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Abstract 

The importance of medical fabrics is reflected by increased clinical need and 

consumption over the past decade in the health and medical sectors. Medical fabric 

products, including wound dressings, are currently defined as ‘medical devices’ by 

European legislation. To ensure effectiveness as a wound dressing, these fabrics should 

assist the repair process by providing sufficient protection against bacterial spread in the 

wound bed. Chronic wounds are an increasingly urgent health problem, owing to the 

rising population of elderly, obese and diabetic patients. When treating such wounds 

with drug releasing dressings, the immediate release of the drug is a common limitation. 

Thus, the development of smart drug delivery dressings that release antibacterial agents 

into the wound bed when required would be a useful aid in medicine.  The overall aim 

of this study was to develop a wound dressing that was able to release the antibacterial 

agents only in the presence of bacteria.  

 

Medical dressings were treated with pH-responsive, self-assembling peptides as 

antibacterial carriers that were able to release the loaded drug when stimulated by the 

bacterial pH. A methodology developed for potential future medical application is 

presented. The preliminary design consisted of three stages. First, the self-assembled 

peptide candidates were studied and selected as drug carriers. Second, fabrics were 

treated with the selected self-assembled peptides using two different methods: (1) 

coating with the peptides from the outer surface by impregnating in peptide solution and 

(2) incorporating the self-assembled peptides within the structure by electrospinning. 

The treatment success of the dressing was investigated using a series of complementary 

techniques such as FTIR, TEM, SEM and CLSM. Third, potential effectiveness of the 

dressings was assessed in vitro using two antibiotics model, vancomycin and 

levofloxacin separately, against a Staphylococcus epidermidis bacterial strain, a species 

commonly found in infected wounds. The study findings clearly demonstrated the in 

vitro potential of self-assembling peptide technology in improving the function of 

medical fabrics.   
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Chapter 1 

 

 

1 Introduction  

 

1.1 Introduction to medical fabrics 

The word fabric is broadly defined as a flexible sheet consisting of a network of natural 

or artificial fibres. Medical fabrics are used in medical applications and play a major 

role in every stage of human health from detecting symptoms and diagnosis to curing 

diseases [1]. The technology of medical fabrics has developed significantly to meet 

human needs. Large varieties of medical materials are being produced, ranging from 

simple bandages to permanent body implants. In the United States alone, the revenue 

from medical textile product sales was estimated at about $11.3 billion in 1980. This 

number rose to $32.1 billion in 1990 and further increased to $76 billion in 2000. In 

Europe, medical textile sales comprise about 10% of the textile market, with an annual 

growth rate of about 4% [2]. Medical fabrics can be categorized into four areas of 

applications: 

 

 Healthcare and hygiene products. 

 Extracorporeal devices. 

 Non-implantable materials. 

 Implantable materials [3].   

    

1.1.1 Healthcare and hygiene products 

The term ‘healthcare and hygiene products’ refers to a wide range of disposable or non-

disposable materials used for human healthcare in everyday life, such as clothes, wipes, 

blankets, pillowcases, feminine products, baby care as well as hospital staff apparel 

including  surgical masks, gloves and surgical head wear [4].  
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In hospitals, spread of infectious material is a common problem in operating  theatres; 

thus, a clean environment is required. Disposable surgical materials and surgical gowns 

have been developed to act as textile barriers against microorganisms. Several synthetic 

and natural antimicrobial agents are widely used in hospital textiles, such as antibiotics, 

phenols, iodophors, silver, aloe vera and tea tree oil [3]. Vego et al. performed several 

studies on the development of antimicrobial finished fabrics to serve as advanced 

antimicrobial barriers for hospital use. Antibacterial polyester is one example of their 

products that was enhanced by the addition of polyethylene glycol to polyester fabrics. 

They found that the treated fabric was resistant to Staphylococcus epidermidis, Candida 

albicans and Aspergillus fumigatus [1]. 

 

1.1.2 Extracorporeal devices 

Extracorporeal devices are medical devices used to purify blood outside the body. 

Examples include the artificial kidney, artificial liver and mechanical lung. Artificial 

kidneys are used in haemodialysis s to filter waste products, such as urea and creatinine 

from blood. It is usually used when kidneys are in renal failure. The process is 

performed by circulating the blood through semi-permeable membranes to remove 

waste materials. The membranes can be either flat sheets or a bundle of hollow fibres. 

Similar to an artificial kidney, an artificial liver is an extracorporeal device that supports 

patients with acute liver failure. The artificial liver also utilizes ultrafiltration 

membranes to purify a patient’s blood. An artificial lung is a microporous membrane 

that is permeable to gas but not liquid; hence, it provides a patient’s blood with oxygen 

and removes carbon dioxide. Medical textiles used for producing these devices are 

made from materials such as regenerative cellulose, polyester, polypropylene and 

silicon [2].  

 

1.1.3 Implantable materials 

Fabrics are widely used as implanted material for soft and hard tissue engineering 

applications owing to their strength, flexibility and porosity.  Their porosity can be 

adjusted to be produced with different diameters and shapes as the porosity   determines 

the rate of human tissue growth. The fibres diameters also can be controlled to produce 

either large or small fibres depending on the application they are applied for and the 
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defected organ to be repaired. They can be made from either degradable or non 

degradable polymer, also depending on the application they are used for.  For example, 

heart valve implants must be made from non-degradable material, while hernia repair 

requires biodegradable polymers in physiological conditions. Finally, for successful 

implantation, fabrics should be made from  non-toxic material and must be free from 

contamination [2, 5].  

Examples of clinical applications of fibrous materials for reconstructing hard and soft 

tissues are briefly described below.  

 

1.1.3.1 Implantable materials for hard tissue engineering 

Hard tissue engineering uses scaffolds in combination with living cells to restore hard 

tissue, such as bones and joints. Natural polymers such as calcium alginate, collagen 

type I and hyaluronan have been used for osteoconductivity.  Collagen type I is a 

natural material used for 3D scaffolds for bone regeneration. It is the major component 

of the extracellular matrix. However, collagen has some limitations. It dissolves in 

living tissues, and it has poor mechanical strength. To improve collagen scaffold 

properties, researchers have developed hybrid scaffolds of collagen with inorganic 

materials or synthetic polymers [6]. For example, the combination of polyglycolic acid 

(PGA) and collagen sponges with basic fibroblast growth factor and dexamethasone 

was found to be more effective for bone regeneration than conventional materials [7]. 

PGA with poly (D, L-lactide urethane) is another example of scaffolding material 

widely used for bone tissue engineering. This hybrid has shown excellent physical 

properties and can be formed into shapes at 60 °C, which allows surgeons to shape it 

during surgery [2]. 

 

1.1.3.2 Implantable materials for soft tissue engineering 

i. Vascular grafts 

Vascular engineering involves the use of artificial grafting materials to replace damaged 

arterial vessels. Grafting materials act as temporary substrates for cell growth and are 

absorbed by surrounding tissues; the end result is a biological vascular graft. Ideal 
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vascular graft materials should be non-thrombogenic, elastic, able to maintain long-term 

tensile strength and highly porous to allow cell ingrowth [8].    

For the first half of the twentieth century, grafting materials were made from glass, 

silver and rubber; however, these were not entirely successful because they were 

rejected by the body. In 1953, after years of research, Voorhees et al. found that tubes 

made from plastic were accepted by the body [3, 8]. This finding was followed by the 

development of various grafting materials made from synthetic polymers, such as 

polytetrafluoroethylene (PTFE), which was patented by DuPont in 1944 [9], and 

polyethylene terephthalate (PET), which was first implanted by Julian in 1957 [3, 8, 10, 

11].  

Several modifications meant to improve graft properties, such as coating them with 

different biofunctional polymers, have been made. Biologically derived substances such 

as collagen, chitosan, elastin and albumin are also used to coat grafts. For example, 

Dacron grafts are coated with protein (collagen/albumin) and antibiotics to reduce blood 

loss and prevent infection [8]. Despite the progress made in textile graft technology, 

improvements are still required. Researchers are currently focusing on developing high-

performance grafts using appropriate materials and technologies, such as using 

electrospinning to produce advanced nanografting materials, see chapter 6 [8, 12]. 

 

ii. Hernia repair  

Although hernias can occur in different places in the body, they occur most often at 

weak spots or scars in the abdominal wall. Hernia repair mesh is usually made from 

porous fabrics. At the implanted site, the mesh is absorbed, and a new biological 

membrane is formed. Varieties of modified composite meshes with enhanced properties 

have been developed, such as meshes with antibacterial activity. For example, 

Dualmesh
® 

Plus is a hernia repair product containing silver carbonate and chlorhexidine 

diacetate, which inhibits microbial colonization at the implanted site [13]. Another 

example of a modified mesh is a polypropylene mesh coated with bioabsorbable omega-

3 fatty acids, which helps repair ventral hernias. This coated mesh has been shown to be 

more effective than uncoated ones. Although hernia meshes perform well, the ideal graft 

for hernia repair has not yet been developed [14].   
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 iii. Nerve tissue regeneration 

The most common way to repair peripheral nerve injury is to reconnect ends of the 

damaged nerve stumps. However, in some cases, this cannot be done, so nerve grafts are 

used to regenerate peripheral nerves. Fibrous scaffolds are promising materials for 

regenerating axons because they serve as a growth substrate for neural cells. For 

example, a blend of poly (3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHBV) was studied by Mesaeli et al. They found that the addition of 

collagen type I to the scaffold blend provided a more favourable environment for 

Schwann cell growth and myelin sheath regeneration compared to  scaffold without 

collagen [15, 16].  

 

1.1.4   Non-Implantable materials 

Non-implantable materials are used for external applications, such as bandages, gauzes, 

wound care products, antimicrobial barriers, cosmetic materials and drug-releasing 

textiles such as   transdermal patches [3].  

 

1.1.4.1    Drug-releasing textiles 

Common medication methods, such as oral tablets or venous injections, may result in 

drug deficiencies. For example, oral drugs may metabolize in the intestinal tract and 

lose their activity before fulfilling their purpose. To cure this problem, high drug doses 

are required, which may, in turn, be toxic. Thus, it would be advantageous to have a 

more advanced delivery system that increases drug bioavailability at a specific site with 

limited side effects. Textiles are an attractive choice for drug-delivery applications. 

Depending on the clinical application, they can be applied as non-implantable or 

implantable textiles such as anti-adhesive patches for  surgical application [17, 18].    

 

1.1.4.1.1 Fabrication methods for drug-releasing textiles 

Drug-releasing textiles can be fabricated by different methods, including coating, 

encapsulation, bioconjugation and ion-exchange [3, 17]. Each method is briefly 

described below. 
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i. Coating 

Coating is a simple method in which the drug is directly loaded onto the fabric surface 

by dipping the fabric in a drug solution. Drugs may also be encapsulated in micro- or 

nanomaterials before coating [3]. This method is described in more detail in Chapter 4.  

 

ii. Encapsulation 

Encapsulation refers to any process in which the drug is loaded within the textile 

structure. To encapsulate drugs within a textile, a homogeneous mixture of the drug and 

the dissolved textile polymer is prepared. Electrospininng is one of the most efficient 

techniques for fabricating drug encapsulated textiles for various biomedical applications, 

including tissue engineering and drug delivery [3]. This technique is described in detail 

in Chapter 6. 

 

iii. Ion-complexes 

In ion complexing, the drug is associated to the fabric via charges on the fabric surface 

and on drug molecules. In these complexes, drugs are the mobile counter ions that are 

released by an ion-exchange process in physiological systems [3].  

 

iv. Bioconjugation 

Bioconjugation refers to the coupling of two biomolecules with a stable covalent link. 

In drug-releasing textiles, bioconjugation is used to covalently couple drug molecules to 

a fabric surface when fabric surfaces are modified by attached biofunctional groups. 

Functional groups can be synthetically created by different methods, including wet 

chemistry and plasma treatment [3].  

 

v. Inclusion compounds 

An inclusion compound is a complex in which a small molecule resides within the 

molecular cavity of a larger molecule. Cyclodextrin, which has a hydrophobic core and 

a hydrophilic outer surface, is most commonly used as a large molecule for inclusion 

compounds in drug-releasing textiles [3]. 
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1.1.4.1.2 Drug- release mechanisms  

When working to develop advanced drug-releasing textiles, it is important to consider 

how drugs are released in or on the body. For optimal performance, a drug must be 

released in a controlled manner. Controlled drug release is defined as delivering a 

required amount of a drug over a defined period of time. Drug-delivery systems can be 

adjusted to release the drug in three different ways: immediate release, extended release 

or triggered release (see Figure 1.1) [17]. The choice from these three mechanisms 

should be made in accordance with the pharmaceutical requirements. The mechanisms 

of release are briefly discussed below. 

 

 

Figure 1.1: Different release mechanisms in drug delivery systems [17]. 

    

i. Immediate release  

With immediate release, the drug is released in a short time. The release is controlled by 

factors, such as digestive juices in the stomach and intestinal tract. To maintain effective 

action, this type of release requires a high dosage of the drug. At the beginning of 

treatment, the drug concentration rapidly increases, followed by a sharp decline (Figure 

1.1). This type of release is usually prescribed when immediate action is required [17].  

 

ii. Extended release 

In extended release, also called prolonged or sustained drug release, the drug is applied 

in a low effective dose and is delivered at a constant rate of release over a prolonged 

period, which can range from hours to days to years. Therefore, dosing frequency is 

reduced. Different principles such as diffusion and dissolution are used to control the 
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drug release rate from drug-releasing textiles. In the diffusion-controlled system, the 

drug release rate is determined by the diffusion coefficient of the drug released from the 

textile polymer. In the dissolution-controlled system, the rate of drug release is 

determined by the dissolution rate of the polymer used to fabricate the drug-

encapsulating textile [17, 18].   

 

iii. Triggered release 

In a triggered release, also called a delayed release, the drug is released when the 

delivery system is stimulated by an external trigger such as pH, temperature or ionic 

strength [17]. Once triggered, the release rate of the triggered drug can be modified 

either to immediately release the whole drug content or to follow a slow extended 

release protocol. An ion-exchange system is an example of a triggered release. The 

release rate of the triggered drug is controlled by ionic properties of mobile ions in the 

fabric together with the ionic strength of the surrounding area [17].    

 

1.1.4.2   Wound care dressings  

 1.1.4.2.1 Wounds   

According to the Wound Healing Society, a wound is defined as damage to or a break in 

the skin.  This damage can obstruct the anatomical structure and  protective function of 

the skin [19].  

Wounds have many causes such as external factors resulting from physical or chemical 

injury and may be exacerbated by the underlying physiological condition of the patient.  

Physical causes include abrasion, knives, gun shots, and surgical instruments. obstruct 

chemicals also cause wounds as well as radiation and electricity [19]. 

Based on healing time, wounds are frequently classified as either acute or chronic. 

Acute wounds usually heal completely within 8–12 weeks. Chronic wounds persist 

beyond a twelve-week period. Chronic wounds are often hard to heal or, in the worst 

case, never heal. Such wounds are characterized by the loss of skin or underlying soft 

tissue, such as pressure sores and venous or diabetic ulcers [19, 20]. Since they do not 

respond to conventional treatments, chronic wounds are a major burden on healthcare 
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providers because of the long healing time and large nursing costs associated with 

managing patients [21].   

 

1.1.4.2.2 Wound exudates 

Wound exudate is a fluid produced by damaged blood vessels in a wound and contains 

electrolytes, nutrients, proteins, inflammatory mediators, protein digesting enzymes, 

such as matrix metalloproteinases (MMPs), growth factors and waste products, as well 

as various types of cells (e.g. neutrophils, macrophages and platelets). Exudates play an 

important role in wound healing. In healthy patients, exudates promote cell proliferation, 

provide nutrients for cell metabolism and aid the autolysis of necrotic tissue. However, 

in chronic wounds, exudates can interfere with the viability of the growth factor and 

slow cell proliferation. Elevated levels of MMPs in chronic wounds have been 

associated with poor wound healing because neotissue may be enzymatically degraded. 

In this situation, exudates have been described as having ‘corrosive’ effects on wounds; 

in such situations, the wound becomes locked in the inflammatory stage of healing and 

does not progress to granulation and epithelialisation [22].  

    

1.1.4.2.3 Wound healing 

Wound healing can be simply defined as a skin reparation process. It is a biological 

process required to re-establish the integrity of damaged tissue. This process appears to 

be simple, but in fact, three overlapping phases occur during the repair of damaged 

tissue: the haemostasis/inflammatory phase, proliferative phase and maturation phase 

[20, 23-26].  

A detailed discussion of the mechanisms of wound healing is outside the scope of this 

study; however, to provide relevant context for the experimental study that follows in 

later chapters, it is instructive to briefly review the main stages. 

 

i. Haemostasis/ Inflammatory phase 

Haemostasis is achieved within a few minutes of injury, commonly up to a period of 24 

h. It is the process in which the flow of blood from injured vessels is prevented. It is 

initiated by clotting factors that convert blood from liquid to solid. One important 
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clotting factor is fibrinogen, which stimulates the clotting mechanism to form a network 

of fibrin in the wound, thereby preventing bleeding [20]. 

 

ii. Proliferative phase  

In the proliferative phase, granulation tissue is formed, which is a soft rudimentary 

tissue containing fibroblasts, inflammatory cells, hyaluronic acid, endothelial cells, new 

blood vessels and collagen [20]. 

  

iii. Maturation and the remodelling phase 

Maturation is the final stage that can take a long time, usually, several months to years 

after injury.   It involves the formation of the connective tissue and strengthening of 

new connective tissue and strengthening of the new epithelium, which determine the  

final scar [20]. 

  

1.1.4.2.4 Wound infection complications 

The term “wound infection” is clinically defined as the development of a 

microorganism colony in the wound site. Microorganisms are classified as fungi, 

viruses, and bacteria. Bacteria are classified as Gram-negative and Gram-positive 

bacteria depending on their structure.  Gram-negative bacteria include Escherichia coli 

and Pseudomonas aeruginosa. Gram-positive bacteria include Staphylococcus aureus 

and staphylococcus epidermidis [8]. When the skin is injured, subcutaneous tissues are 

vulnerable to microorganism colonisation. The removal and replacement of dressings 

also exposes the wound site to potential contamination by microorganisms.  The three 

main sources of microorganism contamination of wounds are: (i) exogenous sources 

such as microorganisms suspended in air or present on the implement   causing the 

injury, (ii) the surrounding skin microflora such as Staphylococcus epidermidis, (iii) 

endogenous sources such as gut and oral flora.  Both acute and chronic wounds are 

susceptible to be contaminated by any one of these sources of infection. Such 

contamination causes wound inflammation, pain, and a reduction in the speed on the 

healing process [27, 28]. Extended healing times are particularly likely if the bacterium 
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is able to develop from its planktonic state to biofilm form. Once established biofilms 

are responsible for poor healing outcomes and they are common in chronic wound sites.  

 

1.1.4.2.5 Wound dressings  

Open wounds can be readily infected by microorganism colonization unless a protective 

layer is provided in the form of a suitably designed dressing [29]. Moist wound healing 

is critical to good healing outcomes and requires exudates to be effectively managed by 

the dressing. Dressings should also be capable of gas exchange as well as permitting the 

permeation of moisture vapour from the wound and diffusion of oxygen into the wound 

site. All required properties of a wound dressing are rather difficult to generalize 

because of the large variety of wound types that must be managed and because the state 

of a wound changes with time. Clearly, it is important to select the most suitable 

dressing from those that are clinically approved. For example, heavily exuding wounds 

require absorbent dressings to prevent the maceration of the surrounding tissue; these 

dressings must be capable of removing fluid at a rate that prevents the wound site from 

drying out. 

Wound dressings may be classified on the basis of their polymer composition (e.g. 

natural or synthetic), form (e.g. non-woven, foam, hydrogel) or function (low adherent, 

antimicrobial, absorbent, occlusive). The classification may also refer to either 

traditional or modern dressings [19].  

 

(1) Traditional dressings     

Traditional dressings can be thought of as passive products, such as bandage, tulle, 

gauze and cotton wool. These dressings can be made from either natural or synthetic 

polymers or combinations of the two. Their primary function is to cover the wound and 

absorb exudates; however, they are becoming increasingly less common because of 

their functional limitations: 

 Limited ability to prevent infection 

 Disruption of the wound bed during removal 

 Limited or no oxygen permeability   

 Require frequent dressing changes 
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 Promote a dry environment that is unfavourable for healing [30].  

 

Despite these limitations, traditional dressings are still used for the debridement or 

cleaning of minor wounds [30].     

 

(2) Modern dressings   

A range of modern dressings has been developed to address the performance 

requirements for an optimal wound healing environment. These dressings are designed 

to address one or more of the following needs: 

 Provide a moist wound healing environment and protect the wound from 

dehydration. 

 Allow effective oxygen exchange between the wound and the external 

environment, providing circulation to aid tissue regeneration. 

 Biocompatible, nontoxic and non-immunogenic. 

 Ease of application to the wound surface and removal without pain to the patient. 

 Facilitate delivery of bioactive agents to accelerate wound healing [19]. 

 

Some of the major commercially successful dressings are classified according to their 

material form, as described below. 

 

i. Hydrocolloid dressings 

Hydrocolloid dressings are used for moderately exuding wounds such as minor burns 

and traumatic injuries. They are made from colloidal materials combined with an outer 

adhesive layer. Colloidal materials include gel forming agents such as gelatine and 

pectin. Hydrocolloid materials interact with the wound exudate to form a gel, which 

enhances the formation of granulation tissue. One disadvantage of this type of dressing 

is that it can produce an unpleasant odour. Commercial examples of hydrocolloid 

dressings include Tegasorb
TM 

(3M Healthcare, Loughborough, UK) and Comfeel 

(Coloplast, Peterborough, UK) [31]. 
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ii. Hydrogels 

Hydrogels are swellable hydrophilic materials that are intended to improve 

reepithelisation of wounds. They can be made from synthetic polymers such as 

poly(methacrylates) and poly(vinylpyrrolidine). They are composed of approximately 

70% water which allows them to promote rehydration [32]. Due to the high water 

content, they are unable to treat wounds that are highly exudating. Thus, they are 

suitable for moderately exuding wounds by swelling and storing water within their 

structure [19]. They need to be frequently changed since once the absorbent capacity 

has been reached there is a risk of leakage. Examples of hydrogel dressings include Nu-

gel
TM

 (Johnson & Johnson, Acost, UK) and Purilon 
TM

 (Coloplast) [19, 31, 33]. 

  

iii. Foam dressings 

Foam dressings are usually made of polyurethane. The void structure within the 

dressing provides volume for fluid absorption so that, depending upon their surface 

wetting characteristics, they can be used for heavily exuding wounds. Examples of foam 

dressings include Lyofoam
®
 (Conva Tec) and Allevyn

®
 (Smith and Nephew) [19]. 

  

iv. Alginate dressings 

Alginate dressings are commonly based  on calcium alginate and  are derived from 

alginic acid extracted from seaweed [34, 35].  They are highly absorbent and 

biodegradable. When applied to the wound, calcium ions present in the alginate fibres 

exchange with sodium ions present in the wound exudate forming sodium alginate gel, 

which provides a moist wound healing environment and low adherence to the wound 

site. Alginate dressings are normally delivered as fibrous assemblies known as 

nonwovens and are popular because they can stimulate epithelial proliferation and 

improve some cellular process in wound healing. Examples of alginate dressings 

include Kaltostat
TM

 (ConvaTec) and Sorbsan
TM 

(3M Healthcare) [31].   

 

vi. Film dressings 

Film dressings are made from nylon derivatives. They are usually supported by an 

adhesive polyethylene layer to make them adhesive. They are unable to absorb large 
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volumes of exudates and need to be frequently changed to avoid the accumulation of 

excess exudate and resultant bacterial proliferation. Available products include Opsite
TM

 

(Smith and Nephew) [19, 31]. 

 

vii. Biological dressings 

Biological dressings, sometimes called bioactive dressings, can play an active part in 

wound healing and new tissue formation. Such dressings can also play a role in tissue 

engineering applications. These dressings incorporate bioactive agents, such as 

antibiotics and growth factors. One example is the use of hyaluronic-acid-modified 

liposomes produced as drug carriers to deliver growth factors to wound sites [19]. 

 

1.2 Advantages and limitations of current drug-releasing 

textiles   

Textiles have advantageous properties such as strength, flexibility, porosity and the 

ability to design them with desired criteria. Thus, textile technology has a number of 

diverse applications in the medical and healthcare sectors, ranging from disposable 

wipes to artificial organs to drug-releasing applications. This project is an attempt to 

contribute to the development of smart medical textiles, in particular, to development of 

controlled drug-release textiles for wound care.   

The delivery of therapeutic drugs into wounds is a developing area. Most of modern 

dressings are not designed to deliver bioactive agents to a wound in a control manner. 

They are rarely reported to control the drug release. The release of a drug into a wound 

in an uncontrolled manner is a common limitation of drug releasing dressings. If the 

release rate is too high, the drug can be unloaded from the dressing before infection is 

arrested.  Furthermore, a ‘burst release’ within the first few hours may lead to overdose 

cytotoxcity, which can give rise to delayed wound healing, or to the development of 

antibiotic resistance [36]. Inversely, if the release rate is too low, the drug delivery may 

be below the effective therapeutic dose that is required to be effective. Another 

limitation caused by uncontrolled drug release from wound dressings is that it leads to 

the need for frequent changes. When the dressing is  removed, the newly formed 
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epithelium can be damaged, so limiting dressing changes is usually considered to be 

beneficial [36, 37].  

To overcome these limitations, attention has been paid to develop materials that provide 

potential for controlled drug delivery. Controlled drug delivery to wounds normally 

means the delivery of an active agent to the wound site in a sustained manner. The ideal 

bioactive dressing should release the drug at the optimum therapeutic concentration 

followed by a sustained constant delivery [37]. These criteria can limit the frequency of 

dressing changes. Under these circumstances patient compliance can be improved, 

especially in those suffering from chronic wounds, where the patient needs to undergo 

extended periods of treatment [19]. In light of such considerations, there is a need for a 

more conservative approach for smart wound-care materials that are more effective and 

more functional than traditional materials. Optimistically, the addition of self-

assembling peptides as a biofunctional component to medical fabrics could have the 

potential to combine the advantages of triggered release with slow kinetic release.   

 

1.3 Introduction to peptides 

Before discussing self-assembling peptides, it is worthwhile reviewing peptide 

composition and structure. 

1.3.1 Primary structure of peptide 

Peptides are linear chains synthesized from the polymerization of amino acid building 

blocks. Amino acids are very small biomolecules with an average molecular weight of 

135 Dalton. Amino acid molecules have a central carbon atom (Cα) that is attached to 

an amine group (NH2), a carboxyl group (COOH) and a side chain (R) (Figure 1.2). 

When a carboxyl group on one amino acid reacts with an amine group on an adjacent 

amino acid, one water molecule is released; this process is known as a condensation 

reaction (Figure 1.3). 

