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Abstract 
 
Yttria stabilised tetragonal zirconia polycrystal (Y-TZP) ceramics have attracted particular 

attention in medical applications due to their outstanding mechanical properties. In 

particular they have increased toughness compared to other ceramics such as alumina. 

Transformation toughened zirconia has the highest fracture toughness of the oxide 

ceramics, but its engineering applications are currently limited because hydrothermal 

degradation can catastrophically degrade its strength. Hydrothermal degradation is the 

autocatalytic transformation of the metastable tetragonal (t-ZrO2) to the equilibrium 

monoclinic (m-ZrO2) which occurs at a free surface when held in a moist atmosphere at 

elevated temperature (typically 100-200oC). The underlying cause of this degradation 

process is still a matter of considerable debate and attempts to improve the resistance of Y-

TZPs to hydrothermal degradation have generally resulted in unacceptable loss of 

toughness. The most prominent example of zirconia hydrothermal degradation is the failure 

of femoral heads in hip prosthetics. Hydrothermal degradation is not the only cause of hip 

joint failure, but tribological behaviour is also important, and the interaction between wear 

and ageing is crucial to developing zirconia applications.  The origin of the detrimental 

effects of ageing on the wear of zirconia remains controversial. In the current work the wear 

behaviour of zirconia against alumina was investigated. In particular, a series of Y-TZPs have 

been developed with ternary and quaternary dopant additions designed specifically to 

reduce the rate of hydrothermal degradation to see whether these additions affected the 

wear behaviour. Ceramics with 0.1%wt Al2O3 and 0.1%(La2O3+Al2O3) doped 3Y-TZP ceramics 

were manufactured under conditions that yielded materials with the same grain size and 

fracture toughness. TEM of sintered materials demonstrated that the ternary oxide 

additions segregated to grain boundaries. Prior to degradation the surfaces were prepared 

by careful polishing to produce an extremely flat surface, followed by thermal etching to 

minimise residual surface strains and to ensure the starting surface was fully tetragonal 

zirconia. After degradation surfaces were examined using atomic force microscopy and X-

ray diffraction and measurements were taken of the transformation depth on cross-

sectional samples. Materials with ternary oxide additions exhibited superior degradation 

resistance to the base zirconia material. To study the ageing behaviour on wear behaviour in 

zirconia the specimens were aged at 134 ᵒC in superheated steam (one hour in these 
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conditions is believed to equate to approximately one year in vivo). A UMT tribometer in 

pin–on–disk configuration was used for the tests. The effect of two different lubricants 

(water and bovine serum) was also investigated. The specific wear rates were measured to 

be at or below 10-6 mm3/Nm for all samples, indicating that mild wear predominated 

throughout. Surprisingly, the wear rate of some of the aged specimens was lower than that 

for the non-aged samples. The worn surfaces exhibited evidence of surface fracture and 

grain pull-out. Cross-sectioning the surface by FIB and examination in the TEM showed that 

transformation from tetragonal to monoclinic zirconia occurred, with grain pull out resulting 

from loss of material from within the monoclinic zirconia layer. TEM also revealed an 

amorphous tribolayer formed on top of the worn surface, which appeared to be a 

combination of the substrate material and the lubricant.  
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TZP       Tetragonal Zirconia Polycrystals 

Y             Y2O3 

Z            3Y-TZP sample 

AZ         0.1 wt. % Al2O3 doped 3Y-TZP sample 

LAZ       0.1 wt. % Al2O3 / 0.1 wt. % La2O3 doped 3Y-TZP sample 

DZ         Degraded 3Y-TZP sample 

DAZ      Degraded 0.1 wt. % Al2O3 doped 3Y-TZP sample 

DLAZ    Degraded 0.1 wt. % Al2O3 / 0.1 wt. % La2O3 doped 3Y-TZP sample 

W        Water lubricant 

B          Bovine lubricant 

COF     Coefficient of friction 

AFM     Atomic force microscopy 

SEM      Scanning electron microscopy 

TEM      Transmission electron microscopy 

FIB         Focused ion beam microscopy 
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1. Introduction 

Total hip replacement (THR) is a major operation to replace a damaged hip with an artificial 

part to improve the mobility of patients suffering from a wide range of hip joint diseases. A 

broad range of the hip joint health problems such as osteoarthritis, bone disease, wear, and 

trauma have been treated since total hip joint replacement were first successfully 

introduced by Mackee Farrar and Charnley  in 1956 [1].  Earlier attempts with materials such 

as pyrex and teflon failed due to the poor design and inadequate material properties [2].  

The current life time of the hip joint implant is between 10 and 15 years which is insufficient 

for the increasing numbers of younger and more active patients seeking treatment [3]. 

Hence, the demand for new materials and longer lasting designs is increasing. Current 

designs of the hip joint and the acetabular cup (large pelvic bone) may be either hard-on-

hard or hard-on-soft combinations i.e. metal-on-metal, metal-on-ultra high molecular 

weight polyethylene (UHMWPE), metal-on-ceramic, UHMWPE-on-ceramic and ceramic-on-

ceramic.  

A polyethylene cup in conjunction with cobalt chrome metal head is a popular 

configuration, but unfortunately the wear rate of the polymer cup is quite high. The 

liberated wear debris reacts with body fluids leading to aseptic loosening, adverse tissue 

reactions and bone resorption [4]. Despite this drawback survival rates as high as 75% over 

20 years implant life time have been reported for this implant type [5].  

The biocompatible nature of ceramics has been commercially recognised since the 1970s, 

and alumina has always led the field. The world’s leading ceramic hip joint (Biolox Delta), 
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manufactured by Ceramtec Germany, uses the fourth generation of alumina developed - 

zirconia toughened alumina (ZTA). 

Zirconia has three times higher fracture toughness than alumina. Since 1985, more than 

600,000 stabilized zirconia femoral heads for THR have been implanted worldwide in the 

form of Y-TZP. However, the effects of ageing, mechanical stresses and low thermal 

conductivity on wear of zirconia implants is complicated by interaction of these processes 

with some unexpected consequences.  Clinical studies demonstrated that those patients 

with stabilized zirconia implant can experience problems related to wear and phase 

instability. The most high profile zirconia failure occurred in 2001 when more than 350 Y-

TZP implanted hip prostheses failed requiring revision surgery. The French manufacturers, 

SGCA Desmarquest, voluntarily suspended the use of prostheses from the batches involved 

in the failure [6].The catastrophic failures were linked to an “accelerated transformation” in 

zirconia.  

Pure zirconia at room temperature has three polymorphic phases, cubic, tetragonal and 

monoclinic. The tetragonal phase becomes stabilised at room temperatures by dopant 

additions such as yttrium, calcium and magnesium. Doping introduces oxygen ion vacancies 

within the structure and which are essential for tetragonal phase retention [7]. However, 

tetragonal zirconia is metastable at room temperature and it can transform to the 

monoclinic phase. This tetragonal to monoclinic phase transformation (t→m) is the main 

reason for zirconia’s outstanding fracture toughness.  Kobyashi was the first to discover 

tetragonal to monoclinic phase transformation at low temperature in a moist environment, 

known generally as ageing or low temperature hydrothermal degradation [7]. Doping 
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zirconia with some metal oxides decelerates the kinetics of this transformation. The effects 

of this on the wear and ageing of zirconia are the main subjects of this project.  

One of the main concerns with using zirconia as a tribological material is the concern over 

hydrothermal degradation. However, Nogiwa and Rainforth [23] demonstrated ways in 

which the degradation rate can be substantially reduced without any detrimental effect on 

mechanical properties.  

In the current study, a key objective was to understand whether the additions of ternary 

and quaternary dopants, that reduce the rate of degradation, have any effect on the wear 

rate.  

Test conditions were chosen to maximise the likely hood that degradation would occur. In 

addition, the effect of degrading the surface of the zirconia before the wear test on the 

subsequent wear behaviour was also investigated. This has not been undertaken before, but 

it believed to be a potential problem arising with sterilisation of zirconia components prior 

to insertion in the body. 

 

 

 

 

 

 

 

 

 



4 
 

2.  Literature 

2.1. Total Hip Joint Replacement 

Total hip replacement (THR) is a major operation to replace a damaged hip with an artificial 

part to improve the mobility of patients suffering from a wide range of hip joint diseases. In 

this operation real joint performance is mimicked using an acetabulum cup fixed inside the 

pelvis, and the ball component is inserted inside the femur bone, Figure 2.1. 

 

Figure2.1: Hip joint implants [8]. 

THR is an efficient and a practical solution, reducing severe pain in these patients, leading to 

increased global demand as a treatment method for hip joint disfunctionality, such as 

arthritis or trauma. The earliest THR was an ivory ball and socket joint invented by Gluck, in 

Berlin, in 1891.  Pyrex and acrylic have also been utilised. Initially both material and design 

contributed to a very short life for replacement parts, and revision surgery was necessary 

[2]. Clinical performance has been improved through both design modification and 

materials development, particularly since the 1950s, when more long lasting pairs were 

introduced to the biomaterial market.  The McKee-Farrar metal-on-metal [3] and Charnley 

metal-on-polymer prosthesis [2] were both successful designs. Ceramic-on-ceramic (C-O-C) 

components were introduced for the first time in France by Boutin in the early 1970s using 

alumina-on-alumina [9]. The early C-O-C hip design by Ceraver Osteal Hip was used in 

http://www.anatomie-physiologie.de/ana_site/anato064.html
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Europe only, but the Mittlemeier and Heisel design in Germany gained worldwide success 

[10].  Initial ceramic-on-ceramic results were very encouraging with satisfactory results in 

the first 200 cases, and no reported failures or fractures in the early years. 

Pairs in current use may be categorised into hard-on-hard and hard-on-soft combinations 

with either Ceramic-on-(ceramic, polymer and metal) or metal-on-(ceramic, polymer and 

metal) are currently used, Figure 2.2.  

 

Figure 2.2: Potential and existing combination for THR combinations 

The wear rate is one of the main concerns in this application because it affects the life of the 

replacement joint. Table 2.1 [4] gives a brief summary of the in vitro wear rate reported in 

the literature. The most commonly used hard-on-soft pair is metal-on-polymer (ultrahigh 

molecular weight polyethylene) yet the polyethylene generates wear particles at a very high 

rate. The same problem arises with alumina-on-polyethylene and zirconia-on-polyethylene.   

Longer life time and lower failure rates have been achieved in recent years using hard-on-

hard combinations. For example a cobalt–chromium (CoCr) alloy introduced in 1938 as a 

general wear resistant material used in a metal-on-metal (MOM) design showed up to 100 

times less wear debris generation. The market for this configuration grew until 2007 when a 

voluntary warning notice issued by Depuy (French hip joint manufacture) alerted high wear 
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debris of MOM pairs. Metallosis is the given name to metal ion release on MOM wear and 

MOM implants were found to cause inflammatory diseases and suffer long term 

catastrophic failure. Since 2012 the FDA have advised that patients with MOM implants 

have regular blood and urine tests for prompt identification of any adverse tissue reaction 

and excessive levels of cobalt or chromium ions within their blood stream [11].  

Attention is therefore now focussed on ceramic-on-metal pairing inhibiting the fracture risk 

in ceramics [12].  

Table 2.1: Wear rate of bearing components of hip joint prostheses [4] 

Ball-on-socket material Clinical wear rate (µm/year) 

Metal-on-polymer 100-300 

Ceramic-on-polymer 50-150 

Metal-on-metal 2-20 

Ceramic-on-ceramic 2-20 

 

 

2.2. Ceramic-On-Ceramic THRs 

The emergence of ceramics-on-ceramic pairs (COC) in the arthroplasty industry arose from 

its success as a femoral head when paired with UHMWPE cups. Table 2.2 provides a brief 

history in ceramic innovations [13]. The excellent mechanical properties of alumina, such as 

high hardness and biocompatibility have resulted in it replacing metals, and its popularity 

continues to increase. 
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Table 2.2: A brief history of ceramic innovation [13] 

 

Alumina and zirconia can both be used in hip joint replacements, but alumina’s performance 

has gained more market success than zirconia. The development of alumina occurred 

through four different generations of materials. The third generation alumina by benefit of a 

hot isostatic pressing technique achieved a density near theoretical density. Low density 

was the main disadvantage of the older generations in alumina implants. The addition of 

zirconia (fourth generation) increases both the strength and fracture toughness (primarily 

through the introduction of the transformation toughening mechanism in the zirconia). By 

2005 over 5,000,000 alumina femoral heads and around 500,000 alumina acetabular cups 

had been implanted worldwide [13]. However, the low fracture toughness of ceramics 

 

 

Year 

 

 

Ceramic 

 

 

Diameter(cm) 

 

 

Details 

 

 

Manufacture company 

1970 Alumina 32 Non-modular ceramic ball and 1 piece cemented ceramic cup Ceraver Inc: Boutin MD 

1973 Alumina 28,32,35 Modular ceramic balls 

Feldmuhle Inc: Griss; 

Mittlemeier 

MD 

1977 Alumina 28,32 Modular ceramic balls Ceraver Inc: Cedel MD 

1985 Zirconia (Y-TZP) 22,26,28,32 Modular zirconia balls 

JMMC Japan, Metoxic 

Switzerland, Morgan 

Matrock –UK,NGK –Japan, 

Saint Gobain-France 

1989 Alumina 28,32 Modular ceramic cup, threated with hydroxyapatite coating JRI Inc; Furlong MD 

1989 Alumina-zirconia 26,28,32 Various alumina and Y-TZP zirconia approved by FDA, for use with polyethylene bearing  

1997 Alumina 36 Large ball. approved by FDA, for use by Write Medical with PE cups Biolex forte Ceram Tec AG 

1999 Zirconia(Y-TZP) 28-32 Beginning of problem in manufacturing and major fracture 
Prozyr, Saint Gobin 

Descmarquest Inc , France 

2000 Alumina-zirconia 28-32 Biolox Forte and delta ceramic balls and liners Ceram Tec AG 

2000 Alumina-zirconia 28-32 Biolox Delta ball approved by FDA ,with PE cups Ceram Tec 

2003 Alumina 28-32 Ceramic liners FDA approved Biolex forte 

2006 Alumina-zirconia 36 Large ball of Biolox Forte approved by FDA, for use with Polyethylene cups Ceram Tec AG 
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remains a big concern with some sections of the orthopaedic community deeming fracture 

rates >0.004 % as being unacceptably high [6]. Revision surgery is a very complicated and 

therefore expensive procedure which puts patients at risk so there is strong market demand 

for a material with greater chemical and mechanical stability, which produces minimal wear 

particles and adverse body reactions. 

