
A Modelling Approach
to

Multi-Domain Traceability

Masoumeh Taromirad

A thesis submitted for the degree of
Doctor of Philosophy

University of York
Department of Computer Science

August 2014

Abstract
Traceability is an important concern in projects that span different engi-
neering domains. Traceability can also be mandated, exploited and man-
aged across the engineering lifecycle, and may involve defining connections
between heterogeneous models. As a result, traceability can be considered
to be multi-domain.

This thesis introduces the concept and challenges of multi-domain trace-
ability and explains how it can be used to support typical traceability sce-
narios. It proposes a model-based approach to develop a traceability so-
lution which effectively operates across multiple engineering domains. The
approach introduced a collection of tasks and structures which address the
identified challenges for a traceability solution in multi-domain projects.
The proposed approach demonstrates that modelling principles and MDE
techniques can help to address current challenges and consequently improve
the effectiveness of a multi-domain traceability solution.

A prototype of the required tooling to support the approach is imple-
mented with EMF and atop Epsilon; it consists of an implementation of the
proposed structures (models) and model management operations to sup-
port traceability. Moreover, the approach is illustrated in the context of
two safety-critical projects where multi-domain traceability is required to
underpin certification arguments.

Contents
Abstract i

Contents iii

List of Figures vii

List of Tables xi

Listing xiii

Acknowledgements xv

Author Declaration xvii

1 Introduction 1
1.1 Motivation: Traceability in Multi-domain Context 2

1.1.1 Example . 3
1.2 Research Hypothesis . 5

1.2.1 Research Objectives 7
1.3 Research Results . 7
1.4 Research Method . 8
1.5 Thesis Structure . 9

2 Background and Literature Review 13
2.1 Traceability . 13

2.1.1 Terminology and Concepts 14
2.1.2 Traceability Applications 24
2.1.3 Traceability Activities 26
2.1.4 Traceability Tools . 59
2.1.5 Traceability Challenges and Limitations 64
2.1.6 Traceability in Specific Domains 68
2.1.7 Traceability in Different Engineering Approaches . . . 73

2.2 Model-Driven Engineering . 78
2.2.1 Models . 78
2.2.2 Modelling Languages and Metamodels 79
2.2.3 Model Management Operations 80
2.2.4 Modelling in the Large 84

iii

Contents

2.3 Chapter Summary . 86

3 Analysis of Traceability Approaches 89
3.1 Overview of the Literature . 89
3.2 Discussion . 94
3.3 Challenges of Multi-Domain Traceability 96

3.3.1 Domain-specific Traceability Information 97
3.3.2 Inter-domain Traceability Information 97
3.3.3 Diverse Information in Heterogeneous Format 98
3.3.4 Separation of Concerns (SoC) 98

3.4 Requirements of a Multi-Domain Traceability Solution 98
3.5 Chapter Summary . 104

4 A Multi-Domain Traceability Solution 105
4.1 Traceability Information Model 110

4.1.1 Step 1: Determine Traceability Goals 111
4.1.2 Step 2: Identify Related Project Concepts 111
4.1.3 Step 3: Define the TIM 114

4.2 Traceability-Related Information 120
4.2.1 Investigate Available Information 120
4.2.2 Domain-Specific Information 121
4.2.3 Multi-Domain Information 123

4.3 Traceability Information . 125
4.3.1 Locating Source Elements 126
4.3.2 Generating the Traceability Model 130

4.4 Maintaining Traceability Model 132
4.5 Traceability Analysis . 133

4.5.1 Traceability Analysis Language (TAL) 135
4.5.2 Analysis Result . 138

4.6 Chapter Summary . 139

5 Implementation 143
5.1 Infrastructure . 144

5.1.1 Eclipse Platform . 144
5.1.2 Eclipse Modelling Framework 144
5.1.3 Epsilon . 145
5.1.4 Xtext & Xtend . 147

5.2 Prototype . 148
5.2.1 Metamodels and Models 150
5.2.2 Extended CoreTIM . 150
5.2.3 Mapping Model . 153
5.2.4 Dynamic Model Transformation 155
5.2.5 Traceability Analysis Language 159

5.3 Chapter Summary . 165

iv

Contents

6 Case Study: The EUR RVSM Programme 167
6.1 The Programme: Introduction 167
6.2 Traceability in the EUR RVSM 171
6.3 Safety Activities . 172

6.3.1 Safety Policy . 172
6.3.2 Functional Hazard Assessment (FHA) 172
6.3.3 Preliminary System Safety Assessment (PSSA) 173
6.3.4 System Safety Assessment (SSA) 175

6.4 Safety-Affected Activities . 176
6.4.1 Modification of ATC Equipment 176
6.4.2 Provision of ATC Procedures 177

6.5 An Example Traceability Scenario 177
6.5.1 The TIM . 179
6.5.2 Traceability-related Information 183
6.5.3 The Traceability Model 184
6.5.4 Trace Queries . 185
6.5.5 Discussion . 188

6.6 Chapter Summary . 189

7 Evaluation and Discussion 191
7.1 Evaluating the Approach Based on Requirements 191

7.1.1 Scenario-Driven Approach 192
7.1.2 Project-specific Traceability Information Model 192
7.1.3 Models and Model Management Operations 193
7.1.4 Domain-Specific Models 194
7.1.5 Inter-Domain Traceability Metamodels and Models . . 194
7.1.6 A Project-wide Traceability Model 195
7.1.7 Traceability Activities 195
7.1.8 Tooling Support . 197
7.1.9 A Model-Based Solution for Multi-Domain Traceability198

7.2 The Case Study: EUR RVSM 201
7.3 Publications . 201
7.4 Limitations and Shortcomings 202

7.4.1 Limited Support of Non-Model Artefacts 202
7.4.2 Partial Traceability Maintenance 203

7.5 Discussion: Solution in Practice 203
7.5.1 Cost/Benefit . 204
7.5.2 Non-model Artefacts 204
7.5.3 Change and Evolution 205

7.6 Chapter Summary . 209

8 Conclusion 211
8.1 Thesis Contributions . 212

8.1.1 Traceability in Multi-Domain Context 212

v

8.1.2 Model-Based Multi-Domain Traceability Solution . . . 213
8.1.3 Case Study and Evaluation 216

8.2 Future Work . 216
8.2.1 Non-Model Artefacts 216
8.2.2 Traceability Maintenance 217
8.2.3 Semi-automated Mapping Model 217
8.2.4 Improved Traceability Analysis Language 218

Appendices 219

Appendix A Categorisation Parameters 221
A.1 TIM . 221
A.2 Activities . 221
A.3 Tooling . 223
A.4 Artefact . 223

Appendix B Summary of Existing Traceability Approaches 225

Appendix C GSN Diagrams 235

Appendix D TAL Xtext Grammar 239

Appendix E Dynamic Model Transformation 243

Appendix F RVSM Case Study Supplement 249
F.1 GQM Model . 249
F.2 EVL Constraints . 249
F.3 partialTIMs . 251
F.4 Mapping Model . 251

References 255

vi

List of Figures
1.1 Conceptual overview of steps in the development process for

IADDS project . 4
1.2 Overview of the research method. 8

2.1 Basic types of traceability [Winkler and Pilgrim, 2010] 18
2.2 Traceability links classification [Ramesh and Jarke, 2001] . . 20
2.3 Requirements Interdependencies Classification [Dahlstedt and

Persson, 2005] . 23
2.4 A generic traceability process model [Gotel et al., 2012b] . . . 28
2.5 The traceability reference model of [Ramesh and Jarke, 2001] 32
2.6 Traceability metamodel proposed by [Jouault, 2005] 35
2.7 The metamodel of a transformation record introduced in [Ob-

ject Management Group, 2005] 36
2.8 Traceability Metamodel proposed by [Amar et al., 2008] . . . 37
2.9 The Traceability Metamodelling Language proposed by [Dri-

valos et al., 2009] . 38
2.10 Feature diagram of traceability models extracted by [Winkler

and Pilgrim, 2010] . 39
2.11 IR-based traceability recovery process [Diaz et al., 2013] . . . 40
2.12 Reactive Traceability [Costa and da Silva, 2007] 51
2.13 A sample traceability matrix [Duan and Cleland-Huang, 2006] 55
2.14 The V-model of software system development 74
2.15 Basic concepts of model transformation [Czarnecki and Helsen,

2006] . 81

3.1 Categorisation parameters for traceability approaches 92
3.2 Feature diagram representing the main issues covered by trace-

ability proposals proposed in [Santiago et al., 2012] 94
3.3 Main elements of the GSN [Kelly and Weaver, 2004] 99
3.4 GSN diagram representing requirements of a multi-domain

traceability solution (overall argument) 103

4.1 Conceptual view of the proposed approach 107
4.2 Main elements of the proposed traceability solution 109
4.3 GQM model to identify traceability-related concepts 112

vii

List of Figures

4.4 Part of the GQM model to identify traceability-related con-
cepts to show ‘implementation is safe’ in IADDS project . . . 113

4.5 GQM Metamodel . 114
4.6 Part of the EMF model for the GQM model depicted in Fig. 4.4115
4.7 Abstract syntax of CoreTIM 116
4.8 Part of the project-specific TIM for IADDS 118
4.9 The metamodel for the safety domain 123
4.10 The metamodel for the requirements engineering domain . . . 123
4.11 How a TIM and partialTIMs are related 124
4.12 The partialTIM between requirement and safety engineering

domain (ReqSafety-partialTIM) 125
4.13 Generating the traceability model 127
4.14 Graphical view of example relationships between the TIM and

the ReqSafety-partialTIM . 128
4.15 Mapping Metamodel . 129
4.16 Part of the mapping model for IADDS project 131
4.17 The abstract syntax of TAL 137
4.18 Analysis result metamodel . 139

5.1 The architecture of Epsilon [Kolovos and Paige, 2013] 145
5.2 A screen shot of the generated editor for the TAL 148
5.3 Technologies used to implement the tooling for the approach 149
5.4 Abstract syntax of ExtendedCoreTIM 151
5.5 The list provided to users to select a metamodel refered by a

ModelRef . 154
5.6 The list provided to users to select the endpoints of an entry 156
5.7 The two options to generate the TM 157
5.8 TAL grammar rules for UserStory and Mitigate 162

6.1 Conceptual overview of the EUR RVSM Programme 170
6.2 Concepts and their relationships in the RVSM Safety Policy . 173
6.3 Concepts and their relationships in the FHA 174
6.4 Concepts and their relationships in the PSSA 175
6.5 Concepts and their relationships in the ATC supporting system177
6.6 Concepts and their relationships in the ATC Manual 178
6.7 The GQM model for the example traceability scenario in RVSM180
6.8 The TIM for the EUR RVSM Programme. 182
6.9 The partialTIM between FHA and PSSA 185
6.10 Part of the mapping model for RVSM case study 190

7.1 GSN diagram summarising the requirements-based evalua-
tion for goal G1 . 199

7.2 GSN diagram summarising the requirements-based evalua-
tion for goals G2 and G3 . 200

viii

C.1 GSN diagram representing requirements of a multi-domain
traceability solution (overall argument) 236

C.2 GSN diagram summarising the requirements-based evalua-
tion for goal G1 . 237

C.3 GSN diagram summarising the requirements-based evalua-
tion for goals G2 and G3 . 238

F.1 The GQM EMF model for the example traceability scenario
in RVSM . 250

F.2 The partialTIM between Safety Policy and FHA 252
F.3 The partialTIM between Safety Policy and PSSA 252
F.4 The partialTIM between PSSA and ATC supporting system

development . 252
F.5 The partialTIM between PSSA and ATC Manual 252
F.6 The mapping model - part 1 253
F.7 The mapping model - part 2 254

ix

List of Tables
2.1 Research-based traceability tools 60

4.1 Overview of the proposed approach - Artefacts 140
4.2 Overview of the proposed approach - TIM 140
4.3 Overview of the proposed approach - Tooling 140
4.4 Overview of the proposed approach - Planning and Management140
4.5 Overview of the proposed approach - Trace Creation 141
4.6 Overview of the proposed approach - Maintenance and Usage 141

B.1 Summary of Existing Traceability Approaches - Part 1 (Arte-
facts, TIM, and Tooling) . 226

B.2 Summary of Existing Traceability Approaches - Part 2 (Ac-
tivities) . 230

xi

Listings
4.1 Example EVL constraint in the TIM in IADDS 119
4.2 The concrete syntax of TAL 135
4.3 Example TAL query . 138
4.4 Example TAL constraint . 138

5.1 EWL wizard to annotate a TIM according to a GQM model . 151
5.2 EWL wizard to list metamodels: listMetamodels 153
5.3 EOL operation getMetaModels 153
5.4 EWL wizard to list model element type: listModelElementTypes155
5.5 Part of the dynamic model transformation to generate the TM158
5.6 Part of the EGL program to generate the TIM-specific part

of the TAL grammar . 161
5.7 The doGenerate method in the Xtend Class 161
5.8 Code template for the Query 163
5.9 Generated EOL file for the trace query defined in Section 4.5.1.3164

6.1 Example EVL constraints in the TIM for RVSM 183
6.2 Queries for the first traceability question (Q1) 186
6.3 The constraint for the fourth traceability question (Q4) . . . 186
6.4 Queries for the traceability question Q6 187
6.5 A query for the traceability question Q7 187

D.1 Xtext grammar of the general part of the TAL grammar . . . 239

E.1 Dynamic model transformation EOL program 243

F.1 EVL constraints for the TIM in RVSM 249

xiii

Acknowledgements
I will always be grateful to my supervisor, Prof. Richard Paige, and co-
supervisor, Dr. Nicholas Matragkas, for their invaluable guidance, help and
encouragement.

I would also like to thank my internal examiner and external examiner,
Dr. Fiona Polack and Prof. Antonio Vallecillo, for their comments and
feedback, which have greatly improved the quality of this thesis.

I am grateful to Dr. Louis Rose for his advice and expertise throughout
my research. I am also thankful to my colleagues and friends in the Enter-
prise Systems research group for their support and friendship.

I would like to express my gratitude to my parents for their unreserved
love, support, and prayers. Finally, I am eternally grateful to my husband
Mohammad and my son Mahdi for their love, patience, and understanding
all these years.

Author Declaration
Except where stated, all the work contained in this thesis represents the
original contribution of the author.

Parts of the work described in this thesis have been previously published
by the author in:

– Masoumeh Taromirad, Nicholas D. Matragkas, and Richard F. Paige,
Towards Multi-Domain Traceability: a Model-Driven Ap-
proach, submitted and under review in Journal of Software and Sys-
tems Modelling, Springer, 2014.

– Masoumeh Taromirad, Nicholas D. Matragkas, and Richard F. Paige,
Towards a Multi-Domain Model-Driven Traceability Approach,
In Proc. of the 7th International Workshop on Multi-Paradigm Mod-
eling (MPM ’13), Miami, Florida, USA, September 2013.

– Masoumeh Taromirad and Richard F. Paige, Agile Requirements
Traceability Using Domain-Specific Modelling Languages, In
Proc. of the 2nd International Extreme Modeling Workshop (XM ’12),
Innsbruck, Austria, October 2012.

1
Introduction

The success of a software system depends on how well it fits the needs of its
users and its environment [Nuseibeh and Easterbrook, 2000]. Recent studies
show that eliciting, specifying and managing requirements are essential chal-
lenges in developing a software system; errors in requirements are claimed
to lead to consistent project failure rates of about 50% [Marasco, 2006].

This issue becomes more crucial with critical applications in which failure
of the system could lead to loss of life, environmental damage, or significant
financial loss. There are numerous accounts of catastrophic software failures
such as the London Ambulance System [Finkelstein and Dowell, 1996], and
more recently Boeing 777-200 (registered 9M-MRG) [Australian Transport
Safety Burea, 2005]. Post-mortem analyses have laid at least partial blame
on the incorrect implementation and management of requirements.

Requirements traceability (or, for short, traceability), has been widely
studied as a mechanism to deal with software development challenges, such
as verification and validation and change impact analysis [Gotel and Finkel-
stein, 1994; Cleland-Huang et al., 2005a]. In some cases, it is mandated so as
to comply with regulations, e.g. DO-178B [RTCA and EUROCAE, 1992] in
civil aviation projects. This is because traceability is claimed to help ensure
that requirements of the system are completely allocated to system elements
and developed correctly. Accordingly, traceability is considered as a key el-
ement of any rigorous software development process, which would provide
critical support for various development activities [Lago et al., 2009].

Nevertheless, there are substantial challenges associated with traceabil-
ity in practice, such as identifying the most appropriate artefacts to
trace [Kirova et al., 2008] and dealing with artefacts represented in hetero-
geneous formats [Mäder and Cleland-Huang, 2010]. This makes it difficult
to define effective traceability solutions – consisting of a Traceability Infor-
mation Model (TIM), traceability process, and analysis tools – to provide
traceability; such solutions are thus still rarely defined and used [Mäder
et al., 2009b].

1

Chapter 1 Introduction

In the following, the scope of the research presented in this thesis is speci-
fied and the problems motivating this research are highlighted. Accordingly,
the research hypothesis and objectives are outlined and a summary of the
results and the main contributions of this research are provided. Then,
the research method is briefly introduced and, finally, an overview of the
structure of the thesis is provided.

1.1 Motivation: Traceability in Multi-domain Context

In many contexts in which different kinds of traceability are mandated (i.e.
developing high-assurance software systems [Cleland-Huang et al., 2012]),
projects extend across multiple domains. These could be either engineering
domains (e.g. business, software, mechanics, and safety), problem domains
(e.g. avionic, medical, and financial), or even technological domains (e.g.
embedded systems, web-based systems, and real-time systems). A domain
represents a collection of concepts fundamentally associated together for
a particular and distinguishable purpose. Therefore, domains are not re-
stricted to the aforementioned ones and could refer to other concepts (pos-
sibly in different levels) as long as they coherently serve a single purpose.

Each domain has its specific stakeholders, goals, artefacts, and tools.
Stakeholders from any single domain may be concerned with both intra-
and inter-domain traceability. For example, a software developer will be
interested in traces from system to software requirements, while a safety en-
gineer will want to trace relationships between fault tree analysis, software
requirements and verification artefacts. Accordingly, as traceability is usu-
ally required throughout the project lifecycle, traceability is a multi-domain
concern. A traceability solution needs to operate across the project’s dif-
ferent domains, effectively deals with various artefacts (documents, models,
databases) in different domains and relationships between them.

Nevertheless, software development projects are increasingly becoming
more distributed and dependent on different software and techniques. Ex-
isting traceability approaches still fall short in tracing scenarios that extend
across tool boundaries [Asuncion and Taylor, 2012]. This also motivates the
need for traceability solutions which operate across different aspects of a
project and, consequently, support such scenarios more easily or effectively.

On the other hand, it is widely accepted that a cost-effective traceabil-
ity solution is the one that is tailored to a particular project situation and
supports traceability goals (e.g. tailoring the granularity and types of trace
links). This is because project-specific traceability goals drive traceability
activities [Aizenbud-Reshef et al., 2005] and project characteristics are criti-
cal in finding the necessary and sufficient amount of required information to
record [Egyed et al., 2007]. However, due to the lack of practical guidance on
how to design, implement, and use project-specific traceability constructs,

2

1.1 Motivation: Traceability in Multi-domain Context

such solutions are rarely defined and used in practice [Mäder et al., 2009a].
Particularly, in the context of multi-domain traceability, existing approaches
do not consider the fact that a project-wide view of traceability information
is just a comprehensive, pervasive, and coherent view of the available infor-
mation scattered in different domains and none of them provide mechanisms
to address this issue explicitly and effectively.

In the following, we introduce a safety-critical systems engineering project
and demonstrate general traceability scenarios which motivate the research
presented in this thesis. Throughout the thesis, we use examples of this
project to illustrate the proposed approach.

1.1.1 Example

We are applying our proposed approach in the context of safety-critical
projects, in which traceability is required. In such systems, tracing hazards
to mitigation is mandated by certification authorities [RTCA and EURO-
CAE, 1992]. Traceability from hazards to derived safety requirements and
to implemented and verified design solutions provides essential evidence to
argue that a system is operationally safe [Lutz, 2000].

The Integrated Altitude Data Display System (IADDS) is responsible for
providing pilots with altitude data during flight [Charalambous, 2007]. It
is also responsible for issuing audible and visible warnings to pilots when-
ever pilot-specified altitude limits are reached. In this project, traceability
is both a mandatory requirement of safety standards (i.e. DO-178B [RTCA
and EUROCAE, 1992]) and essential in addressing the lifecycle manage-
ment challenges inherent in the safety domain. In particular, the project re-
quires multi-domain traceability: requirements engineering tasks must trace
to software engineering tasks and to safety engineering tasks. Largely the
project is dominated by requirements to enable certification: if the system
cannot be certified then the project fails, and certification requires detailed
traceability information (e.g. according to DO-178B).

The process used for developing the software deliverables of the project
resembles the XP process following the pipelined iteration model introduced
in [Paige et al., 2011]. Each iteration comprises a series of steps that are
performed iteratively and each of them consists of a sequence of substeps
that may be performed recursively as necessary. Fig. 1.1 shows the concep-
tual overview of steps, substeps (activities), and artefacts in iteration N of
development. It also shows the input and output of activities and the overall
sequence in which they are performed.

Generally, user stories are derived from software system requirements; de-
velopment models are designed according to user stories and implemented by
code. Meanwhile, safety engineering requires additional artefacts to be pro-
duced and traced to the general software development artefacts. Hazards
are identified through assessments (e.g. Functional Hazard Assessment),

3

Chapter 1 Introduction

Figure 1.1: Conceptual overview of steps in the development process for
IADDS project

which are performed in context of user stories, and documented in hazard
log. Then, they are examined in more detail using safety analysis models
and the contribution of various components in the system to these hazards
is determined and derived safety stories are defined in order to mitigate the
hazards. Derived safety stories are similar to user stories with additional
properties and will be planned to be implemented in following iterations.
Finally, validation and verification (tests and simulations) and safety assur-
ance activities are performed.

One of the main concerns in safety system development is providing valid
and sufficient evidence for the safety argument which aims to show that ‘the
system is acceptably safe to operate in a particular context’ (e.g., civilian
airspace) [Hawkins and Kelly, 2009]. Generally, a safety argument consists
of a number of strategies which specify how the goals are satisfied. In this
context, supporting traceability could be useful to provide required and valid
evidence for safety arguments. This is because trace links allow engineers to
collect artefacts related to or required for an argument through traversing
trace links according to the defined strategy.

In the IADDS project, two main safety arguments are provided in the
safety case document: 1. ‘implementation is safe’ and 2. ‘implementation is
correct’. In the following, we focus on the first argument and show how it is

4

1.2 Research Hypothesis

supported by evidence and how traceability could help.
To show that the implementation is safe, three strategies are defined:

1. All types of requirements (system, user stories, safety stories) have
been satisfied by the implementation

2. All the hazards have been identified

3. All identified hazards have been mitigated (omitted or controlled)

Each of the above strategies need specific evidence. For example, to show
that all requirements have been satisfied a safety engineer needs to show that
each requirement has been considered, at least, in one design model and the
design model has been implemented by code. Also, she has to show that
each requirement has been covered by test cases and implementation has
passed the related unit tests (test results). In this context, the relationships
(trace links) between requirements, design models, code, test cases, test
results are essential to prepare the required evidence. Note that a group of
requirements are defined in the safety engineering domain as derived safety
stories. Thus, to provide the aforementioned evidence, we need to define
and keep records of the relationships between derived safety stories (from
safety engineering domain) and design models (from development domain):
inter-domain traces.

On the other hand, from the traceability perspective, to provide required
trace links to answer the above questions (trace queries), traceability in-
formation would consist of concepts related directly to them. Therefore,
Software System Requirements, User Stories, Safety Stories, Design Models,
Code, Test Cases, and Unit Test Results are accumulated in a traceability
model. Considering Figure 1.1, it can be observed that most of the required
information is already available (except inter-domain traces) and, so, could
be extracted from related domain models and put in the traceability model.
However, defining and capturing inter-domain links is a challenge in this
context.

The above example shows a simple scenario which essentially requires
multi-domain traceability. It also briefly outlines some of the challenges of
multi-domain traceability.

In chapter 4, examples from this project are used to illustrate the proposed
approach in detail to show how the approach helps to provide traceability
in order to support safety assurance and certification activities.

1.2 Research Hypothesis
The above discussion and the research context presented in this thesis ex-
plore the hypothesis of this work. The definition of the highlighted terms
are defined to clarify the hypothesis.

5

Chapter 1 Introduction

In many contexts, traceability is a multi-domain concern as it
needs to operate across project’s different domains. This thesis
demonstrates that a modelling approach to develop a multi-
domain traceability solution improves the precision and re-
peatability in such solutions. This will be via automating the
challenging aspects of defining, creating, using, and maintain-
ing heterogeneous traceability relationships between various do-
mains in order to support multi-domain traceability scenarios.

The highlighted terms are defined as follows.

Multi-domain Traceability. A traceability solution needs to oper-
ate across the project’s different domains to effectively deal with various
artefacts (documents, models, databases) in different domains and the
relationships between them.

Modelling Approach. Using the proposed approach, a model-based
traceability solution is developed which uses modelling principles and MDE
techniques to carry out related activities and generate artefacts represented
as models.

Traceability Solution. The proposed approach will define detailed
steps to build a comprehensive traceability solution which consists of a
traceability information model, a customised traceability process, and
tooling support. The approach considers basic traceability activities
(defining TIM, creation, maintenance, and usage of traces) and, therefore,
specifies either how the solution support an activity explicitly or how it
could be extended with the other techniques.

Traceability Scenarios. Scenarios specify the ultimate purpose of
collecting traceability information. They determine traceability goals or
requirements. Using the proposed approach, traceability requirements are
determined and the solution is developed accordingly; a requirements-driven
traceability solution.

Heterogeneous Traceability Relationships. Using the proposed
approach, an engineer will be able to manage traceability relationships
between different domains’ models expressed in heterogeneous formats and
contexts.

Precision and Repeatability The proposed approach demonstrates
a systematic way which will enable engineers to precisely determine and
define traceability information, and capture and maintain it in a repeatable
manner rather than in an ad hoc way.

6

1.3 Research Results

Automation. The proposed approach will provide semi-automatic
techniques to build and maintain the solution, in addition to techniques to
identify and maintain traceability information.

1.2.1 Research Objectives

The objectives of this thesis are to:

1. Identify and analyse the concept of multi-domain traceability and its
specific requirements and challenges.

2. Propose an approach to develop a multi-domain traceability solution
which effectively deals with models across different domains.

3. Provide techniques to identify requirements for traceability and de-
velop a project-specific solution accordingly.

4. Support and automate the activity of maintaining the traceability so-
lution to keep it relevant and effective over the time.

5. Provide semi-automatic techniques to specify and capture relation-
ships (trace links) between multiple domains

1.3 Research Results

This thesis proposes a model-based approach to building traceability solu-
tions which effectively operate across multiple engineering domains. The
approach introduces a collection of tasks and structures which intend to ad-
dress the identified challenges and requirements for traceability solutions in
multi-domain projects. The proposed approach demonstrates that modelling
principles and MDE techniques could help to address current challenges and
consequently improve the effectiveness of a multi-domain traceability solu-
tion.

A prototype of required tooling to support the approach has been imple-
mented with EMF and atop Epsilon which consists of implementation of the
proposed structures (models) and model management operations to support
traceability.

The thesis contribution has been validated through using the approach in
a large-scale safety-critical project which showed the practicality of the ap-
proach and highlighted its benefits in such context. Additionally, a detailed
requirements-based evaluation of the approach, presented as a formal argu-
ment in the GSN diagram, has demonstrated how the proposed approach
fulfils the identified requirements and challenges.

7

Chapter 1 Introduction

1.4 Research Method
The research presented in this thesis was conducted using the method con-
ceptually illustrated in Figure 1.2, which was effectively based on software
engineering processes concepts. The figure shows main phases of the re-
search, activities, and the inputs/outputs of each phase.

In terms of software engineering (SE), there are two levels in a SE process
working complementary: macro (SE ‘in the large’) and micro (SE ‘in the
small’) levels [Alexander and Maiden, 2004]. Macro level is associated with
the overall phases (e.g. exploration and development) and the micro level
is concerned with the sequences of low-level activities (e.g. detailed design
and implementation).

Figure 1.2: Overview of the research method.

As shown in the Figure 1.2, in overall, the research has been done in three
phases (the macro level), which mainly specify the primary concern of the
research at each time.

1. Review and Analysis. In this phase, existing literature for trace-
ability were studied and analysed, to explore the state of traceability
approaches in practice, and in multi-domain context, in particular.
The analysis led to identification of research challenges and a set of re-
quirements for a practical multi-domain traceability solution address-
ing the challenges.

2. Specification and Implementation. In this phase, based on the re-
sult of the analysis phase, a novel approach to develop a multi-domain

8

1.5 Thesis Structure

traceability solution was proposed, specified and a prototype of the re-
quired tooling was implemented accordingly. The set of requirements
identified in the analysis phase were used for validating the proposed
approach and the implementation.

3. Application and Evaluation. In this phase, the proposed approach
(process and structures) and the prototype implementation were as-
sessed against the specified requirements. Additionally, the approach
was applied in a number of potential contexts (case study) focusing
on the feasibility of the approach and its benefits. Accordingly, the
strengths and weaknesses of the novel approach were identified.

On the other hand, the research was conducted in an iterative and incre-
mental manner. In this way, the above phases were accomplished through
several iterations and their outputs were produced incrementally. In each
iteration, the basic software development activities namely analysis, de-
sign, implementation, and testing, were carried out sequentially (the micro
level). The analysis activity focused on studying existing literature and mod-
elling techniques relevant to this work, and identifying current challenges.
Throughout design and implementation activities, the proposed approach
was defined and implemented gradually. The output of these activities (a
part of the proposed approach) was tested and evaluated in the context of
the running example (Section 1.1.1).

The effort and time spent on each activity in each iteration varied depend-
ing on the phase in which the research was and the short-term goal. Earlier
iterations, which were in the Review and Analysis phase, involved intensive
analysis and possibly short design activities. In mid iterations (Specification
and Implementation phase), intensive design and implementation activities
were performed as the focus of the research was on defining the approach and
implementing a prototype. In later iterations, the approach was applied in
case studies and evaluated with respect to the research hypothesis. There-
fore, these iterations focused on test activities in comparison to previous
iterations, though based on the result of tests, short design and implemen-
tation activities might have been carried out too (in the next iteration).

The iterative and incremental approach also allowed us to manage unfore-
seen issues (e.g. problems, obstacles, missing points) within the time frame
of the research plan, through defining a new iteration planned accordingly.

1.5 Thesis Structure
Chapter 2 provides a thorough review of the literature related to this re-
search divided into two parts: software traceability (Section 2.1) and MDE
(Section 2.2). Section 2.1.1 describes principles of traceability and Sec-
tion 2.1.2 outlines the benefits of traceability in terms of its application

9

Chapter 1 Introduction

for different purposes. In Section 2.1.3, main traceability activities, namely
planning and managing, trace creation, trace maintenance, and using traces,
as well as the existing literature for each part, are described. Section 2.1.4
introduces the most widely used traceability tools in industry and research-
based tools. In Section 2.1.5 limitations and challenges which have hindered
the adoption of traceability approaches in practice are identified. Moreover,
a short review of traceability in specific domains and different engineer-
ing approaches are provided in Section 2.1.6 and Section 2.1.7. Finally,
Section 2.2 introduces basic concepts in modelling including models and
modelling languages. Then, model management operations are explained in
Section 2.2.3 and the concept of modelling in the large is introduced and
discussed in Section 2.2.4.

Chapter 3 summarises the findings of the review conducted in Chap-
ter 2. First, Section 3.1 provides an of overview existing tracing approaches
and a detailed categorisation of them based on the introduced set of pa-
rameters (Figure 3.1). Section 3.2 analyses existing traceability approaches
regarding the context and scope of this research. Based on this analysis,
Section 3.3 synthesises research challenges for traceability in multi-domain
context, highlighting those challenges to which this thesis contributes. Fi-
nally, Section 3.4 outlines the requirements of a multi-domain traceability
solution.

Chapter 4 presents the main contributions of this thesis. Section 4.1 in-
troduces a three-step method to define a project-specific TIM which includes
determining traceability goals, identifying related concepts in the project,
and finally representing the TIM in a formal way. In Section 4.2, it is ex-
plained how to investigate existing models in a project to identify available
traceability-related information which could explicitly or implicitly support
traceability. Section 4.3 presents a systematic approach to locate and ex-
tract traceability-related information from other models in the project and
generate a project-wide traceability model. Section 4.4 discusses how the
traceability model is maintained when the relevant models change and evolve
over the time. Finally, in Section 4.5, the Traceability Analysis Language
(TAL) is presented and it is discussed how it facilitates traceability analyses.

Chapter 5 presents a prototype of the tooling required to support a trace-
ability solution developed based on the approach presented in this thesis. In
Section 5.1 an overview of the infrastructure used in the implementation is
provided. Section 5.1 explains the prototype implementation in detail and
highlights its main parts and features.

Chapter 6 applies the proposed approach in a large-scale safety-critical
project, the EUR RVSM Programme. The case study explores the extent
to which the proposed approach is beneficial, particularly in terms of multi-
domain traceability scenarios.

Chapter 7 evaluates the approach presented and explained in this thesis
to explore whether the proposed tasks and structures are effective in devel-

10

1.5 Thesis Structure

oping a multi-domain traceability solution. In Section 7.1, the approach is
basically assessed against the identified requirements. Section 7.2 outlines
the finding of the EUR RVSM case study. In Section 7.3, the papers repre-
senting the outcomes of this research are introduced. The limitations and
shortcomings of the approach are identified and discussed in Section 7.4.
Finally, Section 7.5 presents a discussion of using the proposed approach in
practice.

Chapter 8 summarises the main contributions of the research, discusses
them in the context of the research hypothesis, and finally suggests areas of
future work.

11

2
Background and

Literature Review
This chapter provides a review of the research relevant to the work presented
in this thesis. The review consists of two main sections. The first section
discusses software traceability and outlines its principles and benefits. It
describes the main traceability activities, namely planning and managing,
trace creation, trace maintenance, and using traces, as well as the related
literature. Additionally, it presents briefly some of the most widely used
traceability tools and it identifies some of the limitations and challenges
which have hindered the adoption of traceability approaches in practice.

The second section describes Model Driven Engineering (MDE), whose
principles are used extensively in this work. This section starts with a brief
introduction to basic concepts in modelling including models and modelling
languages. Then, model management operations, especially those that are
explicitly used in this work, are explained. Finally, the concept of modelling
in the large is introduced and discussed in addition to a brief literature
review.

2.1 Traceability
Traceability is a topic of great interest in the software engineering domain
in general, and in Requirements Engineering (RE) and MDE in particular.
The role of traceability was recognised in the NATO working conference
held in 1968 to discuss the problems of software engineering [Gotel et al.,
2012b]. Afterwards, it has been considered as a quality attribute for software
development because of the benefits provided by supporting traceability,
such as ensuring other qualities of the software (e.g. understandability),
change impact analysis, and coverage analysis [Gotel and Finkelstein, 1994;
Lindvall and Sandahl, 1996; Ramesh and Jarke, 2001].

13

Chapter 2 Background and Literature Review

2.1.1 Terminology and Concepts
Historically, traceability has started as an area of requirements engineering,
as noted by a study of the existing fundamental literature of traceability.
However, nowadays, traceability is considered as a method to manage traces
of any types of artefact (other than requirements) [Aizenbud-Reshef et al.,
2006; Winkler and Pilgrim, 2010] and as an instrument to integrate such
links into development process methods [Lago et al., 2009]. Therefore, it
overlaps with different domains of interest, including RE, MDE, knowledge
engineering, software project and process management. This makes it dif-
ficult to clearly locate the traceability in the software engineering research
landscape. Accordingly, there is no single general definition for traceability,
and different definitions and terminology are provided regarding the context
or domain in which traceability is used or considered.

2.1.1.1 Definition

One of the earliest formal definitions of traceability is found in the IEEE’s
Standard Glossary of Software Engineering Terminology [IEEE, 1990] which
defines traceability as

“The degree to which a relationship can be established between
two or more products of the development process, especially
products having a predecessor-successor or master-subordinate
relationship to one another [...]”

This general definition has been adapted based on context; hence different
definitions of traceability have been provided in the literature. Significant
traceability research has been conducted by the requirements engineering
community, most definitions of traceability explicitly refer to requirements
traceability. In this respect, one of the key and early definitions of trace-
ability has been given by [Gotel and Finkelstein, 1994] in the context of
RE:

“Requirements traceability refers to the ability to describe and
follow the life of a requirement in both forward and backward
direction, i.e from its origins through its development and speci-
fication, to its subsequent deployment and use, and through pe-
riod of ongoing refinement and iteration in any of these phases.”

This definition focuses on requirements and the relationships between
them and other artefacts of software development process. Additionally,
it focuses on relations between a requirement and the associated artefacts
which are subsequently created. Therefore, it does not cover relations be-
tween artefacts that are not in a predecessor-successor relation or the rela-
tions between artefacts which are created simultaneously. However, these

14

2.1 Traceability

types of relations exist in software development projects and are useful to
be captured and recorded.

Another definition of traceability is offered by [Pinheiro, 2003] which is
also produced in the RE domain and focuses on requirements and their
relations with other development artefacts. However, it covers more generic
relations rather than just predecessor-successor relations between artefacts.
According to their definition, requirement traceability

“refers to the ability to define, capture and follow the traces left
by requirements on other elements of the software development
environment and the traces left by those elements on require-
ments.”

As mentioned earlier, over the past years, traceability has gained in im-
portance, and traceability topics have become subject to research in many
other areas of software development. For example, [Object Management
Group, 2003] provides a very specific definition of traceability in the context
of MDE and model transformations. Accordingly,

“a trace records a link between a group of objects from the input
models and a group of models from the output models. This link
is associated with an element from the model transformation
specification that relates the groups concerned.”

Although this definition is provided in the MDE domain, it is not general
enough to cover different types of relations and traces existed in the context
of MDE. This is because it particularly focuses on model-to-model trans-
formations and low-level traces –between objects of models. [Paige et al.,
2008] define traceability in their work to provide a classification for trace-
ability in MDE and identify traceability as “the ability to chronologically
interrelate uniquely identifiable entities in a way that matters”. Although
they do not limit the level of traces and type entities, they limit the traces to
those that exist between traceable entities which can be only chronologically
interrelated. So, it is a partial order rather than a total order.

However, there are definitions of traceability which try to provide a more
generic definition of traceability, though they are provided in a particular
research community. For example, in the MDE domain, [Aizenbud-Reshef
et al., 2006] follow the IEEE’s definition of traceability and define trace-
ability as “any relationship that exists between artefacts involved in the
software engineering life cycle”. Although they do not focus on any specific
domain and define traceability with respect to products or artefacts of the
development process, the terms product or artefact generally refer to coarse-
grained outputs of development activities such as documents or models. So,
although this definition is generic to software development, it does not ex-
plicitly consider potential traces between small pieces or parts of those large
products or artefacts.

15

Chapter 2 Background and Literature Review

[Spanoudakis and Zisman, 2004] provide an extended definition in the con-
text of software traceability, which contains both artefacts produced during
the development process, stakeholders, and artefact rationale. However, it
does focus on artefacts and not their parts, as the definitions mentioned
above. It defines software traceability as

“the ability to relate artefacts created during the development of
a software system to describe the system from different perspec-
tives and levels of abstraction with each other, the stakeholders
that have contributed to the creation of the artefacts and the
rationale that explains the form of the artefacts.”

Finally, in one of the recent studies on traceability terminology and con-
cepts, [Gotel et al., 2012b] define traceability at the most fundamental level
as “the potential for traces to be established and used” within the context of
a broader traceability strategy. The strategy comprise those decisions made
in order to determine the stakeholders and system requirements for trace-
ability and to design a suitable traceability solution. They define trace link
and trace artefacts, respectively, as a “single association forged between two
trace artefacts” and “a traceable unit of data (e.g. a single requirement, a
cluster of requirements, a UML class, a UML class operation, a Java class, or
even a person)”. In this context, traceability is an attribute of an artefact or
a collection of artefacts which makes artefacts to be traceable. As mentioned
above, they aim to provide a fundamental definition; hence, the definition is
generic in comparison to the aforementioned ones and could cover all types
of information which would be traced, with various granularity, at different
levels, and with different semantics.

All of the above mentioned definitions help to reach to a general under-
standing of the concept of traceability in software engineering, even though,
some of definitions focus on specific context, characteristics, or properties.
In the context of this thesis, traceability is about establishing and using
traces in order to support arbitrary stakeholders’ needs which might have
been defined in any context, such as requirements management, certification
process, and quality assurance. Therefore, the scope of this thesis requires a
definition of traceability which could cover all possible scenarios. We found
the definition of traceability provided in [Gotel et al., 2012b] as a suitable
definition which properly meets the requirements of this research, and hence
we use the following as the working definition:

“Traceability is the ability to define, create, maintain, and use
traces between traceable units of data in the context of trace-
ability requirements or goals.”

Effective traceability is provided in the context of a traceability strategy.
The core part of a traceability strategy is a traceability solution which is de-
fined, designed, and implemented for a particular project or situation along

16

2.1 Traceability

with required traceability tooling [Gotel et al., 2012b]. A traceability solu-
tion comprises a traceability information model (TIM), a traceability process,
and traceability tools.

A traceability information model (TIM), which is also called a traceability
scheme or traceability metamodel in the literature, is an abstract expression
of the intended traceability for a project. It is usually represented as a graph
defining the detail required to record in order to address the anticipated
traceability-related queries and software and system engineering activities
and tasks that traceability supports. Usually, a TIM defines the permissible
artefact types, the permissible trace link types, and the permissible trace
relationships in the project [Ramesh and Jarke, 2001; Gotel et al., 2012b]. It
may also capture additional information such as the cardinality of the trace
artefacts associated through a trace link, the primary trace link direction,
the purpose of the trace link (i.e. the link semantics), and the location of
the trace artefacts [Mäder et al., 2009a].

A traceability process defines the particular sequence of activities to be em-
ployed to establish traceability and render it usable for a particular project,
along with a description of the responsibilities and resourcing required to
undertake them as well as their inputs and outputs. The activities are re-
ferred to as the traceability activities in the literature, and include activities
for identification, representation, maintenance, and utilisation of traces [Pin-
heiro, 2003]. The traceability process defines how to undertake a traceability
strategy and traceability activities during the life of a project.

2.1.1.2 Basic Types of Traceability

Tracing can be considered for various purposes and so is performed based
on different foundations, such as based on logical interrelations among arte-
facts or based on temporal dependency between artefacts. The most com-
mon types of traceability, in the requirements traceability literature, are
forwards and backwards traceability, horizontal and vertical tracing, and pre-
RS and post-RS traceability, which are illustrated in Figure 2.1. There are
also other conceptual classifications including functional and non-functional
traces, product-related and process-related trace links, and implicit and ex-
plicit traceability. These terms mainly provide a conceptual (high-level)
classifications for trace links. Additionally, they are not exclusive or orthog-
onal, and a trace link can be categorised in more than one group at the same
time.

The ANSI/IEEE Standard 830–1984 [IEEE, 1984] has introduced the
terms backward and forward traceability. The forward and backward direc-
tion pertain to the logical flow of the software and the systems development
process. Backward traceability refers to the ability to follow the traceabil-
ity links from a specific artefact back to its sources from which it has been
derived. Forward traceability refers to following the traceability links to the

17

Chapter 2 Background and Literature Review

Figure 2.1: Basic types of traceability [Winkler and Pilgrim, 2010]

artefacts that have been derived from the artefact under consideration.
[Ramesh and Edwards, 1993] have introduced the distinction between hor-

izontal and vertical traceability. These terms differentiate between traceabil-
ity links between artefacts belonging to the same project phase or level of
abstraction, and links between artefacts belonging to different ones. Ver-
tical tracing is used to trace artefacts at different level of abstraction to
accommodate lifecycle-wide or end-to-end traceability. Horizontal tracing is
about tracing artefacts at the same level of abstraction. These two types can
employ both forward and backward tracing. [Antoniol et al., 2001] briefly
relates horizontal and vertical traceability to the iteration- and increment-
dimensions of the development process, respectively.

[Gotel and Finkelstein, 1994] have introduced and emphasized the clas-
sification in pre-requirements specification (pre-RS) traceability and post-
requirements specification (post-RS) traceability. Pre-RS traceability is con-
cerned with traces occurring during elicitation, discussion, and agreement of
requirements until they are included in the requirements specification doc-
ument. Post-RS traceability is concerned with the stepwise implementation
of the requirements in the design and coding phases.

18

2.1 Traceability

[Pinheiro, 2003] has divided traces into two different categories:
1. Functional traces. These are created by transforming one artefact into

another using a defined rule set.

2. Non-functional traces. They refer to traces of informal nature and
include reason, context, decision, and technical aspects.

[Ramesh and Jarke, 2001] introduce product-related and process-related
trace links. Product-related links describe properties and relationships of
traceable artefacts independent of how they were created. Process-related
traces are captured only by looking at the history of actions taken in the
process itself and cannot be recovered from the product relationships.

[Mäder et al., 2007] categorises trace links into two groups: explicit and
implicit traces. They describe explicit traceability as any explicitly ex-
pressed relationship between entities, while implicit traceability is consid-
ered to be any interrelationship between entities which is implied but not
explicitly represented. Implicit traces result from an inherent relationship
between the traceable items [Paige et al., 2008]. For example, a link between
two elements, which belong to different models and have the same name, is
considered to be an implicit link. However, current research mostly focuses
on and investigates explicit traceability as it requires additional effort to be
provided [Mäder et al., 2007].

Finally, [Costa and da Silva, 2007] state that there are two viewpoints in
creating traces: the dependency viewpoint and generative viewpoint. The
dependency viewpoint identifies traces describing some implicit or explicit
semantic relation or dependency between them. By contrast, the generative
viewpoint is interested in the relationships between the generated artefact
and the one which was used for the generation.

2.1.1.3 Traceability Classifications

Although many approaches and techniques have been introduced and de-
veloped to address different aspects of traceability, majority of the early
research concentrates on interpretation and classification of traceability re-
lations. This is because richer semantics in the traceability relationships,
rather than abstract relationships, can increase the benefits of using trace-
ability [Dick, 2005].

A traceability classification represents a set of trace link types identified
for a specific domain or context. The existing well-known traceability clas-
sifications (e.g. [Ramesh and Jarke, 2001; Spanoudakis and Zisman, 2004])
are mainly introduced in the context of requirements traceability, and have
been introduced based on the properties and the intention of a specific study.
For example, some of the classifications are based on the types of the related
artefacts, while others are based on the use of traceability in supporting dif-
ferent requirements management activities [Spanoudakis and Zisman, 2004].

19

Chapter 2 Background and Literature Review

However, there are other traceability classifications for other domains such
as [Rummler et al., 2007] for business applications and [Olsen and Oldevik,
2007] for different uses of traceability in model-to-text transformation.

In the following the most well-known traceability classifications and, then,
existing approaches to define case-specific classifications are introduced and
assessed.

[Ramesh and Jarke, 2001] conducted a thorough study in the domain of
requirements engineering. They recognise two types of traceability users:
low-end and high-end users. Low-end users consider traceability simply as a
mandate from the project sponsors or for compliance with standards. These
users describe the various project interdependencies using simple traceabil-
ity classifications to provide links from initial requirements to actual system
components. High-end users consider traceability as a major opportunity
for customer satisfaction and knowledge creation throughout the system de-
velopment process. They use much richer traceability classifications, which
enable them to perform richer analysis and reasoning on traces, including
requirements management, design allocation, compliance verification, and
rationale management. Considering the two types of users, Ramesh and
Jarke classify traceability links into four main groups named satisfies, de-
pends on, evolves to, and rationale links, shown in Figure 2.2. They also
state that the first two link types are product-related while the other ones are
process-related. Then, they provide a considerable number of fine-grained
link types for each group regarding the analyses that low and high-end users
perform.

(a) Product-related traceability
links

(b) Process-related traceability
links

Figure 2.2: Traceability links classification [Ramesh and Jarke, 2001]

In Figure 2.2a, the high-level object (e.g. a requirement, a standard,
a policy, or complex design object) defines some kind of constraint or goal
which should be SATISFIED by one or more lower-level objects. The shared
constraint or goal to be satisfied also implies a DEPENDENCY between
lower-level objects. Generalization and aggregation abstractions (i.e. con-
figuration of complex objects) are special kinds of dependencies. low-end
traceability users tend to be characterized by relying mostly on these two
link types.

20

2.1 Traceability

Figure 2.2b shows the two kinds of process-related links: evolution and
rationale links. The important difference is that the evolution link has a
temporal direction: the left lower-level design object EVOLVES-TO the
right one through some kind of action whose RATIONALE is captured in
the higher-level object. Advanced traceability users typically have a higher
share of link types belonging to this category.

Another classification focusing on requirements traceability is proposed
by [Pohl, 1996b]. In this work, 18 different trace link types are identified and
organised into five different categories. These categories are the following:

– Condition Link Group: this group consists of the relationships between
requirements and the various constraints associated with them.

– Documentation Link Group: this group includes relationships between
different types of software documentation and requirements.

– Abstraction Link Group: this category includes relationships repre-
senting abstraction between requirements, such as generalisation or
refinement.

– Evolutionary Link Group: this group consists of replacement relations
between requirements.

– Content Link Group: this category includes trace links which denote
comparison, conflict and contradiction between requirements.

[Spanoudakis and Zisman, 2004] conducted a thorough survey and organ-
ised the available different types of traceability relations into eight main
groups. These groups are the following:

– Dependency links describe a relationship in which an element e1 de-
pends on an element e2, if its existence relies on the existence of e2 or
if changes in e2 have to be reflected in e1.

– Generalisation/Refinement links are used to identify decomposition of
entities, composition of entities or refinements.

– Evolution links are used to describe the evolution relation between two
artefacts. When artefact e1 evolves to artefact e2, then artefact e1 is
replaced by e2.

– Satisfiability links signify the compliance of an artefact to another one.

– Overlap links describe a relationship in which artefacts e1 and e2 refer
to common features of a system or of its domain.

– Conflict links describe an incompatibility or an inconsistency relation
between two artefacts.

21

Chapter 2 Background and Literature Review

– Rationalisation links are used to represent the rationale behind the
creation and evolution of artefacts.

– Contribution links represent the association between artefacts and
stakeholders, who have contributed to their creation.

In addition to the aforementioned trace link categories, [Spanoudakis and
Zisman, 2004] present a very detailed description (in the form of a matrix)
of the various trace link types that have been proposed in the literature
and the types of software artefacts that these links interrelate. Moreover,
associations between stakeholders and artefacts are presented. Based on
their matrix description, they observe that most approaches focus on types
of traceability relations that relate requirements specifications, as well as
requirements with design. The number of approaches that focus on the
links between code and requirements or between code and design artefacts
are far fewer. This is attributed to the fact that initially, traceability was
a concept very closely related to requirements, as well as to the fact that
establishing trace links between code and other development artefacts is dif-
ficult. Finally, [Spanoudakis and Zisman, 2004] identify the lack of standard
semantics for the various trace link types found in the literature and they
highlight the need for richer trace link semantics, since it is a precondition
for development.

In contrast to these flat classifications, hierarchical structure of link types
is also a common approach in classification. The SysML specification [Ob-
ject Management Group, 2010a], describes its different link types –DERIVE,
VERIFY, COPY, SATISFY, and (implicitly) REFINE– as refined depen-
dencies. The most recent and extensive hierarchical classification has been
created by [Dahlstedt and Persson, 2005].

[Dahlstedt and Persson, 2005] propose a classification of interdependency
trace links between requirements. This classification is illustrated in Fig-
ure 2.3. In the proposed classification, requirements interdependencies are
grouped into two main categories: structural and cost/value interdependen-
cies. Structural interdependencies are concerned with the fact that given a
specific set of requirements, they can be organised in a structure where rela-
tionships are of a hierarchical nature as well as of a cross-structure nature.
On the other hand, cost/value interdependencies are concerned with the
costs involved in implementing a requirement relative to the value that the
fulfilment of that requirement will provide to the perceived customer/user.
[Aizenbud-Reshef et al., 2005] has refined this classification to introduce
more fine-grained dependency relations, such as CLASS-IMPORT-CLASS
or METHODINVOCATION-CALLS-METHODDEFINITION.

Another classification of trace link types is proposed by [Von Knethen
and Paech, 2002]. This classification investigates the technological aspects
of traceability in five different dimensions. One of the proposed dimensions

22

2.1 Traceability

Figure 2.3: Requirements Interdependencies Classification [Dahlstedt and
Persson, 2005]

for classifying traceability approaches is the types of relationships they sup-
port. That is, what kinds of relationships are described by trace links, what
is their direction, what are their attributes, what is the setting of those re-
lationships and finally how are these relationships represented? From the
literature the authors identify three general kinds of relationships: (1) rela-
tionships between documentation entities at different levels of abstraction,
(2) relationships between documentation entities on the same abstraction
level, and (3) relationships between documentation entities of different ver-
sions of the same software product.

The aforementioned traceability classifications are not precisely defined
and they are subject to the view and interpretation of the reader. Addi-
tionally, the categories contains unclear and informal definitions which adds
more difficulty to use them. For example, it is hard to tell, if a refines
link (as in Requirement-refines-Requirement) belongs to one of the classes
of evolutionary, containment, (within-level) refinement, or dependency links
mentioned by [Von Knethen and Paech, 2002]. Furthermore, most of the link
types described in those classifications are binary, something which contrasts
with the fact that trace links can very often be n-ary [Munson and Nguyen,
2005]. [Dick, 2005] advocates the need for even more complex trace link
structures such as alternatives and conjunctions.

The above mentioned classifications advocate that different stakehold-
ers in different domains have different traceability needs. Hence, different
traceability classifications are needed, though they all aim to identify a set
of predefined trace link types for a given domain or case. In contrast to this

23

Chapter 2 Background and Literature Review

usual approach, recent researchers have recognised the importance of build-
ing case-specific traceability solutions [Mäder et al., 2009a; Aizenbud-Reshef
et al., 2006], which consequently leads to defining trace link types for a par-
ticular situation. However, there are limited number of studies providing a
systematic approach to define case-specific traceability classifications. This
is because most of the research in this context simply indicate that users
can define their own trace link types.

[Paige et al., 2008] introduces a simple process for building and main-
taining case-specific traceability classifications. The process is called the
Traceability Elicitation and Analysis Process (TEAP). It is derived from
a process developed in [Chan and Paige, 2005] for elicitation and under-
standing different forms of model-based contracts. The aim of TEAP is to
elicit and analyse traceability relationships in order to determine how they
fit into a traceability classification. When applying TEAP, engineers typi-
cally bootstrap from a simple traceability classification or metamodel, and
iteratively and incrementally refine the classification through a number of
TEAP cycles. Each cycle in the TEAP enriches the existing classification in
terms of one or more key attributes of interest. The classification developed
is a living document which is extended iteratively and incrementally over
the course of the project. TEAP basically provides a process to develop a
classification, so it should be implemented as a concrete design (usually as
a metamodel) in the context of a tracing tool or approach.

2.1.2 Traceability Applications

The value of traceability lies in the software and system engineering activ-
ities and tasks that the information provided through such interrelations
can enable. For example, it can provide visibility into required aspects of
the software and system development process and contribute to a better
understanding of the software and system under development.

The benefits of traceability are thoroughly investigated in the literature
and several applications of it are identified and introduced in different do-
mains and context ([Gotel and Finkelstein, 1994; Ramesh and Edwards,
1993; Von Knethen and Paech, 2002; Winkler and Pilgrim, 2010; Watkins
and Neal, 1994; Wieringa, 1995]). In this section, the importance of trace-
ability in various aspects of software engineering is briefly explained.

Requirements Management

Traceability can be used for requirements prioritization, classification, and
planning. Requirements can be traced back to goals and mission statements,
and then can be rated and categorized in terms of goals, risks, and priori-
ties [Ramesh and Edwards, 1993; Sommerville, 2007], which in turn help in
planning releases, iterations, and development cycles.

24

2.1 Traceability

Change Management and Impact Analysis

Requirements traceability supports the impact analysis of changes by iden-
tifying the work products affected by a change and hence ensuring that the
requirements, design, implementation, and related tests are all evaluated for
impact [Gotel and Finkelstein, 1994; Ramesh and Edwards, 1993]. Impact
analysis, or determining the impact of a change on all of the product arte-
facts, can be done efficiently when traceability, and automated traceabil-
ity in particular, has been implemented end-to-end. Moreover, traceabil-
ity information can help the engineers make decisions about whether such
changes should be introduced and with which priority (change management)
[Spanoudakis and Zisman, 2004].

Validation and Verification

Trace links can provide the basis for performing validation and verification
analysis [Ramesh and Edwards, 1993; Watkins and Neal, 1994]. By valida-
tion, then mean the analysis undertaken to ensure that a system fulfils its
intended purpose. On the other hand, by verification it is meant the analysis
undertaken to ensure that a system is built according to its specification.

Testing

Traceability relationships can be used to check the existence of appropri-
ate test cases for testing different requirements and to guarantee that all
requirements have been covered by all tests [Gotel and Finkelstein, 1994;
Watkins and Neal, 1994]. The results of such analysis usually provide in-
put to software inspection and auditing activities [Von Knethen and Paech,
2002]. Furthermore, traceability can be used to relate possible solutions for
failed tests to the actual problems [Arkley and Riddle, 2005].

Reuse

Traceability can also be used to identify reusable artefacts. During the
development of new system, requirements already have been implemented
can be identified and reused together with their related design and imple-
mentation [Ramamoorthy et al., 1988].

System Understanding

One of the main uses of traceability is for understanding various artefacts in
reference to the context in which they were created or in reference to other

25

Chapter 2 Background and Literature Review

artefacts related to them [Spanoudakis and Zisman, 2004]. There are sev-
eral approaches to use traces in this context. Traces can help to understand
systems from different points of view [Sabetzadeh and Easterbrook, 2005],
to pull together fragmented information [Gotel and Finkelstein, 1994], or
to identify crosscutting concerns [van den Berg et al., 2006]. They are also
useful to follow design and implementation decisions [Ramesh and Edwards,
1993].

Audit and Certification

Traceability is an explicit requirement of many quality standards, especifi-
cally for certification purposes. The Capability Maturity Model Integration
(CMMI) [Chrissis et al., 2006] requires the use of requirements traceability
for CMMI Maturity Level 2 and has adopted the Institute of Electrical and
Electronics Engineers (IEEE) definition for traceability [IEEE, 1990]. Re-
quirements traceability is an explicit requirement of the TL 9000 telecommu-
nications requirements handbook [QuEST, 1998]. The aeronautics industry
software development standards DO-178B [RTCA and EUROCAE, 1992]
and DO-254 [RTCA, 2005] also require the use of traceability.

Software Project Management

Another common use of traceability is for software project management
purposes. Trace links can be used for assessing the development process, be-
cause they comprise a log of events occurred during the development process
[Gotel and Finkelstein, 1994]. Moreover, they can also be used to monitor
the status of the requirements during development as they are implemented
and tested [Lago et al., 2009]. Finally, [Jarke and Pohl, 1992] proposes
the use of traceability to identify and reuse best practices during software
development.

2.1.3 Traceability Activities
As mentioned before (Section 2.1.1), in order to provide traceability in a
project, a series of activities are performed in the context of a broader
traceability strategy. Although these activities vary in the literature and
are named differently (i.e. [Von Knethen and Paech, 2002; Pinheiro, 2003;
Spanoudakis and Zisman, 2004; Gotel et al., 2012b]), they cover a common
life-cycle for traces in any traceability solution including

– Defining the entity types to be traced and the relationships types be-
tween them, representation of the captured traceability information in
the form of data structures as well as their visualisation and storage

– Discovering trace links and recording them in the given format

26

2.1 Traceability

– Using the trace links according to the purposes for accumulating trace-
ability data

– Maintaining the integrity of the trace links while the entities continue
to change and evolve

Traceability activities are supportive activities performed as part of all
steps in the software development process [Palmer, 1999] and there is no
simple relation between activities of a software development process and
these activities. Further, traceability activities are not dependent on any
particular software process model. By and large, traceability activities are
usually interleaved with one another as well as with the other activities of
software development in a way which depends on the tracing needs of a
project. However, at present, there is no standard nor a set of guidelines
to practitioners on how to use the various traceability approaches within a
standardised software development process.

[Gotel et al., 2012b] propose a generic traceability process model which
comprises four distinctive activities: planning and managing traceability,
creating traceability, maintaining traceability, and using traceability. The
process model is illustrated in Figure 2.4. One of the main properties of this
model is that it highlights the role of a traceability strategy in providing
effective traceability, which is not considered explicitly in other studies. In
this context, it defines Planning and Managing Traceability through which
high-level and fundamental decisions are made such as: determining needs,
definition of a TIM, and planning other traceability activities. While, other
studies have considered the definition of a TIM and issues with represen-
tation, visualisation, and storing information, in the context of an activity
usually called representation [Pinheiro, 2003]. The other three activities –
creating, using, and maintaining traceability– are almost defined similarly
in the literature (possibly with different names) for the same intention.

In the following sections, the identified activities, based on the generic
traceability process model, are discussed in more detail.

2.1.3.1 Planning and Managing Traceability

Planning and managing traceability is an umbrella activity (in the soft-
ware engineering terminology), in comparison to other traceability activities,
which is carried out during the life of a project in order to keep the trace-
ability solution relevant and effective over the time. The activity consists of
a number of preliminary tasks to define, build, and maintain a traceability
solution including determining needs and resource constraints, defining the
TIM, planning other traceability activities, providing the required tooling,
and assessing the solution [Gotel et al., 2012b]. In the context of MDE, this
activity can be seen as part of a general setup of all required tools and arte-
facts, which is called the infrastructure by [Bézivin et al., 2006], in order to

27

Chapter 2 Background and Literature Review

Figure 2.4: A generic traceability process model [Gotel et al., 2012b]

perform automated transformation. [Walderhaug et al., 2006] also describes
this step as defining a trace metamodel.

Determining Needs and Resourcing. Building a traceability solution to
service all needs is unlikely to be cost-effective, as resources are generally
limited [Mäder et al., 2009a]. There are wide variations in the format and
content of traceability information across different system development ef-
forts. For example, the types of links of interest to a system tester may be
different from those of interest to a system designer. A system tester may be
interested in finding out what are the system components that are affected
by a requirement while a system designer may be interested in finding out
how the components of the system are affected by requirements.

Accordingly, determining whose needs to satisfy, and so which traceability-
enabled activities and tasks to facilitate, is a precursor to any discussion
about types of trace artefacts, trace links, and tracing mechanism; traceabil-
ity is requirements-driven. [Gotel et al., 2012a], in “The Grand Challenge
of Traceability (v1.0)”, which presents a vision of traceability in 25 years,
highlight and discuss the role of these decisions, and required strategies
and practical guidance to make them, in order to provide a ’fit-to-purpose’
traceability solution.