There are 20 natural amino acids used as building blocks for peptides (Figure 1.4).  

They are classified in four ways according to their side chains: (1) non-polar and neutral 

(hydrophobic), (2) polar and neutral, (3) acidic and polar, (4) basic and polar [38]. All 

amino acids, except glycine,  are chiral as they can form two stereoisomer around the 

central carbon;  they are called L and D.  L is for left-handed form and D is for right 

handed form.  
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Figure 1.2: The general structure of an alpha amino acid. 

 

 

 

 

 

Figure 1.3: The condensation of two amino acids forming the peptide bond. 
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Figure 1.4: Chemical structures of amino acids [39]. 
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1.3.2 Secondary structure of peptide 

Secondary structure refers to certain repetitive conformations of the peptide backbone. 

The conformation of the backbone is determined by the torsion angles Φ and ψ (Figure 

1.5). Based on these angels, there are two common peptide conformations: the α-helix 

and β-sheet [38]. 

  

1.3.2.1 α- Helix  

The α-helix is a right-handed coil resulting when a series of residues that have φ and ψ 

angles of around 60° and 50° respectively.  It is stabilized by hydrogen bonding 

between N-H and C=O groups of residues which are four positions apart (i and i+4).  

There are about 3.6 residues per turn of the helix (Figure 1.6) [38]. 

 

 

Figure 1.5: The torsion angles phi Φ and psi ψ. 

 

 

Figure 1.6: Structure of an  α-helix [40]. 
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1.3.2.2  β-Sheet 

β-Sheet is formed from  two or more β-strands. A β-strand is an extended stretch of 

polypeptide molecule appeared in a zig-zag manner.  The β-sheet is stabilised by 

hydrogen bonds between C=O groups of amino acids in one β-strand and the N-H 

groups of the amino acids in another adjacent β-strand [38].  

β-Sheet can exist in one of two ways, either parallel or anti-parallel (Figure 1.7). Anti-

parallel β-sheets are more stable than parallel, as they have a more stable geometry of 

hydrogen bonds. Antiparallel β-sheets have hydrogen bonds that are perpendicular to 

the strand axis, while parallel β-sheets have hydrogen bonds at an angle between the β-

strands [38]. 

 

 

Figure 1.7: Structure of β-sheet. (A) Parallel and  (B) antiparallel arrangment [41]. 
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1.4 Molecular self-assembly of peptides 

Molecular self-assembly is a major field in nanotechnology research which is based on 

bottom-up approaches. It is defined as the spontaneous organization of individual 

components through non-covalent forces such as hydrogen bonds, hydrophobic 

attractions, electrostatic interactions and van der Waals interactions [42].  

Molecular self-assembly can be either nucleated or non-nucleated (classical). Non-

nucleated self-assembly continuously occurs at any molecular concentration, and the 

process involves only one energetic parameter, the free-energy change for the formation 

of one dimer. In nucleated self-assembly, a critical concentration (c*) is required before 

the first aggregate forms (nucleus); in this case, two energetic parameters are involved: 

nucleation energy and growth energy.  A wide range of biological polymers follow the 

nucleated self-assembly mechanism, including lipids, DNA and peptides. As the self-

assembly of peptides follows a nucleated mechanism, it only occurs when peptide 

concentration is above c*. Below this concentration, the molecules are monomerics with 

random confirmations. When the concentration is greater than c*, stable aggregate nuclei are 

formed. Then followed by the nucleus growth, where the aggregates grow and elongate 

in gradual manner with an increase in concentration resulting in an increase in chain length and 

number [43-46].   

 

1.4.1 Examples of self-assembling peptide nanostructures and their 

potential as drug carriers   

Peptides can self-assemble into a wide range of different well-defined soluble 

aggregates that form peptide hydrogels and respond to chemical triggers. Some 

examples are briefly described here along with their selected applications as drug 

carriers. 

 

1.4.1.1  Cyclic peptide nanotube 

In 1974, De Santis et al. developed a theory that peptides containing an even number of 

alternating D- and L- amino acid residues can form closed flat-shaped rings that would 

be arranged in the antiparallel stack model through backbone-backbone hydrogen 
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bonding [47]. Based on this theory, in 1993 Ghaderi et al. developed the first member 

of such a peptide structure at the nanoscale; this structure has an internal pore diameter 

of about 7Å formed from a sequence of eight residues of amino acids, cyclo[(L-Gln-D-

Ala-L-Glu-D-Ala)2-], (Figure 1.8). Their investigation was extended by using 12 

residues, cyclo[-L-(Gln-D-Ala-L-Glu-D-Ala)3], to design a larger tube having a pore 

diameter of 13 Å [47-50]. Thus, it is deduced that the diameter of the pore can be 

controlled by varying the number of amino acids [48].  

                 

Figure 1.8: Schematic of the formation of cyclic peptide nanotubes (right) from the flat ring-shaped 

conformation (left). Partially taken  from Ghaderi et al  [47]. 

 

Many researchers have studied the use of Ghaderi cyclic peptide nanotubes as drug 

carriers. For example, in the study by Banerjee and Yadav, the peptide (Ala)12 was used 

as a carrier for gentamycin (Figure 1.9).  They did several experiments to understand the 

interactions between gentamycin and the carrier. Their overall finding was that the 

interaction energy is sufficient for holding gentamycin until delivery to the target, thus 

avoiding the premature expulsion of drug. Thus, this carrier is expected to be a 

promising material for decreasing side effects from gentamycin and increasing its 

bioavailability [51]. 
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Figure 1.9: Complex of cyclic (Ala)12 containing gentamycin [51]. 

 

1.4.1.2  Amyloid peptide   

Significant attention has been focused on understanding of the formation of amyloid 

fibrils. Several undesirable diseases occur from the accumulation of amyloid fibrils, 

including Alzheimer’s diseases, prion disease, Type II diabetes and Parkinson’s disease 

[52-54]. The amyloid fibre is considered to be a generic structure and a key example of 

a natural peptide for forming rigid nanostructures to be employed for different 

applications, such as scaffolding that supports physical structures and vehicles to carry 

drugs. The amyloid β-sheet (Aβ) is the core recognition motif for Alzheimer’s β-

amyloid. It is usually formed by 30–40 amino acids. These amino acids self-assemble 

into β-sheets at low pH (Figure 1.10a) [55]. These β-sheets stack on top of each other to 

form the final nanotubes (Figure 1.10b). Each tube has an outer diameter of 52 nm, a 

wall thickness of 4 nm and a length of several microns [56]. Recently, laboratory 

studies have suggested that amyloid peptides could be used as biofunctional materials 

for drug-delivery applications since they are stable against harsh physical, chemical and 

biochemical conditions. Thus, active drugs could be released from amyloid termini over 

extended periods ranging from days to weeks. This was tested using a family of 

gonadotropin-releasing hormones GnRH; the results showed that amyloid peptides 

could be adopted as a sustained release system to promote the long action of GnRH [57, 

58]. 
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Figure 1.10: Model of self-assembly of amyloid peptide. (a) Flat bilayers. (b) Bilayers twist to form 

nanotubes. Partially taken from  Scanlon, S. and A. Aggeli  [56]. 

 

1.4.1.3 β- Hairpin peptide 

Nanotubes arising from self-assembled β-hairpin peptides have been reported. 

Lanreotide growth hormone inhibitor peptide is a natural example of an assembled 

nanotube made from such conformation (Figure 1.11). In water, the peptides assemble 

into bilayers consisting of amphiphilic β-sheets with aliphatic and aromatic residues. 

The hairpin conformation of the building block is stabilized by disulphide bonds. 

Hydrogen bonding drives the peptides to assemble into long ribbons. About 26 ribbons 

associate laterally due to  hydrophobic effect to form nanotubes with diameters of 24 

nm, resulting in hydrogel formation [56].  

The Schneider and Pochan groups have demonstrated hydrogels made from β-hairpin 

building blocks of MAX1 and MAX8 peptides (Figure 1.12). MAX1 and MAX8 are 

peptides containing 20 amino acids and are built from alternative residues of lysine and 

valine  with one lysine replaced by glutamic acid in MAX8.  These molecules have a 

high propensity for folding into β-hairpin structures. Figure 1.12 shows that the self-

assembly process of MAX peptides is driven by external stimuli [59-63].  
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Figure 1.11: Lanreotide  peptide nanotubes in water. Color code: green, hydrophilic; red, aromatic 

hydrophobic; and blue, aliphatic hydrophobic surface of the peptide [56]. 

 

 

               

Figure 1.12: (A) Schematic of folding and subsequent self-assembly when MAX1 and 

MAX8 peptides are placed in DMEM. (B) Peptide sequences of 

 MAX1 and MAX8 [64]. 

 

The inflammatory response to MAX1 and MAX8 hydrogel was assessed. The data 

showed that they do not provoke an inflammatory immune response when implanted 

into animals; therefore, they are suitable candidates for biomedical applications. For 

example, curcumin molecules were incorporated into the gel matrix of MAX8 to induce 
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programmed cell death (apoptosis) in medulloblastoma cancer [65]. Curcumin is water 

insoluble and has relatively low bioavailability. The encapsulation of curcumin into 

MAX8 as a hydrogel vehicle increased bioavailability and effectiveness in the tumour. 

 

1.4.1.4 Amphiphlic peptide  

Amphiphlic peptides are molecules with both hydrophilic and hydrophobic parts. The 

hydrophilic part is usually  peptide and the hydrophobic part is usually non-peptide [66]. 

Different amphiphlic peptide structures  exist including surfactants-like peptides, 

peptide-conjugated amphiphiles and bolaamphiphile. Surfactant-like peptides are 

molecular mimics of membrane phospholipids. They are composed of consecutive 

hydrophobic amino acids as a tail and one or more hydrophilic amino acids as a head 

group. It is believed that in water, the hydrophobic effect drives the nonpolar regions of 

peptide molecules towards each other and away from water-forming bilayer rings. 

These rings stack on top of each other to form peptide nanotubes [67-70]. Shuguang 

Zhang et al. presented the pathway of peptide nanotube formation through the 

molecular modelling of the surfactant peptide V6D (Figure 1.13). Many other 

surfactant-like peptides have been designed with different charges, based on their amino 

acid sequences, such as negatively charged A6D and V6D2 and positively charged A6K 

and V6K. Another example of an artificial surfactant-like peptide was designed by 

Shuguang Zhang  et al. by mimicking the structure of phospholipids. Phosphoserine 

was added to the molecule as a hydrophilic head, and alanine or valine was added as a 

hydrophobic tail to design surfactant-like peptides, such as pSA6 and pSV6  [68, 71].  

 

Conjugated-peptide amphiphile combines the structural features of surfactant-like 

peptide with the functions of bioactive peptides. In this type of structure, a peptidic 

recognition motif is added to the peptide molecule to to mediate cell attachment and 

guidance for tissue engineering applications. An example for peptide-conjugated 

amphiphile was designed by Stupp et al. [72, 73]. The Stupp complex self-assembles, in 

water, into fibres to direct the mineralization of hydroxyapatite HA. The designed 

peptide has an alkyl tail containing 16 carbon atoms attached to an ionic peptide (Figure 

1.14). To promote cell-adhesion, RGD (arginine–glycine–aspartic acid) was added to 

the C-terminus. Four cysteine residues were incorporated into the peptide region to form 

disulphide bonds between adjacent peptide molecules and enhance peptide cross-linking 
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[50, 72-74]. This complex structure tends to concentrate inorganic cations, such as 

calcium, for mineralization applications. 

 

 

Figure 1.13: Mechanism of self-assembly of surfactant-like peptide  V6D into a bilayer and then into 

rings that stack into a peptide nanotube [69]. 

 

Bolaamphipilic peptides differ from traditional surfactants by having two head groups 

of hydrophilic peptides connected by a hydrophobic alkyl chain (Figure 1.15). Xiaojun 

Zhao designed several bolaamphiphilic peptides in water composed of natural amino 

acids; these, in turn, self-assemble into nanotubes with hydrophilic cores and 

hydrophilic outer surfaces. 

Compared with nanotubes formed by surfactant-like peptides, bolaamphiphilic peptide 

nanotubes are smaller with inner diameters of less than 10 nm. It has been reported that 

their structure and size make them excellent carriers for encapsulating and transferring 

hydrophilic compounds into target cells [68]. 



27 

 

 

 

 

Figure 1.14:  The Structure of the peptide amphiphile designed by Stupp et al. (A) Five key 

structural features of the molecule: 1- hydrophobic alkyl tail, 2- four cysteine residues, 3-  three 

glycine  residues, 4- serine residues to interact with calcium, 5-cell adhesion ligand.  (B) Conical 

shape of the molecule. (C) Schematic showing the cylindrical micelle formed from the amphiphilic  

peptide [72]. 

 

 

 

Figure 1.15: Bolaamphiphilic peptides forming the nanotube. Blue= hydrophilic head, white= 

hydrophobic [68]. 
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It is possible that surfactant-like peptides with hydrophobic fatty tails have immense 

potential for delivering hydrophobic drugs. A surfactant-like tetratail peptide, 

[(C18)2K]2KR8GRGDS], was designed and synthesized for hydrophobic drug delivery. 

The molecule is composed of four hydrophobic aliphatic tails and a hydrophilic peptide 

head group. Ibuprofen and doxorubicin (DOX) were loaded into the amphiphilic design. 

The loaded drugs released in sustain manner and showed  high phototoxicity against 

cancer cells indicating their potential for photodynamic therapy [75, 76].   

 

1.4.1.5 Ionic Complementary Peptide 

In the early 1990s, the potential importance of ionic complementary peptides was first 

demonstrated by Shuguang Zhang et al. The formation of such charged peptides occurs 

through electrostatic interactions between positively and negatively charged building 

blocks within the peptide, in addition to hydrogen bonding and van der Waals forces 

(Figure 1.16) [77-79]. Ionic complementary peptides can adopt two different secondary 

structures, which result from different types of charge distributions along the sequence: 

β-structures and helical structures. When the charges are arranged in the alternating 

distribution of ••− −••++ (• is the hydrophobic residue), the peptide will assemble into 

the helical structure. However, if they arranged as •−•+, they will assemble into the β-

structure [80, 81].  

The first ionic complementary peptide EAK 16 was designed by Zhang et al. and is 

composed of 16 peptide residues. Based on differences in charge distributions, EAK16 

is classified into EAK16-I, EAK16-II and EAK16-IV (Figure 1.17)  [78, 82].     

 

 

Figure 1.16: Self -assembly of peptides as mediated by complementary charges [53]. 
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Figure 1.17: (A) Structure of the ionic-complementary peptideEAK16-II.  (B) Three-dimensional 

molecular model of EAK16s. The top, middle and bottom schemes represent the EAK16-I, 

EAK16II and EAK16-IV structures with charge distribution of − + − + − + − + , − − + + − − + + 

 and − − − − + + + + , respectively [79]. 

 

 

 

In water,  EAK16-II forms  β-sheets having  a hydrophobic face on one side and a 

hydrophilic face on the other  [53]. These β-sheets stack on top of each other to form 

EAK16-II fibrils. This peptide self-assembles in aqueous solution to form peptide gels. 

Applications of these complementary peptides have been demonstrated in drug delivery 

fields. They have been used to encapsulate hydrophobic compounds and increase their 

solubility in aqueous environments. For example, EAK16-II has been used to increase 

the solubility of pyrene in aqueous solution. Pyrene is a weakly water-soluble material 

with a solubility of ~7.0 10
–7

 M. EAK16-II was shown to form a stable complex with 

pyrene in aqueous solutions with a solubility of 5 10
–3

 M [79]. 

 
 

(A) 

(B) 
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1.4.1.6 P11 series of peptides 

At the University of Leeds, a new class of peptides (P11) has been designed, synthesized 

and studied by Aggeli et al [44]. These peptides are 11 amino acids in length and self-

assemble by the nucleated mechanism. All amino acids used to design P11 series of 

peptides are L amino acids. They form β-strand conformations and self-assemble into 

long β-sheet tapes and higher-order aggregates. Solutions of the aggregates have been 

found to become gels if peptide is used at sufficiently high concentrations [44].  

A theoretical model has been built to quantitatively describe this peptide self-assembly 

process, and the model has also been used to fit experimental data [44]. A model tape-

forming peptide is P11-2 (CH3CO-Q-Q-R-F-Q-W-Q-F-E-Q-Q-NH2), which self-

assembles into tapes and higher-order aggregates in water and forms hydrogels (Figure 

1.18).   

The self-assembly of P11 peptides only occurs at peptide concentrations greater than a 

certain value known as the critical concentration (c*) [44]. At concentrations lower than 

c*,   the peptides exist as random-coil monomers. In this case, monomeric peptides can 

have any values for the torsion angles Φ and ψ [44]. 

 

     

Figure 1.18: Hierarchical β-sheet tape self-assembly [44]. 
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When the concentration is sufficiently high to start self-assembly, the monomeric 

peptides undergo a straightening process to form rod-like β-strand monomers with 

complementary donor and acceptor groups on opposing sides. For the peptides to self-

assemble, the loss of entropy must balanced by the  gain in enthalpy. The main entropy 

loss is associated with straightening the peptide chain from its random coil into its β-

strand conformation. Enthalpy is gained from interactions between the hydrophilic 

charged and uncharged residues, which can be involved in hydrogen bonding and 

electrostatic interactions. This process is mainly entropic in nature and is expressed by 

the energetic parameter εtransKbT which is the free-energy change per molecule [44]. 

To form a tape, the rod-like β-strand monomers interact via complementary recognition 

between donor and acceptors groups and form hydrogen bonds. This process is mainly 

driven by an enthalpic gain and is described by the term εtapeKbT, which is the free-

energy change owing to the association of two peptides. The tape is the simplest form of 

a hierarchical structure in peptide self-assembly. At equilibrium, tapes are twisted and 

bent. The intrinsic twist within the peptide tapes arises from the chirality of amino acid 

residues, while bending originates from differences between upper and lower sides of 

the tapes [44]. 

When the peptide concentration is increased, two neighbouring tapes stack together 

through the hydrophobic faces and the hydrophilic faces are in contact with water thus 

giving rise to form ribbons. This process is stabilized by εribbonKbT, which is the free 

energy change per pair of stacked tapes and  is  mainly enthalpic in nature. For two 

tapes to stack together both must decrease their bend and twist to facilitate the presence 

of one another. The resultant ribbon has more of a saddle curvature rather than the 

helical twist that is observed for the tapes [44]. 

 

At still higher concentrations, several ribbons can stack together to form a fibril. Fibrils 

are more rigid and longer than ribbons and are stabilized by εfibrilKbT, which again is 

mainly enthalpic in nature. There is an energy cost that restricts fibril formation; this is 

the elastic penalty associated with the untwisting of the ribbons upon stacking. If the 

energy of the fibril formation  is greater than the untwisting energy of the  fibril, then 

the self-assembly of fibrils will occur [44].  With further increases in concentration, a 

pair of fibrils can stack together side by side and entwine to produce fibres. These fibres 

are formed from mutual attractions between the C and N termini of each peptide pair. 

Fibres are stabilized by εfibreKbT [44]. 
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1.4.2 Factors influencing peptide self-assembly 

Peptide self-assembly can be influenced by several factors, including peptide 

concentration, pH and the presence of salt [38-40].  

Peptide concentration strongly affects peptide self-assembly. A critical peptide 

concentration is needed to start the self-assembly presses. Generally, at concentrations 

below the critical peptide concentration, peptides are in monomer states. At the critical 

concentration, peptides start to self-assemble into β-sheet aggregates. For example, 

Aggeli et al. demonstrated that, in water, P11-1 is predominantly in a monomeric 

random coil conformation at c ≤ 0.1 mM. However, at higher concentrations, it forms 

peptide aggregates [44]. 

 pH Charged amino acids have an important role in the stabilization of peptide 

assembled structures through electrostatic interactions and hydrogen bonding. Variation 

in pH can change the peptide conformation. For example, polylysine chains can be 

converted from α-helix to β-sheet when the pH is above 10. At this pH, 95% of lysine 

residues are protonated. This process is reversible. When pH is lower than 10, the α-

helix is converted to a β-sheet [83]. 

The gelation behaviour of P11 series peptide is influenced by pH. For example,  P11-5 

(CH3CO-Q-Q-O-F-O-W-O-F-Q-Q-Q- NH2)  was designed to form fibrils at basic pH 

and to be as monomers  at lower pH (Figure 1.19) [84].  

 

 

Figure 1.19: Behaviour of peptides as a function of pH P11-5 [45]. 
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The presence of salt can affect the critical concentration of peptides. Chen et al have 

investigated the effects of salt on the assembly of EAK 16-I 

(AEAKAEAKAEAKAEAK). In water, the critical concentration of EAK16-I is around 

0.3 mg/ml. At the presence of 20 mM of NaCl, the critical concentration of the peptide 

increased to 0.8 mg/ml [79, 85].  

In a study carried by Aggeli et al, the effect of salt presence on P11-9 self-assembly, for 

example, was studied. In the absence of salt, a sharp transition from flocculation to 

nematic fluid is observed at pD < 6.5. In the presence of 130 mM NaCl, a broader 

transition from flocculation to nematic gel is observed (Figure 1.20). 

 

   

      

Figure 1.20: Phase behaviour of P11-9 as a function of pD.  (a) In D2O. (b) In D2O containing 130 

mM NaCl,  I: nematic gel, II: flocuculate, III: nematic fluid, IV: isotropic fluid [86]. 
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1.5 Advantages and limitations of peptide-based drug-delivery 

systems 

Applications of self-assembled peptides are very diverse. They have been applied as 

nanowires  [87], biosensors [88], selective transport channels [89], antibacterial agents 

[90], and as a scaffold for wide range of tissue engineering applications [91]. In term of 

drug delivery applications, carriers at the nanoscale have unique potential in the 

pharmacokinetic behaviour [92, 93]. Because of their enhanced permeation and 

retention effects, they can reach a disease site. Therefore, they are able to detect, image 

and treat diseases. Many nano-drug carriers are under extensive investigation worldwide, 

including lyposomes, polymer micelles and dendrimers. They are biocompatible, 

biodegradable and non-immunogenic biomaterials. By using natural amino acids, 

maximum biocompatibility is expected. Further, if it is found that there are types of 

amino acids or certain sizes of peptides that cause an immune response, they can be 

modified. In addition, peptides are chemically and thermally stable at high temperatures 

in the presence of organic solvents and at extreme values of pH. They can be rapidly 

synthesized chemically, and novel amino acid residues can be readily incorporated.  

Amyloidal peptides are attractive for their mechanical strength; however, they are 

historically associated with human diseases. In vivo, they can accumulate either outside 

cells or inside cells causing cytotoxicity. β-Hairpin peptides, such as MAX1 and MAX8, 

are attractive in biomedical applications, particularly in applications with post-operative 

infections because they have antibacterial properties. However, because of their large 

size, they require substantial amounts of raw materials and are cost-inefficient. Some 

self-assembling peptides, such as ionic complementary peptides, are formed by classical 

non-nucleated processes; in such cases, controlling aggregate growth is challenging. 

The P11 series of β-sheet tape-forming peptides are more advantageous than other 

equivalent families since they are based on shorter amino acid sequences. Thus, they are 

easier to design and more cost-effective. The ability to change uncharged polar groups 

gives them versatility in chemical and mechanical properties. As they undergo 1D 

hierarchical β-sheet self-assembly, they can be controlled by triggers such as pH, 

temperature and ionic strength. They have highly specific recognition capabilities. Thus, 

they can form very precisely ordered building blocks for specific applications. 

Therefore, because of these advantages, they are considered to be very good candidates 

for different applications in medicine [38, 52, 94].   
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1.6 Aims and Objectives 

The aim of this study is to determine the feasibility of combining P11 sequence self-

assembling peptides with fibrous media  for biofunctional application.  Fabrics were 

treated with pH-responsive self-assembling peptides to release therapeutic agents when 

stimulated by pH. Optimistically, this project could lead to the design of a smart 

material for biomedical applications with particular emphasis on the control of 

infections in chronic wounds. 

 

The specific objectives of the project are as follows: 

1) Investigate the self-assembly of different peptides to determine the optimum 

preparation conditions for designing peptide nanotubes and to compare the 

mechanism of tube formation with that of fibrillar structure analogues. The 

investigation includes testing those factors that affect peptide behaviour, such as 

peptide concentration and pH. 

 

2)  Treat medical fabrics with selected self-assembled peptides. The fabrics will be 

treated with self-assembled peptides by two different methods. (1) Fabrics will be 

coated with self-assembled peptides from the outer surface by dipping. (2) Self-

assembled peptides will be incorporated into the structure of the fabric by 

electrospinning. Complementary characterization techniques will be applied to 

investigate the developed materials.  

 

3) Investigate the feasibility of encapsulating antibiotics into self-assembled peptides. 

 

4) Evaluate the bioactivity against bacteria of the fabrics treated with antibiotics 

encapsulated into self-assembled peptides.  
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Chapter 2   

 

 

2 Experimental procedures and techniques 

 

2.1 Materials  

2.1.1 Chemicals 

1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP ≥ 99% purity), deuterium oxide, deionized 

water, sodium hydroxide pellets, sodium chloride, concentrated hydrochloric acid, 

deuterated sodium hydroxide,  deuterated hydrochloric acid and sodium azide,  were 

purchased from Sigma Aldrich Ltd, Gillingham, Dorset, UK.  

 

2.1.2 Peptides 

P11-2 (MW 1,593 Da), P11-4 (MW 1,565 Da), P11-8 (MW 1,565 Da), P11-9 (MW 1,432 

Da) and P11-12 (MW 1,593 Da) were purchased from the Polypeptide Group 

(Strasbourg, France). All peptides were tested in house for purity on arrival using HPLC, 

UV spectroscopy and elemental analysis (Appendix A).  

 

2.2 General methods 

2.2.2 pH measurement  

All samples were adjusted to the desired pH or pD (pD values are meter reading plus 

0.4). Sample pH was determined using either a WPA CD720 meter and a CMW711 

semi-micro single junction probe, or a Sartorius Docu-pH meter and a VWR sympHony 

semi-micro combination double junction probe. Both probes were filled with, and stored 

in, 3.5 M KCl solution.  
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2.2.3 Peptide solution preparation 

Peptides were weighed to the desired weighs using a Mettler AE240 balance. The 

desired amount of the needed solvents were added to the weighed peptide vials using 

Gilson microppipet. Vails were sealed with barafilm and vortexed for 30 s with 

Scientific Industries Vortex Genie 2 vortexer. Then, the samples were sonicated for 20 

mins using a Bandelin Sonorex RK52H sonicator. 