Regardless of the materials combination used then aseptic loosening of the joint is one of 

the most common reasons for THR revision surgery. Loosening is believed to result from 

wear debris migrating into the surrounding tissue provoking a physiological reaction that 

causes rejection of the prosthesis. Wear of the joint can be uniform, but is usually localised 

in a region of severe wear on the head or cup, commonly known as stripe wear. This area 

usually has a different contrast from the original surface which can be observed with the 

naked eye, Figure 2.4 [16]. Stripe wear is believed to form as a result of microseparation 

during the walking cycle. Figure 2.3 [14], [15] shows a schematic diagram of how 

microseparation occurs during the swing phase of the walking cycle, Figure 2.3A. During 

vertical movements of the head in the heel strike phase, large amounts of load transfer to 

the head, which causes partial contact of the head and rim, Figure 2.3B, and severe wear 

damage is initiated due to edge loading. Material detachment during progressive wear 

changes the original geometry and in severe cases, the actual size of the implant. Revision 

surgery becomes necessary in such cases. While there are limitations to access real 

retrieved hip joints, in vivo experiments are well designed to create such a pattern for 

further study. 
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Figure 2.3: Schematic drawing to show walking cycle applied stress to C-O-C implant and part failures 
performance [14, 15]. 

 

Figure 2.4: Stripe wear region on ceramic head and cup [16]. 

2.3. Zirconia in THR 

Christel [17] was the first to recognise zirconia as a bio material and its higher fracture 

toughness and higher flexural strength offer potential advantages for implants compare to 

alumina. Zirconia has the advantages of non-cytotoxicity, less inflammation reaction, 

outstanding fracture toughness. Zirconia has a polymorphic crystal structure, and its ability 

to transform from tetragonal to monoclinic phase enhances the fracture toughness (see 

next section for detail). Ceramic steel was the name given to zirconia after discovery of the 

‘’transformation toughening process’’ by Garvie *18+. Tetragonal zirconia polycrystalline 

(TZP) is a toughened zirconia with the addition of 3 mol % of yttrium oxide to partially 

http://www.intechopen.com/source/html/43743/media/image2_w.jpg
http://www.intechopen.com/source/html/43743/media/image2_w.jpg
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stabilise the tetragonal phase. In the 1990s Y-TZP material opened a new way for design of 

implants which were not successful with alumina. Manufacturing of smaller hip joints for 

example 22mm head size and Y-TZP knee implants [6] were in this field. In recent years, 

some zirconia-based ceramics such as Mg-PSZ and TZP have been employed in biomaterial 

applications due to their low chemical reactivity and high strength [7]. Table 2.3 compares 

the properties of zirconia based ceramics with those of alumina. 

There are conflicting reports of the success of zirconia implants for hip joint replacements. 

Some reports show very low rates of failure of 0.002%, whereas others reveal disastrous 

performance *6+. The high failure rates are believed to be associated with “ageing” or 

“hydrothermal degradation” *7+.  Saint Gobain Ceramiques Avances Desmarquest (France) 

was one of the manufacturers of hip joint prostheses that were suspended by the FDA in 

2002.  This was due to reports of a higher than expected rate of hip breakages inside the 

patient’s body, sometimes within a few months of surgery. The high failure rate was 

originally thought to be a result of hydrothermal degradation; it was later shown to be a 

result of poor ceramic properties. In this series of hip joints, the sintering stage had been 

changed from a batch process to a continuous process, resulting in unacceptably high 

porosity and poor strength. These catastrophic events seriously eroded the medical 

community’s confidence in zirconia as a biomaterial, triggering renewed research efforts to 

address this weakness and develop this otherwise promising material [6]. 
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Table 2.3: Properties of zirconia based ceramics in compare with alumina [7] 

Property units Alumina Mg-PSZ TZP 

Chemical composition  99.9% Al2O3+MgO ZrO2 ZrO2 

Density gcm
-3

 ≥3.97 5.74-6 >6 

Porosity % <0.1 - <0.1 

Bending strength MPa >500 450-700 900-1200 

Compression strength MPa 4100 2000 2000 

Young modulus GPa 380 200 210 

Fracture toughness MPam
-1 

4 7-15 7-10 

Thermal expansion 

coefficient 
K

-1 
8x10

-6 
7-10x10

-6 
11x10

-6 

Thermal conductivity WmK
-1 

30 2 2 

Hardness H.V 0.1 2200 1200 1200 

 

The following sections will first consider the tribological behaviour of zirconia followed by 

discussion of wear, microstructure, phase transformation, transformation toughening 

process and hydrothermal degradation behaviours. 

2.4. The Structure of Zirconia 

Zirconia is a natural oxide mineral found in two forms, baddeleyite and zircon (ZrO2.SiO2). 

There are numerous ways to produce pure zirconia from these ores but commonly used 
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ones are vapour phase reaction and sol-gel processing. Zirconia’s toughness, wear and 

corrosion resistance have numerous industrial applications e.g. extrusion dies, machinery 

wear parts and piston caps. Ion conductivity and thermal fracture resistance of partially 

stabilized zirconia are utilised in oxygen sensors and fuel cells, and its low thermal 

conductivity in thermal barrier coatings for aerospace parts.  Well-polished zirconia is used 

for feeler gauges. The outstanding mechanical properties of toughened zirconia compared 

to the other ceramic oxides have been extensively demonstrated.  

Zirconia has three well defined polymorphs at ambient pressure, which are stable in 

different temperature ranges, Figure 2.5. The monoclinic structure (space group P2₁/c) with 

seven fold coordination is the thermodynamically stable phase from room temperature up 

to 1170°C. At this temperature the structure transforms to tetragonal (space group 

P4₂/nmc), which is stable up to 2370 °C. The cubic polymorph (space group CF2) nucleates in 

this temperature and remains stable up to 2680 °C (the melting point of zirconia). Both the 

later phases are in eight fold coordination [7]. 

 

 

Figure 2.5: Schematic representation of the three main zirconia polymorphs: cubic (a), (b) tetragonal and (c) 

monoclinic [7]. Red and blue spheres show Zr
4+

 and O
2-

 respectively. 
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2.4.1. Stabilisation of Zirconia 

During the transformation from the tetragonal to the monoclinic phase the zirconia lattice 

undergoes a 2-5 % volume expansion and 16% shear strain. This transformation, which 

occurs for example during the post sintering cooling cycle, is martensitic in nature. As part 

of this martensitic phase transformation, twins are formed in the monoclinic phase, often 

with associated microcracking, in order to relieve the lattice strain resulting from the 

transformation. The importance of the creation of oxygen ion vacancies in the lattice to 

stabilize both the tetragonal and cubic zirconia phases is well documented [19]. Additions of 

appropriate concentrations of metal oxide dopants such as CaO, MgO, Ce2O3 and Y2O3, 

generates these oxygen ion vacancies. Tuning the concentrations of the dopants yields 

different varieties of the toughened zirconia [7]. The two main classes are partially stabilised 

zirconia (PSZ), where the metastable tetragonal zirconia is contained within a cubic zirconia 

matrix, and tetragonal zirconia polycrystals (TZP), where a fully metastable tetragonal 

structure is obtained. TZPs may also contain small fractions of cubic and/or monoclinic 

phases. In Table 2.4 the ionic radii of some dopants added to the zirconia are given. 

Generally ions with a radius within 40% of Zr ⁴⁺ are able to stabilize or partially stabilise the 

zirconia. 
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Table 2.4. Ionic radius of different dopant cations [19]. 

 

 

Reducing the oxygen partial pressure during sintering and doping the material with 

oversized (Y³⁺ and Gd³⁺) and undersized (Fe³⁺ and Ga³⁺) trivalent cation in the ZrO2 lattice 

generates oxygen vacancies. The homogeneity of the dopants (i.e. whether they are present 

throughout the lattice or are segregated to the grain boundaries), as well as the sintering 

condition, has a considerable influence on the microstructure (grain size, phase constitution 

etc). 

2.4.2. Transformation Toughening Process 

Various toughening mechanisms, such as transformation toughening, microcrack 

toughening and crack deflection toughening may be applied to zirconia ceramics. The t-m 

phase transformation which occurs at < 900oC is a consequence of an athermal, diffusionless 

and displacive solid-state phase change known as martensitic transformation. This involves 

the simultaneous movement of a large number of atoms by distances smaller than one 

atomic spacing. In un-doped zirconia, this transformation results in considerable loss of 

mechanical strength, due to the inherently low strength of the monoclinic phase and the 

extensive microcracking.  However, in a TZP or PSZ, where the combination of grain size and 

Cation                Ionic radius (nm) 

Mg
2+

                            0.089 

Ca
2+

                              0.112 

Y
3+

                                0.102 

Ce
4+

                              0.097 

Nb
5+                                             

0.074 

Ta
5+

                               0.074 
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dopant concentration are optimised, the transformation to monoclinic zirconia can be 

constrained to around a propagating crack, Figure 2.6.  The volume expansion associated 

with the tetragonal to monoclinic transformation results in a compressive stress inside the 

transformed region. It is specifically the action of closing the crack in the area behind the 

crack tip, called the crack wake (Figure 2.6) that is responsible for slowing crack propagation 

and thereby toughening the ceramic. The expansion associated with the transformed zone 

in the wake zone that results in closure of the crack, is referred to as 'crack shielding'. As the 

crack grows, the size of the wake zone expands and therefore the amount of transformed 

monoclinic phase becomes larger [7]. This can result in R curve behaviour, i.e. where the 

value of K increases with an increase in crack length, until eventually, K reaches K1C and 

failure occurs. In fact K is the stress-intensity factor which determines the fracture 

toughness of most materials. 

 

Figure 2.6: Crack Propagation: The propagating crack exerts a compressive force around the crack tip, which 
can toughen the ceramic [7]. 
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2.4.3. Hydrothermal Degradation 

The Achilles heel of transformation toughened zirconia based ceramics is the spontaneous 

phase transformation of metastable tetragonal zirconia to monoclinic phase at 

temperatures between 100-500 °C, particularly in the presence of water vapour, known as 

hydrothermal degradation or aging. Kobayashi, who discovered this phenomenon for the 

first time in 1981, reported significant loss of strength due to the microcracking which was 

detected after aging [7]. Water molecules and even water vapour in air is a strong trigger for 

this ageing process. The metastable tetragonal grains undergo martensitic transformation 

during water penetration inside the lattice. The transformation initiates at the surface and 

propagates into the interior. The transformation to monoclinic phase is associated with 

microcracking, which is believed to provide a mechanism for the ingress of water to the 

transformation front, encouraging the transformation to propagate further into the bulk. 

Masaki in 1986[20] showed that degradation of different TZPs was strongly dependent on 

the amount of yttria at 200 °C, Figure 2.7[7]. The specimens were aged in air. 

 

(a)       (b) 

Figure 2.7: Zirconia failure by increasing the monoclinic content in doped materials [7]. Bend strength (a) 

and monoclinic percentage (b) respectively versus ageing temperature for Y-TZPs. Y represents the Y2O3 

content. 
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Despite numerous theories the main cause of ageing has yet to be confirmed. An early 

model proposed by Lange (1986) suggested that degradation occurs because a reaction 

between Y2O3 and water results in the loss of Y3+ from the tetragonal zirconia matrix leading 

to the formation of α-Y (OH)3. Since Y3+ stabilises the tetragonal structure, the loss of Y3+ 

from the lattice results in spontaneous transformation to monoclinic zirconia [21]. However, 

this theory is controversial and has not been subsequently pursued since, as Lange pointed 

out, for Y (OH)3  to form then Y3+ must diffuse  through the zirconia lattice, and this process 

is believed to be very slow taking perhaps 1021 years for 1 nm diffusion.  

Schubert and Frey suggested that when the water molecules penetrate into the lattice they 

dissociate into OH- and H+, and the hydrogen settles in the interstitial site. The vacancies, 

brought about by the addition of the Y3+, are crucial to the retention of the tetragonal 

structure. The presence of H+ in the interstitial site results in a lattice contraction, which 

generates tensile stress, destabilizing the tetragonal grains [22]. 

The hydrothermal degradation mechanism of TZP is considered to be a nucleation and 

growth process which starts at the surface and propagates inwards, according to kinetics 

which can be described by the standard Mehl-Avrami-Johnson law. The transformation is 

not a random process in terms of the monoclinic nucleation and growth, rather following 

transformation to a monoclinic grain, transformation is then nucleated in the adjacent grain, 

a process which continues until the monoclinic phase covers a specific area, a process 

known as autocatalytic transformation. Large grains, and also the grains with 

inhomogeneous dispersion of the stabiliser, are more prone to transform [23].  
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Sato’s model (1985) was based on the reaction of the water molecules with Zr-O-Zr at the 

crack tip.  He proposed that breaking of the Zr-O bonds and formation of Zr -OH induces a 

stress at the crack that releases the crack tip stress encouraging the transformation to occur 

more rapidly [24]. His model was based on the assumption that degradation was only a 

surface phenomenon, however it has since been convincingly evidenced that transformation 

starts at the surface but does then invade the bulk. 

In 1987, Yoshimora proposed the formation of the hydroxyl ions and diffusion of them into 

the zirconia lattice when Zr-OH bonds are created. He postured that absorption of the water 

molecules on the Y-TZP surface produces Zr-OH bonds at the stress sites. Surface diffusion 

of the OH- ions creates nucleation sites for phase transformation on the surface so that 

surface and near surface micro- and macrocracking occurs [25]. 

An alternative model considers crack growth to be a stress corrosion mechanism.  Diffusion 

of the corrosive species (OHˉ) occurs from the environment to the crack tip; the OH- anions 

react with Zr-O-Zr releasing crack tip stresses generated from the tetragonal to monoclinic 

phase transformation and accelerating the transformation process [26]. Since the 

hydrothermal degradation process does appear to involve anion vacancy removal in the 

lattice, particularly in a moist atmosphere, inducing local lattice strain accelerates the 

transformation. Conversely, a higher anion vacancy concentration within the grain boundary 

decelerates it. 

2.4.4. Ternary Oxide Addition 

Hydrothermal degradation in TZP ceramics limits its wide scale use due to the loss of 

strength.  In severe cases complete fracture of the material occurs. Micro-cracking along the 
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grain boundaries accelerates the degradation kinetics; so anion vacancy creation in the grain 

boundaries could reduce the tetragonal to monoclinic phase transformation rate and 

increase the toughness of the material. 

It has been known for some time that the addition of small amounts of alumina to TZPs 

improves their resistance to hydrothermal degradation. Alumina is usually added to ZrO2 at 

the initial powder processing stage to enhance density, but it also improves hydrothermal 

degradation resistance. It has been demonstrated that the trivalent structure of the Al3+ 

enhances the number of oxygen ion vacancies in the grain boundary. Ross et al. [27] 

discovered that when adding Al2O3 (0.05, 0.1, and 0.25 wt %) to TZP the Al3+ segregates and 

modifies the grain boundary structure enhancing oxygen ion vacancy concentration, Figure 

2.8. More recently their research also showed that homogeneity of the precursor has a 

great influence on the microstructure.  

