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Abstract

This thesis explores compensation for reverberation in human listeners and ma-
chines. Late reverberation is typically understood as a distortion which degrades
intelligibility. Recent research, however, shows that late reverberation is not al-
ways detrimental to human speech perception. At times, prolonged exposure to
reverberation can provide a helpful acoustic context which improves identification
of reverberant speech sounds. The physiology underpinning our robustness to re-
verberation has not yet been elucidated, but is speculated in this thesis to include
efferent processes which have previously been shown to improve discrimination
of noisy speech. These efferent pathways descend from higher auditory centres,
effectively recalibrating the encoding of sound in the cochlea. Moreover, this the-
sis proposes that efferent-inspired computational models based on psychoacoustic
principles may also improve performance for machine listening systems in rever-
berant environments.

A candidate model for perceptual compensation for reverberation is proposed in
which efferent suppression derives from the level of reverberation detected in the
simulated auditory nerve response. The model simulates human performance in
a phoneme-continuum identification task under a range of reverberant conditions,
where a synthetically controlled test-word and its surrounding context phrase are
independently reverberated. Addressing questions which arose from the model, a
series of perceptual experiments used naturally spoken speech materials to investi-
gate aspects of the psychoacoustic mechanism underpinning compensation. These
experiments demonstrate a monaural compensation mechanism that is influenced
by both the preceding context (which need not be intelligible speech) and by the
test-word itself, and which depends on the time-direction of reverberation. Com-
pensation was shown to act rapidly (within a second or so), indicating a monaural
mechanism that is likely to be effective in everyday listening. Finally, the impli-
cations of these findings for the future development of computational models of
auditory perception are considered.
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Chapter1
Introduction

Contents
1.1 Perceptual compensation for reverberation . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem and purpose . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Perceptual compensation for reverberation

Reverberation is a term which describes the multitude of reflections that usually
accompany directly propagating sound. Affected by the surfaces in the nearby
environment, each reflection arrives at the ear as a slightly delayed, attenuated and
spectrally altered copy of the original sound source. It is commonly understood that
‘early reflections’ are beneficial to speech perception, but ‘late reverberation’ is an
unwanted signal distortion which degrades performance in speech identification
(e.g., Bradley et al., 1999). Recent research, however, has begun to show that late
reverberation is not always detrimental to speech perception. Rather, a prolonged
exposure to late reverberation can provide some context that listeners use to help
them identify reverberant speech sounds. In this way, reverberation promotes a
kind of perceptual constancy in audition (somewhat akin to colour or brightness
constancy in vision) which ensures that the phonetic message of a speech signal is
likely to remain the same whether heard in a small room or in a large auditorium.



1 Introduction

Although a growing body of psychoacoustic data has begun to outline the reliabil-
ities and fallibilities of the human auditory system in regard to the reverberation
content of a signal, relatively little is yet known about the physiological processes
which yield robustness to reverberation. Since descending auditory pathways of the
efferent system are thought to contribute to a human listener’s resilience in com-
plex listening environments, this thesis proposes a candidate model for perceptual
compensation for reverberation which is based on auditory efferent processing.
Though speculative, the resulting computational model provides data consistent
with human listener responses in a range of monaural speech identification tasks.
Further, a series of perceptual experiments are undertaken to address questions
arising during the modelling process, and to improve our understanding of how
perceptual compensation for reverberation manifests itself with human listeners.

Reverberation still poses a serious problem for ‘machine listening’ systems such as
automatic speech recognition (ASR). This problem becomes ever more pressing,
because as the demand for flexible interfacing with technology increases, so too
does our desire for distant (far-field) speech recognition. Although reverberation-
robust ASR is not the main focus of the current thesis, the contribution that
computer models of perceptual compensation for reverberation might make to
reverberation-robust speech recognition systems is additionally discussed.

1.2 Background

Reverberation exists in most of the environments in which humans spend time.
Indoors, the sound that reaches a listener (human or machine) is a combination of
energy received directly from the sound-source and indirectly from a multitude of
reflections from the surrounding surfaces. These reflections are collectively known
as reverberation.

While reverberation allows a human listener to gain a spatial impression of the
environment, and to locate the distance of a sound-source within that space, re-
verberation has generally been considered to be an unwanted distortion for acous-
tic signals because, in excess, it degrades speech intelligibility (Bolt and Mac-
Donald, 1949; Nábělek et al., 1989). Reverberation reduces the envelope modu-
lation depth of a signal because dips in its temporal envelope are filled with re-
flected sound energy (Houtgast and Steeneken, 1973). Although the identification
of speech depends largely on such temporal envelope modulations, human listen-
ers are nonetheless quite robust to the effects of reverberation. In contrast, rever-
beration is highly problematic for machine listening systems (e.g. distant speech
recognition) and for human listeners dependent on machine-mediated hearing (e.g.
using assistive listening devices such as cochlear implants).
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1.2 Background

ASR applications typically become error-prone in the presence of reverberation
and, as a result, researchers have been attempting to remove reverberation from
signals since the early 1970s. As this challenging problem has not yet been sat-
isfactorily resolved, dereverberation is gaining increasing importance in research
as the number of real-world uses for ASR continues to grow. One such example
is the goal of making an automatic transcription of everything spoken in a meet-
ing. This requires distant speech recognition (for talkers who may potentially move
around the room while speaking), irrespective of the severity of room reverbera-
tion. For real technological advance in this field, solutions are required for both
reverberation and noise (fans, electrical motors, interfering talkers). The fact that
background noise can often be relatively consistent from one moment to the next
has allowed a number of successful techniques to be developed to mitigate against
the effect of stationary noise sources. In contrast, reverberation is highly non-
stationary. Moreover, its perceptual effects are determined by the previous content
of the signal itself in addition to the room acoustics in which it is experienced.
Thus, despite a great deal of effort spent on engineering-based approaches to the
problem of reverberation, currently there is no ‘industry standard’ method to adapt
a machine listener to its physical environment.

A different approach is to consider why human listeners have comparatively little
trouble identifying speech in reverberant environments. That is, while reverbera-
tion constitutes a large distortion acoustically, it appears to be a somewhat lesser
problem when considered from a psychoacoustic perspective (cf. Table 2.2 below).
There has been an increased effort within the research community to understand
perceptual compensation for reverberation in the last decade, but the topic remains
poorly understood at present.

Two groups in particular have led the research in this field, those of Watkins and
Zahorik (detailed in § 2.4 below). Watkins’ experimental paradigm makes use of
a categorical perception task based around a continuum of speech sounds which
are typically, though not exclusively, presented monaurally. The continuum syn-
thetically interpolates between ‘sir’ and ‘stir’ tokens at either extreme, with the
so-called ‘category boundary’ locating the point along the continuum at which the
listener’s percept switches between the two words. In Watkins’ experiments, com-
pensation for reverberation is measured by locating the category boundary in a
variety of listening conditions, for instance when a test-word contains a low or
high level of reverberation. Compensation for reverberation is then quantified by
considering the benefit that arises in the interpretation of a reverberant test-word
when the listener additionally has access to a similarly reverberated preceding con-
text phrase. In Zahorik’s lab, compensation effects have been demonstrated with a
much wider range of speech material, but only seem to arise in binaural listening
conditions. Listener performance is typically measured in terms of the percentage

3



1 Introduction

of correct word identifications in a given experimental condition, and compensa-
tion for reverberation is quantified in terms of the performance benefit arising from
a prolonged exposure to the same room condition.

The major finding arising from these experiments is that human listeners perceptu-
ally compensate for the effects of reverberation experienced in typical listening en-
vironments. Human listeners seem to ‘take into account’ their surroundings when
judging a particular situation so that the underlying categories of speech (e.g., con-
sonants) are still consistently recognised despite considerable acoustic distortions
introduced by real-room reverberation patterns. In such cases, the inclusion of a
reverberant context prior to the test signal actually assists identification of a rever-
berant speech sound, even though it increases the overall level of late reverberation
in the signal. Thus, it appears that the human auditory system somehow – through
a process of perceptual compensation for reverberation – recalibrates itself to max-
imise its speech processing abilities in its current listening environment. Psychoa-
coustic experiments are now beginning to elucidate the various factors contributing
to this auditory recalibration, asking how quickly such compensation mechanisms
act, whether they are restricted to speech perception or work more generally, and
whether monaural or binaural factors dominate.

As yet, however, very little is known about the physiological mechanisms underly-
ing perceptual compensation for reverberation. One particular area of physiology
which we can speculate may prove relevant is the efferent auditory system. Al-
though the role of efferent feedback in auditory perception is not yet fully under-
stood, efferent activity is generally accepted to underpin our ability to understand
speech in complex, noisy environments. Multiple efferent pathways exist in the
human auditory system, each carrying descending electrical signals from a more
central brain area back towards an earlier stage of the auditory system. Two such
efferent pathways reach right back to the auditory periphery itself: the acoustic
reflex acts on the middle ear bones as they transmit sound through the ear drum,
and the medial olivocochlear reflex innervates the outer hair cells in the cochlea.
It is primarily through the second of these mechanisms that the efferent auditory
system is thought to facilitate listening in noise, by performing a series of adjust-
ments that ultimately improve the neural representation of sound by controlling the
encoding of the signal’s dynamic range (Guinan, 2006, 2011). Little evidence yet
demonstrates whether the efferent system can similarly enhance the neural coding
of speech in reverberation. Nonetheless, since reverberation brings about a reduc-
tion in the signal’s dynamic range (an acoustic effect which is similar in this regard
to that of additive noise), it seems feasible that the efferent system may also work
to improve neural representation of the reverberant speech envelope, perhaps by
revealing temporal modulations of speech that had been distorted by the additional
reflected energy.
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1.3 Problem and purpose

To amalgamate findings from different strands of experimental research into a sin-
gle conceptual framework, and to improve hypothesis design for further psychoa-
coustic investigation, researchers have at times built computer models which in-
stantiate a set of principles thought to be relevant to a particular listening task.
Such functional models are particularly useful in cases where the systems in ques-
tion are complex in structure, and where the overall output behaviour depends on
the interactions among many potentially nonlinear components (Weintraub, 1985).
Along these lines, a handful of efferent-inspired computational auditory models
have been developed in recent years and used to simulate — and hence, explain —
listener responses for tasks in which speech is heard in noise: Brown et al. (2010)
use the model of Ferry and Meddis (2007); Lee et al. (2011) use that of Mess-
ing et al. (2009); and Chintanpalli et al. (2012) build on the work of Zilany et al.
(2009). Though the details of each implementation differ, these models each lay
out a scheme in which the medial olivocochlear efferent pathway acts to regulate
the activity of the afferent (ascending) auditory pathway. In this way, processes
deriving information from the acoustic signal may be modified according to clues
gained about the specific contextual environment, and the machine listener may
thus achieve a degree of robustness to the background noise present in the signal.
A similar modelling process might yet help understand whether the efferent system
can help explain perceptual compensation for reverberation.

1.3 Problem and purpose

The key finding of research into perceptual compensation for reverberation in hu-
man audition – that listeners can recalibrate to their acoustic environment – has
been consistently replicated in the experiments carried out by Watkins’ and Za-
horik’s research teams. However, since their two approaches differ significantly in
terms of the speech material and audio presentation methods employed, it is not
yet known whether the same compensation effect is being demonstrated in each
lab, or whether different processes are in fact being examined. Furthermore, the
physiological processes which confer human listeners’ robustness to the effects of
reverberation have not yet been uncovered. Here, the twin tools of psychoacous-
tic experimentation and computer modelling, hand-in-hand, can help to propose
and to test hypotheses regarding the form and function of perceptual mechanisms
involved in compensation for the effects of reverberation.

An important question to answer is whether monaural listening is sufficient to
achieve compensation for the effects of reverberation on naturally spoken speech
material. The phoneme-continuum task first described in Watkins (2005a) has re-
peatedly been used since to demonstrate monaural compensation. However, when

5



1 Introduction

a different speech database was used in Brandewie and Zahorik (2010), a monaural
effect was reported for only 2 of the 14 listeners. It is noteworthy, however, that this
experiment by Brandewie and Zahorik included a spatialised noise source in addi-
tion to reverberation. This does arguably increase the realism of the listening task,
but it also exacerbates the difficulty of interpreting listener results since it is unclear
whether the compensatory effects investigated by them relate directly to speech
identification itself, or might rely instead on spatial hearing mechanisms arising in
binaural auditory pathways. As a result, it has not yet been established whether
monaural pathways in the auditory system provide sufficient compensatory pro-
cesses to deal with the effects of reverberation on naturally spoken material.

If monaural compensation effects do turn out to be relevant for real-room listen-
ing with naturally spoken material, then this could prove to be a significant find.
An improved understanding of the relevant mechanisms might suggest further ad-
vances in far-field ASR techniques, in speech intelligibility prediction models, or
in signal-processing strategies for assistive listening devices such as hearing aids
and cochlear implants which are (at present) often worn single-sided.

The auditory efferent system is believed to enhance the neural representation of
speech in noise through a process of dynamic range adaptation, and thus may un-
derpin our facility to understand degraded speech signals (Guinan, 2006, 2011).
Since reverberation also has an effect on the signal’s dynamic range, it is reason-
able to propose that the efferent system might also be involved in improving the
neural representation of reverberant speech. While efferent-inspired computational
auditory models have several times been used in recent years to simulate listener
responses for tasks in which speech is heard in noise, their performance in rever-
berant listening tasks has not been investigated.

If an efferent-inspired computational model of the auditory system does provide a
good match to listener response data in reverberant speech tasks, then such a model
might help to elucidate the physiological processes which control our ability to
compensate for reverberation.

1.4 Research objectives

To further investigate perceptual compensation for reverberation, a dual approach
underlies the current thesis. As shown in Figure 1.1, a computational auditory
model is configured to include an efferent-inspired circuit which enables it to com-
pensate for the effects of reverberation in its environment. In addition, a series
of psychoacoustic experiments allow a deeper investigation of the phenomenon in
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1.4 Research objectives

Informs experiment design!Informs model!

Category boundaries! Consonant confusions!

Computational!
modelling !

Analysis of  
error patterns!

Psychoacoustic 
experiments !

Figure 1.1: Illustration of workflow which involves simultaneous investigation of perceptual com-
pensation for reverberation in human listeners and in machines. A computational model simulates
monaural compensation effects in listener data of Watkins (2005a), measured by means of the move-
ment of category boundaries on the ‘sir-stir’ continuum. Psychoacoustic experiments use naturally
spoken speech material (in which the talker, test-word and context phrases change from trial to trial)
to address questions arising during the computational modelling process and to further investigate
the nature and time course of the monaural constancy mechanism.

human listeners, following and extending the pre-existing experimental paradigms
using questions raised by the modelling process.

The computational model presented in this thesis develops the efferent model of
cochlear processing first published by Ferry and Meddis (2007). Their model al-
lows efferent suppression to be simulated in a particular frequency region by setting
a manual reduction of the gain applied to the afferent processing chain. The model
has recently been used to simulate human recognition of speech in noise (Brown
et al., 2010; Clark et al., 2012), but has not previously been applied to the study
of reverberant speech perception. The current study does just this, by developing a
model comprising an afferent auditory pathway with an efferent regulation (feed-
back) loop, where the level of efferent activity is altered in response to the level of
reverberation detected in the signal.

The central idea behind the computational model is that the main effect of late re-
verberation is similar to the detrimental effect of additive noise, since it increases
the noise floor of the signal, and thereby decreases its dynamic range. This thesis
asks whether a model of efferent regulatory control can provide additional robust-
ness to reverberation, as has been shown for noise. That is, the thesis is concerned
with the question of whether an efferent-inspired auditory model can produce re-
sults consistent with human listener data in reverberant speech identification tasks,
and eventually thereby help to explain perceptual compensation for reverberation.

The computational model in the current thesis is tested against human listener re-
sponses from Watkins (2005a), where listeners monaurally identified ‘sir’ and ‘stir’
test-words in a variety of reverberation conditions. In Experiment M1, human re-
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sponse data from two room-positions (‘near’ and ‘far’) are used to address ques-
tions regarding the kind of metric that should drive efferent feedback, and to set
corresponding model parameters that determine how efferent suppression should
be implemented. Trained thus, the model is then challenged to produce qualita-
tively similar category boundaries to Watkins’ listeners, for stimuli in which abrupt
changes in reverberation may occur mid-utterance (so that the sentence is heard in
part from nearby, and in part from further afield). Experiment M2 asks whether
compensation for reverberation persists in the model, as it does for human listen-
ers, when the speech direction of the utterance is time-reversed and its linguistic
content is destroyed. Finally, Experiment M3 considers whether compensation oc-
curs in the model when the time-direction of the reverberation itself is reversed,
since the absence of reverberation decay tails at signal offsets is sufficient to block
the compensation process in human listeners.

The process of building an auditory model inevitably exposes gaps in our knowl-
edge of how perceptual phenomena arise in human listeners. In order to begin
to address a number of questions surrounding perceptual compensation for rever-
beration that arose during the modelling process, a series of four psychoacoustic
experiments are presented.

The first study with human listeners (Experiment H1) fundamentally asks whether
the monaural compensation for reverberation effect first demonstrated in the ‘sir-
stir’ continuum experiments of Watkins holds relevance in ecologically valid lis-
tening environments. In doing so, it seeks evidence of the monaural constancy ef-
fect that is sufficient to remove doubts about the monaural mechanism which were
raised by Brandewie and Zahorik (2010) and Nielsen and Dau (2010). The listener
task in Experiment H1 follows that used in the speech identification paradigm of
Watkins’ work, but the stimuli comprise naturally produced speech from twenty
different adult voices, where the talker, context speech and nonsense test-word
vary trial-by-trial. This approach allows perceptual compensation for the effects of
reverberation to be measured as a reduction in the number of consonant confusions
that listeners make in a given experimental condition.

The remaining three perceptual experiments further probe the nature of monau-
ral compensation for reverberation. Reversals of the time-direction in the speech
and/or reverberation content of the stimuli, as in the modelling work above, are
used in Experiment H2 to investigate the robustness of the compensation effect to
linguistic and acoustic aspects of the signal when naturally spoken speech material
is heard. Experiment H3 examines the temporal extent of the signal influencing
identification of the test-word, querying whether information derived from rever-
beration occurring after the test item plays a role in addition to the effect arising
from the preceding context. Finally, Experiment H4 investigates the time course
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of the compensation effect, and examines the way in which a human listener’s
robustness to reverberation appears to build-up over time.

1.5 Thesis structure

In order that the focus of the current research may be more clearly defined, the
next two chapters review existing work which leads towards an understanding of
perceptual compensation for reverberation. Chapter 2 first discusses reverberation
from an acoustical point of view, examining objective measures of room acoustics
and engineering solutions to reverberation-robust ASR. The effects of reverbera-
tion on speech identification by human listeners are then reviewed before the body
of evidence contributing to our current understanding of perceptual compensation
for reverberation is introduced. Chapter 3 considers the compensation mechanism
from a computational modelling perspective, and aims to establish which auditory
components would be relevant for simulating perceptual compensation for rever-
beration. A particular focus of this chapter is the adaptation of the auditory system
to its present environment, which can be simulated with the inclusion of efferent
components as such mechanisms offer robustness in noisy or reverberant environ-
ments.

The following two chapters describe the original research carried out into percep-
tual compensation for reverberation. Chapter 4 presents a computational model
based on auditory efferent processing, and describes its customisation for a cate-
gorical perception listening task. In three modelling experiments (M1 – M3), word
identity decisions made by the model are tested against human listener data from
Watkins’ phoneme-continuum experiments. A series of four experiments with hu-
man listeners (H1 – H4) are presented in Chapter 5 in order to confirm the rele-
vancy of the monaural constancy effect to real-room listening with naturally spo-
ken stimuli, and to address a number of questions arising during the computational
modelling process.

Finally, Chapter 6 draws together the findings of the modelling and experimental
work, and outlines their mutual implications. Potential criticisms of the work are
discussed in light of wider research perspectives, and some suggestions for future
work are outlined.
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2 Identification of reverberant speech

Chapter overview

This thesis is concerned with understanding and modelling effects of perceptual
compensation for reverberation. Overviewing the necessary research background
for this topic, this chapter opens with an introduction to reverberation from an
acoustical point of view. Following this, the problem reverberation poses to ma-
chine listeners is described, and some engineering-approaches that increase robust-
ness to reverberation in speech recognition are discussed. The second half of the
chapter outlines the psychoacoustic effects of reverberation on human listeners,
and considers speech intelligibility in reverberation. The body of evidence demon-
strating compensation for the effects of reverberation is introduced, highlighting
specific research questions that are addressed later in the thesis.

2.1 Room acoustics and quantification of reverberation

In a room, there are many routes by which sound may travel from a talker’s mouth
to a listener’s ear. This is sometimes termed ‘multipath propagation’, and is shown
schematically in the upper row of Figure 2.1. In the left-most panel, the direct path
of sound from a source to a microphone is shown. Being the shortest distance, this
is the sound which arrives first at the receiver’s position. Next, the centre panel
depicts a number of ‘early’ reflections arriving after hitting nearby surfaces in the
room. These reflections consist of delayed and attenuated copies of the direct sig-
nal. They are therefore highly correlated with the direct signal, but are spectrally
‘coloured’ due to the fact that the rooms’ surfaces do not absorb energy equally at
all frequencies. The final panel depicts the diffuse sound field arising some time
later from numerous tightly-packed reflections. These make up the ‘late’ rever-
beration, and cause the archetypal signal degradation that is commonly associated
with the presence of reverberation.

The room impulse response (RIR) shown in the lower half of Figure 2.1 provides
an alternative description of the way in which sound propagates in an enclosure,
now in the time-domain. Mathematically, the RIR represents the response of an
acoustic environment, assumed to be a linear and time-invariant system, to an im-
pulse produced within it. As described by the room sketches above, the initial,
left-most impulse represents the arrival of the direct sound. Following this, a smat-
tering of early reflections can be seen, their relative strength and timing depending
on the geometry of the room in question. The final portion of the RIR constitutes
the diffuse ‘reverberation tail’ containing densely packed higher-order reflections
which decay exponentially to silence.

12



2.1 Room acoustics and quantification of reverberation

Time
Δ

Am
pl

itu
de

Figure 2.1: Multipath propagation and the room impulse response (RIR). Above: Panels show the
direct sound path from the source (marked with an 8-point star) to the receiver (left); some early
reflections (centre); and the diffuse late reverberation (right). Below: Schematic representation of
the RIR which fully characterises the acoustic system. The direct signal from an impulsive sound is
seen first (left). Subsequently, ∆ marks the temporal boundary between the early reflections (centre)
and exponentially decaying late reverberation tail (right).

RIRs can be recorded by a variety of methods including the maximum-length se-
quence technique of Gardner and Martin (1994) or the swept-sine technique of Fa-
rina (2000). When recorded using a mannekin with microphones in its ear canals,
the resulting binaural room impulse response (BRIR) captures one such impulse
response for the left-ear and another for the right-ear. The BRIR thus describes the
reverberant qualities of the space as it would be experienced by a human listener,
quantifying the spatial and temporal distribution of reflections between a particular
pair of source and receiver positions in the room.

The capture and storage of RIRs have facilitated psychoacoustic experimentation
into the perceptual effects of reverberation, because the properties of the dry (un-
reverberated) signal, x, and room impulse response, h, may be independently ma-
nipulated, and the reverberant signal y(t) simulated afterwards using linear convo-
lution (∗) as follows,

y(t) = h ∗ x (2.1)

=

∫ T

τ=0
h(τ)x(t− τ) dτ (2.2)
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where the impulse response is of length T , and τ indexes its samples1. When
the results of such a convolution are later played back binaurally to listeners over
headphones, this re-creates the sound-pressure vibrations recorded in situ at the
ears of the mannekin in the reverberant room, and listeners report that their aural
impression is of hearing sound situated in a reverberant room (Allen, 1979; Blauert,
1997).

Although late reflections degrade the signal, early reflections appear to make a
positive contribution to the intelligibility of the signal (Bradley et al., 1999). The
temporal boundary between the so-called early and late regions of the RIR has
therefore been a topic of considerable study (see e.g., Hidaka et al., 2007). Marked
∆ on the lower panel of Figure 2.1, this boundary reflects the fact that the energy
contributed by convolution with h(t) is therefore initially helpful where t ≤ ∆, but
subsequently unhelpful for t ≥ ∆.

Objective measures of reverberation, discussed below, are largely concerned with
quantifying aspects of the early or late portions individually, or else determining
the relative balance of energies between these two parts. However, perceptual ef-
fects of the reverberation depend not only on the room acoustics, but also on the
temporal and spectral features of the signal itself (Houtgast and Steeneken, 1985).
Acoustic and psychoacoustic effects of the early reflections and late reverberation
are first introduced below; objective methods that attempt to quantify such effects
are examined afterwards.

2.1.1 Early reflections

Early reflections occur sufficiently close in time to the direct signal that they may
be perceptually fused with it, introducing a spectral colouration to the signal that is
defined according to the source-receiver configuration and the particular enclosure
in question (see e.g., Arweiler and Buchholz, 2011; Bech, 1995). In other words,
the timbral alteration due to the early reflections is strongly dependent on the room
positions of the talker and listener (or speaker and microphone) respectively. Early
reflections are understood to assist in delivery and understanding of speech in a
room, since the reflected energy essentially sums with the direct sound. These

1Equation 2.2 reveals that at its heart, convolution is the integral of the product of two functions,
one of which is reversed and shifted. This formulation, like the remainder of the thesis which follows,
does not include the contribution of a static background noise source (or rather, considers only the
cases in which such noise is entirely absent or of sufficiently low-power as to be considered negligi-
ble). If desired, however, additive terms could be introduced to the right-hand side of Equations 2.2
and 2.1 to represent the presence of stationary noise sources (e.g., fans, heaters, air-conditioning
units) in the environment.
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early reflections increase the level of the signal at the ear, and boost the effective
ratio of signal to noise components in the sound (Bradley et al., 2003; Nábělek and
Robinette, 1978).

A number of researchers are working on ways to characterise the perceptual in-
fluence of early reflections, using either monaural (Meynial and Vuichard, 1999)
or binaural (Georganti et al., 2014) approaches. However, much work remains to
be done in order to understand the influence of the original signal content itself
(particularly its distribution across frequency) on sound perception generally, and
on speech intelligibility more specifically (Arweiler and Buchholz, 2011). That is,
speech intelligibility depends not only on the room condition, but also on type of
voice, rate of speech, and so on. Additionally, it will be important to understand the
time course over which adaptation to colouration or timbral differences can occur
(Pike et al., 2013). These topics are important because early reflections appear to
play a dual role in speech intelligibility when considered from both the listener’s
and talker’s points of view. For example, early reflections in school classrooms can
promote a student’s ability to hear their teacher (Bradley et al., 2003; Ellison and
Germain, 2013), and can reduce the vocal effort required by a teacher to present
their words at a given signal level (Pelegrı́n-Garcı́a et al., 2011).

2.1.2 Late reverberation

As outlined above, early reflections are reported to be beneficial for the percep-
tion of speech in a reverberant environment. On the other hand, the succession of
late-arriving reflections, collectively referred to as ‘late reverberation’, is usually
understood to degrade listener performance in reverberant speech-based tasks.

The main effects of late reverberation on a speech signal can be viewed in Fig-
ure 2.2, which plots the amplitude envelope of the signal of a voice heard at a
nearby distance (left) with little influence of reverberation, and when the voice is
heard from a far distance (right) and the influence of reverberation is considerably
stronger. Perhaps the most obvious effect here is that the tightly packed late re-
flections have combined to effect an increase in the noise floor at the far distance
(Hidaka et al., 2007; Koening et al., 1977). Secondly, the reverberation can be
viewed as causing an attenuation of a signal’s amplitude modulation, as the re-
flected energy fills the momentary dips in the dry signal (Houtgast and Steeneken,
1985). The dynamic range of the far-reverberated signal appears correspondingly
reduced.

As was seen above for the early reflections, the effects of late reverberation are
also dependent on temporal and spectral features of the original (voice) signal.
This topic is discussed further in regard to speech perception in § 2.3 below.
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Figure 2.2: Demonstration of the effects of reverberation on a single speech utterance heard from
0.32 m distance (left) and from 10 m distance (right). The traces show the temporal characteristics of
the wideband signal, plotting the amplitudes of low-pass filtered Hilbert envelopes (cutoff frequency
50 Hz). The near distance signal consists primarily of direct sound and thus has a strongly modulated
amplitude envelope and very low noise floor (visually indistinguishable from the abscissa). The
amount of reverberation increases when sound is heard from the far distance. Here, the amplitude
envelope trace reveals an increase in the noise floor (depicted with the raised horizontal line) and an
attenuation in modulation depth contributing to a lessening of the signal’s dynamic range.

2.1.3 Room measures and room-position measures

Since the perceptual effects of reverberation depend on qualities of both the source
signal and room properties, it is hard to wrap up all the relevant aspects of room
acoustics in a single measure. Nonetheless, such a simplification has often been
sought since it would be convenient to represent a room’s effects in such way.

Since the early 1920s, the most commonly-used reverberation measure is ‘rever-
beration time’, or T60 as it is usually stated. This defines the time interval required
for the reverberant signal to drop by 60 dB relative to the level of the direct sound,
i.e. to decay to one millionth of its original intensity (Sabine, 1922). In general,
short reverberation times (small T60) are preferred for listening to speech, since
this minimises the persistence of reflected sound from one syllable into the next
(Nábělek et al., 1989). On the other hand, longer reverberation times (larger T60)
are preferable for music listening (Hidaka et al., 2007; Lokki et al., 2012).

When expressed as a single number, T60 is likely to have been measured from a
wideband signal that is averaged across frequency from c. 20 Hz to 20 kHz. How-
ever, it is clear from Figure 2.3a that the value of T60 in fact varies with frequency,
primarily because the various surfaces in the room (including any people present)
absorb sound non-uniformly. Moreover, since the idea of T60 is to summarise the
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(a) Reverberation time, T60 (b) Binaural mannekins

Figure 2.3: Directional and non-directional measurements of reverberation. Figure 2.3a plots rever-
beration time, T60, the average time required for the reverberant signal to decay by 60 dB relative
to the level of the direct sound (averaged across 12 positions in an auditorium). T60 varies across
frequency, with longer T60s recorded for lower frequency bands (figure from Zahorik, 2002). Rather
than characterise the average room conditions, the binaural mannekins shown in Figure 2.3b allow the
highly directional characteristics of talkers and listeners to be captured in particular source-receiver
positions within a given room (photograph by the author of mannekins used in Watkins, 2005a).

room’s overall acoustic reflection characteristic, measurements are usually taken
at a number of different source-receiver positions and averaged. This reduces the
influence of the selected recording position within the room, and thereby tries to
summarise the overall room response.

An alternative approach to studying reverberation is to try to capture exactly that
variation which has just been ‘averaged out’ in the T60 measure. This is the ap-
proach taken, for instance, by Lokki et al. (2012) whose aim was to simulate the
room acoustics that would be experienced at a given seat in a particular concert
hall. The position-specific approach was also taken by Watkins (2005a), where the
reverberation characteristics of individual source-receiver positions are captured
by a pair of binaural mannekins shown in Figure 2.3b. This allows recreation of
the highly directional characteristics of talkers, whose mouths project most of the
sound energy forwards, and of listeners, whose individual ears are subject to acous-
tic effects from the room itself and from interactions of the sound with the body as
discussed below.

An alternative way to characterise reverberation is with an energy decay curve
(EDC). The EDC can be found whenever the RIR, h(t), is known, and is arguably a
more intuitive description of the room characteristic as a listener would experience
it. Introduced by Schroeder (1965), the decay curve is computed from the RIR
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while the talker’s position was varied to give distances of
0.32, 0.64, 1.25, 2.5, 5.0, or 10 m. Figure 1�a� indicates the
prominence of the direct sound at these distances by the
length of the vertical part of the trace. This can be seen to
decrease monotonically with distance in both rooms, so that
there is an accompanying increase in the proportion of rever-
berant sound as distance is increased.

2. Test-word continua

Recordings were obtained for conditions with fast or
with slow test words, played in context sentences that are
appropriate for the rate of the test-word’s articulation. Tokens
of the end points of the test-word continua, “sir” and “stir,”
were spoken in their contexts by an adult male talker �AJW�
with a southern British dialect. These sounds were recorded
in the IAC booth with a Sennheiser MKH 40 P48 cardioid
microphone. Reverberation in the booth at this microphone
was measured by the above-described deconvolution
method, using the dummy talker as a sound source. Figure
1�a� plots the resulting energy decay curve where the rever-
beration in these “dry” conditions can be seen to decay very
rapidly and to be substantially below the −42 dB noise floor
of the rooms’ BRIRs.

For slow test-words, AJW said, “next you’ll get sir to
click on” and “next you’ll get stir to click on,” placing mod-
erate stress on the “sir” or “stir.” The resulting tokens of the
test words were both 577 ms long. The context used with
these slow test words had originally been spoken with “sir,”
where the duration of “next you’ll get…” was 685 ms and
“…to click on” was also 685 ms. For fast test-words, the
same talker said “OK, next you’ll get sir to click on” and
“OK, next you’ll get stir to click on,” this time stressing
“OK,” while the remaining words were spoken rapidly with
little stress on any of them. This resulted in shorter tokens of
“sir” and “stir,” each lasting 294 ms. The context used here
had again originally been spoken with “sir.” Its first part,
“OK next you’ll get …,” was 1.15 s long, including an “OK”
of 550 ms, while its second part, “…to click on,” lasted 605
ms.

The fast and slow test-word continua were formed from
the corresponding recordings. To obtain wideband temporal
envelopes of the sounds, the “sir” and “stir” tokens were first
isolated and time aligned at the onset of the periodic, voiced
part of these utterances, where the noise-like frication of the
consonant segment gives way to the following vowel. The
envelopes of both words were then obtained by playing the
full-wave rectified wave forms through a low-pass filter with
a cut-off frequency of 50 Hz, while maintaining the time
alignment between the envelope and the wave form. Interpo-
lations between these end-point envelopes were then used to
obtain an 11-step continuum of sounds extending from one
end point to the other. For this interpolation, each point in the
envelope of “stir” was divided by the temporally correspond-
ing point in the envelope of “sir” to obtain an “envelope
ratio.” A value of interpolation, k, was then chosen, from the
range between 0.0 and 1.0, and then each point in the enve-
lope ratio was multiplied by k, followed by the addition of
1-k to give a modulation function. The original recording of
“sir” was then multiplied by the modulation function to ob-
tain test words at steps of the continuum.

Continuum steps are numbered with the integers, n,
from 0 to 10. Pilot observations indicated that a linear rela-
tionship between k and n gives continua where more than
half of the steps sound like “sir,” which restricts the range of
reverberation effects that can be measured. To extend this
range, an arcsine root relationship was used, with values of k
at each step being chosen so that

FIG. 1. �a� Characteristics of room impulse responses at the six distances,
recorded from the left ear of the KEMAR dummy head. The energy shown
on the ordinate is computed from the impulse response using the reverse
integration method of Schroeder �1965�. The decay of reflected sound-
energy is practically linear after the initial drop from the direct sound’s
level. The flat part at the start is the travel time of the direct sound from its
source, so this feature becomes more prominent with increasing distance.
The “dry” trace is from the impulse response of the microphone and booth
where the context and test words were spoken. �b� These wave forms are
steps from test-word continua, which are formed by appropriate amplitude
modulation of tokens of “sir” �step 0�, spoken rapidly �fast� and more slowly
�slow�. Test words become more like “stir” �step 10� as the depth of modu-
lation is increased from one step to the next. The rooms’ reverberation is
likely to oppose effects of this modulation.
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of 550 ms, while its second part, “…to click on,” lasted 605
ms.

The fast and slow test-word continua were formed from
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consonant segment gives way to the following vowel. The
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Figure 2.4: Energy decay curves. Figure 2.4a plots the energy decay function for a mid-frequency
band (centred at 635 Hz) recorded c. 5 m distance (as shown in Zahorik, 2002). The time to arrival of
the direct sound can be seen in the initial horizontal part of the curve, then a sharp drop characterises
the early reflections and an approximately linear decay constitutes the late reverberation. The dotted
line is a linear fit to the decay observed in the region marked with diamonds before 200 ms. The
dark curve is contaminated by noise in the environment, which introduces an additive component
with cumulative effects which raises the decay curve through time. When the noise contamination
is removed, the upward-swing of the dark line is less pronounced and the resulting light line more
closely approximates the anticipated linear decay. Figure 2.4b, redrawn from Watkins (2005a), shows
energy decay slopes for six source-receiver positions in an L-shaped room. The rate of decay appears
independent of the positions of talker and listener beyond a certain distance, but directional effects
(e.g. head shadow) influence the rate of decay considerably when the talker and listener are nearby.

directly, as the tail integral of the squared impulse response at time t, so that

EDC(t) =

∫ ∞
τ=t

h2(τ) dτ, (2.3)

and EDC(t) represents the energy remaining in the impulse response at time t.
The smooth, linear decay of the EDC is apparent from Figure 2.4, particularly in
relatively noise-free conditions. In Figure 2.4a, the upward drift of the dark curve
reveals the effect of noise contamination in the enclosure which acts cumulatively
through time to gradually reduce the incline of the EDC (Schroeder, 1965). In the
example shown here, a process of noise reduction has subsequently been under-
taken by Zahorik (2002) to observe the reverberant effects of the room alone. The
resulting light curve more closely matches the theoretical linear decay that was ex-
trapolated from the observed data marked between the two diamond shapes when
the signal levels were sufficiently strong that the reverberation effect dominated
that of the noise.

Figure 2.4b shows six decay curves recorded by Watkins (2005a), again after a
noise-reduction technique has been applied, for multiple source-receiver distances
(SRDs) within a single room. While late-reverberation decayed approximately ex-
ponentially in the RIR (cf. Figure 2.1), the EDC shows a linear decay. A number of
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2.1 Room acoustics and quantification of reverberation

other features additionally become apparent. First, the fast drop (i.e., vertical por-
tion) at the start of the EDC at near distances shows the high proportion of energy
that was experienced in the direct sound and its early reflections. This proportion
gradually reduces so as to be almost imperceptible at the furthest distances. Con-
versely, the horizontal portion at the start of the EDC at far distances represents
the delay in arrival of the direct sound travelling from the source position (which
is almost imperceptible at the short distances).

Since the EDC gives an intuitive representation of the room’s decay, it is often used
to calculate the reverberation time of an environment: a drop of 60 dB in energy
may be measured (or extrapolated when noise sources are present) in the final lin-
ear portion of the curve more easily that it could in the amplitude envelopes of the
RIR1. However, the variation in slope in Watkins’ curves in Figure 2.4b highlight
that caution should be taken in regard to the claim that the rate of decay of the
late-reverberation is independent of the positions of talker and listener. While the
assumption in this claim holds approximately true for the longer SRDs, where the
linear portion of the curves for distances greater than 0.5 m are approximately par-
allel, the rate of decay is considerably steeper for the closest talker-listener position
(0.32 m). This is likely due to the directional characteristics of sound production at
the mouth of the talker (i.e., the transducer loudspeaker of the source mannekin),
and of sound reception at the ear of the listener (i.e., involving sound interaction
with the pinnae, head and torso of the receiver mannekin).

For sufficiently large source-receiver distances, the assumption that the magnitude
of the late-reverberation is insensitive to the exact talker and microphone locations
has proved useful in speech technology applications. An improvement has been
recorded in far-field ASR, since algorithms based on this assumption can become
robust to movements in the talker’s location (Yoshioka et al., 2012).

2.1.4 Measuring reverberation from an impulse response

As discussed above, early reflections are generally considered beneficial to sound
propagation and perception while late-reverberation is not. Most reverberation
measures are therefore, at their root, an attempt to somehow quantify the balance
between these helpful and unhelpful parts of the room’s distortion, shown in the
second and third panels (upper row) of Figure 2.1 respectively. When reverberation
is artificially simulated, the distinction between early reflections and late reverber-
ation, marked ∆ on Figure 2.1, is easy to determine, in particular since different

1It is common to report the T60 value even if has been extrapolated from the corresponding T20
or T30, i.e. the time taken for a drop of 20 dB or 30 dB respectively (Campanini and Farina, 2009).
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2 Identification of reverberant speech

techniques are often used to create the individual early reflections (e.g. using the
image model of Allen, 1979) and the subsequent diffuse decay (e.g. using indepen-
dent Gaussian noise samples as in Zahorik, 2009). In real rooms, on the other hand,
the distinction between these two parts of the impulse response is a matter of some
debate. Two main approaches to characterise the relative importance of the early
and late portions of the impulse response, time-based and level-based approaches,
are discussed below.

The time-based approach divides the impulse into two parts at a certain point in
time, ∆, and compares the balance of energies present in the initial (early) and
subsequent (late) portions. This method underlies a number of early-to-late indices,
perhaps the most often used of which is the ‘clarity index’, C∆, given by

C∆ = 10 log10

∫ ∆

t=0
h2(t) dt∫ ∞

t=∆
h2(t) dt

(2.4)

which is measured in dB and compares early contributions (in the numerator) with
late contributions (in the denominator). A directly related measure, the ‘definition
index’, D∆, quantifies the early portion as before, but quantifies this against the
total sound energy described in the impulse response using

D∆ = 10 log10

∫ ∆

t=0
h2(t) dt∫ ∞

t=0
h2(t) dt

(2.5)

which is again measured in dB (note here that only the lower limit of the integral
in the denominator has altered).

For speech perception, setting ∆ = 50 ms seems to correlate highly with speech
recognition performance (Nishiura et al., 2007). The corresponding clarity index
at this time constant is known as C50 and is seen to be a good indicator of intelli-
gibility; other values of ∆ may be appropriate for alternative listening situations,
however, and C80 is often a more relevant measure than C50 in rooms in which
music is to be heard (Chesnokov and SooHoo, 1998; Hidaka et al., 2007; Marshall,
1996). Here, if the clarity index C∆ ' 0, then the ratio implies the early and late
sound energies are approximately equal. A large positive C∆ value implies the late
sound is effectively absent, while a negative C∆ value implies that there is more
late sound than early sound present (as might occur, for example, when the ‘direct’
sight-line is broken and the listener and talker are not facing one another, or are
around a corner in an L-shaped room).
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2.1 Room acoustics and quantification of reverberation

If the value of ∆ is reduced sufficiently, then at a certain time-point, Td, it serves
to separate the direct sound-path from the remainder. This is the method under-
lying calculation of the direct-sound to reverberant-sound ratio (DRR). Here, the
contents of the impulse response from zero up to Td, are said to correspond to the
anechoic direct path of the signals captured. The time value should therefore de-
pend upon the distance between the source and receiver (Naylor et al., 2010), and
is correspondingly short (e.g., a value c. 2.5 ms was used in Zahorik, 2002). The
‘direct’ portion is then compared with the remainder of the values in the impulse
response to obtain the DRR value,

DRR = 10 log10

∫ Td

t=0
h2(t) dt∫ ∞

t=Td

h2(t) dt

(2.6)

which directly mirrors the relationship of initial and latter parts of the RIR de-
scribed in Equation 2.4 above.

Rather than calculating energy ratios in a fixed time period, the second approach
to determining the room’s influences depends instead on measuring the time taken
for a particular energy level relationship to transpire. Such an approach was seen
above for the T60 reverberation metric, where the time required for a 60 dB drop
in the signal level was recorded. A related measure captures the influence of early
reflections, the early decay time (EDT), which records the time over which a signal
makes its initial 10 dB decay. Referring back to the energy decay curves in Fig-
ure 2.4b, at nearby source-receiver distances this 10 dB drop comprises a sharp loss
associated with the cessation of the direct sound and the early reflections. At long
SRDs however, there may be insufficient energy received in either direct signal
and early reflections to create this sharp 10 dB drop. Here, were the EDT measure
to be used, then it would instead be mainly describing the linear slope of the late
reverberation decay.

2.1.5 Measuring reverberation from a reverberant signal

If the impulse response of the room is not known in advance, then aspects de-
scribing the reverberation quality of the environment must be estimated from a
reverberant signal instead. One approach to this problem is to estimate the impulse
response first, and then proceed to quantify reverberation using the estimated RIR
with the methods described in the previous section. However, a number of differ-
ent approaches have arisen to quantify reverberation without access to the real or
estimated impulse response. Two such methods are briefly discussed.
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2 Identification of reverberant speech

The first of these measures, the signal-to-reverberation ratio (SRR), relies on
the availability of the clean speech signal, and is thus usually used to assess
dereverberation of a dry speech signal that had previously been artificially reverber-
ated (Furuya and Kataoka, 2007; Naylor et al., 2010; Tsilfidis and Mourjopoulos,
2011; Westermann et al., 2013). By considering the effect of reverberation as noise,
the calculation is analogous to that of the signal-to-noise ratio (SNR) and measures
the ratio of the direct sound power and reverberant sound power (expressed in dB).

A second signal-based approach, the noise-to-mask ratio (NMR), relies on prior
knowledge of the human auditory system rather than on knowledge of the dry
speech signal as was the case above. Again, the reverberation is treated as a noise-
like distortion, and an analysis is made to determine which parts of the reverbera-
tion may produce audible noise components (Furuya and Kataoka, 2007; Tsilfidis
and Mourjopoulos, 2011; Tsoukalas et al., 1997; Westermann et al., 2013). NMR
increases from 0 dB when the reverberation is at the threshold of audibility, with
higher values indicating more perceptible distortion.

2.1.6 The Modulation Transfer Function

Described by Houtgast and Steeneken (1973, 1985), the Modulation Transfer Func-
tion (MTF) characterises the transmission of sound in a room. The term was bor-
rowed from optics, where it was used to assess sharpness in visual scenes. Here,
the fundamental concept underlying the MTF in the audio domain is that the signal
reaching a listener’s ear through the room is a ‘blurred’ (rather than exact) copy of
the original source signal.

In this method, the room is treated as a linear time-invariant system. To measure the
distortion it exerts on a signal, the room is tested with a modified ‘sine in/sine out’
paradigm, with the modification being that the analysis is done in the modulation
domain. That is, a series of test signals (typically noise bands across seven octaves
of the frequency range from 125 Hz up to 8 kHz) are modulated by sine waves at
a range of modulation frequencies (0.63 to 12.5 Hz in third-octave intervals), and
any attenuation in magnitude or modulation depth in the intensity envelope that
results from transmission through the room is recorded.

By taking as their focus the frequency ranges and amplitude modulation rates re-
quired for understanding speech, Houtgast and Steeneken proposed the MTF as
a predictor of the speech intelligibility that would be recorded were it to be in-
vestigated in the room in question. Indeed, the MTF has proved useful in the
decades since and has formed the basis of several subsequent methods of deter-
mining speech perception in rooms, for instance, the Speech Intelligibility Index
(SII) discussed below.
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2.1 Room acoustics and quantification of reverberation

It is noteworthy at this stage that the phase delay is disregarded in the MTF formu-
lation specified by Houtgast and Steeneken (1985), with only the magnitude (am-
plitude) characteristic being used. Discussion returns to this point several times in
the following thesis, since the exclusion of the complex component of the func-
tion renders the MTF insensitive to variation in the time-direction of reverbera-
tion. Admittedly, this limitation would not readily be exposed in real architectural
acoustics, but it has nonetheless been investigated psychophysically by a number
of researchers. Data from Watkins (2005a) and from Longworth-Reed et al. (2009)
both suggest that human speech perception in rooms is strongly affected by the
time-direction of the reverberation. In these experiments, the RIR is time-reversed
before convolution with dry speech signals, and thus simulates the effects of re-
verberation in reverse (with slowly rising ramps being present before signal onsets
rather than slowly decaying tails being present after signal offsets). Since the real
part of the MTF does not capture the resulting differences in the signal, any subse-
quent models of speech perception which rely on it (such as the Speech Transmis-
sion Index (STI) discussed next) consequently fail to predict human performance
in these listening conditions.

2.1.7 Predicting speech intelligibility

To understand the perceptual effects of acoustic distortion introduced by real
rooms, it is also instructive to consider a family of methods developed primarily for
objectively predicting the intelligibility of speech signals. The common thread un-
derlying these methods relates to an assumption that the intelligibility of the whole
signal may be estimated from a weighted sum of the individual spectro-temporal
modulations of which the signal is comprised (Bronkhorst, 2000). The methods
typically comprise a two-stage analysis: firstly, sound is transformed into an inter-
nal ‘auditory’ representation; secondly, a decision metric transforms the auditory
representation into a judgment regarding the signal’s intelligibility (Chabot-Leclerc
et al., 2014).

The Articulation Index (AI) was developed at Bell Telephone Laboratories in the
1920s (published around 25 years later), and used the concept of ‘articulation’ to
characterise the probability of correctly transcribing phonemes and syllables trans-
mitted by telephone (Allen, 1996; Fletcher and Galt, 1950; French and Steinberg,
1947). Defined in this sense, articulation is a useful measure to judge transcrip-
tions of nonsense words or unknown languages since transmission of meaning,
required for signal intelligibility, is not relied upon. Rather, the AI method de-
scribes joint physical properties of the talker, listener and the channel between
them, and describes the influence (or absence) of energetic masking on the signal.
The speech signal is divided into separate frequency bands (usually 20), each of
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2 Identification of reverberant speech

Table 2.1: Intelligibility prediction methods reported in Chabot-Leclerc et al. (2014). The Speech
Transmission Index (STI) considers the audibility of spectral regions and assesses reduction in tem-
poral modulation of the speech envelope using the Modulation Transfer Function (MTF). Modifica-
tions to the STI model include the two-dimensional spectro-temporal modulation index (STMI) of
Elhilali et al. (2003), and the speech-based envelope power spectrum model (sEPSM) which calcu-
lates the ratio of modulations in the speech and noise envelopes (Jørgensen and Dau, 2011). Further
abbreviations used in table (alphabetically): E, envelope compression; N, stationary noise; Pj , phase
jitter; Ps, phase shift; R, reverberation; Ss, spectral subtraction; Sd, spectral distortion.

Study method decision metric can account for cannot account for

Steeneken and Houtgast (1980) STI MTF(t) R, N E, Pj , Ps, Ss
Elhilali et al. (2003) STMI MTF(f, t) N, R, Pj , Ps Ss
Jørgensen and Dau (2011) sEPSM SNRenv(t) N, R, Ss Sd

which independently makes a contribution to the overall articulation score. SNRs
are calculated in each channel, and a weighted sum across the frequency axis of
values proportional to the channel’s SNR then results in a single number to de-
scribe articulation. This index is scored intuitively between 0 and 1, such that an
AI of less than 0.3 is considered to be poor, but an AI above 0.7 describes excellent
conditions for listening to speech1.

The AI was later altered and standardised in ANSI S3.5-1997 as the Speech In-
telligibility Index (SII). The SII provides a measure of intelligibility of speech,
dependent on the talker and individual listener profile. However, it can only de-
scribe intelligibility in cases in which background noise, if present, is stationary
(see e.g., Chabot-Leclerc et al., 2014).

In contrast, the Speech Transmission Index (STI), based on the Modulation Trans-
fer Function (MTF) which was described earlier in § 2.1.6, provides a measure of
intelligibility that can account for the effects of reverberation as well (Steeneken
and Houtgast, 1980). Since this intelligibility measure now includes a description
of the modulation character of a room, the STI value is correspondingly sensitive
to the modulation depth of specific low-frequency bands in a test-signal that, if re-
duced during transmission through a reverberant room, would be associated with
loss of intelligibility (Houtgast and Steeneken, 1973).

A criticism of the STI, however, is that it fails to predict intelligibility in condi-
tions with nonlinear processing such as envelope compression, phase jitter, phase
shifts or spectral subtraction (Chabot-Leclerc et al., 2014). Some recent attempts

1Kryter (1962) describes practical methods to adapt the AI score for certain factors, e.g. sub-
tracting an offset in reverberant conditions (depending on T60), or adding an amount to account for
the beneficial presence of visual cues. However, Kryter also reminds us that the AI is only defined
for male voices, and does not predict the audibility of female voices.
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2.2 Machine listening in real-room reverberation

to improve on the STI are outlined in Table 2.1. These methods differ in regard
to whether the pre-processing and decision stages use modulation information in
the spectral, temporal or spectro-temporal domains. Inspired by neural responses
observed in the auditory cortex of ferrets, the spectro-temporal modulation index
(STMI) of Elhilali et al. (2003) introduces two-dimensional modulation process-
ing to consider modulation across the frequency domain in addition to the tem-
poral modulations considered in the STI. An alternative modification to the STI
was made by Jørgensen and Dau (2011), in which the ratio of speech and noise
envelopes determines the predicted intelligibility score (rather than the reduction
in modulation due to distortion). More recent improvements to these models are
reviewed by Chabot-Leclerc et al. (2014).

This area of research is still receiving a great deal of attention: clearly there is a
strong desire in the community for an accurate prediction of speech intelligibility
in the face of varied signal distortion. Further, it is interesting to note the type of
distortion under investigation has gradually shifted through the years from deal-
ing with stationary background noise sources to fluctuating maskers (competing
speakers) and room reverberation, and now includes the types of distortion which
occur in digital transmission. Though increasingly accurate at making a global pre-
diction of signal intelligibility in a fixed setting, such methods do not yet include
a temporal adaptation component that accounts for a human listener’s continual
recalibration to their listening environment.

2.2 Machine listening in real-room reverberation

Perhaps the most significant benefit of overcoming reverberation in machine lis-
tening would be to allow distant speech recognition. This could, for instance,
allow meetings involving numerous participants to be transcribed via a single mi-
crophone, or allow speeches to be subtitled automatically even across large public
spaces. Understanding the effects of reverberation would also be advantageous
in the development of scene-recognition hearing aids that would allow wearers to
adapt quickly to changes of room condition (Büchler et al., 2005), an application
which will likely grow in relevance as the prevalence of hearing disorders contin-
ues to increase. There is still much work to be done on reverberation, even after a
half century of research.

Many studies report a decrease in automatic speech recognition (ASR) perfor-
mance as the level of reverberation in the signal increases owing to an increase
either in the source-receiver distance or in the reverberation time of the acoustic
enclosure (see e.g., Couvreur and Couvreur, 2004; Eneman et al., 2003; Giuliani
et al., 1996; Palomäki et al., 2004). For example, a study by Kingsbury et al.
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(1997) showed a deterioration from around 15% word error rate (WER) in clean
conditions to around 77% WER in reverberation. Diverse signal-processing based
strategies have been developed to address the problem that reverberation poses to
machine listeners. For instance, by modelling temporal envelopes of the speech
signal in narrow sub-bands, Thomas et al. (2008) showed a vast improvement in
recognition rates (but would nevertheless render many applications unusable as
WER remained about 6% for reverberant speech compared with 1% in clean con-
ditions). In the main, these methods are unable to achieve recognition rates for
reverberated speech comparable to those for unreverberated speech, and a substan-
tial gap remains between human and machine performance in reverberation.

Four main strategies for reverberation-robust ASR are discussed below. The first
strategy attempts to improve the input signal representation provided to the recog-
niser by means of some pre-processing or feature enhancement. The second strat-
egy attempts instead to improve the manner in which the recogniser itself deals
with the reverberant speech. The third strategy deals with reverberation by quanti-
fying the signal uncertainty that it has introduced. The fourth strategy draws from
more auditory-like processing techniques, and hints that bio-inspired methods may
yet lead to improvements in reverberant signal processing techniques. Of course,
in order to achieve the best recognition results, authors often combine a variety of
methods.

Initially, however, this section next outlines a standard machine listening system
and shows that, among the major theoretical and technical advances in ASR, there
have additionally been bio-inspired gains, particularly in cases where signals are
degraded by background noise. However, the success of these methods has been
limited when applied to reverberant speech, primarily because the reverberation
spreads over a much longer time-window than noise-based methods were designed
to deal with.

Figure 2.5 depicts the general framework (described by Yoshioka et al., 2012)
which underlies the majority of speech recognisers developed in the past few
decades. In the so-called ‘front-end’ of the system, a time-series of amplitude mea-
surements of the sound are transformed into short-term spectral estimates every
10 ms or so. In training, these spectral frames are used as feature-vectors (i.e. ob-
servations) to create a set of acoustic models, for example, Gaussian-mixture-based
hidden Markov models (HMMs), capturing the various speech sounds encountered
in the training data. Similarly, language and pronunciation models aim to represent
the common linguistic structures, by exploiting prior probabilities across many se-
quences of words and phones respectively. During recognition, the ‘back-end’ of
the system then decodes the extracted feature-vectors to provide the most likely
word sequence, given the previously trained statistical models.
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Figure 2.5: A common automatic speech recognition (ASR) framework, redrawn from Yoshioka
et al. (2012). The front-end of the recogniser encodes the input audio signals in a series of feature-
vectors which are then passed to the back-end to determine the most probable word-sequence given
the sets of pre-stored statistical models.

Stern and Morgan (2012) list a series of gains that are sought within such a frame-
work: improving the feature representation in the model’s front-end; using a larger
amount of training data; finding more representative statistics for the acoustic and
language models in the back-end. Beyond this, a number of successful techniques
can combat the effects of both additive and convolutional signal distortions aris-
ing from interfering sound sources and/or transmission characteristics of the chan-
nel (e.g., mismatches in frequency responses of the microphones used)1. Despite
their effectiveness in noise, however, these methods provide little benefit in the
face of real-room reverberation since they typically work on the time-scale of the
frame-size of the feature-extraction method and thus cannot account for the type
of distortion encountered in reverberant speech, where the reflected energy from a
particular sound at a particular point in time will cover several consecutive time-
frames in the feature representation. Indeed, methods to combat such longer-term
distortions (discussed below) do not yet provide machine listeners with the same
robustness to reverberation that a human listener enjoys.

2.2.1 Bio-inspired gains in speech recognition

At times, the state of the art in machine hearing has been increased by incorpo-
rating system components designed after observation of psychoacoustic processes
(Hermansky et al., 2013; Stern, 2011). The human auditory system has evolved
specialised neural circuits allowing us to ‘focus’ on particular sounds of interest
even when they are heard among potentially louder or nearer distracting sounds. As

1These include, for example, the maximum a posteriori (MAP) estimation technique of Gauvain
and Lee (1994), the maximum likelihood linear regression (MLLR) method described by Leggetter
and Woodland (1995), the parallel model combination method of Gales et al. (1996), or the vector
Taylor series (VTS) methods suggested in Acero et al. (2000) and Droppo and Acero (2008).
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a result, the benefit from biologically-inspired approaches tends to become more
apparent in adverse listening conditions, i.e. when signals are degraded rather than
clean. Indeed, such approaches may eventually prove useful for machine listeners
in reverberation, whether for reducing errors in ASR performance or for improving
the representation of target sounds in complex environments for the signal process-
ing algorithms used in hearing aids or cochlear implants.