 

2.3 Characterization techniques  

2.3.1 Transmission electron microscopy, TEM 

2.3.1.1 Background 

TEM is widely used by researchers in physics, chemistry and biology. It has a principle 

of work similar to that of the light microscope but essentially differs through the 

utilization of high- energy-electron-beam to form images rather than visible light.  The 

wavelength of the electrons is much smaller than the wavelength of the visible light; 

therefore, the resolution in TEM is higher than the resolution of light microscopes. It 

can reveal fine details, which are a thousand times smaller than the smallest resolvable 

object in light microscopes such as a single column of atoms [95]. 

TEM consists of a vertical column containing a series of electromagnetic lenses, 

condenser lenses, and objective lenses. A specimen chamber is located between the 

condenser lenses and the objective lenses. The microscope is provided by an electron 

gun which creates a beam of electrons, and a suitable electron detector [95]. The main 

components of TEM are illustrated below in Figure 2.1. The electron gun generates the 

primary electrons beam which travels through the vacuum in the column of the 

microscope. Then, the beam is accelerated by an electric potential and focussed by the 

electromagnetic lenses to pass into the sample. The electron beam interacts with the 

sample in a vacuum chamber and undergoes elastic or inelastic scattering or otherwise 

produces different signals such as X-rays, Auger electrons, or light.  The image is 

formed from the electrons transmitted through the specimen with small scattering angles  

and are collected by the detector to record an image [96]. 
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The electron scattering pattern differs from sample to sample according to its density. 

Biological samples that composed of elements with low atomic number such as bacteria, 

biological membrane structures, and proteins have low electron-scattering powers 

resulting in unclear images. Therefore, such samples have to be stained prior to imaging 

with negative stains to enhance the image contrast. Negative stains are heavy metal 

compounds with high atomic number, which can penetrate between the sample 

projections and reveal its fine details. Many negative stains can be used such as osmium 

tetroxide, ammonium molybdate, uranyl formate and uranyl acetate [97].  

 

2.3.1.2 Method  

Pieces of mica were cleaved and coated with a carbon film. The coated mica was then 

left overnight to dry. Then, hexagonal mesh size 400 copper grids were coated with the  

carbon film by immersing the mica in a water surface with an angle about 45º to allow 

the carbon coat to float on the water surface. The water was slowly removed from the 

beaker in order to allow the film to lie on the surface of the grids. After the film 

deposited on the grids, they were kept overnight to dry. The coated grids were 

discharged to form static charges on the grid surface using Edwards 306 a high vacuum 

coating system. The peptide samples were diluted in pure water. A droplet of the diluted 

sample was placed onto a clean discharged surface of the grid and left for one minute; 

the excess was removed using filter paper. Then the grids were introduced on top of a 

droplet of uranyl acetate (UA, 0.4%) in order to be negatively stained. The excess is 

removed and left to go dry. The samples were imaged with a Philips CM10 electron 

microscope at an accelerating voltage of 80 kV or imaged with FEGTEM an Oxford 

instruments 80 mm
2
 SDD EDX detector. 
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Figure 2.1: Schematic representation of transmission electron microscopy [98]. 

 

2.3.2 Scanning electron microscopy, SEM 

2.3.2.1 Background 

SEM is one of the most important instruments for the analysis and examination of 

samples morphology.  Similar to TEM, the basic principle of imaging using SEM is 

based on the interaction under high-vacuum conditions (10
-5 

- 10
 -7

 Torr) between the 

point of interest on the specimen surface and the high-energy electron beam. In the area 

in which the interaction occurs between the beam and the specimen surface, various 

electronic particles will be produced: 1) secondary electron SE; 2) backscattered 

electrons BSE; 3) Auger electrons; 4) X-rays; and 5) cathodoluminescence [99]. The 

secondary electron released from the interaction spot is characteristic of the surface at 
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that point; thin, the secondary electrons are detected by the Everhart-Thornley-Detector. 

The detector conveys the electron signals to a visual signal displayed on a Cathode Ray 

Tube (CRT ) [100, 101]. SEM components are illustrated in Figure 2.2. 

Conductive materials, such as metals can be viewed by directly putting them in the 

specimen chamber without prior preparation. On the other hand, some non-conductive 

materials, such as biological samples require several processing steps to prevent the 

sample from vacuum-related damage and electrical charging. They  can be coated with 

any conductive materials such as gold, palladium, platinum and graphite [100, 101]. 

 

2.3.2.2 Method  

The samples were attached to SEM stubs using carbon pads using double sided stick 

carbon pads. They were sputter coated with Pt/Pd Ager sputter coater model 208HR 

(coat in 80% Pt and 20% Pd) with about 5 nm layer of platinum and palladium (50:50) 

using a Cressington 108 sputter coater. Then, the samples were imaged using a Gemini 

LEO 1530 FEGSEM made by Carl Zeiss. The images were taken at different 

magnification with an accelerating voltage of 10 kV. The diameters ranges of the 

fabricated nanofibers were measured using image analysis software ImageJ.  

 

2.3.3 Energy-dispersive X-ray spectroscopy, EDX 

EDX is an analytical technique used in conjugation with electron microscopy. It is used 

to provide near surface elemental identification and quantitative compositional 

information. The electron beam strikes the surface of a sample. This leads to the 

emission of the X-rays from the material.  X-rays are generated from about 2 microns in 

depth and finally result in a set of peaks. Each peak corresponds to a specific element in 

the examined region, based on the fundamental that each element has a unique atomic 

structure [102]. 
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Figure 2.2: Schematic representation of scanning electron microscopy [103]. 

 

2.3.4 Fourier transform infra-red spectroscopy, FT-IR 

2.3.4.1 Background  

Fourier transform infrared spectroscopy, FTIR, is a technique which has been adopted 

in analytical laboratories for over seventy years. It is a useful tool for identifying any 

unknown materials using a source of IR light.  IR is a radiation with frequencies and 

energies lower than those associated with visible light. When the IR light passes 

through the sample, it will be absorbed by the sample molecules giving spectra. These 

spectra are corresponding to the frequencies of vibrations of the bonds between atoms.  

Each different material has a unique combination of atoms; thus, FTIR can present a 

unique fingerprint for every type of material [104-108]. 

The FTIR basic components are; the infrared source, interferometer, detector, the 

sample compartment, and computer. The unique part in the FTIR is the interferometer. 

The interferometer has a beamsplitter and two types of mirror; fixed and moving mirror 

(Figure 2.3). The beamsplitter splits the incoming infrared beam into two optical beams, 
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whilst one beam reflects off the flat mirror,  the other beam reflects off the moving 

mirror [107, 108].  

 

Figure 2.3: Schematic showing FT-IR components  [109]. 

 

After reflecting off the beams from their respective mirrors, the two lights recombine 

again at the beamsplitter.  The recombined signal results from the interfering between 

each other with the resulting signal known as “interferogram”.  The interferogram has a 

unique prosperity into which every infrared frequency is encoded into it.  Following, the 

interferogram is then transmitted through the sample surface, and reflected off with the 

specific characteristics of the sample owing to the function of the molecule vibration. 

The reflected beam arrives at the detector for final measurement. Finally, the measured 

signals is digitized and sent to the computer to be displayed for the user [107, 108].  

FTIR has been used in the examination of peptide conformation. Nine absorption bands 

can be used to study peptide secondary structure (amide A, B, I, II, III, IV, V, VI, VII) 

(Table 2.1). The frequencies of amide I band are the most useful indicator for particular 

peptide secondary structures and appeared as a peak at 1600-1700   cm
 −1

 [110]. The 

frequencies of vibration in the amide I band arises from the hydrogen bonding involving 
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the C=O and NH groups in the secondary structure of peptide. In order to obtain a semi-

quantitative analysis for an examined peptide, the amide I band at the region  1600-1700 

cm
−1

 should be fitted  to ascertain the number and positions of individual component 

bands in Table 2.2 [110]. The individual amino acids that affect the amide I region are 

listed Table 2.3. The Trifluoroacetic acid, TFA, mostly interferes with the synthetic 

peptides infrared spectrum, located at 1673 cm
-1

. It is a strong acid used in the synthesis 

and purification of peptides and other organic compounds.  TFA is a negatively charged 

compound bounded to positively charged residues. The amount of TFA present in a 

peptide solution depends on the number of positively charged residues in the peptide 

[110].The peptide bands can also be overlapped with the H2O bending vibration at 1640 

cm
-1

,  therefore, FTIR studies of  peptides samples will be run in deuterated solvents 

[110]. 

2.3.4.2  Method  

FTIR spectra were recorded using a Thermo Scientific Nicolet 6700 FTIR 

spectrophotometer using OMNIC 7.3 (Thermo Scientific, UK) software. The samples 

were then placed between CaF2 crystals separated by lead spacer. All spectra are 

collected after subtraction of the component peaks of the peptide amide I band were 

obtained through second derivative analysis. OMNIC Peak Analysis tool were used to 

fit the amide I band. 

       Table 2.1: Infrared bands of the peptide [111]. 

 

 

 

 

 

 

 

 

 

 

       

 

Amide Band Wavenumber /cm
-1 

Origin 

A ~3300 NH stretching 

B ~3100 NH stretching 

I 1600-1690 C=O stretching 

II 1480-1575 CN stretching, NH bending, 

III 1229-1301 CN stretching, NH bending, 

IV 625-767 
OCN bending mixed with other 

nodes 

V 640-800 Out-of plane NH bending 

VI 537-606 Out-of plane C=O bending 

VII ~200 Skeletal torsion 
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 Table 2.2: The
 
amide I’ region component bands [111, 112]. 

Amide I’ band (cm
-1

) Secondary structure assignment 

1613-1630 β-sheet 

1642-1649 Random coil 

1650-1655 a-helix 

1658-1674 Turn 

1673 TFA 

1682-1690 β-sheet 

1694-1697 Turn 

 

 

Table 2.3: Infrared bands of amino acids side chains [111]. 

Amino Acid 
             

Wavenumber   

cm
-1 

Origin 

Aspartic acid 1715 C=O stretch 

 1585 COO
-
 asymmetric stretch 

Glutamic acid 1710 C=O stretch 
 1565 COO

-
 asymmetric stretch 

Glutamine 1620-1640 ND2 stretch 
 1670 C=O stretch 

Arginine 1580 CN stretch 
 1610 CN asymmetric stretch 

Histidine 1600, 1625 ionised ring 
 1620 non-ionised ring 

Phenylalanine 1596,1607 Ring 
Tyrosine 1500,1575 ionised ring 

 1517,1590,1615 non-ionised ring 
Tryptophan 1545 Ring 

 

2.3.5 Attenuated total reflectance spectroscopy,   ATR-IR 

2.3.5.1 Background 

Attenuated total reflectance (ATR) is also known as internal reflection spectroscopy 

(IRS) or multiple internal reflectance (MIR) [113]. This technique has become popular 
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tool for biological studies. It is a direct, flexible, simple and sensitive infrared technique. 

It can gives  qualitative and semi-quantitative analysis of compositional changes, 

conformation, orientation , and molecular interactions for samples either too thick or too 

strongly absorbing material [113].   In this technique, the changes that occur in an 

internally reflected infrared beam when the beam comes into contact with a sample are 

measured (Figure 2.4).  The critical angle is defined as a function of the refractive 

indices of the two surfaces. The outcome attenuated radiation is measured by the 

spectrometer and gives the spectral characteristic of the sample. The ATR crystal is 

usually made of materials with high refractive index such as silicon, germanium, zinc 

selenide and diamond. 

  

                 Figure 2.4:  A multiple reflection ATR system  [114]. 

2.3.5.2 Method 

Golden Gate single reflection diamond ATR spectrometer from Specac Company was 

used to investigate the samples. A background air spectrum was recorded just before a 

sample was analysed. After the background collection, the sample was directly placed 

on a diamond crystal.  Spectra were collected at room temperature. The spectra were 

processed with OMNIC 32 software. 

 

2.3.6 Confocal  laser scanning microscope, CLSM 

2.3.6.1 Background 

All fluorescence microscopes use fluorescence to create an image. The term of 

fluorescence is described as the emission of light from molecules that have absorbed 

light with a particular wavelength from an outside source of energy.  The re-emitted 

light usually has a longer wavelength and lower energy than the absorbed radiation. 
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This reflected light is used to study the properties of organic or inorganic materials 

[115].  

Laser scanning confocal microscope is an essential tool which uses the phenomena of 

fluorescence.  This technique has an advantage of generating three dimensional images 

for a sample with excellent resolution, about 0.1 to 0.2 μm. Also, it is capable to    

reveal  the presence of a single fluorescent molecule [116]. It has the ability to create 

optical sections within thick cells and tissue samples by rejecting the out-of-focus 

information from the image by the use of a suitably positioned pinhole [117, 118]. 

The basic component of the confocal microscopy was developed by Marvin Minsky in 

the mid-1950s. The first commercial instruments became available to the biological 

research in the late 1980s [116]. The main components of any laser scanning confocal 

microscope are: 1) laser excitation source; 2) dichromatic mirror; 3) objective lens; 4) 

pinhole aperture detectors and 5) specimen stage (Figure 2.5). To generate an image, 

first, a laser beam is passed through a light sourcrse aperture. Then,  it is focused by an 

objective lens into a small volum within or on the surface of the sample. Scattered and 

reflicted lasre light as well as fluorescent light emitted from the sample are re-collected 

by the objective lens.  The unwanted reflected light is separated by the use of suitable 

reflecting dichromatic mirrors. The in-focus light, after passing the pinhole, is collected 

by a very high sensitive detector called a photomultipier. The  signal comes from the 

photomultiplier is converted to a digital form containing the sample information. These 

informations are displyed on a computer screen where the sample can be adjusted to be 

presented [116].  

 

2.3.6.2 Method  

The CLSM images were taken by using the confocal upright zeiss LSM510 in the 

faculty of biological science at Leeds University. The specimens were directly placed 

on the sample stage.   The LSCM images were taken by using the confocal upright Zeiss 

LSM510 in the faculty of biological science at Leeds University. The samples were 

directly placed on the sample stage. A laser light was applied on the sample surface. 

The images were adjusted and imported using zeiss LSM image browser software.  
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Figure 2.5: Schematic diagram of the optical pathway and principal components in a laser scanning 

confocal microscope [119]. 
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Chapter 3 

 

 

3 Self-assembly and morphology of peptide nanostructures 

and their gelation properties 

 

3.1 Introduction 

The purpose of the work described in this chapter is to study the mechanisms of 

nanotube formation and to determine the optimum conditions for their preparation. 

Applying nanotubes as drug carriers is of interest because their hollow cylindrical 

structures can permit the loading of large amounts of therapeutic agents. Moreover, their 

structures can protect entrapped drug molecules from denaturation and degradation 

throughout the delivery process [120, 121].  In previous studies within The Centre for 

Molecular Nanoscience, CMNS, at the University of Leeds, peptide nanotubes formed 

when P11-2 was mixed with water and hexafluoroisopropanol (HFIP). Also, they were 

viewed when P11-12 was prepared under physiological conditions. Therefore, in this 

chapter, peptide self-assembly is investigated in water and under physiological 

conditions where the formation of nanotubes is expected. The peptide nanotubes 

investigated here are compared with peptide fibre analogues. The study also includes 

the investigation of factors that affect peptide behaviour such as peptide concentration 

and  pH.  

  

3.1.1 Peptide self-assembly in water 

The peptide P11-2 (CH3CO-Q-Q-R-F-Q-W-Q-F-E-Q-Q-NH2) was selected to test the 

self-assembly of peptides in water. In aqueous solution at low pH and a concentration of 

6.3 mM, P11-2 forms fibril structures with a left-hand twist; at high pH, it forms a 

monomeric solution. As shown in Figure. 3.1, P11-2 has hydrophobic phenylalanine 

residues at positions 4 and 8 and hydrophobic tryptophan at position 6; these groups 

provide intermolecular side-chain recognitions via π–π interactions. Charged arginine 
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and glutamic acid in the molecule promote antiparallel recognition through Coulombic 

attractions. These attractions, as well as hydrogen bonds, guide peptide molecules to 

self-assemble one-dimensionally, resulting in a hydrophilic antiparallel β-sheet 

arrangement [122].  In the presence of HFIP in the peptide solution,  peptide nanotubes 

are formed [123].  In this chapter, P11-2 is investigated for the formation of fibrils in 

pure water and of tubes in aqueous solutions of HFIP.  

  

 

Figure 3.1: Molecular structure of P11-2. 

 

3.1.2 Peptide self-assembly under physiological conditions  

By designing suitable self-assembled nanostructures under appropriate physiological 

conditions, novel nanostructures may be developed. This could open opportunities for 

applying self-assembled peptides in biological and medical applications. In our 

laboratory, P11 peptides variants were designed to self-assemble into tapes and higher-

order aggregates in the complex milieu of the physiological conditions as opposed to 

pure water.  In a study first conducted by Sue Felton (at CMNS, School of Chemistry, 

University of Leeds) P11 peptide variants, e.g. P11-4 and P11-8, were designed to self-

assemble into fibrils of stacked tapes and gelled physiological media; these gels are 

currently being explored as scaffolds for tissue engineering applications [124]. More 

recently, in a work carried out in the same group by Dr Danielle Miles, gels based on 

peptide nanotubes (rather than fibrils) formed when 20 mg/ml of P11-12 self-assembled 

in a phosphate-buffered saline solution [129]. In this study, the self-assembly and 

gelation of P11-9 (CH3CO-S-S-R-F-E-W-E-F-E-S-S-NH2) and P11-12 (CH3CO-S-S-R-F-

O-W-O-F-E-S-S-NH2) were investigated in different physiological environments for 

preparing peptide nanotubes and for determining appropriate preparation conditions. 

P11-9 has ionisable arginine residues at position 3, glutamic acid at positions 5, 7 and 9, 
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and four serine residues at positions 1, 2, 10 and 11. P11-12 has serine residues at 

positions 1, 2, 10 and 11 and has ornithine side chains at positions 5 and 7. Figure 3.2 

illustrates the molecular structures of  P11-9 and P11-12.   

 

 

 

 

Figure 3.2: Molecular structures of peptides P11-9 (top) and P11-12 (bottom). 

 

3.2 Materials and methods 

3.2.1 Materials 

Dulbecco’s phosphate buffered saline (DPBS) without calcium and magnesium was 

purchased from Sigma Aldrich Ltd., Gillingham, Dorset, UK. Dulbecco’s modified 

Eagle’s medium (DMEM) was purchased from Fisher Scientific, Loughborough, 

Leicestershire UK. 
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3.2.2 Methods 

3.2.2.1 Preparation of P11-2 solutions in 100% D2O 

Solutions of varying concentrations were made by adding 0.5 ml of D2O to the required 

weight of peptide. The resulting peptide concentrations are given in Table 3.1. Each 

sample was individually vortexed for approximately 30 s. Then, the samples were 

sonicated for around 20 min. The solutions were acidic between pH ~ 2.7 and 4.17; all 

were prepared at constant room temperature. 

 

Table 3.1: Preparation methods for  P11-2 solutions in D2O. 

 

3.2.2.2 Preparation of  P11-2 solution in 90% D2O and 10% HFIP  

Solutions of P11-2 were prepared by weighing the required amounts of peptide. Then, 

0.05 ml of HFIP was added to the dry peptide. The solutions were vortexed until they 

were clear and then 0.45 ml of D2O was added to each sample. All samples were 

vortexed again for about 30 s and sonicated for 20 min. Preparation details are given in 

Table 3.2. All samples were acidic between pH 2.7 and 3.8; these processes were 

conducted at constant room temperature.  

 

 

 

 

Peptide concentration Details of preparation 

1 mg/ml 0.5 mg P11-2 + 0.5 ml D2O 

5 mg/ml 2.5 mg P11-2 + 0.5 ml D2O 

10 mg/ml 5 mg P11-2 + 0.5 ml D2O 

20 mg/ml 10 mg P11-2 + 0.5 ml D2O 

40 mg/ml 20 mg P11-2 + 0.5 ml D2O 

60 mg/ml 30 mg P11-2 + 0.5 ml D2O 
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Table 3.2: Preparation methods for P11-2 solutions in 90% D2O and 10% HFIP. 

 

Peptide concentration 

 

Details of preparation 

1 mgl/ml 0.5 mg P11-2+ 0.05 ml HFIP + 0.45 ml D2O 

5 mg/ml 2.5 mg P11-2+ 0.05 ml HFIP + 0.45 ml D2O 

10 mg/ml 5 mg P11-2 + 0.05 ml HFIP + 0.45 ml D2O 

20 mg/ml 10 mg P11-2 +0.05 ml HFIP + 0.45 ml D2O 

40 mg/ml 20 mg P11-2 + 0.05 ml HFIP +  0.45 ml D2O 

60 mg/ml 30 mg P11-2 + 0.05 ml HFIP + 0.45 ml D2O 

 

3.2.2.3 Preparation of  P11-2 solutions at different  pH  levels 

To study the behaviour of P11-2 in response to pD, four solutions of P11-2 were prepared. 

A volume of 0.05 ml of HFIP was added to 10 mg of P11-2 and left to become clear. 

Then, 0.045 ml of D2O was added to the mixture. The solutions were vortexed to be 

completely mixed. The samples were then adjusted to have different pD (2.8, 5.2, 7.3 

and 9). Microlitre aliquots of 0.5 M NaOD were added to the solutions to alter their pD 

levels. Values of solution pD were obtained by pD = pH metre reading + 0.4 [125, 126].   

 

3.2.2.4 Preparation of  peptide solutions under physiological conditions 

Solutions of P11-9 and P11-12 were prepared under different physiological conditions, as 

shown in Tables 3.3 and 3.4, respectively. All samples were prepared at room 

temperature around 20°C. The samples were vortexed for 20 s and sonicated for 20 min. 

Then, to maximize peptide solubility, they were warmed to approximately 80°C for 

around 5 min.  
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Table 3.3: Conditions for preparation of P 11-9 gels. 

 

 

 

Table 3.4:Conditions for preparation of P 11-12 gels. 

Preparation conditions 

pH/pD 

before 

adjustment 

 

pH/pD 

 

pH/pD 

after 

adjustment 

10 mg of P 11-9 + 0.5 ml DPBS  containing 0.04% of  

NaN3 
pH 5.4 

0.4 µL of 

0.5 M NaOH 

pH 7.5 

10 mg of P 11-9 + 0.5 ml DMEM  containing 0.04% of  

NaN3 
pH 5.7 

0.3  µL  of 

0.5  M NaOH 

pH 7.2 

10 mg of P 11-9 + 0.5 ml of the physiological-like 

buffer solution (130 mM NaCl in  D2O ) 
pD 5.9 

0.4 µL  of 

0.5  M  

NaOD 

pD 7.3 

10 mg of P 11-9 + 0.5 ml of Triss-buffer (130 mM 

NaCl and 30 mM Tris-HCl in D2O) 
pD 9 

0.5µL of 

0.5  M DCl 

pD 7.1 

Preparation conditions 

pH/pD 

before 

adjustment 

pH/pD 

pH/pD 

after 

adjustment 

10 mg of P 11-12 + 0.5 ml DPBS containing 0.04% of  

NaN3 
pH 3.8 

0.6 µL of 

0.5M  NaOH 

pH 7.4 

10 mg of P 11-12 + 0.5 ml DMEM  containing 0.04% 

of  NaN3 
pH 5.2 

0.7 µL of 

0.5M NaOH 

pH 7.3 

10 mg of P 11-12 + 0.5 ml of the physiologica- like 

buffer solution (130 mM NaCl in D2O) 
pD 3.3 

0.7  µL of 

0.5M   NaOD 

pD 7.2 

10 mg of P 11-12 + 0.5 ml of Tris-buffer (130 mM 

NaCl and 30 mM Triss-HCl inD2O) 
pD 8.8 

0.4 µL of 

0.5M   DCl 

pD 7.2 
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3.3 Results 

3.3.1 Self-assembly of P11-2 in 100% D2O 

The peptide solutions described in Table 3.1 are shown in Figure 3.3. Figure 3.3(A) 

shows that, at a concentration of 1 mg/ml (0.6 mM), the solution forms a clear isotropic 

fluid with weak birefringence. At this concentration, which is above the critical 

concentration of  P11-2 ribbons, the solution contains both flexible  ribbons and some 

monomeric peptides. According to the Aggeli group, the critical concentration for P11-2 

β-sheet ribbons is ≥ 0.1 mM [127].  

Figure 3.3(B) shows that, at a concentration of 5 mg/ml (3.1 mM), a slightly viscous 

birefringent solution formed because of the increased peptide concentration. At this 

concentration (above c*I/N), rigid fibrils are present, forming a nematic solution and 

showing optical birefringence. The c*I/N represents the concentration at which the 

isotropic phase converts to the nematic phase.    Birefringence is a property of the 

nematic phase; it is identified by the many colours visible when exposed to cross-

polarised light  [44, 127].  c*I/N of P11-2 is approximately 1.4 mg/ml (0.9 mM). 

Figure 3.3(C) shows that, at a concentration of 10 mg/ml (6.2 mM), the solution shows 

strong birefringence and is more viscous when compared to the solution having a 

concentration of 5 mg/ml. When the peptide concentration was further increased to 20 

mg/ml (12.5 mM), the sample forms a gel, as shown in Figure 3.3(D). At this 

concentration, which is above c*gel  for P11-2, rigid fibrils are connected to create fibre-

like junctions, and a nematic gel forms. c*gel represents the concentration at which a 

solution changes from a nematic viscoelastic fluid to a nematic elastomeric-like gel 

[44]. c*gel for P11-2 is estimated to be about 15 mg/ml  (10  mM). 

At concentrations of 40 mg/ml (25 mM) and 60 mg/ml (37 mM), Figures 3.3(E) and 

3.3(F) show that the solutions are cloudy self-supported nematic gels. These hydrogel 

samples were observed over a period of five months after their preparation. After that 

time, they retain their original appearance, implying that they are stable.  
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..     .        

Figure 3.3: Photographs of P11-2 samples in D2O (left-hand side) and their optical micrographs 

through cross-polar lenses (right-hand side). (A) 1, (B) 5, (C) 10, (D) 20, (E) 40 

 and (F) 60 mg/ml. 

 

3.3.1.1Transmission electron microscopy, TEM   

TEM was employed to study the morphology of P11-2 aggregates as a function of 

peptide concentration. Figures 3.4–3.9 show the morphology of self-assembled P11-2 in 

D2O at different concentrations. In general, the majority of the aggregates are 

homogenous fibrils. The width and the rigidity of the fibrils increase with increasing 

peptide concentration.  

Figure 3.4 shows a TEM image of peptide aggregates formed at a concentration of 1 

mg/ml. A background of flexible ribbons is covering the grid with width about 4 nm.  

There are also flexible fibrils having wide width (w/w) of about 8–10 nm and narrow 

width (n/w) of about 2–3 nm and persistence lengths from 150 to 180 nm. At 5 mg/ml 

(Figure 3.5), most structures are fibrils with an approximate w/w of 8–13 nm and 

persistence length around 160 to 200 nm. There are also ribbons having widths of 

approximately 2–4 nm. At 10 mg/ml (Figure 3.6), the structures are rigid fibrils with 

longer persistence length, about 300–350 nm, covering the background of the grid and 

having w/w of about 10–14 nm and n/w of about 4–5 nm.  The fibrils have twist pitches 

from 130 to 200 nm.  

