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Abstract 

Introduction 

Parkinson’s disease is the second most common neurodegenerative disorder. There is 

currently no cure, and only symptomatic treatment is available. Homozygous 

mutations in PINK1 result in early onset Parkinson’s disease. Homozygous mutations 

in GBA1 lead to Gaucher’s disease, whilst heterozygous mutations in GBA1 are the 

most common risk factor for Parkinson’s disease. Research in both areas is hindered by 

a lack of suitable loss of function vertebrate models. The zebrafish has recently 

emerged as an effective model for disease.  

Hypothesis 

Loss of function zebrafish models in pink1/gba1 will suitably model the human disease, 

allowing the study of gene-gene interactions and identifying potential new drug 

targets.  

Results 

The glycolytic inhibitor tigarb, was found to be upregulated in pink1 -/- embryos; its 

inhibition completely preventing Th neuron reduction and mitochondrial dysfunction. 

Inhibition of the tumour suppressor vhl was also found to rescue Th neuron reduction 

in the pink1 -/- embryos, but this requires further validation.  

A gba1 orthologue in zebrafish was identified. Its expression was shown to be constant 

and not spatially restricted. Inhibition of gba1 at embryological stages showed no signs 

of Th neuron reduction. Stable mutants were successfully constructed and found to 

have marked phenotypes reminiscent of type II Gaucher’s disease, ultimately leading 

to death at 12 weeks of age. Some mild phenotypes were also identified in 

heterozygous gba1 mutant zebrafish 

Conclusions 

Zebrafish are an effective model for both pink1 and gba1 deficiency. Gene-gene 

interaction studies identified tigarb and vhl as a potential target for disease modifying 

therapy in Parkinson’s disease. Zebrafish are also an effective model for Gaucher’s 

disease, whilst heterozygous phenotypes may reveal mechanisms of gba1 linked 

Parkinson’s disease.  
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1.1  Parkinson’s disease; incidence, symptoms and treatments 

1.1.1 General introduction 

Parkinson’s disease (PD) is a common neurodegenerative movement disorder, 

affecting approximately 13.4 persons per 100,000 of the population.1  The pathological 

hallmark of the disease is the cell death of the dopaminergic (DA) neurons in the 

substantia nigra.2 Within the surviving neurons, protein inlusions, known as Lewy 

bodies are usually found, that are composed of alpha synuclein and ubiquitin, and are 

believed to be driving pathology.3 The DA neuron loss leads to a decrease of dopamine 

in the striatum and causes the classical parkinsonian symptoms of  bradykinesia, 

freezing, abnormal gait, and tremor.4 Non-motor symptoms (NMS) are often 

overlooked, and include, among others depression; dementia and apathy.5 These can 

be as disabling to the patient as the motor symptoms. No cure for PD currently exists, 

and only symptomatic treatment is available. Although initially effective, the benefit of 

the currently available medications, such as Levodopa, reduces over time. Patients can 

then exhibit side effects such as dyskinesias.6 

The cause of PD is mostly unknown, with the majority of cases being sporadic in 

nature.7 However, a small group of patients develop the disease due to monogenically 

inherited genetic defects.8  By studying these genetic subtypes, it is hoped that insight 

will be gained into the disease pathogenesis of the whole patient population. By using 

genetics or chemicals to model the disease, the disease process can be further 

elucidated, in turn hopefully leading to the development of disease-modifying 

treatments.  

1.1.1 Incidence of Parkinson’s disease 

Affecting 1% of the total population by the age of 65, rising to 6% of the total 

population by the age of 85, PD is the second most common form of neurodegeneration 

facing the western world after Alzheimer's disease.1, 9, 10 It is mostly a disease of the 

elderly, with classical PD presenting by those in their 60’s and older (See Figure 1).  
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Figure 1 Incidence of PD by age. The Incidence of PD as a percentage of the total population, per age 
range.  Incidence is approximately 0.1% of the general population, at the 50-54 age group, rising to 2% at 
the 80-84 age group. PD clearly rises with age, making age the biggest risk factor in disease development. 
Adapted from Kowal et al, with permission.10 

Patients developing the disease before the age of 50 have been arbitrarily defined as 

early onset cases, although this can also be defined as an age of onset <40 years of age. 

11, 12 These make up a minority of patients, for example, in UK studies focusing on 

idiopathic PD, out of a total of 156 patients, 20 were below 50 years of age, making up 

12% of the patient population.13 Similar findings have also been shown in other 

countries such as Japan, with an early onset PD (EOPD) population comprising 10% of 

the total disease group.11 Early onset cases are more likely to have an underlying 

genetic cause to their illness, such as mutations in PINK1 or PARK2/PARKIN.8, 9, 14, 15 

This has become a feature of other common diseases with, as yet, mostly unknown 

cause, where some early onset cases can be explained by single gene mutations, such as 

BRCA1 in early onset breast cancer, and APP in familial Alzheimer’s disease.16, 17 This is 

exemplified in studies where PARK2 mutations were analysed in early and late onset 

patients.  In a study focusing purely on early onset cases, of 253 patients, 18 (7.1%) 

were homozygous/compound heterozygous for PARK2 mutations, with the mutation 

frequency decreasing with age of onset. Two studies focusing on late onset PD with a 

combined total of 250 patients, did not detect homozygous PARK2 mutations in any of 

the individuals.18-20 

Familial PD, defined as having a patient with a first degree relative also positive for 

PD, makes up a significant component of the patient population, however the majority 

of patients (approximately 90%) have no identifiable cause of the disease, and are 

hence “sporadic” in nature.9 21 Both sexes are affected by the disease, although for 

reasons unknown, incidence is twice as high for men compared to women.1, 22 
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Incidence by race has been analysed in many studies, but typically the data is either 

conflicting or not significant. 1 With the majority of PD cases defined as sporadic, the 

only major factor predicative of disease risk is age.1, 9, 23 As we live in an aging society, 

the cases of PD, like other diseases of the elderly, will continue to rise relative to the 

rest of the population. Estimates have been made which projects patient numbers 

doubling by 2030.24 This puts increasing strain on primary care givers. This burden is 

not only physical and emotional for patients and carers, but also causes considerable 

financial cost to the patient and to their healthcare systems (see Figure 2 for projected 

PD related healthcare costs for the USA). Studies have shown that patients cost about 

$14,000 per annum, but this cost is tripled when taking into account patients suffering 

from additional dementia.10, 25 

 

Figure 2. The projected cost of PD treatment and care in the USA. From 2010-2050, due to higher 
incidence rates, PD care costs rises substantially, from $7 billion, to $20 by 2050. Figure adapted from 
Kowal et al., with permission.10 

1.1.2 Diagnosis 

PD can be difficult to diagnose clinically. Not only can other diseases present with 

“parkinsonian” symptoms, but diagnosis of bona fide PD is complicated by 

heterogeneous symptoms at clinical presentation.26, 27 Traditionally, diagnosis was 

made upon the exhibition of two of the cardinal motor symptoms, such as 

bradykinesia, resting tremor and rigidity; however, this can cause misdiagnosis of 

other parkinsonian diseases such as multiple system atrophy, and progressive 

supranuclear palsy.28 The addition of other criteria, such as response to Levodopa (L-

Dopa), has helped to improve diagnosis. These additions have provided the 

framework for unified criteria such as the UK Parkinson’s Disease Society Brain Bank 

clinical diagnostic criteria. 26  
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1.1.3 Motor symptoms 

Among the clinical features of PD, motor symptoms are the most striking at clinical 

presentation. The cardinal signs are considered to be tremor, bradykinesia, rigidity and 

postural instability.4 Bradykinesia describes a slowness of movement, which can cause 

difficulty in daily life, especially when undertaking tasks in which precise motor 

control is required. Spontaneous movement such as blinking and swallowing is also 

effected.29-31 Tremor, more specifically resting tremor, is the most recognisable 

symptom of PD. It presents typically in an asymmetrical fashion at onset. However, it 

is noted that the tremor typically disappears during action, or with sleep.32, 33 Postural 

instability, generally occurring in late stage PD, is due to an impairment of postural 

reflexes. This is an important cause of the typical falls by patients (often leading to hip 

fractures) in PD.4, 34 Approximately 50% of PD patients develop freezing, which 

typically occurs during walking; the freezing episode manifests as a sudden inability to 

move.35, 36 

1.1.4 Non-Motor Symptoms (NMS) 

Although considered a movement disorder, PD also manifests with a large set of NMS. 

These lead not only to disability, but also to a decrease in the quality of life and a 

shortened lifespan. These symptoms classically manifest as difficulties with sleep, 

autonomic dysfunction, pain, neuropsychiatric issues and dementia.4, 37 Of note, many 

of these symptoms manifest early in the course of the disease, and can precede motor 

symptoms by decades. 38-40 

Issues affecting sleep are extremely common in patients and present in several 

different forms. Nearly all patients exhibit disturbed sleep, the cause being 

multifactorial in nature.41 These include REM sleep behaviour disorder, which causes 

patients to physically act out their own dreams, sometimes resulting in kicking and 

screaming whilst still asleep.42 Patients can also develop excessive daytime sleepiness, 

characterised by a lack of energy, regardless of the quality or the length of the previous 

night time sleep. Studies have demonstrated that patients can go from a wakeful state 

to one of sleep extremely quickly (approximately 2 seconds), in a similar way to 

narcoleptic patients.43 Neuropsychiatric symptoms can manifest with depression, 

anxiety, apathy, psychosis and hallucinations. All of these are clearly disabling to the 

patients, negatively affecting them, not only through their own quality of life, but also 
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that of their caregiver. Psychosis, in particular, is the most common cause of nursing 

home administration for patients, and therefore one of the most costly.44-46  

Approximately 40% of PD patients develop dementia, which worsens with age.47 

Attention and memory are mostly affected, and in addition, a change of personality 

can occur.48 Dementia also has substantial economic impact on carers and the health 

care system. Demented PD patients cost 3.3 times more ($42,000) than PD patients 

without dementia. The majority of costs (67%) are due to institutional cases.25 

Autonomic dysfunction, another key NMS, is an umbrella term for many difficulties 

experienced by patients, including drooling, sweating, swallowing and constipation.49 

Of these, constipation is one of the most common, but also the most frequently 

reported NMS. Occurring in approximately 70% of patients (depending on the study), 

this causes a decrease in bowel movement frequency, which may then worsen with the 

severity of disease.50, 51 

Pain is another unexpectedly common, yet often overlooked, PD NMS, with substantial 

pain being present in over 40% of patients. Partly exacerbated by motor symptoms; the 

pain sensation felt by patients is varied and can be experienced as musculoskeletal 

pain, neuropathic pain, dystonia-related pain, primary pain and akathitic dysfunction. 

The most severe pain sensations are due to the sustained muscle contractions caused 

by dystonia. Some forms of pain in PD can be alleviated with PD medication, others 

treated by physical therapy.52, 53  

Olfactory dysfunction, a loss of sense of smell, is also very common in PD patients 

(90%) but often not appreciated by the patient until tested. This particular symptom is 

so prevalent in patients, it has been suggested olfactory tests could be more robust at 

identifying PD than motor tests.54, 55 Olfaction presents as defects in odour detection 

and identification, but can also result in a decrease in effective odor discrimination. 

Defects in olfaction may additionally correlate with disease severity, but this requires 

further investigation. 56 

1.1.5 Parkinson’s disease treatments 

There is no current cure for PD, but there are effective symptomatic treatments, not 

only for motor symptoms, but also for at least some of the non-motor symptoms. L-3,4-

Dihydroxyphenylalanine (L-Dopa) is the precursor to a group of neurotransmitters, the 

catecholamines, that includes epinephrine and more importantly in PD, dopamine. L-
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Dopa (also known as Levodopa) has been the main treatment option for dopamine 

replacement therapy for the last 40 years. It is so effective at reversing the motor 

symptoms, and the patient response is so robust, that it can aid the diagnosis.57-59 

Unfortunately, over time, patients can develop a new set of motor complications as a 

direct result of the L-Dopa therapy, particularly at higher doses. Known as dyskinesias, 

these are involuntary movements made by the patient, and can become equally as 

disabling as the original motor symptoms.58, 60 After 5 years of L-Dopa treatment, it has 

been estimated that approximately 50% of patients experience these motor 

complications. 61 

Alternatives to L-Dopa are dopamine agonists, such as apomorphine and Pramipexole, 

which activate dopamine receptors directly. Although effective in treating motor 

symptoms, they are less efficacious than L-Dopa. They also eventually result in 

dyskinesias and other side effects seen in L-Dopa therapy.62  

To enhance L-Dopa therapy efficacy, it can be utilised in conjunction with catechol-O-

methyl transferase inhibitors, such as Entacapone. These act by delaying L-Dopa 

metabolism, increasing its half-life within the brain. Double blind placebo controlled 

trials have shown it to effectively enhance motor function in conjunction with L-Dopa. 

63 

For patients that don’t respond to pharmacological agents, or experience too many side 

effects, surgical techniques can be utilised in the form of deep brain stimulation. These 

are now seen as an effective method of treating motor symptoms in advanced PD 

patients. Classically, an electrical lead is utilised to target the sub-thalamic nucleus or 

globus pallidus pars interna, emitting high frequency electrical impulses to the brain. 

64-66 

Although the described treatments are very efficient at relieving symptoms, they are 

not neuroprotective. Consequently, future therapies must prevent, or at least slow DA 

cell death, in order to normalise life expectancy and improve motor control and 

cognition.67 
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1.2 Causes of Parkinson’s disease 

1.2.1 Monogenically-inherited, Mendelian forms of Parkinson’s disease  

Previously, in order to determine the genetic component of disease, twin studies were 

utilised, measuring concordance between monozygotic and dizygotic twins. 

Monozygotic twins have virtually identical genetic material. Genetic causes are 

inferred if concordances are higher in monozygotic twins than in dizygotic twins, as 

the latter only share 50% of their genetic material. 68  A large 2011 study in the Swedish 

population, found concordance of monozygotic twins for sporadic PD was 11%, whilst 

only 4% for dizygotic twins, implying a genetic contribution to PD development.  In a  

separate study, early onset PD was analysed for concordance in twin pairs, 

concordance was 100% in monozygotic and 17% in dizygotic twins, demonstrating a 

very strong genetic factor, but only in PD patients with age of onset <50. 69, 70 

Studies such as these have difficulty in identifying the causes of complex traits, due to 

incomplete penetrance and genetic heterogeneity, especially for late onset PD. In terms 

of sporadic PD, studies suggest that up to 30% of patients have a family history of the 

disease, with  first degree relatives having a 2-7 increase relative risk.71  Studies such as 

these have been varied due to methodological issues, but strong correlations have been 

reported for early onset PD compared to late, in a similar manner to twin studies. A 

meta-analysis of 29 familial studies of patients having a first degree relative also 

having PD had a relative risk of 2.9, whilst relative risk was 4.4 for pairs of siblings. 

When relative risk was split between late onset and early onset, the risk was 2.7 and 4.7 

respectively. 21, 23 

As the human genome became more annotated and understood, linkage analysis was 

utilised to locate highly penetrant, rare disease causing mutations. Requiring very large 

family pedigrees, the disease causing mutation is tracked in the genome by co-

segregation with genetic markers, such as restriction fragment length polymorphisms 

and microsatellites. Once a small enough region has been identified which co- 

segregates with the disease, all genes within that region can be sequenced in patients to 

identify potential pathogenic mutations. Missense mutations that effect conserved 

residues, or nonsense mutations, insertions and deletions, would aid in the 

identification of the disease gene. These are further screened in healthy controls (such 

as unaffected family members) to identify which mutations lead to the specific disease. 

This allows for the identification of mutations that are inherited in an autosomal 
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recessive manner, or autosomal dominant manner, and are generally highly penetrant 

with an early age of onset. For example, Huntington’s disease (autosomal dominant) 

and cystic fibrosis (autosomal recessive) were both discovered in this manner by 

linkage analysis.72-74 

The first PD gene to be discovered was a point mutation in alpha synuclein (SNCA), in 

3 large Greek/Italian pedigrees, leading to amino acid change of Ala53Thr.  The point 

mutation caused early onset PD in an autosomal dominant manner, suggesting a toxic 

gain of function of the mutation, with onset being between 30-50 years of age in all 

cases.75 Duplications and triplications of the SNCA locus have also been reported in 

large PD families which are also inherited in an autosomal dominant fashion. The age 

of onset being either late or early respectively. With the existence of WT SNCA 

duplication causing late onset PD and triplication leading to early onset, these data 

show the effect gene dosage has on the disease course and progression in familial PD.76, 

77 But, highly penetrant disease causing SNCA mutations are rare.78 The function of the 

alpha synuclein protein is still unknown but is believed to be involved in snare 

complex formation at synaptic terminals, required for long term neuronal health.79 The 

pathogenic mechanism leading to PD is still uncertain, however; due to the apparent 

dosage effects, and furthermore, due to its presence in Lewy bodies, it is believed to be 

caused by alpha synuclein protein aggregation, which overwhelms the proteosomal 

and autophagy pathways, ultimately leading to DA neuronal death. 

Linkage analysis has also been utilised to discover mutations in the genes for PINK1, 

PARK2 and DJ-1. All lead to early onset forms of PD that are inherited in an autosomal 

recessive fashion. Large deletions, insertions and exonic rearrangements have all been 

recorded for each of these genes, as well as missense and nonsense point mutations, all 

leading to loss of function.8, 15, 80, 81  

Homozygous/compound heterozygous mutations in the PARK2 gene that codes for 

the E3 ubiquitin ligase PARKIN are some of the most common genetic causes of early 

onset PD.14 Patients present with typical PD but generally at a very early age (<45 

years); however not all patients show signs of Lewy body pathology at autopsy. 

Symptoms progress very slowly, and respond very well to standard L-Dopa 

treatments, but these patients can then also develop dyskinesias. 80, 82 80, 83 Although 

homozygous mutations are clearly a cause of EOPD, some studies have suggested a 
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link between PARK2 heterozygous mutations or single nucleotide polymorphisms 

(SNPs) and sporadic PD, although this remains controversial.84 

Homozygous mutations in PARK7 coding for DJ1, also cause EOPD, but are very rare; 

estimates of PARK7 mutation frequency from several studies have suggested they are 

responsible for only 1% of EOPD.81, 85 The function of DJ1 is still unknown, but it is 

believed to be an onco-protein that is involved in the response to oxidative stress, and 

may have a role in mitochondrial health.86, 87  

The PINK1 gene is another early onset PD gene, and as the focus of this study, will be 

addressed later in this thesis in greater detail. 

Mutations in LRRK2 (leucine rich repeat kinase 2) are one of the more frequent causes 

of familial PD.  They were also discovered through linkage studies and sequencing.  To 

date, only missense mutations have been reported, the disease manifesting in an 

autosomal dominant fashion with incomplete penetrance. Unlike the disease genes 

previously discussed, LRRK2-linked PD is a cause of late onset PD, likely to be caused 

from toxic gain of function mutations. Clinical presentation resembles that of sporadic 

PD, with at least some patients developing Lewy bodies. LRRK2 mutations, especially 

the G2019S mutation, are very common.  Its occurrence varies greatly between 

populations, with a frequency 1-3% in sporadic PD, and can be as high as 40% in 

familial PD.88-90 The LRRK2 gene, possessing 51 exons, encodes a very large protein, 

2527 amino acids in length. Its function is still not completely understood, but is 

known to be part of the ROCO protein family. This possesses ROC and COR domains, 

as well as GTPase and kinase functions.91 

Another important gene in PD genetics is glucocerebrosidase 1 (GBA1).  Homozygous 

mutations in this gene present as Gaucher’s disease (GD), whilst heterozygosity for 

GBA1  mutations remains the most common risk factor for PD. Clinically almost 

identical to idiopathic PD, several multicentre analyses have compiled the odds ratio  

(OR) of GBA1 mutations for PD risk as being 5.0-7.0.92-94 This gene is also one of the 

focuses of this study, so shall be addressed later in the thesis in greater detail. 

As sequencing technologies have become more advanced in the post genomics era, 

whole exome sequencing has been utilised to find highly penetrant rare PD genes. 

Recently, this has allowed the identification of the pAsp620Asn mutation in the VPS35 

gene in a large Austrian pedigree. The mutation segregates with the disease in an 
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autosomal dominant form, but with incomplete penetrance.95 Subsequent screening 

studies have identified these mutations as a rare cause of LOPD.96 The VPS35 protein, 

part of the retromer complex,  is involved in vesicle transport,  shuttling vesicles 

between organelles such as the mitochondria and peroximsomes.97  Proteomic studies 

have also demonstrated its presence in cortical Lewy bodies.98 

1.2.2 Common genetic variants identified by GWAS 

Although linkage analysis and whole genome sequencing are powerful tools in finding 

rare genetic causes of PD with large effects, genome wide association studies (GWAS) 

must be employed to identify common genetic defects that have a small and 

potentially additive effect in disease development. GWAS, using single nucleotide 

polymorphism (SNP) genotyping arrays, that sequences a specific set of SNPs that can 

be considered representative for large genomic blocks, due to linkage disequilibrium.  

These are compared between cases and controls, to identify SNPs that occur in cases at 

a different frequency from the controls. These specific SNPs are markers for genomic 

regions associated with disease, as opposed to identifying specific genes that are causal 

or protective.99  

The genomic regions co segregating with the SNP implicated in disease will only ever 

have a small effect toward disease risk, with an average OR of 1.33, and will only 

explain a small proportion of genetic variability within a population.  The SNPs only 

mark a genomic region as associated with disease, and may not be identifying the 

pathogenic variant. Extensive sequencing for the region would then be required to 

fully identify the actual pathogenic mutations, as well as identifying the rarer variants 

that may affect disease at that specific locus. 99 

The arrays are limited as they will only detect common SNPs that are present in the 

population with a frequency of >5%. Consequently, although they can identify 

common variants with low genetic contribution to disease, and linkage analysis can 

identify rare variants that have high penetrance, both techniques cannot identify 

variants that are of intermediate frequency <5% and are of intermediate penetrance. 

For example, GBA1 variants which are causal for PD, and TREM2 variants that are 

causal for Alzheimer’s disease.93, 99, 100 

Initial GWAS were hampered by underpowered studies, but now many have been 

collated into meta-analyses which hold considerably more power.101, 102 In the most 
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comprehensive meta-analysis of PD GWAS and candidate gene analysis, Lill et al., 

combined data from several different studies to analyse SNPs from 16,432 PD cases 

and 48,810 controls. This work identified variants at 12 different genomic loci, 

including ITGA8, a gene that had previously not been identified in preceding PD 

GWAS studies due to low power. Loci of particular interest included MAPT, a gene 

encoding tau, a key protein in Alzheimer’s disease pathology, but also in PD, due to its 

presence in Lewy bodies.102-104 

Other loci of interest included those for SNCA, LRRK2 and GBA1, as not being rare 

genes with high penetrance, but have been identified as causal for PD. Yet, those 

variants identified by the meta GWAS are common variants with high odds ratios. The 

GBA1 SNP for allele N370S had an OR of 3.51, unusually high for common variants; 

the OR for the majority of variants from the meta-analysis was 1.10-1.35.  It must be 

noted though that this SNP was identified from meta-analysis of candidate gene 

studies, as standard SNP arrays do not detect N370S SNP as its frequency at 1% is too 

low in the general population. For a table summarising the main PD genes identified 

see Table 1 (highly penetrant genes) and Table 2 (GWAS identified genes). 

Although their overall contribution to the disease is small, the variants are likely to 

have an additive, synergistic or complex effect with each other and the environment. 

These also exclude structural variants that will be elucidated by whole genome 

sequencing once the technology has become cost effective. Extensive deep sequencing 

of each variant must be undertaken, as well as confirmatory in vivo studies to elucidate 

the disease causing mechanism of the variant.102  

  

 

Table 1. A summary of PD linked genes. A list of all recorded PD linked genes with high penetrance listing 
their mode of inheritance, type of PD and types of mutations. Table adapted with permission from Lubbe 
et al.105 
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Table 2. A Summary of GWAS identified genes implicated in PD. A list gene loci  identified as causal for 
PD from the PD GWAS Meta-analysis with accompanying odds ratios and samples sizes. Table adapted 
with permission from Lill et el.102 

1.2.3 Environmental causes of Parkinson’s disease and protective factors 

Environmental factors have additionally been implicated in the causality of PD, and 

exposure is likely to increase risk development, especially in conjunction with genetic 

risk factors. Thus far, exposure to pesticides, insecticides and herbicides have been 

implicated with disease development, with coffee drinking, and smoking having the 

opposite effect.23 Many studies have investigated generalised exposure to pesticides, 

including meta-analyses, producing conflicting data, some studies suggest a high odds 

ratios of 1.3-3.7. However this is controversial as some studies have not identified any 

correlation, or any correlation that is statistically significant.106-110 The most studied 

chemicals are rotenone and paraquat, both commonly utilised in agriculture. The 

former is a pesticide capable of acting as a mitochondrial Complex I inhibitor, and the 

latter, a herbicide that produces reactive oxygen species (ROS). Both have been shown 

to cause selective degeneration of DA neurons in numerous studies in rats and mice.111, 

112 Drinking well water and rural living have also been implicated in increased 

prevalence of PD, but these are perhaps compounded by additional exposure to 

pesticides.23, 113, 114  

In contrast, smoking and coffee drinking have been found to be neuroprotective 

against PD. Coffee intake and PD prevalence has been studied extensively. A meta-

analysis pooling data from 5 cohort and 8 case control studies identified a relative risk 

LOCUS ODDS RATIO N samples
GBA 3.51 44,851

SYT11/RAB25 1.73 17,300
PARK16 0.91 69,262
STK39 1.19 35,159

MCCC1/LAMP3 0.86 46,502
DGKQ 1.21 57,716
BST1 0.88 47,586
SNCA 1.29 79,494
ITGA8 0.88 61,036
LRRK2 1.17 34,123

CCDC62/HIP1R 1.15 38,367
MAPT/STH 0.78 50,389
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of developing PD of 0.69 compared to non-coffee drinkers. Several meta- analyses have 

been conducted investigating the neuroprotective capacity of smoking. A study from 

Hernan et al., pooling data from 44, studies found the relative risk of PD development 

to be 0.8 for past smokers, and 0.39 for current smokers. 115 

1.3 Models of Parkinson’s disease 

1.3.1 Toxin induced Models of Parkinson’s disease 

Initially in PD research, toxin induced models were utilised to study the disease 

process and assay new pharmacological therapies. The classical PD toxin is MPTP (1-

methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) which causes the selective loss of DA 

neurons. It was discovered as a result of drug addicts attempting to manufacture 

synthetic heroin. MPTP was created as a by-product, and once injected, the users 

developed symptoms identical to idiopathic PD.116  

Biochemically, MPTP is rapidly metabolised to MPP+, where it selectively enters the 

DA cells through the action of DAT (Dopamine Transporter).117 Once intracellular, 

MPP+ can accumulate in mitochondria and inhibit mitochondrial Complex I of the 

electron transport chain, impairing respiration.118, 119 It has become the toxin of choice 

to induce PD symptoms and DA neuronal cell loss in a variety of model organisms 

including fish, mice and primates.120-122  

The second classical chemical utilised for toxin-induced models of PD is 6-

hydroxydopamine, an analogue of dopamine in its hydroxylated form. This can lead to 

neuronal cell death by oxidative stress and Complex I inhibition.123, 124 It is fairly 

specific for DA neurons due to preferential uptake by DAT. However, unlike MPTP, it 

cannot cross the blood brain barrier and must be directly injected into the brain, 

requiring surgery.123 It effectively destroys 60% of the Tyrosine Hydroxylase (TH) 

neurons in the brains of mice and rats, leading to motor defects. An advantage of its 

use is that unilateral injections allow for the uninjected half of the brain to be utilised as 

an internal control.125  

Although chemical and toxin induced models are effective in producing symptoms 

such as DA cell death and some motor symptoms, they fail to fully recapitulate the 

disease features, such as Lewy body formation. DA neuronal death in these models is 

generally acute in nature, whilst in idiopathic PD this loss is progressive. Although 
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toxin models are useful at modelling the end stage PD, they fail to accurately model the 

pre-symptomatic and early stages of the disease.126 

1.3.2 Genetic models of Parkinson’s disease 

Using reverse genetic and transgenic strategies, molecular tools such as the Cre LOX 

system have been utilised to generate knockout (KO), conditional KO and knockin 

animals for many of the PD related genes thus far discovered. 127-129 

1.3.2.1 Models of Parkin Deficiency 

parkin KO drosophila (whose entire parkin coding sequence had been deleted), were 

generated using a transposon mutagenesis screen. Homozygous mutants, although 

develop normally, accumulate marked phenotypes with age, ultimately leading to 

decreased lifespan. This is coupled with male sterility due to a defective mitochondrial 

compartment in the maturing spermatids. Mutants developed abnormal wing posture, 

accompanied by a decrease in flight ability, due to apoptotic flight muscles. The flight 

muscles were revealed to have large, swollen, disintegrating mitochondria. Structural 

alterations were recorded in the TH neurons, although no specific Th neuron reduction 

itself was detected. This study demonstrated the importance of parkin for 

mitochondrial homeostasis, due to the cell death of mitochondrial rich tissues such as 

muscle and sperm. 130  

Several different Parkin KO mice have been generated through homologous 

recombination with embryonic stem cells. All demonstrate a distinct lack of 

neurodegeneration of TH neurons. The first KO described by Itier et al., did not present 

any cell loss in TH or DAT neurons up to 24 months, although a decrease in DAT 

protein was observed. Defects in cognition and neurotransmission were also recorded. 

At the biochemical level, homozygous mutants additionally showed mitochondrial 

dysfunction, yet in the absence of any gross mitochondrial morphological 

abnormalities.131, 132 Separate studies using different Parkin KO alleles confirmed the 

lack of TH cell loss, but could not replicate the defects in cognition and 

neurotransmission.133 

1.3.2.2 Models of DJ1 deficiency 

Dj1 loss of function studies have also been conducted in Drosophila and mice. 

Drosophila possess 2 orthologues of the human DJ1 with high homology (50-70%).  In 

contrast to the parkin KO flies, single or double KO dj1 flies develop normally, with 
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similar viability and morphology to WT. This is accompanied by an absence of 

neurodegeneration; implying dj1 status does not affect neuronal homeostasis. 

However, dj1 mutants were found to have a marked increase in sensitivity to oxidative 

stress, such as H2O2 (10 fold greater sensitivity), confirming dj1’s function as a 

oxidative stress responsive protein.134 Dj1 KO mice have similar phenotypes to KO 

flies. Homozygous mutants develop normally without an effect on viability. There is a 

complete absence of neurodegeneration, but an increased sensitivity to oxidative 

stress.135, 136 

1.3.2.3 Knock –In and Knock – Out LRRK2 models 

As LRRK2 mutations are thought to be pathogenic, either predominantly or exclusively 

due to a toxic gain of function, transgenic knockin methods have been employed to 

investigate these LRRK2 mutations in flies and mice. In addition, KO strategies have 

also been employed to investigate the biological function of LRRK2 in vivo. In 

Drosophila, KO study reports have been conflicting. Some studies report no overt 

phenotype or TH neuron loss, while others report extreme phenotypes reminiscent of 

parkin KO flies.137, 138 KO mice also develop normally with a lack of neurodegeneration 

and a sensitivity to MPTP, suggesting Lrrk2 is dispensable for normal neuronal 

homeostasis, at least in vertebrates. SNCA pathology was reported, not in the brain, 

but in the kidney, of one Lrrk2 KO line.139  

Transgenic approaches have been equally inconsistent, transgenic flies overexpressing 

mutant lrrk2 have been described as either asymptomatic, or as developing 

parkinsonian like phenotypes with TH neuron loss.137, 140 Similar findings have been 

reported in Lrrk2 transgenic mice as either asymptomatic or developing late onset TH 

neuron loss. But this may be dependent on the type of Lrrk2 mutation being over 

expressed, and the level of expression achieved.141, 142 

1.4 The zebrafish as a model for disease 

1.4.1 The zebrafish as a model organism 

Over the past 15 years the zebrafish (Danio rerio) has been firmly established as a model 

for biomedical research. Zebrafish are vertebrates, and have greater genetic homology 

to humans than flies. Maintenance costs are a fraction of those for keeping mice. Their 

genome has been sequenced, and is currently in its 9th version. Unlike other model 
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organisms, such as Xenopus, they possess a diploid genome and a similar complement 

of genes to humans. At least 70% of human genes have an obvious zebrafish 

orthologue.143  

Zebrafish were initially utilised as a model species for development, due to rapid 

embryogenesis and transparency. Zebrafish embryos develop from a single cell to a 

whole organism, with its entire body plan and major organs established, within 24 

hours. The majority of development is completed by 5 days post fertilisation and 

sexual maturity is reached by 2.5 months of age. Consequently, generation time is 

comparatively small. As they develop ex vivo and in great numbers, this allows the 

study of mutations that may be embryonic lethal. Their small size makes them cost 

effective, with a single female being capable of producing hundreds of eggs per week.  

Breeding is controlled by a simple light cycle (14 hours light, 10 hours dark) allowing 

manipulation of embryo production, as breeding takes place when the lights are 

turned on. 144 Their transparency allows in vivo imaging in real time, especially when 

using transgenic reporter lines.145  

Zebrafish are also a suitable model for phenotypic drug screening. Embryos can fit into 

96-well plates and be utilised to screen compound libraries for their biological effect. 

Drugs can be dispensed and absorbed directly into the raising media.146 Since whole 

animals are utilised in these screens, the assay simultaneously evaluates bioavailability, 

toxicity and teratogenicity. This allows the identification of small molecules that 

suppress disease, or induce phenotypes.146, 147  Focusing on ameliorating a specific 

phenotype, zebrafish chemical screens make no assumption on the molecular target, 

allowing identification of unknown rescue mechanisms. For example, a chemical 

screen undertaken in a classic study by Yu et al,. resulted in the discovery of the first 

bone morphogenetic protein (BMP) antagonists.148 BMP is required for correct dorso-

ventral patterning, and by using a simple developmental readout, it was possible to 

screen a library of compounds for chemicals that effect developmental patterning. A 

lead compound was discovered, known as dysomorphin, and was found to inhibit the 

BMP type 1 receptor, but not the highly homologous TGF-β-receptor. Since its 

discovery, dysomorphin has been successfully tested in mouse models of BMP 

dysregulation, such as fibrodysplasia ossificans progressive.148, 149 See Figure 3 for a 

flow chart illustrating the sequential steps of phenotypic drug discovery in zebrafish 

compared to traditional high throughput in vitro drug screening. 
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Figure 3. Phenotypic drug discovery using zebrafish. A flow diagram illustrating the sequential steps of 
phenotypic drug discovery using zebrafish, compared to traditional high throughput drug discovery hit to 
lead process. As zebrafish screening simultaneously assays for bioavailability, toxicity and efficacy, the 
time to reach the clinic is considerably reduced. Adapted with permission from Bowman et al.150 

1.4.2 Zebrafish genetic tools 

Different genomic tools for targeted genome modification and RNA interference 

strategies are in use to study the consequences of loss of function mutations in 

zebrafish. RNA interference strategies include the use of Morpholinos, a knockdown 

(KD) technology ideal for fast genetic inhibition studies. Stable mutants can be 

generated by large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screens, which 

create point mutations at random. For precise genome editing, technologies such as 

zinc-finger nucleases (ZFNs), transcription activator-like effector nuclease (TALEN) 

systems and the clustered-regularly-interspaced-short-palindromic-repeats 

(CRISPR)/CRISPR associated protein 9 (Cas9) systems can be utilised.127, 151, 152 Due to 

their small size and low cost, large genetic screens can be carried out, such as the 
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zebrafish mutation project (ZMP), which aims to create a loss of function mutation for 

every zebrafish gene.153  

Morpholinos have emerged as a powerful efficient RNA inference technology for KD 

studies in zebrafish. Morpholinos are 25-mer modified oligonucleotides, containing a 

morpholine instead of deoxyribose rings that effectively bind to RNA nucleotides 

through RNase H independent mechanisms. They can either be targeted to bind to the 

5’ untranslated region of the mature RNA species, blocking translation, or can be 

targeted to the exon junctions of the pre-mRNA complex, interfering with splicing and 

leading to exon skip or intron inclusion in the mature mRNA species. Morpholinos are 

micro-injected into the zebrafish embryos at the single cell stage. Effective KD is 

assessed by either western blot (translation blocking) or RT-PCR (splice blocker), and 

typically lasts for 3-5 days. They are cost effective, 300nmols costing $400, and can be 

kept at room temperature for up to 5 years.  They allow for fast and effective loss of 

function studies in zebrafish embryos.152, 154, 155 

However, Morpholino KD has its draw backs, as a significant proportion of 

Morpholinos produce off target effects. These classically cause a delay in development, 

heart oedema, neural apoptosis and craniofacial defects. These non-specific off-target 

effects are often p53-mediated. Consequently, co-knockdown of p53 with the 

Morpholino targeting the gene of interest has been utilised to ameliorate at least some 

of the off target effects. It has been estimated that 15-20% of Morpholinos produce off 

target effects in zebrafish embryos. However, in the author’s experience, this figure is 

likely to be closer to 40% in practice, and is dependent on the target gene. 

Consequently, unless a stable loss of function mutant can validate the Morpholino 

phenotypes, Morpholino data should be interpreted with caution, especially when 

investigating cell death. Morpholino KD, although fast at inhibiting gene function at 

the embryonic stages, their effects are only transient and wear off 3-5dpf. Consequently 

they cannot be used for loss of function genetic studies in adult Zebrafish.156 

Morpholino KD is fast and cost effective but is transient in nature and may produce off 

target effects; consequently it is preferable to work with stable mutant lines to 

investigate loss of function genetic studies. Generating stable mutants through ENU 

screens are not targeted and induce point mutations at random.  Consequently directed 

genome editing is now the preferred method to generate loss of function mutants. 

Originally, this was achieved using ZFN technology, where pairs of zinc fingers that 
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bind specific sequences of DNA (9bp each) are constructed and fused to a FOK1 

endonuclease. Once bound to the specific DNA sequences, the FOK1 subunits 

dimerise, creating the stranded DNA breaks which can induce small insertions and 

deletions into the DNA sequence due to error-prone non homologous end joining.157 

The main drawbacks of this technique were difficulty in construction for in-house 

methods and the rarity of potential binding sites. Commercially available ZFNs were 

not cost effective at $20,000 each.158 

Targeted genome editing became much more technically simple with the invention of 

the TALEN system. Similar to ZFNs, TALENs function in pairs, to create small indels 

and are composed of a specific DNA binding element fused to a FOK1 endonuclease. 

The DNA binding element is a transcription activator-like effector from the plant 

pathogen Xanthomonas. Target specificity is determined by approximately 15 ‘repeat di 

variable’ residues (RVDs), each binding to a specific DNA nucleotide. By engineering 

the composition of the RVDs, they can be designed to bind to specific DNA sequences. 

