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Abstract

In this Ph.D. thesis, I investigate fundamental aspects of phase separation in
polymer-blend thin films by unifying 1D phase equilibria with film evolution phe-
nomena. I begin by extending a Hamiltonian phase portrait method, useful for
visualising and calculating phase equilibria of polymer-blend films, allowing the
method to be applied to systems with no convenient symmetries. Consideration
of equilibria suggests a thermodynamic mechanism of film roughening, whereby
laterally coexisting phases could have different depths in order to minimise free
energy. I then make use of the phase portraits to demonstrate that simulations
of lateral phase separation via a transient wetting layer, which conform very well
with experiments, can be satisfactorily explained by 1D phase equilibria and a
surface bifurcation mechanism involving effective boundary conditions caused by
the film surfaces. Lastly, to tie together the aforementioned work, I introduce a
novel 3D model of coupled phase separation and dewetting, for which I solved the
problem of including a general non-uniform composition profile in the depth di-
rection between the film surfaces. Pattern formation, in which surface roughening
shadows the phase separation, seems to be determined by an interplay between
dewetting kinetics and underlying phase equilibria.
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Preface

Chapters 1 and 2 provide a chronological overview of the development of
the base theory for phase separation in polymer-blend films used in this thesis.
Chapter 1 focusses on the theory of bulk polymer systems, explaining the origin
of a suitable form of free energy, phase diagrams and spinodal decomposition.
Chapter 2 follows the extension of bulk theory to include preferentially attracting
surfaces, including the origin of a form of surface energy, wetting of surfaces, and
coexisting phases in films. Together, Chapters 1 and 2 cover the primary literature
required to theoretically study polymer-blend thin films from a thermodynamic
perspective.

Chapter 3 introduces the problem of solving for equilibrium profiles in polymer-
blend thin films. A Hamiltonian phase portrait method, previously only suitable
for systems with particular symmetries, is extended to the general case of asym-
metric polymer films, and a qualitative demonstration of how phase portraits
can be used to study how equilibria change with film depth and temperature is
given. A thermodynamic mechanism of surface roughening, whereby the depth
of coexisting profiles can be different to reduce the free energy, is introduced.

In Chapter 4, Hamiltonian phase portraits and simulations of polymer-blend
thin films are used to explain the phenomenon of lateral phase separation via a
transient wetting layer. It is shown that films evolve first towards a metastable
state (the lowest energy independently-existing equilibria) and then evolve to-
wards global equilibrium (laterally coexisting phases). A novel ‘surface bifurca-
tion’ mechanism, in which surface boundary conditions determines the particular
way in which the transient wetting layer breaks up, is introduced to explain the
observations from the simulations and spin coating experiments.

In Chapter 5, a novel 3D model of a phase separating polymer film that can
undergo surface roughening via a dewetting mechanism is formulated. This for-
mulation is made possible by solving the problem of including a general vertical
dependence of the film composition in a dewetting model. This model is used
to investigate surface roughening for films with different surface-blend interac-
tion regimes, suggesting that surface pattern formation in polymer-blend thin
films is general because surface roughening shadows the underlying phase sepa-
rating morphology. The kinetics of dewetting appear to be as important as the
underlying phase equilibria. I conclude this thesis with a summary and outlook.

I hope that I have written this thesis to be useful to another Ph.D. student.
I have tried to include only the most relevant and primary literature, since it is
my sincere opinion that broad and non-specific referencing is unhelpful to anyone
new in the field. I hope that my schematics and explanations will transfer some
of the imagery by which I negotiated this field to someone else. I have also in-
cluded appendices on some technical aspects, namely the calculation of functional
derivatives from first principles and implementations of diffusion simulations on
Graphical Processing Units. Perhaps these will save someone else the time and
energy of reinventing the wheel when they could be doing new physics.
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1

Development of Theory

for

Bulk Polymer Blend Systems

I follow the development of theory for solutions and blends of poly-
mers. I take a minimal historical approach by focussing on the pri-
mary literature in which the theory was developed, and show how
the work culminated ultimately in the Flory-Huggins-de Gennes free
energy of mixing, which is the base theory for the study of spinodal
decomposition in polymer blends.

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Entropy of Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Heat of Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Flory-Huggins Free Energy of Mixing . . . . . . . . . . . . . . . . . . 11
1.5 Flory-Huggins-de Gennes Free Energy . . . . . . . . . . . . . . . . . 13
1.6 Spinodal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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2 Development of Theory for Bulk Polymer Systems

1.1 Introduction

The aim of this chapter is to provide an overview of the development of theory
for bulk polymer1 systems, which came from a drive to understand the behaviour
of solutions2 and blends3 of polymers, which differed significantly from the be-
haviour of non-polymer systems. I take a minimal historical approach to this,
using what I regard to be the most important literature in which the theory was
developed, to give a narrative to the development of the theory. This chapter can
be summarised in the following. The behaviour of polymers in solution prompted
the development of an entropy of mixing valid for long chain molecules. To fit the
theory to data required an empirical term to account for the heat of mixing, the
form of which was quickly grounded theoretically. The entropy of mixing and heat
of mixing can be combined, along with a term accounting for energy contributions
from compositional gradients, to give the Flory-Huggins-de Gennes free energy
of mixing, which can be used to understand and study spinodal decomposition
of polymer blends.

It is useful at this point to introduce the Gibbs free energy, which is ap-
propriate when considering incompressible systems (although the assumption of
constant volume is of course not general). Since the subject matter of this chapter
is mainly changes upon mixing, we can consider the Gibbs free energy change,
given by

∆G = ∆H − T∆S, (1.1)

where ∆H is the Heat (Enthalpy) of Mixing, ∆S is the Entropy of Mixing, and T
is the Temperature. I will refrain from elaboration of standard thermodynamics
terminology throughout.

Terminology

I will briefly introduce terms as they appear, but more detailed definitions of
Terminology are given on page 153. There are several terms that are used in
passing while discussing literature in this section, and those that are not specif-
ically important to this thesis will not be explicitly defined; definitions can be
found elsewhere and in the corresponding citations.

1.2 Entropy of Mixing

By 1940 there was a substantial body of evidence showing that polymer solutions
deviated significantly from Raoult’s law (Eq. (1.8)), which describes how the
vapour pressure of an ideal solution (zero heat of mixing ∆H = 0) depends
on the vapour pressure of the pure components of the solution and the molar
fraction of those components in the solution. These deviations were initially, and

1Polymer: a molecule consisting of repeated units, like a string of beads or a chain. These
repeat units are called monomers. A chain segment usually refers to a single monomer.

2Solution: a liquid mixture of solvent (e.g. water, toluene) and solute (e.g. sugar, polymer),
in which the solute is dispersed in the solvent.

3Blend: a liquid mixture of two components (e.g. a blend of two polymers).
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Figure 1.1: A blend AB on a quasi-solid lattice. There are n = 4 simple molecules,
nA = 2 and nB = 2, hence the number of distinguishable configurations is Ω =
4!/2!2! = n!/nA!nB! = 6. All six distinguishable configurations are shown.

almost exclusively, put down to enthalpic effects: it was assumed that a non-zero
heat of mixing was causing the deviations from Raoult’s Law. However, careful
experiments showed that deviations from Raoult’s Law were significant even when
the heat of mixing really was zero. The first successful efforts to explain these
deviations were undertaken by Huggins [1, 2] and Flory [3], who derived a form
for the entropy of mixing suitable for polymers.

1.2.1 Entropy of Ideal Solutions

Consider a mixture AB of fluids A and B, consisting of equal sized simple
molecules4. An ideal solution has zero heat of mixing, which means that there is
no difference in the enthalpic interactions U between molecules of the pure compo-
nents (A-A and B-B interactions) and between molecules of different components
(A-B interactions) i.e. 2UAB = UAA + UBB. This means that the molecules will
randomly mix to maximise entropy, since there are no particularly favourable or
unfavourable interactions that would prevent an entirely random mixing.

The entropy of the mixture is given by the Boltzmann equation

S = kB ln Ω, (1.2)

where Ω is the number of distinguishable configurations of the mixture. To cal-
culate Ω, we can place each molecule on a quasi-solid lattice. If the molecules of
fluids A and B are the same size, then the number of configurations available to
n = nA + nB molecules is n!, but the number of distinguishable configurations is

Ω = (nA + nB)!/nA!nB!. (1.3)

A schematic of a set of available configurations is shown in figure 1.1.
Using Eq. (1.2), we can find the change of entropy upon mixing as the

difference in entropy between the mixture and the pure components, ∆Smix =
SAB − SA − SB, giving the entropy of mixing per molecule as

∆Smix = −kB [xA lnxA + xB lnxB] , (1.4)

4Simple Molecules: molecules that can be treated as spheres, because they consist of a few
atoms at most and their internal structure need not be explicitly considered.
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where xA = nA/n and xB = nB/n are molar fractions of A and B respectively.
The entropy change ∆Smix is a configurational entropy, because it only accounts
for entropy changes due to the change of available configurations upon mixing.
Strictly speaking this expression only applies to mixtures in which the molecules
of both species are interchangeable, i.e., equal sizes and interaction energies; this
means a molecule of A can be swapped with a molecule of B with no penalty.

A regular solution is one in which the entropy of mixing is given by equation
(1.4), as for an ideal solution, but with ∆H 6= 0. That polymer solutions do not
obey Raoult’s Law even when there was zero heat of mixing meant that polymer
solutions are non-regular solutions.

1.2.2 Entropy of Polymer Solutions

The derivation of an entropy of mixing appropriate for polymer solutions was
undertaken separately by Huggins [2] and Flory [3], and although both derivations
were published in 1942, it was Huggins who published a brief letter of his results
the previous year [1], in which it was stated that “in solutions of long, flexible
chain molecules, deviation in the entropy of mixing from that given by [equation
(1.4)] may be even more important (than the enthalpy of mixing effects)”. Meyer
is credited by Flory with the suggestion that the entropy of mixing for polymer
containing systems must be responsible for these discrepancies, due to the intrinsic
connectivity of polymer chains [3].

Flory explicitly laid down the assumptions required for the derivation [3]:

(i) assume a quasi-solid lattice in the liquid and interchangeability of polymer
segments with solvent molecules (same assumptions used to derive equation
(1.4)). A segment is defined as being equal in volume and shape to a solvent
molecule;

(ii) all polymer molecules are the same size (although in 1944 Flory showed that
“heterogeneity can be disregarded”, since using a number average of chain
lengths in a distribution will include the effects of heterogeneity [4]);

(iii) “the average concentration of polymer segments in cells adjacent to cells
unoccupied by the polymeric solute is taken to be equal to the over-all average
concentration”, which is a mean-field assumption (this can let the theory
down severely under certain conditions e.g. in very dilute solutions in which
solute can clump together);

(iv) we don’t consider that the chain might curve around and cross itself once
again, which Flory noted would “(obviously) lead to computation of too
many configurations”.

Here I will give a simplified explanation in the spirit of the aforementioned
references. Figure 1.2 is a schematic to assist in following the explanation. We
assume a polymer chain to consist of x segments (x = 5). Given ns solvent
molecules (ns = 27) and np polymer molecules (np = 3), we require ns + xnp
lattice cells (ns + xnp = 27 + (3 × 5) = 45). We then place, at random, the
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end segment of a single polymer chain on a lattice cell, hence there are ns + xnp
possible configurations for this move. The next segment from the same chain
has much less freedom, of course, because it is connected to the first segment.
Given this restriction, this segment has z sites to choose from, where z is the
coordination number this gives the second segment z sites to choose from (in
this case, perhaps z = 5, since there are five neighbouring sites to choose from;
this drops out of the resulting expression). However, this second segment doesn’t
really have this much choice, since if the polymer chain were part of a filled
lattice, there might already be segments from another chain next to the first
segment of the chain we are considering. Using assumptions (iii) and (iv), we
assume that we may put the number of configurations for the second segment to
be z(1 − fp) where fp is the probability that a cell is already occupied (fp also
drops out of the final expression). Once all polymer chains have been placed on
the lattice, the remaining sites are filled with solvent molecules. Counting up
all the configurations available, and subtracting the entropy of the pure states of
both polymer and solvent, we arrive at

∆Smix = −kB
[
ns ln

ns
ns + xnp

+ np ln
xnp

ns + xnp

]

= −kB [ns ln (φ) + np ln (1− φ)] , (1.5)

where φ is the volume fraction of solvent, therefore 1 − φ is the volume fraction
of polymer.

Although in (i), we defined a segment as being equal in size to a solvent
molecule, it may be necessary that a segment in the polymer chain is necessarily
the size of several solvent molecules, since a segment must be at least so big
as to allow the chain complete flexibility around these segments. In this case,
we should define the lattice cell to be the size of the segment, and have several
solvent molecules to one cell. Flory addressed this [3], arguing that this can be
accounted for by the rescaling ns → ns/β, x → x/β where β is the number of
solvent molecules that will fill a cell the volume of a single polymer segment.

Figure 1.2: A schematic of a quasi-solid lattice, on which 3 polymer chains (6 seg-
ments longs) have been placed, and the remaining lattice cells filled with solvent
molecules. The polymer chains require connectivity.



6 Development of Theory for Bulk Polymer Systems

This simply re-enforces the requirement to correctly measure the polymer chains
in terms of segment lengths / lattice spacing (so a polymer chain may consist of
15 repeat units / monomers, but a segment may consist of 3 monomers, hence
the chain is 5 segments long).

It is more natural to express this equation per ‘molecule’, where the number
of molecules equals the number of lattice cells ns + xnp. We arrive at

∆Smix = −kB
[
φ ln (φ) +

(1− φ)

x
ln (1− φ)

]
, (1.6)

where ∆Smix has been redefined as the entropy of mixing per molecule. This
equation can be generalised to polymer-polymer mixtures. If the solvent is re-
placed by polymer species A with y number of segments, then the factor of φ can
be replaced by φ/y in the first term. It is more natural to replace y with NA and
x with NB, where Ni represents the number of segments in species i (the segment
size of both species being chosen to be equal in the definitions of Ni). This gives

∆Smix = −kB
[
φ

NA

ln (φ) +
(1− φ)

NB

ln (1− φ)

]
. (1.7)

Equation (1.7) is known as the Flory-Huggins Entropy of Mixing. Notice that
unlike equation (1.4), the logarithm terms contain volume fractions. If NA =
NB = 1 then equation (1.7) reduces to equation (1.4) for ideal solutions.

Although any lattice parameters do not strictly appear in (1.7), it is worth
noting again that the ‘length’ of a polymer species should be counted in units of
lattice size. So if species A and B have the same number of monomer units and
are both flexible around these units, then if the size of A-monomers are twice
the size of B-monomers, we have NA = 2NB (assuming the lattice cells are the
size of the A-monomers, which is required to allow the A-chains to be flexible).
Working in volume fractions φ accounts for the other mathematical difference due
to B-chains having half the volume of A-chains.

1.3 Heat of Mixing

Although deviations from Raoult’s law could be shown to derive from the entropy
of mixing given by equation (1.5), fits to the activities data still require a term
that took the heat of mixing into account [5]. Of course, generally a heat of mixing
term for polymers will be required, because the heat of mixing is rarely zero.

1.3.1 Activities Data

Raoult’s law relates the vapour pressure of an ideal solution to the vapour pressure
of each solution-component and the mole fraction of that component. Huggins
used an expression essentially equivalent to Raoult’s Law, writing the chemical
potential µi of species i in a solution as [5]

µi = µoi +RT ln ai, (1.8)
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where the reference state with chemical potential µoi may refer to the pure com-
ponent, for simplicity. The ‘activity’ is defined as ai = pi/po, where pi and po
are the vapour pressures of component i in the solution and as pure component,
respectively. An expression for the difference in chemical potential can be found
from the entropy of mixing:

∆µp = −∂(T∆S)

∂n∗p
, (1.9)

where n∗p is now the number of moles of polymer, and ∆µp = µp−µop. The entropy
of mixing (1.5) in terms of the number of moles of solvent and polymer is then

∆Smix = −R
[
n∗s ln

n∗s
n∗s + xn∗p

+ n∗p ln
xn∗p

n∗s + xn∗p

]
. (1.10)

Using equation (1.9) and converting back into volume fractions, we arrive at

∆µp
RT

= ln ap = lnφp + (1− x)φs. (1.11)

From the way the number of segments x in the polymer molecules is defined, x
can be written in terms of a ratio of volumes of the polymer and solvent molecules
x = V̄p/V̄s. Generalising to polymer-polymer systems (since we can always choose
N = 1 for either polymer for it to be a simple solvent), there are two expressions
for a binary mixture

ln aA = lnφA +

(
1− V̄A

V̄B

)
φB,

ln aB = lnφB +

(
1− V̄B

V̄A

)
φA, (1.12)

where either A or B could be a polymeric solute or a solvent.
The osmotic pressure of the solvent can be related to the activity by

Π

cs
= −RT

c2
s

ln as, (1.13)

where cs is the concentration of polymer solute or equivalently (given different
units) the partial molar volume. In order to account for how, in polymer so-
lutions, Π/cs increases with cs Huggins needed to include an empirical term in
equations (1.12) which “takes care of the heat of mixing, deviations from complete
randomness of mixing, and other factors” [5]:

ln aA = lnφA +

(
1− V̄A

V̄B

)
φB + µAφ

2
B,

ln aB = lnφB +

(
1− V̄B

V̄A

)
φA + µBφ

2
A. (1.14)

Using equations (1.13) and (1.14) Huggins showed that the expression for the
entropy, equation (1.7), fit data on polymer solutions, providing the empirical
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constants µA and µB are chosen suitably for a particular solution (with the con-
dition that µAV̄A = µBV̄B, which is natural since the heat of mixing is a mutual
interaction between opposing species and must be balanced). In hindsight, the
need for the empirical constants to be included in equation (1.14) can be seen to
arise from the definition of the chemical potential (1.9), since the full expression
should be ∆µp = ∂(∆G)/∂n∗p. However, the form of ∆H was not yet known.

1.3.2 A van Laar form for the heat of mixing

Flory provided a simple derivation for an appropriate form for the heat of mix-
ing [4]. The result is the van Laar expression for the heat of mixing of simple
molecules, which has a simple lattice-based explanation [6], which follows. If a
fluid A and fluid B, both consisting of simple molecules, occupy molar volumes
v and V respectively, then for a solution of n moles of A and N moles of B, the
internal energy per mole of solution can be written as

UAB =
εAA(vn)2 + 2εAB(vnV N) + εBB(V N)2

vn+ V N
. (1.15)

Subtracting the energy of (the same quantity of) the pure fluids UA = εAAvn,
UB = εBBV N , and gathering terms, gives

∆U = ∆ε
vV nN

nv +NV
, (1.16)

∆ε = 2εAB − εAA − εBB. (1.17)

For polymer systems, the argument can be made that the form of interactions
between polymer segments and solvent molecules should be the same as those
between simple molecules. Assuming no volume change upon mixing, ∆H = ∆U ,
so the partial molal heat of A, given by ∆H̄A = ∂∆H/∂n, is then

∆H̄A = ∆εφ2
B, (1.18)

which is exactly the same form as the heat of mixing term in equation (1.14).
However, Flory was quick to point out that the use of this term provides satisfac-
tory agreement with experiment, but that it clearly must contain “contributions
from other factors the origins of which are not yet clear” [4]. This could include,
of course, entropy effects due to the heat of mixing and configurational entropy
modifications to equation (1.7) from the fact that, given a finite heat of mixing,
systems of polymers and solvents will not be entirely uniform.

1.3.3 The Flory-Huggins Interaction Parameter

A heat of mixing consistent with equation (1.16) can be derived from a general
lattice model with coordination number z, as in Flory’s textbook [7]. However, I
found the latter derivation slightly difficult to follow, so I have opted to derive
the heat of mixing in line with a more modern approach [8].
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A mean-field 5 assumption can be applied to a binary polymer mixture AB on
a quasi solid lattice, and assume that the probability that a lattice cell picked at
random will contain a segment of A or B is given by the volume fraction of A or
B, denoted by φA or φB respectively. Also, given this chosen site, the probability
that any neighbouring site contains a segment of A or B is also given by φA or
φB respectively. If the interaction energy between two A segments is εAA, then
given the probability of choosing an A-segment when choosing the first site is φA,
and given that the probability of a neighbouring site containing an A-segment is
φA, then the contribution to the average site energy from A-A interactions will
be εAAφ

2
A. The average energy of a site can then be given by the general formula

Usite = z
∑
i=A,B

∑
j=A,B

εijφiφj, (1.19)

whereas the total energy of the pure states of A and B is given by

Upure = z
∑
i=A,B

εiiφi. (1.20)

Performing Usite−Upure gives the change in internal energy upon mixing per site.
Assuming no volume change, this is the same as the enthalpy of mixing.

∆Hmix = kBTχφAφB, (1.21)

χ = z∆ε/kBT,

∆ε = 2εAB − εAA − εBB.

Equation (1.21) is almost exclusively used to represent the heat of mixing. The
dimensionless parameter χ is called the Flory-Huggins interaction parameter. It
can be measured in experiments, and is usually considered to be an experimental
parameter to describe the heat of mixing without reference to any microscopic
effects or lattice theory model. However, in this particular lattice theory model
from which χ has been explained, χ is purely enthalpic in origin. An entropic
contribution is generally necessary.

Non-combinatorial entropy

The entropy of mixing (1.7) represents the combinatorial entropy of mixing,
resulting only from the change in available configurations for non-interacting
chains (in other words, it arises from the increased volume in which the polymer
molecules can distribute themselves, which allows them access to more configu-
rations [9]). In general, we should expect χ to have an entropic part too, usually
referred to as a non-combinatorial entropy, and may arise from the non-uniformity
of a solution caused by preferential attraction between like components, or from
a change in the accessibility of energy levels or restriction of certain rotational
configurations due to interactions.

5Mean-field: average interactions are used in place of counting up individual interactions,
such that the local behaviour can be written in terms of macroscopic average properties.
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The entropy of mixing can be obtained from equation (1.1) as

∆S = −∂∆G

∂T
, (1.22)

and the enthalpy/heat of mixing as

∆H = ∆G+ T∆S. (1.23)

Substituting in the entropy of mixing (1.7) and the heat of mixing (1.21), and
assuming that it is possible that χ depends on temperature, gives

∆S = −kB
[
φ

NA

ln (φ) +
(1− φ)

NB

ln (1− φ) + φ(1− φ)
∂(χT )

∂T

]
. (1.24)

From this follows that

∆H = ∆G+ T∆S = kBTφAφB

(
χ− ∂(χT )

∂T

)
. (1.25)

Comparing this with the heat of mixing (1.21) we see that, in general, the Flory-
Huggins interaction parameter χ has both an enthalpic and entropic part [7, 10],
such that χ = χH + χS, where

χH = χ− ∂(χT )

∂T
= −T ∂χ

∂T
, (1.26)

χS =
∂(χT )

∂T
. (1.27)

Thus in order for the interaction parameter to be purely enthalpic, it must have
temperature dependence χ ∝ 1/T .

Anomalous contributions to the entropy of mixing were often put down to
changes in volume which the lattice model used to derive equation (1.7) cannot
include. Whilst changes in volume will of course alter the entropy, numerous
experiments under fixed volume still show that there is a contribution to the
entropy upon mixing that cannot be accounted for by equation (1.7) and thus a
non-combinatorial entropy contribution must exist [9]. This idea is now a standard
part of the literature [11].

Dependence of heat of mixing on volume fraction

In Flory’s first paper on the subject [3] it was suggested that the agreement
between theory and experiment would be better if the enthalpy term equivalent
to ∆ε in equation (1.18), which acts as an analogue of χ, was given an appropriate
dependence on concentration. For the rubber-toluene solution measurements in
question, the theory was rather accurate for high concentrations of rubber solute,
but matched the data at low rubber concentrations only with an empirical fit
for the heat of mixing. In [4], Flory returned to this matter, mentioning that
the fit that Huggins had made to a benzene-rubber solution (which required
no concentration dependence for the empirical terms containing µi) was correct,
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but that the matter was actually more complicated. Other measurements that
separately measured the heat of mixing and entropy of mixing in this system
confirmed that both departed significantly from the theory, but “when these two
somewhat erroneous equations are combined, however, a satisfactory free energy
function is obtained, as Huggins has shown”. Flory suggested that a finite heat
of mixing might be responsible, since this would necessarily lead to non-uniform
mixing (clusters of solute in pure solvent).

This idea was explicitly addressed by Flory in a paper soon after [12], in
which Flory investigated the case of highly diluted polymer solutions. Experi-
ments showed that the heat of dilution was dependent on the concentration of
polymer solute, and there was a marked difference between dilute and concen-
trated solutions. The heat of mixing as given by the van Laar form in equation
(1.14) could be reconciled with the data provided that µ is reformulated as

µ = β + α/RT, (1.28)

in which both α and β depend on the concentration. Flory states that the
benzene-rubber system analysed by Huggins is essentially a special case in which
the free energy function does not require µ to depend on concentration, even
though the entropy and heat of dilution equations when considered separately do
not match the data. Flory points out that the value of µ needed for the fit is ac-
tually much lower than theory would predict, which indicates that µ is really just
an empirical constant, and that “in spite of the approximate constancy of µ for
rubber in benzene at all concentrations, it is unlikely that this condition applies to
high polymer solutions in general”. Flory showed that a different µ was required
for solutions of high concentration than low concentration, and the constant α
must change and, generally, it is “likewise necessary to throw the burden of µ
on β in dilute solutions” [12]. Eq. (1.28) is essentially equivalent to the modern
common expression for the Flory-Huggins parameter:

χ = A+
B

T
. (1.29)

1.4 Flory-Huggins Free Energy of Mixing

Substituting the Entropy of Mixing (1.7) and the Heat of Mixing (1.21) for poly-
mer systems into the expression for the Gibbs free energy (1.1), we obtain the
Flory-Huggins Free Energy of Mixing fFH ≡ ∆Fmix = ∆Hmix−T∆Smix. In units
of kBT , we can write

fFH(φ) =
φ

NA

ln (φ) +
(1− φ)

NB

ln (1− φ) + χφ(1− φ). (1.30)

The expression fFH(φ) is the ‘bulk’ free energy for a polymer blend, giving the
free energy per lattice site in the Flory-Huggins lattice with spacing a.
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Figure 1.3: Phase diagram in the φ-χ plane (essentially equivalent to composition-
temperature) for a polymer blend N = NA = NB. Below the coexistence curve,
it is favourable for the polymer blend to remain mixed, hence 1-phase is stable.
Above the coexistence curve, it is favourable for the polymer blend to de-mix,
hence 2-phases are stable. Between the coexistence curve and the spinodal line,
1-phase has more energy than 2-phases, but 1-phase is metastable, and so 1-
phase may still exist in this region. So the spinodal line represents the limit of
stability for the blend remaining in the 1-phase state i.e. above the spinodal, 1-
phase is unstable. The critical point (φC , χC), located at critical volume fraction
φC and critical temperature χC , corresponds to where the coexistence curve and
spinodal line coincide. It is the first point at which the blend becomes unstable
upon increasing χ (assuming χ = A + BT−1, then the critical point marks the
highest temperature for which a blend in the 1-phase region is unstable).

Phase diagram from the Flory-Huggins free energy

Equation (1.30) can be used to compute a phase diagram6 for the blend which
separates the one-phase region (the components of the polymer blend remains
mixed together, entropy overcoming enthalpy) from the two-phase region (the
polymer blend de-mixes into two phases, each rich in one component of the poly-
mer blend) in the plane of composition and temperature. Figure 1.3 is a phase
diagram for the polymer blend N = NA = NB, containing a coexistence curve
and spinodal line, explained below.

The limits of stability of a polymer blend can be calculated by considera-
tion of the first and second derivatives of the free energy (1.30) with respect to
composition, dF/dφ and d2F/dφ2 respectively. To demonstrate, I will consider a

6Phase Diagram: a diagram, drawn in a space of variables such as composition and tempera-
ture, that separates regions corresponding to different stable phases with lines, which correspond
to the limits of stability of these phases. e.g. for water, a phase diagram in the temperature-
pressure plane separates regions of vapour, liquid and solid.
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blend in which the two polymers A and B have the same chain lengths (degree
of polymerisation) NA = NB = N , since this is the simplest example. The first
derivative is

∂F

∂φ
=

1

N
ln

(
φ

1− φ

)
+ χ (1− 2φ) . (1.31)

dF/dφ = 0 corresponds to minima in the free energy, and we can rearrange the
resulting expression so that we can plot a locus of points for which dF/dφ = 0,
giving us the ‘coexistence curve’

χcoex =
1

N

1

2φ− 1
ln

(
φ

1− φ

)
. (1.32)

(If the blend is not symmetric, then calculating the coexistence curve is more
complicated, requiring equating the chemical potentials of both species). The
second derivative is

∂2F

∂φ2
=

1

N

1

φ(1− φ)
− 2χ, (1.33)

d2F/dφ2 = 0 corresponds to minima in the free energy for which the curvature of
the free energy is also zero, and this expression can be rearranged to obtain the
locus of points called the ‘spinodal line’

χS =
1

2N

1

φ(1− φ)
. (1.34)

Quenching a polymer blend, such that the temperature changes and the blend
passes from the 1-phase region to the 2-phase region, results in ‘spinodal decom-
position’ i.e. phase separation induced by crossing the spinodal line. This will be
discussed more in section 1.6.

1.5 Flory-Huggins-de Gennes Free Energy

In order to study how a polymer blend undergoes phase separation, in which a
1-phase mixture de-mixes into a 2-phase mixture, we need to take into account
energy costs from different phases being in contact with each other e.g. a phase
rich in polymer A being in contact with a phase rich in polymer B. The interface
between these phases will have a finite width, so this interface is essentially a
composition gradient across which the composition goes from A-rich to B-rich.
We need to account for free energy contributions from composition gradients.

1.5.1 Free energy of non-uniform systems

Cahn and Hilliard [13, 14, 15, 16] are probably owed the most credit to develop-
ment of theory to describe non-uniform systems. Cahn was primarily interested
in binary alloys and mechanisms of phase separation and the interfaces in the
resulting structures. Although the original treatment by Cahn and Hilliard was
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in the context of a binary mixture of simple fluids or quasi-solids, the theory is
very general, requiring only a small change to describe polymer systems.

In the first of a series of three papers, all published under the leading title
“Free energy of a non-uniform system” [13, 14, 15], Cahn and Hilliard presented
“a general equation for the free energy of a system having a spatial variation in
one of its intensive scalar properties” [13], which for simplicity was chosen to be a
binary solution. Cahn and Hilliard’s original treatment of the problem was based
on expressing the local free energy f ∗ “as the sum of two contributions which are
functions of the local composition and the local composition derivatives” [13, 15].
For an isotropic system which has no directionality, it was then supposed that
the local free energy f ∗ could be expressed as

f ∗(c,∇c,∇2c, . . .) = f(c) + κ1∇2c+ κ2(∇c)2 + . . . (1.35)

where f is the energy of a uniform system, the derivatives terms represent local
composition gradients and κi are coefficients that may possibly depend on the
local composition. It is noted no assumptions are made about the nature of κi,
which of course could depend on local concentration [15]. The form of equation
(1.35) is intuitive for an isotropic system, because only even powers of the gradient
term may appear if direction is not important.

The energy f ∗ refers to the local energy of a volume dV , hence the total free
energy in a system of volume V is given by

F =

∫
V

f ∗dV. (1.36)

This result, which describes an inhomogeneous system, has two contributions to
the free energy: a local contribution f(c) from the system being held at com-
position c; and the energy contribution from a local composition gradient in the
system. After a little re-arranging, we can express this as

F =

∫
V

f ∗(c,∇c,∇2c, . . .)dV,

=

∫
V

[
f(c) + κ(∇c)2 + . . .

]
dV, (1.37)

κ = −dκ1/dc+ κ2. (1.38)

So in general we see that κ may indeed depend on the concentration. Equation
(1.37) is limited to a regime in which the composition gradients are not too steep,
or to be more exact where “the ratio of the maximum in this free energy function
to the gradient energy coefficient κ must be small relative to the square of the
intermolecular distance” [13]. If this is not the case, then higher even powers of
the derivatives of local concentration need to be included in equation (1.35).

Cahn and Hilliard used Eq. (1.37) to investigate the properties of the inter-
face between two coexisting phases, and applied it to regular solutions of simple
molecules [13]. The surface and interfacial energies predicted by manipulations
of equation (1.37) agreed extremely well with experimental data and were in
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agreement with two empirical expressions for the latter known to generally ap-
ply. Furthermore, the theory produced extremely good agreement with data on
the interfacial energy close to the critical temperature TC (χC ; see figure 1.3),
which is significant as it validated the dependence of the surface energy on the
distance from the critical temperature that the theory predicted [13]. As explicitly
explained by Cahn, the advantage of this representation of a non-uniform system
is “the splitting of the thermodynamic quantities into their corresponding values
in the absence of a gradient and an added term due to the gradient” [14].

1.5.2 Random Phase Approximation for Polymer Chains

The Random Phase Approximation is a self-consistent field calculation for (dense)
polymer systems, attributed to de Gennes [17, 18, 19, 20]. Using the RPA it is
possible to find the form of κ(φ), the coefficient of the gradient term in equation
(1.37), suitable for describing polymer systems. I will briefly follow the outline
of the derivation for κ(φ), leaving the full derivation for the citations below.

Self-consistent field calculations

The idea behind a self-consistent field calculation (a type of mean-field treatment)
for polymer systems is as follows [17]. We choose a form of interaction between
polymer segments, and then derive a potential based on this interaction and the
local concentration of segments. We then take an ideal/non-interacting chain
and place it in this potential, and derive the resulting concentration profile. We
ask if our profile for the concentration is consistent with this potential, given
the interactions producing the potential, i.e., we’ve placed our ideal chains, now
if we make them non-ideal (interacting), will the interactions between segments
produce the potential? Almost certainly not, so we update the concentration
profile so that it’s appropriate for our potential. However, since the potential
is also dependent on the concentration, we then update the potential, and then
update the concentration again etc. This is an iterative procedure, and following
de Gennes we can describe it as

U(r) = Tvφ(r), (1.39)

where T is temperature and v is the excluded volume occupied by a segment.
Given an ideal polymer chain in a potential U(r) we can calculate a new concen-
tration profile φ′(r), and then calculate a new potential U ′(r) etc. We hope that
the potential and concentration profile converge on a stable fixed solution upon
enough iterations.

De Gennes points out that the first application of a self-consistent field treat-
ment to polymers was by Edwards [21], and I found the explanation given in
Edward’s work to be extremely enlightening. Edwards explains that the prob-
ability of finding a segment at distance L along the chain and distance r from
the origin is not simply a random walk, due to the excluded volume principle -
a segment cannot occupy a certain volume that is excluded by the presence of
another segment. Thus the probability distribution is broadened and Edwards
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shows that “it will turn out that p (the probability distribution) will play the role
of a potential”. Note that the potential arises from the excluded volume princi-
ple, so we need only know that there is an interaction which achieves an excluded
volume effect.

The Random Phase Approximation

The motivation behind the Random Phase Approximation (RPA) is: we want
to compute a response function that tells us how a weak perturbation at point
r will effect the concentration at a point r′. We will allow our chains to sit
in an overall potential that is the sum of this weak perturbing potential and a
self-consistent potential that is due to all of the surrounding chains. We wish
to find this self-consistent potential, and this is quite a difficult problem. I will
briefly describe the principles behind the random phase approximation, avoiding
the dense mathematics but following the description in de Gennes book [17].

The change in local concentration at point r due to a weakly perturbing
potential W (r′) at point r′ is

δΦn(r) = − 1

T

∑
r′

∑
m

Snm(rr′)Wm(r′), (1.40)

where the index m represents segment m such that Wm is the perturbing poten-
tial acting on segment m, and Snm is a response function that relates how the
perturbation on segment m at r′ affects segment n at r. Thus we see that all
perturbations on all segments have been included. Since we are considering an
isotropic system, the response function may only depend on the separation r−r′,
so we switch to Fourier space to simplify the treatment

δΦn(q) = − 1

T

∑
m

Snm(q)Wm(q). (1.41)

After some difficult maths, the central result of RPA emerges as

Snm(q) = S0
nm(q)− S0

n(q)S0
m(q)∑

nm S
0
nm(q)

,

= S0
nm(q)− S0

n(q)S0
m(q)

NgD(q)
, (1.42)

where S0
nm(q) is the non-interacting response function (which is known, hence

allowing the substitution of the Debye scattering gD function for the sum over
these response functions) and S0

n(q) =
∑

m S
0
nm(q).

What exactly does equation (1.42) mean? The derivation of this result does
not involve introducing specific interactions as such, other than the implied repul-
sive interaction that is responsible for excluded volume, so the result really repre-
sents the distribution of polymer segments caused by there being other polymer
segments around. For a detailed derivation, the reader should consult de Gennes
book [17]. The main point here is that we can calculate the response function Snm
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from quantities that we already know. We can measure Snm using neutron scat-
tering experiments, using chains partially labelled with deuterium [19, 20]. The
results of these experiments will tell us the distribution of labelled segments and
therefore of the polymer chains, assuming that the labelling of segments doesn’t
introduce additional interactions.