Lawson (1996), performing degradation tests on different TZPs powder at 180 °C for 48 h, 

found that the presence of a glassy phase improved resistance to ageing. The glassy phase 

decreases the thermal expansion mismatch stress due to the thermal anisotropy in the TZP 

[28]. The drawback of grain boundary glass in Y-TZP microstructure is the reduced 

toughness due to the loss of yttria within the glassy phase. 
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Figure 2.8: EDS trace derived from a) two grain interface showing Al trace and b) from the adjacent rain 

interior [27]. 

 

 

 

 

2.5. Wear  

Tribological wear is defined as the progressive loss of material when two surfaces rub 

against each other, either in dry or lubricated conditions. Material detachment can occur 

through a wide range of mechanisms as summarised in Table 2.5[29]. In fact friction and 

consequent wear between sliding components is a major factor in high energy cost and 

equipment life reduction but can be significantly reduced with lubrication.  Knowledge of 

fluid dynamics and surface engineering is essential optimising a lubrication regime in 

tribological studies. During wear multiple wear mechanisms, with varying wear rates can 

simultaneously occur. Only the wear mechanisms, most relevant to the wear of ceramic on 

ceramic hip joints are discussed here. 
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Table 2.5: A brief summary of wear mechanism [29] 

Wear mechanism The way it occurs 

Adhesion Material deposition from one surface to another, leaving craters and pits known as galling as well. 

Abrasion The softer surface material removal through ploughing or gouging in contact by harder surface. Detached 

particles can embed to the surface (2 body abrasion) or roll freely between two surfaces (3 body abrasion). 

Fatigue Cyclic sliding stresses which initiates deformation such as cracks underneath the surface which results in 

material fragmentation. 

Erosion It is a kind of abrasive wear which through that the material removal occurs by particles that striking the 

surface in fluid flow. 

Delamination The wear debris pack up makes a sheet like structure which would remove from surface during sliding 

contact. 

Fretting Material removal by oscillatory movement. 

Polishing Abrasive wear type wear which in very fine particles during continues movement, strike the surface 

Tribochemical wear Mechanical stresses of wear trigger chemical reaction of the surface and environment. 

Corrosive This type of wear occurs when environmental chemicals attack strikes the surface. 
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2.5.1. Wear of C-on-C in THR 

Ceramics, due to their inherently brittle nature, mostly wear through microcracks and 

chipping.  Wear of the ceramics has been broadly separated into the mild and the severe 

wear regime. In the mild wear regime the ceramic surface remains smooth, sometimes 

smoother than the original surface. Ceramics will be useful for tribological applications if 

their specific wear rate is less than 10-6 mm3/Nm i.e. the upper limit for the mild wear [30, 

31]. During progressive wear then beyond a critical load/speed/time the wear mechanism 

changes and the condition transforms from mild wear to severe. During this transition, the 

specific wear rate usually increases by several orders of magnitude, exceeding 10-4mm3/Nm 

in ceramics where it is accompanied by the onset of brittle fracture. Table 2.6[32], [33] 

provides information about wear behaviour in the mild and severe wear zone. 

Table 2.6: General differences between mild and sever wear in ceramics [32] [33] 

 Mild wear Severe wear 

Wear rate Low, <10
-6

 mm
3
/Nm High, >10

-4
mm

3
/Nm 

Worn surface morphology 
Extremely smooth, often smoother than original 

surface 
Rough, pitted from original surface 

Friction Steady Fluctuating 

Wear mechanism Plastic flow /tribochemical Fracture 

Wear Particles 

Fine particles and often chemically different from 

the bulk material(chemical interaction of surface 

and wear environment 

Large angular particles with structure 

similar to the wear surfaces 
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2.5.2. Wear Rate 

The specific wear rate provides a convenient way to compare the wear data from different 

sources. For homogeneous materials the specific wear rate (k) is defined by well-known 

Archard theory, equation 2.1. In this equation the wear volume, V, is assumed to be 

proportional to the applied load (N) and sliding distance (S) [34].  

k=V/NS         (2.1) 

The specific wear rate is usually reported in mm3/Nm. 

Wear debris generation is the direct consequence of wear and can be formed early in the 

implant life. Debris as large as 5µm has been detected within the body an implant recipient. 

Although ceramics such as alumina and zirconia are biocompatible materials, but wear 

debris can still be seen as a foreign body, stimulating the immune system and triggering pro-

inflammatory cytokines followed by osteoclast activation and bone resorption [35]. This 

could be lead to aseptic loosening which is the most common reason for revision surgery. 

Wear particles can also act as third body abrasive particles, further increasing implant wear.  

 

2.5.3. Friction and Wear in Simulation Tests 

Friction factor (f) or coefficients of friction (µ) are used in tribology studies for estimating 

the resistance of motion. The coefficient of friction is a non-dimensional ratio which is 

derived from the first law of friction, equation 2.2: 

µ=F/N          (2.2)  
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In this equation F is the friction force and N is the applied load. The friction factor (f) in a hip 

joint simulator is defined in by equation 2.3 [36] where (T) is friction toque, R1 is the radius 

of ceramic head and R2 is the radius of the ball-socket configuration. 

f=T/R1N         (2.3) 

 

Figure 2.9: Hip joint schematic diagram R1, is femoral head diameter and R2 is diameter of head and cup. 

 
 

The anatomy of a hip is a ball-and-socket configuration where the acetabulum is the socket 

and the femur head is the ball portion. A slippery tissue, cartilage, covers the ball and socket 

surface to produce a smooth and low friction movement.  The synovial membrane produces 

synovial fluid which is a natural lubricant designed to continuously lubricate natural human 

joints.  The behaviour of synovial fluid in the presence of artificial parts is markedly different 

and the wettability and lubricant contact angle of artificial parts with the wear surface 

significantly affects wear behaviour [37].  

During wear, the efficiency of the bearing couples depends on the lubrication regime. The 

design for the bearing pairs should suit a range of full-fluid film and mixed lubrication 

regimes during its lifetime. Where there exists enough lubricant between wearing parts to 

avoid asperity contact the system is in full fluid film lubrication regime. As wear progresses 

the stress state alters due to changes in the wear environment e.g. the rheology of the 
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lubricant, consequently the lubricant regime transforms from hydrodynamic to boundary or 

mixed. 

Friction measurements in the reciprocating wear tests determine the lubrication regime by 

reference to its Sommerfeld Number. Variations in the Sommerfeld Number are usually 

reported by plotting a Stribeck curve, Figure 2.10. The X- axis of the Stribeck curve is the 

Sommerfeld number (Z) which is defined as: Velocity (ν) X Viscosity of the lubricant 

(η)/applied load (N) combines the factors which directly influence friction. The chemical 

reaction of the lubricant with wearing surfaces can dramatically influence the lubricant 

regime. 

 

Figure 2.10: Stribeck curve to determine lubricant regime [39] 

 

2.5.4. Zirconia’s Wear 

The contribution of the tetragonal to monoclinic phase transformation in zirconia to wear 

resistance remains controversial, with some reports suggesting that it can reduce wear rate, 

while others suggest it can increase the wear rate [40]. In-vitro experiments of zirconia-on-
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alumina wear showed a catastrophically high wear rate for zirconia [41]. The rapid 

formation of microcracks caused surface fractures leading to severe wear. In the wear of a 

zirconia ball against UHMWPE cup, severe damage of the acetabulum demonstrates the 

poor performance of a polymer against high toughness zirconia, compounded by localised 

wear damage due to the low thermal conductivity of zirconia. In this test high sliding speed 

could be a main factor for this severe wear. Modification of the UHMWPE surface structure 

can significantly improve its performance [42], as can doping the zirconia to improve its 

thermal conductivity [43].   

The low thermal conductivity of zirconia is 2.9 W/ m·K, results in substantial frictional 

heating during sliding, which along with  hydrothermal degradation makes zirconia’s 

tribological behaviour more complex and unpredictable than other ceramics. 

Recent research on an explanted zirconia femoral head [44] in conjunction with 

polyethylene cup reports topographical and compositional changes on the zirconia surface, 

Figure 2.11. In this research the intrinsic coupling of ageing and wear was considered. The 

mixed effects of temperature and mechanical stresses on these retrieved zirconia heads 

show monoclinic clusters of up to 20% on the surface of implant as young as 3 years. Figure 

2.11a shows a surface of an unused implant with scratches that are likely to have been 

produced during surface preparation. Deeper scratches on the surface in image 2.11c are a 

sign of the abrasive wear damage. As is clear in Figure 2.11f, on the 8 year old zirconia head, 

a self-polishing mechanism occurred which decreased the intensity of the abrasive grooves. 

VSI imaging indicates reductions in the scratch lines occurred as monoclinic clusters 

increases. This is in line with those from a simulated ageing experiment reported by 

Chevalier [6]. From the result it could be understood that the transformed zone penetrates 
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into the bulk and causes grain pull out. The loose grains then cause further wear damage 

through abrasive wear mechanisms. 

Figure 2.11: Optical  imaging of zirconia head worn against polyethylene cup after different implantation 

periods: (a) unused, (b) 1 year and 6 months, (c) 5 years and 1 month, (d) 9 years and 1 month, (e) 11 years 

(f) 12 years and 8 months. [44] 

The role of the toughening in zirconia’s tetragonal phase retention was detailed in Chapter 

2. Fischer et al. [45] evidenced that the wear resistance of the Y-TZP depends on its yttria 

content and considered transformation to be advantageous. They suggested that the 

dominant mechanism of wear of Y-TZP was plastic deformation. They considered the 

tetragonal to monoclinic phase transformation to be  a critical factor in material removal 

during wear, and they linked the wear resistance to the fourth power of the toughness, 

after investigating a wide range of fracture toughness values (11.6, 8.7 and 2.5 MPa.m1/2 ) 

with a mixed structure of tetragonal and cubic zirconia.  Rainforth and Birkby challenged this 

view, considering transformation to be a wear driven mechanism and that the importance 

of fracture toughness for zirconia was being over-stated [45]. 
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Lee’s wear maps for Y-TZP under dry and lubricated conditions, Figure 2.12, indicate that a 

sudden increase in wear rate can be attributed to the combined effects of load and the 

velocity variations [46]. Lee postulated that the rheological properties of a lubricant 

dramatically influence the onset of wear transition where the coefficient of friction varies 

between 0.03 and 0.7. He also tested the combined effect of speed and load on the wear 

rate of self-mated Y-TZP where it was in the range of 10-1-10-6 mm3/m. 

 

Figure 2.12: Wear contour maps for Y-TZP under various lubrication conditions: (a) in dry air, (b) in water, (c) 
in paraffin oil and (d) in formulated oil [47]. 

 

Lee also introduced a velocity model to describe the speed influence on wear transition, 

Figure 2.13. 
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Figure 2.13: Wear transition diagrams for Y-TZP under different lubrication conditions: (a) in dry air, (2) in 
water, (3) in paraffin oil, and (4) in formulated oil. The solid and hollow circles represent the conditions 

where SEM observations were taken [47]. 

 

A summary of tribological behaviour of Y-TZP in Table 2.7 provides some information about 

wear of this material. Some researchers believe that the fine microcracks produced during 

the phase transformation are the main reason for zirconia’s high wear rate. Bikby’s 

comparison of 2Y-TZP (K1c about 11 MPa.m1/2) and 3Y-TZP (K1c about 7 MPa.m1/2) support 

the view that phase transformation is the main reasons for zirconia’s high wear rate because 

he observed a higher wear rate in the former compound than the latter. He considers 

transformation to be the dominant wear mechanism and that his results evidence that 

transformation has a catastrophic influence on the wear transition in zirconia [45].  

Water lubrication is regularly used in wear test experiments to decrease wear rate by 

reducing frictional heating, and to reducing contact stress by creating a full fluid film 

lubrication regime. However, hydrothermal degradation of zirconia in the presence of water 

complicates the use of water lubrication and there are conflicting reports of its 

benefits/detriments.  
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Barceinas-Sanches and Rainforth studied the wear rate of 3Y-TZP wear against Mg-TZP in 

both dry and wet wear environments. They measured 6.8x10-4 and 2.2x10-4 mm3/Nm wear 

rate in water and dry conditions respectively. They did not detect any wear resistance 

improvement in the water worn specimens or any reduction in frictional heating despite 

using water. This behaviour was attributed to the hydrophilic nature of a zirconia surface 

[49].  

Rainforth [52] in his research of Y-TZP wear against a ZTA ball concluded that zirconia’s low 

thermal conductivity was the main cause of severe wear damage. He estimated that surface 

flash temperatures of 800 °C occurred due to the asperity contact. Phase transformation of 

zirconia occurs at a much lower temperature than this.  

In contrast, Rainforth and Stevens observed quite a different mechanism for the sliding of 

Mg-PSZ in water against steel. The presence of grain relief on the surface suggested 

tribochemical wear. They found that preferential wear was influenced by the crystal 

orientation. From TEM analysis of Mg-PSZ material [52], they identified that a severe wear 

zone was created due to coalescence of the microcracks along a band with tetragonal 

precipitates with a certain orientation. These microcracks were already formed due to the 

phase transformation. Stevens and Rainforth detected microstructural changes due to the 

mechanical stresses from wear well below the surface. They concluded that the frictional 

temperature on the surface was too high to trigger the phase transformation process [50].  

Unlubricated wear of self - mated TZP studies by Stachowiak et al. [53] recorded surface 

temperature rises and its destructive effect on both strength and toughness. They also 

reported a coefficient of friction of around 0.5-0.6 which is high for zirconia. The abrasive 
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grooving caused further wear of their TZP surface. The intensity and depth of these grooves 

varied with temperature. 

Khanna and Basu found that the wear rate of zirconia decreased with environmental 

humidity. They reported detection of the plastic deformation as the wear mechanism with 

surface delamination under both lubricated and non-lubricated conditions. They detected 

zirconium and yttrium hydroxide inside the wear debris, which it was believed formed a 

tribofilm layer improving wear resistance [51]. 

The characteristic wear morphology of a zirconia surface is that of a delaminated surface 

where accumulated wear debris is located in above the original surface.  This detachment of 

surface material and its smearing over the surface increases the thermal gradient which 

causes increased wear. Some studies show that the addition of a solid lubricant to the 

surface of the ceramic produces a self-lubricated condition for zirconia by improving its 

thermal conductivity [47]. 

Table 2.7: Tribological properties of Y-TZP in different environments [48]. 

Material Configuration environment Speed 

(mm/s) 

Load(N) COF Wear rate 

(mm
3
/Nm) 

Ref 

3Y-TZP Pin-on-disk Water 1 9.8 0.6 0.15 Fischer 

3Y-TZP Pin-on-disk Hexadecane 1 9.8 0.11 0.03 Fischer 

3Y-TZP Ball-on-disk Paraffin oil 1-570 40-200 0.03-0.57 0.1-10
-4 

Lee 

3Y-TZP Pin-on-disk Water 240 10 0.62-0.67 230 Rainforth 

3Y-TZP Pin-on-plate Air 60-90 65 0.68 2.3 He 
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2.5.5. Tribofilm Creation 

The formation of a tribolayer which has been widely observed on zirconia surfaces is due to 

a tribochemical wear mechanism involving interaction between the surface and its 

environment.  The same tribolayer formation also occurs in alumina ceramics. Barceinas-

Sanchez and Rainforth consider tribochemical wear to be the main wear mechanism in 

ceramics in the mild wear zone. Further investigation of the protein reaction at the surface 

of implants is needed, but the in-vitro experiments in bovine serum demonstrate significant 

chemical changes in both the bovine serum and the zirconia surface after wear.  

