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Abstract

In this thesis we explore two main themes, both of which imggiroteins. The first
area of research focuses on the analyses of proteins despésyspots on 2-dimensional
planes. The second area of research focuses on a speciinpaotd how interactions
with this protein can naturally prevent or, in the presenfca pesticide, cause toxicity.

The first area of research builds on previously developed Edthodology to
infer the matching and transformation necessary to supease two partially labelled
point configurations, focusing on the application to 2D pmotimages. We modify the
methodology to account for the possibility of missing andaliocated markers, where
markers make up the labelled proteins manually locatedsacnoages. We provide a way
to account for the likelihood of an increased edge variantd@mprotein images. We find
that slight marker misallocations do not greatly influerfefinal output superimposition
when considering data simulated to mimic the given dataske methodology is also
successfully used to automatically locate and remove aslyromisallocated marker
within the given dataset before further analyses is caoigd

We develop a method to create a union of replicate images;shwtan then be
used alone in further analyses to reduce computationalnsgpeWe describe how the
data can be modelled to enable the inference on the qualaydataset, a property often
overlooked in protein image analysis. To complete this bheesearch we provide a
method to rank points that are likely to be present in one g@uimages but absent in
a second group. The produced score is used to highlight tteips that are not present
in both image sets representing control or diseased titiseiefore providing biological
indicators which are vitally important to improve the acy of diagnosis.

In the second area of research, we test the hypothesis gtatide toxicity is related
to the shape similarity between the pesticide moleculdfitsel the natural ligand of

the protein to which a pesticide will bind (and ultimatelyusa toxicity). A ligand of a



protein is simply a small molecule that will bind to that griot. It seems intuitive that
the similarities between a naturally formed ligand and alsstically developed ligand
(the pesticide) may be an indicator of how well a pesticidd #re protein bind, as
well as provide an indicator of pesticide toxicity. A grapdli matching algorithm is
used to infer the atomic matches across ligands, with Pstesunethodology providing
the final superimposition before a measure of shape sityiligrdefined considering the
aligned molecules. We find evidence that the measure of s$iapkarity does provide
a significant indicator of the associated pesticide toxias well as providing a more
significant indicator than previously found biological icaktors.

Previous research has found that the properties of a melécuts bioactive form
are more suitable indicators of an associated activity.eHt#tese findings dictate that
the docked conformation of a pesticide within the proteifi piovide more accurate
indicators of the associated toxicity. So next we use a aachrogram to predict the
docked conformation of a pesticide. We provide a technigueatculate the similarity
between the docks of both the pesticide and the naturaldig&nsimilar technique is
used to provide a measure for the closeness of fit betweentiaigesand the protein.
Both measures are then considered as independent vaffiabiles prediction of toxicity.
In this case the results show potential for the calculatethbbes to be useful toxicity

predictors, though further analysis is necessary to plpp&plore their significance.
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Glossary

2-Dimensional Electrophoresis (2-

DE)

Western blot

Difference  Gel Electrophoresis
(DIGE)

Biomarker

Bind

A chemical procedure used to separate
proteins by mass and acidity to create
a 2D gel providing a mapping of all

proteins present (see page 2).

Sera is used to probe the 2-DE gel.
Antibodies within the sera bind to

specific proteins and only the proteins
with a bound antibody are highlighted
within western blot images (see page
4).

A modification on 2-DE used to
compare two or three protein samples.
The proteins in each sample are tagged
with different colours before being
mixed together. A single 2-DE gel
is produced, where the proteins in a
particular sample can be distinguished

by colour (see page 7).

A biological indicator of a biological
state, i.e. a protein which indicates the

presence of some disease (see page 2).

Describes the way molecules

chemically react and come together.



CONTENTS

Protein

Ligand

Natural ligand or substrate

Complex

Acetylcholinesterase (AChE)

Acetylcholine (ACh)

Inhibit

Pesticide

Carbamate and Organophosphate
(OPs)

Lethal Dose 50 (LD50)

A large organic molecule that
generally has some function within a

biological system.

A small molecule that will bind with a

protein.

An organic ligand that binds to a

specific protein.

A general term given to a bound ligand

and protein.

The specific protein that influences

toxicity (see page 17)

The natural ligand of AChE (see page
17).

Term used to describe how other
ligands bind with a protein and prevent
the protein from carrying out its

normal function (see page 18).

A synthetic ligand developed to inhibit

AChE and cause toxicity.

Two different families of pesticides.

The amount of pesticide necessary to

kill half a sample of pests.
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Binding affinity

Half maximal Inhibitory
Concentration 50 (IC50), inhibition

constant and binding energy

Quantitative  Structure  Activity
Relationships (QSAR)

Molecular conformation

Bioactive conformation

3D Quantitative Structure Activity
Relationships (3D-QSAR)

Xi

A measure of the strength of the bind

between a ligand and protein.

Different measures of binding affinity

(see page 21).

QSAR dictates that the toxicity of
a pesticide is proportional to one
or more properties of the pesticide

molecule itself (see page 22).

The spatial arrangement of a molecule.

The bioactive conformation of a
pesticide is the docked conformation

within AChE (see page 22).

The same as QSAR, though
considering specifically the bioactive,
i.e. the docked conformation of a

pesticide (see page 22).

Development of Environmental A project where the main objective

Modules for the Evaluation of the

is to produce QSAR software for

Toxicity of pesticide Residues in the improvement of toxicity prediction

Agriculture (DEMETRA)

(see page 23).



CONTENTS

Simplified Molecular Input Line
Entry Specification (SMILES)

Protein Data Bank (PDB)

Van der Waals (VdW) radius

Markers

Coffin bin

Slight marker misallocation

Standard method

Adapted method

Xii

Uses ordered sequence of symbols to

describe the structure of a molecule.

An online archive of experimentally

determined molecular structures.

Defines the radius of an imaginary

sphere often used to represent an atom.

A set of known corresponding points
across all images that account for the

partial labelling (see page 11).

If a point in a second image is not
matched to a point in the first image,
we say it is allocated to the coffin bin

(see page 30).

When a marker is incorrectly allocated
as a nearby point due to the warping

within an image.

Assumes allocated markers are true
markers by fixing the prior matching
probability of corresponding markers

to be one.

Accounts  for  slight  marker
misallocations by allowing the
prior matching probability of non-

corresponding markers to be non-zero.
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Gross marker misallocations

Image contamination

Normoxia/Hypoxia

Xiii

Due to input error of spot IDs when

allocating markers (see page 47).

Consists of missing markers which are
points that should have been located in
an image and imposter points which
are points that do not correspond to a

real protein (see page 85).

A normal/lowered amount of oxygen
used as two different treatments (see

page 10).
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Mathematical Notation

Chapters 2, 3, Section 4.2 and Subsection 5.3.1

ma,naG

Hha, Ta

m,n

His Tj

A b

Number of dimensions the relevant data is representedrwithi
Number of markers, i.e. known corresponding points, shauldbe
located in every image.

The total number of proteins present in a first and second Z}&IE
respectively (see chemical implementation in SubsectidrilL

mgq X D andng x D coordinate matrix for all the proteins that would
be highlighted as points on a 2-DE image (theoretical in $eofithe
data we consider).

Number of non-markers in a first and second image respegtivel
(K +m) x D and (K + n) x D coordinate matrices for a first
and second image respectively, where the fifstet of coordinates
represent markers. Also used more generally to indicaténthge
represented by or x respectively.

D x 1 coordinate vector of thé&h point iny and thejth point inx
respectively. Also used more generally to indicateither jth point

in 1 or x respectively.

Non-singularD x D matrix andD x 1 vector respectively that denote
the affine transformation parameters.

(K +m+ 1) x (K + n) matrix indicating matched points across
images, where an element;; = 1 if z; is matched to the, for
i=1,..., K+ m or allocated to the coffin bin far= K +m + 1.
For simplicity we setM/;; = M,; fori = K +m + 1.
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3

D*

dr

yav

u

(K+m+1)x(K+n) matrix containing prior matching probabilities,
where an elemeny;; = p(M;; = 1) contains the prior probability
thatz; matchegy; fori =1,..., K +m or is allocated to the coffin
bin fori = K +m + 1. For simplicity we sety;; = ¢, for i =
K+m+1.

The region inR” containing all points in.

An assigned variance between the points and z; in each
dimension.

The posterior probability that; matchegy; fori =1,..., K +mor

is allocated to the coffin bin far= 0.

(K +n) x (K +m + 1) matrix containing the final posterior
probabilities output by the EM algorithm. For simplicity veet
pji = Djofori =K +m+ 1.

Set asoji/afj for notational simplicity.

The Euclidean distance betwegn and z; after p has been
transformed to fit: using the final transformation parameters output
by the EM algorithm.

(K +m + 1) x (K + n) matrix where an elemend;; = d;; for
i=1,..., K +moran assigned squared distance threshldor

i = K +m+ 1. For simplicity we seD,; = Dy, fori = K +m+1.
Distance threshold assigned withii* that maximises the distance
allowed between two points that can be matched across images
(K +m+ 1) x (K +n) matrix that can be setas = p” orA = D
when assigning matches across images. For simplicity waA set
Agjfori =K +m + 1.

The number of matched points acrgsand:.

K x D coordinate matrices containing only coordinate informnati
for the markers allocated im andx respectively.

The probability that two correspondingly allocated maskauly
match.

The number of markers ip and x respectively that have actually
been allocated.

D x 1 coordinate vector of th&h point in the union of two images

i andz.
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Sections 4.3,5.2.1,5.2.2 and 5.3.2

Number of points in som&ueimage.

n x D coordinate matrix for points present in the true image.

Also used more generally to indicate the image represenged b
respectively.

Number of points in an observed image of the true image.

n x D coordinate matrix for points in the observed image. Alsaluse
more generally to indicate the image represented lgspectively.
Number of replicate images.

Number of times a particular point is observed acrBsmages.

The probability a true point is observedin

The rate of false points per observed image.

The number of points that are observetimes in the union ofR
replicate imagesfor =0,...,Randj = 1,...,J,.. HereJ, is the
number of ways of choosingfrom R replicate images.

The number of sets we have Bfreplicate images.

XVi
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Sections 4.4,5.2.3and 5.3.3

Alila

Pio

AT
10

l
B

!
0’

Number of images in group 1.

Number of images in group 2.

The total number of non-markers observed inithamage in group
2 and therth image in group 2 respectively.

(K +my;) x D and(K +n,) x D coordinate matrix for all the points
observed in théth image in group 1 and theth image in group 2
respectively.

Final estimated posterior probability that tha point in z(") is
allocated to the coffin bin when(?) is transformed to fig(").

Final estimated posterior probability that tha point in (") is
allocated to the coffin bin when™ is transformed to fifi(1).
Probability that theth pointinz ) is present in all. images in group
1.

Probability that théth pointinzi(?) is present in alk images in group
2.

SetasL/(L + R).

Si(l) € {0, 1} where the probability thazrzf.l) is present in group 1

images but absent from group 2 images increaséél%\s» 1.
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kr Inhibition constant which is a measure of the binding af§init
between a ligand and a protein.

m,n Number of atoms in ACh and a general pesticide respectively.

[, X m x 3 andn x 3 atomic coordinate matrices for ACh and the
general pesticide. Also used more generally to indicatetbiecule
represented by or x respectively.

M m x n matrix indicating matched atoms across molecules, where an
element)/;; = 1 if x; is matched to thg; fori =1,..., K +m.

L The number of matched atoms acrpssnd.x.

T Coordinate matrices of matched points acrpsndx respectively.

If M;; =1, theny; = p; andzy =z forl =1,..., L.
Ab D x D rotation matrix andD x 1 translation vector respectively

that denote the transformation parameters necessary ¢oisygpse

©ontox.

¢ Distance tolerance assigned within the graphical matching
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u? Them x 3 coordinate matrix of the docked conformation of ACh.

% m x 3 matrix containing the matched coordinates:if.
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Chapter 1

Introduction

In this thesis we explore two main themes, both of which imegbroteins. The first
area of research focuses on the analyses of proteins déspéesyspots on 2-dimensional
planes. The second area of research focuses on a speciinpaod how interactions
with this protein can naturally prevent or, in the presenica pesticide, cause toxicity.
Before we discuss the projects in more detail, we first erglae importance of proteins

and why continued research is vitally important.

1.1 Why proteins are important

Proteomicsis simply the ‘study of proteins’ with the main focus beingtbeir structure

and functions within a biological system.

‘It is proteins that are directly involved in both normal adéease-
associated biochemical processes, a more complete uanlgirsg of disease
may be gained by looking at the proteins present within aadise cell or
tissue. This forms the basis of proteomics. The potentiallobical and

clinical applications of proteomics are enormous.’ [26)][9

Most drugs exert their effects on proteins and the analylsgrateins has led to

crucial developments in the successful diagnosis andhtesatof neurological disorders,
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infectious diseases, heart disease and cancer to name d]feRedsearch is continually
being carried out to locatbiomarkers biological indicators, of particular biological
states. These biomarkers often occur in the form of protefizs example, the protein
AMACR has been established as an important biomarker ofgesancer [72] but there
is still an urgent need for more accurate biomarkers to imgdagnosis [16].

One way to locate biomarkers of a certain disease is to amalyw proteins differ
across control or diseased tissue. How we can do this forenbahkis of our first area of
research and is discussed in more detail in Section 1.2.

Another way that we can use proteins to gain biochemicatmétion is to explore
the reaction that occurs between a drug and a protein on aculatdevel. For example,
it is the direct reaction between a pesticide and a partiquiatein that causes toxicity to
an organism. It is analyses at the molecular level that fahadasis for our second area

of research and is discussed further in Section 1.3.

1.2 Analysis of 2D protein gels

1.2.1 Introduction to 2-Dimensional Electrophoresis and Véstern

Blots

There could be as many as 500,000 proteins in a single hunidié@f A protein can
be uniquely identified by its mass and acidity (or rather, ‘theelectric point’ which
is the acidity at which a protein carries no net electricahrge). Two-dimensional
electrophoresis (2-DE) is a chemical procedure used torapproteins by acidity in
the first dimension and mass in the second dimension. Thé resu2-dimensional gel
(or image of the gel) containing a ‘mapping’ of all proteimegent. If the technology were
flawless, the positional information would be enough to uely identify each protein.
However, further analysis is usually necessary to confiratgam identification. In fact,

the development of a protein image is generally the firstestdga multi-step procedure
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described in detail by Dowsest al.[26] and summarised in Subsection 1.2.2.

2-DE was first introduced in 1975 by O’Farrell and Klose [64F]. Although
there has been thorough research over the last 34 yeardtaruagive and more accurate
methods of isolating proteins (for example, the ‘virtueD Enages developed by Walker
et al.[86]), 2-DE remains a core technology for the separationrotgins [63] and is
currently the ‘workhorse’ for proteomics [38]. An examplieam image produced by 2-
DE is displayed in Figure 1.1. In theory, a particular pnotill show up in the form of
a black spot at the appropriate location. The red crossesaitedthe location of proteins
inferred by some analyses system from the image itself. glsiimage could display

over 5000 unique proteins, though routinely they displayuad 2000 [38].

Figure 1.1: An example of a 2-DE protein gel image. The reds®e have been added to
the image to indicate the location of proteins inferred byne@nalyses system from the

gel itself.

Although 2-DE is a well-established and well-used techeiiuprotein separation,
there are still many problems. Rameanal.[64] list gel-running conditions, temperature

effects and uneven focusing of equipment as a few factoteffext the quality of a final
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image. The continual challenge within this technology igntprove the reproducibility
of an image. Currently, two identical protein samples caat very different images
though theoretically they should be identical. Reprodilitylis difficult within a single
laboratory and increasingly more so amongst varying labaes/equipment/experts
[38].

Western blotsare gels created to highlight proteins present in humaneisfor
example. First, 2-DE is used to separate all the proteirraebed from a cell. The 2-DE
gelis then probed with serum which contains antibodieswiiabind to specific proteins.
The image of a western blot will contain only the location abteins that have a bound
antibody. We can think of western blots as containing onlulasst of the proteins that
are displayed on 2-DE images. The extra step necessaryate @avestern blot allows a
further level of variability within the final produced imagghe reproducibility of western
blots is therefore even more challenging than that of 2-DBEges. An example of a
western blot image is illustrated in Figure 1.2 within Sudtge 1.2.4.

Previously, we briefly mentioned the further analyses tleategally follows the
production of 2-DE or western blot images. Considering Hrgd scope for variation
between images and the often vast number of proteins logat@domparatively small
area, visual examination to analyse or compare imagespugth often informative,
can be extremely difficult and conclusions unreliable. ¥lscomparison can also be
extremely repetitive and labourious for the expert makimg ¢comparisons. Statistical
and computational analysis are essential tordseilt accuracyand reduction of expert

manual labour.

1.2.2 General analyses of protein gel images

Gorg et al.[38] summarise the traditional multistep procedure thdtofes image

production. Here we list the initial steps.

1. Each individual image must be preprocessed, i.e., etitimg background noise to
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enhance the image.

2. The exact locations corresponding to unique proteinhayelighted. The spots

often have to be segmented before unique spots can be iddntifi

3. Toenable easier comparison across images, an expemavillally locate a number

of corresponding proteins, sayarkers, across the images under examination.
4. Using the markers as reference points, the images aredarm superimposition.

5. Further corresponding proteins are highlighted throaghautomatic matching

process, enabling scientists to pick out proteins of irstere

6. The proteins of interest can then be identified using anigcie calledmass

spectrometry

Each of the above steps leave room for error and thoroughnasbas been carried
out to refine the procedures involved. Next we discuss exasrgdlprevious research into

the process described above before discussing the datave@hd our particular aims.

1.2.3 Current software and methodology for image analysis

Currently there are various pieces of software commeycathilable which have been
designed specifically to carry out some or all of the stagemnafyses described in the
previous subsection. In many cases, the software is buwlh ggoograms designed in the
early years following the development of 2-DE technology &as undergone years of
refinement.

First we discuss some of the early packages produced. TYCComprises of
programs for image acquisition, background subtractiath smoothing, spot detection
and modelling, pattern matching and computer comparisoemHKin and Lipkin [49]
[50] [51] have produced multiple papers describing the sagation of spots, system
preliminaries, spot matching techniques and further a®aytools within GELLAB
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software. Vincengt al.[83] [82] [84] [85] [76] also produced multiple papers debarg
HERMeS, a software produced to provide similar analysesy Htso proposed database
organisation and interrogation strategies to allow easylirag of the large quantity of
data obtained from a series of gel electrophoresis expatsndoday, dealing with the
wealth of data is still a difficult task at the heart of muche@sh. GESA [71] is a system
characterised by combining expert intervention alongaitematic analyses techniques.

Today, commercially available packages include CAROL [62CAROL was
developed to tackle the local distortions that may be pteseimages and to provide
a fully automated point matching technique without the nfedcorresponding points
across images to be manually located by an expert as reéepmiots. The system is
also able to provide comparisons of images across the wadd web. WebGel [52]
is an exploratory 2-DE gel image and data analysis systeoivimg the tool ‘Flicker".
The tool can also be run on the world wide web to help in the @spn of two gel
images from similar samples, possibly created in diffefaboratories, by matching the
morphology of local regions. The method is only intendedrtavjale a rough comparison
and becomes increasingly difficult to utilise as the numldenages being compared
increases [48]. Melanie [5] [6] is a popular package whidke(many others) integrates
filtering, querying, reporting, statistical and graphigptions so that you can easily view,
compare, analyze and present your results. Other packagede Z3 [73], PDQuest [54]
and Progenesis [53].

Multiple reviews have been carried out to compare the acyuoé the different
packages available [59] [64] [89] each highlighting varyievels of accuracy over the
different stages of analyses. To continue refining the tomslved, many people focus
on one particular stage of protein image analysis.

Before points representing proteins can be successfulbtéal, background noise
needs to be eliminated. Van Bebéal.[81] present a denoising algorithm that adaptively
enhances the image contrast and, through thresholding admfiltering, removes the

grey-scale range covering the background. Applicatioesdmmonstrated on western
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blots which are the type of images that instigated this mesed\fter reducing background
noise, the next problem faced is how to locate the spots thlgtindicate the presence
of a protein. The spots on protein images have varying anedsage often irregularly
shaped. Rogerst al.[69] provide a method to model the shape and appearance & spo
automatically generated from a set of real images, thus/alpbetter definition between
single and multiple spots and creating a higher tolerancerfegularly shaped spots.
Bettenset al.[13] apply a watershed technique for the segmentation ospus on a
protein gel image and the method is demonstrated as sup@dommonly used Gaussian
models [4]. Cutleet al.[24] use a segmentation method involving pixel value coidec

via serial analysis of the image through its range of dereitgls.

One of the most difficult tasks involved in the analyses oft@roimages is how
to highlight how the proteins present differ across imagée difficulties arise in the
inconsistency of image sizes and the warping that can oocl@pendently across gels.
The rough superimposition of even two images is often imiptessithout computational
assistance coupled with the manual location of a selectioreference points, i.e.
corresponding points across images. A modification of 2-RHEed DIGE [80] is a
technique developed to circumvent the problems assocvwaitedpoint matching across
protein images. A single image is developed from up to thrfferdnt samples of
protein extracts that have been individually tagged witifiecent coloured fluorescent
dye. The production of a single image bypasses the necgésisitnage registration and
the proteins present in all three samples can easily beigigbd due to the different
colours of the three samples. Melanie 7.0 DIGE [32] is a consrakly available analyses
system for an image output using DIGE technology. Howewdhe@moment only three
samples can be compared so DIGE is unable to circumvent thdgpns associated with
superimposition when a greater number of protein sampéelseing compared, as is often
the case.

So the accurate registration of protein images is stillliyitanportant in the

exploration of protein correspondences across imagesrehstration and matching of
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point sets is important in a number of different disciplimeduding shape analysis, image
analysis, molecular comparison and even astronomy to néene &lany techniques have
been developed and applied within various fields of study.

Cross and Hancock [23] match geometric structures in 2Dtpséts by first
highlighting point correspondences by maximuemposteriori graph-matching and
then estimating the transformation necessary for sup@sitipn using an Expectation
Maximisation (EM) technique. Chui and Rangarajan [21] psippa general framework
for non-rigid point matching by considering thin-plateispk to tackle the problem with
an application to the comparison of cortical anatomicalcdtires. Besl and McKay [12]
use a iterative closest point (ICP) algorithm to registan{sosets, curves and surfaces.
Belongie et al.[8] first infer point correspondence before estimating thgistration
and describing a shape similarity measure between two tbjeto do this a ‘shape
context’ is given to each point which captures the distitiuof the remaining points
relative to it. Corresponding points across sets will hanelar shape contexts, therefore
enabling correspondences to be inferred through an opt@issadjnment problem. Given
the correspondences, thin-plate splines are then useditwaés the transformation that
best aligns the two objects. Po&hal.[63] provide a method to optimally align families
of 2-DE gels by constructing an ideal gel to represent theesfamily and applying
hierachichal piecewise affine transformations. Akugsal.[1] present a polynomial time
algorithm for a special and one-dimensional case of thetpoatiching problem, which is
based on dynamic programming. A practical heuristic atgorifor identifying a match
between two point sets is also described.

Rohret al.[70] incorporate both point location and intensity to alRHDE images.
Point landmarks are localized using a model fitting scherdelza geometric information
is combined with intensity information for elastic imagegistration. Richmond, Willett
and Clark [68] consider Procrustes analysis [28] for mdEceomparisons where
correspondences are first estimated using image analgsistams. Dryderet al.[27]

consider Bayesian methodology carried out through MCMQu#tion to compare two
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or more unlabelled point sets. Here the application comsdles also in the comparison
of 3D molecular structures. A similar technique has beemnl tigeexplore properties of
human movement by labelling points on the body [2].

Walker [87] applies an EM technique to estimate the tramsé&dion necessary
to superimpose two unlabelled point sets, before providifigrence on point matches
across sets. This work is extended by Kehal. [77] [45] with applications in protein
image comparison and the matching of amino acids within 3idgim structures. Green
and Mardia [39] use a different method to explore the samélenos associated with
matching proteins as points across images or amino acidsnwtotein structures. A
Bayesian approach is applied to simultaneously infer thechirag and transformation
of unlabelled or partially labelled points sets. A Poissoocpss is assumed to describe
hidden true point locations, with EM and MCMC algorithms dise provide inference
on unknown parameters. Glasbey and Mardia [34] give a reaepossible warping
methods that could be utilised for the superimposition ciges.

Many point matching techniques require the location of adgetorresponding
points across sets, i.e markers. Melanie [5] [6] autombyicelects a spot in each of
the four corners of an image before locating correspondoigtp in a second image.
These allocated markers are used as fixed reference poitits gel alignment through
least-squares minimisation [92]. Flicker [52] requestd the user specify 3 or 6 markers
when applying an affine or polygonal transformation regpelst to superimpose images.
The method developed by Pottal.[63] relies in the initial manual location of a group
of markers across images and a threshold is applied to mitlistance allowed between
corresponding pairs.

Before we outline our aims within this research, we firstadtrce the data we have

been given.
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1.2.4 Data
Introduction

Protein images have been produced to reflect, and allow tin@aason of, the proteins
present in tissue within controls and renal cancer patiemter two possible treatments.

Images are created to represent the following four scemario

e A control treated witmormoxig a normal supply of oxygen.
e A control treated withhypoxig a lowered supply of oxygen.
e Arenal cancer patient treated with normoxia.

e Arenal cancer patient treated with hypoxia.

The chemical procedure used to create the images is desanibige following section.

Chemical implementation
We describe the process in a step by step procedure.

1. Cells from the particular cell line HTB47 are grown in onktwo possible

treatments.

¢ Normoxia.
e Hypoxia.
2. Protein extracts are taken from the cells.

3. 2-DE is used to create a 2D protein gel by separating theipsoby acidity in the

first dimension and by mass in the second dimension.

4. A rectangular membrane is sized and cut to fit the gel.

Note: The size of the membrane fitted is dependent on the gel.
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5. The gel igprobedwith serum from one of eight subjects.

e Four different controls.

o Four different patients.

The term ‘probed’ is used to describe how each antibody withe serum will

identify a particular protein within the gel before binditogthat particular protein.

