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“But then, science is nothing but a series of questions that lead to more questions, which

is just as well, or it wouldn’t be much of a career path, would it?”

Terry Pratchett



Abstract

This thesis investigates the properties of intermittent transport on the Mega Amp Spher-

ical Tokamak (MAST) both through dedicated experiment and numerical modelling.

A ball pen probe (BPP) diagnostic has been operated on MAST to make a direct mea-

surement of the plasma potential at the plasma boundary. By combining the BPP

measurement with the floating potential from a Langmuir probe (LP) a measurement

of the electron temperature is obtained, which is compared to the Thomson scattering

diagnostic allowing for the accuracy of the BPP measurement of plasma potential to be

assessed. From the measurement of the plasma potential the profile of the radial elec-

tric field is extracted. Using a third LP on the probe face fluctuation statistics of the

ion-saturation current are determined. The skewness of the Isat fluctuations is shown

cross zero at the point where the radial electric field gradient maximizes. This suggests

that intermittency in the plasma edge of MAST is produced at the centre of the radial

shear layer, with negative skewness inside and positive skewness outside the centre of

the shear layer.

The intermittent transport in the scrape-off layer (SOL) can be approximated as the

result of successive discrete transport events arising from the motion of individual fil-

aments. The BOUT++ framework has been used to model the motion of individual

filaments in a geometry representative of the SOL of MAST. The SOL geometry gives

rise to gradients in the filament parallel to the magnetic field through two mechanisms;

enhanced diffusion in the divertor region and resistive ballooning. Parallel gradients

cause a departure of the filament dynamics from 2D predictions due to the presence of

the Boltzmann response in 3D. This provides a mechanism for poloidal motion of the

filament alongside a breakdown into resistive drift-wave turbulence with the turbulent

scale-length determined by the level of diffusion present in the system. The motion of

the filament in the direction normal and bi-normal to the magnetic field line is shown

to be approximately decoupled. The velocity of the filament in the normal direction

displays a scaling with temperature and filament size congruent with the resistive bal-

looning or ideal interchange regimes of 2D blob dynamics whilst the bi-normal velocity

of the filament adheres to a scaling based on the Boltzmann response. An increase in

temperature is shown to provide a slight increase in the net radial transport of particles

due to the motion of the filament at the outboard midplane, however an increase in

filament width provides a far stronger increase in particle transport. This suggests that

for MAST the filament with is the main parameter determining the level of intermittent

particle transport in the SOL.
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Chapter 1

Introduction

1.1 Energy demand

Global energy demand is evolving at a quickening rate. At present OECD (Organization

for Economic Co-operation and Development) countries are responsible for 41% of global

energy consumption [2]. By 2040 total global energy demand is projected to grow by up

to 30% [3] however the energy demand of OECD countries will remain relatively constant,

despite their continued economic growth. The large growth in energy demand will be

primarily due to rising populations and economic development in Asia and Africa. China

in particular will contribute > 30% of this growth in energy demand whilst energy usage

in India, Indonesia, Brazil and the Middle East with grow even faster than that of China

[4]. The rise in electricity demand is even more drastic. Figure 1.1, taken from [3], shows

a projected 80% increase in electricity demand by the year 2040. Fossil fuels will provide

the primary fuel source for electricity production particularly through coal and gas, with

oil taking a secondary position as reserves begin to dwindle and expense increases. Fossil

fuel reserves are limited and in the long term this presents the problem of excessively high

cost for electricity production driven by excessively low fuel supplies. A more immediate

problem is the impact of fossil fuels on the environment via greenhouse gas emission;

the increasing global dependence on fossil fuels is in striking contrast to the global goal

of reduced CO2 emissions. Consequently electricity production via fossil fuels must be

replaced with sustainable, safe and environmentally responsible options. This problem

can only be addressed through a portfolio of options including renewables (solar, wind

and hydro power), nuclear fission and carbon capture and sequestration (the process

of capture and long-term storage of CO2 from the atmosphere). Renewable sources

for electricity production suffer from high levels of inefficiency which limit their impact

on the global scale. Nuclear fission has the potential to play a key role in electricity
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Figure 1.1: Exxon Mobil projection of electricity demand categorized by the con-
sumption of various fuels for electricity production in BTUs (Billion Tons of Oil), taken

from [3]

production yet it remains a politically undesirable option due to the inherent risks which

have been evidenced by a number of large scale disasters in the past few decades. With

fast-breeder technology yet to reach maturity the fuel reserves for nuclear fission are not

vastly more abundant than fossil fuels themselves [5], yet the development of breeder

technology will greatly aid in the proliferation of nuclear material, making fission an even

less desirable energy source. Nuclear fusion offers the prospect of a safe, environmentally

friendly energy source with practically limitless fuel resources. The waste product from

the nuclear fusion process is Helium which is not harmful to the environment. Given

that future energy policy is being driven by the need for reductions in CO2 this makes

fusion a desirable source of energy. The fuel for nuclear fusion consists of two isotopes

of Hydrogen, Deuterium and Tritium. Approximately 1 in every 6400 Hydrogen atoms

in naturally occurring water is actually Deuterium, which can be readily extracted and

stored. Tritium, on the other hand, is not a naturally occurring isotope. With a half-life

of approximately 12 years Tritium is difficult to create and store. Instead nuclear fusion

reactors will breed Tritium through nuclear reactions with Lithium. Once again Lithium

can be harnessed from naturally occurring sea water making it a practically limitless

fuel. The main chemical reaction occurring during the combustion of fossil fuels is the

oxidization of hydrocarbons where the bonds between hydrogen and carbon atoms in a

hydrocarbon are broken and the atoms rebond with oxygen to form water and carbon

dioxide. These reactions are exothermic (the bonds formed with oxygen atoms require

less energy than the hydro-carbon bonds, thus the reaction produces excess energy).
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Taking methane in natural gas as an example the chemical reaction is

CH4 + O2 → CO2 + H2O (1.1)

The approximate energy content in the constituents of the reaction are [6] 1640kJ/mole

+988kJ/mole → 1598kJ/mole +1840kJ/mole which gives a total energy released in the

reaction of 810kJ/mole or 50.6kJ/g. By contrast the energy output in the neutron

from a single D-T fusion reaction is [7] 14.1MeV or 2.26×10−12J. Thus if the entirety

of 1g of D-T fuel can be forced to fuse the energy output would be ≈ 2.7 × 108kJ/g.

Consequently for the energy produced in fusing 1g of D-T fuel, approximately 5 tonnes

of natural gas must be burnt. This monumental potential drives interest in nuclear

fusion and underpins the global investment in its research.

1.2 Nuclear Fusion

Nuclear fusion is the process by which two light nuclei combine to form a heavier nucleus

and by-products. The deficit in rest-mass energy between the reactants and the products

is converted into kinetic energy in the products which can be harnessed to produce usable

energy output. Fusion occurs when the reactants can become sufficiently close that the

mutual Coulombic repulsion between them is overcome by the attractive strong nuclear

force. Quantum tunnelling of the nuclei through the Coulomb barrier can facilitate

a small percentage of reactions occurring with separations greater than required to

overcome the Coulomb barrier. This is illustrated in figure 1.2. Given the huge energy

yield available from nuclear fusion, this small percentage is enough to allow for significant

energy gain under controlled conditions.

The reaction rate of the fusion reaction can be calculated from the distribution functions

of the reactant species by [7]

R =

∫ ∫
σ
(
v′
)
v′f1 (v1) f2 (v2) d3v1d

3v2 (1.2)

where v′ = v1−v2 and σ is the reaction cross-section. The cross-section parametrizes the

likelihood of a reaction to occur by an effective area over which the reaction occurs. The

larger the cross-section, the more likely the reaction to occur. Physically this describes

the number of reactants with a high enough velocity to overcome the Coulomb barrier

per unit time per unit volume. For Maxwellian distributions the reaction rate is often

written in a simpler form given by

R = n1n2〈σv〉 (1.3)
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Figure 1.2: Schematic illustration of the Coulomb barrier. Only nuclear with kinetic
energies surpassing the Coulomb barrier are subject to fusion. A small fraction of
nuclei can fuse with energies smaller than the barrier with the assistance of quantum

tunnelling. All other nuclei are repelled.

.

where n1,2 is the number density of reactant nuclei of species 1 and 2. 〈σv〉 is given by

〈σv〉 = 4π
( µ

2πT

) 3
2

∫
σ
(
v′
)
v′3 exp

(
−µv

′2

2T

)
d3v′ (1.4)

where µ = m1m2/(m1 +m2) is the reduced mass of the two nuclei and T is the temper-

ature of the nuclei (assuming they are strongly thermally coupled). For reactions that

occur at energies below the Coulomb barrier the quantum tunnelling effect is the only

means by which fusion can occur and the reaction cross-section is proportional to the

tunnelling probability[8];

σ ∼ exp

(
−2πZ1Z2e

2

~v′

)
(1.5)

More generally the fusion cross-sections are calculated by parametrizations of existing

experimental data. Figure 1.3, taken from [7], shows 〈σv〉 for the most promising fusion

reactions. The fusion reactions with the highest probability of occurrence at sustainable

temperatures are the D-T, D-D and D-He3 reactions shown below:

1D
2 + 1T

3 → 2He4 + 0n
1 + 17.6MeV (1.6)

1D
2 + 1D

2 → 2He3 + 0n
1 + 3.27MeV (1.7)

1D
2 + 1T

3 → 1T
3 + 1H

1 + 4.03MeV (1.8)

1D
2 + 2He3 → 2He4 + 1H

1 + 18.3MeV (1.9)
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Figure 1.3: Fusion cross-sections taken from [7] showing that the reaction of Deu-
terium and Tritium is the most promising for significant amounts of fusion.

where D represents a Deuterium nucleus, T represents a Tritium nucleus and He3,4 are

isotopes of the Helium nucleus. n represents a lone neutron and H represents a Hydrogen

nucleus (i.e. a lone proton). It is clear from figure 1.3 that the D-T reaction is orders

of magnitude more likely to occur at attainable energies. Interestingly the cross-section

for H-H fusion, which is responsible for the nucleation of the stellar fusion cycle, is

approximately 1026 times smaller than D-T fusion. The energy that arises from the

fusion reaction is calculated from the deficit in mass across the reaction. For D-T fusion

this is given by

∆m = mD +mT −mHe −mn (1.10)

= (2− 0.000994)mp + (3− 0.006284)mp − (4− 0.0027404)mp − (1 + 0.001378)mp

= 0.01875mp

where mp = 1.6726 × 10−27kg is the proton mass. From mass-energy equivalence this

mass deficit results in an energy gain of

∆E = ∆mc2 = 2.819× 10−12J = 17.6MeV (1.11)

To ensure that both energy and momentum are conserved through the reaction the

neutron carries approximately 4/5 of the energy as kinetic energy, at 14.1MeV, whilst

the alpha particle carries away 3.5MeV. The energy in the neutron is the practically

usable energy. In fusion reactors this neutron will heat a water blanket surrounding the

fuel which will then drive a steam turbine to generate electricity.
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To maintain the fusion process Tritium will be bred from Lithium. One prominent

reaction allowing for Tritium breeding is

3Li6 + 0n
1 → 1T

3 + 2He4 (1.12)

which leads to a cyclic fusion reaction

1D
2 + 1T

3 → 2He4 + 0n
1

0n
1 + 3Li6 → 1T

3 + 2He4 (1.13)

1D
2 + 1T

3 → 2He4 + 0n
1

and so on. A balance must then be struck between the use of neutrons for Tritium

breeding and the harvesting of energy from neutrons.

In the sun intense gravitational pressure at its core provides the conditions required to

achieve fusion. Controlling this process on earth requires the confinement of the fuel.

With temperatures exceeding 100 million K required for fusion to occur, clearly this

confinement cannot be attained simply by placing the fuel inside a material container.

As such other methods of confinement are required. There is a variety of methods for

controlled nuclear fusion. The two most prominent and promising methods are iner-

tial confinement fusion (ICF) and magnetic confinement fusion (MCF). In ICF a small

capsule of fuel is compressed on ns time-scales to extreme temperatures and densities

[9, 10]. To achieve the compression the fuel is irradiated by very high energy lasers

or X-rays. The radiation causes an ablation surface on the exterior of the capsule to

expand explosively outwards. Conservation of momentum then causes the interior fuel

of the capsule to implode, behaving like a spherical, ablation driven rocket. This process

is highlighted in figure 1.4. A fuel capsule consists of a high density ablation surface

surrounding a low density fuel, usually composed of a frozen D-T mix. Both the capsule

and the radiation deposition must be extremely symmetric to minimize the impact of

fluid instabilities and ensure a uniform heating of the central fuel. ICF is a promising

approach to fusion which is evidenced by the development of the National Ignition Facil-

ity (NIF)[11]. The NIF, housed at Lawrence Livermore National Laboratory, is a 1.8 MJ

laser facility which focusses 192 laser beams onto a gold cylindrical container housing

the fuel capsule. The irradiated gold then bathes the fuel in high energy X-rays which

provide the drive for ablation. This approach is known as indirect drive [9, 10]. The

goal of any fusion method is to achieve ignition; a state where the heating of the fuel

is self-sustained by energetic α particles born out of the fusion reaction itself. In early

2014 the NIF took an important step towards ignition by demonstrating energy yield

above the level of energy deposited into the fuel [12]. This is shown in figure 1.5 taken
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Figure 1.4: Schematic of the ICF principle. Inertia confines the fuel whilst radiation
causes an implosion of the fuel by rocket action. A dense hotspot of fuel forms where

nuclear fusion can occur.

from [12]. This result demonstrates the occurrence of self-heating in the fuel capsule,

  

Figure 1.5: Energy yield from a series of NIF shots showing a yield above the energy
deposited into the fuel in 2014.

however it does not represent energy gain. The energy gain shown is in reference to

the energy deposited into the central hotspot of the fuel and does not account for the
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energy contained in the ablator, ∼ 150kJ, or the energy deposited from the laser to the

capsule initially, ∼ 1.8MJ. To achieve net energy gain the NIF needs to achieve at least

two orders of magnitude increase in its energy yield. Furthermore the complexity of

operating a machine such as the NIF makes any sort of reactor concept based on ICF

difficult. Each fuel capsule must be fabricated by hand, however in a reactor individual

capsules need to be provided to the machine every second. Therefore, whilst the ICF

concept has demonstrated promising features, it is worth pursuing other avenues of fu-

sion in parallel.

The MCF principle exploits the charged nature of the fusion fuel under extreme tem-

perature and pressure. In these conditions electrons are liberated from their atoms and

the fuel consists of freely moving electrons and ions. This state of matter is called a

plasma and will be described later in this chapter. In a magnetic field charged particles

are subject to a Lorentz force;

F = Ze

(
E +

1

c
v×B

)
(1.14)

In the absence of electric fields, projecting equation 1.14 onto B shows that charged

particles may move freely along magnetic field lines but are restricted in the plane per-

pendicular to the magnetic field. This means that, through careful design of the mag-

netic field, the plasma can be confined in a vacuum permeated by magnetic fields. The

structure of the confining magnetic field is constrained on a fundamental level by two

well known theorems: The ’hairy ball’ theorem by Brouwer [13], and the Virial theorem

[14] first proposed by Clausius in 1870. The hairy ball theorem states that any tangent

vector on a sphere must contain at least one null point. This is often paraphrased with

the problem of combing a ’hairy ball’. It is impossible to comb the hair such that every

strand lies flat to the surface and a cow-lick will always appear. The hair is analogous to

a tangent vector field on the surface of the ball. Plasma confined in a magnetic sphere

can escape through the magnetic null created at the cow-lick. The problem does not

arise for toroidal configurations (it is easy to comb the hair of a ’hairy donut’) which

can therefore confine a plasma indefinitely in the absence of internal processes trans-

porting the plasma across the magnetic field. The Virial theorem provides a calculation

for average kinetic energy of a system governed by potential forces. In the case of an

electromagnetic thermodynamic system, such as a plasma in a magnetic field, it shows

that in the case with no bounding walls of pressure (either thermodynamic or magnetic)

the system will expand indefinitely and fail to reach equilibrium. Consequently the con-

finement of a plasma requires externally applied pressure, through the application of

external magnetic fields.

There are many magnetic confinement approaches which satisfy the hairy ball and Virial

theorems. The most notable of these are the reversed field pinch [15], the spheromak
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[16], the stellerator [17] and the tokamak[7]. In each case a toroidal configuration pro-

vides closed magnetic field lines with no magnetic null points. Of these approaches the

tokamak is the most mature and widely studied.

1.3 The Tokamak

The tokamak (from the Russian “TOroidal’naya KAmera v MAgnitnykh Katushkakh”

meaning “Toroidal chamber in magnetic coils”) was originally conceived by Igor Tamm

and Andrei Sakharov in the early 1950s with the first tokamak, T-1, built at the Kur-

chatov institute in Moscow and starting operation in 19581. That year also marked

the first open conference on fusion (The 2nd International Conference on the Peaceful

use of Atomic Energy, often referred to as the ’Atoms for Energy’ conference, Geneva,

1958) and is often regarded as the birth year of the tokamak. 10 years later, in 1968 at

the IAEA conference in Novosibirsk, results from the T-3 tokamak, an upscaled version

of T-1, from the Kurchatov institute showed internal temperatures far outperforming

anything achieved in the rest of the world. This prompted a team from the UK, led by

Dr Nick Peacock, to travel to the Kurchatov institute in Russia to independently verify

these claims. This was the first international collaboration in fusion research and con-

firmed the tokamak as the leading candidate towards achieving temperatures suitable

for magnetically confined fusion. Since the early days of tokamak research a number of

machines have been built in a number of different countries. The next stage in tokamak

research, ITER, is currently under construction in Cadarache, France, and is hoped to

provide the stepping stone needed to bring the tokamak to reactor scale.

The principle components of the tokamak are an externally applied toroidal magnetic

field, produced through coils wrapped around a toroidal vacuum chamber, and an induc-

tively driven poloidal magnetic field. To produce the poloidal magnetic field a solenoid is

placed at the centre of the torus. By ramping the current in the solenoid a time-varying

magnetic flux is produced. This cuts through the plasma and induces a toroidal current

in the plasma. This current then produces a poloidal magnetic field encircling it. When

the externally applied toroidal magnetic field and the induced poloidal magnetic field

are superposed a helical magnetic field is produced. This process is illustrated in figure

1.6. If the plasma is solely confined by the toroidal field and the induced poloidal field

it is vertically unstable; any small vertical push to the plasma will result in its vertical

acceleration, eventually leading to the plasma hitting the floor or ceiling of the vacuum

vessel. To prevent this extra poloidal field components are produced by the poloidal field

coils shown in figure 1.6. The induced current in the plasma has a secondary function

as a source of heating. The finite resistivity of the plasma results in Ohmic heating as

1https://www.efda.org/newsletter/50-years-of-tokamaks
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Figure 1.6: Schematic diagram of a tokamak showing the formation of the helical
magnetic field from an externally applied toroidal field and an inductively produced

poloidal magnetic field. Image courtesy of the JET image database.

the current is driven. As the plasma heats collisions among the plasma constituents

become rarer and its resistivity drops, limiting the effect of Ohmic heating. To further

heat the plasma other methods are required such as neutral beam heating, where high

energy neutral particles exchange energy with the plasma through collisions [18, 19], and

I/ECRH where the plasma is heated through a resonant interaction with an externally

driven electromagnetic wave fired into the plasma [20, 21]. The requirement of current

induction presents a further limit for future reactor scale tokamaks. A reactor will have

to run in steady state to make electricity economically. The inductive current drive re-

quires a ramped current in the central solenoid. The current ramping can only continue

to the limits of the power supplies used to perform the ramp and consequently cannot

be operated as a steady state [22].

The goal of the tokamak is to reach a state of ’ignition’ where the fusion reactions are

sustained solely by heating provided by fusion born α particles. The criteria for reach-

ing ignition conditions in a tokamak is often quantified by the fusion triple product [7],

nTτE , where n is the characteristic plasma density, T is the characteristic plasma tem-

perature and τE is the energy confinement time (the characteristic time taken for energy

from the plasma core to leave the plasma). In a tokamak reactor the power loss from

the plasma must be compensated by either external heating or heating by α particles;

PL = PH + Pα (1.15)
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Power is continuously lost by the plasma at a rate of PL = W/τE where W is the total

internal energy of the plasma. The total internal energy of a plasma with three degrees

of freedom and equal densities of ions and electrons is

W =

∫
3nTdV = 3nTV (1.16)

where nT represents volume averaged quantities now. The heating power due to α

particle heating is given by the fusion rate, equation 1.3, times the energy in each α

particle, Eα = 3.5MeV. Taking nD = nT = n/2 gives

Pα =

∫
1

4
n2〈σv〉EαdV =

1

4
n2〈σv〉EαV (1.17)

At ignition the plasma will be self-sustained by α heating meaning that external heating

power , PH = 0. Furthermore at temperatures of significance for fusion, i.e. the range

10− 20keV, 〈σv〉 can be parametrized approximately as [7]

〈σv〉 ≈ 1.1× 10−24T 2(m3s−1) (1.18)

Now evaluating equation 1.15 gives a condition on the fusion triple product required for

ignition in a tokamak of

nTτE ≥ 5× 1021(keV sm−3) (1.19)

The most direct route to achieving ignition is to increase the confinement time of energy

in the tokamak, τE . The transport of heat and particles out of the plasma is set by

internal physics and is hard to affect directly. By increasing the volume of the plasma

the distance of travel required for energy to reach the plasma edge increases thereby

increasing the confinement time of energy. This is the approach taken in the tokamak

community and is reflected in the increase in plasma major radius over time from the

first diverted tokamak, ASDEX [23], with R = 1.62m, through the JET tokamak with

R = 3m [7] to the future tokamak ITER [24] with R = 6.2m. On ITER α particle

heating will provide a consistently strong heating source for the first time in a tokamak.

Particles in a tokamak are confined on the helical magnetic field lines produced in the

vacuum vessel. The magnetic field lines wind around the torus and form closed surfaces.

On these closed surfaces the flux of the poloidal magnetic field is constant, giving the

surfaces the name of ’flux surfaces’. The surfaces form concentric toroids which encircle

the central solenoid. The helicity of the magnetic field on a given surface is characterised

by the safety factor, q = n/m where m is the number of times a magnetic field line

wraps around the poloidal direction whilst n is the number of times it wraps around

the toroidal direction. Perfect confinement would be achieved if the plasma remained

on these surfaces, unfortunately in reality this is not the case. Collisions, turbulence

11



and particle drifts all act to move plasma from surface to surface. If this is uncontrolled

then the plasma will eventually hit the vessel walls potentially damaging important

components of the tokamak. To prevent this unwanted interaction the plasma-material

interface must be controlled

1.3.1 Diverted tokamaks

The control of the interface between the plasma and material surfaces in early tokamaks

was through the use of a ’limiter’. A limiter is simply a piece of material protruding from

the wall of the machine designed specifically for the plasma to interact with. When large

fluxes of plasma are incident on material surfaces a significant number of the surfaces

atoms can become liberated from the surface and enter the plasma as impurities [25].

Electronic transitions in partially ionized impurities radiate energy as electromagnetic

waves which then act to cool and degrade the plasma. This is an unfavourable situation

and as a result an alternative to the limiter, the divertor was developed. The notable

feature of a divertor tokamak is a null point in the poloidal magnetic field, which forms

an ’X’ in the poloidal plane. This X-point is induced by running a current parallel to

the plasma current below the plasma itself. The superposition of the two poloidal fields

includes a null point between the two currents. This is shown schematically in figure

1.7. By placing a material surface intersecting the poloidal magnetic field lines below the

X-point the material interface with the plasma can be moved away from the core plasma.

The benefit of this approach was immediately apparent to the tokamak community. The

first tokamak to adopt the divertor was the ASDEX tokamak [23] which demonstrated

that a regime of enhanced energy confinement can be accessed with a large amount of

plasma heating [26]. This is called H-mode and is characterised as a state of reduced

transport allowing access to higher core pressures. This is contrasted by L-mode, where

radial transport is large and plasma pressures are reduced. Importantly H-mode was

only detected in diverted plasmas, and never in limited plasmas.

With a well defined plasma-material interface, either through the use of a limiter or

a divertor, the plasma is split into two regions depending on whether magnetic field

lines close in on themselves, or intersect the material surface. The closed region is the

tokamak core. The open region is called the scrape-off layer (SOL) because it is the

region where particles and energy from the plasma are ’scraped off’ onto the divertor

or limiter target. These two regions are separated by a single magnetic surface called

the separatrix. The separatrix is the surface that contains the X-point and is the only

magnetic surface that contains a magnetic null point.
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Figure 1.7: Schematic of X-point generation in a tokamak. An external current
parallel to the plasma current generates a poloidal magnetic field null which leads to
the formation of an X-point. Placing a material surface below the X-point allows for
the controlled exhaust of the plasma whilst reducing the impurity dilution of the hot

core plasma.

1.3.2 The scrape-off layer

The scrape off layer (SOL) is the name given to the region of plasma outside the sepa-

ratrix that is in contact with a material surface. Topologically, magnetic field lines in

the SOL are ’open’ meaning that they never connect back onto themselves, instead they

intersect the target surface. Plasma density and heat is transported from the core into

the SOL by cross-field transport processes. In the SOL it is then efficiently transported

along magnetic field lines and deposited on material surfaces. This process is described

in figure 1.8. The steady state of the SOL arises from a balancing between the cross-field

transport of plasma acting as a source and the parallel advective flow of the plasma to

material surfaces, acting as a sink. This can be expressed as a simple diffusion-advection

equation of the form [25]

d

dr
D⊥

dn

dr
+ v||

dn

ds
= 0⇒ D⊥

d2n

dr2
≈ −ncs

L||
(1.20)

where a constant diffusion coefficient has been assumed, and modest gradients parallel

to the magnetic field line allow the gradient to be approximated as ∇|| ∼ 1/L|| where

L|| is the distance to the target. The typical flow speed of particles along the magnetic
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Figure 1.8: Schematic diagram of SOL formation. Cross-field processes transport
heat and particles from the core plasma onto open magnetic field lines, where parallel

streaming motion efficiently transports them to material surfaces.

field line is taken as the sound speed, cs. The radial coordinate r has its origin at the

seperatrix. This equation is solved by a density profile of the form

n (r) = nS exp

(
− r

λSOL

)
(1.21)

where nS is the density at the separatrix and the SOL width is given by

λSOL =

√
D⊥L||

cs
(1.22)

Taking typical SOL parameters of D⊥ ∼ 1m2s−1, cs ∼ 50kms−1 and L|| ∼ 50m gives a

typical SOL width of λSOL ∼ 3cm. Compared to the radius of the core plasma, typi-

cally on the order of 1m, the SOL is a very thin region. This is fortuitous as it allows

walls to be very close to the plasma without contacting it. Given that cost of magnetic

real-estate inside the vacuum vessel, primarily associated with the cost of building the

toroidal magnetic field coils, will be on the order of millions to billions of dollars per m3

in reactor scale tokamaks a close fitting wall is highly desirable. The thinness of the SOL

also presents a major issue however. All power lost from the core plasma is transported

into the SOL and to material surfaces in a thin radial band. The consequential power
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flux density to the material surface is extremely high. Predictions for ITER H-mode

plasmas, based on experimental scalings from current tokamaks, suggest that the SOL

width has no dependence on machine size [27]. If this proves to be the case then the

enormous heating power expected in ITER will be deposited in a very thin SOL. Mate-

rial surfaces will be unable to handle such high heat fluxes and this is an open issue for

the operation of ITER and future devices.

In reality cross-field transport across the separatrix is rarely diffusive and usually dom-

inated by anomalous transport associated with turbulence. A review of these processes

will be given in chapter 2. Furthermore interactions with the material surface can play

a significant role in the SOL behaviour. When plasma is incident on the divertor tar-

get ions can become weakly bound to the surface. As other ions bombard the surface

the weakly bound ions can once again become dissociated, entering the plasma as a

neutral particle and subsequently re-ionizing [25]. The steady state that results from

this process is called recycling. If the mean-free-path of neutral-plasma collision is long

then the recycled neutrals are re-ionized in the plasma core and the SOL is unaffected,

however if the collisional mean free path is short re-ionization can occur within the SOL,

affecting the density distribution of the SOL itself. If the SOL is sufficiently cold then

ions and electrons in the plasma can recombine without the need for material surface

interaction. Such recombination can produce a ’detached’ divertor where a region of

partially ionized plasma directly precedes the target surface [28]. Detachment can be a

favourable situation since fluxes to targets are strongly reduced [29], yet it significantly

complicates the physics of the SOL.

The SOL represents the boundary between the core plasma and the outside world. Fur-

thermore it determines the exhaust of heat and particles from the plasma. The exhaust

of heat from the plasma presents a problem for future fusion reactors, the significance

of which is reflected in the EFDA roadmap to fusion which concludes that2.

A reliable solution to the problem of heat exhaust is probably the main chal-

lenge towards the realisation of magnetic confinement fusion

1.3.3 The future of the tokamak: ITER and DEMO

In 1987 an agreement was made between the European Union, Japan, the Russian Fed-

eration and the USA to initiate the conceptual design of ITER (originally an acronym of

International Thermonuclear Experimental Reactor, now recognised as a proper noun),

the goal of which is to demonstrate the scientific and technological feasibility of fusion

energy for peaceful purposes [30]. The ITER design was originally completed in 1992,

2Page 8, paragraph 2. Accessible at https://www.efda.org
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though has since been scaled down [24]. The present parameters of the ITER design

are given in table 1.1, taken from [24]. The parameters have been compared to those on

JET [7], the worlds largest tokamak at present. ITER represents a major step forwards

Parameter ITER attribute JET attribute

Major Radius 6.2m 3m
Minor Radius 2.0m 1.25m

Plasma volume ∼800m3 ∼80m3

Plasma current 15MA 3MA
Toroidal magnetic field 5.3T 3.5T

Fusion power 500MW –
Fusion gain 10 –

Table 1.1: Table of ITER parameters compared to those of JET.

in size, capability and technological complexity. The design of ITER, taken from [24] is

shown in figure 1.9. ITER will use superconducting material in its magnetic field coils

  

Figure 1.9: The design of the ITER tokamak [24]

made from Niobium-Tin (Nb3Sn) for the solenoid and toroidal field coils, and Niobium-

Titanium (Nb-Ti) for the poloidal field coils. It will act as a test of Lithium breeding

technology housed in breeder blanket modules around the vacuum vessel. The proof of

Lithium breeding technology on ITER is a key milestone on the path to fusion energy.

ITER will provide a key stepping stone towards a demonstration fusion reactor (DEMO)

which will act as a proof-of-principle by demonstrating the feasibility of fusion providing

16



electricity for commercial use. The design of DEMO is not yet determined and will

certainly depend on the results from ITER, as well as other supporting tokamaks such

as JET.

1.3.4 The Mega-Amp Spherical Tokamak (MAST)

MAST is an example of a spherical tokamak; a tokamak design, based initially on the

spheromak concept, which confines the plasma tightly to the central solenoid to minimize

the magnetic field strength required to achieve significant core pressures. The spherical

tokamak concept was first proposed in 1986 [31] and was shown theoretically to engender

the prospects of a compact nuclear fusion device at moderate cost. Figure 1.10 shows

schematically the geometrical difference in the design of the spherical and conventional

tokamak plasma. The first spherical tokamak, the Small Tight Aspect Ratio Tokamak

R r

R
r

Convenvional
R >> r

Spherical
R~r

Figure 1.10: A schematic comparison between the spherical tokamak geometry, where
R ∼ r, and the conventional (large-aspect-ratio) geometry where R >> r. R is the

machine major radius and r is the plasma minor radius.

(START) was built at Culham Centre for Fusion Energy (CCFE) beginning operation in

1991 [32, 33]. It was designed as a proof of principle of spherical tokamak confinement of

a hot plasma but quickly proved more successful. It showed extremely good confinement,

quantified by the measure

βT =
2µ0

V B2
0

∫
pdV (1.23)
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where V is the plasma volume, B0 is the toroidal magnetic field at the magnetic axis

and p is the plasma pressure. βT shows how much pressure can be confined in a plasma

for a given magnetic pressure. Higher βT means higher confinement. In general the βT

accessible to a tokamak is limited by the presence of violent plasma instabilities[34]. The

limited value of βT is increased as the aspect-ratio of the tokamak is decreased. START

broke the record for βT , set at 12% by the DIII-D conventional tokamak, by achieving

a βT ≥ 30% [35]. Furthermore START was shown to achieve H-mode [36] providing

it with all the attributes of the much larger conventional tokamaks in operation at

the time. The successor of START was MAST. MAST was designed as an enlarged

version of START [37] ran its first physics campaign between January and June 2000

[38]. Table 1.2 gives the parameters of a typical MAST discharge [39]. The MAST

Parameter MAST START

R (Major radius) 0.85m 0.32m
r (Minor radius) 0.65m 0.25m

V (plasma volume) 10m3 1m3

BT (Toroidal field) 0.51T 0.31T
Ip (Plasma current) 1MA 0.31MA

Table 1.2: Table of operational parameters for MAST and START

tokamak is a very open design with poloidal magnetic field coils suspending from the

wall of the vacuum vessel. This design has two major advantages: It allows for a greater

diagnostic coverage of the plasma and it allows for flexible shaping of the plasma itself.

Figure 1.11 shows an engineering design of the MAST vacuum vessel, as well as the

three major plasma configurations available. These are the Upper/Lower Single Null

and the Connected Double Null configurations. Toroidal magnetic field coils encompass

the vessel. The P1 coil is the central solenoid which is responsible for driving the plasma

current and initiating the plasma itself [40]. Coil P3 aids in this process to reduce the

flux requirement on P1. The P4, P5 and P6 coils are responsible for plasma shaping

and motional stability. Coil P2 generates the X-point which creates the divertor region

of the plasma.

The spherical tokamak concept has been suggested as a complimentary pathway to a

fusion reactor[41]. The smaller size and higher operating efficiency of the ST design

makes it an economical option for a fusion reactor. Other applications of the ST design

for future machines are:

• A volumetric neutron source in support of ITER and DEMO [42]. This is a high

powered ST machine used to test the effect of extreme neutron irradiation on wall

materials.
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MAST vessel U/LSN CDN

Figure 1.11: The MAST vacuum vessel (left) and the major plasma configurations
available to MAST; the Upper/Lower Single Null and Connected Double Null configu-

rations. Images taken from [40].

• A components test facility[43]. This has a wider reaching aim and is designed to

expose modules for testing in a fusion reactor relevant plasma environment.

1.4 Plasma Physics

The word plasma, derived from the Greek meaning ’formed or moulded’, was first used

to describe the clear liquid in blood left after the removal of all corpuscular material. In

1922 the same word was adopted by Irving Langmuir to describe the state of electrons,

ions and neutrals in an ionized gas[44]. Langmuir originally postulated that the charged

particles were the equivalent of blood cells suspended in a fluid solution. In fact the

ions and electrons themselves are the fluid and no plasma, in the original sense exists.

The term ’plasma’ has since been adopted to describe the state of matter created in

Langmuir’s experiments consisting of ions, electrons and neutrals with behaviour de-

termined through collective interactions as opposed to interactions between individual

constituents. In fact the term plasma can be extended to describe any abstract system

of many constituents dominated by collective behaviour rather than binary interactions

19



including, for example, neural networks in the brain and stock-markets [45].

A large proportion of the matter in the known universe (estimates ranging from 97 =

99%) is thought to exist as in the plasma state [46]. This is not apparent on earth be-

cause the conditions proficient for supporting life are not proficient for matter to adopt

the plasma state. This can be seen by examining the Saha equation[46]:

ni
nn
≈ 2.4× 1021T

3/2

ni
exp

[
− εi
kBT

]
(1.24)

where ni,n is the number density of ions and neutrals, T is the temperature in K and εi is

the ionization energy. The Saha equation describes approximately how much ionization

can be expected in a gas at thermal equilibrium with temperature T due to ionizing

collisions. For conditions on Earth, T ∼ 300K, and Nitrogen in air has a density roughly

3 × 1025m−3 with an ionization energy 14.5eV. The fraction of ionized Nitrogen atoms

is then
ni
nn
∼ 10−122 (1.25)

By contrast in many astrophysical environments temperatures are high and gasses be-

come easily ionized. This is also the case in a tokamak, where temperatures routinely

exceed 10, 000, 000 − 100, 000, 000K and therefore the plasma state is adopted by the

fuel in a tokamak.

1.4.1 Definitions of a plasma

Chen [46] defines a plasma as

A quasineutral gas of charged and neutral particles which exhibits collective

behaviour.

Quasineutraility is the requirement that, despite the charges of the individual con-

stituents of the plasma, the plasma as a whole remains approximately neutral. Globally

this arises because the number of electrons arising in plasma formation is exactly equal

to the number of electrons lost by the ions, hence the charge due to electrons is exactly

opposite to the charge from ions. On smaller length scales though the plasma remains

quasineutral. Within a plasma a net imbalance of ions over electrons may occur, due to

random thermal fluctuations, producing a net charge excess in the form of a potential

well. Electrons react extremely efficiently to this charge imbalance and are attracted

into the well (or repelled if the charge imbalance is negative) and neutralize the charge

imbalance. In a thermal plasma some of the electrons will have sufficient energy to es-

cape the well allowing the charge imbalance to leak into the plasma slightly. The natural
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length scale over which such a charge imbalance can exist is the Debye length, λD, given

by

λD =
ε0kBT

n0e2
(1.26)

The Debye length is used to define a quantity known as the plasma parameter, given by

ND =
4πλ3

Dn

3
(1.27)

which is the number of electrons that inhabit a sphere of radius the Debye length. If

ND is too small then there will not be enough electrons in close enough proximity to a

potential well to efficiently neutralize it and the plasma can not be quasi-neutral. The

conditions for a quasineutral plasma then become:

λD << 1 (1.28)

ND >> 1 (1.29)

Given that bare charges in a plasma can only exists on length scales below λD, if the

latter condition is violated the charge density can no longer be viewed as a continuous

function and instead the discrete nature of the charges takes precedence. The population

of the Debye sphere then ensures that the charge density of the plasma has a statistically

significant meaning. Charged particles in a plasma must also remain charged for a

statistically significant period of time. If this is violated then the plasma is a transient

event in an otherwise neutral gas and the motion of the gas is hydrodynamic. For a

typical frequency in a plasma, ω, and a typical collision time between the plasma and

the neutrals, τ , this condition can be expressed as

ωτ > 1 (1.30)

such that processes occur fast enough that the dynamics are associated with the plasma

itself and are not simply hydrodynamic. The conditions 1.28, 1.29 and 1.30 are used to

define a plasma.

1.4.2 Descriptions of a plasma

The most fundamental description of a plasma is on the scale of individual plasma

particles. In a magnetic field charged particles feel a Lorentz force, FL, and obey a

Newtonian equation of motion of the form

mj
dvj
dt

= FL = qj (E + vj ×B) (1.31)
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where vj , mj and qj are the particle velocity, mass and charge respectively with E and B

the electric and magnetic fields that the particle experiences. In the simplest magnetized

case with no electric field and constant magnetic field in the z direction, projecting

equation 1.31 onto the magnetic field B shows that the particle freely streams along the

magnetic field line with a velocity v||. The perpendicular components of equation 1.31

give

vx = v⊥ sin (Ωt) vy = v⊥ cos (Ωt) (1.32)

which describes a gyration of the particle around the magnetic field line with a gyro-

frequency

Ω =
ZeB

m
(1.33)

where the charge qj = Ze and subscripts have been dropped. Integrating the the equa-

tions for vx, vy and vz = v|| = const in time then gives the trajectory of the particle:

x = x0 − rL cos (Ωt)

y = y0 + rL sin (Ωt)

z = z0 + v||t

(1.34)

This orbital motion is a Larmor orbit and has a radius

rL =
v⊥
Ω

=
v⊥m

ZeB
(1.35)

This motion is illustrated schematically in figure 1.12. Larmor orbital motion underpins

x

y

z || B

v||

vy

vx

rL

(x0,y0,z0)

Figure 1.12: Schematic illustration of charged particle motion in a constant magnetic
field with no external electric field. The particle experiences a gyration in the plane

perpendicular to the magnetic field, but is free to stream along the magnetic field.

all motion of charged particles in a magnetized plasma. In principle if the motion of
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every particle could be treated with this level of detail, and the interactions between

all plasma particles could be accounted for a complete description of the plasma would

emerge. Even for very sparse plasmas, with densities ∼ 1015m−3 for example, this

kind of computation requires accounting for many more particles than is feasible. As a

consequence a statistical formulation of the problem is often necessary.

The distribution function, f (x,v, t), measures the probability density for a particle

to exist at time t having a position x and velocity v [7]. The measure fd3xd3v is

the number of particles that inhabit the 6D phase space volume spanned by x,x + dx

and v,v + dv. To ensure conservation of particle number the distribution function is a

conserved quantity such that, in the absence of any external sources, it obeys a continuity

equation
∂f

∂t
= −∇ · (ẋf)−∇v (·v̇f) (1.36)

Using Hamilton’s equations

q̇ = ∂pH, ṗ = −∂qH (1.37)

where q = x is position and p = mv is momentum and H is the Hamiltonian, to expand

the divergence terms allows the conservation equation to be written in advective form

as
∂f

∂t
+ v · ∇f +

F

m
· ∇vf = 0 (1.38)

This is the collisionless Boltzmann equation [46]. Substituting the Lorentz force gives

the Vlasov equation:

∂f

∂t
+ v · ∇f +

Ze

m
(E + v×B) · ∇vf = 0 (1.39)

If collisions play a significant role in the redistribution of f then an extra term is added,

called the collision operator, which depends on the exact type of collision present. This

then results in the more general Vlasov-Focker-Planck equation:

∂fj
∂t

+ vj · ∇fj +
Zje

mj
(E + vj ×B) · ∇vfj = C [fj , fi] (1.40)

This equation describes the evolution of the distribution function for a particle species

j under the influence of the electromagnetic fields E and B and under collisions with

partial species i. This equation represents the starting point for many theoretical studies

of plasmas. The drift-kinetic equation is generated from equation 1.40 under conditions

where f evolves slowly in comparison with the gyro-motion of the particles, and gradually

in space compared to the gyro-radius of the particles[45]. The gyro-kinetic equation is

similar but allows for electromagnetic fields to vary on and below the gyro-orbit length

scale [45]. In each case the fast motion of the Larmor gyration makes the dynamics of
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the system approximately independent of the phase of the gyro-motion, which constrains

one degree of freedom in the system and reduces the problem to 5 dimensions [7].

Typical applications of the VFP equation are too complicated to solve analytically and

numerical techniques are often used. Numerical solutions require some form of spatial

discretization to represent the spatial continuum on a computer. In the VFP equation

there are 6 dimensions requiring discretization. Thus if N nodes per dimension are

used, the total number of nodes required to solve the problem is N6. Hence for even

moderately sized grids, N = 1024 for example, the computational cost of working in

6D quickly becomes inhibitive. Reducing this to 5D, in the case of the drift-kinetic and

gyro-kinetic equations, represents a major reduction in computational cost, but N5 is

still limiting in most cases of interest.

1.4.3 Fluid moments of the kinetic equation

The electromagnetic fields that influence the plasma distribution function in 1.40 are

determined by Gauss’s law

∇ ·E = ρ/ε0 (1.41)

and Amperes law

∇×B = µ0J (1.42)

where E and B are the electric and magnetic fields and ρ and J are the charge and

current densities respectively. The electromagnetic fields are dependant only on the

lowest order moments of the distribution, namely the density and flow velocity of each

plasma species, therefore it is enticing to approach the problem by taking moments of

equation 1.40.

The particles within a confined plasma are characterized to lowest order by the Maxwell-

Boltzmann velocity distribution, fm [47]:

fm ≡ n
( m

2πT

)3/2
exp

[
− m

2T
v2
]

(1.43)

where n is the density, T is the temperature and u is the flow velocity of the plasma. To

derive the properties of the density, n, velocity, u, and temperature T , the distribution

function can be averaged over velocity space yielding the definitions

nj ≡
∫
fj (t,x,vj) d

3vj (1.44)

uj ≡
1

nj

∫
vjfj (t,x,vj) d

3vj (1.45)
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Tj ≡
1

nj

∫
mj

3
(vj − uj)

2 fj (t,x,vj) d
3vj (1.46)

To derive evolution equations for these quantities moments are taken of the VFP equa-

tion, 1.40. The nth moment of the VFP equation is taken by evaluating∫
vnj
∂fj
∂t

d3vj +

∫
vn+1
j · ∇fjd3vj +

∫
vnj
Zje

mj
(E + vj ×B) · ∇vfjd3vj (1.47)

=

∫
vnj
∑
i

C [fj , fi] d
3vj

Evaluating equation 1.47 for the Nth moment gives a moment hierarchy [48]

∂MN

∂t
+∇ ·MN+1 +

Ze

m

[
EMN−1 + MN ×B

]∗
= CN (1.48)

where the Nth moment, MN is an order N tensor constructed by

MN =
1

n

∫
vNfd3v =

1

n

∫
vvv....fd3v (1.49)

and the Nth moment of the collision operator is similarly defined by

CN =
1

n

∫
vN
∑
i

Cd3v (1.50)

In equation 1.48 the starred bracket []∗ indicates symmetrization of the tensor(s) within

the bracket. For N = 1 this has no effect on the bracket contents and for N = 2 this

is just an addition of the bracket contents by its transpose. The moment hierarchy

illustrates the fundamental issue with fluid theory; the evolution equation for the N th

moment of the distribution function will always contain a dependence on the (N + 1)th

moment; hence the system of equations derived by this approach is only closed as n→∞.

The moment hierarchy is valid for N > 0 whilst the zeroth moment of the VFP equation

is evaluated term by term below:

• First term: ∫
∂fj
∂t

d3vj =
∂

∂t

∫
fjd

3vj =
∂nj
∂t

• Second term:∫
vj · ∇fjd3vj =

∫
∇ · (vjfj) d3vj = ∇ ·

∫
vjfjd

3vj = ∇ · (njuj)

where the fact that v 6= v (x) has been exploited.
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• Third term:∫
(E + vj ×B) ·∇vfjd3vj =

∫
fj (E + vj ×B) ·dSv−

∫
f∇v · (E + vj ×B) d3vj

where an integration by parts followed by an application of Gauss’ theorem in v

space has been performed. Assuming that fj → 0 faster than v → ∞ the first

term here is 0. E is assumed independent of v, and writing the second part of the

volume integral in component form

∂

∂vα
vβBγ = 0

shows that the entire term results in 0

• Fourth term: Assuming that no ionization or recombination of the plasma occurs

collisions preserve the particle number and only shift the velocity distribution.