In general the environmental effects on the wear behaviour of zirconia can be occurred in 

several steps: 

 Formation of an absorbed layer on the surface under tribochemical and 

tribomechanical activities. 

 Modification of the surface properties and surface stress state by the absorbed layer. 

Ma [30], in her TEM study of ZTA-on-alumina pairs, detected an amorphous layer containing 

nanocrystalline wear debris. EEELs observation of the tribolayer detected traces of Na as 

well as the presence of both surface and lubricant components, indicating reaction with the 

bovine serum. By contrast, Rainforth et al. reported an amorphous structure to the 

tribolayer of his alumina wear, leading him to conclude that surface hydration was the 

primary process [54]. 

Fischer in his study on alumina tribolayer detected rolling wear debris throughout the layer, 

from which he concluded that the tribolayer aided wear resistance by acting as if it was a 

lubricant [55]. 
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Kalin et al. [56] and Novak et al. [57] in their observation on alumina tribological behaviour 

showed that in acidic and alkaline aqueous environment no alumina tribolayer appeared. 

They attributed the high wear rate in alumina to the dissolution of alumina. 

2.5.6. Effect of the Counterface 

A range of socket materials can be used in conjunction with a zirconia ball in a hip implant. 

In vitro studies of unlubricated Al2O3, SiC, Si3N4 and ZrO2 found the highest wear rate 

occurred with Al2O3 and ZrO2 counterfaces [58]. Ionic materials sliding over each other are 

believed to form an adherent film form that has not been observed in the wear of covalently 

bonded ceramics. In most of the combinations of these materials then transfer of materials 

in both directions was observed, but in the zirconia/alumina counterface then zirconia 

transferred to alumina but not vice versa. 

2.5.7. Abrasive Wear Mechanisms 

Abrasive wear damage occurs by two different mechanisms, as shown by the schematic 

images in Figure 2.14 and 2.15 [59]. In two body abrasion, the abrasive is part of the 

counterface, and material removal occurs by the machining action of the abrasive. In 

contrast, third body abrasion mechanism occurs when the wear particles move freely 

between the two surfaces and they do not bond to any surfaces. Abrasive particle 

geometry, size and hardness has a critical role in abrasive wear damage in ceramics.  
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Figure 2.14: Schematic image of second body abrasion 

 

Figure 2.15: Schematic image of third body abrasion 
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3.  Experimental Procedure 

3.1. Powder Processing and Specimen Sintering 

The current research was focused on the hydrothermal degradation behaviour and 

reciprocating sliding wear mechanisms in Y-TZP ceramics with and without dopant 

additions. Partially stabilized zirconia powder with uniform dispersion of 3 mol % Yttria (TZ-

3YB, Tosoh Corporation) and <0.034% impurities was selected as a base material. A 

summary of the composition is given in Table 3.1. The low level of impurities was important 

to enable investigation of the effects of ternary additions.  The selected supplier was able to 

guarantee this low level, making their zirconia powder the purest commercially available, 

and their processing method  creates a very fine powder with improved strength, high 

fracture toughness, and resistance to wear and ageing compared to other suppliers. 

 

Table 3.1: Tosoh powder specification provided by vendor [66] 

powder wt%Y2O3 wt%HfO2 wt%Al2O3 wt%SiO2 wt%Fe203 wt%Na2O 

Tosoh 

TZ3YB 

4.95 ~2 ~0.005 0.006 <0.002 0.028 

 

High purity Al2O3 (AKP50, Sumitomo Chemical Co., Japan) and La2O3 (Sigma Aldrich) were 

added to the base powder as ternary and quaternary oxides to aid the hydrothermal 

degradation resistance.  

Equal-sized disk-like specimens with surface roughness, ra, less than 3 nm were prepared for 

degradation and wear testing as follows: 

 50 g batches of TZ-3YB, TZ-3YB + 0.1 wt % Al2O3 and TZ-3YB +0.1 wt. % (Al2O3 +La2O3) 

were weighed separately. These composites hereafter will be called Z, AZ and LAZ 
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respectively. Each batch was added to 120 ml methanol and 1 kg 3Y-TZP zirconia 

balls (2 mm ball dimension).They were attrition milled in a Teflon lined jar at 350 

rpm for 3.5 hours to produce homogenous slurries. After that the milling media was 

separated from the slurries. 

 To avoid any contamination the slurry containers were covered while drying at 80 °C 

for 24 h inside an oven.  

 The dried product was crushed by agate mortar and pestle and was sieved out 

through a 355 μm stainless steel mesh to obtain a fine homogenous powder.  

 2 cm diameter pellets were formed by uniaxial (20 MPa) and cold isostatic (200 MPa) 

pressing from the resulting powder. 

 The compacted powders were sintered for 3 hours at 1450 °C at a heating rate of 2 

°C/min and a cooling rate of 3°C/min inside a clean furnace in an air environment. 

It was essential to achieve an extremely uniform flat and defect-free surface for both the 

high temperature degradation and reciprocating sliding wear tests. Any residual strains on 

the surface would act as nucleation sites for the monoclinic phase. To achieve this surface 

then hot resin was used to attach the sintered sample to a metal stub. The sample was 

ground manually with SiC papers starting with the coarsest (120 grit), and then progressing 

through 240, 400, 800 and finally 1200 to create a planar scratch free surface. The polishing 

stage was carried out in an automatic machine (Buhler USA, water lubricant, 150 rpm) using 

first a  diamond grinding disc (APEX DGD 45 µm, Buhler USA) and then a diamond particle 

embedded grit disk (Cameo Disk Platinum 3-Yellow and 4-Red, Leco, France). At each 

grinding/polishing stage the surface quality was checked using an optical microscope. The 

polished samples were deep cleaned in an ultrasonic bath for 5 minutes in isopropanol. The 
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clean samples were thermally etched at 1400 °C for 5 min at a heating and cooling rate of 

5°/min in order to reveal the grain boundaries and remove any residual stresses. 

3.2.   Sample Characterization 

3.2.1. Density Measurement 

The Archimedes water immersion method was used to measure the density of thermal 

etched specimens, by applying equation (3.1) [60].  

ρ 
           

           
                                              (3.1)                                                                                                     

In this equation mair is the mass of the pellets measured in air and mwater is the mass of the 

pellets measured in the water. The average measured density for the specimens was 6.1 

g/cm³, similar to those values reported in the literature. 

3.2.2. Grain Size Measurement 

The average grain size of the thermal etched samples was estimated by the conventional 

linear intercept method of SEM image at x10000 magnifications, by applying equation 

3.2[61].  

    ̅̅ ̅

 
 

    ̅̅̅̅

  
                                                      (3.2)                                                                                                              

In this equation    is the number of grains,    ̅̅̅ is mean linear intercept grain size and N is 

total number of grains. Around 3000 grains were counted for each material to obtain an 

accurate value for the grain size. 

 

3.2.3. Hardness and Fracture Toughness Measurement 

The fracture toughness and hardness of the materials were measured using the Vickers 

hardness indentation technique. For this purpose a 10 kg load was applied on the thermal 
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etched surface. 15 dents were performed on each surface sufficiently well separated to 

avoid interconnection of the created cracks.  The length of the Palmqvist cracks (l) and 

indentation half diagonal (a) were measured by optical microscopy (Leica Polyvar) 

immediately after indentation in order to minimise any errors associated with slow crack 

propagation. In order to enable comparison with previous work in this area then Equation 

3.3 was selected from the range of available fracture toughness (KIC) models [62]. 

 K IC            
 

                                                    (3.3)                                                                                           

 

3.3. Hydrothermal Degradation Test  

Hydrothermal degradation was simulated by placing specimens in 2 ml of distilled water 

within a conventional sealed Teflon lined general purpose vessel (Parr Instruments Co., 

USA), Figure 3.1. The vessel was heated at a rate of 3 °C/min to 134 °C and held at that 

temperature for periods of 6 , 12 and 24 hours then cooled down to room temperature. The 

extent of degradation was examined using different microscopy techniques. 

 

Fig 3.1: Sealed Teflon lined general-purpose vessel 
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3.4.   Characterization of the Degraded Material 

3.4.1.   XRD Phase Determination 

Original Tosoh powder and disk samples after thermal etching were characterised by X-ray 

diffraction prior to degradation. 

The condition of the as-received Y-TZP powder was analysed by X-ray diffraction (Siemens 

D500 diffractometer, CuKα radiation with 0.02° step size, 0.2°/min) at 2theta angles 27-33 °. 

Two monoclinic phases and one tetragonal peak at (-111)m , (111)m and (101)t respectively 

were identified. 

The intensity ratio of the monoclinic phase was calculated using the method proposed by 

Garvie and Nicholson [63]: 

Xm=
                    

                               
                                                    (3.4) 

 

In this equation, Im(hkl) is the integrated intensity of the monoclinic peaks and It(hkl) 

corresponds to the tetragonal  phase. The volume fraction was calculated using Toraya et 

al.’s model (Equation 3.5) [64]: 

Vm=
       

         
                                                                                  (3.5) 

 

Where Vm is the volume fraction of the monoclinic phase and Xm is the intensity ratio of that 

phase. 

3.4.2. Optical Microscopy 

Lattice volume expansion caused by monoclinic to tetragonal phase transformation can be 

detected by optical microscopy. For this purpose, a Veeco Instruments Contour GT 3D 
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interferometer was used to visualize the regions containing monoclinic spots after propanol 

cleaning of the samples. 

3.4.3. Atomic Force Microscopy 

Atomic force microscopy (AFM) is an effective technique for detecting the onset of 

transformation. AFM was performed on a Veeco NanoscopeIIIa (Digital Instrument, USA) 

using a silicon nitride probe in contact mode.  Samples tested ranged from those with the 

original surface through to the most degraded. The acquired images were scanned at a rate 

of 0.5 Hz with a resolution of 256 samples per line. 

3.4.4. Scanning Electron Microscopy 

Since the ageing process in zirconia initiates at the surface and penetrates into the bulk the 

depth of the transformation zone and its microstructure were analysed using scanning 

electron microscopy, SEM, (Inspect F, FEI Company) on cross sectional samples which had 

been mounted in resin before grinding, polishing and gold coating. 

3.4.5. Raman Spectroscopy 

A Raman Spectrometer (LabRam HR, Joriba Jobin Yvon, France) with a 532 nm line of a He-

Ne laser was used to obtain the Raman spectrum of aged specimens. Spectra were recorded 

from 100-900 cm-1 on accumulation of 5 seconds per point.  Point analysis and surface 

mapping were both used, and the latter was found to be a more useful technique to study 

transformation. The monoclinic phase is characteristically double peaked as shown in Fig. 

3.2 [66]. 
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Figure 3.2: Typical Raman spectra of a 3Y-TZP specimen containing a mixture of monoclinic and tetragonal 
phases [65]. 
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3.5. Reciprocating Wear Test 

 

Since wear is a system property rather than a material one then wear behaviour is difficult 

to monitore and measure, particularly for in-vitro tests where access to the simulated 

condition of the body is restricted. In the current study then reciprocating sliding wear tests 

were performed on a ball-on-flat (alumina-on-zirconia) lubricated configuration using a UMT 

tribometer (Centre for Tribology, Inc, USA), (Fig 3.3). In a ball–on-flat configuration the 

lower specimen slides back and forth against an upper specimen tightly held in a holder with 

a gap of up to 15 cm in the machine used. In the current study the upper surface was an 

ultra-pure alumina ball (Oakwade Ltd, UK) with 4 mm diameter and roughness about 5-8 

nm.  The lower liquid chamber contained a metal stub on which the disk sample was 

secured and had sufficient capacity to also accommodate the lubricant.  For these work two 

kinds of lubricant, ultra-pure water and 25 vol% new-born calf serum solutions were chosen.  

Lower specimen speed was controlled in the range 0.001 rpm to 5000 rpm by a spindle load 

control was applied through an ultra-accurate strain-gauge sensor with 0.00003% 

resolution. 

All tests were conducted at 10 Hz (0.02 m/s) and a 10mm stroke length for 24h. Surface 

loads of 0.5 N, 1 N, 2 N, and 4 N, generating pressures of up to 24MPa were used to 

simulate the rim-contact stress range of ceramic-on-ceramic hip joint articulation which 

results in mild to severe wear of the zirconia. Initial Hertzian contact pressure for this 

reciprocating sliding contact is in the range 2.4-7.1MPa, but rapidly reduced as the surfaces 

became more conformal [55]. The vertical motion controller was paired with a normal load 

sensor to confirm the consistency of the applied load. A stroke length of 10mm was selected 

in order to enable comparison with previously reported results. UMT software recorded real 

time data on FX, Fz, WR, Z, T, Ff and coefficient of friction (COF.  In total 17278 individual COF 
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values were computed from the 24hr duration tests and the  total distance travelled by the 

lower specimen was 17.28 Km. The accuracy of 0.05 µm was performed by for wear 

measurements. 

 

Fig 3.3: The UMT tribometer[66] 

 

 

 

3.5.1. Lubricants 

Ultra-pure water, HPLC Gradient grade, supplied by Fisher Scientific, UK, with viscosity of 

0.001 Pa∙s was the first lubricant used in this study. Referring to the ISO 6474 *67+ water has 

been used for studying tribological behaviour in most of the researches with destructive and 

constructive effects on zirconia’s wear performance. The second used lubricant was 25 vol% 

bovine serum solutions. Bovine serum is a natural protein concentration commonly used as 

a substitute for synovial fluid in tribological studies, 25 vol% bovine serums were obtained 
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by diluting the sterile new-born calf serum supplied by First Link (UK) Ltd with phosphate 

buffered saline (PBS). The PBS was made by dissolving one (1814.5 - 2005.5 mg/tab) 

Phosphate Buffered Saline tablet (Sigma-Aldrich, UK) in 200ml of ultra-pure water (Fisher 

Scientific, UK).  0.1 wt% sodium Azide (Fisher Scientific, UK) was added as anti-bacterial 

agent. This lubricant solution of 25vol% bovine serum had a viscosity of 0.0012 Pa∙s. 

 

3.5.2. Lubricant Regime Definition 

The lubricant regime of each sample was identified using a Stribeck Curve in which 

Sommerfeld Number is plotted against COF. The Sommerfeld number, equation (3.6) [68], is 

applied to study the wear performance of two rubbing surfaces in dynamic state, in the 

presence of a lubricant and  relates speed (V), viscosity (η) and load (N). 