6. The binding of an antibody and protein is then detectediggosure to film. It
is this detection process that creates the subject-tregtspecific 2D western blot

images. We refer to these proteinsas-markers throughout the main text.

7. An analysis system (such as those discussed in the peesigasection) is then
used to highlight each non-marker as a single cross in theewebklot image (see
Figure 1.2).

8. To help make image comparison easier and also to createrdicate system for
the mass and acidity of each protein, 12 particular proteiedocated. These 12
proteins are present in every gel and have a known mass aditiyacihe gel is
removed from the membrane and a stain (Coomassie Blue) iedp the gel to
highlight all the proteins present within the gel. The markers are theruaign

located by an expert. These 12 proteins will be referred toakers.

We consider an image to contain a selection of non-markefa aeparate selection

of markers.

9. The gel is realigned to the membrane so that the markersoarectly positioned
relative to the non-markers before being manually supessagd onto the image as

larger crosses (see Figure 1.2).

10. Both the markers and the non-markers are allocated atraaybbut unique

spot ID. In addition, the markers are allocated a marker IDctwhvill indicate
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corresponding markers across images. Setting the origiheoimage as the top-
left corner of the membrane, 2D spatial coordinates argasdito each marker and
non-marker. Using the coordinate system created by the knoeasurements of

the markers, a mass and acidity measurement is also ass@meadh non-marker.

Figure 1.2 displays an example of a western blot image withindataset. In this
particular example, the labelled markers 9 and 12 were rantessfully located, leaving

10 highlighted markers.

BeonH1 mel x2 .

Figure 1.2: Figure displaying a western blot image withim dataset. The red crosses
depict the subject-treatment specific non-markers. Thyetdslack crosses indicate the

labelled markers, with their acidity and mass measurentegldighted beneath.

Actual dataset

Data is produced to represent eight different subjectsr (6autrols and four patients)
treated with two possible treatments. A replicate imagésis produced for each subject-

treatment specific case. Therefore a full dataset wouldisboiss x 2 x 2 = 32 images.
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However, due to production faults such as excess shadowirgmages were

Control 1 | Initial Replicate| Patient 1| Initial Replicate
Normoxia

Hypoxia

Control 2 | Initial Replicate| Patient 2| Initial Replicate
Normoxia X X
Hypoxia X

Control 3 | Initial Replicate| Patient 3| Initial Replicate
Normoxia

Hypoxia

Control 4 | Initial Replicate| Patient 4| Initial Replicate
Normoxia X
Hypoxia X X

Table 1.1: Table indicating the 32 images we would have inlladataset.

highlight the 6 images that are missing from our dataset.

Sources of variability within the data

Possible variation within or between images include thimfahg.

removed from our investigation leaving 26 images remaiigingdicated in Table 1.1).

The crosses

e During the production process, each gel has the freedom tp imdependently

therefore allowing error in protein location. So positibm&ormation of a protein

relative to another is likely to vary from image to image. Uwig 1.3 displays

the 12 markers from two different images after applying Ristes methodology

to superimpose the corresponding markers. None of the sponeling markers
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between the two images have been superimposed exactlyatirdj location error

within the known, labelled markers that will also occur viitthe non-markers.
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Figure 1.3: The dots and crosses indicate markers from tifereint images after

Procrustes methodology has been applied to superimposettesponding markers.

An increased edge variance. A gel is more vulnerable to wgrpt the edges of

the gel, so variability within protein location is likely twe higher here.

e As can occur with the non-markers, all 12 markers are not\aveccessfully
located. For example, markers 9 and 12 have not been locatéueiimage

displayed in Figure 1.2.

e A marker can be incorrectly labelled. For instance, a nonkeramay be
misidentified as a marker or two marker labels could be irmtly exchanged due

to human error.

e It is possible for proteins present within a gel to remainetedted and for dust

or shadowing, for example, to be detected as false protaives.call thisimage
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contaminationWe can see that contamination is present within the datdsst we
compare replicate images. All replicate images shouldasorthe same selection
of proteins and therefore the same number of points. Figutedisplays two
replicate images. The image in Figure 1.4a contains 99 p@ihereas the image

in Figure 1.4b only contains 93 points.

Figure 1.4: a) Initial image of a control treated with hypmxb) Replicate image of the
same control treated with hypoxia. In both figures, the btiats depict the non-markers

and the red dots highlight the markers.

e Subject variability between controls and between patieRts example, the non-
markers found in Control A treated with normoxia may be dédfd to those of

Control B treated with normoxia.

1.2.5 Aims

In this research, we consider images that have already regorpcessed so that we have
a collection of crosses and corresponding coordinatesrépaésent the likely location
of unique proteins (as displayed in Figure 1.2). The misalignt of images is a major
bottleneck within the analyses of protein images [63] arid ih where we focus our

attention. We aim to develop a technique that can be usedhkoarad highlight proteins
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that are likely to correspond across pairwise images. Wet wan metholodology to
account for the possibilities of error in point location,iacreased edge variance, missing
markers and slight or grossly misallocated markers.

We develop a method to create a union of replicate images;hwtan be used
alone in further analyses to reduce computational expelmspired by DIGE [80] (an
innovative procedure to overcome the problems associatddtiae gel warping and
discussed in more detail in Chapter 4), we develop a techbrtigat can be used to infer
the quality of a dataset, i.e., the level of contaminatioespnt. Although much work
has been spent on matching images, hardly any researcly)ihas gone into evaluating
the quality of a dataset. Considering the extensive vditaliound in images across the
equipment used, the laboratory conditions and the expertondates the images, research
examining the quality is vital to the relevance of any cosua formed from a particular
dataset.

Note: Many matching techniques have been tested by artificiakyoding an
image and investigating the matches made under comparisoth& original image (for
example, [64]). The presence of contamination is oftentigd@ven though it highlights
the need for an associated matching probability to locaiguenpoints across groups of
images.

Finally, we want to provide a way to rank proteins that areliikto be unique to
one group of images. For each point in a group of images, wailede an associated
probability of uniqueness to that group. All pairwise trfmsations are considered so

no information is lost in the allocation of a reference imagereation of a master image.

1.3 Toxicity prediction

1.3.1 Introduction to toxicity

First we introduce the following terminology.
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A proteinis a macromolecule, i.e. alarge molecule that generallpbase function
within a biological system. Aatural ligand or substrateof a protein, is a small molecule
that exists naturally and binds specifically to that pratedhcomplexis a general term
given to a bound protein and ligand.

The pesticides that we consider within this research cacsge oral toxicity
(a measure often used to characterise pesticide toxicyy)nhibiting the protein
acetylcholinesterasAChE) from carrying out its natural function. Before we delse
how a pesticide causes this inhibition, we first describentiteral cause and prevention

of toxicity in the absence of a pesticide.

Natural cause and prevention of toxicity

Figure 1.5 helps to visualise the natural cause and preremti acute oral toxicity.
Impulses are continually emitted from nerve cell endingthiwithe biological system
of an organism. Molecules of AChE exist in the gap dividingeave cell from a muscle.
Molecules ofacetylcholine(ACh), the substrate of AChE, are continually released into
the same gap.

The presence of ACh allows the impulses to travel from a neelleto a muscle.
This occurs because ACh isxaurotransmitterwhich means it has the ability to relay and
amplify the impulses. The impulses stimulate muscle catitas and it is this process
that is thenatural cause of toxicity and can eventually lead to the death of tharasm.

The primary function of AChE is to break down its substrat€hAinto smaller
molecules. Therefore AChE removes molecules of ACh fromgidye dividing a nerve
from a muscle and the impulses cannot be transmitted acfidss reaction that occurs

between an AChE molecule and an ACh molecule can be summass®ellows.

1. AChdocksat a specific location on AChE called thanding site (The term ‘dock’

is used to describe how a smaller molecule binds to a macemnula.)

2. The complex formed by AChE and ACh is particularly unstabeaving ACh
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Figure 1.5: Figure to highlight the natural cause and prewemf acute oral toxicity.

vulnerable to hydrolysis, i.e. a reaction with water. Theioyysis of ACh breaks

the substrate down into two smaller molecules, acetic auidcholine.

3. The two smaller molecules then leave the binding site ohBCeaving AChE

molecularly unaltered.

Figure 1.6 displays the three steps described above. Afethird step, the molecularly
unaltered AChE is thereactivated that is, it is able to bind with further molecules of
ACh so that the process can be continually repeated. Onljuth&Ch molecule acts as

a neurotransmitter. The two smaller molecules released@yE2are unable to transmit

the impulses and toxic consequences are naturally avoided.

Competitive inhibition by a pesticide

Pesticides are synthetic ligands designed specificallyottk éit the same binding site
on AChE to which ACh would dock. The term ‘competitive’ @@mpetitive inhibition

describes the competition between a pesticide and ACh thwitin AChE. If a pesticide
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Figure 1.6: The macromolecule is the protein, AChE, and theller molecule is the
natural ligand, ACh, which is highlighted in green. The stune of AChE is represented
as sticks and each atom in ACh as a sphere to make the smalkgutevisually clearer
in respect to the larger molecule. Figure a) displays an A@mEACh molecule before
they bind. Figure b) displays the complex formed by the bo8@HE and ACh. Figure
c) displays AChE and the two smaller molecules, acetic aniil @éoline, formed by

breaking down ACh.
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binds with AChE, AChE is then ‘inhibited’ from binding with@h and cannot carry out
its primary function to safely break down the substrate. Adsup of ACh molecules

will take place, allowing impulses to be transmitted to theseies of an organism which
resultin toxic effects. Figure 1.7 displays the inhibitmffAChE by an example pesticide,

sarin.

a) b)

Figure 1.7: The macromolecule is the protein, AChE, and thectre of AChE is
represented as sticks. The smaller molecules are ACh anpetttecide, sarin. Both
structures are represented by atomic spheres and aredfitgudi in green and blue
respectively. Figure a) displays AChE, ACh and sarin beforeaction has taken place.
Figure b) displays the complex formed by the bound AChE amih,saurrounded by
molecules of ACh. AChE has been blocked by sarin and is nowlarta bind with the

substrate, ACh, before safely breaking it down.

Within this research, we consider two families of pestisidalledcarbamatesand
organophosphate@Ps), both of which cause toxicity in the way described abdWe
describe the general structures of a carbamate and an @iyasuhate alongside the
structure of ACh in Chapter 6. We also give a more detailed@rij#son of the reaction

that occurs between each ligand and AChE.
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1.3.2 Current methods to predict pesticide toxicity

Drugs generally exhibit pharmaceutical activity by birglito a target protein [56].
Developing new techniques to more accurately predict théesaf activity induced by
the binding of a drug and a protein is crucial to the increaseterstanding of the effects
of current drugs as well as the development of new and moeetefé drugs. Similarly,
pesticides exert toxicity by binding to the protein, AChlBdahe ability to accurately
predict their potential toxicity is of paramount importanc

Pesticide toxicity is simply the degree to which a pestidgaleéoxic. One way to
measure the potential toxicity of a pesticide to a given gsasin vivo by calculating the
associatetlethal Dose 5JLD50), which is the amount of pesticide necessary to ki#60
of a sample of the species. Here the resulting measure talceadcount the absorption,
distribution, metabolism and excretion (ADME) of a pestewithin the system of a pest,
which plays an important role in determining pesticide ¢ayi

However, the potential toxicity of OPs [and carbamates] t&pacies idargely
dependent on the inhibition of AChE [30]. Although many teicjues have been
developed, no general or reliable approach to predict theEA®hibitory activity of
new inhibitors has yet been established [11]. Becausedguiill bind themselves inside
AChE rather than simply on the surface of AChE, a thorougwkedge of how the ligand
and AChE will bind is essential to deriving an accurate prtee model [11].

Alternative to the calculation of LD50, the reaction betw&€ChE and a pesticide
can be carried oun vitro. Through this experimentation we can calculate biveding
affinity, which is a major determinant of the toxic potency of a pé&#i¢30]. The binding
affinity of a pesticide with AChE can be measured by itht@bition constant%;. The
inhibition constant is related to thHelf maximal inhibitory concentratioiC50) by the

equation
IC50

:71—1_17

knt

where S is the concentration of the substrate, ACh, d@nd is the affinity of ACh for

1
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AChE. The IC50 is the amount of a pesticide necessary to iinbd%o of the AChE
molecules.

To avoid the ethical implications associated with animatitey or both the time
and costs associated with vitro experimentation, much research has been spent on
developing more accurate toxicity predictianssilico.

A common technique used to predict toxicitysilico is via Quantitative Structure
Activity Relationships (QSAR). The QSAR paradigm relatedhis project is that the
toxicity of a pesticide is proportional to one or more prdjger of the pesticide molecule
itself. This approach allows important molecular pro=to be identified and then used
within a suitable model to predict toxicity. Alternative tbe classic QSAR methods,
3D-QSAR approaches are considered better suited to degbelactivity resulting from
ligand-receptor interactions as they consider the praseof a ligand in their (supposed)
bioactive conformation [91], which in our case would be tbelked conformation within
AChE. In the case of 3D-QSAR, knowledge about how a pestisitidbind with AChE
Is assumed known.

One way to predict how AChE and a pesticide will bind is by iempenting
computational molecular dockingGenerally a docking program will produce multiple
predictions of how an input pesticide will bind to a proteimdathe predictions should
converge to the ‘true’ dock. For each prediction a measurbiding affinity, such
as the inhibition constant, is often also estimated and tséulghlight the most likely
representative of the true dock. Many different dockinggpams have been developed,
though there are drawbacks associated with each dockistggyr[41].

Finally, shape plays a crucial role in understanding preg#iucture function
relations [58]. Although shape is ill-defined in moleculalbgy [58] (most likely due to
the difficulties associated with defining shape amidst mdédlexibility), Cosgroveet
al.[22] state that it has been established that tightly bintigends [high affinity ligands]
have a high degree of shape complementarity with their tecephough analysis based

on shape requires something close to the functionally asleshapes to start with [58].
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Next we briefly discuss previous work before introducing praject aims.

1.3.3 Previous work

Doornet al.[25] bind the OP, isomalathion, with AChR vitro to evaluate the products of
the reaction. Richardsaet al.[67] examine the toxicity of the OP, chlorpyrifos, to hens
in vitro andin vivo, by calculating the inhibition constarit;, and the LD50 respectively.
Halle and Gores [40] found a positive correlation (sigmifitat the 95% confidence level)
between IC50 and LD50 toxicity.

Recanatiniet al.[66] carried out comparitive QSAR analysis to highlight the
properties of AChE inhibitors which are essential to pasrdrugs for the treatment
of Alzheimers. Both El Yaza¢t al.[30] and Zhacet al.[91] use 3D-QSAR to enable the
prediction of neurotoxicity via the inhibition of AChE. Timeain objective for DEMETRA
- Development of Environmental Modules for the EvaluatidnToxicity of pesticide
Residues in Agriculture - is to produce QSAR software fortigee toxicity prediction.
Previous research has found a correlation between theitiohitof AChE and acute
neurotoxicity [30].

Chen and Ung use a ligand-protein inverse docking appraaédcilitate toxicity
prediction [20]. Bursulayat al.[18] give a detailed comparison of multiple docking
programs and Halperiet al.[41] give an overview of the search algorithms and scoring
functions involved.

Morris et al.[58] present a method to describe the shape of a proteinrgrsite
in terms of spherical coordinates. Cosgrateal.[22] provide a method that detects
local shape similarity which correctly identified the bingiof 20 out of 21 particular
inhibitors using shape alone. Good and Richards [37] gie¥i@w on methods developed

to calculate 3D shape similarity between molecules.
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1.3.4 Data

The data we have been given is summarised as follows.

1. Atomic coordinate data for 145 pesticides (39 carbamatet 106 OPS) in

minimum-energy conformations (discussed in more detallhapter 6).
2. Over a thousand biological descriptors for each of thegeticides.

3. For varying subsets of the pesticides, we have LD50 ttyxdata for 5 different
species: bobwhite quails, japanese quails, mallardswieded blackbirds and
starlings. Table 1.2 displays the number of pesticides floickwwe have toxicity

data for each species.

Number of pesticides for which we have toxicity data
Species Carbamates OPs Total
Bobwhite quail 17 35 52
Japanese qualil 18 49 67
Mallard 15 47 62
Red-winged blackbird 25 60 85
Starling 18 54 72

Table 1.2: Table displaying the number of pesticides forolwhie have toxicity data for

each species.

1.3.5 Aims

We want to develop a shape similarity measure between ACragrekticide. As both
ligands bind to the same site within AChE, the shape sinyldétween them may be

an indicator of the associated pesticide toxicity. We campghe significance of the
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produced shape similarity measure as a toxicity predicttne significance of biological
descriptors which have previously been highlighted ascatdirs of toxicity.

According to 3D-QSAR, the docked pesticide is a more suitdhticator of
toxicity. We use a docking program to predict the dock of dipiele to AChE. We then
explore whether the similarity with the docked ACh, the elosss of fit to AChE and the

output inhibition constant of the prediction help deterenihe potential toxicity.

1.4 Thesis structure

In Chapter 2 we build on the EM algorithm introduced by Walk&r] and extended
by Kentet al. [77] [45]. We provide methodology to infer one-to-one, mdayone or
many-to-many matches of points across images. The lapestgf matching are useful
when comparing protein images as multiple forms of an imtligi protein can often be
visualised [7]. We also provide a method to account for tkelilhood of an increased
edge variance within images.

Most current computational analyses systems rely on theualdoncation of a
set of markers and any mismatches must be checked and editagaity by an expert
[38]. The misidentification of a marker can mislead even thestrelegant analyses
system when estimating the superimposition of images. ik work we introduce a
prior that will account for the possibility that a true marke actually a nearby point
of the allocated marker. Incorporating this prior dealshwtite possibility of slight
marker misallocation within a warped image so that matclghguld not be greatly
affected by slight misallocations. The EM algorithm is sgty dependent on the
starting transformation which would, intuitively, be estited from the corresponding
markers. Inputting the spot IDs of markers is a manual proednd could lead to
gross positional misallocations even if there were onlyighslinput error. We produce
a technique to automatically locate and remove markersatethighlighted as gross

misallocations, before the remaining markers are usedféw gtarting transformations
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in further comparitive analyses. Finally, we provide melblogy to deal with the high
likelihood of missing markers within an image.

The methodology developed in Chapter 2 can not only assigohas, but also
calculates an associated matching probability. This sepm scientist with further
information and the ability to pick the most likely match asmmatch (depending on
what is of particular interest) for further investigation.

In Chapter 3, we explore the accuracy of the methodologypdhiced in Chapter
2 and use it to analyse the given data. We compare the matofesed when we
fix the prior probability of markers matching as one, to theichas inferred when we
employ the prior that will account for the possibility ofgit marker misallocation. We
highlight appropriate parameters that should be usedmithither analyses of the given
dataset. We explore evidence of an increased edge variaitiue wur dataset before
finally including an example of how points are matched actessmages.

In Chapter 4 we first show how data can be pooled across repliceages to
minimise the input into further analyses. We develop a teplenthat can be used to
infer the quality of a dataset, i.e., the level of contamorapresent. Finally, we show
how the EM algorithm can be used to highlight likely pointsque to a specific group of
images.

In Chapter 5, we explore the accuracy of the methodologgdhiced in Chapter 4
and use it to analyse the given data. We provide an examplevo&lsingle union image
can be created to represent two replicate images. We exhledevel of contamination
present within the given dataset. Finally, we rank the go(at proteins) that are likely to
be unique to certain groups of images within the dataset.

In Chapter 6 we test the hypothesis that the potential tyxidia pesticide is related
to the shape similarity between the pesticide and the satbstkCh, of the protein, AChE,
to which they both bind. We produce methodology to calcukatmeasure of shape
similarity between ACh and a pesticide. We then exploreitgpaficance of the developed

shape similarity measure as a toxicity predictor and comjiato the significance of
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known biological indicators of toxicity. We also compare thccuracy of the toxicity
predictions when applying our model to the accuracy whenlempnting a previously
developed online predictor.

In Chapter 7 we explore the accuracy of a docking progranrbefsing it to predict
the docked conformation of a pesticide within AChE. We theodpce a measure of
similarity between the known dock of ACh and the predictestipele docks. We also
define a method to calculate a distance measure between edliag&nd and AChE. We
investigate the significance of these measures, alongsidesaciated inhibition constant,
as toxicity predictors for the bobwhite quail.

In Chapter 8 we provide a critical summary of the researchiwthis thesis before

finally highlighting possible further work in each area.
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Chapter 2

Modelling, and using the EM algorithm

to match, pairwise gels

2.1 Introduction

In Section 2.2 we introduce a statistical model to repredatd across pairwise images.
We consider two possible methods to calculate prior matghinbabilities across images.
The first method assumes thatrae marker is always correctlgllocated The second
method deals with the possibility of slight marker misaitbon within a warped image
and does not assume that an allocated marker is always thenttker. In Section 2.3
we use an Expectation Maximisation (EM) algorithm to estarthe superimposition of
two images before inference is made on point correspondacross images. Finally,
in Section 2.4 we provide methodology to account for missingrossly misallocated
markers.

In this chapter we assume that all points observed in an imegeesent real

proteins.



Chapter 2. Modelling, and using the EM algorithm to matchrvaae gels 29

2.2 Introduction to the statistical model

As the mass and acidity of a protein are calculated from th&aoordinates, we focus

only on protein coordinates within the described statiticodel.

2.2.1 Notation

We introduce a statistical model for data within a genéralimensions. (Within figures,
d denotes theth dimension.)

Let ug andzg bemg x D andng x D matrices containing the coordinates &
the proteins present in two 2-DE gels. leandx be the(K +m) x D and(K +n) x D
subsets of.; andx¢ observed in western blot images of the gels, wherandz; are
D x 1 vectors containing the coordinates of poinh ;. and pointj in = respectively.
Let 1, andz; contain the coordinates of markerfor 1 < ¢, j, < K and the arbitrarily
labelled coordinates of thee andn non-markers foi = K +1,...,K + mandj =
K+1,...,K +nin puandx respectively. The x 1 coordinate vectors ipg andzg
are setag = y; andz§ = x; fori =1,...,K+mandj = 1,..., K +n respectively.
Fori=K+m+1,....mgandj = K+n+1,...,ng, u¥ andxf respectively contain
coordinate information for arbitrarily labelled proteitigat have not been observed;in
andzx.

So the matrices.; and z¢ contain coordinate information for all the proteins
present in the 2-DE gels and are independent of the subjecbur caseu; and x4
represent theoretical gel images as we have data for themdsbts only (see chemical
implementation in Subsection 1.2.4) and are only constlereen simulating data in
the following chapter to mimic the allocation of markers.€Tinatrices: andz contain
coordinate information for th& markers and the: or n subject-treatment specific non-
markers respectively. Bott andx represent observed images and we assume they each

contain a selection of markers and a separate selectiomeimarkers.
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2.2.2 Transformations

To enable us to highlight points that are present in both asagve first aim to
superimposg onto:x.
Although the statistical model we later introduce can applywarious types of

transformations, we focus on an affine transformation ofalne
g(n) = pA" + B,

where A is a non-singulaiD x D matrix and theD x 1 vector,b, is present in every
column of theD x (K + m) matrix B. Due to the possibility of differential stretching
between the rows and columns found in images (because ofatgng incurred by the
gel), Horgaret al. [42] consider the affine transformation to be a suitablesi@mation

when superimposing images. We want to estimate the affinsfsemation parameters,

A andb, that superimposg ontox.

2.2.3 Matching matrix

To enable us to estimate the appropriate transformatignwe can introduce a labelling
system that will indicate whether a point jncorresponds to a point in, i.e., whether
two pointsmatchacross configurations.

We can record the labelling information in(& + m + 1) x (K + n) matching

matrix, M, where

1 fori = 0if z; does not have a matching pointin
Mijj=4 1 fori=1,..., K +mif z; matcheg; ;

0 otherwise

for j = 1,..., K + n. Note that, for simplicity of notation, we sét/,; = M;; for
i =K +m+ 1. If My, =0, thenz; does not have a matching pointirand we say that

x; is allocated to theoffin bin
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We consider one-to-one or many-to-one matches betweeispoin and points in
1. We refer to these asftandhard matches respectively.
Hard Matches

The matching matrix}/, has the following constraints for the hard model.

K+m
> My=1forj=1,... K+n (2.1)
=0
and
K+n
> My <=1fori=1,... K+m. (2.2)

j=1
Here the points in. are chosemvithout replacementSo fori; # 0, if M;,;, = 1, 1.e. y;,
is matched tac;,, thenM,, ;, = M,,;, = 0 for all i, # i, andj; # jo.

Note that there are no constraints on r&w+ m + 1 in M since each of th& +n
points inzx is free to be allocated to the coffin bin.

Soft Matches

For the soft model, the only constraint is stated in Equatibh). Here the points
in i are chosemvith replacementThat is, if M;, ;, = 1thenl/;,;, = 0 for all i; # 4., but
M;,j, € {0, 1} for ji # ja.

When assigning either hard or soft matches, Equation constrains a point in
to be matched to a single point inor, alternatively, to be allocated to the coffin bin.

To allow for the possibility of soft matching, we consideriqts in = to be
independent. As we havE markers in each image, we have prior information about
the matching across images. Next we introduce notation &b \@eh prior matching

probabilities.

2.2.4 Prior matching matrix probabilities

Let @ be a(K + m + 1) x (K + n) matrix where an element; = p(M;; = 1).
Thatis, forj = 1,..., K + n, g;; is the prior probability thaj:; is matched tor; for
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i =1,..., K +mand the prior probability that; is allocated to the coffin bin far= 0.
Again, for simplicity of notation we have set; = ¢;; fori = K +m + 1.
As the labelling is independent over pointsin

K+m
> gy=1forj=1,...,K+n.
=0

We have prior knowledge that corresponding markersndzx, fork = 1,..., K, should
match.

We introduce both atandardandadaptedmethod to assigig; for: = 0,..., K+m
andj = 1,..., K + n. The standard method assumes that the allocated markers are
the true markers, i.e., that corresponding markers willcmaicross configurations. The
adapted method deals with the possibility of slight erroewhllocating markers within
a warped image and does not assume prior knowledge thasporréding markers will

match.