28

2.1 Traceability

[Heindl and Biffl, 2005] suggest value-based requirements traceability
(VBRT) to perform tracing based on prioritised requirements and hence
identify which traces are more important and valuable than others. [Lago
et al., 2009] present an approach to customize traceability to the situation at
hand. Instead of automating tracing, or representing all possible traces, they
scope the traces to be maintained to the activities stakeholders must carry
out. They define core traceability paths, consisting of essential traceability
links required to support the activities.

The importance of definition and specification of the needs for traceabil-
ity is also acknowledged in the studies which focus on the additional cost of
traceability and suggest techniques to control it (e.g. [Ingram and Riddle,
2012; Mäder et al., 2009a; Lago et al., 2009; Egyed et al., 2007; Aizenbud-
Reshef et al., 2005]). A common approach, among these studies, is to define
the entity types to be traced and the relationship types between them re-
garding a specific usage scenario of traceability. Accordingly, they indicate
that it is essential to determine traceability requirements to establish a cost-
effective traceability solution.

However, to the extent of our knowledge, there are few studies which in-
troduce practical guidance on how to determine these needs. [Mäder and
Cleland-Huang, 2010] utilises a goal-oriented approach to identify long-term
strategic traceability needs and required trace queries to satisfy them. The
techniques used to determine traceability goals and construct the TIM has
been established based on the systematic Goal-Question-Metric (GQM) ap-
proach proposed by [Basili and Caldiera, 1994]. The approach demonstrates
how systematically high-level goals are refined (translated) into low-level
queries and then relate to project’s information.

Defining the TIM. One of the main tasks carried out in the context of
planning and managing traceability is defining the TIM, the core compo-
nent of any traceability solution. A TIM defines the information that should
be captured and recorded: the detailed specification of the elements to be
captured, granularity, trace link types, and meta-data. Traceability infor-
mation models are widely investigated in the traceability research area from
different perspectives. Accordingly, there are several studies which discuss
the importance of such models, define traceability information models for a
given domain or context, or propose different approaches to define a TIM
(e.g. [Ramesh and Jarke, 2001; Spanoudakis and Zisman, 2004; Mäder et al.,
2009a]). Because of the importance of the TIM and the available literature,
these studies are introduced separately in the Section 2.1.3.2.

Planning Activities and Tooling. In this sub-activity, a traceability pro-
cess is defined. Also, it is specified when and how other traceability activities
are performed. Additionally, the required tools to support these activities

29

Chapter 2 Background and Literature Review

are defined and provided to users. This sub-activity, as a pre-requisite for
traceability, is rarely considered in existing traceability approaches. Trace-
ability activities and tools are implicitly defined and provided in the context
of a particular approach. Whilst most of the available approaches do not
acknowledge that a practical approach needs to either define a complete
process or specify how it is integrated with other approaches [Matragkas,
2011], which will be discussed more later in Section 3.2.

Nevertheless, [Espinoza and Garbajosa, 2008a] explicitly consider the def-
inition of a traceability process as they believe that traceability practices
are implemented by a traceability methodology. Following the terminol-
ogy of software development methodologies, they introduce the Traceability
metaModel for methodology definition (TmM), at the metamodel level in
software methodology terms [ISO/IEC, 2007]. TmM provides the baseline
for the systematic and formal definition of a traceability methodology. It
includes three aspects: the process to follow, the intermediate and final
products, and the resources, e.g. roles involved in the traceability process.
This way, users define a customised traceability methodology (solution) by
instantiating the introduced metamodel.

Assessing the Solution. Another purpose of planning and managing trace-
ability is to ensure that the traceability is established as planned, and can
adapt to remain effective as needs evolve and as a project’s artefacts change.
This is because the cost-benefits of traceability are not reached if data
does not achieved an ’acceptable quality’, which varies between different
project [Ingram and Riddle, 2012]. Accordingly, assessing the quality and
the execution of the traceability solution is a critical part of the traceability
strategy for a project [Gotel et al., 2012b]. Additionally, the traceability
provided has to fit the end users’ contexts and needs. A feedback loop is
essential to improve and adapt the solution based on the result of assess-
ing the quality of the traces with respect to the task or activity for which
traceability is required –when traces are used. In this context, [Gotel et al.,
2012a] recommend a feedback-driven learning system, which will adapt the
traceability that is established to fully address its end users’ evolving task
contexts and needs, as a component of their traceability process to support
a fit-to-purpose traceability solution.

Although, in theory, assessing the solution is introduced as an essential
task to keep the solution effective, it has not been fully considered in prac-
tice, including in existing traceability approaches. There are few studies
which have introduced some quality attributes for a traceability solution
(as a whole or for a specific part) and, in some extent, talked about how
they are defined and assessed (e.g. [Ingram and Riddle, 2012; Egyed et al.,
2007; Espinoza et al., 2006]). [Espinoza et al., 2006] introduce a set of
non-functional requirements for a traceability solution, including usability,

30

2.1 Traceability

feasibility, reliability, functionality, and efficiency, and state that a trace-
ability schema defines a set of metrics to verify the quality requirements
of a traceability implementation. However, they suggest to apply research
approaches in requirements engineering metrics in this context to verify the
quality of the traceability solution (mainly for the collected data). Neverthe-
less researchers largely agree that the traceability information model (the
core element of a solution) needs to specify validation requirements (con-
straints) for the captured traceability information which should be retained
all the time [Gotel et al., 2012a; Mäder et al., 2009a; Ramesh and Jarke,
2001]. Although these constraints usually focus on the data and not the
whole solution, they are useful to ensure about the quality of the solution
partially.

2.1.3.2 Defining and Representing the TIM

Traceability information models (TIMs) are considered in several studies
and are called largely by various names including metamodels, schemes, or
reference models, depending on the field in which they are used. These
studies proposed different approaches, reference models, frameworks, and
classifications of different types of traceability regarding their interest.

Such models provide guidance as to those elements to collect and those
relations to establish to support traceability needs [Gotel et al., 2012b].
An important point with these models is that they specify the semantics
of traceability through defining trace link types. A trace link could be
viewed differently based on the stakeholders’ perspective. This is because the
meaning (semantics) of a trace link is determined based on how and for what
intention the link is used by the user [Ramesh and Jarke, 2001]. For example,
in the case of a requirement-to-component trace link, the system designer
might consider the requirement as a constraint on the system design, while
a system tester might be interested in using the traces to perform coverage
analysis in order to find out if every requirement is implemented by at least
one component.

As mentioned in Section 2.1.1.3, early research has been mainly concerned
with the study and definition of different types of traceability relations. Re-
cent studies, such as [Aizenbud-Reshef et al., 2005; Mäder et al., 2009a;
Lago et al., 2009; Matragkas, 2011], acknowledge that effective traceabil-
ity requires that the types of trace artefacts and trace links have to be
defined based on a particular project situation. Distinguishing between
different trace link types facilitates a consistent and ready-to-analyse set
of traceability relations for a project and, consequently, richer traceability
analysis [Mäder and Cleland-Huang, 2010]. Accordingly, the traceability in-
formation would support the context and constraints of the project with less
effort which increases the benefits of traceability and compensates the addi-
tional cost of establishing and maintaining traceability [Bayer and Widen,

31

Chapter 2 Background and Literature Review

2002; Mäder et al., 2009a].
These studies propose a case-specific approach to define a TIM and, ac-

cordingly, define the fundamental elements of a TIM rather than a set of
predefined link types. The main issue with this approach is with the mech-
anisms of how to define and use of the required traceability information
model for each particular situation. On the other hand, [Limon and Garba-
josa, 2005] recommends to have a standard way to specify a TIM in order
to support generality and exchangeability in TIM implementation in tools.

In the following, existing specifications of traceability metamodels, in both
the RE and MDE domain, are introduced.

[Ramesh and Jarke, 2001] observed traceability in several industrial
projects focusing on the information needs of different stakeholders to en-
sure that traceability is maintained through all phases of systems develop-
ment activities. Accordingly, they propose a very simple reference model
for traceability (Figure 2.5) which introduces the basic terms for categoris-
ing traceability-related concepts and their relations. Stakeholders represent
the people who are involved in the development process and who create,
maintain and use the various development objects and the traceability links
across them. Objects stand for the traceable entities, while Sources corre-
spond to sources of information or knowledge such as documents, standards,
meeting minutes, policies, etc. The three entities of the metamodel were
derived based on previous studies on different aspects of requirements trace-
ability. For example, version and configuration management systems focus
on Source aspect, while studies at the management level usually focus on
the Stakeholder aspect [Ramesh and Jarke, 2001].

Figure 2.5: The traceability reference model of [Ramesh and Jarke, 2001]

[Ramesh and Jarke, 2001] state that the reference model has to be spe-

32

2.1 Traceability

cialised and instantiated to create project-specific traceability models to
capture the following dimensions of traceability information:

1. What information is recorded in the artefact? Is it a requirement,
an assumption, an environmental constraint, etc. and on which other
information is it based?

2. Who has created or updated the artefact and documented the infor-
mation? Which other stakeholders have been involved in that process
and who belongs to the group of potential users of the information?

3. Where has the information come from? What is the source of the
information?

4. How is traceability information represented? How does this informa-
tion relate to other traceability components?

5. Why has the artefact been created, modified, or evolved?

6. When has the artefact been created, modified, or evolved?

This conceptual model has been the source of many later studies in the
field of requirements engineering to explore different aspects of traceability,
such as stakeholder identification and relation [Alexander, 2005; Ozkaya,
2006] or rationale modelling [Dutoit et al., 2006; Potts and Bruns, 1988].
Large amount of studies have focused on TRACES-TO relationship or trace-
ability links, which are explained in Section 2.1.1.3. However, the model does
not provide a formal specification for traceability metamodels and there is
not any guidance on how to implement and customise a traceability meta-
model in tools for a given project using their reference model.

[Limon and Garbajosa, 2005] and [Espinoza et al., 2006], in a similar work,
analysed the existing traceability metamodels and recognised that there is
a lack of a standard way of specifying traceability between items and trace-
ability relation types (traceability classification). Then, they proposed a
Traceability Schema Specification (TS) as an approach to systematically
specify the characteristics and needed information to provide traceability.
This scheme facilitates traceability specification for a given project, to im-
prove traceability management, and help to automate some part of trace-
ability activities. According to [Limon and Garbajosa, 2005], a traceability
scheme has to formally define the following items:

– Traceability Link Dataset that provides a wide basis to define all
kind possible traceability links regardless the process or the objective
of the link

– Traceability Link Type Set (TYS) which defines the information
each traceability link contains for a given project

33

Chapter 2 Background and Literature Review

– Minimal Set of Traceability Links (MINS) which defines the set
of links that should be created once a system baseline is closed (for
each step).

– Metrics set to verify quality requirements of a traceability scheme
such as correctness and level of accomplishment of the traceability
strategy deployment.

In comparison to the above specification, which includes a dataset of all
possible trace links, [Espinoza et al., 2006] proposes a TS which is com-
pletely designed to define traceability for a specific project. Accordingly, a
traceability scheme includes the following items for a specific project:

– Traceability Type Set Types of links and their meaning

– Traceability Role Set Stakeholders and their permission to access
traces

– Minimal Links Set Links have to exist for correctness and complete-
ness

– Metrics Set Quality measures to verify quality requirements of a
traceability scheme.

[Espinoza et al., 2006] also presents an example of how to implement the
proposed TS in a document oriented CASE tool. The authors use the caseml
language, a XML-based language defined to represent software engineering
documents and schemas. All the software project information, including the
traceability information, is kept in caseml documents in a repository.

[Mäder et al., 2009a] state that a traceability information model consists
of two types of entity, traceable artefacts and traceability relations between
these artefacts. Additionally, a TIM defines which types of artefacts have to
be traced to which related artefacts by what type of relations. In order to
be able to define and customise a TIM regarding a specific project, [Mäder
et al., 2009a] suggests to use UML metamodels to represent the TIM as it is
the standard and most practitioners are quite familiar with it. In the UML
model, the traceable artefacts are defined as Class and traceability link types
are represented as named associations between related Classes. The OCL is
used to define additional constraints which can not be described within the
model. They also provide a tool prototype, called traceMaintainer, which
reads a TIM from the XMI format of the UML model, to provide integration
between tools or prevent being dependent on specific UML tool.

There are other earlier UML-based approaches to define traceability. For
example [Spence and Probasco, 2000] presents several traceability strategies
as metamodels. However, the authors use only one type of trace and do
not provide any mechanism to implement the metamodels. [Letelier, 2002]

34

2.1 Traceability

proposes to use UML profile to define traceable entities and traceability
relations, through extending the UML metamodel. Although this approach
has several benefits, such as defining project-specific trace link types, it has
some shortcomings which are inherently derived from the UML metamodel.
For example, the UML trace relation does not support tracing all of types
of UML entities (e.g. attribute and relations), while real relations can exist
between all supported UML entity types.

The MDE research community considers traceability information mod-
els in a more structured manner. In MDE, the type and semantics of the
traceability information is expressed in well-defined traceability metamodels.
These metamodels are usually related to models specifying model transfor-
mation, though there are a few number of general traceability metamodels
in the literature.

In the context of model transformations, [Jouault, 2005] notes that trace-
ability information can be used in different scenarios, and that each requires
a different format or complexity level of information. Accordingly, the au-
thor proposes a simple traceability metamodel. The metamodel, as shown in
Figure 2.6, consists of two entities, the TraceLink entity and the AnyMod-
elElement entity. The TraceLink entity has a ruleName attribute, which
stores the transformation rule name and pointing to AnyModelElement via
two multivalued references: sourceElements and targetElements.

Figure 2.6: Traceability metamodel proposed by [Jouault, 2005]

The OMG, in a ‘proposal for an MDA foundation model’ [Object Man-
agement Group, 2005], introduces a model of a transformation record which
is a set of traces produced by a model transformation. The metamodel
of a transformation record is depicted in Figure 2.7. The core part of the
metamodel –a TransformationRecord contains a number of Traces which
are linked to the model elements (Objects)– can be found in several other
researches with minor variations.

Similarly, [Amar et al., 2008] introduces a traceability metamodel to struc-
ture traces which are generated by the model transformation engine. The
proposed metamodel is an extension of the one proposed in [Falleri et al.,
2006]. The authors discuss that this metamodel is useful, for imperative as
well as declarative transformations, to have a multiscaled trace. The fact
that an operation transformation can call another one (or that the rules
can trigger other rules) creates levels of nesting that it is useful to be able

35

Chapter 2 Background and Literature Review

Figure 2.7: The metamodel of a transformation record introduced in [Object
Management Group, 2005]

to represent. In doing so, they use the composite pattern on links, which
allows them to separate low-level operation from high-level operation. The
metamodel is illustrated in Figure 2.8.

[Walderhaug et al., 2006] proposes a generic solution for traceability in
model-driven software development which introduces a metamodel and set
of guidelines covering both the specification and usage of traceability. The
proposed generic metamodel would be used by a traceability designer to
build a model of which artefacts and relations to trace, and which infor-
mation to include in the traces. So, instantiations of this metamodel can
be used to model different traceability scenarios. This metamodel consists
of four entities. The TraceModel entity is used to represent the container
for the various trace links as well as for the various traceable artefacts.
The TraceableArtefactType entity defines the mapping of a specific model
artefact type to a corresponding traceable artefact. The ArtefactTraceType
defines a specific trace type for a TraceableArtefactType. Finally, the Rela-
tionTraceType defines a specific trace type for a certain relation between a
source and a target artefact type.

Another approach to define a general traceability metamodel is intro-
duced in [Drivalos et al., 2009], which introduces a Traceability Metamod-
elling Language (TML) to define traceability metamodels regarding a spe-
cific traceability scenario. The TML identifies the core traceability concepts
and patterns into four metaclass (Figure 2.9): Trace which acts as the root
of a TML model, TraceLink which represents a traceability link between
a number of elements, TraceLinkEnd that Represents an end of a trace-

36

2.1 Traceability

Figure 2.8: Traceability Metamodel proposed by [Amar et al., 2008]

ability link, and Context which allows traceability metamodel designers to
attach custom information to traceability links. A TML model expresses the
traceability metamodel and it is eventually transformed into a case-specific
traceability metamodel. Additionally, the TML well supports the common
features of the existing specifications of traceability metamodels in the MDE
literature, identified by [Winkler and Pilgrim, 2010] and represented in a fea-
ture diagram (Figure 2.10).

Several other researchers from both the RE and MDE community have
established their own traceability metamodels. These metamodels usually
extend a basic traceability metamodel for a specific context of study. Some
of them focus on specific context, such as traceability of NFRs ([Kassab
et al., 2009]), traceability in software product lines ([Anquetil et al., 2010]),
use of traceability specifically in model-to-text transformations ([Olsen and
Oldevik, 2007]), and traceability in context of mega models ([Barbero et al.,
2007; Seibel et al., 2010]). Some of them still consider general traceability
metamodels (e.g. [Grammel and Vigot, 2009; Vanhooff et al., 2007]).

2.1.3.3 Traceability Creation

Traceability creation is the activity of acquiring traces, representing and
storing them in some way. The TIM, tools, and the data structures pre-
pared earlier drive the traceability creation sub-activities. In the literature,

37

Chapter 2 Background and Literature Review

Figure 2.9: The Traceability Metamodelling Language proposed by [Drivalos
et al., 2009]

various terms are used to refer to this activity including trace recording [Win-
kler and Pilgrim, 2010], trace generation [Spanoudakis and Zisman, 2004],
trace creation [Aizenbud-Reshef et al., 2006], and trace production [Pinheiro,
2003], although they might consider creating traces from different perspec-
tives and consequently focus on different aspects or tasks.

[Gotel et al., 2012b] identifies two approaches in trace creation, trace cap-
ture and trace recovery. In the first approach, the traces are created concur-
rently with the forward engineering process, while, through trace recovery,
traces are discovered at some point later. [Winkler and Pilgrim, 2010] also
categorises trace creation techniques in a similar way and indicates that
trace recording can be performed either on-line or off-line which are almost
same as trace capture and trace recovery respectively. In the former one,
traces are created automatically as a by-product of the development pro-
cess. In the latter case, traces are created after the actual activity has been
finished. Similarly, [Asuncion et al., 2010] state that traceability creation
can be done prospectively or retrospectively.

Manual trace creation is an effort-intensive, time consuming, and error-
prone task [Spanoudakis and Zisman, 2004]. Without automated sup-
port, creating traces is typically infeasible in practice, especially for large
projects [Asuncion and Taylor, 2012]. Therefore, numerous researchers have
been working to automate the process of traceability creation. However,
there are yet some cases in which traces have to be created manually, for
example due to a regulatory reason [Spanoudakis and Zisman, 2004] or, in
the MDE domain, to explicitly record traces because of the tasks carried

38

2.1 Traceability

Figure 2.10: Feature diagram of traceability models extracted by [Winkler
and Pilgrim, 2010]

out beyond the scope of modelling [Winkler and Pilgrim, 2010].
Trace recovery has been mostly investigated in the context of requirements

traceability, in which traces are identified from existing artefacts. In this
context, automated trace recovery techniques identify candidate traceability
links retrospectively from existing artefacts by using information retrieval
or machine learning techniques to analyse text-based artefacts (i.e. [Lucia
et al., 2012; Grechanik et al., 2007; Kagdi et al., 2007; Marcus and Maletic,
2003]), or by applying rule-based approaches to recover traces from both
models and text-based artefacts (i.e. [Spanoudakis et al., 2004; Mäder et al.,
2008b]).

In contrast, trace capture techniques have been introduced in the MDE
domain, in which traces can be produced on-line as a by-product of trans-
formation activities. This is specified in the OMG MOF QVT standard for
models [Object Management Group, 2011c] and demonstrated in model-to-
model and model-to-text transformations (i.e. [Jouault, 2005; Falleri et al.,
2006; Gorp and Janssens, 2005; Oldevik and Neple, 2006; Olsen and Oldevik,
2007]). However, there are some studies proposing automated techniques
for capturing trace links in software traceability (i.e. [Anderson et al., 2000;

39

Chapter 2 Background and Literature Review

Asuncion and Taylor, 2012]). In the following, a brief discussion of the main
approaches to trace recovery and trace capture is provided.

Using Information Retrieval

Information Retrieval (IR)-based methods recover traceability links
on the basis of the similarity between the text contained in the software
artefacts. The underlying assumption, in these methods, is that if the
textual content of two artefacts refers to similar concepts, then the two
artefacts are conceptually related and a traceability link between them
could be established. The higher the textual similarity between two
artefacts, the higher the likelihood that a link exists between them. A
distinct advantage of using IR techniques is that they do not rely on a
predefined vocabulary or grammar. This allows the method to be applied
without large amounts of preprocessing or manipulation of the input, which
drastically reduces the costs of link recovery.

An IR-based trace links recovery process has three key steps depicted in
Figure 2.11, which is organized in a pipeline architecture.

Figure 2.11: IR-based traceability recovery process [Diaz et al., 2013]

1. Extraction, pre-processing, and indexing corpus
The process starts by extracting information from textual software
artefacts, using given granularities. For example, the majority of tech-
niques applied on source code parse and represent the artefacts at a
class level granularity (e.g. [Antoniol et al., 2002; Lucia et al., 2007]).

40

2.1 Traceability

Then, the extracted information is pre-processed and represented as
a set of document in the resulting corpus. Finally, an IR method
is used to index the corpus and represent them in a homogeneous
document space by extracting information about the occurrence of
terms within documents. Trace recovery techniques apply different
pre-processing strategies on text. However, text normalisation, iden-
tifier splitting, and stop word removal are the frequently used steps
in pre-processing [Lucia et al., 2012]. Morphological analysis, such
as stemming which is the process of reducing inflected words to their
stem, base, or root form [Porter, 1980], could also be used. An alter-
native approach is searching for n-grams rather than stems (e.g. [Zou
et al., 2010] uses 2-grams to compare the contents of software arte-
facts).

The terms extracted from the documents are represented by a m×n
matrix, called term-by-document matrix [Baeza-Yates and Ribeiro-
Neto, 1999], where m is the number of all terms that occur within
the artefacts, and n is the number of artefacts in the repository. A
generic entry wi,j of this matrix denotes a measure of the weight (i.e.,
relevance) of the ith term in the jth document. In the field of IR,
various methods have been developed for weighting terms. However,
they all basically use these three factors in their formulation, term fre-
quency (tf), document frequency (df), and decument length (dl). For
example, [Baeza-Yates and Ribeiro-Neto, 1999] introduces the tf-idf
indexing mechanism, in which idf is the inverse document frequency.
This mechanism gives more importance to words having a high fre-
quency in a document (high tf) and appearing in a small number of
documents, thus having a high discriminant power (high idf). The
term-by-document matrix is the output of the indexing process.

2. Generating ranked list
In this step, the IR-based recovery method compares a set of source
artefacts (represented as documents) against another set of target arte-
facts and uses the defined similarity measure to rank all the possible
pairs by similarities (candidate traceability links). Probabilistic mod-
els [Antoniol et al., 2002], Vector Space Model (VSM) [Baeza-Yates
and Ribeiro-Neto, 1999], and Latent Semantic Indexing [Deerwester
et al., 1990] are the most frequently used in IR-based traceability re-
covery methods [Lucia et al., 2012]. In the probabilistic model, a
source document is ranked based on the probability of being relevant
to a particular document. In VSM and LSI, artefacts are represented
as vectors of terms. Thus, the source artefacts are ranked against tar-
get artefacts by computing the distance between the correspondence
vectors.

41

Chapter 2 Background and Literature Review

3. Analysis of candidate links
Once the list of candidate links has been generated, it is provided to
the software engineer for examination. The software engineer reviews
the candidate links, determines those that are correct links (actual
links), and discards the false positives. The evaluation process used
in this step is based on human intervention and therefore has all the
advantages and disadvantages associated with such activities.
There are two approaches in analysing the ranked list. The first ap-
proach is based on the analysis of the full ranked list (i.e. [Hayes et al.,
2003; Cleland-Huang et al., 2005b; Lucia et al., 2006b]). The other ap-
proach is to cut the ranked list (based on a threshold) (i.e. [Antoniol
et al., 2002; Marcus and Maletic, 2003; Cleland-Huang et al., 2007;
Zou et al., 2010]). This approach is based on the fact that the density
of the correct links are higher at the top of the ranked list [Lucia et al.,
2009]. These methods are classified into cut-point and threshold based
strategies. In the former one, the list is cut based on the number of
the recovered links; the top µ links are selected and presented to the
user. In the former one, the links with the similarity value greater
than or equal to the given threshold ε are retrieved.

The retrieval accuracy of an IR-based trace recovery method is generally
evaluated by calculating the ratio of a set of retrieved links over a set of
relevant links. The set of relevant links is generally provided by developers
at the end of the process. IR methods inherently fail to retrieve all of the
relevant links and thus IR-based trace recovery methods require interaction
between developers and the recovery tool [Lucia et al., 2012].

The retrieval performance of IR methods is measured using two metrics,
namely recall and precision [Baeza-Yates and Ribeiro-Neto, 1999]. Recall
is the ratio of the number of correct retrieved links over the number of
relevant links. Evaluating recall alone is not enough, as it is easily possible to
increase recall by retrieving more trace links (even all links), which results in
more irrelevant links. Accordingly, it is required to control and decrease the
number of non-relevant links. Precision is the fraction of the links retrieved
that are relevant.

Recall = |{RelevantLinks}∩{RetrievedLinks}|
|{RelevantLinks}|

Precision = |{RelevantLinks}∩{RetrievedLinks}|
|{RetrievedLinks}|

IR-based trace recovery methods differ according to the IR strategy which
they use and also the parameters which affect their performance [Lucia et al.,
2012].

[Antoniol et al., 2002] proposes a method based on IR to recover traceabil-
ity links between source code and free text documents. In their approach,

42

2.1 Traceability

the identifiers are extracted from a source code component used as a query
to retrieve the documents relevant to the component. The authors applied
both a probabilistic and a vector space IR model for ranking the documents
against a query. The result of their experiment show that both models
achieve similar results in terms of accuracy and performance.

In the same context, [Marcus and Maletic, 2003] uses LSI to recover trace-
ability links between source code and documentation illustrated in several
experiments. They compared the result of their experiments with similar
works (e.g. [Antoniol et al., 2002]) using different IR methods (PM and
VSM) and discuss that LSI performs at least as well as PM and VSM IR
methods combined with full parsing of the source code and morphological
analysis of the documentation.

[Diaz et al., 2013] proposes a traceability recovery method, named
TYRION (Tractability link Recovery using Information retrieval and code
OwNership), for recovering traces between requirements and code. They
conjecture that the ownership of the artefacts provides information about
the division of requirements (or use cases) to be implemented. They discuss
that TYRION provides more accurate list of candidate links than a stan-
dard IR-based traceability recovery technique and, thus, code ownership
information represents a useful source of information which can be used to
complement textual information.

[Hayes et al., 2003] proposes an IR-based approach for improving require-
ments tracing, focusing on candidate link generation. They have applied
different VSMs and evaluate each method with similar approaches and tools.
First, they discovered that a classical vector space model does not outper-
form analysts or existing tools in terms of recall or precision. Then, they
developed two extensions to this algorithm. The first uses a simple key-
phrase list, one that can be easily pulled from the definitions or acronym
section of a requirement document. The retrieval with key-phrases algorithm
resulted in improved recall but with decreased precision. Next, they added
a simple thesaurus and achieved better recall (85%) and precision (40%).
[Hayes et al., 2004] extended their previous study and consider overall re-
quirements tracing. Accordingly, they built a tool, RETRO (REquirements
TRacing On-target), which also uses the LSI method and implements ana-
lyst feedback into the tracing process [Hayes et al., 2004]. Finally, in [Hayes
et al., 2006], they examined the effectiveness of IR methods in automat-
ing the tracing of textual requirements through introducing a set of goals
for an effective tracing tool. Particularly, they found that analyst feedback
improves the final trace results using objective measures.

[Lucia et al., 2004] present a traceability recovery method and tool based
on LSI in the context of an artefact management system. The tool provides
the software engineer with the set of links not traced by the software engineer
and retrieved by the tool and the set of links traced by the software engineer
and not retrieved by the tool. [Lucia et al., 2006a] suggest an incremental

43

Chapter 2 Background and Literature Review

traceability recovery approach to gradually identify optimal threshold to
achieves an acceptable balance between traced links and false positives. Ad-
ditionally, [Lucia et al., 2006b, 2008] show that using feedbacks within an
incremental traceability recovery process improve the retrieval performances
of these techniques.

[Cleland-Huang et al., 2005b] addresses the recall and precision problems
in dynamic requirements traceability and introduces three strategies for in-
corporating supporting information into a probabilistic retrieval algorithm
in order to improve the performance. The strategies include hierarchical
modelling, logical clustering of artefacts, and semi-automated pruning of
the probabilistic network. Similarly, [Zou et al., 2006] describes a method
for improving the precision of trace results through incorporating the use of
phrases detected and constructed from requirements using a part-of-speech
tagger. They also suggest to use a project glossary to find additional phrases
and weight the contributions of key phrases and terms. They indicate that
phrasing primarily impacted the precision of top links in contrast to other
precision enhancement techniques such as the use of hierarchical information
and pruning methods (e.g. [Cleland-Huang et al., 2005b]) which had a more
general impact on overall precision. The outcome of this research is imple-
mented in a tool called Poirot [Lin et al., 2006]. Poirot uses a probabilistic
network model to generate trace links dynamically at runtime form variety
of requirement management tools.

[Abadi et al., 2008] compares the effectiveness of several different IR tech-
niques to discover traceability links from code to documentation. They
compare dimensionality reduction methods (e.g., LSI), probabilistic and in-
formation theoretic approaches (e.g. JS), and the standard VSM. The re-
sults show that the techniques that provide the best results are VSM and JS.
Similarly, the empirical study in [Oliveto et al., 2010] observes that IR meth-
ods are almost equivalent. [Gethers et al., 2011] proposes a combination of
different techniques and demonstrates that it outperforms stand-alone IR
methods.

A common challenge in IR-based techniques is filtering out noise from the
list of candidate links, in order to improve the recovery accuracy. Several
researches has been carried out in enhancements to improve the accuracy of
the IR-based trace recovery methods and make the process less time con-
suming and error prone. Some improvements focus on the terms that are
extracted from the artefacts and pre-processing techniques. [Capobianco
et al., 2013] has suggested that domain-specific terms (e.g., jargon) best de-
scribe the concepts in the code. They propose to use only the nouns from
the software artefacts. Other work has also adapted the weights of the arte-
facts terms depending on the length of the artefacts [Settimi et al., 2004], a
project glossary [Zou et al., 2006], external dictionaries [Hayes et al., 2003;
Zou et al., 2010]. Additionally, some approaches focus on transformations
at the vocabulary level (e.g., [Zou et al., 2010]), while others leverage rela-

44

2.1 Traceability

tionships between source code-based artefacts, based on different types of
information (e.g., structural dependencies between source code [McMillan
et al., 2009] or code ownership [Diaz et al., 2013]). Recently, smoothing fil-
ters have been shown to improve the precision of IR-based traceability [Lucia
et al., 2011].

Moreover, IR-based approaches are primarily suitable for linking require-
ments and artefacts that exhibit a high lexical correlation, which in some
cases this type of high lexical correlation between the requirement and its
implemented artefacts often does not exist [Cleland-Huang et al., 2003]. Fi-
nally, the links derived by IR methods are fundamentally generic and have
no type. This is because these methods have been founded based on the
similarity between texts. Therefore, a link only shows that there is a re-
lationship between two texts without any interpretation of the semantics
behind the it. Accordingly, IR-based trace recovery methods can not be
easily applied to identify semantically rich traces.

Rule-Based Techniques

The main motivation for rule-based traceability approaches is to sup-
port automatic traceability creation in various types of documents
generated during different phases of the software development life cycle.
In general, rules assist and automate decision making, allow for standard
ways of representing knowledge that can be used to infer data, facilitate
the construction of traceability creators for large data sets, and support
representation of dependencies between elements in the documents. In ad-
dition, the use of rules allows for the creation of new relationships based on
the existence of other relationships, supports the heterogeneity of artefacts
being compared, and supports data inference in similar applications.

[Spanoudakis et al., 2004] propose a rule-based approach to generate trace-
ability between requirements statement and used cases, and analysis object
models represented in UML. The system incorporates a traceability rule
engine which interprets rules and generates trace relations. The artefacts
and the traceability rules are represented in the XML. Two different types
of traceability rules have been identified and implemented in this approach:
requirement-to-object-model rules are used to trace the requirements and use
cases to an analysis object model, and inter-requirements traceability rules
are used to trace requirements and use cases to each other. The approach
has been evaluated in several experiments which suggest acceptable results.
The author indicates that their approach can be customised by adding new
traceability relations and new rules. However, experiments also show that
the main shortcoming of this approach is the creation of new traceability
rules and, particularly, the identification of syntactic patterns with appro-
priate level of granularity. Addressing this shortcoming, [Spanoudakis et al.,

45

Chapter 2 Background and Literature Review

2003] developed a machine learning algorithm that produces new traceability
rules. In particular, new rules capture those relations which are failed to be
recovered by existing rules. New rules are created based on a generalisation
of existing traceability rules.

The above approach has been customised and used later in other contexts
including product-line [Jirapanthong and Zisman, 2005; Jirapanthong, 2007]
and multi-agent systems [Cysneiros and do Prado Leite, 2004; Cysneiros,
2007; de Pádua Albuquerque Oliveira et al., 2007]. Accordingly, [Zisman,
2012] demonstrates the rule-based traceability creation framework which
has been used in all of these studies in general. They have presented a
traceability information model for the documents of their concerned with
different types of trace relationships. The framework assumes documents
represented in XML format and uses traceability rules specified in XQuery
with some extended functions that they have created. Traceability rules
are created based on different aspects, including the semantic of artefacts
being traced, the types of required trace relationships, the grammatical roles
of words in textual artefacts, and synonyms and other associations of the
words in the textual artefacts. The framework has been evaluated in terms
of recall and precision for different case studies. The results of the evaluation
are comparable to other approaches to support automatic creation of trace
relationships.

[Cleland-Huang et al., 2002b] and [Cleland-Huang et al., 2003] use user
input to recover trace links between requirements and performance models
and between non-functional requirements and design code artefacts. Fine-
grained trace links are dynamically generated during system maintenance
and refinement based on user-defined links, which are specified during the
inception, the elaboration and the construction of the system. This approach
supports trace recovery based on invariant rules of design patterns which are
used to identify critical components of classes.

There are researches who apply pattern matching concepts in the context
of trace recovery. [Pinheiro and Goguen, 1996] suggests the use of a regular-
expression language to define patterns to be matched by objects which are
related in a certain way. This approach has been provided in the context of
a tool called TOOR (Traceability of Object Oriented Requirements) which
support traceability between requirements, design documents, specifications,
code and other artefacts through user-defined relations. [Ying et al., 2004;
Zimmermann et al., 2005] have developed an approach that applies data
mining techniques to determine change patterns among sets of files that
were changed together frequently in the past. The underlying assumption
of their approaches is that the change patterns can be used to recommend
potentially relevant source code to a developer performing a modification
task. However, no guidance is provided for the type of the relationship of
two related entities.

Additionally, [Grechanik et al., 2007] simulated the manual human-driven

46

2.1 Traceability

procedure of searching for common patterns and similarities between the
names and values of program entities and the names of elements of use
case diagrams (UCDs), in identifying trace links between use-cases and Java
source code. They suggest using machine learning (ML) techniques that
classify program entities as belonging to elements of UCDs based on the
names of program entities, their runtime values, and the names of elements
of UCDs. ML techniques can support partial matches between names and
values, for example, when patterns in these names and values are not defined
precisely. Their solution is called LEarning and ANAlyzing Requirements
Traceability (LeanArt).

Finally, [Asuncion and Taylor, 2012] present a set of automated tech-
niques to capture custom trace links across heterogeneous artefacts. The
techniques are presented in the context of their Architecture-Centric Trace-
ability for Stakeholders (ACTS) framework [Asuncion et al., 2010], which is
implemented on top of ArchStudio [Dashofy et al., 2007]. They use open hy-
permedia concepts [Anderson et al., 2000] to capture trace links across tool
boundaries and rendering artefacts at different levels of granularity. Third-
party tools are connected to ACTS by building open hypermedia adapters
for the tools, which are called viewers in hypermedia systems [Anderson
et al., 2000]. Customisable rules are used to enable users to define the arte-
facts to trace and to specify traceability relationships. Rules, represented as
XSL Transformation (XSLT) [World Wide Web Consortium (W3C), 1999],
are used to analyse the recorded events to create traceability links. In this
approach, all the control flow goes from ACTS to adapters while users con-
tinue to work with their usual development tools and follow their develop-
ment process. However, the development of adapters and rule are limited
to tools and heuristic that users choose to employ.

This work is similar to the pre-requirements traceability approach pre-
sented in [Pohl, 1996a] in which traceability relations are created as a re-
sult of creating, deleting or manipulating requirements. The approach is
implemented in a tool called PRO-ART. PRO-ART provides (a) a three-
dimensional framework for requirements engineering which defines the kind
of information to be recorded, (b) a trace-repository for structuring the
trace information and enabling selective trace retrieval, and (c) a novel tool
interoperability approach which enables (almost) automated trace capture.

Similar to the IR-based approaches, most of the rule-based trace recov-
ery perform properly in situations where terminology is used consistently
in the different traceable artefacts, which in some cases are not possible.
Additionally, they require setup overhead to specify a set of trace recovering
rules.

Transformation and Translation Techniques

47

Chapter 2 Background and Literature Review

Trace information can be automatically created as by-products of trans-
formation activities, that is, activities which automatically transform one
artefact to another. This can be done either implicitly or explicitly [Olsen
and Oldevik, 2007]. In the former one, a transformation engine generates
the trace links automatically when a transformation is executed. In the
later one, additional code must be inserted into the transformation code in
order to generate a trace model, which can be done by writing the trace
code each time or running a higher order transformation (HOT) [Tisi et al.,
2009] on the transformation model. Accordingly, model transformation
tools support the automated generation of trace links in different ways.

The ATLAS Transformation Language (ATL) [Jouault, 2005], uses HOT
to extend a transformation program to support automatic traceability gener-
ation. [Falleri et al., 2006] propose a traceability framework in the Kermeta
language which requires to add trace generation code in the transformation
code. Generating trace links during model transformation is also demon-
strated for FUJABA in [Gorp and Janssens, 2005] and in a general notation
in [Vanhooff et al., 2007].

In the OMG MOF Query/View/Transformation (QVT) specification [Ob-
ject Management Group, 2011c], traces between model elements involved in
a transformation are created implicitly. The specification describes three
model transformation languages that can be used: Relations, Core, and Op-
erational Mappings. In the Relations and Operational Mappings languages,
trace-links are created automatically without user intervention. In the Core
language, a trace class must be specified explicitly for each transforma-
tion mapping. The implementation does not store trace models as external
files which could be a challenge for interchangeability between tools [Kurtev
et al., 2007].

Similar approaches are applied in the context of model-to-text transfor-
mation. In the MOF Models-to-Text transformation language [Object Man-
agement Group, 2008], traceability is defined to be explicitly created by the
use of a trace block inserted into the code. This approach provides user-
defined blocks that represent a trace to the code generated by the block;
this is specifically useful for adding traces to parts of the code that are not
easily automated. A drawback of the approach is a cluttering of the trans-
formation code. A complementary approach, as taken in MOFScript, is to
automate the generation of traces based on model element references [Old-
evik et al., 2005; Oldevik and Neple, 2006]. This approach is also taken in
the Epsilon Generation Language [Rose et al., 2008].

Obeo Traceability [Information Technology ISO/IEC, 2007] is a traceabil-
ity tool developed by Obeo that handles traceability links between model
elements and code and vice versa. This tool enables round trip support;
updates in the model or the code are reflected in the connected artefacts.
Analyses are also available using the traces as input, but since this is a com-
mercial tool, restricted information describing the solution is available. It

48

2.1 Traceability

seems to be based on similar ideas that are used in MOFScript where model
elements are traced to exact positions in files.

The Epsilon framework [Kolovos et al., 2008] provides implicit traceability
support through an external trace model that can be accessed in Epsilon’s
workflow mechanism (which is based on ANT). An Epsilon program, such
as a transformation or a model merging operation, can expose trace in-
formation (in the form of a container of trace links) and this information
can be accessed by other model management tasks (such as validations) or
even non-MDE tasks, such as visualisations generated with GraphViz [Ellson
et al., 2003].

In the context of requirements traceability, [Anderson et al., 2002] ad-
dresses the challenge of managing the relationships that exist between soft-
ware artefacts. They consider this problem from information integration
perspective as establishing a relationship between documents typically im-
plies that an engineer must integrate information from each of the docu-
ments to perform a development task. Doing so, heterogeneous artefacts
are translated into a homogeneous format and then relationships are discov-
ered automatically between text-based software artefacts through the use
of keywords. Similar to IR-based and rule-based trace recovery approaches,
this technique is also limited to text-based artefacts.

However, the area of trace creation is still challenging. Using IR-based and
rule-based are limited to text-based artefacts with high lexical correlation
or use consistent terminology. Trace creation as a by-product of transfor-
mation also struggles to find a best (an effective) way to generate traces. In
implicit trace recovery, trace links do not have any case-specific semantics.
They are generic and usually of the form <source element, transformation
rule, target element>, while richer traceability links are required in a usable
solution (discussed before in Section 2.1.1.3). On the other hand, although
in the case of explicit trace recovery, trace links with rich-semantics can
be generated, the traceability engineer has to insert traceability code into
the transformation specification. Consequently, it is tightly integrated and
dependent on the existing environment and technologies.

Miscellaneous/Hybrid Techniques

[Egyed and Grünbacher, 2005] use program execution traces to re-
cover relations between source code, requirements and test-cases. In this
approach, test-cases are manually related to requirements. By using these
manually defined links together with the dynamic program behaviour logs
from the execution of the test-cases, their tool is able to recover trace
links between requirements and code. These trace links are derived using
transitive reasoning and shared use of common ground. An example of
transitive reasoning is when A depends on B and B depends on C then A

49

Chapter 2 Background and Literature Review

depends on C. On the other hand, shared use of common ground is the use
of the criterion that if A and B depend on subsets of a common ground
(code in this case) and these subsets overlap, then A depends on B.

[Zhang et al., 2006] present an ontology-based approach for traceability
recovery, to support reverse engineering. They suggest creating formal onto-
logical representations for both the documentation and source code artefacts.
These representations are then aligned to establish traceability links at the
given semantic level. In this approach, traceability links are recovered by
utilizing the structural and semantic information in various software arte-
facts and the linked ontologies are also supported by ontology reasoners to
infer implicit relations among these software artefacts.

Analysing existing trace relationships to obtain implied relationships may
also provide a source of automatically recovered trace links. TraceM is
a framework for automating the management of traceability relationships
which uses this technique. A key contribution of TraceM is its ability
to transform implicit relationships into explicit relationships by processing
chains of traceability relationships [Sherba et al., 2003]. This work builds
on techniques from open hypermedia [Osterbye and Wiil, 1996]) and infor-
mation integration [Anderson et al., 2000]. TraceM allows stakeholders to
view the explicit relationships in a system and to chain these relationships
together to make previously implicit relationships explicit. Moreover, since
these implicit relationships are being made explicit within the context of a
comprehensive requirements traceability framework, they can be explicitly
managed, tracked, and analysed as the software project evolves.

There are also other methods of automatically creating traces in situ, as
artefacts are being created and modified during the development process, for
example by directly analysing the actions. [Wenzel et al., 2007] use a ver-
sion history of a model to trace single model elements or groups of elements.
Given a history of successive model revisions, tracing takes place by locating
that element in another model. [Mäder et al., 2008a] presents an approach
in the context of UML-based software development. The approach recog-
nises the development activities applied to models and capture trace links
while they are performing. Although, it is initially introduced for traceabil-
ity maintenance, it is used to create trace links as well. A prototype tool
called traceMaintainer has been implemented which supports this approach.
[Asuncion and Taylor, 2012] capture traceability links in situ, while artefacts
are generated or modified. A main shortcoming of these approaches is that
they are restricted to capture traceability links from behavioural information
only.

[Costa and da Silva, 2007] proposes a reactive approach to traceability us-
ing MDE concepts. The authors identify two viewpoints in creating traces,
dependency viewpoint and generative viewpoint, and discuss that a combi-
nation of both approach should be used to identify and generate trace links.
The dependency viewpoint identifies traces describing some implicit or ex-

50

2.1 Traceability

plicit semantic relation or dependency between them. While, generative
viewpoint is interested in the relationships between the generated artefact
and the one which was used for the generation. In this case, the traces are
created as a by-product of the the transformation and in most cases can
be done automatically. Figure 2.12 shows a conceptual overview of their
approach.

Figure 2.12: Reactive Traceability [Costa and da Silva, 2007]

2.1.3.4 Traceability Maintenance

Traceability maintenance refers to those activities associated with updating
pre-existing traces as changes are made to the traced artefacts and the trace-
ability evolves, and creating new traces where needed to keep the traceability
relevant and up to date [Gotel et al., 2012b].

Traceability information is subject to gradual degradation as the related
artefacts are modified. As a result, the recorded relationships may end up
being incorrect or inaccurate and as a result cannot support traceability-
enabled activities. One of the most challenging aspects of traceability is
how to maintain the integrity of the relationships, i.e. trace links, while the
referenced entities continue to change and evolve. Traceability maintenance
can also be required following changes to the requirements and constraints
that drive the overarching traceability strategies. Additionally, it can be
seen as an enhancement activity, proposed in [Egyed et al., 2007], to identify
missing traces and resolve errors following trace creation process.

51

Chapter 2 Background and Literature Review

[Gotel et al., 2012b] identify two main approaches for traceability mainte-
nance: continuous and on-demand. In the former approach, the changes are
constantly monitored and the update of impacted trace links immediately
follow changes to traced artefacts. In the latter approach, a dedicated and
overall update of the trace set (in whole or in part), is done generally in re-
sponse to some explicit trigger or preparation for an upcoming traceability
use. In a similar way, [Seibel et al., 2012] categorise traceability mainte-
nance strategies into reactive and proactive strategies. In the context of
MDE, [Drivalos-Matragkas et al., 2010] define event-driven and state-based
traceability maintenance, which can be considered as two techniques, respec-
tively, for continuous and on-demand maintenance approaches (mentioned
above). In the case of event-driven, change events trigger the maintenance
process, while in state-based case, the detection of model changes takes place
by comparing different versions of the models, and potential links are found
based on the identified changes. In the following, the main contributions in
traceability maintenance are presented.

Reactive Traceability Maintenance

In this method, the detection of model changes takes place by com-
paring an instance of the model under consideration in time t1 with an
instance of the model in time t0, where t0 is the time when the model was
checked for the last time. This comparison can take many different forms.
Usually, all the artefacts under consideration are expressed in a common
representation, such as XMI, and then their diff is calculated. In some
cases, it is required for example when no information about changes is
available.

[Maletic et al., 2005] describe an XML-based approach to support the
evolution of trace links between models expressed in the XML. The authors
also describe a traceability graph and its representation in the XML, in-
dependent of specific models or tools. They propose to evolve traceability
along with the models by detecting syntactic changes at the same level and
type as the trace links (e.g., textual links require textual change detection).

An example of a state-based approach is the one proposed by [Sharif and
Maletic, 2007]. In this approach a difference tool such as EMFCompare is
used to identify syntactic differences between different versions of a model.
Based on these differences and user input the links are evolved.

[Drivalos-Matragkas et al., 2010] propose a state-based traceability main-
tenance in the context of the TML [Drivalos et al., 2009]. A traceability
maintenance script, associated with reconciliation expression, is used to de-
tect and reconcile dangling links. The script traverses all the links in the
TML model and when a discrepancy is detected the link is flagged as dan-
gling. Then the maintenance script attempts to reconcile it. If this is not

52

2.1 Traceability

possible, then the user is notified of the suspect link.
There are also many researchers especially in the context of consistency

management between models after their evolution. However, the necessity
to maintain traceability, along with changing a related model, has been
little emphasised. [Engels et al., 2002] present a classification of UML model
refinements to preserve consistency during the evolution of UML-RT models
(a UML enhancement for real-time systems), and identify three kinds of
atomic modification: creation, deletion and update. [Mens et al., 2005]
describe an extension to the UML meta-model to support the versioning
and evolution of UML models. They classify possible inconsistencies of
UML design models and provide rules, expressed in the Object Constraint
Language (OCL), to detect and resolve them.

Proactive Traceability Maintenance

[Cleland-Huang et al., 2002a, 2003] propose event-based traceability
(EBT) as a traceability environment that is more supportive of change.
They have identified a set of standard change events and a method for
monitoring user’s actions within a requirements management environment.
EBT uses a publisher-subscriber paradigm to observe changes in entities
(mainly requirements) and react accordingly. The relationships between
requirements and dependent entities are re-established through an event
service. For example, a scenario that is dependent upon a requirement
subscribes to that requirement in order to receive change notifications.
When a requirement changes, an event message is published to the event
server and, subsequently all dependent entities are notified. Since the
focus of the approach is on recognising types of requirements changes, it
does not deal with the more complex task of recognising multi-step change
activities to models comprising different element types. However, it is
stated that it is possible to identify and define such changes as standard
event messages [Cleland-Huang et al., 2003].

A similar approach is used by [Mäder et al., 2008b,a] in the context of
UML-based software development. They focus on structural UML models
and maintaining post-requirements traceability. Accordingly, they identify
three types of change: add, delete, modify. Rules are used to recognise
change events and specify the actions which should be done consequently.
They provide a tool, traceMaintainer, which is an extension to UML tools
and support their approach.

[Murta et al., 2006] describe an approach called ArchTrace to keep the ar-
chitecture and implementation synchronized as they evolve separately. Arch-
Trace is a policy-based approach in which policies are either rules, deciding
upon actions to take, or constraints, limiting the kinds of actions that can
be taken. They provide an initial set of eight policies based on informally

53

Chapter 2 Background and Literature Review

observing developers in action for example when committing a new version
of an artefact. In their implementation, xADL 2.0 [Dashofy et al., 2001]
is used to describe software architectures and Subversion [Pilato, 2004] to
store source code.

[Seibel et al., 2012] present a retrospective traceability maintenance ap-
proach in the MDE domain, which follows their previous work [Seibel et al.,
2010]. The traceability maintenance approach relies on formal rules to auto-
matically maintain traceability links, which represent dependencies primar-
ily between formal software artefacts. The formal rules (Story Diagrams)
specify a precise semantic for specific types of traceability links and classified
into creation and deletion rules. This approach has two traceability main-
tenance strategies: batch and incremental. The batch strategy is a reactive
traceability maintenance strategy and triggered by a developer on demand
based on the current state of the artefacts. The incremental strategy is trig-
gered automatically when changes occur. Currently, the approach is limited
to the Eclipse workspace and changes coming from EMF or GMF editors.

2.1.3.5 Traceability Use

Traceability use comprises those activities related to exploiting traces in or-
der to support traceability-enabled activities and tasks. In order to use a
trace, it needs to be retrieved and rendered visible in some specific way.
Additionally, [Gotel et al., 2012b] indicate that an important part of the use
process is assessing the quality of the retrieved trace links in terms of the fit-
ness for purpose with respect to the given task or activity. Accordingly, they
define four main components in a use process: retrieving traces, rendering
traces, assessing traces, and recording trace use. The last two component
provide a feedback loop to improve the overarching traceability strategy. As
discussed in Section 2.1.3.1, there are limited studies in regarding assessing
the quality of traceability and, even though, they are not explicitly focused
on this aspect.

Nevertheless, the challenges of searching and browsing traces in an ef-
ficient and user-friendly way has not been fully investigated [Winkler and
Pilgrim, 2010], though they are essential for usability of a traceability so-
lution [Winkler, 2008]. One reason for this is that most researchers often
consider using traces as trivial which is not [Marcus et al., 2005]. In the
following, the existing research and work for retrieving and rendering traces
are introduced.

Visualising Traces

According to [Li and Maalej, 2012], there are fundamentally four vi-
sualisation techniques: matrices, graphs, lists, and hyperlinks, which are
commonly used for visualisation, excluding lists. Lists are often used in

54

2.1 Traceability

trace recovery process and represent each traceability link (along with the
information of source, target artefacts, and other attributes) in one entry.
According to [Wieringa, 1995], hyperlinks are cross-references.

– Matrix or a requirements traceability matrix (RTM) is a two dimen-
sional representation of the relationships between traceable artefacts
(usually between requirements and other artefacts). A matrix element
ai,j being marked (e.g. checked) means that the artefact of column j
and the artefact of row i are linked. Example implementations include
DocTrace [Robinsons, 2014] and VisMatrix [Duan and Cleland-Huang,
2006]. DocTrace automatically creates RTMs, which show the trace-
ability and coverage of requirements throughout the set of documents.
VisMatrix creates a graphical representation of RTMs showing not
only where candidate links exist, but also the strength of those links.
Figure 2.13 illustrates a sample RTM in VisMatrix. The labels shown
on both axes represent the names of requirements.

Figure 2.13: A sample traceability matrix [Duan and Cleland-Huang, 2006]

Traceability matrices can be easily generated for simple (small) trace-
ability links and understood by stakeholders with different back-
grounds. Additionally, matrices give structured overviews and are
appropriate for management tasks [Li and Maalej, 2012]. However,
they are not efficient for systems with complex and large number of
traceability links. An important issue with matrices is that only bi-
nary links between items can be represented. Also, the semantics of

55

Chapter 2 Background and Literature Review

links can not be represented easily in traceability matrices.

– Graphs provide enriched visualization of trace links. Mainly, they al-
low multi-dimensional relationships between artefacts by representing
artefacts as nodes and relationships between them as edges. Two nodes
are connected if a traceability link exists between the corresponding
artefacts.

In context of requirements traceability, graph-based visualisation is
used by different tools. However, as there is no common standard on
the notation and requirements for such techniques, requirements trace-
ability graphs are usually just plain graphical diagrams with boxes
and lines. PRO-ART [Pohl, 1996a] provides a graphical Star View
Dependency Browser which shows an artefact surrounded by its di-
rectly related artefacts, with navigation feature. TOOR [Pinheiro and
Goguen, 1996] also simply uses labels and arrows to represent arte-
facts and links respectively. Traceline [Integrate, 2014] is a DOORS
extension, which provides graph-based visualizations for requirements
traceability. ChainGraph [Heim et al., 2008] visualizes shared meta-
data between requirements in a graph.

On the other hand, graph-based visualisation is a common form of
representing traceability links in the domain of MDE. This is be-
cause diagrams are the trivial form of visualisation of models [Winkler
and Pilgrim, 2010]. Accordingly, existing notations and representation
techniques are used to visualise traceability information.

However, an important challenge in graph-based visualizations is that
they often do not scale well to large data sets because their presen-
tation result in a complex structure that is difficult to manage or
understand [Heim et al., 2008].

– Hyperlinks connect related concepts, keywords, or phrases in a nat-
ural way. The relationships are considered as embedded pointers in
an artefact (usually in textual format). Though, links between dia-
grams can be viewed as cross references (hyperlinks) [Wieringa, 1995].
[Maletic et al., 2003] propose a hypertext model which supports com-
plex linking structures and versioning of individual links for link recov-
ery. In DOORS, out- and incoming links of an artefact are visualized
as bidirectional hyperlinks.

[Li and Maalej, 2012] found out that hyperlinks demonstrate fine-
grained relationships and do not provide a coherent representation
of trace links. Accordingly, they are more preferred for implementa-
tion and testing tasks. Moreover, hyperlinks are always binary links
while n-ary relations are required in real traceability scenarios [Sherba

56

2.1 Traceability

et al., 2003]. Also, they do not provide any information of the type of
the link or the rationale of its existence.

– Miscellaneous There are other techniques for visualising traces.
[Marcus et al., 2005], in TraceViz for tracing between source code and
external documentation, propose a map of coloured and labelled boxes
to show links from and to a single artefact which is similar to the hyper-
link representation. [Merten et al., 2011] suggest using Sunburst and
Netmap visualizations for large amounts of traceability links. [Ratan-
otayanon et al., 2009] developed a prototype for associating arbitrary
lines in text-based files with a feature map, called Zelda. Finally, [Pil-
grim et al., 2008] propose a 3D enhancement to trace visualisation
in the context of model transformation chains. Using a 3D diagram
editor, all the diagrams along with their traceability information are
visualised in a single view. They use layered planes to visualise trace-
ability between different levels of abstraction.

Researchers agree that there is no single perfect way to retrieve and visu-
alise traces and finding a suitable visualisation techniques strongly relates to
the usage context [Marcus et al., 2005; Winkler, 2008; Li and Maalej, 2012].
[Winkler, 2008] indicate that it is essential to determine what the user wants
to achieve when he uses a particular visualization. Accordingly, they identify
three influential factors in visualisation: tasks, users, and modes of access-
ing information (report, search, and browse), and suggest to a catalogue of
requirements induced by the different user roles and tasks should be created.
Similarly, [Marcus et al., 2005] formulated a set of high level requirements
for visualizing traceability links.

Retrieving Traces

In the context of requirements traceability, basic and common trace-
ability tasks, such as coverage analysis and impact analysis, are usually
provided as a feature in the tool used for traceability. For example, [IBM,
2014a] provides a feature that visualise chains of links across multiple
types of artefact. However, these functionalities are primary ones and
do not support non-trivial traceability scenarios. Usually, explaining
complex traceability queries are provided by tool-specific APIs or by direct
access to the underlying data structures. For example, Sparx Enterprise
ArchitectTM [Sparx Systems Pty Ltd., 2014] allows user-defined queries to
be modelled as SQL statements on the underlying database. But, these
techniques require substantial knowledge of the tool’s internal data struc-
ture or of its APIs, which is not compatible with preferences of traceability
users. Generally, users prefer to specify queries at the abstraction level of
traceability [Mäder and Cleland-Huang, 2010].

57

Chapter 2 Background and Literature Review

To address this problem, several researchers have developed languages and
notations to specify trace queries at the right level of abstraction. However,
introduced approaches are relying on and affected by the underlying data
structures and visualisation strategy used in the tool, and they need to deal
with diversity of representation formats.

[Sherba et al., 2003], in TraceM, provide a query service to filter re-
lationships to create different views of information based on stakeholders
needs. [Zhang et al., 2006], in their ontology-based approach for trace
recovery, use Racer query language (nRQL) [Haarslev et al., 2004] to re-
trieve traces. nRQL is a language to retrieve instances of concepts and roles
in the ontology. However, the use of nRQL is restricted to users with a
high mathematical and logical background. [Schwarz et al., 2008] define a
metamodel to store traceability information, named Requirements Reference
Model (RRM), then use the RRM as TGraph schema (a very general kind
of graphs), and represent instances of RMM as TGraphs. Graphs constitute
an abstract representation of artefacts and their traceability relationships.
Then, a graph-based querying approach is used to extract traces. They use
Graph Repository Query Language (GReQL) [Ebert et al., 2002] in which
queries are explained in a SQL-like syntax. However, they do not provide
information how their approach is implemented.

[Maletic and Collard, 2009] introduce the Traceability Query Language
(TQL), a XML-based language to model trace queries for artefacts repre-
sented in XMl. TQL is build on top of XML addressing language (XPath)
and TQL queries are transformed into XQuery. Extensive knowledge of
XML and XPath is a prequisite of using this approach in addition to the
fact that the whole approach is restricted to XML documents. Finally,
[Mäder and Cleland-Huang, 2010] propose a Visual Trace Modelling Lan-
guage (VTML) which allows users to model queries visually within in the
context of their approach to goal-oriented traceability. VTML queries are
modelled over the TIM and reuses the information previously specified in
the TIM to describe a query. They show that VTML allows users to read
and construct queries more easily.

In the MDE domain, to the extent of our knowledge there is no specific
research on how to retrieve traces. This might be due to the fact that
traceability information are represented as a general model and so general-
purpose model management languages (e.g. EOL [Kolovos et al., 2006b]
and OCL [Object Management Group, 2012]) can be used to retrieve model
elements from trace models to support different user-defined traceability
scenarios. A very simple example is to use model-to-text transformation
languages (e.g. EGL [Rose et al., 2008]) to generate reports.

However, existing languages require knowledge of the structure of the trace
models and also they are not at the level of abstraction of traceability users.
Such users usually want to retrieve or find (traceable) elements regarding
existing trace links (i.e. elements which are related to element X with a trace

58

2.1 Traceability

link type R). They may also want to check a constraint on the elements and
trace links (i.e. each element of type Y have to be traced to an element of
type Z). So, they are just interested in traceable elements and trace links
between them, which have been defined by a TIM. Explaining and executing
such queries with general-purpose languages, particularly imperative ones,
require users to explicitly specify how to apply a query on a trace model
and generate an arbitrary output. Traceability users prefer to describe trace
queries and have results represented in a desired format (e.g. list or a graph),
regardless of how queries are implemented and how final representations are
generated.

2.1.4 Traceability Tools

Requirements traceability in practice is usually supported in requirements
management tools, such as DOORS [IBM, 2014a] and Rational Requi-
sitePro [IBM, 2014b]. However, there are traceability-dedicated tools (or
prototypes) which have been mostly developed in the context of a specific
research or study either as a standalone traceability tool or as an extension
to existing tools or framework.

[INCOSE, 2010] provides a list of the available requirements management
tools which support traceability. DOORS is the most widely used tool in
industry to manage requirements and record traces [Alexander et al., 2005].
Generally, these tools enable users to organize requirements and other arte-
facts. Artefacts can be linked to each other and to external files and thereby
make them traceable, for example using hypermedia technologies. Traceabil-
ity links are then visualized in a traceability matrix, as cross-references in
a table-view or in a model- or graph-based diagram. However, most of the
tools do not support customizable set of link types according different usage
scenarios of traceability.

Regarding MDE, traceability tools are mostly available as prototypes
which have been developed as a native tool or by extending the original
tools [Galvao and Goknil, 2007]. The only industrial application of trace-
ability is the bi-directional synchronization of models and code in roundtrip-
engineering UML tools [Winkler and Pilgrim, 2010].

There are several research prototypes developed based on the approach
presented in the related research. Table 2.1 provides an overview of these
tools, which have been introduced in Section 2.1.3 in the context of each
study. The table specifies the related study, the main purpose of the tool
(scope), and highlights main features of the approach or tool.

On the other hand, there are studies arguing that current industrial
approaches do not typically address end-to-end traceability and, accord-
ingly, introduce custom end-to-end traceability tool. [Asuncion et al., 2007]
present a software traceability tool which is used to store and manage traces
throughout the entire life of a development project, from the requirements

59

Chapter 2 Background and Literature Review

phase to the test phase. A main contribution of their approach is to com-
bine end-to-end requirements traceability and process traceability. Similarly,
[Kirova et al., 2008] developed an integrated traceability environment, called
TraceabilityWeb, based on their experience of evaluating different traceabil-
ity methodologies and tools. They have mainly focused on integration with
other tools in their organization, and using this tool to support their pro-
cesses.