Z= 
  

  
                                                                                               (3.6) 

 

              Fig 3.4: Stribeck curve and lubricant regime  

 

 

 

3.5.3. Wear Rate 

The specific wear rate (k) for each lubricant used to analyse the lubricant effect on the wear 

rate of each sample in the 24h reciprocation sliding test was calculated using Archard theory 
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(Equation (3.7)). This equation is commonly used to estimate the specific wear rate of 

homogeneous materials. In this equation S is the total sliding distance after 24 hours 

reciprocation, V is the volume loss of the material after wear and N represents the applied 

load: 

𝑘=𝑉/ 𝑆 (mm³/Nm)                                                                                          (3.7) 

 

To calculate the volume loss of the material after wear, the average area lost, A, was 

measured by a profilometer, Dektak 150(Veeco instrument, US) across the 10 mm wear scar 

length and on 15 different locations of the surface. The average of these values was used for 

calculating the wear rate. 

 

3.6.   Wear Scar Analysis  

Different kinds of microscopes such as counter GT optical microscope, Atomic force 

microscope, Raman spectroscopy, scanning electron microscope, and focused ion beam 

microscope and transmission electron microscope were used to characterise the worn 

surface. 

3.6.1. Profilometer  

The cross-sectional profile of the wear tracks was measured by using a surface profilometer, 

Dektak 150 (Veeco Instruments, US). The Profilometer is a straightforward contact 

quantitative measuring technique. Due to the hard nature of the surface the stylus load was 

set as 3 mg and scan length was varied in different wear regions in accordance with wear 

scar width. The scan durations were set to 50 s Hills & Valleys profile type.  Levelling up the 

acquired graph gave the lost area of the worn scar. 
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To achieve the extremely clean surface needed for area measurement to apply this 

technique samples were cleaned prior to measurement in ultra-sonic bath for 15 minutes 

and then they dried by spray air. 

 

Figure 3.5: Volume lost was measured by tribometer of AZ surface worn under 4N load in water after 24 
hours sliding with 0.02 m/s speed. 

 

3.6.2. 3D Optical Microscopy-VSI Imaging 

To visualize the wear scar features throughout the wear track and the accumulated wear at 

the tail of the wear scar the vertical scanning interferometer (VSI) in Mirau assembly with 

white light illumination (Contour GT, Veeco Instruments  Inc., USA) was employed.  

3.6.3. Atomic Force Microscopy 

A Dimension™ 3100 scanning probe microscope (Veeco Instruments, US) was operated in 

general contact and lateral mode to study topography of the worn surface. 

3.6.4 Scanning Electron Microscopy  

Roughness variability and plastic deformation on the worn surface was determined using a 

field emission gun scanning electron microscope (Inspect F, FEI Company). Samples were 

cleaned in ultra-sonic bath and they were dried by compressed air before gold coating. The 

microscope was operated at an acceleration voltage of 10 keV. The bovine serum worn 
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specimens needed thicker layer of gold coating plus a carbon depositing on top of the gold 

coat to minimise the electron beam causing protein contamination on the surface during 

focusing. 

3.6.5. Focused Ion Beam Microscopy  

Focused ion beam microscopy (Quanta 200 3D FIB/SEM, FEI, Netherlands) was employed to 

prepare TEM samples of the worn surface where mechanical thinning was not practical on 

the worn surface. AZ specimen worn under 4N load in both lubricants was the subject for 

near surface microstructure investigation. In this technique a focused beam of accelerated 

gallium ions milled the material from a selected region at a rate controlled beam current to 

achieve a transparent TEM specimen. 

In this test the specimen’s surface first was gold coated. This coat with around 50 nm 

thickness was created a dark contrast layer on surface to label the original surface during 

TEM observation. On top of the gold coat a thicker carbon coat was deposited to protect the 

real surface from gallium ion beam damage. After specimen was inserted inside the SEM 

chamber it was tilted to 52 ° to become perpendicular to the radiated ion beam. In this 

stage a carbon layer with 15x2x1 µm 3 dimensions was deposited on the area of interest on 

the surface to protect that from ion implantation and surface erosion during milling.  In the 

tilted position, on both opposite sides of the deposited strap two trenches were milled 

sequentially starting from 5.0 nA and finishing at 1.0 nA. The created thin foil with less than 

500 nm thickness was cut out at 7 °.Then the sample was lifted out with a microprobe(Omni 

probe, US) and it was attached in situ to a copper grid. Final ion polishing was carried out 

with 50 pA beam current until reaching a thickness less than 100nm of the foil. 
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Fig 3.6: Electron (a) and ion beam images of the preparation stage of a FIB-machined: a) point (b) milling and 
cut out of the foil, (c) sample lift out with microprobe, (d) sample attachment on TEM holder. 
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4.  Results 

4.1. XRD of Tosoh Powder 

X- ray diffraction of the base 3 mol% Y-TZP Tosoh powder showed a mixture of tetragonal 

and monoclinic phases at 27°-33° 2θ. The main tetragonal peak (101) t appeared at about 

30.1° 2 θ  , and two monoclinic peaks (-1 1 1) m and (1 1 1) m  were detected at 28° and 31.2° 

2 θ  respectively. It was found that the powder contained 13% monoclinic phase with the 

balance being tetragonal zirconia. 

 

Fig 4.1: X-ray diffraction of as-received Tosoh powder 

4.2. Sintered Material Characterization 

4.2.1. Mechanical Property and Grain Size Measurement 

Table 4.1 gives the grain size, density, Vickers hardness and fracture toughness of the 

thermal etched pellets. The sintered material’s density was measured at about 6.1 g/cm³, 

which is 99.7% of the theoretical density reported in the literature.  
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Table 4.1: Mechanical properties of sintered material 

 

Intercept calculation of the grain size in the SEM images showed values of 260-310 nm grain 

size distribution with an average of 286 nm. The thermal etched schedule was set for 5 

minutes at 1350 °C with a heating and cooling rate of 5°/min. Typical equiaxed grain 

structure was found in all three composites, Figure 4.2. Grain size distribution does not 

appear to have been significantly affected by dopant additions, although the LAZ had the 

smallest grain size of all. 

 

Fig 4.2: Secondary electron SEM images of (a) Z, (b) AZ and (c) LAZ. 

Material Grain size 

(nm) 

Density (gr/cm³) 

[std dev] 

Vickers hardness(GPa) [std 

dev] 

Fracture toughness (MPa.m½) 

[std dev] 

Z 289±8 6.09 [0.01] 12.3 [0.10] 5.62 [0.03] 

AZ 302±4 6.10 [0.02] 12.4 [0.17] 5.70 [0.09] 

LAZ 268±2 6.09 [0.01] 12.7 [0.27] 5.63 [0.13] 



51 
 

Atomic force microscopy was undertaken on the thermal etched samples prior to the 

degradation tests to check that the starting surface roughness (Ra) was <3nm. A typical AFM 

image in Figure 4.3 shows homogenous distribution of grains without any abnormal grain 

growth within the scanned area of the specimens. 

 

 

Fig 4.3: AFM image of TZP sample. 

 

4.2.2. XRD Phase Determination 

The X-ray diffraction of thermal etched specimens at 27°-33° 2θ did not show any evidence 

of monoclinic phase on the surface, Figure 4.4. The single tetragonal peak appeared at 

30.28° in all the specimens.  
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Fig 4.4: XRD of sintered specimens 

 

4.3. Degraded Sample Characterization 

4.3.1. Optical Microscopy (OM)  

The surfaces of aged specimens were examined with a polyvar optical microscope with 

Nomarski contrast at 200 x magnification and also using the vertical inferometry imaging 

method (VSI).  The volume increase during tetragonal to monoclinic phase transformation 

produces monoclinic clusters which are clearly visible in the optical microscope. Figures 4.5, 

4.6 and 4.7 give VSI images from the surface showing the monoclinic protuberances for 

different samples with various growth rates. The radius of monoclinic protuberances was 

larger in Z sample than AZ and LAZ samples with average radii of 13.3 µm, 13 µm and 1.7 µm 

respectively. The Z specimens show the highest population intensity of monoclinic clusters 

with 41 clusters compared to less than one in the equivalent AZ surface area. LAZ 

monoclinic nucleation did not form in conical protuberances, Figure 4.7. In this image the 

monoclinic protuberance represents the smallest radius with lowest grain height compared 
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with other samples. The presence of scratches on the surface resulted in a greater localised 

transformation to monoclinic zirconia, even though the sample had been thermally etched 

for stress relief so any residual monoclinic would have been expected to transform back to 

monoclinic zirconia. While any surface defect such as scratches is a stress point for 

monoclinic nucleation, Figure 4.6 demonstrates that the monoclinic was nucleated all the 

way along the scratch line on the aged surface. Figure 4.8 shows how monoclinic clusters 

covered almost the entire surface of the Z sample after an exposure time of 48h at 134 °C. 

 

 Fig 4.5: VSI image of Z specimen aged for 24hours at 134 °C 
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Fig 4.8: Optical image of Z sample aged for 48 hours at 134° 

 

4.3.2. X- Ray Diffraction  

After thermal degradation of specimens phase constitution was observed by X-ray 

diffraction. Figures 4.9 and 4.10 show that there was no sign of monoclinic phase formation 

at 6 and 12 hours ageing process. Figure 4.11 indicates the presence of the monoclinic 

phase more clearly at (-111)m reflection than at (111)m reflection and tetragonal phase 

retention in all specimens after 24h exposure at 134 °C.  

 

Fig 4.9: Degraded specimens at 134 °C for 6h.     
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 Fig 4.10: Degraded specimens at 134 °C for 12h.  

 

 

 

Fig 4.11: Degraded specimens at 134 °C for 24h. 
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4.3.3. Atomic Force Microscopy (AFM) 

In addition to optical microscopy, atomic force microscopy (AFM) was used to study surface 

evolution through the degradation process. AFM enables higher depth resolution images at 

nanometer scale.  For this purpose a Nanoscope IIIa (Digital Instruments, USA) microscope 

was used in contact mode with silicon nitride probes. Typical images were acquired at a scan 

rate of 1 Hz with a resolution of 512 samples per line in the scanned area. In the AFM 

images, the regions with brighter contrast are associated with monoclinic grains due to the 

volume expansion on transformation, meaning they stand proud of the surface. 

 AFM imaging of the aged Z sample, Figure 4.12, indicates individual transformed grains and 

regions of more extensive transformation to form monoclinic clusters. The AZ and LAZ aged 

samples (Figures 4.13 and 4.14 respectively) demonstrate different nucleation and growth 

rate of monoclinic grains at 134 °C for 24 hours compared to the Z specimen. Conical 

monoclinic coalescence was not observed in the LAZ sample, only in the Z and AZ samples. 

Figure 4.15a was imaged from a darker contrast region within the section imaged in Figure 

4.14. Figure 4.15b was imaged from within a light contrast region and confirms that all the 

grains in this region were transformed. 
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Fig 4.12: Z sample degraded at 134ᵒC for 24 hours 

 

Fig 4.13: AZ sample degraded at 134ᵒ for 24 hours 
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Figure 4:14: LAZ sample degraded at 134 ᵒC for 24 hours 

 

Fig 4.15a: Tetragonal region of Figure 4.14 
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Fig 4.15b: Monoclinic region of Figure 4.14  

 

Section analysis using AFM imaging techniques was used to measure the vertical height 

difference between transformed monoclinic and untransformed tetragonal grains, Figure 

4.16. The height difference between the red and a green marker is about 71.75 nm.  

 

Fig 4.16: Section analysis of AZ specimen aged at 134 °C for 24 h 
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4.3.4. SEM Imaging of Degraded Specimens (SEM)  

Hydrothermal degradation of the specimen at 180 oC for 48 hours in superheated steam 

resulted in extensive transformation of the tetragonal to monoclinic phase.  In several cases 

this led to surface microcracks and catastrophic surface fracture Figure 4.17.  Figure 4.18 

shows that on an AZ surface exposed at 134 °C for 24 hours grain boundaries in some 

locations are difficult to find.  
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Fig 4.17:  Secondary electron SEM image of degraded Z sample exposed for 48h at 180 
o
C. 

 
Fig 4.18: Secondary electron SEM image of AZ specimen aged at 134 °C for 24h. 

 

Degradation is a phenomenon which starts from the surface and penetrates into the bulk. 

SEM imaging on cross section specimens was used to evaluate the total penetration depth 

of samples exposed for 24 hours at 134 °C. Figures 4.19 (a), 4.19 (b) and 4.19(c) from Z, AZ 

and LAZ samples respectively present different depths  degradation(4.41 µm, 2.68 µm and 

1.49 µm) indicating that the LAZ and AZ specimens were more resistant to  degradation than 

the Z sample. 
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Fig 4.19(a): Secondary electron SEM 
image of a surface cross section of Z 
sample aged at 134 °C for 24 hours. 

 

 

Fig 4.19(b):  Secondary electron SEM 
image of a surface cross section of AZ 
sample aged at 134 °C for 24 hours. 

 

 

Fig 4.19(c):  Secondary electron SEM 
image of a surface cross section of LAZ 
sample aged at 134 °C for 24 hours. 

 

 

4.3.5. Raman Spectroscopy 

Although specimens exposed at 134 °C for 24 h revealed monoclinic peaks in X-ray 

diffraction, no characteristic monoclinic twin peak was detected on the aged surface of the 

same material through Raman spectroscopy, Figure 5.20a. This twin peak associated with 

monoclinic phase only appeared on samples aged at 180 °C for 48 hours Figure 5.20b. This 

shows that Raman spectroscopy was insensitive to small amounts of transformation. 
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Fig 4.20a: Z sample aged at 134 °C for 24 hours. 

 

 

Fig 4.20b: Z sample aged at 180 °C for 48 hours. 
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4.4. Reciprocating Wear  

Reciprocating sliding wear tests were used to partially simulate the conditions in hip joint 

prosthesis. It is not possible to fully simulate the conditions as this would require a hip 

simulator that incorporates microseparation. However, reciprocating tests in bovine serum 

are known to generate worn surfaces that give many of the worn surface characteristics 

found on retrieved hip joints. In this test two kinds of lubricant were used, ultra-pure water 

and 25% bovine serum which provide both different lubrication regimes, but also different 

degrees of tribochemical interaction. 

 

4.5. Water Lubricated Condition  

Water lubrication would be expected to maximise hydrothermal degradation.  Its influence 

on the sliding wear mechanism of zirconia surfaces against alumina ball was studied by 

applying different loads at constant speed to simulate the mild to severe wear zone. Figure 

4.21 (reciprocating sliding wear of the AZ specimen under 4N load for 24 hours at 600 rpm 

in water) shows a typical coefficient of friction (COF) as a function of time graph. Early 

fluctuation of the COF value at was attributed to initial contact of two intact surfaces and 

was followed by a period of around 6 hours where the COF gradually increased before 

attaining a steady state value of around 0.035.   
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Fig 4.21: A typical COF –Time plot of a reciprocating wear test on AZ specimen in ultra-pure water under 4 N 
contact load, 0.02 m/s speed for 24 hrs. 