Consequently ∫ ∑
i

C [fj , fi] d
3vj = 0

Thus the zeroth moment equation is the density continuity equation and is given by

∂nj
∂t

+∇ · (njuj) = Sn,j (1.51)

where Sn,j is an external particle source. The first and second moments are evalu-

ated from the moment hierarchy and result in the momentum and energy conservation

equations (the energy conservation resulting from a contraction of the N = 2 moment

equation):

njmj
∂uj
∂t

+ njmjuj · ∇uj +∇pj +∇ ·
←→
Π j = Zjenj (E + uj ×B) + Rj + Sm,j (1.52)

3

2
nj

(
∂

∂t
+ uj · ∇

)
Tj + njTj∇ · uj +∇ · qj +

←→
Π j : ∇uj = Wj + ST,j (1.53)

Sm and ST represent external momentum and energy sources. The pressure tensor is

given by
←→
P j ≡

∫
mjvjvjfjd

3vj = pj
←→
I +

←→
Π j (1.54)

where

p =
1

3
Tr
(←→
P
)

=

∫
m
v2

3
fd3v = nT (1.55)

is the scalar pressure and

←→
Π =

←→
P − p

←→
I =

∫ (
vv− v2

3

←→
I

)
fd3v (1.56)
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is the anisotropic viscosity tensor with
←→
I the identity tensor. The collisional terms are

the ion-electron friction given by

Ri = −Re =

∫
miviC [fi, fe] d

3vi (1.57)

and the frictional heating term

Wj =

∫
mjv

2
j

2
C [fj , fi] d

3vj (1.58)

Finally the vector q is the flux density of heat and is the next moment of the distribution

function

q =

∫
m

2
(v − u)2 (v− u) fd3v (1.59)

These equations are exact; approximations are introduced when the series of equations

is closed to make the system tractable. The closure is achieved either through physically

motivated truncation of the moment hierarchy or by an asymptotic calculation of higher

order moments. As an example of the truncation method the plasma can be considered

as a single fluid consisting of a density composed of both the ions and electrons, and a

centre of mass momentum between the ions and electrons [49]. The plasma is considered

adiabatic and the isotropic pressure is given by an equation of state of the form(
∂

∂t
+ u · ∇

)
pn−γ = 0 (1.60)

where γ is the adiabatic index, typically taken as 5/3. This closure approximation leads

to magnetohydrodynamics (MHD).

An asymptotic closure approach can be obtained by evaluating the heat flux density

vector, q to lowest order in a small ordering parameter. This is the approach taken

by Braginskii [47] and Grad [50] for the case where the lowest order cross-field flow is

comparable to the sound speed, and by Mikhailovskii and Tsypin [51], and Simakov and

Catto [52, 53] for the case where flows are much slower than the sound speed. This

closure scheme assumes that the distribution function is at most only a small deviation

from a Maxwellian such that

fj ≈ fM,j + f1,j (1.61)

where f1/fM << 1. The VFP equation can then be expanded asymptotically in orders

of f1/fM and used to provide approximate solutions for the heat flux, viscosity tensor

and collision friction terms. The Braginskii heat flux is given for electrons by [47]

qe = −κ||∇||Te + κ⊥∇⊥Te −
0.71TeJ||

e
+

5nTe
2meΩe

b×∇Te +
3νeTe
2eΩe

b× J (1.62)
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where κ||,⊥ is the parallel/perpendicular thermal conductivity, J|| = eb · (niui − Zneue)
is the parallel current and νe is the electron-ion collision frequency.

1.4.4 Plasma drifts

The motion of a plasma is composed of the larmor orbits of individual particles, free

streaming motion parallel to the magnetic field, and drift motion across the magnetic

field [46]. The drift motion of the plasma is responsible for many of the global dynamics

observed in tokamaks. There are three principle mechanisms by which particle drifts

can occur:

1. Expansion/contraction of the particle Larmor orbit: This mechanism is responsible

for the E×B drift, the curvature drift and the ∇B drift.

2. Polarization of the Larmor orbit: This is responsible for the polarization drift.

3. Fluid flows due to Larmor motion: This is responsible for the diamagnetic drift.

The first of these drift mechanisms is illustrated in figure 1.13. Forces directed per-
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Figure 1.13: Drift motion due to expansion and contraction of the Larmor orbit.
Expansion can occur either due to acceleration by a force perpendicular to the magnetic

field, or by a variation in magnetic field strength, ∇B, perpendicular to the field.

pendicular to the magnetic field accelerate the charged particle on the upward swing of

its orbit. The increased particle velocity expands the Larmor radius with the particle

velocity and radius at maximum at the top of the orbit. On the downward swing the

force decelerates the particle and the opposite effect occurs with the velocity reducing

and the Larmor radius contracting. This expansion/contraction leads to a net motion

perpendicular to both the magnetic field, B and the perpendicular force, F. The same

effect occurs if a gradient in the magnetic field exists perpendicular to the field itself.

The velocity of a drift due to a perpendicular force, F, is given by [46]

ud =
1

ZeB2
F×B (1.63)
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The curvature drift is a example of such a drift, where the bending of magnetic field

lines produces a centripetal force felt by particles as they stream along magnetic field

lines. The force is given by

Fc =
mv2
||

R2
c

Rc (1.64)

where Rc is the radius of curvature. The drift motion in this case reverses if the charge

of the particle changes sign, meaning that charge separation can be driven and such

drifts give rise to currents in the plasma. An exception is the E×B drift, which arises

due to perpendicular electric fields. In this case the force on the particle is FE = ZeE.

Now if the charge reverse, the Larmor orbit reverses as does the perpendicular force,

leading to an invariance of the drift motion. Consequently ions and electrons drift in

the same direction and no current is produced.

The diamagnetic drift does not depend on the motion of individual particles and fits into

the third category outlined above. Taking a simplified form of equation 1.52 (retaining

only pressure, Lorentz terms and Lagrangian derivative terms) and applying B× leads

to an expression for the perpendicular fluid velocity of a plasma:

u⊥ =
E×B

B2
+

B×∇p
ZeB2

+
1

BΩ
B× du

dt
(1.65)

The second term represents the diamagnetic drift. Figure 1.14 illustrates the processes

leading to the diamagnetic drift. If a density gradient exists perpendicular to the mag-

P

fluid element
experiences
net drift motion

Figure 1.14: Schematic illustration of the origin of the diamagnetic drift from larmor
orbit motion across a pressure gradient.

netic field a net flow occurs where more particles exist on the downward swing of their

Larmor orbit than the upper. The same effect occurs if a temperature gradient exists,

in which case the difference in speed of the larmor orbits leads to a net fluid flow. This
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drift does not occur on a single particle level but requires a distribution of particles to

occur. The diamagnetic drift is charge dependant allowing it to drive cross-field currents

in the plasma.

The final drift of importance is the polarization drift. This is the third term in the

equation above. Taking the velocity in this term as being primarily due to the E × B

velocity, and assuming a steady magnetic field results in

up =
1

B2Ω

dE⊥
dt

(1.66)

where the time derivative is d/dt = ∂/∂t+ u · ∇. As E varies the centre of gyration of

the Larmor orbit shifts and the orbit becomes polarized. Once again the polarization

drift is charge dependant and can lead to current formation. The polarization drift is

smaller than the former drifts however the current arising from the polarization drift

can be important in plasma dynamics.

1.5 Thesis outline

In chapter 2 a review of the physics of the filaments and intermittent transport in the

plasma edge is given. This includes aspects of the plasma material interface, turbulence

in the plasma edge and the emergence of intermittency. The physics of the plasma edge

is strongly non-linear and a significant body of work exists dedicated to its experimental

characterization, as well modelling this transport. The chapter will outline the relevance

of this thesis within the field.

Chapter 3 presents the design and operation of a ball pen probe on MAST. The ball pen

probe is a novel probing technique allowing for direct measurements of the plasma poten-

tial in the plasma edge. The plasma potential is an important quantity in determining

the dynamics of the plasma edge. Gradients in the averaged profile give rise to radial

electric fields, in turn leading to radial velocity shear layers. On the fluctuation scale the

potential is a determining factor in the turbulence at the plasma edge. The operation of

the probe is assessed by a direct comparison with the Thomson scattering diagnostic on

MAST. Fluctuation characteristics in the edge are analysed and the interaction between

the radial electric field and the production of intermittency is commented on.

Chapter 4 gives an overview of the BOUT++ code. The BOUT++ code is used in this

thesis to model intermittent events which dominate transport in the edge of tokamaks.

Developments in mesh generation for BOUT++ have been made to facilitate these stud-

ies and these are described here. A description of the physics module implemented in

BOUT++ to carry out the work detailed later in this thesis is given.
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Chapter 5 presents results of filament dynamics simulations in BOUT++ using a geom-

etry representative of the SOL magnetic geometry in MAST. Simple scaling arguments

are used to show that the dynamics of filaments vary as the resistivity of the plasma is

varied. This is investigated by conducting simulations with a range of resistivity, varied

using the electron temperature. The impact of the magnetic geometry on plasma fila-

ment dynamics is assessed and shown to play a key role when resistivity is high. When

resistivity is low the Boltzmann response is shown to cause a drastic departure from

conventional 2D dynamics.

Chapter 6 extends the investigations in chapter 5 by conducting a scan in both electron

temperature and filament cross-sectional width. This is compared to the Two-region

model of Myra et.al [54].

Chapter 7 presents conclusions drawn from the work presented in this thesis. It also

outlines possible extensions to the work, and areas where the work is being continued

for future study.

Appendices A, B and C present an introduction to the geometry used in BOUT++,

a derivation of the equations underlying the simulations in chapters 5 and 6 and a

derivation of the curvature vector respectively.
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Chapter 2

Review of Filament Physics

2.1 Introduction

Filaments are coherent field aligned plasma structures found in the edge and scrape-

off layer (SOL) regions of many magnetically confined plasma devices, not least the

tokamak. Filaments are defined by D’Ippolito et.al [55] through three criteria:

1. A monopole density distribution with a density peak significantly higher than the

RMS profile of the background plasma (typically ≥ 2 times)

2. Alignment to the background magnetic field such that variation in filament features

along the magnetic field is significantly weaker than their perpendicular variation

3. A dominantly dipole potential in the perpendicular plane resulting in a strong

component of E×B motion radially away from the core plasma

Filaments have been referred to in literature by a number of names including avaloids,

intermittent plasma objects (IPOs), streamers and blobs but all are used synonymously

to describe these filamentary objects. In the last thirteen years research into the nature,

motion and transport induced by filaments has increased rapidly. This was strongly mo-

tivated by experiments on ALCATOR C-mod which demonstrated a regime of operation

where the particle balance in the SOL was dominated by recycling at the vessel wall

mediated by anomalously high levels of cross-field advective transport [56]. This excess

in cross-field transport is now thought to be, at least in part, due to filament motion

[57–59] which motivates the study of filaments both experimentally and theoretically.

In future high power devices such as ITER and DEMO interaction with the vessel walls

will need to be tightly controlled to avoid violation of the Tritium inventory or damage

to first wall components [60]. Consequently the study of filaments and the transport
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they may provide is of prime importance to the tokamak community.

In this chapter the body of work concerning filaments is reviewed to lay the foundations

for much of the work carried out within this thesis. This is not intended as an exhaustive

review but rather as an overview to precede the work undertaken herein. A full review

of the subject has recently been conducted by D’Ippolito et.al [55].

2.2 Experimental Characterization of Filaments

Filaments have been observed experimentally in many different plasma devices including

the MAST [61], NSTX [62], TCV [63], ALCATOR-Cmod [64], DIII-D [65], ASDEX [66],

QUEST [67], JET [68] and TEXTOR [69] tokamaks as well as stellerators such as TJ-K

[70] and simpler magnetic configurations such as the toroidal TORPEX device [71] and

the linear PISCES device [72]. Filaments were first observed as excessive fluctuations in

the periphery of the ALCATOR tokamak [73] though the measurements were integrated

in time and space which limited the conclusions that were drawn. The development of

fast imaging techniques, alongside statistical analysis of signals generated from Langmuir

probes allowed these fluctuations to be studied in greater detail in terms of both their

temporal and spatial characteristics.

2.2.1 Probe Measurements of Filaments

Langmuir probes operating in ion-saturation mode and/or floating potential mode (see

Chapter 3 for a description of probe diagnostics) are typically used to measure fluc-

tuations in the SOL and edge regions of tokamak plasmas. The characteristics of the

fluctuations can provide a multitude of information concerning the underlying processes

occurring in the plasma. In particular measurement of the probability distribution func-

tion P (x) (PDF) of a time series x (t), which describes the probability of finding the

value of a fluctuating quantity between x and x + dx, can give insight into the nature

of fluctuations. Random fluctuations have a Gaussian PDF centred on the average of

the time-series with a width given by twice the standard deviation. This is in response

the the equal likelihood of finding a positive or negative fluctuation about the mean.

By contrast the presence of filaments in the SOL provides a source of large, intermit-

tent fluctuations which are always positive and cause a departure of the PDF from a

Gaussian. This behaviour is found to be universal to magnetically confined plasmas [74]

as shown in figure 2.1 taken from Antar et.al [74]. The presence of filaments causes

the positive leg of the PDF to be extended outwards and describes the tendency of the

signal towards large intermittent events. Importantly, as can be seen in figure 2.1, this

structure of the PDF is universal among tokamaks, and other machines. The structure
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Figure 2.1: Fluctuations in ion saturation current measurements on several magneti-
cally confined devices showing universality of the structure of the PDF. In particular in
all cases, even the linear machine PISCES, a strong tendency towards large intermittent

events is observed.

of the PDF can be quantified by the skewness, S, which measures how much the PDF

is biased towards positive or negative events, and can be calculated by taking the third

moment of the PDF (see section 3.5 of chapter 3). A positive skewness implies the

presence of filaments whilst a negative skewness implies the presence of holes of density.

These holes are often observed just inside the separatrix whilst filaments are present

outside [68, 75, 76]. This will be investigated in detail in chapter 3.

The temporal nature of SOL fluctuations can also be inferred from the PDF by con-

structing PDFs over differing time windows and applying analysis techniques described

in detail by Dudson et.al [77]. In particular fluctuations in the SOL are self-similar

[63, 77, 78] indicating that long time correlations exist. This self-similarity begins to

break down in MAST beyond a correlation time of τ ≈ 40µs [78] which is in agreement

with the observed lifetime of filaments on MAST [79]. The properties of the PDFs and

of the fluctuations in general are insensitive to modest changes in magnetic geometry

[78] further highlighting the universal nature of these fluctuations.

Aside from the statistics of fluctuations, probes can also be used to investigate the in-

dividual properties of fluctuations. The process of conditional averaging [75] involves

the identification of individual filament events in the probe time series through a pre-set

detection threshold. The time series data is then binned according to its proximity to

the filament event. This is repeated for many different filament events and an average

profile of the fluctuation is produced. Figure 2.2 shows such a conditional averaging

procedure on the DIII-D tokamak used to produce profiles of fluctuations of density due
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to both filaments and holes [75]. Also shown in figure 2.2 is the conditionally averaged

  

Figure 2.2: Conditional averaging of probe data on DIII-D providing profiles of both
filament and hole events. Also shown is the conditionally averaged electric field across
the event. This confirms the inward motion of holes and the outward motion of fila-

ments.

electric field across the filament measured by the difference in the floating potential

between two poloidally separated probe pins either side of the central measurement of

ion saturation current. If the plasma temperature can be suitably measured or approx-

imated the floating potential can be used to infer the plasma potential and as such an

approximation for the electric field across the filament can be produced. Importantly in

figure 2.2 the measurement of the electric field suggests that E×B motion is responsible

for the propagation of the filament and hole. Using such measurements of the electric

field and filament density, filaments with a fluctuation magnitude greater than 2.5 times

the RMS level were shown to contribute ≈ 50% of the total particle flux in the SOL

plasma in DIII-D [65].

Conditional sampling can provide unique insight into the nature of filaments and can be

achieved with a relatively simple probe set-up, however by complicating the design of

the probe system significantly more information can be attained. Either through instan-

taneous measurement [80] or through an optimized conditional averaging measurement

[81, 82] the 2D shape of profiles across the filament can be measured. Two examples

are shown in figure 2.3. These measurements provide highly resolved 2D profiles and

demonstrate the presence of a polarization of potential across the filament cross-section

which provides the mechanism for E × B motion. Since the probe arrays typically

36



VTF TORPEX

Figure 2.3: 2D profile measurements using probe arrays in the simple toroidal plasma
devices VTF, taken from [80], and TORPEX, taken from [82]. The VTF measurement
is an instantaneous measurement whilst the TORPEX measurement is a conditional

average over 600 filament events centred on the starred position in the Jsat plot.

used are supported by thin frames to avoid excessive perturbations to the plasma, these

highly resolved 2D probe measurements are usually limited to simple magnetic devices

where space inside the vacuum vessel is not an issue, and where excessive heat and

particle fluxes cannot damage the diagnostic. To make similar measurements on toka-

maks requires the use of other diagnostics. Principle among these are visible imaging

diagnostics.

2.2.2 Imaging of Filaments

Visible imaging has provided strong evidence of the existence of filaments. The advan-

tages of imaging measurements is that they are inherently 2D by nature and provide at

most a negligible perturbation to the plasma, allowing accurate measurements of the ge-

ometry of filaments. The disadvantage is that it is often very hard to achieve absolutely

calibrated measurements of quantities such as density since the intensity of emission

measured by the camera is often a complex function of local plasma conditions [40]. As

such a combination of imaging and probe measurements is usually optimal.

Imaging of filaments has been obtained experimentally in two fashions: 1) through

imaging of passive light emission arising from the interaction between the plasma and

the naturally occurring neutral gas within the vacuum vessel and 2) through gas-puff

imaging (GPI) [62, 83] where a localised puff of gas (usually consisting of neutralized
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Helium or Deuterium) is used to enhance the emission around a local area of the plasma

boundary. The first of these methods can be used to provide global imaging of filaments

whilst the latter is used to provide detailed local imaging of the filament cross-section.

On MAST [79, 84, 85], NSTX [62] and ALCATOR C-mod [86, 87] imaging of fluctua-

tions in light emission proved that filaments are field aligned objects with a significant

extent along the magnetic field line. Furthermore measurements on MAST were carried

out in L-mode, inter-ELM H-mode and in H-mode during ELMs and showed that this

field aligned filamentary structure is ubiquitous to SOL fluctuations in all confinement

regimes [84]. Images taken on MAST [84], shown in figure 2.4, show these filamentary

structures.

Inter-ELM H-mode L-mode ELMy H-mode

Projection of detected filaments
onto full view

Figure 2.4: Visible imaging from MAST of filament structures in L-mode, inter-ELM
H-mode and ELMy H-mode taken from [84].

Using GPI the perpendicular structure of filaments on ALCATOR C-mod has also been

shown to translate along the magnetic field line [87] in response to the expansion and

shearing of magnetic flux tubes of the magnetic field. The fluctuation characteristics

from imaging observations have been compared to probe measurements in linear de-

vices [88] and on tokamaks [83, 85] proving that filaments, as imaged by cameras, are

responsible for the fluctuations observed in probe data.

2.2.3 Filament Properties across Machines

Using imaging diagnostics, probes or a combination of the two a number of studies have

been carried out on a variety of machines to characterize key aspects of filaments. In
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table 2.1 the size, lifetime and radial velocity of filaments in L-mode conditions in a

number of different devices is given, with data taken from [68, 71, 72, 75, 79, 89, 90].

Table 2.1 highlights the universal nature of filament properties. The range of machines

Device Perpendicular Diameter (cm) Lifetime (µs) Radial Velocity (km s−1)

MAST 5 - 10 40 - 60 0.5 - 1.5
NSTX 3 - 5 N/A 0.2 - 1.4

ALCATOR C-mod 0.55 - 0.85 10 - 20 0.1 - 0.6
DIII-D 0.5 - 4 15 - 20 0.33 - 2.6
JET 0.5 - 2 20 - 40 0.2 - 0.6

TORPEX 3 - 5 N/A 1 - 1.75
PISCES N/A N/A 0.5 - 1.5

Table 2.1: Comparison of quoted filament parameters across a range of tokamaks and
other machines. Data is quoted from [68, 71, 72, 75, 79, 89, 90]

included in the comparison contains spherical and conventional tokamaks of varying

size and magnetic field strength, a simple toroidal plasma and a linear plasma, yet

the properties of the filaments produced are remarkably similar. Filaments are always

produced on the cm scale, with a lifetime of 10s of µs and velocities on the km/s scale.

Some variation can be noted between machines. Particularly a tendency towards smaller

filaments, slower filaments is observed as the magnetic field of the machine increases.

The upper limit of the results from DIII-D are outliers to this trend however as described

by Boedo et.al [75] these upper limits occur at the separatrix, whilst data from other

machines mainly concerns far SOL properties. The lower bound values in the DIII-D

data are more comparable to other machines, and do adhere to the trend.

2.3 Models for filament motion

The previous section has shown that, not only is the existence of filaments ubiquitous

in magnetically confined plasmas but aspects of the filaments and their motion is highly

universal. As a consequence significant efforts have been made to understand filaments

theoretically. This can be broadly split into efforts in understanding the production of

filaments and efforts into understanding the isolated motion of filaments. The modelling

within this thesis is concerned with the latter of these two areas.

The first model of isolated filament motion was proposed in 2001 by Krashenninikov [91].

The model, as well as all major models since, is based on the fact that in a quasineutral

filament there can be no net generation of current, otherwise a source of charge occurs

and quasineutrality is broken. This can be expressed by the condition of a divergence

free current density

∇ · J = ∇ · J⊥ +∇ ·
(
bJ||

)
= 0 (2.1)
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where J is the total plasma current density and J⊥ and J||b are its components per-

pendicular and parallel to the magnetic field line which has a tangency vector b. The

motion of density in the model is advective due to E×B advection such that

∂n

∂t
= −vE · ∇n (2.2)

where n is the density of the filament and vE is the E × B velocity. The potential

difference across the filament is determined by the current balance in equation 2.1. In

the Krashenninikov model the only source of perpendicular current in the filament is due

to charge dependant curvature and ∇B drifts which cause electrons and ions to drift in

opposite directions. When this occurs across the density monopole of the filament a net

excess of positive charge accumulates on one side of the filament and negative charge

accumulates on the other forming a potential dipole which gives rise to the E×B motion

observed in experiment. The current balance equation in this case then gives [91]

∇ · J⊥ =

(
∇× b

B

)
· ∇P ≈ 1

BR

∂P

∂z
= ∇||J|| (2.3)

where the vector ∇× b
B = 2

Bb× κ+ 2
B2 b×∇B points in the z direction perpendicular

to both the radial and parallel directions. In the Krasheninnikov model the current

induced by curvature and ∇B drifts is closed by currents flowing into the sheath at the

divertor target. Assuming minimal variation in the density, temperature or potential

along the magnetic field line integration parallel to the magnetic field line from divertor

plate to divertor plate leads to∫ L||

0

1

BR

∂P

∂z
dl ≈

L||

BR

∂P

∂z
= J|||ush − J|||dsh (2.4)

where J|||ush, J|||dsh are the sheath currents at the upper and lower divertors respectively

and L|| is the connection length between the two divertor boundaries. The sheath

currents are given by [92]

J|||
u,d
sh = ±enu,dcs

(
1− exp

(
eφW − eφu,d

Te

))
(2.5)

where the upper divertor expression (sub/superscript u) is positive and the lower (sub-

/superscript d) divertor expression is negative. The wall potential, φW , which is neg-

atively biased by the formation of a sheath (see chapter 3 for a description of sheath

formation), can be considered a constant reference potential in an isothermal plasma

and can therefore be cast as a reference potential and set to zero. For relatively small

potentials expression 2.5 can be linearised. Assuming that density and potential re-

spectively are symmetric about the midplane, substitution of the above equation into

40



equation 2.4 gives the expression derived by Krasheninnikov for the potential difference

across the filament.
eφ

Te
=

L||Te

BRentcs

∂nb
∂z

(2.6)

where cs =
√
Te/mi is the sound speed, nt is the density at the divertor target and

nb is the blob density. This expression relates the potential difference across the bi-

normal radius of the filament explicitly to the filament density. Using this expression

an E × B velocity can be derived in terms of the filament density which can then be

substituted into the continuity equation 2.2. By making the assumption that the target

density, nt = εnb where ε is a constant and nb is the midplane blob density, the resulting

equation for the filament density can be written as a ballistic equation if the density can

be written in a separable form nb (x, z, t) = nxb (x, t)nzb (z) where nzb ∝ exp
(
−z2/δ2

)
.

This describes a filament moving radially with a velocity

v = cs

(ρs
δ

)2 L||

R

nb
nt

(2.7)

where ρs = cs/Ωi is the gyro-radius with Ωi = eB/mi the gyro-frequency. This model

of filament motion is commonly termed the sheath-limited model since sheath currents

are responsible for closing the filament circuit.

An additional source of current closure can be included through cross-field polarization

currents, where the polarization drift of the ions opposes the curvature driven current and

grows in strength as the potential dipole grows. This modifies the 2D circuit equation,

equation 2.6 to
Tenb
B2Ωi

(
∂

∂t
+ vE · ∇

)
∇2
⊥φ =

Te
BRe

∂nb
∂z
− ntcs

L||
φ (2.8)

where φ is now normalized to Te in eV. The LHS of equation 2.8 is the divergence of the

polarization current. When this term is dominant over the sheath current the filament

velocity obtains an alternative scaling to the sheath limited regime. The filament velocity

scales with the filament size, δ, as v ∝ δ1/2 [93] compared to the v ∝ δ−2 scaling in the

sheath limited regime showing that the motion of a filament is highly sensitive to the

filament size. A particular filament size exists where the strength of the two current

dissipation channels is balanced [94], often termed the ’fundamental blob size’, and is

given by

δ∗ = 2ρs

(
L2
||

ρsR

)1/5

(2.9)

Generally for full solutions of equation 2.8 numerical methods are used. Such simula-

tions have been investigated widely in literature [54, 94–103]. These simulations show

that below the fundamental blob size, δ << δ∗, blobs form a mushroom like shape as a

result of interchange motion with the surrounding cold plasma and a subsequent roll up
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of the filament front due to secondary Kelvin-Helmholtz instabilities [98, 99]. Above the

fundamental blob size, δ >> δ∗ the blobs form finger-like structures as the dipole vortex

structure across the blob becomes entirely internalized. When δ ∼ δ∗ the two current

channels balance and the filament remains highly coherent, propagating a distance many

times its own diameter. These three types of behaviour are shown in figure 2.5 which

were obtained using the blob2D module of the BOUT++ code [104] (see chapter 4 for

details of BOUT++ and a more general blob modelling module). Numerical simulations

  

Inertial Limit

Sheath Limit 

Mushrooming
motion

Coherent
motion

Fingering
motion

δ << δ*

δ >> δ*

δ ~ δ*

Figure 2.5: Examples of the three limits of 2D blob motion. Simulations were run in
the BOUT++ Blob 2D module. Chapter 4 describes BOUT++, as well as an extended

version of the Blob 2D module.

show that not only is the blob velocity strongly dependant on blob size, but the general

dynamics of blobs can differ significantly too.

Extensions of the basic model resulting in equation 2.8 have been made in a number

of ways. Firstly alternative mechanisms for driving the polarization of potential have

been investigated including thermal gradients [105, 106] and frictional forces induced by

interaction with a ’wind’ of neutral particles [107]. The latter of these two developments

provides a source of drive for filament motion in linear plasma devices, such as PISCES,

where forces associated with curved or varying magnetic fields are absent. Other ex-

tensions include alternative closures for the parallel current. These include accounting
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for Alfven wave generation in electromagnetic filaments [95] and enhanced resistivity in-

duced by plasma shaping at the X-point [54, 108–110]. Electromagnetic effects tend to

stabilize the structure of the filament as δ > δ∗ which provides greater parameter ranges

over which coherent motion of filaments may be observed. This may be particularly

applicable to ELMs which also have a strongly filamentary structure [111] and are likely

to be electromagnetic by nature [112].

Of particular interest for tokamak related applications is the inclusion of X-point shap-

ing effects on the filament. Perhaps the most complete model of these effects to date

is the two-region model [54, 113]. This model separates the filament into two coupled

regions. In the first region, which encompasses the midplane to the X-point, curvature

drive is present and produces the potential dipole. This current can be closed locally

in the first region by cross-field polarization currents, or can be coupled into region two

through parallel currents which depend on the parallel resistivity of the plasma. In the

second region, which connects the X-point to the sheath, curvature drive is assumed

to be negligable, so the potential dipole is a result of a coupling with region one. The

second region contains current closure through sheath currents and through cross-field

polarization currents. In region two the shaping of the filament, induced by the magnetic

geometry, which causes the filament to become elliptically stretched and sheared [114],

is included by a transformation of the perpendicular differential operators. These shap-

ing effects strongly enhance cross-field polarization currents by increasing perpendicular

gradients in the filament. In this model four regimes of blob dynamics are present:

1. The Resistive Ballooning Regime: In the RB regime parallel resistivity is strong

and effectively decouples region one from region two. As such the dynamics of

the filament are determined locally to the source of curvature drive, causing the

filament to balloon at the midplane and become disconnected from the sheath.

This regime is accessed at small filament sizes and/or high collisionalities.

2. The Resistive X-point Regime: In the RX regime the parallel resistivity is high,

but still allows some coupling into the divertor region. The high resistivity however

prevents the current from connecting to the sheath with the enhanced polarization

in region two closing the current circuit long before any sheath connection can be

established. This regime is accessed at intermediate collisionalities.

3. The Ideal Interchange Regime: In the CI regime resistivity is sufficiently low that

significant coupling into the divertor region can occur and the filament is connected

to the sheath. The filament size is small however, so the effects of sheath current

closure are sub-dominant to closure by polarization currents. This is analogous to

the inertial limit in the simple 2D theory outlined previously in this chapter. This

regime is accessible at low collisionality and small blob size.
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4. The Sheath Interchange Regime: In the Cs regime the filament is once again able

to connect fully to the sheath. The filament is large and the sheath current closure

dominates over polarization currents. This is analogous to the sheath limited

regime in simple 2D models. This regime is accessible at low collisionality and

large blob size.

Other more heuristic models for X-point current closure exist [108, 110] where an en-

hanced cross-field electron conductivity is also included.

In recent years models for filament dynamics have been increased from 2D to 3D by

including the full ∇||J|| term into the filament circuit equation and treating the sheath

current closure as a boundary condition [115, 116]. The parallel current is then taken

from the electron parallel momentum equation, neglecting electron inertia, electromag-

netic effects and parallel ion streaming to give

J|| =
σ||Te

e

(
∇|| ln(n)−∇||φ

)
(2.10)

The inclusion of parallel electron dynamics introduces the resistive drift-wave instability

into the system. This is an inherently 3D instability [117] with a finite wave-number

parallel to the magnetic field line. If the cross-sectional size of the filament is small then

these drift-waves can have a profound impact on the filament, causing it to break up

and rapidly disperse. This is shown in figure 2.6 from Angus et.al [115] which compares

a 2D and a 3D filament simulation in a simple curved slab geometry highlighting the

effect of resistive drift-waves. Angus et.al [116] give a condition on the filament size at

which point drift-wave effects may become prominent of 0.15
√
R/2δ⊥ ≥ 1 which implies

that smaller filaments will be more susceptible to breakup due to resistive drift-waves.

If this is the case then this may set a lower limit on the range of filament sizes observed

in the far SOL of tokamaks. It should be noted though, as will be shown in chapter 5

of this thesis, drift-wave effects are sensitive to collisional dissipation and can be readily

stabilized in the SOL.

2.4 Filament Generation

The modelling of filament motion is an idealized situation in that it is not concerned

with processes that generate the filament, but solely focusses on the isolated motion of

the filament. By contrast the problem of understanding filament generation depends

on a multitude of aspects and often requires the simulation of saturated turbulence; a

difficult problem in any context.
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Figure 2.6: Results from [115] comparing 2D and 3D simulations of filament dynamics.
In 3D resistive drift-wave instabilities form on the filament front and cause it to break

up and disperse.

To reduce the complexity of the problem of filament generation through turbulence sim-

ulations models are often reduced to 2D. This is achieved by focussing the simulation

domain on the plane perpendicular to the magnetic field at the outboard midplane re-

gion of the tokamak. Physics parallel to the magnetic field line is accounted for either

by averaging along the magnetic field line or by making assumptions for the form of

dissipative terms which remove plasma by convection or conduction along the magnetic

field line [118]. Highly non-linear problems such as plasma turbulence are often lim-

ited by computational feasibility, usually either through an under-resolved simulation

domain or insufficient computational time to reach statistical saturation. Reducing the

dimensionality of the problem can therefore allow for highly resolved simulations and/or

reduction in computational time. There is a large body of work conducted using models

of this variety [93, 119–126]. Two particularly prominent models of this sort are the

ESEL model[93, 119] and the SOLT model [122]. The ESEL model includes the effects

of curvature drive and contains physically motivated models for dissipative processes

and parallel losses[118]. Turbulence in the ESEL model is driven solely by interchange

motion[93, 99]. The SOLT model on the other hand is able to capture drift-waves by

assuming an adiabatic response for the electrostatic potential in the core region, moti-

vated by the Hasegawa-Wakatani equations[127]. In SOLT therefore turbulence can be

driven through both the interchange mechanism and by drift-waves. Both models have

similar geometrical approaches where the domain is broken down into a core region and
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a SOL region. In the core region an artificial source is present which provides drive for

the turbulence, whilst the SOL region contains heuristic dissipation terms associated

with losses to the sheaths. Being reduced to 2D, these codes cannot recover dynamic

interactions in the direction parallel to the magnetic field, however they can fully resolve

the perpendicular dynamics of filament generation and motion.

Filament generation in 2D codes has been compared against experiment in a number

of tokamaks including TCV [128], MAST [129], NSTX and ALCATOR C-mod [130].

In the case of TCV [128] and MAST [129] comparisons are made between fluctuation

data captured with probes in experiment and with synthetic probe diagnostics applied

to the simulation output. Statistical moments of the fluctuation PDFs as well as char-

acteristics of individual fluctuations agree well between simulations and experiment.

The simulations contain few to no free parameters, with heuristic terms calculated from

plasma parameters, rather then included in an ad-hoc manner. In the case of NSTX

and ALCATOR-Cmod [130] a detailed comparison is made between experiment and

a synthetic GPI diagnostic applied to the 2D plane of the simulation output. In this

way trajectories of individual blob events are tracked and compared directly between

experiment and simulation. Good agreement of both the poloidal velocity of blobs and

the resulting Reynolds stress between the simulation and experiments in the separatrix

and SOL regions of the domain is observed. The agreement between experiment and

modelling is encouraging and suggests that suitably reduced 2D models can capture the

leading order dynamics of edge plasma transport. This is further supported by 3D sim-

ulations of MAST conducted in BOUT [85] which suggest that the dominant processes

in the SOL region are 2D by nature, however in the tokamak edge 3D effects were shown

to play a role also.

Whilst 2D models can reproduce experimental measurements of blobs in the SOL, it

appears that 3D effects are required to fully describe the method of blob birth; that is

to say the processes that provide the perturbation that will eventually grow and become

ejected as a blob. Models of these processes have shown that inverse cascade dynam-

ics in electromagnetic drift-Alfvèn turbulence may provide such an initial perturbation

by transferring energy from small scale electrostatic fluctuations to meso-scale electro-

magnetic structures [131–134]. This transfer can either be the result of kinetic effects

[131, 132] or four-wave coupling leading to a modulational instability [133, 134]. The

large scale structure is driven in part by Reynolds stresses and can then be ejected by

the interchange mechanism. Since drift-waves are inherently 3D and the inverse cascade

requires coupling between drift-waves of differing wave-number, 2D codes are unlikely

to be able to capture fully the mechanisms leading to blob generation.

46



2.5 Discussion

Particle transport due to filament ejection is complex by nature; however significant

progress has been made in this area by decoupling the problem into two parts: the

modelling of filament generation and the modelling of filament motion. The main aspects

affecting the flux of particles from the plasma due to filaments can be listed as:

1. The number of filaments emitted from the plasma per unit time

2. The distribution of sizes of emitted filaments

3. The distribution of amplitudes of emitted filaments

4. The radial propagation velocities of the emitted filaments

5. The loss of particles from the emitted filaments

Aspects 1 - 3 are all properties of the underlying generation of the filaments, whilst

aspects 4 and 5 are properties of the filaments themselves. Whilst full turbulence sim-

ulations can in principle contain all aspects 1 - 5, it is equally possible to use reduced

turbulence simulations to investigate aspects 1 to 3, whilst isolated filament simulations

can be used to investigate in detail aspects 4 and 5. It is this effective separation between

the dynamics of filaments and the dynamics of filament production that may account

for the excellent agreement often observed between edge turbulence modelling in 2D and

experiment, despite the knowledge that these simulations cannot replicate properly the

features of filament production. The exact comparisons made are usually encompassed

by aspects 4 and 5, properties of the filaments themselves, which are known to be well

approximated in 2D models.

Naturally there are many factors which complicate this simplistic splitting of filament

dynamics and filament production. For example the process of filament disconnection

from closed to open field lines during their production will likely set the parallel length

scale of filaments which can in turn directly impact their radial motion. Furthermore

given the level of approximation used in both models for filament motion and production

it is likely that there are unknown aspects connecting the two.

Looking to the future there are a number of areas where continued research focus is

strongly motivated. In terms of isolated filament simulations the inclusion of non-

isothermal effects is of prime importance with a view to understanding not only density

but thermal transport generated by intermittency. This is particularly important in the

framework of next stage high-powered fusion devices where present experimental scal-

ings for the power deposition fall-off length onto divertor targets is unfavourable [27].

Thus a fuller understanding of the detailed processes determining such transport is a
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necessary step towards controlling this excess power deposition.

Including the role of electromagnetic effects is another area of importance for future

modelling research. This will begin to bridge the gap between modelling of turbulence

and filaments with the modelling of ELMs. During an L-H transition it is well estab-

lished that turbulence is suppressed, however filaments are still observed in the SOL

between ELMS [84] so to properly understand this physics an electromagnetic model

will likely be required.

Models of isolated filament dynamics are currently conducted in either 2D or simpli-

fied 3D geometries. This is useful for understanding purposes and indeed, as has been

demonstrated in this chapter, can yield favourable agreement with experiment. The

reality of the tokamak SOL is somewhat more complicated than a slab however and it

is likely that the topology of the magnetic field line may play a role in the dynamics of

filaments. This will be the subject of chapters 5 and 6 where the effect of the magnetic

geometry on isothermal 3D filament motion is characterized using a geometry represen-

tative of the MAST SOL.

Diagnostic development is continually increasing and this has made visual observations

of filaments increasingly attainable. This type of measurement has even reached the

point of complexity now where, through an advanced GPI diagnostic, the complex re-

lationship between turbulent fluctuations and flow-shear can be observed [135]. Such

a relationship has yet to be quantifiably determined by probes since probes commonly

cannot measure flow-shear to the required accuracy. Properties of filament production

can be inferred from the statistical moments of probability distribution functions, how-

ever to then relate these moments to profiles of, for example, poloidal velocity requires

a mapping between diagnostics. This typically results in error through the accuracy of

the mapping and therefore the results can only be compared qualitatively as in [68, 76].

This will be addressed in chapter 3.

2.6 Summary

This chapter has presented a brief review of the physics of filaments including an overview

of both experimental observations and attempts at modelling filaments. The understand-

ing of intermittent transport is of clear importance to the understanding, prediction and

operation of current and future fusion devices given the universal nature of the observed

processes. Experimentally filaments have been observed in a wide variety of magnetic

confinement fusion devices and, as demonstrated by a brief cross-machine comparison

through a literature search, the parameters of these filaments are remarkably compa-

rable. The approach of modelling the motion of these filaments has been presented in

terms of a balancing of currents, as well as the role played by turbulence simulations in
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modelling filament production. It is hoped that this chapter places the work contained

in the following chapters of this thesis in context and motivates the work carried out

herein.
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Chapter 3

Ball Pen Probe Measurements on

MAST

3.1 Introduction

In this chapter the development, implementation of and results from a ball-pen probe

(BPP) on MAST are presented. The BPP is a probe technique developed with the aim

of directly measuring the plasma potential [136, 137]. The plasma potential is an im-

portant quantity in determining convective transport at the plasma edge, as illustrated

in chapter 2. In the standard ordering of drifts in the tokamak plasma edge the E×B

drift, where E = −∇φ is a leading order contribution to advective cross-field flows (see

appendix B). The equilibrium plasma potential can drive flows in the plasma edge which

appear to play a role in the generation of filaments [68] in L-mode and the suppression of

turbulence in H-mode [138], whilst the plasma potential on the fluctuation scale can de-

termine non-linear turbulent interactions and the motion of filaments [55]. The plasma

potential is a desirable quantity to measure however direct measurements are inherently

difficult. A probe placed in a plasma does not naturally measure the plasma potential

alone, but floats below the plasma potential [139]. The level of this deviation is depen-

dant on the electron temperature of the plasma, therefore measurement of the plasma

potential by conventional methods requires knowledge of the electron temperature which

can tend to limit the availability of measurements. Recent forward modelling on MAST

has shown that, on the scale of fluctuations, inference of the plasma potential from the

floating potential can lead to significantly erroneous results [129]. This motivates the

development of alternative (often more complicated) probe configurations such as the

BPP.

This chapter begins with an overview of the principles of probe diagnostics in general
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and in particular the BPP. The collection mechanism of the BPP is then discussed be-

fore the specific BPP design for MAST is presented. Results are then presented from

measurements in three MAST shots comprising a two-point plasma current scan and a

two-point density scan in Ohmic L-mode connected double null plasmas. These measure-

ments are used to determine the validity of the BPP by comparison with complementary

diagnostics. The role of the radial electric field on fluctuations is investigated, before a

discussion on improvements to the probe design and concluding remarks.

3.1.1 Langmuir Probe Diagnostics

The Langmuir probe has been a workhorse diagnostic in laboratory plasmas since its

development by Irving Langmuir in the 1920s [140, 141]. Quantities that are measur-

able by Langmuir probes include [142] the electron temperature, the electron density,

the plasma potential and plasma flows, as well as more detailed measurements of the

distribution function of ions and electrons [143]. In tokamaks probe measurements are

limited to the boundary region of the plasma where power and neutron fluxes to the

probe are tolerable and do not damage the apparatus. As such they are regularly used

to diagnose properties of the SOL and edge plasma. The act of placing a probe in the

plasma naturally has a perturbative effect and the perturbation on the plasma must be

accounted for when interpreting any measurements made by the probe.

The large disparity in mass between ions and electrons in a plasma gives the electrons

a much higher mobility. As a result of quasineutrality, any volume in a plasma contains

approximately equal numbers of ions and electrons at any instant in time, however elec-

trons can travel through the volume much more rapidly than ions. If a surface, such

as a probe, is placed within the volume of plasma then electrons and ions will impact

the surface and begin to accumulate. Since more electrons impact the surface per unit

time than ions a negative charge builds up on the surface until electrons are sufficiently

repelled that their flux to the surface is equal to the ion flux. The plasma response to

the presence of a charge is governed by Poisson’s equation [139]

∇2V =
−e
ε0

(ni − ne) (3.1)

where e is the electron charge, ne is the electron density, ni is the ion density assuming

singly charged ions and V is the potential in the plasma. On sufficiently fast time-scales

the ions can be regarded as stationary, and the electrons adopt a Boltzmann relation

such that

ne = n∞ exp

[
eV

Te

]
(3.2)
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where n∞ is the ion and electron density far from the source of potential. Substituting

this expression into Poisson’s equation gives

∇2V =
−eni
ε0

(
1− exp

[
eV

Te

])
≈ 1

λ2
D

V (3.3)

where the second equality results from an expansion of the exponential, assuming Te >>

eV . The potential profile in the plasma as a result of the bare charge is an exponential

V = V0 exp [−x/λD] where λD = ε0Te/e
2n∞ is the Debye length and characterizes

the distance that the potential produced by the charge can penetrate into the plasma.

Within a length scale λD quasineutrality breaks down and this region is termed the

sheath. The solution of Poisson’s equation can be split into separate solutions in the

plasma, where quasineutrality must be satisfied, and in the sheath, where the full form

of Poisson’s equation applies. On time-scales where the ions appear stationary and their

thermal motion can be neglected (ie they can be considered as cold), any kinetic energy

obtained by ions must be a result of the electrostatic energy in the sheath such that

1

2
miv

2
i = −eV ⇒ |vi| =

(
−2eV

mi

)1/2

(3.4)

This gives an ion current density to the probe of

Ji = Anivi ⇒ ni =
Ji
A

(
−mi

2eV

)1/2

= const (3.5)

where A is the collection area of the probe. The interface between the plasma and

the sheath is characterised by a sheath potential, Vs. This may be different to both the

plasma and/or the probe potential (if the probe is externally biased). Poisson’s equation

takes the form

∇2V =
−e
ε0

(
ni − n∞ exp

[
e (V − Vs)

Te

])
=
−e
ε0

(
Ji
A

(
−mi

2e (V − Vs)

)1/2

− exp

[
e (V − Vs)

Te

])
(3.6)

This equation can now be solved on both the plasma and probe side of the sheath

entrance. Solving this within the sheath, by exploiting the expression for Ji to give

ni = ns (Vs/V )1/2, yields the inequality

Vs ≤ −
Te
2e

(3.7)

Solving equation 3.6 in the plasma, far from the probe where V = 0 and ∇2V = 0, by

differentiating the resultant expression for Ji, yields the inequality

Vs ≥ −
Te
2e

(3.8)
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Since both solutions must match at the sheath entrance, the only possible solution for

Vs is

Vs = −Te
2e

(3.9)

which gives an ion velocity at the sheath entrance of

vi =

(
Te
mi

)1/2

= cs (3.10)

This is the Bohm criterion [25] which shows that ions are accelerated to the local sound

speed at the sheath entrance. If the probe is now externally biased negatively such

that all electrons are repelled, the current to the probe is approximately the ion current

crossing the sheath entrance [139], given by

Ii = Asn∞

(
−−2eVs

mi

)1/2

exp

[
eVs
Te

]
= Asn∞

(
Te
mi

)1/2

exp

[
−1

2

]
≈ Asn∞

(
Te
mi

)1/2

(3.11)

where As is the effective sheath area. This is termed the ion saturation current and

represents the maximum possible ion current to the probe. In general the total current

to the probe is a combination of the ion and electron currents, I = Ii + Ie. The ion

current to the probe is given by the value above. The electron current to the probe can

be taken as a random thermal current, reduced by a Boltzmann factor due to the probe

bias, V , such that

Ie = −1

4
n∞eveAp exp

[
eV

Te

]
= −1

2
en∞Ap

(
2Te
πme

)1/2

exp

[
eV

Te

]
(3.12)

The total current measured by the probe is then given by

I = Ap

(
Je,s exp

[
eV

Te

]
+ Ji,s

)
(3.13)

where the transmission area across the sheath is assumed equal to the probe collection

area such that As ≈ Ap and the electron and ion saturation currents are given by

Js,e ≡ −n∞e
(

Te
2πme

)1/2

(3.14)

and

Js,i ≡ n∞e
(
Te
mi

)1/2

(3.15)

The voltage here is taken with respect to the local plasma potential. These expressions

describe the I-V characteristic of the Langmuir probe and can be used to make a number

of measurements in the plasma local to the vicinity of the probe. The bulk electron/ion
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density can be given by a measure of the ion saturation current, if the electron temper-

ature is known. The electron temperature itself can be measured from the slope of the

I-V characteristic by the expression[25, 139]

Te = e (I −ApJs,i)
(
dI

dV

)−1

(3.16)

The plasma potential can be taken as the potential at which the electron current satu-

rates, as this represents the point at which electrons are no longer repelled by the sheath.