Observation of the human auditory sensitivities to frequency and intensity have
guided the representation of sound that is encoded in standard ASR feature-vectors.
Three frequency scales are typically used in auditory modelling studies – Mel
(Stevens et al., 1937), Bark (Zwicker, 1961) and equivalent rectangular bandwidth
(ERB) (Glasberg and Moore, 1990) – the first two of which additionally form the
basis of standard ASR feature-vectors. Each scale approximates the way in which
the auditory bandwidth varies with frequency (low-frequency channels have ap-
proximately constant bandwidths, while at higher frequencies the bandwidth in-
creases with constant-Q). The Mel or Bark scales are used not because they ap-
proximate human perception but rather because they have led to higher accuracy in
ASR than was achievable with a linear-frequency scale. A similar story underlies
the handling of intensity in both Mel-frequency cepstrum coefficient (MFCC) and
perceptual linear predictive (PLP) features. Using the Mel-frequency axis, MFCCs
include a log-amplitude compression factor so that equal intervals on the intensity
scale represent equal increments of perceived loudness (Davis and Mermelstein,
1980). PLP features, based on the Bark frequency scale instead, include amplitude
compression via a nonlinear power law to approximate perceptual loudness judge-
ments (Hermansky, 1990). In this case, equal intervals on the intensity scale thus
represent equal ratios of perceived loudness. More recently, the power-normalized
cepstral coefficient (PNCC) features developed by Kim and Stern (2012) claim
improved recognition achieved in part by following auditory principles.

Spectral distortions arising from the early reflections in reverberant signals can
largely be compensated by the noise-based methods used to combat linear channel
effects, microphone mismatch, interfering sounds and so on as mentioned above
(e.g., using cepstral normalisation techniques described by Liu et al., 1993). How-
ever, to compensate for the effects of the late-arriving reflections, new methods are
required which can account for the longer-term temporal evolution of the rever-
berant signal. Despite some bio-inspired gains in reverberant speech processing
(discussed below in § 2.2.6), it remains the case at present, however, that abstract
functional models provide the best speech recognition performance. The next part
of the thesis briefly overviews such methods.

28



2.2 Machine listening in real-room reverberation

2.2.2 Reverberation-robust signal processing

The idea behind reverberation-robust signal processing is to achieve a type of
context-sensitive machine hearing by which the detrimental effects of unknown
environments can be somehow cancelled in signal recognition.

As described above, ASR systems typically use statistical algorithms to match the
input acoustic signal against an acoustic model for each speech-component ex-
pected (e.g. on the phone- or word-level). Reverberation causes temporal smearing
in the signal, and as a result, information from a specific speech sound is spread
over several frames. The duration of the room impulse response is usually much
longer than the frame length of the analysis window used for feature extraction,
perhaps a half-second or so in comparison to the 10 ms time-frame used for fea-
ture extraction. To be successful in reverberation, therefore, a speech recogniser
would ideally put this longer-term context (encapsulated in a number of consecu-
tive previous frames) to good use. Capturing such long-term temporal evolution
with HMMs, however, would require extremely long left contexts for each HMM
state (using polyphone rather than triphone models) which would quickly become
problematic due to the high number of resulting speech classes and the diminishing
number of training examples remaining in each class (Yoshioka et al., 2012).

A more popular way to deal with reverberation within the ASR framework out-
lined in Figure 2.5 has been to train the acoustic models using reverberated speech
data. This method indeed improves recognition results provided that the rever-
berant conditions of the test material match that of the training but, somewhat
counter-intuitively, results in an increased WER when the speech signal is clean.
Moreover, since the exact pattern of reflections varies considerably whenever the
source or receiver moves, when trained in this way the recogniser can be particu-
larly vulnerable to alteration in the physical position and environment of the talker
and microphone (McDonough et al., 2008). Multi-condition training attempts to
resolve such problems by conditioning the recogniser using speech recorded in a
range of acoustic conditions. However, it remains an open question whether this
can provide high performance in all environments that might be encountered.

The remainder of this section introduces four strategies which have improved the
state of the art in reverberation-robust speech processing. Each strategy is dis-
cussed sequentially below, though in practise real-world systems may employ mul-
tiple strategies in combination in order to maximise recognition rates. Firstly, a set
of methods are discussed which focus attention on the front-end and attempt to
remove the effect of reverberation from feature vectors themselves (§ 2.2.3). Sec-
ondly, methods which alter the acoustic models or decoder to deal more appropri-
ately with reverberant feature vectors are considered (§ 2.2.4). Thirdly, approaches
which deal with reverberation through missing data and uncertainty are introduced
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Figure 2.6: Front-end enhancements for reverberation-robust ASR. The schematic redrawn from
Yoshioka et al. (2012), shows three enhancement methods (below) which may be employed during
feature-extraction (above) to reduce the effects of reverberation.

(§ 2.2.5). Finally, some methods inspired in part by aspects of biological audition
are discussed (§ 2.2.6).

2.2.3 Front-end approaches

The front-end of the recogniser combines optional signal pre-processing and
feature-vector extraction. As an extension of this concept, front-end approaches
to reverberation-robust ASR aim to remove the detrimental effect of reverberation
from the feature vectors themselves. Spatial filtering techniques address this prob-
lem by exploiting the fact that speech is directional, and thereby enhancing sound
from one direction whilst suppressing everything else. Perhaps the simplest exam-
ple involves use of a single directional microphone, where the talker’s position can
be accurately predicted. More generally, an array of microphones and a beamform-
ing technique could be used to target a specific (stationary) talker and enhance the
direct sound while attenuating the reflected portions in the signal (van Veen and
Buckley, 1988). Yoshioka et al. (2012) classify a variety of additional front-end
feature-enhancement methods in relation to the stage of feature extraction at which
they act, as shown in Figure 2.6.

The first front-end method, linear filtering, makes use of a number of consecutive
time-frames and thus can account for longer-term temporal evolution of a reverber-
ant signal. This approach addresses the very start of the signal processing chain,
using an adaptive filter to estimate and remove the effects of reverberation either
on the time-domain signal itself or on its short-time Fourier transform (STFT) rep-
resentation. This forms the basis of many dereverberation techniques, in particular
the blind deconvolution method which first estimates the room impulse response
and uses this to estimate a clean version of the reverberant signal (Gillespie and
Atlas, 2003; Hopgood and Rayner, 2003). In conjunction with long-term linear
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2.2 Machine listening in real-room reverberation

prediction, the method has improved ASR results both for single-input and multi-
microphone systems (Kinoshita et al., 2009; Nakatani et al., 2010).

A second front-end approach attempts to remove the effect of reverberation when
the signal has been converted into a spectral representation. Given a sequence of
reverberation-corrupted observations, the spectrum enhancement method attempts
to estimate coefficients equivalent to the corresponding clean signal. Since it oc-
curs after the squared magnitude step of feature extraction (see Figure 2.6), the
method offers robustness against talker movement since the late reverberation is of
comparable magnitude irrespective of the relative positions of the talker and mi-
crophone (Yoshioka et al., 2012). This also allows the reverberant distortion to
be removed in a manner similar to that of additive noise distortion. Here, a time-
shifting spectral subtraction method is required, one option being to make use of
the anticipated exponential decay in the magnitude of the late reverberation (Lebart
et al., 2001).

A third front-end approach, feature enhancement, attempts to infer clean features
directly from the reverberant features, i.e. to dereverberate the reverberant fea-
tures. Rather than exploiting characteristics of the room, feature-based techniques
capitalise on structural properties of speech itself, and aim to reduce the mismatch
between reverberant and clean speech representations. For instance, the speech sig-
nal can be characterised by its modulation rate and, in particular, the low-frequency
temporal envelope modulation characteristics can be used to find an inverse mod-
ulation transfer function (Avendano and Hermansky, 1996; Langhans and Strube,
1982).

2.2.4 Back-end approaches

Rather than focus on the feature representation of the signal, back-end approaches
instead attempt to improve the processing stage in which the reverberant features
are decoded (cf. Figure 2.5).

The decoder essentially comprises statistical methods accounting for anticipated
acoustic and linguistic variation of the input signal. A number of model compen-
sation methods now exist whereby the standard features (e.g. MFCCs) are fed to
HMM acoustic models whose parameters are altered prior to recognition (in an at-
tempt to account for the distortion expected in the input signal), and a standard de-
coder then transcribes the reverberant utterances (Sehr et al., 2009). This family of
techniques, including maximum a posteriori (MAP) (Gauvain and Lee, 1994) and
maximum likelihood linear regression (MLLR) (Leggetter and Woodland, 1995),
are now widely used to increase robustness to background noise and unfamiliar
talkers in addition to reverberation. Since these methods attempt to directly model
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the reverberant observations, the mismatch between clean acoustic models and a
reverberant input is reduced. However, the reported ASR gains have been some-
what limited in cases of reverberation since these methods do not account for the
temporal evolution of this particular distortion, i.e. the dependency of the current
state on the previous feature vectors is not exploited.

Methods which attempt to capture such inter-frame relations are now appearing
in reverberation-robust ASR. Extending the model compensation techniques just
mentioned, a similar approach is taken by Takiguchi et al. (2006) where the HMM
adaptation parameters (i.e. the means and covariances) are updated frame-by-
frame, varying in line with the recently experienced acoustic context. Incorporating
time-varying reverberation estimations, the REMOS (REverberation MOdeling for
robust Speech recognition) method of Sehr et al. (2010) uses a statistical reverbera-
tion model to describe a reverberant utterance as the convolution of a clean speech
phrase with a room impulse response. Its main advantage therefore lies in the fact
that changing acoustic conditions (e.g. a moving talker, or an unknown room)
can be accommodated by updating the reverberation model without retraining the
recognition engine itself.

2.2.5 Missing and uncertain data

A different class of techniques deal with reverberation by means of missing data
techniques (Palomäki et al., 2004; Raj et al., 2004) and uncertainty decoding (Deng
et al., 2005; Maas et al., 2013). Such techniques exploit knowledge of which parts
of the signal contain reverberant energy (vs. which parts are relatively uncorrupted)
and, at times, make use of the degree of confidence in the underlying estimation.

The missing data approach described by Raj et al. (2004) aims to reconstruct the
original signal from a distorted one, i.e. to estimate an enhanced representation
of the reverberant signal which is then passed forwards into the speech recogniser.
Since the decoding process in the back-end is not affected in this method, large
vocabulary continuous speech recognition can be undertaken following standard
procedures without much additional computational cost. An alternative missing
data approach described by Palomäki et al. (2004) uses ‘bounded marginalisation’
to deal with feature values that have been corrupted by reverberation. Rather than
ignore the unreliable feature values, their true values are assumed instead to lie
within a certain range (e.g., between zero and the observed (corrupted) value, for
an auditory firing rate representation). During recognition, in a step which requires
some modification to the usual back-end of the recogniser, the decoder can then
compute likelihoods by integrating over the range of possible feature values.
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Uncertainty decoding approaches have been implemented as both front-end and
back-end methods for robust ASR (Deng et al., 2005; Liao and Gales, 2008). The
principle trait of these methods is that, in addition to the feature vectors themselves
being passed to the recogniser, a measure of the uncertainty of these observations
(due to environmental conditions such as noise or reverberation) is also included.
Following this approach, Maas et al. (2013) have recently extended the REMOS
procedure (cf. § 2.2.4) with some success to additionally cope with a range of noisy
environments.

2.2.6 Auditory inspired approaches

A final class of reverberation-robust signal-processing methods are those that are
inspired in some way by biological audition (yet which are not overly concerned
about the physiological resemblance). As mentioned above in § 2.2.1, bio-inspired
approaches have brought gains to ASR, particularly in adverse, noisy situations,
but such methods have proved of limited benefit in reverberation. To compensate
for the effects of the late-arriving reflections, new methods are required which can
account for the longer-term temporal evolution of the reverberant signal. As such,
although a better understanding of how human listeners achieve perceptual com-
pensation for reverberation might eventually impact on the encoding of reverberant
sound in a number of machine listening applications, detailed nonlinear cochlear
models (as discussed in the following chapter) are not expected to bring an im-
mediate solution to the problem of reverberation-robust ASR. Nonetheless, useful
applications may arise from considerations such as those examined in the model
originally proposed in Lavandier and Culling (2010) and further developed in Jelfs
et al. (2011), Lavandier et al. (2012) and Culling et al. (2013). Here, two binaural
listening effects (better-ear listening and binaural unmasking, further discussed in
§ 2.3.1 below) are combined in order to generate ‘intelligibility maps’ of a room
which indicate where to stand for optimal communication given the architectural
constraints of the room.

In an attempt to account for longer-term temporal distortion that reverberation ef-
fects, Kingsbury (1998) used the modulation spectrum (which analyses frequency
components of the signal’s temporal envelopes) with the observation that pho-
netic identification in human listeners is governed largely by the components with
lower modulation frequencies. Another perceptually-inspired (front-end) method,
RASTA, attempts to make perceptually salient spectral transitions more obvious,
while reducing sensitivity to irrelevant steady-state factors (Hermansky and Mor-
gan, 1994). More recently, Petrick et al. (2008) used a ‘temporal power envelope
feature analysis’ to uncover phone-level events that contribute most to intelligibil-
ity by looking at the modulation rate in the speech signal. In the same study, this
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technique is compared with ‘harmonicity based feature analysis’ which assumes
that the harmonic components of speech are relatively undistorted by reverbera-
tion, and which removes low-frequency energy present during unvoiced speech
segments presuming it to be reverberant energy.

Though these methods bring some benefit for reverberant ASR, it is an oversimpli-
fication to assume that harmonic components of speech are undistorted by rever-
beration. Reverberation does distort the harmonic structure, and (for short rever-
beration times) a measure of the pitch strength is therefore inversely proportional
to the reverberation present. This is shown by Wu and Wang (2003) who measure
the pitch strength to determine T60, based on a method that tracks the distribution
of fundamental frequency (F0) values. The distribution of F0 is sharply peaked in
dry conditions but spreads out with increasing reverberation time since the F0 of
reflected sound may differ slightly from the direct F0. By examining the signal to
reverberant component ratio, the linear prediction residual also provides a means
for categorisation of dry and reverberant speech (Yegnanarayana et al., 1998). An-
other method, harmonic dereverberation (HERB), combines feature-based tech-
niques with inverse filtering to design filters that remove the small deviations in
pitch (and hence eliminate reverberant components) so that F0 can be made peri-
odic in these local time regions (Nakatani et al., 2003).

The dependence of the perceptual effects of reverberation on the original signal
content itself has additionally motivated modelling studies in a number of labs,
since it validates the search for objective methods of speech perception which can
work directly on reverberant signals without access to the corresponding room im-
pulse responses. Van Dorp Schuitman et al. (2013), for instance, point out that
since reverberation estimations based on RIR measures alone (cf. 2.1.4) do not de-
pend on the signal content, they cannot adequately represent a listener’s experience
if, say, the room is occupied rather than empty, or if it is used for music listening
rather than for speech. A related point is also exposed by a bio-inspired derever-
beration study by Tsilfidis and Mourjopoulos (2011), in which an estimated clean
signal may be synthesised from a reverberant signal at input1. The method was
reported to be fairly successful for speech stimuli, but worked less well for musi-
cal signals (e.g., a continuous ’cello sound) in which the reverberation components
were harder to identify and remove.

1Their method involved monitoring several independent cues (including an estimate of T60 and
a reconstruction of the clean signal) which together informed a mask locating portions of prominent
vs. inaudible late-reverberation, and determined parameters of the audio resynthesis.
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2.3 Human listening in real-room reverberation

Reviewing psychoacoustic research into subjective effects of early and late room
reflections, van Dorp Schuitman et al. (2013) report eight perceptually important
attributes of room acoustics that appear regularly in the literature: reverberance,
clarity, intimacy, apparent source width, listener envelopment, loudness, brilliance
and warmth. From these descriptions of sound quality, it is clear that reverberation
influences perceptual judgements both of what a sound is, and where it came from.

The majority of the thesis that follows is concerned with speech identification,
however it must be noted from the outset that the ‘where’ and ‘what’ perceptual
aspects of a sound source are clearly intertwined. The location of a sound (the
‘where’) is likely to affect its identification when heard in a reverberant room (and
for a voice, its intelligibility). Conversely, the spectro-temporal content of a sound
source (the ‘what’) also plays a role in its ability to be located, even in anechoic
space. Studying composite sounds created with the envelope of one signal and
the temporal fine structure of another, Smith et al. (2002) were able to pin down
some of these aspects more closely. They report that properties of the fine structure
are responsible for establishing the ‘where’ percept, while (agreeing with Shannon
et al., 1995) properties of the envelope determine ‘what’ is heard1.

In a reverberant room, reflected sound blurs the spectro-temporal features in the
signal, making it harder for listeners to segregate and select target sounds in
the presence of others (see e.g., Bronkhorst, 2000; Culling et al., 2003; Shinn-
Cunningham et al., 2013). Yet reverberation is very common in our everyday lis-
tening environments, and we are often unaware of reflected sound arriving at our
ears. The perceived position of a sound source is dominated by the first sound
components to arrive (Wallach et al., 1949). This ‘precedence effect’ suggests that
the direct signal path dominates perception in a reverberant room, which provides
some robustness against room effects (Hermansky et al., 2013; Litovsky et al.,
1999). Importantly for speech perception, the message heard in a speech signal
usually remains semantically intact, regardless of whether the speaker and listener
are close to each other or far apart (Watkins, 2005a).

This thesis discusses our ability to compensate for the effects of reverberation.
The majority of the work undertaken below is focused on monaural speech iden-
tification tasks, however it must be noted that the binaural system clearly confers

1Moreover, by varying the number of filtered bands in which their stimuli were synthesised, and
by placing cues in conflict with one another, Smith et al. (2002) found that as the number of bands
increases above four, the envelope cues increasingly dominate perception. On the other hand, if just
one or two bands are present in the signal then the fine structure cues are likely to be more influential.
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(a) ILD, better ear effect (b) ITD, binaural unmasking

Figure 2.7: Binaural localisation cues: interaural level difference (ILD) and interaural time dif-
ference (ITD). In Figure 2.7a, a low-frequency sound, depicted with long-wavelength and travelling
left-to-right, diffracts (bends) around the head and provides a similar sound level at each ear. A
high frequency sound, depicted with short-wavelength and travelling right-to-left, cannot diffract
around the head: a head shadow arises, and a level difference is observed between the two ears.
In Figure 2.7b, a source directly ahead of the listener provides the same sound signal to both ears.
When off to one side, however, the sound must travel further to reach one ear (either directly or by
reflection) and a time delay is introduced between signals arriving at the ears.

significant benefit in certain listening situations. Intelligibility predictors based on
monaural analyses will inevitably fail to account for the gains reported with binau-
ral listening, especially in assisting the separation of target speech from stationary
or modulated background noise (see e.g. Lavandier et al., 2012). Two significant
binaural mechanisms are therefore discussed briefly below, regarding timing and
level differences observed between the signals arriving at the two ears. The con-
tribution of these binaural cues is well studied for localisation, however, their con-
tribution to speech identification in reverberant conditions is less clear. Indeed, as
discussion below reveals, a great deal of work remains to be done to understand
binaural and monaural contributions to perceptual compensation for reverberation.

2.3.1 Binaural cues and monaural cues

Binaural cues are based on the comparison of the level and timing of signals re-
ceived by the left and right ears, as depicted in Figure 2.7. The interaural level
difference (ILD) cue described in Figure 2.7a is the first main binaural cue de-
scribed. In the image, a low frequency sound can be seen travelling left-to-right
across the page, with a wavelength sufficiently long as to pass around the listener
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without trouble and present an approximately equal sound level to each ear. On
the other hand, a high frequency sound, here travelling right-to-left, cannot diffract
around the listener’s head. This gives rise to an acoustic shadow at the far ear, and
a large ILD between the ears. Particularly apparent for high frequency sounds, this
cue has been linked to what is termed the ‘better ear’ effect. This is thought to be
a process by which the brain can assess the two ears independently and use the ear
providing the better SNR (Edmonds and Culling, 2006).

The binaural timing cue, the interaural time difference (ITD), arises from the fact
that a sound from off to one side will take longer to reach the ear on the further
side of the head (cf. Figure 2.7b). On the other hand, a sound source directly
in front (or behind) of the listener will travel an identical path length to each ear,
and will arrive simultaneously at each ear. This cue is linked to the concept of
‘binaural unmasking’ which relates to the suppression of signals arriving with a
given ITD between the two ears, perhaps via the equalisation-cancellation model
described by Durlach (1963). At frequencies below 1.5 kHz, ITDs are thought to
arise from a comparison of the two signals themselves while at higher frequencies
it was suggested that the ITD cue is conveyed by the envelope of the signal instead
(Wightman and Kistler, 1992).

Taken together, ITD and ILD provide cues required to locate a sound source. The
ITD cue provides a strong clue as to the azimuth of the source, i.e., its position left
to right, particularly for low frequency sources such as the voice (Wightman and
Kistler, 1992). Additionally, recent research suggests that processing of the ILD
cue in the central auditory system may be involved with perception of distance of
a source (Jones et al., 2013). However, these binaural cues are unable to provide
any information in regard to the elevation of the source since both ITD and ILD
will be zero for a source located ahead, irrespective of its height above or below
the listener. For this, monaural cues (or head movements) are required.

In the presence of reverberation, these binaural cues become less reliable (Rakerd
and Hartmann, 1985). Judgements of ITD are disrupted as the reflected energy
increases the decorrelation between the two signals received at each ear. Addition-
ally, ILD cues may alter unpredictably since they depend on the listener’s exact
position within the enclosure. Thus the spectral balance of the various sound com-
ponents may vary dramatically depending on the location of the source and listener
relative to the room modes and in proximity to particularly reflective or absorbent
surfaces. Interestingly, distance perception has been reported to improve in rever-
berant conditions, while direction accuracy worsens (Shinn-Cunningham, 2000).
The latter finding may be explained by the fact that lateralisation is cued largely
by the temporal fine structure of the ITD which is decorrelated in the presence of
reverberation (Smith et al., 2002). Indeed, Devore and Delgutte (2010) suggest
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that ILDs may provide more reliable directional information than envelope ITDs
for localising high frequency sounds in reverberant conditions.

Monaural localisation cues exist in the form of directional filtering that results from
the interaction of the sound source with the various parts of the human anatomy.
The pinnae in particular provides a spectral cue for elevation, as the original source
sound is modified with a different frequency profile depending on ‘where’ it orig-
inates: level with, above or below the ear (Pickles, 1988). Secondly, the pitch
percept, or its physical correlate, F0, might be thought of as a monaural cue as-
sisting with ‘what’ is heard. Maintained throughout the various stages of auditory
processing, differences of pitch assist listeners in segregating concurrent sounds,
and similar pitch contours assist the grouping sounds originating from a single
source (Darwin, 1984). However, Culling et al. (2003) report that reverberation
additionally hinders listeners’ ability to capitalise on F0 cues. Their experiments
showed that monotonised speech (in which there is no F0 modulation, and thus
reduced prosodic information) was harder for listeners to segregate when stimuli
were reverberated rather than presented in anechoic conditions.

Integration of cues

As stated earlier, listeners are remarkably robust to the effects of real-room rever-
beration. In part, this is likely to be due to the fact that listeners are typically active
participants in their acoustic environments. By moving, tilting and rotating the
head, a great deal of ambiguity in where the signal originated can be resolved. For
example, by tilting the head, an elevation cue may be transformed into an azimuth
cue which is easier to resolve with a greater degree of accuracy. The ways in which
such cues are swapped or integrated has not yet been well-studied, however, since
the bulk of the relevant research to date has used headphone presentation which
does not allow this kind of cue-swapping to occur.

Moreover, it is not yet understood how monaural and binaural aspects of hear-
ing combine together, or take-over from one another, particularly in reverberant
listening tasks. The two binaural cues discussed earlier are thought to contribute
to the phenomena termed spatial release from masking (SRM), combining better-
ear listening and binaural unmasking (Lavandier and Culling, 2010; Zurek, 1993).
While having two ears is clearly a benefit as it allows SRM, it is still not clear
whether that benefit arises from switching between the two monaural systems (left
then right individually, using the better ear effect which favours the ear with the
higher SNR) or from actually synthesising concurrent information from the two
ears simultaneously (as occurs in binaural unmasking arising from the ITDs). Us-
ing modulated noise maskers with simulated room reverberation, ongoing research
in this area aims to better understand the relative importance of these contributions
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in the context of speech intelligibility (see e.g., Culling and Mansell, 2013; Weller
et al., 2014).

Though questioned recently by Jones et al. (2013), the duplex theory has stood for
around a hundred years, suggesting that localisation relies on time-based cues for
low frequency sounds, and level-based cues for the high frequency sounds. Clearly,
to achieve good speech identification a listener must also integrate information
across frequency and through time. Culling et al. (2006) examined contributions
of monaural and binaural cues, separately and in combination, on speech percep-
tion. In their study, the binaurally-derived information was helpful only in the
low-frequency regions (below around 1.2 kHz) whereas monaurally-derived cues
were beneficial throughout the entire frequency region. In other words, binaural
information helped (alongside monaural cues) to uncover the pitch and formant
structure of the speech in this task, whereas the high-frequency consonant identifi-
cation was achieved by (only) the monaural system.

2.3.2 Categorical perception

When listening to speech, individual sounds are perceived according to categories
that remain stable despite variation introduced by everyday listening environ-
ments. However, Klatt (1982) points out the trap of assuming equivalency between
phonetic- and psychophysical-judgements. Here, speech perception exhibits an
important flexibility, namely that these categories are adjusted continually to take
changing contexts into account (Remez, 1996; Tuller et al., 1994).

The premise that a continually variable acoustic signal can be partitioned into dis-
crete perceptual categories is of fundamental importance to speech production and
recognition, and essentially allows the distinction of one word from another. There
is an obvious and significant acoustical dependence on body size, speech rate, ac-
cent and so on, yet we will instinctively classify any given speech sound either as
or not as a particular phoneme. Since speech sounds are strongly categorical in na-
ture, category-boundary experiments have proved useful tools in speech perception
research, and a number of methods have been devised to experimentally determine
the ‘phoneme boundary’ which marks the point on the continuum where the per-
cept changes from one speech sound to another (see e.g., Ganong and Zatorre,
1979).

The ‘perceptual magnet’ theory of Kuhl (1991) highlights the fact that we are more
likely to notice differences between rather than within categories. This theory de-
scribes a warping of perceptual space, illustrated in Figure 2.8, where a speech
sound that is close to a category ‘prototype’ (or unambiguous speech sound) is
pulled toward the prototype itself. The perceptual magnet effect has been framed
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Figure 2.8: Predicted relationship between acoustic and perceptual space for two categories: per-
ceptual space is shrunk in the neighbourhood of unambiguous speech sound categorisation, however
shrinkage is weakest at category borders. Figure redrawn from Feldman and Griffiths (2007).

in Bayesian terms by Feldman and Griffiths (2007) so that an incoming speech
sound is judged in relation to a phonetic category’s mean and variance.

Ladefoged and Broadbent (1957) showed that identification of a test-word also
depends strongly on the context in which it is observed (specifically that the per-
ception of a test-word as bit, bet, bat, or but depends on the formant structure
of the introductory sentence). The category boundary experimental paradigm has
thus proved particularly useful to explore the dependencies of speech perception
on a range of contextual effects. Indeed, this method underpins the experiments of
Watkins (2005a) which examine perceptual compensation for reverberation.

2.3.3 Misclassification in reverberant speech

Over the past 40 or so years, studies have consistently demonstrated that reverbera-
tion degrades the intelligibility of speech. Some of these works are summarised in
Table 2.2. The results are, in the main, consistent, allowing some generalisations
to be drawn as follows.

Reverberation consistently degrades speech intelligibility due to the presence of
real-room reflections which mask the direct sound. Even mild reverberation is
sufficient to disturb the identification of test-words, such that word identification
scores for both normal hearing and hearing impaired listeners are altered from the
non-reverberant case (e.g., Nábělek and Robinette, 1978). A binaural advantage
was reported for cases in which reverberation and noise were heard jointly (Helfer,
1994; Nábělek and Robinette, 1978), but was typically rather limited in otherwise
quiet conditions (ranging from 3.8 to 6.7% relative improvement in Nábělek and
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Table 2.2: Overview of reverberant speech studies, presented alphabetically. Abbreviations used in
table: Listeners – number of participants with normal hearing (n) or some hearing loss (h). Material
– identification of consonants (c), vowels (v), words (w) or nonsense (n) speech material. Conditions
– quiet (q), modulation filtered (m), noisy (n), reverberant (r) or vocoded (v) material. Presentation
– monaural (m), binaural (b) or diotic (d) stimuli.

Study Listeners Material Conditions Presentation

Cox et al. (1987) 40n w n, r m

Drullman et al. (1994a) 54n c, v m m

Drullman et al. (1994b) 60n c, v m m

Gelfand and Silman (1979) 20n c q, r m

George et al. (2008) 10n w n, r m

Harris and Swenson (1990) 10n, 20h w n, r b

Helfer and Wilber (1990) 16n, 16h n q, n, r b

Helfer and Huntley (1991) 16n, 8h n q, n, r b

Helfer (1994) 13n n q, n, r m, b, d

Nábělek and Pickett (1974) 5n c n, r m, b

Nábělek and Robinette (1978) 10n, 12h w n, r m, b

Nábělek and Robinson (1982) 60n w q, r m, b

Nábělek and Dagenais (1986) 10h v n, r m

Nábělek et al. (1989) 20n c q, n, r m

Nábělek et al. (1992) 20n, 20h v q, n, r m

Nábělek et al. (1994) 10n, 10h v q, n, r m

Nábělek et al. (1996) 10n, 7h v q, n, r m

Poissant et al. (2006) 26n w q, n, r, v m

Robinson, 1982, where the largest scores were associated with the elderly listening
group who had in any case begun from the worst baseline performance).

The position of a phoneme within a word or phrase also plays a role in its intelligi-
bility under reverberation. This has been explained by Nábělek et al. (1989), citing
earlier work by Bolt and MacDonald (1949), as the effect of two distinct types of
masking. Self-masking refers to the blurring of energy internally within a particular
phoneme, and overlap-masking occurs when the energy of a preceding phoneme
spreads in time and extends into the following phoneme. As a result, items tested
in word-initial position generally contained less reverberation than those in the
word-final position, and had a correspondingly higher chance of being correctly
identified (e.g., Helfer and Huntley, 1991; Nábělek et al., 1989).

Reverberation does not degrade different speech sounds equally, but misclassifica-
tion among items is somewhat predictable as these tend to be within speech classes,
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i.e., a stop consonant will most likely be mistaken for another stop consonant rather
than for, say, a fricative. Certain sounds (e.g., sibilants) appear naturally more re-
sistant to the effects of reverberation (Gelfand and Silman, 1979); additionally,
vowels are mistaken less often than consonants (Drullman et al., 1994a, b). Rever-
beration typically introduces more errors involving place of articulation rather than
in regard to manner or voicing (Cox et al., 1987; Drullman et al., 1994b; Gelfand
and Silman, 1979; Nábělek and Pickett, 1974). Stop consonants, particularly the
unvoiced plosives, are almost always reported to be the most vulnerable group of
speech sounds (Drullman et al., 1994b; Gelfand and Silman, 1979; Nábělek and
Pickett, 1974).

Perhaps driven by the observation that multiple reflections reach the listener in
close succession and therefore act as a speech-shaped noise masker (Gelfand and
Silman, 1979), the majority of these studies looked jointly at the effects of rever-
beration and noise (cf. the fourth column of Table 2.2). However, reverberation
is a convolutional rather than additive distortion, and we would not therefore ex-
pect it to cause the same effects on speech perception. Moreover, the variety of
noise types (including stationary, speech-shaped, /s/-shaped, babble and cafeteria
noise) and the diversity of listening tasks (identifying consonants, vowels, words,
sentences or nonsense syllables) resulted in less consistency across the noise-based
studies than arose for studies examining reverberation alone.

2.3.4 Effect of reverberation on stop consonants

As mentioned above, the speech sounds most likely to be misidentified in reverber-
ation are the stop consonants, and in particular the unvoiced plosives (Cox et al.,
1987; Drullman et al., 1994b; Gelfand and Silman, 1979; Nábělek and Pickett,
1974). These sounds are produced when the lips or tongue cause a restriction of
the airway, producing the bilabial [p], alveolar [t] or palatal [k] whose release bursts
were reported by Allen and Li (2009) to be in the low frequency regions c. 0.7–
1 kHz for [p], in the high frequency region around 4 kHz for [t], and in the mid
frequency region around 1.4–2 kHz for [k].

In the temporal domain, however, the unvoiced plosives are all defined by a dip
occurring in the amplitude envelope, i.e. a brief silence or period of low energy.
This characteristic results in their particular susceptibility to the effects of rever-
beration (as was seen earlier in Figure 2.2), since the dip in the temporal envelope
which helps to cue their identity may easily become obscured in the presence of
reverberation.

None of the studies in Table 2.2 has yet measured the influence of reverberation on
continuous speech, thus the wider relevance of the difficulty in identifying rever-
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2.3 Human listening in real-room reverberation

berant stops in everyday listening must be inferred from the frequency of their oc-
currence. In an American English conversational speech dataset studied by Mines
et al. (1978), the unvoiced plosives [p], [t] and [k] together accounted for around
10.7% of all phonemes (or about 18.2% of all consonants) encountered. Thus the
relative abundance of these consonants in English may contribute substantially to
the difficulties anecdotally reported by many listeners in reverberant environments.

Interestingly, Nábělek et al. (1989) reported that unvoiced stop consonants were
even more vulnerable to reverberation when presented after an [s] sound than when
they were presented alone. Again, this finding would appear to remain relevant in
more conversational settings, since the [s] occurred at a rate comprising 4.6% of
phonemes encountered in Mines et al. (1978). Further, occurrences of [s] being
followed by [p], [t] or [k] were examined in the dataset used in Lanchantin et al.
(2013). Of all occurrences of [s] that were not in the word-final position1, 44% of
the remaining [s] occurrences were followed by an unvoiced plosive. Among these
phoneme pairs, [st] accounts for 77.4% of the data observed, with [sp] and [sk]
appearing on 12.1% and 10.4% of occasions, respectively. This analysis suggests
that the three pairs of consonants most likely to be lost in reverberation, [sp], [st]
and [sk], might account for just over 2% of all sounds heard in typical English
conversation.

2.3.5 Perceptual constancy in vision and audition

Perceptual constancy describes our ability to recognise an object or quality as fun-
damentally unchanged despite it appearing to be different due to the circumstances
in which it is encountered. Perceptual constancy is increasingly important in au-
ditory research owing to the growing desire for machine listening systems to work
robustly in natural environments. Motivated by a wide variety of practical applica-
tions and theoretical concerns, researchers have investigated perceptual constancy
for varied aspects of sound2. Before restricting the discussion tightly to the topic
of reverberation it is helpful to briefly consider some other examples of perceptual
constancy both in speech perception and more widely.

Perceptual constancy has received greater attention in vision than in hearing, ex-
amining constancy for lightness, colour, shape and size among other attributes

1Pronunciation probability statistics were obtained using a dictionary file rather than a transcrip-
tion of spoken utterances, thus statistics crossing word-boundaries were not available. Thanks to
Oscar Saz for providing these numbers.

2See, for example, Ardoint et al. (2008); Gockel and Colonius (1997); Johnson and Strange
(1982); Kuhl (1979); Li and Pastore (1995); Stecker and Hafter (2000); Summerfield (1981); Zahorik
and Wightman (2001)
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(a) Shape

(b) Focal point

Figure 2.9: Visual constancy. Figure 2.9a depicts shape constancy: the opening door projects differ-
ent shapes visually, but is still understood to be rectangular. In Figure 2.9b the focal point depends
on the stimulus surrounds (Figure from Webster et al., 2002). The middle row is repeated left and
right. On the left-hand side it is flanked by blurred bars and appears sharp in comparison. On the
right-hand side it is flanked by sharpened bars and thus appears correspondingly blurred.

(Adelson, 2000). Shape constancy is depicted in Figure 2.9a and shows that the
perception we have of an object may be quite different from the physical prop-
erties that have brought about that perception. Explanations of visual constancy
differ among vision researchers, however Yang and Purves (2004) have recently
explained a wide range of phenomena (including optical illusions) by describing
brightness with a probability distribution function that records particular luminance
values within local and global surroundings. In this way they suggest that the per-
ception of a target will depend on its context.

We can also approach perceptual compensation for reverberation with reference
to a visual analogy: image blur. Work by Webster et al. (2002) has examined
neural adjustments to image blur, showing that humans label an image as ‘blurry’
or ‘sharp’ depending on their recent exposure to blurry or sharp scenes. If more
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blurry pictures are shown, then the viewer becomes accustomed to this new blurry
world so that a non-blurry image will be interpreted as ‘too sharp’. Similarly in
an overly sharpened world, a normal-focus image will be labelled as ‘too blurry’.
Webster et al. propose that visual responses compensate for spatial sensitivities
by a process of continual recalibration arising from cortical adaptation, and allow
constancy for image structure to be achieved by renormalizing the perceived point
of best focus as shown in Figure 2.9b.

For speech perception, it is clear that vowels and consonants are perceived as con-
stant categories across a wide range of acoustic conditions, for example with dif-
fering talkers, unknown accents, varied rates of speech (Summerfield, 1981), and
a wide range of listening environments (Cox et al., 1987). A perceptual normali-
sation process seems to exist whereby listeners disregard the variation of specific
instances and arrive at a general underlying category. For example, perceptual con-
stancy for vowels has been studied in relation to rapid speech (Johnson and Strange,
1982) and coarticulation (Strange et al., 1983). The former paper suggests that a
vocal context surrounding a test-word makes it easier to identify. The latter pa-
per examines various speakers, speech rates and surrounding consonants using a
stimulus composed of /b/-vowel-/b/. These authors report that dynamic spectral in-
formation from the transitions from and to the consonant is enough to identify the
vowel, even when the centre of the vowel itself is attenuated to silence. The idea
that transient attack portions of sound (i.e. the time-varying parts) are important
is also supported by Ardoint et al. (2008). They find that perceptual constancy ex-
ists for at least partial (or incomplete) normalization of temporal-envelope patterns
when compressed or expanded in the time domain, thereby suggesting an explana-
tion for why speech perception is robust under variation in presentation rate.

2.4 Compensation for reverberation in human listeners

Earlier sections of this thesis showed that when speech occurs in rooms, the direct
sound is amalgamated at the ear with many time-delayed and attenuated reflec-
tions from the room’s surfaces. From an acoustical point of view, the effect of
reverberation was shown to reduce the modulation depth of the speech envelope
and to adversely affect its intelligibility (cf. Figure 2.2). Regardless of these facts,
speech perception in rooms remains remarkably robust under diverse reverberation
conditions. The auditory mechanisms underpinning this robustness, and permitting
compensation for the effects of reverberation on the speech signal, are attracting
a lot of attention in research today. A series of recent experiments (see for ex-
ample: Brandewie and Zahorik, 2010, 2012, 2013; Longworth-Reed et al., 2009;
Srinivasan and Zahorik, 2013; Ueno et al., 2005; Watkins, 2005a, b; Watkins et al.,
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2011) suggests that the auditory system achieves perceptual constancy in reverber-
ation, as was seen above for visual properties of surfaces such as their shape and
focal point.

A substantial body of evidence now shows that the perception of a reverberant
sound is influenced by the properties of its temporal context (e.g., Brandewie and
Zahorik, 2013; Longworth-Reed et al., 2009; Watkins, 2005b). In these exper-
iments, listener performance improves in a range of speech identification tasks
when the listeners hear consistent room cues just prior to the test stimulus. To-
gether, these studies suggest a conceptual model of compensation for reverberation
in which listeners glean information from the acoustic context preceding a test-
sound, and accumulate this information over a period of time in order to achieve
perceptual constancy. Much work is yet needed, however, to understand both the
nature of the information that is used, and the time course over which it is gathered.

As in the reverberant speech perception studies above, research into compensation
for the effects of reverberation has also employed speech stimuli presented in (spa-
tialized) noise. Zahorik and colleagues have demonstrated binaural compensation
effects using the Coordinate Response Measure database in Brandewie and Zahorik
(2010), the Modified Rhyme Test in Brandewie and Zahorik (2012), and from the
PRESTO subset of TIMIT sentences in Srinivasan and Zahorik (2013). Addition-
ally, Zahorik and colleagues have begun to probe the mechanisms that may account
for these effects, and have reported that prior binaural exposure in a particular room
condition improves listeners’ ability to detect amplitude modulation in that room
(Zahorik and Anderson, 2013; Zahorik et al., 2012).

In addition to this binaural compensation effect, a large body of psychophysical
data gathered in a phoneme-continuum identification task supports the idea of a
monaural compensation mechanism (e.g., Watkins, 2005a, b; Watkins and Makin,
2007a, b, c; Watkins et al., 2011). These experiments suggest that the monaural
mechanisms are informed primarily by the temporal envelope of the signal (which
may or may not be speech-like). This proposition is broadly in line with findings
of a recent neural coding study by Kuwada et al. (2012) which observed neurons
that have a higher modulation gain in reverberant conditions relative to anechoic
conditions, and which might therefore help to counteract the deleterious effects of
reverberation on modulation depth.

Watkins’ work into monaural constancy effects has inspired much of the work for
this thesis and is therefore described in greater detail below. However, it is im-
portant to note that monaural compensation has not always been apparent in the
published literature. In Brandewie and Zahorik (2010), for instance, only two of
fourteen participants were reported to derive an appreciable benefit from monau-
ral room exposure. There are several reasons why this performance difference may
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arise, in particular the fact that the listeners’ speech identification task in their study
might conflate aspects of localisation and spatial unmasking with the compensation
effect being studied (since listeners were required to identify reverberant speech
while a masking noise was presented off to the side in binaurally simulated room
reverberation). An alternative possibility is that monaural effects may be limited
to phoneme-continuum type experiments (where only a small number of response
tokens are available) and thus would not occur in experiments during which the
speech stimuli differ substantially from trial to trial. Further, a third possibly re-
mains that the ‘morphing’ effects observed in Watkins’ phoneme-continuum iden-
tification may not arise with naturalistic speech, and instead an even spread of
errors across the various responses alternatives might arise (Phatak et al., 2008).

The relevance of a monaural compensation effect to natural speech perception tasks
thus remains to be demonstrated: this is the subject of the first perceptual exper-
iment reported below (Experiment H1). Moreover, the factors contributing to or
detracting from the monaural compensation effect have also yet to be elucidated
with natural speech.

Watkins’ work suggests that compensation effects can arise even when the con-
text speech cannot be understood, e.g. for cases in which the context speech is
time-reversed (Watkins, 2005a). Indeed, provided there are appropriate tempo-
ral modulations across a sufficiently broad range of the spectrum, compensation
can arise even when the context is not a speech signal at all (e.g. Watkins and
Makin, 2007a, b, c, which all study compensation arising from contexts comprised
of modulated noise bands). However, Srinivasan and Zahorik (2011) warn that
semantic expectations arising from a previous context sentence influence percep-
tion of subsequent reverberant test words to such a degree that they can override
such compensation effects. Another recent study by Longworth-Reed et al. (2009)
appears to support the earlier finding of Watkins (2005a) that monaural compen-
sation is blocked by a reversal of the time-direction of reverberation. Thus the
time-direction of reverberation appears critical for it to be successfully integrated
by the auditory system and turned into ‘useful information’ contributing to the ben-
eficial compensation effect. Experiment H2 below investigates whether the previ-
ous findings of Watkins (2005a) and Longworth-Reed et al. (2009) persist when
the time-reversals (of the speech direction and of the reverberation direction) are
examined monaurally with naturally spoken material.

Importantly, the time course of the monaural compensation effect has yet to be in-
vestigated. However, a number of studies with varying listener tasks have recently
queried the timescales on which binaural compensation effects are apparent. At
the ‘slow’ end of the scale, long-term learning of a particular room condition (c. 5
hours) appears to improve localisation accuracy (Shinn-Cunningham, 2000). Con-
trastingly, just seconds of inconsistent reverberation on the preceding context was
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(a) ‘sir’ (b) ‘stir’ (c) reverberant ‘stir’

Figure 2.10: Waveform display showing the temporal smearing effected by reverberation. The
plosive closure of the [t] sound in an unreverberated utterance of ‘stir’ (Figure 2.10b) is filled with
reflected energy as reverberation increases (in Figure 2.10c). This makes it appear more similar to a
‘sir’ utterance (Figure 2.10a).

sufficient to disrupt listeners’ ability to determine the azimuth of a test pulse (Za-
horik et al., 2009). For binaurally-presented speech identification tasks, a benefit
of prior room experience has typically been reported at the minimum timescale
permitted by the analysis in use: measured in minutes for the sentence sets in
Longworth-Reed et al. (2009); occurring within six sentences in Srinivasan and
Zahorik (2013); and within a few seconds for the two-sentence carriers used in
Brandewie and Zahorik (2010). Recently, Brandewie and Zahorik (2013) designed
a study specifically to measure the time course of the binaural effect, and reported
that around 850 ms of room exposure was sufficient to achieve considerable speech
intelligibility enhancement. Interestingly, this study also reported that the compen-
sation mechanism appeared to act more slowly at higher noise levels: that is, it may
take longer for a listener to adapt to a noisy room. Experiment H3 below queries
the temporal extent of the signal region contributing to monaural identification of
the test-word itself, and Experiment H4 examines the influence of the extent of
matching context reverberation on this judgement.

2.4.1 Watkins’ sir-stir paradigm

Watkins and colleagues have demonstrated perceptual compensation for the effects
of reverberation using a paradigm in which the preceding context of a speech sound
influences its identity (see for example: Watkins, 2005a, b; Watkins and Makin,
2007a, b, c; Watkins and Raimond, 2013; Watkins et al., 2010b, 2011). Since these
‘sir-stir’ continuum experiments form the basis of the auditory modelling study in
Chapter 4 and, in addition, greatly informed the design of the perceptual listening
experiments in Chapter 5, their general scheme is described here in some detail.

In Watkins’ experiments, listeners identify ‘sir’ and ‘stir’ test-words [TEST] em-
bedded in a fixed context phrase (“OK, next you’ll get [TEST] to click on”), while
reverberation conditions of the context and test-word portions of the signal are var-
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ied. The identification task exploits the vulnerability of the stop consonant [t] in
the context of [s] as was discussed above (cf. § 2.3.4), and is highly sensitive to
the way that reverberation tends to ‘morph’ one sound into another1. This can be
understood in relation to Figure 2.10, which depicts the temporal waveform for
unreverberated utterances of ‘sir’ and ‘stir’, and the effects of reverberation on the
word ‘stir’. Figure 2.10b shows a token test-word ‘stir’, evidenced by the dip in the
amplitude envelope that characterises the ‘t’ closure in the non-reverberant situa-
tion. The reverberant decay adds energy into this dip in Figure 2.10c and reduces
the dynamic range of the signal which then appears more similar to a typical ‘sir’
utterance as shown in Figure 2.10a.

Test-words are drawn from a synthetic continuum of 11 steps that was originally
created by interpolating between the temporal envelopes of naturally spoken tokens
of ‘sir’ and ‘stir’ (Watkins, 2005a). Here, the amplitude modulation of the [t] was
gradually introduced across the continuum items so that a sample drawn from one
end of the continuum gave the percept of ‘sir’, and a sample from the other end
of the continuum gave the percept of ‘stir’. However, due to the categorical nature
with which humans perceive speech (cf. § 2.3.2), samples drawn from intermedi-
ate continuum steps do not appear to listeners to be ‘intermediate’ or ambiguous
in any way. Rather, they are immediately and unthinkingly categorised as either
‘sir’ or ‘stir’. The category boundary – that is, the step in the continuum at which
the percept on average switched from ‘sir’ to ‘stir’ – is then recorded at a given ex-
perimental condition by counting the number of ‘sir’ responses achieved across all
items in the continuum and subtracting 0.5. Across the 11 steps of the continuum,
this results in a category boundary which may range from−0.5 (no ‘sir’ responses)
to 10.5 (all ‘sir’ responses).

The key features of Watkins’ paradigm are summarised in Figure 2.11 where the
vertical axis displays the category boundary measured across the 11 continuum
steps (here labelled 0 to 10 inclusive). Listeners identify the continuum test-words
when they are embedded in a fixed context phrase. Context distance and test-word
distance are independently varied, simulating voices being heard from different po-
sitions in a room. In any experiment, the typical set of stimuli heard then contains
two same-distance conditions (with near-near and far-far context-test distances)
and two mixed-distance conditions (near-far and far-near).

1A similar ‘morphing’ process is described by Phatak et al. (2008) for the types of confusion
made in the presence of noise in which a spectro-temporal region critical to the recognition of a
particular consonant feature may be heavily masked. In such cases, rather than an even spread of
responses among all possible consonants, the obfuscated test-item promotes the majority of responses
in one particular category; thus its identity can be said to have ‘morphed’ in the presence of the noise
masker.
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Figure 2.11: Two methods for measuring compensation for reverberation in Watkins’ ‘sir-stir’
paradigm. Listener data (which is the same in each panel) reveals that when the test-word alone is
far-reverberated, the category boundary shifts upwards due to the increase in ‘sir’ responses. When
the context and test-word are both far-reverberated, more steps are again reported to be ‘stir’ and
the category boundary shifts downwards again. In the left-hand panel, compensation is defined with
regard to far-distance test-word alone, as the category boundary recovery that a far-distance context
introduces (Watkins and Makin, 2007c). The right-hand panel presents a more widely-used strategy
(e.g. Watkins and Makin, 2007a), where compensation is quantified by first measuring the difference
in category boundary due to test-word reverberation (i.e. the vertical distance observed at each level
of the context (marked ∆n and ∆f for the near and far distance contexts respectively), and then by
calculating the difference (recovery) that arose due to the context condition, so that compensation
= ∆n −∆f .

For the near-near continuum stimuli, in which the sound is heard to come from a
consistently nearby voice throughout, a relatively low category boundary is usually
recorded (c. 2.5, for the bottom-left data-point in either panel in Figure 2.11).

In the near-far stimulus condition, the level of reverberation present during the
test-word is now much higher than that during the preceding context and listeners
typically respond ‘sir’ to more steps of the continuum. The reverberation has, in
effect, undone the work of the amplitude modulation that was introduced to create
the continuum, as though the increase in reverberant energy has concealed the dip
in the temporal envelope that previously cued the [t] consonant. The category
boundary shifts upwards as a result of the effect of reverberation on the test-word
(to c. 8.5, for the top-left data-point in Figure 2.11).
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For the far-far continuum stimuli, the level of reverberation on the context is in-
creased to match that of the far-reverberated test-word. Here, the reverberation
which had earlier (at near-far) seemed to obscure the [t] in the far-distance test-
word is still present. Moreover, at far-far there is a further increase in the overall
amount of reverberation present during the portion of the signal containing the
test-word, since overlap masking additionally results in reverberant energy from
the context being prolonged into the test region. Given that an increased level of
reverberation has repeatedly been shown to degrade intelligibility in the signal,
one might anticipate that this increase in reverberant energy would further smooth
signal modulation, increase the number of ‘sir’ responses and raise the category
boundary still higher. However, exactly the opposite pattern of results is seen in
the data: at far-far, more of the continuum steps are again identified as ‘stir’ and
the category boundary is partially restored towards its original position (to c. 3, for
the bottom-right data point in the same panel). Thus the category boundary move-
ment here displays the net-result of a compensation effect which far outweighs the
detrimental effect of overlap-masking.

This pattern of listener responses has been replicated throughout Watkins’ studies,
leading him to conclude that listeners routinely use information about the tempo-
ral envelope of surrounding speech to compensate for the effects of reverberation
on a particular word. This has usually been validated by means of a statistically
significant interaction between two factors for context-distance and test-distance
(each with two levels) in a repeated-measures analysis of variance (ANOVA). This
analysis emphasizes that the effect of one factor alters depending on the level of the
other. That is, the far-distance test-word brings about a large increase in the cate-
gory boundary, but only for near-distance contexts. Alternatively, the far-distance
context brings about a large reduction in the category boundary, but only for far-
distance test-words. In other words, the degrading effect of test-word reverberation
is greatly reduced at far-distance context conditions.

The matter of how to quantify the compensation effect numerically has not been so
straightforward to settle. Figure 2.11 shows two methods which have been used.
The left-most panel redraws the method used in Watkins and Makin (2007c), where
the near-distance test-words are effectively neglected. Here, compensation is cal-
culated solely from the recovery of the category boundary that the far-distance
context brings about for the far-distance test-words.

An alternative method to quantify compensation, shown in the right-hand panel
of Figure 2.11, was first described in Watkins and Makin (2007a) and has since
been reused extensively to compare different experimental conditions including
vocoded noise-band contexts in Watkins et al. (2011) and silent contexts in Watkins
and Raimond (2013). Here, the effect of reverberation on the test-word itself is
quantified first by measuring the vertical difference in category boundaries at each
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context condition individually. In Figure 2.11 these quantities are marked ∆n and
∆f for the near and far distance contexts respectively. In this formulation, the
magnitude of the compensation effect is subsequently computed by calculating the
category boundary recovery that arises due to the change in context condition, i.e.
by calculating the difference in the test-word reverberation effect between the two
context conditions. Thus, compensation = ∆n −∆f .

2.4.2 Alternative measures of compensation for reverberation

Watkins’ category boundary paradigm provides an elegant method to observe the
effects of compensation for reverberation, however his experiments are restricted
in the sense that they observe listeners’ responses to only two speech categories
for stimuli arranged along a phoneme-continuum. In recent years there has been a
move to investigate compensation for the effects of reverberation on speech iden-
tification using more diverse speech material. The major findings of these studies
were discussed above. This section instead surveys the various experimental meth-
ods, summarised in Table 2.3, which have been employed to investigate compen-
sation.

The first two studies presented in this table (top) were directly influenced by
Watkins’ work, and asked listeners to identify test-words differentiated by a sin-
gle consonant. In the paper by Ueno et al. (2005), stimuli were arranged similarly
to the ‘sir-stir’ paradigm so that the preceding speech context and subsequent test-
word could be processed with independent reverberation conditions (here with two
BRIRs recorded in different rooms). Listeners identified the test-word’s conso-
nant in two experiments (selecting between 16 alternatives in their first experi-
ment, and 6 alternatives in their second), and performance was measured in terms
of the percentage of correct identifications that the listener made. Secondly, using
the two-alternative forced-choice (2AFC) ‘sir-stir’ identification task, Nielsen and
Dau (2010) attempted to replicate the findings of Watkins (2005a). Methods (and
hence, results) in both of these studies were somewhat unsatisfactory1, but never-
theless did hint overall that consistent exposure to the room reverberation condition
would improve listeners’ consonant identification.

1These two studies were limited by a number of practical details. Ueno et al. (2005) assumed that
the ‘silent’ context would act as a control condition, however this is seen below (in Experiment H3)
not to be the case. The same assumption was made by Nielsen and Dau (2010), who may have had
additional experimental confounds arising from the fact that the test-word’s distance did not vary
unpredictably from trial to trial in their second experiment but was instead held fixed at the far room
distance throughout.
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Table 2.3: Studies examining compensation for the effects reverberation on speech identification,
excluding those of Watkins (2005a). The table is split into three portions, each of which is presented
chronologically. Top: One-off studies inspired by Watkins’ work. Middle: studies by Zahorik and
colleagues. Bottom: Experiments reported in Chapter 5 of this thesis. Abbreviations: Listeners –
number of participants with normal hearing (n) or some hearing loss (h). Material – identification of
consonants (c), words (w) or sentences (s). Conditions – anechoic (a), low-pass filtered (f ), back-
ground noise simultaneous with test item (ns), noise context preceding test item (nc), reverberation
(r), silent context (s), time-reversed reverberation (t), vocoded (v). Stimuli presentation – monau-
ral (m), binaural (b) or diotic (d) stimuli. Task – 2AFC (2), 4AFC (4), 6AFC (6), consonant (c),
number/colour (n), last word in sentence (l), or as many words as possible in sentence (w).

Study Listeners Material Conditions Stimuli Task

Ueno et al. (2005) 25n c a, r, s b c

Nielsen and Dau (2010) 19n c nc, r, s d 2

Longworth-Reed et al. (2009) 10n s r, t b, d w

Brandewie and Zahorik (2010) 14n w ns, r b,m n

Srinivasan and Zahorik (2011) 21n w ns, r b l

Zahorik and Brandewie (2011) 14n, 12h w ns, r b n

Brandewie and Zahorik (2012) 14n w a, ns, r, s b 6

Srinivasan and Zahorik (2013) 60n s ns, r b w

Brandewie and Zahorik (2013) 16n w a, ns, r, s b n

Srinivasan and Zahorik (2014) 30n w a, r, v b w

Experiment H1 60n c f, r m 4

Experiment H2 64n c r, t m 4

Experiment H3 60n c r, s m 4

Experiment H4 40n c r m 2

The central section of Table 2.3 presents a series of studies by Zahorik and col-
leagues. In the first of these studies, Longworth-Reed et al. provided evidence in
support of Watkins’ claim that compensation for reverberation is strongly affected
by the time-direction of the reverberation (discussed earlier in § 2.1.6). This finding
could not be predicted by the available models of reverberant-speech perception,
however, and a great deal of further research into compensation for reverberation
therefore ensued.

The bulk of the studies by Zahorik and colleagues (the middle 6 of 8) share a lot
of similarities, although a variety of speech datasets (and listener tasks) are em-
ployed. In these six studies, speech stimuli are presented binaurally, with target
speech directly ahead of the listener and a simultaneous background noise spa-
tialised to appear from off to one side. The listener task varies a little with the
speech database in use, but in each case involves identification of either some words
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2 Identification of reverberant speech

(selected keywords, alone or in combination) or all words (i.e. as many as possible)
in a sentence. Percentage correct is calculated from the collected data, and is some-
times transformed (e.g., using the arc-sine transform (Kirk, 1968, p. 66) when the
bulk of participant responses are toward the edges of the measurement range, i.e.
close to 0% or 100% correct). Further, examining the influence of the background
noise across different SNRs, the participant data is fitted in some studies with a
logistic function approximating the psychometric curve, allowing them to derive
the Speech Reception Threshold (SRT) at the 50% intelligibility point (Brandewie
and Zahorik, 2010, 2012; Zahorik and Brandewie, 2011).

It was argued above that the inclusion of the spatialised masking noise in this case
is likely to engage different, or perhaps additional, listening strategies than those at
work in the purely monaural task where reverberant speech is heard without noise.
The last study in this section, that of Srinivasan and Zahorik (2014), is therefore
particularly encouraging to see since it examines perceptual compensation for re-
verberation in the absence of masking noise.

