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Abstract

3D watermarking is a technique to hide some information into the 3D graphical

model in such a way that the watermarked object is visually indistinguishable from

the original one. A robust and blind 3D watermarking method should be able to

detect the embedded message after a certain level of malicious attack without having

the original model. 3D watermarking has a great potential of usage in the real world

and it can be applied in the copyright protection, database management, graphics

authentication and data transmission etc. This thesis proposes four novel robust

and blind 3D watermarking methods based on spectral domain and spatial domain.

Chapter 2 comprehensively surveys the related literature in the fields of trans-

formed domain methods, spatial domain methods and the watermarking metrics.

Chapter 3 proposes a novel 3D watermarking methodology in the spectral domain.

The mesh object is decomposed into a set of spectral coefficients which represent

the energy of the mesh in different scales. The message is embedded by introducing

constraints into the distributions of spectral coefficients.

Chapter 4 employs the geodesic distance to carry the bits based on the obser-

vation that the distribution of geodesic distance within a range is close to uniform.

Two ways of embedding scheme are introduced. One is to modify the mean value and

the distribution and the other is to change the variance. A novel Vertex Placement

Scheme (VPS) is proposed to move the vertex in order to satisfy the watermarked

geodesic distance, without causing significant distortion to the object.

Chapter 5 introduces two spatial domain methods which embed the message by

changing the distribution of the vertex norms, i.e. the distance from vertex to the

object centre. Two methods employ the same histogram mapping function as de-

scribed in chapter 4. The first method minimizes the surface distortion by selecting

a candidate point over the neighbourhood which introduces the minimum error. The

second method employs the Levenberg-Marquardt optimization method to find the

best possible solution to ensure that the surface distortion is truly minimum with

respect to a novel surface error function.



The algorithms proposed in this thesis significantly improve the visual quality of

the watermarked object while the watermark detection robustness is at a relatively

high level. The robustness of the proposed methods is increasing from the methods

presented in Chapter 3 to Chapter 5 while the surface distortion is decreasing for

these methods. The second algorithm proposed in Chapter 5 achieves the best

overall performance in the aspect of visual quality and robustness. In Chapter 6,

we conclude the thesis by addressing the weakness and propose potential future

research work.
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Chapter 1

Introduction

Nowadays, Internet is an important part in our life. There are numerous types of

digital data over the Internet, such as text, images, audio tracks, videos and 3D

graphical objects etc. These are used more and more in industrial, medical and

entertainment applications. Digital data are so widely used because they are easy

to store, transfer and duplicate with high quality. However, the convenience also

facilitates the access of malicious users to produce unauthenticated and pirate copies

of the original work.

There are two typical digital data protection techniques: cryptography and wa-

termarking. Cryptography completely changes the appearance of the data and as a

result nobody would be able to decode the message without the secret key. Cryp-

tography is often used in the transmission stage. Users have to decode the message

before they can read or use the data. In contrast, watermarking preserve the ob-

servable quality of the data, for example the image fidelity, audio and video quality,

in such a way that people can use the data without being aware of the existence

of the embedded message. Watermarking can be used both in transmission and for

data usage. In addition, cryptography aims to modify every single bit of the original

data. In Digital Watermarking the aim is to embed a code consisting of bits into a

cover media, representing image, audio, video or graphics information.

Digital watermarking is generally considered as a copyright protection technique.

Digital watermarking consist in embedding information into the “cover media” in

such a way that the embedded “stego media” is perceptually no different from the

1



original one. In principal, any kind of information that can be encoded in binary

format can be embedded into the cover media, for example, copyright, creation

information, content description etc. The message can be used in various ways

for different purposes such as copyright protection, authentication and database

indexing etc.

In the last decade, digital watermarking become an active research area and

many watermarking techniques have been proposed for audio [22], [73] images [14],

[121] and videos [27], [137]. The conventional 1D/2D digital data watermarking are

relatively mature and their applications begin to appear in the commercial market,

for example, you can watermark your own photo using the Adobe Photoshop. On

the other hand, 3D watermarking is still in its infancy and there is no “accepted”

solution especially for robust and blind 3D watermarking methods.

Watermarking methods have close relation with the research area of computer

vision, pattern recognition, computer graphics, theory of transmission of informa-

tion and approximation theory. Various techniques have been used for watermarking

purpose. Many transformed domain methods embed information in the spectral co-

efficients of the mesh. While spectral graph theory has been used extensively in com-

puter vision [144] and pattern recognition [88, 105]. Wavelet decomposition, which

is an important multi-resolution analysis method developed in computer graphics

community [113, 125], is also used in watermarking purposes. Hausdorff distance is

used for evaluating the similarity between the watermarked object and the original

object [34].

In this chapter, the fundamentals of 3D watermarking will be presented first.

This includes fundamental watermarking concepts, watermarking properties and the

difference between the 3D watermarking and traditional 1D/2D methods. Then, we

envisage the applications of 3D watermarking techniques. The contributions of this

thesis are given in the third part of this chapter. And finally, the structure of this

thesis is given at the end of the chapter.
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1.1 Fundamentals of 3D watermarking

1.1.1 Terminology

Before we enter into the details, it is necessary to clarify the specific terminology

used throughout this thesis.

• Cover medium: An original digital medium (3D graphical object in our

case) without being watermarked or processed is called cover medium (or cover

object).

• Stego medium: When the cover medium is watermarked by some watermark-

ing algorithms, watermarked medium object is then called stego medium.

• Watermark: Watermark is the message being inserted to the cover object.

We use M to represent the message to be embedded, while M̂ denotes the

retrieved message from the object that is watermarked or attacked.

• Watermark embedding: It is the process of inserting the watermark into

the cover object.

• Watermark detection: It is the process of retrieving the embedded message.

• Robustness: We measure the robustness of a watermarking algorithm using

the Bit Error Rate, i.e. the ratio between the correctly detected bits and the

total number of embedded bits.

• Distortion: It means the similarity between the watermarked object and

the original one. In this thesis, we use two criteria, both objectively and

subjectively, to evaluate the distortion introduced by watermarking.

1.1.2 3D representations

A 3D object can be represented in various ways: using voxels, polygonal meshes,

constructive solid geometry or as an implicit set of parametrized equations, such

as nonuniform rational B-splines (NURBS) etc. However, triangulated meshes are

considered as the denominator of the 3D objects since any other representations can
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be converted into a triangular mesh very easily. In this thesis, we consider graphical

objects are represented by triangular meshes.

A triangle mesh object O consists of a set of vertices describing its geometry,

V = {vi ∈ O|i = 1, . . . , |O|}, where |O| is the number of vertices of mesh O, and

a set of triangles connecting the vertices, F = {Fi ∈ O|i = 1, . . . , |F|}, where |F|

is the number of faces of the mesh O. A set of attributes such as colour, texture,

shading may be associated with each vertex or face. However, we will not consider

these attributes for watermarking because they can be easily removed or modified

by users. In this thesis, we consider that a triangle mesh represents a two-manifold

object which means that the local neighbourhood of any vertex is topologically

equivalent to a disk. In other words, a non-boundary edge of the mesh O must

connect two neighbouring faces only.

1.1.3 Watermarking properties

A 3D watermarking system contains five main requirements including the robustness

of the embedded message, capacity of the payload, blindness, security and non-

distortion of the 3D surface. From the robustness point of view, the watermarking

algorithms are classified as robust watermarking and fragile watermarking. A robust

method aims to detect the embedded message even after the object suffered from a

serious level of attacks. This category of methods are often designed for the purpose

of copyright protection. On the other hand, a fragile message should disappear

totally when any attack happens to the 3D mesh model. A good fragile watermarking

algorithm should be able to locate the region being modified. Fragile watermarking

is used for the mesh authentication and tamper detection.

Steganography represents the procedure to hide information into a cover media,

usually of audio, image, video or graphics format. The aim in steganography is to

embed a large amount of information. This kind of methods is usually used for

transmitting data and the 3D object is considered as a message carrier in this case.

From the blindness perspective, methods can be considered as blind or non-blind

depending on whether the original object is required or not as reference in the detec-

tion stage. Blind methods are more difficult to implement than non-blind methods
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but at the same time they are more practical having wider potential applications.

The fourth point is that the security of the embedded message should only rely

on the private key but not on the method. Theoretically, it should be impossible to

retrieve the embedded message without the private key. The security is relatively

easy to achieve as it can be enforced in different stages of the watermarking process.

Last but not least, the distortion of the object watermarked by any methods

should be perceptually invisible with respect to the original surface. Currently,

robustness and distortion are the most challenging issues of the robust and blind

3D watermarking study. In this thesis, I focus on the watermarking method that is

robust and blind, while aiming to introduce a minimal distortion in the 3D surface

of the graphical objects used as cover media.

Figure 1.1 illustrates the relation among the three factors: robustness, capacity

and distortion with the security taken into account. Trying to improve any one part

may limit the effectiveness of the others. For instance, we may obtain a higher ro-

bustness if we relax the requirement of the distortion and embed fewer bits. But the

trade-off is that the object may be very distorted from the original one. Increasing

the capacity means that one bit of message will be carried by less vertices. Thus,

this may reduce the robustness of the watermarking algorithm. Security means how

much is the opportunity that the embedded message can be recovered and removed

by malicious users. It is relatively not as vital as the other three factors in water-

marking methods but it can not be ignored. How to find a proper balance among

these aspects is the most challenging issue in the research of 3D watermarking al-

gorithms.

1.1.4 Difference with conventional digital data

There are three major differences between the 3D graphical object and the tradi-

tional 2D/1D data so that the techniques developed for 2D/1D watermarking can

not be directly imported to 3D object watermarking.

Firstly, a 3D object is not regularly sampled. It is not possible to represent

a 3D object by a single dataset. For example, an image can be interpreted as a

matrix. The irregular sampling issue makes the spectral analysis techniques such as
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Figure 1.1: Property Triangle of 3D Watermarking

Fourier Transform, Discrete Cosine Transform and Wavelet Transform, which rely

on regular sampling, more difficult to apply. Meanwhile, these techniques have been

successful in the traditional 2D/1D data.

Secondly, a 3D object can be represented in an infinite ways both on geometry

and connectivity. For instance, a mesh can be represented as a 1-to-4 connectivity

(one vertex is connected with four neighbours), or 1-to-6 connectivity. Sometimes,

regular connectivity is considered as regular sampling in 3D meshes [44, 67, 113].

Simplification techniques [50] preserves the shape of the mesh surface by using a

smaller number of vertices. Uniform resampling schemes use totally new samples to

represent the same object, etc. This indicates that either geometry or connectivity

is weak and not reliable.

Last but not least, there is no stable intrinsic order sequence of the 3D data.

Image data can be ordered easily according to the row or column information and

audio and video data are streamed according to the time series. As both the geome-

try and the connectivity information are irregular in 3D objects, there is no explicit

sequence order of 3D data. Thus, it is difficult to apply the existing successful

spectral watermarking schemes, such as the one proposed in [38], on 3D meshes.

1.1.5 3D watermarking is a cutting edge area

3D object watermarking is a cutting-edge research area involving various fields such

as computer vision, statistics, data-hiding, signal processing, approximation theory,
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optimization theory and computer graphics, etc. Thus, 3D watermarking algorithms

are very different from one to another. Signal processing techniques are mostly used

in the spectral domain algorithms such as mesh spectral analysis [100], mesh wavelet

decomposition [67].

In the other category, the message is embedded directly into the spatial domain.

Most of the robust and blind algorithms belong to this category. This class of

methods usually use statistical features of the mesh geometry and it is close to the

computer graphics. Currently, the spatial domain methods based on the geometry

features of the 3D model consists of the state of the art in 3D watermarking and it

is a more promising area than methods based on the transformed domain.

The approximation theory is an important theoretical background of measuring

the surface distortion. The algorithms proposed in Chapter 5 explicitly use an error

function which is closely related with the approximation theory to control the sur-

face distortion. Consequently, the distortion is minimized through an optimization

procedure.

1.1.6 Attacks of 3D meshes

As mentioned in the previous section, a robust and blind 3D watermarking algo-

rithm should be able to detect the embedded message even after the mesh object is

suffered from a certain level of attacks. In general, there are two types of attacks.

One is the distortionless attack that means any technique not modifying the geom-

etry or the connectivity of the mesh. The following attacks belong to this category:

mesh registration, rotation, uniform scaling, object description file shuffling and ge-

ometry transformation. Distortionless attack is often considered as 3D processing

that is not harmful to the 3D model. Most of existing watermarking algorithms

are resistant to distortionless attacks. On the other hand, distortion attacks may

change the geometry or the connectivity or both properties of the mesh. In this the-

sis, we test the robustness of the proposed algorithms against five attacks including

additive noise, Laplacian smoothing, mesh simplification, quantization and uniform

resampling. Additive noise is a common attack which randomly modifies the ge-

ometry of the mesh. Mesh simplification aims to represent the same object using
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less vertices. Laplacian smoothing is to remove the sharp feature and noise of the

mesh. Quantization attack produces blocking effects on the object surface. Uniform

resampling is a kind of combination attack of mesh simplification and Laplacian

smoothing. Uniform resampling takes samples on the tangent plane of the surface

and remesh the new samples to produce the new object.

1.2 Applications of 3D Watermarking

There are many potential applications of 3D watermarking because of two reasons.

Firstly, any information can be embedded into the object. Secondly, the water-

marked models can be used as original ones, because watermarking methods aim to

embed the message without modifying the appearance of the 3D model. The content

of the embedded information can be used in various ways. The most straightforward

application is to protect the 3D object. Copyright information, such as author or

creation date etc, can be embedded in order to protect the intellectual property of

the 3D model. In a virtual 3D object market, an artist creates some wonderful 3D

models. Then he can save the information such as website, price, even barcode to

the object. Once the author finds some unauthorized copy over the Internet, he

can claim his copyright by retrieving his own watermark code from the 3D model.

Fragile watermarking can be used as an authentication or tampering detection tools.

The watermark will disappear when a watermarked object is modified and ideally

the detected information can tell where and how the mesh is modified.

In a 3D database, we can incorporate the information such as, database index,

mesh description, category etc, into the mesh. In a large database, some objects may

have the similar semantics with little different features such as two hands shown in

Figure 1.2. In this case, the watermark can distinguish the two objects to accelerate

the recognition or retrieval of relevant data about the given object.

It would be very difficult to replicate a 3D scene if it contains thousands of

objects of various types and sizes. But if every object is embedded with a message

describing its location in the scene, it would make the rendering like a jigsaw puzzle

game. Using a steganography method [24], we may be able to incorporate the

information of colour, material or texture of each vertex into the mesh itself. This
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Figure 1.2: Two hands

can save lots of storage space and rendering time.

All in all, a lot more applications of using 3D watermarking algorithms in the

real world can be imagined. However, there is currently no 3D algorithm that is

accepted in general and applied especially in commercial and industrial market. My

opinion is that the 3D algorithms proposed so far, especially the robust and blind

algorithms, all introduce observable distortion and do not find a proper balance

between the visual distortion and robustness.

1.3 Contributions

There are four major contributions in my thesis.

• A novel robust and blind watermarking algorithm based on the spectral domain

is proposed in Chapter 3. It uses the statistical characteristics of the spectral

coefficients to embed the message.

• A novel robust and blind watermarking algorithm based on geodesic distances

is proposed in Chapter 4. It solves a reverse problem of calculating geodesic

distance and guarantees a minimum distortion when modifying the geodesic

distance.

• A novel object surface error function is proposed in Chapter 5. This function
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can be used to describe the similarity between two local surfaces.

• A novel optimization watermarking methodology minimizing the error function

while satisfying the watermarking constraint is proposed in Chapter 5. This

algorithm, from the experiments, achieves the best perceptual and objective

mesh quality, over all robust and blind watermarking methods, with respect

to the original object surface while possesses a very high robustness. The

optimization method bridge the gap between the surface error metric and the

watermarking embedding.

In Chapter 3, the message is embedded by modifying the statistical features of

the spectral coefficients of a 3D model. The method is the first one that analyze the

spectral coefficients statistically and which is blind in the detection stage.

The method in Chapter 4 is motivated by the observation that the distribution

of geodesic distances within a region of the surface is uniform. The message is

embedded by changing the statistical features of the geodesic distribution to embed

the message. We propose a novel method to solve the problem how to move a vertex

in order to satisfy a given geodesic distance on the mesh.

There are two watermarking methods proposed in Chapter 5 and both share

the same motivation with Cho’s method in [31]. The first method called Quadric

Selective Placement (QSP) method proposes a discretization method to minimize

the surface distortion, while the second method named as L-M method proposes to

use an optimization procedure to optimize the distortion with respect to a novel

surface error function.

The robustness of the methods proposed in each chapter, from Chapter 3 to

Chapter 5, is increasing, while their corresponding distortion produced in the graph-

ical objects is decreasing.

1.4 Thesis Structure

The thesis is structured as follows:

• Chapter 2 gives a comprehensive literature review of the 3D watermarking

algorithms.
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• Chapter 3 proposes a robust and blind watermarking algorithm using the

spectral domain.

• Chapter 4 proposes a robust and blind watermarking algorithm based on the

statistical features of the geodesic distances.

• Chapter 5 proposes two robust and blind watermarking algorithms based on

the optimization with respect to surface error functions.

• Chapter 6 gives the conclusion of the thesis and the future work.

11



Chapter 2

Literature Review

Since the 3D watermarking was firstly introduced by Ohbuchi [96,97], it is becoming

an active research area during the last decade. 3D watermarking is inspired from

the image watermarking and video watermarking [20, 37, 58, 101, 112, 117, 130, 147].

However, as explained in Section 1.1.4 on page 5, the techniques in 2D watermarking

can not be directly applied to 3D watermarking.

Generally speaking, the 3D watermarking can be classified into transformed do-

main watermarking and the spatial domain watermarking from the perspective of the

embedding domain. Then the transformed domain methods can be further split into

spectral methods and multiresolution methods. In this chapter, I will firstly com-

prehensively survey the transformed domain methods followed by that of the spatial

domain methods. We focus mainly on the robust methods and briefly mention the

others. Then we introduce the assessment methodology of the 3D watermarking

algorithms.

2.1 Spectral domain algorithms

The methods of mesh spectral analysis are inspired by the development of spectral

graph theory [26], signal processing and the kernel principal component analysis

and spectral clustering in the computer vision and machine learning [146]. The

mesh spectral analysis of a given mesh object O with N vertices generally has the

following three steps in common:
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1. A square Laplacian matrix L of size N × N is constructed. The Laplacian

matrix which is a discretization of a continuous operator represents a discrete

linear operator based on the connectivity of the input mesh.

2. The second step is almost identical for all methods. This consists of to eigen-

decomposing the matrix L.

3. Process the calculated eigenvalues usually by embedding constraints or by

adding noise, i.e. frequency coefficients, and the eigenvectors, i.e. the or-

thonormal eigenspace.

The Laplacian matrix L is a square matrix which characterizes the pairwise in-

formation (also called affinity in the literature) between any two vertices on the

mesh O, e.g., Li,j reflecting the weight between the ith vertex and the jth vertex.

The Laplacian operator has a strong physical meaning which is equivalent to a sec-

ond order differential operator in physics in the study of wave propagation, heat

diffusion, electrostatics and fluid mechanics. Because the matrix encodes the one

ring neighbourhood information of the mesh, it can also be considered as a convo-

lutional kernel from the signal processing perspective. According to the different

requirements, the Laplacian matrix can be used to simulate different continuous

operators. Not only the connectivity information can be considered but also the

geometric information can be embedded in the matrix as well.

Because the Laplacian matrix L is square and positive semi-definite, it means

the eigen-decomposition produces a set of non-negative eigenvalues and a set of

orthonormal eigenvectors. Chung [26] stated that Laplacian eigenvalues are closely

related to almost all major graph invariants. In other words, the eigenvalues contain

most of the information about the characteristics of the shape. Inspired by such

properties, the graph spectra are used for shape matching and retrieval in computer

vision [21, 81] and for indexing [64, 107]. On the other hand, eigenvectors provide a

more refined shape characterization [146]. Furthermore, the eigenvectors have much

wider applications including object segmentation [85,111,136], clustering [10,15,127,

128], parametrization [53,148] and shape matching [21,48,108,114].

Instead of using the eigenvalues and eigenvectors directly, the eigenvectors can be

used similarly to Fourier descriptors. And the spectral coefficients can be obtained

13



by projecting the mesh geometry, i.e. the vertex coordinates, onto the orthonormal

eigenspace defined by the eigenvectors. The coefficients also contains the energy

and global information of the mesh global information. They can be used in various

ways such as geometry compression [68], mesh watermarking [89,90,98,100] and as

Fourier descriptors [129].

In the following of this section, the watermarking methods are classified accord-

ing to the type of basis functions used in the spectral analysis. Methods based

on Combinatorial Laplacian are firstly introduced. Most of the spectral 3D water-

marking methods belong to this branch. Methods based on manifold harmonics is

followed and lastly the other types of spectral methods.

2.1.1 Combinatorial Laplacian methods

A combinatorial Laplacian is a matrix operator that solely depends on the connec-

tivity of the mesh. It treats the pairwise relation as a binary delta function, i.e.

if vi is connected with vj, the corresponding entry is 1 otherwise, is 0. The idea

was firstly introduced by Taubin [118] to approximate low pass filters. Kaini et

al [68] compress the mesh geometry making use of the eigenprojections. Zhang [145]

studies several variants of combinatorial Laplacian and their properties for spectral

geometry processing and JPEG-like mesh compression.

Most of the spectral watermarking methods so far tend to embed the message

in the spectral coefficients called eigenprojections in some papers. This is because

the basis functions, i.e. eigenvectors, of the combinatorial Laplacian operator are

stable and insensitive to the geometry changes since only the connectivity is con-

sidered in the matrix. Thus, after watermarking, the connectivity is not changed

so the watermarked coefficients can always be detected. Some of the watermark-

ing methods [2, 98] tend to remesh the mesh object ensuring the connectivity is

consistent.

2.1.1.1 Theoretical background

We first briefly review the theoretical background of spectral analysis using the

combinatorial Laplacian based on the work proposed by Karni et al [68]. Given a

14



mesh object O containing N vertices, the Laplacian matrix of dimension N ×N is

built according to its connectivity as follows:

Li,j =


|Nvi

| if i = j

−1 if i 6= j and vi adjacent to vj

0 otherwise

(2.1)

where |Nvi
| represents the valence of the vertex vi, i.e. the number of its neighbours

directly connected to it. Then, the Laplacian matrix is eigen-decomposed as:

L = qTΩq (2.2)

where Ω is the diagonal matrix containing the eigenvalues and q is the matrix

consisting of the eigenvectors. The eigenvector matrix q is sorted in the ascending

order according to the magnitude of its corresponding eigenvalues in the diagonal

matrix Ω. While the eigenvalues in Ω are considered as frequencies, q constitutes

an orthonormal basis of the mesh O. The spectral coefficients are calculated by

projecting the vertex coordinates on the basis functions defined by the eigenvectors

q:

C = qV (2.3)

where V is the matrix containing the geometry of the vertex coordinates. The

spectral coefficients of low frequencies, i.e. the coefficients correspond to the small

eigenvalues in Ω, reflects the general shape or the large scale information of the

mesh. In contrast, the high frequency coefficients indicate the details or the small

scale information of the mesh. Figure 2.1 shows a set of spectral coefficients. 90%

of the mesh energy is contained in the low frequency, while the energy in the high

frequency is much lower. To reverse the transformation process, the geometry can

be recovered as:

V = qTC (2.4)
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Figure 2.1: A plot of spectral coefficients.

2.1.1.2 Non-blind methods

Ohbuchi et al proposed a non-blind method in 2001 in [100] based on Karni’s anal-

ysis from [68]. This is the first 3D watermarking method based on the spectral

domain. The method applies the spectral analysis employing the basis functions of

the combinatorial Laplacian. The message is embedded by slightly modifying the

low frequency and medium frequency coefficients. In the detection stage, both the

original object and the watermarked object need to be spectrally decomposed. The

embedded information is retrieved by comparing the difference of the spectral coeffi-

cients between the original and the watermarked ones. However, any modification to

the combinatorial Laplacian would result in different eigenvectors. So the algorithm

is sensitive to any of the attacks that modifies the connectivity of the mesh. Fur-

thermore, the method is computational expensive. The matrix eigen-decomposition

requires O(N3) complexity. Thus, although any mesh can be spectral decomposed

theoretically, it is not feasible to do so in a large mesh in practice.

In 2002, Ohbuchi et al extended their previous work in [98] in three directions.

The mesh size was reduced by splitting it into several patches. Each patch is used to

carry a set of bits. A more efficient numerical method called Arnoldi [52] is employed

to eigen-decompose the Laplacian matrix. The Arnoldi method can calculate the

leading spectral coefficients as required, instead of calculating the full set of the

eigenvectors. Finally, the 3D object is remeshed before detection in order to recover

the original connectivity such that the Laplacian Matrix is identical to the original
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one. The method proposed in 2002 is resistant to the connectivity alteration attacks

like mesh simplification and cropping because the connectivity is enforced to be

the same in the detection stage. This method is computationally more efficient

as not only the matrix size is reduced but also the numerical routine for eigen-

decomposition is improved. In 2004, Ohbuchi et al and Cotting et al proposed

two similar methods in [36, 99] to extend the ideas from the other papers to the

point sampled object. Although the object is in point cloud format, the intrinsic

connectivity is built before constructing the Laplacian Matrix.

Lavoué et al proposed a similar method as Ohbuchi’s to watermark subdivision

surfaces [77, 79]. The message is embedded in the control mesh (called also base

mesh) of the subdivided mesh. Control mesh is the lower-resolution version of the

original mesh after the wavelet decomposition. In the message retrieval, the control

mesh synchronization need to be done on the attacked model so as to detect the

message. There are two improvement of Lavoué’s method over Ohbuchi’s methods.

Firstly, Lavoué proposed a so-called Low Frequency Favoring (LFF) modulation

scheme. The full range of spectrum can be used for embedding by employing the LFF

scheme. The LFF takes the magnitude of the spectral coefficients into account and

adaptively embed the watermark. For the high frequency coefficients, i.e. a small

numerical value, the embedding strength is adjusted to a smaller value. Moreover,

the capacity of the watermark and the imperceptibility is optimized using error

correcting codes. A large message can be encoded using a relatively small number

of bits. The method claimed a 20% improvement of the watermark robustness over

Ohbuchi’s method [98].

All these methods are non-blind and the bit carriers are the low frequency and

medium frequency coefficients. The main strength of these methods is the relatively

high robustness. Nevertheless, the premises is made that the original object must

be present in the message retrieval stage. There are three disadvantages. Firstly,

the original object is required to recover the original connectivity. This involves ex-

tra steps and computational cost. Secondly, the computational cost is higher than

spatial domain methods in general. Thirdly, it is hard to control the distortion.

Although there are embedding strength parameters in order to control the visual

distortion, there is no explicit relation between the coefficients and the vertex co-
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ordinates. Therefore, decreasing the embedding strength is the only way to reduce

the visual distortion. Furthermore, the distortion is large because the change of low

frequency will change the general shape of the object.

