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Abstract

In this thesis we explore two main themes, both of which involve proteins. The first

area of research focuses on the analyses of proteins displayed as spots on 2-dimensional

planes. The second area of research focuses on a specific protein and how interactions

with this protein can naturally prevent or, in the presence of a pesticide, cause toxicity.

The first area of research builds on previously developed EM methodology to

infer the matching and transformation necessary to superimpose two partially labelled

point configurations, focusing on the application to 2D protein images. We modify the

methodology to account for the possibility of missing and misallocated markers, where

markers make up the labelled proteins manually located across images. We provide a way

to account for the likelihood of an increased edge variance within protein images. We find

that slight marker misallocations do not greatly influence the final output superimposition

when considering data simulated to mimic the given dataset.The methodology is also

successfully used to automatically locate and remove a grossly misallocated marker

within the given dataset before further analyses is carriedout.

We develop a method to create a union of replicate images, which can then be

used alone in further analyses to reduce computational expense. We describe how the

data can be modelled to enable the inference on the quality ofa dataset, a property often

overlooked in protein image analysis. To complete this lineof research we provide a

method to rank points that are likely to be present in one group of images but absent in

a second group. The produced score is used to highlight the proteins that are not present

in both image sets representing control or diseased tissue,therefore providing biological

indicators which are vitally important to improve the accuracy of diagnosis.

In the second area of research, we test the hypothesis that pesticide toxicity is related

to the shape similarity between the pesticide molecule itself and the natural ligand of

the protein to which a pesticide will bind (and ultimately cause toxicity). A ligand of a
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protein is simply a small molecule that will bind to that protein. It seems intuitive that

the similarities between a naturally formed ligand and a synthetically developed ligand

(the pesticide) may be an indicator of how well a pesticide and the protein bind, as

well as provide an indicator of pesticide toxicity. A graphical matching algorithm is

used to infer the atomic matches across ligands, with Procrustes methodology providing

the final superimposition before a measure of shape similarity is defined considering the

aligned molecules. We find evidence that the measure of shapesimilarity does provide

a significant indicator of the associated pesticide toxicity, as well as providing a more

significant indicator than previously found biological indicators.

Previous research has found that the properties of a molecule in its bioactive form

are more suitable indicators of an associated activity. Here, these findings dictate that

the docked conformation of a pesticide within the protein will provide more accurate

indicators of the associated toxicity. So next we use a docking program to predict the

docked conformation of a pesticide. We provide a technique to calculate the similarity

between the docks of both the pesticide and the natural ligand. A similar technique is

used to provide a measure for the closeness of fit between a pesticide and the protein.

Both measures are then considered as independent variablesfor the prediction of toxicity.

In this case the results show potential for the calculated variables to be useful toxicity

predictors, though further analysis is necessary to properly explore their significance.
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Glossary
2-Dimensional Electrophoresis (2-

DE)

A chemical procedure used to separate

proteins by mass and acidity to create

a 2D gel providing a mapping of all

proteins present (see page 2).

Western blot Sera is used to probe the 2-DE gel.

Antibodies within the sera bind to

specific proteins and only the proteins

with a bound antibody are highlighted

within western blot images (see page

4).

DIfference Gel Electrophoresis

(DIGE)

A modification on 2-DE used to

compare two or three protein samples.

The proteins in each sample are tagged

with different colours before being

mixed together. A single 2-DE gel

is produced, where the proteins in a

particular sample can be distinguished

by colour (see page 7).

Biomarker A biological indicator of a biological

state, i.e. a protein which indicates the

presence of some disease (see page 2).

Bind Describes the way molecules

chemically react and come together.
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Protein A large organic molecule that

generally has some function within a

biological system.

Ligand A small molecule that will bind with a

protein.

Natural ligand or substrate An organic ligand that binds to a

specific protein.

Complex A general term given to a bound ligand

and protein.

Acetylcholinesterase (AChE) The specific protein that influences

toxicity (see page 17)

Acetylcholine (ACh) The natural ligand of AChE (see page

17).

Inhibit Term used to describe how other

ligands bind with a protein and prevent

the protein from carrying out its

normal function (see page 18).

Pesticide A synthetic ligand developed to inhibit

AChE and cause toxicity.

Carbamate and Organophosphate

(OPs)

Two different families of pesticides.

Lethal Dose 50 (LD50) The amount of pesticide necessary to

kill half a sample of pests.



CONTENTS xi

Binding affinity A measure of the strength of the bind

between a ligand and protein.

Half maximal Inhibitory

Concentration 50 (IC50), inhibition

constant and binding energy

Different measures of binding affinity

(see page 21).

Quantitative Structure Activity

Relationships (QSAR)

QSAR dictates that the toxicity of

a pesticide is proportional to one

or more properties of the pesticide

molecule itself (see page 22).

Molecular conformation The spatial arrangement of a molecule.

Bioactive conformation The bioactive conformation of a

pesticide is the docked conformation

within AChE (see page 22).

3D Quantitative Structure Activity

Relationships (3D-QSAR)

The same as QSAR, though

considering specifically the bioactive,

i.e. the docked conformation of a

pesticide (see page 22).

Development of Environmental

Modules for the Evaluation of the

Toxicity of pesticide Residues in

Agriculture (DEMETRA)

A project where the main objective

is to produce QSAR software for

the improvement of toxicity prediction

(see page 23).
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Simplified Molecular Input Line

Entry Specification (SMILES)

Uses ordered sequence of symbols to

describe the structure of a molecule.

Protein Data Bank (PDB) An online archive of experimentally

determined molecular structures.

Van der Waals (VdW) radius Defines the radius of an imaginary

sphere often used to represent an atom.

Markers A set of known corresponding points

across all images that account for the

partial labelling (see page 11).

Coffin bin If a point in a second image is not

matched to a point in the first image,

we say it is allocated to the coffin bin

(see page 30).

Slight marker misallocation When a marker is incorrectly allocated

as a nearby point due to the warping

within an image.

Standard method Assumes allocated markers are true

markers by fixing the prior matching

probability of corresponding markers

to be one.

Adapted method Accounts for slight marker

misallocations by allowing the

prior matching probability of non-

corresponding markers to be non-zero.



CONTENTS xiii

Gross marker misallocations Due to input error of spot IDs when

allocating markers (see page 47).

Image contamination Consists of missing markers which are

points that should have been located in

an image and imposter points which

are points that do not correspond to a

real protein (see page 85).

Normoxia/Hypoxia A normal/lowered amount of oxygen

used as two different treatments (see

page 10).



CONTENTS xiv

Mathematical Notation
Chapters 2, 3, Section 4.2 and Subsection 5.3.1

D Number of dimensions the relevant data is represented within.

K Number of markers, i.e. known corresponding points, thatshouldbe

located in every image.

mG, nG The total number of proteins present in a first and second 2-DEgel

respectively (see chemical implementation in Subsection 1.2.4).

µG, xG mG×D andnG×D coordinate matrix for all the proteins that would

be highlighted as points on a 2-DE image (theoretical in terms of the

data we consider).

m, n Number of non-markers in a first and second image respectively.

µ, x (K + m) × D and (K + n) × D coordinate matrices for a first

and second image respectively, where the firstK set of coordinates

represent markers. Also used more generally to indicate theimage

represented byµ or x respectively.

µi, xj D × 1 coordinate vector of theith point inµ and thejth point inx

respectively. Also used more generally to indicate theith orjth point

in µ or x respectively.

A, b Non-singularD×D matrix andD×1 vector respectively that denote

the affine transformation parameters.

M (K + m + 1) × (K + n) matrix indicating matched points across

images, where an elementMij = 1 if xj is matched to theµi for

i = 1, . . . , K + m or allocated to the coffin bin fori = K + m + 1.

For simplicity we setMij = M0j for i = K + m + 1.
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Q (K+m+1)×(K+n) matrix containing prior matching probabilities,

where an elementqij = p(Mij = 1) contains the prior probability

thatxj matchesµi for i = 1, . . . , K + m or is allocated to the coffin

bin for i = K + m + 1. For simplicity we setqij = q0j for i =

K + m + 1.

|Ω| The region inRD containing all points inx.

σ2
ij An assigned variance between the pointsµi and xj in each

dimension.

pji The posterior probability thatxj matchesµi for i = 1, . . . , K +m or

is allocated to the coffin bin fori = 0.

p̂ (K + n) × (K + m + 1) matrix containing the final posterior

probabilities output by the EM algorithm. For simplicity weset

p̂ji = p̂j0 for i = K + m + 1.

p∗ji Set aspji/σ
2
ij for notational simplicity.

dij The Euclidean distance betweenµi and xj after µ has been

transformed to fitx using the final transformation parameters output

by the EM algorithm.

D∗ (K + m + 1) × (K + n) matrix where an elementDij = d2
ij for

i = 1, . . . , K + m or an assigned squared distance threshold,d2
T for

i = K +m+1. For simplicity we setDij = D0j for i = K +m+1.

dT Distance threshold assigned withinD∗ that maximises the distance

allowed between two points that can be matched across images.

∆ (K + m + 1)× (K + n) matrix that can be set as∆ = p̂T or ∆ = D

when assigning matches across images. For simplicity we set∆ij =

∆0j for i = K + m + 1.

L The number of matched points acrossµ andx.

µ
′

, x
′

K × D coordinate matrices containing only coordinate information

for the markers allocated inµ andx respectively.

pM The probability that two correspondingly allocated markers truly

match.

Kµ, Kx The number of markers inµ andx respectively that have actually

been allocated.

ul D × 1 coordinate vector of thelth point in the union of two images

µ andx.
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Sections 4.3, 5.2.1, 5.2.2 and 5.3.2

n Number of points in sometrue image.

x n × D coordinate matrix for points present in the true image.

Also used more generally to indicate the image represented by x

respectively.

n̄ Number of points in an observed image of the true image.

x̄ n̄×D coordinate matrix for points in the observed image. Also used

more generally to indicate the image represented byx̄ respectively.

R Number of replicate images.

r Number of times a particular point is observed acrossR images.

p∗ The probability a true point is observed inx̄.

λ The rate of false points per observed image.

vrj The number of points that are observedr times in the union ofR

replicate images forr = 0, . . . , R andj = 1, . . . , Jr. HereJr is the

number of ways of choosingr from R replicate images.

L The number of sets we have ofR replicate images.
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Sections 4.4, 5.2.3 and 5.3.3

L Number of images in group 1.

R Number of images in group 2.

m̄l, n̄r The total number of non-markers observed in thelth image in group

2 and therth image in group 2 respectively.

µ̄(l), x̄(r) (K + m̄l)×D and(K + n̄r)×D coordinate matrix for all the points

observed in thelth image in group 1 and therth image in group 2

respectively.

p̂l1l2
i0 Final estimated posterior probability that theith point in µ̄(l1) is

allocated to the coffin bin when̄µ(l2) is transformed to fit̄µ(l1).

q̂l1r
i0 Final estimated posterior probability that theith point in µ̄(l1) is

allocated to the coffin bin when̄x(r) is transformed to fit̄µ(l1).

p
(l)
i Probability that theith point inµ̄(l) is present in allL images in group

1.

q
(l)
i Probability that theith point inµ̄(l) is present in allR images in group

2.

w Set asL/(L + R).

S
(l)
i S

(l)
i ∈ {0, 1} where the probability that̄µ(l)

i is present in group 1

images but absent from group 2 images increases asS
(l)
i → 1.
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Chapter 6

kI Inhibition constant which is a measure of the binding affinity

between a ligand and a protein.

m, n Number of atoms in ACh and a general pesticide respectively.

µ, x m × 3 and n × 3 atomic coordinate matrices for ACh and the

general pesticide. Also used more generally to indicate themolecule

represented byµ or x respectively.

M m × n matrix indicating matched atoms across molecules, where an

elementMij = 1 if xj is matched to theµi for i = 1, . . . , K + m.

L The number of matched atoms acrossµ andx.

µ∗, x∗ Coordinate matrices of matched points acrossµ andx respectively.

If Mij = 1, thenµ∗
l = µi andx∗

l = xj for l = 1, . . . , L.

A, b D × D rotation matrix andD × 1 translation vector respectively

that denote the transformation parameters necessary to superimpose

µ ontox.

ζ Distance tolerance assigned within the graphical matching

algorithm.

y
(k)
i Toxicity of theith pesticide when ingested by thekth species.

θij Thejth biological descriptor of theith pesticide.

ni Number of atoms in theith pesticide.

x(i) ni × 3 atomic coordinate matrices for theith pesticide in the

minimum-energy conformation. Also used more generally to

indicate the molecule represented byx(i) respectively.

µ(1) Them×3 coordinate matrix of the low-energy conformation of ACh.

µ(2) Them × 3 coordinate matrix of the docked conformation of ACh.

x(i)∗ m × 3 matrix containing the matched coordinates inx(i).

θ∗li Measure of shape similarity betweenµ(l) andx(i)∗.
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Chapter 7

µP 4143 × 3 atomic coordinate matrix for AChE.

ni Number of atoms in theith pesticide.

x(i) ni × 3 atomic coordinate matrices for theith pesticide in the

minimum-energy conformation. Also used more generally to

indicate the molecule represented byx(i).

x̂(il) ni × 3 atomic coordinate matrices for thelth predicted dock of the

ith pesticide.
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Chapter 1

Introduction

In this thesis we explore two main themes, both of which involve proteins. The first

area of research focuses on the analyses of proteins displayed as spots on 2-dimensional

planes. The second area of research focuses on a specific protein and how interactions

with this protein can naturally prevent or, in the presence of a pesticide, cause toxicity.

Before we discuss the projects in more detail, we first explain the importance of proteins

and why continued research is vitally important.

1.1 Why proteins are important

Proteomicsis simply the ‘study of proteins’ with the main focus being ontheir structure

and functions within a biological system.

‘It is proteins that are directly involved in both normal anddisease-

associated biochemical processes, a more complete understanding of disease

may be gained by looking at the proteins present within a diseased cell or

tissue. This forms the basis of proteomics. The potential biological and

clinical applications of proteomics are enormous.’ [26] [90]

Most drugs exert their effects on proteins and the analysis of proteins has led to

crucial developments in the successful diagnosis and treatment of neurological disorders,
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infectious diseases, heart disease and cancer to name a few [7]. Research is continually

being carried out to locatebiomarkers, biological indicators, of particular biological

states. These biomarkers often occur in the form of proteins. For example, the protein

AMACR has been established as an important biomarker of prostate cancer [72] but there

is still an urgent need for more accurate biomarkers to improve diagnosis [16].

One way to locate biomarkers of a certain disease is to analyse how proteins differ

across control or diseased tissue. How we can do this forms the basis of our first area of

research and is discussed in more detail in Section 1.2.

Another way that we can use proteins to gain biochemical information is to explore

the reaction that occurs between a drug and a protein on a molecular level. For example,

it is the direct reaction between a pesticide and a particular protein that causes toxicity to

an organism. It is analyses at the molecular level that formsthe basis for our second area

of research and is discussed further in Section 1.3.

1.2 Analysis of 2D protein gels

1.2.1 Introduction to 2-Dimensional Electrophoresis and Western

Blots

There could be as many as 500,000 proteins in a single human cell [69]. A protein can

be uniquely identified by its mass and acidity (or rather, the‘isoelectric point’ which

is the acidity at which a protein carries no net electrical charge). Two-dimensional

electrophoresis (2-DE) is a chemical procedure used to separate proteins by acidity in

the first dimension and mass in the second dimension. The result is a 2-dimensional gel

(or image of the gel) containing a ‘mapping’ of all proteins present. If the technology were

flawless, the positional information would be enough to uniquely identify each protein.

However, further analysis is usually necessary to confirm protein identification. In fact,

the development of a protein image is generally the first stage of a multi-step procedure
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described in detail by Dowseyet al.[26] and summarised in Subsection 1.2.2.

2-DE was first introduced in 1975 by O’Farrell and Klose [61] [46]. Although

there has been thorough research over the last 34 years into alternative and more accurate

methods of isolating proteins (for example, the ‘virtual’ 2D images developed by Walker

et al.[86]), 2-DE remains a core technology for the separation of proteins [63] and is

currently the ‘workhorse’ for proteomics [38]. An example of an image produced by 2-

DE is displayed in Figure 1.1. In theory, a particular protein will show up in the form of

a black spot at the appropriate location. The red crosses indicate the location of proteins

inferred by some analyses system from the image itself. A single image could display

over 5000 unique proteins, though routinely they display around 2000 [38].

Figure 1.1: An example of a 2-DE protein gel image. The red crosses have been added to

the image to indicate the location of proteins inferred by some analyses system from the

gel itself.

Although 2-DE is a well-established and well-used technique in protein separation,

there are still many problems. Ramanet al.[64] list gel-running conditions, temperature

effects and uneven focusing of equipment as a few factors that effect the quality of a final
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image. The continual challenge within this technology is toimprove the reproducibility

of an image. Currently, two identical protein samples can create very different images

though theoretically they should be identical. Reproducibility is difficult within a single

laboratory and increasingly more so amongst varying laboratories/equipment/experts

[38].

Western blotsare gels created to highlight proteins present in human tissue, for

example. First, 2-DE is used to separate all the proteins extracted from a cell. The 2-DE

gel is then probed with serum which contains antibodies thatwill bind to specific proteins.

The image of a western blot will contain only the location of proteins that have a bound

antibody. We can think of western blots as containing only a subset of the proteins that

are displayed on 2-DE images. The extra step necessary to create a western blot allows a

further level of variability within the final produced image. The reproducibility of western

blots is therefore even more challenging than that of 2-DE images. An example of a

western blot image is illustrated in Figure 1.2 within Subsection 1.2.4.

Previously, we briefly mentioned the further analyses that generally follows the

production of 2-DE or western blot images. Considering the large scope for variation

between images and the often vast number of proteins locatedin a comparatively small

area, visual examination to analyse or compare images, although often informative,

can be extremely difficult and conclusions unreliable. Visual comparison can also be

extremely repetitive and labourious for the expert making the comparisons. Statistical

and computational analysis are essential to theresult accuracyand reduction of expert

manual labour.

1.2.2 General analyses of protein gel images

Gorg et al.[38] summarise the traditional multistep procedure that follows image

production. Here we list the initial steps.

1. Each individual image must be preprocessed, i.e., eliminating background noise to
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enhance the image.

2. The exact locations corresponding to unique proteins arehighlighted. The spots

often have to be segmented before unique spots can be identified.

3. To enable easier comparison across images, an expert willmanually locate a number

of corresponding proteins, saymarkers, across the images under examination.

4. Using the markers as reference points, the images are warped into superimposition.

5. Further corresponding proteins are highlighted throughan automatic matching

process, enabling scientists to pick out proteins of interest.

6. The proteins of interest can then be identified using a technique calledmass

spectrometry.

Each of the above steps leave room for error and thorough research has been carried

out to refine the procedures involved. Next we discuss examples of previous research into

the process described above before discussing the data we have and our particular aims.

1.2.3 Current software and methodology for image analysis

Currently there are various pieces of software commercially available which have been

designed specifically to carry out some or all of the stages ofanalyses described in the

previous subsection. In many cases, the software is built upon programs designed in the

early years following the development of 2-DE technology and has undergone years of

refinement.

First we discuss some of the early packages produced. TYCHO [3] comprises of

programs for image acquisition, background subtraction and smoothing, spot detection

and modelling, pattern matching and computer comparison. Lemkin and Lipkin [49]

[50] [51] have produced multiple papers describing the segmentation of spots, system

preliminaries, spot matching techniques and further analyses tools within GELLAB
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software. Vincenset al.[83] [82] [84] [85] [76] also produced multiple papers describing

HERMeS, a software produced to provide similar analyses. They also proposed database

organisation and interrogation strategies to allow easy handling of the large quantity of

data obtained from a series of gel electrophoresis experiments. Today, dealing with the

wealth of data is still a difficult task at the heart of much research. GESA [71] is a system

characterised by combining expert intervention alongsideautomatic analyses techniques.

Today, commercially available packages include CAROL [62]. CAROL was

developed to tackle the local distortions that may be present in images and to provide

a fully automated point matching technique without the needfor corresponding points

across images to be manually located by an expert as reference points. The system is

also able to provide comparisons of images across the world wide web. WebGel [52]

is an exploratory 2-DE gel image and data analysis system involving the tool ‘Flicker‘.

The tool can also be run on the world wide web to help in the comparison of two gel

images from similar samples, possibly created in differentlaboratories, by matching the

morphology of local regions. The method is only intended to provide a rough comparison

and becomes increasingly difficult to utilise as the number of images being compared

increases [48]. Melanie [5] [6] is a popular package which (like many others) integrates

filtering, querying, reporting, statistical and graphicaloptions so that you can easily view,

compare, analyze and present your results. Other packages include Z3 [73], PDQuest [54]

and Progenesis [53].

Multiple reviews have been carried out to compare the accuracy of the different

packages available [59] [64] [89] each highlighting varying levels of accuracy over the

different stages of analyses. To continue refining the toolsinvolved, many people focus

on one particular stage of protein image analysis.

Before points representing proteins can be successfully located, background noise

needs to be eliminated. Van Belleet al.[81] present a denoising algorithm that adaptively

enhances the image contrast and, through thresholding and median filtering, removes the

grey-scale range covering the background. Applications are demonstrated on western
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blots which are the type of images that instigated this research. After reducing background

noise, the next problem faced is how to locate the spots that truly indicate the presence

of a protein. The spots on protein images have varying areas and are often irregularly

shaped. Rogerset al.[69] provide a method to model the shape and appearance of spots

automatically generated from a set of real images, thus allowing better definition between

single and multiple spots and creating a higher tolerance for irregularly shaped spots.

Bettenset al.[13] apply a watershed technique for the segmentation of thespots on a

protein gel image and the method is demonstrated as superiorto commonly used Gaussian

models [4]. Cutleret al.[24] use a segmentation method involving pixel value collection

via serial analysis of the image through its range of densitylevels.

One of the most difficult tasks involved in the analyses of protein images is how

to highlight how the proteins present differ across image. The difficulties arise in the

inconsistency of image sizes and the warping that can occur independently across gels.

The rough superimposition of even two images is often impossible without computational

assistance coupled with the manual location of a selection of reference points, i.e.

corresponding points across images. A modification of 2-DE called DIGE [80] is a

technique developed to circumvent the problems associatedwith point matching across

protein images. A single image is developed from up to three different samples of

protein extracts that have been individually tagged with different coloured fluorescent

dye. The production of a single image bypasses the neccessity for image registration and

the proteins present in all three samples can easily be highlighted due to the different

colours of the three samples. Melanie 7.0 DIGE [32] is a commercially available analyses

system for an image output using DIGE technology. However, at the moment only three

samples can be compared so DIGE is unable to circumvent the problems associated with

superimposition when a greater number of protein samples are being compared, as is often

the case.

So the accurate registration of protein images is still vitally important in the

exploration of protein correspondences across images. Theregistration and matching of
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point sets is important in a number of different disciplinesincluding shape analysis, image

analysis, molecular comparison and even astronomy to name afew. Many techniques have

been developed and applied within various fields of study.

Cross and Hancock [23] match geometric structures in 2D point sets by first

highlighting point correspondences by maximuma posteriori graph-matching and

then estimating the transformation necessary for superimposition using an Expectation

Maximisation (EM) technique. Chui and Rangarajan [21] propose a general framework

for non-rigid point matching by considering thin-plate splines to tackle the problem with

an application to the comparison of cortical anatomical structures. Besl and McKay [12]

use a iterative closest point (ICP) algorithm to register points sets, curves and surfaces.

Belongie et al.[8] first infer point correspondence before estimating the registration

and describing a shape similarity measure between two objects. To do this a ‘shape

context‘ is given to each point which captures the distribution of the remaining points

relative to it. Corresponding points across sets will have similar shape contexts, therefore

enabling correspondences to be inferred through an optimalassignment problem. Given

the correspondences, thin-plate splines are then used to estimate the transformation that

best aligns the two objects. Potraet al.[63] provide a method to optimally align families

of 2-DE gels by constructing an ideal gel to represent the entire family and applying

hierachichal piecewise affine transformations. Akutsuet al.[1] present a polynomial time

algorithm for a special and one-dimensional case of the point matching problem, which is

based on dynamic programming. A practical heuristic algorithm for identifying a match

between two point sets is also described.

Rohret al.[70] incorporate both point location and intensity to align2-DE images.

Point landmarks are localized using a model fitting scheme and this geometric information

is combined with intensity information for elastic image registration. Richmond, Willett

and Clark [68] consider Procrustes analysis [28] for molecular comparisons where

correspondences are first estimated using image analysis algorithms. Drydenet al.[27]

consider Bayesian methodology carried out through MCMC simulation to compare two
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or more unlabelled point sets. Here the application considered is also in the comparison

of 3D molecular structures. A similar technique has been used to explore properties of

human movement by labelling points on the body [2].

Walker [87] applies an EM technique to estimate the transformation necessary

to superimpose two unlabelled point sets, before providinginference on point matches

across sets. This work is extended by Kentet al. [77] [45] with applications in protein

image comparison and the matching of amino acids within 3D protein structures. Green

and Mardia [39] use a different method to explore the same problems associated with

matching proteins as points across images or amino acids within protein structures. A

Bayesian approach is applied to simultaneously infer the matching and transformation

of unlabelled or partially labelled points sets. A Poisson process is assumed to describe

hidden true point locations, with EM and MCMC algorithms used to provide inference

on unknown parameters. Glasbey and Mardia [34] give a reviewof possible warping

methods that could be utilised for the superimposition of images.

Many point matching techniques require the location of a setof corresponding

points across sets, i.e markers. Melanie [5] [6] automatically selects a spot in each of

the four corners of an image before locating corresponding points in a second image.

These allocated markers are used as fixed reference points inthe gel alignment through

least-squares minimisation [92]. Flicker [52] requests that the user specify 3 or 6 markers

when applying an affine or polygonal transformation respectively to superimpose images.

The method developed by Potraet al.[63] relies in the initial manual location of a group

of markers across images and a threshold is applied to limit the distance allowed between

corresponding pairs.

Before we outline our aims within this research, we first introduce the data we have

been given.
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1.2.4 Data

Introduction

Protein images have been produced to reflect, and allow the comparison of, the proteins

present in tissue within controls and renal cancer patientsunder two possible treatments.

Images are created to represent the following four scenarios.

• A control treated withnormoxia, a normal supply of oxygen.

• A control treated withhypoxia, a lowered supply of oxygen.

• A renal cancer patient treated with normoxia.

• A renal cancer patient treated with hypoxia.

The chemical procedure used to create the images is described in the following section.

Chemical implementation

We describe the process in a step by step procedure.

1. Cells from the particular cell line HTB47 are grown in one of two possible

treatments.

• Normoxia.

• Hypoxia.

2. Protein extracts are taken from the cells.

3. 2-DE is used to create a 2D protein gel by separating the proteins by acidity in the

first dimension and by mass in the second dimension.

4. A rectangular membrane is sized and cut to fit the gel.

Note: The size of the membrane fitted is dependent on the gel.
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5. The gel isprobedwith serum from one of eight subjects.

• Four different controls.

• Four different patients.

The term ‘probed’ is used to describe how each antibody within the serum will

identify a particular protein within the gel before bindingto that particular protein.

6. The binding of an antibody and protein is then detected upon exposure to film. It

is this detection process that creates the subject-treatment specific 2D western blot

images. We refer to these proteins asnon-markers throughout the main text.

7. An analysis system (such as those discussed in the previous subsection) is then

used to highlight each non-marker as a single cross in the western blot image (see

Figure 1.2).

8. To help make image comparison easier and also to create a coordinate system for

the mass and acidity of each protein, 12 particular proteinsare located. These 12

proteins are present in every gel and have a known mass and acidity. The gel is

removed from the membrane and a stain (Coomassie Blue) is applied to the gel to

highlight all the proteins present within the gel. The markers are then manually

located by an expert. These 12 proteins will be referred to asmarkers.

We consider an image to contain a selection of non-markers and a separate selection

of markers.