The work from Zahorik’s lab takes a sizeable step forward from Watkins’ in the
search for a connected-speech measure of compensation for reverberation. Their
studies ask about the effects of prolonged exposure to reverberation on speech as
an entity in itself. Thus, any findings they can draw will clearly be relevant to
speech in every-day listening situations. The down-side of their approach, at least
to readers who do not have access to the raw data and are reliant instead on the
published results, is that there is no analysis of which types of speech sounds are
misheard (or recovered) in the differing reverberation conditions. Moreover, it is
not obvious whether the effects of noise (where present) and reverberation could
be satisfactorily separated in these cases of mistaken identity.

The final section of Table 2.3 looks ahead to four perceptual studies which are de-
scribed fully in Chapter 5 below. These studies resemble Watkins’ original work
in two fundamental respects: they focus on perception of reverberant stop con-
sonants, and they query the monaural compensation mechanism. However, these
studies also echo work from Zahorik’s lab, in that they use naturalistic speech ma-
terials which vary from trial-to-trial in regard to the talker, context and test-words.
Here, consonant confusions are assessed with an information-theoretic measure
which quantifies the consistency of mistakes, as well as the overall proportion of
correct responses (Miller and Nicely, 1955).

2.4.3 Temporal envelope constancy

Constancies are named in the literature according to the thing that is constant,
rather than the thing that does the distorting, e.g. shape constancy, colour con-
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2.4 Compensation for reverberation in human listeners

stancy, brightness constancy, and so on. In other words, it is the constancy of
the percept, not of the underlying signal properties or stimulus conditions, that is
named. Two recent studies suggest that compensation for the effects of reverbera-
tion in speech identification is underlain by constancy for perceptual attributes of
the temporal envelope, though which attributes these are is not yet entirely clear.
It is well-established that speech identification typically depends more strongly on
temporal envelope cues than temporal fine structure (TFS) cues (see e.g., Shan-
non et al., 1995; Smith et al., 2002)1. It is perhaps not surprising therefore that
compensation for the effects of reverberation also appears to be influenced more
by envelope cues than by TFS cues. This account was proposed by Watkins et al.
(2011) using 8-band vocoded speech material in monaural phoneme-identification
tasks; moreover, recent evidence from Srinivasan and Zahorik (2014) directly sup-
ports this explanation with binaural stimuli as well.

Another important conclusion of Watkins et al. (2011) is that the monaural con-
stancy effect appears to work in a band-by-band manner. That is, the level of
reverberation in one auditory channel determines its contribution to the constancy
effect relatively independently of the level of reverberation in other frequency re-
gions. Conceptually, this band-by-band hypothesis implies that each auditory chan-
nel may independently adapt to the room conditions experienced, as interpreted by
the temporal variation in the narrowband amplitude envelope in that limited spec-
tral region. However, it is not yet clear which aspects of the narrowband envelopes
influence the constancy mechanism; two different interpretations exist.

Since reverberation attenuates the modulation in temporal envelopes of individual
frequency-bands of the speech signal, the first interpretation considers the ampli-
tude modulation character of the signal. This bears some relation to the Speech
Transmission Index (STI) and Modulation Transfer Function (MTF) on which it
is based (cf. Sections 2.1.7 and 2.1.6 respectively), and essentially quantifies the
preservation of the amplitude envelope spectrum. Alongside the speech percep-
tion studies discussed above, Zahorik and colleagues are also pursuing this line
of research by investigating amplitude modulation (AM) detection thresholds (Za-
horik and Anderson, 2013; Zahorik et al., 2011, 2012). Interestingly, these studies
find that AM thresholds in reverberant rooms are lower than those predicted by the
acoustical MTF (i.e., whether measured binaurally or monaurally, human sensitiv-
ity to AM is higher than anticipated); and in addition, AM thresholds are enhanced
by prior exposure to the room. In related work using binaurally modulated signals,
Reed and van de Par (2014) and Reed et al. (2014) are additionally attempting to

1Indeed, this is the principle by which cochlear implants bypass the acoustic stages of hearing
and deliver electric impulses along the cochlear partition that are sufficient for understanding speech
(Rubinstein, 2004).
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pick apart cues carried in the AM content of the signal that either assist speech
identification directly or enhance intelligibility indirectly (e.g. through spatial un-
masking). A recent study by Kuwada et al. (2012) has also begun to examine the
neural coding of the envelope signal in the midbrain, and to study the transforma-
tion of this internal representation in various reverberant conditions.

Rather than study the modulation character of the signal itself, a second approach
to temporal envelope constancy considers the tails that reverberation adds to the
channel offsets in a signal. This line of thought may be motivated by the finding
that the constancy mechanism breaks down under conditions where the reverbera-
tion signal is time-reversed, yet the modulation character of the acoustic signal is
relatively unaffected (Longworth-Reed et al., 2009; Watkins, 2005a). The proposal
here is that the tail-like portions are ‘used’ somehow to ‘deal with’ reverberation,
perhaps to allow a perceptual filtering out or dampening of its effects, and that the
same process cannot take place when the reverberation appears in ramps prior to
signal onsets rather than tails from its offsets. Indeed, such temporal asymmetries
are observed throughout the auditory system, for example in loudness judgements
(Stecker and Hafter, 2000) or in perception of sound timbre (Rupp et al., 2013).

Chapter summary

This chapter examined human and machine identification of reverberant speech. It
began by describing room-acoustics in § 2.1 and the way in which early reflections
and late reverberation brought about differing perceptual effects, depending both
on signal content and the room characteristic. Reverberation was seen to pose a
much larger problem for machine listening systems than it did for human listen-
ers, and § 2.2 described the tendency for ASR to become error-prone in real-room
reverberation. Robustness to reverberation was realised by a range of engineering
solutions acting either at the front- or back-end of the recogniser, and bio-inspired
approaches were also suggestive of potential improvements that could be made in
machine hearing, particularly in adverse conditions.

The second half of this chapter considered the effects of reverberation on human
listeners from a psychoacoustic point of view. The effects of reverberation in
speech identification were seen in § 2.3 to be largely localised to specific groups
of speech sounds, the most affected being the unvoiced stop consonants. Finally,
§ 2.4 outlined the growing body of work investigating perceptual compensation for
reverberation with human listeners, and identified a number of questions about the
monaural mechanism that have yet to be investigated with naturally spoken stimuli.
To this end, Chapter 3 now asks which auditory components may be relevant to the
investigation of perceptual compensation for reverberation.
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3 Biological and computational auditory systems

Chapter overview

Chapter 3 gives an overview of biological and computational audition, and an in-
sight into the benefits that an adaptive listening system might bring in reverberant
environments. Firstly, the relevance of auditory modelling to the current research
objectives is discussed in § 3.1. Secondly, the human auditory system is examined
in detail, studying peripheral processing in § 3.2, central processing in § 3.3, and
efferent feedback to the periphery in § 3.4. Finally, in § 3.5 the chapter ends with
a discussion of the state of the art in efferent-inspired auditory models. Chapter 3
thus aims to uncover auditory processes relevant to perceptual compensation for
reverberation, and to establish which components of the auditory system should be
modelled in order to simulate these compensation effects.

3.1 Auditory modelling for reverberant listening tasks

The human auditory system turns sound into electrical signals that the brain can
interpret. One stimulus can, however, lead to many different neural representations
depending on its presentation level, surrounding environment, and recent historical
context. Additionally, it follows that one pattern of neural activity can in fact be
evoked by many diverse real-world circumstances. This chapter describes how the
efferent system is thought to re-calibrate the mapping between the sound experi-
enced and neural activity transmitted.

The external ear is only a fraction of what we hear with. Rather, our hearing is
vitally dependent on a number of delicate systems buried deep within our skulls.
The peripheral and central auditory systems are overviewed in Figure 3.1. The
peripheral auditory system, seen in Figure 3.1a, comprises the outer, middle and
inner ear. Together, these transform pressure variations in air into nerve impulses
delivered via the brain stem to the auditory cortex. This processing chain forms
part of the ascending pathway, described below in § 3.2. Also known as the af-
ferent pathway, the primary function achieved here is the basic analysis of sound:
frequency is encoded in nerves by location along the cochlear partition; intensity
is encoded by the numbers of nerve fibres responding and by their firing rates.

Crucially, the peripheral auditory system is under the influence of the central audi-
tory system (as well as the exterior world). A series of efferent pathways descend
through the central auditory system, reaching back into the earlier stages of the au-
ditory system as shown in Figure 3.1b. In the auditory periphery, efferent signals
are believed to alter the sound-encoding behaviour of the cochlea, and ultimately
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(a) Peripheral

Inner Ear 

Inferior Colliculus 

Auditory Cortex 

Lateral Lemniscus 

Superior Olive 

Cochlear Nuclei 

Medial Geniculate Body 

(b) Central

Figure 3.1: Peripheral and central auditory processing. Figure 3.1a shows the structure of the human
peripheral auditory system, as depicted by the Laurent Clerc National Deaf Education Center (LC-
NDEC, 2009). Figure 3.1b, adapted from Ryugo (2011), depicts a simplified schematic of central
auditory system, showing afferent (upward arrows) and efferent (downward) connections. The final
descending arrow (shown dark) depicts the stage at which the olivocochlear (OC) neurons provide
efferent feedback to the peripheral system, and innervate the outer hair cells in the inner ear.

to confer robustness in adverse listening conditions. This topic is the focus of § 3.4
below.

3.1.1 Relevance of the efferent system to reverberant listening

Efferent signals appear to continually adjust the sound-encoding behaviour of the
cochlea, adapting the auditory system to suit the listening conditions being experi-
enced. Increasingly, evidence suggests that efferent processing assists compensa-
tion for environmental noise through its role in controlling the dynamic range of
hearing (see e.g. Guinan, 2011; Guinan and Gifford, 1988, and further discussion
in § 3.4 below). In turn, this cochlear re-adjustment affects neural transduction by
the inner hair cells, and is thought to result in an enhanced signal representation in
the auditory nerve, ultimately leading to improved perception of speech in noise.

The physiological process by which efferent feedback to the periphery might be
involved in perceptual compensation for reverberation is entirely speculative at
present, however, it is not without foundation. The main effects of reverberation,
depicted earlier in Figure 2.2, appear essentially similar to the effects of additive
noise when considered in certain analysis domains (i.e., the noise floor increases
and the dynamic range of the signal reduces). This similarity underpins the pro-
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posal in the current thesis that efferent processing may also account for our robust-
ness to the effects of reverberation in speech identification.

3.1.2 Motivating an auditory modelling approach

Biological audition is rendered vulnerable to the effects of noise when the efferent
system is compromised or lost (Guinan, 2006; Henderson et al., 2001). By anal-
ogy, a machine listener with no efferent simulation may be considered similarly
disadvantaged, and it is speculated that performance may become more robust in
adverse conditions by incorporating an element representing efferent processing.

The view that ASR and other machine hearing tasks may be improved by mod-
elling the human auditory system has gained some momentum in recent years (see
e.g., Elhilali and Shamma, 2008; Ellis and Weiss, 2006; Nix and Hohmann, 2007;
Regnier and Allen, 2008; Seneff, 1988; Stern and Morgan, 2012). However, it is
worth noting that ‘increased robustness in difficult environments’ is not typically
expressed as a decrease in word error rate. Rather, an increased robustness to noise
or reverberation typically is taken to mean a closer match to human listener error
patterns on the same set of data.

A secondary benefit to auditory modelling becomes apparent when we consider
that such models are useful for bringing together potentially disparate ideas, and
can allow response data from several independent experiments to be combined in
a single modelling task. By doing this, the mechanisms within a system may be
examined in detail, and explanations offered. As a direct result of this, modelling
questions often give rise to hypotheses about how a particular system may function
(or may be dysfunctional). Auditory models are therefore useful in the process of
making uncertainties explicit, and in designing experimental tests that may answer
such points.

The auditory modeller’s task is not trivial, however, as neural coding of sound in
reverberation is poorly understood at present. While the afferent (ascending) audi-
tory pathways are relatively well understood, particularly in the peripheral stages,
the efferent (decending) pathways as yet leave many questions unanswered (and
indeed, unasked). Crucially, it is these efferent pathways which are thought to
underpin our remarkable ability to compensate for environmental obstacles.

The remainder of this chapter looks in more detail at how individual components of
auditory systems are combined in nature and in simulation. Description of actual
physiological systems are interleaved with computational models that attempt to
capture something of their relevant form and function.
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3.2 The peripheral auditory system

3.2 The peripheral auditory system

The peripheral auditory system is overviewed in Figure 3.1a. Regulated by effer-
ent pathways from the central auditory system shown in Figure 3.1b, the peripheral
system transforms acoustic vibrations in the environment into an electrical repre-
sentation which is delivered through the auditory nerve into higher centres of the
auditory system.

3.2.1 Outer and middle ear

The human outer ear comprises the pinna and meatus (or auditory canal). The ge-
ometry of the pinna leads to interference effects that attenuate certain frequencies
while simultaneously boosting others. The pinna thereby filters the high-frequency
components of the incoming sound, in a manner which depends on the angle of
incidence to the head (Pickles, 1988). This provides a monaural cue for sound lo-
calisation which can assist with resolving front-to-back locations and can help to
determine sound elevation. Ryugo (2011) suggests that descending auditory sig-
nals may be relevant even at these outermost reaches of the auditory system. The
relationship between cue values and sound localisation is presumed to be learned
through experience, thus as the head/body matures and grows, the values of such
cues must also change over time. Here, Ryugo suggests that efferent circuits could
facilitate the constant re-adjustments required to recalibrate our 3D coordinate sys-
tem to preserve auditory space.

Following the pinna, sound is transmitted into the middle ear through the meatus,
a cylindrical channel approximately an inch long which boosts frequencies around
2 to 3 kHz. This canal transmits sound to the eardrum and thereby induces a vi-
bration in the smallest bones in our bodies, collectively known as the ossicles (and
individually as the malleus, incus and stapes, or ‘hammer’, ‘anvil’ and ‘stirrup’ re-
spectively). Accordingly, the frequencies that are particularly important for speech
perception are transferred efficiently through the oval window to the fluids of the
cochlea.

Additionally, the middle ear may also reduce the transmission of sound from dif-
ferential bone movements (e.g. from chewing) through the skull directly to the
cochlea (Moore, 2004). The descending pathway of the acoustic reflex (AR)1, also
known as the ‘middle ear reflex’, acts as a safety mechanism somewhat akin to

1The acoustic reflex (AR) was not pictured in the simplified auditory system overviews of Fig-
ure 3.1, but is seen in the more detailed schematic of Figure 3.7 below to carry feedback from central
to peripheral regions of the auditory systems.
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reducing the pupil size of the eyes in bright sunshine. When exposed to intense
sounds, minute muscles attached to the ossicles contract and reduce the transmis-
sion of low frequencies (below about 1000 Hz) through the middle ear. This acous-
tic reflex is too slow to give protection from real-world shock sounds such as un-
expected cracks and bangs, but is thought to protect against sustained high-level
noise (Handel, 2006). Additionally, the AR may help to reduce the sound we hear
of ourselves talking and to reduce the upward spread of masking (Moore, 2004).
By attenuating low frequencies most strongly, the higher-frequency components
that are critical for speech perception become relatively enhanced.

A filter representation of the outer-middle ear

Taken together, the outer and middle ear thus transfer sound pressure variation to
the oval window and filter the signal’s spectrum (aiding sound localisation and
strengthening the speech-bands). The outer and middle ear can be modelled with
a single linear filter that provides a broad resonance around 2.5 kHz that imitates
the ear canal effect, with a subsidiary resonance around 5.5 kHz that corresponds
to the external ear (Pickles, 1988). Alternatively, two filters may be combined in
series to imitate each step in turn: the first filter characterises the outer ear, and the
second, the eardrum-pressure to stapes-velocity transformation in the middle ear
(Lopez-Poveda and Meddis, 2001).

3.2.2 Inner ear mechanics

The basic role of the cochlea is to convert the incoming sound waves into neural
activity. The cochlea is filled with an almost incompressible fluid. Pressure exerted
by the stapes on the oval window is transferred through this fluid, setting up a
vibration effectively instantaneously on the basilar membrane (BM) that travels
the length of the cochlea. The response on the BM is frequency-dependent, largely
due to mechanical properties of the BM itself. If conceptually unwound from its
spiral shape as shown in Figure 3.2a, the BM is stiff and narrow at the base (where
high frequencies cause a maximal displacement) and wider and more flexible at its
apex (where low frequencies show a maximal response). This has led to a view of
the BM as a tonotopic frequency analyser such that each area of the BM appears to
be tuned to a specific resonance frequency.

Cochlear mechanics have been studied for almost a century, yet our understanding
remains incomplete. Early work focussed on afferent processing, examining the
way in which signals are passed upwards through inner hair cell (IHC) transduction
into the auditory nerve. However, as can be seen in Figure 3.2b, there are also
clearly efferent connections within the cochlea, the majority of which terminate on
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Figure 3.2: Cochlear frequency analysis and innervation. Figure 3.2a (redrawn from Kern et al.,
2008) imagines the cochlea uncoiled to reveal a tonotopic frequency analyser. Figure 3.2b (from
Guinan, 2011) shows the afferent and efferent connections in the organ of Corti. The majority
(c. 95%) of afferent fibres (Type I) transmit information from the inner hair cells, while relatively
few (c. 5%) afferent fibres (Type II) originate on the outer hair cells (OHCs) (Spoendlin, 1969).
Lateral olivocochlear (LOC) efferent signals synapse on the afferent Type I fibres themselves, while
medial olivocochlear (MOC) efferent signals innervate the OHCs.

the outer hair cells (OHCs). In this way, signals originating from higher centres of
the auditory system can exert control over the sensitivity of the cochlea (Russell
and Murugasu, 1997), such that the sound analysis undertaken within it is adapted
to the current setting and listener task (Guinan, 2011; Reichenbach and Hudspeth,
2014). This is thought to arise because of the electromotility of the OHCs, whereby
variations in the electrical stimulation cause contraction and elongation of the cell
to such a degree that the surrounding tissues are additionally affected (Frolenkov
et al., 1998).

As understanding of the efferent processing in the cochlear partition slowly but
steadily increases, we are beginning to understand more about the resulting sound
processing which occurs (and additionally, our models are gradually improving).
This is illustrated in Figure 3.3a which describes the BM velocity near the resonant
frequency. The passive, linear relationship (lower line) describes the relationship
that was classically described by studying BM responses to sound in cadavers (von
Békésy, 1947), where the resonance frequency depends on the local stiffness and
mass of the membrane.

However, as shown in the upper line of Figure 3.3a, animal studies have shown
that live cochlear responses are larger than postmortem cochlear responses (Rhode,
1971). This so-called ‘cochlear amplification’ has been studied non-invasively by
means of otoacoustic emissions (OAEs) (Kemp, 1978; Manley and Köppl, 1998;
van Dijk et al., 1989; Yates and Kirk, 1998). Despite the wide adoption of these
techniques, however, there remains much that is not yet understand about efferent
action at the level of the cochlea. In particular, Guinan (2014) warns that it is
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Figure 7. Schematic diagrams characterizing compressive
nonlinearity. (a) The sensitivity of the basilar membrane is defined
as the membrane’s vertical velocity divided by the applied sound
pressure. For frequencies much below the resonant value f0, the
sensitivity is independent of the pressure and the membrane’s
response is linear. Near the resonant frequency, however, a sublinear
response emerges: the sensitivity at low levels of stimulation can
exceed that at high sound-pressure levels by a thousand times or
more. (b) The membrane velocity near the resonant frequency
depends nonlinearly on the sound intensity for a living cochlea. The
response drops and becomes linear in a dead ear.

oto is Greek for ear, these signals were subsequently named
otoacoustic emissions. Kemp (1981) also recorded such
emissions in the absence of external stimulation. We know
today that these spontaneous otoacoustic emissions can be
measured from most human ears. They arise at a set of
frequencies that is characteristic for a given ear and have
therefore been proposed as a means of biometric identification
(Swabey et al 2009).

Earlier in the 1970s William Rhode discovered a
compressive nonlinearity in the basilar membrane’s response
(Rhode 1971). Measuring from living squirrel monkeys, he
found that the velocity of vibration at the characteristic place
grew sublinearly with the intensity of stimulation (figure 7).
After the death of an experimental animal, the velocity,
especially at low intensities, fell to much lower values. The
membrane’s velocity in the dead cochlea grew linearly with
increasing sound intensity. Even in living animals, the
response to stimulation away from the characteristic frequency
was much lower in amplitude and varied linearly with the
intensity of stimulation.

Rhode’s measurement in the living cochlea of basilar-
membrane vibration greatly enhanced with respect to that in
an impaired cochlea evidenced an active process in the healthy
ear. Because of the difficulty of measuring the tiny, sound-
induced vibrations in living animals, however, confirmation
of Rhode’s measurements came only years later (LePage and
Johnstone 1980, Rhode 1980, Sellick et al 1982, Robles et al
1986). These subsequent observations coincided with Kemp’s
measurements of otoacoustic emissions and with the discovery
of active processes in hair cells (section 4).

How does the nonlinearity arise in the response of the
basilar membrane, and what does it signify? When describing
the hydrodynamics of a passive cochlea in section 2, we
assumed a linear relation between pressure difference and
membrane velocity (equation (2.11)). In many physical
systems such a relation holds for small pressures and velocities,
whereas nonlinearities become important for larger ones. In
the case of the cochlea, however, the acoustic impedance Z

that linearly relates pressure and velocity displays a resonant
frequency ω0 at which its imaginary part vanishes. Its
real part is specified by the damping. If the ear’s active
process counteracts the damping so as to exactly cancel
it, then the impedance and therefore the linear response
vanishes entirely. The basilar membrane’s response to sound
stimulation becomes nonlinear even for small vibrations.

The mathematical field of nonlinear dynamics that can
describe such a situation flowered only in the 1960s and
1970s, when the rise of powerful computers made numerical
investigations feasible. It is accordingly unsurprising that
Gold did not foresee the implications of his ideas concerning
cochlear nonlinearity. Originating in studies of hair-bundle
activity, such a mathematical analysis has more recently
suggested that each segment of the basilar membrane operates
near a Hopf bifurcation (Choe et al 1998, Camalet et al
2000, Eguı́luz et al 2000, Duke and Jülicher 2003, Kern and
Stoop 2003, Magnasco 2003). In the language of dynamical-
systems theory, a bifurcation denotes a qualitative transition
in the behavior of a dynamical system in response to a
graded change in the value of a control parameter (Wiggins
1990, Strogatz 1994). In the instance of the supercritical
Hopf bifurcation, the transition extends from underdamped
resonance to spontaneous oscillation.

What precisely is a Hopf bifurcation and how can it
arise in cochlear mechanics? Equation (2.11) describes the
response of an isolated segment of the basilar membrane to a
pressure difference p. The linear part with the impedance Z

follows from Newton’s equation of motion for the temporal
development of the membrane displacement X:

m∂2
t X + ξ∂tX + KX = Ap. (3.5)

Employing the velocity V = ∂tX we may recast this
second-order ordinary differential equation as two first-order
differential equations:
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)
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In the case of an underdamped oscillation, ξ < 2
√

Km, the
matrix on the right-hand side has two eigenvalues λ and λ̄

that are each other’s complex conjugates. By diagonalizing
the matrix we can find a variable transformation (X, V )T →
(Y, Ȳ )T with a complex variable Y such that the equation takes
the form

∂t

(
Y

Ȳ

)
=

(
ζ 0
0 ζ̄

) (
Y

Ȳ

)
+

(
P

P̄

)
. (3.7)

This is achieved with the eigenvalue ζ = −ξ/(2m) +
i
√

4Km − ξ 2/(2m), the complex variable Y = V/2 + i(KX +
ξV/2)/

√
4Km − ξ 2, and forcing through the transformed

pressure P = Ap
(

1 + iξ/
√

4Km − ξ 2
)

/(2m). The

dynamics may then be described by a single complex equation
for Y :

∂t Y = (ζr + iω∗)Y + P. (3.8)

Here we have decomposed the complex eigenvalue ζ into its
real and imaginary parts, ζ = ζr + iω∗, in which ζr and ω∗ are

12

Active,
nonlinear

(a) BM input-output relation

.

Basilar membrane

(b)

ZD

ZR

Tectorial
membrane

Hair-bundle
complex

V

VHB

VES

Reticular
lamina

(b) Model of the cochlear amplifier

Figure 3.3: Active cochlear modelling. The ‘passive’ response displayed in Figure 3.3a shows the
motion recorded in early studies of the BM, where an increase in sound-pressure level corresponded
linearly to an increase in BM velocity. The ‘active’ response recorded in a living cochlea instead
becomes nonlinearly compressive at high signal levels. Figure 3.3b presents a model of the organ of
Corti, which rests on top of the BM. The tallest stereocilia in the hair bundle of the OHC is firmly
embedded in the tectorial membrane (TM) above. Vertical motion of the BM thus depends on both
the vibration arising from the input sound signal and the motility of the OHCs. Both figures are
redrawn from Reichenbach and Hudspeth (2014).

not yet understood how well modifications in the OAEs represent actual changes
occurring in the auditory nerve1.

Despite these open questions, the scheme in Figure 3.3a remains generally accepted
in the research community at present. The active response is greater than the pas-
sive cochlear response, and boosts the amplification near the resonant frequency.
However, BM vibrational response does not grow in proportion to the level of the
input stimulus, but instead is nonlinearly compressive: the response is maximal for
low-level sound intensities (above threshold) but is increasingly attenuated for high
intensity sounds, especially for high frequencies.

Thus, for a living human, the BM response derives from the physical properties
of the BM (stiffness, mass) and any active tuning mediated through the efferent
system. To account for this, the explanation of cochlear mechanics proposed by
Reichenbach and Hudspeth (2010) describes BM response near its resonance fre-
quency by means of its local impedance which includes terms for the local stiffness
and mass of the membrane as before (for the passive system), and now additionally

1Nor is it yet fully understood how the lateral olivocochlear (LOC) and medial olivocochlear
(MOC) efferent signals may interact, nor how ipsilateral and contralateral effects relate, nor to what
degree the sizes of measured effects would vary with listener attention and task-difficulty. Discussion
returns to such queries in § 3.4 below.
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3.2 The peripheral auditory system

depends on a viscous damping coefficient which varies with the (active) cochlear
amplification. A recent micro-mechanical model of the BM response by Reichen-
bach and Hudspeth (2014) is shown in Figure 3.3b. In this scheme, the vertical
motion of the BM depends in part on the properties of the OHC which are them-
selves innervated under efferent control.

At the furthest extreme, the compressive non-linearity in the inner ear could be
viewed as a safety-mechanism preventing the ear from shaking itself apart with
strong input signals. More generally, the nonlinear cochlear response can be
viewed as a mechanism to circumvent response saturation and retain perceptual
contrast (Handel, 2006). The involvement of the MOC efferent system in control-
ling the sensitivity of the BM is discussed in greater detail below (cf. § 3.4).

Cochlear models

Cochlear models represent the vibration at a given place on the basilar membrane in
response to a stimulus. In attempting to confer the same responses on a computer
simulation that were experimentally measured in cadavers (von Békésy, 1947),
early cochlear models historically fell into two broad categories: transmission line
models and filterbank models.

Zwislocki-Moscicki (1948) provided an early simulation of the motion of travelling
waves along the BM using a transmission line framework where the mass and
friction of the BM are taken to be constant while the flexibility increases with
distance from the oval window. This idea was later taken up by Allen (1981)
and by Lyon (1982), using a cascade of notch filters to gradually remove the high
frequency components from the pressure wave in the cochlear fluid, each with a
parallel resonance filter that converts the pressure on the BM into displacement.

Motivated by psychophysical studies of the frequency-resolving power of the hu-
man ear, filterbank models require channels whose bandwidth and spacing increase
with frequency. To this end, early experimental work by Zwicker (1961) tabulated
the critical bandwidth as a function of centre frequency, and led to the Bark fre-
quency scale (mentioned earlier in regard to ASR feature creation, cf. § 2.2.1).
The Mel frequency scale was similarly inspired by perceptual correlates of pitch-
resolution (Davis and Mermelstein, 1980; Stevens et al., 1937). An alternative
method that matches well to human data first describes the magnitude response
of vibration at a particular point on the BM with a gammatone function (de Boer,
1979), and secondly distributes such filters across the frequency axis in propor-
tion to the measurements of the human auditory filter bandwidth (Moore, 1986;
Patterson et al., 1988). This produces a warped-frequency mapping known as the
equivalent rectangular bandwidth (ERB)-rate scale which is almost logarithmic,

65



3 Biological and computational auditory systems

and may include any number of filters dependent on the resolution desired for au-
ditory modelling.

Although practical for many purposes, the assumed linearity and symmetry of the
gammatone filter has not stood up to empirical measurements of the BM which in
fact shows an asymmetric and level-dependent frequency response (Glasberg and
Moore, 2000). In order to model the broadening of auditory filter bandwidth that
is seen with an increased stimulus level, a number of extensions to the model have
been proposed including the gammachirp filter (Irino and Patterson, 1997) and
the dual-resonance nonlinear (DRNL) filter (Lopez-Poveda and Meddis, 2001).
The latter is of particular interest here as it provides a framework that can later be
extended to introduce efferent auditory processing1.

The DRNL filterbank model combines a linear and nonlinear path in parallel to
transform stapes displacement to BM vibration (Lopez-Poveda and Meddis, 2001;
Meddis, 2006; Meddis et al., 2001). As shown in Figure 3.4a, the linear pathway
models the passive mechanical properties of the BM by cascading gammatone and
low-pass filters. The nonlinear pathway simulates the influence of outer hair cells
by including a ‘broken stick’ function whose compressive effect varies along the
length of the BM. In Figure 3.4b, Ferry and Meddis (2007) introduce an attenuator
at the beginning of the nonlinear pathway in order to model the cochlear compres-
sion that was shown to be a feature of active cochlear processing (cf. Figure 3.3a).
This model is discussed further in § 3.5 below, where the state of the art in efferent
modelling is introduced and assessed. Before this, discussion first continues along
the afferent processing chain to briefly examine the higher auditory centres, and
then returns to introduce efferent feedback to the periphery.

3.2.3 Hair cell transduction at the auditory-nerve synapse

The environmental information that has been derived by the cochlea is passed up-
wards into the central auditory system in such a way that the tonotopic ‘frequency
axis’ is maintained at every level. In general, the pitch of a sound tends to be coded
in terms of which neurons are responding, and its loudness is determined by the
rate of response and the total number of neurons activated.

Mechanical-to-neural transduction is achieved in the organ of Corti, positioned
between the basilar membrane (BM) and the tectorial membrane (TM). While the
outer hair cells (OHCs) are largely understood to be involved in efferent control
of the sensitivity of the cochlea (Russell and Murugasu, 1997), it is predominantly
the inner hair cells (IHCs) which transmit the detail of our local sound environment

1This cochlear model forms the centre-piece of the modelling studies undertaken in Chapter 4.
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lin. 2GT1 4BL2

3GT1 non-lin. 3GT1 3BL2

(a) Dual-resonance nonlinear (DRNL) filter of Lopez-Poveda and Meddis (2001).

lin. 2GT1 4BL2

3GT1 non-lin. 3GT1 3BL2ATT

(b) Efferent attenuation introduced by Ferry and Meddis (2007) in the nonlinear pathway.

Figure 3.4: The dual-resonance nonlinear (DRNL) filter, redrawn from Lopez-Poveda and Meddis
(2001), is shown in Figure 3.4a. The input to the model is the stapes velocity (m/s). The output,
representing the basilar membrane velocity (m/s), is the sum of the signal from linear (top) and
nonlinear (bottom) pathways. In addition to the linear (lin.) or nonlinear (non-lin.) gain after which
the branches are named, each pathway comprises a number of gamma tone (GT) or Butterworth
lowpass (BL) filter cascades; the number of times the filter is applied is shown in large script, and the
filter order is represented in the subscript. Figure 3.4b presents the adaptation by Ferry and Meddis
(2007) which simulates the effects of efferent suppression by applying an attenuation, ATT , at the
start of the nonlinear pathway.

further upwards to the auditory nerve (AN)1. Deflection of IHC stereocilia occurs
due to shearing forces between the BM and TM, instigating a chemical exchange
process where potassium ions flow into the hair cell. This leads to a release of
a chemical neurotransmitter (when the hairs bend in one direction) and, when a
sufficient quantity has been released, an action potential or spike travels up the
auditory nerve.

1Spoendlin (1969) reports that 95% of the afferent AN fibres transmitting sound towards the
brain, known as Type I afferents, originate from the IHCs (cf. Figure 3.2b). These fibres transmit the
details of our local sound environment further upwards to the AN, encoding the frequency, intensity
and timing of sounds present. Around 5% of the afferent fibres contact the OHCs instead, and are
known as Type II afferents. Though comparatively less is known about these fibres, recent data
in Weisz et al. (2014) is consistent with an earlier proposal that the Type II afferent fibres integrate
acoustic information over a wider frequency range, and respond in particular to high-intensity sounds.
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There is a one-to-many relationship between IHCs and cells in the AN: each hair
cell may be connected to as many as 10 nerve cells (though each nerve cell is only
connected to 1 hair cell), and approximately 30,000 neurons in each auditory nerve
are available for carrying auditory information from the cochlea to the central ner-
vous system (Moore, 2004). Since an incident sound wave dissipates most of its
energy near the resonance frequency of the BM, different frequencies at input cause
maximal displacement at different places along the cochlear partition. In this way,
hair cells at different locations are maximally stimulated by different input fre-
quencies. Increased intensity of stimulation causes a more rapid rate of response,
but nonlinear compression assists in maintaining sensitivity across widely-varying
sound levels.

Additionally, timing theories suggest that the auditory system may also derive in-
formation from the interval between successive spikes and thereby encode fre-
quency from the periodicity of the spike train (Young and Sachs, 1979). This
theory relies on the fact that, for frequencies below about 4 kHz, neural spikes
tend to occur at a particular phase of the stimulating waveform. That is, although
auditory nerve fibres have a probabilistic (i.e. random) chance of firing in any given
cycle, when they do fire they tend to do so at the same point in the stimulus cycle.
A temporal regularity therefore exists in the firing pattern of a neuron in response
to a periodic stimulus, such that inter-spike intervals are very close to integer mul-
tiples of one period of the stimulating signal. Above around 4 kHz, phase locking
can no longer occur as the chemical changes of the hair cell transduction process
are not sufficiently fast to encode signal detail. Thus the cochlea preserves both
temporal- and rate-information, allowing signal details to be conveyed through the
phase locking of stimulus-synchronised discharges even when the firing-rate has
become saturated.

In addition to maintaining frequency selectivity through the tonotopic arrangement
of hair cells, a number of other phenomena help ensure that a large dynamic range
is maintained in the AN spike train in order to accommodate the vast range of
intensities that are encountered in daily life.

Firstly, the nerve cells themselves are differentiated such that individual AN fi-
bre groups encode different ranges of intensities present. Nerve cells fire even
in the absence of any stimulus: the level of this background activity is known as
the spontaneous rate (SR). A continuum exists such that individual nerve fibres
have different thresholds and thereby encode different ranges of intensities present
(Manley, 2000). Splitting the intensity range across different types of nerve fibres
increases the chance that a set of nerve fibres exist that are not yet saturated. The
hearing sensitivities of different species may depend partially on the distribution of
such fibres: whereas humans are often described as having low and high SR fibres,
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Figure 3.5: High and low spontaneous rate (SR) auditory nerve fibres. Firing rate is shown as a
function of characteristic frequency for a high SR fibre (left) and a low SR fibre (right) in response
to a 1000 Hz pure tone presented at different levels. Both auditory nerve (AN) fibres can be seen to
respond to a narrow range of frequencies at low intensities, and a broader range at higher intensities.
The rate-level functions of the two fibres to this tone, inset on the right hand side of the figure, and
show comparatively larger encoding of dynamic range that can be achieved by the low SR nerve
fibre. Image from Plack (2005, p. 124).

cats, for example, are thought to have medium SR fibres in addition (Liberman,
1978).

Reviewing this topic, Handel (2006) reports that for humans, approximately 85%
of the neurons are high-SR fibres. The high SR fibres fire spontaneously at a rapid
rate (tens of times per second) and saturate at low signal levels. We have a far
smaller number of low SR fibres (that spike fewer than c. 15 times per second).
These fibres saturate at much higher signal levels, and thus encode signal strength
over a much wider dynamic range. Figure 3.5 illustrates the differences between
these fibre types. The inset panel (Figure 3.5, right) shows that high SR fibres are
already saturated by around 40 dB, and suggests that at normal conversation levels
of around 60 dB (here, without involvement of the efferent system) it is the low SR
fibres that are particularly relevant for speech perception1.

However, each of the individual IHCs that provides a signal to the AN fibres addi-
tionally benefits from a gain-control mechanism that allows the response to allevi-
ate saturation and adapt to the intensity levels they detect (Handel, 2006). Thought
to be under efferent control, this adjusts the dynamic range between spontaneous
and saturation levels, and assists in maintaining an optimum response pattern to
perceive our ever-changing world. This type of effect, brought about by efferent
feedback to the periphery, is described in detail in § 3.4 below.

1As such, it is the low SR fibres that are modelled in Chapter 4, cf. § 4.2.1 below.
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Figure 3.6: Figure 3.6a is a post-stimulus time histogram showing hair cell adaptation to a steady
tone stimulus. The solid line is the function derived by Westerman (1985) and the dotted line results
from the Meddis hair cell model. Figure taken from Meddis (1988). Figure 3.6b describes the hair
cell transduction process implemented by the Meddis model (redrawn from Meddis et al., 1990).
The onset of a tone causes an immediate rise in firing rate proportional to the (half-wave rectified)
motion of the BM, represented by the arrow pointing from the free transmitter pool to the cleft. This
peak onset-response is immediately followed by an initially rapid decline in firing-rate and then a
slower adaptive decline, resulting in a firing-rate representation that emphasises the leading edges
of stimulus inputs. In the model, the free transmitter pool is replenished over time, partially by the
factory (a source representing new creation of the necessary chemicals) and partially through the
recycling or re-uptake of previously ejected neurotransmitter. A relatively small amount is lost but
this loss is eventually balanced by the slow manufacture from the factory which gives rise to the
steady-state condition of the adapted auditory nerve (whose level depends on the amplitude of the
stimulating tone).

Irrespective of its particular threshold or associated dynamic range, all auditory
nerve fibres are thought to respond with a similar temporal discharge pattern,
shown in the post-stimulus time histogram (PSTH) of Figure 3.6a. Stepping along
the time-axis, this PSTH shows the non-zero spontaneous firing rate in quiet con-
ditions and a sharp onset spike when the stimulus tone begins. Following this, a
two-stage adaptation is seen: first a rapid decline, then a slower decline (with time
constants around 10 and 70 ms respectively). Eventually the hair cell becomes
well-adapted to the stimulus and a steady-state is reached. When the stimulus
stops, the spike activity momentarily drops below the spontaneous rate before re-
covering to it. In the review discussed above, Handel reports that for a typical high
SR fibre with a characteristic frequency of 6900 Hz, a 60 dB (i.e. 1, 000-fold) dif-
ference in intensity results in only a factor of three increase in the onset rate, and a
factor of two increase in the steady-state response.
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3.3 The central auditory system

Modelling mechanical-to-neural transduction

Auditory models represent hair cell transduction using the velocity or displacement
of the basilar membrane as an input, resulting in a measure of nerve activity across
an array of inner hair cell models. Implementations vary, and the output of a single
IHC model may take various forms. Information about neural spikes may be out-
put either as a firing rate map, as a spike train (with which timing information is
encoded) or as a probabilistic measure i.e., spike-likelihood. In the computational
model described by Ghitza (1988), for instance, the phase-locking of the auditory
nerve is modelled with an ‘ensemble interval histrogram’ that preserves fine spec-
tral details in low-frequencies only. In this way, useful aspects of auditory function
are abstracted and incorporated into the front-end of a speech recogniser.

The review by Hewitt and Meddis (1991) examines eight IHC models by examin-
ing their ability to reproduce mammalian responses to specific tone-burst stimuli.
While no single model could replicate all the desired features, Hewitt and Med-
dis recommended Meddis (1988) in terms of both the match to physiological data
and computational efficiency. The scheme underpinning this model is described
in Figure 3.6b. Viewed as a functional model, the Meddis IHC model is capable
of exhibiting the major features of the mechanical to neural transduction process
(as were seen previously in Figure 3.6a): spontaneous firing, saturation, a maximal
sensitivity to a particular frequency and, after an onset peak, a rapid decline to the
adaptation level whose rate is independent of tone intensity and background level
(Meddis, 1986, 1988; Meddis et al., 1990).

However, the biological plausibility of the Meddis IHC model has recently been
questioned. The model by McEwan and van Schaik (2004), for instance, proposed
a simplification that achieves a similar result, and Sumner et al. (2002) presented a
revision which aims to be more faithful to known physiology. AN activity was also
modelled by Zhang et al. (2001), and updated by Zilany et al. (2009) to simulate the
dynamical response observed over several timescales at the synapse between IHCs
and AN fibres. In their model, a slower adaptation accounts for the recovery after
stimulus onset, and a faster rate adaptation simulates the response to alterations in
signal level for a continuous stimulus.

3.3 The central auditory system

A simplified schematic of the central auditory system was presented at the start of
this chapter (cf. Figure 3.1b). It shows the major nuclei involved in the ascending
(afferent) auditory processing chain, and labels a number of descending (efferent)
pathways in addition. Importantly, it can be seen here that a large number of the

71



3 Biological and computational auditory systems

organs involved in the afferent pathway receive efferent signals, and are thus under
control of the higher levels of the auditory system. In other words, the behaviour
of the afferent sound-encoding process can be modulated at almost every stage in
its upward journey.

This section briefly introduces a few parts of the central auditory system that are
particularly relevant to reverberant speech processing in the brainstem, midbrain
and cortex.

3.3.1 Brainstem

The key idea of audio processing in the brainstem is that the previously single-track
processing of the periphery now becomes massively parallel. Progressing upwards
through the auditory system, the acoustic signal information which was originally
spread over multiple fibres in the AN is gradually encoded in a more robust manner
at the level of the single cell (Joris and Smith, 2008).

Ascending information from the auditory nerve fibres is delivered to the brain-
stem via the cochlear nucleus (CN). The CN is split into separate regions, each of
which has its own tonotopic map. Its various specialised cells and synapses pro-
vide for different routes through the brainstem, each of which passes a differently
conditioned set of data onwards to the midbrain. Cao and Oertel (2010) discuss
three of the major cell types found in the CN. Firstly, bushy cells provide ‘primary
responses’, encoding timing information by phase locking to individual cycles at
low-frequency, and following the temporal envelope for high-frequency sounds.
Secondly, octopus cells integrate across a population of AN fibres and thus en-
code ‘onset responses’ in the presence of transient broadband pulses. Thirdly, T
stellate cells signal energy transients over a small range of frequencies, effectively
detecting spectral alterations in the input.

Interestingly, Bürck and van Hemmen (2007) propose the CN as a site for monaural
echo suppression (such that a lead-click may suppress a lag-click which follows at
a delay of around 2–3 ms). However, the advantage from such processing is clearly
not sufficient to fully remove the effects of reverberation. Sayles et al. (2013) dis-
cuss chopper cells in the CN which are likely to be of particular relevance in rever-
berant listening situations since they encode amplitude modulation with a high de-
gree of sensitivity (indeed, the most sensitive of these units matched the thresholds
of human psychophysical performance). Analogous to the ‘best frequency’ of an
AN fibre, chopper units can be characterised by their ‘best modulation frequency’
(independently of the modulation depth). Since reverberation alters the modula-
tion content apparent in a signal, these cells might be implicated in the degradation
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of the neural representation of pitch (extracted from timing information) that was
reported for the anaesthetised guinea pigs studied by Sayles and Winter (2008).

Following the CN, the superior olivary complex (SOC) is the next level in the af-
ferent pathway. The SOC is the first level of the auditory system at which binaural
information is available, that is, that inputs from the right side and left side con-
verge in the superior olive (SO) on each side of our head. Concerned primarily
with sound localisation (particularly azimuth detection), the medial SO performs
a low-frequency analysis to consider interaural time differences (ITDs), and the
lateral SO computes the interaural level difference (ILD) cue for high-frequency
signals (Darrow et al., 2006).

The SOC is also of particular relevance to the current study since the descending
olivocochlear feedback derives from here. Discussed extensively in § 3.4.1 below,
these efferent signals are thought to confer robustness in complex and noisy lis-
tening situations (Henderson et al., 2001). Indeed, it has also been suggested that
these descending circuits might act to mitigate asymmetries in our physiology, and
assist in the calibration of left- and right-side derived information in our binaural
auditory system (Cullen and Minor, 2002; Darrow et al., 2006). Further, it appears
that effects of attention and experience are also be apparent at the level of the brain-
stem response. For instance, Bidelman and Krishnan (2010) have recently shown
that reverberation effects in the brainstem were less detrimental for musicians than
those without such auditory training.

3.3.2 Midbrain

The inferior colliculi (IC) are large nuclei in the midbrain which receive monaural
input from the CN and binaural input from the SO. Moreover, the ICs are involved
with multi-sensory integration, responsible for the startle response, attention re-
flexes, and learned reflexes (Gruters and Groh, 2012).

A recent report by Devore et al. (2009) suggested that the IC continues the bin-
aural localisation processing described above. A single neuron was shown to pro-
vide a similar pattern of data to that of psychophysical performance measured with
human listeners, in that the presence of reverberation degraded the sensitivity to
direction overall. Here, Devore et al. reported an ‘onset dominance’ cue which
effectively highlights the more reliable spatial cues present in the signal (typically
those which arrive early in the stimulus history before reflections have time to build
up). Additionally, Devore and Delgutte (2010) suggest that the ILD pathway in the
IC provided more accurate cues than envelope-based ITDs for localisation of high
frequency sounds in reverberation.
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Kuwada et al. (2012) caution, however, that although studies often report IC re-
sponses collected from anesthetised animals, this anesthetisation is itself known
to alter binaural processing in the IC. Using unanesthetised rabbits, Kuwada et al.
demonstrated that single neurons in the IC were able to encode both amplitude and
azimuth in such a way that the effects of reverberation were largely ameliorated.
Here, the example neuron encoded source distance in response to binaural input:
the input signal level was held constant, but the firing rate decreased systemati-
cally with the distance of a reverberant source. Additionally, the example neuron
adjusted the modulation gain of the signal in response to monaural input, and thus
compensated for the level of reverberation present in the signal.

3.3.3 Cortex

The varied subcortical processes occurring in the brainstem and midbrain suggest
that the auditory cortex is highly specialised for certain types of pre-conditioned
inputs. The auditory cortex is interconnected with other cerebral areas, and also
transmits descending signals to several lower parts of the auditory system (cf. Fig-
ure 3.1b). The role of cortical processing remains somewhat ambiguous, how-
ever, activity in the cortex can itself be studied with non-invasive techniques such
as magnetoencephalography (as used by Ding and Simon, 2011) or high-density
electroencephalography (as used by Horton et al., 2013).

Lomber and Malhotra (2008) have recently reported that different regions of the
cortex are involved with recognition and with localisation (reminiscent of the divi-
sion of ‘what’ and ‘where’ processing suggested by the psychophysical studies of
Smith et al., 2002, discussed earlier in § 2.3). Focusing on the former of these path-
ways, recent studies have revealed that cortical delta band (1–4 Hz) and theta band
(4–8 Hz) oscillations entrain to the slow temporal modulations of the envelope of a
speech signal at syllable and word rates (Ding and Simon, 2013a, b, 2014). More-
over, an attended signal is represented more accurately at the cortex than is a dis-
tractor signal containing either noise or a competing speaker (Horton et al., 2013).
Taken together, these studies suggest that by the level of the auditory cortex, the
brain is capable of encoding a representation of speech that is largely invariant to
the sonic background in which it occurred.

3.4 Efferent feedback to the periphery

Two main feedback systems regulate the peripheral auditory system: the acoustic
reflex to the middle ear, and efferent innervation of the inner ear (Giguère and
Woodland, 1994). These are depicted in Figure 3.7, which overviews the bridge
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between the peripheral and central hearing processes. The first of these descending
pathways, the acoustic reflex (AR), is a slow-acting reflex which is thought to be
triggered mainly when high sound levels are experienced1 (see discussion above in
§ 3.2.1). The second descending pathway, the olivocochlear (OC) system, provides
a number of routes by which efferent neuron spikes can travel from the central
nervous system back towards the cochlea.

Guinan (2006) reports two separate types of nerve travelling down the olivo-
cochlear bundle (OCB), named due to their origin in the SOC and termination
in the cochlea, as lateral olivocochlear (LOC) or medial olivocochlear (MOC) ef-
ferents. The anatomy of the OC system has now been fairly well mapped (see
e.g. Brown, 2011), such that it is known in what manner the inner and outer hair
cells are separately innervated by LOC and MOC neurons (as was shown earlier,
cf. Figure 3.2b). On the other hand, the function of the OC is still incompletely
understood.

The role of the MOC neurons has been studied in a number of species, and is now
understood to act on the OHCs to reduce cochlear sensitivity. As was described
above, research in this area relies on the cochlea being active, and thus requires
a non-destructive form of measurement. The clinical description of otoacoustic
emissions (OAEs) by Kemp (1978), has led to a family of OAE-based methods
being developed over the past 35 years. This is because it became apparent that
the faint sounds emitted by the OHCs could be modulated, and thus recorded (non-
invasively) in the audio domain, by activation of the MOC efferent pathway (Moun-
tain, 1980; Siegel and Kim, 1982).

However, little is yet known about the LOC system since there is no sound-evoked
test of its function (Guinan, 2014). Thus the contribution of LOC efferents, ei-
ther separately or in concert with MOC signals, remains a subject awaiting future
investigation (Brown, 2011; Guinan, 2006, 2014).

3.4.1 The medial olivocochlear system

Substantial experimental evidence now supports the claim that electrical stimu-
lation of the MOC fibres results in a reduced effect of acoustic stimulation (e.g.
Robles and Ruggero, 2001; Russell and Murugasu, 1997). As was shown schemat-
ically in Figure 3.7, fibres of the efferent MOC system descend from the brainstem
and terminate on the OHCs. The length and stiffness of the OHCs are modulated

1Indeed, the AR is omitted from the modelling study presented in the following chapter, since
the sounds heard are presented at a level well below that thought to give rise to contraction in the
middle ear muscles.
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Figure 3.7: Efferent feedback to the periph-
ery. A stimulus is processed through the afferent
chain (depicted with upward arrows), passing
first through the outer and middle ear (OME),
where it may be attenuated by the acoustic re-
flex (AR) (outer downward arrow) if the level
is sufficiently loud. The transmission of sound
through the basilar membrane (BM) may also be
adjusted by the medial olivocochlear (MOC) re-
flex (inner downward arrow), effected through
changes to the motility of the outer hair cells
(OHCs). Following this, transduction at the in-
ner hair cells (IHCs) transforms the vibrational
energy to a neural firing pattern which is trans-
mitted up the auditory nerve (AN) to higher
centres of the auditory system (of which the
cochlear nucleus (CN) and superior olivary com-
plex (SOC) alone are shown).
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by the descending efferent signals, and since the OHC tips are embedded into the
TM, the motion of the IHCs with BM-TM shearing is altered in turn (Kim, 1986).
That is, activation of the efferent fibres inhibits the cochlear response, and thereby
alters the signal properties encoded at the level of the auditory nerve.

Two major subgroups of MOC neurons exist, ipsilateral and contralateral, defined
according to which ear (monaurally) excites their response (Guinan, 2006). In
addition, a third (though more minor) subgroup appears to respond to sound in ei-
ther ear (Brown, 2011). In natural listening conditions, however, the medial olivo-
cochlear reflex (MOCR) evoked in one ear would typically arise from sound com-
ing into both ears (i.e., ipsilaterally and contralaterally). In this way, the resulting
cochlear suppression would depend on the combination of efferent activity in both
these descending pathways.

However, whether examined monaurally or binaurally, the effects of MOC acti-
vation on the auditory nerve response are very difficult to measure and quantify
at present. Chintanpalli et al. (2012) note, for instance, that while the ipsilateral
effect may be measured by shocking the MOC bundle, it is extremely difficult
to measure this effect using sound itself to elicit the response without producing
ancillary effects such as AN excitation and subsequent suppression. Moreover,
Guinan (2006) notes that studies may not draw pertinent conclusions from animal
physiologically in this regard: it appears that for cats the ipsilateral reflex may be
two or three times stronger than the contralateral, whereas for humans they appear
approximately equal. Approaches based on OAEs separate the elicitor sound in
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either frequency or time from the expected response (measuring distortion-product
or transient-evoked OAEs respectively), and thus check for adequate presence and
function of the efferent effects. Yet such tests still do not directly estimate the
psychopysical effect size of OHC suppression (Guinan, 2014). Any MOC activity
would clearly alter the magnitude and phase of the afferent cochlear processing;
however, it is extremely hard at present to investigate the impact of such sound-
evoked efferent suppression on interaural cues such as ILD and ITD. Further, recent
studies are beginning to reveal that MOC effects are also subject to attention and
experience; thus their involvement may differ between active and passive listening
occasions (Guinan, 2014).

Cooper and Guinan (2003, 2006) report that, under efferent control, the OHCs
influence the sound-processing function of the BM by two separate mechanisms.
Firstly, a fast effect, thought to aid signal discrimination in noisy environments,
has been attributed to an overall decrease in OHC motility. Secondly, a slow effect,
thought to perhaps help protect the auditory system from excessive stimulation,
has been linked with a change in the axial stiffness of the OHCs. Signals were
reported to occur in the region of 10-100 milliseconds for the fast effect, and 10-
100 seconds for the slow effect (Sridhar et al., 1997; Zhao and Dhar, 2011). On the
other hand, Backus and Guinan (2006) reported effects acting on three timescales
(‘fast’ ' 70 ms, ‘medium’ ' 330 ms and ‘slow’ ' 25 s). Though the details
of the various analyses differ, the studies all concur that the efferent pathway acts
over a much slower time-scale compared with the high speeds at which the afferent
system carries information to the brain. Thus the efferent system could be thought
to provide a series of continual adjustments, recalibrating our auditory system as
the environment around us gradually shifts.

3.4.2 MOC unmasking in noise

In this section, Figure 3.8 is used to explain the presumed role of the MOC efferent
system in controlling the dynamic range of hearing (Guinan, 2011; Guinan and
Gifford, 1988).

Figure 3.8a presents AN fibre responses to short tone bursts heard in an otherwise
quiet environment. Without involvement of the efferent system, the firing rate here
increases with stimulus level until the fibre’s saturation level is reached at around
40 dB. In Figure 3.8b, MOC activation effects a shift of the rate-level curve to
higher sound pressure levels (to the right). A tone presented at 40 dB now lies on
the steep part of the response curve, and the fibre can increase its firing rate further
still for sounds presented at stronger levels.
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Figure 3.8: Figure 3.8 is from Guinan (2011) and shows medial olivocochlear (MOC) unmasking
in the presence of low-level background noise. The top panels depict auditory nerve (AN) fibre
responses to short tone bursts in quiet backgrounds (a) without– and (b) with– MOC activation,
which effects a shift of the rate-level curve to higher sound pressure levels. The lower panels show
equivalent rate-level curves in the presence of a continuous background noise. This has the effect of
reducing the fibre’s dynamic range (c): at low test-signal levels the AN responds to the presence of
the noise (raising its overall response curve), while at high sound-levels the continuous noise causes
additional adaptation which lowers the response to the test-tone bursts. The MOC activation in (d),
however, increases the dynamic range of the fibre once again: the reduced cochlear gain causes
the response to the low-level sounds to be suppressed; the background noise therefore causes less
adaptation and the high-level tone bursts are responded to more strongly once more.
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The lower panels of Figure 3.8 show equivalent rate-level curves in the presence of
a continuous background noise. This has the effect of reducing the fibre’s dynamic
range in Figure 3.8c. Here, at low test-signal levels the AN responds more strongly
to the presence of the noise than the test-tone, which raises its overall response. At
high sound-levels the continuous noise causes additional adaptation which lowers
the response to the tone bursts. The MOC activation in Figure 3.8d, however,
increases the dynamic range of the fibre once again. Now, the reduced cochlear
gain causes the response to the low-level sounds to be suppressed. As a direct
result, the background noise causes less adaptation in the AN, and the high-level
tone bursts are responded to more strongly once more.

Understood in this way, release from adaptation has the effect of increasing the dy-
namic range available. If these results can be carried over from test tones to speech
signals, then the implication is that when speech begins in a noisy environment,
a new surge may be seen in the AN response despite the concurrent presence of
background noise. Indeed, mirroring the situation examined in Figure 3.8, Hen-
derson et al. (2001) and Strickland and Krishnan (2005) report that in cases where
the efferent system was impaired or missing it proved very difficult to perceive test
stimuli in noise. Given that the AN response had already become well-adapted, it
could not respond further to a new sound, even at an increased level. When the ef-
ferent system is functioning, however, the situation is quite different. Here, efferent
activity reduces the BM displacement, the response curves of the AN fibres shift to
higher sound pressure levels, and the dB region of normal conversation would once
more lie on the sloping section of the AN response curve so that variation in the
speech-signal may again cause a variation of the output response. Thus, the back-
ground noise can be tuned out to some extent because efferent suppression reduces
the previously-adapted firing rate that the noise would ordinarily have produced.

3.4.3 Proposed relevance to reverberant listening

The proposal that the MOC efferent system might be involved in perceptual com-
pensation for reverberation can now be re-examined. The effect of reverberation
on a speech signal was demonstrated early in this thesis, where the overall dynamic
range of the reverberant signal decreased as the late-reverberation caused a prolon-
gation of energy which raised the noise floor of the signal (cf. Figure 2.2). There is
clearly a high degree of similarly in this respect between the effects of reverbera-
tion on a speech signal, and the effects of additive noise. In a direct parallel to that
outlined above in § 3.4.2, where the MOC system has been shown to assist percep-
tion of speech in noise through a process of release from adaptation, the current
thesis proposes that an essentially similar process may underpin our robustness to
the effects of reverberation in speech identification.
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It should be noted that no particular claim is made at this stage about the origin
of any signal controlling the MOC efferents, only that the resultant efferent activa-
tion might be involved in the process of perceptual compensation for reverberation.
Indeed, if it can be assumed that the conversational sound levels studied in the ma-
jority of the reverberant speech studies are insufficient to trigger the acoustic reflex,
then, as Figure 3.7 shows, the MOC efferents provide the main pathway through
which the auditory system might be re-calibrated to adjust the peripheral encoding
of sound. As was seen in Figure 3.1b at the start of this chapter, however, descend-
ing inputs to the olivocochlear pathway arise from both the inferior colliculus and
the auditory cortex (Brown, 2011). It still remains a possibility, therefore, that the
effects seen in perceptual compensation for reverberation might be explained only
with reference to these more central layers of the auditory system.

