Fracture Mechanics
and Its Application in Rock Excavation Engineering

Chaoshui Xu BSc, MSc

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds
Department of Mining and Mineral Engineering

May 1993

The candidate confirms that the work submitted is my own and that appropriate credit has been given where reference has been made to the work of others
Fracture Mechanics
and Its Application in Rock Excavation Engineering

Chaoshui Xu
PhD, May 1993

Abstract

The two chevron notched specimen geometries for rock Mode I fracture toughness measurement, CB and SR, recommended by the ISRM have several disadvantages, such as very low loads required to initiate failure, complicated loading fixtures, difficult to be developed for rock mixed mode fracture testing, relatively large amounts of intact rock core needed for the test and complex specimen preparation for the SR geometry. The cracked chevron notched Brazilian disc (CCNBD) and the cracked straight through Brazilian disc (CSTBD) specimen geometries overcome these problems and they are believed to be ideal geometries for rock fracture investigations.

The general case for the cracked Brazilian disc fracture problem is when the specimen is loaded diametrically with the crack inclined at an angle to the loading direction. Different combinations of Mode I and Mode II fracture intensities can be obtained simply by changing this angle and the loading fixture still remains as simple as for a normal Brazilian test.

A special superimposition technique is developed to theoretically solve the stress intensity factor (SIF) values for the CSTBD fracture problem with the help of dislocation and complex stress function methods. This evaluation can generate accurate SIF results for the problem with any crack length $\alpha(a/R) = 0.05-0.95$, while the mixed mode SIF solution for $\alpha > 0.60$ has not been reached by previous researchers. The relative theoretical SIF solution for the corresponding CCNBD fracture problem (single or mixed fracture modes) is obtained by using Bluhm’s slice model proposed for general crack problems.

Numerical calibrations for Mode I fracture problems of the CSTBD and the CCNBD specimens have been conducted by using 194 different specimen geometries and the results prove the correctness of the theoretical evaluations. The valid CCNBD geometrical range for a valid rock Mode I fracture toughness test is numerically investigated and then experimentally validated based on 40 different CCNBD geometries by using 42 different rocks. Experimental studies on the minimum specimen size requirement for a valid CCNBD rock Mode I fracture toughness test are also carried out and the approximate critical criteria is given. The great advantages of using the CCNBD specimens for rock fracture toughness measurement have been investigated and the documentation for recommending the CCNBD specimen geometry to the ISRM as the third suggested method for rock Mode I fracture toughness test is presented.

The rock Mode I fracture toughness values are then related to rock conventional properties for the purpose of prediction.