Although still context dependent, TALENs are much more versatile, with binding sites 

appearing on average every 35bp. Due to the availability of TALEN construction in kit 

form and their fast assembly (approximately 1 week), TALEN mutagenesis is rapid, 

cost effective and user friendly.159 

The CRISPR cas9 technology has recently been introduced as a further genome editing 

technology. It exploits the CAS systems within prokaryotic organisms that provide 

them with adaptive antiviral activity. The cas9 protein complexes with the CrRNA 

(CRISPR RNA), and the trans-activating crRNA (tracrRNA). It then becomes an 

endonuclease, binding to specific foreign DNA and cleaving it in two. The RNA 

molecules can be fused together to form a single RNA species, the guide RNA (gRNA). 

By altering the binding sequence it can be engineered to bind to specific DNA 

sequences, without the need for changing the cas9 protein complement, allowing 

targeted binding and cleaving of specific genomic sequences. Its only requirement is a 

20bp DNA sequence with a proto-spacer adjacent motif (PAM) site, consisting of 5’-

NGG-3’.160, 161 CRISPRs have the advantage over TALENs that the protocol is even 

faster and user friendly, the requirement after site selection is to generate an ultramer 

for the gRNA template and transcribe the appropriate RNA species. It has a generation 

time of a single day. Although still context-dependent, PAM sites are a frequent feature 

of all genomes. So where a site is not suitable for TALEN mutagenesis, it will likely 

contain a PAM site, and vice versa.  The drawback of CRISPRs compared to TALENs is 
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that, as they bind a shorter sequence of DNA, they produce far more off target effects 

than TALENs. In the context of zebrafish mutations, this is not necessarily a major 

problem, but any identified allele would need to be outcrossed several times to a WT 

background.162 See Figure 4, for an illustration demonstrating TALEN and CRISPR 

function. 

 

Figure 4. TALEN and CRISPR/CAS9 activity. TALEN cutting (Figure 4A) occurs between the pairs of 
TALENs in the spacer region. CAS9 (Figure 4B) cuts the DNA helix directly upstream from the PAM site. 
As TALENs require a larger binding region of 30 bases, they produce less off target background mutations 
compared to the CAS9 system that only binds to 20 bases. Figures reproduced with permission from 
Cermak et al. and Ran et al.159, 163 

TALENs and CRISPRs have the additional advantage (over ENU screens) of not just 

causing insertions and deletions, but can also generate targeted point mutations to the 

genome. By using the genome editor in conjunction with single-stranded DNA 

A 

B 
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molecules (ssDNA), once the target has been cleaved, the ssDNA can act as a template 

for homology directed repair. This has been utilised in zebrafish to change single bases, 

effectively inserting loxP sites and restriction sites into genomic DNA. In the context of 

modelling PD, this could in theory be utilised to generate toxic gain of function 

mutations, as seen in human patients, such as the LRRK2 G2019S mutations, without 

the need for the generation of transgenic lines.161 

1.4.3 Zebrafish as a vertebrate model of human neurodegenerative diseases 

Zebrafish have been utilised as a model organism for many neurodegenerative 

diseases, including PD. There are some notable differences between the brains of 

humans and zebrafish, but the functional organisation remains very similar. The DA 

neurons that project to the ventral telencephalon in zebrafish are found in the posterior 

tuberculum of the ventral diencephalon, making these neurons analogous to those seen 

in the mammalian nigrostriatal system.164 In zebrafish embryos, the DA neuronal 

system is established very early, with the first TH-positive neurons emerging 18 hours 

post fertilisation (hpf). By 3 days post fertilisation (dpf), the DA system is extremely 

well established and has been well characterised, with comprehensive maps of all TH 

neuron clusters within the central nervous system (CNS) of both embryos and adults. 

The small number of neurons and transparency of the embryos allows for simple 

quantification of the DA system, using markers for TH or DAT. 165 MPP+ studies on 

embryos and adult zebrafish have induced parkinsonian like phenotypes, including 

TH neuron loss and movement deficits, further implicating these neuronal clusters as 

the zebrafish equivalent of the substantia nigra in rodents and humans.120, 166 Toxin 

exposure, such as those just described in zebrafish, have the additional advantage that 

drugs can be simply administered to embryo E3 media, not requiring invasive 

procedures for administration. The generation of transgenic GFP reporter lines for DA 

neuronal system, such as DAT, allow for the analysis of DA neuronal death in real 

time.167 

Specifically in terms of modelling PD, loss of function studies have been performed 

using Morpholino KD. Several have been conducted on monogenically inherited PD 

genes, such as the autosomal recessive inherited genes parkin, pink1 and dj1, but also to 

study the functional consequences of lrrk2 deficiency. Zebrafish do not possess an 

orthologue of SNCA. 
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parkin loss of function has been investigated in a study by Flinn et al., who 

demonstrated that Morpholino KD of parkin led to a 25% reduction in TH neurons, and 

a decrease in mitochondrial Complex I activity at 3dpf, as well as an increased 

susceptibility to MPP+. Analysis of HuC expression (a pan neuronal marker of post-

mitotic neurons) and islet1 (a motor neuron marker) showed no change between 

morphants and uninjected controls, demonstrating that the effects of parkin KD were 

specific for DA neurons. Swimming behaviour was also unaltered, but this was likely 

to be due to the comparatively mild TH neuron loss. PD patients only develop motor 

symptoms after a reduction of at least 50% of their DA neurons. As Parkin KO mice do 

not exhibit neurodegeneration, the parkin KD zebrafish represented the first parkin 

deficient vertebrate model of Th neuron reduction.168 

However, a similar study by Fett et al., found no reduction in TH neurons at the same 

time point. This discrepancy could be due to different KD efficiencies. 169 PARK2-

mediated PD is due to loss of function of the protein. Flinn et al’s Morpholinos 

achieved a KD of approximately 90%, whilst those utilised by Fett et al., only reduced 

expression by 50%. Consequently, Fett et al., only induced a representative 

heterozygous state, which may not be enough loss of parkin to induce Th neuron 

reduction.168, 169 

dj1 KD in zebrafish resulted in phenotypes similar to KO mice and Drosophila. dj1 KD 

did not result in loss of TH neurons, but led to an increased sensitivity to oxidative 

stress after H2O2 exposure and proteosome inhibition after treatment with MG132. Dj1 

KD also resulted in a large upregulation of p53. Inhibition of the protein (p53) with 

phifithrin alpha completely rescued the Th neuron reduction caused in dj1 morphants 

by MG132.134, 135, 170 

Several studies have focused on KD of lrrk2, but have presented conflicting data, even 

when using identical reagents. Sheng et al., originally utilised a start site Morpholino to 

completely block translation of lrrk2, and found morphants to be lethal by 3dpf. The 

embryos showed signs of developmental delay, small head size and heart oedema, 

compared to uninjected controls. Sheng et al., also utilised a splice site Morpholino to 

KD the WD40 domain, in order to produce a weaker phenotype. Morphants developed 

normally, but showed a decrease in DA neurons and an increase in apoptosis. 

Morphants additionally had a movement defect that could be rescued by L-Dopa. In 

contrast to these findings, and using identical reagents, Ren et al., could not record any 
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change in DAT neuron count or TH neuron count between morphants and uninjected 

controls. 171, 172  

pink1 loss of function studies have been investigated by three independent groups with 

a Morpholino strategy, all reporting different phenotypes. KD with start site 

Morpholinos by Anichtchik et al., exhibited phenotypes of developmental delay, small 

heads, and gross deformity accompanied by apoptosis. The majority of morphants did 

not survive past 3dpf. The TH neurons were reduced in number by 30%, compared to 

uninjected controls, but this may have been due to developmental retardation as 

opposed to cell death per se.173    

A KD study by Xi et al., also using start sites Morpholinos, only reported minor 

deformities in morphants, and a Th neuron reduction of 8% as opposed to 30%. 

However, the TH neurons showed disorganisation and mispatterning. The KD was 

also embryonic lethal, with most morphants not surviving to 10 dpf. 174 

Sallinen et al., have also reported pink1 phenotypes, but using splice site Morpholinos. 

In sharp contrast to previous findings, the morphants displayed no overt deformity or 

decrease in TH neuron count. Although morphants did display an increased sensitivity 

to sub effective doses of MPTP.175 

The discrepancies between phenotypes in each study are most likely explained by 

classical p53 mediated off target effects, especially in the study by Anichtchik et al., 

whose KD features all the main deformities described as off target by Robu et al.  When 

one considers the phenotypes of loss of function Drosophila and mice, one would expect 

possibly an intermediate phenotype when using a zebrafish model. Even though 

Drosophila pink1 KO have an marked phenotype with reduced lifespan, they still 

successfully complete development and maturation, unlike the morphants described 

by Anichtchik and Xi, that are both deformed and are embryonic lethal.176 Other likely 

explanations are the use of different Morpholinos, and KD efficacies, each group using 

different Morpholino sequences. The lack of a significant phenotype in Sallinens et al., 

study was possibly due to lack of efficacy, many of their TH neuron counts were 

recorded at 5dpf as the Morpholino was losing effect. Although their study was very 

thorough in demonstrating that their Morpholinos were non-toxic. The lack of 

agreement in Th neuron reduction by all groups, may also be due to method of TH 

neuron counting, Anichtchik counting all TH positive neurons within the brain, Xi et 

al., counting only those in the ventral diencephalon (using counting clusters for 



 
 

25 

mispatterning studies) and Sallinen et al., counting only individual TH groups 

described by Rink et al.165 173-175  See Figure 5 for an illustration of the location of the TH 

positive groups in Zebrafish larvae counted by Sallinen et al., which are the same as 

those counted as part of this thesis. 

 

Figure 5. TH positive neuronal groups in 5dpf Zebrafish. TH neuronal groups counted in this thesis as 
defined by Rink and Wulliman are located in the diencephalon of the zebrafish larva. Only groups I, II, IV 
and V believed to be analogous to the substantia nigra in humans and thus are only counted during TH 
experiments in this thesis. Figure reproduced from Rink and Wulliman 2002. 

 

Apart from PD, zebrafish have also been utilised to model Huntington’s disease and 

motor neuron disease. The zebrafish Huntington’s model offers many insights, as 

mouse KO are embryonic lethal, death occurring at embryonic days 7-8. From a reverse 
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genetics stance, although demonstrating the importance of Htt in vertebrate 

gastrulation, mouse Htt loss of function mutants are impractical to study due to the 

nature of their in vivo development. This is not an issue for zebrafish that are 

transparent and develop ex vivo.177 KD of htt in zebrafish resulted in defects in iron 

homeostasis and iron deficiency.178, 179Additional KD studies have shown an aggressive 

phenotype of a small head, CNS apoptosis, enlarged brain ventricles and a sharp 

decrease in Bdnf levels (60% decrease). Application of Bdnf protein to morphants 

ameliorated many of the phenotypes caused by KD of htt, demonstrating Bdnf levels 

strongly influence the htt KO phenotype.180 

As HD mutations are toxic gain of function in nature, Morpholino studies, although 

useful for understanding protein function, do not model the natural history of the 

disease seen in human patients. Consequently, over expression studies in zebrafish 

embryos expressing the poly-glutamine expansions (seen in human patients) are more 

appropriate. One such study over expressed the N-terminal of Htt containing 102 Q 

repeats, modelling the Htt expansion seen in HD with the GFP construct, allowing for 

imaging of polyQ aggregates by fluorescent microscopy in real time. Large cytoplasmic 

inclusions were detected just after 24hpf which grew larger over time by absorbing 

soluble Q102-GFP. The model was utilised to test known inhibitors of PolyQ 

aggregation as a proof of principle, then successfully tested experimental compounds 

for efficacy.181  

Zebrafish have also been utilised to model familial forms of SOD1 linked motor neuron 

disease, in both loss of function and overexpression models. In the former, a stable T70I 

mutant was generated from an ENU mutagenesis screen. Homozygous mutants 

possess decreased Sod1 activity, are sensitive to oxidative stress during development 

and possess altered neuromuscular junction morphology. Adult mutants develop a 

50% reduction in large motor neurons and spend more time moving slower. These fish 

also spent 20% more time swimming on the bottom of the tank, suggesting an anxiety 

like phenotype.182, 183  

In an over expression model developed by McGown and Ramesh et al., a transgenic 

line over expressing human mutant SOD1 was constructed adjacent to a Dsred element 

under the control of an HSP70 promoter, independent of mutant SOD1. Consequently 

Dsred is only transcribed in the presence of heat shock or cellular stress. In the absence 

of heat shock, mutant SOD1 over-expressing lines still exhibited Dsred expression, 
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specifically in their CNS, implying neuronal stress. Dsred expression was not detected 

in lines overexpressing WT SOD1. This mutant SOD1 over expressing line model was 

found to have a decrease in glycinergic currents occurring in spinal motor neurons, 

changes in neuromuscular junctions and movement defects.184 Riluzole, a compound 

utilised to treat motor neuron disease, decreased Dsred fluorescence in lines 

overexpressing mutant SOD1, implying it was decreasing neuronal stress, as a proof of 

principle. Both models are now being extensively utilised for small molecule chemical 

screens for motor neuron disease.182, 184, 185 

1.4.4 Medaka as a model for Parkinson’s disease 

The Japanese fresh water fish, Medaka (Oryzias latipes) extensively utilised in the field 

of developmental biology, has also been utilised to model PD loss of function 

mutations.  They additionally produce parkinsonian-like phenotypes in response to 

traditional PD chemical toxins, such as MPTP and MG132. In contrast to zebrafish, only 

stable mutations have been studied in Medaka in the context of PD. Loss of function 

alleles have been generated for pink1, parkin and dj1. pink1 -/- and parkin  -/- Medaka 

have mild phenotypes similar to KO mice. Loss of function pink1 and parkin Medaka 

develop normally; segregating in a Mendelian ratio, but have a decrease in mass 

compared to WT at 12 months of age. Both showed a decrease in spontaneous 

movement in the absence of neurodegeneration. Double mutants also developed 

normally, reaching adulthood, but showed a decrease in TH neurons of 30%, TH 

protein levels and a decrease in dopamine in their brains. Their brain tissue also had 

accompanying mitochondrial dysfunction, with a specific decrease in mitochondrial 

Complex I and II activity; the organelles were grossly enlarged with fragmented 

cristae. This data challenges the concept of pink1 and parkin acting in a linear pathway 

in vertebrates. A dj1 null Medaka has been generated, but has yet to be 

characterised.186-190 

1.5 PINK1 

1.5.1 PINK1 function 

The initial focus of this thesis was to characterise and investigate gene-gene 

interactions in a stable loss of function zebrafish pink1 mutant. Loss of function 

mutations in PINK1 leads to early onset PD.15 Clinically, PINK1 linked PD manifests in 
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a similar manner to PARK2 linked PD, both having  an early onset of 18-50 years, a 

long disease duration (~20 years) and an excellent response to L-Dopa. Symptoms are 

indistinguishable from idiopathic PD.191 Genetically, the disease segregates in an 

autosomal recessive manner, coupled with a large variety of extreme deleterious 

mutations (exon deletions, nonsense mutations), these mutations are considered to be 

pathogenic due to a loss of function effect. PINK1 heterozygous mutations are over 

represented in sporadic PD cases compared to healthy controls, suggesting they may 

contribute to disease progression, although this is controversial. 192 

PINK1 linked PD, unlike PARK2 linked PD, is not a common cause of EOPD, making 

up between 1-4% of early onset patients, depending on the population; however PINK1 

mutations are still more common than DJ-1 mutations.193, 194  

PINK1 is a serine/threonine kinase, additionally possessing a mitochondrial 

localisation signal, further linking mitochondrial dysfunction to PD pathogenesis.15 

PINK1 is expressed ubiquitously, with higher expression in organs with a large energy 

demand; namely the heart, muscle and the brain, within which expression is highest in 

the substantia nigra.195 Functional studies have demonstrated its role in the mitophagy 

pathway, among others.196, 197 PINK1 is believed to function in the same pathway as 

another PD related protein, the E3 ubiquitin ligase PARKIN, at least in Drosophila. 

However, whether this pathway is linear in vertebrates has been called into 

question.190, 198 PINK1 deficiency results in mitochondrial dysfunction with a decrease 

in mitochondrial membrane potential, a decrease in ATP levels and a decrease in 

mitochondrial Complex I and IV activites.199-201 

PINK1 protein is constantly expressed, trans-locating to the mitochondria where it is 

processed into two forms; firstly cleaved by a matrix processing peptidase to remove 

the mitochondrial targeting signal to form 60kDa �-MTS –PINK1. The 60kDa form is 

then cleaved again by PARL (presenilin associated rhomboid like protein) to a 52kDa 

form in the inner mitochondrial membrane, and finally is completely degraded by the 

proteosome.202 Some of the 52kDa PINK1 isoform escapes to the cytoplasm, where it 

physically binds to, and inhibits PARKIN recruitment to the mitochondria.203 Cleavage 

by PARL is believed to be dependant on the mitochondrial membrane potential. 204 

When the membrane potential is substantially decreased, full length 60kDa PINK1 is 

not cleaved and accumulates on the outer mitochondrial membrane (OMM) where it 

recruits PARKIN. The PARKIN protein then ubiquitinates targets on the membrane, 
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marking the mitochondrion for recycling by mitophagy.203, 205 Potential protein 

ubiquitination targets of PARKIN have been identified on the OMM, including p62, 

VDAC1, MFN1, MFN2.206-209 Once ubiquitinated, the mitochondria migrate to the 

perinuclear area and are degraded by autophagy.206 

TRAP1, a mitochondrial heat shock protein, has been shown to be a substrate of 

PINK1. TRAP1 exerts a neuroprotective effect by preventing cytochrome c release in 

the mitochondria. Overexpression of WT TRAP1 rescues pink1 -/- defects in Drosophila 

and in cell culture models.210, 211  

PINK1 appears to have additional functions in maintenance of the mitochondrial 

network and its dynamics, although data is conflicting depending on the model. pink1 -

/- Drosophila and PINK1 deficient rat DA neuronal cultures both have elongated 

mitochondria.212, 213 Conversely, KD in other cell lines such as HELA and SH-SY5Y, 

produce fragmented mitochondria.214, 215 Even with these discrepancies, and given its 

interactions both genetically and physically with many proteins involved in fission and 

fusion of the mitochondria, namely, DRP1, MFN1, MFN2 and OPA, PINK1 clearly 

influences mitochondrial dynamics 213, 216, 217. 

To analyse the involvement of PINK1 and PARKIN in the mitophagy pathway at the 

cellular level, many studies rely on toxins such as CCCP that completely depolarise the 

mitochondrial membrane. This induces irreversible damage and the subsequent 

destruction of the whole organelle. If damage is only mild, such as in the case of 

oxidative stress, then the loss of the whole organelle is potentially costly to the cell.206, 

207 An alternative strategy is to remove only the damaged part of the organelle. The 

damaged section of organelle is identified by PINK1 and PARKIN, through currently 

unknown mechanisms, and a mitochondrial derived vesicle is generated around the 

damaged area. This vesicle then directly fuses with lysosomes without the addition of 

the classical autophagy proteins, see Figure 6.218 
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Figure 6.  Models of the PINK1 and PARKIN mitophagy pathway. Flow diagram 1 (left) is the classic 
mitophagy model, severe mitochondrial damage, dissipates the mitochondrial membrane potential 
stabilising PINK1 on its surface and recruiting PARKIN. Post recruitment, PARKIN then ubiquitinates 
substrates for destruction, leading to phagophore formation around the damaged organelle (by LC3) and 
subsequent degradation by the lysosome. Flow diagram 2 (right), a model proposed by Mclelland et al., 
demonstrates PINK1 PARKIN involvement in response to mild stress. Mild localised stress does not 
depolarise the mitochondrial membrane. PINK1 somehow localises around the damaged area only, 
recruiting and activating PARKIN. This somehow leads to the excision of the damaged material only in 
mitochondrial derived vesicles and subsequent degradation by the lysosomal. Figure reproduced with 
permission from Shlevkov 2014.219 

New evidence suggests PINK1 has an active role in the heart and its development. 

PINK1 is highly expressed in the heart, as well as the brain, most likely due to its high 

energy requirements and large abundance of mitochondria.195  In human patients with 
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end stage heart failure, cardiac tissue has been shown to have a large decrease in 

PINK1 protein levels (however not transcript levels). The decrease is so large that 

PINK1 protein was nearly undetectable in some heart failure patients, compared to 

healthy controls. With age, Pink1 KO mice begin to develop cardiac hypertrophy, with 

an average increase in heart to body ratio of 18% by 8 months.  Individual 

cardiomyocytes increased in size by 50%, compared to WT controls, with an absence of 

an increase in cell number.220 Mitochondrial analyses in Pink1 KO mice showed 

classical mitochondrial dysfunction, such as an increase susceptibility to oxidative 

stress, a decrease in ATP levels and a decrease in mitochondrial membrane potential. 

PINK1 function is clearly required for mitochondrial health in cardiac tissue, and not 

only purely for neuronal health.220, 221 

1.5.2 Models of PINK1 deficiency 

A variety of genetic models were constructed to gain a better understanding of PINK1 

function through a reverse genetic approach. Loss-of-function pink1 flies developed 

severe and robust phenotypes. These were most obvious in the morphology where 

mutants have the so-called downward turning wing phenotype and a degenerating 

thorax. The mutants can walk normally, however, have a decrease in flight ability and 

slower climbing speeds. Muscle fibres were disorganised and undergo degeneration. 

Analysis of mitochondria showed swollen organelles with a decrease in ATP levels.  

Sperm development was also found to be defective (again due to mitochondrial 

abnormalities) causing male sterility. Phenotypes become worse over time, leading to 

increase in susceptibility to oxidative stress and also a decrease in lifespan.  A modest 

decrease in TH neurons was reported by two studies, implying neurodegeneration, 

however were found un-changed in another.176, 222, 223 

These phenotypes were reminiscent of parkin KO Drosophila described by Greene et al. 

Overexpressing WT parkin on the pink1 null background partially ameliorated thorax 

and wing morphological defects. Mitochondrial dysfunction in muscle was also 

restored with a complete reduction in muscle and TH cell degeneration. Conversely, 

overexpressing WT pink1 on a parkin null background could not alter any phenotypes.  

Yang et al., also overexpressed WT dj1 on a pink1 null background to also find it did not 

rescue any phenotypes. 176, 222, 223 

Flies carrying homozygous mutations for both parkin and pink1 do not show a 

worsening of any phenotypes, with double mutants being indistinguishable from 
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single mutants. These genetic studies suggest not only pink1 and parkin to be in the 

same linear pathway, but that also parkin acts downstream of pink1. In contrast, recent 

studies undertaken in vertebrates have challenged this concept.176, 190, 222, 223 

Pink1 KO mice only develop very mild phenotypes compared to pink1 KO Drosophila.  

Homozygous mutant mice generated by homologous recombination developed a 20% 

decrease in mass at 1 year. By 1.5 years they exhibited a decrease in spontaneous 

movement. Measurements of strength and anxiety remained unchanged compared to 

WT. Complex behaviours such as the acoustic startle-response was also identical 

between the mutant and WT.199  

Although a significant decrease in dopamine was recorded in aged PINK1 deficient 

mice, there was a complete absence of TH cell loss. Although neuronal cell loss could 

not be detected, mitochondrial dysfunction was present, with decreases in ATP levels 

and reduced mitochondrial Complex activities.129, 199, 224   Due to the lack of TH cell loss 

in single Pink1, Parkin and Dj1 KO mice, a triple KO was made to explore any genetic 

interactions. Triple KO mice also displayed no gross deformity and exhibited no 

neurodegeration.129 These data imply that PINK1 may confer a protective mechanism 

as opposed to it being required for maintenance of neuronal health, at least in mice.129, 

199  

pink1 deficient Medaka fish, containing a premature stop codon, have also been 

characterised. The stop codon results in a decrease in pink1 transcript, most likely due 

to nonsense mediated decay, demonstrating loss of function. In keeping with mice, 

pink1 KO Medaka develop normally, showing no gross morphological changes and 

exhibit a reduction in mass compared to WT at late stages (12/18 months). Unlike 

Drosophila, no defects in sperm, muscle or mitochondria could be identified. Similar to 

KO mice, pink1 mutant Medaka show altered dopamine metabolism and a decrease in 

spontaneous movement, however in the absence of neurodegeneration. Medaka 

double mutants (KO for pink1 and parkin) synergistically display a decrease in DA 

neurons, this conclusion arguing against pink1 and parkin functioning in a linear 

pathway, at least in vertebrates. 188, 190  

1.5.3 p53-Inducible Regulator of Glycolysis and Apoptosis (TIGAR) 

The initial focus of this study was the further characterisation of a loss of function pink1 

zebrafish model, including the investigation of gene-gene interactions. A gene of 
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interest for further study in the model was tigarb, an orthologue of the human gene 

TIGAR (p53-Inducible Regulator of Glycolysis and Apoptosis). Tigarb was identified 

through an unbiased genome wide expression study as it was shown to be significantly 

upregulated in pink1 -/- 5dpf larvae compared to their WT siblings.201  

The p53 protein, a highly researched protein in cancerous mechanisms, possesses a 

broad range of functions that ultimately allow it to prevent tumour progression by 

reducing cellular stress.225, 226 In a further study to understand p53 responsive genes, a 

microarray analysis following p53 induction identified several of these elements. One 

of these, uncharacterised at the time, was TIGAR.227 The genomic structure of TIGAR is 

highly conserved across all vertebrates (mammals, birds, fish, amphibians etc), and is 

noticeably absent from invertebrates and other forms of complex life. The TIGAR 

sequence contains two separate p53 binding sites in humans, although only one is 

conserved in mammals, and codes for a protein of 30kDa. Its expression is rapidly 

induced, in a variety of difference cell lines following p53 induction by Adriamycin 

treatment. This p53 induction is believed to be only in response to mild repairable 

cellular damage, as chronic induction with high cellular stress leads to constant p53 

upregulation. This will induced TIGAR upregulation. However after initial 

upregulation, TIGAR expression falls rapidly, whilst p53 induction remains constant. 

This implies TIGAR may be part of a molecular switch for p53 controlling its complex 

functions in response to different forms of stress.228 TIGAR additionally possesses p53 

independent induction, as cells lines not expressing p53, will still express TIGAR at 

basal levels.228 

TIGAR function was elucidated due to its homology to the glycolytic enzyme 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2).228 PFK-

2/FBPase-2 has the dual function of both kinase and bisphosphate activity, with the 

TIGAR protein only sharing homology to the bisphosphatase domain. Bensaad et al., 

demonstrated that the function of TIGAR is to degrade fructose-2,6-bisphosphate to 

fructose-6-phosphate.228 The former is a potent effector of 6-phosphfructo 1-kinase, a 

glycolytic stimulator. Fructose-2,6-bisphosphate additionally functions as an inhibitor 

of fructose-1,6-bisphosphatase, a gluconeogenic regulator.229 By reducing levels of 

fructose-2,6-bisphosphate, degrading it to fructose-6-phosphate, TIGAR functions to 

inhibit glycolysis, see Figure 7.  
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Figure 7. The metabolic pathways affected by enzymatic TIGAR function. Fructose-2.6-bisphosphate is 
converted to Fructose-6-phosphate, preventing allosteric activation of PFK-1.This in turn, diverting 
metabolism towards the pentose phosphate pathway and Hexosamine pathway. This not only lowers 
oxidative stress, but also provides materials for DNA repair. Reproduced with permission from Lee 
2014.230 

 

This inhibition leads to a diversion of metabolism towards the pentose phosphate 

pathway, causing not only a decrease in oxidative stress, but also a decrease in 

apoptosis.228 Although TIGAR substrate specificity has recently been challenged by 

Gerin et al., who demonstrated TIGAR has a far greater affinity for 2,3 bi-

phosphoglycerate (23BPG), than for fructose-2,6-bisphosphate, the concept of TIGAR 

thus acting as a 23BPG phosphatase would actually increase glycolytic intermediates as 

opposed to inhibiting them. This new function of TIGAR calls into question its primary 

mode of action as a glycolytic inhibitor, or at least suggests its functions are more 

complex than first perceived. 228, 231 

Overexpressing TIGAR has been discovered to lower levels of ROS in response to 

chemical stress, metabolic, stress or starvation, as well as basal levels of ROS. The KD 

of TIGAR will increase levels of ROS under all previously described conditions. 

However, as basal levels of ROS represent important cellular signalling, processes such 

as autophagy can also be affected by TIGAR manipulation.232, 233 Indeed, TIGAR KD 

was shown to robustly induce autophagy, not only in unstressed cells, but also those 

subjected to starvation or metabolic stress, whilst over expression of TIGAR was found 
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to reduce autophagy. Additionally, TIGAR KD stimulates autophagy even in p53 null 

cell lines, indicating p53 is not required for modulation of autophagy by TIGAR.232 

DRAM, also a p53 responsive gene, functions in promoting autophagy. The increase in 

autophagy after TIGAR KD was found not to be effected by DRAM status, showing 

that both p53 responsive genes do not work in concert to manipulate autophagy 

pathway. TIGAR modulation of autophagy was demonstrated to be mTOR 

independent, as KD did not lead to a change in the down-stream targets of mTOR.228 

The function of TIGAR to limit ROS has been demonstrated in cancer cell lines; when 

under hypoxic stress, a proportion of TIGAR relocates to the outer mitochondrial 

membrane. Stabilisation of Hypoxia-inducible factor 1-alpha (HIF1�) by small 

molecules such as DMOG also relocated TIGAR to the outer mitochondrial membrane. 

TIGAR’s translocation was dependant on glucose and Hexokinase 2 (HK2), as 

depletion of both removed the re-localisation. TIGAR was found to bind exclusively to 

HK2 but not HK1, which can also bind to the OMM. TIGAR physically binding to HK2 

enhances its activity (without altering TIGAR expression). The binding is retained by 

TIGAR, even in mutants without an FBPase-2 domain.234 Mitochondrial localisation 

and HK2 binding is dependent only on 4 amino acids (human residues 258-261), and 

that co-localisation under hypoxia was shown to be HIF1� dependant, as inhibition of 

HIF� prevents relocation of TIGAR.234 Furthermore, enhancing HK2 activity lowers 

ROS and cell death.234 HK2 KD prevented TIGAR over expression to reduce ROS 

formation, mostly likely as it is required to maintain the mitochondrial membrane 

potential.234, 235 This action appears to be cell type dependent as in cardiomyocytes; 

hypoxia causes a p53 dependant increase in TIGAR expression. Over expression of 

TIGAR increased apoptosis after hypoxia induction. Conversely KD of TIGAR was 

found to rescue the mitochondrial membrane potential and prevent apoptosis after 

hypoxic induction.236  

Three KO mouse models have been constructed to understand the function of Tigar in 

vivo. In a similar manner to p53 KO mice, Tigar KO mice develop normally and do not 

exhibit morphological defects. Homozygous mutants are viable, live to adulthood, 

with genotypes segregating in a Mendelian fashion.237, 238 

As expected, Tigar KO shows an increased level of Fructose-2,6-bisphosphate in 

keeping with human cells. Expression in vivo showed Tigar to be highly expressed in 

the intestines of WT animals. Although crypt architecture was identical between both 
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genotypes, following toxin ablation, Tigar KO showed a decrease in size and number of 

regeneration within their crypts. Analysis of WT tissue showed a marked upregulation 

of Tigar 24-72 hours after toxin exposure, indicating that Tigar is required for 

proliferation of tissue during regeneration, likely due to its capacity to generate 

nucleotides and antioxidants required for growth.237 

Conversely, Tigar deficient mice have been shown to be more protected in a model of 

ischemic injury. Tigar KO mice develop an increase in autophagy markers at sites of 

ischemic injury, phenocopying p53 null mice. Both KO mice showed a reduction in 

build-up of defective mitochondria. Although, PARKIN was found to not translocate 

to the mitochondria during metabolic stress, in P53/Tigar KO animals there was a 

marked activation of BNIP3 that initiates autophagy as well as mitophagy during 

hypoxia. Consequently TIGAR may inhibit BNIP3 and indirectly inhibit mitophagy if 

over expressed.232, 238 

1.5.4 Von Hippel-Lindau and hypoxia 

The second phase of the pink1 project involved the investigation of gene-gene 

interactions between pink1 and vhl (Von Hippel-Lindau), loss of function mutations 

which lead to specific cancers.  

As described above, pink1 -/- zebrafish exhibit an upregulation of tigarb, an inhibitor of 

glycolysis, implying a reduced glycolytic flux. In contrast, vhl -/- zebrafish exhibit an 

upregulation of glycolytic genes implying an enhanced glycolytic flux, common in 

many cancers. It was hypothesised that crossing these lines together, generating 

zebrafish homozygous for both pink1 and vhl mutations, would normalise their 

glycolytic pathways and may lead to a rescue of phenotypes seen in pink1 and vhl      -

/- larvae. 

VHL disease is an autosomal dominant inherited disorder, caused by mutations in the 

VHL tumour suppressor gene. Patients carry heterozygous mutations and only 

develop tumours when the WT allele is mutated by exogenous mechanisms. Once both 

alleles have been mutated causing loss of function that leads to upregulation of many 

pathways involved in hypoxic signalling.  The most commonly associated tumours 

with VHL disease are haemangioblastomas of the retinal and central nervous system, 

renal cell carcinomas and pancreatic islet tumours. Renal cysts can also develop, 

however are benign in nature and do not compromise organ function.239 
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The VHL gene codes for a 231 amino acid protein (pVHL30) and a smaller pVHL19 

which is missing amino acids 1-53. A large variety of disease causing mutations have 

been described, however the majority (40%) consist of large deletions due to alu 

mediated recombination.240 VHL is an E3 ubiquitin ligase and tumour suppresser with 

multiple complex functions; its main role appears to be in hypoxic signalling. Under 

normoxia, VHL constantly binds to the alpha subunits of HIF1a and HIF2a, marking 

them for degradation.  Oxygen is required for the modification of HIF1 and HIF2 by 

PHD (prolyl hydroxylase) enzymes, which allows VHL to bind them. Under hypoxic 

conditions, as oxygen is unavailable for this reaction, HIF1 and HIF2 remain un- 

modified, and so VHL is unable to bind to them, allowing for their stabilisation. Once 

stabilised, they are able to act freely as transcription factors, leading to the transcription 

of a vast array of hypoxic responsive elements, promoting angiogenesis.239, 241 In the 

absence of viable VHL, HIF1a is continually stabilised allowing for the transcription of 

its target genes, and hence dysregulation of hypoxic signalling occurs, making the cell 

act as if it is hypoxic even when it has the full requirement of oxygen.241  See Figure 8. 

 

Figure 8. VHL and hypoxic signalling. The activity of VHL in response to oxygen levels within the cell. 
Under normoxia VHL continually binds to HIF1α marking it for degradation. During hypoxia, VHL is 
unable to bind to HIF1α HIF1α can then bind to HIF1β, and acts as a transcription factor for hypoxia 
responsive genes. Figure reproduced with permission from Maher 2010.239 

Vhl homozygous mutations are embryonic lethal in mice. Consequently, as it develops 

ex vivo, the zebrafish has successfully been utilised to model VHL deficiency in vivo, 

through development. Microarray studies on the vhl -/- mutants demonstrate an 

upregulation of many genes involved in anaerobic metabolism (such as the glycolytic 

pathway), oxygen sensing, oxygen transport and angiogenesis, generating a robust 
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hypoxic response. Functionally, this leads to an increase in VEGF signalling leading to 

polycythaemia, increased blood flow and disorganised branched blood vessels in the 

vascular network. The vessels become leaky, which in the eye, where the vascular 

network is vastly increased, leads to retinal lesions and in some cases, retinal 

detachment from the neuronal layers. This is very suggestive of macular oedema 

which can also be observed in human patients with VHL disease. The vhl –/- zebrafish 

eventually begin to hyperventilate and although mature through the stages of 

development, die at 10dpf due to oedema.242, 243 

1.6 Glucocerebrosidase 1 

1.6.1 Gaucher’s disease 

The third part of this thesis concentrated on establishing loss of function models of 

zebrafish for Glucocerebrosidase (gba1) using KD/KO strategies and to assess if the 

zebrafish is a suitable model of gba1 deficiency.  

GBA1 is a lysosomal enzyme required for the conversion of Glucocerebroside 

(otherwise known as Glucosylceramide) to ceramide and glucose (see Figure 9), 

mutations in its gene present with Gaucher’s disease (GD), a lysosomal storage 

disorder. 

 

Figure 9. The GBA1 catalysed chemical reaction. GBA1 catalyses the conversion of Glucocerebroside 
(Glucosylceramide) to Ceramide and Glucose. 

The GBA1 gene is located in a highly gene-rich region within the human genome 

comprised of 7 genes and 2 pseudo genes within an 85 kb region located on human 

chromosome 1. Due to a duplication event, (present before the diversion of humans 

and primates) both GBA1 and the nearby mitochondrial import gene Metaxin have very 

homologous pseudo-genes. The GBA1 pseudogene possesses a 96% homology to 
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GBA1, but contains a 55bp deletion within exon 9, that can be utilised for diagnostic 

purposes.244 The gene has two in frame ATG start sites producing polypeptides of 

different lengths which are both post-translationally processed to yield a 497 residue 

mature enzyme. GBA1 is expressed ubiquitously in all tissues in a similar fashion to a 

housekeeper; however GBA1 enzyme activity rarely correlates with transcript levels.244, 

245 

So far, over 300 GBA1 mutations have been reported, the majority being missense 

mutations (80%), but also nonsense mutations, splice site mutations and small indels 

producing frameshifts. The majority of GBA1 mutations are found in exons 8 and 9, but 

they  have also been observed in all other GBA1 exons.244  The presence of the 

pseudogene and its 55bp deletion, are also the cause of both reciprocal and non-

reciprocal recombination events, termed complex alleles representing a distinct and 

significant portion of GD mutations. Despite the severity of certain mutations, there is 

a poor correlation between genotype and clinical presentation with the exception of the 

N370S and L444P mutations that more commonly give rise to types I and II GD 

respectively. The L444P and N370S mutations are the most prevalent, making up 

around 70% of cases either in a homozygous or compound heterozygous state.244, 246  

Bi-allelic mutations in GBA1 lead to GD, the most common lysosomal storage disorder 

with a prevalence of approximately 1/100,000.247 The disorder presents with 

heterogeneous symptoms, giving rise to three  subtypes, although this is increasingly 

viewed as a continuous spectrum.92 Type 1 GD is based on the absence of neurological 

symptoms, making up 90% of all GD cases. It presents with highly variable symptoms, 

many patients can go undiagnosed for years as they appear almost asymptomatic. 