1.5.3 The Flory-Huggins-de Gennes Free Energy

We still need to calculate a coefficient κ of the gradient term in Eq. (1.37)
suitable for polymer systems. A derivation can be found in modern textbooks [8,
10]. We ask how the local composition changes with respect to a change in the
local chemical potential. When the volume we consider is very large compared to
the chain size, such that this volume as a whole will not contain fluctuations of
concentration, we obtain from equation (1.30) with χ = 0 (such that the polymer
mixture is ideal) the chemical potential of species i as µi = ∂∆F/∂φi:

µi =
kT

Ni

lnφi + const, (1.43)

providing we write φ ≡ φi and 1 − φ ≡ φj 6=i. We can then easily derive the
response function that we desire

∂φi
∂µi

= φi
Ni

kT
. (1.44)

Using the notation δ(∆µ) = δµA − δµB and noting that for a binary mixture we
must have φA + φB = 1, then we obtain with φ = φA

∂φ

∂(∆µ)
=

1

kT

(
1

φNA

+
1

(1− φ)NB

)−1

. (1.45)

This won’t be correct for small volumes where fluctuations are significant. Work-
ing in Fourier space, we can adapt the latter equation to

∂φ(q)

∂(∆µ(q))
=

1

kT

(
1

φSA(q)
+

1

(1− φ)SB(q)

)−1

,

=
1

kT
Sni(q), (1.46)

where Sni is the response function for non-interacting chains.
To account for a potential, so as to consider interacting chains, we can then

write
1

S(q)
=

1

Sni(q)
− V (q), (1.47)

and we note that for q = 0 this potential must equal 2χ, since by definition this
is our interaction in the FH regime based solely upon the enthalpy between two
monomers. For small q it must be true that

V (q) = 2χ

(
1− 1

6
q2r2

0

)
, (1.48)
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because this term arises from a first order expansion of a Gaussian distribution
describing a bare response function for a non-interacting chain [17, 20] and r0,
which is of the order of the segment size a (which is therefore equal to the lattice
spacing in the Flory-Huggins lattice), measures the range of inter-segment forces
[8]. Inserting the approximate potential V and the response functions SA and SB
into equation (1.47) we obtain an expression for the scattering response function
S(q) that is consistent with a free energy (in units of kBt) of the form [8]

F =

∫ [
fFH(φ) + κ(φ)(∇φ)2

]
dr, (1.49)

κ(φ) =
χr2

0

6
+

a2

36φ(1− φ)
≈ a2

36φ(1− φ)
, (1.50)

for which it is common practice to neglect the small first term in κ(φ). The result
is the Flory-Huggins-de Gennes free energy for a binary polymer system:

F [φ,∇φ] =

∫ [
fFH(φ) +

a2

36φ(1− φ)
(∇φ)2

]
dr, (1.51)

which is the starting point for studying the kinetics of, and morphology resulting
from, phase separation of polymer blends.

1.6 Spinodal Decomposition

A mixture of two components may exist either as one phase (the entropy of mixing
overcomes the heat of mixing) or as two phases (the heat of mixing overcomes the
entropy of mixing). A phase diagram like figure 1.3 separates regions of stability
of blends existing as one-phase and two-phases. Phase separation from one phase
into two phases, caused by the thermodynamic instability of the mixture as it is
brought across the spinodal line from the one-phase to the two phase region, is
called Spinodal Decomposition. I will first discuss an early example involving a
crystaline solid, not only because it is an important example in the development
of theory, but because it is a good introduction to several concepts.

1.6.1 A crystal with a 1D inhomogeneity

Hillert considered a crystalline solid consisting of two components A and B, in
which a variation in composition x (the volume fraction of A, 0 < x < 1) was
allowed in one direction along the crystal [22]. This system was modelled by con-
secutive parallel 2D planes i− 1, i, i+ 1..., every plane having some characteristic
composition xi−1, xi, xi+1.... Figure 1.4 shows a schematic representation.

Hillert calculated the free energy of this system. For the interaction energy
(heat/enthalpy), it was assumed that an atom in a particular plane i could inter-
act with Z nearest neighbours in total, with z of these nearest neighbours being
located in the next plane i+1. The system as a whole has average composition xa,
interaction strength v, and the total number of atoms within a single atomic plane
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i
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i - 2

i + 1

i + 2

Figure 1.4: Parallel 2D planes of a crystal, in which the composition of each plane
0 < xi < 1 is represented, in this schematic, by the degree of transparency of the
planes. The arrow represents the direction of inhomogeneity in the crystal.

is m. The energy of interaction for plane i interacting with next plane i+1 is then
∆U = vm {Z(xi − xa)2 − z(xi − xi+1)2}. The change in entropy arising from a
single plane i being at a composition different from the average composition is

given by regular solution theory ∆S = m
{
xp log xp

xa
+ (1− xp) log 1−xp

1−xa

}
. Hence,

after summing across all planes in the system, the energy difference between the
inhomogeneous state and the homogeneous (note the direction of consideration
of energy difference, which gives a minus sign) is

∆F =− vm
∑
p

{
Z(xp − xa)2 − z(xp − xp+1)2

}
+ kBTm

∑
p

{
xp log

xp
xa

+ (1− xp) log
1− xp
1− xa

}
. (1.52)

Nature of stable solutions

Hillert considered stable (mathematical) solutions to the problem, which requires
calculation of the change in free energy “when atoms are exchanged between two
neighbouring planes p − 1 and p” i.e. what is the functional derivative of the
free energy with respect to composition xp of plane p. For equilibrium (stable
solutions) we require δ∆F/δxp = 0. For small amplitude fluctuations around the
average composition xa, stable solutions were found to obey the relation

xp+1 = xp−2 − xp−1 + xp − 2M(xp−1 − xp), (1.53)

where M is a constant given by a combination of parameters (including average
composition xa, the number of nearest neighbours Z and z, the temperature T ,
and the interaction energy v).

It turns out that M = 1 corresponds to the spinodal curve for a 1D system:
(one-phase region) |M | > 1 corresponds to states outside the spinodal for which
the only physically relevant solution (in which 0 < xp < 1) was xp = const = xa
i.e. a homogeneous state; (two-phase region) |M | < 1 corresponds to inside the
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spinodal, for which relevant solution for small amplitude fluctuations are of the
form xp = xa + C sin pφ where C is a constant. For shallow depths beyond the
spinodal, the wavelength (of the composition variation) extends over many atomic
planes, but as distance into the spinodal increases (|M | → 0) the wavelength
becomes of order unity (on the order of a few atomic planes). Consideration of
large compositional variations required numerics to be performed on a computer,
but the results showed that again the equilibrium states within the spinodal were
sinusoidal in nature.

Wavelengths

Hillert supposed that a kinetic treatment of the problem would give insight into
what composition variation wavelengths might dominate by showing which wave-
lengths would grow the fastest. It was also noted that in order for the system to
increase the wavelength of fluctuations (in order to lower energy) a re-arrangement
of the system is necessary that should also be studied from a kinetic perspective.
By deriving a diffusion equation for the system and applying random fluctuations
(fluctuations with a spectrum of amplitudes and wavelengths), Hillert found that
a spectrum of wavelengths first developed, followed by small wavelength fluctu-
ations decreasing in amplitude, causing the average wavelength of the system
grow with time. Consideration of the fastest growing wavelength is important in
spinodal decomposition studies [22].

1.6.2 Stability of a solution

Cahn considered the stability of a solid-solution with respect to compositional
fluctuations [23], where ‘solution’ is meant in the sense of a binary mixture which
may support composition gradients, and ‘solid’ is meant in the sense that there
is an elastic energy contribution to the free energy (arising from strain in the
material when an initially homogeneous region becomes inhomogeneous). I will
leave out the elastic energy contribution in my discussion here.

Cahn considered the free energy of a two-component solution using Eq. (1.37)
To consider fluctuations requires knowledge of how the free energy changes when
a small amount of one-component is replaced with another, but “in the presence
of a gradient, if we make a local change in composition we also change the local
gradient”, so we must consider the functional derivative of the free energy with
respect to composition. If a functional F is given by

F =

∫
g(r, c(r),∇c(r))dV, (1.54)

then the functional derivative of F with respect to c(r) is given by

δF

δc
=
∂g

∂c
−∇ · ∂g

∂(∇c)
, (1.55)
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as long as the integrand vanishes at the boundaries of integration. Applied to
Eq. (1.37) (such that g is the integrand f ∗ of Eq. (1.37)) we obtain

δF

δc
=
∂f

∂c
+
∂κ

∂c
(∇c)2 − 2κ∇2c. (1.56)

The functional derivative can be used to formulate a diffusion equation which
may be used to study the morphology resulting from spinodal decomposition.

1.6.3 Diffusion Equation

The chemical potential µ can be related to the functional derivative via µ =
δF/δc. Cahn considered the matter current J = −M∇µ, where M is a positive
mobility coefficient, and the continuity equation ∂c/∂t = −∇ · J . Disregarding
all terms non-linear in c, so as to consider infinitesimal compositional fluctuations
corresponding to the initial stages of spinodal decomposition, we have

∂c

∂t
= M

∂2f

∂c2
∇2c− 2Mκ∇4c, (1.57)

confirming Cahn’s assertion that “the diffusion equation must contain a higher or-
der term reflecting the thermodynamic contributions of the gradient energy term”.
The first term of Eq. (1.57) allows us to interpret Mf ′′ as an interdiffusion coef-
ficient. The second term accounts for gradients and interfaces.

Wavelengths

For small variations in c about the average c0, the solution to Eq. (1.57) is
c − c0 = A(k, t) cos k · r, where k is the wavevector of a compositional variation
and A(k, t) is an amplification factor depending on the wavelength, which yields

∂A

∂t
= −Mk2

[
∂2f

∂c2
+ 2k2κ

]
A, (1.58)

and therefore solutions are of the form

A(k, t) = A(k, 0) exp [R(k)t], (1.59)

R(k) = −Mk2

[
∂2f

∂c2
+ 2k2κ

]
, (1.60)

Cahn referred to R(k) as a kinetic amplification factor, which if negative means
that the solution is stable to fluctuations of wavevector k, and which if positive
means the the solution is unstable to fluctuations of wavevector k. The critical
wavelength by definition separates these two regimes, and corresponds to the
smallest possible wavelength for which the mixture is unstable, R(kc) = 0. Cahn
noted that “surface tension prevents decomposition of the solution on too fine a
scale.” This important point is why equations like (1.37) and (1.51) are required
to study phase separation, because without a gradient energy term, the mixture
could decompose on an infinitely fine scale. However, since this would yield an
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enormous amount of gradient energy, this is not actually energetically favourable,
and so does not happen.

Cahn found that the fastest growing wavelength was related to the critical
wavelength

kmax =
√

2kc, (1.61)

Fluctuations of wavelength kmax “will grow the fastest and will dominate. This
principle of selective amplification depends on the initial presence of these wave-
lengths but does not critically depends on their exact amplitude relative to other
wavelengths”. This is a very important idea in spinodal decomposition.

1.6.4 Morphology from spinodal decomposition

To investigate the structures that may result from spinodal decomposition, Cahn
used the solution to Eq. (1.57) given by c − c0 = A(k, t) cos k · r [16]. Since all
sums of all solutions are also possible solutions, due to superposition theory, the
most general solution is

c− c0 =
∑
all k

exp {R(k)t} [A(k) cos(k · r) +B(k) sin(k · r)] . (1.62)

The problem of studying the temporal evolution is much simpler if only the
wavelength with the fastest growing amplitude is considered i.e. kmax

c− c0 ≈ exp {R(kmax)t}
∑
kmax

[A(k) cos(k · r) +B(k) sin(k · r)] . (1.63)

Hence “The predicted structure may be described in terms of a superpositioning of
sinusoidal composition modulations of a fixed wavelength, but random in ampli-
tude, orientation, and phase” and “at some time after phase separation starts, a
description of the composition in the solution will be a superposition of sine waves
of fixed wavelength, but random in orientation, phase, and amplitude”. The sum
in equation (1.63) remains, even though only k = kmax is considered in the sum,
because Cahn generated a predicted morphology by summing over waves with
different directions and amplitudes.

The resulting morphology was a highly interconnected bi-continuous struc-
ture, which resembled that of phase separable glasses believed to have undergone
spinodal decomposition. Cahn stated that “theory of spinodal decomposition has
been shown to predict a two-phase structure”, although strictly speaking this re-
sult only applied to the initial stages of phase separation. Kinetic restrictions
would of course mean that this structure would indicate the qualitative features
that would be expected from the late stages, since rearrangement of material
at late stages is restricted by the structures formed at early stages. Figure 1.5
shows simulation snapshots of a phase separating polymer-blend, produced by
solving the diffusion equation (1.65) for a polymer-blend (equation (1.65) is es-
sentially equation (1.57), but with random thermal noise included and without
limiting to small variations around c0) shown for visualisation purposes: the final
morphology, a bicontinuous structure, is very similar to that obtained by Cahn.
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Figure 1.5: Shown here only for visualisation purposes are simulation snapshots I
produced of a phase separating symmetric polymer blend (NA = NB = N , aver-
age volume fraction φ̄ = 1/2), created by solving the Cahn-Hilliard-Cook equation
(1.65) for a polymer blend. The initially nearly-homogeneous blend phase sep-
arates and coarsens into a highly interconnected bicontinuous morphology, the
latter of which is similar to that obtained by Cahn.

1.6.5 Random noise and spinodal decomposition

Cahn’s theory of the early stages of spinodal decomposition [16] is known to break
down at later stages, mainly as a result of neglecting higher order terms in the
gradient energy that bring in other harmonics [24]. However, Cook noted that it
was not understood why the theory could also break down for the initial stages of
spinodal decomposition for which it was designed to study. Cook suggested that
“the breakdown at the very early stages of the transformation which is caused by
thermal fluctuations is not so widely appreciated” [24]. A strong example of the
lack of understanding was the complete lack of spinodal decomposition in some
glass mixtures, which were practically identical to other glass mixtures which
did have the features of spinodal decomposition. This could not be accounted
for by a theory that suggested that only the initial amount of decomposition in
the glass mixture (the spectra of composition fluctuations in the initial mixture)
would result in different late-time features.

Supposing that “fluctuations in composition caused by thermal effects which
were not included in the original theory” may have been responsible, Cook modi-
fied Cahn’s diffusion equation given in Eq. (1.57) to include thermal noise, which
should give rise to Brownian motion of the fluid. This was justified by Cook
because it is understood that “the equilibrium state is dynamic and that, for the
case of a stable, single phase, binary solid solution, an appreciable flux of solute
occurs at equilibrium.” To include this random thermal contribution, Cook modi-
fied the matter current equation J = −M∇µ to include a “quasi-random thermal
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contribution to the total flux”, denoted by j, resulting in a material current

J =−M∇µ+ j

=−M∇δF
δc

+ j. (1.64)

Cook’s important contribution to the rate equation for spinodal decomposition
lead to the name “Cahn-Hilliard-Cook” theory for equations of the form

∂c

∂t
= ∇ ·

[
M∇δF

δc

]
−∇ · j(r, t) (1.65)

≡ ∇ ·
[
M∇δF

δc

]
+ η(r, t). (1.66)

The randomly fluctuating field η(r, t) has certain properties, such that its
average value is zero. Using averaging to treat the random term (the average
properties are well defined), the rate of change equation given by Cahn in equa-
tion (1.58) gains an extra term, giving dI(k, t)/dt = M(k){[f ′′ + 2κk2] I(k, t) −
kBT/Ωc0(1−c0)}, where Ω is the volume per atom. So the rate of change of inten-
sity has two separate contributions: (a) a thermodynamic driving force “which is
proportional to the free energy associated with the Fourier coefficient of wavevec-
tor k”; and (b) a thermal driving force “which is proportional to the temperature
and independent of the wave vector”.

The inclusion of thermal noise has several non-trivial implications for spinodal
decomposition [24], especially in the early stages of spinodal decomposition when
the free energy of the fluctuations is ∼ kBT “and thus the influence of random
fluctuations will be pronounced”: (i) the critical wavevector kC is now determined
by the condition that the thermal driving force (from the thermal noise) is equal
to the thermodynamic driving force (arising from the free energy of the system);
(ii) the rate of intensity will be greater given the thermal driving force, since
“every movement in the fluctuation field... which increase the magnitude of a
Fourier coefficient is amplified”; and (iii) the “thermal driving force indicates
early stages of decomposition outside the spinodal... in this ‘operational’ sense
the spinodal, itself, becomes a diffuse boundary”.

1.6.6 Spinodal Decomposition of a Polymer Blend

I will briefly discuss, for completeness, the relaxation of a polymer melt, which
is an important idea of spinodal decomposition, although the concept will not
be discussed in the rest of this thesis. Relaxation concerns, to give a broad
definition, how an unstable mixture ‘relaxes’ into a stable mixture in spinodal
decomposition. Relaxation can be described by a relaxation time for different
wavelengths (lengthscales) of the decomposition.

De Gennes extended the study of the dynamics of spinodal decomposition
to polymer blends [18]. For polymer blends, there are a variety of length scales
that are important, and so it may be important to have a dependence of the
mobility on the wavelength of fluctuations in a polymer blend. This can be
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done by introducing a wavelength dependent Onsager coefficient Λ(q) into the
usual expression for the matter current J = −M∇µ. This effectively allows a
dependence of the constant M on the wavelength of each Fourier component.
The result is a current for each Fourier component

Jq = −Λ(q)

kBT
(∇µ)q. (1.67)

We can allow use the following expression for the relaxation time for a mode of
wavelength q:

1

τq
= − 1

δφq

∂(δφq)

∂t
, (1.68)

where δφ is a small fluctuation away from the homogeneous state φ0, such that
we can express the composition using φ = φ0 + δφ. If wavelengths of fluctu-
ations produce negative values for τ−1

q , then compositional fluctuations of this
wavelength grow with time.

De Gennes derived a relaxation formula for a symmetric binary polymer blend,
assuming the form Λ(q) ∝ q2 for polymer blends (based on a scaling ansatz)
[18]. The result for the relaxation time “differs from the standard Cahn-Hilliard
equation for spinodal decomposition” for simple molecules, this difference arising
from “the presence of long chains”. It was noted that “the characteristic length l
is much smaller than the coil size... (thus) spinodal decomposition is an excellent
probe for fluctuations of short wavelength.” The assumption Λ(q) ∝ q2 was later
found to be false [25].

Pincus continued the work of de Gennes by taking into account new knowl-
edge the nature of the Onsager coefficient [25]. The nature of the relaxation of
modes in a polymer melt leads to a significantly altered dependence of the On-
sagar coefficient on the wave vector q, namely that Λ(q) ∝ q−2. This gives a
very different result for the relaxation time (still of the form equation (1.68)).
Unlike the results of the earlier work by de Gennes which showed that spinodal
decomposition should probe very short wavelengths “much smaller than the coil
size” [18], it now appeared that “the unstable mode has a wavelength compara-
ble to the ideal chain radius and therefore should vary as N1/2 with only a weak
concentration dependence”. Also, “the corresponding growth rate is proportional
to the reptation diffusion coefficient in a melt and thus scales as N−2 and has a
concentration dependence that reflects the shape of the spinodal line.” Concerning
the latter point, this means that upon going from the one-phase to the two-phase
region, the rate of spinodal decomposition depends on the concentration.

Mean-field treatments of polymer systems

Binder later did a similar calculation, but using the chemical potential as calcu-
lated via functional derivatives [26]. Binder notes that mean-field treatments of
spinodal decomposition in fluids of simple molecules can fail due to fluctuation
effects that are not included in mean-field treatments. However, “a simplifying
feature due to the large size of the polymer chains is the mean-field character of the
unmixing transition, fluctuation corrections to the mean-field description can be
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safely neglected.” On the linearisation approximation φ(r, t) ≡ φ0 + δφ(r, t) used
to calculate the relaxation time, Binder noted that “whilst it is well known that
the linearisation approximation is not valid in the critical region of non-mean-field
liquid... its validity in the present case should be much better justified.” The main
result is that “the wavevector qm of maximal growth in spinodal decomposition is
typically of the order of qm ∼ R1” where R is the polymer coil radius.

1.7 Summary

In this chapter, I discussed the development of theory to describe bulk polymer
blend systems, beginning with the development of an entropy of mixing valid for
long chain molecules, followed by a heat of mixing, and an expression for the
free energy cost of compositional gradients. Together, these expressions give the
Flory-Huggins-de Gennes free energy of mixing. I discussed the coexistence curve
and spinodal line for a binary blend system, as well as spinodal decomposition
whereby a blend phase separates into phases rich in either component upon being
quenched from the one-phase to the two-phase region. This chapter has covered
the bulk theory required in this thesis, and the next chapter extends this theory
to include surfaces, allowing films to be studied theoretically.
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2.1 Introduction

The aim of this chapter is to introduce several important concepts about films of
binary fluids that are relevant to the rest of this thesis. I have taken care to follow
the primary literature that developed the relevant theory, much of which is as
relevant to simple fluids and Ising systems as it is to polymer fluids. This chapter
can be summarised as follows. I begin with how a surface can be included into
a theory of non-uniform systems, and follow literature for Ising systems, simple
fluid systems, and polymer systems which utilised specific forms of this surface
energy. I then briefly discuss wetting, whereby a surface can be coated by the
preferred phase of a binary mixture. I then introduce films of multicomponent
fluids, namely a binary mixture bounded by two surfaces, and explain different
surface energy configurations caused by the preferential attraction of components
by the two surfaces, and what effect the surface energy and finite geometry has
on phase separation.

It is useful to introduce some terminology here. Figure 2.1 shows two schemat-
ics of semi-infinite systems: (a) bulk system of infinite extent in contact with a
surface/wall 7 (such that the system spans from z = 0 to z = ∞, where z mea-
sures the distance from a bounding wall at z = 0); and (b) a film of infinite
thickness, which is effectively a film of thickness d in the limit that d→∞ (usu-
ally such that the system runs from z = −∞ to +∞, the position of the two
bounding surfaces/walls). The work that I discuss prior to section 2.5 considers
such semi-∞ geometries.

∞

∞

(a) (b)

Figure 2.1: Two different examples of semi-infinite systems of two-phase mix-
tures in contact with surfaces, the degree of shading (colouring) representing
composition: (a) bulk system of infinite extent in contact with a single sur-
face/wall/substrate; (b) a film of infinite thickness with two bounding surfaces.

7Surface/Wall: the boundary formed by the interface between the fluid and, for example,
air or a vacuum. While the terms will often be used interchangeably, a Wall is specifically meant
to be a rigid planar surface, while a Surface could be non-rigid and deformable. A substrate
such as a silicon wafer, on which a fluid film may rest, is therefore a wall, whereas the fluid-air
boundary may be referred to as either a wall or a surface depending on the context.
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2.2 Non-uniform systems with a surface

In pioneering work, Cahn extended the theory for non-uniform bulk systems, with
two phases α and β, to include a third phase x representing a surface [27]. Later
work concerning similar systems is almost invariably built on these foundations.
Cahn showed that for a two-phase system α-β in contact with a third phase x,
near criticality for the two-phase system the third phase is completely wetted by
only one of the critical phases, the other critical phase being entirely excluded
from contact with the third phase [27]. Figure 2.2 is a schematic similar to that
given in Cahn’s work: when the angle that a phase makes with the surface drops
to zero, θ → 0, the surface is wetted by that phase. Applied to a binary fluid (two-
phase system) in contact with a wall (the third phase), which was the context
of the work, this means that near criticality the wall would be wet entirely by a
phase rich in one component of the binary fluid.

x

α

β
θ

Figure 2.2: Schematic of a two-phase system α-β in contact with a third phase
x, which is in this case a planar surface. When θ → 0, the surface will be
completely wetted by the β phase, such that a layer of β phase will coat the
surface, excluding the α phase from contact with the surface. Here, the surface
is non-wet since θ 6= 0, but changing parameters like temperature and surface
energy could cause θ → 0.

Cahn modelled a semi-infinite system, running from z = 0 to z =∞ as shown
in figure 2.1(a), of a binary blend of liquid-vapour in contact with a surface. The
bulk composition at an infinite distance from the surface at z = 0 was c∞ ≡ c0.
Cahn assumed that “the interactions between surface and fluid are sufficiently
short-range” and only depend on the local fluid composition cs at the surface.
The excess free energy the system has, due to the presence of the wall, can then
be expressed as

∆F = Φ(cs) +

∫ ∞
0

∆f + κ

(
dc

dx

)2

dx, (2.1)

where ∆f = f(c) − f(c0) − (c − c0)(∂f/∂c)|c=c0 is the energy needed to form a
volume of material with composition c differing from the bulk c0, κ(dc/dx)2 is
the energy cost of a composition gradient, and Φ(cs) is the surface energy. The
surface energy decreased non-linearly with increasing composition of the preferred
component at the wall, such that coating of the wall by that component would
be preferable. Cahn made no other assumptions about the form of Φ.

The task of finding the equilibrium profile c(z), describing the composition c
with distance z from the wall, requires minimising ∆F with respect to a boundary
condition imposed by the wall. Setting the functional derivative of the excess free
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energy at the wall to zero, Cahn obtained for the boundary condition at z = 0:

dΦ

dcs
− 2κ

dc

dx

∣∣∣∣
c=cs

= 0. (2.2)

(Calculating equilibrium profiles is the subject of chapter 3.) I will discuss the
important results of Cahn’s work, as opposed to only the model, in section 2.4,
but equations (2.1) and (2.2) are ideal to introduce the concept of the surface
energy addition to the bulk free energy.

2.3 Form of the surface energy

In this section, I will discuss the form of the surface energy term Φ in equation
(2.2), for which there are many applications to different non-uniform systems,
including Ising-spin systems (magnetic systems), multicomponent fluids of simple
molecules, and polymer blends. It turns out the the form of the surface energy is
essentially the same in all these cases, although the meaning of the terms varies
slightly between each case.

2.3.1 Magnetic systems

Lubensky and Rubin studied a semi-infinite system of continuous magnetic spins
using Landau-Ginzberg mean-field theory [28]. Figure 2.3 is a schematic, showing
a wall (surface), the layer of spins directly adjacent to the wall, and the next layer
of spins (similar to figure 2.1(a), these spins extended infinitely away from the
wall). The effect of the wall had two contributions: a surface magnetic field at
that wall (an interaction between the wall and the spins, which would encourage
alignment of the spins with the magnetic field at the wall) and an enhancement
of the nearest neighbour exchange energy at the wall (which would encourage the
spins directly adjacent to the wall to align with each other either more strongly
or less strongly than they would in the bulk). In effect, the enhancement of near-
est neighbour exchange energy represents a change of the nature of interactions
between spins at the wall, which should be possible even if the wall does not exert
a surface magnetic field on the spins.

The presence of the wall resulted in a boundary condition determining the
magnetisation at the wall, which is in analogy with the boundary condition equa-
tion (2.2). The surface highly perturbs the behaviour of the system. For example,
when the surface field exceeds the bulk field, then surface transitions are possible
in which the surface orders when the bulk is still disordered (the magnetisa-
tion decaying with distance from the wall). Due to the enhancement of nearest
neighbour interactions, it is also possible for the bulk to order before the surface
orders.

Pandit and Wortis (1982) also studied a semi-∞ Ising system like that in
figure 2.3, but with a one-dimensional inhomogeneity allowing the spin-profile to
vary with distance from the wall [29]. They used a phase portrait method (phase
portraits are the topic of chapter 3) to study the states and transitions of the
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Figure 2.3: Two layers of a semi-∞ Ising system in contact with a wall, which
can modify the interactions between neighbouring spins in the vicinity of the wall
(left) and apply a magnetic field to spins adjacent to the wall (right).

system. Similar to Lubensky and Rubin [28], both a surface field and a surface
enhancement were used to represent the wall: the surface term was linear in
the magnetisation at the wall M(0); the surface enhancement, corresponding to
an additional interaction between spins in the immediate vicinity of the surface,
provided a term quadratic in M(0). The particular form is noted here for com-
parison with that used for simple fluid and polymer systems, discussed in sections
2.3.2 and 2.3.3. Variation of the free energy functional at the surface leads to a
boundary condition analogous to that found by Cahn, equation (2.2).

2.3.2 Simple Fluid systems

The form of the wall interaction used by Lubensky and Rubin [28], briefly men-
tioned above, turns out to be qualitatively identical to that which became the
norm for binary fluid systems. Nakanishi and Fisher studied the “global phase
diagram for wall and surface critical phenomena” [30]. Their work was a direct
extension of that by Lubensky and Rubin, although leaning towards the context
of binary fluid systems in contact with a surface. The equivalence of the surface
field in magnetic systems and an “incremental chemical potential, δ∆µ = h1kBT ,
which favours one species and acts only near the wall” was made clear, and as
in the case of an Ising system, a surface enhancement g representing enhanced
coupling (a change in the nature of interactions) near the wall was included. Fig-
ure 2.4 is a schematic representing these effects. The surface energy contribution,
depending on the magnetisation at the surface m1, was then

fs(m1) = −h1m1 −
1

2
gm2

1, (2.3)

which is essentially equivalent to that used by Lubensky and Rubin for an Ising
system [28]. Using Φ = fs and cs = m1 in equation (2.2), it is simple to see
that the boundary condition at the surface will be of the form ∂zm1 ∝ h1 + gm1.
Hence the surface enhancement g sets the boundary condition on m1 by relating
the composition gradient to the surface composition. Perhaps they were first to
write the surface energy in a phenomenological form like in equation (2.3).

Using the same description of a simple bulk fluid in contact with a surface,
Nakanishi and Pincus later studied ‘surface spinodal decomposition’ (where the
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Figure 2.4: Three layers of a semi-∞ binary fluid of simple molecules in contact
with a wall, which can modify the interactions between neighbouring molecules
in the vicinity of the wall (left) and apply an incremental chemical potential
favouring one component on molecules adjacent to the wall (right).

surface gives directionality to spinodal decomposition) for fluids near a wall [31],
describing the model as “the simplest model for wetting where an incremental
chemical potential δ∆µ = h1kBT is introduced favouring one component, say B,
of a binary fluid mixture near the wall” with an enhancement term describing an
“enhancement near the wall in the effective molecular couplings”.

Jerry and Neumann investigated the criteria for depletion and enrichment
of a component of a binary mixture at a wall, using a nearest-neighbour type
interaction to model interaction with the wall [32]. Using regular solution theory
for the binary mixture, they pointed out that a consistent form for the wall
interaction energy Φ must be (at least) quadratic in the local composition cs;
the coefficient of the linear term is a chemical potential and the coefficient of
the quadratic term is a based on missing neighbour interactions caused by the
presence of the wall resulting in fewer nearest neighbour bonds at that wall. Of
course, such a surface energy is then equivalent to equation (2.3). They showed
the equivalence of various theoretical descriptions of a wall, including a ‘frozen
wall’ consisting of fluid molecules with a fixed phase cs, a free surface in which
the interface can be taken to be a vacuum, and a ‘real wall’ which included the
effects of the wall interaction with each component in the binary mixture. A
function quadratic in composition proves to describe all of these scenarios, only
the coefficients have different physical meanings, the proposed form being (s ≡ c)

Φ(s) = −µ1s−
1

2
gs2 +R, (2.4)

where R is a constant, which would of course disappear in the boundary condition
(2.2). One of the most important points they raised was that “the bulk concentra-
tion is important in determining whether enrichment or depletion occurs (at the
wall). This contradicts the conventional understanding that the surface should be
enriched with the component having the lower surface energy” [32].

2.3.3 Polymer systems

Schmidt and Binder extended the work of Nakanshi and Pincus to binary polymer
blends in the presence of a single wall [33]. Their results showed that polymer sys-
tems should display the same surface phenomena present in simple fluid systems.
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They used a quadratic expression for the bare surface energy −µ1φ1 − 1
2
gφ2

1, in
common with the aforementioned work on systems of simple molecules. Similarly,
g “represents a change of interactions near the surface (including the effects due
to “missing neighbours” etc.).” Using the Flory-Huggins-de Gennes free energy
functional, together with a chemical potential difference and the surface energy,
they wrote their free energy functional in the same form as equation (2.1):

F

AkBT
=

∫ ∞
0

{
fFH(φ) + κ(φ)

(
dφ

dz

)2

−∆µφ

}
dz − µ1φ1 −

1

2
gφ2

1. (2.5)

Essentially, the interactions between polymer segments and a wall should be simi-
lar to interactions between simple molecules and a wall. Figure 2.5 is a schematic
showing why this ought to be the case. They put forth that, unlike for simple flu-
ids in which fluctuations can make artefacts of mean-field predictions, “polymer
mixtures would be an excellent candidate of systems to observe (phenomena like)
critical wetting” which are predicted by such theories, since polymer mixtures
should be better described by mean-field theories.

Figure 2.5: Schematic of polymer chains in the vicinity of a surface/wall. The
presence of the wall can modify the interactions between neighbouring segments
on different chains (centre), whether these chains are of the same species or of
a different species, and apply an incremental chemical potential near the wall
which favours segments of one polymer species (right). The interactions between
different monomers, and between monomers and the wall, ought to be of the same
nature and magnitude as the interactions of simple molecules.

Interpretation of the quadratic wall interaction for a polymer system

Although a quadratic expression for the free energy of the boundary is mainly
phenomenological, one can make a simple argument based on bond counting that
shows that a quadratic dependence is fairly general. Jones proceeds as follows [8]:
Consider a binary polymer mixture A-B laid out on a lattice. The probability
of a particular lattice site being occupied by a segment of A is φ, which is the
total volume fraction of A in the blend. If the bond energy between components
i and j on neighbouring lattice sites is εij, then the energy contribution from A
monomers in contact with A monomers will be the probability of a site being
occupied by A, which is φ, multiplied by the probability that a neighbouring
site is also occupied by A, which is also φ, multiplied by εAA, the energy of an
A-A bond. A similar argument applies to interacts between B-B segments, and
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between A-B segments. We can then form a surface in the blend, such that
several bonds will have to be cut. If forming the surface requires that we cut
z′ such bonds on a lattice of spacing b, then the energy of forming that surface
turns out to be

f (b)
s (φ) =

z′b

2

[
φ2εAA + (1− φ)2εBB − 2φ(1− φ)εAB

]
. (2.6)

So we should expect the surface energy to be at least quadratic in φ. Reference
[8] discusses how the phenomenological parameters expressing the surface energy
(µ1 and g in section 2.3.3) may be related to other variables, which might be
experimentally measured/estimated, by such a bond counting argument.

2.4 Wetting in semi-infinite geometries

In this section, the term semi-infinite geometry is meant to mean a system of
infinite extent but with a bounding wall or surface, like that shown in figure
2.1(a), such that the system spans from z = 0 to z = ∞, where z measures the
distance from a bounding wall at z = 0.

2.4.1 Wetting in a Three Phase System

Cahn did the earliest systematic study of wetting, which I discussed briefly in
section 2.2 [27]. Using a graphical method to analyse solutions minimising the
free energy functional (2.1), Cahn determined some very general results about
wetting. The three phase system of a binary fluid (phases α and β) in contact
with wall (phase x) is shown in figure 2.2. Wetting8 of the wall x happens when
one fluid phase, say α, is excluded from contact with the wall, such that the
wall is in contact only with the other phase β, as in figures 2.7 and 2.8 (this
means that θ → 0 in figure 2.2). Wetting by β, in which only β is in contact
with the wall x, will happen if the energy of this configuration is lower than the
energy of three phase contact, in which both fluid phases α and β are in contact
with the wall x. The limit of wetting by β should occur when the free energy
of the system with three phase contact is the same as when only one phase β
is in contact with the wall x. Since the free energy depends on the temperature
T , Cahn predicted that a wetting temperature TW , less than but in the vicinity
of the critical temperature TC , is the cut-off for wetting behaviour (at TW , the
energy of the two aforementioned configurations is the same).

Figure 2.6 shows a representative phase diagram of composition c against χ,
which for the purposes here can be considered to be the inverse temperature
(however, see equation (1.29)). For TW ≤ T ≤ TC (χW ≥ χ ≥ χC), the coexist-
ing phases with composition ca and cb (lying on the coexistence curve between

8Wetting: when one phase of a binary phase system entirely coats a surface, excluding
the other phase from contact. Although wetting is strictly defined to mean that the latter
configuration is stable and the phase coating the surface is infinitely thick in a semi-∞ system
(see main text throughout), the term is usually used more loosely to describe most scenarios
when a phase coats a surface.
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Figure 2.6: A representative phase diagram of composition c against inverse tem-
perature χ. The wetting temperature χW is in the vicinity of the critical tem-
perature. The compositions cb and ca of the coexisting phases at the wetting
temperature are shown. In the two-phase region between χW and χC , one of the
coexisting phases will wet the surface (which one depends on the surface energy).
Above χW , wetting no longer occurs, only positive adsorption of the preferred
phase at the surface.

the points shown and the critical point at the bottom of the coexistence curve)
constitute perfect wetting, with an infinitely thick layer of the preferred phase
coating the wall x. For T < TW (χ > χW ) there is only positive adsorption of
the preferred phase (an excess of the preferred phase at the wall x). At T = TW
(χ = χW ) a first-order transition occurs, which constitutes a jump from positive
adsorption to an infinitely thick layer of the preferred phase. This jump in the
wetting layer thickness, from finite to infinite, is characteristic of first-order wet-
ting. A schematic of this transition is given in figure 2.7: wetting occurs because
there is a spontaneous change in which configuration has a lower energy, prompt-
ing the system to switch from a profile cfinite(z) to c∞(z). Cahn also predicted
prewetting (although the term was not coined here): when one of the phases, say
β, is not stable in the bulk system (because the system is still in the one phase
region) this phase can still form a non-homogeneous layer of finite thickness at
a surface (wetting happens in the two phase reion). When the composition of β
reaches the value for coexistence, a first-order transition can occur and the layer
thickness jumps to ∞.
Cahn therefore showed that wetting phenomena should be observed in any two-
phase system in contact with a surface (i.e. three phase system) close to the
critical point of unmixing.

2.4.2 Ising Systems with a wall

In pioneering work utilising phase portraits (essentially plots of composition and
composition gradient, along with boundary conditions; see chapter 3) to study
phase equilibria (composition profiles that minimise the free energy), Pandit and
Wortis studied a semi-∞ nearest neighbour Ising model with a bulk field and
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Figure 2.7: Schematic of a first-order wetting transition, which constitutes a jump
in the layer thickness from a finite value to infinity. The jump occurs due to a
spontaneous change in which composition profile has the lower free energy, from
cfinite(z) at T < TW to c∞(z) at TC > T > TW , as parameters like the temperature
are changed. At T = TW , the free energies of cfinite(z) and c∞(z) are equal.

surface field (and also modified spin-spin interactions in the layer of spins adjacent
to the wall) [29]. This was discussed briefly in section 2.3.1 with regards to the
form of the surface energy, and the schematic of figure 2.3 still applies.

First-order wetting was found for a non-zero, large enough surface field (pre-
ferring up-spins, say) and opposing bulk field (preferring down-spins, say), in the
limit that the bulk field goes to zero. At a temperature TW it is found that
the minimal energy profile for the systems changes discontinuously from a profile
with a finite wetting layer of the preferred phase to a profile in which this layer is
infinite. For non-zero bulk field (which is in analogy with a 2-phase fluid mixture
away from coexistence) pre-wetting transitions are found in which there is still
a jump in the thickness of the wetting layer, due to a sudden change of profile
of minimal energy, but this jump is from a finite value to a large but also finite
value. These transitions are first-order; the characteristic jump in wetting layer
thickness can be seen as due to an instantaneous switch of profiles to achieve a
lower energy state, as represented in figure 2.7.