9. The gel is realigned to the membrane so that the markers arecorrectly positioned

relative to the non-markers before being manually superimposed onto the image as

larger crosses (see Figure 1.2).

10. Both the markers and the non-markers are allocated an arbitrary but unique

spot ID. In addition, the markers are allocated a marker ID which will indicate
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corresponding markers across images. Setting the origin ofthe image as the top-

left corner of the membrane, 2D spatial coordinates are assigned to each marker and

non-marker. Using the coordinate system created by the known measurements of

the markers, a mass and acidity measurement is also assignedto each non-marker.

Figure 1.2 displays an example of a western blot image withinour dataset. In this

particular example, the labelled markers 9 and 12 were not successfully located, leaving

10 highlighted markers.

Figure 1.2: Figure displaying a western blot image within our dataset. The red crosses

depict the subject-treatment specific non-markers. The larger black crosses indicate the

labelled markers, with their acidity and mass measurementshighlighted beneath.

Actual dataset

Data is produced to represent eight different subjects (four controls and four patients)

treated with two possible treatments. A replicate image is also produced for each subject-

treatment specific case. Therefore a full dataset would consist of 8 × 2 × 2 = 32 images.
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However, due to production faults such as excess shadowing,six images were

removed from our investigation leaving 26 images remaining(indicated in Table 1.1).

Control 1 Initial Replicate Patient 1 Initial Replicate

Normoxia

Hypoxia

Control 2 Initial Replicate Patient 2 Initial Replicate

Normoxia × ×

Hypoxia ×

Control 3 Initial Replicate Patient 3 Initial Replicate

Normoxia

Hypoxia

Control 4 Initial Replicate Patient 4 Initial Replicate

Normoxia ×

Hypoxia × ×

Table 1.1: Table indicating the 32 images we would have in a full dataset. The crosses

highlight the 6 images that are missing from our dataset.

Sources of variability within the data

Possible variation within or between images include the following.

• During the production process, each gel has the freedom to warp independently

therefore allowing error in protein location. So positional information of a protein

relative to another is likely to vary from image to image. Figure 1.3 displays

the 12 markers from two different images after applying Procrustes methodology

to superimpose the corresponding markers. None of the corresponding markers
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between the two images have been superimposed exactly, indicating location error

within the known, labelled markers that will also occur within the non-markers.
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Figure 1.3: The dots and crosses indicate markers from two different images after

Procrustes methodology has been applied to superimpose thecorresponding markers.

• An increased edge variance. A gel is more vulnerable to warping at the edges of

the gel, so variability within protein location is likely tobe higher here.

• As can occur with the non-markers, all 12 markers are not always successfully

located. For example, markers 9 and 12 have not been located in the image

displayed in Figure 1.2.

• A marker can be incorrectly labelled. For instance, a non-marker may be

misidentified as a marker or two marker labels could be incorrectly exchanged due

to human error.

• It is possible for proteins present within a gel to remain undetected and for dust

or shadowing, for example, to be detected as false proteins.We call this image
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contamination. We can see that contamination is present within the datasetwhen we

compare replicate images. All replicate images should contain the same selection

of proteins and therefore the same number of points. Figure 1.4 displays two

replicate images. The image in Figure 1.4a contains 99 points whereas the image

in Figure 1.4b only contains 93 points.
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Figure 1.4: a) Initial image of a control treated with hypoxia. b) Replicate image of the

same control treated with hypoxia. In both figures, the blackdots depict the non-markers

and the red dots highlight the markers.

• Subject variability between controls and between patients. For example, the non-

markers found in Control A treated with normoxia may be different to those of

Control B treated with normoxia.

1.2.5 Aims

In this research, we consider images that have already been pre-processed so that we have

a collection of crosses and corresponding coordinates thatrepresent the likely location

of unique proteins (as displayed in Figure 1.2). The misalignment of images is a major

bottleneck within the analyses of protein images [63] and this is where we focus our

attention. We aim to develop a technique that can be used to rank and highlight proteins
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that are likely to correspond across pairwise images. We want our metholodology to

account for the possibilities of error in point location, anincreased edge variance, missing

markers and slight or grossly misallocated markers.

We develop a method to create a union of replicate images, which can be used

alone in further analyses to reduce computational expense.Inspired by DIGE [80] (an

innovative procedure to overcome the problems associated with the gel warping and

discussed in more detail in Chapter 4), we develop a technique that can be used to infer

the quality of a dataset, i.e., the level of contamination present. Although much work

has been spent on matching images, hardly any research (if any) has gone into evaluating

the quality of a dataset. Considering the extensive variability found in images across the

equipment used, the laboratory conditions and the expert who creates the images, research

examining the quality is vital to the relevance of any conclusion formed from a particular

dataset.

Note: Many matching techniques have been tested by artificially distorting an

image and investigating the matches made under comparison with the original image (for

example, [64]). The presence of contamination is often ignored even though it highlights

the need for an associated matching probability to locate unique points across groups of

images.

Finally, we want to provide a way to rank proteins that are likely to be unique to

one group of images. For each point in a group of images, we calculate an associated

probability of uniqueness to that group. All pairwise transformations are considered so

no information is lost in the allocation of a reference imageor creation of a master image.

1.3 Toxicity prediction

1.3.1 Introduction to toxicity

First we introduce the following terminology.
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A proteinis a macromolecule, i.e. a large molecule that generally hassome function

within a biological system. Anatural ligand, orsubstrateof a protein, is a small molecule

that exists naturally and binds specifically to that protein. A complexis a general term

given to a bound protein and ligand.

The pesticides that we consider within this research causeacute oral toxicity

(a measure often used to characterise pesticide toxicity) by inhibiting the protein

acetylcholinesterase(AChE) from carrying out its natural function. Before we describe

how a pesticide causes this inhibition, we first describe thenatural cause and prevention

of toxicity in the absence of a pesticide.

Natural cause and prevention of toxicity

Figure 1.5 helps to visualise the natural cause and prevention of acute oral toxicity.

Impulses are continually emitted from nerve cell endings within the biological system

of an organism. Molecules of AChE exist in the gap dividing a nerve cell from a muscle.

Molecules ofacetylcholine(ACh), the substrate of AChE, are continually released into

the same gap.

The presence of ACh allows the impulses to travel from a nervecell to a muscle.

This occurs because ACh is aneurotransmitter, which means it has the ability to relay and

amplify the impulses. The impulses stimulate muscle contractions and it is this process

that is thenaturalcause of toxicity and can eventually lead to the death of the organism.

The primary function of AChE is to break down its substrate, ACh, into smaller

molecules. Therefore AChE removes molecules of ACh from thegap dividing a nerve

from a muscle and the impulses cannot be transmitted across.The reaction that occurs

between an AChE molecule and an ACh molecule can be summarised as follows.

1. AChdocksat a specific location on AChE called thebinding site. (The term ‘dock’

is used to describe how a smaller molecule binds to a macromolecule.)

2. The complex formed by AChE and ACh is particularly unstable, leaving ACh
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Figure 1.5: Figure to highlight the natural cause and prevention of acute oral toxicity.

vulnerable to hydrolysis, i.e. a reaction with water. The hydrolysis of ACh breaks

the substrate down into two smaller molecules, acetic acid and choline.

3. The two smaller molecules then leave the binding site of AChE, leaving AChE

molecularly unaltered.

Figure 1.6 displays the three steps described above. After the third step, the molecularly

unaltered AChE is thenreactivated, that is, it is able to bind with further molecules of

ACh so that the process can be continually repeated. Only thefull ACh molecule acts as

a neurotransmitter. The two smaller molecules released by AChE are unable to transmit

the impulses and toxic consequences are naturally avoided.

Competitive inhibition by a pesticide

Pesticides are synthetic ligands designed specifically to dock at the same binding site

on AChE to which ACh would dock. The term ‘competitive’ incompetitive inhibition

describes the competition between a pesticide and ACh to bind with AChE. If a pesticide
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a) b) c)

Figure 1.6: The macromolecule is the protein, AChE, and the smaller molecule is the

natural ligand, ACh, which is highlighted in green. The structure of AChE is represented

as sticks and each atom in ACh as a sphere to make the smaller molecule visually clearer

in respect to the larger molecule. Figure a) displays an AChEand ACh molecule before

they bind. Figure b) displays the complex formed by the boundAChE and ACh. Figure

c) displays AChE and the two smaller molecules, acetic acid and choline, formed by

breaking down ACh.
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binds with AChE, AChE is then ‘inhibited’ from binding with ACh and cannot carry out

its primary function to safely break down the substrate. A build-up of ACh molecules

will take place, allowing impulses to be transmitted to the muscles of an organism which

result in toxic effects. Figure 1.7 displays the inhibitionof AChE by an example pesticide,

sarin.

a) b)

Figure 1.7: The macromolecule is the protein, AChE, and the structure of AChE is

represented as sticks. The smaller molecules are ACh and thepesticide, sarin. Both

structures are represented by atomic spheres and are highlighted in green and blue

respectively. Figure a) displays AChE, ACh and sarin beforea reaction has taken place.

Figure b) displays the complex formed by the bound AChE and sarin, surrounded by

molecules of ACh. AChE has been blocked by sarin and is now unable to bind with the

substrate, ACh, before safely breaking it down.

Within this research, we consider two families of pesticides calledcarbamatesand

organophosphates(OPs), both of which cause toxicity in the way described above. We

describe the general structures of a carbamate and an organophosphate alongside the

structure of ACh in Chapter 6. We also give a more detailed description of the reaction

that occurs between each ligand and AChE.
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1.3.2 Current methods to predict pesticide toxicity

Drugs generally exhibit pharmaceutical activity by binding to a target protein [56].

Developing new techniques to more accurately predict the scale of activity induced by

the binding of a drug and a protein is crucial to the increasedunderstanding of the effects

of current drugs as well as the development of new and more effective drugs. Similarly,

pesticides exert toxicity by binding to the protein, AChE, and the ability to accurately

predict their potential toxicity is of paramount importance.

Pesticide toxicity is simply the degree to which a pesticideis toxic. One way to

measure the potential toxicity of a pesticide to a given species isin vivoby calculating the

associatedLethal Dose 50(LD50), which is the amount of pesticide necessary to kill 50%

of a sample of the species. Here the resulting measure takes into account the absorption,

distribution, metabolism and excretion (ADME) of a pesticide within the system of a pest,

which plays an important role in determining pesticide toxicity.

However, the potential toxicity of OPs [and carbamates] to aspecies islargely

dependent on the inhibition of AChE [30]. Although many techniques have been

developed, no general or reliable approach to predict the AChE inhibitory activity of

new inhibitors has yet been established [11]. Because ligands will bind themselves inside

AChE rather than simply on the surface of AChE, a thorough knowledge of how the ligand

and AChE will bind is essential to deriving an accurate predictive model [11].

Alternative to the calculation of LD50, the reaction between AChE and a pesticide

can be carried outin vitro. Through this experimentation we can calculate thebinding

affinity, which is a major determinant of the toxic potency of a pesticide [30]. The binding

affinity of a pesticide with AChE can be measured by theinhibition constant, kI . The

inhibition constant is related to thehalf maximal inhibitory concentration(IC50) by the

equation

kI =
IC50

1 + S
kM

,

whereS is the concentration of the substrate, ACh, andkM is the affinity of ACh for
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AChE. The IC50 is the amount of a pesticide necessary to inhibit 50% of the AChE

molecules.

To avoid the ethical implications associated with animal testing or both the time

and costs associated within vitro experimentation, much research has been spent on

developing more accurate toxicity predictionsin silico.

A common technique used to predict toxicityin silico is via Quantitative Structure

Activity Relationships (QSAR). The QSAR paradigm related to this project is that the

toxicity of a pesticide is proportional to one or more properties of the pesticide molecule

itself. This approach allows important molecular properties to be identified and then used

within a suitable model to predict toxicity. Alternative tothe classic QSAR methods,

3D-QSAR approaches are considered better suited to describe the activity resulting from

ligand-receptor interactions as they consider the properties of a ligand in their (supposed)

bioactive conformation [91], which in our case would be the docked conformation within

AChE. In the case of 3D-QSAR, knowledge about how a pesticidewill bind with AChE

is assumed known.

One way to predict how AChE and a pesticide will bind is by implementing

computational molecular docking. Generally a docking program will produce multiple

predictions of how an input pesticide will bind to a protein and the predictions should

converge to the ‘true’ dock. For each prediction a measure ofbinding affinity, such

as the inhibition constant, is often also estimated and usedto highlight the most likely

representative of the true dock. Many different docking programs have been developed,

though there are drawbacks associated with each docking strategy [41].

Finally, shape plays a crucial role in understanding protein-structure function

relations [58]. Although shape is ill-defined in molecular biology [58] (most likely due to

the difficulties associated with defining shape amidst molecular flexibility), Cosgroveet

al. [22] state that it has been established that tightly bindingligands [high affinity ligands]

have a high degree of shape complementarity with their receptor. Though analysis based

on shape requires something close to the functionally relevant shapes to start with [58].
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Next we briefly discuss previous work before introducing ourproject aims.

1.3.3 Previous work

Doornet al.[25] bind the OP, isomalathion, with AChEin vitro to evaluate the products of

the reaction. Richardsonet al.[67] examine the toxicity of the OP, chlorpyrifos, to hens

in vitro andin vivo, by calculating the inhibition constant,kI , and the LD50 respectively.

Halle and Göres [40] found a positive correlation (significant at the 95% confidence level)

between IC50 and LD50 toxicity.

Recanatiniet al.[66] carried out comparitive QSAR analysis to highlight the

properties of AChE inhibitors which are essential to potential drugs for the treatment

of Alzheimers. Both El Yazalet al.[30] and Zhaoet al.[91] use 3D-QSAR to enable the

prediction of neurotoxicity via the inhibition of AChE. Themain objective for DEMETRA

- Development of Environmental Modules for the Evaluation of Toxicity of pesticide

Residues in Agriculture - is to produce QSAR software for pesticide toxicity prediction.

Previous research has found a correlation between the inhibition of AChE and acute

neurotoxicity [30].

Chen and Ung use a ligand-protein inverse docking approach to facilitate toxicity

prediction [20]. Bursulayaet al.[18] give a detailed comparison of multiple docking

programs and Halperinet al.[41] give an overview of the search algorithms and scoring

functions involved.

Morris et al.[58] present a method to describe the shape of a protein binding site

in terms of spherical coordinates. Cosgroveet al.[22] provide a method that detects

local shape similarity which correctly identified the binding of 20 out of 21 particular

inhibitors using shape alone. Good and Richards [37] give a review on methods developed

to calculate 3D shape similarity between molecules.
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1.3.4 Data

The data we have been given is summarised as follows.

1. Atomic coordinate data for 145 pesticides (39 carbamatesand 106 OPs) in

minimum-energy conformations (discussed in more detail inChapter 6).

2. Over a thousand biological descriptors for each of the 145pesticides.

3. For varying subsets of the pesticides, we have LD50 toxicity data for 5 different

species: bobwhite quails, japanese quails, mallards, red-winged blackbirds and

starlings. Table 1.2 displays the number of pesticides for which we have toxicity

data for each species.

Number of pesticides for which we have toxicity data

Species Carbamates OPs Total

Bobwhite quail 17 35 52

Japanese quail 18 49 67

Mallard 15 47 62

Red-winged blackbird 25 60 85

Starling 18 54 72

Table 1.2: Table displaying the number of pesticides for which we have toxicity data for

each species.

1.3.5 Aims

We want to develop a shape similarity measure between ACh anda pesticide. As both

ligands bind to the same site within AChE, the shape similarity between them may be

an indicator of the associated pesticide toxicity. We compare the significance of the
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produced shape similarity measure as a toxicity predictor to the significance of biological

descriptors which have previously been highlighted as indicators of toxicity.

According to 3D-QSAR, the docked pesticide is a more suitable indicator of

toxicity. We use a docking program to predict the dock of a pesticide to AChE. We then

explore whether the similarity with the docked ACh, the closeness of fit to AChE and the

output inhibition constant of the prediction help determine the potential toxicity.

1.4 Thesis structure

In Chapter 2 we build on the EM algorithm introduced by Walker[87] and extended

by Kent et al. [77] [45]. We provide methodology to infer one-to-one, many-to-one or

many-to-many matches of points across images. The latter types of matching are useful

when comparing protein images as multiple forms of an individual protein can often be

visualised [7]. We also provide a method to account for the likelihood of an increased

edge variance within images.

Most current computational analyses systems rely on the manual location of a

set of markers and any mismatches must be checked and edited manually by an expert

[38]. The misidentification of a marker can mislead even the most elegant analyses

system when estimating the superimposition of images. In this work we introduce a

prior that will account for the possibility that a true marker is actually a nearby point

of the allocated marker. Incorporating this prior deals with the possibility of slight

marker misallocation within a warped image so that matchingshould not be greatly

affected by slight misallocations. The EM algorithm is strongly dependent on the

starting transformation which would, intuitively, be estimated from the corresponding

markers. Inputting the spot IDs of markers is a manual procedure and could lead to

gross positional misallocations even if there were only a slight input error. We produce

a technique to automatically locate and remove markers thatare highlighted as gross

misallocations, before the remaining markers are used to infer starting transformations
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in further comparitive analyses. Finally, we provide methodology to deal with the high

likelihood of missing markers within an image.

The methodology developed in Chapter 2 can not only assign matches, but also

calculates an associated matching probability. This supplies a scientist with further

information and the ability to pick the most likely match or non-match (depending on

what is of particular interest) for further investigation.

In Chapter 3, we explore the accuracy of the methodology introduced in Chapter

2 and use it to analyse the given data. We compare the matches inferred when we

fix the prior probability of markers matching as one, to the matches inferred when we

employ the prior that will account for the possibility of slight marker misallocation. We

highlight appropriate parameters that should be used within further analyses of the given

dataset. We explore evidence of an increased edge variance within our dataset before

finally including an example of how points are matched acrosstwo images.

In Chapter 4 we first show how data can be pooled across replicate images to

minimise the input into further analyses. We develop a technique that can be used to

infer the quality of a dataset, i.e., the level of contamination present. Finally, we show

how the EM algorithm can be used to highlight likely points unique to a specific group of

images.

In Chapter 5, we explore the accuracy of the methodology introduced in Chapter 4

and use it to analyse the given data. We provide an example of how a single union image

can be created to represent two replicate images. We explorethe level of contamination

present within the given dataset. Finally, we rank the points (or proteins) that are likely to

be unique to certain groups of images within the dataset.

In Chapter 6 we test the hypothesis that the potential toxicity of a pesticide is related

to the shape similarity between the pesticide and the substrate, ACh, of the protein, AChE,

to which they both bind. We produce methodology to calculatea measure of shape

similarity between ACh and a pesticide. We then explore the significance of the developed

shape similarity measure as a toxicity predictor and compare it to the significance of
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known biological indicators of toxicity. We also compare the accuracy of the toxicity

predictions when applying our model to the accuracy when implementing a previously

developed online predictor.

In Chapter 7 we explore the accuracy of a docking program before using it to predict

the docked conformation of a pesticide within AChE. We then produce a measure of

similarity between the known dock of ACh and the predicted pesticide docks. We also

define a method to calculate a distance measure between a docked ligand and AChE. We

investigate the significance of these measures, alongside an associated inhibition constant,

as toxicity predictors for the bobwhite quail.

In Chapter 8 we provide a critical summary of the research within this thesis before

finally highlighting possible further work in each area.
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Chapter 2

Modelling, and using the EM algorithm

to match, pairwise gels

2.1 Introduction

In Section 2.2 we introduce a statistical model to representdata across pairwise images.

We consider two possible methods to calculate prior matching probabilities across images.

The first method assumes that atrue marker is always correctlyallocated. The second

method deals with the possibility of slight marker misallocation within a warped image

and does not assume that an allocated marker is always the true marker. In Section 2.3

we use an Expectation Maximisation (EM) algorithm to estimate the superimposition of

two images before inference is made on point correspondenceacross images. Finally,

in Section 2.4 we provide methodology to account for missingor grossly misallocated

markers.

In this chapter we assume that all points observed in an imagerepresent real

proteins.
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2.2 Introduction to the statistical model

As the mass and acidity of a protein are calculated from the spatial coordinates, we focus

only on protein coordinates within the described statistical model.

2.2.1 Notation

We introduce a statistical model for data within a generalD dimensions. (Within figures,

d denotes thedth dimension.)

Let µG andxG bemG × D andnG × D matrices containing the coordinates forall

the proteins present in two 2-DE gels. Letµ andx be the(K +m)×D and(K +n)×D

subsets ofµG andxG observed in western blot images of the gels, whereµi andxj are

D × 1 vectors containing the coordinates of pointi in µ and pointj in x respectively.

Let µi andxj contain the coordinates of markerk for 1 ≤ i, j,≤ K and the arbitrarily

labelled coordinates of them andn non-markers fori = K + 1, . . . , K + m andj =

K + 1, . . . , K + n in µ andx respectively. TheD × 1 coordinate vectors inµG andxG

are set asµG
i = µi andxG

j = xj for i = 1, . . . , K + m andj = 1, . . . , K + n respectively.

For i = K + m + 1, . . . , mG andj = K + n + 1, . . . , nG, µG
i andxG

j respectively contain

coordinate information for arbitrarily labelled proteinsthat have not been observed inµ

andx.

So the matricesµG and xG contain coordinate information for all the proteins

present in the 2-DE gels and are independent of the subject. In our caseµG and xG

represent theoretical gel images as we have data for the western blots only (see chemical

implementation in Subsection 1.2.4) and are only considered when simulating data in

the following chapter to mimic the allocation of markers. The matricesµ andx contain

coordinate information for theK markers and them or n subject-treatment specific non-

markers respectively. Bothµ andx represent observed images and we assume they each

contain a selection of markers and a separate selection of non-markers.
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2.2.2 Transformations

To enable us to highlight points that are present in both images, we first aim to

superimposeµ ontox.

Although the statistical model we later introduce can applyto various types of

transformations, we focus on an affine transformation of theform

g(µ) = µAT + BT ,

whereA is a non-singularD × D matrix and theD × 1 vector,b, is present in every

column of theD × (K + m) matrix B. Due to the possibility of differential stretching

between the rows and columns found in images (because of the warping incurred by the

gel), Horganet al. [42] consider the affine transformation to be a suitable transformation

when superimposing images. We want to estimate the affine transformation parameters,

A andb, that superimposeµ ontox.

2.2.3 Matching matrix

To enable us to estimate the appropriate transformation ofµ, we can introduce a labelling

system that will indicate whether a point inµ corresponds to a point inx, i.e., whether

two pointsmatchacross configurations.

We can record the labelling information in a(K + m + 1) × (K + n) matching

matrix,M , where

Mij =



















1 for i = 0 if xj does not have a matching point inµ

1 for i = 1, . . . , K + m if xj matchesµi

0 otherwise

,

for j = 1, . . . , K + n. Note that, for simplicity of notation, we setM0j = Mij for

i = K + m + 1. If M0j = 0, thenxj does not have a matching point inµ and we say that

xj is allocated to thecoffin bin.
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We consider one-to-one or many-to-one matches between points inx and points in

µ. We refer to these assoftandhardmatches respectively.

Hard Matches

The matching matrix,M , has the following constraints for the hard model.

K+m
∑

i=0

Mij = 1 for j = 1, . . . , K + n (2.1)

and
K+n
∑

j=1

Mij <= 1 for i = 1, . . . , K + m. (2.2)

Here the points inµ are chosenwithout replacement. So fori1 6= 0, if Mi1j1 = 1, i.e. µi1

is matched toxj1 , thenMi1j2 = Mi2j1 = 0 for all i1 6= i2 andj1 6= j2.

Note that there are no constraints on rowK + m + 1 in M since each of theK + n

points inx is free to be allocated to the coffin bin.

Soft Matches

For the soft model, the only constraint is stated in Equation(2.1). Here the points

in µ are chosenwith replacement. That is, ifMi1j1 = 1 thenMi2j1 = 0 for all i1 6= i2, but

Mi1j2 ∈ {0, 1} for j1 6= j2.

When assigning either hard or soft matches, Equation(2.1) constrains a point inx

to be matched to a single point inµ or, alternatively, to be allocated to the coffin bin.

To allow for the possibility of soft matching, we consider points in x to be

independent. As we haveK markers in each image, we have prior information about

the matching across images. Next we introduce notation to deal with prior matching

probabilities.

2.2.4 Prior matching matrix probabilities

Let Q be a (K + m + 1) × (K + n) matrix where an elementqij = p(Mij = 1).

That is, forj = 1, . . . , K + n , qij is the prior probability thatµi is matched toxj for
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i = 1, . . . , K + m and the prior probability thatxj is allocated to the coffin bin fori = 0.

Again, for simplicity of notation we have setq0j = qij for i = K + m + 1.

As the labelling is independent over points inx,

K+m
∑

i=0

qij = 1 for j = 1, . . . , K + n.

We have prior knowledge that corresponding markers,µk andxk for k = 1, . . . , K, should

match.

We introduce both astandardandadaptedmethod to assignqij for i = 0, . . . , K+m

and j = 1, . . . , K + n. The standard method assumes that the allocated markers are

the true markers, i.e., that corresponding markers will match across configurations. The

adapted method deals with the possibility of slight error when allocating markers within

a warped image and does not assume prior knowledge that corresponding markers will

match.

Standard method:

In this case we assume that an allocated markerk is the true markerk for k = 1, . . . , K.

Markers in x

Because we assume that each marker is correctly allocated, we set

qik =







1 if i = k

0 if i 6= k
, (2.3)

for i = 0, . . . , K + m andk = 1, . . . , K, whereqkk denotes the prior probability that

correspondingly allocated markers match.

Non-markers in x

For a non-markerxj , j = K + 1, . . . , K + n, we set

qij =







0 for i = 1, . . . , K

1
m+1

for i = 0 andi = K + 1, . . . , K + m
. (2.4)
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We know that theK markers inµ have specified corresponding points inx. So the prior

matching probability of a non-markerxj is set to be uniform over them + 1 remaining

matching possibilities.

Note: We have chosen to set the probability ofxj being allocated to the coffin bin

to be equal to the probability of it being matched to a point inµ. The more points inµ,

the more likely it is thatxj has a corresponding point inµ. So setting the prior probability

to be inversely related tom + 1 seems sensible.

Adapted method:

Here we allow for error in the allocation of a marker within a warped configuration and

consider the possibility that an allocated markerk may not be the true markerk.

Markers in x

We know thatµk contains the allocated marker coordinates for markerk in µ, k =

1, . . . , K. Let γk be the index of the true markerk in µ. If γk = k, then the true markerk

has been correctly allocated as markerk.

We set the prior probability of a pointµi being the true markerk, qik, to be a function

of the distance betweenµi andµk so that

qik = p(γk = i) = f(dik) for i = 1, . . . , K + m, (2.5)

wheredik is the Euclidean distance betweenµi andµk, i.e.,

dik = ‖µi − µk‖. (2.6)

Possible choices forf are discussed in Section 2.3.5.

Next we consider the possibility that a marker withinx does not have a

corresponding point inµ. We know thatxk contains the allocated marker coordinates

for markerk in x, k = 1, . . . , K. To allow the possibility forxk to be allocated to the

coffin bin, we set the prior probability ofM0j = 1 to be uniform so that

q0k = p(γk = i) =
1

|Ω|
, (2.7)
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whereΩ is some region inRD containing all points inx.

Non-markers in x

To allow for the possibility that an allocated markerk is not the true markerk in x,

for k = 1, . . . , K, we can set

qij =
1

K + m + 1
, (2.8)

for i = 0, . . . , K + m andj = K + 1, . . . , K + n. So the prior matching probability of a

non-markerxj is set to be uniform over theK + m + 1 matching possibilities.