These features of the I-V characteristic are illustrated in figure 3.1.

Current

Voltage

Ii,sat

Ie,sat

Vfloat Vplasma

dI/dV

Figure 3.1: Schematic illustration of an I-V characteristic indicating the properties
usually exploited to measure local plasma quantities.

The voltage at which the probe draws no current from the plasma does not equate to

the plasma potential but instead represents the potential that the probe floats at within

the plasma. Taking I = 0 in equation 3.13 gives

Vfl − Vpl ≡ −Te ln

(
|Js,e|
Js,i

)
= −1

2
Te ln

(
2π
mi

me

)
(3.17)
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where Vpl is the reference plasma potential and Te is given in eV. Relaxing the assumption

of cold ions gives a finite ion temperature correction to the Bohm criterion of [25]

vi =

(
Ti + Te
mi

)1/2

(3.18)

which then modifies the floating potential to

Vfl − Vpl =
1

2
Te ln

(
2π
me

mi

(
1 +

Ti
Te

))
(3.19)

If Te >> Vpl then the floating potential can be used to measure the local electron

temperature. On the other hand when Te << Vpl the floating potential can be used

directly as a measurement of the plasma potential [142]. Unfortunately in many fusion

relevant scenarios Te ∼ Vpl which then requires a complementary measurement of the

electron temperature profile before Vpl can be extracted. Alternatively Vpl can be derived

from the LP I-V characteristic, however in reality the electron current rarely saturates

and the voltage corresponding to Vpl is difficult to accurately infer.

Many advanced probe techniques exist which draw and expand on the basic theory of the

Langmuir probe. On MAST an array of Langmuir probes is situated in the divertor to

measure radial profiles of electron density and temperature at the target plates. MAST

also has a number of probes which are interchangeably used on a reciprocating system

[144] allowing fast plunges into the plasma edge near to the midplane. These include a

retarding field energy analyser [145] which measures the ion energy distribution function

by systematically sampling ion energies through a series of potential grids which reflect

low energy ions and electrons [145]. The Mach probe [146] and the Gundestropp probe

[147, 148] exploit differences between the I-V characteristics of the plasma in a region

of high and low flow to infer flow velocities.

Despite the multitude of probe measurements available in modern day experiments, the

plasma potential remains a difficult quantity to accurately measure. To determine the

plasma potential from an I-V characteristic requires an entire voltage sweep to obtain one

measurement, limiting temporal resolution. Furthermore fluctuations in local plasma

conditions can introduce significant error into the I-V characteristic. The purpose of

this chapter is to investigate an alternative probe principle, named the ball pen probe,

designed to directly measure the plasma potential.

3.1.2 The Ball Pen Probe Principle

The principle of the ball pen probe is illustrated by equation 3.17; a probe may be made

to float at the plasma potential if the ion and electron saturation currents are equalized
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such that

ln (R) = ln

(
Is,e
Is,i

)
= 0⇒ Vfl = Vpl (3.20)

This principle is already exploited by the emissive probe [142]. In an emissive probe a

wire, usually made of Tungsten or a Tungsten composite material, is heated externally.

As the wire heats it emits electrons from its surface with the rate of emission propor-

tional to the level of heating applied. When inserted into a plasma the negative current

arising from the net emission of electrons enhances the ion saturation current. This is

then varied to achieve the ratio R = 1 which allows the emissive probe to float at the

plasma potential. The drawback of the emissive probe is weak structural design since it

requires the exposure of a thin wire to the high power fluxes in a fusion plasma. This

limits the use of emissive probes in tokamaks to the far SOL.

The ball pen probe was originally developed by Adamek et.al [136] and exploits the

difference in the Larmor radii between ions and electrons in a magnetized plasma. The

original design aim of the BPP was to shield a portion of the electron current to the

collector in order to equalize the total ion and electron currents to the probe. The total

ion and electron currents incident on the collection surface are given by Ii = AiJi and

Ie = AeJe where Ai and Ae are the collection area for ions and electrons respectively

which have a current density Ji and Je. The emissive probe increases Ji to achieve

R = Ii/Ie = 1. By contrast the BPP aims to decrease Ae again with the aim of achiev-

ing R = 1. Figure 3.2 describes schematically the BPP principle originally proposed by

Adamek et.al [136].

B
Ion orbits contact
entire collection
surface Electron orbits

are shielded
and contact a 
reduced collecton
surface

Variable retraction depth

Figure 3.2: Schematic of the BPP principle originally proposed by Adamek et.al.
The reduction in the electron collection area compensates the higher electron current
density. By adjusting the retraction depth of the collector the ion and electron current

ratio, R, is reduced to 1.

The BPP is closely related to the Katsumata probe[149], also known as the Ion-sensitive

probe (ISP), where the collector is flat, rather than conical and the walls are indepen-

dently biased from the collection surface. This acts to filter the electron current out of
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the measurement to the collector. By independently biasing the collector the ion energy

distribution can be obtained and the ion temperature can be measured. In contrast to

the ISP the walls of the collection tube in the BPP are made of an insulating material,

usually Boron Nitride. The conical collector can then be retracted into the shielding

tube until the ion-electron current ratio equalises. Figure 3.3 shows the original BPP

designed by Adamek et.al, alongside measurements of R as the retraction depth of the

collector, h, is increased, taken from [136].

  

Figure 3.3: Top: The original BPP design for the CASTOR tokamak by Adamek.
Bottom: Measurements on CASTOR showing the systematic decrease of ln (Ii/Ie) as
the BPP is retracted. At h < −0.5mm the BPP measures the plasma potential. Images

taken from [136].

Figure 3.3 demonstrates that the ratio R is reduced in a BPP by retraction of the

collector inside the shielding tube. The BPP measurement of Vpl has been compared

favourably to measurements made by an emissive probe on CASTOR [137] and a self-

emitting Langmuir probe on COMPASS [150]. The BPP has also been implemented

on the ASDEX-Upgrade tokamak to make measurements of the plasma potential during

L-mode [151, 152] and H-mode [151, 153]. The BPP principle has also been implemented

in low temperature plasma devices [154, 155] where the electrons remain strongly mag-

netized, but unlike a tokamak the ions are demagnetized. In these plasmas the BPP

was again shown to measure the plasma potential effectively, though the shielding of the

electron current to the collector becomes highly dependant on the probe geometry [155].

The empirical success of the BPP is encouraging and motivates continued study. Fur-

thermore the BPP is a robust diagnostic capable of surviving the harsh environment at

the tokamak plasma edge. Steep gradients at the edge of tokamak plasmas are impor-

tant features of tokamak operation, therefore the capability of the BPP to diagnose this
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region is desirable. This gives the BPP a unique capability among probe diagnostics for

well resolved plasma potential measurements across the separatrix. The BPP is hindered

however by a lack of a first principles model in support of its operation.

3.2 The BPP Collection Mechanism

The simple model for BPP collection proposed originally by Adamek is appealing and

shows some qualitative agreement with experiments, however a review of BPP results in

literature reveals a number of empirical features which suggest that the physics of BPP

collection is more complex than the simple model proposed by Adamek et.al. Firstly,

as acknowledged by Adamek in [136, 137], the BPP on CASTOR was never observed to

reduce the electron current to exactly the level of the ion current. This suggests that a

net excess of electrons over ions always occurs at the BPP collection surface, even when

the collector is retracted well below the ion Larmor radius, ρi. This also illustrates a

second discrepancy; the ratio R = Ie/Ii remains close to unity even when the entire col-

lector is retracted well below the shielding tube entrance[136]. The simple model based

on geometrical shadowing predicts Ie → 0 as the collector retracts below the shielding

tube entrance. These two observations indicate that electron transport to the collector

occurs by a different means, and in the case of a deep collector retraction this trans-

port must occur across the magnetic field. This is further evidenced in [156] where an

alternative BPP design was implemented where the conical collector was replaced by a

flat collector, removing the possibility of geometrical shadowing. A current in both the

ion and electron channels was observed at the probe surface, even when the collector is

retracted below ρi. This shows that the conical shape of the collector is not necessary

for the BPP measurement and again suggests that cross-field transport processes must

play a role in BPP collection.

Dedicated modelling of the BPP [157], as well as modelling of ISPs [158, 159] has shown

that the BPP perturbs the local Maxwellian distribution of particles due to the shadow-

ing of electron and ion trajectories into the collection tube. A potential forms within the

shielding tube which can transport electrons to the collection surface by E×B motion.

This has been cited as an explanation for the anomalously high electron currents often

observed in ISPs [159], and also plays a role in related problems such as heat fluxes to

tile gaps [160]. Dedicated ISP experiments using a split collection surface have shown

that the electron and ion current to the collection surface is asymmetric [161], suggest-

ing experimentally that E × B motion plays a role in ISP collection. The question of

BPP collection however has received significantly less attention in literature. Since the

BPP shielding walls are insulating, they cannot be externally biased, but can sustain a

potential due to charge accumulation. Any potential distribution within the shielding
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tube will is likely to be complex and will consist of at least two parts: 1. Sheath for-

mation on the walls of the tube where electrons may impact along the field line. 2. An

ion space charge in the centre of the tube where ions can initially penetrate beyond the

reach of electrons. The resulting motion of ions and electron in response to this potential

structure will likely perturb the potential further until a steady state is reached.

As discussed, the collection process to the collector in a BPP appears to occur perpen-

dicular to the field line and is likely, in part at least, to be the result of E×B motion.

To avoid specific details of the collection mechanism for now a simple model is assumed

where both ions and electrons are transported down the shielding tube to the collector

at a constant collection velocity vc. The physics behind vc will be discussed shortly,

however first an argument based on a filtering of the ion distribution function will be

laid out which can be used to bound possible values of vc. Electron impact on the shield-

ing tube walls will lead to formation of a sheath. The sheath, formed on the shielding

tube walls is assumed to form homogeneously on all walls. In reality the biasing of

the shielding walls will likely vary with depth, since the electron distribution function

has a progressive loss of high energy electrons though the sheaths. For the purpose of

simplicity however this is not accounted for here. The presence of the sheath repels

electrons with energies below the energy required to cross the sheath and impact the

wall. This corresponds to a parallel velocity v|| > vsh where vsh is the velocity required

to penetrate the sheath, given by

1

2
mev

2
sh = eVsh ⇒ vsh ≡

(
2eVsh
me

)1/2

(3.21)

Only a small fraction of the electron distribution function satisfies v|| > vsh and the

distribution function is approximately unfiltered, but is reflected by the sheath. Conse-

quently all electrons entering the tube are repeatedly reflected whilst undergoing cross-

field transport to the collection surface, and the electron current to the collection surface

is approximately

Je ≈ −n0,eevc (3.22)

By contrast ions are not reflected by the sheath but can freely impact the walls of the

collection tube. Assuming the collection surface is retracted deeper than the ion Larmor

radius, h > ρi, where h is the retraction depth, for the collection of ions to occur their

time spent in crossing the diameter of the collection tube must be longer than their time

spent travelling down the tube to the collection surface. If this is not the case then ions

will impact the walls before they can be collected. This results in a condition on the ion

parallel velocity of
d

v||,i
>

h

vc
⇒ v||,i < vc

d

h
(3.23)
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This then limits the collection of ions to the portion of the velocity distribution function

that satisfies the above condition such that the ion current to the collector is given by

Ji = evc

∫ ∞
−∞

dv⊥

∫ vc
d
h

−vc dh
dv||fi

(
v⊥, v||

)
(3.24)

where fi is the ion distribution function. Taking fi as a Maxwellian this can be reduced

to

Ji = evcn0,i

∫ vc
d
h

−vc dh
dv||f̄i

(
v||
)

(3.25)

where f̄i
(
v||
)

is the normalized 1D Maxwellian distribution in v||. In a more advanced

version of this model the perpendicular velocity distribution may also affect collection,

however this is not included here and only the parallel velocity distribution is consid-

ered. The filtering of the ion distribution function acts to reduce the ion current to the

collector. The transport of ions and electrons to the collector is described schematically

in figure 3.4.

e

vcDielectric

Collector

i

B-field

Dielectric

Figure 3.4: Schematic illustration of the motion of ions and electrons to the collection
surface in the simple model of ion kinetic filtering.

It is now possible to estimate the value α = ln (Ie/Ii) using

Ie
Ii

=
Aen0,e

Ain0,i

(∫ vc
d
h

−vc dh
dv||f̄i

(
v||
))−1

(3.26)

where n0,e and n0,i are the electron and ion densities entering the collection tube and Ae

and Ai are the collection areas for electrons and ions respectively. Ae = Ai is assumed

here. It is likely that the exterior surfaces of the BPP will play a role in determining

the incoming densities however this requires advanced modelling and is not accounted
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for here and n0,i = n0,e is assumed. The current ratio is estimated as

Ie
Ii

=

(∫ vc
d
h

−vc dh
dv||f̄i

(
v||
))−1

(3.27)

Figure 3.5 shows a calculation of α = ln (Ie/Ii) based on the model presented here for

a typical ion temperature of 10eV with d = 4mm and h = 5mm. Figure 3.5 shows

102 103 104 105

vc(ms−1 )

0

1
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3

4

5

α
=
ln
(I

e/
I i
)

Figure 3.5: Predicted α from the ion filtering model as a function of collection velocity.
Indicated is the velocity required for α = 0.6.

that a collection velocity on the order of 10 − 50km/s, which is on the order of the

sound speed, cs ≈ 20km/s at Te = 10eV, is required in this geometry for experimentally

relevant values of α. This simple model can now be used to assess possible mechanisms

of collection. A trivial example is to test whether the motion of the reciprocating probe

alone can affect the collection. The RP moves with a velocity of v ≈ 1m/s, which is

well below the order required for αBPP < 0.6 and can therefore not contribute to BPP

collection. It is likely that E×B motion is, at least partly, responsible for this collection

and two possible scenarios can be considered:

1. E×B motion due to sheath formation on the shielding walls. Taking an order of

magnitude electric field as E ∼ 2Te/d where d is the probe diameter and φ ∼ Te

is taken for the potential on the shielding walls gives a collection velocity due to

E×B motion of

vc ∼
E

B
∼ 2Te
dB
∼ 10km/s (3.28)
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2. E ×B motion due to ion space charge. This was investigated in [159] where the

approximate collection velocity was estimated as

vc ∼
enid

4ε0B
∼ 1000km/s (3.29)

The analysis of [159] predicts very large E×B velocities due to ion space charge which is

likely to be a result of a large overestimate of the electric field strength. Nevertheless it is

plausible that both mechanisms may provide a means for collection in a BPP. A deeper

analysis is hindered by the complexity of the probe geometry and it is likely that a full

understanding of the BPP collection mechanism will require full 3D3V particle-in-cell

modelling which is beyond the scope of this thesis.

3.3 Design and Testing of the MAST BPP

3.3.1 BPP Design for MAST

The BPP for MAST has been designed as a modification to an existing probe head

with Gundestropp probe capabilities [147, 148] rather than as a bespoke design. This

is motivated by the reduced cost of modification compared to full fabrication, combined

with the as yet unproven nature of the BPP. Figure 3.6 shows the design of the BPP.

The normal vector to the face of the probe lies anti-parallel to the major radius of the

plasma. Probe tips are held in place by a two-part retainer which sits inside the body

of the probe (shown in the cutaway in figure 3.6) held in place by a strut (not shown).

Probe tips on the axial surface are inherited from the Gundestropp probe (see [148] for

a description) and are not used in this study. The layout of the probe face is shown in

figure 3.7.

The positions of pins BPP2, Vf1 and P1 were inherited from an existing triple probe

configuration on the face of this Gundestropp probe. The geometry of the probe face

was designed to eliminate the shadowing of any probe tip by any other along a magnetic

field line. Table 3.1 shows the BPP pin diameters and retractions.

Pin Retraction (mm) Diameter

BPP1 2 1.5
BPP2 5 4
BPP3 8 1.5

Table 3.1: Parameters of the BPP pins designed for maximum flexibility.

Significant variability was designed into both the retraction and diameter of the probe

tips. Since this work was the first implementation of a BPP on MAST there was little
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Figure 3.6: 3D rendering of the MAST BPP showing the design of the BPP. Also
shown is the internal structure developed to hold the Langmuir and BPP pins in place.
Shown is the particular case of a Langmuir probe, though the design is identical for all

pins on the probe face.
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9
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BPP1

BPP2

BPP3

VF1 P1

B-field
direction

Dimensions 
in mm

Figure 3.7: Dimensions between probe tips on the BPP probe face. BPP2, P1 and
Vf1 were inherited from the Gundestropp design. The head is mirror symmetric about
the vertical axis. The layout of probe tips is designed to minimize shadowing between
probes, however this results in probe tip distances ∼ 2cm, which may be too large for

detailed analysis of correlations of fluctuations between pins.
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guidance on the specific design of pin geometries. To mitigate the risk of choosing an

inappropriate pin geometry a range of parameters was chosen, guided by previous ex-

periments. As will be shown later BPP2 proved to be the best combination of retraction

and diameter. Other than the addition of extra probe pins to the probe face, the other

significant modification from the Gundestropp probe design was the detailed design of

the probe tips, shown in figure 3.8. The original design of the probe tips on the face of

7

3.9

29.5

6.8

3.9

18.2

1.4

12

2.9

1.4

Old

New

All dimensions in mm

Figure 3.8: Redesign of the probe tip structure for the BPP. The specific case illus-
trated is for a Langmuir probe, however the BPP tips are identical with dimensions
scaled accordingly. The redesign provides far greater structural stability during assem-

bly.

the probe, shown in the upper section of figure 3.8, were found to be structurally frag-

ile. This presented a significant challenge in assembly where multiple probe tips where

shattered. This called into question the durability of the probe tip during installation

onto MAST and as a result the tip was re-designed with the aim of added structural

stability. To achieve this a pedestal structure of the probe tip was added, with 0.5mm

gradient added to each right-angle. These features significantly increased the durability

of the probe tips. The design was similar in the case of BPP probe tips with dimensions

scaled accordingly.

3.3.2 Electronics

The BPP pins were operated as floating measurements throughout the experimental time

on MAST. The BPP potential, as well as the floating potential measurements are made

with respect to a diagnostic earth. The pins are connected to a set of optical isolation

amplifiers with an impedance of 300kΩ and a bandwidth of 50kHz. This bandwidth is

sufficient for fluctuation measurements in the SOL which typically occur with frequencies

≤ 30kHz. The signals were digitized with a sampling frequency of 500kHz.
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3.3.3 Analysis of Noise

Noise on the BPP signals occurs from two principle sources: High frequency, low ampli-

tude noise which occurs within the electronics of the system, and narrowband bursting

noise which occurs due to electrical pick-up from poloidal magnetic field coils. The mid-

plane reciprocating probe, upon which the BPP is mounted, lies in close proximity to

the P5 coils and to a lesser degree the P4 and P6 coils. The electronic noise is random,

and generally does not affect the measurements with the BPP. The PF pick-up noise has

a distinct response in the BPP signals. Figure 3.9 shows the structure of the PF noise

during shot 28815, where the probe was positioned far from the plasma edge such that

no interaction between the probe and the plasma occurred. Note that this is a worst

case scenario with the amplitude of PF noise decreasing as the probe moves towards the

plasma, away from the PF coils.
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(a) Raw data from shot 28815
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(b) Frequency spectrum and filtered signal

Figure 3.9: Structure of PF pick-up induced noise from shot 28815, alongside its
power spectrum. The power spectrum is normalized to the total power within the
signal. Filtering below the primary noise peak effectively removes the noise. Filtered

signals are shown in blue.

The PF noise has a characteristic frequency peak at approximately 30kHz with higher

frequency harmonic peaks present towards the upper end of the spectrum. The power

in the primary frequency peak dominates the spectrum and is nearly 100 times greater

than the baseline power. Filtering the frequency spectrum below the primary peak (blue

profiles in figure 3.9) reduces the noise source by an order of magnitude from ± ∼ 5V to

< ±0.5V . Figure 3.10 shows the effect of the PF noise during two shots where significant

interaction with the plasma was observed.

In each shot the PF noise is identifiable in the frequency spectrum. Filtering the signal
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Figure 3.10: Examples of PF pick-up noise during a reciprocation of the probe into
the plasma in shots 28819 and 30250 (described later in the chapter). In each case the
PF noise is identifiable in the frequency spectrum, normalized to the total power within
the signal. Filtering below the primary frequency peak removes the noise, but retains

the fluctuation characteristics during the probe-plasma interaction phase.

below the primary frequency peak removes the PF noise, but retains the shape of the

underlying signal during strong interaction with the plasma. In figure 3.11 the form of

individual fluctuations in both the BPP and Isat time series are compared in shot 30250

with and without the filtering of the PF noise.
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Figure 3.11: Fluctuation data from the BPP and an LP in Isat mode in shot 30250
sampled in the SOL region and the edge region. In the SOL the BPP signal lies well
below the noise level, though in the edge region where the interaction of the plasma is
strong the BPP signal dominates over the noise. Overlaid are the filtered signals with

the PF noise removed.

The structure of fluctuations in the Isat signal and in the edge region of the BPP signal
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show minimal variation between the filtered and unfiltered cases suggesting that PF

noise does not affect the signal in these cases. In the SOL region of the BPP signal how-

ever the noise is on a similar level to the underlying signal. In this region fluctuations

occur primarily due to large intermittent events which can be identified as filaments.

The Isat signal in the SOL shows multiple blobs passing the probe, whilst the BPP sig-

nal in the same time frame only shows one significant event. The initial impulse in the

BPP signal is followed by a long falloff time which encompasses many blob events in the

Isat signal. The example given in figure 3.11 is representative of the BPP signal in the

SOL in all shots analysed. Figure 3.12 shows the frequency power spectrum, normalized

to the total power in the spectrum, sampled in the SOL, in the region where the probe

crosses the separatrix and within the plasma edge, of the BPP signal and the Isat signal.
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Figure 3.12: Power spectra, normalized to the total, from the BPP (a), Isat (b)
and floating potential (c) signals in shot 30250. The spectra are sampled in the SOL
(black), separatrix region (red) and edge region (blue). The BPP shows a significant

suppression of the frequency spectra in the SOL.

Figure 3.12 shows a systematic suppression of fluctuations in the BPP signal in the SOL

region. This suppression is not present in the Isat or floating potential signals, though

in all three cases the PF noise contributes a larger portion of the power in the signal

than the near separatrix and edge regions. Whilst it is possible that fluctuations in the

plasma potential, which should dominate the BPP signal, are strongly suppressed in

the SOL the frequency suppression is more likely associated with an excessively high

probe impedance. The probe and amplifier form an RC circuit where the resistance is

provided by the coupling of the probe with the plasma, and the capacitance is provided

by interaction between cables in the probe head. A typical RC circuit acts as a low pass

filter since the capacitor requires a finite amount of time to charge up. Before the ca-

pacitor is charged current can flow through it to ground. This filters the high frequence

component of the signal. If the resistance of the probe is large, then the current drawn
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by the probe is weak and the capacitor takes longer to charge, thereby filtering a larger

amount of the frequency spectrum. This behaviour has recently been observed in BPPs

used in low temperature plasmas, where very high impedance amplifiers were required

to accurately measure the frequency range of the BPP signal [154, 155]. Whilst the

capacitance of the cabling to the amplifier is not known, it will remain constant across

all BPP measurements. Consequently the increase in high frequency power in the BPP

spectrum as the probe nears the plasma edge shows that the probe impedance varies

as the local plasma conditions vary. By the time the probe enters the plasma edge the

BPP frequency spectrum no longer exhibits significant filtering compared to the Isat

and floating potential signals.

From the analysis presented in this section the following conclusions are drawn:

• The primary source of noise in BPP measurements, as well as floating potential and

Isat signals, arises from poloidal field coil pick-up and has a distinctive frequency

spectrum.

• This noise does not affect the measurement of average profiles.

• The noise can strongly affect BPP fluctuation measurements in the SOL region,

but can be removed by filtering the signal in frequency spectrum below the primary

noise peak.

• Strong suppression of the high frequency components of the BPP signal occurs

in the SOL as a consequence of an increased probe impedance in the cold, low

density SOL plasma. The suppression of BPP fluctuations in the SOL makes the

analysis of blob fluctuations in the BPP signal infeasible. The SOL frequency

suppression could be avoided in future implementations of the BPP by the use of

a high impedance amplifier [154].

3.3.4 Comparison of BPP pins

This section briefly compares the response of the three BPP pins built into the probe.

The comparison is conducted in shots 28819, 28830 and 28834. In shot 30250, which

occurred much later in the MAST M9 experimental campaign, a failure in pin 3 prevented

further comparison. Figure 3.13 compares the frequency spectra of the three BPP pins.

From figure 3.13 it is clear that the signal in the highly recessed pin, BPP3, is strongly

suppressed across the entire spectrum and the PF noise, analysed at the beginning of this

section, dominates the signal. Pin BPP1 follows a similar trend though to a lesser extent.

In particular in shot 28819 pin BPP1 matches the low frequency part of the spectrum
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Figure 3.13: Comparison of the fluctuation spectra between pins BPP1 (red) BPP2
(black) and BPP3 (blue) in shots 28819, 28830 and 28834. A systematic suppression
of the frequency spectra is observed in BPP3 and lesser so in BPP1 with respect to

BPP2. The signal from BPP3 is dominated by PF noise.

of pin BPP2, however the two then deviate, and the PF noise certainly plays a stronger

role in the BPP1 power spectrum than pin BPP2. The deviation between the two pin

spectra is greater in shot 28830 and greater still in shot 28834. The strong frequency

suppression in pins BPP1 and BPP3 makes them unsuitable for use in experimental

profile measurement, as such the BPP2 pin will be used in this chapter as the principal

BPP measurement.

3.4 Radial Profile Measurements

During the MAST M9 campaign (April - October 2013) the BPP was placed on the

reciprocating probe (RP) system [144] on MAST. The RP is located at the outboard

midplane in a connected double-null (CDN) MAST plasma, supported by a flange at

the equatorial plane. The placement of the RP in relation to a standard MAST CDN

plasma is shown in figure 3.14.

There are two drive mechanisms for the reciprocation of the probe. A motorized drive

is used to set the initial placement of the probe head. This can move the probe head

by up to 1m from outside to inside the vessel through a high vacuum valve. Once in

place a pneumatic drive is used to quickly plunge the probe head into the plasma and

subsequently retract it. The probe can reciprocate a maximum of 10cm over 0.2s inwards

and 0.4s outwards, attaining a maximum velocity ∼ 1ms−1.

The reciprocation of the probe head allows for the measurement of radial profiles of

plasma parameters with the BPP. Radial profile measurements have been made in three

Ohmic L-mode CDN plasmas in MAST. These are shots 28819, 28830 and 28834. The

details of these shots are summarized in table 3.2. Shots 28819 and 28830 can act as
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Thomson scattering 
line of sight

Figure 3.14: Position of the reciprocating probe system on MAST in a CDN plasma.
The probe is located at the outboard midplane and samples the plasma over the same

line of sight as the Thomson scattering diagnostic. Image adapted from [145]

Shot Ip(kA) BT (T) ne,sep
(
1019

)
m−3 n̄e

(
1018

)
m−2

28819 400 0.585 0.7 - 0.9 120
28830 600 0.585 0.7 - 0.9 110
28834 600 0.585 0.2 - 0.4 70

Table 3.2: Relevant parameters for MAST shots 28819, 28830 and 28834, in which
the BPP was reciprocated into the plasma edge. Ip is the plasma current, BT is the
toroidal field on the magnetic axis, ne,sep is the electron density at separatrix and n̄e

is the line integrated electron density.

a two-point plasma current scan, whilst shots 28830 and 28834 can act as a two-point

electron density scan. The reciprocation profile of the RP is identical in each shot,

however the motion of the plasma edge varies and leads to varying reciprocation depths

(with respect to the plasma edge). The plasma edge radius is measured by EFIT[162]

constrained by the peak in Dα light emission at the plasma edge. This measurement is

subject to systematic uncertainty of ≈ 2cm, however since the error is systematic it does

not affect comparisons between datasets containing the error, and therefore will not affect

any conclusions in this chapter. The uncertainty has the effect only of shifting the x axis

of radial measurements. In figure 3.15 the position of the end of the BPP is compared to

the position of the plasma edge. Shot 28819 exhibits a deeper reciprocation than shots

28830 and 28834. The motion of the plasma edge can be accounted for by constructing

profiles as a function of R−RLCFS , allowing for a direct comparison between the three

shots.
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Figure 3.15: Position of the BPP head (thick) compared to the position of the plasma
edge (thin) during the reciprocation of the BPP for shots 28819, 28830 and 28834.

BPP data is sampled in the time interval t = [0.15, 0.27]s in each shot. To construct

profile measurements the data is separated into 50 discrete temporal windows with a

width ≈ 2.4ms. On this time-scale the motion of the RP can be neglected and the profile

can be constructed from averages within each window. Each window contains > 1200

data points which is sufficient to make a mean measurement with insignificant error.

The standard error on the mean of a data set of N samples is

σm ≈
σ√
N

(3.30)

where σ is the standard error of the data sample, xi, given by

σ ≈

(∑
i x

2
i − 1

N (
∑

i xi)
2

N − 1

)1/2

(3.31)

Thus by making a large number of samples the error on the mean is greatly reduced

(provided the samples are independant).

Figure 3.16 shows the plasma current evolution in the three shots analysed.
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Figure 3.16: The plasma current evolution during shots 28819, 28830 and 28834.
Highlighted is the region in which BPP data is sampled. The plasma current remains

relatively constant within this region, allowing the plasma to be treated as steady.

The plasma current remains steady during the reciprocation of the RP so the plasma
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conditions can be considered approximately constant during the reciprocation of the

BPP.

3.4.1 Potential Profiles

Figure 3.17 shows the mean potential profile measured by the BPP compared with the

floating potential during the time window [0.15, 0.27]s in shots 28819, 28830 and 28834.
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Figure 3.17: Potential measured by the BPP, compared to the floating potential as a
function of the major radius R for shots 28819, 28830 and 28834. Error bars represent
one standard deviation of the data within each window. The error on the mean is ≈ 35

times smaller than the standard deviation.

The signal measured by the BPP differs significantly from the floating potential during

the reciprocation of the probe. Before associating the BPP measurement with the plasma

potential, some features of the measurement and its comparison to the floating potential

can be made. Firstly the polarity of the BPP signal is opposite to the floating potential

in a significant portion of each shot. This indicates that the BPP signal cannot simply

be a scaled measurement of the floating potential. Secondly the shape of the BPP

profile contains significant qualitative differences to the shape of the Vfl profile. This

is particularly prevalent in shot 28830 where the BPP signal exhibits a change in sign

of its gradient, where the Vfl profile has a continuously decreasing profile. Finally the

difference between the two profiles grows during the probe reciprocation, suggesting

that a change in plasma parameters may be responsible for the deviation between the

two profiles. These features are all in agreement with the qualitative features expected

from expression 3.17. The floating potential is always more negative than the BPP

potential due to the strong electron temperature contribution. The deviation between

the two profiles increases during the reciprocation as the probe enters regions of hotter

electrons.

Figure 3.18 shows the mean potential measured by the BPP, compared to the mean

floating potential, as a function of distance from the LCFS, R − RLCFS . In each shot
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Figure 3.18: Potential measured by the BPP as a function of distance from the LCFS.
This accounts for both the motion of the RP and the motion of the plasma edge.

there is a region in the BPP potential measurement where the gradient of the potential

changes sign. This region is always in the vicinity of the separatrix, though precise

identification of the separatrix is hindered by the error on the EFIT calculation. The

peak in the potential profile is consistent with the presence of a radial velocity shear

layer in the vicinity of the separatrix [70]. The velocity, being dominantly due to E×B

motion, can be related to an electric field ER = −dφ/dR where φ is the plasma potential.

The radial electric field will be calculated from the BPP potential in a later section.

3.4.2 Electron Temperature Profiles

The ball pen probe potential and the floating potential measured by a Langmuir probe

can be written in the general forms

VBPP = φ− αBPPTe (3.32)

and

Vfl = φ− αLPTe (3.33)

where α = ln (Ie/Ii) is the logarithmic ratio of electron and ion saturation currents in

each probe type. From these expressions the electron temperature can be extracted as

Te (eV ) =
VBPP − Vfl
αLP − αBPP

(3.34)

The calculation of Te depends critically on the parameters αLP and αBPP . αLP , is given

by [25] (neglecting secondary electron emission for now)

αLP =
1

2
ln

(
2π
mi

me

(
1 +

Ti
Te

))
=

1

2

[
ln

(
2π
mi

me

)
+ ln

(
1 +

Ti
Te

)]
(3.35)
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where mi,e is the ion/electron mass, evaluated in this section for Deuterium ions, and Ti,e

is the ion/electron temperature. The ratio of Ti/Te cannot readily be measured during

shots 28819, 28830 and 28834 and requires the replacement of the probe head on the RP

system. As a consequence this ratio introduces a source of error into the calculation of

αLP . Previous measurements on MAST [145] indicate that the ratio Ti/Te is commonly

in the range of 1 to 2 in the SOL and edge plasma. Taking these as bounding values,

αLP can be evaluated for MAST as

αLP ≈ 2.7± 0.1 (3.36)

where the error in αLP arises from the uncertainty in Ti/Te. At present no first principles

model exists to evaluate αBPP . The arguments laid out in section 3.2 suggest that

collection due to E × B motion within the collection tube may provide αBPP values

within the ranges found in experiment, however this is far from a predictive model. The

quantity

αBPP = ln

(
Ie
Ii

)
(3.37)

has been measured empirically in the past by sweeping the probe tip bias and measuring

the current drawn [136]. The BPP used in MAST cannot be swept and as a consequence

αBPP cannot be measured directly. In a following section a procedure for evaluating

αBPP by calibration with the Thomson scattering system will be presented, however for

an initial investigation αBPP is taken as

αBPP ≈ 0.6± 0.3 (3.38)

which is an empirical value motivated by previous experiments [136]. In measurements

of Te the quantity αLP − αBPP is important which, from the values stated above, takes

the value

αLP − αBPP ≈ 2.1± 0.4 (3.39)

The electron temperature can now be measured with uncertainty determined by αLP −
αBPP .

To assess the validity of the BPP measurement it will be directly compared to the Thom-

son scattering system on MAST [163]. To make this comparison the TS data is sampled

over a radial range encompassing the reciprocation of the RP. The TS data is sampled

in a time window during which the plasma edge is stationary. This allows the measure-

ment to be expressed in terms of distance from the LCFS, rather than major radius, by

subtracting the position of the plasma edge again taken from EFIT. As already stated

the EFIT measurement of the LCFS position is subject to unknown systematic error.

Using the EFIT value in both the BPP and TS measurements removes any effect of this
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error from the comparison between the two diagnostics. During the sampling window

the mean of the data is taken. Data points with a random error greater than 50% of the

mean are rejected from the sample (although in practice this is not a significant por-

tion). Furthermore radial windows with less than three data points in them are rejected

as too small a sample to construct a mean measurement. This occurs in the SOL region,

where low temperatures and densities lead to large amounts of random error on the

data. Furthermore the TS system has a floor measurement of 5eV, making it unsuitable

for SOL measurements.

Figure 3.19 shows the electron temperature, Te, calculated from the BPP using equa-

tion 3.34, compared with the TS measurement of Te during the three analysed MAST

shots. The two diagnostics compare favourably, with the TS measurement of electron
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Figure 3.19: Comparison of the electron temperature, Te, measured by the BPP and
the TS system during MAST shots 28819, 28830 and 28834. The dotted lines show
the upper and lower bounded values of the BPP temperature due to the uncertainty
in αLP − αBPP . The error bars on the TS data are the standard error on the mean
within each radial window. The error arises from a combination of the data variance

within each window and random error on the measurements.

temperature falling within error bars of the BPP measurement over much of the radial

range where the two data sets overlap. In particular shot 28819, which has the deepest

probe reciprocation, shows excellent agreement with the TS system in both the mag-

nitude and gradient of the Te profile. The BPP profiles show a rapid decrease of the

electron temperature at −2cm. This is consistent with the efficient transport of heat to

the divertor target in the SOL and suggests that the EFIT calculation of RLCFS is offset

by 2cm. There is a gradual relaxing of the gradient as the probe penetrates deeper into

the plasma. This is particularly pronounced in shots 28830 and 28834. This relaxation

is expected, however the BPP profile appears to underestimate the gradient of the pro-

file as the temperature increases. This has the result of a growth in the disagreement

between the BPP and TS measurements as the magnitude of Te increases. The TS

system is a well established diagnostic therefore the source of disagreement is assumed

to lie in the BPP measurement. The increase in disagreement between the BPP and

TS measurements suggests that a temperature dependant process may be present in the
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BPP measurement which is not accounted for in the present analysis. Given the lack

of a robust model for BPP collection it is not possible to identify such a process which

may affect the ball pen probe contribution to the measurement. The measurement of Te

also depends on the Langmuir probe potential measurement however which may also be

responsible for the observed disagreement. In particular the neglect of secondary elec-

tron emission is an approximation which may affect the measurement of Vfl. Secondary

electron emission is the emission of electrons from a surface as a result of an incident

flux of electrons in a plasma [25]. In principle the yield of electrons has a component

due to electrons released from the surface and a component due to backscattered elec-

trons [164], though in temperature regimes of relevance to the edge plasma in MAST

the backscattered component is negligible [25]. The emission of electrons from a surface

enhances the ion current to the surface and can therefore reduce the floating potential of

the surface. The floating potential including the effects of secondary electron emission

(SEE) is given by [25]

αLP = −1

2
ln

(
2π
me

mi

(
1 +

Ti
Te

)
(1− δ)−2

)
(3.40)

where δ is the secondary electron yield and measures the average number of electrons

emitted from the surface per incident electron. The secondary electron yield can be well

described over a wide range of material surfaces by the empirical formula [25, 165]

δ = 2.722δmax
E

Emax
exp

[
−2

(
E

Emax

)1/2
]

(3.41)

where δ is the SEE yield, E is the incident electron energy and δmax and Emax are

material dependant parameters. For graphite (the material used for the probe tips in

the BPP constructed for MAST) δmax = 1 and Emax = 300eV [25, 165]. This formula

is derived from an experimental fit over multiple data sets shown in figure 3.20

SEE is conventionally neglected in Langmuir probe measurements at divertor targets.

Since the magnetic field is highly oblique to the collection surface electrons emitted

normal to the probe surface will be recaptured as they complete their first Larmor orbit.

The case of the LP on the midplane RP system is in contrast to the divertor. In the

case of the RP the magnetic field has a close to normal angle of incidence on the probe.

In this case the sheath that forms on the probe acts to accelerate the emitted electrons

away from the probe along the magnetic field line. The electrons are not then recaptured

by the probe and so the effect of SEE can be significant.

Generally expressions for the secondary electron yield, δ, are given in terms of incident

electron energy, as in equation 3.41 for example. To factor δ into the floating potential

expression in terms of electron temperature rather then electron energy, the distribution

of electron energies must be accounted for to provide an average δ as a function of

77



  

Figure 3.20: Normalized secondary electron emission as a function of normalized
incident energy. The line is the semi-empirical curve given in equation 3.41. Figure

taken from [25], originally from [165]

Te, δ̄ (Te). To calculate δ̄ the electrons are assumed to have a Maxwellian distribution

function. The experiments carried out to derive the expression for δ (E), equation 3.41,

were carried out with an electron beam at normal incidence to the surface [165]. As a

result the expression does not account for any variation in the angle of incidence of the

electrons. For this reason in the calculation of δ̄ (Te) the angle of incidence on the surface

is assumed to have no effect on δ. This translates to the assumption that the pitch angle

part of the Maxwellian distribution of the electrons has no effect on δ̄. It should be

noted however that in [166] electrons incident on a variety of surfaces at below normal

incidence were shown to enhance secondary electron emission. As such the neglect of

pitch angle here is likely lead to an underestimate in the calculation of δ̄. With these

approximations in mind, δ̄ can be obtained by averaging the mono-energetic δ (E) over

a Maxwellian energy distribution so that

δ̄ (Te) =

∫∞
0 δ (E) exp [−E/Te] dE∫∞

0 exp [−E/Te] dE
(3.42)

Figure 3.21 shows δ (E) and δ̄ (Te) as a function of incident electron energy and electron

temperature respectively.

The SEE yield calculated as a function of Te, δ̄ (Te) is reduced compared to the mono-

energetic case. This is a result of the Maxwellian distribution being biased towards

E = 0, where δ (E) is lowest. Woods has shown [166] that including the effect of pitch

angle in the calculation of δ̄ (Te) can lead to a strong enhancement of the SEE yield. An

enhancement by up to ≈ 50% was noted in graphite, however no parametrization exists

for this enhancement, so it must be neglected here. It should also be noted that the
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Figure 3.21: Secondary electron yield as a function of incident electron energy, δ (E)
calculated from 3.41, and as a function of electron temperature calculated from 3.42 by

integration over a Maxwellian.

deviation between the mono-energetic and Maxwellian calculations begins to become

significant within the experimentally relevant range of Te, showing that the Maxwellian

calculation must be accounted for in order to consistently include the effects of SEE on

Vfl.

With the calculation of δ̄ (Te) established the effects of SEE can now be included in the

calculation of αLP through equation 3.40. The experimental temperature is approxi-

mated by taking a linear fit of the Thomson scattering measurement to the point where

Te = 1eV, beyond which the temperature is fixed at 1eV. Higher order fitting functions

were tested but were found to have a negligible effect on results presented. αLP can

be calculated as a function of electron temperature, which can then be mapped onto

R − RLCFS . Figure 3.22 shows the approximated temperature profiles and resulting

radial profiles of αLP for each shot analysed. Using these profiles of αLP the electron

temperature can be recalculated from the BPP data this time accounting for the pres-

ence of secondary electron emission. Three cases are presented which take αBPP = 0,

αBPP = 0.15 and αBPP = 0.30 respectively. This new comparison with the TS system

is presented in figure 3.23.

The inclusion of secondary electron emission in the measurement of the floating potential

improves the agreement between the BPP and TS measurements of Te. This comparison

also allows the parameter αBPP to be approximately constrained to 0 ≥ αBPP ≤ 0.3

which is below the empirical values found by Adamek et.al [136]. The validity of the

BPP measurement of the plasma potential is further strengthened by considering that

the influence of pitch angle on SEE has been neglected here. As shown in [166] including

the effects of pitch angle on SEE can enhance δ̄ (Te) by up to 50%. This is exempli-

fied in figure 3.24 where a 30% enhancement to δ̄ (Te) has been applied to the BPP

measurement in shot 28834 and is compared to the case with no enhancement. A 30%
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Figure 3.22: Upper: Linear fits to Thomson scattering measurement of electron
temperature. Lower: Calculated radial profiles of αLP including self-consistently the

effects of secondary electron emission.
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Figure 3.23: Comparison of the electron temperature measured by the TS system
with the BPP measurement including the effects of secondary electron emission. A

range of αBPP are tested.

enhancement to δ̄ (Te) can bring the BPP measurement with αBPP = 0 into very close

agreement with the TS measurement of Te. This suggests that within the uncertainty

induced from the neglect of pitch angle effects in the calculation of δ̄ (Te), the BPP

potential can be considered to be a good estimate of the true plasma potential. In the

following sections the effect of finite αBPP will be retained as a source of uncertainty,

although ultimately it will be shown that αBPP has little impact on the most significant

measurements made by the probe.

The BPP electron temperature profile resolves the temperature gradient in the SOL.

Figure 3.25 shows the temperature profile in the near separatrix region for the three
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Figure 3.24: Comparison of the BPP Te measurement with 30% enhancement to the
SEE yield, δ̄ (Te) compared to the un-enhanced case for shot 28834.

analysed shots. The electron temperature decay length in the near separatrix region is a
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Figure 3.25: Left: Electron temperature profile in the near separatrix region showing
the sharp falloff. Right: Electron temperature normalized to the maximum value for

scale length comparisons between the three shots.

critical quantity since it determines the radial extent over which the majority of power

is deposited on the divertor. Figure 3.25 suggests that the temperature decay length in

shot 28834 significantly exceeds the other two. Despite the lower temperature in shot

28819, due to a reduced Ohmic heating power by virtue of a reduced plasma current,

the decay length remains close to that of shot 28830. The temperature decay length, λT

is defined as

λT =
Te

dTe/dR
(3.43)

where Te here refers to the time and flux surface averaged electron temperature. In the

two-point model of the conduction limited SOL [25] the heat flux decay length, λq can be
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related directly to the temperature decay length by λq ≈ 7
2λTe . λT has been calculated

in shots 28819, 28830 and 28834 in figure 3.26.
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Figure 3.26: Temperature decay length, λT calculated as a function of R−RLCFS for
shots 28819, 28830 and 28834. Similar profiles are observed in shots 28819 and 28830,

whilst 28834 exhibits extended decay lengths.

Shot 28834 exhibits larger λT than shots 28819 and 28830. Shot 28834 has a lower density

than both 28819 and 28830 and has a plasma current of 600kA making it comparable

to 28830 but greater than 28819. Since the change in decay length between shots 28819

and 28830, which represent a current scan, is minimal this suggests that the reduced

plasma density causes the increased temperature decay length. It should be noted that

the minimum in λT may be expected to occur in the near SOL where efficient parallel

transport of heat to the divertor targets reduces the electron temperature radially. In

figure 3.26 this appears not to be the case when accounting for the 2cm systematic offset

of the EFIT calculation of RLCFS . The presence of this offset however prevents exact

determination of the proximity of the profiles to the separatrix, only that they occur in

the near separatrix region.

Millitello et.al [167] have derived numerically a scaling for the temperature decay length

using the 2D ESEL model [93, 118, 119] for MAST-like parameters. The ESEL model,

reviewed in chapter 2, is based on 2D interchange turbulence in the plane perpendicular

to the magnetic field with local sources and sinks accounting for motion parallel to the

field line. The scaling derived in this model for the temperature decay length is [167]

λT ∝ qanbeT ce (3.44)

where the indices a, b, c depend on the dimensionless collisionality ν∗ [167], where

ν∗ = L||/λc (3.45)
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and are

• For ν∗ << 4

a = 1.52 b = 0.45 c = −0.55

• For 4 << ν∗ << 12

a = 1.63 b = 0.59 c = −0.73

• For 12 < ν∗ < 63

a = 2.18 b = 1.11 c = −1.77

In each case the general trends are the same with an increase in λT with the safety factor,

q and the density ne at the separatrix and a rapid decrease with separatrix temperature,

Te. Comparing this scaling behaviour with the BPP measurements of Te there are two

notable points:

• An increase in λT is observed between shots 28830 and 28834. These two shots

represent a two-point density scan with 28830 higher in density and 28834. On

the other hand the magnitude of the temperature, shown in figure 3.25, is greater

in shot 28834 than in 28830. The increase in λT is therefore in contrast to the

expectations from the numerical scaling predictions. This could suggest that as

temperature increases the scalings based on 2D turbulence breaks down, poten-

tially due to the impact of 3D features of the turbulence.