Second order wetting, which they found under the same bulk field conditions
but with smaller surface fields, was also studied. This so-called ‘critical-wetting’
temperature (as opposed to ‘wetting temperature’, which they took to mean the
temperature for a first order transition) is very close to the critical temperature
of the system. Upon approaching the critical-wetting temperature, the wetting
layer thickness goes to infinity, but continuously. This is because there is no
sudden jump to a different profile of minimal energy. Instead, upon approaching
this temperature, the profile continuously changes until the part of the profile
corresponding to the wetting layer is infinitely thick, as shown in figure 2.8.

2.4.3 Wetting in polymer systems

Nakanishi and Pincus studied wetting for simple fluids in a semi-infinite geome-
try in which the bounding wall preferred the liquid (as opposed to the vapour)
phase [31]. The work was carried over to polymer systems too. Similar to earlier
work [29], a phase portrait method was used to study wetting and prewetting.
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Figure 2.8: Schematic of a second-order wetting transition. As the temperature
approaches the so-called ‘critical-wetting’ temperature, very close to the critical
temperature, the composition profile c∗(z) changes continuously such that the
thickness of the wetting layer goes to infinity.

‘Extended wetting’ was proposed, whereby a metastably wetted state (i.e. pro-
file) could exist below the wetting temperature. The argument for this behaviour
comes from studying inflexion points in the free energy, in the same way that the
spinodal is defined in infinite bulk systems. This yields surface spinodals which
give rise to metastably wetted and metastably non-wetted states. However, it is
noted that this behaviour could simply be artefacts from the mean-field theory.
They argued that, for polymer blends, critical/second-order wetting should be
impossible to observe, as should extended wetting.

Schmidt and Binder studied a semi-infinite binary polymer mixture in contact
with a wall preferring one polymer species [33], using a Flory-Huggins-de Gennes
free energy functional with an additional term for the bare surface energy, given
by equation (2.5). First-order wetting, prewetting and second-order wetting were
studied. They found that, at two-phase coexistence, the wall is always wetted
with the preferred phase, but that there is strong enhancement of the preferred
component at the wall even away from two phase coexistence. In disagreement
with previous work by Nakanishi and Pincus [31], Schmidt and Binder argued
that it should be possible to observe second-order wetting in a binary polymer
mixture (in which mean-field descriptions should work well, and the spinodal
should be well defined rather than smeared out by fluctuations, as it would be in
simple fluid systems). The disagreement arises from a difference in the magnitude
of the polymer wall interactions assumed by the authors, with the assumptions
of Schmidt and Binder probably being much more physical, since the latter work
assumes that the interactions between polymer segments and surfaces is of com-
parable magnitude to that between simple molecules and surfaces, as explained
in section 2.3.3.

2.5 Phase Separation in finite geometries

In this section, I discuss phenomena resulting from the confinement of a non-
uniform system between two walls that are a finite distance apart i.e. a film,
figure 2.1(b) but with finite d.
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2.5.1 Laterally Coexisting Film Profiles

In the previous section, it was mentioned that in the non-wet state, there is pos-
itive adsorption of the prefered component at the surface, but the discussion was
reserved to considering only how the composition varies with distance from the
surface. Of course, if the composition was only allowed to vary in the direction
perpendicular to the wall, then one would find in the non-wet state preferential
adsorption at the wall, and could not find cases in which there was lateral varia-
tion. However, in real films the composition may of course vary in the direction
parallel to the surface as well, and when the surface is non-wet it is actually
preferable for the film to exist in a state of lateral segregation, as in figure 2.2,
for which both phases α and β are in contact with the surface x. This lateral
segregation will be discussed in this section on finite systems i.e. films (although
the study of lateral segregation is still possible for semi-infinite systems), and in
chapter 3.

Surface Regimes

In a film with symmetrically attracting surfaces, figure 2.9, both surfaces prefer
the same component of the blend between the surfaces. More specifically, each
surface attracts a preferred component in exactly the same way as the other sur-
face, so that if the surfaces were swapped there would be no observable difference.

z

(a) (b)

c ca cb ca cb

Figure 2.9: Symmetrically attracting surfaces: both surfaces prefer the same
component of the blend. (a) Trilayer profile; (b) Laterally coexisting profiles.

In a film with anti-symmetrically attracting surfaces, figure 2.10, one surface
prefers one component and the other surface prefers the other component. More
specifically, the surfaces attract their preferred components in exactly the same
way, such that if the labels on the components of the mixture were swapped and
the surfaces were swapped, there would be no observable difference.

In a film with asymmetrically attracting surfaces, the surfaces attract the
components in any combination of ways that is not specifically symmetric or an-
tisymmetric, hence asymmetrically attracting surfaces are the general case. One
important idealised case is a film of finite width in which one surface preferen-
tially attracts a component in the blend and the other surface has no preference
(neutral). The profile in that case would still be similar to that in figure 2.10 if
either the upper or lower surface were replaced by a neutral surface.
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Figure 2.10: Antisymmetrically attracting surfaces: one surface prefers one com-
ponent in the exactly the same way as the other surface prefers the other com-
ponent. (a) Bilayer profile; (b) Laterally coexisting profiles.

Neglect of contact angle

The schematics of figures 2.9 and 2.10 show: (a) a vertically segregated film; and
(b) a laterally segregated film. It is important to note that in the schematics
(b) that both phases make the same angle θ = 90◦ with the surface, in contrast
to figure 2.2 in which the non-wet state has a general angle θ 6= 0. In reality,
the phases in the laterally segregated state will have θ 6= 90◦, but in the context
of the work in this section, consideration of how these phases exist side-by-side
(thus making a specific angle θ with the surface) is not included, due to the
difficulty of this problem (which I address and partially solve in chapter 4). In
the work discussed, the composition profiles are calculated only in the direction
perpendicular to the film. Thus it is simplest to visualize laterally coexisting
composition profiles as they are given in 2.9-2.10(b), which implicitly treats the
coexisting phases as if they could not ‘feel’ lateral contact with each other. As
a final word on this for now, the difficultly can be appreciated if one considers
figure 2.2 in the case that the phases α and β are themselves highly non-uniform,
with an interface between them (hence lateral variation) and a vertical profile
due to preferential attraction by the surface.

Average Composition

Also in the figures 2.9 and 2.10, the average compositions of the film profiles c̄,
c̄a and c̄b are represented. It is useful to consider the average composition. In
the same way that the composition of a two-phase bulk (or semi-∞) mixture can
be described by the compositions ca and cb of the coexisting phases (determined
by the coexistence curve, as in figure 2.6), it is useful to consider the average
composition of laterally coexisting phases when describing how the presence of
preferentially attracting surfaces and the finite thickness of a film affects the
behaviour of the mixture in the film e.g. how does the surface preference affect
the compositions of the coexisting phases? This section discusses these ideas.
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2.5.2 Symmetric confinement

No true wetting transition

Nakanishi studied the effects of finite film thickness for films of a binary fluid
mixture confined by symmetric walls, using mean field theory for a lattice gas
[31]. It was found that all the sharp transitions found in semi-∞ systems are
smeared out in finite systems, and that true wetting no longer occurs (note that
it is still usual to use the term ‘wetting’ in finite systems to denote when having
only one phase in contact with a surface is favourable). Considering that at the
wetting transition there is a jump in the thickness of the adsorped layer from finite
to infinite thickness, and that in a finite geometry no infinitely thick wetting layer
can form, this is not too surprising. The only remaining wetting-type transition is
a first-order, distorted version of a pre-wetting transition for semi-infinite systems,
whereby there is a jump from a finite thickness to a larger, but still finite thickness
of the adsorped layer. It was found that the compatibility of the fluid components
increases upon decreasing the film thickness. This appears as a shift in the
critical temperature of unmixing (and therefore the whole coexistence curve)
to lower temperatures, meaning that the one-phase region becomes larger (more
compatibility of the components). The coexistence curve is shifted to towards the
component preferred by the walls, such that the coexisting phases are richer in the
component preferred by the wall (since it is now possible to support compositions
richer in that component).

Capillary Condensation

Binder and Landau studied capillary condensation via a lattice gas model, in
which a binary liquid-vapour system is confined between symmetrically attracting
surfaces (which represent a slit/pore/capillary) in order to study finite size effects
i.e. effects resulting specifically from the finite width of the slit [34]. Capillary
condensation is the phenomena in which a vapour condenses on the walls of a
finite sized pore or slit at a chemical potential different to that at which it would
condense in a bulk system, or in other words the vapour layer appears under
conditions which, in the bulk, would not give rise to this liquid layer (note that
‘the bulk’ is meant in the sense that the slit is infinitely thick). This can happen
if the surfaces prefer the liquid component since a liquid phase may exist under
conditions which would have otherwise corresponded to the one-phase region.
The shift of the chemical potential was found to be in agreement with the Kelvin
equation µc(D) − µc(∞) ∝ D−1 when D, the film thickness, is large enough.
Monte Carlo simulations showed a transition from a non-wet state to a ‘wet’
state. In the wet-state there is high adsorption of the liquid at the walls for
both the gas phase and the liquid phase, with the adsorption of liquid at the
walls even in the gas phase being very high and approaching the adsorption of
the liquid phase. The local density at the walls varies smoothly in this finite
system, since the true wetting transitions of semi-infinite systems are smeared
out (again, note that it is normal to refer to these phenomena as wetting, even
though they are technically not wetting as defined in semi-∞ systems). The
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critical point was shifted to lower temperatures as the films became thinner, such
that condensation occurs at lower temperatures for thinner films (the thinner the
film, the more incompatible the components of liquid or vapour have to become
for the liquid to be supported, even with the preferentially attracting surfaces,
since for thinner films there will be a higher cost in the gradient energy arising
from the interface between vapour and liquid). Also, the coexistence curve is
shifted towards higher densities i.e. towards the liquid component, since denser
phases are now supported due to the walls preferring the liquid phase.

Finite thickness effects in films between symmetric walls remove transitions
seen in equivalent semi-infinite systems. Instead, there is just a smooth increase
in the surface excess where there would be a wetting layer formed in the semi-
infinite system. For thick enough films, variations of a pre-wetting transition
still exist, with a jump in the amount of excess surface material [35]. Binder
suggests a definition for capillary condensation as follows: “Shift of the vapour
liquid transition in a slit pore due to surface effects, so that condensation of a
vapour that would be under-saturated in the bulk occurs” [36]. It can be seen from
the Kelvin equation that as the thickness of the film tends to infinity the critical
point for symmetric films tends to the critical temperature of the bulk system,
(φC(D), TC(D))→ (φC,∞, TC,∞)) [36].

Polymers

Flebbe, Dunweg and Binder studied a binary polymer mixture between symmet-
ric walls for a finite film thickness using Flory-Huggins-de Gennes mean field
theory [37]. It was shown that polymer blends exhibit much of the same be-
haviour as blends of simple molecules, such as enhanced compatibility of the
components upon decreasing film depth, a shift of the coexistence curve to lower
temperatures (indicating enhanced compatibility) and compositions richer in the
component preferred by the walls as the preference for that component at the
walls increases. It was shown that the film thickness alone had little effect on
φ̄crit, the average composition of the critical phase, whereas the wall interactions
had a much more pronounced effect on φ̄crit (since the more the walls prefer a
particular component, the richer phases can be in that component, since richer
phases are supported by excess at the walls). Importantly, it was shown that only
symmetric composition profiles are stable, figure 2.9(a), and that coexistence of
laterally separated phases should occur under certain conditions, these phases
richer and poorer, respectively, in one of the polymer species, as in figure 2.9(b).
Increasing the average composition of the blend towards the component not pre-
ferred by the walls will eventually stabilise the phase richer in the non-preferred
phase (this sudden change of minimal energy solution being a first-order phase
transition), though a significant amount of the non-preferred species in the blend
is required.
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2.5.3 Antisymmetric confinement

Freely Fluctuating Interface

Parry and Evans took a pioneering step by studying a simple fluid or Ising magnet
in a finite thickness film confined between antisymmetric walls [38]. The phase
behaviour was found to be strikingly different from that for a film with symmetric
walls. For finite films, coexistence of two-phases can only occur for temperatures
T < TC,L (L is the film thickness), where TC,L < TW < TC,∞, TW being the
wetting temperature of the semi-infinite system (so we could say TC,L ≡ T finite

W ).
Also, the thickness of the film determines whether or not the film can exist in two
laterally separated phases or not; only for L > LC can the film exist in two phases.
Parry and Evans are accredited with the discovery that for T > TW and large
enough L there is a freely fluctuating interface in the film centre, parallel to the
walls. This interface is between phases rich in opposite components of the binary
mixture, each phase coating the wall (forming a layer on the wall) which prefers
that phase’s majority component. This can be visualised with figure 2.10(a):
between the different phases coating each surface, there is an interface, and the
less compatible the components are, the sharper this interface will become, until
at a temperature TC,L it is preferable for the film to exist as laterally coexisting
phases, as in figure 2.10(b).

Interface Unbinding

Albano and Binder investigated the freely fluctuating interface, predicted by
Parry and Evans, using a Monte Carlo simulation of an Ising model between
antisymmetric walls [39]. One wall interacted with up-spins exactly as the other
wall interacted with down-spins. The results showed that in the non-wet state,
T < TW (D) < TW (∞) (where D is the film depth), the interface between the
up-spins and down-spins is ‘bound’ to either wall (with no preference due to
the perfect antisymmetry), whereas in the wet state, T > TW (D), the interface
is ‘unbound’, and there is “an interface position fluctuating around the centre
of the film...(which) slowly diffuses back and forth across the strip” during the
simulation (the strip needed to be wide enough to accommodate this interface).
Wetting can thus be viewed as ‘interface unbinding’. A definition from Binder
is that a wetting transition is a “singularity of the surface excess free energy of
a semi-infinite system at condition of two-phase coexistence, characterised by the
unbinding of a flat interface from a confining wall” [36]. Of course, given the
finite system size, the wetting layer cannot be infinitely thick, so this transition
is a finite-sized equivalent of wetting.

Soft-mode

Parry and Evans built upon their previous work to investigate a ‘soft-mode’ ex-
isting for TW < T < Tcb, (Tcb is the critical temperature for a bulk system), using
a phase portrait approach to investigate the phase equilibria of the system [40].
The soft-mode is characterised by an interface between layers rich in one compo-
nent of the blend, each phase rich one component of the blend, such that each
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phase coats the surface that prefers that component (so the soft-mode has the
freely fluctuating interface discussed above). Since variation of the magnitude of
the surface fields can push the wetting temperature arbitrarily below the critical
bulk temperature, this soft-mode phase can exist for a wide range of tempera-
tures. As the temperature is brought close to the critical bulk temperature from
below, T → T−cb , the width of this interface tends to D, the width of the film,
so that the interface ceases to become well defined, and the entire film profile is
essentially interface (a single layer with a composition gradient, rather than two
clearly distinct layers with an interface between them). For antisymmetric walls,
it was shown that as D → ∞, the critical temperature required for separation
into coexisting phases tends to the wetting temperature, not the critical bulk
temperature. This is distinct from films between symmetric walls.

Polymers

Souche and Clarke developed a phase portrait approach to study binary fluid
systems in a finite film geometry, with focus on a binary polymer blend con-
fined between antisymmetric walls [41]. A Hamiltonian formulation was used to
generate the phase portraits, which allowed for an easy graphical study of the
phase equilibria (this method is the subject of chapter 3). The phase portraits
allow easy visualisation of the soft-mode transition and the laterally coexisting
phases. Souche and Clarke extended their work to ternary systems, namely a bi-
nary polymer mixture with solvent, in a finite antisymmetric wall geometry [42].
This work showed that the stable solutions are all analogues of the solvent-free
system. Increased amounts of solvent act to increase compatibility of the poly-
mers, and hence play a similar role to temperature. The soft-mode transition
from an approximate monolayer film to a bilayer structure, figure 2.10(a), as well
as lateral phase separation into laterally coexisting phases, figure 2.10(b), can be
induced by lowering the temperature and/or the solvent concentration.

2.5.4 Asymmetric confinement

Binder, Landau and Ferrenberg studied Ising strips confined between asymmetric
walls using Monte Carlo simulations [43]. The results were qualitatively the same
as those for strips between antisymmetric films, provided that the walls serve
to attract oppositely aligned spins strongly enough, so that the profiles are still
similar to those of figure 2.10, i.e., approximately antisymmetric. Due to the
broken (anti)symmetry, coexistence of the phases in which the interface is bound
to one wall or the other now occurs for non-zero bulk field. For T > TW (D) there
is no ordering whatsoever (i.e. the average magnetisation is zero) despite the lack
of symmetry which would otherwise suggest there might be some ordering towards
the most preferred (least not-preferred) spins, so only at T = TW (D) < TW (∞) is
there symmetry breaking and a finite magnetisation [44]. The results are exactly
in analogy with the ‘interface-localisation transition’ of Parry and Evans [38, 40].
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Crossover Behaviour

Muller, Binder and Albano studied the intermediate cases between perfect anti-
symmetry and perfect symmetry, i.e. general asymmetry, with the aim of demon-
strating the crossover behaviour between capillary-condensation behaviour (sym-
metric films) and interface-localisation transition behaviour (antisymmetric films)
[45]. Self-consistent field calculations were used, which showed that the crossover
is gradual but non-monotonous. Keeping the interaction at one wall fixed, it was
shown that the critical temperature of the film increases from a minimum for
antisymmetric walls, to a maximum approximately when one surface is neutral.
The critical temperature then decreases again, but remaining far above the crit-
ical temperature for antisymmetric walls, as the wall interactions are tuned to
perfect symmetry. As the walls are brought from perfect antisymmetry to per-
fect symmetry, such that the wall that attracts species B (in the antisymmetric
case) is changed slowly to a neutral surface and then to an A attracting surface
(bringing about the symmetric case), there comes a point at which only capillary
condensation is possible, in which only prewetting-like enrichment of the wall(s)
by A is possible, at a modified temperature and chemical potential from that for
a bulk system.

2.6 Summary

In this chapter I describe the theory of multicomponent systems in contact with
a surface which may preferentially attract a particular component. I discussed
literature for Ising systems, simple fluid systems, and polymer systems, showing
that the description of the surface-blend interaction energy is similar in all cases.
I discussed the concept of wetting, several different surface energy regimes, and
the concept of a vertically segregated film and a laterally segregated film. The
next chapter, which begins the discussion of my own research in this thesis, uses
this theory to introduce the problem of solving for equilibrium profiles of polymer-
blend thin films with preferentially attracting surfaces.
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Hamiltonian Phase Portraits

for

Polymer-Blend Thin Films

I describe a Hamiltonian Phase Portrait method for studying the
equilibrium profiles of polymer-blend thin films, including an exten-
sion I made to this method which made it suitable for general (asym-
metric) wall-blend interaction regimes, rather than only regimes with
convenient symmetries. I derive the equations that equilibrium film
profiles must satisfy and the expressions for the phase portraits. I
describe how the phase portraits can be used to visualise how the
equilibrium profiles change with temperature regime and film depth,
and discuss a thermodynamic mechanism of surface roughening based
on laterally coexisting profiles having different depths to minimise
the free energy. This work was published in my first paper “Surface
roughening in polymer blend thin films by lateral phase separation: A
thermodynamic mechanism” [46].

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Phase Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Hamiltonian Phase Portraits . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Phase Equilibria of Asymmetric Films . . . . . . . . . . . . . . . . . 59
3.5 Surface Roughening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

45



46 Hamiltonian Phase Portraits for Polymer-Blend Thin Films

3.1 Introduction

This chapter describes a graphical method for studying polymer-blend films:
Hamiltonian Phase Portraits. This method allows equilibrium film profiles, de-
scribing the composition of a polymer-blend between selectively attracting sur-
faces, to be visualised and calculated in phase space. This provides insight on
how equilibrium profiles change as film depth and temperature change (and is
also suitable to study how profiles change as surface-blend interactions change,
although this is not discussed here, but is a part of chapter 4). The work in this
chapter is a direct extension of the Hamiltonian Phase Portrait method of Souche
and Clarke [41], who were the first to use the method to study polymer-blend
thin films of finite thickness with this method, for films with very particular sym-
metries which simplified the problem. My work allowed the Hamiltonian Phase
Portrait method to be extended to general cases, and was published in a paper
discussing both this extension and a possible mechanism of surface roughening in
polymer-blend thin films [46].

3.1.1 Equilibria of Polymer-Blend Thin Films

This chapter concerns binary polymer-blends of components A and B between
selectively attracting surfaces/walls. The composition of the film at any point can
be described by φ ≡ φA, and ‘selectively attracting walls’ means that the walls
prefer to be in contact with fluid at a particular composition (section 2.5 contains
a discussion of selectively attracting walls and different ‘surface regimes’). The
profile9 φ(z) of a polymer-blend thin film describes the volume fraction φ (com-
position) as a function of position z in the film, which is usually measured from
one of the film surfaces.

z Φ(z)

(a) (b)

Φ*(z) Φ**(z) Φ*(z) Φ**(z)

Figure 3.1: Schematic of a binary polymer-blend film. The hatched lines represent
a confining surface/wall, and the composition of the blend varies with z, which
measures the position in the film (usually the distance from one of the walls). (a):
independently-existing equilibria, in which the profile φ(z) describes the entire
film; (b): coexisting equilibria φ∗(z) and φ∗∗(z) which exist side-by-side (laterally
coexisting). Note that in this schematic, the interface between the coexisting
phases is not displayed. In reality, there will be an interface between these phases,
this interface making an angle with the surfaces as in figure 2.2.

9Profile: description of a polymer-blend by volume fraction φ as a function of spatial vari-
ables e.g. φ(z, y), where z is the vertical (depth) dimension and y is the lateral (parallel to
substrate) dimension. Throughout this thesis the profiles are discussed primarily in 1D as φ(z).
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It is useful to calculate the equilibrium profiles, which are profiles for which
the free energy is a minimum. I shall often refer to equilibrium profiles as phase
equilibria10. Since a system will naturally evolve to minimise its free energy,
knowledge of equilibria informs us about how the system will evolve: which state11

the system will end up in, whether a particular state is stable or not, and even
insights into the kinetics by which the system will evolve towards and between
equilibrium states. The subject of this chapter is the visualisation and calculation
of equilibria using Hamiltonian Phase Portraits.

Figure 3.1 is a schematic of a polymer blend between selectively attracting
surfaces, in which several profiles are represented in such a way that we assume
that the composition varies only in the vertical ‘depth’ dimension, even in the
case that several profiles coexist side-by-side in the film (the neglect of how the
composition varies laterally, such that the interface between coexisting phases is
not taken into account in the calculation of φ(z), is discussed in section 2.5). Note
that films may be described by independently-existing equilibria12 as in Figure
3.1(a), or by (laterally) coexisting equilibria13 as in Figure 3.1(b).

3.1.2 Phase Space, Trajectories, and Phase Portraits

The Phase Space14 of a system is a space of the variables that describe that system.
For example, a particle can be described by its position and its momentum, and so
a plot of position and momentum would constitute a phase space for the particle.
The unique state of the particle at any time will be a point in that phase space.
If the particle is moving, it will trace out a Trajectory in phase space, consisting
of all the points of position and momentum that it had as it moved. If we knew
the trajectory (path) through phase space, we could calculate the time required
for the particle to move along any part of that trajectory. A polymer blend
film has an analogy with a moving particle: position→ composition, momentum
→ composition gradient, time → distance. The trajectory of a polymer film
would consist of a curve of composition and composition gradient over a length
(depth) of film. A Phase Portrait for a polymer film is a plot of trajectories that
minimise the free energy of the film, such that equilibria are contained in the
phase portraits.

10(Phase) Equilibria: profiles which minimise the free energy of the film, and therefore
correspond to equilibrium. The term phase is used in analogy with bulk blends e.g. an A-B
blend can exist as: a miscible blend (one-phase); or A-rich and B-rich phases (two-phase).

11State(s): (disambiguation) the overall configuration of the film, and/or the equilibria con-
tained in that configuration e.g. a film in a laterally segregated state will consist of laterally
coexisting states. Non-specific term.

12Independently-Existing Equilibria: profiles which describe the film entirely and do not
coexist with other profiles, as for a laterally homogeneous film.

13Coexisting Equilibria: profiles which coexist together, describing different phases in the
film, as for a laterally inhomogeneous film of two laterally segregated phases.

14Phase Space, Trajectory, Phase Portrait: definitions in main text and terminology section.
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3.1.3 Previous Work

Much of the previous work that utilised a phase portrait method to study non-
uniform systems in contact with a surface(s) was discussed in sections 2.3-2.4,
although the discussion concerned the findings rather than the method. For
completeness and context, I will return very briefly to several studies here.

Pandit and Wortis undertook pioneering work in which they developed a
graphical method useful for analysing the possible solutions of mean-field theories,
for the particular case a of magnetic system with an inhomogeneity in one direc-
tion [29]. They studied an Ising system with a free surface that could modify the
magnetic field and exchange coupling between neighbouring spins. They showed
that the equilibrium states of the system, along with first order and second order
phase transitions could be easily visualised using phase portraits. Nakanishi and
Pincus utilised the method of Pandit and Wortis to study wetting transitions for
simple fluid systems in contact with a wall/surface [31]. Their analysis included
a discussion of possible metastably wet states, and the idea of extended wetting
and ‘surface spinodals’. They also discussed polymer containing systems. Once
again, transitions from one equilibrium state to another could be easily visualised
using phase portraits. Parry and Evans studied the phase behaviour of a simple
fluid or Ising magnet confined between two confining walls that exerted opposing
surface fields, finding that wetting and coexistence phenomena were very differ-
ent than for the same systems confined between two walls that exerted the same
surface fields [40]. Although they didn’t use phase portraits, they did utilise a
graphical method in a similar vein as the aforementioned work above.

Souche and Clarke developed the Hamiltonian Phase Portrait method to study
binary polymer-blend films, with a focus on a symmetric blend confined between
antisymmetric walls [41]. This was the first time that such a technique had been
applied to films of finite thickness. The phase portraits provided excellent visu-
alisation of the soft-mode transition and laterally coexisting phase equilibria for
this surface regime (antisymmetric). Souche and Clarke also applied the method
to ternary systems, namely a binary polymer mixture with solvent in an anti-
symmetric wall regime, showing that the stable solutions are all analogues of the
solvent-free (binary polymer-blend) system [42]. However, they did not extend
the work to asymmetric films, for which the wall-blend interactions were not
antisymmetric and/or for which the blend was not symmetric.

3.1.4 Asymmetric Films: a more difficult problem

Considerable attention has been paid to symmetric binary blends of small molecules
or polymers, A and B say, confined between antisymmetric walls (for a blend
A : B, one wall attracts A in exactly the same way as the other wall attracts B).
The reason for this focus is that the symmetries of both the blend and the walls
greatly simplifies the study of phase equilibria: without an explicit consideration
of material conservation (requiring that the profiles satisfy ¯φ(z) = φ̄, the com-
position of the blend) the equilibrium profiles naturally conserve the blend ratio
φ̄ = 1/2 for a symmetric blend, and laterally coexisting equilibria of A-rich and
B-rich phases are mirror images of each other (having equal heights and equal ex-
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cess surface free energies [40, 45]). These conveniences vanish for a polymer-blend
(whether symmetric or otherwise) confined between asymmetric walls. The easi-
est way to show why this is the case is to address the general problem of solving
for equilibria of polymer-blend thin films between selectively attracting walls.

3.2 Phase Equilibria

For polymer-blend thin films between selectively attracting walls, the task is
to find the profiles φ(z) that minimise the free energy i.e. the task is to find
profiles φ(z) that are phase equilibria. This section describes the Euler-Lagrange
treatment of a film described by the Flory-Huggins-de Gennes free energy, which
results in an Euler-Lagrange equation that equilibrium profiles must satisfy, a
boundary condition at each surface/wall, and a material constraint.

3.2.1 Free energy functional

The Flory-Huggins-de Gennes free energy is discussed in section 1.5 (bulk theory)
and section 2.3.3 (with surface energy terms). Here, I use the notation used by
Souche and Clarke [41], with some minor changes to maintain consistency in my
thesis. In one dimension, the Flory-Huggins-de Gennes free energy of a binary
polymer blend confined between walls at z = 0 and z = d is given in units of kBT
by

F [φ(z)] =
1

a

∫ d

0

[
fFH(φ) + κ(φ)(∇φ)2] dz + f ∗0 (φ0) + f ∗d (φd),

=
1

a

∫ d

0

[
fFH(φ) + κ(φ)(∇φ)2] dz +

1

a
f0(φ0) +

1

a
fd(φd), (3.1)

where ∇φ ≡ ∂φ/∂z, the partial derivative of φ with respect to z, where z is the
distance from the wall at z = 0. The film composition depends only on z (such
that the profiles φ(z) that we calculate are laterally uniform, even if these profiles
are in fact coexisting with other profiles in a laterally segregated film; see figure
3.1). a is the cell-spacing of the underlying Flory-Huggins lattice, which has been
factored out of f ∗S so that fS are the surface energies per unit cell (S = 0, d). The
Flory-Huggins free energy for a binary polymer blend is

fFH(φ) =
φ

NA

ln (φ) +
1− φ
NB

ln (1− φ) + χφ(1− φ), (3.2)

where φ is the volume fraction of component A, NA and NB are the degrees of
polymerisation of components A and B respectively, and χ is the Flory-Huggins
interaction parameter. The gradient coefficient is

κ(φ) =
a2

36φ(1− φ)
. (3.3)

As discussed in chapter 2, the surface energies are given by (S = 0, d)

fS(φS) = hSφS +
1

2
gSφ

2
S, (3.4)
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where hS and gS are phenomenological parameters, taking account of blend-wall
interactions and missing neighbour effects respectively. Note that only the local
volume fraction at the confining walls enters into the surface energies.

3.2.2 Euler-Lagrange equation

Using equation (3.1) we can develop an Euler-Lagrange equation, the solutions to
which are equilibrium profiles φ(z) minimising the free energy. The Lagrangian
density is the integrand of Eq. (3.1):

L(φ,∇φ) = a−1
[
fFH(φ) + κ(φ)(∇φ)2

]
. (3.5)

Without constraints on the system, an Euler-Lagrange equation can be developed
from Eq. (3.5) as follows (constraints will be included later in section 3.2.4). Using
the notation φ̇ ≡ ∇φ, the Euler-Lagrange equation is given by

∂L

∂φ
− d

dz

(
∂L

∂φ̇

)
= 0. (3.6)

For the first term we find

∂L

∂φ
= a−1

[
∂φfFH + ∂φκ

(
φ̇
)2
]
. (3.7)

∂φf is the partial derivative of f with respect to φ. For the second term, we take
two steps. Before taking the derivative with respect to z, we find

∂L

∂φ̇
= a−1

[
2κφ̇

]
, (3.8)

and then performing the derivative with respect to z, we find

d

dz

(
∂L

∂φ̇

)
=

∂

∂z

(
∂L

∂φ̇

)
+

∂

∂φ

(
∂L

∂φ̇

)
φ̇+

∂

∂φ̇

(
∂L

∂φ̇

)
φ̈. (3.9)

Since there are no explicit appearances of z, the first term on the right-hand side
is zero (the second two terms accounting for the dependence on z through φ and
φ̇), and so we have

d

dz

(
∂L

∂φ̇

)
= a−1

[
2∂φκ

(
φ̇
)2

+ 2κφ̈

]
. (3.10)

Returning to Eq. (3.6) (factor a will cancel out) we then have the result

∂φfFH = ∂φκ
(
φ̇
)2

+ 2κφ̈. (3.11)

(The same result can be found be directly calculating the functional derivative,
which is done rigorously in the next chapter, and which is discussed briefly in sec-
tion 3.3.4). Profiles φ(z) which satisfy equation (3.11) minimise the bulk free en-
ergy (note that the surface energy terms have not entered into the Euler-Lagrange
equation), but phase equilibria for films must also satisfy other requirements.
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3.2.3 Surface Boundary Conditions

Taking the functional derivative of Equation (3.1) with respect to φ(z) to be
constant at equilibrium introduces two boundary conditions, one at each confining
wall, given by

+ 2κ(φ0)∇φ0 = +
∂f0

∂φ
≡ +h0 + g0φ0, (3.12)

+ 2κ(φd)∇φd = −∂fd
∂φ
≡ −hd − gdφd. (3.13)

Since these boundary conditions are found in the literature as standard (having
been derived by Cahn for a wall at z = 0, equation (2.2), as discussed in chapter
2), and a rigorous derivation of them is given in section 4.3.1, I refrain from
deriving them here.

3.2.4 Material Constraints

A binary blend can be described by an average volume fraction φ̄ of one of its
components. When calculating a film profile φ(z), it is generally necessary to
ensure that the film profile calculated has the average volume fraction of the
blend, since this is required for material conservation. This would be required
for an independently-existing profile, like that in Figure 3.1(a). A constraint
equation can be written as

1

a

∫ d

0

(
φ(z)− φ̄

)
dz = 0. (3.14)

(it is convenient to include the factor a−1). We must construct a new Lagrangian
which takes the constraints into account:

L′ = L+ a−1λC. (3.15)

λ is a Lagrange multiplier and C is an expression that accounts for the constraint
(3.14). It is simplest to choose the constraint C = φ, since φ̄ in Eq. (3.14) is a
constant. Using L′, the Euler-Lagrange equation for the system is then simply

2κφ̈+ ∂φκ
(
φ̇
)2

= ∂φfFH + λ. (3.16)

λ must be chosen such that Eq. (3.14) is fulfilled by the profile solution φ(z).
Therefore equilibrium profiles (equilibria) φ(z) must satisfy the Euler-Lagrange
equation (3.16), the boundary conditions at each wall/surface (3.12) and (3.13),
and the material constraint (3.14). It is because of this plethora of requirements
that a phase portrait method is useful.
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3.3 Hamiltonian Phase Portraits

The phase portraits developed by Souche and Clarke are Hamiltonian phase por-
traits, plotted not with the composition and composition gradient of the film,
but with the canonical position q and canonical momentum p. However, as will
be shown below, the canonical position is equivalent to the composition, and for
convenience it will suffice to think of the canonical momentum as the composition
gradient. The convenience of this formalism will become apparent.

3.3.1 Hamiltonian formulation with constraints

We can easily shift from a Lagrangian formulation to a Hamiltonian formulation,
and in order to honour the constraints the (constrained) Hamiltonian must be
defined using the constrained Lagrangian L′:

H(q, p) = pq̇ − L′(q, q̇), (3.17)

where q = φ and p, the canonical momentum, is given by

p =
∂L′

∂q̇
= a−12κ(q)q̇. (3.18)

It is slightly unusual to transform to a Hamiltonian description using a con-
strained Lagrangian; this was an important step that I recognised as necessary if
the constraints were to appear in the phase portraits. The Hamiltonian is then
given by

H(q, p) = pq̇ − L′(q, q̇) (3.19)

= pq̇ − a−1
[
fFH(q) + κ(q)q̇2

]
− a−1λq

= (a−12κ(q)q̇)q̇ − a−1
[
fFH(q) + κ(q)q̇2

]
− a−1λq

= a−1{κ(q)q̇2 − fFH(q)− λq}
= a−1{9q(1− q)p2 − fFH(q)− λq}, (3.20)

Using Eq. (3.18) simplifies Eqs. (3.12) to

ap0 = +h0 + g0q0, (3.21)

apd = −hd − gdqd, (3.22)

3.3.2 Generating Hamiltonian Phase Portraits

Since z does not explicitly appear in the Hamiltonian (3.19), the Hamiltonian
density is conserved [47, 29], thus H(q, p) = H (where H is a constant). Eq.
(3.19) can then be rearranged to give an analytical expression for the phase
portraits which lie in the space (q, p):

p(q) = ±1

3

√
aH + fFH(q) + λq

q(1− q)
, (3.23)
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Particular phase portraits can be generated by choice of H and λ. The phase
portraits consist of the flow of canonical coordinates (q, p) which minimise the
bulk free energy of the functional F (3.1), i.e., the integral in equation (3.1) is
minimised, the surface energy terms not entering into the expression for the phase
portraits. I will often refer to the flow of coordinates as the Hamiltonian Flow.
Trajectories along these portraits take paths which minimise the free energy, since
trajectories are paths through phase space that follow the Hamiltonian flow of
the phase portraits. Furthermore, the boundary conditions at the surfaces can
be plotted in the Hamiltonian phase space, and appear as straight lines. Before
directly discussing the phase portraits, I will give some context to how they
relate to the problem of calculating phase equilibria, so that the discussion of
phase portraits will hopefully seem less arbitrary.

3.3.3 Calculation of Equilibria

How do these phase portraits relate to the calculation of equilibrium profiles φ(z)?
If we begin at a point qi somewhere on a particular phase portrait (determined
by H and λ), we can move along the Hamiltonian flow up to a point qj, whilst
performing the path integral

z =

∫ qj

qi

dq

q̇
. (3.24)

Since there is no constant of integration, qi corresponds to z = 0, and integrating
up to qj will give a value of z = L that corresponds to a length of film over
which we have integrated. If we imagine discretising the interval qi..qj into steps
qi, qi+1, qi+2..qj, such that the integration 3.24 becomes a sum of sub-integrals,
then for every value of q between the limits qi and qj, we will have a unique
value of z: we then have a set of pairs of q and z values, therefore we will have
calculated φ(z) ≡ q(z), a profile minimising the bulk free energy. This film profile
has φ(z = 0) = qi and φ(z = L) = qj.

Since the boundary conditions (3.12)-(3.13) must be satisfied by equilibria, we
can only choose a value of qi = q0 on the Hamiltonian flow which coincides with
the boundary condition at z = 0. Similarly, we can only integrate up to qj = qd,
a value of q for which the flow coincides with the boundary condition at z = d.
This being the case, to calculate equilibrium profiles of films we must begin at a
point q0 on the z = 0 boundary condition and move along the Hamiltonian flow
until we reach a point on the z = d boundary condition, which gives us our upper
limit qd. Thus we will have performed the following path integral

z =

∫ qd

q0

dq

q̇
, (3.25)

and calculated the profile φ(z) for a film of depth d. Figure 3.2 is an example phase
portrait (left) with a valid equilibrium trajectory marked by the bold coloured
line, alongside the profile (right) that can be calculated via the integration (3.25)
(phase portraits, along with a choice of parameters, will be discussed properly
later. Figure 3.2 is present here only for visualisation purposes). To summarise,
solution trajectories of equilibrium film profiles φ(z) are those parts of the phase
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portraits which flow between the wall boundary conditions i.e. which begin on
the z = 0 boundary condition and end on the z = d boundary condition. The
boundary conditions are satisfied when they cross the Hamiltonian flow.
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Figure 3.2: An example phase portrait (left) and corresponding equilibrium profile
(right), shown for visualisation (figures from bottom of Fig. 3.7). The boundary
conditions are straight lines in this phase space. The bold line shows the profile
trajectory that satisfies the boundary conditions, such that qi ≡ q0 and qj ≡ qd.
Arrows indicate the direction of increasing z along the Hamiltonian flow. The
x-axis is scaled to 2φ− 1 in keeping with reference [41].