 

 

 

 

(B) 

(E) (F) 

(A) (D) (C) 
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Figure 3.4: TEM image of 1 mg/ml P11-2 in D2O, one week old. Scale bar =100 nm. 

 

    

Figure 3.5: TEM image of 5 mg/ml P11-2 in  

D2O, one week old. Scale bar =100 nm. 

Figure 3.6: TEM image of 10 mg/ml in D2O, 

one week old.Scale bar =100 nm 

 

At 20 mg/ml (Figure 3.7), the aggregates are rigid fibrils covering the grid with w/w of 

about 10–15 nm and n/w of about 2–4 nm; these comprise about 90% of the aggregates. 

Few thin ribbons also form with widths of approximately 2–3 nm. At 40 mg/ml (Figure 

3.8), the aggregates are fibrils having w/w of about 6–10 nm and n/w of about 2–3 nm.  

At 60 mg/ml (Figure 3.9), highly twisted fibres form with fibre-like junctions. The 

fibres have w/w of approximately 15–24 nm, n/w of 4–5 nm and twist pitch of about 

100–130 nm. 

 

Fibril  

Ribbon 
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  Figure 3.7: TEM image of 20 mg/ml P11-2  in 

D2O, one week old. Scale bar =100. 
Figure 3.8: TEM image of 40 mg/ml in D2O, 

one week old. Scale bar =100. 

 

 

 

Figure 3.9: TEM image of 60 mg/ml P11-2 in D2O, one week old. Scale bar =100 nm. 

Fiber- like junction 
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3.3.1.2 Fourier transform infrared spectroscopy, FTIR 

FTIR spectra were analysed for all peptide samples, and the amide I band region was 

band-fitted to determine the proportion of peptides in β-sheets. Figure 3.10 shows a 

representative spectrum of P11-2 at a concentration of 20 mg/ml in D2O; the spectrum 

was taken one week after sample preparation. The spectrum has a large absorption band 

at 1616 cm
−1

, attributed to β-sheet aggregates, and another one at 1630 cm
−1

. The 

spectrum shows a peak at 1649 cm
−1

, corresponding to the random coil conformation. A 

peak is present at 1675 cm
−1

, which corresponds to TFA molecules. The individual 

components of P11-2 in the fitted amide I region are listed in Table 3.5. The table shows 

that about 89% of the peptide molecules are in β-sheets, while about 10% are in the 

random coil conformation. 

Figure 3.11 presents overlaid spectra of amide I bands of P11-2 in D2O at concentrations 

of 60, 40, 20 and 10 mg/ml. All spectra are dominated with peaks located at β-sheet area. 
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Figure 3.10:  Fitted IR amide I′ band of 20 mg/ml P11-2 in D2O showing β-sheet conformation. 
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Table 3.5: Identification of peaks in the fitted IR amide I′ band of 20 mg/ml P11-2 in D2O.  

 

 

1740 1720 1700 1680 1660 1640 1620 1600 1580 1560

0.0

0.2

0.4

0.6

0.8

A
b

so
rb

a
n

ce

Wavenumber (cm-1
)

 

Figure 3.11:  Overlaid amide I bands for different concentrations of P11-2 in D2O. 

 

3.3.2 Self-assembly of P11-2 in 90% D2O and HFIP 

Figure 3.12 shows solutions of P11-2 in 90% D2O and 10% HFIP. The solutions exhibit 

gelation behaviour and birefringence similar to those for solutions of P11-2 in 100% 

D2O. At the low concentration of 1 mg/ml, P11-2 forms an isotropic liquid with weak 

Peak Centre cm
−1

 Area Assignment 

1601.212 1.6429 Arginine side chain 

1616.118 5.5546 β-sheet 

1630.343 2.9417 β-sheet 

1649.900 0.9931 Random coil 

1675.100 1.1897 TFA 

1697.147 0.0493 Turn 

1617 cm
-1

 
60 mg/ml   

40 mg /ml 

20 mg/ml 

10 mg//ml 
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birefringence. At the higher concentrations of 5 and 10 mg/ml, P11-2 is arranged into 

nematic domains forming nematic viscoelastic fluids. At concentrations of 20, 40 and 

60 mg/ml, P11-2 forms strong self-supported gels. 

 

 

                                     

                    

Figure 3.12: Photographs of P11-2 samples in 90% D2O   and 10% HFIP (left-hand side) and their 

optical micrographs through cross-polar lenses (right-hand side). (A) 1, (B) 5, (C) 10, (D) 20, (E) 40 

and (F) 60 mg/ml. 

 

3.3.2.1  Transmission electron microscopy, TEM  

TEM was employed to investigate P11-2 self-assembly as a function of peptide 

concentration in the presence of 10% HFIP in D2O. In general, two different types of 

peptide aggregates were observed: fibrils and tubes. At 1 mg/ml of peptide (Figure 3.13), 

approximately 60% of the structures are still in the initial stage and appeared as circular 

amorphous aggregates with diameters around 12 to 23 nm.  Fibrils appear with w/w of 

10–15 nm and n/w of about 2–3 nm. Their persistence length is 95–130 nm, and the 

twist pitch is about 60–68 nm.  At 5 mg/ml (Figure 3.14), short fibril aggregates appear 

with w/w of about 10–13 nm, n/w of about 2–3 and total lengths of around 164 nm. At 

10 mg/ml (Figure 3.15), helical structures, which are intermediate structures for 

nanotubes, appear with widths of about 23–25 nm. 

 

 

 

 

(A) (C) 

(E) (F) 

(D) (B) 
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Figure 3.13: TEM image of 1 mg/ml   P11-2 in 

90% D2O and  10% HFIP, one week                                                                      

old.  Scale bar = 100 nm.                                                           

Figure 3.14: TEM image of 5 mg/ml  P11-2 in 

90% D2O and 10% HFIP, one week old Scale 

bar =100 one week old. 

 

 

 

Figure 3.15: TEM image of 10 mg/ml P11-2 in 90% D2O and 10% HFIP, one week old. Scale bar 

=100 nm. 

 

For 20 mg/ml, Figure 3.16 shows intermediate helices and a peptide nanotube with an 

inner pore of about 5–6 nm and an outer pore of about 11–13 nm. In Figure 3.17, at 40 

mg/ml, P11-2 favours the formation of nanotubes rather than fibrils. About 70% of the 

aggregates are tubes having inner pore diameters of approximately 5–7 nm and outer 

diameters of around 12–14 nm. Approximately 30% of the aggregates are helical 

Helical intermediate  

Amorphous aggregates   
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intermediates for nanotube formation. After 17 days, Figure 3.18 shows that the 

majority of aggregates are nanotubes with inner pore diameters of about 5–8 nm and 

outer pore diameters of about 13–18 nm. 

 

 

Figure 3.16: TEM image of 20 mg/ml P11-2 in 90% D2O and 10% HFIP, one week old.  

Scale bar =100 nm. 

 

  

Figure 3.17: TEM image of 40 mg/ml P11-2 in 90% D2O and 10% HFIP, after one week. 

 Scale bar =100 nm. 

 

nanotube Helical intermediate  

 

Nanotube  

Helical 

 intermediate  
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Figure 3.18: TEM image of 40 mg/ml P11-2 in 90% D2O and 10% HFIP, 17 days old. 

Scale bar =100 nm. 

 

At 60 mg/ml (Figure 3.19), peptide nanotubes do not occur; instead, the aggregates are 

highly twisted fibrils having w/w of about 7–10, n/w of 3–5 nm.  

 

 

Figure 3.19: TEM image of 60 mg/ml P11-2 in 90% D2O and 10% HFIP, 17 days old.  

Scale bar =100 nm. 
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3.3.2.2 Fourier transform infrared spectroscopy, FTIR 

FTIR spectra were taken for P11-2 as a function of peptide concentration in the presence 

of 10% HFIP in D2O. Figure 3.20 shows representative spectra of P11-2 at a 

concentration of 20 mg/ml at one week after sample preparation. The band-fitted 

spectrum shows a large peak at 1618 cm
−1

, which corresponds to β-sheet conformation 

and another one at 1636 cm
−1

. A weak peak appears at 1682 cm
−1

, which corresponds to 

the antiparallel β-sheet. Identifications of individual components are listed in Table 3.6. 

The table indicates that 92% of the P11-2 spectrum has the β-sheet conformation, which 

is relatively similar to the portion of β-sheet in pure water in section 3.3.1.2. 

Figure 3.21 presents overlaid spectra in amide I regions of P11-2 in D2O in the presence 

of 10% HFIP at peptide concentrations of 60, 20, 40 and 10 mg/ml. Each spectrum has a 

peak indicating the β-sheet conformation.  
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Figure 3.20: Fitted IR amide I' band of 20 mg/ml P11-2 in D2O and 10% HFIP showing β-sheet 

conformation. 
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Table 3.6: Identifications of peaks in the IR amide I′ band of 20 mg/ml P11-2 in 90% D2O and 10% 

HFIP. 
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Figure 3.21: Overlaid IR amide I' bands for different concentrations of P11-2  in 90% D2O and %10 

HFIP. 

 

Peak Centre cm
−1

 Area Assignment 

1602.916 2.7140 Arginine side chain 

1618.328 10.9779 β-sheet 

1636.679 3.2807 β-sheet 

1653.875 0.9778 α-helix 

1671.849 1.1144 TFA 

1682.786 0.6489 β-sheet 

1618 cm
-1

 

60 mg/ml 

40 mg/ml 

20 mg/ml 

10 mg/ml 
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3.3.3 Self-assembly of P11-2 as a function of pH  

The self-assembly process depends on a number of external triggers, such as peptide 

concentration, ionic strength and pH/pD [122]. In this section, preliminary data are 

presented on the responsiveness of P11-2 self-assembly to changes in pH. The behaviour 

of P11-2 at different pD levels was tested in 90% D2O and 10% HFIP.  

Solutions of P11-2 in D2O and HFIP were prepared at different levels of pD, as 

described in Section 3.2.2.3. The results are shown in Figure 3.22. The solution of P11-2 

at pD = 2.8 forms a clear nematic gel, while solutions at pD levels of 5.2, 7.3 and 9 

form cloudy liquids with many gel-like precipitates. This phenomenon is called solution 

flocculation; it occurs when P11-2 solutions have pH > 5 [122].  

 

                                                

Figure 3.22: P11-2 solutions at different levels of pD: (A) pD = 2.8, (B) pD = 5.2, (C) pD = 7.3 and (D) 

pD = 9. 

 

3.3.3.1 Transmission electron microscopy, TEM 

TEM was used to investigate morphologies of the peptide aggregates as a function of 

pD. Figure 3.23(A) shows that, at pD = 2.8, P11-2 aggregates are well distributed. At pD 

= 5.2, Figure 3.23(B) shows that P11-2 starts to form bundles of aggregates. For pD = 

7.3 and pD = 9, Figures 3.23(C) and 3.23(D) show that P11-2 forms large bundles of 

peptide aggregates.  

 

3.3.3.2 Fourier transform infra-red Spectroscopy, FTIR 

Figure 3.23 shows spectra of P11-2 samples at different pD levels. The figure shows that 

P11-2 at pD levels of 2.8, 5.2, 7.3 and 9 have large absorption bands centred at 1618 

cm
−1

, which correspond to the β-sheet conformation. 

 

(B) (C) (D) 
(A) 
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Figure 3.23: TEM images of 20 mg/ml P11-2 in 90% D2O and 10% HFIP at different pD levels. (A) 

pD = 2.8, (B) pD = 5.2, (C) pD = 7.3 and (D) pD = 9. All samples were one-week old. Scale bar = 100 

nm. 

 

 

 

 

Figure 3.24: Overload IR amide I' regions of 20 mg/ml P11-2 in 90% D2O and 10% HFIP as a 

function of pD. 
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3.3.4 Peptide self-assembly in physiological-like solution  

3.3.4.1 P11-9 

It was found that all P11-9 solutions (Figure 3.25) prepared in physiological conditions, 

as described in Table 3.3, resulted in clear self-supporting gels. However, the sample 

with P11-9 in the Tris buffer was a weak gel (Figure 3.25D).  

 

                                                                     

Figure 3.25: Photographs of peptide gels of 20 mg/ml P11-9 under different physiological conditions: 

(A) in DPBS, (B) in DMEM, (C) in physiological-like buffer and (D) in Tris buffer. 

 

3.3.4.1.1 Transmission electron microscopy, TEM 

TEM was used to study the morphology of the peptide aggregates in physiological 

conditions. Figure 3.26 shows that, in all physiological environments, P11-9 forms thin 

fibrils in the presence of ribbon networks. The wide width of the fibrils is 7–9 nm, and 

the narrow width is 3–4 nm. None of the images in Figure 3.25 show nanotubes. 

 

3.3.4.1.2  Fourier transform infra-red spectroscopy, FTIR  

The FTIR spectrum of P11-9 (20 mg/ml) in D2O containing 130 mM NaCl is shown in 

Figure 3.27. The amide I region of the spectrum was band-fitted; the fitted spectrum is 

dominated by three peaks for β-sheets located at 1613 cm
−1

, 1625 cm
−1

 and 1637 cm
−1

. 

There are also  peak peaks at 1680 cm
−1

 and 1686 cm
−1

, corresponding to the 

antiparallel β-sheet. The spectrum shows a weak peak at 1646 cm
−1

, which corresponds 

to the random coil state. Table 3.7 lists the peak assignments and shows that β-sheet 

aggregates involve about 57% of the peptides, while random coils constitute about 6%. 

 

 

(A) (B) (C) (D) 
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Figure 3.26:  TEM images of 20 mg/ml P11-9 under different physiological-like conditions: (A) in 

DPBS, (B) in DMEM, (C) in physiological-like buffer and (D) in Tris buffer. 

 Scale bar =100 nm.                
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Figure 3.27:  Fitted IR amide I' band of  20 mg/ml  P11-9  in D2O containing 130 mM NaCl. 

 

(A) (B) 

(C) (D) 
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Table 3.7: Identifications of peaks in the fitted IR amide I′ band of 20 mg/ml P11-9 in D2O 

containing 130 mM NaCl. 

 

 

 

 

 

 

 

 

 

 

 

The FTIR spectrum of  20 mg/ml P 11-9 in  D2O containing 130 mM NaCl  and 30 mM 

triss-HCl was collected (Figure 3.28). The amide I region of the spectrum was band 

fitted. The β-sheet peaks are located at 1613 cm
-1

 and 1623 cm
-1

. The antiparallel β-

sheet peak is located at 1681 cm
-1

. A weak peak is located at 1644   cm
-1

 corresponding 

to the random coil state. The individual components of the spectrum are listed in the 

Table 3.8. The table shows that about 82% of the peptide is β-sheet, whilst about 8% is 

in the random coil state. 

 

Figure 3.28: Fitted IR amid I' band of    20 mg/ml P11-9  in D2O containing 130 mM NaCl and 30  

mM of Tris-HCl. 

Peak Centre cm
−1

 Area Assignment 

1613.009 0.6876 β-sheet 

1625.259 0.1332 β-sheet 

1637.620 0.1101 β-sheet 

1646.311 0.1073 Random coil 

1654.970 0.5876 α-helix 

1661.952 0.1266 Turn 

1680.002 0.1001 β-sheet 

1686.587 0.0730  β-sheet 
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Table 3.8: Identification of peaks in the IR fitted amide I′ band of 20 mg/ml P11-9 in D2O containing 

130 mM NaCl and 30 mM Tris-HCl. 

 

 

 

 

 

 

 

3.3.4.2 P11-12 

All P11-12 solutions were prepared as described in Table 3.4; they form clear self-

supporting gels, as shown in Figure 3.29.  

 

                                                      

Figure 3.29: Photographs of peptide gels of 20 mg/ml P11-12 under different physiological-like 

conditions. (A) in DPBS, (B) in DMEM, (C) in physiological-like buffer, (D) in Tris buffer. 

 

3.3.4.2.1 Transmission electron microscopy, TEM 

Figure 3.30 shows the morphology of P11-12 self-assembled peptides under different 

physiological conditions. The figure shows that the structures are all fibrils, and no 

peptide nanotubes form. 

Peak Centre cm
−1

 Area Assignment 

1613.110 0.4877 β-sheet 

1623.235 0.1251 β-sheet 

1644.421 0.0762 Random coil 

1654.850 0.0676 α-helix 

1681.525 0.0830 β-sheet 

(A) (C) (D) (B) 
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Figure 3.30: TEM images of 20 mg/ml P11-12 under different physiological-like conditions: (A) in 

DPBS, (B) in DMEM, (C) in physiological-like buffer and (D) in Tris buffer. 

 

3.3.4.2.2 Fourier transform infra-red spectroscopy, FTIR 

FTIR spectra of 20 mg/ml P11-12 in D2O containing 130 mM NaCl were collected, as 

shown in Figure 3.31. The amide I region of the spectrum was band-fitted. Two peaks 

for β-sheet aggregates appear at 1615 cm
−1

, 1629 cm
−1

. From Table 3.9, it was found 

that about 71% of the peptides form β-sheet aggregates. 

 

Figure 3.31: Fitted IR amide I′ band for 20 mg/ml P11-12 in D2O containing130 mM NaCl. 

(A) (B) 

(C) (D) 
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Table 3.9: Identification of peaks in fitted IR amide I′ band of 20 mg/ml P11-12 in D2O containing 

130 mM NaCl. 

 

 

 

 

 

 

 

 

The FTIR spectra of 20 mg/ml P11-12 in D2O containing 130 mM NaCl and 30 mM 

Tris-HCl were also collected (Figure 3.32), and the amide I region of the spectra was 

band-fitted. Peaks for β-sheets are located at 1615 cm
−1

, 1629 cm
−1

 and 1637 cm
−1

. A 

weak peak, corresponding to the random coil state, is located at 1645 cm
−1

. The 

individual components of the spectrum are identified in Table 3.10. The table shows 

that about 72 % of the peptides are in β-sheets, while about 6% are in the random coil 

state. 

 

 

Figure 3.32: Fitted IR amide I′ band of 20 mg/ml P11-12 in 130 mM NaCl and 30 mM of Tris-HCl in 

D2O. 

 

 

Peak Centre cm
−1

 Area Assignment 

1615.394 1.0085 β-sheet 

1629.152 0.4381 β-sheet 

1643.754 0.3118 Helix 

1658.370 0.2699 Turn 

1675.868 0.9668 TFA 
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Table 3.10: Identification of peaks in fitted amide I′ band for 20 mg/ml P11-12 in 130 mM NaCl and 

30 mM of Tris-HCl in D2O. 

 

 

 

 

 

  

 

 

3.4 Discussion 

3.4.1 Self-assembly of P11-2 in 100% D2O  

It has been previously found that the amphiphilic nature of P11-2 leads to the formation 

of peptide tapes. A critical concentration is needed to start the self-assembly process. 

The assembly of peptide molecules into higher structures increases with increasing 

peptide concentration. This hypothesis is tested in this section. Birefringence was weak 

at low concentrations and strong at high concentrations, which demonstrates that P11-2 

forms high-order aggregates as the peptide concentration increases. TEM images of P11-

2 in water showed networks of long polymers covering the grids. At a concentration of 

60 mg/ml, fibre-like junctions appear, while at lower concentrations, the structures are 

fibrils and ribbons. The images support the hypothesis that structural order increases 

with increasing peptide concentration. This progression matches reports by the Aggeli 

group [45, 128]. The behaviour of P11-2 in water as a function of peptide concentration 

is summarized in Figure 3.33 

                                  

 Peak Centre cm
−1

 Area Assignment 

1615.700 0.5010 β-sheet  

1629.392 0.1245 β-sheet 

1637.246 0.0869 β-sheet 

1646.963 0.0646 random coil 

1651.479 0.1093 Helix 

1668.000 0.0955 Turn  

1674.055 0.1976 TFA 
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Figure 3.33: Behaviour of P11-2 in water as a function of increasing peptide concentration [44]. 

 

3.4.2 Self-assembly of P11-2 in 90% D2O and 10% HFIP 

The gelation of P11-2 in aqueous solutions of HFIP shows the same behaviour as that of 

the peptide without HFIP. The presence of HFIP does not affect the formation of β-

sheets or change critical concentrations. FTIR revealed that the percentage of      β-sheet 

in the aqueous solutions of HFIP was 92%, which is relatively in the same average of 

the  β-sheet portion of the solution peptide without HFIP, which was 89%. The TEM 

images in Section 3.3.1.1 show that P11-2 in water, without the addition of HFIP, forms 

nanofibrillar structures. However, the data in Section 3.3.2 show that in the presence of 

10% HFIP, P11-2 forms nanotubes rather than fibrils at concentrations of 20 and 40 

mg/ml. HFIP is a very strong polar solvent that is considered to be a key material in 

nanotube formation. HFIP decreases interactions between ribbons by interacting with 

ribbons faces and preventing them from stacking on top of each other to form nanotube 

structures, see Figure 3.34. However, nanotubes did not appear at a concentration of 60 

mg/ml. This suggests that the nanotubes are metastable structures and only form over a 

narrow range of concentrations. However, these phenomena have not yet been fully 

explored [123]. 
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Figure 3.34: Schematic of proposed self-assembly pathways for formation of fibrils and nanotubes 

starting from ribbons [123]. 

 

3.4.3 Self-assemble of P11-2 as a function of pD 

The investigation on the responsiveness of P11-2 to different pD levels demonstrated 

that peptide self-assembly can be triggered by switching the pH/pD of the solutions. At 

low pD, P11-2 forms a clear nematic gel. At high pD levels of 5.2, 7.3 and 9, P11-2 

flocculates and forms a cloudy liquid with many gel-like precipitates. These results are 

consistent with those reported by Aggeli; see Figure 3.35.  

The dispersion of self-assembled peptides is stabilized by electrostatic interactions. 

Amino acids having side chains with –COOH or –NH2 terminal groups can be in either 

a deprotonated or protonated state at pH values below or above their nominal pK values. 

Thus, electrostatic interactions between neighbouring peptides can be controlled [122]. 

Based on this fact, P11-2 was designed to form a clear nematic gel at low pH. At low pH, 

arginine is protonated; hence, P11-2 molecules have one positive charge (Arg
+
) that 

stabilizes fibrillar dispersion and results in a stable gel. At high pH, the carboxyl group 

of the glutamic acid side chain is deprotonated (Figure 3.36). As a result, glutamic acids 

are negatively charged, causing the peptide molecule to have a zero net charge and 

causing flocculation to occur. Therefore, one unit of net positive or negative charge is 

required per peptide molecule to stabilize the dispersions of fibrils [122].  

 

Ribbon  

i.e. 2 stacked tapes 

Solid fibrils (i.e. several twisted stacked ribbons) 

Helical intermediate Hollow nanotubes 
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Figure 3.35: Schematic of phase behaviour of P11 amino acid residue peptides in aqueous solution as 

functions of pH. P11-2, P11-3 and P11-4 at c = 6.3 mM,  P11-5  at c = 13.1 mM [122]. 

 

(A)      pH < 5 

 

 

 

Figure 3.36: Charge distributions on P11-2 dimers in an antiparallel  β-sheet tapelike substructure: 

(A) pH < 5 and (B) pH > 5. The repulsion between molecules is indicated by arrows. 

(B)    pH > 5 



78 

 

TEM images showed that P11-2 fibrils at pD = 2.8 are well distributed because of the 

presence of a +1 charge on each peptide molecule. This net charge allows peptide 

aggregates to repel one another. At pD = 5, P11-2 starts to form bundles of insoluble 

structures. At pD > 5, where the peptides have a zero net charge, peptide bundles 

accumulate because of insufficient repulsion between peptide molecules.  

FTIR spectra revealed that at pD > 5, P11-2 has large peaks centred around the 

absorption area for β-sheets. These results indicate that β-sheet aggregates were present 

in those samples, even though they were insoluble solutions. However, the formation of 

β-sheets is not sufficient to stabilize a gel; stabilisation also requires the presence of a 

net charge on each peptide molecule. 

 

3.4.4 Peptide self-assembly under physiological-like solutions 

Under physiological conditions, the presence of salts screens the electrostatic repulsion 

between peptide molecules. Therefore, higher number of net charges is required to form 

a stable gel in physiological conditions. P11-9 and P11-12 were designed to form gels 

under physiological conditions. P11-9 contains three glutamic acids side chain per 

molecule. In neutral pH, the structure of P11-9 allows these peptide molecules to have a 

net charge of −2. This slight net negative charge allows the peptide molecules to form 

soluble aggregate structures, and thus gel, rather than precipitate [86]. P11-12 contains 

three positively charged side chains; two ornithine and one arginin.  The structure of 

P11-12 allows these peptide molecules to have a net charge of +2. This slight net 

positive charge enables the peptide molecules to form soluble aggregate structures and 

thus form gels rather than precipitates [86].   

Similar to self-assembly in water, self-assembly under physiological conditions is a 

nucleated process by which monomers aggregate into β-sheet tapes. FTIR spectra 

confirmed that β-sheet conformations formed, However, TEM images showed no 

nanotubes on the grids; only fibrillar structures appeared. The main difference between 

the fibrillar structure of P11-9 and P11-12 that  P11-9 is more twisted than P11-12.  

Peptides with positive charge tend to be loosely associated  allowing the aggregates to 

be ascertained, while peptides with negative charge tend to be tightly packed resulting 

with highly twisted fibrils [86].  
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3.5 Conclusions 

Based on investigations using TEM and FTIR, the peptide P11-2 self-assembles into 

either nanofibrils or nanotubes in water and forms hydrogels. The behaviour of the 

peptide was studied as a function of P11-2 concentration in water. At low concentrations, 

such as 1 mg/ml, P11-2 formed nematic fluids, while at high concentrations, such as 40 

and 60 mg/ml, P11-2 formed self-supported gels. TEM images showed that P11-2 in D2O 

self-assembles into nanofibrillar aggregates. Fibrils formed as a result of ribbons 

interacting with each other via their wide sides, thereby stacking on top of each other. 

However, in aqueous solutions of 10% HFIP, P11-2 self-assembled into tightly packed 

open-ended nanotubes, predominantely at a concentration of 40 mg/ml. These 

nanotubes are believed to form as a result of interactions of HFIP with ribbon faces, 

preventing them from stacking on top of each other and allowing only edge-to-edge 

interactions of β-sheet ribbons. 