• A reduction in λT is observed between shots 28819 and 28830. Shots 28819 and

28830 represent a two-point plasma current scan. Increasing plasma current si-

multaneously reduces q and increases Te so the observed reduction in λT is in

qualitative agreement with the numerical scaling

This is not a complete parametric study of λT and a much larger parameter scan is

required to assess the agreement between numerical and experimental measurements

of the temperature decay length. Nevertheless the above analysis shows that the BPP

measurements contain qualitatively similar features to numerical modelling and, more

importantly, demonstrates the capability of the BPP at measuring the electron temper-

ature profile. A full scan of q,Te and ne would be an excellent avenue of future work to

experimentally characterize the scaling of λT with the BPP.
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3.4.3 Radial Electric Field

The radial electric field can be calculated from the plasma potential by

ER = − ∂φ
∂R

(3.46)

and is an important quantity in the plasma edge. By E ×B motion the radial electric

field induces flows of the plasma within the flux surface. This can be decomposed into

a poloidal and a toroidal flow, vθ and vζ , by

vθ =
E×B

B2
· Bθ

|Bθ|
= −

BζER
B2

=
Bζ
B2

∂φ

∂R
(3.47)

vζ =
E×B

B2
·

Bζ

|Bζ |
=
BθER
B2

= −Bθ
B2

∂φ

∂R
(3.48)

where Bθ = |Bθ| is the poloidal magnetic field strength and Bζ = |Bζ | is the toroidal

magnetic field strength and B =
√
B2
θ +B2

ζ is the total magnetic field strength. In

deriving equations 3.47 and 3.48 quantities have been taken at the outboard midplane

such that ∇ψ/ |∇ψ| = R/R and Bθ/ |Bθ| = Z/Z where R and Z are the major radius

and vertical position of the plasma in cylindrical coordinates. If the flows are sheared

radially then they can be responsible for suppressing turbulence [138]. On the other

hand sheared flows are well known to drive hydrodynamic Kelvin-Helmholtz instabili-

ties [168] in regular fluids. In plasmas the K-H instability can be driven at high flow

shear on the global plasma scale [169–171] and can also be driven locally to the plasma

edge which has been suggested as a mechanism for blob production [172].

Previous measurements of the radial electric field on MAST have used the Doppler

backscattering (DBS) technique [173, 174] and the charge exchange recombination spec-

troscopy (CXRS) technique [175, 176]. DBS measures the Doppler shift and broadening

of backscattered light off of turbulent density fluctuations. The shift of the frequency

peak of the backscattered light gives the local flow velocity of the density fluctuations.

CXRS measures the local flow velocity by a similar method. The charge exchange pro-

cess is the exchange of an electron between a neutral impurity particle and an ion in

the plasma. This thermalizes the impurity species with the plasma ions so that mea-

surements of the impurity energy spectrum are representative of the ions in the plasma

and this allows CXRS to measure the flow and temperature of plasma ions. Light,

emitted from the impurity species by electronic transitions, can be measured and the

broadening and shift of the frequency spectrum away from the transition line provides

a measurement of ion temperature and flow velocity. Assuming that the radial electric

field provides the dominant mechanism producing a plasma flow, the flow velocity can be

inverted to produce a measurement of the radial electric field. These techniques make

84



a direct measurement of the flow velocity, and indirectly measure the radial electric

field. By contrast the BPP measures the plasma potential directly, from which ER can

be obtained and the flow velocity can be inferred. Previous studies have shown good

agreement between ER measurements from a BPP and a passive Doppler reflectometry

system on ASDEX-Upgrade [177]. If Te is known a correction can be made to the BPP

measurement to obtain the true plasma potential. The correction is given by

φ = VBPP + αBPPTe = (1 + γ)VBPP − γVfl (3.49)

where γ = αBPP / (αLP − αBPP ). By comparison with the TS system αBPP has been

constrained to 0 ≥ αBPP ≤ 0.3, though as noted within uncertainty induced by the

neglect of pitch angle in the calculation of αLP , αBPP ≈ 0 can be considered appropri-

ate. Figure 3.27 shows the corrected plasma potential using the full range of αBPP , and

using the profiles for αLP shown in figure 3.22. The correction to the plasma potential
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Figure 3.27: Corrected plasma potential measurements using the parameters αBPP =
0, 0.15 (blue) and 0.3 (red). αLP is taken from figure 3.22. The correction to the plasma
potential can be significant in the region inside the separatrix, but it small in the SOL.

measurement can be substantial on the core-side of the separatrix, where the electron

temperature is highest. To calculate the radial electric field the derivative of the BPP

signal must be taken with respect to the distance from the LCFS. Taking the derivative

with respect to R−RLCFS , rather than simply the major radius removes any time de-

pendence of the measurement that may result from motion of the plasma edge. Taking

the derivative of the raw signal directly, or of the averaged data results in discontinu-

ities due to the discrete nature of the data, which tend to dominate the derivative. To

alleviate this problem a fit of the data is performed to provide a smoothly varying rep-

resentation of the profile and the derivative of this fit is taken. Predicting the structure

of the radial electric field is difficult and generally depends on high order momentum

transport processes [178]. As such it is overly presumptuous to pre-determine a fitting

function for the potential profile. Instead a high order polynomial is used since this

provides a smooth curve which captures the underlying features of the potential profile.
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In this case a 17th degree polynomial is used. Figure 3.28 shows the fit to the BPP

potential profile in the vicinity of the LCFS for the three analysed shots. In each case

-0.04 -0.02 0.00 0.02 0.04
R - RLCFS (m)

-5

0

5

P
ot

en
tia

l(
V

)

Original

α=0.15

α=0.3

(a) 28819

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04
R - RLCFS (m)

0

5

10

15

P
ot

en
tia

l(
V

)

Original

α=0.15

α=0.3

(b) 28830

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04
R - RLCFS (m)

0

20

40

60

80

P
ot

en
tia

l(
V

)

Original

α=0.15

α=0.3

(c) 28834

Figure 3.28: 17th degree polynomial fits (solid line + error bars) to the BPP potential
profile (squares) in shots 28819, 28830 and 28834.

shown in figure 3.28 the polynomial fit matches the experimental profile well. The radial

electric field may then be calculated by taking the derivative of these fits. Figure 3.29

shows the radial electric field calculated from the BPP potential in shots 28819, 28830

and 28834. The radial electric field is significantly less sensitive to the αBPP parameter
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Figure 3.29: Radial electric field profile calculated from fitted BPP potential profiles,
shown in figure 3.28, for shots 28819, 28830 and 28834.

than the potential.

The measurements obtained from the BPP agree qualitatively with previous measure-

ments on MAST using the ECELESTE system. ECELESTE is a CXRS system and was

used in [176, 179] to measure the radial electric field. Extensive studies were made of the

H-mode electric field, but fewer studies were conducted in Ohmic L-mode. Nevertheless

ER was shown to exhibit a magnitude ∼ 1kV/m similar to the BPP measurements. Fur-

thermore a strong gradient region near the separatrix, which corresponds to the radial

shear layer, can be identified in the BPP measurements and is in qualitative agreement

with [179].

The variation of ER between shots 28819 and 28830 (which correspond to a plasma

current scan) indicates an increase in the radial electric field with plasma current whilst
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ER remains relatively similar between 28830 and 28834 which represent a density scan.

In each case a region of strong electric field shear is present near to the separatrix which

can be identified as the radial shear layer. The length scale of the shear layer remains

relatively constant between each shot, however an increase in the electric field magnitude

as plasma current increases also results in increased shear of the electric field.

The toroidal and poloidal magnetic field strengths can be calculated from EFIT. These

are given in figure 3.30. Using the magnetic field components shown in figure 3.30 the
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Figure 3.30: Poloidal magnetic field, Bθ (blue), toroidal magnetic field, Bζ (dot-dash)
and total magnetic field (solid) from EFIT equilibrium reconstructions of shots 28819,

28830 and 28834. Minimal variation is observed across the region of interest.

velocity components can be calculated from equations 3.47 and 3.48. These are shown

in figure 3.31 for shots 28819, 28830, and 28834. The poloidal velocity is the dominant
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Figure 3.31: Toroidal (solid) and poloidal (broken) E ×B velocity components cal-
culated from the BPP measurements of radial electric field for shots 28819, 28830 and

28834.

component of the E × B due to the larger toroidal magnetic field. The plasma is ob-

served to rotate toroidally and poloidally with a velocity on the order of ∼ 1km/s. In

each case a strong velocity shear is observed near to the separatrix in the radial shear

layer. The shear has a magnitude on the order of 5× 105s−1.

Velocity shear in the plasma edge can have a significant effect on turbulent transport

that is typical and is linked with the ejection of filaments. In the next section the impact

87



of the radial shear layer on statistical properties of density fluctuations in the plasma

edge is analysed. The BPP offers a unique opportunity to measure this interaction lo-

cally, removing any source of uncertainty arising from the need to map measurements

spatially onto one another.

3.5 Fluctuations in the Radial Shear Layer

Intermittency in the SOL can be inferred from the structure of the probability distribu-

tion function (PDF) of Ion saturation current (Isat) fluctuations. Isat, which is given

by

Isat = AZnecs = AZeni

√
Te
mi
∝ niT 1/2

e (3.50)

is often used to infer fluctuations in the plasma density since low frequency (kHz range)

temperature fluctuations are usually assumed to be small due to efficient parallel heat

transport. The structure of the Isat PDF can then be used to infer characteristics of

the density fluctuations dominating transport in the SOL. If the signal is dominated by

random (uncorrelated) fluctuations then the PDF of the signal reduces to a Gaussian

centred on the average with a width of 2σ where σ is the standard deviation of the

signal. If the signal has an intermittent character, such as signals in the SOL where the

ejection of filaments generates intermittency, the PDF becomes biased in the positive

(or negative if the intermittent fluctuations are negative) direction. This behaviour is

illustrated schematically in figure 3.32. A positively biased PDF indicates a tendency

S
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Time

Frequency of
                      occurence

Deviation from mean

Figure 3.32: Schematic illustration of the biasing of a PDF by intermittent fluc-
tuations. Random fluctuations (blue) result in a symmetric, Gaussian PDF whilst
intermittent signals (red) result in a skewed PDF as large, infrequent events dominate

the signal.

for the plasma to produce large intermittent fluctuations which, in the context of the
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plasma edge, are filaments. On the other hand a negatively biased PDF indicates the

production of negative depressions in plasma density, also known as holes. Filaments

can provide a large component of density transport into the SOL in a non-diffusive

manner [180], whilst holes have been cited as a possible means for enhanced impurity

transport towards the tokamak core [181]. As a consequence the nature of fluctuations

in the plasma edge can play a strong role in determining tokamak performance.

Probe measurements on JET [68] and ASDEX-Upgrade [76] have indicated a qualita-

tive connection between the structure of the Isat PDF and the radial shear layer. In

particular both studies showed a drop in the skewness of the PDF as the shear layer

was passed through, suggesting that the shear layer is a local generation region of fil-

aments and holes. A difficulty in interpreting these measurements is an inability to

accurately pinpoint the position of the radial shear layer whilst obtaining fluctuation

statistics. Consequently the relationship between skewness and the radial shear layer

is qualitative. Visible imaging using localized gas puffs in TEXTOR has shown that

the interaction between fluctuations and the radial shear layer varies dramatically over

an L-H transition [135] with eddy structures being broken into smaller structures in

H-mode. A local measurement of the fluctuation characteristics in the radial shear layer

would allow a quantification of these processes. The BPP offers the chance to make such

a measurement by simultaneously measuring the plasma potential and Isat signals local

to the probe allowing the radial electric field to be measured alongside fluctuation char-

acteristics. Since the measurements are local to the probe they can be quantitatively

compared and do not rely on spatial mapping between diagnostics. Given that the shear

layer width can be ∼ 1cm small uncertainties introduced by such spatial mapping can

strongly impact measurements in the shear layer.

MAST shot 30250 is an Ohmic L-mode CDN discharge with a plasma current of 600kA

and a magnetic field of 0.585T. It is entirely equivalent to the previously analysed shot

28830. During shot 30250 the BPP pin p1 was operated in Isat mode to analyse Isat

fluctuation characteristics in the MAST plasma edge.

The first four moments of a PDF P (f) of a function f (t) are given by [182]

f̄ =

∫
fP (f) df =

1

N

N−1∑
j=0

fj (3.51)

σ2 = V (f) =

∫ (
f − f̄

)2 P (f) df =
1

N − 1

N−1∑
j=0

(
fj − f̄

)2
(3.52)

S (f) =

∫ (
f − f̄

)3
σ3

P (f) df =
1

N

N−1∑
j=0

(
fj − f̄

)3
σ3

(3.53)
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K (f) =

∫ (
f − f̄

)4
σ4

P (f) df − 3 =
1

N

N−1∑
j=0

(
fj − f̄

)4
σ4

− 3 (3.54)

where V is the variance, σ is the standard deviation, S is the skewness and K is the

kurtosis of the PDF of (f) with mean value f̄ . Also given are the expressions for the

discrete series fj = [f0, f1, ..., fN−1]. The mean and variance describe the most common

value of the data and the spread of the series around its mean value. The skewness

measures how positively or negatively the distribution is biased (the red distribution in

figure 3.32 is positively skewed for example). The Kurtosis is a measure of how flat or

peaked the distribution is. A Gaussian distribution (the blue PDF in figure 3.32) has

S = K = 0.

The aim of this section is to compare the radial variation of the moments of the Isat

PDF with the radial electric field profile. To generate profiles of the statistical moments

an adaptation of the box-car average method has been used. The time series is split

into a set of strongly overlapping windows. Within each window the moments of the

PDF are calculated and assigned a radial position corresponding to the position of the

window centre. This process produces a series of values for the moments of the PDF as a

function of radial position. The Isat signal has been split into 200 windows with a width

of 3ms. The window width is limited by the need to encompass a significant number of

fluctuations allowing the statistics of the PDF to be accurately reproduced, requiring

a large window width. On the other hand the width must be small enough to ensure

that the low frequency component of the signal remains constant within the window,

meaning that the effect of background profile variation can be neglected within each

individual window. If this is not the case then a significant smoothing of the profile of

the various moments occurs and the boxcar method is no longer valid. A window width

of 3ms, which corresponds to a radial window of ∼3mm was found to give adequate

statistics for calculation of PDF moments, but remains small enough to minimize any

radial smoothing of the underlying profiles.

The mean, variance, skewness and kurtosis of the Isat signal in shot 30250 have been

calculated within each window. Figure 3.33 shows these quantities as a function of

distance from the LCFS during shot 30250. The skewness is positive in the SOL and

drops, eventually becoming negative radially inwards. This indicates the presence of

filaments in the SOL and holes in the near separatrix region. The skewness and kurtosis

are strongly correlated with both showing drops as the LCFS is crossed. In previous

experiments on TORPEX [183], ASDEX-Upgrade [76] and many other magnetic con-

finement fusion devices[184] a parabolic relationship between the skewness and kurtosis

has been reported. Figure 3.34 shows that this parabolic relationship is reproduced

by Isat fluctuations in MAST. The data in figure 3.34 is well fitted by the generalized

parabolic relationship K = aS2 + bS + c where K is the kurtosis, S is the skewness and
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Figure 3.33: The mean, variance, skewness and kurtosis of Isat in the time window
[0.15, 0.27]s during MAST shot 30250. Notably the skewness decreases sharply as the

mean increases. At this point the probe is crossing the LCFS.
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Figure 3.34: Kurtosis of fluctuations in Isat during MAST shot 30250 as a function
of the squared skewness. A clear parabolic relationship between the two is observed

with a linear fit of K = 1.69S2 − 0.52 fitting the data well.
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a, b and c are polynomial coefficients with a = 1.69, b = 0 and c = −0.52. The fact that

b = 0 is in agreement with the ASDEX-upgrade and TORPEX results however here a

negative value of c is observed. This arises simply because of the definition of kurtosis

used here where a subtraction of −3 is applied. Undoing this subtraction then gives

c − 0.52 + 3 = 2.48 which is in close agreement with TORPEX [183]. The universality

of this relation is well established [184] and does not depend strongly on the particular

system under study [185]. The particular values taken by the coefficients a and c can be

dependant on local conditions of the experiment however, with the coefficient c being

determined by the temporal intermittency of the signal and a being determined by the

spatial intermittency [186].

To assess the accuracy of the plasma potential measurement in shot 30250 made by the

BPP the electron temperature is once again compared to the TS system. This is shown

in figure 3.35. The BPP measurement of electron temperature has been obtained by
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Figure 3.35: Comparison of Te measured by the BPP (solid lines) and the TS system.

the method outlined in section 3.4.2 including the effects of secondary electron emission.

The BPP measurement is a clear extrapolation of the TS data. Furthermore, as argued

in section 3.4.2 since the effect of secondary electron emission is underestimated in figure

3.35 αBPP = 0 can be considered adequate and the BPP potential can be considered as

the plasma potential.

Figure 3.36 compares the skewness of the Isat PDF with the plasma potential measured

by the BPP. Figure 3.36 suggests that the skewness of the Isat PDF may be related to

the plasma potential with a change of sign of S occurring within the region of strong po-

tential gradient variation. This suggests that the skewness may be related to the radial

electric field −∂φ/∂R. To investigate this further the radial electric field is calculated

using the method described in section 3.4.3. Figure 3.37 shows the radial electric field

compared to the skewness of the Isat PDF in the radial shear layer (the region where the
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Figure 3.36: Skewness of the Isat PDF compared to plasma potential as measured by
the BPP. The skewness first becomes Gaussian in the region of high potential. As the

gradient of the potential changes sign the skewness also changes sign.

radial electric field changes sign). The skewness and radial electric field appear to be

strongly correlated within the radial shear layer with a strong decrease in the skewness

occurring as the radial electric field changes sign. The radial shear layer produces strong

levels of flow shear by E×B motion. Since both the electric field and the skewness are

measured locally the skewness can been plotted as a function of both ER and dEr/dR.

This is presented in figure 3.38.

The most striking feature of figure 3.38 is the relationship between the skewness and

radial electric field gradient. As the radial electric field gradient reaches a maximum the

skewness tends toward 0 and as the maximum is passed through the skewness reverses

sign. This suggests that the ejection of blobs outside the radial shear layer and the ejec-

tion of holes inside the shear layer and, most importantly, identifies the region around

the maximum in dEr/dR as a local generation region of intermittency and hence the

birth region of filaments and holes. This trend can be clearly identified in the PDFs of

Isat in the filament, generation and hole regions respectively. Figure 3.39 shows the Isat

PDF constructed at different points during the probe reciprocation, alongside the time

series used to construct the PDF. Figure 3.39 indeed confirms that the fluctuations vary

from positive to negative intermittency as the radial shear layer is crossed, with the PDF

tending towards a Gaussian at the peak in the generation region which corresponds to
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Figure 3.37: Comparison of the radial electric field with the skewness of the Isat PDF
in the vicinity of the radial shear layer during MAST shot 30250. The radial electric
field is constructed by fitting the plasma potential with a smoothly varying 17th degree
polynomial (left), removing small scale structure in the profile and allowing gradients

to be taken.
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Figure 3.38: Skewness of the Isat PDF as a function of the radial electric field (a)
and the radial electric field shear (b). The skewness is at an absolute minimum when
the electric field shear is a maximum, suggesting that the shear of the radial electric

field is responsible for reducing the Isat PDF to a Gaussian.
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Figure 3.39: PDFs of the Isat time series in the SOL (red) at R − RLCFS = 3cm,
centre of the radial shear layer (blue) at R − RLCFS = −1cm and inside the radial
shear layer (black) at R−RLCFS = −2.5cm showing the presence of blobs in the SOL,
the presence of holes in the core side and the Gaussian nature of fluctuations in the

generation zone.

a maximum in the radial electric field gradient.

It should be noted that it is presently not possible to verify the causality between the

observed correlation between the radial electric field gradient and the skewness of the

Isat PDF. This uncertainty can be highlighted by considering two cases:

1. If the sheared flow that results from the gradient in electric field is directly responsi-

ble for the generation of blobs and holes through the Kelvin-Helmholtz mechanism,

as investigated in [172] for example, then the radial electric field gradient is the

cause of the correlation with the skewness.

2. If blobs and holes are produced by other mechanisms, for example drift-interchange

turbulence driven by pressure gradients, then net flows can develop through a

Reynolds stress. The direction of this flow may then be strongly dependant on the

skewness of the fluctuations (ie whether more eddys turn one way or another) and

the skewness causes the observed correlation with the gradient of electric field.

It has not been possible to remove this ambiguity here, however the observation of the

strong correlation between skewness and radial electric field gradient is important and

it is hoped that this will lead to further study into the causality of edge turbulence and

the edge radial electric field. An avenue for future work may be to apply the technique
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described by Sugihara et.al [187] for detecting causality in correlated time-series and

confirm cause and effect between the radial electric field gradient and skewness of the

Isat fluctuations.

3.6 Improvements to the MAST BPP design

The results presented in this chapter clearly demonstrate the capability of the BPP

to make detailed measurements of quantities that are important in the understanding

of the plasma edge. The implementation of the BPP technique is extremely simple; a

BPP can be implemented on a standard reciprocating probe head simply by retracting a

Langmuir probe a suitable distance (> ρi) into the probe body. This can make the cost

for a basic implementation of a BPP very low (the total cost for the BPP used in this

study was < £2000). As has been shown in this chapter, such an implementation can

provide measurements of both the electron temperature and radial electric field profiles

at the plasma edge, which are difficult to measure with a similar degree of accuracy by

other means. The potential for advanced measurements by a BPP is rich, but is limited

in the current design for a number of reasons. The measurement of true plasma potential

fluctuations, which are not contaminated by the electron temperature as in the case of

the floating potential, is a particularly appealing aspect of the BPP. This could not be

achieved in the current design due to a suppression of the frequency spectrum of the

BPP. Since the BPP collection relies on cross-field motion, rather than parallel motion,

currents to the collector are significantly reduced. This increases the effective impedance

of the BPP. If the impedance of the BPP greatly exceeds the impedance of the amplifier

circuitry then a leakage current can occur across the cabling from the probe head to

the amplifier. This causes the observed suppression of the BPP frequency spectra and

greatly reduces the spectral window for the BPP measurement. In cases where the BPP

impedance is particularly high (the BPP3 pin on the MAST design for example) the

suppression can occur across the entire spectrum and an underestimate of the plasma

potential profile can occur. This was also recently noted on the MIRABEL cylindrical

low-temperature plasma device[155]. The solution to this problem is to replace the (rel-

atively) low impedance electronics with a very high impedance option. In[154] and [155]

an electrometer with extremely high impedance (> TΩ) is used as a unit gain voltage

buffer which greatly increases the impedance of the measurement circuit and therefore

reduces the effects of leakage current.

Of particular interest to the study of turbulent transport in the plasma edge is the inter-

action between fluctuations in electrostatic potential, density and electron temperature.

These three quantities could be measured simultaneously by a BPP, an LP measuring

Isat and an LP measuring Vfl. The difference between VBPP and Vfl can be used to
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obtain Te, which can then be factored into the measurement of Isat to extract the elec-

tron density. The MAST BPP design can make the individual measurements required,

however the spatial separation between the two LPs is 1.6cm, whilst the spatial sepa-

ration between the LPs and the BPP is 2.4cm. This is a result of the inherited design

of the Gundestropp probe head and could not be readily avoided. This limits any mea-

surements to fluctuating structures with a length-scale significantly greater than 2.5cm.

Unfortunately this is well within the region of interest for fluctuations on MAST [79].

An improved design would be a set of probe groupings laid out on the probe face. Each

grouping would contain a BPP, an LP measuring Isat and an LP measuring Vfl in very

close proximity. The individual groupings can then be laid out in a pattern to best

capture the nature of the fluctuations. A particularly enticing choice of layout would

be an array spaced logarithmically away from one another. This allows an array of N

groupings to measure
∑N−1

i=0 i = (N − 1)2/2 + (N − 1)/2 length-scales, whilst a common

linear array is limited to N possible measurements. In the case of 5 groupings this

provides 10 measurements in a logarithmic array compared to 5 in a linear array.

3.7 Conclusions and Future Work

This chapter has presented the first implementation of the ball-pen probe (BPP) tech-

nique on MAST. The specific design included three BPP pins with variable retraction

depth and diameter. The two pins with a smaller diameter exhibited a significant sup-

pression of their frequency spectra due the inherently high impedance of the BPP pins.

This high impedance is a result of the collection process in the BPP occurring across

the magnetic field rather than along it. When the pin impedance is higher than the

impedance of the measurement circuitry current leakage can lead to the suppression

observed in the frequency spectra. Of the three BPP pin configurations a retraction of

5mm and a diameter of 4mm was optimum for measurements of the potential. A similar

filtering of the frequency spectrum was observed in all BPP pins in the SOL region of

the plasma, indicating that the impedance of the BPP is strongly dependant on local

plasma conditions. This prevented the study of potential fluctuations in the SOL, but

did not affect profile measurements.

The BPP was attached to the reciprocating probe (RP) system on MAST during the

M9 campaign and was used to measure radial profiles of the plasma potential, electron

temperature and radial electric field in the vicinity of the separatrix. The potential

measured by the BPP was shown to differ significantly from the floating potential mea-

sured simultaneously by a Langmuir probe (LP). The BPP potential profile is always

more positive than the floating potential, and exhibits polarity changes where none are

observed in the floating potential. This suggests that the BPP potential is measuring
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a quantity at least closely related to the plasma potential. A quantitative test of the

validity of the BPP measurement of the plasma potential is achieved through a detailed

comparison with the Thomson scattering (TS) system. Both the BPP and TS systems

were used to measure the electron temperature. Moderate agreement between the two

diagnostics was achieved by neglecting secondary electron emission however the two

profiles diverged as the temperature increased. It was then argued that due to the pre-

dominantly normal angle of incidence of plasma fluxes onto the LP secondary electron

emission should be included in the analysis. This was achieved by integrating an empiri-

cal formula over a Maxwellian energy distribution over a range of temperatures providing

a temperature dependant parametrization of the secondary electron yield. This was then

mapped to plasma radius to generate radial profiles including self-consistently the effects

of secondary electron emission. This greatly improved the agreement between the two

diagnostics and, within the uncertainty introduced by the neglect of pitch angle varia-

tion, showed that the BPP potential may be considered a reasonable measurement of

the plasma potential. Aside from the specifics this also shows that secondary electron

emission can play a significant role in midplane LP measurements and should be con-

sidered in future studies with the RP system on MAST.

By fitting a high order polynomial function to the plasma potential a smoothly varying

potential profile can be extracted which retains the main features of the true profile.

From these fits a derivative can be taken and an estimate for the radial electric field

is produced. This showed that the BPP measurement can accurately resolve the radial

shear layer in the radial electric field. From these measurements a poloidal and toroidal

velocity were inferred by E × B motion. Motivated by this measurement of the radial

shear layer, the interaction between the statistics of Isat fluctuations and the radial elec-

tric field was investigated in a single shot. Given the locality of the measurements of

Isat and ER the variation in moments of the Isat PDF could be compared quantitatively

to aspects of the underlying profiles. In particular a strong correlation was observed be-

tween the skewness of the Isat PDF and the gradient of the radial electric field, dER/dR.

The skewness was observed to drop to 0 at the point where dER/dR maximises indicat-

ing that the generation region for intermittency in the plasma edge occurs at the peak

in electric field gradient. The causality of this correlation could not be determined from

the measurements and is an excellent topic for future investigations.

Finally improvements to the BPP design are presented which would allow for advanced

measurements of fluctuations in the plasma edge. It is hoped that the work presented

in this chapter acts as motivation for continued use of the BPP principle. Given its

simplicity and cost to implement it is an attractive option for fluctuation measurements.

The drawback of the BPP is an incomplete understanding of the collection mechanism.

This was commented on and a simple model of kinetic ion filtering was derived which

provided limitations on the possible collection velocities in a BPP, however a detailed
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analysis was not attempted. Such an analysis requires advanced kinetic modelling using

a 3D PIC code which is beyond the scope of this thesis.
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Chapter 4

The BOUT++ Framework

BOUT++ [104, 188–190], written by B. D. Dudson of the York Plasma Institute in col-

laboration with Lawrence Livermore National Lab, is a framework for simulating highly

non-linear problems in plasma physics. It is written predominantly in the C++ program-

ming language with aspects of pre and post-processing written in IDL, python, mathe-

matica and matlab. BOUT++ is an incarnation of the original BOUndary Turbulence

code written by X. Q. Xu [191] of LLNL now maintained by M. V. Umansky in the

form of BOUT-06 [192]. BOUT++ inherits some algorithms and ideas from BOUT, but

is entirely a stand-alone code and has a number of features not present in the original

BOUT. These include:

• An object oriented modular structure. This allows users to change aspects of

the physics being investigated without having to alter any of the core modules.

This decoupling between the numerical methods employed and the physics involved

greatly speeds up the implementation of multiple physics models for use in a variety

of different problems. It also gives the user access to a range of numerical methods

for solving their problem with minimal alteration to the module detailing the

physics under investigation.

• Generalized differential operators which can be solved in any curvilinear coordinate

system with a metric tensor allowed to vary in two directions (i.e. a system with one

constant direction). This allows for a large variety of geometries to be implemented

in the code again with minimal alteration. Only the components of the metric

tensor need to be specified.

• Syntactically simple coding of evolution equations. This speeds up the writing of

the equations and greatly simplifies the task of reading them.
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The strength of BOUT++ lies in its flexibility and usability. The symbolic writing of

equations makes error spotting a less formidable task. An example of this style of coding

in BOUT++ is given below. The Navier-Stokes equation [193] is a well known non-linear

equation arising from the application of Newton’s 2nd law to a fluid. This equation is

∂u

∂t
= − (u · ∇) u− ∇p

ρ
+ ν∇2u (4.1)

where u is the flow velocity, p is the internal pressure of the fluid, ρ is the mass density

of the fluid and ν is the viscosity coefficient. To write this in BOUT++ a single line is

required:

Vector3D ddt(u) = -V_dot_Grad(u,u) - Grad(p)/rho + nu*Laplacian(u)

This style of implementation makes it easy to add extra terms to the equations to be

solved. For example in the case above one may wish to investigate the role of advection

due to a background static flow,v. In BOUT++ this is achieved by adding the line

ddt(u) += -V_dot_Grad(u,v) - V_dot_Grad(v,u) - V_dot_Grad(v,v)

This flexibility has prompted the use of BOUT++ for a variety of problems. In [194]

BOUT++ was used to simulate the non-linear dynamics of edge localised modes (ELMs).

It was shown that BOUT++ captured the ideal linear physics of ELMs by benchmarking

the code against pre-existing linear MHD codes. The model was then extended to

the non-linear regime and the full crash of the pedestal profiles was captured. It was

also shown that the energy released by the ELM varied strongly with resistivity even

in regions where the linear stability varied very little. This suggests that non-linear

processes play a prominent role in energy redistribution during an ELM crash.

BOUT++ has also been used to study the complex structure of turbulence in simple

linear magnetized plasmas. In [195] non-linear simulations of turbulence in the Large

Plasma Device (LAPD) [196] were studied. It was shown that the driving mechanism

for the turbulence was not a linear instability, as is often assumed, but a non-linear

instability. In particular it was shown that an energy transfer between modes with

parallel wave numbers k|| = 0 and k|| 6= 0 is required to drive turbulence which is

sufficiently broadband to be compared with experiment.

As a final example BOUT++ can also be implemented in simple slab geometries to

elucidate fundamental non-linear physics. In [115, 116, 197] isolated filaments were

simulated in 3D. The geometry used was a simple slab with an effective gravity giving

rise to interchange motion. These simulations showed that filaments of a sufficiently

small cross-sectional size can become unstable to resistive drift-waves, an inherently 3D
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phenomenon that cannot be accounted for in the popular 2D models of blob motion

introduce in chapter 2. This effect is potentially important for intermittent transport

in the edge of tokamaks since it suggests that drift-waves place a minimum possible

size at which filaments can propagate a significant distance across the seperatrix. This

work is important in the context of this thesis where the 3D dynamics of filaments are

investigated in more complex geometries.

The remainder of this chapter will describe briefly the algorithms used in BOUT++

for spatial differentiation and time integration, followed by an overview of the physics

module developed to study 3D filament dynamics in complex geometries in BOUT++.

See chapter 2 for a discussion of this topic.

4.1 Time Integration

4.1.1 Explicit and implicit time integration

The general evolution of a system of equations can be written in the form

∂f

∂t
= F (f) (4.2)

where f = (f1, f2, ..., fi) is the state vector of the system and F (f) is a general non-linear

function of time, f and its spatial derivatives. To solve equations of this kind BOUT++

employs the method of lines [198] which separates the processes of time integration and

spatial differentiation. The time derivative in 4.2 can be discretized by taking

∂f

∂t
≈ fn+1 − fn

∆t
= F (fn)⇒ fn+1 = fn + ∆tF (fn) +O

(
∆t2

)
(4.3)

where fn is the state vector at time t and fn+1 is the state vector at time t+ ∆t. This is

called the Forward Euler Method (FEM). In this approximation fn+1 depends only on

the state vector at the previous time step and is explicit of any variable at time t+ ∆t.

Instead of making the discretization in 4.3 it is possible to substitute t for t − ∆t. In

this case the discretization formula becomes

∂f

∂t
≈ fn − fn−1

∆t
= F (fn)⇒ fn = fn−1 + ∆tF (fn) +O

(
∆t2

)
(4.4)

which gives

fn = fn−1 + ∆tF (fn) +O
(
∆t2

)
(4.5)
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which is termed the Backward Euler Method (BEM). The formula 4.5 is implicit ; the

state vector at time t+∆t depends implicitly on itself through the function F
(
fn+1

)
. Ex-

plicit time integration schemes are typically easier to implement than implicit schemes.

The time step used in an explicit scheme is limited by the CFL condition [199] with

numerical instability occurring if ∆t > ∆tCFL = ∆x/u where ∆x is the spatial step

and u is the fastest velocity in the system. Since the time integration in an implicit

scheme already contains all required updated information the time step used can exceed

∆tCFL without incurring numerical instability. This makes implicit schemes favourable

for numerically stiff problems (problems containing fast, limiting timescales), however

physics occurring faster than the implicit time step may be damped in the numerical

solution.

Equation 4.5 can be written in the form

G (fn) = fn − fn−1 −∆tF (fn) = 0 (4.6)

G can now be expanded around fnm to first order to give

G (fn) = G (fnm) + (fn − fnm)
∂G

∂fn
= 0 (4.7)

The derivative term is given by
∂G

∂fn
= I−∆tJ (4.8)

where the Jacobian matrix, J is given by

J =
∂F

∂f
=


∂F1
∂f1

· · · ∂F1
∂fi

...
. . .

...
∂Fi
∂f1

· · · ∂Fi
∂fi

 (4.9)

To solve equation 4.7 a Newtonian iteration procedure is followed where a solution, δfn,

is found to

(I−∆tJ) δfn = −G (fn) (4.10)

and the state vector is then updated using

fnm+1 = fnm + δfn (4.11)

until

G
(
fnm+1

)
≈ 0 (4.12)

is satisfied within a user defined tolerance. The inversion of equation 4.10 is often

performed using a Krylov subspace method, hence this iteration procedure is often

named ’Newton-Krylov iteration’.
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For a typical implementation of such an implicit time integration the state vector is

often very large (proportional to the number of discrete points in the spatial domain).

This then leads to a Jacobian matrix which is prohibitively large and cannot be stored

within the memory of the CPU. Furthermore matrix inversion methods, such as Gaussian

Elimination [182], can become prone to errors in large systems. To avoid this problem

the matrix-vector product Jv can be approximated by

Jv ≈ F (f + εv)− F (f)

ε
(4.13)

where ε is a small number. This negates the need to store the large matrix J and is

known as a ’Jacobian-Free’ implementation.

It is worth noting that higher order methods may replace the ∆t coefficient with some

other coefficient and may also depend on multiple previous time steps.

4.1.2 Time integration methods in BOUT++

BOUT++ contains the option to use either explicit or implicit time integration methods.

The explicit methods supported are the FEM, the Runge-Kutta 4th order (RK4) method

[182], the Karniadakis method [200] and the RK3-SSP methods. No explicit methods

will be used during this thesis.

For implicit time integration BOUT++ uses by default the PVODE solver [201] which

is part of the SUite of Non-linear DIfferential Algebraic Solvers (SUNDIALS). PVODE

is an iterative solver with a dynamically varying local time step h and method order q.

Each global time step consists of a number of local PVODE time steps. On each local

time step an estimate for the local error on the state vector fn, εn is calculated and the

inequality

|εn|rms < 1 (4.14)

is tested, where |εn|rms is the weighted root-mean-square norm given by

|εn|rms =

[
N∑
i=1

1

N
(wiεn,i)

2

]1/2

(4.15)

where i loops over the elements of the error vector εn. wi is a weight vector given by

wi =
1

atol + rtol |fi|
(4.16)

atol and rtol are the absolute and relative tolerance in the error on the state vector

at each time step and combine to define the allowable error in the solution. If the

inequality 4.14 is violated then the local time step, h and/or the order of the method q
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is dynamically altered until the inequality is once again adhered to. PVODE iterates this

procedure until the user specified global time step is overtaken, at which point PVODE

interpolates the solution back in time to the global time step.

4.2 Spatial Differentiation

The RHS function in 4.2 can be a function of the state vector and/or combinations of its

spatial derivatives. To perform such derivatives computationally the continuum of the

spatial domain must be represented numerically. Three common methods are used for

such a representation: Finite difference, finite element and spectral methods. In finite

difference schemes functions are represented at discrete locations on a spatial grid, or

mesh. In finite element and spectral schemes functions are represented by a truncated

set of basis functions. BOUT++ uses finite difference methods for spatial derivatives.

Figure 4.1 is an example of discretization in one dimension used in typical finite difference

methods. The type of the mesh used within the scheme depends on the description

chosen to represent the fluid motion within the code. This can be broadly split into two

categories:

• Lagrangian mesh: The nodes of the mesh track material properties of the fluid.

This approach is advantageous for the tracking of free surfaces within the fluid,

interfaces between fluid species and complex spatial domains. The drawback is

its difficulty in tracking strongly sheared flows and shocks where the mesh may

become severely deformed, requiring either adaptive re-meshing or other techniques

for handling such deformation. This method is illustrated in figure 4.1 part b.

• Eulerian mesh: The nodes of the mesh are fixed in space and the variation of con-

tinuum quantities is tracked on the mesh nodes. This allows for large deformation

in the continuum properties, as well a simpler computational implementation. The

drawback with this method is that the resolution of flow details (eg. dissipation

scales in turbulence) and of interfaces is strongly dependant on the resolution of

the mesh. This method is illustrated in figure 4.1 part c.

See [202, 203] for a description of these two approaches, as well as a description of

advanced methods combining qualities of each.

BOUT++ is an Eulerian code and consequently must calculate both diffusive (ie d/dx,

d2/dx2) and advective (v · d/dx) derivatives. This is done through a range of possible

differencing methods.
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Fluid element

Mesh node
a) Initial discretization at time t

b) Lagrangian mesh at time t + ¢t

c) Eulerian mesh at time t + ¢t

Figure 4.1: Mesh discretization and the difference between the Lagrangian (b) and
Eulerian (c) approach.

4.2.1 Finite Difference Methods in BOUT++

For diffusive operators BOUT++ employs central differencing methods of differentiation.

The Taylor expansion of f (x+ h) around f (x) where h is a small spatial increment (i.e.

the spacing between two nodes of the mesh) is

f (x+ h) = f (x) + hf ′ (x) +
h2

2
f ′′ (x) +O

(
h3
)

(4.17)

whilst the Taylor expansion of f (x− h) is

f (x− h) = f (x)− hf ′ (x) +
h2

2
f ′′ (x) +O

(
h3
)

(4.18)

Subtracting these two expressions and rearranging for f ′ (x) results in the expression

f ′0 =
1

2h
(f1 − f−1) (4.19)

where f0, f
′
0 = f, f ′ (x) and f1, f−1 = f (x± h). This is an expression for the spatial

first derivative of f accurate to second order in h. Higher order differencing formulas

are available such as

f ′0 =
1

12h
(−f−2 + 8f−1 − 8f1 + f2) (4.20)
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which is accurate to 4th order in h. The second derivative formulas are readily calculable

by adding 4.17 and 4.18 and rearranging for f ′′0 which gives

f ′′0 =
1

h2
(f1 − 2f0 + f−1) (4.21)

to second order in h and

f ′′0 =
1

12h2
(−f−2 + 16f−1 − 30f0 + 16f1 − f2) (4.22)

to fourth order. BOUT++ facilitates the use of either second order differencing with

4.19 and 4.21 or fourth order differencing with 4.20 and 4.22.

In strongly advective flows central differencing methods often produce non-physical os-

cillatory behaviour on the leading and/or trailing edges of advective structures [204].

To combat such spurious oscillation upwind methods can be used to calculate advective

operators such as v · d/dx. First developed in [204] upwind differencing accounts for the

direction of information flow in advection by biasing the finite difference stencil in the

direction of the incoming flow. The simplest implementation of an upwind method uses

the first order difference formulae

v
∂f

∂x
≈ v (f0 − f−1)

h
(4.23)

when the flow is in the positive x direction and

v
∂f

∂x
≈ v (f1 − f0)

h
(4.24)

when the flow is in the negative x direction. This is illustrated in figure 4.2. In BOUT++

1st order and 4th order upwinding methods are supported. The differencing formulae

for 4th order upwinding are

v
∂f

∂x
≈ v (4f1 − 12f−1 + 2f−2 + 6f0)

12h
(4.25)

for positive velocities and

v
∂f

∂x
≈ v (−4f−1 + 12f1 − 2f2 − 6f0)

12h
(4.26)

for negative velocities.

BOUT++ can also use a more advanced form of upwind differencing, the Weighted

Essentially Non-Osscilatory scheme [205]. The WENO scheme exploits the fact that

f ′0 can be approximated through a number of different stencils at the same order of

accuracy. The scheme tests for discontinuities in the solution on the various stencils and

adapts to generate a solution which is weighted towards the smooth stencils. This helps
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Mesh node
a) Upwind with positive flow
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b) Upwind with negative flow
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Figure 4.2: Schematic example of 1D upwind differencing in the presence of positive
flow (a) and negative flow (b) with respect to the x direction.

to ensure monotonicity and makes the scheme exceptionally good at dealing with steep

gradients and discontinuities. BOUT++ facilitates a 3rd order WENO scheme which

calculates the upwind differences as

v
∂f

∂x
≈ v 1

2h
[(f1 − f−1)− w (−f−2 + 3f−1 − 3f0 + f1)] (4.27)

for positive velocities (i.e. left biased upwinding) and

v
∂f

∂x
≈ v 1

2h
[(f1 − f−1)− w (−f−1 + 3f0 − 3f1 + f2)] (4.28)

for negative velocities (i.e. right biased upwinding). The weighting coefficient w deter-

mines the strength of upwind biasing and is given by

w =
1

1 + 2r2
(4.29)

where r is given by

r =
εW + (f0 − 2f−1 + f−2)2

εW + (f1 − 2f0 + f−1)2 (4.30)

for positive velocities/left biasing and

r =
εW + (f2 − 2f1 + f0)2

εW + (f1 − 2f0 + f−1)2 (4.31)

for negative velocities/right biasing. εW is a small number included to avoid the de-

nominator in r reducing to 0. r is used to dynamically select the most appropriate
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combination of the two stencils with which to construct f ′0. For the 3rd order WENO

scheme the differential is constructed from a central difference approximation (first term

in 4.28, 4.27) and a left/right biased difference (second term in 4.28, 4.27). If there

is a strong disparity between the second derivatives from these two schemes then it is

likely that a discontinuity exists in one of the approximations. If |f ′′0 | from the biased

difference is much larger than the central difference then r becomes very large and w

becomes very small. The contribution from the biased difference to the calculation of f ′0

is then strongly reduced and the smoothness of the solution is maintained. By contrast

if |f ′′0 | from the central difference is much larger than the biased difference, w takes its

maximum value of 1 and the calculation of f ′0 is weighted towards the biased difference

approximation. The WENO scheme in BOUT++ is a lower accuracy scheme than the

4th order upwind differencing, but it ensures monotonicity and smoothness making it a

good option for simulations of advective structures.

As an alternative to finite difference methods BOUT++ also supports the use of fast

Fourier transforms (FFTs) for numerical differentiation [206]. BOUT++ requires one

dimension of the simulation domain to be periodic and is constrained to the use of FFTs

in this direction. Internally this direction is the BOUT++ z coordinate (see appendix

A for a description of the BOUT++ coordinate system). BOUT++ uses the FFTW3

library [207] to perform FFTs.

These schemes for numerical differentiation are implemented in BOUT++ either directly

through operators of the form

Field3D dfdx = DDX(f);

Field3D d2fdx2 = D2DX2(f);

Field3D vdfdx = V_dot_Grad(v,f);

or through more advanced differential operators which account for the metric tensor of

the coordinate system.

4.2.2 Differential operators in BOUT++

Differential operators in BOUT++ fall into two categories: coordinate independent and

coordinate dependant. The coordinate independent differential operators implemented

in BOUT++ are given in table 4.1 (taken from [188]). The differential operators in ta-

ble 4.1 are de-constructed internally within BOUT++ to the point at which differencing

formulas using the methods outlined in section 4.2.1 can be applied. The deconstruction

accounts for the metric tensor of the coordinate system. In general curvilinear coordi-

nates with a covariant basis (ei, ej , ek) and a contravariant basis
(
∇ui,∇uj ,∇uk

)
the
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Differential Operator BOUT++ syntax

v = ∇f Vector3D v = Grad(Field3D f)

f = ∇ · a Field3D f = Div(Vector3D a)

v = ∇× a Vector3D v = Curl(Vector3D a)

f = v · ∇g Field3D f = V_dot_Grad(Vector3D v, Field3D g)

v = a · ∇b Vector3D v = V_dot_Grad(Vector3D a, Vector3D b)

f = ∇2g Field3D f = Laplacian(Field3D g)

Table 4.1: Table of coordinate independent differential operators in BOUT++.

differential operators are given by [208]

∇f =
∂f

∂ui
∇ui (4.32)

∇ · a =
1

J

∂

∂ui
(
JAi

)
=

1

J

∂

∂ui
(
JgijAi

)
(4.33)

∇× a =
εijk

J

∂Aj
∂ui

ek (4.34)

∇2f = ∇ · (∇f) =
1

J

∂

∂ui

(
Jgij

∂f

∂uj

)
= gij

∂2f

∂ui∂uj
+ Γi

∂f

∂ui
(4.35)

Γi =
1

J

∂

∂ui
(
Jgij

)
(4.36)

where J is the Jacobian and gij is the contravariant metric tensor of the coordinate

system, εijk is the Levi-Cevita symbol and the Einstein convention of index summation

is implied. For a fuller derivation and introductory explanation to differential geometry

see appendix A and/or [208].