Note that the Hamiltonian flow has a clockwise direction to it (to move in
the direction of increasing z): the orbital part of the flow should be followed in
a clockwise manner; the left edge should be followed from top to bottom; and
the right edge from bottom to top; see figure 3.2. Not present in this particular
phase portrait are parts of the flow that would be above and below the orbital
part. These parts can be seen in figures 3.3.4(b)-3.3.4(d): the top part should
be followed left to right and the bottom part from right to left. Also note that
the path integral does not have to stop at the first point when the trajectory
crosses the boundary condition for z = d, as long as it ends on the boundary
condition for z = d, as in figure 3.2 (similarly, we can choose which cross with
the z = 0 boundary condition that we begin our integration from). Equilibria for
a particular blend with average volume fraction φ̄ must also satisfy the material
constraint 3.14, which I have not yet discussed, but any trajectories that follow
the Hamiltonian flow between the boundary conditions are valid equilibria.

Drawback and Advantage

The drawback of the Hamiltonian Phase Portrait method is that we can’t know
the depth or composition of the profile we are calculating in advance of calculat-
ing it. We must choose values for H and λ (some of which won’t generate phase
portraits that cross the boundary conditions) and calculate profiles, which will
yield particular φ(z). As can be seen from figure 3.2, there are a number of dif-
ferent possible trajectories that could be made that begin on the z = 0 boundary
condition and end on the z = d boundary condition. This is generally the case for
any particular phase portrait. It is precisely because of this that the Hamiltonian
Phase Portrait method is useful, which will hopefully become apparent later.
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3.3.4 Description of Phase Portraits

Parameters: Symmetric Blend between Asymmetric Surfaces

Throughout the remainder of this chapter, I will specialise to a symmetric binary
polymer blend (NA = NB = N = 100) confined between a B-attracting wall
(h0 = −0.05; g0 = 0.18) at z = 0 and a neutral wall (hd = 0.0; gd = 0.0) at
z = d. This means that the z = 0 wall prefers fluid at composition φ < 0, whilst
the z = d wall has no preference since the surface energy of this wall has no
dependence on the local volume fraction. This specialisation is made in order to
isolate the effects of wall asymmetry, and simplifies my discussion of the phase
portraits. From now on I will set a = 1 for convenience (effectively, z is then in
units of a). I will assume that χ = A+B/T , and so use χ to discuss temperature.
For the symmetric blend, the bulk critical temperature is χcb = 2/N = 0.020.

Characterising Phase Portraits: Fixed Points and the Separatrix

Figure 3.3 shows examples of Hamiltonian phase portraits plotted for λ = 0, for
three temperature regimes: (b) χ = 0.015 (above the critical bulk temperature
χ < χcb); (c) χ = 0.021 (below the critical bulk temperature and above the
wetting temperature χcb < χ < χw); and (d) χ = 0.026 (below the wetting
temperature χw < χ). For estimation of χw, see the discussion of λ = 0 phase
portraits below. Figure 3.3(a) shows three ‘separatrix’ (I use the terminology of
reference [41]), the shape of which characterises the phase portraits (the separatrix
are also plotted in figures 3.3(b)-(d)). The relevance of these temperature regimes
and their relation to the separatrix is discussed shortly. The phase portraits are
symmetric around p = 0 and 2q − 1 = 0; this is due to the symmetry of the
polymer blend and setting λ = 0. Also plotted are the boundary conditions for a
B-attracting wall at z = 0 and a neutral wall at z = d.

Figure 3.3(a) shows only the separatrix for three values of χ, each value cor-
responding to a different temperature regime. What are these separatrix? The
separatrix15 are phase portraits that flow through fixed points16 in the phase space,
which are points that satisfy q̇ = 0 and q̈ = 0 (so fixed points exist on p = 0).
According to equation (3.16), fixed points are the solutions of ∂φfFH + λ = 0.
Fixed points can be explained with an analogy with moving particles: if a par-
ticle has zero velocity (composition gradient) and is not accelerating (rate of
change of composition gradient is zero), then it takes an infinite amount of time
(film depth) to cross a finite distance (film composition). An infinite amount of
film depth is required to pass through the fixed point. As the phase portraits
tend to the separatrix, the length of parts of the trajectory passing near the fixed
points tend to infinity (imagine a particle passing near a region at which its speed

15Separatrix: phase portraits that flow through fixed points in phase space. Trajectories
that flow through these fixed points (these trajectories must therefore be on the separatrix)
correspond to infinitely thick films, hence as (finite) films become thicker their corresponding
phase portraits tend to, but don’t meet, the separatrix.

16Fixed Points: regions of phase space that require an infinite depth of film to pass through,
since these points satisfy q̇ = 0 (composition gradient is zero) and q̈ = 0 (rate of change of
composition gradient is zero).
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(c) χ = 0.021
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Figure 3.3: Phase portraits for λ = 0 : (a) separatrix only, for all three tempera-
ture regimes outlined in the text. The fixed points q−, q0, and q+ are also shown.
(b)-(d) examples of phase portraits, including the separatrix, shown for each in-
dividual temperature regime. Within each plot (b)-(d), each set of curves with
the same colour (dashes/dots) corresponds to the same phase portrait, generated
with a single value of H (see Tables 3.1 and 3.2 for comparable values of H).
Note that the separatrix and phase portraits are symmetric around p = 0 and
2q− 1 = 0, due to the symmetry of the polymer blend. The boundary conditions
arising from the surfaces are plotted in (b)-(d), appearing as straight lines.

drops to zero, thus taking a very long time to pass by this region). Therefore,
phase portraits cannot touch the separatrix or pass through the fixed points. The
separatrix characterise the general shape of the phase portraits in each tempera-
ture regime. The relationship between fixed points, separatrix and temperature
regimes is elaborated on in the rest of this subsection.

λ = 0 phase portraits i.e. no material constraints

I will firstly discuss the separatrix for λ = 0, explaining the relevance of the
temperature regimes in terms of where the fixed points are located relative to
the boundary conditions. Above the critical bulk temperature, χ = 0.015, the
separatrix is cross shaped. There is only one fixed point, q0, at (q, p) = (1/2, 0),
and the separatrix passes through this point. Solution trajectories will be on
the left edge of the flow, since this allows trajectories from the z = 0 boundary
condition to the z = d boundary condition. Below the critical bulk temperature
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but above the wetting temperature, χ = 0.021, there are three fixed points, q0,
q− and q+, and the separatrix passes through the latter two, which are located
symmetrically around φ = 1/2. Inside those fixed points, the Hamiltonian flow is
an orbit around the fixed point q0. Note that for the chosen surface energies, the
fixed points lie inside the boundary condition at z = 0, so this boundary condition
does not cross the orbital part of the flow, so, again, solution trajectories exist
only on the left edge of the flow. Below the wetting temperature, χ = 0.026, there
are again three fixed points, but the boundary condition at z = 0 lies inside the
leftmost fixed point q−, thus crossing the orbital part of the flow twice (this gives
an estimation of χw [41]; see section 4.3.3 for more on estimating χw). Because of
this, there are several ways in which we can construct a trajectory between the
boundary conditions, so in this temperature regime we expect to find coexisting
solutions, allowing for lateral phase separation into A-rich and B-rich phases with
interfaces perpendicular to the walls, as shown in figure 3.1(b).

λ 6= 0 phase portraits i.e. with material constraints

Addressing how λ affects the fixed points, and therefore the shape of the sepa-
ratrix, allows us to characterise how λ changes the general shape of the phase
portraits. The fixed points are the values of q for which the curve y = ∂qfFH + λ
crosses y = 0. Changing λ will shift the curve ∂φfFH + λ = 0 along the y-axis,
and move the fixed points to different values of q (along p = 0). This is demon-
strated in figure 3.4 for χ = 0.021 > χcb: above the bulk critical temperature,
there are three solutions and therefore three fixed points, as mentioned above for
λ = 0 phase portraits. Choosing λ < 0 shifts q0

λ < q0, meaning the separatrix
cross-centre or orbit-centre is shifted to lower q, whilst both fixed points q− and
q+ are shifted to higher q. Both of these effects are complimentary, and pull the
left side of the phase portraits to the right, which pulls the solution trajectories
to higher q. For λ > 0 the fixed points shift in the opposite direction. So λ 6= 0
breaks the symmetry of the phase portraits around 2q − 1.

Material Constraints

For a symmetric blend, solutions satisfying the constraints must clearly pass
through q = 1/2, else it would not be possible to achieve φ̄ = 1/2. It is clear
that many of the trajectories between the boundary conditions in Figure 3.3 do
not pass through q = 1/2, and so to obtain valid solutions for a polymer blend
between attracting-neutral walls, λ must be altered until the solution trajectories
pass through q = 1/2, and more specifically until φ̄ = 1/2. Suitable choices of
both λ and the Hamiltonian constant H are necessary to produce phase equilibria
trajectories of specified depth d and average composition φ̄. This is discussed
further in section 3.4.1.
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Figure 3.4: Fixed points of the Hamiltonian flow correspond to values of q solving
f ′ + λ = 0, where f ′ = ∂qfFH . This example is for χ = 0.021 > χcb, so there
are three fixed points q−, q0, and q+. The Lagrange multiplier λ shifts the fixed
points, as seen by consideration of the curve f ′ + λ. The fixed points will move
along p = 0 in figures 3.3(a)-(d). Note that the curve f ′ + λ for χ = 0.026
is similar to the curve presented here, but above the critical bulk temperature
χ = 0.015 < χcb the curve only crosses f ′ + λ = 0 once (for λ = 0) at 2q− 1 = 0.

Interpretation of λ

Solving the Eular-Lagrange equation, Eq. (3.16), subject to constraints (3.14)
with φ̄ = 1/2, is equivalent to finding the solution φ = φ′ for which

δ

{
F(φ(z)) + λ

[
a−1

∫ d

0

φ(z)dz − 1

2
d

]} ∣∣∣∣
φ=φ′

= 0. (3.26)

such that φ is a general profile and φ′ is an equilibrium profile. When φ = φ′

such that φ̄ = 1/2, we see from Eq. (3.26) that

δF(φ(z))

δφ(z)

∣∣∣∣
φ=φ′

= −λa−1. (3.27)

Taking the functional derivative of the free energy (3.1) and assuming φ = φ′

such that Eq. (3.16) is satisfied, we find

a
δF(φ(z))

δφ(z)

∣∣∣∣
φ=φ′

=
(
∂φfFH − (∂φκ)φ̇2 − 2κφ̈

) ∣∣∣∣
φ=φ′

= −λ. (3.28)

Finding φ = φ′ subject to the constraint φ̄ = 1/2 requires choosing the correct
value of λ, such that both the Euler-Lagrange equation (3.16) and the constraint
equation (3.14) are satisfied. We see, from Eq. (3.27), that the constraint is
enforced by λ acting as a constant chemical potential across the film [48, 49] (the
functional derivative δF [φ(z)] /δφ is proportional to the chemical potential. This
is discussed in depth in section 4.3).
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Even though the boundary conditions arising from the surface energies do
not directly affect the phase portraits, in the sense that the expression for the
phase portraits does not contain the surface energies, the effect of the boundary
conditions is then not only to pin the value of φ at the film walls/surface by
providing integration limits on Eq. (3.24) (often noted as being the only effect on
the solution profile due to focus on symmetric blends confined between antisym-
metric walls [33, 37]) but to effectively apply a field across the film. Of course,
the surface energies only act locally at the surfaces, and do not in reality actually
apply a field across the film. But the effect of λ on the equilibrium profiles (as
opposed to the actual, physical effect of the surfaces on the polymer blend) is as
if a field is applied across the film (the chemical potential is the conjugate field
for φ). This is demonstrated by the distortion of the symmetric (λ = 0) phase
portraits into asymmetric phase portraits caused by λ 6= 0.

3.4 Phase Equilibria of Asymmetric Films

In this section, I will demonstrate the use of phase portraits for displaying and
calculating the phase equilibria of a symmetric binary polymer blend between
asymmetrically attracting walls, namely a B-attracting wall at z = 0 (prefers
φ < 1/2) and a neutral wall at z = d (no preference on φ). The phase portraits are
useful for showing how equilibria change as film depth and temperature change.
The significance of different temperature regimes will hopefully be more apparent
in this section.

In some cases, there are several ways in which we can make a trajectory
from the z = 0 boundary condition to the z = d boundary condition, and in
some regimes this allows for coexisting solutions because we can find profiles of
the same depth with different trajectories (although these won’t have φ̄ = 1/2,
but will be rich in one component of the A-B blend). Note that the wall-blend
interaction configuration I am using here, namely a B-attracting wall at z = 0
and a neutral wall at z = d is just an example, used because the neutral wall at
z = d somewhat simplifies the calculation of the profiles.

In all cases, as the phase portraits approach the separatrix the corresponding
profiles are those of thicker films, and when the phase portraits tend to the sep-
aratrix the film thickness tends to infinity, such that the equilibria of profiles for
phase portraits tending towards the separatrix are representative of the profiles
for very thick (tending to infinite) films. The change in the profiles as the thick-
ness tends to infinity can be inferred from the phase portraits, without needing
a calculation of the profiles for extremely thick films to be performed.

From this point onward, I will discuss the phase portraits using q = φ and
p = 2κ∇φ (a = 1). The figures in this section are split into two columns,
with the phase portraits on the left and the composition profiles (calculated with
equation (3.24)) on the right. The film thickness increases from the top to the
bottom subfigure. Both the trajectories and the composition profiles are coloured
(shaded) in φ, from black/blue/dark for φ = 0 (pure B) to white/yellow/light
for φ = 1 (pure A). This makes comparison of the profiles and the equilibria
trajectories slightly easier.
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Numerical Integration

The integration of equation (3.25) must be done numerically. On the task of
integrating between boundary conditions, I noted that rather than select a value
of H and λ to generate the phase portraits, it can be simpler to select a value of
φ0 and λ, and from these values calculate a value of H for which the Hamiltonian
flow cross the boundary condition at φ0. This can be done as follows: selecting
a value of φ0 (q0) gives the required value of 2κ∇φ|0 (p0) from the boundary
condition (3.21). Both q0 and p0 (as well as λ) can then be inserted into equation
(3.23), which can then be rearranged to give a value for H. This is sometimes
useful because not all values of H will generate a phase portrait which intersects
with the z = 0 boundary condition, but if a value of φ0 (the value at which
the boundary condition crosses the flow) is chosen first, this problem is avoided
(though it does not guarantee that the flow will also intersect with the z = d
boundary condition).

3.4.1 Independently-existing profiles

Independently-existing solutions, such as that in figure 3.1(a), must have φ̄ = 1/2
in order to conserve material for a symmetric polymer blend, H and λ having
been adjusted for this requirement, these values being shown in order of figure
appearence in table 3.1. We can calculate such a profile for all temperature
regimes, even if it is not the most energetically favourable profile (this is discussed
in section 3.4.2).

Above critical bulk temperature: χ = 0.015

We see from figure 3.3(b) that the boundary conditions cross the B-rich (leftmost)
part of the flow when λ = 0. Setting λ < 0 pulls this part of the flow past φ = 1/2,

χ λ H
0.015 −0.001636 0.0040824

−0.001387 0.003942
−0.000781 0.0035997
−0.000537 0.00346405
−0.000330 0.003351899

0.021 −0.001387 0.0024925
−0.000281 0.0018621
−0.000104 0.0017598
−0.000037 0.001721
−0.000006 0.001703

0.026 −0.001144 0.0011826
−0.000829 0.001020
−0.000089 0.0007045
+0.000120 0.0007585
+0.000058 0.0008682

Table 3.1: λ and H for the independently-existing profiles shown in figures 3.5, 3.6
and 3.7. The order of rows corresponds to the order of appearence of the sub-figures.
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Figure 3.5: Phase portraits (left) and profiles (right) for a symmetric blend, χ =
0.015 < χcb (one-phase region); increasing film depth from top to bottom. The
bold (coloured) line shows the trajectory that satisfies the boundary conditions.
There is an excess of B and a gradient at z = 0 (the B-attracting wall). As z → d,
the gradient approaches zero and the profile becomes constant with an excess of
A. These profiles are a monolayer with an excess of B at the B-attracting wall,
since in this temperature the polymer blend is miscible (this means there is little
change in the profiles as film depth increases).
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and suitable tuning of λ and H ensures material conservation φ̄ = 1/2 for the
profiles. Example phase portraits are shown in figure 3.5. The bold line shows the
solution trajectory that satisfies both of the boundary conditions and φ̄ = 1/2.
There is an excess of B and a composition gradient at z = 0, due to this surface
preferring the B-component.

As film depth increases, the phase portraits show that the excess of B at z = 0
increases whilst the gradient at that wall, and throughout the film, decreases.
This is a consequence of there being more bulk material to draw B-component
from, and a longer distance over which the profile can relax from the wall effects.
As z → d (the film thickness), the gradient approaches zero and the profile
becomes constant with a slight excess of A-component, due to the neutral surface
at z = d enforcing ∇φ|d = 0 and depletion of A elsewhere in the film, respectively.
The profiles are all a monolayer17 with approximately φ = 1/2 but an excess of
B at the B-attracting wall. This is because χ < χcb and so the polymer blend is
miscible (the bulk fluid would be in the one-phase region).

Below critical bulk temperature, above wetting temperature; χ = 0.021

There are three fixed points in this temperature regime, as demonstrated in fig-
ure 3.4. Example phase portraits are shown in figure 3.6. The phase portraits
approach the fixed point q+ > q0 > 1/2 as d → ∞, developing a turning point
near the z = 0 boundary condition as the trajectories circumvent the fixed point
q0, which is now orbital (the trajectories cannot tend towards this point). This
turning point means that, although the profile is monotonic, there is a region
slightly displaced from the B-attracting wall at which the rate of change of B
towards that wall decreases and the profile becomes less steep. Very close and up
to this wall, the rate of change of B then accelerates towards the wall again. The
excess of B near the B-attracting wall extends deeper into the film for χ > χcb
than for χ < χcb, since the profiles are now a bilayer, since χ > χcb (the bulk fluid
would be in the two-phase region).

Bilayer18 means that the film effectively consists of two layers, each rich in a
different component of the blend and each coating a different wall, in this case
the B-rich (A-rich) layer coating the B-attracting (neutral) wall. In the case of
an antisymmetric wall regime (which would be achieved by making the z = d wall
A-attracting in the same way that the z = 0 wall is B-attracting) on decreasing
temperature from χ < χcb to χ > χcb there is a soft-mode transition from a
monolayer to a bilayer, in which an A(B)-rich phase exists between the A(B)-
attracting wall and the centre of the film, with a soft interface centred on φ = 1/2.
There is an analogous transition for asymmetric films.

The blend is still relatively miscible, since χ is still fairly close to χcb, and
so the interface in the bilayer is still fairly diffuse, although for thicker films
the interface is narrow compared to the layers. This can be demonstrated for

17Monolayer: the profile is approximately constant φ(z) ≈ φ̄ since the blend is miscible.
There may be an excess of a component near the film surfaces due to preferential attraction,
depleting that component in the rest of the film.

18Bilayer: the film is vertically segregated into two phases (layers) with an interface between
them. These phases coat the film surfaces due to preferential surface attraction.
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Figure 3.6: Phase portraits (left) and profiles (right) for a symmetric blend,
χ = 0.021 > χcb; increasing film depth from top to bottom. The bold line shows
the trajectory that satisfies the boundary conditions. As the phase portraits tend
towards the separatrix for thicker films, a minimum appears in the phase portraits
close to the z = 0 boundary condition, meaning that very near the B-attracting
wall the richness of B in the profile accelerates towards the wall, but there is a
region slightly displaced from this wall where the steepness of the profile becomes
gentler as the trajectories near 2κ∇φ = 0. The profiles are a bilayer since χ > χcb,
although the blend is still rather miscible due to the shallow distance into the
two-phase region, so the interface is still rather diffuse, hence thicker films are
required to find a more pronounced bilayer.
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Figure 3.7: Phase portraits (left) and profiles (right) for a symmetric blend,
χ = 0.026 > χw; increasing film depth from top to bottom. The bold line shows
the trajectory that satisfies the boundary conditions. The boundary conditions
cross the orbital part of the Hamiltonian flow for thick enough films. Above
a certain depth, the trajectories at z = 0 fall below 2κ∇φ < 0, because the
trajectory begins at the first cross of the flow with the z = 0 boundary condition
(this is required to find trajectories corresponding to deeper films). This means
that the profiles are no longer monotonic, and the profiles are richer in B at a
point near the B-attracting wall than at the B-attracting wall. For thicker films,
the latter B-rich region becomes thicker as the phase portraits tend towards
the q− fixed point. The bilayer nature of the film is quite pronounced, as the
temperature is further from the bulk critical temperature than for χ = 0.021.
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films with d → ∞ from the phase portraits: the B-rich and A-rich parts of the
flow approach q− and q+ respectively as the films become thicker, and the layers
corresponding to these regions become infinitely thick in the limit d→∞, whilst
the interface corresponds to the bump in the trajectory around φ = 1/2, and
since this part of the trajectory cannot approach the fixed point q0, the interface
will tend to a finite width in the limit d→∞.

Below wetting temperature; χ > χw

Example phase portraits are shown in figure 3.7. The phase portraits are qualita-
tively similar to those for χ = 0.021, the main difference being that the boundary
conditions now cross the orbital part of the Hamiltonian flow, so solution tra-
jectories pass through φ = 1/2 even for λ = 0 (non-distorted phase portraits,
figure 3.3(d)). For films above a characteristic depth, the trajectories cross the
z = 0 boundary condition for 2κ∇φ < 0, so the profiles are no longer monotonic:
the profiles have an inflexion point in φ near the B-attracting wall, so there is
an initial increase in B-component on moving away from the B-attracting wall.
The bilayer is far more pronounced than for χ = 0.021, since the blend is more
immiscible for χ = 0.026. As d → ∞, the B-rich turning point in the profile
trajectory will approach the q− turning point and this region of the B-rich layer
will become infinitely thick. Similarly, the ∇φ ≈ 0 region of the A-rich layer will
become infinitely thick as trajectories approach the q+ fixed point. The interface
width will tend to a finite value in the limit d → ∞, since the part of the tra-
jectory constituting the interface cannot approach the q0 fixed point. Note that
these independently-existing solutions are not the lowest free energy solutions
available, and lateral phase separation into coexisting equilibria is favourable.

3.4.2 Coexisting solutions

Below the wetting temperature χ > χw, a single solution with φ̄ = 1/2 is not
energetically favourable, and a lower energy configuration for the film can be
obtained by having two coexisting solutions, one rich in A (φ̄A > 1/2) and the
other rich in B (φ̄B < 1/2). This is really the very definition of the wetting tem-
perature: the cut-off temperature at which an independently-existing solution, in
which layers ‘wet’ the surfaces as in figure 3.1(a), is not energetically preferable
to coexisting solutions, in which two phases are in contact with each surface as
in figure 3.1(b). Calculation of the free energy can be done using equation 3.1 for
the calculated profiles. Wetting is discussed in section 2.2 and figure 2.2. These
coexisting phases together conserve the average composition of the blend by ad-
justment of the area of the film occupied by each phase, and by the richness of
each phase in either component.

Forming a tractable problem

Presently I consider λ = 0, leaving a generalisation to λ 6= 0 for the discussion
in Sec. 3.6. The reason for this is as follows. The coexisting solutions in a real
film will need to have λA = λB i.e. the chemical potential of coexisting equilibria
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χ λ H
0.026 A-rich 0 0.00080

0 0.00090
0 0.0009235

0.026 B-rich 0 0.00089
0 0.00092
0 0.00092384

Table 3.2: λ and H for the coexisting profiles shown in figures 3.8 and 3.9. The order
of rows corresponds to the order of appearence of the sub-figures.

must be the same at equilibrium. However, trying to find an A-rich and a B-
rich solution of the same depth, with the same chemical potential λA = λB 6= 0,
such that at this chemical potential the pairs of profiles have a lower free energy
than the profiles with a different chemical potential, is an intractable problem
(and, furthermore, we still would not be taking into account the lateral interface
between the laterally coexisting phases in this 1D consideration). In order to
make the problem of finding coexisting phases tractable, it is simplest to restrict
to λ = 0, since we guarantee λA = λB and each coexisting phase will have a lower
free energy than for any λ 6= 0. λ 6= 0 means that the free energy of solutions
is greater than for the ‘same’ solutions with λ = 0 (‘same’ is meant in the sense
that the depth is the same, and the trajectory is qualitatively similar except for
the distortion of the phase portraits away from symmetry by non-zero λ) because
the lowest energy solutions are found subject to no constraints at all.

With λ = 0 and χ = 0.026, it can be seen from the phase portraits of figure
3.3(d) that there are several different trajectories between the boundary condi-
tions available, since each boundary condition crosses the flow more than once
(in a region where a valid trajectory between the boundary conditions can be
made). With λ = 0 these solutions all correspond to φ̄ 6= 1/2, and depending on
the trajectory will either be A-rich (φ̄ > 1/2) or B-rich (φ̄ < 1/2).

Coexisting Phase Equilibria

The values of H used to generate figures 3.8 and 3.9 are given in table 3.2. A-rich
profiles, shown in figure 3.8, can be found for all depths above a minimum depth
D, therefore A-rich solutions must have a minimum length D. The reason for
this minimum depth can be inferred from the phase portraits: it is not possible to
adjust the phase portraits via H such that the crosses of the flow with the z = 0
and z = d boundary conditions come arbitrarily close together (the orbital part
of the flow, upon ‘shrinking’ along the x-axis direction, would no longer cross
the z = 0 boundary condition), therefore there is a limit on how small A-rich
solutions can become for λ = 0. The A-rich solutions have a high B excess near
the attracting wall, but quickly approach a constant A-rich composition away
from this wall. The excess of A at the neutral wall is due to depletion of B in
the film by the B-attracting wall.

B-rich profiles can be found all depths, as can be inferred from figure 3.9,
because the crosses of the boundary conditions with the flow for z = 0 and z = d
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Figure 3.8: For χ = 0.026 and λ = 0, phase portraits (left) and profiles (right)
for A-rich profiles. The phase portraits are symmetrical since λ = 0 (the blend is
symmetric). Longer A-rich solutions are all similar, beginning on the rightmost
cross of the z = 0 boundary condition with the flow. d → ∞ as the phase
portraits approach the separatrix, the thickness of the A-rich part of the profile,
for which ∇φ ≈ 0, tends to infinity. There is an excess of B at z = 0.

can be brought together to allow d → 0. The B-rich profiles are approximately
constant and very rich in B, but a drop in B occurs close to the B-attracting
wall; it appears to be unfavourable for the B-attracting wall to adsorp (excess
attracted by surface) material with the same richness of B found in the bulk.

Imposing that A-rich and B-rich solutions must have equal depths, we must
infer that films with depths less than D cannot undergo lateral phase separation
and must exist in a single state with φ̄ = 1/2, because an A-rich solution does
not exist to allow lateral phase separation. For depths greater than D, lateral
phase separation is energetically favourable, because the energy of both of these
coexisting equilibria is less than the energy of a φ = 1/2 independently-existing
equilibria, and material conservation can be accounted for by varying the area
of these laterally segregated phases in the film. This result is an analogue of the
result for blends between antisymmetric walls for χ > χw, for which lateral phase
separation can occur only for films above a minimum depth [40, 41].

3.5 Surface Roughening

Figure 3.10 is a plot of the free energy, calculated with equation (3.1), of laterally
coexisting profiles calculated for λ = 0, for profiles with a range of film depths d
(the free energy is calculated from equation (3.1)). The free energy decreases with
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Figure 3.9: For χ = 0.026 and λ = 0, phase portraits (left) and profiles (right)
for B-rich profiles. The phase portraits are all symmetrical since λ = 0 and the
blend is symmetric. Longer B-rich solutions are all qualitatively similar and exist
for all possible film depths. The profiles are nearly constant, but the B-attracting
wall at z = 0 is less B-rich than both the bulk and the neutral wall at z = d.

the thickness of the film as a consequence of the composition gradients becoming
less steep as the films become thicker. Imposing that λ = 0, consider films (before
lateral phase separation occurs) of depth slightly below D, the minimum depth
of A-rich profiles. In this case, neglecting the effects of gravity and other kinetic
considerations, consideration of the free energy shows it is thermodynamically
favourable for the film to laterally phase separate into an A-rich phase with
dA ≥ D > d and a B-rich phase with dB < d < D, since these phases still have
less energy than an independently-existing profile.

If one of the walls is a free surface then there is no need to impose that
the depths of the laterally separated phases are equal, so the A-rich phase will
protrude from the B-rich phase, since dA > dB. This is because the A-rich phase
has the greater free energy per unit area (for λ = 0) than the B-rich phase, as
demonstrated by figure 3.10, so we might expect the A-rich phase to be deeper
and richer in A, since this accounts for material conservation whilst minimising
the area of film occupied by the A-rich phase (if the phase with the higher free
energy per unit area occupies less area by increasing in height, we would expect
the free energy to reduce). In this case, the difference in depths arises so that an
A-rich phase may exist for λ = 0, allowing lateral phase separation. However, for
films with initial depth d > D, we may expect the same phenomena as a result of
lateral phase separation, again with the A-rich phase protruding from the film,
since the A-rich phase still has a lower free energy than the B-rich phase. Figure
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Figure 3.10: Free energy of the A-rich and B-rich solutions for λ = 0 and χ =
0.026. Both solutions can go to arbitrarily high depths, but there is a lower limit
on the depth for the A-rich solution (not on the B-rich solution). Of interest for
the A-rich solution is that there is a region of two solutions for the same height,
which is a result of being able to calculate an A-rich solution from the leftmost
cross of the orbital flow with the z = 0 boundary condition, rather than just the
rightmost cross (although the former yields a higher energy profile; the upper
branch results from calculating the profile from the leftmost cross). The A-rich
phase has a higher free energy than the B-rich phase.

3.11 is a schematic of this scenario.

However, there is no need to enforce λ = 0, unlike for antisymmetric films.
Allowing λ 6= 0, with the understanding that the heights of coexisting solutions
may differ, the role of λ changes subtly, since now it can act to alter the depth
of the equilibria, as well as the average volume fraction. Changing λ from zero
whereby a depth d is obtained, to λ′ whereby a depth d′ > d is obtained, can
have the effect of decreasing the free energy, although the energy will be greater
than that for a solution of depth d′ for λ = 0.

We then expect in general that, for a laterally phase separated film with a
depth greater than D, it is favourable for the A-rich and B-rich solutions to
exist at different heights. With λ 6= 0, there can be a distortion of the phase
space to obtain A-rich solutions with dA < D, so that the minimum depth of
A-rich solutions is certainly below D. There will be a compromise between the
average volume fraction φ̄A and φ̄B, the depths dA and dB, the total area of the
A-rich and B-rich phases, and λA and λB (λA = λB at equilibrium), to obtain
two solutions which may coexist together in order to produce the lowest free
energy overall. From a purely thermodynamic argument, without any particular
symmetries of the confining walls/surfaces, in general we should not expect the
coexisting solutions to have equal depths, and that a scenario like that in figure
3.11(b) may be rather general.
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Figure 3.11: Schematic of a binary polymer-blend film. (a): film with a free
top surface, with a single profile φ(z) describing the entire film; (b): coexisting
equilibria φ∗(z) and φ∗∗(z) which exist side-by-side, but at different heights, since
this provides a lower energy configuration. The lateral interfaces between the
coexisting phases are not taken into account.

3.6 Summary

I have described how the phase equilibria of a binary polymer-blend thin film
between selectively attracting walls can be studied with Hamiltonian Phase Por-
traits. This method was originally developed and used by Souche and Clarke
for the special case of a symmetric blend between antisymmetric walls [41]. I
extended the method to include a Lagrange multiplier, allowing this method to
be generalised to asymmetric films. This chapter was restricted to a specific
asymmetry, although this can be generalised to general surface asymmetry and
to asymmetric blends. Hamiltonian Phase Portraits can be used to visualise and
calculate phase equilibria in the ‘depth dimension’, but qualitative conclusions
can be drawn about the nature of laterally coexisting phases that can exist in a
laterally segregated film. This method treats coexisting phases as if they were
effectively isolated from each other, since I have not considered the interfaces
between the coexisting phases or the implications of surface tension and surface
connectivity. However, from a purely thermodynamic perspective, surface rough-
ening whereby one phase is deeper/higher than the other should be a general
mechanism by which a film can lower its free energy upon lateral phase separa-
tion.

The next chapter uses Hamiltonian Phase Portraits to explain the results of 2D
simulations of polymer-blend thin films, showing how knowledge of 1D equilibria
(calculated only in the dimension extending from one film surface to the other,
as in this chapter) is sufficient to explain the kinetics of phase separation.



4

Lateral Phase Separation

via

Surface Bifurcation

I use diffusion simulations of polymer blend films with selectively at-
tracting surfaces to identify the dynamics of lateral phase separation
via a transient wetting layer, utilising Hamiltonian phase portraits of
1D phase equilibria to explain a surface bifurcation mechanism. This
mechanism describes how the surface values of the equilibrium profile
of a transient wetting layer, which are effectively pinned to boundary
conditions at the film surfaces, divide into two values for laterally
coexisting equilibria. The requirement that these effective boundary
conditions be satisfied at all times, not only at equilibrium, causes
the particular dynamics of the breakup of the transient wetting layer.
This work was published in my second paper (Letter) “Breakup of a
Transient Wetting Layer in Polymer Blend Thin Films: Unification
with 1D Phase Equilibria” [50] and third paper “Lateral phase sepa-
ration in polymer-blend thin films: Surface bifurcation” [51].
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4.1 Introduction

In this chapter I develop a diffusion equation for binary polymer-blend thin films
with selectively attracting surfaces. Included in this equation are often neglected
surface terms that are required so that the equilibria that appear in the simu-
lations match those that can be calculated using, for example, the Hamiltonian
Phase Portraits method presented in chapter 3. I then perform simulations with
this equation for various different temperatures, depths and surface attraction
regimes. I show that the simulation results are fully consistent with the calculated
phase equilibria, and show how the coexisting equilibria that can be calculated in
1D using phase portraits do appear in the (2D) simulations, albeit under a non-
zero chemical potential due to the lateral interfaces between the phases (which
cannot be accounted for with the 1D Hamiltonian Phase Portrait method). I also
explain how effective boundary conditions at the film surfaces serve to pin the
profiles of the films to particular values, even out of equilibrium.

I use these simulations to identify the dynamics of lateral phase separation via
a transient wetting layer, which is the process by which a film initially vertically
segregates and then undergoes lateral phase separation into laterally coexisting
equilibria (which is favourable below the wetting temperature). Utilising Hamil-
tonian phase portraits of the 1D phase equilibria that appear in the simulations,
I explain a surface bifurcation mechanism. This mechanism describes the par-
ticular way in which the surface values of the transient wetting layer divide into
two values which evolve towards those of the laterally coexisting equilibria, but
in such a way that the surface boundary conditions are still honoured, and how
this is ultimately responsible for the particular dynamics of the breakup of the
transient wetting layer.

4.1.1 The importance of dynamics and kinetics

The difference between the wetting regime, in which one phase completely covers a
surface and excludes another phase from contact with that surface, and the non-
wet regime, in which both phases are in contact with a surface, was discussed
throughout chapter 2. Figure 2.2 shows a binary blend in contact with a planar
surface: when the contact angle that a phase makes with the surface goes to zero,
the surface is wet by that phase. However, the discussions in chapter 2, and the
literature cited therein, primarily concerned describing wetting transitions in the
context of wetting layers which become infinitely thick in a semi-∞ geometry,
although there was a discussion of films of finite thickness which discussed how
equilibrium in the non-wetting regime is laterally coexisting phases which are
both in contact with the surface.

Of equal importance are the kinetics by which a surface may wet or de-wet.
A film of an initially homogeneous blend does not spontaneously adopt an equi-
librium profile, and the pathway by which the films evolve are very important for
determining the final morphology, particularly for polymer-blend films, in which
the morphology can become ‘frozen’ far away from equilibrium (for example,
when a solvent which keeps the blend a fluid is all removed; see description of
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spin coating process below). Similarly, the final morphology may not necessarily
be that predicted by consideration of the lowest free energy equilibria; it may be
another equilibrium profile (a metastable equilibrium) that was reached first due
to the kinetics of the system.

Early numerical studies of binary blends made the distinction between the
layered morphology of Vertical Phase Separation19 (one phase in contact with a
surface; see figure 4.1(a)) and the non-wet morphology of Lateral Phase Sepa-
ration20 (both phases in contact with a surface; see figure 4.1(b)): a high sur-
face field, low thermal noise regime corresponded to a layered morphology, and
a low surface field, high thermal noise regime corresponded to a partially wet
morphology [52]. The competition between surface attraction of particular blend
components and thermal noise that will generally move the blend towards a lower
free energy (which may not be a layered morphology with only one phase in con-
tact with each surface) highlights the importance of kinetics in determining the
morphology of the film: vertical layering may initially occur, but is not necessar-
ily stable. The vertical layering of phases was realised both experimentally [53]
and computationally [54, 55], even in the non-wet regime when it is energetically
favourable for both phases to be in contact with the surface [56, 57] i.e. vertical
phase separation into layers (like in figure 4.1(a); alternating layers extending into
the film are also possible) occurred even when lateral phase separation (like in
figure 4.1(b)) was energetically favourable. Experiments later revealed that the
vertical layers forming in the non-wet regime can break up as lateral structures
appear at a surface [58], with solvent evaporation experiments allowing frozen
out-of-equilibrium states to be studied to investigate this breakup [59].