Common features in type I include anaemia, thrombocytopia, organomegaly and 

osteoporosis. Patients are also at a higher risk of certain cancers such as non-Hodgkin’s 

lymphoma.92, 93, 248, 249 

 Type II GD, also known as neuropathic GD, leads to early death, approximately 9 

months after birth due to neurological decline which is rapid and patients may also 

present with seizures and hypertonia. Progressive hepatosplenomegaly and other 

symptoms such as apnoea, cachexia and growth arrest also occur. A subset of patients 

(known as collodian babies), are born with congenital ichthyosis, with death occurring 

shortly after birth. Type III GD, also neuropathic in nature, is a chronic progressive 

form of the disease, presenting in childhood to adolescence. Symptoms range from 
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neurological decline with seizures, horizontal supranuclear palsy, and hydrocephalus 

to mild hepatosplenomegaly and cardiac valvular involvement.92, 250-252 

Although type I GD has always been categorized as a non-neuropathic form of the 

disease, this has been brought into question with many type I patients presenting with 

PD in later life.253 

Effective treatment is available. Enzyme replacement therapy (recombinant GBA1) is 

extremely effective at treating the majority of symptoms. However, enzyme 

replacement therapy is not a suitable treatment for type II or type III GD, as 

recombinant GBA1 does not cross the blood-brain barrier.254, 255 

Glucocerebroside is a key component of sphingolipid metabolism in the salvage 

pathway which provides up to 80% of the cells ceramide requiements.256 All GBA1 

mutations lead to partial if not complete loss of enzyme activity, leading to substrate 

accumulation of glucocerebroside and glucosylsphingosine within lysosomes. Due to 

the large lysosomal content of macrophages, the cells become engorged, the lysosomes 

pushing their nuclease to the side of the cell membrane. Within the cell the cytoplasm 

appears to possess many crinkles and striations. This has classically been described as a 

“wrinkled tissue paper” appearance. The swollen cells, known as “Gaucher cells” are 

highly activated macrophages, and congregate in particular organs leading to 

hepatosplenomegaly. Any cell of a mononuclear phagocyte lineage may be affected in 

this fashion, including kupffer cells (present in the liver), osteoclasts (present in bone) 

and microglial cells (present in the CNS). The latter microglial cells although don’t 

directly cause disease; increase severity judging from conditional mouse models.128, 257 

Gaucher cells secrete many chemokines, such as Interleukin-1β, that are elevated in the 

plasma of GD patients. Chitotriosidase, a human chitinase, a marker of activated 

macrophages, is markedly upregulated in its activity in GD patients’ plasma.  Indeed, 

it is utilised as a GD biomarker for evaluating efficacy of enzyme replacement 

therapy.258, 259 

1.6.2 Models of GBA1 deficiency 

Drosophila possess two orthologues of GBA1 too close to each other to create a 

chromosome with mutations in both genes with standard techniques.  By simple 

molecular manipulation, animals with heterozygous mutations in both genes have 

been created (double hets). These mutant flies show a 30% decrease in Gba1 activity 
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and demonstrate activation of the unfolded protein response. Survival from larvae to 

adult is reduced by 50% compared to WT. Transgenic flies expressing either human 

WT GBA1, N370S or L444P mutations show further activation of unfolded protein 

response (UPR) compared to WT. Both mutant transgenic and double het flies show a 

decrease in flight capacity, with large reductions in climbing activity of up to 80% by 

22dpf.260 

The first Gba1 KO mouse models constructed, possessed a neomycin resistance cassette 

inserted between exons 9 and 10. GBA1 activity in homozygous mutants was reduced 

to 4% of WT. All homozygous mutants were underweight, exhibited abnormal 

respiration and died within 24 hours of birth. Gaucher like cells were detected in the 

liver, spleen and brain, the phenotypes strikingly similar to type II GD collodian 

babies.261 

As most human patients still retain some residual GBA1 activity, in order to more 

faithfully model the disease, mouse models were generated that possessed mutations 

seen in humans (L444P and RecNcil). The L444P mutation is one of the most common 

found in patients, whilst RecNcil is an example of a complex recombination allele 

genotyped using the NciI restriction enzyme. L444P mice retained 20% residual GBA1 

activity, whilst RecNcil only had 4%. Both homozygous mutants all died 24-48 hours 

after birth. They would not feed and possessed very red dry skin. Glucocerebroside 

accumulation was detected in the skin of both mutants, however substrate 

accumulation  in the brain could only be detected in the RecNcil mutant.262 

Mice carrying Gba1 point mutations seen in human patients have also been generated, 

including N370S, D409H, D409V and V394L. N370S homozygotes died during the 

neonatal period. All other mutants retained only 25% enzyme activity compared to 

WT, but did not model the disease, as all were viable and did not accumulate 

glycolipids in the brain. 263 

As KO mice develop such severe phenotypes that make study impractical, conditional 

KO were generated to analyse Gba1 loss of function in particular organs. Enquist et al., 

generated a conditional KO mouse that was a KO in all organs apart from the skin, the 

K14-lnl/lnl. K14 mice had a reduction in GBA1 activity by 95% and accumulated 

glucocerebroside in the brain, liver and spleen. Unlike complete KO mice, K14 mice are 

viable during the first week of life, however, after a symptom free period of ten days, 

they undergo rapid neurological decline.  They develop abnormal gait and experience 
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motor dysfunction and seizures. K14 mice all had to be culled at 2 weeks of age due to 

excessive seizures leading to end stage paralysis.128  

K14 brains contained a large reduction in neuronal cells as well as cellular density. 

Large neurons were surrounded by microglial like cells, many containing large 

vacuoles most likely due to substrate accumulation.  K14 brains had increased caspase 

3 and TUNEL staining, showing neuronal cell loss due to cell death, as well as 

microglial activation and astrogliosis. Conditional KO mice that retained GBA1 activity 

in skin and microglia (Nestin mice), develop phenotypes identical to the K14 mice, 

however, symptoms only start to appear a week after K14. Suggesting Gba1 status in 

microglia effects disease duration as opposed to driving the primary pathology. From 

these mouse models it is clear that GBA1 activity is critical for neuronal survival.128 

Other conditional mouse models have been constructed for other organs excluding 

neuronal tissue. Mistry et al., constructed a conditional mouse KO that is Gba1 null in 

all tissues of hematopoietic and mesenchymal lineages, reducing GBA1 activity in 

these tissues to 5% of WT activity. Although these mice were viable, they developed 

marked substrate accumulation of glycolipids in their liver and spleen (approximately 

30 fold), similar to human disease. The Gba1 -/- mice display classic gibbus formation, 

hepatosplenomegaly and anaemia. Spleen size rising to 8 fold that of WT. Mutant mice 

go on to develop Gaucher cells, invading organs such as the bone leading to severe 

osteopenia.264 

1.6.3 Glucocerebrosidase and Parkinson’s disease 

Interest in GBA1 mutations has significantly increased in the biomedical field since the 

discovery that heterozygote GBA1 mutations are a risk factor for PD and dementia 

with Lewy bodies. 8, 93, 265 

The association was first detected when it was noted that there was an over 

representation of PD in  patients with type I GD, previously considered to be the non-

neuropathic form of GD.253 Type I GD is not 100% penetrant when assessing patients 

on traditional symptoms such as organomegaly. To assess for an association between 

GD type I and PD, sporadic PD patients were screened for GBA1 mutations in 

Ashkenazi Jewish populations, as this population has unusually high incidence rates of 

both diseases. Of 99 patients screened, 30% carried a GBA1 mutation, compared to only 

5% of the controls.  The vast majority of the mutation carriers were only heterozygous 
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for the common GBA1 mutations implying that heterozygosity on its own may be a 

risk factor for PD.266 Large scale screening studies have confirmed this association, 

making GBA1 mutations the most common risk factor for PD. GBA1 mutations have 

also be found to additionally be the most common risk factor for dementia with Lewy 

bodies.102  

However, it has also been suggested that these mutations may in fact not be a risk 

factor, but actually a cause of autosomal dominant PD with lower penetrance.267 The 

OR for gene mutations is approximate 5-15 depending on the population, meta- 

analysis have deduced OR of 3.51.102  This OR is likely to be higher in reality as, due to 

practicalities, the majority of studies only screen for common GBA1 mutations of 

N370S and L444P, which make up 70% of cases. This therefore will not identify the 30% 

of patients carrying one of the 300 recorded GBA1 mutations.93, 244 

Few functional studies have yet to be carried out on how GBA1 mutations could lead to 

PD, reports mainly implicating SNCA interactions as a driver of pathology, however 

GBA1 deficiency may be even more key to PD than originally thought, due to the 

discovery that even PD patients without GBA1 mutations display a decrease in GBA1 

activity in brain tissue.268 

1.6.4 GBA1 pathology due to loss of function mutations 

The role of GBA1 in the development of synucleinopathies is poorly understood, with 

many questions remaining. Models have been put forward for both toxic gain of 

function, loss of function or a synergy of the two.269 

Although a variety of GBA1 mutations have been catalogued, thus far, no GD patients 

have been recorded that possess large deletions and exonic rearrangements,  that are 

present in classic loss of function autosomal recessive inherited forms of disease such 

as PINK1 and PARK2 disease. The exceptions to these are patients containing complex 

alleles due to recombination with the pseudo gene. These have only been found in 

homozygous form in patients that are stillborn neonates. Complex alleles have been 

found in compound heterozygosity with other more common GD alleles, however, 

these also tend to present perinatal-lethal GD. As common GBA1 mutations have been 

shown to cause a partial decrease in enzyme activity, this and KO mice would imply 

that complete loss of function of GBA1 in humans is incompatible with life. The 
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remaining disease genes could potentially be viewed as hypo-morphs or partial loss of 

function.270, 271 

KO Mouse models of Gba1 lead to rapid neurodegeneration, however, the effect of 

Gba1 heterozygous mutations on neuronal health have yet to be investigated in vivo. In 

neuronal cell culture, complete loss of GBA1 activity by CBE (conduritol b epoxide , a 

specific GBA1 inhibitor) inhibition had no effect on cell viability, and did not affect 

basal levels of ATP, mitochondrial membrane potential or mitochondrial Complex 

activity; however GBA1 inhibition did lead to SNCA accumulation. This was 

complemented by inhibition of GBA1 by a KD.272  A separate study by Manning-Bog et 

al., also confirmed CBE inhibition of GBA1 to be sufficient to lead to SNCA 

accumulation in the absence of a change in SNCA transcript levels.273 

The latter study assessed complete loss of function as seen in GD and not partial loss of 

function as seen in GBA1 heterozygous mutations linked to PD. A study by Mazzulli 

utilised a KD approach to assess partial loss of GBA1 function on SNCA levels. GBA1 

protein levels were reduced by 50%, leading to accumulation of glucocerebroside in the 

absence of neurotoxicity although lysosomal dysfunction was evident. Notably, this 

decrease in GBA1 protein led to an accumulation of SNCA in the absence of a change 

in transcript levels, suggesting protein aggregation.  This data was confirmed using iPS 

neurons derived from GD patients fibroblasts, which also accumulated SNCA.274  

The indirect consequences of GBA1 deficiency were also analysed with respect to 

SNCA accumulation. GBA1 substrates which accumulate upon GBA1 loss of function 

were found to increase SNCA aggregation in vitro. The same study also demonstrated 

that overexpression of WT SNCA prevented proper folding and transport of GBA1 in 

the endoplasmic reticulum. This reduced GBA1 protein levels and therefore GBA1 

activity even further. Consequently, this suggests SNCA and GBA1 work in a bi 

directional feedback loop. Loss of GBA1 activity increasing SNCA levels in vivo, due to 

glucocerebroside induced aggregation. SNCA in turn preventing correct GBA1 folding 

and maturation in the lysosome, decreasing activity further. This demonstrates how 

loss of GBA1 activity may be a unifying pathogenic mechanism in PD. In patients 

without GBA1 mutations there is SNCA accumulation in the form of Lewy body 

pathology. This could interfere with correct GBA1 processing leading to a decrease in 

GBA1 activity and subsequent increase in GBA1 substrates and further SNCA 

accumulation.274 
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This was demonstrated in a study by Gegg et al., where brain tissue of patients with 

sporadic PD was analysed for GBA1 activity. Patients who did not possess GBA1 

mutations still had a decrease in GBA1 activity in different parts of their brain, 

especially the substantia nigra.  This was accompanied by a decrease in GBA1 protein 

levels but not of the mRNA transcript levels, demonstrating that a decrease in GBA1 

activity was a post transcriptional effect and not simply a downregulation of GBA1. 

268The study confirmed findings from Mazzulli et al., that overexpression of SNCA 

reduces GBA1 protein levels but not transcript levels. 268 

Lowered mitochondrial Complex I activity is an important pathogenic mechanism 

observed in both sporadic PD and familial subtypes. Of note, decreased Complex I 

activity also reduces GBA1 activity. KD of PINK1 produces mitochondrial dysfunction 

and oxidative stress in a neuronal cell culture system.  Gegg et al., also demonstrated it 

to decrease GBA1 protein levels and subsequent activity in these PINK1 deficient cells.  

SCNA accumulation following GBA1 deficiency has been recently challenged by 

Dermentzaki et al. Using CBE a at a range of concentrations, they could not detect 

SCNA aggregation and dysfunction of lysosomal or autophagy pathways.275 

1.6.5 Toxic gain of function 

Evidence for toxic gain of function has been highlighted through overexpression of 

different mutant GBA1 constructs leading to accumulation of SNCA compared to WT 

in several different cell lines. Cullen et al., analysed SNCA levels after overexpression 

of WT GBA1, GD associated GBA1 mutations and loss of function GBA1 mutations 

within neuronal cell culture systems. WT overexpression had no effect on the levels of 

SNCA, whilst overexpression of GD associated alleles N370S, D409V, L444P and 

D409H all increased the levels of SNCA. L444P and D409H, producing the most robust 

increase, with SNCA levels rising to 170% and 248% respectively to that of WT, notably 

without the activation of the unfolded protein response.276 

Transgenic approaches using Drosophila overexpressed the human GBA1 and the GD 

mutant allele RecNciI under the promoter of specific GAL 4 lines which expressed the 

transgenic protein in the eye cells of the Drosophila, including certain photoreceptor 

neurons and pigment cells. WT GBA1 developed minor phenotypes, slightly affecting 

eye morphology. Overexpression of the mutant GD allele RecNciI led to severe rough 

eye phenotype, this occurred with large differences in sizes of the ocelli in transgenic 
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flies compared to controls. Mutant transgenic flies also show up regulation of markers 

indicative of ER stress.277 

Analysis of mice heterozygous for either Gba1 KO allele compared to point mutation 

mice, D409V demonstrated that GBA1 mutations linked to PD may be toxic gain of 

function as at 6 months of age since Gba1 -/+ D409V mice develop ubiquitinated SNCA 

deposits within their brains. Mice  -/+ for Gba1 null alleles do not develop any such 

pathology at the same time point, regardless of the fact that both alleles possess the 

same amount of residual GBA1 activity.278 

 In animal models, it has been demonstrated that overexpression of complex GBA1 

mutation alleles (RecNcil) in Drosophila lead to neurodevelopmental defects and 

endoplasmic reticulum stress (ER) compared to overexpression of WT GBA1 alone. 

1.6.6 GBA1 unfolded protein response and mitochondrial dysfunction 

Secondary explanations of pathogenicity revolve around the unfolded protein response 

(UPR). To prevent misfolded proteins damaging cell homeostasis, they are recycled via 

endoplasmic reticulum associated degradation (ERAD). This occurs through 

ubiquitination, followed by degradation by the proteosome.279 Under normal 

conditions GBA1 assembles in the ER and is then shuttled to the lysosome. Mutant 

GBA1 fails to fold properly and is ubiquitinated for degradation. Several E3 ubiquitin 

ligases have been identified that recognise mutant GBA1, namely PARKIN and ITCH, 

although the involvement of PARKIN has recently been questioned.260, 280, 281 GBA1, 

being constitutively expressed, will cause mutant GBA1 to be constantly turned over 

activating the UPR, potentially overwhelming E3 ubiquitin ligases. This results in the 

neglect of their other substrates, leading to ER stress. Clearly UPR activation and ER 

stress would impact on SNCA turnover, likely leading to its cellular accumulation. 

Indeed, UPR activation has been detected in GD and GBA1 mutation carrying 

fibroblasts, as well as in fly models.260, 280, 282 Conversely, UPR activation has not been 

seen in other models, such as brain tissue from neuropathic mouse models, and 

neuronal cultures treated with CBE.128, 283 Clearly, the relationship between SNCA and 

UPR in the context of GD and Parkinson’s related GBA1 mutations requires further 

evaluation. 

Mitochondrial dysfunction has also been suggested to explain how GBA1 mutations 

may lead to PD. GBA1 KD or inhibition via CBE, in fibroblasts leads to an increase in 
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ROS levels, a decrease in mitochondrial membrane potential,  a decrease in ATP levels 

and fragmented mitochondrial network. The mitochondrial dysfunction observed in 

GBA1 deficient fibroblasts is therefore very similar to those seen in PARK2 mutant 

fibroblasts.272, 284 Using primary neuronal cultures from the previously established 

neuropathic conditional Gba1 KO mouse, Osellame et al. demonstrated defective 

autophagy and UPS breakdown, resulting in ubiquitinated aggregates and SNCA 

accumulation. Mitochondrial Complex 1 defects, increased ROS and fragmented 

mitochondria were also observed, similar to Cleeter et al. The dysfunction was revealed 

to be a defect in PARKIN recruitment to the OMM. 272, 285 
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1.7 AIMS AND OBJECTIVES 

Ultimately both projects were to establish whether the zebrafish could firstly model the 

human disease pathology and to identify benefits they would have over existing 

models of PD and GD. If the specific mutant suitably modelled the disease course in 

humans, the model in question could be used for further scientific analysis. Specifically 

genetic interactions and rescue experiments to identify new drug targets for both 

diseases and potential new protein functions.  

Objectives for each project were as follows, 

pink1 

1. Further analyse mutant phenotypes in greater depth.  

Identifying movement defects that are similar to PD motor symptoms exhibited by 

human patients.  Evaluate the cause of the decrease in TH neurons in the pink1 -/- 

larvae. 

2. Identify genetic interactions in pink1 -/- larvae. 

 To identify potential rescue mechanisms, up-regulated transcripts in pink1 -/- will be 

inhibited and pink1 -/- phenotype reassessed. 

 

gba1 

1. Generate gba1 mutant zebrafish.  

Loss of function models will be generated in a transient manner for pilot studies, 

following which, stable mutants will be generated. Loss of function will be assessed in 

both models of gba1 deficiency. 

2. Phenotype gba1 mutant zebrafish.  

Symptoms presented by GD patients in the clinic will be evaluated for similarity in the 

mutant gba1 zebrafish. Phenotypes will be assessed biochemically, behaviourally and 

histologically. Once the model has been validated, pathology will be assessed in 

further detail to identify molecular defects in specific cellular pathways such as 

autophagy. 
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2  Materials and Methods 
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2.1 Chemicals and other reagents 

All chemicals were purchased from Sigma Aldrich unless otherwise stated. All 

restriction enzymes and buffers were purchased from New England Biolabs. 

2.2 Zebrafish husbandry  

All adult and larval zebrafish were housed at the University of Sheffield; experimental 

procedures being in accordance with UK Home Office Animals (Scientific Procedures) 

Act 1986 (Project license PPL40/3402, held by Dr Oliver Bandmann, Personal license 

PIL 40/1009, held by Marcus Keatinge).  

Fish were housed at a density of 40 per tank, whilst on a cycle of 14 hours of light, ten 

hours of dark. Adults and larvae were kept at constant temperature of 28ºC. 

2.3 Fin clipping 

For genotyping, adult fish were anesthetised in a solution of tricaine (80ug/ml) and a 

small portion of the caudal fin was removed with sterile surgical scissors. The clipped 

fish was then moved to an individual tank, until the genotype was established. 

2.4 DNA extraction 

Genomic DNA, suitable for use in genotyping by polymerase chain reaction (PCR) was 

obtained using the REDExtract-N-Amp™ Tissue PCR Kit (Sigma). 

A zebrafish fin clip, was placed in the well of a PCR tube, homogenised with a solution 

of 25 µl extraction solution and 6.25 µl tissue preparation solution. The sample was 

vortexed for ten seconds, incubated at room temperature for 15 minutes, vortexed 

again, then finally incubated for three minutes at 95 ºC. Once the sample had cooled, 25 

µl neutralisation solution B was added, and then the tube was vortexed for a final time. 
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2.5 Polymerase Chain Reaction 

PCR was utilised to amplify both genomic and cDNA for analysis.  Each PCR reaction 

was composed of 10 µl Biomix Red TM (Bioline), 2 µl forward primer (10 µM), 2 µl 

reverse primer (10 µM), 4 µl H2O and 2 µl of DNA. The reaction was heated to 95 ºC for 

three minutes then went through the following cycle for a total of 34 cycles. Each cycle 

consisted of incubation at 95 ºC for 30 seconds, 60 ºC for 30 seconds, and 72 ºC for 1 

minute. This was followed by final 5 minutes incubation at 72 ºC. The reaction was 

heated using a BIORAD DNA Engine gradient thermo cycler (BIORAD). Primers were 

designed using Primer3 software (v. 0.4.0) supplied by INTEGRATED DNA 

TECHNOLOGIES Ltd. For PCR, both the forward and reverse primers were used at 10 

µM. For a list of all the primers used see Table 3 below. For qPCR reactions, primers 

were optimised for annealing temperature, concentration and efficiency. SYBR green 

master mix (Agilent) was utilised for the enzyme reaction, reaction incubated and 

analysed by Stratagene MxPro 3000p (Stratagene). ef1 alpha was used as a reference 

gene to which data was normalised too. 
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PRIMER Sequence (5'-3') Description 

PINK1 Genotyping R AGCTTCACCACCAGCTGAAC PINK1 line genotyping 

PINK1 Genotyping F AAAGCAGATGTGTGGGCTGT PINK1 line genotyping 

GBA 178 G>A R GGGAAAGTTCCCTCAAAAATG GBA sanger line genotyping 

GBA 178 G>A F AGTACCGTTTCGTGAGAGTGC GBA sanger line genotyping 

MWO1 #4 R ATGTCATGGGCGTAGTCCTC GBA TALEN genotyping, all alleles 

MWO1 #4 F AAAGCAGCACGATATGTCCA GBA TALEN genotyping, all alleles 

M13 R CAGGAAACAGCTATGAC Colony PCR for TOPO Ta cloning 

M13 F GTAAAACGACGGCCAG Colony PCR for TOPO Ta cloning 

VHL Genotyping R CGAGTTAAACGCGTAGATAG VHL line genotyping 

VHL Genotyping F TAAGGGCTTAGCGCATGTTC VHL line genotyping 

PINK1 NMD R CTGATGACGTTCAGCTGGTG PINK1 qPCR 

PINK1 NMD L CCACAGACTGATGTGCAGGA PINK1 qPCR 

TigarB qPCR R TCAGCATTTCTTTTATTGCATGA TigarB qPCR 

TigarB qPCR L TGTGAGCTGGCTGAACGTAA TigarB qPCR 

Hdac9B qPCR R CCTACAAGAGCTTTGAGAGTTGTG Hdac9B qPCR 

Hdac9B qPCR L GAATTTAGCCGACAGAGTCTTTT Hdac9B qPCR 

Apex1 qPCR R ACTTCCCATGGCAGTGTTTC Apex1 qPCR 

Apex1 qPCR L TTTCGGGAGCTCTATCCAGA Apex1 qPCR 

TigarA qPCR R TCAGGGATGGACAAACTTGG TigarA qPCR 

TigarA qPCR L ATAGGACCAGCCCTTTCACC TigarA qPCR 

TigarB WISH R TCAGCCAGCTCACAAAACTG TigarB WISH probe 

TIgarB WISH L CTGCTGCAAGGTCAGGGTAT TigarB WISH probe 

TigarA WISH R ATAGGACCAGCCCTTTCACC TigarA WISH probe 

TigarA WISH L CATAGCTGAGGGAGGTCGAG TIgarA WISH probe 

EF1a qPCR R TGACTCCAACGATCAGCTGT qPCR House Keeper 

EF1a qPCR L TGGTACTTCTCAGGCTGACT qPCR House Keeper 

OTPa WISH R ACTCTGCTGGCTGGAGGACTGGGTG OTPa WISH PROBE 

OTPa WISH L GGAAAAGCATTTCGCCCTGGAGCG OTPa WISH PROBE 

TBMO2 RT PCR R GACAGAGGTGTGTCAATACCCTGAC TBMO2 efficacy detection 

TBMO2 RT PCR L TCAGTGACGTCATTTATCTGCAAC TBMO2 efficacy detection 

TBMO3 RT PCR R TCTCAGCTGTCTGTATAGCTCTTTG TBMO3 efficacy detection 

TBMO3 RT PCR L CTGCAAGGTCAGGGTATTGA TBMO3 efficacy detection 

PINK4 MO DEC R TCTGCTAGACAGCAGCCAAA PINK4 ie and ei efficacy detection 

PINK4 MO DEC L AACATTGGGGCTGGTTCAT PINK4 ie and ei efficacy detection 

PINK5 MO DEC R TCAGGTGCCATTAGACAGGA PINK5 MO efficacy detection 

PINK5 MO DEC L CTGACTTTGAACGGGCACTT PINK5 MO efficacy detection 

GBA MO 8 DEC R TCCTCTTCAGACCTGTTTAGAATG GBA MO 8 efficacy detection 

GBA MO 8 DEC L CAGGACCTGAATAATTATGTGACC GBA MO 8 efficacy detection 

GBA MO 9 DEC R CCAGGACCTGAATAATTATGTGACC GBA MO 9 efficacy detection 

GBA MO 9 DEC L TCCACAGTAGTGTGAGAATGGAG GBA MO 9 efficacy detection 
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PRIMER Sequence (5'-3') Description 

GBA MO 7 DEC R GGTCCAGCCGGTCACATAAT GBA MO 7 efficacy detection 

GBA MO 7 DEC L GATGACAACCGCCTTATGCT GBA MO 7 efficacy detection 

GBA NMD #3 R GGGTGAAGTTCTGGAGATCG GBA NMD qPCR 

GBA NMD #3 L AGTACCGTTTCGTGAGAGTGC GBA NMD qPCR 

GBA NMD #5 R CACCGTTTGATCCCAGACTT GBA NMD qPCR 

GBA NMD #5 L CACTTCAGCAAGTTCCTGTG GBA NMD qPCR 

 

Table 3. Primer list. A table listing all primers utilised in this study. 

2.6 DNA gel electrophoresis 

DNA gel electrophoresis was used to visualise PCR products. A 2% agarose gel was 

constructed from 2 grams of agarose powder heated in 100 ml of TAE buffer (40 mM 

Tris, 20 mM acetic acid, 1 mM EDTA) until fully dissolved. The solution was allowed 

to cool, and then poured into a gel tank with a comb to produce sample wells. Once the 

gel had set it was then moved to an electrophoresis tank and covered in fresh TAE(x1) 

buffer. Hyper ladder IV, 2 µl (Bioline) was pipetted into the first available well on 

every gel for sample size reference and concentration analysis. Samples were pipetted 

in the wells after this at 2 µl unless otherwise stated. Samples were electrophoresed at 

150 volts for 15-30 minutes. DNA products were visualised under UV light in a 

GENi™ (SYNGENE). 

2.7 Zebrafish Genotyping 

Primers required for genotyping for each mutant line can be found in the primer list 

(Table 3). The primers were used to amplify the region containing the mutation using 

gDNA, and genotyped by direct sequencing at the University of Sheffield Core 

Genomics Facility using the Reverse primer. Sequencing data were analysed using 

FINCH TV, Version 1.4.0 (Geospiza Inc). All pink1 sequences were reverse 

complemented and the lead up sequence, 5’GCGATCGCTTA was located. 

5’GCGATCGCTTAT was WT 

5’GCGATCGCTTAN was heterozygous for the pink1 Y431* stop mutation 

5’GCGATCGCTTAG was homozygous for the pink1 Y431* stop mutation 
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The gba1 sa1621 line was genotyped using the primer pair GBA 178 G>A. The primers 

were used to amplify the region containing the mutation, then genotyped by direct 

sequencing using the forward primer. The lead up sequence was 5’CACATGAAG 

located and used to genotype the allele. 

5’CACATGAAGG was WT 

5’CACATGAAGN was heterozygous for the sa1621 mutation 

5’CACATGAAGA was homozygous for the sa1621 mutation 

The gba1 23bp deletion was genotyped using the primer pair MWO1 #4. The primers 

were used to amplify the region containing the deletion, and then electrophoresed on 

2% agarose gel for 25 minutes. Genotyping was performed directly from the 

photograph of the gel.  

A product of size 203 was WT 

A product of size 180 was a homozygous mutant for 23bp deletion. 

2 products of both these sizes were heterozygous.  

See Figure 10 for an example of gba1 23bp del genotyping  
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Figure 10. gba1 23bp del genotyping. Genomic PCR illustrating gba1 23bp del allele primers situated 
around the TALEN-targeted MwoI site of gba1. WT individuals produce a product of 203bp (Lane 1), 23bp 
del gba1 -/- of 180bp (Lane 3) and 23bp del gba1 -/+ individuals produce products of both sizes (Lane 2).   

The 8bp and 7bp deletion TALEN lines were genotyped with MWO1 #4 primers and 

the PCR product digested with 1µl of MwoI restriction enzyme (NEB) and incubated at 

60ºC for 4 hours. 2µl of digested PCR product was electrophoresed on a 2% gel for 30 

minutes. 

A single product at size 225 was a homozygous mutant 

A single product at 110 was WT 

A product at 225 and 110 was heterozygous. 

The vhl line was genotyped using primer pair VHL genotyping. The primers were used 

to amplify the region containing the vhl mutation, and then electrophoresed on a 2% 

agarose gel for ten minutes to check PCR was successful, genotype was determined by 

digest. Briefly 5 µl of PCR product was digested in a mixture of 1.8 µl buffer 4 (NEB), 

13 µl H2O and 0.2 µl Bci IV enzyme. The mixture was incubated for 4 hours at 37ºC 

then electrophoresed a 2% gel for 30 minutes. 

A single product of size 200 was WT 

100bp 

1000bp 

200bp 

300bp 

400bp 

600bp 

       1                            2                          3 
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A single product of size 400 was a homozygous mutant 

A product at 200 and 400 was heterozygous 

2.8  Basic Local Alignment Search Tool 

To identify orthologues of human genes in zebrafish, the human protein sequence was 

located in ENSEMBL and pasted into the Basic Local Alignment Search Tool (BLAST) 

function of ENSEMBL. The species selected was ‘Danio Rerio’ and the database selected 

was ‘protein’. The sensitivity was selected at no optimisation. The sample was then 

run. The hit with the greatest homology was selected. This was repeated with the 

human cDNA and all settings remained the same, except that the database selected 

was DNA database (cDNA library specifically). Once the top hit was duplicated in 

these BLAST searches, the top cDNA and protein match (both these were coded for by 

the same gene) was compared to the orthologue assigned to Human gene by 

ENSEMBL itself to validate the match. Both genes had the basic genetic architecture 

compared (exon number for example) then genomic regions were compared. The area 

used for gene synteny comparison was 1.0 mega bases, by using the ‘compare region’ 

function in ENSEMBL. 

2.9 RNA extraction 

To extract RNA required for cDNA generation; 20 larvae / brain tissue (12 wpf), were 

placed in a microcentrifuge tube and all E3 media was removed. 250 µl of TRIzol® 

(Life Technologies) was added and the larvae homogenised with a 23 gauge needle, 

followed by incubation at room temperature for 5 minutes. 50 µl of Chloroform was 

then added; the tube was inverted 8 times, then left to incubate for a further 5 minutes 

at room temperature. The sample was then centrifuged in a microcentrifuge for 15 

minutes at 13,000 rpm at 4 ºC. 100 µl of the supernatant was removed and placed into a 

new sterile microcentrifuge tube. 100 µl of isopropanol was added, the tube was 

inverted to mix, then incubated at room temperature for ten minutes. The sample was 

then centrifuged again at the same settings. All supernatant was discarded and the 

RNA pellet washed with 70% ethanol and centrifuged for 5 minutes at 7,000 rpm, at 

4°C. The supernatant was discarded again, and the RNA pellet RNA air dried for 3 
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minutes, followed by re-suspension in 20 µl DEPC treated H2O. RNA extraction from 

brain tissue was identical, with two brains used per sample. 

2.10 DNase Treatment 

To remove DNA from purified RNA, the DNA-Free KIT ™ was utilised (Invitrogen™) 

10 µl buffer and 1µl DNase 1 were added to the RNA, then incubated for 30 minutes at 

37 ºC. 2 µl DNAse inactivation solution was added, mixed and incubated at room 

temperature for 2 minutes. The contents were then centrifuged at 10,000g for 2 

minutes. The RNA supernatant was then transferred to a fresh tube. 

2.11 Reverse transcription 

Purified RNA was firstly quantified by using a Nanodrop (Thermo scientific). 1000 ng 

RNA was made up to 10 µl with DEPC H2O. The Verso cDNA synthesis kit (Thermo 

Scientific) was utilised for the reverse transcription reaction. 4µl 5X cDNA synthesis 

buffer, 2 µl dNTP MIX, 1 µl RNA primer and 1 µl Verso enzyme mix, was added to the 

10 µl RNA. The mixture was incubated for 30 minutes at 42 ºC then for 2 minutes at 95 

ºC. 

2.12 PCR purification 

PCR product was purified using QIAquick PCR purification KIT (Qiagen) as follows: 5 

volumes of PB buffer was added to 1 volume of the PCR reaction and mixed. The 

mixture was placed in a QIAquick column and centrifuged for 60 seconds in a micro-

centrifuge. The flow-through was discarded and 750 µl PE buffer added to the column 

and centrifuged again. The flow-through was again discarded and the column 

centrifuged for a further minute. The flow-through was again discarded and the 

column transferred to a fresh microcentrifuge tube. 30 µl EB was added to the centre of 

the column and incubated at room temperature for 1 minute. The column was then 

centrifuged for a final 60 seconds to elute the purified DNA. 
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2.13 Plasmid purification 

The QIAprep mini-prep kit (Qiagen) was used to isolate plasmid DNA from bacterial 

cultures. Firstly 1-6ml of bacterial culture was centrifuged down with a micro-

centrifuge and the supernatant discarded. The bacterial pellet was re-suspended with 

250 µl Buffer P1 by vortexing. 250 µl of Buffer P2 was added and the microcentrifuge 

tube inverted 6 times to mix until the solution became clear. 350 µl of Buffer N3 was 

then added; the tube was then inverted 6 more times and afterwards centrifuged at 

13,000 rpm for 10 minutes in a micro-centrifuge. The supernatant was then applied to a 

QIAprep spin column and centrifuged again for 1 minute. The flow-through was 

discarded and 750 µl Buffer PE added. The column was centrifuged for a further 

minute and the flow-through discarded. The column was centrifuged for a further 

minute to get rid of any residual buffer in the column. The spin column was then 

transferred to a fresh tube and 30 µl EB buffer added to the centre of the column. The 

column was incubated for 1 minute at room temperature then centrifuged for 1 minute 

to elute the plasmid DNA.  

2.14 RNA purification 

The RNeasy® Mini Kit (Qiagen) was used to purify RNA for TALEN injection. Firstly 

the sample volume was adjusted to 100 µl with RNase free water followed by the 

addition of 250 µl ethanol (100%). The sample was then transferred to an RNeasy Mini 

spin column placed in a 2ml collection tube and centrifuged for 15 seconds at 8000g. 

The flow-through was discarded and 500 µl Buffer RPE added to the RNeasy spin 

column and centrifuged again for 15 seconds. The flow-through was again discarded, 

and again 500 µl Buffer RPE was added to the column but then centrifuged for 2 

minutes at 8000g. The column was then placed in a new tube and 30 µl RNase free 

water added to the centre. The tube was centrifuged for 1 minute to at 8000 g to elute 

the DNA. 

2.15 Large scale Plasmid purification 

The Nucleobond® Xtra Midi plasmid purification kit was used to purify plasmids at 

high concentrations from bacterial cell culture.  Bacterial culture was firstly harvested 

by spinning at 6,000 g for 15 minutes at 4ºC. The supernatant was discarded and the 
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bacterial pellet re-suspended with 8ml re-suspension buffer RES. The cells were then 

lysed with 8 ml Lysis buffer LYS and the mixture inverted 5 times to mix. The mixture 

was then incubated at room temperature for 5 minutes. During the incubation, a 

Nucleobond® Xtra column with inserted filter was equilibrated with 12 ml 

Equilibration buffer EQU. Post incubation, the mixture was neutralised with 8 ml 

Neutralisation buffer NEU, then inverted 10 times to mix. Once a homogenous lysate 

was achieved, the mixture was poured into the Xtra column and allowed to flow 

through by gravity. The column was washed with 5 ml Equilibration buffer EQU and 

the filter was then discarded. The column was then directly washed with 8 ml buffer 

wash. The plasmid DNA was eluted and collected by applying 5 ml Elution buffer ELU 

to the column. The elute was then treated with 3.5 ml of room temperature isopropanol 

and centrifuged for 15 minutes at 5,000g to precipitate the plasmid DNA. The 

supernatant was discarded and the DNA pellet washed with 2 ml 70% ethanol by 

spinning again at 5,000g for 5 minutes. The supernatant was discarded and the pellet 

air dried for 5 minutes followed by dissolving it in 1 ml TE buffer. 

2.16 Ligation independent Cloning and transformation 

Molecular Cloning was achieved using the TOPO TA cloning® kit (Invitrogen, Life 

technologies). A PCR product was amplified and purified using a QIAquick PCR 

purification KIT (Qiagen). 4 µl of purified DNA, 1 µl TOPO vector, 1 µl salt solution 

(1:4 dilution with H2O) were mixed together and incubated at room temperature for 30 

minutes. Meanwhile chemically competent DH5β (NEB) cells were defrosted on ice for 

30 minutes. The Cloning reaction was then added to the cells on ice and incubated for 

30 minutes. The cells were then heat shocked at 42 ºC for 30 seconds and returned to ice 

for a further 5 minutes. 900 µl of SOC media (Sigma) was added, and then incubated 

for 1 hour on a shaker at 37°C. During the incubation phase, agar plates containing 

ampicillin at a concentration of 0.1 mg/ml were also incubated at 37 ºC to dry them. In 

close proximity to a Bunsen flame, 100 µl of the transformation was plated onto the 

agar plates and distributed evenly using a cell scraper. The plate was then incubated 

overnight at 37 ºC. Insertion of the cassette was determined using colony PCR.  
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2.17 Colony PCR 

To determine if TOPO TA cloning was successful, colony PCR was performed. After 

overnight incubation of the transformation plate, colonies were picked for analysis. A 

PCR master mix was made up as previously described, using M13 primers. For the 

DNA portion of the reaction, a single colony was picked using a sterile p10 pipette tip 

and dabbed into the PCR reaction. All reactions were amplified as standard and 

electrophoresed on a 2% agarose gel. Reactions positive for PCR cassette were sent for 

sequencing with M13 primers. 