2.2.5 Error distribution

Assuming the transformation parameters,A andb, are known, we can apply a distribution

to xj given the matchMij = 1. We treat the elements ofx as conditionally independent

with the following distributions forj = 1, . . . , K + n.

xj |Mij = 1 ∼







ND(Aµi + b, σ2
ijID) for i = 1, . . . , K + m

Unif(Ω) for i = 0
,

where2σ2
ij is an assigned variance betweenµi andxj (assuming independence across

dimensions), andΩ is again some region inRD containing all points inx. So the pdf of

xj given the matchMij = 1 is

p(xj |Mij = 1) =







1
(2πσ2

ij )D/2
exp

{

−‖xj−Aµi−b‖2

2σ2

ij

}

for i = 1, . . . , K + m

1
|Ω|

for i = 0
. (2.9)
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2.3 Estimating the parameters within the statistical

model

2.3.1 Inference on the matching matrix assuming the transformation

is known

In the simplest case, the variance,σ2
ij , and the transformation parameters,A andb, are

known. The expected log-likelihood of the matching matrix,M , given the data,x, takes

the form

E[l(M |x)] =

K+m
∑

i=0

K+n
∑

j=1

Mij log p(xj |Mij = 1)

=
K+n
∑

j=1

{

K+m
∑

i=1

Mij

[

−
‖xj − Aµi − b‖2

2σ2
ij

−
D

2
log(2πσ2

ij)

]

− M0j log |Ω|

}

= −
1

2

K+n
∑

j=1

{

K+m
∑

i=1

[

Mij

σ2
ij

‖xj − Aµi − b‖2 + D log(σ2
ij)

]

+ αM0j

}

+ c,

(2.10)

whereα = 2 log(|Ω|/(2π)D/2) andc = −((K + n)D/2) log(2π) when incorporating the

constraint that applies to both the hard and soft model in Equation(2.1).

However, in reality it is unlikely that the transformation parameters are known. In

the next section we show how the EM algorithm can be implemented to estimate the

transformation parameters,A andb, before inferring on the matching matrix,M .

2.3.2 Estimating the transformation parameters via the EM

algorithm

We use an EM algorithm to estimate the transformation parameters,A andb, that will

superimposeµ ontox. In the E-step we calculate the posterior probability thatµi matches

xj , i.e. the posterior probability thatMij = 1. The posterior probabilities are then input
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into the expected likelihood of observing the matching matrix, M , given the data,x. In the

M-step we estimate the transformation parameters,A andb, that maximise the expected

likelihood found in the E-step.

E-step

We calculate the posterior probability ofµi matchingxj , i.e., Mij = 1, givenxj using

Bayes Theorem so that

p(Mij = 1|xj) =
p(xj |Mij = 1)p(Mij = 1)

p(xj)
, (2.11)

where p(xj |Mij = 1) is calculated using Equation(2.9). The second term in the

numerator of Equation(2.11) is qij = p(Mij = 1) and is calculated using both Equations

(2.3) and(2.4) in the standard method or Equations(2.5), (2.7) and(2.8) in the adapted

method. The denominator of Equation(2.11) is calculated as

p(xj) =
K+m
∑

i=0

p(xj |Mij = 1)p(Mij = 1) =
K+m
∑

i=0

qijp(xj |Mij = 1).

ReplacingMij and p(xj |Mij = 1) in Equation(2.10) with pji and qijp(xj |Mij = 1)

respectively, the expected log-likelihood of observing the matching matrix,M , given the

data,x, becomes

E[l(M |x)] =
K+m
∑

i=0

K+n
∑

j=1

pji [log qij + log p(xj |Mij = 1)] , (2.12)

wherepji = p(Mij = 1|xj) for simplicity of notation.

M-step

In this step we want to estimate the transformation parameters,A andb, that maximise the

expected log-likelihood displayed in Equation(2.12). Both the prior probabilities stored

in Q and the conditional distribution ofxj being allocated to the coffin bin are independent
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of A andb, so we estimate the transformation parameters that maximise

K+m
∑

i=1

K+n
∑

j=1

pji log p(xj|Mij = 1) =
K+m
∑

i=1

K+n
∑

j=1

pji

[

−
‖xj − Aµi − b‖2

2σ2
ij

−
D

2
log(2πσ2

ij)

]

.

Removing further terms independent ofA andb, we want to estimate the transformation

parameters that minimise

K+m
∑

i=1

K+n
∑

j=1

p∗ji‖xj − Aµi − b‖2

=
K+m
∑

i=1

K+n
∑

j=1

p∗ji
[

‖xj‖
2 − 2xT

j (Aµi) − 2xT
j b + ‖Aµi‖

2 + 2(Aµi)
T b + ‖b‖2

]

, (2.13)

where

p∗ji =
pji

σ2
ij

.

Ignoring the terms independent ofb and applying the properties

∂aT x

∂x
= a and

∂xT x

∂x
= 2x,

the differential of Equation(2.13) with respect tob becomes

K+m
∑

i=1

K+n
∑

j=1

p∗ji(2b − 2xj + 2Aµi).

Setting to zero, the maximum likelihood estimate ofb, b̂, is

b̂ =

∑K+m
i=1

∑K+n
j=1 p∗ji(xj − Aµi)

∑K+m
i=1

∑K+n
j=1 p∗ji

. (2.14)

Substituting the mle ofb, b̂, back into Equation(2.13), we find that

K+m
∑

i=1

K+n
∑

j=1

p∗ji‖xj − Aµi − (x̄ − Aµ̄)‖2

=

K+m
∑

i=1

K+n
∑

j=1

p∗ji‖(xj − x̄) − A(µi − µ̄)‖2
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=

K+m
∑

i=1

K+n
∑

j=1

p∗ji(‖xj − x̄‖2 − 2(xj − x̄)T A(µi − µ̄) + ‖A(µi − µ̄)‖2), (2.15)

where

µ̄ =

∑K+m
i=1

∑K+n
j=1 p∗jiµi

∑K+m
i=1

∑K+n
j=1 p∗ji

and x̄ =

∑K+m
i=1

∑K+n
j=1 p∗jixj

∑K+m
i=1

∑K+n
j=1 p∗ji

.

Ignoring the terms independent ofA and applying the properties

∂aT Xb

∂X
= abT , and

∂aT XT Xb

∂X
= X(abT + baT )

the differential of Equation(2.15) with respect toA becomes

K+m
∑

i=1

K+n
∑

j=1

p∗ji
[

−2(xj − x̄)(µi − µ̄)T + 2A(µi − µ̄)(µi − µ̄)T
]

Setting to zero, the maximum likelihood estimate ofA, Â, is

Â =

[

K+m
∑

i=1

K+n
∑

j=1

p∗ji(xj − x̄)(µi − µ̄)T

][

K+m
∑

i=1

K+n
∑

j=1

p∗ji(µi − µ̄)(µi − µ̄)T

]−1

(2.16)

These mles for botĥA andb̂ were given by Walker [87].

The algorithm alternates between the E-step and the M-step.At each iteration, the

transformation parameters are updated in the M-step to

A(r+1) = Â(r) andb(r+1) = b̂(r),

before being input back into the E-step for the next iteration.

Convergence

We assign convergence to be whenr is such that

1

(K + m + 1)(K + n)

K+m
∑

i=0

K+n
∑

j=1

[

p
(r+1)
ji − p

(r)
ji

]2

≤ 1 × 10−l, (2.17)

wherel can be varied and the posterior probability ofµi matchingxj at therth and(r +

1)st iteration is denoted byp(r)
ji andp

(r+1)
ji respectively, fori = 0, . . . , K + m andj =

1, . . . , K +n. The largerl, the closer the average squared difference must be betweenp
(r)
ji

andp
(r+1)
ji at the final iterationr + 1.
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2.3.3 Inference on the matching matrix using estimated

transformation parameters

Let p̂ be the(K + n) × (K + m + 1) matrix containing the final posterior matching

probabilities. LetÂ andb̂ be the final maximum likelihood estimates of the transformation

parameters output by the EM algorithm. These mles,Â andb̂, provide the transformation

necessary to superimposeµ ontox.

We now provide methods to find hard (one-to-one), soft (many-to-one) and “super

soft” (many-to-many) matches. The latter types of matchingare useful when comparing

protein images as multiple forms of an individual protein can often be visualised [7]. That

is, a single protein can produce multiple spots on an image. Let ∆ be a(K + m + 1) ×

(K + n) matrix. We can estimate the matching matrix,M , using the posterior matching

probabilities by setting∆ = p̂T . Alternatively, we can control the output number of

matches and the maximum distance between two matched pointsby setting∆ = D∗,

whereD∗ is the(K+m+1)×(K+n) matrix containing all pairwise Euclidean distances

between points in the transformedµ and points inx. An element inD∗ is set to be the

following.

D∗
ij =







d2
ij for i = 1, . . . , K + m

d2
T for i = 0

,

for j = 1, . . . , K + n where

dij = ‖xj − Âµi − b̂‖

anddT is an assigned distance threshold. The lower we fixdT , the lower the number

of output matches. Like previously, for simplicity of notation we setD∗
ij = D∗

0j and

∆ij = ∆0j for i = K + m + 1.

Note: Controlling the number of matches is useful if we want to highlight the most

likely matched pair or the 10 most likely, for example.
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One-to-one matches

For one-to-one matches acrossµ and x, we need to apply the constraints stated in

Equations(2.1) and(2.2). The conditional likelihood and the log-likelihood ofM are

respectively given as
K+m
∏

i=0

K+n
∏

j=1

∆
Mij

ij

and
K+m
∑

i=0

K+n
∑

j=1

Mij log ∆ij . (2.18)

We findM that maximises this log-likelihood when∆ = p̂T or that minimises the log-

likelihood when∆ = D∗. We inputlog ∆ and the2K+m+n constraints into a hardening

algorithm developed by Michael Berkelaar [10], which will output the estimated one-to-

one matching matrix,̂M .

Note 1: If ∆ij = 0, thenlog ∆ij = −∞ which will halt the hardening algorithm.

To allow the algorithm to run, we setlog ∆ij = −1 × 1010 if ∆ij = 0.

Note 2: If ∆0j > ∆ij when∆ = p̂T or ∆0j < ∆ij when∆ = D∗ for all i 6= 0, the

algorithm would setM0j = 1. To reduce computational workload, we exclude columnj in

∆ from the hardening algorithm when the described conditionsare met and automatically

setM0j = 1.

Many-to-one matches

For many-to-one matches fromx to µ, we only need to apply the constraint stated in

Equation(2.1).

In this case we simply set

M̂i1j =







1 if, for all i2 6= i1, ∆i1j > ∆i2j when∆ = p̂T or if ∆i1j < ∆i2j when∆ = D∗

0 otherwise
,

(2.19)

for j = 1, . . . , K + n.
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Many-to-many matches

Here the only constraints are thatMij = {0, 1} and that ifM0j = 1, thenMij = 0 for all

i 6= 0. That is,xj can not be allocated to the coffin bin and matched with points in µ.

Here we set

M̂ij =







1 if ∆ij > ∆0j when∆ = p̂T or if ∆ij < ∆0j when∆ = D∗

0 otherwise
, (2.20)

for i = 1, . . . , K + m andj = 1, . . . , K + n.

The estimated number of matches, denoted byL̂, is

L̂ =

K+m
∑

i=1

K+n
∑

j=1

M̂ij , (2.21)

whereM̂ is the inferred matching matrix.

2.3.4 Composite algorithm

We can summarise each step within the algorithm as follows.

1. Assignqij using Equations(2.3) and (2.4) in the standard method or Equations

(2.5), (2.7) and (2.8) in the adapted method fori = 0, . . . , K + m and j =

1, . . . , K + n.

2. Find initial estimates of the transformation parameters, A(0) andb(0), and assign the

variance,σ2
ij. Possible choices are discussed in the following subsection.

3. Run the EM algorithm to get the updated estimates,p
(1)
ji , A(1) and b(1), using

Equations(2.11), (2.16) and(2.14) respectively.

4. Repeat step 3 to find the updated estimates,p
(r+1)
ji , A(r+1) and b(r+1), until

convergence (defined in Equation(2.17)) is reached. Let the final posterior

matching probabilities be stored in the(K + n) × (K + m + 1) matrix p̂ and

the final estimated transformation parameters be denoted byÂ andb̂.
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5. We can choose to assign matches by setting∆ = p̂T or ∆ = D∗. One-to-

one matches are assigned using the hardening algorithm described in the previous

subsection, many-to-one matches using Equation(2.19) or many-to-many matches

using Equation(2.20).

6. Treating the matches within the inferred matching matrix, M̂ , as known, we

can update the transformation parameters using Procrustesmethodology [28] to

calculate the final estimates,ˆ̂A andˆ̂
b.

2.3.5 Assigning the function and parameters within the EM

algorithm

When considering the adapted method to assign prior matching probabilities for the

markers, we need to assign the functionf stated in Equation(2.5). We also need to

assign starting values for the transformation parameters denoted byA(0) andb(0). Finally

we need to assign a variance between a pointi in µ and a pointj in x, denoted byσ2
ij .

We look at each assignment separately.

Function applied within adapted method

We discuss two possible choices for the function,f , in Equation(2.5).

As before,µk contains the allocated marker coordinates for markerk in µ, k =

1, . . . , K andγk is the index of the true markerk in µ.

Let d̄ik denote the expected distance between a pointµi andµk for i = 1, . . . , K+m.

Due to the freedom for a gel to warp, in reality the distance betweenµi andµk in an image

is

dik = d̄ik + ε,

whereε denotes some error.
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The first choice for the function,f , in Equation(2.5) is motivated by the likelihood

of clusters to occur within a gel and the resulting difficultyin correctly allocating a marker

within a cluster of points.

We can accommodate for the increased likelihood that a marker µk is misallocated

if it exists within a cluster of other points, fork = 1, . . . , K, by stating

qik = p(γk = i) ∝







1
Ck

if dik ≤ ε

0 if dik > ε
, (2.22)

wheredik is a Euclidean distance calculated with Equation(2.6) and

Ck =
K+m
∑

i=1

I[dik ≤ ε],

whereI[dik ≤ ε] = 1 if dik ≤ ε andI[dik ≤ ε] = 0 if dik > ε for i = 1, . . . , K + m. So

Ck is simply the number of points inµ that are within a distance ofε from µk.

For the second choice of the function,f , in Equation(2.5), all points inµ are

considered as possible true markers. We apply a normal distribution toε so that

ε ∼ ND(µk, σ
2
∗ID)

and

qik = p(γk = i) ∝
1

(2πσ2
∗)

D/2
exp

{

−
‖µi − µk‖

2

2σ2
∗

}

, (2.23)

for i = 1, . . . , K + m, where2σ2
∗ is the variance between two points inµ (assuming

independence across dimensions). So the probability thatµi is the true markerk will

decrease the further it is fromµk.

Starting values for transformation parameters

As we have prior knowledge of allocated corresponding markers in bothµ andx, it is

sensible thatA(0) and b(0) are set as the transformation parameters necessary to best

superimpose corresponding markers. Dryden and Mardia [28]show how these parameters

can be estimated from the matrix,

R = (µT
∗ µ∗)

−1µT
∗ x

′

, (2.24)
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whereµ∗ is theK × (D + 1) matrix µ∗ = (1K , µ
′

) and1K is a vector of ones of length

K. The K × D matrices,µ
′

andx
′

, contain only the marker coordinates forµ andx

respectively.

The first column inRT containsb(0) and the second two columns inRT contain the

D × D matrixA(0).

Starting values for the variance between images

Constant variance

We can estimate a constant variance,σ2
ij = σ2 for i = 1, . . . , K + m and j =

1, . . . , K + n, by considering the mean squared distance between corresponding markers

in µ andx after an affine transformation has been applied to superimpose them. That is,

set

σ̂2 =
1

ν

K
∑

k=1

‖xk − A(0)µk − b(0)‖2, (2.25)

whereν = DK − D2 − D and denotes the degrees of freedom. HereDK is the number

of error terms in theD components of theK markers. This number is reduced inν to

accommodate the estimates ofA(0) andb(0).

Increased edge variance

Due to the chemical procedure used to create images, points close to the edges tend

to have a higher degree of positional error than those allocated close to the centre of an

image. For this reason we provide a method that will take intoaccount an increased edge

variance within an image.

Let us consider the single imageµ. Let w andh denote the width and height ofµ

respectively. If a pointµi is a greater distance thana from any edge of the imageµ, then

the influence due to edge proximity on positional variance isnegligible, so we fixµi to

have a fixed variance,σ2
0 . If a point µi is a lesser distance thana from any edge of the

imageµ, then the variance ofµi will be location dependent. We defineσ2
i , the variance

of a pointµi, separately for each of the nine areas (displayed in Figure 2.1) thatµi can lie
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within.

Area 0

Area 1

Area 2

Area 3 Area 4 Area 5

Area 6

Area 7Area 8

0
0

a

a

h−a

w−a w

h

Figure 2.1: Figure displaying the nine areas of an image in which we separately define

the variance of a pointµi, σ2
i .

Let µi1 andµi2 denote thex andy coordinates of a pointµi.

Area 0

If a ≤ µi1 ≤ w − a anda ≤ µi2 ≤ h − a, then

σ2
i = σ2

0.

The variance is fixed atσ2
0 for any point inµ present in area 0.

Area 1

If µi1 < a andµi2 < a, then

σ2
i = c

[

(a − µi1)
2 + (a − µi2)

2
]

+ σ2
0,

wherec is some scaling factor. The distance ofµi from the bottom-left corner ofµ dictates

σ2
i .

Area 2
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If µi1 < a anda ≤ µi2 ≤ h − a, then

σ2
i = c(a − µi1)

2 + σ2
0.

The distance ofµi from the left edge ofµ dictatesσ2
i .

Area 3

If µi1 < a andµi2 > h − a, then

σ2
i = c

[

(a − µi1)
2 + (µi2 − h + a)2

]

+ σ2
0 .

The distance ofµi from the top-left corner ofµ dictatesσ2
i .

Area 4

If a ≤ µi1 ≤ w − a andµi2 > h − a, then

σ2
i = c(µi2 − h + a)2 + σ2

0.

The distance ofµi from the top edge ofµ dictatesσ2
i .

Area 5

If µi1 > w − a andµi2 > h − a, then

σ2
i = c

[

(µi1 − w + a)2 + (µi2 − h + a)2
]

+ σ2
0 .

The distance ofµi from the top-right corner ofµ dictatesσ2
i .

Area 6

If µi1 > w − a anda ≤ µi2 ≤ h − a, then

σ2
i = c(µi1 − w + a)2 + σ2

0 .

The distance ofµi from the right edge ofµ dictatesσ2
i .

Area 7

If µi1 > w − a andµi2 < a, then

σ2
i = c

[

(µi1 − w + a)2 + (a − µi2)
2
]

+ σ2
0 .
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The distance ofµi from the bottom-right corner ofµ dictatesσ2
i .

Area 8

If a ≤ µi1 ≤ w − a andµi2 < a, then

σ2
i = c(a − µi2)

2 + σ2
0.

The distance ofµi from the bottom edge ofµ dictatesσ2
i .

Similarly, letσ2
xj be the variance of a pointxj in x. Using the appropriate values of

w andh, we can calculateσ2
xj for xj in the same way we have calculatedσ2

i for µi. We

can estimate the variance between the pointµi in µ and the pointxj in x as

σ̂2
ij = σ2

i + σ2
xj ,

for i = 1, . . . , K + m andj = 1, . . . , K + n.

2.4 Accounting for grossly misallocated or missing

markers

The number of missing or grossly misidentified markers are dependent on the quality of

the equipment and the expert that create the images.

2.4.1 Grossly misallocated markers

Gross misallocations of a marker may occur through human error when inputting marker

labels into data spreadsheets. For instance, spot ID 153 could easily be labelled as marker

1 rather than spot ID 135. Dryden and Walker [29] consider procedures based on S

estimators, least median of squares and least quartile difference estimators that are highly

resistant to outlier points. Here we describe how we can use the EM algorithm previously

described.

The EM algorithm is very much dependent on the transformation parameters input

as starting values,A(0) andb(0). We have previously stated that the affine transformation
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necessary to superimpose corresponding markers inµ andx will provide sensible starting

values for the transformation parameters within the EM algorithm. However this would

not be the case if gross misallocations occur.

Here we provide a method that will highlight grossly misallocated markers across

images. Highlighted markers can then be automatically removed or corrected before they

are used within the EM algorithm to estimate transformationstarting values.

Letµ
′

andx
′

beK×D coordinate matrices whereµ
′

k andx
′

k contain the coordinates

of markerk in µ andx respectively fork = 1, . . . , K.

Here we consider the prior matching probabilities to be independent of the distance

between a possible marker and the allocated marker so that

qik =







pM for i = k

1−pM

K
for i 6= k

, (2.26)

wherepM denotes the probability that the allocated markerµ
′

k truly corresponds to the

allocated markerx
′

k.

We inputµ
′

andx
′

into steps 1-5 of the composite algorithm to estimate the one-

to-one matching matrixM̂ , replacing Equations(2.5) and(2.7) with Equation(2.26) in

stage 1. We use a sensible fixed varianceσ̂2
ij = σ̂2 in Equation(2.9). We use Equation

(2.24) to estimate the starting transformation values,A(0) andb(0). Note that the starting

transformation will be distorted by the presence of grosslyallocated markers.

There are four possible outcomes fork = 1, . . . , K.

• The allocated corresponding markersµ
′

k andx
′

k are matched if

M̂kk = 1.

We include bothµ
′

k andx
′

k in further analyses.

• The markerx
′

k is allocated to the coffin bin if

M̂0k = 1.

We exclude bothµ
′

k andx
′

k from further analyses.
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• No point inx
′

is matched to the markerµ
′

k if

M̂kj = 0,

for all j = 1, . . . , K. We exclude bothµ
′

k andx
′

k from further analyses.

• The markerµ
′

k1
is matched to an allocated non-corresponding markerx

′

k2
if

M̂k1k2
= 1,

for k1 6= k2. We excludeµ
′

k1
, µ

′

k2
, x

′

k1
andx

′

k2
from further analyses.

2.4.2 Missing markers

It is possible that allK markers are not successfully located in bothµ andx. For example,

only 10 out of the possibleK = 12 markers were located in the image displayed in

Figure 1.2.

There are four possibilities we must consider fork = 1, . . . , K.

• Case 1:Markerk is located in bothµ andx.

• Case 2:Markerk is located inµ alone.

• Case 3:Markerk is located inx alone.

• Case 4:Markerk is not located in eitherµ or x.

We first introduce notation to allow for the possibility of missing markers.

Let Kµ andKx be the total number of markers located inµ andx respectively. As

previously notated, letµ be the(K +m)×D coordinate matrix andx be the(K +n)×D

coordinate matrix.

If markerk is located inµ, thenµk contains the coordinates of markerk in µ. If

markerk is not located inµ, thenµk = ∅. Similarly if markerk is located inx, thenxk
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contains the coordinates of markerk in x, for k = 1, . . . , K. If markerk is not located in

x, thenxk = ∅.

As previously stated,Q is the(K + m + 1) × (K + n) matrix containing the prior

matching probabilities for points inx. We redefineQ separately for both the standard and

adapted method.

Standard method

We assume that the allocated markerk is the true markerk, for k = 1, . . . , K.

Markers in x

Case 1:If µk 6= ∅ andxk 6= ∅, then markerk is located in bothµ andx and we can

assignqik as previously defined in Equation(2.3) for i = 1, . . . , K + m.

Case 2: If µk 6= ∅ and xk = ∅, then markerk is located inµ alone. As we

assume that an allocated markerk is the true markerk, we know thatµk does not have a

corresponding point inx. We can removeµk from the analyses by setting

qkj = ∅ for j = 1, . . . , K + n.

Alternatively we could setqkj = 0 for j = 1, . . . , K + n throughout the EM algorithm

and removeµk before assigning matches.

Case 3: If µk = ∅ andxk 6= ∅, then markerk is located inx alone. In this case

we know thatxk does not have a corresponding point inµ. We can removexk from the

analyses by setting

qik = ∅ for i = 0, . . . , K + m.

Alternatively we can set

qik =







1 for i = 0

0 for i = 1, . . . , K + m.
,

to ensure thatxk is allocated to the coffin bin. Again we would removexk before assigning

matches.
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Case 4:If µk = ∅ andxk = ∅, then markerk is not located in eitherµ or x. We set

qik = qkj = ∅ for i = 0, . . . , K + m andj = 1, . . . , K + n.

Non-markers in x

In the standard method we only consider the possibility thata non-marker inx

matches a non-marker inµ, otherwise it is allocated to the coffin bin. So we can still

use the previously defined Equation(2.4) to evaluateqij for i = 0, . . . , K + m andj =

K + 1, . . . , K + n.

Adapted method

Now we allow for the possibility that an allocated markerk is not the true markerk, for

k = 1, . . . , K.

Markers in x

Case 1:If µk 6= ∅ andxk 6= ∅, we assignqik as previously stated in Equations(2.5)

and(2.7) for i = 0, . . . , K + m.

Case 2:If µk 6= ∅ andxk = ∅, we treatµk as a non-marker.

Case 3:If µk = ∅ andxk 6= ∅, we treatxk as a non-marker.

Case 4:If µk = ∅ andxk = ∅, we set

qik = qkj = ∅ for i = 0, . . . , K + m andj = 1, . . . , K + n.

Non-markers in x

The prior matching probability of a non-marker,xj , is again set to be uniform over

all matching possibilities so that, fori = 0, . . . , K + m andj = K + 1, . . . , K + n,

qij =
1

Kµ + m + 1
. (2.27)

In Case 3, whenµk = ∅ andxk 6= ∅ for k = 1, . . . , K, we treatxk as a non-marker and

use Equation(2.27) to calculateqik for i = 0, . . . , K + m.

Note thatµ containsKµ markers andm non-markers. There are onlyKµ + m + 1

matching possibilities for a point inx, thus producing the denominator in Equation(2.27).
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Chapter 3

Experiments and Applications

3.1 Introduction

Here we analyse the properties and the accuracy of the methodology introduced in Chapter

2. In Section 3.2 we simulate data to examine the accuracy of the algorithm and to

highlight appropriate parameters that should be used in further analyses. We begin by

comparing the results when applying the standard or the adapted method within the model

in Subsection 3.2.1. In Subsection 3.2.2 we examine the matches made when using the

final posterior probabilities or the final superimposition output by the EM algorithm.

In Subsection 3.2.3 we highlight the appropriate parameternecessary to successfully

highlight grossly misallocated markers. In Section 3.3 we incorporate the conclusions

from Section 3.2 into the analyses of real data. We investigate the presence of grossly

misallocated markers and include a simulated example to show how two incorrectly

switched marker labels are correctly highlighted in Subsection 3.3.1. In Subsection 3.3.2

we investigate whether there is evidence of an increased edge variance within our dataset.

Finally, in Subsection 3.3.3 we provide an example of how themethodology from Chapter

2 is implemented to highlight corresponding points across images.

Throughout the simulations and when relevant, we assumeσ2
ij in Equation(2.9) is

constant and estimate it asσ̂2 = 4.52, which is approximately the median squared distance
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between two corresponding markers within the real dataset after all pairwise Procrustes

transformations are performed. Alternatively, we estimateσ2 using Equation(2.25) with

denominatorK instead ofν. Note that these estimates provide a conservative value ofσ2

and allow greater freedom for the distance between potential and known corresponding

points. Though sensitivity tests are not carried out here, future work should involve a

thorough exploration of the algorithm sensitivity toσ2. The values presented here will be

strongly dependent on the assignedσ2.

For each investigation we fixl = 10 to define convergence in Equation(2.17).

3.2 Simulating data to analyse properties and highlight

optimal parameters

3.2.1 Standard vs adapted method

We want to compare the accuracy of the estimated superimposition of µ onto x when

applying the standard method or the adapted method. Here we produce six types of data

which are described within the simulations below.

1. We simulate a 2-DE gel image, denoted byµG, by randomly scatteringmG points

across aw × h uniform surface where each point is set to be a minimum of2 units

from any other point. These points will represent all pointspresent in the theoretical

2-DE gel image.

2. We randomly selectK true markers from themG points inµG, with the constraint

that each marker must be a minimum distance ofdK from any other marker.