Standard method:

In this case we assume that an allocated makrkstthe true markek fork =1, ..., K.
Markers in x
Because we assume that each marker is correctly allocagesetv
1 ifi=k
0 ifi£k
fori =0,...., K +mandk = 1,..., K, whereq, denotes the prior probability that
correspondingly allocated markers match.
Non-markers in x
Foranon-market;, j = K +1,..., K +n, we set
0 fori=1,....K

Gij = . (2.4)

— fori=0andi=K+1,....,K+m
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We know that the/ markers inu have specified corresponding pointsiinSo the prior
matching probability of a non-market; is set to be uniform over the: + 1 remaining
matching possibilities.

Note: We have chosen to set the probabilityzgfbeing allocated to the coffin bin
to be equal to the probability of it being matched to a pointinThe more points in,
the more likely it is that:; has a corresponding point jin So setting the prior probability

to be inversely related ta + 1 seems sensible.

Adapted method:

Here we allow for error in the allocation of a marker within anged configuration and
consider the possibility that an allocated markenay not be the true markét

Markers in x

We know thatu, contains the allocated marker coordinates for makkier .., £ =
1,..., K. Lety, be the index of the true markeérin . If v, = k, then the true marker
has been correctly allocated as marker

We set the prior probability of a poipt being the true markaek, g;x, to be a function

of the distance between andy, so that
Gix = p(e = 1) = f(di) fori=1,..., K +m, (2.5)
whered;,;, is the Euclidean distance betweenand;.,, i.e.,

dix = Hﬂz - Mk” (2-6)

Possible choices fof are discussed in Section 2.3.5.

Next we consider the possibility that a marker within does not have a
corresponding point in.. We know thatz, contains the allocated marker coordinates
for markerk in z, k = 1,..., K. To allow the possibility forr; to be allocated to the
coffin bin, we set the prior probability af/,; = 1 to be uniform so that

qor = p(ye = 1) = ﬁ (2.7)
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wheref) is some region ifR” containing all points in.
Non-markers in x
To allow for the possibility that an allocated markeis not the true markek in z,

fork=1,..., K, we can set
1

= 2.8
] (2.8)

qij
fori=0,..., K+mandj = K +1,..., K +n. So the prior matching probability of a

non-markerz; is set to be uniform over th& + m + 1 matching possibilities.

2.2.5 Error distribution

Assuming the transformation parametetsandb, are known, we can apply a distribution
to z; given the matchl/;; = 1. We treat the elements efas conditionally independent
with the following distributions forj = 1,..., K + n.

Np(Ap; +b,0%1p) fori=1,....K+m

2| Mij =1 ~ Y
Unif(Q2) fori =0

Y

Where2o—§j is an assigned variance betweenandz; (assuming independence across
dimensions), an€l is again some region iR” containing all points inc. So the pdf of

x; given the match\/;; = 1is

1 _ 2= Ap—b)? .
(2no3,) D72 exp { 207, fori=1,..., K+m

p(x;|Mi; = 1) = (2.9)

‘—1| fori =0
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2.3 Estimating the parameters within the statistical

model

2.3.1 Inference on the matching matrix assuming the transfonation

is known

In the simplest case, the varianeg;, and the transformation parametersandb, are
known. The expected log-likelihood of the matching matfix, given the datay, takes

the form

K+4+m K+4n

[[(M|z)] Z Z i log p(x;|M;; = 1)

i=0 j=1

K+n (K+m
o, — Ap — b D
- i ij

K+n K+m M..
- —— Z { Z |i i ||Qj] A,ul — b”2 + Dlog(U?j):| + OzM()j} +C,

i=1 ZJ

(2.10)

wherea = 21log(|Q|/(27)P/?) ande = —((K + n)D/2) log(27) when incorporating the
constraint that applies to both the hard and soft model ireEqn(2.1).

However, in reality it is unlikely that the transformatioarameters are known. In
the next section we show how the EM algorithm can be impleetetd estimate the

transformation parameterd,andb, before inferring on the matching matrix/.

2.3.2 Estimating the transformation parameters via the EM

algorithm

We use an EM algorithm to estimate the transformation pateised andb, that will
superimpose ontox. In the E-step we calculate the posterior probability fhanhatches

z;, i.e. the posterior probability thalt/;; = 1. The posterior probabilities are then input
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into the expected likelihood of observing the matching matv/, given the datag. In the
M-step we estimate the transformation parametédrands, that maximise the expected

likelihood found in the E-step.

E-step
We calculate the posterior probability pf matchingz;, i.e., M;; = 1, givenz; using
Bayes Theorem so that

(zj|M;; = 1)p(M;; = 1)
p(x;)

p

where p(z;|M;; = 1) is calculated using Equatio(2.9). The second term in the
numerator of Equatiof®.11) is ¢;; = p(M,; = 1) and is calculated using both Equations
(2.3) and(2.4) in the standard method or Equatiaf2s5), (2.7) and(2.8) in the adapted

method. The denominator of Equati@h11) is calculated as

K+m K+m
p(r;) = Y plaj| My = Dp(My; = 1) = > qyp(a;|My; = 1).
=0 i=0

Replacing)/;; and p(z;|M;; = 1) in Equation(2.10) with p;; and ¢;;p(x;|M;; = 1)
respectively, the expected log-likelihood of observing thatching matrix)\/, given the
data,r, becomes

K+m K+n

E[l(M|x)] = Y > pjillog gy + log play| My = 1)] (2.12)

i=0 j=1

wherep,;; = p(M,; = 1|z;) for simplicity of notation.

M-step

In this step we want to estimate the transformation paraisieteandb, that maximise the
expected log-likelihood displayed in Equati@ih12). Both the prior probabilities stored

in @ and the conditional distribution af; being allocated to the coffin bin are independent
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of A andb, so we estimate the transformation parameters that maximis

D
-3 log(27mi2j) .

Z ijiIng(xj|Mij =1) = Z iji -

20’2.
=1 j=1 i=1 j=1

K+m K+n K+m K+n |: ||xJ A/JZ b||2
)

Removing further terms independent4fandb, we want to estimate the transformation
parameters that minimise

K+m K+4n

SN pilles - Ap = b

i=1 j=1

K+m K+n
= Z Zpﬂ [l 1% = 227 (Aps) — 2270 + || Apsal > + 2(Apa) b+ b)), (2.13)

where

Ignoring the terms independentioénd applying the properties

T T
ag T _q and 82 x:2x,
x x

the differential of Equationi2.13) with respect td becomes

K+4+m K+n
D> ph(2b — 205 + 2Aw,).
i=1 j=1

Setting to zero, the maximum likelihood estimate of, is

K+m K+n «
Z 1 Z] —’i pgz(xj Alul)
ZK—i—m ZK—i—n *Z

Substituting the mle of, b, back into Equatiori2.13), we find that

b= (2.14)

K+m K+4n

D> piille = Ap — (@ — Ap)|?

i=1 j=1

||M+
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K+4+m K+4n
= > whillly =27 = 2w — 2) A — ) + [ A — D), (2.15)
i=1 j=1
Where K+m K+n 4 K+m K+n 4
/j Z Z] 1 p]z/’LZ and 7= E ZJ 1 p]lx] )
ZK+m EJI(—EH p;kl EK—i—m ZK—H’L *Z
Ignoring the terms independent afand applying the properties
TXb TXTXb
&L&X =ab”, and Ga” X7Xb o X (ab” + ba™)

the differential of Equationi2.15) with respect tad becomes

K+m K+n

Z Z Py [=2(a; — ) (e — )" + 2A(w — @) (s — )"

i=1 j=1
Setting to zero, the maximum likelihood estimatedfA, is

> > e SN i — ) —m)" (2.16)

K+m K+n K+m K+n -1
i=1 j=1 ] [ i=1 j=1
These mles for boti andb were given by Walker [87].

The algorithm alternates between the E-step and the M-stiepach iteration, the

transformation parameters are updated in the M-step to

~

AT = A0 gndpth) = p)

before being input back into the E-step for the next iteratio

Convergence

We assign convergence to be wheis such that

K+4+m K+4n

(r+1) —1
<1x10 2.17
(K+m+1 (K +n) ZZ[,D], p”] =0 ’ ( )

=0 j=1

where! can be varied and the posterior probability@fmatchingz; at therth and(r +

(r+1)

1)st iteration is denoted by§ andp]’" respectively, fori = 0,..., K + m andj =

, K +n. The largell, the closer the average squared difference must be beﬁﬂéen

(r+1)

andp ) at the final iteration + 1.
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2.3.3 Inference on the matching matrix using estimated

transformation parameters

Let p be the(K + n) x (K + m + 1) matrix containing the final posterior matching
probabilities. Letd andb be the final maximum likelihood estimates of the transforomat
parameters output by the EM algorithm. These mieandb, provide the transformation
necessary to superimpogentoz.

We now provide methods to find hard (one-to-one), soft (manrgne) and “super
soft” (many-to-many) matches. The latter types of matclareguseful when comparing
protein images as multiple forms of an individual protein oéten be visualised [7]. That
is, a single protein can produce multiple spots on an imagéAlbe a(K + m + 1) x
(K + n) matrix. We can estimate the matching mattiX, using the posterior matching
probabilities by setting\ = p’. Alternatively, we can control the output number of
matches and the maximum distance between two matched pmjirgsttingA = D*,
whereD* is the( K +m+1) x (K +n) matrix containing all pairwise Euclidean distances
between points in the transform@dand points inc. An element inD* is set to be the

following.

d; fori=1,...,K +m
D;k]: )
d3 fori=0
forj =1,..., K +nwhere

dij = || — AM@ - EH

anddr is an assigned distance threshold. The lower weifixthe lower the number
of output matches. Like previously, for simplicity of ndtat we setD;; = Dg,; and
A=A fori=K+m+1.

Note: Controlling the number of matches is useful if we want to higyht the most

likely matched pair or the 10 most likely, for example.
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One-to-one matches

For one-to-one matches acrogsand z, we need to apply the constraints stated in
Equations(2.1) and (2.2). The conditional likelihood and the log-likelihood &f are

respectively given as
K+4+m K+4n

111

i=0 j=1

and
K+m K+n

> Mylog Ay (2.18)

i=0 j=1

We find M that maximises this log-likelihood whefs = p” or that minimises the log-
likelihood whenA = D*. We inputlog A and the2 K +m+n constraints into a hardening
algorithm developed by Michael Berkelaar [10], which willtput the estimated one-to-
one matching matrix)/.

Note 1: If A;; = 0, thenlog A;; = —oo which will halt the hardening algorithm.
To allow the algorithm to run, we sétg A;; = —1 x 10" if A;; = 0.

Note 2: If Ag; > A;; whenA = p’ or Ag; < A;; whenA = D* for all i # 0, the
algorithm would sefi/,; = 1. To reduce computational workload, we exclude colyrmm
A from the hardening algorithm when the described conditesesmet and automatically

Many-to-one matches

For many-to-one matches fromto u, we only need to apply the constraint stated in
Equation(2.1).
In this case we simply set
v 1 if, forall ip # i1, A;; > Ay,; whenA = pforif A, ; < A;,; whenA = D* |
0 otherwise
(2.19)

forj=1,..., K +n.
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Many-to-many matches

Here the only constraints are thiat; = {0, 1} and that ifA/,; = 1, then},;; = 0 for all
i # 0. Thatis,z; can not be allocated to the coffin bin and matched with pomis i

Here we set

. 1 if A;; > Ag; whenA = pT orif A;; < Ay; whenA = D~
ij — )

0 otherwise

(2.20)

fori=1,.... K+mandj=1,...,K +n.
The estimated number of matches, denoted big

K+4+m K+4n

=3y, @21)

i=1 j=1

where)/ is the inferred matching matrix.

2.3.4 Composite algorithm
We can summarise each step within the algorithm as follows.

1. Assigng;; using Equationg2.3) and (2.4) in the standard method or Equations
(2.5), (2.7) and (2.8) in the adapted method for = 0,..., K +m andj =
1,...,K +n.

2. Find initial estimates of the transformation parametgfd andb(¥), and assign the

varianceafj. Possible choices are discussed in the following subsectio

3. Run the EM algorithm to get the updated estimaﬁég,, AW and v, using
Equationg2.11), (2.16) and(2.14) respectively.

4. Repeat step 3 to find the updated estimages;”, AC+) and b+D, until
convergence (defined in EquatigR.17)) is reached. Let the final posterior
matching probabilities be stored in thé& + n) x (K + m + 1) matrix p and

the final estimated transformation parameters be denotetdndb.
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5. We can choose to assign matches by setting= p” or A = D*. One-to-
one matches are assigned using the hardening algorithmlukgs@ the previous
subsection, many-to-one matches using Equdtiald) or many-to-many matches

using Equatior{2.20).

6. Treating the matches within the inferred matching matfix, as known, we
can update the transformation parameters using Procrostdsodology [28] to

calculate the final estimated,andb.

2.3.5 Assigning the function and parameters within the EM

algorithm

When considering the adapted method to assign prior magghiababilities for the
markers, we need to assign the functiprstated in Equatiori2.5). We also need to
assign starting values for the transformation parametsmsted by4A© andv®. Finally
we need to assign a variance between a pamf: and a pointj in z, denoted byﬁj.

We look at each assignment separately.

Function applied within adapted method

We discuss two possible choices for the functibnin Equation(2.5).
As before,;, contains the allocated marker coordinates for makker ., & =
1,..., K and~; is the index of the true markerin .
Letd;, denote the expected distance between a piand, fori = 1,..., K+m.
Due to the freedom for a gel to warp, in reality the distande/beny; andy;, in an image
is
di, = dit, + €,

wheres denotes some error.
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The first choice for the functiory;, in Equation(2.5) is motivated by the likelihood
of clusters to occur within a gel and the resulting difficuttgorrectly allocating a marker
within a cluster of points.

We can accommodate for the increased likelihood that a markes misallocated

if it exists within a cluster of other points, far= 1, ..., K, by stating

Giw =plyr =1) x { _ , (2.22)
0 ifdy>c¢

whered;;, is a Euclidean distance calculated with Equati®i6) and

K+m
Cy = Z Idy, < €],
i=1
wherel|d;, <e| =1ifdy <ecandl|dy <e]=0if dy >ecfori=1,..., K +m. So
(', is simply the number of points in that are within a distance affrom .
For the second choice of the functiofi, in Equation(2.5), all points inp are

considered as possible true markers. We apply a nhormaildistm toe so that

g~ ND(Mk, UfID)

and
: 1 gt = pul?
Qi = p(’yk = ’L) X W exXp {—T‘z , (223)
fori = 1,..., K + m, where20? is the variance between two points jin(assuming

independence across dimensions). So the probability;thet the true markek will

decrease the further it is fropm,.

Starting values for transformation parameters

As we have prior knowledge of allocated corresponding marke bothy andz, it is
sensible thatdA® and b® are set as the transformation parameters necessary to best
superimpose corresponding markers. Dryden and Mardiasf&8) how these parameters

can be estimated from the matrix,

R = (ulp.) 'pla, (2.24)
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wherey, isthe K x (D + 1) matrix . = (1,, ') andl, is a vector of ones of length
K. The K x D matrices,.” andz’, contain only the marker coordinates forand =
respectively.

The first column inkR” containsh®) and the second two columns RY' contain the
D x D matrix A©,

Starting values for the variance between images

Constant variance

We can estimate a constant varianeg, = ¢° fori = 1,..., K +mandj =
1,..., K + n, by considering the mean squared distance between condisjganarkers
in 1 andx after an affine transformation has been applied to supesgmpgem. That is,

set

K
1
57 == |lap — A9 py, — 0O, (2.25)
1%
k=1

wherev = DK — D? — D and denotes the degrees of freedom. He¥€ is the number
of error terms in theD components of thél markers. This number is reduced:rto
accommodate the estimates4f) andp®.

Increased edge variance

Due to the chemical procedure used to create images, ptosts to the edges tend
to have a higher degree of positional error than those a#dcelose to the centre of an
image. For this reason we provide a method that will take atmunt an increased edge
variance within an image.

Let us consider the single image Let w andh denote the width and height of
respectively. If a point; is a greater distance tharfrom any edge of the image, then
the influence due to edge proximity on positional varianceegligible, so we fixu; to
have a fixed variances?. If a point; is a lesser distance thanfrom any edge of the
imagey, then the variance qf; will be location dependent. We defimé, the variance

of a pointy;, separately for each of the nine areas (displayed in Figieti2at..; can lie
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within.

h 1 1
Area 3 Area 4 ' Area 5
h-a r-------- A dmmmmmme--
Area2 . Area 0 + Area 6
R e L
Areal Area 8 Area 7
0 : :
0 a w-a w

Figure 2.1: Figure displaying the nine areas of an image iithvive separately define

the variance of a point;, o2.

(2

Let u;; andy;, denote ther andy coordinates of a point;.
Area 0

If a < ppn <w—aanda < pyp < h — a, then

The variance is fixed at? for any point iny present in area 0.
Area 1

If ;1 < aandu;s < a, then
o = c¢[(a—pi)® + (a — pi2)?] + 07,

wherec is some scaling factor. The distancegfrom the bottom-left corner gif dictates

2
O-i'

Area 2
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If 4in < aanda < p; < h —a, then
o =cla — ppn)*+ op.

The distance ofi; from the left edge of. dictatess?.
Area 3

If 1,1 < aandyu, > h — a, then
ol =c [(“ — pi1)* + (i — b+ a)z} + 05

The distance ofi; from the top-left corner of: dictateso?.
Area 4

If a < pyn <w—aandu;; > h — a, then
of = c(pig — h +a)® + op.

The distance ofi; from the top edge of: dictatess?.
Area 5

If 151 > w— aandu;; > h — a, then
o7 =c[(pa —w+a)® + (2 — h+a)’] + 0.

The distance ofi; from the top-right corner of; dictatess?.
Area 6

If 7 > w —aanda < ;s < h —a, then
o} = c(pn — w+a)? + .

The distance ofi; from the right edge of: dictatess?.
Area 7

If ;7 > w —aandu;, < a, then

o7 = c[(un —w+a) + (a — p)’] + op.

46



Chapter 2. Modelling, and using the EM algorithm to matchrvaae gels 47

The distance ofi; from the bottom-right corner qf dictateso?.
Area 8

If a < pyn < w—aandu;; < a, then
02 = cla — pp)* + op.

The distance ofi; from the bottom edge qf dictatess?.
Similarly, Ieto—gj be the variance of a point; in z. Using the appropriate values of
w andh, we can calculate?; for z; in the same way we have calculategifor ;. We

can estimate the variance between the ppjnb 1 and the pointz; in = as

f2 2
0;; = 0; +0

2
Rl

fori=1,..., K+mandj =1,..., K +n.

2.4 Accounting for grossly misallocated or missing

markers

The number of missing or grossly misidentified markers apeddent on the quality of

the equipment and the expert that create the images.

2.4.1 Grossly misallocated markers

Gross misallocations of a marker may occur through humaor @inen inputting marker
labels into data spreadsheets. For instance, spot ID 138 easily be labelled as marker
1 rather than spot ID 135. Dryden and Walker [29] considelcgdores based on S
estimators, least median of squares and least quartikreiifte estimators that are highly
resistant to outlier points. Here we describe how we canhes&M algorithm previously
described.

The EM algorithm is very much dependent on the transformaterameters input

as starting values4®©) andv®. We have previously stated that the affine transformation
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necessary to superimpose corresponding markersindz will provide sensible starting
values for the transformation parameters within the EM iadlgm. However this would
not be the case if gross misallocations occur.

Here we provide a method that will highlight grossly misaelited markers across
images. Highlighted markers can then be automatically wethor corrected before they
are used within the EM algorithm to estimate transformasi@nting values.

Let, andz’ be K x D coordinate matrices wheyg andz, contain the coordinates
of markerk in p andz respectively fork = 1,... K.

Here we consider the prior matching probabilities to be jpahelent of the distance

between a possible marker and the allocated marker so that

pv fori=k
w=q (2.26)
wherep,,; denotes the probability that the allocated markgttruly corresponds to the

allocated marker,.

We inputy’ andz’ into steps 1-5 of the composite algorithm to estimate the one
to-one matching matrid/, replacing Equation§.5) and(2.7) with Equation(2.26) in
stage 1. We use a sensible fixed variafife= 5% in Equation(2.9). We use Equation
(2.24) to estimate the starting transformation valué$) andv®. Note that the starting
transformation will be distorted by the presence of groafitycated markers.

There are four possible outcomes foe 1, ..., K.
e The allocated corresponding markgrsandz, are matched if
My, = 1.
We include bothy, andz, in further analyses.
e The markerr, is allocated to the coffin bin if
Mgy, = 1.

We exclude both, andz, from further analyses.
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e No pointinz’ is matched to the markex, if

~

Mkj - 0,
forallj = 1,..., K. We exclude both, andz, from further analyses.

e The markerp}ﬁ1 is matched to an allocated non-corresponding mat}cge'rf
Mklkg = 17

for ki # k. We excludeu;, , s, z,,, andz, from further analyses.

2.4.2 Missing markers

Itis possible that all markers are not successfully located in betndz. For example,
only 10 out of the possiblél = 12 markers were located in the image displayed in
Figure 1.2.

There are four possibilities we must considerfot 1, ..., K.
e Case 1:Markerk is located in both: andz.
e Case 2:Markerk is located inu alone.
e Case 3:Markerk is located inz alone.
e Case 4:Markerk is not located in either or x.

We first introduce notation to allow for the possibility of ssing markers.

Let K, and K, be the total number of markers located.dmndz respectively. As
previously notated, lgt be the( KX +m) x D coordinate matrix and be the(K +n) x D
coordinate matrix.

If marker & is located inu, thenp, contains the coordinates of markiein . If

markerk is not located inu, theny,, = 0. Similarly if markerk is located inz, thenxy,
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contains the coordinates of markem x, for k = 1,..., K. If markerk is not located in
x, thenzy, = 0.

As previously statedy is the( K + m + 1) x (K + n) matrix containing the prior
matching probabilities for points in. We redefing) separately for both the standard and

adapted method.

Standard method

We assume that the allocated markes the true markek, fork =1, ..., K.

Markers in x

Case L:If p;, # 0 andz;, # (), then markel is located in both: andz and we can
assigng;, as previously defined in Equatid2.3) fori = 1,..., K + m.

Case 2: If yu, # 0 andz, = 0, then markerk is located inu alone. As we
assume that an allocated markeis the true markek, we know that., does not have a

corresponding point im. We can remove,, from the analyses by setting
qj=0forj=1,..., K +n.

Alternatively we could sef,; = 0 for j = 1,..., K 4+ n throughout the EM algorithm
and remove., before assigning matches.

Case 3:If y, = 0 andz;, # 0, then markerk is located inz alone. In this case
we know thatz, does not have a corresponding poininWe can remove;, from the
analyses by setting

gr=0fori=0,..., K +m.
Alternatively we can set

1 fori=0
qik = )
0 fori=1,...,K+m.

to ensure that, is allocated to the coffin bin. Again we would remayebefore assigning

matches.
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Case 4:If y;, = () andx;, = ), then markek is not located in either or x. We set
qr=qy; =0fori=0,..., K+mandj=1,..., K +n.

Non-markers in x

In the standard method we only consider the possibility thabn-marker inc
matches a non-marker im, otherwise it is allocated to the coffin bin. So we can still
use the previously defined Equati¢h4) to evaluatey;; fori = 0,..., K +m andj =
K+1,....,K+n.

Adapted method

Now we allow for the possibility that an allocated markeis not the true market, for
k=1,..., K.

Markers in x

Case 1:If y;, # 0 andx, # (), we assigny;, as previously stated in Equatiofis5)
and(2.7)fori =0,..., K + m.

Case 2:If u;, # 0 andx;, = (), we treatu,, as a non-marker.

Case 3:If y, = 0 andz;, # (), we treatr;, as a non-marker.

Case 4:If p, = 0 andz;, = ), we set
qr=qy; =0fori=0,..., K+mandj=1,..., K +n.

Non-markers in x
The prior matching probability of a non-marker, is again set to be uniform over

all matching possibilities so that, for=0,..., K +mandj = K +1,..., K +n,

1
= . 2.27
@i K,+m+1 (2.27)
In Case 3, whem;, = () andx;, # () for k = 1,..., K, we treatr; as a non-marker and

use Equationi2.27) to calculatey;, for: = 0,..., K + m.
Note thaty containsk,, markers andn non-markers. There are only, +m + 1

matching possibilities for a point in, thus producing the denominator in Equat{ar2?).
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Chapter 3

Experiments and Applications

3.1 Introduction

Here we analyse the properties and the accuracy of the n@tgydntroduced in Chapter
2. In Section 3.2 we simulate data to examine the accurachefatgorithm and to
highlight appropriate parameters that should be used thduranalyses. We begin by
comparing the results when applying the standard or thetadapethod within the model
in Subsection 3.2.1. In Subsection 3.2.2 we examine thehaatmade when using the
final posterior probabilities or the final superimpositiontgut by the EM algorithm.
In Subsection 3.2.3 we highlight the appropriate paramessessary to successfully
highlight grossly misallocated markers. In Section 3.3 meorporate the conclusions
from Section 3.2 into the analyses of real data. We inveitjge presence of grossly
misallocated markers and include a simulated example tw dfew two incorrectly
switched marker labels are correctly highlighted in Subea@.3.1. In Subsection 3.3.2
we investigate whether there is evidence of an increaseel\etgance within our dataset.
Finally, in Subsection 3.3.3 we provide an example of howntle¢hodology from Chapter
2 is implemented to highlight corresponding points acrosages.
Throughout the simulations and when relevant, we assx@.’de Equation(2.9) is

constant and estimate it &% = 4.52, which is approximately the median squared distance
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between two corresponding markers within the real datdsstal pairwise Procrustes
transformations are performed. Alternatively, we estamdtusing Equation(2.25) with
denominatork instead of.. Note that these estimates provide a conservative valaé of
and allow greater freedom for the distance between poterig known corresponding
points. Though sensitivity tests are not carried out haryré work should involve a
thorough exploration of the algorithm sensitivitytd. The values presented here will be
strongly dependent on the assigned

For each investigation we fix= 10 to define convergence in Equatiéh17).

3.2 Simulating data to analyse properties and highlight

optimal parameters

3.2.1 Standard vs adapted method

We want to compare the accuracy of the estimated superitigrosif ;. onto x when
applying the standard method or the adapted method. Hereadeige six types of data

which are described within the simulations below.