Finally, there are also some tools which provide traceability regarding
requirements of specific contexts or domains. For example, [Lee et al.,
2003] present ECHO, a tool-based approach to requirements engineering
and traceability in agile projects. Echo creates the traceability web be-
tween customer needs and specified solutions by providing a means to
capture conversations with customers, structuring them into requirements
artefacts, and then including them in the information model (as traceable
items). In SPL engineering, pure::variants [pure-systems GmbH, 2014] and
GEARS [BigLever Software Inc, 2012] are the two leading tools which pro-
vide extensions to allow integration with other commercial traceability tools.
They allows developers to integrate the functionalities provided by require-
ments and traceability management tools with the variant management ca-
pabilities specifically provided in these tools for SPL engineering.

Choosing the right tool support for traceability is not an easy and straight-
forward decision. This is because available tools are different in several ways
and even focus on different aspects of traceability, such as the aspects of de-
velopment process that they cover, the traceability approach, and type of
artefacts. Therefore, a simple comparison between tools’ features would not
come to a tool by itself. The result of comparison should be examined against
the capability and services required within a specific context or project. For
example, the decision depends on the requirements management system al-
ready used in the organisation or project. The most appropriate tool is the
one that meets stakeholders’ needs, yields the benefits that are anticipated
at an acceptable cost. In this respect, [Gotel and Mäder, 2012] indicate
that acquiring tool support for traceability requires a systematic enquiry
and accordingly present a seven-step guide for practitioners to conduct such
enquiry.

Table 2.1: Research-based traceability tools
Tool Scope Features
TOOR
[Pinheiro and
Goguen, 1996]

Trace Recovery
– Pattern matching

– Uses regular expressions to
define patterns to be matched

60

2.1 Traceability

Tool Scope Features
PRO-ART
[Pohl, 1996a]

Trace Capture
– Rule-based

– Traceability relations are cre-
ated as a result of creating,
deleting or manipulating re-
quirements

ACTS
[Asuncion and
Taylor, 2012]

Trace Capture
– Rule-based

– Traceability relations are cre-
ated as users carry out devel-
opment activities

TraceM
[Sherba et al.,
2003]

Trace Recovery
– Transforms implicit relation-

ships into explicit relation-
ships

traceMaintainer
[Mäder et al.,
2008a]

Trace Capture
– UML-based software develop-

ment

– Traceability links are cap-
tured while development ac-
tivities are applied

ArchTrace
[Murta et al.,
2006]

Trace Maintenance
– Policy-based approach

– Keeps the architecture and
implementation synchronized

DocTrace
[Robinsons, 2014]

Trace Visualisation
– Automatically creates re-

quirements traceability
matrix (RTM)

– Coverage of requirements in
the implementation

61

Chapter 2 Background and Literature Review

Tool Scope Features
VisMatrix
[Duan and
Cleland-Huang,
2006]

Using Traces
(Visualisation & Re-
trieval)

– A graphical representation of
RTMs

– Shows candidate links and the
strength of them

ChainGraph
[Heim et al., 2008]

Trace Visualisation
– Graph-based

– Visualizes shared metadata
between requirements in a
graph

Traceline
[Integrate, 2014]

Trace Visualisation
– Graph-based

– A DOORS extension to pro-
vide visualization for require-
ments traceability

TraceViz
[Marcus et al.,
2005]

Trace Visualisation
– A map of coloured and la-

belled boxes to show links
from and to a single artefact

– Tracing between source code
and external documentation

Zelda
[Ratanotayanon
et al., 2009]

Trace Visualisation
– Associating arbitrary lines in

text-based files with a feature
map

GEF3D
[Ratanotayanon
et al., 2009]

Trace Visualisation
– 3D editor

– Visualises model transforma-
tion chains

62

2.1 Traceability

Tool Scope Features
Poirot
[Lin et al., 2006]

Trace Recovery
– IR-based

– Uses a probabilistic network
model to generate trace links
from requirement manage-
ment tools

RETRO
[Hayes et al.,
2004]

Trace Recovery
– IR-based

– Uses the LSI method and
implements analyst feedback
into the tracing process

LeanArt
[Grechanik et al.,
2007]

Trace Recovery
– Machine learning (ML)-based

– Identifies trace links between
use-cases and Java source
code

ECHO
[Lee et al., 2003]

Trace Recovery
– Requirements engineering and

traceability in agile projects

– Captures conversations with
customers

TraceLab
[Center of Excel-
lence for Software
Traceability (Co-
EST), 2014]

General
– A workbench for designing,

constructing, and executing
traceability experiments

– Highly customized to support
rigorous Software Engineering
experiments

63

Chapter 2 Background and Literature Review

Tool Scope Features
REAMP
[Schmid et al.,
2006]

Trace Capture
– Software Product Line (SPL)

development

– An extension to DOORS
for requirements modelling in
SPL engineering

2.1.5 Traceability Challenges and Limitations

The benefits of an appropriate traceability approach are widely accepted [Go-
tel et al., 2012c]. However, empirical studies show that implementing a
successful and cost-effective traceability solution is still a challenge and is
usually failed in many contexts [Egyed et al., 2007]. Many researchers have
investigated the difficulties or problems which hinder the adoption of trace-
ability in practice, considering this issue from different points of view. Some
of them address difficulties associated with traceability activities, while oth-
ers are interested in the shortcomings of supporting technologies. There are
also studies considering the cost-benefit and return on investment (ROI) of
a traceability solution in general.

Additionally, [Winkler and Pilgrim, 2010], in a comprehensive survey of
traceability, classify the factors which hinder the adoption of traceability in
practice into four groups.

– Natural factors; attributed to the imprecise and incomplete nature of
traceability (e.g. no common understanding of a complete and well-
defined traceability metamodel)

– Technical factors; related to enabling technologies for a traceability so-
lution (e.g. lack of integration with other development activities/tools
and automated trace recording)

– Economical factors; concerning the Return on Investment (ROI) of
traceability

– Social factors; attributed to the inevitable role of human in traceability
activities (e.g. in trace recording)

Considering this thorough survey on the use of traceability in practice and
also other researches focusing on specific aspect of traceability, we investi-
gate current difficulties and challenges from four viewpoints: definition, fun-
damental characteristics, enabling techniques (traceability activities), and
practicality or applicability (implementing a solution).

64

2.1 Traceability

2.1.5.1 Definition

This viewpoint covers those difficulties which happen because of ambigu-
ous and imprecise definitions in the traceability domain regardless of how
traceability is implemented in a project. These difficulties are similar to the
natural factors defined by [Winkler and Pilgrim, 2010]. One of the factors
affecting the adoption of traceability in practice is the lack of a commonly
accepted definition of traceability and inconsistency in the use of traceability
terminology and concepts [Gotel et al., 2012b]. Current standards provide
little guidance and the models and mechanisms vary to a large degree and
are often poorly understood, so traceability in many organizations is haphaz-
ard [Ramesh and Jarke, 2001]. Addressing this issue, [Gotel et al., 2012b]
provide a resource for traceability fundamentals along with a glossary of
traceability terms and concepts. Such work will provide a common view of
traceability and help the research community and industry to structure and
understand problems better.

Additionally, researchers highlight the need for a standard way of speci-
fying a traceability metamodel, mainly to support interoperability between
traceability solutions, and hence, propose reference models or formal spec-
ification of traceability metamodels (at the metametamodel level), such as
[Ramesh and Jarke, 2001; Limon and Garbajosa, 2005; Espinoza et al., 2006]
(introduced in Section 2.1.3.2).

2.1.5.2 Fundamental Characteristics

We argue that there are some challenges which are inherent to traceability
and which cannot be eliminated completely. To address these challenges, a
traceability approach has to convince users of the benefits of having trace-
ability and control or dominate the negative effects of them in some way.

Fundamentally, supporting traceability requires substantial effort to cre-
ate and maintain traceability relations. Therefore, traceability is always a
costly activity and it is not easy to measure the return on investment (ROI)
of traceability [Palmer, 1999]. A practical solution needs to provide a less
effort-intensive approach for creating and updating trace relations or in-
crease the benefits of traceability to compensate its additional costs. In this
context, a part of current research focuses on techniques to create, main-
tain, and use traces, and try to improve them. Such studies are discussed
in Section 2.1.5.3.

On the other hand, some researchers address the additional cost of trace-
ability at the higher level, focusing on the overarching strategy which drives
traceability activities. They provide guidelines and standard templates sup-
porting the whole planning activity for traceability. The primary idea behind
these approaches is to tailor and customise a traceability solution (and con-
sequently traceability activities) to the needs of a particular project. This

65

Chapter 2 Background and Literature Review

approach has been acknowledged in various contexts.
[Dömges and Pohl, 1998; Pinheiro, 2003] note that traceability meth-

ods and tools have to be easily customised in order to lower traceability
costs. [Mäder et al., 2009a] advocate defining traceability metamodels specif-
ically for a project at hand and propose practical guidelines accordingly.
[Aizenbud-Reshef et al., 2005] state that an optimal traceability metamodel
is the one that is customisable and extensible by the user. [Heindl and
Biffl, 2005] suggest value-based requirements traceability (VBRT) to iden-
tify which traces are more important and valuable than others. Similarly,
[Egyed et al., 2005] propose a value-based approach to assist engineers into
deciding which traces are needed, when they are needed and at what level
of precision, completeness and correctness. They show that the approach
reduces the cost of traceability by avoiding unnecessary trace recovery and
maintenance. Cost of traceability can also be reduced by tailoring the preci-
sion, completeness and correctness of trace links depending on their intended
usage. In a related work, [Egyed et al., 2007] conducted three case studies to
examine the trade-off between these three attributes and traceability cost.
The results of these case studies show that cost and effort of traceability can
be reduced by reducing the granularity of the traceable artefacts.

[Lago et al., 2009] present a scoped approach to traceability instead of
automating tracing, or representing all possible traces. They scope the traces
to be maintained to the activities stakeholders must carry out. They define
core traceability paths, consisting of essential traceability links required to
support the activities. They illustrate the approach through two examples:
product derivation in software product lines, and release planning in software
process management.

[Ingram and Riddle, 2012] focus on cost as the key reason to neglect or
abandon traceability efforts, and identify key issues to maximise the cost-
benefit of a traceability solution (optimal scenario). They introduce three
strategies to minimise the cost of gathering trace data: establishing trace-
ability goals, trace creation and evolution, and using automated tools. More-
over, they state that traceability data should be at an ”acceptable quality”
in order to reach the cost-benefit of traceability. The quality of data is
defined as a function of the granularity, recall and precision, and level of
coverage of trace links, which are specified regarding the given project.

On the other hand, humans inherently play an important role in captur-
ing and maintaining traceability as traceability practices can never be fully
automated [Egyed and Grünbacher, 2005]. Even in the relatively formal
context of model driven software development, fully automated establish-
ing and maintaining traceability links is still an issue [Winkler and Pilgrim,
2010]. In this context, it is important to motivate users and convince them
of the benefits of having traceability. Empirical studies show that direct,
immediate, and short-term benefit motivate users to carry out traceabil-
ity activities [Alexander, 2002; Ebner and Kaindl, 2002; Arkley and Riddle,

66

2.1 Traceability

2005].
Additionally, [Hoffmann et al., 2004] argue that traceability acceptance

will increase if supporting tools are made more usable. [Arkley and Riddle,
2005] also indicate that traceability activities should be designed in a way
that can be integrated with the way users work. Otherwise, they would be
imposed on them and consequently would be discarded. Moreover, [Hayes
and Dekhtyar, 2005] argue that users do not trust the traces produced by
automated traceability methods and many times they make the results of
such methods worst, which can happen because of missing motivation or
lack of understanding of traceability.

2.1.5.3 Enabling Techniques

These challenges are related to techniques and methods used to create, main-
tain, and use traces in a project. The ultimate goal of the related research is
to improve the efficiency, usability, or productivity of traceability activities
in various ways. Some of them try to minimise manual activities (human
interaction) and so to automate traceability activities as much as possible,
for example through using IR- and rule-based methods for trace recovery.
Other studies are interested in enhancing the recall and precision of traces.
Finally, several efforts have been spent on improving tool support for trace-
ability. The current and ongoing research in this context were introduced,
and their strengths and weaknesses were discussed in Section 2.1.3.

2.1.5.4 Practicality and Applicability

This viewpoint focuses on problems which are related to the practicality
or applicability of a traceability approach; when a traceability solution is
implemented and used.

Experimental studies of existing tracing approaches in practice, observe
that usually the traceability metamodel is undetermined [Von Knethen and
Paech, 2002]. It has not been precisely defined what artefacts are traced and
what trace links are captured. Also, selecting the right level of granularity
for traceability is a challenge [Kirova et al., 2008]. It is difficult to determine
what level of granularity is appropriate and useful for a given project. The
granularity varies depending on the usage scenario. For example if there is a
lot of in-team knowledge and experience in architecting or designing specific
products within the domains, there can be less emphasis on requirements to
design traceability, hence a higher level of granularity will be acceptable. So,
support for selecting granularity, quality, and completeness of the traceabil-
ity metamodel is essential. [Mäder et al., 2009a] also acknowledge the lack
of practical guidance on how to design, implement, and use project-specific
traceability metamodels as one the main reasons why such metamodels are
not used in practice, though they are considered and discussed as the core

67

Chapter 2 Background and Literature Review

element of any traceability solution.
Additionally, tracing approaches do not provide sufficient and clear pro-

cess support [Von Knethen and Paech, 2002; Winkler and Pilgrim, 2010].
Generally, traceability is not directly supported by software development
process [Ramsin and Paige, 2008]. Therefore, tracing approaches have to
clearly specify when and how traceability activities are actually carried out
during software development.

Insufficient tool support has been identified as a factor which hinders the
adoption of traceability in practice [Von Knethen and Paech, 2002; Kirova
et al., 2008; Winkler and Pilgrim, 2010]. Studies show that automated trace
creation and maintenance are essential in adopting a traceability solution,
as recording and using traces manually are time-consuming and error-prone
tasks. The studies also highlight the lack of interoperability between tools.
In industry, there is a need for a comprehensive approach to traceability
which considers interoperability between requirements management tools,
modelling tools, integrated development environments (IDEs), and commu-
nication tools. The tooling support could implement standardized interfaces
or would support a common trace data format.

2.1.6 Traceability in Specific Domains

Previous sections introduce and discuss traceability generally in software
and systems development. Nevertheless, there are several researches focus-
ing on traceability in specific domains. They advocate that an effective
traceability solution has to be designed and implemented according to a
particular project’s need. These studies investigate the domain or context,
locate the role of traceability in that domain, identify the specific needs,
and accordingly propose a complete traceability approach or an element of
a solution.

Traceability has been widely investigated in those areas in which trace-
ability is considered as a mandatory or essential requirement, such as NFRs,
safety-critical systems, and software product lines. This section gives a brief
introduction of existing research in these domains. Particularly, due to the
context of the running example (Section 1.1.1) and the case study (chap-
ter 6), we spend more on the traceability in the context of safety-critical
systems.

2.1.6.1 Tracing Non-functional Requirements

NFRs traceability has been considered in different phases of software de-
velopment process, for different purposes. In early phases of software de-
velopment, tracing NFRs provides support for software project planning
and control [Ramesh and Edwards, 1993] and can help architects determine
whether all NFRs have been fully covered in the proposed design, and con-

68

2.1 Traceability

versely identify unresolved concerns [Tang et al., 2010]. The ability to con-
nect each design and implementation element back to design decisions and
its related NFRs can also provide capabilities for verifying and evaluating
the completeness of the design [Tekinerdogan et al., 2007b]. Additionally,
existing traces from NFRs to the design provide support for change impact
analysis [Mirakhorli and Cleland-Huang, 2011]. NFR traceability is also an
integral part of documenting the architectural decisions and their relation-
ship to quality goals and NFRs [Tang et al., 2007].

Nevertheless, NFRs are more difficult to trace than functional require-
ments as they often exhibit cross-cutting and wide impacts across the sys-
tem and general traceability approaches do not address challenges of tracing
NFRs directly or explicitly. [Mirakhorli and Cleland-Huang, 2012] have anal-
ysed and explored existing techniques for tracing NFRs, and then identified
the fundamental issues related to tracing NFRs. They indicate that NFRs
traceability is multi-level, multi-path, heterogeneous, multi-granularity, tacit
traces, trade-offs, semantically typed, strategic, minimalistic.

Fundamentally, NFRs play a strategic role in driving the architectural
design of a software intensive system. In this regard, a common approach
to tracing NFRs is to explicitly specify relationships between NFRs and
downstream work products through existing architectural analysis and man-
agement processes. Four representative software engineering activities that
incorporate the creation and utilization of NFR traceability links are the
Architectural Tradeoff Analysis Method (ATAM) [Kazman et al., 2000],
Architectural Documentation (e.g. Views-and-Beyond [Bass et al., 1998]),
Enterprise Architectural Frameworks (e.g. C4ISR developed by the U.S.
Department of Defense (DoD) [U.S. Department of Defense (DoD), 1997]),
and management of architectural knowledge [Vliet, 2008].

This way, traceability information is embedded into the architectural doc-
uments and therefore it is difficult to use trace links to support other ac-
tivities. However, building traceability techniques on top of such methods
demonstrates the benefits of traceability efforts quickly. On the other hand,
architectural management tools provide rich environments for tracing be-
tween designs decisions, rationales, and other supporting information, but
have not yet been integrated with architectural modelling tools [Tang et al.,
2010]. They also support only relatively high level trace links; no finer
grained traceability between NFRs and specific design or code elements.

There are several other tracing approaches which are specifically designed
for creating and maintaining NFR traces. Another approach is Goal-Centric
Traceability (GCT) [Cleland-Huang et al., 2005a; Cleland-Huang, 2005]
which provides traceability support for managing and maintaining NFRs
and their related quality concerns over the long-term life of a software in-
tensive system. GCT is a goal-oriented approach which assumes that quality
concerns are modelled in an arbitrary goal hierarchy. [Cleland-Huang and
Schmelzer, 2003; Song et al., 2011] suggest recording traces from NFRs to

69

Chapter 2 Background and Literature Review

software designs simultaneously while applying existing design and archi-
tectural patterns. They assume that, in most cases, non-functional require-
ments provide solutions in pattern. The concepts of Aspect Oriented Re-
quirements Engineering (AORE) provide an promising framework for trac-
ing NFRs. Therefore, several researchers have explored ideas of using early
aspects to trace NFRs including [Tekinerdogan et al., 2007a; Kassab and
Ormandjieva, 2006]. [Kassab et al., 2009] propose a metamodel which ex-
plicitly captures the concepts of NFRs, FRs, and their relationships, and
it is independent of any programming paradigm. It can be customised and
instantiated with respect to the required programming type. The meta-
model is ultimately transformed into a rational model and Datalog is used
to implement queries to represent traceability information.

A main advantage of these techniques is that they provide wider usage of
traceability links in comparison to the architecture-centric approach. How-
ever, they require specific modelling environments or development practices
and suffer from scalability issues. A number of approaches, such as [Salazar-
Zárate et al., 2003; Krishna and Gregoriades, 2011], develop UML profiles
and extend UML models to integrate NFRs into functional behavioural
models. Considering advantages and disadvantages of the above mentioned
approaches, [Mirakhorli and Cleland-Huang, 2012] introduce a hybrid ap-
proach, called Architectural Centric Traceability (ACT), which is designed
specifically for tracing NFRs across the software development life cycle, but
also closely integrated into common architectural assessment and analysis
techniques [Burge and Brown, 2008]. ACT provides traceability support
for preventing the typical architectural erosion and quality degradation that
occurs during long-term system maintenance and evolution of a software
system.

2.1.6.2 Traceability in Safety-Critical Systems

Traceability is especially essential for critical systems which must satisfy a
range of functional and non-functional requirements, including safety, relia-
bility and availability [Mason, 2005].

Additionally, traceability is an important component in all the standards
available for different industries, including DO-178B [RTCA and EURO-
CAE, 1992] for the Aerospace industry, Automotive SPICE [IEC, 2012] and
ISO 26262 [ISO, 2011] for Automotive industry, and IEC 60880 [IEC, 2008]
and IEC/TR 61508 [IEC, 2005] in nuclear power generating software. They
routinely require full lifecycle traceability to assist in evaluating such sys-
tems. Traceability from hazards to derived safety requirements and to im-
plemented and verified design solutions provides essential evidence to ar-
gue that a system is operationally safe [Lutz, 2000]. However, in practice
traceability links provided by software developers are usually incomplete,
inaccurate, ineffective for demonstrating software safety.

70

2.1 Traceability

[Katta and Stlhane, 2012] address the need for traceability methods tai-
lored to safety systems and propose a conceptual model of traceability for
safety systems covering both the development process and safety analysis
processes. The conceptual model presents the data generated during de-
velopment and the safety analysis phases, and the relations between them.
The model is the core part of a traceability management approach in safety
systems, which ultimately generate safety cases. The model can also be used
as a base line for communication between developers and safety analysts.

Additionally, [Cleland-Huang et al., 2012] proposes a family of reusable
traceability queries as a blueprint for traceability in safety-critical systems.
The queries that consider formal artefacts, designed to help demonstrate
that: 1) identified hazards are addressed in the safety-related requirements,
and 2) the safety-related requirements are realized in the implemented sys-
tem. Practitioners building safety critical systems can use these trace queries
to make their traceability efforts more complete, accurate and effective.

In the context of the MeMVaTEx project, [Albinet, 2008; Peraldi-Frati
and Albinet, 2010] introduce a model-based methodology for requirements
expression, traceability, and verification in real-time systems development.
Their methodology relies on the EAST-ADL2 framework [ATESST2 Con-
sortium, 2010] and two of the UML2 profiles: MARTE [Object Management
Group, 2011a] for real-time embedded systems and SysML [Object Manage-
ment Group, 2010a] for system requirements modelling. The methodology
defines different models used at each abstraction level of the process. The
results are a requirement model and a solution model which is related to
the requirements. Verification and validation models and techniques are
connected to these models. The key feature of their methodology is devel-
oping a dedicated UML profile as a DSL which imports a subset of needed
stereotypes from mentioned profiles.

On the other hand, safety standards mandate generation of product-
specific evidence demonstrating the satisfaction of safety requirements and
that the system is acceptably safe to operate [Habli and Kelly, 2006], which
requires the creation of a safety case for the system [Despotou and Kelly,
2008]. A safety case is a document which consists a set of various deliv-
erables, including diagrams, tables, and texts, to show that a system is
acceptably safe in the operation context [Kelly, 1998]. Therefore, gathering
the evidence for the safety case is very critical. A safety case needs to be
linked properly to other related concepts in safety engineering process, such
as safety models, safety analysis, and verification and validation. Although
the relationships are specified through the safety case notations, they are not
well connected and they are defined in a totally separate context [Despotou
and Kelly, 2008].

[Mason et al., 2003; Mason, 2005] address the problems of establishing and
maintaining traceability and consistency across disjoint safety engineering
tools to provide valid evidence for safety case. They introduce MATra, the

71

Chapter 2 Background and Literature Review

Meta-modelling Approach to Traceability, for managing the engineering of
aerospace systems. The framework is realised by exporting information from
the internal models of tools to an integrated environment consisting of 1)
a set of metamodels expressing the application domain, 2) well-fromedness
constraints over the metamodels, and 3) associations between the metamod-
els. However, the framework is limited to the safety domain and intends to
overcome the poor integration between safety tools and the consequent in-
consistencies.

[Panesar-Walawege et al., 2010] provide a conceptual model that charac-
terizes the evidence necessary for arguing about software safety. Their model
captures both the information requirements for demonstrating compliance
with IEC 61508, and the traceability links necessary to create a seamless
continuum of evidence information, called the chain of evidence.

2.1.6.3 Traceability in Software Product Lines

Software Product Line (SPL) Engineering has to explicitly deal with in-
terrelated, complex models such as feature and architecture models, hence
traceability is fundamental to keep them consistent. It is required both be-
tween different software models (e.g., feature and structural models), and
between different development phases (e.g., from domain engineering to ap-
plication engineering).

[Ajila and Kaba, 2004] present traceability mechanisms to support soft-
ware product line evolution. The product line approach to software develop-
ment requires designers to consider requirements for a family of products and
the relationships between these requirements. They examine three kinds of
evolution processes -architecture, product line, and product to define change
management mechanisms. These mechanisms share four strategies change
identification, change impact, change propagation, and change validation.
Then, an evolution model based on dependency relationships structure of
the various product line artefacts is developed.

[Jirapanthong and Zisman, 2005] advocate the use of traceability rela-
tions to support SPL engineering. Relations between product members and
the product line architecture, and among the product members themselves
must be automated. For this purpose, a rule-based approach for generating
traceability relations among different types of artefacts is presented. Ac-
cordingly, ten different types of traceability relations (between the various
documents) are identified among feature, sub-system, process, module, use
case, class diagram, statechart diagram and sequence diagram models. An
extended version of XQuery is used to represent the rules and to support
extra functions to cover some of the traceability relations being proposed.

[Anquetil et al., 2010] present a model-driven traceability framework to
software product line development. Model-driven techniques are adopted
with the aim to support the flexible specification of trace links between dif-

72

2.1 Traceability

ferent kinds of SPL artefacts. A traceability metamodel is defined to support
the flexible creation and storage of the SPL trace links. The framework is
organized as a set of extensible plug-ins that can be instantiated to create
customized trace queries and views.

Finally, a survey on existing traceability tools was conducted in the con-
text of the AMPLE project [AMPLE, 2007]. The objectives of this survey
were to investigate the current features provided by existing tools in order
to assess their strengths and weaknesses and their suitability to address SPL
development. The tools were evaluated in terms of the following criteria: (i)
management of traceability links; (ii) traceability queries; (iii) traceability
views; (iv) extensibility; and (v) support for SPLs and MDE. The conclu-
sions that were drawn from their survey were that none of the investigated
tools had built-in support for SPL development, and a vast majority of them
are closed, so they cannot be adapted to deal with the issues raised by SPL.

There is some recent progress in providing traceability support for product
lines. Two of the leading tools in SPL development, pure::variants [pure-
systems GmbH, 2014] and GEARS [BigLever Software Inc, 2012] have de-
fined some extensions to allow integration with other commercial traceability
tools. Pure::variants includes a synchronizer for CaliberRM and Telelogic
DOORS that allows developers to integrate the functionalities provided by
these requirements and traceability management tools with the variant man-
agement capabilities of pure::variants. Similarly, GEARS allows importing
requirements from DOORS, UGS TeamCenter, and IBM/Rational Requi-
sitePro. [Schmid et al., 2006] focus on tool support for SPL engineering
and discuss how a seamless integration of product line concepts in existing
tools is possible and desirable. When analysing the requirements a tool ex-
tension for product lines must support, traceability support is considered
as mandatory. Thus, the authors introduce in REMAP (an extension to
DOORS for requirements modelling in SPL engineering) an explicit and au-
tomatically generated trace between a requirement in the product line and
a requirement in the product: if a requirement is added by instantiation to
a product, REMAP creates a link from the requirement in the product to
the respective requirement of the product line infrastructure.

However, these external tools (e.g. DOORS, RequisitePro) handle trace-
ability for traditional systems. Apart from their individual weaknesses (see
Table 1), they all lack the ability to deal explicitly with specificities of SPL
development, for example, dealing with variability. They do not provide ad-
vanced and specific support to deal with change impact analysis or feature
covering in the context of SPL development.

2.1.7 Traceability in Different Engineering Approaches

Traceability has been mandated by military regulations and thus, it has been
part of waterfall-drived development processes. Today, however, traceability

73

Chapter 2 Background and Literature Review

has gained in significance in any development approach. In this section, we
briefly discuss the role of traceability and how it is considered in different
engineering approaches including V-model (an extension to waterfall model),
agile software development, and enterprise architecture frameworks.

2.1.7.1 V-Model

The V-Model is an extension of the waterfall model of software development,
which is the traditional development process model. In the V-model, devel-
opment activities are basically performed sequentially, but the process steps
are bent upwards after the coding phase, to form the typical V shape (illus-
trated in Figure 2.14) [Sommerville, 2007]. The model specifies two groups
of activities: the development process (left side) and testing activities (right
side). For each stage in the development process, there is a related testing
activity.

Figure 2.14: The V-model of software system development

As mentioned before, waterfall-based process models are usually used in
developing critical (high-integrity) systems. For example critical software
systems processes usually follow the V-model of software development [Ge
et al., 2010]. This is due to the special requirements of such project, such as

74

2.1 Traceability

each phase and its documents needs to be approved so that next phase can
start. Accordingly, traceability is a mandatory attributes of such develop-
ment processes because of the regulations and standards in these context.

Additionally, the model requires traceability in a slightly different way
from the normal traceability mandated in general (between requirements,
design, implementation, and test units). Throughout the system develop-
ment, users need to explicitly specify that each development activity has a
corresponding testing activity and vise versa, which in other words, is to
provide traceability at the process level, between activities. However, to our
knowledge, current research has not explicitly considered traceability in such
projects. This might be because of the fact that, in such projects, traceabil-
ity is a mandatory requirement regardless of how it is provided and how
much it costs; there is not any specific constraints on traceability practices
(for example in comparison to agile projects).

2.1.7.2 Agile Software Development

Agile software development is a style of software development in which both
the requirements and the delivered solution evolve incrementally through
a series of iterations. Such methodologies are characterized by an empha-
sis on human interactions and collaborations, lightweight development pro-
cesses, frequent deliverables, and minimal documentation [Ambler and Jef-
fries, 2002; Schwaber and Beedle, 2001; Beck and Andres, 2004]. XP [Beck
and Andres, 2004] and Scrum[Schwaber and Beedle, 2001] are two well-
known and commonly used agile methodologies in industry.

Traceability is generally perceived by agile developers as an additional,
heavy-weight activity which returns little value to the project [Cleland-
Huang, 2006]. However, traceability fundamentally could benefit such
projects in many ways. [Appleton, 2005] identified several reasons for tracing
in an agile project including change impact analysis, product conformance,
process compliance, project accountability, baseline reproducibility, and or-
ganizational learning. On the other hand, agile practices are increasingly
adopted in larger, distributed, and safety-critical projects [Paige et al., 2011],
and in these environments the benefits of traceability outweigh its costs.

Accordingly, traceability has been considered in the context of agile de-
velopment, also under the term agile traceability. As discussed in [Cleland-
Huang, 2012], what differentiates agile traceability from traceability in non-
agile projects is the way in which traceability practices are provided (im-
plemented and used). For example, [Lee et al., 2003] discuss that success-
ful traceability, in agile projects, has to start as early as possible and the
method for creating and maintaining traceability must be non-intrusive to
the development team. They present a tool-based approach which deliver
transparent model in which traceability is implicitly maintained while the
content is created. [Appleton et al., 2007] describes several techniques for

75

Chapter 2 Background and Literature Review

light-weight tracing such as utilizes existing configuration management tools
in order to capture traceability links, as configuration management is a nat-
ural part of an agile project. Another approach is to generate traces as a
by-product of the normal agile process at low cost. Just-in-time Traceability
(JITT) follows this approach and uses information retrieval techniques to
automatically create candidate traceability links. In this way, no perma-
nent traces are stored or maintained, and the primary cost and effort of the
trace is incurred at the time of need (when traces are retrieved). Finally,
[Cleland-Huang, 2012] suggests a very basic traceability information model
which only includes the most essential concepts in agile development, such
as requirements, test case, and code. Though, it is acknowledged that this
model is not scalable and according to the size and longevity of the project,
different TIMs are required which is highlighted in [Espinoza and Garbajosa,
2011].

2.1.7.3 Enterprise Architecture Framework

Enterprise Architecture (EA) is a well-defined practice for conducting en-
terprise analysis, design, planning, and implementation, using a holistic
approach at all times, for the successful development and execution of a
strategy [Federation of EA Professional Organizations, 2013]. An architec-
ture framework is a set of structures for developing a wide range of different
architectures in order to design a target state of an enterprise in terms of
a set of building blocks (represented by architectural views). It specifies a
list of recommended standards and compliant products that can be used to
implement the building blocks.

MODAF and TOGAF are two well-known frameworks for developing an
EA. The Ministry of Defence Architecture Framework (MODAF) [The UK
Ministry of Defence, 2012] is the recognised enterprise architecture frame-
work developed by the UK Ministry of Defence (MoD) based on the US De-
partment of Defence Architecture Framework (DODAF). The Open Group
Architecture Framework (TOGAF) [The Open Group, 2011] is developed
and maintained by members of The Open Group 1, based on the Technical
Architecture Framework for Information Management (TAFIM), developed
by the US Department of Defense (DoD). Also, the Reference Model of Open
Distributed Processing (RM-ODP) [ISO/IEC and ITU-T, 1998] which is a
reference model to describe an open distributed processing (ODP) system,
introduces an enterprise architecture framework for the specification of such
systems. RM-ODP is a joint effort by ISO/IEC and ITU-T.

One of the responsibilities of an EA is to provide complete traceability
from requirements analysis and design artefacts, through to implementation
and deployment. This is because the architecture needs to be understood
by all participants and not just by technical people.

1www.opengroup.org

76

2.1 Traceability

However, considering TOGAF 9.1 specification, it is observed that trace-
ability is rarely referred to and the only sections where it is used is in the
various architecture domains where a requirements traceability report or
traceability from application to business function to data entity has to be
created. TOGAF specification does not provide specific techniques to pro-
vide traceability. Its core metamodel also provides limited number of ar-
chitectural content to support traceability across artefacts. However, as
discussed in [Thorn, 2013], in order to support traceability, it is possible to
use an enterprise architecture tool with TOGAF artefacts, and thereafter,
use matrices and diagrams to build the required traceability.

In MODAF, traceability is considered in the context of mappings used
to relate various concepts in different view points together. The MODAF
is organised into seven viewpoints, each of which contains several architec-
ture views. It mostly uses traceability matrices to specify the relationships
between concepts. For example, in the ‘System Viewpoint’, the Function
to Operational Activity/System Function Traceability Matrix is a specifi-
cation of the relationships between the set of operational activities/system
functions applicable to an architecture and the set of functions applicable to
that architecture. Additionally, the ‘All View Viewpoint’ demonstrates an
overarching description of the architecture and allows to search and query
architectural models. Thus, this viewpoint implicitly provides traceabil-
ity between viewpoints. Nevertheless, the MODAF tools are model-driven
and the MODAF Meta Model (M3) is the reference model that underpins
MODAF which is implemented as a profile of UML 2.1; architectural views
are represented as UML models and therefore traceability practices intro-
duced in MDE domain can be applied if required.

Similarly to MODAF, RM-ODP provides an EA framework based on view-
points; it describes a distributed application according to five viewpoints.
Each viewpoint is associated with a viewpoint language that specifies the vo-
cabulary and presentation of that viewpoint. Although viewpoints are sep-
arately specified, they are not completely independent and key concepts in
each are identified as related to concepts in the other viewpoints. In this con-
text, RM-ODP defines correspondences between viewpoints which support
mutual consistency between them, in addition to specifying the relationship
between viewpoints. Correspondences are specified with the Enterprise Lan-
guage which are statements that relate the various different viewpoint spec-
ifications, but do not form part of any one of them. UML4ODP [ISO/IEC
and ITU-T, 2009] is a set of UML profiles which allows ODP modellers
to use the UML notation for expressing their ODP specifications based on
RM-ODP.

77

Chapter 2 Background and Literature Review

2.2 Model-Driven Engineering

The proposed approach to traceability in this thesis, which is explained in
Chapter 4, is based on the principles of MDE. In this section, we briefly
introduce MDE and its principles relevant to and used in the proposed ap-
proach.

MDE is an approach to address the inability of third-generation lan-
guages to alleviate platform complexity and express domain concepts effec-
tively [Schmidt, 2006]. In MDE, models are the primary artefacts which are
constructed and manipulated throughout the engineering process. Accord-
ingly, software engineers using MDE particularly work with specific types of
artefact, such as models, metamodels and model transformations. Further-
more, MDE involves new development activities usually referred as model
management operations. In the following, the artefacts and activities in-
volved in MDE are briefly explained. Finally, regarding the proposed ap-
proach in this thesis, modelling in the large is discussed shortly.

2.2.1 Models

Models are the primary concept in the MDE. Different definitions of the
term model are provided in the domain of computer science (e.g. [Starfield
et al., 1990; Ludewig, 2003; Henderson, 2003]) and in the domain of MDE,
in particular (e.g. [Bézivin and Gerbe, 2001; Seidewitz, 2003]). [Kurtev,
2004] reviewed and identified commonalities and variations between these
definitions.

Considering the fundamental purpose of MDE, the particular strength
of models is based on the idea of abstraction, as recognised in [Ludewig,
2003]. Abstraction is a purposeful simplification of the reality; representing
related details and discarding irrelevant details from what is being mod-
elled. Accordingly, a model is an abstraction of something that exists in
reality [Kleppe et al., 2003]. The reality is referred to as the original in
[Ludewig, 2003] and it could be an object, phenomenon, a system, a system
of systems, or a domain.

[Kurtev, 2004] also acknowledges that the relation between a model and
its original is highlighted in many of the definitions. [Ludewig, 2003] con-
siders this property under the mapping criterion and [Seidewitz, 2003] refers
to it as the interpretation of a model. By interpreting a model, model ele-
ments are mapped to the elements of the original being modelled. So that
an engineer can determine the truth of the model and perceive the model
meaning relative to the original.

Models can be structured (presented in a well-defined language) or un-
structured (an informal drawing). However, in software engineering, and
hence, in MDE, models are structured rather than unstructured [Kolovos,
2008] which may have either a textual or graphical representation [Kolovos

78

2.2 Model-Driven Engineering

et al., 2006b].

2.2.2 Modelling Languages and Metamodels

Models are expressed by modelling languages [Seidewitz, 2003]. A modelling
language is a set of syntactic and semantic constraints used to define a model.
In MDE, a modelling language is often described as a model and, hence the
term metamodel is used in place of modelling language. However, the two
terms are slightly different: a metamodel defines the structure of a group of
valid models expressed by a certain modelling language [Seidewitz, 2003].

A model conforms to a metamodel when the metamodel specifies every
concept used in the model definition, and the model uses the metamodel
concepts according to the rules specified by the metamodel. Conformance
can be described by a set of constraints between models and metamod-
els [Paige et al., 2007]. When all constraints are satisfied, a model conforms
to a metamodel.

In MDE, a modelling language is commonly specified by a concrete syntax,
an abstract syntax and semantics [Rose, 2011].

– The concrete syntax provides a notation for constructing models
that conform to the language. For example, a model may be rep-
resented as a collection of boxes connected by lines. A standardised
concrete syntax enables communication. Concrete syntax may be opti-
mised for consumption by machines (e.g. XML Metadata Interchange
(XMI) [Object Management Group, 2007]) or by humans (e.g. the Uni-
fied Modelling Language (UML) [Object Management Group, 2010b]).

– The abstract syntax defines the concepts described by the language,
such as classes, packages, datatypes. The representation for these
concepts is independent of the concrete syntax. For example, the
implementation of a compiler might use an abstract syntax tree to
encode the abstract syntax of a program (whereas the concrete syntax
for the same language may be textual or graphical).

– The semantics identifies the meaning of the modelling concepts with
respect to the domain. For example, consider the tree construct which
is a usual construct in modelling. The semantics of a tree in a lan-
guage is likely to be different from the semantics of a tree in others.
The semantics of a modelling language may be specified rigorously, by
defining a reference semantics in a formal language such as Z [Infor-
mation Technology ISO/IEC, 2002], or in a semi-formal manner by
employing natural language.

Metamodels are essential in domain-specific modelling where metamodels
define the relationships among concepts in a domain and precisely spec-

79

Chapter 2 Background and Literature Review

ify the key semantics and constraints associated with these domain con-
cepts [Schmidt, 2006].

Metamodels also facilitate model interchange [Gitzel and Korthaus, 2004]
and, consequently, interoperability between modelling tools. Metamodels
are expressed in some modelling language. In this context, specifying meta-
models with a common modelling language ensures consistency in the way
in which modelling constructs are specified and supports the construction
of interoperable MDE tools. To facilitate interoperability between MDE
tools, the OMG has standardised a language for specifying metamodels, the
Meta-Object Facility (MOF) [Object Management Group, 2011b]. Meta-
models specified in MOF can be interchanged between MDE environments.
MOF is sometimes called as a metamodelling language, as it is a modelling
language for describing modelling languages.

2.2.3 Model Management Operations

In MDE, models are manipulated throughout the engineering process in or-
der to produce a product. This set of model-related operations is referred
to as model management [Bernstein and Melnik, 2007], which covers all
kind of manipulations such as model transformations, refactoring, compar-
isons, merging, and validation. Typical model management operations are
described in the following, particularly those are relevant to this thesis, in-
cluding model transformation, validation, and composition/merging/weav-
ing.

2.2.3.1 Model Transformation

Model transformation is one of the integral parts of MDE [Schmidt, 2006]. A
model transformation is an operation which automatically generates a num-
ber of output artefacts (targets) from a number of input artefacts (sources),
according to a given transformation specification [Kleppe et al., 2003]. Al-
though model transformations have to involve models, either as input or
output, in the literature, a broad range of software development artefacts
are considered as potential transformation artefacts such as texts, specifica-
tions, and program code [Czarnecki and Helsen, 2006].

Figure 2.15 gives an overview of the main concepts involved in a model
transformation. The figure shows the simple scenario of a transformation
with one input (source) model and one output (target) model. However, in
general, the input and output could be a non-model artefact and the trans-
formation may have more than one source and target. The transformation
is defined with respect to the metamodels (or the structure of the involved
artefacts, in case of non-model artefacts). The definition is executed on
concrete models by a transformation engine. Transformations are usually
specified as a set of transformation rules. Each rule defines the way in which

80

2.2 Model-Driven Engineering

a set of elements in the source is transformed to an equivalent set of elements
in the target [Kolovos, 2008].

Figure 2.15: Basic concepts of model transformation [Czarnecki and Helsen,
2006]

Model transformations are usually described with transformation lan-
guages specially tailored for transforming models [Guerra et al., 2010]. In
practice, there are many different types of transformation languages. [Czar-
necki and Helsen, 2006] presents a comprehensive, hierarchical feature model
to categorise different model transformation approaches. [Clark et al., 2004]
identify the important choices that need to be made in designing a trans-
formation language. Some of the features are highlighted over the others
and, hence, transformation languages are largely classified according to their
paradigm and directionality:

– declarative or imperative: Declarative transformation languages only
provide mechanisms for mapping source to target model elements and
the execution of rules are determined by the transformation engine. In
contrast, imperative transformation languages operate at a low level of
abstraction and users explicitly specify how transformation rules are
scheduled, as well. Each of these two approach demonstrates particu-
lar advantages and shortcomings. Declarative languages are generally
limited to scenarios in which the transformation is a matter of a simple
mapping, while imperative transformation languages support a wider
range of transformation scenarios. However, such languages require
users to manage the execution process manually which can be hard to
develop and maintain [Kolovos, 2008].

Addressing these shortcomings, hybrid languages have been introduced
which provide both a declarative rule-based execution approach be-

81

Chapter 2 Background and Literature Review

sides imperative features for handling complex transformation scenar-
ios [Kolovos et al., 2008].

– unidirectional or bi-directional: Unidirectional transformations can be
executed in one direction only, in which case a target model is com-
puted (or updated) based on a source model. Bi-directional trans-
formations can be executed in two directions, which is particularly
useful in the context of model synchronization. Bi-directional trans-
formations can be achieved using bi-directional rules or by defining
several separate complementary unidirectional rules, one for each di-
rection [Czarnecki and Helsen, 2006].

Additionally, model transformations can be categorised into three groups:
model-to-model, model-to-text, and text-to-model transformations [Rose,
2011]. The difference between the first two groups is that a model-to-model
transformation generates models –an instance of a target metamodel, while
the target of a model-to-text transformation is just texts. A text-to-model
transformation specifies transformation from textual artefacts to models
which usually comprises parsing technologies. Each type of transformation
has unique characteristics and tools, though they share common character-
istics. Accordingly, different languages have been developed and introduced
for each type.

Model-To-Model (M2M) Transformation. M2M transformations are
used to generate models from other models and are the most widely used
type of transformation. This is because, in a MDE process, high-level
models are refined through transformations and, hence, it is an essential
need to transform models between different languages and levels of abstrac-
tion [Guerra et al., 2010].

Many M2M transformation languages have been proposed, such as the
Atlas Transformation Language (ATL) [Jouault et al., 2006], VIsual Au-
tomated model TRAnsformations (VIATRA) [Varro and Balogh, 2007],
and the Epsilon Transformation Language (ETL) [Kolovos et al., 2008].
Queries/Views/Transformations (QVT) [Object Management Group, 2011c]
is a standard for M2M transformation.

Model-To-Text (M2T) Transformation. M2T transformation is used to
generate text which could be a piece of code or a document. It is also
used for model serialisation (enabling model interchange). There are vari-
ous M2T languages including MOFScript [Oldevik et al. 2005], the Epsilon
Generation Language (EGL) [Rose et al., 2008], which have been developed
according to the standard of M2T languages published by Object Manage-
ment Group.

82

2.2 Model-Driven Engineering

One of the main requirements of M2T transformation languages is to
provide mechanisms for specifying sections of text that will be completed
manually and must not be overwritten by the transformation engine.

Template-based M2T transformation is the common approach in existing
languages. A template usually consists of the target text containing dynamic
sections which are written in specific language (syntax). These sections
describe how the output text should be generated; they access information
from the source and generate the output through iterative expansion. The
contents of static sections are directly written to the output stream when
the transformation is invoked.

Text-To-Model (T2M) Transformation. T2M transformation is most of-
ten implemented as a parser that generates a model rather than object code.
Parser generators such as ANTLR [Parr, 2007] can be used to produce a
structured artefact (such as an abstract syntax tree) from text. T2M tools
are built atop parser generators and post-process the structured artefacts to
produce a model that can be managed with a particular modelling frame-
work. Xtext [The Eclipse Foundation, 2013b] and EMFtext [Heidenreich
et al., 2009] are examples of T2M tools that, given a grammar and a target
metamodel, will automatically generate a parser that transforms text to a
model.

2.2.3.2 Model Validation

Model validation provides a mechanism to specify semantics and constraints
associated with a model in the context of a particular domain. It allows users
to perform model checking to detect errors and generate valid models, which
is important in MDE to be able to test or check a model regarding partic-
ular concerns and questions [Henderson, 2003]. Similarly to model trans-
formation, model validations are usually described with specific languages,
developed to describe validation constraints, rather than with general pro-
gramming languages (such as Java) [Kolovos, 2008].

The Object Constraint Language (OCL) [Object Management Group,
2012] is an OMG standard for defining constraints in modelling languages
specified using UML and MOF. OCL provides an expression language with
model querying and navigation facilities. The structural constraints are
captured in the form of invariants attached to MOF meta-classes. [Kolovos
et al., 2009] identify the shortcomings of the syntax and semantics of OCL
invariants for capturing structural constraints and, accordingly, introduce
the Epsilon Validation Language (EVL). EVL, in comparison with OCL,
supports inter-model constraints, distinguishing between warnings and er-
rors, dependant constraints, and repairing. The xlinkit toolkit [Nentwich
et al., 2002] is also a lightweight approach which supports specifying inter-
model constraints.

83

Chapter 2 Background and Literature Review

2.2.3.3 Model Compositions/Merging/Weaving

Model composition involves combining different models in a MDE process
to produce a unified model [Bézivin et al., 2006]. It is mainly based on re-
lated work in aspect-oriented modelling [Cottenier et al., 2006] and database
schema integration [Pottinger and Bernstein, 2003]. In comparison to model
transformation and validation, model composition is not a well-understood
concepts which is called with different terms in available frameworks. It is
considered as weaving in Atlas Model Weaver (AMW) [Fabro et al., 2005],
merging in Epsilon Merging Language (EML) [Kolovos et al., 2006c], and
gluing in Glue Generator Tool (GGT) [Bouzitouna et al., 2005].

[Bézivin et al., 2006] provide a canonical set of definitions for model com-
position. Accordingly, in a model composition process the links between the
models to be composed are captured in a correspondence model, an equiva-
lent to the weaving model in AMW, expression composition (EC) in GGT,
and comparison rules in EML. The correspondence model is created by a
match operation which takes a set of models as input and searches for equiv-
alents between their elements. Finally, the new output model is generated
by a compose operation, which takes two models MA, MB and a corre-
spondence model CAB as input and combines their elements. [Bézivin et al.,
2006] also distinguish between merge and composition, though they are used
interchangeably. They indicate that merge is a special case of composition
and define the merge operation which generates an output model including
all the information from input models without duplicate information.

2.2.3.4 Other Model Management Operations

In addition to model transformation, validation, and composition, fur-
ther examples of model management activities include model comparison
(e.g. [Kolovos, 2009]), in which a set of matching elements between mod-
els is produced, model migration (e.g. [Rose et al., 2009; Gruschko et al.,
2007]), which involves updating a model in response to changes to the meta-
model, and testing model management operations (e.g. [Garćı-Domı́guez
et al., 2011]), in which model management operations are tested regarding
a combination of input models, task and expected outputs.

Model tracing is also regarded as a model management task but, regard-
ing the context of this thesis, is considered and discussed separately in the
context of traceability in general and in the MDE domain in Section 2.1 and
2.2.4.

2.2.4 Modelling in the Large

[Bézivin et al., 2004] explicitly acknowledge the need to distinguish between
modelling in the small and modelling in the large, similarly to the differences
noticed between programming in the large and in the small [DeRemer and

84

2.2 Model-Driven Engineering

Kron, 1975]. By modelling in the small, engineers are mostly interested in
relationships and interactions between elements of models and metamodels,
such as model transformation and model composition. Modelling in the
large focuses on establishing and using relationships between models and
metamodels (as single entities), ignoring the internal details of them.

[Bézivin et al., 2004] propose megamodelling, as the activity of modelling
in the large, and the notion of a MegaModel to describe a registry of macro-
scopic entities (models, metamodels, operations, and services). In a later
work, [Bézivin et al., 2006] introduce the Atlas Model Management Archi-
tecture (AMMA) addressing the fact that, however, it is important to be
able to carry out both modelling in the small activities and megamodelling
in a well-coordinated way. AMMA defines a lightweight platform providing
integration between these complementary aspects. It consists of two main
set of tools, one set of tools for modelling in the small (e.g ATL for model
transformation and AMW for model weaving) and another set of tool for
modelling in the large including Atlas MegaModel Management tool (AM3)
particularly. AM3 defines the way the metadata of a given platform, includ-
ing what is described in a MegaModel, is managed in a given scope.

[Salay et al., 2008, 2009] also focus on the relationships between models
at a high-level of abstraction and introduce macromodelling to manage col-
lections of related models. They propose a framework to formally define
the relationship types between model types, such as submodelOf and refine-
mentOf, within a new type of model, called a macromodel. Macromodels can
be used to support development, comprehension, consistency management,
and evolution of related models. A macromodel is a hierarchical model
whose elements are used to denote models and model relationships, and can
express integrity constraints on its elements.

Nevertheless, tranditionally, modelling in the large has been considered
in the context of multimodelling, though it follows slightly different goals.
Multimodelling focuses on creation and manipulation of interrelated models
or multimodels. Existing approaches mainly provide mechanisms to specify
how the contents of models are related in order to support tasks such as com-
positing different views (e.g. [Yie et al., 2009]) and consistency checking and
inconsistency management (e.g. [Nuseibeh et al., 1994]). [Salay et al., 2008],
in the context of their framework, consider a multimodel as a macromodel.

Traceability, in MDE, is similarly studied in two contexts: traceability in
the small (classical traceability) and traceability in the large. Traceability
in small mostly focuses on the trace information between model elements,
while traceability in large is interested in traceability between models as a
whole and handling such information.

[Barbero et al., 2007] presents global model management (modelling in
the large) as a generic solution to support traceability in the large by
putting traceability-related information into a megamodel. They suggest
to use weaving models and megamodels as two complementary approaches

85

Chapter 2 Background and Literature Review

to deploy a generic and complete traceability solution. Weaving models are
used to support traceability in small and store traceability information be-
tween model elements which are loosely coupled with the related models.
Then, the megamodel contains relationships between models, for instance
transformation models, weaving models, and UML models, and provides a
global view of all the models involved in the traceability process.

Macromodelling, introduced in [Salay et al., 2008, 2009], is also used to
join classical traceability and traceability in global model management. In
their framework, the relationship types (trace link types between models)
are defined by a traceability metamodel. The metamodel contains meta-
model elements and associations of the metamodels it relates to as well as
metamodel morphisms to map related metamodel elements to metamodel
elements of the traceability metamodel. In a given development project, an
initial macromodel is created expressing the required models and their rela-
tionships. The macromodel provides the comprehension of the collection of
models in the project.

[Seibel et al., 2010] present a comprehensive traceability approach which
combines classical traceability and global model management in form of
dynamic hierarchical megamodels. They also highlight the importance of
efficiency in maintenance of traceability and so provides efficient mainte-
nance of traceability on top of megamodels. The approach considers both
low-level traceability models, which contains trace links between model ele-
ments, and high-level traceability models (megamodels) specifying the links
between models only. It defines hierarchical dependencies between high-level
and low-level modelling artefacts and between traceability links at different
levels to glue both traceability models into a combined traceability model.

The above approaches provide traceability in the large in the domain of
MDE, with a similar approach to multi-domain traceability presented in this
thesis. Although they could not be applied in the contxt of requirements
traceability directly, they provide helpful suggestions and ideas to apply
modelling in order to provide a multi-domain traceability solution, regarding
existing challenges and difficulties.

2.3 Chapter Summary

This chapter presented the basic principles of traceability in software engi-
neering and identified the core traceability activities. For each activity, the
state-of-the art approaches were introduced and a discussion on their advan-
tages and shortcomings was provided. Following this and based on available
empirical surveys, limitations of current traceability practices were discussed
and outlined. At the second part of the chapter, the principles of Model
Driven Engineering were briefly introduced, regarding the scope of this re-
search. In the next chapter, based on the conducted literature review, we

86

2.3 Chapter Summary

will give an overview of current traceability approaches and identify existing
challenges related to research presented in this thesis.

87

3
Analysis of Traceability

Approaches
In Chapter 2, a detailed review of traceability in software engineering was
conducted. In this review, the different approaches to traceability were pre-
sented and open issues were identified. In this chapter, these findings are
summarised (Section 3.1) and further analysed regarding the context and
scope of this research (Section 3.2). Based on this analysis, Section 3.3 syn-
thesises research challenges for traceability in multi-domain context, high-
lighting those to which this thesis contributes. Finally, requirements of a
multi-domain traceability solution are defined in Section 3.4.

3.1 Overview of the Literature
This section presents an overview of the literature (a categorisation scheme)
and provides a foundation for analysing existing traceability approaches re-
garding the context of this thesis. It helps to determine those approaches
directly relevant to this work, in addition to identify research gaps in the
domain of traceability.

Generally, the existing literature of traceability covers the following areas
in the field of traceability. Each study and research could be located in more
than one group depending on the scope and those aspects of traceability
which it fully or partially (explicitly or implicitly) covers.

– Traceability fundamentals; defining traceability-related concepts such
as terms, principles, and activities (Section 2.1.1)

– Traceability strategy; providing strategies to support traceability. For
example, how to develop a complete traceability solution (e.g. [Es-
pinoza and Garbajosa, 2008b]) or provide cost-effective traceability
(e.g. [Egyed et al., 2005; Heindl and Biffl, 2005])

89

Chapter 3 Analysis of Traceability Approaches

– What to Trace; specifying the syntax and semantics of the traceabil-
ity information referred to as a traceability information model, meta-
model, schema, classification, or reference model (Section 2.1.3.2)

– Creating Traces; providing techniques for manual and
(semi-)automated trace identification and generation (Section 2.1.3.3)

– Maintaining Traces; introducing mechanisms for maintaining the in-
tegrity of the relationships while the entities continue to change and
evolve (Section 2.1.3.4)

– Retrieving and Using Traces; discussing how to retrieve and use traces
for example by specific query languages (Section 2.1.3.5)

– Visualisation; providing techniques for representation and visualisa-
tion of the traceability information (Section 2.1.3.5)

– Tooling; providing tooling support: commercial tools (e.g. DOORS,
RTM, TOOR) or research tools (e.g. TraceM, ART, PRO-ART) (Sec-
tion 2.1.4)

– Applications of traceability; discussing applications and benefits of
traceability in different contexts (Section 2.1.2)

– Challenges; discussing existing problems and limitations and providing
approaches and suggestions to overcome them (Section 2.1.5)

For the analysis, we focus on traceability in practice and, therefore, on ap-
proaches which propose a complete or partial traceability solution; introduce
techniques or methods to support traceability activities, or provide tooling
support. Therefore, we exclude studies in the first and the last two groups
which outline and discuss conceptual features and issues of traceability. In
the following, we discuss main parameters distinguishing existing traceabil-
ity approaches from each other. Then, an overview of the approaches, based
on these parameters, is provided and analysed.

Considering the traceability approaches described in Section 2.1, it is ob-
served that available approaches are largely varied regarding the techniques
or approach which they introduce to perform a particular traceability ac-
tivity or task. In this context, available traceability approaches can be
compared together in the context of the activity which they cover and basi-
cally categorised based on the general techniques that they use, those were
introduced in Section 2.1.3.

On the other hand, traceability approaches differ with respect to the level
in which they consider traceability. Some of the approaches introduce or
develop strategies to design and implement traceability solutions and provide
practical guidelines accordingly. These approaches define abstract solutions

90

3.1 Overview of the Literature

describing a traceability process model or pattern regardless of the actual
techniques or tools used to perform related activities (e.g. [Lago et al.,
2009]). Some of the approaches define either a concrete traceability solution
or introduce particular low-level techniques and tools to carry out activities.

A traceability approach could also focus on some aspects and provide
supporting techniques while specifying how they are integrated with other
techniques or methods in order to introduce a comprehensive solution. Most
of the existing tracing approaches focus on one or two aspects of traceability,
assuming there is already a traceability solution and their approach supports
them. Usually they do not explicitly specify how their approach is integrated
with other aspects of traceability in a comprehensive solution [Matragkas,
2011].

Additionally, traceability approaches differ with respect to the context
in which they are proposed. This is because the context affects a solution
regarding the artefacts which the solution considers and, hence, it can be
applied to, the techniques introduced to carry out traceability activities ef-
ficiently in that context, and the tooling. Most of the approaches focus on
specific context (e.g. software product lines, MDE) or particular scenarios
(e.g. traceability between requirements and code, traceability between mod-
els), mainly in order to provide efficient and better traceability solutions.

An approach may also work with artefacts with specific formats (e.g. nat-
ural language, structured texts, models) or particular types of artefacts (e.g.
requirements, class diagram, code). This way, the approach is restricted to
the particular situation that it considers. Although an approach may intro-
duce a technique based on artefact-specific characteristics, it could consider
different types of artefacts in various formats by providing mechanisms to
deal with them in an appropriate way. In this context, the types and formats
of artefacts, covered by a traceability approach, are influential in applicabil-
ity of an approach in practice.

According to the above discussion, we defined a set of parameters to ex-
amine each traceability approach. Considering the main elements of any
traceability solution (TIM, traceability activities, and tooling), an approach
is studied to determine which elements are covered and how (i.e. details of
the proposed techniques or methods). Additionally, an approach is evalu-
ated based on the types and formats of artefacts supported in the approach.
An approach may be generic in terms of type or format.

In order to come up with more detailed and comparable results, we refined
the above parameters into lower-level ones. For example, traceability activ-
ities include four activities and there are already recognised approaches in
the context of each activity. We iteratively performed this refinement until
we reach to the desired level of granularity. Though, the refinement could
be continued to define more detailed parameters depending on the purpose
of an evaluation.

91

Chapter 3 Analysis of Traceability Approaches

Fi
gu

re
3.

1:
C

at
eg

or
isa

tio
n

pa
ra

m
et

er
s

fo
r

tr
ac

ea
bi

lit
y

ap
pr

oa
ch

es

92

3.1 Overview of the Literature

Appendix A presents a brief description of the categorisation parameters
and Figure 3.1 shows them in a hierarchical diagram. In the first level,
the main perspectives for evaluating an approach, including artefacts, TIM,
activities, and tooling, are defined. The lowest-level nodes (leaves) show the
categorisation parameters which are used to examine available resources to
find out whether an approach covers or supports a parameter or not or it
is unspecified. The middle nodes illustrate the hierarchical classification of
the parameters.

A summary of the traceability approaches which were introduced and
discussed in chapter 2, based on the above mentioned parameters, is pro-
vided in Appendix B. The summary provides a concise overview of existing
approaches while highlights their main differences. It also supports the dis-
cussion at the beginning of this section. In particular, this overview shows
that:

1. Most approaches are concerned with one or two specific aspects of
traceability and do not consider integration within a comprehensive
solution.

2. Most of the approaches are applied to specific types of artefacts or
particular formats and do not mention how to deal with other types
or formats.

3. A few approaches focus on the semantics of trace links and support
case-specific TIMs. However, most of them focus on a specific context
and provides a defined TIM for that context.

4. Few approaches cover planning and management activities. However,
some of them cover a limited number of related tasks implicitly or
partially.

5. Most of the approaches are concerned with trace creation and main-
tenance and try to improve these activities with more efficient tech-
niques.

6. A few approaches consider retrieving traces specifically for traceability
purposes.

There are also few classifications of traceability approaches in available
surveys of traceability literature, which are almost similar to the above cat-
egorisation and show similar results. Amongst them, [Santiago et al., 2012]
and [Matragkas, 2011] are more extensive and detailed in comparison to
other ones (i.e. [Galvao and Goknil, 2007]). [Santiago et al., 2012] conduct
a systematic literature review of traceability management in the context
of MDE and identify the main issues covered by traceability proposals as
a hierarchical feature diagram [Czarnecki, 2002]. Features determine the

93

Chapter 3 Analysis of Traceability Approaches

parameters which distinguish traceability proposals from each other. Fig-
ure 3.2 depicts the first two levels of the identified features.

Figure 3.2: Feature diagram representing the main issues covered by trace-
ability proposals proposed in [Santiago et al., 2012]

[Matragkas, 2011] observes parameters affecting the applicability of a
traceability approach in different scenarios and highlights the factors that
are more critical to a traceability approach including coverage of traceabil-
ity activities, support for dependency and generative viewpoints, support
for link semantics, automation, artefact support, traceability representa-
tion, and traceability maintenance. [Matragkas, 2011] also applies the phe-
netics or numerical taxonomy classification approach and, based on the
similarity between approaches, identifies four main clusters of traceabil-
ity approaches, named Generative approaches, Representation-intensive ap-
proaches, Hyperlink-based Approaches, and Text-intensive approaches.