2.18 RIBO probe manufacture and design 

To generate RNA probes, for whole mount in situ hybridisation (WISH), primer 3 

(http://bioinfo.ut.ee/primer3-0.4.0/) was used to design primers that would amplify a 

region 700-1000 bp in length of cDNA. This sequence was searched against the cDNA 

database to determine the specificity of the probe. The PCR product was amplified and 

sub cloned into a TOPO TA, colonies positive for the cassette were sent off for 

sequencing and the orientation was determined. To generate the probe, the plasmid 

was cut at the opposite end of the cassette to transcription using a restriction enzyme. 

The cassette was also checked not to have a restriction site at the same site as the 

digesting enzyme by analysing the sequence with NEBcutter V2.0 (New England 

Biolabs) (http://tools.neb.com/NEBcutter2/). The restriction digest was constructed of 

10 µg of plasmid DNA, 5 µl restriction enzyme and 10 µl appropriate buffer. The 

reaction was made up to 100 µl H2O and incubated at the optimum temperature for the 

enzyme for 4 hours. 2 µl uncut plasmid and 5 µl of cut plasmid were electrophoresed 

on a 2% gel to determine if linearization was complete. The cut plasmid was purified 

using QIAquick PCR purification KIT (Qiagen). To generate the riboprobe , 1000ng cut 

plasmid, 2 µl transcription buffer, 2 µl DIG labelling mix, 2 µl of transcription enzyme 

(either T7, T3 or Sp6) and 1 µl RNAase were made up to 20 µl with H2O, then 

incubated for 2 hours at 37 ºC. All transcription reagents were purchased from Roche. 

Following incubation, 2 µl DNAse was added and the mixture incubated for a further 

15 minutes.  2 µl of probe reaction was electrophoresed on a 2% gel to check for probe 

transcription and complete DNA digestion. 10 µl 7.5 M NH4C2H3O2 (Ammonium 

Acetate) and 60 µl Ethanol (both ice cold) was added to the transcription reaction and 

inverted to mix. The reaction was then centrifuged in a micro-centrifuge (13,000 rpm, 4 
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ºC, and 15 minutes). The supernatant was discarded and the pellet washed with 100 µl 

ethanol (70%) and centrifuged again for 5 minutes. The supernatant was again 

discarded, the pellet air dried for 3 minutes and re-suspended in a 100 µl mixture of 

formamide and H2O (70:30 respectively) then stored at -80 ºC. 

2.19 Embryo fixation 

To preserve zebrafish larvae for whole mount in situ hybridisation (WISH), larvae 

were fixed. Zebrafish larvae were de-chorionated and put into 1.5 ml microcentrifuge 

tubes in groups of 20. All E3 media was removed and 500 µl 4% PFA 

(paraformaldehyde) solution (made up with sterile PBS) was added. The larvae were 

incubated on a rocker at room temperature for 2 hours. PFA was removed and 

replaced with 500µl 100% methanol, incubated at room temperature for 15 minutes and 

then stored at -20 ºC. 

2.20 Whole mount in in-situ hybridisation  

WISH was utilised to investigate the expression of specific mRNA transcripts. Fixed 

larvae were rehydrated in a series of 500 µl 5 minute washes of 75% methanol: 25% 

PBT, 50% methanol: 50% PBT, 25% methanol: 75% PBT, and finally 4 washes with 100% 

PBT. Larvae were then digested at room temperature with 500 µl 10 µg/ml proteinase 

K for the following time, depending on the age of larvae: 8 minutes for 24 hpf, 14 

minutes for 48 hpf, 30 minutes for 72 hpf, 40 minutes for 96 hpf and 45 minutes for 120 

hpf larvae. Proteinase K was then removed and replaced with 500 µl 4% PFA and 

incubated for 20 minutes at room temperature. Samples were then washed with 500 µl 

of PBT for 5 minutes, 5 times each. The PBT was removed and replaced with 500 µl 

Hyb A buffer (50% formamide, 5XSSC solution, 0.5 mg/ml tRNA, 0.1% tween 20, 50 

ug/ml Heparin, pH was adjusted to 6.0 with 1M citric acid) and incubated at 70 ºC for 5 

hours. Hyb A solution was then replaced with a solution of Hyb A 2% riboprobe and 

incubated overnight at 70 ºC. Each tube then had a brief wash with 70 ºC 100% Hyb B 

solution (Hyb A without tRNA and Heparin) then sequential 500 µl washes at 70 ºC for 

15 minutes each with 75% HybB: 25% 2xSSC, 50% HybB: 50% 2xSSC, 25%Hyb B: 75% 

2XSSC then 100% 2XSSC. Each sample was then washed twice with 0.2XSSC for 30 

minutes at 70ºC.  Each sample then went through sequential washes of decreasing 

concentrations of 0.2xSSC at room temperature. Starting with 75% 0.2XSSC: 25% PBT 
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for ten minutes, then 50% 0.2XSSC: 50% PBT for ten minutes, then 25% 0.2XSSC: 75% 

PBT for ten minutes followed by a final 10 minutes PBT wash. Each sample was then 

incubated in 500 µl blocking buffer (2mg/ml Bovine serum albumin (BSA), 2% sheep 

serum, all dissolved in PBT) for 3 hours. Each sample was them incubated in 500 µl 

Blocking buffer with a 1:5000 dilution of anti-dig antibody (Roche) and protected from 

light at 4 ºC overnight.  

The following morning each sample went through 6 washes of PBT for 15 minutes 

each. This was followed by 3, 5 minutes washes with 500 µl NTMT buffer (0.1M 

TrisHCl pH 9.5, 50 mM MgCl2, 0.1M NaCl, 0.1% Tween 20). The Buffer was then 

exchanged with 500 µl staining solution (3.5 µl and 4.5 µl, BCIP and NBT respectively, 

per ml of NTMT). Samples were inspected every 15 minutes for stain development 

(appearance of purple stain). When the stain had developed satisfactorily, the samples 

were washed 3 times with PBT. 

To remove any background, each sample was washed with 500 µl 50% methanol then 

incubated in 100% methanol, until all background had been cleared. Each sample was 

then washed again with 50% methanol, then twice with PBT.  4% PFA was then used to 

re-fix larvae for 20 minutes at room temperature. Each sample was washed 3 times 

with PBT, then placed into 75% glycerol and stored at 4 ºC. 

2.21 Tyrosine Hydroxylase Neuron Counting 

When assessing the number of DA neurons, 3 dpf larvae were always used, unless 

otherwise stated. The neurons were stained by WISH for Tyrosine Hydroxylase (TH) 

as a marker of DA neurons, unless otherwise stated. Zebrafish larva heads were 

mounted in glycerol for correct orientation and TH positive neurons counted by eye 

using axioplan 2 (Zeiss) compound microscope at X20 magnification. TH neuron count 

was assessed by counting DA subgroups 1, 2, 4 and 5 in the diencephalon. Groups 

were defined according to the descriptions of Rink and Wulliman.165 For Each embryo 

TH neuron count, each experiment contained n of ten individuals (unless otherwise 

stated) in all groups. Each experiment was performed in triplicate (unless otherwise 

stated). The mean count of control groups in each experiment was set as 100%, and all 

counts expressed as a percentage of the control mean. 
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2.22 Tyrosine Hydroxylase Neuron staining and counting in 12 wpf 

zebrafish 

In order to quantify TH neurons in 12 wpf zebrafish, IHC was employed to stain the 

neurons. This experiment was jointly undertaken between the author and Dr Yu-Chia 

Chen. Brain dissection and fixing was performed by the author. TH neuron staining 

and count was performed by Dr Yu-Chia Chen. 

12 wpf were culled and brains removed then fixed as previously described in PFA, and 

dehydrated in 100% methanol. To stain, whole brains were rehydrated in a series of 

PBST/methanol, for 60 minutes each, at concentrations of 25%, 50%, 75% and 100%. 

Samples were then digested with proteinase K (10 µg/ml) in PBST at room 

temperature for 3 minutes. Samples were then refixed in 4%PFA at room temperature 

for 30 minutes. Each sample was then incubated in PBST twice for a single hour at 

room temperature. All samples were incubated in blocking buffer composed of 4% 

normal goat serum +1 % DMSO in PBST at 4°C for 24 hours. 

For the next four following days, each sample was incubated with a anti Tyrosine 

Hydroxylase antibody diluted in blocking buffer (Mouse monoclonal anti-TH, 

DiaSorin Inc), at 4°C. Following incubation, each sample was washed twice with PBST 

for one hour at room temperature, then incubated overnight at 4°C in PBST. 

Each sample was then incubated with an Alexa Fluor® 488 goat anti-mouse IgG 

diluted in blocking buffer as a concentration of 1/1000, for 24 hours at 4°C. Following 

incubation, each sample was washed twice with PBST for one hour at room 

temperature, and then incubated overnight at 4°C in PBST. 

Each sample was incubated in a 50% glycerol/PBS solution, overnight at 4°C. Samples 

were then incubated in an 80% glycerol/PBS solution for 2 days at 4°C. Each sample 

was then mounted and imaged. TH neurons were counted according to Sallinens 

dfinition.120  

2.23 Morpholino design and optimisation 

The preferred exons junctions targeted for binding had their exon-intron boundary 

sequences sent to Gene-Tools for Morpholino design (http://www.gene-tools.com/). 

The Morpholino binding regions were then confirmed by direct sequencing. Possible 
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SNPs in the sequence would lead to rejection of the designed Morpholino. 

Morpholinos were ordered from Gene-Tools and re-suspended at 2 mM with H2O and 

stored at room temperature with protection from light. A list of all Morpholino used in 

the experiments are listed in the Morpholino Table 4. 

Morpholino Sequence 5'-3' Optimised concentration 

TigarB i5e6 ACCTGGAGAGACAAAAGCAGGATCT N/A -TOXIC 

TigarB e2i2 TAGAGTGTTTATCTACCTTGCAGCA 0.9mM 

TigarB i2e3 CCCTGACCTTCACATCAGATAAAAA N/A low efficacy 

GBA1 i8e9 TTGCTGTTAGTAAGGTACAAAGGCA N/A low efficacy 

GBA1 e8i8 GTGCTTTGAACGAGTCTGACCTGAA 0.9mM 

GBA1 i6e7 GTCACTTAGAACCTATAGCCGAAAA  N/A toxic 

VHL e1i1 GCATAATTTCACGAACCCACAAAAG 0.2mM 

PINK1 e5i5 AGAGTCTCTGAGCTCTTACTGTTGT 0.9mM 

PINK1 e4i4 GTGTTTTCATGTTTCCTCACTTCTT N/A TOXIC 

PINK1 i3e4 AGTGCCTGCAAAAATAGCAAAGCCA N/A low efficacy 

Table 4. Morpholino list 

To inject zebrafish embryos, working concentration (0.9 mM, 0.5 mM or 0.25 mM) 

Morpholino was loaded into a glass needle (borosilicate glass capillary, by WPI) pulled 

using a Model P97 micro-pipette puller, by Shutter Instruments. The full needle was 

hooked to a Pv 820 Pneumatic Pico-pump (WPI) for injections. Injection speed was 

calibrated by injecting the Morpholino solution into a drop of mineral oil placed on top 

of a 100x0.1=10mm graticule (Pyser-SGI), in order to correctly set the speed and 

pressure to inject 0.5nl with each burst. To optimise Morpholinos, WT 1 cell stage 

zebrafish embryos were injected with 0.9 mM, 0.5 mM and 0.25 mM Morpholino. 

Phenol red (0.00011mg/ml) was used to colour the Morpholino solution, to ensure 

correct injection. Embryos were injected with 1 nl each and inspected on days 1, 2 and 

3 post fertilisation, for mortality and deformity. Morpholino efficacy was determined 

by RT-PCR on days 1 and 3 post fertilisation compared to un-injected controls. 

Morpholinos were rejected if they lacked efficacy or were deemed toxic, definitions by 

Robu et al. 156   
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2.24 TALEN design and construction 

A TALEN pairs to make targeted germ line mutations in ZF embryos were designed 

and manufactured as follows. The cDNA sequence for gba1 (ENSDART00000113093) 

was inputted into the TALEN TARGETTER 

https://boglab.plp.iastate.edu/node/add/talen. The targeter was set to allow spacers 

of 16bp as a minimum and 21bp as a maximum. Minimum repeat array was set at 15 

and maximum at 21. A pair of TALENs, including a region with a wide large 

restriction enzyme site was chosen. In the case of the TALENs targeting, gba1, a 

position in exon 7 was chosen with an MwoI restriction enzyme present that could be 

used to assay TALEN efficacy. A pair of TALENs binding 

5’TCTGTACCCTGATTACTT (RIGHT TAL) and 5’ATGCGCTGGGTGGAGTCCA 

(LEFT TAL) were chosen by the TALEN Targeter with plasmid codes of HD NG NN 

NG NI HD HD HD NG NN NI NG NG NI HD NG NG and NN NN NI HD NG HD 

HD NI HD HD HD NI NN HD NN HD NI NG respectively. 

Self-ligating plasmids were purchased from Addgene 

(http://www.addgene.org/TALeffector/goldengate/voytas/Plate1/). Each TALEN 

was made in two parts and joined at the end. Part A was assembled into the F5 

plasmid (pFusA) with the initial ten RVDS. The latter RVD plasmids would be 

assembled into pFUSBN, N=TOTAL RVD-11. For the initial assembly, 2 tubes were 

made up as follows: 

For each A part – 1 µl of each RVA plasmid (100ng/µl), 1 µl pFusA (100ng/µl) 4 µl 

H2O, 2µl T4 ligase buffer (NEB), 2 µl T4 ligase (NEB) and 1µl BSA1 (NEB). For each part 

B – 1 µl each RVD plasmid (150ng/µl), 1 µl pFusB (150ng/µl), 2 µl T4 DNA ligase 

buffer (NEB), 2 µl T4 DNA ligase (NEB), 1 µl Bsa1 (NEB), with the reaction made up to 

20 µl with H2O. Each reaction was then incubated in the following cycle for ten cycles: 

37 ºC for 5 minutes then 16 ºC for ten minutes. This was followed by a 5 minute 

incubation at 50 ºC, then at 80 ºC. 0.3 µl 25mM rATP and 1µl plasmid safe nuclease were 

added to each reaction then incubated for 1 hour at 37 ºC.  

Each reaction was then transformed (as previously described) into DH10Beta cells 

(NEB) which were then spread onto LB agar plates (50 ug/ml Spectinomycin, 0.1 mM 

IPTG and  XGal 40 µg/ml) and incubated overnight at 37 ºC. The following day, 3 

white colonies from each reaction were picked and used to inoculate 6 ml LB (50 
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ug/ml Spectinomycin) and shaken overnight at 37 ºC. The following morning, all 

samples were centrifuged down and plasmids isolated with a Qiagen mini-prep kit. 

The second assembly stage took place to combine parts A and B of each TALEN as 

follows: 5 µl H2O, 4 µl mini-prep A, 4 µl mini-prep B, 1 µl 150ng/µl plasmid E4, 1 µl 75 

ng/µl pCAGT7TALEN, 2 µl T4 DNA ligase buffer (NEB), 2 µl T4 DNA ligase (NEB) 

and 1 µl Esp4I. The reaction was then incubated as follows for ten cycles: 37 ºC for 5 

minutes then 16 ºC for ten minutes. Followed by a 5 minute incubation at 50 ºC, then at 

80 ºC. 

Each reaction was then again transformed into DH10Beta cells (NEB), and streaked 

onto LB agar plates with carbenecillin selection (50 ug/mL carbenecillin and 0.1 mM 

IPTG and XGal 40 µg/ml) and incubated over night at 37 ºC. The following morning, 1 

colony was picked from each subunit and used to inoculate 100 ml LB (50 ug/mL 

carbenecillin) in a baffled flask, and shaken overnight at 37 ºC. The following morning 

each culture was purified using a Nucleo-bond midi-prep as previously described and 

the plasmid pellet re-suspended in 30 µl H2O.  

To generate TALEN mRNA, the final plasmids were linearized with a NotI digest as 

follows: - 6 µg DNA of each of the right and left constructs, 30 µl NEB3 buffer, 3µl 10 

mg/ml BSA and 10 µl NotI, then H2O up to 300 µl in a PCR tube. The reaction was 

incubated at 37ºC for 1 hour. RNA was synthesised using an Epicentre T7 MessageMax 

ARCA kit (CAMBIO) as follows. 3 µl DNA (400 ng/µl), 4 µl NTP CAP mix, 1µl buffer, 

1 µl 100 mM DTT and 1 µl enzyme mix was incubated for 30 minutes at 37ºC, then 1µl 

DNAse was added, followed by a further incubation for 15 minutes. RNA was purified 

using Qiagen MinElute system™. RNA was stored at -80ºC. To mutagenize zebrafish 

embryos, 1 nl of RNA solution (3.5 µl RNA and 0.5 µl Phenol RED) was injected into 1 

cell stage WT embryos and grown up to adulthood to create mosaic F0. 

2.25 Movement analysis of adult zebrafish 

Adult locomotion was quantified using Viewpoint analysis software version 3, 22, 3, 9 

and filmed on a CCTV LENS 2.8-12mm F1.4 camera (both Viewpoint). For filming 3 

year old PINK1 line, fish were filmed individually for a period of 4 hours (1 hour 

acclimation and 3 hours analysed) between the hours of 3pm and 7pm. For the gba1 

line, fish were filmed individually for ten minutes after ten minutes acclimation time. 
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Low speed movements were defined as less than <5 cm/s. Medium speed movements 

were defined as 5<X<7cm/s. High speed movements were defined as movements over 

7cm/s. 

2.26 Bicinchoninic acid assay (BCA) protein assay 

The BCA assay was utilised to determine protein concentration of zebrafish brain 

homogenates. 

Adult zebrafish brains were homogenised as a 5% solution with a 100 µl glass on glass 

homogeniser (Decon instruments). Samples were kept on ice for the protein 

concentration to be measured. Two dilutions of 2.5 µl and 5 µl brain homogenates were 

made up to 50 µl with distilled H2O. Each volume for each sample was measured in 

duplicate. 1 ml bicinchoninic acid was added to each sample and mixed, then 

incubated at 37ºC for ten minutes. 20 µl of 4% copper sulphate solution was then added 

to each sample, mixed, then incubated for 20 minutes at 37ºC. The absorbance was read 

at 562nm and protein concentration calculated from a standard curve established from 

a set of dilutions of bovine serum albumin. 

2.27 Gba activity assay 

Gba1 and 2 activities were determined as follows: Whole zebrafish brain was 

homogenised (in distilled water) and diluted to 2 mg/ml. For total Gba activity 

(TOTAL) of the homogenate, 10 µl homogenate was mixed with 90 µl H2O. For basal 

Gba1 activity (Gba1), 10 µl homogenate was mixed with 80 µl H2O and 10 µl NBDNJ 

(50 µM, N-Butyldeoxynojirimycin, a specific GBA2 inhibitor).  For activated Gba1, 10 

µl homogenate was mixed with 50 µl H2O and 40 µl NAT (sodium taurocholate, GBA1 

activator/GBA2 inhibitor) (40mg/ml). Each mixture was incubated on ice for 1 hour. 

100µl substrate solution was added to each mixture (1.69mg/ml of 4-

methylumbelliferyl-beta-D-glucopyranoside dissolved in McIlvaine citrate phosphate 

pH 5.4), and incubated for 1 hour at 28ºC. The reaction was stopped with the addition 

of 1 ml of 1 M glycine NaOH buffer pH 10.4 and vortexed. Samples were read 

alongside a 1 nm 4-methylumbelliferone standard, with excitation 365 nm, emission 

450 nm. A blank was set up for all inhibitor conditions containing all reagents except 

for the brain lysate.  
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Gba1 activity was also measured using CBE as an inhibitor as part of a collaboration 

between the author and Dr Matthew Gegg. Dr Matthew Gegg performed the assay and 

analysis, the author performed the genotyping, brain removal and processing. The 

assay was conducted as follows. 

Brains were homogenised in 75 µl RIPA buffer (150 mM NaCl, 1.0% (v/v) NP-40, 1% 

(w/v) sodium deoxycholate, 0.1% (w/v) SDS, 50 mM Tris, pH 7.4). Gba activity 

determined in samples (10 µg protein) by hydrolysis of 5 mM 4-methylumbelliferyl-β-

D-glucopyransoside in McIIvaine citrate phosphate buffer (pH 5.4) in the presence of 

22 mM sodium taurocholate at 37 °C for 1 hour. For CBE sensitive rate, duplicate 

samples were incubated in the presence of 5 mM CBE (15 minute pretreatment at 37 

°C, plus present during assay). The reaction was stopped by addition of 0.25M glycine 

(pH 10.4) and 4-methylumbelliferone fluorescence measured at excitation 360 nm, 

emission 460 nm. 

 

2.28 Total β Hexosaminidase activity assay 

Total zebrafish brain was homogenised as previously described, and diluted to 1 

mg/ml. 5 µl of this solution was diluted with 495 µl of McIlvaine citrate–phosphate 

buffer pH 4.5. 100µl of this further dilution was placed into a new 1.5 ml tube and 

warmed for 2 minutes at 37ºC. 100 µl of substrate solution (1.1 mg/ml of 4-

methylumbelliferyl-2-acetamido-2-deoxy-beta-d-gluco-pyranoside in McIlvaine 

citrate–phosphate buffer pH 4.5) was then added to each sample, mixed and incubated 

for ten minutes at 37ºC. The reaction was stopped with 1 ml of 1 M glycine NaOH 

buffer pH 10.4 and vortexed. Samples were read along with a 1nm 4-

methylumbelliferone standard, with excitation 365 nm, emission 450 nm. A blank was 

set up for containing all reagents except for the brain lysate.   

2.29 Chitotriosidase activity assay 

Zebrafish brains were homogenised as described and diluted to 2 mg/ml. To measure 

Chitotriosidase level 10 µl of brain homogenate was combined with 100 µl substrate 

solution (1.73mg/ml of 4-methylumberiferyl-beta-d-N, N’, N’’, -triacetychitotriose in 

McIlvaine citrate–phosphate buffer pH 5.2) mixed and incubated for 1 hour at 28ºC. 
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The reaction was stopped with 1 ml 1 M glycine NaOH buffer pH 10.4 and vortexed. 

Samples were read along with a 1nm 4-methylumbelliferone standard, with excitation 

365 nm, emission 450 nm. A blank was set up for all conditions containing all reagents 

except for the brain lysate. 

2.30 β Galactosidase activity assay 

Zebrafish brains were homogenised as described and diluted to 2 mg/ml.  To measure 

β-Galactosidase activity, 10µl brain homogenate was mixed with 40 µl of McIlvaine 

citrate–phosphate buffer pH 4.1. This was combined with 150 µl substrate solution 

(1mM 4-methylumbelliferyl-D-galactopyranoside dissolved in 4.1 buffer). The reaction 

was incubated for 15 minutes at 28 ºC. The reaction was stopped with 1ml 1 M glycine 

NaOH buffer pH 10.4 and vortexed. Samples were read along with a 1nm 4-

methylumbelliferone standard, with excitation 365 nm, emission 450 nm. A blank was 

set up for all conditions containing all reagents except for the brain lysate. 

2.31 Haematoxylin and Eosin (H&E)/ Periodic acid–Schiff (PAS) 

staining 

For histological analysis of 12 wpf zebrafish, sections were stained with either H&E or 

PAS. This experiment was jointly undertaken between the author and Dr Aswin 

Menke. Genotyping and fixation of samples was performed by the author, sectioning, 

staining and analysis was performed by Dr Aswin Menke. 

Adult zebrafish were genotyped and fixed in Bouins fixative.  Each sample was 

embedded in paraffin and subsequently cut into, 4 µm transversal or saggital sections 

were made and stained with haematoxylin and eosin. The slides were analysed on a 

Axioskop 2 plus microscope by a board-certified pathologist. 

2.32 Microglial/Macrophage analysis 

For analysis of the macrophages and microglial in gba genotypes, a GFP reporter and 

confocal imaging was utilised. This experiment was jointly undertaken, between the 

author and Dr Felix Ellett. Imaging and analysis performed by Dr Felix Ellett, 

genotyping and crossing performed by the author. 
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gba1 23bp del -/+ were crossed to Tg(mpeg1:EGFP-CAAX) described by Ellett et al.286 

Embryos were selected for GFP fluorescence, genotyped at 3 months. All subsequent 

embryo work was generated from an incross of gba1 23bp del -/+; Tg(mpeg1:EGFP-

CAAX) and imaged at 4 dpf using UltraVIEWVoX spinning-disk confocal microscope 

(PerkinElmer Life and Analytical Sciences). 2µm optical sections were taken for three 

fields of view for each embryo, principally: the caudal haematopoietic tissue; trunk, 

and head region anterior to the yolk. Volocity 5 (Improvision; PerkinElmer Life and 

Analytical Sciences) was used for imaging analysis of GFP positive cell shape and 

volume, with cell boundaries defined using fluorescence intensity. All analysis was 

performed blinded to embryo genotype. 

2.33 Mitochondrial Complex assays 

Mitochondrial Complex assays were utilised to measure the activity of each 

mitochondrial Complex in the electron transport chain. These experiments were jointly 

undertaken between the author, Dr Marc DaCosta and Dr Heather Mortiboys. The 

author performed Morpholino injections, genotyped and extracted brains then 

processed all samples. Dr Marc Da Costa performed the Complex assays on brain 

material; Dr Heather Mortiboys performed the Complex assays on larvae. Assays were 

performed as previously decribed.168  

2.34 Mass Spectrometry 

Mass spectrometry methods where conducted as previously described.287 Mass 

spectrometry experiments were jointly undertaken between the author and Dr Hai Bui. 

12 wpf brains were extracted and flash frozen by the author. Mass spectrometry 

analysis of the samples was conducted by Dr Hai Bui. 

2.35 Nomenclature 

All human genes and proteins are referred to in uppercase, with genes and transcripts 

italicised. All mouse proteins are referred to in uppercase with genes in lowercase with 

the exception of the first letter. All mouse genes are in italics. All zebrafish genes and 

transcripts are represented in lower case italics whilst proteins are represented in lower 
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case with the exception the first letter that is written in uppercase. See below for 

examples. The only exception to this stated nomenclature is tyrosine hydroxylase that 

is referred to as TH through the entire thesis. 

species / gene / protein 

zebrafish /pink1/ Pink1 

human / PINK1 / PINK1 

mouse / Pink1 / PINK1 

2.36 Statistical tests and analysis 

All statistical tests were performed using Graphpad prism V.5 software (Graphpad). N 

numbers for all experiments donated by the prefix n and all errors bars shown denote 

the mean ± Standard error of the mean. All experiments performed in triplicate unless 

different n number stated or the data described as pilot data. All data analysed with 

either T test, one way ANOVA or two-way ANOVA unless otherwise stated. 

Significance values denoted as follows. 

Non-significant (ns): p>0.05  

*: p<0.05  

**: p<0.01 

***: p<0.001 

****:p<0.0001 
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3 The zebrafish as a model for pink1 deficiency 
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3.1 Characterisation of the pink1 Y431* zebrafish 

3.1.1 pink1 introduction 

Prior to commencement of this study, no previous vertebrate model of PINK1 

deficiency faithfully modelled the disease seen in humans, with no model 

demonstrating spontaneous DA cell loss.129, 188  It was hypothesised that zebrafish 

would be a more suitable model for pink1 deficiency, with the wider aim of using pink1 

mutant zebrafish for phenotypic drug discovery. Consequently a pink1 mutant 

zebrafish allele was generated from an ENU mutagenesis screen conducted by Dr 

Sandrine Bretaud that identified a pink1 allele with a nonsense mutation Y431*. The 

mutation leads to a premature stop codon appearing within the kinase domain of 

Pink1. The mutation was confirmed to be loss of function in kinase assays, and led to 

mitochondrial dysfunction in larvae and adult pink1 -/- (Experiments conducted by Ms 

Helen Woodroof and Dr Heather Mortiboys). The mitochondria appeared swollen and 

less electron dense, with pink1 -/- exhibiting a decrease in mitochondrial Complex 

activity, specifically in Complex I and III. This defect was present in 5dpf larvae and in 

adult fish in a manner that was not progressive in nature.  Unlike Pink1 KO mice and 

Medaka, pink1 -/- loss of function zebrafish exhibited a loss of TH neurons in 

development by 5dpf of approximately 20% (experiments conducted by Dr Laura 

Flinn). This decrease increased to 50% at the age of 18 months. This was the first 

vertebrate model of pink1 deficiency that demonstrated a loss of DA neurons. Not only 

does the loss appear very early in development, it also persisted through to 

adulthood.200 As part of this thesis, further validation, and functional studies of this 

zebrafish model of pink1 deficiency were carried out. The aim was to assess, firstly, 

whether zebrafish is a useful model species for studying pink1 deficiency, and secondly 

whether there are any genetic interactions that can modify the phenotypes, identifying 

possible new drug targets for PD. 

3.1.2 Zebrafish possess a single PINK1 orthologue (ENSDARG00000001929)  

Many studies have identified Zebrafish to have single orthologue of human PINK1, 

which possesses approximately 60% protein and DNA identity to the human gene, see 

Figure 11.  
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Figure 11. Clustal alignment of human GBA1 and Zebrafish Gba1.The human protein sequence 
(ENSP00000314508) aligned via clustal to its zebrafish orthologue (ENSDARP0000098103). Both sequences 
have considerable homology of approximately 60% over 100% coverage. 

 

However, conserved synteny in the genomic loci of human and Zebrafish genes has yet 

to be illustrated, a further marker of true conservation between orthologues.   

A 500kb stretch of genomic locus of each gene was compared in both species, revealing 

there was indeed a conserved gene synteny between them both. Upstream of the 

PINK1 gene, four genes present in the human locus were also found, not only in same 

zebrafish locus, they also appear in the same sequential order. Specifically, these were 

CAMK2N1, MUL1, FAM43b and CDA at the human locus, their zebrafish orthologues 

being camk2n1b, mul1b, fam43b and cda respectively. All of which were found within 

200kb of the PINK1 locus. Synteny downstream of PINK1 did not appear to be 



 
 

75 

conserved, with no genes located in both species within 200kb. See Figure 12 for a 

graphical representation outlining the similarities and differences of both loci. 

 

Figure 12. The genomic loci of the PINK1 in human and zebrafish. Both zebrafish and humans share 
conserved gene synteny surrounding the PINK1 gene, with four different genes (CAMK2N1, MUL1, 
FAM43B and CDA all upstream of the PINK1 sequence), in the same order in both species. Demonstrating 
that pink1 zebrafish is a true orthologue of human PINK1.  Synteny down- stream of the PINK1 does not 
appear to be conserved, with no genes in common in either species within the 300kb radius. 

3.1.3 pink1 Y431* transcript undergoes nonsense mediated decay 

The Y431* allele, a nonsense mutation, codes for a premature stop codon within the 

kinase domain of pink1.  Although this prevents the last 30% of the WT mRNA species 

from being translated into protein and one could hypothesise that the protein would 

not be able to fold properly or alternatively be kinase dead, further evidence was 

required to demonstrate loss of function. In parallel to the kinase assays that 

demonstrated the allele to be enzymatically non-functional, the experiment 

investigated possible activation of nonsense mediated decay (NMD) on the pink1 

transcript itself in pink1 -/-.  Subsequently, to further investigate whether the Y431* 

mutation results in decreased pink1 mRNA levels, pink1 qPCR was carried out in pink1 

-/- and WT. pink1 -/-had an approximately 65% reduction in pink1 transcript compared 

to WT controls (P<0.0001), see Figure 13. This suggests that NMD is occurring in the 
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pink1 -/- fish  and further supports the assumption that the Y431* mutation results in 

Pink1 loss of function.201, 288 

 

Figure 13. The pink1 transcript expression in pink1 - /- compared to WT. The pink1 -/- larvae have a 
marked reduction in pink1 transcript levels (approximately 65%) compared to the WT (P<0.001 Unpaired T 
test). ef1a was use as a reference gene. 

3.1.4 Aged pink1 -/- zebrafish display a parkinsonian-like movement defect 

To evaluate for parkinsonian like movement defects in aged fish, 3 year old fish were 

filmed and their total displacement analysed. Each fish (n of ten per genotype) was 

filmed for a total of 4 hours. Habituation time of 1 hour was deemed appropriate for 

each genotype and total displacement calculated over the next 3 hour period.  3 year 

old pink1 -/- zebrafish covered 30% less distance over time than WT controls (P <0.05, 

unpaired T test) (see Figure 14). This demonstrated that pink1 -/- may move less often, 

at slower speeds or both. Behaviour such as this is indicative of bradykinesia and 

freezing, key motor symptoms seen in PD. 
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Figure 14. Total displacement of 3 year old pink1 -/- and WT controls. The pink1 -/- fish exhibited a 
decrease in total displacement (approximately 30% P<0.05 unpaired T Test, n=10 for both groups) over 
time, indicating slower and less frequent movements as seen in PD patients. 

3.1.5 pink1 -/- larvae do not exhibit defects in neuronal development 

Dr Laura Flinn had previously established that pink1 -/- larvae have a 25% reduction of 

TH neurons at 5dpf. This had been confirmed using DAT as a secondary marker, 

which also demonstrated a 25% reduction. 201 The nature of this reduction could either 

be due to cell death of the TH positive neurons, or a developmental phenotype. As 

zebrafish develop ex vivo, they present the perfect model to examine any possible 

neuro-developmental defects that may lead to the recorded TH neuron reduction. To 

investigate this, a series of neurodevelopmental markers were analysed in pink1 -/- 

and their WT controls.  The markers stained by WISH included shh, emx1, otpa, otpb, 

krox20, and pax2.1.  This experiment was jointly undertaken between the author and 

Ms Elena de Felice. Markers for shh, emx1, otpb, krox20, and pax2.1, were stained and 

analysed by Ms Elena de Felice. The marker otpa was stained and analysed by the 

author. Both genotypes were analysed throughout development at 1-5 days post 

fertilisation.  No differences in change of expression of any gene were seen in either 

genotype qualitatively or quantitatively (see Figure 15), suggesting that Th neuron 

reduction in pink1 -/- larvae is not due to a developmental defect after 24hpf. This does 

not rule out developmental defects effecting TH neuron development pre 24dpf. 
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Figure 15. Developmental markers in pink1 -/- larvae. A series of neuronal developmental markers were 
analysed in pink1 -/- and WT from 1-5dpf (only 1dpf shown). These were emx1, shh, pax2.1, krox20, otpa 
and otpb. only 1dpf shown. No difference was observed in WISH staining in either group at any marker 
arguing against Th neuron reduction being due to a development defect at 24hpf and after.  

3.1.6 pink1 -/- microarray re-annotation 

Previous to the commencement of this thesis, microarray-based gene expression 

analysis had been conducted between pink1 -/- and WT controls at 5dpf to identify gene 

expression changes that may be leading to the reported Th neuron reduction. The 

original microarray had been annotated using ENSEMBL data of the Zebrafish genome 

during its 5th version. The zebrafish genome is now in its 9th assembly and 

considerably more detailed and annotated.  Approximately 80% of the probe changes 

in the original microarray were to unannotated zebrafish genes. To re-annotate the 

microarray using the 9th version of the zebrafish genome, each probe was searched for 

via BLAST in the zebrafish cDNA database with multiple stringencies. When the 

zebrafish transcript was identified, the zebrafish transcript was search for using BLAST 

in the human genome to identity a suitable orthologue if ENSEMBL had not 
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automatically identified it as an orthologue of a human gene,. All probe hits that 

required re-annotation are highlighted in blue. See Table 5 for a re-annotated list of 

upregulated transcripts in the pink1 -/- 5dpf larvae and Table 6 for the down regulated 

transcripts. 