1. We simulate a 2-DE gel image, denoted;Ry, by randomly scattering: points
across av x h uniform surface where each point is set to be a minimu ariits
from any other point. These points will represent all popressent in the theoretical

2-DE gel image.

2. We randomly seleck” true markers from then points inu, with the constraint

that each marker must be a minimum distancépfrom any other marker.

3. For simplicity we have previously considered markers aod-markers to be
disjoint sets of points. In reality, this may not always be ttase. Within this

simulation we consider the following three ways to allocade@-markers.
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(&) Them non-markers are randomly selected from the remaining- K points

in 1. The K markers andn non-markers are disjoint sets of points.

(b) Them non-markers are randomly selected fromalj points inu. A marker

can also be a non-marker.

(c) The K markers are a subset of the non-markers and the remainirgK’

non-markers are randomly selected from the remainiag- K points iny.

The set of unique markers and non-markers create the (webtet) subject-
treatment specific image denoted py The labelling ing is such that, for
i =1,..., K, u; contains coordinate information for marker Fori: > K + 1,

; contains the coordinates of a non-marker.

4. We setr; = ug andx = p. Thatis,ug andz represent replicate 2-DE gel images

andyu andx represent replicate western blot images.

5. We add noise]N(0,7%/4), to each individual coordinate of the; = n¢ points

within both i andz respectively.

6. We produce botktandardandadapted data

(a) Standard data is data in which tRetrue markers are correctly allocated, so

the data remains as theandz described above.

(b) To create adapted data we use Equat) to calculate the probability that
a pointu¢ in g may be allocated as the true markgr fori = 1,...,mg
andk = 1,..., K. These probabilities are then used to randomly allocate
each markey,. If the true markert is neither correctly allocated or also a
non-marker, then the true markeris excluded from further analyses. The

same is done far. We fix 02 = 72.

7. Bothy andz are input into steps 1-4 of the composite algorithm to predhe
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final estimated transformation parametetsandb. We consider both the standard

method and the adapted method within step 1 to analyse the dat

The starting values for the transformation parametéf8,andb(?), are found using
Equation(2.24). We estimate the variance in Equati@h9), o2, using Equation
(2.25) with denominator instead ofv. When implementing the adapted case, we

sets? = 62 in Equation(2.23).

8. Finally we calculate the RMSD between the true correspgncharker pairs as

K
RMSD = % ; | Apy, + b — x|,
wherey.,, contains the coordinates of the true marken p. We fix m¢g = 2000, m =
120, K = 12, w = 257, h = 191 anddg = 25 to mimic the real data. We consider
values ofr € [1,10] at integer intervals. We repeat the simulation 200 timese#wh
combination ofr and the six types of data.
Note: We create both standard and adapted data and consider ifieeend ways

to allocate the non-markers. Thus we consider 6 types of data

Discussion

Figure 3.1 displays the proportion of times out of the 200wations that the standard
method gives a lower RMSD between the true correspondingerathan the adapted
method. We can see that the only time the adapted methoddeiotihe more accurate
result is when the markers are a subset of the non-markers<or for adapted data. As
the markers are a subset of the non-markers, all true mankitise present even if they
were not correctly allocated. Unlike the standard methoel gidapted method allows the
matching probability of truly corresponding markers torgase from zero, even when
one or both of the markers are misallocated. In every othes,dhie application of the

standard method provides the better result.
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Figure 3.1:

Prop. of times standard gives lower RMSD than adapted method
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Figure displaying the proportion of times thht tRSMD between

corresponding markers when applying the standard methedsshan the RMSD when

applying the adapted method for each of the six types of data.

Mean RMSD with adapted minus mean RMSD with standard method
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Figure 3.2: Figure displaying the mean RMSD calculated qushe adapted method,

minus the mean RMSD calculated using the standard methadsaga
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1 2 3 4 5 6 7 8

10

Standard data with non-marker allocation (a)

Standard metho
Adapted method

10.98 1.99 293 3.88 4.87 584 6.70 7.72
098 199 293 3.88 4.88 586 6.72 7.75

8.71
8.76

Standard data with non-marker allocation (b)

Standard metho
Adapted method

10.97 196 293 390 4.78 5.89 6.76 7.68
097 196 293 390 4.79 591 6.79 7.71

8.70
8.75

Standard data with non-marker allocation (c)

Standard metho

Adapted method

10.98 191 294 395 480 584 6.84 7.69
098 191 294 395 480 584 686 7.71

8.59
8.64

Adapted data with non-marker allocation (a)

Standard metho

10.98 1.98 290 3.87 490 5.97 7.24 8.29
098 199 291 3.88 492 6.04 7.32 8.45

Adapted method

9.33
9.49

10
10

Adapted data with non-marker allocation (b)

Standard metho
Adapted method

10.99 193 293 3.98 491 587 7.15 8.30
0.99 1.93 293 3.99 495 593 7.24 841

9.33
9.50

10
10

Adapted data with non-marker allocation (c)

Standard metho

10.97 192 291 390 4.95 589 6.91 8.20

Adapted method

097 191 289 3.88 495 589 694 825 950 10

9.44

10

56
62

47
52

55
61

.52
.68

.38
57

44
.53

Table 3.1: Table displaying the mean RMSD when applying taadard and adapted

method to the six

considered types of data.
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Figure 3.2 displays the mean RMSD calculated using the adapethod, minus
the mean RMSD calculated using the standard method for eadkle can see that the
standard and adapted methods produce very similar resuttst 4 when considering all
three forms of standard data. For> 4, the application of the standard method produces
increasingly better results than the adapted methods o3, the standard and adapted
methods produce very similar results for the first two forrhadapted data. Far > 3,
the standard method provides increasingly better ressitsrecreases. For the third form
of adapted data, the application of the adapted method pesdmore accurate results
for - < 6. However, as for all the other types of data, the standardhodeprovides
increasingly better results asncreases.

Table 3.1 provides the mean RMSD when applying the standaddaalapted
method to the six considered types of data. We can see manydliee patterns described
above. As we intuitively would expect, we can see that thedsied data generally
produces an equal to or lower RMSD than the RMSD found wittettegpted data.

Conclusion

For all future analysis, we choose to apply the standard odedls this method generally
produces the more accurate results. Furthermore, for tlaecdasidered in this research
we should assume that the application of the blue stain tadigigt markers (discussed in
Subsection 1.2.4) would not be necessary if the markersasubset of the non-markers.
However, the way markers are allocated is dependent on ttieydar method used to

create the images i.e. there could be cases where markesslarets of the non-markers

and the application of the adapted method would provide thieeraccurate results.

3.2.2 Assigning matches

We want to compare the accuracy of the matches made whengstti= »” or setting

A = D* and varyingdr. When setting: andx to represent replicate images, we may
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expect that the number of true positive matches will inceessgl - increases. However, if
1 andx represent images that contain a low number of correspomdaighes, increasing
dr will surely increase the number of false positive matchegsr this reason, we also
vary pc, the proportion of corresponding non-markers across tlages. LetN = mp¢
denote the number of corresponding non-markers betweeimtiges represented hy
andzx.

We run the following simulation 500 times for each case.

1. We randomly scattek” + 2m — N points across & x h uniform surface, where

each point is set to be a minimum tinits from any other point.

2. We randomly seledt’ true markers from th& +2m — N points with the constraint
that each marker must be a minimum distance pffrom any other marker. Let
. andz, contain the coordinates of markerin . and x respectively, fork =

..., K.

3. From the remainin@m — N points, we randomly seleét points to represent the
corresponding non-markers acrgsandzx. Soyu; andz; contain the coordinates of

corresponding non-markers foe= K +1,..., K + N.

4. Finally, we randomly split the remainirgfm — V) points equally between and
x so thaty,; andx; contain the coordinates of arbitrarily labelled pointg.iandz,
fori,j = K+ N+1,..., K+ m, that do not have corresponding pointssiand

1 respectively.
5. We add noiseN (0, 72/4), to each point coordinate within bothandz.

6. Both ;» and x are input into steps 1-5 of the composite algorithm to preduc
the estimated one-to-one matching matrix{. The starting values for the

transformation parameterd(’) andv®, are found using Equatic(2.24).
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7. The number of correctly matched points is

K+N
nrp = E ij.
Jj=1

The number of points in that are correctly allocated to the coffin birigy = 0

if pc =1or
K+m
nry = Z M0j7
j=K+N+1
if Pc # 1.

The number of points in that are incorrectly allocated to the coffin bin is

K+N
nepn = E MOj-
J=1

The number of falsely matched pointsins ngpp = K + m — nrp — npny — npn.

In this case, to ease computational workload, werfix= 30, K = 3, w = 257/2,

h = 191/2 andd = 25. We estimate the variance in Equati@m) ass? = 4.5% and set
T = ¢. We consider values gk € [0, 1] at intervals of).1. We first assign matches using
the final posterior matching matrix by setting= p”. We also consider € [0.1,1.9] at
intervals 0f0.2 which fixes the distance threshold@s = c6 and estimate the matching

matrix, M, using the pairwise distances between points across images

Discussion

Figure 3.3a and 3.3b display the number of true positive hest@and the number of false
positive matches made agaipgt for each considered method of assigning matches. We
can see that ag; increases, both the number of true and false matches ircr8asting
A = p’ generally produces more true and false positives than thsidered numerical
values ofd.

Figure 3.3c displays the proportion of true positive maschg p/(nrp + nrp),

againsipc for each considered method of assigning matches. For eatciimgmethod,
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Figure 3.3: Figure showing a);p, b) nrpp and c)nyp/(nrp + npp) againstpc when

~

settingA = p” and when setting\ = D* for variousd;, whered; = cé.
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the proportion of true positive matches increases as thebauwf corresponding non-
markers across images;, increases.

For0.1 < pe < 0.8, setting0.5 < ¢ < 1.9 generally provides a higher proportion
of true positives than wheA = p”. Settingd; ~ 0.7 maximises the proportion of
true positives, with the proportion decreasinglas> 0.7 and increasingly decreasing as
dr < 0.7.

Forpc < 0.1 andpc > 0.8, settingA = p” provides a higher proportion of true

positives than whefl.1 < ¢ < 1.9.

Conclusion

When matching points across replicates,Aet p’. In other casesyc is unknown so
setdr ~ 0.7¢ as this provides a higher proportion of true positive magdioe a larger

range ofpc.

3.2.3 Grossly misallocated markers

We want to highlight the appropriate proportion of corrgellocated marker pairg,,,
necessary to assign matches when locating grossly miatdldenarkers.

We run the following simulation 1000 times.

1. We randomly scatteK” + m points across a x h uniform surface, where each

point is set to be a minimum afunits from any other point.

2. We randomly seleck true markers from thex + m points, with the constraint
that each marker must be a minimum distancé pffrom any other marker. The
remainingm points are the true non-markers. TRemarkers andn non-markers
createu. The labelling is such that; contains the coordinates of the true marker
fori =k =1,..., K and the coordinates of the arbitrarily labelled true nonmkaa

iforir=K+1,..., K +m.
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3. Lety be the subset gf containing the coordinates of té markers only. We set

T =.

4. We fix the number of misallocated markersiras K *. This value is related to the

true proportion of correctly allocated marker pairs as
K — K~

b= T

5. Let/, contain the coordinates of the allocated markerg.inFor K* > 0, we
randomly select (without replacement) one of thetrue non-markers to be the
allocated markek, for k = 1,..., K*. Letr, be a vector of length*. If
an elementzr,j" = 1, then the true non-markey,;, is allocated as markek for
i=K+1,.... K+mandk=1,..., K*. Weset,ug‘/ =[x fork=1,...,K*
andug‘/ =y fork = K* +1,..., K. The labelling is sucﬁ thal;“/ contains the

coordinates of the allocated markefori =k =1,... , K.

Note that we do not allow marker labels to be exchanged wittigisimulation.
6. We add noiselN (0, 72/4), to each point coordinate withjm, andx’.

7. The allocated markers jm, and the true markers in are input into steps 1-5 of
the composite algorithm to produce the estimated one-&roatching matrix)\/.
The starting values for the transformation parametét8,andb(?), are found using
Equation(2.24). We use the final posterior probabilities, to assign one-to-one

matches.

8. The number of correctly matched marker pairs is

K
nrp = Z M.
k=K*+1
The number of markers inthat are correctly allocated to the coffin bin far = 0

isnyy = 0and forK* # 0,

K*
nry = E M()k.
k=1
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The number of markers inthat are incorrectly allocated to the coffin bin is

K
npn = E Moy.

k=K*+1

The number of falsely matched markersciis nyp = K — nyp — ney — npn.

We fixm = 120, K = 12, w = 257, h = 191 anddx = 25. We estimate the variance in
Equation(2.9) ass? = 4.5? and setr = . We consider values df* € {0, 3} at integer
intervals (equivalent tp,, € {1,0.92,0.83,0.75}) andp,, € {0.01,0.99} at intervals of
0.07.

As it is the matches made that are used to highlight markeespondencies in

future analyses, we focus mainly on the true and false matclaele.

Conclusion

Figure 3.4 displays the number of matches iagainst the inpug,, for each considered
K*. We can see that increasing, increases the number of true positive matches
and decreases the number of false positive matches fanale {1,0.92,0.83,0.75}.
Therefore for future analyses we g, = 0.99. Settingp,, = 0.99 indicates that
correspondingly labelled markers are highly likely to nmataut still allows the possibility

for this not to be the case.

3.2.4 Overall conclusions

e The application of the standard method generally produetietresults than the
adapted method. That is, the assumption that the allocaseklens are correctly
allocated amid warping provides a more accurate match theanwihe method is
allowed the freedom to explore other possible markers wiranlating images

from the given dataset.

e When matching points across replicates /et p’. In other casesyc is unknown
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Figure 3.4: Figures displaying the number of matches madeagainst the inpug,, for
a) K* =0,b) K* =1,c) K* = 2and d)K* = 3. The solid black line represents p,
the broken black line represents y, the solid red line represents:p», the broken red

line represents .
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so setA = D* anddr ~ 0.74, as this provides a higher proportion of true positive

matches for a larger range af.

e We found that setting a higby, will highlight more true positive correspondences,
even when the proportion of correctly allocated correspundharker pairs is as

low asp,, = 0.75.

3.3 Application examples

3.3.1 Grossly misallocated markers
Real gel data

Let 1, represent imagegin our dataset fof = 1, ..., 26. Let ,Lglb be thekK,;, x 2 matrix
containing only the marker coordinates of the markerg;jrnthat have correspondingly
labelled markers i, .

We input the corresponding markers for all pairwise congmars into steps 1-5 of
the composite algorithm to estimate the one-to-one magamiatrix, 1/;,;,, found when
superimposingtzll2 ontomzl1 forly,lo =1,...,26 andl; # [,. Thatis, we transform the
appropriate markers in imade onto the correspondingly labelled markers in image
So the indice$; andl, indicate the direction of transformation between images.

Note: If a markerk is not allocated in both,;, andy,, it is excluded from the
analysis.

Again, the parameters within the algorithm are set to be éimeesas those used in
the previous simulations. We estimate the variance in Egué.9) asé? = 4.5% and the
proportion of correctly corresponding marker pairs in Bopra(2.26) aspy, = 0.99. The
starting values for the transformation parametdr®, andb®, are found using Equation
(2.24). We use the final posterior probabilities,to estimate the matches by fixidy =

.
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Let 7, be a vector containing the indices of the images that comtairkerk. Here
we discuss all cases in tRé x 25 comparisons where grossly misallocated markers are
highlighted.

Case 1:

Marker 1 remains unmatched in both images for= 23 and eachH, € 7, where
l1 # l,. Marker1 also remains unmatched in both images when consideringtieese
transformations fol, = 23 and eachl; € 7, wherel; # [,. The length ofr; is 16,
indicating 16 images in the dataset that contain marker

Figure 3.5a and 3.5b respectively display the initial tfarmaation om;&23 onto
u’23726, for example, before and after markiers removed as a marker from both images.
In this example, the RMSD between themarker pairs before the removallis.44. The
RMSD between the remainirild marker pairs after the removali®6. Table 3.2 lists the
RMSD between corresponding markers before and after thevaof markerl for each
of the 30 comparisons. In each case we can see a dramaticicedmcRMSD between
corresponding markers after marker 1 is removed as a marker.

Note: We leave removed markers within Figures simply for illust&purposes.

12 12 1 12
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1 1
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V] a4
8
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® | 7 | 6 7

50 00 d=]l-50 200 50 00 d=1 50 00 50
a) b)

Figure 3.5: Figure displaying the initial transformatid‘n,u’g&23 onto/,/%,26 a) before and

b) after markenr is removed as a marker from both images.
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Before After

26

24.1
21.6
25.1
22.7
23.1
24.3
23.1
22.2
24.1
24.5
25.5
25.6
24.8
25.1
22.5

4.5
8.0
6.0
3.3
2.9
3.1
3.5
3.8
4.7
3.6
3.2
4.9
3.9
3.4
2.9

Before After

Table 3.2: Tables displaying the RMSD between the allocatatkers before and after

26

21.8
18.4
21.5
19.9
22.8
22.1
20.6
19.8
22.0
21.9
21.6
22.6
21.6
22.0
19.4

4.9
8.1
6.1
3.2
3.2
3.5
3.9
3.7
5.2
3.8
3.2
5.2
4.1
3.4
3.0
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marker1 is removed as a marker from both images. The table to the igitays the

RMSD when image 23 is transformed onto imdge The table to the right shows the

RMSD when applying the reverse transformation.

Case 2:

Marker 8 remains unmatched in both images for= 4 andl, = 25. The same

occurs for the reverse transformation whien= 25 andl/, = 4. Figure 3.6a and 3.6b

respectively display the initial transformation/gzi{25 ontou;&4 and the RMSD between

markers before and after marlkeis removed as a marker from both images.

Case 3:
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Figure 3.6: Figure displaying the initial transformatiof /0, ,; onto i, , a) before
and b) after markeg is removed as a marker from both images. The RMSD between

corresponding markers is indicated at the top-left of eagpréi.

Marker 8 remains unmatched in both images for= 5 andl, = 25. Figure 3.7a
and 3.7b respectively display the initial transformatit[mldg25 onto/,L'%,5 and the RMSD
between markers before and after markes removed as a marker from both images.

Case 4:

Marker 2 remains unmatched in both images for= 25 andl, = 19. Figure
3.8a and 3.8b respectively display the initial transfoiorabf ,ul25’19 ontou;g’25 and the
RMSD between markers before and after markés removed as a marker from both
images.

Discussion

A summary of the gross misallocations found is given below.

e There are 16 images containing marKer Marker 1 is highlighted as a gross

misallocation in each of the x 15 comparisons made with imag8.

e All 26 images contain markey. Marker8 in image25 is highlighted as a gross

misallocation in 3 of th& x 25 comparisons considered involving imagje So the
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Figure 3.7: Figure displaying the initial transformatioh ;@’5,25 onto M;5,5 a) before
and b) after markeg is removed as a marker from both images. The RMSD between

corresponding markers is indicated at the top-left of eagpréi.
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Figure 3.8: Figure displaying the initial transformatioh;@a19 onto x/19725 a) before
and b) after marke? is removed as a marker from both images. The RMSD between

corresponding markers is indicated at the top-left of eayréi.
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proportion of times markes in image25 is highlighted as a gross misallocation is
0.06.

e Marker 8 in image4 is highlighted as a gross misallocation in 2 of thex 25

comparisons considered involving image.e, a proportion 06.04 times.

e Marker 8 in image5 is highlighted as a gross misallocation in 1 of thex 25

comparisons considered involving image.e, a proportion 06.02 times.

e Marker2 in both imagel9 and image5 is highlighted as a gross misallocation in 1
of the2 x 15 comparisons considered involving imageand image5 respectively,

i.e, a proportion of).03 times.

Remark:

Following these discoveries, we were informed that markén image 23 was
incorrectly labelled as spotlD 136 when it should have bgeniB 153.

To investigate whether our method would have found this mate rerun each
of the 2 x 15 transformations, this time reallocating markéras non-markers in both
images. We now consider the full image represented,fgr/ =1, ..., 26.

First we transformu,s ontoy, for I € = andl # 23. We also carry out the reverse
transformation ofy; onto s for I € 7, andl # 23. For each pairwise comparison, we
input both images into steps 1-5 of the composite algorithmstimate the one-to-one
matching matrix. For this analysis, we reassign matkas a non-marker in both images
and treat non-correspondingly labelled markers acrosgesas non-markers.

The starting values for the transformation paramet{8,andv®), are found using
Equation(2.24). We estimate the variance in Equati@h9), o2, using Equatior(2.25)
with denominatork’ instead ofv. We use the final posterior probabilitigs,to estimate
the matches by fixing = p’.

When transformingu»s ontoy, for [ € = andl # 23, we found that the originally

labelled market in imagel is correctly matched to the true marker 1 in image 23 (i.e. the
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point with spotID 153) in 12 out of the 15 cases. In two casemker1 in both images
remain unmatched. In the remaining one case, mdrkeimagel is incorrectly matched
to marker2 in image23.

When transforming:;, onto 3 for [ € 7 andl # 23, we found that the originally
labelled market in imagel is correctly matched to the true marker 1 in image 23 (i.e. the
point with spotID 153) in 9 out of the 15 cases. In three caseskerl in both images
remains unmatched. In one case, matkeemains unmatched in imagebut markerl in
image23 is incorrectly matched to a nearby non-marker in imada the remaining two
cases, marker in imagel is incorrectly matched to a nearby non-marker in im2ge

Conclusion

Within image23, we reassign the point with spotID 153 as markeand set the
point with spotID 136 to be a non-marker.

In our case, we deal with more than a single pairwise compasgs we have more
information than the methodology described within Cha@tevould require. Because
only a small proportion of comparisons highlight each of dtiger gross misallocations,
we make the executive decision to leave the other highlebimarkers as markers to allow
o;; to be higher in future analyses.

We have previously concluded that the standard method dl@ulised for further
analyses. In this section, we have discovered a case whekemas incorrectly matched
to marker2 in another image when markeris not present in the first. For this reason,
and because markers are included as a guide rather thandotic interest, we include
only corresponding markers between images in further aealyThat is, we follow the
standard method described in Subsection 2.4.2 when disgussw to deal with missing

markers.

Simulated gel data

Figure 3.9a and Figure 3.9b depict the = 12 marker labels at the appropriate

coordinates for a simulated andz’ respectively. In this example, the labels of marker
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k =1 and markek = 9 in " have been ‘accidentally’ switched.

Figure 3.9c¢ displays the initial affine transformatiornobntoz” when considering
the originally allocated markers.

We input bothy” andz’ into steps 1-5 of the composite algorithm to estimate the
one-to-one matching matri¥l/. The parameters within the algorithm are set to be the
same as those used or established in the previous simdatmestimate the variance in
Equation(2.9) asé? = 4.5? and the proportion of correctly corresponding marker pairs
in Equation(2.26) aspy, = 0.99. The starting values for the transformation parameters,
A® andb®, are found using Equatiaf2.24). We use the final posterior probabilitigs,
to estimate the matches by fixing = p”.

We find thatM,, = 1 for all & #+ 1,9, so the correctly labelled markers are
successfully matched. We also find theyy = My, = 1. That is, ;1 iIs matched to
xrg9 andug is matched tac;. The EM algorithm has correctly highlighted the incorrgctl
labelled markers.

Figure 3.9d displays the initial affine transformation:obntoz’ when considering
the 10 remaining markers only. We can see that the truly spomding markers are now

much closer.

3.3.2 Investigating evidence of increased edge variance

We consider marker correspondences only when investgyatildence of increased edge
variance. For our dataset, the width,and the height,, of each image is unknown.
For each transformation gf, , ontoy, , forl;,l, = 1,...,26 andl; # l,, we do

the following.

e Calculate the residual between thid corresponding marker pair as
T]ill2 _ HN?ZQ _ A(O)M?ll _ b(O)H’

wherek = 1,..., K;,;, and K}, is the number of corresponding markers between
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Figure 3.9: Figure displaying th& = 12 markers a) within: b) and withinz’. Figure

displaying the affine superimposition of the markers aciosgges c) using the initial

marker labels d) and using the updated marker labels.
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1y, andyy,. The affine transformation parameters? andb®, are found using
Equation(2.24)

e Calculate the coordinates associated with this residual as

lily l1ls laly
Gy = (Mk;* T+ My )7

N~

wherex indicates the standardised coordinates so that every ipaaich imagey,

forl =1,...,26,is defined within a unit square.

Smoothing of the residuals at the standardised (and iraepcbordinates was performed
by Gaussian kernel weighting with parameter 0.1. Figur® 8i&plays the colour-coded
intensity plot with highlighted coordinates. We see evitkethat the variance between
corresponding markers, after superimposition, increasébe markers become closer to
the top or right side of the image. We see further evidencetttevariance between
corresponding markers, after superimposition, decreas#se markers become closer to
the bottom or left side of the image.

Conclusion

We have found evidence of an increased edge variance atgh@td corner of an
image and a decreased edge variance at the bottom-leftraufria@ image. However,
the width and height of each image within this dataset is omknand the estimated
values used above are unlikely to reflect the reality. Formgte, the image displayed
in Figure 1.2 has ample space without points at each edgehdfarore, the degree of
variance will vary across images and fitting a global trenghikely to be very accurate.

For these reasons, we assunjg = ¢ is constant in Equatiof2.9) in all future

analyses.

3.3.3 Real matching example

In this example we display the matches made when compariagdplicates,. and .

We input the images into steps 1-5 of the composite algoritfime starting values for the
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35

Figure 3.10: Colour-coded intensity plot displaying theostmed residuals (performed
by Gaussian kernel weighting) between corresponding msirké the standardised

coordinates.
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transformation parameterd?) andb®, are found using Equatiof2.24). We estimate
the variance in Equatiof2.9), o2, using Equatior{2.25) with denominatorx™ instead of
V.

The estimated transformation parameters are

i 0.9750 —0.0506
0.0001  1.0047

andb = (—0.7138,11.3564)7.

We explore the one-to-one matches made wher- p” and the matches made
whenA = D*, settingdr = 0.76.

Both plots in Figure 3.11 display the final transformationgobnto x and the
matches made wheA = p” and whend; = 0.76 in Figure 3.11a and Figure 3.11b
respectively. We find that the estimated number of matchds #s 107 when we set
A = pT andL = 49 when we setl; = 0.76 respectively. The maximum distance

between two matched points in each case is 10.24 and 2.38ctesy.