3.2 Discussion

This section discusses the state of current traceability research regarding the
context of this thesis, project-specific, multi-domain traceability solutions,
and highlights main concerns and issues. Based on the provided overview
in the previous section, the discussion focuses on those approaches which
are similar to the research presented in this thesis in one of the following
ways: providing traceability in the context of a complete solution, support-
ing project-specific traceability, end-to-end traceability (e.g. broader con-
text, across boundaries), and traceability in MDE (particularly traceability
in the large).

Effective traceability happens in the context of a traceability strategy
which is implemented as a traceability solution for a particular project [Go-
tel et al., 2012b]. As mentioned in Section 2.1.1.1, a traceability solution
comprises a TIM, a traceability process, and supporting tools. Therefore,
a practical traceability approach should either cover all aspects of a trace-
ability solution or clearly specify how it can be integrated within a com-
prehensive traceability solution (for example by providing extension points
or integration mechanisms). However, as illustrated in the previous sec-

94

3.2 Discussion

tion (3.1), most of the tracing approaches are concerned with one or two
specific aspects of traceability. They are defined in a rather isolated way
and do not acknowledge how their approach would be adapted in a solution,
which makes their integration into a traceability solution a challenge and
hinders their adoption in practice (also discussed in 2.1.5). Only few trace-
ability approaches provide an almost complete solution: acknowledge the
importance of being part of a comprehensive solution or cover four trace-
ability activities (e.g. [Schwarz et al., 2010; Seibel et al., 2010; Matragkas,
2011; Asuncion and Taylor, 2012]).

An end-to-end traceability solution requires considering all types of arte-
facts in different formats. This is because during any development process,
all kinds of artefacts, including natural language descriptions of require-
ments, spreadsheets, models, or executable source code, are inevitably cre-
ated and used. Therefore, an end-to-end, effective traceability solution in a
project requires to deal with all kinds of artefacts. It may be general and
applicable to any artefacts or provide extension mechanisms to deal with all
types and formats of artefacts, if it works efficiently with specific artefacts.
However, as discussed in the previous section (3.1), most of the tracing ap-
proaches are limited to specific types and formats of artefacts and do not
mention how they deal with other kinds of artefacts.

As mentioned before (Section 2.1.3), a cost-effective solution is defined
and designed for a particular project situation. In such solutions, a TIM is
defined based on project-specific traceability goals in the abstraction level of
traceability (defines traceable artefacts and trace links between them) and
used to collect and record required traceability information. As shown in
the previous section (3.1), some of the existing approaches acknowledge this
and define case-specific TIMs. However, there is a lack of practical guidance
to define and use case-specific TIMs in general [Mäder et al., 2009b].

Additionally, in the existing project-specific traceability approaches, a
TIM is often described independently from other models, though traceabil-
ity models (instances of TIMs) are connected to other models in a project.
None of them acknowledge that a project-specific TIM is inherently a re-
dundant model which mostly provides a pervasive and coherent view of the
available information in other models, regarding traceability perspective.
They do not provide any explicit mechanisms to deal with this dependency
and consequent redundancy.

On the other hand, as discussed in Section 1.1, traceability is a multi-
domain concern. Traceability is usually mandated in projects extending
across multiple engineering domains (e.g., software, mechanics and safety).
Consequently, traceability may be required throughout the project lifecycle
and so a practical (an effective) traceability solution needs to operate across
the project’s different domains; a TIM is a multi-domain construct as it refers
to artefacts (documents, models, databases, project activities context) from
different domains and may require relationships between multiple domains.

95

Chapter 3 Analysis of Traceability Approaches

In this context, the above discussion is more challenging. It is essential
to specify (explicitly consider) the relationships between a multi-domain
TIM and other models, in different engineering domains, in order to be able
to effectively deal with the dependency between multi-domain traceability
models and other models.

Current research mostly focuses on traceability in a single context or, at
most, similar contexts (e.g. requirements specification and coding) in which
it is feasible and possible to integrate them together for example by using
a particular family of tools or a common artefact. For example, [Asuncion,
2008] address the multi-faceted traceability and introduce an architecture-
centric stakeholder-driven approach. The approach proposes to use archi-
tecture as the primary artefact to trace all other artefacts and capture the
traceability links as a side effect of development tasks. It also allows stake-
holders to define and maintain their trace relationships. Although the ap-
proach considers traceability as a multi-domain concern to some extent, it
is dependent to the architecture model and focus on traces created as a side
effect of development tasks. In the context of MDE, [Barbero et al., 2007;
Salay et al., 2009; Seibel et al., 2010] consider traceability in the large with
a similar perspective to the multi-domain traceability approach presented
in this thesis. They focus on managing the relationships between models as
whole and so introduce methods for multimodelling. Although their work
could not be directly applied in traceability in general as they fundamen-
tally address challenges in a MDE process, they provide helpful suggestions
and idea to address existing challenges in multi-domain traceability using
model-driven approach.

Existing traceability approaches demonstrate acceptable results and im-
provements in their target context, however they still fall short to support
those tracing scenarios extending across tool boundaries [Asuncion and Tay-
lor, 2012]. None of the existing approaches address situations in which en-
gineering activities cannot be integrated or it is not feasible or cost-effective
to do it. For example, safety engineering tasks are largely dependent on spe-
cialised tools and techniques which can not be easily integrated with general
software development tools.

The multi-domain nature causes additional complexity and difficulties in
supporting traceability which are outlined and discussed in the next sec-
tion (3.3).

3.3 Challenges of Multi-Domain Traceability

The review of the literature and the example (provided in Section 1.1.1)
suggest several challenges specific for multi-domain traceability.

As discussed in Section 3.2, traceability in systems engineering is inher-
ently multi-domain and is required throughout the project lifecycle. Thus,

96

3.3 Challenges of Multi-Domain Traceability

any traceability solution needs to operate across the project’s different do-
mains. Most of the following challenges originate because of the multi-
domain nature of traceability. Depending on project requirements, a TIM
possibly needs to support various development activities such as require-
ments or safety engineering and to capture inter-domain traceability infor-
mation. An important concern in such situations is to keep the relationships
among domains explicit while avoiding coupling and interference between
domains. In the following, we discuss these challenges in more detail.

3.3.1 Domain-specific Traceability Information

For a systems engineering project, each domain (and hence domain-specific
models) contains information which could explicitly or implicitly provide
part of the information needed to generate a complete, project-wide trace-
ability model, although it would be specific to a domain and insufficient to
achieve traceability goals. In this context, it is recommended to (re-)use
this existing information to generate the traceability model to avoid rework
in order to control the additional cost of supporting traceability. However,
(re-)using existing information results in redundancy and coupling between
the traceability model and domain-specific models, which would lead to later
inconsistency and synchronisation difficulties. This is because it is essential
to keep the traceability model updated and synchronised with the other
models [Kannenberg and Saiedian, 2009]; it should be updated whenever
any of the models change to reflect the new states. Therefore, we need
to use a proper way to build the traceability model which effectively man-
ages this mandatory redundancy and coupling between these models while
(re-)using them.

On the other hand, engineers usually prefer to work with familiar tools or
techniques; the existing tools, models, and techniques which are specialised
for a given domain. So, a traceability approach should allow users to use
current tools and techniques while extracting required information from their
models, artefacts, or documents.

3.3.2 Inter-domain Traceability Information

As mentioned above, we cannot just rely on available domain-specific in-
formation in a project: it mainly contains domain-specific concepts and
normally does not cover any inter-domain relationships. The relationships
between domains are usually defined informally or incompletely. For exam-
ple, some times there are common objects in two domains which represent
same concepts, though they are recorded separately in each domain. In these
cases, relationships between domains are informally inferred from such ob-
jects; there is no formal or precise definition of which objects are equivalent
or partially related. On the other hand, this way would result in inconsis-

97

Chapter 3 Analysis of Traceability Approaches

tency between domains as it is not clearly specified which domains have to
be updated in case of a change in one of them and how.

However, the relationships between domains are essential to accumulate
the traceability information in order to provide a project-wide view of trace-
ability. The engineer needs to have comprehensive knowledge about the do-
mains and the relationships between them. Therefore, inter-domain trace-
ability information should be defined and provided formally and precisely
to support traceability needs. In this respect, finding and resolving redun-
dancies and inconsistencies between domains are also of the main concerns
in collecting the traceability-related data.

3.3.3 Diverse Information in Heterogeneous Format

Available information (which might be used to generate the project-wide
traceability model) is provided in different formats, including documents
(plain text or structured languages), models (e.g. UML class diagrams),
databases, tools, or XML documents. Using a diverse set of information
sources to extract traceability information, which is usually represented in
heterogeneous formats, is one of the main problems in working with trace-
able artefacts and trace links [Mäder and Cleland-Huang, 2010]. To collect
traceability-related information from existing information, we need a sys-
tematic approach to extract the required information and integrate them as
the ultimate traceability information. In this context, integration of infor-
mation from various domains which are expressed in different and heteroge-
neous formats is a major concern.

3.3.4 Separation of Concerns (SoC)

Engineers are interested in their own domain and usually prefer to work
with familiar tools from a specific domain. Traceability models are created
from traceability perspective and provide a different view of the project’s
information. Therefore, although the engineers might use the traceability
information (represented in traceability models), it is not recommended to
force all the stakeholders to work with the traceability model directly in
addition to their domain models. In this context, a traceability solution
should be transparent to the engineers while using domain-specific models.

3.4 Requirements of a Multi-Domain Traceability
Solution

As stated in Chapter 1, the aim of this work is to provide a comprehensive
multi-domain traceability solution, applying a modelling approach. The
discussion which was taken place in Chapter 1 and Section 3.2 establishes a

98

3.4 Requirements of a Multi-Domain Traceability Solution

foundation to identify the requirements of a practical and applicable multi-
domain traceability. Although the focus of this work is on particular features
of multi-domain solutions, there are a number of requirements which could
benefit any traceability approach, though they are not directly related with
multi-domain traceability. This section contributes requirements of a multi-
domain traceability solution regarding the context of this research.

This thesis addresses the aforementioned challenges of multi-domain trace-
ability in addition to general challenges of any effective traceability solution.
On the other hand, as mentioned in Chapter 1, we propose to apply a mod-
elling approach to build a traceability solution and use modelling (MDE)
techniques to support the proposed traceability activities. Accordingly,
we define our requirements in the context of three high-level requirements
(goals): providing a traceability solution (G1), supporting multi-domain
traceability (G2), and building a model-based traceability solution (G3).
However, in some cases, a requirement could be considered as part of mul-
tiple groups.

We use the Goal Structuring Notation (GSN) [Kelly, 1998] to give an
overview of the aforementioned requirements. The GSN is a graphical ar-
gumentation notation which is mainly used in the context of safety argu-
ments [Kelly and Weaver, 2004]. Figure 3.3 shows the main symbols of
the notation. A goal is a requirement or a constraint to be met by the
system and it might be refined into sub-goals. Strategies (or arguments)
specify how goals are addressed which are supported by direct reference to
evidence, represented as solutions. A context defines the context in which a
goal or a strategy is stated.

Figure 3.3: Main elements of the GSN [Kelly and Weaver, 2004]

In terms of the GSN, three high-level requirements (G1, G2, and G3) are
considered as goals. Lower-level (underlying) requirements are defined as
sub-goals (Rx.y or Rx.y.z). Descriptions for each requirement conceptually
outline how a requirement would be satisfied and, so, they are represented as

99

Chapter 3 Analysis of Traceability Approaches

strategies and titled with St and the correspondent numbering. The body of
knowledge presented in the Chapter 2 is also considered as contexts of goals
and strategies depending on the case. Later on (Chapter 7), the GSN dia-
gram is extended with the proposed techniques (as solutions) which is used
to generally demonstrate how the requirements and the research objectives
are fulfilled. The GSN diagram representing the identified requirements is
depicted in Figure 3.4 (a larger view of the diagram is provided in Fig-
ure C.1).

The principles of traceability (Section 2.1) and the challenges and dif-
ficulties of it in practice (Section 2.1.5) help to identify requirements of
a traceability solution in general. Additionally, “The Grand Challenge of
Traceability (v1.0)” [Gotel et al., 2012a], which presents a vision of trace-
ability in 25 years, expresses main characteristics of a solution. It also
provides a comprehensive reference of how each feature could be provided
and the suggested strategies or mechanisms.

We define the requirements of a traceability solution as the followings.

– R1.1: Traceability is requirements-driven [Gotel et al., 2012a] and
a cost-effective traceability solution is built based on stakeholder needs
and the context of a specified project situation. Therefore, it is a fit-
for-purpose solution.
Accordingly, a fit-for-purpose traceability solution and, hence, its main
elements, including TIM, activities, and tooling, need to be cus-
tomised (R1.1.1) to accommodate stakeholder requirements and
contexts for traceability. Doing so, any approach for building a cus-
tomised solution has to provide

– practices to determine stakeholder needs and identify necessary
information which supports them (St1.1.1.1).

– mechanisms to select and define the [right] level of granularity
for traceability information to be captured and recorded. The
granularity is usually dependent on the context of the project
and the usage scenario (St1.1.1.2).

– guidelines to develop a customised process of specified traceabil-
ity activities specifying how they are integrated with project’s
activities (St1.1.1.3).

– required tools which are sufficiently configured to support stake-
holder requirements and their processes (St1.1.1.4).

Additionally, a fit-for-purpose traceability solution needs to be flexi-
ble (R1.1.2) in order to keep the solution relevant over the time and
address evolving stakeholder needs and contexts for traceability. This
feature is concerned with maintaining the solution while it is used.
Accordingly, It has to provide

100

3.4 Requirements of a Multi-Domain Traceability Solution

– mechanisms to change and adapt the TIM, the process and the
tooling to traceability users’ changing task contexts and needs
(St1.1.2.1).

– a feedback loop to reflect effectiveness of the solution with respect
to the changing needs (St1.1.2.2).

– R1.2: A practical traceability approach should be comprehensive.
Doing so, it should either support all the basic traceability activities
described in Section 2.1.3 or provide required extensibility mechanisms
for the activities it does not support (St1.2).

– R1.3: Automating traceability activities will reduce the cost and
complexity of traceability and, so, increase its applicability [Egyed
et al., 2005]. However, traceability activities can never be fully au-
tomated [Egyed and Grünbacher, 2005]. Accordingly, a traceability
approach should automate as much as possible the different trace-
ability activities (St1.3).

– R1.4: Tooling support for a traceability solution is essential to
maximise the return on investment. As mentioned in Section 2.1.5, in-
sufficient tool support has been identified as a factor which hinders the
adoption of traceability solutions in practice [Kirova et al., 2008; Win-
kler and Pilgrim, 2010]. A practical solution has to provide required
tools to support traceability (St1.4).

– R1.5: Current studies highlight the lack of interoperability between
tools. In industry, there is a need for a comprehensive approach to
traceability which considers interoperability between different tools
such as requirements management tools, modelling tools, and inte-
grated development environments (IDEs). A comprehensive traceabil-
ity solution needs to address this issue and provide mechanisms to
support interoperability (St1.5).

Considering the specific challenges of multi-domain traceability, the re-
quirements for a multi-domain solutions are the followings.

– R2.1 A multi-domain solution needs to consider existing domain-
specific information (domain models) and the inherent coupling
between these models and traceability models. It has to provide a
systematic way to deal with this mandatory redundancy and cou-
pling between these models while (re-)using domain-specific informa-
tion (St2.1).

– R2.2 The relationships between domains are essential to provide a
project-wide view of traceability information. A multi-domain solu-
tion has to provide mechanisms to identify and capture inter-domain
traceability information (St2.2).

101

Chapter 3 Analysis of Traceability Approaches

– R2.3 Available information, used to generate the project-wide trace-
ability model, is provided in different formats and contexts (do-
mains). To collect traceability-related information from existing in-
formation, a solution needs to provide a systematic approach to deal
with this diversity in format and context (St2.3).

– R2.4 Engineers are interested in their own domain and usually prefer
to work with their familiar tools from a specific domain. A multi-
domain traceability solution should be transparent to the engineers,
as much as possible, and support Separation of Concerns (SoC)
while (re-)using domain-specific models (St2.4).

Finally, the followings define the requirements for any modelling approach
which have to be addressed in a model-based traceability solution, too.

– R3.1 A model-based traceability solution works with models. So, the
proposed approach has to be applicable to models and use model
management operations to do proposed tasks to build a solution and
carry out traceability activities (St3.1).

– R3.2 The traceability-related information could be represented in dif-
ferent kinds of non-model artefacts (e.g. plain text, XML files,
source codes). A model-based traceability solution needs to consider
these non-model artefacts and specify how it deals with them, for ex-
ample by providing mechanisms to create a model-based view of them
(St3.2).

– R3.3 Models conform to different metamodels and have different
semantics. A model-based solution should not be dependent on specific
metamodels and it should demonstrate how it works with different
metamodels and use them in consistent way (St3.3).

– R3.4 It is common to use different notations to express different
concepts in different domain. So, a traceability approach in MDE
should not be notation specific and it should be either generic or ex-
tensible in order to address the diversity of notations (St3.4).

102

3.4 Requirements of a Multi-Domain Traceability Solution

Fi
gu

re
3.

4:
G

SN
di

ag
ra

m
re

pr
es

en
tin

g
re

qu
ire

m
en

ts
of

a
m

ul
ti-

do
m

ai
n

tr
ac

ea
bi

lit
y

so
lu

tio
n

(o
ve

ra
ll

ar
gu

m
en

t)

103

Chapter 3 Analysis of Traceability Approaches

3.5 Chapter Summary
In the first part of this chapter, an overview of the traceability literature was
provided and analysed regarding the context of this thesis. Based on this
analysis the research challenges of this work were identified. Accordingly, in
the last part of this chapter, the requirements of a multi-domain traceability
solution were defined.

104

4
A Multi-Domain

Traceability Solution
In the previous chapters, traceability approaches found in the literature were
presented and analysed in the context of supporting multi-domain trace-
ability. The analysis led to the identification of a set of requirements for
a traceability solution in multi-domain projects. In this section the con-
tributions of this thesis are presented. The contributions comprise a novel
approach for building a multi-domain traceability solution. The approach
is model-driven, and uses MDE techniques and tools to design and build
a model-based traceability solution. The proposed approach aims to pro-
vide a less effort-intensive strategy for creating and maintaining trace rela-
tions, especially between different domains, to outweigh the additional cost
of traceability.

Traceability solutions are designed, implemented, and used in the context
of an overarching strategy to support traceability which comprises planning
and management activities [Gotel et al., 2012b]. In this sense, the approach
presented in this thesis demonstrates a strategy to provide traceability in
multi-domain projects. It describes how stakeholder and requirements for
traceability are determined, a suitable traceability solution is designed and
implemented, and the requirement and the solution are kept relevant and
effective during the life of a project. The approach also demonstrates how
other traceability activities are carried out in the context of the proposed
solution, namely how traces are created or captured, maintained, and used
depending on traceability usage scenarios.

The approach uses modelling concepts for building and implementing the
solution and performing the required and defined tasks. For example, the
TIM is defined in the form of a domain-specific modelling language (DSML),
all the input or output artefacts are represented as models and MDE prin-
ciples and techniques are used to derive, extract, and identify traceability

105

Chapter 4 A Multi-Domain Traceability Solution

information from different models, record the information in a traceability
model (TM), and perform traceability analyses, based on traceability goals.
In this context, the solution is implemented and supported within a model-
based tool which is built atop an existing modelling framework concurrently
with the solution and according to it. The tool works with models and al-
lows users to perform traceability activities. We will discuss later, in the
following sections, how we deal with non-model artefacts.

The approach covers two aspects of a traceability solution:

1. Infrastructure: steps which ultimately prepare or generate the infras-
tructure required to perform traceability activities, which comprises
metamodels, utility models, and an environment to do operations. In
fact, these steps support the required tooling to put the solution in
operation.

2. Operational: tasks which capture traces, maintain them, use them
with the use of the provided infrastructure.

A conceptual view of the proposed approach is illustrated in Figure 4.1.
Usage scenarios are the input to the approach; they trigger the whole pro-
cess. Through the next steps, the infrastructure is generated and, thereafter,
it is used to carry out traceability activities as prescribed.

Initially, traceability goals are determined based on the usage scenarios:
these are essential to identify the required information needed to answer
project-specific questions or undertake traceability-enabled activities and
tasks. Then, with a goal-oriented approach, the project activities, artefacts,
and tools are observed and analysed, and available traceability-related con-
cepts and relationships between them are identified. These concepts and re-
lationships establish the basis for the traceability information model. These
two activities are explained in more detail in Section 4.1.1 and Section 4.1.2.

Based on these activities, a TIM is defined which formally specifies the
entity types to be recorded and the relationship types between them. The
TIM acts as the reference to capture and collect traceability information in
the project. From the implementation perspective, the TIM is developed
as a domain-specific modelling language (DSML), the metamodel for the
TM which represents captured traceability information (Section 4.1.3 and
Section 4.1.3.1).

As discussed in Section 3.2, when observing a TIM, most of the traceability
information is available in different domains. For example, a TIM could
contain (define) requirement as a traceable element which can be found in
the requirements engineering domain’s models. In this context, we need
to extract the required information and put it all in a project-wide TM.
In this way, a TM is a view (similar to ‘view’ in databases) built on top
of other models, which could be generated automatically by a query over
these models. Doing so, we identify and specify the relationships between

106

Figure 4.1: Conceptual view of the proposed approach

TM and other models. These relationships –called mappings– are described
in a model (mapping model) and formally define how each concept in the
TM (entities and relationships) is related to a concept in the underlying
models. Using the mapping model, the traceability-related information is
automatically extracted from existing models and instantiated in a single
traceability model which conforms to the TIM.

Once the TM is generated, traces are used to support traceability us-
age scenarios. Traceability analyses are defined based on traceability goals,
which are normally expressed in an abstract level, and performed on the
TM. The analyses are described by a project-specific Traceability Analysis
Language (TAL), which is mostly defined based on the TIM. The TAL lets
us to query the TM and check specific constraints on it with respect to the
defined traceability goals.

Finally, the approach considers the change and evolution in the traceabil-

107

Chapter 4 A Multi-Domain Traceability Solution

ity goals and their effects on the other traceability-related artefacts (models).
It provides specific practices to manage such changes, in addition to apply-
ing existing practices to maintain the integrity of the traceability model,
regarding the changes in other models (general traceability maintenance).

Figure 4.2 introduces the main elements of the proposed traceability so-
lution and how they are related to each other. It shows the location of
the traceability solution from traceability perspective and illustrates how
modelling principles and techniques are used to provide traceability.

As depicted in Figure 4.2, a solution is designed by engineers who focus
on traceability and are only interested in (required) traceable elements and
valid trace link types (traceability abstraction level). They determine trace-
ability goals, define the TIM accordingly, and create the mapping model.
Then, the modelling techniques and tools are used to generate and prepare
the operational environment of the solution (the front-end). They generate
the project-specific TAL, create traceability model, and execute traceabil-
ity analyses. These structures and model operations represent the part of
the infrastructure which is common in all solutions, called Core and shown
in the yellow box. The GQM model, TIM, and mapping model constitute
the project-specific part of the infrastructure as they are defined for a given
project. Traceability users (end users) create the TM and use the generated
TAL to define traceability analyses, based on traceability goals. The TM is
used to perform traceability analyses and users use the analyses results for
arbitrary purposes.

The following sections explain how elements of the proposed solution are
defined and implemented, and required tasks are carried out. In Section 4.1,
the steps to define and implement a project-specific TIM are introduced.
Section 4.2 explains the prerequisite activities to generate a TM and Sec-
tion 4.3 provides a systematic approach to capture traceability information
in order to generate the project-wide TM. Section 4.4 discusses how the
traceability model is maintained when the relevant models change and evolve
along the time. In Section 4.5, the Traceability Analysis Language (TAL)
is presented and it is demonstrated how it facilitates traceability analyses.

108

Fi
gu

re
4.

2:
M

ai
n

el
em

en
ts

of
th

e
pr

op
os

ed
tr

ac
ea

bi
lit

y
so

lu
tio

n

109

Chapter 4 A Multi-Domain Traceability Solution

4.1 Traceability Information Model
The core element of any traceability solution is a TIM (also called as trace-
ability metamodel). A TIM determines the information required to support
traceability goals, including which artefacts should be traced, the level of
detail of the traces, and how traceability links should be classified regarding
their usage, context or semantics [Ramesh and Jarke, 2001]. The first step
to establish a traceability solution is to define a TIM, however traceability
metamodels are still rarely defined and used [Mäder et al., 2009b]. Defining
a TIM provides an easier and less effort-intensive approach for creating and
updating traceability relations. It increases the benefits of traceability to
compensate for its additional cost. As is widely accepted, a major draw-
back of traceability is the high effort associated with creating and updating
relations [Mäder et al., 2009a].

However, researchers seem to agree on the value of a project-level defini-
tion of a TIM (e.g. [Aizenbud-Reshef et al., 2005; Egyed et al., 2007; Mäder
and Cleland-Huang, 2010]). A project-specific TIM drives traceability activ-
ities such as the type of captured information (which is defined based on the
project) and facilitates a consistent and ready-to-analyse set of traceability
relations for a project. It also supports user-defined value considerations, a
recommended feature for a traceability solution [Egyed et al., 2007].

The project-specific traceability approach allows engineers to focus on
essential project-specific traceability information to find the critical infor-
mation to support traceability. It also expresses the semantics of the trace-
ability information as it is defined in the context of the project, especially
in comparison to general-purpose traceability frameworks and tools [Mäder
and Cleland-Huang, 2010]. However, this approach is not widely used in
practice as current software development or requirements management tools
provide little support to practitioners for building and using a customisable
project-specific TIM [Mäder et al., 2009a].

In this thesis, the TIM is defined specifically for a project, based on its
characteristics, constraints, and the traceability goals and described and
implemented as a DSML which thereafter is used as the reference to collect
traceability information. This way, users can use modelling techniques and
tools to work with the TIM to generate traceability models and execute
traceability analyses. It also helps to provide an integrated model-based
tool which supports the proposed approach.

The project-specific TIM is defined in three steps that are performed it-
eratively until the target TIM has been developed. The steps, which are ef-
fectively based on a software engineering lifecycle (identifying requirements,
conceptual modelling, and specification modelling), are defined as follows:

1. Determine traceability goals

2. Identify related project concepts

110

4.1 Traceability Information Model

3. Define the TIM

At each iteration, the user considers and focuses on the current traceability
requirements of the project. For doing so, the TIM is incrementally com-
pleted and extended whenever it is required which results in a lightweight
TIM rather than a large TIM with many features which might be used in
future. The iterative definition of the TIM also supports flexibility as it
enables the user to change the TIM based on new traceability requirements.
We now explain each step in more detail.

4.1.1 Step 1: Determine Traceability Goals
In this first step, traceability goals are determined based on the specific us-
age scenarios for the traceability information. Goals are defined in a lower
level than scenarios and each scenario is usually refined into more than one
goal. In general, goals represent the way in which engineers would support
a scenario. For example, in a safety-critical project, a safety engineer might
need to retrieve all requirements that mitigate identified hazards in order
to construct a safety case; or, a developer might need to check whether the
code they are modifying impacts specific quality constraints captured in the
software requirements specification. Supporting each traceability goal needs
specific information to be captured and recorded in the project. Trace-
ability goals are defined based on project goals (e.g. satisfying functional
requirements) or contextual constraints and requirements (e.g. certified as
operationally safe).

For example, one of the main concerns in safety system development is
providing valid and sufficient evidence for the argument which shows that
a system is acceptably safe to operate in a particular context (e.g., civilian
airspace) [Hawkins and Kelly, 2009]. Therefore, a contextual requirement for
the example project, introduced in Section 1.1.1, is ‘providing evidence for
safety arguments’. The safety arguments in this project are: ‘implementation
is safe’ and ‘implementation is correct’. Accordingly, the traceability goals
for this project are defined as follows; these will drive later steps to establish
the traceability solution.

“Providing evidence to show that the implementation is safe”

and

“Providing evidence to show that the implementation is correct”

4.1.2 Step 2: Identify Related Project Concepts
Regarding the traceability goals, the project activities, roles and tasks are
analysed to identify activities and artefacts related to or involved in support-
ing traceability goals. These concepts form the backbone of the traceability

111

Chapter 4 A Multi-Domain Traceability Solution

information model. In this step, users could also determine if there is any
missing concept (activity or artefact) in the project which has to be provided
(done or produced) to satisfy traceability requirements.

The technique used to identify related concepts is based on the Goal-
Question-Metric (GQM) approach proposed by [Basili and Caldiera, 1994].
GQM defines a systematic way to refine goals into questions and then into
metrics to satisfy them. [Cleland-Huang et al., 2012] also suggest to use
GQM in order to identify long-term strategic trace queries and the under-
lying data and traceability links needed to support them.

A GQM model is a hierarchical structure (e.g. Figure 4.3) starting from
goals which are refined into several questions. Questions characterise the
way in which a specific goal is achieved. Every question has a set of asso-
ciated data in order to be answered. So, each question is then refined into
associated data. The same data can be used to answer different questions.

In the context of traceability, an example GQM model is depicted in
Figure 4.3. The model starts with traceability goals, at the top, which
are refined into traceability-related questions, representing low-level trace
queries and constraints. Each question is then refined into associated project
concepts (e.g. artefacts, models, activity). In this way, the lowest level, in
the model, cover all the traceability-related concepts in the project to satisfy
identified traceability goals.

Figure 4.3: GQM model to identify traceability-related concepts

To illustrate the approach used to identify traceability-related concepts
in more detail, an example from the IADDS project (see Section 1.1.1) is
provided. In this project, to show that the implementation is safe, the
safety engineers need to provide evidence indicating that safety requirements
are satisfied, all potential hazards are identified, and identified hazards are
mitigated and omitted. These expressions specify the questions indicating
how the traceability goal is satisfied (in a lower level). So, the questions are
defined as follows. The associated concepts for each question are specified
too.

112

4.1 Traceability Information Model

– Are the safety requirements satisfied by the implementation?
To be able to answer this question, the following concepts and rela-
tionships between them have to be defined and captured in the project:
safety story, development models, test cases, and test results.

– Have all the hazards been identified?
To justify that all hazards have been identified correctly, we need to
record and trace the relationships between user stories, hazard assess-
ments, and identified hazards.

– Are the identified hazards omitted?
This question needs the following concepts and the relationships be-
tween them: hazards, (derived) safety story, development model, code
(implementation), and safety analysis model which shows that hazards
do not happen or the possibility of a hazard happening is acceptable.

Figure 4.4 shows a part of the GQM model to identify traceability-related
concepts in the IADDS project for the first traceability goal.

Figure 4.4: Part of the GQM model to identify traceability-related concepts
to show ‘implementation is safe’ in IADDS project

4.1.2.1 GQM Metamodel

In the context of our modelling approach, we define a metamodel for the
GQM approach which allows users to create GQM models within the pro-
vided tooling and have an integrated view of all the artefacts (models) in-
volved in the solution. Additionally, this way, GQM models can be used in
the traceability solution similarly to other models. For example, a GQM

113

Chapter 4 A Multi-Domain Traceability Solution

model could provide justification to show why a TIM contains specific ele-
ments. So, it can be attached to a TIM.

The abstract syntax of the GQM metamodel has been defined using Ecore
and is presented in Figure 4.5. In the following, the concepts of the GQM
metamodel are explained.

Figure 4.5: GQM Metamodel

GQMModel: Acts as the root of a GQM model. It defines a name and
contains a number of UsageScenario, TraceabilityGoal, and Concept.

UsageScenario: Represents a usage scenario for the traceability. It
defines a name and a description of the scenario. A scenario is associated
with a number of TraceabilityGoals.

TraceabilityGoal: Represents a traceability goal. It defines a name and
a goal. Each goal is associated with a number of TraceabilityQuestion into
which the goal is refined.

TraceabilityQuestion: Represents a traceability question in the context
of its upper-level goal. It defines a name and a question and contains a
number of Concepts.

Concept: Represents a project concept required to answer a question.
It defines a name and possibly the name of the domain that the concept
belongs to.

Figure 4.6 shows the EMF model which represents the GQM model de-
picted in Figure 4.4.

4.1.3 Step 3: Define the TIM

Once the traceability goals have been determined (step 1) and the related
concepts in the project have been identified (step 2), the TIM is defined.

114

4.1 Traceability Information Model

Figure 4.6: Part of the EMF model for the GQM model depicted in Fig. 4.4

According to [Espinoza et al., 2006], a TIM formally describes

– Traceable Elements: the objects that should be traced (captured
and recorded)

– Trace Links: permitted traceability link types

– Constraints: validity requirements

A TIM is defined at the abstraction level of traceability: it defines trace-
able elements and valid trace link types between them, regardless of elements
or associations not involved in traceability. Therefore, a TIM is a simple (but
possibly a large) metamodel which specifies traceable concepts and relations
between them through defining trace link types for the project. It also spec-
ifies validity constraints that can not be specified by the metamodel itself.
These constraints can be specified using any constraint language compati-
ble with the metamodelling infrastructure. As discussed before, traceability
models (instances of TIM) are conceptually related to other models in the
project, as they contain concepts in common. However, TIMs are described
independently from other models.

Through several experiments in defining or studying project-specific or
domain-specific TIMs, we have identified the recurring patterns in the struc-
ture and characteristics of traceability metamodels as discussed in [Taromi-
rad et al., 2013]. Fundamentally, a TIM is defined from a traceability per-
spective and is totally independent from development artefacts. Therefore,
it usually includes elements and relations which are already defined and
recorded in other models in the project. Additionally, a traceable element
defines the minimum information required to support traceability queries

115

Chapter 4 A Multi-Domain Traceability Solution

(i.e. name and ID) rather than containing all the properties and informa-
tion for the associated concept. Therefore, the TIM can be used as the
reference to collect required traceability information in the form of a TM
which conforms to the TIM.

These recurring patterns led us to develop a core traceability metamodel
–called CoreTIM– with the aforementioned characteristics. The CoreTIM
defines the basic structure of a TIM and defines the fundamental elements
which have to be included in a traceability metamodel. The core metamodel
is to be extended and completed by users to include project-specific concepts
and semantics. In the following section, we will introduce the CoreTIM and
how it is extended and used in a particular project.

4.1.3.1 CoreTIM

The abstract syntax of the CoreTIM has been defined using Ecore and is
illustrated in Figure 4.7 (with an example extension). In this section, the
concepts of the coreTIM are explained in more detail.

Figure 4.7: Abstract syntax of CoreTIM

TraceabilityModel: Acts as the root of a traceability model. It contains
a number of TraceableElements and TraceLinks and could be renamed to
the user-defined name in the context of the project.

TraceableElement: Represents a traceable object which may be the end
of a traceability link. It defines a name and can be associated to a number
of the original traceable concept, which are represented conceptually by
this TraceableElement. The class is extended, in the context of the given
project, to specify the project-specific traceable concepts (e.g. class X and Y
in Fig. 4.7). Note that at this step, the type of the associated target model
element is not specified. This information will be identified and defined

116

4.1 Traceability Information Model

later on during identifying the relationships between TM and other models
(discussed in Section 4.3).

TraceLink: Represents a traceability link between two elements. It de-
fines name and is extended to define concrete valid trace link types in the
project. Each subclass (e.g. class XYTraceLink in Fig. 4.7) has two refer-
ences to TraceableElements, named traceLinkEnd1 and traceLinkEnd2, to
clearly specify the type of the trace link ends. traceLinkEnd1 and traceLink-
End2 represent the source and the target of the trace link respectively.

The TIM is also accompanied by constraints. Structural constraints, such
as cardinality of references, can be expressed within the metamodel. For
more complicated and non-structural constraints, such as constraints defined
in terms of attributes and their values, model validation languages (e.g.
OCL [Object Management Group, 2012] and EVL [Kolovos et al., 2009])
can be used. A typical example of complex constraints, in the context of
traceability metamodels, is to describe the following condition: Assume that
A, B, and C are TraceableElements, R1 is a TraceLink between A and B,
R2 is a TraceLink between B and C, and R3 is a TraceLink between A and
C. Also, there are a, b and c of type A, B, and C respectively. Then, the
condition is that if there is a trace link of type R1 between a and b, and a
link of type of R2 between b and c, there should be a trace link of type R3
between a and c.

4.1.3.2 Project-Specific TIM

A project-specific traceability metamodel is defined by extending the
CoreTIM. The extension defines the project-specific TraceableElements and
TraceLinks and expresses the specific constraints regarding the project in
hand. Note that, at this step, the type of the original traceable concepts
(targets reference in a TraceableElement) is not specified in the metamodel.
The type of these concepts in terms of target model elements is defined in
later steps in which engineers identify the relationships between the TM and
other models in the project. After these steps, the TIM is updated to provide
an accurate and semantically rich project-specific traceability metamodel.

A project-specific TIM can also define other concepts in addition to the
traceable elements and trace link types. An engineer may need to record
when a trace link is created and who creates it, or she might want to attach
a note to each trace link to provide arbitrary information about a link. Such
information has to be specified in the traceability metamodel which is an
extension to the CoreTIM, so called ExtendedCoreTIM. An ExtendedCore-
TIM defines additional classes, attributes, and associations with respect to
the specified needs and preferences. It is then enriched with project-specific
TraceableElements and TraceLinks.

For example, consider the goal-oriented approach used to identify
traceability-related concepts and define a TIM accordingly. The GQM model

117

Chapter 4 A Multi-Domain Traceability Solution

can be considered as the context or rationale for why a TIM is defined in its
current way. So, a project-specific TIM can define an entity called Contex-
t/Rationale which can be attached to any entities and shows why an entity
is defined. Accordingly, a Context/Rationale for the whole TIM (root of the
model: TraceabilityModel) or any element of it could have a reference to
the GQM model of a project or an element of it. In Section 5.2.2, we illus-
trate an example of extending CoreTIM through attaching GQM models to
a traceability metamodel.

The project-specific TIM for the example project was defined based on
traceability goals. As discussed in Section 1.1.1, traceability is a manda-
tory requirement of safety standards (i.e. DO-178B RTCA and EUROCAE
[1992]). In such systems, traceability from hazards to derived safety re-
quirements and to implementation supports the safety argument to show
that the system is operationally safe. In this context, we defined our trace-
ability goal as ‘providing evidence for the safety argument: the implemen-
tation is safe’. Based on the project development activities and artefacts,
the project-specific traceability information model was defined accordingly.
Fig. 4.8 depicts the TIM for the IADDS project based on the traceability
goals.

Figure 4.8: Part of the project-specific TIM for IADDS

118

4.1 Traceability Information Model

As illustrated in Figure 4.8, the root of the TIM, ‘IADDSTraceabili-
tyModel’, consists of concepts to be traced (‘TraceableElements’), such
as ‘UserStory’, ‘DevelopmentModel’, and ‘Hazard’, and trace link types
(‘TraceLinks’) which are defined between specific traceable elements, such
as ‘Satisfy’ and ‘Mitigate’.

In the safety domain, hazards are categorised into two groups based on
the result of safety analyses: mitigated and unmitigated. In the case of mit-
igated hazards, at least one derived safety requirement is defined to prevent
the hazard from occuring. In contrast, when a hazard cannot be prevented it
is classified as unmitigated, hence there is no derived safety requirement for
that hazard. Considering this, in the TIM for IADDS project, the ‘Hazard’
has an additional attribute called mitigated, indicating if the hazard is miti-
gated or not. Accordingly, if a hazard is classified as mitigated there should
be at least one element of type ‘SafetyStory’ and a link of type ‘Mitigate’
between the hazard and the safety story. This constraint is an example of
complex inter-model constraints, which can be described with model vali-
dation languages (EVL in our example project). Listing 4.1 shows the EVL
code for this constraint. Other validation languages that allow evaluation of
expressions over heterogeneous models (e.g. XLinkit [Nentwich et al., 2002])
could also be used.

1 context IADDSTIM!Hazard {
2 guard : self.mitigated
3 constraint LinkedToSafetyStory {
4 check : Mitigate.all().exists(
5 m | m.traceLinkEnd2 = self
6 and
7 m.traceLinkEnd1.isDefined());
8 message : "Hazard ‘" + self + "’ should be linked to at

least one SafetyStory";
9 }

10 }

Listing 4.1: Example EVL constraint in the TIM in IADDS

As mentioned before, if we consider the TIM, it is observed that the trace-
able elements contain requirements engineering, software development, and
safety engineering artefacts, which most of them are recorded and available
in the related context (domain). The TIM provides a comprehensive view of
all the required traceability information by including them in one integrated
metamodel.

Accordingly, we suggest extracting traceability information from available
information (other models) and automatically create a traceability model
which conforms to the TIM. Before explaining the steps to extract and
create the traceability model, the available traceability information in dif-
ferent domains will be studied in more detail; this appears in the next sec-
tion (4.2). Then, the proposed approach to generate the TM is introduced

119

Chapter 4 A Multi-Domain Traceability Solution

in Section 4.3.

4.2 Traceability-Related Information

Once the TIM has been defined, traceability information can be collected
and recorded in a traceability model. But, as discussed before, consider-
able amount of required information to support traceability is provided and
available in models in different context or domains. Although these models
might be defined for other purposes (not explicitly for traceability), they
could provide traceability-related data. This section focuses on such infor-
mation scattered in different domains, generally called as traceability-related
information, and discusses how this information can be used to generate a
project-wide traceability model. In this context, related traceability infor-
mation is investigated to prepare the prerequisites to generate and populate
the final traceability model.

As mentioned before, the required information, which supports traceabil-
ity, could be represented in various formats (e.g. plain text, XML files) with
different underlying structures and metamodels. To support analyses and an
overall MDE approach to developing tools, we need to provide a model-based
view of the non-model information (wherever it is possible and reasonable)
as a prerequisite of generating a TM; this can be challenging. However, we
focus on those models that are available and that information which can be
automatically transformed to models: there are several types of model in
different domains (e.g., requirements models, safety analysis models) that
provide substantial traceability information. Our approach does not restrict
the types of model that can be considered in a traceability solution, but in
the illustrative example that follows we consider a specific set of models.

4.2.1 Investigate Available Information

Based on the TIM, available information (models) are investigated to find
out how much of the required information is provided and available, in which
ways, and how it can be used.

In general, there are two types of information:

1. Domain-specific information: information which is specific or lim-
ited to one domain

2. Multi-domain information: information which covers two or more
domains

For example, considering the general development process of the example
project, the following information was available and provided in the involved
engineering domains:

120

4.2 Traceability-Related Information

1. Requirements Engineering: Software System Requirements (plain
text), Properties and Constraints (plain text), User Stories (tabular
format)

2. Safety Engineering: Hazards (tabular format), Derived Safety Require-
ments (tabular format), Safety Analysis Models, and the relationship
between Hazards and Derived Safety Requirements

3. Software Engineering (Development): Architecture Model, Class Dia-
grams, Test Cases, Code Segments

In addition to the above domain-specific information, the following multi-
domain information is defined and provided:

1. Relationship between Hazard and User Story (in tabular format)

2. Relationship between Safety Story and User Story (in tabular format)
As the result of this investigation, the available information including

models and trace link types either within or between domains which sup-
ports traceability is identified. Additionally, the investigation will identify
the missing information which is essential to generate a complete project-
wide traceability model such as models or a formal relationship between
two concepts. This requires us to provide currently not provided data or
concepts. The missing information is divided into two parts: that which is
limited to a single domain; and that which relates to multiple domains, such
as the relationship between concepts in different domains. Each of them has
to be dealt with differently. We now elaborate on this in more detail.

4.2.2 Domain-Specific Information
As mentioned before, domain-specific information represents concepts and
their relations within the context of a domain. In this respect, the informa-
tion available as a model can be directly used to extract traceability infor-
mation. On the other hand, to define and collect missing domain-specific
traceability-related information –not available either in the form of a model
or in any other format– one of the following alternatives could be applied.

1. Extend existing metamodels. In some cases, it is reasonable and
possible to extend existing models to include missing information. For
example, the missing info is a number of simple attributes. In these
cases, the correspondence metamodels are extended by defining or
adding new objects, attributes, and relationships (as associations or
objects), and describing required constraints. Consequently, the target
models have to be updated or regenerated according to the new meta-
model. Nevertheless, depending on the type and size of changes in
metamodels, particular practice need to be applied to update models
with valid additional or new data.

121

Chapter 4 A Multi-Domain Traceability Solution

2. Define new metamodels. In some cases, it is not possible to work
with existing metamodels: 1. there is no artefact (in any format)
which covers even partially related information to the missing one, 2.
there are non-model artefacts covering missing information, for exam-
ple within other tools (e.g. requirements management tools such as
DOORS) or arbitrary structured documents (e.g. spreadsheets), and
3. the engineer cannot alter the metamodels with the new concepts
(e.g. due to limited access, regulations). In these cases, new metamod-
els have to be defined (from scratch) and instantiated as new (domain)
models which include the missing information.
In the first case, depending on the type of the information and also
possible and available ways for collecting data, required information
could be captured by any heuristic method. The new models thereafter
can be used and manipulated similar to other artefacts in the project.
In the other two cases, different model transformation techniques
(M2M, M2T, T2M) can be applied to transform the non-model arte-
facts or models into the new models which also include the comple-
mentary new data (missing information). For example, a spreadsheet,
which is a common format for preparing documents in a project,
can be transformed into desired models with user-defined T2M trans-
formations or available tools specifically developed for this purpose
(e.g. [Francis et al., 2013]). Most of the existing tools provide the fea-
ture to export their data into spreadsheets. For example, DOORS,
as the most widely used tool in industry to manage requirements and
record traces between them, allows users to export the description of
requirements and their relations to different formats including spread-
sheet. The generated spreadsheets can be used to generate or populate
the new models representing the missing information.
In these cases, maintaining the consistency between original artefacts
or models with the new models is a challenge which is extensively
studied in the context of MDE under co-evolution subject (e.g. [Rose,
2011]). Automatic model transformations partially address this is-
sue, as they can be re-executed whenever any of the original artefacts
change. This is possible when it does not invalidate the extra data
previously and independently inserted into new models.

4.2.2.1 Example

Regarding the available information and their format (mostly provided in
textual format in tables) in the example project, we define a new metamodel
for each domain which defines the information in that domain. Existing in-
formation (tables) is then transformed into new domain models. Figure 4.9
and Figure 4.10 depict the main artefacts in safety and requirements engi-

122

4.2 Traceability-Related Information

neering domain as the metamodel for these domain models. The metamod-
els also show the association relationships between concepts in each domain
which are later on translated into trace link types in the TIM.

Figure 4.9: The metamodel for the safety domain

Figure 4.10: The metamodel for the requirements engineering domain

4.2.3 Multi-Domain Information

After investigating the required information in each domain and provid-
ing the information as models, the multi-domain information is considered.
Multi-domain information encompasses concepts from different domains. It
mainly represents the relationships existing between two domains. One of
the main unavailable traceability-related data is a precise and formal defini-
tion of the relationships between domains. The available traceability-related
information (mainly trace links) is usually limited to one domain. In this
respect, we focus on the relations between domains.

To represent the relationships between domains, so called inter-domain
trace links, we propose building a traceability model –so called partialTM–

123

Chapter 4 A Multi-Domain Traceability Solution

between pairs of domains to keep record of inter-domain trace links. We
define a traceability information model for each partialTM. Each traceabil-
ity information model –called partialTIM– formally or explicitly defines the
inter-domain trace link types. Basically, a partialTIM is defined by extend-
ing the CoreTIM; each partialTIM can be considered as a slice of the main
TIM only containing those elements that are directly related to each other
(with a trace link). Figure 4.11 conceptually shows the relationship between
partialTIMs and the main TIM.

Figure 4.11: How a TIM and partialTIMs are related

A partialTIM clearly specifies the required trace link types and the type of
trace link ends for each trace link type. There are two kinds of inter-domain
traces:

1. Equivalence trace: This type of trace shows equivalent concepts in
two domains. In this case, a concept from one domain is redefined
and reused in another domain (possibly with new name), though they
represent an identical concept.

2. Relationship trace: These traces are used to show relationships be-
tween elements from two different domains that are related to each
other, in some way, but they are not equivalent.

Although, in this thesis, partialTIMs are defined manually, they can be
defined semi-automatically by using different type of model management
operations, for example, by comparing traceable entities, defined in a TIM
and linked directly with a trace link type, with available entities defined
in different domains. Through such comparison, it is possible to identify
potential relationships between two domains and, hence, a partialTIM. A
partialTIM can also be defined based on the available onthologies, which
provide description of concepts in different domains, and available knowledge

124

4.3 Traceability Information

of how concepts of anthologies are related. These would specify the potential
partialTIMs.

Inter-domain trace links can be identified and captured manually or semi-
automatically (i.e. through model comparison). In the manual case, the
user manually defines the traces between domains based on the correspon-
dent partialTIM, while in the latter form traces are identified with model
comparison. In this case, the users might need to check the identified traces
to select valid traces to be recorded.

4.2.3.1 Example

In the IADDS project, we define the required traceability metamodels for
the inter-domain trace link types. Figure 4.12 shows the partialTIM between
the requirements engineering and safety engineering domains which defines
a relationship trace link type, named ‘UserStoryToAssessmentTL’, between
‘UserStory’ and ‘Assessment’ in addition to an equivalence trace link type,
named ‘SafetyStoryToDerivedSafetyReqEL’, between ‘SafetyStory’ and ‘De-
rivedSafetyRequirement’. In this example, the trace links are captured and
recorded manually.

Figure 4.12: The partialTIM between requirement and safety engineering
domain (ReqSafety-partialTIM)

4.3 Traceability Information
Once the domain-specific and inter-domain models (which provide required
traceability-related information), are available and ready to use, it is time to
extract the information from them and generate a single project-wide trace-
ability model; a model which is built on top of the other models, generated
automatically by model operations and does not contain any information
that cannot be regenerated automatically. The TM, as described earlier, is

125

Chapter 4 A Multi-Domain Traceability Solution

like a view; theoretically it should be generated on-demand, and not updated
directly.

A single TM provides a coherent view of the traceability information
spread in different models. As [Mäder and Cleland-Huang, 2010] state, us-
ing a diverse set of traceability information sources (usually represented in
heterogeneous formats) is one of the main problems in working with trace
links. A TM also unifies the way in which the traceability information can
be used to perform traceability analyses. For example, it lets us define a
Traceability Analysis Language to describe traceability analyses, based on
traceability goals, regardless of the diversity of the underlying models.

Having prepared and completed the domain-specific and inter-domain
models, which are called source models in the rest of this document, the
project-wide TM is generated through the following two steps. Figure 4.13
illustrates the conceptual overview of how a TM is generated.

1. Locate source elements. In this step, the relationships between the
TM and other models are identified. Each relationship specifies that
each type in the TM maps to what type from source models. It also
defines precisely how two elements are related. These relationships are
defined in a mapping model.

2. Generate the TM. In this step, using model operations, the required
information is extracted from source models based on the mapping
model, and the traceability model is generated and populated with
the collected information.

4.3.1 Locating Source Elements

In this step, the model elements in the TM are mapped into model ele-
ments in source models. The mapping formally specifies how each concept
(traceable element or trace link type) defined in the TIM relates to model
elements in the other models. It is used to collect information from other
models in order to automatically generate the project-wide TM. It could also
be used to interpret the result of traceability analyses in terms of the source
models in different domains. The mapping is expressed in a model which
conforms to a mapping metamodel. The mapping model is similar to a Cor-
respondence Model (CM) or Weaving Model (WM) in model composition
[Bézivin et al., 2006]. A CM or a WM is a model that explicitly describes
the relationships between elements of different models, but is constructed
specifically for model comparison or merging processes.

We captured the specific requirements for the mapping model regarding
the context of this work and how it would be used in the proposed trace-
ability solution. Accordingly, the metamodel

126

4.3 Traceability Information

Figure 4.13: Generating the traceability model

– is defined at the metamodel level and refers to (Ecore) metamodels
(R1)

– is used either to generate the TM and translate the result of trace
queries in terms of the source models (R2)

– defines what element maps to what element (R3)

– explains precisely how two elements are related (R4)

Additionally, we determined that in order to have complete information
to generate the TM, the mapping model should capture two types of rela-
tionships between models:

1. Relationships between a TM and other models, called Mapping En-
try in the model; they define how each element in TM is related to
elements in source models. For example, regarding the TIM for the
IADDS project (Figure 4.8) and the partialTIM between requirement
and safety domains (Figure 4.12), the ‘Assess’ trace link type, in the
TIM, maps to the ‘UserStoryToAssessmentTL’ between ‘UserStory’
and ‘Assessment’, in the partialTIM between requirements and safety
engineering domains.

127

Chapter 4 A Multi-Domain Traceability Solution

2. Relationships between models except TM, called Equivalence Entry in
the model; they define equivalent elements which are those elements
that represent a common concept in different domains. For example,
in the IADDS project, ‘SafetyStory’ in the requirements engineering
domain (Figure 4.10) is equivalent to ‘DerivedSafetyRequirement’ in
safety domain model (Figure 4.9).

Figure 4.14 shows the examples described above for each type of rela-
tionships. A mapping relationship (highlighted in red) is defined between
the TIM and the ReqSafety-partialTIM (the partialTIM between the re-
quirements engineering and safety engineering domains). Two equivalent
elements in requirements engineering and safety engineering domains are
shown and highlighted in blue.

Figure 4.14: Graphical view of example relationships between the TIM and
the ReqSafety-partialTIM

According to the above mentioned requirements and properties, the map-
ping metamodel has been defined using Ecore, as depicted in Figure 4.15.

128

4.3 Traceability Information

4.3.1.1 The Mapping Metamodel

In this section the concepts of the mapping metamodel are explained in
detail.

Figure 4.15: Mapping Metamodel

MappingModel: Acts as the root of the mapping model. It defines a
name and contains at least two ModeRefs which represent the TIM and
other involved metamodels (Ecore metamodels). It also contains a number
of MappingEntries and EnquvalenceEntries.

ModelRef: Represents a metamodel of the model used to generate the
final TM. It defines name and contains a number of ModelElementRefs defin-
ing the elements from this metamodel which are used in the mapping model.

ModelElementRef: Represents an element of a metamodel which is
used in the mapping model. It can be a model, a class, an attribute, or a
reference.

MappingEntry: Represents a mapping between a model element in TIM
with a model element in another metamodel. Each mapping defines two
ModelElementRefs (as end points of the mapping) and a number of Defini-
tions and Conditions.

EquivalenceEntry: Defines an equivalence relationship between two
model elements from two different metamodels (other than the TIM). An
EquivalenceEntry is a kind of MappingEntry with an additional reference
(corrTraceLink) to the related partialTIM (which defines the equivalence
traces between two related domains). This reference is required to find
equivalent objects when generating project-wide TM.

129

Chapter 4 A Multi-Domain Traceability Solution

Definition: A statement indicates how the two end points of a mapping
are exactly related to each other (e.g. endPoint1.name=endPoint2.ID)

Condition: A statement specify the condition in which an entry is valid
and used.

A ModelRef refers to metamodels and a ModelElementRef represents a
type defined in the metamodels (requirement R1). The MappingEntry and
EquivalenceEntry address the requirement R3 and the two relationship types
necessary to generate the TM. With Definition and Condition users express
how two elements are related (requirement R4) which is used to automati-
cally populate the TM with correct and valid values for the model elements.

A mapping model, which conforms to the above metamodel, is a high-
level specification of the model transformation rules which are required to
extract information from the source models, create the TM, and populate
it with this information. The transformation is obtained by translating the
mapping model into low-level, executable model operations. Section 5.2.4
explains how the mapping model is used to generate the TM.

4.3.1.2 Example

Figure 4.16 shows an example of mapping and equivalence entries from the
case study which were explained above. As shown in the figure, the map-
ping model works with four metamodels: the IADDS TIM, the metamodel
for requirement and safety engineering domains, and the partialTIM be-
tween Requirements and Safety domain, and so has four elements of type
ModelRef representing each of them. The mapping entry, named ‘Assess-
US2ASS’, maps the ‘Assess’ trace link type, in TIM, to the ‘UserStory-
ToAssessmentTL’, in the partialTIM between requirement and safety en-
gineering domain. It contains definitions indicating how to initialise the
‘Assess’ object in the generated model (reserved words start with ‘ ’). For
example, the first definition indicates that the name of the ‘Assess’ object
would be the same as the name of the source model element and the sec-
ond definition says that the ‘traceLinkEnd1’ of the new object is equal to
the ‘assessment’ property in the source model element. The equivalence
entry, named ‘SafetyStory-DerivedSafetyReq’, shows that the ‘SafetyStory’
and ‘DerivedSafetyRequirement’ are equal and the correspondent trace link
type is ‘SafetyStoryToDerivedSafetyReqEL’ which is defined in ReqSafety-
PartialTIM (refer to Figure 4.12). The definitions for the equivalence entry
indicate how each end point of the entry relates to the corresponding trace
link.

4.3.2 Generating the Traceability Model

In this step, the project-wide traceability model is generated and popu-
lated with the information extracted from source models, including domain-

130

4.3 Traceability Information

Figure 4.16: Part of the mapping model for IADDS project

specific models and partialTMs, based on the mapping model, as illustrated
in Figure 4.13. The TM is created and populated automatically by a domain-
specific model transformation –a so called dynamic model transformation–
which takes the mapping model and the other source models as input and
produces the final TM as output.

The transformation is dynamic as it does not contain the low-level (exe-
cutable) transformation rules, which explicitly define which model elements
are transformed to which model elements. In the dynamic model trans-
formation, rules are determined dynamically and executed as the transfor-
mation runs. The transformation can be considered to be a higher-order
transformation (HOT). A HOT is a model transformation such that takes a
transformation model as input and produces a transformation model as out-
put [Tisi et al., 2009]. In comparison to HOT which generates executable
transformations rather than executing them, the dynamic transformation
performs the transformation and generates the target model.

Accordingly, the dynamic model transformation is a transformation engine
which performs the transformation based on the two recurring patterns of
the rules that we identified in generating the TM. These two patterns define
the semantics of the mapping model:

1. Create an object of subtype of ‘TraceableElement’ or ‘TraceLink’ in
the TM in respect to a specific object of type EClass in a source model.

131

Chapter 4 A Multi-Domain Traceability Solution

2. Create an object of subtype of ‘TraceLink’ in the TM for a given
association between two objects in a source model.

The transformation iterates over the mapping entries (defined in the map-
ping model) and, for each entry, identifies the matching pattern for the entry
and, accordingly, carries out the transformation. For each entry, it finds the
corresponding model element from source models to the type defined in the
second endpoint of the entry (endPoint2 in the Figure 4.15). Then, it cre-
ates or updates the corresponding model element (in the TM) to the type
defined in the first endpoint (endPoint1 in the Figure 4.15) of the mapping
entry. Finally, it initialises the output element based on the definitions ex-
pressed in the entry and puts a reference to the original model element in
the source model.

The project-wide traceability model is created so as to minimise redun-
dancy and inconsistency; it keeps the minimum information needed. For
example, it contains reference to the source elements in the source mod-
els instead of completely redefining these elements and each element only
includes necessary information for traceability analysis.

The transformation is tested by common techniques (e.g. defining test
cases particularly for unusual situations). Therefore, the output traceability
model would be a valid model regarding the specification of the transfor-
mation; the recovered links are complete and correct (i.e. include all the
required links and there are no traces between unrelated elements) accord-
ing to the provided mapping model (assuming the source models are valid).
On the other hand, the project-wide traceability model is also validated
with respect to the validity constraints associated with the TIM, which rep-
resent the semantics of traceability in the project. In this context, an invalid
trace model identifies a problem in the source models (e.g. inconsistency,
incompleteness) which should be resolved.

4.4 Maintaining Traceability Model

One of the main activities in traceability is maintenance. Traceability main-
tenance refers to those activities associated with updating pre-existing traces
as changes are made to the traced artefacts and the traceability evolves, and
creating new traces where needed to keep the traceability relevant and up to
date. However, traceability maintenance is also required following changes
to the requirements and constraints that drive the overarching traceability
strategies, which consequently results in change in the traceability solution
and the traceability information [Gotel et al., 2012b].

As discussed in Section 2.1.3.4, traceability maintenance is largely consid-
ered in order to keep the integrity of the relationships while the referenced
entities continue to change and evolve. Accordingly, in this section, we focus

132

4.5 Traceability Analysis

on the traceability model and discuss how it is updated whenever any of the
models to which it refers change.

Models (domain-specific and inter-domain) change as the system (or soft-
ware) artefacts evolve. In our approach we assume that changes in domain
models are captured and managed within the scope of the domain possi-
bly with domain-specific tools and techniques. For inter-domain models
(partialTMs), which are basically created for a solution, specific techniques
should be applied. Considering the way these models are created for the
first time (Section 4.2.3), they are updated through (re-)creating them again
(manually or semi-automatically).

As explained in Section 4.3.2, the traceability model is created by the
dynamic model transformation. The transformation uses these models as
input, extracts information from them, and generates the TM automatically
based on the mapping model. Therefore, whenever one of the source models
changes and the change was propagated completely, the traceability model
can be regenerated automatically by the dynamic model transformation with
the updated models as input. This transformation happens when a user want
to access the traceability information for example to perform an analysis.

In order to control the cost of managing a change, a change could be
investigated in more detail to determine if it will affect the TM or not, before
regenerating the TM. This is because some of changes, mainly in domain-
specific models, happen on those parts of models that are not involved in
traceability and so they do not relate to the TM and do not affect it. Doing
so, the mapping model can be searched to find out if there is any object
of type ModelElementRef which refers to any of the altered elements (the
main element and the affected elements). If so, the TM has to be regenerated
otherwise, there would be no update for the TM. Although, in this way, we
need an additional model operation (to inspect the mapping model with
respect to a change) to observe if the TM should be regenerated or not, it
would be helpful for cases in which the TM has been enriched with additional
information such as transitive links. In such cases, it is recommended to keep
the TM unchanged as much as possible.

Nevertheless, in the context of this work, the change and evolution in the
traceability goals and their effects on the other traceability-related models
have to be also studied to provide a flexible traceability solution. In Sec-
tion 7.5.3, we identify other change scenarios in the context of the proposed
approach and discuss how those scenarios could be managed with potential
model-based approaches.

4.5 Traceability Analysis

Traceability information is captured and recorded to support traceability
goals. As mentioned before, traceability goals are usually explained in high

133

Chapter 4 A Multi-Domain Traceability Solution

level terms. For example, they can be expressed as ‘traceability of designs
against requirements’ or ‘track the allocation of requirements to system com-
ponents’. To be able to support the goals, we need to define concrete trace-
ability analyses which can be directly applied to the traceability model to
determine whether traceability goals are satisfied. Doing so, each traceabil-
ity goal may result in one or more traceability analyses.

In the context of this thesis, the analyses are formal descriptions of those
questions which were defined (through GQM) to identify traceability-related
concepts in a project (Section 4.1.2). A traceability analysis is then a trace
query or a constraint which could be expressed with a model management
language in terms of the concepts defined in the TIM and applied on the
TM.