FCAbsolute GeneSymbol GeneName 
16.423103 hdac9b histone deacetylase 9b 
14.817871 tigarb tp53-induced glycolysis and apoptosis regulator b 
10.187797 cfh Complement factor H 
9.761307 CU463157.1 Similar to Complement factor H  
9.706486 N/A BLAST SEARCH GAVE NO HITS 
7.7182097 N/A Multiple HITS 
7.0322556 ALPP alkaline phosphatase, placental   
5.9192815  rpl13a ribosomal protein L13a 
5.836889 myl6 myosin, light chain 6, alkali 
5.437794 ccbl1 cysteine conjugate-beta lyase; cytoplasmic  
5.365619 N/A BLAST SEARCH GAVE NO HITS 
5.274791 N/A BLAST SEARCH GAVE NO HITS 
5.229535 tom1l2 target of myb1-like 2 (chicken) 
5.0453973 xkr9 XK, Kell blood group complex subunit-related family 
4.987913 fbxo16 F-box protein 16 
4.905778 apex1 APEX nuclease  1 
4.9030137 si:dkey-238c7.13 A non -protein coding transcript 
4.847179 uvrag UV radiation resistance associated gene  
4.8395343 zgc:101572 Protein kinase-like protein SgK196 
4.778119 ccbl1 cysteine conjugate-beta lyase; cytoplasmic  
4.6681256 crebl2 cAMP responsive element binding protein-like 2  
4.5243216 N/A BLAST SEARCH GAVE NO HITS 
4.2470703 N/A BLAST SEARCH GAVE NO HITS 
4.1389275 CCDC137 coiled-coil domain containing 137  
3.9723723 N/A Multiple HITS 
3.878004 capn8 calpain 8 
3.8745248 N/A BLAST SEARCH GAVE NO HITS 
3.7615082 capn8 calpain 8  
3.6562207 N/A Multiple HITS 
3.5966234 N/A processed transcript si:ch73-44m9.2-001 
3.59213 ptgs2b prostaglandin-endoperoxide synthase 2b 
3.549981 IMPG2 interphotoreceptor matrix proteoglycan  
3.5278482 zgc:162239  acyl-CoA synthetase long-chain family member 1 
3.5260308 FETUB fetuin B 
3.5236447 zgc:122979 DnaJ (Hsp40) homolog, subfamily B, member 5  
3.3546922 FUT9 (3 of 16) fucosyltransferase 9 
3.3368623 N/A Multiple HITS 
3.291373 N/A BLAST SEARCH GAVE NO HITS 
3.2243793 N/A BLAST SEARCH GAVE NO HITS 
3.197398 pogza pogo transposable element with ZNF domain  
3.0550892 GJA4 gap junction protein, alpha 4 
3.0521128 MATE 1 Multidrug and toxin extrusion protein 1  
3.0221562 nudix nucleoside diphosphate linked moiety X 
2.999063 bhlhb3l basic helix-loop-helix domain  
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FCAbsolute GeneSymbol GeneName 
2.909844 N/A BLAST SEARCH GAVE NO HITS 
2.8619947 cdadc1 cytidine and dCMP deaminase domain containing 1 
2.8518662 cyp8b1 cytochrome P450, family 8 
2.8446841 SMU1 smu-1 suppressor of mec-8 and unc-52 homolog 
2.8259096 N/A BLAST SEARCH GAVE NO HITS 
2.8096638 N/A BLAST SEARCH GAVE NO HITS 
2.7729554 yipf5 Yip1 domain family, member 5 
2.7522666 ubtd1 ubiquitin domain containing 1 
2.720866 ACY1 Aminoacylase-1 61% homology to human gene 
2.7193558 N/A Probe not specific 
2.7091837 rgs2 regulator of G-protein signaling 2 
2.686784 pex14 peroxisomal biogenesis factor 14   
2.6860514 HSP3 Hermansky-Pudlak syndrome 3 
2.6850827 taar65 trace amine associated receptor 65 
2.6711266 N/A Multiple HITS 
2.64639 N/A Multiple HITS 
2.583023 N/A BLAST SEARCH GAVE NO HITS 
2.5543456 rh50 Rh50-like protein 
2.5355914 NUDT16 nucleoside diphosphate linked moiety X 
2.5262425  ENPP7 ectonucleotide pyrophosphatase/phosphodiesterase 7  
2.4969575 N/A BLAST SEARCH GAVE NO HITS 
2.4912636 SH3BGRL3 SH3 domain binding glutamic acid-rich protein like 3 
2.471074 N/A BLAST SEARCH GAVE NO HITS 
2.465009 N/A BLAST SEARCH GAVE NO HITS 
2.4475963 SH3BGRL3 SH3 domain binding glutamic acid-rich protein like 3  
2.4423368 ACE angiotensin I converting enzyme 
2.4230134 ATPBD4 ATP binding domain 4  
2.4093752 ubr3 ubiquitin protein ligase E3 component n-recognin 3 
2.4026387 bokb BCL2-related ovarian killer b 
2.3753383 zmat2 zinc finger, matrin type 2 
2.3702154 rh50 Rh50-like protein 
2.3591704 N/A BLAST SEARCH GAVE NO HITS 
2.3576367 polr1b polymerase (RNA) I polypeptide B 
2.3572855 rhcg Rhesus blood group, C glycoprotein 
2.3397517 RAB35 RAB35, member RAS oncogene family 
2.3275254 SLC16A8 similar to monocarboxylate transporter 3  
2.3168197 st14b suppression of tumorigenicity 14 (colon carcinoma) b  
2.2862763 vti1a vesicle transport through interaction with t-SNAREs  
2.2692866 mylipb myosin regulatory light chain interacting protein b 
2.258262 N/A BLAST SEARCH GAVE NO HITS 

2.2536519 CAMKK1(2 of 2) calcium/calmodulin-dependent protein kinase kinase 1 

2.243251  slco2b1 solute carrier organic anion transporter family 
2.240908 ntf3 neurotrophin 3 
2.2320147 bhlhb3l basic helix-loop-helix domain containing, class B 
2.2305305 N/A BLAST SEARCH GAVE NO HITS 
2.2201831 nt5c3 5'-nucleotidase, cytosolic III  
2.2149444 ZNF362 zinc finger protein 362  
2.2083664 dapp1 dual adaptor of phosphotyrosine and 3-phosphoinositides 
2.2026093 rgs2 regulator of G-protein signalling 2 
2.1944575 SUSD3 (3 of 3) sushi domain containing 3 
2.1529658 gltpd2 similar to glycolipid transfer protein domain containing 1 
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FCAbsolute GeneSymbol GeneName 
2.143542 zgc:66298 polymerase (RNA) I polypeptide B 
2.1408815 TTF1 (6 of 6) transcription termination factor, RNA polymerase I   
2.1399355 N/A BLAST SEARCH GAVE NO HITS 
2.136245 cdk5 cyclin-dependent protein kinase 5 
2.1317372 dcps mRNA de-capping enzyme  
2.1275663 guca1c guanylate cyclase activator 1C 
2.1216083 ubtd1 ubiquitin domain containing 1 
2.115108 fam151a family with sequence similarity 151, member A 
2.0885773 rbm28 RNA binding motif protein 28  
2.0721066 slc23a1 solute carrier family 23 (nucleobase transporters) 
2.0627465 N/A 3 hits but all in the wrong direction 
2.062203 N/A BLAST SEARCH GAVE NO HITS 
2.054885 si:ch211-9d9.1 Novel protein si:ch211-9d9. 
2.04587 fbxl22 F-box and leucine-rich repeat protein 22 
2.0447233 cx28.9 connexin 28.9 
2.0266476 LOC796252 chemokine CXL-C24a  
2.022967 LOC100001286 similar to C6orf106  
2.0225506 bcl2l bcl2-like 50% homology to human gene 
2.0224402 rnf207 ring finger protein 207 
2.0055213 otud7b OTU domain containing 7B  

Table 5.Up-regulated transcripts in pink1 -/- microarray. All genes highlighted in green were altered 
during re annotation. 

 

FCAbsolute GeneSymbol Description 
337.62494 A2LD1 AIG2-like domain 1  
294.653 si:dkeyp-73d8.6 Homology to ATP-binding cassette, sub-family A  
208.23721 N/A BLAST SEARCH GAVE NO HITS 
156.19023 lmbr1l Danio rerio limb region 1 like  
48.701042 im:7148382  IMAP family member 4 and GTPase 
32.852505 BLOC1S2 biogenesis of lysosomal organelles complex-1, s2 
31.081526 gltpd1- glycolipid transfer protein domain containing 1 
26.637669 polr2b polymerase (RNA) II (DNA directed) polypeptide B  
26.173359 BLOC1S2 biogenesis of lysosomal organelles complex-1, s2 
25.223787 N/A BLAST SEARCH GAVE NO HITS 
24.581673 SLC17A3  solute carrier family 17 (sodium phosphate) 
23.082857 A2LD1 AIG2-like domain 1 
21.294308 N/A BLAST SEARCH GAVE NO HITS 
21.037832 N/A Multiple HITS 
20.258842 dhrs11a dehydrogenase/reductase (SDR family) member 11a  
20.244846 N/A BLAST SEARCH GAVE NO HITS 
20.155668 kmo kynurenine 3-monooxygenas 
16.645021 N/A BLAST SEARCH GAVE NO HITS 
14.625197 gpib  glucose phosphate isomerase b 
14.02044 A2LD1 AIG2-like domain 1 
14.008943 TSEN15 tRNA splicing endonuclease 15 homolog  
12.349935 wnt9a Danio rerio wingless-type MMTV integration site  
11.57964 RAP1GAP RAP1 GTPase activating protein 
11.193585 N/A BLAST SEARCH GAVE NO HITS 
10.937099 FABP6 fatty acid binding protein 6, ileal  
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FCAbsolute GeneSymbol Description 
10.151755 gpib glucose phosphate isomerase b 
10.0883045 A2LD1 AIG2-like domain 1 
9.349176 N/A BLAST SEARCH GAVE NO HITS 
8.381044 psmg1  proteasome  assembly chaperone  
7.8119206 N/A BLAST SEARCH GAVE NO HITS 
7.7133327 TSG101 tumor susceptibility gene 101 
7.341222 dnmt4  DNA (cytosine-5-)-methyltransferase 4  
6.614778 si:ch211 si:ch211-260o22.1 no human orthologue 
6.3371925 N/A BLAST SEARCH GAVE NO HITS 
6.1110654 N/A BLAST SEARCH GAVE NO HITS 
5.987409 N/A BLAST SEARCH GAVE NO HITS 
5.91139 N/A BLAST SEARCH GAVE NO HITS 
5.4998446 N/A BLAST SEARCH GAVE NO HITS 
5.3801837 olfml3a olfactomedin-like 3a  
5.192232 RAP1GAP RAP1 GTPase activating protein 
4.8446903 STARD8 StAR-related lipid transfer domain containing 8  
4.7878747 N/A BLAST SEARCH GAVE NO HITS 
4.76362 hsf1  heat shock transcription factor 1  
4.749809 UNC13C unc-13 homolog C  
4.7147145 N/A BLAST SEARCH GAVE NO HITS 
4.6948247 si:dkey-217f16.3 Processed transcript 
4.5762057 UNC13C unc-13 homolog C  
4.4179616 N/A BLAST SEARCH GAVE NO HITS 
4.415685 N/A BLAST SEARCH GAVE NO HITS 
4.3336716 N/A BLAST SEARCH GAVE NO HITS 
4.331479 parp6a  poly (ADP-ribose) polymerase family, member 6a  
4.285228 cyp24a1l cytochrome P450, family 24, subfamily A, p1 
4.225144 N/A Multiple HITS 
4.015451 N/A BLAST SEARCH GAVE NO HITS 
3.994224 N/A BLAST SEARCH GAVE NO HITS 
3.9867797 dnmt8  DNA (cytosine-5-)-methyltransferase 8 
3.908932 N/A BLAST SEARCH GAVE NO HITS 
3.8250778 N/A BLAST SEARCH GAVE NO HITS 
3.822486 N/A BLAST SEARCH GAVE NO HITS 
3.801205 nedd1 neural cell expressed, down-regulated 1  
3.798918 N/A BLAST SEARCH GAVE NO HITS 
3.7675848 pnrc2  proline-rich nuclear receptor co-activator 2  
3.7333267 slc35c2  solute carrier family 35, member C2  
3.7078235 N/A BLAST SEARCH GAVE NO HITS 
3.6977255 cyp24a1l  cytochrome P450, family 24, subfamily A 
3.6936898 adh8a Danio rerio alcohol dehydrogenase 8a 
3.691377 N/A BLAST SEARCH GAVE NO HITS 
3.656716 N/A BLAST SEARCH GAVE NO HITS 
3.4622538 or115-15  odorant receptor, family F, subfamily 115, member 15  
3.4027152 zgc:77778 Novel gene zgc:77778 
3.3788104 N/A BLAST SEARCH GAVE NO HITS 
3.3629289 PAK6 p21 protein (Cdc42/Rac)-activated kinase 6 
3.2621887 myt1 myelin transcription factor 1 
3.238024 N/A BLAST SEARCH GAVE NO HITS 
3.1932921 N/A BLAST SEARCH GAVE NO HITS 
3.1537905 N/A BLAST SEARCH GAVE NO HITS 
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FCAbsolute GeneSymbol Description 
3.1504362 N/A Multiple HITS 
3.1422331 minal MYC induced nuclear antigen-like  
3.1365201 N/A BLAST SEARCH GAVE NO HITS 
3.11931 A2LD1 AIG2-like domain 1  
3.1175594 N/A BLAST SEARCH GAVE NO HITS 
3.108831 minal  MYC induced nuclear antigen-like  
3.105338 nek8 NIMA (never in mitosis gene a)-related kinase 8  
3.0960152 GST? Possible orthologue of glutathione S-transferase t2  
3.0869365 tcf21  transcription factor 21  
3.0493743 N/A BLAST SEARCH GAVE NO HITS 
3.0321693 znf511 zinc finger protein 511 
3.0255601 ITLN1 Orthologue of Human Interlectin 1 and 2 
3.0156412 N/A BLAST SEARCH GAVE NO HITS 
2.9421065 usp19 ubiquitin specific peptidase 19 
2.8969617 N/A BLAST SEARCH GAVE NO HITS 
2.8825202 zgc:162431 coiled-coil domain containing 50 
2.8793223 N/A BLAST SEARCH GAVE NO HITS 
2.7616208 ndrg1l  N-myc downstream regulated gene 1 
2.7057443 ALPP alkaline phosphatase, placental 
2.7017643 rxfp2 relaxin/insulin-like family peptide receptor 2  
2.6924372 PDRG1  p53 and DNA-damage regulated 1 
2.6574495 sema3bl sema domain, immunoglobulin domain  
2.6233196 trpc4apb transient receptor potential cation channel 
2.6145089 GPR22 (2 of 2)  G protein-coupled receptor 22  
2.612301 ttyh2  tweety homolog 2 (Drosophila) 
2.603541 N/A BLAST SEARCH GAVE NO HITS 
2.594108 atp6v1e1  ATPase, H+ transporting, lysosomal 
2.592997 trpc4apb  transient receptor potential cation channel 
2.563882 CASP7 caspase 7, apoptosis-related cysteine peptidase 
2.4672425 N/A BLAST SEARCH GAVE NO HITS 
2.4536474 N/A BLAST SEARCH GAVE NO HITS 
2.4451828 pdlim5 PDZ and LIM domain 5  
2.4280818 h3f3d H3 histone, family 3D 
2.4169915 N/A BLAST SEARCH GAVE NO HITS 
2.4159079 zgc:162431 coiled-coil domain containing 50 
2.406655 N/A Multiple HITS 
2.4065533 ormdl2 ORM1-like 2  
2.4046388 ifnphi3 interferon phi 3 
2.40159 irgf1 immunity-related GTPase family, f1 
2.3965645 COX19 COX19 cytochrome c oxidase assembly  
2.393588 N/A BLAST SEARCH GAVE NO HITS 
2.3926997 N/A BLAST SEARCH GAVE NO HITS 
2.325134 FIG4 (2 of 2)  SAC1 lipid phosphatase domain containing  
2.324486 scinlb scinderin like b 
2.31802 sfswap splicing factor, suppressor of white-apricot homolog  
2.313321 or106-8 odorant receptor, family G, subfamily 106, member 8 
2.3082094 zgc:77778 Novel gene zgc:77778 
2.3035688 plp1a  proteolipid protein 1a 
2.2929733 d2hgdh D-2-hydroxyglutarate dehydrogenase 
2.282499 ugt5g1 UDP glucuronosyltransferase 5 family 
2.2780974 N/A BLAST SEARCH GAVE NO HITS 
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FCAbsolute GeneSymbol Description 
2.2714615 mapk1  mitogen-activated protein kinase 1  
2.264065 h1fx H1 histone family, member X  
2.2367263 h1fx H1 histone family, member X  
2.196375 zbtb8os  zinc finger and BTB domain 8 opposite strand 
2.1856678 N/A BLAST SEARCH GAVE NO HITS 
2.1851153 N/A BLAST SEARCH GAVE NO HITS 
2.1839597 aggf1 angiogenic factor with G patch and FHA domains 1 
2.1829376 c1galt1a glycoprotein-N-acetylgalactosamine,3-beta 
2.1532488 N/A BLAST SEARCH GAVE NO HITS 
2.1515162 CCDC50 coiled-coil domain containing 50 
2.1179307 pcmt l-isoaspartyl protein carboxyl methyltransferase  
2.1156254 cry2a cryptochrome 2a  
2.1147645 ncam1b neural cell adhesion molecule 1b  
2.1113217 zgc:165603 Possible orthologue of CUGBP, Elav-like  
2.100326 N/A BLAST SEARCH GAVE NO HITS 
2.100112 LOC100000522 caspase 7, apoptosis-related cysteine peptidase 
2.090073 si:ch1073  similar to nicotinamide nucleotide transhydrogenase 
2.0878496 N/A BLAST SEARCH GAVE NO HITS 
2.0687912 zp3  zona pellucida glycoprotein 3  
2.0626397 cyp26a1  cytochrome P450, subfamily XXVIA, polypeptide 1  
2.0602734 CAMKV  similar to CaM kinase-like vesicle-associated protein  
2.0586677 arrdc3  arrestin domain containing 3 
2.0586 tmx3  thioredoxin-related transmembrane protein 3  
2.0477684 sqstm1 sequestosome 1 
2.0187578 arhgap4a Rho GTPase activating protein 4a 
2.0176172 N/A BLAST SEARCH GAVE NO HITS 
2.0170264 rxfp2 relaxin/insulin-like family peptide receptor 2  
2.0129385 cyp26a1  cytochrome P450, subfamily XXVIA, polypeptide 1  
2.0070715 N/A BLAST SEARCH GAVE NO HITS 
2.0065784 FBXL17 F-box and leucine-rich repeat protein 17 

Table 6. The down-regulated transcripts in pink1 -/- microarray. All genes highlighted in green were 
altered during re annotation. 

Of the 276 probes that had different expression between pink1 -/- and WT, 211 probes 

(76%) required re annotation.  73 probes (26%) did not match homology to any known 

zebrafish cDNA or cross reacted to a variety of transcripts equally.  Of specific interest, 

the reference gene rpl13a appeared as upregulated in the pink1 -/-, a gene previously 

utilised for normalisation in qPCR studies. The majority of gene expression changes 

that were up regulated did not appear to be related and there were only three 

mitochondrial genes. The gene ontogeny terms of the remaining changed probes were 

diverse and included autophagy, mRNA processing, calcium binding, onco-proteins 

and endocytosis. In the down regulated probes, many could not be matched to a 

specific cDNA in the zebrafish genome. Of note, 5 down-regulated probes matched to 

one cDNA, of the AIG like-2 domain protein, an enzyme that catalyses the breakdown 
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of isodipeptide L-gamma-glutamyl-L-epsilon-lysine to 5-oxo-L-proline and free 

alkylamine.289 

3.2 pink1 -/- Th neuron reduction is rescued by tigarb knockdown 

3.2.1 pink1 -/- gene expression changes at 5dpf 

From the microarray, several upregulated genes of interest were chosen for further 

investigation. These transcripts were coded for by the following genes, tigarb, a 

glycolytic inhibitor (up 14 fold), hdac9b a histone deacetylase (up 16 fold) and apex1 a 

DNA repair enzyme (up 5 fold).  In order to carry out functional studies with gene-

gene interactions, these changes required confirmation. Each transcript was analysed 

by qPCR to investigate the specific gene expression changes. However, no changes in 

gene expression were found between pink1 -/- and WT controls at 5dpf, for either 

hdac9b or apex1 (Figure 16). Of note, tigarb expression in pink1 -/- was found to be 

increased nearly 3 fold compared to WT controls (P<0.001 unpaired T test), and hence 

confirming the upregulation recorded in the microarray (Figure 16). 
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Figure 16. Gene expression analysis between pink1 -/- and WT. To confirm the upregulation of particular 
gene transcripts suggested in the pink1 -/ -microarray experiments,  qPCR was undertaken to confirm or 
refute changes in the expression of tigarb (A), hdac9b (B) and apex1 (C) in pink1 -/- 5dpf and compared to 
their WT. The only expression changes from the microarray that could be confirmed were for tigarb with 
pink1 -/- larvae having nearly a 3 fold increase (P<0.001 unpaired T test) in tigarb expression compared to 
WT at 5dpf.  Specific mRNA expression levels were normalised to the reference gene ef1alpha. 
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3.2.2 tigarb is chronically upregulated during development in pink1 -/- 

larvae 

tigarb expression in WT embryos was detected as early as 4hpf by RT-PCR (Figure 17) 

and ubiquitously expressed throughout development. To establish whether tigarb 

upregulation may be mediating Th neuron reduction during embryogenesis in pink1 -

/-, expression had to be confirmed in the brain. An in situ hybridisation probe was 

constructed specifically for tigarb and utilised to stain for expression in pink1 -/- and 

their WT controls from 1-5 days post fertilisation. Expression was present through all 

age groups and was not spatially restricted.  WISH confirmed tigarb upregulation in 

pink1 -/-, development, including increased expression in the pink1 -/- brains (Figure 

18).  

 

Figure 17. tigarb expression through development. tigarb transcript levels were measured throughout 
development from 4-120hpf by RT-PCR. tigarb expression was also confirmed in adult brain material. ef1a 
was utilised as a loading control. 
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Figure 18. tigarb WISH through development in pink1 -/-. Widespread tigarb expression was evident in all 
organs, with marked expression in the head and chronically increased in the pink1 -/- throughout 
development. 

3.2.3 tigarb Morpholino optimisation 

Upregulation of tigarb could either be due to it being an activated survival mechanism 

or reflect involvement of tigarb in the mechanisms leading to the observed DA cell loss. 

To further investigate this, splice Morpholinos were designed to specifically KD tigarb 

in zebrafish embryos. Exons 2, 3 and 6 were chosen for targeting as their coding region 

was of functional importance for enzyme activity. For example, exons 2 and 3 code for 

the second and third residues that form the catalytic triad required for the 

bisphosphatase activity (Figure 19).228  

 

Figure 19. Schematic demonstrating Morpholino targets against tigarb exons. Morpholinos denoted by 
an arrow, were designed against the splicing boundaries of e2i2, i2e3 and i5e6. 

 

Initial toxicity tests were performed by inspection of embryos at 1, 2, and 3 days post 

fertilisation, following injection of 0.25mM, 0.5mM and 0.9mM Morpholino at the 1 cell 

stage.  Toxicity tests found tigarb Morpholinos directed at exons 2 and 3 to be non-
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toxic, with only slight deformity seen in approximately 10% of subjects by 3dpf. In 

contrast, the Morpholino against exon 6 was found to be very toxic, the exon 6 

Morpholino induced severe developmental delay of approximately 6 hours at the 24 

hpf time point, and gross deformity, even at the lowest concentration.  This 

Morpholino was therefore not used due to clear off target effects.  As the effects of 

morpholinos generally wear off by 3dpf, to measure efficacy, RNA was extracted from 

morphants injected with all concentrations at 3dpf, reverse transcribed to generate 

cDNA and then amplified by PCR. Each sample was electrophoresed on a 2% agarose 

gel and compared to WT to investigate Morpholino effects on splicing.  

For the Morpholino targeting exon 2 of tigarb (referred to as TBMO2), more than 90% 

aberrant splicing was achieved at 0.9mM (Figure 20). Exon 2 partly codes for the 

catalytic triad region of tigarb, and TBMO2 caused a complete skip of exon 2, confirmed 

by direct sequencing) that partly codes for tigarb’s catalytic triad. The exon deletion 

also resulted in a frame shift. Lower concentrations lead to lower levels of exon 

skipping.  

Using a Morpholino targeting exon 3 of tigarb (TBMO3), did not have an effect on 

splicing even at 0.9mM and was therefore not chosen for further experiments either 

which only concentrated on the use of TBMO2.  
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Figure 20. tigarb Morpholino 2 optimisation. A Morpholino designed to target exon 2 (e2i2) of tigarb was 
injected at several concentrations to ascertain toxicity and efficacy.  Efficacy was measure by RT-PCR at 
3dpf. Lane 1, uninjected controls, lane 2, 0.9mM, lane 3 0.5mM and lane 5, 0.25mM. The Morpholino was 
non- toxic at any concentration. With increasing concentration of the Morpholino, greater exon skip of 
exon 2 (confirmed by direct sequencing) was achieved, giving 90-100% KD at 0.9mM. 
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Figure 21. TBMO3 optimisation. A Morpholino designed to target exon 3 (i2e3) of tigarb was injected at 
several concentrations to ascertain toxicity and efficacy.  Efficacy was measure by RT-PCR at 3dpf. Lane 1, 
uninjected controls, lane 2, 0.9mM, lane 3 0.5mM and lane 5, 0.25mM. The Morpholino was non- toxic at 
any concentration. However the Morpholino did not lead to any obvious splicing defects at any 
concentration. 

3.2.4 tigara expression in pink1 -/- larvae 

The zebrafish genome contains many orthologues of human genes, however, due to a 

duplication event, many of these have two copies in zebrafish. Tigar is no exception, 

with the zebrafish genome containing two orthologues with approximately 50% 

protein homology, tigarb and tigara. Only tigarb was demonstrated to be upregulated in 

the pink1 -/- microarray. As both orthologues may be functionally redundant, gene 

expression analysis of tigara was investigated by qPCR and WISH, in the pink1 -/- 

larvae and their WT controls.  qPCR demonstrated approximately a twofold 

upregulation of tigara in the pink1 -/-; a similar trend to that of tigarb. However, this 

upregulation was very variable and not statistically significant (P=0.178 unpaired T 

test) (Figure 22). As these results were inconclusive, an in situ probe was constructed to 

stain tigara expression. Consequently WISH experiments using this probe were 

undertaken throughout development between WT controls and pink1 -/- larvae.  tigara 

expression was similar to tigarb, ubiquitous and not spatially restricted.  No staining 

was detected with the sense probe (Figure 23). Although tigara expression was 

demonstrated to be upregulated at certain time points, this was not found to be a 

robust phenotype on subsequent replicates or at all-time points. Consequently, 

increased tigara expression in pink1 -/- larvae was deemed inconclusive. 
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Considering tigara may be functionally redundant to tigarb, it is plausible that tigarb KD 

may result in an increase in tigara expression levels to compensate. However, gene 

expression analysis of tigara by qPCR in TBMO2 morphants demonstrated that tigarb 

KD did not change tigara expression levels (Figure 22). 

 

Figure 22. tigara expression levels quantified by qPCR. Figure 22A comparing tigara expression between 
pink1 -/- 5dpf larvae and their WT. pink1 -/-showing a trend for increased tigara expression compared to 
WT, however this was not statistically significant. Figure 22B comparing tigara expression levels in 
uninjected WT controls at 3dpf and WT TBMO2 injected larvae. No change in tigara expression levels 
between the two groups was detected; implying tigarb KD does not increase tigara expression due to 
functional redundancy. ef1 alpha was used as a reference gene for normalisation. 

 



 
 

93 

 

Figure 23. WISH of tigara in WT larvae during early development. Staining was ubiquitous and not 
spatially restricted in a similar manner to tigarb expression. No staining was detected with the sense probe, 
demonstrating antisense staining to be specific for tigara. 

3.2.5 Knockdown of tigarb rescues Th neuron reduction in pink1 -/- larvae 

With the Morpholino optimised, TBMO2 was utilised to inactivate tigarb in pink1 -/- 

and their WT controls, and investigate whether this would lead to either a rescue or a 

worsening of their phenotype in general and the effect on the number of DA neurons 

in particular. Morphants were morphologically normal in both genotypes and full KD 

was achieved in spite of tigarb upregulation in pink1 -/- larvae (Figure 24) 
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Figure 24.  tigarb KD in pink1 -/- and WT larvae. tigarb KD in pink1 -/- larvae and their WT controls 
resulted in >90% KD determined by RT-PCR at 3dpf. Lane 1 WT uninjected, lane 2 WT TBMO2, lane 3 
pink1 -/- uninjected and lane 4 pink1 -/- TBMO2. Morphants were morphologically normal regardless of 
genotype. 

Analysis of TH-positive neurons at 3dpf demonstrated a 20% reduction in pink1 -/- 

uninjected larvae (P<0.05) compared to WT uninjected larvae, similar to that seen at 

5dpf. KD of tigarb in WT controls led to a small increase in TH neurons of 5% although 

this was not statistically significant. KD of tigarb in pink1 -/- larvae resulted in a 

complete normalisation of the TH  positive neuron level to that of WT controls (Figure 

25). This suggests that tigarb upregulation in the pink1 -/- is responsible for the Th 

neuron reduction. 
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Figure 25.  Knockdown of tigarb rescues Th neuron reduction in pink1-/- larvae. KD of tigarb in WT 
larvae had a small effect on TH level, raising it by 5% although this did not reach significance.  The pink1-
/- un-injected larvae at 3dpf exhibited a 20% decrease in TH neuron count compared to WT as seen at 5dpf 
(P<0.05, two way anova). KD of tigarb in pink1-/- led to a complete normalisation of the TH neuron count, 
with an average TH neuron count of approximately 100% compared to the uninjected WT. WT  uninjected 
TH neuron counts normalised to 100%, experimental groups expressed as a percentage of this. See 
materials and methods for more detail. 

3.2.6 pink1 Morpholino design and optimisation 

To further confirm the functional relevance of tigarb KD as a rescue mechanism in pink1 

deficiency, the author tested its effect in a different model of pink1 deficiency with MO 

mediated pink1 KD.  tigarb KD, leading to a rescue of pink1 -/- phenotypes, needed to be 

confirmed in a second model of pink1 deficiency. However, as all published 

Morpholinos did not phenocopy the stable Y421* mutant, a new pink1 Morpholino had 

to be designed and optimised. 

Morpholino sites in pink1 were chosen by analysing each exon and evaluating it for 

ease of assay, and whether exon skip/intron inclusion would lead to a subsequent 

frame shift. See Figure 26 for a schematic, illustrating choice of exon/intron boundaries 

chosen for further analysis.  
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Figure 26. A schematic outlining pink1 Morpholino design. pink1 exons were labelled to denote locations 
of published pink1 Morpholinos ( diamond shape), novel designed gene tools Morpholino sites (triangle 
shape) and SNP sites (star shape). Consequently, exons were manufactured targeting exon 4 (i3e4 and 
e4i4) and exon 5 (e5i5). 

The company Gene Tools were able to design morpholinos to the intron-exon 

boundaries and exon-intron boundaries of exons 4 and 5, as well as the exon-intron 

boundaries of exons 6 and 7. Each Morpholino binding site was sequenced beforehand, 

to confirm that the genomic sequences on ENSEMBL that would be utilised for 

Morpholino design were correct. Any putative Morpholino target sites which 

contained SNPs were rejected, as these would prevent Morpholino binding. This left 

morpholinos targeting two sites in exon 4 and the exon-intron site of exon 5.  All 3 

morpholinos were ordered and toxicity and efficacy established in a manner similar to 

that of TBMO2 optimisation. 

Morpholino i3e4 was found to be non-toxic at all concentration levels injected, however 

lacked efficacy, causing as little as 30% aberrant splicing at 24hpf and 72hpf. This 

particular Morpholino appeared to cause an exon skip of exon 4 and activation of 

cryptic splices sites simultaneously (Figure 27). 

Morpholino e4i4 was found to be toxic at the 0.9mM injection, with morphants 

exhibiting a large delay in development and gross deformity. Injections at 0.5mM and 

0.25mM had morphants with deformities responding in a dose dependant manner, 

consequently the Morpholino was deemed too toxic for further use. The action of the 

Morpholino appeared to be that of an intron inclusion that was not possible to assay, 

due to its large size >1000bp with the polymerases commonly utilised for this type of 

RT-PCR (Figure 28).  
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Figure 27. pink1 Morpholino PINK4 (i3e4) optimisation. RT- PCR evaluating PINK4 (i3e4) efficacy. Lane 
1 and 2, uninjected controls at 1 and 3 dpf respectively. Lanes 3 and 4, 0.9mM injected at 1 and 3 dpf. Lanes 
5 and 6, 0.5mM injected  at 1 and 3 dpf.  The Morpholino was non toxic even at the highest dose. PINK4 
(i3e4) causes likely activation of cryptic splice sites and an exon skip of exon 4. Even at highest dose  and at 
the earliest time point, KD  efficacy is still very low, with approximately 30% of the transcript being 
abnormally spliced. 

 

Figure 28. pink1 Morpholino  e4i4 optimisation. RT-PCR demonstrating efficacy of pink1 Morpholino 
e4i4. Lanes 1 and 2, uninjected control at 1 and 3 dpf. Injections of 0.9mM of pink1 morpholino e4i4 was 
toxic leading to excessive deformity and delays in development. Lanes 3 and 4 are injections of 0.5 mM at 1 
and 3 dpf. Lanes 5 and 6 are injections of 0.25mM at 1 and 3 dpf. pink1 Morpholino e4i4 appears to cause 
an intron inclusion  which is not possible to assay with the current polymerases, due to its large size 
(2000bp). pink1 Morpholino e4i4  is efficient, with over 90% abnormal splicing  at 0.5mM. 

Both Morpholinos were also co-injected to investigate synergistic splicing effects. The 

concentrations utilised for Morpholino e4i4, although toxic on their own, showed 

decreased toxicity when co-injected with Morpholino i3e4 for unknown reasons. More 

than 90% KD was achieved with the co-injection leading to an exon skip of exon 4 of 
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pink1 (Figure 29). Unfortunately co-injection of both of the pink1 Morpholinos with 

TBMO2 was very toxic due to the large quantities of Morpholino injected (3 times what 

the author considers to be the potential highest dose).  

The pink1 Morpholino targeting the exon intron boundary of exon 5 (PINK5) was 

found to be non-toxic at all doses and led to more than >90% aberrant splicing at the 

highest dose. PINK5 led to an intron inclusion of intron 5 (77bp, confirmed by direct 

sequencing) and a small quantity (approximately 5%) of exon skip of exon 5 (Figure 

30). A dose of 0.9mM PINK5 was chosen for co injection experiments. Co-injection of 

PINK5 and TBMO2 resulted in the expected KD efficacies (Figure 31). 
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Figure 29. pink1 MO4  co-knockdown optimisation. RT-PCR demonstrating efficacy of co-injection of 
both PINK4 Morpholino’s. Lane 1, uninjected control at 3dpf. Lane 2 and 3 is co-injection of 0.45mM   
pink1 i3e4+ pink1 e4i4  at 1 and 3 dpf. Lanes 4 and 5 is 0.25mM at 1 and 3 dpf. Co-injection of both 
Morpholinos targeting exons 4 results in a 90% exon skip of exon 4 at highest dose, the effects not wearing 
off even at 3dpf. Injections of 0.25mM result in a similar KD efficacy although it had worn off by 3dpf.  

 

Figure 30. pink1 MO5 optimisation.  RT-PCR demonstrating efficacy of pink1 Morpholino e5i5 (PINK5).  
Lane 1 uninjected control, lanes 2,3 and 4 representing injections of 0.9mM, 0.5 mM and 0.25mM 
respectively. All at 3dpf. PINK5 led to an intron inclusion of intron 5, confirmed by direct sequencing, and 
gave  approximately 90% abnormal splicing and was non toxic at 0.9mM. 
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Figure 31. RT-PCR demonstrating PINK5 KD in co-injection experiments. Lanes 1-3 RT-PCR with 
PINK5 primers. Lanes 4-6 RT-PCR using TBMO2 primers. Lane 1 and 4 using uninjected control, lanes 2 
and 5 PINK5 KD, lanes 3 and 6 CO injection with PINK5 and TBMO2.  90% KD was achieved in PINK5 
injected larvae, and 100% KD in TBMO2 injected larvae. Co-injected larvae had more deformity than 
PINK5 injected, however heads appeared to be intact. 

KD of pink1 with PINK5 alone caused a 20% decrease in TH neurons at 3dpf seen in 

previous experiments in the stable mutant line (P<0.05) compared to uninjected and 

control Morpholino injected. Co-injection of PINK5 and TBMO2 led to the complete 

normalisation of the TH neuron count compared to uninjected and control Morpholino 

injected (Figure 32).  
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Figure 32. Co-knockdown of pink1 and tigarb rescues Th neuron reduction. A pink1 Morpholino (PINK5) 
was utilised to confirm tigarb KD rescues Th neuron reduction in a second model of pink1 deficiency.  pink1 
KD in Zebrafish leads to a 20% decrease in TH neurons at 3dpf (P<0.05). Co-injection with tigarb 
Morpholino prevents this neural cell loss. 

3.2.7 Knockdown of tigarb rescues mitochondrial dysfunction 

Once it had been confirmed that tigarb KD rescues Th neuron reduction in pink1 -/- 

larvae, its method of action had to be addressed.  tigarb expression was again rescued 

by Morpholino KD in the pink1 -/- larvae and WT controls to investigate whether TH 

rescue was due to normalisation of mitochondrial dysfunction. At 3dpf uninjected 

larvae were found to have a decrease in mitochondrial Complex activities of 

Complexes I and III in a manner similar to pink1 -/- at 5dpf.  In contrast, KD of tigarb in 

pink1 -/- larvae completely rescued the activity of Complex I and Complex III (Figure 

33).  The mitochondrial Complex assay experiments were jointly undertaken between 

the author and Dr Heather Mortiboys. Morpholino injections were performed by the 

author, Mitochondrial Complex assays performed by Dr Heather Mortiboys. 
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Figure 33. Mitochondrial Complex activities in tigarb morphants. To ascertain the rescue effect of tigarb 
KD in pink1 -/-, Mitochondrial Complex activity was measured in response to the KD of tigarb with 
TBMO2 at 3dpf. At this time point pink1 -/- larvae have a large reduction in Complex I and III which is 
completely rescued by the KD of tigarb. In each graph, first white bar represents WT uninjected, second 
white bar represents WT TBMO2 inject, the black bar represents pink1 -/- uninjected and the grey bar 
represents pink1 -/- TBMO2 injected. 

3.2.8 tigarb KD does not rescue MPP+ mediated Th neuron reduction 

 As KD of tigarb rescues the Th neuron reduction seen in a genetic model that also 

exhibits Complex I inhibition (pink1 -/-), it was hypothesised that tigarb KD may also 

rescue Th neuron reduction induced by a chemical form of Complex I inhibition; in this 

case the classical PD toxin, MPP+. 

Wildtype zebrafish larvae injected with TBMO2 and uninjected controls were treated at 

48hpf with either 3mM MPP+ or standard E3 media for 24 hours. TBMO2 injection and 

MPP+ exposure did not affect morphology. When analysing the TH neuron counts of 

MPP+ treated larvae, uninjected control larvae had a 25% decrease in TH neuron count 

compared to E3 treated uninjected larvae (P<0.05 Two way anova). TBMO2 injected 



 
 

103 

larvae treated with E3 had an increase of 15% TH neurons compared to WT although 

this was not statistically significant. However tigarb KD in MPP+ treated larvae did not 

lead to normalisation of Th neuron reduction, with larvae having a 25% decrease 

compared to E3 uninjected larvae (P<0.05) (Figure 33). 

 

Figure 34. TB KD does not rescues TH loss in response to MPP+. KD of tigarb in E3 media treated larvae 
resulted in a 15% increase in TH neurons compared to E3 uninjected however this was not statistically 
significant.  Treated larvae with 3mM MPP+ uninjected and TBMO2 injected resulted in a 25% reduction 
in TH neurons (P<0.05). This demonstrates tigarb KD does not rescue TH neurons after MPP+ treatment. 

3.2.9 Knockdown of vhl rescues Th neuron reduction in pink1 -/- larvae 

Mutations in VHL lead to activation of HIF1a and the hypoxic response, causing 

certain cancers in humans. vhl -/- zebrafish larvae have been shown to have an 

increased glycolytic flux.242 Consequently vhl was chosen as a subject for gene-gene 

interaction studies in the pink1 -/- larvae. It was hypothesised homozygocity for both 

pink1 and vhl may lead to a normalisation of glycolysis and therefore a possible rescue 

of phenotype seen in either mutant. Initially vhl Morpholinos were utilised to KD vhl in 

pink1 -/- larvae. Efficacy was determined by using phd3 GFP reporter zebrafish as the 

control group. These transgenic fish possess GFP fused to the phd3 promoter; 

consequently expression of phd3 will also cause expression of GFP. vhl -/- show a very 

large upregulation of phd3, and so as a result of vhl deficiency in these reporter larvae, 

they fluoresce green. Zebrafish have such low basal expression of phd3, that uninjected 

WT larvae have very low to undetectable phd3 and consequently GFP expression. 
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KD of vhl in phd3 reporter zebrafish led to a large green fluorescence signal, indicating 

vhl deficiency, and no reduction of TH neurons was seen compared to phd3 uninjected. 

Uninjected pink1 -/- larvae had the standard 25% decrease in TH neurons (P<0.05) 

compared to phd3 uninjected controls. vhl KD in pink1 -/- larvae did not cause any 

morphological changes, and led to a complete rescue of Th neuron reduction (Figure 

35).  