4.1.2 Lateral Phase Separation via a Transient Wetting
Layer

The main subject of this chapter is the lateral phase separation of an initially
vertically segregated21 film resulting in a laterally segregated22 film. The pioneer-
ing work of Walheim highlighted the possibility of lateral phase separation via
a transient wetting layer23 [59]: the initial formation of a transient (temporary)
wetting layer that forms as the blend initially vertically phase separates, due to
preferential attraction by the film surface(s), which subsequently breaks up due
to an instability. This subject has received more recent attention [60, 41, 61, 62],
with a fair amount of evidence now suggesting that, for spin cast films, before the
blend laterally phase separates into a laterally segregated film (which is usually

19Vertical Phase Separation: phase separation into vertically layered phases, e.g. a bilayer,
usually caused by preferential surface attraction.

20Lateral Phase Separation: phase separation into laterally coexisting phases, whether from
an approximately homogeneous film or a bilayer film, resulting in a laterally segregated film.

21Vertically Segregated (film): layered phases with interfaces parallel to the surfaces.
22Laterally Segregated (film): ‘column’ phases with interfaces perpendicular to the surfaces.
23Lateral Phase Separation via a Transient Wetting Layer: vertical phase separation initially

proceeds, due to preferential surface attraction, resulting in a vertically segregated film. This
state is unstable, and lateral phase separation occurs, resulting in a laterally segregated film.
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Figure 4.1: Schematics of different profiles for spin-cast films: (a) vertically seg-
regated (bilayer); (b) laterally segregated. The process of spin-coating is shown in
figure 4.2. There is evidence that films can in fact first undergo vertical phase
separation into a bilayer, followed by a sinusoidal-like distortion of the interface
between the phases of the bilayer, which results in lateral phase separation of the
film (note that in (b) the coexisting phases are shown in common with chapters
2 and 3, with no consideration of the interface between them). In this case, the
temporary bilayer is referred to as a transient wetting layer, and the process is
referred to as lateral phase separation via a transient wetting layer. A posited
reason for the breakup is a Marangoni-like instability; see text.

the final state of spin cast films) it first undergoes vertical phase separation into
a bilayer (i.e. a transient wetting layer); see below for description of spin coating.

The most posited reason for the breakup of the bilayer is a Marangoni-like
instability caused by solvent gradients in the film as solvent evaporates from the
top surface [60, 62]. This may be what causes the bilayer to develop a sinusoidal
distortion which leads to the breakup of the bilayer, resulting in a laterally seg-
regated film. Control of the evaporation rate, and therefore the steepness of the
solvent gradient in the film, has been shown to be a mechanism by which the
lateral phase separation can be prevented, allowing the final morphology to be
either vertically or laterally segregated [62]. A schematic showing the process of
the breakup of a bilayer is shown in figure 4.1.

Despite the recognition of lateral phase separation via a transient wetting
layer, prior to this work little theoretical work had been done to shed light on
the dynamics of the break up of the transient wetting layer, and any underlying
mechanisms explaining the way in which the transient wetting layer breaks up.

Spin Coating of Polymer Blend Films

Spin coating is a widely used technique for creating polymer-blend thin films.
A polymer blend is combined with a common solvent (‘common’ means that it
dissolves both components of the blend), and sprayed/spread onto a flat substrate
which is then spun very quickly. The fluid layer first thins from the spinning as
material is rapidly shed due to centrifugal forces, and then thins further as solvent
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Figure 4.2: Schematic of initial stages of the spin-coating process: two polymer
species are combined, along with a common solvent, and sprayed/spread onto
a substrate, which is then spun around very quickly. The fluid layer thins as
material is shed due to centrifugal forces, and thins further as solvent evaporates,
leaving behind a film of the phase-separated polymer blend at the end.

evaporates, leaving behind a film of the binary polymer blend. The rate of solvent
evaporation can be controlled by adjusting the vapour pressure above the film.
See figure 4.2 for a simple schematic of the spin-coating process. The final state of
films manufactured in this way is almost always laterally segregated, as in figure
4.1(b), but there is evidence that films first undergo vertical phase separation
into a bilayer, as in Figure 4.1(a).

4.2 Calculating phase equilibria in 1D

The problem of solving for equilibrium profiles of polymer-blend thin films with
selectively attracting surfaces (walls) was addressed in chapter 3, but for com-
pleteness it is worth restating several important aspects in this chapter.

4.2.1 1D description of polymer-blend film

The following description is consistent with chapter 3. The Flory-Huggins-de
Gennes free energy functional F for a 1D binary polymer blend (monodisperse,
components A and B, volume fraction of A given by φ, depth d) confined between
selectively attracting walls (surfaces) at z = 0 and z = d is [18]

F [φ(z)] =
1

a

∫ d

0

[
fFH(φ) + κ(φ)(∇φ)2] dz + f ∗0 (φ0) + f ∗d (φd), (4.1)

where F is given in units of kBT , z measures the vertical distance from the wall
at z = 0, and ∇φ ≡ ∂zφ is the partial derivative of φ with respect to z. I will
denote film profiles, describing the volume fraction φ as a function of distance z,
by φ (z). a is the spacing of the underlying Flory-Huggins lattice. The gradient
coefficient κ (φ) in Eq. (4.1) is

κ(φ) =
a2

36φ(1− φ)
. (4.2)
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The surface energies f ∗0 and f ∗d are given by [31, 33]

f ∗S(φS) = h∗SφS +
1

2
g∗Sφ

2
S =

1

a

(
hSφS +

1

2
gSφ

2
S

)
≡ 1

a
fS(φS), (4.3)

where S = 0, d (the index S denotes the confining walls) and h∗S ≡ hS/a and g∗S ≡
gS/a are phenomenological parameters, taking account of blend-wall interactions
and missing neighbour contributions due to the walls (surfaces), respectively.
Only the local volume fraction φS enters into Eq. (4.3). Note that the definitions
fS(φS) = hSφS+ 1

2
gSφ

2
S are the surface energies per unit cell. These are convenient

because hS and gS are independent of the dimensionality D of the system (which
enters as a−D in Eqs. (4.1) and (4.3), a−1 in those cases).

To isolate the symmetry-breaking effects of the film walls, I now specialise
to a symmetric binary polymer blend (average composition φ̄ = 1/2, degree of
polymerisation NA = NB = N), so the Flory-Huggins free energy contribution to
Eq. (4.1) in units of kBT is

fFH(φ) =
φ

N
ln (φ) +

1− φ
N

ln (1− φ) + χφ(1− φ), (4.4)

where χ is the Flory-Huggins interaction parameter.

4.2.2 The Chemical Potential

In chapter 3, it was briefly noted that the Lagrange multiplier required to find
equilibria with the Hamiltonian Phase Portrait Method was equivalent to a chem-
ical potential. To recap: for any chosen blend ratio A:B (quantified by the aver-
age composition φ̄) equilibria implied to exist in isolation (rather than coexisting
with other phases) must conserve φ̄, which for a symmetric binary blend means
φ̄ = 1/2. The Lagrange multiplier must be chosen to ensure that calculated
profiles satisfy the latter constraint. In a laterally segregated film of coexisting
phases φA(z) and φB(z) (rich in components A or B i.e. φ̄B < φ̄ < φ̄A), adjust-
ment of the area and composition of each phase can conserve material, though
λA = λB is required (λA = λB = 0 was used in chapter 3).

In 1D, the total free energy is given by

FTOT [φ (z)] = F [φ (z)]− µ

a

∫ d

0

φ(z)dz, (4.5)

where a factor of kBT has been absorbed into the chemical potential µ, which is
multiplied by a−1 in this definition for convenience. The local chemical poten-
tial µ(z) is related to the free energy via µ(z) ≡ aδF/δφ(z) (using a consistent
definition as before). Since equilibrium profiles (equilibria) φ(z) correspond to a
minimum in the total free energy i.e. δFTOT/δφ(z) = 0, then for equilibrium

δF [φ (z)]

δφ(z)
≡ µ (z)

a
=
µ

a
, (4.6)

meaning the local chemical potential µ (z) is a constant value µ for all z at equilib-
rium. This was mentioned briefly in chapter 3 section 3.3.4 on the interpretation
of the Lagrange multiplier λ. Another way to put this is to say: for equilibrium,
there are no gradients in the chemical potential.
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4.2.3 Solving for 1D equilibria

I will briefly restate several equations relevant to the Hamiltonian Phase Por-
trait method, which equilibrium profiles are required to satisfy. These equations
are discussed in detail in chapter 3. Underlying the Hamiltonian phase portrait
method is the Euler-Lagrange equation for equilibrium profiles φ(z), given by

2κ∇2φ+ ∂φκ (∇φ)2 = ∂φfFH + λ, (4.7)

where ∂φ is the partial derivative with respect to φ, and λ is a Lagrange multiplier.
Eq. (4.7) is not enough to fully specify a solution; we require two boundary
conditions to numerically solve for a unique solution:

+ 2κ(φ0)∇φ0 = +
∂f0

∂φ
≡ +h0 + g0φ0, (4.8)

+ 2κ(φd)∇φd = −∂fd
∂φ
≡ −hd − gdφd. (4.9)

We also need to satisfy a material constraint for independently-existing profiles,
which for a symmetric blend φ̄ = 1/2 is

1

a

∫ d

0

(
φ(z)− 1

2

)
dz = 0. (4.10)

The boundary conditions (4.8) and (4.9) must be satisfied, along with the con-
straint equation (4.10) via choice of λ, to specify equilibrium profiles φ (z) which
also satisfy the Euler-Lagrange equation (4.7) [27, 31, 33]. Of course, that equi-
libria must satisfy these requirements is not specific to the Hamiltonian Phase
Portrait method in particular.

4.3 Modelling Phase Separation

In order to study phase separating films, I use diffusion simulations based upon
a diffusion equation in which the gradient of the local chemical potential drives
the flux of material. I use ‘simulation’ throughout to mean numerically solving
the resulting equation of motion. It is now useful to write Eq. (4.1) slightly
differently, as

aF [φ(z)] =

∫ d

0

[
fFH(φ) + κ(φ)(∇φ)2 + f0(φ)δz0 + fd(φ)δzd

]
dz, (4.11)

where δzS represents the Kronecker delta function: δzS(z = S) = 1, δzS(z 6= S) =
0 (S refers to the value of z at the walls i.e. S = 0 or S = d). Note that since
the film surfaces are rigid planar impenetrable surfaces, I will most often refer to
the surfaces as walls.
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4.3.1 The local chemical potential

To derive the diffusion equation, we require the local chemical potential µ(z) as
defined by µ(z) ≡ aδF [φ (z)] /δφ(z). There is a standard expression for the func-
tional derivative which can be used in cases where the boundaries of integration
on a functional, such as F [φ(z)] in equation (4.1), don’t introduce additional
terms into the functional derivative. In that case, for a functional of the form
F =

∫
f(φ,∇φ)dz, we could use the expression

δF [φ(z)]

δφ(z)
=
∂f

∂φ
−∇ · ∂f

∂∇φ
. (4.12)

I began the research that forms this chapter by using such a derivation. However,
in order to unite the results of the simulations with the results I could obtain
using the Hamiltonian Phase Portrait method to calculate equilibrium profiles,
the diffusion equations for the simulations required modification. I found that
terms resulting from one-sided gradients at the boundaries of integration, required
for the equilibrium profiles from the simulations to match those calculated, were
missing if I used equation 4.12. To try to find the source of the discrepancy, I
instead went back to first principles to calculate the functional derivative.

The local chemical potential µ (z′), given by the functional derivative of the
free energy (4.1) at z′, is:

µ (z′) = a
δF [φ (z)]

δφ(z′)
. (4.13)

The variational derivative in Eq. (4.13) describes how F changes when we perturb
the profile φ(z) by an infinitesimally small amount ε at the point z′:

δF [φ (z)]

δφ(z′)
= lim

ε→0

1

ε
{F [φ (z) + εg(z, z′)]−F [φ (z)]}. (4.14)

g(z, z′) is a test function (not rigorously a delta function or delta distribution)
whose value is zero for z 6= z′ and one for z = z′. It is necessary to use such a
test function due to the finite range of the integral in the functional Eq. (4.11).

I will begin with the variational derivative of the gradient term κ(φ) (∇φ)2 in
Eq. (4.11). I use the contractions g ≡ g(z, z′) and κ ≡ κ (φ) when convenient,
and discard all terms O(ε2) in the expanded integrands since they vanish in the
limit ε → 0. Note that the quantity we are actually interested in is the local
chemical potential µ(z) i.e. we must take z = z′, so the integrals below vanish
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when we take z′ = z due to the properties of the test function g(z, z′):

1

ε

∫ d

0

κ (φ+ εg) (∇(φ+ εg))2 − κ(φ) (∇φ)2 dz

=

∫ d

0

2κ∇φ∇g + g(∂φκ)(∇φ)2dz

= [2κ∇φg]d0 −
∫ d

0

2κ g∇2φdz

−
∫ d

0

2∇φg∇κdz +

∫ d

0

g(∂φκ)(∇φ)2dz

= [2κ∇φ]d0 − 2κ ∇2φ− 2∇φ∇κ+ (∂φκ)(∇φ)2

= [2κ∇φ]d0 − 2κ∇2φ− (∂φκ)(∇φ)2. (4.15)

The terms [2κ∇φ]d0 do not appear from equation (4.12), and these terms are
usually missing from similar work in the literature.

The variational derivative of the Flory-Huggins free energy (4.4) is simply
given by ∂φfFH , the partial derivative with respect to φ

∂fFH
∂φ

=
1

N
ln

φ

1− φ
+ (1− 2φ)χ, (4.16)

and the variational derivatives of the surface energies in Eq. (4.3) are [∂φfS(φ)] δzS,
due to the rewriting of the surface energies in the form given by equation (4.11),
where (for S = 0, d)

∂fS
∂φ

= hS + gSφ. (4.17)

So we have for the local chemical potential µ(z) at point z:

µ(z) =− 2κ (φ)∇2φ− (∂φκ)(∇φ)2 + ∂φfFH

+ [+2κ (φ)∇φ+ ∂φfd(φ)] δzd

+ [−2κ (φ)∇φ+ ∂φf0(φ)] δz0, (4.18)

where the surface energy terms and [2κ (φ)∇φ]d0 have been combined, since both
pairs of terms act at the walls.

Consistency

Eq. (4.6) means the chemical potential must be constant everywhere at equi-
librium, µ(z) = µ. The Euler-Lagrange equation (4.7) must also be satisfied by
equilibrium profiles φ(z). Substituting Euler-Lagrange equation (4.7) into the
local chemical potential (4.18) we obtain for equilibrium

µ(z) = −λ
+ [+2κ (φ)∇φ+ ∂φfd(φ)] δzd

+ [−2κ (φ)∇φ+ ∂φf0(φ)] δz0, (4.19)
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which requires that the boundary conditions Eqs. (4.8) and (4.9) are naturally
satisfied, indeed the requirement that µ(z) be constant at equilibrium is the origin
of the boundary conditions for equilibrium profiles. If we were to perform sim-
ulations of a polymer-blend described by equation (4.11), then we would expect
to find for equilibrium profiles that

µ ≡ µsim = −λ, (4.20)

i.e. at equilibrium, the Lagrange multiplier is the negative of the chemical poten-
tial µsim from the simulations. The relationship between λ, required to solve for
profiles in 1D, and the chemical potential from a 2D simulation in which there
are lateral interfaces between coexisting phases (not accounted for when solving
for equilibria in 1D) is discussed in section 4.4.

4.3.2 The diffusion equation

From the local chemical potential we can develop a governing equation for the
diffusion simulations. I assume the material current at a point z can be written as
J(z) = −M∗∇δF/δφ, where M∗ is the mobility, assumed to be constant for sim-
plicity. This constitutive law (a form of Fick’s law of diffusion) assumes that the
flux of material J is proportional to the gradient of the chemical potential, mean-
ing that material will move so as to equalise the chemical potential. This means
that material will diffuse until equilibrium is achieved, in which the chemical po-
tential is constant everywhere. From the continuity equation ∂φ/∂t = −∇ · J we
then obtain (remembering the factor of a in the definition of µ)

∂φ (z)

∂t
=
M∗

a
∇2µ (z) ≡M∇2µ (z) . (4.21)

Inserting the expression for the local chemical potential (4.18) into the above ex-
pression yields the diffusion equation for the simulations. For numerical purposes,
we scale space by z′ = |χ− χS|1/2 z/a and time by τ = NM |χ− χS|2 t/a2. χS
is the value of χ at the spinodal, which for a symmetric blend gives χS = χC ,
where χC is the critical temperature of the blend (see section 1.4). The rescaled
units of space z′ are of the magnitude of phase separated domains expected from
bulk phase separation, and the rescaled time τ removes the dependence on the
mobility. We then obtain

∂φ (z)

∂τ
=

1

N
∇′2
(

1

|χ− χS|
∂fFH
∂φ

+
(1− 2φ)

φ(1− φ)

κ

a2
(∇′φ)2 − 2

κ

a2
∇′2φ

+
δzd

|χ− χS|

[
∂fd
∂φd

+ 2
|χ− χS|1/2

a
κ∇′φ

]

+
δz0

|χ− χS|

[
∂f0

∂φ0

− 2
|χ− χS|1/2

a
κ∇′φ

])
. (4.22)



4.3. Modelling Phase Separation 81

where ∂φfFH = (1/N) ln (φ/(1− φ)) + χ(1− 2φ).
Eq. (4.22) must be discretised for simulations. I divide the range in z by a

mesh of D grid cells of depth ∆z, so the film depth d = D∆z and the surface
terms act in the grid cells i = 1 and i = D respectively. As first discussed by
Henderson and Clarke [63], and later given firmer foundations by Fukuda et al
[64], inconsistencies can arise unless we normalise surface/wall energy (4.3) to
make the free energy (4.11) invariant to the mesh size:

fi(φi)→
fi(φi)

∆z
=

hi
∆z

φi +
1

2

gi
∆z

φ2
i , (4.23)

where i = 1 or i = D. The surface gradient terms ±2κ (φ)∇φ must also be nor-
malised by ∆z−1, else the resulting discretised diffusion equation is not consistent
with its continuous counterpart Eq. (4.22).

I also include a second lateral dimension y running parallel to the confining
walls, using index j, and apply periodic boundary conditions in this dimension.
The free energy functional (4.1) changes such that a−1 → a−2, but the careful
definitions means that we need only replace factors of a−1 with a−2 in Sections
4.2 and 4.3 (this leaves Eq. (4.20) remains unchanged). I used a square simu-
lation mesh ∆y = ∆z for the work in this chapter. Using φij to represent the
volume fraction of A at the grid cell ij, the 2D discrete diffusion equation for the
simulations discussed in this chapter is

∂φij
∂τ

=
1

N
∇′2
(

1

|χ− χS|
∂fFH
∂φ
|ij

+
(1− 2φij)

φij(1− φij)
κij
a2

(∇′φ|ij)2 − 2
κij
a2
∇′2φ|ij

+
δiD
∆z′

[
a−1

|χ− χS|
1
2

∂fd
∂φd

+ 2
κDj
a2
∇′zφ|Dj

]

+
δi1
∆z′

[
a−1

|χ− χS|
1
2

∂f0

∂φ0

− 2
κ1j

a2
∇′zφ|1j

])
, (4.24)

where κij ≡ κ(φij) and ∂φfFH |ij ≡ ∂φfFH(φij). The gradient terms ∇′ and ∇′2
are now 2D, whilst ∇′z ≡ ∂z′ (the partial derivative with respect to z′). For the
surface terms ∂fd/∂φd and ∂f0/∂φ0, I keep the notation for the continuous spatial
variable z (0 and d), although these terms must be evaluated for grid cells with
i = 1, D. (Note that the lattice spacing a cannot be fully scaled out of the surface
terms; see ref [64]).

The film surfaces are impenetrable hence material conservation is required:

d

dτ

∫ d

0

φ (z) dz = 0, (4.25)

which was implemented by a no-flux condition at the walls, achieved by setting
J (i = 1− 1/2) = 0 and J (i = D + 1/2) = 0. To discretise Eq. (4.24), I used
a central differencing scheme for spacial derivatives and a forward differencing
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time step. Unless specified otherwise, simulations are started seeded with initial
random noise i.e. φ(z, y) = 0.5 + δφ, where δφ is chosen from a Gaussian distri-
bution with mean zero and width σ, which will be specified, and additional noise
is not included throughout the rest of the simulation. However, to show that the
results are general, I show a simulation with continuous noise in section 4.6.1.

The simulations were implemented in CUDA, a programming language simi-
lar to C++ which allows for execution of parallelised code on a CUDA-enabled
NVIDIA Graphical Processing Unit (GPU). This made the simulations much
more tractable, providing between 10× to 100× speed up over serial processing
on a CPU. More details of the implementation of my simulations for parallelised
code, which may be useful for reproducing them or for efficiently implement-
ing other similar diffusion simulations, along with details about the discretised
gradient operators and time step, are given in appendix A.

4.3.3 Parameters

Blend and surface parameters

Throughout this chapter, I focus on a symmetric polymer blend φ̄ = 0.5 with N =
100, hence χc = 0.020. I use the following wall parameters and terminology, in
common with chapter 3: for ‘asymmetric’ films h0 = −0.05, g0 = 0.18, hd = gd =
0 (a B-attracting wall at z = 0 and a neutral wall at z = d); for ‘antisymmetric’
films h0 = −0.05, g0 = 0.18, hd = −0.13, gd = 0.18 (a B-attracting wall at
z = 0 and an A-attracting wall at z = d, such that the walls attract opposite
components in exactly the same way); and for ‘symmetric’ films h0 = hd = −0.05,
g0 = gd = 0.18 (a B-attracting wall at z = 0 and z = d). These different surface
regimes are discussed in chapter 2 section 2.5. The symmetric blend between
asymmetric walls is directly comparable with the work in chapter 3.

Parameters and units

Since scaled space depends on the temperature χ and I discuss a range of different
χ, it is easier to discuss the results in terms of ‘unscaled’ space z (setting a = 1
gives z units of a) and scaled time τ , since then the difference in behaviour
for films of the same depth at different temperatures is more transparent (the
scaling of space is nonetheless useful for numerical reasons). When discussing
phase portraits, I provide the Hamiltonian constants and Lagrange multipliers
used to generate the phase portraits.

The wetting temperature

Since the wetting temperature depends on the film thickness and wall interactions,
I have defined the wetting temperature χW throughout this chapter as the cut-
off temperature at which spontaneous lateral phase separation of a transient
wetting layer no longer appears to occur (i.e. the wetting layer is stable, and
the contact angle of the wetting phase with the surface remains zero) for an
asymmetric film of depth d = 20.1 (the film depth used in section 4.5). This
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χ λ d ∆z µsim

0.015 −0.000745 14.85 0.10 +0.000745
0.41 +0.000791
0.74 +0.000832
1.24 +0.000897
1.85 +0.000985

0.021 −0.000033 40.60 0.25 +0.000033
0.68 +0.000036
1.13 +0.000037
1.69 +0.000039

0.026 +0.000120 20.92 0.20 −0.000120
0.40 −0.000118
0.65 −0.000116
1.05 −0.000112
1.74 −0.000101

Table 4.3: Lagrange multiplier λ (for the calculated 1D profile) and equilibrium chem-
ical potential µsim (obtained from simulations) for different temperature regimes χ,
depths d, and varying mesh size ∆z (including all the data from the simulations for
Figs. 4.3-4.5). As the mesh size becomes finer ∆z → 0, we observe µ → −λ, as
predicted by Eq. (4.20). The rate equation (4.24) is therefore accurate and precise.

gives an estimate of 0.0213 < χW < 0.0214 (this provides an upper limit for all of
my wall configurations, since my asymmetric configuration has one neutral wall;
see ref [45]). It is worth restating that defining the wetting temperature as the
point at which wetting is stable is really the fundamental definition of the wetting
temperature. My more restricted definition here is for convenience, allowing us
to refer to the same value of χW throughout, even though, for example, the ‘true’
wetting temperature of, say, an antisymmetric film may in fact be χAS

W < χW .

4.4 1D equilibria in 2D films

This section relates the phase equilibria that can be calculated in 1D via the
Hamiltonian Phase Portrait Method of chapter 3, to the equilibrium states found
in my 2D simulations. The purpose of this comparison was to investigate whether
the simulations of the diffusion equation (4.24) were consistent with the equilibria
calculated with the Hamiltonian phase portrait method, in particular whether the
coexisting phases that can be calculated in 1D actually correspond to the laterally
segregated phases observed in 2D.

4.4.1 Vertically segregated films

To study vertically segregated films, such as figure 4.1(a), I restricted the simu-
lations to quasi-1D, so that the lateral dimension y was too narrow to support
laterally segregated phases. For the Gaussian noise width I used σ = 0.0001 for
an initially nearly homogeneous film, and made a further restriction to asymmet-
ric films. The equilibrium profiles from the quasi-1D simulations can be directly
compared with calculated 1D film profiles of independently-existing equilibria,
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Figure 4.3: 1D simulation data for χ = 0.015 (χ < χC), film depth d = 14.85 and
asymmetric walls. Times are τ = 1 (a), τ = 2 (b), τ = 15 (c). The calculated equilib-
rium profile (green dashed line) required λ = −0.000745, whilst µsim = +0.000791 for
∆z = 0.41. Equilibrium is a monolayer with positive adsorption of B material at the
B attracting wall (z = 0).

since restricting the lateral width prevents lateral phase separation and therefore
allows the vertically segregated state to be accurately compared with calculated
profiles, even for χ > χW when this configuration is unstable with respect to a
laterally segregated configuration (any lateral variation in the vertically segre-
gated profile would make a comparison less accurate). I studied three different
temperature regimes (those used in chapter 3): above the critical temperature
χ = 0.015 (figure 4.3), below the critical temperature but above the wetting tem-
perature χ = 0.021 (figure 4.4), and below the wetting temperature χ = 0.026
(figure 4.5).

In Figs. 4.3, 4.4 and 4.5 the three sub-figures show each film at (a) a very early
time; (b) an intermediate time away from equilibrium; and (c) at equilibrium.
The data points φi (1 ≤ i ≤ D) are averages of φij taken over index j (the lateral
dimension) for fixed index i, and the dashed lines are the 1D equilibrium profiles
of asymmetric films calculated by the Hamiltonian phase portrait method of
chapter 3, although any method would suffice. I made the following observations:
at equilibrium the simulation data matches the profiles; the simulations reproduce
the profiles more accurately as the mesh size is reduced (∆τ = 0.00004 was used
for each temperature regime); and as ∆z → 0, the simulation data conforms
exactly to the calculated profiles. Further proof of this is table 4.3, which shows
that as ∆z → 0 the simulation equilibrium chemical potential converges to the
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Figure 4.4: 1D simulation data for χ = 0.021 (χC < χ < χW ), film depth d = 40.60
and asymmetric walls. Times are τ < 1 (a), τ = 9 (b), τ = 25 (c). The calculated equi-
librium profile (green dashed line) required λ = −0.000033, whilst µsim = +0.000036
for ∆z = 0.68. Equilibrium is a bilayer with a soft interface separating the B-rich phase
and A-rich phase.

negative of the Lagrange multiplier required to numerically solve for the film
profile, as predicted by Eq. (4.20), but these finer ∆z are absent in Figs. 4.3-4.5
to preserve clarity. It is important that the results of the simulation accurately
and precisely match the results of a calculation of equilibria, since this gives us
confidence in the diffusion equation (4.24).

It is worth noting that for thicker films an oscillatory concentration wave may
form, in which the profile would resemble a sine-wave in concentration extending
away from the B-attracting wall. This wouldn’t necessarily become a profile like
those in figures 4.3 - 4.5 (unless given an infinite amount of time), but this is
a kinetic problem that can be a particular nuisance in 1D simulations. Since
the work in chapter 3 gives us confidence that we know the nature of the true
equilibria even for infinitely thick films, and since the focus of this chapter is
on lateral phase separation via a transient wetting layer, in which the transient
wetting layer is a bilayer structure like that in figure 4.1(b), the problem of
oscillatory profiles is not relevant.

4.4.2 Pinning of profiles at the walls

From Figs. 4.3 - 4.5 we see, in agreement with the literature e.g. [57], that
the value of φ at the B-attracting wall appears to be very quickly pinned to its
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Figure 4.5: 1D simulation data for χ = 0.026 (χW < χ), film depth d = 20.92 and
asymmetric walls. Times are τ = 2 (a), τ = 20 (b), τ = 100 (c). The calculated equi-
librium profile (green dashed line) required λ = +0.000120, whilst µsim = −0.000118
for ∆z = 0.40. The equilibrium profile is non-monotonous with a minimum (∇φ = 0)
at z ≈ 2.5.

equilibrium value, and from this pinning centre a concentration wave is crossing
the film. On the other hand, the profile near the neutral wall is unperturbed
at very early times, and it would appear that there is no such rapid pinning of
φ at the neutral wall. For each temperature regime, a point is reached when
the concentration wave has crossed the film, and the profiles show a monotonous
increase in B towards the B attracting wall at z = 0 and flat profile at z = d.
For figure 4.5, the film then develops non-monotonous behaviour at z ≈ 2.5
(characterised by a minimum in φ near but not at the B-attracting wall) shortly
prior to achieving equilibrium (metastable in the latter case; χ > χW ).

A more careful inspection of the diffusion equation (4.24) and boundary con-
ditions (4.8) and (4.9) shows us that the profile is in fact pinned at both the
B-attracting wall and the neutral wall, but that pinning24 does not refer to just
the volume fraction φ, but rather to both coordinates (φ, 2κ∇zφ). The surface
terms of the diffusion equation (4.24) effectively enforce the boundary conditions
(4.8) and (4.9) such that they are fulfilled at all times during the simulation,
not only at equilibrium. For the B-attracting wall, although φ is pinned at early
times, it in fact does continue to change slightly, as does ∇zφ. For the neutral
wall, Eq. (4.9) with hd = gd = 0 shows us that ∇zφ = 0 solves the bound-

24Pinning: values of (φ, 2κ∇zφ) at the film surfaces are determined by surface boundary
conditions, such that the ends of trajectories are always pinned to these boundary conditions.
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Figure 4.6: Laterally segregated phases for χ = 0.026 (χ > χW ), depth d = 20.1 and
asymmetric walls, using ∆z = 0.36 and ∆τ = 0.10×10−5. The lateral dimension y ≈ 90
(with periodic boundary conditions) is wide enough to support two lateral phases.
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Figure 4.7: The laterally segregated state for χ = 0.026 (χ > χW ), depth d = 20.1 and
symmetric walls, using ∆z = 0.36 and ∆τ = 0.25×10−5. The lateral dimension y ≈ 90
(with periodic boundary conditions) is wide enough to support two lateral phases.

ary condition for any value of φ, so although the value of φ does not appear
to be pinned, ∇zφ is pinned to zero. The wall-blend interactions thus enforce
the boundary conditions at all times, but (φ, 2κ∇zφ)0,d may still change whilst
satisfying these boundary conditions. This novel observation will be important
to my discussion of lateral phase separation in section 4.5, in which a graphical
interpretation of this pinning can be made by considering phase portraits: no
matter how the trajectories of the film profiles change during film evolution, the
ends of the trajectories are pinned to the boundary conditions (4.8) and (4.9).

4.4.3 Laterally segregated films

I now discuss 2D simulations at χ > χW , for which global equilibrium is a later-
ally segregated film (to put it another way, if the film laterally segregates after
temporary wetting, then χ > χW by definition, since wetting is not stable). I
will reserve discussion of the dynamics of lateral phase separation for section 4.5,
and focus here on showing that the coexisting equilibria that can be calculated
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Figure 4.8: 1D vertical cross-sections from Fig. 4.6, (data points) and calculated
profiles (curves) of coexisting phases for χ = 0.026 (χ > χW ), depth d = 20.1 and
asymmetric walls. The curves matching the data points (blue and pink) were calculated
with λ = −µsim = −0.000491 (HA = 0.001357,HB = 0.000988), whilst the other curves
(red and green) were calculated with λ = 0 (HA = 0.000923, HB = 0.000924).

in 1D (in the dimension running between the walls) do in fact occur in laterally
segregated 2D films.

Comparison with 1D profiles

Figs. 4.6 and 4.7 show, for an asymmetric and a symmetric film respectively, only
the laterally segregated state corresponding to global equilibrium, which should
technically consist of only a single pair of coexisting phases in contact. Note
that the phases do not exist as side-by-side ‘columns’ as in previously shown
schematics of laterally segregated films in this thesis, but form distinct shapes
due to the interface between them. Although it’s not clear where one would
measure a contact angle (figure 2.2) with the surfaces in most cases, clearly the
contact angle is generally not 90◦. I previously argued in chapter 3, on the subject
of solving for these coexisting phases in 1D, that since a Lagrange multiplier λ 6= 0
always acts to increase the free energy of a profile relative to the same profile for
λ = 0 (‘same profile’ in this context means that the solution trajectory through
phase space is qualitatively the same, except for distortion due to non-zero λ; see
section 4.5) that the coexisting solutions should be calculated in 1D for λ = 0 [46].
Since actual coexistence of these lateral phases in a 2D film requires an interface
we should expect λA = λB 6= 0.

To compare the 2D simulation data of figure 4.6 and 4.7 with the 1D coexisting
phases calculated via a 1D Hamiltonian method (requiring a choice of λ and
Hamiltonian H, explained in chapter 3 and section 4.5), I took 1D cross sections
of the 2D data at points yA and yB, which are at the cores/centres of the A-rich
and B-rich phases respectively. The cross-sections from the asymmetric film of
figure 4.6 (yA ≈ 20 and yB ≈ 70) are shown in figure 4.8, which also contains
two pairs of curves. The curves to which no data points are directly aligned were
obtained from a 1D calculation of the lateral phases using λ = 0. However, the
simulation for figure 4.8 gave µsim = 0.000491, so it is unsurprising that the data
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Figure 4.9: 1D vertical cross-sections from Fig. 4.7, (data points) and calculated
profiles (curves) of coexisting phases for χ = 0.026 (χ > χW ), depth d = 20.1 and
symmetric walls. The calculated profiles required λ = −µsim = −0.001202 (HA =
0.001922, HB = 0.001092). It is not possible to obtain A-rich profiles of depth d = 20.1
for λ = 0.

and the 1D calculated profiles do not coincide. The second set of curves, which are
almost obscured by the data points, are the 1D profiles calculated with Lagrange
multiplier λ = −µsim = −0.000491. These 1D cross sections, whilst describing the
majority of the cores of the phases very accurately, do not of course describe the
interface between the phases. The cross-sectional profiles obtained from the data
for the symmetric film of figure 4.7 (yA ≈ 40 and yB ≈ 86) are shown in figure 4.9,
along with 1D coexisting phases calculated for λ = −µsim = −0.001202; a pair
of A-rich and B-rich coexisting phases of depth d = 20.1 cannot be calculated
for λ = 0. The relatively steep gradients in the A-rich phase cause some minor
discretisation errors, causing the B-rich phase of the symmetric film to be slightly
less B-rich than expected. No data is shown for antisymmetric films, since in this
special case λ = −µsim = 0, and so we find that the lateral interfaces between
the perfectly antisymmetric 1D phases do not introduce a non-zero chemical
potential. I conclude that the laterally segregated state is effectively described
by 1D equilibria in the dimension running perpendicular to the confining walls.

Is there a minimum depth of solution?

In chapter 3, I discussed how the minimum depth of A-rich solutions available
with λ = 0 for asymmetric films suggested a minimum depth of film required for
lateral phase separation to occur, for a particular χ. This idea is relevant here for
symmetric films. Suitable adjustment of λ could presumably produce coexisting
states of any depth, but the relevant question is really: is the free energy of a
‘thin’ A-rich phase coexisting with a ‘thin’ B-rich phase (calculated by λ 6= 0
such that a ‘thin’ A-rich phase can actually be found) less than the free energy of
an independently existing solution of the same depth? If not, then lateral phase
separation is not preferable for that ‘thin’ film at that particular χ. This is only
a minor point with regards to the work in this chapter, since we are interested in
the kinetics of phase separation, not in identifying the wetting temperature as a
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Figure 4.10: Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and asymmetric
walls (∆z = 0.50, ∆τ = 1.0 × 10−5). (a) metastable bilayer state with minor lateral
inhomogeneities (τ = 100); (b) distortion of bilayer interface with corresponding inho-
mogeneities at the walls (τ = 892) (c) break-up of the bilayer interface as a column of
B-rich material reaches the z = d wall (τ = 1665); (d) laterally segregated coexisting
states (τ = 3655).

function of film depth χ(d). If at a particular value of χ lateral phase separation
via a transient wetting layer occurs, then for this particular depth of film we know
that χ(d) > χW (d), and this is sufficient.

4.5 Breakup of a Transient Wetting Layer

In this section I discuss the dynamics of the breakup of a transient wetting layer,
the dynamics by which the vertically segregated state is reached having been
effectively discussed in the last section. Figs. 4.10, 4.12, 4.14, 4.16 and 4.18 show,
for χ > χW , simulation snapshots of films undergoing lateral phase separation
via a transient wetting later. The width of the initial noise δφ was σ = 0.05, this
choice allowing both the TWL (Transient Wetting Layer) and laterally segregated
state to be probed.

It is important to highlight here that the absence of a random noise term
in the current model means that the final lateral states I present do not always
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Figure 4.11: 1D phase portraits for equilibria in Fig. 4.10 (asymmetric walls). (a)
Metastable bilayer (TWL) (λ = +0.000119, H = 0.000743); (b) Coexisting phases
(λ = −µsim = −0.000497): A-rich phase (HA = 0.001362) and B-rich phase (HB =
0.000989). φd of all three phases are rather distinct. φTWL

0 and φB0 are quite similar,
but both distinct from φA0 .

consist of ‘wide’ lateral phases (resulting from the merging of narrower lateral
phases, for example) which are closer to ‘true’ global equilibrium (a single pair
of laterally coexisting phases). However, the distinction between multiple lateral
phases (wide or narrow) and a single pair of laterally coexisting phases is of little
practical relevance to the mechanism I discuss here, or to most experiments. The
lateral phases that appear in my simulations are the same phase equilibria that
correspond to global equilibrium, and I refrain from using the latter term only
because it could possibly be misleading (coarsening of the lateral phase in the
simulations is technically possible). I present a simulation in which continuous
random noise was included in section 4.6.1 figure 4.21, which shows that the
results still hold in the case of continuous noise, and that wider lateral phases
form in that case.

The wall configuration of the asymmetric film (a B-attracting wall and a
neutral wall) is a special case in that there is only one surface field. This particular
case highlights the qualitatively different behaviour at each confining surface and
does not include any convenient symmetries that fix the chemical potential (e.g.
µ(z) = 0 for antisymmetric films). General asymmetry complicates my discussion
of the phase portrait method and would leave me short of discussing behaviour
at a neutral wall. However, a neutral wall is nonetheless a special case, and so
after discussing asymmetric films in section 4.5.1. I will extend my discussion to
two non-zero surface fields in section 4.5.2.