 

The lubrication regime for each lubricant was defined by constructing the Stribeck curve, 

which is a plot of the average COF values as a function of the Sommerfeld number. 

Sommerfeld number ‘’Z ‘’ is defined in equation 4.1, where V is the sliding speed, ƞ is the 

lubricant viscosity and N is the applied load. Lubricant viscosity was assumed constant and 

sliding speed was set at 600 rpm (equating to 0.02 m/s). 

𝑧 = 𝑣𝜂 /N (4.1) 

Figure 4.22 gives the Stribeck curve for six samples of Z, AZ, LAZ, DZ, DAZ and DLAZ (where D 

refers to degraded). Two lubricated regimes were identifiable in the majority of the graphs. 

When the COF increases proportionate to the Sommerfeld number the lubricant regime is 

considered to be full fluid-film and when it reduces a mixed lubrication regime is indicated. 

The minimum and maximum average values of COF and the lubrication regimes for the 

water lubricated wear test are summarized in table 4.2.  During this test the value of COF for 

zirconia surface against alumina ball was quite small and it changes in the range of 

[0.006±0.001, 0.070±0.062]. 
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Table 4.2: Minimum, maximum of COF with respect to the applied load and lubrication regime for Z, DZ, AZ, 
DAZ, LAZ and DLAZ specimens in water (“D” represents the degraded specimens) . 

 

 

 

 

 

 

 

 

Material Minimum COF(load) Maximum COF(load) Lubrication regime 

 

Z 

 

0.013±0.012 (1N) 

 

 

 

0.048±0.028(2N) 

 

 

Mixed-full 

 

DZ 

 

0.021±0.012(1N) 

 

 

0.070±0.062(4N) 

 

 

Full-mixed 

 

AZ 

 

0.012±0.004(1N) 

 

 

0.023±0.010(2N) 

 

Full-mix-full 

 

DAZ 

 

0.006±0.001 (0.5N) 

 

 

0.021±0.003 (1N) 

 

 

Mixed-Full 

LAZ 0.010±0.001(1N) 0.028±0.016(4N) Full-Mixed 

DLAZ 0.022±0.014(2N) 

 

0.025±0.012  (05,1,4N) 

 

Mixed 
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(d)

(e)

(f) 

 
Fig 4.22: The Stribeck curve for (a) Z, (b)AZ, (c)LAZ,(d) DZ, (e)DAZ and (f) DLAZ samples lubricated with ultra-

pure water(W) under 4, 2, 1 and 0.5N load. D represents degraded specimens. 
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4.5.1. Wear Rate 
 

The specific wear rate of each material was determined by equation 4.2, i.e. the volume lost 

(V) divided by the applied load (F) and travelled distance (S), with units of mm3/Nm. 

K=
 

  
                              (4.2) 

The specific wear rates of Z, AZ, LAZ, DZ, DAZ and DLAZ specimens sliding against alumina 

ball in ultra pure water at speed of 0.02 m/s  as a function of  load and material are plotted 

in Figure 4.23 and 4.24 respectively. The DZ sample showed a slight decrease in wear rate at 

1N load compared with 0.5 N load, but in all other tests the wear rate increased with load, 

Figure 4.24.  The highest wear rate was at 4 N for the Z specimen at 2.04E-6 mm3/Nm, while 

the smallest wear rate was obtained at 0.5 N for the LAZ specimen. The magnitude of 

specific wear rate placed all wear tests within the mild wear regime [ref49]. The wear rates 

at 0.5N and 1N loads were significantly lower than those at 2N and 4N for all of the 

specimens. Surprisingly the degraded specimens generally presented with lower wear rates 

than the non- degraded samples. The wear rates of DLAZ and DAZ specimens at 2N and 4N 

were significantly less than those of the non-aged AZ and LAZ samples, as shown by Figure 

4.23. 
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Fig 4.23: Specific wear rates for the reciprocating wear tests of all the material against high purity alumina 
ball lubricated with ultra-pure water, showing a comparison of the effect of load. 

 

Fig 4.24: Specific wear rates for the reciprocating wear tests of all the material against high purity alumina 
ball lubricated with ultra-pure water. (Materials comparison). 

 

4.5.2. Worn Surface Characterisation 

4.5.2.1. VSI Imaging 

Optical 3D (VSI) imaging of zirconia samples shows the surface evolution during sliding wear 

against alumina ball in water, Figures 4.25 to 4.34. Figure 4.25 and 4.26 demonstrate 

different wear zones. Z specimens worn at 1N and DZ specimens worn at 0.5N suffered 
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some localised severe wear damage even though other areas within the wear track surface 

were largely unaffected by wear. Wear debris accumulation to one side and at the head of 

the wear track showed more intensity in the DZ sample than in the Z one. The DZ samples 

worn in water under 0.5N, 1N and 2 N load, reveal that the wear track has a broader width 

and shallower depth with respect to the counterface geometry at higher applied loads 

(Figure 4.25, 4.27 and 4.28 respectively). In general at loads exceeding 1N the wear track in 

all specimens tended to be more obvious, Figure 4.27, 4.28, 4.30, 4.31 and 4.33. An abrupt 

increase in wear rate of the AZ specimen was observed for load 4N, Figure 4.31. 

Figure 4.29 shows the worn surface of the AZ sample tested under 0.5N load. It exhibited 

parallel grooves along the sliding direction that appeared to be associated with third body 

abrasion.  
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Fig 4.25: Z sample worn in water under 1N at 0.02 m/s 

 

 

Fig 4.26: DZ sample worn in water under 0.5 N at 0.02 m/s 

 

 

Fig 4.27: DZ sample worn water under 1N at 0.02 m/s 

 

 

Fig 4.28: DZ sample worn in under water 2N at 0.02 m/s 

 

 

Fig 4.29: AZ sample worn in water under 0.5 N at 0.02 m/s 

 

 

Fig 4.30: AZ sample worn under 2N in water at 0.02 m/s 
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Fig 4.31: AZ sample worn under 4N in water at 0.02 m/s 

 

 

Fig 4.32: DAZ sample worn in water under 4N at 0.02 m/s 

 

 

Fig 4.33: LAZ sample worn in water under 4N at 0.02 m/s 

 

 

Fig 4.34: DLAZ sample worn under 4N in water at 0.02 m/s 

 

 

Frequent grooves inside the wear scar in Figure 4.32 and 4.34 evidence the presence of 

embedded or loose third bodies with higher hardness than the zirconia surface. The wear 

rate of the DAZ specimen was higher than that of the DLAZ sample under the same load of 

4N as shown by Figures 4.32 and 4.34.  
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4.5.2.2. SEM Imaging 

Secondary electron scanning microscopy was used to characterise the worn surface damage 

including wear debris of a selection of worn surfaces. These surfaces exhibited both 

commonly observed features and extremes of behaviour. Surface changes as a function of 

load were consistent with that observed by optical microscopy. SEM imaging identified the 

existence of a surface tribolayer which covered almost the entire surface on all the water 

worn samples. Figure 4.35 shows the Z sample worn under 2N load. The surface layer in this 

image shows a more polished structure compared to that of the same sample worn under 

higher load (4N), Figure 4.36. The variable intensity of detached material in different 

locations of the surface in these two images is significant. Both images show embedded 

wear debris on the surface layer which is identifiable from the different contrasts in the 

surface layer. There is some loose wear debris over the surface which, depending on its 

hardness and size can produce further wear on the surface.   In the Z specimen worn under 

4N load (Figure 4.36) there appears to be an area of delamination in the surface layer (top 

left of the image) and also some surface ripples.  The ripples are on two scales, one with a 

wavelength of around a micron (bottom right) and the other on a much finer scale.  

Figure 4.37 is a low magnification SEM image in showing a general view of a wear scar 

(middle of the image). As already identified from the optical image, the wear debris 

accumulation is more pronounced in one side of the wear track (bottom of the image) and 

more material detachment is observable in the middle of the scar. The micro-ripples 

structure of DZ sample worn at 2N was captured in Figure 4.38, using high magnification of 

x20000. This wear morphology characteristic was found in most of the water worn zirconia 

surfaces.  
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Figure 4.39 shows the grain relief structure in AZ sample worn at 1N load. This structure is 

rarely observed in water worn zirconia surfaces. Interestingly, the AZ sample worn at the 

higher load of 2N, still show grain relief on the surface alongside another mechanism that 

occurred within the imaged area, Figure 4.40. 

Figure 4.41a is a low magnification image of an AZ sample worn under 4N in water. In this 

image the edge of the wear track was smooth and it gets progressively rougher towards the 

scar centre. The higher magnification of Figure 4.41b indicates grain pull out, with the recess 

being filled by wear debris (exhibited as darker contrast in this image), leaving a relatively 

smooth surface overall. The grooved lines along the sliding direction which are often formed 

in sliding wear could be due to a foreign body between the two rubbing surfaces or could be 

due to an asperity on the counterface. The randomly oriented scratches were considered to 

be residual from surface preparation.  
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Fig 4.35:  Z sample worn in water under 2N at 0.02 
m/s 

 

Fig 4.36: Z sample worn under 4N in water at 0.02 
m/s 

 

 

Fig 4.37: DZ sample worn in water under 0.5N at 0.02 
m/s 

 

Fig 4.38: DZ sample worn in water under 2N at 0.02 
m/s 
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Fig 4.39: AZ sample worn in water under 1N at 
0.02m/s 

 

 

Fig 4.40: AZ sample worn in water under 2N at 0.02 
m/s 

 

 

Fig 4.41a: AZ sample worn in water under 4N at 0.02 
m/s 

 

 

Fig 4.41b: AZ sample worn in water under 4N at 0.02 
m/s 
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Fig 4.42: DLAZ sample worn under 1N load in water at 0.02 m/s 

 

Figure 4.42 shows typical quasi-parallel cracks perpendicular to the sliding direction for the 

DLAZ specimen worn at 1N in water. This appearance is typical of  stick slip behaviour, 

producing a surface layer that became wear debris when it detached (top right of image).    

4.5.2.3. AFM Imaging 

AFM imaging was employed to provide higher resolution information of the wear zone. 

Wear damage intensity is not uniform across the wear scar, but Figure 4.43 of Z sample 

under 1N load in water evidences surface modification during the wear process.  The 

significant appearance of lubricant layer existence on top of the surface this layer 

considerably modified its surface. Figure 4.44 is a lateral force microscopy image of the 

specimen shown in Figure 4.43 evidencing grain boundary recesses which were not 

detected in normal contact mode AFM imaging. The amplitude image of this sample shows 

ripples of compacted layer on the worn region with 5µm wavelength, Figure 4.45. 
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Figure 4.46 shows an AFM image of the worn degraded DZ sample at 2N load. Two different 

wear mechanisms occurred in this image; the upper part of the image demonstrates slip -

slide wear damage in zirconia. In this motion, attachment of some hard particles by frequent 

arrangements over zirconia surfaces was caused alumina ball’s slip on the surface. In 

absence of such features the lower side of the image shows smoother wear morphology. 

In Figure 4.47 the location of the grain boundaries can still be seen clearly in the AZ sample 

worn under 0.5N load. In the AFM images, the regions with brighter contrast correlate to 

features on the surface such as wear debris which stand proud of the surface. The AZ 

sample worn under 2N and 4N loads has approximately parallel grooves perpendicular to 

the sliding direction, Figure 4.48 and 4.49, which is consistent with SEM images of the same 

feature. These features appeared to be a result of fragmentation of a smeared surface layer.  

Figure 4.50 shows an LAZ specimen worn under 1 N loads in water. A tribolayer covered a 

large portion of the surface.  LAZ samples worn under 4N load shows slip-slide, grooving and 

grain pull out wear damage within the wear track,  Figure 4.51 and  the grain outline is still 

visible, Figure 4.52.  

 

 

Fig 4.43: Z sample worn under 1N in water at 0.02m/s 



80 
 

 

Fig 4.44: Lateral force microscopy of Z sample worn in water under 1N at 0.02 m/s 

 

 

 

Fig 4.45: AFM amplitude image of Z sample worn under 1N in water at 0.02 m/s 

 

 

 

Fig 4.46: DZ sample worn under 2N in water at 0.02m/s 



81 
 

 

Fig 4.47: AFM image of the AZ sample worn under 0.5N load in water at 0.02 m/s 

 

 

Fig 4.48: AZ sample worn under 2N load in water at 0.02 m/s 
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Fig 4.49:  AZ sample worn under 4N load in water at 0.02 m/s 

 

 

Fig 4.50: LAZ sample worn under 1N in water at 0.02 m/s 

 

 

Fig 4.51: LAZ sample worn under 4N in water at 0.02m/s 
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Fig 4.52: DLAZ sample worn under 2N load in water at 0.02 m/s 

 

4.5.2.4. Subsurface Wear Damage Characterisation 

 

A surface layer with around 50 nm thickness was generally found on the surface of the 

water worn specimens. A detailed sub-surface damage study was carried out using 

transmission electron microscope.  

The labelled area in Figure 4.53 (top image), which is an SEM image of an AZ surface worn at 

4N was selected for cross-sectional TEM sample.  It was prepared using the focus ion beam 

(FIB) lift-out method. The corresponding TEM image, Figure 5.33 (bottom image) shows the 

carbon deposition layer which was mostly removed by damage of gallium ion beam during 

sample ion milling. A protective gold coating on top was present to label the original 

surface. A large region filled with lubricant can be seen in the corner of the TEM image. This 

could be due to the existence of subsurface pores which aid pull-out grains. Figure 4.54 

shows major sub-surface cracking and also the tribolayer created over the very rough 

surface. Figure 4.55 evidences monoclinic twins the presence of which was also confirmed 

by diffraction pattern. These structures were formed due to either stress or tribochemical 

reaction of surface and environment (the circled regions).  
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Although Figure 4.56 indicates the existence of some nano particles within the tribolayer, 

only an amorphous structure could be detected from the diffraction pattern. The origin of 

the nano particles could be identified with high resolution TEM. 

 

 

Fig 4.53: SEM image of typical damage pit on AZ worn surface under 4N load in water for 24 hours with 

reciprocating sliding speed 600 rpm with selected area for TEM imaging purpose by FIB lift out method. 
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Fig 4.54: Tribolayer and microcracks underneath the surface.  

 

Fig 4.55: TEM image of damaged surface with monoclinic twins’ formation. 
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Fig 4.56: Tribolayer with nano particle floating on that. 

 

4.6. %25 Bovine Serum Lubricated Condition 

Lower wear rates would be expected when using %25 bovine serum lubricant rather than 

water.  The sliding wear mechanism of zirconia surfaces against alumina ball was studied by 

applying loads ranging from 0.5N to 4N at 600rpm (0.02m/s) constant speed to simulate 

different wear zones i.e. the same testing regime as the water lubricated samples. A typical 

COF (coefficient of friction)-time graph for reciprocating sliding wear of the DLAZ (degraded 

LAZ) sample worn under 0.5 N load for 24h at 600rpm in bovine serum was plotted in Figure 

4.57. Initial contact of the intact surfaces of alumina counter ball and zirconia disk caused 
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early COF fluctuation which then steadily increased from around 2 hours attaining a steady 

state value of about 0.014.   