3.5 State of the art in efferent auditory models

Early computational models of the auditory system (e.g., Ghitza, 1986; Lyon, 1982;
Seneff, 1988) benefitted from plentiful physiological evidence on afferent pro-
cessing in the peripheral auditory system. Such models were of interest to the
community since they provided a representation of sound that was thought to be
more faithful to auditory processing than MFCCs or PLPs, and at times could im-
prove recognition in difficult listening conditions (Stern, 2011; Stern and Morgan,
2012). However, these models were computationally expensive and produced out-
put features in a format that required further treatment before use in an HMM-based
recogniser1.

Later auditory models benefitted from computing efficiencies, and from methods
designed to address the mismatch with statistical assumptions of the recognition
back-end (as discussed in Stern, 2011). Computational models began to examine
effects of longer-term temporal evolution (e.g., the modulation spectrum of Kings-
bury et al., 1998) and to predict speech intelligibility (cf. § 2.1.7 where different
spectral regions were viewed as containing complimentary information). Other re-
searchers were inspired by afferent effects observed in more central auditory areas
(e.g., Chi et al., 2005, modelled the spectro-temporal response fields of neurons
in the auditory cortex). When used as a front-end for a speech recogniser, these
representations again generally resulted in improved performance for conditions in

1Auditory features are typically computed at a high data rate, and multiply the data by a fac-
tor equal to the number of frequency channels. Moreover, neighbouring frequency areas are highly
correlated in auditory representations, requiring use of a discrete cosine transform or similar to decor-
relate the channels.
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which the signal was degraded by noise (e.g., Kim et al., 1999; Kleinschmidt et al.,
2001; Tchorz and Kollmeier, 1999).

Compared to the mass of physiological evidence on afferent pathways in the audi-
tory system, relatively little physiological data exists regarding efferent processing.
Perhaps as a result, descending pathways have often been completely absent from
the auditory models developed. Four notable exceptions which include efferent
processing, based on work by Giguère and Woodland (1994), Goldstein (1990),
Zilany and Bruce (2006) and Ferry and Meddis (2007), are introduced in the re-
mainder of this chapter.

While the afferent pathways of auditory models are tuned to quickly emphasise
change in the environment, the efferent system is comparatively sluggish: so-called
‘fast’ effects occur over tens of milliseconds, but ‘slow’ effects unfold over tens of
seconds (Sridhar et al., 1997). In other words, the time-scales over which affer-
ent models of the auditory periphery may be regarded as adaptive are relatively
short-term (in the region of 50 ms), offering little ability to compensate for slowly
varying changes in the environment or to deal with the longer-term effects of rever-
beration. On the other hand, the efferent-inspired models described below appear
to be able to make use of the longer-term contextual information in the signal,
for instance by monitoring the AN response internally. Although configuration
details differ between research groups, each model implements efferent suppres-
sion by means of a gain-control mechanism so that MOC feedback (directly or
indirectly) decreases the effect that an input signal would ordinarily have on BM
motion. In turn, the reduction in BM motion results in a change in activity recorded
at the AN stage of the model. This may allow a degree of disambiguation of AN
responses, effectively mimicking the human ability to suppress irrelevant informa-
tion in speech signals (Hermansky, 1998).

Though they have not been tested with reverberant signals, the efferent models dis-
cussed below claim to improve machine listening in noisy environments (Brown
et al., 2010; Chintanpalli et al., 2012; Lee et al., 2011), much as was observed
in physiological data (cf. § 3.4.2). Rather than modelling physiological or psy-
choacoustic data directly, two recent studies follow a physics-based approach to
understanding cochlear function. The description of non-linear amplification by
Reichenbach and Hudspeth (2014) was introduced above (cf. Figure 3.3). Addi-
tionally, Gomez et al. (2014) are researching clinical applications of active cochlear
modelling, and aim to inspire the next-generation of cochlear implants.
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Figure 3.9: Auditory model compris-
ing afferent pathways (solid lines) and
two efferent pathways descending to
the periphery (dashed), redrawn from
Giguère and Woodland (1994). The
afferent pathway comprises modules
for the outer ear, middle ear, basilar
membrane (BM) and its coupling with
the inner hair cells (IHCs). The in-
ner efferent pathway models the effect
of medial olivocochlear (MOC) effer-
ents on the outer hair cells (OHCs),
and the outer efferent pathway repre-
sents the acoustic reflex (AR). Fixed
model parameters FMOC and FAR

represent target firing rates of narrow-
band MOC and wideband AR efferent
signals respectively.
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3.5.1 Giguère and Woodland

Giguère and Woodland (1994) model both of the main feedback systems operat-
ing in the auditory periphery (cf. Figure 3.7 above): the acoustic reflex of the
middle-ear and the efferent innervation of the inner ear. To simulate the effects of
MOC feedback, their model inserts a component representing the fluid-cilia cou-
pling between the BM and IHC, and controls this with an OHC model as shown
in Figure 3.9. The stated objective of the efferent feedback circuits is to regulate
the average (afferent) AN firing rate. This is achieved in the model by monitoring
the average firing rate (across all channels for the AR circuit, and within particular
frequency bands for the MOC circuit), however, Giguère and Woodland suggest
that at higher frequencies a measure of synchronous firing activity may be a more
appropriate control structure.

This model later formed the basis of ASR experiments carried out by Giguère et al.
(1997). Simulations of normal and impaired hearing were realised by altering the
model parameters, and the resultant AN representation was used as a front-end for
a neural-network recogniser. Modelling peripheral hearing impairment lowered the
speech recognition accuracy in a manner that was broadly in line with human data.
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Figure 3.10: Multiple band-pass non-linearity (MBPNL) model, redrawn from Goldstein (1990).
The cochlear model is developed further in Ghitza (2007), Messing (2007) and Messing et al. (2009),
and is used by Lee et al. (2011) for noise-robust ASR experiments.

3.5.2 Goldstein

Figure 3.10 pictures the multiple band-pass non-linearity (MBPNL) model of
cochlear mechanics by Goldstein (1990), in which stapes velocity is converted
into BM displacement. Like the DRNL filterbank, this model also comprises two
pathways which are summed to represent the tuning curves of the BM. The upper
path represents the overall broadband response of the BM tuning curves by using
an expanding function followed by its inverse compressive function, thereby gen-
erating a linear filter response. The lower path represents the sensitive compressive
non-linear tip of the BM tuning curves, comprising a compressive nonlinear filter
whose gain may be altered to mimic the efferent-induced suppressive effects on the
BM that occur in the presence of noise.

The MBPNL model by Goldstein (1990) lies at the heart of the efferent-inspired
studies undertaken by Ghitza (2007), Messing (2007) and Messing et al. (2009).
Aiming to predict human performance in diphone discrimination tasks in back-
ground noise, the MBPNL is embedded in a closed-loop model of the auditory
periphery in such a way that the parameters controlling the efferent response are
determined, per channel, based on the amount of (sustained) noise present in the
signal. In this simulation, the MOC adjustment affects the gain in the MBPNL
channel: low levels of noise in the input signal have little suppressive effect, while
high levels of noise in the input signal bring about a larger efferent suppression and
reduce the nonlinear amplification of low-amplitude sounds as a result. In this way
the efferent processing effectively normalises the input sound level, ensuring that
the output of the model always lies within an appropriate dynamic range window.

While earlier works focused on modelling psychoacoustic responses in particu-
lar listening tasks (e.g. Messing et al., 2009, examined confusions among word-
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tones in background noise were measured for cats
anesthetized with sodium pentobarbital. The dose of
the anesthetic was adjusted to maintain the animals in
an areflexive state, so the MOCR was greatly reduced
in these animals (Boyev et al. 2002). Tone bursts with
a duration of 200 ms were presented at the AN fiber's
characteristic frequency (CF), in quiet and in three
levels of background noise. When presented in
background noise, the noise was presented for at least
15 s before the tone was presented. Measurements for
noise alone were taken from the 200 ms immediately
preceding the tone. In the second study (Kawase et al.
1993), AN fiber responses were measured to tone
bursts in ipsilateral noise in cats, the majority of which
were decerebrate. The MOCR was active in these
animals (as measured by compound action potential
responses). In their experiments, the effects of the
MOCR were studied by comparing AN responses
measured with and without contralateral noise. The
basic stimulus paradigm consisted of a series of 50-ms
tone bursts presented 5 s after the onset of the
ipsilateral noise. As noted by Kawase et al., this 5-s
delay between the start of the noise and the onset of
the tone bursts was sufficiently long to elicit the
ipsilateral MOCR. Thus, in the baseline (ipsilateral
noise) condition, the MOCR was already elicited, but
to an unknown extent. The contralateral noise further
elicited the MOCR; however, the contralateral effect is
often interpreted as the total MOCR effect.

The stimulus parameters in the present study were
chosen to approximate those of Kawase et al. (1993).
Using the AN model, the amount of OHC gain
reduction was able to be adjusted systematically. This
allowed the simulated effects of the MOCR to be
studied relative to model responses with full gain,
rather than looking at a proportional response (i.e.,
contralateral effects combined with baseline ipsilateral
effects) as was done by Kawase et al. (1993). The
present study provides a potential bridge (in theory)
between the studies of Young and Barta (1986) and
Kawase et al. (1993). Simulations with full gain (i.e.,
no MOCR) should resemble those of Young and Barta

(1986), allowing for small differences in the stimulus
paradigms. Model predictions with systematic reduc-
tions in OHC gain (i.e., simulating variations in the
strength of MOCR effects) will produce results that
can be compared to those found by Kawase et al.
(1993) for ipsilateral noise alone and with the
addition of contralateral noise. Thus, this modeling
approach can be used to provide a theoretical
estimate of the amount of OHC gain reduced by the
MOCR in the ipsilateral-alone and the combined
ipsilateral/contralateral noise conditions tested by
Kawase et al. Moreover, the “optimal” reduction in
gain to maximize detection and discrimination in
different levels of noise was also determined through
systematic variation of model parameters. A reduction
in gain as high as 40 dB has been produced by
shocking the crossed MOC bundle (Russell and
Murugasu 1997), which controls the ipsilateral reflex.
It is not known how shocking the bundle compares to
eliciting the MOCR by sound; however, 40 dB was
used as the upper limit of physiologically realistic gain
change in the present study. A similar approach was
taken by Brown et al. (2010) to determine the amount
of gain reduction needed to optimize identification of
speech in noise, and by Ferry and Meddis (2007) to
model physiological data at the level of the BM and
for compound action potentials measured to tones in
noise. However, this modeling approach has not been
used to simulate detection and discrimination of
tones in noise based on AN fibers with different SRs.

Stimuli

The input to the model was an acoustic waveform (in
Pascals), and the output was the response of the C1 filter
(for BM simulations), or the time-varying discharge rate
of a single AN fiber (in spikes/s) with a specific CF. The
sampling rate used with the stimuli and AN model was
100 kHz. The discharge rate was estimated from the
synapse output of the model [r(t) in Fig. 1], which does
not include the effects of refractoriness. The model
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FIG. 1. Schematic diagram of the auditory nerve model. The medial olivocochlear (MOC) reflex was simulated by reducing the gain of the
outer hair cells (OHCs) by adjusting the model parameter COHC, as shown by the box marked MOC feedback and the red dashed arrow. Figure
modified from Zilany and Bruce (2007) and used with permission from the Journal of the Acoustical Society of America.
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Figure 3.11: A model of peripheral processing by Zilany and Bruce (2006). MOC feedback affects
the OHC behaviour in the lower pathway, which in turn adjusts IHC transduction at the AN synapse.
The model has also been used to match psychophysical data in studies by Jennings et al. (2011) and
Chintanpalli et al. (2012), and has received further parameter tuning in Zilany et al. (2009, 2014).

initial consonants when corrupted by speech-shaped additive Gaussian noise), re-
cent studies have also applied this model in ASR experiments. Lee et al. (2011)
used the model of Messing et al. (2009) to show that efferent processing could
improve word accuracy when speech was presented in diverse noise backgrounds.
Five types of noise were examined, three of which were stationary (white, pink,
speech-shaped), and the remainder (train, subway) represented real-world listen-
ing environments.

3.5.3 Zilany and Bruce

Figure 3.11 shows an alternative model of peripheral processing by Zilany and
Bruce (2006), which again allows the main MOC efferent effect to be modelled
with a reduction of the nonlinear cochlear response. Previous versions of the model
were tuned in order to match (feline) physiological data captured in response to
tones, tone-complexes, broadband noise and vowels (Bruce et al., 2003; Carney,
1993; Zhang et al., 2001). The model has more recently been used to match
a number of other psychophysical datasets. Zilany et al. (2009) simulated low,
medium and high spontaneous rate fibres, and showed firing rate adaptation effects
as discussed in § 3.2.3 above. More recently, parameters describing mechanical-to-
neural transduction at the IHC–AN synapse have undergone fine-tuning in Zilany
et al. (2014) in order to better represent the data published by Liberman (1978).

The Zilany et al. (2009) model formed the basis of a study undertaken by Jen-
nings et al. (2011) in which model parameters were tuned to match perceptual data
showing a longer-term temporal effect sometimes referred to as ‘overshoot’. Here,
under certain conditions, a preceding sound can improve the detection of a masked
tone (Fletcher et al., 2013). Chintanpalli et al. (2012) also extended the model of
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Zilany et al. (2009) to query the involvement of the MOC reflex in noise-based
listening. In agreement with the MOC unmasking effect outlined in § 3.4.2 above,
their study reported that manual reduction of the OHC gain parameter (simulating
efferent suppression) re-mapped the dynamic range of simulated AN fibres, and
allowed discrimination of tones-in-noise over a wide range of background noise
levels.

3.5.4 Ferry and Meddis

The dual-resonance nonlinear (DRNL) model of cochlear filtering (introduced
above in Figure 3.4) underpins another family of efferent modelling studies. The
original DRNL filter consists of two parallel paths, one linear and one nonlin-
ear, which together describe the ascending processing pathway which transforms
stapes displacement to BM vibration (Lopez-Poveda and Meddis, 2001; Meddis,
2006; Meddis et al., 2001). To simulate the effects of efferent processing, Ferry
and Meddis (2007) incorporated an attenuator at the start of the nonlinear pathway
of the DRNL, as shown in Figure 3.4b. Their paper simulates empirical studies
carried out at different laboratories in order to confirm that the model fits physio-
logical data recorded on the BM and in the AN.

Ferry and Meddis (2007) state that the aim of the model, in the longer term, is to
study the role of the efferent system in processing complex stimuli such as music
and speech, with and without noise. Some of these conditions, and others be-
sides, have since been examined by embedding the efferent-DRNL in computa-
tional models of auditory function which variously simulate human response data
or investigate environmental robustness in ASR (e.g., Beeston and Brown, 2010;
Brown et al., 2010; Clark et al., 2012; Meddis et al., 2013).

In Brown et al. (2010), the model of Ferry and Meddis (2007) was used as a front-
end for speech-in-noise recognition experiments. The MOC attenuation param-
eter was varied manually (in an open-loop configuration), and was fixed across
all frequency channels. Similar to the study of Messing et al. (2009) discussed
above, optimal recognition scores were achieved when the attenuation parameter
was proportional to the amount of noise present in the signal. Clark et al. (2012)
reported further ASR improvements when MOC feedback was derived from a mea-
sure of firing activity in the simulated AN, and was adjusted separately in each
channel. In the latest revision, Meddis et al. (2013) describe a closed-loop model
with frequency- and time-dependent circuits implementing both the MOC and AR
pathways. In this version of the model, the MOC signal is derived from the high
SR fibres of the AN response after processing in the cochlear nucleus. The AR, on
the other hand, is derived after a second-level brainstem response which receives
input from the AN’s low SR fibres.
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Beeston and Brown (2010) also used the efferent-inspired model of Ferry and Med-
dis (2007), but diverged from the approach taken in Brown et al. (2010) above.
The efferent-DRNL filterbank was embedded in a closed-loop model of auditory
processing, in which the value of efferent attenuation was derived on the fly in re-
sponse to the dynamic range of the input signal’s simulated AN response. Further
investigation into candidate metrics to control the efferent feedback mechanism in
reverberant speech-based tasks was also presented in Beeston and Brown (2013).

3.5.5 Efferent model choice

The four state-of-the-art efferent auditory models discussed above are broadly
equivalent in that they all aim to model the role of efferent suppression on the
response of the basilar membrane to an incoming sound signal. Since its publica-
tion in 2007, the Ferry and Meddis model has become well-established in auditory
modelling studies, in part because the model has been validated against a num-
ber of physiological data sets, and in part because a Matlab implementation of the
model has been made available for use by other researchers. As a result, the Ferry
and Meddis model was adopted to represent cochlear function in the computational
work presented in Chapter 4 below, where the efferent-inspired auditory model is
tested to see if it may replicate and help explain the effects of perceptual com-
pensation for reverberation. It is noteworthy, however, that since the three models
deriving from work by Giguère and Woodland (1994), Goldstein (1990) and Zilany
and Bruce (2006) perform essentially the same task, they have potential to act as
substitutes for the efferent-DRNL component in this regard.

Chapter summary

To allow an examination of perceptual compensation for reverberation from a com-
putational modelling perspective in the chapter which follows, Chapter 3 first re-
viewed existing works which either shed light on auditory processing relevant to
reverberant speech identification, or described computational models capable of
simulating such auditory processes. This chapter therefore discussed biological
and computational auditory systems (§ 3.1) and reviewed the process by which the
peripheral auditory system transforms acoustic vibrations into electrical messages
which the brain interprets (§ 3.2, § 3.3). Crucially, this encoding of sound is reg-
ulated by a series of efferent pathways which descend from higher auditory areas
and ultimately confer robustness in adverse conditions (§ 3.4).

Two efferent pathways reach directly back into the auditory periphery: the acous-
tic reflex to the middle ear, and the medial olivocochlear (MOC) innervation to
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the inner ear. Focussing on the latter of these mechanisms, both physiological and
computational studies suggested that MOC neurons reduce cochlear sensitivity by
attenuating the nonlinear amplification of the basilar membrane. Activation of
this pathway appears to adjust the process of neural transduction by the inner hair
cells and, by a process known as MOC unmasking, improves the effective dynamic
range of signals encoded in the auditory nerve. Further, a number of studies using
state-of-the-art efferent-inspired auditory models as front-ends for speech recognis-
ers suggest that this enhancement in signal representation can improve recognition
accuracy for speech in noise (§ 3.5).

By considering the acoustical effects of late reverberation in terms of an increased
noise-floor and reduced dynamic range, this chapter additionally set out the rel-
evance of MOC unmasking to perceptual compensation for reverberation. The
physiological mechanisms conferring human robustness to the effects of reverber-
ation on speech identification have not yet been confirmed, and it is as yet too early
to know whether the evidence gathered so far regarding reverberation-robust pro-
cessing in the central auditory system will turn out to explain this phenomenon.
Nonetheless, it appears that MOC efferents are likely to be implicated in the pro-
cess of recalibrating the sound-encoding at the cochlea in reverberant listening en-
vironments, much as they are for situations in which background noise is a factor.
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Modelling perceptual compensation for
the effects of reverberation1
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4.1 Introduction

Motivated by the main areas of research just described, this chapter presents a
model in which auditory efferent suppression is used as a candidate theory for ex-
plaining the effects of perceptual compensation for reverberation. Human auditory
processing seems to be underlain by a set of constancy mechanisms which result in
robust speech perception even when listening conditions are degraded by noise or
reverberation. As a result, state-of-the-art techniques in automatic speech recog-
nition (ASR) have sometimes incorporated components that were either loosely or
more directly inspired by aspects of biological audition. This strategy produced
substantial gains in noisy speech recognition, but to date, has not yet solved the
challenge that reverberation poses to machine listeners.

The computer model presented below is an extension of that proposed by Ferry
and Meddis (2007), in which efferent suppression regulates activity in the afferent
pathway (§ 4.2). Previously used to simulate data that displayed increased noise-
robustness with increased efferent activity (Brown et al., 2010; Clark et al., 2012),
the model is examined in the current chapter to see if efferent processing may
help explain the relative robustness to the effects of reverberation that is observed
with human listeners. Palomäki et al. (2004) previously reported an approach to
speech recognition in which reverberation may be treated similarly to noise; their
insight underpins the current work, where the Ferry and Meddis model is applied
to the task of simulating perceptual compensation for the effects of reverberation.
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Here, the effect of the late reverberation is considered to be similar to the effect of
additive noise, in that it reduces the dynamic range of the signal and increases its
noise floor (as was previously depicted in Figure 2.2). Since the efferent system is
known to be involved with the regulation of dynamic range in such noisy listening
conditions (see e.g., Guinan, 2006, and § 3.4 earlier), it follows that the efferent
system might also be involved in suppressing the auditory nerve response to late-
arriving reflections. This is the key proposal which is implemented in the model.

Further, this chapter describes how the model of Ferry and Meddis may be em-
bedded within a feedback mechanism which monitors the level of reverberation
in the environment and adjusts the sound-encoding behaviour of the simulated au-
ditory nerve response accordingly (§ 4.3). To see whether the model can indeed
simulate and help explain the effects of perceptual compensation for reverberation,
the model is evaluated against human listener data published by Watkins (2005a).
In addition to modelling his general ‘sir-stir’ category boundary paradigm (§ 4.4),
the model is tested in further experiments with time-reversed speech (§ 4.5) and
time-reversed reverberation (§ 4.6). The final section of the chapter then discusses
the proposed involvement of efferent processing in compensation for reverberation
more widely, and highlights a number of areas where psychophysical research may
help to answer questions arising during the modelling process.

4.1.1 Research questions

This chapter presents a computational model of auditory function in which the sim-
ulated auditory nerve response in the afferent pathway is monitored, and at times
attenuated, by an efferent feedback control mechanism. The manner in which this
efferent control is implemented is therefore of primary concern. Since human lis-
teners make use of the temporal context immediately prior to a test sound, the
auditory model follows a similar principle: a time-windowed segment of the simu-
lated auditory nerve signal is observed, and used somehow to determine a value for
efferent attenuation which is then applied in the model. Opinion appears divided in
the literature over exactly what aspects of a signal may determine a listeners’ abil-
ity to compensate for the reverberation present in a given test signal. Two putative
measures of the perceptual influence of reverberation are examined in § 4.3, and
are tested as controllers for the efferent feedback circuit.

The first measure of reverberation concerns the dynamic range of the simulated
auditory nerve signal, quantified by examining the signal’s mean-to-peak ratio
(MPR). Reverberation is typically understood to reduce dynamic range, as dips
in a signal’s temporal envelope are filled with reflected energy. One way to view
this process is to note that the ‘noise floor’ of a signal appears to increase when it is
reverberated. Since the efferent system is known to be active in noisy conditions,
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it seems feasible therefore that reverberation may also give rise to efferent activity.
In the model described below, an increase in reverberation is detected as a raised
MPR value, and used in turn to trigger the efferent suppression.

A second measure that has been proposed to inform the compensation mechanism
concentrates instead on the ‘tails’ that reverberation adds at offsets in a signal’s
temporal envelope. Here, a low-pass mask (LPM) signal measure is used whereby
signal envelopes are smoothed in each auditory channel, and the signal’s energetic
content is examined during the envelope’s downward-going slopes (i.e. during the
reverberation tails). In the model, an increase in the LPM value is detected when
the level of reverberation increases; this again corresponds to an increase in efferent
suppression.

Employing these two measures of reverberation, Experiment M1 is a calibration
exercise which asks whether measures of either the dynamic range or the rever-
beration tails of a signal could be appropriate candidates for controlling efferent
suppression in a model of perceptual compensation for reverberation. A computer
model is built to simulate the experimental findings of Watkins (2005a): it ‘lis-
tens to’ (or processes) a sound file and ‘responds with’ (or outputs) a ‘sir’ or ‘stir’
result. If the model is capable of simulating perceptual compensation for reverbera-
tion, then results should follow the pattern of human listener responses in Watkins’
work. The influence of increased reverberation on the test-word is expected to re-
duce the number of ‘stir’ responses since the dip that cued the [t] becomes obscured
by reflected energy protruding from the preceding context into the test-word region.
However, when the level of reverberation on the context is also increased, then in
human listeners the factors obscuring the [t] appear to be somewhat overcome, so
that the number of ‘stir’ responses increases again.

Further aspects of the compensation mechanism are investigated in two following
experiments. Human listener data in Watkins (2005a) indicates that compensation
does not rely on phonetic perception, so the compensation effect should be main-
tained even when the time-direction of the speech signal in the preceding context
is reversed. This is investigated in Experiment M2. Conversely, when the time-
direction of the reverberation is reversed in the preceding context, it appears that
compensation no longer occurs (Longworth-Reed et al., 2009; Watkins, 2005a).
This finding is of particular interest since it is not consistent with the predictions
of objective measures of reverberant speech perception. Time-reversal of reverber-
ation is therefore investigated in Experiment M3.
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(a) open-loop implementation
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Figure 4.1: Schematic depictions of the open-loop (fig. 4.1a) and closed-loop (fig. 4.1b) implementa-
tions of the computational auditory model which receives an audio signal at input and provides a sim-
ulation of firing activity in the auditory nerve (AN) at output. Afferent components comprise an outer
and middle ear (OME) filter, a bank of dual-resonance nonlinear (DRNL) filters representing basi-
lar membrane vibration, inner hair cell transduction and temporal integration as a spectro-temporal
excitation pattern (STEP). Efferent attenuation, ATT , is controlled manually in the open-loop im-
plementation, but is derived via a metric from a windowed portion of the STEP in the closed-loop
model configuration.

4.2 Auditory model overview

Efferent feedback from the olivocochlear system, discussed earlier in Sections 3.4
and 3.5, has recently been introduced into the Meddis auditory model1, the Gold-
stein model2, and the model of Zilany and Bruce3. This approach has proved fruit-
ful in modelling a number of tasks involving listening to speech in noise (e.g.,
Brown et al., 2010; Clark et al., 2012; Lee et al., 2011). The following experiments
ask whether the efferent system may also be implicated in reverberant listening.
The insight underlying this work is that efferent suppression might similarly re-
duce the auditory response when the noise floor is raised by reverberation in the
signal. If so, then periods of low amplitude in the signal’s temporal envelope which
had been previously filled in by reflected energy might now be revealed once more
by the application of efferent attenuation.

The linchpin of the current simulation4 is the efferent DRNL cochlear model of
Ferry and Meddis (2007), which extends the earlier model of basilar membrane

1Efferent processing was introduced by Ferry and Meddis (2007), and subsequently used in
modelling studies by Beeston and Brown (2010); Brown et al. (2010); Clark et al. (2012).

2See for example Ghitza (2007); Lee et al. (2011); Messing et al. (2009).
3See Chintanpalli et al. (2012); Jennings et al. (2011).
4The starting code base for the efferent dual-resonance nonlinear (DRNL) component is the

MAP (Matlab auditory periphery), version 1.6, as described in Meddis (2006). Described below in
§ 4.2.2, efferent suppression is simulated using the cochlear attenuation parameter in the non-linear
path of the DRNL as identified by Ferry and Meddis (2007).
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(BM) response proposed by Meddis et al. (2001) by adding an attenuator to the
non-linear path of the DRNL. When embedded in an auditory model with further
components representing hair cell transduction and firing activity in the auditory
nerve as shown in Figure 4.1a, the effect of an increase in efferent attenuation is
that the response in the auditory nerve is suppressed (i.e., fewer spikes per second
at output).

Figure 4.1b presents a schematic overview of the computational auditory model
described in this chapter. The central block of the model consists of two major
parts, and is an extension of the computer model proposed by Ferry and Meddis
(2007), in which an efferent feedback loop monitors and regulates activity in the
afferent pathway. The afferent pathway is described fully in § 4.2.1. Here, a simu-
lation of auditory nerve (AN) firing rate is obtained by passing the acoustic signal
through an outer and middle ear (OME) filter, a bank of DRNL cochlear filters and
a model of inner hair cell function. The simulated AN activity in each channel
of the model is temporally integrated to give a spectro-temporal excitation pattern
(STEP). In the efferent pathway, discussed below in § 4.2.2, an estimate of the
amount of reverberation present in the signal is calculated over a windowed por-
tion of the STEP, using a metric based either on dynamic range or on reverberation
tails. This estimate is finally used to control the amount of efferent attenuation
applied, ATT .

4.2.1 Afferent pathway

To understand the progression of an audio stimulus through the afferent auditory
pathway, Figure 4.2 presents a visualisation of a male voice speaking the word
“stir” as it would appear after each stage of the peripheral auditory processing.
Each element was previously introduced in § 3.2.1, and is discussed in turn below
with the implementation details of how it is used in the computational model for
investigating perceptual compensation for reverberation.

i. Outer and middle ear (OME)

The outer and middle ear (OME) transfer sound pressure variation to the oval win-
dow while filtering the signal’s spectrum to aid sound localisation and strengthen
the frequency-regions likely to contain speech. The OME can be modelled with
a single linear filter that provides a broad resonance around 2.5 kHz that imitates
the ear canal effect, with a subsidiary resonance around 5.5 kHz that corresponds
to the external ear (cf. Pickles, 1988, fig. 2.3 and fig. 2.6). Here, two filters were
combined in series to imitate each step in turn: the first filter characterises the outer
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Figure 4.2: Afferent processing pathway (with efferent attenuation fixed at 0 dB). A single word
(‘stir’ spoken by a male voice) is shown progressing through the model from top to bottom as: in-
put signal yin(t) indexed by the time sample t; stapes displacement after the outer and middle ear
(OME) filter, yom(t); as a basilar membrane (BM) representation ybm(t, c) after the dual-resonance
nonlinear (DRNL) filterbank, additionally indexed by the channel number c with centre frequencies
log-spaced in the range between c1 = 100 Hz and c80 = 8 kHz; as a hair cell response, yhc(t, c);
and as a spectro-temporal excitation pattern (STEP) response, now indexed by the time frame n,
simulating firing activity in the auditory nerve (AN), yan(n, c).
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ATT nonlinear

linear

Figure 4.3: Bank of efferent DRNL filter components (cf. Figure 3.4b). The current model uses
80 filters (only four of these are shown), with centre frequencies log-spaced in the range between
100 Hz and 8 kHz. Efferent attenuation (ATT ) is applied in each channel at the start of the nonlinear
pathway as described by Ferry and Meddis (2007).

ear, and the second, the eardrum-pressure to stapes-velocity transformation in the
middle ear (Lopez-Poveda and Meddis, 2001).

The stapes displacement, yom(t), resulting after OME filtering of input waveform,
yin(t), may be examined by comparing the first and second panels of Figure 4.2.
Here, the initial [s] and [t] of the spoken word ‘stir’ remain strong while the sub-
sequent voiced part, the vowel [3~], appears attenuated in comparison since it is
comprised predominantly of energy in lower frequency regions than the two fil-
ters’ peak frequencies.

ii. Inner ear mechanics

As was shown previously in Figure 3.4a, a single dual-resonance nonlinear
(DRNL) filter models the frequency analysis performed at a particular location
in the cochlea. The two pathways – one of which is strictly linear, and the other,
nonlinear owing to the inclusion of a static ‘broken-stick’ nonlinearity – are added
together at output, and together introduce level-dependent filtering behaviour. Fur-
ther, Figure 3.4b depicted the innovation introduced by Ferry and Meddis (2007),
where an attenuator at the start of the nonlinear pathway models the effect of effer-
ent suppression.

Since a single DRNL filter can represent the vibration resulting at a particular place
along the basilar membrane (BM) in response to an input stimulus (Lopez-Poveda
and Meddis, 2001; Meddis et al., 2001), a bank of efferent-input DRNL filters thus
acts on the OME-filtered signal, yom(t), to represent the whole BM in the current
model. Configured to represent responses of a human listener (Meddis, 2006), the
filterbank in the current model uses C = 80 filters, with centre frequencies, c,
log-spaced in the range between c1 = 100 Hz and c80 = 8 kHz. The resulting
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Figure 4.4: Iso-intensity contours for the basilar membrane velocity response, ybm(t, c), to input
signal levels of 0 to 90 dB SPL (in steps of 10 dB).

representation, ybm(t, c), models the frequency-dependent and level-dependent re-
sponse of the BM, and is depicted for the word ‘stir’ in the third panel of Figure 4.2.

The frequency-dependent and level-dependent response of the BM is examined
more closely in Figure 4.4. Here, iso-intensity contours are plotted for input sig-
nals of 0 to 90 dB SPL (in steps of 10 dB). It is evident that auditory regions
corresponding to speech are again favoured, and that the frequency producing the
maximal BM response clearly varies with sound level. Responses were first calcu-
lated for pure tone test signals in single channels whose frequencies matched values
defined in the international standard for equal loudness contours (ISO226, 2003).
From there, an interpolation function derives intermediate response values (at each
signal level) for each of the C = 80 channels used in the full auditory model. Af-
ter this interpolation, channels are now log-spaced in the region c1 = 100 Hz to
C80 = 8 kHz as required.

iii. Hair cell transduction

The current study models transduction by inner hair cells with a simple scheme
similar to that described by Messing (2007). The resulting hair cell representa-
tion is displayed in the fourth panel of Figure 4.2. Representing the fact that hair
cells fire when bending in one direction only, the output of the DRNL was first
half-wave rectified, giving y′bm(t, c). Secondly, the break down of phase-locking
at high frequencies was simulated by lowpass filtering the half-wave rectified out-
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Figure 4.5: (a) Input-output function for the simple rate-limiter hair cell model described in Equa-
tion 4.1, redrawn from Messing (2007). The dynamic range of the signal is compressed by clipping
the inner hair cell module’s output to lie within a specified set of values between a lower limit (spon-
taneous rate, a0) and upper limit (saturation rate, a1). (b) Response levels of y′′bm(t, c) selected as
threshold and saturation values at b0 = 20 dB SPL and b1 = 70 dB SPL pure tones respectively.

put to a cutoff frequency of 3 kHz by a second order Butterworth filter1, giving
y′′bm(t, c). Finally, the resulting response was mapped to a representation of hair
cell activity, yhc(t, c), by applying a channel-dependent rate-limiting function as
shown in Figure 4.5a, where

yhc(t, c) =


a0 if y′′bm(t, c) < b0
a1 if y′′bm(t, c) > b1

a0 + (a1 − a0)y′′bm(t,c)−b0
b1−b0 otherwise.

(4.1)

The spontaneous and maximum firing rates were fixed throughout all channels of
the model at a0 = 0.5 spikes/s and a1 = 250 spikes/s, respectively. The BM ve-
locity parameters, b, varied channel-by-channel2. To approximate the response
of a typical low-spontaneous-rate auditory nerve (AN) fibre (cf. Moore, 2004,
fig. 1.17), the threshold, and saturation BM velocities were mapped to occur at
around b0 = 20 and b1 = 70 dB SPL respectively, as shown in Figure 4.5b. This
results in the fibre having a fairly large dynamic range of around 50 dB3.

The resulting level-dependent response is depicted across a population of such hair
cell fibres in Figure 4.6, whose centre frequencies span the log-spaced region of

1Messing’s model uses a Johnson filter whose bandwidth increases with centre frequency.
2This is a significant departure from the model presented in Beeston and Brown (2010), where

BM parameters were selected based on the response of a single channel in the 1 kHz region. This
point is discussed further in § 4.6.4 below.

3This contrasts the model implementation of Meddis et al. (2013) in which the response of high-
spontaneous-rate fibres are implicated in MOC efferent feedback, and low-spontaneous-rate fibres
are instead used to control the middle ear muscle and the trigger the acoustic reflex.
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Figure 4.6: Iso-intensity contours are depicted for the hair cell population response, yhc(t, c), to
10 dB stepped input signals between threshold level (defined as a0 = 0.5 spikes/s when b0 = 20 dB
SPL) and saturation level (defined as a1 = 250 spikes/s when b1 = 70 dB SPL). Here, a population
of nerve fibres is simulated covering the hearing range of the model from 100 Hz to 8 kHz, and the
response is shown for a test tone occurring in the centre-frequency of each channel. The frequency
region of maximum response can be seen to vary with the level of the input signal.

100 Hz to 8 kHz used in the auditory model. In each channel, the response to a
test tone matching the channel’s centre frequency is seen to be a0 = 0.5 spikes
per second for the b0 = 20 dB SPL contour. The number of spikes per second
gradually increases as the signal level increases until saturation (a1 = 250 spikes
per second) is reached for the b1 = 70 dB SPL contour. For the 50 dB range
in which the simulated low-spontaneous rate fibres respond, the frequency region
for maximum response varies in line with the BM response characteristics (cf.
Figure 4.4).

The iso-intensity contours in Figure 4.7 describe the characteristic of a single fibre
at levels above the threshold. Here, the response in a single auditory channel cen-
tred at 2.1 kHz is shown for test-tones at equal sound levels which rove in frequency
above and below the channel centre frequency. The response is clearly strongest
when the test-tone is aligned with the channel centre-frequency. However, a fairly
strong response can still be achieved for frequencies several hundred Hz above or
below this value provided that the signal level is great enough.

iv. Temporal integration in the auditory nerve (AN)

The final stage of the afferent processing chain simulates the auditory nerve (AN)
reponse, yan(n, c), from the hair cell response, yhc(t, c) by a process of tempo-

99



4 Computational modelling experiments

1300 1500 1700 1900 2100 2300 2500 2700
0

50

100

150

200

250

Frequency of test−tone (Hz)

Fi
rin

g 
ra

te
 (s

pi
ke

s/
s)

90
80

70

60

50

40

30

Figure 4.7: Response in a single-channel centred at 2.1 kHz when a test-tone varies (in steps of 200
Hz) below and above this frequency. Following data from Rose et al. (1971), additionally reported in
Pickles (1988, Figure 4.7) and Moore (2004, Figure 1.16), the frequency axis is here plotted linearly.
Again, iso-intensity contours are plotted for 10 dB steps, here from 30 to 90 dB SPL. The frequency-
selectivity is again level dependent: at low levels, the channel responds most strongly to tones at
its own centre-frequency. As the level of the test tone increases, the channel tuning broadens and
provides a strong response even for signals of several hundred Hz difference.

ral integration. The spectro-temporal excitation pattern (STEP) which results is
depicted in the lowest panel in Figure 4.2 for the spoken test-word ‘stir’.

Here, a number of neighbouring time-steps are summarised together to provide
a feature representation of the input signal for speech recognition. The temporal
resolution is reduced from the original 48 kHz sample rate used in early stages of
the model, to a much lower output-rate which is set here1 at 100 Hz, i.e. a new
output frame is calculated every 10 ms.

Temporal integration is achieved in the current model using a raised cosine window,
defined as

wrc(k) =

{
1 + cos(2πk

K + π) for 1 ≤ k ≤ K
0 otherwise,

(4.2)

1This differs from the temporal integration stage used in Beeston and Brown (2010): (i) a raised
cosine window now replaces the Hann window of the previous work in order that neighbouring
frames sum to one; (ii) the output frame rate is halved (and window length correspondingly dou-
bled) for compatibility with standard speech recognition software such as the Hidden Markov Model
Toolkit (HTK, Young et al., 2009).
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where k counts the sample index within a window, up to the maximum K = 960
samples, which corresponds to the 20 ms window size used in the current model.
Windows had a hop-size of K/2 samples (i.e. overlap at 50%) which provided a
new output frame every 10 ms (i.e. at 100 Hz), and ensured that neighbouring win-
dows summed to one. These raised cosine windows were applied in a channel-by-
channel manner, wrc(k, c), to the hair cell response in order to simulate temporal
integration and obtain the firing rate in the auditory nerve

yan(n, c) =
2

K

K∑
k=1

wrc(k, c) yhc(
nK

2
+ k, c) (4.3)

where n indexes the time frame in the STEP which results. By this process, the
temporally integrated signal was proportional to the mean of the input hair cell
signal in each channel, but was additionally scaled such that the maximum value
of the output yan(n, c) was equal to the maximum value of the input yhc(t, c).

4.2.2 Efferent pathway

The human auditory system, as yet incompletely understood, was overviewed in
Chapter 3. The output of the afferent pathway is a representation of instantaneous
firing rate in the auditory nerve, yan(n, c), where n indexes the time frame and
c the frequency channel. The current chapter introduces efferent feedback to the
periphery by simulating activity of the olivocochlear system (see § 3.4.1) which
regulates the behaviour of the afferent pathway by attenuating the input to the non-
linear pathway of the DRNL (see Figure 4.1a).

The role of the efferent pathway in the model can be illustrated by considering the
effect of efferent attenuation on the rate-level response curve shown in Figure 4.8.
Here, the auditory response to a spoken stimulus1 presented at varying input signal
levels has been computed in a 7-channel model, with 1 channel per octave across
the whole hearing range. For a given presentation level and attenuation value, the
firing rate here reports the maximum response achieved in any of the 7-channels,
when efferent attenuation was applied throughout the spoken phrase at a fixed level
of either 0 dB or 10 dB. Efferent suppression turns down the gain on the nonlinear
path of the DRNL, reducing its overall output and causing the rate-level curve to
shift toward higher sound pressure levels. This causes the response to stimuli with
low sound levels (which lie on the toe of the curve) to fall below threshold.

1The spoken stimulus is the same ‘sir-stir’ reference file later used for calibration of the input
signal levels for the modelling task in § 4.4.2.
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Figure 4.8: Multi-channel rate-response curve. For demonstration, the simulated auditory nerve
firing response was computed in a 7-channel model (1 channel per octave) for a spoken reference
stimulus presented at varying input signal levels, with efferent attenuation fixed at either 0 dB (white
markers) or 10 dB (black markers). For a given presentation level and attenuation value, the firing
rate here reports the maximum response achieved in any of the 7-channels. The response curve
shifts to higher sound pressure levels as efferent attenuation is applied (here, 10 dB). For low signal
presentation levels, this has the effect of reducing the firing response back to its threshold value.

The central hypothesis underlying the following modelling work is that the shift
in the rate-level curve observed in Figure 4.8 will subdue the response to low-
level reflections (from the late reverberation) sufficiently that spectro-temporal dips
will re-appear in the signal. Since such periods of low amplitude are cues to the
identification of stop consonants, an increase in efferent attenuation might thus
bring about an improvement in the representation of reverberant stop consonants.

4.3 Control of efferent suppression

In the previous section, the consequence of manually applying efferent attenuation
was demonstrated using a model based around the efferent-DRNL implementation
of Ferry and Meddis (cf. § 4.2.2, and Figure 4.8 in particular). As shown in Fig-
ure 4.1b, the current model extends the work of Ferry and Meddis by introducing
an ecosystemic control mechanism (Di Scipio, 2003) that determines the effective-
ness of the efferent feedback loop. By varying the level of attenuation applied in the
model in proportion to the amount of reverberation detected in the recent history of
the acoustic surroundings, auditory efferent suppression is thus used as a candidate
theory for explaining the effects of perceptual compensation for reverberation.
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4.3 Control of efferent suppression

This section describes the conditions that such a control mechanism must satisfy if
it is to allow simulation of perceptual compensation for the effects of reverberation
that is observed in human speech perception. Two prospective metrics for reverber-
ation estimation are first described below, each of which makes an assessment of
the amount of reverberation present in the signal, and then (automatically) uses this
value to update the value of the efferent attenuation applied in the model. The se-
lected reverberation measures are subsequently used to model human listener data
collected by Watkins (2005a) in a series of experiments below (Experiments M1,
M2 and M3).

In an ideal world, the metric deriving control for efferent attenuation would be
based on human physiology and function. While behavioural data gathered in
psychoacoustic studies is beginning to elucidate various mechanisms underlying
perceptual compensation for reverberation, relatively little is yet known about the
physiological factors influencing these processes. Thus compensation for rever-
beration is not yet well-enough understood for a model to be biologically accu-
rate. Rather, the current model makes a crude summarisation of known auditory
processing in order to create a functional simulation of the compensation effect.
Here, all higher levels of the auditory system are lumped together and treated as a
‘black-box’ which outputs a single efferent signal. This efferent signal acts on the
peripheral auditory system and thereby regulates the afferent processing behaviour.
This simplification is easily seen in Figure 3.1b; only the final descending pathway
is modelled.

Functionally, then, the job of the feedback circuit is to make an assessment of the
amount of reverberation present in the signal, and to use this value to automatically
update the attenuation parameter in the DRNL filter bank. Two questions thus im-
mediately arise. The first asks how reverberation should be quantified; the second
queries the time-period over which this quantification should be done. These two
areas are discussed in turn below.

It is generally accepted that the preceding context appears to inform a listener’s de-
cision about a subsequent test-word. It is not yet fully understood, however, what
the nature of this influential information may be. One theory, termed ‘modulation
masking’, was put forward by Nielsen and Dau (2010). This explanation suggests
that human listeners may adapt to the degree of modulation present in the preced-
ing context signal; thus it would appear that a measure of dynamic range might
prove useful in modelling compensation for the effects of reverberation. One such
measure, the mean-to-peak ratio (MPR) is described below. On the other hand,
Watkins (2005a) argues that listeners are informed by mechanisms that detect and
compensate for the ‘reverberation tails’ present in a signal. More recently, Watkins
et al. (2011) have suggested further that this compensation mechanism may be
informed by an assessment of temporal envelopes within individual auditory chan-
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nels. The second measure described below, the low-pass mask (LPM) reverberation
estimator is based on these principles. Many other approaches could of course be
investigated to quantify reverberation in the auditory modelling task but are not
investigated further in the current work. One that has proved successful in ASR
involves modelling the excitation signal for voiced speech with the linear predic-
tion residual (Ananthapadmanabha and Yegnanarayana, 1979), and examining the
higher order statistics (i.e. the kurtosis) to quantify the ‘peakiness’ of the resulting
probability distribution (e.g., Gillespie et al., 2001). Another approach that looks
interesting from a biological point of view would be to examine the auditory onset-
rather than offset- response (see e.g., Heil, 2003; Longworth-Reed et al., 2009).

The time course of the monaural compensation effect has yet to be studied in de-
tail1. Since Watkins (2005a) has repeatedly demonstrated compensation effects
using single utterances, however, it seems that we are interested in a fairly rapid
mechanism. However, in the earlier discussion of compensation for reverberation
it became apparent that various constancies might be active on different time-scales
(cf. § 2.4). Indeed, looking across recent studies that examined the timescales on
which binaural compensation effects operate, it appears that the relevant timescale
for contextual information may depend critically on the listener task. Long-term
learning (over around 5 hours of exposure to a particular room condition) can im-
prove performance in listeners’ localisation accuracy (Shinn-Cunningham, 2000).
On the other hand, listeners’ ability to determine the azimuth of a test pulse appears
to be impeded by just seconds of inconsistent reverberation on the preceding con-
text (Zahorik et al., 2009). For binaural speech-perception tasks, experiments have
shown compensation occurring at the minimum temporal resolution of the anal-
ysed data: in minutes for sentence sets in Longworth-Reed et al. (2009); within
six sentences in Srinivasan and Zahorik (2013); and in just a few seconds in Bran-
dewie and Zahorik (2010). Brandewie and Zahorik (2013) recently designed a
study specifically to measure the time course of the binaural effect, and reported
that 850 ms2 of room exposure was sufficient to achieve considerable speech intel-
ligibility enhancement.

Having thus derived a measure of reverberation over a particular time period,
whether it be based on dynamic-range or on reverberation tails, the measure is
then used to linearly control the efferent attenuation applied in the model as de-
scribed below, i.e. attenuation increases as the level of reverberation increases.
This is similar to the noise-based modelling strategies employed elsewhere, where

1Experiment H4 below directly addresses this point in Chapter 5.
2Interestingly, they found that the compensation mechanism appeared to slow down when the

listener task involved dealing with an additional noise component in the stimuli.
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Figure 4.9: Demonstration of the mean-to-peak ratio (MPR) reverberation estimator. Above:
STEP simulated auditory nerve response, yan(n, c). Below: Envelope (ENV) of the across-channel
summed auditory nerve response (as described by Equation 4.4). In the lower panel, the mean level
of the ENV signal is shown with a solid line; the peak is shown dotted. An increase in reverberation
would raise the noise floor and reduce the dynamic range. Thus the peak would be little changed,
while the mean value would correspondingly increase.

attenuation increases as the level of noise increases (Brown et al., 2010; Lee et al.,
2011; Messing et al., 2009).

4.3.1 Dynamic range estimation: mean-to-peak ratio (MPR)

The mean-to-peak ratio (MPR), related to the ‘blurredness’ metric of Palomäki
et al. (2004), was proposed in Beeston and Brown (2010) as a method to monitor
the dynamic range of the simulated auditory nerve signal (or more specifically, it’s
temporal envelope), and thereby arrive at an estimate of the amount of reverbera-
tion present in the signal. The method relies on the assumption that late-arriving
reflections add additional energy to a signal which reduces its dynamic range as
the noise floor rises. While the peak value of the signal remains more-or-less un-
changed, the mean value rises with additional reflected energy. Thus, with MPR
defined simply as the ratio of the mean and peak values, an increase in the level of
reverberation (raising the mean value) will bring about a corresponding increase in
MPR value recorded.

The upper panel of Figure 4.9 shows the STEP simulated in the auditory nerve
(AN) in the afferent pathway of the model in response to the spoken word ‘stir’
(this STEP was previously shown in the final panel of Figure 4.2). The response in
all C frequency channels is summed at each time step n, giving a pooled estimate
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of auditory nerve activity,

ENVan(n) =
C∑
c=1

yan(n, c). (4.4)

The estimated level of reverberation, Rmp(n), at time step n, is then quantified
by the ratio of the mean and peak values of the previous AN temporal envelope
computed over a windowed portion of duration Z time frames,

Rmp(n) =

1
Z

n∑
z=n−Z

ENVan(z)

n
max
z=n−Z

ENVan(z)
(4.5)

where z indexes time frames within this temporal window.

Posed in this way, later-arriving reflections can be regarded as contributing addi-
tional energy to a signal, filling dips in its temporal envelope with reflected energy,
raising the noise floor and thereby reducing its dynamic range. The previous chap-
ter reviewed work suggesting that the efferent auditory system is involved in gain
control, and appears to bring about a suppression of the auditory nerve response in
situations of additive background noise (see § 3.4.1). Thus it seems that a close re-
lationship may exist between reverberation, noise suppression and dynamic range
control. A model that adjusts efferent suppression by detecting the effects of re-
verberation on the signal’s dynamic range thus explores the idea that low-level
mechanisms controlling dynamic range in the auditory nerve might be involved in
compensation for reverberation.

4.3.2 Reverberation tails estimation: low-pass mask (LPM)

The low-pass mask (LPM) metric is not concerned with the dynamic range of the
signal, but instead attempts to capture information regarding offsets in the signal
since these are frequently prolonged by the presence of a reverberant tail (Beeston
and Brown, 2013; Kallasjoki et al., 2014). Inspired by missing data approaches to
robust speech processing, LPM considers individual areas in the spectro-temporal
representation to be either informative (reliable) or not (unreliable) about the off-
sets in individual frequency channels of the simulated auditory nerve response.
Subsequent processing is based on the informative parts of the signal only; other
parts are discarded in the reverberation estimation calculation. A single-channel
demonstration, from which it can be inferred that LPM attempts to judge the
amount of reverberation present based on the proportion of energy present during
tails (offsets) in the signal, is presented in Figure 4.10.

106



4.3 Control of efferent suppression

Time (ms)

 

y a
n

y lp
y′

lp
m

lp
m

lp
 y a

n

10050 150 200 2500

Figure 4.10: Demonstration of the low-pass mask (LPM) offset capture technique in a single-channel
of the simulated AN response. Top to bottom: simulated AN response, yan(n, c), in a single high-
frequency channel (where c = 76); smoothed temporal envelope in this channel, ylp(n − τ, c);
derivative of the envelope, y′lp(n − τ, c); binary mask, mlp(n, c), which locates offsets via the
negative portions of the derivative; the masked signal resulting in that channel, mlp(n, c) yan(n, c).

Figure 4.10 describes how the LPM method locates ‘tail-like’ regions in yan(n, c),
the simulated STEP resulting in the auditory nerve simulation. First, the smoothed
temporal envelope in each channel, ylp(n − τ, c), is estimated using a second-
order low-pass Butterworth filter with cutoff frequency at 10 Hz, and is temporally
corrected to remove the filter delay, τ . The derivative of the envelope, y′lp(n−τ, c),
is then calculated and the binary mask, mlp(n, c), subsequently locates its negative
portions such that

mlp(n, c) =

{
1 if y′lp(n− τ, c) < 0,

0 otherwise.
(4.6)

Finally, the amount of reverberation present in the signal at time frame n is es-
timated with a single number, Rlp(n), by computing the mean masked signal
strength present in each of the C channels over a preceding context window of
Z frames duration (so that z indexes frames within the window), and taking the
across-channel mean to summarise these values:

Rlp(n) =
1

C

1

Z

C∑
c=1

n∑
z=n−Z

mlp(z, c) yan(z, c). (4.7)

An increase in the level of reverberation would typically cause a longer reverbera-
tion tail, thereby increasing the proportion of signal contributing toward the mea-
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sure, i.e. with value 1 in the binary mask mlp(n, c). An increase in reverberation
would thus likely give rise to a corresponding increase in the value of Rlp(n).

There is some support in the both psychoacoustic and speech-technology literature
for a ‘reverberation tail’ based approach to dealing with reverberation. For exam-
ple, Watkins and colleagues propose that listeners are informed by a reverberation
tail-based perceptual mechanism (Watkins, 2005a; Watkins et al., 2011). Addi-
tionally, Javed and Naylor (2014) have recently suggested a metric based on the
detection of such tails which correlates with objective measures of room reverber-
ation and aims to predict the perceived impact of reverberation on a given speech
signal. Since reverberation tail metrics are asymmetric in time, they hold the poten-
tial to further examine and possibly explain findings regarding speech perception
in time-reversed rooms.

4.4 Experiment M1: Application of the efferent model to
sir-stir continuum experiments

In this section, the auditory model is applied to the reverberant ‘sir-stir’ listener
task of Watkins’ continuum experiments.

The main findings of Watkins’ paradigm are detailed first (§ 4.4.1), including lis-
tener results for conditions investigating time-forward and time-reversed speech,
and time-forward and time-reverse reverberation. Input and output stages of the
modelling study are also described (cf. the first and final boxes in Figure 4.1b). At
input, the signal level must be scaled appropriately to provide input to the auditory
model that is equivalent to the level heard by human listeners (§ 4.4.2). The pro-
posed reverberation estimators are then aligned to assess the part of the preceding
context immediately prior to the test-word (§ 4.4.3), and at output, the simulation of
auditory nerve firing is converted into a ‘sir’ or ‘stir’ decision (§ 4.4.4). The effect
of efferent attenuation on ‘sir-stir’ continuum tokens is examined manually at first
(§ 4.4.5). Finally, the efferent-feedback-monitoring parameters are trained on data
points for human listener category boundary points for two naturalistic listening
conditions (§ 4.4.6).

After these calibration stages, the remainder of the chapter evaluates the model
against Watkins’ human listener data to investigate time-reversal of the preceding
context speech in Experiment M2, and time-reversal of the preceding context re-
verberation in Experiment M3.
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4.4 Experiment M1: Application to the sir-stir continuum

main effect of the test-word’s distance, where F�1,5�
=17.13, and p�0.009. There is again extrinsic compensation
for this effect of reverberation on the test word, which gives
a main effect of the context’s distance with F�1,5�=37.75,
and p�0.0017.

Effects of the distances of the test word and of the con-
text are largely due to their prominence in the speech condi-
tion. Effects of reverberation on test words are much less
prominent in both of the conditions where the contexts are
noise. This gives an interaction between test-word’s distance
and noise condition with F�2,10�=6.95,
Huynh–Feldt epsilon=0.7371, and p�0.025. In contexts
that are noise the extrinsic compensation effect is not evi-
dent. Here, increases in the context’s distance do not reduce
the effect of the test-word’s distance as they do in the speech
condition. This gives an interaction between the context’s
distance and noise condition with F�2,10�=38.32,
Huynh–Feldt epsilon�1.0, and p�0.0001. Effects of the
context’s distance are more prominent for test sounds at 10
m than they are at 0.32 m, as found previously, but here
again this result pattern is confined to the speech condition,
giving a three-way interaction between context’s distance,
test-word’s distance, and noise condition with F�2,10�
=25.08, Huynh–Feldt epsilon=0.7090, and p�0.0009.
Overall there is a main effect of noise condition with
F�2,10�=16.62, Huynh–Feldt epsilon�1.0, and p�0.0007.
There are no other significant F-ratios.

C. Discussion

Effects of the context’s distance are not apparent when
spectral transitions are removed from the context by this ex-
periment’s noise processing. This may be because signal
characteristics that arise at spectral transitions, such as the
tails added by reverberation, are necessary for compensation.
However, it is also possible that compensation is reduced
here for some other reason, perhaps because it is somehow
informed by the context’s words, which are not heard in
noise versions of contexts. Another possibility is that extrin-
sic compensation only affects test words that are sequentially
grouped with the context �Bregman, 1990�, and a noise con-
text might not group with a test word if these sounds are
heard as if they have come from different sources.

Results in the speech conditions seem to indicate that the
boundary value for 10 m same-distance phrases �upper panel
of Fig. 4�a�� is influenced by extrinsic compensation, but
similar boundary-values for 10 m test words are found when
contexts are noise �lower panels of Fig. 4�a��. The bound-
aries for noise contexts might be this low because there is an
intrinsic form of compensation in these conditions, deriving
perhaps from the reverberant tail on the test-word’s vowel.
Such compensation might assess the signal’s reverberation
from only the test word, and exclude the context if it is noise.
The parts of the signal that are included in such assessments
of reverberation may depend on the extent to which they are
perceptually grouped with the test word.