Generic query languages (e.g. SQL) and model management languages
can be used to express traceability analyses, but these require knowledge
of the underlying structures in which the traceability information is stored.
For example, in Sparx Enterprise ArchitectTM [Sparx Systems Pty Ltd.,
2014] queries are modelled as SQL statements on the underlying database;
this requires substantial knowledge of internal data models. To address the
aforementioned challenges, research has identified languages and notations
to support traceability queries or adopting standard query languages such
as SQL or XQuery. One of the main goals of such languages is to allow users
to specify queries at an abstraction level that focuses on the traceability per-
spective of the project. For example, [Schwarz et al., 2008] uses graph-based
querying approach to extract traceability information. In this approach,
graphs constitute an abstract representation of artefacts and their trace-
ability relationships. [Maletic and Collard, 2009] introduce a Traceability
Query Language (TQL) based on XML. In their approach, TQL is build on
top of XML addressing language (XPath) and TQL queries are transformed
into XQuery. [Mäder and Cleland-Huang, 2010] also present a Visual Trace
Modelling Language (VTML) which allows users to model queries visually
within their proposed approach to provide goal-oriented traceability.

Considering the context of this work, general-purpose model management
languages, such as EOL [Kolovos et al., 2006b] and OCL [Object Manage-
ment Group, 2012], similarly require knowledge of the structure of the mod-
els and also they are not at an appropriate level of abstraction recommended
to describe traceability analyses. This is because using such imperative lan-
guages, directly, requires users to explicitly specify how to apply an analysis
on the TM and generate an arbitrary output model. However, traceability
users are just interested in expressing an analysis regardless of how it is
implemented and how it generates an output model.

Accordingly, we suggest defining a task-specific analysis language to ex-
press traceability analyses at the traceability abstraction level, called the
Traceability Analysis Language (TAL). TAL is a task-specific analysis lan-
guage –bound to the TIM– which hides the complexity of the underlying

134

4.5 Traceability Analysis

information and how it is stored and represented. The TAL is compatible
with the implementation infrastructure with which we have worked through-
out this thesis.

4.5.1 Traceability Analysis Language (TAL)

As mentioned above, TAL is a task-specific language to specifying traceabil-
ity queries or constraints at the traceability abstraction level. Additionally,
it is a TIM-specific language as it lets users to express analyses by using the
traceability domain terminology and project-specific terms (defined in the
TIM).

The TAL is a textual language which supports two types of analysis:

1. Query: to find specific traceable elements (or a number of them) that
satisfy given conditions

2. Constraint: to check if the traceability model satisfies specific condi-
tions

Through experiments and analysis examples, we found out that the fol-
lowing existential conditions are encountered very often in analyses:

ForAll: all the elements satisfy the condition
Exist: at least one element satisfies the condition
ExistOne: there is only one element which satisfies the condition

4.5.1.1 Concrete Syntax

Regarding the above mentioned requirements for a suitable traceability anal-
ysis language, we define the concrete syntax of the TAL which enables users
to describe queries and constraints in their level of abstraction. Listing 4.2
displays the concrete syntax in general.
(<comment>)?
Query <name> (< inputParameter> : <traceableElement >)∗ {

find | count <tracableElement> as <a l i a s >
(where (<condi t ion >)) ?

}

(<comment>)?
Constraint <name> (< inputParameter> : <traceableElement >)∗ {

forAll <traceableElement> as <a l i a s > (where <condi t ion >)? : (<
condi t ion >)

| exist <traceableElement> as <a l i a s > where (<condi t ion >)
| existOne <traceableElement> as <a l i a s > where (<condi t ion >)

}

Listing 4.2: The concrete syntax of TAL

135

Chapter 4 A Multi-Domain Traceability Solution

Each Query or Constraint has a name and may have a number of input pa-
rameters. Queries find or count the number of model elements with the given
condition described for the target model element type (traceableElement).
Constraints express a validation constraint on specified model elements, us-
ing forAll, exist, existOne analysis types. Input parameters are defined in
order to be enable to execute a query or check a constraint with respect to
a given element of specified types (e.g. finding related hazards to a specified
safety story, ‘SS1’, in context of IADDS project).

A Query can define a condition which includes a number of statement
following the where keyword. Each constraint defines a condition following
the where keyword, in case of using exist and existOne, or a colon (:) in
case of using forAll. A constraint with forAll may also restrict the elements
on which its condition has to be applied. This restriction is defined as a
condition following the where keyword and before the colon (:). A condition
can be described with one or more expressions. An expression could be a
simple comparison (e.g. greater than, less than, and equal) or a constraint
defined with one of the validation functions (forAll, exist, existOne). Addi-
tionally, the expression may use built-in functions (e.g. size(), isDefined(),
and includes()), which are provided in the language.

Additionally, TAL provides an expressive syntax in the context of trace-
ability. For example, to express the existence of a paticular trace link type
between two elements the following syntax is provided, which can be used
in conditions:

<traceableElement1> <traceLinkX> <traceableElement2>

The above statement means there exists a trace link of type ‘traceLinkX’
with ‘traceableElement1’ as traceLinkEnd1 and ‘traceableElement2’ as
traceLinkEnd2.

On the other hand, considering the concrete syntax, it is easily observed
that the valid values for the TracableElement and TraceLink are exactly the
TraceableElements and TraceLinks defined in the TIM. Therefore, it seems
possible to explicitly specify these values in the language. The grammar can
be generated based on a given TIM and so defines the permissible values for
these two terms. In this thesis, the proposed TAL is defined with Xtext [The
Eclipse Foundation, 2013b], which is a textual grammar language. Accord-
ingly, the TAL grammar is automatically generated based on the TIM using
M2T model transformations. We will explain how the grammar of the TAL
is defined and generated in more detail in Section 5.2.5.

As a result, the TAL is a project-specific analysis language (TIM-specific)
and provides early validation for analysis scripts to increase precision and
consequently reduce errors. The main feature of a TIM-specific TAL is
to clearly specify the terms permitted in an analysis script which con-
tains the name of traceable objects (TraceableElements), trace link types
(TraceLinks), and possibly their features.

136

4.5 Traceability Analysis

4.5.1.2 Abstract Syntax

The abstract syntax of the TAL is defined based on the grammar language
used to describe a language namely Xtext. Figure 4.17 illustrates the ab-
stract syntax of the TAL (generated with Xtext). We now describe the
language in detail.

Figure 4.17: The abstract syntax of TAL

AnalysisModel: Acts as the root of the analysis model. It defines a
name and contains a number of Queries and Constraints.

Query: Represents a traceability query to find specific elements. It de-
fines a name and comments, and contains a QueryFunction. A Query might
have a number of Parameters as input parameters.

Constraint: Represents a constraint on the traceability model. Similar
to Query, it defines a name and comments, contains a ValidationFunction,
and might have input Parameters.

QueryFunction: Defines the function for the owner Query. It defines
the target model element (on which the query is executed) and an alias to
refer to the element, and may contain a Condition.

ValidationFunction: Defines the function for the owner Constraint. It
defines the target model element (on which the query is executed) and an
alias to refer to the element, and may contain a Condition.

Condition: Represents the condition for queries or constraints. It con-
tains a main Expression and may have a number of additional ExtendedEx-
prs.

Expression: Represents an expression to explain the condition for
queries or constraints. It contains a SimpleExpr and can have a Valida-
tionFunction to express a constraint (such as exist, exist one, and for all)

137

Chapter 4 A Multi-Domain Traceability Solution

on model elements.
SimpleExpr: Is a simple statement over model elements. It is used to

specify existence of a trace link between two traceable elements or to describe
a desired relationship between two model elements, such as less than and
equal. It can also be used to evaluate the result of calling a built-in function
on a model element, such as ‘includes()’ and ‘size()’. Each Statement defines
the one or two model elements that it works with (left and right operands)
and the operator (e.g <, >, and =).

ExtendedExpr: Is an extended Expression which has ‘And/Or’ in ad-
dition to an Expression.

Parameter: Represents a parameter in Queries or Constraints. It defines
the name and type of the model element that it would refer to.

Find, Count: A Subtype of the QueryFunction.
Exist, ExistOne, ForAll: Subtypes of ValidationFunction.

4.5.1.3 Example

Listing 4.3 shows an example TAL query, named ‘unMitigatedHazards’, to
find those ‘Hazard’ (a traceable element in IADDS project) which are not
mitigated in the project by a ‘SafetyStory’. As shown in the listing, ‘Safe-
tyStory’, ‘Hazard’, and ‘Mitigate’ are examples of TIM-specific terms that
are allowed to be used in trace queries or constraints.
//Find hazards which are not mit igated
Query unMitigatedHazards {

find Hazard as HZD where not (
exist SafetyStory as SS where (SS Mitigate HZD)

)
}

Listing 4.3: Example TAL query

In Listing 4.4, a TAL constraint is defined to check that all ‘SystemRe-
quirements’ are at least addressed by one ‘UserStory’.
//Each system requirement has to be addressed at l e a s t with one

user s to ry
Constraint al lSysRequirementsAddressed {

forAll SystemRequirement as SR :
(exist UserStory as US where (US Address SR))

}

Listing 4.4: Example TAL constraint

4.5.2 Analysis Result

Each TAL script is executed on the project-wide TM. The result of executing
a traceability analysis on the TM is a Result Model. The model contains the

138

4.6 Chapter Summary

output model elements and shows the overall result of the analysis mostly
in case of checking a constraint in the TM. The result model can be used to
support extended user-defined usage scenarios (e.g. generate reports) which
can be implemented with model management languages.

Figure 4.18 depicts the metamodel of the result model which is explained
in the following.

Figure 4.18: Analysis result metamodel

AnalysisResult: Acts as the root of the result model. It defines a name
and contains a number of ResultObject (in case of querying the TM). It
also shows the overall result of the analysis, in case of checking a constraint,
indicating if the model passes or fails to satisfy the constraint. The result
model shows the execution status of the script representing if it is failed
(due to technical errors or problems) or successful.

ResultObject: Represents the model elements satisfied the query. It
associates with the original model element in the TM.

ExecutionStatus: Provides the valid values for the execution status of
the EOL script.

Result: Provides the valid values for the overall result of the analysis.

4.6 Chapter Summary
In this chapter, we presented the main contributions of this thesis. In Sec-
tion 4.1, we introduced a three-step method to define a project-specific TIM,
which includes determining traceability goals, identifying related concepts
in the project, and finally representing the TIM in a formal way. Section 4.2
explained how to investigate existing models in a project to identify available
traceability-related information which could explicitly or implicitly support
traceability. In Section 4.3, we presented a systematic approach to extract
traceability-related information from other models in the project and gener-
ate a project-wide traceability model. Also, in Section 4.4, we demonstrated

139

Chapter 4 A Multi-Domain Traceability Solution

how the traceability model is maintained when the relevant models change
and evolve over the time. Finally, Section 4.5 introduced the Traceability
Analysis Language (TAL) and it was discussed how it facilitates traceability
analyses.

Tables 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 show the characteristics of the pro-
posed approach with respect to the parameters defined in Section 3.1.

Table 4.1: Overview of the proposed approach - Artefacts
Artefact

Type Format
General Specific General Specific

The Approach X Models

Table 4.2: Overview of the proposed approach - TIM
TIM

General-Purpose
Case-Specific

Static Customisable
The Approach X

Table 4.3: Overview of the proposed approach - Tooling
Tooling

General
specific

Partial Complete Interoperable
The Approach X X

Table 4.4: Overview of the proposed approach - Planning and Management
Planning and Management

Identity Req. Define TIM Define Process Assessment
The Approach X X X

140

4.6 Chapter Summary

Table 4.5: Overview of the proposed approach - Trace Creation
Trace Creation

Automation Acquisition Storage
Capture Recovery

M
an

ua
l

Se
m

i-a
ut

om
at

ic

A
ut

om
at

ic

Tr
an

sf
or

m

Ev
en

t-
ba

se
d

IR R
ul

e

M
isc

M
od

el

R
ep

os
ito

ry

The Approach X X X

Table 4.6: Overview of the proposed approach - Maintenance and Usage
Maintenance Usage

Automation Mode Visualisation Retrieving
Query

M
an

ua
l

Se
m

i-a
ut

om
at

ic

A
ut

om
at

ic

R
ea

ct
iv

e

Pr
oa

ct
iv

e

M
at

rix

G
ra

ph

Li
nk

Pr
ed

efi
ne

d

A
PI

G
en

er
al

Sp
ec

ifi
c

The Approach X X X

141

5
Implementation

Tool support for a traceability framework is essential to maximise the re-
turn on investment in supporting traceability. A traceability tool is an
integral part of a traceability solution to assist or automate any part of
the traceability process [Gotel et al., 2012b]. Accordingly, a prototype of
the required infrastructure for the proposed traceability solution has been
developed which is explained in this chapter.

For the implementation, EMF [Eclipse Foundation, 2013], Epsilon [Kolovos
and Paige, 2013], Xtext [The Eclipse Foundation, 2013b], and Xtend [The
Eclipse Foundation, 2013a] have been used. EMF has been used as the mod-
elling framework for this work. In addition to the familiarity of the author
with EMF, it has been chosen because it is considered as a de facto standard
modelling framework being supported by open-source high quality tools and
editors.

In addition to EMF, the Epsilon framework has been selected for devel-
oping the various model management tasks, such as model transformations
and comparisons. Similarly to choosing EMF as modelling framework, Ep-
silon has been chosen because of its familiarity to the author and due to the
high level of re-use available in the platform and its presence in a research
community. Epsilon is an ideal host for the rapid prototyping of languages
for better supporting model management activities.

Finally, a combination of Xtext and Xtend has been used to develop the
traceability analysis language and generate the infrastructure required to use
the language to express and run traceability analyses. Xtext is a framework
for development of programming and domain specific languages [The Eclipse
Foundation, 2013b]. Xtend is a programming language which is supported
with the provided code generation facilities in Xtext. Xtext and Xtend
have been used as they are well integrated with Eclipse and EMF modelling
framework.

Accordingly, EMF and Epsilon are appropriate choices to implement the
prototype for the traceability solution. However, in principle, any other

143

Chapter 5 Implementation

modelling framework and model management framework could have been
used for developing a tooling support for the proposed approach in this
thesis.

This chapter provides an overview of the infrastructure, used to implement
a prototype of the tooling required to support the introduced traceability
solution. It also introduces and explained the prototype in detail and high-
lights its main parts.

5.1 Infrastructure

5.1.1 Eclipse Platform

Eclipse is an open-source software development environment, which consists
of an integrated development environment (IDE) and an extensible plug-in
system. The Eclipse plug-in system allows developers to extend the core of
the tool by contributing functionality in the form of plug-ins. Due to this
extensibility mechanisms, a wide range of tools have been developed atop
Eclipse, such as editors and execution engines for programming languages,
as well as modelling tools such as EMF and GMF.

Eclipse is the platform of choice for MDE tools as the majority of contem-
porary MDE languages and frameworks provide Eclipse-based development
tools [Kolovos, 2008]. Moreover, due to the aforementioned extensibility
mechanisms, the development of new tools and their integration with ex-
isting tools can be done with little effort. Given these reasons, Eclipse was
chosen as the platform atop which the prototype is developed.

5.1.2 Eclipse Modelling Framework

Eclipse Modelling Framework (EMF) is a modelling framework and code
generation facility for building tools and other applications based on a struc-
tured data model [Steinberg et al., 2009]. From a model specification de-
scribed in XMI, EMF provides tools and runtime support to produce a set
of Java classes for the model, a set of adapter classes that enable viewing
and command-based editing of the model, and a basic editor. Models can
be specified using annotated Java, XML documents, or modelling tools like
Rational Rose, then imported into EMF. Most important of all, EMF pro-
vides the foundation for interoperability with other EMF-based tools and
applications.

EMF provides a metamodelling language, named Ecore, for defining the
structure of models. Ecore is an implementation of the Meta Object Facility
(MOF) 2.0 specification [Object Management Group, 2011b].

144

5.1 Infrastructure

5.1.3 Epsilon

Epsilon (Extensible Platform for Specification of Integrated Languages for
mOdel maNagement) [Kolovos et al., 2010] is a platform for building con-
sistent and interoperable task-specific programming languages which can be
used to interact with EMF models to perform common model management
tasks such as model transformation, model comparison, and validation.

The purpose of Epsilon is to consolidate the common features of the vari-
ous task-specific languages in one base language and then develop the various
model management languages atop it. The base language is EOL. Moreover,
Epsilon provides the Epsilon Model Connectivity (EMC), which abstracts
over the different modelling frameworks and enables the Epsilon task-specific
languages to uniformly manage models of those frameworks. Apart from the
existing model management languages, Epsilon provides appropriate exten-
sibility mechanisms to implement new task specific languages with minimal
replication. The architecture of the Epsilon framework and its family of
languages are illustrated in Figure 5.1.

Figure 5.1: The architecture of Epsilon [Kolovos and Paige, 2013]

At the bottom is the EMC, which abstracts the various modelling tech-
nologies such as EMF and Metadata Repository (MDR) [Matula, 2003].
Atop EMC, EOL is developed, which is the basis for the current and fu-
ture task-specific languages. Since Epsilon framework is built in Eclipse, it
is well integrated with other Eclipse development tools, through the use of
the plug-in system provided by the Eclipse platform [Kolovos et al., 2006a].
The task specific languages used for this work are briefly described in the

145

Chapter 5 Implementation

following.

5.1.3.1 Epsilon Object Language (EOL)

At the core of Epsilon is the Epsilon Object Language (EOL) [Kolovos et al.,
2006b], an imperative model-oriented language that combines the proce-
dural style of JavaScript with the powerful model querying capabilities of
OCL [Object Management Group, 2012]. EOL provides a reusable set of
common model management facilities, atop which task-specific languages
can be implemented. However, EOL can also be used as a general-purpose
standalone model management language for automating tasks that do not
fall into the patterns targeted by task-specific languages. It supports state-
ment sequencing, model modification capabilities, simultaneous access to
multiple models which conform possibly to heterogeneous metamodels. In
this work, EOL has been used in different parts. It is used to develop
the dynamic model transformation to generate the traceability model (Sec-
tion 5.2.4). Additionally, traceability analyses are ultimately translated into
EOL programs which are then executed on the TM (Section 5.2.5).

5.1.3.2 Epsilon Transformation Language (ETL)

ETL [Kolovos et al., 2008] is a hybrid, rule-based, model-to-model trans-
formation language built on top of EOL. It is capable of transforming an
arbitrary number of source models into an arbitrary number of target mod-
els. Moreover, as ETL is based on EOL, it reuses its imperative features to
enable users to specify particularly complex, and even interactive, transfor-
mations. In the context of this work, ETL is not used explicitly. However, it
is one of the options to impelement and perform the required transformation
to generate the TM (discussed in Section 5.2.4).

5.1.3.3 Epsilon Validation Language (EVL)

EVL [Kolovos et al., 2009] is the validation language of the Epsilon plat-
form to specify and evaluate constraints on models of arbitrary metamodels
and modelling technologies. It is an OCL-like validation language, which
additionally supports dependencies between constraints, customizable error
messages and specification of fixes, which are invoked to repair inconsisten-
cies. Similarly to the other languages of the Epsilon framework, EVL builds
on top of EOL. This enables it to evaluate inter-model constraints. In the
proposed approach, EVL is used to express correctness constraints which
apply to metamodels and models.

146

5.1 Infrastructure

5.1.3.4 Epsilon Generation Language (EGL)

EGL [Rose et al., 2008] is a template-based, model-to-text transformation
language for generating various types of textual artefact, including exe-
cutable code, documentation, and other textual artefacts from models. EGL
offers model-to-text specific features such as protected regions for mixing
generated code with hand-written code and extensible template system.
Similarly to ETL, EGL is built atop EOL, therefore it has access to general
model management support. In the context of this work, EGL is used to
generate the Xtext grammar for the TIM-specific TAL which is explained
in Section 5.2.5.

5.1.3.5 Epsilon Wizard Language (EWL)

EWL [Kolovos et al., 2007] is a language, whose aim is to support interactive
in-place update transformations on user-selected model elements. The niche
of EWL is the automation of recurring model editing tasks such as model
refactorings. EWL is used in this thesis in the context of building the
mapping model. Two EWL wizard have been developed to provide a list
of the metamodels, attached to the mapping model, and a list of all the
EModelElements in these metamodels to the user, in order to choose and
assign the target for ModelRefs or ModelElementRefs in the mapping model.
They will be explained in Section 5.2.3.

5.1.4 Xtext & Xtend

Xtext [The Eclipse Foundation, 2013b] is a framework for development of
programming and domain specific languages. It provides a grammar lan-
guage which is a domain-specific language, designed for the description of
textual languages. The grammar language allows to describe the concrete
syntax and how it is mapped to the semantic model of the language. The
Xtext language generator generates the parser and serialiser and some addi-
tional infrastructure code. For example, it generates an IDE plug-in which
provides the generated entity editor with various functionalities including
code completion, syntax highlighting, syntactic validation, linking errors,
the outline view, and find references. Figure 5.2 shows a screen shot of the
generated editor for the IADDS project.

One of the Xtext artefacts is a code generator stub which is added to
the language project. The code generator can be used to generate arbitrary
types of code for the new language. The Xtext language generator uses
Xtend [The Eclipse Foundation, 2013a] and generates a Xtend class which
is used to generate the code. Xtend is a statically-typed programming lan-
guage which translates to comprehensible Java source code. Syntactically
and semantically Xtend has its roots in the Java programming language

147

Chapter 5 Implementation

Figure 5.2: A screen shot of the generated editor for the TAL

but improves on many aspects including extension methods, lambda expres-
sions, and template expressions. Xtend is well integrated with Xtext and
provides template expression which is an important feature for code gener-
ation. Xtend’s capability to describe templates allows users to define code
templates regarding the various element types defined in the grammar. The
code generator is called by the language compiler whenever a statement in
the new language is created.

In this work, we describe the analysis language using Xtext grammar
language and then generate the language infrastructure required to use the
language to define traceability analyses. With code generation facilities
provided with Xtext, each TAL script is automatically transformed into an
EOL script to be executed on the TM.

5.2 Prototype

This section introduces the prototype implemented as the tool support for
the proposed approach in this thesis. It explains the main elements and
parts of the prototype which are related to and support the novel parts of
the approach.

The prototype is a model-based environment which provides the founda-
tion required to develop a traceability solution according to the proposed
approach and use it to support usage scenarios. As mentioned before (Fig-
ure 4.1), a solution has two aspects: infrastructure and operational. In this
context, the tooling initially allows engineers to build the required infras-

148

5.2 Prototype

tructure for a solution: explain metamodels, create utility models, define or
perform model management operations, and generate the analysis language
and its editor. As a result, an operational environment is prepared and
provided to traceability users which allows them to create (or regenerate)
the traceability model, by executing the provided operation (dynamic model
transformation), describe traceability analyses, and use their results.

In the following, we focus on the novel parts of the approach and facilities
accordingly provided to engineers in order to build an infrastructure. We de-
scribe in detail how a mapping model is created (Section 5.2.3), the dynamic
model transformation is defined and works (Section 5.2.4), and the analysis
language is generated (Section 5.2.5). We also explain how metamodels and
models are generally defined, manipulated, and visualised in the context of
this implementation (Section 5.2.1). Additionally, it is demonstrated how
an extension to the CoreTIM can be defined as an example extension to the
proposed approach (Section 5.2.2).

Figure 5.3 gives an overview of the implementation infrastructure and
technologies used to implement each part of the prototype.

Figure 5.3: Technologies used to implement the tooling for the approach

149

Chapter 5 Implementation

5.2.1 Metamodels and Models
Metamodels can be represented with any metamodelling language, such as
a UML class diagram [Object Management Group, 2010b] or Ecore meta-
model [Steinberg et al., 2009]. We use Ecore metamodelling language to
describe all metamodels in the traceability solution. The TIM and other
metamodels, including GQM metamodel, mapping metamodel, domaind-
specific metamodels, and partialTIMs, are defined and described as Ecore
metamodels. The metamodels are accompanied with EVL scripts to express
and check complex validity constraints on their related models.

For our model management operations, we need to locate the main EClass
of each metamodel, which is the EClass that contains all the other model
elements, and we call it the entry point. This allows us to use the entry
point, as the container of the other elements, to access the inner elements in
order to do model operations. Doing so, we use EAnnotation to specify the
entry point. The details of annotations have the form of key-value mappings
and their purpose is to capture useful details for the model management task
of interest. In this respect, the following EAnnotation is added for the main
class of each Ecore metamodel.

1 @traceability(type="ModelEntryPoint")

We use basic EMF tree editors to create models (instantiate metamodels)
and then manipulate them accordingly. However, in some cases, the editor
has been customised by using the EXtended Emf EDitor (Exeed) [Kolovos,
2007]. This is achieved by adding Exeed specific EAnnotations to the
EClasses of the metamodels. These annotations provide instructions about
how to format labels and icons of the editor and then Exeed uses this in-
formation to visualise the models accordingly. For example, the editor has
been customised for the mapping model with user-defined icons and labels
for each model element. A screen shot of the Exeed editor for a mapping
model is illustrated in Figure 4.16.

5.2.2 Extended CoreTIM
As mentioned before in Section 4.1.3.2, traceability metamodels can define
or contain other concepts in addition to what is defined in the CoreTIM,
depending on the specific requirements for traceability information or the
preferences of engineers who define the TIM. In this context, we suggested
to define ExtendedCoreTIM which is an extension to the CoreTIM and can
be used as the base metamodel for defining project-specific TIMs similarly
to the CoreTIM.

In our prototype of the required tool support, we focused on the GQM
models and tried to attach it to a TIM. This relationship helps engineers to
understand why specific elements have been defined and also helps them in
later stages to make decisions particularly in case of change. Accordingly, we

150

5.2 Prototype

defined an ExtendedCoreTIM of which the main feature is that it relates the
GQM model developed in a project to its traceability metamodel in order
to demonstrate the rationale behind the definition of the metamodel. The
abstract syntax of the ExtendedCoreTIM is illustrated in Figure 5.4.

Figure 5.4: Abstract syntax of ExtendedCoreTIM

Basically, it extends the CoreTIM with GQMContext, which represents
the context within which its associated element is defined. A GQMContext
defines a name and a description, has a reference to a GQMElement (any
element in a GQM model), named refGQM, and is associated with Traceabil-
ityModel. Accordingly, a TraceabilityModel contains a GQMContext, called
gqmContext, which in practice points to the GQM model of the project (the
element of type GQMModel in the model). When a TM is generated, the
gqmContex attribute of its main class (entry point) is assigned to the main
class of the GQM model.

Note that a GQMContext could not be associated with TraceableElements
and TraceLinks as the supportive information provided by a GQM model
is defined in the metamodel level. It demonstrates that why a specific type
is defined in the metamodel not why each instance is defined in a model.
Therefore, a GQMContext is just associated with TraceabilityModel which
has one instance a TM. However, the GQM model can be used to annotate
the project-specific traceability metamodel.

To annotate the traceability metamodel, we developed a wizard with EWL
which works on GQM models and allows users to locate the related Trace-
ableElements or TraceLinks for a GQMElement. Then, the related element
in the TIM is annotated accordingly. The EWL wizard, called annotateTIM
is shown in the Listing 5.1.

1 wizard annotateTIM {

151

Chapter 5 Implementation

2 guard : self.isKindOf(GQMElement)
3 title : "Annotate TIM"
4 do {
5 var traceElements = getTraceElements();
6 var theElement = UserInput.choose("Select Element",

traceElements);
7 if (theElement.isDefined()) {
8 var emfTool = new Native("org.eclipse.epsilon.emc.emf.

tools.EmfTool");
9 var ecoreUtil = emfTool.ecoreUtil;

10

11 //The resource representing the TIM Ecore
12 var timResource = theElement.eResource().getResourceSet().

getResources().get(1);
13 //To be able to modify the TIM
14 timResource.setTrackingModification(true);
15

16 //Annotate the element
17 ecoreUtil.setAnnotation(theElement, "GQMContext", "type",

self.eClass().name);
18 ecoreUtil.setAnnotation(theElement, "GQMContext", "name",

self.name);
19 ecoreUtil.setAnnotation(theElement, "GQMContext", "

elementRef", self.asString());
20 }
21 }
22 }

Listing 5.1: EWL wizard to annotate a TIM according to a GQM model

As shown in the listing, the wizard is called and executed when the current
model element is of type GQMElement (the guard in line 2 specifies this).
The main part of the wizard is the do block in which a collection of the
trace elements (all subtypes of TraceableElement and TraceLink defined in
the TIM) is provided to the user to select the related element to the current
GQMElement. The operation getTraceElements returns a collection of trace
elements and the TIM is defined as a resource for the GQM model. Then,
the selected element, from the TIM, is annotated with the specific values.
The annotation has the following format and the parameters are replaced
with the type of the current GQMElement (goal, question, or concept), its
name, and a reference to it.

1 @GQMContext(type="<elementType>", name="<elementName>",
elementRef="<elementRef>")

According to the proposed approach, in practice, engineers extend the Ex-
tendedCoreTIM (or the CoreTIM) to define a project-specific TIM, which
contains specific TracableElements and TraceLinks. Then, they need to lo-
cate source elements; determine how the TIM is related to other models and
create a mapping model. The next section (5.2.3) explains how a mapping
model is created, particularly with the use of facilities provided in Epsilon.

152

5.2 Prototype

5.2.3 Mapping Model

As explained in Section 4.3.1, the mapping model formally specifies how each
traceable element or trace link type defined in the TIM relates to model el-
ement types in the other metamodels. Accordingly, it refers to metamodels,
including the TIM, domain-specific metamodels, and partialTIMs.

The mapping model is created as an EMF model by instantiating the
mapping metamodel (Figure 4.15). Then, the metamodels with which the
model works are determined and, so, the ecore metamodel of the TIM and
other related metamodels are defined as additional resources for the model.
In this way, it is possible to refer to the metamodels and the model element
types, defined in them, while populating the mapping model. For each of
these metamodels an element of type ModelRef is added to the mapping
model. To assign the reference of each ModelRef element to the correspond-
ing metamodel, an EWL wizard has been developed which allows an engineer
to easily select the metamodel.

The EWL provides a list of all the metamodels (already defined as ad-
ditional resources) and assigns the value for the attribute theMetaModel in
the ModelRef model element to the selected metamodel. The EWL wizard,
called listMetaModels, is shown in the Listing 5.2.

1 wizard listMetaModels {
2 guard : self.isTypeOf(ModelRef)
3 title : "MetaModels"
4 do {
5 var metaModels = getMetaModels();
6 var theMetaModel = UserInput.choose("Select Metamodel",

metaModels);
7 if (theMetaModel.isDefined()) {
8 self.theMetaModel = theMetaModel;
9 }

10 }
11 }

Listing 5.2: EWL wizard to list metamodels: listMetamodels

As shown in the listing, the wizard is called and executed when the current
model element is of type ModelRef (the guard in line 2). The main part of
the wizard is the do block in which a collection of the metamodels (returned
by operation getMetaModels) is given to the user to select the desired meta-
model. The ModelRef model element has a reference to an EClass (depicted
in figure 4.15). This EClass is the entry point of a metamodel, the EClass an-
notated with @traceability(type=“ModelEntryPoint”). In this respect, the
operation getMetaModels, called in line 5, returns a collection of the entry
points of the metamodels. Listing 5.3 shows the opertion getMetamodels.

1 operation getMetaModels() : Collection (EClass) {
2 var metaModels = new Set;
3 var allEClasses = EClass.AllInstances;

153

Chapter 5 Implementation

4 metaModels.addAll(allEClasses.select(cl | cl.getEAnnotation(
"traceability").isDefined() and cl.getEAnnotation("
traceability").getDetails().get("type") = "
ModelEntryPoint"));

5

6 return metaModels;
7 }

Listing 5.3: EOL operation getMetaModels

Figure 5.5 shows a screen shot of the list of the EModelElements provided
to users.

Figure 5.5: The list provided to users to select a metamodel refered by a
ModelRef

Having defined the metamodels in the mapping model, the relationships
between the TIM and the other metamodels (mapping entries) and the
equivalence relationships (equivalence entries) between metamodels other
than the TIM should be defined. Each entry has two references to the model
elements involved in the relationship. To assign these values in an entry, we
have developed an EWL wizard which lists all the EModelElements defined
in the metamodels (EClasses, EAttributes, and EReference), allows the user
to select the target, and finally assigns the right value for the entry.

Listing 5.2 shows the EWL wizard called listModelElementTypes. Simi-
larly to the previous wizard, the wizard is called on the elements of type
ModelElementRef (the guard in line 2). The operation getModelElements
returns a collection of all the EModelElements defined in the metamodels,
which is provided to the user to select the required element. Then, in line 12
and 13, the metamodel and the model element are assigned for ModelEle-
mentRef in the entry.

154

5.2 Prototype

1 wizard listModelElementTypes {
2 guard : self.isTypeOf(ModelElementRef)
3 title : "EModelElements"
4 do {
5 var modelElements = getModelElements();
6 var modelElementStr = UserInput.choose("Select

EModelElement", modelElements);
7

8 if (modelElementStr.isDefined()) {
9 var theModel = getModel(modelElementStr);

10 var modelElement = getModelElement(modelElementStr);
11

12 self.theElement = modelElement;
13 self.owner = theModel;
14

15 if (modelElement.isTypeOf(EClass)) {
16 self.type = ModelElementType#Clazz;
17 } else if (modelElement.isTypeOf(EAttribute)) {
18 self.type = ModelElementType#Attribute;
19 } else if (modelElement.isTypeOf(EReference)) {
20 self.type = ModelElementType#Reference;
21 }
22 }
23 }
24 }

Listing 5.4: EWL wizard to list model element type: listModelElementTypes

Each entry would have a number of Definitions in order to explicitly define
how two end points are related. The definitions are used in initialising the
new model element in the output model (the TM). Definitions are explained
textually. There are some keywords (starting with ‘ ’) which can be used in
the statement for referring to the endpoints of the relation. For example.
‘ endPoint1’ is used to refer to the first end point in the entry, and ‘ source’
is used to refer to the source of a ERefernce element.

Figure 5.6 shows a screen shot of the list of the EModelElements provided
to users.

As mentioned in Section 4.3, having defined the mapping model, a project-
wide traceability model is generated and populated by a dynamic model
transformation which extract traceability-related information form other
models based on the mapping model. The next section (5.2.4) explains
the transformation in detail.

5.2.4 Dynamic Model Transformation

As explained in Section 4.3.2, the TM is generated automatically by a model
transformation operation. The transformation takes the source models and
the mapping model, as its input models, and generates the project-wide TM

155

Chapter 5 Implementation

Figure 5.6: The list provided to users to select the endpoints of an entry

as the output model. The dynamic model transformation is published in
the final tooling and provided to the traceability users to create the TM.

Basically, there are two options for how to implement and perform the
transformation as depicted in Figure 5.7.

1. Generate transformation rules, based on the mapping model, and then
use them to generate the TM
This option is a higher-order transformation (HOT), which takes a
transformation model as input and produces a transformation model
as output [Tisi et al., 2009]. In the context of this work, the mapping
model is the transformation model which is transformed into an ex-
ecutable transformation model. Regarding the target transformation
model (e.g. ETL in our infrastructure), a M2M or M2T transforma-
tion language can be used to generate the target transformation, which
is thereafter executed on the source models and generates the TM.

2. Develop a domain-specific transformation which performs the trans-
formation dynamically (on-the-fly)
A domain-specific transformation performs customised transformation
for particular purposes, in comparison to usual transformation. In this
case, a domain-specific transformation is developed with a general
model operation language (e.g. EOL). The transformation dynam-
ically infers the transformation rules from the mapping model and

156

5.2 Prototype

executes them at run-time. Rules are applied on the source models
and the TM is accordingly populated. This way, the TM is generated
gradually while the transformation is executed.

(a) Option 1

(b) Option 2

Figure 5.7: The two options to generate the TM

We chose the second option and decided to implement and perform the
required model transformation using EOL, which we call it dynamic model
transformation, instead of transforming the mapping model into an ETL
module (HOT). The first reason for this decision was to minimise the ad-
ditional models and model operations as much as possible. This is because
even if they are created or executed automatically they increase the com-
plexity and cost of dealing with change to keep them consistent and updated.
In the first option, there would be two model operations: an EGL program
used to generate transformation rules in ETL which are thereafter used to
generate the TM. In the second case, there is just an EOL program which
does the transformation to build the TM.

Additionally, we discovered two recurring patterns for the transformation
rules:

1. Create an object of subtype of TraceableElement or TraceLink in the
TM in respect to a defined object of type EClass in a source model.

2. Create an object of subtype of TraceLink in the TM for a given asso-
ciation between two objects in a source model.

In this respect, we determined that although the first pattern can be easily
implemented by ETL, it would be too complex to explain the rules for the
second pattern in ETL and we need to explain some parts of the transfor-
mation within user-defined operations which are implemented using EOL.
Although ETL is a hybrid language that implements a task-specific rule
definition and execution scheme and also inherits the imperative features
of EOL to handle complex transformations, we found that describing the
required transformation in context of ETL would increase the complexity of

157

Chapter 5 Implementation

the solution. This is because, as we wanted to generate the transformation
rules automatically, we needed to develop a complex EGL program to gen-
erate a complex ETL program which should be tested and verified to check
if it generates the correct output or not. On the other hand, the second
rule pattern is important and frequently used in the context of this work.
This is because, fundamentally, we intend to derive trace links from gen-
eral relationships between elements and objects in other models. Therefore,
we decided to develop an EOL program to perform the transformation to
generate the TM.

Listing 5.5 shows part of the EOL program used for dynamic model trans-
formation. The complete code of the transformation is provided in Ap-
pendix E. The core of the transformation is iterating over mapping entries
(Listing 5.5 the for statement in line 13) and for each entry creating and
initialising a new element in the output traceability model. At each itera-
tion, the source metamodel and its model is determined based on the value
of endPoint2 for the entry (line 16 and 23). Then, according to the pattern
of the mapping, the correspondent element is created or updated in the TM.
For example, in line 25, the if statement shows the case in which an EClass
in the TIM has been mapped to an EClass in one of the source metamod-
els. In this case, for each object of type the EClass in the metamodel, an
object of type the correspondent EClass in created and added to the TM
(lines 29-34). The output of the transformation is a project-wide TM which
conforms to the project-specific TIM (defined in line 6 in Listing 5.5).

Alongside the transformation, a utility model, so called equivalences, is
generated which shows each model element in the TM is related to which
model element from other models. This model is used to find the equivalent
element to an element in the source models and use it in the transformation.
For example, assume in model M, there are two model elements X and Y
and there is also a 1-1 association between them. Both X and Y have an
equivalent model element in the TM: X’ and Y’. Now, if we have to define a
trace link between X’ and Y’ because of the existing association between X
and Y, we need to find X’ and Y’, the equivalent elements to X and Y which
have already been created in the TM, and then create a trace link between
these two elements (X’ and Y’). The equivalence model is used to find X’
and Y’.

1 ...
2 //input: mapping model
3 var mappingModel : Any = inputMappingModel!MappingModel.all()

.first();
4

5 //output: traceability model
6 var traceabilityModel = ecoreUtil.create(TIM.theMetaModel);
7 traceabilityModel.name = mappingModel.name;
8 emfTool.createModel(traceabilityModel, "

outputTraceabilityModel");

158

5.2 Prototype

9 ...
10

11 //iterate over mapping entries
12 var entry : inputMappingModel!MappingEntry;
13 for (entry in mappingEntries) {
14 //endPoint1 always refers to TIM
15 var endPoint1 : inputMappingModel!ModelElementRef = entry.

endPoint1;
16 var endPoint2 : inputMappingModel!ModelElementRef = entry.

endPoint2;
17 var definitions = entry.definitions;
18 var conditions = entry.conditions;
19

20 //Select the elements belong to the specified source model
21 var inModelElements = sourceModelElements.get(endPoint2.

owner.name);
22

23 //select the elements from the source model
24 var inModelElements = sourceModelElements.select(el | el.

eContainer().eClass().name = sourceMetaModel.
theMetaModel.name).asSet();

25

26 if (endPoint1.type = inputMappingModel!ModelElementType#
Clazz and endPoint2.type = inputMappingModel!
ModelElementType#Clazz) {

27 inputElements = inModelElements.select(el | el.eClass().
name = endPoint2.theElement.name);

28

29 var outElements : Sequence = new Sequence;
30 for (element : Any in inputElements) {
31 var outElement = outputTraceabilityModel.createInstance(

endPoint1.theElement.name);
32 ...
33 }
34 ...
35 }

Listing 5.5: Part of the dynamic model transformation to generate the TM

The next section (5.2.5) explains how the introduced traceability analy-
sis language is defined and implemented in the prototype. Additionally, it
demonstrates the execution semantics of the language in detail.

5.2.5 Traceability Analysis Language

As explained in Section 4.5.1, the traceability analysis language (TAL) is a
textual language, which is also bound to the TIM (TIM-specific), to express
traceability analyses at traceability abstraction level.

In this implementation, the TAL is defined on top of EOL which means
that each statement is transformed into an EOL program to be executed on
the TM. The generated EOL program takes TM as input, runs the analysis,

159

Chapter 5 Implementation

and produces the output result model. This way, the TAL would be com-
patible with the implementation infrastructure with which we have worked
through out the research. However, it also allows us to exploit existing model
management tools which already operate on modelling and metamodelling
standards (such as Ecore).

The grammar of the TAL have been explained with Xtext which allows
us to describe the concrete syntax and how it is mapped to the semantic.
Additionally, it generate the basic infrastructure required to use the language
to define traceability analyses.

As mentioned in Section 4.5.1, the TAL grammar is generated based on
a given TIM. Basically, the TAL grammar consists of two parts:

1. General part which does not have any TIM-specific elements and covers
the syntax for defining a query or a constraint, describing a condition
using ForAll, Exist, and ExistOne, and explaining an expression in
TAL. This part is provided in Appendix D.

2. Project-specific part which contains the project-specific terms which
are defined in the TIM as TraceableElements and TraceLinks. These
terms are used in the TAL as the valid values for the TracableElement
and TraceLink rules in the grammar.

We also found out a number of other rules are required to describe more
complex uses of these project-specific terms, which depends on the part of a
statement in which they are used (e.g. elements as an operand which requires
access to its feature). All the additional rules follow a set of recurring
patterns for all elements, and, hence, can be generated automatically based
on the TIM using M2T model transformations.

In this context, we have developed an EGL program which takes a TIM
and generates the TIM-specific part of the TAL grammar which is thereafter
appended to the general part of the grammar in order to have a complete
grammar for a TIM-specific TAL. For each element in the TIM (subtypes of
TraceableElement and TraceLink), we identified five grammar rules which
have to be generated to reach to a precise and complete grammar. These
rules define how to use the

1. alias for the element (specific syntax)

2. element in the query or constraint

3. features of the element

4. features of the element as an operand (used to navigate to the feature
of the elements referred in a trace link)

5. element as an operand in an expression (normally, we need to access
its features)

160

5.2 Prototype

Listing 5.6 shows the core part of the EGL program in which the above
grammar rules for each subtype of TraceableElement and TraceLink (de-
fined in the TIM) are generated. The elements, in line 2, is a collection of
TraceableElement and TraceLink. In lines 16-17, the first type of rules in
above list is generated; the rule which defines the specific syntax to use an
alias for an element.

1 [%
2 for (element : Any in elements)
3 {
4 //Element name
5 var elName = element.name;
6 //Determine the alias for the element
7 var elAlias = elName.toCharSequence()
8 .select(ch | ch.matches("[A-Z]"))
9 .concat();

10

11 //Initialise required variables
12 ...
13 //Generating grammar rules
14 %]
15

16 terminal [%=elAlias%]ALIAS :
17 "[%=elAlias%]_"INT;
18

19 [%=elName%]:
20 name = ‘[%=elName%]’ ‘as ’ alias = [%=elAlias%]ALIAS
21 ;
22 ...
23 }

Listing 5.6: Part of the EGL program to generate the TIM-specific part of
the TAL grammar

Figure 5.8 shows an example of the grammar rules generated in the IADDS
project for the traceable element UserStory and trace link Mitigate.

With the complete grammar for the analysis language, the Xtext language
generator is executed which will derive the various language components.
We mainly use the editor, because of syntax highlighting and syntactic val-
idation, and the code generator stub (the Xtend class) which is used to
translate TAL scripts into EOL. The code generator stub is called by the
language compiler whenever a statement in the new language is created.

The code generator stub is a Xtend class which implements a doGenerate
method. This method is the main method of the code generation and it is
overrided to generate any arbitrary code in the desired format. Listing 5.7
shows our implementation of the doGenerate method to generate EOL code
for TAL scripts.

1 override void doGenerate(Resource resource, IFileSystemAccess
fsa) {

161

Chapter 5 Implementation

Figure 5.8: TAL grammar rules for UserStory and Mitigate

2 for (q: resource.allContents.toIterable.filter(typeof(Query)
)) {

3 fsa.generateFile(q.QName +"_Query.eol", q.compile);
4 }
5

6 for (c: resource.allContents.toIterable.filter(typeof(
Constraint))) {

7 fsa.generateFile(c.CName +"_Constraint.eol", c.compile);
8 }
9 }

Listing 5.7: The doGenerate method in the Xtend Class

First of all, the contents of the resource are filtered down to queries and
constraints. Then, for each query and constraint, an EOL file (with .eol
extension) is generated and the output of compiling Query and Constraint

162

5.2 Prototype

(calling function compile on the query or the constraint) is written into
the generated file. The function compile implements the code generator
and defines the template code for the input type (e.g. query), which is
implemented with specific syntax (EOL code in our implementation).

Listing 5.8 shows part of the function compile which generates the EOL
code for a Query. In line 1, the code generator function compile is defined
for type Query. The tag pair « » is used to delimit a dynamic section
of the Xtend code. The contents of dynamic sections are executed and
used to control the text that is generated, such as explaining conditional
statements and calling the other functions to generate required text for the
nested elements. In lines 11-13, if the Query has any input parameter the
function compile for each parameter is called (shown in lines 36-41). For
each input parameter, a list of all the model elements of specified type is
provided to users to select one of them which is then assigned to a variable
in the context of the EOL. In line 15, the code generator calls function
compileQFunc for the query element in a Query which generates the template
code for the QueryFunction (defined in the TAL grammar). All the other
texts (outside of « and ») are directly written into the output.

1 def compile (Query q) {
2 ’’’
3 "**********************".println();
4 "Query: <<q.QName>> ".println();
5 "**********************".println();
6

7 //output model
8 var resultModel = new outputModel!QueryResult;
9 resultModel.queryName = queryName;

10

11 <<IF q.params != null && !q.params.isEmpty()>>
12 <<FOR p: q.params>>
13 <<p.compile>>
14

15 result = <<q.query.compileQFunc>>;
16

17 //build the output model
18 if (result.isEmpty()) {
19 resultModel.overallResult = outputModel!Result#failed;
20 "Failed: No Element Found!".println();
21 }
22 else {
23 resultModel.overallResult = outputModel!Result#passed;
24 ("Passed: " + result.size() + " Element(s) Found.").println

();
25 for (r: Any in result) {
26 var resObj : outputModel!ResultObject = new outputModel!

ResultObject;
27 resObj.object = r;
28 resultModel.objects.add(resObj);
29 }

163

Chapter 5 Implementation

30 }
31

32 resultModel.execStatus = outputModel!ExecutionStatus#
successful;

33 ’’’
34 }
35

36 def compile (Parameter p) {
37 ’’’
38 //Input parameter: <<p.PName>> : <<p.PType>>
39 var <<p.PName>> = System.user.choose("Choose Parameter: <<p

.PName>>", inputModel!<<p.PType>>.all());
40 ’’’
41 }

Listing 5.8: Code template for the Query

The template code for all of the elements in the language have been im-
plemented in the Xtend class similarly to the one defined for the Query
element.

Accordingly, when a trace query or constraint is described an EOL file
is generated automatically. Listing 5.9 shows the generated EOL for the
trace query defined in Section 4.5.1.3. The EOL script creates a model of
type QueryResult (line 9), named resultModel, and initialises its name to
the name of the given trace query (line 10). The core part of the EOL is
the statement executed to query the input model and collect the desired
elements (line 13). The input model is called inputModel which refers to the
traceability model and defines in the run configuration for the EOL. Finally,
based on the result of the main statement, the found elements are added
to the resultModel (the for statement in lines 23-27), the overalResult, and
the execStatus of the model are assigned to the right value (lines 21 and 30
respectively).

1 "********************************".println();
2 "Query: unMitigatedHazards ".println();
3 "********************************".println();
4

5 //temporary result
6 var result : Any;
7

8 //output model
9 var resultModel = new outputModel!QueryResult;

10 resultModel.queryName = "unMitigatedHazards";
11 resultModel.execStatus = outputModel!ExecutionStatus#failed;
12

13 result = inputModel!Hazard.all().select(HZD | not (inputModel
!SafetyStory.all().exists(SS | inputModel!Mitigate.all().
exists(M | M.traceLinkEnd1.name = SS.name and M.
traceLinkEnd2.name = HZD.name))));

14

15 //build the output model

164

5.3 Chapter Summary

16 if (result.isEmpty()) {
17 resultModel.overallResult = outputModel!Result#failed;
18 "Failed: No Element Found!".println();
19 }
20 else {
21 resultModel.overallResult = outputModel!Result#passed;
22 ("Passed: " + result.size() + " Elements Found.").println();
23 for (r: Any in result) {
24 var resObj : outputModel!ResultObject = new outputModel!

ResultObject;
25 resObj.object = r;
26 resultModel.objects.add(resObj);
27 }
28 }
29

30 resultModel.execStatus = outputModel!ExecutionStatus#
successful;

Listing 5.9: Generated EOL file for the trace query defined in Section 4.5.1.3

5.3 Chapter Summary

In this chapter, an overview of the prototype of the tooling support for
the traceability solution was provided. The implementation enables the au-
thor to use and evaluate the proposed approach. Throughout this chapter,
important implementation decisions such as the choice of specific develop-
ment environments or of specific programming and developing languages is
discussed.

It is important to note that although EMF and Epsilon were chosen as the
model management framework to implement the prototype for the tooling
support, in principle, any other modelling framework and model manage-
ment framework could have been used instead for implementation and this
decision should not affect the genericity of the proposed approach. Of course,
depending on the framework it might be needed to implement some parts
from scratch, regarding the framework, or appropriate adjustments to the
implementation should have been made. For example, using EWL facili-
tates the creation and definition of the mapping model as the model refers
to many metamodels and element types and EWL wizards allows users to
access the element types and assign them easily and correctly. In this re-
spect, if we had chosen another framework which does not support update
transformations in small explicitly (similar to Epsilon with EWL), we would
have had to find and implement other methods to support users in this step.

To conclude, the main concept of the proposed approach (i.e. the fact
that requirements traceability is a multi-domain concern and traceability
solutions are required to work with various, heterogeneous models) should be
generic and in principle applicable no matter which modelling technologies

165

Chapter 5 Implementation

are used to implement the tooling to support the approach. In the next
chapter, a complex and large case study, using the implemented prototype,
is provided. The case study helps us to evaluate the validity of the hypothesis
and the tool, in addition to the requirements defined in Section 3.4.

166

6
Case Study

The EUR RVSM Programme

This chapter presents a case study of applying the introduced approach in a
safety-critical project. The case study is large due to the size of the project
and the number of the traceability-related metamodels and models as well
as the nature of the traceability relationships. First, a brief introduction to
the project is provided, which focuses on safety issues. Then, the application
of the proposed approach in a traceability scenario is demonstrated.

6.1 The Programme: Introduction

The European Reduced Vertical Separation Minimum (RVSM) Pro-
gramme [EUROCONTROL, 1999a]1 provides six additional cruising levels
to air traffic in the airspace of 39 RVSM States. This facilitates the task
of Air Traffic Services (ATS) in maintaining a safe, orderly and expeditious
flow of traffic and results in increased capacity of the Air Traffic Manage-
ment (ATM) system and reduced inflight delays and fuel economies for the
users.

The RVSM Programme requires specific training for aircrew and Air Traf-
fic Control (ATC) staff which was performed prior to the start of RVSM
operations. The Programme also requires ATC equipment and procedures
to be modified according to specific Programme requirements prior to the
start of RVSM operations.

The Programme involves activities from a wide range of stakeholders and
1The resources for the project, which have been used in this case study, are no longer

available officially.

167

Chapter 6 Case Study: The EUR RVSM Programme

covers different areas including the followings. Definitions have been taken
from EUR RVSM Master Plan [EUROCONTROL, 1999b].

Safety. The introduction of RVSM must be achieved in conjunction with
a thorough assessment of the safety implications of this change, the es-
tablishment of clear safety objectives, and safety evaluations showing the
attainment of these objectives, before and after RVSM introduction.

Airspace Aspects. The definition of the extent of the European RVSM
area has been based on the operational requirement for a homogeneous area
without significant gaps. Within RVSM airspace, sectorisation and ATS
routes will need to be reviewed in the context of the availability of the
additional RVSM Flight Levels.

ATC Procedures. ATC Operational Procedures for the European RVSM
airspace will need to be developed and implemented, including Flight Plan-
ning Procedures, Contingency Procedures, Transition Procedures, Proce-
dures for handling non-RVSM State aircraft. These procedures will be
reflected in the ATC Manual for Reduced Vertical Separation Minimum
(RVSM) in Europe. Additionally, ATC training syllabi will be developed to
support RVSM ATC training by the ATS providers.

ATC Systems. In order to accommodate and support the provision of ATC
in an RVSM environment, ATC systems will need modification. The modifi-
cations are related to the controller and ATC training simulators to accom-
modate new needs. Further, the Central Flow Management Unit (CFMU)
will need to adapt the system for RVSM, including modifications to the
Integrated Initial Flight Plan Processing System (IFPS).

Aircraft Requirements. For operations in RVSM airspace, flights are re-
quired to be RVSM approved regarding the RVSM requirements. The RVSM
requirements are reflected in the ATC Manual for RVSM in Europe, as basis
for National regulation.

Monitoring. In line with International Civil Aviation Organisation (ICAO)
Guidance Material, introducing RVSM should have appropriate monitoring
in place to confirm that the height keeping performance requirements are
being met. The monitoring programme requires the availability of height
monitoring systems, both ground based (HMUs) and portable for on-board
measurements (GMUs).

The identified activities have been organised into five main sub pro-
grammes and projects which have been further divided into a number of
Work Packages (WPs) (tasks with objectives/deliverables).

168

6.1 The Programme: Introduction

1. Project P0: Programme Validation & Management. The main deliv-
erables of P0 are the detailed RVSM Master Plan [EUROCONTROL,
1999b].

2. Sub Programme P1: Airspace User Preparation & Performance Ver-
ification. It ensures that the technical, operational and regulatory
means will available for airspace users and States to enable RVSM
approvals. P1 also assists and monitors the approval process. The
monitoring programme will provide the technical data to confirm that
safety objectives are met

3. Sub Programme P2: ATM Preparation. This will ensure all Air Traffic
Service (ATS) provider units are prepared and ready for the introduc-
tion of RVSM. It identifies the tasks and deliverables required to make
airspace changes including introducing RVSM related ATC procedures
(ATC Manual for RVSM in Europe), modifying ATC systems (Agreed
Operational Requirements for System Support, Agreed Interface Spec-
ifications, and software and procedures to fulfill the requirements),
providing ATC training (ATC training syllabus), and resolving legal
issues.

4. Sub Programme P3: RVSM Safety Assurance. It constitutes the safety
assessments necessary prior to implementation, just after implemen-
tation, and at the end of the RVSM Programme to ensure that the
agreed safety objectives are met. It includes the development of an
agreed Safety Policy, a report on the RVSM Functional Hazard As-
sessment (FHA), a report on the Collision Risk Assessment (CRA),
National Safety Plans, and Pre/Post-Implementation Safety Case.

5. Project P4: Awareness and Marketing. P4 caters development, de-
livery and coordination of an awareness programme through actions,
products and packages supporting RVSM milestones.

Figure 6.1 gives an overview of the areas covered in the Programme and
WPs with the associated deliverables/objectives. WPs have been cate-
gorised regarding the main areas and the general relationships between them
are specified. An additional area, Management, has been defined (for our
case study) which shows the managerial aspects of the Programme. Obvi-
ously, managerial activities (Project P0) and their outcomes determine other
activities and monitor them. Accordingly, the deliverables of this area, in-
cluding Programme Support Office (PSO), RVSM Master Plan, and RVSM
Management Plan, are related to all other WPs, which is shown as relation-
ships between this area and other areas rather than between WP (shown as
dashed arrow). Additionally, some of the WPs involve more than one area
and they are shown on the boundary between related areas.

169

Chapter 6 Case Study: The EUR RVSM Programme

Fi
gu

re
6.

1:
C

on
ce

pt
ua

lo
ve

rv
ie

w
of

th
e

EU
R

RV
SM

Pr
og

ra
m

m
e

170

6.2 Traceability in the EUR RVSM

6.2 Traceability in the EUR RVSM

In this Programme, similarly to any safety-critical project, traceability is
both a mandatory requirement of safety standards and essential in address-
ing the challenges and requirements inherent in the context of safety. In
terms of the proposed approach in this thesis, both domain-specific trace-
ability and multi-domain traceability are required. In particular, the project
requires multi-domain traceability as it involves different areas (domains)
and a wide range of activities. As shown in the Figure 6.1, activities (and
so artefacts) in different areas are relevant to each other and, consequently,
must trace to their related activities. For example, safety activities must
trace to system modification activities, or trace to activities carried out to
define and provide ATC procedures.

In many domains, traceability is supported in the scope of that domain
(e.g. with domain-specific traceability solutions) or existing models im-
plicitly provide traceability-related information. For example, traceability
between the specific requirements of a supporting system and system accep-
tance tests is provided in the context of the system development process.
In the safety domain, the relationships between safety requirements, haz-
ards, and system elements is completely and explicitly defined and provided.
However, to have a comprehensive and integrated view of the interrelation
between different domains and their artefacts, a multi-domain approach to
traceability is required, beneficial, and useful.

On the other hand, the nature of the involved areas acknowledges and sup-
ports the motivation of the research presented in this thesis; this case fits
well with the proposed multi-domain approach. The areas are completely
different from each other. Activities in each domain are usually performed
without significant knowledge of other domains with totally different teams.
The interrelation between activities is limited to preparing specific artefact
to be used in other activities which is somehow the only way to relate them.
This is because it is not possible or feasible to carry out these activities
through a single execution or operational environment (system) or seam-
lessly integrate them in order to provide a coherent and comprehensive view
of the information in the project.

Nevertheless, the traceability in the safety domain also has similar char-
acteristics to multi-domain traceability to some extent. Safety activities are
usually carried out independently by teams specialised in particular area,
though they all conceptually serve for a same purpose (safety). In the scope
of each activity, the relationships between concepts are well-defined and pro-
vided completely. But, the relationship between them are defined implicitly
or incompletely. Moreover, in some cases different vocabulary are used to
represent same concepts which would result in later misunderstanding and
inconsistency. For example, in the RVSM FHA, for each hazard a safety
objective is defined which is referred to as a safety integrity requirement in

171

Chapter 6 Case Study: The EUR RVSM Programme

the context of the PSSA. The term ‘safety objective’ refers to a different
concept in the RVSM Safety Policy.

In this case study, we are particularly interested in traceability required
for or related to safety; traceability between safety artefacts (implicitly pro-
vided in the safety area) and traceability between safety activities and ac-
tivities/artefacts in other areas. Accordingly, in the following, a brief de-
scription of safety activities and their relationships with other activities is
provided, which is however limited to activities for which there are available
and enough resources in public. In addition to safety activities and artefacts,
two activities including ‘modification of ATC equipments’ and ‘provision of
ATC Manual’ are introduced highlighting their relation with safety activi-
ties.

Available resources for this project are documents (texts) which generally
describe accomplished activities and represent the input/output of them.
The metamodels and models for EUR RVSM that are used in this thesis
have been developed by the author specifically for the purposes of this case
study, based on existing available documents.

6.3 Safety Activities
The EUR RVSM has to demonstrate to the international aviation commu-
nity that the Target Level of Safety (TLS) set out by ICAO [ICAO, 2002]
for the vertical collision risk will not be exceeded in the European RVSM
Airspace.

6.3.1 Safety Policy

The EUR RVSM Safety Policy [EUROCONTROL, 2000] has been developed
to meet the requirements of ICAO standard. The Safety Policy is described
through a set of safety statements based on which the EUR RVSM safety
objectives are defined. It is the function of these objectives to ensure that
the safety statements have been complied with.

Figure 6.2 shows the main concepts involved in the Safety Policy in the
form of a metamodel for a model representing the Safety Policy.

6.3.2 Functional Hazard Assessment (FHA)

A detailed FHA is conducted to determine how safe the system would be
by specifying the minimum requirements to be achieved by the system re-
lated to the identified hazards –called safety objectives in the context of
FHA [EUROCONTROL, 2001b]. The identification is carried out in struc-
tured brainstorm sessions. For each session a number of scenarios were
developed. The aim of scenarios is to ensure that all RVSM-related aspects
of flight and air traffic control operations are critically examined.

172

6.3 Safety Activities

Figure 6.2: Concepts and their relationships in the RVSM Safety Policy

Once all possible hazards have been identified, each of them is being as-
sessed to determine the consequences on operation and safety. After as-
sessment of operational and safety consequences, the identified hazards are
assessed in regard to severity and probability. The safety objective for each
hazard is derived from the severity classification assigned to the hazard.
Based on the specific severity classification, the safety objective specifies the
maximum tolerable probability of the failure condition occurrence; that is
“how safe the system needs to be”.

Additionally, the mitigation to reduce the effect, and/or probability of
occurrence, of each hazard is identified. Then (based on the mitigation),
the identified hazards are grouped in two categories: safety-critical (not
tolerable) and not safety-critical. Safety-critical hazards are those that do
not achieve the related safety objective after RVSM mitigation (the identified
mitigation is not sufficient).

Figure 6.3 shows the main concepts in the FHA and the relationships
between them (the metamodel of the FHA model).

6.3.3 Preliminary System Safety Assessment (PSSA)

Throughout PSSA, further development is made in the context of safety
and safety requirements are defined [EUROCONTROL, 2001c]. Initially, the
safety objectives, which express seven attributes of the system, are translated
into High-level Safety Requirements which are allocated to different RVSM
system elements and subsequently broken down into safety requirements for
them. System attributes include Function, Accuracy, Capacity, Overload
Tolerance, Robustness, Reliability, Maintainability.

Additionally, the identified hazards are allocated to the system elements
in order to ensure that they are appropriately addressed and their risk be-

173

Chapter 6 Case Study: The EUR RVSM Programme

Figure 6.3: Concepts and their relationships in the FHA

ing managed. Doing so, safety integrity requirements are defined which are
corresponding to the safety objectives for identified hazards in the FHA.
Then, these requirements, with an indication of what (if any) mitigation is
available, are allocated to already defined safety requirements and, conse-
quently, to the related system element(s). Therefore, if any mitigation is
available, an explicit (functional and detailed) safety requirement is derived
for the relevant system element(s), in order to specify clearly the mitigation
required. Otherwise, the safety integrity requirement from the FHA is di-
rectly allocated to the relevant system element(s), in order to limit the risk
to a tolerable level.