2.1.1.3 Blind methods

Cayre and Alface et al proposed a blind algorithm [23] based on the spectral do-

main in 2003. A mesh object can be considered as a three dimensional signal, i.e.

(vx, vy, vz), we can have the corresponding spectral coefficient triplet (Cx, Cy, Cz).

Every triplet is considered as an embedding primitive. The triplet is sorted in the

ascending order and the maximum Cmax = max(Cx, Cy, Cz) and minimum value

Cmin = min(Cx, Cy, Cz) are regarded as the modulation range. The mean value

Mean = (Cmax + Cmin)/2 is used to distinguish the bits 1 and 0 intervals. When

embedding a 1 bit, the medium coefficient is moved into the interval of values cor-

responding to the bit 1 and vice versa. Figure 2.2 shows an example of the triplet

embedding. The embedding message is inserted repetitively into the low and medium

frequency to ensure the robustness. The method is the first blind algorithm based

on the spectral domain, but its robustness is very limited.

Figure 2.2: Cinter is moved into the 1 bit interval when embedding 1 bit. Figure is
taken from [23].

Alface et al in 2005 [2] proposed to segment the 3D object into patches for reduc-

ing the embedding complexity while the core embedding method is still the same as
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Cayre’s method [23]. Firstly, the feature points are automatically selected through

a multi-scale estimation of the curvature tensor field. Then, the algorithm proceeds

by partitioning the mesh shape using a geodesic Delaunay triangulation of the de-

tected feature points. Each of these geodesic triangle patches is then parametrized

and remeshed by a subdivision strategy to obtain a robust base mesh. The remeshed

patches are watermarked in the spectral domain and original mesh points are finally

projected on the corresponding watermarked patches. The automatic feature point

detection and the patch generation are the main contribution of Alface’s method.

The core watermarking process is basically identical with Cayre’s method. Thus, it

suffers from the low robustness problem as well.

All these methods are blind The main embedding idea is to encode information

into the coefficient triplet. A lot of efforts are made on the preprocessing steps such

as the robust feature points detection and the patch generation. And the spectral

decomposition is made on the remeshed and parametrized model. The robustness of

those methods somehow depend on the robustness of the pre-processing stages more

than the embedding itself. Same as in Ohbuchi’s methods mentioned in the previous

section, Alface’s methods embed the message in the low and medium frequencies. In

other words, it embeds the message into the “shape” of the object. The algorithms

show certain robustness. And lastly, the methods strongly rely on the pre-processing

of the robust feature points, patch generation, parametrization and remeshing.

2.1.2 Manifold harmonics

Although the combinatorial Laplacian has the perfect reversibility and it is simple

to implement, the lack of the geometry information makes it inadequate to describe

the feature of an object. There is another kind of discrete Laplacian which deals

with the geometry properties of the mesh, called Manifold Harmonics, proposed by

Vallet [126]. Its transformation is called Manifold Harmonics Transform (MHT).

The Manifold Harmonics injects the geometry information by calculating the

cotangent (cotan) weights of the one ring neighbourhood. The weight between vi

and vj is measured by the cotan angle opposite to the edge formed by the two

vertices [41, 93]. The cotan weight derived from Finite Element Modeling [135] has
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been proved a close relationship with the surface curvature [93]. They converge to the

continuous Laplacian under certain conditions as explained in [11,60]. Nonetheless,

the cotan weights are calculated by the dual cell area of each vertex, which is non-

symmetric. Thus, the cotan weights can not be used for the spectral analysis directly.

Lévy tried empirical symmetrization in [82]. Vallet et al clarify these issues based on

a rigorous Discrete Exterior Calculus (DEC) [55] formulation and recover symmetry

by expressing the operator in a proper basis [126]. The symmetry property ensures

its eigenfunctions are both geometry aware and orthogonal as well.

2.1.2.1 Theory background

In this section, we clarify the theoretical issues of the Manifold Harmonic Transform.

Similar to the Laplace operator in Euclidean space, the Laplace-Beltrami operator

∆ is defined as the divergence of the gradient for functions defined over a manifold

O with its metric tensor. The eigenfunction and the eigenvalue pair (Hk, λk) of ∆

on manifold O satisfy:

−∆Hk = λkH
k (2.5)

The above eigen-problem is then discretized and simplified within the finite element

modeling framework as the following matrix equation:

−Qhk = λkDhk (2.6)

where hk = [Hk
1 , H

k
2 , . . . , H

k
n]
T , the N ×N matrix D is diagonal and called lumped

mass matrix as:

Di,i =

∑
t∈NFi

|t|

 /3 (2.7)

where NFi
is the number of neighbouring faces of vertex vi. t is a neighbour of

vertex vi. |t| gives the area of the triangle. The matrix Q called stiffness matrix is

also of size N ×N :  Qi,j = (cot(αi,j) + cot(βi,j)) /2

Qi,i = −
∑

j Qi,j

(2.8)

where αi,j and βi,j are the two angles opposite to the edge ViVj. The Manifold

Harmonics Basis can be calculated by eigen-decomposing the matrix Q in equa-
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tion (2.6). The frequencies are represented by the corresponding eigenvalues. Let

us define vector x = (x1, . . . , xN) (respective y and z) containing the x coordinates

of the mesh. With the Manifold Harmonics Basis, the kth spectral coefficient can be

calculated as:

cxk =< x,hk >=
n∑
i=1

xiDi,iH
k
i (2.9)

Thus, the amplitude of the spectral coefficients is defined as:

ck =
√

(cxk)
2 + (cyk)

2 + (czk)
2 (2.10)

The object can be exactly reconstructed by using the inverse manifold harmonics

transform. For coordinates x (resp. y, z), we have

xi =
n∑
k=1

cxkH
k
i (2.11)

With the geometry information embedded in the operator, the spectrum obtained

from the MHT nicely captures shape characteristics of the object. However, on the

other hand, the side effect is that when the geometry of the mesh is changed, e.g.

watermarked, the approximation matrix Q will be changed. Thus, if we apply

the MHT again on the modified mesh, we can no longer retrieve the watermarked

coefficients again. The causality problem is the major obstacle of using the MHT to

design a watermarking method. People tend to use the iteration methods to recheck

the coefficients to ensure a successful embedding [86].

Another major contribution of Vallet’s work is a band-by-band spectrum com-

putation algorithm and an out-of-core implementation that can compute thousands

of eigenvectors for meshes with up to a million vertices. These make the spectral

analysis directly usable in practice on a large mesh object, besides its common use

as a theoretical tool.

2.1.2.2 Blind methods

Since the Manifold Harmonics Basis incorporates more geometry information of the

mesh object, it captures more shape information rather than when considering topol-
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ogy only. The spectrum obtained from the MHT is very stable and consistent for

the other object representations. It means that the attacks like mesh simplification,

resampling and remeshing, which do not alter the shape of the object, will not affect

the spectrum very much. Because this feature of the MHT, it becomes a popular

transformation technique to devise robust watermarking schemes. In this section, I

will briefly introduce two recent robust and blind algorithm based on the manifold

harmonics transform proposed by Vallet et al [126].

Liu et al [86] proposed a robust and blind algorithm based on the manifold

harmonics in 2008. The method takes the medium frequency coefficients as the

embedding domain. The authors experimentally show that the medium frequency

changes affect the spectrum very little and can be accepted for watermarking pur-

pose. Every ten coefficients are grouped as a embedding primitive used to carry one

bit of message. Two embedding methods were proposed, one is called progressive

embedding and the other is non-progressive embedding. The progress embedding

picks one coefficient magnitude from the primitive and calculate the mean value of

the other nine coefficient magnitudes. The selected embedding candidate magni-

tude is moved more than the mean value for embedding a 1 bit and less than the

mean value for embedding a 0 bit. In order to overcome the causality problem, i.e.

the watermarked coefficients can not be exactly recovered from the watermarked

model, the method iteratively check the coefficients until it satisfies the embedding

condition. While the assumption is made that a small change on the medium range

spectrum will not affect the shape of the spectral coefficients significantly. The ex-

periments show certain robustness against various attacks when 5 bits of message

are embedded.

Wang et al [133] proposed another robust and blind algorithm based on the

MHT in 2009. Unlike Liu’s method where only 5 bits of message a embedded,

Wang’s method is able to carry 16 bits of message. The scalar Costa scheme [46]

which is a quantization algorithm is used to modulate the low frequency coefficients

to embed the message. The unique code-book generated from the Costa scheme

ensures a good security of the algorithm. The spectral coefficients are repetitively

embedded and iteratively checked to avoid the causality problem. The author argued

that although the low frequency changes introduce a large numerical error on the
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mesh object, human eyes are not sensitive with respect to distortion of the large

scale changes [78]. The method was compared with Liu’s method [86] and Cho’s

method [31] and shows a good result on both visual quality and robustness.

2.1.3 Other transformed methods

Other transformed domain methods includes Singular Spectrum Analysis (SSA)

[94], Discrete Cosine Transform (DCT) [65], spherical parametrization [83], Oblate

Spheroidal Harmonics [75].

The Singular Spectrum Analysis is assuming a time series of the object geometry.

The time series is virtually the vertex order in the object file. Murotani et al [94]

proposed a non-blind algorithm based on the SSA in 2003. The spectrum is then

computed using the SSA for the trajectory matrix derived from the vertex series

and used for watermarking. The original object is required in the detection stage to

retrieve the watermark. The experiments show the algorithm is robust against the

similarity transforms and the additive noise. The algorithm is a spectral domain

method but obviously the assumption of the time series in SSA is not robust and

the watermark can be easily destroyed. Any attack that modifies the vertex order,

for instance a vertex reordering, will fail the algorithm.

Jeon et al [65] applied the Discrete Cosine Transform (DCT) to devise a 3D

watermarking algorithm. The algorithm generates a set of triangle strips according

to a secret key. The strips are then transformed into the spectral domain using

DCT. The mid-frequency band of AC coefficients are used to carry the watermark

in order to balance the trade-off between the robustness and the imperceptibility.

The authors claim three advantages of using triangle strips. 1. The user who doesn’t

know the starting face for creating triangle strips can not distinguish a watermark

pattern. 2. The triangle strips also have the property of mesh partition, it can be

considered as a subset of the mesh object. 3. Finally, inserting the message into

multiple strips strengthen the robustness. As proved experimentally, the method is

rather robust against the additive noise attack and geometry compression. However,

it is not resistant against any attacks that alter the connectivity of the mesh.

Li et al [83] proposed a non-blind method based on the spherical parametriza-
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tion in 2004. The geometry of a 3D object is transformed into spherical signals

using a global spherical parametrization and an evenly sampling scheme. Spherical

harmonic transformation is then applied to generate frequency coefficients for em-

bedding watermarks. The algorithm shows a good robustness against the additive

noise attack.

In 2005, Wu et al [139] argued that the Combinatorial Laplacian spectral method

does not encode any geometric information in the discrete operator. In addition,

the inverse of a large matrix is computationally unfeasible. Wu et al introduced

a new set of geometry dependent orthonormal basis functions derived from the

Radial Basis Functions. By using the scheme, the main features of the mesh object

can be recovered by using just a few spectral coefficients. The advantage of the

new basis functions is that its computation is significant faster than the Laplacian

based functions. However, the same as the other non-blind spectral methods, the

message detection relies on the mesh registration, resampling and remeshing. As a

consequence, the robustness benefits from those extra steps.

In 2009, Konstantinides et al [75] proposed a blind and robust method based

on the Oblate Spheroidal Harmonics. The transform is based on the use of one

of the many variants of oblate spheroidal harmonics; namely the Jacobi ellipsoidal

coordinates [54, 120]. The algorithm realigns the mesh object by translating the

object onto the mass centre, uniformly normalization and PCA rotation. However,

the robustness of these traditional alignment methods can be severely affected by

attacks. Thus, a smoothing scheme is proposed prior to the alignment. This is based

on the observation that attacks like noise, resampling, remeshing and mesh simpli-

fication tends to alter the high frequency properties, while the smoothing tends to

eliminate the high-frequency attributes, the smoothed versions of the attacked mesh

and the intact one converge to roughly the same one. Patches are then generated

on the smoothed surface while the patch centre is established as the intersection

between an randomly-generated ray and the object surface. The radius of the patch

is defined according to the geodesic distance. While the patch is generated on the

smoothed surface, the points are sampled on the original object by projection from

the smoothed version to the original one. When the preprocessing steps are all

completed, the patches are spectral transformed and the watermark is embedded
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in the spectral coefficients. The algorithm is compared with the state of the art

algorithm proposed by Cho et al [31] and the results show a better robustness and

better visual quality. However, the algorithm involves too many preprocessing steps

like reorientation, patch generation and sampling etc. Moreover, the capacity of the

algorithm is quite low and it is tested for embedding only 7 bits of message is tested

in the experiments.

Ai et al [1] introduced a method that firstly find out the feature points from the

rapid changing regions. The mesh is uniquely segmented into Voronoi patches using

those feature points. Each patch is used to generate a range image. A Discrete

Cosine Transform is then applied on the range image and the bit message is inserted

into the high frequency of the image. The algorithm is robust against various attacks

including mesh simplification, additive noise and cropping etc. This method directly

applies 2D image watermark techniques to the 3D methods by generating the range

image of the mesh object.

2.2 Multi-resolution methods

2.2.1 Regular wavelet decomposition

Except the classic Fourier-like analysis, another traditional approach used in signal

processing area is the multiresolution analysis. The basic idea behind multiresolution

analysis is to decompose a complicated function into a “simpler” low resolution part,

together with a collection of perturbations, called wavelet coefficients [87]. While

in the case of a 3D mesh object, the original 3D mesh itself is considered as a

function. The object is analyzed using the so-called lazy wavelet transform [113].

In the transform, the object is filtered with a wavelet function. A base mesh is then

generated i.e. the base mesh is the analogy of the low-resolution function and it

should be a good approximation of the original denser one. The information that is

lossy in the base mesh is stored in the wavelet coefficients. Thereafter, the 3D object

is iteratively analyzed using the different scale of basis functions. The functions with

different scales are orthogonal. The object can be decomposed into different level of

details as shown in Figure 2.3. The scheme proposed by Lounsbery et al [87] requires
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that the mesh must fit a 4-to-1 subdivision connectivity scheme, i.e. a vertex can

only connect with six neighbours. Because of the restricted requirement of the mesh,

the wavelet transform described by Lounsbery et al [87] is also called regular mesh

wavelet transform. Any mesh can be easily converted to the regular mesh using the

method proposed by Eck et al [45].

Figure 2.3: Wavelet decomposition [87]

To formulate the wavelet transform in a more rigorous manner, we have:

Vj = AjVj+1

Wj = BjVj+1
(2.12)

assuming that Vj+1 denotes the matrix whose row corresponds to the vertex coor-

dinates at the resolution level j + 1. Then Vj is the one level lower resolution. Wj

is the wavelet coefficients which is the lossy information from resolution level j + 1

to j. Aj and Bj are called the analysis filters at resolution level j producing the

base mesh (base function) and the wavelet (lossy information), respectively. The

transform can be reversed by adding the lossy information contained in the wavelet

coefficients back to the base mesh as:

Vj+1 = PjVj + QjWj (2.13)

where Pj and Qj are called synthesis filters. An interesting mathematical relation

between the synthesis filters and the analysis filters is defined as:

[
Pj|Qj

]
=

[
Aj

Bj

]−1

(2.14)
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Kanai et al firstly employed the wavelet framework and developed a non-blind

3D watermarking algorithm in 1998. They argue that the human eye is not sensitive

to the small geometric changes in the bumpy areas. While the norm of the wavelet

coefficient vector |wj
i | indicates the degree of the bumpiness of the small area near

around wj
i [67]. The larger the norm, the bumpier the area. Thus, only the wavelet

coefficient vectors that are larger than a certain user-specified threshold are selected

as the watermarking domain. Furthermore, the geometric error is also strictly con-

trolled so that the largest change of the wavelet can not beyond certain level. The

vector is modulated to carry the watermark and the message can be recovered by

comparing the wavelet of the original mesh.

Uccheddu et al [124] proposed a blind algorithm. The watermark is embedded

by modulating the norm of the wavelet coefficient vector. The change of the norm

is determined by the look up table generated by a secret key.

Cho et al [32] proposed a fragile watermarking algorithm using the wavelet trans-

form. And Wang et al [131, 132] proposed a hierarchical watermarking algorithm

using the wavelet. Three watermarks can be inserted in different appropriate reso-

lution levels obtained by the wavelet transform. The robust watermark is stored in

the lowest resolution by modifying the norms of the wavelet coefficient vectors. The

fragile watermark is embedded in the high resolution level. And the high-capacity

watermark is inserted in one or several intermediate levels.

In conclusion, the watermarking methods based on the regular wavelet transform

[87] such as proposed by Kanai et al, Uccheddu et al, Cho et al and Wang et al,

are rather similar. The basic idea is to modulate the wavelet coefficient norms

to embed the message. The weight of the modulation is controlled using different

quantization methods or lookup tables. There are four main advantages of using

the wavelet transform.

1. As the norm of wavelet vector implicitly characterize the bumpiness of the

local surface, and human eyes are not sensitive to the changes in the bumpy

areas, it is easy to define the area that is more suitable for watermarking than

the others.

2. The watermarks can be embedded in different resolution levels. Furthermore,
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as the low resolution represents the low frequency and high resolution contains

more about the high frequency information, various resolution levels can be

watermarked for different purpose as Wang et al did in [131,132].

3. Not only the wavelet coefficient vector can be watermarked, but also the base

mesh. This gives a broader range of the embedding domain.

4. The lazy wavelet transform enables researchers to define a clear geometric re-

lation between the surface distortion and the upper bound of the modification

of each wavelet coefficient vector.

On the contrary, because the strict limitation of the regular mesh wavelet decom-

position, there are two obvious disadvantages of this class of methods:

1. The transform works only on the restricted topological class of the mesh, i.e.

the mesh must be in a 4-to-1 subdivision connectivity schemes. Every vertex

can only have six neighbours.

2. This class of methods are not robust against any connectivity attacks like mesh

simplification, cropping and remeshing etc.

2.2.2 Other multi-resolution methods

There are other multi-resolution analysis methods on mesh with arbitrary connec-

tivities rather than the restricted 4-to-1 connectivity. Progressive mesh [61] was

proposed by Hoppe. The method employs the restricted edge collapse operation

which is chosen deterministically with the goal of preserving the surface of the orig-

inal mesh. This operator is applied iteratively until it reaches a coarse base mesh

and it is accompanied with a sequence of vertex split operations. Praun et al de-

veloped a method based on the progressive mesh [104]. Firstly a number of basis

functions are constructed. The boundary of the basis functions are defined in the

coarse base mesh of the progressive representation. Then, the vertex within each

region is displaced according to a interpolation function. In the message extraction,

the observed mesh should be re-synchronized and resampled with the original mesh.

Valette et al extends the wavelet decomposition to the irregular mesh in 2004

[125]. In this paper, a set of well-designed wavelet codebook is constructed in order
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to match an arbitrary local connectivity scheme. Instead of contract four triangles

into one as the regular wavelet transform, the irregular transform is able to deal

with 2-to-1, 3-to-1 and 4-to-1. The extension work is also used for watermarking.

Kim et al [70] propose a method based on Valette’s irregular wavelet. The idea

is not surprisingly the same as the regular wavelet methods, i.e. the norm of the

wavelet coefficient vector is modulated to embed the message. However, because

the irregularity of the connectivity of the mesh, Valette’s wavelet method in fact

needs a starting triangle to proceed the decomposition process. Thus, the wavelet

decomposition will not produce the same base mesh or the wavelet sequence if the

connectivity is changed. Therefore, the algorithm is not robust against the mesh

simplification attacks.

2.3 Spatial domain algorithms

Spatial domain methods consist of embedding the message in the geometry or the

connectivity of the mesh directly. Thus, there are three characteristics of the spatial

domain methods. First of all, it is easy to apply constraints on the mesh and

the constraint can be easily recovered and detected blindly. Secondly, because the

geometry and connectivity define the appearance of the surface, it enables the user

to explicitly control the watermarking distortion on the object surface. Finally,

spatial domain method does not have the extra transformation steps, they are much

more computationally efficient than the transformed domain methods. These three

features determines that the spatial domain is more suitable for blind or fragile

watermarking as well as for steganography applications.

From the purpose or the application point of view, the 3D methods can be classi-

fied into three sets: robust watermarking, steganography and fragile watermarking.

Almost all transform domain methods are robust watermarking algorithms with a

few exceptions of the wavelet methods. In fact, although the wavelet transform

analyze the object using a set of orthogonal basis functions, the manipulations are

directly on the geometry. On the other hand, spatial domain is used in all the

three classes of algorithms. In my research, all my methods are blind and robust

watermarking algorithms. Therefore, in this literature review of the spatial do-
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main methods, I will mainly focus on the robust methods in the spatial domain.

Steganography and the fragile watermarking will be briefly reviewed for completion.

2.3.1 Robust methods

Benedens et al in 1999 proposed one of the first robust 3D watermarking methods

based on the spatial domain in [16]. This method groups the vertex normals as

the watermarking bins and each bin is used to carry one bit of message. The

message is embedded by carefully modifying the normal distribution of each bin.

The experiments show that the algorithm has a good performance against the mesh

simplification attack. Because the mesh simplification attack tends to preserve the

surface and thus the vertex normals are not likely to be changed a lot. While it is

more problematic in the noise attack which randomly modifies the geometry of the

surface.

Harte and Bors published a paper [57] in 2002 and proposed to embed the mes-

sage using the local moments. The work was completed by Bors in 2006 [19]. Two

schemes were proposed. One is to use the ellipsoid to model the local moments, while

the other places two parallel planes locally according to the geometry of a vertex

neighbourhood. The message is encoded by examining the position of the candidate

vertex with respect to the ellipsoid or the two parallel planes. The sequence order is

checked after the embedding to make sure the message can be recovered afterwards.

The algorithm is robust against the additive noise attack and smoothing up to a

certain level.

Yu et al proposed a spatial domain method based on the distance from vertex

to the object centre [141] in 2003. The vertices are firstly scrambled and divided

into sections using a secret key. The distances of vertices within each section are

then modified in order to embed one bit of message. The magnitude of the distance

change is adapted with respect to its original length to control the surface distortion.

In the detection stage, the observed model is synchronized and re-sampled with the

original model. The message is retrieved by comparing the difference between the

original length and the watermark length. The algorithm is robust against various

attacks including mesh simplification, additive noise and cropping etc. However,
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this method requires the original object to recover the message.

Zafeiriou et al proposed two spatial domain methods in 2005 [142]. The first

method uses individual vertex as the embedding primitive and it is robust against the

similarity transformation. The second one converts the vertices from the Euclidean

coordinate system (x, y, z) to the spherical coordinate system (ρ, θ, φ) first. The

vertices are clustered into groups according to their θ values. The assumption is

made on the distribution of the ρ component to be a Gaussian distribution within

each cluster. The message is embedded by modifying left variance or right variance

of the Gaussian distribution. The second algorithm shows a good robustness and

visual quality. Zafeiriou’s method is probably the first method in the spatial domain

that utilize the geometric statistical feature of the object to embed the watermark.

Cho et al in 2007 proposed a similar statistical method [31] combining the ideas of

Yu et al and Zafeiriou et al. In this work, the vertices are firstly clustered into groups

according to the distance from the vertex to the object centre i.e. ρ component of

the (ρ, θ, φ) spherical coordinate system. The observation tells that the distribution

of the ρ component is uniform within each bin. Two histogram mapping functions

are introduced to modify the mean value and variance value of the distribution

respectively as shown in Figure 2.4. The histogram mapping functions ensure the

statistical condition of the distribution is satisfied while the Euclidean movement

of the vertex is minimum. The method proposed by Cho et al is probably the

most robust 3D watermarking algorithm that does not require the original object

to retrieve the watermark.

(a) (b)

Figure 2.4: (a) change the mean value of the distribution (b) change the variance of
the distribution. Taken from [31].
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Alface et al in 2007 [3] applied Cho’s method locally and proposed a framework to

withstand the cropping attack. A number of robust feature points are automatically

detected and used as the source points. From those source points, geodesic waves

are propagated and the boundary of patches are defined as the intersections between

those geodesic waves. Each patch is used as a single message carrier. Alface et al

argue that the message can still be recovered as long as there is at least one intact

patch existing in the attacked mesh model. However, when the cropping attack

removes one of the feature points, the propagation intersection will be different.

Thus, neither the patch is recovered nor the watermark. Thus, the method is not

in fact totally solve the cropping problem. Furthermore, the robust feature point

proposed in their papers [2, 3] must calculate the geodesic maps for every single

vertex. So it is very computationally expensive and the complexity is approximately

O(N2 logN). So the method is of limited use in practice.

Hu et al [62] in 2009 extends Cho’s work by minimizing the mean square error

between the original mesh and the watermarked mesh under several constraints. The

assumption is made that the distortion is the same, but the robustness is improved.

In this method, the object centre is enforced to be the same as the original one.

The watermarked norms in each bin are carefully calculated to make sure a higher

robustness. The main improvement is made that the vertex is guaranteed to be

within the bin after watermarking and the gravity centre is not changed.

All the 3D watermark methods I developed are compared with Cho’s method.

This is because Cho’s method achieves the almost best robustness over all the other

methods in the literature. Furthermore, the two methods described in Chapter 5

are extension and generalization of Cho’s method. These two methods preserve the

robustness of Cho’s method, while the surface distortion is significantly reduced.

2.3.2 Other spatial domain methods

Except the robust watermarking algorithm, steganography and fragile watermark-

ing are the other two kinds of algorithms in the watermarking family. As we have

reviewed in the previous sections, robust watermarking is a technique that aims to

detect the embedded information even when the stego medium suffered from a cer-
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tain level of attacks. It is designed for copyright protection purpose. Steganography

and fragile watermarking are designed with different motivations in mind.

Steganography is a data transmission and storage technique. In this scenario,

the capacity is the most important criteria to evaluate a steganography algorithm

but not the robustness. This branch of algorithms usually use every vertex as a

embedding primitive. The sequence of the embedded message can be determined by

the connectivity [17]. The capacity can be increased by quantization [23], subdivision

[122], angles [30] and multilayer embedding [24].

Fragile watermarking, on the contrary to the robust watermarking, is designed

that the watermark should disappear when any attacks happens to the stego medium.

Therefore, it is used for authentication. In the message retrieval, if the information

is detected completely and correctly, then the object is intact, otherwise the mis-

matching message tells people the object is attacked or modified unintended. A good

fragile watermarking should be able to tell where the object is touched and what

kind of attacks it is suffered. The basic idea of fragile watermarking is to slightly

move the vertex to a predefined relationship. The relationship can be defined with

respect to its neighbours [33, 134, 140] or the centre of the object [138]. There are

two common problems that are frequently encountered in the fragile watermarking:

the causality problem and the convergence problem. The causality problem raised

when the neighbouring relationship of a former processed vertex is influenced by

the perturbing of its latter processed neighbouring vertices. The convergence prob-

lem means that the original model has been severely distorted before some vertices

reach the predefined relationship. The two problems should be carefully handled

when designing a fragile watermarking method.