There is a further possible reason for the low boundaries
with 10 m test words in the noise conditions. These test
words may be influenced by an extrinsic compensation from

FIG. 4. Means and standard errors of category boundaries from experiments
4 and 5 where the 6 listeners in each experiment identified rapidly spoken
test-words and where the contexts were played through BRIRs from the
L-shaped room. �a� Data from experiment 4, where the effects of the con-
text’s distance and of the test-word’s distance are both sharply reduced when
contexts are processed to turn them into speech-shaped signal-correlated
noise. This reduction happens in the condition where the noise processing is
applied before convolution with the BRIR �noise before� as well as in the
condition where this processing is applied after this convolution �noise af-
ter�. The speech condition is a control without any noise processing of the
contexts. �b� Data from experiment 5, where the effects of the context’s
distance are markedly reduced when the context’s reverberation pattern is
reversed �reverb reverse�, but not when the context’s speech is reversed
�speech reverse�. Large effects of the test-word’s distance are still apparent
in the reversed reverberation conditions, while effects of the context’s dis-
tance are reduced.
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Figure 4.11: Human listener response data in Watkins
(2005a, Experiment 5), showing mean and standard error
for six listeners’ category boundary positions. In forward-
reverberation conditions (above), the category boundary
shifts upward when the test-word alone is far-reverberated.
Compensation for reverberation is indicated by the partial
recovery of the boundary’s earlier position when the con-
text is also far-reverberated. Compensation is disrupted in
reverse-reverberation conditions (below). Reversal of the
context speech had little effect on the category boundaries
recorded in either reverberation condition. Additional
markers (circles) indicate the two same-distance condi-
tions for the forward-speech and forward-reverberation
stimuli, with near-near (left) and far-far (right) context-
test distances respectively. These two data-points are used
to train the efferent attenuation mappings in the following
computational study (cf. § 4.4.6 below).

4.4.1 Modelling task: Watkins’ ‘sir-stir’ continuum data

Watkins’ continuum experiments were outlined previously in § 2.4.1. In these
experiments, the listener task is underlain by a process of categorical perception
which appears to disregard the gradual amplitude modulation imposed across con-
tinuum steps that creates the impression of the [t] at one end (vs. its absence at the
other). Categorical perception ensures that even intermediate continuum steps are
identified by listeners as either a spoken ‘sir’ or ‘stir’ test-word.

Using such a continuum of test-words, compensation for reverberation has been
repeatedly demonstrated1. Experiment M1 is a calibration stage aimed to prepare
the auditory model to simulate this listener task. The main findings were previously
depicted in Figure 2.11, and are visible again in the top left panel of Figure 4.11
which shows human listener data from Watkins (2005a). Here, the influence of far-
distance reverberation on the test-word increases the number of ‘sir’ responses (i.e.,
shifts the category boundary upwards), as though the dip in the temporal envelope
that cued the [t] consonant had been concealed by reverberant energy. However,
increasing the level of reverberation in the context to far-distance restores a number
of ‘stir’ responses, even though the factors that had seemed to obscure the [t] are
still present.

1See for example: Watkins (2005a, b); Watkins and Makin (2007b, c); Watkins and Raimond
(2013); Watkins et al. (2010a, b, 2011)
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Two further findings of Watkins are of particular interest and are selected for the
subsequent modelling experiments. Listener data for these conditions are shown in
Figure 4.11.

Firstly, it is apparent from a comparison of the two upper panels in Figure 4.11, that
reversing the direction of the context speech has little effect on the listener data:
compensation for reverberation is qualitatively similar in both cases. Since the
context speech was not intelligible in the reversed speech case, this result suggests
that the compensation mechanism does not rely on phonetic perception. Experi-
ment M2 investigates whether the MPR- and LPM-driven efferent models are able
to replicate this finding.

Secondly, comparing upper and lower panels in Figure 4.11 reveals that the com-
pensation mechanism is disrupted when the time-direction of reverberation is re-
versed on the preceding context. As was discussed earlier (cf. § 2.1.6), this result
is of interest in the current auditory modelling study since it cannot be predicted by
objective measures of reverberant speech perception based on the room’s modula-
tion transfer function. Experiment M3 then tests the suitability of the MPR- and
LPM-based efferent suppression controllers on this task.

4.4.2 Input signal level calibration

In order for the computational auditory model to undertake the ‘sir-stir’ listen-
ing task, a process of input signal level calibration was required. The aim of this
step was to ensure that the experimental stimuli were presented to the model in an
equivalent manner to that in which they had been presented to listeners in Watkins
(2005a), i.e. with single-channel sound files sampled at 48 kHz, at a maximum root
mean square (RMS) level of 48 dB SPL (measured with a 1-second time constant).

A particular audio file was used as a reference signal1. This file was played through
the equipment that delivered stimuli to listeners in Watkins’ laboratory, and the
voltage arising in the headphone wire was measured with an analogue RMS volt-
meter (B&K 2425) set to the ‘slow’ setting. This resulted in a continuously varying
voltage signal, measured internally with a 1 second time constant, whose maximum
value was read off by eye at 60 mV. Since this equipment had previously been cal-
ibrated by Watkins, this voltage was known to result in a signal in the left-channel
of the headphones at a level of 48 dB SPL.

The analogue voltmeter RMS signal observation was simulated in Sheffield in or-
der that an appropriate scaling factor could be calculated for the reference file

1Additionally, this audio reference file was re-used to calibrate the presentation level for the
human listener experiments as described in the following chapter (cf. § 5.2.3).
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(based in the same way on its maximum RMS value). Thereafter, all ‘sir-stir’
signals could be multiplied by this scaling factor prior to their presentation to the
model, resulting in signals being delivered at 48 dB SPL as was done in Watkins’
experiments.

RMS values were therefore calculated for the ‘sir-stir’ reference audio file, using
time-windowed blocks ofK = 48, 000 samples (of duration 1 second at the 48 kHz
sample rate in use), and whose starting index t was incremented by 1 sample on
each iteration of the calculation. In this way, a series (length T ) of local RMS
values RMS(t) were calculated using

RMS(t) =

√√√√ 1

K

K∑
k=1

(yin(k)− ȳ)2 (4.8)

where k indexes the sample within the RMS time-window, and ȳ is the mean value
within the signal portion being considered (which has the effect of removing any
DC bias in the signal). The peak RMS level of the reference signal, RMSpk, was
then found by simply taking the maximum value in this series such that

RMSpk =
T

max
t=1

(RMS(t)) . (4.9)

When the audio presentation level is defined as L, a sound pressure level (SPL)
value measured in decibels (dB), then the scale-factor adjustment, l, that presents
the reference file to the model at the selected level is given by

l =
√

2

(
p0

RMSpk

)
10L/20 (4.10)

where the standard reference sound pressure value is used, p0 = 105 Pa (20 micro
pascals).

Calculated once for the ‘sir-stir’ reference signal with the desired presentation level
of L = 48 dB SPL, the corresponding value of l was stored and subsequently used
to scale every other 48 dB SPL presentation of the monaural ‘sir-stir’ stimuli to the
auditory model.

4.4.3 Monitoring reverberation in the preceding context

Two signal-based approaches to reverberation quantification were proposed in
§ 4.3, and important aspects of their function were described with reference to an
unreverberated signal. In the current section, these two techniques are discussed
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in turn to examine whether they do indeed capture something useful about the re-
verberation content of the signal in the acoustic context immediately prior to the
test-word itself.

The mean-to-peak ratio (MPR) metric works on a specific windowed portion of the
context (the recently experienced time), and measures the mean and the peak values
experienced, thus keeping track of the signal’s dynamic range. This is displayed in
Figure 4.12. In Figure 4.12a, the STEP representing AN firing rate is shown in the
top panel for a test utterance reverberated at the near distance. The context portion
just prior to the test-word, here Z = 100 frames, corresponding to context window
of 1 second duration at the model’s output frame rate, is displayed in the second
panel. Finally the third panel shows the across-channel sum, defined earlier in
Equation 4.4. This reveals a signal with a large dynamic range, strong modulation
content, and relatively sharp onsets and offsets.

The far-distance context is similarly shown in Figure 4.12b. The peak value is of
the same order of magnitude as in the near condition, with the most significant dif-
ference being that the dips in the temporal envelope have largely been filled with
reverberant energy (effectively increasing the noise floor). This increase in energy
shows as a rise in the signal’s mean value, which thereby causes a corresponding
raise in the value estimating the reverberation content of the signal Rmp (cf. Equa-
tion 4.5). If an increase in Rmp value were to be mapped in the efferent circuit
to a process of stronger attenuation, it is anticipated that this would decrease the
simulated AN response to the late-arriving, low-level reflected energy, and thereby
uncover some of the dips in the temporal envelope.

A similar demonstration is given in Figure 4.13 for the low-pass mask (LPM) re-
verberation estimator. In this case, only the Z = 100 frames of the context window
are shown, again for the response in a single high-frequency auditory channel. For
the major region of activity in this channel (at roughly 350 ms before the end of
the context portion), a comparison of the binary masks in the near distance (Fig-
ure 4.13a) and far distance (Figure 4.13b) reveals that the increased reverberation
adds longer ‘tails’ to the window in the far condition. The negative-going part of
the smoothed temporal envelope suggests a masked tail-contribution in this channel
over approximately 12 frames in the near condition, and over double this duration
in the far context condition.

Again, a higher value of Rlp results for the far-reverberated speech context than
for the near-reverberated context. Following the same logic as described for the
MPR estimator above, if an increased Rlp were again mapped to an increased at-
tenuation value, then the increase in reverberation could be thought of as activating
the efferent suppression mechanism and may possibly simulate effects of MOC
unmasking.
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(a) near distance context: MPR measure, Rmp = 0.34
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(b) far distance context: MPR measure, Rmp = 0.47

Figure 4.12: Mean-to-peak ratio (MPR) measures of the preceding context. STEPs resulting from
the simulation of auditory nerve activity, yan(n, c), for the forward-speech, forward-reverberation
continuum stimulus (step 00) are shown in the upper panels of Figure 4.12a for the near-near context-
test condition, and in Figure 4.12b for the far-far condition. The second and third panels for each
stimulus reveal the MPR assessment of the level of reverberation in the portion of the context of
1 second duration (Z = 100 frames) immediately prior to the occurrence of the test-word. The
across-channel envelope, ENVan(n), as defined by Equation 4.4, shows sharp offsets and a high
dynamic range for the near-distance context and resulted in the value Rmp = 0.34. The far-distance
context appears less strongly modulated, with reflected energy partially filling some of the dips in
the temporal envelope. The increase in reverberation in this condition raised the MPR value to
Rmp = 0.47. Other details are as described in Figure 4.9.
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(a) near distance context: LPM measure, Rlp = 0.63
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(b) far distance context: LPM measure, Rlp = 0.80

Figure 4.13: Single-channel demonstration of the low-pass mask (LPM) estimation technique. A
single high-frequency channel (c = 72) of the STEP is shown, highlighting the simulated auditory
nerve response for the portion of context of 1 second duration (Z = 100 frames) immediately prior
to the temporal location of the test-word, first in conditions of near distance reverberation (4.13a),
and subsequently with far distance reverberation (4.13b). For either stimulus, the smoothed temporal
envelope in the selected channel, ylp(n − τ, c), and its derivative, y′lp(n − τ, c), are calculated.
Negative portions in the derivative signal create a binary mask, mlp(n, c), which locates the portions
of the original signal most likely to contain the reverberation tails, mlp(n, c) yan(n, c) (cf. 4.7). The
value of Rlp rises from 0.63 in the near distance condition to 0.80 in the far distance condition.
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(a) STEP representations for canonical ‘sir’ and ‘stir’ templates
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(b) ‘Sir-stir’ identification using mean squared error (MSE) distance.

Figure 4.14: (Fig. 4.14a) STEP representations of the word ‘sir’ (left) and ‘stir’ (right) from the ex-
treme ends of the unreverberated ‘sir-stir’ continuum. The vowel is included here for demonstration,
though it is discounted in the experiments reported below. (Fig. 4.14b) Example of the EMSE score
(cf. Equation 4.11) altering across the stimuli in the continuum, quantifying the distance from ‘sir’
and ‘stir’ templates for each continuum step. Here, the first five steps of the continuum were selected
as ‘sir’, whilst the remainder of the steps bring about ‘stir’ responses. The category boundary B (cf.
Equation 4.12), results in a boundary quantised to the value of 4.5.

4.4.4 ‘Sir-stir’ speech identification

A simple template-matching approach was employed for speech identification: for
each sound file, the model responds with a ‘sir’ or ‘stir’ decision in much the same
fashion that a human listener does. To simulate this 2AFC task, STEP templates
were derived from the ‘sir’ and ‘stir’ words at either end of Watkins’ unreverber-
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ated ‘sir-stir’ continuum (with the efferent attenuation parameter fixed at 0 dB1).
Resulting templates for canonical ‘sir’ and ‘stir’ test-words are shown respectively
in Figure 4.14a.

During simulation, utterances for each step of the continuum were presented to the
model and the corresponding STEP token, ytok

an , was computed from the simulated
auditory nerve response. The time frames corresponding to the test sound were
compared in turn with the ‘sir’ and ‘stir’ templates, ytem

an , using a standard MSE
metric2, given by

EMSE(ytok
an , y

tem
an ) =

1

C

1

N

C∑
c=1

N∑
n=1

[
ytok

an (n, c)− ytem
an (n, c)

]2
(4.11)

where ytok
an and ytem

an are STEPs of dimension C frequency channels and N time
frames. Since listeners rely on a specific phonetic cue (the presence or absence of
a [t]) in order to distinguish between ‘sir’ and ‘stir’, the template matching process
was similarly restricted to the part of the test-word that contains the initial sibilant
and stop3. For each utterance, the template with the smallest value of EMSE was
then chosen as the test sound identity (‘sir’ or ‘stir’). This process is visualised in
Figure 4.14b.

Finally, the category boundary reported the point along the 11-step continuum at
which the ‘percept’ switched from ‘sir’ to ‘stir’, as shown by vertical line in Fig-
ure 4.14b. By analogy to the numerical method outlined in Watkins (2005a), the
category boundary B was calculated essentially from a count of the number of sir
responses, Isir, with

B = Isir − 0.5 (4.12)

so that its values lie in the range -0.5 to 10.5 as used by Watkins. Since Watkins
reported results across a number of human listeners, each of whom received a
number of presentations of each stimulus, his category boundary results varied
smoothly across the entire range. Contrasting this, the current model is quantised:
it can only output category boundaries directly at {−0.5, 0.5, 1.5, ..., 10.5}. Since
the model is fully deterministic, repetitious presentation of stimuli to the model
would bring about exactly the same result each time. A number of suggestions are
discussed in § 4.7.3 below to work around this issue.

1In Beeston and Brown (2010), efferent attenuation was not fixed at 0 dB at this stage. Rather,
templates were created using the linear-fit-derived attenuation values at each time-step.

2A similar approach, comparing unknown tokens to frozen speech templates using the MSE
distance, was also used in Messing et al. (2009).

3With the benefit of hindsight, this appears overly restrictive (cf. discussion in § 4.7.3).
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(c) ATT = 0 dB: continuum step 5 = ‘sir’
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Figure 4.15: STEP representations of the consonant portions of ‘sir’ (4.15a) and ‘stir’ (4.15b) from
the extreme ends of the unreverberated ‘sir-stir’ continuum. A test-word from the middle of the con-
tinuum is initially reported as ‘sir’ in the presence of reverberation (4.15c). When efferent attenuation
is applied, the /t/ closure (triangle) is partially revealed and the word is reported as ‘stir’ (4.15d).

4.4.5 Efferent attenuation applied to the continuum

Section 4.2.2 previously explained the central hypothesis underlying the efferent
model, namely that the shift in the rate-level curve (cf. Figure 4.8) will suppress
the response to low-level reverberation in signal areas that were previously char-
acterised by spectro-temporal gaps. In this way, the influence of reflected energy
protruding into the signal regions of low amplitude will be reduced. Since stop
consonant perception is influenced by dips in the temporal envelope, and since
such regions are easily obscured by reflected energy, it follows that an increase in
efferent attenuation might allow improved recognition of reverberant stop conso-
nants.

To investigate the effects of efferent attenuation on the ‘sir-stir’ continuum stim-
uli, a model was configured in the ‘open-loop’ fashion as displayed in Figure 4.1a.
Here, the efferent attenuation parameter, ATT (measured in dB), could be manu-
ally specified, and held fixed for the entire duration of the sound file.

Figure 4.15 illustrates this process with ‘sir-stir’ continuum files. Panels 4.15a and
4.15b show the initial consonant portions [s] and [st] of the unreverberated contin-
uum extremes for ‘sir’ and ‘stir’ respectively. In 4.15c, the STEP resulting from
a reverberated signal from the middle of the continuum is shown. Here, reflected
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energy is smeared across the signal, and the model responds by labelling the token
‘sir’. In 4.15d, a fixed amount of efferent attenuation has been applied to the same
reverberant sound file viewed in 4.15c. The attenuation applied has reduced the
simulated auditory nerve response overall, and the model this time selects the label
‘stir’ as the closest match.

This result confirms that manipulation of the efferent attenuation parameter pro-
vided to the DRNL filter bank (Ferry and Meddis, 2007) can indeed influence the
subsequent recognition of a reverberant stimulus from the middle of the Watkins’
‘sir-stir’ continuum. Here, a token was first recognised as ‘sir’ when reverbera-
tion obscured spectro-temporal dips in the signal, and secondly recognised as ‘stir’
when the simulated auditory nerve response to low-level reflected energy was sup-
pressed by the efferent signal.

4.4.6 Tuning the efferent feedback circuit

This section describes how the approximate operating point of the efferent feed-
back circuit was found, in order that the model may be run in the ‘closed-loop’
implementation shown in Figure 4.1b where the efferent attenuation parameter,
ATT , is derived on the fly from the measured metric value (MPR or LPM). The
process deriving the metric-to-attenuation mappings is as follows.

Two experimental conditions from Watkins (2005a, Experiment 5) were selected
for use as training data. These conditions are marked on Figure 4.11, and consti-
tute the two naturalistic conditions of everyday listening: near- and far-distance
reverberation, while both the speech and reverberation remain in the usual time-
forwards direction. For each of the stimuli at these training conditions, sound files
were scaled and input to the model as described in § 4.4.2; the STEP for each con-
tinuum step was computed in the auditory model, and matched against ‘sir’ and
‘stir’ templates to obtain the category boundary as described in § 4.4.4. Concur-
rently, the value of efferent attenuation applied in the model, ATT , was varied
systematically from 0 to 15 dB in steps of 0.5 dB.

The results of this process are shown for the near-distance reverberation condition
in Figure 4.16a, and for the far-distance condition in Figure 4.16b. The quantisa-
tion of the model, discussed in § 4.4.4, is apparent in the descending staircase-like
pattern of data points. The near-distance condition appears to be relatively robust to
changes in attenuation: the staircase has broad, flat steps. Furthermore, the mean
category boundary for the human listeners, at B ' 3, lies directly between two
possible model outputs (B = 2.5 or B = 3.5). On the other hand, the far-distance
condition has a steep slope more typical of psychometric functions: moving out-
with a fairly small range of efferent attenuation values (c. 4 to 8 dB) is enough to
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Figure 4.16: Derivation of the efferent attenuation mapping function in Experiment M1. Above: De-
termining the value of efferent attenuation that approximates category boundaries, B, in the human
data for near-near context-test distance stimuli (Figure 4.16a) and for far-far stimuli (Figure 4.16b).
Quantisation in the boundary decisions is overcome using an interpolated sigmoid fitting process.
Below: The corresponding reverberation estimation values are shown as a function of the efferent at-
tenuation applied. The MPR measure (Rmp in Figure 4.16c), and LPM measure (Rlp in Figure 4.16d)
consistently produce larger values for the far reverberation conditions (plotted with continuous lines)
than for the near distance conditions (dotted).

flip the response of the computational model from ‘sir’ to ‘stir’ for all steps of the
continuum.

To obtain the value of efferent attenuation that would approximate the category
boundaries recorded in Watkins’ human listener data, the data-points arising from
the model simulations are fitted with a sigmoid curve (shown in the solid line in
Figures 4.16a and 4.16b) at each of the near- and far-distance conditions. The
human category boundary is marked with a horizontal line, and the resulting ATT
value with a vertical line. Thus for the open-loop model configuration, where the
attenuation is applied at a fixed level (throughout the duration of the sound file), the
near-near category boundary would be well matched (were the ‘sir-stir’ identifica-
tion quantisation not an issue) at aroundATT ' 3.5 dB. A correspondingly higher
value of ATT ' 5 dB would be needed to achieve the far-far category boundary.
Here, the principle underlying the model becomes apparent: when there is more
reverberant energy, more efferent attenuation is required.
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Section 4.3 previously proposed two reverberation estimation methods to drive the
efferent feedback circuit when run in the closed loop model configuration. There
is little evidence with which to determine exact time-scales over which such mea-
sures might be best implemented, however the efferent system is generally thought
to act on rather slower timescales than the afferent system (Backus and Guinan,
2006; Cooper and Guinan, 2003). In the present study, the context-assessing mea-
sures were each calculated over a signal period of duration 1 second (i.e. Z=100
frames) prior to the test-word’s position in the stimulus. The resulting estimator
values, again varying with the fixed level of attenuation applied in the open loop
configuration, are shown for Rmp estimated by the MPR in Figure 4.16c, and for
Rlp estimated by the LPM in Figure 4.16c. Here, the reported metric values were
obtained by averaging across all steps in the ‘sir-stir’ continuum.

The behaviour of these metrics differs as efferent attenuation is increased. In the
case ofRmp, an ever-increasing value of attenuation eventually pushes the majority
of the signal back under the threshold for firing. The result therefore is a signif-
icant reduction in the peak value. The mean value however is slightly boosted
relative to this by the fact that the spontaneous firing rate is always positive and
non-zero in this implementation. Thus the ratio of mean and peak tends to increase
(cf. Equation 4.5) at higher values of efferent attenuation. In the case of Rlp,
the ever-increasing attenuation reduces the signal strength so severely that there
is little energy left to capture in the reverberant tail mask (cf. Equation 4.7) and
the estimation of reverberant energy gradually dwindles. Importantly, however,
the lower row of Figure 4.16 shows that both reverberation estimation techniques
consistently measure smaller values for the near-distance reverberation, and larger
values for the far distance condition containing a correspondingly higher degree of
reflected energy.

For each reverberation estimator, the values that arose from the 0.5 dB steps of
Figure 4.16 were additionally interpolated to obtain values corresponding to the at-
tenuation level that approximates the human near- and far-distance category bound-
aries. A linear mapping is then assumed between the measured metric value and
the required attenuation, so that the level of attenuation applied in the model,ATT ,
increases monotonically with increasing reverberation. This allowed the two mea-
sures to be tested as controllers of the efferent feedback circuit, where the amount
of efferent attenuation to apply at each time-step is derived from the following lin-
ear fits1. For MPR, the attenuation applied (in dB) was subsequently derived on
the fly using

ATTmp = max [(11.18×Rmp − 0.24) , 0] , (4.13)

1Numerical values differ from those in Beeston and Brown (2010, 2014) due to knock-on effects
from alterations in the input signal level scaling method and hair cell mapping parameters.
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and for LPM, using

ATTlp = max [(3.57×Rlp − 0.39) , 0] . (4.14)

Inclusion of the max[..., 0] term in these equations ensures that any potential neg-
ative values for efferent attenuation are excluded. In practise, however, values of
Rmp and Rlp were never sufficiently small for this situation to arise. Moreover, the
simulated attenuation values appear to be in the range predicted by physiological
experiments reported in the literature (see e.g., Cooper and Guinan, 2003; Meddis
et al., 2013; Murugasu and Russell, 1996).

Section 4.4 has described the process by which behaviour of the efferent circuit was
tuned on the conditions of Watkins’ experiment where both context and test-word
were heard at the consistently near or consistently far distance reverberation. Once
the corresponding linear approximations had been found (equations 4.13 and 4.14
respectively for the MPR and LPM estimation techniques), no further tuning of the
model was performed; the same parameters were used for all following simula-
tions.

4.5 Experiment M2: Compensation for reverberation
with time-forward and time-reversed speech

Experiment M2 investigates whether an efferent-inspired auditory model is able
to simulate compensation for the effects of reverberation in the time-forward re-
verberation conditions reported by Watkins (2005a) as was previously depicted in
the upper panels of Figure 4.11. Two different methods (MPR and LPM) are in-
vestigated as estimators of the reverberation. Each of these is used to control the
efferent feedback signal via a mechanism which regulates the afferent stage of au-
dio processing.

The MPR- and LPM-driven models are tested in conditions where the acoustic
context preceding the test-word may contain either time-forward or time-reversed
speech signals. Firstly, the time-forward speech conditions allow an examination
of the basic compensation for reverberation paradigm first introduced in § 2.4.1.
Here, the addition of reverberation to a test-word influences its identity; addition of
similar reverberation to the surrounding context appears to reduce the perceptual
degradation of the initial test-word reverberation. Secondly, by including condi-
tions where the context speech signal was reversed, Watkins asks whether human
listeners’ need to understand the speech signal in order to compensate for the ef-
fects of reverberation. This question is of interest to the current study since the
auditory model has no language model component as presently described. This
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is contrary to most machine listening techniques, where statistical language mod-
els are usually included alongside acoustic models representing the various speech
sounds. Examining human responses in this dataset therefore allows us to query
whether a language model would be required in order to simulate compensation
effects. If this component were necessary, then the compensation effect would
be expected to break down in conditions where the speech in the context is time-
reversed.

4.5.1 Watkins’ stimuli and human response data

The test stimuli in this experiment follow the pattern of the ‘sir-stir’ paradigm
outlined earlier (cf. § 2.4.1) for the baseline time-forward reverberation, time-
forward speech condition. By manipulating the temporal envelope of a test-word,
Watkins constructed an 11-step test-word continuum, where tokens varied between
‘sir’ at one end and ‘stir’ at the other. The test-word was embedded in a context
phrase (“OK, next you’ll get [...] to click on”) and the reverberation conditions of
the context portion and test-word portion of the signal were varied independently
by convolving them with room impulse responses recorded at either near or far
source-receiver distances.

Listeners were asked to identify the test-word as either ‘sir’ or ‘stir’. The category
boundary position (the step in the continuum where listeners’ percept shifted on
average from ‘stir’ to ‘sir’) was recorded in a mid-continuum position for the near-
reverberated test-word embedded in the near-reverberated context. This is shown
by Watkins’ data-points marked at ‘0.32 m’ distance in the upper left panel of
Figure 4.11. When the test-word alone was reverberated at the far-distance (marked
‘10 m’), the category boundary shifted upwards as listeners responded ‘sir’ to more
steps of the continuum. However, compensation for reverberation was evident in
the downward slope of the upper line in both upper panels (cf. Figure 4.11). Here,
an increase in reverberation distance of the preceding context speech lowered the
category boundary position, and more stimuli were again reported as ‘stir’ by the
listeners.

While the test-word was always presented in the conventional time-forward direc-
tion, in some experimental conditions the context speech surrounding the test-word
was temporally reversed. That is, the sequence of samples in the unreverberated
speech signal has been inverted before convolution with the impulse responses for
near or far source-receiver distance. This process destroyed the semantics of the
speech context but maintained a similar overall spectral profile. The pattern of lis-
tener data in Watkins’ results indicates that phonetic understanding is not necessary
for compensation to occur: compensation for reverberation is observed even when
the time-direction of the context speech was reversed.
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4.5.2 Methods

The model was applied to the ‘sir-stir’ continuum files as described in Experi-
ment M1. All experimental stimuli were sampled at 48 kHz and scaled in level to
the 48 dB presentation level required. The resulting single-channel files were pro-
cessed by the afferent pathway of the model, with attenuation initially set at 0 dB.
This stage comprised the model components representing the filtering stages of the
outer and middle ear, the afferent cochlear processing, inner hair cell transduction
and temporal integration at the auditory nerve as described in § 4.2.1.

The STEP resulting from the afferent processing was then monitored over a win-
dowed portion of the context preceding the test-word (examining Z = 100 frames,
equivalent to 1000 ms duration at the model’s output sample rate) as shown in
§ 4.4.3. In separate simulations, the level of reverberation in this portion of the
signal was assessed by the MPR or LPM estimators, and the value of the efferent
attenuation parameter subsequently provided to the DRNL filterbank was found
using the linear mappings defined in equations 4.13 and 4.14. In this way, the ef-
ferent feedback circuit both monitored and adjusted the behaviour of the auditory
model’s afferent processing chain.

Finally, the STEP arising in the test-word portion of the signal was compared to
canonical ‘sir’ and ‘stir’ representations using the MSE comparator as described
in § 4.4.4, and the closest match was selected as the test-word identity. Across
the entire set of stimuli for the continuum (at a particular experimental condition),
the category boundary result was then derived using Equation 4.12 as previously
described.

4.5.3 Results

Figure 4.17 displays the category boundaries resulting in the auditory model sim-
ulation for time-forward and time-reversed speech conditions (in time-forward re-
verberation). The same overall pattern of results is observed for both model simu-
lations, as can be seen by comparing Figure 4.17a for the efferent control based on
dynamic range (Rmp, from MPR), and Figure 4.17b for the mechanism based on
a measure of reverberant tails (Rlp, from LPM). For the conditions where speech
and reverberation were presented in their usual time-forward senses, left-hand pan-
els replicate the major hallmarks of compensation for the effects of reverberation.
Here, despite the fact that the training data for the efferent feedback circuit in-
cluded only the same-distance phrases (at near and far reverberation distances), the
model provides category boundary results that are qualitatively similar to Watkins’
human data for the mixed-distance conditions.
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(a) Time-forward and time-reverse speech results derived using MPR.
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Figure 4.17: Experiment M2: Category boundaries for time-forward (left) and time-reversed (right)
speech conditions (in time-forward reverberation). Modelling results (black markers) arise using
the MPR metric in fig. 4.17a, and the LPM metric in fig. 4.17b to monitor a windowed-portion
of the preceding context (length Z = 100 frames, equivalent to 1000 ms) and derive ATT (dB)
during the simulation. For both reverberation estimation measures, the category boundary results
are qualitatively similar to human listener results (white markers) in Watkins (2005a, Experiment 5)
and demonstrate a pattern of compensation for reverberation in both time-forward and time-reversed
speech conditions.

124



4.5 Experiment M2: Time-direction of speech

Since the reverberation estimation metrics assess only the context portion of the
signal in the current model implementation, they are not influenced by the reverber-
ation distance of the test-word itself1. Rather, their value depends on both the sig-
nal content itself and the reverberation arising from the particular source-receiver
distance in use.

For the forward-speech case, the near distance context reverberation gives rise to
an efferent attenuation value in the region of 3.5 dB (ATTmp = 3.53 dB derived
via the MPR measure in Equation 4.13, andATTlp = 3.59 dB derived via the LPM
method presented in Equation 4.14). When the test-word distance matched the near
context distance, the category boundary predicted by the model was slightly lower
than the human boundary result. This result can be understood with reference to
Figure 4.16a: the degree of quantisation inherent in the model’s ‘sir-stir’ identifi-
cation procedure is such that a boundary of B ' 3 cannot be achieved, the closest
available boundary being ±0.5 (cf. Equation 4.12). Since both reverberation es-
timators have resulted in a little over 3.5 dB attenuation, the category boundary
drops into the region where a boundary of B = 2.5 results. In fact, as can be
read from this figure, any value of efferent attenuation from 3.5 up to around 5.5
dB will result in a category boundary of 2.5 for the near-near condition, as the
category boundary is rather insensitive to variation in attenuation in this region.

When the test-word is far-reverberated but the context remains at the near distance,
the number of continuum steps reported as ‘sir’ is maximal. In this condition, the
[t] closure is obscured by overlap reverberation from preceding speech sounds and
as a result the MSE matching process (cf. § 4.4.4) reports all continuum steps as
being more similar to the canonical ‘sir’ template. The increased reverberation
measured for the far-distance context conditions leads to a higher value of ATT
being applied in the model. This suppresses low-level activity in the simulated
AN response; a lower category boundary therefore results, as more steps of the
continuum are now reported to be more similar to the canonical ‘stir’ template.

The far-distance context gives rise to a stronger attenuation signal, equivalent to
5.06 dB for both reverberation estimators. While the resulting boundary for the
near test-word is recorded around the same position as for human listener re-
sponses, the boundary resulting for the far-distance test-word is one step lower
than the human result for either reverberation mapping. Again, this can be pre-
dicted by the tuning curve shown earlier (in Figure 4.16b). The predicted value
of ATT = 5.06 dB lies on the steep part of the curve where a small change in
efferent attenuation brings about a large change in category boundary. Here, the

1Experiment H3 below indicates that the model should be updated to include sources of intrinsic
information deriving from within the test-word in addition. This is discussed further in § 6.1.3.
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boundary is marked atB = 4.5 for the model results rather than at around step 5.5,
i.e. one step of the continuum has been labelled differently by the computational
model compared with the human listener data.

In the reverse-speech cases, the computational model predicts a similar pattern of
results: compensation occurs despite the temporal reversal of the context speech
signal. For both efferent control metrics, the model over-estimates the influence of
far-distance reverberation on the test-word when the near-context is present. The
category boundary that results is correspondingly higher than was observed with
human listeners.

For a far-distance test-word, the model driven by the MPR metric additionally over-
estimates the recovery due to a consistently far-reverberated context; the predicted
boundary is lower than the human boundary as a result. Here, the attenuation pre-
dicted by Rmp for the far-distance context is ATT = 5.41 dB. The far-far bound-
ary predicted by the LPM model better fits the human perceptual data. In this
case a lesser attenuation was predicted by Rlp for the far-distance context, with
ATT = 4.68 dB. Compared with the MPR-driven model, correspondingly less of
the simulated AN response is suppressed by the LPM-driven feedback loop.

4.5.4 Interim discussion

Both the MPR and LPM efferent control mechanisms achieved a simulation of the
overall pattern of data for perceptual compensation for the effects of reverberation
in forward-reverberation conditions. Here, increasing reverberation in the context
surrounding a test-word improved recognition of a test-word’s [t] even though this
processes added further reflected energy into the signal. Thus, the MPR, based on a
measure of dynamic range, and LPM, measuring signal energy in reverberant tails,
appear to both capture some relevant properties of reverberation that can be used
to drive the efferent feedback loop such that efferent suppression is proportional to
the level of reverberation experienced. This suggests it may not be unreasonable to
treat the noise-like aspect of reverberation (the raised noise floor from late-arriving
reflections) with the kind of efferent activity (suppression) that is thought to be
active in situations of noisy listening.

By including conditions where the context speech signal was reversed, Watkins
asked whether human listeners’ used semantic processing to compensate for the
effects of reverberation. In general, humans can still understand speech well pro-
vided that the time-reversed segments are less than 100 ms in length; at longer
reversal lengths, intelligibility decreases (Saberi and Perrott, 1999). The duration
of the context phrase portions in Watkins work was substantially longer (at 1.15 s),
thus these portions of the speech signal were completely unintelligible when heard
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backwards. Nonethess, Watkins showed that perceptual compensation persisted in
conditions with time-reversed speech contexts, when the speech sounds were not
heard as a series of words. This (and subsequent experiments) allowed Watkins
et al. (2011) to conclude that compensation for reverberation is not due to phonetic
perception, but arises from a rather more general perceptual-constancy mechanism.

Without further tuning, the auditory model similarly displayed compensation for
reverberation in conditions with time-reversed speech contexts. Both versions of
the model followed the qualitative data trend overall, but the model in which effer-
ent suppression was driven by LPM gave a slightly closer match to human category
boundary results than did the model based on MPR. It appears then that a language
model component is not required for the current auditory modelling task. How-
ever, it should be noted that this finding is likely due to the unpredictable nature
of the ‘sir-stir’ stimuli, since Srinivasan and Zahorik (2013) have recently reported
that the ability to make semantic predictions about a test-word are sufficient to
overcome the influence of reverberation in the phrase.

4.6 Experiment M3: Abolition of compensation with
time-reversed reverberation

Experiment M3 investigates whether the efferent-inspired auditory model simu-
lates the disruption of compensation for the effects of reverberation that is ob-
served in human listener data reported by Watkins (2005a), for conditions in which
the time-direction of reverberation in the preceding context is reversed. As in the
earlier work, two methods are used to estimate reverberation in the portion of the
signal immediately preceding the test-word; one is based on dynamic range (MPR,
described in § 4.3.1) and the other on a measure of reverberation tails (LPM, de-
scribed in § 4.3.2). The resulting measures of reverberation, Rmp and Rlp respec-
tively, are used to automatically control efferent attenuation regulating the afferent
processing in the auditory model as described in § 4.3.

It is anticipated that the model based on dynamic range will not capture this effect
since the dynamic range is little affected by the time-direction of reverberation1.
On the other hand, the reverberation tail measure is sensitive to the time-direction

1Nonetheless, due to the nonlinear processing in an auditory model (adaptation, refractory peri-
ods etc.) the representation for time-reversed stimuli will not be simply a time-reversed version of
the response to time-forward stimuli. In some implementations the MPR measure may therefore be
sensitive to the time-direction of reverberation, as was seen in the model configuration of Beeston
and Brown (2010). This topic is discussed fully in § 4.6.4 below.
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Figure 4.18: Experiment M3 investigates conditions in which the reverberation processing applied
to the context has itself been time-reversed. The sequence of time-samples in the room impulse
response (left) is time-reversed (right) prior to convolution with the ‘sir-stir’ continuum test-words
and context phrases.

of the signal and may therefore capture this effect because the time-reversal of
reverberation removes tails at offsets, and adds ramps at onsets instead.

4.6.1 Watkins’ stimuli and human response data

The modelling task in this experiment investigates conditions where the ‘sir-stir’
continuum test-words are embedded in context phrases in which the reverberation
processing applied to the context has itself been time-reversed. As shown in Fig-
ure 4.18, the sequence of samples in each room impulse response was optionally
time-reversed before convolution with the unreverberated speech signals. As be-
fore, the test-word was always presented with both speech and reverberation in the
conventional time-forwards direction. Other aspects of stimuli presentation were
the same as described in § 4.5.1, so that the same- and mixed-distance phrases were
now investigated, in the presence of time-reversed context reverberation, for both
time-forward and time-reversed context speech.

Human listener responses for these conditions were obtained by Watkins (2005a)
as shown in the lower panels of Figure 4.11 (discussed earlier in § 4.4.1). As was
the case in time-forward reverberation, the direction of speech in the context did
not substantially affect the results (i.e. the left panel follows the same trend as
that on the right). Increasing the test-word reverberation from near to far while
the context remains at the near distance brings about a large shift in the listeners’
mean category boundary position, as had been observed in the time-forward rever-
beration conditions. However, in conditions where the reverberation applied to the
context was time-reversed, the addition of a consistently far-reverberated context
no longer aids perception of the far-reverberated test-word. Thus, compensation
for reverberation did not occur when the RIR was time-reversed.
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4.6.2 Methods

No further tuning of model parameters was undertaken for Experiment M3. There-
fore, as was described in the previous experiment, the two reverberation estimators
(MPR and LPM) were each used to control the efferent feedback signal sent to the
auditory periphery via the existing linear mappings (cf. equations 4.13 and 4.14
respectively). Time positions locating the test-word portion of the signal were up-
dated to account for the later starting index of the speech content in the file (which
arose since the time-reversed reverberation processing introduced ramps before on-
sets in the temporal envelope, rather than tails after signal offsets). All other aspects
of the model configuration were the same as described in § 4.5.2.

4.6.3 Results

Category boundaries arising for time-forward and time-reversed context speech
conditions are shown in Figure 4.19 for conditions in which the context reverbera-
tion was always applied in a time-reversed fashion. In this experiment a different
pattern of results emerges from each of the efferent control mechanisms. For the
LPM-driven model in Figure 4.19b, category boundaries follow the general trend
underlying the perceptual data, however, the MPR-driven model in Figure 4.19a
fails to simulate the abolition of compensation for reverberation that is observed
for human listeners in time-reversed reverberation conditions (cf. Watkins, 2005a,
Experiment 5).

The difference in these results essentially arises in the category boundary place-
ment for the condition where the far-distance test-word is preceded by the far-
distance context. In reverse-reverberation, the MPR-driven model results in an
ATTmp value of 5.24 dB when the context speech is presented in the time-forward
direction, and 4.86 dB when the speech signal is reversed. These values are close
to those that were derived via the Rmp in the time-forward reverberation case (cf.
§ 4.5.3), and hence cause a similar degree of suppression in the AN response. The
knock-on effect of this is that several steps of the continuum are recognised by the
MSE template-matching process (cf. eq 4.11) as ‘stir’ rather than ‘sir’ (6 steps in
the case of the forward-speech, and 5 for the reverse speech condition). Thus, for
the MPR-driven model, compensation for reverberation is erroneously simulated
for reverse-reverberation conditions.

On the other hand, the attenuation values arising in the LPM-driven model sim-
ulation are somewhat lower in reverse-reverberation conditions compared to the
forward-reverberation cases reported earlier (cf. § 4.5.3). Here, the Rlp value lead
to an ATTlp value of 3.98 dB for the forward-speech case, and 3.86 dB for time-
reversed speech. Since the far-distance test-word is not sensitive to this variation
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(a) Time-reversed reverberation simulations using MPR.
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Figure 4.19: Experiment M3: Category boundaries for time-reversed reverberation simulations.
Time-forward (left) and time-reversed (right) speech conditions are shown for the MPR metric in
fig. 4.19a, and the LPM metric in fig. 4.19b. Model results (black markers) follow the general trend
underlying data in human listener results in Watkins (2005a, Experiment 5) (white markers) for the
LPM-driven model. However, the MPR-driven model fails to simulate the abolition of compensation
for reverberation in time-reversed reverberation conditions.
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Figure 4.20: Dependency of reverberation estimators on context distance, MPR value, Rmp, in
Figure 4.20a and LPM value, Rlp, in Figure 4.20b. Both measures are relatively unaffected by time-
reversing the speech; however only Rlp is substantially altered by time-reversing the reverberation.

in attenuation (cf. Figure 4.16b, where an attenuation value greater than 4 dB was
required to achieve recognition of continuum tokens as anything other than ‘sir’),
the recognition of the [t] does not improve (i.e., the AN simulation is suppressed,
but the suppression is not yet sufficient to make the continuum steps resemble the
canonical ‘stir’ than the canonical ‘sir’). As a result, the far-distance context does
not lower the category boundary in the reverse-reverberation condition, and com-
pensation for the effects of reverberation is not apparent in the simulation data.

4.6.4 Interim discussion

While the model whose efferent circuit was driven by the reverberation tail measure
(LPM) provides a good simulation of the perceptual data in this task, listening con-
ditions in Experiment M3 indicate that the measure based on dynamic range (MPR)
is not a suitable metric with which to monitor reverberation and control efferent
suppression. Thus, in the current task, just one of the reverberation estimators is
consistent with independent reports by Watkins (2005a) and Longworth-Reed et al.
(2009) that listeners can no longer perceptually compensate for reverberation when
the direction of the reverberation was reversed.

Data in the current study is consistent with the explanation of compensation given
by Watkins (2005a), that the perceptual compensation effect might arise from a
listener’s use of reverberation tails. Reverberation tails are effectively abolished
by time-reversing the room impulse response prior to convolution with context
speech. As such, information about reverberation is no longer contained in the
(per-channel) offsets of the surrounding context speech, and thus cannot inform
the compensation process. This can be seen in Figure 4.20 (right), where the val-
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ues measured by the LPM metric, Rlp, are plotted at each context distance for each
of the reversal conditions. The time-reversal of speech affects Rlp only slightly,
and thus does not alter the overall pattern of data resulting from the ATTlp value
provided in the subsequent linear mapping in Equation 4.14. On the other hand,
time-reversal of the reverberation direction substantially lowers the value of Rlp

since offsets are sharper and contain proportionally less signal energy (cf. Equa-
tion 4.7). This leads to a substantially reduced level of efferent attenuation being
applied in the model in the reverse reverberation cases (via Equation 4.14). With
reduced attenuation, the low-level reverberant signal energy is no longer removed
from the signal, thus the [t] is not revealed and the category boundary position is
not recovered.

In this study, the MPR-driven model did not achieve a good match to the human
listener data for time-reversed reverberation conditions (cf. upper panels in Fig-
ure 4.19): the abolition of compensation was not simulated. Figure 4.20 (left)
reveals that the context measures, Rmp, of the time-reversed reverberation condi-
tions were very similar to those of the time-forward reverberation cases; thus the
ATTmp value that resulted (via Equation 4.13) acted similarly in both reverber-
ation directions to suppress reverberant energy in the AN response and increase
likelihood of ‘stir’ results.

Monitoring of dynamic range in reverse reverberation

Here, MPR displays the same problem as objective speech intelligibility room mea-
sures discussed earlier in § 2.1.6. Based on the Modulation Transfer Function
(MTF), such measures are insensitive to the time-direction of the signal since they
disregard the phase component and use only the magnitude. Like MPR (in the
temporal envelope domain), the magnitude of the MTF is not much altered by a
change in the direction of reverberation, so it cannot accurately reflect subjective
experience in these conditions (Longworth-Reed et al., 2009). Nonetheless, dis-
cussion of dynamic range and signal modulation frequently occurs in relation to
reverberation. One such theory relates to modulation masking1 (Nielsen and Dau,
2010), where it is proposed that a listener may become accustomed to a particu-
lar type of modulation in a signal and thus become less sensitive to it over time.
This line of thought seems similarly to underpin the auditory modelling work of
Lee et al. (2011), where the channel-by-channel dynamic range of the model’s re-
sponse is adjusted through time to reflect the dynamic range of the input signal.
Indeed, Beeston and Brown (2010) also previously reported model performance in

1The modulation masking theory is analysed below in § 5.5.5 in light of data presented in Ex-
periment H3.
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a reverse-reverberation task that was qualitatively compatible with Watkins’ find-
ings using an MPR-based efferent feedback circuit similar in principle to that de-
scribed above. Use of the MPR metric in modelling listener tasks involving reverse
reverberation therefore requires some further discussion.

Since, on the surface, the MPR metric appears to be insensitive to the time-
direction of the reverberation, the question therefore arises over why the metric
was sufficient to replicate human performance in a reverse-reverberation task in
the study of Beeston and Brown (2010). In that study, the time-reversed rever-
beration conditions were measured as containing a lower degree of reverberation
prior to the test-word, and this brought about less compensation than occurred in
Figure 4.19a above1. The likely explanation for this difference rests in the non-
linear processing introduced by the (differing) modelling structures: the auditory
nerve representation whose MPR is monitored, yan(n, c), did not represent the
time-reversed reverberation in the same way in the current study that it was ob-
served in Beeston and Brown (2010).

While the OME filter and underlying DRNL model was the same in each study,
almost all other stages differed. Input signals were presented to the current model
at the level matching listener presentation in Watkins (2005a); in the earlier model
they were presented at a considerably higher level. In both models the attenuation
was applied simultaneously to every channel at the same level; however the earlier
model alone allowed a continual adaptation of this value every 1 ms as the utterance
progressed. The ‘sir-stir’ identification process also differed between models: the
output frame-rate is halved in the current version, and the STEP templates and
tokens are thus considerably less detailed.

The most significant difference between the models, however, arises in the simu-
lation of transduction at the inner hair cells. Beeston and Brown (2010) used the
rate-limiting function (cf. Figure 4.5a) to derive the hair cell response from a fixed
BM response in every channel (with minimum BM response b0 = 6.417×10−4 m/s
corresponding to the hair cell spontaneous rate of a0 = 10 spikes/s, and saturation
a1 = 500 spikes/s arising at a maximum BM response of b1 = 5 × 10−3 m/s).
These values were selected by observing the 1kHz channel response, and were in-
tended (as in the current study) to elicit a response in the AN with high dynamic
range, similar to that of a low spontaneous rate fibre. Observed at the level of the
STEP response, this process represented a behaviour similar to that seen in Fig 4.8,
where the application of attenuation in the 1 kHz channel showed as a shift to
higher sound pressure levels in the rate-intensity curve. However, on closer ex-

1In Beeston and Brown (2010, Figure 8), the MPR context values displayed a separation be-
tween time-forward and time-reverse conditions, similar to that seen above for the LPM measures in
Figure 4.20 (right).
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amination it was apparent that other channels in the model were not so smoothly
responsive across the dynamic range. Rather, when observed at the level of the
hair cell, each channel in the Beeston and Brown (2010) model was usually either
on (i.e. at saturation firing rate) or off (i.e. at threshold firing rate). Application
of attenuation was enough in some moments to effectively eliminate the response
(i.e. go below threshold), and the shift in the rate-level curve observed in the 1 kHz
STEP channel occurred due to the averaging process which summarised all time-
steps occurring within a 5 ms time period.

The current model improves on the earlier work by implementing efferent attenu-
ation in such a way that the MOC unmasking effect is observable in the firing rate
of individual auditory nerve fibres, not only at the overall level of the STEP repre-
sentation that results across the total nerve population. That is, the rate-level shift
in Figure 4.8 is extracted from the model stage before temporal integration occurs.

Conflation of effects from the speech signal and from reverberation

The discussion above exposes a further question in regard to Watkins original
study: it is not possible to say whether the lack of compensation in reverse rever-
beration in Watkins (2005a, Experiment 5) is (a) due to a lack of reverberation from
the preceding context spilling forwards into the test-word region; (b) due to time-
reversed reverberation from the following context speech signal spilling backwards
into the test-word region (appearing now as onset ramps instead of offset tails); or
(c) both1. Moreover, there is a (probably unplanned, but nevertheless interesting)
symmetry in the context speech material, “OK, next you’ll get {sir, stir} to click
on”, which broadly mirrored the phonetic classes in the local context (a sequence
of 5 phonemes) on either side of the test-word. Thus, for the specific phrase used
in Watkins stimuli, the spectral regions of overlap-masking from the context might
be similarly distributed when reverberation is applied from either direction:

. . . [uÏ gEt] . . . [tu klI] . . .
. . . V L S V S . . . S V S L V . . .

where vowels, liquids and stops are marked by the letters V, L and S respectively.

In Watkins’ stimuli, the test-word and its reverberation always occur in the con-
ventional time-forward fashion. For time-reversed reverberation conditions, this
results in a reduced amount of reverberation in the signal region immediately pre-
ceding the test-word (compared with the forward-reverberation case, the reverber-

1Experiment H2 in the following chapter looks into this question in a further detail, schemati-
cally depicting Watkins stimuli in Figure 5.8a and an alternative condition in Figure 5.8b.
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ant overlap-masking contribution is reduced). Moreover, the level of reverberation
in the test-word varies with the context (reversed) reverberation because there is an
overspill of reflected energy (which could perhaps be termed backwards overlap
masking) from the final portion of the context (“[...] to click on”) backwards into
the test-word region. The model described in Beeston and Brown (2010) detected
this slight reduction in reverberation. That is, the MPR measure in the context im-
mediately prior to the test-word was reported as being lower, and a low value of
efferent attenuation arose as a result, removing the compensation effect which had
been simulated in time-forward conditions. Contrastingly, the MPR-driven model
reported in this chapter does not detect the slight reduction in backwards overlap-
masking, thus there is no reduction inRmp for time-reverse conditions, no decrease
in the ATTmp applied to the non-linear path of the DRNL, and compensation mis-
takenly arises as a result.

It is clear from the above discussion that some caution is required when models
are tuned to a particular, small set of experimental data. In order to generalise
findings to an unseen data set, the key idea is to ensure that the selection of values
for any free-parameters is justified by the data available. The model underlying
the current simulation has been validated against a range of physiological data,
allowing its various outputs to be expressed in international units such as Pascals,
meters and seconds (Meddis, 2006; Meddis et al., 2013). Little is yet known about
the physiological processes involved in compensation for reverberation, however,
so modelling choices in the current study have, by necessity, been ‘best guesses’
based on what can be inferred from the available psychopysical data. Implications
of this are discussed further in the following section.

4.7 General discussion

This chapter has described the development of a computer model that qualitatively
matches perceptual compensation for the effects of reverberation as seen in be-
havioural data collected by Watkins (2005a). The key elements of the model are
an estimation of reverberation in the simulated auditory nerve response, and an ef-
ferent feedback circuit which selectively attenuates the afferent auditory response
based on the reverberation estimate. The goal in an auditory modelling study such
as this is to match data in regard to human responses to sound stimuli. As such,
research in this area of machine listening is not concerned with reducing the word
error rate in recognition, but aims instead to simulate the error patterns in recog-
nition that humans are prone to. The resulting model can be used to make pre-
dictions about the compensation mechanism, and these in turn can be tested in
psychoacoustic studies.
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In the model based on the low-pass mask (LPM) reverberation estimation tech-
nique, the efferent control circuit suppresses auditory nerve response in proportion
to the signal energy measured in reverberation tails. This model achieves a three-
fold replication of Watkins’ findings. Firstly, a baseline simulation of perceptual
compensation for reverberation is seen: addition of a far-reverberated context as-
sisted the recognition of a reverberant [t] closure, even though this context actually
adds more reverberant energy into the temporal region of the signal where the
test-word consonant is located. Secondly, the model replicated results whereby
compensation persists despite a time-reversal of the context speech. This confirms
that a linguistic component is not necessary in the model, since the compensation
effect is present even when the semantic content of the signal is destroyed. Thirdly,
the model based on reverberation-tails additionally replicates the disruption of per-
ceptual compensation for reverberation in conditions where the surrounding con-
text is time-reversed. This result was of particular interest to study since it is not
predicted by objective measures of speech perception in rooms (cf. § 2.1.6), but
has been replicated several times for human listeners (Beeston and Brown, 2014;
Longworth-Reed et al., 2009; Watkins, 2005a).

4.7.1 Proposed involvement of efferent processing

It should be noted that while functional, this model is entirely speculative: the
proposal that the efferent system is involved in compensation for reverberation has
yet to be investigated in a physiological sense. The efferent auditory system is a
topic of much research at present since it seems to confer a number of benefits in
compromised listening environments. In particular, the efferent system may assist
with taking stimulus history into account, such that the spectro-temporal context
dynamically adjusts the function of the afferent auditory processes. Efferent signals
remain incompletely understood at present, both in regard to structure and function,
but mounting evidence links the activity of MOC efferents in adjusting the dynamic
range of auditory components for noisy listening tasks. The model presented in this
chapter relies on the signal processing insight that some of the long-term effect
of reverberation causes artefacts that are similar to the presence of additive noise
components, where the added reflected energy in the reverberation decay tail raises
the noise floor and lessens the dynamic range of a signal (cf. Figure 2.2), and that
olivocochlear feedback might thus be additionally relevant to reverberant listening.

Moreover, the model implements a highly simplified auditory system in which a
single parameter is used to model the effect of central auditory activity on the dy-
namics of the inner-ear. Two main types of efferent feedback exist to the auditory
periphery. Firstly, at high signal input levels the acoustic reflex (also known as the
middle ear muscle reflex) affects the stapes; the signal presentation levels in this

136



4.7 General discussion

study are insufficiently powerful to activate such a system. Secondly, MOC effer-
ents act at the level of the BM displacement; these are modelled with an attenua-
tion of the efferent pathway of the DRNL filter bank following Ferry and Meddis
(2007). Beyond this, there are many different pathways through the more cen-
tral sites of the auditory system. Each set of auditory pathways has a specialised
function (discussed earlier in § 3.3), some of which are now beginning to enter
the realm of auditory modelling studies1 as is discussed further in the following
section below. Thus the simplification necessary to represent all central auditory
activity with a single feedback parameter, as depicted in the final descending arrow
of Figure 3.1b, will clearly be unable to encapsulate the full variety of the multiple
auditory processing mechanisms.

While there is little physiological evidence at present to suggest that peripheral
efferent effects are important in perceptual compensation for the effects of rever-
beration, there is evidence in higher centres of the auditory system that different
processes offer robustness for the effects of reverberation (see for example the work
of Kuwada et al., 2012, discussed earlier in § 3.3, which examines monaural re-
sponses to reverberant signals in the inferior colliculus). Since many descending
pathways exist through the central auditory system, each one might have a knock-
on effect on the other processes beneath it, assisting in a continual re-calibration
that allows human listeners to improve their chances of perceiving important sig-
nal details in varied acoustic environments. Thus, while the processing relevant
for perceptual compensation for reverberation may not actually arise directly in the
processes governing MOC efferents themselves, effects stemming from higher up
in the auditory system are in the end at least partially effected through the MOC
efferents since this is the location at which the frequency- and level-dependent be-
haviour of the cochlea is determined.

Indeed, while the LPM reverberation estimator allowed a simulation of human re-
sponses to be achieved with the current model configuration, this should not be
taken as a suggestion that the brain is actually calculating the value of Rlp in order
to attenuate the auditory nerve output. Rather, this chapter has presented a func-
tional model which explores the application of efferent suppression in reverberant
listening tasks. Moreover, other model configurations are possible that may yet fit
the limited human data equally well and be based on alternative reverberation met-
rics2. Despite the different individual details of the potential feedback regulation

1The most recent Meddis model now includes two levels of neuronal response above the AN,
such that the MOC-efferent signal is derived after the cochlear nucleus chopper response and second-
level brainstem response (Meddis et al., 2013).

2Discussion returns in § 4.7.4 below to the criteria – examined within a particular spectro-
temporal region in the simulated auditory nerve response – that should be met in order for a candidate
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metrics, the general result here is consistent with the possibility that the mechanism
responsible for controlling dynamic range in the auditory nerve in noisy listening
tasks might also be involved in the process of perceptual compensation for rever-
beration, acting to reduce the cochlear gain when higher levels of reverberation
are present. If the model is a suitable representation of reality, however, it seems
that a sensitivity to the time-direction of reverberation must be maintained in the
monitoring process that drives this efferent feedback signal in this task1. Right
or wrong, when a prediction arises from a modelling study in this way it can in-
form the design of future experiments (whether psychoacoustical, physiological or
computational), and the process of modelling can thus contribute to furthering our
understanding of compensation mechanisms.

The auditory model described is monaural. In everyday listening, however, differ-
ent groups of MOC efferents are activated by sound through either the ipsilateral or
the contralateral pathways and, for a small group of neurons, by sound into either
ear (Brown, 2011; Guinan, 2006). The model described in this chapter can thus
only simulate one of these effects. Though binaural hearing is clearly involved in
many reverberant listening tasks, Watkins’ single-ear demonstrations of perceptual
compensation for reverberation indicate that monaural processing is sufficient for
some reverberant speech identification tasks. Simulation of these monaural com-
pensation effects in single-channel systems may eventually benefit a wide range
of applications, not only for machine listening applications requiring distant ASR,
but also for human listeners who are reliant on speech processing devices such as
hearing aids and cochlear implants which are often worn single-sided.

Although spotting a single stop consonant [t] may appear to be a straight-forward
task, it has been selected for study by Watkins since it is one of the speech sounds
that is most vulnerable to the effects of reverberation (Drullman et al., 1994b;
Gelfand and Silman, 1979; Nábělek et al., 1989) and is therefore likely to be fre-
quently misheard in everyday listening. Moreover, this consonant alone accounts
for 5.78% of all phonemes spoken in American English conversational speech

reverberation estimator to be successful in ecosystemic efferent control. In overview, this would ne-
cessitate a high degree of consistency when measured across speech stimuli databases and different
rooms; and predictable differences in measures to arise due to alternative source-receiver configu-
rations within rooms. Moreover, a sensitivity to the time-direction of the reverberation processing
appears beneficial, and finally such a reverberation estimator should ideally not conflate the effects
of reverberation with the recent history of the signal content itself.