Safety requirements (all types) also specify how they are realised and
which actions are required for the individual stakeholders participating in
EUR RVSM. Actions are particularly related to (affect) the tasks carried out
under the Sub Programme P2. For example, they require specific training
for the aircrew or ATC staff, particular requirements and specification for
ATC systems, or specific ATC procedures to follow.

Figure 6.4 shows the main concepts in the PSSA and the relationships

174

6.3 Safety Activities

between them (the metamodel of the model of the PSSA).

Figure 6.4: Concepts and their relationships in the PSSA

6.3.4 System Safety Assessment (SSA)

In SSA, the target system is checked against the FHA derived safety ob-
jectives or more accurately the PSSA derived safety requirements. The
Pre-Implementation Safety Case (PISC) [EUROCONTROL, 2001c] estab-
lishes all the arguments and evidence necessary to demonstrate that the
implementation of RVSM will be tolerably safe when assessed against the
requirements of the EUR RVSM Safety Policy. The principal safety argu-
ments are that

– the safety requirements fully address all the functionality, performance
and integrity requirements necessary to ensure that the safety risks
under RVSM will be tolerable.

– the RVSM Concept fully satisfy the RVSM safety requirements.

– the Implementation of the RVSM Concept fully satisfies the RVSM
safety requirements.

175

Chapter 6 Case Study: The EUR RVSM Programme

– That the Switch-Over from the current vertical separation minima to
the RVSM will not adversely affect the safety of the on-going air traffic
operations.

Nevertheless, the evidence of the successful implementation of RVSM, to
ensure that the agreed safety objectives are met, depends on the satisfactory
completion of the actions specified by safety requirements in other areas.

Accordingly and considering the above mentioned safety arguments, it is
required to be able to link safety requirements to other parts of the sys-
tem and deliverables to be able to demonstrate that they are satisfied. For
examples, if an action results in a specific requirement in one of the sup-
porting systems, it has to be shown that the requirement is implemented
in the system, for example by requirements traceability in the development
of that system. In case an action requires a specific procedure or training,
there should be correspondent parts (procedure or training material) in the
ATC Manual or ATC training syllabus. These relationships have to be de-
fined and available to be able to establish valid safety arguments. Therefore,
traceability is essential to be able to comprehensively demonstrate that the
EUR RVSM Programme is operationally safe.

6.4 Safety-Affected Activities

Safety activities affect many of the other activities and, therefore, safety
artefacts are used in these activities, as the agreed requirements or specifica-
tions for that activity. In this section, two activities including ’modification
of ATC equipments’ and ’provision of ATC Manual’ are introduced focusing
on how they are affected by safety activities and how safety requirements
are addressed in them.

6.4.1 Modification of ATC Equipment

ATC equipment is modified to provide the additional support to controllers
regarding the specification of the RVSM and specific safety requirements.
Generally, the RVSM Programme provides an agreed technical specifications
for each equipment to the related stakeholders. For example, a document
entitled ‘RVSM Requirements for IFPS’ was developed and accepted as the
formal agreement between CFMU for the modification to the IFPS. In some
cases, operational specifications for functionalities are also detailed in the
RVSM ATC Manual.

Additionally, a series of Systems Acceptance Testing (SAT) are carried
out which are conducted by a dedicated test team and the CFMU Quality
Assurance section. Successful completion of the operational evaluation will
therefore ensure that safety requirements have been satisfied.

176

6.5 An Example Traceability Scenario

Figure 6.5 shows the main concepts in modifying ATC equipments (based
on the available resources) and their relationships.

Figure 6.5: Concepts and their relationships in the ATC supporting system

6.4.2 Provision of ATC Procedures

RVSM is a change to a fundamental ATC separation. Its application needs to
be supported by appropriate operational instructions and procedures which
cover all possible scenarios encountered by controllers. These instructions
and procedures are provided in the ATC Manual for RVSM in Europe [EU-
ROCONTROL, 2001a]. The manual represents an operational reference
document intended for the use of ATS personnel involved in the planning,
implementation and application of a RVSM in Europe.

The safety requirements applicable to ATC procedures for RVSM are in-
tended to ensure that the procedures cover the precise and clear description
of the new vertical separation minimum, the criteria and requirements for
its use, and enable the safe and expeditious flow of traffic. Accordingly, they
are satisfied by procedures issued by EUROCONTROL and provided in the
ATC Manual for RVSM.

Figure 6.6 shows the main concepts involved in and related to ATC pro-
cedures and the relationships between them. It mainly represents the ATC
Manual concepts as the metamodel of a model representing the ATC Man-
ual.

6.5 An Example Traceability Scenario

In this section, a multi-domain traceability scenario, in the context of safety
assessment, is introduced and the application of the proposed approach to
support the scenario is demonstrated and discussed.

177

Chapter 6 Case Study: The EUR RVSM Programme

Figure 6.6: Concepts and their relationships in the ATC Manual

The scenario is defined as the following which, in particular, supports the
first and the second safety arguments provided in the PISC.

‘Safety requirements are valid, correct, and realised in Concept.’

The main concerns in this scenario are to show that specified safety re-
quirements are

– Valid: they are either directly relevant or related to the RVSM safety
objectives or defined to address identified hazards and mitigations.

– Correct: they covers all safety objectives and all identified hazards.

– Realised in Concept: they are explicitly addressed and covered in other
related parts of the system.

178

6.5 An Example Traceability Scenario

A traceability solution is essential to address these issues; a solution which
allows to define, create, and retrieve those traces representing the required
relationships between objects or artefacts. As it can be seen, a part of
the required information is in the safety domain and considers relationships
between different safety concepts and models. The other part of the infor-
mation requires relationships between safety models and models in other
domains, such as supporting systems and ATC procedures. It might also
require relations between other domains (excluding safety), for example,
between system models and procedures.

6.5.1 The TIM
According to the proposed approach, traceability goals are determined and
a GQM model is developed in order to define a TIM for the solution. The
GQM model illustrates how the goals are refined into more detailed trace-
ability questions and further into related concepts in the project. Figure 6.7
depicts the GQM model (the EMF model is provided in Appendix F.1).

Three traceability goals are defined corresponding to the aforementioned
concerns for safety requirements. The first goal (G1) is to show that safety
requirements are valid; for each safety requirement there is at least one safety
objective or one hazard. The goal is refined into a question (Q1) which finds
the related safety objective or hazard for a safety requirement. This question
involves the following concepts: safety requirement, safety objective, high
level safety requirement, and hazard.

Goal G2 demonstrates that all safety objectives and identified hazards
are addressed by at least one safety requirement. Three traceability ques-
tions are defined in the context of this goal. The questions Q2 and Q3
find the safety requirements related to a safety objective or a hazard. The
third question Q4 checks if the actions required by a safety requirement
represents the mitigations identified for its related hazard. As shown in Fig-
ure 6.7, this question requires ‘mitigation’ and ‘action’ in addition to the
above mentioned concepts.

Finally, the third goal (G3) focuses on the realisation of the safety re-
quirement in the Programme. Doing so, three questions are defined. The
question Q5 is defined to find the system element to which a safety require-
ment is allocated. The question Q6 determines more precisely how a given
safety requirement is addressed. Considering the scope of this study, Q6
finds the operational requirements or specific procedures defined based on
a safety requirement. Additionally, it is required to find out if these op-
erational requirements are implemented in supporting systems and if these
procedures are explicitly presented in the manual. Accordingly, the question
Q7 focuses on the acceptance tests defined for operational requirements and
the content of the ATC Manual provided for the RVSM Programme.

179

Chapter 6 Case Study: The EUR RVSM Programme

Fi
gu

re
6.

7:
T

he
G

Q
M

m
od

el
fo

r
th

e
ex

am
pl

e
tr

ac
ea

bi
lit

y
sc

en
ar

io
in

RV
SM

180

6.5 An Example Traceability Scenario

Based on the GQM model and the context of the project, the TIM is
defined which is an extension to the Extended CoreTIM (introduced in Sec-
tion 5.2.2), and, therefore, it is annotated with respect to the GQM model.
The TIM is shown in Figure 6.8. TraceableElements are highlighted in yellow
and the part of the TIM which have been introduced in the ExtendedTIM
are coloured in gray in order to focus on the part which is specific to the
RVSM (TraceableElement and TraceLink types).

Conceptually, the TIM represents an integrated and concise overview of
the relationships between safety concepts and other concepts required to
support specified traceability goals. The focus is on safety requirements and
how they are related with other elements.

‘Safety Requirements’ are allocated to ‘System Elements’ and each of them
defines specific ‘Actions’ to be done in the RVSM. The ‘Safety Objectives’
are translated into ‘High Level Safety Requirements’ which are then decom-
posed to ‘Safety Requirements’. On the other hand, a number of ’Safety
Requirements’ are derived from those ‘Safety Integrity Requirements’ which
are defined for NonSafetyCritical hazards. For SafetyCritical hazards, the
defined ‘Safety Integrity Requirements’ is directly allocated to related ‘Sys-
tem Elements’ (shown as ‘DirAllocatedTo’ trace link type).

The actions required by derived safety requirements have to be defined
based on the ‘Mitigation’ identified for the related ‘Hazard’ and, therefore,
they refer to related mitigations. All the actions have to be explicitly con-
sidered in different areas of the RVSM. In the scope of this case study, we
focus on how they are considered in the systems support or through provided
procedures. Accordingly, depending on the type of an action, it has to be
addressed by the ‘Operational Requirements’ defined for ATC equipments or
covered by ATC ‘Procedures’ which are presented in the ATC Manual (‘Sec-
tionOfManual’). For operational requirements, it is required to show that
they are satisfied in the developed system which is possible through devel-
oping ‘Acceptance Tests’ for each requirement and recording their execution
results (‘Test Results’).

Additionally, a traceability model, conforming to this TIM, has to satisfy
more validity constraints, in addition to structural constraints which are
described by a model validation language (EVL in our case study). These
constraints could represent specific characteristics of a project or could be
required based on the traceability goals. A traceability question, in the
GQM model, may explain a constraint on particular trace link types.

181

Chapter 6 Case Study: The EUR RVSM Programme

Fi
gu

re
6.

8:
T

he
T

IM
fo

r
th

e
EU

R
RV

SM
Pr

og
ra

m
m

e.

182

6.5 An Example Traceability Scenario

For example, the first validation constraint demonstrated in Listing 6.1
explains that a derived safety requirement is derived from a safety integrity
requirement which its associated hazard is classified as NonSafetyCritical
(there is no derived safety requirement for a SafetyCritical hazard). The
second constraint in the Listing 6.1 has been defined based on the traceabil-
ity question Q1, in the GQM model. It specifies that each safety requirement
has to trace to a high level safety requirement or has to be derived from a
safety integrity requirement. All the EVL constraints for the TIM are pro-
vided in Appendix F.2.

1 context SafetyRequirement {
2 guard : self.derived
3 constraint DerivedForNonSafetyCriticalHazard {
4 check :
5 var safetyIntegrityReq = DerivedFrom.all().selectOne(df

| df.traceLinkEnd1 = self).traceLinkEnd2;
6 return not DefinedFor.all.exists(df | df.traceLinkEnd1 =

safetyIntegrityReq and df.traceLinkEnd2.type =
HazardClassification#SafetyCritical);

7

8 message : "Safety Requirement ‘" + self + "’ traces to a
SafetyCritical hazard";

9 }
10 }
11

12 context SafetyRequirement {
13 constraint NoDanglingSafetyRequirement{
14 check : DerivedFrom.all.exists(df | df.traceLinkEnd1 = self
15 and
16 df.traceLinkEnd2.isDefined())
17 or
18 DecomposedTo.all.exists(dt | dt.traceLinkEnd2 = self
19 and
20 dt.traceLinkEnd1.isDefined())
21

22 message : "All Safety Requirement have to be traced to a
safety objective or a hazard";

23 }
24 }

Listing 6.1: Example EVL constraints in the TIM for RVSM

6.5.2 Traceability-related Information

Considering the models provided in the context of safety activities and ac-
tivities affected by them (introduced in Section 6.3 and 6.4), all the traceable
elements are defined and provided in these models. Trace link types which
are defined between two elements within a same model can also be derived
from that model and accordingly created in the TM. The main challenge is

183

Chapter 6 Case Study: The EUR RVSM Programme

about those trace link types which involve two elements from two models.
According to the proposed approach, in such cases, partialTIMs are defined
and partialTMs are generated.

As explained in Section 4.2.3, model elements in different domains are
related to each other in two ways. Two elements are equivalent when they
represent a same concept (common in two domains). In contrast, two ele-
ments are relevant when they do not represent an identical concept but they
are related to each other in some way.

In the scope of this example traceability scenario, the following inter-
domain relationships between model elements are identified which are re-
quired to be specified and provided.

– ‘Safety Objective’ in Safety Policy is equivalent with ‘Safety Objective’
in FHA when it is not a derived objective.

– derived ‘Safety Objective’ in FHA is equivalent with ‘Safety Integrity
Requirement’ in PSSA.

– ‘Safety Objective’ in the Safety Policy is equivalent with ‘Safety Ob-
jective’ in the PSSA.

– ‘Action’ for derived safety requirements in PSSA is related to ‘Mitiga-
tion’ in FHA.

– ‘RVSM Specific Requirement’ in ATC systems supporting is related to
‘Action’ in PSSA.

– ‘System Supporting Requirement’ in ATC Manual is related to ‘Action’
in PSSA.

– ATC ‘Procedure’ in ATC Manual is related to ‘Action’ in PSSA.

Accordingly, five partialTIMs have to be defined to formally and explicitly
specify these inter-domain relationships; partialTIMs between Safety Policy
and FHA, between Safety Policy and PSSA, between FHA and PSSA, be-
tween PSSA and ATC Manual, and between PSSA and ATC systems sup-
porting. Figure 6.9 shows the partialTIM between FHA and PSSA which
includes an equivalent trace link type between ‘SafetyObjective’ and ‘Safety-
IntegrityRequirement’ and a relationship between ‘Mitigation’ and ‘Action’.
Other parialTIMs are provided in Appendix F.3.

6.5.3 The Traceability Model

Based on the TIM, traceability-related information is located and the map-
ping model is defined to extract required information from existing models
and create the TM. The TM provides a comprehensive and coherent view

184

6.5 An Example Traceability Scenario

Figure 6.9: The partialTIM between FHA and PSSA

of the required (traceability) information over involved areas in the RVSM
Programme to support the specified traceability goals.

Figure 6.10 shows part of the mapping model in which some of the map-
ping entries are defined. Mapping entries specify that each element in the
TM is mapped to which element or association in other models. The map-
ping entries shown in the figure are limited to TraceableElements and de-
scribe how they are mapped to other model elements. The complete mapping
model is shown in Appendix F.4.

6.5.4 Trace Queries

A TIM-specific traceability analysis language is generated based on the TIM
defined for the example traceability scenario. The language is used to define
arbitrary trace queries in the scope of the TIM. For example, the traceabil-
ity questions identified in the GQM model demonstrate example queries or
constraints to define. Each question might lead to more than one query and
constraint. In the following, a number of queries and constraints defined
with respect to these questions are explained as examples to show how the
analysis language is used.

Q1: To which safety objective or hazard is a safety requirement related?

This question leads to two queries to find the safety objective and the haz-
ard related to a safety requirement. These two queries support the question
considering the validity constraint already defined on the TM: all safety re-
quirements have to be related to a safety objective or a hazard. Listing 6.2
shows these queries. Safety requirements and safety objectives are traced
to each other via high level safety requirements; a high level safety require-
ment is decomposed to a number of safety requirements while it is translated
from a safety objective. Accordingly, this safety objective and these safety
requirement are related. The first query explains this relationship with the

185

Chapter 6 Case Study: The EUR RVSM Programme

TAL and finds the related safety objective for a given safety requirement.

Query re la tedSa fetyObj4Sa fetyReq (SR : SafetyRequirement) {
find SafetyObjective as SO where (

exist HighLevelSafetyRequirement as HLSR where (
SO TranslatedTo HLSR
and
HLSR DecomposedTo SR

)
)

}

Query re latedHazard4SafetyReq (SR : SafetyRequirement) {
find Hazard as HZD where (

exist SafetyIntegrityRequirement as SIR where (
SIR DefinedFor HZD
and
SR DerivedFrom SIR

)
)

}

Listing 6.2: Queries for the first traceability question (Q1)

Q4: Does the action associated with a derived safety requirement refer
to the mitigation associated with its related hazard?
The constraint shown in Listing 6.3 addresses this question.

Constraint act ionRe fe rToMit igat ion (SR : SafetyRequirement)
{

forAll Action as ACT where (ACT RequiredBy SR) : (
exist SafetyIntegrityRequirement as SIR where (
SR DerivedFrom SIR
and
exist Hazard as HZD where (
SIR DefinedFor HZD
and
exist Mitigation as MIT where (
HZD MitigatedBy MIT
and
ACT ReferTo MIT

)
)

)
)

}

Listing 6.3: The constraint for the fourth traceability question (Q4)

186

6.5 An Example Traceability Scenario

Q6: Which procedure or system functionality does address the action(s)
associated with a safety requirement?
This question decomposed to two queries to find the related procedures or
operational requirements which address or cover the action required by a
given safety requirement. These queries are shown in Listing 6.4.

Query r e l a t edProcedure (SR : SafetyRequirement) {
find Procedure as PROC where (

exist Action as ACT where (
PROC Cover ACT
and
ACT RequiredBy SR

)
)

}

Query r e l a t e d F u n c t i o n a l i t y (SR : SafetyRequirement) {
find OperationalRequirement as OR where (

exist Action as ACT where (
OR Address ACT
and
ACT RequiredBy SR

)
)

}

Listing 6.4: Queries for the traceability question Q6

Q7: Have procedures or operational requirements been presented or im-
plemented?
One of the queries in the context of this question is to find those safety
requirement which are related to supporting systems but have not been im-
plemented successfully (looking into test cases and test results). Listing 6.5
demonstrates this query.

Query unReal i sedSafetyReqsInSystems {
find SafetyRequirement as SR where (

exist Action as ACT where (
ACT RequiredBy SR
and
exist OperationalRequirement as OR where (
OR Address ACT
and
not
exist AcceptanceTest as AT where (
OR TestedBy AT
and
exist TestResult as TR where (
TR Result AT and TR. r e s u l t=Passed

187

Chapter 6 Case Study: The EUR RVSM Programme

)
)

)
)

)
}

Listing 6.5: A query for the traceability question Q7

6.5.5 Discussion

As mentioned before, traceability is a mandatory requirement in the EUR
RVSM Programme. The Programme involves a wide range of stakeholders
from various areas and contains different kinds of activities. In this context,
most of the traceability scenarios involve different programme areas and con-
sequently require relationships between them (their artefacts). In particular,
multi-domain traceability is essential in the context of safety assessment to
provide valid evidence for safety arguments.

Using the approach presented in this thesis, we can obtain a coherent
view of the traceability information required in the context of the RVSM
Programme. The approach allows us to collect traceability-related informa-
tion from different areas in a systematic, semi-automatic way rather than
manually in an ad hoc way.

In addition to the main benefit of this approach, we can identify incom-
pleteness between artefacts. For example, in the safety domain, the hazards
identified during the FHA are investigated in more detail in the PSSA. It is
required to ensure that all identified hazards are covered in the PSSA and
each covered hazard is an identified hazard (a valid hazard). Accordingly,
considering the metamodels shown in Figure 6.3 and Figure 6.4, each ‘Haz-
ard’ defined in the PSSA model has to trace to a ‘Hazard’ defined in a FHA
model and vice versa. In the context of the developed traceability solution,
this property can be expressed as a validation constraint on the partialTIM
between PSSA and FHA (Figure 6.9).

Additionally, the developed solution, mostly partialTIMs between mod-
els, provides a way to deal with inconsistencies between them specially when
they are involved in the traceability. For example, as mentioned before in
Section 6.2, the term safety objective is used in FHA as the derived safety
requirement for a hazard, while the term is used differently in the context
of the RVSM Safety Policy. On the other hand, safety objectives defined in
FHA are referred to as safety integrity requirement in PSSA. This inconsis-
tency, in using the term safety objective, is managed within the traceability
solution as it is involved in the traceability scenario. ‘Safety Objective’ is
defined in the TIM and, in the mapping model, it is described that to which
concept in other models it is mapped. Also, in the partialTIM between
PSSA and FHA, it is specified that safety objectives in FHA are equivalent

188

6.6 Chapter Summary

to safety integrity requirements in PSSA. This way such inconsistencies are
managed in a systematic way.

6.6 Chapter Summary
This chapter demonstrated the application of the approach presented in
this thesis in a large safety-critical project. Following a brief introduction
to the project and its activities, it discussed the role of traceability in the
project and outlined why the proposed approach to traceability is helpful
and beneficial in this case. A multi-domain traceability scenario, in the
context of safety assessment, was defined and, according to the proposed
approach, a traceability solution was developed to support the traceability
goals defined in this case study. Main parts of the solution were considered
and described in detail. Finally, Section 6.5.5 discussed the benefits of using
the proposed approach to develop a multi-domain traceability solution.

189

Chapter 6 Case Study: The EUR RVSM Programme

Figure 6.10: Part of the mapping model for RVSM case study
190

7
Evaluation and Discussion

This chapter evaluates the approach presented and explained in this thesis
with respect to the research hypothesis outlined in Section 1.2. The eval-
uation explores whether the proposed tasks and structures are effective in
developing a multi-domain traceability solution. It demonstrates how the
proposed approach fulfils the defined requirements for such solutions and
addresses identified challenges.

In addition to evaluating the proposed approach with respect to the de-
fined requirements in Section 3.4, we focus on the validity and feasibility of
this approach by analysing the prototype implementation, investigating the
case study, and introducing publications directly related to this work. At
the end, the limitations are outlined and we discuss why the approach has
the potential to be useful in practice in spite of its limitations and the cost
of developing a solution accordingly.

In Section 7.1, the approach is assessed against the identified requirements.
Section 7.2 evaluates the EUR RVSM case study focusing on the feasibility
and benefits of the approach. In Section 7.3, the papers representing the
outcomes of this research are introduced. The limitations and shortcomings
of the approach are identified and discussed in Section 7.4. Finally, the
chapter is concluded with a discussion of using the proposed approach in
practice (Section 7.5).

7.1 Evaluating the Approach Based on Requirements

This section focuses on the requirements defined for a multi-domain trace-
ability solution and evaluate the work presented in this thesis regarding
them. In the following sections, we discuss in detail how requirements are
addressed and, hence, high-level goals are met by the proposed approach.

Each section focuses on a specific element, feature, or aspect of the pro-
posed approach and highlights the requirements mainly addressed by that

191

Chapter 7 Evaluation and Discussion

element, feature, or aspect. In terms of the GSN, each section demonstrates
the evidence (represented as solutions) to justify how goals (requirements)
are addressed. Accordingly, the GSN diagram of requirements, provided in
Figure 3.4, is completed by adding these sections as solutions. In order to
have a expressive and clear GSN diagram, discussions under requirements
are highlighted and named as [Sx.x.x] which allows us to refer to them in
the diagram. The complete GSN diagram, which illustrates a summary of
the requirements-based evaluation, is depicted in Figure 7.1 and Figure 7.2.

7.1.1 Scenario-Driven Approach
“R1.1 - Traceability is requirements-driven”

According to the approach, the solution is designed and developed based
on the specific usage scenarios for traceability and the context of a project.
Usage scenarios represent stakeholder needs and imply the required informa-
tion to answer project-specific questions or undertake traceability-enabled
activities. As mentioned in Chapter 4, scenarios act as the input of the
introduced process to develop a solution. Therefore, the developed solution
is requirements-driven.

7.1.2 Project-specific Traceability Information Model
“R1.1.1 - Solution is customised to accommodate requirements”

Using this approach, engineers can focus on traceability requirements for a
specific project and develop a solution which is tailored to the requirements
of a given project. A TIM is the core element of any traceability solution
and solutions are built upon them. Accordingly, defining a customised TIM
is a preliminary task in developing a customised traceability solution.

Section 4.1 describes how to define a project-specific TIM which is cus-
tomised to the specific requirements and context of a project. In the pro-
posed approach, a TIM is defined through three steps: 1. determine trace-
ability goals, 2. identify related project concepts, and 3. define the TIM.

“St1.1.1.1 - Identify necessary information”

[S1.1.1.1] The first and the second steps provide a systematic way to iden-
tify necessary information to support traceability. Traceability goals are
determined according to given scenarios which are used to identify required
information to support traceability (Section 4.1.1). Then a goal-oriented
approach, Goal-Question-Metric (GQM), is used to identify traceability-
related concepts in the project. Using this approach, traceability goals are
refined into lower level traceability questions (trace queries) which are asso-
ciated with concrete concepts in the project (Section 4.1.2).

192

7.1 Evaluating the Approach Based on Requirements

“St1.1.1.2 - Select the granularity of information”

[S1.1.1.2] In the third step, a project-specific TIM (traceability metamodel)
is formally defined according to the identified concepts in previous steps. It
specifies concepts and the relationships between them which are required to
answer traceability questions and ultimately meet the goals. As explained
in Section 4.1.3, the metamodel is implemented as a DSML which defines
TraceableElements (concepts), TraceLinks (relationships), and validation
constraints.

7.1.3 Models and Model Management Operations
“R3.1 - The approach is applicable to models: Create models and use

model management operations (St3.1)”

[S3.1] The proposed approach works with models: domain-specific models
are used to extract required information, inter-domain traceability models
(partialTMs) are defined and created to record the relationships between do-
mains, and traceability information is captured as a model which conforms to
a customised traceability metamodel. Moreover, model management tasks
and operations are used to create, modify and update the traceability-related
models including utility models which are generated to support the proposed
tasks and steps.

“R3.2 - Non-model artefacts: Systematic way to deal with non-model
artefacts (St3.2)”

[S3.2] Although the approach works effectively with already available mod-
els that provide traceability information, it also considers non-model arte-
facts (though partially). The approach acknowledges that non-model arte-
facts are essential in an effective traceability solution, particularly in the
context of multi-domain projects. As explained in Section 4.2, it identified
different cases and discussed potentials to deal with non-model artefacts in
each case, particularly using MDE techniques. For example, it was realised
that in many cases existing non-model artefacts are structured (i.e. spread-
sheets) and, therefore, a series of model transformation techniques (T2M,
M2M, and M2T) can be used to transform them into models.

However, supporting an end-to-end, effective traceability solution in a
project requires an extended approach to deal with all kinds of non-model
artefacts specially when they are not structured and it is not practical and
feasible to transform them into models, such as natural language descriptions
or executable code.

“R3.3 - Different Metamodels: Systematic way to deal with different
metamodels (St3.3)”

193

Chapter 7 Evaluation and Discussion

[S3.3] The approach is not restricted to specific metamodels, excluding the
ones that are introduced and defined in this approach. Existing models
(domain-specific or inter-domain models) are not required to conform to
specific metamodels or to contain specific concepts.

“R3.4 - Different notations: Systematic way to deal with different
notations (St3.4)”

[S3.4] The metamodelling language chosen to describe metamodels in the
context of a solution is essential in order to be able to work with arbitrary
metamodels. This is because the approach uses existing metamodels regard-
ing the language by which they are described. So, a common metamodelling
language should be used to describe all the metamodels in a soltuion. For
example, in this thesis, we use EMF modelling framework and Ecore meta-
modelling language to define metamodels. So, Ecore metamodels are defined
and used in different parts and steps of the approach. However, the approach
does not mandate to use any specific metamodelling language which is de-
pendent on the modelling framework chosen to implement a solution.

7.1.4 Domain-Specific Models
“R2.1 - Domain-specific information: Systematic way to reuse

domain-specific information (St2.1)”

[S2.1] As explained in Section 4.2.1, once the TIM was defined, existing
models (mainly domain models), which explicitly or implicitly support trace-
ability, are analysed to find out how much of the required information is
available and in which format. It is realised how the traceability model
is related with domain models. The relationships are described in a map-
ping model which defines how each concept in a TIM (TraceableElement or
TraceLink) is related to concepts in other models (Section 4.3.1). Then, as
described in Section 4.3.2, with the use of model transformations and based
on the mapping model, traceability-related information is extracted from
domain-specific models and a TM for the project is generated. Accordingly,
the approach uses existing domain-specific models in creating the traceabil-
ity model and the model-driven approach enables us to work with arbitrary
engineering models and effectively (re-)use them.

7.1.5 Inter-Domain Traceability Metamodels and Models
“R2.2 - Inter-domain information: Formally identify and capture

inter-domain relationships (St2.2)”

[S2.2] The relationships between domains are important to accumulate the
traceability information in order to support multi-domain traceability sce-
narios. Accordingly, a precise and formal definition of the relationships be-
tween domains is an essential information in a project, though it is usually

194

7.1 Evaluating the Approach Based on Requirements

defined informally or incompletely. Section 4.2.3 demonstrated how to keep
record of inter-domain trace links between two domain. Doing so, a trace-
ability information model (partialTIM) is defined which explicitly specifies
the required inter-domain trace link types between pairs of domains and.
Then, traceability models (partialTMs) are created to record the trace links
between domains. Accordingly, throughout the process to create a TM,
inter-domain relationships are identified and captured in partialTMs which
are used to create the TM, similarly to other models.

7.1.6 A Project-wide Traceability Model

Traceability information is captured and represented in a single project-
wide traceability model. The model is built on top of the other models
(domain models and inter-domain models) and generated automatically by
the dynamic model transformation described in Section 4.3.2.

“R2.3 - Diverse information in different format: Systematic way to deal
with the diversity in format and context (St2.3)”

[S2.3] A single TM provides a coherent view of the traceability information
spread in different models, and unifies the way in which the traceability
information can be used to perform traceability analyses. This way, users
can focus on traceability and use the TM to perform traceability analyses
regardless of the underlying information complexity, data structures, and
information representation format of artefacts involved in supporting trace-
ability.

“R2.4 - Separation of Concerns: Allow users to use domain-specific models
and tools (St2.4)”

[S2.4] The way in which traceability information is captured and the project-
wide TM is created allows the traceability users to use domain-specific tools
and models separately while traceability information is defined and cap-
tured. Different artefacts from different domains that are being traced do
not need to be combined (possibly artificially) in one overall description.
Accordingly, the proposed approach supports separation of concerns and
provides a transparent traceability solution to those who are not a user of
traceability.

7.1.7 Traceability Activities

“R1.2 - Comprehensive solution: Consider all traceability activities or
define extension mechanisms (St1.2)”

195

Chapter 7 Evaluation and Discussion

[S1.2] The proposed approach covers the planning and managing traceabil-
ity tasks. As presented in Section 4.1.1, engineers determine their needs for
traceability and design a solution accordingly. Section 4.1.3 demonstrated
how a TIM is defined and represented as a DSML (Ecore metamodel). ‘As-
sessing the solution’ task is partially considered by defining validation con-
straints on a TIM which have to be correct all over the time.

In the scope of the approach, trace creation activity is realised by extract-
ing traceability information from other models and generating a project-
wide traceability models (Section 4.3.2). The approach does not consider
the traceability solutions which might be used in each domain. It just uses
the output of such solutions and other artefacts available in these domains.
Thus, different trace creation techniques can be used in each domain to
capture traceability information limited to a single domain.

The analysis language introduced in this thesis (Section 4.5.1) supports
the using traceability activity, particularly for retrieving traces from a trace-
ability model. In the context of the model-based approach, traceability
information is represented as a model, which is a graph-based techniques for
visualising traces (introduced in Section 2.1.3.5).

Traceability maintenance –and consequently flexibility– have not been
fully covered in this thesis. The approach particularly considers maintain-
ing the integrity of traceability model as other models change. Additionally,
change and different types of change which might happen within the scope
of the solution have been studied and identified, in Section 7.5. Then, and,
accordingly, potential model-based strategies have been suggested to man-
age them, which certainly need more work to reach to a set of practical
techniques to completely support traceability maintenance.

“R1.3 - Automated solution: Activities are performed automatically or
semi-automatically (St1.3)”

[S1.3] In terms of traceability, two activities are subject to automation:
trace creation and trace maintenance. In the context of the proposed ap-
proach, a dynamic model transformation is developed to extract traceability
information from existing models and, accordingly, create the traceability
model automatically, which is explained in Section 4.3.2. In this way, the
TM can be automatically regenerated and updated whenever any of the
source models change. As mentioned above, traceability maintenance is not
completely covered in this work. However, MDE provides promising tech-
niques to support (semi-)automated methods to keep the solution relevant
and up to date (discussed later in Section 7.5.3).

“St1.1.1.3 - Customised traceability process”

[S1.1.1.3] As mentioned above, this approach does not constraint other
project activities and does not require any specific order or schedule for

196

7.1 Evaluating the Approach Based on Requirements

them. This is because it is loosely coupled with them and only use the
output of these activities. Various traceability solutions could be used in
each domain to capture traceability information limited to a single domain,
in addition to the domain-specific activities carried out in each domain.
This way allows engineers to easily customise the traceability process and
integrate it with the other activities performed in a project.

7.1.8 Tooling Support
“R1.4 - Tool Support: Provide required tools (St1.4)”

[S1.4] The proposed approach provides a strategy to design and develop a
traceability solution with the use of MDE techniques and tools. It demon-
strates how modelling and consequently MDE framework help to develop a
practical solution and implement a tool to carry out traceability activities.
The proposed approach is not restricted to a particular model management
framework. It introduces structures and operations which can be imple-
mented with any framework. The prototype implementation (Section 5.2)
shows that how the required tooling could be implemented with EMF and
Epsilon, as an example modelling framework and platform. Nevertheless, it
also demonstrates that it is feasible to implement a tooling support for a
traceability solution developed based on this approach.

“R1.5 - Interoperable solution: Support interoperability between different
tools (St1.5)”

[S1.5] The proposed approach is model-based. It mainly focuses on meta-
models and works with them. As mentioned in Section 2.2.2, metamodels
facilitate model interchange [Gitzel and Korthaus, 2004] and, consequently,
interoperability between modelling tools. Specifying metamodels with a
common modelling language ensures consistency in the way in which mod-
elling constructs are specified and supports the construction of interoperable
MDE tools. Therefore, a model-based tool supports interoperability between
modelling tools which are used by users in different tools. For example,
considering the prototype, the proposed structures and model management
tasks are interoperable with the Eclipse Modeling Framework, which is ar-
guably the most widely used contemporary MDE modelling framework.

On the other hand, as discussed above, the proposed approach allows
users to use the tools that they normally use in their domain. The approach
uses the artefacts generated within these tools. If these artefacts are models
they can be used directly within the solution. Otherwise, specific techniques
need to be provided to transform these artefacts into models. This case was
considered in Section 4.2 where we discussed how the approach deals with
non-model artefacts. Therefore, considering that there are several types
of model in different domains with which the approach can be work, the

197

Chapter 7 Evaluation and Discussion

proposed approach supports interoperability between its supporting tools
and other tools in a project.

“St1.1.1.4 - Configurable Tools: Tooling is configured to support
stakeholder requirements and their processes”

[S1.1.1.4] The presented approach is requirements-driven and, so, the sup-
porting tool is totally implemented based on specified requirements for trace-
ability. On the other hand, as explained above, a solution and consequently
its supporting tool can be customised and configured to stakeholders needs
and usual processes.

7.1.9 A Model-Based Solution for Multi-Domain Traceability
According to all the above discussions, the proposed approach demonstrates
a strategy to build a project-specific, multi-domain traceability solution. It
introduces detailed steps and dedicated structures to design, define, and
implement a solution using modelling principles and techniques to carry
out related activities and generate related artefacts (represented as mod-
els). Therefore, the approach addresses the three top-level goals including
providing a traceability solution (G1), supporting multi-domain traceability
scenarios (G2), and providing a model-based approach to build a solution
and carry out activities (G3).

Figure 7.1 and Figure 7.2 summarises the requirements-based evaluation
in a GSN diagram which is an extension to the GSN diagram provided in
Figure 3.4 (a larger view of the diagrams is provided in Figure C.2 and
Figure C.3). As mentioned at the beginning, the above discussions in each
section are considered as solutions in the diagram, except the discussion in
Section 7.1.1 which is defined as context (C1.1) for the requirement ‘R1.1 -
Requirements-driven’.

198

7.1 Evaluating the Approach Based on Requirements

Fi
gu

re
7.

1:
G

SN
di

ag
ra

m
su

m
m

ar
isi

ng
th

e
re

qu
ire

m
en

ts
-b

as
ed

ev
al

ua
tio

n
fo

r
go

al
G

1

199

Chapter 7 Evaluation and Discussion

Fi
gu

re
7.

2:
G

SN
di

ag
ra

m
su

m
m

ar
isi

ng
th

e
re

qu
ire

m
en

ts
-b

as
ed

ev
al

ua
tio

n
fo

r
go

al
s

G
2

an
d

G
3

200

7.2 The Case Study: EUR RVSM

7.2 The Case Study: EUR RVSM

In Chapter 6, the proposed approach was applied in a large-scale safety-
critical project, EUR RVSM Programme. The case study explored the extent
to which the proposed approach is beneficial, particularly in terms of multi-
domain traceability scenarios.

In the case study, we defined an example traceability scenario in the con-
text of safety assessment which covers different types of traceability. Then,
using the proposed approach, we developed a traceability solution which
supports specified goals.

The case study acknowledged that a multi-domain approach to traceabil-
ity is essential in situations which involve wide range of stakeholders and
various activities. We also found out that the approach can be generally
helpful for any situation in which different activities are carried out even if
they are all in a same domain. Usually, activities are performed indepen-
dently, to some extent, and they are not (can not be) integrated properly (for
any reason). Accordingly, the approach works well when there are a num-
ber of models and a concise view of the traceability information, which is
implicitly or partially provided in these models, is required or recommended.

Additionally, the case study demonstrated that it is feasible to develop a
traceability solution according to the proposed approach, various kinds of
traceability usage scenarios can be supported with the approach, and finally
why the benefits outweigh the cost of developing such solution. The case
study also highlighted a number of limitations and potential improvements
such as more automation support in building the infrastructure and addi-
tional features or capabilities to describe complex analysis scripts in the
TAL.

7.3 Publications

Peer review is an important means of evaluation of the validity of an ap-
proach. Accordingly, publication in academic journals, and at international
conferences and workshops ensure that our work is reviewed by experts, and
is well-established and communicated in our field of research. The results
of this research have been presented in a number of academic papers in
journals, international conferences/workshops which are listed below.

– Masoumeh Taromirad, Nicholas D. Matragkas, and Richard F. Paige,
Towards Multi-Domain Traceability: a Model-Driven Approach, sub-
mitted and under review in Journal of Software and Systems Mod-
elling, Springer, 2014.
This paper motivates multi-domain traceability and demonstrates how
MDE principles and techniques could help to address its challenges.

201

Chapter 7 Evaluation and Discussion

Then, it provides a model-driven approach to define, design, and de-
velop a complete multi-domain traceability solution.

– Masoumeh Taromirad, Nicholas D. Matragkas, and Richard F. Paige,
Towards a Multi-Domain Model-Driven Traceability Approach, In Proc.
of the 7th International Workshop on Multi-Paradigm Modeling (MPM
’13), Miami, Florida, USA, September 2013.
In this paper, the concept of multi-domain traceability is introduced
and a model-based approach to develop a multi-domain traceability
solution is provided.

– Masoumeh Taromirad and Richard F. Paige, Agile Requirements Trace-
ability Using Domain-Specific Modelling Languages, In Proc. of the
2nd International Extreme Modeling Workshop (XM ’12), Innsbruck,
Austria, October 2012.
This paper discusses how domain-specific modelling languages helps
to provide light-weight traceability through defining traceability meta-
models with respect to a project or case.

7.4 Limitations and Shortcomings

In this section, the main limitations and shortcomings of the proposed ap-
proach are outlined and discussed.

7.4.1 Limited Support of Non-Model Artefacts

The approach proposed in this thesis is applicable to models and focuses
on defining and providing traceability between models. However, even in
a MDE environment, other kinds of artefacts, such as informal, natural
language descriptions of requirements, spreadsheets, or executable source
code, are created and used during a development process. An end-to-end
traceability solution requires to consider such artefacts as they are essential
in providing required information.

Although non-model artefacts are partially considered, the suggested ways
to deal with them are abstract and limited to cases in which it is feasible
to use model transformations to transform these artefacts to models. There
are situations in which non-model artefacts are not structured or it is not
feasible to transform them into models, such as natural language descriptions
or executable code. Therefore, in order to be able to provide a complete
traceability solution, we need to extend our approach to consider all kinds
of non-model artefacts and effectively deal with them. This would need to
be done on a case-by-case basis, though we expect patterns will eventually
be identified.

202

7.5 Discussion: Solution in Practice

7.4.2 Partial Traceability Maintenance

Traceability maintenance refers to those activities associated with updating
pre-existing traces as changes are made to the traced artefacts and the trace-
ability evolves, and creating new traces where needed to keep the traceability
relevant and up to date. Additionally, traceability maintenance is required
following changes to the requirements and constraints that drive the over-
arching traceability strategies, which consequently results in change in the
traceability solution and the traceability information [Gotel et al., 2012b].

A practical approach has to provide specific methods or techniques to
support this activity or specify how existing practices for maintaining the
integrity of the links could be applied within the approach. The way in which
the TM is created allows users to regenerate the model whenever any of the
related model change. Accordingly, the approach supports maintaining the
integrity of the TM in the scope of the developed solution.

On the other hand, the approach needs to consider change and evolution
in other parts of a solution (e.g. in traceability goals) and their effects on the
other traceability-related models and discuss how to manage such changes.

Accordingly, the approach proposed in this thesis does not completely
support traceability maintenance. However, Section 7.5.3 investigate change
and evolution in detail. Different change scenarios, which might happen in a
solution, are identified and discussed how they could be managed especially
with the use of MDE techniques.

7.5 Discussion: Solution in Practice

The multi-domain traceability solution presented in this thesis provides a
comprehensive and coherent view of the traceability information usually
scattered across the project’s domains heterogeneously. Particularly, the
systematic way to collect traceability-related information and record it, us-
ing MDE tools, automates the creation and maintenance of a project-level
traceability model. Additionally, the approach leads to a better way to
manage the inevitable coupling and redundancy between traceability mod-
els and other models in the project. Moreover, a project-specific solution
allows traceability users to focus on project’s specific traceability goals and
build an effective traceability solution.

However, there are still a number of concerns with the proposed approach
which need to be considered and discussed to demonstrate why the approach
could be used and be beneficial, in addition to identified limitations and
shortcomings. The following sections elaborate on these issues.

203

Chapter 7 Evaluation and Discussion

7.5.1 Cost/Benefit

As mentioned previously, to our knowledge, there is no similar approach con-
sidering traceability as a multi-domain concern. Current research mostly fo-
cuses on traceability in a single context or, at most, similar contexts in which
it is feasible to integrate them together for example by using a particular
family of tools. The proposed approach allows users to benefit from a com-
prehensive solution which particularly operates across multiple domains and
supports multi-domain traceability scenarios. Using this approach, users can
express and answer questions (trace queries) across different domains re-
gardless how the involved domains interact and the underlying information
is provided. Supporting such scenarios is not easily possible with current
tracing approaches and need more effort to achieve.

Preparing an MDE environment with the approach presented in this the-
sis requires additional effort and cost. Throughout the running example and
the case study, we found out that the additional cost and expected effort
is reasonable in comparison to normal activities in a project. For example,
even for our case study, in which there were no models to be used and all the
metamodels and models defined and generated from scratch, we built the
solution in about two weeks, which is acceptable in the context of a large
project. Moreover, this time could be considerably less if models and meta-
models are already available. Moreover, the extra effort is largely required
while a traceability solution is initially built. This is because although the
solution might change, the main part of the solution remains unchanged. In
the initial steps in building a solution, engineers and domain experts (trace-
ability users) work together: domain experts specify the usage scenarios and
goals, engineers define a TIM accordingly, and domain experts assist engi-
neers to identify source models and the relationship between them to create
the mapping model.

Finally, in situations where traceability is a mandatory requirement, it is
required to establish an environment that capture the necessary traceability
relationships [Pinheiro, 2003] and the benefits of traceability outweigh its
costs [Cleland-Huang, 2006].

7.5.2 Non-model Artefacts

The approach works effectively when models have been already created and
provided in a project. But, other kinds of artefacts, such as informal, natural
language descriptions of requirements or spreadsheets, are created which
have to be considered in a practical traceability solution.

Fundamentally, throughout our research, we found out that there are sev-
eral types of model in different domains (e.g., requirements models, safety
analysis models) which can provide substantial traceability-related informa-
tion and, therefore, make the model-based approach applicable and benefi-

204

7.5 Discussion: Solution in Practice

cial in many projects and situations.
On the other hand, as discussed in Section 4.2, in many cases differ-

ent model transformation techniques (M2M, M2T, T2M) can be applied
to transform non-model artefacts into models. Particularly when such arte-
facts are almost structured. For example, spreadsheets, as a common format
for documentation, can be transformed into models using user-defined T2M
transformations or available tools and techniques specifically developed for
this purpose.

7.5.3 Change and Evolution

One of the main concerns with traceability implementations and tools is
managing change which is formally considered in the context of traceability
maintenance activities. Additionally, evolution is an identified concern in
a MDE environment [Rose, 2011]; the evolution of models, modelling lan-
guages and other MDE development artefacts must be managed properly.

Accordingly, we study change in the context of our approach, from both
traceability and MDE perspectives, and identify different change and evo-
lution scenarios. Then, we discuss how these changes could be managed,
specially with the use of MDE techniques, and suggest potential approaches
or methods to maintain the solution relevant and updated.

7.5.3.1 Change Scenarios

Based on an analysis of the artefacts or elements defined, created, and used
in the context of the proposed traceability solution and how they are related
to each other, we identify the following scenarios which have to be managed
to keep the solution relevant and up to date:

– Change in the TIM. A TIM will change when the requirements
and constraints for the traceability change. This is because a TIM is
defined based on these requirements and project contextual constraints
in order to support traceability goals. On the other hand, a TIM is the
core of any traceability solution and solutions are developed around it.
Accordingly, a change in a TIM will affect the solution and traceability-
related models in different ways and levels.

– Change in metamodels. This kind of change commonly happens
and is extensively studied in the context of MDE. In this thesis, we
particularly need to consider changes in domain-specific metamodels
with respect to their effects on the models specifically generated for
the solution. Basically, domain-specific models have to be updated
due to change in their metamodels. But, in the context of this work,
such changes are important from another perspective as they have

205

Chapter 7 Evaluation and Discussion

additional effects: the inter-domain metamodels/models (partialTIM-
s/partialTMs) and the mapping model are consequently subject to
change. This is because they work with domain-specific metamodels
and, hence, are related with them. We mainly study such effects in
Section 7.5.3.3.

– Change in the models. This change is the one that is generally
considered in the context of traceability maintenance; changes in the
traced artefacts and the relationships between them which need to be
managed and propagated correctly to maintain the integrity of the
links. This change scenario has been discussed under maintaining
traceability model in Section 4.4.

As mentioned before in Section 2.1.3.4, there are two main approaches
to maintenance: proactive (or continues) and reactive (or on-demand). In
the former approach, the changes are constantly monitored and the update
of impacted trace links immediately follow changes to traced artefacts. In
the latter approach, a dedicated and overall update of the trace set (in
whole or in part), is done generally in response to some explicit trigger
or preparation for an upcoming traceability use. We consider both types
of approaches to maintenance in order to introduce potential practices to
manage the aforementioned change scenarios.

7.5.3.2 Change in the TIM

This change mainly happens because of a change in traceability requirements
(usage scenarios), constraints, and goals which drive the proposed strategy.
This change would be the most expensive type of change in a traceability
solution due to the role of a TIM in any solution. A TIM is the core element
of a solution and its change would affect possibly all of the other elements
of a traceability solution. To analyse the impact of a change in a TIM on
the other parts, we go through the activities performed after defining a TIM
and discuss in each case what should be done and how.

1. The first step after defining a TIM is investigating the available infor-
mation to find the required traceability-related data. So, following a
change in the TIM, the available information should be revisited. This
job can be done manually or semi-automatically (i.e. through model
comparison) as mentioned in Section 4.2.1.

2. Similarly to the main step, as the result of new investigation of avail-
able information, domain-specific and inter-domain metamodels/mod-
els might need to be changed and updated in order to reflect new
requirements for the traceability-related data. Such changes, which
mainly relate to making changes in metamodels and updating the cor-
respondent models accordingly, are thoroughly investigated in MDE

206

7.5 Discussion: Solution in Practice

domain, mostly in the context of model-metamodel co-evolution. In
the next section (7.5.3.3), this type of change is discussed in more
detail.

3. When the TIM, domain-specific and inter-domain models are changed,
the mapping needs to be updated accordingly. Through several exper-
iments in studying the effect of change in the traceability solution, we
have identified the following cases in which the mapping model needs
to be changed:

– New mapping entry or equivalence entry is required to define a
new relationship between the TIM and other metamodels. In this
case the new entry is added to the model.

– A model element type in a metamodel (either the TIM or a source
metamodel), which has been referred by an entry (as ‘ModelEle-
mentRef’), needs to be deleted. In this case, the entries which
have references to the deleted type should be deleted from the
mapping model. This can be done automatically by specifying
required model migration strategies to update the mapping model
consistently.

– A model element type in a metamodel (either the TIM or a source
metamodel), which had been referred by an entry (as ‘ModelEle-
mentRef’), has to be renamed or moved. In this case, the entry
might need to be updated to refer to the altered or new element.
This update can be done automatically similarly to the previ-
ous case by describing particular model migration strategies to
propagate the change.

4. The most important concern in managing change is to keep the TM
up to date and valid. So, when the TIM changes, the TM has to be
updated accordingly in order to conform to the TIM and represent
valid trace links while the information evolves. In this case, the TM is
regenerated by the dynamic model transformation with the updated
inputs (TIM, domain-specific and inter-domain models, and mapping
model).

5. Finally, the traceability analyses may need to be defined again, as
they are defined in terms of TIM. Therefore, those trace queries and
constraints which use a renamed or deleted model element type (in the
TIM) should be rewritten, where as for the new model element types,
new analyses are defined and expressed.

All of the above are the effects of a change in the TIM. As mentioned
before, this change is the most expensive change as it leads to change in all

207

Chapter 7 Evaluation and Discussion

other elements of the solution. Considering the two approaches for traceabil-
ity maintenance, those changes and steps which happen in metamodel level,
such as updating a domain-specific metamodel and the mapping model, are
performed and applied as the TIM changes (continuous traceability main-
tenance). But, the changes in the model level, including regenerating the
TM, and updating the trace queries, are done whenever users need to use
the traceability information or perform a traceability analysis (on-demand
traceability maintenance).

7.5.3.3 Change in metamodels

This type of change would happen if there are some changes in system or
software requirements. Additionally, a new traceability requirement might
result in updates in metamodels. For example, when additional concepts
are required to capture in order to support traceability goals. This way, as
explained in Section 7.5.3.2, existing metamodels needs to be updated or
new metamodels have to be created to define new concepts to be able to
record them.

The first effect of change in metamodels is that their corresponding models
needs to be updated to conform to the new metamodel. But, In the context
of the developed solution, changes in domain-specific metamodels result in
particular changes, rather than updating their related models. The mapping
model is the main model which works with these metamodels. Therefore, it
might need to be updated to reflect the changes in metamodels. As explained
in the previous Section 7.5.3.2, a mapping model may have entries which
refer to model element types which do not exist any more or have been
renamed or moved. This way, the mapping model needs to be updated to
show valid relationships between metamodels.

On the other hand, inter-domain metamodels (partialTIMs) are funda-
mentally linked with domain-specific metamodels. So, when one of these
metamodel changes, related partialTIMs may need to be updated if they
refer to the altered part of the source metamodels. Inter-domain models
(pratialTMs) are accordingly required to be updated. This will need to deal
with the model-metamodel co-evolution issues, in addition to identifying
new trace links as discussed in Section 4.2.3. The TM has to be regener-
ated with the updated models, whenever users want to access traceability
information and perform an analysis.

As mentioned before, such changes are an active research area in context
of MDE [Mens and Demeyer, 2008]. There has been substantial research into
model and metamodel change and evolution in MDE, which can be applied
in these cases. Considering the classification of types of metamodel change
presented in [Gruschko et al., 2007], some of the changes in a metamodel
can be resolved in the model automatically, while there are some changes
which needs human intervention to be resolved. Generally, researches pro-

208

7.6 Chapter Summary

pose different approaches for co-evolution of models with their respective
metamodels. For example, [Gruschko et al., 2007] introduces an envisioned
migration process focusing on the minimisation of manual effort, and [Rose,
2011] provides structures and processes for performing model-metamodel
co-evolution. Using such approaches, the required migration strategies for
the models can be defined and used to update the models according to the
respective metamodels. However, updating the source models is out of the
scope of this work. It is because we assume that source models are managed
by users in each domain and the traceability solution just uses these models
as its input just in the way they are provided.

Finally, there is an special issue with changes in metamodels: when a
traceability-related concept, which has already been mapped to a concept
in the TIM, is deleted from one of the metamodels. In this case, assuming
that the TIM is the reference of the required traceability information to
record and it is fixed, users need to find a way to deal with the missing
information. Basically, they could follow what is done in the early phases
of building the solution (Section 4.2). Also, they could inform the engineers
of the related domain to consider the new situation, which might result in
keeping the concept. These two approaches are based on the fact that the
TIM is the reference and it is not supposed to be changed. However, there
are situations in which the TIM has to be updated, though they happen
rarely. Sometimes, such changes implicitly reflect a change in the context
of a project and requirements for traceability which results in changes in
the TIM and, consequently, in almost all other elements of the solution (the
first scenario of change discussed in Section 7.5.3.2).

7.6 Chapter Summary

In this chapter, considering different evaluation methods, we demonstrated
how the thesis proposal has been realised and the proposed approach ad-
dresses the identified challenges and requirements in the conxtet of this
work. The evaluation of the proposed approach and the prototype imple-
mentation of the tooling support, against the specified requirements for a
multi-domain traceability solution, showed that the approach meets almost
all of the requirements specially those are related to the multi-domain na-
ture of the solution. An overview of the case study illustrated the feasibility
of the approach, in addition to the benefits achieved by using it, particularly
in projects where providing traceability is a mandatory requirement. Addi-
tionally, publications (peer reviewed papers), representing outcomes of this
research, supported the contribution and validity of the proposed approach.
The evaluation led to identifying main limitations and shortcomings of the
approach including limited support of non-model artefacts and supporting
traceability maintenance activity and tasks. Finally, Section 7.5 discussed

209

Chapter 7 Evaluation and Discussion

the solution in practice with respect to the identified limitations and the cost
of developing a multi-domain solution based on this approach. We demon-
strated how they are addressed or could be managed and so the approach
is beneficial.

210

8
Conclusion

This thesis has investigated traceability in multi-domain context because of
its essential role in projects that span different engineering domains. In such
projects, traceability is usually mandated and should be exploited and man-
aged across the engineering lifecycle which is often required to capture the
artefacts and trace links either within one or across many domains. How-
ever, there are several challenges that hinder the adoption of traceability
in multi-domain projects, such as defining, identifying, and specifying rela-
tionships between heterogeneous models in different domains. The thesis has
contributed to the research challenges and the research hypothesis stated in
Section 1.2:

In many contexts, traceability is a multi-domain concern as it
needs to operate across project’s different domains. This the-
sis demonstrates that a modelling approach to develop a multi-
domain traceability solution improves the precision and repeata-
bility in such solutions. This will be via automating the chal-
lenging aspects of defining, creating, using, and maintaining het-
erogeneous traceability relationships between various domains in
order to support multi-domain traceability scenarios.

To explore the hypothesis, the following research objectives were defined:

1. Identify and analyse the concept of multi-domain traceability and its
specific requirements and challenges.

2. Propose an approach to develop a multi-domain traceability solution
which effectively deals with models across different domains.

3. Provide techniques to clearly identify requirements for traceability and
develop a project-specific solution accordingly.

211

Chapter 8 Conclusion

4. Support and automate the activity of maintaining the traceability so-
lution to keep it relevant and effective over the time.

5. Provide semi-automatic techniques to specify and capture relation-
ships (trace links) between multiple domains

The remainder of this chapter summarises the contributions of the thesis
in relation to the thesis hypothesis and research objectives, and briefly de-
scribes the areas for further work which were identified during the course of
this research.

8.1 Thesis Contributions
The main contributions of this thesis are summarised below.

– Motivating the concept of multi-domain traceability, identifying spe-
cific challenges in this context, and analysing existing literature on
traceability accordingly, which consequently, led to a set of require-
ments for an effective multi-domain traceability solution.

– Demonstrating the process and structures to design and develop
a model-based multi-domain traceability solution, which included a
three-step method to define a project-specific TIM, defining and cre-
ating inter-domain models, locating related models, providing a sys-
tematic way to extract traceability-related information and create a
traceability model, and a Traceability Analysis Language (TAL) for
expressing traceability analyses.

– Application of the approach in a large safety-critical system which
explored the extent to which the proposed approach is beneficial.

– Evaluating the approach with respect to the specified requirements
for a practical traceability solution in multi-domain projects, which
was illustrated using the Goal Structuring Notation (GSN) to give a
concise view of the evaluation.

8.1.1 Traceability in Multi-Domain Context
The initial contribution of this thesis is introducing the concept of multi-
domain traceability which was discussed in Section 1.1. Traceability is usu-
ally required throughout the project lifecycle, which in many cases extends
across multiple engineering domains. Therefore, a traceability solution needs
to operate across the project’s different domains, effectively deals with var-
ious artefacts in different domains and relationships between them.

Chapter 3 investigated the existing work in the field of software traceabil-
ity, provided in Chapter 2, and analysed the state of current traceability

212

8.1 Thesis Contributions

literature in the context of multi-domain traceability. Accordingly, those
challenges specifically existed because of the multi-domain nature of trace-
ability were outlined and discussed. The investigation led to definition of a
set of requirements for a multi-domain traceability solution which address
challenges and characteristics of a general traceability solution, in addition
to the identified challenges for multi-domain traceability.

On the other hand, as stated in the research hypothesis, this thesis pro-
posed a modelling approach to develop a solution. Accordingly, the set
of requirements also addresses issues related to model-based approaches in
general (e.g. dealing with different metamodels) and such approaches in the
context of traceability (e.g. dealing with non-model artefacts). The specified
requirements are summarised in a GSN diagram, depicted in Figure 3.4

8.1.2 Model-Based Multi-Domain Traceability Solution
The main technical contribution of this thesis, presented in Chapter 4, is
a model-based approach to develop a traceability solution which effectively
operates across multiple domains. The proposed approach introduced a
collection of tasks and structures which intend to address the challenges and
requirements defined before. In the following the novel (the most important)
parts of the proposed approach are briefly introduced in turn.

Usage Scenarios and Traceability Goals

Traceability is requirements-driven [Gotel et al., 2012a]. In terms of
traceability, usage scenarios determine project-specific questions or
traceability-enabled activities which are answered or supported by
traceability information and, hence, specify requirements. Therefore, a
traceability solution has to be designed and developed with respect to the
specific requirements for traceability in a given project.

Accordingly, the proposed approach in this thesis is scenario-driven. Us-
age scenarios are the input of the introduced process which are then refined
into lower-level (more detailed) traceability goals. In general, goals represent
the ways in which a scenario supported.

Project-Specific TIM

A project-specific TIM, the core element of a traceability solution, is
defined specifically for a project based on its characteristics and traceability
goals. In the proposed approach, a TIM is defined through three steps: 1.
determine traceability goals, 2. identify related project concepts, and 3.
define the TIM.

First, traceability goals are determined based on the usage scenarios.
Then, with the GQM, a goal-oriented approach, existing traceability-related

213

Chapter 8 Conclusion

concepts and relationships between them are identified. These concept and
relationships form the foundation of a suitable TIM. Finally, based on the
previous tasks, a TIM is formally defined which specifies the entity types to
be recorded and the relationship types between them. A TIM is developed
as a domain-specific modelling language (DSML), the metamodel for the
traceability model.

Inter-Domain Traceability Metamodels/Models

The relationships between domains are essential to accumulate the
traceability information in order to support multi-domain traceability
scenarios. Though, such relationships are usually defined informally or
incompletely or not provided at all.

In the approach presented in this thesis, the relationships between each
pairs of domains (inter-domain trace links) are captured in a special trace-
ability model, a partialTM, which only involves two domains. For each
partialTM, a traceability information model (partialTIMs) is defined which
formally and explicitly defines the inter-domain trace link types between
involved domains and the type of trace link ends for each type.

Mapping Model: Locating Related Models

Throughout our research, we observed that, in multi-domain trace-
ability, most of the required traceability-related information is already
available in other models and, so, could be extracted from them (reused)
and put in a traceability model. Therefore, a traceability model is inher-
ently a redundant model which provides a pervasive and coherent view of
the other models from traceability point of view. This was also highlighted
in the context of the example project (Section 1.1.1). However, in existing
approaches which support project-specific traceability, TMs are created
independently from other models. None of them has acknowledged to
reuse existing models and specify this connection between a TM and other
models.

Doing so, a mapping model is created which formally specifies how each
concept (traceable element or trace link type) defined in a TIM relates to
model elements in the other models. Generally, the model is similar to a
Correspondence Model (CM) or Weaving Model (WM) in model composition
[Bézivin et al., 2006]. The model is thereafter used to collect information
from other models in order to automatically generate a project-wide TM.

A Project-Wide Traceability Model

Having defined the project-specific TIM and the mapping model,

214

8.1 Thesis Contributions

traceability information can be collected and recorded. As [Mäder
and Cleland-Huang, 2010] state, using a diverse set of traceability models
is one of the main problems in working with traceability information.
Accordingly, we suggested to create a project-wide traceability model. A
single TM provides a coherent view of the traceability information and
unifies the way in which the traceability information can be used. For
example, it lets us define a Traceability Analysis Language to describe
traceability analyses regardless of the diversity of the underlying models.
This way, the model can be considered as a model built on top of the
other models. A TM is generated automatically by a particular model
transformation, called dynamic model transformation.

Dynamic Model Transformation

The TM is created and populated automatically by a domain-specific
model transformation, so called dynamic model transformation which takes
the mapping model and the other source models as input and produces
the final TM as output. The transformation extracts traceability-related
information from other models, including domain-specific models and
partialTMs, based on the mapping model (illustrated in Figure 4.13).

The transformation is dynamic as it does not contain the low-level (exe-
cutable) transformation rules, which explicitly define which model elements
are transformed to which model elements. Rules are determined dynami-
cally and executed at run-time. The transformation can be considered to
be a higher-order transformation (HOT). However, in comparison to HOT
which generates executable transformations rather than executing them, the
dynamic transformation also performs the transformation and generates the
target model –as a transformation engine.