2.4 Robust 3D watermarking assessment

Figure 1.1 illustrates the three most important aspects in the robust 3D water-

marking algorithm: distortion, robustness and the capacity. For a robust and blind

watermarking algorithm used for the purpose of copyright protection, most methods

accept that the payload of the embedded watermark is 64 bits. Thus, most of the

evaluation work are focused on the other two parts i.e. distortion and robustness. In
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this section, I will present the assessment approaches that are used in the literature.

2.4.1 Distortion evaluation

Evaluating the similarity of two 3D objects has been widely studied in the research

of the mesh simplifications. In general, there are Six classes of methods to measure

the error between the original mesh object and the target object.

1. Hausdorff distance comparison

2. Volume based measurement

3. Energy minimization measurement

4. Curvature based measurement

5. The projection image comparison

6. Human perceptual distance.

The Hausdorff distance is widely used to measure the similarity between two sets

of data including image comparison [63] and 3D comparison [12, 34, 56, 66, 74]. The

symmetric Hausdorff distance between an original mesh object O and a processed

object Ô is defined as:

H(O, Ô) = max(max(min(d(v, v̂))),max(min(d(v̂,v))), ∀v ∈ O, ∀v̂ ∈ Ô

(2.15)

The most popular implementation called Metro which is a Hausdorff distance mea-

surement was done by Cignoni et al [34]. It was originally designed to measure the

similarity between the simplified object and the original object. Now, researchers in

3D watermarking community also prefer to use the Metro tool to assess the distortion

introduced by the watermark embedding. As the Hausdorff distance is not symmet-

ric, two distances are evaluated: forward Ef (O, Ô) and backward Eb(Ô,O) root

mean square errors between O and Ô. The maximum root mean square (MRMS)

value is then used as the distortion measure:

E(O, Ô) = max{Ef (O, Ô), Eb(Ô,O)} (2.16)
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where:

Ef (O, Ô) =

∑
v∈O

min
v̂∈Ô

‖v − v̂‖

|O|
(2.17)

Eb(Ô,O) =

∑
v̂∈Ô

min
v∈O

‖v̂ − v‖

|Ô|
(2.18)

It is generally accepted that the Hausdorff distance is the best approximation mea-

surement to evaluate the similarity between two 3D objects. Therefore, in the rest of

our thesis, we will use the MRMS as the objective metric to evaluate the distortion

introduced by our watermarking methods.

Volume based measures have first been developed by Alliez et al [5]. The error

between two meshes O and Ô is defined as V (O, Ô), where V is a Lebesque formula.

The main argument is that if Ô is the best approximation of O then the volume

between both meshes is minimized.

Energy minimization measurements are mostly used in mesh simplification al-

gorithms that use the edge collapse strategy. The energy is nothing but a scalar

measuring the difference between the two surfaces. Garland proposed a Quadric

Error Metric (QEM) which calculate the sum of squared distances between two sur-

faces locally [50]. Hoppe used the elastic equations to measure the similarity [61]. In

fact, the error functions proposed by Garland and Hoppe have implicit connections

with the Hausdorff distortion, Volume and Curvature etc. QEM is by far the most

popular metric that is used in mesh simplification due to its accuracy and efficiency.

Curvature Based Distance has been proposed by Kim et al [71]. They argue

that the visual distortion should be measure according to the human vision which

is sensitive to curvature direction changes. The local error is then decomposed into

three distinct components, distance, tangential and discrete curvature. Lavoué also

proposed a perceptually-driven roughness measurement [78,80] to evaluate the visual

similarity between two meshes. This work tries to simulate the subjective human

eye behavior rather than calculating the objective distance between two meshes.

Similarly, Corsini et al [35, 51] proposed a objective roughness assessment.

A natural way to evaluate the similarity between two meshes is human eyes.

Therefore, Bian et al developed a novel human perceptual distance metric to evaluate
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the distortion introduced by mesh processing in [18]. The experiments show that

the difference estimates are well correlated with human perception of differences.

The last class of distortion measurement is to compare the similarity between the

2D projection images of 3D meshes [4,84,106]. This kind of measurements have the

same inspiration as the Lavoué’s perceptually driven roughness measurement [78,80]

and they are evaluating the distortion from the human eye perspective.

There is also another distortion measurement worth to mention called the Signal

to Noise Ratio (SNR) [142]. The error is calculated as the ratio between the sum of

the original signal, i.e. the sum of the vertex coordinates and the sum of the noise,

i.e. the Euclidean distance between vertices. However, as a mesh object is a 2D

manifold, Euclidean distance between every pair of vertices does not reflect the real

distortion between two surfaces. Therefore, we do not consider this error function

as an effective one to evaluate the distortions between two 3D objects.

Finally, as we have mentioned earlier, we will use the MRMS error produced by

the Metro tool which is the most popular and efficient Hausdorff distance implemen-

tation to measure the surface error between two objects. The Hausdorff distance

gives the most accurate and comprehensive description about the similarity of two

objects, and it is widely used in computer vision and computer graphics.

2.4.2 Robustness measurement

The other most important property of a robust watermarking method is, no surpris-

ingly, the robustness. The robustness means how much of the probability that we

can retrieve the same message as embedded when the mesh object is suffered from

some attacks. The most common and simple robustness measurement is the Bit

Error Rate (BER) (also called detection ratio), i.e. the ratio between the number

of bits that are correctly detected and the total number of bits embedded as: Let

M denote the original message to be embedded while M̂ is the detected message.

Then BER is defined as:

BER =

|M|∑
i=1

Mi == M̂i

|M|
(2.19)

where | · | gives the cardinality of the set.
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The Receiver Operating Characteristic (ROC) or simply the ROC curve is a

measurement for a binary classifier system to discriminate the probabilities of false

alarm Pfa and false rejection Pfr. The false alarm means that the detection asserts

the object is watermarked when the object is not in fact. Whilst the false rejection

describes the probability that the detection tells that the object is not watermarked

but it is actually. The operating point where Pfa == Pfr i.e. the Equal Error

Rate (EER) can be used as a quantitative estimation of the watermark detection

performance.

In the area of 3D watermarking, people generally consider that the BER is

sufficient to describe the robustness of a 3D watermarking algorithm. The algorithms

described in this thesis are all based on the statistical feature changes instead of a

single value modulation, ROC and EER are not necessary. Therefore, we use only the

BER (Detection Ratio) to evaluate the robustness of our watermarking algorithms.

2.5 Discussion of the watermarking literature

It is necessary now to briefly summarize the 3D watermarking methods. We here

discuss the advantages and disadvantages of the transformed domain methods and

the spatial domain methods.

2.5.1 About the transformed domain

There are various of transformation methods proposed in the last decade such as

spectral decomposition, multiresolution analysis, DCT and Radial Basis Function

etc. Informally speaking, the methods based on the transformed domain try to

analogize the techniques from the 2D data to 3D data. Although the transformed

domain algorithms are relatively successful in the conventional data type, they do

not gain the same success in 3D. The most important reason is that a 3D object is

not regular sampled, the connectivity is not regular either.

Different spectral decomposition methods use different set of orthogonal basis

functions of the mesh. The combinatorial Laplacian operator interprets purely the

topological information of the mesh object. The connection between vertices are
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characterized as a binary relation. So the combinatorial Laplacian is the analogy

between the graph Laplacian and Fourier transform. It implicitly assumes the uni-

form sampling of the mesh as pointed-out in [93]. Any geometric changes to the

vertices do not affect the basis function. Therefore, it is suitable for watermark-

ing due to its perfect reversibility. However, the major problem is also that the

operator solely depends on the connectivity. Then any change modifying the con-

nectivity like mesh simplification and remeshing will destroy the basis functions. As

a consequence, the spectra will be different.

Manifold Harmonics Transform (MHT), on the other hand, is another spectral

technique that use the discrete Laplace-Beltrami operator to encode the geometric

and topological information of the mesh. The relation between vertices are inter-

preted using a cotan weight which reflects not only the connectivity but also the

local surface curvatures. With the geometric information embedded in the operator,

the spectrum obtained by MHT is more descriptive and informative. On the other

hand, the basis functions are closely related to and can be affected by the geometry

due to the construction of the operator. So when watermark embedding modifies

the geometry, it may not be possible to retrieve the embedded message due to the

causality problem. The researchers using MHT to watermark the object argue that

the spectra will not change too much as long as the object is not strongly distorted

because the spectra is so descriptive.

There are also other spectral analysis methods, but in general, the ideas are

rather similar. The message is embedded by modulating the low or medium fre-

quency coefficients as the argument says the low frequency embedding is less dis-

torted and more robust. The human eye system is not sensitive to the low frequency

changes [75]. And the robustness is high because the large scale change of the ob-

ject is hardly to be modified. Many of the methods require the original object as a

reference in the detection stage, which is not practical in most applications.

As a summary, the advantages of the spectral domain watermarking are security

and robustness. It is debatable if the distortion is low or not. Firstly, the objective

distortion is large, like MRMS value. Secondly, it seems no subjective distortion

from a low resolution image (like images in the research paper). But the difference

is quite obvious on the computer when you see the real object with rotation and
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dragging stuff. Some researchers claim that as a blind method, people will not be

able to tell any distortion without the original object. But this is not acceptable

from a rigorous scientific perspective.

On the contrary, the computational efficiency is the main disadvantage of the

transformed domain methods. A number of techniques were developed for improving

the computation including mesh segmentation [89,98] and better numerical methods

[42, 76, 116, 126]. Fortunately, watermarking method is supposed to be an offline

application rather real time. Secondly, due to the obscure relationship between

the geometry and the spectral coefficients, there is lack of mechanism to explicitly

control the distortion with respect to the existing distortion evaluation tools [34]

etc.

Multiresolution is another kind of transformed domain methods. In this branch,

the regular wavelet decomposition is the most popular framework for watermarking

3D object [131,132]. Although the wavelet transform has very rigorous and profound

mathematical framework, the actual construction of the wavelet coefficients is rather

easy and intuitive. Therefore, the wavelet methods do not have the problem of the

high computation cost. Also, the vector norm of the wavelet coefficient explicitly

characterize the local surface roughness. It provides a natural way to select the

embedding region and strength. Thus, the wavelet method has been used for fragile,

steganography and robust watermarking. In contrast, the disadvantage of wavelet

method is obvious: it requires the mesh to be in a restricted connectivity scheme.

Even for the irregular wavelet method, the connectivity must be identical with the

original object in order to retrieve the watermark. So the watermark based on the

multiresolution method has limited applications in the real world.

2.5.2 About spatial domain and distortion measurement

So far, the spatial domain has been used in fragile watermarking [140], steganog-

raphy [23] and robust watermarking algorithms [31]. There are basically two ways

to embed the watermark. The first approach we name it as “single embedding”

consists of using a single vertex as an embedding primitive and implement some

constraint to carry the message. The second one named “statistical embedding”

39



consists of modifying statistical features. Single embedding is mostly used in the

fragile watermarking and steganography because it is not robust to attacks. How-

ever, its distortion is low and easy to control. Statistical embedding, on the other

hand, consist of using the statistical description as the embedding primitive. So it

is generally more robust. The trade-off is the relative high distortion.

In the current study of robust and blind watermarking in spatial domain, the

most important problem that I address is the surface distortion. Especially when we

modify the statistical features of an object, it is not easy to control the distortion

except adjust the parameter of the embedding strength. The distortion can be lower

with a lower strength parameter, but also the robustness will be lower in this case

In section 2.4.1, we introduced many existing surface distortion measurements.

However, there is no spatial domain watermarking method that explicitly uses any

one of the similarity measure to control the distortion. In addition, because the

measures are designed for various applications rather than watermarking, they are

not very suitable to control the watermarking distortion.
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Chapter 3

Spectral Watermarking of 3D

meshes

3.1 Introduction

Mesh spectral analysis is derived from the spectral graph theory, signal processing

and the kernel principal component analysis. The spectral coefficients are obtained

by projecting the mesh geometry onto a set of orthonormal basis functions obtained

from the structure of the mesh. The low frequency spectral coefficients reflect the

large scale information of the mesh, while the high frequency coefficients indicate

the local scale information. The mesh spectral analysis has been used extensively

in many area including: shape matching and retrieval [21, 81], indexing [64, 107],

segmentation [111, 136], clustering [128], parametrization [53] and geometry com-

pression [68].

Mesh spectral analysis has also been used in 3D mesh watermarking as reviewed

in Section 2.1. The computational complexity is higher than that of spatial domain

methods, even when using a decomposition scheme [124]. This shortcoming limits

the application of spectral methods to large meshes [91]. Thus, the application of

most spectral methods would require a mesh segmentation procedure in order to

reduce the computational complexity [2, 97].

There are two main advantages of the spectral domain watermarking methods.

The robustness of the spectral methods is high especially the non-blind methods.
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Each coefficient is reflecting the energy of its corresponding basis function of the

mesh. Thus, every single spectral coefficient is related with all the vertex geometry.

A light attack of the mesh is not likely to modify the basis functions and the spectral

coefficients. Secondly, the security is easily enforced in the spectral methods. It

is highly unlike to recover the embedded message by studying the pattern of the

mesh geometry without knowing the secret key and transforming the mesh into the

spectral domain. Thus, it makes the malicious attacks more difficult to find the

message.

The most prominent drawback is that spectral analysis requires very high compu-

tational cost. The computational efficient is incomparable with the spatial domain

methods even using better decomposition scheme [126]. This shortcoming limits the

spectral methods to apply on the large meshes [90] without reducing the mesh size.

Thus, most of the spectral methods involve a mesh segmentation in order to reduce

the computational complexity [2, 98].

From the distortion point of view, the spectral methods introduce more visible

distortion on the smooth regions rather than the bumpy regions. Although the

change of the spectral coefficients spreads the error over all the vertices, there is

very few study about the relation between the spectral coefficients and the mesh

geometry. Therefore, it is not possible to introduce an explicit mechanism to control

the distortion introduced by the spectral watermarking.

In this chapter, we introduce a novel robust and blind 3D watermarking al-

gorithm based on the spectral domain. This work is mostly based on our paper

published in IWDW 2009 [89] which is an extension of [90] in ICIP 2008. We firstly

introduce the idea of using the statistical features of spectral coefficients to embed

the watermark. We use the combinatorial Laplacian matrix as the operator in the

mesh spectral analysis. The high frequency coefficients are splitted into bands and

each band is used as a bin to embed one bit of message. Each bin of coefficients

forms a point cloud whose statistical characteristics are analyzed using the Princi-

pal Component Analysis (PCA). In the proposed approach, the distribution of the

spectral coefficients is constrained to a sphere when embedding a bit of zero and

to a squashed ellipse when embedding a bit of one. With the perfect reversibility

of the spectral decomposition scheme by using the combinatorial Laplacian matrix,
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the message can be easily recovered by checking the ratio between the first principal

component and the last principal component of the high frequency coefficients.

The proposed method consists in applying spectral decomposition locally, in

well defined patches of the graphical object. The proposed methodology has the

following stages. Firstly, the object is robustly aligned along the principal axis

calculated using the analytic volumetric moments. Then the object is decomposed

into patches (i.e. connected spatial regions) of equal areas defined along the first

and second principal axes. Lastly, the spectral analysis is performed on each patch

and the spectral coefficients are extracted. We use the embedding scheme proposed

in [90] to embed one bit of message into one patch generated in the last step. Unlike

the previous work [90] which split the high frequency coefficients into bands, the

robustness of the localized version [89] uses the whole high frequency of each patch

as a embedding primitive. The results are compared with Cho’s algorithm [31] and

it shows that the proposed algorithm introduces less distortion.

There are two main contributions of our spectral methods. Firstly, unlike the

other spectral domain methods which embed the message in the low and medium

frequency non-blindly [77,79,98,100]. Our method utilizes the high frequency coef-

ficients to embed the watermark blindly. And the experiments show the frequency

changes can also obtain relatively good visual quality and robustness. Secondly, the

robustness is enforced by statistical analyzing the spectral coefficient rather than

embedding the same bit into coefficients repetitively.

The reminder of the chapter is organized as follows. In Section 3.2 we describe

the volumetric method for aligning the 3D graphical object, while in Section 3.3

we describe the algorithm for generating the equal area patches. The alignment

method will also be used in Chapter 4 as the initialization of the geodesic calculation.

In Section 3.4 the spectral graph theory is briefly introduced. Section 3.5 gives

the details of the proposed watermark insertion and extraction based on spectral

coefficients analysis. The experimental results and comparison with the state of

the art are provided in Section 3.6. The conclusions of this study are drawn in

Section 3.7.
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3.2 Robust object alignment

The first step of watermarking is usually to register the object with respect to the

original model [98, 104]. The original object is used as a reference model so that

the new object can be translated and rotated on the coordinate system same as the

original object. This category of methods are frequently used in the non-blind wa-

termarking method. Thus, it is not suitable for our blind method. Object alignment

is to find a stable pose for a 3D object which is invariant to translation, rotation

and uniform scaling. This is common and important issue in 3D mesh processing

methodology such as in watermarking, object matching [69], object retrieval etc.

There are many ways to align the object.

The model symmetry has also been studied extensively for aligning the object

into a meaningful orientation for processing [25,69]. The reflectance plane symmetry

is probably the most robust alignment method for a class of similar 3D objects. So far

there is no watermarking method using this kind of alignment algorithms, because

their computational requirements is high.

The mostly classical alignment method in 3D graphics is the Principal Compo-

nent Analysis. This method treats the object as a point cloud and estimates its

principal components. The PCA method is fast but its shortage is the low robust-

ness. As PCA does not consider the topology or the manifold information of the

mesh object, the principal axis calculated by the point cloud can be very easily bi-

ased by attacks such as mesh simplification, quantization and additive noise. Some

algorithms [75] use the PCA to align the object in the preprocessing stage.

A 3D object can also be realigned using its surface area moment or the volume

moment. The surface area moment and volume moment are proposed by Tuzikov

al [123]. They calculate the continuous area and volume moment of the object.

Principal component of the moments are analyzed and the object is realigned with

respect to its principal components. Both moments capture more information of

the model than PCA and they are robust as long as the object is not severely

distorted. However, the area moment is not as robust against the noise attack

which modifies the surface area. We propose to use a robust alignment scheme called

volume moment alignment which was proposed in [143] considering the robustness
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and its computational efficiency.

The volume moments of a 3D object are defined as:

Mpqr =

∫ ∫ ∫
xpyqzrρ(x, y, z)dxdydz (3.1)

where p, q, r are orders, and ρ(x, y, z) is the volume indicator function (it equals

to 1 if (x, y, z) is inside the mesh and to 0 otherwise). For a triangular face

fi = {vi1,vi2,vi3} = {(xi1, yi1, zi1), (xi2, yi2, zi2), (xi3, yi3, zi3)} on a mesh object,

the moments are defined as :

M fi
000 = 1

6
|xi1yi2zi3 − xi1yi3zi2 − yi1xi2zi3 + yi1xi3zi2 + zi1xi2yi3 − zi1xi3yi2|

M fi
100 = 1

4
(xi1 + xi2 + xi3) ·M fi

000

M fi
200 = 1

10
(x2

i1 + x2
i2 + x2

i3 + xi1xi2 + xi1xi3 + xi2xi3) ·M fi
000

M fi
110 = 1

10
(xi1yi1 + xi2yi2 + xi3yi3 + xi1yi2+xi1yi3+xi2yi1+xi2yi3+xi3yi1+xi3yi2

2
) ·M fi

000

(3.2)

In fact this corresponds to the moment of the tetrahedron linking this face to the

coordinate system origin. The global moments of a mesh are obtained by summing

these elementary moments over all facets (with the appropriate contribution sign).

The complete set of explicit volume moment functions can be found in [123]. The

object centre is defined as

µ = (M100/M000,M010/M000,M001/M000), (3.3)

and the 3 × 3 matrix of the second order moments of the 3D object is constructed

as:

Ψ =


M200 M110 M101

M110 M020 M011

M101 M011 M002

 (3.4)

The principal axes of the object are the eigenvectors obtained by applying eigen-

decomposition to the covariance matrix Ψ:

Ψ = WT∆W (3.5)
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where ∆ = {δ1, δ2, δ3} is the diagonal matrix containing the eigenvalues assuming

δ1 > δ2 > δ3 and W = [w1 w2 w3]
T is the matrix whose columns are the

eigenvectors of Ψ. The eigenvalues {δ1, δ2, δ3} characterize the extension of the

object along its principal axes whose directions are defined by the corresponding

eigenvectors. In order to define a unique alignment, we propose two constraints.

Firstly, the three axes must conform the right hand rule such that the direction of

the third axis will be well defined as the cross product of the first two. Furthermore,

the valid alignment satisfies the condition that the third order moments M300 and

M030 of the rotated object are positive. By following these constraints and the right

hand rule, the principal axis alignment is unique [143] and far more robust than the

alignment calculated by only using vertex coordinates.

3.3 Object patch generation

Watermarking in spectral domain owns a series of advantages including increased

watermark key security and good watermark related robustness. However, as shown

in [90], the application of blind spectral watermarking is limited to rather small

graphical objects due to the high computational complexity requirements of spectral

decomposition for large meshes.

Thus, an object segmentation scheme is required for reducing the Laplacian ma-

trix size in order to improve the computational efficiency. There are many segmenta-

tion or clustering methods that have been used in the watermarking literature. One

popular category of patch generation algorithm is seed-generated, i.e. the patches

are generated according to seeds on the object surface. Ohbuchi et al use a random

seed to generate patches on the object surface [98]. Konstantinides [75] propose a

similar method as Ohbuchi’s. They firstly cast a random ray from the centre of

the object. The intersection between the ray and the surface is defined as a seed.

The patch is generated around the seed with a certain geodesic boundary. However,

there are a obvious shortcoming with this kind of patch generation. The seeds can

be close to each other so that the patches will be overlapped. The causality prob-

lem which means the new watermarked patch will remove the previously embedded

watermarking will certainly happen in this case. Another approach of patch gen-
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eration is feature point based segmentation method [2, 3]. Alface et al [2] proposed

to re-triangulate the object surface into patches by using the detected robust fea-

ture points based on its curvature characteristics. The feature points are connected

by geodesic lines such that vertices in the same the region is considered as a com-

pact patch. Alface et al [3] also proposed another feature point based segmentation

method in 2007. In [3], the protrusion points are detected and used as seed points.

Then, the patches are generated as a geodesic circle around the protrusion points.

This category of patch generation methods strongly requires the robustness of the

feature point detection algorithm. The feature points may be different when the

surface is strongly attacked by random noise. In addition, the protrusion points

detection are computationally very expensive, it may take a few hours for detection

process as we shown in Section 4.4.6 on page 95.

In this chapter in order to apply the spectral algorithm to large 3D objects, we

propose a simple and computational efficient method to split the mesh into segments

(i.e. spatial compact regions) so that each segment is used for carrying one bit of

the message. The number of patches is generated as a sum of the number of bits and

a small integer number. The small integer can be generated randomly seeded by the

secret key. So the total patches is a bit more than the message length in order to

improve the security. After aligning the graphical object as described in Section 3.2

we trim away the extremes of the object as defined along its principal axis w1. In

this way we increase the watermark security. Then the trimmed object is split into

layers which are defined by planes perpendicular to w2, the second principal axis.

Finally, the vertices and triangles from each layer are divided into connected patches

of equal areas in a direction along the first principal axis w1. All these steps are

detailed below.

Let us consider xmax and xmin the maximum and minimum value along the first

principal axis w1. α ∈ [0, 0.15] is a value generated by the secret key which is used

for trimming the extremities of the object. We define two boundary values along

the first principal axis w1 such that: Bmin = (xmax − xmin) · α+ xmin

Bmax = (xmax − xmin) · (1− α) + xmin
(3.6)
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All the vertices whose x coordinates are outside this range, i.e., vx < Bmin and

vx > Bmax will be excluded from the watermark embedding process. Let us define

the trimmed object OT as:

OT = {v|Bmin ≤ vx < Bmax, ∀v ∈ O} (3.7)

The total area of the trimmed object considered for watermarking, denoted as At,

is defined as the sum of all polygons, usually triangles, which are located on the

surface of the trimmed object OT .

OT is then split into κ layers defined by planes perpendicular onto the second

principal axis, i.e. w2. κ is chosen as a ratio as:

κ = δ2/δ3 (3.8)

Other schemes to define κ can also be used, for example, fixed κ = 2. Thus, there

are κ+ 1 boundary values defined by:

yi = ymin +
ymax − ymin

κ
· i (3.9)

where i = 0, . . . , κ. The vertices of the trimmed object are thus split into κ layers

and for each layer we have:

Li = {v|yi−1 ≤ vy < yi, ∀v ∈ OT} (3.10)

where i = 1, . . . , κ. These layers are then divided so as to obtain a set of N patches

of equal areas.

The desired area for each patch is calculated according to the following equation:

Ap =
At
N

(3.11)

where N > M and M is the number of bits to be embedded in the object. The

reason for which more patches are generated than the number of bits to embed

is because a segment may be eliminated if its area is smaller than a pre-defined
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threshold, this may happen due to surface folding while we also aim to increase the

watermark security by deliberately excluding specific patches. For example, the last

patch of each layer is likely to have an area smaller than Ap and thus if watermarked

may result into a non-uniform embedding capacity.

Next, we sort all vertices of all layers Li in ascending order of their x coordinates,

i.e. along the first principal axis w1. Vertices are then iteratively added into a patch

from left to right of the sorted sequence; when the area Ap is attained for the current

growing patch, a new patch is initiated.

Let us denote Pj as the jth patch generated, where j = 1, . . . , N . The first M

patches P1, . . . ,PM are used for watermarking. The patches to be watermarked can

be picked up randomly according to the watermark key. This patch segmentation

mechanism is summarized in the Algorithm 1.

When one triangle is crossing several boundaries of layer planes, that triangle

will be split and only the area of its section which is within the layer Li will be

accounted into the current patch area. For example, as shown in Figure 3.1, trian-

gle 4ABC is located at the intersection of two different layers; Bmax indicates the

trimming boundary value. Only the area of the red region, i.e. polygon ADEF is

accumulated in the current patch area. Ideally, one segment should contain only

one compact 3D patch surface. However, if an object has a complex topology, e.g.

the graphical object contains many holes, one patch may include several small and

isolated surface regions. Watermarking such discontinuous patches will result into

visible distortions and may cause visible artifacts on the graphical object surface fol-

lowing spectral watermarking. Therefore, after the segmentation we do not consider

for watermarking those patches which contain discontinuous areas that are smaller

than a predefined threshold.

There are several advantages for the proposed layer segmentation algorithm.