1It appears unlikely therefore the dynamic-range assessments driving efferent feedback sug-
gested in noise-based listening task simulations (e.g., Clark et al., 2012; Lee et al., 2011) could be
immediately re-used in reverberant listening tasks unless the nonlinear properties of those auditory
models (e.g., adaptation in the auditory nerve) were sufficient to implicitly distinguish the time-
forward and time-reversed reverberation conditions.

138



4.7 General discussion

(Mines et al., 1978), therefore any benefit that could be brought to its interpre-
tation in a machine listening system might have an appreciable impact on overall
recognition rates. Generalising Watkins’ demonstration of perceptual compensa-
tion for the effects of reverberation to a wider set of speech tokens is a central
aspect of the work presented below in Chapter 5.

4.7.2 Relation to other efferent processing models

Section 3.5 discussed the state of the art in efferent auditory models, presenting, in
the main, ongoing work from three teams of researchers. Each of these has been
applied to the task of replicating physiological or psychological measurements of
speech or tones in noise; the model described in the current chapter instead attempts
to explain measurements of reverberant speech perception by means of auditory
efferent involvement.

The starting code base for the current work is MAP (Matlab auditory periphery),
version 1.6, as described in Meddis (2006). Described above in § 4.2.2, effer-
ent suppression is then simulated using the cochlear attenuation parameter in the
non-linear path of the DRNL as identified by Ferry and Meddis (2007). Guided
wherever possible by measured physiological data, the DRNL thus underpins the
current work up to the level of cochlear processing. The subsequent model stages
take further inspiration from the modelling work by Messing et al. (2009). Hair
cell transduction is represented by rectification, filtering and rate-limiting which
attempts to marry the vibration resulting on the BM with physiological data re-
ported for a high dynamic-range (low spontaneous rate) nerve fibre as described
in Figure 4.5. Here, literature from the perception of equal loudness (ISO226,
2003) suggested an approach whereby a set of pure tones at fixed sound pressure
levels be input to the model at different frequencies, and the resulting BM iso-
intensity response contours observed. This provided a detailed map of the afferent
DRNL response which could be used to set the spontaneous and saturation firing
rate parameters, channel-by-channel, which subsequently scale the inner hair cell
response to an unknown input. In this way, a model providing a 50 dB region of
sensitivity across the entire hearing range (defined here as 100 Hz to 8 kHz) was
built without yet having to select any parameter values by hand.

As a first approximation, efferent attenuation was applied equally in all frequency
regions, as done in Ferry and Meddis (2007) and Brown et al. (2010), but now
with values based on a measure of the pooled auditory nerve response. Recent
perceptual studies however suggest that perceptual compensation is primarily a
within-frequency-channel effect (Watkins et al., 2010b, 2011). In principle, the
model may be extended so that the reverberation estimation and efferent feedback
loop work independently within each frequency channel. Thus, as was seen in re-
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cent modelling tasks, further improvements might be expected were the attenuation
allowed to vary across channels (as implemented by Clark et al., 2012; Lee et al.,
2011; Messing et al., 2009). For instance in Clark et al. (2012), the model version
with differing attenuation values in each channel gave better ASR results than the
version of the model where attenuation was fixed at the optimum wideband level.
However, these models do not yet account for recently described frequency off-
sets, where efferent signals have recently been reported to be strongest in response
to a probe tone presented a half-octave lower than the channel centre frequency
(Lilaonitkul and Guinan, 2009), or (for the contralateral reflex) to be responsive
only to the 500–1000 Hz spectral region in Zhao and Dhar (2012).

While it is clear that efferent signals can occur on multiple timescales, auditory
models currently suffer from a lack of consistent data regarding the time courses of
these mechanisms. So-called ‘fast’ effects, acting over 10-100 ms, were modelled
by Ferry and Meddis (2007) (reported by Cooper and Guinan, 2003, in addition
to ‘slow’ 10-100 s effects). A more recent experimental report, however, has split
these effects into three groups, acting on ‘fast’ ' 70 ms, ‘medium’ ' 330 ms and
‘slow’ ' 25 s timescales, irrespective of whether an ipsilateral, contralateral, or
bilaterally activated unit was being considered (Backus and Guinan, 2006). Clark
et al. (2012) report making a compromise between the different timescales, mod-
elling just a single effect with an intermediate timescale. A similar approach is
taken in the current model, where a window of 1 second duration is observed in
order to derive a measure of reverberation that drives the efferent feedback control
system.

4.7.3 Further implications of task-based modelling decisions

As described above, it is largely possible to base modelling decisions for the com-
putational model on pre-existing data from a range of physiological or psychophys-
ical experiments. However, as soon as the model is applied to the task of modelling
a particular set of data, it is necessary to begin making such decisions since many
things are left unknown about how the model should be integrated with the spe-
cific listener task that it is attempting to simulate. Here, since physiological data is
not available, psychoacoustic data has instead been used to select values for model
parameters: attempts were made to bring the attenuation values into reasonable
ranges by tuning the parameters governing the linear mapping on the actual human
response data in naturalistic conditions (cf. § 4.4.5 and § 4.4.6). The resulting
values in unknown data conditions are then computed automatically, and arise in
a similar range to those expected from the literature (where a maximum attenu-
ation of around 20 dB is suggested by Cooper and Guinan, 2003; Murugasu and
Russell, 1996). Moreover, allowing the efferent attenuation to vary in proportion
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to the reverberation level of the signal is similar in principle to the suggestions by
other researchers that efferent signal should vary in proportion with the noise level
(Brown et al., 2010; Clark et al., 2012; Lee et al., 2011; Messing et al., 2009).

The time course of contextual awareness represents two difficulties in the current
experiments. Firstly, there is not yet a consensus in the data about the timescales
on which efferent effects are manifest. Secondly, at the time of modelling there
was no data available on the specific time course of perceptual compensation for
reverberation1. Nonetheless, the time-scale of the binaural effect could be seen to
be at the lower end of the analysis window timescales (cf. Brandewie and Zahorik,
2010; Longworth-Reed et al., 2009), and was known to occur monaurally within
the span of a single utterance (e.g. in Watkins, 2005a, b; Watkins and Makin,
2007b, c). The window duration was therefore set at a somewhat arbitrary 1 sec-
ond time-frame. The model was then run in different configurations as shown in
Figure 4.1 at the start of this chapter. First, an ‘open-loop’ tuning stage is under-
taken in order that the efferent attenuation value providing the best match to human
data could be found by an exhaustive search. In subsequent simulations the model
is then able to assesses stimuli independently to derive ATT automatically in a
‘closed-loop’ setting. However, the model presented in this chapter is simplified in
that it only assesses the context area prior to the text word in order to determine the
subsequent attenuation value to apply (more like a ‘semi’ closed loop, perhaps).
The assessment of the preceding speech would be better updated online in a con-
tinual fashion by means of a gradually shifting time window, following methods
presented elsewhere (for example, in Beeston and Brown, 2010; Clark et al., 2012;
Messing et al., 2009). Additionally such a model might include a ‘forgetting’ func-
tion (e.g., an exponential decay with a time-constant that varies inversely with the
centre frequency of the channel so that low frequency channels contain longer his-
tories) so that the immediate prior context of the signal contributes more strongly
to the quantification of reverberation. Recent work by Watkins et al. (2011) also
suggests that a frequency weighting to rate context areas signalling the [t] more
strongly would benefit the high-frequency consonant distinction around which the
‘sir-stir’ identification task revolves, as is discussed below2.

Additionally, the time window of test-word awareness is not straight-forward ei-
ther. A keyword spotting technique was considered for the current study, and might
have been closer to the manner in which a human listener approaches the ‘sir-stir’
task. However, this method was eventually abandoned in favour of the simpler

1Two studies in particular have recently provided data related to this question: Brandewie and
Zahorik (2013), which investigates binaural compensation effects, and Experiment H4 (below),
which investigates monaural effects.

2Additional support for this is found and discussed in § 5.3.4 in the following chapter as well.
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template-based MSE approach (also favoured by Messing et al., 2009). Influenced
by the technical considerations behind ASR segmentation techniques, the test area
was at first assumed to be defined by the time frames corresponding to the un-
reverberated test-word position, and later, to be the frames corresponding to just
the initial consonant cluster (cf. § 4.4.4). With hindsight, this appears particularly
restrictive: the reverberation tails corresponding to the test item itself protrude out-
side of this region, yet are not assessed by the template mechanism. Moreover,
recent work by Watkins and Raimond (2013)1 suggests that these areas beyond the
bounds of the test-word do indeed influence human listeners in this task. Future
modellers would thus be advised to increase the duration of the word identification
portion considerably to include areas outwith the test-word location itself. More-
over, alternative templates themselves would also be worthy of investigation. Here,
unreverberated speech items were used in order that the exact stimuli presented in
the near or far distance cases did not recur in testing. Alternatives to this could in-
clude, for instance, using acoustically averaged templates (combining near and far
distances together), or using perceptually averaged templates (combining all steps
of the continuum that were reported by listeners to be ‘sir’ or vice versa).

A further aspect of the template-matching process might yet be improved in addi-
tion, that of the relative contribution of the different spectral regions to the distance
metric. Since it is not specialised to the high frequency consonant distinction inher-
ent in the ‘sir-stir’ listening task, the current model retains an element of generalis-
ability as it stands. The MSE metric described above weights all channels equally;
however, the human listeners’ perception of whether a word is ‘sir’ or ‘stir’ is dom-
inated by energy in the region around 4 kHz (Allen and Li, 2009; Watkins et al.,
2011). Moreover, Watkins et al. (2011) suggest that the frequency weighting of
both context and test portions are such that the high frequency channels should
count for more when a ‘sir-stir’ consonant identification task is under way (i.e.,
the metric should be (or becomes) specialised for the task at hand). Earlier work
therefore trialled a frequency-weighted version of the MSE which favours high fre-
quencies over low. However, the low-frequency channels in the templates (corre-
sponding to ‘s’ and ‘st’ in the current model configuration, as seen in Figures 4.15a
and 4.15b) essentially contain only the spontaneous firing rate response, and there-
fore do not contribute much to the wideband distance calculation in any case. In
practise then, this weighted metric made little difference to the overall results: nu-
merical values for sir-scores and stir-scores differ slightly, but not appreciably; the
simulated category boundary positions do not move as a result.

1Findings of Watkins and Raimond (2013) are indeed supported in a connected-speech task in
Experiment H3 below.
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This exposes a further possibility in regard to the manner in which stimuli are pre-
sented to the model. The present work follows that of countless other modelling
studies: the stimulus is presented; the response is recorded; the process repeats for
each item in the test suite. Whereas the human listeners in Watkins’ trials received
these items one after another (in a randomised order), the current model shared the
simulations out between many different cores in a high performance computing
grid. This was deemed a sensible given that the computer model is completely de-
terministic and outputs a single response for a given sound file, irrespective of what
other jobs it has recently been working on. That is, since each trial is a completely
separate event, there is no need to randomise the stimuli presentation order, and no
knock-on effects can persist from one trial to the next. In the online closed-loop
configuration of the model (where the attenuation estimate is continually updated),
however, the time course is such that the previous trial may indeed have an ef-
fect on the current word identification likelihood if the inter-stimulus interval is
short1. Therefore, it would be possible to present a randomised sequence of trials
to a single instance of the auditory model (much as is done for a human listener)
and record category boundaries along the same manner as that used in Watkins
(2005a). Further randomisations could be investigated much as multiple people
are tested; and since the model is no longer fully deterministic, category bound-
aries might now vary slightly in the different runs of the experiment. If so, this
would allow the current limit on the quantisation to be overcome (Equation 4.12
would now be averaged across several model listeners), perhaps allowing a better
match to human data since positions in between the labelled continuum steps could
now be identified as the point at which responses flip from ‘sir’ to ‘stir’. Since one
of the pair of data points used in tuning was itself unattainable in the current model
configuration (discussed in § 4.4.6), it can be inferred that this smoothing process
might improve results additionally through re-tuning of the attenuation mapping
equations themselves.

4.7.4 Reverberation estimation

The previous section has described the fundamental interdependence of the rever-
beration estimation method on the modeller’s decision about the spectro-temporal
‘awareness’ of both context and test-word, neither of which could be determined
empirically since such physiological (or psychophysical) data is not yet available.
Such factors ought to be investigated systematically before deciding whether one

1Indeed, Watkins and Raimond (2013) criticised the study by Nielsen and Dau (2010) for failing
to consider such longer-term effects when they removed the ‘near’ condition test-words in their ‘sir-
stir’ replication attempt. As a result, listeners could predict the level of test-word reverberation from
one trial to the next.

143



4 Computational modelling experiments

particular reverberation measure is better than another: this process is begun in
Chapter 5 which follows. Nonetheless, for a given spectro-temporal region in the
simulated auditory nerve response – here defined as 1 second context awareness in
all channels, and with all channels contributing equally to the interpretation of both
efferent suppression values and test-word consonant identification – we can assess
whether one such reverberation measure at least meets a few basic requirements
that would make it a likely candidate for contributing to the perceptual compensa-
tion for reverberation process. The best fit to human data was found in the current
model using an estimate of reverberation based on the energy present during de-
caying tails (using LPM), hence this measure is tested further in an attempt to begin
validation of the present model, or to highlight areas in which further work (both
modelling and psychophysical) should be directed.

There are a number of criteria that must be met in order for a candidate reverber-
ation estimator metric (such as LPM) to be assessed as a successful in an ecosys-
temic efferent control mechanism capable of simulating the effects of perceptual
compensation for reverberation. The following list is certainly not exhaustive:
there is much still to be learned about the compensation mechanism. From the
preceding modelling study, however, the following list may be drawn.

1. Consistency across speech stimuli. This study has investigated a single
recorded utterance as context phrase into which has been embedded a test-
item from the ‘sir-stir’ continuum (itself created by a process of amplitude
modulation). It would be important to assess potential reverberation estima-
tion metric across a wider range of naturally spoken speech stimuli, where
vocabulary and talker vary. To begin this process, an alternative speech
database is therefore considered below.

2. Consistency across source-receiver distance (SRD). This study implements
a linear mapping between the estimate of the level of reverberation and the
subsequent value of efferent attenuation applied in the model (see equa-
tions 4.13 and 4.14 for example), however these were derived using just two
room distances, ‘near’ (at 0.32 m) and ‘far’ (at 10 m). It therefore remains
to be demonstrated whether different SRDs (i.e., alternative talker-listener
configurations) would fit such the same assumption. To begin to address this
question, four intermediary positions are examined below in addition to the
original near and far distances.

3. Consistency across rooms. Again, a single room has been studied in this
chapter so far, but to be considered useful, the modelling results should of
course be transferrable to other reverberant environments. A second enclo-
sure is therefore studied below.
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4. Sensitivity to the time-direction of reverberation. As discussed above, sev-
eral studies have now shown that compensation for reverberation is disrupted
when the RIR is reversed prior to convolution so that the reverberation oc-
curs backwards (producing ramps at onsets rather than tails at offsets). To
match psychophysical responses the reverberation metric must be sensitive
to this difference as well.

Meeting such a set of criteria could be considered a multi-objective optimisation
problem, and could be solved systematically – and updated continually – as more
criteria are added based on the expanding knowledge of compensatory mechanisms
in human hearing. This may lead to alternative metrics being derived, combining
the ‘useful’ parts of each analysis in order to improve the overall match between
human and machine data (see e.g., Nikulin et al., 2010). Such an approach is
beyond the scope of this thesis, however, where for simplicity the tail-based LPM
measure1 alone has been selected by eye for further study in the remainder of this
section since it provided qualitatively similar results to the human listener data in
all experimental conditions studied so far.

Figure 4.21 presents the results of an initial investigation which asks whether the
LPM measure can meet the reverberation estimation criteria just discussed. To
assess whether metric results derived from the ‘sir-stir’ stimuli hold for more nat-
uralistic speech tokens, 100 utterances were drawn at random from a subset of
the Articulation Index Corpus (Wright, 2005)2. To investigate whether the LPM
measure can generalise beyond the ‘near’ and ‘far’ conditions already used, to
alternative talker–listener positions in a room, RIRs recorded by Watkins for a
series of six logarithmically spaced source-receiver distances (SRDs) were con-
volved with these utterances. After convolution, the speech stimuli thus sounded
as if they had been spoken from 0.32, 0.63, 1.25, 2.5, 5 and 10 m distance in the

1The LPM method examines the auditory nerve response simulation and assesses the energy
present during the offset regions in each channel. The basic scheme of the method was previously
outlined in § 4.3.2, and depicted in Figure 4.10. As the amount of reverberation increases, a reverber-
ation decay tail is increasingly prominent at the channel-based offsets; as tails lengthen more energy
is detected within these regions and the measured value, Rlp, rises correspondingly. This was seen
to occur for the ‘sir-stir’ stimuli of Watkins (2005a, Experiment 5), as was shown in Figure 4.13. For
instance, the offset at around time-frame 60 which was stretched in duration by around 20 frames in
length in the far-distance condition (seen by comparing upper and lower figures).

2This corpus is described fully in Chapter 5 which follows (cf. § 5.2.1). The data subset com-
prises the 480 Articulation Index Corpus (AIC) utterances which formed the original speech ma-
terial selected in Experiment H3 below. In total, 24 test-words (TEST) were each spoken by 20
talkers (12 male, 8 female). Each instance of the test-word has an independently selected set of
context words (CW) into which it is embedded, thus forming short utterances defined by the pattern
[CW1][CW2][TEST][CW3].
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Figure 4.21: Estimation of the amount of reverberation using the LPM measure,Rlp, for 100 speech
stimuli drawn at random from the Articulation Index Corpus (AIC). Error bars mark the 95% con-
fidence interval. Conventional time-forward reverberation conditions are presented in Figure 4.21a,
where the estimated reverberation increases monotonically with source-receiver distance across the
six distances selected in two different rooms. In Figure 4.21b, the increase of Rlp with distance
remains consistent across the two rooms but its rate is much reduced.

room. Additionally, RIRs recorded at these distances in a corridor were treated
similarly to assess whether the metric might generalise from the L-shaped room
used in the modelling task to other reverberant enclosures. Energy decay curves
for all 12 impulse responses (6 distances × 2 rooms) may be viewed in Watkins
(2005a, Figure 1). After convolution, stimuli were presented to the auditory model
following the methods described earlier, and the amount of reverberation present
in the signal was estimated using the LPM measure (Rlp) from the simulated au-
ditory nerve response over a 1-second time windowed portion of the signal whose
location varied with the time-direction of reverberation to ensure that the extent of
overlap masking would be comparable in both cases.

The initial investigation into the generalisability of the tail-based LPM reverbera-
tion measure reveals in Figure 4.21 that LPM measures for a new set of speech ma-
terial behave in a manner that looks qualitatively similar to results obtained earlier
with the ‘sir-stir’ stimuli (cf. Figure 4.20b). Here, Rlp – which stands as a proxy
for the level of reverberation in the signal – appears to increase monotonically with
SRD across the six distances in two different rooms. As desired, measured val-
ues of Rlp are always at their lowest for the shortest SRD distance, irrespective of
the time-direction of room reverberation. As the talker-listener distance increases,
the amount of reverberation increases and a large increase in Rlp is measured in
the conventional time-forward reverberation condition. Values of Rlp also rise in
the case of time-reversed reverberation, but the overall growth is considerably less
pronounced. Overall, these results suggests that an efferent feedback system de-
riving attenuation proportional to the tail-based reverberation estimation measure
may also be capable of simulating the effects of perceptual compensation for re-
verberation in experiments where using stimuli from a different speech corpus.
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However, it is not yet clear whether the mappings for attenuation given by Equa-
tion 4.14 could be derived from one dataset (comprising arbitrary speech stimuli
and room conditions) and then used directly to model listener tasks on another
dataset (comprising a different arbitrary speech database and room conditions).
This is considered in Figure 4.22 where a line of best fit is plotted with square
markers through the AIC data just shown in the previous figure. Additionally,
equivalent values for ‘sir-stir’ stimuli1 are shown in each condition using diamond-
shaped markers.

In each of two rooms, the Rlp measure behaves broadly similarly, increasing more
quickly with SRD for time-forward than for time-reversed reverberation condi-
tions as anticipated. In the L-shaped room there is a high degree of consistency
between the two speech databases, and the linear predictions (the best-fit lines) lie
correspondingly close together. However, results in the corridor reveal some de-
pendency of the LPM reverberation estimation method on the signal content itself.
When the reverberation content is very low (i.e., at the nearest distances) the ‘sir-
stir’ stimuli resulted in smaller measures than the AIC analyses, indicating that the
LPM measure is rather more strongly affected by channel-offsets due to the speech
content and less so by the overall reverberation pattern itself. At longer SRDs
the binary mask locating the regions that contribute to the LPM measure contains
considerably longer ‘tail’ segments in each channel (since offsets in the envelopes
have been somewhat smeared by the stronger reverberation conditions). In these
cases, masked segments contributing to the LPM measure now contain reverber-
ated speech signals whose temporal envelopes have been smoothed, resulting in
a loss of detail. Under these conditions it is likely that the two speech databases
may thus appear more similar to each other, resulting in closer values of Rlp being
attained. Thus for the furthest SRD distances examined2, it appears that the contri-
bution of the reverberation content in the signal is more significant to the measure
overall than is the contribution due solely to the speech content itself.

1For the ‘sir-stir’ stimuli, the line of best fit summarises the measured Rlp of the simulated
auditory nerve response in each of the 11 continuum steps at each SRD in each room condition.

2Indeed, reverberant ASR results in Kallasjoki et al. (2014, Table 1) also suggest that this mea-
sure is better suited to higher levels of reverberation. In low-level reverberation cases (simulated
rooms 1 and 2) the LPM-informed recogniser performed less well than the baseline system. When
the level of reverberation increased, however, the LPM-informed recogniser showed some improve-
ment over the baseline results. In the simulated data (room 3), relative improvements of 3.85% for
near and 18.62% for far room distances were achieved over the baseline system’s word error rate
(WER) of 51.95% and 88.9% respectively. For the real-room reverberation condition the relative
improvement was more consistent, at 16.95% for near and 17.96% for far, this time above baseline
results of 88.71% and 88.31% WER respectively.
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Figure 4.22: Prediction of the amount of reverberation using the best-fit LPM measures (Rlp) for
100 speech stimuli drawn at random from the AIC (square markers) and for 11 continuum steps
for the ‘sir-stir’ stimuli in Watkins’ work (diamonds). In each of two rooms, the Rlp measure be-
haves broadly similarly, increasing more quickly with SRD for time-forward than for time-reversed
reverberation conditions. In the ‘L-shaped’ room there is a high degree of consistency between the
two speech databases. However, results in the corridor reveal the dependency of the reverberation
estimation method on the signal content itself. When the reverberation content is very low (i.e., at
the nearest distances) and the measure is more heavily affected by channel-offsets due to the speech
content of the signal, and the ‘sir-stir’ stimuli resulted in smaller measures than the AIC analyses.
At longer SRDs the speech envelopes are smoothed and appear more similar between the datasets.
Here, it appears that the contribution of the reverberation in the signal content is more significant
than the contribution due solely to the speech offsets.

The fact that LPM is affected by the speech source (particularly at near distances)
should come as no surprise here since the estimation technique is reliant solely
on temporal envelopes: it therefore inevitably conflates signal content and rever-
beration content because the effects of both of these factors play out in the same
measurement domain. At one extreme, transient signals (e.g., a drum kit) will fa-
cilitate the perception of channel offsets, particularly at high frequencies. On the
other hand, signals which are essentially continuous (e.g., a solo trumpet playing
a continuous note of fixed-pitch) would provide the LPM measure with few op-
portunities at which to estimate the reverberation condition. Here, the number of
offsets itself could be used in some way as a normalisation factor to account for
different signal types encountered. Alternative computational approaches might
attempt to unravel the separate energetic contributions due to the original signal
and to the reverberation, either by estimating a clean version of the source signal
(e.g. using spectral subtraction) or by estimating a description of the reverberation
characteristic itself (by obtaining the room impulse response). On the other hand,
the model described in this chapter accepts reverberant audio signals at input, and
has no prior knowledge about either the room acoustic or the ‘clean’ speech sig-
nal. Nonetheless, since perceptual effects of reverberation do depend strongly on
the original sonic material of the (pre-reverberated) source, a system such as this
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which directly processes reverberant signals may yet help to explain behavioural
data collected in reverberant speech perception tasks.

Biological auditory processing in reverberation is an area presently under intense
study1, but the underlying processes are not yet well understood. What does seem
to be becoming apparent, however, is that our listening processes are likely to in-
volve a weighted sum of multiple cues that arise, whether monaurally or binaurally,
at different levels of the auditory system (e.g., Kuwada et al., 2012; Zahorik, 2002).
Auditory models including a combination of concurrent multiple analyses have re-
cently been proposed in order to deal with the simultaneous effects of speech con-
tent and reverberation processing, for example combining a number of different
monaural cues (Tsilfidis and Mourjopoulos, 2011), or invoking parallel pathways
representing binaural unmasking, better-ear listening or cross-ear glimpsing effects
(e.g. Jelfs et al., 2011; Lavandier and Culling, 2010; Weller et al., 2014). This com-
bined approach could be introduced within the model structure described in this
chapter, for instance by allowing the reverberation mask (which locates the decay-
ing tail regions in the signal) to be derived from the aggregated results of multiple
reverberation estimation measures2.

Fundamentally, however, more sophisticated cognitive models will be needed to
describe the task-dependent nature which affects the combination and weighting
of cues in different listening exercises. Moreover, experience, attention, active
participation and other modalities of sensory information (particularly vision) can
also play a role in some kinds of listening task. To understand these process more
closely it may become increasingly beneficial in future to model an individual’s
responses to a given sequence of stimuli, rather than to model the data which is
averaged across the whole listener population (and which effectively smoothes a
large degree of the natural variability inherent in our responses to sound). These
wider-perspectives return to the discussion in Chapter 6. More immediately, the
modelling study has highlighted some specific ‘unknowns’ which require inves-
tigation in order to improve the similarity between model responses and human
listener data in tasks demonstrating perceptual compensation for reverberation.
Chapter 5 begins to address these points in a series of four psychophysical ex-
periments. Initial experiments seek to replicate and extend the major findings of
monaural compensation previously discussed, using new talkers and more varied

1See, e.g. Bidelman and Krishnan (2010); Bürck and van Hemmen (2007); Devore et al. (2009);
Kuwada et al. (2012); Sayles and Winter (2008); Sayles et al. (2013).

2Alternatively, a single measure could be evaluated over a number of different timescales,
thereby keeping track of its mean and variance as time progresses. In this manner, the attenuation
value could be made to depend on averaged measures over the recent past and potentially thereby
overcome due solely to moment-by-moment variations in the actual signal content.

149



4 Computational modelling experiments

speech sounds. Later experiments query which signal portions in particular should
‘count’ towards the processes of test-word identification and context adaptation.

Chapter summary

This chapter has investigated the proposal that auditory efferent suppression might
be implicated in perceptual compensation for reverberation, and has given rise to a
number of questions that may be investigated psychophysically.

A computational model of perceptual compensation for reverberation was pre-
sented which was able to qualitatively simulate the trends observed in human
listener data in a categorical perception task, where the identity of a test item
depended on its recent acoustic context. Since mounting physiological data has
implicated medial olivocochlear efferents in dynamic range regulation, the rever-
beration condition of the preceding context was estimated in terms of the ratio
of its peak and mean values. When the efferent feedback circuit in the auditory
model was controlled with this measure of dynamic range, compensation effects
for time-forward reverberation conditions were simulated. However, perceptual
data in time-reversed reverberation conditions could not be accounted for. Instead,
the successful model in these conditions observed the energetic content of the sig-
nal during within-channel offsets, and increased efferent suppression proportion-
ally to the level of reverberation recently experienced. When so-driven by the
measure based on reverberation tails the computational model was, like human
listeners, broadly insensitive to time-reversals in the speech direction, but heavily
influenced by time-reversals in the direction of reverberation. Subsequent analysis
of the offset-based metric using a new speech database, a new room and further
talker–listener positions suggested that the reverberation estimation technique may
conflate the effects of reverberation and speech at the lowest reverberation levels,
but was more robust when higher levels of reverberation were present.
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Chapter5
Perceptual compensation for the
effects of reverberation on consonant
identification with human listeners1
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5.1 Introduction

Chapter 2 reviewed a body of work showing firstly the detrimental effects that
reverberation typically brings about on test-word recognition, and secondly the
improvement that seems to arise from a period of ‘prior exposure’ to the room
reverberation condition. In particular, these sections overviewed a mounting body
of evidence1 which suggests that human hearing is remarkably robust to real-room
reverberation since it is underpinned by auditory mechanisms that compensate for
the effects of reverberation on the speech signal.

Taken together, the behavioural data in this field suggests that the perception of
a reverberant sound is influenced by the properties of its context. That is, in or-
der to achieve perceptual constancy, listeners exploit information gleaned from the
acoustic context surrounding a test sound, and accumulate this information over

1See for example: Brandewie and Zahorik (2010, 2012, 2013); Longworth-Reed et al. (2009);
Srinivasan and Zahorik (2013, 2014); Ueno et al. (2005); Watkins (2005a, b); Watkins and Raimond
(2013); Watkins et al. (2011); Zahorik and Brandewie (2011).
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a period of time. Chapter 4 presented a computational implementation of such a
model, achieving a degree of robustness to reverberation similar to human listeners
for a single reverberant consonant identification task. Chapter 5 now focuses on
aspects of this model that require clarification: the nature of the information that
contributes to perceptual compensation for reverberation, and the time period over
which it is gathered.

The current chapter presents a series of experiments, each of which was designed
with a dual purpose in mind. As will be described below, each experiment seeks
to replicate and extend the work of other researchers in order to extend our un-
derstanding of the human auditory system: both its inherent ability to cope with
realistic reverberant environments, and its tendencies to break down in particular
ways under unrealistic room conditions. On the other hand, each experiment is
additionally underpinned by a particular question arising during the auditory mod-
elling study described in the previous chapter. Thus each perceptual result may
potentially lead to an improvement in future auditory models or speech-processing
devices. For clarity in the current chapter, however, discussion regarding the im-
plications of this human listener data to machine listening techniques is reserved
until the point at which all of the behavioural data gathered in Chapter 5 may be
surveyed en masse. The current discussion therefore resurfaces in Chapter 6 (cf.
§ 6.1.3).

5.1.1 Research questions

This chapter presents a series of four perceptual experiments. The first experi-
ment reported below asks whether perceptual compensation occurs with naturally
spoken speech utterances when the talker, test and context words may vary un-
predictably. In other aspects, the listener task follows the ‘sir-stir’ paradigm of
Watkins, and asks whether perceptual compensation is apparent when only monau-
ral cues are available. In Experiment H1, the ecological relevance of the compensa-
tion effect is assessed in terms of the consonant confusions arising in experiments
using naturally produced speech from twenty different adult voices. Here, percep-
tual constancy for the effects of reverberation can be measured as a reduction in
consonant confusions that listeners make in a given experimental condition.

Experiment H2 seeks to estimate the ecological relevance of recent reports that
compensation for reverberation breaks down when the time-direction of reverber-
ation is reversed, a finding which is of particular interest since it is not predicted
by intelligibility standards based on the room’s modulation transfer characteristic
(Longworth-Reed et al., 2009; Watkins, 2005a). The previous chapter modelled the
reverse-reverberation experiment of Watkins (2005a), using a monaural ‘sir-stir’
continuum category boundary task. Experiment H2 now asks whether Watkins’
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findings hold using a task in which the speech is more similar to everyday listening
situations in that the talker, test-word and context speech varies unpredictably from
one moment to the next.

A third question relates to the respective contributions of context and test-word re-
verberation to the perceptual compensation effect. Watkins and Raimond (2013)
noted that a compensation effect can arise due to information originating from
within the test-word itself, but their experiment only examined this for cases
when test-words were presented in isolation (i.e., in silence). Experiment H3 asks
whether such an effect plays a role in connected speech. Further knowledge re-
garding this question would benefit future auditory modelling studies by helping to
determine the area over which the test-word identity decision should be made.

The final experiment below clarifies the time course of monaural compensation
for the effects of reverberation, and provides data which is comparable to a re-
cent study by Brandewie and Zahorik (2013) which investigated the timescale of a
binaural compensation mechanism. By applying reverberation to the context over
different temporal window durations in the area immediately prior to the test-word,
Experiment H4 asks how much of the context phrase must be reverberated in order
to compensate for the effects of reverberation in the test-word. Data in this regard
would guide future modelling studies in determining the temporal area over which
the context metrics estimating the reverberation content of the signal should best
be applied.

5.2 Methods

This section describes the selection and processing of the speech material in prepa-
ration for the current series of experiments, and the techniques with which percep-
tual compensation for reverberation is observed and examined.

5.2.1 Speech material

Human listening experiments in this thesis all use read speech material drawn from
the Articulation Index Corpus (AIC), LDC2005S22 (Wright, 2005). The database
contains around 2000 nonsense test syllables, among them the words ‘sir’ and
‘stir’, each spoken by 20 different talkers. Individually, corpus utterances consist
of a single test syllable (TEST) embedded in a sequence of context words (CW),

[CW1][CW2][TEST][CW3]
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which are similar in form to that of Watkins’ ‘sir-stir’ continuum utterances, and
well suited to the independent reverberation processing that context and test por-
tions of the signal receive in that paradigm (e.g., Watkins, 2005a).

Context words in the AIC are drawn from a limited set, however (8 CW1 pronouns,
51 CW2 verbs, 43 CW3 codas), resulting in a quasi-predictable temporal location1

for the test-word within the utterance e.g., “people note sir typically” or “I evoke
stir precisely”. This ensured that the context speech did not contain semantic cues
that could be used to predict test identity or override compensation effects (cf.
Srinivasan and Zahorik, 2011).

Experiments H1–H2 reported below widen Watkins’ ‘sir-stir’ distinction to exam-
ine unvoiced plosive consonants differentiated by horizontal place of articulation:
bilabial [p], alveolar [t] and velar [k]. These consonants include a period of brief
silence (or low amplitude) that occurs when the airway is restricted by the artic-
ulators (the tongue, teeth, lips, and so on), resulting in a temporal dip which may
easily become obscured in the presence of reflected sound energy. These conso-
nants are thus particularly susceptible to the effects of reverberation2. Heightening
this effect further, the initial [s] of Watkins’ test-words was maintained in all ex-
periments below, since the stop consonants were found to be even more vulnerable
to reverberation when presented after an [s] sound than when they were presented
alone (Nábělek et al., 1989).

To allow a direct comparison with Watkins’ results, Experiment H1 begins this
work using only the [3~] vowel that features in the ‘sir-stir’ test-words. The number
of test-word vowels was increased in Experiment H3 in order to widen the test
material drawn from the AIC and thereby increase the scope of the data obtained
from each participant.

5.2.2 Convolution with room impulse responses

The experiments that follow all present listeners with monaural stimuli obtained
by convolving speech signals with the left-channel of a binaural room impulse
response (RIR) recorded by Watkins (2005a) with a pair of acoustic manikins as
shown in Figure 2.3b. RIRs were recorded at two source-receiver distances in an
L-shaped office (volume 183.6 m3), with the two heads directly facing each other

1Participants are aware of the generic structure of the phrases, but not the exact selection of
words in each trial. Moreover, the duration of the context portion is highly variable from one phrase
to the next (further details are discussed below).

2Section 2.3.4 reviewed literature showing that reverberation tends to introduce more errors
involving place of articulation than manner or voicing (Drullman et al., 1994b; Gelfand and Silman,
1979; Helfer, 1994).
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in each of the positions. The two talker-listener configurations were denoted ‘near’
(0.32 m) and ‘far’ (10 m) respectively, and resulted in different levels of reflected
sound at each distance. The resulting RIRs were analysed using Aurora modules
in Audacity (Campanini and Farina, 2009), and are briefly characterised here by
measures discussed more fully in § 2.1.4. The initial part of the energy decay curve
is characterised in the ratio of early (first 50 ms) to late energy in the impulse
response of 18 dB at the near distance. This reduced to 2 dB at the far distance.
The later decay portion of both energy decay curves was practically linear (this was
shown previously in Figure 2.4b). The slope of this decay determined an energy
decay rate of 60 dB per 281 ms at the near distance, and 60 dB per 969 ms at the
far distance.

Each one of the experiments that follow implements a different set of experimental
conditions in relation to the specific questions it asks. The general scheme under-
pinning all of these experiments, however, follows Watkins ‘sir-stir’ paradigm as
closely as possible. Test-word and context portions of the speech utterances from
the AIC were independently convolved with the near or far distance RIRs, and
then recombined to give the same- and mixed-distance reverberation conditions re-
quired to independently examine the effects of reverberation on the test-word and
on the context1. Accordingly, when the stimuli were presented monaurally over
headphones to listeners seated in a sound-isolating booth, the sounds at their ear
were the same as those for speech arriving from sources nearby or further away in
the room.

5.2.3 Headphone calibration

A particular ‘sir-stir’ reference audio file was used to calibrate the headphone lis-
tening level in a sound attenuating booth (IAC single-walled) to ensure that stimuli
were presented to listeners in Sheffield at the same level as in the Reading Audi-
tory Laboratory where data collection was carried out by Watkins and colleagues2.
Stimulus presentation levels in Watkins’ lab had previously been set using factory-
calibrated binaural heads. Subsequently, an analogue RMS voltmeter (B&K 2425)
was set to the slow (1 second) RMS averaging time, and was used to measure the

1An example of the resulting stimuli can be seen below in Figure 5.1.
2Since the experiments are carried out in a quiet environment and at a fairly moderate con-

versational speech level, it is not anticipated that small variations in level would alter measure-
ment of compensation effects. Nonetheless, some perceptual attributes of reverberation have been
shown to depend on the sound presentation level (see e.g., Dubno et al., 2012; Lee et al., 2012; van
Dorp Schuitman et al., 2013). Care was therefore taken to calibrate the sound delivery equipment in
order to replicate the presentation level used in earlier work demonstrating the compensation effects
of interest.
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voltage in the wire leading to the headphones while the reference file was played.
This provided a peak measure of 60 mV for the reference ‘sir-stir’ audio. The slow
time-constant of the RMS calculation ensured that most of the trial was present
during the measurement, and also that peak and average dB levels differed little
across the stimulus in question.

In order to present sounds to listeners at the same level in the Sheffield lab, this level
calibration stage was replicated as closely as possible with the available equip-
ment. The audio reference file was played (through the iMac computer, M-Audio
Firewire Audiophile sound interface and listening booth connectors) and the volt-
age was again measured in the wire leading to an identical set of headphones1,
mirroring the method described above. This time, the voltage was measured us-
ing a digital meter (UNI-T UT70D) set to its slow RMS averaging time (again,
1 second) with peak hold set. The output level of the sound interface was manually
reduced until the voltage in the wire to the headphones again matched a peak level
of 60 mV, averaged over multiple presentations. A preference file was saved for
the sound interface to facilitate future experiment set-up.

5.2.4 Measuring the constancy effect

Various methods have been employed to measure perceptual compensation for the
effects of reverberation. As was discussed earlier in § 2.4, the choice of which
method to use appears to be principally influenced by the type of data collected. All
measures are somehow capturing the relief obtained by the presence of a facilitative
context setting in which the reverberated test trials are presented. For instance,
Longworth-Reed et al. (2009) tasked listeners with repeating as many words in
the sentence as possible, and reported mean word recognition scores under various
experimental conditions.

For the ‘sir-stir’ paradigm, Watkins recorded the benefit of a consistently rever-
berated prior context as a recovery of the test-word’s original category boundary
position which was measured by determining the proportion of ‘sir’ (vs. ‘stir’)
responses (Watkins, 2005a)2. A related approach may be seen below in Experi-
ment H4, confusions between words beginning with ‘s’ and ‘st’ were investigated
and visualised in terms of the proportion of [s] responses reported by listeners.

1The impulse response that inverted the frequency characteristic of the Sennheiser HD480 head-
phones used in stimuli presentation was additionally provided by Watkins. Without this, stimuli may
have been subject to colouration effects from any imbalance present in the frequency response of the
headphones.

2The category boundary approach was introduced in § 2.4.1, and was also used in the modelling
study presented in Chapter 4.
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However, this approach is unsuitable for Experiments H1, H2 and H3, where con-
fusions among several consonants were investigated. In these experiments, partic-
ipant responses were captured and stored in consonant confusion matrices so that
the pattern of misidentifications in the data may be taken into account in addition
to the correct identifications.

Relative information transmitted (RIT)

Confusion matrices storing each participant’s responses were subsequently anal-
ysed in terms of relative information transmitted (RIT) (Miller and Nicely, 1955;
Smith, 1990). With this information theoretic approach, participants are regarded
as information channels receiving input X and responding with output Y . Their
information transfer characteristic is then given by

RIT =
H(X;Y )

H(X)
(5.1)

where H(X;Y ) is the mutual information of X and Y , and H(X) is the self-
information (entropy) of X . Probabilities are estimated directly from the finite
sample of observations contained in the confusion matrices (Miller and Nicely,
1955; Smith, 1990), where px is the probability of occurrence of stimulus x, py is
the probability of occurrence of response y, and pxy is the probability of the joint
occurrence of x and y. In this framework, mutual information

H(X;Y ) =
∑
x,y

pxy log
(
pxy
pxpy

)
(5.2)

can then be interpreted as the information about the input of the system (i.e. the
stimuli) that is provided by the output (i.e. the responses). To calculate the measure
of information transfer, this value is therefore normalised by the entropy of the
input to the system,

H(X) = −
∑
x

px log(px). (5.3)

The RIT score thus summarises the consonant identification pattern of the confu-
sion matrix with values ranging from 0 for essentially random responses, to 1 for
fully consistent responses (perfect transmission).

The RIT metric offers three significant benefits over a simpler measure such as
percentage correct. These are outlined below. Firstly, RIT is influenced by the
patterning of all data in the confusion matrix, whereas percentage correct only
considers whether responses are on the main diagonal. It therefore is influenced by
the kind of mistake as well as by the number (i.e., by quality as well as by quantity).
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Secondly, the RIT metric accounts for the difficulty of the listener task so that it
is not influenced by chance performance level. This allows confusion matrices of
different sizes to be compared in a straightforward way (Smith, 1990). Thirdly, the
RIT metric is a normalised measure of stimulus-response covariation that is free
from listener response bias (Miller and Nicely, 1955)1.

Task-adapted compensation metrics

It has previously been shown how different authors – and indeed a single author
at different times – have adopted a variety of methods to measure compensation
effects, depending on the speech material and listener task selected in the study
(cf. § 2.4). The same requirement to adapt the compensation measure to the listener
task in use is true for the perceptual experiments that make up this chapter.

To present results in a visually comparable fashion to Watkins ‘sir-stir’ continuum
experiments, consonant identification performance in Experiment H1 was inverted
to provide an error (misidentification) measure instead. This was defined as

ERIT = 1−RIT (5.4)

so that an error value of ERIT = 0 indicated complete consistency in the partic-
ipant’s responses, whereas an error value of ERIT = 1 indicated an essentially
random set of responses.

Experiments H2 and H3, on the other hand, adapt existing linear contrast meth-
ods (Howell, 1982) from subsequent ‘sir-stir’ studies to examine the compensation
effect at each of a number of (non-ordinal) context conditions (e.g., Watkins and
Makin, 2007b; Watkins and Raimond, 2013). Here, in each of i different exper-
imental conditions, the participants’ RIT scores for the two levels of test-word
reverberation were computed – i.e. RIT(n,i) for a near distance test-word, and
RIT(f,i) for a far distance test-word – and their difference was found. This quan-
tity was labelled ∆RIT, using

∆RIT(i) = RIT(n,i) −RIT(f,i) (5.5)

where each of the participant’s RIT scores were calculated as in Equation 5.1
above. This resulted in a value of ∆RIT that describes the influence of reverberation

1The implication of this may at first seem rather surprising: performance scores on the listener
response data would not have been numerically affected even if the visible category labels had been
shuffled on screen prior to the experiment beginning. In fact, provided that a listener was entirely
consistent about their response behaviour then it would still be possible to achieve a ‘perfect’ score
(RIT = 1, so ERIT = 0) without actually responding to a single item in a ‘correct’ fashion.
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on the test-word at each experimental condition. If ∆RIT is large, then the increase
in test-word reverberation has brought about a strong perceptual degradation of
the signal resulting in many more consonant confusions. If ∆RIT is small, the
increased level of reverberation on the test-word has made little difference to the
pattern of consonant confusions that were recorded. Thus, constancy is greatest for
small ∆RIT values.

The final experiment presented below investigates just two word initial consonant
cluster conditions, ‘s’ and ‘st’. Analogous to the straight-forward counting of the
number of ‘sir’ (vs. ‘stir’) identifications in Watkins continuum study (and in Equa-
tion 4.12 in the modelling study above), compensation was characterised in Ex-
periment H4 with a simple measure of the proportion of ‘s’ responses given by
listeners.

5.3 Experiment H1: Compensation for the effects of
reverberation in consonant identification

In Watkins’ ‘sir-stir’ listening experiments, some of which were previously mod-
elled in § 4.4, the [t] consonant distinction was cued largely by a dip in the temporal
envelope of the test-word. Attempting to generalise findings from this paradigm,
Experiment H1 now asks whether perceptual compensation for the effects of re-
verberation is apparent in a consonant identification task using natural speech pro-
duced by a range of different talkers and with varying speech contexts.

It was previously argued in § 2.3.4 that cues reliant on temporal envelope dips were
particularly susceptible to reverberation, since the reflected energy may persist be-
yond the offsets and fill such gaps in the signal. It seems reasonable to suppose,
however, that the sounds found in natural speech may contain cues which are more
robust in the presence of reverberation than the amplitude modulation cue that dif-
ferentiated the ‘sir-stir’ stimuli in Watkins’ continuum experiments.

Miller and Nicely (1955) have shown that cues to place of articulation are severely
degraded in low-pass filtered speech, causing listeners to make more confusions.
Additionally, Watkins et al. (2011) found that listeners gave more perceptual
weight to high-frequency bands in their ‘sir-stir’ experiments, presumably because
the temporal envelopes of the two test-words differ the most at high frequencies.
Hence, prior to being convolved with room impulse responses, the speech stimuli
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used in Experiment H1 were low-pass filtered in order to reduce the likelihood of
ceiling effects in listener performance1.

In order to locate a suitable operating point at which compensation for reverbera-
tion may be observed in natural speech stimuli, a range of low-pass cutoff frequen-
cies were selected in Experiment H1. Conversely, the expectation is that perceptual
compensation will not be apparent in the more severe (lowest cutoff) filtering con-
ditions because (i) consonant identification is likely to be poor overall and (ii) the
filtering step removes temporal envelope information at the higher auditory fre-
quencies that have been reported to be more effective in inducing compensation
for reverberation on a test-word.

If perceptual constancy does occur in the consonant identification task, then it
should become apparent in the following way. Listeners will tend to make few
errors in test-word identification when both context and test sounds are heard at
the ‘near’ distance, however the number of consonant confusions will increase
when the test-word is presented at the ‘far’ distance yet the context remains rever-
berated at the ‘near’ distance. Subsequently, the number of confusions caused by
‘far’ reverberation of the test-word should be reduced (i.e., compensation will have
occurred) in conditions where the context is also reverberated at the ‘far’ distance.

5.3.1 Stimuli

Eighty utterances were selected from the Articulation Index Corpus (AIC), with 20
talkers (12 male, 8 female) speaking each of four test-words (‘sir’, ‘skur’, ‘spur’
and ‘stir’). Each utterance was segmented by hand using Praat software and a
TextGrid file was stored locating the word-boundaries (Boersma and Weenink,
2010). Five versions of each utterance were then created by low-pass filtering
with an 8th order Butterworth filter at cutoff frequencies of 1, 1.5, 2, 3 and 4 kHz.
The particular range of cutoff frequencies was suggested by Fig. 3 of Miller and
Nicely (1955), since RIT varied for place of articulation between the two extreme
values.

The method outlined by Watkins (2005a, b) was then followed to create matched
and mismatched reverberation-distance conditions for each filtered utterance. Mat-
lab v. 7.5 (R2007b) was used to read word-boundaries from the Praat TextGrid files,
and thereby to identify the context and test-word portions of the phrase. Context
and test portions of the signal were isolated from each utterance and zero-padded
to retain the correct temporal alignment, as illustrated in Figure 5.1). This allowed

1Appendix A below asks whether compensation for the effects of reverberation can also be
demonstrated without this low-pass filtering step.
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Figure 5.1: Illustration of same- and mixed-distance reverberation conditions for one representative
example of the 80 utterances selected for Experiment H1. The traces are amplitudes (Amp.) of
low-pass filtered (cutoff frequency 80 Hz) Hilbert envelopes derived from the temporally aligned
context (light line, upper label) and test-word (dark line, lower label) before these two sounds were
added, point-wise, to form the experimental stimuli. Before the addition, the context and test-word
were independently reverberated at ‘near’ or ‘far’ room distances to give, from top to bottom: near-
near, near-far, far-near and far-far context-test distance conditions. In the top panel, the test-word is
annotated with pointers to show, from left to right, the start of frication, closure and voicing.

them to be independently convolved with either the ‘near’ or ‘far’ impulse response
as required. The resulting waveforms were scaled and summed to give same or
mixed-distance phrases, again as indicated in Figure 5.1. The near-near context-
test condition and far-far condition were calculated first, and their root mean square
(RMS) levels were equalised. Amplitude scaling factors were then derived for the
context and test portions and these were applied to the mixed distance phrases, re-
sulting in stimuli for the near-far and far-near conditions that had equal RMS levels
to the same-distance stimuli.

Finally, as in Watkins (2005a), each signal was convolved with the impulse re-
sponse that inverted the frequency characteristic of the Sennheiser HD480 head-
phones used in stimuli presentation, and the signals were scaled en masse to be
saved as WAV files without clipping. The set of sound files for Experiment H1
thus comprised 1600 stimuli (20 talkers × 4 test-words × 5 filter cutoff frequen-
cies × 2 context distances × 2 test distances).
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5.3.2 Participants

Listening experiments reported in this study were approved by the local ethics com-
mittee, and informed consent was obtained from each participant. Sixty listeners
without obvious or reported hearing deficiencies participated in Experiment H1.
The group comprised fluent native or non-native speakers of English from across
the student and staff population of the university. A sixth of the participants were
recruited informally from the University of Sheffield’s Department of Computer
Science, and were not paid. The remainder responded to a university-wide email
requesting volunteers, and were compensated for their time. In addition, a further
8 people completed the listening test but were discounted from further analysis
since they did not meet the inclusion criterion, set at 90% correct (as in Nábělek
and Robinson, 1982) for responses in the 4 kHz filter cutoff condition when both
context and test-word were reverberated at the ‘near’ distance.

5.3.3 Procedures

Stimuli were partitioned evenly among participants so that each person heard ev-
ery AI corpus utterance just once. This avoided association of the test-word with
its context words by ensuring that any given phrase (comprising one of 20 talkers
speaking a certain test-word in a particular context sentence) was heard in only
a single experimental condition by a single listener. Each participant heard ev-
ery test-word (defined according to the four initial consonant cluster conditions)
at every reverberation distance and at every filter cutoff frequency combination (4
test-words × 4 distances × 5 filters = 80 trials). The stimulus partition was gath-
ered and its order randomised immediately prior to presentation to the participant.

Matching the monaural presentation level used for the ‘sir-stir’ continuum exper-
iments in Watkins (2005a), stimuli were presented to the left ear of listeners at a
peak RMS presentation level of 48 dB SPL (measured with a 1-second time aver-
aging constant). Before the experiment began there was a familiarisation session
which allowed the participant to become comfortable with the computer interface
and the task required of them.

Stimuli were presented with an iMac computer running Matlab Version 7.5
(R2007b) software through an M-Audio Firewire Audiophile sound interface, in
a randomised order in a single session lasting approximately 6 minutes. Each
experimental trial consisted of a speech context with an embedded test-word, as
described above. Listeners identified the test-word with a click of the computer’s
mouse, positioned while looking through the booth’s window at ‘sir’, ‘skur’, ‘spur’
or ‘stir’ alternatives displayed on the computer’s screen. This click also initiated
the subsequent trial.
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Table 5.1: Confusion matrices summarising 60 participants’ responses at three of the 4 kHz low-
pass filter cutoff conditions in Experiment H1. Rows correspond to the stimuli presented; columns
record the responses. Reverberation conditions are labelled as context-test distance. In the near-near
condition, no confusions were recorded. In the near-far condition, listeners frequently misreported
‘skur’, ‘spur’ and ‘stir’ as ‘sir’. These confusions were largely resolved in the far-far condition.

near-near near-far far-far
SIR SKUR SPUR STIR SIR SKUR SPUR STIR SIR SKUR SPUR STIR

4
kH

z

SIR 60 0 0 0 SIR 56 1 0 3 SIR 52 1 0 7
SKUR 0 60 0 0 SKUR 9 46 3 2 SKUR 2 52 0 6
SPUR 0 0 60 0 SPUR 27 3 27 3 SPUR 4 3 47 6
STIR 0 0 0 60 STIR 23 2 1 34 STIR 2 0 0 58

5.3.4 Results

Summarising all participants responses for the 4 kHz lowpass filter condition, the
confusion matrices in Table 5.1 clearly illustrate the perceptual compensation ef-
fect. Consonant identification was not seriously disrupted in the low levels of re-
verberation present in the near-near context-test condition1, however, confusions
were frequent when more reverberation was added to the test-word alone (the near-
far condition). Here, the three most numerous confusions were stimuli for ‘skur’,
‘spur’ and ‘stir’ each being reported as ‘sir’. However, when the preceding context
was also reverberated at the ‘far’ distance (the far-far condition), the majority of
these confusions were resolved.

Perceptual compensation for reverberation

For numerical analysis, participants’ responses were recorded in individual confu-
sion matrices, and analysed in terms of their information transfer characteristics as
described in section 5.2.4. Figure 5.2 shows the mean and standard error of the
ERIT scores at each reverberation distance and each filter condition. A three-way
repeated measures analysis of variance (ANOVA) was performed on participants’
arcsine-transformed RIT scores (Kirk, 1968) using IBM SPSS Statistics 20 soft-
ware. All factors were within-subject; two factors had two levels each (context dis-
tance and test-word distance) and the third had five levels (filter cutoff frequency).
Mauchley’s test showed no cases of violation of sphericity.

The right-hand side of Figure 5.2 reveals a monaural perceptual compensation ef-
fect in the 3 and 4 kHz filter cutoff conditions. In these two conditions, a far-
distance test-word was less often confused when it was preceded by a far-distance
context than when it was preceded by a near-distance context (i.e. the upper line

1The inclusion criterion removed eight participants who misidentified an item in this condition.
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Figure 5.2: Mean and standard error of 60 participants’ ERIT scores (cf. Equation 5.4) at the
five low-pass filter conditions of Experiment H1. Compensation for reverberation is evident in the
downward-sloping upper line of the 3 and 4 kHz filter conditions. In these two conditions, an in-
creased level of reverberation in the context, resulting from an increase in context distance, brought
about an improvement in the identification of the far-distance test-words.

slopes downward to the right). For filter cutoff frequencies of 2 kHz and lower,
however, a far-reverberated context did not aid identification of the far-reverberated
test-word. This pattern of results was indicated in the data by a three-way interac-
tion among the factors for filter condition, test distance and context distance, where
F(4,236) = 5.94, and p < 0.001. Two main effects and three two-way interactions
in the analysis, described below, largely arose from this higher-order interaction.

As one would expect, consonant identification was best (i.e. had lowest values
of the error metric) in the near-near reverberation condition for each filter cutoff
frequency. This can be clearly seen in Figure 5.3, in which the data from Fig-
ure 5.2 has been redrawn as a conventional line plot. Additionally, and again as
expected, increasing the distance of the test-word from ‘near’ to ‘far’ consistently
increased the consonant identification error. This gave a main effect of the test-
word’s distance with F(1,59) = 306.62, and p < 0.001. Further, and yet again as
expected, consonant confusions became more prevalent as the cutoff frequency of
the lowpass filter was reduced and the filtering became more severe. This showed
in the data as a main effect of the filter cutoff frequency with F(4,236) = 53.99, and
p < 0.001. An interaction of these factors was also found, with F(4,236) = 9.16,
and p < 0.001, indicating that consonant confusions resulting from an increased
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Figure 5.3: Data of Figure 5.2 replotted to show the effect of lowpass filtering on each context-test
condition. Consonant identification error decreases monotonically with increasing lowpass cutoff
frequency, except when the context is ‘near’ reverberated and the test-word is ‘far’ reverberated.

level of test-word reverberation were more prominent when higher-frequency in-
formation was retained in the signal.

A two-way interaction between the factors for context distance and test-word
distance, with F(1,59) = 28.32, and p < 0.001, indicated that when the far-
reverberated context did cause an improvement in consonant identification, this
was confined to the far-reverberated test-words. As described above, however, the
effect of context reverberation varied across the filter conditions, which showed
as a significant interaction of context distance and filter cutoff frequency, with
F(4,236) = 9.78, p < 0.001. There were no other significant F ratios.

Effect of low pass filtering on the near-far condition

As would be expected from the prior literature (e.g. Miller and Nicely, 1955), and
as is apparent from Figure 5.3, consonant identification error generally decreased
as the lowpass cutoff frequency increased. However, this trend was not observed in
the near-far context-test condition. Rather, in this condition, consonant confusions
increased when more high frequency information above 2 kHz was retained.

A plausible explanation for this finding might stem from the within-channel pro-
cessing that is suggested to underlie the monaural perceptual compensation for
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reverberation effect demonstrated in Watkins et al. (2011). If acoustic features that
cue the identity of stop consonants are more strongly apparent at high frequen-
cies, then a higher frequency cutoff condition will present the listener with more
conflicting cues than would a lower frequency cutoff condition in the near-far con-
dition. The specific acoustic-phonetics of the consonants used here, all of which
are generally characterised by high-frequency cues, may provide some support for
this interpretation. For example, Allen and Li (2009) report that [t], [k] and [p] can
be defined primarily by their burst frequencies: at 4 kHz for [t]; at 1.4–2 kHz for
[k]; and at 0.7–1 kHz for [p].

Listeners’ responses for each individual consonant were therefore analysed further
in the near-far condition, to seek further support for this explanation. This analysis
questions whether the form of the near-far curve in Fig. 5.3 was only apparent be-
cause the data was pooled across all consonants, or whether there was a consistent
pattern of behaviour for each of the consonants involved.