Traceability Analysis Language

Generic query languages (e.g. SQL) and model management languages can
be used to express traceability analyses, but these require knowledge of
the underlying structures in which the traceability information is stored.
Considering the context of this work, general-purpose model management
languages (e.g. EOL) require user to explicitly specify how to retrieve
particular elements from a models and generate an arbitrary output model.
Whilst, traceability users are just interested in expressing a trace query
or constraint regardless of how it is implemented and generates an output
model.

Accordingly, a task-specific analysis language which enables users to ex-
plain traceability queries or constraints at the traceability abstraction level,
so called Traceability Analysis Language (TAL) was defined. The TAL hides

215

Chapter 8 Conclusion

the complexity of the underlying information and how it is stored and rep-
resented. Additionally, it is a TIM-specific language as it lets users express
analyses by using the traceability domain terminology and project-specific
terms (defined in the TIM).

The TAL is a simple textual language, similar to SQL, and allows users to
describe queries (finding specific traceable elements) and constraints (check
if the traceability model satisfies specific conditions). Each TAL script is
executed on the project-wide TM and the result is presented in a simple
model called Result Model.

8.1.3 Case Study and Evaluation

Initially, applying the proposed approach in a large-scale safety-critical
project has explored the extent to which the proposed approach is bene-
ficial and is practical (Chapter 6). The case study defined different types
of usage scenarios and demonstrated the variety of cases that the approach
could support.

Additionally, in Chapter 7 the approach introduced in this thesis has been
evaluated with respect to the defined requirements for a multi-domain trace-
ability solution and considering the peer-reviewed papers. In Section 7.1, a
detailed evaluation of the approach was provided and illustrated the extent
to which it satisfies the requirements, which is summarised in two comple-
mentary GSN diagrams (Figure 7.1 and Figure 7.2). In Section 7.3, the
validity of the thesis proposal was considered with respect to the papers
representing the outcomes of this research.

8.2 Future Work
The identified limitations and shortcomings of the approach (Section 7.4)
and the discussion of using it in practice (Section 7.5) motivates several di-
rections for future work following this work. On the other hand, throughout
our research, we noticed some potential extensions which would enhance the
proposed approach. In the following, these areas are described and, in case,
initial work is outlined.

8.2.1 Non-Model Artefacts

As discussed in Section 7.4.1, non-model artefacts contains substantial in-
formation and are extensively used, even in a MDE environment. In this
context, a comprehensive approach to traceability requires to consider these
artefacts as they are essential in providing required information. It should
clearly specifies in which way it deals with them. It could specify how models
are traced to non-model artefacts and vice versa. However, in the approach
presented in this thesis, non-model artefacts are considered as sources of

216

8.2 Future Work

information and, therefore, are required to be represented in models to be
able to extract required information from them to create a TM. Accordingly,
in the context of this work, supporting non-model artefacts is about provid-
ing effective and practical mechanisms to represent non-model artefacts in
models, in addition to the general challenge in MDE for tracing models to
non-model artefacts. This way, required information can be extracted from
these model similarly to other models.

Model transformation techniques can be applied to transform non-model
artefacts, particularly when they are structured, into models. There are also
different tools and techniques specifically developed to transform such arte-
facts into models (i.e. [Francis et al., 2013] to add spreadsheets into MDE
context). However, there are situations in which non-model artefacts are
not structured or it is not feasible to transform them into models. In such
cases, depending the required information from given non-model artefact
(i.e. its granularity and semantics), heuristic approaches, which are prefer-
ably repeatable, could be applied. An engineer could define a simple model
which only represents traceability-related information provided in a given
non-model artefact depending on the granularity of the information. For
example, the model might have an element representing an analysis docu-
ment as a whole and then she can use an existing approaches to trace models
to text (i.e. offset/length-based solutions) to refer to specific parts in a doc-
ument. Although this is a simple example, it shows potentials to identify
recurring patterns to deal with non-model artefacts and provide low-level
practices accordingly.

8.2.2 Traceability Maintenance

One of the main activities in providing traceability is maintenance. We
identified that change is an important concern and more detailed and low-
level practices are required to fully support traceability maintenance. The
discussion in Section 7.5.3 identified possible approach to manage different
change scenarios and demonstrated that how and in which ways existing
model migration and co-evolution techniques could be helpful to effectively
cope with them.

We also found out that it might be fruitful to adopt the state-based ap-
proach to traceability maintenance provided in [Drivalos-Matragkas et al.,
2010] within the context of traceability metamodelling language introduced
in [Drivalos et al., 2009]. Particularly, due to the potential to use the TML
to define a project-specific TIM in our approach.

8.2.3 Semi-automated Mapping Model

As mentioned in Section 4.3.1, a mapping models is similar to a Correspon-
dence Model (CM) in model composition [Bézivin et al., 2006]. A CM cap-

217

Chapter 8 Conclusion

tures links between different models and is created with a match operation
which is implemented with different procedures depending on the language
used for composition. In AMW, a user interface and pluggable match algo-
rithms are provided to create a CM. EML uses comparison rules (in ECL)
to define a match operation, and in GGT, the expression of composition is
created by a user interface.

Although mapping models and CMs are created for different purposes,
existing approaches to create a CM suggest potential extensions to the pro-
posed approach by adapting these techniques in this context, which would
improve efficiency of defining a mapping model. Currently, this thesis has
not prescribed a particular way to create a mapping model and focused on
their usage in a solution. Therefore, in practice, a mapping model can be
created differently depending on the tooling support (the modelling frame-
work and model management platform). For example, in the prototype,
a mapping model is created manually within a simple user interface (pro-
vided with EWL). However, considering the model composition with EML,
comparison rules (ECL) could be used in creating a mapping model. ECL
rules are defined to identify potential relationships between models which
are then finalised by engineers and recorded in a mapping model.

8.2.4 Improved Traceability Analysis Language
The introduced traceability analysis language can be improved and enhanced
with more complex constructs and functionality to allow users explain com-
plicated queries. We also found out that ready-to-use templates or patterns
for various usage scenarios would help users to work with traceability infor-
mation in a better way. This is because templates and patterns are usually
defined more efficiently, allow users to spend less time to describe a query,
and also decrease errors.

Query optimisation is also a potential improvement. For example, as
traceability models are usually large and contains many model elements,
execution time of even simple queries on such models would take consider-
able amount of time and optimising queries would help to reduce this time.
Current research in the domain of query languages, e.g. SQL, would explore
promising directions and approaches.

218

Appendices

219

A
Categorisation

Parameters
This appendix briefly describes the categorisation parameters introduced in
Section 3.1, Figure 3.1.

A.1 TIM

This group of criteria indicates the type of the TIM explicitly defined or
used in the context of an approach, if there is any. A TIM could be

– General-purpose. A general model to be used in any solution

– Case-specific. A model which is defined for a particular scenario or
case and could be further classified as

– Static. It is used directly, with no changes, in all similar scenar-
ios or cases.

– Customisable. It can be customised with respect to the context
of the project at hand.

A.2 Activities

The purpose of the criteria in this group is to find out which traceability
activities is covered and how. There are four activities and an approach
is examined in the context of each activity with respect to the existing
approaches to do an activity or its sub-activities.

1. Planning and Managing; it is determined which of the following sub-
activities is covered in an approach:

221

Appendix A Categorisation Parameters

– Identifying Requirements. mechanisms or techniques to iden-
tify traceability requirements

– Defining a TIM. mechanisms or techniques to define a TIM
based on the identified requirements

– Defining Traceability Process. mechanisms or techniques to
specify how and when activities are performed

– Assessment (Feedback). mechanisms or techniques to main-
tain a solution relevant regarding the evolving needs

2. Creation. It focuses on three aspects in this activity:
a) Trace Acquisition. It demonstrates the approach used to create

traces:
i. Trace Capture. traces are created as activities are performed

– Event-driven (by-activity). Traces are captures based
on the events (i.e. specific development activities).

– Transformation (by-product). Traces are created as
artefacts (mainly models) are transformed to other ones.

ii. Trace Recovery. It demonstrates which technique or method
is used to identify traces from existing artefacts: IR-based,
rule-based, or misc/hybrid.

b) Storage; it shows how traces are stored
– Model; traces are stored and represented as models
– Repository; traces are stored in repositories (e.g. XML

files)
c) Automation. A cross-cutting parameter which could be used for

all types of techniques. The proposed technique could be auto-
matic, semi-automatic or manual.

3. Maintenance. It is demonstrated that which technique is used to main-
tain traces and how much it is automated.

a) Mode. The maintenance of traces is performed in a reactive or
in a proactive manner.

b) Automation. A cross-cutting parameter which could be used for
all types of techniques. The proposed technique could be auto-
matic, semi-automatic or manual.

4. Usage. It discusses the two essential (sub-)activities to use traces and
current techniques to support them:

a) Trace Visualisation. Traces are visualised with one of the follow-
ing techniques: Matrices, Graphs, or Hyperlinks.

222

A.3 Tooling

b) Retrieving Traces. Traces have to be retrieved in order to support
traceability scenarios. An approach might support

– Predefined Analyses. Common and basic traceability sce-
narios

– Retrieving traces with tool-specific APIs, general or spe-
cific query languages or model management languages.

A.3 Tooling
These criteria examine the type of the provided or specified tool in an ap-
proach and its features. An approach can be used with general available
(requirements) traceability tools or it might require specific tools. Specific
tools can be provided as a complete toolkit, which support other activ-
ities too, or a partial tool dedicated to the approach. Also, an specific
tool might support interoperability and provide required mechanisms to
interact with other tools.

A.4 Artefact
In terms of the artefacts which are supported, an approach could be

– General. It could deal with different types of artefacts in different
formats.

– Type-specific. It is applied on specific types of artefacts (e.g. re-
quirements, architecture, class diagram).

– Format-specific. It works with artefacts in specific formats and no-
tations (e.g. text, model, XMI).

223

B
Summary of Existing

Traceability Approaches
Table B.1 and Table B.2 provide a summary of available traceability ap-
proaches, introduced and discussed in chapter 2, based on the proposed
categorisation in Section 3.1. Table B.1 covers Artefact, TIM, and Tooling
parameters and Table B.2 focuses on supported Activities in traceability
approaches.

Basically, in terms of the highest-level groups of parameters, the gray
colour shows if a group is applicable to an approach; it is directly or explicitly
considered or covered by an approach. Accordingly, white colour indicates
that an approach does not cover or consider that group and the approach
can not be examined based on that particular group. Then, a check mark
(X) in each cell shows if the correspondent approach covers or supports the
related parameter.

225

Appendix B Summary of Existing Traceability Approaches

Ta
bl

e
B.

1:
Su

m
m

ar
y

of
Ex

ist
in

g
Tr

ac
ea

bi
lit

y
A

pp
ro

ac
he

s
-P

ar
t

1
(A

rt
ef

ac
ts

,T
IM

,a
nd

To
ol

in
g)

A
p

p
ro

ac
h

A
rt

ef
ac

t
T

IM
T

oo
li

n
g

T
yp

e
Fo

rm
at

C
as

e-
Sp

ec
ifi

c
sp

ec
ifi

c

General

Specific

General

Specific

General

St
at

ic
C

us
to

m
is

ab
le

General

P
ar

ti
al

C
om

pl
et

e
In

te
ro

pe
ra

bl
e

[L
ag

o
et

al
.,

20
09

]
X

[M
äd

er
et

al
.,

20
09

a]
X

X
X

[M
at

ra
gk

as
,

20
11

;
D

ri
va

lo
s-

M
at

ra
gk

as
et

al
.,

20
10

]
X

X
X

X

[R
am

es
h

an
d

Ja
rk

e,
20

01
]

X
X

X
X

[S
pe

nc
e

an
d

P
ro

ba
sc

o,
20

00
]

X
X

X
X

[L
et

el
ie

r,
20

02
]

X
X

X
X

[J
ou

au
lt

,2
00

5]
X

X
X

X
X

[A
m

ar
et

al
.,

20
08

]
X

X
X

X
X

[F
al

le
ri

et
al

.,
20

06
]

X
X

X
X

X

[W
al

de
rh

au
g

et
al

.,
20

06
]

X
X

X

[K
as

sa
b

an
d

O
rm

an
dj

ie
va

,
20

06
;

K
as

sa
b

et
al

.,
20

09
]

X
X

X

[A
nq

ue
ti

le
t

al
.,

20
10

]
X

X
X

X
X

[O
ls

en
an

d
O

ld
ev

ik
,2

00
7]

X
X

X
X

X

[S
ei

be
le

t
al

.,
20

10
,2

01
2]

X
X

X
X

[G
ra

m
m

el
an

d
V

ig
ot

,2
00

9]
X

X
X

[V
an

ho
off

et
al

.,
20

07
]

X
X

X
X

[A
su

nc
io

n
et

al
.,

20
10

]
X

X
X

X

226

A
p

p
ro

ac
h

A
rt

ef
ac

t
T

IM
T

oo
li

n
g

T
yp

e
Fo

rm
at

C
as

e-
Sp

ec
ifi

c
sp

ec
ifi

c

General

Specific

General

Specific

General

St
at

ic
C

us
to

m
is

ab
le

General

P
ar

ti
al

C
om

pl
et

e
In

te
ro

pe
ra

bl
e

[G
re

ch
an

ik
et

al
.,

20
07

]
X

X
X

X

[K
ag

di
et

al
.,

20
07

]
X

X
X

[M
ar

cu
s

an
d

M
al

et
ic

,2
00

3]
X

X

[M
äd

er
et

al
.,

20
08

b]
X

X
X

[S
pa

no
ud

ak
is

et
al

.,
20

04
]

X
X

X
X

[G
or

p
an

d
Ja

ns
se

ns
,2

00
5]

X
X

X

[O
ld

ev
ik

et
al

.,
20

05
;O

ld
ev

ik
an

d
N

e-
pl

e,
20

06
]

X
X

X

[A
nd

er
so

n
et

al
.,

20
00

]
X

X
X

X
X

[A
nd

er
so

n
et

al
.,

20
02

]
X

X
X

X
X

[L
uc

ia
et

al
.,

20
06

b,
20

07
]

X
X

X

[Z
ou

et
al

.,
20

10
]

X
X

X
X

X

[C
le

la
nd

-H
ua

ng
et

al
.,

20
05

a;
C

le
la

nd
-

H
ua

ng
,2

00
5]

X
X

X

[H
ay

es
et

al
.,

20
03

]
X

X

[D
ia

z
et

al
.,

20
13

]
X

X

[G
et

he
rs

et
al

.,
20

11
]

X
X

[S
et

ti
m

ie
t

al
.,

20
04

]
X

X

[M
cM

ill
an

et
al

.,
20

09
]

X
X

[J
ir

ap
an

th
on

g
an

d
Zi

sm
an

,2
00

5]
X

X
X

X

[C
ys

ne
ir

os
an

d
do

P
ra

do
Le

it
e,

20
04

]
X

X

227

Appendix B Summary of Existing Traceability Approaches

A
p

p
ro

ac
h

A
rt

ef
ac

t
T

IM
T

oo
li

n
g

T
yp

e
Fo

rm
at

C
as

e-
Sp

ec
ifi

c
sp

ec
ifi

c

General

Specific

General

Specific

General

St
at

ic
C

us
to

m
is

ab
le

General

P
ar

ti
al

C
om

pl
et

e
In

te
ro

pe
ra

bl
e

[Z
im

m
er

m
an

n
et

al
.,

20
05

]
X

X
X

X

[C
le

la
nd

-H
ua

ng
et

al
.,

20
02

b,
20

03
]

X
X

X
X

[P
in

he
ir

o
an

d
G

og
ue

n,
19

96
]

X
X

X
X

[Y
in

g
et

al
.,

20
04

]
X

X

[P
oh

l,
19

96
a]

X
X

X
X

[E
gy

ed
an

d
G

rü
nb

ac
he

r,
20

05
]

X
X

X

[Z
ha

ng
et

al
.,

20
06

]
X

X

[S
he

rb
a

et
al

.,
20

03
]

X
X

X
X

X

[W
en

ze
le

t
al

.,
20

07
]

X
X

X
X

[M
al

et
ic

et
al

.,
20

03
,2

00
5]

X
X

[E
ng

el
s

et
al

.,
20

02
]

X
X

[M
en

s
et

al
.,

20
05

]
X

X

[M
ur

ta
et

al
.,

20
06

]
X

X
X

[S
ch

w
ar

z
et

al
.,

20
08

]
X

X
X

[M
al

et
ic

an
d

C
ol

la
rd

,2
00

9]
X

X
X

[M
äd

er
an

d
C

le
la

nd
-H

ua
ng

,2
01

0]
X

X
X

X
X

[A
su

nc
io

n
et

al
.,

20
07

;A
su

nc
io

n,
20

08
;

A
su

nc
io

n
an

d
Ta

yl
or

,2
01

2]
X

X
X

X
X

[S
on

g
et

al
.,

20
11

]
X

X

[T
ek

in
er

do
ga

n
et

al
.,

20
07

a,
b]

X
X

X
X

[K
ri

sh
na

an
d

G
re

go
ri

ad
es

,2
01

1]
X

X
X

228

A
p

p
ro

ac
h

A
rt

ef
ac

t
T

IM
T

oo
li

n
g

T
yp

e
Fo

rm
at

C
as

e-
Sp

ec
ifi

c
sp

ec
ifi

c

General

Specific

General

Specific

General

St
at

ic
C

us
to

m
is

ab
le

General

P
ar

ti
al

C
om

pl
et

e
In

te
ro

pe
ra

bl
e

[M
ir

ak
ho

rl
i

an
d

C
le

la
nd

-H
ua

ng
,

20
11

,
20

12
]

X
X

X
X

[K
at

ta
an

d
St

lh
an

e,
20

12
]

X

[A
lb

in
et

,2
00

8;
P

er
al

di
-F

ra
ti

an
d

A
lb

i-
ne

t,
20

10
]

X
X

X
X

X

[M
as

on
et

al
.,

20
03

;M
as

on
,2

00
5]

X
X

X
X

X

[S
ch

w
ar

z
et

al
.,

20
10

]
X

X
X

X

229

Appendix B Summary of Existing Traceability Approaches

Ta
bl

e
B.

2:
Su

m
m

ar
y

of
Ex

ist
in

g
Tr

ac
ea

bi
lit

y
A

pp
ro

ac
he

s
-P

ar
t

2
(A

ct
iv

iti
es

)

A
p

p
ro

ac
h

P
la

n
n

in
g

T
ra

ce
C

re
at

io
n

M
ai

nt
en

an
ce

U
sa

ge

A
ut

o.
A

cq
ui

si
ti

on
St

or
ag

e
A

ut
o.

M
od

e
V

is
ua

lis
at

io
n

R
et

ri
ev

in
g

C
ap

tu
re

R
ec

ov
er

y
Q

ue
ry

IdentityReq.

DefineTIM

DefineProcess

Assessment

Semi-automatic

Automatic

Transform

Event-based

IR

Rule

Misc

Model

Repository

Semi-automatic

Automatic

Reactive

Proactive

Matrix

Graph

Link

Predefined

API

General

Specific

[L
ag

o
et

al
.,

20
09

]
X

X

[M
äd

er
et

al
.,

20
09

a]
X

X
X

X
X

X
X

[M
at

ra
gk

as
,

20
11

;
D

ri
va

lo
s-

M
at

ra
gk

as
et

al
.,

20
10

]
X

X
X

X
X

X
X

X

[R
am

es
h

an
d

Ja
rk

e,
20

01
]

X
X

X
X

[S
pe

nc
e

an
d

P
ro

ba
sc

o,
20

00
]

X
X

[L
et

el
ie

r,
20

02
]

X
X

X
X

[J
ou

au
lt

,2
00

5]
X

X
X

[A
m

ar
et

al
.,

20
08

]
X

X
X

[F
al

le
ri

et
al

.,
20

06
]

X
X

X

[W
al

de
rh

au
g

et
al

.,
20

06
]

X
X

X

[K
as

sa
b

an
d

O
rm

an
dj

ie
va

,
20

06
;K

as
sa

b
et

al
.,

20
09

]
X

X
X

[A
nq

ue
ti

le
t

al
.,

20
10

]
X

X
X

X
X

X
X

[O
ls

en
an

d
O

ld
ev

ik
,2

00
7]

X
X

X
X

X

[S
ei

be
le

t
al

.,
20

10
,2

01
2]

X
X

X
X

X
X

X
X

X

230

A
p

p
ro

ac
h

P
la

n
n

in
g

T
ra

ce
C

re
at

io
n

M
ai

nt
en

an
ce

U
sa

ge

A
ut

o.
A

cq
ui

si
ti

on
St

or
ag

e
A

ut
o.

M
od

e
V

is
ua

lis
at

io
n

R
et

ri
ev

in
g

C
ap

tu
re

R
ec

ov
er

y
Q

ue
ry

IdentityReq.

DefineTIM

DefineProcess

Assessment

Semi-automatic

Automatic

Transform

Event-based

IR

Rule

Misc

Model

Repository

Semi-automatic

Automatic

Reactive

Proactive

Matrix

Graph

Link

Predefined

API

General

Specific

[G
ra

m
m

el
an

d
V

ig
ot

,2
00

9]
X

X
X

X

[V
an

ho
off

et
al

.,
20

07
]

X
X

X

[A
su

nc
io

n
et

al
.,

20
10

]
X

X
X

X
X

X

[G
re

ch
an

ik
et

al
.,

20
07

]
X

X
X

X

[K
ag

di
et

al
.,

20
07

]
X

X
X

[M
ar

cu
s

an
d

M
al

et
ic

,2
00

3]
X

X
X

[M
äd

er
et

al
.,

20
08

b]
X

X

[S
pa

no
ud

ak
is

et
al

.,
20

04
]

X
X

X
X

X

[G
or

p
an

d
Ja

ns
se

ns
,2

00
5]

X
X

X

[O
ld

ev
ik

et
al

.,
20

05
;

O
ld

ev
ik

an
d

N
ep

le
,2

00
6]

X
X

X

[A
nd

er
so

n
et

al
.,

20
00

]
X

X
X

[A
nd

er
so

n
et

al
.,

20
02

]
X

X
X

X
X

X

[L
uc

ia
et

al
.,

20
06

b,
20

07
]

X
X

X
X

[Z
ou

et
al

.,
20

10
]

X
X

X
X

[C
le

la
nd

-H
ua

ng
et

al
.,

20
05

a;
C

le
la

nd
-H

ua
ng

,2
00

5]
X

X
X

X
X

[H
ay

es
et

al
.,

20
03

]
X

X

231

Appendix B Summary of Existing Traceability Approaches

A
p

p
ro

ac
h

P
la

n
n

in
g

T
ra

ce
C

re
at

io
n

M
ai

nt
en

an
ce

U
sa

ge

A
ut

o.
A

cq
ui

si
ti

on
St

or
ag

e
A

ut
o.

M
od

e
V

is
ua

lis
at

io
n

R
et

ri
ev

in
g

C
ap

tu
re

R
ec

ov
er

y
Q

ue
ry

IdentityReq.

DefineTIM

DefineProcess

Assessment

Semi-automatic

Automatic

Transform

Event-based

IR

Rule

Misc

Model

Repository

Semi-automatic

Automatic

Reactive

Proactive

Matrix

Graph

Link

Predefined

API

General

Specific

[D
ia

z
et

al
.,

20
13

]
X

X
X

X

[G
et

he
rs

et
al

.,
20

11
]

X
X

X
X

[S
et

ti
m

ie
t

al
.,

20
04

]
X

X

[M
cM

ill
an

et
al

.,
20

09
]

X
X

[J
ir

ap
an

th
on

g
an

d
Zi

sm
an

,
20

05
]

X
X

[C
ys

ne
ir

os
an

d
do

P
ra

do
Le

it
e,

20
04

]
X

X
X

[Z
im

m
er

m
an

n
et

al
.,

20
05

]
X

X
X

X
X

[C
le

la
nd

-H
ua

ng
et

al
.,

20
02

b,
20

03
]

X
X

X
X

[P
in

he
ir

o
an

d
G

og
ue

n,
19

96
]

X
X

X
X

X
X

X
X

X
X

X
X

[Y
in

g
et

al
.,

20
04

]
X

X
X

[P
oh

l,
19

96
a]

X
X

X

[E
gy

ed
an

d
G

rü
nb

ac
he

r,
20

05
]

X
X

X
X

X

[Z
ha

ng
et

al
.,

20
06

]
X

X

[S
he

rb
a

et
al

.,
20

03
]

X
X

X
X

X

[W
en

ze
le

t
al

.,
20

07
]

X
X

X

[M
al

et
ic

et
al

.,
20

03
,2

00
5]

X
X

X
X

X
X

232

A
p

p
ro

ac
h

P
la

n
n

in
g

T
ra

ce
C

re
at

io
n

M
ai

nt
en

an
ce

U
sa

ge

A
ut

o.
A

cq
ui

si
ti

on
St

or
ag

e
A

ut
o.

M
od

e
V

is
ua

lis
at

io
n

R
et

ri
ev

in
g

C
ap

tu
re

R
ec

ov
er

y
Q

ue
ry

IdentityReq.

DefineTIM

DefineProcess

Assessment

Semi-automatic

Automatic

Transform

Event-based

IR

Rule

Misc

Model

Repository

Semi-automatic

Automatic

Reactive

Proactive

Matrix

Graph

Link

Predefined

API

General

Specific

[E
ng

el
s

et
al

.,
20

02
]

X
X

[M
en

s
et

al
.,

20
05

]
X

X

[M
ur

ta
et

al
.,

20
06

]
X

X
X

X

[S
ch

w
ar

z
et

al
.,

20
08

]
X

X

[M
al

et
ic

an
d

C
ol

la
rd

,2
00

9]
X

[M
äd

er
an

d
C

le
la

nd
-H

ua
ng

,
20

10
]

X
X

X

[A
su

nc
io

n
et

al
.,

20
07

;
A

su
n-

ci
on

,2
00

8;
A

su
nc

io
n

an
d

Ta
y-

lo
r,

20
12

]
X

X
X

X
X

X
X

X
X

X
X

[S
on

g
et

al
.,

20
11

]
X

X

[T
ek

in
er

do
ga

n
et

al
.,

20
07

a,
b]

X
X

X
X

[K
ri

sh
na

an
d

G
re

go
ri

ad
es

,
20

11
]

[M
ir

ak
ho

rl
i

an
d

C
le

la
nd

-
H

ua
ng

,2
01

1,
20

12
]

X
X

X
X

X
X

X
X

[K
at

ta
an

d
St

lh
an

e,
20

12
]

[A
lb

in
et

,
20

08
;

P
er

al
di

-F
ra

ti
an

d
A

lb
in

et
,2

01
0]

X
X

233

Appendix B Summary of Existing Traceability Approaches

A
p

p
ro

ac
h

P
la

n
n

in
g

T
ra

ce
C

re
at

io
n

M
ai

nt
en

an
ce

U
sa

ge

A
ut

o.
A

cq
ui

si
ti

on
St

or
ag

e
A

ut
o.

M
od

e
V

is
ua

lis
at

io
n

R
et

ri
ev

in
g

C
ap

tu
re

R
ec

ov
er

y
Q

ue
ry

IdentityReq.

DefineTIM

DefineProcess

Assessment

Semi-automatic

Automatic

Transform

Event-based

IR

Rule

Misc

Model

Repository

Semi-automatic

Automatic

Reactive

Proactive

Matrix

Graph

Link

Predefined

API

General

Specific

[M
as

on
et

al
.,

20
03

;
M

as
on

,
20

05
]

X
X

[S
ch

w
ar

z
et

al
.,

20
10

]
X

X
X

X
X

X
X

X
X

X

234

C
GSN Diagrams

In this appendix, a larger view of the GSN diagrams which were introduced
in the thesis is provided. Figure C.1 shows the identified requirements of
a multi-domain traceability solution and Figure C.2 and C.3 demonstrate
the overall argument on how the requirements and research objectives have
been fulfilled.

235

Appendix C GSN Diagrams

Figure C.1: GSN diagram representing requirements of a multi-domain traceability solution (overall argument)

236

Figure C.2: GSN diagram summarising the requirements-based evaluation for goal G1

237

Appendix C GSN Diagrams

Figure C.3: GSN diagram summarising the requirements-based evaluation for goals G2 and G3

238

D
TAL Xtext Grammar

This appendix shows the general part of the TAL grammar. This part con-
sists of the grammar rules for defining a query or a constraint, describing a
condition, and explaining an expression in TAL.

QueryModel :
(q u e r i e s += Query | checks += Constra int) ∗

;

Query :
(comment = SL COMMENT) ?
’ Query ’ qName = ID (’ (’ params += Parameter (’ ; ’ params

+= Parameter) ∗ ’) ’) ? ’ { ’
query = QueryFunction

’ } ’
;

Constra int :
(comment = SL COMMENT) ?
’ Constra int ’ cName = ID (’ (’ params += Parameter (’ ; ’

params += Parameter) ∗ ’) ’) ? ’ { ’
check = Val idat ionFunct ion

’ } ’
;

UsedQuery :
qName = ID (’ as ’ a l i a s = ID) ?

;

QueryFunction :
Find | Count

;

Find :
’ f i n d ’ element = TraceableElement (’ where ’ cond =

Condit ion) ?
;

239

Appendix D TAL Xtext Grammar

Count :
’ count ’ element = TraceableElement (’ where ’ cond =

Condit ion) ?
;

Val idat ionFunct ion :
Ex i s t | ExistOne | ForAll

;

Ex i s t :
’ e x i s t ’ e lement = Element (’ where ’ cond = Condit ion) ?

;

ExistOne :
’ existOne ’ element = Element (’ where ’ cond = Condit ion) ?

;

ForAll :
’ f o r A l l ’ e lement = TraceableElement (’ where ’ r e s t r i c t i o n

= Condit ion) ? ’ : ’
cond = Condit ion

;

Condit ion :
mainExpr = Express ion (add i t i ona lExprs += ExtendedExpr) ∗

;

Express ion :
(not ?= ’ not ’) ? (beg ?= ’ (’) (stmt = SimpleExpr | func =

Val idat ionFunct ion) (end ?= ’) ’)
;

SimpleExpr :
l e f t = Operand op = Operator rightOp = Operand
| l e f t = Operand op = Operator r i ghtVa l = ConstantValue
| l e f t = Operand
| l e f t = Operand ’ in ’ input = ID (’ (’ paramVal = ID ’) ’) ?
| l e f t = Operand ’ in ’ ’ (’ inQuery = Find ’) ’
| source = TraceableElement traceType = TraceLink t a r g e t

= TraceableElement ;

ExtendedExpr :
conj = AndOr exp = Express ion

;

Parameter :
pName = ID ’ : ’ pType = TraceableElement

;

240

ConstantValue :
STRING | INT | ’ n u l l ’ | ’ t rue ’ | ’ f a l s e ’

;

Operator :
’= ’ | ’< ’ | ’> ’ | ’<> ’ | ’<=’ | ’>=’

;

AndOr :
’ and ’ | ’ or ’

;

Bui l t InFunct ion :
’ s i z e () ’ | ’ i sD e f i n ed () ’ | (’ s tartsWith (’ Input ’) ’)

;

Input :
ConstantValue (’ , ’ ConstantValue) ∗

;

Element :
TraceableElement | TraceLink

;

Listing D.1: Xtext grammar of the general part of the TAL grammar

241

E
Dynamic Model
Transformation

Listing E.1 provides the EOL program for the dynamic model transformation
used to generate a TM.

1 var emfTool = new Native("org.eclipse.epsilon.emc.emf.tools.
EmfTool");

2 var myTool = new Native("org.eclipse.epsilon.examples.tools.
MyJavaTool");

3

4 var ecoreUtil = emfTool.ecoreUtil;
5

6 //Input: Mapping Model
7 var mappingModel = inputMappingModel!MappingModel.all().first

();
8

9 var TIM = mappingModel.TIM;
10 var mappingEntries = mappingModel.mappings;
11 var equivalents = mappingModel.equivalences;
12 var sourceMetaModels = mappingModel.sourceMetaModels;
13

14 var sourceModelElements = new Map;
15 for (mm in sourceMetaModels) {
16 //Locate the source model for the specified metamodel and

put its elements in the map
17 sourceModelElements.put(mm.name, loadSourceModelElements(mm

));
18 }
19

20

21 //Output: Traceability Model
22 var traceabilityModel = ecoreUtil.create(TIM.theMetaModel);
23 traceabilityModel.name = mappingModel.name;
24 emfTool.createModel(traceabilityModel, "

outputTraceabilityModel");
25

243

Appendix E Dynamic Model Transformation

26 //Utility Model: Equivalent Model (a generic traceability
model)

27 var equivalentModel = new outputEquivalentModel!
TraceabilityModel;

28 equivalentModel.name = mappingModel.name;
29 var eqLinkType = new outputEquivalentModel!LinkType;
30 eqLinkType.name = "Equivalent";
31 equivalentModel.linkTypes.add(eqLinkType);
32 var sameLinkType = new outputEquivalentModel!LinkType;
33 sameLinkType.name = "same";
34 equivalentModel.linkTypes.add(sameLinkType);
35

36 //Iterate over mapping entries
37 var entry : inputMappingModel!MappingEntry;
38 for (entry in mappingEntries) {
39 //Assume that endPoint1 always refers to TIM
40 var endPoint1 : inputMappingModel!ModelElementRef = entry.

endPoint1;
41 var endPoint2 : inputMappingModel!ModelElementRef = entry.

endPoint2;
42 var definitions = entry.definitions;
43 var conditions = entry.conditions;
44

45

46 //Select the elements belong to the desired source model
47 var inModelElements = sourceModelElements.get(endPoint2.

owner.name);
48

49 //Target reference in the TM used to add the elements to the
model

50 var targetEReference = traceabilityModel.eClass().
getEAllReferences().selectOne(sf | sf.getEType().name =
endPoint1.theElement.name);

51

52 var inputElements;
53

54 if (endPoint1.type = inputMappingModel!ModelElementType#
Clazz and endPoint2.type = inputMappingModel!
ModelElementType#Clazz) {

55 inputElements = inModelElements.select(el | isTypeOf(el,
endPoint2.theElement));

56

57 var outElements : Sequence = new Sequence;
58 for (element : Any in inputElements) {
59 var outElement = outputTraceabilityModel.createInstance(

endPoint1.theElement.name);
60

61 //Initialise the new element based on definitions
62 initialiseElement(definitions, outElement, null, element,

null);
63

64 //Add the new element into the output TM
65 traceabilityModel.eGet(targetEReference).add(outElement);
66

244

67 //Add an equivalenve link in the utility model
68 addToEquivalentModel(element, outElement, eqLinkType);
69

70 //Check for equivalents in source models
71 var equal = equivalents.selectOne(eq | eq.endPoint1.owner

= endPoint2.owner and eq.endPoint1.theElement =
endPoint2.theElement);

72 if (equal.isDefined()) {
73 var links = sourceModelElements.select(el | isTypeOf(el,

equal.corrTraceLink.theElement));
74

75 if (links.isDefined() and not links.isEmpty()) {
76 //Retrieve the StructuralFeature from the eClass!!!
77 var tempLink = links.at(0);
78

79 var sfName1 = equal.definitions.selectOne(def | def.name
= "ep1").stmtStr;

80 var sf1 = tempLink.eClass().getEAllStructuralFeatures().
selectOne(sf | sf.name = sfName1);

81 var sfName2 = equal.definitions.selectOne(def | def.name
= "ep2").stmtStr;

82 var sf2 = tempLink.eClass().getEAllStructuralFeatures().
selectOne(sf | sf.name = sfName2);

83

84 var link = links.selectOne(l | l.eGet(sf1) = element);
85 if (link.isDefined()) {
86 addToEquivalentModel(link.eGet(sf2), outElement,

sameLinkType);
87 }
88 }
89 }
90 }
91 } else if (endPoint1.type = inputMappingModel!

ModelElementType#Clazz and endPoint2.type =
inputMappingModel!ModelElementType#Reference) {

92 for (modEl in inModelElements) {
93 var sf = modEl.eClass().getEAllStructuralFeatures().

selectOne(sf | sf.name = endPoint2.theElement.name);
94 if (sf.isDefined()) {
95 inputElements = modEl.eGet(sf);
96 if (inputElements.isDefined()) {
97 for (element in inputElements) {
98 var outElement = outputTraceabilityModel.createInstance

(endPoint1.theElement.name);
99 //Initialise the new element based on definitionss

100 initialiseElement(definitions, outElement, null, modEl,
element);

101

102 //Add the new element into the output TM
103 traceabilityModel.eGet(targetEReference).add(outElement

);
104 }
105 }
106 }

245

Appendix E Dynamic Model Transformation

107 }
108 }
109 }
110

111 operation initialiseElement(definitions : Any, el1Src : Any,
el1Tar : Any, el2Src : Any, el2Tar : Any) {

112 if (definitions.isUndefined())
113 return;
114

115 var el1 = el1Src;
116 var el2 = el2Src;
117 for (def in definitions) {
118 var parts = def.stmtStr.split(’ = ’);
119

120 //the TIM side: a reference to the attribute
121 var left: Any = parts.at(0);
122

123 //the other side: resolved value for the attribute
124 var right : Any = parts.at(1);
125

126 //Extract the name of the attribute of the element in TM
127 var attr1 = left.split(’\\.’).at(1); //.split(’\\]’).at(0);
128

129 //Resolve the value
130 var rightParts = right.split(’\\+’);
131 var value;
132 for (part in rightParts){
133 var arr = part.split(’\\.’);
134 for (a in arr) {
135 a = a.trim();
136 //Manage keywords
137 if (a.trim() = "ep2")
138 continue;
139 if (a = "_source") {
140 el2 = el2Src;
141 } else if (a = "_target") {
142 el2 = el2Tar;
143 } else {
144 var attr2 = a;
145 var srcEsf = el2.eClass().getEAllStructuralFeatures().

selectOne(sf | sf.name = attr2);
146 if (srcEsf.isDefined()) {
147 if (srcEsf.isTypeOf(EAttribute)) {
148 value = value + el2.eGet(srcEsf);
149 } else if (srcEsf.isTypeOf(EReference)) {
150 value = getEquivalent(el2.eGet(srcEsf));
151 }
152 } else {
153 value = value + (a.replace("\"", ""));
154 }
155 }
156 }
157 }
158

246

159 if (value.isUndefined()) {
160 value = getEquivalent(el2);
161 }
162

163 var tarEsf = el1.eClass().getEAllStructuralFeatures().
selectOne(sf | sf.name = attr1);

164 if (tarEsf.isTypeOf(EAttribute)) {
165 el1.eSet(tarEsf, ecoreUtil.createFromString(tarEsf.

getEAttributeType(), value));
166 } else if (tarEsf.isTypeOf(EReference)) {
167 el1.eSet(tarEsf, value);
168 }
169 }
170 }
171

172 operation addToEquivalentModel(source : Any, target : Any,
linkType: Any) {

173 var link = new outputEquivalentModel!Link;
174 link.name = source.name + " -- " + target.name;
175 link.type = linkType;
176 link.linkEnd1 = source;
177 link.linkEnd2 = target;
178 equivalentModel.links.add(link);
179 }
180

181 operation Any getEquivalent(element : Any) {
182 var eqEl = equivalentModel.links.selectOne(l | l.linkEnd1 =

element);
183 if (eqEl.isDefined())
184 return eqEl.linkEnd2;
185 return null;
186 }
187

188 operation Boolean isTypeOf(element : Any, type : Any) {
189 return element.eClass().name = type.name;
190 }
191

192 operation Any loadSourceModelElements(metamodel : Any) {
193 var srcModel = System.user.prompt("Locate the model for ’" +

metamodel.name + "’");
194 var srcEMFModel;
195 if (srcModel.isDefined()) {
196 srcEMFModel = myTool.createEmfModel(metamodel.name+"_model"

, srcModel, metamodel.theMetaModel.eContainer().
getNsURI(), true, false);

197

198 if (srcEMFModel.isDefined())
199 return srcEMfModel.allContents();
200 }
201 return null;
202 }

Listing E.1: Dynamic model transformation EOL program

247

F
RVSM Case Study

Supplement
This appendix provides the complementary information for the RVSM case
study including the GQM EMF model, EVL constraints for the TIM, par-
tialTIMs, and the complete mapping model.

F.1 GQM Model
Figure F.1 shows the EMF model of the GQM model defined in the case
study.

F.2 EVL Constraints
In this section, the EVL constraints which are defined for the TIM in the
RVSM case study are provided. Listing F.1 shows these constraints.

The first constraint describes that a safety integrity requirement can be
directly allocated to a system element if and only if its associated hazard is
classified as SafetyCritical. The second one specifies that actions required
by a derived safety requirement have to trace to mitigations identified for
the hazard associated with the safety requirement. The last ones have been
introduced in Section 6.5.1.

1 context SafetyIntegrityRequirement {
2 guard : DirAllocatedTo.all().exists(d | d.traceLinkEnd1 =

self)
3 constraint SafetyCriticalHazardDirAllocatedToSysElement{
4 check : not DefinedFor.all.exists(
5 df | df.traceLinkEnd1 = self
6 and
7 df.traceLinkEnd2.type = HazardClassification#

NonSafetyCritical);

249

Appendix F RVSM Case Study Supplement

Figure F.1: The GQM EMF model for the example traceability scenario in
RVSM

8

9 message : "Safety Integrity Requirement ‘" + self + "’ has
been defined based on a NonSafetyCritical hazard and
could not be directly allocated to system elements";

10 }
11 }
12

13 context Action {
14 guard : RequiredBy.all().exists(rb | rb.traceLinkEnd1 =

self and rb.traceLinkEnd2.derived)
15 constraint ActionReferToMitigation{
16 check :
17 var sr = RequiredBy.all().selectOne(rb | rb.

traceLinkEnd1 = self).traceLinkEnd2;
18 var sir = DerivedFrom.all()selectOne(df | df.

traceLinkEnd1 = sr).traceLinkEnd2;
19 var hazard = DefinedFor.all().selectOne(df | df.

traceLinkEnd1 = sir).traceLinkdEnd2;
20 var mitigations = MitigatedBy.all().select(mb | mb.

traceLinkEnd1 = hazard);
21 return mitigations.forAll(m | ReferTo.all.exists(rt |

rt.traceLinkEnd1 = self and rt.traceLinkEnd2 = m));
22

250

F.3 partialTIMs

23 message : "Action ‘" + self + "’ has to refer to related
mitigations";

24 }
25 }
26

27 context SafetyRequirement {
28 guard : self.derived
29 constraint DerivedForNonSafetyCriticalHazard {
30 check :
31 var safetyIntegrityReq = DerivedFrom.all().selectOne(df

| df.traceLinkEnd1 = self).traceLinkEnd2;
32 return not DefinedFor.all.exists(df | df.traceLinkEnd1 =

safetyIntegrityReq and df.traceLinkEnd2.type =
HazardClassification#SafetyCritical);

33

34 message : "Safety Requirement ‘" + self + "’ traces to a
SafetyCritical hazard";

35 }
36 }
37

38 context SafetyRequirement {
39 constraint NoDanglingSafetyRequirement{
40 check : DerivedFrom.all.exists(df | df.traceLinkEnd1 = self
41 and
42 df.traceLinkEnd2.isDefined())
43 or
44 DecomposedTo.all.exists(dt | dt.traceLinkEnd2 = self
45 and
46 dt.traceLinkEnd1.isDefined())
47

48 message : "All Safety Requirement have to be traced to a
safety objective or a hazard";

49 }
50 }

Listing F.1: EVL constraints for the TIM in RVSM

F.3 partialTIMs
In this section, the partialTIMs defined to specify required inter-domain
relationships are provided.

F.4 Mapping Model
The mapping model for the RVSM project is shown in two parts. Fig-
ure F.6 shows the mapping between TraceableElements and other elements.
Figure F.7 shows how TraceLinks are mapped to other models, in addition
to three equivalence relationships identified between domain-specific models
(defined in Section 6.5.2).

251

Appendix F RVSM Case Study Supplement

Figure F.2: The partialTIM between Safety Policy and FHA

Figure F.3: The partialTIM between Safety Policy and PSSA

Figure F.4: The partialTIM between PSSA and ATC supporting system de-
velopment

Figure F.5: The partialTIM between PSSA and ATC Manual

252

F.4 Mapping Model

Figure F.6: The mapping model - part 1
253

Appendix F RVSM Case Study Supplement

Figure F.7: The mapping model - part 2
254

References
[Abadi et al., 2008] A. Abadi, M. Nisenson, and Y. Simionovici. A traceabil-

ity technique for specifications. In Proc. of the 16th IEEE International
Conference on Program Comprehension, ICPC ’08, pages 103–112. IEEE
Computer Society, 2008.

[Aizenbud-Reshef et al., 2005] N. Aizenbud-Reshef, R. F. Paige, J. Rubin, Y.
Shaham-Gafni, and D. S. Kolovos. Operational semantics for traceability.
In Proc. of the ECMDA Traceability Workshop, ECMDA-TW ’05, pages
8–14. Sintef, 2005.

[Aizenbud-Reshef et al., 2006] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y.
Shaham-Gafni. Model traceability. IBM Systems Journal, 45(3):515–526,
2006.

[Ajila and Kaba, 2004] S. A. Ajila and A. B. Kaba. Using traceability mecha-
nisms to support software product line evolution. In Proc. of the IEEE
International Conference on Information Reuse and Integration, IRI ’04,
pages 157–162. IEEE Computer Society, 2004.

[Albinet, 2008] A. Albinet. The MeMVaTEx methodology: From requirements
to models in automotive application design. In Proc. of the 4th European
Congress on Embedded Real-Time Software, ERTS ’08, 2008.

[Alexander et al., 2005] I. Alexander, S. Robertson, and N. Maiden. What influ-
ences the requirements process in industry? a report on industrial prac-
tice. In Proc. of the 13th IEEE International Requirements Engineering
Conference, RE ’05, pages 411–415. IEEE Computer Society, 2005.

[Alexander, 2002] I. Alexander. Towards automatic traceability in industrial prac-
tice. In Proc. of the 1st International Workshop on Traceability, pages
26–31, 2002.

[Alexander, 2005] I. Alexander. A taxonomy of stakeholders: human roles in
system development. International Journal of Technology and Human
Interaction, 1(1):23–59, 2005.

[Alexander and Maiden, 2004] I. Alexander and N. Maiden. Scenarios, stories,
use cases: through the systems development life-cycle. J. Wiley and sons,
Chichester, 2004.

255

References

[Amar et al., 2008] B. Amar, H. Leblanc, and B. Coulette. A traceability engine
dedicated to model transformation for software engineering. In Proc. of
the ECMDA Traceability Workshop, ECMDA-TW ’08, 2008.

[Ambler and Jeffries, 2002] S. W. Ambler and R. Jeffries. Agile Modeling: Effec-
tive Practices for Extreme Programming and the Unified Process. Wiley,
2002.

[AMPLE, 2007] AMPLE. Project AMPLE: Aspect-Oriented, Model-Driven
Product Line Engineering. http://ample.holos.pt, 2007.

[Anderson et al., 2000] K. M. Anderson, R. N. Taylor, E. J. Whitehead, and Jr.
Chimera: Hypermedia for heterogeneous software development environ-
ments. ACM Transactions on Information Systems, 18:211–245, 2000.

[Anderson et al., 2002] K. M. Anderson, S. A. Sherba, and W. V. Lepthien. To-
wards large-scale information integration. In Proc. of the 22nd Inter-
national Conference on Software Engineering, ICSE ’02, pages 524–534.
ACM, 2002.

[Anquetil et al., 2010] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreir, J.-C.
Royer, A. Rummler, and A. Sousa. A model-driven traceability framework
for software product lines. Software and Systems Modeling, 9(4):427–451,
2010.

[Antoniol et al., 2001] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia.
Maintaining traceability links during object-oriented software evolution.
Software: Practice and Experience, 31:331–355, 2001.

[Antoniol et al., 2002] G. Antoniol, G. Canfora, G. Casazza, D. L. Andrea, and
E. Merlo. Recovering traceability links between code and documentation.
IEEE Transactions on Software Engineering, 28(10):970–983, 2002.

[Appleton et al., 2007] B. Appleton, R. Cowham, and S. Berczuk. Lean trace-
ability: A smattering of strategies and solutions. http://meu-tcc.
googlecode.com/svn/trunk/Artigos/Lean%20Traceability%
20a%20smattering%20of%20strategies%20and%20solutions,
2007.

[Appleton, 2005] B. Appleton. Traceability and trust-
ability. http://bradapp.blogspot.co.uk/2005/03/
traceability-and-trust-ability.html, 2005.

[Arkley and Riddle, 2005] P. Arkley and S. Riddle. Overcoming the traceability
benefit problem. In Proc. the 13th IEEE International Requirements En-
gineering Conference, RE ’05, pages 385–389. IEEE Computer Society,
2005.

256

http://ample.holos.pt
http://meu-tcc.googlecode.com/svn/trunk/Artigos/Lean%20Traceability%20a%20smattering%20of%20strategies%20and%20solutions
http://meu-tcc.googlecode.com/svn/trunk/Artigos/Lean%20Traceability%20a%20smattering%20of%20strategies%20and%20solutions
http://meu-tcc.googlecode.com/svn/trunk/Artigos/Lean%20Traceability%20a%20smattering%20of%20strategies%20and%20solutions
http://bradapp.blogspot.co.uk/2005/03/traceability-and-trust-ability.html
http://bradapp.blogspot.co.uk/2005/03/traceability-and-trust-ability.html

References

[Asuncion, 2008] H. U. Asuncion. Towards practical software traceability. In Proc.
of the 30th International Conference on Software Engineering - Compan-
ion, ICSE Companion ’08, pages 1023–1026. ACM, 2008.

[Asuncion and Taylor, 2012] H. U. Asuncion and R. N. Taylor. Automated tech-
niques for capturing custom traceability links across heterogeneous arti-
facts. In J. Cleland-Huang, O. Gotel, and A. Zisman, editors, Software
and Systems Traceability, pages 129–146. Springer, 2012.

[Asuncion et al., 2007] H. U. Asuncion, F. François, and R. N. Taylor. An end-to-
end industrial software traceability tool. In Proc. of the 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE ’07,
pages 115–124. ACM, 2007.

[Asuncion et al., 2010] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Soft-
ware traceability with topic modeling. In Proc. of the 32nd International
Conference on Software Engineering - Volume 1, ICSE ’10, pages 95–104.
ACM, 2010.

[ATESST2 Consortium, 2010] ATESST2 Consortium. Advancing Traffic Effi-
ciency and Safety through Software Technology phase 2 (ATESST2).
http://www.atesst.org/scripts/home/publigen/content/
templates/show.asp?P=125&L=EN&ITEMID=8, 2010.

[Australian Transport Safety Burea, 2005] Australian Transport Safety Burea.
Aviation safety investigation report - in-flight upset event 240 km north-
west of perth, wa, boeing company 777-200, 9m-mrg. http://www.
atsb.gov.au/media/24550/aair200503722_001.pdf, 2005.

[Baeza-Yates and Ribeiro-Neto, 1999] R. A. Baeza-Yates and B. A. Ribeiro-Neto.
Modern Information Retrieval. ACM Press/Addison-Wesley, 1999.

[Barbero et al., 2007] M. Barbero, M. Didonet, D. Fabro, and J. Bézivin. Trace-
ability and provenance issues in global model management. In Proc. of
the ECMDA Traceability Workshop, ECMDA-TW ’07, 2007.

[Basili and Caldiera, 1994] V. R. Basili and G. Caldiera. Goal question metric
paradigm. Encyclopaedia of Software Engineering, 1:528–532, 1994.

[Bass et al., 1998] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1998.

[Bayer and Widen, 2002] J. Bayer and T. Widen. Introducing traceability to
product lines. In Revised Papers from the 4th International Workshop on
Software Product-Family Engineering, PFE ’01, pages 409–416. Springer-
Verlag, 2002.

257

http://www.atesst.org/scripts/home/publigen/content/templates/show.asp?P=125&L=EN&ITEMID=8
http://www.atesst.org/scripts/home/publigen/content/templates/show.asp?P=125&L=EN&ITEMID=8
http://www.atsb.gov.au/media/24550/aair200503722_001.pdf
http://www.atsb.gov.au/media/24550/aair200503722_001.pdf

References

[Beck and Andres, 2004] K. Beck and C. Andres. Extreme Programming Ex-
plained: Embrace Change. Addison-Wesley, 2nd edition, 2004.

[Bernstein and Melnik, 2007] P. A. Bernstein and S. Melnik. Model management
2.0: Manipulating richer mappings. In Proc. of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’07, pages 1–12.
ACM, 2007.

[Bézivin and Gerbe, 2001] J. Bézivin and O. Gerbe. Towards a precise definition
of the OMG/MDA framework. In Proc. of the 16th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’01, pages
273–280, 2001.

[Bézivin et al., 2004] J. Bézivin, F. Jouault, and P. Valduriez. On the need for
megamodels. In Proc. of the OOPSLA and GPCE Workshop on Best
Practices for Model Driven Software Development, OOPSLA ’04, 2004.

[Bézivin et al., 2006] J. Bézivin, S. Bouzitouna, M. D. D. Fabro, M.-P. Ger-
vais, F. Jouault, D. Kolovos, I. Kurtev, and R. F. Paige. A canonical
scheme for model composition. In Proc. of the 2nd European Conference
on Model Driven Architecture-Foundations and Applications, ECMDA-
FA ’06, pages 346–360, 2006.

[BigLever Software Inc, 2012] BigLever Software Inc. BigLever Software Gears.
http://www.biglever.com, 2012.

[Bouzitouna et al., 2005] S. Bouzitouna, M.-P. Gervais, , and X. Blanc. Model
reuse in MDA. In H. R. Arabnia and H. Reza, editors, Proc. of the Soft-
ware Engineering Research and Practice, pages 354–360. CSREA Press,
2005.

[Burge and Brown, 2008] J. E. Burge and D. C. Brown. Software engineering us-
ing {RATionale}. Journal of Systems and Software, 81(3):395–413, 2008.

[Capobianco et al., 2013] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella,
and S. Panichella. Improving ir-based traceability recovery via noun-based
indexing of software artifacts. Journal of Software: Evolution and Process,
25(7):743–762, 2013.

[Center of Excellence for Software Traceability (CoEST), 2014] Center of Excel-
lence for Software Traceability (CoEST). Tracelab. http://www.
coest.org/index.php/about-tracelab, 2014.

[Chan and Paige, 2005] Z. E. Chan and R. F. Paige. Designing a domain-specific
contract language: A metamodelling approach. In Proc. of the 1st Euro-
pean Conference on Model Driven Architecture: Foundations and Appli-
cations, ECMDA-FA ’05, pages 175–189. Springer-Verlag, 2005.

258

http://www.biglever.com
http://www.coest.org/index.php/about-tracelab
http://www.coest.org/index.php/about-tracelab

References

[Charalambous, 2007] R. Charalambous. Towards agile engineering of high in-
tegrity software. Master’s thesis, Department of Computer Science, Uni-
versity of York, 2007.

[Chrissis et al., 2006] M. B. Chrissis, M. Konrad, and S. Shrum. CMMI: Guide-
lines for Process Integration and Product Improvement (SEI Series in
Software Engineering). Addison-Wesley Longman, Amsterdam, 2nd edi-
tion, 2006.

[Clark et al., 2004] T. Clark, A. Evans, P. Sammut, and J. Willans. Transfor-
mation language design: A metamodelling foundation. In H. Ehrig, G.
Engels, F. Parisi-Presicce, and G. Rozenberg, editors, Graph Transforma-
tions, volume 3256 of Lecture Notes in Computer Science, pages 13–21.
Springer Berlin Heidelberg, 2004.

[Cleland-Huang and Schmelzer, 2003] J. Cleland-Huang and D. Schmelzer. Dy-
namically tracing non-functional requirements through design pattern in-
variants. In Proc. of the International Workshop on Traceability in Emerg-
ing Forms of Software Engineering in Conjunction with ASE, TEFSE ’03,
2003.

[Cleland-Huang et al., 2005a] J. Cleland-Huang, R. Settimi, O. BenKhadra, E.
Berezhanskaya, and S. Christina. Goal-centric traceability for managing
non-functional requirements. In Proc. of the International Conference on
Software Engineering, ICSE ’05, pages 362 – 371, 2005a.

[Cleland-Huang, 2005] J. Cleland-Huang. Toward improved traceability of non-
functional requirements. In Proc. of the International Workshop on Trace-
ability in Emerging Forms of Software Engineering, TEFSE ’05, pages
14–19. IEEE Computer Society, 2005.

[Cleland-Huang, 2006] J. Cleland-Huang. Just enough requirements traceability.
In Proc. of the 30th Annual International Computer Software and Ap-
plications Conference - Volume 01, COMPSAC ’06, pages 41–42. IEEE
Computer Society, 2006.

[Cleland-Huang, 2012] J. Cleland-Huang. Traceability in agile projects. In J.
Cleland-Huang, O. Gotel, and A. Zisman, editors, Software and Systems
Traceability, pages 265–275. Springer London, 2012.

[Cleland-Huang et al., 2002a] J. Cleland-Huang, C. K. Chang, and Y. Ge. Sup-
porting event based traceability through high-level recognition of change
events. In Proc. of the 26th International Computer Software and Ap-
plications Conference on Prolonging Software Life: Development and Re-
development, COMPSAC ’02, pages 595–602. IEEE Computer Society,
2002a.

259

References

[Cleland-Huang et al., 2002b] J. Cleland-Huang, C. K. Chang, G. Sethi, K. Jav-
vaji, H. Hu, and J. Xia. Automating speculative queries through event-
based requirements traceability. In Proc. of the 10th Anniversary IEEE
Joint International Requirements Engineering Conference, RE ’02, pages
289–298. IEEE Computer Society, 2002b.

[Cleland-Huang et al., 2003] J. Cleland-Huang, C. K. Chang, and M. Christensen.
Event-based traceability for managing evolutionary change. IEEE Trans-
actions on Software Engineering, 29(9):796–810, 2003.

[Cleland-Huang et al., 2005b] J. Cleland-Huang, R. Settimi, C. Duan, and X.
Zou. Utilizing supporting evidence to improve dynamic requirements
traceability. In Proc. of the 13th IEEE International Requirements En-
gineering Conference, RE ’05, pages 135–144. IEEE Computer Society,
2005b.

[Cleland-Huang et al., 2007] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc.
Automated classification of non-functional requirements. Requirements
Engineering, 12(2):103–120, 2007.

[Cleland-Huang et al., 2012] J. Cleland-Huang, M. Heimdahl, J. H. Hayes, R.
Lutz, and P. Mäder. Trace queries for safety requirements in high as-
surance systems. In Proc. of the 18th Working Conference on Require-
ments Engineering: Foundation for Software Quality, REFSQ ’12, pages
179–193, 2012.

[Costa and da Silva, 2007] M. Costa and A. R. da Silva. RT-MDD framework
a practical approach. In Proc. of the ECMDA Traceability Workshop,
ECMDA-TW ’07, 2007.

[Cottenier et al., 2006] T. Cottenier, A. Berg, and T. Elrad. Modeling aspect-
oriented compositions. In J.-M. Bruel, editor, Satellite Events at the
MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer
Science, pages 100–109. Springer Berlin Heidelberg, 2006.

[Cysneiros and do Prado Leite, 2004] L. M. Cysneiros and J. C. S. do Prado Leite.
Nonfunctional requirements: from elicitation to conceptual models. IEEE
Transactions on Software Engineering, 30(5):328–350, 2004.

[Cysneiros, 2007] L. M. Cysneiros. Evaluating the effectiveness of using catalogues
to elicit non-functional requirements. In Workshop em Engenharia de
Requisitos, WER ’07, pages 107–115, 2007.

[Czarnecki and Helsen, 2006] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems Journal, 45(3):621–645,
2006.

260

References

[Czarnecki, 2002] K. Czarnecki. Domain Engineering. John Wiley & Sons, Inc.,
2002.

[Dahlstedt and Persson, 2005] A. Dahlstedt and A. Persson. Requirements inter-
dependencies: State of the art and future challenges. In A. Aurum and C.
Wohlin, editors, Engineering and Managing Software Requirements, pages
95–116. Springer-Verlag, 2005.

[Dashofy et al., 2007] E. Dashofy, H. Asuncion, S. Hendrickson, G. Surya-
narayana, J. Georgas, and R. Taylor. Archstudio 4: An architecture-based
meta-modeling environment. In Proc. of the 29th International Confer-
ence on Software Engineering - Companion, ICSE Companion ’07, pages
67–68, 2007.

[Dashofy et al., 2001] E. M. Dashofy, A. V. der Hoek, and R. N. Taylor. A highly-
extensible, XML-based architecture description language. In Proc. of the
Working IEEE/IFIP Conference on Software Architecture, WICSA ’01,
pages 103–112. IEEE Computer Society, 2001.

[de Pádua Albuquerque Oliveira et al., 2007] A. de Pádua Albuquerque Oliveira,
J. C. S. do Prado Leite, L. M. Cysneiros, and C. Cappelli. Eliciting multi-
agent systems intentionality: from language extended lexicon to i* models.
In Proc. of the 14th International Conference of the Chilean Computer
Science Society, SCCC ’07, pages 40–49. IEEE Computer Society, 2007.

[Deerwester et al., 1990] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Lan-
dauer, and R. Harshman. Indexing by latent semantic analysis. Journal
of The American Society for Information Science, 41(6):391–407, 1990.

[DeRemer and Kron, 1975] F. DeRemer and H. Kron. Programming-in-the large
versus programming-in-the-small. SIGPLAN Not., 10(6):114–121, 1975.

[Despotou and Kelly, 2008] G. Despotou and T. Kelly. Investigating the use of
argument modularity to optimise through-life system safety assurance. In
Proc. of the 3rd IET International Conference on System Safety, pages
1–6, 2008.

[Diaz et al., 2013] D. Diaz, G. Bavota, A. Marcus, R. Oliveto, S. Takahashi, and
A. D. Lucia. Using code ownership to improve ir-based traceability link
recovery. In Proc. of the 21st IEEE International Conference on Program
Comprehension, ICPC ’13, pages 123–132. IEEE Computer Society, 2013.

[Dick, 2005] J. Dick. Rich traceability. In Proc. of the International Workshop
on Traceability in Emerging Forms of Software Engineering, TEFSE ’05,
pages 62–66. IEEE Computer Society, 2005.

[Dömges and Pohl, 1998] R. Dömges and K. Pohl. Adapting traceability environ-
ments to project-specific needs. Commun. ACM, 41(12):54–62, 1998.

261

References

[Drivalos et al., 2009] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fer-
nandes. Engineering a dsl for software traceability. In D. Gašević, R.
Lämmel, and E. Wyk, editors, Software Language Engineering, pages 151–
167. Springer-Verlag, 2009.

[Drivalos-Matragkas et al., 2010] N. Drivalos-Matragkas, D. S. Kolovos, R. F.
Paige, and K. J. Fernandes. A state-based approach to traceability main-
tenance. In Proc. of the ECMFA Traceability Workshop, ECMFA-TW ’10,
pages 23–30. ACM, 2010.