BOUT++ is optimized for simulations at the boundary of tokamak plasmas. As a

consequence it contains a suite of differential operators that depend on the equilibrium

magnetic field. These operators require the magnetic field to be written in a Clebsch

form [188, 208, 209],

B = ∇α×∇β (4.37)

where B is the equilibrium magnetic field and α and β are stream functions of the

magnetic field. In a field aligned coordinate system the stream functions define the x

and z dimensions of the simulation domain such that

B = ∇x×∇z (4.38)

which then defines the third dimension from

∇x×∇z =
1

J
ey ⇒ b =

B

B
=

1

JB
ey (4.39)
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where b is the magnetic field tangency vector. The magnetic field dependant differential

operators (pertinent to this thesis) included in BOUT++ are listed in table 4.2. The

Differential Operator BOUT++ syntax

f = b · ∇g Field3D f = Grad_par(Field3D g)

f = ∇ · (bg) Field3D f = Div_par(Field3D g)

f = b×∇g · ∇h = b · ∇g ×∇h Field3D f = bracket(Field3D h,Field3D g)

f = ∇2
⊥g Field3D f = Delp2(Field3D g)

Table 4.2: Differential operators implemented in BOUT++ which depend on the
equilibrium magnetic field.

differential operators in table 4.2 can be written in the x, y, z coordinate system defined

by 4.38, 4.39 and described in appendix A as [188]

b · ∇f =
1

JB

∂f

∂y
=

1
√
gyy

∂f

∂y
(4.40)

∇ · (bf) = B · ∇
(
f

B

)
=

B
√
gyy

∂

∂y

f

B
(4.41)

The gradient operator perpendicular to the magnetic field is defined as

∇⊥f ≡ ∇f − b (b · ∇) f =
∂f

∂ui
∇ui − 1

(JB)2 gi,y
∂f

∂y
∇ui (4.42)

=

(
∂f

∂x
− gxy
J2B2

∂f

∂y

)
∇x+

(
∂f

∂z
− gyz
J2B2

∂f

∂y

)
∇z = Ax∇x+Az∇z

The perpendicular Laplacian can now be defined as

∇ · (∇⊥f) =
1

J

∂

∂x
(JgxxAx + JgxzAz) +

1

J

∂

∂z
(JgzzAz + gxzAx) (4.43)

The flute assumption, k|| << k⊥, results from the field aligned nature of fluctuations

in the plasma edge and allows parallel derivative terms to be neglected. Expanding the

derivatives then gives

∇2
⊥f = gxx

∂2f

∂x2
+ 2gxz

∂2f

∂x∂z
+ gzz

∂2f

∂z2
+ Γx⊥

∂f

∂x
+ Γz⊥

∂f

∂z
(4.44)

where

Γx⊥ ≡
1

J

(
∂

∂x
(Jgxx) +

∂

∂z
(Jgxz)

)
(4.45)

Γz⊥ ≡
1

J

(
∂

∂x
(Jgxz) +

∂

∂z
(Jgzz)

)
are called the connection coefficients. Finally in the tokamak edge the dominant advec-

tion mechanism is E × B motion perpendicular to the magnetic field. As a result the
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operator

(b×∇φ) · ∇f = b · (∇φ×∇f) (4.46)

is commonly used in models of the edge plasma. This can be written in terms of the

metric as
1

JB
[gxy (∇φ×∇f)x + gyy (∇φ×∇f)y + gyz (∇φ×∇f)z] (4.47)

where

(∇φ×∇f)x =
1

J

(
∂φ

∂y

∂f

∂z
− ∂φ

∂z

∂f

∂y

)

(∇φ×∇f)y = − 1

J

(
∂φ

∂x

∂f

∂z
− ∂φ

∂z

∂f

∂x

)
(4.48)

(∇φ×∇f)z =
1

J

(
∂φ

∂x

∂f

∂y
− ∂φ

∂y

∂f

∂x

)
Using tables 4.1 and 4.2 the differential operators described in this section can be used

in BOUT++.

4.3 BOUT++ code layout

A central aim of the BOUT++ code is to decouple the physics being investigated

from the numerics used to solve the system of equations pertaining to that physics.

A schematic of the layout of BOUT++ is shown in figure 4.3. The user provides an in-

put file under the name BOUT.inp which contains runtime input settings for the physics

module and the internal parts of BOUT++. The user also provides a physics module.

The physics module contains the evolution equations to be solved as well as the ini-

tialisation of variables and parameters. The mesh, created by the user, can either be

specified through the input file in the case of simple geometries or as a separate grid file

containing all aspects of the mesh and metric tensor of the coordinate system.

The next section provides an overview of the physics module created to investigate

filament dynamics in BOUT++.

4.4 Physics module for filament dynamics investigations

The aim of the physics module implemented into BOUT++ and described within this

thesis is to study the dynamics of filaments. Previous studies of these phenomena have

been reviewed in chapter 2. The physics model is designed to facilitate simulations in

both a simple slab geometry, used to investigate basic processes in blob and filament

dynamics, as well as a field aligned geometry representing a tokamak plasma edge. The
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Figure 4.3: Schematic of the layout of the BOUT++ code showing the division
between the user and the internal numerics within BOUT++.

particular tokamak simulated in this thesis is MAST in a connected double null geometry.

To derive properties of the metric tensor which are required for the realistic simulations

a grid generator has been developed which extracts the pertinent information from an

EFIT [210] equilibrium reconstruction. This will be described subsequently. First the

system of equations to be solved is introduced.

4.4.1 System of Equations

The system of equations implemented in the filament dynamics physics module is derived

under the drift-ordering employed in [52, 53]. The drift ordering makes the following

assumptions:

• Spatial length scales can be separated between a slowly varying length scale, Ls

and a quickly varying length scale, Lf . Quantities that vary on the slow time scale

are assumed to have a large spatial extent, whilst quantities varying on the fast

time scale are assumed to have a small spatial extent. This is effectively a splitting

between the the perpendicular and parallel scales of turbulence in the SOL. The

small parameter, ε is characterized by

ε ≡
Lf
Ls

<< 1 (4.49)
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• Other parameters assumed to be small are

β ≡ 2µ0nT/B
2
0 << 1

∆ ≡ λ/Ls << λ/Lf << 1

δ = ρ/Lf << 1

(4.50)

where β measures the ratio of thermal to magnetic pressure, λ is the ion-electron

collisional mean free path and ρ is the gyro-radius.

• The time-scales in the system can be ordered by

ω << ν << Ω (4.51)

where ω is the characteristic frequency of the physics under investigation within

the system, ν is the collision frequency between ions and electrons and Ω is the

gyro-frequency.

• The small variables can be ordered by

ω ∼ δ2Ωi

δ ∼ ∆

β ∼ ε
v/vth ∼ ε/δ << 1

(4.52)

Before these orderings are used to derive equations for the dynamics of filaments it is

worth checking their validity using characteristic values of the ordering parameters. Four

values are considered for each parameter corresponding to a typical value in the core,

edge, near SOL and far SOL of the MAST tokamak. The characteristic parameters are

given in table 4.3 and are based on the work in [211]. The values of Lf in table 4.3 are

Core Edge Near SOL Far SOL

Te(eV ) 500 50 15 5
ne(m

−18) 50 8 5 1
B0(T ) 0.5 0.37 0.35 0.33
R(m) 0.84 1.36 1.44 1.49
q 1.2 8 10 5

Ls(m) 6.3 68.2 15 8
Lf (m) 0.02 0.02 0.02 0.02

Table 4.3: Characteristic parameters in a MAST L-mode plasma to be used to assess
the validity of the drift ordering.

based on typical filament length scales [79] whilst Ls is taken as Ls = 2πRq for the core
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and edge region and based on estimates motivated by [211] for the SOL regions. Using

these parameters the drift orderings can be tested. A ratio of v/vth,i ∼ 0.05, as well as

a characteristic frequency ω ∼ 20kHz is assumed throughout the test, motivated by the

results of chapter 3. Ωi is given by

Ωi =
eB0

mi
[rad/s] (4.53)

where mi is the ion mass (here taken as Deuterium). The collisional mean free path is

taken from the electron-ion channel and is given by

λei =
vth,i
νei

[m] (4.54)

where the thermal velocity is given by (assuming Ti = Te)

vth,i =

√
2Te
mi

[m/s] (4.55)

and the collision frequency is given by

νei =
4
√

2πnΛe4

3
√
meT

3/2
e

=
1

3.44× 1011

nΛ

T
3/2
e

[/s] (4.56)

with Te measured in eV and n measured in 1019m−3 and the Coulomb logarithm, Λ is

taken as ∼ 10. The gyro-radius is given by

ρi =
vth,i
Ωi

[m] (4.57)

Figure 4.4 shows the ordered terms from 4.52 calculated and compared against each

other. Figure 4.4 shows that the drift ordering is valid for the near and far SOL with

the exception of the ordering of β which is found to be β << ε rather than β ∼ ε. This

is not important since the system will be subsequently assumed to be electrostatic. If β

is very low then it is very difficult for a perturbation in pressure to affect the magnetic

field structure, so the electrostatic assumption is justified. It is also worth noting that

this analysis shows that the fundamental assumptions of the drift ordering, δ << 1,

∆ << 1 and β << 1 are justified in the SOL regions.

The system of equations to be solved in the BOUT++ filament dynamics physics model

consists of the density equation;

dn

dt
= 2csρsξ · (∇n− n∇φ) +

1

e
∇||J|| (4.58)

the vorticity equation;

nρ2
s

dω

dt
= 2csρsξ · ∇n+

1

e
∇||J|| (4.59)
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Figure 4.4: Test of the drift ordering given in 4.52 for MAST relevant parameters in
the core, edge, near and far SOL regions.

and auxiliary equations for the parallel current

J|| =
σ||Te

e
∇|| (ln (n)− φ) (4.60)

and for the perpendicular vorticity

ω = ∇2
⊥φ (4.61)

In 4.58 and 4.59 the time derivatives are advective such that

d

dt
≡ ∂

∂t
+ vE · ∇ (4.62)

where

vE ≡ csρsb×∇φ (4.63)

is the E × B velocity. A full derivation of these equations starting from the first 3

moments of the kinetic equation is given in appendix B. In the system of equations n

is the electron density in m−3 and ne = ni is assumed. φ is the electrostatic potential

and is normalized to Te in eV. ω is the perpendicular vorticity. J|| is the parallel current
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density. cs and ρs are the Bohm sound speed and Bohm gyro-radius given by

cs =

√
eTe
mi

(4.64)

and

ρs =
cs
Ωi

(4.65)

with Ωi given by 4.53. σ|| is the parallel conductivity of the system and determines the

mobility of electrons flowing along the magnetic field line. It is given by [47]

σ|| = 1.96
ne2

meνei
(4.66)

with νei taken from 4.56. Finally the vector ξ is here named the polarization vector

since it defines the direction of charge polarization due to guiding centre drifts and is

defined as

ξ ≡ b× κ (4.67)

where b is the magnetic field tangency vector and κ is the magnetic curvature vector. In

deriving these equations a number of assumptions are made, further to the assumptions

of the drift-ordering. These assumptions are:

• Cold ions; Since the electrons respond to the plasma potential much faster than

ions it is the electron dynamics that primarily determine the motion of the plasma,

with ions following by quasineutrality. The cold ion assumption is used to neglect

effects due to ionic motion.

• Isothermal; this model is used to study filaments in the far-SOL region. Thermal

transport is significantly faster than particle transport [47] as such a localised

excess of temperature is likely to thermalize with the background in the far SOL.

This is supported by Thomson scattering measurements in MAST [61] which show

that δne/ne >> δTe/Te in L-mode filaments.

• No parallel streaming; all advection parallel to the magnetic field line is neglected.

This is valid on time-scales τ < L||/cs ∼ 10−4s where the parallel advection cannot

move the plasma large distances and the dynamics of the filament is dominated

by perpendicular motion. Figure 4.5 shows schematically the region of time under

which these simulations are valid. This assumption has recently been relaxed in

[212] and shown to have little effect on filament motion.

• Boussinesq approximation; this approximation assumes that δn/n is sufficiently

small that ∇ · (ndt∇⊥φ) ∼ ndt∇2
⊥φ. This is not strictly valid for filaments which

have densities significantly above the background. The approximation was initially
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Figure 4.5: Schematic example of the time-history of a filament with the region under
which the physics model presented in this chapter is valid. Image taken with permission

from [1]

necessitated by the inability to implement the proper form numerically. In recent

versions of BOUT++ this can be done using the PETSc solver suite [213] with a

suitable preconditioner [190]. Unfortunately this could not be implemented during

this thesis, however previous studies have shown that this approximation does not

significantly affect the motion of blobs [95, 214].

• Electrostatic; This is motivated by the observation from figure 4.4 that β << ε

which makes electromagnetic perturbations small in comparison to thermodynamic

fluctuations and validates the electrostatic approximation.

• No neutral particles. At low temperatures plasma recombination, as well as inter-

actions with material surfaces may produce a significant source of neutral particles.

This is not included here to focus on the plasma physics leading to filament motion.

In [107] it is noted that a neutral wind force can produce a force perpendicular to

the magnetic field and lead to enhanced blob polarization. This would be a good

topic for future work.

The system is normalized as follows; density is normalized to a background value, n0;

length scales to ρs ( so that κ is normalized to 1/ρs); time-scales to Ω−1
i ; the electrostatic

potential to Te in eV . The normalized system of equations is

∂n

∂t
+ b×∇φ · ∇n = 2ξ̂ · (∇n− n∇φ) + α∇||J|| (4.68)

n

(
∂

∂t
+ b×∇φ · ∇

)
∇2
⊥φ = ξ̂ · ∇n+ α∇||J|| (4.69)

J|| = ∇|| ln (n)−∇||φ (4.70)

The dimensionless variables are α defined by

α =
σ||Te

n0csρse
(4.71)

and

ξ̂ = ρsξ (4.72)
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with Te in eV .

This completes the description of the system of equations to be solved. The next section

describes the boundary conditions applied to the system.

4.4.2 Boundary Conditions

In either the slab geometry or the more complicated MAST SOL geometry boundary

conditions are required on the two boundaries in each dimension, (x, y, z), of the domain.

The z domain, which is in the bi-normal direction in a slab, or the toroidal direction in

the full magnetic geometry, is required by BOUT++ to be periodic and so has periodic

boundary conditions applied to it. At the boundary of the x (radial) domain all variables

have zero gradient boundary conditions. Initially the electrostatic potential was given a

Dirichlet boundary condition (set to 0 on the boundary). This resulted in the potential

experiencing an interaction with a reflection of itself in the boundary and was deemed

non-physical. In practice the simulations are treated as void when the interaction with

the radial boundary becomes strong and efforts are made to keep such interaction to a

minimum.

Interaction with the y boundary along the magnetic field line cannot be readily avoided.

In this direction filaments can contact material surfaces leading to the formation of a

sheath. Sheath formation has been introduced in chapter 3 and results in the material

surface developing a negative bias with respect to the plasma. If the angle of incidence

of the magnetic field line on the material surface is oblique a magnetic pre-sheath can

form. The role of the magnetic pre-sheath is to demagnetize the ions and bend their

trajectories towards the surface normal. This requires electric fields forming on the

gyro-radius length scale and invalidates the drift ordering [215]. Consequently the edge

of the magnetic pre-sheath is the boundary for the domain of the simulations in this

thesis. From [92] the parallel current at the magnetic pre-sheath entrance is

J±||,sh = ±encs
(
1− exp

(
φW − φ±

))
(4.73)

where ± corresponds to the upper and lower boundary respectively. φW is the potential

at the material wall and φ± is the potential at the magnetic pre-sheath entrance. In

an isothermal plasma φW can be regarded as a constant offset and so acts as a ground

potential and can be set to 0. Modifications to 4.73 exist including the effect of oblique

incidence to the material surface [215, 216]. For this thesis such modifications are not

used. This is due to the reduced nature of the simulation geometry. A good topic for

future work would be the effect of oblique field line incidence at the sheath edge on

filament dynamics.
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4.4.3 Initial Conditions

Filament simulations are initialized with a density profile of the form

n (t = 0) = n0 + δn exp

(
(x− x0)2

δ2
x

)
exp

(
(z − z0)2

δ2
z

)
(4.74)

where x0 and z0 define the spatial centre of the filament in the perpendicular plane. δx

and δz set the Gaussian widths of the filament in the x and z dimensions. Filaments are

always seeded homogeneously along the magnetic field line. The vorticity, ω, is initially

0 and grows in the initial phase of the simulation. Different initial conditions in ω and

φ were tested but the simulations proved to be insensitive to such changes, with initial

transients rapidly damped. The electrostatic potential is then set by the inversion of

equation 4.61 and the parallel current set by 4.60 with the boundary conditions 4.73.

4.4.4 Grid Generation

BOUT++ requires a user specified grid upon which the differencing stencils used to

construct spatial differential operators are applied. The physics module has been con-

structed for use with either simple slab geometries or complex flux-tube geometries.

The results presented in this thesis all use the latter of these two options, however the

former is included with a view to allowing the physics module to be used as generally

as possible.

4.4.4.1 Slab Grids

Whilst not used within this thesis, slab grids may be easily implemented within the input

BOUT.inp file by specifying the parameters listed in table 4.4. Setting these parameters

sets the grid as a Cartesian (i.e. an identity metric tensor) slab with an artificial radius

of curvature set by R_c.

4.4.4.2 SOL flux tube grids

The principal aim of the numerical studies within this thesis is to investigate the role of

magnetic geometry in the dynamics of filaments. To introduce the effects of magnetic

geometry a flux tube approach has been taken for the numerical grid[217]. A flux tube

approach assumes that the variation of all parameters perpendicular to the magnetic field

is small compared to the variation of fluctuating quantities such that, on the fluctuation

length and time scales, all parameters can be considered constant. This approach is
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Parameter Function

General Parameters

nx Number of grid points in the x dimension
dx Grid resolution in x
ny Number of grid points in the y dimension
dy Grid resolution in y
MZ Number of grid points in the z dimension
ZMAX Limit of the z domain (as a multiple of 2π)

Specific Parameters

Slab Boolean to optimize physics module for slab simulations
R_c Radius of curvature in m

Table 4.4: Table of parameters used to set up slab grid simulations. General parame-
ters can be specified for any BOUT++ simulation. Specific parameters are implemented

for the filament dynamics physics module.

not self consistent since quantities which vary on the equilibrium scale of the tokamak

are constant in the perpendicular dimensions of the flux tube, but also have constant

gradients. In this sense a parameter and its spatial variation are decoupled such that

for a parameter P (x) which varies in the radial x dimension the variation of P across

the flux-tube is accounted for from the Taylor expansion

P (x) = P (x0) +
dP

dx

∣∣∣∣
x0

(x− x0) +O
(

(x− x0)2
)

(4.75)

where x0 is the centre of the flux tube. The flux-tube assumption then decouples

P ≈ P (x0) and its variation dxP ≈ dxP |x0 from one another. As such the flux-tube

approximation is only formally valid as x− x0 → 0.

Flux tube geometries are popular in core turbulence simulations, including those car-

ried out on MAST [218], where the correlation length scale of turbulence is sufficiently

small that equilibrium variation can be neglected. In the SOL the validity of the flux

tube approach is questionable. Both background gradients and transient events such

as filaments can have a length scale of a few cm and so the fast scale dynamics can

interact with equilibrium variation. In the far SOL gradients are relatively flat, how-

ever the variation of the equilibrium magnetic field may still occur within the length

scales of interest. The flux tube treats the magnetic field strength and the magnetic

shear as entirely independent quantities, so accounts for magnetic field variation in an

approximate manner. The flux tube fully accounts for variation parallel to the magnetic

field however. The effect of this parallel variation is to transform the cross-section of

the flux tube. The form of this transformation will be commented on further in chapter

5, however the effect of parallel variation of the magnetic field dominates the effect of

perpendicular variation [114]. In MAST the perpendicular B-field strength may vary

by ∼ 5% across the magnetic field, whilst it may vary by ∼ 70% parallel to it. This
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then motivates the use of the flux tube approach for a first investigation of these effects

of filament motion. A good topic for future study would be to include perpendicular

variation of geometric parameters, however this is outside the scope of this thesis.

The grid generator, named sol_flux_tube.pro1, has been written to generate flux tube

grids around a single field line in the SOL. It takes as input a file containing general

equilibrium properties of the plasma in either the EQDSK g.file format from an EFIT

calculation or the .equ format commonly outputted from equilibrium calculation codes

such as FIESTA. The user must also input the desired flux surface in the SOL by its

normalized flux label, ψN = (ψ − ψax) / (ψsep − ψax) where ψsep is the poloidal magnetic

flux at the separatrix and ψax is the flux at the magnetic axis. If coordinates of the first

wall are included in the equilibrium file the grid generator will then select the magnetic

flux surface at the desired ψN between its two intersections with the wall. Otherwise it

selects the entire length of the flux surface. The user can optionally specify end points

of the flux surface (ie an artificial wall) if no wall coordinates are present. The grid-

generator then selects the desired flux surface. Figure 4.6 shows the ψN = 1.15 surface

in MAST which is the basis on which all flux tubes in this thesis are constructed.

0.5 1.0 1.5 2.0
-2

-1

0

1

2

0.51.01.52.0
R (m) R (m)

Z 
(m

)

ψN = 1.15

Figure 4.6: Visualisation of the ψN = 1.15 flux surface in the poloidal plane of MAST,
highlighted in blue. Also shown are the primary and secondary separatrices (red lines),

X-points (red crosses), O-points (green crosses) and the first wall (green line).

The aim of the grid generator is to derive the parameters required for the metric ten-

sor of the BOUT++ field aligned coordinate system given in appendix A, as well as

parameters required for the physics module. These are listed in table 4.5. The grid is

designed to be equally spaced along the flux surface in the poloidal plane. This means

that hθ = 1/ |∇θ| is a constant in the flux tube domain. In a circular cross-section

1Available at https://github.com/boutproject/BOUT-dev/blob/master/tools/tokamak_grids/

gridgen/sol_flux_tube.pro
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Parameters Function

B (x, y) Total magnetic field strength
Bp (x, y) Poloidal magnetic field strength
BT (x, y) Toroidal magnetic field strength
R (x, y) Major radius of the field line
hθ (x, y) Poloidal arc length
I (x, y) Magnetic shear integrated in y

(b× κ)x,y,z Contravariant components of the polarization vector

Table 4.5: Parameters produced as output by the SOL flux tube grid generator
required to construct the metric tensor, or required by the physics module.

hθ can be identified with the minor radius, though in more complicated cross-sections

hθ can be thought of as the poloidal arc length such that hθdθ = dL where dL is the

elemental distance in the poloidal direction and dθ is an elemental shift in poloidal an-

gle. The magnetic field strength B, its components Bp and BT and the major radius,

R, are readily extracted from the equilibrium file and interpolated onto the grid. The

challenging parameters to extract from the equilibrium information are the magnetic

curvature vector, κ and the magnetic shear, ∂ν/∂ψ which is then integrated in y to get

I.

To derive the polarization vector b × κ the grid generator uses the expression for the

curvature of a general curve characterised by a tangency vector T̂ [208]

κ =
dT̂

ds
(4.76)

where d/ds is the derivative along the curve. The relationship between the curvature and

the tangency vector is illustrated in figure 4.7. On a magnetic field line the tangency

vector is b = B/B. The tangency vector in a cylindrical coordinate system can be

written as

T̂ = b =
dr

ds
=
dR

ds
R̂ +

dZ

ds
Ẑ +R

dφ

ds
φ̂ (4.77)

where R, Z and φ are the radial, vertical and toroidal coordinates respectively and s is

the distance along the line. This then gives a curvature vector

κ =

(
d2R

ds2
−R

(
dφ

ds

)2
)

R̂ +
d2Z

ds2
Ẑ +

(
2
dR

ds

dφ

ds
+R

d2φ

ds2

)
φ̂ (4.78)

A derivation of equation 4.78 is given in appendix C. The grid generator calculates the

derivative quantities in 4.77 and 4.78 along the selected magnetic field line and uses

them to construct the vector κ and subsequently b × κ. The grid generator uses the

relations

∇ψ =
∂ψ

∂R
R̂ +

∂ψ

∂Z
Ẑ (4.79)
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Figure 4.7: Schematic showing how the curvature vector (k in the figure) derives
from the change of the tangency vector over a distance ds along the field line. The
curvature vector is normal to the curve and its magnitude is the reciprocal of the

radius of curvature, Rc.

as well as

∇θ =
1

hθBθ
∇φ×∇ψ (4.80)

and

∇φ =
1

R
φ̂ (4.81)

to generate the contravariant components of b × κ in the (ψ, θ, φ) coordinate system.

Finally the expressions for the reciprocal vectors of the field aligned coordinate system,

given in appendix A are used to generate the contravariant components of b× κ in the

field aligned system, as required.

The grid generator must also produce the integrated magnetic shear defined as∫ y

y0

∂ν

∂ψ
dy′ (4.82)

which requires the derivation of the magnetic shear, ∂ν/∂ψ. The magnetic field line

pitch, ν is

ν =
hθBφ
RBθ

(4.83)

which is used to construct an expression for the magnetic shear

∂ν

∂ψ
= ν

(
1

hθ

∂hθ
∂ψ

+
1

Bφ

∂Bφ
∂ψ
− 1

Bθ

∂Bθ
∂ψ
− 1

R

∂R

∂ψ

)
(4.84)
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The second and third terms in 4.84 can be extracted from the equilibrium file. The

fourth term can be calculated by noting that

∂R

∂ψ
=
∇R · ∇ψ
R2B2

θ

=
1

R2B2
θ

∂ψ

∂R
(4.85)

which can also be extracted from the equilibrium file.

The first term is the most difficult to generate from the equilibrium data. To derive an

expression for ∂hθ/∂ψ it is useful to first note that κ can be written in the form (see

reference [188])

κ = − Bθ
hθB

[(
∂

∂x

(
hθB

Bθ

)
− ∂

∂y

(
BφIR

B

))
∇x+

∂

∂y

(
BφR

B

)
∇z
]

(4.86)

Now taking κ · ∇ψ and noting that

∇x · ∇ψ = R2B2
θ (4.87)

∇z · ∇ψ = −IR2B2
θ

the expression for κ · ∇ψ can be written (after some algebraic manipulation)

κ · ∇ψ = −
R2B3

θ

hθB

(
∂

∂x

(
hθB

Bθ

)
−
BφR

B

∂I

∂y

)
(4.88)

Exploiting

I =

∫
∂ν

∂ψ
dy ⇒ ∂I

∂y
=
∂ν

∂ψ
(4.89)

and using 4.83, again after some manipulation 4.88 can be rearranged to give an expres-

sion for ∂hθ/∂ψ of

∂hθ
∂ψ

= −hθB
2

B2
θ

(
1

R2B2
θ

κ · ∇ψ +
B2
φ

RB2

∂R

∂ψ

)
(4.90)

This can be written in terms of derivatives along the field line by noting that ∇ψ can

be written as

∇ψ = R2Bb×∇φ (4.91)

and since ∇φ = φ̂/R using 4.77 with T̂ = b

∇ψ = RB

(
dR

ds
Ẑ− dZ

ds
R̂

)
(4.92)
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Now using 4.85 and 4.78 expressions for ∂R/∂ψ and κ · ∇ψ can be derived in terms of

derivatives along the field line. These are

∂R

∂ψ
= − BR

R2B2
θ

dZ

ds
(4.93)

and

κ · ∇ψ = BR

(
d2Z

ds2

dR

ds
− d2R

ds2

dZ

ds
+
dZ

ds
R

(
dφ

ds

)2
)

(4.94)

Finally since the change in toroidal angle along the magnetic field line is given by

dφ

ds
=

Bφ
RB

(4.95)

substituting 4.93 and 4.94 into 4.90 gives

∂hθ
∂ψ

= −hθB
3

RB4
θ

(
d2Z

ds2

dR

ds
− d2R

ds2

dZ

ds

)
(4.96)

The quantity ∂hθ/∂ψ can now be calculated by the grid generator using only the infor-

mation provided in the equilibrium file. Using 4.84 and integrating along y the quantity

I can be generated.

The grid generator outputs all of the metric information required in a NetCDF grid file

which is then read into the BOUT++ code and called as a mesh class [189]. BOUT++

also contains a pre-existing grid generation code called Hypnotoad [188, 190] however

this is not optimized for flux-tube domains. The validity of the flux-tube grid generator

can be tested by comparing the output with the profiles on the Hypnotoad grid, taken

along the same magnetic field line as the flux-tube. In figure 4.8 the (R,Z) coordinates

of the ψN = 1.15 and the toroidal and poloidal magnetic field strength, Bζ and Bθ are

compared between the flux-tube grid and the Hypnotoad grid. The global grid output

from Hypnotoad is in close agreement with results from the flux-tube grid generator.

Some minor deviation is present between the two grids in the upper divertor leg where

the Hypnotoad calculation predicts a slight reduction in the radial location of the field

line.

Figure 4.9 shows a comparison between the Hypnotoad and flux-tube calculations of

the contravariant x and z components (perpendicular components) of the polarization

vector, (b× κ)x,z, the integrated magnetic shear, I =
∫ y
y0
∂ψνdy

′, and the component

of the polarization vector lying normal to both the magnetic field line and the ∇ψ di-

rection, (b× κ)z + I (b× κ)x. The only major source of disagreement between the two

calculations is in the calculation for (b× κ)x. Firstly it is worth noting that whilst hyp-

notoad has a variety of methods used to calculate the magnetic curvature each requires

derivatives of quantities perpendicular to the magnetic field[190]. The input mesh is
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Figure 4.8: Comparison of flux-tube grid parameters with Hypnotoad. Left: R,Z
coordinates of the magnetic field line in the poloidal plane. Right: Toroidal (red) and
poloidal (blue) magnetic field strength. Note that by convention the toroidal field in
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in Hypnotoad (red triangles) and in the flux-tube grid (solid black line).

128



often of low resolution (eg 65× 65 points in (R,Z) for a typical EFIT g. file) which can

limit the resolution of derivative quantities perpendicular to the field. The flux-tube grid

does not face this limitation however since it only requires derivatives along the field line

curve which are typically much more well resolved in the EFIT calculations. To show

the smoothed nature of the Hypnotoad calculation, the same comparison of (b× κ)x

has been made between the flux-tube and the hypnotoad calculation, with the flux-tube

calculation smoothed by successively larger amounts. This comparison is shown in figure

4.10.
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Figure 4.10: Comparison of (b× κ)
x

calculations in Hypnotoad (red triangles) and
the flux-tube generator (solid line) for successively increased levels of smoothing on the

flux-tube output. Smoothing is achieved by the IDL box car average routine.

The rest of the quantities shown in figure 4.9 agree well, though once again some devi-

ation is present in the upper divertor region (Z > 1m). This is a result of the original

deviation observed in the calculation of R. The slightly lower R in the hypnotoad calcu-

lation increases the curvature since it is proportional to 1/R, and the shear by causing

the field line to pass slightly closer to the X-point where magnetic shear is maximized.

Nevertheless the degree of agreement between the two calculations provides reasonable

confidence that the flux-tube grid is an accurate reconstruction of the true MAST case,

assuming that the original EFIT file was accurate.
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A final comparison between the two methods is made by comparing some of the impor-

tant terms in the contravariant metric tensor of the coordinate system. In particular

the terms gxx = R2B2
θ , gxz = −IR2B2

θ and gzz = I2R2B2
θ + B2/(R2B2

θ ) which play an

important role in the ∇2
⊥ operator are compared. Full details of the metric are given

in appendix A. This comparison is shown in figure 4.11. The comparison between the
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Figure 4.11: Contravariant metric components calculated in Hypnotoad (red trian-
gles) and the flux-tube generator (solid black line).

different calculations of the metric components is good and, furthermore, they are qual-

itatively similar to calculations in ASDEX-Upgrade [219]. There is some deviation of

gxz at the midplane which can once again be attributed to the averaging effect in the

Hypnotoad calculation. All deviations between the Hypnotoad and flux-tube calcula-

tions are small and are unlikely to have a major effect on the simulations for which the

grids are designed.

The shear of the magnetic field strongly influences the structure of the computational

domain in real space. The toroidal angle at a point along the magnetic field line can be

calculated from the ballooning coordinate system, (x, y, z) (see appendix A) by

ζ (x, y) = ζ (ψ, θ) = z +

∫ θ

θ0

ν
(
ψ, θ′

)
dθ′ ≈ z +

∫ y

y0

(
ν
(
ψ0, θ

′)+ (ψ − ψ0)
∂ν

∂ψ

∣∣∣∣
ψ0

)
dθ′

(4.97)
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= z + I (θ) ∆ψ +

∫ θ

θ0

ν
(
ψ0, θ

′) dθ′
This expression then shows that a distance δψ leads to a toroidal motion as a result of

the magnetic shear. This also shows that if the computational domain is orthogonal at

the midplane, it will not remain so in the divertor, where I becomes very large. A typical

grid spacing in ψ is ∆ψ ≈ 1×10−5 Webers which then gives a toroidal shift between two

adjacent grid cells of 3.5 × 10−3 radians. This can become a significant amount when

many grid cells are used. Figure 4.12 shows a typical flux-tube produced by the grid-

generator outlined here. As can be seen the (x, z) plane of the flux tube becomes strongly
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Figure 4.12: 3D visualisation of a typical SOL flux-tube domain. Shown in black are
the boundaries of the domain in the (x, z) plane, whilst red lines show the corresponding
field line at the vertices of the (x, z) domain. Strong magnetic shear deforms the domain

towards either termination point of the magnetic field.

sheared in the toroidal direction as the X-point is passed, towards the termination points

of the magnetic field line. The effect this has on the grid is to drastically increase the

spacing between grid points in the x dimension. Figures 4.13 shows the real space grid

spacing between two adjacent grid points in x and z. The grid contains 516 grid points

in the x direction and 256 grid points in the z dimension. Furthermore the x dimension

has been scaled by a factor of 7 to ensure that the spatial extent of the grid is much larger

than the cross-sectional width of a filament. The purpose of these grids is to facilitate

the simulation of filament dynamics. Filaments typically occupy macroscopic length-

scales (i.e. much larger than the gyro-radius, but much smaller than the equilibrium

length scale) and typically have cross-sectional length scales on the cm scale. As such

the macroscopic dynamics are well resolved by the grid, even in the strongly sheared

region near to the X-points. The work of Angus et.al however has shown that smaller

scale resistive drift-wave instabilities can impact filament dynamics in 3D [115, 116].
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Figure 4.13: Spacing between adjacent grid points in the x and z dimensions of the
flux-tube grid.

Angus has found numerically that the dominant resistive drift-wave instability occurs

with k⊥ρs ≈ 0.5 where ρs = cs/Ωi is the Bohm gyro-radius and k⊥ = 2π/λ⊥ is the

perpendicular wave-vector of the drift-wave instability with a perpendicular wavelength

λ⊥. It is important therefore to establish whether such an instability can be resolved on

the resolution provided by the grid. A distance ∆ζ in toroidal angle results in a spatial

distance ∆z[m] = ∆ζRBθ/B in the bi-normal direction of the perpendicular plane. As

a result the resolution in the perpendicular plane due to the grid spacing in x and z

respectively is

dx[m] = ∆x

√
1

R2B2
θ

+
I2R2B2

θ

B2
(4.98)

and

dz[m] = ∆z
RBθ
B

(4.99)

To ensure that the resistive drift-wave instability can be minimally resolved the grid

resolution must exceed at least half the perpendicular wavelength of the instability. This

results in the condition dx, dz < 2πρs. In figure 4.14 the resolution in the perpendicular

plane is calculated along the flux-tube and the condition on dx, dz is tested. Figure 4.14

confirms that over the majority of the flux-tube grid the resistive drift-wave instability

can be resolved. This is not the case in the divertor region where the perpendicular

resolution dx exceeds 2πρs at Te = 1eV, however this will be shown to be allowable due

to the presence of dissipation which stabilizes the resistive drift-wave instability in this

region. As a result the flux-tube grid can be considered adequate for use within this

thesis.
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z (right) in the MAST flux-tube grid. Also shown is the quantity 2πρs calculated at 1,

10 and 20eV.

4.5 Summary

This chapter has provided a brief review of the BOUT++ code including time integration

techniques and spatial differentiation. It has also presented an overview of the differential

operators implemented in BOUT++ to facilitate the simulation of plasma dynamics in a

field aligned magnetic geometry. The development of a physics module within BOUT++

has been described. The module is based on a reduction to the two-fluid equations and

is ordered initially according to the drift-ordering. The ordering of parameters arising

in the drift ordering has been tested for conditions representative of the core, edge, near

and far SOL of MAST and the drift-ordering has been shown to apply well in the MAST

SOL, with the exception of the ordering of β. This is not an issue however as the plasma

is subsequently assumed to be electrostatic.

A grid generator has been described which produces field aligned flux-tube grids based

on a selected magnetic field line the in SOL. Novel techniques have been presented to

derive the curvature of the magnetic field line in field aligned coordinates purely from

the geometry of the magnetic flux surface. Similar techniques are also employed to

calculate the magnetic shear. The grid-generator has been tested against the BOUT++

inbuilt grid generator Hypnotoad and reasonable agreement is found between the two.

Finally the resolution of the grid has been investigated and found to be adequate for

studies of 3D filament dynamics under the requirement that the grid needs to be able

to approximately resolve wave vectors constrained by k⊥ ≈ 0.5ρs.
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Chapter 5

3D Filament Dynamics in a

MAST SOL Flux Tube Geometry

5.1 Introduction

The intermittent ejection of coherent, field aligned structures known as filaments is a

characteristic feature of transport in the scrape-off layer of tokamak plasmas [55, 220,

221]. Statistical measurements with probe diagnostics, as performed for example in

chapter 3, have been used in experiment to demonstrate the intermitency of fluctuations

in the SOL whilst imaging diagnostics [79, 84, 86, 89] have highlighted the field aligned

filamentary structure of these fluctuations. The presence of these filaments in L-mode

[79], in inter-ELM H-mode [84] and in H-mode during ELMs [61, 111] suggests that they

are universal in nature and are likely to play a prominent role in edge plasma transport.

Filaments have been estimated to contribute up to 50% of the density transport within

the SOL[222] however this transport is highly non-diffusive [180] due to the non-local

relationship between filament motion and equilibrium plasma profiles. Filaments can

travel significant distances into the SOL and can present a risk of unwanted interac-

tion with first-wall materials, leading to a large particle source due to recycling [56]

and potential damage to in-vessel components. As a means to assess these aspects of

density transport due to filament motion, the non-linear dynamics of filaments may be

investigated. Furthermore it is likely that analogies can be drawn between the processes

involved in filament motion and non-linear theories of tokamak edge plasma turbulence,

providing insight into drive and saturation mechanisms inside and outside the last closed

flux surface.

The dynamics of filaments have been historically studied in the context of reduced 2D

135



models in the plane perpendicular to the magnetic field, where physical processes par-

allel to the magnetic field line are approximated by heuristic closure assumptions [95]

(see chapter 2 or [55] for a discussion). Results by Angus et.al [115, 116, 197] have

extended these studies to a full 3D slab domain and have shown that 3D effects can

cause a dramatic departure from 2D predictions. More recent work by Halpern et.al

[223] and Easy et.al [212] (both pieces of work being conducted after the completion of

the work detailed in this chapter) have shown that 2D predictions can indeed capture

some of the dynamics of 3D filaments if 3D effects can be suppressed, however that to

accurately assess filament dynamics a 3D treatment is required.

Until recently the simulation of filament dynamics in 3D has been constrained to sim-

plistic geometries. In the work of Angus et.al [115, 116, 197] and Easy et.al [212] a

simple slab geometry is used whilst Helpern et.al [223] focussed on a simple toroidal

geometry representative of the TORPEX plasma device [224]. These geometries allow

for simplification of the physical processes occurring in the evolution of filaments, but

do not allow for the interaction between these processes and the magnetic geometry of

the tokamak SOL. An analytical treatment of the effects of magnetic geometry has been

given by Myra et.al [54] and by Ryutov and Cohen [110, 225] which suggests that the

magnetic geometry can strongly influence the motion of filaments. The work presented

in this chapter represents the first dedicated numerical investigation of these processes.

With advanced divertor concepts under consideration for DEMO, including the Super-

X divertor [226, 227] and the snowflake divertor [228], set to complicate the magnetic

geometry of the SOL further, it is increasingly important to factor in such effects into

the understanding of filament dynamics.

The aim of this chapter is to investigate numerically the dynamics of 3D filaments in

a magnetic geometry representative of a tokamak SOL. The particular geometry used

is a flux-tube geometry based on the SOL of MAST. The geometry itself is described

in chapter 4. Simulations are carried out using BOUT++ modelling framework [104]

and exploit its flexible handling of complex geometries. A theoretical consideration will

first be given to the effects of parallel electron dynamics on the motion of the filament,

followed by a consideration of the effects of the magnetic geometry. Limiting cases are

then presented where 3D effects are negligible and dominant respectively. In each case

the evolution of the filament perpendicular and parallel to the magnetic field will be as-

sessed. Finally a brief investigation into the role played by dissipation will be presented,

before a discussion on the results and a summary.

Parts of this chapter are based on published work [1]. A follow up publication based on

this chapter and chapter 6 is currently in preparation.
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5.2 The role of parallel electron dynamics

The modification of the standard equations of 2D blob dynamics, outlined in chapter 2,

to 3D is the through inclusion of parallel electron dynamics. As described by Angus [115,

116], this can be achieved by calculating the parallel current density through projection

of Ohm’s law along the magnetic field line. Under the assumptions of an isothermal,

electrostatic plasma and neglecting electron inertia this is derived in appendix B as an

expression for the parallel current density in Ampères as

J|| = σ||Te∇|| (ln (n)− φ) (5.1)

where φ is the electrostatic potential, Φ, normalized to the electron temperature, Te in

eV such that φ = Φ/Te, n is the electron density and σ|| is the parallel conductivity,

given in chapter 4 and originally derived in [229] as

σ|| = 1.96
ne2τei
me

(5.2)

where τei is the electron-ion collision time given by

τei =
3
√
meT

3/2
e

4
√

2πnΛe4
= 3.44× 1010T

3/2
e

n
(5.3)

with Te in eV, n in m−3 and the coulomb logarithm Λ ≈ 10. In 2D models the ∇|| ln(n)

term in 5.1 is neglected and the parallel current is then matched to the sheath current

to provide the sheath current closure. The full form of J|| can be calculated in 3D and

input into the density and vorticity equations. These are introduced in chapter 4 and

derived in appendix B as
dn

dt
= ξ̂ · ∇n+ α∇||J|| (5.4)

n
d

dt
∇2
⊥φ = ξ̂ · ∇n+ α∇||J|| (5.5)

where the dimensionless parameters are the normalized polarisation vector

ξ̂ = ρsξ = ρsb× κ ∼ ρs/Rc (5.6)

where κ is the curvature vector of the magnetic field described in chapter 4, and

α =
σ||Te

n0csρse
=
σ||B

n0e
(5.7)

The Bohm normalization is employed here and is summarized in table 5.1. Length scales
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Description Variable Normalization

Density n n0 (m−3)
Potential φ Te (eV)

Length scales r ρs
Time-scales t Ωi

Table 5.1: Normalization of variables in the system of equations 5.4 and 5.5. n0 is
a reference density and refers to the plasma background, whilst Te is the isothermal

background electron temperature.

in the system are normalized to the Bohm gyro-radius and time scales to the ion cy-

clotron frequency such that velocities are normalized to the acoustic speed cs = ρsΩi. In

addition the potential is normalized to the electron temperature in eV and the density

is normalized to the background reference density.

One method of analysing the parametric dependencies of a system is invariant scaling

analysis, a technique popularised by Connor and Taylor [230] to study the tokamak

energy confinement time scaling and used by Myra [54] to determine the scaling of the

2D blob velocity in the two-region model (see chapter 2 and/or [54]). The aim of the

technique is to find a scale transformation that leaves the underlying system of equa-

tions invariant. This can then be used to identify combinations of parameters used to

control the system, and can also elucidate the role played by different mechanisms in the

equations defining the system. To perform the analysis a scale transformation is applied

to all variables and parameters required to define the system of the form n → λan,

r→ λbr, Te → λcTe and so on for t, B, φ, ξ = |ξ| and n0. These transformed quantities

are substituted into the governing equations and exponents a, b etc are found that leave

the equations invariant. In the case of equations 5.1 to 5.5 a scale transformation found

to leave the equations invariant is given by

φ→ φ t→ t r→ r δn→ λδn

Te → λγTe B → λβB n0 → λ3γ/2+β−1n0 ξ → λβ−γ/2ξ
(5.8)

where γ and β are free parameters. Given that this transformation leaves the system

invariant it is necessary that any solutions to the system, F (n, φ; r, t;B, ξ, Te, n0, B) for

example, must also remain invariant under the same scale transformation. This means

that it must be independent of γ and/or β since they are arbitrary. As a consequence

the arguments of F can only appear in certain scale independent combinations. These

combinations are:

C1 =
ξ
√
Te
B

C2 =
n0δn

|ξ|T 2
e

(5.9)
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C3 =
n0δn

T
3/2
e B

C4 =
n0δn |ξ|
TeB2

Relations C1 to C4 are related by

C1 × C3 = C4 C1 × C2 = C3 (5.10)

so we need to specify only two of the four parameters. In terms of system parameters

C1 ∝
∣∣∣ξ̂∣∣∣ = ξ̂ and C3 ∝ n/α. This means that the non-linear evolution of a filament is

determined principly by ξ̂, n and α. This is intuitive since ξ̂, the normalized magnetic

curvature, and α, the normalized conductivity, control the right hand side (RHS) of

equations 5.4 and 5.5, whilst n specifies the initial conditions of the system. Notably

the parameters controlling the system consist of plasma parameters, n0, and Te and

magnetic parameters, B and ξ. The magnetic parameters in the SOL are generally fixed

during tokamak operation and to emulate this they will be held fixed in the MAST

geometry investigated in this chapter. By fixing the initial conditions of the system, and

keeping n0 constant, the only parameter left governing the dynamics of the system is

the electron temperature, Te.

The invariant scaling produced above differs significantly from that of the two-region

model [54]. In particular in the 3D system it is no longer possible to keep the system

invariant under a scale transformation of the electrostatic potential. This can be shown

by re-examining the equation for parallel Ohm’s law, equation 5.1. For the system to

remain invariant under a scale transformation, both terms in equation 5.1 must have

the same scaling exponent. Since the scale transformation of n in the term ∇|| ln(n) =

(∇||n)/n cancels, the only possible scale transformation to φ that can leave the system

invariant is λ0. Hence the inclusion of 3D parallel electron dynamics fundamentally

alters the invariant nature of the system. It should be noted that, even if a distinction

in the scale transformation between perpendicular and parallel length scales is made,

this result does not change and is fundamental to the 3D system.