Hydrogels  were formed by both P11-9 and P11-12 under all physiological conditions 

tested. FTIR spectra confirmed that they formed -sheet aggregates, and TEM images 

showed that the aggregates were fibrils. It could be concluded that the formed nanotubes 

were metastable. For this reason, the peptides investigated in this chapter will not be 

used as drug carriers in this project. Other peptides were therefore required,  P11-8 and 

P11-4 were used, as discussed in subsequent chapters.  
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Chapter 4 

 

 

 

 

4 Preparation and characterization of self-assembled peptide 

coated cellulosic fabric 

 

 

4.1 Introduction 

The aim of the previous chapter was to compare peptide nanotubes with peptide 

nanofibres so as to select one for use as drug carriers.  For this purpose,  P11-2, P11-9 and 

P11-12, were investigated. However, the nanotubes formed from these peptides were 

found to be metastable; therefore, fibrillar structure  would  be more  favourable drug 

carriers in this project.  Consequently, in this chapter, we propose to use peptide P11-4 

(CH3CO-Q-Q-R-F-E-W-E-F-E-Q-Q-NH2) and P11-8 (CH3CO-Q-Q-R-F-O-W-O-F-E-Q-

Q-NH2) since they have already been extensively investigated and used for biomedical 

applications.  They are biocompatible, biodegradable, non-toxic to human and murine 

cells and do not cause an immunogenic response in mice [129, 130]. P11-4 was 

clinically studied for dental repair application, and it is now in the commercial process 

at Cridentis ag (Zurich, Switzerland) [129]. In this chapter, the feasibility of 

manufacturing cellulosic fibre nonwovens coated with P11-4 and P11-8 is studied as a 

potential route for the preparation of bioactive wound dressings.  

 

 

 

 

 



81 

 

 

   

 

 

 

 

 

 

 

 

Figure 4.1: Molecular structures of peptide P11-4 (top) and peptide P11-8 (bottom). 

 

4.1.1 Modified coated dressing for wound care applications 

Coating is defined as applying layers of any substance to cover the surface of an object.  

Coating dressings with a drug is a simple process achieved by dipping the fabric in a 

drug solution. Drug loading efficiency depends on the nature of the fabric polymer and 

drug. For instance, a drug with a high affinity for a fabric polymer will readily coat it 

and form layers on fabric surfaces [3].  

Silver ions have been widely used to coat wound dressings due to their broad-spectrum 

antimicrobial efficacy against fungi, viruses, and bacteria. They are substantially 

released when the dressing is in contact with wound exudes. Actisorb
®
 Plus is an 

example of a dressing impregnated with silver ions and produced by the Johnson & 

Johnson Company. It is made from charcoal fabric coated with silver ions. In 

applications, the charcoal dressing absorbs bacteria from wound exudates, while silver 

ions are released from the dressing to inactivate bacteria [131]. Inadine
®

 is another 

example of a wound dressing product also produced by Johnson & Johnson. This 

dressing contains povidone-iodine, which is active against both Gram-positive and 

Gram-negative bacteria, fungi and protozoa [17].   

Applying an antimicrobial coating directly to a dressing without a carrier coating is 

effective for developing antimicrobial activity; however, the effects of high local 
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concentrations of drugs could be toxic to cells. Further, the release of drugs immediately 

after the dressing is applied is another limitation. To circumvent this limitation, 

researchers are developing modified dressings that incorporate drugs into carrier 

coatings. For example, the Anghel group has developed a cotton-based wound dressing 

coated with a hybrid coating composed of magnetic iron oxide nanoparticles and a 

limonene (natural antiseptic). The anti-biofilm properties of the modified dressing were 

assessed in vitro using two bacterial strains commonly found in infected wounds: 

Pseudomonas aeruginosa and Staphylococcus aureus. The dressing exhibited 

significant anti-adherence and anti-biofilm properties against these two bacterial strains 

[132].  

Antibiotics have been incorporated in several coatings, such as poly (D, L-lactide) 

(PDLLA), poly (L-lactic acid) (PLLA), polyurethane and polyphosphoester. For 

example, the surface of orthopaedic implants was coated with PDLLA containing 

gentamycin. Based on in vivo and in vitro investigations, the modified implant showed a 

drastically decreased infection rate compared to systemic gentamycin treatments [133]. 

rifampicin and fusidic acid were mixed and incorporated into PLLA coatings by Kalicke 

et al. This hybrid coating was found to be effective in killing Staphylococcus aureus 

infections in a rabbit tibia infection model [134].  

This study attempts to develop dressings by incorporating antibiotics into pH-

responsive coating. In the presence of infection, the local pH is changed stimulating the 

coating to release the loaded drug.  The fabrics used herein were made from cellulose 

polymer. Cellulose and its derivatives are widely used in wound dressings due, in part, 

to their hygroscopic nature, which helps provide an optimal moisture balance in the 

wound by absorbing exudates from moist wounds and hydrating dry wounds [135, 136]. 

Cellulose is chemically defined as a polysaccharide polymer consisting of a linear chain 

of glucose units with the formula (C6H10O5)n. Hydroxyl groups on the side of one 

glucose chain form hydrogen bonds with oxygen atoms on the side of a neighbouring 

chain, thereby forming strong microfibrils (Figure 4.2). There are many sources of 

cellulose for industrial use. The most common sources are wood pulp and cotton linters 

(a by-product in manufacturing cotton yarn). The mechanical properties of cellulose 

fibres make them a good material for textile fabric production. Regenerated cellulose 

fibres, such as viscose rayon, are extensively used in the textile industry in numerous 

different products such as dresses, bed sheets, towels and medical products including 

wound dressings [137]. The fibres may be incorporated into yarns for manufacturing 
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medical gauze and into nonwovens as components for modern wound dressings. G.M. 

Raghavendra et al .described the development of Cellulose–silver composites fibers. 

They impregnated the film with silver nanoparticles by immersion in a reduced silver 

nitrate solution and reported enhanced antimicrobial activity against E.coli [138].  

Biely and Cavorsi reported a first study on the effects of cellulose dressings in 

delivering vancomycin. They evaluated the effects of a cellulose dressing and topical 

vancomycin on methicillin-resistant Staphylococcus aureus (MRSA) and Gram-positive 

organisms in chronic wounds on 23 patients. They found that the dressing was effective 

in treating patients with positive results on MRSA and Gram-positive bacteria, reducing 

the number of patients from 23 to 4. This result suggests that reducing wound bacteria 

in chronic wounds may help healing [136]. 

   

 

Figure 4.2: Cellulose strand showing hydrogen bonding between chains [139]. 

 

Given the properties of P11-4 and P11-8, their utilisation as carriers for bioactive agents 

in a wound-dressing construct is highly attractive, particularly if a novel approach can 

be demonstrated for controlling drug delivery. Accordingly, an experimental study was 

conducted using commercially applicable fabrication techniques to examine the 

incorporation of P11-4 and P11-8  in a nonwoven wound dressing material. In this study, 

regenerated cellulose fibres (viscose rayon) were coated with self-assembled peptides as 

drug carriers. The nonwoven fabrics composed were obtained from the Nonwovens 

Research Group at the University of Leeds. Peptides were then added by coating fibre 

surfaces by the full impregnation (dipping) of the fabric samples. Figure 4.3 illustrates 

http://upload.wikimedia.org/wikipedia/commons/c/c3/Cellulose_strand.jpg


84 

 

the preparation method. The resultant fabric is a smart pH-stimulus responsive  dressing 

that immediately releases a drug only when triggered by external pH. Specimens were 

separately coated with P11-8 or P11-4 peptide fibrils using two concentrations: 2 mg/ml 

(the concentration at which peptides form ribbons in a viscous solution) and 10 mg/ml 

(at this concentration, peptides form -sheets as a gel). The coating process was based 

upon the peptide self-assembly mechanism triggered by the pH effect.  

 

 

 

 

 

 

  

 

 

Figure 4.3:  Schematic of the dipping method for preparing regenerated cellulose fabric coated with 

self-assembled peptides. Green = peptide  

 

 

4.2 Materials and methods 

4.2.1 Materials 

Regenerative cellulose dressing (100% viscose rayon) was received from Nonwovens 

Research Group at the University of Leeds. viscose rayon is usually  prepared by 

treating cellulose with  sodium hydroxide and carbon disulfide.  

 

4.2.2 Methods  

4.2.2.1 Coating of cellulose fabric with P11-4  

A peptide solution was prepared by adding 10 mg of P11-4 to 1 ml of H2O. 

Approximately 0.15 mg of fluorescein-tagged P11-4 was mixed with the peptide solution. 

The ratio of tagged to untagged P11-4 was 1:60. The solution was vortexed for 30 s. The 

pH of the solution was measured to be 5.8; at this pH, P11-4 flocculated. Drops of 6 μl of 

 
  

  

pH trigger 

Peptide monomer 

 solution 

Peptide nematic 

gel 
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1 M NaOH were added to form a clear liquid solution at pH 11. Then, 0.5 × 0.5 cm 

regenerated cellulose fabric samples were dipped in the monomer solution and left 

overnight. Drops of 8 μl of 1 M HCl were added to the solution to decrease the pH to 

2.8. At this pH, P11-4 molecules self-assembled into β-sheets, forming a gel. The fabric 

was left in the gel overnight. The fabric was then removed and left overnight to air dry. 

A control sample of cellulose fabric was prepared using the same method in a solution 

containing only water.  

 

4.2.2.2 Coating of cellulose fabric with P11-8  

A peptide solution was prepared by adding 10 mg of P11-8 to 1 ml of H2O. 

Approximately 0.15 mg of fluorescein-tagged P11-4 was mixed with the peptide solution. 

The ratio of the tagged P11-4 to untagged P11-8 was 1:60. The solution was vortexed for 

30 s. The pH of the solution was measured to be 3.9; at this pH, P11-8 molecules are 

monomers forming a liquid solution. Then, 0.5 × 0.5 cm-regenerated cellulose fabrics 

were dipped in the monomer solution and left overnight. Drops of 5 μl of 1 M NaOH 

were added to the solution to increase the pH to 10. At this pH, P11-8 molecules self-

assembled into β-sheets, forming a nematic gel. The fabric was left in the gel overnight. 

The fabric was then removed and left overnight to air dry. A control sample of uncoated 

regenerated cellulose fabric was prepared using the same method in a solution 

containing only water. 

 

4.3. Results  

4.3.1 Coating of cellulose fabric with self-assembling peptides 

A specimen of cellulose fabric (0.5 × 0.5 cm) was coated with P11-4 fibrils by dipping 

the fabric in 10 mg/ml of a P11-4 solution, see Figure 4.4. Another specimen of cellulose 

fabric (0.5 × 0.5 cm) was coated with P11-8 fibrils by dipping the fabric in 10 mg/ml of 

a P11-8 solution (Figure 4.5). By the similar method, specimens were coated by P11-4 

and P11-8 at 2 mg/ml (Figures 4.6 and4.7). In this case, specimens were dipped in 

viscous solutions rather than gels at 10 mg/ml.   
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Figure 4.4: Photograph of cellulose fabrics dipped in P11-4 at 10 mg/ml. 

 (A) at  pH 11. (B) at pH 2.8. 

 

                                                          

Figure 4.5: Photograph of cellulose fabrics dipped in  P11-8 at 10 mg/ml. 

 (A) at pH 3.9. (B) at pH 10. 

 

 

                               

Figure 4.6: Photograph of cellulose fabrics dipped in P11-4 at 2 mg/ml. 

 (A) at  pH 11. (B) at pH 2.8. 

 

                        

Figure 4.7: Photograph of cellulose fabrics dipped in  P11-8 at  2 mg/ml. 

(A) at pH 3.9. (B) at pH 10. 

NaOH 

HCl 

(A) (B) 

(B) (A) 

HCl 

NaOH 
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4.3.2 Transmission Electron Microscopy, TEM 

TEM was used to inspect the peptide structures in the coatings applied to the fabrics 

(Figure 4.8). Figure 4.8 (A) reveals the fibrillar structures of P11-4 (10 mg/ml) resulting 

from the coating. The fibrils have wide diameter range from 8 - 13 nm and small 

diameters between 2-3 nm. Figure 4.8 (B) reveals P11-8 fibrillar structures of large 

diameter ranging from 7 - 11 nm and small diameters from 2-3 nm.  

 

4.3.3 Scanning Electron Microscopy, SEM 

SEM was employed to compare the morphologies of the peptide coated and uncoated 

fabrics. In this comparison, samples treated with NaOH and HCl were also included 

because the coating process requires the addition of acid and base to the solution in 

which the fabric was dipped. Therefore, it is important to determine how fabric surfaces 

are affected by low and high pH. 

 

   

Figure 4.8: TEM micrographs of peptide fibrils. (A) P11-4 in water (10 mg/ml) at pH 2.9. (B)  P11-8 

in water  (10 mg/ml) at pH 10.  

 

4.3.3.1 Cellulose fabric coated with P11-4 (10 mg/ml) 

Figure 4.9(A) shows a complex network of flexible cellulose fibres, which is 

characteristic of mechanically bonded nonwoven fabrics in which fibres are 

entwined with each other and have looped configurations. The cellulose fibres have 

100 nm 

(A) (B) 
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diameters of 15–20 μm. Figure 4.9(B) shows a cellulose sample treated with HCL, 

and Figure 4.9 (C) shows a specimen coated with    P11-4. At low magnification, 

there is no visible difference between the three samples.  

The magnification was further increased, images are shown in Figure 4.10 Image 

4.10A) shows a cellulose sample without any peptide coating, while image 4.10(B) 

shows an HCl-treated sample. These two images show that, without acid treatment, 

the surface morphology of cellulose fibres is smooth in Figure 4.10(A), while the 

sample surface in image 4.10(B) is roughened after HCl treatment. The image 

4.10(C) shows cellulose fibres coated with the peptide in which gel has accumulated 

between cellulose fibres. 

Figure 4.11 provides a high-magnification comparison between the details of the 

surfaces of the control sample, the sample treated with HCl and that coated with P11-

4. Image 4.11(B) shows changes in the surface morphology of fibres treated with 

HCL. These changes are not visible in image 4.11(C) because the peptide gel 

extends around and between cellulose fibres. 

 

 

       

Figure 4.9: SEM micrographs of cellulose fabrics at relatively low magnification.  (A) Uncoated 

cellulose fabric. (B) Cellulose fabric treated with HCl. (C) Cellulose fabric coated with P11-4 (10 

mg/ml). 
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Figure 4.10: SEM micrographs of cellulose fabrics at relatively moderate magnification. (A) 

Uncoated cellulose fabric. (B) Cellulose fabric treated with HCl. (C) Cellulose fabric coated with 

P11-4 (10 mg/ml). 

Peptide gel 
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Figure 4.11: SEM micrographs of cellulose fabrics at relatively high magnification.  (A) Uncoated 

cellulose fabric. (B) Cellulose fabric treated with HCl. (C) Cellulose fabric coated with P11-4 (10 

mg/ml). 
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4.3.3.2 Cellulose fabric coated with P11-4 (2 mg/ml)  

Figures 4.12, 4.13, and 4.14 show SEM images of cellulose fabric coated with 2 mg/ml 

of P11-4 at low, medium and high magnification, respectively. These should be 

compared with Figures 4.9, 4.10 and 4.11 for fibres coated with a high peptide 

concentration of 10 mg/ml. In general, Figures 4.12–4.14 show that the fabric coated 

with the low peptide concentration of 2 mg/ml does not have gel accumulations between 

fibres. The figures show that surfaces are affected by HCl treatment. At high 

magnification, Figure 4.14(B) shows denatured surfaces that are not visible in Figure 

4.14(C) due to the peptide coating. 

 

  

 

    

Figure 4.12: SEM micrographs of cellulose fabrics at relatively low magnification. (A) Uncoated 

cellulose fabric. (B) Cellulose fabric treated with HCl.  (C) Cellulose fabric coated with P11-4 (2 

mg/ml). 
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Figure 4.13: SEM micrographs of cellulose fabrics at relatively moderate magnification. (A) 

Uncoated cellulose fabric. (B) Cellulose fabric treated with HCl.  (C) Cellulose fabric coated with 

P11-4 ( 2 mg/ml). 
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Figure 4.14: SEM micrographs of cellulose fabrics at relatively high magnification. (A) Uncoated 

cellulose fabric. (B) Cellulose sample treated with HCl. (C) Cellulose sample coated with P11-4 (2 

mg/ml). 
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4.3.3.3  Cellulose fabric coated with P11-8 (10 mg/ml) 

As was done with the P11-4 samples coated with P11-8 is compared with uncoated 

samples. Figure 4.15(B) shows a cellulose sample treated with NaOH that appears 

to be denatured with the evidence of the presence of random features on the surface. 

In Figure 4.15(C), the peptide-coated specimen has accumulations of gel at 

crossover points between fibres. The magnification was further increased in Figure 

4.16 and 4.17. Figures 4.16(A) and 4.17(A) show the cellulose sample without any 

peptide coating, and the characteristic morphology of regenerated cellulose fibres 

produced by the viscose process is evident. Figures 4.16(B) and 4.17(B) reveal more 

details of morphological changes in fibres as a result of NaOH treatment, 

particularly, modifications of the surface structure. These changes cannot be 

detected in Figures 4.16(C) and 4.17(C) for which the fibres were coated by the 

peptide gel around and between cellulose fibres. 

 

 

  

Figure 4.15: SEM micrographs of cellulose fabrics at relatively low magnification . (A) Uncoated 

cellulose fabric. (B) Cellulose fabric treated with NaOH.  (C) Cellulose fabric coated with P11-8 (10 

mg/ml). 

 

     

Peptide gel  

(A) 

(B) (C) 
Peptide gel  
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Figure 4.16: SEM micrographs of cellulose fabrics at relatively moderate magnification.  (A) 

Uncoated cellulose fabric. (B) Cellulose fabric treated with NaOH. (C) Cellulose fabric coated with 

P11-8 (10 mg/ml) 

(C) 

peptide gel  
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Figure 4.17: SEM micrographs of cellulose fabrics at relatively high magnification. (A) Uncoated 

cellulose fabric. (B) Cellulose fabric treated with NaOH.  (C) Cellulose fabric coated with P11-8 (10 

mg/ml). 

 

(C) 
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4.3.3.4 Cellulose fabric coated with P11-8 (2 mg/ml) 

 A P11-8 peptide solution in water at low concentration (2 mg/ml) was prepared to 

compare the performance with that of the high-concentration peptide solution, as was 

done with P11-4. Figure 4.18 shows that, at low magnification, differences in the 

morphological textures of samples could not be readily distinguished.    Figures 4.19 

and 4.20 show images at higher magnification, and differences such as surface 

roughening are clear. The modification of cellulose fibre surfaces as a result of NaOH 

treatment in Figure 4.20(B) is completely hidden in Figure 4.20(C) by the presence of 

the peptide coating.  

 

 

  

Figure 4.18: SEM micrographs of cellulose fabrics at relatively low magnification. (A) Uncoated 

cellulose fabric. (B) Cellulose fabric treated with NaOH.  (C) Cellulose fabric coated with P11-8 (2 

mg/ml). 

 

 

 

 

(A) 

(B) (C) 
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Figure 4.19: SEM micrographs of cellulose fabrics at relatively moderate magnifaction. (A) 

Uncoated cellulose fabric. (B) Cellulose fabric treated with NaOH.  (C) Cellulose fabric coated 

 with P11-8 (2 mg/ml). 

(B) 

(C)  
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Figure 4.20: SEM micrographs of cellulose fabrics at relatively high. (A) Uncoated cellulose fabric. 

(B) Cellulose fabric treated with NaOH.  (C) Cellulose fabric coated with P11-8 (2 mg/ml). 
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4.3.4 Confocal Laser scanning microscopy, CLSM    

4.3.4.1 Cellulose fabric coated with P11-4 

CLSM images in Figure 4.21 show that the fabric coated with P11-4 is distinctly 

different from the control fabric and control peptide gel. In Figure 4.21(A), the fabric 

control sample shows a black background as a result of no florescence. In image 

4.21(B), the fluorescently tagged peptide gel formed a randomly ordered gel. In images 

4.21(C) and 4.21(D), the fluorescently tagged peptide appears to have coated the sample, 

revealing the underlying fibrous structure of the fabric. The supporting fibrous scaffold 

provided by the nonwoven fabric, together with the peptide coating, had diameters of 15 

to 18 µm. 

The widespread florescence across the specimen surface in Figure 4.22 shows that 

cellulose samples dipped in a solution of P11-4 at 2 mg/ml were extensively coated with 

the peptide. However, reduced florescence appears at the fibre crossover points 

compared with that in the samples dipped in P11-4 (10 mg/ml) in Figure 4.21. This 

reflects the reduced gel mass in P11-4 at 2 mg/ml as compared with that in P11-4 at 10 

mg/ml. 

 

4.3.4.2 Cellulose fabric coated with P11-8 

Figures 4.23 and 4.24 show CLSM images for fabric samples dipped in solutions of P11-

8 at 10 mg/ml and 2 mg/ml, respectively. Figure 4.23 shows that the 2 mg/ml coating 

extends over the fibres in the fabric. Just as for P11-4, florescence in the corners around 

intersections of the fibres coated with the 2 mg/ml peptide is reduced in comparison 

with those dipped in P11-8 at the higher concentration of 10 mg/ml. Again, this reflects 

the lower gel mass at the lower concentration. 
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Figure 4.21: CLSM images of cellulose fabrics. (A) Uncoated cellulose fabric. (B) Fluorescently 

tagged P11-4 peptide gel at 10 mg/ml. (C) Fabric coated with fluorescently tagged peptide P11-4 (10 

mg/ml) at      10 X magnification. (D) Same as (C) but at 20 X magnification. 
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Figure 4.22: CLSM images of cellulose fabrics. (A) Uncoated cellulose fabric. (B) Fluorescently 

tagged P11-4 peptide gel at 2 mg/ml. (C) Fabric coated with fluorescently tagged peptide P11-4 (2 

mg/ml) at 10 X magnification. (D) Same as (C) but at 20 X magnification. 
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Figure 4.23: CLSM images of cellulose fabrics. (A) Uncoated cellulose fabric. (B) Fluorescently 

tagged P11-8 peptide gel at 10 mg/ml. (C) Fabric coated with fluorescently tagged peptide P11-8 (10 

mg/ml) at     10 X magnification. (D) Same as (C) but at 20 X magnification. 
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Figure 4.24: CLSM images of cellulose fabrics. (A) Uncoated cellulose fabric. (B) Fluorescently 

tagged P11-8 peptide gel at 2 mg/ml. (C) Fabric coated with fluorescently tagged peptide P11-8 (2 

mg/ml) at 10 X magnification. (D) Same as (C) but at 20 X magnification. 
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4.3.5 Attenuated Total Reflectance spectroscopy, ATR 

ATR-FTIR studies of the samples were performed to investigate the characteristic 

groups present in the deposited peptide fibrils. 

 

4.3.5.1 Cellulose fabric coated with P11-4 (10 mg/ml) 

Figure 4.25 compares the spectra of the blank regenerated cellulose sample and the 

sample coated with P11-4 (10 mg/ml).  The figure shows that cellulose/P11-4 spectrum is 

dominated by a peak centred at β-sheet region, while the blank cellulose spectrum is 

shifted to higher wavenumber.   The amide I region of the spectra was band-fitted to 

determine the percentage of -sheet aggregates (Figure 4.26). The band-fitted spectrum 

was dominated by β-sheet components located at 1614 cm
–1

 and 1623 cm
–1

. Table 4.1 

identifies the individual peaks in the band-fitted spectrum; from the table, β-sheets 

represent about 72% of the coating. 
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Figure 4.25: IR spectra of a blank cellulose sample (red) and cellulose sample coated with P11-4 (10 

mg/ml) (black). 
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Figure 4.26: Band-fitted IR amide I' band of cellulose fabric coated with P11-4 (10 mg/ml) showing 

β-sheet conformation. 

 

 

Table 4.1: Identifications of peaks in the fitted amide I' band of cellulose coated with P11-4 (10 

mg/ml). 

 

 

 

 

 

 

 

 

 

4.3.5.2  Cellulose fabric coated with P11-4 (2 mg/ml) 

Figure 4.27 compares the spectrum of an uncoated sample with that of a sample coated 

with P11-4 (2 mg/ml). Similar to above, the spectrum of the sample coated with peptide 

Peak Centre cm
−1

 Area Assignment 

1614.207 2.2837 β-sheet 

1623.563 4.1776 β-sheet  

1650.444 0.9449 α-helix  

1661.967 1.0038 Turn 

1673.129 1.0632 TFA 

1694.444 0.5037 Turn 
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is centred at β-sheet region, while the uncoated one is shifted. The amide I region was 

band fitted, as shown in Figure 4.28, and the band-fitted spectrum is dominated by a 

large absorption peak located at 1625 cm
–1

, which corresponds to peptides with the β-

sheet conformation. Table 4.2 identifies the individual peaks in the band-fitted 

spectrum; from this table, the β-sheets represent about 46.9% of the coating.  
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Figure 4.27: IR spectrum of blank cellulose sample (red) and cellulose sample coated with P11-4 (2 

mg/ml) (black). 
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Figure 4.28: Fitted IR amide I' band of cellulose fabric coated with P11-4 (2 mg/ml) with the β-sheet 

conformation. 

 

Table 4.2: Identifications of peaks found in fitted amide I' band of cellulose coated with P11-4 (2 

mg/ml). 

 

 

 

 

 

 

 

 

 

 

4.3.5.3 Cellulose fabric coated with P11-8 (10 mg/ml) 

Figure 4.29 compares the spectra of the blank regenerated cellulose sample and the 

sample coated with P11-8 (10 mg/ml). To enable the calculation of the percentage of     

Peak Centre cm
−1

 Area Assignment 

1606.667 1.1124 arginine side chain 

1625.524 2.3382 β-sheet  

1640.816 0.2639 random coil 

1650.632 1.2473 α-helix  

1663.727 0.9980 Turn 

1676.824 0.3880 TFA 

1697.784 0.1358 Turn 
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β-sheets in the sample, the amide I region of the spectra was band fitted, as shown in 

Figure 4.30. The band-fitted spectrum shows a large peak centred at 1621 cm
–1

, which 

corresponds to β-sheet aggregates, plus another peak centred at 1634 cm
–1

. The fitted 

spectra also show two weak peaks located at 1681 cm
–1

 and 1692 cm
–1

; these 

correspond to anti-parallel β-sheets. Table 4.3 identifies the individual peaks in the 

band-fitted spectrum; from this table, β-sheets represent about 65.3% of the coating. 

 

4.3.5.4  Cellulose fabric coated with P11-8 (2 mg/ml) 

Figure 4.31 shows the spectra of an uncoated sample and a sample coated with P11-8 (2 

mg/ml), and Figure 4.32 shows the band-fitted spectra. The figure shows a large 

absorption band at 1623 cm
–1

, which correspond to β-sheet aggregates. Table 4.3 

identifies the individual peaks in the band-fitted spectra, showing that the percentage of 

β-sheets in the coating was 47%.  
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Figure 4.29: IR spectra of blank cellulose sample (red) and cellulose sample coated with P11-8 (10 

mg/ml) (black). 
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Figure 4.30: Fitted IR amide I' band of cellulose coated with P11-8 (10 mg/ml) showing β-sheet 

conformation. 