Firstly, the patches generated using this algorithm are highly secure; indeed the

percentage of the trimmed extremities is generated according to a secret key and it

is therefore impossible to recover the patches without the knowledge of this secret

key. By increasing the number of layers we can provide more compactness to the

patches. Patches which are closer to a square-like shape are more appropriate for

spectral watermarking since they provide area compactness and a high connectivity
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Algorithm 1 Patch Segmentation Algorithm

1: seg = 0; // Patch index
2: for i = 1 to κ do
3: Let V be the sorted sequence of ∀v ∈ Li in ascending order of the x coordinate
4: A = 0;
5: for j = 1 to |Li| do
6: vj = V[j];
7: Add vj into patch Pseg;
8: for all Neighbouring face f incident to vj do
9: if f is not processed and each vertex of f has been assigned to a patch

then
10: Calculate the area Ain inside the layer Li;
11: Increment the area accumulator A+ = Ain;
12: if A > AP then
13: seg + +; // Move to the next patch;
14: Move vj to patch Pseg
15: A = A− Ap // Residue area is assigned to the next patch
16: end if
17: end if
18: end for
19: end for
20: Mark all v in the last patch of the layer Li as −1.
21: end for

which are both beneficial for watermarking. On the contrary, if only one layer is

used, the algorithm splits the object into narrow strips which contain a lower level

of mesh connectivity than a square-like patch. By adjusting the parameter κ, we

therefore have the flexibility to adjust the size and the shape of the patches.

According to the experimental results the proposed patch segmentation algo-

rithm is robust against most of the mesh attacks including additive noise, mesh

simplification and Laplacian smoothing. Moreover, the process of watermarking the

3D object will hardly affect the segmentation in the detection stage. This robust-

ness is a very strong point for a practical watermarking application. The proposed

algorithm produces patches of equal areas. That also constitutes a very strong is-

sue for watermarking; indeed since each patch will carry one bit of the watermark,

each bit will have a high robustness. Two examples of segmentation (one layer and

three layers) of the Venus head object are illustrated in Figure 3.2(a) and 3.2(b),

respectively. From these figures it is clear that three layers segmentation produces

more compact patches than a single layer segmentation.
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Figure 3.1: An example of triangles splitting over different patches, where each
colour corresponds to a different patch.

3.4 Spectral decomposition of mesh patches

The theory background of the spectral decomposition of a mesh object using the

combinatorial Laplacian matrix has been introduced in Section 2.1.1.1 Chapter 2.

Here we apply the spectral analysis on the local patches of the mesh. A patch

Pi consists of a set of vertices {vj, j = 1, . . . , |Pi|} where |Pi| is the number of

the vertices within the patch Pi, and a set of edges characterizing the connectivity

information. The Laplacian matrix Li is calculated as the difference between the

degree matrix and the adjacency matrix and has the following entries:

Lij,k =


|Nvj

| if j = k

−1 if j 6= k and vj adjacent to vk

0 otherwise

(3.12)

where |Nvj
| represents the degree (valence) of the vertex vj (the number of neigh-

bouring vertices vk ∈ Nvj
). The Laplacian matrix is eigen-decomposed as :

Li = qTi Ωiqi (3.13)

where Ωi is a diagonal matrix containing the eigenvalues of the Laplacian, and qi

is a matrix containing its eigenvectors. The eigenvectors of Li constitute an or-

thogonal basis and the associated eigenvalues are considered as frequencies. Here
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(a) One layer κ = 1 (b) Three layers κ = 3

Figure 3.2: Patch segmentation of the Venus head graphical object. The blue regions
represent the trimmed extremities along the first principal axis w1.

we assume that qi and Ωi are sorted in ascending order according to their corre-

sponding eigenvalues in the diagonal matrix Ωi. The spectrum is provided by the

projections of each vertex coordinate on the directions defined by the basis function

qi. The spectral coefficients Ci are calculated as:

Ci = qiVi (3.14)

Vi is the set of spatial coordinates of the vertices of the patch.

The transformation can be reversed and the patch vertices can be recovered as:

Vi = qTi Ci (3.15)

As the construction of the Laplacian matrix solely depends on the connectivity

but not the geometry of the mesh, the changes of the spectral coefficients Ci only

affect the geometry Vi. Therefore, the connectivity and the basis functions qi remain

the same. This enables us to perfectly retrieve the message after watermarking which

only modifies the spectral coefficients.
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3.5 Watermarking using constraints on the PCA

axes of the spectral coefficients

3.5.1 Watermark Embedding

The spectral coefficients can be divided into “low frequency” and “high frequency”.

The low frequency reflects the large scale information of the patch while the high

frequency corresponds to the details of the patch. Changing the low frequency coef-

ficients may result in severe deformation and the shearing of the object. In contrast,

changing the high frequency could introduce noisy like effects on the patch surface.

In this chapter, we propose to embed the watermark in the high frequency coeffi-

cients so as to minimize the introduced geometric distortion. In the following we

consider the distribution of the highest 70% of the spectral coefficients for water-

marking. The high frequency coefficients of each patch form a point cloud in the

3D space. The shape of this point cloud is analyzed in the following way by using

Principal Component Analysis (PCA). The mean and covariance matrix of each set

of points are calculated as:

µi =

∑n
j=1 Ci,j

n
(3.16)

Σi =
1

n

n∑
j=1

(Ci,j − µi)
T (Ci,j − µi) (3.17)

where n is the number of frequency coefficients. The covariance matrix Σi is decom-

posed as:

Σi = UT
i ΛiUi (3.18)

where Λ is the diagonal matrix containing the eigenvalues {λ1, λ2, λ3} where we

assume λ1 > λ2 > λ3. Ui is the transformation matrix whose columns are the

eigenvectors of Σi. The eigenvalues {λ1, λ2, λ3} determine the extension (variance)

of the point cloud along the axes defined by the eigenvectors. The spectral coeffi-

cients of a patch are shown as a signal for the x axis in Figure 3.3(a) and as a 3D

distribution in Figure 3.3(b).

The watermark embedding method has three steps. Firstly, the point cloud of

spectral coefficients Ci is rotated so that its axes coincide with the orthogonal axes
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defined by the eigenvectors:

Di = CiUi (3.19)

such that the variances along the three axes will not be correlated.

The cloud of 3-D points of Ci is then “squashed” for embedding a bit of 1 and

“inflated” to a sphere for embedding a bit of 0, by using the ratio between the

eigenvalues :

λ1

λk
= K

 K > 1 for a bit of 1

K = 1 for a bit of 0
(3.20)

where k ∈ {2, 3}. In order to enforce these constraints, the variance along the second

and third axis is changed without affecting the variance corresponding to the largest

eigenvalue :

D̂i,k = Di,k

√
λ1

Kλk
(3.21)

where k ∈ {2, 3}, λ1 is the largest variance and D̂i,k represents the modified com-

ponent of the coefficient vector after embedding the watermark. For embedding

a ‘1’ bit, K is set to be larger than 1 and smaller than a reasonable value ensur-

ing the point cloud is not over-squashed, and for embedding a ‘0’ bit, K is set to

be 1 in order to inflate the point cloud into a perfect sphere. Figures 3.3(c) and

3.3(d), illustrate the shape of the coefficients cloud after embedding a bit of 0 or 1,

respectively.

The watermarked spectral coefficients of high frequency are reconstructed as:

Ĉi = D̂iU
T
i (3.22)

Finally, we enforce the changes back to the watermarked coefficients Ĉi. The water-

marked object is obtained by applying the reverse transformation of equation (3.15)

using the watermarked coefficients Ĉi.

3.5.2 Watermark extraction

The proposed spectral PCA watermarking detection stage does not require the orig-

inal object for retrieving the watermark. The detector needs to know the secret key,

the watermarking algorithm and the number of bits that was embedded in order to
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(a) Spectral coefficients (b) Ellipse of the original coefficients

(c) Ellipse with 1 embedded (d) Ellipse with 0 embedded

Figure 3.3: Enforcing constraints into spectral coefficients of meshes.

recover the watermark message. The secret key is used to generate the α and the

length of the message is used to generate the patches. As a statistical method, it

is impossible to generate the patches without knowing the length of the message.

First of all, the mesh object is aligned and segmented as explained in Sections 3.2

and 3.3. Then, we apply the spectral analysis on each patch and extract the spectral

coefficients in the same way as proposed in Section 3.4. Finally, we calculate the

ratio between the largest and the smallest eigenvalues of the point cloud formed by

the watermarked coefficients and retrieve the information bit as :

if λ̂1

λ̂3
> T then bit = 1

otherwise then bit = 0
(3.23)

where T is a threshold which depends on the embedding level K.

The other spectral domain 3D watermarking methods in the literature embed

watermark by modulating a single spectral coefficient or repetitively a number of

spectral coefficients. Unlike those methods, the method we proposed here is the first

one that use the statistical feature of the spectral coefficients to embed watermark.
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In comparison with the other methods, the method proposed in this chapter im-

proves the robustness because a statistical feature is more difficult to be destroyed.

3.6 Experimental results

3.6.1 Models and parameters

The proposed 3D watermarking algorithm is applied on four different mesh ob-

jects: Bunny with 34, 835 vertices and 69, 666 faces, Horse with 67, 583 vertices and

135, 162 faces, Buddha with 89, 544 vertices and 179, 222 faces and Venus head with

134, 345 vertices and 268, 686 faces. It can be observed that these objects contain

many vertices and faces. Bunny is an object with bumpy surface. Horse contains

large regions with very few variations. The Budda object is a topologically complex

one. And finally, the Head object is a relatively large 3D model. The appearance

of those models are shown in Figure 3.4. Each object is split into N = 70 patches

grouped into κ = 2 layers as described in Section 3.3 while embedding a total of

M = 64 bits. κ = 2 is selected empirically. By splitting them into patches as

explained in Section 3.3 we reduce the required computational complexity for spec-

tral watermarking. The watermarking algorithm parameters are set as: α = 0.1,

K = 15 and T = 2.25, as used in equations (3.6), (3.20) and (3.23), respectively.

The K = 15 is chosen to make sure the point cloud is squeezed enough to distinguish

with the perfect sphere. As the coefficients are the high frequency, the change of the

coefficients is very small. The detection threshold T = 2.25 is chosen empirically by

taking the average value of first principal component and third principal component

of spectral coefficients point cloud over all the patches. K = 15 is also chosen em-

pirically as it can sufficiently distinguish the shape of the coefficients point cloud as

shown in Figure 3.3 (c) and (d).

3.6.2 Watermarked spectral coefficients

Figure 3.3(b) shows a point cloud of original spectral coefficients of a patch. The

ellipsoid which describes the distribution of the point cloud in the 3D space is char-

acterized by three principal axis obtained in PCA. Figures 3.3(c) and (d) illustrate
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(a) Bunny (b) Horse

(c) Budda (d) Head

Figure 3.4: Models used in experiments.

the case when embedding a ’1’ and a ’0’ bit, respectively. As we can see from those

figures, the shape of the ellipsoid mimic the shape of the Arabic number ’1’ and

’0’. This is actually the inspiration of our algorithm. The spectral coefficients cor-

responding to the y axis coordinate, i.e. corresponding to the second component

eigenvector, of an original and a watermarked segment are shown in Figures 3.5(a)

and 3.5(b), respectively. It can be observed that the amplitude of the high fre-

quency coefficients is shrink after watermarking a bit of ‘1’. However this kind of

high frequency modulation only introduces small geometric distortions on the shape.
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(a) Original (b) After embedding a bit of ’1’

Figure 3.5: Spectral coefficients corresponding to the y axis component.

3.6.3 Comparative assessment of the object distortion

The proposed watermarking algorithm is compared with the state-of-art robust al-

gorithm proposed by Cho et al. in [31]. We denote by ChoMean and ChoVar, the

mean change and the variance change algorithms, described in [31]. We set the

watermark parameter α = 0.05 for the ChoMean and ChoVar methods according to

their embedding algorithm from [31].

The distortion introduced by our spectral watermarking algorithm is compared

objectively and visually. We use the MRMS proposed in [34] as the numerical ob-

jective comparison measurement. As we introduced earlier in Section 2.4.1, MRMS

is the most popular Hausdorff error implementation for graphics so far. It is widely

used by watermarking community and is generally accepted as the best quality mea-

surement tool. Details can be found in Section 2.4.1 Chapter 2 and the equation

can be found in equation 2.16 on page 34.

The comparison of the visual distortions is shown in Figure 3.6. It is easy to

see that Cho’s methods produce staircase-like distortions on the graphical object

surface. The distortion is quite large and clearly visible. On the other hand, our

method introduces less distortion than Cho’s method. Some visible noise can be

observed at the boundary of the patches. The distortion is more visible on the

flat regions such as the body of the Horse and the belly of the Budda. While the

distortion is not obvious on the regions with many variations. However, this level of

distortion may limit the real application of this method. This verifies the distortion

visibility study made By Bors in [19]. The numerical results are listed in Table 3.1.
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From these results it is clear that the algorithm proposed in this chapter introduces

less distortion than Cho’s algorithms for all four objects from both geometric and

visual points of view.

Object Spectral ChoMean ChoVar
Bunny 0.25 0.49 0.28
Horse 0.43 0.67 0.44
Budda 0.26 0.46 0.26
Head 0.10 0.25 0.15

Table 3.1: Geometric distortions measured by MRMS (×10−4).

3.6.4 Robustness comparison

The robustness comparison results of the three algorithms against various attacks

such as additive noise, mesh simplification, quantization, Laplacian smoothing and

uniform resampling. As mentioned in Section 2.4.2, we consider that the set of these

five attacks can sufficiently test the robustness of a watermarking algorithm.

Noise added to the vertex locations of the watermarked object can model a large

category of possible attacks which may affect the ability to retrieve the watermark

code. In the following we consider additive random noise according to the following

distortion equation :

ṽi = v̂i + ε‖v̂max‖−→p (3.24)

where ṽi represents the distorted watermarked vertex v̂i, ε ∈ [0, 1] is the percentage

of ‖vmax‖ which corresponds to the largest Euclidean distance measured from the

object center to each vertex, −→p is a unitary vector with random direction. The

direction of −→p spans the entire range of possible angles. Figure 3.7 shows the

comparison between our algorithm and Cho’s algorithms. In the case of the Budda

and Head object, the results are rather similar for the three methods while Cho’s

algorithms demonstrate a higher robustness in the case of Bunny and Horse objects.

We use the Laplacian Smoothing method proposed in [119] for the smoothing

attack. The Laplacian Smoothing calculates the position of a vertex by averaging its

neighbours while the weight is considered according to its local connectivity. The
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(a) Original (b) Spectral (c) ChoMean (d) ChoVar

Figure 3.6: Visual distortions introduced by different watermarking algorithms.

method consider the local Laplacian as a high frequency filter. We consider the

smoothing parameter λ = 0.2 and 10 iterations used in our experiments. The plots

displaying the robustness of the watermarking methods are provided in Figure 3.8 for

all four graphical objects. Basically the three algorithms have the similar robustness

but our method performs better for fewer iterations in the smoothing attack.

Mesh simplification is used in graphics for compressing, coding and in other ap-

plications [43]. In the case of watermarked objects mesh simplification is considered

as a potentially destructive attack for the watermark. The quadratic metric sim-

plification software described in [50] was used for testing the robustness at mesh

simplification. This algorithm collapses two vertices connected by an edge into one
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(a) Bunny (b) Horse

(c) Budda (d) Head

Figure 3.7: Robustness against the additive noise attack.

which position is chosen ensuring that the introduced error is minimum. This ap-

proach for mesh simplification was chosen because it represents a harder to resist

attack for the watermark than other mesh simplification algorithms. Figure 3.9 con-

tains the plots showing the resistance to mesh simplification attack for the objects

when using all four methods. Cho’s results are better in general when considering

mesh simplification. The reason is that our algorithm modifies the high frequency for

embedding watermark, while the mesh simplification removes the high frequency de-

tails of the mesh. As a result, the behaviour of the mesh simplification attack erases

the watermark from the high frequency.

The quantization attack is defined as the difference between the maximum and

minimum value of vertices along each axis when they are quantized by a specific
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(a) Bunny (b) Horse

(c) Buddha (d) Head

Figure 3.8: Robustness against the Laplacian smoothing.

number of bits. We test the robustness of the algorithms from 11 bits quantization

to 5 bits quantization. Figure 3.10 provides the plots of the robustness against the

quantization attack. It can be observed from these plots that the proposed algorithm

is better than Cho’s algorithm in this attacking test.

We compare the robustness of watermarking methods against the uniform re-

sampling attack by using the algorithm proposed in [13]. This attack consists of

uniformly sampling random vertices from the graphical object surface and meshing

them in a way that is not related to the original object. The vertices are sam-

pled on the local tangent plane. Therefore, the new vertices are not guaranteed

that they would lie on the initial surface. The number of sampled vertices represent

{100%, 80%, 60%, 40%, 20%} from the total number of vertices in the original object.
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(a) Bunny (b) Horse

(c) Buddha (d) Head

Figure 3.9: Robustness against mesh simplification.

The results are shown in Figure 3.11. Our algorithm provides a better performance

in the Budda object but worse than Cho’s Mean methods in the other cases.

The comparison demonstrates the good trade-off of our method between the

watermark robustness and the distortion. Indeed our algorithm introduces a lower

distortion (both geometric and visual) than Cho’s methods at the price of a lower

robustness for certain attacks, while maintaining the same robustness for other at-

tacks.
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(a) Bunny (b) Horse

(c) Buddha (d) Head

Figure 3.10: Robustness against quantization.

3.6.5 Alignment and segmentation

In this study we evaluate the influence of the object centre location and the axes

alignment orientation for the watermark detection performance. We use the Bunny

graphical object in order to compare the robustness of the principal axis alignment

for the following methods: volume moments, surface moments, PCA alignment.

The surface moment alignment is similar to the volume moment alignment and

both are described in section 3.2 as well as in [123]. The error in center location,

after considering various mesh surface attacks, is given by the Euclidean difference

between the object centres before and after the attack. The alignment error is

measured by the angle difference between the object principal axes before and after
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(a) Bunny (b) Horse

(c) Buddha (d) Head

Figure 3.11: Robustness against uniform resampling.

the attacks. The results for the angle error between the principal axes and the

resulting bias in the object centre location, when considering additive noise to the

watermarked object, are shown in Figures 3.12(a) and 3.12(b), respectively. Results

of the same error evaluations when considering mesh simplification are shown in

Figures 3.12(c) and 3.12(d), respectively. Clearly, the volume alignment method

has the highest robustness in all these cases.

In Figure 3.13 we experimentally examine the robustness of the equal area seg-

mentation method proposed in Section 3.3. The segmentation result on the original

object is shown in Figure 3.13(a). The results obtained after considering additive

noise, mesh simplification and Laplacian smoothing are shown in Figures 3.13(b),

3.13(c) and 3.13(d), respectively. For the simplification, we used the quadric error
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(a) Angle difference of principal axis (b) Object centre difference

(c) Angle difference of principal axis (d) Object centre difference

Figure 3.12: Alignment error under noise attack in (a) and (b), simplification attack
in (c) and (d).

metric software described in [50], while for the mesh smoothing we employed the

Laplacian filter proposed in [119] with a parameter λ = 0.2 and for 10 iterations.

The segmentation is consistent almost perfectly under the simplification and the

Laplacian smoothing. Some errors emerge at the leg of the horse under the additive

noise attack but most of the segments remain identical to the original ones.

3.7 Conclusion

In this chapter, we proposed a new blind and robust spectral watermarking algorithm

for 3D meshes based on the localized patches generation. The algorithm firstly

orients the object using the Volumetric Principal Component Analysis. The object
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is then split into patches of equal areas along the first and second principal axis.

Each patch of the object is spectral decomposed. The spectral coefficients of each

patch are treated as point cloud in 3D space. The message is embedded by enforcing

a constraint on the ratio between the first principal component and the other two

principal components of the point cloud.

The proposed watermarking methodology in the spectral domain is blind and

robust and is based on embedding constraints in the distribution of spectral coeffi-

cients. Also, we proposed a novel patch generation method that is robust against

most of the common mesh attacks. The proposed method does not suffer of the

patch overlapping problem as other segmentation methods [98]. Furthermore, the

patch generation method is very flexible and can be adjusted according to the object

type and to the various requirements of the watermarking system. The security is

ensured in several stages including patch generation, patch selection and the coeffi-

cients selection.

However, there are a few disadvantages of the watermarking algorithm. Although

the proposed method provide competitive results on some cases in the robustness

test, the algorithm is not as robust as Cho’s method. And the algorithm is not

robust against the re-watermarking attack. Also, the algorithm still produces vis-

ible distortion on some regions of the object. As a transform domain method,

the proposed method is lack of mechanism to control the distortion produced by

watermarking. However it still produces less distortion than the Cho’s method. Ex-

tensive experiments have shown that the proposed method provides a good trade-off

between distortion and robustness when compared with state-of-the-art spatial do-

main methods.
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(a) Original (b) 0.5% additive noise

(c) 50% simplification (d) Smoothed after 10 iterations
λ = 0.2

Figure 3.13: Robustness of the segmentation method
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Chapter 4

Geodesic Watermarking

4.1 Introduction

Although the spectral method shows certain robustness and relatively low visual

distortion, this category of methods suffers from the problem of high computational

cost. In this chapter, we propose a spatial domain method which use the geodesic

distribution to embed the watermark.

3D watermarking algorithms based on spatial domain have shown promising and

good results. A watermarking method using distributions of differences of distances

between randomly picked vertices and the average of their neighbourhood, both

calculated from the principal axis of the object, was proposed in [142]. The distance

from the object center to the vertices on its surface is considered as a statistical

variable in [31] for a watermark embedding method which extends the approach

from [142]. Two statistical methods are proposed in [31] by changing the statistical

variable mean or variance. This method was shown to embed watermarks which are

robust against most common distortion attacks such as additive noise, smoothing

and mesh simplification. Alface et al [3] proposed to use robust feature points as

watermarking references in order to cope with the stego-object cropping attack. All

existing graphics watermarking methods create bump like changes on the surface of

objects which are more or less visible.

The geodesic distance, which takes into account the local surface variation, has

been shown to be the most appropriate measure for calculating the distance be-
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tween two different points on a mesh [110]. The geodesic distance has been used

in computer graphics [115] and computer vision [102]. The distribution of geodesic

distance has not been investigated in the literature for watermarking 3D graphics.

Various approaches have been adopted for calculating the geodesic distance includ-

ing by using straightest geodesics [103]. However, this method does not guarantee

the minimal path for its computation. In [115] the geodesic distance is calculated

by considering an acceptable error bound. Fast Marching Method (FMM) was pro-

posed for fast and accurate calculation of geodesic distances between two locations

on the object mesh [72, 102, 109]. FMM evaluates geodesic distances with respect

to a source location by considering a specific vertex ordering according to the up-

wind direction. Based on FMM we can change the geodesic distance of one vertex

without affecting the upwind vertex distances. This avoids the backward causal-

ity problem encountered when considering other measures. Geodesic distances are

invariant to translation, rotation and vertex reordering. With regard to uniform

scaling, it changes the numerical value of a specific geodesic distance but not the

ratio of two geodesic distances, thus this does not affect the geodesic distribution.

Normalizing all geodesic distances to the interval [0, 1] solves the uniform scaling

problem.

In this chapter we propose a novel statistical 3-D watermarking method by using

distributions of geodesic distances calculated from the mesh surface. We identify

the location of a source as a reference for the FMM method using the intersection of

a key based random vector passing through the object center with its surface. The

reference system for aligning the graphical object is defined by using the Volumetric

Principal Component Analysis (VPCA). We split the surface of the object into

strips of equal geodesic width, calculated by using FMM when considering the source

location as reference. Each strip contains vertices which have their geodesic distances

to the source in a well defined interval range. Distributions of geodesic distances

corresponding to the vertices from each strip are changed by using two histogram

mapping methods in order to embed a single bit. A novel Vertex Placement Scheme

(VPS) is proposed for moving vertices according to the watermark geodesic distances

as required by the corresponding histogram mapping. The vertices are moved on the

object surface perpendicularly on the geodesic front lines. The message is embedded
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when all vertices comply with the marked geodesic distances. By changing geodesic

distances as proposed in this study we preserve the object shape by minimizing the

distance from the displaced vertices to the original mesh surface. We provide a set

of constraints for the interval of allowable vertex changes. The minimum admissible

change is a consequence of the study from [72], while we provide the condition for

the maximum admissible change in order to avoid the turn over of mesh triangles.

The rest of the chapter is organized as follows. Section 4.2 introduce the geodesic

distance calculation and the FMM method. In Section 4.3 we detail the steps of

the proposed methodology corresponding to the initialization, histogram mapping

and the vertex placement scheme followed by the mesh distortion assessment and

the watermark detection algorithm. Section 4.4 provides the experimental results,

while Section 4.5 details the conclusions of this study.

4.2 Geodesic distances on manifolds

The proposed graphics watermarking methodology consists of splitting the object

into regions and marking each region according to the watermark code. In order

to ensure an increased robustness to possible attacks and to various graphics pro-

cessing algorithms we propose to use distance measures which are consistent with

the shape representation. Euclidean distance simply calculates the shortest distance

between locations in space without considering any specific information about the

graphical object. In contrast, the geodesic distance takes into account the shape

of the object and calculates distances along the minimal path on the surface of the

object [72, 109, 110]. By using geodesic distances we can embed information in the

graphical shape by ensuring that the resulting watermarked shape is not distorted

when compared to the original shape. In the following we outline a few concepts

about calculating geodesic distances on manifolds which are used by the proposed

watermarking methodology.

Let us consider O, a graphical object which is represented as a mesh containing

vertices V = {vi ∈ O|i = 1, . . . , N}, where N is the total number of vertices. In

the following we assume that the graphical objects are represented as triangulated

manifolds. Other types of graphical objects can be converted into triangulated

71



manifolds. Let us consider a curve γ(t) ∈ O, where t ∈ [0, P ] is a parameter, onto

the surface of the object, which joins two different points x,y ∈ O. The points are

located on the surface of the graphical object, but they are not necessarily part of

its vertex set. There are a multitude of ways for joining the two given points such

that the connecting curve is completely contained on the surface of the graphical

object. The geodesic distance TO(x,y) between the points x and y is defined with

respect to the minimal length of the geodesic curve γ(t) such that :

TO(x,y) = min
γ(t)∈O

∫ P

0

√
γ′(t)TH(γ(t))γ′(t)dt (4.1)

where γ(0) = x, γ(P ) = y, γ′(t) represents the local derivative of the parametric

curve and H(·) is an intrinsic metric. In this study we consider H(·) = 1. A

geodesic map calculates the geodesic distances from all points on the object surface

to a set of known source points. The geodesic map to a single source point is shown

coded using colour on the Bunny object in Figure 4.1(a) where the reference point,

representing the source for evaluating the geodesic distances, is indicated by a small

red circle. The color varies from blue to red pseudo-coding the geodesic distance

from the source point. In the following we consider a single source point s ∈ O

and for the sake of simplification we denote TO(s,x) ≡ T (x), where x ∈ O is an

arbitrary location on the surface of the graphical object O.