3. For simplicity we have previously considered markers andnon-markers to be

disjoint sets of points. In reality, this may not always be the case. Within this

simulation we consider the following three ways to allocatenon-markers.
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(a) Them non-markers are randomly selected from the remainingmG−K points

in µG. TheK markers andm non-markers are disjoint sets of points.

(b) Them non-markers are randomly selected from allmG points inµG. A marker

can also be a non-marker.

(c) TheK markers are a subset of the non-markers and the remainingm − K

non-markers are randomly selected from the remainingmG −K points inµG.

The set of unique markers and non-markers create the (western blot) subject-

treatment specific image denoted byµ. The labelling inµ is such that, for

i = 1, . . . , K, µi contains coordinate information for markeri. For i ≥ K + 1,

µi contains the coordinates of a non-marker.

4. We setxG = µG andx = µ. That is,µG andxG represent replicate 2-DE gel images

andµ andx represent replicate western blot images.

5. We add noise,N(0, τ 2/4), to each individual coordinate of themG = nG points

within bothµG andxG respectively.

6. We produce bothstandardandadapted data.

(a) Standard data is data in which theK true markers are correctly allocated, so

the data remains as theµ andx described above.

(b) To create adapted data we use Equation(2.23) to calculate the probability that

a pointµG
i in µG may be allocated as the true markerµk, for i = 1, . . . , mG

andk = 1, . . . , K. These probabilities are then used to randomly allocate

each markerµk. If the true markerk is neither correctly allocated or also a

non-marker, then the true markerk is excluded from further analyses. The

same is done forx. We fix σ2
∗ = τ 2.

7. Bothµ andx are input into steps 1–4 of the composite algorithm to produce the
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final estimated transformation parameters,Â andb̂. We consider both the standard

method and the adapted method within step 1 to analyse the data.

The starting values for the transformation parameters,A(0) andb(0), are found using

Equation(2.24). We estimate the variance in Equation(2.9), σ2, using Equation

(2.25) with denominatorK instead ofν. When implementing the adapted case, we

setσ̂2
∗ = σ̂2 in Equation(2.23).

8. Finally we calculate the RMSD between the true corresponding marker pairs as

RMSD =

√

√

√

√

1

K

K
∑

k=1

‖Âµγk
+ b̂ − xk‖2,

whereµγk
contains the coordinates of the true markerk in µ. We fix mG = 2000, m =

120, K = 12, w = 257, h = 191 anddK = 25 to mimic the real data. We consider

values ofτ ∈ [1, 10] at integer intervals. We repeat the simulation 200 times foreach

combination ofτ and the six types of data.

Note: We create both standard and adapted data and consider three different ways

to allocate the non-markers. Thus we consider 6 types of data.

Discussion

Figure 3.1 displays the proportion of times out of the 200 simulations that the standard

method gives a lower RMSD between the true corresponding markers than the adapted

method. We can see that the only time the adapted method provides the more accurate

result is when the markers are a subset of the non-markers forτ < 7 for adapted data. As

the markers are a subset of the non-markers, all true markerswill be present even if they

were not correctly allocated. Unlike the standard method, the adapted method allows the

matching probability of truly corresponding markers to increase from zero, even when

one or both of the markers are misallocated. In every other case, the application of the

standard method provides the better result.
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Figure 3.1: Figure displaying the proportion of times that the RSMD between

corresponding markers when applying the standard method isless than the RMSD when

applying the adapted method for each of the six types of data.

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

tauM
ea

n 
R

M
S

D
 w

ith
 a

da
pt

ed
 m

in
us

 m
ea

n 
R

M
S

D
 w

ith
 s

ta
nd

ar
d 

m
et

ho
d

Standard data with non−marker data (a)
Adapted data with non−marker data (a)
Standard data with non−marker data (b)
Adapted data with non−marker data (b)
Standard data with non−marker data (c)
Adapted data with non−marker data (c)

Figure 3.2: Figure displaying the mean RMSD calculated using the adapted method,

minus the mean RMSD calculated using the standard method against τ .
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τ 1 2 3 4 5 6 7 8 9 10

Standard data with non-marker allocation (a)

Standard method 0.98 1.99 2.93 3.88 4.87 5.84 6.70 7.72 8.71 9.56

Adapted method 0.98 1.99 2.93 3.88 4.88 5.86 6.72 7.75 8.76 9.62

Standard data with non-marker allocation (b)

Standard method 0.97 1.96 2.93 3.90 4.78 5.89 6.76 7.68 8.70 9.47

Adapted method 0.97 1.96 2.93 3.90 4.79 5.91 6.79 7.71 8.75 9.52

Standard data with non-marker allocation (c)

Standard method 0.98 1.91 2.94 3.95 4.80 5.84 6.84 7.69 8.59 9.55

Adapted method 0.98 1.91 2.94 3.95 4.80 5.84 6.86 7.71 8.64 9.61

Adapted data with non-marker allocation (a)

Standard method 0.98 1.98 2.90 3.87 4.90 5.97 7.24 8.29 9.33 10.52

Adapted method 0.98 1.99 2.91 3.88 4.92 6.04 7.32 8.45 9.49 10.68

Adapted data with non-marker allocation (b)

Standard method 0.99 1.93 2.93 3.98 4.91 5.87 7.15 8.30 9.33 10.38

Adapted method 0.99 1.93 2.93 3.99 4.95 5.93 7.24 8.41 9.50 10.57

Adapted data with non-marker allocation (c)

Standard method 0.97 1.92 2.91 3.90 4.95 5.89 6.91 8.20 9.44 10.44

Adapted method 0.97 1.91 2.89 3.88 4.95 5.89 6.94 8.25 9.50 10.53

Table 3.1: Table displaying the mean RMSD when applying the standard and adapted

method to the six considered types of data.
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Figure 3.2 displays the mean RMSD calculated using the adapted method, minus

the mean RMSD calculated using the standard method for eachτ . We can see that the

standard and adapted methods produce very similar results for τ ≤ 4 when considering all

three forms of standard data. Forτ > 4, the application of the standard method produces

increasingly better results than the adapted method. Forτ ≤ 3, the standard and adapted

methods produce very similar results for the first two forms of adapted data. Forτ > 3,

the standard method provides increasingly better results asτ increases. For the third form

of adapted data, the application of the adapted method produces more accurate results

for τ ≤ 6. However, as for all the other types of data, the standard method provides

increasingly better results asτ increases.

Table 3.1 provides the mean RMSD when applying the standard and adapted

method to the six considered types of data. We can see more clearly the patterns described

above. As we intuitively would expect, we can see that the standard data generally

produces an equal to or lower RMSD than the RMSD found with theadapted data.

Conclusion

For all future analysis, we choose to apply the standard method as this method generally

produces the more accurate results. Furthermore, for the data considered in this research

we should assume that the application of the blue stain to highlight markers (discussed in

Subsection 1.2.4) would not be necessary if the markers werea subset of the non-markers.

However, the way markers are allocated is dependent on the particular method used to

create the images i.e. there could be cases where markers aresubsets of the non-markers

and the application of the adapted method would provide the more accurate results.

3.2.2 Assigning matches

We want to compare the accuracy of the matches made when setting ∆ = p̂T or setting

∆ = D∗ and varyingdT . When settingµ andx to represent replicate images, we may
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expect that the number of true positive matches will increase asdT increases. However, if

µ andx represent images that contain a low number of correspondingmatches, increasing

dT will surely increase the number of false positive matches. For this reason, we also

vary pC , the proportion of corresponding non-markers across the images. LetN = mpC

denote the number of corresponding non-markers between theimages represented byµ

andx.

We run the following simulation 500 times for each case.

1. We randomly scatterK + 2m − N points across aw × h uniform surface, where

each point is set to be a minimum of2 units from any other point.

2. We randomly selectK true markers from theK+2m−N points with the constraint

that each marker must be a minimum distance ofdK from any other marker. Let

µk andxk contain the coordinates of markerk in µ andx respectively, fork =

1, . . . , K.

3. From the remaining2m − N points, we randomly selectN points to represent the

corresponding non-markers acrossµ andx. Soµi andxi contain the coordinates of

corresponding non-markers fori = K + 1, . . . , K + N .

4. Finally, we randomly split the remaining2(m − N) points equally betweenµ and

x so thatµi andxj contain the coordinates of arbitrarily labelled points inµ andx,

for i, j = K + N + 1, . . . , K + m, that do not have corresponding points inx and

µ respectively.

5. We add noise,N(0, τ 2/4), to each point coordinate within bothµ andx.

6. Both µ and x are input into steps 1–5 of the composite algorithm to produce

the estimated one-to-one matching matrix,̂M . The starting values for the

transformation parameters,A(0) andb(0), are found using Equation(2.24).
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7. The number of correctly matched points is

nTP =

K+N
∑

j=1

M̂jj.

The number of points inx that are correctly allocated to the coffin bin isnTN = 0

if pC = 1 or

nTN =

K+m
∑

j=K+N+1

M̂0j ,

if pC 6= 1.

The number of points inx that are incorrectly allocated to the coffin bin is

nFN =

K+N
∑

j=1

M̂0j .

The number of falsely matched points inx is nFP = K + m− nTP − nTN − nFN .

In this case, to ease computational workload, we fixm = 30, K = 3, w = 257/2,

h = 191/2 anddK = 25. We estimate the variance in Equation(2.9) asσ̂2 = 4.52 and set

τ = σ̂. We consider values ofpC ∈ [0, 1] at intervals of0.1. We first assign matches using

the final posterior matching matrix by setting∆ = p̂T . We also considerc ∈ [0.1, 1.9] at

intervals of0.2 which fixes the distance threshold asdT = cσ̂ and estimate the matching

matrix,M , using the pairwise distances between points across images.

Discussion

Figure 3.3a and 3.3b display the number of true positive matches and the number of false

positive matches made againstpC for each considered method of assigning matches. We

can see that asdT increases, both the number of true and false matches increase. Setting

∆ = p̂T generally produces more true and false positives than the considered numerical

values ofdT .

Figure 3.3c displays the proportion of true positive matches, nTP/(nTP + nFP ),

againstpC for each considered method of assigning matches. For each matching method,
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Figure 3.3: Figure showing a)nTP , b) nFP and c)nTP /(nTP + nFP ) againstpC when

setting∆ = p̂T and when setting∆ = D∗ for variousdT , wheredT = cσ̂.
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the proportion of true positive matches increases as the number of corresponding non-

markers across images,pC , increases.

For 0.1 ≤ pC ≤ 0.8, setting0.5 ≤ c ≤ 1.9 generally provides a higher proportion

of true positives than when∆ = p̂T . SettingdT ≈ 0.7 maximises the proportion of

true positives, with the proportion decreasing asdT > 0.7 and increasingly decreasing as

dT < 0.7.

For pC < 0.1 andpC > 0.8, setting∆ = p̂T provides a higher proportion of true

positives than when0.1 ≤ c ≤ 1.9.

Conclusion

When matching points across replicates, set∆ = p̂T . In other cases,pC is unknown so

setdT ≈ 0.7σ̂ as this provides a higher proportion of true positive matches for a larger

range ofpC .

3.2.3 Grossly misallocated markers

We want to highlight the appropriate proportion of correctly allocated marker pairs,pM ,

necessary to assign matches when locating grossly misallocated markers.

We run the following simulation 1000 times.

1. We randomly scatterK + m points across aw × h uniform surface, where each

point is set to be a minimum of2 units from any other point.

2. We randomly selectK true markers from theK + m points, with the constraint

that each marker must be a minimum distance ofdK from any other marker. The

remainingm points are the true non-markers. TheK markers andm non-markers

createµ. The labelling is such thatµi contains the coordinates of the true markerk

for i = k = 1, . . . , K and the coordinates of the arbitrarily labelled true non-marker

i for i = K + 1, . . . , K + m.
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3. Letµ
′

be the subset ofµ containing the coordinates of theK markers only. We set

x
′

= µ
′

.

4. We fix the number of misallocated markers inµ
′

asK∗. This value is related to the

true proportion of correctly allocated marker pairs as

pM =
K − K∗

K
.

5. Let µ
′

A contain the coordinates of the allocated markers inµ. For K∗ > 0, we

randomly select (without replacement) one of them true non-markers to be the

allocated markerk, for k = 1, . . . , K∗. Let πA′ be a vector of lengthK∗. If

an elementπA
′

k = i, then the true non-marker,µi, is allocated as markerk for

i = K + 1, . . . , K + m andk = 1, . . . , K∗. We setµA
′

k = µ
πA

′

k

for k = 1, . . . , K∗

andµA
′

k = µ
′

k for k = K∗ + 1, . . . , K. The labelling is such thatµA
′

i contains the

coordinates of the allocated markerk for i = k = 1, . . . , K.

Note that we do not allow marker labels to be exchanged withinthis simulation.

6. We add noise,N(0, τ 2/4), to each point coordinate withinµ
′

A andx
′

.

7. The allocated markers inµ
′

A and the true markers inx
′

are input into steps 1–5 of

the composite algorithm to produce the estimated one-to-one matching matrix,M̂ .

The starting values for the transformation parameters,A(0) andb(0), are found using

Equation(2.24). We use the final posterior probabilities,p̂, to assign one-to-one

matches.

8. The number of correctly matched marker pairs is

nTP =
K

∑

k=K∗+1

M̂kk.

The number of markers inx that are correctly allocated to the coffin bin forK∗ = 0

is nTN = 0 and forK∗ 6= 0,

nTN =

K∗

∑

k=1

M̂0k.
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The number of markers inx that are incorrectly allocated to the coffin bin is

nFN =

K
∑

k=K∗+1

M̂0k.

The number of falsely matched markers inx is nFP = K − nTP − nTN − nFN .

We fix m = 120, K = 12, w = 257, h = 191 anddK = 25. We estimate the variance in

Equation(2.9) asσ̂2 = 4.52 and setτ = σ̂. We consider values ofK∗ ∈ {0, 3} at integer

intervals (equivalent topM ∈ {1, 0.92, 0.83, 0.75}) andp̂M ∈ {0.01, 0.99} at intervals of

0.07.

As it is the matches made that are used to highlight marker correspondencies in

future analyses, we focus mainly on the true and false matches made.

Conclusion

Figure 3.4 displays the number of matches inx against the input̂pM for each considered

K∗. We can see that increasinĝpM increases the number of true positive matches

and decreases the number of false positive matches for allpM ∈ {1, 0.92, 0.83, 0.75}.

Therefore for future analyses we setp̂M = 0.99. Setting p̂M = 0.99 indicates that

correspondingly labelled markers are highly likely to match, but still allows the possibility

for this not to be the case.

3.2.4 Overall conclusions

• The application of the standard method generally produces better results than the

adapted method. That is, the assumption that the allocated markers are correctly

allocated amid warping provides a more accurate match than when the method is

allowed the freedom to explore other possible markers when simulating images

from the given dataset.

• When matching points across replicates, set∆ = p̂T . In other cases,pC is unknown
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Figure 3.4: Figures displaying the number of matches made inx against the input̂pM for

a) K∗ = 0, b) K∗ = 1, c) K∗ = 2 and d)K∗ = 3. The solid black line representsnTP ,

the broken black line representsnTN , the solid red line representsnFP , the broken red

line representsnFN .
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so set∆ = D∗ anddT ≈ 0.7σ̂, as this provides a higher proportion of true positive

matches for a larger range ofpC .

• We found that setting a higĥpM will highlight more true positive correspondences,

even when the proportion of correctly allocated corresponding marker pairs is as

low aspM = 0.75.

3.3 Application examples

3.3.1 Grossly misallocated markers

Real gel data

Let µl represent imagel in our dataset forl = 1, . . . , 26. Let µ
′

l1l2
be theKl1l2 × 2 matrix

containing only the marker coordinates of the markers inµl1 that have correspondingly

labelled markers inµl2 .

We input the corresponding markers for all pairwise comparisons into steps 1–5 of

the composite algorithm to estimate the one-to-one matching matrix,M̂l1l2 , found when

superimposingµ
′

l1l2
ontoµ

′

l2l1
for l1, l2 = 1, . . . , 26 andl1 6= l2. That is, we transform the

appropriate markers in imagel1 onto the correspondingly labelled markers in imagel2.

So the indicesl1 andl2 indicate the direction of transformation between images.

Note: If a markerk is not allocated in bothµl1 andµl2 , it is excluded from the

analysis.

Again, the parameters within the algorithm are set to be the same as those used in

the previous simulations. We estimate the variance in Equation (2.9) asσ̂2 = 4.52 and the

proportion of correctly corresponding marker pairs in Equation (2.26) asp̂M = 0.99. The

starting values for the transformation parameters,A(0) andb(0), are found using Equation

(2.24). We use the final posterior probabilities,p̂, to estimate the matches by fixing∆ =

p̂T .
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Let τk be a vector containing the indices of the images that containmarkerk. Here

we discuss all cases in the26 × 25 comparisons where grossly misallocated markers are

highlighted.

Case 1:

Marker 1 remains unmatched in both images forl1 = 23 and eachl2 ∈ τ1 where

l1 6= l2. Marker1 also remains unmatched in both images when considering the reverse

transformations forl2 = 23 and eachl1 ∈ τ1 wherel1 6= l2. The length ofτ1 is 16,

indicating 16 images in the dataset that contain marker1.

Figure 3.5a and 3.5b respectively display the initial transformation ofµ
′

26,23 onto

µ
′

23,26, for example, before and after marker1 is removed as a marker from both images.

In this example, the RMSD between the12 marker pairs before the removal is19.44. The

RMSD between the remaining11 marker pairs after the removal is2.96. Table 3.2 lists the

RMSD between corresponding markers before and after the removal of marker1 for each

of the 30 comparisons. In each case we can see a dramatic reduction in RMSD between

corresponding markers after marker 1 is removed as a marker.

Note: We leave removed markers within Figures simply for illustrative purposes.
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Figure 3.5: Figure displaying the initial transformation of µ
′

26,23 ontoµ
′

23,26 a) before and

b) after marker1 is removed as a marker from both images.
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l2 Before After

3 24.1 4.5

4 21.6 8.0

5 25.1 6.0

8 22.7 3.3

9 23.1 2.9

10 24.3 3.1

11 23.1 3.5

13 22.2 3.8

14 24.1 4.7

15 24.5 3.6

16 25.5 3.2

19 25.6 4.9

22 24.8 3.9

24 25.1 3.4

26 22.5 2.9

l1 Before After

3 21.8 4.9

4 18.4 8.1

5 21.5 6.1

8 19.9 3.2

9 22.8 3.2

10 22.1 3.5

11 20.6 3.9

13 19.8 3.7

14 22.0 5.2

15 21.9 3.8

16 21.6 3.2

19 22.6 5.2

22 21.6 4.1

24 22.0 3.4

26 19.4 3.0

Table 3.2: Tables displaying the RMSD between the allocatedmarkers before and after

marker1 is removed as a marker from both images. The table to the left displays the

RMSD when image 23 is transformed onto imagel2. The table to the right shows the

RMSD when applying the reverse transformation.

Case 2:

Marker 8 remains unmatched in both images forl1 = 4 and l2 = 25. The same

occurs for the reverse transformation whenl1 = 25 and l2 = 4. Figure 3.6a and 3.6b

respectively display the initial transformation ofµ
′

4,25 ontoµ
′

25,4 and the RMSD between

markers before and after marker8 is removed as a marker from both images.

Case 3:
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Figure 3.6: Figure displaying the initial transformation of µ
′

4,25 onto µ
′

25,4 a) before

and b) after marker8 is removed as a marker from both images. The RMSD between

corresponding markers is indicated at the top-left of each figure.

Marker8 remains unmatched in both images forl1 = 5 andl2 = 25. Figure 3.7a

and 3.7b respectively display the initial transformation of µ
′

5,25 ontoµ
′

25,5 and the RMSD

between markers before and after marker8 is removed as a marker from both images.

Case 4:

Marker 2 remains unmatched in both images forl1 = 25 and l2 = 19. Figure

3.8a and 3.8b respectively display the initial transformation of µ
′

25,19 ontoµ
′

19,25 and the

RMSD between markers before and after marker2 is removed as a marker from both

images.

Discussion

A summary of the gross misallocations found is given below.

• There are 16 images containing marker1. Marker 1 is highlighted as a gross

misallocation in each of the2 × 15 comparisons made with image23.

• All 26 images contain marker8. Marker8 in image25 is highlighted as a gross

misallocation in 3 of the2×25 comparisons considered involving image25. So the
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Figure 3.7: Figure displaying the initial transformation of µ
′

5,25 onto µ
′

25,5 a) before

and b) after marker8 is removed as a marker from both images. The RMSD between

corresponding markers is indicated at the top-left of each figure.
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Figure 3.8: Figure displaying the initial transformation of µ
′

25,19 onto x
′

19,25 a) before

and b) after marker2 is removed as a marker from both images. The RMSD between

corresponding markers is indicated at the top-left of each figure.
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proportion of times marker8 in image25 is highlighted as a gross misallocation is

0.06.

• Marker 8 in image4 is highlighted as a gross misallocation in 2 of the2 × 25

comparisons considered involving image4, i.e, a proportion of0.04 times.

• Marker 8 in image5 is highlighted as a gross misallocation in 1 of the2 × 25

comparisons considered involving image5, i.e, a proportion of0.02 times.

• Marker2 in both image19 and image25 is highlighted as a gross misallocation in 1

of the2×15 comparisons considered involving image19 and image25 respectively,

i.e, a proportion of0.03 times.

Remark:

Following these discoveries, we were informed that marker1 in image23 was

incorrectly labelled as spotID 136 when it should have been spotID 153.

To investigate whether our method would have found this match, we rerun each

of the 2 × 15 transformations, this time reallocating markers1 as non-markers in both

images. We now consider the full image represented byµl for l = 1, . . . , 26.

First we transformµ23 ontoµl for l ∈ τ1 andl 6= 23. We also carry out the reverse

transformation ofµl ontoµ23 for l ∈ τ1 andl 6= 23. For each pairwise comparison, we

input both images into steps 1–5 of the composite algorithm to estimate the one-to-one

matching matrix. For this analysis, we reassign marker1 as a non-marker in both images

and treat non-correspondingly labelled markers across images as non-markers.

The starting values for the transformation parameters,A(0) andb(0), are found using

Equation(2.24). We estimate the variance in Equation(2.9), σ2, using Equation(2.25)

with denominatorK instead ofν. We use the final posterior probabilities,p̂, to estimate

the matches by fixing∆ = p̂T .

When transformingµ23 ontoµl for l ∈ τ1 andl 6= 23, we found that the originally

labelled marker1 in imagel is correctly matched to the true marker 1 in image 23 (i.e. the
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point with spotID 153) in 12 out of the 15 cases. In two cases, marker1 in both images

remain unmatched. In the remaining one case, marker1 in imagel is incorrectly matched

to marker2 in image23.

When transformingµl ontoµ23 for l ∈ τ1 andl 6= 23, we found that the originally

labelled marker1 in imagel is correctly matched to the true marker 1 in image 23 (i.e. the

point with spotID 153) in 9 out of the 15 cases. In three cases,marker1 in both images

remains unmatched. In one case, marker1 remains unmatched in imagel, but marker1 in

image23 is incorrectly matched to a nearby non-marker in imagel. In the remaining two

cases, marker1 in imagel is incorrectly matched to a nearby non-marker in image23.

Conclusion

Within image23, we reassign the point with spotID 153 as marker1 and set the

point with spotID 136 to be a non-marker.

In our case, we deal with more than a single pairwise comparison so we have more

information than the methodology described within Chapter2 would require. Because

only a small proportion of comparisons highlight each of theother gross misallocations,

we make the executive decision to leave the other highlighted markers as markers to allow

σij to be higher in future analyses.

We have previously concluded that the standard method should be used for further

analyses. In this section, we have discovered a case where marker1 is incorrectly matched

to marker2 in another image when marker2 is not present in the first. For this reason,

and because markers are included as a guide rather than for scientific interest, we include

only corresponding markers between images in further analyses. That is, we follow the

standard method described in Subsection 2.4.2 when discussing how to deal with missing

markers.

Simulated gel data

Figure 3.9a and Figure 3.9b depict theK = 12 marker labels at the appropriate

coordinates for a simulatedµ
′

andx
′

respectively. In this example, the labels of marker
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k = 1 and markerk = 9 in µ
′

have been ‘accidentally’ switched.

Figure 3.9c displays the initial affine transformation ofµ
′

ontox
′

when considering

the originally allocated markers.

We input bothµ
′

andx
′

into steps 1–5 of the composite algorithm to estimate the

one-to-one matching matrix,̂M . The parameters within the algorithm are set to be the

same as those used or established in the previous simulations. We estimate the variance in

Equation(2.9) asσ̂2 = 4.52 and the proportion of correctly corresponding marker pairs

in Equation(2.26) asp̂M = 0.99. The starting values for the transformation parameters,

A(0) andb(0), are found using Equation(2.24). We use the final posterior probabilities,p̂,

to estimate the matches by fixing∆ = p̂T .

We find thatM̂kk = 1 for all k 6= 1, 9, so the correctly labelled markers are

successfully matched. We also find thatM̂19 = M̂91 = 1. That is,µ1 is matched to

x9 andµ9 is matched tox1. The EM algorithm has correctly highlighted the incorrectly

labelled markers.

Figure 3.9d displays the initial affine transformation ofµ
′

ontox
′

when considering

the 10 remaining markers only. We can see that the truly corresponding markers are now

much closer.

3.3.2 Investigating evidence of increased edge variance

We consider marker correspondences only when investigating evidence of increased edge

variance. For our dataset, the width,w, and the height,h, of each image is unknown.

For each transformation ofµ
′

l1l2
ontoµ

′

l2l1
for l1, l2 = 1, . . . , 26 andl1 6= l2, we do

the following.

• Calculate the residual between thekth corresponding marker pair as

rl1l2
k = ‖µl1l2

k − A(0)µl2l1
k − b(0)‖,

wherek = 1, . . . , Kl1l2 andKl1l2 is the number of corresponding markers between
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Figure 3.9: Figure displaying theK = 12 markers a) withinµ
′

b) and withinx
′

. Figure

displaying the affine superimposition of the markers acrossimages c) using the initial

marker labels d) and using the updated marker labels.
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µl1 andµl2 . The affine transformation parameters,A(0) andb(0), are found using

Equation(2.24)

• Calculate the coordinates associated with this residual as

C l1l2
k =

1

2

(

µl1l2
k∗ + µl2l1

k∗

)

,

where∗ indicates the standardised coordinates so that every pointin each image,µl

for l = 1, . . . , 26, is defined within a unit square.

Smoothing of the residuals at the standardised (and irregular) coordinates was performed

by Gaussian kernel weighting with parameter 0.1. Figure 3.10 displays the colour-coded

intensity plot with highlighted coordinates. We see evidence that the variance between

corresponding markers, after superimposition, increasesas the markers become closer to

the top or right side of the image. We see further evidence that the variance between

corresponding markers, after superimposition, decreasesas the markers become closer to

the bottom or left side of the image.

Conclusion

We have found evidence of an increased edge variance at the top-right corner of an

image and a decreased edge variance at the bottom-left corner of an image. However,

the width and height of each image within this dataset is unknown and the estimated

values used above are unlikely to reflect the reality. For example, the image displayed

in Figure 1.2 has ample space without points at each edge. Furthermore, the degree of

variance will vary across images and fitting a global trend isunlikely to be very accurate.

For these reasons, we assumeσ2
ij = σ2 is constant in Equation(2.9) in all future

analyses.

3.3.3 Real matching example

In this example we display the matches made when comparing two replicates,µ andx.

We input the images into steps 1–5 of the composite algorithm. The starting values for the
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Figure 3.10: Colour-coded intensity plot displaying the smoothed residuals (performed

by Gaussian kernel weighting) between corresponding markers at the standardised

coordinates.
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transformation parameters,A(0) andb(0), are found using Equation(2.24). We estimate

the variance in Equation(2.9), σ2, using Equation(2.25) with denominatorK instead of

ν.

The estimated transformation parameters are

Â =





0.9750 −0.0506

0.0001 1.0047



 ,

andb̂ = (−0.7138, 11.3564)T .