 

 

Table 4.3: Identification of peaks found in fitted amide I' band of cellulose coated with P11-8 (10 

mg/ml). 

Peak Centre cm
−1

 Area Assignment 

1605.650 1.14091 Arginine side chain 

1621.000 3.5072 β-sheet 

1634.790 0.7869 β-sheet 

1650.289 1.5105 α-helix  

1663.824 1.6757 Turn 

1681.510 1.3389 β-sheet 

1692.618 0.3793 β-sheet 
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Figure 4.31: IR spectra of blank cellulose sample and cellulose sample coated with P11-8 (2 mg/ml). 
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Figure 4.32: Fitted IR amide I' band of cellulose/P11-8 (2 mg/ml) showing β-sheet conformation. 
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Table 4.4: Identification of peaks found in fitted amide I' band of cellulose coated with P11-8 (2 

mg/ml). 

 

 

 

 

 

 

 

 

 

 

4.4 Discussion 

The integration of peptides with cellulose fibres in the form of a coated nonwoven 

wound dressing is a novel approach that has not been previously reported. In this study, 

mechanically bonded nonwoven dressings, which are commonly utilised in wound care, 

containing regenerated cellulose fibres (viscose rayon) were coated with peptide fibrils 

that were prepared at two different concentrations. 

 

4.4.1 Fabrics coated with P11-4 

It was found that fabrics were successfully coated with either of the two self-assembled 

peptides: P11-4 and P11-8. The peptide P11-4 forms nematic gels at low pH and 

monomeric fluids at high pH, and it has glutamic acid on side chains 5, 7 and 9. At pH 

9–12, all glutamic acid molecules are protonated, giving the peptide molecule a net 

charge of –2. This net charge causes repulsion between peptide monomers and results in 

a monomer fluid. At pH < 3, the P11-4 molecule has a net charge of +1 at position 3 on 

the arginine side chain and forms a self-supporting gel (Figure 4.33). Based on this 

Peak Centre cm
−1

 Area Assignment 

1606.646 0.5561 arginine side chain 

1623.095 1.1006 β-sheet 

1643.194 0.5288 Random coil 

1653.686 0.5788 α-helix 

1667.109 0.4072 Turn 

1674.535 0.2265 TFA 

1694.000 0.2852 Turn 
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behaviour, cellulose fibres coated with P11-4 were readily produced by first dipping the 

fabric in a monomer solution of P11-4 at a high pH of 10. Then, the pH of the solution 

was decreased, which decreases repulsions between peptide monomers and enables the 

formation of peptide tapes that then cover fibre surfaces within the fabric. Figure 4.34 

shows the behaviour of P11-4 as a function of pH, which was applied to coat the fabric 

at low pH. 

 

 

 

 

 

 

 

Figure 4.33: Structural changes in  P11-4  nanotapes in response to changes in pH. 

 

 

 

 

 

         

 

 

Figure 4.34: pH-dependant behaviour of P11-4 nanotapes  ● is the percentage of β-sheet by FTIR 

and ▲by  NMR.  Adopted from Aggeli 2007  [86]. 
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4.4.2 Fabrics coated with P11-8  

Compared with P11-4, the peptide P11-8 is designed to have the opposite switching 

behaviour. It forms monomeric peptide solutions at low pH and self-assembles into β-

sheet fibrils at high pH [86]. This behaviour is driven by the primary structure of P11-8. 

P11-8 has an arginine side chain at position 3, ornithine side chains at positions 5 and 6 

and a glutamic acid side chain at position 9. The charges of the arginine and ornithine 

side chains are positive in solutions with pH below their pKa values of 12.5 and 10.8 

respectively. As a result, at 6 > pH > 3, P11-8 forms a clear isotropic fluid due to the +2 

net charge per peptide (Figure 4.35). At 10.3 > pH > 6, self-assembly occurs because 

the ornithine side chains are deprotonated; this decreases repulsions between peptides 

molecules and a gel forms [8]. Based on this behaviour, cellulose fibres coated with P11-

8 were readily produced by first dipping the fabric in a monomer solution of P11-8 at a 

low pH of ~3. Then, the pH of the solution was increased, which decreases repulsions 

between peptide monomers and enables the formation of peptide tapes that then cover 

the fibre surfaces (Figure 4.36).  

 

 

 

 

 

Figure 4.35:  Structural changes in  P11-8  

nanotapes in response to changes in pH. 
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4.4.3 Characterization of samples coated with self-assembled peptides 

The tendency to coat a fabric depends on the nature of the fabric material and coating 

substance. The fabrics used here were made from cellulose polymer, which contains 

many hydrogen bonds in its strands. Therefore, it was feasible to coat cellulose fibres 

with peptides fibrils because peptides also have hydrogen bonds in their structures. The 

feasibility of coating cellulose fabric with peptides was investigated by complementary 

characterization techniques: SEM, CLSM and FTIR. All these techniques demonstrated 

that fabric samples were successfully coated with the peptides. 

 

 

Figure 4.36: pH-dependant behaviour of P11-8 nanotapes ● is the percentage of β-sheet by FTIR 

and ▲by  NMR.  Adopted from Aggeli 2007 [86]. 

 

We used SEM to explore differences between three types of samples: control samples, 

coated samples and samples treated with an acid or base. At low magnification, SEM 

images did not show any differences between the three samples. However, at high 

magnification, SEM images revealed clear differences in cellulose fibre morphology. In 

samples coated with peptides at a concentration of 10 mg/ml, massive accumulation of 

bulk gel was trapped between specimen fibres; this accumulation did not appear in 

specimens coated with peptide at a low concentration of 2 mg/ml. At high 

concentrations, differences in surface details were clear. The fabric sample treated with 

NaOH exhibited surface roughening. Many authors have reported the effects of NaOH 

on cellulosic fabrics by hydrolysis process, including Wang [140]. Wang showed that 

NaOH can dissolve cellulose tissue over a narrow range. These defective surfaces were 
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not visible in SEM images of the coated samples because the peptide fibrils that covered 

fabric surfaces concealed the denaturation [31]. Also,  the addition of HCl caused 

surface roughening, which indicates that cellulosic fabrics   hydrolyzed [141, 142].  

 

CLSM confirmed the presence of fluorescently tagged peptides in coatings that covered 

the underlying cellulose fibres. The technique showed that, at a high concentration of 10 

mg/ml, heavy accumulation of peptide gel formed between fibre surfaces. At 2 mg/ml, 

the fibres were extensively coated without accumulation of excess gel; these 

observations confirm those by SEM. FTIR demonstrated that the higher concentration 

of peptides forms a higher percentage of β-sheets. High percentages of β-sheets could 

provide higher capacities for uploading drug molecules. Therefore, for drug-release 

applications, high peptide concentrations are favourable. 

 

4.5 Conclusions 

It is expected that, owing to their flexibility and versatility, composite medical fabrics 

will continue to have a significant impact in many medical applications. In addition, 

their low production costs, together with the ease and options for surface modifications, 

make them attractive alternatives to current drug delivery devices. In this chapter, 

cellulosic fabrics were coated with pH-responsive peptides. SEM, CLSM and FTIR 

were used to evaluate the coated dressings. The two main findings from those 

characterization techniques are as follows: (a) peptides can readily be applied as 

coatings on cellulosic dressings, and (b) FTIR results showed that fabric samples 

immersed in a higher concentration of peptides produced coatings that contain a higher 

proportion of -sheet peptides.  
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Chapter 5 
 

 

5 Antimicrobial activity of self-assembled peptide-coated 

cellulosic fabric against Staphylococcus epidermidis  

 

 

5.1 Introduction 

The previous chapter described the successful coating of cellulosic fabrics with P11-4 

and P11-8 fibrils. This chapter considers the feasibility of incorporating antibiotics into 

the peptide fibril coating. Vancomycin and levofloxacin were selected for this purpose, 

because they are commonly used to treat Staphylococcus epidermidis (SE) infections. 

The release of these bacteria from fibril coatings was determined using agar diffusion 

assay. 

 

SE 

SE is a Gram-positive bacterium present in the normal flora of the skin. The spherical 

cells arrange into grape-like clusters and form creamy/white colonies approximately 1–2 

mm in diameter after overnight incubation on an agar plate.  The optimal pH for its 

activity is 6–8 [143, 144].  

The main source of SE infection is the skin, and SE is the most frequently isolated 

microorganism in the clinical microbiology laboratory, particularly from patients with 

hospital-acquired infections. SE is not normally pathogenic; however, under some 

conditions it converts from a commensal organism to a pathogen. Newborns, elderly 

and people with a compromised immune system are at a risk of SE infection. Patients 

with foreign bodies such as catheters or implants are at a high risk of SE contamination. 

Devices such as implants cause infection by introducing SE from the skin or mucous 

membranes into the implantation site. Bacteria that colonize the implant form biofilms, 

which comprise multiple layers of cell clusters that are embedded in amorphous 
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extracellular polymeric substance that are mainly composed of proteins, lipids, 

polysaccharides and DNA [145].   

 

Vancomycin 

The glycopeptide antibiotic vancomycin, which is produced by Streptomyces orientalis, 

is most widely used to treat infections caused by Gram-positive bacteria (Figure 5.1 A). 

Vancomycin inhibits bacterial cell-wall formation by interfering with the 

transglycosylation of peptidoglycan in the bacterial cell wall by forming a complex with 

the terminus of cell-wall precursor proteins [146]. 

 

Levofloxacin  

The fluoroquinolone levofloxacin is active against a wide range of bacteria and is 

typically used to treat infections caused by Gram-negative bacteria such as Escherichia 

coli, Haemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, 

Moraxella catarrhalis and Proteus mirabilis and Gram-positive bacteria such as 

methicillin-sensitive but not methicillin-reistant Staphylococcus aureus, Streptococcus 

pneumoniae, Staphylococcus epidermidis, Enterococcus faecalis, and Streptococcus 

pyogenes (Figure 5.1 B).  

 

       

Figure 5.1: Structures of antibiotics: (A) Vancomycin [147], (B) Levofloxacin [148]. 
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5.1.1 Bacterial resistance to antibiotics 

Bacterial resistance occurs when an antibiotic loses its ability to kill bacteria or control 

their growth, the bacteria survive and continue causing harm. The genetic and 

biochemical mechanisms of antibiotic resistance have been investigated. Resistance to 

antibiotics can be classified as intrinsic or acquired. Intrinsic resistance is the ability of 

bacteria to resist the activity of antibiotics through their inherent structure. For example, 

Pseudomonas aeruginosa has low membrane permeability, which is the reason for its 

innate resistance to several antimicrobials. Acquired resistance occurs when 

microorganism transform from susceptible to resistant. Susceptible bacteria can acquire 

resistance by different mechanisms. Some bacteria become resistant to antibiotics 

through a mechanism known as efflux. Efflux pumps are channels that export 

antibiotics from the cell. Antibacterial agents enter bacteria through channels termed as 

porins. The agents are pumped back out the bacteria by efflux pumps. By pumping out 

antibacterial agents, intracellular accumulation of the agents is prevented and their lethal 

activity is inhibited. Acquiring changes that prevent drug binding to antimicrobial target 

sites is a common mechanism of resistance. Target site changes often result from the 

spontaneous mutation of genes on the bacterial chromosome or from the acquisition of 

antimicrobial resistance genes from other bacteria. Antibiotic inactivation is another 

common resistance mechanism. Some bacteria release enzymes that inactivate drugs by 

hydrolysis or by modification (group transfer or redox mechanisms). Several antibiotics 

possess chemical bonds that are susceptible to hydrolysis and whose integrity is central 

to biological activity. When these vulnerable bonds are cleaved, antibiotic activity is 

destroyed  [147-149]. 

 

Infectious diseases caused by microbes that have become resistant to antibiotics are an 

increasing public health problem. Wound infections, malaria, gonorrhoea, tuberculosis, 

pneumonia and septicaemia are examples of diseases that have become harder to treat 

with antibiotics. Sever health consequences can arise from resistant bacteria, such as 

prolonged infections, increased recovery times, increased hospital stays and increases in 

health care costs. More toxic medications are often needed to cure infection and these 

medications cause higher mortality rates. There are several reasons why antibiotic 

resistance is increasing, including increased use of antibiotics, improper use of 

antibiotics and poor hygiene practices [150].  
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This chapter describes the incorporation of antibiotics within peptide fibrils before 

coating the fabrics (Figure 5.2). The addition of antibiotics molecule to the peptide 

solution was tested to determine whether they interfere with the formation of β-sheet or 

not. The cellulosic fabrics were coated with the fibril-encapsulated antibiotics to 

develop a pH-responsive dressing, which was then assessed for the ability to inhibit the 

growth of SE. Hopefully,  this dressing could by  clinically applied on infected wounds 

in the future to release the drug when required and reduce the problem of bacterial 

resistance to antibiotics in wound care (Figure 5.3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Development of cellulosic fabrics coated with peptide fibril-encapsulated  

antibiotics. Blue is antibiotic, green is peptide. 
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Figure 5.3: Switchable drug release from the pH-responsive dressing stimulated by bacterial-

induced changes of pH. Red is bacteria. Green is peptide. Blue is antibiotic. 

 

 

5.2 Materials and method 

5.2.1 Materials  

Antibiotics 

Vancomycin (1449.3 g/mol) and Levofloxacin  (361.368 g/mol)   was purchased from  

Sigma Aldrich.  

 

SE  

SE strain NCTC-13360 was purchased from The National Collection of Type Cultures 

(NCTC). Muller–Hinton agar, nutrient agar and nutrient broth were purchased from 

Sigma Aldrich. 

bacterial 

pH 

 

 

wound  
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5.2.2  Methods 

5.2.2.1 Development of an antimicrobial dressing 

5.2.2.1.1 Antibiotic encapsulation into P11-4 

The peptide solution was prepared by adding 10 mg of P11-4 into 1 ml of D2O, 

vortexing for 30 s and adding approximately 0.15 mg fluoro P11-4 to the solution. The 

pD of the solution was 5.8 and caused P11-4 to flocculate. NaOD (1 M) was added (3 µl 

drops) to clarify the solution (pD 11), and a piece of 0.5 × 0.5 cm cellulose fibre was 

dipped into the monomer solution, which was incubated overnight. DCl (1 M) was 

added dropwise (6 µl drops) to the solution to decrease the pD to 2.9, which induced 

P11-4 molecules to self-assemble into β-sheets. The fabric was trapped inside the gel 

overnight. The fabric was then removed and air-dried overnight. A control sample of 

cellulose fabric was prepared in water using the same method. 

 

5.2.2.1.2 Antibiotic encapsulation into P11-8 

The peptide solution was prepared by adding 10 mg of P11-8 into 1 ml of D2O followed 

by vortexing for 30 s. Approximately 0.15 mg of fluoro-P11-4 was added (pD 3.9) to 

form P11-8 monomers. A piece of 0.5 × 0.5 cm cellulose fibre was dipped in the 

monomer solution and left overnight. NaOD (1 M) was added (4 µl drops) to increase 

the pD to 10 and induce the self-assembly of P11-8 into β-sheets that subsequently form 

a nematic gel. The fabric was trapped inside the gel overnight, removed and air-dried 

overnight. A control sample of cellulose fabric was prepared in water using the same 

method. 

 

5.2.2.2 Isolation of single colonies 

SE was collected as freeze-dried beads. One bead was added to each of the three types 

of culture medium and incubated at 37 °C for 24 h. Reconstituted bacterial broth was 

used to subculture the bacteria on agar plates. The inoculating loop was heated to red 

hot in a blue Bunsen flame and cooled before streaking. A loopful was collected from 

the bacterial broth culture and immediately streaked gently across the plate. The 

streaking pattern is shown in Figure 5.4.  



123 

 

 

 

 

 

 

Figure 5.4: Streaking pattern. 

5.2.2.3 Gram staining 

A single well-isolated colony of SE was collected and mixed with a single loop of 

sterile deionised water on a glass slide (a sterilized loop was used to collect the 

suspension). The bacterial suspension was heat-fixed to the slide by passing it a few 

times through a blue Bunsen flame. The slide was flooded with oxalate crystal violet 

and rinsed with running tap water after 1 min. The slide was flooded with iodine 

solution, and it was rinsed with running tap water after 1 min. The slide was decolorized 

by flooding it with acetone for 5 s and washed with running water. The slide was then 

washed with carbol fuchsin for a few seconds and then rinsed with running water. The 

sample was viewed using a visible light microscope. 

 

5.2.2.4 Disk diffusion assay 

An overnight broth culture was diluted to 0.5 McFarland and standard turbidity, which 

is equivalent to approximately 1.50 × 10
8 

cells/ml. The turbidity of the suspension was 

determined using a spectrophotometer, and the absorbance was adjusted to 0.08 at 625 

nm. A sterile swap was used to collect the bacteria, and excess liquid was removed by 

gently pressing the swab against the inside of the tube. The swab was streaked across a 

Mueller–Hinton agar (4 mm deep) plate, rotated 90° and streaked again in one direction. 

This procedure was repeated three times. The plates were allowed to dry for 

approximately 5 min. The coated fabrics (0.5 cm in diameter) were placed on the plates 

(three samples for each dressing). The plates were incubated at 37 °C for 24 h, and the 

diameters (mm) of the zones of growth inhibition were recorded. 
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5.3 Results 

5.3.1 Effect of antibiotics on peptide self-assembly 

Before starting the coating process, the incorporation of antibiotics within peptide fibrils 

was investigated to determine whether the antibiotics molecules influenced peptide self-

assembly and gel formation. Solutions of peptide monomers (10 mg/ml) were mixed 

with 0.1 mg of antibiotic, and gelation was triggered by changing the pH. Self-

supporting gels were formed in all samples, suggesting that the antibiotics did not 

inhibit peptide self-assembly (Appendix B). 

 

5.3.1.1  Transmission electron microscopy, TEM 

Solutions of P11-8 and P11-4 gels containing antibiotics were viewed using TEM (Figure 

5.5). Control P11-4 formed fibrils a few microns long, approximately 13–18 nm and 10–

14 nm at their widest and narrowest points, respectively. Their helical pitch was 190–

240 nm. In P11-4-containing antibiotics, there was no significant difference in the fibril 

dimensions or morphology compared with the samples without antibiotics. P11-4-

containing vancomycin or levofloxacin formed fibrils up to 12–19 nm and 14–18 nm 

wide, respectively. 

Control P11-8 formed fibrils 12–16 nm wide, which formed rope-like structures 

approximately 24–30 nm wide. P11-8 containing antibiotics formed fibrous structures 

(14–17 mm long) that were not significantly different compared with the control. These 

observations indicate that the antibiotics did not interfere with peptide self-assembly. 
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Figure 5.5: TEM images of peptides fibrils encapsulating antibiotics (A) Control P11-4, (B) control 

P11-8 (C) P11-4/vancomycin (D) P11-4/levofloxacin (E) P11-8/vancomycin (F) P11-8/levofloxacin. 

 

5.3.2 Coating cellulosic fabrics with fibril-encapsulated antibiotics 

After TEM confirmed that antibiotics did not affect the formation of peptide fibrils, the 

incorporated antibiotics into peptide fibrils were used to coat cellulosic fabrics to 
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develop smart dressings that respond to SE-induced changes in pH. The coating process 

is shown in Figures 5.6 and 5.7. 

 

                                   

                                    

Figure 5.6: Development of fabric coated with P11-4 encapsulated antibiotics. (A) P11-4 fluid 

solution  containing vancomycin. (B) P11-4 gel containing vancomycin. (C) P11-4 fluid solution  

containing levofloxacin. (D) P11-4 gel containing levofloxacin. 

 

 

                         

                            

Figure 5.7: Development of fabric coated with P11-8 encapsulated antibiotics. (A) P11-8 fluid 

solution containing vancomycin, (B) P11-8 gel containing vancomycin, (C) P11-8 fluid solution 

containing levofloxacin, (D) P11-8 gel containing levofloxacin. 
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5.3.2.1 Scanning electron microscopy, SEM 

SEM images revealed the details of the surfaces of the coated fabrics prepared in this 

chapter (with antibiotics). These samples were compared with coated samples prepared 

in the previous chapter (without antibiotics) to demonstrate if the addition of antibiotics 

affected the coating process. 

The surfaces of the fabrics impregnated with vancomycin or levofloxacin solution are 

shown in Figure 5.8 (A) and (B), respectively. Their surfaces are smooth and resemble 

those of control samples shown in the previous chapter (Figures 4.13, 4.16, 4.19 and 

4.22). Figures (C) and (D) show the distributions of peptide P11-4 fibrils containing 

vancomycin and levofloxacin, respectively. Images (E) and (F) show the distribution of 

peptide P11-8 fibrils containing vancomycin and levofloxacin, respectively. The images 

reveal that the morphologies of the network of antibiotic-encapsulated fibrils are similar 

to those of the coated samples shown in the previous chapter. These comparisons 

indicate that the peptide fibrils were successfully coated with antibiotics. 

 

5.3.2.2 Confocal laser scanning microscopy, CLSM 

Confocal microscopy was used in the previous chapter to investigate the presence  of 

the peptide fibril layers on  the fibres of the fabric. In this chapter, CLSM was applied 

again to investigate the presence of antibiotic-containing peptide fibrils on the surface of 

the fabric. Figure 5.9 presents the layers on top of the fabrics is consistent with that 

acquired in the previous chapter. 

The results of using both techniques, SEM and CLSM, indicate that the addition of 

antibiotics to the peptide coating solution did not change the affinity of peptide fibrils 

for the surface of the fabric. 
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Figure 5.8: SEM images of dressings coated with peptide fibrils containing antibiotics. (A) Control 

sample of cellulose fabric with vancomycin, (B) cellulose and levofloxacin, (C) cellulose fabric 

coated with P11-4/vancomycin, (D) cellulosic fabric coated with P11-4/levofloxacin, (E) cellulose 

fabric coated with P11-8/vancomycin, (F) cellulose and P11-8/levofloxacin. 
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Figure 5.9: CLSM images of dressings coated with peptide fibrils and antibiotics. (A) Control, (B) 

P11-4/vancomycin, (C) P11-4/levofloxacin, (D) control, (E) P11-8/vancomycin, (F) P11-8/levofloxacin 

  

5.3.2.3 Attenuated total reflectance spectroscopy, ATR-IR 

Figures 5.10 shows the overlaid spectra of samples coated with 10 mg/ml P11-4 gel 

containing 0.1 mg antibiotic. Figure 5.11 shows the overlaid spectra of samples coated 

with 10 mg/ml P11-8 gel containing 0.1 mg antibiotic.  Both figures show that all spectra   

of samples containing antibiotics remained unshifted from β-sheet region.  
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Figure 5.10: IR spectra of a cellulose sample coated with P11-4 peptide fibrils, cellulosic fabric 

coated with P11-4/vancomycin and fabric coated with P11-4/levofloxacin. 
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Figure 5.11: IR spectra of a cellulose sample coated with P11-8 peptide fibrils, cellulosic fabric 

coated with P11-8/vancomycin and fabric coated with P11-8/levofloxacin. 

 

5.3.3 Antimicrobial activity of the coated fabrics   

All characterisation techniques proved that antibiotics were successfully incorporated 

into the peptide coating. Subsequently, the effect of the coated fabric on the growth of 

SE  was determined. 
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5.3.3.1  Identification of SE 

To confirm the identity of SE, cultures were incubated at 37 °C overnight. The cream-

coloured flat colonies with regular edges are shown in Figure 5.12A. A single colony 

was collected using a sterilised loop for gram staining. The figure shows Gram-positive 

cocci in grape-like clusters (Figure 5.12B). pH of the SE colonies was determined by 

applying strips of pH paper to the cultured plates. The starting pH was 7, increased to 8 

after 24 h, and increased to 9 after 5 days (Figure 5.13). 

 

 

Figure 5.12: Identification of  SE. (A)  MHA plate displaying typical colony morphology, the 

creamy colour of SE.  (B) Gram stain of a single colony, grape-like  clusters of Gram-positive cocci.  

 

 

Figure 5.13: Measurement of the pH of an SE culture. 
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pH 
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5.3.3.2 Effect of bacterial pH on peptide self-assembly  

Before investigating the release of antibiotics from the peptide fibrils, the effect of 

bacterial pH on peptide fibrils before encapsulating them with antibiotics was 

determined. Because the pH of SE cultures is the external trigger that disassembles 

peptide fibrils, peptide gels were deposited on SE cultures, and the P11-4 and P11-8 gels 

were observed after overnight incubation. 

Figures 5.14, 5.15 and 5.16 show the effects of bacterial pH on the self-assembly of 

solutions of 30, 20 and 10 mg/ml P11-4, respectively. The figures compare plates 

containing peptide gels deposited on plates with and without bacteria. The figures show 

that all P11-4 gels were completely dissolved, indicating that P11-4 gels were triggered 

by the bacterial pH and that the β-sheet structure of fibrils disassembled into monomers. 

Figures  from 5.17 to 5.19  show the effect of bacterial pH on P11-8 gels at 

concentrations 30, 20, 10 mg/ml.  It is clear from the images that part of  P11-8  

remained gel in the middle of the deposited  area of the gel and part was dissolved in the 

surrounding edge, suggesting that P11-8 was partially disassembled by bacterial pH. 
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Figure 5.14: Effect of bacteria on the 30 mg/ml P11-4gel. (A) Blank agar immediately after applying 

the P11-4 gel, (B) blank agar one day after applying the P11-4 gel, (C) agar with the SE culture 

immediately after applying the P11-4 gel, (D) agar with the P11-4 and SE culture after one day. 
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Figure 5.15: Effect of bacteria on the 20 mg/ml the P11-4 gel. (A) Blank agar immediately after 

applying the P11-4 gel on agar, (B) blank agar one day after applying the P11-4 gel, (C) agar with the 

SE culture immediately after applying the P11-4 gel, (D) agar with the P11-4 gel with the SE culture 

after one day 
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Figure 5.16: The effect of bacteria on the 10 mg/ml P11-4 gel. (A) Blank agar immediately after 

applying the P11-4 gel, (B) blank agar with the P11-4gel after one day, (C) agar with the SE culture 

immediately after applying the P11-4 gel, (D) agar with the P11-4 gel and the SE culture after one 

day. 
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Figure 5.17: Effect of bacteria on the 30 mg/ml P11-8 gel. (A) Blank agar immediately after applying 

the P11-8 gel, (B) blank agar with the P11-8 gel after one day, (C) agar with the SE culture 

immediately after applying the P11-8 gel, (D) agar with the SE culture and the P11-4 gel after one 

day. 
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Figure 5.18: Effect of bacteria on the 20 mg/ml P11-8 gel at (A) blank agar immediately after 

applying the P11-8 gel, (B) blank agar with the P11-8 gel after one day, (C) agar with the SE culture 

immediately after applying the P11-8 gel, (D) agar with the SE culture with the P11-8 gel after one 

day. 
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Figure 5.19: Effect of bacteria on the 10 mg/ml P11-8 gel. (A) Blank agar immediately after applying 

the P11-8 gel, (B) blank agar with the P11-8 gel after one day, (C) agar with the SE culture 

immediately after applying the P11-8 gel, (D) agar with the SE culture and P11-8 gel after one day. 