 

Figure 35. vhl KD rescues pink1 -/- Th neuron reduction.  pink1 -/- larvae have an upregulation of tigarb, 
implying a state of inhibited glycolysis. vhl -/- larvae are in a chronic state of increased glycolytic flux.  KD 
of vhl in WT had no effect on the TH neuron count.  The pink1 -/- uninjected larvae had a 25% decrease 
compared to WT. KD of vhl in pink1 -/- larvae led to complete normalisation of TH neuron levels. 

vhl deficiency activates hypoxic signalling, that also leads to a robust upregulation of 

TH expression.290 The author subsequently wanted to confirm the rescue effect of vhl 

deficiency on TH neurons in pink1 -/- larvae by crossing the pink1 -/+ with a stable vhl 

deficient line (vhl -/+). In addition, the author wanted to confirm with the apparent 

rescue of DA neurons with a second marker of DA neurons other than TH. This is due 

to the nature of vhl deficiency, as it leads to activation of Hif1a and its downstream 

targets. Tyrosine hydroxylase is known to be a direct target of Hif1�. Consequently, in 

case the rescue seen in vhl KD was actually an increase of TH expression (caused by 

Hif1� activation) as opposed to an increase in DA neurons, DAT was chosen as a 

confirmatory marker. DAT had previously been utilised by Dr Laura Flinn to confirm 

Th neuron reduction in the pink1 -/- at 5dpf with a loss of approximately 25%, similar 

to TH.201 Consequently the pink1 Y431* line was crossed to a previously characterised 

vhl loss of function line previously characterised, to generate pink1 -/+; vhl -/+. As vhl -

/- are not viable, with larvae dying at around 10dpf, the pink1 -/+; vhl -/+ were 
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incrossed to generate pink1 -/-; vhl -/+ adults from which all embryo work was to be 

conducted. Consequently, for each experiment, all larvae would have to be genotyped 

for vhl status.  This cross to generate pink1 -/-; vhl -/+ also demonstrated that pink1 -/- 

cannot rescue the lethality seen in vhl  -/-, as no pink1 -/-; vhl -/- were found in the adult 

genotyping. 

From incrossed experiments, pink 1 -/-; vhl -/- larvae were deemed to be 

indistinguishable from pink1 +/+; vhl  -/- larvae, demonstrating that the presence of 

the pink1 -/- could not rescue the morphological phenotypes exhibited by vhl -/- 

during development. When the DAT neurons were analysed at 5dpf, pink1 -/-; vhl +/+ 

showed a 20% decrease (P<0.05 two way anova) in DAT neurons compared to WT, in a 

similar manner documented by Flinn et al 2013. Upon analysis, pink1 +/+; vhl -/- 

demonstrated an even greater decrease in DAT neurons of approximately 30% (P<0.01 

two way anova).  This decrease was not rescued by pink1 -/-; vhl -/-, and in fact they 

showed a similar decrease in DAT neurons (Figure 36). 

 

Figure 36. vhl -/- has a large decrease in DAT neurons at 5dpf compared to WT. pink1 -/- at 5dpf has a 
20% decrease in DAT neurons at 5dpf similar to TH (P<0.05).  vhl -/- have an even greater decrease in DAT 
neurons  at 5dpf of 30% (P<0.001), unaffected by pink1 genotype, seen in pink1 -/-; vhl -/- also have a large 
decrease in DAT neurons of 30%. Pilot data n=1  

3.3 pink1 results summary 

The presented work contributed to the first characterisation of a stable mutant PD 

zebrafish line (part of the publication by Flinn et al 2013., see appendix). This zebrafish 

model also highlights that DA neuronal cell reduction can start very early in pink1 
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deficiency, as pink1 -/- have a reduction of TH neurons by 3dpf.  Gene expression 

analysis by WISH for neuronal developmental markers has suggested the neuronal loss 

being due to a developmental defect is unlikely after 24hpf, although may be causative 

before 24hpf. Gene expression studies also identified the upregulation of tigarb in pink1 

-/- larvae which was further confirmed by WISH and qPCR. KD of tigarb was found to 

completely rescue Th neuron reduction and mitochondrial dysfunction in pink1-/- 

larvae. However tigarb KD could not rescue Th neuron reduction in MPP+ treated 

larvae. vhl was also found to be a modifier of pink1 deficiency as KD of vhl in pink1 -/- 

larvae also rescued Th neuron reduction. The latter finding still requires further 

validation. 

Overall, the study revealed that zebrafish are indeed a valid model for pink1 deficiency 

and has revealed a potential new drug target, opening the potential for the pink1 Y431* 

zebrafish as a platform for phenotypic drug discovery. 
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4 The zebrafish as a model for 

Glucocerebrosidase1 deficiency 
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4.1 Introduction and gba1 expression profile 

4.1.1 Introduction 

Homozygous mutations in GBA1 present as GD, whilst GBA1 mutations remain the 

most common genetic risk factor for development of PD.93 At the commencement of 

this study the only vertebrate models of GBA1 deficiency were mouse KO/conditional 

KO’s, which either died shortly after birth, or did not faithfully model GD or PD. The 

zebrafish has been shown to be a useful model for studying neurodegeneration, so it 

was hypothesised that zebrafish could be a useful model for GD and GBA1-linked PD. 

At the time of study only KD approaches were available, so these were utilised to 

initially generate a loss of function zebrafish model. However, as stable mutant alleles 

had become available, due to the SANGER-led zebrafish mutation project, and with the 

advent of TALEN technology, a stable loss of function mutant was also generated and 

both mutant lines were characterised. The specific objectives of this part of the thesis 

were to validate a zebrafish model of gba1 deficiency in its homozygous and 

heterozygous state, and to identify suitable phenotypes, amenable to high throughput 

zebrafish drug screens. 

4.1.2 Zebrafish gba1 orthologue identification and expression. 

To identify a zebrafish orthologue of GBA1, the human protein sequence 

(ENSP00000314508) was aligned against the zebrafish proteome using the BLAST 

online tool, identifying a single hit, of approximately 50% homology to the human 

protein, ENSDARP00000098103 annotated as gba1 in the zebrafish genome. To validate 

the hit, the putative protein orthologue sequence was then searched for in the human 

proteome, the top hit identified as ENSP00000314508, the human GBA1 protein. To 

confirm these BLAST results the human GBA1 cDNA, ENST00000368373, was searched 

for against the zebrafish genome, identifying ENSDART00000113093, the annotated 

zebrafish gba1 transcript, as the top hit, with 50% homology to the human cDNA.  Both 

genes have a similar genetic structure, with similar numbers of exons (human 11, 

zebrafish 10), transcript length and protein size. From ENSEMBL, the zebrafish gba1 

codes for a single major isoform, 518 amino acids in length, zebrafish Gba1 sharing 

57% identity to human GBA1. The human gene can be alternatively spliced into 5 

different protein coding combinations, ranging in size from 423 to 536 amino acids in 

length. The main human GBA1 protein isoform being 497 amino acids in length. To 
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confirm that the identified orthologue was indeed the zebrafish orthologue of GBA1, 

the human and zebrafish genomic loci were compared to determine whether gene 

synteny was also conserved.  No genes could be located up to 500kb upstream of 

GBA1/gba1 that are present in both organisms. Up to 500kb downstream of GBA1/gba1, 

3 genes were identified that were present in both organisms, namely DAP3/dap3, 

RUSC1/rusc1 and FDPS/fdps, demonstrating partial conserved gene synteny between 

the loci of human GBA1 and zebrafish gba1. See  

Figure 37. 

 

 

Figure 37. The Genomic loci of human and zebrafish GBA1/gba1.  Cartoon comparing loci of GBA1/gba1 
orthologues.  

To assess whether gba1 is expressed during development, PCR was utilised to amplify 

a region of gba1 cDNA from 1 to 5 days post fertilisation (dpf) and a selection of adult 

tissues. Expression was detected at a constant, and low level from days 1-5 of 

embryogenesis, with similar expression in fin, liver and brain from adult organs ( 38). 

To assess if expression was spatially restricted during development, a WISH probe was 

constructed to specifically stain for gba1 expression. WISH at days 1, 2, 3 dpf revealed 

gba1 expression was widespread with marked expression in the head. No staining was 

detected with the control sense probe (Figure 39). 
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Figure 38. gba1 expression in early development and adult tissues. gba1 expression was monitored 
through early development and in a selection of key tissues by RT-PCR. Expression was low and constant 
at all-time points and tissues. gba1 expression was additionally confirmed in the fin, liver and brain. Ef1a 
was utilised as a loading control. 

 

Figure 39. gba1 expression through early development by WISH. gba1 expression was monitored 
spatially by WISH. gba1 Expression at days 1, 2, 3 of development in Figure 39 A, B and C demonstrated 
gba1 expression to be ubiquitous and not spatially restricted. No staining could be detected with the 
control sense probe at 3dpf, Figure 39 D.  

4.2 gba1 Morpholino optimisation and knockdown 

4.2.1 gba1 Morpholino optimisation 

To prevent gba1 expression, a Morpholino strategy was employed to KD the transcript 

during zebrafish embryonic development. Of the 300 mutations characterised in the 11 

exons of the GBA1 human gene, 100 occur in exons 8 and 9. This also includes the most 

common mutations (N370S and L444P) that are found in 70% of patients. Exon 9 is also 
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the site of many complex alleles, due to recombination events with GBA1 and GBA1 

pseudogene, the latter containing a 55bp deletion in its 9th exon. Consequently, these 

sites were originally chosen for Morpholino KD. Exon junctions were sequenced for 

both genes to confirm the genomic sequence in ENSEMBL. Using the confirmed 

sequences, Gene tools were able to design Morpholinos binding to the i6e7 (MO7), e8i8 

(MO8) and i8e9 (MO9) junctions. See  

Figure 40 for a graphical representation of Morpholino binding sites. 

 

Figure 40. gba1 Morpholino binding sites. A schematic illustrating Morpholino binding sites to gba1. 
Morpholinos were designed against i6e7 (MO7), e8i8 (MO8) and i8e9 (MO9).  

Morpholinos were tested for efficacy and toxicity by injecting 1nl of 0.25mM, 0.5mM 

and 0.9mM into 1 cell stage WT embryos. MO7 was toxic at the highest doses (0.9mM 

and 0.5mM) and displayed low efficacy, see Figure 41. MO8 injected embryos showed 

no deformity or increased death compared to uninjected controls, at any dose and RT-

PCR demonstrated the largest KD of the WT mRNA, leading to a simultaneous exon 

skip and intron inclusion (Figure 42). MO9 was toxic at 0.9mM and had low efficacy 

(Figure 42).  
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Figure 41. gba1 MO7 optimisation.  gba1 MO7 was injected at a variety of concentrations to assess toxicity 
and efficacy. gba1 MO7 was toxic at the highest doses (0.9mM and 0.5mM) and had low efficacy. Lane 1, 
uninjected, lane 2, 0.9mM injected, lane 3, 0.5mM injected. At the highest dose of 0.9mM, gba1 MO7 caused 
less than 10% exon skip. No obvious effect on splicing could be detected.  

 

Figure 42. gba1 MO8 and MO9 optimisation. RT-PCR demonstrating gba1 MO8/MO9 optimisation. gba1 
MO8 was injected at a range of different concentrations to determine toxicity and efficacy. Lane 1 
uninjected, lane 2, 0.9mM injected, lane 3, 0.5mM injected, lane 4, 0.25mM injected. gba1 MO8 was non-
toxic at all concentrations and achieved greatest KD at 0.9mM. gba1 MO9 had low efficacy even when 
injected at the highest dose (0.9mM, lane 6), compared to uninjected, lane 5. 

Due to its efficacy (~90% KD) and low toxicity, MO8 was selected as the optimal 

Morpholino for further gba1 KD experiments in WT zebrafish embryos. To confirm 

abnormal splicing of the WT gba1 transcript, the mis-spliced products produced by 
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MO8 were sub-cloned into a Topo-ta vector and sequenced to confirm the effects of the 

Morpholino. The sequenced products were identified to be intron inclusions of intron 8 

(581 base pairs) and a complete exon skip of exon 8 (164 base pairs). 

4.2.2 TH neuron count of Complex I inhibited gba1 knockdown larvae 

Initially, TH neurons were counted in WT uninjected and gba1 MO8-injected zebrafish.  

Despite reliable KD of gba1 with MO8, no decrease of TH neurons was observed (data 

not shown). Consequently, it was investigated whether gba1 KD may sensitise WT 

zebrafish larvae to mitochondrial Complex I inhibition. WT uninjected and gba1 MO8-

injected zebrafish were then exposed to 3mM MPP+ (a robust Complex I inhibitor) for 

24 hours. gba1 KD with MO8-treated with control E3 media led no decrease of TH 

neurons compared to uninjected WT zebrafish, that was statistically significant, 

reproducing the results previously seen in unexposed zebrafish. Uninjected WT larvae 

treated with 3mM MPP+ had a 50% reduction of TH neurons compared to those 

uninjected WT controls treated with control E3 media. gba1 MO8-injected larvae also 

treated with MPP+  had a 60% reduction of TH neurons compared to WT uninjected 

controls treated with E3 media, however this loss was not statistically significant to the 

MPP+ treatment alone, see  

Figure 43. To confirm this lack of a synergistic effect of gba1 KD, in conjunction with 

Complex I inhibition, gba1 MO8 was utilised to KD gba1 in pink1 -/- larvae that exhibit a 

reduction in Complex I activity and a 20% reduction in TH neurons at 3dpf. The gba1 

MO8-injected WT zebrafish showed a no reduction of TH neurons that was statistically 

significant, consistent with previous findings. pink1 -/- uninjected larvae had a 20% 

reduction of TH neurons (P<0.05, two way ANOVA) compared to uninjected WT 

zebrafish. gba1 KD in pink1 -/- larvae did not exacerbate loss of TH neurons beyond the 

initial 20% reduction (observed in the pink1 -/- uninjected zebrafish. This confirms gba1 

KD in WT larvae does not sensitise TH neurons to mitochondrial Complex I inhibition 

during development. See Figure 44. 
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Figure 43. TH neuron count after gba1 knockdown at 3dpf and with 3mM MPP+. gba1 KD treated with 
control E3 media developed a no decrease in TH neurons compared to uninjected (P>0.05). Uninjected 
controls treated with 3mM MPP+ had a TH neuron decrease of 50% compared to uninjected E3 treated 
control (P<0.001 two way ANOVA). TH neuron count in gba1 KD MPP+ treated larvae decreased by 60% 
compared to uninjected E3 treated control (P<0.001 two way ANOVA), although not statically significant 
decrease compared to uninjected larvae treated with 3mM MPP+ (P>0.05 two way ANOVA). 

 

 

Figure 44. gba1 knockdown in pink1 -/- larvae at 3dpf. gba1 KD in WT larvae led to no decrease in TH 
cells, compared to WT uninjected controls. pink1 -/- uninjected larvae exhibited the standard 20-25% 
decrease in TH neurons compared to WT uninjected (P<0.01, two way ANOVA). KD of gba1 in pink1  -/- 
did not increase the Th neuron reduction in pink1 -/- uninjected, demonstrating gba1 deficiency does not 
increase Th neuron reduction due to Complex I inhibition at 3dpf. 
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4.3 gba1 sa1621, zebrafish mutation project line 

4.3.1 gba1 sa1621characterisation 

KD strategies, although somewhat effective, are transient in nature, with KD lasting 

only up to 3-5 days in WT zebrafish larvae. Studies examining cell death in Morpholino 

KD based studies are also difficult to interpret as un-validated Morpholinos may be 

producing nonspecific phenotypes due to off target p53-mediated effects. 

Consequently, stable mutant lines are preferable for reverse genetic studies, as they 

avoid these variables and additionally allow for the analysis of loss of function 

phenotypes from development to adulthood. Previously, stable mutant lines were 

generated from large scale ENU mutagenesis screens that are costly and time-

consuming. A novel technique for targeted genome editing using TALENs has been 

developed for zebrafish embryos, as a robust method for producing insertions and 

deletions (indels) in a targeted fashion. Additionally, the zebrafish mutation project, a 

very large-scale ENU mutagenesis screen is being undertaken by the WELLCOME 

TRUST SANGER centre with the aim of identifying loss of function mutations in all 

zebrafish genes (http://www.sanger.ac.uk/resources/zebrafish/zmp/).  

The zebrafish mutation project had already identified a point mutation (sa1621) 

affecting an essential splice site in exon 4 of the gba1 transcript. The base affected was a 

G>A at the exon 4 intron 4 junction. A complete intron inclusion of intron 4 (2,718bp) 

would lead to a premature stop codon appearing at c.573, producing a truncated 

protein of 191 amino acids , as opposed to the WT 518 amino acids in length. See Figure 

45.   
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Figure 45 The Genomic sequence illustrating the sa1621 allele point mutation. gba1 introns 3 and 4 are 
lower case and light and dark blue script respectively, exon 4 in upper case and purple script. The altered 
position in the sa1621 allele, generated from the zebrafish mutation project, is a G<A mutation of an 
essential splice site, at the exon 4 intron 4 boundary, highlighted in yellow. 

Pilot data from a gba1 sa1621/+ incross at 5dpf demonstrated no TH neuronal cell loss at 5 

dpf, suggesting the small decrease of the TH neuronal count seen in gba1 KD larvae is 

likely to be an off target effect of the Morpholino , see Figure 46. When the sa1621 gba1 

-/+ incross was grown to adulthood and reached 12 wpf, it was noted that a significant 

proportion of the individuals were emaciated, exhibited movement difficulties and 

were lying on the bottom of the tank. Many had to be culled immediately in line with 

animal welfare protocol.  The culled and live fish were all genotyped. All culled fish 

were all gba1 sa1621/ sa1621, the remaining gba1 sa1621/ sa1621were moved to a separate tank 

and behaviour analysed by visual inspection. The adults moved abnormally and 

would spontaneously exhibit violent, corkscrew-like, motions. See Video 1 in the 

supplementary data for an example of 12 wpf WT zebrafish locomotion and Video 2 

for an example of gba1 sa1621/ sa1621 motion. The remaining fish also were then culled. 

Each fish was measured and weighed at the point of culling.  The gba1 sa1621/ sa1621 had a 

50% decrease in mass compared to WT (P<0.01), and a decrease in length of 10% 

(P<0.01), see  

Figure 47. Although all gba1 sa1621/ sa1621 had to be culled at 12 wpf, homozygosity did not 

appear to significantly affect viability before this time point, with the alleles 

segregating in a Mendelian fashion at genotyping  with 21 WT (24.4%), 45 gba1 sa1621/ + 

(52.3%) and 20 gba1 sa1621/ sa1621 (23.3%). Attempts were made to investigate fertility in 

the gba1 sa1621/ sa1621adults, however all successive breeding attempts failed to produce 

offspring, possibly due to defects in co-ordination as opposed to specific infertility. 

gagagcaacagagattgagcaagtggaaatgaaaatggcctcggctttc
tcagttccgaatggtgtacatcgctctgtttcacagGTATAGAGTACCG
TTTCGTGAGAGTGCCGGTGGCCAGCTGTGATTTTTCAACTCGACTCTAC
ACGTATGCTGACACTCCAGAAGACTACGATCTCCAGAACTTCACCCTGG
CCAAAGAGGATGTTCACATGAAGgtagcatacacaaacaaaaacacacc
ttactacaaatagcggtctgcagtagtactcgcttgagggtaaatattg
cgtaaatagtgatttgattttcatttttgagggaactttccctttaagt 
 

Intron 3 

Exon 4 

Intron 4 

 



 
 

117 

 

Figure 46. TH neuron count of 5dpf larvae in all sa1621 gba1 genotypes . 5dpf larvae from a gba1 sa1621/ + 
incross were stained for TH by WISH, neurons were counted and then larvae were genotyped. There was 
no significant difference in TH neuron count between all gba1 genotypes, WT:12, gba1 sa1621/ + :18 and 
gba1 sa1621/ sa1621:7. Pilot data, n=1. 
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Figure 47. The length and mass of sa1621 gba1 -/- and WT controls at 12 wpf. A, sa1621 gba1 -/- have a 
50% decrease in mass compared to WT controls at 12 wpf (P<0.05, unpaired T test). B, sa1621 gba1 -/- 
show a small, statistically significant decrease in length of 20% compared to WT (P<0.05, unpaired T test). 
N =10 for both measurements. 

4.4 gba1 TALEN mutagenesis 

4.4.1 gba1 TALEN construction 

In parallel to the sa1621 characterisation, a second loss of function gba1-mutant was 

constructed using the TALEN system of gene editing. TALEN mutagenesis requires 

pairs of TALENs to be constructed with a spacer region of approximately 20bp. By 

targeting a region containing a large restriction enzyme site within the spacer region, 

A 

B 
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TALEN efficacy can be determined, as any small indels created will mutate the 

restriction site and prevent digestion. Exon 7 was chosen for targeting due to the 

presence of suitable TALEN sites flanking a MwoI restriction site. See Figure 48 for the 

position of TALENs within the gba1 gene.  

Figure 48. TALEN binding site. The Genomic sequence of the gba1 TALEN binding site showing introns 6 
and 7 are in lower case and light blue script. Exon 7 of gba1 is highlighted in red and uppercase. TALEN 
binding sites are highlighted in yellow. The MwoI site in the spacer region is underlined and in black. 

TALEN mRNA was injected into 1 cell stage WT embryos and genomic DNA (gDNA) 

extracted for restriction digest at 24 hpf. Exon 7 was amplified and digested with MwoI.  

PCR products from uninjected single embryos gDNA extraction were completely 

digested by MwoI. Digested PCR products from TALEN injected samples showed 

incomplete digestion with the presence of uncut products showing the TALEN 

possessed high efficacy. See Figure 49 for the restriction digest agarose gel image.  
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actcggtttggcctgtgtggacttcgaaggactcaccttggaagtctacttccttcggaggataaagtttatgaaatgagacacggc

ttatatgacaacatctaatacaacaatctgaattttcttaaaagcaatctaaaagtttaaatattaaataattgttcaattgagtatttaa

gtgtccatggtataatactgtgcatgttcattatcactgtatatttaattttggcacaagttgattcttctttttttttttcggctatagGTT

CTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTATT

TTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCT

GATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTG

GTGTGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCC

AGgtactggataatggtcttaaacaattctagattggatatgcacattaatatagcagcatttttttaatgacactgtataacaataat

taatattttacagtactgtgatggttggatttagggttggtgtgggggtaggcgttaaaaaataaaatgtattgggtattttaataga

tagcataaataatactcagtacaactactgtttttacattactgtgggtttagggttgggtttag 
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Figure 49. TALEN analytical restrictions digest. To test efficacy of gba1 TALEN, PCR products of the 
target site from gDNA from single embryos 24 hours post injection, were subjected to digestion by MwoI. 
The uncut PCR product of approximately 250 base pairs is shown in lanes 1-4. Uninjected controls cut with 
MwoI gave complete digestion, leaving two products of similar sizes at 125bp mark (Lanes 6-9). TALEN-
injected embryos (Lanes 10-15) resulted in incomplete digestion in all embryos examined, implying MwoI 
site had been mutated by the TALEN in a highly efficacious way. 

To confirm TALEN efficacy, PCR products of the target site using gDNA, pooled from 

8 TALEN injected embryos, were sub-cloned into a Topo-ta vector, transformed into 

competent cells and plated then incubated overnight. Seventy-three colonies were 

picked for colony PCR and sequenced. Out of 73 colonies, 64% were WT, 23% 

contained deletions, and 13% contained a combination of insertions and deletions. No 

clones could be identified that contained insertions exclusively.  The TALENs had a 

mutation generation rate of 33% in the pooled F0 mosaic embryos. The gba1 TALEN 

produced a wide variety of different mutations; the largest alteration being a 77bp 

deletion. For a summary of the different gba1 mutations caused by the TALEN and 

their incidence see Table 7. 
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   TOTAL	
   %	
   Description	
  
WT	
   47	
   64	
   N/A	
  
DELETION	
   17	
   23	
   3,6,7,10,17,29,68,77bp	
  del	
  
INSERTION	
   0	
   0	
   N/A	
  

DEL	
  +	
  INS	
   9	
   13	
  
22bp	
  del	
  +	
  46bp	
  ins,	
  22bp	
  del	
  +	
  4bp	
  ins,	
  8bp	
  del	
  +	
  5bp	
  ins,	
  
	
  5bp	
  del	
  +	
  8bp	
  ins,	
  3bp	
  del	
  +31bp	
  ins,	
  51bp	
  del	
  +	
  7bp	
  ins,	
  	
  
39bp	
  del+8bp	
  ins,	
  5bp	
  del	
  +	
  8bp	
  ins	
  

Table 7. TALEN mutation type summary. The total incidence of each mutation type (WT, deletion, 
insertion, deletion & insertion) for all sequenced clones, and their percentage incidence. 

4.4.2 gba1 TALEN founder identification 

Once TALEN efficacy had been established and confirmed, 50 TALEN injected 

embryos (F0) were raised to breeding age. In order to determine whether TALEN 

mutations were transmitted to the germ line, F0 mosaic adults were crossed with WT 

adult zebrafish and 8 embryos from each cross was analysed by restriction digest. Each 

digest was compared to an undigested product. See  

Figure 50 for representative digests of founder identification. 

Eleven initial F0 TALEN-injected adults were crossed with WT zebrafish. Restriction 

digest identified 9 founders, the transmission rate being 81%. Some of the digests 

showed the presence of multiple products, implying the founder transmitted an allele 

to the germ line containing a large deletion (see  

Figure 50). Although a deletion or insertion of 1bp is only required for a frameshift 

mutation that can produce a premature stop codon, a large deletion or insertion would 

allow the resulting allele to be genotyped by analysing of product sizes of the PCR 

product, without the need for restriction digests (that can be effected by SNPs in the 

restriction site) or direct sequencing. Being able to genotype by PCR would be 

considerably cost and time effective. Consequently, the founder strategy was altered, 

to simply amplify the TALEN region and identity F0 individuals whose outcrossed 

progeny produced 2 PCR products of different sizes (indicating a large insertion or 

deletion). A total of 26 F0 individuals were outcrossed and the embryos were analysed 

by PCR. Eleven were definite founders confirmed by digest, 3 were non-transmitting 

F0 individuals, and 12 were potential founders unconfirmed by digest. A further 9 

individuals were outcrossed however did not produce offspring. Three founders were 

outcrossed to WT TL fish and were grown to adulthood, producing the F1 generation. 
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Figure 50. Founder identification restriction digests. Representation gels of founder identification using 
primers situated around the TALEN-targeted MwoI site of gba1. TALEN injected adult (F0) were 
outcrossed to WT individuals and the resultant progeny (F1) utilised for gDNA isolation and subsequent 
PCR of the TALEN region for restriction enzyme analysis. Gel A, An example of a PCR of F1 gDNA of 3 
individual embryos from a non-transmitting F0 TALEN injected individual, alternating between 
undigested  (Lane 1, 3 5) and MwoI-digested PCR product (5µl) (Lane 2, 4, 6). WT PCR product gives 
complete digestion of the PCR product indicating no indels are present in the restriction site. Gel B,  an 
example of a PCR of F1 gDNA from 7 individual embryos from a transmitting F0 TALEN-injected fish 
crossed with WT fish, alternating between undigested (Odd lanes, 1, 3, 5 etc.) and digested (even lanes, 2, 
4, 6 etc.) with MwoI. Note lanes 2 and 4 contains residual undigested PCR product indicating the presence 
of an indel within the restriction site, identifying the F0 injected fish as a mutation founder. Gel C, PCR of 
F1 embryos, F0 TALEN-injected fish crossed with WT fish, alternating between undigested (Odd lanes, 1, 
3, 5 etc.) and digested (even lanes, 2, 4, 6 etc.) with MwoI. Note lanes 2, 4 and 8 not only contains residual 
undigested PCR product (indicating the presence of an indel within the restriction site), identifying the F0 
injected fish as a mutation founder. But also contains a second PCR product, indicating the allele is a large 
deletion that could be genotyped by PCR. 
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4.4.3  gba1 TALEN allele selection 

Three separate alleles were identified in the F1 generations; a 7, 8 and 23bp deletion 

(del), see 

 

Figure 51 for the sequence alterations.  The 23bp del had the additional advantage of 

being so large that it could be genotyped by PCR without further downstream 

techniques such as restriction digest or direct sequencing. The 7bp del alleles were 

present in both sexes in the F1 outcross so were subsequently incrossed to generate 

homozygous mutants and to investigate if the allele phenocopied the sa1621 allele.  

Embryos were monitored daily to check for potential deformity and mortality. All 

individuals in 7bp del incross developed normally. At 4 wpf, 20% of the incross looked 

comparatively small and underweight. A 7bp del outcross tank was used for a 

comparison.  From the preliminary incross, a total of 32 individuals were raised to 

8wpf and genotyped. 10 were WT (31%), 17 were 7bp del gba1 -/+ (53%) and 5 were 

7bp del gba1 -/- (16%). All 7bp del gba1 -/- were underweight and extremely small and 

WT 

GTTCTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTAT
TTTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCTG
ATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTGGTG
TGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCCAG 

7bp del 

GTTCTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTAT
TTTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCTG
ATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTGGTG
TGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCCAG 

8bp del 

GTTCTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTAT
TTTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCTG
ATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTGGTG
TGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCCAG 

23bp del 

GTTCTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTAT
TTTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCTG
ATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTGGTG
TGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCCAG 
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exhibited abnormal corkscrew like motions seen in the sa1621 gba1 -/-. Eventually all 

7bp del gba1 -/- had to be culled at 12 wpf.  

Due to an extremely skewed sex distribution, only females possessing the 23bp del 

allele could be identified in the F1 outcross, so a further outcross to F2 with WT had to 

be performed before a successive incross could be made. Only a single individual 

contained the 8bp del allele, so this was also outcrossed to generate the F2 generation. 

Once the F2 23bp del gba1 -/+ had grown to adulthood, they were incrossed to see if the 

23bp del gba1 -/- produced a similar phenotype to the 7bp del gba1 -/- and sa1621 gba1 -

/-. A total of 46 individuals were grown to 8 wpf and genotyped.  Of these, 20% of the 

incross appeared underweight and smaller compared to a control outcross tank. Once 

genotyped, 14 were WT (31%), 21 were 23bp del gba1 -/+ (45%) and 11 were 23bp del 

gba1 -/- (23%). All 23bp del gba1 -/- developed cork screw like motions that became 

uncontrollable so had to be culled, in an identical manner to 7bp del gba1 -/- and sa1621 

gba1 -/- . The eldest 23bp del gba1 -/- was culled at 14wpf. See Videos 3 and 4 for 

examples of 23bp del gba1 -/- impaired mobility. 

Both the 7bp del gba1 -/- and 23bp del gba1 -/- phenocopied the sa1621 gba1 -/- alleles. It 

was decided to use the 23bp del allele for subsequent studies, as genotyping could be 

performed by PCR alone without the need for restriction enzyme digestion, see Figure 

10, and the phenotype matched the phenotype observed in the other gba1 mutant 

genotypes.  To genotype the 7bp del and 8bp del required a MwoI digest and sa1621 

genotyping required direct sequencing.  Although all the different gba1 -/- mutant 

strains survive to adulthood, they all had to be culled at approximately 3 months of 

age and were seemingly unable to produce embryos. Consequently, all studies had to 

be performed from a 23bp del gba1 -/+ incross, with each subsequent embryo requiring 

genotyping, as opposed to using 23bp del gba1 -/- adults to generate 23bp del gba1 -/- 

embryos.  The 23bp allele was outcrossed to WT again to produce the F3 23bp del gba1 

-/+. All subsequent experiments were performed on the F3 incross. No further 

experiment utilised the gba1 sa1621 line, as all embryos that would be genotyped 

would require direct sequencing, which would not be cost effective. 
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Figure 51. F1 TALEN-induced gba1 mutants. The genomic gba1 exon 7 sequence illustrating TALEN 
deletions that transmitted to the F1 generation.  Outcrossing F0 injected to WT in order to generate the F1 
generation led to 3 different alleles being identified for further study, namely 8, 7 and 23bp deletion, all 
within exon 7. The MwoI site is highlighted in green and deleted bases in red script. 

4.5 gba1 TALEN characterisation  

4.5.1 gba1 qPCR in gba1 -/- and WT brain tissue 

The 23bp deletion leads to a frameshift and appearance of a premature stop codon 

66bp downstream within exon 7 at c.1342, truncating the protein at position p.379 (WT 

is 518 amino acids in length). qPCR was utilised to demonstrate the stop codon led to 

nonsense mediated decay of the transcript. As it was unknown how the deletion may 

affect splicing, two pairs of primers were optimised. The first pair amplifying a region 

upstream of the deletion, the primers binding to exon 4, and the second pair binding to 

exons 8, 9 and 10, downstream of the deletion. RNA was extracted from 12 wpf brain 

tissue from WT and gba1 -/- zebrafish, 2 brains per replicate. qPCR using either primer 

WT 

GTTCTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTAT
TTTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCTG
ATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTGGTG
TGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCCAG 

7bp del 

GTTCTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTAT
TTTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCTG
ATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTGGTG
TGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCCAG 

8bp del 

GTTCTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTAT
TTTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCTG
ATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTGGTG
TGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCCAG 

23bp del 

GTTCTAAGTGACATTAAAGCAGCACGATATGTCCACGGCATTGGTGTTCACTGGTAT
TTTGATCGCCTTGTGCCGCCTGACGTCACCCTGACCTCCACACACCATCTGTACCCTG
ATTACTTCCTATTTGCAACTGAGGCATGCGCTGGGTGGAGTCCAGTGGATCGTGGTG
TGCGTCTGGGCAGCTGGGACAGGGCAGAGGACTACGCCCATGACATCATCCAG 
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pair showed a decrease in gba1 transcript levels of 50% (P<0.05) in the gba1 -/- brain 

tissue compared to WT, indicating that the gba1 mRNA transcript is unstable due to the 

appearance of a premature stop codon, suggestive of loss of function. See Figure 52. 

 

Figure 52.  qPCR of gba1 transcript in WT and gba1 -/- brains. qPCR was utilised to investigate the 23bp 
del allele effect on stability of the gba1 mRNA transcript. Primer pairs amplifying cDNA downstream of 
the deletion (Figure 52A) and upstream the deletion (Figure 52B) were utilised to quantify gba1 transcript 
levels in WT and gba1 -/- adult brains. Both primer pairs demonstrated a decrease of 50% (P<0.05 unpaired 
t test) of the gba1 transcript in gba1 -/- compared to WT, thus demonstrating that the mutation leads to 
mRNA instability and NMD, supporting the assumption that this 23 bp deletion results at least in partial 
loss of function. Data normalised to reference gene ef1alpha 

4.5.2 Gba activity assay optimisation 

Brain homogenates were utilised to assay Gba enzyme activity to quantify the loss of 

Gba1 activity due to the 23bp deletion, the assay itself had only previously been 

optimised for mammals; therefore, temperature and inhibitors required for the assay 

had to be re-evaluated for use in zebrafish. Traditionally, basal GBA1 activity is 
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determined by subtracting GBA2 inhibited activity from total GBA activity, using the 

specific GBA2 inhibiter N-Butyldeoxynojirimycin (DNJ). As this can be low, activated 

GBA1 activity is calculated by measuring total GBA activity in the presence of sodium 

taurocholate (NaT), an inhibitor that simultaneously inhibits GBA2 whilst activating 

GBA1. This can allow large improvements in signal to noise ratio.  

Firstly, the assay temperature was assessed at 37°C (mammalian body temperature) 

and 28°C (zebrafish body temperature). Total Gba activity in zebrafish at 37ºC was 

approximately 37 nmol/h/mg, whilst DNJ inhibited Gba activity was extremely low, 

even for basal Gba1 activity, at 5 nmol/h/mg. Upon inhibition with NaT, Gba1 activity 

was unchanged to basal Gba1 activity, when theoretically there should have been a 

marked Gba1 activity increase. Total Gba activity at 28°C was 55% lower than activity 

at 37ºC, with similar decreases in activity in DNJ inhibited at 28°C compared to 37ºC. 

Conversely, NaT activated Gba1 had 50% more activity at 28ºC (10.25 nmol/h/mg) 

compared to NaT activated at 37°C. Although total Gba activity was lower at 28°C, this 

temperate was chosen for future experiments as it is more physiologically relevant to 

study activity in zebrafish, and NaT appeared to be more in zebrafish at 28ºC, see 

Figure 53 . 
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Figure 53.Gba activity assay temperature optimisation. Temperature optimisation for the GBA activity 
assay. Total (T) Gba activity at 37°C is much higher than at 28ºC (the optimum zebrafish body 
temperature). Basal Gba1 activity (DNJ inhibited) is unexpectedly low compared to total Gba activity, only 
10% of total Gba activity. NaT simultaneously inhibits GBA2 activity and activates GBA1 activity in 
mammals. Gba1 activated at 37°C does not raise Gba1 activity; conversely, the NaT treatment at 28 degrees 
raises it to 75% of total Gba activity. 

The DNJ dose was revaluated over a range of increasing concentrations, to investigate 

whether there may be any residual Gba2 activity. The standard dose of 50uM was 

assayed, including increasing concentrations of 100, 150 and 200µM, see Figure 54. 
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Figure 54. DNJ optimisation. The standard DNJ dose of 50µM is currently utilised in mammalian GBA 
assays. The dose was increased to investigate if further inhibition was required to prevent any residual 
Gba2 activity. 50µM DNJ reduced Gba activity to 33% of total uninhibited Gba activity. Increasing the 
concentration of the inhibitor to doses of 100, 150 and 200µM of DNJ had minimal further effects at 
decreasing Gba activity demonstrating 50uM is sufficient to inhibit all Gba2 activity. 

Subsequent studies found NaT to be highly variable at modulating Gba activity, 

occasionally giving activity readings as low, or even lower than DNJ treatment groups 

(data not shown). To further optimise NaT-activated Gba1 activity, Triton X- 100 was 

tested. Triton X has been utilised in previous studies to further increase the action of 

NaT on Gba1 activity.291 The addition of Triton X-100 to the NaT treatment led to a 

decrease of Gba activity compared to using NaT alone. Therefore, presence of Triton X-

100 clearly does not give robust Gba1 activity enhancement when utilised in 

conjunction with NaT in zebrafish, see Figure 55.  
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Figure 55. Triton X-100 effect on Gba1 activity. To further increase activated Gba1 activity, a combination 
of NaT and Triton X-100was applied to zebrafish brain homogenates. DNJ reduced Gba1 activity to 6% of 
the total, whilst NaT raised the activity to 38% of the total. In contrast, a combination of NAT and TRITON 
X only raised the activity to 26% of total activity. Triton X-100, therefore, does not enhance the ability of 
NaT to activate Gba in zebrafish. 

The concentration of NaT was also re-evaluated, as more concentrated doses may be 

required to fully inhibit Gba2 and activate Gba1 in zebrafish. Increasing concentrations 

of NaT, up to 120mg/ml (from 40mg/ml) only decreased Gba activity to nearly 

background levels, in a similar manner to DNJ inhibited activity, see Figure 56. 