Participant responses at the near-far reverberation condition were therefore anal-
ysed as follows. At each filter cutoff condition, the overall 4×4 confusion matrix
was refigured into four 2×2 matrices quantifying, for each consonant stimulus-
response pairing, the number of hits, misses, correct rejections and false alarms
that each participant reported (Gelfand, 1990, Chapter 8). As before, participants’
misidentification scores were then quantified from these smaller matrices in terms
of information transfer (i.e. by re-applying Equation 5.4 to calculate ERIT for the
new 2×2 matrices).

These results are shown in Figure 5.4, where it is apparent that a similar pattern is
repeated across all test-words. A ‘pivot point’ is found in performance at 1.5 kHz
for ‘spur’ and at 2 kHz for the remainder of the test items. This finding is consistent
with the fact that the burst frequency for [p] is the lowest of the consonants consid-
ered here (Allen and Li, 2009). In conclusion, therefore, it would appear that the
increase in error rate in the near-far condition apparent in Fig. 5.3 is not an arte-
fact in the data caused by pooling across all consonants tested. Rather, it is most
likely caused by conflicting high-frequency cues in the context and test-word of the
utterance, which reduce the efficacy of within-channel compensation mechanisms.

5.3.5 Interim Discussion

By using more variation among stimuli than Watkins, we have demonstrated that a
monaural perceptual compensation for the effects of reverberation is also likely to
arise at the higher levels of stimulus uncertainty that tend to be present in everyday
listening. In the ‘sir-stir’ continuum experiments described in § 2.4.1, Watkins at-
tributed the increased number of ‘sir’ responses in the near-far condition to the fact
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Figure 5.4: Data of the near-far condition in Figure 5.3 re-examined to show the cutoff filter effect
on each test-word’s responses. All test-words show a similar pattern of performance, with a ‘pivot
point’ at 1.5 kHz for ‘spur’ and at 2 kHz for the remainder.

that the amplitude modulation which imposed the dip in the temporal envelope was
filled with reverberant energy and no-longer cued the [t] of ‘stir’. Experiment H1,
on the other hand, used recorded speech utterances in which the acoustic-phonetic
cues varied naturally (20 male/female talkers speaking 80 test-words, each with a
different speech context). Perceptual compensation has recently been reported by
other investigators using test signals with a comparable degree of variability (e.g.,
Brandewie and Zahorik, 2010, 2012, 2013; Longworth-Reed et al., 2009; Srini-
vasan and Zahorik, 2013), however, these studies were concerned with binaural
listener tasks rather than the monaural task employed here.

Watkins’ task repeatedly used a single recording of the speech context, which re-
sulted in a highly predictable position for the test-word. Compared with this, there
was increased uncertainty in the temporal location of the test-word in the current
experiment since context durations varied from trial to trial, ranging from a mini-
mum of 0.31 s to maximum 0.97 s, with a mean duration of 0.61 s. Results in other
listener tasks, for instance in investigations of the effects of temporal uncertainty
on signal detection (Egan et al., 1961) and gap detection (Green and Forrest, 1989),
suggest that this temporal uncertainty is likely to have reduced listeners sensitivity
in the current experiment. Despite this, perceptual compensation for the effects
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of reverberation was observed, and was qualitatively similar to that reported by
Watkins (2005a).

In Experiment H1, perceptual compensation did not occur when high-frequency
components were removed from the speech signal. This data is consistent with
Watkins et al. (2011) proposal that perceptual compensation occurs in a band-by-
band manner, and, in the ‘sir’ vs. ‘stir’ distinction, that the high-frequency bands
are weighted more perceptually importantly than low-frequency bands. It therefore
seems likely that similar mechanisms of band-by-band processing underlie the ef-
fect of lowpass filter cutoff frequency seen with the ‘sir-skur-spur-stir’ distinction
investigated in Experiment H1. Nonetheless, at this stage there remains the possi-
bility that listeners were unable to compensate for the effects of reverberation at the
lowest cutoff frequency filter conditions because the phonetic content of the con-
text speech signal suffered severe degradation as a result of the filtering operation
(cf. Miller and Nicely, 1955). This point is addressed in the next experiment.

5.4 Experiment H2: Compensation for reverberation
with time-reversed speech and time-reversed rooms

Two main questions motivate Experiment H2. As just discussed, Experiment H1
could not rule out the possibility that compensation for reverberation might be re-
liant on phonetic processing. This result would be unexpected from the listener
data reported by Watkins (2005a, Experiment 5) which was modelled in Chap-
ter 4, nonetheless, it remains to be tested on more naturalistic speech material. If
compensation for reverberation were reliant on the linguistic content of the previ-
ous speech, then it would be blocked by a process which time-reverses the context
speech. On the other hand, if compensation for reverberation did not rely on the
linguistic content, then one would expect the time-reversal of the context speech to
leave the compensation effect largely intact.

Secondly, Experiment H2 investigates claims by Watkins (2005a) and Longworth-
Reed et al. (2009) that time-reversed rooms remove the benefit otherwise gained
from prior room exposure in speech-based reverberant listening tasks. As was dis-
cussed in § 2.1.6, this result is of particular interest since it is incongruent with
predictions of reverberant speech perception given by objective speech intelligi-
bility measures. Watkins’ main findings were previously simulated in Experi-
ments M2 and M3: the fast-acting monaural constancy effect occurred within the
time-scale of a single utterance for time-forward rooms, but was disrupted in the
time-reversed reverberation condition. In those studies, the listener task involved
the binary identification of speech tokens that were differentiated by a synthetic
amplitude modulation cue (which gave the listener the impression of ‘sir’ at one
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end of the continuum and ‘stir’ at the other). Relatedly, Longworth-Reed et al.
(2009) reported an improvement gained from a consistent room acoustic over a
block of trials (sentences 21-40 had better results than sentences 1-20), but only
for the time-forward reverberation direction. Their study used naturally spoken
speech material, but demonstrated a longer-term effect which was measured with
a binaural listener task. The monaural effect has yet to be investigated with natural
speech containing real articulatory-phonetic cues. Therefore, the second hypothe-
sis in Experiment H2 is that a monaural influence of compensation for the effects
of reverberation will be observed in time-forward but not time-reversed rooms.

5.4.1 Stimuli

This experiment used exactly the same utterances from the Articulation Index Cor-
pus (AIC) that were previously selected for Experiment H1. This comprised a set
of 80 utterances, consisting of twelve male and eight female voices each uttering
the test-words ‘sir’, ‘skur’, ‘spur’ and ‘stir’ in phrases with contexts of a quasi
predictable nature:

[CW1][CW2][TEST][CW3].

The 4 kHz lowpass filtering process was again replicated here (and in all further
experiments below) since it had proved a suitable operating point at which a clear
perceptual compensation effect could be observed in Experiment H1. A two-fold
reasoning motivates the choice of the 4 kHz condition over the 3 kHz condition
(which had additionally permitted compensation to be observed). Firstly, the 4 kHz
condition is the least severely filtered condition and is thus closest to ‘normality’
of those conditions tested. Secondly, this condition crops up repeatedly as a bench-
marked standard in speech processing, in part since voice on the telephone network
is typically represented with frequencies up to a maximum of 4 kHz.

Four preceding context ([CW1][CW2]) conditions were created by independently
varying the speech direction and the reverberation direction, using either time-
forward or time-reversed states for each. In all trials, however, the test-word and
following context ([TEST][CW3]) were presented with the time-forward speech
direction and the time-forward room reverberation condition1.

1In this experiment, treatment of CW3 deviates from the reverberation conditions implemented
in Watkins (2005a, Experiment 5), where the context following the test-word was treated in the same
manner as the context preceding the test-word. The reasons for altering the implementation of the
time-reversals on the following context were driven by primarily by auditory modelling questions.
The discussion is therefore reserved until § 5.4.5 below.
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Figure 5.5: Illustration of selected stimulus conditions for one of the 80 utterances used in Exper-
iment H2. The context (light line, upper label) and test-word (dark line, lower label) are tempo-
rally aligned and independently reverberated at ‘near’ or ‘far’ distances as before (upper two pan-
els). Here, the following context word [CW3] is reverberated at the same distance as the test-word
(cf. fig 5.1, second panel). In other conditions, the time-direction of the speech signal in the preced-
ing context is reversed (third panel). Additionally, the time-direction of the reverberation processing
is reversed and applied at either the near (fourth panel) and far (fifth panel) distance conditions. Other
details remain as described for Fig. 5.1.

As in Experiment H1, the current study used the left-channel of the binaural RIRs
recorded at ‘near’ (0.32 m) and ‘far’ (10 m) distances in an L-shaped office of
volume 183.6 m3(Watkins, 2005a, b). Context and test portions were isolated and
independently convolved with either the near or far distance impulse response to
create matched and mismatched conditions, as was previously described in § 5.3.1.
The consistently near and consistently far reverberated conditions were calculated
first, and their RMS levels equalised to obtain multiplying factors to balance the
mixed-distance phrases. This resulted in the mixed-distance conditions labelled
near-far (near distance [CW1][CW2] with far distance [TEST][CW3]) and far-near
(far distance [CW1][CW2] with near distance [TEST][CW3]) which had equal
RMS to the same-distance phrases. The resulting stimuli are depicted in fig. 5.5.

Finally, as described by Watkins (2005a), a headphone correction impulse response
inverted the frequency characteristic of the Sennheiser HD480 headphones through
which the stimuli were to be presented, and the utterances were scaled en masse to
be saved as .wav files without clipping. The total set of soundfiles for this experi-
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ment comprised 1280 stimuli (20 talkers × 4 test-words × 2 speech directions × 2
reverberation directions × 2 context distances × 2 test-word distances).

5.4.2 Participants

Results are presented below for 64 listeners without obvious or reported hearing
deficiencies who took part in Experiment H2. This group consisted of University
students and staff who were all fluent native or non-native speakers of English.
Approximately one third of the participants were recruited informally from within
the Department of Computer Science, and were not paid. The remainder responded
to a university-wide volunteers email inviting participation in a listening study,
and were compensated for their time. In addition, a further 15 people completed
the listening test but were discounted from subsequent analysis since they did not
meet the inclusion criterion (above 90% correct responses in the forward-speech,
forward-reverberation condition with both context and test portions heard at the
‘near’ distance).

5.4.3 Procedures

Stimuli were again partitioned evenly among participants to ensure that participants
heard a given AIC utterance in only one experimental condition. This avoided
association of the test-word with its context sentence. Participants heard each test-
word at each reverberation distance and time reversal combination, and in addition
heard one of the test-words for a second time (4 distances × 4 time reversals × 5
test items = 80 trials).

As in the earlier experiment, listeners were seated individually in a sound-
attenuating booth, and sounds were presented monaurally to the left ear over
Sennheiser HD480 headphones at a peak RMS-level of 48 dB SPL (measured with
a 1-second time averaging window). A familiarisation session took place before
the experiment began. This allowed the participant to become comfortable with
the computer interface and the task required of them.

Presentation conditions exactly replicated those of the earlier experiment, with
each trial consisting of a speech context with an embedded test-word as described
above. Listeners again identified the test-word with a click of the computer’s
mouse, positioned while looking through the booth’s window at ‘sir’, ‘skur’, ‘spur’
or ‘stir’ alternatives displayed on the computer’s screen. This click also initiated
the subsequent trial. Stimuli were presented in a randomised order in a single ses-
sion lasting approximately 7 minutes.
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Table 5.2: Confusion matrices summarising 64 participants’ responses at three forward-speech,
forward-reverberation conditions. Rows correspond to the stimuli presented; columns record the
responses. Reverberation conditions are labelled as context-test distance. In the near-near condi-
tion, no confusions were recorded. In the near-far condition, listeners frequently misreported ‘skur’,
‘spur’ and ‘stir’ as ‘sir’. These confusions were largely resolved in the far-far condition.

near-near near-far far-far
SIR SKUR SPUR STIR SIR SKUR SPUR STIR SIR SKUR SPUR STIR

SIR 80 0 0 0 SIR 71 1 2 6 SIR 65 1 1 13
SKUR 0 80 0 0 SKUR 15 63 2 0 SKUR 2 71 1 6
SPUR 0 0 80 0 SPUR 17 8 52 3 SPUR 2 8 64 6
STIR 0 0 0 80 STIR 23 1 0 56 STIR 4 5 0 71

5.4.4 Results

The time-forward reverberation condition of this experiment clearly replicates the
main demonstration of compensation for reverberation that was previously ob-
served in Experiment H1. Participant responses are tabulated in summary con-
fusion matrices in Table 5.2, and the corresponding RIT error scores, ERIT, are
presented graphically in Figure 5.6. As was seen in the previous experiment, the
result of the high accuracy inclusion criterion (above 90% correct) implied that no
consonant confusions were recorded in the near-context, near-test condition (cf.
Table 5.2, left column). When the context remained at the near distance, but the
test-word was heard at the far distance, listeners frequently misreported ‘skur’,
‘spur’ and ‘stir’ as ‘sir’ (centre column). However, when the level of reverberation
in the context was increased to match the far-distance test-word, these confusions
were largely resolved (right column)1.

In order to assess the consistency of results across listeners, a linear contrast was
introduced which following the method of Watkins and Raimond (2013) and sim-
plified the data sufficiently for analysis with a 3-factor ANOVA. Difference scores,
here named ∆RIT, were calculated for each participant as their RIT at the near-
distance test-word condition minus their RIT at the far-distance test-word condi-
tion, as was previously described in Equation 5.5. Means and standard errors of
this measure are shown in Figure 5.7. A repeated measures ANOVA (all within-
subject factors) was performed on these difference scores. Three two-level factors
described the preceding context condition: speech direction (forward and reverse),
reverberation direction (forward and reverse) and reverberation distance (near dis-
tance and far distance).

1In the far-far condition, a considerable number confusions have arisen whereby [s] stimuli gave
rise to ‘st’ responses. This point is discussed further in § 5.7.1 below.
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Figure 5.6: Mean and standard error are shown for 64 participants ERIT scores in each of the exper-
imental conditions, with time-forward (tf) or time-reversed (tr) speech and reverberation processing
implemented independently. Here, 320 responses contribute to each data point (5 trials per partici-
pant in each condition).

The left-most line in Figure 5.7 shows the forward-speech, forward-reverberation
condition that was presented in Table 5.2. For the near distance context condi-
tion, a large difference was observed on average between the near-distance and
far-distance test-words for each participant, and a high ∆RIT value resulted. On
the other hand, the test-word distance was less influential at the far distance context
condition, and a low ∆RIT value resulted, which illustrated the benefit that a speech
precursor with matching reverberation can bring about in the identification of a re-
verberant test-word. This showed in the data as a significant main effect of context
distance, with F(1,63) = 13.59, p < 0.001. A tendency for lower recognition ac-
curacy was observed for reverse speech contexts, with F(1,63) = 7.38, p = 0.009.
Furthermore, it was evident that compensation only occurred for conditions with
forward-reverberation contexts, and not for those with time-reversed reverberation.
This appeared in the data as a significant interaction of context distance and rever-
beration direction, with F(1,63) = 8.72, p = 0.004, and can be seen, by compari-
son, in the two right-most panels of Figure 5.7. In these two conditions, applying
far-distance time-reversed reverberation to the speech context caused no statistical
difference to the near-distance context. There were no other significant F ratios.
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Figure 5.7: Mean and standard error are shown for 64 participants ∆RIT scores at each experimental
condition (cf. Equation 5.5). Each data point now characterises 640 responses (i.e., 10 trials per par-
ticipant). Compensation for reverberation was observed in the steeply sloping line for time-forward
reverberation conditions (black markers), with both time-forward (tf) and time-reversed (tr) speech
contexts. Here, addition of a far reverberated context (-f) increased constancy in comparison with the
near (-n) context. Conversely, in conditions with time-reversed reverberation (white markers), the
compensation effect was not observed.

5.4.5 Interim discussion

Listener data in Experiment H2 confirms the main finding of Experiment H1 and
other researchers (e.g., Brandewie and Zahorik, 2010, 2012, 2013; Longworth-
Reed et al., 2009; Srinivasan and Zahorik, 2013; Watkins, 2005a; Watkins et al.,
2011) that listeners perceptually compensate for the effects of reverberation. In
time-forward reverberation and monaural listening conditions, a large proportion
of consonant confusions again occurred when the level of reverberation applied to
the test-word exceeded that of the preceding speech context. However, when far-
distance reverberation was applied to both, most of these confusions were resolved.

The use of nonsense test syllables here again ensured that the context speech did not
contain any semantic cues that listeners could use to predict test identity or over-
ride compensation effects (Srinivasan and Zahorik, 2011). Since Experiment H2
showed, however, that perceptual compensation for reverberation persisted despite
the time-reversal of the context speech, it now seems extremely unlikely that this
constancy mechanism could be reliant on phonetic perception. This finding sug-
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gests that the degradation of test signal’s phonetic content at the more severe low-
pass filter conditions in the previous experiment (H1) would not, in itself, have
caused the absence of compensation in these conditions. Rather, it appears that
the outright lack of energetic components in the upper frequency channels was
significant in that case (cf. § 5.3.5).

On the other hand, the pattern of consonant confusions in this listener data sup-
ported claims by Watkins (2005a) and Longworth-Reed et al. (2009) that time-
reversal of the room impulse response applied to the speech context does prevent
perceptual compensation from taking place. This result generalises the category
boundary paradigm of Watkins (where a single talker and single consonant dis-
tinction were investigated), to consonant confusions among several unvoiced stop
plosives spoken by 20 different talkers. Additionally, it hints at the possibility that
the binaural effect reported by Longworth-Reed et al. might actually be underlain
by monaural processes.

Reverberation processing on the following context

It was not clear whether the absence of compensation for time-reversed reverbera-
tion in Watkins (2005a, Experiment 5) was mainly due to effects (or lack thereof)
arising from the preceding context treatment, or whether it largely resulted from the
backward protrusion of reverberation from the following context into the test-word
region. To help clarify this point, Experiment H2 implemented time-reversed rever-
beration somewhat differently from Watkins (2005a). Time-reversed reverberation
conditions in Watkins’ experiment are depicted in Figure 5.8a, above those of the
current experiment in Figure 5.8b.

Since time-reversed reverberation from the context following the test-word could
protrude backwards in Watkins’ experiment, the level of reverberation present dur-
ing the test-word portion of the signal varied with the reverberation distance of the
final context portion in his stimuli. By restricting the time-reversal processes to
the preceding context only, Experiment H2 ensured that the level of reverberation
present in the test-word was not affected by the context distance in time-reversed
reverberation conditions. This may be seen by comparison in Figure 5.8b.

Despite the altered reverberation processing on the following context portion, how-
ever, Experiment H2 replicated the disruption of the compensation effect in time-
reversed room conditions. It would appear, therefore, that the monaural compen-
sation effect was dominated in the current experiment by information arising from
the context prior to the test-word. The contribution to compensation of effects due
to reverberation in the test-word region and context region located after the test
portion remains to be investigated.
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(a) Time-reversed reverberation conditions in Watkins (2005a, Experiment 5).

near
near

near
far

far
near

far
far

Time

(b) Time-reversed reverberation conditions in Experiment H2.
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Figure 5.8: Schematic illustration for reverse reverberation stimuli. The test-word (dark) and sur-
rounding context (light) were independently reverberated at ‘near’ or ‘far’ room distances (depicted
with short or long tails respectively) to give, from top to bottom: near-near, near-far, far-near and far-
far context-test distance. Fig. 5.8a shows the time-reversed reverberation conditions in from Watkins
(2005a, Experiment 5). Fig. 5.8b shows the corresponding conditions in Experiment H2, two of
which were previously plotted for a real stimulus in the fourth and fifth panels of Figure. 5.5. Pre-
ceding context reverberation and test-word reverberation conditions are implemented identically in
both experiments, but reverberation of the following context differs. In Watkins, reverberation from
the following context impinges (backwards) on the test-word in time reversed reverberation condi-
tions. Therefore, the level of reflected energy in the test-word varied with the context distance. In
Experiment H2 the final context portion is presented with time-forward reverberation in all condi-
tions, thus the level of reflected energy in the test-word portion of the signal does not vary with the
context distance.
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It is interesting to note here that Watkins and Raimond (2013) have recently re-
ported that compensation effects may include ‘intrinsic’ influences – those which
originate from material located within the test-word itself (including its reverbera-
tion tail) – in addition to the more commonly studied ‘extrinsic’ effects (like those
seen in Experiments H1 and H2) which originate in the preceding speech context.
The stimuli in the study by Watkins and Raimond used the ‘sir-stir’ continuum
words, but presented these test items in isolation, without the speech context. It
is uncertain therefore whether such an effect would be replicable with continu-
ous speech, particularly using a source of highly variable speech material such as
the AIC where the test and context portions of the signal vary unpredictably from
trial to trial. The following experiment therefore asks whether an intrinsic com-
pensation effect is apparent when a source of extrinsic information is available in
addition via the preceding context words.

5.5 Experiment H3: An intrinsic effect

Experiments H1 and H2 demonstrated an ‘extrinsic’ effect of compensation medi-
ated by the preceding speech context (termed extrinsic since it was brought about
by factors outwith the test-word in question). On the other hand, Watkins and Rai-
mond (2013) reported an ‘intrinsic’ compensation effect1, so-called since it orig-
inates from reverberation information due to the signal content of the test-word
itself. However, in these studies reverberant test-words were presented in isolation
(i.e., in silence). Experiment H3 now asks whether intrinsic information plays a
role when extrinsic information is additionally present.

In Experiment H3 the preceding context phrase received three different treatments:
near-distance reverberation and far-distance reverberation (replicating the baseline
conditions of Experiments H1and H2), and thirdly, a silencing treatment which
removed the preceding context cues and gave conditions similar to Nielsen and
Dau (2010) and Watkins and Raimond (2013).

The test-word in Experiment H3 was potentially subject to two different types of
processing. As in the earlier experiments, the test-word was first reverberated at
either the near or far room distance. Secondly, the reverberant test-word was gated
in some conditions following the method of Watkins and Raimond. By shortening
the reverberation tail that follows the test-word’s final vowel, the intrinsic infor-
mation content was reduced. Stimuli are described in detail below, and selected

1Indeed, Nielsen and Dau (2010) have shown listener results consistent with this effect, though
their analysis did not represent the data in this fashion.
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Figure 5.9: Illustration of selected stimuli in Experiment H3. Context phrase (light line, upper label)
and test-word (dark line, lower label) were independently reverberated at ‘near’ or ‘far’ distances as
before (upper half). In other conditions the context was silenced (lower half) and the test-word was
gated (bottom panel). Other details are the same as Fig. 5.1.

conditions are displayed in Figure 5.9 to depict the separate context silencing and
test-word gating processes.

Watkins and Raimond reported a gating effect when the test-word was presented in
isolation (i.e. in silence, without a context), however, they did not investigate this
effect for conditions in which gated test-words had speech precursors. As detailed
in § 2.4.1, the carefully controlled stimuli of the ‘sir-stir’ continuum provide a
sensitive paradigm in which to investigate such effects yet despite this, the gating
effect they measured, though robust, was relatively small. The implication of this
finding is that a ceiling effect may exist: in cases where an extrinsic compensation
effect arises from the speech precursor (i.e., in the far-distance context condition),
then there may be no remaining headroom in which to measure a further intrinsic
effect exposed by the gating process.

To avoid this likely ceiling effect, Experiment H3 therefore asks whether the intrin-
sic effect exposed by the test-word gating process is present for naturalistic speech
utterances with near-distance and silent precursor conditions only1. However, in
order to maintain uncertainty about the level of reverberation occuring in a given

1Planned comparison tests are used to address the data conditions of interest (excluding the
far-distance data) following the initial ANOVA data summarisation stage.
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trial, far-distance context conditions were also included in the experimental stimuli
as before.

If apparent, the intrinsic effect would be measurable in the following way: in con-
ditions where the reverberation tail of the test-word promotes some intrinsic effect
of compensation, listeners would make more confusions when that tail is removed
by gating, and fewer consonant confusions when the test-word’s reverberation tail
remains intact. Moreover, if an effect of gating is apparent (i.e., if listeners’ ability
to identify the test-word consonant reduces in gated conditions), then it would sug-
gest that the reverberation tail following the test-word’s final vowel contributes to
perceptual compensation even though it occurs some time after the stop consonant
that distinguishes the test-word.

Crucially, it should be noted that this experimental design does not gauge the full
size or importance of all intrinsic sources of reverberation information. Instead,
the gating operation evaluates only the contribution of the vowel-end tail. Other
aspects of reverberant test-words, notably the tail that follows the test-word’s con-
sonant, are not evaluated at present but should not be discounted since they are
located closer in time to the frication part of the sound.

5.5.1 Stimuli

Utterances selected for Experiment H3 were similar in form to those of the earlier
experiments, however, in this case they were truncated to remove the final context
word. The stimuli now were of the form

[CW1][CW2][TEST]

which facilitated the independent manipulation of the reverberation elicited by the
test-word and the context.

Additionally, to gather more consonant confusion data from each participant, the
set of test-word vowels was expanded further in this experiment. However, since
the perception of [p] and [k] (but not [t]) has been shown to depend on the fol-
lowing vowel (Liberman et al., 1952), care was taken to ensure that the following
vowel would have similar effects across the new set of test-words. The vowels
{[eI], [i:], [E], [I], [æ], [3~]} were finally selected from the AIC since coarticulatory
variation is not prominent among front vowels. The last of these is the vowel from
the ‘sir-stir’ paradigm that was previously used in Experiments H1 and H2. The
corpus contained appropriate data (i.e., all four test-words) with two other vowels
in addition to the six finally selected. The vowel labelled [A] was rejected, how-
ever, because it was spoken inconsistently by the 20 talkers (Wright (2005) reports
frequent mergers of the two back vowels [A] and [6]). Additionally, the vowel [oU]
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was not included since it was the only back vowel remaining in the group. Using
the same initial consonant groups as in the previous study, the current experiment
thus employed 480 AIC utterances (20 talkers × 4 consonants × 6 vowels).

The process of locating word boundaries was partially automated in Experiment H3
due to the large number of utterances involved, but considerable care was taken to
position word boundaries in order that the resulting speech stimuli sounded natu-
rally spoken after truncation and reverberation. The AIC transcripts were initially
expanded into phone sequences using the Carnegie Mellon University pronuncia-
tion dictionary1. Subsequently, a hidden-Markov model-based automatic speech
recognition system2 was then used in conjunction with TIMIT-trained monophone
acoustic models (Lee and Hon, 1989) to force-align each phone sequence with
its corresponding speech signal. This allowed the test and context regions of each
sound file to be identified. To overcome quantisation errors (due to the 10 ms frame
rate of the recogniser), the word boundaries were subsequently checked using Praat
(Boersma and Weenink, 2010) and amended by hand where necessary.

After lowpass filtering throughout at 4kHz as before, same- and mixed-distance
stimuli were again created following the reverberation processing methods pre-
viously described (cf. § 5.3.1), with scaling factors were calculated across CW1,
CW2 and TEST in order to ensure that the level of context and test portions was
balanced in mixed-distance conditions. Two such conditions are illustrated in the
upper two panels of Figure 5.9.

Silent context conditions are illustrated in the third panel of Figure 5.9. Here,
the preceding context words CW1 and CW2 were omitted and silent intervals,
SIL, of equal duration were introduced so that the utterances now comprised
[SIL][SIL][TEST]. This further increased the uncertainty in the temporal location
of the test-word since the preceding context varied in duration for each utterance
(ranging from 0.23 s to 1.24 s, with a mean duration of 0.65 seconds). As a result,
any quasi-semantic cues from the preceding pronoun and verb were removed in
these conditions.

The gating process applied to the test stimulus was based on that used in Watkins
and Raimond (2013) and is illustrated in the final panel of Figure 5.9. The gating
function was created using the right-hand-side of a Hann window of 10 ms du-
ration3, and was applied to ‘near’ and ‘far’ reverberated versions of the test-word,
with the function time-aligned to begin its descent at the end of the test-word (at the

1Carnegie Mellon University pronunciation dictionary, v. 0.7a, accessed 1 Jul 2010 at http:
//www.speech.cs.cmu.edu/cgi-bin/cmudict

2HTK v. 3.4.1, accessed 1 Jul 2010 at http://htk.eng.cam.ac.uk
3The gate duration used in Watkins and Raimond (2013) was comparatively shorter at just 1 ms.
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position in the AIC utterance at which the following context word was truncated).
Hence, the reverberant tail following the test-word’s final vowel was cropped off
without shortening the test-word beyond its initial unreverberated duration. Other
aspects of reverberant test-word, particularly the reverberation tail following the
test-word’s consonant, remained intact and provided reflected energy that was tem-
porally proximate to the crucial frication part of the sound.

Finally, the twelve versions of each spoken utterance were equalised in RMS level,
the headphone correction was applied and the sound files were saved as previously
described in § 5.3.1. The set of sound stimuli for Experiment H3 thus comprised
5760 sound files (480 utterances × 3 context conditions × 2 test-word distances ×
2 gate conditions).

5.5.2 Participants

Sixty participants from among the student and staff population of Sheffield Univer-
sity were recruited by email for Experiment H3, and were compensated for their
time. A further 10 people participated but were discounted from further analysis. In
one case this was due to a reported hearing impairment. In the remaining 9 cases
this was through failure to meet the inclusion criterion at the control condition
(achieving above 90% correct responses at the near-context, near-test distances,
with full reverberation tails following the test-words).

5.5.3 Procedures

Stimuli were once again partitioned among listeners to avoid repetition of an item
in different experimental conditions that would otherwise increase association be-
tween the test and context portions of the phrase and thereby assist identification of
the test-word. Every participant heard 480 different phrases, comprising 40 items
in each of 12 experimental conditions. Vowels were divided evenly across the
listener group, and stimuli rotated among participants so that each listener heard
every test consonant either once or twice in each condition and the set was bal-
anced overall. In cases where listeners heard the same test consonant twice in a
given experimental condition, the two instances were from different phrases (and
thus were spoken by different talkers). In this experiment, participants were not
required to identify the test-word completely. Rather, they were instructed to iden-
tify the initial part of the word by choosing among buttons labelled ‘s’, ‘sk’, ‘sp’
or ‘st’. For each participant, the 480 stimuli were presented in a randomised order
in a single session. Participants were encouraged to take short breaks whenever
needed, and the experiment was typically completed in around 25 minutes. Other
aspects of stimulus presentation were as described in section 5.3.3.
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Figure 5.10: Mean and standard error of 60 participants’ERIT scores in Experiment H3. Conditions
in which the reverberation tail following the test-word was removed by gating are shown with white
markers. The not-gated conditions that preserve intrinsic information are shown with black markers.

5.5.4 Results

Participants’ responses were once again recorded in confusion matrices and anal-
ysed in terms of their information transfer characteristics. Overall, the main ex-
trinsic compensation effect of Experiments H1 and H2 was replicated in baseline
conditions, as shown by the mean and standard errors of participants’ ERIT scores
in Figure 5.10. Firstly, increasing the test-word distance from near to far gave rise
to a large increase in the number of consonant confusions in the listener data. Sec-
ondly, in comparison with the near-distance context condition, extrinsic compensa-
tion at the far-distance context condition brought about a reduction in the number
of misidentifications recorded for both gated and not-gated stimuli. Since the final
context word was omitted from all stimuli used in this experiment, extrinsic infor-
mation from the context portion following the test-word was clearly not required in
order to achieve perceptual compensation for the effects of reverberation.

Following the linear contrast previously used in Experiment H2 and in Watkins and
Raimond (2013), participants responses were again transformed prior to analysis
in this experiment. As before, the difference between participants’ scores for the
two levels of test-word reverberation was calculated using ∆RIT defined in Equa-
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tion 5.5, and used to characterise the compensation effect: constancy is considered
to be greater when this difference is small.

This linear contrast avoids a number of potential confounds that might otherwise
have been a concern in data analysis. Looking left to right1 in Figure 5.10, the tem-
poral uncertainty of the test-word increases between the near-distance and silent
context conditions. There is substantial evidence that listeners are more sensitive
to a sound if they know when it is likely to occur, as shown by the effect of tem-
poral uncertainty on signal detection (Egan et al., 1961) and gap detection (Green
and Forrest, 1989). Therefore the move from near-distance to silent context con-
ditions would be anticipated to bring about an increase in the overall number of
consonant confusions since the silent context cannot cue the location of the test-
word. The reduced degree of temporal uncertainty at far distance contexts might
suggest a decrease in error on continuing towards the right from silent to far con-
texts (cf. fig. 5.10). However, in this comparison the presence of overlap masking
(Nábělek et al., 1989) from the context in the far condition would be likely to bring
about an increase in consonant confusions. Concurrently, extrinsic compensation
effects would be expected to decrease the overall error rates of far test-words.

At each context and gate condition, difference scores ∆RIT were therefore calcu-
lated for each participant as their RIT at the near distance test-word minus their
RIT at the far distance test-word (cf. Equation 5.5). Means and standard errors of
this measure are shown in Figure 5.11 (left).

Participants’ difference scores were analysed with a 2-way repeated measures
ANOVA (all within-subject factors), using one factor for test-word gate condition
(with two levels: gated, not-gated) and a second factor for preceding context con-
dition (with three levels: near, far, silent). Mauchley’s test showed that conditions
of sphericity were met. An overall reduction in ∆RIT was observed when mov-
ing from left to right in Figure 5.11 which suggested that constancy increased in
silent-context conditions, and increased further in far-distance contexts. This large,
extrinsic compensatory effect showed in the data as a significant factor for context
type, with F(2,118) = 90.61, and p < 0.001. There were no other significant F
ratios.

It was argued above that a ceiling effect is likely to prevent gating effects from be-
ing measurable in conditions with far-distance contexts (where an extrinsic com-
pensation effect dominates). The far-distance listener data points were therefore
excluded in the planned comparison stage (Howell, 1982, Chapter 12). Moreover,
since here we are interested in the effect of gating, the remaining silent and near

1Since the horizontal axis describing context treatment is non-ordinal in this experiment, the
left-to-right positioning of context types was selected purely for convenience.
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Figure 5.11: Left – Mean and standard error for 60 participants’ ∆RIT scores for near (n), silent
(s) and far (f) contexts at each gate condition in Experiment H3. Right – Pooled results (p) show
some effect of gating on the test-word’s vowel, suggesting that intrinsic effects may have helped to
disambiguate far distance test-words in the near- and silent-context conditions. Note that the ordinate
scales of the two panels differ.

context conditions were pooled to undertake the linear contrast depicted in Figure
5.11 (right). Here, a paired-samples t-test revealed that there was some effect of
test-word gating in these conditions, with t(119) = 2.43 and p = 0.017. Thus,
despite the high variability of the speech stimuli used, this dataset nonetheless con-
stitutes further evidence in support of a role for intrinsic information which seems
to help the listener to identify reverberant test-words in the near- and silent-context
conditions.

5.5.5 Interim discussion

Stimulus conditions in Experiment H3 were designed further investigate the results
of Nielsen and Dau (2010) and Watkins and Raimond (2013).

To explain their data, Nielsen and Dau put forward a ‘modulation masking’ theory
which proposed that the dip cueing the /t/ in a reverberant ‘sir-stir’ continuum test-
word could be made less apparent (i.e., masked) by a preceding context, provided
that that context contained a sufficient degree of modulation. By this theory, the
near distance context can be thought to have a large degree of modulation (i.e. little
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reflected energy to smooth over the spectro-temporal gaps), which would thereby
induce substantial masking of the /t/ in the far-reverberant test-word. The near dis-
tance context would thus promote more ‘sir’ responses from the listeners (and, by
inference, a greater degree of confusion in the AIC data). On the other hand, the far
distance has a lesser degree of modulation since the higher degree of reverberation
has somewhat smoothed the signal, and filled gaps with reflected energy. The lower
modulation content of the far context condition would therefore promote less mask-
ing of the /t/ dip, and permit more ‘stir’ responses (and again by inference, fewer
consonant confusions). For silent contexts, where there is no modulation and thus
no modulation masking, Nielsen and Dau’s proposal would predict a well-defined
plosive dip, resulting in still fewer confusions in the AIC data. However, a differ-
ent pattern of responses emerged in the listener results of Experiment H3. Here, far
test-word consonant confusions were indeed less frequent for silent contexts than
for near-distance contexts, but confusions were actually reduced still further by the
presence of a far-distance context. The current result therefore provides further
evidence1 that the ‘modulation masking’ theory of Nielsen and Dau (2010) does
not explain the compensation for reverberation paradigm.

Listener data in Experiment H3 supports an idea that perceptual compensation for
reverberation may be influenced by several factors. An improvement in far test-
word recognition accuracy was observed when moving from near context to silent
context conditions which clearly cannot be attributed to the extrinsic effects elu-
cidated in Experiments H1 and H2 since the preceding context cues have been
removed by the silencing operation. Rather, the increase in performance can be
attributed to an intrinsic compensatory influence. By examining the intrinsic influ-
ence from tails at the end of the far-reverberated test-word’s vowel2 it transpired
that identification errors tended to be reduced in not-gated conditions with near and
silent contexts. This suggests that the test-word’s tail played a role in the identi-
fication of the preceding consonant when intrinsic and extrinsic information were
placed in conflict. That is, when listeners were presented with an ambiguously re-
verberant stimulus, they appeared to use intrinsic information to help resolve the
uncertainty.

Moreover, since this experiment indicates that some compensation may arise in
silent-context conditions, it may in addition cast earlier datasets in a new light,
in particular for experiments where silence has been used as a ‘control’ condition

1Watkins and Raimond (2013) have suggested that listener data of Nielsen and Dau (2010) was
affected by having presentation of only far-distance test-words presented, since listeners could pre-
dict the level of test-word reverberation from one trial to the next.

2Indeed, tails from the test-word’s initial consonant might form a second intrinsic influence.
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against which a reverberated speech carrier has been contrasted (cf. for example
Brandewie and Zahorik, 2013; Nielsen and Dau, 2010; Ueno et al., 2005).

Experiment H3 has therefore permitted observation of compensation mechanisms
acting in both a time-forward fashion (i.e. due to the extrinsic context appearing
prior to the test-word) and in a time-reverse fashion (i.e. due to factors arising
in the final reverberant tail of the test-word occurring after the consonant which
distinguished the test-word). It is apparent, however, from Figure 5.10 that the
effects due to the test-word gating process are small in comparison to those medi-
ated by the preceding context. In conclusion therefore, while intrinsic sources of
information should not be discounted, Experiment H3 suggests that compensation
for reverberation is rather strongly informed by extrinsic sources of information.
The following experiment therefore investigates the time course of this extrinsic
compensation effect.

5.6 Experiment H4: Investigating the time course of the
extrinsic perceptual compensation effect

In Experiments H1, H2 and H3, the context words preceding the test-word varied
in duration from trial to trial; in other words, the amount of extrinsic information
available to listeners was not constant. Regardless of this, each of these experi-
ments found that inconsistent reverberation in the context and test regions of the
signal brought about a degradation in consonant identification for far-reverberated
test-words, and that this degradation could be alleviated by increasing the level of
context reverberation to match that in the test-word.

By varying the duration of the context speech that is reverberated at the far-
distance, Experiment H4 now investigates the time course of the extrinsic per-
ceptual compensation effect. In the previous experiments, the speech context pre-
ceding the test-word was wholly reverberated at either far- or near-distance. Here,
the context speech is divided into two regions; the first part is reverberated at the
near distance, and the second part (just prior to the test-word) is reverberated at the
far distance. The boundary between these two regions is then varied as an experi-
mental condition in order ask how much of the context must be far-reverberated to
bring about an effect of compensation on a far-reverberated test-word.

5.6.1 Stimuli

As in the earlier experiment, Experiment H4 used speech material from the AIC,
low-pass filtered at 4 kHz to reduce ceiling effects in consonant identification. In
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Figure 5.12: Illustration of selected stimulus conditions for one of the 100 utterances used in Ex-
periment H4. The test-word (dark line, lower condition label) is preceded by the context (light line)
which is divided into an initial near-reverberated part and a subsequent far-reverberated part. The
temporal position of the boundary is varied between these parts, so that less or more of the context
immediately prior to the test-word is far-reverberated (shaded area, upper condition label). Other
details remain as described for Fig. 5.1.

this experiment the stimuli and task were simplified, however, to reduce effects of
a potential nuisance variable (consonant closure duration, which differs on average
for [k], [p] and [t]). Using a two-alternative forced choice (2-AFC) design, listeners
therefore identified just ‘s’ or ‘st’ at the initial position of the test-word. Five
following vowels were used to complete the test-words: {[eI], [i:], [E], [I], [æ]},
and the word-initial [s] sound was preserved from the earlier experiment design.

Using methods described in section 5.5.1, word boundaries were located to identify
portions of the signal belonging to the test-word and context regions. However, in
Experiment H4 the utterances were reordered and spliced so that all of the context
words preceded the test-word. Utterances were now of the form
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[CW3][CW1][CW2][TEST]

and therefore maximised the duration of the context before the test-word while
retaining plausible phrases e.g., “daily we think stir”. By limiting the number of
corpus talkers to exactly half of those available, the resulting 100 utterances (10
talkers × 2 consonants × 5 vowels) had preceding contexts of around one second
duration or longer. Four utterances fell slightly short of this target, however, and
resulted in preceding context of 994, 979, 959 and 933 ms duration respectively.

The initial portion of the (rearranged) context phrase was always reverberated with
the near-distance room impulse response in Experiment H4. Thereafter, a portion
of the context just prior to the test-word was reverberated at the far-distance. The
duration of this far-distance portion was controlled with a window of nominal du-
ration 0, 62.5, 125, 250 or 500 ms, as depicted in the shaded regions of Figure 5.12.
In practice, the window length was modified on an utterance-by-utterance basis so
that the window edges were always aligned with zero-crossings in the audio sig-
nal. This ensured that reverberation of the context did not introduce any audible
discontinuities in the signal. The duration of the far-context portion thus differed
slightly from the nominal window length in almost all cases, but this variation was
typically small. Across the whole set of stimuli, the mean deviation was 48.9 sam-
ples from the nominal window length, corresponding to approximately 1 ms at the
48 kHz sample rate in use.

As in earlier experiments, the near- and far-distance portions of the context were
recombined with the test-word using the RMS balancing techniques outlined in
5.3.1, to create the same- and mixed- distance phrases. Finally, the overall RMS
level was equalised across stimulus conditions, the headphone correction was ap-
plied throughout. The total set of sound files for Experiment 3 thus comprised 1000
stimuli (100 utterances × 2 test distances × 5 context window durations).

5.6.2 Participants

Forty participants were recruited for Experiment H4 via a university-wide email,
and were compensated for their time. A further 5 people took part but were dis-
counted from analysis. Two of the excluded participants reported hearing losses,
and had considerable difficulties recognising test-words in all conditions. The re-
mainder did not achieve the criterion for inclusion (above 90% correct responses
for near-distance test-words at the 0 ms far-distance window condition).

189



5 Human listening experiments

5.6.3 Procedures

Stimuli were once again partitioned across the listener group (with 10 listeners per
group) in order to avoid any association between test-word and context phrase that
might otherwise assist recognition of the test-word. Talkers were divided evenly
across participants so that each listener heard 10 utterances at each of the 10 exper-
imental conditions, and each stimulus was repeated 4 times. Every test vowel was
used in each experimental condition, once with the preceding ‘s’ and once with the
‘st’ word initial consonants. Again, participants identified the test-word by clicking
on either an ‘s’ or ‘st’ alternative on the computer’s screen, but were not required to
identify the test-word’s vowel. Stimuli were presented in a randomised order in a
single session lasting around 20 minutes, and participants were encouraged to take
breaks as often as they wished. Other aspects of stimuli presentation were carried
out as described in section 5.3.3.

5.6.4 Results

Participants’ responses for Experiment H4 are shown in Figure 5.13, presented in
terms of the proportion of ‘s’ responses at each test-word distance and context-
window condition. These results were analysed with a two-way repeated measures
ANOVA, using one factor for test-word distance (with two levels: near, far) and a
second factor for the duration of the far-distance context preceding the test-word
(with five levels: 0, 62.5, 125, 250, 500 ms). Mauchley’s test again showed no
violation of sphericity. The two-way interaction between factors for test distance
and far-reverberated context duration was found to be significant (F(4,156) = 22.13,
p < 0.001) as were both main effects; test-word distance (F(1,39) = 75.96, and
p < 0.001) and far-context duration (F(4,156) = 25.55, and p < 0.001). A linear
trend test (using a least-squares method) across the log-spaced window-duration
conditions showed a linear decrease in the number of ‘s’ responses with increasing
duration of the far-reverberated context window length (F(1,39) = 82.90, p <
0.001).

5.6.5 Interim discussion

Experiment H4 asked how much of the context must be reverberated at the far
distance in order to find a effect of perceptual compensation on a far-reverberated
test-word. The current experiment was monaural, and thus complements a recent
study on binaural compensation mechanisms by Brandewie and Zahorik (2013),
Figure 5.13 suggests a clear trend; for a task in which listeners were required to
determine whether the test-word began with an initial ‘s’ or ‘st’, the number of
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5.6 Experiment H4: Time course of extrinsic compensation
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Figure 5.13: Mean and standard error of 40 participants’ scores in Experiment H4. The lower line
reports near-distance test-word scores, where listeners made few errors (i.e., the proportion of initial
/s/ consonants reported is close to 0.5) and the data showed no dependency on the duration of the
far-reverberated context. The upper line reports the far-distance test-word scores. For the zero-length
far-context window condition, where the test-word has more reverberation than the context, listeners
often misclassified ‘st’ as ‘s’. As the duration of the far-reverberated part of the context increased,
fewer misclassifications were made and the proportion of /s/ consonants reported decreased.

incorrect responses consistently decreased as the duration of the far-reverberated
context portion increased.

For consistency with the three previous experiments, Experiment H4 once again
used utterances drawn from the AIC, however the final context word was spliced
onto the beginning of the utterance in this experiment in order to maximise the
duration of the preceding context. This process ensured that the preceding context
duration was at least 1 second in most cases, which was sufficient to allow a near-
reverberated portion (of 500 ms or longer) to be followed by a far-reverberated
portion of at most 500 ms in duration. This allowed examination of the compen-
sation effect across more rapid timescales than the shortest condition observed in
Brandewie and Zahorik (2013), where an 850 ms context was sufficient to ob-
serve listeners’ improvement in a binaural listening task. However, the maximum
time resolution of Experiment H4 was insufficient to determine whether a further
decrease in consonant identification error would have arisen from a longer far-
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reverberated context portion (i.e. if the window duration exceeded 500 ms), thus
is not clear from this data whether compensation is yet ‘complete’ in the longest
time-condition studied.

One option to increase the length of the speech material presented before the test-
word would have been to pad short utterances with additional speech material.
However, this would have disrupted the consistent form of the utterances (which
otherwise had exactly three context words preceding the test-word) and might have
directed listeners’ attention towards the context rather than the test-word itself (cf.
Ueno et al., 2005, Experiment 1). To avoid this, context lengths were instead max-
imised by selecting the 10 talkers which had the fewest utterances of short dura-
tions in the corpus. By this method, it is likely that talkers with a slow speaking rate
were preferentially selected. With fast and slow versions of the ‘sir-stir’ paradigm,
Watkins has previously shown that speech at a faster rate was more influenced by
the test-word reverberation, and resulted in a greater shift in the category boundary
between the near-near and near-far conditions (see Watkins, 2005a, fig. 3). Hence
by using slower talkers, Experiment H4 used a set of utterances that are likely to be
relatively robust to the effects of reverberation, and a still larger effect of perceptual
compensation than that observed in Figure 5.13 might have been apparent were the
faster talkers selected instead. Be that as it may, inclusion of the slower talkers is
more akin to every-day life, since talkers tend to slow down in reverberant rooms
(Black, 1950) and listeners tend to prefer slower speech (Moore et al., 2007).

5.7 General discussion and conclusions

The human listener data presented in Chapter 5 has demonstrated monaural effects
of compensation for reverberation with naturally spoken speech material. Table 5.3
presents a summary of the experiments in which data was gathered, achieving
in total nearly 55,000 responses for around 10,000 stimuli. As has been shown,
the collected data replicates the main findings of the ‘sir-stir’ continuum experi-
ments undertaken by Watkins (2005a), in which listeners were asked to identify
test-words where the impression of a [t] was created artificially (by superimpos-
ing the temporal envelope of a spoken ‘stir’ on top of a recorded ‘sir’ utterance).
Moreover, the consonant confusion data collected here extends Watkins’ paradigm
by examining a slightly wider range of test-words embedded in short phrases where
the talker and context vocabulary varies from trial to trial. The following section
presents a meta-analysis of the combined data, not in a statistical sense (ie., there
is no hypothesis to test), but rather in an observational sense in order to highlight
some note-worthy features of the dataset that appear to be common across the four
experiments undertaken but which have not hitherto been discussed.
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Table 5.3: Data coverage of listener responses across all experiments, where experimental conditions
are abbreviated according to the following alphabetical list. Totals are not shown for the number of
conditions and number of utterances drawn from the Articulation Index Corpus (AIC) since there is
a degree of overlap between experiments.

C – number of conditions in which the context words were presented;
F – number of low-pass filter cutoff frequency conditions;
R – number of reverberation directions in the context portion;
S – number of speech directions in the context portion;
T – number of test-word distances;
V – number of voices heard (talkers);
W – number of test-words presented.

Experiment Conditions AIC phrases Stimuli Participants Responses
H1 20 (2T×2C×5F) 80 (20V×4W) 1,600 60 4,800
H2 16 (2T×2C×2S×2R) 80 (20V×4W) 1,280 64 5,120
H3 12 (2T×3C×2G) 480 (20V×24W) 5,760 60 28,800
H4 10 (2T×5C) 100 (10V×10W) 1,000 40 16,000
TOTAL – – 9,640 224 54,720

5.7.1 Meta-analysis of the human listener data

Grand summary confusion matrices are presented in Tables 5.4 and 5.5 for the
baseline situation most resembling ‘normal’ listening, for the experiments with
four (Experiments H1–H3) and two (H4) response alternatives respectively. The
same data is also visualised in Figure 5.14 using the familiar RIT error grids. In
contrast to earlier plots which showed the mean and standard error of the par-
ticipants’ individual ERIT values, however, the value of ERIT is calculated here
from the aggregated confusion matrix in each experimental condition (using equa-
tions 5.1 through 5.4 as before).

Figure 5.14 shows, for the summary data aggregated across all participants, a repli-
cation of the main findings seen in individual listeners in the earlier analysis. As ex-
pected, the lowest error rates are seen in the least reverberant conditions (lower-left
in each panel), at near-near context-test distance. Shown in the leftmost columns
of Tables 5.4 and 5.5, responses at near-near show very few confusions, in part
because this is the baseline conditions in each experiment that most resembles
‘normal’ listening, and in which the 90% correct inclusion criterion was applied.

The far-near condition has not received much attention thus far, however the data
in all four experiments clearly show the effect of overlap-masking in the lower-
right data-point of each panel in Figure 5.14 (Nábělek et al., 1989). Here, the
near-reverberated test-word is more frequently misidentified when it is preceded
by a far-reverberated context, due to the prolongation of reflected energy from the
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Table 5.4: Confusion matrices summarising 184 participants’ responses in Experiments H1, H2
and H3. Rows correspond to the stimuli presented; columns record the responses. Reverberation
conditions are labelled as context-test distance. Results presented in the near-near condition are for
the baseline situation most resembling ‘normal’ listening (i.e., that in which the 90% correct inclusion
criterion was applied). Few confusions were recorded here. In the near-far condition, listeners
frequently misreported the stop consonants [sk], [sp] and [st] as ‘s’, however these confusions were
largely resolved in the far-far condition. Confusions for [s] stimuli rose in near-far conditions, but
rose further still in the far-far condition (largely towards ‘st’ responses) so did not display the same
compensatory effect. The final row shows the proportion (∝) of responses per category of stimulus
presentation. Values under 0.01 are not shown, and values may not total 1.00 due to numerical
rounding.

near-near near-far far-far
‘s’ ‘sk’ ‘sp’ ‘st’ ‘s’ ‘sk’ ‘sp’ ‘st’ ‘s’ ‘sk’ ‘sp’ ‘st’

H
1

[s] 60 0 0 0 [s] 56 1 0 3 [s] 52 1 0 7
[sk] 0 60 0 0 [sk] 9 46 3 2 [sk] 2 52 0 6
[sp] 0 0 60 0 [sp] 27 3 27 3 [sp] 4 3 47 6
[st] 0 0 0 60 [st] 23 2 1 34 [st] 2 0 0 58

H
2

[s] 80 0 0 0 [s] 71 1 2 6 [s] 65 1 1 13
[sk] 0 80 0 0 [sk] 15 63 2 0 [sk] 2 71 1 6
[sp] 0 0 80 0 [sp] 17 8 52 3 [sp] 2 8 64 6
[st] 0 0 0 80 [st] 23 1 0 56 [st] 4 5 0 71

H
3

[s] 584 6 3 7 [s] 558 4 16 22 [s] 477 17 31 75
[sk] 2 596 1 1 [sk] 70 502 6 22 [sk] 22 550 12 16
[sp] 0 0 580 20 [sp] 228 40 243 89 [sp] 57 35 391 117
[st] 6 9 2 583 [st] 300 24 16 260 [st] 83 38 35 444

H
1+

H
2+

H
3 [s] 724 6 3 7 [s] 685 6 18 31 [s] 594 19 32 95

[sk] 2 736 1 1 [sk] 94 611 11 24 [sk] 26 673 13 28
[sp] 0 0 720 20 [sp] 272 51 322 95 [sp] 63 46 502 129
[st] 6 9 2 723 [st] 346 27 17 350 [st] 89 43 35 573

∝

[s] .98 - - - [s] .93 - .02 .04 [s] .80 .03 .04 .13
[sk] - .99 - - [sk] .13 .83 .01 .03 [sk] .04 .91 .02 .04
[sp] - - .97 .03 [sp] .37 .07 .44 .13 [sp] .09 .06 .68 .17
[st] - .01 - .98 [st] .47 .04 .02 .47 [st] .12 .06 .05 .77

Table 5.5: Confusion matrices summarising 40 participants’ responses in Experiment H4. Other
details are the same as described for Table 5.4 above.

near-near near-far far-far
‘s’ ‘st’ ‘s’ ‘st’ ‘s’ ‘st’

H
4 [s] 791 9 [s] 775 25 [s] 712 88

[st] 2 798 [st] 351 449 [st] 152 648

∝ [s] .99 .01 [s] .97 .03 [s] .89 .11
[st] - 1. [st] .44 .56 [st] .19 .81
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Figure 5.14: Compensation for reverberation is apparent in the aggregated summary confusion ma-
trix data for baseline conditions in each experiment undertaken. Lowest error rates are found in
the least reverberant condition (lower-left data-points in each panel), at near-near context-test. At
far-near, the reverberant context causes overlap-masking in the test-word and error rates increase a
little (lower-right data-points). More striking though is the effect of reverberation on the test-word
(upper-left data-points): error rates are substantial in the near-far condition. In every experiment, the
main finding underpinning the compensation for reverberation paradigm is replicated: error rates for
a far-reverberant test-word reduce when a greater degree of reverberation is present in the context as
well (upper right data-points).

context into the portion of the signal in which the test-word is located (Watkins,
2005a; Watkins et al., 2011).

More striking, however, is the effect of reverberation on the test-word itself: sub-
stantial error rates are seen in the near-far condition (the upper-left data-point in
each panel in Figure 5.14). In this case there is little contribution to overlap mask-
ing from the context since it is at the low-level reverberation condition (the near
source-receiver distance). However, overlap-masking protrudes from the reverber-
ated [s] portion of the test-word into the region defining stop consonants (where
present); moreover there is self-masking within the phoneme pertaining to the [k],
[p] or [t] itself (Nábělek et al., 1989). As discussed earlier, listeners frequently
misreported the [sk], [sp] and [st] word-initial clusters as ‘s’ in this condition.

The final rows in Tables 5.4 and 5.5 show the full extent of these misidentifica-
tions at near-far distance across the four experiments by quantifying the proportion
(∝) of responses per category of stimulus presentation. For [st] presentations in
near-far conditions, close to half of the total responses are consonant confusions in
favour of ‘s’ (47% in Experiments H1–H3, 44% in H4). In Experiments H1–H3,
this accounted for ' 89% of the misidentifications made in that condition. The
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[sp] stimuli see over a third of responses toward ‘s’ (37%), accounting for ' 65%
of the misidentifications in this case. The [sk] are substantially more robust in
the near-far condition, with almost twice the correct identifications the [sp] stim-
uli just discussed. Nonetheless, ‘s’ responses again constitute the majority of the
misidentifications for [sk] stimuli, standing at around 73% of the errors.

Finally, the effect of compensation for reverberation can be seen at the far-far dis-
tance in every experiment performed (upper-right data-point in each panel of Fig-
ure 5.14): here, an increased level of reverberation in the preceding context appears
to assist listeners in identifying reverberant test-words. Although the acoustic as-
pects of reverberation have not fundamentally changed, the perceptual implication
of the reverberant context is quite different whether the test-word is at the near
or far distance. That is, the far-distance context reverberation still causes the pro-
longation of reflected energy into the test-word, an effect usually termed overlap-
masking which was previously seen to result in poorer listener performance. Now,
however, the degrading effect of this energetic masking is outweighed overall by
the beneficial compensation effect. This is seen most clearly at the foot of the right-
hand column in Table 5.4, where the frequency of occurrence of [st], [sp] and [sk]
stimuli being reported as ‘s’ reduces from 47, 37 and 13% respectively to only 12,
9 and 4% of the total number of responses overall.

5.7.2 A different pattern in [s] stimuli responses

It is interesting to note, however, that this pattern is not observed in the data for
all consonants: confusions for the [s] stimuli do not display the same compen-
satory effect. For [s] presentations, the number of correct identifications falls in
the near-far condition, but now continues to fall still further in the far-far condi-
tion (in all experiments). A possible explanation for this finding is that during
the far-distance context, listeners become primed to a high level of reverberation
being present. Thus they are likely to be sensitive even to small dips in the tem-
poral envelope, and may therefore over-estimate any degree of signal modulation
as a stop closure1. There is a strong favouring of the ‘st’ responses in the data,
amounting to approximately 88, 87 and 61% of the errors in Experiments H1, H2
and H3 respectively (the corresponding value of 100% was inevitable given the
2AFC design of the listener task in Experiment H4). A similar result was reported

1Indeed, a similar effect might be expected for the modelling simulation described in Chapter 4,
where far-distance context reverberation gives rise to an increased level of efferent attenuation which
in turn reduces the response in the auditory nerve. Typically this increases the dynamic range in the
signal since the response to low-level portions of the stimuli is reduced below threshold; thus gaps
are revealed in the signal which may (mistakenly, in this case) give rise to the impression of a stop
consonant closure.
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by Gelfand and Silman (1979), who studied confusions between 20 reverberant
consonants and noted that errors regarding place of articulation were often toward
alveolar consonants.