The cause of this difference between the invariant nature of the 2D and 3D systems is

the result of the inclusion of the term ∇|| ln(n) in the vorticity equation via the full 3D

version of Ohm’s Law, equation 5.1. In 2D models the vorticity equation contains only

one source, the interchange source, SI = ξ̂ ·∇n, which drives interchange motion. In the

3D vorticity equation the term arising from the parallel current provides a second source,

SB = α∇2
|| ln(n). In [115] Angus showed that this source can be responsible for inducing

a spinning of a 3D blob in a slab by inducing a Boltzmann response of the potential. In

the full system of equations the Boltzmann response is introduced through the SB source

term, as such this term will be called the Boltzmann source here. In 2D the entire system
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can be scaled to keep the relative strength of the interchange source, SI , constant, so

that the dynamics of the blob remain invariant. If this is attempted in the 3D case,

then the Boltzmann source, SB becomes stronger or weaker relative to the interchange

source, SI and so the dynamics of the system alter. If SI >> SB then the dominant

source of potential arises from the magnetic curvature and the dynamics of the filament

are likely to be close to 2D predictions, however if SI ∼ SB then the Boltzmann source

can play a comparable role or if SI << SB the the Boltzmann source can dominate

the vorticity equation and the dynamics may depart from 2D predictions. As indicated

earlier, the electron temperature can be used as a primary parameter for varying the

dynamics of a filament in fixed magnetic geometry, with fixed initial conditions and for

fixed background density. The point at which 3D effects may become important can be

estimated by weighting the two sources against one another. The two sources can be

estimated by

SI = 2ξ̂ · ∇n ≈
2ρ2

S |ξ| δn
δ⊥

(5.11)

SB = α∇2
|| ln(n) ≈ ρ2

sα

δ2
||

(5.12)

where δ⊥ and δ|| are the perpendicular and parallel filament length scales respectively,

and δn is the peak filament density above the background. Equating these two terms

against one another and rearranging for the electron temperature gives an estimate for

Te through which a transition from 2D to 3D dominated physical processes can occur in

the filament. This is given by

Te,c =

(
2n0δnmeδ

2
|| |ξ|

1.96× 3.44× 1010δ⊥eB

)2/3

(5.13)

where the denominator arises from σ||. To estimate this temperature typical parameters

of the MAST SOL are taken. These are n0 ∼ 1019m−3, δn ≡ (n − n0)/n0 ∼ 0.5,

δ⊥ ∼ 2cm, B ∼ 0.3T , |ξ| ∼ 1/R with R ∼ 1.5m, and δ|| ∼ 8m which is representative of

the connection length in the far SOL. These parameters then give an estimate for the

transition electron temperature of

Te,c ≈ 4eV (5.14)

Whilst this estimate is subject to considerable uncertainty, it suggests that 3D effects

may play a role in filament dynamics at temperatures relevant to the experimental

conditions. In MAST for example ball pen probe measurements in chapter 3 suggest

that temperatures in the range of 5 to 20eV are appropriate for the far SOL.
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5.2.1 Symmetry Breaking

The arguments laid out so far suggest that 3D effects may play a role in filament dynam-

ics in a parameter range relevant to experimental conditions on MAST. To explore on a

slightly deeper level the impact of these 3D effects the symmetry properties of filament

dynamics can be examined. The 2D theory of blob dynamics, as outlined in chapter

2, predicts the formation of a potential dipole across a mono-polar density. Recent 3D

results [115, 116] suggest that this picture changes when 3D effects are introduced. To

investigate this effect the electrostatic potential can be written in terms of an even and

an odd component, φ+ and φ− respectively, in the bi-normal direction (perpendicular to

radial and parallel directions) about the centre of the blob. The true potential is then a

linear combination of these two

φ = φ+ + φ− (5.15)

The same is true for the density, however since the density is initially mono-polar in the

bi-normal direction it can be approximated by n = n+ such that the density is an entirely

even function about the blob centre. This decomposition of the density and potential

is illustrated schematically in figure 5.1. Substituting the expression φ = φ+ + φ− into
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Figure 5.1: Schematic illustration of the decomposition of filament density and po-
tential into even and odd components.

the vorticity equation allows the parity in the bi-normal direction of each term in the

equation to be determined. In determining the parity note that even order differential

operators in the bi-normal direction preserve the parity of the function they are operating

on, whilst odd order operators reverse the parity. This means that ∇⊥φ+ has an odd

parity, whilst ∇2
⊥φ

+ has an even parity. The vorticity equation can then be written as
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∂∇2
⊥φ

+

∂t
+ v−E · ∇∇

2
⊥φ
− + v+

E · ∇∇
2
⊥φ

+ − α

n

(
∇2
|| ln (n)−∇2

||φ
+
)

= (5.16)

−
∂∇2
⊥φ
−

∂t
− v+

E · ∇∇
2
⊥φ
− − v−E · ∇∇

2
⊥φ

+ + ξ̂ · ∇ ln(n)− α

n
∇2
||φ
−

where all of the even parity terms have been collected on the LHS, and the odd parity

terms have been collected on the RHS. The E×B advection velocity has been split into

even and odd parts given by

v+
E = b×∇φ− (5.17)

v−E = b×∇φ+ (5.18)

The density n = n+ is assumed to be entirely even in parity. Note that by construction

the LHS of equation 5.16 is entirely even in parity, whilst the RHS is entirely odd which

can only be generally true if both sides identically equal 0. This then allows the vorticity

equation to be split into two coupled equations for the odd and even components of the

potential

∂∇2
⊥φ

+

∂t
+ v−E · ∇∇

2
⊥φ
− + v+

E · ∇∇
2
⊥φ

+ =
α

n

(
∇2
|| ln (n)−∇2

||φ
+
)

(5.19)

∂∇2
⊥φ
−

∂t
+ v+

E · ∇∇
2
⊥φ
− + v−E · ∇∇

2
⊥φ

+ = ξ̂ · ∇ ln(n) +
α

n
∇2
||φ
− (5.20)

If the Boltzmann source is neglected, and the initial conditions of the blob are set up

such that φ+ (t = 0) = 0, as is the standard case in 2D blob theory, then the blob will

maintain an odd parity of potential throughout its lifetime with no growth of the even

component. By constrast when the Boltzmann source is included the initial symmetry of

the blob potential can be broken by the growth of an even component alongside the odd

component. This shows that 2D blob models are a rather special class of models and

do not allow for a breaking of the reflective anti-symmetry imposed by the interchange

source. When the symmetry is broken the non-linear operators act to mix the parities.

As the blob then advects, the symmetry of the density is also broken and the assumption

of n = n+ no longer applies. As such the above analysis only applies formally to the early

stages of the blob motion however it serves to illustrate the role played by 3D effects.

It is also worth noting that the diamagnetic contribution to the density equation also

permits symmetry breaking, however this term is generally much weaker than advection

by the E×B velocity and is therefore negligible.

The symmetry breaking predicted here has already been observed by Angus et.al [115]

in the form of a mono-polar potential arising across a 3D blob in a slab with a density

gradient in the parallel direction. This was observed to spin the blob. The situation

studied in this chapter is rather different and it will be shown that symmetry breaking

can play a major role in the dynamics of 3D blobs, or filaments, despite no density
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gradients being initialised. The magnetic geometry of the SOL can provide the conditions

for symmetry breaking to occur as will be discussed in the next section. The odd and

even components of the potential are investigated in this chapter at the post-processing

level; the equations solved do not decompose the potential.

5.3 The role of magnetic geometry

A key feature of the work presented here is the inclusion of a realistic magnetic geometry.

The principle effect of the magnetic geometry, beyond providing drive for the interchange

motion through magnetic curvature, is to transform the shape of the filament in the

perpendicular plane along the magnetic field line. This shaping transformation has been

noted previously in [54] and [225]. The transformation of the cross-sectional shape of the

filament can be derived from the ballooning coordinate system described in appendix A.

For reference, the ballooning coordinate system (x, y, z) is specified by

x = ψ − ψ0

y = θ (5.21)

z = ζ −
∫ y

y0

νdy′

where ψ is the normalized poloidal flux and ψ0 is the poloidal flux at the separatrix, θ

is the poloidal angle and ζ is the toroidal angle. ν is the local field line pitch given by

ν =
hθBζ
RBθ

(5.22)

where R is the major radius of the plasma, Bθ and Bζ are the poloidal and toroidal

field strengths respectively and hθ = 1/ |∇θ| is the related to the poloidal arc length

by dL = hθdθ and can be identified with the minor radius in a circular plasma cross-

section. When integrated around 2π in the toroidal direction, this expression gives the

safety factor q. The coordinate system has the contravariant basis vectors

∇x = ∇ψ

∇y = ∇θ (5.23)

∇z = ∇ζ − I∇ψ − ν∇θ

and covariant basis vectors

ex =
1

RBθ
êψ + IRêζ
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ey = hθêθ + νRêζ (5.24)

êz = Rêζ

In this coordinate system the magnetic field can be written in Clebsch form as

B = ∇x×∇z =
1

J
(hθêθ + νRêζ) (5.25)

With this description of the magnetic coordinates it is possible to identify a unit vector

normal to the flux surface,

êN = êψ =
∇ψ
R |Bθ|

(5.26)

and a unit vector normal to both the flux surface and the magnetic field line

êg = êN ×B/B =
RBθ
B

eζ −
hθBζ
B

eθ =
RBθ
B

(∇z + I∇ψ) (5.27)

Within this chapter this direction will be referred to as the bi-normal direction. The

vectors (êN ,b, êg) form a local right-handed coordinate system at any point along the

magnetic field line. Returning to the ballooning coordinate system, (x, y, z), for the

system to be a valid representation the coordinates must be independent of one another.

This implies that
dx

dy
=
dz

dy
= 0 (5.28)

The differential lengths dx and dz can be written in terms of the locally orthogonal

vectors (êN ,b, êg) as

dx = ∇x · dr (5.29)

and

dz = ∇z · dr (5.30)

where the differential length vector is given by

dr = dxN êN + dxy
ey
JB

+ dxgêg (5.31)

where the equality b = ey/JB has been employed. Using equation 5.23 to evaluate dx

and dz then gives

dx = ∇x · dr = R |Bθ| dxN (5.32)

and

dz = ∇z · dr = −IR |Bθ| dxN +
B

R |Bθ|
dxg (5.33)

Since dx and dz are constant these expressions allow the elemental length scales at some

point upstream on the field line, dxN,u and dxg,u, to be related to downstream length
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scales dxN,d and dxg,d by (
dxN,d

dxg,d

)
= T

(
dxN,u

dxg,u

)
(5.34)

where the transformation matrix, T is given by

T =


A 0

C D

 =


RuBθ,u
RdBθ,d

0

RuRdBθ,uBθ,d
Bd

(Id − Iu)
BuRdBθ,d
BdRuBθ,u

 (5.35)

Here Bθ is the poloidal magnetic field magnitude, R is the major radius and I is the

integrated magnetic shear. Subscripts u indicate upstream values and d indicate down-

stream values. This is precisely the transformation matrix derived in [54]. To derive the

corresponding transformation of perpendicular gradients the fact that (xN , xg) form a

local coordinate system implies

∇d,ixd,i = ∇u,ixu,i = 1 (5.36)

where d denotes downstream and u denotes upstream quantities. The transformation

matrix M that transforms ∇u into ∇d is then derived from

∇d,ixd,i =Mj
i∇

u,iT ij xu,i =Mj
iT

i
j = 1⇒M = T Tr,−1 (5.37)

which gives

M =


RdBθ,d
RuBθ,u

RuRdBθ,uBθ,d
Bu

(Id − Iu)

0
BuRuBθ,u
BdRdBθ,d

 (5.38)

Examining the transformation implied by T shows two distinct transformations occur-

ring in the flux tube as one moves along the magnetic field line. The first is a scale trans-

formation which is a result of the requirement that the magnetic flux passing through

the cross-section of the flux tube must be constant at all points along the flux tube.

This transformation enlarges the flux tube in the normal direction but contracts it in

the bi-normal direction. If the total magnetic field magnitude is constant along the flux

tube then this transformation is area preserving. This transformation is described by the

diagonal terms in T . The off-diagonal term describes a shearing transformation result-

ing from the magnetic shear in the flux-tube. This is an area preserving transformation

and acts to stretch the flux tube in the bi-normal direction. These two transformations

are described schematically in figure 5.2.

In figure 5.3 the transformation elements A,C and D from equation 5.35 are calculated for
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Figure 5.2: Schematic example of the transformation properties of a flux tube along
a magnetic field line. The effects of flux expansion (upper) and magnetic shear (lower)

are shown. The total transformation is a combination of the two.

the MAST SOL flux tube at ψN = 1.15 as a function of distance along the magnetic field

line, S, with the origin at the outboard midplane. The flux tube geometry is described in

chapter 4. The effects of the transformation of the flux-tube (and consequently filament)
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(a) A: Normal scale expansion
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Figure 5.3: Components of the transformation matrix, given in equation 5.35, calcu-
lated in the MAST SOL flux-tube taken at ψN = 1.15. Components A and D describe
a scale transformation which leads to an expansion in the normal direction and a con-
traction in the bi-normal direction. Component C represents a shearing transformation

in the bi-normal direction.

cross-section can be rather dramatic, particularly in the divertor region, as shown in fig-

ure 5.3, where the shearing transformation begins to become large. Figure 5.4 shows an

example of the transformation induced in an initially circular flux-tube cross-section at

the midplane, as it appears in the divertor. The transformation properties vary with

distance from the separatrix due to variation in the magnetic field. In particular the
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Figure 5.4: Transformation of a flux-tube in the divertor (red) compared to the initial
circular cross-section at the midplane (black). Parameters leading to the transformation

are taken from figure 5.3.

shearing transformation becomes less extreme further from the separatrix. As indicated

in chapter 4 this effect cannot be captured in the flux-tube geometry since radial varia-

tion of magnetic parameters is neglected. This may affect filament dynamics if magnetic

parameters vary on length scales comparable to the cross-section filament size. This is

unlikely to occur at the outboard midplane in MAST as shown in figure 3.30 of chapter

3 where the magnetic field variation is weak, however close to the X-point the magnetic

shear can be large due to the reduction of the poloidal field to 0 at the X-point. This

will be addressed in the discussion section of this chapter. Inclusion of these effects is

beyond the scope of this study, however would be a good topic for future research.

The transformation properties of the flux-tube have an important impact on the dynam-

ics of filaments in a number of ways. Firstly and most obviously since filaments align

to the magnetic field, they inherit the scale transformation of the flux-tube. Therefore

the cross-sectional width of filaments vary along the magnetic field line which in turn

causes a variation of the cross-field gradients in the filament. The cross-sectional width

of the filament in the normal and bi-normal directions can be estimated by taking

∇ ∼

(
1/δN

1/δg

)

where δN and δg are the filament half-widths (radii) in the normal and bi-normal direc-

tions respectively. This then gives the transformation(
1/δd,N

1/δd,g

)
=M

(
1/δu,N

1/δu,g

)
(5.39)

This expression can be rearranged to calculate δd,N and δd,g. Assuming a circular fila-

ment cross-section with a radius δ⊥ = δN = δg = 2cm and taking the upstream reference

position as the midplane, figure 5.5 shows the resulting width of the filament as a func-

tion of distance along the magnetic field line. The magnetic geometry can induce an

extreme contraction of the filament width in the normal direction principally as a result

of the shearing transformation. In the divertor region this can lead to filament widths
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Figure 5.5: Filament half-width in the normal (left) and bi-normal (right) directions
due to the transformation properties of the flux-tube as a function of distance along
the magnetic field line. The shearing transformation leads to an extreme contraction

in the normal length scale of the filament.

on the mm scale. This scale is comparable to the Bohm gyro-radius in MAST which is

≈ 1.5mm at an electron temperature of 20eV. This suggests that gyro-scale effects may

play a role in the physics of filaments in the divertor region. The cold-ion assumption

in the model used here leads to a neglect of gyro-scale effects by assuming a vanishingly

small ion gyro-radius. As such the contraction in the divertor is not inconsistent with

the model used, however inclusion of gyro-scale effects may be a good topic for future

work. This will be commented on further in the discussion section.

The peaks in the normal width of the filament observed in figure 5.5 occur at points

where the shearing transformation, C in figure 5.3, crosses 0. At this point only the

scale transformations occur. Since the shearing transformation universally reduces the

normal width it is expected that the filament width maximizes when the shearing trans-

formation is 0. In the bi-normal direction peaks in the bi-normal width correspond to

peaks in the bi-normal scale transformation due to flux expansion,element B in figure

5.3. This occurs when the poloidal magnetic field maximizes along the magnetic field

line. Note that this is a result of the close proximity of the plasma to the P5 poloidal

magnetic field coils (see figure 1.11 from chapter 1) and as such is a feature of the tight

aspect-ratio design of MAST.

The variation in the filament width can play an important role in the dynamics of the

filament. The contraction of the width increases cross-field gradients which in turn

increase the drive for the interchange source. The diamagnetic current produced by

the interchange source is (at least partly) balanced by cross-field polarisation currents,

which also increase in strength as the filament width is reduced. In the case where

the diamagnetic current is dominantly balanced by polarisation currents (corresponding
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to the resistive ballooning regime of the two-region model [54], described in chapter 2)

the characteristic velocity of a filament is proportional to both the square root of the

curvature drive, ξ = b× κ, and the filament width δ⊥ as

v ∝
√
|ξ| δ⊥ (5.40)

suggesting that as the filament width contracts its velocity should reduce. Before this

can be commented upon further a note must be made about the magnetic curvature. In

2D studies of blob dynamics [54, 55, 94, 99] as well as 3D studies in a slab [115, 116]

the magnetic curvature vector is assumed to point negatively in the normal direction.

In the tokamak SOL the reality is more complicated. Generally the magnetic field is

dominated by the toroidal component, as shown in chapter 4 and so the curvature vector

points predominantly radially towards the centre column of the tokamak at all points

along the magnetic field line. When the curvature vector is projected onto the unit

vectors in the perpendicular plane it can produce a component in both the normal and

bi-normal (poloidal direction if B ≈ Bζ) directions. This is illustrated schematically

in figure 5.6. Also shown in figure 5.6 are the normal and bi-normal components of

ξ = b × κ. These are calculated by projecting the vector ξ, calculated in the grid

generator described in chapter 4, onto the normal and bi-normal unit vectors respectively.

Note that the poloidal component of curvature contributes to the normal component of

ξ, whilst the normal component of curvature contributes to the bi-normal component

of ξ. It is notable that the normal component of ξ, which induces motion in the bi-
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Figure 5.6: Left: Schematic illustration of the alignment of the curvature vector in the
poloidal plane, showing that both a normal and bi-normal component of the curvature
are present along the magnetic field line. Right: Bi-normal (solid line) and normal
(dashed line) components of the polarisation vector ξ = b × κ in the MAST SOL
flux-tube geometry. The normal component of the curvature can become comparable

in magnitude to the bi-normal component in the divertor region.

normal direction, can become comparable to the bi-normal component as the field line

approaches the divertor. Around the midplane the shearing transformation is weak

149



and the presence of the normal component of the polarisation vector indicates that the

potential dipole forming across the filament may form at an angle compared to the

midplane. This assumes that the dipole that forms is entirely a local process, however

in reality some averaging will occur along the field line as a result of the ∇||φ term in

Ohm’s law. Since the normal component ξ is anti-symmetric about the midplane these

effects may average to 0 if the averaging is strong enough. It is also notable that the

often used approximation of |ξ| ∼ 1/R where R is the major radius underestimates the

strength of the magnetic curvature at the midplane. The enhancement to the curvature

is a result of the poloidal magnetic field component, which can be comparable to the

toroidal field at the midplane of MAST. Once again this is a feature of the spherical

tokamak design of MAST and is not true in conventional aspect ratio tokamaks where

Bθ/Bζ << 1.

Having calculated the normal and bi-normal components of the polarisation vector ξ, the

velocity of the filament can be estimated. The velocity in the normal direction is a result

of the bi-normal component of ξ and visa versa. Figure 5.7 shows that predicted velocity

of the filament normalized to the velocity in the normal direction at the midplane, as

a function of distance along the field line. The filament velocity strongly peaks in
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Figure 5.7: Filament velocity as a function of distance along the magnetic field line
due to polarisation from the bi-normal component of ξ (solid curve) and the normal
component of ξ (broken curve) predicted from the resistive ballooning scaling, normal-

ized to the normal velocity at the midplane.

the midplane region suggesting that strong ballooning of the filament at the midplane is

expected. Some fine structure is present in the velocity prediction however the averaging

effect of Ohm’s Law is likely to suppress this structure. The extreme contraction of the

filament in the normal direction suppresses the bi-normal velocity and the predominant

motion of the filament is expected to be in the normal direction.

The ballooning predicted here suggests that the magnetic geometry provides a natural
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source of parallel density gradients within the filament. These density gradients can

then act, through the Boltzmann source, to break the symmetry of the interchange

motion and cause a departure of the filament dynamics from 2D predictions. With

a view to investigating these effects, the next two sections present limiting cases of

otherwise identical filaments with electron temperatures of 1eV and 20eV respectively.

The former is below the critical temperature of ≈ 4eV predicted earlier and is expected

to be dominated by the interchange mechanism, whilst the latter is above the critical

temperature and expected to display the effects of the Boltzmann source.

5.4 The interchange regime

When the resistivity of the plasma is high the vorticity equation is dominated by the

interchange source and the filament is governed by interchange dynamics. This is termed

the interchange regime. This section will focus on filament simulations in the interchange

regime and seek to characterise the resulting dynamics of the filament and investigate the

role of the magnetic geometry on the filament motion. To access the interchange regime

the resistivity must be large. This is achieved by taking the background density of the

filament as n0 = 5 × 1018m−3 and the background electron temperature as Te = 1eV.

This temperature is below temperatures that may be expected in the SOL of MAST,

however it is used here to illustrate a limiting case of filament motion. At 1eV the

plasma may also be subject to electron-ion recombination, which can act as a sink of

plasma density and can cause detachment to occur in the divertor. These effects are not

included here but would be a good topic for future study.

The filament density is initialized as a Gaussian in x and z with an initial radius of

δ⊥ ≈ 2cm (measured as the point where the filament density is 1% above the background)

at the midplane in the normal and bi-normal directions with peak density δn/n0 = 2.06.

Small amounts of density and momentum diffusivity are included in the simulation

with coefficients of D̂ = µ̂ = 0.001 where D̂ is the normalized density diffusivity and

µ̂ is the normalized momentum diffusivity. In terms of dimensional variables these are

D̂ = D/
(
ρ2
sΩi

)
and µ̂ = µ/

(
ρ2
sΩi

)
with D and µ the dimensional density and momentum

diffusivities in m2s−1. These values are below experimental levels and the detailed role

of dissipation will be assessed in section 5.6. The filament parameters are within the

ranges found experimentally on MAST [79].

5.4.1 Cross-field motion

The cross-field motion of filaments is well documented in the 2D limit which here corre-

sponds to the high resistivity limit (see Chapter 2, or [55] for a review). Characteristic
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aspects of the motion are the formation of a dipole potential across the filament centre,

resulting in a strong electric field at the filament core which advects the filament radially.

The increased advective velocity of the filament centre compared to its exterior leads to

the classic ’mushroom’ shape observed in simulation [94, 99] and experiment [80]. This

interchange behaviour is observed in the filament simulations conducted in the MAST

SOL flux tube geometry. Figure 5.8 shows the evolution of the filament cross-section

in the perpendicular plane. The cross-section is taken at the midplane. Also shown

in figure 5.8 is the electrostatic potential across the filament in the early stages of its

motion.
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Figure 5.8: Evolution of the filament cross-section at the midplane in the interchange
regime. Filament density is shown in colour whilst potential is shown as contours. The
filament displays the classic mushrooming motion associated with interchange motion.
Here the x coordinate is the normal direction (radial at the outboard midplane) and z

is the bi-normal direction.

Figure 5.8 shows the interchange characteristics of filament motion, with a strong peak-

ing of the electric field at the filament centre leading to mushrooming motion; the evo-

lution of the filament is similar to that observed in 2D theories. In the late stages of

evolution resistive drift-waves are observed to form on the filament front. These resistive

drift-waves are shown in figure 5.9.

The presence of resistive drift-waves in 3D filaments has been demonstrated by Angus

et.al [115, 116]. In the strongly interchange driven filaments investigated here these re-

sistive drift-waves only form towards the latter stages of the filament evolution and form

with a length scale much smaller than the filament radius. The disparity in their length

scale compared to the filament suggests that they are driven linearly unstable by pertur-

bations to the filament front, as described by Angus. The delay in their onset suggests

that a gradient build up is required to trigger their instability. Unlike the drift-waves

found by Angus et.al they are not observed to significantly impact the filament motion

here. This suggests that they are only marginally unstable, and require the filament

to evolve and gradients on the filament front to build up before being driven unstable.
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Figure 5.9: Resistive drift wave formation on the filament front in the late stages
of its evolution at 113µs. Colour represents density and contours represent potential.
The filament front has been enlarged to show the drift-waves in detail. Here the x
coordinate is the normal direction (radial at the outboard midplane) and z is the bi-

normal direction.

This will be commented on further in the discussion section.

In figure 5.6 the polarisation vector, ξ = b × κ which determines the polarisation di-

rection of the potential, was shown to be comparable in magnitude in the normal and

bi-normal directions. At the midplane the magnetic curvature is purely in the radial

direction which leads to a purely bi-normal polarisation, however moving away from the

midplane the increased normal component of the polarisation vector causes the potential

dipole across the filament to form at an angle. This is shown in figure 5.10 where cross-

sections of the filament density are shown 2m along the magnetic field line either side of

the midplane. The variation of the dipole formation about the midplane is in agreement
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Figure 5.10: Filament density (colour) and potential (contours) in cross-sections taken
2m along the magnetic field line either side of the midplane. The change in the angle
of the dipole is a result of the impact of a normal component of the polarisation vector
ξ. Here the x coordinate is the normal direction (radial at the outboard midplane) and

z is the bi-normal direction.

with the predictions made in section 5.3. Notably the angle of the dipole formation
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moving away from the midplane varies weakly away from the horizontal, so the motion

of the filament is still predominantly in the direction normal to the flux surface. This

deviation in the motion of the filament can lead to density gradients along the magnetic

field line and is the first example of the production of parallel density gradients due to

the influence of the magnetic geometry.

Figure 5.11 shows the spatial structure of the electrostatic potential, vorticity and paral-

lel current 38µs into the filament evolution. Figure 5.11 shows that the vorticity evolves
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Figure 5.11: Electrostatic potential, φ, vorticity, ω and parallel current J|| 38µs
into the filament evolution. Contours show the density of the filament for reference.
Importantly, all quantities evolve on a length scale similar to the density due to the

dominance of the interchange source in the vorticity equation.

on a length scale comparable to the filament density. This indicates that the interchange

source is dominant in determining the dynamics of the vorticity, and consequently the

filament. As described in section 5.2 when the vorticity equation is strongly dominated

by the interchange source, the electrostatic potential is expected to develop an odd struc-

ture around the filament centre. Figure 5.11 already shows that this is true, however

a more detailed analysis is possible by reconstruction of the odd and even components

of the potential. This is obtained by taking the original potential profile in the per-

pendicular plane, φ (x, z) and constructing its reflection about the filament centre in z,

φ (x,−z). The odd and even components of the potential can then be obtained by

φ+ =
1

2
(φ (x, z) + φ (x,−z)) (5.41)

φ− =
1

2
(φ (x, z)− φ (x,−z)) (5.42)

where the even component of φ is φ+ and the odd component is φ−. In figure 5.12

φ+ and φ− are shown during the filament evolution at the midplane cross-section. The
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potential here has been normalized to its absolute maximum in space and time before

the components are extracted so that the even and odd components can be viewed

comparably.
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Figure 5.12: Even (upper) and odd (lower) components of the potential at the mid-
plane in the interchange regime. The potential is normalized to its absolute maximum.
Note the difference in scale between the even and odd components. The odd compo-

nents are significantly stronger than the even components.

Figure 5.12 shows that the even component of the potential is significantly weaker than

the odd component when the filament is in the interchange regime. The growth of the

two components can be compared directly by taking the absolute maximum in space

of each component as the filament evolves. This is shown in figure 5.13. Figure 5.13

confirms that the growth of the even component of the potential is substantially slower

than the odd component. Notably though the even component does grow and this leads

to the slow bi-normal motion prior to the formation of resistive drift waves.

The filament motion in the divertor region differs from the motion at the midplane as
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Figure 5.13: Growth of the even and odd components of the potential, shown by cal-
culating the absolute maximum of each component at the midplane during the evolution

of the filament.

a result of the shape transformation induced by the magnetic geometry. As discussed

in section 5.3 the filament in the divertor becomes elliptical and highly sheared which

greatly reduces the width of the minor axis of the filament. This has two principal effects

on the filament in the divertor region:

1. Reduced electric field strength: The strength of the electric field, which results from

potential polarisation across the filament arises from the balance of the diamagnetic

current, the parallel current and the polarisation current in the filament. As

the filament width reduces, the polarisation current increases as δ−2
⊥ whilst the

diamagnetic current, which provides the drive for the polarisation, only increases

as δ−1
⊥ . Consequently as the width reduces the polarisation current can carry away

proportionally more charge and the magnitude of the potential dipole reduces.

This reduces the filaments E×B velocity.

2. Enhanced diffusion: As the filament width reduces, gradients increase. As such,

even the small amounts of diffusion employed in these simulations (which are at

least an order of magnitude below the experimental level, see section 5.6) can lead

to significant dispersion of the filament density. This reduces gradients which in

turn reduces the drive for the dipole potential and consequently reduces filament

motion.

Both of these effects can be observed in figure 5.14 which shows the evolution of the

filament in the divertor. Note that the shearing transformation of the filament cross-

section has been removed in figure 5.14 to aid visual clarity. The shearing transformation

is present during the simulation. Also note the disparity in the limits of the axes which

is a result of the scale transformation due to flux expansion/contraction.
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Figure 5.14: Evolution of the filament cross-section in the divertor region. The
disparity in the scale of the axis is a result of the scale transformation due to flux
expansion. Density is shown in colour and potential as contours. Note that the shearing
transformation has been artificially removed in the presentation of this data to aid visual

clarity, but is fully included in the calculations used to create the data.

Figure 5.14 shows that the filament remains more coherent in the divertor, with a reduced

rate of outward motion as predicted in section 5.3. In figure 5.15 the spatial morphology

of the potential, vorticity and parallel current in the divertor are presented.
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Figure 5.15: Electrostatic potential, φ, vorticity, ω and parallel current J|| in the
divertor region 38µs into the filament evolution.

Comparing figure 5.15 to figure 5.11 confirms that the polarisation in the divertor region

is weaker than in the midplane. Also shown in figure 5.14 is a reduction in the peak

density of the filament as it propagates as a result of the enhanced diffusion. In figure

5.16 the peak density of the filament in the divertor is compared to the peak density at

the midplane during the evolution of the filament.

Figure 5.16 shows that the enhanced diffusion in the divertor leads to quicker reduction
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Figure 5.16: Evolution of the peak density of the filament cross-section at the mid-
plane (blue) and in the divertor (red). Enhanced diffusion in the divertor leads to a

reduction in the peak density compared to the midplane.

in the peak density compared to the midplane. This leads to density gradients parallel

to the magnetic field which will be investigated in the next section.

5.4.2 Parallel profile

A major feature of the simulations conducted in the MAST SOL flux tube geometry,

compared to slab simulations such as those conducted in [115, 116, 197], is the presence of

variable drive for filament motion along the length of the filament. When the resistivity

is high, filaments are not tied to magnetic field lines [225] and can deviate away from

field alignment. In the previous section this has already been observed in the fact that

the filament dynamics in the divertor differ from the dynamics at the midplane. In figure

5.17 the evolution of the parallel profile of the filament is presented. The parallel profile

is obtained by taking a cross section of the x, y plane in the field aligned coordinate

system holding z constant. y can then be cast in terms of S, the distance along the

field line. The effect is to lay the filament flat along the magnetic field line and take a

cut through its centre showing the direction normal to the flux surface and field aligned

direction.

Figure 5.17 shows that the filament does not remain aligned along the magnetic field

as it evolves. Starting from a homogeneous profile along the magnetic field, the centre

of the filament accelerates rapidly outwards. The region towards the divertor plates

initially shows a reduction in density as a result of the enhanced diffusion in that region.
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Figure 5.17: Evolution of the parallel profile of the filament density in the interchange
regime. S is distance along the magnetic field line, whilst ψN is the normalized flux

surface label. The divertor target is located at either boundary in S.

The propagation of the filament in the divertor regions is then slower as a result of the

increased charge dissipation from the polarisation current. The net result is that the

filament balloons at the midplane. The ballooning observed is a combination of three

effects:

1. Curvature variation

2. Poloidal flux expansion

3. Magnetic shear

To study the role played by each of these effects in detail otherwise identical simulations

have been run with two out of the three effects suppressed, thereby isolating a single effect

in each case. To suppress the effects of curvature variation the curvature is artificially

held constant in the flux tube at the midplane value. To suppress poloidal flux expansion,

R and Bθ are held constant, whilst to suppress the magnetic shear, I is set to 0 over the

domain. In all cases the artificial dissipation is removed from the system so that only the

effects of the magnetic geometry on the interchange motion is present. Figure 5.18 shows

the parallel profile obtained during each simulation. These profiles are compared to the

parameters which determine their shape; the curvature in the first case the filament

159



radius in the bi-normal direction in the second and the filament radius in the normal

direction in the third. Figure 5.18 shows that that the observation of ballooning at the

1.05 1.10 1.15 1.20 1.25
ψN

-5

0

5

S
 (

m
)

 

1.0 1.2 1.4 1.6 1.8 2.0

(a) Curvature

1.05 1.10 1.15 1.20 1.25
ψN

-5

0

5
S

 (
m

)

 

1.0 1.2 1.4 1.6 1.8 2.0

(b) Flux Expansion

1.05 1.10 1.15 1.20 1.25
ψN

-5

0

5

S
 (

m
)

 

1.0 1.2 1.4 1.6 1.8 2.0

(c) Magnetic Shear

0.0 0.2 0.4 0.6 0.8 1.0
ξ (m-1)

-5

0

5

S
 (

m
)

(d) Curvature strength

1.0 1.5 2.0 2.5 3.0
δg(cm)

-5

0

5

S
 (

m
)

(e) δ⊥: Flux expansion

0.5 1.0 1.5 2.0
δN(cm)

-5

0

5

S
 (

m
)

(f) δ⊥: Magnetic Shear

Figure 5.18: Comparison of mechanisms leading to resistive ballooning of the filament.
Parallel profiles of filament simulations including only the effects of curvature variation
(left upper), poloidal flux expansion (centre upper) and magnetic shear (right upper)
are presented alongside the parameters which determine the motion. These are the
curvature (left lower) and the filament width due to poloidal flux expansion (centre

lower) and magnetic shear (centre right)..

midplane is a result of poloidal flux expansion and magnetic shear, and not of variable

magnetic curvature. The simulations contain a degree of averaging in the parallel profiles

due to the ∇||φ term in Ohm’s law, which acts to couple the potential along the filament
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length. Nevertheless the qualitative shape of the filament in each case is well predicted by

the theoretical considerations laid out in section 5.3. The ballooning causes a departure

of the filament from field alignment. The alignment of the filament can be quantified

by calculating the correlation between two filament cross-sections in the field aligned

coordinate system (x,y,z). This is given in the case of the filament density at a fixed

time t by

Cn (y) =

∫
dx
∫
dz [n (x, 0, z)− 〈n (x, 0, z)〉] [n (x, y, z)− 〈n (x, y, z)〉]√

σn (x, 0, z)σn (x, y, z)
(5.43)

where y = 0 represents the midplane, 〈〉 indicates an average over the cross-section and

the variance, σn is defined as

σn (x, y, z) =

∫
dx

∫
dz (n (x, y, z)− 〈n (x, y, z)〉)2 (5.44)

It is important to carry out the calculation of Cn in the field aligned coordinate system,

rather than in real space since the transformation of the filament due to the magnetic

geometry naturally leads to decorrelation in real space. Figure 5.19 shows the calculation

of Cn and Cφ (taken by replacing the density, n, with the potential, φ, in equation 5.43)

from the midplane to the lower divertor (though the results are symmetric about the

midplane) taken 76µs into the filament evolution. Figure 5.19 shows that the filament
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Figure 5.19: Correlation of filament density (red) and potential (blue) between the
midplane cross-section and a cross-section displaced along the field line by a distance S,
calculated from 5.43, 78µs into the filament evolution. S = 0 is the midplane position.

density remains highly correlated for the first few metres along its length. Beyond this

point decorrelation is observed indicating that the filament is deviating away from field

alignment. The point at which the decorrelation begins to become significant coincides

with the point where the shearing transformation begins to cause a large contraction

in of the filament width in the normal direction (see figure 5.18 for comparison). The
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decorrelation is less severe in the case of φ since this is unaffected by the enhanced

diffusion in the divertor. The decrease in field alignment of the filament over time can

also be measured with the correlation function, Cn, Cφ, by fixing the two cross-sections

in which the correlation will be calculated at the midplane and divertor (taken to be 2

grid points before the divertor surface) respectively. The correlation is then calculated

at each point in time during the filament evolution. This calculation is shown in figure

5.20.
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Figure 5.20: Evolution of the correlation between the midplane and divertor cross-
sectional density (red) and potential (blue).

The filament becomes increasingly decorrelated along the field line as the midplane

portion accelerates outwards relative to the divertor portion. This misalignment due to

ballooning at the midplane has been predicted to be most effective at high resistivity

[54, 225] which corresponds here to low temperature. As temperature is increased the

field alignment of the filament may be expected to increase. From section 5.2.1 however

the role of 3D effects should also become more prominent at higher temperatures and

may affect the structure of the filament. This will be investigated in the next section.

5.5 The Boltzmann Regime

As the electron temperature is increased, and the resistivity is accordingly decreased the

Boltzmann source (∇2
|| ln (n) term) in the vorticity equation gets stronger. In this state

parallel electron dynamics can play a prominent role in determining the evolution of the

filament. The parallel electron dynamics are determined by parallel Ohm’s law, given

in dimensional form by

J|| =
σ||Te

e

(
∇|| ln (n)−∇||φ

)
(5.45)
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This expression neglects electron inertia and electromagnetic effects, yet retains two

important terms which play different roles in determining the filament dynamics. The

∇|| ln (n) term has already been shown to provide a secondary source to the vorticity

equation which can break the symmetry of interchange motion, as well as drive unstable

resistive drift waves [115, 116]. The ∇||φ term acts to couple the electrostatic potential

along the magnetic field line and is responsible in the Two-region model [54] and the

work of Ryutov [225] for aligning the filament along the magnetic field line and coupling

it to the sheath. As already indicated in the previous section, when this term is not

strong the filament can become decorrelated along its length and deviate away from field

alignment.

In this section the role of these aspects of the parallel electron dynamics will be in-

vestigated by analysing filament simulations with a background electron temperature

of 20eV. This decreases the resistivity by 90 times relative to the interchange regime

simulations at Te = 1eV, drastically increasing the strength of the Boltzmann source

in the vorticity equation. At 20eV the electron temperature is above the transitional

electron temperature at which 3D effects associated with the Boltzmann source may

affect the filament. For this reason this regime is termed the Boltzmann regime. All

other parameters of the filaments are identical to those investigated in section 5.4.

5.5.1 Cross-field motion

The cross-field evolution of a filament in the Boltzmann regime differs significantly from

the motion found in the interchange regime. Figure 5.21 shows the evolution of the

filament cross-section at the midplane making it appropriate for comparison with figure

5.8.
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Figure 5.21: Evolution of the density (colour) and potential (contours) in the mid-
plane filament cross-section in the Boltzmann regime. The filament becomes much less

coherent than in the interchange regime.
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The filament cross-section in the Boltzmann regime quickly becomes significantly less

coherent than the interchange driven filament. Within the first 30µs the filament has

transitioned into a turbulent state with small scale structure starting to appear. In fig-

ure 5.22 the early evolution of the filament cross-section is presented where the filament

shows a transfer of both the potential and density from larger to smaller length scales.
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Figure 5.22: Evolution of filament density (colour) and potential (contours) in the
early stages of the filament motion. An initial rotation of the potential dipole is followed
by a gradual transition towards smaller scale turbulence leading to dispersion of the

filament and propagation in the diamagnetic direction.

Figure 5.22 shows that the filament is immediately influenced by the Boltzmann source.

In the initial stages a rotation of the potential dipole through nearly π/2 radians in the

bi-normal direction is observed before the filament begins to break up and a transfer to

smaller length scales occurs. Notably there is no sign of the linear drift-wave instability

forming on the filament front, as was observed in the interchange regime and predicted

in [115, 116], but rather an indication that the turbulence is non-linearly driven. To

show that the Boltzmann source is responsible for the departure of the filament from in-

terchange dynamics a simulation has been run with the Boltzmann source omitted from

the vorticity equation. This removes the drive for resistive drift-wave turbulence. Figure

5.23 shows the early stage of evolution for the case without the Boltzmann source. The

data is sampled at a comparable timing to figure 5.22. Comparing figure 5.23 with figure

5.22 shows that the Boltzmann source is responsible for the departure of the filament

motion from interchange dynamics. In the case with the Boltzmann source removed no

rotation of the potential dipole occurs, no small length scales develop and the filament

behaves in a manner similar to the interchange driven filaments studied in the previous

section. An exact likeness between figure 5.23 and figure 5.8 is not present however. This

arises due to additional coupling of the potential along the magnetic field line from the

∇||φ term in Ohm’s Law, which becomes large when the conductivity is large. In the in-

terchange regime the mushrooming dynamics arise predominantly locally to the filament

cross-section however in the Boltzmann regime with the Boltzmann source removed, the
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Figure 5.23: Evolution of the filament density (colour) and potential (contours) at the
midplane cross-section with the Boltzmann source artificially removed. The simulation
is otherwise identical to that presented in figure 5.22. Note that only half of the entire
z domain is shown and despite appearances interaction with the z boundary is low.

dynamics are a result of strong coupling along the magnetic field line. Therefore, whilst

both cases exhibit the potential dipole associated with interchange motion, the dynamics

differ.

Figure 5.24 shows the spatial structure of the potential, vorticity and parallel current

with and without the Boltzmann source included.

With the Boltzmann source included the vorticity now evolves on a length scale compa-

rable to the parallel current, a smaller length scale than the density. This indicates that

the parallel current (and consequently Boltzmann source) is responsible for initiating the

descent down length scales. The turbulence causes dispersion of the filament and leads

to significant propagation in the bi-normal direction, rather than the radial direction.

When the resistivity is low parallel Ohm’s law suggests that the parallel electric field

must adapt to align with parallel density gradients so that ∇||φ ∼ ∇|| ln (n). This is

shown in figure 5.25 where ∇|| ln (n) and ∇||φ are shown at the midplane cross-section

in the case with and without the Boltzmann source. As expected in the case with the

Boltzmann source removed the condition of ∇|| ln (n) ∼ ∇||φ is no longer satisfied. This

shows that in a magnetic geometry relevant to the tokamak SOL the interchange model

for filament motion is incompatible with the Boltzmann response, and inclusion of the

Boltzmann response can cause a departure from 2D predictions.

The Boltzmann response induces strong growth of an even component of the potential

which in turn leads to the observed dipole rotation. By performing a similar analysis

to section 5.4 the odd and even components (about the filament centre) of the potential

have been extracted and are shown in figure 5.26 prior to the transition into drift-wave

turbulence.

Comparing figure 5.26 to figure 5.12 shows that the even component of potential is larger
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Figure 5.24: Electrostatic potential (left), vorticity (centre) and parallel current
(right) 33µs into the filament evolution in the Boltzmann regime with (upper row)
and without (lower row) the Boltzmann source included. The vorticity and parallel
current fields show small scale structure due to drift-wave turbulence when the Boltz-

mann source is included.

in the Boltzmann regime than in the interchange regime. As the filament propagates in

the Boltzmann regime the symmetry of the density is also broken, which is not observed

in the interchange regime until the late stages when linear resistive drift-waves form.

The growth of the even and odd components of potential are shown in figure 5.27, which

shows the absolute maximum of each component during the filament evolution.

Comparing figure 5.27 with figure 5.13 shows that the initial growth-rate of the even

component of the potential is substantially faster in the Boltzmann regime than in the

interchange regime. The growth rate of the even component in the Boltzmann regime is

comparable to the growth rate of the odd component, which leads to the initial dipole

rotation observed in figure 5.22. As the filament transitions into drift-wave turbulence
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Figure 5.25: ∇|| ln (n) (colour) and ∇||φ (contours) at the midplane cross section in
the case with (left) and without (right) the Botlzmann source included. Data is sampled
12µs after initialization. In the case with the Boltzmann source the two quantities align.

the odd and even components remain comparable. It should be noted though that at

this point the assumption of n = n+ is no longer valid.

5.5.2 Parallel profile

In the interchange regime the filament balloons at the midplane due to the shaping

transformation induced by the magnetic geometry. It was argued there, and in [225]

that as the resistivity drops, or conversely as temperature increases the filament should

align along the magnetic field line. Figure 5.28 shows the parallel profile of the filament

in the Boltzmann regime. The profile is shown in the early stages of the filament evolu-

tion, before the onset of the drift-wave turbulence.

The parallel profile in the Boltzmann regime exhibits similar features to the interchange

regime in the initial stages of evolution. In particular the effects of enhanced diffusion in

the divertor leads to the strong density gradients along the length of the filament. These

density gradients drive the Boltzmann source in the vorticity equation which leads to

the initial dipole rotation and transition into turbulence observed in figure 5.22. As the

filament evolves and begins to break down coherence along the magnetic field line is

lost. This suggests that the drift-wave turbulence acting on the filament occurs fairly

locally and does not lead to any significant coherent structure parallel to the magnetic

field line. This is in contrast to the case of linear resistive-drift waves which were shown
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Figure 5.26: Even (upper) and odd (lower) components of the electrostatic potential
during the early stages of evolution (prior to the transition into turbulence) of the
filament in the Boltzmann regime. The components are normalized to the absolute

maximum of the total potential.

by Angus [115] to produce wave-like structures along the magnetic field line in a slab

geometry. To demonstrate once again that this loss in coherency along the field line

is a result of the Boltzmann source, parallel profiles taken over the identical evolution

time are shown in figure 5.29 with the Boltzmann source artificially removed from the

vorticity equation.

Figure 5.29 shows a considerably more coherent filament along the magnetic field with

the Boltzmann source removed. It also shows no signs of resistive ballooning at the mid-

plane with the density strongly aligned along the field, though still showing a reduction

in magnitude in the divertor due to enhanced diffusion.