Phase portraits and profile pinning by boundary conditions

In this section, I make use of Hamiltonian phase portraits, Figs. 4.11, 4.13, 4.15,
4.17, and 4.19, to discuss the 1D phase equilibria. These portraits are discussed
in more detail in chapter 3, but I will briefly recap them here. The Hamiltonian
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Figure 4.12: Simulation snapshots for χ = 0.023 (χ > χW ), d = 20.1 and asymmetric
walls (∆z = 0.50, ∆τ = 0.5 × 10−5). (a) metastable bilayer state (τ = 200); (b)
distortion of bilayer interface as lateral structures grow primarily at z = d wall (τ =
550); (c) A-rich phases growing from z = d surface (τ = 700) (d) laterally segregated
coexisting states (τ = 1500).

phase portraits consist of the flow of canonical coordinates (φ, 2κ∇zφ) which min-
imise the bulk free energy functional F (4.11). Due to the coordinate space, the
satisfied boundary conditions enforced by the walls (Eqs. (4.8)-(4.9)) are repre-
sented by straight lines. The solution ‘trajectories’ are those parts of the phase
portraits which flow between the wall boundary conditions. The phase portraits
(which are symmetric around φ = 0.5 for a symmetric blend if λ = 0) are dis-
torted by the Lagrange multiplier λ 6= 0, which is a chemical potential. Suitable
choices of both λ and the Hamiltonian constant H (these sensitive parameters
will be given to six decimal places) are necessary to produce phase equilibria
trajectories of specified depth d and average composition φ̄. Coexisting solutions
must have the same depth dA = dB, which for the same λ are generated with dif-
ferent values of H i.e., HA 6= HB (since for χ > χW , there are several trajectories
corresponding to profiles of the same depth, which can be obtained by producing
phase portraits with different values of H and the same value of λ).

The phase portraits themselves can provide significant insight, as the evolu-
tion of trajectories can be tracked graphically as depth, temperature and wall
interaction parameters change. Most importantly, we must understand that the
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Figure 4.13: 1D phase portraits for equilibria in Fig. 4.12 (asymmetric walls). (a)
Metastable bilayer (TWL) state (λ = −0.000113, H = 0.001332), with two crosses of
the z = 0 BC along the flow; (b) Coexisting phases (λ = −µsim = −0.000367): A-rich
phase (HA = 0.001618) and (c) B-rich phase (HB = 0.001404). φd (φ0) of all three
phases are rather distinct (similar).

ends of the trajectories are always pinned to the boundary conditions (BCs), even
out of equilibrium, as shown in section 4.4.2). This is why bifurcation of the pro-
file at the walls is inherent in lateral phase separation. I will denote the profile
value of the TWL at the z = 0 wall by (φ, 2κ∇zφ)TWL

0 , and similarly for other
cases. I have coloured (shaded) the trajectories to match the colour range for φ
shown in the final laterally segregated film of the simulation figures, to which the
phase portraits correspond.

4.5.1 One surface field

Figs. 4.10, 4.12 and 4.14 are snapshots from 2D simulations of films with χ > χW
for χ = 0.026, χ = 0.023, and χ = 0.022 respectively, for asymmetric films of
depth d = 20.1, showing direct observations of lateral phase separation via a
transient wetting layer. Time increases from sub-figure (a) to (d). In all cases
the film first evolves into a ‘bilayer’ (vertically stratified profile), which is the
TWL, and this bilayer subsequently breaks up into lateral segregated phases.
Figs. 4.11, 4.13 and 4.15 show 1D phase equilibria (d = 20.1) in Hamiltonian
phase space for the phases that form in Figs. 4.10, 4.12 and 4.14 respectively.

Instability of a transient wetting layer

Figs. 4.10, 4.12 and 4.14(a) all show a bilayer with a B-rich (A-rich) phase
coating the B-attracting (neutral) wall, respectively, and an interface separating
these phases [40] (for comparison, Figs. 4.4 and 4.5 are both bilayer profiles,
whilst the profile of figure 4.3 is a monolayer with positive adsorption of B at
the B-attracting wall at z = 0). As χ increases, the bilayer interface sharpens
(for χ < χW , this interface is rather diffuse, and the bilayer is stable against
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Figure 4.14: Simulation snapshots for χ = 0.022 (χ > χW ), d = 20.1 and asymmetric
walls (∆z = 0.56, ∆τ = 0.25 × 10−5). (a) metastable bilayer state (τ = 100); (b) late
stages of bilayer state with visible change of φ at the z = d wall (τ = 1000); (c) merging
of adjacent growing A-rich lateral phases at around y ≈ 50 and y ≈ 300 (τ = 1800);
(d) laterally segregated coexisting states (τ = 4000).

lateral phase separation, since a configuration of coexisting phases no longer has
a lower free energy than the bilayer phase). Figs. 4.11, 4.13 and 4.15(a) show, in
phase space, the independently existing solution of lowest free energy (a bilayer),
λ having been chosen to ensure φ̄ = 1/2. The average chemical potential of
the bilayer state in Figs. 4.10, 4.12 and 4.14 (the average is over all grid cells)
confirms that the films are in the 1D metastable bilayer states shown in the phase
portraits of Figs. 4.11, 4.13 and 4.15(a) (e.g. for χ = 0.026, < µsim >= 0.000112,
whilst −λ = 0.000119 for the calculated profile, it is hopefully obvious that there
are no other equilibria that the films could be in at this stage).

Figs. 4.10, 4.12 and 4.14 show that lateral inhomogeneities in the bilayer
state continue to grow with time and the interface separating the phases of the
bilayer becomes distorted (subfigure (b)). Any distortion of the interface appears
to correspond to lateral inhomogeneities which have appeared at the confining
walls, most notably at the neutral wall at z = d. The average chemical potential
remains approximately that of the bilayer during this distortion, and only when
the interface appears to break up does the average chemical potential begin to
rapidly change, indicating that the film is now in the process of leaving its long-
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Figure 4.15: 1D phase portraits for equilibria in Fig. 4.14 (asymmetric walls). (a)
Metastable bilayer (TWL) (λ = −0.000184, H = 0.001580); (b) Coexisting phases
(λ = −µsim = −0.000333): A-rich phase (HA = 0.001747) and B-rich phase (HB =
0.001589). The B-rich trajectory shows φB ≡ 1 − φ increases towards the z = 0 wall,
which was not the case for Figs. 4.10 and 4.12) φd (φ0) of all three phases are rather
distinct (similar).

lived metastable equilibrium. At later times (subfigure (c)) the interface breaks
up: figure 4.10(c) shows the interface moments after a column of B-rich material
reaches the z = d surface; figure 4.12(c) shows the interface just prior to break
up, showing significant variations in φd; and figure 4.14(c) shows the film after
the break up of the interface as some lateral phases merge to reduce interfacial
energy. It can be seen that points where the interface touches down on the walls
and where the lateral phases develop from are exactly the same points where the
initial lateral variations at the walls took place, and in fact it appears that the A-
rich phases are growing from the neutral wall at z = d. The final states (subfigure
(d)) of Figs. 4.10, 4.12 and 4.14 show the film in the laterally segregated state,
and it is clear that the lateral phases have formed exactly where the initial lateral
variations at the walls took place. This strongly suggests that the wall-blend
interactions are controlling the dynamics of lateral phase separation.

For χ > χW , a bilayer is unstable with respect to a laterally segregated film
due to having a greater free energy as discussed in chapter 3 (again, this is
really the definition of the wetting temperature), and it is clear that the result
carries across to 2D (although a 1D consideration may not be able to predict the
wetting temperature, since it cannot account for the lateral interfaces between
coexisting phases, which has an associated energy cost). I conclude that the
transient wetting layer, which initially forms due to preferential attraction by the
confining walls, breaks up because it is metastable with respect to the laterally
segregated state. The intrinsic instability of the transient wetting layer as a whole
is different from an instability in the interface between the vertically segregated
phases of the bilayer. Note the similarities in the breakup of the bilayer in my
simulations and the schematics of figure 4.1: the interface of the bilayer distorts
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Figure 4.16: Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and antisym-
metric walls (∆z = 0.50 and ∆τ = 1.0× 10−5). (a) metastable bilayer state (τ = 150);
(b) rupture of coexisting A-rich and B-rich layers of bilayer, coupled with bifurcation
of φ at both walls (τ = 1300); (c) continued rupture of layers distorts interface towards
the walls, since the wall boundary conditions must be satisfied (τ = 2500); (d) the
boundary conditions of the laterally segregated states are met (τ = 4500).

in a practically identical way, and yet my simulations clearly don’t include solvent
gradients or hydrodynamic mechanisms. The bilayer breaks up only because it is
metastable. This is discussed further in section 4.6.2.

Explaining the dynamics

The phase portraits Figs. 4.11, 4.13 and 4.15 can be used to explain the dynamics
of the film evolution. Figs. 4.11, 4.13 and 4.15(b) are phase portraits of the A-rich
and B-rich laterally coexisting phases respectively, calculated using the chemical
potentials extracted from the simulations λ = −µsim when the film has achieved a
static laterally segregated state. The phase portraits describe the profiles from the
simulations exactly, and clearly show how the equilibria evolve as χ is changed,
including the increased homogeneity of the B-rich phase as χ = 0.026 → 0.023
(the trajectory becomes ‘shorter’ in phase space) and a qualitative change in the
B-rich solution for χ = 0.023→ 0.022 as the B-attracting wall becomes richer in
B material than elsewhere in the B-rich phase.
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Figure 4.17: 1D phase portraits for equilibria in Fig. 4.16 (antisymmetric walls). (a)
Metastable bilayer (TWL) (λ = 0, H = 0.000752); Coexisting phases (λ = −µsim = 0):
(b) A-rich phase (HA = 0.000899) and (c) B-rich phase (HB = 0.000899). Since
λ = 0 the phase portraits are symmetric around φ = 0.5. The bilayer trajectory passes
through ∇φ = 0 near each BC, whilst the A-rich (B-rich) trajectories pass through
∇φ = 0 only near the A-attracting (B-attracting) wall BC at z = d (z = 0).

For χ = 0.022, figure 4.15 shows that the trajectory of the TWL passes
through each boundary condition only once (although the Hamiltonian flow crosses
each boundary condition twice, in the region of interest) and the same is true for
the A-rich and B-rich trajectories, which flow between crosses similar to that of
the TWL. In this case, we see that |φA0 − φB0 | << |φAd − φBd | (the values of φd
for the coexisting phases are more different from each other than the values of
φ0 for the coexisting phases) and |φTWL

0 − φA0 | << |φTWL
d − φAd |, which means

that for the A-rich phase to form from the TWL, φd must change by much more
than φ0. As figure 4.14 shows, lateral phase separation happens as the A-rich
lateral phases appear to grow from the z = d wall. For χ = 0.023, even though
the B-rich trajectory exists on a different region in the phase space (the closed
tear-shaped loop in figure 4.13(b)) such that the ‘bulk’ of the profile is slightly
different, figure 4.12 shows that the lateral phases still appear to grow from the
z = d surface, since the same arguments as for the previous case can be made.
For χ = 0.026, figure 4.11 shows that the TWL trajectory crosses each boundary
condition twice, and each coexisting phase flows between a different cross of the
flow with the boundary conditions. φ0 and φd for both the A-rich and B-rich
phases differ much more from φTWL

0,d than in the case of χ = 0.022. This is espe-
cially true of φA0 . Figure 4.10 shows that the break up of the interface is due to
significant variations in φ at both confining walls, the largest variations in φTWL

0
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Figure 4.18: Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and symmetric
walls (∆z = 0.50, ∆τ = 1.0× 10−5). (a) metastable trilayer state (τ = 50); (b) A-rich
(central) layer begins to phase separate, causing corresponding changes in φ throughout
the trilayer (τ = 300); (c) rupture of the A-rich layer once bifurcation of φ at the walls
is sufficient (τ = 450); (d) laterally segregated coexisting states (τ = 1000).

of the bilayer being precisely where the columns of A-rich phase form. This is
expected from inspection of figure 4.11, which shows that φTWL

0 and φB0 are still
fairly similar, but φA0 of the A-rich phase is significantly different from both those
values. The column of B-rich phase reaches the z = d surface when φd, which
had been gradually change during the interface distortion, suddenly undergoes
a quick transient φTWL

d → φBd as the interface appears to reach the surface and
break. The phase portraits thus offer practical insight into the dynamics of the
break-up of the transient wetting layer.

The simulations of Figs. 4.10, 4.12 and 4.14 seem to show that the breakup
of the bilayer state proceeds from the neutral wall at z = d. Since the profiles
are pinned to the surface boundary conditions at all times, lateral phase sepa-
ration clearly requires that the single value of the volume fraction at each wall
for the TWL must undergo a bifurcation into two values for the laterally coex-
isting phases: φTWL

0,d → φA0,d, φ
B
0,d, the bifurcation at the z = d wall being much

more pronounced for asymmetric films (clearly, due to the interface between the
coexisting phases, there are more than two values at the wall, but it is much
simpler to discuss the coexisting states in terms of the 1D phase equilibria that
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Figure 4.19: 1D phase portraits for equilibria in Fig. 4.18 (symmetric walls). (a)
Metastable trilayer (TWL) (λ = −0.000750, H = 0.000968); (b) Coexisting phases
(λ = −µsim = −0.001204): A-rich phase (HA = 0.001922) and B-rich phase (HB =
0.001092). In all cases, ∇φ = 0 is located exactly in the centre of the film.

appear in the simulations). Note that this bifurcation at the surface is technically
(φ, 2κ∇zφ)TWL

0,d → (φ, 2κ∇zφ)A0,d, (φ, 2κ∇zφ)B0,d but it is sufficient here to discuss
only φ0,d (which can be experimentally measured). The distortion of the inter-
face in the TWL is coupled to phase separation at the walls due to the boundary
conditions enforced by the walls, causing the distortion of the bilayer interface
as the films evolve towards laterally coexisting equilibria. I have not seen this
surface bifurcation25 mechanism discussed elsewhere.

4.5.2 Two surface fields

Figure 4.16 shows snapshots from simulations of a polymer blend between anti-
symmetric confining walls. As in the case of asymmetric confinement, a bilayer
(TWL) first forms which subsequently breaks up into laterally segregated phases.
The Hamiltonian flow containing the bilayer trajectory, shown in figure 4.17(a),
is very similar to the flow in figure 4.11(a) for an asymmetric film. The phase
portrait of figure 4.17(a) shows that the TWL trajectory passes through ∇φ = 0
(stationary points) near each wall, with a corresponding maximum in φA ≡ φ
(φB ≡ 1 − φ) near the A-attracting (B-attracting) wall. The simulation in fig-
ure 4.16 shows that the distortion of the interface in the bilayer appears to be
caused by growing lateral inhomogeneities at these stationary points, although
the wall boundary conditions ensure that lateral inhomogeneities simultaneously
grow at the walls. However, it certainly appears that rupture of the film proceeds
from the stationary points near the surfaces. Inspection of the phase portraits of

25Surface Bifurcation: mechanism explaining the dynamics of lateral phase separation via a
transient wetting layer, describing how the surface values (φ, 2κ∇zφ) of the TWL divide into
two values that evolve towards those for laterally coexisting equilibria, whilst honouring the
surface boundary conditions at all times throughout the entire process.
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figure 4.17 shows that in order for the film to laterally separate, not only does
the volume fraction at the confining walls have to undergo bifurcation, but one
of the stationary points needs to disappear. For the A-rich (B-rich) phase, the
stationary point near the A-attracting (B-attracting) wall is preserved and en-
riched in A-material (B-material), whilst the other stationary point disappears
exactly where the B-rich (A-rich) phase forms. The enrichment and removal of a
stationary point happens at the same depth, so we see lateral phase separation
occurring at the stationary points, causing a distortion of the interface towards
the walls where the stationary points disappear. Also, for lateral phase separa-
tion to occur, the required change in the profiles at the walls is much less than
the change required at the stationary points. Whilst it is clear that lateral phase
separation at the walls is inherent in this process, as film thickness is increased
the stationary points in the trajectories can pass arbitrarily close to fixed points
in the phase space (these fixed points are located at ∇zφ = 0 between the gaps
in the Hamiltonian flows; see chapter 3 section 3.3.4), meaning that the amount
of the film profile constituting a stationary point can become arbitrarily thick.

It should be noted that the final state of figure 4.16 does indeed contain the
laterally coexisting phases shown in the phase portraits of figure 4.17, and does
not simply show an oscillatory interface. Lateral phase separation in antisym-
metric films is in fact the transition from a delocalised interface (bilayer) to an
interface bound to one of the walls (laterally coexisting phases) [40, 36]. In section
4.6.1 figure 4.21, I show that the lateral domains of figure 4.16 will evolve into
wider trapezoidal phases [65] when continuous noise is included in the simulation.

For a film between symmetric walls, shown in figure 4.18, the TWL that forms
first is actually a trilayer structure. It is clear that lateral phase separation occurs
when the central layer ruptures. The phase portraits of figure 4.19 show that this
rupture again occurs at a stationary point in the profile, where ∇zφ = 0. The
rupture of the central layer preserves the A-rich stationary point of the trilayer
for the A-rich phase, and columns of B-rich phase form in the depleted regions
caused by the enrichment of the A-rich stationary points. Although lateral phase
separation via a transient wetting layer is usually referring to the break up of a
bilayer film, this case shows that although bifurcation of the volume fraction at
the confining walls is necessary for lateral phase separation to occur (and will
occur as phase separation occurs anywhere in the transient wetting layer, due to
the wall boundary conditions), the break up of the TWL may primarily proceed
via growth of lateral inhomogeneities in some other part of the film.

4.5.3 Bypassing the wetting layer

If the dynamics of lateral phase separation via a transient wetting layer are ul-
timately controlled by wall-blend interactions (via boundary conditions enforced
by the walls), then it should be possible to manipulate the dynamics in the film
by attempting to control behaviour at the confining walls. Investigating this
possibility led to a possible method that may prove useful in obtaining laterally
segregated films, as opposed to a TWL or a structure in-between a TWL and a
laterally segregated film. In the case of the asymmetric confinement (B-attracting
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Figure 4.20: Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and asymmetric
walls, (∆z = 0.84, ∆τ = 1.0 × 10−4). Both walls are initially neutral, then the z = 0
wall is ‘turned on’ (film becomes asymmetric) at τ = 160. (a) phase separation with
domains aligned to walls to satisfy BCs requiring ∇φ = 0 (τ = 150); (b) moments after
z = 0 wall is ‘turned on’ (τ = 160); (c) rapid evolution towards the coexisting states of
the asymmetric film (τ = 170); (d) laterally segregated state (τ = 300) is reached an
order of magnitude faster than via a transient wetting layer.

wall at z = 0, neutral wall at z = d), if the B-attracting wall could be ‘turned
off’ temporarily to become a neutral wall, then we should suppose for a near
critical mixture that a transient wetting layer will not form, and the film should
phase separate more generally. This is because there should be no mechanism
via which vertical phase separation in particular should proceed (in a non-critical
blend φ 6= 1/2, layering parallel to the walls may sometimes still occur [52] even
with no surface fields, simply as a way to reduce the amount of interface between
the majority and minority component of the blend, and if the simulations were
1D then of course vertical phase separation would in fact be the only route). If
the B-attracting wall was ‘turned on’ at some later time after ‘enough’ phase sep-
aration has already happened, the laterally segregated phases may be obtained
without having formed a bilayer first.

Figure 4.20 demonstrates that this may work in practice. When both walls are
‘turned off’ (subfigure (a)), we see phase separation into domains with ∇zφ = 0
(required for neutral walls, as can be inferred readily from equations (4.8) and
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(4.9)). There are (in terms of 1D equilibria) two values of φ at each wall. The
z = 0 wall is ‘turned on’ to attract B-material at τ = 160 in subfigure (b)
(asymmetric wall configuration) and there is immediate preferential attraction of
B-material to the z = 0 surface. However, φA0 and φB0 have been obtained, rather
than φTWL

0 . The TWL has been avoided and the film can evolve directly towards
the laterally segregated state, shown in the subfigure (d), and lateral segregation
is achieved an order of magnitude faster than via a TWL. In solvent evaporation
processes, such as spin coating, it might be possible to use this mechanism by
choosing a solvent to adjust the wall-blend interactions, thus allowing for greater
control over film evolution and final morphology.

4.6 Discussion

4.6.1 Random Noise

The absence of a random noise term in my simulations, although maintaining
clarity in the results, is why many lateral phases don’t become more macroscopic
at very late times (e.g. figure 4.16 does not show the wide trapezoidal-shaped
coexisting phases expected at long times [65] although such trapezoidal-shaped
phases are simply wide versions of the phases shown), although this considera-
tion is of little practical relevance in many experiments including solvent evap-
oration, for example the spin-coating process described in section 4.1.2. Figure
4.21 shows a simulation for antisymmetric walls in which a continuous noise
was included throughout the simulation. This random noise consisted of ran-
dom thermal currents J∗, selected from a Gaussian distribution with mean zero
and amplitude/width 0.01. This gave an additional contribution to the diffusion
equation 4.21 of ∇ · J∗(z, y, t), as in ref [65] and in chapter 1 equation (1.65) on
Cahn-Hilliard-Cook theory:

∂φ

∂t
= M∇2µ+∇ · J∗. (4.26)

Using random thermal currents is more physical than simply applying some ran-
dom change in volume fraction at each time step: currents guarantee material
conservation, both globally and locally (the local movement of material in and
out of grid cells is consistent).

Figure 4.21 shows that a bilayer still forms and breaks up via the mechanism
I have already presented. There are smaller scale lateral variations at the surface
initially, and wider domains form at later times. Figure 4.21 appears to reproduce
a contact angle appropriate for an antisymmetric film. I did not find that the
A(B)-attracting surface is coated by B(A)-rich material, as is sometimes suggested
by schematic representations (the phase portraits of figure 4.17 support this; the
A(B)-rich trajectories must pass through φ = 0.5 near the B(A)-attracting wall
for antisymmetric films, which agrees with the idea that these coexisting phases
have an interface ‘bound’ to one of the walls [40, 36]).
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Figure 4.21: Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and antisymmet-
ric walls, (∆z = 0.84, ∆τ = 1.0× 10−4). Random noise is included at every time step.
(a) The bilayer interface is heavily distorted (τ = 25); (b) lateral A-rich phase begins
to form as the A-rich layer of the bilayer ruptures (τ = 125) (c) A-rich phase retreats
from B-attracting wall (z ≈ 150) and neighbouring A-rich phases grow (τ = 2225);
(d) Macroscopic trapeziodal domains form at longer times (τ = 5000). These phase
equilibria match those in Figs. 4.16 and 4.17.

4.6.2 Solvent Evaporation

Many practical applications using polymer films involve solvent evaporation, such
as the spin casting process discussed in section 4.1.2. Here I discuss the impli-
cations of my results for experiments involving solvent evaporation. I do this
because the model reproduces and explains the way in which the transient wet-
ting layer breaks up without needing to include solvent. Given this, and evidence
(see references below) that the rate of solvent evaporation has an effect on whether
a bilayer will break up during the spin casting process ends (i.e. before all sol-
vent has been removed from the film), I suggest that solvent may influence lateral
phase separation in several ways:

1. fast solvent evaporation provides lateral inhomogeneities in the transient
wetting layer due to a less even distribution of solvent (this will depend
on the rate of evaporation and the mobility of the solvent). This could
provide a kinetic route to a laterally segregated film by promoting lateral
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inhomogeneities in the already unstable TWL, which could encourage the
formation of a laterally segregated film which is sometimes not achieved:
my simulations and frozen out-of-equilibrium states found in experiments
[59] show strong resemblances;

2. solvent evaporation allows phase separation to initiate at the top surface,
where the solvent concentration is lowest and therefore where the film is
likely to first enter the two-phase region, this phase separation then pro-
ceeding downwards into the film [66]. In this case, the solvent in the ‘bulk’
of the film keeps it in the one-phase region and prevents the formation of
a TWL, and when the film enters the two-phase region the existing lateral
inhomogeneities mean that the film remains laterally segregated, which is
similar to my discussion in section 4.5.3 (although my simulations did not
include solvent, the equilibria of ternary polymer-polymer-solvent films are
analogues of equilibria for binary polymer-polymer films [42]);

3. overall reduction of solvent in the film induces phase separation by taking
the film into the two-phase region, and lateral phase separation occurs in
stages that appear to match the simulations, with high, medium, and low
solvent concentrations corresponding to a bilayer, a bilayer with a distorted
interface, and a laterally segregated film, respectively [61]. Higher solvent
concentrations mean that the film is more miscible and closer to the one-
phase region, therefore the time scales on which one might expect a bilayer
to break up may be expected to be longer.

Although a Marangoni-like instability has been suggested to explain the dis-
tortion of the bilayer interface prior to lateral phase separation [62, 61, 41], in a
manner like in figure 4.1, I have shown that the intrinsic instability of the bilayer
and surface bifurcation is sufficient to cause distortion of the interface in a similar
if not near-identical way. Therefore we should consider that the phase equilibria of
polymer films and the surface bifurcation mechanism I have presented here might
be responsible for the film evolution seen in many experiments. Of course this
is not to say that solvent-gradients and hydrodynamic mechanisms of material
transport are not also extremely important.

4.7 Summary

I have derived a diffusion equation describing a binary polymer blend confined
between two preferentially attracting walls/surfaces. I compared the phases pro-
duced in the simulations with profiles calculated using a 1D Hamiltonian phase
portrait method to show that the diffusion equation correctly reproduces con-
tinuum behaviour and that all of the equilibria that arise in 2D are simply 1D
coexisting phases, existing in 2D under an altered chemical potential due to the
lateral interfaces between these coexisting phases. I also showed the film profile
is pinned at the film walls by effective boundary conditions.

I have identified the dynamics of lateral phase separation via a transient wet-
ting layer for several wall-blend interaction configurations, showing that distortion
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of the interface in the transient wetting layer is coupled to changes in the film
profile at the walls. For a film with one preferentially attracting wall and one
neutral wall, the growth of lateral inhomogeneities at the confining walls causes
distortion and breakup of the interface in the transient wetting layer. For films
with two preferentially attracting walls, phase separation appears to primarily
proceed from elsewhere in the film, but there are always corresponding inhomo-
geneities growing at the walls. The instability of a transient wetting layer (below
the wetting temperature) as a whole is not the same as an instability in the in-
terface of the transient wetting layer; in all cases I have studied, the growth of
lateral inhomogeneities at the walls limits and dictates the dynamics.

I have explained the dynamics of lateral phase separation via a transient wet-
ting layer with a surface bifurcation mechanism: the pinning of the profile at the
film walls by effective boundary conditions imposed by the film surfaces means
that the film must undergo bifurcation of the profile at the walls in order to later-
ally phase separate into coexisting phases. The distortion of the interface in the
wetting layer coincides with phase separation at the surfaces. Since these results
should also extend to ternary blends, I discussed how solvent evaporation may
assist the proposed mechanism. As far as I am aware, this is the first time that
a mechanism has been suggested that accounts for the particular way in which
lateral phase separation via a transient wetting layer occurs, without requiring
solvent evaporation and/or non-diffusive flow of material (i.e. hydrodynamics).

In the next chapter, I introduce a 3D model of coupled phase separation and
surface roughening, whereby the depth profile of the film evolves via a dewetting
mechanism. This allows for an investigation of how surface roughening, discussed
briefly in chapter 3, and lateral phase separation, discussed in this chapter, may
be coupled, resulting in particular pattern formations in polymer-blend thin films.





5

A 3D Model of

Phase Separation

coupled to

Surface Roughening

I introduce a model for thin films of multicomponent fluids which, by
successfully including a general vertical dependence of the composi-
tion, can account for lateral and vertical phase separation, preferen-
tial component attraction at both surfaces, and surface roughening.
I demonstrate that surface roughening couples to phase separation,
study stages of surface roughening in films undergoing lateral phase
separation via a transient wetting layer, and discuss pattern forma-
tion for different surface-blend interaction regimes. This work was
published in my fourth paper “Pattern Formation in Polymer Blend
Thin Films: Surface Roughening couples to Phase Separation” [67].
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5.1 Introduction

The work in this chapter resulted from my attempts to build a 3D model of a
polymer-blend thin film which could lend itself to simulations of simultaneous
phase separation and surface roughening. My work was an extension of that of
Clarke [68], in which a fluid film with no vertical variation of the composition
(only a 2D lateral dependence of the composition) was modelled and used to
investigate coupled phase separation and dewetting. Including this vertical de-
pendence proved non-trivial, and was solved by using an a priori discretisation
of the film.

By a way of including a general vertical dependence of composition, I could
investigate for the first time the interplay between all of (i) both lateral and ver-
tical phase separation; (ii) preferential attraction of the blend by both surfaces
(which really requires a vertical dependence of the composition to be meaningful);
and (iii) film height evolution (surface roughening). I applied the model to thin
films of binary polymer blends, and used simulations of different surface-blend
interaction regimes to investigate pattern formation, demonstrating that surface
roughening couples to phase separation. For films undergoing lateral phase sepa-
ration via a transient wetting layer, this resulted in distinct stages of roughening
as the film evolved into and between states determined by the phase equilibria of
polymer blend thin films.

5.1.1 Relevant Literature

Semiconducting polymer devices, such as photovoltaic films of binary polymer
blends, generally rely on performance enhancements gained from phase separated
morphologies to compete with traditional technologies. Whilst understanding
phase separation assists in tailoring specific morphologies, polymer blend thin
films are also prone to surface roughening, so it follows that an understanding of
how phase separation couples to dewetting is of particular importance. Note that
dewetting26 in this context is meant in the sense of a fluid layer deweting a solid
substrate: the fluid layer does not remain uniform in height, but tends towards
the formation of droplets as regions of the substrate tend towards ‘drying’ (this
does not necessarily mean that the fluid layer will breakup into droplets; it may
lead to an undulating film surface etc.).

Surface Roughening in polymer-blend films

The interplay between phase separation and dewetting in domain formation in
spin-cast polymer blend films (see chapter 4 for spin-casting) was highlighted in
the seminal work of Walheim [59], and has been repeatedly observed in similar
contexts, including: phase separation in thin films with symmetrically attracting
surfaces [69, 70, 71, 72], lateral phase separation via a transient wetting layer [60,
61], and cases when lateral phase separation proceeded downwards from the film

26Dewetting: (disambiguation) process by which a fluid film will not uniformly coat a sub-
strate, due to forces which cause areas of substrate to tend towards ‘drying’; this can lead to
isolated droplets of fluid, but more generally will cause some undulation of the fluid film surface.
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Figure 5.1: A fairly typical schematic of a film undergoing roughening in the course of
lateral phase separation via a transient wetting layer: the laterally segregated structure
and the surface roughening are intimately linked.

surface as solvent evaporated from the film [73]. Pattern formation in polymer
blend thin films, in which surface roughening shadows the phase separated mor-
phology, is so incredibly common that it is difficult to highlight particular studies,
but the review articles of references [74, 75] are recommended. Figure 5.1 is a
rough schematic of surface roughening that is fairly typical in the literature [59,
60], showing that roughening is associated with the lateral phase separation of a
bilayer film (the particular morphology in this schematic is only an example).

Several general theoretical results have emerged, in particular that instabilities
leading to dewetting can be triggered through the coupling of phase separation
and height variation [68, 76] and that a binary component film will be less stable
due to coupling of fluctuations of height and composition than if these fluctua-
tions were not coupled [77]. These studies clearly indicate the importance of the
coupling between phase separation and dewetting/surface roughening.

Models of deformable fluid films

A variety of models of multicomponent fluid films with a deformable upper sur-
face have been investigated. The Clarke model, as it will be referred to in this
chapter, utilised non-equilibrium thermodynamics based upon a free energy func-
tional, demonstrating that phase separation generally couples to dewetting [68]:
the Clarke model is explained more in section 5.1.2. A model based on the
Navier-Stokes Cahn-Hilliard equations in the lubrication approximation showed
that concentration gradients can create a roughened pattern that mirrors the
underlying phase separation [78]. However, the film composition has no vertical
dependence in these models, which means that a meaningful preferential surface
attraction of blend components cannot be included. A vertical dependence has
been included by way of two-layer models, including models with immiscible fluid
layers [79, 80] and layers with a diffuse boundary for films with no preferential
surface attraction [81]. A schematic of a two-layer model is given in figure 5.2.
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h
1

h
2

Figure 5.2: Representation of a two-layer model, which effectively consists of two-
immiscible fluid layers with a sharp interface between them. Both of the layers are
deformable, such that layer 1 (2) is described at y by height h1(y) (h2(y)), where y is
the direction parallel to the substrate.

A general vertical dependence of the film composition, which could allow
vertical phase separation to occur during a simulation, is typically not included
[74]. Films with a vertical dependence of the composition have been studied with
regards to stability, but not simulated [82]. An exception is a model of surface
roughening of polymer blend films, although this model is not based upon a
dewetting film [83]. It is this lack of investigation into a general 3D model of a
film which can undergo phase separation and dewetting/surface roughening which
inspired the work in this chapter.

5.1.2 The Clarke Model

Progress towards modelling pattern formation in binary blend films was made by
the Clarke model of a binary fluid film which coupled phase separation to height
variations caused by dewetting [68]. The central part of the model was a free
energy functional depending on material volume fraction φ(y) and film height
h(y), given by

F [φ(y), h(y)] =

∫
f(φ, h) + hg(φ) dy (5.1)

where f(φ, h) is the surface energy, g(φ) is the bulk free energy, and y is the lateral
direction parallel to the film substrate. In the Clarke model, only compositional
variations in the lateral directions are possible, so vertical phase separation in the
vertical (depth) direction cannot be studied. This also means that a meaningful
preferential surface attraction of blend components cannot be included, since the
primary way in which preferential surface attraction affects the blend is to cause
vertical variation of the composition. Figure 5.3 is a schematic of the Clarke
model, which attempts to represent the description of the film by the height
h(y) and composition φ(y) at point y (this schematic is designed to be directly
compared with my model, represented in figure 5.4).
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Figure 5.3: 2D schematic of the Clarke Model, representing a fluid layer with a de-
formable upper surface on a flat substrate. The film height at y is given by h(y), and
there is no vertical dependence of the composition φ(y) at y. φ(y) could be thought of
as the average volume fraction at y, but clearly this model would best describe films
with no vertical variation of the composition at all.

5.2 A 3D Model

The model presented in this chapter is essentially an extension of the Clarke
model. I introduce a vertical dependence of the composition, and formulate a set
of governing equations. The model proceeds via two stages: the lateral movement
of material (bulk movement of material that causes roughening); and diffusion (as
in the simulations of chapter 4). This model is the most consistent and workable
of all of the possible formulations that I investigated, and fortunately makes the
most intuitive sense out of all of them.

Figure 5.4: 2D schematic of my Model, representing a fluid layer with a deformable
upper surface on a flat substrate. Here, the film is divided into D = 4 grid cells in the
vertical direction. The cell-height is given by ∆z(y′) = h(y′)/D, so that the cell-height
at y′ is constant. Each cell has volume fraction φ(i, y′), where the index i runs from 1
to D. The average volume fraction φ̄(y) is an average over i at point y.
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5.2.1 Vertical dependence of composition

I first introduce a vertical dependence z into the free energy functional used by
Clarke, which I a priori discretise such that a vertical coordinate z is replaced by
index i:

F [φ(i, y), h(y)] =

∫
f(φ, h) +

D∑
i=1

∆z(y)g(φ) dy, (5.2)

so that h(y) = D∆z(y) i.e. the height at point y is divided into D grid cells of
equal height (∆z(y) does not depend on i: at any point y all ∆z values are the
same). Figure 5.4 is a schematic of my model, explaining the average volume
fraction φ̄(y) = D−1

∑D
i=1 φ(i, y) at point y and the volume fraction φ(i, y) in

individual grid cells (in the schematic 5.4, I have discretised the y direction too,
although at this point it is still continuous; it will be discretised for simulations).
In order to simplify the notation in the model, it is useful to separate the free
energy F into the following parts

F [φ(i, y), h(y)] = F φ [φ(i, y)] + F h [h(y)] + F φ,h [φ(i, y), h(y)] , (5.3)

where

F φ =

∫
fφ(φ) +

D∑
i=1

∆z(y)g(φ) dy, (5.4)

F h =

∫
fh(h) dy, F φ,h =

∫
fφ,h(φ, h) dy. (5.5)

and where I have separated the surface energy into

f(φ, h) = fφ(φ) + fh(h) + fφ,h(φ, h), (5.6)

where fh(h) and fφ(φ) depend only on h and φ respectively, and fφ,h(φ, h) con-
tains any cross terms. This separation of the energy into parts simply makes it
easier to write a compact form of the model, the convenience mainly being in Eq.
(5.4) since this is the only functional containing the sum.

5.2.2 Two-stage dynamic model

The dynamic model proceeds via two stages: a height evolution step and a diffu-
sion step. For the height evolution, which involves lateral movement of material,
I use the following coupled equations [68]

∂h(y)

∂t
= ∇y ·

(
h3

3η
∇∗µc(y)

)
, (5.7)

∂φ̄(y)h(y)

∂t
= ∇y ·

(
h3φ̄

3η
∇∗µc(y)

)
, (5.8)

which is very similar to the formulation of the Clarke model [68], but with a
redefined chemical potential gradient ∇∗µc(y) which is explained in section 5.2.3.
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This step in the model acts to move material laterally in the film, in such a way
that h(y) and φ̄(y) change. For diffusion, I use the same form as in chapter 4 but
generalised to account for a non-uniform grid

∂φ(i, y)∆z(y)

∂t
= M∇ · [∆z∇µφ∆z(i, y)] , (5.9)

where M is the mobility, assumed to be constant.
Equation 5.8 is responsible for the change in the average volume fraction φ̄(y)

at a point y. The volume fraction in each grid cell i at y must be changed by the
same amount to account for this change in φ̄(y), so we can think of this step as
‘not knowing’ that there is any vertical dependence of the composition at all and
that the model is essentially the schematic of figure 5.3. This is better explained
by the implementation of the forward difference time-step for this stage of the
simulation, so I refer the reader to section C.1 in the appendix on the numerical
implementation. (Note that the chemical potential gradient∇∗µc(y) does actually
account for the vertical dependence of composition in order to make the model
physical. This is explained in section 5.2.3).