We explore the one-to-one matches made when∆ = p̂T and the matches made

when∆ = D∗, settingdT = 0.7σ̂.

Both plots in Figure 3.11 display the final transformation ofµ onto x and the

matches made when∆ = p̂T and whendT = 0.7σ̂ in Figure 3.11a and Figure 3.11b

respectively. We find that the estimated number of matches isL̂ = 107 when we set

∆ = p̂T and L̂ = 49 when we setdT = 0.7σ̂ respectively. The maximum distance

between two matched points in each case is 10.24 and 2.33 respectively.

3.3.4 Overall conclusions

• The described methodology and appropriate parameters correctly highlighted a

grossly misallocated marker in all comparisons. The markerwas reallocated

appropriately before further analyses.

• We found evidence of an increasing edge variance at the top and right side of the

images. We found evidence of an decreasing edge variance at the bottom and left

side of the images. However, asw andh are unknown and the warping between

images is independent, we assignσ2
ij = σ2 in future analyses.

• Using the final estimated posterior probabilities,p̂, to define matches can often

match points that are quite far apart. If a pointxj has a single nearby point inµ,

the posterior probability of these two points matching willbe quite dominant even
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Figure 3.11: Figure showing the final transformation ofµ ontox and the matches made

when a)∆ = p̂T and b)dT = 0.7σ̂. The filled circles represent points inx and the crosses

represent points in the transformedµ. Black indicates non-markers and green indicates

markers. Matched points across images are joined by a red line.
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though the points are not that close. Setting a distance tolerance,dT , and∆ = D∗

bypasses this problem which will become more prominant as the correspondence

across two images decreases.
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Chapter 4

Further analyses for image comparisons

4.1 Introduction

In Chapter 4 we explore how the methodology introduced in Chapter 2 can be used to

pool data across replicates, to investigate the quality of adataset and finally, how it can be

implemented to highlight the differences in proteins across groups of images. We begin in

Section 4.2 by describing how we can create a union of replicate images which can then

be considered alone in further analyses to reduce the computational expense. In Section

4.3 we introduce the concept of image contamination and descibe how the data can be

modelled to enable the inference of the contamination levels within a dataset. In Section

4.4 we introduce methodology to calculate a score that can beused to highlight proteins

unique to one group of images.

4.2 Pooling data across replicate pairs

In this section we considerµ andx to denote two replicate images. Replicate images

should be identical. However, due to gel warping and imperfections within the chemical

procedure used to create the images, exact replicates are rarely produced.

To reduce computational workload, we can pool replicate information into one
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single image which can be used in further analyses. Inputting µ andx into steps 1-6

of the composite algorithm in Subsection 2.3.4, we estimatethe(K + m + 1)× (K + n)

one-to-one matching matrix,̂M .

Let ul be theD×1 vector containing the coordinates of thelth point in the union of

µ andx, u. The points withinu include points that are present inµ alone, points that are

present inx alone and points that are present in bothµ andx. We defineul in each case.

• The number of points that remain unmatched inµ, i.e., that are present solely inµ,

is

m∗ = K + m − L̂,

whereL̂ is the estimated number of matches stated in Equation(2.21). Let ζ be a

list of lengthm∗ containing the increasing indices of unmatched points inµ. We set

ul =
ˆ̂
Aµζl

+
ˆ̂
b,

for l = 1, . . . , m∗, where ˆ̂
A andˆ̂

b are the updated transformation parameters in Step

6 of the composite algorithm.

• The number of points that remain unmatched inx, i.e., that are present solely inx,

is

n∗ = K + n − L̂

Let η be a list of lengthn∗ containing the increasing indices of unmatched points in

x. We set

ul = xηl−m∗
,

for l = m∗ + 1, . . . , m∗ + n∗.

• Now to include thêL matched points, i.e., the points present in bothµ andx.

Let ϕµ be a list of lengthL̂ containing the increasing indices in{1, . . . , K + m}

that are not present inζ . Let ϕx be a list of lengtĥL containing the corresponding
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indices in{1, . . . , K + n} of matched points inx that are not present inη. That is,

if ϕµ
l = i andϕx

l = j, thenM̂ij = 1 for l = 1, . . . , L̂. We set

ul =
1

2

(

xϕx
l−m∗

−n∗
+

ˆ̂
Aµϕµ

l−m∗
−n∗

+
ˆ̂
b
)

,

for l = m∗ + n∗ + 1, . . . , m∗ + n∗ + L̂.

Note: Pooling replicate data in this way is only useful when the error within images

is small. If the images are greatly influenced by warping, forexample, the union will be

unlikely to represent the theoretical image represented bythe two replicate images and

information would be lost.

4.3 Image contamination

In this section we want to provide a method to measure the level of contaminationwithin

a set of images. The methodology we produce was inspired by a modification of 2-

DE calledDIfference Gel Electrophoresis(DIGE) [80]. DIGE is a chemical procedure

used to compare two or three protein samples by tagging each sample with different

coloured fluorescent dyes before mixing them and creating one single image. The third

protein sample is usually a mix of the first two samples. The creation of a single gel

bypasses the necessity of further computational analyses to assign matches across images

and contamination is more easily distinguished from spots that represent true proteins.

Figure 4.1 shows a simplified example of an image produced by DIGE. In this

example, two protein samples are tagged with either a blue ora red dye. A yellow dye is

used to tag the proteins in a mixture of the two samples. We know that the black points

represent false positive observations (created by dust on the image, for example) due to

the absense of fluorescent dye. We know that the single yellowspots represent proteins

that have failed to be observed in one or both of the first two samples - false negative

observations. The yellow and blue spots denote proteins present in the first sample (and

possibly false negative observations in the second sample). The yellow and red spots
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denote proteins present in the second sample (and possibly false negative observations in

the first sample). The yellow, blue and red spots denote proteins present in both the first

sample and the second sample.
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2

Figure 4.1: Figure displaying an example of a simplified image output by DIGE. The

blue circles display the proteins present in the first sampleand the red circles represent

the proteins present in the second sample. The yellow circles display a union of the

proteins present in the first two samples.

The limitations of DIGE include that it can only be used to compare a maximum

of three protein samples and the technology is not yet commonly in general usage.

In the following subsection we clearly define what we mean by image contamination

before discussing how replicate data can be used to infer thelevel of contamination

within a dataset. In this section we assume that images are free from warping and that

correspondences across images are known, so that matching is not necessary. We should

also note that, within this section, the presence of markerswithin an image is ignored.
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4.3.1 Introduction to contamination

We consider image contamination to be the presence ofmissingor imposter pointswithin

an image.

• A missing point is a protein that should have been detected within an image, but

has not been observed. Missing points are caused by thelimit of detectionof the

chemical procedure used to produce the images.

• An imposter point is a point that is observed in an image, eventhough the protein

corresponding to the point location should not have been detected. These points

can be the result of dust caught in the gel before the image hasbeen taken.

In this section, we letx denote some true image containingn points. This true image

is what we would see in the absence of contamination. Letx̄ be the observed image,

containingn̄ points. It is withinx̄ that contamination may exist.

Table 4.1 displays the four possibilities for the points present inx and the points

observed in̄x.

Observed in̄x

Yes No

Present inx Yes True Positive False Negative

No False Positive True Negative

Table 4.1: Table displaying the possibilities of points observed or those failed to be

observed in̄x.

We can redefine contamination, i.e., missing points and imposter points, in terms of

the true image,x, and the observed image,x̄.

• Missing points: Points that are present inx but are not observed in̄x, i.e., false

negatives.
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• Imposter points: Points that are absent fromx but are observed in̄x, i.e., false

positives.

Figure 4.2a displays a simulated true image,x. Figure 4.2b displays a possible observed

image,x̄. In this example there are two false negative observations in x̄ (highlighted in

blue withinx) and three false positive observations inx̄ (highlighted in yellow).
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Figure 4.2: a) A simulated true image,x, and b) a possible observed image,x̄. The false

negative observations in̄x are highlighted in blue withinx. The false positive observations

in x̄ are highlighted in yellow.

4.3.2 Contamination across replicates

Replicate images each represent the same true image,x, but are produced separately.

In the absence of contamination, each replicate image wouldsimply be identical tox.

However if the observed images contain contamination, it ispossible for a point to be

observed in̄x1 but not observed in̄x2, for example, wherēx1 and x̄2 are two replicate

images. There are only two possible explanations.

• The point is a false positive observation inx̄1.
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• The point is a false negative observation (i.e.,missing) inx̄2.

Becausēx1 andx̄2 are replicates, we do not have to consider the possibility that a

point may be a true positive in̄x1 or a true negative in̄x2. We know that the differences

between replicates are a product of contamination alone.

Figure 4.3a displays the same true image,x, as displayed in Figure 4.2a.

Figures 4.3b and 4.3c display two possible replicates,x̄1 and x̄2, both produced to

representx. In this example, there are two false negative observationsin both x̄1 andx̄2

(highlighted in light-blue and dark-blue respectively within x). There are also three false

positive observations in both̄x1 and x̄2 (highlighted in yellow). So only 6 true positive

observations are present in bothx̄1 andx̄2.

Next we introduce a possible model to represent image contamination.

4.3.3 Modelling contamination

Introduction

As stated previously,x denotes some true image containingn points. Letx̄l denote the

lth replicate, produced to representx, containingn̄l points forl = 1, . . . , R. Let r be the

number of times a point is observed in a union of theR replicate samples. For example,

if a point is observedr = R times in the union, then the point is observed in each of the

R replicates.

Let ζ indicate whether a point is one of then true points or whether it is a false

point, i.e, an imposter point where

ζ =











1 if the point is true

0 if the point is false.
(4.1)

The probability we observe a pointr times in a union is

p(r) = p(r|ζ = 1)p(ζ = 1) + p(r|ζ = 0)p(ζ = 0). (4.2)
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Figure 4.3: a) A simulated true image,x. Two possible observations ofx, x̄1 and x̄2,

are displayed in a) and b) respectively. The false negative points observations in̄x1 and

x̄2 are highlighted in light-blue and dark-blue repectively within x. The false positive

observations in̄x1 andx̄2 are highlighted in yellow.
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Distribution of true points

We use a Binomial distribution to model the number of times a true point is observed

in the union so that

r|ζ = 1 ∼ Bin(R, p∗), (4.3)

wherep∗ is the probability a true point inx is observed in̄xl for l = 1, . . . , R.

Distribution of false points

Let Cl be the number of false points observed in thelth replicate forl = 1, . . . , R.

Assuming false points occur at random over a uniform surface, we can apply a Poisson

distribution so that

Cl ∼ Po(λ), (4.4)

whereλ is the rate of false points per image.

The number of points observed in thelth image, forl = 1, . . . , R, is therefore

distributed as

n̄l ∼ Bin(n, p∗) + Po(λ). (4.5)

We assume the contamination parameters,p∗ andλ, to be dependent on the laboratory

conditions and the person who created the dataset. We also assume that bothp∗ andλ are

constant over all points and all images respectively.

Inputting the distributions applied in Equation (4.3) and (4.4), we can rewrite

Equation(4.2) as

p(r) ∝
R!

r!(R − r)!
pr
∗(1 − p∗)

R−ra + (1 − a)I[r = 1], (4.6)

wherea = p(ζ = 1), i.e., the probability an observed point is true and

I[r = 1] =











1 if the point is observed once in the union

0 otherwise.
.

Let vrj be the number of points that are observedr times in the union ofR replicates for

r = 0, . . . , R andj = 1, . . . , Jr, whereJr is the number of possible ways of choosing
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r from theR replicates, arbitrarily ordered. As we only know correspondences between

observed points, we do not know the total number of true points so we have

R
∑

r=1

Jr =

R
∑

r=1

R!

r!(R − r)!
,

observations in total.

Because of the Binomial distribution applied in Equation(4.3) to the true points

and the Poisson distribution applied in Equation(4.4) to the number of false points in an

image, we can state the following.

• The number of points observed inr replicates, forr = 2, . . . , R andj = 1, . . . , Jr,

is distributed as

vrj ∼ Bin(n, pr
∗(1 − p∗)

R−r), (4.7)

and is therefore independent ofλ. For each of ther distributions, we haveJr

observed results.

• The number of points observed inxj alone, forj = 1, . . . , R, is distributed as

v1j ∼ Bin(n, p∗(1 − p∗)
R−1) + Po(λ), (4.8)

and is dependent on all three unknown parameters,n, p∗ andλ.

To allow us to estimate the three unknown parameters, we assume the distributions stated

in Equations(4.7) and(4.8) are independent overr andj.

We now show how we can estimate the total number of true points, n, and the two

contamination parameters,p∗ andλ.

4.3.4 Parameter estimation

We findn, p∗ andλ that maximise the probability of observingvrj. To do this we consider

two methods. The first method provides numerical solutions for the three unknowns using

the full dataset, i.e., considering allvrj for r = 1, . . . , R andj = 1, . . . , Jr. The second
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method estimatesn andp∗ considering onlyvrj for r = 2, . . . , R, j = 1, . . . , Jr and

finally estimatesλ from v1j for j = 1, . . . , R. This method highlights the relationship

betweenp∗ andλ whenR = 2, it provides analytical solutions whenR = 3 and is less

computationally expensive than method 1 over allR.

Method 1:

We can estimate the parameters numerically by findingn, p∗ andλ that maximise

R
∏

r=1

Jr
∏

j=1

p(vrj),

i.e., that maximise the full log-likelihood of all the observed data

R
∑

r=1

Jr
∑

j=1

log p(vrj), (4.9)

where vrj has the distribution defined in Equation(4.7) for r = 2, . . . , R and the

distribution defined in Equation(4.8) for r = 1 and j = 1, . . . , Jr. The probability

of observingv1j is stated later within Method 2 in Equation(4.13).

Using this method we cannot easily obtain analytical solutions, but we do not lose

the information aboutn andp∗ stored in the observedv1j , for j = 1, . . . , R, as we do in

Method 2 described next.

Method 2:

To define analytical solutions or if we cannot solve forN , p∗ andλ using Method 1,

we can consider the following method as an alternative way toestimate the unknown

parameters.

Equation(4.8) involves all three unknown parameters,n, p∗ andλ and provides us

with R observations from one distibution. Equation(4.7) involves only two unknowns,n

andp∗, and provides us with observations fromR − 1 distributions.

We can first use the observations with the distribution stated in Equation(4.7) to

estimaten andp∗ where possible. Finally, we use the observations with the distribution
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stated in Equation(4.8) to estimateλ and any remaining unknowns. We look at the cases

for R = 2, R = 3 and generalR ≥ 3 separately.

Estimating n and p∗

R = 2 replicates

We begin by considering the observed points in the union ofR = 2 replicates,̄x1

andx̄2.

• We observev21 points in both̄x1 andx̄2.

• We observev1j points inx̄j alone forj = 1, 2.

From Equation(4.7), we know that the estimate ofn that maximises the probability of

observingv21 is

n̂ =
v21

p̂2
∗

. (4.10)

R = 3 replicates

ForR = 3 replicates,̄x1, x̄2 andx̄3, we observe

• v31 points in allR = 3 replicates.

• v2j points in all replicates excludinḡxj for j = 1, 2, 3.

• v1j points inx̄j alone forj = 1, 2, 3.

In this case, we have observations from two distributions stated in Equation(4.7) for

r = 2 andr = 3. As the expected values ofv2j for j = 1, 2, 3 andv31 are

E[v2j ] = np2
∗(1 − p∗) and E[v31] = np3

∗,

respectively, we can estimaten andp∗ respectively as

n̂ =
(v2· + v31)

3

v2
31

and p̂∗ =
v31

v2· + v31
, (4.11)

where

v2· =
1

3

J2=3
∑

j=1

v2j .
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R > 3 replicates

For R > 3, we have observationsvrj for r = 2, . . . , R andj = 1, . . . , Jr that are

dependent solely onn andp∗. So we have two unknowns and more than two equations

involving the two unknowns. In this case we can estimaten andp∗ that maximise the

joint distribution ofvrj for r = 2, . . . , R andj = 1, . . . , Jr

R
∏

r=2

Jr
∏

j=1

p(vrj),

i.e., that maximise the log likelihood

R
∑

r=2

Jr
∑

j=1

log p(vrj), (4.12)

where the probability ofvrj is found from the distribution in Equation(4.7) for r =

2, . . . , R and j = 1, . . . , Jr. As R increases, Equation(4.12) becomes increasingly

complex so numerical solutions are easier to compute.

So, from the observed correspondences with the distribution in Equation (4.7)

betweenR replicates, we can state the following.

• ForR = 2, we know the relationship betweenn andp∗ stated in Equation(4.10).

• ForR = 3, we can estimaten andp∗ analytically using Equations(4.11).

• ForR > 3, we can estimaten andp∗ numerically by maximising the log-likelihood

of vrj overr = 2, . . . , R andj = 1, . . . , Jr stated in Equation(4.12).

Estimating λ and any remaining unknowns

The conditional distribution ofv1j givenCj (see Equation(4.4)), for j = 1, . . . , R,

is dependent on the number ofn real points that are observed only once, so that

v1j |Cj ∼ Bin(n, p∗(1 − p∗)
R−1).

The probability of observingv1j points inxj alone is therefore

p(v1j) =

v1j
∑

Cj=0

p(v1j |Cj)p(Cj)
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=

v1j
∑

Cj=0

n!

(v1j − Cj)!(n − v1j + Cj)!

[

p∗(1 − p∗)
R−1

]v1j−Cj
[

1 − p∗(1 − p∗)
R−1

]n−v1j+Cj e−λλCj

Cj!
.

(4.13)

Finally, we estimate any remaining unknowns forR ≥ 2 by maximising the joint

probability
R

∏

j=1

p(v1j),

i.e., maximising the log likelihood

R
∑

j=1

log p(v1j), (4.14)

wherep(v1j) is given in Equation(4.13).

4.3.5 Contamination within multiple replicate sets

Now let us consider that we haveL sets ofR replicates (note that here,L does not indicate

the number of matches as it has previously). Letx̄lr denote therth image from thelth

set of replicates containinḡnlr points forl = 1, . . . , L andr = 1, . . . , R. The lth set of

R images is taken to represent the true image,xl, containingnl points, forl = 1, . . . , L.

Assuming thatp∗ andλ are constant overL, we can estimatep∗, λ andnl for l = 1, . . . , L.

Let vl
rj be the number of points that are observedr times in the union of thelth set

of R replicate samples forr = 0, . . . , R, j = 1, . . . , Jr andl = 1, . . . , L, whereJr is the

number of possible ways of choosingr from theR replicates.

The distributions assigned tovl
rj are similar to those assigned tovrj in Equations

(4.7) and (4.8) except we replace then with nl so that

vl
rj ∼ Bin(nl, p

r
∗(1 − p∗)

R−r) (4.15)

and

vl
1j ∼ Bin(nl, p∗(1 − p∗)

R−1) + Po(λ), (4.16)

for r = 0, . . . , R, j = 1, . . . , Jr andl = 1, . . . , L.
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In this case, we need to estimatep∗, λ andnl for l = 1, . . . , L so we have a total of

L + 2 unknowns. We consider two methods similar to those described previously.

Method 1

Similar to Equation(4.9), we can estimate all unknown parameters numerically by finding

nl, p∗ andλ that maximise
L

∏

l=1

R
∏

r=1

Jr
∏

j=1

p(vl
rj),

i.e., that maximise the full log-likelihood of all the observed data

L
∑

l=1

R
∑

r=1

Jr
∑

j=1

log p(vl
rj), (4.17)

wherevl
rj has the distribution defined in Equation(4.15) for r = 2, . . . , R and Equation

(4.16) for r = 1, j = 1, . . . , Jr andl = 1, . . . , L, . The probability ofvl
1j is later stated in

Method 2 in Equation(4.22).

Method 2:

Again we can look atR = 2, R = 3 andR ≥ 3 separately.

ForR = 2, the relationship stated in Equation(4.10) becomes

n̂l =
vl
21

p̂2
∗

. (4.18)

ForR = 3, the estimates stated in Equation(4.11) respectively become

n̂l =
(vl

2· + vl
31)

3

[vl
31]

2
and p̂∗ =

v∗
31

v∗
2· + v∗

31

, (4.19)

where forl = 1, . . . , L,

v∗
31 =

1

L

L
∑

l=1

vl
31, vl

2· =
1

3

J2=3
∑

j=1

vl
2j and v∗

2· =
1

L

L
∑

l=1

vl
2·.
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ForR > 3, the log likelihood stated in Equation(4.12) is now dependent solely onnl and

p∗, for l = 1, . . . , L, and becomes

L
∑

l=1

R
∑

r=2

Jr
∑

j=1

log p(vl
rj), (4.20)

wherevl
rj has the distribution stated in Equation(4.15).

ForR ≥ 2, the log likelihood stated in Equation(4.14) becomes

L
∑

l=1

R
∑

j=1

log p(vl
1j), (4.21)

wherevl
1j has the distribution stated in Equation(4.16) so that

p(vl
1j) =

vl
1j

∑

Cj=0

nl!

(vl
1j − Cj)!(nl − vl

1j + Cj)!

[

p∗(1 − p∗)
R−1

]vl
1j−Cj

[

1 − p∗(1 − p∗)
R−1

]n1−vl
1j+Cj e−λλCj

Cj!
.

(4.22)

4.4 Scoring system for group comparisons

The main aim of this section is to develop a method that will highlight points that do not

exist in both control and patient images or both normoxia andhypoxia treated images. In

this section we introduce a scoring system for the comparison of two groups of images.

Let µ̄(l) andx̄(r) denote thelth andrth image in group 1 and group 2 forl = 1, . . . , L

andr = 1, . . . , R respectively. (Note that the definitions ofL andR are different to those

defined previously.)

The ith point in imagel from group 1 is denoted bȳµ(l)
i , for markersi = 1, . . . , K

and non-markersi = K + 1, . . . , K + m̄l. The jth point in imager from group 2 is

denoted bȳx(r)
j , for markersj = 1, . . . , K and non-markersj = K + 1, . . . , K + n̄r.

Say we wanted to highlight points that are likely to be present in group 1 images,

but absent from group 2 images. To do this, we calculate a score as follows for each point

µ̄
(l)
i , i = 1, . . . , m̄l andl = 1, . . . , L.
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4.4.1 Point presence in group 1

Transform µ̄(l2) to fit µ̄(l1) using steps 1–4 of the composite algorithm, described in

Subsection 2.3.4 to match pairwise configurations, forl2 = 1, . . . , L andl1 6= l2.

Let p̂l1l2
i0 denote the final estimated posterior probability thatµ̄

(l1)
i is allocated to the

coffin bin whenµ̄(l2) is transformed to fit̄µ(l1). The probability that̄µ(l1)
i is present in all

L images in group 1 is

p
(l1)
i =

1

L

[

1 +
∑

l1 6=l2

(1 − p̂l1l2
i0 )

]

. (4.23)

4.4.2 Point absence in group 2

Transformx̄(r) to fit µ̄(l1) using steps 1–4 of the composite algorithm to match pairwise

configurations, forr = 1, . . . , R.

Let q̂l1r
i0 denote the final estimated posterior probability thatµ̄

(l1)
i is allocated to the

coffin bin whenx̄(r) is transformed to fit̄µ(l1). The probability that̄µ(l1)
i is present in all

R images in group 2 is

q
(l1)
i =

1

R

[

R
∑

r=1

(1 − q̂l1r
i0 )

]

. (4.24)

The probabilityµ̄(l1)
i is absent from images in group 2 is simply1 − q

(l1)
i .

We assign the following score to each point,µ̄
(l)
i ,

S
(l)
i = wp

(l)
i + (1 − w)(1 − q

(l)
i ), (4.25)

for i = 1, . . . , m̄l andl = 1, . . . , L. The weight,w, accounts for the number of images in

each group as

w =
L

L + R
.

The use of the posterior matching probabilities provides a score S
(l)
i ∈ {0, 1}. The

probability thatµ̄(l)
i is present in group 1 images but absent in group 2 images increases

asS
(l)
i → 1.
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Chapter 5

Experiments and Applications

5.1 Introduction

In Chapter 5 we analyse the properties and accuracy of the methodology introduced in

Chapter 4. In Subsection 5.2.1, simulations are carried outto investigate the accuracy

of contamination prediction with data from the assumed models. The accuracy is then

investigated when point correspondences are inferred across replicates in Subsection

5.2.2. In Subsection 5.2.3 we explore how the score used to highlight points unique

to one group of images is affected by varying levels of correspondence across groups as

well as varying levels of contamination. Finally, in Section 5.3, we focus on the real data.

Two replicate images are randomly chosen to provide an example of how a union image is

created in Subsection 5.3.1. In Subsection 5.3.2 the correspondences across all replicate

pairs are inferred and then used to estimate the level of contamination within the dataset.

Finally, in Subsection 5.3.3, we highlight points that are likely to be present in patient

images but absent from control images and vice versa. We alsohighlight the points likely

to exist uniquely to images treated with normoxia or hypoxia. Finally, we reduce the

variability within groups even further by considering the four subsets of images split by

subject-type as well as treatment, before highlighting unique points within groups.

As in Chapter 3, where relevant we assumeσ2
ij in Equation(2.9) is constant and
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estimate it aŝσ2 = 4.52, which is approximately the median squared distance between two

corresponding markers within the real dataset after all pairwise Procrustes transformations

are performed. Alternatively, we estimateσ2 using Equation(2.25) with denominatorK

instead ofν. Note that these estimates provide a conservative value ofσ2 and allow greater

freedom for the distance between potential and known corresponding points. Though

sensitivity tests are not carried out here, future work should involve a thorough exploration

of the algorithm sensitivity toσ2. The values presented here will be strongly dependent

on the assignedσ2.

When following the composite algorithm described in Subsection 2.3.4, we

implement the standard method to assign the prior matching probabilities inQ. The

starting values for the transformation parameters,A(0) andb(0), are found using Equation

(2.24). We setl = 10 to define convergence in Equation(2.17).

5.2 Experiments

5.2.1 Accuracy of the contamination parameters within one set of

replicates

We first investigate the prediction accuracy ofn, p∗ andλ over varyingR and varying

levels of contamination when simulating data from the assumed distributions. We focus

on method 1 only.

We run the following simulation 1000 times.

1. First we simulatevrj for r = 1, . . . , R andj = 1, . . . , Jr. We randomly assignv1j

using Equation(4.8) andvrj using Equation(4.7) for r 6= 1.

2. We then estimaten, p∗ andλ as the values that maximise the likelihood stated in

Equation(4.9).

We fix n = 120 and varyp∗ = 0.5, 0.75, 1 andλ = 0, 5, 10. We consider values of
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R = 2, 4, 6. We calculate the likelihood in Equation(4.9) for n̂ ∈ [110, 130] at integer

values,p̂∗ ∈ [0, 1] at0.05 intervals and̂λ ∈ [0, 20] at integer intervals.

Table 5.1 displays the mean number of true points estimated over the 1000

simulations and the standard deviance of the estimates fromthe truen, σn̂, where

σ2
n̂ =

1

1000

1000
∑

i=1

(n̂i − n)2,

wheren̂i is the estimated number of true points at theith simulation. Similarly, Table 5.2

displays the mean probability of observing a true point overthe 1000 simulations and

the standard deviance of the estimates from the truep∗, σp̂. Table 5.3 displays the

mean number of false points over the 1000 simulations and thestandard deviance of the

estimates from the trueλ, σ2
λ̂
.