In a similar manner to section 5.4 the field alignment of the filament can be assessed by

calculating the correlation between cross-sections displaced along the magnetic field line
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Figure 5.27: Growth of the absolute maximum of the even (black) and odd (red)
components of potential at the midplane in the Boltzmann regime.
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Figure 5.28: Evolution of the parallel profile of the filament density in the Boltzmann
regime prior to the onset of the drift-wave turbulence.
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Figure 5.29: Parallel profile of density evolution in a filament simulation identical to
figure 5.28 but with the Boltzmann source removed.

in the field aligned coordinate system. Figure 5.30 shows the correlation between the

midplane cross-section and a cross-section diaplaced by a distance S along the magnetic

field line 24µs into the filament evolution. The cases with and without the Boltzmann

source are compared.
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Figure 5.30: Correlation of the density (red) and potential (blue) between a cross-
section and the midplane and a cross-section displaced by a distance S along the field
line. The case with (left) and without (right) the Boltzmann source are compared 30µs

into the filament evolution, prior to the transition into drift-wave turbulence.
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Comparing figure 5.30 with figure 5.19 shows that the alignment of the density along the

magnetic field line is increased in the Boltzmann regime compared to the interchange

regime. In particular the density remains highly correlated between the midplane and

X-point. The density becomes more decorrelated in the divertor even in the Boltzmann

regime as a result of the enhanced diffusion. Comparing the cases with and without

the Boltzmann source shows that the correlation of the density along the field line is

largely dominated by the enhanced diffusion, with both cases showing decorrelation in

the divertor region. The potential, on the other hand, shows a significant difference be-

tween the two cases. With the Boltzmann source removed the potential remains entirely

field aligned with a correlation of order unity over the entire filament length. With the

Boltzmann source included the correlation of the potential closely resembles that of the

density. In the Boltzmann regime the parallel gradients of potential and density tend to

align, as shown in figure 5.25 which leads to the observed similarity in the potential and

density correlation. In figure 5.31 the correlation between the midplane and divertor

cross-sections is calculated over the evolution time of the filament. Once again cases

with and without the Boltzmann source included are compared.
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Figure 5.31: Correlation between the midplane and divertor cross-sections of density
(red) and potential (blue) over the evolution time of the filament. Cases with (left) and

without (right) the Boltzmann source are compared.

Both the potential and density become misaligned along the magnetic field as the fila-

ment evolves in the case where the Boltzmann source is included. In contrast removing

the Boltzmann source leads to a strongly field aligned potential throughout the evolution

of the filament.

It has become clear that as temperature increases the dynamics of 3D filaments depart

significantly from conventional 2D dynamics. The departure is caused by the Boltz-

mann source, which becomes strongly driven as a result of the emergence of parallel

gradients which occur due to the magnetic geometry of the SOL. With this departure of
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the dynamics from 2D behaviour evident, it is important to assess the impact of these

3D effects on the transport due to filament motion. In particular the scaling properties

of this transport may deviate from 2D predictions as a result of 3D effects. This will be

assessed in the following chapter.

5.6 The Role of Dissipation

The simulations presented within this chapter have contained a small, constant amount

of dissipation in the form of diffusion and viscosity in the density and vorticity equations

respectively. In a realistic system describing a tokamak scrape off layer dissipation can

be introduced from a number of sources. The principal source is ion-ion and ion-electron

collisions [118] with electron-electron collisions playing a weaker role. In dimensionless

form (employing the Bohm normalization used to normalize the governing equations

within this thesis) the collisional diffusion and ion viscosity coefficients are given by

[129]

D =
(
1 + 1.3q2

)(
1 +

Ti
Te

)
ρ2
e

τeiρ2
sΩi

(5.46)

µ =
(
1 + 1.6q2

) ρ2
i

τiiρ2
sΩi

(5.47)

where the terms dependant on q2 are neoclassical corrections and terms dependant on q0

are the classical calculations. ρi and ρe are the ion and electron Larmor radii respectively,

whilst τei and τii are the ion-electron and ion-ion collision times. As noted in [129] there

is no current theory for neoclassical transport on open magnetic field lines and therefore

the above expressions must be considered approximate. Heuristic arguments laid out in

[118] support the approximate use of these expressions and, for lack of an alternative,

they are employed here with q ∼ 7 appropriate to the edge region of MAST. D and µ

are calculated below at electron temperatures of 1eV and 20eV respectively.

D1 = 1.1 D20 = 0.012

µ1 = 14 µ20 = 0.15

(5.48)

In the calculation of D1, µ1 and D20, µ20 the ion temperature has been taken as Ti = 2Te

supported by measurements in the SOL of MAST [145]. The magnetic field has been

taken as B = 0.3T appropriate to the midplane in MAST. The dissipation coefficients

used previously in this chapter were D = µ = 0.001 which is at least an order of magni-

tude below the density diffusivity and many orders of magnitude below the momentum

diffusivity.
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The dissipation terms can be cast in terms of a Rayleigh number as

Ra =
1

µD
(5.49)

The Rayleigh number is a measure of the strength of the buoyant force against the

strength of dissipative forces in the system. In scans carried out in this section all as-

pects of the filaments are held constant, so the buoyant force is fixed (hence 1 in the

numerator of Ra. As such the scan in Ra represents a scan in the strength of dissipative

forces in the system. A series of filament simulations, similar to those already presented

in this chapter, have been run at two background electron temperatures of Te = 1eV and

20eV respectively and a fixed background electron density of n0 = 5× 1018m−3. Table

5.2 details the values of D and µ used to scan Ra. The simulations presented in the

D µ Pr Ra

10−2 10−2 1 104

10−3 10−3 1 106

10−4 10−4 1 108

Table 5.2: Parameters used to scan the Rayleigh number, Ra. The Prandtl number,
Pr = µ/D is a measure of the ratio between momentum and density diffusivity and is

kept constant at unity across the Ra scan.

previous sections of this chapter were conducted with Ra = 106 so the scans presented

here centre around the level of dissipation employed to obtain the results presented so

far.

The role of dissipation in non-linear fluid systems is well established [193] with increased

dissipation causing a suppression of fine scale structure in the flow. In [99] similar effects

were observed in the framework of blob dynamics, with increased dissipation leading to

more coherent propagation of a blob with a suppression of the fine scale breakup ob-

served in the absence of dissipation. This implies that the small scale structure induced

in the interchange regime by the formation of the linear resistive drift-wave instability

may be strongly affected by an increase in dissipation strength. The Boltzmann regime

on the other hand displays a transfer from large length scales towards small length scales

and a state of drift-wave turbulence. In this case the role of dissipation is to determine

the smallest length scale of the potential, with increased dissipation leading to larger

lengthscales.

Figure 5.32 shows three filament cross-sections taken at the midplane in the interchange

regime (ie with Te = 1eV) and the Boltzmann regime (ie with Te = 20eV) over the 3-

point scan in Ra. As expected the linear resistive drift-waves observed in the interchange

regime are stabilized by a decrease in Ra, which corresponds to increased dissipation.

This stabilization is observed to occur below Ra < 104. When Ra ≥ 104 the observed

dynamics of the filament at the midplane are very similar. In the Boltzmann regime the
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(f) Boltzmann: Ra = 108

Figure 5.32: Cross-sections of the filament taken at the midplane across the scan in
Ra. In the interchange regime simulations are sampled at 113µs, when resistive drift-
waves are unstable. In the Boltzmann regime simulations are sampled at 41µs at the
point where the transition into drift-wave turbulence occurs. Colour represents density

whilst contours represent potential.

predicted suppression of small scale structure is also observed, with increasingly small

scale structure in both potential and density observed as Ra increases and, correspond-

ingly, dissipation strength decreases. The descent down length scales is halted by this

suppression. In all cases the large scale structure of the filament remains similar over

the scan in Ra, suggesting that the net motion of the filament is relatively unaffected

by the level of dissipation employed in the simulation.

The effect of dissipation on the filament in the divertor is more drastic than the mid-

plane. As already indicated in section 5.4 the contraction of the filament width in the

divertor strongly enhances the effects of dissipation by increasing the strength of cross-

field gradients. Without dissipation in the system the gradients in this region can be

very large, which provides a lot of free energy to instabilities. Figure 5.33 shows cross-

sections of the filament density in the divertor region over the scan in Ra. As was the

case in section 5.4 the shearing transformation has been artificially removed from the

images to aid visual clarity. Also note the disparity in axis scales as a result of flux

expansion. At high levels of dissipation, when Ra = 104, the filament is observed to
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Figure 5.33: Cross-sections of the filament taken in the divertor across the scan in
Ra. In the interchange regime simulations are sampled at 113µs whilst in the Boltz-
mann regime simulations are sampled at 57µs. Colour represents filament density. The
disparity in spatial scales is a result of the flux expansion transformation. The shearing

transformation has been artificially removed from the image to aid visual clarity.

disperse quickly. As the level of dissipation is reduced the filament becomes subject to a

violent instability which causes it to break up. The instability has a smaller wavelength

in the interchange regime than the Boltzmann regime, however the effect is the same

in both; to cause the filament to disperse in the absence of dissipation. It is therefore

interesting to note that with or without strong dissipation included in the system, the

enhancement of gradient length scales in the divertor due to the magnetic geometry

causes the filament to disperse. This either occurs via diffusive processes, or is mediated

by resistive drift-wave instabilities. This suggests that density transport due to filament

motion in the divertor is suppressed compared to transport at the midplane.

5.7 Discussion

In this chapter the combined role of magnetic geometry and 3D effects mediated by

parallel electron dynamics have been investigated. This is the first dedicated numerical
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study of filamentary motion in a realistic magnetic geometry. The two-region model

proposed by Myra et.al [54, 113] (described in chapter 2 includes effects of the magnetic

geometry but neglects 3D effects. In section 5.4 filaments in the interchange regime were

shown to balloon at the midplane as a result of the magnetic geometry. This is consis-

tent with the resistive ballooning regime of the two-region model. As the temperature

increases the filament was shown to align strongly along the magnetic field in the case

with the Boltzmann source removed, which is directly comparable with the Two-region

model. The cross-field motion still displays a mushrooming characteristic and the po-

tential develops a dipole structure with a large spatial extent, suggesting that the sheath

limited regime, where large scales in the potential are preferentially damped [212] is not

applicable and that the filament may be considered to be in the ideal-interchange regime.

The introduction of 3D effects through the Boltzmann source causes a drastic departure

of the filament dynamics from 2D behaviour when electron temperature is high. When

temperature is low the impact of 3D effects is reduced. It appears therefore that the RB

regime of the two-region model captures filament dynamics well, however the ideal inter-

change regime is subject to changes in the dynamics of filaments as a result of symmetry

breaking induced by the Boltzmann source. In [84] inter-ELM filaments on MAST were

shown to possess traits of the RB regime, though the results were not definitive. The

results of this chapter however support the assertion that filament dynamics on MAST

are ballooning by nature, with modifications resulting from 3D effects, but without a

noticeable effect from the sheath.

In the work of Angus et.al [115, 116, 197] the effects of parallel electron dynamics were

considered in a curved slab geometry. Linear resistive drift-waves were shown to grow

on the filament front in the perpendicular plane. This process is also observed in the

interchange regime, as shown by figure 5.9 however the observed drift-waves have a min-

imal impact on the evolution of the filament. The condition given by Angus for resistive

drift-waves to significantly affect filament motion is

0.15

√
1

2 |ξ| δ⊥
≥ 1 (5.50)

which is obtained by the requirement that resistive drift-wave instabilities grow faster

than the linear interchange instability. For the MAST case considered in this chap-

ter, |ξ| ≈ 1m−1 at the midplane and the filament radius δ⊥ ≈ 2cm. This then gives

0.15
√

1/2 |ξ| δ⊥ = 0.75 < 1 which suggests that linear drift-waves may be expected to

only have a marginal effect on filaments in MAST. The LHS of the inequality above

gets larger as δ⊥ reduces, however taking instead a filament radius of 1cm, which is well

below limits observed in experiment on MAST [79, 84] only increases the LHS to 1.06,
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meaning that the inequality is still marginal. This supports the observation in the in-

terchange regime that filament dynamics are largely unaffected by resistive drift-waves.

By contrast the Boltzmann regime shows a strong influence of 3D effects on the dy-

namics of filaments when electron temperature is increased. This was shown generally

to be a result of a breaking of the interchange symmetry in the potential. The po-

tential and density exhibit a transfer from large length scales towards smaller length

scales, limited by the level of dissipation in the system. The symmetry breaking ob-

served here is equivalent to the spinning induced by the Boltzmann response observed

in [115] however an important distinction must be made. In [115] the Boltzmann re-

sponse occurs due to a pre-imposed density gradient parallel to the magnetic field line.

In the present work no such gradient is applied. Instead the gradients emerge in the

system as a result of the magnetic geometry therefore even in an entirely homogeneous

filament, symmetry breaking resulting from the Boltzmann source can still be induced.

The effect of this symmetry breaking is the emergence of strong motion in the bi-normal

direction, however it should be noted that the motion in the normal direction, whilst

differing in nature, still produces similar levels of net displacement in the filament to

the interchange regime. In experiment filaments can be tracked on fast camera imaging

up to ≈ 10cm from the separatrix [79], however the simulations performed here show

displacements of the filament density not exceeding a few cm. One possibility is that

the filaments simulated are not sufficiently large. Strongly coherent motion of filaments

is commonly attributed to filaments in which the dissipative effects of sheath currents

and polarisation currents balance one another [95], however the results of this chapter

suggest that this does not occur in MAST. This suggests that the physics included in

the model is not sufficient to fully describe filament motion in MAST. Two key pieces

of physics have been neglected in the model used; hot ions and non-isothermal effects.

Inclusion of hot ions directly into the fluid model used here requires accounting for the

diamagnetic contribution to the ion polarisation current. This has the effect of adding

a second, diamagnetic contribution to the vorticity [231] such that

ω = ∇2
⊥φ+ τ∇2

⊥ ln (n) (5.51)

The gyroviscous cancellation [232] prevents significant advection of the vorticity so the

above modification to the vorticity can be considered as the leading order effect of the

inclusion of hot ions (isothermally). τ = Ti/Te is the ratio of ion to electron tempera-

tures. From the arguments of symmetry made in section 5.2.1 the role of the diamagnetic

contribution to the vorticity equation is to break the symmetry of the potential. If the

interchange source is strong and the vorticity obtains an odd parity about the filament

centre, the potential which can be calculated by inverting the vorticity, develops an odd

component from the vorticity itself, but also an even component from the density in the
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diamagnetic term. In [120] this effect was observed in 2D simulations of edge turbulence

which show the ejection of blobs with dipole potentials rotated with respect to the hor-

izontal.

The results of this chapter show that the electron temperature can have a profound

effect on the dynamics of filaments within experimental ranges found on MAST. The

model currently assumes that the filament is thermalized to the background plasma,

making it appropriate for modelling the far SOL. In the near SOL however filaments are

likely to inherit the temperature of their birth region. Due to fast parallel transport the

temperature of the filament is likely to fall rapidly compared the the loss of density and

so the filament may exhibit a transition from the Boltzmann regime to the interchange

regime on the time-scale of its perpendicular motion. This cannot be captured by an

isothermal model and requires the accounting of electron temperature evolution. Both

the inclusion of hot ions and non-isothermal effects would be excellent avenues of future

work.

Finally a comment must be made on the magnetic geometry used here. Since the geome-

try is a flux-tube no radial variation of magnetic parameters is present. This approach is

sufficient to demonstrate the resistive ballooning of filaments which results in a decorre-

lation of the upstream and downstream filament potential. In [110] such a decorrelation

was observed in full turbulence simulations of a DIII-D boundary plasma. It was noted

that this decorrelation, resulting from resistive ballooning induced by the magnetic ge-

ometry, may relax in the far SOL where the magnetic shear weakens and a reconnection

to the sheath may occur. This cannot be captured in the flux-tube employed here,

however the occurrence of this reconnection seems unlikely. The flux-tube used in this

study is based on a field line approximately 4cm into the SOL already, so if the recon-

nection could occur it might be expected to show in the flux tube used. Nevertheless the

radial variation of magnetic parameters may be an interesting avenue of future study.

To achieve this the SOL grid generator outlined in chapter 4 could be extended to en-

compass multiple field lines in the SOL, thereby providing radial variation of magnetic

parameters.

5.8 Summary

This chapter has studied numerically the effects of parallel electron dynamics on filament

motion in a realistic magnetic geometry based on the SOL of MAST and is the first

dedicated study of its kind. An invariant scaling analysis of the governing equations

shows that the presence of the Boltzmann source (arising from the ∇|| ln (n) term in

parallel Ohm’s law) can strongly influence the nature of filament dynamics in parameter

ranges relevant to experimental conditions on MAST. A method of analysis based on
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the symmetry properties of filament motion shows that the role of the Boltzmann source

is to provide an alternative source to the vorticity equation which leads to a component

of potential with an even parity in the bi-normal direction across the filament centre.

This is a manifestation of the Boltzmann response. This even component can break

the symmetry of the standard interchange motion of filament dynamics and led to a

departure from 2D predictions. To test this hypothesis simulations of filaments were

carried out at 1eV, where the effect of symmetry breaking was predicted to be negligible,

and 20eV where the effect was predicted to be strong. As predicted the 1eV case

shows propagation similar to 2D interchange motion. The magnetic geometry of the

SOL induces a ballooning of the filament in the midplane due to the transformation

of the filament cross-section. This allows the classification of filaments in MAST at

low temperature as resistive ballooning filaments in terms of the Two-region model

[54, 113]. The effects of parallel electron dynamics play a minimal role in this regime,

however linear resistive drift-waves are observed to form on the filament front towards

the end of its evolution. By contrast the high temperature case shows a strong departure

from 2D physics. A breaking of the interchange symmetry of the potential is observed

in the early phase of the filament motion, which is then followed by a descent down

length scales as the filament becomes turbulent. The symmetry breaking induces strong

motion in the bi-normal direction which is not observed with the Boltzmann source

removed. The Boltzmann response causes parallel gradients in density and potential

to align strongly. By comparing simulations with and without this mechanism the

interchange model of filament motion is shown to be incompatible with the Boltzmann

response. In both regimes of dynamics dissipation can impact the motion of the filament.

In the interchange regime increased levels of dissipation suppress the linear resistive drift-

wave instability, whilst in the Boltzmann regime the level of dissipation determines the

size of the small length scales which are exhibited in the structure of the density and

potential. This affects the finer structure of the filament dynamics, but the general

motion of the filament is observed to remain qualitatively similar. In the divertor region

the strong increase in gradients as a result of the shearing transformation induced by

the magnetic geometry can enhance the effects of diffusion. This acts to disperse the

filament. Dispersion is also observed with the strength of dissipation reduced, however

this is the result of strong instabilities as opposed to diffusion. Nevertheless the net

result is the same. This suggests that regardless of the level of dissipation, the dynamics

of filaments at the midplane play the dominant role in determining the transport of

filaments, with the strong dispersion of filaments in the divertor limiting the impact in

this region.
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Chapter 6

Scaling of the Midplane Filament

Velocity in the MAST SOL

geometry

6.1 Introduction

The contribution to density transport into the far SOL as a result of filament motion

can be high [222]. Early measurements on the DIII-D tokamak indicated that up to

50% of the particle flux entering the SOL was carried by filaments [75]. As a result it

is desirable to describe the properties of this transport theoretically and, in particular,

how the level of transport may vary as aspects of the filaments change. Historically the

scaling properties of a ’characteristic velocity’ of the filament have been used to charac-

terise the advective transport of plasma density due to filament motion. The definition

of the characteristic velocity is imprecise with authors using the velocity of the filament

density peak [95], the filament density front [223] and cross-sectional centre of mass [99]

to investigating the velocity scaling. Although this ambiguity can lead to differences in

the magnitude of the velocity measured, the scaling of the velocity should be unaffected

by the choice of velocity used (so long as the choice is fixed over any individual scal-

ing study). The filament velocity scaling is highly sensitive to the particular regime of

dynamics the filament is in. In particular the scaling of the filament velocity with the

cross-sectional filament radius, δ⊥ and/or the electron temperature, Te can vary dra-

matically between regimes. As a result quantifying the velocity scaling of the filament

is a good way of identifying the filament dynamics regime.

In the simple magnetized torus device TORPEX experimental velocities of filaments

are shown to agree well with theoretical scalings [82], however in the more complicated
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geometry of a tokamak SOL such scalings are found to break down. In NSTX[89] the

experimentally measured filament velocities were shown to be well bounded by the max-

imal and minimal predictions of the two-region model [54] however the detailed scaling

predictions of the model could not be captured, in part due to the large statistical vari-

ation in filament properties during an experiment. In ALCATOR C-mod [90] filament

velocities were shown to lie within the bounds of the theoretical predictions however

statistical variation in experimental parameters once again made a detailed comparison

difficult. The study did reveal a systematic increase in filament velocity with an increase

in line-integrated density of the plasma from which the author inferred a breakdown of

the conventional filament velocity scaling from 2D theories [95]. This phenomenon has

also recently been confirmed on ASDEX-Upgrade [57–59] where a significant increase in

radial transport due to filament motion is observed as the plasma density approaches

half the Greenwald limit [233]. It should be noted that this increase in advective density

transport was noted in 2001 [234] outside of the context of filament dynamics. In [58, 59]

this increase in radial transport is attributed to a transition in the dynamics of filaments

as a result of an increase in collisionality. It should be noted though that a concurrent

increase in filament size is also observed during this transition. Whilst no detailed study

of this kind has been carried out on MAST a similar increase in filament size with line

integrated density has been observed in inter-ELM filaments [84], though the inverse

was observed in L-mode filaments [79].

The role of the magnetic geometry on filament velocity scaling was investigated in the

Two-region model [54, 113], however the role of 3D effects on filament velocity scaling

has only very recently been investigated. In [223] 3D filaments are shown to obey well

2D scaling predictions with corrections due to an enhanced loss of density local to the

sheath boundary. The geometry used was a simple magnetized torus to facilitate com-

parisons with the TORPEX device [224]. The authors did not report any significant

effect arising from the inclusion of 3D physics, unlike the results presented in chapter 5.

This may be in part due to the high collisionalities used in that study, and in part due

to the simplified geometry.

In this chapter the simulations conducted in the previous chapter will be extended to

encompass a scan in both electron temperature, Te, which was shown to have a strong

impact on the presence of 3D effects, and on the filament width δ⊥ which is a common

parameter used to study filament velocity scalings [95]. This chapter will begin with a

brief derivation and overview of the relevant scalings of the velocity in both the normal

and bi-normal directions. A scan of electron temperature at fixed δ⊥, followed by a

scan of δ⊥ at fixed Te will be presented and the resulting scalings of the velocity will be

analysed. A comparison with the Two-region model will be made before a discussion

and summary.
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6.2 Scaling of the Characteristic velocity

A number of methods have been used in literature to calculate the scaling of the char-

acteristic velocity including inference from the linear stability of the system [54, 94],

order of magnitude approximation of the vorticity equation [82, 223] and equilibration

of drive and dissipation terms in the vorticity equation [95, 115]. In this section the

latter method will be employed to derive the possible scalings of the filament velocity

with electron temperature and filament width present in the model used to simulate

filaments in the previous chapter and outlined in appendix B.

As indicated in section 5.2.1 in the early stages of the filament evolution (prior to the

occurrence of symmetry breaking) the vorticity equation can be decoupled into an equa-

tion for the odd and even components of the potential in the bi-normal direction about

the filament centre, equations 5.20 and 5.19 respectively. For reference these equations

are repeated here:

∂∇2
⊥φ

+

∂t
+ v−E · ∇∇

2
⊥φ
− + v+

E · ∇∇
2
⊥φ

+ =
α

n

(
∇2
|| ln (n)−∇2

||φ
+
)

(6.1)

for the even component of the potential, φ+, and

∂∇2
⊥φ
−

∂t
+ v+

E · ∇∇
2
⊥φ
− + v−E · ∇∇

2
⊥φ

+ = ξ̂ · ∇ ln(n) +
α

n
∇2
||φ
− (6.2)

for the odd component of the potential, φ−. The 2D approximation is equivalent to

neglecting the Boltzmann source in the equation for φ+, assuming φ+ (t = 0) = 0 and

using heuristic closures to represent the remaining 3D terms. This constrains the poten-

tial to φ = φ− and only the odd equation needs to be considered. As such the velocity

of the filament in the direction normal to the flux surface can be derived from the odd

component of the vorticity equation. To derive a characteristic velocity, order of mag-

nitude estimates are taken for each term such that ∇⊥ ∼ 1/δ⊥ and ∇|| ∼ 1/δ|| where

δ⊥ is the cross-field length scale and δ|| is the parallel length scale of the filament. The

characteristic velocity can be related to a characteristic potential through the E × B

velocity by

vE = csρsb×∇φ ∼
csρs
δ⊥

φ (6.3)

The hypothesis is made in this chapter that the characteristic velocity in the direction

normal to the flux surface can be evaluated from the odd component of the vorticity

equation, i.e. by estimating φ−, whilst the bi-normal velocity can be evaluated from

the even component of the vorticity equation, hence by estimating φ+. Equilibrating

the drive term (the interchange source) and the dissipation terms in the odd component

of the vorticity equation, equation 5.20, arising from polarisation currents (non-linear
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advective term) and parallel currents then gives (in dimensional form)

2csρs |ξ|
δ⊥

∼ ρ3
scsφ

−,2

δ4
⊥

+
σ||Te

e2δnδ2
||
φ− (6.4)

where the LHS is the curvature drive, the first RHS term is dissipation due to polarisation

currents (the square of the potential arises from the action of the E × B advection on

the vorticity) and the second is dissipation due to parallel currents. If the interchange

drive is balanced predominantly by polarisation currents then the first term on the RHS

is dominant and the characteristic velocity has the scaling

vN ∼ cs
√

2 |ξ| δ⊥ ∝ T 1/2
e δ

1/2
⊥ (6.5)

whilst if parallel currents (distinct from sheath currents) are responsible for charge dis-

sipation then the characteristic velocity has the scaling

vN ∼ 2
csρs |ξ| δ2

||

σ||B

1

δ2
⊥
∝ T−1/2

e δ−2
⊥ (6.6)

The former scaling is the resistive ballooning scaling of the two-region model [54] whilst

the latter is the resistive X-point scaling. The Sheath-interchange and ideal interchange

scalings from the two-region model can be recovered by integrating the odd component

of the vorticity along the magnetic field line to the sheath boundary. The order of

magnitude integrated vorticity equation is given by∫ L||

0

(
2csρs |ξ|
δ⊥

− ρ3
scsφ

−,2

δ4
⊥

)
dL ∼

(
2csρs |ξ|
δ⊥

− ρ3
scsφ

−,2

δ2
⊥

)
L|| ∼ Jsh|| /e ∼ ncsφ

− (6.7)

The integration assumes that parallel gradients in density and potential are approx-

imately negligible. Furthermore the curvature drive is assumed constant along the

magnetic field. This approximation will be discussed later in this chapter. The ideal

interchange scaling, derived by balancing the curvature drive against the polarisation

current dissipation, is identical to the resistive-ballooning scaling since the same balance

between currents applies. The sheath-interchange scaling is derived by balancing the

sheath current dissipation against the interchange drive and yields

vN ∼
2csρ

2
s |ξ|
δ2
⊥

∝ T 3/2
e δ−2

⊥ (6.8)

In sections 5.4.1 and 5.5.1 3D filaments were shown to exhibit behaviour suggestive

of the resistive ballooning and ideal interchange regimes. No sign of interaction with

the sheath was observed, however significant breaking of the interchange symmetry

was observed in the 20eV case. This led to propagation of the filament density in
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the bi-normal direction. This cannot be accounted for by the odd component of the

vorticity equation and requires consideration of the even component. The nature of the

motion in the bi-normal direction is complex and involves a rotation of the potential

dipole followed by a transition into a turbulent state mediated by resistive drift-waves.

Since symmetry breaking is required for bi-normal motion the bi-normal velocity can be

attributed approximately to the even component of the potential such that

vg ∼
csρs
δ⊥

φ+ (6.9)

where vg is the bi-normal velocity. Note that this is strictly only valid before the density

develops an odd component. To estimate the scaling of vg a similar process of equili-

brating drive and dissipation terms in the even component of the vorticity equations can

be applied. This leads to

σ||Te

e2δnδ2
||

ln(δn) ∼ 2
csρ

3
s

δ4
⊥
φ−φ+ +

σ||Te

e2δnδ2
||
φ+ (6.10)

The term arising from the polarisation currents now acts to mix the even and odd

components of potential, whilst parallel currents again act to dissipate charge along

the magnetic field line. To assess the case when dissipation by polarisation currents

dominates a choice must be made for the form of φ−. The simulations carried out thus

far indicate that the filament is subject to the resistive ballooning scaling so φ− is taken

from the resistive ballooning calculation (i.e. from equation 6.4) as

φ− ∼

√
2δ3
⊥ |ξ|
ρ2
s

(6.11)

which then gives a scaling for the bi-normal velocity of

vg ∼
csσ||B

δneδ||

√
δ⊥

8 |ξ|
ln(δn) ∝ T 2

e δ
1/2
⊥ (6.12)

Alternatively if the drive arising from the Boltzmann source is balanced by dissipation

by parallel currents the bi-normal velocity has the simple form

vg ∼
csρs
δ⊥

ln (δn) ∝ T 1
e δ
−1
⊥ (6.13)

This is the most likely scenario in MAST, since as the electron temperature increases,

the resistivity decreases and parallel Ohm’s law implies ∇|| ln (n) ∼ ∇||φ. This has

already been shown in section 5.5.1 to occur when symmetry breaking is strong. In

highly collisional devices such as TORPEX for example this may not be true and the

closure due to parity mixing may become appropriate.
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Of the various possibilities for the scaling of the filament velocity presented here, the

evidence from the simulations presented thus far in this chapter suggest that the resistive

ballooning scaling may be most appropriate for the radial velocity whilst the Boltzmann

response scaling may be most appropriate for the bi-normal velocity. This approach

does not capture the complexity of the motion, particularly when resistive drift-waves

can have an impact on the system, and it remains to be seen whether the velocity

scalings predicted here are indeed found in the simulations. To test this hypothesis both

a temperature scan and a scan in filament width have been conducted. The results of

these scans are presented in the next two sections.

6.3 Filament velocity in ballooning coordinates

The filament velocity is a result of E × B advection of the filament density. As a

result the transport of particles due to filament motion is the result of advection due to

E×B motion. The previous section has shown that the E×B velocity can be used to

analyse the scaling nature of the filament dynamics. In this section a brief derivation

of the E × B velocity in the normal and bi-normal directions is given in terms of the

ballooning coordinates used in BOUT++ (see appendix A for details).

The E × B velocity is given in terms of the potential, φ, (normalized to the electron

temperature in eV) by

vE = csρsb×∇φ (6.14)

where cs and ρs are the Bohm sound speed and gyro-radius respectively. The magnetic

field vector can be written in the ballooning coordinate system as

B =
1

J
ey =

Bθ
hθ

ey (6.15)

where Bθ is the poloidal magnetic field strength, hθ is the poloidal arc length and

J = hθ/Bθ is the Jacobian of the coordinate system. The magnetic field tangency

vector, b can then be written as

b =
B

B
=

1

JB
ey =

1

JB
(gxy∇x+ gyy∇y + gzy∇z) (6.16)

= bx∇x+ by∇y + bz∇z

Taking the metric components, gij , from appendix A the covariant components of the

magnetic field tangency vector are

bx =
BζIR

B
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by =
Bhθ
Bθ

(6.17)

bz =
BζR

B

∇φ is given in the ballooning coordinate system by

∇φ =
∂φ

∂x
∇x+

∂φ

∂y
∇y +

∂φ

∂z
∇z (6.18)

The contravariant components of b×∇φ can then be derived from

b×∇φ =

(
bi
∂φ

∂uj
− bj

∂φ

∂ui

)
∇ui ×∇uj =

1

J

(
bi
∂φ

∂uj
− bj

∂φ

∂ui

)
ek (6.19)

which gives

(b×∇φ)x = B
∂φ

∂z
−
BθBζR

hθB

∂φ

∂y

(b×∇φ)y =
BθBζR

hθB

∂φ

∂x
−
BθBζIR

hθB

∂φ

∂z
(6.20)

(b×∇φ)x =
BθBζIR

hθB

∂φ

∂y
−B∂φ

∂x

∂φ/∂y, where y is the poloidal angle which follows the magnetic field line, is small

in comparison to ∂φ/∂x and ∂φ/∂z which characterise perpendicular derivatives. As

such the terms dependant on ∂φ/∂y can be neglected. This then gives contravariant

components of the E×B velocity

vxE = csρsB
∂φ

∂z

vyE = csρs

(
BθBζR

hθB

∂φ

∂x
−
BθBζIR

hθB

∂φ

∂z

)
(6.21)

vzE = −csρsB
∂φ

∂x

The velocities in ballooning coordinates, vx,y,zE are not necessarily the most useful for

interpretive purposes. Instead the velocities in the direction normal to the flux surface,

vNE and in the bi-normal direction, vgE , can be calculated from the E×B velocity by

vNE = vE · êN =
vxE
RBθ

(6.22)

and

vgE = vE · êg =
RBθ
B

(vzE + IvxE) (6.23)

where eN and eg are the unit vectors in the normal and bi-normal directions respectively,

derived in section 5.3 of chapter 5. Figure 6.1 shows vNE and vgE at the midplane cross-

section of a filament with Te = 5eV and δ⊥ = 4cm (the point which straddles both the
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temperature and filament width scans). Figure 6.1 shows that both the normal and bi-
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Figure 6.1: Instantaneous E ×B velocity in the normal (left) and bi-normal (right)
directions at Te = 5eV and δ⊥ = 4cm. Data is sampled at 30µs. Velocities are shown

in colour with density overlaid as contour lines.

normal velocities can be on a similar order of magnitude and in this case the bi-normal

velocity can even exceed the normal velocity in magnitude, motivating the scaling study

of both the normal and bi-normal velocities. It is interesting to note that experimental

results on MAST have shown bi-normal filament velocities at similar magnitudes to

radial velocities [79].

6.4 Temperature Scan

The electron temperature has already been shown in chapter 5 to play a critical role in

determining the dynamics of filaments by providing drive for the Boltzmann source. To

investigate the effect of electron temperature on the transport of the filament a series of

simulations have been run over the range of electron temperatures Te = [1, 5, 10, 15, 20]eV.

Across the scan the geometry of the filament remains constant, as does the filament den-

sity.

In order to assess the transport of the filament in a general manner a quantity is required

which can be compared between simulations. This can be provided by averaging the
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E × B velocity over the filament cross-section at the midplane. This provides a mea-

sure of the average velocity per particle in the filament cross-section. This is explicitly

calculated by

〈vN,gE 〉 =

∫ ∫
vN,gE δndxNdxg∫
δndxNdxg

(6.24)

where δn is the filament density and vN,gE are the normal and bi-normal components of

the E×B velocity, with xN and xg the coordinates in the normal and bi-normal direc-

tions . In [99] it is noted that this quantity is equivalent to the velocity of the centre of

mass when the the density is assumed to be solely advected by the E × B velocity, as

is the case in filament dynamics. This centre of mass velocity will be calculated at the

midplane cross-section of each filament within the scan and used to assess the filament

velocity scaling.

Figure 6.2 shows the evolution of 〈vNE 〉 and 〈vgE〉 at the midplane during each simulation

in the Te scan. The centre of mass velocity of the filament varies strongly in both the
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Figure 6.2: Filament cross-section averaged velocities in the normal (left) and bi-
normal (right) directions during the evolution of the filament over the temperature
scan. Variation in the velocities in both directions is observed as a result of the change

in electron temperature.

normal and bi-normal directions through the scan in electron temperature. The velocity

normal to the flux surface displays an initial acceleration period as the electric field

across the filament grows, followed by a peak in the velocity and then deceleration as

the filament propagates outwards. In a similar manner the bi-normal velocity grows

initially as the dipole rotation, induced by the Boltzmann response, occurs. Again this

is followed by a deceleration as the filament propagates in the bi-normal direction. No-

tably however the deceleration in the bi-normal direction is slower than in the normal

direction.

The maximum speed of the filament in both directions increases strongly with the elec-

tron temperature. In figure 6.3 maximum speed in each direction is shown as a function
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of background electron temperature. The bi-normal speed increases approximately lin-

0 5 10 15 20
Te (eV)

250

300

350

400

450

500

550

600

650

700

m
a
x
 〈 v

N E

〉 ( m
s−

1
)

(a) Normal direction

0 5 10 15 20
Te (eV)

−1200

−1000

−800

−600

−400

−200

0

m
a
x
 〈 v

g E

〉 ( m
s−

1
)

(b) Bi-normal direction

Figure 6.3: Peak of the averaged filament velocity in the normal (left) and bi-normal
(right) directions at the midplane as a function of background electron temperature. A
linear increase with temperature is observed in the bi-normal direction, whilst a weaker

increase is observed in the normal direction.

early with electron temperature. This is in agreement with the scaling predictions made

by balancing the Boltzmann source with dissipation by parallel currents. This scaling

arises as a result of the Boltzmann response, ∇|| ln(n) ∼ ∇||φ and suggests that this

process underlies the observed motion in the bi-normal direction. The velocity in the

normal direction also shows an increase with electron temperature however this increase

is weaker than that of the bi-normal speed. The scaling predictions made in section

6.2 predict a positive scaling with Te in either the resistive ballooning/ideal interchange

regimes of T
1/2
e or the sheath-interchange regime of T

3/2
e . Since the observed increase in

figure 6.3 is weaker than linear suggesting the resistive ballooning scaling appears to be

most appropriate in describing the normal velocity. In figure 6.4 the maximum velocity

in the normal direction is shown as a function of T
1/2
e as a test of the RB scaling. Figure

6.4 indicates that the RB scaling of 〈vNE 〉 ∝ T
1/2
e captures the increase in peak radial

velocity with electron temperature. This supports the assertions made previously that

the filaments simulations display the characteristics of the resistive ballooning regime

and/or the ideal interchange regime. This analysis suggests that despite the complex

3D nature of the filament evolution in the Boltzmann regime, reduced 2D models may

still capture the key features of the filament evolution normal to the flux surface.

In figure 6.2 the increase in the peak of the velocity in the normal directions as temper-

ature increases is also accompanied by a quicker deceleration of the filament. The net

displacement of the filament centre of mass, which can be calculated by integrating the

velocity curves calculated in figure 6.2 is increased by a higher peak velocity, but also

decreased by a more rapid deceleration of the filament. In figure 6.5 the displacement

in the normal direction, 〈XN 〉 and in the bi-normal direction, 〈Xg〉 are shown over the
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Figure 6.4: Peak velocity of the filament in the normal direction at the midplane as

a function of T
1/2
e . The linear trend indicates that the temperature scaling predicted

for the RB and/or CI regimes fit the data well.

scan in electron temperature. In all cases the integration is carried out over the 120µs

of the simulation. The displacement of the filament centre of mass increases in both the
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Figure 6.5: Displacement of the filament centre of mass in the normal (left) and
bi-normal (right) directions measured by integration of the curves in figure 6.2 to t =

120/mus.

normal and bi-normal directions as temperatures increases. In the normal direction the

increase with temperature shows that the increased maximum velocity of the filament

outweighs the effect of the increased deceleration after it begins to propagate and tran-

sition into turbulence. The occurrence of this deceleration means that the increase in

displacement with temperature is weaker than the T
1/2
e scaling observed in the velocity.

The displacement in the bi-normal direction reflects the linear scaling observed in the

bi-normal velocity of the filament. The propagation of the filament in the bi-normal

direction can greatly exceed the radial propagation, with the 20eV filament displaying

a bi-normal displacement approximately twice as large as its radial displacement. It is
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also clear from figure 6.5 that the relative increase in displacement across the temper-

ature scan is far greater in the bi-normal direction than in the normal direction, with

an difference of ≈ 5cm in displacement in the bi-normal direction observed across the

temperature scan, whilst a far more modest difference of ≈ 0.6cm is observed in the

normal direction. This indicates that an increase in electron temperature may result

in only a modest increase in the number of particles transported into the far SOL by

filaments. The bi-normal displacement of the filament can exceed a filament width and

therefore may lead to interaction between filaments in the SOL. This cannot be captured

in isolated filament simulations, such as those conducted here.

The transport of particles normal to the flux surface determines both the width of the

density SOL, as well as the proportion of particles capable of interacting with first wall

materials. With the aim of limiting interaction between the plasma and the first wall

it is important to understand the detailed transport of particles in the SOL. Whilst the

analysis presented so far gives useful information on the average motion of the filament, a

more detailed analysis is required to assess the influence of the filament on radial particle

transport. To assess the transport of the plasma density carried by the filament a series

of surfaces have been constructed which lie on concentric flux surfaces and encompass

the entire toroidal angle, but only extend a small distance (1cm) in the poloidal direction

centred on the midplane. The small poloidal extent allows the filament properties to be

considered constant parallel to the field line within the surface and focusses the study

towards particle transport at the midplane. The particle flux through such a surface

can then be calculated by taking

ΓN =

∫
δnvE · dS =

∫
δnvNE dA (6.25)

where δn is the filament density, and the surface element is given by dS = êNdA and

dA ≈ 2πR × 1cm where R is the major radius. By calculating ΓN at each flux-surface

location within the grid (i.e. each grid point in x) at each instant in time the instanta-

neous particle flux from a single filament can be calculated as a function of x and time,

t. Note that this does not factor in the intermittency of filaments in either space of time

and refers only to the flux of particles from an individual filament. Spatial intermittency

can be factored in approximately by multiplying the fluxes calculated by the total num-

ber of filaments present toroidally. Note that this assumes all filaments act identically.

Figure 6.6 shows a series of radial profiles of the particle flux ΓN during the evolution

of the filaments across the temperature scan.

In the early stages of the filament motion the hotter filaments provide a greater radial

flux of particles due to their higher propagation velocities. In the latter stages this trend

reverses as the velocity of the colder filaments is more sustained due to their reduced

deceleration. The hottest filaments, in particular the case at 20eV , shows a small but
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Figure 6.6: Radial profiles of the instantaneous particle flux, ΓN , during the filament
evolution across the scan in electron temperature. Note the variation in the scale of the
vertical axis. The starting position of the filament is indicated by the vertical dashed

line.

non-zero particle flux nearly 5cm from its starting position. At this point in its evolu-

tion the filament has become turbulent, suggesting that the drift-wave turbulence can

transport particles radially after the filament has broken up and in fact enhances the

transport of filament density. This can be seen clearly by integrating ΓN in time at

each radial location. This measures the total number of particles crossing each radial

point during the simulation. Again this is for an individual filament. Once again the

intermittency of filaments could be accounted for by multiplying the results by the total

number of filaments crossing the flux surface, however this again assumes that all fila-

ments act in exactly the same manner. This calculation is shown in figure 6.7. Figure

6.7 shows that an enhancement of particle transport into the outer regions of the domain

is observed in hotter filaments. This is shown by the increase in the number of particles

crossing surfaces up to nearly 5cm from the filaments initial position. To show that this

enhancement is a result of resistive drift-wave turbulence, the time integrated flux of
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Figure 6.7: Time-integrated particle flux,
∫

ΓNdt, integrated over the simulation
time providing a measure of the total number of particles crossing each radial point
over the simulation. This shows explicitly that simulations in which the Boltzmann
source is strongly driven show an enhancement of particle transport. This is attributed

to turbulent transport after the breakdown of the filament.

2 4 6 8 10
x (cm)

0

1

2

3

4

5

∫ Γ
N
d
t 

(n
o
. 
p
a
rt

ic
le

s)

1e13

B

NB

Figure 6.8: Time integrated particle flux profile for the 20eV filament with (green) and
without (red) the Boltzmann source included. A significant enhancement of the particle
transport is observed with the Boltzmann source included, and is therefore associated

with turbulent transport as the filament transitions into drift-wave turbulence.

particles has also been calculated in the simulation outlined in section 5.5 of chapter

5, where the Boltzmann source is omitted. This removes resistive drift-waves from the

system. The comparison with and without the Boltzmann source is shown in figure 6.8.

Figure 6.8 indeed confirms that the inclusion of the Boltzmann source is responsible for
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the enhanced transport of particles observed in the hotter filaments. Therefore, whilst

resistive drift-waves cause the filament to become more diffuse, they also provide a chan-

nel for enhanced turbulent transport of density into the outer regions of the SOL, though

the enhancement is not strong. The case with no Boltzmann source under-predicts par-

ticle transport and suggests that 2D estimates may represent a lower bound on the

particle transport in hot filaments.

The scan in electron temperature has shown that the radial transport of particles in

an individual filament in MAST can be reasonably well approximated by reduced 2D

models, though 3D effects can cause a slight enhancement of this transport. The scaling

predictions made in section 6.2 also indicate the the filament width, δ⊥ should play an

important role in the dynamics of the filaments as well. This is investigated in the next

section.

6.5 Filament width scan

The filament width is a key scaling parameter in filament dynamics [54, 95, 99] and,

as illustrated in section 6.2, its effect on the filament velocity varies depending on the

dynamic regime of the filament. To test the effect of varying filament width within

the MAST SOL flux tube geometry a series of simulations have been conducted at

fixed Te = 5eV and n0 = 5 × 1018 with the filament width varied in the range 2cm

to 8cm. Here the filament width, δ⊥, is measured from the point where the filament

density is 1% above the background density (i.e. the limit of the contours in figure

5.8). The filaments are approximately circular in the perpendicular plane, though δ⊥

here is specifically taken as the bi-normal width at initialization. All other aspects of

the simulations, including grid resolution, are identical to those used previously in this

chapter and are held fixed over the δ⊥ scan. The range of δ⊥ chosen encompasses the

range of observed L-mode filament widths on MAST [79], though it is worth noting that

filaments on MAST have been observed with anisotropic cross-sections. This anisotropy

is not considered here where filaments are taken as circular at the midplane. Figure 6.9

shows midplane cross-sections of the filament density and potential taken at 38µs into

the filament evolution with increasing δ⊥. It is immediately apparent from figure 6.9

that the symmetry breaking of the filament potential and density induced by 3D effects

increases in prominence as the filament width decreases. In the δ⊥ = 2cm case the

filament already exhibits the initial transition into drift-wave turbulence. By contrast

the δ⊥ = 8cm filament shows predominantly interchange motion with only a slight

component of motion in the bi-normal direction present. In figure 6.10 this is investigated

further by analysing the evolution of the odd and even components of φ over the δ⊥ scan.
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Figure 6.9: Midplane cross-sections of filament density (color) and potential (con-
tours) over the range of the δ⊥ scan samples at t = 38µs. An increase in the symmetry

breaking induced by 3D effects is observed as the filament size reduces.

Both the peak and initial growth rate of the even component of potential, shown in figure

6.10, are reduced with respect to the odd component as the filament width increases.

The scaling of the even component of potential arising from the Boltzmann response

is independent of δ⊥, whilst the odd component of potential grows with δ⊥ in the RB

regime. This means that the relative strength of the even component compared to the

odd component increases as filament width decreases, as shown in figure 6.10. As in

the previous section, the centre of mass velocity of the filament cross-section can be

used to compare the motion of the filament between simulations. Figure 6.11 shows

that evolution of the normal and bi-normal velocities over the scan in filament width.

Figure 6.11 shows an interesting trend with δ⊥. The maximal velocity in the normal

direction reduces weakly with increasing δ⊥, in disagreement with the predicted scaling

of δ
1/2
⊥ in the resistive ballooning regime though the deceleration slows in the larger
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Figure 6.10: Evolution of the even (black) and odd (red) components of the potential
compared over the δ⊥ scan. The components are normalized to the absolute maximum
of the total potential in each case. The relative strength of the even component is

greatest as δ⊥ reduces.
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Figure 6.11: Evolution of the averaged filament velocity in the normal (left) and
bi-normal (right) directions over the scan in the filament width, δ⊥.
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filaments. Again the balance between the change in the maximum velocity and rate of

deceleration affect the displacement of the filament centre of mass. Figure 6.12 shows the

displacement of the filament centre of mass in the normal and bi-normal directions over

the scan in δ⊥. Once again integration is carried out over the 120µs of the simulation

in each case.
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Figure 6.12: Average displacement in the normal (left) and bi-normal (right) direc-
tions over the scan of δ⊥.