3.3.4 Overall conclusions

e The described methodology and appropriate parametersatigrihighlighted a
grossly misallocated marker in all comparisons. The marxkas reallocated

appropriately before further analyses.

e We found evidence of an increasing edge variance at the topigit side of the
images. We found evidence of an decreasing edge varianbe abttom and left
side of the images. However, asandh are unknown and the warping between

images is independent, we assig?p: o2 in future analyses.

e Using the final estimated posterior probabilitigs,to define matches can often
match points that are quite far apart. If a painthas a single nearby point jn

the posterior probability of these two points matching w#él quite dominant even
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Figure 3.11: Figure showing the final transformationuadnto x and the matches made
when a)A = p and b)d; = 0.75. The filled circles represent points:inand the crosses
represent points in the transformed Black indicates non-markers and green indicates

markers. Matched points across images are joined by a red lin
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though the points are not that close. Setting a distanceatate,d, andA = D*
bypasses this problem which will become more prominant astiirespondence

across two images decreases.
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Chapter 4

Further analyses for image comparisons

4.1 Introduction

In Chapter 4 we explore how the methodology introduced inpB#ra2 can be used to
pool data across replicates, to investigate the qualitydataset and finally, how it can be
implemented to highlight the differences in proteins asig®ups of images. We begin in
Section 4.2 by describing how we can create a union of reglicaages which can then
be considered alone in further analyses to reduce the catimel expense. In Section
4.3 we introduce the concept of image contamination andilbesmow the data can be
modelled to enable the inference of the contamination $ewthin a dataset. In Section
4.4 we introduce methodology to calculate a score that carsed to highlight proteins

unique to one group of images.

4.2 Pooling data across replicate pairs

In this section we considegr andz to denote two replicate images. Replicate images
should be identical. However, due to gel warping and immgidas within the chemical
procedure used to create the images, exact replicatesralg peoduced.

To reduce computational workload, we can pool replicatermation into one
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single image which can be used in further analyses. Ingujtiand = into steps 1-6
of the composite algorithm in Subsection 2.3.4, we estirtieé/X + m + 1) x (K + n)
one-to-one matching matri®/.

Letu; be theD x 1 vector containing the coordinates of ttie point in the union of
1 andzx, u. The points withinu include points that are presentjimalone, points that are

present inc alone and points that are present in beptandz. We definey, in each case.

e The number of points that remain unmatchedg jm.e., that are present solely jin
IS

~

m* =K-+m— L,

whereL is the estimated number of matches stated in Equéfiar). Let¢ be a

list of lengthm* containing the increasing indices of unmatched poinjs iWe set
Uy = AMCZ + Z;a

forl =1,...,m*, whered andb are the updated transformation parameters in Step

6 of the composite algorithm.

e The number of points that remain unmatched me., that are present solely in
IS

~

n=K+n-—1L

Letn be a list of lengthn* containing the increasing indices of unmatched points in
x. We set

ul = xﬁl—m*’
foril=m*+1,...,m" +n*.
e Now to include thel. matched points, i.e., the points present in hot#md..

Let ¢, be a list of lengthl containing the increasing indices n,....K+m}

that are not present i Let o, be a list of lengthl containing the corresponding



Chapter 4. Further analyses for image comparisons 82

indices in{1, ..., K + n} of matched points i that are not present ip That is,
if o =iandy? = j,thenM;; = 1fori=1,..., L. We set

1 A
+b),

Ul - 5 (xip‘ll;m*fn* _'_ Auip;l;'m*

—n*

forl=m*+n*+1,....m"+n*+ L.

Note: Pooling replicate data in this way is only useful when themewithin images
is small. If the images are greatly influenced by warping eicemple, the union will be
unlikely to represent the theoretical image representethéywo replicate images and

information would be lost.

4.3 Image contamination

In this section we want to provide a method to measure thé ¢é\v@mntaminatiorwithin
a set of images. The methodology we produce was inspired bydification of 2-
DE calledDlfference Gel Electrophores{®IGE) [80]. DIGE is a chemical procedure
used to compare two or three protein samples by tagging eaaipls with different
coloured fluorescent dyes before mixing them and creatirgsamgle image. The third
protein sample is usually a mix of the first two samples. Theaton of a single gel
bypasses the necessity of further computational analgsesstgn matches across images
and contamination is more easily distinguished from sgwsrepresent true proteins.
Figure 4.1 shows a simplified example of an image produced IEDIn this
example, two protein samples are tagged with either a blaered dye. A yellow dye is
used to tag the proteins in a mixture of the two samples. Wevkhat the black points
represent false positive observations (created by dust@miage, for example) due to
the absense of fluorescent dye. We know that the single yelpmis represent proteins
that have failed to be observed in one or both of the first twoes - false negative
observations. The yellow and blue spots denote proteirsepten the first sample (and

possibly false negative observations in the second samfle¢ yellow and red spots
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denote proteins present in the second sample (and posaibéyriegative observations in
the first sample). The yellow, blue and red spots denote ippFesent in both the first

sample and the second sample.
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Figure 4.1: Figure displaying an example of a simplified imagtput by DIGE. The
blue circles display the proteins present in the first sarapbkthe red circles represent
the proteins present in the second sample. The yellow sidigplay a union of the

proteins present in the first two samples.

The limitations of DIGE include that it can only be used to gare a maximum
of three protein samples and the technology is not yet conymiongeneral usage.
In the following subsection we clearly define what we mean rhgpge contamination
before discussing how replicate data can be used to infetetre# of contamination
within a dataset. In this section we assume that images eeeffom warping and that
correspondences across images are known, so that matshiognecessary. We should

also note that, within this section, the presence of mankéhsn an image is ignored.
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4.3.1 Introduction to contamination

We consider image contamination to be the presencaisgingor imposter pointsvithin

an image.

e A missing point is a protein that should have been detectéldirwan image, but
has not been observed. Missing points are caused blntiteof detectionof the

chemical procedure used to produce the images.

e An imposter point is a point that is observed in an image, ekieagh the protein
corresponding to the point location should not have beeectled. These points

can be the result of dust caught in the gel before the imagbdwstaken.

In this section, we let: denote some true image containingpoints. This true image
is what we would see in the absence of contamination. zLbé the observed image,
containingn points. It is withinz that contamination may exist.

Table 4.1 displays the four possibilities for the pointsserg inz and the points

observed irc.

Observed it

Yes No

Presentinc Yes| True Positive False Negative

[¢)

No | False Positive True Negativ|

Table 4.1: Table displaying the possibilities of points efved or those failed to be

observed int.

We can redefine contamination, i.e., missing points and gtgggoints, in terms of

the true imagey, and the observed image,

e Missing points: Points that are present inbut are not observed in, i.e., false

negatives.
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e Imposter points: Points that are absent frombut are observed im, i.e., false

positives.

Figure 4.2a displays a simulated true imageFigure 4.2b displays a possible observed
image,z. In this example there are two false negative observatioas(highlighted in

blue withinz) and three false positive observationsithighlighted in yellow).
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Figure 4.2: a) A simulated true image,and b) a possible observed image,The false
negative observations inare highlighted in blue within. The false positive observations

in z are highlighted in yellow.

4.3.2 Contamination across replicates

Replicate images each represent the same true imadmyt are produced separately.
In the absence of contamination, each replicate image wsinigly be identical tor.
However if the observed images contain contamination, ftassible for a point to be
observed inz; but not observed ix,, for example, whereg,; andz, are two replicate

images. There are only two possible explanations.

e The pointis a false positive observationin
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e The point is a false negative observation (i.e.,missing)in

Becauser; andz, are replicates, we do not have to consider the possibilay ah
point may be a true positive iy, or a true negative in,. We know that the differences
between replicates are a product of contamination alone.

Figure 4.3a displays the same true image, as displayed in Figure 4.2a.
Figures 4.3b and 4.3c display two possible replicatesand z,, both produced to
represent:. In this example, there are two false negative observatiobsthz; andz,
(highlighted in light-blue and dark-blue respectively it z). There are also three false
positive observations in botlh, andz, (highlighted in yellow). So only 6 true positive
observations are present in bathandz,.

Next we introduce a possible model to represent image conédion.

4.3.3 Modelling contamination
Introduction

As stated previously; denotes some true image containim@oints. Letz; denote the
Ith replicate, produced to representcontainingn; points forl = 1,..., R. Letr be the
number of times a point is observed in a union of theeplicate samples. For example,
if a point is observed = R times in the union, then the point is observed in each of the
R replicates.

Let ¢ indicate whether a point is one of thetrue points or whether it is a false
point, i.e, an imposter point where

1 ifthe pointis true
¢ = (4.1)

0 if the pointis false

The probability we observe a pointimes in a union is

p(r) = p(r|¢ = p(¢ = 1) + p(r|¢ = 0)p(¢ = 0). (4.2)
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Figure 4.3: a) A simulated true image, Two possible observations af 7, andz,,
are displayed in a) and b) respectively. The false negatiwmat observations im; and
Ty are highlighted in light-blue and dark-blue repectivelythin . The false positive

observations ir; andz, are highlighted in yellow.
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Distribution of true points
We use a Binomial distribution to model the number of timesia point is observed
in the union so that
r|¢ =1~ Bin(R, p,), (4.3)

wherep, is the probability a true point im is observed irx; fori =1, ..., R.
Distribution of false points
Let C; be the number of false points observed in tthereplicate forl = 1,.. ., R.
Assuming false points occur at random over a uniform surfagecan apply a Poisson
distribution so that
Cy ~ Pao(\), (4.4)

where is the rate of false points per image.
The number of points observed in thé image, forl = 1,..., R, is therefore
distributed as
n, ~ Bin(n, p.) + Po(\). (4.5)

We assume the contamination parametgrsand \, to be dependent on the laboratory
conditions and the person who created the dataset. We alsmaghat both, and\ are
constant over all points and all images respectively.

Inputting the distributions applied in Equatiod.§) and ¢.4), we can rewrite

Equation(4.2) as

p(r) o %pzu Cp) et (1— a)Ifr = 1], (4.6)

wherea = p(¢ = 1), i.e., the probability an observed point is true and

I N 1 ifthe point is observed once in the union
r=1]= .

0 otherwise.

Letv,; be the number of points that are observdtmes in the union of? replicates for

r=20,...,Randj = 1,...,J,, whereJ, is the number of possible ways of choosing
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r from the R replicates, arbitrarily ordered. As we only know correspemces between

observed points, we do not know the total number of true paatwe have

- R!
2= 2y

r=1 r=1
observations in total.
Because of the Binomial distribution applied in EquatidrB) to the true points
and the Poisson distribution applied in Equatidnt) to the number of false points in an

image, we can state the following.

e The number of points observedi#replicates, for =2,...,Randj =1,...,J,,
is distributed as
vrj ~ Bin(n, pl (1 —p.)"7), (4.7)

and is therefore independent &f For each of the- distributions, we haveJ,

observed results.

e The number of points observedin alone, forj =1, ..., R, is distributed as
vi; ~ Bin(n, p.(1 — p) )+ Po(y), (4.8)
and is dependent on all three unknown parameters, and\.

To allow us to estimate the three unknown parameters, weraste distributions stated
in Equationg4.7) and(4.8) are independent overand.
We now show how we can estimate the total number of true pointnd the two

contamination parameters, and\.

4.3.4 Parameter estimation

We findn, p, and) that maximise the probability of observing;. To do this we consider
two methods. The first method provides numerical solutiongife three unknowns using

the full dataset, i.e., considering all; forr =1,..., Randj = 1,..., J,. The second
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method estimates andp, considering onlyv,; forr = 2,... R, j = 1,...,J, and
finally estimates\ from v,; for ;7 = 1,..., R. This method highlights the relationship
betweerp, and A when R = 2, it provides analytical solutions whelR = 3 and is less

computationally expensive than method 1 overall

Method 1:

We can estimate the parameters numerically by finding and\ that maximise

R Jr

JIRIECE!

r=1j=1
I.e., that maximise the full log-likelihood of all the obsed data

R Jy

> logp(vyy), (4.9)

r=1 j=1
where v,; has the distribution defined in Equatidd.7) for » = 2,..., R and the
distribution defined in Equatio(d.8) for r = 1 andj = 1,...,J,. The probability
of observingy,; is stated later within Method 2 in Equati¢f.13).
Using this method we cannot easily obtain analytical sohgj but we do not lose
the information about andp, stored in the observed, for j = 1,..., R, as we do in

Method 2 described next.

Method 2:

To define analytical solutions or if we cannot solve f¥r p, and A using Method 1,
we can consider the following method as an alternative wagstamate the unknown
parameters.

Equation(4.8) involves all three unknown parameters,p. and A and provides us
with R observations from one distibution. Equati@n?) involves only two unknowns;
andp,, and provides us with observations fradin— 1 distributions.

We can first use the observations with the distribution dtateEquation(4.7) to

estimaten andp, where possible. Finally, we use the observations with te&idution
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stated in Equatiofy.8) to estimate\ and any remaining unknowns. We look at the cases
for R =2, R = 3 and generak > 3 separately.

Estimating » and p,

R = 2 replicates

We begin by considering the observed points in the unioR of 2 replicates;z;

andzs.
e \We observes,; points in bothz; andz,.
e We observe),; points inz; alone forj = 1, 2.

From Equation(4.7), we know that the estimate af that maximises the probability of

observingu,, is
V21

n= .
H2
Dx

(4.10)

R = 3 replicates

For R = 3 replicates;,, z, andzs, we observe
e v3; pointsin allR = 3 replicates.
e v,; points in all replicates excluding; for j = 1,2, 3.
e vy, points inz; alone forj = 1,2, 3.

In this case, we have observations from two distributioasest in Equation4.7) for

r = 2 andr = 3. As the expected values of; for j = 1,2, 3 andv;; are
Elvy;] = np3(1 — p.) and Elvs1] = np?,

respectively, we can estimateandp, respectively as

= 3
(’UQ. + ’U31) and b =

n = 5 _—,
U3y Uo. + U31

(4.11)

where

B 1J2=3
Uy = — E Vo
34~

J=1
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R > 3 replicates

For R > 3, we have observations, forr = 2,...,Randj = 1,..., J, that are
dependent solely on andp,. So we have two unknowns and more than two equations
involving the two unknowns. In this case we can estimaindp, that maximise the

joint distribution ofv,; forr =2,... . Randj =1,...,J,

R Jr

TP,

r=2j=1
i.e., that maximise the log likelihood

R Jy

Z Zlogp(vrj)v (412)

r=2 j=1
where the probability of,; is found from the distribution in Equatioft.7) for r =
2,...,Randj = 1,...,J.. As R increases, Equatiof4.12) becomes increasingly
complex so numerical solutions are easier to compute.
So, from the observed correspondences with the distributioEquation ¢.7)

betweenR replicates, we can state the following.

e For R = 2, we know the relationship betweerandp, stated in Equatiof4.10).
e For R = 3, we can estimate andp, analytically using Equationgl.11).

e For R > 3, we can estimate andp, humerically by maximising the log-likelihood

ofv,; overr =2,...,Randj =1, ..., J, stated in Equatiof4.12).

Estimating A and any remaining unknowns
The conditional distribution of,; givenC; (see Equatioti4.4)), forj = 1,..., R,

is dependent on the numbenrofeal points that are observed only once, so that
v1;]C; ~ Bin(n, p.(1 —p)fh).

The probability of observing, ; points inz; alone is therefore

Ul_]

plvi;) = Y plvy|Cy)p(C5)

C;=0
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= n! R—17v15—Cj Ro1yn-vi;+C; € AT
C;O (Ulj—Cj)!(n—U1j+Cj)! [ ( ) } [ ( ) } C]'
(4.13)
Finally, we estimate any remaining unknowns f8r > 2 by maximising the joint
probability
R
Hp</U1])7
j=1
i.e., maximising the log likelihood
R
> “logp(vyy), (4.14)
j=1

wherep(vy;) is given in Equatior{4.13).

4.3.5 Contamination within multiple replicate sets

Now let us consider that we havesets ofR replicates (note that heré,does not indicate
the number of matches as it has previously). Egtdenote the'th image from thdth
set of replicates containing, points forl = 1,..., L andr = 1,..., R. Thelth set of
R images is taken to represent the true imaggegontainingn; points, forl = 1,..., L.
Assuming thap, and\ are constant ovell, we can estimatg,, A andn; fori =1,..., L.

Let v, be the number of points that are observdiines in the union of théth set
of R replicate samplesfor=0,...,R,j=1,...,J.andl = 1,..., L, whereJ, is the
number of possible ways of choosingrom the R replicates.

The distributions assigned Hﬁj are similar to those assigned g, in Equations

(4.7) and (.8) except we replace thewith n; so that
vij ~ Bin(ny, po(1 — p,)*") (4.15)

and
vy, ~ Bin(ng, (1 — p) 1) + Po()), (4.16)

forr=0,...,.R,j=1,...,J,andl=1,..., L.
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In this case, we need to estimate A andn; for{ =1, ..., L so we have a total of

L + 2 unknowns. We consider two methods similar to those destpbeviously.

Method 1

Similar to Equatior{4.9), we can estimate all unknown parameters numerically byrfndi

ny, p» and\ that maximise
L R Jr

ITITTTP05)

=1 r=1 j=1

I.e., that maximise the full log-likelihood of all the obsed data

Jr

L R
>3 log (vl (4.17)

=1 r=1 j=1

3

wherev!; has the distribution defined in Equatién15) for » = 2,..., R and Equation
(4.16)forr=1,5 = ,Jr.andl =1,...,L,. The probability ofulj is later stated in
Method 2 in Equatiorﬁ4.22).

Method 2:

Again we can look akk = 2, R = 3 andR > 3 separately.
For R = 2, the relationship stated in Equati¢h10) becomes
l

fp = 2L, (4.18)
P

For R = 3, the estimates stated in Equati@nl1) respectively become

=1 1 \3 *
R Sk T A (4.19)
[v51] Uy + U3
whereforl =1,... L,

Jo=3 L

L
. 1 _ 1 . 1 _
Y1 = § :'Uil’,b v, = 3 E Uéj and V2 =7 § Ulz

1=1

j=1 =1
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For R > 3, the log likelihood stated in Equatidd.12) is now dependent solely o) and
p., forl=1,..., L, and becomes
L R Jr
> YD logp(uyy), (4.20)
=1 r=2 j=1
wherev!; has the distribution stated in Equatioh15).
For R > 2, the log likelihood stated in Equatidr.14) becomes
L R
D> Tlogp(et)), (4.21)
=1 j=1
whereuv!; has the distribution stated in Equatioh16) so that

p(vllj) =

. e~ M\
(1= p,)B1 =Gy _ (1 —p,)R? ni—vi;+C; €
Z )( Ulj+c)[p( p) ] [1—p.(1=p)"] ci

vlj
(4.22)

4.4 Scoring system for group comparisons

The main aim of this section is to develop a method that wghlight points that do not
exist in both control and patient images or both normoxiataypbxia treated images. In
this section we introduce a scoring system for the compadwo groups of images.

Let () andz(") denote théth andrth image in group 1 and group 2 fbe= 1, .. ., L
andr = 1, ..., R respectively. (Note that the definitions bfand R are different to those
defined previously.)

Theith point in image from group 1 is denoted bygl), formarkers = 1,..., K
and non-markers = K + 1,..., K + m;. Thejth point in imager from group 2 is
denoted bﬁg’"), for markersj = 1,..., K and non-markers = K +1,..., K + n,.

Say we wanted to highlight points that are likely to be présemgroup 1 images,
but absent from group 2 images. To do this, we calculate a&sfollows for each point

ﬂf”,izl,...,mlandl:1,...,L.
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4.4.1 Point presence in group 1

Transformz2) to fit i) using steps 1-4 of the composite algorithm, described in
Subsection 2.3.4 to match pairwise configurations/fet 1, ..., L andl; # .

Let pi}]lQ denote the final estimated posterior probability l@%ﬁ is allocated to the
coffin bin whenji"?) is transformed to fifz(*). The probability thapf.l1 is present in all
L imagesin group 1is

(ll _

L+ ) (-5 ] . (4.23)

l1#l2
4.4.2 Point absence in group 2

Transformz") to fit z"Y) using steps 1-4 of the composite algorithm to match pairwise
configurations, for = 1,..., R.

Let ¢l denote the final estimated posterior probability mz%ft) is allocated to the
coffin bin whenz (" is transformed to fifi"). The probability thafi\"" is present in all
R images in group 2 is

) _ 1
QZ R

R
}jm—d§4. (4.24)

1" is absent from images in group 2 is simply- ¢\

The probabilityz;

We assign the following score to each pomgf,),

S =wpl” + (1 —w)(1 - q"), (4.25)
fori =1,...,myandl =1,..., L. The weightuw, accounts for the number of images in
each group as

L
L+ R

The use of the posterior matching probabilities providescaresSf” € {0,1}. The
probability thatﬂf.l) is present in group 1 images but absent in group 2 imagesasese

asSi(l)
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Chapter 5

Experiments and Applications

5.1 Introduction

In Chapter 5 we analyse the properties and accuracy of thieaaelogy introduced in
Chapter 4. In Subsection 5.2.1, simulations are carriedminvestigate the accuracy
of contamination prediction with data from the assumed rfeod&he accuracy is then
investigated when point correspondences are inferredssameplicates in Subsection
5.2.2. In Subsection 5.2.3 we explore how the score usedgtalitht points unique
to one group of images is affected by varying levels of cqroeslence across groups as
well as varying levels of contamination. Finally, in Sect®.3, we focus on the real data.
Two replicate images are randomly chosen to provide an ebeaofipow a union image is
created in Subsection 5.3.1. In Subsection 5.3.2 the qguneences across all replicate
pairs are inferred and then used to estimate the level odoanation within the dataset.
Finally, in Subsection 5.3.3, we highlight points that akelly to be present in patient
images but absent from control images and vice versa. Wehajbtight the points likely
to exist uniquely to images treated with normoxia or hypoxtanally, we reduce the
variability within groups even further by considering tloaif subsets of images split by
subject-type as well as treatment, before highlightingjuaipoints within groups.

As in Chapter 3, where relevant we assumjein Equation(2.9) is constant and
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estimate it ag? = 4.5%, which is approximately the median squared distance betivee
corresponding markers within the real dataset after allpsé Procrustes transformations
are performed. Alternatively, we estimaté using Equation(2.25) with denominators
instead of-. Note that these estimates provide a conservative valw®arid allow greater
freedom for the distance between potential and known gooreging points. Though
sensitivity tests are not carried out here, future work shmvolve a thorough exploration

of the algorithm sensitivity te-2. The values presented here will be strongly dependent
on the assigned?.

When following the composite algorithm described in Subeac2.3.4, we
implement the standard method to assign the prior matchiobabilities inQ. The
starting values for the transformation parametdf8, andb®), are found using Equation
(2.24). We setl = 10 to define convergence in Equati¢h17).

5.2 Experiments

5.2.1 Accuracy of the contamination parameters within one et of

replicates
We first investigate the prediction accuracymgfp, and \ over varyingRR and varying
levels of contamination when simulating data from the asslidistributions. We focus

on method 1 only.

We run the following simulation 1000 times.

1. First we simulate,; forr =1,..., Randj = 1,...,J,.. We randomly assign,;

using Equatior{4.8) andv,; using Equatior{4.7) for r # 1.

2. We then estimate, p. and\ as the values that maximise the likelihood stated in
Equation(4.9).

We fix n = 120 and varyp, = 0.5,0.75,1 and A = 0,5,10. We consider values of
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R = 2,4,6. We calculate the likelihood in Equatiqrd.9) for n € [110, 130] at integer
valuesp, € [0,1] at0.05 intervals and\ € [0, 20] at integer intervals.

Table 5.1 displays the mean number of true points estimated the 1000
simulations and the standard deviance of the estimatestfrertnuen, o, where
1000
2 1

- = N )2
7 = Togn 2" "

wheren; is the estimated number of true points at ttiesimulation. Similarly, Table 5.2
displays the mean probability of observing a true point dier 1000 simulations and
the standard deviance of the estimates from the tryes;. Table 5.3 displays the
mean number of false points over the 1000 simulations andtdrelard deviance of the

estimates from the trug, o—i.

Averagen Standard deviance from
A 0 5 10 0 5 10

p. =05 | R=2|11597 11891 120.10 7.7427 6.9522 7.0396
R=41]117.74 120.07 121.5¢ 7.8983 7.9627 8.5156b
R=6]118.99 121.02 11991 7.9639 7.9047 7.9283

p. =0.75 | R=21113.25 114.74 115.14 7.7218 6.9457 6.3548
R=41119.07 120.85 120.6P2 7.5952 7.7778 6.9442
R=6119.14 121.37 120.62 7.5652 7.5712 7.7185

p.=1 | R=2|120.00 120.00 120.00 0.0000 0.0000 0.0000
R=41120.00 120.00 120.0D 0.0000 0.0000 0.0000
R=6|120.00 120.00 120.00 0.0000 0.0000 0.0000

Table 5.1: The first table displays the average of the estichatimber of true points
acrossR replicates,n, for various values op. and \. The second table displays the

standard deviation of from n, o;,, over the 1000 simulations.
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Averagep, Standard deviance from
A 0 5 10 0 5 10

p. =05 | R=21]0.5010 0.5090 0.4980 0.0512 0.0414 0.0466
R=410.5035 0.5010 0.494D 0.0322 0.0355 0.0402
R=6|0.5080 0.4990 0.497b 0.0266 0.0284 0.0241

p. =075 R=2|0.7730 0.7725 0.7670 0.0389 0.0458 0.0389
R=41]0.7555 0.7510 0.745b 0.0251 0.0236 0.0251
R=6|0.7505 0.7480 0.746b 0.0151 0.0201 0.0181

p.=1 | R=21]1.0000 1.0000 1.0000 0.0000 0.0000 0.000(
R=41.0000 1.0000 1.0000D 0.0000 0.0000 0.000(
R=6|1.0000 1.0000 1.0000 0.0000 0.0000 0.000¢

Table 5.2: The first table displays the average of the estidhatobabilities of observing
a true pointp,, for various values oR?, p, and\. The second table displays the standard

deviation ofp, from p., o, over the 1000 simulations.
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Average\ Standard deviance frorh
A 0 5 10 0 5 10

p. =05 | R=2|1.68 5.28 10.34 2.7005 4.0751 3.928}
R=41057 480 9.49 1.0200 1.8641 2.4184
R=6|0.25 4.89 10.07 0.5412 1.2268 1.5472

p. =075 | R=21]234 7.36 11.4§ 3.7363 5.2436 4.4992
R=4]10.23 490 9.67 0.5222 1.1371 1.5923
R=6]0.03 5.08 9.98 0.1741 1.0347 1.2871

p.=1 | R=2|0.00 5.18 10.47 0.0000 1.5954 1.9592
R=410.00 512 10.13 0.0000 1.0445 1.6606
R=6|0.00 4.97 10.03 0.0000 0.9156 1.3744

Table 5.3: The first table displays the average of the esticthatimber of false points
per image,f\, for various values oR, p, and\. The second table displays the standard

deviation of) from ), o, over the 1000 simulations.
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Conclusion

Generally, ask — oo, i — n, p. — p, and\ — . We also see that a8 — oc or
Py — 1, a%, ag anda§ — 0.
That is, the accuracy of the inferred parameters increafeaaseases and as —

1. Increasing\ does not have an obvious adverse effect on prediction ancura

5.2.2 Accuracy of the contamination parameters after infering

correspondence

The methodology, introduced in Section 4.3, to estimatenaonk contamination
parameters assumes point correspondences across imagdsiavn. In reality,
correspondences across images have to be inferred bedatise warping present in
an image. Here we investigate the accuracy of the estimatethmination parameters
after using the proposed methodology in Chapter 2 to infethercorresponding points
across images. As the real data we have contains only reppedrs, we fixR = 2.