The lubricated regime was identified from the Stribeck curve constructed for six samples of 

Z, AZ, LAZ, DZ, DAZ and DLAZ, Figure 4.58. As with water lubrication then two main 

lubricated regime, mixed and full fluid were identifiable in most graphs, Table 4.3 COF value 

for zirconia surface in presence of bovine serum is very low being within the range at 

[0.003±0.002, 0.042±0.008].  

As with the water lubricated tests, then surprisingly the DLAZ sample worn at 1N and 2 N 

load exhibited lower COF value than the non –aged specimen worn in the same condition. 

 

 

Fig 4.57: DLAZ sample worn under 0.5N load in bovine 
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Table 4.3: Minimum, maximum of COF with respect to the applied load and lubrication regime for Z, DZ, AZ, 
DAZ, LAZ and DLAZ specimens in bovine 

Material COF MIN COF MAX 
Lubricant 

regime 

Z 

 

0.001±0.002(1N) 

 

 

0.011± 0.004 (4N) 

 

Mix-Full-Mix 

DZ 

 

0.014±0.001(0.5N) 

 

 

0.021±0.015(4N) 

 

Mix 

AZ 

 

0.003±0.002(1N) 

 

 

0.042±0.008(0.5N) 

 

Full-mix 

DAZ 0.002±0.002(2N) 

 

0.025±0.001(0.5N) 

 

Full -mix 

LAZ 

 

0.007±0.004(4N) 

 

 

0.035±0.004(0.5N) 

 

Full 

DLAZ 

 

0.004±0.003(4N) 

 

0.035±0.004(0.5N) Full 
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(d)

(e)

(f) 

Fig 4.58: The Stribeck curve for (a) Z, (b) AZ, (c) LAZ, (d) DZ, (e) DAZ and (f) DLAZ samples lubricated with 
bovine serum(B) under 4, 2, 1 and 0.5N load . D represents degraded specimen. 

 

Obtaining the lowest value of COF at 4N load for LAZ and DLAZ samples might be due to 

change of the lubricant viscosity. During the wear the mechanical stresses coupled with heat 
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generated in higher loads modifies the surface property in a way to improve the wear 

resistance significantly. 

4.6.1. Wear Rate 

Obtaining the lowest value of COF at 4N load for LAZ and DLAZ samples might be the result 

of changes to lubricant viscosity, but was difficult to explain. Figure 4.59 and 4.60 compare 

the wear rate in bovine serum of the 6 different materials over this load range. The highest 

wear rate recorded was 8.73 x10-8 mm3/Nm during the 4N load of the DZ specimen. The 

wear scar could usually be observed with the naked eye by comparing the contrast on the 

wear track to that of the original surface, but interestingly in the DLAZ sample worn at 0.5N 

no wear damage was detectable even by SEM microscopy.  

All of the wear tests were conducted in the mild wear zone based on the specific wear rates 

measured. The DLAZ sample showed the best wear resistance and was situated entirely 

within the full fluid film lubricated regime.  
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Fig 4.59: Specific wear rates for the reciprocating wear tests of all the material against high purity alumina 
ball lubricated with bovine serum showing the effect of test load. 

 

Fig 4.60:  Specific wear rates for the reciprocating wear tests of all the material against high purity alumina 
ball lubricated with bovine serum, showing the effect of materials. 

 
 

4.6.2. Worn Surface Characterisation 

4.6.2.1. VSI Imaging 

Surface evolution of Z, AZ and LAZ samples under bovine lubricated condition was imaged 

by 3D optical microscope (VSI), Figure 4.61 to 4.64. Figure 4.61 shows the worn surface of a 

Z sample tested under 0.5 N load. No wear debris accumulation was found on the surface 

indicating full fluid lubricated regime, but a deep groove parallel with sliding direction was 

found on the surface indicating the presence of an abrasive wear mechanism. The Z 
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specimen worn under 4N load, Figure 4.62, shows a rough surface towards the centre of the 

wear track and a few parallel grooves at the edge of the wear scar.  

The LAZ sample worn at 4N load, Figure 4.63, shows two different wear regions.  The left 

side image is of the head of the wear track and shows wear debris accumulation at one side 

of the wear track whilst the right side image is from middle of the scar where the wear 

damage is more inform.  The levels of wear damage detected in the LAZ and DLAZ samples 

was very similar, Figures 4.63 and 4.64. 
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Fig 4.61: Z sample worn under 0.5 N in bovine. 

 

 

Fig 4.62: Z sample worn under 4N load in bovine. 

 

Fig 4.63: LAZ sample worn under 4N load in bovine. 

 

Fig 4.63: LAZ sample worn under 4N load in 
bovine. 

 

Fig 4.64: DLAZ sample worn under 4N load in bovine. 

 

 

4.6.2.2 SEM Imaging 

Figure 4.65 shows the surface layer of the AZ sample worn at 4N load. Surprisingly retention 

of the grain outline is clear within the image indicating that the original surface protected 

the surface layer.  Comparison of Figure 4.66 with Figure 4.2c evidences modification of the 
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grain boundary outline in the LAZ sample which is a sign of tribochemical wear. The specific 

wear of this sample was extremely low and wear scar on the surface was difficult to detect 

even microscopically. The random scratch lines on the surface are residual from the sample 

preparation stage. The darker contrast in 4.66 and 4.68 images is a result of fixing carbon on 

the surface of the specimen by the action of the electron beam. Figure 4.67 of the LAZ 

sample worn at 1N load shows the intact grain outline but some surface wear particles were 

detectable which, dependent on their hardness and size could cause surface damage. 

Interestingly even under the highest applied load of 4N no sign of grain damage to the LAZ 

sample could be detected, Figure 4.68. The observable scratch lines were either residual 

from sample preparation or could have been caused by abrasive foreign body particles 

where the scratches were in line with the sliding direction.  
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Fig 4.65: AZ sample worn in bovine under 4N load in  
for 24 hours at 0.02 m/s 

 

 

Fig 4.66: LAZ sample worn in bovine under 0.5 N 
load for 24 hours at 0.02 m/s 

 

 

Fig 4.67: LAZ sample worn in bovine under 1N load 
for 24 hours at 0.02 m/s 

 

 

Fig 4.68: LAZ sample worn in bovine under 4N load 
for 24 hours at 0.02 m/s 

 

4.6.2.3. AFM Imaging  

The modified zirconia surface after wear in bovine serum was also investigated using AFM 

imaging. This indicated an irregular wear morphology and multiple wear mechanisms. The 

LAZ sample worn at 4N presents a totally polished surface but abrasive grooving along the 

sliding direction is visible, Figure 4.69(a). Localised grain relief is evident within the wear 

scar, Figure 4.69 (b). Interestingly the grain relief region was not detected in normal contact 
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mode imaging of AFM but only when using lateral force mode. The stable crystal orientation 

of some grains was attributed to the high fracture toughness of LAZ sample. AFM section 

analysis of the abrasive groove depth profile indicates that the abrasive particles participate 

in further wear damage, Figure 4.70 (bottom image). 

 

 

Fig 4.69: Lateral force microscopy image of LAZ sample worn under 4N load in bovine serum for 24 h. The 
polished area (a) belongs to worn surface adjust to fractured area (b) grain relief traces are clear. 

 



98 
 

 

Fig 4.70: AFM 2D height image of grooves in DAZ sample worn inside bovine under 4N load (a) with 
corresponding section analysis of grooves depth. 

 

4.6.2.4. Subsurface Wear Damage Characterisation 

Determining actual wear damage of zirconia surface against alumina ball required analysis 

of sub-surface images. An AZ sample worn under 4N load in bovine serum for 24h at speed 

0.02 m/s was investigated using TEM. Focus ion beam microscopy technique was applied to 

prepare the transparent sample if mechanical grinding was not a practical method for 

thinning TEM samples of the worn region.  The boxed area of the SEM image in Figure 
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4.71(top image) was selected for cross-sectional TEM sample by FIB lift-out method. A gold 

coating layer protected the surface from further damage due to the gallium ion beam 

damage where it helped to label the actual surface. The TEM cross-section, Figure 

4.71(bottom image) shows extensive subsurface microcracking and grain pull out. The 

diffraction pattern taken from an area beneath the tribolayer presents a monoclinic 

structure. Figure 4.72 (top image) shows the presence of a thick tribolayer on top of the 

original surface. The very rough structure of the original wear surface is clear from this 

image. The sub-surface microcracking (bottom image) extended to grains a considerable 

depth beneath the surface.  In this image the subsurface porosity can be observed which 

makes this region vulnerable to grain pull, which then causes further damage. 



100 
 

 

 

Fig 4.71: (a) A SEM image of worn AZ sample under 4N load in bovine shows a typical pit damage on which 
the location of cross-section TEM sample prepared by FIB lift-out method . (b) The plan view of the 

corresponding TEM cross-section sample and diffraction pattern(c). 
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Fig 4.72: (Top image) shows floating wear particles inside surface layer. Bottom image shows the detail of 
wear damage followed by micro- cracking and monoclinic Twining. 
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5. Discussion 

 

In this chapter the results of the degradation and wear tests are analysed. The benefit of 

dopant additions (Al203 and La203) in reducing the kinetics of the tetragonal to monoclinic 

phase transformation, on the zirconia’s wear behaviour and interlinking mechanisms 

between degradation and wear are discussed. 

5.1. Material Processing 

High purity 3Y-TZP, B-grade Tosoh powder was used in this test due to it producing a 

sintered microstructure of faceted grain boundaries with no glassy phase at the grain 

boundaries or triple points. This is important as the glassy phase is known to effect the 

degradation kinetics and also could preferentially dissolve the dopant additions, thereby 

negating their beneficial effect [7].  Zirconia balls were used as milling media to eliminate 

any possible impurities introduce during milling process. Nogiwa [60] in her TEM study of 

the same composites used in the present work discovered some voids within the doped 

material’s structure and attributed them to the removal of the amorphous phase in the 

triple point due to ion milling of TEM sample preparation process. However, these were few 

and far between and high resolution TEM analysis demonstrated that the grain boundaries 

were free from glassy phase. 

The schedule of the sintering process was that developed by Burke [70] to achieve optimum 

grain size and fracture toughness. In particular, this sintering schedule allowed materials 

with different additions to be developed with the same grain size and fracture toughness, 

thereby allowing the role of the dopant additions to be determined without the 

complication of these variables. Grain size has a critical effect on the mechanical properties 
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of zirconia and its role in the tetragonal to monoclinic phase transformation has been 

discussed extensively in the literature. For zirconia in biomedical applications, the British 

standard requirement is of a grain size is less than 400 nm. This is a reduction in grain size 

compared to that stated previously of 600nm, followed by catastrophic failure of the Prozyr 

zirconia hip joint implants manufactured in 2001. The grain size produced in the current 

work is in agreement of the British standard requirement although all three compositions 

showed some degree of ageing regardless of grain size. The range of the measured grain 

size was 260-310 nm (Table 4.1) where AZ had the closest value to the undoped Z material, 

while the LAZ grain size was 20 nm smaller, but this value is within experimental error. 

Similarly, the fracture toughness measured for all materials was the same, within 

experimental error.  

The grain size observed in the current work does not fit in the suggested ranking for dopants 

additions suggested by Huan and Chen [19]. The sintering schedule used provided 

essentially the same grain size and fracture toughness for all materials. This is in contrast to 

Huan and Chen who suggested that the grain sizes should be a function of the 

characteristics of the ternary dopant, in particular the ionic size and valence.  Moreover, 

there are several reports in the literature that the alumina addition should act as a sintering 

aid [7]. The difference between the current research and the literature is because relatively 

small additions were made in the current work, and a relatively low sintering temperature 

was also used.  

Lepisto and Mantyla [71] in their research pointed to the creation of the oxygen vacancies 

as a result of the alumina addition, which aids the ageing resistance. The number of oxygen 

vacancies is the key factor in tetragonal phase stabilization. Ross and Rodrigues Pulido also 
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discuss about the effect of the alumina and lanthena additions on oxygen ion vacancy 

accumulations at the grain boundaries, which is a major contributor in the stabilization of 

the tetragonal phase [72]. 

It is important to note that the fracture toughness of a zirconia ceramic depends strongly on 

the test method used to measure the fracture toughness. In the current work, indentation 

was used, because this was regarded as most relevant to the wear process, which is a 

surface specific phenomenon. One of the disadvantages of this technique is that there can 

be further crack propagation from the indent some time after the test. Moreover, locating 

the crack tip can be difficult, particularly by optical microscopy. In the current work, crack 

measurements were made in the SEM straight after indentation to minimise any time 

dependent crack propagation. The more accurate measurement of total crack length by 

SEM is likely to have produced a lower value of the fracture toughness than observed by 

Burke and Rodrigues Pulido for essentially the  same material, as they used optical 

microscopy to measure crack length [72][73]. 

5.2. Topography of the Degraded Materials 

Since the tetragonal to monoclinic phase transformation results in an increase in the lattice 

volume and thereby grain upheaval on a surface, AFM with its high vertical resolution was 

used to image the changes in grains height after aging. A significant height difference was 

observed between transformed and non-transformed regions, e.g. Fig. 4.16. Monoclinic 

twinning was not observed in any of the monoclinic grains, consistent with the work of 

Nogiwa [78], believed to be because of the small grain size. Twins in the monoclinic phase 

have been observed, but for significantly larger grain size materials.  XRD of the degraded 

samples aged less than 24h did not detect any monoclinic phase but AFM imaging revealed 
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some transformed grains, indicating that AFM was more sensitive to detecting 

transformation than XRD. AFM imaging of the sample degraded for 24 hours showed 

circular monoclinic “spots” forming on the surface, Fig. 4.13. These “spots” are regions 

where transformation occurs in a small number grains and this triggers transformation in 

the adjacent grains such that the transformation front grows away from the original grains 

with an approximately circular appearance when viewed at the surface. The structure of 

these spots was revealed by Nogiwa and Rainforth [23].  

The AZ material exhibited similar behaviour to the Z material, Fig. 4.12 and 4.13. However, 

AFM imaging of the LAZ specimen showed a different behaviour of monoclinic nucleation 

and growth compared to the other compositions. In the LAZ specimen, monoclinic spots 

were not observed; rather transformation appeared to occur in individual or small clusters 

of grains, as can be seen in the light contrast area in 24h, Figure 4.14.  This behaviour has 

not been seen before, and is different to that observed by Nogiwa and Rainforth for 

material with similar composition. However, the current work was undertaken with a 

degradation temperature of 134oC, whereas Nogiwa and Rainforth used 180oC. This 

suggests that the co-addition of La3+ and Al3+ interferes with the autocatalytic nature of the 

transformation more at the lower temperature than the higher temperature. Nevertheless, 

Nogiwa and Rainforth observed a fundamental difference in transformation behaviour 

between the Z and LAZ materials, with the latter exhibiting far slower transformation 

kinetics.  