 

5.3.3.3  Drug release study   

The Kirby–Bauer (KB) antibiotic test or disk diffusion test is commonly used to test 

bacterial susceptibility to antibiotics, which is indicated by a clear zone of growth 

inhibition surrounding an antibiotic disk. The diameter (mm) of the zone of inhibition 

indicates the degree of susceptibility. The bigger the diameter of the inhibition zone, the 

more susceptible is the microorganism to the antimicrobial agent [149]. 

The KB test was applied here to assess drug release and determine the pH-

responsiveness of the modified coated dressing. The test was performed by applying an 

approximately 10
8 

CFU/ml to the surface of a Mueller–Hinton agar plate. Coated 

dressings with a diameter of 0.5 cm were placed on the inoculated agar surface. Before 

investigating the zone of inhibition surrounding the dressings coated with the 

fibril/antibiotic complex, the zone of inhibition was measured around dressings coated 

with the fibrils only. Samples without antibiotics did not generate zones of inhibition, 

indicating that the growth of SE was not susceptible to the peptide fibrils (Figure 5.20).  
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Figure 5.20: Disk diffusion test of control samples. (A) Control P11-4, (B) Control P11-8. 

 

5.3.3.4.1 Vancomycin release  

Figures 5.21–5.23 show P11-8 and P11-4-encapsulated vancomycin. The antibiotics were 

used at high MICs (16, 32 and 64 μg) to produce clearly visible zones of inhibition. The 

results demonstrated that both encapsulated antibiotics were effective. However, 

antibiotics encapsulated by P11-4 showed greater activity compared with antibiotics 

encapsulated by P11-8. Compared with controls, P11-4-encapsulated vancomycin 

produced very slight decrease of the zone of inhibition, indicating that the majority of 

the drug molecules were released. For drugs encapsulated by P11-8 fibrils, there were 

significant decreases in the diameters of the zones of inhibition, suggesting that 

antibiotics were trapped in the fibrils. There was no increase in the diameters of the 

zones of inhibition after 48 h. The experiments were done in triplicate, and the average 

of inhibition zones diameters is shown in Figure 5.24.   
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Figure 5.21: Disk diffusion test of vancomycin (16 µg/ml) released from peptide fibrils. (A) Fabric 

containing vancomycin, (B) fabric containing P11-4-encapsulated vancomycin, (C) fabric containing 

P11-8-encapsulated vancomycin 
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Figure 5.22: Disk diffusion test of the release of vancomycin (32 µg/ml) from peptide fibrils. (A) 

Fabric containing vancomycin, (B) fabric containingP11-4-encapsulated vancoymcin, (C) fabric 

containingP11-8-encapsulated vancomycin. 
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Figure 5.23: Disk diffusion test of the release of vancomycin (64 µg/ml) from peptide fibrils. (A) 

Fabric containing vancomycin, (B) fabric containingP11-4-encapsulated vancomycin, (C) fabric 

containingP11-8-encapsulated vancoymcin. 

 

Figure 5.24: Average of inhibition zones diameters in the disk diffusion assay of vancomycin. Data 

is expressed as the mean (n=3) ± 95% confidence intervals. Data was analysed by one way ANOVA 

followed by calculation of the minimum significant difference by the post-hoc T test (p < 0.05). * = 

significant difference  compared to the control sample.      
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5.3.3.4.1 Levofloxacin release 

The results for dressing coated with encapsulated levofloxacin were similar to those 

described above for vancomycin. The diameter of the zone of inhibition in the presence 

of levofloxacin-encapsulated within P11-4 was larger than that of P11-8, indicating that 

SE is more susceptible to P11-4-encapsulated levofloxacin than those encapsulated 

within P11-8. There was no significant difference in the results after 48 h (Figures 25-

27). Again, the experiments were done in triplicate, and the average of inhibition zones 

diameters is shown in Figure 5.28.   

 

 

 

   

Figure 5.25: Disk diffusion test for the release of levofloxacin (16 µg/ml) from peptide fibrils. (A) 

Fabric containing levofloxacin, (B) fabric containing levofloxacin encapsulated into P11-4, (C) fabric 

containing levofloxacin encapsulated into P11-8 
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Figure 5.26: Disk diffusion assay of the release of levofloxacin (32 µg/ml) from peptide fibrils. (A) 

Fabric containing levofloxacin, (B) fabric containing levofloxacin encapsulated into P11-4, (C) fabric 

containing levofloxacin encapsulated into P11-8. 
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Figure 5.27: Disc diffusion assay of the release of levofloxacin (64 mg/ml) from peptide fibrils. (A) 

Fabric containing levofloxacin, (B) fabric containing levofloxacin encapsulated into P11-4, (C) fabric 

containing levofloxacin encapsulated into P11-8. 

 

 

Figure 5.28: Average of inhibition zones diameters in the disk diffusion assay of levofloxacin.  Data 

is expressed as the mean (n=3) ± 95% confidence intervals. Data was analysed by one way ANOVA 

followed by calculation of the minimum significant difference by the post-hoc T test (p < 0.05). * = 

significant difference  compared to the control sample.      
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5.4 Discussion 

The purpose of this study was to evaluate the effectiveness of antibiotics incorporated 

into peptide fibrils. The modified coated dressings containing antibiotics were 

characterized using SEM, TEM, CLSM and FTIR. Inhibition of bacterial growth by the 

dressings was analysed using agar diffusion methods. In these assays, a clear zone 

surrounding the antibiotic-impregnated material indicates inhibition of bacterial growth. 

TEM analyses demonstrated that the addition of vancomycin or levofloxacin did not 

alter the morphology of peptide fibrils likely because the concentrations of antibiotics 

are low, while  peptides concentrations were in vast excess. Therefore, when the peptide 

monomers were stimulated to aggregate in the presence of the antibiotics, they were 

encapsulated into the peptide gel. The analyses using visible-light microscopy, SEM 

and CLSM presented in the previous chapter show that the appearance of the peptide 

coatings was unchanged in the presence of antibiotics, indicating that the antibiotics did 

not alter the affinity of peptide for cellulosic fabrics.  

SE was selected for this study because it is present in the common microflora of human 

skin. If the skin is injured, the wound is vulnerable to infection with SE [150].   The SE 

strain used in this study was identified by Gram staining method.  Gram staining is a 

method used to differentiate bacteria into two groups, Gram-negative and gram-positive. 

Gram positive bacteria are characterised with violet stain, while gram negative bacteria 

are characterised with pink stain. The reason of Gram-staining bacteria is that some 

bacterial culture may become contaminated during preparation.  Therefore, it was 

necessary to ensure that they were the pure culture prior using.  Here in, the Gram-stain 

results, cell morphology and colony shape and colour were sufficient to conclude that 

the SE colonies were pure. 

After verifying the purity of the SE isolate, the pH of the culture was measured for five 

days using pH indicator strips because pH of the SE culture provides the external trigger 

that disaggregates the peptide gel. Subsequently, the effect of pH on peptide self-

assembly was investigated. The P11-4 gels that were formed at 10, 20 and 30 mg/ml 

were completely dissolved. P11-4 is monomeric in solution at alkaline pH. It forms a 

self-supporting gel at pH ≤ 3 and flocculates at pH >3 due to the charged peptides. 

When the pH is further increased,  glutamic acid residues are increasingly deprotonated, 

and the β-sheet is converted to monomers due to the net negative charge of the peptide. 
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At pH 8–9, P11-4 fibrils are completely converted to monomers (Figure 5.29). Therefore, 

P11-4 gels were completely dissolved at the alkaline pH of SE. The gels formed by P11-8 

at concentrations of 10, 20 and 30 mg/ml were partially converted to monomeric liquids 

because P11-8 at 6 < pH 10.3 forms a biphasic solution containing gel particles and clear 

fluid (Figure 5.30). The biphasic solution of P11-8 is clearly shown in a vial in Appendix 

C.  

After determining the responsiveness of the peptide fibrils to SE, the fibrils were 

applied as antibiotic carriers to coat the cellulosic dressing, and their release of 

antibiotics was determined using a disk diffusion assay. Overall, the inhibition zone 

diameters resulted in significant differences between antibiotics loaded into P11-4 and 

those loaded into P11-8. Larger zones of inhibition were observed with the samples 

treated by P11-4/drugs.   P11-4/antibiotics shows zone inhibition diameters relatively 

similar to the control samples with very slight decrease. As indicated above, P11-4 is 

completely monomer in alkaline pH. As a result, the majority of antibiotic molecules 

were released from the dressings. On the other hand, in the case of P11-8/antibiotics, the 

zone inhibition diameters were clearly smaller than P11-4/antibiotics. The reason was 

that  P11-8 is biphasic solution at the alkaline pH of SE. Thereby, molecules were 

released from the liquid phase and other molecules were entrapped within the gel phase. 

As the drug molecules were released from the fibrils that indicate that the interaction 

between the fibrils and the drug molecules is non-covalent interaction. The release 

schematic is described in Figures 5.31 and 5.32.  

It is important to notice in this investigation that the effectiveness of  vancomycin at the 

concentration of 32 µg were dropped (comparing to 16, and 64 µg) against SE either 

with the addition of peptides  to vancomycin or not. The test were repeated to make sure 

this finding was not due to some faults in the experiment, but it comes up with the same 

result. There is no clear and definite explanation, however, some researches, suggested 

that, staphylococci could be developed some kind of resistant against vancomycin at 

concentration of  32 µg [151, 152].  
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Figure 5.29: β-Sheet percentage of P11-4 ● as determined by FTIR and ▲ by NMR. I: nematic gel, 

II: flocculate, III: nematic fluid, IV: isotropic fluid [86].  

 

 

       

Figure 5.30: β-Sheet percentage of P11-8  ● as determined by FTIR and ▲ by NMR. I:isotropic fluid, 

II: biphasic solution, III: nematic gel [86]. 
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Figure 5.31: The hypothesis of the therapeutic release from P11-4 fibrils. Green is peptide, blue is 

antibiotic. 

 

 

 

 

 

Figure 5.32: The hypothesis of the therapeutic release from P11-8 fibrils. Green is peptide, blue is 

antibiotic.   
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5.5 Conclusions  

pH-sensitive dressing were prepared by impregnating  fabrics in peptide solutions, P11-8 

and P11-4 solutins separately,  containing antibiotics. The feasibility of coating fabrics 

with peptides/antibiotics complex was investigated with complementary microscopic 

and spectroscopic techniques.  The effectiveness of the dressings were  in vitro 

investigated by  testing the dressings against  Staphylococcus epidermis. The results 

showed that the dressings were stimulated by the pH of the bacteria and released the 

loaded drugs. However, the results also showed that the   antibacterial activity of the 

fabrics modified with P11-4 was higher compared with those modified with P11-8. 
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Chapter 6 
 

 

 

6   Fabrication and characterization of polycaprolactone 

peptide-enriched fabrics 

 

6.1 Introduction 

In chapter 4, self-assembled peptides were applied to coat the outer surface of the 

fabrics to serve as drug carriers for wound care applications. In this chapter, the 

electrospinning technique was applied to incorporate self-assembled peptides within the 

texture of the fabrics for biomedical applications.   

 

6.1.1 Introduction to electrospinning   

Electrospun nanofibers are increasingly being used in a broad range of applications. 

They are defined as ultra-fine elongated thread-like solid fibres with very small 

diameters having average diameters ranging from 100 nm to 5 μm [153]. Electrospining 

is one of the most promising techniques to fabricate nanofibers. The fundamental theory 

of electrospinning goes back to 80 years when Formhals produced fibres   from a 

polymer solution using an electrostatic force. In early 1900s,  Renker and co-workers 

have revived the interest in this technology and popularised the name of electrospinning.  

Between 1934 to 1944, he published a number of patents describing the experimental 

setup of electrospinning [154].   They   have demonstrated the possibility to fabricate 

nanofibres from a  wide range of organic polymers [155].  Recently, within the past 10 

years,  attention to the electrospinning technique has increased dramatically due to the 

increased interest in nanoscale properties [156].  The number of Publications on this 

promising technique is rocketing as shown in Figure 6.1.  
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Figure 6.1: Publications on electrospinning [157]. 

 

The electrospinning setup simply consists of a syringe pump fed with polymer solution, 

a high voltage source, and a collector (Figure 6.2). The syringe is connected towards the 

collector.   The syringe is filled with polymer solution. An electrical charge is induced 

to the polymer solution by high electrical field. When the induced electrical force 

overcomes the solution surface tension force, a charged jet of the solution is travels  to 

the collector  [158]. Before collecting, the solvent jet is stretched and the solvent is 

evaporated forming solid nanofibres in the collector [159].  

 

 

Figure 6.2: Electrospinning equipment [160]. 
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Electrospun fibres exhibit outstanding functional quality. They have large surface area 

per unit mass, small pore size, high length/diameter ratio, flexible surface with superior 

mechanichal performance, and tuneable surface morphology [161].  It is a cheap  

process and the most straightforward way to produce nanofibres [162]. They  are 

excellent materials for a variety of applications including reinforced fibres, support for 

enzymes, fuel cells, photonic sensors, medicine, pharmacy, filtration, tissue engendering, 

catalyst support, drug delivery system and wound dressings [162].  

In the field of drug delivery systems, recent experiments have  successfully proved that 

certain drugs can be incorporated  and released from electrospun nanofibres such as 

antibiotics and anticancer  agents [163]. The large surface/volume ratio allows 

antibacterial drugs to be retained within the structure. The first work using electrospun 

fibres as drug carriers was reported by Kenawy et al.  They fabricated fibres from poly 

(lactic acid) (PLA), poly (ethylene-co-vinyl acetate) (PEVA) and 50/50 PLA/ PEVA 

blend.  The fibres encapsulated tetracy-cline hydrochloride as a drug model. The release 

profile of the fibres was compared with commercially available Actisite
 

(Alza 

Corporation, Palo Alto, CA). The results suggest that encapsulated electrospun matrices 

may significantly impact on  the drug controlled release technology [164]. 

Bolgen et al. examined the potential function of antibiotic embedded electrospun  

polycaprolactobe PCL to prevent abdominal adhesions after abdominal surgeries. 

Usually, after abdominal surgeries, adhesions developed in the peritoneal cavity as 

pathological fibrotic bands at the surgery site. The risk of adhesions development can be 

increased by certain bacteria. For this investigation, Bolgen et al. have made defects in 

the peritoneum abdominal walls in a rat model. They embedded the commercial 

antibiotic (Biteral
®
) into an electrospun PCL membrane (Figure 6.3).  They slowly 

dropped the drug solution to be absorbed by the electrospun nonwoven membrane 

sample, and they fixed it in the rat abdominal wall to cover the injured site.  The authors 

found that the abdominal adhesions were reduced and the healing process was 

accelerated [165]. 
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Figure 6.3: An electrospun PCL membrane made by Bolgen et al. A) SEM micrograph. B) an 

optical micrograph [165]. 

 

Kim et al. examined electrospun PLGA and PLGA/PEG-b-PLA/PLA mats embedded 

with the hydrophilic antibiotic (Mefoxin
®

). The loading process was different than the 

method used by Bolgen et al. They dissolved the antibiotic and the polymers before 

electrospinning. The authors examined the morphology of the loaded fibre with 

unloaded one. They found that the drug affected the morphology of the electrospun fibre. 

They observed that the sample without drug has a bead-and-string morphology, while 

the sample with 5 wt% has a fibrous structure.  By using NMR and UV-vis, they have 

found that the structure of the drug was not affected by the electrospinning process, 

indicating that the antibiotic retained its bioactivity.  They demonstrated that PLGA and 

PLGA/PEG-b-PLA/PLA mats containing 5 wt% antibiotics inhibited greater than 90% 

of Staphylococcus aureus growth. Thus, the authors concluded that antibiotic loaded 

electrospun mats can effectively reduce infections [166].  

Xu et al. incorporated BCNU anticancer into electrospun PEG-PLLA (Figure 6.4). The 

polymer and the drug were dissolved and electrospun. They examined the effect of 

anticancer drug loaded electrospun fibres on the growth of rat Glioma C6 cells [167].  

They observed that loaded PEG-PLLA mats with BCNU exhibited anticancer activity 

over a period of 72 hr, while the free BCNU began to lose its activity after 48 hrs [167]. 
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Figure 6.4: ESEM photographs of BCNU/PEG–PLLA fibres containing 10% wt of BCNU [167]. 

 

E. Luong-Van et al. fabricated heparin-loaded polycaprolactone fiber for the treatment of 

vascular injury. The fiber was successfully prepared by electrospinning and heparin 

remained homogenous in the spinning solution. They hypothesized that heparin release 

could be controlled over 14 days. The released heparin retained biological functionality, 

indicating that the fabricated electrospun fiber is a promising candidate for the drug 

delivery applications [168].  

The study on electrospun-fibre for wound dressing application is still limited;   however, 

there are a few papers published for this application. It is demonstrated that electrospun 

nanofibres are excellent candidates to be applied as a wound dressing. They  show 

controlled liquid evaporation and oxygen permeability [162]. Their pore sizes are usually 

in the range of 500 to 1000 nm which is small enough to prevent bacteria from 

penetration. Large  surface area of to volume ration of electrospun fibres makes them 

extremely efficient for fluid absorption and dermal delivery [157]. Chong fabricated a 

composite wound dressing from a semi-permeable barrier and a scaffold filter layer for 

the skin cells.   Tegaderm polyurethane TG was electrospun and employed as a semi-

permeable barrier. Then, PCL was electrospun onto the surface of the TG to form a TG- 

nanofibre (TG-NF) composite.  TG-NF  was employed as a suitable host substrate for 

human dermal fibroblast [157]. Another example of wound dressing was made from 

electrospun gelatine with superabsorbent Norsocryl XFS and bentonite. This formed 

dressing was applied to acute hemostasis and used to treat chronic ulcers. 

The combination of self-assembled peptides and electrospun polymers has so far seen 

very limited numbers of applications. R. Danesin et al. have designed PCL fibres 
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containing self-assembling peptide fibres to support the adhesion and growth of h-

osteoblast. They prepared five different   mats: EAK/PCL, DAK/PCL, EabuK/PCL, 

EYK/PCL, and RGD-EAK/PCL (Figure 6.5). They added the self-assembled peptides to 

PCL solution before the electrosping process. They have found using FTIR and XPS that 

the secondary structure of the self-assembled peptides is not affected during 

electrospinning.  They found that the designed membranes  were able to enhance h-

osteoblast adhesion to maintain osteoblast [169]. 

 

    

Figure 6.5: SEM images of electrospun scaffolds. (A) PCL scaffold; (B) PCL-EAK scaffold [169]. 

 

P.Brun et al.  designed hybrid scaffolds made by electrospinning polyethylene oxide, 

PEO, in combination with self-assembling peptides to promote bone regeneration in 

bone defects. Solutions were prepared by dissolving PEO in H2O and sodium phosphate 

at pH 7.4. Each self-assembling peptides (EAK, RGD-EAK, RGD-EAKsc, EabuK, 

EYK, and DAK) were added to each solution and stirred to optioned homogenous 

mixture. The solutions were electrospun to an aluminium collector screen (Figure 6.6). 

The calcium assay data confirmed that the hybrid materials are more appealing to 

promote growth and differentiation of human osteoblasts [170]. 

The goal of this chapter is to combine the advantages of electrospun polycaprolactone 

with the advantages of self-assembled peptides using electrospining  to fabricate novel 

hybrid material to be used in biomedical application (Figure 6.7). PCL is   FDA 

approved polymer [171, 172]. It is a hydrophobic, semicrystalline biodegradable 

polyester belongs to polyhydoxy acids family [170]. It has shown great potential in 

tissue engineering and drug delivery [157, 163, 173]. In tissue engineering point of view, 

it is an  ideal material to biologically mimic   extra cellular matrix (ECM) [169, 174]. 
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Figure 6.6: SEM images SEM images of electrospun scaffolds (A) PEO scaffold; (B) PEO with 

0.059% (w/v) EAK [170]. 

 

They showed enhanced cell adhesion, migration, proliferation, cellular differentiation 

[169, 175]. In the field of drug delivery, due to its slow degradation rate, it is a good 

candidate for long-term drug delivery application [153, 176, 177].  It  is widely 

fabricated using electrospinning technique [178]. However,  electrospinning  is not a 

simple one-step top-down process to produce fibres. The architecture of the fabricated 

fibers is affected by variety of parameters: 1) system parameters such as molecular 

weight, solution properties (viscosity, conductivity, surface tension) and 2) process 

parameters such as flow rate, concentration, distance between tip to collector, 

temperature, and applied voltage) [177, 179]. The study in this chapter is accomplished 

by investigating the effect of electrospinning parameter on PCL/peptide fabrics.  

 

 

Figure 6.7: Schematic illustrates the hypothesis of the PCL/peptide fibres  preparation. Gray; PCL. 

Blue; P11-4. Red P11-8.   
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6.2 Materials and methods 

6.2.1 Materials 

PCL pellets (molecular Formula (C6H10O2)n  and Molecular weight 50.000) was 

purchased from Sigma Aldrich.   

 

6.2.2 Methods 

6.2.2.1 Solutions for electrospining 

Solutions were prepared at a concentration of 6% w/w by dissolving 375 mg of PCL in 

10 ml of  HFIP. About 200 mg of each peptide were added to each solution. A control 

solution (6% wt/wt)  of PCL in HFIP was also prepared.  The solutions were then stored 

for 24 hours time and were ready to electrospin after obtaining a homogenous mixture. 

 

6.2.2.2 Electrospinning process 

During the electrospinning, the solution was pumped   from a 5 ml syringe through a 20 

gauge stainless steel nozzle (Sigma Aldrich), and connected to a dual head syringe 

pump (KDS-200 CE) operating at a feed rate of 1 ml/min. A copper electrode supplying 

the current and voltage was attached to the syringe needle at its base. Electrospinning 

was performed inside a fume cupboard with continuous suction to remove the floating 

fibres. At first step, Three different voltage values of 15, 20, and 25 kV were used at the 

same distance between the spinning surface and collector counter (16 cm) and normal 

conditions (22 ± 1°C, RH = 38%). In the second phase these three experiments were 

repeated in the same atmospheric condition with two other distances (18, and 20 cm), 

and finally all 9 performed experiments were repeated on the other atmospheric 

condition of 50 ± 1°C,  RH = 38%. In all 18 experiments, fibres were collected on an 

aluminium foil sheet (6 x 6 cm). The parameters settings were summarized in Table 6.1. 
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Table 6.1: Electrospinning parameters. 

 

              Voltage 

                     Temp                         

   Distance 

 

 

V1= 15 kV 

T1(room temp/ T250 ºC 

 

V2= 20 kV 

T1(room temp)/T2 50ºC 

V3= 25 kV 

T1 (room temp)/T250 

ºC 

D1= 16 cm 
Sample 1= D1V1T1 

Sample 2= D1V1T2 

Sample 3= D1V2T1 

Sample 4= D1V2T2 

Sample 5= D1V3T1 

Sample 6= D1V3T2 

D2= 18 cm 
Sample 7= D2V1T1 

Sample 8= D2V1T2 

Sample 9= D2V2T1 

Sample10=D2V2T2 

Sample 11=D2V3T1 

Sample 12= D2V3T2 

D3= 20 cm 
Sample 13=D3V1T1 

Sample 14= D3V1T2 

Sample 15=D3V2T1 

Sample 16= D3V2T2 

Sample 17= D3V3T1 

Sample 18= D3V3T2 

 

 

6.3 Results  

Before applying microscopy and spectroscopy to characterize the morphology and the 

chemical composition of the fabricated samples, the surface wetability of the fabricated 

100% PCL was simply tested by depositing a drop of deionized water on the surface. 

See Appendix D.  

 

6.3.1 Scanning electron microscope, SEM 

SEM images  of all electrospun fibers were obtained. The images indicate that there are 

morphological differences between samples with peptide and without peptide. In 

general, all fibers, with peptide and without peptide have circular cross-sectional shape. 

Uniform  nanofibres were obtained from control PCL. Mostly, the fiber diameters were 

between 600 and 850 nm.  The fibres of PCL/P11-4 samples have diameters in the range 

of 350 to 750 nm. However, In the case of PCL/P11-8, in each sample two ranges of 

diameter were observed, one has fiber diameters between 280 and 600 nm, and the other 

has fiber diameter range of 30 – 70 nm.  
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6.3.1.1  100% PCL 

6.3.1.1.1 The effect of distance 

Fibres that fabricated when the distance was varied from 18 to 20 cm and the applied 

voltage was 25 kV at room temperature are presented in Figure 6.8. Figure 6.8 (A and  

B) exhibit fibres were collected at distance of 18 cm. The fibres diameters are in the 

range of 624-898 nm. Figure 6.8 (C and D) show fibres were collected at distance of 20 

cm. The fibre diameters range decreased to 450-580 nm. From this result, varying the 

distance between the tip and the collector significantly impacts the fibres diameters. 

 

6.3.1.1.2 The effect of temperature  

Figure 6.9  (A and  B)  shows samples were made at room temperature,  the applied 

voltage was 25 kV, and   were collected at a distance of 16 cm from the needle. The 

fibres diameters are in the rage of 668-3317 nm. Figure 6.9 (C and D)  presents fibres 

were made at 50 ºC. The fibers diameters are in the range of 589-896 nm, which is 

smaller than the fibers made at room temperature.  

 

6.3.1.1.3 The effect of applied voltage 

To evaluate the diameters as a function of voltage, the other two parameters should be 

constant. The distance was 18 cm and the process was done at room temperature.  

Figure 6.10 (A and B) show samples were fabricated when the applied voltage was 15 

kV. The fibers diameters are in the range of 576-970 nm. Figures 6.10 (C and D) shows 

samples were made when the applied voltage was 20 kV. The fibers’ diameters are in 

the range of 2501-2867 nm, which is wider than the diameters of the fibers when they 

were made using an applied voltage of 15 kV. The measurements with the rest samples 

are listed in Appendix E. 
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Figure 6.8: Effect of distance on 100% PCL  fibre’ diameters. (A) tip to collector = 18 cm; Mag 2.36 

KX. (B) tip to collector =18 cm; Mag 49.14 KX. (C) tip to collector = 20 cm; Mag 2.9 KX .(D) tip to 

collector = 20 cm; Mag 63.63 KX (voltage= 25 kV; at room Temp). 

 

 

Figure 6.9: Effect of temperature on 100% PCL  fibre’ diameters. (A)  room temp; Mag 4.5 KX.  (B) 

room temp; Mag 27.14 KX. (C) 50 ºC; Mag 3.8 KX . (D) 50 ºC; Mag 83.63 KX (voltage = 25 kV; 

distance =16). 