We run the following simulation 200 times for each case.

1. We randomly scattek +n points across a x h uniform surface, where each point
is set to be a minimum ¢f units from any other point. Note that we are simulating
data similar to that given so we again consider an image te Ramarkers and a

selection of non-markers.

2. We randomly seledt” markers from thé< + n points with the constraint that each
marker must be a minimum distancedaf from any other marker. The remaining
points are allocated as non-markers. ThEsmarkers andh non-markers represent

the true imagey.

3. Now we allocate the non-markers in the observed imagesdz,. Note that we

fix the K markers to be observed in both images.
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Let n7 and nZ denote the number of non-markers observedzinand z,
respectively. We simulate! using only the Binomial distribution within Equation
(4.5). Then we randomly select the' from the N non-markers to represent the

non-markers observed if for [ = 1, 2.
4. We add noise) (0, 7%/4), to each point coordinate withity andz.

5. Now we add false points to both andz,. Let 7! and7nl denote the number
of false points allocated t@, and 7, respectively. We simulatgé!” using only
the Poisson distribution stated in Equati@n5) before randomly scattering them
across the same x h uniform surface used to creatgfor [ = 1,2. In this case

there are no constraints on the distance between points.

Note: The distribution stated in Equatigd.5) is now fully satisfied for botin,

andns.

6. The(K +n,) x 2and(K + n5) x 2 matrices;z; andz, respectively, are input into
steps 1-5 of the composite algorithm introduced in Subze&i3.4 to estimate the

one-to-one matching matrixy/.

Note: As p. decreases and increases, the number of false positive matches
made by the EM algorithm will increase dg increases if we seh = D*. As

we do not know the level of contamination before the infeceenf matches, we
assign matches using the final posterior probabilities kyngeA = p*, therefore

forfeiting control of the number of output matches.

7. Letvyy, 011 andoy, be the inferred values ah,, v1; andv, respectively. These

values are calculated from the non-markers alone so that

K+n, K+neo K+no
Vo1 = g E Mij, V12 = E MOj
1=K+1j=K+1 j=K+1

and’&n =Ny — Vo
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8. Finally we estimatei, p, and \ that maximize the log-likelihood in Equation
(4.9) when applying method 1. For method 2, we fifadh terms ofp, using the
relationship defined in Equatiar.10), before estimating, and\ that maximise

the log-likelihood stated in Equatiqd.14).

We fixn = 30, K = 3, w = 257/2, h = 191/2 anddx = 25. We estimate the variance
in Equation(2.9) ass? = 4.5% and setr = 6. We vary the contamination levels by
consideringy,. € [0.5, 1] at intervals of0.05 and X € {0, 10} at integer intervals. In step
8, we calculate the method 1 log-likelihood for= [0, 40] at integer valuess, € [0.05, 1]

at intervals of 0.05 and e [0,20] at integer values. We calculate the method 2 log-

likelihood forp, € [0.05, 1] at intervals of 0.05 and < [0, 20] at integer values.

Discussion

Figure 5.1 displays the mean valuesiofp, and \ over the 200 simulations for both
methods 1 and 2. Figure 5.2 displays the standard error oégtimates from the true
values, again for both methods 1 and 2.

We can see that method 1 generally estimates: 1 for all considered levels of
contamination. Therefore the error between the estimatasd the true, increases as.
decreases. The estimated number of non-markedecreases as boph and\ decrease
with the error between andn becoming increasingly larger. Generalydecreases at a
slower rate than decreases so that the error betwaeand )\ increases.

Method 2 provides low estimates farfor all considered levels of contamination,
with the error between and )\ increasing as\ increases. The estimated number of non-
markersy, decreases as boph and)\ decrease with the error betwegmandn becoming
increasingly larger. We can see tlpatdecreases at a slower rate thardecreases so that

the error increases betweghandp* increases.
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Figure 5.1: For\ againstp*, Figures a) and b) display the mean values poFigures c)
and d) display the mean values@fand Figures e) and f) display the mean values of
for methods 1 and 2 respectively over the 200 simulationshEgure is a contour plot

where a greyscale is used to illustrate the various means.
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Figure 5.2: For\ againstp*, Figure a) and b) display the standard erromdirom n,
Figures c) and d) display the standard erroppfrom p, and Figures e) and f) display
the standard error of from ) for methods 1 and 2 respectively over the 200 simulations.

Each figure is a contour plot where a greyscale is used tdr#ligsthe various errors.
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Conclusion

Method 1 generally predictg, ~ 1. Alternatively method 2 generally predicts a low
)\ over all considered levels of contamination. The previdusutations showed that
generating data from the assumed distributions will prexgdod estimates of, p, and

A for R = 2. However, when inferring on point correspondence across 2 replicates,
there is not enough information to provide good estimatesnfamination. When testing
the real data in Subsection 5.3.2, we see that only a refdtipmetweemn, and\ can be

inferred.

5.2.3 Estimating the appropriate score threshold

Here we look at how the score (indicating points unique toréiqadar group of images)
is affected by varying levels of correspondence acrosspgaw varying levels of
contamination. We want to highlight an appropriate thréshoe,, above which scores
should be considered. We run simulations separately fofingrcorrespondence and
contamination levels.

Let p denote the proportion of corresponding non-markers agausgp 1 images
and group 2 images. The number of corresponding non-madaecss images in the

different groups isV = np¢.

Varying point correspondence across images

We varypc and carry out 200 simulations for each case.

1. We randomly scattek” 4+ 2n — N points across a x h uniform surface, where

each point is set to be a minimum tinits from any other point.

2. We randomly seledk true markers from th& 4 2n — N points with the constraint

that each marker must be a minimum distance pffrom any other marker. Let
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. andz, contain the coordinates of markerin . and x respectively, fork =
1,...,K.

3. From the remainingn — N points, we randomly sele¢Y points to represent the
corresponding non-markers acrgsandzx. Soyu; andz; contain the coordinates of

corresponding non-markers foe= K +1,..., K + N.

4. Finally, we randomly split the remainiritfn — V) points equally between and
x so thaty; andx; contain the coordinates of arbitrarily labelled pointgiandz,
fori,j = K+ N+1,..., K+n,that do not have corresponding pointsiand

respectively.

5. We fix g = pforl = 1,..., L to create the group 1 images and = x for

r=1,..., Rto create the group 2 images.

6. We add noiseN(0,72%/4), to each point coordinate withip® andz" for | =

1,...,Landr =1,..., Rrespectively.

7. Using the output final posterior matching probabilitiese calculate the
probabilities stated in Equatior{d.23) and (4.24), pf.” and qi(”, fori = 1 and
1=1,..., K +n.

We transforma) onto M, for I = 2,..., L, by inputting both into steps 1—
4 of the composite algorithm described in Subsection 2.8.groduce the final
posterior matching probabilitieg!’. We transformz) ontoa™, forr = 1,..., R,

by inputting both into steps 1-4 of the composite algoritlinptoduce the final

posterior matching probabilitieg!”.

8. Inputtingp!” andq" into Equation(4.25), we calculate the score for each point in

b, WhereSZ.(l) is the score for pointin the first image in group 1.

9. Finally we calculate the proportion of correctly higlitgd points unique to group
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1images agrp = 0 for pc = 1 and forpg # 1,

n 1
S nrp _ Zi[i—’]_(-i-N-i-l I1[S; ) > pr)
nrectnee - SOELI[SY > prl
where
1 if S > pr
I[Si(l) > pr| = o)
0 if SZ <pr

We fixn = 30, K = 3, w = 257/2, h = 191/2 andd, = 25. We estimate the variance
in Equation(2.9) asé? = 4.5% and setr = 6. We also fixL = R = 13 to mimic the
comparisons between patients/controls and treatmentstasaeate the real data. We
vary the point correspondence across groups by considging [0, 1] at intervals of

0.1. We explore the highlighted points when fixipg € [0.49, 1] at intervals 010.01.

Discussion

Figure 5.3 displays contours of-p, nrp andprp for pr againsipc. The number of true
positives increase as bgth andp; decrease. The number of false positives also increase
aspr decreases, but increasemasincreases. The proportion of true positives increase as

pc decreases ang- increases.

Conclusion

When applying a threshold gf; ~ 0.7, over 97% of the highlighted points are true
positive observations over ali;. A decreasing amount of points wiﬂ‘jl) > pr indicates

an increasing similarity across images in group 1 and grouapeges.

Varying contamination levels

Finally we fix po = 1 and vary the level of contamination within the following 100

simulations.
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Figure 5.3: Figure showing a);p, b) npp and c)prp for pr againsipc.
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1. We randomly scatteK” + m points across a x h uniform surface, where each

point is set to be a minimum @funits from any other point.

2. We randomly seledt” markers from the< 4 m points with the constraint that each
marker must be a minimum distancedgf from any other marker. The remaining
points are allocated as non-markers. ThEsearkers and» non-markers represent
the true imagey. We setr = p so that the true image for group 1 is equivalent to

the true image for group 2.

3. Now we allocate the non-markers observegnfor i = 1,..., L and inz(™) for

r =1,..., R. Note that the’ markers are observed in all images.

Let m] and n! denote the number of non-markers observediith and ()
respectively. We simulaten] and n! separately using only the Binomial

distribution within Equatior(4.5). Then we randomly select; andn! from the

m non-markers to represent the non-markers observetdiandz(") respectively.

4. We add noiseN (0,7%/4), to each coordinate of the non-markers observed'in

andz") for{ =1,...,Landr =1,..., R respectively.

5. Letm! andn!” denote the number of false pointgif andz(") respectively. Using
only the Poisson distribution stated in Equations), we simulatem!” and i’
before randomly scattering them across the sameh uniform surface separately
for iV andz(™) respectively. In this case there are no constraints on ttartie

between points.
Note: In this casem; = m} + m/ andn, = nl +nf forl = 1,...,L and

r=1,...,R.

6. Using the output posterior matching probabilities, wiwdate the probabilities
stated in Equation§l.23) and(4.24), pgl) andqi(l), forl=1andi=1,...,m;.
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We transformi) onto iV, for I = 2,..., L, by inputting both into steps 1—
4 of the composite algorithm described in Subsection 2.8.groduce the final
posterior matching probabilitieg!’. We transformz™ ontog", forr =1,..., R,

by inputting both into steps 1-4 of the composite algoritlinptoduce the final

posterior matching probabilitieg!”.

7. Inputtingpgl) andqi(l) into Equation(4.25), we calculate the score for each point in

), WhereSZ.(” is the score for pointin the first image in group 1.

8. Finally we calculate the proportion of incorrectly higjtited points unique to group

1images as .
L™ e
Prp = — E I1S;” > pr.
FP My £ [ T]

Note that the true imageg,andz, are identical. Any point highlighted as unique

to group 1 images is therefore incorrectly highlighted.

We fix N = 30, K = 3, w = 257/2, h = 191/2 anddx = 25. We estimate the variance
in Equation(2.9) ass? = 4.5% and setr = 6. We vary the contamination levels by
considering. € [0.5,1] atintervals of).1 and\ € {0, 10} at intervals of 2. We calculate

prp When settinggr = 0.7

Conclusion

Over all considered contamination levels, the maximumevalithe mean proportion of
false positives (over the 100 simulations) was> = 0.007. So, whenL = R = 13 and
settingpr = 0.7, the unknown contamination levels do not have a negativeantie on

the points highlighted to exist uniquely in one group.

5.2.4 Overall conclusions

e The prediction accuracy af, p, and A\ is good when simulating data from the

assumed distributions, even when considering dhly 2 replicates.
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e When inferring on the corresponding points acréss= 2 replicates, method 1
estimates), ~ 1 and method 2 povides low estimates of In this case, later
analyses on the real data suggests that there is enougmatfon to infer a
relationship betweep, and A whenR = 2, although not enough information to

produce explicit solutions.

e The higher the probability thresholg, the higher the proportion of true positive
points highlighted as unique to group 1 images. A threshdlg,0= 0.7 is
recommended when analysing the real data and should nogb&vedy affected by
the proportion of corresponding points across groups olethed of contamination

within the dataset.

5.3 Applications

5.3.1 Example of a union

In this example we create a union of two replicatesndx. We input the images into
steps 1-6 of the composite algorithm described in Subsei8.4. We estimate the
variance in Equatioi2.9), o2, using Equatior(2.25) with denominatork instead ofv.
We explore the one-to-one matches made when p’.

The final estimated transformation parameters are

1.0815 0.0217
0.0018 0.9885

>>

andb = (—22.4579, —47.7393)7.
Both plots in Figure 5.4 display the final transformationuobnto z. Figure 5.4a
displays the matches inferred. Figure 5.4b displays theruoi ;» andx.
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Figure 5.4: a) Figure showing the final transformatiom@ntox and the matches made.

The filled circles represent points:inand the crosses represent points in the transformed

w. Black indicates non-markers and green indicates markbfatched points across

images are joined by a red line. b) Figure showing the uniop ahdz. The crosses

indicate points unique tp, the filled circles indicate points unique:taand the blue stars

indicate points that are observed in bpthndz.
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Lmh om0y @y
118 83|46 43 37
2 | 157 134|115 42 19
3 1198 142,137 61 5
4 | 152 141|107 45 34
5 141 148,120 21 28
6 | 112 114 73 39 41
7 1106 109 65 41 44
8|94 99| 72 22 27
919 92|57 39 35
10| 166 125 97 69 28

Table 5.4: Table displaying,, 72}, 05, 9!, anddl, forl = 1,..., L = 10.

5.3.2 Estimating contamination levels

Here we estimate the contamination levels usingithe 10 sets of R = 2 replicates
we have in the real dataset. L&t represent theth replicate from théth set, forl =
1,...,L =10 andr = 1, 2. First we estimatel,, v\, andv!, for each of thel, replicate
pairs.

We input z;; and z;; into steps 1-5 of the composite algorithm described in
Subsection 2.3.4 fof = 1,...,L = 10. We estimate the variance in Equatitih9),
o2, using Equatior{2.25) with denominatorX” instead ofv. We estimate the one-to-one
matching matrix M/, by settingA = p’.

Table 5.4 displays!, i}, 94, 0}, and®!, for each of thel. = 10 replicate pairs.

Note: These values consider the non-markers only, as within thelations.

We first consider each replicate set separately before finglmbal solutions using

all replicate pairs.
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Local Solutions

For each of thed, = 10 replicate pairs, we do the following.

For method 1, we estimatg, p, and) that maximize the log-likelihood in Equation
(4.9). We calculate the log-likelihood foi;, € [0, q,] at integer valuesp, € [0, 1] at
intervals of 0.01 and € [0, 100] at integer values. Here; = 50 + max(ii, iib).

For method 2, we find,; in terms ofp, using the relationship defined in Equation
(4.10), before maximising the log-likelihood stated in Equatidni4). We calculate the
log-likelihood forp, € [0.01,1] at intervals of 0.01 and € [0, 100] at integer values.

Table 5.5 displays the estimated parameters when applyatigod 1 and method 2.
Figure 5.5 displays contours of the method 2 likelihood in&tpn (4.14) for A against
p«forl=1,..., L =10 (note that we only display the method 2 likelihood becaus® it
dependent on the two contamination parameters alone).

Conclusion

In this case, from Table 5.5 we can see that genefalky 1, with an exception for
the first replicate pair in method 2 wheke~ 0. The contours in Figure 5.5 each show
a ridge of maxima indicating the data provides a relationgtgtweenp, and \ rather
than explicit solutions. The similarity of the contours@ss replicate pairs supports the
assumption that, and\ are constant across images in the dataset. However, theucent

also indicate a poor quality of the given dataset.

Global solutions

Now we combine information across the = 10 replicate pairs when estimating the
unknown parameters.

For method 1, we estimatg, p, and) that maximize the log-likelihood in Equation
(4.17). We calculate the log-likelihood fat; € [0, ;] at integer valuesp, € [0,1] at
intervals of 0.01 and € [0, 100] at integer values. Here; = 50 + max(ii, iib).

For method 2, we find,; in terms ofp, using the relationship defined in Equation
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Dl fe pe A Ll A pe A

1,10 1 45 1277 019 2
2111 1 79 2|11 098 78
3110 1 99 3|10 1.00 99
419 1 76 41 9 100 76
519 1 71 5 9 099 70
6 |10 1 56 6 | 10 1.00 56
718 1 53 7 8 1.00 53
819 1 47 8 9 1.00 47
9110 1 48 9| 10 1.00 48
1010 1 83 10| 10 1.00 83

Table 5.5: Tables containing the estimated parametersi. and A when considering
each of thel. = 10 replicate pairs separately. The table to the left displagsrésults
when applying method 1 and the table to the right displaysréiselts when applying
method 2.
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Figure 5.5: Contours of the method 2 likelihood formgainsip, for each of thel. = 10

replicate pairs. The red crosses represent the estimatashptersy, and), in each case.
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l 1 2 3 4 5 6 7 8 9 10
Method 17, | 80 202 248 184 160 114 95 81 90 216
Method 27, | 50 125 149 116 130 79 71 78 62 105

Table 5.6: Tables containing the estimated number of pamnésch of theL = 10 true

imagesy, for method 1 and method 2 globally.

(4.18), before maximising the log-likelihood stated in Equatidr21). We calculate the
log-likelihood forp, € [0.01,1] at intervals of 0.01 and € [0, 100] at integer values.

Table 5.6 displays the estimategdfor [ = 1, ..., L when applying either method
1 or method 2. For method 1, the estimated contaminatiompeteas,p, and A, are
respectively

b =0.26 \ =37

For method 2, the estimated contamination parameteid), are respectively
P = 0.96 A = 65.

Figure 5.6 displays contours of the global likelihood foagainstp, for a) method 1
(assuming that; = n, for/ =1,..., L) and b) method 2.

Conclusion

We can see that the solutions farfor l = 1, ..., L, p, and X differ greatly across
methods, with method 2 predicting ~ 1. The contour in Figure 5.6b, which illustrates
the method 2 likelihood, again shows a ridge of maxima irtthgathe data provides
a relationship betweep, and ) rather than explicit solutions. The contour illustrating
the method 1 likelihood indicates explicit solutions whénirsformation is considered
to estimatep,, A andn; for [ = 1,...,L. This solution is also present within the
ridge of maxima shown in the contour displaying the methoitéihood. The resulting

contamination parameters again indicate a poor qualitgnafies within our dataset.
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Figure 5.6: Contours of the global likelihood faragainstp, for a) method 1 and b)

method 2. The red cross represents the estimated paranpetansl )\, in each case.

5.3.3 Highlighting unique points within image groups

Table 5.7 displays the number of images we have for eachdiygjge and treatment.

Treatment

Normoxia Hypoxia| Total

Control 7 6 13
Patient 6 7 13
Total 13 13

Table 5.7: Table displaying the number of images we have &oh esubject-type and

treatment.

First, we calculate the score to highlight points that aesent in
e Al: control images but absent in patient images.
e A2: patient images but absent in control images.

e A3: normoxic images but absent in hypoxic images.
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e A4: hypoxic images but absent in normoxic images.

In each of the above analysds= R = 13. Finally, we reduce variability within groups
even further by separating the data in four subsets andlatilay the score to highlight

points that are present in

e B1: normoxic control images but absent in normoxic patient iesaf = 7 and
R = 6).

e B2: normoxic patient images but absent in normoxic control iesaf = 6 and
R=7).

e B3: hypoxic control images but absent in hypoxic patient images= 6 and

R=7).

e B4: in hypoxic patient images but absent in hypoxic control iegg. = 7 and
R = 6).

e B5: in normoxic control images but absent in hypoxic controlgesi(C = 7 and
R = 6).

e B6: in hypoxic control images but absent in normoxic controlges (. = 6 and
R=7).

e B7: in normoxic patient images but absent in hypoxic patientyesal. = 7 and
R = 6).

e B8: in hypoxic patient images but absent in normoxic patientgesal. = 7 and
R = 6).

For each analysis, we transformf) onto iV, for I = 2, ..., L, by inputting both into
steps 1-4 of the composite algorithm described in Subse2ti®.4 to produce the final
posterior matching probabilitieg’. We transformz(”) onto iV, forr = 1,..., R, by

inputting both into steps 1-4 of the composite algorithm todpice the final posterior
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matching probabilitiesj'”. We estimate the variance in Equati¢29), o2, using
Equation(2.25) with denominators instead ofv.
Table 5.8 displays the index of each image present in theselata hese indices

are then used to indicate the image containing the 5 topregqoints in analyses A

(Tables 5.9) and analyses B (Tables 5.10).

Control | Initial Replicate| Patient| Initial Replicate
Hypoxia 1 1 2 1 5 6
Normoxia 3 4 7 8
Hypoxia 2 9 X 2 11 X
Normoxia 10 X 12 13
Hypoxia 3 14 15 3 18 19
Normoxia 16 17 20 21
Hypoxia 4 22 23 4 25 X
Normoxia 24 X 26 X

Table 5.8: Table displaying indices of the 26 images withmmdataset.

The highest score is 0.9418 which highlights spotID 112 iage 10 as being the
most likely point to be present in normoxic controls imagetsdtosent in hypoxic controls.
Figure 5.7a-f display the superimposition of each remaimiarmoxic control image onto
image 10. Figure 5.8a-f display the superimposition of dagboxic control image onto
image 10. Each figure is magnified onto the point of interesedch case, a red ‘circle’

with a radius equal to twice the RMSB, surrounds spotID 112 in image 10.
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Al A2
Image| Point| Score Image| Point| Score
23 171 | 0.7748 7 103 | 0.7525
23 168 | 0.7682 12 108 | 0.7453
23 163 | 0.7644 18 73 | 0.7317
15 124 | 0.7311 8 110 | 0.7155
16 116 | 0.7020 12 113 | 0.7142

A3 A4
Image| Point| Score Image| Point| Score
3 107 | 0.7203 18 84 | 0.7729
10 89 |0.7161 19 85 | 0.7695
3 167 | 0.6987 9 102 | 0.7633
7 107 | 0.6900 15 92 | 0.7564
3 161 | 0.6849 19 57 | 0.7557

Table 5.9: Table showing the top five scoring points in aregys.
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Bl B2 B3
Image| Point| Score Image| Point| Score Image| Point| Score
23 6 0.9115 20 67 | 0.7629 15 14 | 0.7992
23 11 | 0.9077 7 157 | 0.7473 15 13 | 0.7834
10 6 0.8929 20 59 | 0.7391 2 4 |0.7689
24 62 | 0.8781 7 86 | 0.7005 1 5 0.7687
17 7 0.8760 7 97 | 0.6871 1 3 0.7659
B4 B5 B6
Image| Point| Score Image| Point| Score Image| Point| Score
18 73 | 0.8905 10 112 | 0.9418 15 14 | 0.7629
5 206 | 0.8788 10 24 | 0.9165 1 61 | 0.7598
12 106 | 0.8483 10 19 | 0.8883 15 13 | 0.7520
5 134 | 0.8339 10 | 110 | 0.8733 15 92 |0.7195
11 | 148 | 0.8339 3 161 | 0.8665 22 1 |0.7087
B7 B8

Image| Point| Score Image| Point| Score

8 150 | 0.6945 6 15 | 0.8722

7 87 | 0.6900 18 84 | 0.8447

21 26 | 0.6857 19 73 | 0.8431

8 18 | 0.6851 6 133 | 0.8417

7 13 | 0.6757 18 85 | 0.8353

Table 5.10: Table showing the top five scoring points in asedyB.
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Figure 5.7: Figures displaying the final superimpositioneath of the 6 remaining
normoxic control images onto image 10. The filled circlegespnt points in image 10
and the crosses represent points in the transformed ses@myki Black indicates non-
markers and green indicates markers. The radius of the irett’csurrounding point 112
in image 10 is equal to twice the standard deviationysed within the model to provide

the superimposition.
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Figure 5.8: Figures displaying the final superimpositioeath of the 6 hypoxic control
images onto image 10. The filled circles represent pointsniaigie 10 and the crosses
represent points in the transformed second image. Blackates non-markers and
green indicates markers. The radius of the red ‘circle’aunding point 112 in image
10 is equal to twice the standard deviati@n, used within the model to provide the

superimposition.
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Chapter 6

Predicting toxicity by shape similarity

6.1 Introduction

In Chapter 6 we test the hypothesis that the potential ttyximi a pesticide is related
to the shape similarity between the pesticide and the satbstACh, of the protein,

AChE, to which they both bind. In Section 6.2, we illustrake tstructure of ACh

and depict the general structures of a carbamate and anopigasphate (OP), the two
families of pesticides considered within these analyse® a0 display the reaction
that takes places between each ligand and AChE before biegcthe concept driving
the development of the shape similarity measure. In Se@&i8nwe discuss how we
can measure the shape similarity between ACh and a giveitigest\We introduce the
data considered within the analyses, including the moégatdnformations and known
biological indicators of toxicity in Section 6.4. Finallyy Section 6.5, we explore the
significance of the developed shape similarity measure@saity predictor and compare
it to the significance of the known biological indicators okicity. We also compare
the accuracy of the toxicity predictions when applying owdel to the accuracy when

implementing a previously developed online predictor.
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6.2 Ligand structures, reaction and shape similarity

concept

6.2.1 Structures and reactions

Here we describe the structures of the different ligand®uodnsideration and illustrate
the reaction that takes place when each ligand type bindS€tdEA

Figure 6.1 displays the structure of an ACh molecule. It isnalsmolecule with
only 10 non-hydrogen atoms (relative to the 4143 non-hyeinaoms within the protein,
AChE). The number of non-hydrogen atoms within the considg@esticides range from

7 to 28 with an average of around 16.