Phase transformation in zirconia is triggered by an applied stress. As it is shown in Figure 4.6 

defects such as scratches on the surface appeared to be preferential regions for nucleation 
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of the monoclinic phase. This is consistent with the work by Nogiwa for samples aged at 180 

ᵒC. 

5.3. Propagation of the Transformation 

Degradation of zirconia starts from the surface and propagates inside the bulk. SEM imaging 

of surface cross-sections of the aged specimens revealed the transformation front as a 

result of grain pull-out and intergranular fracture which occurred during metallographic 

preparation, a consequence of the low mechanical strength and microcracking of the 

monoclinic phase, Fig. 4.19.  This showed the dramatic difference in the degradation rate 

between the different materials. The small addition of alumina approximately halved the 

depth of transformation.  The addition of alumina and lanthana reduced the depth of 

transformation by a factor of around 4. This is in-line with the observations of Nogiwa and 

Rainforth [43], although the effect of a combined alumina and lanthena addition was much 

more pronounced at 134oC degradation temperature used in the current work compared to 

the 180oC used by Nogiwa and Rainforth. 
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5.4. Sliding Wear Mechanisms  

5.4.1. Friction and Lubrication Behaviour  

Lubricated reciprocating wear tests were carried out at four different loads in water and 25 

vol% new-born calf serum. Generally the average COF for all the materials was very low. The 

COF value was in range of 0.010-0.070 for water and 0.002-0.041 for bovine serum. Ma 

undertook tests of a commercial zirconia toughened alumina (ZTA) using the same test 

conditions as those in the present work and observed higher friction for tests using water as 

a lubricant compared to the bovine serum. However, as such low values of the friction 

coefficient, the accuracy of the test method has to be called into question. Nevertheless, it 

is interesting that the values observed in the current work for zirconia were similar to those 

that Ma observed for ZTA [30]. The higher COF value for the tests in water compared to 

bovine serum could indicate zirconia’s inherent sensitivity to water. Rainforth in his research 

showed that water was not a suitable lubricant for zirconia during the wear simulated wear 

tests, with similar wear behaviour observed in wet and dry tests [53]. This suggests that the 

surface of zirconia is hydrophilic.  

In ceramic on ceramic in-vitro wear tests, the wear rate and COF in bovine serum depends 

on the viscosity of the serum. For example 100% bovine serum exhibited a higher coefficient 

of friction than that of 25% bovine serum [75]. This could be related to the absorption of the 

protein layer on the ceramic surface which creates an organic surface layer which is believed 

by some to act as a solid lubricant.  

To identify the lubrication regime during the wear tests, the Stribeck curve construction for 

all the materials in both lubricants was constructed. Figure 5.1 shows a comparison of all the 

data. Some curves followed a classic shape for a Stribeck curve (as shown in Fig. 2.1), while 
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some do not. One problem is that the range of test conditions used was not sufficient to 

fully establish a Stribeck curve, with a range of sliding speeds also required to provide a 

comprehensive plot. In addition, it was difficult to measure friction accurately given the low 

friction coefficient values observed and therefore any noise in the system would dominate 

the measured value.  
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Fig 5.1: Partial Stribeck curves for : a) Z sample worn in water, b) Z sample worn in bovine, c) Degraded Z sample worn in water , d) AZ 

sample worn in Water ,e) AZ sample worn in water ,f) AZ sample worn in Bovine , g) Degraded AZ sample worn in water , h) Degraded 

AZ sample worn in Bovine , i) LAZ sample worn in water , J)LAZ sample worn in Bovine , K) Degraded LAZ sample worn in water, L) 

Degraded LAZ sample worn in Bovine . 

Ma in her Stribeck curve construction for ZTA material found a specific trend to suggest a 

mixed and hydrodynamic lubricated regime. The Stribeck curves she observed for three 
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lubricants were much more consistent with the classic behaviour shown in Fig. 2.10, so that 

she was able to determine the lubrication regime operating for each test condition. The 

available evidence from studying the worn surfaces was that the zirconia in the current tests 

was operating predominantly in the boundary-lubricated regime.  

 

5.4.2. Specific Wear Rates 

The highest specific wear rates for all materials tested in water were 2.03x10-6 mm3/Nm for 

water and 8x10-8 mm3/Nm for bovine serum. These values are in the mild wear regime, as 

defined by Rainforth [52] who suggested a specific wear rate below 10-6 mm3/Nm or less 

can be defined as the mild wear regime for ceramics. Le tested a commercial ZTA material 

using the same test conditions and obtained specific wear rates of 9.75×10-10-1.33×10-8 

mm3/Nm in serum solution, which are smaller than the specific wear rates for the materials 

tested here. Jin [37] in his screening test suggested wear rates range of 10-8 mm3/Nm for 

ceramic-on-ceramic hip joint combinations. So based on these findings bovine serum 

lubricated specimens with a lower wear rate than water are in the accepted range of mild 

wear. The specific wear rate here in this test is agreement with Rainforth’s plot of specific 

wear rate against sliding speed for all the data available in the literature at that time [52], 

Figure 5.2. 
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Fig 5.2: Specific wear rate as a function of sliding speed [52] 

 

Rainforth and Stevens [50] reported similar specific wear rates for non-lubricated and water 

lubricated sliding for zirconia against alumina. Detailed microstructural observation of the 

worn surface revealed surprising high strain deformation at the surface that could only be 

explained by high flash temperatures during sliding. The surface structure was similar for 

water lubricated and dry sliding, again strongly suggesting that water does not act as a 

lubricant, rather that zirconia is hydrophilic.  
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(c) 

Figure 5.3: Specific wear rate as a function of load for a) Z, b) AZ and c) LAZ materials respectively. “D” represents 

degraded specimens. ”W” and “B” are water and bovine lubricants. 

5.4.3. Worn Surface Morphology  

The worn surfaces of the materials tested in water differed from those tested in bovine 

serum. Generally, the surfaces worn in water were generally rougher and contained a more 

distinct tribolayer. Also, the surfaces worn in water tended to show characteristics of stick-

slip (e.g. Figs. 4.38, 4.42, 4.46), while this characteristic was not evident on the surfaces 

worn in bovine serum. There was some evidence of grain pull-out, but this was more 

pronounced on the water surface and was generally obscured by the tribolayer.  

TEM cross-sections of the worn surface showed that the surface regions were dominated by 

monoclinic zirconia for both the water lubricated and bovine serum lubricated surfaces, Fig. 

4.56,4.71 and 4.72. The monoclinic grains were heavily microcracked in both cases, and 

evidence of grain pull-out was found for both lubricants. Such grain pull-out would be easy 

since the monoclinic phase was full of microcracks and has little mechanical strength, Fig. 

4.72.  Thus, the evidence was that the wear process was dominated by the transformation 

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

0.5N 1N 2N 4N

w
e

ar
 r

at
e

 m
m

3
/N

m
 

 

LAZ-W LAZ-B DLAZ-W DLAZ-B



114 
 

from tetragonal to monoclinic zirconia at the surface, followed by detachment of the 

monoclinic grains as wear debris.  

Detached wear debris would be re-deposited on the worn surface through attrition of the 

wear debris between the sliding surfaces. During this attrition process, there was clearly a 

reaction between the zirconia wear debris and the lubricant, ultimately leading to the 

formation of an amorphous tribolayer, with fine nanocrystals within the layer, Figs. 4.56, 

4.72. SEM showed that this tribolayer covered much of the surface, e.g. Fig. 4.41, 4.53. The 

tribolayer becomes thicker at higher loads. The layer appeared to fill in recesses on the 

surface and form much of the contacting surface. Detachment of this layer occurred, giving 

the appearance of delamination wear, e.g. Fig. 4.36. 

One surprising observation on the worn surface was the absence of monoclinic zirconia 

when using Raman spectroscopy to search for it. However, the laser wavelength penetration 

limit is less than the tribofilm thickness on the surface.  Given the clear evidence in the TEM 

of a thick layer of monoclinic zirconia at the surface, it is concluded that the failure to 

observe it by Raman spectroscopy must have been because of the tribofilm prevented a 

signal escaping from the monoclinic layer. 

One particular difference between the water and bovine serum lubricated surfaces was that 

grain relief was observed for the bovine serum lubricated conditions, e.g. Fig. 4.69, but was 

rarely seen in the water lubricated case. Grain relief morphology is usually linked to 

tribochemical mechanism, and has mostly been observed for the wear of alumina. This and 

the significant other differences in surface morphology indicate the significant differences in 

wear behaviour with water compared to bovine serum lubrication. 
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For both water lubricated tests and bovine serum tests for the non-degraded surfaces, the 

wear resistance of the alumina (AZ) containing material was better than the base 3Y-TZP, 

while the alumina-lanthana containing (LAZ) material offered the best wear resistance of all 

materials. Broadly speaking, the wear resistance scaled with the resistance to hydrothermal 

degradation. This, therefore, gives direct evidence that reducing the extent of 

transformation from tetragonal to monoclinic zirconia improves the wear resistance. It is 

also consistent with the TEM observations that wear occurred predominantly by removal of 

monoclinic grains from a heavily microcracked surface.  The same observation of LAZ being 

better than AZ being better than Z is broadly speaking true for the wear tests on prior 

degraded surfaces, although the difference was more pronounced at low load. This again, 

suggests that the smaller the transformed layer the lower the wear rate.  

One question that has been very difficult to answer has been why the surfaces degraded 

prior to wear testing tended to offer similar or better wear resistance to those that had not. 

Given that the degradation results in extensive microcracking in the monoclinic layer, it 

would be expected that such a surface would wear at a greater rate, but this was not 

observed. One possible reason could be that the surface transformation induced by the 

degradation results in surface compressive stresses that reduce wear rate. Such a 

hypothesis would be difficult to verify. However, it is difficult to envisage any other reason 

why a degraded surface could offer superior wear resistance in both water and bovine 

serum lubricated conditions. 
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6.  Conclusions 

6.1. Degradation in Zirconia  

The effect of Al2O3 and La2O3 oxide additions on the ageing behaviour of a 3Y-TZP zirconia 

ceramic was studied. Powder processing and sintering schedule resulted to achieve a fully 

dense 3Y-TZP ceramics with homogeneous microstructures of faceted equiaxed grains. The 

structure was 100% tetragonal confirmed by XRD. These dopants additions did not 

significantly effect on the grain size of the base material (Z) material. The mean linear 

intercept measured grain size ranged between 260-300 nm with average grain size 286nm. 

This grain size is in agreement of the British Standards for Y-TZP surgical implants [11]. In 

addition, no statistically significant difference in fracture toughness or hardness was 

observed between doped and undoped materials. As shown in previous work by Nogiwa, 

dopants addition by segregation to the grain boundary create oxygen ion vacancies which 

make the tetragonal phase of zirconia more stable. 

To simulate the degradation for zirconia in hydrothermal condition, all three samples were 

place in a degradation vessel for 6, 12 and 24 hours at 134 °C. The tetragonal to monoclinic 

phase transformation initiated at the free surface, usually from an isolated grain. 

Transformation then grew in an autocatalytic manner from the original transformation site 

forming monoclinic “spots”. Due to the volume expansion of the monoclinic grains the area 

of transformed grains starts to form conical structure, standing proud of the surface. Atomic 

force microscope with high vertical resolution was able to detect the monoclinic spots 

earlier than XRD. AFM is more sensitive to height differences on the surface.  At the same 

time as forming these protuberances, the transformation of tetragonal zirconia propagated 
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into the bulk. Surface defects such as scratches were preferential regions for monoclinic 

nucleation.  

Dopant additions reduced the rate of monoclinic phase transformation. The added dopants 

segregate to the grain boundary and by increasing the local stabilising effect from higher 

dopant concentration inhibit the transformation. It has been shown that the t→m 

transformation kinetics follows a sigmoidal behaviour typical of the nucleation and growth 

mechanisms described by the Mehl-Avrami-Johnson laws [84].  

SEM cross-section imaging of the aged structure easily revealed the penetration depth as a 

result of intergranular microcracking and grain pull out which occurred during polishing the 

cross-sections. This revealed major differences in depth is minimum in LAZ sample and 

maximum in undoped Z sample. 

In conclusion, alumina and lanthana-alumina additions to 3Y-TZP resulted in a significant 

improvement in ageing resistance in this material by creating oxygen ion vacancies at the 

grain boundaries to retain the tetragonal phase. 

6.2. Sliding Wear Mechanisms in Zirconia 

Based on the findings from reciprocation wear tests on sintered zirconia disks using water 

and bovine lubricants at 0.5, 1, 2 and 4 N loads at a constant speed of 0.02 m/s , the 

following conclusions were drawn:  

Results from reciprocating sliding wear tests in water and bovine lubrications were used to 

understand the lubricant regime during zirconia performance against alumina ceramic. To 

determine this purpose the Stribeck curve was constructed with friction coefficients and 

Sommerfeld number. Mixed and full fluid films lubrication regimes were detected for 

zirconia performance during wear. Degradation and low thermal conductivity in zirconia 

made the wear behaviour of zirconia very complicated and quiet unexpected.  
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In general worn surfaces for materials worn in water showed higher wear rate than those 

worn in bovine serum. At 4N load however, the wear rate was few orders of magnitude 

higher than the other loads. The wear zone in fact changed from mild to severe by moving 

towards higher loads. 

Surface pitting and intergranular fracture were the dominant wear morphology was seen for 

the surfaces. Differential wear between individual grains was detected in bovine serum 

worn specimens. Third body abrasive grooving was observed in many loads and also in both 

lubricants. Liberated grains from pits contribute in the abrasive wear mechanism. 

An amorphous tribolayer was formed on top of the fractured surface imaged by FIB 

microscopy. The nature of the tribofilm and how it formed does need to be investigated 
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7. Future Work 

Alumina and lathena additions in small amount made a positive contribution in mechanical 

property improvement in zirconia to aid the ageing and wear resistance. It is important to 

further investigate what exactly the role of the dopant additions is. 

A systematic study of FIB samples is suggested to study the distribution of tetragonal and 

monoclinic grains across a region exposed to hydrothermal conditions. 

For the further study of reciprocating sliding wear behaviour of zirconia tests that were 

carried out in these different conditions an investigation of longer and shorter wear 

durations are suggested. A wear map construction in different lubricants might assist to 

study the wear mechanisms in zirconia ceramics.  

A further investigation on tribolayer required to investigate which in the origin of the layer.  

While protein reaction on implant surface has critical importance to investigate, so XPS 

could be applied to study this reaction on the surface. Tribolayer on serum lubricated worn 

surface is strongly affected by protein precipitation.  

Viscosity of the lubricant need to be study in more details. More controllable environment 

such as temperature, shear rate, speed, could be add to the wearing system to compare the 

viscosity effect to the wear.  
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