 

(A) (B) 

(C) (D) 

(A) (B) 

(C) (D) 
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Figure 6.10: Effect of voltage on 100% PCL  fibre’ diameters. (A) V=15 kV; Mag 2.36 KX. (B) V 

=15 kV; Mag 49.14 KX. (C) V = 20 kV; Mag 2.9 KX. (D) V = 20 kV; Mag 63.63 KX ( room temp; 

distance=18). 

 

6.3.1.2 PCL/P11-4 

6.3.1.2.1 The effect of distance 

The morphologies of PCL fabrics containing 35% of P11-4 were also investigated.  

Fibres were fabricated with tip to collector distances of 16, 18, and 20 cm. The applied 

voltage was 15 kV at room temperature. Figures 6.11 (A) and 6 (B) exhibit fibres were 

collected at distance of 16 cm. The fibres diameters are in the range of 202-541 nm. 

Figures 6.11 (C) and (D) show fibres were collected at distance of 18 cm. The fibre 

diameters range decreased to 280-430 nm. 

 

6.3.1.2.2 The effect of temperature  

Figures 6.12 (A) and 6.12 (B) present samples were prepared with the applied voltage 

of 20 kV, and   were collected  from a  distance of 18 cm. The figures show  fibres with 

diameters range  between 480-650. Figures 6.12 (C) and 6.12 (D) show samples were 

made at 50 ºC. The fibres in those figures decreased to the range of 365-594 nm.  

(B) (A) 

(C) (D) 
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6.3.1.2.3 The effect of applied voltage 

To investigate the effect of voltage, temperature and distance will be constant. Distance 

to collector is 16 cm and temperature is 50 ºC. Figure 6.13 shows the samples’ 

morphology as a function of voltage of 15, 20, and 25 kV.  From the figure, there was a 

slight decreased in the average of the fibre’s diameters with increasing voltage from 

15kV to 20 kV. The diameter was increased when higher voltage was applied to 25 KV.  

The measurements of the rest samples are listed in Appendix F. 

 

 

 

Figure 6.11: Effect of distance on PCL/P11-4 fibbers’ diameters. (A) tip to collector =16 cm; Mag 

2.02 KX. (B) tip to collector = 16 cm; Mag 100.00 KX. (C) tip to collector = 18 cm; Mag 3.06 KX. (D) 

tip to collector = 18 cm; Mag 40.32 KX  (V =15 kV; room temp). 

 

 

 

 

 

 

(B) (A) 

(C) (D) 
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Figure 6.12: : Effect of temperature on PCL/P11-4 fibres’ diameters. (A) room temp; Mag 6.61 KX. 

A2) at room temp; Mag 111.71  KX. (C) at 50 ºC; Mag 3.8 KX. B2) 50 ºC; Mag 83.63 KX  (voltage = 

20 kV; tip to collector distance = 20). 

 

 

 

 

 

 

 

(A) (B) 

(C) (D) 
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Figure 6.13: Effect of voltage on PCL/P11-4 fibre’ diameters. (A)  15 kV; Mag 2.36 KX. (B) 15 kV; 

Mag (C) 20 kV; Mag 1.9 KX . (D)  20 kV;  Mag  57.63. (E) 25 kV; Mag 43.82. (F) 25 kV;  

 

 

 

(A) 

(C) 

(B) 

(D) 

(E) (F) 
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6.3.1.3 PCL/P11-8 

6.3.1.3.1 The effect of distance  

Fibres of PCL containing 35% of P11-8 were fabricated with tip to collector distances of 

16, 18, and 20 cm. The applied voltage was 25 kV at room temperature. Figures 6.14 (A) 

and (B) exhibit fibres were collected at distance of 16 cm. The fibres diameters are in 

the range of 300-471 nm. Figures (C) and (D) show fibres were collected at distance of 

18 cm. The fibre diameters range decreased to 200-300 nm. Figures (E) and (F) show 

fibres were collected at distance of 20 cm. Further decrease in the fibres diameters were 

observed with the presence of fibres less than 100 nm. Again as presented above, 

varying the  distance between the tip and the collector appreciably impacts the fibre 

diameters.  

 

6.3.1.3.2 The effect of temperature  

Figures 6.15 (A) and (B) present samples were made using the applied voltage of 20 

kV, and   were collected  from a  distance of 18 cm.  The figures show fibres with 

diameters range between 197-291 nm and thin fibres with diameters range from 50 to 

80 nm. Figure 6.15 (C) and (D) show samples were made at 50 ºC. The fibres in those 

figures decreased to the range of 156-276 nm with the presence of very thin fibres.  

 

6.3.1.3.3   The effect of applied voltage 

In this section, temperature and distance are constant; distance to collector is 16 cm and 

temperature is 50 ºC. Figure 6.16 shows the samples’ morphology as a function of 

voltage: 15, 20, and 25 kV.  From the figure, there was a slight dectrease in the average 

of the fibre’s diameters with increasing voltage from 15 kV to 20 kV.  When higher 

voltage was applied to 25 KV, opposite behaviour was observed. The diameters were 

clearly increased to the average of 1200 nm. The measurements of the rest samples are 

listed in Appendix G. 

 

 

 

(B) (A) 
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Figure 6.14: Effect of distance on PCL/P11-8 fibbers’ diameters.  (A) tip to collector = 16 cm; Mag 

3.55 KX.  (B) tip to collector =16 cm; Mag 43.14 KX.  (C ) tip to collector = 18 cm; Mag 6.36 KX. (D) 

tip to collector = 18 cm; Mag 73.63 KX.  (E) tip to collector =  20 cm; Mag 8.75 KX. (F) tip to 

collector = 20 cm; Mag  143 KX (voltage= 25 kV; at room Temp). 

 

 

(C) 

(E) 

(D) 

(F) 

(A) (B) 
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Figure 6.151: Effect of temperature on PCL/P11-8 fibres’ diameters. (A) room temp; Mag 6.61 KX.  

(B) at room temp; Mag 111.71  KX.  (C) at 50 ºC; Mag 3.8 KX . (D) 50 ºC; Mag 83.63 KX  (voltage 

= 20 kV; tip to collector distance = 18 cm). 

 

 

 

 

(A) (B) 

(C) (D) 



169 

 

 

Figure 6.16: Effect of voltage on PCL/P11-8 fibre’ diameters. (A)  15 kV; Mag 2.36 KX. (A) 15 kV; 

Mag 57.14 KX.    (C) 20 kV; Mag 1.9 KX . (D)  20 kV;  Mag  57.63 KX. (E) 25 kV; Mag . (F) 25 kV; 

Mag   (Temp= 50 ºC; distance = 16). 

 

6.3.2  Confocal laser scanning microscope, CLSM 

To investigate the peptides distribution in the fibres, they were fluorescently labelled 

and viewed by confocal microscopy. Figure 6.17 provides CLSM micrographs of the 

electrospun samples. The figure gives no fluorescence background emitted from the 

fabric without peptide. In contrast, it shows green fluorescence emitted from PCL/P11-8 

and PCL/P11-4 compositions. In those treated samples, the individual fibres are clearly 

visible. Thus further supports the conclusion that peptides are homogenously distributed 

along their entire length. One sample from each type of fabric (%100 PCL, PCL/P11-4, 

(A) 

(E) 

(C) 

(B) 

(D) 

(F) 
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PCL/P11-8) is presented in the Figure 6.17, also, all samples prepared at different 

electrospinning parameters showed the same results.  

 

  

    

Figure 6.17:  Visualization of fluorescence-labelled P11-4 in PCL fibres. 

 

6.3.3 Energy-dispersive X-ray spectroscopy, EDX 

EDX spectrometer is used in conjugation with SEM to examine the fibre's chemical 

composition. The EDX spectra of PCL fibres with and without peptides are shown    in   

Figure 6.18.  The presence of nitrogen peaks are observed in PCL/P11-8 and    PCL/P11-

4 spectra. The nitrogen peaks in the EDX spectra are attributed to peptide molecules 

which indicate the successful incorporation of peptides   in those fibres.  A nitrogen 

peak is not appeared in control PCL spectrum because peptides are not added to this 

(A) 

(B) 

(C) (B) 
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sample. Table 6.2 summarizes the quantitative results of the chemical   elements in the 

samples. 

 

     

 

    

      

 

Figure 6.18:  EDX spectra of electrospun fibres. (A) Control PCL. (B) PCL/P11-4. 

 (C) PCL/P11-8. 

 

 

 

 

 

 

(A)  

(B)  

(C)  
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           Table 6.2: The chemical elements in the elctrospun fibres by SEM/EDX. 

 

6.3.4  X-ray photoelectron spectrometer, XPS 

The surface chemistry of the samples was analyzed by X-ray photoelectron 

spectroscopy. Figure 6.19 displays the absorption of C1s at 285.0 eV and  O1s at 531.0 

eV in 100% PCL. In the peptides enriched samples, in addition to C1s and O1s, there is 

an absorption peak of N1s at 420 eV (Figure 6.20).  The presence of nitrogen peaks in 

the spectra indicates that there is an amount of peptides laying on the surface of the 

treated samples. The intensity of nitrogen peak in PCL/P11-8 sample is higher than 

PCL/P11-4 due to the higher number of nitrogen in P11-8. The quantitative results are 

summarized in Table 6.3.  

 

 

Figure 6.19: XPS spectra of the electrospun samples of 100% PCL. 

 

 

Sample 

 

 

C % 

 

N % O % 

PCL 91.8 ± 3.6 0.0 8.2 ± 3.7 

PCL/P11-8 70.4 ± 13.1 19.3 ± 2.9 10.3 ± 6.6 

PCL/P11-4 78.5  ± 13.7 10.4 ± 3.9 11.1 ± 4.2 
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Figure 6.20: XPS spectra of the electrospun samples  (B) PCL/P11-4. (C) PCL/P11-8. 

 

Table 6.3: The chemical elements in the elctrospun fibres by XPS. 

 

Sample C % N % O % 

PCL 79.0 0.0 21.0 

PCL/P11-8 81.5 2.0 16.5 

PCL/P11-4 80.9 0.6 18.5 

(A)  

(B)  
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6.3.5 Attenuated total reflectance spectroscopy, ATR 

ATR was applied to investigate the mixture of PCL and peptides before and after 

electrospininng. The spectra are shown in Figure 6.21.  Before electrospininng, the 

spectra displays carbonyl C=O stretching mode of PCL which is appeared at 1730 cm
-1 

in all three overlaid samples in Figure 6.21 (A).  The figure shows no β-sheet 

conformation in the solution before electrospinning.  After electrospinning, changes 

were observed. New small feature is added to the PCL/P11-8 spectrum near to the PCL 

carponyl stretching area. This new peak is located in the amide I region around         

1625 cm
-1

,  see Figure 6.21 (B). Peptides spectra were subtracted from PCL spectrum to 

determine the conformation of the peptide incorporated into the PCL fibres           

(Figure 6.21 C). PCL/P11-8 has a strong absorption peak at 1625 cm
-1

 corresponding to 

its high β-sheet contents. About 85% of the peptide present in PCL/P11-8 is in the β-

sheet conformation. PCL/P11-4 has a strong absorption peak centred at 1655 cm
-1

 

indicating the high content of random coil. About 70%  of the peptide in PCL/P11-4 for 

is at random coil conformation, while β-sheet is 30%.    

 

6.3.6 The effect of the electrode charge on fabric morphology 

The results shown by SEM have opened some more questions. What are these thin 

fibres? Why they do appear in PCL/P11-8 more than PCL/P11-4? and what is the 

difference in the chemical compositions between thin and thick fibres? 

In an attempt to find the reason of the presence of small network fibres in PCL/P11-8 

fabric, electrode polarity was swapped. All previous samples described above were 

pumped from a syringe that connected to a positive electrode. Figure 6.22 shows the 

morphology of samples were pumped from a syringe that connected to a negative 

electrode. Image (A) and (B) shows low and high magnification images of  PCL/P11-4 

fabric which ejected from negative connected syringe.  The images show  no  difference 

between them and samples ejected from positive electrode. Also PCL/P11-8 solution 

when was pumped from syringe connected to negative electrode showed  no significant 

different  morphology than sample prepared from syringe connected to positive 

electrode. Still the fabrics have two different networks of fibres. 
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Figure 6.21:  IR spectra of electrospun fabric. (A) before electrospinning. (B) after electrospinning. 

(C) overliad band fitted of amide I for PCL/P11-8 and PCL/P11-4.  

(A) 

(B) 

(C) 

Random coil 

β-sheet 

C=O 

 stretching 

random 

coil 

 

β-sheet  
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Figure 6.22: SEM images of electrospun fibres. (A)  and (B) low and high magnification of   

PCL/P11-4. (C) and (D) low and high magnification of PCL/P11-8. 

 

6.3.7 The effect of peptide concentration on fabric morphology 

Another experiment was done to find the reason of the presence of thin fibres in 

PCL/P11-8 fabric. PCL/P11-8 fabric was again fabricated but with high P11-8 

concentration. P11-8 concentration was increased to double the concentration of the 

samples in the previous experiments.  From Figure 6.23, it is clear that there is a large 

increase in the number of thin fibres in the fabric. 

 

6.3.7.1 Transmission electron microscopy, TEM  

PCL/P11-8 sample was viewed by EDX/TEM in order to investigate the different in the 

chemical composition between thin and thick fibres.  Figure 6.24 shows TEM image of 

PCL/P11-8. Figure 6.25 shows the EDX spectra of PCL/P11-8. 

 

 

 

(A) (B) 

(C) (D) 



177 

 

 

 

 

 

    

 

 

Figure 6.23: SEM images of PCL/P11-8   with high concentration of P11-8. 
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Figure 6. 24: TEM image of PCL/P11-8 showing thick and thin fibres. 

 

 

 

Figure 6.25: The  EDX spectrum of  PCL/P11-8. (A) thick. (B) thin fibre. 

(A) 

(B) 



179 

 

6.4 Discussion  

The goal of this chapter was to design a composition of peptide-enriched electrospun 

materials for biomedical application. This new fabricated materials were characterized 

using several tools.  

From SEM results, it is observed that the average of fibres diameters was slightly 

decreased with the addition of peptide compared to fibres without peptide. The presence 

of charged molecules in the spinning solution increases the charge density on the 

surface of the ejected polymer jet. When the solution travels through the electric field, 

greater elongation and thinning force are imposed due to enhanced conductivity. As a 

result,  fibres with  smaller diameter are fabricated [168, 170]. In agreement with this 

result, the same effect has been seen by many authors. Zang et al. have shown  that 

poly(vinyl alcohol) fibre diameters were decreased from 214  ± 19 nm to 159 ± 21 nm 

when NaCl concentration was increased from 0.05 to 0.2% [180]. J.Zeng et al. have 

concluded from their investigation that the addition of anions or cations to the 

electrospinning solution increases the electrospining conductivity  causing a decrease in 

the fibre diameter [181].   

Electrospinning parameters have significant effect on the fibres' diameter. Distance is an 

effective parameter in the electrospinning process. The diameters were observed to 

decrease with increasing distance. The reason could be that longer travelling distance 

gives the polymer solution more time to be elongated. As a result, smaller diameters are 

fabricated.  This conclusion is consistent with work of Doshi and Reneker.  They 

examined the effects of various processing parameters on PEO fibre morphology. They 

found that the fibre diameter decreased with increasing distance [163]. In other work 

done by, Jaeger et al. they also found  that longer distance  decreases the fibre diameters 

of PEO/water system [163].  

The fibres diameters were observed to be decreased with increasing temperature. This 

result is in agreement with a work made by Mit-Uppatham et al. They found that 

increasing the temperature yielded with smaller polyamide-6 fibres.  They attributed this 

result to the decrease in the polymer viscosity at high temperature and to the increase in 

the evaporation rate of the solvent (HFIP) [182].  
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The voltage was found to have two opposing effects on the fibers diameters. In our 

results, there was an increase in the fibres diameter upon increasing the applied electric 

voltage,  but on the opposite way, there was also a decrease in some  fibers' diameters. 

Voltage can either increase the diameter or decrease it, so the effect of the electric 

voltage is ambiguous. At the end, it could be concluded that it is difficult to isolate the 

effect of the electrospinning parameters since they are interrelated.  

CLSM revealed that the peptide distribution was homogenous during eletrospinning. 

ATR proved that peptides were self-assembled during electrospinning. Before 

electrospinning, when the solvent is present, peptides are below the critical 

concentration to self-assemble. During electrospinning, the solvent is rabidly evaporated 

and the  peptide self-assembly process is started. However, ATR also showed that  

PCL/P11-8 nanofibres   have more β-sheet conformation than PCL/P11-4 fabrics.  

At the end of this chapter, some experiments were done to investigate the reason of the 

presence of thin fibres in PCL/P11-8 more than PCL/P11-4.  The elecrospinning polarity 

was swapped and the result showed no difference in the fabric morphology. Then, the 

concentration of P11-8 was increased in the fabric PCL/P11-8 and the result showed that 

thin fibres were  increased. This result indicates that P11-8 causes thin fibres formation. 

Then, PCL/P11-8 was viewed by TEM/EDX to investigate the chemical composition in 

the two different networks of fibres.  TEM/EDX showed no difference in the chemical 

composition between the two networks; thick and thin fibres. 
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Chapter 7 

 

 

 

7 Conclusions and future work 

 

7.1 Conclusions  

The controlled delivery of antibacterial agents to the wound site is favorable, 

particularly when systemic delivery could cause organ damage due to toxicity caused by 

the preferred agents.  A limitation associated with using drug releasing dressings is the 

immediate   release of the drug when the dressing is applied even before the bacteria is 

arrested.  The overall aim of this study was to develop a 'smart' wound dressing that 

able to release the antibacterial agents only in the presence of bacteria. This work had 

four major findings. 

In chapter 3, the behaviour of three candidates of β-sheet forming peptides was 

examined in aqueous solutions and physiological-like conditions. The peptides were 

analysed using analytical techniques (FTIR and TEM) to determine their behaviour at 

the molecular & nanoscale. It was shown that P11-2 self-assemble into nanofibrils  in 

water, and into nanotubes in the aqueous solution  of HFIP in a narrow range. In 

physiological conditions, it was found that the P11-9 and P11-12 follow a hierarchical 

self-assembly process similar to that in pure water and form fibrils. Peptide nanotube 

was not seen in physiological condition and the conclusion was that peptide nanotubes 

appear in limited range.  

In chapter 4, the feasibility of coating cellulosic fabrics with peptides was investigated. 

The dressings were evaluated using SEM, CLSM and FTIR. It was shown that peptides 

can readily form a self-assembled coating around the cellulosic fabrics.  

In chapter 5,  preliminary work for designing a simple  pH-sensitive dressing were 

prepared by impregnating  fabrics in peptide solutions, P11-8 and P11-4 solutions 
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separately,  containing antibiotics. The effectiveness of the dressings were in vitro 

investigated against  Staphylococcus epidermis. The study has demonstrated that a 

peptides/antibiotics system can be used for controlling bacterial growth. The results 

showed that the peptides were stimulated by the pH of the bacteria and the loaded drugs 

were released. However, the results also showed that the   antibacterial activity of the  

fabrics modified with P11-4 was higher than those modified with P11-8. The partial 

release of the drug form P11-8 demonstrated that if the peptide is in a monomer state, the 

drug is librated and released, while if the peptide is gel the drug is entrapped. 

In chapter 6, 100% PCL and PCL/peptide nanofibres   have been successfully 

electrospun. The presence of self-assembling peptides in the nanofibres produced was 

confirmed by FTIR and CLSM analysis. For PCL/P11-4 solution, uniform fibres were 

observed. For the blend of PCL/ P11-8, two ranges of fibre diameter were observed in 

SEM images; fibres in the range of more than 100 nano-meters diameter, with average 

diameter of 380-600 nano-meters and fibres in the range of less than 100 nano-meters 

with the average fibre diameter of 30-70 nano-meters. It was suggested that the 

networks of small fibres could be peptides, which have been self-assembled to fibres, as 

they seem to be emerged from the main structure. Electrospinning parameters of voltage 

and tip-to-collector distance as well as the temperature of electrospinning environment 

were found to be the key factors that controlled the morphology of the nano-fibres.  

 

7.2 Future work  

The main aim of this thesis has been met. However, there are several areas of this thesis 

that can be expanded at a future stage.  

It has been shown that P11-2 form well defined nanotubes in the presence of HFIP. 

Further studies are required in order to fully understand the mechanism for nanotube 

formation. This could be achieved by X-ray diffraction, TEM, FTIR and NMR.  

The work in chapter 5 presented a first step in the development of  P11 sequence of  

peptide incorporating  drugs for controlled release applications. Further work should be 

focus  on understanding the interaction between peptides and  drug molecules. In this 

chapter, we demonstrated that dressings coated with peptide/drug have released the 

antibiotics in response to changes in pH induced by bacterial growth. This is a 

promising result for preventing infections caused by the implantation of medical devices. 
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Further studies could be done to optimise this methodology to treat infections caused by 

other bacterial species. Also, the experiments done here could be repeated with other 

peptides that form strong self-supporting gel at the pH of SE to determine if there is 

leakage of the drug from the peptide fibrils.  

In fact, exudating wounds contain salts.  It has been shown, within Aggeli group, that 

salt affects the peptide self-assembly. Therefore, the drug release should be investigated 

in a wound model.  

In chapter 6, well ordered nanostructures have already been successfully formed from 

self-assembling peptides into PCL nanofibres, however,  their potential as wound 

dressings and drug-releasing  textiles  has not yet been investigated. Therefore, future 

studies can be carried out to evaluate their ability to combine the triggered release  

property with the slow kinetic release for long-term use. 
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 Appendix 

 

A.Peptide content 

 

P11-2 

 

Table A1: Data for P11-2, batch CF06465O. 

HPLC (purity) 97.3 % 

In house UV  99.2 % 

In house elemental analysis C 50.8%, H 5.8 %, N 16.9 % 

 

 

P11-4  

Table A2: Data for P11-4, batch: CF10141A 

HPLC (purity) 97.3 % 

In house UV  99.2 % 

In house elemental analysis C 51.8%, H 6.2 %, N 16.9 % 

 

 

P11-8  

Table A.3: Data for P11-8, Batch: HF34148A 

HPLC (purity) 96.3 % 

In house UV 80.2 % 

In house elemental analysis C 47.1 %, H 5.6 %, N 15.3 % 
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P11-9 

Table A.4:  Data for P11-9, batch CF08380D   

P11-12 

 

 Table  A.5: Data for  P11-12  AW09357b  

HPLC (purity) 96.2% 

In house UV 82.1 % 

In house elemental analysis C 45.8%, H 5.5%, N 13.8% 

 

 

    B.  Effect of antibiotics on peptide self-assembly 

Figure A.2 shows that the addition of the antibiotics, vancomycin and levofloxcacin,  do 

not interfere with the self-assembly and the gel formation of P11-4 and P11-8. 

 

 

Figure B: The effect of antibiotics on peptide self-assembly. From Left; P11-8/vancomycin, P11-8 

Levofloxacin, P11-4/vancomycin, P11-4/Levofloxacin. 

 

C. The effect of alkaline pH of P11-8 and P11-4 

The figure below shows that P11-4 is monomer solution at ph 8, while P11-8 is biphasic 

solution containing gel on top of the vial and monomer fluid in the bottom.    

HPLC (purity) 98.2% 

In house UV 89 % 

In house elemental analysis C 51.4%, H 6.0%, N 14.7% 
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Figure C: Solutions of peptides at pH 8. Left; P11-4. Right: P11-8 

 

 

 D. Surface wettability   

The evaluation of the hydrophobicity of the material surface is an important basic 

experiment for gathering information about the surface properties.    Drops of pure 

water were separately deposited on the fibres' surfaces.   

 

Figure D: Photographs showing the surface characteristic of  PCL and cellulose fabrics. Left:  a drop of 

deionized water on cellulosic fabrics.   Right; a drop of water on 100% PCL.   
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E. The effect of electrspinning parameters on  100% PCL  

Sample Distance(cm) 
Voltage 

(V)  
Temperature  

Diameter  

range (nm) 

Average 

diameter(nm) 

1 16 15 Room temp 972-1079 1025 

2 16 15 50ºC 868-1249 1058 

3 16 20 Room temp 504-879 642 

4 16 20 50ºC 668-3317 1992 

5 16 25 Room temp 589-896 742 

6 16 25 50ºC 658-1174 916 

7 18 15 Room temp 576-970 773 

8 18 15 50ºC 795-802 798 

9 18 20 Room temp 2501-2867 2684 

10 18 20 50ºC 302-647 475 

11 18 25 Room temp 624-898 761 

12 18 25 50ºC 406-562 484 

13 20 15 Room temp 611-1161 886 

14 20 15 50ºC 931-953 941 

15 20 20 Room temp 512-632 572 

16 20 20 50ºC 442-983 712 

17 20 25 Room temp 390-409 400 

18 20 25 50ºC 365-624 494 
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F. The effect of electrspinning parameters on   PCL/P11-4 

Sample Distance(cm) Voltage (V)  Temperature  
Diameter  

range (nm) 

Average 

diameter(nm) 

1 16 15 Room temp 202-541 371 

2 16 15 50ºC 382-960 671 

3 16 20 Room temp 360-596 478 

4 16 20 50ºC 444-750 597 

5 16 25 Room temp 522-701 611 

6 16 25 50ºC 491-710 600 

7 18 15 Room temp 280-430 355 

8 18 15 50ºC 505-1030 767 

9 18 20 Room temp 480-650 565 

10 18 20 50ºC 265-494 379 

11 18 25 Room temp 483-707 645 

12 18 25 50ºC 350-624 487 

13 20 15 Room temp 367-334 350 

14 20 15 50ºC 113-612 362 

15 20 20 Room temp 318-399 358 

16 20 20 50ºC 437-520 478 

17 20 25 Room temp 430-664 547 

18 20 25 50ºC 588-998 793 
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G. The effect of electrspinning parameter on   PCL/P11-8 

 

 

 

 

  

Sample Distance(cm) 
Voltage 

(V)  
Temperature  

Diameter  

range (nm) 

Average 

diameter(nm) 

1 16 15 Room temp 200-371 285 

2 16 15 50ºC 355-480 417 

3 16 20 Room temp 204-1300 752 

4 16 20 50ºC 326-444 385 

5 16 25 Room temp 240-332 286 

6 16 25 50ºC 1700-2008 1854 

7 18 15 Room temp 190-319 254 

8 18 15 50ºC 420-633 316 

9 18 20 Room temp 260-275 267 

10 18 20 50ºC 156-276 216 

11 18 25 Room temp 197-291 244 

12 18 25 50ºC 211-539 480 

13 20 15 Room temp 181-245 163 

14 20 15 50ºC 340-411 375 

15 20 20 Room temp 233-853 543 

16 20 20 50ºC 293-313 303 

17 20 25 Room temp 595-633 614 

18 20 25 50ºC 492-1300 896 
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