(a) Geodesic map. (b) Iso-geodesic mesh strip generation

Figure 4.1: Geodesic distance, highlighted using pseudo-colour, on the Bunny object.
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The key idea for solving equation (4.1) is that the distance function satisfies the

intrinsic Eikonal equation, which is a non-linear partial differential equation given

by :

‖∇OT (s,x)‖ = F (x), ∀x ∈ O (4.2)

such that there is a start location s with T (s) = 0, where F (x) > 0 and ‖ · ‖

represents the norm. Physically, the solution T (x) is the shortest distance from s

to x using only paths contained in O, where 1/F (x) is the propagation speed at

location x. We assume F (x) = 1 in the following, i.e. the propagation speed is

constant all over the mesh. The idea for solving the Eikonal equation is to find

an approximation to the gradient term which correctly deals with shape variations

including folds and creases [109].

Various solutions have been proposed for calculating the geodesic distance [103,

110, 115]. An approximate solution for solving the eikonal equation (4.2) on trian-

gulated manifolds is provided by the Fast Marching Method (FMM) [72,110]. FMM

makes sure that every vertex is updated only once by progressively advancing the

front of distance calculation in an upwind direction starting from the source (refer-

ence location) s. At any time, when applying this method, the object vertices are

split into three sets D, F and L such that D ∪ F ∪ L = V , where V is the vertex

set, and the intersection of any two of these sets is empty. The set D is used to

store the vertex which geodesic distance has been calculated. F is the front line of

the propagation, i.e. the geodesic distance of the vertex that is being calculated. L

contains the rest of the vertices. Initially, the source points are labeled as D = {s}.

Neighbours of the source points are marked as F = N (s). Once a vertex vi ∈ F has

its geodesic distance T (vi) calculated, it is moved from set F to set D. FMM, by

using the geodesic distance propagation, as described above, ensures that changing

the geodesic distance of a specific vertex will not affect the previously calculated

geodesic distances for the other vertices. This property is important in order to en-

sure that geodesic distance calculation avoids the backward causality problem. The

neighbours of vi are moved to the front set F , if {vj|vj ∈ N (vi),vi ∈ D,vj /∈ D}.

All the other vertices are part of the third set, L. The vertices from F define the

propagation front line and they are ordered according to their geodesic distance to
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the source point. One by one, in the order of their increasing geodesic distance to

the source location, these vertices are added to the set D. When the geodesic dis-

tance is calculated for a vertex vj ∈ F , this should not change any geodesic distance

T (vi) already calculated for the vertices from the set D. Only vertices from the set

L are considered each time for inclusion in the set F and only vertices from F have

their geodesic distance calculated. The procedure continues as a propagation wave

until L and F are both empty. The details of how to calculate the geodesic distance

can be found in section 4.3.4. The computational complexity of this algorithm is

O(N log N), where N is the number of vertices. The local shape characteristics

are intrinsically considered in the calculation of propagating fronts using geodesic

distances in the FMM. In the following section we consider FMM for developing a

new 3-D watermarking method which ensures that the presence of the watermark

in the graphical object will be hidden.

4.3 The geodesic front propagation watermarking

method

The proposed watermark embedding method has the following steps: finding the

source location, segmenting the object surface into strips, mapping of geodesic dis-

tance histograms and the vertex placement scheme for watermark embedding.

4.3.1 Defining the source location

As described in Section 4.2 the FMM method requires a source location s which is

considered as reference for calculating the geodesic distances. The source location

should be defined robustly, such that we will be able to identify the same position

even after the graphical object has suffered certain changes (such as those performed

by an attacker with the intention to destroy the watermark). In general, there

are two possible approaches to generate the starting source point. The first way

is to find the starting position as the intersection between a direction cast from

a reference point, i.e. the object centre, to the mesh surface. The direction is

generated according to a secret key. Alternatively, the starting point can be chosen
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by using a robust feature point detection algorithm such as in [3]. The direction of

the intersection scheme is generated according to a secret key such that it is very

hard for a malicious attacker to find the starting point without knowing the secret

key thus increasing the security of the technique. However, this scheme relies on

the robust location of the object center as well as on the principal axis orientation

required for the object alignment with the watermark coordinate system. Any attack

that affects the object center and the principal axis orientation may lead to errors in

the watermark detection stage. On the other hand a feature point location method

may have high computational complexity requirements while lacking security since

an attacker can easily guess such source locations. In the following we describe a

blind method for defining the source location using graphical object moments.

We use the same volume moment scheme detailed in Section 3.2 to align the

object. A direction
−→
Γ is casted from the object centre µ (shown in equation 3.3)

according to a secret key. We use the secret key as a seed, and then generate a

random 3D vector based on this seed. The starting point is defined as the intersection

between the direction of this vector from the object center µ and the mesh surface

as:

s = {µ+ t
−→
Γ ∩ O} (4.3)

where t ∈ IR is a parameter scalar. There are two extreme cases corresponding to

when there is no intersection with the object surface and when there are multiple

intersections. In the former case we proceed to generate additional directions until

an intersection with the object surface is found. In the latter case the intersection

which is the furthest away from the object center µ is chosen as the source location.

4.3.2 Iso-geodesic mesh strip generation

Let us define Tmin = min({T (x),∀x ∈ O}) and Tmax = max({T (x),∀x ∈ O}) as

the minimum and maximum geodesic distances calculated for the object O from

a source location s. Generally, the number of vertices whose geodesic distance is

close to Tmin and Tmax would be too small in order to be statistically relevant so

they are not considered for watermark embedding. Therefore, we trim the range of
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acceptable geodesic distances to the range :

T (vj) ⊂ ((1− ε)Tmin + εTmax, εTmin + (1− ε)Tmax) (4.4)

where ε ∈ (0, 0.2) characterizes vertices which are close to extremes, according

to their geodesic distance from the source location, in order to be excluded from

further watermark embedding calculations. Then, for a watermark code of M bits,

the object mesh is segmented into M strips, each used for embedding a single bit.

Consequently, the geodesic distance width for each strip is defined as :

Tb =
(1− 2ε) (Tmax − Tmin)

M
. (4.5)

Let us consider Bi as the set of vertices which are located in a specific range of

geodesic distances calculated from the source location s and characterizing a mesh

strip on the object surface :

Bi = {vj ∈ O | Tmin + (i− 1)Tb ≤ T (vj) < Tmin + iTb} (4.6)

for i = 1, . . . ,M . Tb should be large enough in order to define regions which contain

a statistically consistent number of vertices available for watermark embedding.

Figure 4.1(b) shows how the graphical object Bunny is split into strip regions. The

region around the location of the source, which is trimmed away, is pseudo-colored

with blue, and each strip is used for embedding a single bit.

An interesting observation is that the geodesic distance distributions correspond-

ing to vertices contained in each strip are close to uniform which means that the

expected mean and variance are around 0.5 and 1/3, respectively. Figure 4.2(a)

displays a typical histogram of geodesic distances of the vertices on the Bunny ob-

ject. Figure 4.2(b) shows the mean and variance values corresponding to each bin

of the Bunny object segmented into 64 regions as described in the previous sec-

tions. As can be observed from this plot, the mean and variance value of most of

the bins conforms to the assumptions of uniform distributions of geodesic distances.

These properties have been observed for a large category of objects when assuming

segmentation into iso-geodesic strips containing a statistically significant number of
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vertices.

(a) Histogram of geodesic distances (b) Mean and variance of geodesic
for vertices. distances from each iso-geodesic strip.

Figure 4.2: Statistics of geodesic distances from strips extracted from the Bunny
object when segmented into 64 regions.

4.3.3 Statistical watermarking by histogram mapping

After splitting the graphical object into strips of equal geodesic width according to

equations (4.5) and (4.6), each strip is associated with a bit from the watermark code.

The distributions of geodesic distances for vertices in each strip are close to uniform

and consequently they are considered as a random variable suitable to be used for

embedding messages by introducing specific histogram asymmetries [31,142].

In the proposed method we embed a bit into each iso-geodesic distance strip. Let

us define the statistical variable representing the geodesic distance from a vertex to

the source location gi = {gij = T (vj),∀vj ∈ Bi}. We record the minimum and

maximum geodesic distances within each strip, i.e. Ti,min = Tmin + (i − 1)Tb and

Ti,max = Tmin + iTb, in order to be used later for the inverse normalization. The

statistical variable gij is firstly normalized to the range [0, 1] by:

g̃ij =
gij − Ti,min

Ti,max − Ti,min
(4.7)

where gij and g̃ij are the jth elements of gi and g̃i, respectively.

In the following we consider two histogram mapping functions for embedding

information as in [31]. The first histogram mapping function changes the mean value
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of the statistical variable g̃ij which corresponds to the vertex vj ∈ Bi. Assuming

that gij is uniformly distributed, the expected mean value of g̃i is 1/2. In order to

embed one bit of message, the mean value of g̃i is changed as follows:

µ̂i =

 1
2

+ α if Bi = 1

1
2
− α if Bi = 0

(4.8)

where α is the watermark strength factor, influencing the visual distortion and

robustness, and Bi, for i = 1, . . . ,M , is the bit to be embedded in the ith mesh

strip.

In order to fulfill the relationship from (4.8) the first histogram mapping function

implements the following :

g̃′ij = g̃βij

 β ∈ (0, 1) if Bi = 1

β ∈ (1,∞) if Bi = 0
(4.9)

where g̃′ij is the resulting histogram mapping variable corresponding to g̃ij and β > 0

is a parameter which models its shape and which depends on the watermark strength

α [31]. Finally, the watermarked geodesic distance ĝij is obtained by mapping g̃′ij

back to the original interval as :

ĝij = g̃′ij(Ti,max − Ti,min) + Ti,min (4.10)

The second embedding method changes the variance of the statistical variable

gij. In this case, gij is normalized to the range [−1, 1]:

g̃ij = 2 · gij − Ti,min
Ti,max − Ti,min

− 1 (4.11)

The expected variance of variable g̃ij is 1/3 for a uniform distribution. We embed

one bit of message by modifying the variance of g̃ij according to :

σ̂2
i =

 1
3

+ α if Bi = 1

1
3
− α if Bi = 0

(4.12)

The second histogram mapping function for modifying each element from the set Bi
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is defined as :

g̃′′ij = sign(g̃ij)|g̃ij|β
 β ∈ (0, 1) if Bi = 1

β ∈ (1,∞) if Bi = 0
(4.13)

Accordingly, the watermarked geodesic distances are obtained by the inverse nor-

malization function:

ĝij =
1

2
· (g̃′′ij + 1) · (Ti,max − Ti,min) + Ti,min (4.14)

The details of how to calculate β in equation (4.9) and (4.13) given the value of α

in equation (4.8) and (4.12) can be found in Cho’s paper [31].

A crucial requirement for graphics watermarking is to produce undetectable

changes in the object surface. In the following section we describe and discuss a

new watermark embedding method called vertex placement scheme. The proposed

method changes the location of vertices inside each iso-geodesic strip such that

their geodesic distances correspond to the watermarked distributions obtained as

described above.

4.3.4 Changing vertex geodesic distances by vertex place-

ment scheme

The previous section described the modalities of mapping histograms of geodesic

distances corresponding to each surface strip, by using equation (4.8) when shifting

the mean or (4.12) when changing the variance, in order to embed one bit. Various

3-D watermarking methods embed information in the 3-D structure of the object by

introducing bias in the statistical measures characterizing the local object symmetry

according to the bit to be embedded. Such approaches produce changes with respect

to a predefined reference location usually resulting in bump like distortions on the

object surface. In this chapter we propose to watermark the graphical object by

displacing the vertex locations on its surface, along the direction of the FMM prop-

agation front obtained as explained in Section 4.2. In this approach we compute the

solution to the Eikonal equations (4.2), resulting in a piecewise linear approximation

to the geodesic function.
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In the following we describe how to displace vertices in order to conform with

the distributions of the watermarked geodesic distance variables from (4.9) or (4.13)

while not visibly perturbing the surface. Let us consider the framework from [72] by

using similar notations and figures. The proposed watermark embedding procedure

for a particular triangle 4ABC, A,B,C ∈ V is called the vertex placement scheme

(VPS). The study can be easily extended for all the vertices inside the strip Bi and

to the entire object O. Let us consider the vertices A and B as having their geodesic

distances T (A) and T (B), T (A) < T (B). When the angle ∠C = θ inside triangle

4ABC is acute then the update scheme is monotone, i.e. T (A) < T (B) < T (C).

Let us assume that the lengths of the triangle sides are a = ‖BC‖, b = ‖AC‖ and

c = ‖AB‖ as shown in Figure 4.3(a) and denote the geodesic distances between its

vertices, calculated along the front propagated with respect to the source location

s, as :

t = T (C)− T (A) (4.15)

u = T (B)− T (A) (4.16)

h = T (C)− T (B) = t− u (4.17)

Kimmel and Sethian have shown in [72] that the value of t can be calculated using

FMM by assuming known T (A), T (B) and the geometry of 4ABC, according to

the equation :

(a2 + b2 − 2ab cos θ)t2 + 2bu(a cos θ − b)t+ b2(u2 − a2 sin θ) = 0 (4.18)

The solution t must satisfy two conditions: u < t

a cos θ < b(t−u)
t

< a
cos θ

(4.19)

u < t means that T (C) > T (B) > T (A) which conforms to the monotone property.

The second condition of equation (4.19) means that T (C) must be updated from
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within 4ABC. Thus, the complete update procedure is given as:

T (C) =

 min{T (C), t+ T (A)} if conditions (4.19) are fulfilled

min{T (C), b+ T (A), a+ T (B)} otherwise

(4.20)

The Fast Marching Method does not calculate exact solution of geodesic distance.

When condition (4.19) is not satisfied, the geodesic distance will be approximated

locally according to the length of the edge.

An extreme situation for t as solution from equation (4.18) is when θ = π/2. In

this situation we have the minimum bound for t, constraining the vertex placement

location, as :

tmin =
b2u+ ab

√
a2 + b2 − u2

a2 + b2
(4.21)

When θ is obtuse, triangles are unfolded and split into two acute angle triangles and

then we can proceed with the updating scheme. For 4ABC whose ∠C is obtuse,

we follow the triangle unfold procedure as detailed in [72] and split ∠C into two

acute angles, and then update the vertex by using the scheme described above.

In the following we show that changes of geodesic distances, according to the

proposed VPS, can be embedded into the FMM method by ensuring a minimal

change along the geodesic front. Let us assume that in the case of 4ABC we have

A and B fixed while C changes to C ′ following watermarking by VPS. Assuming

that {A,B} ∈ D, the watermark embedding is performed along the geodesic front

vertices C ∈ F . We associate the statistical variables g and ĝ, as derived according

to the histogram mapping functions from Section 4.3.3, after dropping their location

parameters i, j for the sake of convenience, to the geodesic distance T (C) = g and

to that of a new location C ′, which would result after watermark embedding. The

problem addressed in the following is about how to move the vertex C to a new

location C ′, such that its new geodesic distance satisfies T (C ′) = ĝ, while ensuring

that the graphical object suffers a minimal distortion. The proposed VPS consists

of the following sequence of steps for vertices from a segmented strip Bi :

1. Calculate ĝ from either (4.9) or (4.13).

2. Choose a vertex C ∈ Bi in the downwind direction of FMM, calculate T (C).
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3. While T (C) 6= ĝ and less than 50 iterations, repeat steps (4) - (6).

4. Locate A,B ∈ N (C) such that all three form a triangle which contributes to

the minimum path calculation for T (C).

5. Apply VPS in 4ABC to move C to C ′ such that T (C ′) = ĝ.

6. Set C = C ′ and update the geodesic distance T (C) using only vertices from

set D and go to step (3).

We have shown the details step (1) and (2) already. Now we demonstrate how to

move the vertex C to a new position C ′ from a 4ABC such that its new geodesic

distance T (C ′) = ĝ. Similarly with Figure 5 from [72], depicting geodesic distance

calculation, we illustrate the VPS procedure in Figure 4.3. In the case when the

conditions from (4.19) are fulfilled, there is a point G inside 4ABC such that

CG ⊥ BG and the Euclidean distance ‖CG‖ = h, with h defined in equation (4.17).

Replacing h with ‖CG‖ in equation (4.17) and expanding into geodesic distances

we observe that T (G) = T (B). BG is the approximation of the equal geodesic

curve located at the distance T (B) from the source location s. In the following

we describe the VPS procedure which transforms 4ABC into 4ABC ′ such that

T (C ′) = ĝ, where ĝ was calculated in Section 4.3.3, as shown in Figure 4.3.

A

B

G

DC

a
c

C’

b

C’(      )tmin

A

B

H

G

D

F

h

I

J

C

E

E’

J’

C’

(a) 4ABC plane view (b) Spatial view

Figure 4.3: Illustration of the updating procedure from C to C ′.

We define the following theorem for characterizing the vertex displacement for

geodesic distance watermark embedding :
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Theorem 1. For 4ABC, we can find a new point C ′ on the line GC such that

‖CC ′‖ = |ĝ − T (C)|, with ĝ ≥ tmin + T (A), where tmin is provided in (4.21),

and assuming that the conditions from (4.19) are fulfilled for both C and C ′, then

T (C ′) = ĝ.

Proof. We can observe that for any point C ′ ∈ CG we have C ′G ⊥ BG, where BG

is the geodesic front line calculated from the source location. We have the following

geodesic distance for C ′ calculated from the source location :

T (C ′) = ‖C ′G‖+ T (B) = ‖CG‖ ± ‖CC ′‖+ T (B) (4.22)

where we use the fact that {G,C,C ′} are collinear and where the sign before ‖CC ′‖

is “+” if T (C ′) ≥ T (C) and “-” otherwise. This results into the following :

T (C ′) = T (C)− T (B)± |ĝ − T (C)|+ T (B) (4.23)

where we consider that T (B) = T (G) and from the first relationship of (4.19) that

T (C) > T (B). Then we have :

T (C ′) = T (C) + ĝ − T (C) = ĝ (4.24)

The watermark updating by means of VPS is visualized in Figure 4.3(a). In Fig-

ure 4.3(b) we show a perspective view of the geodesic distance propagation. In this

figure we have {HB, IG,EC, FD} ⊥ 4ABC and as in [72] we consider ‖HB‖ =

‖FD‖ = ‖IG‖ = u while ‖EC‖ = t. We also consider J ∈ EC such that ‖JC‖ = u

resulting in ‖JI‖ = h. From 4EIJ we can observe that the slope of the plane con-

taining 4EHF and that of 4ABC is equal to tan(∠(EIJ)) = t−u
h

which represents

the geodesic propagation speed. In Figure 4.3(b), C ′ is located in the plane of4ABC

while we consider E ′ such that E ′C ′ ⊥ 4ABC ′ and ‖C ′E ′‖ = t̂ = T (C ′) − T (A).

We consider J ′ ∈ E ′C ′ such that ‖J ′C ′‖ = u resulting into ‖J ′I‖ = ĥ, corresponding

to the watermarked vertex following VPS. We can observe that E ′ is located in the

plane of 4EFH and by using the similarity of the triangles 4IEJ and 4IE ′J ′ we

83



obtain :
t̂− u

ĥ
=
t− u

h
(4.25)

which proves that C ′ is characterized by the same geodesic propagation speed as

C.

Note that the theorem is valid only when the geodesic distance T (C ′) is still

calculated from within the 4ABC ′ after updating C to C ′. For a single vertex C ′

there may be other neighbours U, V ∈ N (C ′) such that U, V ∈ D which can be used

for calculating the geodesic distance. According to the definition from equation (4.1),

the geodesic distance represents the shortest length on the manifold, calculated on

the object surface. The final geodesic distance of a vertex is calculated by using at

most two neighbours (i.e. forming a triangle such as 4UV C ′). If T (C ′) calculated

from the 4UV C ′ is less than the value calculated from 4ABC ′, then T (C ′) is not

equal to ĝ. In this case, the vertex C ′ need to be updated again in order to satisfy

the actual geodesic distance T (C ′) = ĝ i.e. go back to step (3).

Theorem 1 indicates that within each iteration in a triangle 4ABC, a vertex is

moved with the Euclidean distance of |ĝ − T (C)| in order to ensure the watermark

embedding, where T (C) means the actual geodesic distance calculated within that

iteration. T (C) is initially equal to g in the first iteration but not the latter ones.

Thus, the theorem states that if the vertex satisfies the watermark condition by

just one move, then the Euclidean movement is |ĝ − g|. The vertex is moved with

Euclidean distance |ĝ − T (C)| in every iteration but the total movement may not

be equal to the |ĝ− g|. But the movement within each iteration is guaranteed to be

minimum as proved by Theorem 1. In some extreme cases, the vertex may be in an

infinite loop as it is moving back and forth. We avoid this case by stopping the loop

when the iteration is beyond a certain limit i.e. 50 iterations in our implementation.

Because our algorithm is a statistical method, the nonconvergent vertices will not

affect the robustness of the algorithm as long as they are not so many.

If ĝ < tmin+T (A), where tmin is provided in (4.21), then the condition required by

Theorem 1 is not fulfilled and will result into an angle ∠C ′ which is obtuse as can be

observed from Figure 4.3(a). In this case we choose C ′ such that ‖GC ′‖ = tmin−u+ε

where ε is a small value and we reassess the updating statistics for the rest of
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geodesic distances ĝ. The limit situation of watermark embedding corresponding to

the condition ĝ = tmin + T (A) is represented in Figure 4.3(a) for ∠AC ′B = π/2.

In the case when the conditions from (4.19) are not fulfilled, it means that there

is no point G inside 4ABC ′ such that T (B) = T (G) [72] and we use the second

equation from (4.20) for calculating T (C ′). In this case, the updating scheme consists

of: Find C ′ along BC so that ‖BC ′‖ = ĥ if T (B) + a < T (A) + b

Find C ′ along AC so that ‖AC ′‖ = ĥ+ u else
(4.26)

The proof of Theorem 1 from above is still valid in this case by substituting G with

A or B respectively.

4.3.5 Assessing the mesh distortion caused by VPS

Let us consider a non-flat surface, while trying to embed a large geodesic distance.

Such a situation is shown in Figure 4.4 when embedding a watermark by mapping C

into C ′, while considering 4ABC as the base for calculating the geodesic distances.

We can see that for a certain watermark mapping, T (C ′) − T (C) = |ĝ − g|, the

triangle 4CDE which follows 4ABC may be turned over. So, in order to avoid

such effects we should limit the amount of change in the geodesic distance when

embedding the watermark. In the following we imagine the vertex C is changed

into C ′ along a direction which is perpendicular to the geodesic front line defined by

GC. Let us consider the plane α such that GC ′ ∈ α and DE ⊥ α. We assume that

α ∩ DE = {H} and that there is a location I ∈ α such that I is contained in the

polygon following4CDE and adjacent toDE, with I 6= H. Following thatDE ⊥ α

we have CH ⊥ DE, C ′H ⊥ DE and IH ⊥ DE. Under these circumstances we

can define the following angles: ∠CHI = θ and ∠C ′HI = ψ between the plane α

and the one defined by {D,E,C ′} after watermarking, respectively, with the plane

formed by {D,E, I}. Let us denote the distance ‖CH‖ = d and the angle between

GC and CH as ∠GCH = φ. It can be observed that the angle θ becomes ψ after

watermark embedding, representing the angle defining the turn over for 4C ′DE.
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From the law of sines in 4CC ′H we obtain the following relationship :

|ĝ − T (C)| = d
sin(θ − ψ)

sin (ψ + φ− θ)
(4.27)

A condition for avoiding or limiting the turn over is imposed on the value of ψmin =

min(ψ) and this would result into a maximal admissible geodesic distance following

the watermark embedding such that T (C ′) = ĝmax, imposing restrictions on the

amount of displacement caused by the watermark. Finally, a consistency check

condition which was used for mesh simplification algorithms [50] can be used in

order to prevent large distortions. Such a condition requires that a displaced vertex

C ′ should lie inside the convex hull determined by planes perpendicular on the

object surface which contain the edges that form the first ring neighbourhood of C ′,

such as AB,AE,ED,BD in Figure 4.4. A vertex breaking this limit, following the

watermark embedding, will cause the normal flip artifact in the watermarked object

which would appear as a black triangle on the object surface. The conditions of

minimum and maximum admissible distortions following watermark embedding are

given by the conditions |ĝ − T (C)| ≥ tmin + T (A) − T (C) from Theorem 1 and by

equation (4.27), respectively.

Figure 4.4: Assessing the triangle flip distortion when embedding the maximum
vertex displacement.

In Figure 4.5(a) we show a simple mesh surface while in Figure 4.5(b) the same

mesh is represented after watermark embedding using the vertex placement scheme

when assuming a single source point in the center. We can observe that several

vertices are changed on the mesh according to the embedding procedure described
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above. It can be easily observed that the vertices are redistributed resulting in

circular like effects on the mesh which are concentric in the centre of the object.

However, after flat shading as shown in Figures 4.5(c) and 4.5(d), the distortions

are no longer visible, excepting for the ripples at the boundary of the object. This

shows that the mesh surface is very little affected when embedding watermarks by

using the proposed VPS watermark embedding method.

(a) Original mesh (b) Watermarked mesh

(c) Shaded original mesh (d) Shaded watermarked mesh

Figure 4.5: Original and marked mesh surfaces using grid representations in (a),
(b), and after flat shading in (c),(d).
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4.3.6 Watermark extraction

The watermark extraction algorithm is blind, i.e. it does not need the cover object

in the detection stage but only the knowledge of the number of embedded bits which

can be predetermined. The detector needs to know the secret key, the watermark-

ing algorithm and the number of bits that was embedded in order to recover the

watermark message. As a statistical method, it is impossible to generate the bins

without knowing the length of the message. For extracting the watermark we use

the same procedures as for detecting the source location and generating the iso-

geodesic mesh strips as described in Sections 4.3.1 and 4.3.2. Histograms of local

geodesic distances are formed for each strip. Statistical tests on the data from the

histograms are used to detect the embedded information. For the first histogram

mapping method, the average of the geodesic distances for vertices contained in the

mesh strip Bi, i = 1, . . . ,M is calculated and compared with 1/2 : if µ̂i >
1
2

then Bi=1

if µ̂i <
1
2

then Bi=0
(4.28)

For the second histogram mapping method, the variance is calculated and compared

with 1/3 :  if σ̂i >
1
3

then Bi=1

if σ̂i <
1
3

then Bi=0
(4.29)

4.4 Experimental results

4.4.1 Experimental 3D Models

The proposed statistical watermarking methodology described in Section 4.3 was

applied on several 3-D graphical objects represented as meshes. In the following we

provide the results when watermarking a set of five objects: Bunny, Head, Statue,

Dragon and Fandisk. These objects are displayed in Figure 4.6 and their mesh char-

acteristics are provided in Table 4.1. It can be observed that the selected objects

provide a diversity of shapes and of mesh characteristics. While Statue is an elon-

gated object, Bunny has many round surfaces, Fandisk is a computer aided design
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(CAD) object represented with few vertices and by using large flat surfaces, Dragon

is a complex object, with many faces, displaying a high variation on its surface.