 

Figure 56. NaT re-optimisation. To further enhance Gba1 activity whilst inhibiting Gba2 in zebrafish, 
increasing concentrations of NaT were assayed with zebrafish brain homogenates. Increasing the 
concentration from 40mg/ml up to 160mg/ml meant that Gba activity decreased with increasing NaT 
concentrations, to levels barely above background, in a similar manner to DNJ inhibited activity. 

As both inhibitors at standard concentrations showed Gba1 basal activity is very low, 

and increasing NaT is unable to increase basal Gba1 activity, inhibitors were utilised at 
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the standard concentrations for the Gba activity assays on mutant brain tissue.  Total 

Gba activity was substantially reduced in DNJ and NaT treatment groups compared to 

uninhibited total Gba activity. Within treatment condition activity was unchanged 

between each genotype. These data imply the 23bp del does not lead to a loss of 

function of Gba1, in contrast to the qPCR data. However, the Gba activity assay may 

provide false negative data due to the assumption that both inhibitors function in a 

similar manner in zebrafish as they do in mammals. This has yet to be validated.  

 

Figure 57. DNJ and NaT sensitive Gba activity in gba 23bp del genotypes. Using DNJ and Nat to inhibit 
Gba2 activity, no change in Gba1 activity could be detected in any of the gba 23bp del genotypes. 

Consequently, the Gba1 activity assay was performed again, utilising different 

inhibitors that may behave in a similar manner in zebrafish as they do in mammals. 

CBE, an specific inhibitor of GBA1 in humans was employed to deduce the Gba1 

sensitive fraction of each homogenised brain and thus deduce Gba1 activity. This 

experiment was jointly undertaken between the author and Dr Matthew Gegg. The 

author performed the brain extractions, genotyping and processing. Dr Matthew Gegg 

performed and analysed the assay. CBE sensitive Gba activity was reduced by 50% 

compared to WT in both 23bp del gba -/+ and 23bp del gba -/- (P<0.05 one way anova), 

demonstrating the gba 23bp del mutation does indeed lead to a loss of Gba1 activity.  
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Figure 58.  CBE sensitive, Gba activity in 23bp del gba genotypes. CBE sensitive Gba activity, 
representative of Gba1 activity in other species was reduced 50% in both 23bp del gba -/+ and 23bp del gba 
-/- (P<0.05 one way anova) compared to WT, demonstrating the deletion leads to a loss of function. 
Residual activity in gba1 -/- may be due to lack of efficacy of GBA inhibitors in zebrafish. 

 



 
 

133 

4.5.3 gba1 23bp del gba -/- TH count at 5dpf 

Incross of gba1 23bp del gba1 -/+ (and all other TALEN alleles) develop normally 

through embryogenesis. No embryos showed signs of developmental delay or 

deformity. TH neuron count at 5dpf in gba1 23bp del gba1 -/- showed no decrease 

compared to WT or gba1 -/+. To confirm this data, gba1 8bp del genotypes also had 

their TH neurons analysed that also showed no decrease in gba1 -/-, compared to WT or 

gba1 -/+, see Figure 59. 

 

Figure 59. TH neuron counts in TALEN alleles at 5dpf. Figure 59A, 23bp del genotypes shows no 
decrease in TH neuron count in gba1 -/- and gba1  -/+ compared to WT. Figure 59B, 8bp del genotypes 
showing no decrease in TH neuron count in gba1 -/- and gba1 -/+ compared to WT. 
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4.5.4 TH neuron count at 12 wpf in gba1 genotypes 

In order to assess TH neuron count at older ages, TH-positive neuronal cells were 

stained by IHC and analysed by confocal microscopy at 12 wpf. TH positive neurons 

were counted by Sallinen’s definition.120  The experiment was jointly performed by the 

author and Dr Yu-Chia Chen. The author performed the genotyping, brain extraction 

and fixation. Dr Yu-Chia Chen performed the IHC. The caudal zone of the 

periventricular hypothalamus was also analysed for TH neuron count in WT (n=10), 

gba1 -/+ (n=12) and gba1 -/- (n=13). WT and gba1 -/+ showed no difference in the 

number of TH positive cells counted in this region. gba1 -/- show a marked decrease in 

TH1-positive neurons compared to WT, with a decrease of 50% (P<0.01, one way 

ANOVA) (Figure 60A). TH1 positive neuronal cells were counted in the posterior 

tuberculum in all genotypes. gba1 -/- showed a 25% decrease in TH neurons compared 

to WT (p<0.01, one way ANOVA, n= 12 and 10 respectively). gba1 -/+ showed no  

statistically significant difference to WT. See Figure 60B. 
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Figure 60. TH neuron counts in 12 wpf gba1 genotypes. TH1 positive cells were counted in the brains of 
12 wpf gba1 -/-,gba1 -/+ and WT in the caudal hypothalamus (A) and the posterior tuberculum (B). In both 
regions gba1 -/- exhibited a decrease of 40-50% compared to WT (P<0.01), whilst gba1 -/+ showed no 
decrease compared to WT in the caudal hypothalamus and a slight, non-significant increase of 10% in the 
posterior tuberculum. gba1 genotype n numbers for caudal hypothalamus counts for WT, gba1 -/+ and gba1 
-/- were 9, 12 and 13 respectively. gba1 genotype n numbers for posterior tuberculum counts for WT, gba1 -
/+ and gba1 -/- were 10, 13 and 12 respectively.   

4.5.5 Microglial shape in gba1 -/- larvae 

To assess if Gaucher like cells appear during embryological stages in gba1 -/- larvae, 

gba1 -/+ were crossed with the Tg(mpeg1:EGFPcaax) transgenic reporter line that 

simultaneously labels microglia and macrophages with GFP. This experiment was 

jointly performed by the author and Dr Felix Ellett. Imaging and analysis was 

performed by Dr Felix Ellett. Genotyping was performed by the author. gba1 -/+; 
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Tg(mpeg1:EGFPcaax) were incrossed and microglial/macrophage morphology was 

assessed at 4dpf by confocal microscopy in all gba1 genotypes. Three separate fields of 

view were analysed for each embryo, specifically the tail, the trunk and the head. 

Macrophages/microglia were analysed for a different morphological markers, 

including shape and volume. No differences were found between WT and gba1 -/- for 

cell shape or volume in either the tail or trunk. However, in the head, these GFP 

positive cells, most likely microglial, had normal volume in all gba1 genotypes, 

however gba1 -/+ and gba1 -/- both had a decrease in their spherical shape compared to 

WT (P<0.05 and P<0.01 respectively, one way ANOVA), see Figure 61. 

 

Figure 61. Shape factor of GFP positive cells in the head of each gba1 genotype. gba1 -/+ and gba1 -/- 
exhibited a decrease in shape factor compared to WT when analysed in the head of 4dpf larvae.  WT 
microglia had an average shape factor of 0.2417 (47 GFP positive cells from 6 individuals), with gba1 -/+ 
(140 GFP positive cells from 14 individuals) and gba1 -/- (91 GFP positive cells from 10 individuals) having 
a smaller shape factor of 0.2087 (P<0.05) and 0.1997 (P<0.01). This demonstrates that gba1 -/+ and gba1 -/- 
GFP positive cells have a less spherical shape when compared to WT. 

4.5.6 Mass measurements of 23bp del gba1 genotypes 

Pilot data from 7bp del and sa1621 incross showed the gba1 -/- developing a decrease in 

mass compared to WT. Mass measurement of the gba1 23bp del genotypes was 

undertaken at 9 and 12 wpf. The 23bp del gba1 -/- (from here on referred to as gba1 -/-) 

showed a decrease in mass at 9 wpf (30% decrease P<0.05) see  

Figure 63. The incross was genotyped at 10wpf and all animals were segregated by 

genotype in separate tanks.  The mass of the gba1 -/- was normalised to WT fish by 12 

wpf, after segregation of genotypes into separate tanks. This demonstrates the decrease 

in mass seen at 9 wpf is not an inability of gba1 -/- to gain mass, but rather implies that 
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they were out competed for the limited food supply by their gba1 -/+ and WT. 

Additionally, it was noted that food fed during the afternoon was not completely eaten 

by the next morning in the gba1 -/- tank, whereas it was in the WT and gba1 -/+ tank. By 

12 wpf, all gba1 -/- developed a curve in their spine, similar to the gibbus seen in 

conditional Gba1 KO mice see Figure 62.264 

 

Figure 62. Photographs of 12 wpf WT and gba1 -/-. WT individuals (Figure 62A) did not display any 
gross morphological deformities at 12 wpf.  By 12 wpf many gba1 -/- exhibited a visible curve to their 
spine (Figure 62B), with a small minority even having an asymmetrical body axis. The spinal curvature is 
very similar to the gibbus exhibited by some conditional Gba1 mouse KO. 
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Figure 63. Mass of 23bp del gba1 allele at 9 and 12 wpf. The mass of each genotype at 9 wpf (A) and 12 
wpf (B).  gba1 -/- show a significant decrease in mass compared to WT at 9 wpf (P<0.05, one way 
ANOVA, WT:16, gba1 -/+:10, gba1 -/-:26). The gba1 -/- mass normalises by 12 wpf, once they had been 
genotyped and put into genotype specific tanks. WT:27, gba1 -/+:25, gba1 -/-:24. 

4.5.7 Movement analysis in gba1 genotypes 

Total displacement for each gba1 genotype was assayed via video tracking software at 

12 wpf. Each fish was filmed for ten minutes, with ten minutes tank habituation. gba1 -

/- showed a striking 60% decrease in total displacement compared to WT (P<0.0001). 

gba1 -/+ fish demonstrated an intermediate phenotype with a small and non-significant 

decrease of 25% compared to WT (Figure 64A). Subsequently, activity phases were 

combined into large, small and inactive movements. WT fish spent a large proportion 

of their time performing larger movement compared to gba1 -/- (P<0.0001), with the 
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opposite trend for inactive phases (P<0.0001), gba1 -/+ fish had an intermediate 

phenotype in both movements compared to WT and gba1 -/-. All genotypes spent 

similar amounts of time making small movements (P>0.05). See Figure 64B. 
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Figure 64. Total displacement of gba1 genotypes. Total displacement and activity levels during 
spontaneous movement of gba1 genotypes at 12 wpf.  A, gba1 -/- exhibit a large decrease of total 
displacement of approximately 60% compared to WT (P<0.0001, one-way ANOVA), gba1 -/+ fish 
demonstrating a smaller, non-significant decrease of 25%.  When average speeds where combined into 3 
phases of activity (B), inactive, small and large movements, the large decrease in the gba1 -/- total 
displacement was revealed to be due to more time in the inactive phase (P<0.0001) and fewer large 
movements (P<0.0001) compared to the WT. 

4.5.8 Hematoxylin and Eosin (H&E) sections of gba1 23bp del genotypes 

To further understand the severe phenotypes exhibited by the gba1 -/-, H&E staining 

was conducted on sections taken from samples at 4, 9 and 12 wpf. No obvious 

pathology could be found when analysing H&E staining between WT and gba1 -/- 
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4wpf individuals. This was jointly undertaken between the author and Dr Aswin 

Menke. The author genotyped and processed the fish, Dr Aswin Menke performed the 

staining and analysis.  

By 9 wpf (when the abnormal motor phenotype with cork screw motions first became 

apparent) gba1 -/- develop aggregates of swollen cells with some resemblance of 

Gaucher’s cells, the engorged macrophages seen in GD. These Gaucher-like cells form 

clusters in specific organs in the zebrafish body. This is most apparent in the brain, 

where these swollen cells accumulate specifically in the tectal ventricle (n=7). No 

Gaucher like cells could be detected in either gba1 -/+ or WT individuals (n=5). 

Gaucher-like cells were also detected most notably in the thymus of gba1 -/- 9 wpf fish, 

with some individuals (although not all) exhibiting these accumulations in the liver, 

spleen, pancreas and gonads. No Gaucher-like cells could be detected in either gba1 -/+ 

or WT 9 wpf fish (n=5). See Figure 65 for a representative example of Gaucher like cells 

in the tectal ventricle of gba1 -/- 9 wpf individuals. 
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Figure 65. Gaucher like cells in 9 wpf gba1 -/- brain. H&E staining  brain of 9 wpf gba1 -/- demonstrating 
the presence of Gaucher like cells (white arrows) in the tectal ventricle. Staining and analysis was 
performed by Dr Aswin Menke, genotyping and fixation by the author. 

At 12 wpf, the pathology in the gba1 -/- individuals had worsened, with lesions 

appearing in the brain (see Figure 66). Gaucher-like cells were aggregated in the 

thymus and liver of all individuals (n=5), whilst more (although not all) individuals 

presented with aggregates in the spleen, pancreas and gonads, n=3, 4 and 4 

respectively (see Figure 67).  Periodic acid–Schiff (PAS) staining showed a build-up of 

glycolipids within the aggregated cells, presumably of the undigested 

glucocerebroside. At 12 wpf, the gba1 -/+ fish showed minor cellular swelling in the 

tectal ventricle compared (n=5) to WT, with an absence of cellular swelling in any other 

organs. 
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Figure 66. H&E sagittal brain sections of 12 wpf gba1 -/+ genotypes.  At 12 wpf, Gaucher-like cells and 
lesions accumulating in the tectal ventricle in gba1 -/- (white arrows), gba1 -/+.exhibit minor cellular 
swelling also within the tectal ventricle. No such cells could be identified in WT individuals. N= 5 for each 
group.  
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Figure 67. Gaucher like cells in 12 wpf gba1 -/- visceral organs. H&E staining of liver, thymus and 
kidneys of 12 wpf gba1 -/- demonstrating the presence of Gaucher like cells (black arrows). Staining and 
analysis was performed by Dr Aswin Menke, genotyping and fixation by the author. 

4.6 Biochemical phenotypes of gba1 23bp del genotypes 

4.6.1  Enzyme activities of classical GD biomarkers 

In Gaucher’s disease patients, chitotriosidase activity and total β-hexosaminidase 

activity are utilised as biomarkers to assess the effects of enzyme replacement therapy. 

Untreated Gaucher’s disease patients show very large increases in the activity of both 
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these enzymes, with decreases throughout the course of treatment. The activities of 

both were analysed in the brain tissue of 12 wpf gba1 -/-, gba1 -/+ and WT controls.  

Both classical GD biomarkers were markedly upregulated in the gba1 -/- brains, 

compared to WT, see  

Figure 68. Chitotriosidase had, on average, a ten-fold increase in activity in the gba1 -/- 

compared to WT and gba1 -/+ (P<0.00001). Total β-hexosaminidase was also markedly 

elevated in the gba1 -/-, by 4 fold compared to WT (p<0.00001. β-galactosidase was 

additionally assayed in all gba1 genotypes as a control enzyme, no significant increase 

or decrease in activity could be identified compared to WT (n=8 per genotype), see 

Figure 69. 

Both biomarker assays for chitotriosidase and β-hexosaminidase are ideal read outs for 

high-throughput screening, due to their low cost, low technical difficulty and minimal 

material requirements. As the gba1 -/- exhibited such a marked increases in enzyme 

activity, it was hypothesised this may be the case in 5dpf larvae. This would be a fast 

simple and effective readout for zebrafish chemical screens, potentially able to identify 

new chemical treatments for treatment of GD. Single larvae from a gba1 -/+ incross 

were assayed for total β-hexosaminidase activity at 5dpf, the homogenate was then 

utilised to genotype all individuals. In contrast to the 12 wpf, gba1 -/- brains, enzyme 

activity was unchanged in gba1 5dpf larvae of all genotypes. See Figure 70. 
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Figure 68. Total chitotriosidase and β-hexosaminidase activity in gba1 genotypes. gba1 -/- brain tissues 
show marked elevation of traditional Gaucher’s disease biomarkers at 12 wpf. A, total chitotriosidase 
activity is elevated by 10 fold compared to WT in gba1 -/- brains (P<0.00001) with no significant difference 
in activity between WT and gba1 -/+. B, total β-hexosaminidase activity is elevated 3.5 fold in gba1 -/- 
brains compared to WT (P<0.00001). β-hexosaminidase and chitotriosidase activity was assayed in all gba1 
genotypes (n=11).  
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Figure 69. β-Galactosidase activity in gba1 genotypes. β-Galactosidase activity was assayed in all gba1 
genotypes (n=8). Activity in gba1 -/- exhibited a small, non-significant increase of 20% in activity compared 
to WT. In contrast, activity in gba1  -/+ exhibited a slight non-significant decrease in activity compared to 
WT of approximately 10%. 

Figure 70. Total β-hexosaminidase activity in 5dpf larvae. β-hexosaminidase activity was measured in all 
gba1 genotypes at 5dpf. No significant difference in activity was detected between WT, gba1 -/+ and gba1 -/-
, n= 7, 8 and 7 respectively.  

4.6.2 Classical GD biomarkers are unchanged in pink1 -/- 

Chitotriosidase activity is upregulated in activated macrophages and microglia. pink1 -

/- have previously been demonstrated to have a 50% increase in microglia at 3dpf. 
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Chitotriosidase activity was measured in pink1 -/- homogenates of 20 larvae at 5dpf 

compared to WT. pink1 -/- homogenates had no significant changes in activity 

compared WT. See Figure 5. Clearly Chitotriosidase activity is not a suitable read of for 

phenotypic drug screens in pink1 -/-. 

Total β Hexosaminidase activity, another GD biomarker was assayed for in the pink1 -

/- 5dpf homogenates as a possible drug screen read out. Total β Hexosaminidase has 

previously been shown to decrease in cerebrospinal fluid in sporadic PD patients. 11 

The assay is preferable as a drug screen read out due to its requirement for very small 

tissue samples (5µl homogenate of 2mg/ml protein) and the speed of assay (10 

minutes). Total β Hexosaminidase activity was unchanged between pink1 -/- and WT, 

see Figure 71. 
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Figure 71. Chitotriosidase and beta hexosaminidase activities in pink1 -/- and WT. Figure 71A, pink1 -/- 
show no significant change in activity compared to WT. Figure 71B, total β-hexosaminidase activity is 
unchanged between pink1 -/- and WT. 

4.6.3 Mass spectrometry analysis of sphingolipid metabolites in gba1 alleles 

Sphingolipid metabolites were analysed by mass spectrometry in 12 wpf gba1 -/-, gba1 -

/+ and WT brains to further elucidate the biochemical consequences of gba1 deficiency. 

This was jointly undertaken between the author and Dr Hai Bui, the author genotyped 

extracted and processed the brain samples, Dr Hai Bui performed the mass 

spectrometry and subsequent analysis. gba1 -/- showed large dysregulation of most 

analysed metabolites compared to WT and gba1 -/+ with highly elevated levels of 

sphingosine, sphinganine, psychosine, glucosylceramides (all molecular weights), 
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lactosyceramide and gangliosides compared to WT (P<0.00001). Low molecular weight 

dihydroceramides (C14:0 to C18:0), ceramides (C14:0 to C20:0) and galactosylceramide 

(C16 and C18) also show a high accumulation in gba1 -/- brains compared to WT. 

However, high molecular weight dihydroceramides (C22:0 to C24:0), ceramides (C22:0 

to C24:0) and galactosylceramide (C20 and C24), are all decreased in the gba1 -/-, 

showing a reduced levels compared to WT. All changes were statistically significant, 

with the exception of the decrease in in dihydroceramides (C22:0 to C24:0), ceramides 

C20 (increase), C23 and C24:1 (decrease). gba1 -/+ brains showed few differences 

compared to WT, with the exception of galactosylceramide C20 and C22 that were 

statistically significant (P<0.05). See Table 8. 
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Metabolite gba1 -/- % change Significance gba1-/+ % change Significance 

Sph 101.8257993 **** 7.616997247 ns 

Sa 32.12020523 ** -4.598635528 ns 

HexSph 2734.134563 *** 0 ns 

S1P -12.79776202 * 6.388802447 ns 

DHCer (C16:0) 78.44923164 ** -15.21157476 ns 

DHCer (C18:0) 74.38079648 * -20.52226775 ns 

DHCer (C22:0) -39.17801471 ns 30.96156414 ns 

DHCer (C24:1) -19.22123153 ns 9.932727669 ns 

DHCer (C24:0) -38.92186153 ns -10.83898132 ns 

Cer (C14:0) 135.044829 **** 21.67382643 ns 

Cer (C16:0) 102.6808401 **** -2.431257609 ns 

Cer (C18:0) 41.85715181 **** -4.648751669 ns 

Cer (C18:1) 115.8841224 **** 16.62848969 ns 

Cer (C20:0) 20.30314387 ns -5.203168812 ns 

Cer (C22:0) -44.29546135 ** 15.39658039 ns 

Cer (C23:0) -25.30982469 ns 8.456590168 ns 

Cer (C24:1) -4.024969258 ns 9.362985403 ns 

Cer (C24:0) -31.4830211 * 6.93120657 ns 

HexCer (C14:0) 1382.157511 **** 11.41672443 ns 

HexCer (C16:0) 3466.013156 **** 2.801254756 ns 

HexCer (C18:0) 7957.318434 **** 20.38332697 ns 

HexCer (C20:0) 549.0958593 **** 15.68309227 ns 

HexCer (C22:0) 27.33122019 *** 7.07047193 ns 

HexCer (C23:0) 9.431597549 ns 10.71208532 ns 

HexCer (C24:1) 42.95955413 **** 9.658944035 ns 

HexCer (C24:0) -22.35357736 * 6.195719944 ns 

GlucosylCer (C14:0) 210.373226 **** 4.391630775 ns 

GlucosylCer (C16:0) 9882.521703 **** 21.61574145 ns 

GlucosylCer (C18:0) 14514.04145 **** -7.169052539 ns 

GlucosylCer (C20:0) 2885.8451 **** 14.79933588 ns 

GlucosylCer (C22:0) 529.5906243 **** 15.11069321 ns 

GlucosylCer (C23:0) 348.5546373 **** 13.87395725 ns 

GlucosylCer (C24:1) 421.7412698 **** 18.88677559 ns 

GlucosylCer (C24:0) 112.0538577 **** 9.617032105 ns 

GalactosylCer (C16:0) 46.97169221 * 5.671671856 ns 

GalactosylCer (C18:0) 112.6041678 **** 6.572369034 ns 

GalactosylCer (C20:0) -39.80263245 **** 18.063784 * 

GalactosylCer (C22:0) -56.07424287 **** 23.29432352 * 
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Metabolite gba1 -/- % change Significance gba1-/+ % change Significance 

GalactosylCer (C23:0) -48.38752436 **** 15.8204541 ns 

GalactosylCer (C24:1) -45.28273411 *** 20.61044589 ns 

GalactosylCer (C24:0) -55.09351962 **** 9.281332468 ns 

LacCer (C16:0) 989.8202929 **** 19.43392737 ns 

LacCer (C18:0) 2092.221844 **** 4.76117511 ns 

LacCer (C20:0) 1481.346375 **** 10.68494713 ns 

LacCer (C22:0) 601.1440845 **** 14.79503812 ns 

LacCer (C23:0) 295.3751503 **** 0.579652139 ns 

LacCer (C24:1) 292.0227223 **** 15.53764801 ns 

LacCer (C24:0) 340.8251407 **** 25.00821108 ns 

GM3 (C16:0) 226.7453547 **** -8.165992634 ns 

GM3 (C18:0) 230.2296156 **** 9.119074479 ns 

GM3 (C22:0) 458.1100752 **** -22.58397659 ns 

GM3 (C24:1) 351.4096211 **** 25.46355691 ns 

GM3 (C24:0) 263.9855849 **** -6.904832976 ns 

 

4.6.4 Mitochondrial Complex activities in gba1 genotypes 

Mitochondrial dysfunction has been demonstrated in familial forms of PD as well as 

GD mouse models.284, 285 The activity of each Complex of the mitochondrial electron 

transport chain was analysed in each gba1 23bp deletion genotype. This was jointly 

undertaken between the author and Dr Marc DaCosta. The author genotyped, 

extracted and processed the samples, Dr Marc DaCosta performed the mitochondrial 

Complex assays and subsequent analysis. Activities of mitochondrial Complex I and II 

were unchanged between WT, gba1 -/+ and gba1 -/- 12 wpf brains (Figure 72 A and B). 

In contrast, there was a specific decrease of 40% compared to WT of the activity in 

Table 8. Sphingolipid metabolite changes in gba1 -/- and gba1 -

/+ brains. Brains of 12 wpf gba1 -/-,gba1 -/+ and WT were analysed 
by mass spectrometry for changes in sphingolipid metabolites 
(n=10 for all genotypes).  The gba1 -/- brains showed marked 
dysregulation of metabolites, with a large accumulation of Gba1 
substrate compared to WT. The gba1 -/+ group showed a trend 
toward some changes compared to WT however these were not 
statistically significant. There were exceptions to this including a 
80% decrease in GalactosylCer (C20:0) and GalactosylCer (C22:0) 
compared to WT, P<0.05.  Abbreviatios, Sph: Sphingosine, Sa: 
Sphinganine, Hexsph: Phycosine, S1P, Sphingosine 1 Phosphate, 
DHcer: Dihydroceramide, Cer: Ceramide, HexCer: 
Heoxsylceramide, Glucosyl: Glucosylceramide, Galaccer: 
Galactosylceramide, LacCer: Lactosylceramide, GM3: GM3 
gangliosides. 
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mitochondrial Complexes III and IV (P<0.05). gba1 -/+ brains showed no significant 

differences compared to WT. See Figure 72 C and D.  

 

Figure 72. Mitochondrial Complex activities I-IV in gba1 genotypes. Activity of mitochondrial Complex 
I, II, III and IV were analysed in 12 wpf gba1 -/-, gba1 -/+ and WT brains. No statistical differences were 
found between genotypes in Complex I and II activity (A and B). gba1 -/- showed a large decrease of 50% 
in both Complex III and IV compared to WT (P<0.05 one way ANOVA) (C,D). gba1 -/+ showed no 
significant decreased compared to WT.  

4.7 gba1 results summary 

This study represents the first characterisation of a gba1 loss of function model using 

teleost fish.  All previous loss of function in vivo models had either utilised Drosophila 

or mice. Zebrafish were found to possess a single gba1 orthologue, with conserved gene 

synteny, whose expression was low, but consistent and not spatially restricted, at least 

during early development. gba1 KD was found to not lead to substantial Th neuron 

reduction or synergistically increase Th neuron reduction seen in Complex I inhibited 

larvae. TALENs were employed to create a stable loss of function gba mutant. The 

A B 

C D 



 
 

154 

resultant allele produced juvenile fish with a marked movement phenotype and early 

lethality. H&E staining revealed many Gaucher like cells appearing in key GD organs 

as well as the brain. Mass spectrometry of sphingolipids showed accumulation of 

many metabolites in the sphingolipid pathway including gba1 substrates within the 

brains of 12 wpf gba1 -/-. This was accompanied by large increases in GD biomarkers. 

TH neuron count revealed a large decrease in the brain of gba1 -/-, which may be a 

contributing factor to the decrease in spontaneous movements of gba1 -/- at the same 

time point. 
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5 General Discussion 
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5.1 Overview 

The aims of this research project were to establish the zebrafish as a new model for 

pink1 and gba1 deficiency; identify phenotypes of the resulting mutants; investigate 

potential new genetic interactions; and establish assays for phenotypic drug discovery. 

Both projects were successful in establishing loss of function models for the relevant 

gene, and mutants were characterised to investigate how useful they are as models of 

their respective neurological disorders. The tigarb/vhl interaction study, part of the 

pink1 project, has produced potential novel drug targets to treat PD. The gba1 project 

was successful in characterising the first teleost model of gba1 deficiency, exhibiting 

phenotypes in a manner similar to the GD state of type 2 patients.  Although new 

phenotypes were discovered in both mutant lines, none are currently suitable for 

phenotypic drug discovery. 

5.2 pink1 -/- characterisation 

The zebrafish pink1 -/- line was, until very recently, the only model of pink1 deficiency 

which exhibited spontaneous and progressive DA neuron loss. Recent studies of rats 

exhibiting PINK1 loss of function have now been reported, which progressively lose 

DA neurons and display motor dysfunction in a progressive manner. Gait dysfunction 

appears as early as 4 months of age, in the PINK1 -/- rats, while TH neuron counts 

showed a decrease of 25% at 6 months of age, increasing to 50% at 8 months of age, 

compared to WT. TH neuron count reduction was also found to occur in the absence of 

SNCA pathology.292 

The demonstration of a late onset motor phenotype in aged (3 year old) pink1 -/- 

zebrafish may imply that a more marked decrease in TH neurons has occurred 

(compared to 18 months), which is in keeping with the progressive loss of TH neurons 

in PD patients. However, similar phenotypes have also been recorded in other 

vertebrate models of pink1 deficiency which lack Th neuron reduction.188, 199 Although 

Th neuron reduction increases between embryonic and adult (18 month old) time 

points from 20 to 50%, whether this decreases further during aging still needs to be 

addressed, by counting the TH neurons at the 3 year old time point. If Th neuron 

reduction was not large enough to cause PD like symptoms, the late onset defect in 

movement seen in pink1 models that lack Th neuron reduction, could suggest a role of 

PINK1 in neurotransmitter homeostasis.188, 224 
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The pink1 -/- microarray that first identified tigarb upregulation in pink1 -/- during 

development was one of the first whole transcriptome studies comparing the effect of 

pink1 loss of function to WT in an unbiased approach. Previously, a single pink1 loss of 

function microarray had been published in zebrafish. Although, this relied on the use 

of a Morpholino strategy which can cause off target effects.156 The study by 

Priyadarshini et al., identified many gene expression changes in their pink1 morphants 

involved in hypoxic signalling. This included a large decrease in hifa expression. 

Although this change would functionally agree with the vhl KD rescue described in 

this thesis, no single gene expression changes were similar between those described by 

Priyadarshini et al., and those described by Flinn et al., even after the re-annotation of 

the microarray in this thesis. These discrepancies may at least partially be due to the 

different time points utilised for each microarray study, 2 and 5dpf respectively, and 

the two different methods of model generation, Priyadarshini et al., utilised a transient 

KD approach, were as Flinn et al., utilised a kinase dead mutant. The latter may not 

even be producing Pink1 protein due to nonsense-mediated decay.175, 192 The re-

annotation of the microarray was successful in identifying many of the transcripts’ 

human orthologues, but did not highlight any particular pathways previously implied 

in the pathogenesis of PD, such as dysregulation of mitophagy pathways or 

intracellular calcium homeostasis. This could be because gene expression changes 

leading to Th neuron reduction may be more specific to neuronal cells and the 

microarray was conducted with RNA extracted from whole larvae as opposed to cells 

of a DA neuron origin. Future gene expression studies in the pink1 -/- line, especially 

those which investigate the gene expression changes at different time points including 

adult pink1 brains should focus purely on brain tissue. Isolating brain tissue from 

larvae is technically challenging, however one method to achieve this would be to use 

fluorescence activated cell sorting of labelled cells of interest.  

To address whether the Th neuron reduction observed at 5dpf in the pink1 -/- was due 

to cell death or a developmental defect, the expression of key neuronal developmental 

genes was analysed in both genotypes. Spatial expression of all genes was identical in 

both genotypes suggesting Th neuron reduction was not developmental in origin, at 

least at the time points analysed. This is unsurprising as PD is a neurodegenerative 

disease and no evidence has shown it to be developmental in origin. This study 

highlights the advantages of using the zebrafish as a model due to its ex vivo 

development and transparency. Studies such as this would be impractical in other 
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vertebrate models such as mice. Furthermore, data from the microarray suggested that 

neuronal developmental defects were unlikely. This, in conjunction with 

developmental gene expression patterns examined by WISH, lead the author to 

conclude that the TH defects seen in pink1 -/- were not caused by developmental 

dysregulation, but by neurodegeneration. But a developmental phenotype could still 

be causative for the reduction, as all time points analysed were 24hpf or later. 

5.3 tigarb upregulation 

The identification of up regulated tigarb in pink1 -/- larvae through early developmental 

stages has not previously been reported in any pink1 deficient model systems. The 

finding that tigarb KD ameliorates mitochondrial dysfunction and Th neuron reduction 

seen in the pink1 -/- is also counter intuitive as all previous research implies PINK1 

linked Th neuron reduction to be due to oxidative stress. TIGAR is an oxidative stress 

response protein in humans; it’s up-regulation reduces oxidative stress and apoptosis 

in other model systems including mice. Consequently an upregulation of tigarb in pink1 

-/- could be seen as a protective mechanism, as opposed to causing Th neuron 

reduction. KD of tigarb preventing cell loss in the pink1 -/- larvae is in contrast to 

previous data where KD of TIGAR led to an increase in apoptosis.228 This also 

contradicts models of stroke, where Tigar upregulation is neuroprotective.293 Of note, 

pink1 KO Drosophila develop a marked phenotype, (motor defects, TH neuron cell loss, 

male sterility) without possessing a TIGAR orthologue. This would suggest that Tigar 

over expression is not driving pathology in the pink1 -/- zebrafish, rather, the metabolic 

changes induced by tigarb KD are neuroprotective.130 

Initial characterisation of tigarb in WT and pink1 -/- demonstrated expression is 

constant and not spatially restricted, although there was a more concentrated 

expression in the head. This is in keeping with previously described expression data 

described in numerous cancer cell lines and mouse tissue.228, 231 At basal levels, TIGAR 

is constantly expressed under the control of an sp1 promoter, in a p53 independent 

mechanism.228, 294 tigarb is highly expressed in zebrafish brain, in keeping with 

expression data recorded for mice. This was to be expected due to the effects on tigarb 

levels on TH neurons.293, 295 tigara, the tigarb paralogue,  is also expressed in a 

ubiquitous fashion, however, its upregulation in pink1 -/- larvae remains inconclusive 

due to conflicting WISH data. tigara upregulation would be unexpected as its 
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expression was unchanged in the pink1 microarray. Western blotting could be utilised 

further evaluate the status of tigara expression in pink1  -/-, however this would require 

a functional antibody that is selective for tigara alone. No antibodies of this specificity 

are commercially available. A change in tigara expression may also be of no functional 

consequence as although tigarb has confirmed bisphosphatase activity, tigara does not. 

Of the catalytic triad required for the bisphosphatase activity, tigarb has 2 out of 3 

residues conserved, whereas tigara only has 1 out of 3 conserved. However, this 

assumes Tigarb’s catalytic activity is responsible for pink1 -/- Th neuron reduction.296 

Ultimately if the gene expression changes seen in the pink1 -/- larvae are different 

between the two tigar paralogues, this may be due to them evolving different 

functions. 

5.4 tigarb Morpholino optimisation 

Morpholino optimisation for tigarB was successful and led to the identification of a 

Morpholino capable of producing 100% KD without toxic off-target effects or 

deformity. The complete KD by TBMO2 also illustrates that tigarb is unlikely to be 

maternally expressed, or only maternally expressed at very low levels.  The mechanism 

of TBMO2, an exon skip of exon 2 leads to a deletion of a part of the catalytic triad and 

also causes a frame shift. This suggests to total loss of function. To fully demonstrate 

the loss of function caused by TBMO2, bisphosphatase assays could be utilised. 

However, these are impractical, since they require the prior cloning, expression and 

purification of the truncated Tigarb protein resulting from the deletion of exon 2 and 

WT protein. 

5.5 Inhibition of glycolysis as a pathogenic PD mechanism 

Glycolysis is a complicated biochemical pathway which provides both energy in form 

of ATP and other metabolites such as NADH for the cell. Its flux is highly tissue and 

age specific, global inhibition of glycolysis may have far reaching consequences for 

many cell types. Its activity in the brain is poorly understood compared to other organs 

such as the liver. The majority of the brain’s energy requirements is believed to be 

covered by oxidative phosphorylation. Although this is widely accepted, glycolytic 

flux still generates a sizable proportion of ATP for the brain of approximately 10% 

during wakefulness and 20% during sleep.297 Any chronic alterations of this may have 
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negative effects on neuronal health. Glycolytic inhibition may be more relevant at the 

time point analysed in pink1 -/- model, as these were at early developmental stages 

since the brain of pre-term infants has been found to consume 90% of the body’s 

glucose levels.298 In the adult brain, glycolytic rates vary dramatically within different 

cell types and regions of the brain.299 It is conceivable that, due to the brain’s larger 

glucose requirement in development, glycolytic inhibition would lead to a decrease in 

ATP levels that could lead to Th neuron reduction during gestation. Consequently at 

birth, PINK1 linked PD patients may have a reduced number of DA neurons compared 

to healthy individuals, so therefore are closer to the threshold required for developing 

motor symptoms, hence the early onset of PINK1 linked PD.  

A more plausible argument is that general glycolytic inhibition is pathogenic towards 

DA neurons regardless of developmental stage. Current literature is conflicting 

regarding the effect on glycolysis modulation on neuronal health, however this is likely 

to be dependent on which model is utilised. In contrast to other cell types, neurons 

preferentially metabolise glucose via the pentose phosphate pathway over glycolysis. 