Averagen̂

λ 0 5 10

p∗ = 0.5 R = 2 115.97 118.91 120.10

R = 4 117.74 120.07 121.57

R = 6 118.99 121.02 119.91

p∗ = 0.75 R = 2 113.25 114.74 115.14

R = 4 119.07 120.85 120.62

R = 6 119.14 121.37 120.62

p∗ = 1 R = 2 120.00 120.00 120.00

R = 4 120.00 120.00 120.00

R = 6 120.00 120.00 120.00

Standard deviance fromn

0 5 10

7.7427 6.9522 7.0396

7.8983 7.9627 8.5156

7.9639 7.9047 7.9283

7.7218 6.9457 6.3548

7.5952 7.7778 6.9442

7.5652 7.5712 7.7185

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

Table 5.1: The first table displays the average of the estimated number of true points

acrossR replicates,n̂, for various values ofp∗ andλ. The second table displays the

standard deviation of̂n from n, σn̂, over the 1000 simulations.
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Averagep̂∗

λ 0 5 10

p∗ = 0.5 R = 2 0.5010 0.5090 0.4980

R = 4 0.5035 0.5010 0.4940

R = 6 0.5080 0.4990 0.4975

p∗ = 0.75 R = 2 0.7730 0.7725 0.7670

R = 4 0.7555 0.7510 0.7455

R = 6 0.7505 0.7480 0.7465

p∗ = 1 R = 2 1.0000 1.0000 1.0000

R = 4 1.0000 1.0000 1.0000

R = 6 1.0000 1.0000 1.0000

Standard deviance fromp∗

0 5 10

0.0512 0.0414 0.0466

0.0322 0.0355 0.0402

0.0266 0.0284 0.0241

0.0389 0.0458 0.0389

0.0251 0.0236 0.0251

0.0151 0.0201 0.0181

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

Table 5.2: The first table displays the average of the estimated probabilities of observing

a true point,̂p∗, for various values ofR, p∗ andλ. The second table displays the standard

deviation ofp̂∗ from p∗, σp̂, over the 1000 simulations.
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Averageλ̂

λ 0 5 10

p∗ = 0.5 R = 2 1.68 5.28 10.34

R = 4 0.57 4.80 9.49

R = 6 0.25 4.89 10.07

p∗ = 0.75 R = 2 2.34 7.36 11.48

R = 4 0.23 4.90 9.67

R = 6 0.03 5.08 9.98

p∗ = 1 R = 2 0.00 5.18 10.42

R = 4 0.00 5.12 10.13

R = 6 0.00 4.97 10.03

Standard deviance fromλ

0 5 10

2.7005 4.0751 3.9287

1.0200 1.8641 2.4184

0.5412 1.2268 1.5472

3.7363 5.2436 4.4992

0.5222 1.1371 1.5923

0.1741 1.0347 1.2871

0.0000 1.5954 1.9592

0.0000 1.0445 1.6606

0.0000 0.9156 1.3744

Table 5.3: The first table displays the average of the estimated number of false points

per image,̂λ, for various values ofR, p∗ andλ. The second table displays the standard

deviation ofλ̂ from λ, σλ̂, over the 1000 simulations.
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Conclusion

Generally, asR → ∞, n̂ → n, p̂∗ → p∗ and λ̂ → λ. We also see that asR → ∞ or

p∗ → 1, σ2
n̂, σ2

p̂ andσ2
λ̂
→ 0.

That is, the accuracy of the inferred parameters increase asR increases and asp∗ →

1. Increasingλ does not have an obvious adverse effect on prediction accuracy.

5.2.2 Accuracy of the contamination parameters after inferring

correspondence

The methodology, introduced in Section 4.3, to estimate unknown contamination

parameters assumes point correspondences across images are known. In reality,

correspondences across images have to be inferred because of the warping present in

an image. Here we investigate the accuracy of the estimated contamination parameters

after using the proposed methodology in Chapter 2 to infer onthe corresponding points

across images. As the real data we have contains only replicate pairs, we fixR = 2.

We run the following simulation 200 times for each case.

1. We randomly scatterK +n points across aw×h uniform surface, where each point

is set to be a minimum of2 units from any other point. Note that we are simulating

data similar to that given so we again consider an image to have K markers and a

selection of non-markers.

2. We randomly selectK markers from theK + n points with the constraint that each

marker must be a minimum distance ofdK from any other marker. The remainingn

points are allocated as non-markers. TheseK markers andn non-markers represent

the true image,x.

3. Now we allocate the non-markers in the observed imagesx̄1 andx̄2. Note that we

fix theK markers to be observed in both images.
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Let n̄T
1 and n̄T

2 denote the number of non-markers observed inx̄1 and x̄2

respectively. We simulatēnT
l using only the Binomial distribution within Equation

(4.5). Then we randomly select thēnT
l from theN non-markers to represent the

non-markers observed in̄xl for l = 1, 2.

4. We add noise,N(0, τ 2/4), to each point coordinate within̄x1 andx̄2.

5. Now we add false points to both̄x1 and x̄2. Let n̄F
1 and n̄F

2 denote the number

of false points allocated tōx1 and x̄2 respectively. We simulatēnF
1 using only

the Poisson distribution stated in Equation(4.5) before randomly scattering them

across the samew × h uniform surface used to creatēxl for l = 1, 2. In this case

there are no constraints on the distance between points.

Note: The distribution stated in Equation(4.5) is now fully satisfied for both̄n1

andn̄2.

6. The(K + n̄1)× 2 and(K + n̄2)× 2 matrices,̄x1 andx̄2 respectively, are input into

steps 1–5 of the composite algorithm introduced in Subsection 2.3.4 to estimate the

one-to-one matching matrix,̂M .

Note: As p∗ decreases andλ increases, the number of false positive matches

made by the EM algorithm will increase asdT increases if we set∆ = D∗. As

we do not know the level of contamination before the inferrence of matches, we

assign matches using the final posterior probabilities by setting ∆ = p̂T , therefore

forfeiting control of the number of output matches.

7. Let v̂21, v̂11 and v̂12 be the inferred values ofv21, v11 andv12 respectively. These

values are calculated from the non-markers alone so that

v̂21 =

K+n̄1
∑

i=K+1

K+n̄2
∑

j=K+1

M̂ij , v̂12 =

K+n̄2
∑

j=K+1

M̂0j

andv̂11 = n̄1 − v̂21.
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8. Finally we estimatên, p̂∗ and λ̂ that maximize the log-likelihood in Equation

(4.9) when applying method 1. For method 2, we findn̂ in terms ofp̂∗ using the

relationship defined in Equation(4.10), before estimatinĝp∗ andλ̂ that maximise

the log-likelihood stated in Equation(4.14).

We fix n = 30, K = 3, w = 257/2, h = 191/2 anddK = 25. We estimate the variance

in Equation(2.9) as σ̂2 = 4.52 and setτ = σ̂. We vary the contamination levels by

consideringp∗ ∈ [0.5, 1] at intervals of0.05 andλ ∈ {0, 10} at integer intervals. In step

8, we calculate the method 1 log-likelihood forn̂ ∈ [0, 40] at integer values,̂p∗ ∈ [0.05, 1]

at intervals of 0.05 and̂λ ∈ [0, 20] at integer values. We calculate the method 2 log-

likelihood for p̂∗ ∈ [0.05, 1] at intervals of 0.05 and̂λ ∈ [0, 20] at integer values.

Discussion

Figure 5.1 displays the mean values ofn̂, p̂∗ and λ̂ over the 200 simulations for both

methods 1 and 2. Figure 5.2 displays the standard error of theestimates from the true

values, again for both methods 1 and 2.

We can see that method 1 generally estimatesp̂∗ ≈ 1 for all considered levels of

contamination. Therefore the error between the estimatesp̂∗ and the truep∗ increases asp∗

decreases. The estimated number of non-markers,n̂, decreases as bothp∗ andλ decrease

with the error between̂n andn becoming increasingly larger. Generallyλ̂ decreases at a

slower rate thanλ decreases so that the error betweenλ̂ andλ increases.

Method 2 provides low estimates forλ for all considered levels of contamination,

with the error between̂λ andλ increasing asλ increases. The estimated number of non-

markers,̂n, decreases as bothp∗ andλ decrease with the error betweenn̂ andn becoming

increasingly larger. We can see thatp̂∗ decreases at a slower rate thanp∗ decreases so that

the error increases betweenp̂∗ andp∗ increases.
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Figure 5.1: Forλ againstp∗, Figures a) and b) display the mean values ofn̂, Figures c)

and d) display the mean values ofp̂∗ and Figures e) and f) display the mean values ofλ̂

for methods 1 and 2 respectively over the 200 simulations. Each figure is a contour plot

where a greyscale is used to illustrate the various means.
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Figure 5.2: Forλ againstp∗, Figure a) and b) display the standard error ofn̂ from n,

Figures c) and d) display the standard error ofp̂∗ from p∗ and Figures e) and f) display

the standard error of̂λ from λ for methods 1 and 2 respectively over the 200 simulations.

Each figure is a contour plot where a greyscale is used to illustrate the various errors.
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Conclusion

Method 1 generally predictŝp∗ ≈ 1. Alternatively method 2 generally predicts a low

λ̂ over all considered levels of contamination. The previous simulations showed that

generating data from the assumed distributions will provide good estimates ofn, p∗ and

λ for R = 2. However, when inferring on point correspondence acrossR = 2 replicates,

there is not enough information to provide good estimates ofcontamination. When testing

the real data in Subsection 5.3.2, we see that only a relationship betweenp∗ andλ can be

inferred.

5.2.3 Estimating the appropriate score threshold

Here we look at how the score (indicating points unique to a particular group of images)

is affected by varying levels of correspondence across groups or varying levels of

contamination. We want to highlight an appropriate threshold, pT , above which scores

should be considered. We run simulations separately for varying correspondence and

contamination levels.

Let pC denote the proportion of corresponding non-markers acrossgroup 1 images

and group 2 images. The number of corresponding non-markersacross images in the

different groups isN = npC .

Varying point correspondence across images

We varypC and carry out 200 simulations for each case.

1. We randomly scatterK + 2n − N points across aw × h uniform surface, where

each point is set to be a minimum of2 units from any other point.

2. We randomly selectK true markers from theK +2n−N points with the constraint

that each marker must be a minimum distance ofdK from any other marker. Let
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µk andxk contain the coordinates of markerk in µ andx respectively, fork =

1, . . . , K.

3. From the remaining2n − N points, we randomly selectN points to represent the

corresponding non-markers acrossµ andx. Soµi andxi contain the coordinates of

corresponding non-markers fori = K + 1, . . . , K + N .

4. Finally, we randomly split the remaining2(n − N) points equally betweenµ and

x so thatµi andxj contain the coordinates of arbitrarily labelled points inµ andx,

for i, j = K + N + 1, . . . , K + n, that do not have corresponding points inx andµ

respectively.

5. We fix µ̄(l) = µ for l = 1, . . . , L to create the group 1 images andx̄(l) = x for

r = 1, . . . , R to create the group 2 images.

6. We add noise,N(0, τ 2/4), to each point coordinate within̄µ(l) and x̄(r) for l =

1, . . . , L andr = 1, . . . , R respectively.

7. Using the output final posterior matching probabilities,we calculate the

probabilities stated in Equations(4.23) and (4.24), p
(l)
i and q

(l)
i , for l = 1 and

i = 1, . . . , K + n.

We transformµ̄(l) onto µ̄(1), for l = 2, . . . , L, by inputting both into steps 1–

4 of the composite algorithm described in Subsection 2.3.4 to produce the final

posterior matching probabilities,p̂1l. We transform̄x(r) ontoµ̄(1), for r = 1, . . . , R,

by inputting both into steps 1–4 of the composite algorithm to produce the final

posterior matching probabilities,q̂1r.

8. Inputtingp
(1)
i andq

(1)
i into Equation(4.25), we calculate the score for each point in

µ̄(1), whereS
(1)
i is the score for pointi in the first image in group 1.

9. Finally we calculate the proportion of correctly highlighted points unique to group
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1 images aspTP = 0 for pC = 1 and forpC 6= 1,

pTP =
nTP

nTP + nFP
=

∑K+n
i=K+N+1 I[S

(1)
i > pT ]

∑K+n
i=K+1 I[S

(1)
i > pT ]

,

where

I[S
(1)
i > pT ] =







1 if S
(1)
i > pT

0 if S
(1)
i ≤ pT

.

We fix n = 30, K = 3, w = 257/2, h = 191/2 anddK = 25. We estimate the variance

in Equation(2.9) as σ̂2 = 4.52 and setτ = σ̂. We also fixL = R = 13 to mimic the

comparisons between patients/controls and treatments used to create the real data. We

vary the point correspondence across groups by consideringpC ∈ [0, 1] at intervals of

0.1. We explore the highlighted points when fixingpT ∈ [0.49, 1] at intervals of0.01.

Discussion

Figure 5.3 displays contours ofnTP , nFP andpTP for pT againstpC . The number of true

positives increase as bothpC andpT decrease. The number of false positives also increase

aspT decreases, but increase aspC increases. The proportion of true positives increase as

pC decreases andpT increases.

Conclusion

When applying a threshold ofpT ≈ 0.7, over 97% of the highlighted points are true

positive observations over allpC . A decreasing amount of points withS(1)
i > pT indicates

an increasing similarity across images in group 1 and group 2images.

Varying contamination levels

Finally we fix pC = 1 and vary the level of contamination within the following 100

simulations.
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Figure 5.3: Figure showing a)nTP , b) nFP and c)pTP for pT againstpC .
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1. We randomly scatterK + m points across aw × h uniform surface, where each

point is set to be a minimum of2 units from any other point.

2. We randomly selectK markers from theK +m points with the constraint that each

marker must be a minimum distance ofdK from any other marker. The remainingm

points are allocated as non-markers. TheseK markers andm non-markers represent

the true image,µ. We setx = µ so that the true image for group 1 is equivalent to

the true image for group 2.

3. Now we allocate the non-markers observed inµ̄(l) for l = 1, . . . , L and inx̄(r) for

r = 1, . . . , R. Note that theK markers are observed in all images.

Let m̄T
l and n̄T

r denote the number of non-markers observed inµ̄(l) and x̄(r)

respectively. We simulatēmT
l and n̄T

r separately using only the Binomial

distribution within Equation(4.5). Then we randomly select̄mT
l andn̄T

r from the

m non-markers to represent the non-markers observed inµ̄(l) andx̄(r) respectively.

4. We add noise,N(0, τ 2/4), to each coordinate of the non-markers observed inµ̄(l)

andx̄(r) for l = 1, . . . , L andr = 1, . . . , R respectively.

5. LetmF
l andnF

r denote the number of false points inµ̄(l) andx̄(r) respectively. Using

only the Poisson distribution stated in Equation(4.5), we simulatemF
l and nF

r

before randomly scattering them across the samew × h uniform surface separately

for µ̄(l) and x̄(r) respectively. In this case there are no constraints on the distance

between points.

Note: In this casem̄l = m̄T
l + mF

l and n̄r = n̄T
r + nF

r for l = 1, . . . , L and

r = 1, . . . , R.

6. Using the output posterior matching probabilities, we calculate the probabilities

stated in Equations(4.23) and(4.24), p
(l)
i andq

(l)
i , for l = 1 andi = 1, . . . , m̄1.
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We transformµ̄(l) onto µ̄(1), for l = 2, . . . , L, by inputting both into steps 1–

4 of the composite algorithm described in Subsection 2.3.4 to produce the final

posterior matching probabilities,p̂1l. We transform̄x(r) ontoµ̄(1), for r = 1, . . . , R,

by inputting both into steps 1–4 of the composite algorithm to produce the final

posterior matching probabilities,q̂1r.

7. Inputtingp
(1)
i andq

(1)
i into Equation(4.25), we calculate the score for each point in

µ̄(1), whereS
(l)
i is the score for pointi in the first image in group 1.

8. Finally we calculate the proportion of incorrectly highlighted points unique to group

1 images as

pFP =
1

m̄1

m̄1
∑

i=1

I[S
(l)
i > pT ].

Note that the true images,µ andx, are identical. Any point highlighted as unique

to group 1 images is therefore incorrectly highlighted.

We fix N = 30, K = 3, w = 257/2, h = 191/2 anddK = 25. We estimate the variance

in Equation(2.9) as σ̂2 = 4.52 and setτ = σ̂. We vary the contamination levels by

consideringp∗ ∈ [0.5, 1] at intervals of0.1 andλ ∈ {0, 10} at intervals of 2. We calculate

pFP when settingpT = 0.7

Conclusion

Over all considered contamination levels, the maximum value of the mean proportion of

false positives (over the 100 simulations) wasp̄FP = 0.007. So, whenL = R = 13 and

settingpT = 0.7, the unknown contamination levels do not have a negative influence on

the points highlighted to exist uniquely in one group.

5.2.4 Overall conclusions

• The prediction accuracy ofn, p∗ and λ is good when simulating data from the

assumed distributions, even when considering onlyR = 2 replicates.
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• When inferring on the corresponding points acrossR = 2 replicates, method 1

estimateŝp∗ ≈ 1 and method 2 povides low estimates ofλ̂. In this case, later

analyses on the real data suggests that there is enough information to infer a

relationship between̂p∗ and λ̂ whenR = 2, although not enough information to

produce explicit solutions.

• The higher the probability threshold,pT , the higher the proportion of true positive

points highlighted as unique to group 1 images. A threshold of pT = 0.7 is

recommended when analysing the real data and should not be negatively affected by

the proportion of corresponding points across groups or thelevel of contamination

within the dataset.

5.3 Applications

5.3.1 Example of a union

In this example we create a union of two replicates,µ andx. We input the images into

steps 1–6 of the composite algorithm described in Subsection 2.3.4. We estimate the

variance in Equation(2.9), σ2, using Equation(2.25) with denominatorK instead ofν.

We explore the one-to-one matches made when∆ = p̂T .

The final estimated transformation parameters are

ˆ̂
A =





1.0815 0.0217

0.0018 0.9885



 ,

andˆ̂
b = (−22.4579,−47.7393)T .

Both plots in Figure 5.4 display the final transformation ofµ ontox. Figure 5.4a

displays the matches inferred. Figure 5.4b displays the union ofµ andx.
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Figure 5.4: a) Figure showing the final transformation ofµ ontox and the matches made.

The filled circles represent points inx and the crosses represent points in the transformed

µ. Black indicates non-markers and green indicates markers.Matched points across

images are joined by a red line. b) Figure showing the union ofµ andx. The crosses

indicate points unique toµ, the filled circles indicate points unique tox and the blue stars

indicate points that are observed in bothµ andx.
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l n̄l
1 n̄l

2 v̂l
21 v̂l

11 v̂l
12

1 89 83 46 43 37

2 157 134 115 42 19

3 198 142 137 61 5

4 152 141 107 45 34

5 141 148 120 21 28

6 112 114 73 39 41

7 106 109 65 41 44

8 94 99 72 22 27

9 96 92 57 39 35

10 166 125 97 69 28

Table 5.4: Table displayinḡnl
1, n̄l

2, v̂l
21, v̂l

11 andv̂l
12 for l = 1, . . . , L = 10.

5.3.2 Estimating contamination levels

Here we estimate the contamination levels using theL = 10 sets ofR = 2 replicates

we have in the real dataset. Letx̄lr represent therth replicate from thelth set, forl =

1, . . . , L = 10 andr = 1, 2. First we estimatevl
21, vl

11 andvl
12 for each of theL replicate

pairs.

We input x̄l1 and x̄l2 into steps 1–5 of the composite algorithm described in

Subsection 2.3.4 forl = 1, . . . , L = 10. We estimate the variance in Equation(2.9),

σ2, using Equation(2.25) with denominatorK instead ofν. We estimate the one-to-one

matching matrix,M , by setting∆ = p̂T .

Table 5.4 displays̄nl
1, n̄l

2, v̂l
21, v̂l

11 andv̂l
12 for each of theL = 10 replicate pairs.

Note: These values consider the non-markers only, as within the simulations.

We first consider each replicate set separately before finding global solutions using

all replicate pairs.
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Local Solutions

For each of theL = 10 replicate pairs, we do the following.

For method 1, we estimatenl, p∗ andλ that maximize the log-likelihood in Equation

(4.9). We calculate the log-likelihood for̂nl ∈ [0, al] at integer values,̂p∗ ∈ [0, 1] at

intervals of 0.01 and̂λ ∈ [0, 100] at integer values. Here,al = 50 + max(n̄l
1, n̄

l
2).

For method 2, we find̂nl in terms ofp̂∗ using the relationship defined in Equation

(4.10), before maximising the log-likelihood stated in Equation(4.14). We calculate the

log-likelihood for p̂∗ ∈ [0.01, 1] at intervals of 0.01 and̂λ ∈ [0, 100] at integer values.

Table 5.5 displays the estimated parameters when applying method 1 and method 2.

Figure 5.5 displays contours of the method 2 likelihood in Equation(4.14) for λ against

p∗ for l = 1, . . . , L = 10 (note that we only display the method 2 likelihood because itis

dependent on the two contamination parameters alone).

Conclusion

In this case, from Table 5.5 we can see that generallyp̂∗ ≈ 1, with an exception for

the first replicate pair in method 2 whereλ̂ ≈ 0. The contours in Figure 5.5 each show

a ridge of maxima indicating the data provides a relationship betweenp̂∗ and λ̂ rather

than explicit solutions. The similarity of the contours across replicate pairs supports the

assumption thatp∗ andλ are constant across images in the dataset. However, the contours

also indicate a poor quality of the given dataset.

Global solutions

Now we combine information across theL = 10 replicate pairs when estimating the

unknown parameters.

For method 1, we estimatenl, p∗ andλ that maximize the log-likelihood in Equation

(4.17). We calculate the log-likelihood for̂nl ∈ [0, al] at integer values,̂p∗ ∈ [0, 1] at

intervals of 0.01 and̂λ ∈ [0, 100] at integer values. Here,al = 50 + max(n̄l
1, n̄

l
2).

For method 2, we find̂nl in terms ofp̂∗ using the relationship defined in Equation
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l n̂l p̂∗ λ̂

1 10 1 45

2 11 1 79

3 10 1 99

4 9 1 76

5 9 1 71

6 10 1 56

7 8 1 53

8 9 1 47

9 10 1 48

10 10 1 83

l n̂l p̂∗ λ̂

1 277 0.19 2

2 11 0.98 78

3 10 1.00 99

4 9 1.00 76

5 9 0.99 70

6 10 1.00 56

7 8 1.00 53

8 9 1.00 47

9 10 1.00 48

10 10 1.00 83

Table 5.5: Tables containing the estimated parameters,n̂l, p̂∗ and λ̂ when considering

each of theL = 10 replicate pairs separately. The table to the left displays the results

when applying method 1 and the table to the right displays theresults when applying

method 2.
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Figure 5.5: Contours of the method 2 likelihood forλ againstp∗ for each of theL = 10

replicate pairs. The red crosses represent the estimated parameters,̂p∗ andλ, in each case.
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l 1 2 3 4 5 6 7 8 9 10

Method 1n̂l 80 202 248 184 160 114 95 81 90 216

Method 2n̂l 50 125 149 116 130 79 71 78 62 105

Table 5.6: Tables containing the estimated number of pointsin each of theL = 10 true

images,̂n, for method 1 and method 2 globally.

(4.18), before maximising the log-likelihood stated in Equation(4.21). We calculate the

log-likelihood for p̂∗ ∈ [0.01, 1] at intervals of 0.01 and̂λ ∈ [0, 100] at integer values.

Table 5.6 displays the estimatedn̂l for l = 1, . . . , L when applying either method

1 or method 2. For method 1, the estimated contamination parameters,p∗ andλ, are

respectively

p̂∗ = 0.26 λ̂ = 37.

For method 2, the estimated contamination parameters,p∗ andλ, are respectively

p̂∗ = 0.96 λ̂ = 65.

Figure 5.6 displays contours of the global likelihood forλ againstp∗ for a) method 1

(assuming thatnl = n̂l for l = 1, . . . , L) and b) method 2.

Conclusion

We can see that the solutions fornl for l = 1, . . . , L, p∗ andλ differ greatly across

methods, with method 2 predictingp∗ ≈ 1. The contour in Figure 5.6b, which illustrates

the method 2 likelihood, again shows a ridge of maxima indicating the data provides

a relationship between̂p∗ and λ̂ rather than explicit solutions. The contour illustrating

the method 1 likelihood indicates explicit solutions when all information is considered

to estimatep∗, λ and nl for l = 1, . . . , L. This solution is also present within the

ridge of maxima shown in the contour displaying the method 2 likelihood. The resulting

contamination parameters again indicate a poor quality of images within our dataset.
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Figure 5.6: Contours of the global likelihood forλ againstp∗ for a) method 1 and b)

method 2. The red cross represents the estimated parameters, p̂∗ andλ, in each case.

5.3.3 Highlighting unique points within image groups

Table 5.7 displays the number of images we have for each subject-type and treatment.

Treatment

Normoxia Hypoxia Total

Control 7 6 13

Patient 6 7 13

Total 13 13

Table 5.7: Table displaying the number of images we have for each subject-type and

treatment.

First, we calculate the score to highlight points that are present in

• A1: control images but absent in patient images.

• A2: patient images but absent in control images.

• A3: normoxic images but absent in hypoxic images.
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• A4: hypoxic images but absent in normoxic images.

In each of the above analyses,L = R = 13. Finally, we reduce variability within groups

even further by separating the data in four subsets and calculating the score to highlight

points that are present in

• B1: normoxic control images but absent in normoxic patient images (L = 7 and

R = 6).

• B2: normoxic patient images but absent in normoxic control images (L = 6 and

R = 7).

• B3: hypoxic control images but absent in hypoxic patient images(L = 6 and

R = 7).

• B4: in hypoxic patient images but absent in hypoxic control images (L = 7 and

R = 6).

• B5: in normoxic control images but absent in hypoxic control images (L = 7 and

R = 6).

• B6: in hypoxic control images but absent in normoxic control images (L = 6 and

R = 7).

• B7: in normoxic patient images but absent in hypoxic patient images (L = 7 and

R = 6).

• B8: in hypoxic patient images but absent in normoxic patient images (L = 7 and

R = 6).

For each analysis, we transform̄µ(l) onto µ̄(1), for l = 2, . . . , L, by inputting both into

steps 1–4 of the composite algorithm described in Subsection 2.3.4 to produce the final

posterior matching probabilities,̂p1l. We transformx̄(r) onto µ̄(1), for r = 1, . . . , R, by

inputting both into steps 1–4 of the composite algorithm to produce the final posterior
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matching probabilities,̂q1r. We estimate the variance in Equation(2.9), σ2, using

Equation(2.25) with denominatorK instead ofν.

Table 5.8 displays the index of each image present in the dataset. These indices

are then used to indicate the image containing the 5 top scoring points in analyses A

(Tables 5.9) and analyses B (Tables 5.10).

Control Initial Replicate Patient Initial Replicate

Hypoxia 1 1 2 1 5 6

Normoxia 3 4 7 8

Hypoxia 2 9 × 2 11 ×

Normoxia 10 × 12 13

Hypoxia 3 14 15 3 18 19

Normoxia 16 17 20 21

Hypoxia 4 22 23 4 25 ×

Normoxia 24 × 26 ×

Table 5.8: Table displaying indices of the 26 images within the dataset.

The highest score is 0.9418 which highlights spotID 112 in image 10 as being the

most likely point to be present in normoxic controls images but absent in hypoxic controls.