Object No. Vertices No. Faces
Bunny 34,835 69,666
Head 134,345 268,686
Statue 187,638 375,272
Dragon 422,335 844,886
Fandisk 6,475 12,946

Table 4.1: Characteristics of the graphical objects used in the study.

4.4.2 Distortion evaluation

We use the abbreviation ProMean for the method which embeds watermarks by

changing the mean of the distribution of geodesic distances, according to equation

(4.9) and ProVar when watermarking is performed by changing the variance of

the geodesic distance distribution by using equation (4.13). The vertex placement

scheme (VPS) method is used for replacing each vertex from the set Bi, contained in

an iso-geodesic strip, with the vertex corresponding to the watermarked distributions

of geodesic distances. Before the segmentation into iso-geodesic strips the graphical

objects are trimmed by considering ε = 0.1 in (4.4). The proposed methodology is

compared with the graphics watermarking methods proposed in [31] which are called

ChoMean and ChoVar for changing the mean or variance of distributions of distances

from the object center to its vertices. Both methods use the same embedding and

detection functions, as described in Section 4.3.3 and the same detection criteria

have been considered for all methods.

We use the E(O, Ô) to evaluate the objective surface distortion as introduced in

Section 2.4.1. Table 4.2, provides the distortion results, measured by E(O, Ô) from

(2.16) for all four methods when watermarking the set of objects from Figure 4.6.

The models are watermarked with 64 bits of message. As can be observed from

Table 4.2, the graphical object distortion introduced by the proposed watermarking

methodology is much lower than that produced by ChoMean and ChoVar methods

[31]. Most existing 3-D watermarking methods introduce bump-like distortions on

the surface of graphical objects. Figure 4.7 displays the visual effects of the proposed
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watermarking methods using zoomed views of graphical object surfaces. As can

be observed from these figures, the methods from [31] introduce visible staircase

artifacts. In the methodology proposed in this chapter, vertices are moved in the

plane of the triangle containing the current geodesic front line and perpendicularly

on that front line. Thus, hardly any distortion can be observed in the watermarked

objects when using either ProMean or ProVar methods. The error analysis from

Section 4.3.5 leads to the derivation of a maximum vertex displacement distance

when using the VPS algorithm, as provided by equation (4.27), in order to avoid

the triangle flip error. If triangles would be flipped over by the VPS embedding,

then the surface normal orientation would be reversed with respect to that of the

most likely light source direction. This would cause those triangles to become back-

facing from front-facing the light source leading to black triangles on the object

surface due to the inappropriate interaction with the scene lighting. This problem

was analyzed in Section 4.3.5 and such errors are avoided as can be observed in the

watermarked graphical objects. However, the proposed methods do not consider

preserving features which represent sharp changes on the object surface and some

distortions are visible on the edges of the watermarked Fandisk object. As described

in Section 4.3.4 and as can be observed from Figure 4.7, the proposed methodology

preserves very well the original mesh after watermarking in most cases.

Object ProMean ProVar ChoMean ChoVar
Bunny 0.37 0.24 0.81 0.39
Head 0.22 0.10 0.37 0.19
Statue 0.35 0.22 0.94 0.40
Dragon 0.36 0.24 0.90 0.47
Fandisk 11.10 8.20 22.90 12.80

Table 4.2: Watermarked object distortion with respect to the original object, calcu-
lated as E(O, Ô), where all results should be multiplied with 10−4.

In order to visualize the error distribution, in Figures 4.8(a) and 4.8(b) we rep-

resent the local distortion measured by E(O, Ô) between the surface of the water-

marked and original Bunny objects when using ProMean and ProVar watermarking

methods, respectively. In these figures we consider the same source location and

number of watermark bits as in Figure 4.1. It can be observed that the watermark-

ing errors produced by VPS are rather uniform and localized inside each iso-geodesic
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strip as shown in the distortion study from Section 4.3.5. The propagation errors

will only accumulate within each iso-geodesic strip but are not propagated to other

strips.

4.4.3 Robustness evaluation

In the first experiment we analyze the embedding capacity when considering various

ranges of bits, M ∈ {32, 64, 128, 256} and α = 0.1. The detection results for the

proposed two methods are provided in Table 4.3. It can be observed that there are

some problems with the ability to retrieve the watermark code when embedding

M = 256 bits into a simple object such as the Fandisk. This is due to limitations for

performing significant statistical changes in the geometry of small graphical objects.

We have also tested the detection of false positives using the same keys in the same

graphical objects. The tests gave zero detection rates in the case of both ProMean

and ProVar when no watermark has been previously embedded.

In the following we consider embedding watermark codes of M = 64 bits with the

strength α = 0.1 for ProMean in (4.8) as well as for ProVar in (4.12) for the first four

objects from Table 4.2 and we present the average detection results when embedding

and detecting 100 different watermark codes by using 100 different random keys. The

detection ratio is defined as the ratio between the number of correctly detected bits

and the total number of embedded bits. The following results are obtained after

embedding without attacks.

Object Methods 32 bits 64 bits 128 bits 256 bits
Bunny ProMean 1.00 1.00 1.00 0.99

ProVar 1.00 1.00 1.00 0.99
Head ProMean 1.00 1.00 1.00 1.00

ProVar 1.00 1.00 1.00 1.00
Statue ProMean 1.00 1.00 1.00 1.00

ProVar 1.00 1.00 1.00 1.00
Dragon ProMean 1.00 1.00 1.00 1.00

ProVar 1.00 1.00 1.00 1.00
Fandisk ProMean 1.00 0.99 0.99 0.93

ProVar 1.00 0.99 0.97 0.88

Table 4.3: The bit detection ratio when varying the embedded information capacity.

In [31] it was stated that ChoMean and ChoVar methods are not suitable for wa-
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termarking Computer Aided Design (CAD) graphical objects which contain flat re-

gions. In the following we exclude the Fandisk object from the robustness tests which

are only carried out on the other four objects. Four methods, ProMean, ProVar,

ChoMean and ChoVar are compared when considering additive noise, smoothing,

mesh simplification, quantization and uniform remeshing. Figure 4.9 shows the wa-

termarked Bunny after various attacks. In the experiments we vary the intensity of

the attack up to the level where the resulting object becomes seriously degraded.

Figure 4.9(a) shows watermarked Bunny corrupted with additive noise when

ε = 0.005. The additive noise attack is defined in equation (3.24) in section 3.6.4.

The plots from Figure 4.10 show the robustness against noise when varying ε for

the four methods, ProMean, ProVar, ChoMean and ChoVar for all four graphical

objects. From these plots it can be observed that ProMean and ChoMean methods

provide better results than ProVar and ChoVar.

We use the Laplacian Smoothing method proposed in [119] for the smoothing

attack. A watermarked and smoothed Bunny, when considering a smoothing pa-

rameter λ = 0.3 and 10 iterations according to the method from [119], is shown

in Figure 4.9(b). The plots displaying the robustness of the watermarking meth-

ods are provided in Figure 4.11 for all four graphical objects. As can be observed

from the plots, ProMean provides slightly better results for Bunny, Head and Statue

graphical objects while ProVar is better for the Dragon. This is due to the fact that

the Dragon is a very dense object and contains many variance on its surface. The

Laplacian smoothing requires more iterations to smooth the object in this case.

The quadratic metric simplification software described in [50] was used for testing

the robustness at mesh simplification. This approach for mesh simplification was

chosen because it represents a harder to resist attack for the watermark than other

mesh simplification algorithms. Figure 4.9(c) shows watermarked Bunny object after

being 90% simplified. Figure 4.12 contains the plots showing the resistance to mesh

simplification attack for the objects when using all four methods. The proposed

methods are slightly less robust to mesh simplification than Cho’s methods because

the latter methods introduce distortions in the object surface which resist such an

attack.

Figure 4.9(d) shows the Bunny object represented using 7 bits quantization. In
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this attack, the difference between the maximum and minimum value of vertices

along each axis is quantized by a specific number of bits. As shown in Figure 4.13

all four algorithms are fairly robust up to 8 bits quantization. ProMean provides

better results for the Head, Statue and Dragon graphical objects, while ChoMean

and ProMean provide better results for the Bunny when compared to ChoVar and

ProVar methods.

We compare the robustness of all four watermarking methods against the re-

sampling attack by using the algorithm proposed in [13]. This attack consists of

uniformly sampling random vertices from the graphical object surface and connect-

ing them in a way that is not related to the original mesh. The vertices are moved on

the local triangle mesh plane which does not guarantee that they would lie on the ini-

tial surface. The number of sampled vertices represent {100%, 80%, 60%, 40%, 20%}

from the total number of vertices in the original object. The results are shown in

Figure 4.14. As can be observed from these plots the best results are provided by

ProVar and afterwards ProMean methods for all four objects.

4.4.4 Parameter influence

The proposed graphics watermarking methodology depends only on the size of the

watermark code length M . In the following we study the effect of the embed-

ding capacity size when watermarking the Bunny object. Figure 4.15(a) shows

the distortion measured using Metro, i.e. equation (2.16), when embedding M ∈

{32, 64, 96, 128} bits. When the message length is increased, the width of the his-

togram becomes narrower. The change of the corresponding vertex norm is smaller.

Thus the distortion is less. Figure 4.15(b) provides the error E(O, Ô) when the wa-

termark strength is increased such that α ∈ [0.05, 0.30] for all four methods. It can

be observed that the distortion, as measured using equation (2.16), increases linearly

with α for all four methods from Figure 4.15(b). From the plots from Figure 4.15 it

is evident that the proposed methods whose names start with Pro show much lower

distortions when increasing the strength factor α for embedding the watermark in-

formation then the methods which start with Cho, which use the same histogram

based procedure depending on the α parameter for watermark embedding. It can be
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observed from these figures that the watermarking methods based on changing the

variance by using equation (4.12) provide lower levels of distortion than those based

on changing the mean of histograms by using equation (4.8). The plots from Fig-

ure 4.16 show the robustness to additive noise on the watermarked Bunny by using

(3.24) when varying ε and when increasing the embedded bit capacity for ProMean

and ProVar methods. Evidently, from these plots, the graphical objects embedding

a larger amount of information are performing worse under the noise attack when

compared with those carrying fewer bits. The plots from Figures 4.17(a) and 4.17(b)

show the robustness at noise, when increasing the strength factor α, for ProMean

and ProVar, respectively. It can be observed that when increasing α we improve the

watermark robustness up to a certain level. However, when α > 0.15, the errors on

the surface of graphical object become significant.

4.4.5 Source point location effect on the robustness

According to our experiments the robustness of the proposed methods can be im-

proved if stable source locations can be found for the FMM method. Small changes

in the orientation of the principal axis for the watermarked object after attacks can

cause significant errors in the detection stage. In Figure 4.18 we compare the de-

tection errors for the Bunny object after the noise and simplification attacks when

considering various ways for deciding on the starting point s when calculating the

geodesic distances. We compare the volume alignment described in Section 4.3.1

with the PCA alignment and the robust feature point detection described in [3] for

deciding s. In the plot from Figure 4.18(a) we consider additive noise according to

equation (3.24), while in Figure 4.18(b) we consider the mesh simplification method

described in [50]. As can be observed from these plots, all three source point local-

ization methods provide similar robustness against additive noise because such an

attack does not significantly change the object center or its principal axis. However,

the mesh simplification may affect differently various regions of the graphical object

leading to changes in the object center as well as to the orientation of its main axes.

It can be observed from Figure 4.18(b) that by using PCA for finding the source

location s is particularly sensitive to mesh simplification leading to reduced bit de-
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tection rates. Defining robust feature points gives the highest robustness overall.

The source localization using the significant feature position is shown in Figure 4.19

for the original Bunny object, watermarked and when attacked by using additive

noise and mesh simplification. The robustness of the significant feature point is very

good as it can be observed from these plots. However, the computational complexity

requirement for finding the robust feature point is of O(N2 logN). Moreover, locat-

ing the source at a specific feature point produces a reduced security since this can

be easily guessed by an attacker. After considering both the computational com-

plexity and the security to attacks we decide to use the volume moment alignment,

as described in Section 4.3.1, for defining the starting point s.

4.4.6 Computational complexity

The computational complexity of the proposed watermark embedding methodology

is of order O(N logN + N |ND|), where N is the number of vertices and |ND| rep-

resents the average number of vertex neighbours from the set D for the updating

vertex. The first component of the computational complexity corresponds to FMM

while the watermark embedding using VPS consists of changing at most a vertex

per triangle. However, the updating may have to be repeated a number of times

equal to the number of adjacent vertices contained in the set D in order to ensure

that the updated geodesic distance is truly consistent with the watermark bit distri-

bution. All the experiments are carried out on a computer with the CPU as AMD

Athlon(tm) 64 X2 Dual Core Processor 4200+, 2.20GHz, 8GB RAM under 64 bits

Linux operating system. The processing times in seconds required by various stages

of the proposed methods are provided in Table 4.4. In this table, PT represents the

time for calculating the geodesic distance on the object mesh using FMM, VPS rep-

resents the average computation time of the vertex placement scheme. The columns

VolMom alignment and the PCA alignment provide the mesh alignment timing using

the procedure described in Section 4.3.1 and the volumetric PCA, respectively, while

Embedding Time gives the total required time for watermark embedding. It takes

approximately 3 hours to find the significant feature point when using the method

from [3] on the Bunny object which is the smallest object used in our experiments.
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Object PT VPS VolMom PCA Embedding
Alignment Alignment Time

Bunny 0.26 0.40 0.16 0.06 0.99
Head 1.21 2.01 0.68 0.21 4.39
Statue 1.82 2.90 1.22 0.34 6.26
Dragon 3.86 6.60 3.38 0.70 14.28

Table 4.4: Table showing the watermark embedding times in seconds.

Table 4.5 demonstrates the convergence rate of the VPS algorithm. When one

vertex is moved to the new position, its geodesic distance is required to be updated.

Then it is possible that its new geodesic distance is calculated from another triangle

rather than the one which was used for updating. So the vertex may need to be

moved again to ensure that its geodesic distance satisfies the watermarking condi-

tion. In this case, the vertex may end up going back and forth infinitely. We examine

the convergence rate of the VPS algorithm in Table 4.5. As observed from the table,

the VPS algorithm shows very good convergence rate. In our implementation, if the

vertex is iterated more than 50 times, we treat it as nonconvergent vertex and jump

out loop. About 80% of vertices need only to be replaced once, which means most

of the vertices are moved in a distortion minimum manner. There are only very

few percentage of vertices that goes into the infinite loop. In this case, we detect

the failure to converge and stop the iteration. As our watermarking algorithm is a

statistical method, such a small percentage of nonconvergent vertices will not affect

the robustness very much.

Object 1 Move 2 Moves 3 Moves [4,. . . , 50] Nonconvergent
Bunny ProMean 80.69% 13.80% 2.86% 2.20% 0.45%
Bunny ProVar 82.01% 14.26% 2.42% 0.80% 0.51%
Head ProMean 81.37% 9.42% 3.13% 5.79% 0.29%
Head ProVar 82.34% 8.05% 4.13% 5.25% 0.23%

Statue ProMean 78.58% 11.00% 3.56% 6.52% 0.34%
Statue ProVar 77.75% 11.17% 3.74% 7.06% 0.28%

Dragon ProMean 78.52% 4.93% 2.95% 12.97% 0.63%
Dragon ProVar 78.87% 5.64% 3.87% 11.02% 0.60%

Table 4.5: Table showing the convergence rate of the VPS.
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4.4.7 Discussion

The proposed watermarking methodology depends on defining a source location s

as a reference for calculating the geodesic distances as required by FMM. If the

source point is selected as described in [3], the algorithm will obtain the highest

robustness as shown in Figure 4.18. In this case the algorithm is partially robust

against cropping as shown in [3]. However, the disadvantage is that the feature

point finding algorithm requires a computational complexity which is a lot larger

than that required by the other stages of the watermarking method. Moreover,

significant graphical object features are very easy to guess providing an easier task

to an attacker aiming for destroying or reading the watermark message and signif-

icantly reducing the watermark security. Volume moment alignment is the second

robust scheme and has a much lower computational complexity requirement. As

the starting point in this case is defined according to an intersection between a key

generated vector direction and the object surface, malicious attackers will not be

able to find the embedded message without knowing the secret key. The proposed

scheme requires the knowledge of the watermark code length in the detection stage.

Moreover, the cropping attack may significantly change the object center and result

in the watermark detection failure. Another constraint is that the volume alignment

will be undefined if the object is not closed or contains holes. PCA applied directly

to the vertex coordinates can be used as an alignment scheme in order to define the

source point. The PCA based watermarking scheme can be used on non-closed ob-

jects but suffers of other drawbacks such as an undefined positive principal axis [49],

low robustness against mesh simplification, etc.

4.5 Conclusion

This chapter proposes a new 3-D watermarking methodology based on statistics of

geodesic distances defined using the Fast Marching Method. The object is aligned

using the volume moments and the starting point for FMM is defined as the in-

tersection between a random direction generated according to a key and the object

mesh. The surface of the graphical objects is segmented into strips, each containing
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vertices located in a well defined band of geodesic distances. All strips have identical

geodesic distance width and each of them is used for embedding a bit. Distributions

of geodesic distances are formed for each strip. Two different statistical methods are

proposed for watermark embedding, one by changing the mean of the distribution

and the other by changing its variance. The vertices are changed along the graphical

object surface, using the Vertex Placement Scheme such that the resulting object

distortion is minimal. The study from this chapter shows theoretically as well as by

means of numerical simulations that the proposed methodology ensures a minimal

distortion in graphical objects following watermarking. The proposed methodology

has low computational demands and results in watermarks which are robust to var-

ious mesh attacks excepting object cropping. The security of the proposed method

is enforced in various stages including the source point location, segmentation and

the construction of the statistical variable.

The method strongly relies on the robustness of the object centre and principal

axis. Thus, the method is not robust against any attack that destroy the object

principal axis such as cropping. The method is also not applicable on small mesh

objects as there are not sufficient samples for constructing the statistical variable

for watermarking. Furthermore, the VPS does not make sure that all the vertex

placements converge although the nonconvergent rate is very small. In the future, it

is possible to improve the VPS method so that all the vertices can converge within

a small number of iterations.
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(a) Bunny (b) Head

(c) Statue (d) Dragon

(e) Fandisk

Figure 4.6: Graphical objects used in the experiments.
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(a) (b) (c) (d) (e)

Figure 4.7: Comparison of visual distortion by displaying zoomed detail of orig-
inal objects and the watermarked objects. (a) Original. (b) Watermarked using
ProMean. (c) Watermarked using ProVar (d) Watermarked using ChoMean (e)
Watermarked using ChoVar
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(a) Distortion by ProMean method. (b) Distortion by ProVar method

Figure 4.8: Distortion produced by VPS. Red point is the source. The lighter the
color, the more the distortion.

(a) Additive random noise (b) Smoothing when considering
with ε = 0.005. λ = 0.3, 10 iterations

(c) 90% Mesh simplification. (d) 7 bits quantization

Figure 4.9: Watermarked Bunny object after various attacks.
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(a) Bunny (b) Head

(c) Statue (d) Dragon

Figure 4.10: Plots showing the robustness against additive noise.
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(a) (b)

(c) (d)

Figure 4.11: Plots showing the robustness at smoothing: (a) Bunny, (b) Head, (c)
Statue, (d) Dragon

103



(a) (b)

(c) (d)

Figure 4.12: Plots showing robustness at mesh simplification: (a) Elephant, (b)
Bunny, (c) Statue, (d) Dragon

104



(a) (b)

(c) (d)

Figure 4.13: Plots showing robustness at bit quantization: (a) Bunny, (b) Head, (c)
Statue, (d) Dragon
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(a) (b)

(c) (d)

Figure 4.14: Plots showing robustness at resampling: (a) Bunny, (b) Head, (c)
Statue, (d) Dragon
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(a) (b)

Figure 4.15: Visibility distortion when varying various watermark parameters. (a)
Relation between visual distortion and bit capacity. (b) Relation between visual
distortion and strength factor α.

(a) (b)

Figure 4.16: Simplification robustness results when increasing the embedded bit
capacity. (a) ProMean, (b) ProVar
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(a) (b)

Figure 4.17: Additive noise robustness when increasing the watermark strength
factor α. (a) ProMean (b) ProVar.

(a) (b)

Figure 4.18: Comparison of different starting point schemes.
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(a) Original (b) Watermarked

(c) Additive noise with ε = 0.01 (d) Mesh simplification of 90%

Figure 4.19: Starting point detected using the significant feature point described in
on the Bunny graphical objects before and after attacks. The red circle shows the
starting point.
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Chapter 5

Optimization Watermarking

5.1 Introduction

In the previous chapter, we have examined the property of the distribution of the

geodesic distance of the mesh. Watermarking the geodesic distance has shown a

good balance between robustness and the surface distortion. In this chapter, we

propose two novel spatial domain watermarking methods by changing the distance

from the vertex to the object centre.

Watermarking methods can be categorized as deterministic method [19, 23] or

statistical methods [31, 142] and all the methods in this thesis are statistical based

methods. The methods from the first category employ a set of constraints for em-

bedding messages while the second category extract the message by using a sta-

tistical test. Usually, deterministic methods allow a higher capacity of information

embedding, making them suitable for steganography, but achieve lower robustness

to attacks. On the other hand, the statistical methods are more robust but they

achieve lower embedding capacity rates. Zafeiriou et al [142] proposed a robust

watermarking method using distributions of distances from surface vertices to the

local symmetry axis. Cho et al [31] proposed using vector norms representing dis-

tances from object surface to its centre as a statistical variable. In this approach

sets of vertices are grouped into bins according to their distance to the object centre.

The embeddings are performed by changing the vertex locations according to two

histogram mapping functions. Two statistical algorithms are proposed in [31] by
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changing the mean or the variance of the statistical variable. The statistical algo-

rithms proposed by Cho et al show excellent robustness against most common mesh

attacks. Moreover, these algorithms are blind and do not require the knowledge of

additional information or specific object representation properties such as a regular

connectivity. However, these algorithms produce visible artifacts such as ripples on

the 3D object surface, which limits their usage in many application.

In this chapter, we propose two new methods employing the minimizing a sur-

face distortion function. In the first approach, we employ the Quadric Error Metric

(QEM). QEM was used as a measure of surface similarity for mesh simplification by

Garland et al in [50]. The aim in mesh simplification is to produce similar graphical

objects with fewer vertices. This measure was used for controlling the surface error

for digital object watermarking [91] and was shown to have a similar robustness with

the Cho et al methods [31]. In the second approach, we propose a new method for

3D watermarking using a novel error function. The surface error has been studied

extensively in the area of mesh approximation [50,61]. The watermark distortion can

be minimized by using a proper defined surface error function. This error function

considers the following distances from the watermarked vertex location: the Haus-

dorff distance [7, 39] to the original object surface, to the watermarked surface as

well as the Euclidean distance to the original vertex location. The vertex is placed,

such that the error function is minimized, by using the Levenberg-Marquardt opti-

mization method in spherical coordinates. Only a few iterations are necessary for

the convergence of the proposed method. Levenberg-Marquardt is well-known opti-

mization method which was used for surface fitting of graphical objects [29], shape

processing [47], as well as for image watermarking [9]. The proposed methodology

ensures a minimal distortion in the resulting watermarked 3-D mesh and constitutes

a generalization of the methods from [31, 91]. The rest of the Chapter is organized

as follows. Section 5.2 gives the statistical background of the watermarking meth-

ods. Section 5.3 describes the general framework of the vertex norm watermarking

methods. Section 5.4 proposes the discretization watermarking method. Section 5.5

introduces the L-M method which minimizes the distortion with respect to a novel

surface error function. Section 5.6 shows the experimental results and followed by

conclusion in section 5.7.
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5.2 Statistical watermarking of mesh-based rep-

resentations of 3-D objects

In this section we describe the steps of the proposed 3D watermarking methodol-

ogy which are adapted from the approach proposed by Cho et al. [31]. While the

statistical approach proposed by Zafeiriou et al. [142] employs distributions of dis-

tances between vertices and the local symmetry axis, Cho et al. considers vertex

norms, representing the distance from vertices located on the object surface to its

center. The watermarking steps described in the following are: statistical variable

representation, histogram mapping function and the watermark detection algorithm.

5.2.1 Statistical variable representation

Assume that we want to embed a code of M bits into a 3D object O. Let us denote

the object center by O and by Vj a vertex on its surface, while their coordinates

are o and vj, respectively. The vertices of the mesh object O are clustered into M

bins such that each bin is used to hold one bit of message Bi, i = 1, . . . ,M . In this

chapter, we cluster the vertices according to their distance from a vertex vj to the

centre of the object o, calculated as:

o =
1

A(O)

∑
vj∈O

A(vj)vj (5.1)

where A(vj) is the sum of the areas of the triangular faces incident to the vertex vj,

and A(O) represents the area of the entire surface of the graphical object O. The

object center defined in this way is more robust than by simply taking the average

of all its vertices, as it was used in [31], particularly when considering the robustness

of the watermarked object to various attacks such as remeshing, simplification, etc.

Other ways of evaluating the object center could have been by using the object

moments [123].

For a given vertex vj ∈ O, let us denote its distance to the centre of the object

o, by ρj = ‖vj − o‖ and consider this as a statistical variable. After ranking these

distances we find ρmin = minj(ρj) and ρmax = maxj(ρj), where j = 1, . . . , |O| and
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|O| represents all vertices from O. Then all the vertices are grouped into M sets

according to their distances to the object centre o as:

Bi = {vj ∈ O | ρmin + |O| ∗ ε+ (i− 1)ρb ≤ ρj , ρj < ρmin + |O| ∗ ε+ iρb} (5.2)

where each of these sets contains a number of vertices equal to:

ρb =
(1− 2ε)(ρmax − ρmin)

M
(5.3)

where ε ∈ [0, 0.15] represents a small percentage accounting for outliers which are

likely to correspond to specific object features and are eliminated from the further

consideration for watermarking in order to avoid visible distortions. The value of ε

is generated as a random value within the range [0, 0.15] seeded by the secret key.

This adds to the watermark security because without the knowledge of the secret

key it would be impossible to retrieve the embedded watermark.

5.2.2 The histogram mapping function

The histogram mapping function presented in this section is theoretically the same

as the one which is presented in Section 4.3.3. However, the statistical variable

is different from Chapter 4 where it was the distribution of geodesic distance. In

this chapter, we consider the distribution of vertex norms i.e. the distance from the

object centre to the vertex as the statistical variable. In order to avoid any confusion,

here we detail all the necessary equations related to this chapter although they are

theoretically equivalent to the previous one introduced in Chapter 4.3.3. Thus, the

methods in this chapter share the same initialization as Cho’s method [31].