The diffusive step allows an exchange of material between different individual
cells. We will see from the results that diffusion rapidly acts to distribute material
vertically, such that once initial vertical phase separation into a transient wetting
layer has occured, vertical phase separation is effectively never catching up with
lateral phase separation: at any point y, the film is as vertically separated as it
can be without requiring lateral phase separation such that the overall volume
fraction at y changes. This was true in the results of chapter 4 too, in which
lateral phase separation takes much longer than vertical phase separation, and it
was precisely the growth of lateral inhomogeneities that caused vertical changes
in the profile and allowed the bilayer interface to become distorted. This helps
justify the form of the two-stage model, in particular the movement of lateral
material in the first step which uniformly distributes this material across the grid
cells i at point y: even if this even distribution of material is not as physical as
if individual transfer between different cells i were allowed at this stage (which
would severely complicate the model and would require variation of ∆z with i),
diffusion rapidly redistributes material appropriately.
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5.2.3 Definition of the chemical potentials

I have defined the following

∇∗µc(y) ≡ ∇yµh(y) + φ̄
1

D

D∑
i=1

∇yµφ∆z(i, y), (5.10)

µh(y) ≡ δF h

δh
+
δF φ,h

δh
+

1

D

δF φ

δ∆z
, (5.11)

µφ∆z(i, y) ≡ δF φ

δ(φ∆z)
+

δF φ,h

δ(φ∆z)
. (5.12)

for the gradients of the chemical potentials in equations (5.7), (5.8) and (5.9).
The diffusion step equations (5.9) together with (5.12) is really a generalisation

of the diffusion equation that appeared in chapter 4 for which ∆z did not vary (in
appendix B we see that the chemical potential µφ∆z derived from equation (5.2)
will actual give the same result as δF/δφ gave in chapter 4, if ∆z is constant
everywhere). The form of the other equations is explained below.

Equation (5.11) can be derived as follows. It is simple to write

µh(y) ≡ δF
δh

=
δ

δh

[
F φ + F h + F φ,h

]
=
δF φ

δh
+
δF h

δh
+
δF φ,h

δh
, (5.13)

but the discretisation of F φ means that h no longer seems to appear in F φ (if I
had written Clarke’s Model down in the same formulation as we have here, we
would have found hg(φ) in F φ, and of course I could have written h/D in place
of ∆z in F φ). This artefact can be removed by observing that we can write

F φ =

∫
fφ(φ) +

D∑
i=1

∆z(y)g(φ) dy (5.14)

=

∫
fφ(φ) dy +

D∑
i=1

∫
∆z(y)g(φ) dy, (5.15)

since we can swap the summation and the integration and leave the terms the
same. If we now take the functional derivative with respect to h:

δF φ

δh
=

δ

δh

D∑
i=1

∫
∆z(y)g(φ) dy

=
δ

δh

D∑
i=1

F φ
i =

δ

δh

[
F φ

1 + F φ
2 + . . . F φ

D

]
=

1

D

[
δF φ

1

δ∆z
+
δF φ

2

δ∆z
+ . . .

δF φ
D

δ∆z

]

=
1

D

D∑
i=1

δF φ

δ∆z
, (5.16)
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where I have used the fact that the functional derivative commutes on the second
line, and on the third line I have used the fact that h = D∆z (∆z does not
depend on i). Really, ∆z is defined as ∆z = h/D, so in a way h does appear in
F φ. So the functional derivative with respect to height at point y can be written
as an average over i of the functional derivatives with respect to cell height for
each grid cell at point y. The latter step is very important, as it is one of the
important insights that allowed a vertical dependence to be included in my model.
Without the a priori discretisation, how could we write an expression for δF φ/δh

with F [φ(z)] =
∫ h

0
. . . f (φ) . . . dz? That equation (5.16) exactly reduces to that

for the Clarke Model (for a vertically homogeneous film) when the values of φi(z)
are all the same gives us confidence that it is correct.

The combined gradient of the chemical potential

Concerning the gradient of the chemical potential ∇∗µc in equations (5.7), (5.8)
and (5.10), we can see that without variation in the z direction, and therefore no
variation in i, that (5.10) reduces down to

∇∗µc(y) ≡ ∇yµh(y) + φ∇yµφ∆z(i, y), (5.17)

in accordance with Clarke’s model. In the latter equation, we have φ ≡ φ̄, since
the model assumes the we can describe the film at a point y by the average
composition at that point. Putting the i dependence back in, and writing φ→ φ̄
in accordance with the role of φ in Clarke’s model, we can write the latter equation
in the form:

φ∇yµφ∆z(i, y)→ φ̄
1

D

D∑
i=1

∇yµφ∆z(i, y), (5.18)

where I have averaged the lateral gradients of the chemical potential µφ∆z in each
individual grid cell at y, in order to better account for the ‘interface’ between
the vertical ‘columns’ at point y. It is via this averaging that the i dependence
is removed. Note that I could have also done φ̄ 1

D
∇y

∑D
i=1 µφ∆z(i, y) i.e. taken

the gradient of the average chemical potential, but this would not have properly
taken account of the interface between two side-by-side ‘columns’ of fluid at point
y, which would have been less physical since I would like to properly account for
the vertical variation in the film profile. Also, I settled on using φ̄ outside of
the averaging, rather than using φ within the averaging, not because it appeared
to make any difference at all, but because this is more in line with the original
formulation of Clarke, and keeps the symmetry in equations (5.7) and (5.8).

At this point the model is completely generalised, and satisfies the thermody-
namic stability criterion required for an initially homogeneous film [77, 68], since
the model reduces down to Clarke’s model in the case of no vertical variations.

A note on the functional derivatives

Note the presence of functional derivatives of Eq. (5.2), using the notations and
definitions in Eqs. (5.3)-(5.5). We must take care in calculating the functional
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derivatives in Eqs. 5.10 - 5.12 by writing (φ∆z) /∆z in place of φ when perform-
ing derivatives [84]. This is done in the appendix B. This makes sure that the
movement of material is with regards to gradients in the proper quantities: φ is
not a conserved variable in this system of equations, h and φ∆z are conserved,
and must be to satisfy material conservation (in Chapter 4, φ was conserved
because film depth was fixed).

5.3 Application to polymer-blend thin films

To illustrate the model, I apply it to a binary polymer blend of components A
and B between selectively attracting walls. The bulk free energy is given by

g(φ) = fFH(φ) + κ(φ)(∇φ)2, (5.19)

where fFH(φ) = (1/N) [φ ln(φ) + (1− φ) ln(1− φ)] + χφ(1 − φ) and κ(φ) =
a2/φ(1 − φ), where a is the underlying Flory-Huggins lattice spacing, N is the
degree of polymerization (same for both A and B) and χ is the Flory-Huggins
interaction parameter. The φ-dependant surface energy is given by

fφ(φ) = f1(φ)δi1 + fD(φ)δiD, (5.20)

where fS = hSφ + (1/2)gSφ
2 and hS and gS are phenomenological parameters.

S = 1, D and δiS is the Kronecker delta function, so the surface energies only act
in the cells adjacent to the film surfaces. For the height dependant surface energy
I used [68]

fh(h) = σ(∇yh(y))2 + ε/h8, (5.21)

where the first term accounts for energy costs of curvature in the film surface and
the second term prevents complete dewetting of the substrate (which, although
observed, is to some extent is a numerical convenience). Equation (5.21) implies
that the Hammaker constant is zero; the results do not depend on the top and
lower surfaces ‘feeling’ each other. Note that I have tried to keep the specific
terms in the model extremely minimal, which should allow for general principles
to be discovered through the simulations.

Specific Parameters

I performed the simulations in 3D, so that the lateral dimension comprises of x
and y directions. I scaled space by z′ = |χ− χS|1/2 z/a (applied to x and y too)
and time by τ = NM |χ− χS|2 t/a2, where χS is the value of χ on the spinodal
curve. I used the following parameters: N = 100, φ̄ = 0.5 (unless specified),
a = 1, η = 1000, M = 1, ε = 0.010, σ = 0.01 (unless specified). I used a square
simulation grid in the lateral plane, with ∆x′ = ∆y′ = 0.173, and have used
D = 16 grid cells to discretise the vertical direction. For the results presented
here, I used χ = 0.050 (this large value results from a = 1, but a and χ are both
absorbed into the scaling; this allows the the films to be relatively thin, and so
less area of film is need for the simulations). Random thermal currents JT from
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a Gaussian distribution of width 0.01 were applied in the diffusion stage of my
simulations, providing an additional term +∇ ·

(
∆zJT

)
to Eq. (5.9) [65], which

is discussed in appendix C.
I used the following surface parameters and terminology, in common with

chapter 4: for ‘antisymmetric’ films h1 = −0.05, g1 = 0.18, hD = −0.13, gD =
0.18 (a B-attracting substrate and an A-attracting surface, such that the walls
attract opposite components in exactly the same way); for ‘asymmetric’ films
h1 = −0.05, g1 = 0.18, hD = gD = 0 (a B-attracting substrate and a neutral
surface); and for ‘symmetric’ films h1 = hD = −0.05, g1 = gD = 0.18 (both the
substrate and the surface are B-attracting).

Functional Derivatives

The expressions for the functional derivatives required in the model, the deriva-
tions of which can be found in the appendix B, are given by

δF φ

δ (φ∆z)
= + ∂φfFH(φ)− (∂φκ) (∇φ)2 − 2κ(φ)∇2φ

+ (∆z)−1 [+2κ (φ)∇zφ+ ∂φfh] δ
z
h

+ (∆z)−1 [−2κ (φ)∇zφ+ ∂φf0] δz0

− 2

∆z
κ(φ)∇(∆z) · ∇φ, (5.22)

δF φ

δ∆z
= + fFH(φ) + κ (φ) (∇φ)2

− φ∂φfFH(φ) + φ (∂φκ) (∇yφ)2 + 2φκ(φ)∇2
yφ

− 4κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2

− (∆z)−1 [+2φκ (φ)∇zφ+ φ∂φfh] δ
z
h

− (∆z)−1 [−2φκ (φ)∇zφ+ φ∂φf0] δz0

+
2φ

∆z
κ(φ)∇(∆z) · ∇φ, (5.23)

δF h

δh
=− 8ε

h9
− 2σ∇2h. (5.24)

Due to the discretisation of the free energy functional (5.2), there are two ap-
proaches to calculating the expressions above, which yield very slightly different
results. This is explained in the appendix B. Whilst the Model I present here
does not depend on which ‘version’ of the functional derivatives are used, since
the model is supposed to solve the general problem of simulating a dewetting film
with 3D phase separation, the different approaches may be important in some
ways that were not clear in testing the model.
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5.4 Results and Discussion

Figs. 5.5 and 5.7 show an antisymmetric and an asymmetric film, respectively,
at different stages in evolution. For these 3D plots, time increase from (a) to
(d), where (a) vertical phase separation of initially nearly homogeneous film; (b)
bilayer film; (c) breakup of the bilayer; (d) laterally segregated film. Figs. 5.6 and
5.8 are 2D plots showing the surface volume fraction (left-hand side, colour-bar
shown in 3D plots) and the film height (right-hand side, colour-bar shown) for the
films in Figs. 5.5 and 5.7, respectively. For these 2D plots, time increases from
top to bottom, the particular plots having been selected to show the breakup
of the bilayer (top), the emergence of lateral phases (middle), and the laterally
segregated film (bottom: same time as shown in (d) of the 3D plots figures 5.5
and 5.7). Figure 5.11 shows 2D plots of the final surface volume fraction and film
height of several symmetric films with different initial average volume fractions.

5.4.1 Antisymmetric Films and Asymmetric Films

Figs. 5.5 and 5.7 show an antisymmetric and an asymmetric film, respectively,
at different stages in evolution. In both cases, the film initially undergoes verti-
cal stratification (a) due to the preferential surface attraction, forming a bilayer
(b). This bilayer then breaks up via the surface bifurcation mechanism ([67] and
chapter 4) in which the single value of the order parameter at the film surfaces
divides as laterally coexisting phases appear (c), and the film becomes laterally
segregated (d). Hence the films undergo lateral phase separation via a transient
wetting layer (the instability of the bilayer is studied in [81] and [82], although
due to non-diffusive transport mechanisms).

When the film is in the bilayer state as in figures 5.5(a) and 5.7(a) there is
no significant roughening of the film surface. The surface plots of figures 5.6
and 5.8 show that as the bilayer begins to breakup (top), showing significant
phase separation at the top surface, the surface roughens quite significantly. This
may correspond to the increased roughness of the surface prior to lateral phase
separation of the bilayer, as reported in Ref. [60]. It seems that the onset of
phase separation in the lateral direction induces this roughening. As the lateral
phases emerge due to the breakup of the bilayer, as in figures 5.6(middle) and
5.8(middle), dewetting couples strongly to the lateral phase separation, causing
the surface roughening to shadow the phase separating morphology. Earlier signs
of this coupling can also be faintly seen in the top sub-figure of figure 5.8, where
the B-rich material has broken the surface.

The laterally segregated morphology that results depends on the surface regime.
Figure 5.6 shows that the antisymmetric film laterally phase separates into a bi-
continuous morphology of both the A-rich and B-rich phases. The simulations
show that the B-rich phase protrudes from the A-attracting film surface. From a
purely thermodynamic perspective that considers the lateral phases in 1D (as in
chapter 3) it is not clear why either phase would be higher than the other [46].
However, the kinetics of the breakup of the bilayer appears to promote the B-rich
phase, which previously formed the bottom layer of the bilayer. This may be
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Figure 5.5: Antisymmetric film of average height h′ = 1.73. (a) initial vertical phase
separation τ = 25; (b) bilayer film τ = 100; (c) breakup of bilayer τ = 500; (d) laterally
segregated film τ = 1263. The trapezoidal shape of the lateral phases can be clearly
seen, meaning that the B-rich phase makes less contact with the top surface than the
A-rich phase. This may be responsible for the kinetics that cause the B-rich phase to
become higher than the A-rich phase, despite the symmetry of the system.
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Figure 5.6: Surface view for film shown in Fig. 5.5 (left: volume fraction, as in Fig.
5.5; right: film height, colour-bar shown). Top: breakup of the bilayer (τ = 500);
Middle: appearance of lateral phases (τ = 830); Bottom: further roughening as lateral
phases coarsen (τ = 1263). The surface morphology is bicontinuous, with the B-rich
phase protruding higher than the A-rich phase.
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Figure 5.7: Asymmetric film of average height h′ = 1.73. (a) initial vertical phase
separation τ = 40; (b) bilayer film τ = 160; (c) breakup of bilayer τ = 540; (d)
laterally segregated film τ = 1200. The B-rich phase breaks the surface even though
the film is vertically stratified (b), so that it appears that there is a template of the
laterally segregated morphology already present at this point, which determines where
the breakup of the bilayer occurs due to surface bifurcation, as in (c).
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Figure 5.8: Surface view for film shown in Fig. 5.7 (left: volume fraction, as in
Fig. 5.7; right: film height, colour-bar shown). Top: beginning of breakup of the
bilayer, (τ = 400); Middle: more lateral phases break the surface, destroying the
bilayer (τ = 840); Bottom: further roughening as lateral phases coarsen (τ = 1200).
The A-rich phase is continuous, encapsulating islands of the B-rich phase.
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because of the trapezoidal shape of the laterally coexisting phases, which means
that in this case it is the B-rich phase that makes less contact with the top sur-
face than the A-rich, and since dewetting appears to primarily proceed at the
interface between the laterally coexisting phases, the B-rich phase will become
higher than the A-rich phase, since it is narrower at the point where it meets the
surface and thus requires less material to be transferred into it for the same height
increase. The laterally segregated state of the asymmetric film shown in figure
5.8 is a continuous A-rich phase which encapsulates islands of the B-rich phase.
This is caused by depletion of B-component in the film due to the B-attracting
substrate, leading to an excess of A-component in the rest of the film.

In the case of the asymmetric film of figure 5.7, an important point can be
made about the bilayer state (a), namely that the film is definitely vertically
stratified into a bilayer even though it is clear that the surface of the film would
suggest that the film is laterally segregated (the snapshot of the bilayer has been
chosen to show this). The reason for this is that lateral phase separation is
proceeding from the top surface in this case [50], as in chapter 4. The variations
that can be seen in the bilayer correspond to where the lateral phases are in the
laterally segregated film. In Ref. [85], the authors observe that a bicontinuous
morphology is maintained throughout the spin-casting process, and conclude that
this means no bilayer initially formed. Their conclusions therefore contradict
earlier results reporting that a bilayer did initially form [60]. My results bring
these two contradicting interpretations together, showing that phase separation
observed at the surface does not indicate that there is no vertical stratification.

Quantitative Analysis

Figures 5.9 and 5.10 are plots, against (scaled) time τ , of the free energy (cal-
culated with equation (5.2)) per unit area, the standard deviation (S.D.) of the

(scaled) height < (h′(y)− h′0)2 >
1
2 , and the S.D. of the average volume fraction

< (φ̄(y)− φ̄0)2 >
1
2 , for an antisymmetric film and an asymmetric film respectively

(with the same parameters as figures 5.5 and 5.7, respectively). < (h′(y)− h′0)2 >
1
2

gives some measure of the surface roughness of the film, and < (φ̄(y)− φ̄0)2 >
1
2

gives some measure of the degree of lateral segregation of the film (although it
should be noted that the variable φ̄ is not a conserved quantity). The results
for the antisymmetric and asymmetric film are qualitatively the same in every
regard, and so I will only explicitly discuss figure 5.9 for the antisymmetric film.

Early on τ < 100, the free energy falls rapidly as the film initially vertically
phase separates into a bilayer (transient wetting layer), at which point the free
energy plateaus between τ = 100 and τ = 300 since the film is in metastable
equilibrium. Around τ = 300, lateral inhomogeneities have grown enough that the
bilayer begins to breakup (surface bifurcation) and the free energy falls away from
the plateau. At this same time, the S.D. of height changes significantly, levelling
off (and even dropping slightly) from the initial linear rise: this initial rise may
be the roughening of the bilayer prior to lateral phase separation, as mentioned
above and reported in Ref. [60]. A change in the S.D. of φ̄(y) also happens at
exactly this time, the gradient becoming shallower. I suggest that the latter
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Figure 5.9: Antisymmetric film of average height h′ = 1.73 (with the same parameters
of figure 5.5 but with (3/4)2 the area). The standard deviations (S.D.) of height h′(y)
and average volume fraction φ̄(y) compliment the features that can be inferred from
the 3D simulation snapshots and free energy curve. The free energy plateaus for the
bilayer (TWL), and falls off fairly rapidly as the bilayer breaks up. As the laterally
coexisting phases appear from this breakup, the film becomes more structured; the S.D.
of height and φ̄(y) reflect this. Once the laterally coexisting phases have formed, the
S.D. of height begins to rapidly increase as surface roughening shadows the underlying
phase separated morphology as a means to lower the free energy. At long times when
lateral phase separation is mostly complete, the S.D. of φ̄(y) and the free energy level
out, but the surface roughness still increases to further lower the free energy.

observations both correspond to the initial lateral inhomogeneities that breakup
the bilayer becoming more structured as laterally coexisting phases appear.

At around τ = 550 the laterally coexisting phases have mostly formed and
therefore the increase in the S.D. of φ̄(y) levels off. At this point, the S.D. of
height begins to rapidly rise in a linear fashion, now that the surface roughening
shadows the underlying phase separated morphology in order to further lower the
free energy of the film, as shown in the continuous decrease in the free energy. At

τ = 1000, the free energy levels out as < (φ̄(y)− φ̄0)2 >
1
2 levels out, since lateral

phase separation is mostly complete. The film is still roughening, which further
lowers the free energy. It seems to be energetically favourable for dewetting to
occur at the interfaces between the laterally coexisting phases, as shown in figures
5.6 and 5.8, as the film appears to be able to lower its free energy in this way.
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Figure 5.10: Asymmetric film of average height h′ = 1.73 (with the same parameters of
figure 5.7 but with (3/4)2 the area). The standard deviations (S.D.) of height h′(y) and
average volume fraction φ̄(y) compliment the features that can be inferred from the 3D
simulation snapshots and free energy curve. The evolution is essentially qualitatively
the same as that described in the caption of figure 5.9.

Validation of the Model

Equation (5.10) shows that the amount of material that is moved laterally is based
on the average volume fraction φ̄(y) and the average of the lateral gradients of
µφ∆z(i, y). Material moved in this way is evenly distributed amongst the grid
cells at y in order that the average volume fraction at y changes, as explained in
Appendix C equation C.15 (this is ultimately because ∆z does not vary with i).
Equations (5.7) and (5.8), combined with equation (5.10), means that the height
evolution step may not, in theory, always lead to a lowering of the free energy,
since both the distribution of material across the vertical dimension and the
amount of material transferred laterally may not necessarily be optimal. However,
the diffusion step rapidly distributes material vertically to compensate for this,
and the free energy in figures 5.9 and 5.10 show that the model functions very
well. Its not clear if this would be true at very long time, once lateral diffusion has
effectively ceased but height evolution still continues (the simulations numerically
decouple at longer times as the height differences between simulation grid cells
becomes large; much smaller ∆y would be needed to study longer times).
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Figure 5.11: Surface view of the laterally segregated states of three Symmetric films,
with different φ̄, which initially form a trilayer structure: both surfaces coated by a
B-rich layer, with an A-rich layer sandwiched in between (left: volume fraction, as in
Figs. 5.5 and 5.7; right: film height, colour-bar shown). The scaling of height depends
on χS , which varies with φ̄ (see sections 1.4 and 2.4). Top: (σ = 0.03, φ̄ = 0.2, h′ = 2.74
) droplets of A-rich phase encapsulated by B-rich phase (τ = 700); Middle: (σ = 0.01,
φ̄ = 0.3, h′ = 3.24 ) droplets joining up as amount of A component increases (τ = 980);
Bottom: (σ = 0.01, φ̄ = 0.5, h′ = 2.60 ) the A-rich phase forms a protruding matrix
encapsulating the lower B-rich phase (τ = 1200).

5.4.2 Symmetric Films

I also performed simulations of symmetric films, in which both surfaces pref-
erentially attract the B-component, leaving an A-rich phase sandwiched in the
middle of the film i.e. a trilayer structure. I used slightly thicker films for these
simulations, since there are three layers in the film and I wanted these layers to
be sufficiently distinct. I will briefly discuss the results from these simulations,
although in the context of this thesis they are of less interest than results for the
lateral phase separation of a bilayer film. I have only shown, in figure 5.11, the
surface profiles of the final laterally segregated state, for various blend ratios (val-
ues of φ̄). For the symmetric blend φ̄ = 0.5 (top), the final roughened morphology
highly resembles that found in experiments, when the encapsulating phase pro-
trudes from the film [70, 72]. For blends with a lower ratio of A-material φ̄ = 0.3
(middle), such that the non-wetting A-component is the minority component, the
A-rich lateral phase becomes encapsulated in the B-rich phase, with the A-rich
phase protruding but no longer continuous. For φ̄ = 0.2 (bottom), droplets of the
minority phase form, which could, if other hydrodynamic flow mechanisms like
those suggested in Refs. [69, 71] were present, allow the formation of pancake-like
droplets of the minority phase.
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5.5 Summary

I have presented results from a new model for thin films of multicomponent fluids,
applied to binary polymer blend thin films. The results show that roughening
couples to phase separation, resulting in stages of surface roughening correspond-
ing to distinct stages of phase separation. The results can be interpreted in terms
of the phase equilibria of polymer films [50, 67]: the transient wetting layer that
forms before the film laterally phase separates is a metastable state, the phase
equilibria of the laterally segregated state corresponding to the equilibria of global
equilibrium. In the transient wetting layer, there does not seem to be a route to
lower the free energy of the film by roughening, but the roughening begins with
the onset of lateral phase separation, as a means to lower the free energy of the
film as lateral inhomogeneities grow.

Perhaps as important as the general results concerning coupled surface rough-
ening and lateral phase separation in polymer-blend thin films is the formulation
of the model so as to allow a vertical dependence of the composition, which has
never been done before in any general way. I hope that the idea behind this
model can be utilised by others to formulate similar 3D models.
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Summary of Research and Outlook

In Chapter 3, I extended a Hamiltonian Phase Portrait method for visual-
ising and calculating equilibrium profiles of polymer-blend thin films, allowing
the method to be applicable to the general case of film asymmetry, though I
focussed on a symmetric blend between an attracting surface and a neutral sur-
face. I explained how a Lagrange multiplier distorts the phase portraits away
from symmetry, and how the location of fixed points can be used to explain the
behaviour of equilibria as film depth and temperature regimes are changed. I also
discussed laterally coexisting solutions, necessarily limiting to the case in which
the phase portraits are not distorted since the 1D phase portraits are not able
to take account of the lateral interface between phases. By considering the role
of the Lagrange multiplier, I argued from a thermodynamic perspective that the
coexisting phases could have different depths in order that the free energy of the
film is reduced, possibly leading to a laterally segregated film with a roughened
surface.

In Chapter 4, I studied lateral phase separation via a transient wetting layer
using simulations and Hamiltonian Phase Portraits and introduced a Surface Bi-
furcation mechanism, involving effective boundary conditions at the film surfaces,
explaining the particular dynamics of the breakup of the transient wetting layer. I
derived a diffusion equation suitable for studying polymer-blend films, in which I
used a first-principles derivation to derive the proper forms of the surface terms.
I compared the results from simulations to the equilibria calculated from the
Hamiltonian phase portrait method to demonstrate that the diffusion equations
were accurate and precise, and showed that the 1D calculated equilibria actually
appear in the simulations. This means that the lateral interfaces between coex-
isting phases do not prevent 1D considerations of equilibria from being useful, at
least in terms of the states which films evolve through and into. I showed that
films evolve first towards a metastable bilayer configuration, determined by the
lowest energy independently-existing equilibria of the films, and then evolve to-
wards laterally coexisting phases corresponding to global equilibrium. I explained
the dynamics of the breakup of the transient wetting layers for a variety of wall-
blend interaction regimes, explaining how the surface bifurcation mechanism may
explain many general results from spin-casting experiments.

In Chapter 5, I formulated a 3D model of coupled phase separation and sur-
face roughening by solving the problem of introducing a vertical dependence of
the film composition into a model of a dewetting film. I applied the model to a
polymer-blend thin film and used it to investigate surface roughening for films
with different surface-blend interaction regimes. I showed that lateral phase sep-
aration via a transient wetting layer has distinct stages of surface roughening,
resulting in pattern formation whereby the surface roughening shadows the un-
derlying phase separated morphology. Both the kinetics of dewetting and the
shapes of the underlying equilibria determine the pattern formation.

The work in this thesis has hopefully revealed some very general fundamen-
tal aspects of phase separation in polymer-blend thin films. I have implicitly
focussed on investigating what is necessary and sufficient to explain phenom-
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ena in film evolution; how stages of film evolution can be explained by phase
equilibria i.e. a thermodynamic perspective. The work is based on a mean-field
description of a polymer-blend, and so cannot necessarily be relied upon to give
quantitative results. Fortunately, mean-field descriptions of polymer blends are
known to generally give good results, and polymer blends are identified through-
out the literature as ideal systems in which to study phase transitions and related
phenomena.

It would seem that this work could equally apply to simple fluid blends. This
is true in as much as the equations can be applied to either a polymer blend
or a simple fluid blend, provided an appropriate choice for the coefficient of the
gradient energy. However, mean-field descriptions of simple fluids do not work
very well in practice, for a similar reason that they don’t work well for dilute
polymer solutions. In the latter case, enthalpic interactions cause solute to clump
together, leading to regions of (nearly) pure solvent and (nearly) pure solute. A
mean-field description of the solution, derived on the basis that the probability of
lattice sites being occupied by polymer segments (solvent molecules) is given by
the local polymer (solvent) volume fraction, would fail to describe such a dilute
solution. The case is not dissimilar for simple fluid blends. Mean-field theories
don’t account for local fluctuations in the mean field, and well defined features
like the spinodal curve can become artefacts of the theory that don’t necessarily
make useful predictions. In dense polymer blends with a high molecular weight,
the interconnectivity of chains means that fluctuations are less important and
mean-field descriptions generally work well.

Flory-Huggins-de Gennes theory (the mean-field theory used throughout this
thesis) allows a polymer-blend to be identified by the interaction parameter χ,
which can be experimentally determined. As per the scaling in chapters 4 and 5,
the length scale of bulk phase separation is of the order |χ − χS|1/2, and so the
simplicity of the theory is that we can make predictions about film evolution based
on the thickness of the film with respect to the length scale of phase separation: if
the film is of the thickness of |χ−χS|1/2, we might expect lateral phase separation
via a transient wetting layer, since we can be reasonably certain that the film
would initially vertically separate into a bilayer; if the film thickness is many
times |χ− χS|1/2, we might expect some sort of multiple layering (an oscillatory
profile) and bulk-like phase separation away from the film surfaces.

To what extent can the phase portraits of chapter 3 predict the results of
the simulations in chapters 4 and 5? Throughout, I have restricted to studying
lateral phase separation via a transient wetting layer, in which case the films
in the simulations can be considered ‘thin’ and have reached the equilibrium
states predicted by the phase portraits. The phase portraits also help explain
the particular way in which lateral phase separation via a transient wetting layer
occurs in terms of phase equilibria, as shown in chapter 4. I have not included
a study of thick films that form oscillatory profiles or undergo bulk-like phase
separation. What can the phase portraits and phase equilibria say about ‘thick’
films, with thickness many times |χ− χS|1/2? The behaviour of the equilibria in
the limit that the thickness goes to infinity can be easily determined from the
phase portraits, by considering the film profile when part of the corresponding



Summary of Research and Outlook 129

phase portrait approaches a fixed point in phase space, as discussed in chapter 3.
When thicker films don’t reach the equilibria predicted by the phase portraits,
due to bulk-like phase separation for example, this can be considered a kinetic
phenomena, since the predicted phase equilibria are still the lowest energy states
of the film.

Bulk-like phase separation in films could possibly be avoided by experimen-
tal conditions. This may be important to bear in mind because lateral phase
separation via a transient wetting layer produces a very neat laterally segregated
structure. It might be instructive for experimentalists to consider that, if a neatly
laterally segregated structure is desired, it may be best to achieve this with lateral
phase separation via a transient wetting layer, rather than allow bulk-like phase
separation to ‘lock-out’ the possibility of reaching a bilayer state and the following
neat laterally segregated structure. This could perhaps be done by deliberately
controlling the rate of solvent evaporation e.g. maintaining a high solvent concen-
tration for an extended period of time prior to gradual removal of solvent, which
might result in a bilayer initially forming (the increased miscibility from solvent
could be used to tune the length scale of phase separation to the order of the
film thickness) followed by lateral phase separation as solvent is removed. This
could be important when tailoring morphologies to create a better functioning
polymer-blend thin film solar cell.

The current form of the 3D model of coupled phase separation and dewetting
that I developed in chapter 5 is perhaps only applicable to thin films undergoing
non-bulk-like phase separation, such as lateral phase separation via a transient
wetting layer. This is because of the averaging used in the model, both in the way
that material is moved laterally and in the way that averaging is used to calculate
lateral flux in the dewetting stage of the model. However, since the dewetting
process I have discussed is primarily applicable to thin fluid films, perhaps the
model is not applicable to films that are thick enough to display bulk-like phase
separation. The results of chapter 3 would predict that an antisymmetric film
would have roughened differently, and so the results of chapter 5 highlight the
importance of kinetic considerations in determining the final roughened morphol-
ogy.

The surface energy I have used throughout this thesis acts locally at the film
surfaces, so it is not clear how results might change if a different form of the surface
field (e.g. one that extends a finite distance into the film) might lead to different
findings. An approximate idea of surface energies would allow the plotting of
simple qualitative phase portraits and a prediction of the sort of equilibria that
might be expected to occur. The work of chapter 4 would suggest that we can
simply generalise surface energy regimes to a few cases, and therefore understand
the way phase separation generally proceeds in each regime.

I will briefly suggest possible future work that might be of interest. It might
be instructive to investigate more bulk-like phase separation in thicker films, to
see how the idea about phase equilibria determining film evolution (as per thin
films) performs alongside bulk-like behaviour, and what structures form as a
result of this. In that case, the inclusion of solvent, and particularly the use of
3D simulations, would be very important.
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Given more understanding of how thicker films evolve, it would also be in-
structive to include solvent evaporation, and a systematic investigation of how
this affects the resulting structures. This may help us understand how removal
of solvent in the spin-coating process can be used to control the final morphol-
ogy. This might be especially important in trying to obtain desired structures
in thicker films. These sorts of investigations, combined with knowledge of how
phase equilibria determine the stages of phase separation, might prove very use-
ful in predicting and controlling film evolution and morphology. Since the depth
profile of films cannot be measured during spin-coating, theoretical predictions
may be a good way to reveal what is happening within the film, based on what
can be observed during the process and on the final morphology.

Another possible route for study, in a different direction, would be the use
of the structures produced from the simulations described above in simulations
of charge transport, as a means of determining, and perhaps cataloguing, which
types of structures lead to better performing photovoltaic films. This is essentially
a percolation problem: charges created in the film need to be able to navigate
through the phase separated structure to reach the electrodes at the film surfaces.
The phase separated structure, both in the centre of the film and at the film sur-
faces, is therefore extremely important. It is not clear which morphologies give
better performances or why, and so combining understanding of this with under-
standing of how to tailor morphologies, as mentioned above, could be extremely
promising.

In this thesis, I have explored the phase equilibria of polymer-blend thin films
using a Hamiltonian phase portrait method, and used phase portraits and simu-
lations to identify that phase equilibria calculated in 1D can explain the evolution
of films in the case of lateral phase separation via a transient wetting layer. Using
a 3D model of coupled phase separation and dewetting, I have demonstrated pat-
tern formation whereby surface roughening shadows underlying phase separation.
The overall theme of this thesis is then simply this: a polymer-blend thin film
will evolve to lower its free energy, and most of the behaviour can be explained
entirely by evolution to and between different equilibria. I hope that my research
contributes to understanding of the fundamentals of phase separation in polymer
blend thin films.
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Appendix A

Diffusion Simulations on GPUs
with CUDA

I implemented my simulations in CUDA, a programming language extension to
C++ that can be used to write code that can be executed on a CUDA-enabled
Graphical Processing Unit (GPU). A GPU allows thousands of tasks to be per-
formed in parallel, with different threads performing each task. I have written
this section to assist somebody writing GPU code for a diffusion simulation of the
sort given in this thesis. Rather than go into too many details of GPU program-
ming, I will try to cover some general principles for efficient parallelised GPU
code focussing on the simulations used for chapter 4.

A.1 Principles of Parallelised GPU code

Avoid Branching in Code

GPU code is most efficient when all the tasks to be done are identical, such that
each thread is executing the same code but with ‘different numbers’ e.g. different
values of φij. This point is important, since it means that branching in code
should be minimal i.e. there should be as few if-else statements (which cause
parrallel threads to execute different code) as possible. The reason for this is: if
10 parallel tasks encounter an if-else branch in code and 5 tasks follow ‘if’ and
the other 5 tasks follow ‘else’, in fact all 10 tasks follow both branches, which
therefore takes twice the amount of time that would be expected. Only if all 10
tasks follow only ‘if’ or only ‘else’ do the tasks not have to do twice the work (note
that this point about branching concerns only threads within the same block).

Application of Boundary Conditions

Because of this, when boundary conditions such as ‘no material flux through
a surface’ have to be enforced during a simulation involving ‘moving material
around’, it is better to separate the tasks of ‘enforcing no material flux through
a surface’ and ‘moving material around’ rather than to implement a boundary
condition of ‘no material flux through a surface’ while ‘moving material around’
(which would require more branching in code). So the general principle is to
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separate steps that enforce numerical boundary conditions from steps which then
use those boundary conditions, in order to avoid branching. This also simplifies
code, making it easier to write optimised parallelised code; the best optimisa-
tion (memory retrieval etc.) for ‘moving material around’ may not be the best
optimisation for enforcing ‘no material flux through a surface’.

A.2 Steps of Simulation

My simulations required storage of both the volume fraction and the chemical
potential, each set of values being stored on a separate array on the GPU i.e.
two arrays (it is better to have structures-of-arrays than arrays-of-structures, for
more efficient memory access with GPUs). My simulations were broken down
into 4 sub-steps, which were performed for every time-step in the simulation:

1. Apply ‘central-differencing at surfaces’ boundary conditions;

2. Calculate the chemical potential for every grid cell;

3. Apply ‘no flux through surfaces’ boundary conditions;

4. Update values of φ for every grid cell.

1: Central-differencing at surfaces

This section is concerned with calculating gradients of the volume fraction in the
vertical direction i.e. ∇zφ. The first-order central-differencing scheme used in my
simulations was

∇cφi =

(
1

2
φi+1 −

1

2
φi−1

)
/∆z, (A.1)

∇2
cφi = (φi+1 − 2φi + φi−1) / (∆z)2 , (A.2)

where the z-direction between the walls is discretised with index i (this central
differencing scheme was also used to calculate gradients in chemical potential,
explained later, and also for the lateral dimension).

Figure A.1 shows a schematic of the simulation grid: the bold lines represent
the surfaces at z = 0 and z = d, the grid cells containing the results are those
between these surfaces i.e from i = 1 to i = D. As shown in the schematic, there
are actually two more layers of ‘virtual’ grid-cells (shaded) beyond the surfaces,
so the array was actually D+ 2 wide. This was also true of the array storing the
chemical potential, but I will only discuss the relevance to φ for now.