Figure 6.1: Figure displaying the structure of the substr&iCh. The black spheres
represent carbon atoms, the blue sphere represents aemitetgm, the red atoms

represent oxygen atoms and the white spheres represeiigeydatoms.

Thompson and Richardson [79] describe the general steicfua carbamate and
an OP pesticide molecule. They also outline the reactiontétkes place between each

ligand type and AChE. Both of these are illustrated in Figug
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Figure 6.2: Figures a), b) and c) depict the reaction betw¢ainE and: ACh; a general

carbamate; and a general OP respectively.
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6.2.2 Concept

As introduced in Subsection 1.3.2, QSAR assumes that theitgpadr function of a
molecule is correlated with one or more of the structuralppries of the molecule
itself. At the basis of the theory is that similar moleculeslice similar reactions
and consequences within a biological system. QSAR hasteesiuh an increased
understanding of the molecular properties necessarydgdria certain activity and is
therefore vital to the discovery and development of new ancereffective drugs, as well
as producing an increased understanding of current drugs.

In terms of this research, QSAR represents the theory theticpe toxicity is
correlated with one or more properties of the pesticide maéeitself. Much research has
been carried out to highlight the structural properties thiquence the resulting toxicity
[30] [91]. Here, we test the unique hypothesis that pesi¢akicity is related to the
similarity between the pesticide molecule and the natural ligand, AGhwith ACh that
the protein, AChE, naturally binds in a very similar way thgiesticide molecule would
bind. We can see from Figure 6.2 that ACh, a carbamate and agaCt*form a bond
with the same oxygen atom (within a particular serine resjdi AChE. Both ACh and
a carbamate contain a ‘carbon double-bond oxygen’ withéir thtructures, whereas an
OP contains a ‘phosphorus double-bond oxygen’. The afonetioreed oxygen atom
in AChE will form a bond with this carbon atom for both ACh andcarbamate, or
the phosphorus atom for an OP. It seems intuitive that thdasitres or dissimilarities
between a synthetically developed pesticide and the ngtdocamed ligand will help
characterise the bind with AChE and ultimately influence final activity, i.e., the
induced toxicity.

In this chapter we produce a measure stfape similaritybetween the two
molecules. Molecular shape is not well-defined in molechlalogy [58]. One of the
reasons for this is likely to be due to the flexibilty and coo@l change of molecular

shape dependent on the encountered environment. To aeovdshdifficulties associated
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with incorporating molecular flexibility, we focus on padiar conformations which we
discuss further in Subsection 6.4.3.
Next we introduce the methodology developed to produce asumeaof shape

similarity between ACh and a pesticide.

6.3 Methodology to produce measure of shape similarity

Let . andz be them x 3 andn x 3 matrices containing the atomic coordinates of ACh and a
pesticide respectively. We exclude hydrogen atoms fronatiadyses so there ane = 10
atoms in ACh under consideration. Drydehal.[27] consider Bayesian methodology
within MCMC to infer the matching and transformation neeggso superimpose (or
align) two molecules. Here we provide alternative methggdd reach the same goal and

ultimately enable the calculation of the shape similargyween two molecules.

6.3.1 Graphical matching algorithm

To assign atomic matches acrgssndx we use the prograrBKTest(written by Gold
[36]) which implements a graphical matching algorithmgaorally developed by Bron
and Kerbosch [17]. Inputting andz into BKTest, distance matrices are produced for
each molecule and used to find a maximal common-induced apbdo infer the best
atomic matches.

Using similar notation to that introduced in Chapter 2 )iébe thel0 x n matching

matrix, where
1 if u; matches;
! 0 otherwise 7
fori =1,...,10andj = 1,...,n. Note that in this case, we do not have a final column
indicating coffin bin allocations as we did in Chapter 2.
Let u* andz* represent matrices containing the matched atomic codedirzeross

p andx respectively. 1fM;; = 1, theny; = p,; andz; = z; for somel, where there are
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[=1,...,L matches.
Before matches can be inferred, we need to inpdistéance tolerancénto the

matching algorithm. The distance tolerance ensures that
[, = pgy| = lof, — @, || < G,

where( indicates the input distance tolerante/, = 1,..., L andl; # [5.

6.3.2 Superimposition via Procrustes methodology

Using the inferred matches, we use Procrustes methodo®&jyq superimposg* onto
z*. Let A andb be the estimated transformation parameters (scale is levare here).
The measure of shape similarity is simply the sum of sQqUA&S] between the matched

atom pairs after the superimposition (measured in squargstmsﬁ?), ie.,
L
0SS=) _|lzj — Auj —bl*,
=1

where A is the estimated x 3 rotation matrix and is the estimated translation vector.
Note that the typical distance between two atoms in a moteisulA-2A,

It should be noted that we consider OSS rather than the roat mguared distance
(RMSD) so that information involving the number of matchgsis not lost.

The number of matches inferred by the graphical matchingrahgn, L, is of
course discrete. Figure 6.3 displays the output OSS aghi@shput distance tolerance
when comparing a random pesticide with ACh. We can see teatasing the distance
tolerance(, will generally increase the output OSS, thatiand OSS have a high positive
correlation.

However, increasing will not alwaysincrease the number of matchds,so the
OSS can remain constant ove(for example, for¢ € [0.7,1.1] in Figure 6.3). It is also
possible for the OSS to decrease ascreases as the subset of matches may change even
when L remains constant (for example, fore [1.4,1.5] whenL = 8 or { € [2.0,2.1]

when L increases froni. = 8 to L = 9).
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Figure 6.3: Figure displaying the output OSS against thatidgstance tolerance, as
red dots. The number of matches inferred at a specific disteoterance is indicated at

the top of the plot.
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6.4 Data introduction and development

Here we discuss the data we consider within the followindyeses and give appropriate
notation. We first introduce the toxicity data, the bioladidescriptors and the atomic
coordinates representing specific pesticides given to u€®ly, York. Obviously the
measure of shape similarity produced will be extremely ddpat on the considered
molecular conformation of each pesticide and ACh. So nextdigeuss the single
conformation we consider for each pesticide and the two aromdtions of ACh
under investigation. Finally, we show how the pesticide foonation and the two
conformations of ACh can be used to produce two measuresapkessimilarity for each

pesticide.

6.4.1 Toxicity data

We have toxicity data for different subsets of 145 pestigidalculated from 5 different
species; mallards, japanese quails, red-winged blackbstdrlings and bobwhite quails.
We consider the LD50 toxicity, that is, the amount of pedgcnheccessary to kill 50
percent of a species.

Let yi(k) be the toxicity of theith pesticide when ingested by th¢h species, for
i=1,...,mpandk =1,...,5(k = 1 indicates bobwhite quail#, = 2 Japanese qualils,

k = 3 mallards k = 4 red-winged blackbirds antl = 5 starlings).

6.4.2 Biological descriptors

We have been given over 1000 biological descriptors for ehtihe 145 pesticides.

A DEMETRA software tool [9] is available online to predicitlacute oral toxicity
related to the administration of a pesticide to bobwhiteilguaPrevious research has
highlighted numerous biological descriptors as beingiigant indicators of toxicity [30]

[91]. The software requires the input of 14 of these biolabdescriptors, 13 of which
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are numerical. Itis these 13 numerical descriptors thatamsider in the later analyses.
Let 0;; be thejth biological descriptor of théth pesticide, found to be relevant to
bobwhite quail toxicity, for; = 1,...,13 andi = 1,...,52. Here we consider the 52

pesticides for which we have bobwhite quail toxicity data.

6.4.3 Molecular conformations
Pesticide conformation

We have atomic coordinate data for 145 pesticidasimmum-energy conformationk
mathematical terms, the minimum-energy conformation obéegule is equivalent to the
conformation associated with the highest likelihood ofusoence. For this reason, it is
appropriate to use the minimum-energy conformation of gashicide for our analysis.
Let () be then; x 3 matrix containing the coordinates of the minimum-energy

conformation associated with thin pesticide.

Conformations of ACh

It is also appropriate to compare each pesticide to the numirenergy conformation
of ACh. In this case, we were not given the appropriate atocomrdinates so they
must be generated. For an input SMILES formula, the programn@ [35] will
generate a single low-energy conformation. The SMILES fdamof a molecule
is the ‘Simplified Molecular Input Line Entry Specification'The formula for ACh
is CC(=0O)OCCIN+](C)(C)C [44]. Inputting this SMILES forntau into an online
demonstration of Corina, a low-energy conformation of A€henerated.

We should note that this is a low-energy conformation rathan a global minima.
Michael North [60] states that ‘there is no methodology hian guarantee to find the
global minimum-energy conformation. There are, howevarious methods which can
be used to generate multiple [local] minimum-energy camfaions of a molecule’.

Another sensible conformation of ACh to examine is the hivaci.e. the docked
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conformation of ACh within AChE. Anative structure of AChE, that is, a crystallised
structure of AChE with its substrate, ACh, is recorded inRnetein Data BankKPDB),
an online archive of experimentally determined structurésom this database we can
extract the docked conformation of ACh and consider thisulmsecond conformation of
ACh under investigation.

Aside: This native structure, nametbrpedo californicafile 2ace [65], was
extracted from a particular species of stingray. Althouggh& has been isolated from a
wide range of species [33], few 3D structures of the nativeglex have been recorded,
including structures from the species with which we havecioxdata for. However, a
high degree of homology exists for AChE across a variety ecgs [55] andorpedo
californicais often used as a standard native structure of AChE [79]imvitiis type of
analyses.

Let ™M) be thel0 x 3 matrix containing the atomic coordinates of the low-energy
conformation of ACh. Lef(? be thel0 x 3 matrix containing the atomic coordinates
of the docked conformation of ACh. We refer to the analysesluing (Y andu? as

Case landCase 2throughout this text.

6.4.4 The measure of shape similarity

We have previously introduced the distance toleragceecessary to output the inferred
matches across ACh and a pesticide before calculating tisesB&pe similarity measure.
Intuitively, there is no obvious value gfthat we should consider. Investigating a range
of ¢ may produce the same vectors of OSS over the pesticidestt& than fixing,, we
choose to fix the number of matches/as- 10, that is, all 10 atoms within ACh must be
matched to atoms within each pesticide (as 144 out of the #4B6gdes have more than
10 atoms). Figure 6.3 displays the possibility for the OS8ay over a fixedl.. So we
further considet as the minimum distance threshold necessary (to 2dp) tomaditdé 0

atoms within ACh.
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In Case 1, we produce the OSS measure of shape similarityebapt’) and 2
fori = 1,...,144 (note that the pesticide with only 7 non-hydrogen atoms dusled
from the analysis, leaving 144 pesticides remaining). Both andz® are input into
the graphical matching program, BKTest. We fix the distaiceshold ag = (;;, the
minimum distance tolerance to find corresponding atomslfdi0satoms within.®.

Let 2(9* be thel0 x 3 matrix containing the matched coordinates of atoms(ih
The atom represented by tka row in (), xl(i)*, is matched to the atom represented by
thelth row in @, ;" fori =1,...,10.

Finally, we apply Procrustes methodology to superimp@se onto z(V* before

calculating the OSS measure of shape similarity, so that
10
* 1)% n 1 7
0= Ml — Ay — b1,
=1

where®?; indicates the OSS when calculating the shape similaritwéen; (V) andz®.
The estimated transformation parameters necessary toisose () onto zV* are
denoted byA,; andb;;.

We repeat this process for the Case 2 conformation of ACh adymre the OSS

measure of shape similarity betwee? andz), denoted by, fori = 1,...,144.

6.5 Analyses of toxicity prediction

Let y*) be the vector containing all pesticide toxicity values fpesiesk. Let 9%’”* and
Hé"”)* be the corresponding vectors of shape similarity in CasedlGase 2 respectively,
fork=1,...,5.

First we explore the distributions of the shape similaritgasures for the 144
pesticides in both Case 1 and Case 2. Then we investigatetraation betweerny*)
and the two measures of shape similaftf)* and6\"" for k = 1,. .., 5.

Finally we focus on the data we have concerning the bobwhidd tpxicity. For the

52 pesticides for which we have toxicity data, we includertteasures of shape similarity
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alongside the 13 biological descriptors and investigatetivdr there is an improvementin
toxicity prediction. We compare the significance of the shsimilarity measures with the
significance of the 13 biological descriptors when predgtoxicity. Lastly, we compare
the toxicity prediction accuracy when using our developedieh and the known online

predictor [9].

6.5.1 Distribution of the shape similarity measures

Figure 6.4 explores the distributions of the shape sintylaneasures. Figure 6.4a displays
boxplots of the shape similarity measure for Case 1 and Cassp2ctively. Both Case
1 and Case 2 show evidence of four outliers, though only oserwhtion is an outlier
in both cases. Figure 6.4b displays the boxplot of the Casegessimilarity subtracted
from the Case 1 shape similarity measure. The differencesdnaymmetrical distribution
and indicate that the Case 1 measure is generally higherttigaGase 2 measure for a
given pesticide. Figure 6.4c shows the Case 2 shape sityilagasure against the Case
1 shape similarity measure. When all observations are dere, the regression line
shows a slight positive correlation between the two vaesbExcluding the outliers (as
indicated by the boxplots in Figure 6.4a), the regressiom i much flatter indicating no
relationship between the Case 1 and the Case 2 shape diynil@asures and highlighting

the importance of the molecular conformations considenguinmthese analyses.

6.5.2 Correlation between toxicity and shape similarity masure

Figure 6.5 displays*) against\"" in the first column ang®*) against\”" in the second
columnfork = 1,...,5. Table 6.1 displays the number of toxicity observations aeeh
for each species. Pearson’s correlation coefficient betyéeand both9§k)* and@ék)* has
been calculated including and excluding outliers. The sided critical value at a 95%

confidence level (when considering all observations) is displayed for each species.
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b) C)

Figure 6.4: Figures a) displays boxplots of the shape siityilaneasure for Case 1

and Case 2 respectively. Figure b) displays the boxplot ®fGhase 2 shape similarity

subtracted from the Case 1 shape similarity measure. Fwkows the Case 2 shape

similarity measure against the Case 1 shape similarity areas
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Note: We consider the four shape similarity measures highligim&igure 6.4a for

both Cases 1 and 2 as outliers. They include the observatiassed as being less than

LQ-1.51QR or higher than UQ+1.5I1QR. The toxicity outlien®eaalculated in the same

way but separately for each species.

Pearson’s correlation coefficient

Case 1 Case 2
Species No. obs.| Inc. outliers Exc. outliers Inc. outliers Exc. outliers Critical value
1 51 -0.18 -0.07 -0.45 -0.31 0.23
2 67 -0.05 -0.08 -0.25 -0.23 0.20
3 84 -0.12 -0.11 -0.13 -0.03 0.18
4 72 0.14 0.14 -0.09 -0.13 0.20
5 62 0.12 0.20 -0.02 -0.07 0.21

Table 6.1: Table displaying the number of toxicity obsensa we have for each species.

The Pearson’s correlation coefficient betwegft and bothd"* and 6" has been

calculated including and excluding outliers.

The onedidetical value at a 95%

confidence level is also displayed for each species whendanrgg the full dataset.

In Case 1, we can see that negative correlations betxy/ééand@%’“)* have been

calculated folk = 1, 2, 3, though positive correlations were found foe= 4, 5. In Case 2,

we can see that a negative correlation betv@@mnd@é’“)* isfound forallk =1,...,5.

Conclusion

The only significant linear correlation we find is in Case 2t $jwecies 1 and 2, bobwhite

quails and japanese quails, we find evidence at the 95% canédevel of a negative

correlation between toxicity and the shape similarity nneaswhen the outliers are both

included and excluded. This result could be due to an ineced®mology between

the docked ACh within quails and the type of ray from which to@sidered ACh was
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Figure 6.5: Figure displaying, againsﬂ%’“)* in the left column and; againsﬂé’“)* in
the right column. The:th row indicates théth species. Points below or to the right of
the black dotted line indicate outliers within the datagéte red and black lines are the

fitted regression lines when outliers are included and ebeduespectively.
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extracted.

6.5.3 Predicting the bobwhite quail toxicity using the shap

similarity measure alongside biological descriptors

In summary, the data we now consider is as follows fer1, . .., 51, for the 51 pesticides
for which we have bobwhite quail toxicity data (excluding thesticide with only 7 non-

hydrogen atoms).

e The vector of pesticide toxicitieg;, where an elemeny; is the bobwhite quail
toxicity of theith pesticide. (Note that for simplicity of notation, we haety =
y) etc.)

e Theb51 x 13 matrix containing the biological descriptors, where amradatf;; is

the jth descriptor of théth pesticide.

e The corresponding vectors of OSS shape similatjtgndd;, for Case 1 and Case 2
respectively. An element;, andd;,, is respectively the Case 1 and Case 2 measure

of shape similarity for théth pesticide.

The online predictor discussed in Subsection 6.4.2 [9] iglarid model consisting of
two possible algorithms, one of which is simply a linear mddewnhich the biological
descriptors are the independent variables.

For Casel, [ = 1,2, we choose to fit a linear model between the variables and

response, i.e. find; that best fits
13
yi = Bo + 5i0] + Z Bjis16ij + €, (6.1)
7j=1

for j = 0,...,14. The intercept is denoted by, 5, is the coefficient of the shape
similarity measure and; is the coefficient of the¢;j — 1)st biological descriptor foj =
2,...,14. The normally distributed error of thih observation is denoted lky for i =

1,...,51.
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Initially we calculate the pairwise correlation betweere ttoxicity and each
variable. We test the significance of the full linear modeltésting the hypothesis that
H, : B = 0, wheref is the vector containing al; for j = 1,...,14. We then test the
significance of each variable by testing the hypothesedihats; = 0forj =1,...,14.

For Case 1, the top table in Tables 6.2 displays the coral&gtweery andd; and
thep-value off3;, denoted by (67, y) andp, -value respectively. The ranks of these values
in comparison to the corresponding values of the 13 biokdgiescriptions is shown.
The p-value of the full linear model is stated. Also displayedhs ©SS and correlation
betweeny and the predicted toxicities, denoted fayThe adjustedz:? is displayed in the
final row. The same is displayed for Case 2, in both cases @emnsg the inclusion and
exclusion of toxicity outliers.

For comparison, the bottom table in Tables 6.2 displaygthalue, the OSS and
correlation between the true and fitted toxicity, and theustdid 2> when the shape
similarity measure is excluded from the linear model. Sothis case, only the 13
biological descriptors are used to predict toxicity.

Figure 6.6 displays the residuals agaipsinote not the fitted toxicity;) when
the toxicity outliers are a) included and b) excluded whamitthe linear model. The
filled circles represent observations when the shape measexcluded from the linear
model and the crosses indicate the Case 2 residuals. Theeldett line connects the two

residuals for the same pesticide.

Discussion

We discuss Case 1 and Case 2 separately.

In Case 1, when all observations are considered, the absmutelation between
andd; is higher than the correlation betwegmand 10 of the biological descriptors. The
pi-value is lower than thg-values of 8 biological descriptors, though it is not sigraft
enough to reject, : f; = 0. When outliers are excluded, the absolute correlation

betweeny and#; is again higher than the correlation betweeand 8 of the biological
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Including OSS shape measure
Case 1 Case 2
Inc. outliers Exc. outlierg Inc. outliers Exc. outliers
p(67, ) -0.1768 -0.1557 -0.4521 -0.2607
Rank: p(0;,y) 4 4 1 3
pi-value 0.3006 0.6205 0.0003 0.0723
Rank:p,-value 6 12 1 3
p-value 0.2189 0.0371 0.0048 0.0131
0SS, 1) 23.8031 8.9277 17.0769 8.1209
p(y, ) 0.5892 0.6954 0.7291 0.7282
AdjustedR? 0.0933 0.2577 0.3495 0.3247
Excluding OSS shape measure
Inc. outliers Exc. outliers
p-value 0.2131 0.0243
0SSs(, 1) 24.5323 8.9975
p(y, ) 0.5720 0.6925
AdjustedR? 0.0908 0.2745

Table 6.2: For Case 1, the top table displays the correldteweeny and¢; and the
p-value of 3;, denoted byp;-value. The ranks of these values in comparison to the 13
biological descriptions is shown. Thevalue of the full linear model is stated. Also
displayed is the OSS and correlation betwgeand the predicteg. The adjusted?? is
displayed in the last row. The same is displayed for Case 2t cases considering the
inclusion and exclusion of toxicity outliers. The bottonbl@a displays the»-value, the
OSS and correlation between the true and fitted toxicity, thedadjustedz? when the
shape similarity measure is excluded from the linear modél.again consider both the

inclusion and exclusion of toxicity outliers.
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Figure 6.6: Figure displaying the residuals againsthen the toxicity outliers are a)

included and b) excluded. The filled circles represent alasiens when the shape

measure is excluded from the linear model and the crossésirdhe Case 2 outliers.

The dotted red line connects the two residuals for the sarstecyuie.
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descriptors. Though thg,-value is now lower than the-values of only 2 biological
descriptors, again it is not significant enough to rejggt: 3; = 0. Including outliers,
we find a slight increase in the adjust&d when the Case 1 shape similarity measure is
included within the linear model. Excluding outliers, wedfia decrease in the adjusted
R? when the Case 1 shape similarity measure is included wiligitinear model.

In Case 2, when outliers are included, the absolute coivel&etween, andd} is
higher than the correlation betwegrand all 13 of the biological descriptors. The
value is lower than thg-values of all 13 biological descriptors and is significambegh
to rejectH, : £; = 0 at even the 99.9% confidence level. When outliers are exdlude
the absolute correlation betwegrandé; is higher than the correlation betwegrand
11 of the biological descriptors. The-value is lower than the-values of 11 biological
descriptors and is almost significant enough to reféct 5; = 0 at the 95% confidence
level. Including outliers, we find a large increase in theuathd ?? when the Case 2
shape similarity measure is included within the linear nhoBgcluding outliers, we find
a relatively large increase in the adjust@tiwhen the Case 2 shape similarity measure is

included within the linear model.

Conclusion

The main conclusion is that the shape similarity measuredsst the minimum-energy
pesticide conformations and the docked conformation of AGhsignificant predictor of

the associated acute oral toxicity to bobwhite quails. We s=e, from the illustrations
in Figure 6.6, an obvious improvement in the toxicity préidics of pesticides with

particularly low or high toxicities. We should note that $keeresults are vulnerable to
the problems associated with multiple testing. Jhealues of the variable coefficients
are dependent on the variables under consideration, tnergfe could find them less

significant if a different set of variables were considered.
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6.5.4 Comparison of the fitted model with an online toxicity

predictor

In the final subsection, we use cross-validation to compleeaccuracy of toxicity
prediction under our model to that found when implementimg online predictor [9].
In turn, we exclude each of the 51 pesticides and fit the lingadel in Equation(6.1)
using the remaining 50 pesticides as the training set. Therfitted model is used to
predict the toxicity of the excluded pesticide. We do thisldoth Case 1 and Case 2.
Let p(y,y) denote the correlation between the true and predicteditiescLet|r|
denote the mean absolute residual between the true andiecdoxicities. Table 6.3

provides these results for each of the considered toxicégiptors.

Online predictor Case 1l Case?2
p(y,9) 0.31 0.14 0.40
|7 1.23 0.69 0.65

Table 6.3: Table displaying(y, y) and|7| when implementing the online predictor or

when applying the linear model in Equati¢t1) for Case 1 and Case 2.

Conclusion

The one-sided critical value of the correlation coefficiana 95% confidence level with
51 observations is 0.23. We can see from Table 6.3 that betagplication of the online
predictor and the Case 2 linear model provide a significanmetation between the true
and predicted toxicities, with the highest correlatiomiggproduced when including the
Case 2 shape similarity measure within our model.

Using the Case 1 and Case 2 linear model as a toxicity pregictwides a much
lower absolute residual between the true and predicteditis on average that the online

predictor.



Chapter 6. Predicting toxicity by shape similarity 148

Here we have further evidence that the inclusion of a shapdasity measure
increases the accuracy of toxicity prediction, espechalten the docked conformation

of ACh is used to calculate the measure of shape similarityd®en ACh and a pesticide.
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Chapter 7

Pesticide dock as toxicity predictor

7.1 Introduction

In Section 7.2 we describe the concept behind consideringoekedi molecular
conformation of a pesticide when attempting to predict soaiated toxicity. In Section
7.3 we introduce a docking program and explore the prediciruracy by using it to
predict the known docked conformation of ACh within AChE Saction 7.4 we define a
method to calculate a distance measure between a docked kgal AChE and discuss
how it can be used as an indicator of docking accuracy. Weligigha relationship
between this measure and the accuracy of a predicted dockedtion 7.5 we produce
a measure of similarity between the known dock of ACh and tieglipted pesticide
docks. Finally we investigate the significance of these mness alongside an associated

inhibition constant, as toxicity predictors for the bobteguail.