In the following we consider two methods for statistically embedding a message

bit into the i′th bin. The first bit embedding method changes the mean value of its

corresponding histogram while the second method embeds the bit by changing the

histogram variance, [31]. The minimum and maximum statistical variable values are

calculated for each bin i as:

ρi,min = ρmin + |O| ∗ ε+ (i− 1)ρb (5.4)
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ρi,max = ρmin + |O| ∗ ε+ iρb (5.5)

In the first embedding method, the statistical variables are firstly normalized to

the range [0, 1] by using:

ρ̃ij =
ρij − ρi,min
ρi,max − ρi,min

(5.6)

As shown in [31], the distribution of the statistical variable ρ̃ij is close to a uniform

distribution. Thus, the expected mean value of the statistical variable is 1/2. In

order to embed one bit we introduce a bias in the corresponding histogram by

changing its mean value as:

µ̂i =

 1
2

+ α if Bi = 1

1
2
− α if Bi = 0

(5.7)

where α is the watermark strength factor influencing the visual distortion as well as

the robustness, while Bi, for i = 1, . . . ,M , is the bit to be embedded in the i′th bin.

In order to change the normalized distances for fulfilling (5.7), the first histogram

mapping function is defined as:

ρ̃′ij = ρ̃βij

 β ∈ (0, 1) if Bi = 1

β ∈ (1,∞) if Bi = 0
(5.8)

where ρ̃′ij is the resulting watermarked normalized vertex norm. Finally, the wa-

termarked vertex norms are obtained by mapping ρ̃′ij back to the original interval

as:

ρ̂ij = ρ̃′ij(ρi,max − ρi,min) + ρi,min (5.9)

The second method embeds the message by changing the variance of the norms.

In this case, ρij is normalized to the range [−1, 1] as:

ρ̃ij = 2
ρij − ρi,min
ρi,max − ρi,min

− 1 (5.10)

The expected variance in this case is 1/3 for a uniform distribution. We embed one
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bit of message by modifying the variance of ρ̃ij according to :

σ̂2
i =

 1
3

+ α if Bi = 1

1
3
− α if Bi = 0

(5.11)

The histogram mapping function for modifying each element from the set Bi is

defined as:

ρ̃′′ij = sign(ρ̃ij)|ρ̃ij|β
 β ∈ (0, 1) if Bi = 1

β ∈ (1,∞) if Bi = 0
(5.12)

The watermarked vertex norms are obtained by the inverse normalization func-

tion:

ρ̂ij =
1

2
(ρ̃′′ij + 1)(ρi,max − ρi,min) + ρi,min (5.13)

In the approach of Cho et al. [31], the vertex is moved along the direction from

the object centre to the current vertex
−−→
OV i, to a new location corresponding to

the watermark in order to satisfy the watermarked vertex norm distributions. This

means that the Euclidean distance from the vertex to the object center becomes ρ̂i,

according to the bit Bi , and its corresponding distribution mean fulfills the condition

from equation (5.7) for the mean-based watermarking, or its variance fulfills equation

(5.11) for the variance-based watermarking. The change of vertex location may affect

the object centre in principal. However, as shown in Figure 3.12, the volume moment

alignment scheme is very robust. And as long as the watermarking process preserve

the surface well enough, it will not affect the watermark detection. In Section 5.3

we provide a new mesh surface error criterion in order to achieve a lower 3D object

modification visibility following watermarking.

5.2.3 Watermark Detection

The watermark extraction algorithm is blind, i.e. it does not need the original object

in the detection stage. The detector needs to know the secret key, the watermark-

ing algorithm and the number of bits that was embedded in order to recover the

watermark message. As a statistical method, it is impossible to generate the bins

without knowing the length of the message. In the detection stage we follow the

same steps as presented in the previous section. After evaluating the object center
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o, we segment the object vertices into bins assuming that the number of embedded

bits M is known. Then, the statistical variable of distances from the vertices to

the object center are normalized according to either equation (5.6) or (5.10), for the

mean or variance methods, respectively. For the first watermarking method, the

message is extracted by applying a test on the mean value of the bin histogram: if µ̂i >
1
2

then Bi=1

if µ̂i <
1
2

then Bi=0
(5.14)

For the second watermarking method, the variance is calculated, and the bit is

extracted following the test : if σ̂2
i >

1
3

then Bi=1

if σ̂2
i <

1
3

then Bi=0
(5.15)

5.3 Watermarking while minimizing the surface

distortion

In the following we use the same statistical embedding and detection approaches as

those described in the above section. However, unlike in [31] where the vertex is

moved along the direction of the line joining the vertex and the object center O,

we propose to change the location of the vertex such that the surface of the object

is not modified. Invisibility of the changes caused by watermarking is one of the

major requirements for the practical application of watermarking. In this section

we outline a surface error minimization approach for 3-D object watermarking.

We can observe that ‖OV̂i‖ = ρ̂i corresponds to a mapping on a 3D sphere

centered at O and of radius ρ̂, where O represents the centre of the object and V̂i is

the new vertex location following watermarking. Any point on the sphere is eligible

to satisfy the watermark condition, i.e. it can potentially be the location of the

vertex following watermark embedding. In the approach from [31], the vertex is

moved along the direction of
−−→
OV i in order to fulfill the watermark condition. Such

a movement guarantees that the resulting Euclidean distortion with respect to the

previous vertex location is minimal. However, this change does not guarantee that
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the object surface distortion is minimal. This is because the similarity between two

surfaces is better measured by the Hausdorff distance and not by the Euclidean

distance [6, 40]. Thus, a Hausdorff-related metric is a more appropriate metric to

evaluate the distortion introduced by the vertex displacement by watermarking.

We propose solving the following system when watermarking 3D graphical ob-

jects under the constraint of minimizing the shape distortion: ‖OV̂i‖ = ρ̂i

v̂i = argminE(v̂i)
(5.16)

where E is a function measuring the distortion produced by watermark embedding

when changing the vertex Vi to V̂i. The above system means that we are aiming

to find a location on the sphere centered in O, fulfilling the watermark condition

‖OV̂i‖ = ρ̂i, such that the displaced vertex introduces a minimal distortion to a

given error function E. Thus, the watermarking is now modeled as a non-linear

optimization method subject to constraints. We propose two solutions for solving

the system from (5.16).

The first method consists of the discretization of the 3-D object surface and

fitting the surface of the sphere centered in O, of radius ρ̂i, by using a number

of candidate points among the surface vertices. We use the Quadric Error Metric

(QEM) which is used in mesh simplification [50] as the surface error metric E.

The location which introduces the minimum distortion according to the QEM error

function will be selected as the watermarked vertex position. The advantages of

this method are that a reasonable high quality watermarked mesh can be produced

with a low computational complexity requirement [91]. However, limited by the

approximation candidates, the distortion is not guaranteed to be the true minimum

over all possibilities.

In the second method proposed in this chapter, we introduce a novel surface

error function which generalizes over both the Euclidean and the Hausdorff metrics

[6,40]. The error function in this case contains three parts measuring: the Hausdorff

distance to the original surface, the Hausdorff distance to the updated surface as well

as the Euclidean distance between the watermarked vertex and the original vertex,
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respectively. The weights of each component of the error metric can be adjusted

by changing user-defined parameters resulting into a method which represents the

generalization of the approaches from [31] and [91]. The watermarked vertex is

firstly placed on the sphere, centered in O and then the best position minimizing

the error function is found iteratively by the Levenberg-Marquardt method.

The schemes that implement the optimization of (5.16) are described in detail

in the following two sections.

5.4 Discretization method

The first proposed vertex placement method using the quadric error metric is de-

scribed in this section.

5.4.1 Quadric Error Metric

Quadric Error Metric (QEM), proposed by Garland and Heckbert [50], is used in

surface quality assessment for mesh simplification methods. QEM assesses the sim-

ilarity between the simplified and the original local surface of 3D graphical objects

by using an edge collapsing procedure. It evaluates the distances from vertices from

one mesh surface to corresponding planes in the other object mesh.

The standard representation of a plane consists of the set of all points for which

nTx + d = 0 where n = [nx ny nz]
T is a plane normal vector which is of unit

magnitude. (i.e., n2
x + n2

y + n2
z = 1), x = [x y z]T is a point in the 3D space and d is

a constant. The quadric QF(x) is defined as the squared distance from a point X,

of location x, to a plane F in the 3D space, as:

QF(x) = xTAx + 2bTx + c (5.17)

where the quadric is described by the triplet QF = (A,b, c), where A = nnT ,

b = dnT and c = d2.

An important property of the quadric is that it can be summed up easily for

entire 3D surface regions and the result will be a triplet whose components are

the sums of each individual quadric triplet components. Let us assume NFi
as the
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number of neighbouring faces adjacent to the vertex Vi of a mesh O and that each

Vj face, j = 1, . . . , NFi
lies on a plane Fj. Then, the quadric error with respect to

the vertex vi given the location of a point x and NFi
can be defined as :

Qvi
=

Nvi∑
j

QFj
=

Nvi∑
j

Aj,

Nvi∑
j

bj,

Nvi∑
j

cj

 (5.18)

where QFj
= (Aj,bj, cj). This formula means that each quadric component is made

up of a separate sum of individual quadric components, each corresponding to a

single plane Fj. The quadric error of X with respect to Vi is defined as the sum of

the squared distance from a point X to all the planes adjacent to Vi.

The quadric error metric is proved to have close relation to the local shape

characteristics including its fundamental form, curvature and local moment. It has

also been shown that its metric represents a lower complexity implementation of

the Hausdorff distance [59]. Moreover, QEM has low requirements for the mesh

surface properties, i.e. it can be even applied on a non-manifold mesh. In this

study, we employ QEM as a measure in order to evaluate the local distortion error

when selecting the location of the watermarked vertex.

5.4.2 Quadric Selective Placement Scheme

We propose to employ the QEM as the distortion measure, according to (5.16), as

follows:  ‖OV̂i‖ = ρ̂i

v̂i = argminQvi
(v̂i)

(5.19)

The proposed scheme consists in finding a candidate point on each neighbouring

face Fj of the vertex Vi, j ∈ 1, . . . , NFi
. Let us consider a triangle 4MNK on the

surface of the object O as shown in Figure 5.1. We locate the closest and furthest

away points from O, from all the points X inside 4MNK, denoted as P and Q,

respectively, such that: ||OP || = min(||OX||)

||OQ|| = max(||OX||)
∀X ∈ 4MNK. (5.20)
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We employ the following geometrically based selection scheme for choosing the wa-

termarked vertex for each neighbouring face:

wj =



vi + ‖ViWj‖ ·

( −−→
ViPj
‖ViPj‖

)
if ρ̂i ∈ [‖OPj‖, ‖OVi‖]

vi + ‖ViWj‖ ·

( −−→
ViQj

‖ViQj‖

)
if ρ̂i ∈ [‖OVi‖, ‖OQj‖]

o + ρ̂i

( −−→
OPj
‖OPj‖

)
if ρ̂i < ‖OPj‖

o + ρ̂i

( −−→
OQj

‖OQj‖

)
if ρ̂i > ‖OQj‖

(5.21)

where Wj is the point of coordinates wj that satisfies the watermark distance condi-

tion ||OWj|| = ρ̂j. The idea behind this configuration is to find a replacement of the

vertex on the original manifold surface so that the watermarked vertex does not in-

troduce too much error. The configuration proposed in equation (5.21) considers all

the possible cases. In Figure 5.1 is shown an example of the first case from the system

provided in (5.21), when Wj is located inside 4MNK and ρ̂i ∈ [‖OPj‖, ‖OVi‖].

ρ

M

N

O

O’

α

W

K = Q

P

j

Figure 5.1: The watermarked vertex Wj is located at the intersection between the
sphere centered in O, of radius ρ̂, and 4MNK from the surface of O.

Thus, for each face Fj we have one candidate vertex wj, j = 1, . . . , NFi
as the

potential position of the watermarked vertex v̂i. For defining the location v̂i of the

watermarked vertex we choose the one that has the minimum quadric error Qvi
(wj)
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from among all the candidates corresponding to the faces adjacent to vi :

v̂i = arg min
wj

Qvi
(wj), j = 1, . . . , NFi

(5.22)

The proposed selection scheme is a geometrically motivated approximation of the

quadric error minimization problem as provided in equation (5.19), [91]. Although

the algorithm makes sure that the newly selected vertex introduces a minimum

distortion over all the candidates with respect to the original object surface, it does

not guarantee that the new triangle will not flip-over after the vertex movement.

A further simple consistency check on the surface normals is required in order to

avoid such problems by ensuring that the watermarked vertex is contained in the

convex hull formed by planes perpendicular on the surrounding surfaces. However,

such a constraint may limit the robustness of the algorithm as in some cases the

vertex will not be able to move to the position required by the embedding condition.

Each neighbouring face is processed for a possible candidate wj thus resulting in

the complexity of O(NFi
) for finding the location of a single watermarked vertex v̂i.

5.5 Optimization method

In the first part of this section, we propose a novel surface distortion error function.

Afterwards, we describe an iterative optimization method to find the optimal solu-

tion of vertex placement for watermarking with respect to the given surface error

function.

5.5.1 Surface distortion metric

We propose an error function consisting of a set of constraints that enforce the

minimum error after watermarking. The error function proposed not only measures

the distortion between the watermarked surface and the original surface, but also

considers the smoothness of the watermarked surface as well as the displacement

error of the original vertex.
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The proposed error function is defined as a product of a vector function:

E = fT f (5.23)

where f is a vector-function that contains three components :

f =


√
k1f1

√
k2f2

√
k3f3

(5.24)

where k1, k2, k3 are the user-defined parameters which control the weights of the

three error function components: f1, f2 and f3.

The first error metric f1 is used to measure the distortion of the watermarked

vertex with respect to the original surface. This is defined as :

f1 =


〈(v̂i − vi), n1〉n1

...

〈(v̂i − vi), nj〉nj

(5.25)

where < ·, · > is the dot product and nj, j = 1, . . . , NFi
is the normal vector

of a neighbouring triangle to the vertex vi of the original surface. The vector <

(v̂i − vi), nj > nj is orthogonal from v̂i to the face Fj. Let us define D(v̂i,Fj) as

the distance from vertex v̂i to face Fj. We can observe that

fT1 f1 =
∑
j

D2(v̂j,Fj) = Qvi
(v̂i) (5.26)

Therefore, the first vector function is measuring the squared distance from the wa-

termarked vertex to the original local surface and corresponds to the error from

equation (5.19) as used in Section 5.4.

The second vector function f2 is defined to measure the distance of the water-

122



marked vertex to the updated surface as:

f2 =


〈(v̂i − vi), n̂1〉n̂1

...

〈(v̂i − vi), n̂j〉n̂j

(5.27)

where n̂j, j = 1, . . . , NFi
is the normal vector of the triangle of the modified surface

neighbouring the vertex v̂i, where we assume that the number of triangles does not

change following watermarking. In case that no neighbouring vertex to v̂i has its

location changed following watermarking, we have:

Qvi
(v̂i) = fT2 f2 = fT1 f1. (5.28)

The reason for using f2 is to ensure the quality of the resulting watermarked surface.

When updating the vertex vi, some of its neighbours may have been watermarked in

the previous stage. Then, the surrounding faces are no longer located on the same

planes as the original ones. In this case, the smoothness of the watermarked surface

can be affected if only f1 would have been considered for the distortion assessment.

The third error function component f3 corresponds to the Euclidean distance

between the watermarked vertex and the original vertex locations :

f3 = v̂i − vi (5.29)

such that the squared Euclidean distance between the original vertex Vi and the

watermarked vertex V̂i is:

fT3 f3 = ||v̂i − vi||2 (5.30)

The third constraint is added to compensate the error which can not be measured by

the previous two functions f1 and f2. For example, any point on the plane containing

the original triangle will produce no errors with respect to the first and second

error functions if none of their neighbours locations are changed by watermarking.

However, if the new vertex goes too far away from the original position on the

plane, it will introduce a very large distortion, although fT1 f1 = fT2 f2 = 0 in this

case. Therefore, we add the third error function as a dragging force in order to
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f1 f3
f2

Vi

V’

V’’

O

A

B

A’

B’

i

i

Figure 5.2: This diagram illustrates the three vector error functions when follow-
ing watermarking a triangle is changed from 4ViAB to 4V ′iA′B′. The water-
mark enforces that the Euclidean distance from O to any location on the sphere
is ||OV ′′i || = ||OV ′i || = ρ̂i. A

′ and B′ are the watermarked neighbours of V ′i corre-
sponding to the original A and B. f1 and f2 are the vector functions from V ′ to the
original plane and the updated plane, respectively. f3 is the Euclidean distance from
Vi to V ′i . In can be observed that if only f1 is considered, then V ′′i will introduce the
smallest error. But obviously, this will introduce a big distortion to the new surface
4V ′′i A′B′.

make sure that the watermarked vertex will be displaced only as much as necessary

from its original location.

Figure 5.2 displays an example illustrating the three error functions for a single

triangle when changing the vertex Vi location into V ′i , following watermarking. If

only the original surface is considered, i.e. the plane containing 4ViAB, then V ′′i

introduces the smallest distortion. But obviously, the new triangle 4V ′′i A′B′ is

twisted and can result into unpleasant visual results of the watermarked surface.

Such a movement will be prevented by employing the second error vector function

f2. The watermarked position of the new vertex must consider the original surface

and the updated surface simultaneously in order to ensure an appropriate surface

smoothness after watermarking. The user defined parameters k1, k2 and k3 weigh

the error with respect to the original surface, watermarked object surface and the

Euclidean distance between the original and updated vertices, respectively. The user

can adjust the configuration in order to focus on a specific error according to different
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requirements. A comprehensive empirical study about choosing these parameters is

provided in the experimental results section. In the following section, we describe

the optimization watermarking algorithm using the Levenberg-Marquardt method.

5.5.2 Optimization methodology for optimal vertex place-

ment for watermarking

In this section we describe how we minimize the error function defined in equa-

tion (5.23) in order to find the best vertex position minimizing the error E. The

constraint that we have to enforce is ||OV̂ || = ρ̂, i.e. the watermarked vertex should

be on the sphere centered in the object center O. Let us consider the spherical

coordinate representation for the vertex v̂ which has an explicit term of the vertex

norm ρ̂ :

v̂ =


ρ̂ cos φ̂ sin θ̂

ρ̂ sin φ̂ sin θ̂

ρ̂ cos θ̂

 (5.31)

Thus, we can modify the vector ψ =

 φ̂

θ̂

 while the vertex norm ρ̂ is constant,

i.e. the corresponding angles of v are changed while the vertex is still located on

the same sphere. Therefore, we only need to find the best vector ψ such that E is

minimized :

ψ = argmin
ψ

E (5.32)

Initially, we can select any point on the sphere as an initial value. We choose

to move the vertex v to v̂ along the direction of
−−→
OV such that ||OV̂ || = ρ̂, as

in [31], as a suitable initialization. Then, we use the Levenberg-Marquardt method

to iteratively find the optimal vertex location minimizing the surface error defined

according to (5.23). Levenberg-Marquardt [92] is a damped version of the Gauss-

Newton method and represents an iterative gradient-descend method which solves

nonlinear least square problems subject to constraints. This method has been used

as an optimization method in computer graphics [28,47], computer vision as well as

for image watermarking [8].

Levenberg-Marquardt firstly linearizes the given nonlinear problem by using the
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Taylor expansion around the vector ψ:

f(ψ + h) = f(ψ) + Jh (5.33)

where f is defined in Equation (5.24) and h =

 ∆φ

∆θ

 is the step size. J is the

Jacobian Matrix of the vector function f and is calculated as:

J =

 ∂fT

∂φ̂
∂fT

∂θ̂

 (5.34)

An optimal step h is evaluated at each iteration k, in order to update the vector

ψk :

ψk+1 = ψk + h (5.35)

Levenberg-Marquardt method uses the following equation to calculate an optimal h

at the given iteration [92]:

(JTJ + µI)h = JT f (5.36)

while µ > 0 is called damping factor. The initial value of µ is chosen to be 10−6 times

the largest value on the diagonal component of JTJ, evaluated at ψ0, as suggested

in [47, 92]. The µ value is updated according to the schedule proposed by Nielsen

in [95]. The algorithm is not sensitive to the initial value of µ as this is continually

optimized by the updating procedure [92]. The damping factor serves two main

purposes. Firstly, as long as µ > 0, the coefficient matrix is positive definite, and

this ensures that h is calculated in order to ensure minimizing in the descent error

direction. Secondly, the damping parameter influences both the step size and the

direction of the gradient descent. When ψ is close to the optimal position, the

convergence rate of the Levenberg-Marquardt is almost quadratic. The details of

the Levenberg-Marquardt method can be found in [92].

Optimization using Levenberg-Marquardt was shown to converge and the process

is terminated in the following situations [47, 92]: when the step size h is too small,

the error E is too small, or when the loop exceeds a pre-set number of iterations,
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according to the following thresholds :
||hk|| ≤ 10−8(||xk||+ 10−8)

||fTk ψk||∞ ≤ 10−8

k ≥ kmax

(5.37)

where the subscript k indicates the iteration step, kmax is the maximum allowed

number of iterations and ||fTk ψk||∞ represents the infinity norm of the matrix fTk ψk

(the largest absolute value of all the matrix entries).

5.6 Experimental results

In the following we provide experimental results when using the proposed methodol-

ogy for watermarking graphical objects. The experiments address both the visibility

of the watermarks as well as their robustness to various attacks. In the simulations

we use both the discretization method described in Section 5.4 (denoted as QSP)

as well as the error minimization approach by employing Levenberg-Marquardt as

described in Section 5.5 (denoted as L-M). For each of these methods we employ

two different statistical approaches, corresponding to modifying the mean or the

variance of the histogram of distances from vertices to the object center, according

to either equation (5.7) or (5.11), respectively. The discretization method proposed

in [90] , described in Section 5.4, has been shown to produce less visible changes in

3D objects and to possess similar robustness when compared to the methods pro-

posed by Cho et al. in [31]. Moreover, the placement of the vertex proposed in [31]

is used as the initialization of the Levenberg-Marquardt method. The optimization

methodology described in Section 5.5 clearly leads to a better solution for the ver-

tex placement following watermarking, such that it minimizes the energy function as

defined in Section 5.5.1, and consequently produces less distortion in the graphical

object than the approach from [31].
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Models No. of vertices No. of faces
Bunny 34,833 69,449
Fish 64,982 129,664
Gear 231,703 463,430

Dragon 422,335 844,886

Table 5.1: Characteristics of the 3D models used in experiments.

Parameters Bunny Gear
k1 k2 k3 L-MMean L-MVar L-MMean L-MVar
1.0 0.0 0.0 0.44 0.17 949.09 428.09
0.0 1.0 0.0 0.46 0.18 1025.21 355.11
0.0 0.0 1.0 1.18 0.62 1861.15 1024.07
0.5 0.5 0.0 0.41 0.18 654.57 303.15
0.5 0.0 0.5 1.10 0.59 1546.87 862.52
0.0 0.5 0.5 1.17 0.62 1817.69 998.94
0.45 0.45 0.1 0.69 0.36 621.97 313.10
0.4 0.4 0.2 0.88 0.46 1007.14 537.90
0.49 0.49 0.02 0.40 0.21 410.57 148.12

Table 5.2: Evaluating MRMS error, calculated according to equation (2.16), when
changing k1, k2, k3.

5.6.1 Experimental Models

In this chapter, we use the following four 3D graphical models : Bunny, Fish, Gear

and Dragon. The details of the models are provided in Table 5.1. Figure 5.3 shows

the rendered models. Bunny is a standard small mesh object which is widely used

in computer graphics experiments. Gear is a CAD object which contains large flat

regions and sharp corners. Dragon is considered as a large 3D model as number of

vertices and faces.

(a) Bunny (b) Fish (c) Gear (d) Dragon

Figure 5.3: 3D Models used in the experiments.
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5.6.2 Evaluating the parameter setting

In this section we provide results about how to choose the parameters weighting

the error components used in the optimization process as described in Section 5.5.1.

There are 64 bits message embedded in the objects and the α = 0.1 in these cases.

The parameters k1, k2 and k3 weigh the significance of the constraints characterizing

the errors of the updated vertex with respect to the original surface, watermarked

surface and the Euclidean distance to the original vertex location, respectively. A

number of significant parameter combinations (k1, k2, k3), emphasizing one or an-

other of the error components, are listed in the first column of Table 5.2. L-MMean

and L-MVar denote the watermarking methods using the error optimization by

Levenberg-Marquardt, as described in Section 5.5, when employing either equation

(5.7) for mean change, or equation (5.11) for variance change. The results are eval-

uated according to the distortion caused to the 3D object surface, according to

MRMS error, provided in equation (2.16). Table 5.2 provides the MRMS results for

two of the graphical objects: Bunny and Gear. The first three sets of parameters

consider each a single error component while equating the other two to zero. In

these cases, when only the distortion with respect to the original surface or to the

updated surface is considered, the resulting surface distortion results are similar.

However, when considering only the Euclidean distance with respect to the original

vertex, i.e. when k3 = 1 and k1 = k2 = 0, the resulting surface distortion is much

larger. For this parameter combination it can be observed that the watermarking

method becomes identical with the method of Cho et al. described in [31]. From

the fourth case to the sixth case, we test the effects considering only two parameters

while equating the third one to zero. It shows that if the errors with respect to

the original surface and the watermarked surface are considered simultaneously and

equally weighted, the resulting distortion is much smaller than the other two cases.

This indicates that the significance of the first two error function components f1 and

f2 should outweigh the third error component, respectively f3. As it is described in

Section 5.5.1, the errors with respect to both the original surface and the updated

surface must be considered. So the fourth case provides less surface distortion than

the first and the second ones according to these experiments. The final three pa-
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rameter sets evaluate the distortion when we take all three factors into account with

various weights. We found that the last case, where k1 = k2 = 0.49 and k3 = 0.02,

provides the minimum surface distortion according to the MRMS criterion. This

result verifies our error function construction, as described in Section 5.5.1, with

the main emphasize on minimizing the error with respect to the original object

surface as well as for enforcing the smoothness of the resulting watermarked ob-

ject surface, but without neglecting the error with respect to the original vertex

location. Figure 5.4 illustrates various visual effects on the Gear object when us-

ing different configurations of k1, k2 and k3. According to the parameter settings,

both Cho et al. and the QSP methods are special cases of the proposed L-M based

methodology. In the rest of the chapter, we consider the configuration of (k1, k2,

k3)=(0.49, 0.49, 0.02) for the weighting parameters because this provides the best

watermarked object surface quality. Unless, specifically stated otherwise we embed

M = 64 bits in all the watermarking experiments. The robustness parameter is set

as α = 0.1 in both equations (5.7) and (5.11), while the maximum number of itera-

tions for the Levenberg-Marquardt method is set at kmax = 500 in the convergence

criteria system from (5.37).