[Duan and Cleland-Huang, 2006] C. Duan and J. Cleland-Huang. Visualization
and analysis in automated trace retrieval. In Proc. of the 1st International
Workshop on Requirements Engineering Visualization, REV ’06. IEEE
Computer Society, 2006.

[Dutoit et al., 2006] A. H. Dutoit, R. McCall, I. Mistrik, and B. Paech. Rationale
Management in Software Engineering. Springer-Verlag New York, Inc.,
2006.

[Ebert et al., 2002] J. Ebert, B. Kullbach, V. Riediger, and A. Winter. Gupro:
Generic understanding of programs – an overview. In Electronic Notes in
Theoretical Computer Science, 2002.

[Ebner and Kaindl, 2002] G. Ebner and H. Kaindl. Tracing all around in reengi-
neering. IEEE Software, 19(3):70–77, 2002.

[Eclipse Foundation, 2013] Eclipse Foundation. Eclipse Modelling Framework
Project. http://www.eclipse.org/modeling/emf, 2013.

[Egyed and Grünbacher, 2005] A. Egyed and P. Grünbacher. Supporting software
understanding with automated requirements traceability. International
Journal of Software Engineering and Knowledge Engineering, 15(5):783–
810, 2005.

[Egyed et al., 2005] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher. Determin-
ing the cost-quality trade-off for automated software traceability. In Proc.
of the 20th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’05, pages 360–363. IEEE Computer Society, 2005.

[Egyed et al., 2007] A. Egyed, P. Grunbacher, M. Heindl, and S. Biffl. Value-
based requirements traceability: Lessons learned. In Proc. of the 15th
IEEE International Requirements Engineering Conference, RE ’07, pages
240–257. IEEE Computer Society, 2007.

[Ellson et al., 2003] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G.
Woodhull. Graphviz and dynagraph – static and dynamic graph drawing
tools. In Graph Drawing Software, pages 127–148. Springer-Verlag, 2003.

262

http://www.eclipse.org/modeling/emf

References

[Engels et al., 2002] G. Engels, R. Heckel, J. M. Kuster, and L. Groenewegen.
Consistency-preserving model evolution through transformations. In J.-
M. Jezequel, H. Hussmann, and S. Cook, editors, «UML» 2002 – The
Unified Modelling Language, volume 2460 of Lecture Notes in Computer
Science, pages 212–227. Springer Berlin Heidelberg, 2002.

[Espinoza and Garbajosa, 2008a] A. Espinoza and J. Garbajosa. A proposal for
defining a set of basic items for project-specific traceability methodolo-
gies. In Proc. of the 32nd Annual IEEE Software Engineering Workshop,
SEW ’08, pages 175–184. IEEE Computer Society, 2008a.

[Espinoza and Garbajosa, 2008b] A. Espinoza and J. Garbajosa. Tackling trace-
ability challenges through modelling principles in methodologies under-
pinned by metamodels. In Proc. of the CEE-SET WiP, CEE-SET
WiP ’08, pages 41–54. IEEE Computer Society, 2008b.

[Espinoza and Garbajosa, 2011] A. Espinoza and J. Garbajosa. A study to sup-
port agile methods more effectively through traceability. Innovations in
Systems and Software Engineering, 7(1):53–69, 2011.

[Espinoza et al., 2006] A. Espinoza, P. Alarcon, and J. Garbajosa. Analyzing and
systematizing current traceability schemas. In Proc. of the 30th Software
Engineering Workshop, 2006.

[EUROCONTROL, 1999a] EUROCONTROL. European Reduced Vertical Sep-
aration Minimum (RVSM) Programme. http://www.eurocontrol.
int/eur-rma, 1999a.

[EUROCONTROL, 1999b] EUROCONTROL. Reduced Vertical Separation Min-
imum (RVSM) Master Plan. www.seguridadaerea.gob.es/media/
Migracion/PDF/89756/2032.pdf, 1999b.

[EUROCONTROL, 2000] EUROCONTROL. AFI Reduced Vertical Separation
Minimum (RVSM) Safety Policy (1st Edition), 2000.

[EUROCONTROL, 2001a] EUROCONTROL. ATC Manual for a Reduced Ver-
tical Separation Minimum (RVSM) in Europe (2nd Edition). www.
code-team.com/mavien/RVSM_Manual.pdf, 2001a.

[EUROCONTROL, 2001b] EUROCONTROL. The EUR RVSM Functional Haz-
ard Assessment, 2001b.

[EUROCONTROL, 2001c] EUROCONTROL. The EUR RVSM Pre-
Implementation Safety Case. dependability.cs.virginia.
edu/research/safetycases/EUR_RVSM.pdf, 2001c.

[Fabro et al., 2005] M. D. D. Fabro, J. Bézivin, F. Jouault, E. Breton, and G.
Gueltas. AMW: A generic model weaver. In Proc. of the 1éré Journéees
sur l’Ingénierie Dirigée par les Modéles, IDM ’05, 2005.

263

http://www.eurocontrol.int/eur-rma
http://www.eurocontrol.int/eur-rma
www.seguridadaerea.gob.es/media/Migracion/PDF/89756/2032.pdf
www.seguridadaerea.gob.es/media/Migracion/PDF/89756/2032.pdf
www.code-team.com/mavien/RVSM_Manual.pdf
www.code-team.com/mavien/RVSM_Manual.pdf
dependability.cs.virginia.edu/research/safetycases/EUR_RVSM.pdf
dependability.cs.virginia.edu/research/safetycases/EUR_RVSM.pdf

References

[Falleri et al., 2006] J.-R. Falleri, M. Huchard, and C. Nebut. Towards a trace-
ability framework for model transformations in kermeta. In Proc. of the
ECMDA Traceability Workshop, ECMDA-TW ’06, 2006.

[Federation of EA Professional Organizations, 2013] Federation of EA Profes-
sional Organizations. Common perspectives on enterprise architecture.
Architecture and Governance Magazine, 4, 2013.

[Finkelstein and Dowell, 1996] A. Finkelstein and J. Dowell. A comedy of errors:
the London Ambulance Service case study. In Proc. the 8th IEEE In-
ternational Workshop on Software Specification and Design, IWSSD ’96.
IEEE Computer Society, 1996.

[Francis et al., 2013] M. Francis, D. Kolovos, N. Matragkas, and R. Paige. Adding
spreadsheets to the MDE toolbox. In Proc. of the 16th ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages & Systems,
MoDELS ’13, 2013.

[Galvao and Goknil, 2007] I. Galvao and A. Goknil. Survey of traceability ap-
proaches in model-driven engineering. In Proc. of the 11th IEEE Interna-
tional Enterprise Distributed Object Computing Conference, EDOC ’07,
pages 313–324. IEEE Computer Society, 2007.

[Garćı-Domı́guez et al., 2011] A. Garćı-Domı́guez, D. S. Kolovos, L. M. Rose,
R. F. Paige, and I. Medina-Bulo. Eunit: A unit testing framework for
model management tasks. In J. Whittle, T. Clark, and T. Kuhne, editors,
Model Driven Engineering Languages and Systems, volume 6981 of Lecture
Notes in Computer Science, pages 395–409. Springer Berlin Heidelberg,
2011.

[Ge et al., 2010] X. Ge, R. F. Paige, and J. A. McDermid. An iterative approach
for development of safety-critical software and safety arguments. In Proc.
of Agile Conference, Agile ’10, pages 35–43, 2010.

[Gethers et al., 2011] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. Lucia. On
integrating orthogonal information retrieval methods to improve trace-
ability recovery. In Proc. of the 27th IEEE International Conference on
Software Maintenance, ICSM ’11, pages 133–142, 2011.

[Gitzel and Korthaus, 2004] R. Gitzel and A. Korthaus. The role of metamodeling
in model-driven development. In Proc. of the 8th World Multi-Conference
on Systemics, Cybernetics and Informatics, SCI ’04, 2004.

[Gorp and Janssens, 2005] P. V. Gorp and D. Janssens. Cavit: a consis-
tency maintenance framework based on visual model transformation

264

References

and transformation contracts. In Transformation Techniques in Soft-
ware Engineering, number 05161 in Dagstuhl Seminar Proc. of the In-
ternationales Begegnungs- und Forschungszentrum fu Informatik (IBFI),
Schloss Dagstuhl, 2005.

[Gotel and Finkelstein, 1994] O. C. Z. Gotel and C. W. Finkelstein. An analysis
of the requirements traceability problem. In Proc. of the 1st IEEE In-
ternational Requirements Engineering Conference, RE ’94, pages 94 –101.
IEEE Computer Society, 1994.

[Gotel and Mäder, 2012] O. Gotel and P. Mäder. Acquiring tool support for trace-
ability. In J. Cleland-Huang, O. Gotel, and A. Zisman, editors, Software
and Systems Traceability, pages 43–68. Springer London, 2012.

[Gotel et al., 2012a] O. Gotel, J. Cleland-Huang, J. Hayes, A. Zisman, A. Egyed,
P. Grunbacher, A. Dekhtyar, G. Antoniol, and J. Maletic. The grand chal-
lenge of traceability (v1.0). In J. Cleland-Huang, O. Gotel, and A. Zis-
man, editors, Software and Systems Traceability, pages 343–409. Springer
London, 2012a.

[Gotel et al., 2012b] O. Gotel, J. Cleland-Huang, J. Hayes, A. Zisman, A. Egyed,
P. Grunbacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Mäder.
Traceability fundamentals. In O. Gotel, J. Cleland-Huang, and A. Zisman,
editors, Software and Systems Traceability, pages 3–22. Springer London,
2012b.

[Gotel et al., 2012c] O. Gotel, J. Cleland-Huang, and A. Zisman, editors. Software
and Systems Traceability. Springer London, 2012c.

[Grammel and Vigot, 2009] B. Grammel and K. Vigot. Foundations for a generic
traceability framework in model-driven software engineering. In Proc. of
the ECMDA Traceability Workshop, ECMDA-TW ’09, 2009.

[Grechanik et al., 2007] M. Grechanik, K. S. McKinley, and D. E. Perry. Recover-
ing and using use-case-diagram-to-source-code traceability links. In Proc.
of the 6th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC-FSE ’07, pages 95–104. ACM, 2007.

[Gruschko et al., 2007] B. Gruschko, D. S. Kolovos, and R. F. Paige. Towards
synchronizing models with evolving metamodels. In Proc. of the Interna-
tional Workshop on Model-Driven Software Evolution held with the EC-
SMR, MDSE ’07, 2007.

[Guerra et al., 2010] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, and O. M.
dos Santos. transml: A family of languages to model model transfor-
mations. In Proc. of the 13th International Conference on Model Driven

265

References

Engineering Languages and Systems: Part I, MODELS ’10, pages 106–
120. Springer-Verlag, 2010.

[Haarslev et al., 2004] V. Haarslev, R. Möler, and M. Wessel. Querying the se-
mantic web with Racer + nRQL. In Proc. of the KI International Work-
shop on Applications of Description Logics, ADL ’04, 2004.

[Habli and Kelly, 2006] I. Habli and T. Kelly. Process and product certification
arguments: Getting the balance right. SIGBED Rev., 3(4):1–8, 2006.

[Hawkins and Kelly, 2009] R. Hawkins and T. Kelly. Software safety assurance -
what is sufficient? In Proc. of the IET System Safety Conference. IEEE
Computer Society, 2009.

[Hayes et al., 2004] J. H. Hayes, A. Dekhtyar, S. Sundaram, and S. Howard. Help-
ing analysts trace requirements: An objective look. In Proc. of the 12th
IEEE International Requirements Engineering Conference, RE ’04, pages
249–259. IEEE Computer Society, 2004.

[Hayes and Dekhtyar, 2005] J. H. Hayes and A. Dekhtyar. Humans in the trace-
ability loop: Can’t live with ’em, can’t live without ’em. In Proc. of the
International Workshop on Traceability in Emerging Forms of Software
Engineering, TEFSE ’05, pages 20–23. IEEE Computer Society, 2005.

[Hayes et al., 2003] J. H. Hayes, A. Dekhtyar, and J. Osborne. Improving re-
quirements tracing via information retrieval. In Proc. of the 11th IEEE
International Requirements Engineering Conference, RE ’03, pages 138–.
IEEE Computer Society, 2003.

[Hayes et al., 2006] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing
candidate link generation for requirements tracing: The study of methods.
IEEE Transactions on Software Engineering, 32(1):4–19, 2006.

[Heidenreich et al., 2009] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C.
Wende. Derivation and refinement of textual syntax for models. In R. F.
Paige, A. Hartman, and A. Rensink, editors, Model Driven Architecture -
Foundations and Applications, volume 5562 of Lecture Notes in Computer
Science, pages 114–129. Springer Berlin Heidelberg, 2009.

[Heim et al., 2008] P. Heim, S. Lohmann, K. Lauenroth, and J. Ziegler. Graph-
based visualization of requirements relationships. In Proc. of the 3rd Inter-
national Workshop on Requirements Engineering Visualization, REV ’08,
pages 51–55. IEEE Computer Society, 2008.

[Heindl and Biffl, 2005] M. Heindl and S. Biffl. A case study on value-based re-
quirements tracing. In Proc. of the 10th European Software Engineering

266

References

Conference Held Jointly with 13th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, ESEC/FSE ’13, pages
60–69. ACM, 2005.

[Henderson, 2003] P. B. Henderson. The role of modeling in software engineer-
ing education. In Proc. of the 33rd ASEE/IEEE Frontiers in Education
Conference, 2003.

[Hoffmann et al., 2004] M. Hoffmann, N. Kuhn, and M. Weber. Requirements for
requirements management tools. In Proc. of the IEEE International Re-
quirements Engineering Conference, RE ’04, pages 301–308. IEEE Com-
puter Society, 2004.

[IBM, 2014a] IBM. Rational DOORS. http://www-03.ibm.com/
software/products/en/ratidoor, 2014a.

[IBM, 2014b] IBM. IBM Rationa RequisitePro. http://www-03.ibm.com/
software/products/en/reqpro, 2014b.

[ICAO, 2002] ICAO. ICAO Document 9574 (2nd Edition) - Manual on Im-
plementation of a 300M (1000 FT) Vertical Separation Minimum be-
tween FL290 and FL410 inclusive. http://www.skybrary.aero/
bookshelf/content/bookDetails.php?bookId=1311, 2002.

[IEC, 2005] IEC. IEC/TR 61508 - Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems. http://www.iec.ch/
functionalsafety/standards/page3.htm, 2005.

[IEC, 2008] IEC. IEC 60880. Nuclear power plants instrumentation and con-
trol systems important to safety software aspects for computer-based sys-
tems performing category A functions. http://webstore.iec.ch/
preview/info_iec60880%7Bed2.0%7Db.pdf, 2008.

[IEC, 2012] IEC. http://www.iso.org/iso/home/store/catalogue_
tc/catalogue_detail.htm?csnumber=60555, 2012.

[IEEE, 1984] IEEE. IEEE Guide to Software Requirements Specification. The
Institute of Electrical and Electronics Engineers: New York, 1984.

[IEEE, 1990] IEEE. IEEE Standard Glossary of Software Engineering Terminol-
ogy. The Institute of Electrical and Electronics Engineers: New York,
1990.

[INCOSE, 2010] INCOSE. Tools database working group (tdwg). interna-
tional council on systems engineering requirements (incose) man-
agement tools survey. http://www.incose.org/ProductsPubs/
products/rmsurvey.aspx, 2010.

267

http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/reqpro
http://www-03.ibm.com/software/products/en/reqpro
http://www.skybrary.aero/bookshelf/content/bookDetails.php?bookId=1311
http://www.skybrary.aero/bookshelf/content/bookDetails.php?bookId=1311
http://www.iec.ch/functionalsafety/standards/page3.htm
http://www.iec.ch/functionalsafety/standards/page3.htm
http://webstore.iec.ch/preview/info_iec60880%7Bed2.0%7Db.pdf
http://webstore.iec.ch/preview/info_iec60880%7Bed2.0%7Db.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60555
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60555
http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
http://www.incose.org/ProductsPubs/products/rmsurvey.aspx

References

[Information Technology ISO/IEC, 2002] Information Technology ISO/IEC. Z
formal specification notation - syntax, type system and semantics, 2002.

[Information Technology ISO/IEC, 2007] Information Technology ISO/IEC.
Acceleo Pro Traceability. http://www.obeo.fr/pages/
obeo-traceability/en, 2007.

[Ingram and Riddle, 2012] C. Ingram and S. Riddle. Cost-benefits of traceability.
In J. Cleland-Huang, O. Gotel, and A. Zisman, editors, Software and
Systems Traceability, pages 23–42. Springer, 2012.

[Integrate, 2014] Integrate. Traceline for doors. http://www.integrate.
biz/traceline/, 2014.

[ISO, 2011] ISO. Road vehicles – Functional safety. http://www.iso.
org/iso/home/store/catalogue_tc/catalogue_detail.htm?
csnumber=43464, 2011.

[ISO/IEC, 2007] ISO/IEC. ISO/IEC 24744:2007 Software Engineering - Meta-
model for Development Methodologies, 2007.

[ISO/IEC and ITU-T, 1998] ISO/IEC and ITU-T. The Reference Model of Open
Distributed Processing: ITU-T Rec. X.901-X.904 — ISO/IEC 10746.
http://www.rm-odp.net/, 1998.

[ISO/IEC and ITU-T, 2009] ISO/IEC and ITU-T. Information technology -
Open distributed processing - Use of UML for ODP system specifica-
tions: ITU-T Rec. X.906 — ISO/IEC 19793. http://www.lcc.uma.
es/˜av/download/UML4ODP_IS_V2.pdf, 2009.

[Jarke and Pohl, 1992] M. Jarke and K. Pohl. Information systems quality and
quality informations systems. In Proc. the IFIP WG8.2 Working Con-
ference on The Impact of Computer Supported Technologies in Informa-
tion Systems Development, pages 345–375. North-Holland Publishing Co.,
1992.

[Jirapanthong and Zisman, 2005] W. Jirapanthong and A. Zisman. Supporting
product line development through traceability. In Proc. of the 12th Asia-
Pacific Software Engineering Conference, APSEC ’05. IEEE Computer
Society, 2005.

[Jirapanthong, 2007] W. Jirapanthong. Techniques and approaches for developing
software product line. In H. R. Arabnia and H. Reza, editors, Proc. of the
International Conference on Software Engineering Research & Practice,
SERP ’07, pages 276–281. CSREA Press, 2007.

[Jouault, 2005] F. Jouault. Loosely coupled traceability for ATL. In Proc. of the
ECMDA Traceability Workshop, ECMDA-TW ’05, 2005.

268

http://www.obeo.fr/pages/obeo-traceability/en
http://www.obeo.fr/pages/obeo-traceability/en
http://www.integrate.biz/traceline/
http://www.integrate.biz/traceline/
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.rm-odp.net/
http://www.lcc.uma.es/~av/download/UML4ODP_IS_V2.pdf
http://www.lcc.uma.es/~av/download/UML4ODP_IS_V2.pdf

References

[Jouault et al., 2006] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Val-
duriez. ATL: A QVT-like transformation language. In Companion to the
21st ACM SIGPLAN Symposium on Object-oriented Programming Sys-
tems, Languages, and Applications, OOPSLA ’06, pages 719–720. ACM,
2006.

[Kagdi et al., 2007] H. Kagdi, J. I. Maletic, and B. Sharif. Mining software repos-
itories for traceability links. In Proc. of the 15th IEEE International
Conference on Program Comprehension, ICPC ’07, pages 145–154. IEEE
Computer Society, 2007.

[Kannenberg and Saiedian, 2009] A. Kannenberg and H. Saiedian. Why software
requirements traceability remains a challenge. The Journal of Defense
Software Engineering, 22:14–19, 2009.

[Kassab and Ormandjieva, 2006] M. Kassab and O. Ormandjieva. Towards an
aspect oriented software development model with tractability mechanism.
In Proc. of the Workshop on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design, AOSD ’06, 2006.

[Kassab et al., 2009] M. Kassab, O. Ormandjieva, and M. Daneva. A metamodel
for tracing non-functional requirements. In Proc. of the WRI World
Congress on Computer Science and Information Engineering - Volume
07, CSIE ’09, pages 687–694. IEEE Computer Society, 2009.

[Katta and Stlhane, 2012] V. Katta and T. Stlhane. A conceptual model of trace-
ability for safety systems. Technical report, Laboratory of Algorithmics,
Complexity and Logic, 2012.

[Kazman et al., 2000] R. Kazman, M. H. Klein, and P. C. Clements. Atam:
Method for architecture evaluation. Technical report, Software Engineer-
ing Institute (SEI), 2000.

[Kelly and Weaver, 2004] T. Kelly and R. Weaver. The goal structuring notation
- a safety argument notation. Elements, 2004.

[Kelly, 1998] T. P. Kelly. Arguing Safety – A Systematic Approach to Managing
Safety Cases. PhD thesis, Department of Computer Science, University
of York, 1998.

[Kirova et al., 2008] V. Kirova, N. Kirby, D. Kothari, and G. Childress. Effec-
tive requirements traceability: Models, tools, and practices. Bell Labs
Technical Journal, 12:143–157, 2008.

[Kleppe et al., 2003] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained:
The Model Driven Architecture: Practice and Promise. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

269

References

[Kolovos et al., 2010] D. Kolovos, L. Rose, and R. Paige. The Epsilon Book.
Eclipse, 2010.

[Kolovos, 2007] D. S. Kolovos. Editing emf models with exeed (extended emf
editor). Technical report, Department of Computer Science, University of
York, 2007.

[Kolovos, 2008] D. S. Kolovos. An Extensible Platform for Specification of Inte-
grated Languages for Model Management. PhD thesis, University of York,
2008.

[Kolovos, 2009] D. S. Kolovos. Establishing correspondences between models with
the Epsilon Comparison Language. In R. F. Paige, A. Hartman, and A.
Rensink, editors, Model Driven Architecture - Foundations and Applica-
tions, volume 5562 of Lecture Notes in Computer Science, pages 146–157.
Springer Berlin Heidelberg, 2009.

[Kolovos and Paige, 2013] D. S. Kolovos and R. F. Paige. Extensible Platform for
Specification of Integrated Languages for mOdel maNagement (Epsilon).
http://www.eclipse.org/gmt/epsilon, 2013.

[Kolovos et al., 2006a] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Eclipse de-
velopment tools for Epsilon. In Eclipse Summit Europe, Eclipse Modeling
Symposium, 2006a.

[Kolovos et al., 2006b] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. The
Epsilon Object Language (EOL). In Proc. of the 2nd European conference
on Model Driven Architecture: foundations and Applications, ECMDA-
FA ’06, pages 128–142. Springer-Verlag, 2006b.

[Kolovos et al., 2006c] D. S. Kolovos, R. F. Paige, and F. A. Polack. Merging
models with the Epsilon Merging Language (EML). In O. Nierstrasz, J.
Whittle, D. Harel, and G. Reggio, editors, Model Driven Engineering Lan-
guages and Systems, volume 4199 of Lecture Notes in Computer Science,
pages 215–229. Springer Berlin Heidelberg, 2006c.

[Kolovos et al., 2007] D. S. Kolovos, R. F. Paige, F. A. Polack, and L. M. Rose.
Update transformations in the small with the Epsilon Wizard Language.
Journal of Object Technology, 6(9):53–69, 2007.

[Kolovos et al., 2008] D. S. Kolovos, R. F. Paige, and F. A. Polack. The Epsilon
Transformation Language. In Proc. of the 1st International Conference on
Theory and Practice of Model Transformations, ICMT ’08, pages 46–60.
Springer-Verlag, 2008.

[Kolovos et al., 2009] D. S. Kolovos, R. F. Paige, and F. A. Polack. On the evolu-
tion of OCL for capturing structural constraints in modelling languages.

270

http://www.eclipse.org/gmt/epsilon

References

In J.-R. Abrial and U. Glässer, editors, Rigorous Methods for Software
Construction and Analysis, volume 5115 of Lecture Notes in Computer
Science, pages 204–218. Springer Berlin Heidelberg, 2009.

[Krishna and Gregoriades, 2011] A. Krishna and A. Gregoriades. Extending UML
with non-functional requirements modelling. In J. Pokorny, V. Repa,
K. Richta, W. Wojtkowski, H. Linger, C. Barry, and M. Lang, editors,
Information Systems Development, pages 357–372. Springer New York,
2011.

[Kurtev, 2004] I. Kurtev. Adaptability of Model Transformations. PhD thesis,
University of Twente, 2004.

[Kurtev et al., 2007] I. Kurtev, M. Dee, A. Göknil, and K. van den Berg.
Traceability-based change management in operational mappings. In Proc.
of the ECMDA Traceability Workshop, pages 57–67. SINTEF, 2007.

[Lago et al., 2009] P. Lago, H. Muccini, and H. van Vliet. A scoped approach to
traceability management. Journal of Systems and Software, 82(1):168–
182, 2009.

[Lee et al., 2003] C. Lee, L. Guadagno, and X. Jia. An agile approach to capturing
requirements and traceability. In Proc. of the 2nd International Workshop
on Traceability in Emerging Forms of Software Engineering, pages 17–23,
2003.

[Letelier, 2002] P. Letelier. A framework for requirements traceability in UML-
based projects. In Proc. of the Intlernational Workshop on Traceability in
Emerging Forms of Software Engineering, TEFSE ’02, pages 32–41. IEEE
Computer Society, 2002.

[Li and Maalej, 2012] Y. Li and W. Maalej. Which traceability visualization is
suitable in this context? a comparative study. In Proc. of the 18th Interna-
tional Conference on Requirements Engineering: Foundation for Software
Quality, REFSQ ’12, pages 194–210. Springer-Verlag, 2012.

[Limon and Garbajosa, 2005] A. E. Limon and Garbajosa. The need for a unify-
ing traceability scheme. In Proc. of the ECMDA Traceability Workshop,
ECMDA-TW ’05, 2005.

[Lin et al., 2006] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi, J. Amaya, G.
Bedford, B. Berenbach, O. B. Khadra, C. Duan, and X. Zou. Poirot:
A distributed tool supporting enterprise-wide automated traceability. In
Proc. of the 14th IEEE International Requirements Engineering Confer-
ence, RE ’06, pages 356–357. IEEE Computer Society, 2006.

271

References

[Lindvall and Sandahl, 1996] M. Lindvall and K. Sandahl. Practical implications
of traceability. Software: Practice and Experience, 26(10):1161–1180,
1996.

[Lucia et al., 2004] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhanc-
ing an artefact management system with traceability recovery features.
In Proc. of the 20th IEEE International Conference on Software Mainte-
nance, ICSM ’04, pages 306–315. IEEE Computer Society, 2004.

[Lucia et al., 2006a] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Can
information retrieval techniques effectively support traceability link re-
covery? In Proc. of the 14th IEEE International Conference on Pro-
gram Comprehension, ICPC ’06, pages 307–316. IEEE Computer Society,
2006a.

[Lucia et al., 2006b] A. D. Lucia, R. Oliveto, and P. Sgueglia. Incremental ap-
proach and user feedbacks: a silver bullet for traceability recovery. In
Proc. of the 22nd IEEE International Conference on Software Mainte-
nance, ICSM ’06, pages 299–309. IEEE Computer Society, 2006b.

[Lucia et al., 2008] A. D. Lucia, R. Oliveto, and G. Tortora. IR-based trace-
ability recovery processes: An empirical comparison of “One-Shot” and
incremental processes. In Proc. of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’08, pages 39–48.
IEEE Computer Society, 2008.

[Lucia et al., 2009] A. D. Lucia, R. Oliveto, and G. Tortora. Assessing ir-based
traceability recovery tools through controlled experiments. Journal of
Empirical Software Engineering, 14(1):57–92, 2009.

[Lucia et al., 2011] A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and
S. Panichella. Improving ir-based traceability recovery using smoothing
filters. In Proc. of the 19th IEEE International Conference on Program
Comprehension, ICPC ’11, pages 21–30. IEEE Computer Society, 2011.

[Lucia et al., 2012] A. Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk. In-
formation retrieval methods for automated traceability recovery. In J.
Cleland-Huang, O. Gotel, and A. Zisman, editors, Software and Systems
Traceability, pages 71–98. Springer London, 2012.

[Lucia et al., 2007] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recov-
ering traceability links in software artifact management systems using in-
formation retrieval methods. ACM Transactions on Software Engineering
Methodology, 16(4), 2007.

[Ludewig, 2003] J. Ludewig. Models in software engineering – an introduction.
Software and Systems Modeling, 2(1):5–14, 2003.

272

References

[Lutz, 2000] R. R. Lutz. Software engineering for safety: A roadmap. In Proc. of
the Conference on The Future of Software Engineering, ICSE ’00, pages
213–226. ACM, 2000.

[Mäder et al., 2007] P. Mäder, I. Philippow, and M. Riebisch. Customizing trace-
ability links for the unified process. In Proc. of the Quality of Software Ar-
chitectures 3rd International Conference on Software Architectures, Com-
ponents, and Applications, QoSA ’07, pages 53–71. Springer-Verlag, 2007.

[Mäder et al., 2008a] P. Mäder, O. Gotel, and I. Philippow. Enabling automated
traceability maintenance by recognizing development activities applied to
models. In Proc. of the 23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08, pages 49–58. IEEE Computer
Society, 2008a.

[Mäder and Cleland-Huang, 2010] P. Mäder and J. Cleland-Huang. A visual
traceability modeling language. In Proc. of the 13th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS ’10,
pages 226–240, 2010.

[Mäder et al., 2008b] P. Mäder, O. Gotel, and I. Philippow. Rule-based main-
tenance of post-requirements traceability relations. In Proc. of the 16th
IEEE International Requirements Engineering Conference, RE ’08, pages
23–32. IEEE Computer Society, 2008b.

[Mäder et al., 2009a] P. Mäder, O. Gotel, and I. Philippow. Getting back to ba-
sics: Promoting the use of a traceability information model in practice. In
Proc. of the International Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE ’09, pages 21–25. IEEE Computer Society,
2009a.

[Mäder et al., 2009b] P. Mäder, O. Gotel, and I. Philippow. Motivation matters in
the traceability trenches. In Proc. of the 17th IEEE International Require-
ments Engineering Conference, RE ’09, pages 143–148. IEEE Computer
Society, 2009b.

[Maletic and Collard, 2009] J. I. Maletic and M. L. Collard. TQL: A query lan-
guage to support traceability. In Proc. of the International Workshop
on Traceability in Emerging Forms of Software Engineering, TEFSE ’09,
pages 16–20. IEEE Computer Society, 2009.

[Maletic et al., 2003] J. I. Maletic, E. V. Munson, A. Marcus, and T. N. Nguyen.
Using a hypertext model for traceability link conformance analysis. In
Proc. of the International Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE ’03, pages 47–54. IEEE Computer Society,
2003.

273

References

[Maletic et al., 2005] J. I. Maletic, M. L. Collard, and B. Simoes. An XML based
approach to support the evolution of model-to-model traceability links. In
Proc. of the International Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE ’05, pages 67–72. IEEE Computer Society,
2005.

[Marasco, 2006] J. Marasco. Software development productivity and project suc-
cess rates: Are we attacking the right problem? http://www.cs.
st-andrews.ac.uk/˜ifs/Talks/IEEInaugural.pdf, 2006.

[Marcus and Maletic, 2003] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using latent semantic in-
dexing. In Proc. of the 25th International Conference on Software Engi-
neering, pages 125–135, 2003.

[Marcus et al., 2005] A. Marcus, X. Xie, and D. Poshyvanyk. When and how
to visualize traceability links? In Proc. of the International Workshop
on Traceability in Emerging Forms of Software Engineering, TEFSE ’05,
pages 56–61. IEEE Computer Society, 2005.

[Mason, 2005] P. Mason. On traceability for safety critical systems engineering. In
Proc. of the 12th Asia-Pacific Software Engineering Conference, APSEC’
05, pages 272–282. IEEE Computer Society, 2005.

[Mason et al., 2003] P. Mason, A. Saeed, P. Arkely, and S. Riddle. Meta-
modelling approach to traceability for avionics: A framework for man-
aging the engineering of computer based aerospace systems. In Proc. of
the 10th IEEE International Conference and Workshop on the Engineering
of Computer-Based Systems, ECBS ’03, pages 233–246. IEEE Computer
Society, 2003.

[Matragkas, 2011] N. Matragkas. Establishing and Maintaining Semantically Rich
Traceability: A Metamodelling Approach. PhD thesis, University of York,
2011.

[Matula, 2003] M. Matula. Netbeans metadata repository.
netbeans-uml-extender-plugin.googlecode.com/files/
MDR-whitepaper.pdf, 2003.

[McMillan et al., 2009] C. McMillan, D. Poshyvanyk, and M. Revelle. Combin-
ing textual and structural analysis of software artifacts for traceability
link recovery. In Proc. of the International Workshop on Traceability in
Emerging Forms of Software Engineering, TEFSE ’09, pages 41–48. IEEE
Computer Society, 2009.

[Mens and Demeyer, 2008] T. Mens and S. Demeyer. Software Evolution.
Springer-Verlag, 2008.

274

http://www.cs.st-andrews.ac.uk/~ifs/Talks/IEEInaugural.pdf
http://www.cs.st-andrews.ac.uk/~ifs/Talks/IEEInaugural.pdf
netbeans-uml-extender-plugin.googlecode.com/files/MDR-whitepaper.pdf
netbeans-uml-extender-plugin.googlecode.com/files/MDR-whitepaper.pdf

References

[Mens et al., 2005] T. Mens, R. V. D. Straeten, and J. Simmonds. A framework
for managing consistency of evolving UML models. In H. Yang, editor,
Software Evolution with UML and XML, pages 1–31. Idea Group Pub-
lishing, 2005.

[Merten et al., 2011] T. Merten, D. Juppner, and A. Delater. Improved represen-
tation of traceability links in requirements engineering knowledge using
Sunburst and Netmap visualizations. In Proc. of the 4th International
Workshop on Managing Requirements Knowledge, MARK ’11, pages 17–
21, 2011.

[Mirakhorli and Cleland-Huang, 2011] M. Mirakhorli and J. Cleland-Huang. Us-
ing tactic traceability information models to reduce the risk of architec-
tural degradation during system maintenance. In Proc. of the 27th IEEE
International Conference on Software Maintenance, ICSM ’11, pages 123–
132. IEEE Computer Society, 2011.

[Mirakhorli and Cleland-Huang, 2012] M. Mirakhorli and J. Cleland-Huang.
Tracing non-functional requirements. In J. Cleland-Huang, O. Gotel, and
A. Zisman, editors, Software and Systems Traceability, pages 299–320.
Springer London, 2012.

[Munson and Nguyen, 2005] E. V. Munson and T. N. Nguyen. Concordance,
conformance, versions, and traceability. In Proc. of the International
Workshop on Traceability in Emerging Forms of Software Engineering,
TEFSE ’05, pages 62–66. IEEE Computer Society, 2005.

[Murta et al., 2006] L. G. P. Murta, A. van der Hoek, and C. M. L. Werner.
ArchTrace: Policy-based support for managing evolving architecture-to-
implementation traceability links. In Proc. of the 21st IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’06, pages
135–144. IEEE Computer Society, 2006.

[Nentwich et al., 2002] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelsteiin.
Xlinkit: A consistency checking and smart link generation service. ACM
Trans. Internet Technol., 2(2):151–185, 2002.

[Nuseibeh et al., 1994] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework
for expressing the relationships between multiple views in requirements
specification. IEEE Transactions on Software Engineering, 20(10):760–
773, 1994.

[Nuseibeh and Easterbrook, 2000] B. Nuseibeh and S. Easterbrook. Require-
ments engineering: A roadmap. In Proc. of the International Conference
on Software Engineering, ICSE ’00, pages 35–46. ACM, 2000.

275

References

[Object Management Group, 2003] Object Management Group. OMG. Model
Driven Architecture (MDA) Guide 1.0.1. http://www.omg.org/
cgi-bin/doc?omg/03-06-01.pdf, 2003.

[Object Management Group, 2005] Object Management Group. A proposal for an
MDA foundation model, ormsc/05-04-01. Technical report, Object Man-
agement Group, 2005. URL http://www.omg.org/cgi-bin/doc?
ormsc/05-04-01.

[Object Management Group, 2007] Object Management Group. OMG. MOF
2.0/XMI Mapping, v2.1.1 . http://www.omg.org/spec/XMI/2.1.
1/PDF/index.htm, 2007.

[Object Management Group, 2008] Object Management Group. MOF Model to
Text Transformation Language, v1.0. http://www.omg.org/spec/
MOFM2T/1.0, 2008.

[Object Management Group, 2010a] Object Management Group. OMG. Systems
Modeling Language 1.2. http://www.omg.org/spec/SysML/1.2/
PDF, 2010a.

[Object Management Group, 2010b] Object Management Group. OMG. Unified
Modeling Language 2.3 Infrastructure. http://www.omg.org/spec/
UML/2.3/Infrastructure/PDF/, 2010b.

[Object Management Group, 2011a] Object Management Group. The UML Pro-
file for MARTE: Modeling and Analysis of Real-Time and Embedded
Systems. http://www.omgmarte.org/, 2011a.

[Object Management Group, 2011b] Object Management Group. OMG. Meta
Object Facility 2.4.1. http://www.omg.org/spec/MOF/2.4.1/
PDF/, 2011b.

[Object Management Group, 2011c] Object Management Group. MOF
Query/View/Transformation Specification, v1.1. http://www.
omg.org/spec/QVT/1.1, 2011c.

[Object Management Group, 2012] Object Management Group. OMG. Object
Constraint Language 2.3.1. http://www.omg.org/spec/OCL/2.3.
1/PDF/, 2012.

[Oldevik and Neple, 2006] J. Oldevik and T. Neple. Traceability in model-to-text
transformation. In Proc. of the ECMDA Traceability Workshop, ECMDA-
TW ’06, pages 64–69, 2006.

[Oldevik et al., 2005] J. Oldevik, T. Neple, R. Grønmo, J. Aagedal, and A.-J.
Berre. Toward standardised model to text transformations. In Proc. of
the 1st European Conference on Model Driven Architecture: Foundations
and Applications, ECMDA-FA ’05, pages 239–253. Springer-Verlag, 2005.

276

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?ormsc/05-04-01
http://www.omg.org/cgi-bin/doc?ormsc/05-04-01
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://www.omg.org/spec/MOFM2T/1.0
http://www.omg.org/spec/MOFM2T/1.0
http://www.omg.org/spec/SysML/1.2/PDF
http://www.omg.org/spec/SysML/1.2/PDF
http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/
http://www.omgmarte.org/
http://www.omg.org/spec/MOF/2.4.1/PDF/
http://www.omg.org/spec/MOF/2.4.1/PDF/
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/OCL/2.3.1/PDF/
http://www.omg.org/spec/OCL/2.3.1/PDF/

References

[Oliveto et al., 2010] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. D. Lucia.
On the equivalence of information retrieval methods for automated trace-
ability link recovery. In Proc. of the 18th IEEE International Conference
on Program Comprehension, ICPC ’10, pages 68–71. IEEE Computer So-
ciety, 2010.

[Olsen and Oldevik, 2007] G. K. Olsen and J. Oldevik. Scenarios of traceability in
model to text transformations. In Proc. of the 3rd European Conference
on Model Driven Architecture-Foundations and Applications, ECMDA-
FA’ 07, pages 144–156. Springer-Verlag, 2007.

[Osterbye and Wiil, 1996] K. Osterbye and U. K. Wiil. The flag taxonomy of open
hypermedia systems. In Proc. of the 7th ACM Conference on Hypertext,
pages 129–139. ACM, 1996.

[Ozkaya, 2006] I. Ozkaya. Representing requirement relationships. In Proc. of the
1st International Workshop on Requirements Engineering Visualization,
REV ’06, page 3, 2006.

[Paige et al., 2008] R. F. Paige, G. K. Olsen, D. S. Kolovos, S. Zschaler, and
C. Power. Building model-driven engineering traceability classifications.
In Proc. of the ECMDA Traceability Workshop, ECMDA-TW ’08, pages
49–58. Sintef, 2008.

[Paige et al., 2007] R. F. Paige, P. J. Brooke, and J. S. Ostroff. Metamodel-
based model conformance and multi-view consistency checking. ACM
Transactions on Software Engineering and Methodolology, 16, 2007.

[Paige et al., 2011] R. F. Paige, A. Galloway, R. Charalambous, X. Ge, and P. J.
Brooke. High-integrity agile processes for the development of safety crit-
ical software. International Journal of Critical Computer-Based Systems,
2:181–216, 2011.

[Palmer, 1999] J. D. Palmer. Traceability. In R. H. Thayer and M. Dorfman,
editors, Software Requirements Engineering, 2nd, pages 412–422. IEEE
Computer Society Press, 1999.

[Panesar-Walawege et al., 2010] R. K. Panesar-Walawege, M. Sabetzadeh, L.
Briand, and T. Coq. Characterizing the chain of evidence for software
safety cases: A conceptual model based on the IEC 61508 standard. In
Proc. of the 3rd International Conference on Software Testing, Verifica-
tion and Validation, ICST ’10, pages 335–344, 2010.

[Parr, 2007] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Programmers. Pragmatic Bookshelf, 1st edition,
2007.

277

References

[Peraldi-Frati and Albinet, 2010] M.-A. Peraldi-Frati and A. Albinet. Require-
ment traceability in safety critical systems. In Proc. of the 1st Workshop
on Critical Automotive applications: Robustness & Safety, CARS ’10,
pages 11–14. ACM, 2010.

[Pilato, 2004] M. Pilato. Version Control With Subversion. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2004.

[Pilgrim et al., 2008] J. Pilgrim, B. Vanhooff, I. Schulz-Gerlach, and Y. Berbers.
Constructing and visualizing transformation chains. In I. Schieferdecker
and A. Hartman, editors, Model Driven Architecture Foundations and
Applications, volume 5095 of Lecture Notes in Computer Science, pages
17–32. Springer Berlin Heidelberg, 2008.

[Pinheiro, 2003] F. A. C. Pinheiro. Requirements traceability. In S. do Prado,
J. Leite, and J. Doorn, editors, Perspectives on Software Requirements,
Lecture Notes in Business Information Processing, pages 93–103. Springer,
Berlin, 2003.

[Pinheiro and Goguen, 1996] F. A. C. Pinheiro and J. A. Goguen. An object-
oriented tool for tracing requirements. IEEE Software, 13(2):52–64, 1996.

[Pohl, 1996a] K. Pohl. PRO-ART: Enabling requirements pre-traceability. In
Proc. of the 2nd IEEE International Requirements Engineering Confer-
ence, RE ’96, pages 76–84. IEEE Computer Society, 1996a.

[Pohl, 1996b] K. Pohl. Process-Centered Requirements Engineering. John Wiley
& Sons, Inc., 1996b.

[Porter, 1980] M. Porter. An algorithm for suffix stripping. Program: electronic
library and information systems, 14(3):130–137, 1980.

[Pottinger and Bernstein, 2003] R. Pottinger and P. A. Bernstein. Merging mod-
els based on given correspondences. In Proc. of the 29th International
Conference on Very Large Data Bases - Volume 29, VLDB ’03, pages
862–873, 2003.

[Potts and Bruns, 1988] C. Potts and G. Bruns. Recording the reasons for de-
sign decisions. In Proc. the 10th International Conference on Software
Engineering, ICSE ’88, pages 418–427, 1988.

[pure-systems GmbH, 2014] pure-systems GmbH. pure::variants. http://www.
pure-systems.com/Variant_Management.49.0.html, 2014.

[QuEST, 1998] QuEST. TL 9000 Quality Management System. Quest, 1998.

[Ramamoorthy et al., 1988] C. V. Ramamoorthy, V. Garg, and A. Prakash. Sup-
port for reusability in Genesis. IEEE Transactions on Software Engineer-
ing, 14:1145–1154, 1988.

278

http://www.pure-systems.com/Variant_Management.49.0.html
http://www.pure-systems.com/Variant_Management.49.0.html

References

[Ramesh and Edwards, 1993] B. Ramesh and M. Edwards. Issues in the develop-
ment of a requirements traceability model. In Proc. the IEEE Interna-
tional Symposium on Requirements Engineering, pages 256 –259, 1993.

[Ramesh and Jarke, 2001] B. Ramesh and M. Jarke. Toward reference models for
requirements traceability. IEEE Transactions on Software Engineering,
27:58–93, 2001.

[Ramsin and Paige, 2008] R. Ramsin and R. F. Paige. Process-centered review
of object oriented software development methodologies. ACM Computer
Survey, 40(1):3:1–3:89, 2008.

[Ratanotayanon et al., 2009] S. Ratanotayanon, S. E. Sim, and D. J. Raycraft.
Cross-artifact traceability using lightweight links. In Proc. of the Inter-
national Workshop on Traceability in Emerging Forms of Software Engi-
neering, TEFSE ’09, pages 57–64. IEEE Computer Society, 2009.

[Robinsons, 2014] Robinsons. Doctrace - requirements traceability tool. http:
//www.robinsons.co.uk/doctrace.html, 2014.

[Rose, 2011] L. M. Rose. Structures and Processes for Managing Model-
Metamodel Co-evolution. PhD thesis, University of York, 2011.

[Rose et al., 2008] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack. The
Epsilon Generation Language. In Proc. of the 4th European conference
on Model Driven Architecture: Foundations and Applications, ECMDA-
FA ’08, pages 1–16. Springer-Verlag, 2008.

[Rose et al., 2009] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. Polack.
Enhanced automation for managing model and metamodel inconsistency.
In Proc. of the 26th IEEE/ACM International Conference on Automated
Software Engineering, volume 0 of ASE ’11, pages 545–549. IEEE Com-
puter Society, 2009.

[RTCA, 2005] RTCA. DO-254: Design Assurance Guidance for Airborne Elec-
tronic Hardware, 2005.

[RTCA and EUROCAE, 1992] RTCA and EUROCAE. DO-178B: Software Con-
siderations in Airborne Systems and Equipment Certification. Radio Tech-
nical Commission for Aeronautics (RTCA), 1992.

[Rummler et al., 2007] A. Rummler, B. Grammel, and C. Pohl. Improving trace-
ability in model driven development of business applications. In Proc. of
the 3rd Traceability Workshop of European Conference on Model Driven
Architecture: Foundations and Applications, ECMDA-FA ’07, 2007.

[Sabetzadeh and Easterbrook, 2005] M. Sabetzadeh and S. Easterbrook. Trace-
ability in viewpoint merging: a model management perspective. In Proc.

279

http://www.robinsons.co.uk/doctrace.html
http://www.robinsons.co.uk/doctrace.html

References

the International Workshop on Traceability in Emerging Forms of Soft-
ware Engineering, TEFSE ’05, pages 44–49. IEEE Computer Society,
2005.

[Salay et al., 2008] R. Salay, J. Mylopoulos, and S. Easterbrook. Managing mod-
els through macromodeling. In Proc. of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’08, pages 447–450,
2008.

[Salay et al., 2009] R. Salay, J. Mylopoulos, and S. Easterbrook. Using macro-
models to manage collections of related models. In Proc. of the 21st
International Conference on Advanced Information Systems Engineering,
CAiSE ’09, pages 141–155. Springer-Verlag, 2009.

[Salazar-Zárate et al., 2003] G. Salazar-Zárate, P. Botella, and A. Dahanayake.
Introducing non-functional requirements in UML. In L. Favre, editor,
UML and the Unified Process, pages 116–128. IGI Global, 2003.

[Santiago et al., 2012] I. Santiago, A. Jiménez, J. M. Vara, V. D. Castro, V. A.
Bollati, and E. Marcos. Model-driven engineering as a new landscape for
traceability management: A systematic literature review. Information
Software and Technology, 54(12):1340–1356, 2012.

[Schmid et al., 2006] K. Schmid, K. Krennrich, and M. Eisenbarth. Requirements
management for product lines: extending professional tools. In Proc. of
the 10th International Software Product Line Conference, SPLC ’06, pages
10–122, 2006.

[Schmidt, 2006] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven En-
gineering. Computer, 39(2):25–31, 2006.

[Schwaber and Beedle, 2001] K. Schwaber and M. Beedle. Agile Software Devel-
opment with Scrum. Prentice Hall PTR, 1st edition, 2001.

[Schwarz et al., 2008] H. Schwarz, J. Ebert, V. Riediger, and A. Winter. Towards
querying of traceability information in the context of software evolution.
In Proc. of 10th Workshop on Software Reengineering, pages 144–148,
2008.

[Schwarz et al., 2010] H. Schwarz, J. Ebert, and A. Winter. Graph-based trace-
ability: A comprehensive approach. Software and Systems Modeling, 9
(4):473–492, September 2010.

[Seibel et al., 2010] A. Seibel, S. Neumann, and H. Giese. Dynamic hierarchical
mega models: comprehensive traceability and its efficient maintenance.
Software and Systems Modeling, 9(4):493–528, 2010.

280

References

[Seibel et al., 2012] A. Seibel, R. Hebig, and H. Giese. Traceability in model-
driven engineering: Efficient and scalable traceability maintenance. In J.
Cleland-Huang, O. Gotel, and A. Zisman, editors, Software and Systems
Traceability, pages 215–240. Springer London, 2012.

[Seidewitz, 2003] E. Seidewitz. What models mean. IEEE Software, 20(5):26–32,
2003.

[Settimi et al., 2004] R. Settimi, J. Cleland-Huang, O. B. Khadra, J. Mody, W.
Lukasik, and C. DePalma. Supporting software evolution through dynam-
ically retrieving traces to UML artifacts. In Proc. of the 7th International
Workshop on Principles of Software Evolution, IWPSE ’04, pages 49–54.
IEEE Computer Society, 2004.

[Sharif and Maletic, 2007] B. Sharif and J. I. Maletic. Using fine-grained differenc-
ing to evolve traceability links. In Proc. of the International Symposium
on Grand Challenges in Traceability, GCT ’07, pages 76–81. ACM, 2007.

[Sherba et al., 2003] S. A. Sherba, K. M. Anderson, and M. Faisal. A frame-
work for mapping traceability relationships. In Proc. of the International
Workshop on Traceability in Emerging Forms of Software Engineering,
TEFSE ’03, pages 32–39. IEEE Computer Society, 2003.

[Sommerville, 2007] I. Sommerville. Software engineering. Addison Wesley Long-
man Publishing Co., Inc., Redwood City, CA, USA, 8th edition, 2007.

[Song et al., 2011] S. Song, Y. Kim, S. Park, and S. Park. A non-functional re-
quirements traceability management method based on architectural pat-
terns. In R. Lee, editor, Computers,Networks, Systems, and Industrial
Engineering 2011, volume 365 of Studies in Computational Intelligence,
pages 25–35. Springer Berlin Heidelberg, 2011.

[Spanoudakis and Zisman, 2004] G. Spanoudakis and A. Zisman. Software Trace-
ability: A Roadmap. In Handbook of Software Engineering and Knowledge
Engineering, pages 395–428. World Scientific Publishing, 2004.

[Spanoudakis et al., 2003] G. Spanoudakis, A. S. d’Avila Garcez, and A. Zisman.
Revising rules to capture requirements traceability relations: A machine
learning approach. In Proc. of the 5th International Conference on Soft-
ware Engineering & Knowledge Engineering, SEKE ’03, pages 570–577,
2003.

[Spanoudakis et al., 2004] G. Spanoudakis, A. Zisman, E. Perez-Minana, and P.
Krause. Rule-based generation of requirements traceability relations.
Journal of Systems and Software, 72(2):105–127, 2004.

[Sparx Systems Pty Ltd., 2014] Sparx Systems Pty Ltd. Sparx Enterprise
ArchitectTM. http://www.sparxsystems.com.au/, 2014.

281

http://www.sparxsystems.com.au/

References

[Spence and Probasco, 2000] I. Spence and L. Probasco. Traceability strategies
for managing requirements with use cases. Technical report, IBM, 2000.

[Starfield et al., 1990] M. Starfield, K. Smith, and A. Bleloch. How to model it:
Problem Solving for the Computer Age. McGraw-Hill Inc., New York,
1990.

[Steinberg et al., 2009] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework. Addison-Wesley, Boston, MA, 2nd
edition, 2009.

[Tang et al., 2007] A. Tang, Y. Jin, and J. Han. A rationale-based architecture
model for design traceability and reasoning. Journal of Systems and Soft-
ware, 80(6):918–934, 2007.

[Tang et al., 2010] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar.
A comparative study of architecture knowledge management tools. Jour-
nal of Systems and Software, 83(3):352–370, 2010.

[Taromirad et al., 2013] M. Taromirad, N. Matragkas, and R. F. Paige. Towards
a multi-domain model-driven traceability approach. In Proc. of the 7th
International Workshop on Multi-Paradigm Modelling, MPM ’13, 2013.

[Tekinerdogan et al., 2007a] B. Tekinerdogan, C. Hofmann, and M. Aksit. Model-
ing traceability of concerns for synchronizing architectural views. Journal
of Object Technology, 6(7):7–25, 2007a.

[Tekinerdogan et al., 2007b] B. Tekinerdogan, C. Hofmann, M. Aksit, and J.
Bakker. Metamodel for tracing concerns across the life cycle. In A. Mor-
eira and J. Grundy, editors, Early Aspects: Current Challenges and Fu-
ture Directions, volume 4765 of Lecture Notes in Computer Science, pages
175–194. Springer Berlin Heidelberg, 2007b.

[The Eclipse Foundation, 2013a] The Eclipse Foundation. Xtend. http://www.
eclipse.org/xtend/, 2013a.

[The Eclipse Foundation, 2013b] The Eclipse Foundation. Xtext. http://www.
eclipse.org/Xtext/, 2013b.

[The Open Group, 2011] The Open Group. TOGAF Version 9.1. http://
pubs.opengroup.org/architecture/togaf9-doc/arch/, 2011.

[The UK Ministry of Defence, 2012] The UK Ministry of Defence.
MOD Architecture Framework. https://www.gov.uk/
mod-architecture-framework, 2012.

[Thorn, 2013] S. Thorn. Redefining traceability in enterprise architec-
ture and implementing the concept with TOGAF 9.1 and/or

282

http://www.eclipse.org/xtend/
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
https://www.gov.uk/mod-architecture-framework
https://www.gov.uk/mod-architecture-framework

References

ArchiMate 2.0. http://sergethorn.blogspot.co.uk/2013/05/
redefining-traceability-in-enterprise.htmll, 2013.

[Tisi et al., 2009] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the
use of higher-order model transformations. In R. F. Paige, A. Hartman,
and A. Rensink, editors, Model Driven Architecture - Foundations and
Applications, volume 5562 of Lecture Notes in Computer Science, pages
18–33. Springer Berlin Heidelberg, 2009.

[U.S. Department of Defense (DoD), 1997] U.S. Department of Defense (DoD).
Command, control, computers, communication, intelligence, surveillance,
and reconnaissance (C4ISR) framework. http://www.afcea.org/
education/courses/archfwk2.pdf, 1997.

[van den Berg et al., 2006] K. van den Berg, J. M. Conejero, and J. Hernández.
Analysis of crosscutting across software development phases based on
traceability. In Proc. the International Workshop on Early Aspects at
ICSE, EA ’06, pages 43–50. ACM, 2006.

[Vanhooff et al., 2007] B. Vanhooff, D. Ayed, S. Baelen, W. Joosen, and Y.
Berbers. Uniti: A unified transformation infrastructure. In G. Engels,
B. Opdyke, D. C. Schmidt, and F. Weil, editors, Model Driven Engineer-
ing Languages and Systems, volume 4735 of Lecture Notes in Computer
Science, pages 31–45. Springer Berlin Heidelberg, 2007.

[Varro and Balogh, 2007] D. Varro and A. Balogh. The model transformation
language of the VIATRA2 framework. Science of Computer Programming,
68(3):214 – 234, 2007. Special Issue on Model Transformation.

[Vliet, 2008] H. V. Vliet. Software architecture knowledge management. In Proc.
of the 19th Australian Conference on Software Engineering, ASWEC ’08,
pages 24–31, March 2008.

[Von Knethen and Paech, 2002] A. Von Knethen and B. Paech. A survey on trac-
ing approaches in practice and research. Technical report, Fraunhofer
IESE, 2002.

[Walderhaug et al., 2006] S. Walderhaug, U. Johansen, E. Stav, and J. Aagedal.
Towards a generic solution for traceability in MDD. In Proc. of the
ECMDA Traceability Workshop, ECMDA-TW ’06, 2006.

[Watkins and Neal, 1994] R. Watkins and M. Neal. Why and how of requirements
tracing. IEEE Software, 11(4):104 –106, 1994.

[Wenzel et al., 2007] S. Wenzel, H. Hutter, and U. Kelter. Tracing model ele-
ments. In Proc. of the IEEE International Conference on Software Main-
tenance, ICSM ’07, pages 104–113. IEEE Computer Society, 2007.

283

http://sergethorn.blogspot.co.uk/2013/05/redefining-traceability-in-enterprise.htmll
http://sergethorn.blogspot.co.uk/2013/05/redefining-traceability-in-enterprise.htmll
http://www.afcea.org/education/courses/archfwk2.pdf
http://www.afcea.org/education/courses/archfwk2.pdf

References

[Wieringa, 1995] R. J. Wieringa. An introduction to requirements traceability.
Technical Report IR-389, Faculty of Mathematics and Computer Science,
Vrije Universiteit, 1995.

[Winkler, 2008] S. Winkler. On usability in requirements trace visualizations.
In Proc. of the 3rd International Workshop on Requirements Engineering
Visualization, REV ’08, pages 56–60. IEEE Computer Society, 2008.

[Winkler and Pilgrim, 2010] S. Winkler and J. Pilgrim. A survey of traceability
in requirements engineering and model-driven development. Software and
Systems Modeling (SoSyM), 9:529–565, 2010.

[World Wide Web Consortium (W3C), 1999] World Wide Web Con-
sortium (W3C). XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt, 1999.

[Yie et al., 2009] A. Yie, R. Casallas, D. Deridder, and D. Wagelaar. A practical
approach to multi-modeling views composition. ECEASST, 21, 2009.

[Ying et al., 2004] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history. IEEE Transac-
tions on Software Engineering, 30(9):574–586, 2004.

[Zhang et al., 2006] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev. An ontology-
based approach for traceability recovery. In Proc. of the 3rd International
Workshop on Metamodels, Schemas, Grammars, and Ontologies for Re-
verse Engineering, ATEM ’06, pages 36–43, 2006.

[Zimmermann et al., 2005] T. Zimmermann, A. Zeller, P. Weissgerber, and S.
Diehl. Mining version histories to guide software changes. IEEE Trans-
actions on Software Engineering, 31(6):429–445, June 2005.

[Zisman, 2012] A. Zisman. Using rules for traceability creation. In J. Cleland-
Huang, O. Gotel, and A. Zisman, editors, Software and Systems Trace-
ability, pages 147–170. Springer, 2012.

[Zou et al., 2006] X. Zou, R. Settimi, and J. Cleland-Huang. Phrasing in dy-
namic requirements trace retrieval. In Proc. of the 30th Annual Inter-
national Computer Software and Applications Conference, volume 1 of
COMPSAC ’06, pages 265–272, 2006.

[Zou et al., 2010] X. Zou, R. Settimi, and J. Cleland-Huang. Improving auto-
mated requirements trace retrieval: A study of term-based enhancement
methods. Empirical Software Engineering, 15(2):119–146, 2010.

284

http://www.w3.org/TR/xslt

	Abstract
	Contents
	List of Figures
	List of Tables
	Listing
	Acknowledgements
	Author Declaration
	Introduction
	Motivation: Traceability in Multi-domain Context
	Example

	Research Hypothesis
	Research Objectives

	Research Results
	Research Method
	Thesis Structure

	Background and Literature Review
	Traceability
	Terminology and Concepts
	Traceability Applications
	Traceability Activities
	Traceability Tools
	Traceability Challenges and Limitations
	Traceability in Specific Domains
	Traceability in Different Engineering Approaches

	Model-Driven Engineering
	Models
	Modelling Languages and Metamodels
	Model Management Operations
	Modelling in the Large

	Chapter Summary

	Analysis of Traceability Approaches
	Overview of the Literature
	Discussion
	Challenges of Multi-Domain Traceability
	Domain-specific Traceability Information
	Inter-domain Traceability Information
	Diverse Information in Heterogeneous Format
	Separation of Concerns (SoC)

	Requirements of a Multi-Domain Traceability Solution
	Chapter Summary

	A Multi-Domain Traceability Solution
	Traceability Information Model
	Step 1: Determine Traceability Goals
	Step 2: Identify Related Project Concepts
	Step 3: Define the TIM

	Traceability-Related Information
	Investigate Available Information
	Domain-Specific Information
	Multi-Domain Information

	Traceability Information
	Locating Source Elements
	Generating the Traceability Model

	Maintaining Traceability Model
	Traceability Analysis
	Traceability Analysis Language (TAL)
	Analysis Result

	Chapter Summary

	Implementation
	Infrastructure
	Eclipse Platform
	Eclipse Modelling Framework
	Epsilon
	Xtext & Xtend

	Prototype
	Metamodels and Models
	Extended CoreTIM
	Mapping Model
	Dynamic Model Transformation
	Traceability Analysis Language

	Chapter Summary

	Case Study: The EUR RVSM Programme
	The Programme: Introduction
	Traceability in the EUR RVSM
	Safety Activities
	Safety Policy
	Functional Hazard Assessment (FHA)
	Preliminary System Safety Assessment (PSSA)
	System Safety Assessment (SSA)

	Safety-Affected Activities
	Modification of ATC Equipment
	Provision of ATC Procedures

	An Example Traceability Scenario
	The TIM
	Traceability-related Information
	The Traceability Model
	Trace Queries
	Discussion

	Chapter Summary

	Evaluation and Discussion
	Evaluating the Approach Based on Requirements
	Scenario-Driven Approach
	Project-specific Traceability Information Model
	Models and Model Management Operations
	Domain-Specific Models
	Inter-Domain Traceability Metamodels and Models
	A Project-wide Traceability Model
	Traceability Activities
	Tooling Support
	A Model-Based Solution for Multi-Domain Traceability

	The Case Study: EUR RVSM
	Publications
	Limitations and Shortcomings
	Limited Support of Non-Model Artefacts
	Partial Traceability Maintenance

	Discussion: Solution in Practice
	Cost/Benefit
	Non-model Artefacts
	Change and Evolution

	Chapter Summary

	Conclusion
	Thesis Contributions
	Traceability in Multi-Domain Context
	Model-Based Multi-Domain Traceability Solution
	Case Study and Evaluation

	Future Work
	Non-Model Artefacts
	Traceability Maintenance
	Semi-automated Mapping Model
	Improved Traceability Analysis Language

	Appendices
	Appendix Categorisation Parameters
	TIM
	Activities
	Tooling
	Artefact

	Appendix Summary of Existing Traceability Approaches
	Appendix GSN Diagrams
	Appendix TAL Xtext Grammar
	Appendix Dynamic Model Transformation
	Appendix RVSM Case Study Supplement
	GQM Model
	EVL Constraints
	partialTIMs
	Mapping Model

	References