Figure 6.12 shows that, despite the slight reduction in the maximal normal velocity of

the filament, the average displacement in the normal direction still increases with δ⊥ as a

result of the decreasing deceleration in the larger filaments. The characteristic velocity

of the filament is a loosely defined quantity and, if instead of the peak velocity, the

average velocity of the filament is considered then the scaling of the velocity inherits the

scaling of the centre of mass displacement. In figure 6.13 the displacement in the normal

direction is shown as a function of δ
1/2
⊥ . The displacement in the normal direction is

captured by the resistive ballooning scaling of δ
1/2
⊥ which re-enforces the assertion that

the scaling of the perpendicular dynamics of the filament can be described by the resistive

ballooning scaling in the normal direction. In the bi-normal direction the behaviour

is more complicated. Both the maximum speed and the displacement of the centre

of mass exhibit an inverse scaling with δ⊥ as predicted by the Boltzmann response

scaling, however the specific scaling of δ−1
⊥ does not appear to capture the observed

trends. This may indicate that the dynamics of filaments in the bi-normal direction as

δ⊥ is varied, whilst being governed strongly by the effects of the Boltzmann response,

cannot be accurately captured by the scaling arguments outlined in section 6.2. This is

not surprising since the dynamics in the binormal direction involve a transition into a

turbulence state with complex dynamics.

As with the scan in electron temperature, the particle transport normal to the flux

surface at the midplane resulting from the filament motion can be investigated in more
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Figure 6.13: Average filament displacement in the normal direction as a function of

δ
1/2
⊥ . The displacement shows strong agreement with the resistive ballooning scaling,

suggesting that in the δ⊥ scan the average velocity (calculated by dividing the dis-
placement by the total time, ∼ 120µs) is a better representation of the characteristic

velocity.

detail by calculating the instantaneous particle flux of an individual filament, ΓN , at each

radial location at the midplane. Figure 6.14 shows the radial profile of the instantaneous

particle flux as the filaments evolve over the δ⊥ scan. As opposed to the case of the

scan in electron temperature, the largest particle fluxes are now observed when the

effects of the Boltzmann source are weakest, at large δ⊥. This is a consequence of the

larger filaments containing more particles and exhibiting a greater average displacement.

Again in analogy to the scan in electron temperature, the instantaneous particle flux at

each radial location can be integrated in time to give a measure of the total number of

particles passing through each radial location during the evolution of the filament. This

is shown in figure 6.15. As expected the larger filaments provide a far stronger source of

particle transport than the smaller filaments. This suggests that filament size is likely

to play a crucial role in determining particle transport due to filament motion in the

SOL of MAST. Furthermore the relative increase in the number of particles transported

a significant distance from the initial position of the filament is much larger in the δ⊥

scan than in the Te scan. This suggests that the filament width is far more critical

than the electron temperature in determining the contribution of particle transport into

the far SOL due to filament motion. Since the filament width is set by the mechanism

producing the filament, and not by the filament itself, this suggests that to accurately

predict the non-diffusive transport of particles into the SOL of MAST the distribution

of filament sizes must be predicted and the underlying turbulence in the MAST plasma

edge should be considered. This may show that the filament width depends on Te. The

results presented here then suggest that any change in transport is due to the a change

in the electron temperature indirectly, through the varying filament width, rather than

directly.
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Figure 6.14: Instantaneous particle flux, ΓN across a thin toroidal (1cm width) band
at each radial location during the evolution of filaments over the δ⊥ scan. Note the
change in magnitude of the vertical axis. The dashed line indicates the initial position

of the filament centre.
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Figure 6.15: Integrated particle flux at each radial location over the lifetime of a
filament over the δ⊥ scan.
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6.6 Discussion

The results presented in this chapter suggest that the velocity in the direction normal to

the flux surface of filaments in a MAST-like geometry can be well described numerically

by the resistive ballooning/ideal-interchange scaling of

vN ∝ T 1/2
e δ

1/2
⊥ (6.26)

The two-region model [54] is a 2D model which attempts to capture some of the effects

of magnetic geometry. As described in section 6.2 the two-region model has four possible

dynamical regimes that a filament may be subject to. These can be described by two

dimensionless parameters, Λ and Ω where

Λ =
L||

csτei

Ωe

Ωi
(6.27)

and

Ω =

(
δ⊥
δ∗

)5/2

(6.28)

where δ∗ is the ’fundamental blob size’[55, 94, 95] which is the radius of a filament at

which the effects of sheath dissipation and inertial dissipation are equal. This can be

paraphrased as the point at which the resistive ballooning and sheath limited velocities

are equal, which gives (from section 6.2)

cs
√

2 |ξ| δ∗ ∼
2csρ

2
s |ξ|L||
δ∗,2

⇒ δ∗ =
(

2ρ4
sL

2
|| |ξ|

)1/5
(6.29)

Λ represents a dimensionless collisionality whilst Ω describes the effects of increasing

filament radius. Both the scan in Te and in δ⊥ carried out in this chapter have specific

trajectories in Ω,Λ space which can be readily calculated. These trajectories are shown

in figure 6.16. To calculated Λ and Ω the filament width cited previously in this chapter

(which refers specifically to the bi-normal width between the two points across the

filament where the density is 1% above the background) has been converted to the

radius given by the full-width half-maximum of the filament density. The conversion is

approximately a multiplication by a factor 3/8. The magnetic field is taken as 0.45T

which is the maximum of B in the flux-tube. Figure 6.16 shows clear disagreement

between the simulations conducted in the MAST SOL flux tube geometry and the two-

region model in both the Te and the δ⊥ scan. Examining each scan independently, the

main areas of disagreement are:

• Te scan: The two-region model predicts a trajectory in Ω,Λ space that intersects

all four dynamic regimes. The simulation results, particularly those presented in
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Figure 6.16: Trajectories of the Te (black squares) and δ⊥ (red diamonds) scan in
Ω,Λ space. Arrows indicate the direction of increasing Te and δ⊥ respectively. The

regime boundaries of the two-region model are calculated from [54].

figures 6.3 and 6.4, show a clear scaling of T
1/2
e throughout the scan. This is in

agreement with the RB and CI regimes, but is a weaker scaling than predicted

in the CS regime and is opposite to the scaling expected in the RX regime. At

5eV the two-region model predicts the filament to be in the RX regime where a

decrease (∝ T
−1/2
e ) in the filament velocity, rather than the observed increase is

expected. Furthermore in the two-region model the RB velocity is the maximum

attainable, therefore the 1eV filament may be expected to be faster than all others,

which is in complete opposition to the observed results.

• δ⊥ scan: The two-region model predicts a trajectory in the Ω,Λ space which is

almost entirely encompassed in the RX regime. In this regime a scaling of δ−2
⊥ is

predicted for the filament velocity which should lead to a strong decrease as the

filament width is increased. The results in figure 6.11 do show a reduction in peak

velocity as δ⊥ increases, however the reduction is very weak, and certainly much

weaker than predicted by the two-region model. Furthermore the average velocity

of the filament, over its evolution, shows an increase with δ⊥ of approximately δ
1/2
⊥

as indicated in figure 6.13. This is suggestive of the RB or CI regimes and is in

complete disagreement with the predictions of the two-region model.

The most obvious difference between the two-region model and the simulations con-

ducted in this chapter is the inclusion of 3D effects however this has been addressed by

the separation between odd and even components of the vorticity equation suggests that

2D scalings should still apply to the motion of the filament normal to the flux surface.
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A more subtle difference occurs in the way in which the effects of magnetic geometry,

and in particular magnetic curvature drive are included in the two-region model. In

the two-region model only magnetic curvature at the midplane is considered with au-

thor citing [54] that magnetic curvature in the divertor region is small and negligible.

This can become important when the sheath-limited velocity is derived which requires

an integration along the magnetic field line. The sheath-limited velocity is derived by

taking

2csρs

∫ L||

0
ξ · ∇ndL ∼ Jsh|| /e ∼ ncsφ (6.30)

where Jsh|| ∼ necsφ is the sheath current. In the two-region model (as well as other 2D

models) ξ · ∇n is assumed constant along the magnetic field line, fixed at the midplane

value, however it has been shown in chapter 5 that both the curvature and the ∇ oper-

ator vary considerably along the magnetic field line. Furthermore when balancing the

curvature drive against sheath dissipation both the normal and bi-normal components

of curvature need to be considered. The transformation of the filament cross-section in

the divertor region can lead to a large enhancement of the curvature drive which leads

to a much larger curvature induced diamagnetic current for sheath currents to balance.

To estimate this enhancement, parallel density gradients can be assumed to be weak and

the gradients in the normal and bi-normal direction can be approximated as ∇ ∼ 1/δ⊥.

As a consequence the integrated curvature drive can be approximated by

2csρs

∫ L||

0
ξ · ∇ndL = 2csρs∇un ·

∫ L||

0
ξMdL ≈ 2csρsn

(
1/δ⊥

1/δ⊥

)
·
∫ L||

0
MξdL (6.31)

=
2csρsn

δ⊥
Leff

where M is the transformation matrix acting on the ∇ operator as a result of the

magnetic geometry. M is derived in section 5.3 of chapter 5. In the calculation of

the sheath-limited velocity and the corresponding calculation of the fundamental blob

size, L|| |ξ| can be replaced by Leff to include the effects of enhanced curvature driven

current. Making this replacement in the two-region model can then be used to produce

corrected trajectories in Ω,Λ space. Figure 6.17 shows the calculation of Leff in the

MAST SOL flux tube as a function of distance along the magnetic field line, alongside

a corrected Ω,Λ parameter space. Making this correction for the enhanced curvature

driven current brings the predictions of the (corrected) two-region model into agreement

with the simulation results. Both cases now predict that the RB scaling should be

most appropriate for the filament velocity. This suggests that the two-region model can

capture the salient features of the full magnetic geometry case, however to accurately

predict the full 3D case requires accounting for the enhancement of the curvature driven

current due to the transformation of the filament cross-section induced by the magnetic
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Figure 6.17: Left: Calculation of Leff for the MAST flux tube where S = 0 is the
midplane and the integration is taken from the divertor plate to the midplane. Right:
Corrected trajectories in Ω,Λ space which includes the effects of enhanced curvature

driven currents in the filament in the divertor region.

geometry.

One important consequence of these results is that no transition is predicted in the

dynamics of filaments in MAST as the collisionality is increased. This is opposed to

the case reported by Carallero et.al [58, 59] in ASDEX-Upgrade where a transition

between the CS and RX regimes is proposed as a cause for the observed sharp increase in

density transport as collisionality increases. The MAST and ASDEX-Upgrade tokamaks

have comparable major radii (∼ 1.5m and ∼ 2m respectively), however they have very

different magnetic field strengths (∼ 0.4T compared to ∼ 2T in the SOL). This increase

in magnetic field causes a decrease in the curvature drive and a corresponding decrease in

the fundamental blob size which suggests that low collisionality filaments of comparable

size will tend towards the CS regime in ASDEX-Upgrade. A good test of the theory of

filament dynamics would be the exploration of filament dynamics over a collisionality

scan in MAST. This also has implications for MAST-Upgrade. The geometry of MAST

and MAST-Upgrade is largely similar at the midplane with the exception of the magnetic

field strength, which is roughly twice the size in MAST-Upgrade compared to MAST.

This has the effect of shifting the points in figure 6.17 to the right. In larger filaments

this may lead to a transition into the RX regime which may reduce the density transport

into the far SOL due to filament motion and cause a narrowing of the density SOL. To

accurately assess this effect requires dedicated simulations and is a good topic for future

work.
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6.7 Summary

In this chapter the scaling of the velocity of filaments at the midplane has been investi-

gated in the MAST SOL flux tube geometry used in chapter 5 and described in chapter

4. Through the decoupling of the vorticity equation into odd and even components (in

the bi-normal direction with respect to the central axis of the filament at initialization)

the range of possible velocity scalings for the normal and bi-normal centre of mass ve-

locities of the filament cross-section are derived. Simulation scans have been carried out

in both electron temperature Te, and filament cross-sectional width, δ⊥ and the centre

of mass velocity of the filament has been tested against the various possible scalings.

The bi-normal velocity is well described by a velocity scaling arising from the Boltz-

mann response, whilst the normal velocity is well described by a resistive ballooning

scaling. The displacement of the filament in the bi-normal direction can greatly exceed

the displacement in the normal direction to the point where the isolated filament as-

sumption becomes questionable. Multi-filament simulations would be a good topic for

future work. The velocity scaling in the normal direction is compared to the two-region

model and a correction accounting for enhanced curvature driven current in the divertor

is required to obtain agreement between the simulations and the model. Nevertheless

2D models are shown to capture approximately the filament velocity normal to the flux

surface, with 3D effects acting to induce bi-normal motion without strongly augmenting

the radial motion of the filament.

A detailed analysis of the transport of particles within the filament shows that the

breakdown into turbulence induced by 3D effects as Te increases provides a slight en-

hancement to density transport normal to the flux surface, however the enhancement is

weak. A much stronger increase in density transport is observed with filament size as

a coupled result of an increased filament velocity and an increased number of particles

within the filament. This suggests that, for MAST, the filament size is likely to have

a much stronger effect on the radial transport of particles than the collisionality. This

may be a good topic for experimental investigation in the future.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Transport in the periphery of magnetically confined plasmas is poorly understood. This

is largely due to the highly non-linear nature of turbulence in the plasma edge and the

subsequent intermittent ejection of mesoscale plasma structures known as filaments into

the scrape-off layer. Filaments provide a strong non-local component of density trans-

port into the SOL [180] and can cause anomalous interaction with first wall materials

[56] which may threaten their lifetime in future high powered fusion devices [60] and

can affect fuelling efficiency. Understanding the intermittent transport of density due to

filaments is therefore an important step towards accurate predictions of transport in the

plasma edge and next-step tokamak operation. This thesis investigates such transport

both experimentally and theoretically with an emphasis on the Mega Amp Spherical

Tokamak (MAST).

Probe diagnostics are commonly used to measure both profiles and fluctuations in the

plasma edge. Previous probe measurements on JET [68] and ASDEX Upgrade[76] have

indicated a qualitative connection between the generation of intermittency in ion satu-

ration current time-series and the radial shear layer, a region around the last closed flux

surface containing a strong radial gradient of the perpendicular plasma flow. This pro-

vided motivation for the development of a ball pen probe (see chapter 3) on MAST. The

ball pen probe (BPP) [136] is capable of measuring the plasma potential by shielding

the collector from plasma flux along the magnetic field line. This then requires cross-

field transport to the collector which is predominantly due to E×B motion, preventing

the formation of a sheath and thus allowing the probe to be charged up by the plasma

potential rather than the sheath formation. By combining the BPP measurement with a

measurement of floating potential the probe can also measure the electron temperature
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profile. This measurement was compared in detail to the Thomson scattering diagnostic

and good agreement was found. In attaining this agreement the effects of secondary elec-

tron emission on the Langmuir probe (LP) measurement of the floating potential were

shown to be important, which suggests that similar accounting of these effects should

be taken in future LP measurements at the MAST midplane. By directly measuring the

profile of the plasma potential the radial electric field could be extracted and was shown

to contain the structure of the radial shear-layer. A third Langmuir probe on the probe

head was used to measure fluctuations in Isat from which profiles of the moments of the

fluctuation PDFs were extracted. Since all of these measurements were made locally

to the probe head, the profiles of the radial electric field could be directly compared to

the PDF moments. In particular a strong correlation between the radial electric field

gradient and the skewness of the Isat PDF was observed; the skewness dropped to 0 and

reversed as the electric field gradient reached a maximum. This shows quantitatively

for the first time that the production of intermittency, inferred by the skewness in the

PDF, is strongly coupled to the shear of the perpendicular flow, inferred through the

radial electric field. It is noted that the causality of this relationship cannot be readily

extracted from the data, however this observation opens an avenue for further research

into the interaction between sheared flows and filament production by probe diagnostics.

As discussed in the discussion section of chapter 2 modelling the full problem of intermit-

tent transport requires understanding a multitude of physics aspects and is generally too

large a problem to tackle head on. Fortunately the problem can be approximately de-

coupled into the modelling of filament production and the modelling of filament motion.

Whilst both of these areas are complex in their own right, they present less formidable

challenges than the fully coupled problem. In chapters 5 and 6 the latter of these two

modelling paradigms was adopted and the dynamics of isolated filaments in the SOL

of MAST was investigated numerically using the BOUT++ framework [104]. By de-

veloping a grid generator within BOUT++ the geometry of a flux-tube centred around

a magnetic field line in the SOL of MAST was used to investigate the dynamics of fil-

aments in a realistic magnetic geometry. The inclusion of the magnetic geometry was

shown to lead naturally to the formation of density gradients parallel to the magnetic

field line for two reasons: 1. The local drive for potential polarisation in the filament

varied along the magnetic field line leading to ballooning of the filament around the

midplane and 2. Enhanced diffusion of density in the divertor region. Both of these

effects are results of the transformation of the filament cross-section as a result of flux

expansion and magnetic shear. This produces large cross-field gradients in the strongly

sheared divertor region which suppresses polarisation due to an enhancement of the po-

larisation drift and naturally enhances dissipation of density and vorticity. The presence

of parallel gradients necessitates the inclusion of 3D effects. At low temperatures these
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3D effects have a limited role with the dynamics of the filament largely determined by

mechanisms present in 2D theories. By contrast, raising the temperature of the filament

and thereby decreasing the resistivity, increases the prevalence of 3D effects and can

cause a drastic departure of the filament dynamics from 2D predictions. The general

cause of this departure is the presence of a source driving the growth of an even (ver-

tically about the centre of the filament cross-section) component of the potential. This

source is not present in 2D models and thus 2D models are constrained to potential

profiles with an odd parity. The presence of a significant even component of potential

leads initially to a rotation of the potential dipole which induces filament motion in the

bi-normal direction and may explain the poloidal motion of filaments often observed in

experiment. The structure of the potential then exhibits a transfer from large length

scales to smaller length scales towards a state of non-linear drift-wave turbulence. The

extent of this cascade is limited by the level of dissipation in the system as determined

by a scan in dimensionless diffusivity and viscosity. In contrast to [116] when 3D effects

are strong the linear resistive drift-wave instability is not observed, instead non-linear

resistive drift-wave turbulence augments the filament motion. In [116] the linear insta-

bility must grow from transient perturbations, whilst in the case of realistic geometry

there is a natural source of parallel gradients which provides the non-linear drive.

In the divertor region the motion of the filament is strongly suppressed as a result of

the excessive shearing due to the magnetic geometry. In this region a dissipation scan

reveals that when dissipation is high the filament quickly disperses due to large cross-

field gradients as a result of the shearing transformation. If dissipation is low however

strong drift-wave instabilities can set in along the major axis of the filament which are

otherwise stabilised, but again act to disperse the filament. It therefore appears that

filaments in the divertor are naturally dispersive. These results also suggest that regard-

less of the level of dissipation in the system the large scale dynamics of the filament is

unchanged, even if the specific details of the evolution may vary.

In order to more quantitatively compare the simulations conducted in the MAST SOL

flux-tube geometry with 2D theories, in particular the two-region model [54], the scaling

of the filament velocity at the midplane with electron temperature and filament cross-

section was investigated. The scaling of both the peak and average (inferred through net

filament displacement) radial velocity of the filaments were suggestive of the resistive

ballooning or ideal interchange regimes of filament dynamics. Interestingly this suggests

that 3D effects, whilst drastically altering the dynamics of the filaments, did not directly

affect the net radial motion of the filament. This supports the notion that the odd and

even components of the potential can be decoupled, with the odd components respon-

sible for the radial motion and the even components responsible for the generation of

poloidal motion. This is further evidenced by the scaling of the poloidal velocity, which

is found to be well predicted by a simple scaling based on the Boltzmann response. This
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shows that smaller, hotter filaments which are more subject to 3D effects should also

exhibit faster poloidal motion. Comparisons of the observed scalings with the two-region

model show disagreement, with the two region model predicting weaker and even op-

posed scalings to those observed numerically. Agreement is observed between the two if

the parallel connection length in the two region model is artificially enhanced. This may

be justified by the fact that the two-region model neglects drive for diamagnetic currents

in the divertor region, where in fact the drive is rather strong due to the enhancement of

cross-field density gradients by the magnetic geometry. This provides a larger current for

sheath currents to close and effectively decreases the effectiveness of the sheath-current

closure in the two-region model, which can be expressed as an effective increase of the

parallel connection length.

Finally the transport of particles at the midplane due to the motion of a single filament

was investigated across both the temperature and filament size scans. Whilst the elec-

tron temperature leads to an increase in the filament velocity the net transport of density

remained relatively similar across the scan. This shows that 3D effects do not hinder

the transport of density. In fact, by comparing two likewise simulations but with the

3D drive terms removed from one, it was possible to show that the presence of resistive

drift-wave turbulence provided a slight increase in the net transport of density. This

increase was small however and unlikely to be detectable experimentally. By contrast,

the filament width was shown to strongly affect the net transport of density. This might

be expected since a larger filament can hold more particles, however the increased radial

motion of larger filaments acts to further enhance the transport of density. This obser-

vation suggests that filament width is the primary parameter in MAST determining the

intermittent transport of density, and any changes in this transport due to variation in

plasma parameters are likely to be through a change in the width distribution of emitted

filaments, rather than a change in the dynamics of the filaments themselves.

7.2 Future Work

The ball pen probe diagnostic will be available in its current form for operation on

MAST-Upgrade when it comes online in 2016 and 2017. A natural progression of the

work presented in chapter 3 is to conduct systematic studies of the scaling of both λTe ,

the electron temperature gradient scale length, and ∂E/∂R, the radial electric field

gradient, with variation of equilibrium plasma parameters. Both of these quantities

are difficult to measure accurately in the plasma edge, however the BPP can make

these measurements routinely. A study of λTe will provide insight into the control of

power deposition in the SOL which is a particularly important topic concerning future

high power fusion devices. The scaling of the radial electric field and, particularly, its
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gradient may provide important insight into filament generation processes (as shown in

chapter 3) and the transition to higher confinement. A modified design of a BPP is

presented in chapter 3 which would allow the BPP to make detailed measurements of

potential, temperature, density and electric fields within individual fluctuations. This

would allow for the experimental characterisation of turbulence and potentially aid in

the understanding of edge plasma transport.

The work on filament dynamics could be extended in two directions: 1. Relaxation of

the flux-tube approximation in the geometry of the system and 2. Inclusion of extra

physics in the governing equations. The relaxation of the flux-tube geometry would

allow for the investigation of effects such as sheath reconnection in the far SOL [110]

where the shearing of the filament lessens and allows for easier connection to the sheath.

By extending the methods employed in the flux-tube generator described in chapter 4 to

work on several adjacent flux surfaces spanning the domain of interest in the SOL and

interpolating between these surfaces, this approximation could be bypassed, however the

non-orthogonality of the resulting mesh (in the poloidal plane) must then be accounted

for in the metric tensor of the system. Such an approach is currently being investigated

by Jarrod Leddy at the York Plasma Institute.

At present the model used for filament motion neglects the effects of warm ions, non-

isothermal effects and electromagnetic effects. The latter of these three effects will soon

be investigated by Dr Fulvio Militello of CCFE in the case of a simple slab geometry, with

a view to understanding the basic physical processes involved and eventually porting the

model into the more complex geometry of the SOL. The former of these two effects will

be investigated during the authors fellowship at CCFE to commence in November 2014.
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Appendix A

The BOUT++ Coordinate

System

A.1 Differential Geometry Primer

This appendix provides an overview of the ballooning coordinate system used in BOUT++

and within this thesis to simulate filaments. Before introducing this coordinate system

however a brief primer on differential geometry is provided which is based largely on

[208].

For a general curvilinear coordinate system given by the coordinates
(
u1, u2, u3

)
a set

of basis vectors can be constructed which lie tangent to the coordinate axis. These are

called the tangent or covariant basis vectors and are given by

ei ≡
∂R

∂ui
(A.1)

where R (x, y, z) is the position vector in cartesian space. The covariant vectors are a

triplet of linearly independant vectors with a common origin making them suitable as

a basis for the coordinate system. An equally suitable basis however can be obtained

by instead taking the vectors normal to the surfaces generated by the coordinate axis.

These are called the contravariant or reciprocal basis vectors and are given by

ei ≡ ∂ui

∂R
= ∇ui (A.2)

These two basis sets are reciprocal to one another, which means that ei ·ej = δji where δji

is the Kronecker delta function. This is clearly true for the covariant and contravariant

basis vectors since

ei · ej =
∂R

∂ui
∇uj =

∂R

∂ui
∂uj

∂R
=
∂uj

∂ui
= δji (A.3)
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which relies on the fact that the coordinates ui and uj must be independant of one

another to form a proper coordinate system. The reciprocal nature of the two basis sets

implies that (see [208] for a derivation) the vectors of one basis can be generated by the

vectors from the other by

ei =
ej × ek

ei · (ej × ek))
; ei =

ej × ek

ei · (ej × ek))
(A.4)

The denominator here is called the Jacobian J such that J = ei·(ej × ek)) =
[
ei ·
(
ej × ek)

)]−1
.

In cartesian coordinates the contravariant and covariant basis vectors are identical and

the sytem is orthogonal, however this is not the general case. This is illustrated in figure

A.1.

x y

z

ex
ey

ez

ez

ex ey

Cartesian
covariant basis

contravariant basis

u1 u2

u3

e1
e2

e3

e3

e1 e2

Curvilinear

Figure A.1: Schematic illustration of co and contravariant basis vectors in cartesian
and general curvilinear coordinates. The size of the covariant basis vectors has been

exagerated to allow the two basis sets to be distinguished in the cartesian case.

Since both the covariant and the contravariant vectors form basis sets a general vector

D can be written

D = Aei +Bej + Cek = Eei + Fej +Gek (A.5)

By either dotting the above expression with ei to get A and ei to get E, the form of the

coefficients can be found to be

A = D · ei = Eei · ei + Fej · ei +Gek · ei (A.6)

= (D · ei) ei · ei + (D · ej) ei · ej + (D · ek) ei · ek

with the equivalent expression achieved by swapping the indices from super to sub scripts

and visa versa. The terms D · ei,j,k ≡ Di,j,k are the contravariant components of the

vector D, whilst the D ·ei,j,k ≡ Di,j,k are the covariant components. The two are related

to each other through the metric coefficients. The contravariant metric components are

ei · ej ≡ gij whilst the covariant metric components are ei · ej ≡ gij . The covariant and
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contravariant components of a vector are related to each other (as can be seen from the

expression above) by Di = Djgij and conversely Di = Djg
ij where a sum over repeated

indices is implied. The same arguments can be applied to the basis vectors themselves

to show that

ei = giie
i + gije

j + gike
k (A.7)

and

ei = giiei + gijej + gikek (A.8)

The metric coefficients form a symmetric metric tensor which can be written

gij ≡ ei · ej ≡ ∇ui · ∇uj =


g11 g12 g13

g12 g22 g23

g13 g23 g33

 (A.9)

gij ≡ ei · ej ≡
∂R

∂ui
· ∂R

∂uj
=


g11 g12 g13

g12 g22 g23

g13 g23 g33


such that the two sets of basis vectors can be related by

e1

e2

e3

 = gij


e1

e2

e3

 ;


e1

e2

e3

 = gij


e1

e2

e3

 (A.10)

which clearly implies that

gij = g−1
ij (A.11)

hence the covariant and contravariant metric tensors are inverse to one another. By

substituting the above expressions for the basis vectors into the definition of the Jacobian

J and after some algebraic manipulation it is possible to show that

J2 = g11 (g22g33 − g23g23) + g12 (g13g23 − g12g33) + g13 (g12g23 − g22g23) (A.12)

which is immediately recognisable as the determinant of the tensor gij such that the

Jacobian can be given by

J2 = det (gij) ≡ g ⇒ J =
√
g (A.13)

Finally the ∇ operator can be defined in terms of the contravariant and covariant basis

vectors. To do this note that the operation ∇Θ is defined by

dΘ = ∇Θ · dR (A.14)
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however by use of the chain rule and since ei · ej = δij , dΘ can equally be given by

dΘ =
∂Θ

∂ui
dui =

∂Θ

∂ui
ei · ejduj =

(
∂Θ

∂ui
∇ui

)
·
(
∂R

∂uj
duj
)

(A.15)

Once again by the chain rule the second of the bracket terms can be identified as dR.

Thus by comparing the two equivalent statements of dΘ

dΘ = ∇Θ · dR =

(
∂Θ

∂ui
∇ui

)
· dR⇒ ∇ ≡ ∇ui ∂

∂ui
= ei

∂

∂ui
(A.16)

from which the other differential operators can be derived.

A.2 Field Aligned Coordinates in BOUT++

As a starting point for the derivation of the field aligned coordinate system, the poloidal

magnetic flux, ψ can be used to label nested magnetic surfaces with a unique label from

the centre of the plasma outwards and is therefore a good coordinate for the system

[209].

B · ∇ψ = 0⇒ B = ∇ψ ×A (A.17)

and the vectors∇ψ and A lie perpendicular to the magnetic field at all points. Maxwell’s

law of a divergence free magnetic field then allows the magnetic field to be written in a

Clebsch form [209]

∇ ·B = 0⇒ ∇ψ · ∇ ×A = 0⇒ A ≡ ∇α (A.18)

thus the vector A can be written in terms of a scalar potential α and the magnetic field

is

B = ∇ψ ×∇α (A.19)

This then shows that the scalar quantities ψ and α can uniquely label any plane perpen-

dicular to B but do not vary along B. This then naturally specifies a third coordinate,

β, that labels the magnetic field line with the covariant vector B = Ceβ = C∂R/∂β.

The proportionality factor C is given by dotting B with the reciprocal vector in β, ∇β

B · ∇β = C = ∇ψ ×∇α · ∇β = J−1 (A.20)

where J is the Jocobian of the (ψ, β, α) coordinate system. For (ψ, β, α) to specify a set

of unique coordinates the following must be true

dψ

dβ
=
dψ

dα
=
dβ

dψ
=
dβ

dα
=
dα

dψ
=
dα

dβ
= 0 (A.21)
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The ballooning coordinate system [217] used in BOUT++ employs the poloidal angular

coordinate, θ, to label the direction along the magnetic field line such that β = θ. The

above expression is then used to force the toroidal angular coordinate, ζ, to follow the

field line by making the ansatz α = ζ + γ which then gives

dα

dθ
=
dζ

dθ
+
dγ

dθ
= 0⇒ γ (θ) = −

∫ θ

θ0

dζ

dθ′
dθ′ (A.22)

γ is shown here to be a θ dependant shift to the toroidal angle applied to ensure that

the coordinate system follows the magnetic field line. The change in toroidal angle due

to translation in θ is given by

dζ

dθ
=

eθ · ∇ζ
eθ · ∇θ

=
B · ∇ζ
B · ∇θ

≡ ν (ψ, θ) (A.23)

where the trivial fact that eθ ·∇θ = 1 and B = J−1eθ has been used. ν (ψ, θ) specifies the

local pitch angle of the magnetic field line. The BOUT++ (x, y, z) coordinate system is

thus defined by

x = σBθ (ψ − ψ0)

y = θ (A.24)

z = ζ −
∫ y

y0

ν
(
x, y′

)
dy′

where ψ0 is a constant offset of the domain and σBθ is the sign of the vertical magnetic

field in the (R, ζ, Z) cylindrical coordinate system which ensures that x is always in-

creasing from the centre of the tokamak plasma outwards. For the considerations in this

theses σBθ = 1. The contravariant basis vectors of the system can now be evaluated as

∇x = ∇ψ

∇y = ∇θ (A.25)

∇z = ∇ζ − ν∇θ − I∇ψ

where

I =

∫ y

y0

∂ν

∂ψ
dy′ (A.26)

is the integrated magnetic shear. The Jacobian of the system can now be evaluated from

expression A.20 to give

J−1 = ∇x×∇z · ∇y = B · ∇θ = Bθ |∇θ| = Bθ
hθ

(A.27)
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where Bθ is the poloidal magnetic field strength and hθ is the magnitude of the poloidal

basis vector. Specifically hθ is the proportionality factor that relates a poloidal displace-

ment of length dL to a shift in poloidal angle of dθ by dL = hθdθ. On closed field lines

in a circular tokamak equilibrium hθ = r where r is the minor radius.

Using ei = Jej × ek the covariant basis vectors of the system can be derived as

ex = eψ + Ieζ

ey = eθ + νeζ (A.28)

ez = eζ

In deriving these expressions the fact that the coordinates (ψ, θ, ζ) form a right handed

coordinate system has been used. Furthermore the lengths of the basis vectors in this

toroidal coordinate system are

h2
ψ = gψψ = 1/gψψ = eψ · eψ =

1

R2B2
θ

h2
θ = gθθ = 1/gθθ = eθ · eθ = h2

θ (A.29)

h2
ζ = gζζ = 1/gζζ = eζ · eζ = R2

These expressions will be used to evaluate the metric coefficients of the field aligned

system shortly, however first ν is given by

ν =
B · ∇ζ
B · ∇θ

=
Bζ |∇ζ|
Bθ |∇θ|

=
hθBζ
RBθ

(A.30)

The covariant metric coefficients are then given by

gij ≡ ei · ej =


I2R2 + 1/ (RBθ)

2 BζhθIR/Bθ IR2

BζhθIR/Bθ B2h2
θ/B

2
θ BζhθR/Bθ

IR2 BζhθR/Bθ R2

 (A.31)

and the contravariant metric coefficients by

gij = ∇ui · ∇uj =


(RBθ)

2 0 −I (RBθ)
2

0 1/h2
θ −ν/h2

θ

−I (RBθ)
2 −ν/h2

θ I2 (RBθ)
2 +B2/ (RBθ)

2

 (A.32)

Figure A.2 gives a schematic illustration of the (x, y, z) coordinate system used in

BOUT++.
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Figure A.2: Schematic illustration of the spatial layout of coordinates in the (x, y, z)
coordinate system in the BOUT++ code. Specifically shown is the process by which a
shift in the toroidal direction ensures that the coordinate system follows a magnetic field
line. Note that the toroidal shift between two x coordinates on concentric flux surfaces
occurs as a result of magnetic shear in order to maintain the field line following nature

of the system.
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Appendix B

Derivation of equations for

filament simulations

This appendix presents a derivation of the governing equations used in this thesis to

model filament dynamics. From the outset the plasma is assumed to be isothermal and

the ion temperature is assumed small such that Ti/Te << 1. The starting point of the

derivation is the first two moments of the Valsov-Focker-Plank equation. For particle

species j these are the equations for density conservation

∂nj
∂t

+∇ · (njuj) = Sj,n (B.1)

and momentum conservation

njmj

(
∂

∂t
+ uj · ∇

)
uj = qjnj (E + uj ×B)−∇pj−∇·Πj+Rj+Sj,m+mjujSj,n (B.2)

where nj is the species particle density , uj is the species fluid velocity, pj = njTj is the

species scalar isotropic pressure scalar, Πj is the anisotropic viscosity tensor, Rj is the

collisional friction, E and B are the electric and magnetic fields respectively, mj is the

species particle mass, qj is the species charge and Sj,n and Sj,m are external sources or

sinks of density and momentum respectively.

The components of the fluid velocity perpendicular to the magnetic field can be extracted

by applyling the operation B× to the momentum equation. This then gives

uj,⊥ = uj − (uj ·B)
B

B2
= uE + uD + up (B.3)

where the components of the perpendicular velocity can be identified as the E × B

velocity,

uj,E =
b×∇φ
B

(B.4)
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the diamagnetic velocity,

uD =
b×∇pj
qjnjB

(B.5)

and the polarization velocity (dropping external source terms)

up =
1

Ωj
b×

(
∂uj
∂t

+ uj · ∇uj +
∇ ·Πj −Rj

mjnj

)
(B.6)

Using the drift ordering described and assessed in chapter 4 the magnitude of each of the

velocity components can be assessed. First the magnitude of the electrostatic potential

is estimated as φ ∼ Te/e where Te is the electron temperature in Joules. The potential

is assumed to vary on the fast length scale Lf such that

uE =
b×∇φ
B

∼ Te
eB

1

Lf
= δρsΩi (B.7)

where δ = ρs/Lf << 1 and ρs =
√
Temi/eB is the Bohm gyroradius. The magnitude of

the diamagnetic velocity can be estimated noting that pj = njTj as

uD =
b×∇pj
qjnjB

∼ Tj
eB

1

Lf
=
Tj
Te
δρsΩi (B.8)

This shows that the E × B velocity and diamagnetic velocity are on the same order

of magnitude within the drift-ordering and must both be retained. The polarization

velocity can now be assessed term by term. Noting that the leading order part of the

total perpendicular velocity is shown here to be ∼ δρsΩi the first two terms can be

estimated as

1

Ωj
b× ∂uj

∂t
∼ ω

Ωj
δρsΩi ∼ δρsΩi

Ωi

Ωj
δ2 =

mj

mi
δ2 (δρsΩi) (B.9)

1

Ωj
b× (u · ∇u) ∼ (δρsΩi)

2

LfΩj
=
mj

mi
δ2 (δρsΩi)

The third term concerns the viscosity tensor Πj . This consists of a collisional part

and a non-collisional ’gyro-viscous’ part [52]. As noted in [52] the collisional part is

νj/Ωj << 1 times smaller than the gyro-viscous part, where νj is the collision frequency.

Consequently only the gyro-viscous part needs to be retained in up. Under the drift-

ordering and assuming an isothermal plasma the gyro-viscosity reduces to the Braginskii

gyro-viscosity [47, 235], given here in the form from [52] as

Πj,g =
pj

4Ωj

[
b×

(
∇uj + (∇uj)

T
)
· (I + 3bb)− (I + 3bb) ·

(
∇uj + (∇uj)

T
)
× b

]
(B.10)

Fortunately within the cold ion limit no formal evaluation of this expression will be

required. Using the above expression for Πj,g and taking order of magnitude estimates
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results in
1

Ωj
b× ∇ ·Πj,g

mjnj
∼ 1

Ωj

njTj
Ωj

δ2Ωi
1

njmjLf
=
mj

mi

Tj
Te
δ2 (δρsΩi) (B.11)

thus the gyro-viscous part is small compared to the rest of the polarization velocity by at

least Ti/Te. The final part of the polarization velocity to be evaluated is the collisional

friction term involving Rj . From [47, 52] Rj is given in the case of an isothermal plasma

as

Re = −Ri = ene
(
η||bJ|| + η⊥J⊥

)
(B.12)

Note that only the J⊥ term is retained after the b× operation. The perperndicular

collisional resistivity is given by [47]

η⊥ =
meνe
e2ne

(B.13)

where νe is the electron-ion collision time. Taking the maximum possible ordering of J⊥

as J⊥ ∼ neeu⊥ ∼ neeδρsΩi the frictional part of the polarization velocity is estimated

as (assuming ne = ni by quasineutrality)

1

Ωj
b× Rj

mjnj
∼ 1

Ωj

meνeδρsΩi

mj
=
me

mj

νe
Ωj

(δρsΩi) =
νe
Ωe

(δρsΩi) (B.14)

There are a few key points to note about the ordering of the polarization velocity.

Firstly the collisional term is the leading order part since Ωj >> νj >> ω ∼ δ2Ωi infers

1 >> νe/Ωe >> δ2me/mi. Secondly the second order terms in the electron polarization

velocity are me/mi times smaller than the counterpart terms in the ion polarization

velocity. The leading order terms are identical in both however. Finally leading order

terms of the polarization velocity are smaller than both the E × B and diamagnetic

velocities by νe/Ωe, whilst second order terms are small by at least δ2.

The equation for density continuity can now be evaluated for electrons up to first order

in δ as (dropping subscript for brevity)

∂n

∂t
= −∇ · (nuE)−∇ · (nuD) = −n∇ · uE − uE · ∇n−∇ · (nuD)−∇ ·

(
bu||n

)
(B.15)

The divergent terms are evaluated as

∇ · uE = ∇ ·
(

b

B
×∇φ

)
=

(
∇× b

B

)
· ∇φ (B.16)

∇ · (nuD) = −csρs∇ ·
(

b

B
×∇n

)
= −csρs

(
∇× b

B

)
· ∇n (B.17)

and

∇·
(
bu||n

)
= ∇·

(
B
u||n

B

)
= Bb ·∇

(u||n
B

)
+
u||n

B
∇·B = −B

e
∇||

J||

B
≈ −1

e
∇||J|| (B.18)
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where J|| = ne
(
u||,i − u||,e

)
for single charged ions, and the ion velocity contribution has

been neglected. Thus the density continuity equation becomes

∂n

∂t
+ uE · ∇n = csρs

(
∇× b

B

)
· ∇n− n

(
∇× b

B

)
· ∇φ+

1

e
∇||J|| (B.19)

It is worth noting that the RHS terms are ε = Lf/Ls times smaller than the LHS terms

and are usually neglected. Angus has shown [115] that the first and third RHS terms

should be retained however to properly capture the linear stability of the resistive drift-

wave.

To close the system equations for J|| and φ are required. The latter can be achieved

by evaluating the condition for current continuity, ∇ · J = 0 where the current density

J = J⊥ + J||b = ne (u⊥,i − u⊥,e) + J||b. In evaluating ∇ · J⊥ it is important to retain

the polarization velocity, since it is not possible to assume that the difference between

two large terms will still be large enough to remain leading order. As discussed earlier

though, only the collisional part of the electron polarization velocity needs to be retained.

Furthermore the gyroviscous and diamagnetic parts of the ion velocity can be neglected

due to Ti/Te << 1 and the ion and electron E×B terms naturally cancel, thus

∇ · J⊥ = ∇ ·
[
neb×

(
∂

∂t
+ uE · ∇

)
uE

]
− e∇ · (nuD,e) (B.20)

Note that the collisional contribution from the electron polarization cancels the corre-

sponding contribution from the ion polarization velocity. The second term above has

already been evaluated in the density continuity equation. The first term can be eval-

uated approximately by noting spatially derivatives of the magnetic field are small by

Ls/Lf and by making the Boussinesq approximation, which is used to pull the n outside

of the divergence such that

∇·
[
neb×

(
∂

∂t
+ uE · ∇

)
uE

]
≈ ne∇·

(
∂

∂t
+ uE · ∇

)
b×uE = −ne

B

(
∂

∂t
+ uE · ∇

)
∇2
⊥φ

(B.21)

where b × b × ∇φ = −∇⊥φ has been used. The full expression for ∇ · J = 0 is now

(often called the vorticity equation)

n

B

(
∂

∂t
+ uE · ∇

)
∇2
⊥φ = csρs

(
∇× b

B

)
· ∇n+

1

e
∇||J|| (B.22)

Finally it remains to derive an expression for J||. This is achieved by dotting the electron

momentum equation with b and, following [52] by neglecting inertial terms as me/mi

times smaller than leading order and viscous terms as
√
me/miε∆/δ times smaller, the
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parallel momentum equations becomes

b ·Re = en∇||φ− Te∇||n (B.23)

Evaluating Re then gives parallel Ohm’s law, which is an auxialliary equation for J||

η||J|| =
Te
e
∇|| ln (n)−∇||φ (B.24)

This completes the derivation of the system of equations employed to simulate filament

dynamics in MAST.

To summarize these are the density equation

∂n

∂t
+ uE · ∇n = csρs

(
∇× b

B

)
· ∇n− n

(
∇× b

B

)
· ∇φ+

1

e
∇||J|| (B.25)

the vorticity equation

n

B

(
∂

∂t
+ uE · ∇

)
∇2
⊥φ = csρs

(
∇× b

B

)
· ∇n+

1

e
∇||J|| (B.26)

and parallel Ohm’s law

η||J|| =
Te
e
∇|| ln (n)−∇||φ (B.27)

The normalization employed in this thesis is the Bohm normalization where length-

scales are normalized to ρs and timescales to 1/Ωi with the density normalized to the

background value n0 and the potential normalized to Te/e (Te joules). Under these

normalizations the system becomes

∂n

∂t
+ uE · ∇n = 2ξ̂ · ∇n− n2ξ̂ · ∇φ+

1

n0cse
∇||J|| (B.28)

n

(
∂

∂t
+ uE · ∇

)
∇2
⊥φ = 2ξ̂ · ∇n+

1

n0cse
∇||J|| (B.29)

η||J|| =
Te
ρse
∇|| (ln (n)− φ) (B.30)

where uE = b × ∇φ and ξ̂ = ρsb × κ is the normalized polarization vector where the

approximation [52]

ξ = ∇× b

B
=

1

2B
b× κ+

1

B
b×∇B ≈ 1

2B
b× κ (B.31)

has been used.
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Appendix C

Derivation of curvature vector

This appendix outlines a derivation of the curvature vector along a magnetic field line.

The magnetic field line is parameterized by the cylindrical coordinates (R (s) , φ (s) , Z (s))

where s is the arc length along the magnetic field line. In the context of a tokamak R

is the major radius, φ is the toroidal angle and Z is the vertical dimension. The unit

tangent vector, which lies tangent to the magnetic field line at all points is given by

T̂ =
dr

ds
= r′ =

dR

ds
R̂ +R

dφ

ds
φ̂+

dZ

ds
Ẑ (C.1)

This expression is derived from the expression for a differential line element dr = dRR̂+

Rdφφ̂+ dZẐ. The curvature vector is given by

κ =
dT̂

ds
(C.2)

= R̂
d2R

ds2
+ φ̂

(
dR

ds

dφ

ds
+R

d2φ

ds2

)
+ Ẑ

d2Z

ds2

+
dR

ds

dR̂

ds
+R

dφ

ds

dφ̂

ds
+
dZ

ds

dẐ

ds

To evaluate the derivatives of the unit vectors they are first cast into cartesian coordi-

nates (x, y, z) such that

R̂ = cosφx̂ + sinφŷ

φ̂ = − sinφx̂ + cosφŷ (C.3)

Ẑ = ẑ

Noting that
dR̂

ds
=
∂R̂

∂φ

dφ

ds
(C.4)
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and
dφ̂

ds
=
∂φ̂

∂φ

dφ

ds
(C.5)

gives
dR̂

ds
=
dφ

ds
(− sinφx̂ + cosφŷ) = φ′φ̂ (C.6)

and
dφ̂

ds
=
dφ

ds
(− cosφx̂− sinφŷ) = −φ′R̂ (C.7)

Finally, substituting these into the earlier expression and noting that

dẐ

ds
=
dẐ

dφ

dφ

ds
= 0 (C.8)

gives

κ = R̂

(
d2R

ds2
−R

(
dφ

ds

)2
)

+ φ̂

(
R
d2φ

ds2
+ 2

dR

ds

dφ

ds

)
+ Ẑ

d2Z

ds2
(C.9)
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