5.6.3 Evaluation of surface distortion

One of the main requirements of digital watermarking is that it does not produce

visible changes on the surface of graphical objects. The watermarking methods

developed by Cho et al. [31] are known to produce ripples like effects on the surface

of graphical objects. The methodology presented in this chapter aims to specifically

address the distortions produced by digital watermarking in the meshes of graphical

objects. Table 5.3 compares the distortions introduced by the two methods proposed

in this chapter and Cho’s methods under the same parameter settings. For each

method we use both statistical approaches corresponding to equation (5.7) for mean

change and equation (5.11) for variance change. The names of the methods are

obtained by appending either “Mean” or “Var”, respectively to the name of the

watermarking method. We use MRMS, proposed in [34] and provided in equation

(2.16), as the numerical distortion measure for comparing various watermarking
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(a) k1 = 0.0, k2 = 0.0, k3 = 1.0 (b) k1 = 0.5, k2 = 0.5, k3 = 0.0

(c) k1 = 0.45, k2 = 0.45, k3 = 0.1 (d) k1 = 0.49, k2 = 0.49, k3 = 0.02

Figure 5.4: The visual effects for various k1, k2 and k3 settings.

methods. Clearly, both methods proposed in this chapter outperform Cho’s methods

by producing a lower level of distortion in the surfaces of the watermarked graphical

objects. The L-M methods and the QSP methods give similar distortion to the

objects Bunny, Fish and Dragon. But L-MMean and L-MVar are clearly better

than their corresponding QSP methods when applied on the Gear object which is a

CAD object containing many flat regions and sharp angles.

Figure 5.5 shows the visual differences among the results provided by the three

methods: L-M, QSP and Cho. The two methods proposed in this chapter produce

much smaller distortion than Cho’s method. Figure 5.6 compares close details of the

distortions produced by the two proposed methods. In general, the visual quality of

the watermarked objects by the two proposed methods is very close to each other

but the M-L optimization based methods produce slightly better results than the
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Object L-MMean L-MVar QSPMean QSPVar ChoMean ChoVar
Bunny 0.40 0.21 0.43 0.25 1.18 0.62
Fish 0.12 0.06 0.15 0.07 0.48 0.24
Gear 409.59 148.16 679.46 212.11 1860.67 1023.67
Dragon 0.29 0.13 0.36 0.15 1.09 0.57

Table 5.3: Watermarked object distortion measured by MRMS, where all the figures
should be multiplied with 10−4.

QSP based methods.

(a) Original object (b) L-MMean (c) QSPMean (d) ChoMean

Figure 5.5: Distortions produced by watermarking on the Bunny object.

5.6.4 Watermark robustness assessment

The results are obtained under 64 bits message embedded and α = 0.1 in this section.

The Levenberg-Marquardt method described in Section 5.5 is used for the vertex

placement at a watermark defined distance from the object center while employing

the statistical approach of Cho’s method [31] as initialization. The optimization

method by L-M ensures that the vertex is placed optimally according to the given

error measure as described in Section 5.5. In [91] it is shown that the robustness of

the QSP methods is very similar with that of Cho’s methods. Given these aspects

of the proposed methodology, in this study we only compare the robustness of the

L-M method with that of the QSP methods. All these methods are perfectly robust

against attacks that do not distort the graphical object surface including the affine

transformations, vertex reordering etc. In the following, we evaluate the robustness

against additive noise, Laplacian smoothing, mesh simplification, quantization and

uniform resampling. Figure 5.7 shows the effects on the Bunny model after certain

attacks. All those models are embedded with 64 bits of message while α = 0.1.
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Figure 5.7(a) shows the watermarked Bunny graphical object after noise addition

with ε = 0.5%. And the noise attack is defined in equation 3.24 on page 59. The plots

from Figure 5.8 show the robustness against noise when varying ε = [0.1%, 1%] for all

four methods and for all four graphical objects under consideration. The twisting

curves indicate that the robustness of the L-M methods and those of the QSP

methods are similar to each other for each of the statistical cases of either “Mean”

or “Var”. The results on the Gear object are not that robust as those achieved when

attacking the other three objects because this is a CAD object containing large flat

areas and sharp angles. Additive noise can easily destroy completely such distinctive

features.

For the smoothing attack test we use the Laplacian algorithm proposed in [119].

A watermarked and smoothed Bunny when considering a smoothing parameter

λ = 0.5 and 10 iterations is shown in Figure 5.7(b). The robustness of the wa-

termarking methods against the Laplacian smoothing when applied for 1 to 20 it-

erations with λ = 0.5 are provided in Figure 5.9 for the four objects. Again, the

proposed methods show similar results to each other. It can be observed that as the

size of the object, measured by the number of vertices, is increasing, the robustness

is increased accordingly. The watermarked Bunny, which has the fewest number

of vertices, is the least robust to the Laplacian smoothing attack among the four

objects.

The quadric metric simplification software described in [50] was used for testing

the robustness at mesh simplification. Figure 5.7(c) shows the watermarked Bunny

object after 90% simplification. Figure 5.10 shows the robustness to the simplifica-

tion attack for the four methods and for the given four graphical objects. In these

experiments, we test the robustness of the watermarking methods when varying the

mesh simplification ratio from 5% to 95%. The proposed methodology performs

excellently in the case of the mesh simplification attack. According to the results

from Figure 5.10, L-M methods provide better results than QSP methods. This is

because the L-M methods approximate the watermarked object surface better than

the QSP methods while the mesh simplification attack always tends to preserve the

surface features.

Figure 5.7(d) shows the bunny object attacked after 7 bits quantization. As
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shown in Figure 5.11 all four algorithms are fairly robust up to applying 8 bits

quantization attacks and the histogram mean change methods when using (5.7)

perform better than histogram variance change methods when using (5.11), similarly

to the noise attack tests.

We compare the robustness of all four methods against the remeshing attack after

uniform sampling a percentage of 100%, 80%, 60%, 40% and 20% from all vertices of

the original object using the method proposed in [13]. The new points are sampled

from the tangent plane to the object surface. From the robustness plots shown in

Figure 5.12 we can see that while for Bunny L-M and QSP methods provide similar

results, L-MMean gives better robustness results than the other methods when used

for watermarking the Fish, Gear and Dragon.

5.6.5 Computational complexity

Table 5.4 shows the comparison of the timing required for embedding 64 bits when

using the three methods L-M, QSP and Cho from [31] and their Mean and Var

variants. The first two columns of Table 5.4 provide the average number of itera-

tions required by the Levenberg-Marquardt method for each of the four models. In

Figure 5.13(a) we provide the convergence of the step function ‖h‖ as well as that

of the minimization of the infinity norm ||fTk ψk||∞, which represents the component

of the matrix fTk ψk with the largest absolute value from all its entries, evaluated for

a typical vertex which is watermarked by using L-M. From these results it can be

observed that L-M method converges in just a few iterations. Figure 5.13(b) shows

the variation of the error function E. The Levenberg-Marquardt method automat-

ically adjusts the step size and the step direction h while testing whether the step

size is appropriate. In this example, although there are nine iterations required in

total for convergence, the vertex is actually only moved once at step 5 where both

the ||fTk ψk||∞ and the error E are decreased. Then, the process terminates as the

method eventually reaches the stopping condition at step 9, i.e. when it reaches the

local minimum. The less distortion is introduced by the watermarking method, the

larger is the required execution time.
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Object Mean. Var. L-M L-M QSP QSP Cho Cho
Iter.(No) Iter.(No) Mean(s) Var(s) Mean(s) Var(s) Mean(s) Var(s)

Bunny 6.20 5.74 5.75 5.3 1.7 1.79 0.39 0.4
Fish 5.69 5.03 10.28 9.36 3.29 3.25 0.85 0.88
Gear 5.87 5.24 42.55 38.52 12.96 12.69 3.98 3.87
Dragon 5.88 5.35 77.55 69.78 22.82 22.4 6.09 6.67

Table 5.4: Comparison of the watermark computational requirements. The sec-
ond and third columns provide the average number of iterations required by the
Levenberg-Marquardt method until convergence for the Mean and Var methods.
The columns fourth to ninth represent processing times in seconds.

5.6.6 Evaluation of the bit-capacity and of the embedding

strength factor α

Figure 5.14(a) illustrates the relations between the 3-D object surface distortion and

the watermark strength factor α. Figure 5.14(b) shows the distortion variation with

respect to the watermarking capacity. As it was expected the distortion is increased

when either α or the embedding capacity is increased. Figure 5.16 (a) and (b) pro-

vide the robustness plots for L-MMean and QSPMean methods, respectively, when

increasing the bit capacity to be embedded in the graphical object. Figures 5.15 (a)

and (b) provide the robustness plots for L-MMean and QSPMean methods, respec-

tively, when increasing the watermark strength factor α as well as the relationship

between the robustness and the embedding capacity. The robustness is higher when

embedding fewer bits of information. However, the robustness is very similar when

watermarking any of the given graphical objects for the watermark strength corre-

sponding to α = {0.1, 0.15, 0.2}.

5.7 Conclusion

In this chapter, we propose two watermarking methods motivated by Cho’s method.

One is called QSP method based on the surface discretization. The method dis-

cretizes the surface into a number of candidate points and select the one minimizing

the QEM error as the watermarked vertex. The second method uses a novel er-

ror function measuring the distortion caused by the vertex movement. The error

function consists of three parts which consider the distortion with respect to the
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original surface, watermarked surface and the Euclidean constraint, respectively.

The surface distortion produce by the watermark is minimized by means of the

Levenberg-Marquardt optimisation method. The optimization method can be con-

sidered as a generalization of the Cho’s method and the QSP method. As shown in

the experiments, the robustness of our methods matches Cho’s method. However,

the surface distortion is significantly reduced by the proposed methodology. We

claim that the error function when introduced in the chapter can be considered as

a standard metric in measuring the surface distortion.

To the best of our knowledge, the L-M method proposed in this chapter in-

troduces the smallest visual and numerical distortion with respect to the original

surface over all the robust 3D watermarking algorithms. The L-M method is the

best method over the four methods proposed in this thesis, in the perspective of

robustness and distortion. The security is also enforced in various stages including

the mesh segmentation and statistical variable construction. When compared to

other spatial domain methods in literature, the L-M method first time employs a

mechanism to minimize the surface error with respect to a well defined surface error

function.

However, the methods proposed in this chapter still suffer the same problem as

the other statistical methods. The methods can not be applied on the small objects.

Also, the methods are not robust against any attack modifying the object centre.
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(a) Bunny (b) Fish (c) Gear (d) Dragon

Figure 5.6: Visual comparison of graphical object details following watermarking.
From the first row to the bottom, the following are represented on each row: original
objects and watermarked by L-MMean, L-MVar, QSPMean and QSPVar, respec-
tively.
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(a) Noise ε = 0.5% (b) Laplacian smoothing λ = 0.5, 10 iterations

(c) 90% mesh simplification (d) 7 bits quantization

Figure 5.7: Watermarked Bunny model after various attacks.
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(a) Bunny (b) Fish

(c) Gear (d) Dragon

Figure 5.8: Robustness against additive noise.
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(a) Bunny (b) Fish

(c) Gear (d) Dragon

Figure 5.9: Robustness against Laplacian smoothing.
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(a) Bunny (b) Fish

(c) Gear (d) Dragon

Figure 5.10: Robustness against mesh simplification.
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(a) Bunny (b) Fish

(c) Gear (d) Dragon

Figure 5.11: Robustness against quantization.
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(a) Bunny (b) Fish

(c) Gear (d) Dragon

Figure 5.12: Robustness against uniform resampling and remeshing.

(a) The variation of the step size (d) The error function.
||h|| and ||f(ψ)||∞.

Figure 5.13: Typical convergence of Levenberg-Marquardt for a vertex.
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(a) Distortion when varying α (b) Distortion when increasing capacity

Figure 5.14: Distortion with respect to the watermark strength factor α and bit-
capacity.

(a) Robustness of L-MMean (b)Robustness of QSPMean
when varying capacity when varying capacity

Figure 5.15: Robustness when increasing the bit capacity.
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(a) Robustness of L-MMean (b) Robustness of QSPMean
when varying α when varying α

Figure 5.16: Robustness when increasing the watermark strength factor α.
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Chapter 6

Conclusion and future work

This chapter commences with a summary of the contributions from Chapter 3 to

Chapter 5 of this thesis. This is followed by a discussion of the strengths and

weakness of the methods presented. Finally, we give the directions of the future

work.

6.1 Summary of contributions

This thesis introduced four novel robust and blind watermarking methods from dif-

ferent directions. The first one presented in Chapter 3 is embedding the watermark

message in the spectral domain. The method employs the Combinatorial Laplacian

matrix to model the second derivative of the mesh based on the spectral graph the-

ory. A robust 3D object alignment scheme using the Volumetric Moment is also

introduced to ensure that the watermarked object can be oriented to the same pose

as the original one. The method is the first spectral domain watermarking method

that uses the statistical feature of the spectral coefficients to embed the message.

The experimental results are compared with the state of the art [31] and show that

our method is introducing less distortion.

In Chapter 4, we presented a novel spatial domain method using the statistical

feature of the geodesic distances. The method is based on the observation that

within a strip, the distribution of the geodesic distance is close to uniform. Thus,

we embed the message by modifying the mean value or the variance value of the

distribution. We firstly introduced a novel vertex placement scheme to move the
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vertex with minimum distortion in order to change the geodesic distance. This

algorithm preserves the surface feature very well and its robustness is comparable

with the state of the art [31]. The geodesic method firstly shows that the flat region

may be more suitable for watermarking purpose than the bumpy region [19].

In Chapter 5, we proposed two algorithms which share the same initialization as

Cho’s method [31] based on the well designed framework of constraint non-linear op-

timization problem. The first method is to discretize the configuration of the surface

and generate a number of approximation candidates. The Quadric Error Metric used

in mesh simplification is employed as the error function. The point introducing the

smallest error will be selected as the watermarked position for a vertex. Although

the point introduces the smallest error within the approximated candidates, it does

not ensure the smallest error in all possibilities due to the limitation of discretization.

In the second method, we minimize the surface error with respect to a novel surface

error function using the Levenberg-Marquardt optimization algorithm. The error

function involves three parts measuring the error introduced by the watermarked

vertex with respect to the original object, watermarked object and the Euclidean

distance to the original vertex, respectively. The Levenberg-Marquardt method is

a gradient descend like optimization method and is used for finding the location

minimizing the surface error function. The second method in Chapter 5 introduces

the smallest distortion to the surface so far in the literature while its robustness

matches the state of the art [31]. Another important contribution in Chapter 5 is

that we bring an explicit mechanism to control the surface error while keeping the

embedding strength factor unchanged.

The most important advantage over the majority of other 3D robust and blind

watermarking algorithms is that the distortion introduced by our algorithms are

clearly smaller. We also bridge the gap between the distortion and the robustness

by introducing an explicit technique to control the distortion introduced.

On the other hand, there are certain weaknesses in each of the proposed algo-

rithms. The spectral watermarking algorithm proposed in Chapter 3 has limited

robustness against attacks. Also, the spectral algorithm involves decomposition of

very large matrix which makes the algorithm unapplicable in the real world.

The geodesic distance watermarking method provides much better robustness
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and visual quality in the resulting watermarked object when compared to the spec-

tral methods. However, the robustness is still lower than that of Cho’s methods. The

method is computationally more expensive than Cho’s method. Some of the vertices

may not convergent following watermark embedding in the vertex placement.

The two methods in the Chapter 5 are probably the best 3D robust and blind

watermarking algorithm so far in the literature. However, the second one involving

a optimization process takes longer time to watermark an object.

In general, none of the algorithm proposed in this thesis is robust against the

mesh cropping attack. Because all methods proposed rely on the object alignment

in the preprocessing stage. Cropping will severely change the object centre and the

principal axis. As a result, the methods proposed in this thesis can not deal with

this attack.

6.2 Future work

In addressing the weaknesses detailed above, the proposed methods can be extended

and improved in the following aspects. It is possible to reduce the complexity of

the spectral decomposition method by employing some better matrix decomposition

techniques such as proposed in [126]. It would significantly boost the usage of the

mesh spectral decomposition technique if the relation is made clear, so does the

watermarking technique.

The geodesic watermarking method still suffer the nonconvergent problem in

some rare cases although this does not affect the robustness of the algorithm. This

can be improved in the future. Once the convergence problem is solved, it is very

promising to employ the VPS to design a steganography or reversible watermarking

algorithm. The reversible method means that the original model can be recovered

according the recovered message.

It is also worth to develop a better mesh registration method so that the water-

marking algorithm can be robust against cropping attack for a certain level.

There are extensively applications that watermarking can be applied in the real

world such as database management, copyright protection and authentication etc.

It seems the second method proposed in Chapter 5 is the most promising method
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to be applied in practice. Because it provides the best overall mesh quality and the

robustness.
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[41] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr. Implicit fairing of irregular

meshes using diffusion and curvature flow. In SIGGRAPH ’99: Proceedings of

the 26th annual conference on Computer graphics and interactive techniques,

pages 317–324, New York, NY, USA, 1999. ACM Press/Addison-Wesley Pub-

lishing Co.

[42] S. Dong, P.T. Bremer, M. Garland, V. Pascucci, and J.C. Hart. Spectral

surface quadrangulation. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,

pages 1057–1066, New York, NY, USA, 2006. ACM.

[43] J. L. Dugelay, A. Baskurt, M. Daoudi, and eds. 3D object processing: com-

pression, indexing and watermarking. J. Wiley & Sons, 2008.

[44] M Eck, T. DeRose, T. Duchamp, H Hoppe, M. Lounsbery, and W. Stuet-

zle. Multiresolution analsysi of arbitrary meshes. In Proceedings of ACM

SIGGRAPH 1995, pages 173–182, 1995.

[45] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Louns-

bery, and Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In

SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer

graphics and interactive techniques, pages 173–182, New York, NY, USA, 1995.

ACM.

[46] J.J. Eggers, R. Bauml, R. Tzschoppe, and B. Girod. Scalar costa scheme for

information embedding. Signal Processing, IEEE Transactions on, 51(4):1003–

1019, Apr 2003.

[47] M Eigensatz, R.W. Sumner, and M. Pauly. Curvature-domain shape process-

ing. In Proc. of Eurographics, Computer Graphics Forum, vol. 27, no. 2, pages

241–250, 2008.

154



[48] A. Elad and R. Kimmel. On bending invariant signatures for surfaces. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 25(10):1285–1295,

Oct. 2003.

[49] Thomas Funkhouser, Patrick Min, Misha Kazhdan, Joyce Chen, Alex Halder-

man, David Dobkin, and David Jacobs. A search engine for 3d models. ACM

Transactions on Graphics, 2003.

[50] M. Garland and P. Heckbert. Surface simplification using quadric error met-

rics. In Proceeding SIGGRAPH, Graphical Models 66(6), pages 370–397, 1997.

[51] E.D. Gelasca, T. Ebrahimi, M. Corsini, and M. Barni. Objective evaluation of

the perceptual quality of 3d watermarking. In Image Processing, 2005. ICIP

2005. IEEE International Conference on, volume 1, pages I–241–4, Sept. 2005.

[52] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Uni-

versity Press, third edition edition, 1996.

[53] Craig Gotsman, Xianfeng Gu, and Alla Sheffer. Fundamentals of spherical

parameterization for 3d meshes. In SIGGRAPH ’03: ACM SIGGRAPH 2003

Papers, pages 358–363, New York, NY, USA, 2003. ACM.

[54] E.W. Grafarend and A.A. Ardalan. World geodetic daum 2000. Journal of

Geodesy, 73(11):611–623, 1999.

[55] Eitan Grinspun and Adrian Secord. Introduction to discrete differential ge-

ometry: the geometry of plane curves. In SIGGRAPH ’06: ACM SIGGRAPH

2006 Courses, pages 1–4, New York, NY, USA, 2006. ACM.

[56] A. Guezlec. Meshsweeper: dynamic point-to-polygonal mesh distance and

applications. Visualization and Computer Graphics, IEEE Transactions on,

7(1):47–61, Jan-Mar 2001.

[57] Thomas Harte and A.G. Bors. Watermarking 3d models. In Proceeding of

IEEE International Conference on Image Processing, pages 661–664, 2002.

155



[58] F. Hartung and B. Girod. Copyright protection in video delivery networks by

watermarking of pre-compressed video. In Lecture Notes in Computer Science,

volume 1242, pages 423–436. Springer, 1997.

[59] P. Heckbert and M. Garland. Optimal triangulation and quadric-based surface

simplification. Journal of Computational Geometry, 14(1-3):49–65, 1999.

[60] K. Hildebrandt, K. Polthier, and M. Wardetzky. On the convergence of metric

and geometric properties of polyhedral surfaces. Journal Geometriae Dedicata,

123(1):89–112, 2006.

[61] Hugues Hoppe. Progressive meshes. In SIGGRAPH ’96: Proceedings of

the 23rd annual conference on Computer graphics and interactive techniques,

pages 99–108, New York, NY, USA, 1996. ACM.

[62] Roland Hu, Patrice Rondao-Alface, and Benoit Macq. Constrained optimi-

sation of 3d polygonal mesh watermarking by quadratic programming. In

ICASSP ’09: Proceedings of the 2009 IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 1501–1504, Washington, DC,

USA, 2009. IEEE Computer Society.

[63] DP HUTTENLOCHER, GA KLANDERMAN, and WJ RUCKLIDGE. COM-

PARING IMAGES USING THE HAUSDORFF DISTANCE. IEEE TRANS-

ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

15(9):850–863, SEP 1993.

[64] V. Jain and H. Zhang. A spectral approach to shape-based retrieval of artic-

ulated 3d models. Comput. Aided Des., 39(5):398–407, 2007.

[65] J. Jeon, S.K. Lee, and Y.S. Ho. A three-dimensional watermarking algorithm

using the dct transform of triangle strips. Digital Watermarking, pages 269–

285, 2004.

[66] A.D. Kalvin and R.H. Taylor. Superfaces: polygonal mesh simplification with

bounded error. Computer Graphics and Applications, IEEE, 16(3):64–77, May

1996.

156



[67] S. Kanai, H. Date, and T. Kishinami. Digital watermarking for 3d polygons

using multiresolution wavelet decomposotion. In Proceeding of International

Workshop on Geometric Modeling: fundamentals and applications, pages 296–

307, Tokyo, Japan, 1998.

[68] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. Computer

Graphics (Proceeding SIGGRAPH), pages 279–286, 2000.

[69] Michael Kazhdan. Shape Representations and Algorithms for 3D Model Re-

trieval. PhD thesis, Princeton University, 2004.

[70] M.S. Kim, S. Valette, H.Y. Jung, and R. Prost. Watermarking of 3d irregular

meshes based on wavelet multiresolution analysis. Lecture Notes in Computer

Science, Digital Watermarking, pages 313–324, 2005.

[71] Sun-Jeong Kim, Soo-Kyun Kim, and Chang-Hun Kim. Discrete differential er-

ror metric for surface simplification. In PG ’02: Proceedings of the 10th Pacific

Conference on Computer Graphics and Applications, page 276, Washington,

DC, USA, 2002. IEEE Computer Society.

[72] R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. In Pro-

ceeding National Academic Science USA, volume 95, pages 8431–8435, 1998.

[73] D. Kirovski and H.S. Malvar. Spread-spectrum watermarking of audio signals.

IEEE Transactions on Signal Processing, 51(4):1020–1033, 2003.

[74] Reinhard Klein, Gunther Liebich, and Wolfgang Strasser. Mesh reduction with

error control. In VIS ’96: Proceedings of the 7th conference on Visualization

’96, pages 311–318, Los Alamitos, CA, USA, 1996. IEEE Computer Society

Press.

[75] J. M. Konstantinides, A. Mademlis, P. Daras, P. A. Mitkas, and M. G.

Strintzis. Blind robust 3-d mesh watermarking based on oblate spheroidal

harmonics. Multimedia, IEEE Transactions on, 11(1):23–38, 2009.

157



[76] Yehuda Koren, L. Carmel, and D. Harel. Ace: a fast multiscale eigenvectors

computation for drawing huge graphs. In Information Visualization, 2002.

INFOVIS 2002. IEEE Symposium on, pages 137–144, 2002.
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Appendix A

Comparisons of All Methods

In this appendix, we make the comparison among the methods proposed in this

thesis and Cho’s method proposed in [31].

A.1 Models and Parameter Settings

We use two models to do the comparison. One is the Bunny object which contains

34,835 vertices and 69,666 faces. All the experiments are taken with 64 bits of

message embedded in the object. In the detection stage, we assume that the secret

key and the length of the message are known. And the other is Buddha with 89,544

vertices and 179,222 faces. For the spectral method, we have the parameter setting

as: α = 0.1, K = 15 and T = 2.25 as used in equations (3.6), (3.20) and (3.23),

respectively. And the object is split into N = 70 patches grouped into κ = 2 layers.

For the geodesic method, the discretization method and the optimization method,

the watermarking strength factor α are all set as α = 0.1. For Cho’s method, we

set α = 0.05 so that the watermarked object can have similar surface quality with

those watermarked by geodesic, QSP and L-M Methods.

A.2 Distortion

We use the MRMS as introduced in Section 2.4.1 to evaluate the distortion intro-

duced by the watermarking embedding as shown in Table A.1. The value obtained

in the table are may vary from time to time if the watermark message is changed.
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We use the same message to watermark the object using different algorithms to test

the numerical distortion. The difference between the algorithms are small but L-M

method provides the smallest distortion.

Note that the surface distortion of each method is affected by two reasons.

Firstly, the embedding message. For example a message 0101 has different effect

as 1111 on the surface. Secondly, different initialization gives different result. For

example, in the method of geodesic distance, a small region at the end point (the

smallest geodesic distance point and the largest) are not considered for watermark-

ing. This is determined by ε ∈ (0, 0.2). For example, if ε = 0.05, there are more

vertices can be used for embedding and in this case the distortion is smaller. If

ε = 0.15, then 10% of vertices can not be used and the difference is quite large. The

epsilon is generated according to a secret key. Therefore, different key also gives

different results. The results obtained in Table A.1 are seeded using the same key

35233.

Bunny Buddha
Spectral 0.25 0.26
ProVar 0.25 0.24
QSPVar 0.26 0.19
L-MVar 0.21 0.19
ChoVar 0.27 0.26

Table A.1: Watermarked object distortion with respect to the original object mea-
sured by MRMS, where all results should be multiplied with 10−4.

A.3 Robustness

The noise attack is defined in equation (3.24) in section 3.6.4. Figure A.1, figure A.2,

figure A.3, figure A.4 and figure A.5 demonstrate the robustness comparison of five

methods against the attack of additive noise, Laplacian Smoothing, mesh simplifi-

cation, quantization and uniform resampling respectively. All the results are taken

as an average value of 20 random cases. As shown in those results, L-M and QSP

methods possess the highest overall robustness. These results are obtained user the

same key 35233.
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(a) (b)

Figure A.1: Plots showing the robustness at noise, (a) Bunny, (b) Budda

(a) (b)

Figure A.2: Plots showing the robustness at smooth, (a) Bunny, (b) Budda. λ = 0.3
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(a) (b)

Figure A.3: Plots showing the robustness at mesh simplification attack, (a) Bunny,
(b) Budda.

(a) (b)

Figure A.4: Plots showing the robustness at quantization, (a) Bunny, (b) Budda.

169



(a) (b)

Figure A.5: Plots showing the robustness at resampling, (a) Bunny, (b) Budda.
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