To calculate ∇cφ2 or ∇2
cφ2, the gradients in ‘bulk’ cells not directly adjacent

to the surface, is very simple, requiring a simple application of equation (A.1)
for i = 2. The sets of three shaded cells between the film surfaces represents the
cells required for this calculation. But how does one calculate the gradient for
i = 1, for cells directly adjacent to the surface at z = 0? Technically, there is no
cell at i = 0, since all of the polymer fluid is within the impenetrable walls; the
sets of three shaded cells which overlap the film surfaces represent this problem.
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This point is usually, and frustratingly, glossed over, so I present my solution to
the problem here. For the i = 1 cells next to the surface, consider the central
differencing scheme for the first derivative for the cell i = 1:

∇cφ1 =

(
1

2
φ2 −

1

2
φ0

)
/∆z, (A.3)

and also consider the forward differencing scheme for the first derivative, to second
order accuracy:

∇fφ1 =

(
−3

2
φ1 + 2φ2 −

1

2
φ3

)
/∆z. (A.4)

If we set ∇cφ1 = ∇fφ1 then we find that if we set

φ0 = +3φ1 − 3φ2 + φ3. (A.5)

then the result of the central difference equation (A.3) using φ0 is the same as
doing forward-differencing to second order accuracy, which is a very nice result
(since we help nullify the use of forward differencing by having increased the
accuracy of this derivative). Similarly for the z = D wall, we obtain

φD+1 = +3φD − 3φD−1 + φD−2. (A.6)

The advantage of setting the ‘virtual’ cells at i = 0 and i = D+1 to expressions
in (A.5) and (A.6) respectively is that the central differencing regimes in equation
(A.1) can be applied to the cells at i = 1 and i = D, as if these cells were not
any different from grid cells ‘in the bulk’ of the film (this avoids the need to
obtain from memory the ‘next-nearest neighbour’ cells φ3 and φD−2, which would
otherwise be required to use second-order forwards and backwards differencing in

0 1 2 3

D-2 DD-1 D+1

0 1 2 3

D-2 DD-1 D+1

i

z=0 z=d

Figure A.1: Simulation grid. The surface/walls of the film are given by the
bold lines. Between the bold lines are the parts of the grid representing the
cells i = 1..D, which are the cells representing the polymer blend i.e. the cells
containing the simulation results. Beyond the surfaces are ‘virtual cells’ i = 0 and
i = D+1, which are also stored in memory in the same array as the cells between
the walls. The sets of three shaded cells are for visualisation of the cells required
for central-differencing in the vertical direction: central differencing for ‘bulk’
cells is simple (i = 2 and i = D − 1), but how does one do central differencing
for cells adjacent to the surfaces (i = 1 and i = D)? See main text above.
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step (ii) of the simulation). It can easily be verified that central differencing for
∇2
c in equation (A.1) using φ0 is equivalent to first order forward differencing ∇2

f

(similarly for backward difference using φD+1).
These substitutions, which are essentially numerical boundary conditions ap-

plied prior to calculations involving the gradient, are useful for speeding up and
simplification of GPU code. The same idea can be extended to higher-order
differencing schemes.

2: Calculate the chemical potential for every grid cell

Comparing the governing diffusion equation (4.24) with the general diffusion
equation (4.21) reveals that we can write the governing diffusion equation in
the following simplified form:

∂φij
∂τ

=
1

N
∇′2µ′′

ij, (A.7)

where the scaled chemical potential in each grid cell, which I have denoted µ
′′
ij

since several scaling factors have been absorbed into this expression, is therefore
given by

µ
′′

ij =
1

|χ− χS|
∂fFH
∂φ
|ij +

(1− 2φij)

φij(1− φij)
κij
a2

(∇′φ|ij)2 − 2
κij
a2
∇′2φ|ij

+
δiD
∆z′

[
a−1

|χ− χS|
1
2

∂fd
∂φd

+ 2
κDj
a2
∇′zφ|Dj

]

+
δi1
∆z′

[
a−1

|χ− χS|
1
2

∂f0

∂φ0

− 2
κ1j

a2
∇′zφ|1j

]
. (A.8)

If we calculate and store the values µ
′′
ij, then we can easily apply the central

differencing operator ∇′2 to these values to calculate equation (A.7). This means
that we only need to calculate µ

′′
ij from equation (A.8) once per time step. If we

tried to calculate ∂φij/∂τ without this intermediate step, for example by applying
equation (4.24) without storing the value in the round brackets (i.e. µ

′′
ij), then

we would end up actually calculating µ
′′
ij three times: once for each ∂φij/∂τ ,

∂φi+1,j/∂τ , and ∂φi−1,j/∂τ (actually, including the second dimension j, we would
end up calculating this value 5 time, and seven times for three dimensions). To
summarise, it is much more efficient to calculate and store values of the chemical
potential, so that they can be used multiple times without requiring recalculation.

3: Apply ‘no flux through surfaces’ boundary conditions

In order to conserve the amount of material in the film, such that equation (4.25)
is fulfilled, we can implement a simple numerical boundary condition, thanks to
the virtual grid cells i = 0 and i = D+1 for the grid storing values of the chemical
potential. This boundary condition must be implemented after the calculation of
the chemical potential µ

′′
but before calculation of ∂φij/∂τ using equation (A.7).



Appendices 137

This step simply consists of setting

µi=0 = µi=1, , (A.9)

µi=D = µi=D+1. (A.10)

This has the effect of making the material current across the walls equal to zero,
(e.g. the material current across the z = 0 wall is J−1/2 ∝ µi=1 − µi=0) hence
material is conserved. Also, this means that every grid cell can be treated the
same in step 4, and we don’t have to make exceptions for grid cells adjacent to
the surfaces in order to conserve material.

4: Update values of φ for every grid cell

We used a forward-differencing time-step to update φ:

φτ+∆τ
ij = φτij + ∆τ

∂φij
∂τ

. (A.11)

After the steps outlined above, this step is incredibly simple, simply requiring the
application of equation (A.7) to calculate the change in φij, and then applying
equation (A.11) to update φij. It may be worth noting that forward time differ-
encing can be unstable, requiring fairly small time-steps, but I did not find that
I had significant problems with this, and the program would have become much
more complicated using a different type of time differencing method.

A.3 Improving Efficiency

Use mixed precision code

Experience with these sorts of simulations has convinced me that the variables φ
and µ should be stored as double-precision floats (‘doubles’) to ensure material
conservation (which can not be honoured over time due to accumulating numerical
errors if these values are stored as floats) while calculations should all be floating-
point precision (floating-point calculations, especially for functions like ‘log’ and
‘exp’, are several times faster than double precision equivalents, especially on
GPUs).

Shared Memory and ‘Halo’ Cells

A slightly technical point can be made about utilising ‘shared memory’ on GPUs,
and how to make fetches from the ‘global memory’ into shared memory more
efficiently. The information that follows may be difficult to understand for readers
not familiar with GPU programming.

Threads are actually executed in batches called blocks, which can be 2D e.g. if
I need to do 100×100 calculations in parallel requiring 100×100 threads, I could
do this using 10 × 5 blocks containing 10 × 20 threads. Note that each thread
in the block has an index, in this case a 2D index ij, that identifies it within
the block. If shared memory is allocated when a GPU process is executed, then
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i

j

Figure A.2: Representation of a block of threads with dimensions 6× 6 fetching
memory from part of an array: the part of array is the 8× 8 grid, and the 6× 6
grid within the bold square represents the block of threads such that each thread
is represented by a grid-cell in the 6× 6 grid. Each thread in the block can fetch
an element from the array, such that the thread with index ij can fetch the array
element Aij: this is represented by the light (yellow) shading. However, several
threads need to do extra work and fetch more array elements in the ‘halo’ around
the block of threads, these halo elements having darker (pink) shading. This is
because each thread needs ‘nearest-neighbour’ information. The lines going from
threads within the bold square to array elements beyond the square represents
a possible configuration for threads fetching these extra elements, such that, in
theory, no thread has to do more than two fetches. I used this configuration in
my simulations. Since nearest-neighbour information is required, I gave an X×Y
block of threads (X + 2) × (Y + 2) elements of shared memory. (Note: due to
branching, it is not clear whether the configuration I have shown is significantly
better than if the threads in the corners of the block fetched two ‘neighbour’
elements, one to either the left or right and one to either the top or bottom. I
did find a small speed-up with my represented configuration, but at the expense
of more complicated code.)

a block can have access to a certain amount of shared memory, and all threads
within that block have access to this shared memory. The benefits of shared
memory are that it is incredibly fast to read from, compared to global memory
(where the arrays required to store simulation data, e.g. φ and µ, would be stored
in these simulations) which is very slow to read from. If data is going to be used
repeatedly by a block of threads, it is often better to read from global memory
as few times as possible, so storing data retrieved from global memory in shared
memory, and then accessing this data via shared memory, can significantly speed
up simulations by several times. Also, to mention again, all the threads within a
block have access to this memory, which is very useful.

In my simulations, every thread needs access to nearest neighbour information
due to the central differencing scheme e.g. a thread calculating µ

′′
(i = 5, j = 5)
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needs to access φ(i = 5, j = 5), but also φ(i = 4, j = 5), φ(i = 6, j = 5),
φ(i = 5, j = 4), and φ(i = 5, j = 6). A 6 × 6 block of threads actually needs
access to (8×8)−4 values of φ, and since every thread needs access to 5 values, it is
much more efficient if all of the threads cooperatively read these values from global
memory to shared memory. A schematic representation of this idea, showing a
block of threads reading values from global memory into shared memory, is given
in figure A.2, which is explained by its caption.





Appendix B

Functional Derivatives for
dewetting model

There are two slightly different approaches to calculating the functional deriva-
tives required for chapter 5, which I will denote the ‘continuous derivation’ and
the ‘discrete derivation’. While the calculations of the functional derivatives do
not have any bearing on the presented model, I feel that it is important to be
explicit here in the derivations.

Variations with respect to conserved quantities

As a reminder, we must write (φ∆z)/∆z in place of φ when performing functional
derivatives, such that (φ∆z) and ∆z can be treated as variables in there own right.
To simplify this notation, I sometimes write ψ ≡ φ∆z.

B.1 ‘Continuous derivation’

B.1.1 The sum

We can take the second term of equation (5.4),
∑

∆zg(φ), and in the same vein to
the work in chapter 4, focus only on the vertical dimension z (ignoring the lateral
dimension y for the time being) and the term in g(φ) containing the gradient,
κ(φ) (∇φ)2, since this is the most difficult term. Now we write

∑
→
∫
dz (hence

why I have denoted this method the ‘continuous derivation’), despite the vertical
grid spacing which we can then consider to be in the limit ∆z → 0, and therefore
write the functional derivative of the gradient containing term in (5.4) as:

δ

δψ

[∫
dz(∆z)κ(φ) (∇φ)2

]
=

lim
ε→0

1

ε

∫
dz

[
(∆z)κ

(
ψ + εp

∆z

)(
∇
(
ψ + εp

∆z

))2

− (∆z)κ (φ) (∇φ)2

]
, (B.1)

141



142 Appendices

where p is a test function (playing the role of g(z, z′) from chapter 4). We make
several expansions:

κ

(
ψ + εp

∆z

)
= κ

(
ψ

∆z
+

1

∆z
εp

)
= κ (φ) +

1

∆z
(∂φκ) εp, (B.2)(

∇
(
ψ + εp

∆z

))2

=

(
∇
(
ψ

∆z
+

1

∆z
εp

))2

=

(
∇φ+∇

(
1

∆z

)
εp+

1

∆z
ε∇p

)2

= (∇φ)2 + 2∇φ
(
∇
(

1

∆z

)
εp+

1

∆z
ε∇p

)
= (∇φ)2 + 2ε∇φ

(
− 1

∆z2
∇(∆z)p+

1

∆z
∇p
)
. (B.3)

Inserting these expansions into equation (B.1), part way through the calculation
we arrive at

δ

δψ

[∫
dz(∆z)κ(φ) (∇φ)2

]
=∫

dz

[
p

(
−2

1

∆z
κ (φ)∇φ∇h+ (∂φκ) (∇φ)2

)
+∇p (2κ(φ)∇φ)

]
, (B.4)

and calculating the rightmost term, similar to the work in chapter 4:∫
dz [∇p (2κ(φ)∇φ)] = [2κ (φ)∇φ]h0 −

∫
dz∇ (2κ (φ)∇φ) p

= [2κ (φ)∇φ]h0 −
∫
dz p

(
2κ (φ)∇2φ+ 2 (∂φκ) (∇φ)2) ,

(B.5)

and then putting it all together we arrive at:

δ

δψ

[∫
dz(∆z)κ(φ) (∇φ)2

]
=− (∂φκ) (∇φ)2 − 2κ(φ)∇2φ+ [2κ (φ)∇φ]h0

− 2

∆z
κ(φ)∇(∆z) · ∇φ. (B.6)

The functional derivative of the term ∆zfFH (φ) in ∆zg(φ) simply gives us
+∂φfFH(φ). Including the lateral dimension y simply makes the gradient op-
erators 2D, so we arrive at

δ

δψ

[∫
dz(∆z)g(φ)

]
=

+ ∂φfFH(φ)− (∂φκ) (∇φ)2 − 2κ(φ)∇2φ+ [2κ (φ)∇φ]h0

− 2

∆z
κ(φ)∇(∆z) · ∇φ. (B.7)
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A similar derivation can be done for the functional derivative with respect to
∆z, beginning with:

δ

δ∆z

[∫
dz(∆z)κ(φ) (∇φ)2

]
=

lim
ε→0

1

ε

∫
dz

[
(∆z + εp)κ

(
ψ

∆z + εp

)(
∇
(

ψ

∆z + εp

))2

− (∆z)κ (φ) (∇φ)2

]
,

(B.8)

with the result being

δ

δ∆z

[∫
dz(∆z)g(φ)

]
= +fFH(φ) + κ (φ) (∇φ)2

− φ∂φfFH(φ) + φ (∂φκ) (∇φ)2 + 2φκ(φ)∇2φ− [2φκ (φ)∇φ]h0

+
2φ

∆z
κ(φ)∇(∆z) · ∇φ, (B.9)

which we can be confident in since it can be verified fairly easily that if F =∫
∆zg (φ,∇φ) dz, then δF/δh = g(φ,∇φ)− φδF/δ (φh).

B.1.2 The surface energy depending on φ

Now for the fS part of equation (5.4), which can be written as

fS = hφ+
1

2
gφ2

= h

(
ψ

∆z

)
+

1

2
g

(
ψ

∆z

)2

. (B.10)

We then have

∂fS
∂ψ

= h

(
1

∆z

)
+

1

2
g

(
2ψ

(∆z)2

)
=

(
1

∆z

)
[h+ gφ] , (B.11)

and

∂fS
∂∆z

= h

(
−ψ

(∆z)2

)
+

1

2
g

(
−2ψ2

(∆z)3

)
= −

(
φ

∆z

)
[h+ gφ] . (B.12)

However, this dependence on ∆z at this point is an artefact, so I remove it, since
really the surface energies really ought to act only at a surface rather than across
an entire grid cell adjacent to a surface.
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B.1.3 Before normalising of surface terms

We can now write

δF φ

δ (φ∆z)
= + ∂φfFH(φ)− (∂φκ) (∇φ)2 − 2κ(φ)∇2φ

+ [2κ (φ)∇φ]h0 + ∂φf0δ
z
0 + ∂φfhδ

z
h

− 2

∆z
κ(φ)∇(∆z) · ∇φ, (B.13)

δF φ

δ∆z
= + fFH(φ) + κ (φ) (∇φ)2

− φ∂φfFH(φ) + φ (∂φκ) (∇φ)2 + 2φκ(φ)∇2φ

− [2φκ (φ)∇φ]h0 − φ∂φf0δ
z
0 − φ∂φfhδzh

+
2φ

∆z
κ(φ)∇(∆z) · ∇φ. (B.14)

B.1.4 Normalising of surface terms

We can scale the surface terms by (∆z)−1 and group the surface terms, as was
done in chapter 4. This then gives us the final equations for the chemical poten-
tials:

δF φ

δ (φ∆z)
= + ∂φfFH(φ)− (∂φκ) (∇φ)2 − 2κ(φ)∇2φ

+ (∆z)−1 [+2κ (φ)∇zφ+ ∂φfh] δ
z
h

+ (∆z)−1 [−2κ (φ)∇zφ+ ∂φf0] δz0

− 2

∆z
κ(φ)∇(∆z) · ∇φ, (B.15)

δF φ

δ∆z
= + fFH(φ) + κ (φ) (∇φ)2

− φ∂φfFH(φ) + φ (∂φκ) (∇φ)2 + 2φκ(φ)∇2φ

− (∆z)−1 [+2φκ (φ)∇zφ+ φ∂φfh] δ
z
h

− (∆z)−1 [−2φκ (φ)∇zφ+ φ∂φf0] δz0

+
2φ

∆z
κ(φ)∇(∆z) · ∇φ. (B.16)

B.1.5 The surface energy depending on h

From equation (5.5) we obtain

δF h

δh
=
−8ε

h9
− 2σ∇2h. (B.17)
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B.2 ‘Discrete derivation’

Since I used a priori discretisation to include a vertical dependence on compo-
sition (equation (5.2)) it is possible that we should follow a slightly different
derivation, which actually yields a slightly different result for δF φ/δ∆z.

B.2.1 An a priori discretised gradient

Equation (5.4) contains the bulk energy g(φ), which contains gradient terms ∇φ.
We could account for discretisation of this gradient prior to taking the functional
derivative of F φ: ∇y will be continuous (e.g. ∇yφ = ∂yφ) whereas ∇z will
already be discrete (e.g. ∇zφ|i = (φi+1 − φi−1)/2∆z). To investigate this, I
include 2 dimensions in the derivation, and we can first break F φ into two parts,
accounting for a ‘continuous’ part F φ

C and a ‘discrete’ part F φ
D:

F φ =

∫
fφ(φ) dy +

D∑
i=1

∫
∆z(y)g(φ) dy (B.18)

=

∫
fφ(φ) dy +

D∑
i=1

[
F φ
C + F φ

D

]
, (B.19)

where the ‘continuous’ part (no discrete gradient) is

F φ
C =

∫
∆z
[
fFH(φ) + κ(φ) (∇yφ)2] dy, (B.20)

and the ‘discrete’ part (discrete gradient) is

F φ
D =

∫
∆z

[
κ(φ)

(
φi+1 − φi−1

2∆z(y)

)2
]

dy. (B.21)

I have used central differencing for the gradient in equation (B.21), although the
particular differencing is not important; that the gradient now contains ∆z in the
denominator is what makes a difference.

B.2.2 Continuous part of δF φ/δ(φ∆z)

This yields the same results as before:

δF φ
C

δ(φ∆z)
= + ∂φfFH − (∂φκ) (∇yφ)2 − 2κ(φ)∇2

yφ

− 2

∆z
κ(φ)∇y(∆z) · ∇yφ, (B.22)

δF φ
C

δ(∆z)
= + fFH(φ) + κ(φ) (∇yφ)2

− φ∂φfFH + φ (∂φκ) (∇yφ)2 + 2φκ(φ)∇2
yφ

+
2φ

∆z
κ(φ)∇y(∆z) · ∇yφ, (B.23)

which is not surprising.
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B.2.3 Discretised part of δF φ/δ(φ∆z)

Since the gradient term is now expressed in terms of ∆z, there is no longer an
explicit gradient term in F φ

D, and so the functional derivative can be found by
performing the partial derivative of the integrand with respect to the relevant
variables. A similar derivation was done by Fukuda et al [64]. For 1 < i < D,
‘layers’ of cells that are not directly adjacent to the film surfaces, we obtain:

δF φ
D

δ(φ∆z)
= − 1

2∆z
{+2κ(φi+1)(∇zφ|i+1))− 2κ(φi−1)(∇zφ|i−1))}+ (∂φκ)(∇zφ|i)2

= −∇z{2κ(φi)∇zφ|i}+ (∂φκ)(∇zφ|i)2

≈ −2κ(φ)∇2
zφ− (∂φκ)(∇zφ)2. (B.24)

The second line expresses the first line using central differencing. In the last step,
I have approximated the result of the second-to-last step, which replaces the terms
derived from the discretised gradient with the terms that would have been derived
from a continuous gradient. It can be seen that the last two lines are equivalent
to each other, apart from artefacts left over from the initial discretisation. I thus
dispense of these artefacts, so that we may better approximate the real system
and do away with numerical problems that appear when using the discretised
result (which, I have observed, usually lead to numerical decoupling).

However, what do we do at the boundary of summation, in the cells i = 1 and
i = D? Performing the functional derivative in the cells i = D, we obtain:

δF φ
D

δ(φ∆z)
|D = − 1

2∆z
{−2κ(φD−1)(∇zφ|D−1))}+ (∂φκ)(∇zφ|D)2

= − 1

2∆z
{+2κ(φD+1)(∇zφ|D+1)− 2κ(φD−1)(∇zφ|D−1))}

+ κ(φD+1)(∇zφ|D+1) + (∂φκ)(∇zφ|D)2

= −∇z{2κ(φD)∇zφ|D}+ (∂φκ)(∇zφ|D)2 + κ(φD+1)(∇zφ|D+1)

≈ −2κ(φ)∇2
zφ− (∂φκ)(∇zφ)2 + κ(φD+1)(∇zφ|D+1), (B.25)

where I have introduced terms for ‘virtual grid-cells’ at i = D + 1. However, we
can’t leave these grid-cells in the final answer, we should remove these artefacts
of the discretisation (and include the missing factor of 2 in the final term that has
disappeared because central differencing has a factor of 2 in the denominator) and
keep the continuous result. Using a similar argument for the layer of grid-cells at
i = 1, and combining the answers for i = 1 and i = D with the answer for the
cells 1 < i < D, we obtain:

δF φ
D

δ(φ∆z)
= −2κ(φ)∇2

zφ− (∂φκ)(∇zφ)2 + [2κ(φ)∇zφ]D0 . (B.26)

Therefore the terms δF φ
D/δ(φ∆z) are the same as in the first derivation.

B.2.4 Discretised part of δF φ/δ(∆z)

For the derivative of the discretised part with respect to ∆z, we will not obtain the
same result, because ∆z is present in the denominator of the discretised gradient.
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We obtain for cells 1 < i < D

δF φ
D

δ(∆z)
=

∂

∂∆z

(
∆z

[
κ(φ)

[
φi+1(y)− φi−1(y)

2∆z

]2
])

=
∂

∂∆z

(
∆z

[
κ(φ)

[
ψi+1(y)− ψi−1(y)

2 (∆z)2

]2
])

= −3κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2

= κ(φ)(∇zφ)2 − 4κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2, (B.27)

and, if we make the leap of faith (necessary for the model to reproduce calculated
equilibria when film height is held constant; see chapter 4) to include the surface
terms produced from a continuous gradient in the vertical direction (the different
terms obtained here are a result of the gradient changing as ∆z changes, and
since the surfaces terms should act only at the surface, and not across a volume
of fluid, it seems sensible to keep the continuous result that take into account
that the surface terms are completely local) we obtain

δF φ
D

δ(∆z)
= κ(φ)(∇zφ)2 − 4κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2

− [2φκ(φ)∇zφ]D0 . (B.28)

B.2.5 Scaling and final equations

For δF φ/δ (φ∆z) we have the same result as before:

δF φ

δ (φ∆z)
= + ∂φfFH(φ)− (∂φκ) (∇φ)2 − 2κ(φ)∇2φ

+ (∆z)−1 [+2κ (φ)∇zφ+ ∂φfh] δ
z
h

+ (∆z)−1 [−2κ (φ)∇zφ+ ∂φf0] δz0

− 2

∆z
κ(φ)∇(∆z) · ∇φ, (B.29)

but for δF φ/δ (∆) z the result is modified:

δF φ

δ∆z
= + fFH(φ) + κ (φ) (∇φ)2

− φ∂φfFH(φ) + φ (∂φκ) (∇yφ)2 + 2φκ(φ)∇2
yφ

− 4κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2

− (∆z)−1 [+2φκ (φ)∇zφ+ φ∂φfh] δ
z
h

− (∆z)−1 [−2φκ (φ)∇zφ+ φ∂φf0] δz0

+
2φ

∆z
κ(φ)∇(∆z) · ∇φ. (B.30)

Since ∇z (∆z) = 0 in the model, I have written ∇(∆z) · ∇φ using 3D gradient
operators. The surface energy depending on film height can be calculated as in
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the continuous derivation, giving equation (B.17). It is the expressions above
resulting from performing the functional derivative on a discretised functional
that have been used to test the model in this chapter. This method is more
consistent with how we have discretised the free energy, and should also account
for a reduction in the energy cost of vertical composition gradients as the film
becomes thicker in places, and vice versa.
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Numerical implementation for
3D dewetting model

Most of the general principles behind the implementation of my simulations in
CUDA, to utilise a CUDA-enabled Graphical Processing Unit (GPU), are dis-
cussed in Appendix A, but here I will outline a few key points relevant to the
simulations of chapter 5. The particular implementation I used conserved mate-
rial (of course) and kept the program simple, but there may very well be better
implementations. Also, although I scaled the equations, I have not remarked at
all on this scaling in this section, since it would confuse the matter.

Correct implementation of the rate equations (5.7), (5.8) and (5.9) and time-
step is crucial for material conservation to be honoured; the governing equations
of course conserve material, but it can be easy to misinterpret the equations
upon implementation. In my implementation I stored values of h(y) and φ(i, y),
although one could probably store the values h(y) and φ(i, y)∆z(y) instead.

Suggestion for 2D simulations → 3D simulations

In order to make use of shared memory effectively, in the same way discussed in
Appendix A, it seemed that the best way to run 3D simulations was to divide the
simulation up into 2D slices. When launching a process (kernel) on the GPU, I
would then loop over these 2D slices. This was also the simplest way to turn a
2D simulation into a 3D simulation. This made the program simpler, and made
memory access from global memory and storage of values using shared memory
much more efficient and manageable.

While calculating values for a set of simulation grid cells within a 2D slice of
the array, values corresponding to the previous, current and next 2D slices can
be stored in shared memory, and current slice → previous slice and next slice
→ current slice as the 3D array is traversed by stepping through the 2D layers.
This means we can efficiently use memory and make efficient memory accesses. I
would highly recommend implementing a 3D simulation in a similar way.

149
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C.1 Lateral Transport Step

The equations governing the lateral transport step in which material is moved
laterally such that the height of the film can change, equations (5.7) and (5.8),
involve the transfer of material in the form of h(y) and φ̄(y)h(y), which together
specify the amount of, and type of, fluid that is transferred.

C.1.1 Explicit definition of Material Currents

To keep track of everything and make sure that material conservation is locally

correct, it is easier to explicitly introduce material currents
−→
J . In 3D there are

two components to these currents (for the lateral transport step there is only the
lateral movement of material, so the currents I define here don’t have a vertical
component) though my discussion will only discuss one component for simplicity.
These material currents can be defined at the centre of a grid cell j (i.e. Jj) or
between grid cells j and j + 1 (i.e. Jj+1/2) (note that by grid cell I mean the
result of discretising the system so that it can be simulated on a computer). The
lateral grid has a spacing ∆y, whilst the vertical grid (arising already from the
a priori discretisation of the film) has spacing ∆z(j) (where the lateral spacial
variable y has been replaced by a discrete index j):

Assuming that the chemical potentials have already been calculated from
equations (5.11) and (5.12) (as discussed in Appendix A, it is best to calculate
and store the chemical potentials before using them. Calculation and storage
of the average φ̄(j) in the same way is also recommended) we can define the
following currents:

∇∗µc(j) ≡ ∇jµh(j) + φ̄(j)
1

D

D∑
i=1

∇jµφ∆z(i, j)

≡ −J∗h(j)− J∗φ̄∆z(j), (C.1)

J∗h(j) ≡ −∇jµh(j), (C.2)

J∗φ̄∆z(j) ≡ −φ̄(j)
1

D

D∑
i=1

∇jµφ∆z(i, j), (C.3)

where ∇jµφ∆z(i, j) ≡ [µφ∆z(i, j + 1)− µφ∆z(i, j − 1)] /2∆y for example i.e. cen-
tral differencing. We can then define the currents

Jh(j) ≡
h(j)3

3η
J∗h, (C.4)

Jφ̄∆z(j) ≡
h(j)3

3η
J∗φ̄∆z, (C.5)

and then

∂h(j)

∂t
= −∇j ·

(
Jh + Jφ̄∆z

)
, (C.6)

∂φ̄(j)h(j)

∂t
= −∇j ·

(
φ̄Jh + φ̄Jφ̄∆z

)
. (C.7)
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Using central differencing on the latter equations, we then obtain

∂h(j)

∂t
= −Jh(j + 1)− Jh(j − 1)

2∆y
−
Jφ̄∆z(j + 1)− Jφ̄∆z(j − 1)

2∆y
, (C.8)

∂φ̄(j)h(j)

∂t
= − φ̄(j + 1)Jh(j + 1)− φ̄(j − 1)Jh(j − 1)

2∆y

−
φ̄(j + 1)Jφ̄∆z(j + 1)− φ̄(j − 1)Jφ̄∆z(j − 1)

2∆y
. (C.9)

C.1.2 Forward-Difference Time-Step

The values for the rate of change of material can be calculated with the equations
above. To update the values of h(j) and φ(i, j) such that matter is conserved, we
can perform the following

[
φ̄(t+ dt)h(t+ dt)

]
= φ̄(t)h(t) + dt

∂φ̄h

∂t
, (C.10)

h(t+ dt) = h(t) + dt
∂h

∂t
, (C.11)

φ̄(t+ dt) =
[
φ̄(t+ dt)h(t+ dt)

]
/h(t+ dt), (C.12)

such that we can, in this order, store the values
[
φ̄(t+ dt)h(t+ dt)

]
in the array

for φ, update the values in the height array, and then convert the φ array back
to storing φ values, in such a way that material is correctly conserved.

Note that the steps above concern the change of h and φ̄: the change in ∆z
is implied very simply through ∆z = h/D where D is the number of grid cells
in the vertical dimension. To account for a change in φ̄(y), the cells φ(i, y) must
change. This is done very simply by evenly distributing the amount of material
that is moved in the lateral step amongst the grid cells i: if the average amount of
material over grid cells i at y must change, then changing the amount of material
in each grid cell i at y by how much the average at y changes will account for this.
Of course, it is really

[
φ̄h
]

that changes and so it is this value that must be evenly
distributed, as can be seen by following the steps above (equation (C.12) simply
converts back to φ̄ for convenience). So we can implement the aforementioned
equations as

[φ(i, y)(t+ dt)∆z(t+ dt)] = φ(i, y)(t)∆z(t) + dt
1

D

∂φ̄h

∂t
, (C.13)

∆z(t+ dt) = ∆z(t) + dt
1

D

∂h

∂t
, (C.14)

φ(i, y)(t+ dt) =
[φ(i, y)(t+ dt)∆z(t+ dt)]

∆z(t+ dt)
. (C.15)
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C.2 Diffusion Step

∆z(j) doesn’t change in these steps because the film height h(j) doesn’t change,
therefore in my implementation of the diffusion step I did not find the need to
explicitly calculate and store any currents (although the currents between grid
cells are implicit in my implementation nonetheless).

C.2.1 Diffusion from Chemical Potential

We must implement the following equation

∂φ(i, j)∆z(j)

∂t
= M∇ · (∆z(j)∇µφ∆z(i, j)) , (C.16)

where the gradient operator is now for both directions represented by i and j,
rather than just the lateral direction j. My implementation was

∂φ(i, j)∆z(j)

∂t
=

M

∆y

[
(µj+1 − µj)

∆y

(∆zj+1 + ∆zj)

2
− (µj − µj−1)

∆y

(∆zj + ∆zj−1)

2

]
+

M

∆z

[
+

(µi+1 − µi)
∆z

∆z − (µi − µi−1)

∆z
∆z

]
, (C.17)

where (µj+1 − µj) /∆y is essentially a current between grid cells j + 1 and j,
and (∆zj+1 + ∆zj) /2 can be thought of as the grid-cell wall through which this
current passes (the average of the heights of the grid-cells j + 1 and j). Diffusion
in the vertical direction is simpler, since the lateral grid spacing ∆y is constant
everywhere. Of course, the currents throught the surfaces must be set to zero.
Updating the value of φ with a forward-difference time-step is then very simple,
because ∆z(j) does not change in this diffusion step

φ(t+ dt) = φ(t) + dt
1

∆z(j)

∂φ(i, j)∆z(j)

∂t
. (C.18)

C.2.2 Random Thermal Currents

The RHS of equation (C.17) can also include random thermal currents, as in my
simulations. From any particular random distribution, one can sample currents−→
J T whose components are the random numbers selected from the distribution,
such that these currents are between grid cell. A noise term that can be added
to (C.17) can then be written in terms of these currents as (using one component
for simplicity, specifically j in which direction the grid is non-uniform)

noise =
1

∆y

[
JTj+1/2

∆z(j + 1) + ∆z(j)

2
− JTj−1/2

∆z(j) + ∆z(j − 1)

2

]
+

1

∆z

[
+JTi+1/2∆z − JTi−1/2∆z

]
. (C.19)

Throughout the entire diffusion step, the currents through the film surfaces must
be set to zero, and this includes the random thermal currents.
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Terminology

Bilayer: The film is vertically segregated into two phases (layers) with an interface
between them. These phases coat the film surfaces due to preferential surface
attraction.

Blend: A liquid mixture of two components (e.g. a blend of two polymers).

Coexisting Equilibria: Profiles which coexist together, describing different phases
in the film, as for a laterally inhomogeneous film of two laterally segregated
phases.

Dewetting: (disambiguation) process by which a fluid film will not uniformly coat
a substrate, due to forces which cause areas of substrate to tend towards ‘drying’;
this can lead to isolated droplets of fluid, but more generally will cause some
undulation of the fluid film surface.

Fixed Points: Regions of phase space that require an infinite length of film to
pass through, since these points satisfy q̇ = 0 (composition gradient is zero) and
q̈ = 0 (rate of change of composition gradient is zero).

Independently-Existing Equilibria: Profiles which describe the film entirely and
do not coexist with other profiles, as for a laterally homogeneous film.

Lateral Phase Separation: Phase separation into laterally coexisting phases, whether
from an approximately homogeneous film or a bilayer film, resulting in a laterally
segregated film.

Lateral Phase Separation via a Transient Wetting Layer: Vertical phase sepa-
ration initially proceeds, due to preferential surface attraction, resulting in a
vertically segregated film. This state is unstable, and lateral phase separation
occurs, resulting in a laterally segregated film.

Laterally Segregated (film): ‘column’ phases with interfaces perpendicular to the
surfaces.

Mean-field: Average interactions are used in place of counting up individual in-
teractions, such that the local behaviour can be written in terms of macroscopic
average properties. Works well for polymer systems, but rarely for fluids of simple
molecules in which fluctuations mean the description fails.

Monolayer: The profile is approximately constant φ(z) ≈ φ̄ since the blend is
miscible. There may be an excess of a component near the film surfaces due to
preferential attraction, depleting that component in the rest of the film.
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Phase Diagram: a diagram, drawn in a space of variables such as composition
and temperature, that separates regions corresponding to different stable phases
with lines, which correspond to the limits of stability of these phases. e.g. for
water, a phase diagram in the temperature-pressure plane separates regions of
vapour, liquid and solid.

(Phase) Equilibria: profiles which minimise the free energy of the film, and there-
fore correspond to equilibrium. The term phase is used in analogy with bulk
blends e.g. an A-B blend can exist as: a miscible blend (one-phase); or A-rich
and B-rich phases (two-phase).

Phase Portrait: Plot of trajectories in phase space that minimise free energy.

Phase Space: A space of the variables that describe a system e.g. position and
momentum, composition and composition gradient.

Pinning: Values of (φ, 2κ∇zφ) at the film surfaces are determined by surface
boundary conditions, such that, in phase space, the ends of trajectories are always
pinned to these boundary conditions.

Polymer: A molecule consisting of repeated units, like a string of beads or a
chain. These repeat units are called monomers. A chain segment usually refers
to a single monomer, but may refer to several monomer units in order that the
chain be flexible around these segments.

Profile: description of a polymer-blend by volume fraction φ as a function of
spatial variables e.g. φ(z, y), where z is the vertical (depth) dimension and y is
the lateral (parallel to substrate) dimension. Throughout this thesis the profiles
are discussed primarily in 1D as φ(z).

Separatrix: Phase portraits that flow through fixed points in phase space. Tra-
jectories that flow through these fixed points (these trajectories must therefore
be on the separatrix) correspond to infinitely thick films, hence as (finite) films
become thicker their corresponding phase portraits tend to, but don’t meet, the
separatrix.

Simple molecule: molecules that can be treated as spheres, because they consist of
a few atoms at most and their internal structure need not be explicitly considered.

Solution: A liquid mixture of solvent (e.g. water, toluene) and solute (e.g. sugar,
polymer), in which the solute is dispersed in the solvent.

State(s): (disambiguation) the overall configuration of the film, and/or the equi-
libria contained in that configuration e.g. a film in a laterally segregated state
will consist of laterally coexisting states. Non-specific term.
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Surface Bifurcation: Mechanism explaining the dynamics of lateral phase separa-
tion via a transient wetting layer, describing how the surface values (φ, 2κ∇zφ) of
the TWL divide into two values that evolve towards those for laterally coexisting
equilibria, whilst honouring the surface boundary conditions at all times.

Surface/Wall: the boundary formed by the interface between the fluid and, for
example, air or a vacuum. While the terms will often be used interchangeably, a
Wall is specifically meant to be a rigid planar surface, while a Surface could be
non-rigid and deformable. A substrate such as a silicon wafer, on which a fluid
film may rest, is therefore a wall, whereas the fluid-air boundary may be referred
to as either a wall or a surface depending on the context.

Trajectory: Path through phase space e.g. path of all the points of position and
momentum that a particle had as it moved.

Vertical Phase Separation: Phase separation into vertically layered phases, e.g. a
bilayer, usually caused by preferential surface attraction.

Vertically Segregated (film): Layered phases with interfaces parallel to the sur-
faces.

Wetting: when one phase of a binary phase system entirely coats a surface, ex-
cluding the other phase from contact. Although wetting is strictly defined to
mean that the latter configuration is stable and the phase coating the surface is
infinitely thick in a semi-∞ system (see main text throughout), the term is usu-
ally used more loosely to describe most scenarios when a phase coats a surface.
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Publications

The work in this thesis has been published/submitted as follows:

1. Sam Coveney and Nigel Clarke. “Surface roughening in poly-
mer blend thin films by lateral phase separation: A thermody-
namic mechanism.” In: The Journal of Chemical Physics 137
174901 (2012)

2. Sam Coveney and Nigel Clarke. “Breakup of a Transient Wet-
ting Layer in Polymer Blend Thin Films: Unification with 1D
Phase Equilibria.” In: Physical Review Letters 111 125702
(2013)

3. Sam Coveney and Nigel Clarke. “Lateral phase separation in
polymer-blend thin films: Surface Bifurcation.” In: Physical
Review E 89 062603 (2014)

4. Sam Coveney and Nigel Clarke. “Pattern Formation in Poly-
mer Blend Thin Films: Surface Roughening couples to Phase
Separation.” In: Physical Review Letters 113 218301 (2014)
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