For [s] stimuli errors in the far-far condition, the clear preference for the ‘t’ re-
sponse (over ‘k’ or ‘p’) can perhaps be attributed to the high-frequency spectral
prominence that defines both the alveolar consonants, [s] and [t] (cf. Figure 4 in
Allen and Li, 2009). The velar consonant [k] and bilabial consonant [p], on the
other hand, contain more prominent in mid- and lower- frequency energies respec-
tively, and are thus less likely to be confused with the [s] stimuli. An alternative
explanation for the same finding might suggest a lexical preference for words with
‘st’ arising from a phonotactic point of view, here analysed according to the pro-
nunciations of words within the dataset used in Lanchantin et al. (2013). Excluding
the cases in which [s] appears in the word-final position, nearly half (44.0%) of the
remaining 151,744 occurrences of [s] are immediately followed by one of the three
stop consonants studied. Among these phoneme pairs, [st] accounts for 77.4% of
the data observed, with [sp] and [sk] appearing on 12.1% and 10.4% of occasions,
respectively1.

Since the analyses performed in this study assess the entire confusion matrix by
reducing it to a single numerical value, these methods cannot distinguish between
the two different effects observed in the data, i.e. the decrease in identification
resulting for [s] at far-far, alongside the increase in identification rates for the com-
bined [k], [p], [t] group. The meta-analysis findings suggest therefore that the RIT
calculation in Experiments H1, H2 and H3 are likely to have under-estimated the
compensation effect that would be seen in an analysis that considered only the par-
ticipants’ responses to stop consonant stimuli presentations. On the other hand,
the analysis of Experiment H4 took the proportion of ‘s’ responses itself as the
dependent measure (analogous to the method used in Watkins’ original studies).
Here, the rapidity of the build-up of the compensation effect may have been over-
estimated as a result of the continued deterioration in recognition of [s] stimuli in
the far-far conditions (which would have contributed to the overall lowering of the
number of ‘s’ responses counted in this condition).

5.7.3 Concluding remarks

The series of four experiments reported in this chapter complements the work of
other researchers in the field by providing evidence that monaural exposure to a re-

1I am grateful to Oscar Saz for computing the phoneme-pair statistics in the Lanchantin et al.
(2013) dataset.
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verberant environment is sufficient to bring about a significant improvement in con-
sonant identification in speech material recorded by 20 talkers. Measured across
224 left ears, these effects clearly do not involve the types of inter-aural process-
ing that are thought to underpin binaural hearing process. As such, they cannot be
directly attributable to the raft of binaurally advantageous listening processes that
are observed in reverberant listening tasks, such as ‘echo-suppression’ resulting
from precedence effect buildup (cf. Brandewie and Zahorik, 2010; Zahorik et al.,
2009). Instead, the listener data gathered in this study is consistent with a compen-
sation mechanism that appears to enhance the amplitude modulation in reverberant
signals (Zahorik et al., 2012), and which has been attributed to temporal envelope
constancy (Kuwada et al., 2012; Watkins et al., 2011).

While Experiments H1 to H3 all hinted that these monaural compensation mech-
anisms are fast-acting (i.e. occur within an utterance), the time course of the large
extrinsic effect was only directly investigated for the first time in Experiment H4.
Here, the majority of consonant confusions were correctly resolved after only half
a second of consistent far-distance reverberation on the preceding context (it was
not determined whether longer contexts would increase performance further still).
Relatedly, a study by Brandewie and Zahorik (2013) has recently reported that con-
texts of 850 ms bring about a performance improvement in a binaural listening task
(conversely, in that study shorter timescales were not tested). At the other end of
the scale, a long-term binaural improvement was reported by Shinn-Cunningham
(2000) to take place over several hours exposure to a single room reflection pat-
tern. It would appear from the pattern of results in current experiments, however,
that the monaural compensation effects studied here are not primarily related to the
refined learning of a particular room characteristic. Indeed, compensation effects
have previously been demonstrated despite various distortions to the fine-structure
of the room’s reflection pattern, for example by presenting context and test-word
with impulse responses recorded in different rooms (Watkins, 2005a), or by revers-
ing the polarity of a randomly selected half of the samples in the impulse response
(Watkins et al., 2011). Thus it would appear that the rapidly-acting monaural con-
stancy mechanism acts to promote an initial, fast calibration to a new listening
environment.

Experiments H2 and H3 replicated and extended experiments by Watkins (2005a)
and Watkins and Raimond (2013) respectively. Experiment H2 confirmed two im-
portant findings; firstly, that the constancy mechanism does not require linguistic
comprehension of the speech signal, and secondly, that time-reversed rooms dis-
rupt compensation for reverberation. By slightly altering the implementation of the
reverberation processing from conditions used in Watkins (2005a, Experiment 5),
Experiment H2 additionally suggested that that the monaural compensation effect
was dominated by information arising (or failing to arise) from treatment of the
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preceding context rather than from the backward protrusion of reverberation from
the following context into the test-word region. The contribution to compensation
of the region following the test-word was therefore probed in more detail in Ex-
periment H3. Watkins and Raimond had reported an intrinsic compensation effect
which was mediated through information originating from the test-word’s final tail,
but had carried out their study only for test-words presented in isolation. Extending
this, Experiment H3 assessed the contribution of intrinsic and extrinsic information
when test-words were presented after a preceding speech context, and found that
intrinsic cues contributed something to compensation effects even where there was
a longer context available to the listener, and even for highly variable speech stim-
uli where the talker and speech content differs from trial to trial.

The basic aim of the present experiments was to investigate whether the monaural
compensation effect found by Watkins (2005a) generalises to conditions where the
variability among sounds is more similar to everyday listening. It clearly does.
Watkins’ listeners’ task relied on stimuli that created the perception of a [t] by a
process of amplitude-modulation. The current series of experiments instead used
utterances in which the stop consonant is signalled by naturally occurring acoustic-
phonetic cues. These experiments have demonstrated a large compensation effect
overall, but have shown that this monaural constancy effect may not generalise to
the full range of natural speech sounds (indeed, the meta-analysis reveals that the
[s] may behave somewhat differently from the plosive consonants studied)1.

Nonetheless, these results appear to be ecologically relevant for two main reasons
that were previously discussed in § 2.3.4. The first of these relates to the high rate of
occurrence of stop consonants in real speech. Indeed, Mines et al. (1978) reported
that [t], [k] and [p] account together for 10.67% (respectively: 5.78, 3.10, 1.79%)
of all phonemes encountered in American English casual conversational (including
the vowels). Secondly, since the consonants studied here are among those most
vulnerable to the effects of reverberation (Drullman et al., 1994b; Gelfand and
Silman, 1979; Nábělek et al., 1989), the experiments above are directly concerned
with the very parts of the speech signal that are the most awkward to hear in real
reverberant listening situations.

The speech material selected for Experiment H4 was controlled for temporal ef-
fects of the preceding context, however the frequency content was not controlled in
the same way. Allen and Li (2009) reported that frequency regions around 4 kHz
are likely to contribute most significantly to identification of the [t] when it is
present in test-words. Moreover, Watkins et al. (2011) reported that compensa-

1This raises a query in regard to the exact nature of effects reported recently for the binaural
constancy effect (e.g., Brandewie and Zahorik, 2013; Srinivasan and Zahorik, 2013), and suggests it
may be interesting to more closely study the speech materials used in such works.
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tion for reverberation appears to work in a band-by-band manner, and that the level
of compensation achieved would be similarly dependent upon these important fre-
quency regions in the neighbouring context words. Taken together, these findings
imply – provided the trial is identified based on the test-word’s stop consonant –
that a context phrase that is rich in sibilants and stops of a matched frequency re-
gion to the test-word (e.g., “first people detect”) would promote a higher degree
of compensation than would a phrase without (e.g., “now you remember”). Future
work would be required to examine the implications of this phonetic variation on
the time course of the constancy mechanism.

Chapter summary

This chapter has demonstrated perceptual compensation for the effects of rever-
beration in an ecologically relevant listening task. Listeners’ ability to identify
the consonant in a reverberated test-word was strongly influenced by the level of
reverberation in the preceding speech context. When the reverberation in the con-
text and test-word were consistent, an extrinsic compensation effect was apparent
which helped listeners to monaurally identify the test-words’ consonant. This ef-
fect, though not reliant on phonetic processing of the speech signal, broke down
when time-reversed reverberation was applied to the context phrase. A smaller in-
trinsic compensation effect similarly appeared to aid identification of reverberant
test items for stimuli which did not promote extrinsic compensation, namely those
with silent or near-distance speech carriers. Subsequently, the time course of the
extrinsic compensation mechanism was investigated by applying the same rever-
beration to the test-word and to a proportion of the preceding context. Consonant
identification improved as the reverberated portion of the context increased in du-
ration, up to the maximum tested duration of 500 ms. Finally, a meta-review of the
listener data across the four experiments revealed that these compensatory effects
were largely restricted to the stimuli containing the unvoiced stop consonants.
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6 Conclusions

Chapter overview

Perceptual compensation for reverberation was explored in this thesis by means
of a computational modelling study and psychophysical experiments. This chapter
summarises the main findings of these two strands of work, and discusses their mu-
tual implications and interdependencies. The relationship between current findings
and those of other researchers working on similar topics is discussed. Alternative
perspectives are also considered, leading to an examination of the wider relevance
of the research. Potential criticisms of the studies are addressed, and some sugges-
tions for future work are presented.

6.1 Original contributions

To introduce the research topic and clarify the focus of experimental work in this
thesis, existing studies which queried the effects of reverberation on human- and
machine-speech identification were reviewed in Chapter 2, where perceptual com-
pensation for reverberation was examined in detail. Auditory mechanisms that may
potentially contribute to human listeners’ robustness in reverberation were subse-
quently examined in Chapter 3. Chapters 4 and 5 of this thesis then presented two
strands of original work investigating perceptual compensation for reverberation.

1. A candidate model of perceptual compensation for reverberation was pro-
posed, based on the hypothesis that efferent-inspired auditory modelling
may help improve speech identification in reverberant environments. The
model provided a qualitative match to human response data from experi-
ments presented in Watkins (2005a), in which perceptual compensation oc-
curred for time-forward and time-reversed speech signals, but was disrupted
when time-reversal was applied to the impulse response instead.

2. A series of psychoacoustic experiments showed that the monaural compen-
sation effect that was originally demonstrated in Watkins (2005a) could be
generalised from synthetic test-words to naturally spoken test-words. This
compensation effect was found to derive from the context and test-word por-
tions of the signal, to be fast-acting, and to break down when the temporal
direction of reverberation was reversed.

Original findings from the modelling studies and listening experiments are sum-
marised below.
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6.1.1 Efferent-inspired model of perceptual compensation for reverberation

The model developed in this thesis is underlain by the proposal that medial olivo-
cochlear (MOC) unmasking may assist with perceptual compensation for the ef-
fects of late reverberation. This proposal relies on the similarity of the effects
of late reverberation and of additive noise, both of which can be understood to
raise the noise floor of a signal, and thereby reduce its dynamic range. While a
large body of evidence now points to the involvement of MOC efferents in noise-
robust listening, it remains to be investigated physiologically whether (or how) the
efferent system can assist in the processing of reverberant speech. Thus, while
speculative, it seems plausible that MOC efferents may be partially responsible for
human robustness to reverberation since they are implicated in recalibrating the
sound-encoding behaviour of the cochlea in complex listening environments.

The computational model presented in this thesis embedded the efferent model
of cochlear processing by Ferry and Meddis (2007) in a closed-loop structure, and
automatically adjusted the level of efferent activity in response to the level of rever-
beration detected in the signal. The model was then challenged to replicate human
response data from Watkins (2005a), in which sentences including ‘sir’ and ‘stir’
test-words were identified monaurally in a variety of experimental conditions.

• Experiment M1 used human response data from two room-positions (‘near’
and ‘far’) in Watkins (2005a) to tune model parameters for two candidate
metrics for efferent feedback regulation. The mean-to-peak ratio (MPR)
metric effectively measured the dynamic range of the signal, and applied
more efferent attenuation when a low dynamic range suggested that a high
level of reverberation was present. Alternatively, the low-pass mask (LPM)
measured the presence of reverberant tails at signal offsets. In this imple-
mentation, more efferent attenuation was applied when a mask defined by
negative-going gradients (i.e., tails) in smoothed temporal envelopes of indi-
vidual channels suggested that a high level of reverberation was present.

• Experiment M2 investigated stimulus conditions in which there was an
abrupt change in reverberation condition mid-utterance, so that part of the
sentence was heard from nearby and part from further afield. Whether driven
with the MPR or LPM metric, the efferent-inspired circuit enabled the model
to compensate for the effects of reverberation, replicating the effect observed
for human listeners. When a low level of reverberation was detected in the
preceding context, little attenuation was applied and the temporal dip sig-
nalling the ‘t’ consonant was filled with reverberant energy, resulting in a
high number of ‘sir’ responses for reverberant test-words. On the other hand,
when a high level of reverberation was detected in the preceding context,
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more attenuation was applied, and the dip signalling the ‘t’ consonant was
revealed. This resulted in a greater number of ‘stir’ responses across the con-
tinuum of test-words, and the restoration of the category boundary towards
its original position.

• Experiment M2 also showed that compensation for reverberation persisted
in the model (as it did for human listeners) when the linguistic content of the
speech context was destroyed by time-reversing the speech utterance. This
result was modelled by both the MPR and LPM measures.

• Experiment M3 asked whether compensation would occur in the model if
the time-direction of the reverberation itself were reversed. Here, the LPM-
driven model replicated the human response data, suggesting that the ab-
sence of reverberation decay tails at signal offsets is sufficient to block the
compensation process in human listeners. On the other hand, the MPR was
not able to simulate human listener data, suggesting that a reverberation mea-
sure based solely on dynamic range is not sufficient to explain the effects of
compensation for reverberation.

6.1.2 Evidence for monaural compensation with naturalistic stimuli

Development of the auditory model exposed a number of gaps in our knowledge
of how perceptual compensation arises in human listeners. A series of four psy-
choacoustic experiments addressed the most significant of these questions and, fur-
thermore, provided sufficient evidence of the monaural constancy effect to show its
relevance for everyday listening.

• Experiment H1 demonstrated a monaural compensation for reverberation ef-
fect (generalising the phoneme-continuum experiments of Watkins, 2005a)
which holds relevance in ecologically valid listening environments where
the talker, context speech and test-words varied from trial to trial. Perceptual
compensation for reverberation was measured in terms of a reduction in the
number of consonant confusions that listeners made. By using a range of
low-pass filter conditions to assess the operational point of the experimental
setup, Experiment H1 also obtained evidence suggesting that the compensa-
tion mechanisms works in a band-by-band fashion.

• Experiment H2 used naturally spoken materials to demonstrate that although
the monaural compensation effect does not rely on the time-forward direc-
tion of a speech signal (and is thus not dependent on linguistic factors), it is
dependent on the time-forward direction of the reverberation itself.
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• Experiment H3 queried the temporal extent of the signal area which con-
tributed to compensation, and showed that intrinsic information from the re-
verberation tail of the test-word’s final vowel could influence the perceived
identity of the consonant which preceded it. This indicates that perceptual
compensation is influenced by both intrinsic and extrinsic factors.

• Experiment H4 queried the time course of the extrinsic compensation effect
arising from the preceding context. Consonant identification improved as
reverberation was applied to an increasing portion of the preceding context
(up to 500 ms). This suggests a rapid compensation mechanism which al-
lows listeners to gain robustness to reverberation within a second or so of
environmental changes.

• Finally, a meta-analysis considering Experiments H1–H4 side-by-side
showed that these compensatory effects were largely restricted to stimuli
containing the plosive consonants [k], [p] or [t].

6.1.3 Implications of perceptual findings on auditory model development

Each perceptual experiment was designed to shed light on a different aspect of the
auditory model, therefore the human response data has some very direct implica-
tions for future computational modelling work.

• Experiment H1 confirmed that the monaural constancy mechanism is rele-
vant for recognition of naturally spoken materials, and also provided evi-
dence of a band-by-band compensation effect. This result suggests efferent
feedback can next be implemented in a channel-independent manner (as has
recently been done, for example, by Clark et al., 2012).

• By altering the implementation of time-reversed reverberation on the follow-
ing context from Watkins’ original study (cf. Figure 5.8), Experiment H2
showed the compensation effect to be strongly influenced by the preceding
extrinsic context. This suggests efferent attenuation should be driven by a
metric that is sensitive to the time-direction of reverberation prior to the test-
word.

• Experiment H3, however, suggests the model must be updated to include
sources of intrinsic information deriving from within the test-word. Thus the
windowed portion of signal which is assessed to determine the efferent con-
trol should extend both backwards into the preceding context and forwards
throughout the duration of the test-word itself (including its reverberation
tail).
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• The temporal extent of the extrinsic compensation effect was probed more
closely in Experiment H4. Results suggest that there is benefit in extending
the time window backwards at least 500 ms into the preceding context, but
may not require the full 1000 ms used at present (which was chosen to allow
comparison with results shown in Beeston and Brown, 2010).

6.2 Relation to similar research

Perceptual compensation for reverberation has been discussed in this thesis in re-
gard to both human listeners and machines. Psychoacoustic research into this phe-
nomenon has increased significantly in the past decade, in parallel with greater
interest in efferent computational modelling. However, as yet there is no signifi-
cant linkage between the two domains.

6.2.1 Psychoacoustic investigation of compensation for reverberation

Experiments H1–H4 confirmed that the monaural compensation mechanism
demonstrated in the ‘sir-stir’ continuum experiments of Watkins (2005a) is rele-
vant with naturalistic speech material. This generalisation is important because
doubt had been raised about the existence of a monaural mechanism on two fronts.
Firstly, the majority of listeners tested in Brandewie and Zahorik (2010) did not im-
prove from prior monaural room exposure, though this may have arisen due to the
inclusion of a simultaneous background noise which required listeners to employ
other hearing mechanisms. Secondly, Nielsen and Dau (2010) revisited the ‘sir-
stir’ paradigm but were unable to demonstrate the compensation for reverberation
effect with reverse-engineered room impulse responses (cf. § 2.4.2).

The current series of experiments also reveals that further claims made by Watkins
and colleagues in regard to ‘sir-stir’ continuum stimuli are also relevant to naturally
spoken materials heard monaurally. Using nonsense syllables as test-words in or-
der to avoid semantic effects from the preceding context (Srinivasan and Zahorik,
2011), the compensation mechanisms was first shown not to rely on a linguis-
tic component (as in Watkins, 2005a). Providing further evidence in support of
Watkins (2005a, who used synthetic test-words) and Longworth-Reed et al. (2009,
who used binaural presentation), the monaural compensation effect was also shown
to be disrupted by time-reversed reverberation on real-speech contexts.

Compensation effects arising within the test-word itself, demonstrated for ‘sir-stir’
test words in Watkins and Raimond (2013), were also found to be relevant for
real speech. Since this intrinsic compensation arises in silent-context conditions,
this suggests that silence may not be a straightforward ‘control’ condition against
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which to contrast a reverberated speech carrier (cf. Brandewie and Zahorik, 2013;
Nielsen and Dau, 2010; Ueno et al., 2005).

Finally, the monaural time course of compensation for reverberation was examined
directly, and found to act on a similarly rapid timescale to that of the binaural
effect measured by Brandewie and Zahorik (2013). Together, the data suggest
a compensation mechanism that appears to enhance the amplitude modulation in
reverberant signals (Zahorik et al., 2012), and which has been ascribed to temporal
envelope constancy (Kuwada et al., 2012; Srinivasan and Zahorik, 2014; Watkins
et al., 2011).

6.2.2 Development of efferent-based computational models

Computational models of the auditory system evolve in a circular manner, being
gradually refined or radically altered as novel hypotheses are posed and tested, and
as further physiological or psychoacoustic datasets become available (Weintraub,
1985). A recent example of this way of working is given by van Dorp Schuitman
et al. (2013) in a study which models the perception of room acoustics (though
without any simulation of efferent activity in this case).

Since the MOC unmasking principle which underpins the current modelling effort
is usually associated with noisy rather than reverberant listening experiments (cf.
§ 3.4.2), it is perhaps not surprising that further examples of efferent-models pro-
cessing reverberant speech are not available for comparison. Yet, as Figure 2.3
depicted, the effects of late reverberation are somewhat comparable to those of
additive noise, and thus MOC activation may be relevant (as described in § 3.4.3).

The majority of efferent models have been applied to the task of modelling speech-
in-noise data. Indeed, the studies of Brown et al. (2010) and Clark et al. (2012)
both simulated human recognition of speech in noise using the efferent-DRNL
model of cochlear filtering by Ferry and Meddis (2007) which lies at the core of the
computational work in this thesis. Additionally, noisy speech has been investigated
by Lee et al. (2011) using the efferent-inspired model of Messing et al. (2009), and
by Chintanpalli et al. (2012) using the model of Zilany et al. (2009).

6.3 Alternative perspectives

Via a raft of related phenomena grouped under the umbrella term ‘echo-
suppression’ (including the precedence effect, Haas effect, law of the first wave-
front, and localisation dominance), it has long been realised that exposure to room
effects can assist listeners in localisation tasks, via the selective weighting of
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acoustic cues based on time of arrival (cf. § 2.3). Such effects have been investi-
gated with click stimuli and with speech (Hermansky et al., 2013; Litovsky et al.,
1999; Nábělek and Robinette, 1978; Wallach et al., 1949), and have been mod-
elled both monaurally and binaurally (Bürck and van Hemmen, 2007; Hummer-
sone et al., 2013; Martin, 1997). Interestingly, it appears that while spatial infor-
mation in the reflections is largely suppressed to provide a fused image, non-spatial
details remain perceivable, and at times are reported by listeners as alterations in
timbre, loudness, and so on (Bishop et al., 2014). More recently, researchers have
also begun to describe the manner in which exposure to room effects can also assist
listeners in identification tasks.

6.3.1 An internal model of a room

It has been proposed several times in the literature that human listeners’ robust-
ness to reverberation might arise from their ability to model rooms in their heads
(Keen and Freyman, 2009; Menzer and Seeber, 2014; Shinn-Cunningham, 2000).
One possibility is that listeners might build up internal geometrical representations
of the various reflective surfaces in their environment, and mentally ‘deconvolve’
the associated signal and room effects. This theory is attractive since it would, for
instance, allow the disruption of compensation observed in time-reversed reverber-
ation conditions to be explained on the basis that listeners adapt only to plausi-
ble architectural arrangements. A study by Menzer and Seeber (2014) appears to
support this theory, using stimuli in which high-order reflections were artificially
scrambled in certain experimental conditions, but the conclusions are drawn from
very limited data (a single listener).

However, other studies appear to argue against this room acoustic hypothesis.
In particular, two experiments have reported compensation for reverberation de-
spite various distortions to the fine-structure of the room’s reflection pattern which
ought to render any such internal models effectively useless. First, compensa-
tion occurred even when the context and test-word were convolved with impulse
responses that had been recorded in different rooms (Watkins, 2005a). Second,
compensation persisted even when half of the samples (randomly selected) in the
impulse response had their polarity reversed before convolution with speech sig-
nals (Watkins et al., 2011).

6.3.2 Modulation masking

Section 5.5.5 discussed ‘modulation masking’, a theory which was put forward by
Nielsen and Dau (2010) as an alternative to ‘perceptual compensation’ in order
to account for the listener data of Watkins (2005a). Analogous to the forward
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masking paradigm, their theory proposes that listeners may become accustomed
to the degree of modulation present in a signal, and thus become less sensitive
to it over time. The theory of Nielsen and Dau does sufficiently explain the ‘sir-
stir’ continuum data presented in Watkins (2005a), but it cannot account for the
consonant confusion data collected in Experiment H3.

According to the modulation masking theory, the relatively large modulation con-
tent of a near-distance context will mask the plosive consonant of a following test-
word (i.e., make it more difficult to identify) if that test-word is reverberated at
the far distance. This effect was observed in both datasets: more ‘sir’ responses
arose in the near-far context-test distance in Watkins’ data, and a larger number of
consonant confusions occurred in Experiment H3. Conversely, the far-reverberated
context induces less masking of the following test-word’s consonant, and provokes
fewer mis-identifications. Again, this is observed in both datasets. For silent-
context conditions, no modulation forward masking is predicted. The theory of
Nielsen and Dau thus predicts a well-defined plosive dip in silent-context condi-
tions, which ought to give rise to still fewer mis-identifications. However, the op-
posite was observed in Experiment H3: a greater number of confusions arose for
isolated test-words than for test-words preceded by the far-reverberated context.

6.3.3 No evidence of compensation in the ventral cochlear nucleus

The computational modelling studies outlined in Chapter 4 proposed a mecha-
nism which simulated perceptual compensation for the effects of reverberation by
means of MOC efferent activity. In the model, the level of reverberation present in
the auditory nerve representation was assessed (via a metric which substituted the
involvement of higher auditory centres), and a resulting efferent attenuation signal
which was fed back to the inner ear. By such a scheme, perceptual compensation
for reverberation was shown to alter the representation of the signal in the auditory
nerve (cf. Figures 4.15c and 4.15d). It follows from this proposal that compen-
sation effects ought to be ‘visible’ in signals recorded in subsequent layers of the
central auditory system above the auditory nerve, the next of which is the cochlear
nucleus (CN). However, a study by Lehtinen et al. (2011) did not find evidence of
compensation for reverberation in the CN of anaesthetised guinea pigs.

There appear to be two possible interpretations of this negative result. Firstly,
perceptual compensation for reverberation may be a more central auditory effect,
unobservable in the auditory periphery. Recent experiments with unanesthetised
rabbits have indeed demonstrated some monaural robustness to reverberation in
the midbrain, e.g. in the inferior colliculus (Kuwada et al., 2012), as was discussed
in § 3.3.2. Nonetheless, a second possibility remains, whereby the anaesthesia used
in Lehtinen et al. (2011) might have prevented the efferent system from functioning
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normally (Kuwada et al., 2012; Sayles et al., 2015), and thus prevented observation
of the neural correlates signifying perceptual compensation for reverberation.

6.4 Wider relevance

The computational model of efferent function, in combination with the percep-
tual compensation for reverberation task, has implications in the area of hearing
impairment, with additional relevance to reverberation-robust machine listening.

6.4.1 Hearing impairment

It has been established via cochlear implant (CI) simulations (Poissant et al., 2006),
and CI listeners (Hu and Kokkinakis, 2014), that even relatively low levels of rever-
beration are particularly detrimental when heard through the implant. A possible
explanation for this arises from the computational modelling work described in
Chapter 4.

The computational model implements a mechanism of medial olivocochlear
(MOC) unmasking which, it is proposed, assists a listener to accommodate the
multitude of late-arriving reflections which are present in a reverberant environ-
ment. As depicted in Figure 3.1a, the auditory periphery usually consists of a
series of processes undertaken in the outer and middle ear which translate acoustic
vibration into motion of the basilar membrane (BM). From here, sound is encoded
as an electrical signal by the hair cells in the inner ear which is then passed upwards
into the auditory nerve.

For individuals with a peripheral hearing impairment (and for whom the auditory
nerve is present), a CI is often a suitable prosthetic hearing device to use. The CI
bypasses the acoustic processing usually undertaken by the outer and middle ear,
delivering electrical signals directly to the auditory nerve via an electrode which is
inserted into the cochlea (Rubinstein, 2004). Importantly, while this intervention
replaces the afferent pathway in the peripheral system, it does not repair or replace
any of the efferent processing that would ordinarily be undertaken at this stage of
audition. Since, for CI users, sound is not transmitted via the action of the BM,
any preserved action of the outer hair cells (OHCs) may be effectively wasted. As
a result, the MOC system cannot provide the feedback necessary to the peripheral
filters, placing higher decoding demands on more central auditory stages.

Un-aided hearing-impaired listeners, for whom it could be theorised that the MOC
effect would still be operational via the OHCs, have shown similar compensation
effects as the normal-hearing population (Zahorik and Brandewie, 2011). However,
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from the above analysis it seems unlikely that cochlear implanted listeners would
benefit in the same way. On the other hand, if CI users do demonstrate compen-
sation for reverberation then it would suggest either that central auditory processes
are sufficient to provide robustness to the effects of reverberation on speech identi-
fication, or that the speech processor worn with the CI is capable of replacing some
of this function.

Interestingly, efferent processing has also recently been linked with hearing impair-
ment in another way. Liberman et al. (2014) report that efferent feedback appears
to slow cochlear ageing (in mice), because the reduction of cochlear gain that is
imparted by efferent signals effectively protects the hair cells from noise-induced
hearing loss.

6.4.2 Reverberation-robust machine listening

The most significant benefit of increased robustness to reverberation for machine
listeners would be to allow distant speech recognition. At present, commercial
ASR systems (such as those offered by Google and Apple) are limited by the close-
talking position which is required of their users. Far-field systems, on the other
hand, require techniques to compensate for a variety of acoustic unknowns, prin-
cipally background noise, competing talkers and room reverberation. Engineering
approaches have resulted in methods to successfully combat distortions introduced
by noise and interfering speakers, yet reverberation still poses a serious challenge
for most speech recognisers (cf. § 2.2).

One of the main approaches to reverberation-robust ASR is concerned with dere-
verberation, that is, recovering a cleaner signal representation than the original
(reverberation-corrupted) observation. While this is not the aim of the auditory
model described here, it could be argued that efferent-based processing is effec-
tively removing reverberation from the auditory nerve representation. However,
this interpretation does not specifically explain the understanding of perceptual
compensation for reverberation which arose from Experiment H3 (which indicated
instead that human listeners may have anticipated the presence of reverberation in
the signal). Rather, in borrowing the MOC unmasking scheme for the effects of late
reverberation suppression, the efferent-based processing bears more resemblance
to spectral-subtraction (Boll, 1979). Using the suggested channel-dependent effer-
ent implementation, the model would thus act similarly to a continually-updating
multi-band spectral subtraction method (as has recently been suggested by Upad-
hyay and Karmakar, 2013).

The computational model in Chapter 4 focussed on demonstrating a specific psy-
choacoustic phenomenon and, if viewed in terms of speech recognition, can be
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thought to involve a ‘back-end’ recognition engine which can identify only two
words. In its present implementation, the computational auditory model would
be far too computationally expensive to consider extending it for large vocabu-
lary online speech recognition. Nonetheless, such a model could in principle be
used as a front-end for an HMM-based or deep neural network-based recogniser.
In the tasks against which it was tested, the processing undertaken in the LPM-
based efferent-model ‘front-end’ was sufficiently close as to allow a good simula-
tion of human speech identification. This indicates that a spectro-temporal excita-
tion pattern (STEP) representation might, in theory, provide an enhanced feature
representation, and might therefore allow an improvement in recognition (of stop
consonants at least).

Auditory models capable of perceptual compensation for reverberation might alter-
natively help to make predictions of the likely intelligibility of speech signals heard
in particular rooms (or positions within a room). A good model of intelligibility
prediction is important, particularly for educational settings such as classrooms
and lecture theatres where intelligibility is critical to the function of the room it-
self1. The commonly used STI method, however, has been shown not to predict
listener intelligibility in certain conditions (see e.g., Longworth-Reed et al., 2009).
Thus, although it is clearly functional for many useful cases, the STI cannot yet
substitute for human intelligibility judgements outright. After a study of various
reverberation-detection methods (Beeston and Brown, 2013), the LPM-based effer-
ent model was tested for generalisation across six listener/talker positions in each
of two rooms (cf. Figure 4.21), and examined using multiple speech datasets (cf.
Figure 4.22). From this work it appears that the exact characteristic of the reflec-
tion pattern is not critical, provided that there is energy in sufficient regions of the
input signal, and that the LPM-based model stands a good chance of maintaining
its performance in unknown room conditions as well.

6.5 Potential criticisms

This section addresses some potential criticisms of the research presented, and
discusses the computer model, the listening experiments, and some wider factors
which relate to both strands of work.

1Another interesting approach to this topic is taken by Culling and colleagues, who use geomet-
rical descriptions of simulated rooms (with interfering noise sources) to optimise intelligibility in a
given space. The resulting benefit is that suggestions can then be made about where to stand at a
party, where to sit in a restaurant etc. in order to maximise speech intelligibility (Culling et al., 2013;
Jelfs et al., 2011; Lavandier and Culling, 2010).
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6.5.1 Limitations of efferent modelling

In order to make further progress in efferent auditory modelling, a greater under-
standing of biological auditory systems and their activation in particular tasks is
needed (a requirement raised by Guinan, 2014).

The relative scarcity of efferent-related data implies that many aspects of efferent-
inspired auditory models remain under-determined at present. This can be seen
with regard to the efferent-DRNL studies. The MOC unmasking phenomenon was
simulated initially using an open-loop configuration in which the value of attenu-
ation was manually specified (e.g. Brown et al., 2010; Ferry and Meddis, 2007),
and has subsequently been set in a closed-loop configuration in which the atten-
uation control parameter was derived internally (e.g. Beeston and Brown, 2010;
Clark et al., 2012). The model by Clark et al. (2012) further improves the imple-
mentation of efferent suppression in such a way that MOC activation may vary in
strength across channels. However, none of these models has yet implemented the
off-frequency effects described by Lilaonitkul and Guinan (2009) and Zhao and
Dhar (2012), nor satisfactorily resolved the potential for ambiguity in the time-
course datasets published by Cooper and Guinan (2003) and Backus and Guinan
(2006).

All the models described have presented a simplified picture of efferent processing,
as discussed in § 4.7.2. Significiantly, the effects of the lateral olivocochlear (LOC)
are not considered at all, despite the fact that the LOC efferents synapse on the
afferent auditory nerve fibres themselves (Guinan, 2011) and their effects are likely
therefore to be influential (Guinan, 2014). Further, ipsilateral and contralateral
effects are yet to be implemented separately (Brown, 2011; Guinan, 2006). Finally,
top-down effects of attention and experience, which are thought to mediate MOC
activity in addition to the bottom-up sound-invoked reflex, remain entirely absent
from all models at present. Discussion returns to this topic in § 6.5.4 below.

6.5.2 Methodological issues in the psychoacoustic studies

There are several potential criticisms of the psychoacoustic studies.

Excluded participants

A relatively high number of people were excluded from analysis because they did
not meet the inclusion criteria by achieving 90% accuracy in the baseline exper-
iment condition. Discounting three participants who were excluded because of
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reported hearing losses, a further 35 people were excluded across the four experi-
ments, representing 13.5% of the participants with normal-hearing.

The 90% inclusion criterion was selected on the basis of its use in similar studies of
reverberant speech identification (see e.g., Nábělek and Robinson, 1982), and does
not seem a high measure to achieve in the conditions thought to be ‘easiest’ (near-
near context-test). However, as a result of the relatively small number of baseline
stimulus presentations (particularly in Experiments H1 and H2), this led to the
situation where participants could be excluded based on a single misidentification
in the baseline condition.

A second possibility is that, due to the partitioning of sound files across partic-
ipants, the excluded participants were presented with more ‘difficult’ stimuli to
identify in these baseline experimental conditions. Studying noise-induced con-
fusion patterns in the AIC stimuli, Phatak et al. (2008) reported that the intelligi-
bility of consonants heard in background noise differs significantly when spoken
by different talkers. Barker and Cooke (2007) also showed that speech produced
by different talkers varies in intelligibility when heard in noise, and described a
glimpsing-based model that predicts the intelligibility of different talkers. Initial
investigation of the data gathered in Experiments H1–H4 suggests, similarly, that
certain stimuli were particularly likely to cause participant exclusion. It remains
for future study to investigate precisely which AIC talkers and test-words were fre-
quently misidentified, and to investigate the acoustic properties of these utterances
which may have led to their perceptual ambiguity.

Measures of compensation

Researchers appear to have struggled to find a good way to quantify compensa-
tion for reverberation: at least two methods were employed by Watkins (cf. Fig-
ure 2.11); multiple measures were used by Zahorik’s group (cf. § 2.4.2); finally,
several methods used in the Experiments H1–H4 were introduced in § 5.2.4.

Since the 2AFC response pattern in Experiment H4 was identical to that of Watkins
(2005a)’ listener task, the measure in that experiment (number of ‘s’ responses) ex-
actly mirrors the analysis of Watkins. In Experiments H1–H3, however, a 4AFC
paradigm was used and participant responses were captured in 4×4 consonant
confusion matrices. The measure of relative information transmitted (RIT) was
selected as a convenient way in which to summarise the complex pattern of re-
sponses in a single number (Miller and Nicely, 1955; Smith, 1990). However,
although convenient, this method does raise additional questions.

One potential criticism of the measure is that RIT is biased to overestimate infor-
mation transfer for small samples (Miller and Nicely, 1955). This is a particular
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issue in Experiments H1 and H2 where there are only 20 data points per 4×4
matrix. However, since it is the pattern of responses (relative differences between
conditions) which is of interest rather than the absolute values, then the analysis re-
mains valid (Sagi and Svirsky, 2008). The primary problem of the small number of
data points per matrix shows itself here as a higher inherent variability in the RIT
estimate, as a result of which it is more difficult to achieve statistically significant
differences between the experimental conditions.

A potentially more serious criticism of the RIT measure was exposed in the meta-
analysis undertaken in § 5.7.1. Since the RIT assesses the whole confusion matrix
with a single number, it cannot separately account for the compensation effect
which is seen for the [k], [p], [t] group and, concurrently, the lack of compensation
which is observed for [s]. Earlier analysis (cf. § 5.7.2) revealed that this may have
led to an under-estimation of the compensation effect observed for stop consonant
stimuli in Experiments H1, H2 and H3, and an over-estimation of the speed of the
effect for [t] stimuli in Experiment H4.

This level of detail is unfortunately not available in the published analyses by other
researchers. Indeed, all studies so far have looked for only one compensation ef-
fect (i.e., have used one measure) at a time. Thus it remains to be investigated
whether, for instance, the compensation effects reported in studies by Zahorik
and colleagues are similarly reliant on effects occurring for one particular class of
speech sound (e.g., plosive consonants), or whether the compensation effects they
measure are spread more evenly across speech categories. To know the ecological
validity of the compensatory mechanisms, the eventual goal should be to find a
measure of compensation that can be applied to connected speech. This would al-
low investigations to examine compensation for reverberation with conversational
speech, including natural ‘difficulties’ such as overlapping talkers which are a fea-
ture of daily experience.

Pre-filtering of speech materials

Section 5.3 argued that, in order to test effects of reverberation on speech identi-
fication, it is necessary to find the operating point where (i) some degradation in
listener performance is reported and (ii) some recovery from that ‘low-point’ can be
observed. However, human speech recognition is generally good, even in reverber-
ant environments. The speech signal itself is highly redundant, and likely contains
multiple cues for speech identification. For example, French and Steinberg (1947)
demonstrated that speech is equally intelligible whether high-pass or low-pass fil-
tered at around 1900 Hz, but that each ‘half’ of the filtered speech allowed c. 68%
intelligibility alone.
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Studies into compensation for reverberation have therefore typically introduced
some further signal distortion in order to make the listeners’ task harder, i.e. to
guarantee that some misidentification will occur. Table 2.3 previously showed that
Zahorik’s group increased the difficulty of the listener task by introducing a si-
multaneous (spatialised) background noise. The psychoacoustic experiments pre-
sented in this thesis introduced low-pass filtering instead. Motivated by the study
of Miller and Nicely (1955), a range of low-pass filter conditions were tested in
Experiment H1, and the 4 kHz cutoff condition was then used in all subsequent
experiments. The bonus of using low-pass filtering over spatialised noise is that
it is unlikely to involve binaural hearing mechanisms which seemed to play a role
in Brandewie and Zahorik (2010). However, the low-pass filtering does reduce the
high-frequency variability in the signal which has been shown to be crucial for
consonant perception.

It could be argued, therefore, that the inclusion of the low-pass filtering stage had
an impact on the compensation results obtained. Appendix A below, however,
presents preliminary results which argue against this criticism. Comparing un-
filtered (wideband) and filtered (4 kHz) speech stimuli side-by-side, Figure A.1
shows that perceptual compensation for reverberation occurred in both conditions.
Here, an increased level of reverberation in the context, resulting from an increase
in context distance, brought about an improvement in the identification of the far-
distance test-words, whether filtered or not. Although this pattern of responses
was collected from only a small number of listeners (eight listeners, the minimum
possible given the eight experimental conditions and partitioning of stimuli re-
quired), this pattern of responses suggests that the pre-filtering of speech materials
is not required for demonstrating the monaural compensation for reverberation ef-
fect. The low-pass filtering stage could likely therefore be omitted from future
experiments investigating perception of reverberated plosives with naturally spo-
ken speech stimuli.

6.5.3 Simulated talkers and listening via head-phones

Since reverberant speech in the present experiments was created via convolution of
room impulse responses with dry speech signals, the talker could not slow down or
otherwise accommodate to the reverberation condition as would have happened in
real life (Barker et al., 2013; Black, 1950). Since it has been shown that listeners
tend to prefer slower speech in reverberant environments (Moore et al., 2007), it
is likely that this may have contributed somewhat to the difficulty of the speech
identification task.

Additionally, since sounds were delivered over a single headphone channel, listen-
ers could not move their heads to resolve confusion as they might in a free-field
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listening environment (cf. § 2.3.1). Interestingly, Kim et al. (2013) report that head
movement is dependent on the task being undertaken; listeners moved their heads
more to estimate source width than to judge timbre. It is unclear at present exactly
what relevance this would have for compensation for reverberation. However, such
head movements do appear to be relevant for identification (as well as for localisa-
tion), since intelligibility in a room also varies as a function of the listener’s head
orientation (Culling et al., 2013).

6.5.4 Multi-sensory integration and non-auditory factors

Another factor which has been not been addressed in either the psychoacoustic
studies or the computational model, is that hearing is modulated by our other
senses, and by a number of non-auditory processes such as attention and expe-
rience.

Since the brain uses multiple senses (and multiple strategies) to undertake tasks
(Bolognini et al., 2007; London et al., 2012), it seems unlikely that compensation
for reverberation will be unaffected by such multi-sensory integration and non-
auditory factors. In particular, vision can strongly influence both speech identi-
fication (McGurk and MacDonald, 1976; Schroeder et al., 2008) and the spatial
impression perceived in localisation tasks (Bishop et al., 2011, 2012; Murray and
Spierer, 2011). Moreover, London et al. (2012) propose that attention to low-level
spatial aspects can influence the formation of individual auditory objects, which
has knock-on effects on our understanding of the acoustic scene at large, and also
for speech perception in particular (Shinn-Cunningham et al., 2013).

While it is clear that MOC responses are modulated by attention, the principles
governing these actions have not been elucidated in the literature. Since attention
seeks to reduce the complexity of the scene analysis and focus on most relevant
object at one time (Fritz et al., 2007), it is likely that so-called ‘attention’ effects
will actually vary considerably from one task to the next. Perhaps as a result,
Guinan (2010) hypothesised that MOC activity may increase when it is ‘beneficial’
for the listener task (and decrease otherwise). To model attentional effects in this
manner, e.g. to simulate the task-related head movement in Kim et al. (2013), is
well beyond the scope of the state-of-the-art techniques in efferent computational
models at present.

Additionally, MOC effects appear to depend on listeners’ experience, and to be
trainable themselves. This has led researchers to suggest that the MOC suppres-
sion might itself be under the control of other ‘higher’ efferent signals (as shown
in Figure 3.1b) from either the cortex (De Boer and Thornton, 2008) or the infe-
rior colliculus (Brown, 2011). If the MOC were indeed implicated in reverberant
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listening as this thesis hypothesises, then it may help to account for the benefits
that musical training (which promotes highly skilled listening) appears to offer in
certain listener tasks. In particular, musical training was seen to reduce listeners’
sensitivity to reverberation in Bidelman and Krishnan (2010), and to enhance per-
formance in a gap detection task in Mishra et al. (2014).

6.6 Future work

A few avenues for further research are explored in greater detail in this section.

6.6.1 Computational studies

As described above in § 6.5.1 above, a great deal of the limitations in efferent-
modelling are due to an incomplete understanding of human auditory function as it
is applied to particular tasks. However, the process of auditory modelling has itself
proved useful for making predictions in regard to how a system may function, and
for assisting with the design of psychoacoustic experiments which can gather data
to validate proposed hypotheses.

For instance, one of the next suggested developments for the auditory model (cf.
§ 6.1.3) would be to implement efferent feedback within individual channels, so
that the value of efferent attenuation applied in the DRNL filter differs across fre-
quency as well as through time (cf. Figure 4.3). This band-by-band hypothesis
has been suggested to be relevant in perceptual compensation for reverberation,
seen first in listener responses to vocoded ‘sir-stir’ stimuli in Watkins et al. (2011),
and later supported by consonant confusion data gathered in Experiment H1 above
(cf. 5.3.5). Additionally, such a band-by-band approach has improved performance
of efferent-based ASR in experiments by Lee et al. (2011) and Clark et al. (2012).

Additionally, it is expected that further improvements could be made to the model
by simulating a greater range of experiments in which human responses have al-
ready been collected. Further ‘sir-stir’ experiments by Watkins and colleagues
examined alternative speaking rates and different rooms (Watkins, 2005a), single-,
multiple- and wide-band noise contexts (Watkins and Makin, 2007a), tonal con-
texts (Watkins and Makin, 2007c), and vocoded speech stimuli (Watkins et al.,
2011). With some development of the ‘back end’ speech identification process
in the computational model, detailed consonant confusion patterns could also be
matched for the responses gathered using the Articulation Index Corpus (AIC)
dataset in Experiments H1–H4, or world-level recognition performance could be
modelled for the studies undertaken by Zahorik and colleagues (listed in Table 2.3
above).
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For scalability and comparison of results among differing datasets, definition of a
battery of test-stimuli and associated listener responses would be extremely help-
ful. Further, it is anticipated that techniques such as sensitivity analysis and un-
certainty quantification would help to identify which model parameters it would
be particularly beneficial to gather perceptual data on in future listening studies
(Sacks et al., 1989). In addition to the macroscopic modelling tasks undertaken so
far (where the computer simulation is trained to match the average of all listener
responses), it would also be interesting to approach this on the microscopic level
(cf. § 6.5.2), so that (i) responses to individual utterances and (ii) responses of
individual listeners may be examined in detail (Cooke et al., 2006; Meddis et al.,
2010).

6.6.2 Perceptual studies

Experiments H1–H4 took Watkins’ monaural demonstration of compensation for
reverberation from the ‘sir-stir’ continuum stimuli, and generalised this to the case
of naturally spoken material. These experiments did not, however, generalise the
reverberation conditions themselves which were used to demonstrate the constancy
effect.

A number of different rooms (real and simulated) have been investigated by re-
searchers interested in the compensation effect, however the relative distance be-
tween talker and listener has yet to be studied. The experiments in this thesis
re-used the left channel of binaural room impulse responses that were originally
recorded at ‘near’ and ‘far’ positions in an L-shaped room (as described in Watkins,
2005a). The far condition, measured at a source-receiver distance (SRD) of 10 m
between the centre of the talker and listener heads suggests, for instance, listening
to a lecturer at the front of a seminar room while being seated several rows back.
Contrasting this, the near condition (at only 0.32 m SRD) represents listening to
the person sat in the neighbouring seat. In future perceptual studies it would be of
interest to examine perceptual compensation using different near- and far-SRDs,
and to see whether differences in their relative position would make a measurable
difference to the time course of the constancy effect. In this way, it could be asked
whether listeners might take longer to adapt to a speaker that is heard from a greater
distance away.

Background noise is another factor which appears to affect the speed of the com-
pensation mechanism, and was reported by Brandewie and Zahorik (2013) to slow
down compensation for reverberation for tasks in which listeners binaurally lis-
tened to target speech from straight ahead, with a noise-source presented from
side-on. It remains to be tested whether this finding would also be true for monau-
ral compensation, or whether it relied in part on the binaural presentation method
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which was used. There is little noise occurring in the monaural experiments stud-
ied so far, since noise was removed from the impulse responses used by Watkins
(cf. Figure2.4b), and was effectively absent in both the ‘sir-stir’ and AIC speech
materials. Nonetheless, additive noise is of particular interest to the current mod-
elling investigation due to the adoption of the noise-related MOC unmasking effect
(cf. § 3.4.3). Noise itself does not prevent compensation, and indeed can promote
it in cases where there is ample modulation across sufficient channels in the con-
text (Watkins and Makin, 2007a). However, since the compensation mechanism
appears to be effected in a primarily within-band manner (Watkins et al., 2011), it
would be interesting in addition to consider effects of spectral centroid and band-
width with such simultaneous noise sources.

Finally, the interaction between the two sides of the auditory system is another area
which would be of particular interest in the context of the current computational
modelling effort since, as Lopez-Poveda et al. (2013) point out, the two human
cochleae are linked at the level of MOC efferent processing. Different groups of
MOC efferents exist in different pathways, activated by sound occurring in the
ipsilateral ear, contralateral ear or, for a small group of neurons, either ear (Brown,
2011; Guinan, 2006). If it can be assumed that these reflexes are sufficiently fast
so as to occur within individual utterances, then it may be feasible to explore them
within the current psychoacoustic experimental paradigm. For instance, it would
be interesting to know whether compensation persists if the context is presented
to one ear and the test-word occurs in the other. Further, in comparison to the
monaural demonstration of the effect, it would be interesting to examine whether
compensation is enhanced by a context which occurs in both ears when the test-
word is heard in only one ear.

Concluding remarks

This thesis proposes a candidate model of compensation for reverberation in which
efferent auditory processing is responsible for adjusting the sound-encoding be-
haviour of the cochlea, based on the level of reverberation detected in the environ-
ment. Perceptual studies indicate that the monaural compensation effect is likely
to be relevant in everyday listening, assisting listeners to re-calibrate rapidly when
encountering a new listening environment.
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AppendixA
Pre-filtering of speech materials

Section 5.3 described an experiment in which perceptual compensation for the ef-
fects of reverberation was apparent in a consonant identification task using spoken
material recorded by a range of talkers and with speech contexts which varied from
trial to trial. The remaining experiments presented in Chapter 5 investigated fur-
ther conditions in which compensation was either promoted or was blocked. How-
ever, in each of these experiments, speech stimuli were low-pass filtered at 4 kHz,
replicating conditions which had promoted compensation for reverberation in Ex-
periment H1. The following experiment, modelled closely on Experiment H1, asks
whether compensation for reverberation may be demonstrated monaurally without
the prior low-pass filtering of speech stimuli.

Experiment H5: Compensation for reverberation
with wideband speech materials

Sections 2.3.3 and 2.3.4 argued that speech identification cues which are reliant on
the perception of dips in the temporal envelope are particularly susceptible to the
effects of reverberation. For these consonants, reflected energy that persists beyond
the signal offset fills the periods of low energy which would otherwise indicate the
plosive dip.

This observation underlies the ‘sir-stir’ continuum experiments of Watkins and col-
leagues as described in § 2.4.1. Here, an amplitude modulation cue altered the
identity of test-words across a continuum by varying the depth of the modulation
applied. When a stimulus with the synthetically introduced temporal dip was pre-
sented in a low-level of reverberation, listeners’ typically identified the test-word
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as ‘stir’. However, when the same stimulus was presented in a higher level of re-
verberation, listeners typically responded ‘sir’. In this way, reverberation can be
understood to have ‘undone’ the amplitude modulation processing that was intro-
duced.

It is not immediately obvious whether naturally spoken material would be system-
atically affected in a similar manner to that outlined by Watkins (2005a, b). Indeed,
the relatively small number of speech identification errors typically reported in re-
verberant speech perception studies appears often to have influenced researchers to
include additional factors which would make the listeners’ task somewhat harder
(cf. Table 2.2). The same has been true for experiments examining compensa-
tion for reverberation. Zahorik and colleagues, for instance, addressed this issue
by including a simultaneous noise source in addition to the reverberated speech
conditions (used in 6 of their 8 studies listed in Table 2.3). Unfortunately, this
somewhat muddied subsequent analyses as it was difficult to attribute observed
results to solely reverberation- or noise-compensation strategies.

Following the observation of Miller and Nicely (1955) that cues regarding place of
articulation are severely degraded in low-pass filtered speech, the studies presented
in Chapter 5 used low-pass filtering (rather than noise) to increase the difficulty
of the listeners’ task. Speech stimuli were low-pass filtered at a range of cutoff
values in Experiment H1 to find a suitable operating point at which compensa-
tion for reverberation could be achieved with naturally spoken stimuli. From these
results, the 4 kHz condition was selected for use in later experiments since, of
those conditions tested which permitted a clear demonstration of compensation, it
was the most ‘normal’ (i.e., least strongly filtered). Although the 4 kHz filtering
is relatively mild, and indeed matches conditions frequently heard (e.g., in tele-
phone conversations), it does nonetheless reduce the closeness of the experimental
paradigm to listening to natural speech in real rooms. Experiment H5, presented
in this appendix, therefore asks whether it was necessary to pre-filter the speech
material at all.

Stimuli

Utterances selected for Experiment H5 were identical in form to those used in
Experiment H1 above, comprising

[CW1][CW2][TEST][CW3]

in which reverberation conditions of the test-word (TEST) and the context words
(CW) could again be independently manipulated. Using the same four initial con-
sonant conditions, {[s], [sk], [sp], [st]}, the test-word set extended those used in
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Experiment H1 with a second vowel in addition, {[æ], [3~]}. Again, all talkers
from the corpus were used, thus the current experiment employed 160 Articulation
Index Corpus (AIC) utterances (20 talkers × 4 consonants × 2 vowels).

As was described previously, stimuli in the filtered experimental condition were
created by low-pass filtering with an 8th order Butterworth filter at a cutoff fre-
quency of 4 kHz matching the experimental condition used in Experiments H1–H4
above (cf. § 5.3.1). This process was omitted for the wideband condition. Same-
and mixed-distance phrases were then created exactly by the methods described
for Experiment H1, resulting in phrases as described by the illustration provided
in Figure 5.1. Other details of stimulus creation followed the details provided in
§ 5.3.1. The set of sound files for Experiment H5 thus comprised 1280 stimuli (160
AIC utterances × 2 filter conditions × 2 context distances × 2 test distances).

Participants and procedures

A single listener group comprising eight individuals took part in this study. As in
the earlier experiments, stimuli were partitioned among participants in order that
each AIC phrase was heard in a single experimental condition (ensuring that there
could be no association between the test and context portions of the phrase which
might otherwise assist identification of the test-word). Every participant heard
160 different phrases, comprising 20 items in each of 8 experimental conditions.
Vowels were divided evenly across the listener group, and stimuli rotated among
participants so that each listener heard every test consonant five times in each con-
dition, with the five instances being from different phrases (and thus were spoken
by different talkers). As in the earlier experiments, participants identified the ini-
tial part of the word only, by choosing among buttons labelled ‘s’, ‘sk’, ‘sp’ or ‘st’.
Other aspects of stimulus presentation were as described in section 5.3.3, and the
experiment was typically completed in around 10 minutes.

Results and discussion

Preliminary results in Figure A.1 show that perceptual compensation for rever-
beration occurred in both the 4 kHz (filtered) and wideband (unfiltered) stimulus
conditions. In both conditions, an increased level of reverberation in the context,
resulting from an increase in context distance, brought about an improvement in
the identification of the far-distance test-words.

The pattern of results for the 4 kHz condition (Figure A.1, left) closely resembles
those reported in Figure 5.2, and the major features of the compensation for rever-
beration paradigm are all replicated. At near-near context-test distances, few con-
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Figure A.1: Mean and standard error of 8 participants’ ERIT scores (cf. Equation 5.4) for the 4 kHz
lowpass filter cutoff condition (left) and for wideband (unfiltered) speech (right). The lower line
reports near-distance test-word scores, where listeners made few errors. The upper line reports the
far-distance test-word scores. For both filter conditions, fewer misclassifications resulted when the
reverberation in the context was increased to the far-distance condition.

sonants were misclassified, and the error measure, ERIT (cf. Equation 5.4), was
relatively low. In near-far stimulus conditions, a larger proportion of the stimuli
were misclassified, and the ERIT measure increased. However, in far-far stimu-
lus conditions the test-words were easier for listeners to identify correctly, and the
ERIT measure decreased somewhat. In the near-far wideband stimulus condition
(Figure A.1, right), a similar number of reverberant test-words were misclassified
as in the 4 kHz condition. Moreover, the recovery due to the increased context-
reverberation at far-far appears to be even larger than that which was observed in
the 4 kHz condition.

Although collected from a small number of listeners, this pattern of responses sug-
gests that the pre-filtering of speech materials is not required for demonstrating
the monaural compensation for reverberation effect. The low-pass filtering stage
could likely therefore be omitted from future experiments investigating perception
of reverberated plosives with naturally spoken speech stimuli.
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Glossary

2AFC two-alternative forced-choice.

AI Articulation Index.
AIC Articulation Index Corpus.
AM amplitude modulation.
AN auditory nerve.
ANOVA analysis of variance.
AR acoustic reflex.
ASR automatic speech recognition.

BM basilar membrane.
BRIR binaural room impulse response.

CI cochlear implant.
CN cochlear nucleus.

DRNL dual-resonance nonlinear.
DRR direct-sound to reverberant-sound ratio.

EDC energy decay curve.
EDT early decay time.
ERB equivalent rectangular bandwidth.

HERB harmonic dereverberation.
HMM hidden Markov model.

IC inferior colliculus.
IHC inner hair cell.
ILD interaural level difference.
ITD interaural time difference.

LOC lateral olivocochlear.
LPM low-pass mask.



Glossary

MBPNL multiple band-pass non-linearity.
MFCC Mel-frequency cepstrum coefficient.
MOC medial olivocochlear.
MOCR medial olivocochlear reflex.
MPR mean-to-peak ratio.
MSE mean squared error.
MTF Modulation Transfer Function.

NMR noise-to-mask ratio.

OAE otoacoustic emissions.
OC olivocochlear.
OCB olivocochlear bundle.
OHC outer hair cell.
OME outer and middle ear.

PLP perceptual linear predictive.
PNCC power-normalized cepstral coefficient.
PSTH post-stimulus time histogram.

RIR room impulse response.
RIT relative information transmitted.
RMS root mean square.

SII Speech Intelligibility Index.
SNR signal-to-noise ratio.
SO superior olive.
SOC superior olivary complex.
SPL sound pressure level.
SR spontaneous rate.
SRD source-receiver distance.
SRM spatial release from masking.
SRR signal-to-reverberation ratio.
SRT Speech Reception Threshold.
STEP spectro-temporal excitation pattern.
STFT short-time Fourier transform.
STI Speech Transmission Index.
STMI spectro-temporal modulation index.

TFS temporal fine structure.
TM tectorial membrane.

WER word error rate.
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