7.2 Concept

In Chapter 6 we found evidence that the shape similarity eetwthe minimum-energy
pesticide conformation and the docked conformation of A@B @significant predictor of

the associated quail toxicity. 3D-QSAR approaches consiseproperties of a ligand in
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their bioactive form to be more appropriate indicators ef éissociated activity. In terms
of this research, 3D-QSAR dictates that the properties oickel pesticide conformation
will provide a better indication of the associated toxicity

Within this section we want to calculate a measure of sintyléetween the docked
locations of both ACland a pesticidéo explore whether this provides a more significant
predictor of toxicity. We use a docking program (introduaethe following subsection)
to predict the docked conformation of the pesticides undesiceration. A common
approach in this type of analysis is to fix the protein as rigithis enables a direct
comparison of the docked locations between ACh and a péstwith respect to a fixed
protein. Figure 7.1 illustrates the complementary geoe®tretween a substrate and a
protein, demonstrating the basic lock and key concept fostydated by Emil Fischer
[31]. The concept of a key fitting into the lock to open a dooswaveloped to represent
a substrate binding with a protein to initialise some ativiAccording to this theory,
we can think of a pesticide and ACh as being two different ldgsigned to fit the same
lock. As well as being able to make a direct comparison betwee docks of ACh and
a pesticide, we can also explore whether the closeness @f tietween a pesticide and
AChE provides an indicator of pesticide toxicity. It hasealdy been established that
tightly binding ligands have a high degree of shape compieaniy with their receptor
[22]. It is intuitive that the closer a pesticide and AChEg tighter they are bound, the
longer AChE will be inhibited and the stronger the toxic efse

Note: The theory of the rigid binding site has since been proveddnate and
has been modified by an induced-fit theory proposed by Kodhl&n]. In this case,
the substrate induces changes in the molecular conformeafithe AChE binding site
until the substrate is bound and the final complex shape esméted [15]. However, to
provide a fixed position of AChE relative to both ACh and a jpéd¢, we allow the protein
configuration to remain rigid so that a direct comparisorhefdocked configurations of

both ACh and a pesticide can be made.
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Figure 7.1. Displaying the theory relating the geometricdbbetween a protein and

substrate to a lock and key respectively.

7.3 The docking program, AutoDock 4

7.3.1 Introduction

AutoDock 4 is a suite of C programs implemented to predictdbeformation formed
between an input ligand and protein. It is amongst the fivet paysular docking programs
[74] and came second for docking accuracy when being cordparéhe remaining four
[18]. The top ranking docking program is only commercialgidable whereas AutoDock
is free for academics. AutoDock has been applied with grneatess to the prediction of
enzyme-inhibitor complex conformations [57] and is a l@dchoice for our analyses.
The only input required are the atomic coordinates of thandand protein. The
ligand is treated as flexible and the protein can be fixed asegntigid or flexible within

set residues. AutoDock is made up of three main programs:

1. AutoTors first processes the ligand. The default unbound state (ndater energy
calculations) is set as the extended ligand, where all atwegushed as far away as
possible from each other. Rotatable torsion angles argrassi The ligand explores
six degrees of freedom for translation and rotation plusassigned number of

torsional degrees of freedom.
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2. AutoGrid creates a grid of interaction energies between the inpahtigand the
protein. A 3D grid is constructed around the full protein opaxticular area of
interest, such as the protein binding site. At regular wraksr within the grid,
interaction energies are calculated and stored for each Bgoe within the ligand.
The full energy grid provides a quick look-up table for thelexation of the full
interaction energy between a ligand and protein. The forld fised to evaluate
the energies is based on the Amber force field [19], which wiasapily developed

to represent molecular dynamics involving proteins [88].

3. AutoDock performs the actual docking simulation using a Lamarckianegic
algorithm [57]. The free energy of binding is calculatedlzes difference between
the energies of the separate molecules and the energy ofighediprotein
complex. Itis made up of energy terms for dispersion/rapaldydrogen bonding,

electrostatics and desolvation.

The free energy of binding)G, is used to rank the final predicted conformations over all

simulations. AutoDock defines the relationship with thelition constant as
Ink; < AG.

The more negativA\G, or equivalently the lowek;, the more likely the prediction is to
represent the true ligand-protein conformation. In latedgses we focus on the inhibition
constantf;, as a variable for toxicity prediction.

In the following section we analyse the accuracy of AutoDock

7.3.2 Exploring the accuracy of AutoDock

The accuracy of a docking program is generally measuredstgbility to reproduce an
experimentally determined conformation of a bound ligarsl.[ Although there are no
experimentally determined conformations of the boundipiests under consideration,

there is the bound conformation of ACh and AChE stored in filee2in the PDB [65], as
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considered in Chapter 6. We can use AutoDock to predict how Wl bind to AChE
and compare the predictions to the experimentally detexdwonformation. We carry out
two tests to investigate whether the input conformation GhAwill affect the accuracy of
the predicted dock.

Test 1. We arbitrarily translate and rotate the true docked coné&tion of ACh
away from its docked location (though the distance movedfixad as 100A to ensure
the validity of the created PDB file).

Test 2: We use the progrararog [14] to generate multiple different conformations
of ACh which are then input directly into AutoDock. The onlpput required
to generate an assigned number of conformations is the S$llfdemula of ACh,
CC(=0)OCC[N+](C)(C)C.

We carry out 40 trials for each test, that is, we input 40 ddife starting orientations
and conformations respectively for Test 1 and Test 2. In @¢dah we request that
AutoDock output 50 predictions for the docked conformation

For each test, we fix AChE to be the rigid conformation expenitally determined.
That is, the conformation of AChE is fixed as the true boundfa@wonation. When
analysing the accuracy of AutoDock, we only need to compgaértie dock of ACh with
the predicted docks. The difference between a predictecegperimentally determined
docked conformation is generally calculated as the RMSvéen the corresponding
‘heavy atoms’ [74], i.e. non-hydrogen atoms. (Note thatttiree methyl groups, CH
are interchangeable so we calculate the RMSD in all vanatand use the minimum
value.) First we describe the preparation that must beezhbyefore AutoDock can be

run.

Preparing the molecules, grid and docking procedure

Before AutoDock can be run, we first need to prepare the mtdscthe grid and fix the

parameters within the docking procedure. We do this by aagrgut the following steps.

1. Read the full AChE and ACh complex [65] into the graphicséwuinterface of
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AutoDock after deleting the single bond connecting ACh tcdh&CThe remaining
steps can be carried out within the user interface with defaitings specified

when necessary.
2. Delete the water molecules from the complex and add hyar®tp both molecules.

3. Save the automatically generated PDB files (storing atdomration such as type,
coordinates and partial charges) separately for ACh andeAQle true bound
conformation of AChE is fixed for both tests described abdwa. Test 1, it is this
conformation of ACh that is randomly rotated and transldiefdre being saved as
a separate PDB file. For Test 2, Frog can be set to automgtmatiput PDB files

for each conformation produced.

4. Generate atomic partial charges for both AChE and ACh heddrsional angles

within ACh alone to define a flexible ligand.

5. Prepare the grid by assigning the location of the centgidamensions of the grid.
In these analyses we fix the centre of the grid as the oxygemaithin AChE that
will bind to the considered ligands (see Figure 6.2), so thatgrid captures the

relevant binding site within AChE.

6. Run AutoGrid to precalculate interaction energies faheatom type within ACh

at each grid point.

7. Fix the parameters used within the Lamarckian algorithie. set the number of

predictions to be 50 for each trial.
8. Finally, run AutoDock to produce the predicted docks.

The output can now be used to analyse AutoDock accuracy.
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Analysis of results

We carry out three main forms of analysis. First we exploretivar the predictions in Test
1 differ from those in Test 2. Secondly, we focus on each tebvidually and investigate
whether the initial orientation or specific conformatioeatly influences the final result.
Finally, as in the general case when the true dock is unknawnse the RMSD between
predictions alone to see if the observations are groupetiasiynas to when the RMSD
between the true and predicted docks are used.

Test 1 v Test 2 observations

Figure 7.2b displays; against the RMSD between the true and predicted docks for
the40 x 50 predictions for both Test 1 and Test 2. Due to the observestarimg about

RMSD, we choose to fit a global Gaussian mixture model so that
RMSD ~ p;N(p;,073),

where; and a? are the mean and variance of ti cluster andp; is the probability
of an observation being in clustgr It is considered a global distribution because all
observations in both Test 1 and Test 2 are considered. Wgnatbe& number of clusters
as that that maximises the Bayesian Information Criter®IC] for EM initialized by
model-based hierarchical clustering for parameterizegs&an mixture models. Finally
complete hierarchical clustering on the set of differenbesveen RMSD is used to
allocate each observation to a particular cluster. FiguBa Bhows that the BIC is
maximised at four clusters and each of the four clusters eatidtinguished by character
in Figure 7.2b.

Table 7.1 displays the number of observations in clugter;, and the estimated
parameters of the mixture modgl,, i, anda—j. for cluster; = 1,...,4. We can use the
Chi-squared test to investigate whether the number of gagens in each cluster for Test
1 and Test 2 separately follow the applied global distrimuti

Conclusion

Thep-value for both Test 1 and Test 2 observationk @4 x 10~7, indicating that
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Figure 7.2: Figure a) displays the BIC against the numbelusiters. Figure b) displays
k; against the RMSD between the true and predicted docks. Bidotates observations

from Test 1 and red indicates observations from Test 2. E&gter is indicated by

different symbols.

Clusterj
1 2 3 4
n; | 3666 276 45 13
p; | 0.916 0.069 0.011 0.008
fi; | 2.152 5.745 7.869 9.30p
7 10.034 0.019 0.015 0.118

Table 7.1: Table displaying the number of observations aheduster and the estimated

parameters of the mixture model.
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observations from Test 1 and Test 2 do not follow the applieta distribution. That
is, inputting the true docked conformation (although atradoan orientation) provides
significantly different predicted docks than when a randomfarmation is input.

Note: Thek; for the more accurate predictions is much lower in Test 1 thamest
2. However, the observation with the minimumis present in the most accurate cluster
in both tests.

Trial dependency within each test

Following the same procedure as in the previous investigatie fit a sub-global

Gaussian mixture model separately to both Test 1 and Tess& adtions so that
RMSD ~ ple(,Ulj, U%j) and RMSD~ pZJ'N(Mij Ugj)a

respectively, where:;; and a%j are the mean and variance of thh cluster andp,;
is the probability of an observation being in clustein Test 1 for example. They
are considered to be sub-global distributions becausenadigmns in both Test 1 and
Test 2 are considered separately. Again we fix the numberusterls as four for the
observations in each test. Table 7.2 displays the numbebsdreations in each cluster
and the estimated parameters of the mixture model for eath\i¢e again use the Chi-
squared test to investigate whether observations fromQ@heals in each test follow the
corresponding sub-global distribution applied.

Conclusion

For Test 1, we found evidence that the observations fromtitais do not follow
the applied sub-global distribution at the 95% criticadeVFor Test 2, we found evidence
that the observations from only one trial did not follow thmpked sub-global distribution
at the 95% critical level.

When inputting the true docked conformation of ACh at a randwientation, 10%
of the considered starting values do not follow the geneistridution applied to the
RMSD over all predictions. This provides evidence that tteeting orientation does

affect the output if the dock is known.



Chapter 7. Pesticide dock as toxicity predictor 158

Test 1 Clusterj Test 2 Clusterj
1 2 3 4 1 2 3 4
niy; | 1904 85 8 3 ng; | 1762 191 37 10

T

pi; | 0.952 0.042 0.004 0.002 p,; |0.881 0.096 0.018 0.00b
fi; | 2.070 5.646 7.814 9.354 [p; | 2.241 5.789 7.881 9.290
&fj 0.035 0.023 0.019 0.29¢ &Sj 0.018 0.011 0.014 0.090

-

==

Table 7.2: Tables displaying the number of observationsaah&luster and the estimated

parameters of the mixture model fitted for Test 1 observatard Test 2 observations.

When inputting a random conformation of ACh, only 1% of thesidered starting
values do not follow the general distribution applied to RMSD over all predictions.
This provides evidence that, if the true dock is unknown rémelom conformation input
as a starting value does not greatly influence the output.

Using predicted docks to assign clusters

Here we assign clusters using the RMSD between the prediltiekis alone. A
RMSD< 2.5A between the true dock and predicted dock is classed as a&ssfat
prediction [43]. We again use complete hierarchical clisteand cut the tree at a height
of 2.5A so that we locate a set of unique conformations.

Figure 7.3 display#; against the RMSD between the true and predicted docks for
a) Test 1 and b) Test 2 where each cluster (allocated usingtD between predicted
docks alone) can be visualised. Note that the RMSD betwesinuik and predicted docks
is only used for reasons of visual comparison.

Conclusion

There are seven clusters formed using the RMSD betweencpimedi in Test 1 and
five clusters formed using the RMSD between predictions gt Zeln both cases a greater
number of clusters is found than when the RMSD between tleeana predicted docks

is considered. Note that the RMSD between the true and pieeddocks can be equal
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Figure 7.3: Figures displaying against the RMSD between the true and predicted docks
for a) Test 1 and b) Test 2. Each cluster is indicated by dififesymbols.

even though the predictions differ significantly. Using RSD between predictions we
are able to locate the local minima that may be indistingalida when considering the
RMSD between the true and predicted docks.

For both Test 1 and Test 2, the cluster containing the moneratepredictions (i.e.
the lower RMSD between the true and predicted docks) is tlyedsh, containing 1848

and 1762 observations respectively.

Overall conclusions

e A RMSD< 2.5A between the true dock and predicted dock is classed as a
successful prediction [43]. We find that 94% of predictiorsteh this criteria in
Test 1 and 88% from Test 2.

e The conformation associated with the minimuia has RMSD=2.08 and
RMSD=2.31 from the true dock in Test 1 and Test 2 respectively. So ihbot

tests the observation with the minimumrepresents a successful dock.

e Inputting the true docked conformation of ACh (though at ad@m orientation)

produced a different distribution of predicted docks thahew a random
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conformation of ACh was input. From Table 7.2 we can see thaititting the
true docked conformation produces a larger amount of mararate predictions

which is what we intuitively would expect.

e If the true dock is known, the orientation of the input ligacwhformation does
affect the accuracy of the output predictions. Howeveheftrue dock is unknown,
the specific random conformation input as a starting vales dot greatly influence

the accuracy of the output predictions.

e When using the RMSD between predicted docks only to clubobservations,
the largest cluster contained the more accurate predgctioboth Test 1 and Test
2. In Test 1, 100% of the observations in the first cluster HRRMSD< 2.5A
from the true dock. In Test 2, 99.8% of the observations infifs¢ cluster have

RMSD< 2.5A from the true dock.

7.4 Using the distance between the protein and docked

ligand as an accuracy indicator

Here we show how a distance measure between a predicted Akhadd the protein,
AChE, is an indicator of the accuracy of the observationkiwithe largest cluster (formed
using the RMSD between predicted docks alone).

Let up denote the4143 x 3 atomic coordinate matrix for AChE (excluding

hydrogens). LefiY) denote thel0 x 3 coordinate matrix for théth predicted dock in

Test 1 forl =1,...,2000. We measure the distance betweenithelock and.p as
10
~ (1
>l = w12,
k=1

Whereufk are the coordinates of the point iy that is closest to théth point in thelth

dock,ﬂ,(f). Note that all points within:!) are considered and that one-to-many matches
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are allowed. Figure 7.4a shows the distance measure agaen&MSD between the
true and predicted docks for each of the 1848 observatiotiseilargest cluster. The
correlation coefficient is-0.37 which provides strongly significant evidence that, as the
RMSD between the true and predicted docks decreases, taaaibetweep”) andup
increases. That is, AutoDock is overfitting in this partaoutase. Figure 7.4b shows the
distance measure against the RMSD between the true anata@diocks for each of the
1762 observations in the largest cluster in Test 2. The latioa coefficient in this case

is —0.09, however Figure 7.4b displays two clusters which coulddatk two separate

local solutions that the clustering technique failed tdidgish.
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a) b)
Figure 7.4: Figures a) and b) display the distance measuxeba AChE and the
predicted docks against the RMSD between the true and peediocks for the largest

cluster formed in Test 1 and Test 2 respectively.

We use this finding to highlight an observation to invesegatthe next section.

7.5 Pesticide docks as toxicity predictors

As in the previous chapter, let”) be then; x 3 matrix containing the minimum-energy
conformation of theth pesticide. In Subsection 7.3.3 we found that, when the diack

is unknown, the conformation input into AutoDock does ngn#icantly influence the
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accuracy of the predicted docks. So we consider only theocortion stored within:(®
in further analyses, for= 1, ..., 17. For simplicity, we consider only the 17 carbamate

pesticides for which we have bobwhite quail toxicity.

Preparing the molecules, grid and docking parameters

We again follow steps 1-8 of the preparation described ptesly in Subsection 7.3.3
when exploring AutoDock accuracy, with a few alterations.

In step 3, we convert the given formatsdf) to the required PDB format using
Babel[78]. In the remaining steps we simply replace ACh witt. To allow each
pesticide to be able to rotate freely, in step 5 we fix the gideshsions to be twice that
of the maximum length of the extended ligand. We now assigt/th= 1000 predictions
be made for the dock of eaatt.

Let () be then, x 3 matrix containing the coordinates of ttl predicted dock of

theth pesticide.

Single dock to predict toxicity

Let 29 denote a single docked prediction for thi pesticide. We fit the linear model,

i.e. estimate the parametéyfor j =0,...,41in
4
yi = Po Z Bibi; + €, (7.1)
j=1

wherey; is the toxicity of theith pesticide. The errot,, is fixed asN (0, 02) wheregs; is
set as proportional to the number of observations withirstirae cluster ag®.
We separately consider three possible predicted dockstref thei = 1,...,17

pesticides.

1. In Case 1 we set® to be the conformation with the minimuin.

2. In Case 2 we sét” to be the median conformation within the largest clustemien

when using the RMSD between the predicted docks.
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3. In Case 3 we seit”) to be the conformation, within the largest cluster, thahis t

greatest distance fromp.

The four variables we include within the linear model in Egpra(7.1) are now discussed
individually.

Inhibition constant

Let #,; denote the inhibition constant associated with. The inhibition constant is
a measure of a pesticides ability to inactivate AChE. Intely, it should be an important
indicator of the potential toxicity.

Comparing the ACh and pesticide docks

In the previous chapter we describe a method to calculate asume of shape
similarity between the natural ligand, ACh, and a pesticitdow we produce a way
of measuring the ‘distance’ between the predicted pestidiock, 2, and the known

ACh dock,u. Let

10
b= Il — 20
k=1

Wherefgf,z represents the atom withiif” that is closest tqi,. Note that all points inu
are considered and that one-to-many matches are allowed.

Comparing pesticide dock to protein receptor

Finally we include a measure for the distance betweéhand the proteinjp.

Similar to the previous variable defined in Subsection 7 \8elset
K; 4
Ois = |12 — b |1,
k=1

whereufk represents the atom withjne that lies closest t@;,(j). Again, all points ini:®
are considered and one-to-many matches are allowed.

Conclusion

We found that in all three considered cases, the linear miodEQuation(7.1)

was not significant (which is not surprising considering lthe number of observations
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Toxicity
Toxicity

a) b)
Figure 7.5: Figures displaying the true toxicitigsagainst the predicted toxicitieg, for
a) Case 2 and b) Case 3. The black line is the regression Imgd=ring all observations

and the red line is the regression line when the fitted oudliexcluded.

considered). The correlation coefficient between the ptediand true toxicity is 0.05,
0.24 and 0.32 respectively in Cases 1, 2 and 3. Excludingribditied toxicity outlier in
both Cases 2 and 3, the correlation coefficient becomes 0b0.&80 respectively. The
95% one-tailed critical value using all observations islOahd excluding the outlier is
0.43. Therefore indicating a significant correlation betwéhe true and fitted toxicities
in Case 2 and 3 when the fitted outlier is excluded. Figurediggdays the true toxicities,
y, against the predicted toxicities for both a) Case 2 and b) Case 3.

Here we have highlighted that it is not simply the predictedidwith the minimum
kr that provides the more accurate toxicity prediction. Ithie bbservations within the
dominant cluster (allocated using the RMSD between predidbcks alone) that provide
a more accurate toxicity predictor. It would be interestiogee if the linear model in
Equation(7.1) provides a more significant predictor of toxicity when caiesing a larger
sample. This research has shown that useful toxicity indisacan be found even when
the conformation of AChE is fixed and therefore the true caxmonformation is not

considered.
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Chapter 8

Critical summary and further work

8.1 Introduction

In the final chapter, we consider each area of research selyardnen providing a critical

summary and proposing ideas for further work.

8.2 Using EM to match pairwise gels, infer
contamination levels and highlight missing proteins
across sets

In Chapter 2 we introduced a statistical model to represata dcross pairwise images.
We considered two possible methods to calculate prior nvajcprobabilities across
images. The standard method assumes thiateamarker is always correctlgllocated
The adapted method deals with the possibility of slight rearkisallocation within a
warped image and does not assume that an allocated markemigsahe true marker.
We used an EM algorithm to estimate the superimposition ofitmages before inferring
point correspondence across images. Finally, we providetthadology to account for

missing or grossly misallocated markers.
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In Chapter 4 we explored how the methodology introduced iapg@dr 2 can be used
to pool data across replicates, to investigate the qudligydataset and finally, how it can

be implemented to highlight the differences in protein®asmgroups of images.

8.2.1 Critical summary

The EM algorithm is strongly dependent on the starting fiamnsation when aiming
to superimpose one image onto another. As the data we congithén this research
contains images with partial labelling (i.e. a correspagdset of points across images
known as markers), the estimation of a good starting tramsftion is possible. We
consider an affine transformation for the superimpositsmnthe fit will not account for
local distortions that may exist within an image. Howevera#fine transformation will
account for a global warp and will avoid the overfitting ofeessociated with attempts to
account for local warping.

Throughout the experiments and applications describedhiaptrs 3 and 5, we
used a conservative estimate«df = o> in Equation(2.9) to allow greater freedom for
the distance between potential and known corresponding$oit should be noted that
the values and conclusions will be strongly dependent oestimate ofr2,

We found that applying the standard method generally predi@more accurate
superimposition than when applying the adapted methodt iSheve found that setting
the prior probability of corresponding markers matchindpgéoone generally produced a
more accurate superimposition than when the probabiliteze allowed to vary. Though
this is dependent on how the markers are allocated. If thkemaare subsets of the points
present in a western blot image, then the adapted methoorperbetter for < 7. This
is also likely to be the case when considering a lower numberaskers across images.

Using the final output posterior probabilities to match p®iacross images we
found that relatively far apart points are often matched.a Woint inx has a single

nearby point inu, the posterior probability of these two points matchingl w&#come
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quite dominant even if the points are not that close. Thisoblpm that becomes more
prominant as: andz become increasingly dissimilar. An alternative way of imifgg
the matches is by considering the pairwise distances batp@iats after the application
of the final transformation. Implementing this method diesathat only points within
a certain distance threshold are matched. However, this doeaddress the negative
influence caused throughout the running of the EM algoritRossible ways to counteract
this problem are by increasing the coffin bin probability, the probability that points in
remain unmatched or by decreasing the variance betweetspoinwithin the algortihm.

Pooling data across replicate images can reduce commahgapense in further
analyses, but data will always be lost due to image warpiigaawy inaccuracy within the
matching method.

The method introduced for estimating contamination levels dataset of images
assumes a constant distribution over all the images. If visider images made by the
same expert, in the same laboratory with the same equipthengssumption is sensible.
The probability of successfully observing a protein as apon the imagey., is assumed
to be constant over all points. In truth, this probabilitylikely to dependent on the
intensity of the protein itself, as more intense proteim&lt®d produce larger and often
darker spots on an image. The method is also dependent ondheaay of the matches
across images. However, when applying the method to theletaset we found a similar
relationship indicated between and ) (the number of false points expected in an image)
for each of the ten replicate pairs. Therefore showing thienasion of the contamination
levels to be consistent across replicate pairs within theesdataset, and thus providing
useful indicators of the dataset quality.

The production of the score indicating unique proteins s&two groups of images
will become increasingly computationally expensive as tiienber of images under
consideration increases. Again, the method is dependetiteoaccuracy of the final
superimposition and posterior matching probabilitiesppsed by the EM algorithm.

However the score is not strongly influenced by varying lewelcontamination within a
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dataset and it provides a logical indicator of points unitpua group of images.

8.2.2 Future work

Future work could involve a comparison of the accuracy ostaedard or adapted method
as the number of markers across images vary. As well as arirgychow the protein sets
differ across images or groups of images, it is also of irsteieexplore how the intensity
of a particular protein varies. After employing the EM aligiom to infer point matches,
we could further investigate how the intensities vary agtbg points matched.

The most appropriate value of within Equation(2.9) was not investigated here.
Sensitivity tests should be completed to find the optimahese ofo? for a particular
dataset of interest.

As previously discussed, the probability of successfulbgerving a protein as a
point on the image is likely to dependent on the intensityhef protein itself. The

methodology could be modified to deal with the influence otgirointensity.

8.3 Molecular structure to predict pesticide toxicity

In Chapter 6 we test the hypothesis that the potential ttyxadi a pesticide is related to
the shape similarity between the pesticide and the subsfat, of the protein, AChE, to
which they both bind. We consider two different fixed confations of ACh. In Chapter
7, we explore this hypothesis further by using a docking mogto predict a pesticide
dock and calculating a measure of shape similarity betwleeddcked conformations of
both the pesticide and ACh.

8.3.1 Critical summary

As we purely wanted to investigate whether the moleculapshat a pesticide helped

predict the associated toxicity, information such as atge tvas not considered, though
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would be provide useful further information. The calcwatiof a shape similarity
measure between a pesticide and ACh could provide a usedidaitor of toxicity,
however molecular shape is constantly changing due to tléifiey of a molecule.
If fixing molecular shape is required, the minimum energyfoomation and docked
conformation are sensible conformations to consider antpeoe.

We found that the shape similarity measure provided a sagmifi indicator of
toxicity in the case of quail toxicity when the docked comfation of ACh was
considered. We also found that using our shape similaritpsues alongside known
biological descriptors provided a more accurate predictibassociated toxicity than an
online toxicity predictor.

Providing a measure of shape similarity between the dock®tf a pesticide and
ACh within the relevant protein, is likely to provide a betpeedictor of toxicity as itis is
this form that toxicity is caused. However, the structuréhefbound protein is dependent
on the ligand with which it is binding and will rarely remaindid as assumed within this

research.

8.3.2 Future work

Future work would consist of a more detailed comparison ef tmolecular shapes
involved in the complexes of ACh and AChE, and a pesticide AGHE. This time

allowing flexibility within the protein to enable a more acate dock prediction.
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