Figure 5.7a-f display the superimposition of each remaining normoxic control image onto

image 10. Figure 5.8a-f display the superimposition of eachhypoxic control image onto

image 10. Each figure is magnified onto the point of interest. In each case, a red ‘circle’

with a radius equal to twice the RMSD,σ̂, surrounds spotID 112 in image 10.
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A1

Image Point Score

23 171 0.7748

23 168 0.7682

23 163 0.7644

15 124 0.7311

16 116 0.7020

A2

Image Point Score

7 103 0.7525

12 108 0.7453

18 73 0.7317

8 110 0.7155

12 113 0.7142

A3

Image Point Score

3 107 0.7203

10 89 0.7161

3 167 0.6987

7 107 0.6900

3 161 0.6849

A4

Image Point Score

18 84 0.7729

19 85 0.7695

9 102 0.7633

15 92 0.7564

19 57 0.7557

Table 5.9: Table showing the top five scoring points in analyses A.
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B1

Image Point Score

23 6 0.9115

23 11 0.9077

10 6 0.8929

24 62 0.8781

17 7 0.8760

B2

Image Point Score

20 67 0.7629

7 157 0.7473

20 59 0.7391

7 86 0.7005

7 97 0.6871

B3

Image Point Score

15 14 0.7992

15 13 0.7834

2 4 0.7689

1 5 0.7687

1 3 0.7659

B4

Image Point Score

18 73 0.8905

5 206 0.8788

12 106 0.8483

5 134 0.8339

11 148 0.8339

B5

Image Point Score

10 112 0.9418

10 24 0.9165

10 19 0.8883

10 110 0.8733

3 161 0.8665

B6

Image Point Score

15 14 0.7629

1 61 0.7598

15 13 0.7520

15 92 0.7195

22 1 0.7087

B7

Image Point Score

8 150 0.6945

7 87 0.6900

21 26 0.6857

8 18 0.6851

7 13 0.6757

B8

Image Point Score

6 15 0.8722

18 84 0.8447

19 73 0.8431

6 133 0.8417

18 85 0.8353

Table 5.10: Table showing the top five scoring points in analyses B.
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Figure 5.7: Figures displaying the final superimposition ofeach of the 6 remaining

normoxic control images onto image 10. The filled circles represent points in image 10

and the crosses represent points in the transformed second image. Black indicates non-

markers and green indicates markers. The radius of the red ‘circle’ surrounding point 112

in image 10 is equal to twice the standard deviation,σ̂, used within the model to provide

the superimposition.
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Figure 5.8: Figures displaying the final superimposition ofeach of the 6 hypoxic control

images onto image 10. The filled circles represent points in image 10 and the crosses

represent points in the transformed second image. Black indicates non-markers and

green indicates markers. The radius of the red ‘circle’ surrounding point 112 in image

10 is equal to twice the standard deviation,σ̂, used within the model to provide the

superimposition.
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Chapter 6

Predicting toxicity by shape similarity

6.1 Introduction

In Chapter 6 we test the hypothesis that the potential toxicity of a pesticide is related

to the shape similarity between the pesticide and the substrate, ACh, of the protein,

AChE, to which they both bind. In Section 6.2, we illustrate the structure of ACh

and depict the general structures of a carbamate and an organophosphate (OP), the two

families of pesticides considered within these analyses. We also display the reaction

that takes places between each ligand and AChE before describing the concept driving

the development of the shape similarity measure. In Section6.3, we discuss how we

can measure the shape similarity between ACh and a given pesticide. We introduce the

data considered within the analyses, including the molecular conformations and known

biological indicators of toxicity in Section 6.4. Finally,in Section 6.5, we explore the

significance of the developed shape similarity measure as a toxicity predictor and compare

it to the significance of the known biological indicators of toxicity. We also compare

the accuracy of the toxicity predictions when applying our model to the accuracy when

implementing a previously developed online predictor.
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6.2 Ligand structures, reaction and shape similarity

concept

6.2.1 Structures and reactions

Here we describe the structures of the different ligands under consideration and illustrate

the reaction that takes place when each ligand type binds to AChE.

Figure 6.1 displays the structure of an ACh molecule. It is a small molecule with

only 10 non-hydrogen atoms (relative to the 4143 non-hydrogen atoms within the protein,

AChE). The number of non-hydrogen atoms within the considered pesticides range from

7 to 28 with an average of around 16.

Figure 6.1: Figure displaying the structure of the substrate, ACh. The black spheres

represent carbon atoms, the blue sphere represents a nitrogen atom, the red atoms

represent oxygen atoms and the white spheres represent hydrogen atoms.

Thompson and Richardson [79] describe the general structure of a carbamate and

an OP pesticide molecule. They also outline the reaction that takes place between each

ligand type and AChE. Both of these are illustrated in Figure6.2.
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Figure 6.2: Figures a), b) and c) depict the reaction betweenAChE and: ACh; a general

carbamate; and a general OP respectively.
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6.2.2 Concept

As introduced in Subsection 1.3.2, QSAR assumes that the activity or function of a

molecule is correlated with one or more of the structural properties of the molecule

itself. At the basis of the theory is that similar molecules induce similar reactions

and consequences within a biological system. QSAR has resulted in an increased

understanding of the molecular properties necessary to trigger a certain activity and is

therefore vital to the discovery and development of new and more effective drugs, as well

as producing an increased understanding of current drugs.

In terms of this research, QSAR represents the theory that pesticide toxicity is

correlated with one or more properties of the pesticide molecule itself. Much research has

been carried out to highlight the structural properties that influence the resulting toxicity

[30] [91]. Here, we test the unique hypothesis that pesticide toxicity is related to the

similarity between the pesticide molecule and the natural ligand, ACh.It is with ACh that

the protein, AChE, naturally binds in a very similar way thata pesticide molecule would

bind. We can see from Figure 6.2 that ACh, a carbamate and an OPeach form a bond

with the same oxygen atom (within a particular serine residue) in AChE. Both ACh and

a carbamate contain a ‘carbon double-bond oxygen’ within their structures, whereas an

OP contains a ‘phosphorus double-bond oxygen’. The afore mentioned oxygen atom

in AChE will form a bond with this carbon atom for both ACh and acarbamate, or

the phosphorus atom for an OP. It seems intuitive that the similarities or dissimilarities

between a synthetically developed pesticide and the naturally formed ligand will help

characterise the bind with AChE and ultimately influence thefinal activity, i.e., the

induced toxicity.

In this chapter we produce a measure ofshape similaritybetween the two

molecules. Molecular shape is not well-defined in molecularbiology [58]. One of the

reasons for this is likely to be due to the flexibilty and continual change of molecular

shape dependent on the encountered environment. To avoid the vast difficulties associated
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with incorporating molecular flexibility, we focus on particular conformations which we

discuss further in Subsection 6.4.3.

Next we introduce the methodology developed to produce a measure of shape

similarity between ACh and a pesticide.

6.3 Methodology to produce measure of shape similarity

Letµ andx be them×3 andn×3 matrices containing the atomic coordinates of ACh and a

pesticide respectively. We exclude hydrogen atoms from theanalyses so there arem = 10

atoms in ACh under consideration. Drydenet al.[27] consider Bayesian methodology

within MCMC to infer the matching and transformation necessary to superimpose (or

align) two molecules. Here we provide alternative methodolgy to reach the same goal and

ultimately enable the calculation of the shape similarity between two molecules.

6.3.1 Graphical matching algorithm

To assign atomic matches acrossµ andx we use the programBKTest(written by Gold

[36]) which implements a graphical matching algorithm, originally developed by Bron

and Kerbosch [17]. Inputtingµ andx into BKTest, distance matrices are produced for

each molecule and used to find a maximal common-induced subgraph to infer the best

atomic matches.

Using similar notation to that introduced in Chapter 2, letM be the10×n matching

matrix, where

Mij =







1 if µi matchesxj

0 otherwise
,

for i = 1, . . . , 10 andj = 1, . . . , n. Note that in this case, we do not have a final column

indicating coffin bin allocations as we did in Chapter 2.

Let µ∗ andx∗ represent matrices containing the matched atomic coordinates across

µ andx respectively. IfMij = 1, thenµ∗
l = µi andx∗

l = xj for somel, where there are
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l = 1, . . . , L matches.

Before matches can be inferred, we need to input adistance toleranceinto the

matching algorithm. The distance tolerance ensures that

‖µ∗
l1 − µ∗

l2| − |x∗
l1 − x∗

l2‖ < ζ,

whereζ indicates the input distance tolerance,l1, l2 = 1, . . . , L andl1 6= l2.

6.3.2 Superimposition via Procrustes methodology

Using the inferred matches, we use Procrustes methodology [28] to superimposeµ∗ onto

x∗. Let Â and b̂ be the estimated transformation parameters (scale is not relevant here).

The measure of shape similarity is simply the sum of squares (OSS) between the matched

atom pairs after the superimposition (measured in squared angstroms,̊A2), i.e.,

OSS=
L

∑

l=1

‖x∗
l − Âµ∗

l − b̂‖2,

whereÂ is the estimated3 × 3 rotation matrix and̂b is the estimated translation vector.

Note that the typical distance between two atoms in a molecule is 1Å-2Å.

It should be noted that we consider OSS rather than the root mean squared distance

(RMSD) so that information involving the number of matches,L, is not lost.

The number of matches inferred by the graphical matching algorithm, L, is of

course discrete. Figure 6.3 displays the output OSS againstthe input distance tolerance

when comparing a random pesticide with ACh. We can see that increasing the distance

tolerance,ζ , will generally increase the output OSS, that is,ζ and OSS have a high positive

correlation.

However, increasingζ will not alwaysincrease the number of matches,L, so the

OSS can remain constant overζ (for example, forζ ∈ [0.7, 1.1] in Figure 6.3). It is also

possible for the OSS to decrease asζ increases as the subset of matches may change even

whenL remains constant (for example, forζ ∈ [1.4, 1.5] whenL = 8 or ζ ∈ [2.0, 2.1]

whenL increases fromL = 8 to L = 9).
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Figure 6.3: Figure displaying the output OSS against the input distance tolerance,ζ , as

red dots. The number of matches inferred at a specific distance tolerance is indicated at

the top of the plot.
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6.4 Data introduction and development

Here we discuss the data we consider within the following analyses and give appropriate

notation. We first introduce the toxicity data, the biological descriptors and the atomic

coordinates representing specific pesticides given to us byCSL, York. Obviously the

measure of shape similarity produced will be extremely dependent on the considered

molecular conformation of each pesticide and ACh. So next wediscuss the single

conformation we consider for each pesticide and the two conformations of ACh

under investigation. Finally, we show how the pesticide conformation and the two

conformations of ACh can be used to produce two measures of shape similarity for each

pesticide.

6.4.1 Toxicity data

We have toxicity data for different subsets of 145 pesticides calculated from 5 different

species; mallards, japanese quails, red-winged blackbirds, starlings and bobwhite quails.

We consider the LD50 toxicity, that is, the amount of pesticide neccessary to kill 50

percent of a species.

Let y
(k)
i be the toxicity of theith pesticide when ingested by thekth species, for

i = 1, . . . , mk andk = 1, . . . , 5 (k = 1 indicates bobwhite quails,k = 2 Japanese quails,

k = 3 mallards,k = 4 red-winged blackbirds andk = 5 starlings).

6.4.2 Biological descriptors

We have been given over 1000 biological descriptors for eachof the 145 pesticides.

A DEMETRA software tool [9] is available online to predict the acute oral toxicity

related to the administration of a pesticide to bobwhite quails. Previous research has

highlighted numerous biological descriptors as being significant indicators of toxicity [30]

[91]. The software requires the input of 14 of these biological descriptors, 13 of which
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are numerical. It is these 13 numerical descriptors that we consider in the later analyses.

Let θij be thejth biological descriptor of theith pesticide, found to be relevant to

bobwhite quail toxicity, forj = 1, . . . , 13 andi = 1, . . . , 52. Here we consider the 52

pesticides for which we have bobwhite quail toxicity data.

6.4.3 Molecular conformations

Pesticide conformation

We have atomic coordinate data for 145 pesticides inminimum-energy conformations. In

mathematical terms, the minimum-energy conformation of a molecule is equivalent to the

conformation associated with the highest likelihood of occurrence. For this reason, it is

appropriate to use the minimum-energy conformation of eachpesticide for our analysis.

Let x(i) be theni × 3 matrix containing the coordinates of the minimum-energy

conformation associated with theith pesticide.

Conformations of ACh

It is also appropriate to compare each pesticide to the minimum-energy conformation

of ACh. In this case, we were not given the appropriate atomiccoordinates so they

must be generated. For an input SMILES formula, the program Corina [35] will

generate a single low-energy conformation. The SMILES formula of a molecule

is the ‘Simplified Molecular Input Line Entry Specification’. The formula for ACh

is CC(=O)OCC[N+](C)(C)C [44]. Inputting this SMILES formula into an online

demonstration of Corina, a low-energy conformation of ACh is generated.

We should note that this is a low-energy conformation ratherthan a global minima.

Michael North [60] states that ‘there is no methodology which can guarantee to find the

global minimum-energy conformation. There are, however, various methods which can

be used to generate multiple [local] minimum-energy conformations of a molecule’.

Another sensible conformation of ACh to examine is the bioactive, i.e. the docked
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conformation of ACh within AChE. Anativestructure of AChE, that is, a crystallised

structure of AChE with its substrate, ACh, is recorded in theProtein Data Bank(PDB),

an online archive of experimentally determined structures. From this database we can

extract the docked conformation of ACh and consider this as our second conformation of

ACh under investigation.

Aside: This native structure, namedtorpedo californicafile 2ace [65], was

extracted from a particular species of stingray. Although AChE has been isolated from a

wide range of species [33], few 3D structures of the native complex have been recorded,

including structures from the species with which we have toxicity data for. However, a

high degree of homology exists for AChE across a variety of species [55] andtorpedo

californica is often used as a standard native structure of AChE [79] within this type of

analyses.

Let µ(1) be the10 × 3 matrix containing the atomic coordinates of the low-energy

conformation of ACh. Letµ(2) be the10 × 3 matrix containing the atomic coordinates

of the docked conformation of ACh. We refer to the analyses involving µ(1) andµ(2) as

Case 1andCase 2throughout this text.

6.4.4 The measure of shape similarity

We have previously introduced the distance tolerance,ζ , necessary to output the inferred

matches across ACh and a pesticide before calculating the OSS shape similarity measure.

Intuitively, there is no obvious value ofζ that we should consider. Investigating a range

of ζ may produce the same vectors of OSS over the pesticides. So rather than fixingζ , we

choose to fix the number of matches asL = 10, that is, all 10 atoms within ACh must be

matched to atoms within each pesticide (as 144 out of the 145 pesticides have more than

10 atoms). Figure 6.3 displays the possibility for the OSS tovary over a fixedL. So we

further considerζ as the minimum distance threshold necessary (to 2dp) to match all 10

atoms within ACh.



Chapter 6. Predicting toxicity by shape similarity 137

In Case 1, we produce the OSS measure of shape similarity betweenµ(1) andx(i)

for i = 1, . . . , 144 (note that the pesticide with only 7 non-hydrogen atoms is excluded

from the analysis, leaving 144 pesticides remaining). Bothµ(1) andx(i) are input into

the graphical matching program, BKTest. We fix the distance threshold asζ = ζ1i, the

minimum distance tolerance to find corresponding atoms for all 10 atoms withinµ(1).

Let x(i)∗ be the10 × 3 matrix containing the matched coordinates of atoms inx(i).

The atom represented by thelth row inx(i)∗, x
(i)∗
l , is matched to the atom represented by

thelth row inµ(1), µ
(1)
l , for l = 1, . . . , 10.

Finally, we apply Procrustes methodology to superimposeµ(1) onto x(i)∗ before

calculating the OSS measure of shape similarity, so that

θ∗1i =

10
∑

l=1

‖x
(i)∗
l − Â1iµ

(1)
l − b̂1i‖

2,

whereθ∗1i indicates the OSS when calculating the shape similarity betweenµ(1) andx(i).

The estimated transformation parameters necessary to superimposeµ(1) onto x(i)∗ are

denoted byÂ1i andb̂1i.

We repeat this process for the Case 2 conformation of ACh to produce the OSS

measure of shape similarity betweenµ(2) andx(i), denoted byθ∗2i, for i = 1, . . . , 144.

6.5 Analyses of toxicity prediction

Let y(k) be the vector containing all pesticide toxicity values for speciesk. Let θ(k)∗
1 and

θ
(k)∗
2 be the corresponding vectors of shape similarity in Case 1 and Case 2 respectively,

for k = 1, . . . , 5.

First we explore the distributions of the shape similarity measures for the 144

pesticides in both Case 1 and Case 2. Then we investigate the correlation betweeny(k)

and the two measures of shape similarity,θ
(k)∗
1 andθ

(k)∗
2 for k = 1, . . . , 5.

Finally we focus on the data we have concerning the bobwhite quail toxicity. For the

52 pesticides for which we have toxicity data, we include themeasures of shape similarity
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alongside the 13 biological descriptors and investigate whether there is an improvement in

toxicity prediction. We compare the significance of the shape similarity measures with the

significance of the 13 biological descriptors when predicting toxicity. Lastly, we compare

the toxicity prediction accuracy when using our developed model and the known online

predictor [9].

6.5.1 Distribution of the shape similarity measures

Figure 6.4 explores the distributions of the shape similarity measures. Figure 6.4a displays

boxplots of the shape similarity measure for Case 1 and Case 2respectively. Both Case

1 and Case 2 show evidence of four outliers, though only one observation is an outlier

in both cases. Figure 6.4b displays the boxplot of the Case 2 shape similarity subtracted

from the Case 1 shape similarity measure. The differences have a symmetrical distribution

and indicate that the Case 1 measure is generally higher thanthe Case 2 measure for a

given pesticide. Figure 6.4c shows the Case 2 shape similarity measure against the Case

1 shape similarity measure. When all observations are considered, the regression line

shows a slight positive correlation between the two variables. Excluding the outliers (as

indicated by the boxplots in Figure 6.4a), the regression line is much flatter indicating no

relationship between the Case 1 and the Case 2 shape similarity measures and highlighting

the importance of the molecular conformations considered within these analyses.

6.5.2 Correlation between toxicity and shape similarity measure

Figure 6.5 displaysy(k) againstθ(k)∗
1 in the first column andy(k) againstθ(k)∗

2 in the second

column fork = 1, . . . , 5. Table 6.1 displays the number of toxicity observations we have

for each species. Pearson’s correlation coefficient betweeny(k) and bothθ(k)∗
1 andθ

(k)∗
2 has

been calculated including and excluding outliers. The one-sided critical value at a 95%

confidence level (when considering all observations) is also displayed for each species.
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Figure 6.4: Figures a) displays boxplots of the shape similarity measure for Case 1

and Case 2 respectively. Figure b) displays the boxplot of the Case 2 shape similarity

subtracted from the Case 1 shape similarity measure. Figurec) shows the Case 2 shape

similarity measure against the Case 1 shape similarity measure.
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Note: We consider the four shape similarity measures highlightedin Figure 6.4a for

both Cases 1 and 2 as outliers. They include the observationsclassed as being less than

LQ-1.5IQR or higher than UQ+1.5IQR. The toxicity outliers are calculated in the same

way but separately for each species.

Pearson’s correlation coefficient

Case 1 Case 2

Species No. obs. Inc. outliers Exc. outliers Inc. outliers Exc. outliers Critical value

1 51 -0.18 -0.07 -0.45 -0.31 0.23

2 67 -0.05 -0.08 -0.25 -0.23 0.20

3 84 -0.12 -0.11 -0.13 -0.03 0.18

4 72 0.14 0.14 -0.09 -0.13 0.20

5 62 0.12 0.20 -0.02 -0.07 0.21

Table 6.1: Table displaying the number of toxicity observations we have for each species.

The Pearson’s correlation coefficient betweeny(k) and bothθ
(k)∗
1 and θ

(k)∗
2 has been

calculated including and excluding outliers. The one-sided critical value at a 95%

confidence level is also displayed for each species when considering the full dataset.

In Case 1, we can see that negative correlations betweeny(k) andθ
(k)∗
1 have been

calculated fork = 1, 2, 3, though positive correlations were found fork = 4, 5. In Case 2,

we can see that a negative correlation betweeny(k) andθ
(k)∗
2 is found for allk = 1, . . . , 5.

Conclusion

The only significant linear correlation we find is in Case 2. For species 1 and 2, bobwhite

quails and japanese quails, we find evidence at the 95% confidence level of a negative

correlation between toxicity and the shape similarity measure, when the outliers are both

included and excluded. This result could be due to an increased homology between

the docked ACh within quails and the type of ray from which theconsidered ACh was
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Figure 6.5: Figure displayingy(k) againstθ(k)∗
1 in the left column andy(k) againstθ(k)∗

2 in

the right column. Thekth row indicates thekth species. Points below or to the right of

the black dotted line indicate outliers within the dataset.The red and black lines are the

fitted regression lines when outliers are included and excluded respectively.
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extracted.

6.5.3 Predicting the bobwhite quail toxicity using the shape

similarity measure alongside biological descriptors

In summary, the data we now consider is as follows fori = 1, . . . , 51, for the 51 pesticides

for which we have bobwhite quail toxicity data (excluding the pesticide with only 7 non-

hydrogen atoms).

• The vector of pesticide toxicities,y, where an elementyi is the bobwhite quail

toxicity of the ith pesticide. (Note that for simplicity of notation, we havesety =

y(1) etc.)

• The51 × 13 matrix containing the biological descriptors, where an elementθij is

thejth descriptor of theith pesticide.

• The corresponding vectors of OSS shape similarity,θ∗1 andθ∗2, for Case 1 and Case 2

respectively. An element,θ∗1i andθ∗2i, is respectively the Case 1 and Case 2 measure

of shape similarity for theith pesticide.

The online predictor discussed in Subsection 6.4.2 [9] is a hybrid model consisting of

two possible algorithms, one of which is simply a linear model in which the biological

descriptors are the independent variables.

For Casel, l = 1, 2, we choose to fit a linear model between the variables and

response, i.e. findβj that best fits

yi = β0 + β1θ
∗
l +

13
∑

j=1

βj+1θij + ǫi, (6.1)

for j = 0, . . . , 14. The intercept is denoted byβ0, β1 is the coefficient of the shape

similarity measure andβj is the coefficient of the(j − 1)st biological descriptor forj =

2, . . . , 14. The normally distributed error of theith observation is denoted byǫi for i =

1, . . . , 51.
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Initially we calculate the pairwise correlation between the toxicity and each

variable. We test the significance of the full linear model bytesting the hypothesis that

H0 : β = 0, whereβ is the vector containing allβj for j = 1, . . . , 14. We then test the

significance of each variable by testing the hypotheses thatH0 : βj = 0 for j = 1, . . . , 14.

For Case 1, the top table in Tables 6.2 displays the correlation betweeny andθ∗1 and

thep-value ofβ1, denoted byρ(θ∗1, y) andp1-value respectively. The ranks of these values

in comparison to the corresponding values of the 13 biological descriptions is shown.

Thep-value of the full linear model is stated. Also displayed is the OSS and correlation

betweeny and the predicted toxicities, denoted byŷ. The adjustedR2 is displayed in the

final row. The same is displayed for Case 2, in both cases considering the inclusion and

exclusion of toxicity outliers.

For comparison, the bottom table in Tables 6.2 displays thep-value, the OSS and

correlation between the true and fitted toxicity, and the adjustedR2 when the shape

similarity measure is excluded from the linear model. So, inthis case, only the 13

biological descriptors are used to predict toxicity.

Figure 6.6 displays the residuals againsty (note not the fitted toxicity,̂y) when

the toxicity outliers are a) included and b) excluded when fitting the linear model. The

filled circles represent observations when the shape measure is excluded from the linear

model and the crosses indicate the Case 2 residuals. The dotted red line connects the two

residuals for the same pesticide.

Discussion

We discuss Case 1 and Case 2 separately.

In Case 1, when all observations are considered, the absolute correlation betweeny

andθ∗1 is higher than the correlation betweeny and 10 of the biological descriptors. The

p1-value is lower than thep-values of 8 biological descriptors, though it is not significant

enough to rejectH0 : β1 = 0. When outliers are excluded, the absolute correlation

betweeny andθ∗1 is again higher than the correlation betweeny and 8 of the biological
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Including OSS shape measure

Case 1 Case 2

Inc. outliers Exc. outliers Inc. outliers Exc. outliers

ρ(θ∗1, y) -0.1768 -0.1557 -0.4521 -0.2607

Rank:ρ(θ∗1, y) 4 4 1 3

p1-value 0.3006 0.6205 0.0003 0.0723

Rank:p1-value 6 12 1 3

p-value 0.2189 0.0371 0.0048 0.0131

OSS(y, ŷ) 23.8031 8.9277 17.0769 8.1209

ρ(y, ŷ) 0.5892 0.6954 0.7291 0.7282

AdjustedR2 0.0933 0.2577 0.3495 0.3247

Excluding OSS shape measure

Inc. outliers Exc. outliers

p-value 0.2131 0.0243

OSS(y, ŷ) 24.5323 8.9975

ρ(y, ŷ) 0.5720 0.6925

AdjustedR2 0.0908 0.2745

Table 6.2: For Case 1, the top table displays the correlationbetweeny andθ∗1 and the

p-value ofβ1, denoted byp1-value. The ranks of these values in comparison to the 13

biological descriptions is shown. Thep-value of the full linear model is stated. Also

displayed is the OSS and correlation betweeny and the predicted̂y. The adjustedR2 is

displayed in the last row. The same is displayed for Case 2, inboth cases considering the

inclusion and exclusion of toxicity outliers. The bottom table displays thep-value, the

OSS and correlation between the true and fitted toxicity, andthe adjustedR2 when the

shape similarity measure is excluded from the linear model.We again consider both the

inclusion and exclusion of toxicity outliers.
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Figure 6.6: Figure displaying the residuals againsty when the toxicity outliers are a)

included and b) excluded. The filled circles represent observations when the shape

measure is excluded from the linear model and the crosses indicate the Case 2 outliers.

The dotted red line connects the two residuals for the same pesticide.
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descriptors. Though thep1-value is now lower than thep-values of only 2 biological

descriptors, again it is not significant enough to rejectH0 : β1 = 0. Including outliers,

we find a slight increase in the adjustedR2 when the Case 1 shape similarity measure is

included within the linear model. Excluding outliers, we find a decrease in the adjusted

R2 when the Case 1 shape similarity measure is included within the linear model.

In Case 2, when outliers are included, the absolute correlation betweeny andθ∗2 is

higher than the correlation betweeny and all 13 of the biological descriptors. Thep1-

value is lower than thep-values of all 13 biological descriptors and is significant enough

to rejectH0 : β1 = 0 at even the 99.9% confidence level. When outliers are excluded,

the absolute correlation betweeny andθ∗2 is higher than the correlation betweeny and

11 of the biological descriptors. Thep1-value is lower than thep-values of 11 biological

descriptors and is almost significant enough to rejectH0 : β1 = 0 at the 95% confidence

level. Including outliers, we find a large increase in the adjustedR2 when the Case 2

shape similarity measure is included within the linear model. Excluding outliers, we find

a relatively large increase in the adjustedR2 when the Case 2 shape similarity measure is

included within the linear model.

Conclusion

The main conclusion is that the shape similarity measure between the minimum-energy

pesticide conformations and the docked conformation of AChis a significant predictor of

the associated acute oral toxicity to bobwhite quails. We can see, from the illustrations

in Figure 6.6, an obvious improvement in the toxicity predictions of pesticides with

particularly low or high toxicities. We should note that these results are vulnerable to

the problems associated with multiple testing. Thep-values of the variable coefficients

are dependent on the variables under consideration, therefore we could find them less

significant if a different set of variables were considered.
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6.5.4 Comparison of the fitted model with an online toxicity

predictor

In the final subsection, we use cross-validation to compare the accuracy of toxicity

prediction under our model to that found when implementing the online predictor [9].

In turn, we exclude each of the 51 pesticides and fit the linearmodel in Equation(6.1)

using the remaining 50 pesticides as the training set. Then the fitted model is used to

predict the toxicity of the excluded pesticide. We do this for both Case 1 and Case 2.

Let ρ(y, ŷ) denote the correlation between the true and predicted toxicities. Let|r̄|

denote the mean absolute residual between the true and predicted toxicities. Table 6.3

provides these results for each of the considered toxicity predictors.

Online predictor Case 1 Case 2

ρ(y, ŷ) 0.31 0.14 0.40

|r̄| 1.23 0.69 0.65

Table 6.3: Table displayingρ(y, ŷ) and |r̄| when implementing the online predictor or

when applying the linear model in Equation(6.1) for Case 1 and Case 2.

Conclusion

The one-sided critical value of the correlation coefficientat a 95% confidence level with

51 observations is 0.23. We can see from Table 6.3 that both the application of the online

predictor and the Case 2 linear model provide a significant correlation between the true

and predicted toxicities, with the highest correlation being produced when including the

Case 2 shape similarity measure within our model.