Reducing the level of glycolysis even further might reduce levels of ATP to an extent 

neurons can no longer tolerate.300 A study on sporadic patients’ fibroblasts detected no 

change in glycolytic flux. Models of pink1 deficiency have even shown an increase in 

glycolytic flux in pink1 -/- compared to WT, which is in direct contrast to the zebrafish 

data described in this study.301-303 However, the former studies were all conducted in 

cell culture systems whose metabolic rates may be altered to that in vivo. More 

importantly, the pink1 studies utilised Pink1 KO mouse tissue that does not recapitulate 

early onset Parkinson’s and most importantly does not exhibit TH cell loss. This may 

explain the discrepancies in glycolytic rates. 301-303 

Recent data in flies and worms has demonstrated a neuroprotective effect for Glucose 

Phosphate Isomerase (GPI), a glycolytic enzyme that converts glucose-6-phosphate into 

fructose 6-phosphate in a reversible fashion. Glucose-6-phosphate has the capacity to 

be fed into the glycolytic system if converted into fructose-6-phosphate, or can enter 

the pentose phosphate pathway. Data by Knight et al., has shown GPI inhibition to 

exacerbate phenotypes of DA neuron loss, exhibited by flies and worms both 

overexpressing SNCA. Overexpression of GPI was also found to be neuroprotective in 

both these in vivo models of PD, whilst its inhibition was found to exacerbate 

neurodegeneration.304 Its mechanism of action was found to be producing glycolytic 

metabolites that were neuroprotective in nature, as small molecule inhibition of 
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glycolysis by 2-deoxyglucose led to neurodegeneration whilst addition of glucose 

ameliorated phenotypes exhibited by the fly PD models. Even though flies lack a 

TIGAR orthologue, glycolytic inhibition may still be key to their pathogenesis.304 

The fly data discussed above is in keeping with the zebrafish pink1 microarray data 

that revealed a downregulation the zebrafish orthologue of GPI, glucose phosphate 

isomerase b (gpib) whilst its paralogue, glucose phosphate isomerase a (gpia) remains 

unchanged. This is significant, as unlike GPI, Gpia and Gpib have preferences as to 

which direction metabolism proceeds. It has been demonstrated that Gpib 

preferentially catalyses glucose-6-phosphate to fructose-6-phosphate, whilst the 

reverse occurs in Gpia (Figure 73). Consequently, as upregulation of tigarb would 

results in a net accumulation of fructose-6-phosphate, the main metabolic product of 

Gpib. Downregulation of Gpib may be an attempt to normalise fructose-6-phosphate 

levels, further aiding the action of Tigarb. This further suggests inhibition of glycolysis 

in the pink1 -/- and a move of metabolism towards the PPP.305  

 

Figure 73. The zebrafish gpi paralogues in relation to the glycolytic pathway. Zebrafish paralogues and 
their preferred mechanism glycolytic flux are shown within the glycolytic pathway. The red arrow is 
showing preferred flux of Gpib, converting Glucose-6-phosphate to Fructose-6-phosphate, and the blue is 
arrow showing preferred flux of Gpia, which is opposite to its paralogue Gpib. Adapted with permission 
from Lee et al.230 

The upregulation of tigarb and its inhibition of glycolysis may in fact be exerting its 

pathogenic effect through the inhibition of autophagy. PINK1 is required for the 

selective removal of damaged mitochondria via mitophagy, a pathway that is clearly 
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hindered in PINK1 KO models.199, 205, 218 Upregulation of tigarb will in theory, lower 

oxidative stress, a key cellular signal for autophagy induction. TIGAR activity has been 

shown to modulate autophagy in a p53 independent manner.232 TIGAR’s modulation 

of autophagy can also modulate mitophagy independently of the PINK1/PARKIN 

pathway as TIGAR inhibition can activate mitophagy through the BNIP3 pathway.238 

Consequently, the upregulation of tigarb in the pink1 -/- zebrafish may be indirectly 

leading to inhibition of Pink1 independent mitophagy pathways in an effort to reduce 

oxidative stress. Consequently, KD of tigarb in the pink1 -/-, although it may result in an 

initial increase of oxidative stress, will increase the flux through mitophagy in a 

pink1/parkin independent manner, therefore indirectly decreasing oxidative stress by 

the removal of damaged mitochondria. 

The lack of a rescue effect of tigarb KD when exposing larvae to MPP+ is inconsistent 

with the pink1 data. However, this may be due to the dosing procedure. Although both 

pink1 deficiency and MPP+ exposure both lead to mitochondrial Complex I inhibition 

and 20% reduction in TH neurons at 72hpf, the Complex I inhibition in pink1 -/-is 

chronic in nature. In contrast, the MPP+ exposure protocol is acute, with larvae 

receiving a single dose of the toxin at 48hpf until 72hpf. The administration of MPP+ in 

a single dose, and at a late time point, may overwhelm the neuroprotective power of 

tigarb KD. Consequently administering a less concentrated dose of MPP+ in a chronic 

fashion (such as administering daily and from fertilisation) may lead to a more chronic 

inhibition of Complex I inhibition and gradual decrease in TH neuron count, which 

could then possibly also be rescued by tigarb inactivation. 

5.6 Future work for pink1 -/- 

Although a developmental cause of TH neuronal cell loss in the pink1 -/- larvae has 

been largely excluded, the cause of cell loss (such as apoptosis) still requires 

explanation. 

tigarb KD, as a rescue mechanisms in pink1 -/- still needs to be further explained. But, 

this has become more complicated as the role of Tigarb as a glycolytic inhibitor has 

recently been challenged. Its catalytic affinity for fructose-2,6-bisphosphate (originally 

described as Bensaad et al.) is several orders of magnitude lower than that for 23BPG, 

consequently, 23BPG may be the main physiological substrate of TIGAR in vivo,   

calling into question TIGAR’s function as a glycolytic inhibitor. But this is difficult to 
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interpret, as cellular levels of 23BPG have never been recorded due to contamination 

from red blood cells which contain very high quantities of the metabolite. The function 

of 23BPG is still unknown (apart from in red blood cells where it has a role of 

regulating affinity of haemoglobin for oxygen). However, this still does not prevent 

TIGAR inhibiting glycolysis through its originally discovered function as it still has 

significant affinity for fructose-2,6-bisphosphate in vivo. The pink1 microarray data also 

suggests pathogenic mechanisms may be due to the inhibition of glycolysis. This is not 

only due to tigarb upregulation but also due to downregulation of the gpib that has a 

high affinity towards Glucose-6-phosphate catabolism, a glycolytic intermediate.305 

To fully understand tigarb’s recue mechanism in pink1 -/-, confirmation of decreased 

glycolytic rate needs to be demonstrated biochemically, for example by measuring 

glycolytic metabolites. If there proves to be no dysregulation, it would add strength to 

the argument against Tigar being involved in inhibition of glycolysis, and would point 

to other novel functions, most likely involving its capacity to re-localise to the 

mitochondria and bind HK2 under cellular stress.234 If tigarb rescue is due to increased 

mitophagic flux, specific markers of autophagy could be analysed for any potential 

changes.  

To firmly establish TIGAR as a potential therapeutic target for PINK1 disease/PD, 

stable tigarb mutants need to be generated to cross with the stable pink1 mutant line to 

evaluate rescue effects in later life. This would allow evaluation of whether chronic loss 

of function of both proteins has negative consequences in aged fish. This is especially 

important, as the studies described in this thesis only examine a single time point 

(3dpf). Tigar inhibition studies should also be carried out in mammalian PINK1 loss of 

function models to demonstrate this rescue is not exclusively a teleost phenomenon. 

Tigar KD in other models of PD should also be investigated to ascertain potential 

therapeutic rescue in other forms of the disease, for example in LRRK2 or SNCA linked 

PD. 

To achieve this, TIGAR could be inhibited by KD in patient fibroblasts that have 

previously been characterised, and look for a rescue in phenotypes. For example, 

inhibiting TIGAR in LRRK2 patient fibroblasts and evaluating its effect on ATP levels 

and mitochondrial membrane potential. It would be prudent to investigate TIGAR 

levels in patient brain tissue also, to investigate whether PD, (both sporadic and PINK1 
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linked) is being driven by TIGAR upregulation. This could be achieved by analysing 

sporadic patient microarray data. 

5.7 vhl knockdown rescues pink1 -/- Th neuron reduction 

The rescue of Th neuron reduction by vhl KD is intriguing, but could not be confirmed 

using stable mutant lines and with a second marker of DA neurons. As the principle 

read out from the vhl KD experiments was TH positive cells stained by in situ, this may 

produce a false positive result as KD may only be increasing TH expression in the 

mutants as opposed to rescuing TH cell loss. This is especially important as TH is 

known to be a direct target of Hifa which accumulates in response to vhl deficiecny.290 

Consequently, staining for DAT would be a more suitable marker to confirm the TH 

cell rescue.  

Increased expression of TH is unlikely to be a cause of the apparent TH cell rescue in 

the pink1 -/-, since there is no effect of vhl deficiency in WT control zebrafish, with an 

identical TH neuron count in WT with vhl KD and WT uninjected zebrafish larvae. 

The confirmation of TH neuron rescue by vhl KD in a second model system is critical to 

be certain of its true significance and to be sure the TH cell rescue was not a non-

specific consequence of the Morpholino injection (however unlikely it may be). Stable 

mutants were the most obvious choice and were available. Unfortunately, staining for 

DAT at 5dpf proved not to support the working hypothesis, as vhl -/- had an even 

larger cell loss (30%) than pink1 -/- (20%). This is likely due to developmental defects 

and general retardation as opposed to neurodegeneration itself. Complete loss of 

function of vhl is not compatible with life as both vhl -/- mice and zebrafish are not 

viable. pink1 -/- loss of function is mild in comparison as pink1 status does not affect 

lifespan in zebrafish. Consequently, potential rescue of pink1 -/-, by vhl loss of function 

should analysed earlier in development where Th neuron reduction is present in pink1 

although not in vhl, such as 3dpf. 

How vhl KD could rescue pink1 -/- phenotypes requires further investigation. The 

original hypothesis was a normalisation of glycolytic flux as both loss of function 

mutations have opposing rates of glycolysis. This is plausible, but as previously 

discussed TIGARs status as an glycolytic inhibitor has recently been questioned.231 

Another rescue explanation would be activation of Hifa in the pink1 -/- larvae due to 
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vhl KD. This has been shown to rescue defects seen in other PD models. Moreover, DJ1 

has been found to be a direct negative regulator of vhl/hif1a interaction.228  

5.8 gba1 orthologue identification, expression and knockdown 

This study was the first reverse genetic study of gba1 in teleosts, and other than mouse 

models, represents the only other loss of function vertebrate model. Identification of a 

single orthologue of GBA1 is in keeping with ENSEMBL data listing a single 

orthologue of GBA1 in every other vertebrate with a sequenced genome. Although 

zebrafish possess many duplicated genes in their genome due to a genome duplication 

event, only a single GBA1 orthologue could be identified in the zebrafish genome. 

Unlike humans, zebrafish lack a GBA1 pseudo gene as this is only present in apes.244 

 Gene synteny was demonstrated to be partially conserved with high homology at not 

only at the DNA, but also at the protein level. Both the synteny and homology data 

clearly shows ENSDARG00000076058 to be the true zebrafish gba1 and not gba2. 

Expression analysis of WT tissue confirmed gba1 expression occurs at consistent, 

although low levels throughout development, with earliest expression detected at 

1dpf. Expression in adult zebrafish was confirmed in both liver and brain; key tissues 

for pathology seen in KO mouse studies and GD linked pathology. Expression was 

additionally monitored through development by WISH. The staining for expression 

was specific as no staining could be detected in the sense control probe. Expression 

was found to be in all organs and concentrated in the head. A similar study in murine 

developmental stages, also found gba1 expression in all organs, through all 

development stages, in keeping with the observed expression pattern in zebrafish.264, 

306, 307 

Morpholino optimisation was successful in producing a Morpholino with high 

efficacy. Optimisation of the Morpholino targeting exon 8, led to high levels of 

abnormal splicing in the WT transcript, producing exon skips and intron inclusions. It 

was noted that 100% KD could not be achieved, even by injecting this Morpholino at 

toxic doses, suggesting that gba1 may be maternally expressed. 

 KO mice die shortly after birth due to skin defects that lead to a loss of water. It was 

therefore unexpected that gba1 KD did not grossly affect morphology or development, 

suggesting different roles of gba1 in zebrafish skin formation. The modest reduction in 
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TH neurons seen in gba1 KD (10-15%) was not statistically significant and likely to be 

due to a non-specific off target effect of the Morpholino as TH neuron count in 23bp 

del gba1 -/- was unchanged compared to WT, and in all other stable mutants analysed 

in this thesis. The lack of phenotype may also be due to the residual WT transcript in 

the morphant group and the early time point analysed. If gba1 deficiency phenotypes 

are indeed due to substrate accumulation, this may take time, especially if not all of the 

WT transcript has been mis-spliced as some mouse models have shown to have a large 

reduction in Gba1 activity with little or no phenotype. The latter is likely due to a 

higher activity level of Gba1 in the brains of some loss of function mouse models. It 

appears that if the residual GBA1 activity is more than 20% in the brain, neurological 

decline is prevented in mice.263  

The apparent lack of synergistic decrease in TH neuron count in Complex I 

compromised larvae after MPP+ treatment, subjected to gba1 KD is also unexpected, 

although it may be due to the early time point (3dpf). This is not the first study to 

investigate an interaction between GBA1 and Complex I deficiency. In a study by Gegg 

et al., KD of PINK1 in SH-SY5Y cell line already led to a 30% decrease in GBA1 activity 

and expression. It is therefore plausible that pink1 -/- larvae already have a decrease in 

gba1 activity, prior to gba1 KD. Although this does not rule out a genetic interaction 

between the two, it is likely that it may take longer to modulate phenotypes, especially 

as stable mutants show minor phenotypes until 2 months of age, as opposed to 2-3 

days. Gegg et al., also utilised a similar approach of evaluating gba1 activity in response 

to Complex I inhibition by using chemical insults, in this case rotenone. However, this 

showed no decrease in activity. Most likely to the long half-life of GBA1 in vivo (72 

hours) and the short treatment period of the Complex I inhibitor (48 hours).268 

5.9 gba1 stable mutant line generation 

The generation of a stable mutant gba1 line using the TALEN system highlights its 

importance as a highly efficient genome editing technology. All previous targeted 

genome editing technology applicable for zebrafish were either not cost effective 

(Sigma Zinc Fingers) or limited by context dependence (Zinc fingers designed by the 

context dependant assembly method). For example, initial bioinformatics analysis of 

the gba1 genomic sequence identified only 3 sites (2 overlapping) that could be utilised 

for zinc finger targeting by the context assembly method, whereas TALEN analysis 
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identified over 50. Further advantages of TALENs over zinc finger nucleases are that 

the construction is technically simple and very rapid. The resulting TALEN pair 

mutated gba1 exon 7 in a targeted and highly efficient fashion. The initial screen on 

single embryos showed more than 50% mutation rate in some individuals. Sub cloning 

of undigested TALEN injected PCR products allowed direct sequencing of the 

mutations induced by the TALEN in the F0 mosaics individuals. Sequencing identified 

a mutation rate of 40%, producing deletions and indels of a similar magnitude as 

reported in the literature. The only exception was a complete lack of insertions.308 As 

expected, the mutations were present in the germ line, with 80% of the F0 injected 

individuals identified as founders. Outcrossing two F0 founders to generate the F1 

generation, and subsequent genotyping by digest identified the 7, 8 and 23bp del 

alleles. The 23bp del allele was preferred due to the capacity to genotype by PCR alone, 

which eventually proved to be extremely cost and time effective. The time taken from 

construction to having heterozygous adults that could be utilised for incross 

experiments was 6 months but would then obviously only represent F1 individuals. All 

F1 adults would require direct sequencing to ascertain their mutation, as F0 founders 

can still produce F1 individuals with different mutations if their germ line is a mosaic 

harbouring multiple mutations. Caution must also be taken when outcrossing each 

allele to remove background mutations. ENU screens for example, as they are not 

targeted, produce many mutations within a genome, and consequently, mutant alleles 

generated by this method have traditionally been outcrossed to WT individuals until 

the F5 generation is reached. At this point, any confounding mutations are deemed to 

have been removed from the line, and therefore the adults can be utilised for 

experiments. In contrast, TALENs produce targeted mutations, but may still induce 

off-target mutations. How often this occurs and how much they vary between TALEN 

pairs is still being evaluated, appropriate guidelines have not been developed yet.309 

The technical simplicity of TALEN construction, and the availability of loss of function 

mutations from the SANGER zebrafish mutation project, makes the zebrafish a highly 

amenable model organism for future reverse genetic work which allows the 

confirmation of mutant phenotypes in a further zebrafish stable mutant line in which 

the mutation has been generated using a different technique.  
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5.10 23bp del gba1 -/- loss of function 

Mutants were generated to investigate loss of function of gba1 in zebrafish, to 

determine whether zebrafish are a suitable model for GD or GBA1 linked PD. 

Analysing the mutations at a structural level, the gba1 sa1621 mutant most likely leads 

to abnormal splicing due to the alteration of an essential splice site. If leading to 

complete insertion of the following intron, this would generate a premature stop codon 

downstream of the point mutation, and the deletion of the latter two thirds of the 

coding sequence at protein translation. All TALEN deletions in the F1 generation, lead 

to a similar scenario due to the creation of frame shifts. All alleles leading to a 

premature stop codon appear within exon 7, deleting the last third of the amino acid 

sequence at protein translation.  

The 3D structure of zebrafish Gba1 has not been elucidated, but the 3D structure of 

human GBA1 is well characterized. The domains are not linear in their organisation, 

and the N and C terminal parts of the amino acid sequence bind to each other at 

several points within domains I and II. Disease causing mutations appear in all exons 

in the human gene, and it is plausible that any kind of deletion similar to those seen the 

stable mutant zebrafish would prevent proper folding of the enzyme, causing complete 

loss of function. See Figure 74 for a schematic of the structure of human GBA1.  
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Figure 74. GBA1 cartoon structure. A cartoon illustrating the structure of GBA1.  Triangles represent 
numbered β strands, whilst circles represent numbered α helices. Amino acids denoted in pink are 
associated with domain I, amino acids denoted in green are associated with domain II, whilst amino acids 
denoted in blue are associated with domain III. Certain amino acid residues are numbered in certain 
positions within the connecting groups for clarity. Note that the N and C terminals bind to each other at 
several locations to form domains II and III. Clearly a large deletion would lead to improper folding and 
loss of function. Reproduced from Dvir et al.310 

To establish whether the 23bp del gba1 -/- represented a true loss of function, qPCR was 

utilised to investigate potential activation of the nonsense mediated decay pathway. 

qPCR demonstrated a 50% reduction of the gba1 transcript in the brains of gba1 -/- to 

that of WT levels, implying the mutant transcript is unstable and being degraded by 

RNA surveillance pathways.311 This suggests that the deletion does indeed lead to loss 

of function. 

The GBA1 activity assay has previously been utilised as a robust tool for measuring the 

activity of GBA1 in homogenates of mammalian tissue, distinguishing it from GBA2 by 

the use of specific GBA2 inhibitors. To improve signal to noise ratios, NaT can be 

utilised, this simultaneously inhibits GBA2 whilst activating GBA1. The assay found no 

difference in activity between any Gba1 23bp del alleles suggesting the mutation has 

no effect on Gba1 function. This does not explain how several different mutations, that 

all produce premature termination codons, lead to such marked robust phenotypes 

(barrel roll movements, a decrease in mass and premature lethality). For the gba1 23bp 
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del allele, also includes organ invasion by Gaucher like cells seen in loss of function 

mouse models, and also activation of classical GD biomarkers such as Chitotriosidase 

and β hexosaminidase but also accumulation of GBA1 substrates within the brain, 

confirmed by mass spectrometry and PAS staining. Mass spectrometry revealed 

especially large increases in the level of Gba1 substrates in the 23bp del gba1 -/- 

compared to WT. These increases in the different glucocerebrosides ranged from a 5 

fold increase compared to WT, to nearly a 100 fold increase, depending on the fatty 

acid side chain analysed. These results are similar to loss of function mouse models 

that accumulate similar levels of glucocerebroside in their brain, spleen and liver. 

Human patient tissue also exhibits similar changes to those seen in the zebrafish brain 

mass spectrometry data. Patient GD fibroblasts from Type I and II patients both exhibit 

large accumulations of ceramides and glucocerebrosides. GD patient plasma has also 

found to have large increases in levels of ceramides and glucocerebrosides. When 

analysing GD patients spleens, (an organ key in GD pathology), these changes were 

also present, but also contained a large accumulation of GM3.312, 313 Studies of these 

small metabolites in patient brain tissue of type II and III GD also show large 

accumulations of in glucocerebrosides, ceramides, GM3 gangliosides. Of note these 

were found to be especially high in the cerebellum, a site of Gaucher like cell 

accumulation, within the gba1 -/- zebrafish brains. Human GD brains also have a large 

accumulation of the metabolite hexosyl-sphingosine (psychosine), which is never 

present in normal healthy brain tissue. Hexosyl-sphingosine was also undetected in the 

WT and gba1 -/+ brains, but was detected in large quantities in the gba1 -/- zebrafish 

brains. These data combined suggest the zebrafish is a valid model for neuropathic 

GD.128, 262, 314 

Although the Gba1 activity assay itself showed no difference in Gba1 activity between 

WT and gba1 -/- brain tissue this may be due to the specificity of the inhibitors utilised 

to differentiate Gba1 activity from Gba2 activity. DNJ inhibits Gba2, leaving residual 

Gba1 activity with basal readings at 5 nm/h/mg in zebrafish brain tissue. These 

readings are comparatively low compared to mammalian brain tissue, which gives 

much higher readings of approximately 12 nm/h/mg (both at 37°C). This may be a real 

physiological reflection of lower total Gba activities in zebrafish brain homogenates, 

with levels at 35 nm/h/mg compared to mouse brains with GBA1 enzymatic activity 

close to 100nm/h/mg (both at 37ºC). Determining Gba1 activity merely from basal 

readings by inhibiting Gba2 are difficult to interpret due to their comparatively low 
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signals compared to total activity.315 The majority of studies examining Gba1 activity 

use NaT that simultaneously inhibits Gba2 and activates Gba1. The optimisation 

experiments carried out by the author revealed that NaT, although inhibiting Gba2 

quite successfully, did not lead to the activation of Gba1, even in the presence of Triton 

X-100. This suggests that either Gba1 activity is very low in zebrafish brain and is 

unchanged in mutant compared to WT, or NaT is inhibiting both Gba1 and Gba2. 

These inhibitors have never been tested before in zebrafish and had not been validated. 

A final possibility is that the Gba activity left in NaT and DNJ gba1 -/- groups is not in 

fact Gba1 but a different Glucocerebrosidase, such as the klotho protein.315, 316 

However, the morphological and behavioural phenotypes, the RNA instability, and the 

marked substrate accumulation in the brain of gba1 -/-, all reminiscent to patients and 

KO mouse models, suggest that the gba1 23bp del is indeed a loss of function allele. 

Based on the gba1 structure, it is plausible to hypothesise that any of the alleles 

discussed in this thesis would lead to improper folding and subsequent null enzyme 

activity. When alternative inhibitors were used, specifically CBE, a specific irreversible 

inhibiter of Gba1 to assess the activity of the two enzymes, 23bp del gba -/- were found 

to have a 50% decrease in Gba activity in the CBE sensitive Gba activity. However, 

these experiments were again complicated by low Gba activity levels. Consequently, 

the Gba1 activity data generated by the NaT and DNJ inhibitors is likely to be false 

negative data, as the functional activity of these inhibitors has yet to be validated in 

zebrafish.  

Alternatively, these stable mutants may confer a toxic gain of function. Indeed, 

arguments for toxic gain of function have been put forward to explain the link between 

partial GBA1 deficiency and PD.269 However, this is unlikely for the 23bp del gba1 -/-, 

as toxic gain of function mutations tend to be due to microsatellite repeat expansions 

(for example the CAG expansion in Huntington’s) or missense mutations (such as 

LRRK2 linked PD) but only rarely as deletions or splice site alternations.74, 91 In 

addition, the probability that three separate mutant alleles, essentially created at 

random (only exon 7 was defined as a target, not the nature and size of the actual 

mutation), in two separate regions of the gene, and different two different types of 

mutations, would all phenocopy each other due to toxic gain of function, is highly 

unlikely. Additionally, if the mutation were indeed loss of function, more of a 

phenotype would be expected in the heterozygous individuals. 
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5.11 gba1 -/- characterisation 

The decrease in mass exhibited by the gba1 23bp del -/-, gba1 7bp del -/- and gba1 

sa1621 -/- would appear similar to that previously described in murine models of Gba1 

deficiency, however the reduction in mass of the mutant zebrafish is likely to be due to 

their inability to compete with their WT controls for limited food supplies due to their 

movement defect. This decreased mass was normalised back to WT levels upon re-

housing in a genotype specific tank, suggesting that the decreased mass is not as a 

result of “failure to thrive”.261, 262   

As zebrafish develop ex utero and gba1 -/- survive until 12 wpf, they are far easier to 

study than Gba1 KO mice, which die shortly after birth.128, 261 The stereotyped “barrel 

rolling/corkscrew like motions” exhibited by the gba1 -/- zebrafish that generally 

occurred upon loss of balance are unlikely to be due to ear defects, as no detectable 

pathology could be found upon H&E staining in the ear. However, this does not 

exclude balance defects due to degeneration of the lateral line. The violent motions are 

reminiscent of seizures exhibited by the neuropathic conditional mouse KOs described 

by Enquist et al., as the cork screw motions seen could be due to the combination of 

muscle spasms and the curvature of the body axis, however this requires further 

investigation.128 

The gibbus formation and body axis defects seen at the 12 wpf in gba1 -/- is very similar 

to those exhibited by the conditional Gba1 mouse KO that lack GBA1 activity in only in 

hematopoietic and mesenchymal stem cell lineages. These mice are viable and do not 

display neurological defects, however, show large substrate accumulation and organ 

invasion by Gaucher cells.251, 264 These conditional KO mouse also develop severe bone 

complications including focal osteonecrosis and osteopenia, mimicking the bone 

phenotype typically seen in type I GD. Bone phenotypes were not evaluated in the 

adult stages of the 23bp del gba1 -/- zebrafish, but should be investigated in the future 

Gaucher cell infiltration may be present in bone marrow of gba1 -/- at 12 wpf similar to 

the Gaucher cell infiltration observed in the bone marrow of conditional KO mice 

described by Mistry et al.264 
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5.12 23bp del gba1 -/- TH neuron loss 

The TH neuron loss in gba1 -/- is progressive in nature, reaching a 50% decrease by 12 

wpf. The lack of a decrease at 5dpf in the gba1 -/- is most likely due to the requirement 

for Gba1 substrate to build up in the brain tissue.274 Although there appears to be a 

change in microglial morphology at 4dpf in the gba1 -/+ and gba1 -/-, this requires 

further investigation to assess the functional consequences of these cells being less 

spherical. The lack of an upregulation of GD biomarkers at 5dpf in the gba1 -/- further 

implies that pathology in the embryological stages is limited or very subtle in nature, 

and takes time to manifest. The large TH neuron loss seen at 12 wpf, is in keeping with 

conditional KO mice described by Enquist et al.  Although they did not quantify TH 

neuron count specifically, they noted conditional KO mice had smaller brains and a 

reduction of cellular density in the thalamus, cortex, cerebellum, pons and medulla. 

There was a large increase in apoptotic cells (measured by TUNEL and anti-caspase 3 

staining). Additional markers of further neuronal populations should be investigated 

in the gba1 -/- 12 wpf zebrafish to determine whether TH neuron loss is specific or a 

consequence of global neurodegeneration.128 No TH neuron loss could be detected in 

the gba1 -/+ 12 wpf zebrafish compared to WT. This is likely due residual enzyme 

activity in the gba1 -/+ individuals. As GBA1 linked PD manifests as a late onset disease 

(at least when compared to PINK1 linked PD) it could be expected that TH neuron loss 

is unlikely to be detected at this early time point of 12 wpf. This is especially true as 

although there was the appearance of minor cellular swelling within the tectal 

ventricle, there was no robust accumulation or deficiency of any metabolites in the 

sphingolipid pathway. It should also be noted that although GBA1 mutations are the 

most common risk factor for PD, the vast majority of GBA1 mutation carriers do not 

develop the disease. 

5.13 23bp del gba1 -/- Gaucher cell invasion 

H&E staining revealed the presence of Gaucher like cells invading organs in the 23bp 

del gba1 -/-which are also affected in GD and in GD mouse models. The Gaucher like 

cells were first detected at 9 wpf, with pathology worsening by 12 wpf, specifically in 

the thymus, liver, spleen, and pancreas; all these organs are affected in GD. However, 

unlike in mouse models of GBA1 deficiency, there was a distinct lack of Gaucher cell 

accumulation in the bones, which occurs in the conditional model described by Mistry 
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et al.  These mice, although exhibiting hepatosplenomegaly, are viable and live to old 

age, bone invasion may therefore be a phenomenon that requires further time to 

appear in zebrafish. Unfortunately the 23bp del gba1 -/- do not survive long enough to 

investigate this possible phenomenon.264 The accumulation of Gaucher like cells in the 

brains of the 23bp del gba1 -/-, has previously been documented in mouse models and 

human patients.317, 318 The main accumulation site is within and adjacent to the tectal 

ventricle, a structure analogous to the cerebral aqueduct in humans. Over time this has 

evolved to be much smaller in the human brain than in zebrafish. In zebrafish, the 

tectal ventricle is located in the optic lobes, the ventral and lateral regions of the tectum 

opticum in zebrafish play an important role in the coordination of sensory signals and 

motoric integration. These regions are involved in a wide range of responses, including 

swimming. The brain lesions and Gaucher cells in this area are therefore a likely cause 

of the abnormal swimming behaviour seen in the 23bp del gba1 -/-. In addition, it also 

serves as the main visual area of the brain, functionally analogous to the visual areas of 

the cerebral cortex in mammals. The Corpus cerebellum, analogous to the cerebellum 

in humans, is the site of considerable sphingolipid metabolite accumulation in types II 

and III GD, the observed accumulation of Gaucher-like cells in the corpus cerebellum is 

therefore in keeping with the pathological changes observed in human GD patients.314, 

318 

PAS staining confirmed the Gaucher-like cells to be filled with glycolipids, however to 

confirm their status as genuine Gaucher cells, co-staining for microglial and 

macrophage markers should be carried out in the gba1 23bp del gba1 -/-, such as mac2 

and puc.1. The appearance of minor cellular swelling the in the 23bp del gba1 -/+ at 12 

wpf, was unexpected and difficult to interpret, however it does suggest that 

heterozygous mutations for gba1 is pathogenic, even at this comparatively early time 

point. Further investigation is required to ascertain whether this is neurodegenerative 

in nature. Most likely the gba1 -/+ will have more marked phenotypes at older ages as 

TH cell loss could not be detected at this age. Major changes in sphingolipid 

composition were also not detected at this age. 

5.14 23bp del gba1  -/- mitochondrial dysfunction 

Mitochondrial dysfunction has been widely reported in models of PD, although only a 

small number of studies have been conducted in the context of GD, none in non-
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mammalian models.199, 201, 272, 284, 285 Mitochondrial dysfunction has been shown to 

decrease the activity of GBA1, however it is still uncertain whether GBA1 deficiency 

can lead to defects in the mitochondrial electron transport chain.  In this thesis, 23bp 

del gba1  -/- were found to have a specific decrease in mitochondrial Complex activities 

of Complexes III and IV compared to WT. No specific changes in activity were 

reported in any 23bp del gba1 genotypes in Complexes I and II. The only prior study 

similar to this was by Osellame et al., who found a specific decrease in Complex I and 

III, without a decrease in Complex IV activity, in cultured mouse Gba1 KO neurons. No 

decrease in activity could be found in a chemically induced model of GBA deficiency 

by Cleeter et al., who utilised CBE to inhibit GBA1 in cultured SH-SY5Y cell lines. The 

lack of an effect in the latter suggests that the acute nature of CBE treatment may only 

partially reflect any genetically determined GBA1 enzymatic deficiencies. The 

discrepancies between Complex I activity between this thesis and the report by 

Osellame et al., could be due to the difference in species, and of the tissue used. This 

thesis utilised whole brain homogenates, whereas Osellame et al., utilised cultured 

mouse neurons specifically from isolated midbrain neurons to investigate 

mitochondrial dysfunction. However, both confirm that Gba1 loss of function can 

result in mitochondrial dysfunction.272, 285 In other mouse models of Gba1 deficiency, 

Amyloid precursor protein has been found to co localise with COX IV. This in theory 

could be a represent a direct association between both proteins, which may help to 

explain the decrease in mitochondrial Complex IV seen in gba -/- brains.319 

Models of other lysosomal storage disorders have also been recorded to exhibit 

mitochondrial dysfunction. Mouse models of GM1 glangliosidoses, have mutations in 

the gene coding for β-Galactosidase, and have a specific decrease in mitochondrial 

Complex IV activity, in a similar manner to gba1 -/- zebrafish brains. They also exhibit a 

decrease in their mitochondrial membrane potential and defects in mitochondrial 

morphology.320 Mouse models of Niemann pick disease, possess mutations in 

sphingomyelin phosphodiesterase, also show defects in mitochondrial Complex 

activity, specifically Complex V.321 Clearly, mitochondrial dysfunction is a key feature 

of lysosomal storage disorders and not just specific to GD.  
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5.15 Future work for 23bp del gba1 -/- 

The mutant zebrafish described in this thesis has proven to be a robust model of GD, 

with a marked reproducible phenotype in juvenile zebrafish. The GD phenotype 

displayed most reminiscent of type 2 GD, due to the marked neurological impairment. 

TH neuron loss at 12 wpf is especially novel as it is the first example of Gba1 deficiency 

leading to TH neuron loss in an SCNA independent fashion, as zebrafish do not 

possess an orthologue of SCNA. Whilst this does not rule out SNCA being a major 

factor in GBA1 linked neurodegeneration it highlights SNCA independent 

neurodegenerative mechanisms. However, identifying these specific mechanisms 

requires further investigation.  

As zebrafish do not possess a SNCA orthologue, they are an ideal model to analyse 

SNCA dependent and independent effects due to Gba1 deficiency. By crossing 

transgenic over-expressing SNCA lines to the gba1 23bp del line, further evaluation 

could be undertaken. Although it is difficult to predict how human SNCA would affect 

zebrafish nerve cells, it would be useful to assess the effect of possible SNCA 

aggregation in the context of gba1 deficiency.  

Additionally, recent data has demonstrated SNCA can effect PD progression by 

moving between cells, a feature exacerbated by GBA1 deficiency. By expressing SNCA 

under specific promoters within the zebrafish larvae (such as within the  olfactory 

bulb), potential transmission can be tracked through the brain by IHC in 23bp del gba1 

genotypes.322  

 Although not implicated in GD, MAPT has been linked to PD through GWAS. Hence 

over expressing MAPT may be useful to investigate interactions between these two 

genes in the context of PD, especially as a MAPT over expressing line has previously 

been characterised. 102, 323 

Gene- gene interactions could be further elucidated by over expressing and inhibiting 

other members of the sphingolipid pathway or other Glucocerebrosidases. Of these, 

sphingomyelinase and GBA2 are key examples.  Sphingomyelinase  (SMPD1)  converts  

sphingomyelin   to   ceramide.   Homozygous   mutations   lead   to   another   lysosomal  

storage   disorder,   Niemann   Pick   disease,   whilst   heterozygous   mutations   (like  

GBA1)   have   been   linked   to   PD,   but   this   remains   controversial.324   By   inhibiting  
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smpd1   in   the  23bp  del  gba1   -­‐‑/+  or   -­‐‑/-­‐‑  by  Morpholinos,  may  reveal  phenotypes   that  

would  demonstrate  an  interaction  between  the  mutations.    

gba2   is  another  candidate  gene  for  investigation  in  the  23bp  del  gba1  genotypes  as  

Gba2  has   recently  been   found   to  be  a  modifier  of  Gba1  phenotypes   in   conditional  

mouse   models   of   GD.   The   deletion   of   Gba2   in   a   conditional   Gba1   KO   mice  

described  by  Mistry  et  al.,  had  a  complete  rescue  of  hepatosplenomegaly  and  bone  

defects   exhibited   by   the   conditional  Gba1      KO  mouse   previously   described.325   It  

should  be  noted  that  the  conditional  Gba1  KO  mice  utilised  by  Mistry  et  al.,  retain  

GBA1  activity  in  the  brain.  Gba2  deficient  Gba1  conditional  KO  mice,  although  they  

have   a   rescue   of   phenotypes,   also   undergo   higher   quantities   of   sphingolipid  

accumulation   compared   to   either  mutant   alone.   Consequently  Gba2   deletion   in   a  

full  Gba1   loss  of   function  model  may  be  even  more  destructive   to  neuronal   tissue  

than  Gba1  loss  of  function  on  its  own.  But  this  requires  further  investigation.  

  limp2   is   another   obvious   choice   to   inhibit   in   23bp   del   gba1   -­‐‑/-­‐‑   zebrafish   as   it  

involved  with   trafficking  Gba1   to   the   lysosome  and  has  been   implicated   in  PD  in  

meta  GWAS   studies.   But   investigations   in   zebrafish  would  be   impractical   due   to  

multiple  limp2  ortholgues.102,  325  

As  the  majority  of  human  GBA1  -­‐‑/+  carriers  do  not  develop  PD,  it  remains  crucial  to  

identify   the   factors   that   lead   to   disease   development.   One   factor   previously  

discussed  is  genetic  interactions.  The  other  is  environmental  factors.  As  Complex  I  

inhibition  has  not  be  shown  to  synergistically  increase  TH  neuron  loss  in  gba1  KD,  

it  may  be  prudent   to   explore  other   toxins   implicated   in  PD,  or   at   least   later   time  

points.   Suitable   candidates   would   be   investigating   potential   susceptibility   to  

proteosome   inhibitors   such   as   MG132,   as   these   have   extensively   been   used   to  

model  PD.170  Alternatively,  as  gba1  mutations  leads  to  lysosomal  dysfunction,  gba1  -­‐‑

/-­‐‑   and   -­‐‑/+  may   be  more   susceptible   to   inhibition   of   general   lysosomal   proteases,  

such  as  Cathepsin  D  with  pepstatin  A.  Cathepsin  D  would  be  of  particular  interest  

as   not   only   is   it   the   main   protease   required   for   SNCA   breakdown,   but   sole  

inhibition  of  the  protease  leads  to  neurodegeneration  itself.326,  327   
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The Gaucher like cells described in this thesis, are likely to be true Gaucher cells 

judging from the areas they accumulate, although further confirmation is required. To 

achieve this, the 23bp del gba1 -/+;Tg(mpeg1:EGFPcaax) could be incrossed and grown 

to 12 wpf and a combined IHC for GFP and H&E could be conducted in order to 

investigate co-localisation as this transgenic reporter simultaneously labels microglia 

and macrophages with GFP.286  

As thus far, the majority of phenotypes exhibited by 23bp del gba1 -/- such as the 

appearance at of Gaucher like cells within the brain are first recorded during juvenile 

stages. To further understand pathology, it would be useful to identify when 

phenotypes first begin. This could be achieved by analysing the phenotypes with the 

largest read out, specifically chitotriosidase activity in a time course fashion. Although 

brain tissue would be difficult to extract from whole embryos at early stages, whole 

embryos themselves could be used for the assay, until the individuals become large 

enough for brain extraction to become practical. If pathology is being driven by 

substrate accumulation as is currently thought, measuring levels of sphingolipid 

metabolites by mass spectrometry at earlier time points is also crucial. As in the case 

with chitotriosidase activity at early time points, brain removal is impractical, 

consequently whole larvae could be utilised for analysis, but would have to be 

genotyped before flash freezing.  

Ultimately, using the 23bp del gba1 -/- larvae for drug based discovery for new 

therapeutics to treat GD and even PD would be desirable but currently two major 

difficulties remain. Firstly, suitable readout would need to be established since gba1 -/- 

larvae are phenotypically normal. The only abnormality detected so far were 

alterations to microglial shape, which is labour intensive to analyse and of uncertain 

functional significance.  Using fluorescent read outs such as those for the lysosomal 

assays are ideal, however further lysosomal enzymes require testing for phenotypes in 

the 23bp del gba1 -/- larvae to identify potential new read outs.  Alternatively, 

fluorescent dyes that label specific organelles such as lysotracker or mitotracker could 

be amenable to high throughput analysis.  

5.16 Concluding remarks 

This study highlights the zebrafish as a new model for PD and GD, proving to 

faithfully model at least some aspects of the disease where traditional models have 
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failed, or have proved to be impractical for study. Both models are prime candidates to 

identify readouts for phenotypic drug discovery to treat GD and PD, as well as models 

to further understand disease causing mechanisms.  
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