Using the Case 1 and Case 2 linear model as a toxicity predictor provides a much

lower absolute residual between the true and predicted toxicities on average that the online

predictor.
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Here we have further evidence that the inclusion of a shape similarity measure

increases the accuracy of toxicity prediction, especiallywhen the docked conformation

of ACh is used to calculate the measure of shape similarity between ACh and a pesticide.
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Chapter 7

Pesticide dock as toxicity predictor

7.1 Introduction

In Section 7.2 we describe the concept behind considering a docked molecular

conformation of a pesticide when attempting to predict the associated toxicity. In Section

7.3 we introduce a docking program and explore the prediction accuracy by using it to

predict the known docked conformation of ACh within AChE. InSection 7.4 we define a

method to calculate a distance measure between a docked ligand and AChE and discuss

how it can be used as an indicator of docking accuracy. We highlight a relationship

between this measure and the accuracy of a predicted dock. InSection 7.5 we produce

a measure of similarity between the known dock of ACh and the predicted pesticide

docks. Finally we investigate the significance of these measures, alongside an associated

inhibition constant, as toxicity predictors for the bobwhite quail.

7.2 Concept

In Chapter 6 we found evidence that the shape similarity between the minimum-energy

pesticide conformation and the docked conformation of ACh was a significant predictor of

the associated quail toxicity. 3D-QSAR approaches consider the properties of a ligand in
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their bioactive form to be more appropriate indicators of the associated activity. In terms

of this research, 3D-QSAR dictates that the properties of a docked pesticide conformation

will provide a better indication of the associated toxicity.

Within this section we want to calculate a measure of similarity between the docked

locations of both AChand a pesticideto explore whether this provides a more significant

predictor of toxicity. We use a docking program (introducedin the following subsection)

to predict the docked conformation of the pesticides under consideration. A common

approach in this type of analysis is to fix the protein as rigid. This enables a direct

comparison of the docked locations between ACh and a pesticide with respect to a fixed

protein. Figure 7.1 illustrates the complementary geometries between a substrate and a

protein, demonstrating the basic lock and key concept first postulated by Emil Fischer

[31]. The concept of a key fitting into the lock to open a door was developed to represent

a substrate binding with a protein to initialise some activity. According to this theory,

we can think of a pesticide and ACh as being two different keysdesigned to fit the same

lock. As well as being able to make a direct comparison between the docks of ACh and

a pesticide, we can also explore whether the closeness of thefit between a pesticide and

AChE provides an indicator of pesticide toxicity. It has already been established that

tightly binding ligands have a high degree of shape complementarity with their receptor

[22]. It is intuitive that the closer a pesticide and AChE, the tighter they are bound, the

longer AChE will be inhibited and the stronger the toxic effects.

Note: The theory of the rigid binding site has since been proved inaccurate and

has been modified by an induced-fit theory proposed by Koshland [47]. In this case,

the substrate induces changes in the molecular conformation of the AChE binding site

until the substrate is bound and the final complex shape is determined [15]. However, to

provide a fixed position of AChE relative to both ACh and a pesticide, we allow the protein

configuration to remain rigid so that a direct comparison of the docked configurations of

both ACh and a pesticide can be made.
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Figure 7.1: Displaying the theory relating the geometric bind between a protein and

substrate to a lock and key respectively.

7.3 The docking program, AutoDock 4

7.3.1 Introduction

AutoDock 4 is a suite of C programs implemented to predict theconformation formed

between an input ligand and protein. It is amongst the five most popular docking programs

[74] and came second for docking accuracy when being compared to the remaining four

[18]. The top ranking docking program is only commercially available whereas AutoDock

is free for academics. AutoDock has been applied with great success to the prediction of

enzyme-inhibitor complex conformations [57] and is a logical choice for our analyses.

The only input required are the atomic coordinates of the ligand and protein. The

ligand is treated as flexible and the protein can be fixed as entirely rigid or flexible within

set residues. AutoDock is made up of three main programs:

1. AutoTors first processes the ligand. The default unbound state (used in later energy

calculations) is set as the extended ligand, where all atomsare pushed as far away as

possible from each other. Rotatable torsion angles are assigned. The ligand explores

six degrees of freedom for translation and rotation plus theassigned number of

torsional degrees of freedom.
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2. AutoGrid creates a grid of interaction energies between the input ligand and the

protein. A 3D grid is constructed around the full protein or aparticular area of

interest, such as the protein binding site. At regular intervals within the grid,

interaction energies are calculated and stored for each atom type within the ligand.

The full energy grid provides a quick look-up table for the evaluation of the full

interaction energy between a ligand and protein. The force field used to evaluate

the energies is based on the Amber force field [19], which was primarily developed

to represent molecular dynamics involving proteins [88].

3. AutoDock performs the actual docking simulation using a Lamarckian genetic

algorithm [57]. The free energy of binding is calculated as the difference between

the energies of the separate molecules and the energy of the ligand-protein

complex. It is made up of energy terms for dispersion/repulsion, hydrogen bonding,

electrostatics and desolvation.

The free energy of binding,∆G, is used to rank the final predicted conformations over all

simulations. AutoDock defines the relationship with the inhibition constant as

ln kI ∝ ∆G.

The more negative∆G, or equivalently the lowerkI , the more likely the prediction is to

represent the true ligand-protein conformation. In later analyses we focus on the inhibition

constant,kI , as a variable for toxicity prediction.

In the following section we analyse the accuracy of AutoDock.

7.3.2 Exploring the accuracy of AutoDock

The accuracy of a docking program is generally measured by its ability to reproduce an

experimentally determined conformation of a bound ligand [75]. Although there are no

experimentally determined conformations of the bound pesticides under consideration,

there is the bound conformation of ACh and AChE stored in file 2ace in the PDB [65], as
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considered in Chapter 6. We can use AutoDock to predict how ACh will bind to AChE

and compare the predictions to the experimentally determined conformation. We carry out

two tests to investigate whether the input conformation of ACh will affect the accuracy of

the predicted dock.

Test 1: We arbitrarily translate and rotate the true docked conformation of ACh

away from its docked location (though the distance moved wasfixed as 100A to ensure

the validity of the created PDB file).

Test 2: We use the programFrog [14] to generate multiple different conformations

of ACh which are then input directly into AutoDock. The only input required

to generate an assigned number of conformations is the SMILES formula of ACh,

CC(=O)OCC[N+](C)(C)C.

We carry out 40 trials for each test, that is, we input 40 different starting orientations

and conformations respectively for Test 1 and Test 2. In eachtrial, we request that

AutoDock output 50 predictions for the docked conformation.

For each test, we fix AChE to be the rigid conformation experimentally determined.

That is, the conformation of AChE is fixed as the true bound conformation. When

analysing the accuracy of AutoDock, we only need to compare the true dock of ACh with

the predicted docks. The difference between a predicted andexperimentally determined

docked conformation is generally calculated as the RMSD between the corresponding

‘heavy atoms’ [74], i.e. non-hydrogen atoms. (Note that thethree methyl groups, CH3,

are interchangeable so we calculate the RMSD in all variations and use the minimum

value.) First we describe the preparation that must be carried before AutoDock can be

run.

Preparing the molecules, grid and docking procedure

Before AutoDock can be run, we first need to prepare the molecules, the grid and fix the

parameters within the docking procedure. We do this by carrying out the following steps.

1. Read the full AChE and ACh complex [65] into the graphical user interface of



Chapter 7. Pesticide dock as toxicity predictor 154

AutoDock after deleting the single bond connecting ACh to AChE. The remaining

steps can be carried out within the user interface with default settings specified

when necessary.

2. Delete the water molecules from the complex and add hydrogens to both molecules.

3. Save the automatically generated PDB files (storing atom information such as type,

coordinates and partial charges) separately for ACh and AChE. The true bound

conformation of AChE is fixed for both tests described above.For Test 1, it is this

conformation of ACh that is randomly rotated and translatedbefore being saved as

a separate PDB file. For Test 2, Frog can be set to automatically output PDB files

for each conformation produced.

4. Generate atomic partial charges for both AChE and ACh and the torsional angles

within ACh alone to define a flexible ligand.

5. Prepare the grid by assigning the location of the center and dimensions of the grid.

In these analyses we fix the centre of the grid as the oxygen atom within AChE that

will bind to the considered ligands (see Figure 6.2), so thatthe grid captures the

relevant binding site within AChE.

6. Run AutoGrid to precalculate interaction energies for each atom type within ACh

at each grid point.

7. Fix the parameters used within the Lamarckian algorithm.We set the number of

predictions to be 50 for each trial.

8. Finally, run AutoDock to produce the predicted docks.

The output can now be used to analyse AutoDock accuracy.
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Analysis of results

We carry out three main forms of analysis. First we explore whether the predictions in Test

1 differ from those in Test 2. Secondly, we focus on each test individually and investigate

whether the initial orientation or specific conformation greatly influences the final result.

Finally, as in the general case when the true dock is unknown,we use the RMSD between

predictions alone to see if the observations are grouped similarly as to when the RMSD

between the true and predicted docks are used.

Test 1 v Test 2 observations

Figure 7.2b displayskI against the RMSD between the true and predicted docks for

the40 × 50 predictions for both Test 1 and Test 2. Due to the observed clustering about

RMSD, we choose to fit a global Gaussian mixture model so that

RMSD∼ pjN(µj , σ
2
j ),

whereµj andσ2
j are the mean and variance of thejth cluster andpj is the probability

of an observation being in clusterj. It is considered a global distribution because all

observations in both Test 1 and Test 2 are considered. We assign the number of clusters

as that that maximises the Bayesian Information Criterion (BIC) for EM initialized by

model-based hierarchical clustering for parameterized Gaussian mixture models. Finally

complete hierarchical clustering on the set of differencesbetween RMSD is used to

allocate each observation to a particular cluster. Figure 7.2a shows that the BIC is

maximised at four clusters and each of the four clusters can be distinguished by character

in Figure 7.2b.

Table 7.1 displays the number of observations in clusterj, nj , and the estimated

parameters of the mixture model,p̂j, µ̂j andσ̂2
j for clusterj = 1, . . . , 4. We can use the

Chi-squared test to investigate whether the number of observations in each cluster for Test

1 and Test 2 separately follow the applied global distribution.

Conclusion

Thep-value for both Test 1 and Test 2 observations is1.684× 10−7, indicating that
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Figure 7.2: Figure a) displays the BIC against the number of clusters. Figure b) displays

kI against the RMSD between the true and predicted docks. Blackindicates observations

from Test 1 and red indicates observations from Test 2. Each cluster is indicated by

different symbols.

Clusterj

1 2 3 4

nj 3666 276 45 13

p̂j 0.916 0.069 0.011 0.003

µ̂j 2.152 5.745 7.869 9.305

σ̂2
j 0.034 0.019 0.015 0.118

Table 7.1: Table displaying the number of observations in each cluster and the estimated

parameters of the mixture model.
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observations from Test 1 and Test 2 do not follow the applied global distribution. That

is, inputting the true docked conformation (although at a random orientation) provides

significantly different predicted docks than when a random conformation is input.

Note: ThekI for the more accurate predictions is much lower in Test 1 thanin Test

2. However, the observation with the minimumkI is present in the most accurate cluster

in both tests.

Trial dependency within each test

Following the same procedure as in the previous investigation, we fit a sub-global

Gaussian mixture model separately to both Test 1 and Test 2 observations so that

RMSD∼ p1jN(µ1j , σ
2
1j) and RMSD∼ p2jN(µ2j , σ

2
2j),

respectively, whereµ1j and σ2
1j are the mean and variance of thejth cluster andp1j

is the probability of an observation being in clusterj in Test 1 for example. They

are considered to be sub-global distributions because observations in both Test 1 and

Test 2 are considered separately. Again we fix the number of clusters as four for the

observations in each test. Table 7.2 displays the number of observations in each cluster

and the estimated parameters of the mixture model for each test. We again use the Chi-

squared test to investigate whether observations from the 40 trials in each test follow the

corresponding sub-global distribution applied.

Conclusion

For Test 1, we found evidence that the observations from fourtrials do not follow

the applied sub-global distribution at the 95% critical level. For Test 2, we found evidence

that the observations from only one trial did not follow the applied sub-global distribution

at the 95% critical level.

When inputting the true docked conformation of ACh at a random orientation, 10%

of the considered starting values do not follow the general distribution applied to the

RMSD over all predictions. This provides evidence that the starting orientation does

affect the output if the dock is known.
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Test 1 Clusterj

1 2 3 4

n1j 1904 85 8 3

p̂1j 0.952 0.042 0.004 0.002

µ̂1j 2.070 5.646 7.814 9.354

σ̂2
1j 0.035 0.023 0.019 0.298

Test 2 Clusterj

1 2 3 4

n2j 1762 191 37 10

p̂2j 0.881 0.096 0.018 0.005

µ̂2j 2.241 5.789 7.881 9.290

σ̂2
2j 0.018 0.011 0.014 0.090

Table 7.2: Tables displaying the number of observations in each cluster and the estimated

parameters of the mixture model fitted for Test 1 observations and Test 2 observations.

When inputting a random conformation of ACh, only 1% of the considered starting

values do not follow the general distribution applied to theRMSD over all predictions.

This provides evidence that, if the true dock is unknown, therandom conformation input

as a starting value does not greatly influence the output.

Using predicted docks to assign clusters

Here we assign clusters using the RMSD between the predicteddocks alone. A

RMSD< 2.5Å between the true dock and predicted dock is classed as a successful

prediction [43]. We again use complete hierarchical clustering and cut the tree at a height

of 2.5Å so that we locate a set of unique conformations.

Figure 7.3 displayskI against the RMSD between the true and predicted docks for

a) Test 1 and b) Test 2 where each cluster (allocated using theRMSD between predicted

docks alone) can be visualised. Note that the RMSD between the true and predicted docks

is only used for reasons of visual comparison.

Conclusion

There are seven clusters formed using the RMSD between predictions in Test 1 and

five clusters formed using the RMSD between predictions in Test 2. In both cases a greater

number of clusters is found than when the RMSD between the true and predicted docks

is considered. Note that the RMSD between the true and predicted docks can be equal
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Figure 7.3: Figures displayingkI against the RMSD between the true and predicted docks

for a) Test 1 and b) Test 2. Each cluster is indicated by different symbols.

even though the predictions differ significantly. Using theRMSD between predictions we

are able to locate the local minima that may be indistinguishable when considering the

RMSD between the true and predicted docks.

For both Test 1 and Test 2, the cluster containing the more accurate predictions (i.e.

the lower RMSD between the true and predicted docks) is the largest, containing 1848

and 1762 observations respectively.

Overall conclusions

• A RMSD< 2.5Å between the true dock and predicted dock is classed as a

successful prediction [43]. We find that 94% of predictions match this criteria in

Test 1 and 88% from Test 2.

• The conformation associated with the minimumkI has RMSD=2.03̊A and

RMSD=2.31̊A from the true dock in Test 1 and Test 2 respectively. So in both

tests the observation with the minimumkI represents a successful dock.

• Inputting the true docked conformation of ACh (though at a random orientation)

produced a different distribution of predicted docks than when a random
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conformation of ACh was input. From Table 7.2 we can see that inputting the

true docked conformation produces a larger amount of more accurate predictions

which is what we intuitively would expect.

• If the true dock is known, the orientation of the input ligandconformation does

affect the accuracy of the output predictions. However, if the true dock is unknown,

the specific random conformation input as a starting value does not greatly influence

the accuracy of the output predictions.

• When using the RMSD between predicted docks only to cluster the observations,

the largest cluster contained the more accurate predictions in both Test 1 and Test

2. In Test 1, 100% of the observations in the first cluster haveRMSD< 2.5Å

from the true dock. In Test 2, 99.8% of the observations in thefirst cluster have

RMSD< 2.5Å from the true dock.

7.4 Using the distance between the protein and docked

ligand as an accuracy indicator

Here we show how a distance measure between a predicted ACh dock and the protein,

AChE, is an indicator of the accuracy of the observations within the largest cluster (formed

using the RMSD between predicted docks alone).

Let µP denote the4143 × 3 atomic coordinate matrix for AChE (excluding

hydrogens). Let̂µ(l) denote the10 × 3 coordinate matrix for thelth predicted dock in

Test 1 forl = 1, . . . , 2000. We measure the distance between thelth dock andµP as

10
∑

k=1

‖µ̂
(l)
k − µP

πk
‖2,

whereµP
πk

are the coordinates of the point inµP that is closest to thekth point in thelth

dock, µ̂(l)
k . Note that all points within̂µ(l) are considered and that one-to-many matches
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are allowed. Figure 7.4a shows the distance measure againstthe RMSD between the

true and predicted docks for each of the 1848 observations inthe largest cluster. The

correlation coefficient is−0.37 which provides strongly significant evidence that, as the

RMSD between the true and predicted docks decreases, the distance between̂µ(l) andµP

increases. That is, AutoDock is overfitting in this particular case. Figure 7.4b shows the

distance measure against the RMSD between the true and predicted docks for each of the

1762 observations in the largest cluster in Test 2. The correlation coefficient in this case

is −0.09, however Figure 7.4b displays two clusters which could indicate two separate

local solutions that the clustering technique failed to distinguish.
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Figure 7.4: Figures a) and b) display the distance measure between AChE and the

predicted docks against the RMSD between the true and predicted docks for the largest

cluster formed in Test 1 and Test 2 respectively.

We use this finding to highlight an observation to investigate in the next section.

7.5 Pesticide docks as toxicity predictors

As in the previous chapter, letx(i) be theni × 3 matrix containing the minimum-energy

conformation of theith pesticide. In Subsection 7.3.3 we found that, when the true dock

is unknown, the conformation input into AutoDock does not significantly influence the
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accuracy of the predicted docks. So we consider only the conformation stored withinx(i)

in further analyses, fori = 1, . . . , 17. For simplicity, we consider only the 17 carbamate

pesticides for which we have bobwhite quail toxicity.

Preparing the molecules, grid and docking parameters

We again follow steps 1-8 of the preparation described previously in Subsection 7.3.3

when exploring AutoDock accuracy, with a few alterations.

In step 3, we convert the given formats ofx(i) to the required PDB format using

Babel [78]. In the remaining steps we simply replace ACh withx(i). To allow each

pesticide to be able to rotate freely, in step 5 we fix the grid dimensions to be twice that

of the maximum length of the extended ligand. We now assign thatL = 1000 predictions

be made for the dock of eachx(i).

Let x̂(il) be theni × 3 matrix containing the coordinates of thelth predicted dock of

theith pesticide.

Single dock to predict toxicity

Let x̂(i) denote a single docked prediction for theith pesticide. We fit the linear model,

i.e. estimate the parameterβj for j = 0, . . . , 4 in

yi = β0

4
∑

j=1

βjθij + ǫi, (7.1)

whereyi is the toxicity of theith pesticide. The error,ǫi, is fixed asN(0, σ2
i ) whereσi is

set as proportional to the number of observations within thesame cluster aŝx(i).

We separately consider three possible predicted docks for each of thei = 1, . . . , 17

pesticides.

1. In Case 1 we set̂x(i) to be the conformation with the minimumkI .

2. In Case 2 we set̂x(i) to be the median conformation within the largest cluster formed

when using the RMSD between the predicted docks.
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3. In Case 3 we set̂x(i) to be the conformation, within the largest cluster, that is the

greatest distance fromµP .

The four variables we include within the linear model in Equation (7.1) are now discussed

individually.

Inhibition constant

Let θi1 denote the inhibition constant associated withx̂(i). The inhibition constant is

a measure of a pesticides ability to inactivate AChE. Intuitively, it should be an important

indicator of the potential toxicity.

Comparing the ACh and pesticide docks

In the previous chapter we describe a method to calculate a measure of shape

similarity between the natural ligand, ACh, and a pesticide. Now we produce a way

of measuring the ‘distance’ between the predicted pesticide dock,x̂(i), and the known

ACh dock,µ. Let

θi2 =
10

∑

k=1

‖µk − x̂(i)
πk
‖2,

wherex̂
(i)
πk represents the atom within̂x(i) that is closest toµk. Note that all points inµ

are considered and that one-to-many matches are allowed.

Comparing pesticide dock to protein receptor

Finally we include a measure for the distance betweenx̂(i) and the protein,µP .

Similar to the previous variable defined in Subsection 7.3.4, we set

θi3 =

Ki
∑

k=1

‖x̂
(i)
k − µP

πk
‖2,

whereµP
πk

represents the atom withinµP that lies closest tôx(i)
k . Again, all points inx̂(i)

are considered and one-to-many matches are allowed.

Conclusion

We found that in all three considered cases, the linear modelin Equation(7.1)

was not significant (which is not surprising considering thelow number of observations
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Figure 7.5: Figures displaying the true toxicities,y, against the predicted toxicities,ŷ, for

a) Case 2 and b) Case 3. The black line is the regression line considering all observations

and the red line is the regression line when the fitted outlieris excluded.

considered). The correlation coefficient between the predicted and true toxicity is 0.05,

0.24 and 0.32 respectively in Cases 1, 2 and 3. Excluding the one fitted toxicity outlier in

both Cases 2 and 3, the correlation coefficient becomes 0.51 and 0.50 respectively. The

95% one-tailed critical value using all observations is 0.41 and excluding the outlier is

0.43. Therefore indicating a significant correlation between the true and fitted toxicities

in Case 2 and 3 when the fitted outlier is excluded. Figures 7.5displays the true toxicities,

y, against the predicted toxicities,ŷ for both a) Case 2 and b) Case 3.

Here we have highlighted that it is not simply the predicted dock with the minimum

kI that provides the more accurate toxicity prediction. It is the observations within the

dominant cluster (allocated using the RMSD between predicted docks alone) that provide

a more accurate toxicity predictor. It would be interestingto see if the linear model in

Equation(7.1) provides a more significant predictor of toxicity when considering a larger

sample. This research has shown that useful toxicity indicators can be found even when

the conformation of AChE is fixed and therefore the true complex conformation is not

considered.
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Chapter 8

Critical summary and further work

8.1 Introduction

In the final chapter, we consider each area of research separately when providing a critical

summary and proposing ideas for further work.

8.2 Using EM to match pairwise gels, infer

contamination levels and highlight missing proteins

across sets

In Chapter 2 we introduced a statistical model to represent data across pairwise images.

We considered two possible methods to calculate prior matching probabilities across

images. The standard method assumes that atrue marker is always correctlyallocated.

The adapted method deals with the possibility of slight marker misallocation within a

warped image and does not assume that an allocated marker is always the true marker.

We used an EM algorithm to estimate the superimposition of two images before inferring

point correspondence across images. Finally, we provided methodology to account for

missing or grossly misallocated markers.
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In Chapter 4 we explored how the methodology introduced in Chapter 2 can be used

to pool data across replicates, to investigate the quality of a dataset and finally, how it can

be implemented to highlight the differences in proteins across groups of images.

8.2.1 Critical summary

The EM algorithm is strongly dependent on the starting transformation when aiming

to superimpose one image onto another. As the data we consider within this research

contains images with partial labelling (i.e. a corresponding set of points across images

known as markers), the estimation of a good starting transformation is possible. We

consider an affine transformation for the superimposition,so the fit will not account for

local distortions that may exist within an image. However anaffine transformation will

account for a global warp and will avoid the overfitting oftenassociated with attempts to

account for local warping.

Throughout the experiments and applications described in Chapters 3 and 5, we

used a conservative estimate ofσ2
ij = σ2 in Equation(2.9) to allow greater freedom for

the distance between potential and known corresponding points. It should be noted that

the values and conclusions will be strongly dependent on theestimate ofσ2.

We found that applying the standard method generally produced a more accurate

superimposition than when applying the adapted method. That is, we found that setting

the prior probability of corresponding markers matching tobe one generally produced a

more accurate superimposition than when the probabilitieswere allowed to vary. Though

this is dependent on how the markers are allocated. If the markers are subsets of the points

present in a western blot image, then the adapted method performs better forσ < 7. This

is also likely to be the case when considering a lower number of markers across images.

Using the final output posterior probabilities to match points across images we

found that relatively far apart points are often matched. Ifa point in x has a single

nearby point inµ, the posterior probability of these two points matching will become
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quite dominant even if the points are not that close. This a problem that becomes more

prominant asµ andx become increasingly dissimilar. An alternative way of inferring

the matches is by considering the pairwise distances between points after the application

of the final transformation. Implementing this method dictates that only points within

a certain distance threshold are matched. However, this does not address the negative

influence caused throughout the running of the EM algorithm.Possible ways to counteract

this problem are by increasing the coffin bin probability, i.e. the probability that points inx

remain unmatched or by decreasing the variance between points,σ2, within the algortihm.

Pooling data across replicate images can reduce computational expense in further

analyses, but data will always be lost due to image warping and any inaccuracy within the

matching method.

The method introduced for estimating contamination levelsin a dataset of images

assumes a constant distribution over all the images. If we consider images made by the

same expert, in the same laboratory with the same equipment,this assumption is sensible.

The probability of successfully observing a protein as a point on the image,p∗, is assumed

to be constant over all points. In truth, this probability islikely to dependent on the

intensity of the protein itself, as more intense proteins tend to produce larger and often

darker spots on an image. The method is also dependent on the accuracy of the matches

across images. However, when applying the method to the realdataset we found a similar

relationship indicated betweenp∗ andλ (the number of false points expected in an image)

for each of the ten replicate pairs. Therefore showing the estimation of the contamination

levels to be consistent across replicate pairs within the same dataset, and thus providing

useful indicators of the dataset quality.

The production of the score indicating unique proteins across two groups of images

will become increasingly computationally expensive as thenumber of images under

consideration increases. Again, the method is dependent onthe accuracy of the final

superimposition and posterior matching probabilities proposed by the EM algorithm.

However the score is not strongly influenced by varying levels of contamination within a
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dataset and it provides a logical indicator of points uniqueto a group of images.

8.2.2 Future work

Future work could involve a comparison of the accuracy of thestandard or adapted method

as the number of markers across images vary. As well as considering how the protein sets

differ across images or groups of images, it is also of interest to explore how the intensity

of a particular protein varies. After employing the EM algorithm to infer point matches,

we could further investigate how the intensities vary across the points matched.

The most appropriate value ofσ2 within Equation(2.9) was not investigated here.

Sensitivity tests should be completed to find the optimal estimate ofσ2 for a particular

dataset of interest.

As previously discussed, the probability of successfully observing a protein as a

point on the image is likely to dependent on the intensity of the protein itself. The

methodology could be modified to deal with the influence of protein intensity.

8.3 Molecular structure to predict pesticide toxicity

In Chapter 6 we test the hypothesis that the potential toxicity of a pesticide is related to

the shape similarity between the pesticide and the substrate, ACh, of the protein, AChE, to

which they both bind. We consider two different fixed conformations of ACh. In Chapter

7, we explore this hypothesis further by using a docking program to predict a pesticide

dock and calculating a measure of shape similarity between the docked conformations of

both the pesticide and ACh.

8.3.1 Critical summary

As we purely wanted to investigate whether the molecular shape of a pesticide helped

predict the associated toxicity, information such as atom type was not considered, though
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would be provide useful further information. The calculation of a shape similarity

measure between a pesticide and ACh could provide a useful indicator of toxicity,

however molecular shape is constantly changing due to the flexibility of a molecule.

If fixing molecular shape is required, the minimum energy conformation and docked

conformation are sensible conformations to consider and compare.

We found that the shape similarity measure provided a significant indicator of

toxicity in the case of quail toxicity when the docked conformation of ACh was

considered. We also found that using our shape similarity measure alongside known

biological descriptors provided a more accurate prediction of associated toxicity than an

online toxicity predictor.

Providing a measure of shape similarity between the docks ofboth a pesticide and

ACh within the relevant protein, is likely to provide a better predictor of toxicity as it is is

this form that toxicity is caused. However, the structure ofthe bound protein is dependent

on the ligand with which it is binding and will rarely remain fixed as assumed within this

research.

8.3.2 Future work

Future work would consist of a more detailed comparison of the molecular shapes

involved in the complexes of ACh and AChE, and a pesticide andAChE. This time

allowing flexibility within the protein to enable a more accurate dock prediction.
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