Rock cutting mechanics is analyzed by probabilistic fracture mechanics and Weibull's distribution model is found to better express the characteristics of rock cutting performance parameters. Some initial predictions for these parameters based on this mode are then presented.
Keys to the Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEASY</td>
<td>Boundary Element Analysis SYstem soft package</td>
</tr>
<tr>
<td>BEM</td>
<td>Boundary Element Method</td>
</tr>
<tr>
<td>BT</td>
<td>Burst Test specimen</td>
</tr>
<tr>
<td>C.D.</td>
<td>diamond saw Cutting Depth</td>
</tr>
<tr>
<td>CB</td>
<td>Chevron Bend specimen</td>
</tr>
<tr>
<td>CCNBD</td>
<td>Cracked Chevron-Notched Brazilian Disc</td>
</tr>
<tr>
<td>CM</td>
<td>Compliance Method</td>
</tr>
<tr>
<td>CMOD</td>
<td>Crack Mouth Opening Displacement</td>
</tr>
<tr>
<td>COD</td>
<td>Crack mouth Opening Displacement</td>
</tr>
<tr>
<td>CS</td>
<td>Cutting Strength in rock cutting</td>
</tr>
<tr>
<td>CSTBD</td>
<td>Cracked Straight-Through Brazilian Disc</td>
</tr>
<tr>
<td>CT</td>
<td>Compact Tension</td>
</tr>
<tr>
<td>DCB</td>
<td>Double Cantilever Beam</td>
</tr>
<tr>
<td>DI</td>
<td>Direct Indentation method</td>
</tr>
<tr>
<td>DSM</td>
<td>Direct Stress Method</td>
</tr>
<tr>
<td>DT</td>
<td>Double Torsion</td>
</tr>
<tr>
<td>EPFM</td>
<td>Elastic-Plastic Fracture Mechanics</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FS</td>
<td>Fracture Strength in rock cutting</td>
</tr>
<tr>
<td>FSMA</td>
<td>MAjor chipping fracture strength in rock cutting</td>
</tr>
<tr>
<td>FSMI</td>
<td>MInor chipping Fracture Strength in rock cutting</td>
</tr>
<tr>
<td>IDM</td>
<td>Immediate Displacement Method</td>
</tr>
<tr>
<td>IS</td>
<td>Indentation Strength in rock cutting</td>
</tr>
<tr>
<td>LEFM</td>
<td>Linear Elastic Fracture Mechanics</td>
</tr>
<tr>
<td>LPD</td>
<td>Loading Point Displacement</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transformer transducer</td>
</tr>
<tr>
<td>MA</td>
<td>MAjor chipping in rock cutting</td>
</tr>
<tr>
<td>MI</td>
<td>MInor chipping in rock cutting</td>
</tr>
<tr>
<td>PFM</td>
<td>Plastic Fracture Mechanics</td>
</tr>
<tr>
<td>SCB</td>
<td>Semi-Circle Bending specimen</td>
</tr>
<tr>
<td>SE</td>
<td>rock cutting Specific Energy</td>
</tr>
<tr>
<td>SECRBB</td>
<td>Single Edge Cracked Round Bar in Bending</td>
</tr>
<tr>
<td>SENBB</td>
<td>Single Edge Notched Beam in Bending</td>
</tr>
<tr>
<td>SIF</td>
<td>Stress Intensity Factor</td>
</tr>
<tr>
<td>SR</td>
<td>Short Rod Specimen</td>
</tr>
<tr>
<td>TBM</td>
<td>Tunnel Boring Machine</td>
</tr>
<tr>
<td>VCEM</td>
<td>Virtual Crack Extension Method</td>
</tr>
</tbody>
</table>
II

Common Nomenclature

\(a \) - semi-crack length
\(a_0 \) - semi-initial length of a chevron crack for a CCNBD specimen
\(a_1 \) - semi-final length of a chevron crack for a CCNBD specimen
\(a_m \) - semi-critical crack length
\(\alpha \) - dimensionless crack length
\(\alpha_0, \alpha_1 \) - dimensionless expressions of \(a_0 \) and \(a_1 \)
\(\alpha_0, \alpha_1 \) - dimensionless expressions of \(B \) and \(R_3 \)
\(\alpha_R, \alpha_\theta \) - critical crack length and critical crack inclination angle for pure Mode II fracture condition for the CSTBD fracture problem
\(\theta \) - crack inclination angle with the loading direction in the mixed mode CSTBD and CCNBD fracture problems
\(\gamma \) - crack surface energy per unit area
\(\rho \) - density
\(\nu \) - Poisson’s ratio
\(\sigma_c \) - rock uniaxial compressive strength
\(\sigma_t \) - rock tensile strength
\(\sigma_s \) - rock shear strength
\(\sigma_N \) - normal stress acting on a crack surface along the normal direction
\(\sigma_T \) - tangential stress acting on a crack surface along the tangential direction
\(\sigma_{xx}, \sigma_{yy}, \sigma_{xy} \) - stress components (stress field) at any arbitrary point inside the media considered
\(\varepsilon_z \) - strain value at the crack front along the specimen thickness direction
\(\phi \) - dislocation variable
\(\Lambda_{\text{min}} \) - critical (minimum) dimensionless SIF for the CB and SR specimens
\(B \) - thickness of the CSTBD or the CCNBD specimens
\(b \) - width of the crack front of a propagating crack
\(C(\alpha) \) - dimensional compliance of a cracked system
\(\text{CBE}' \) - dimensionless compliance of a crack system
\(D \) - disc diameter of the CSTBD or the CCNBD specimens
\(D_{\text{min}} \) - minimum valid specimen size (diameter) of CCNBD specimens for rock \(K_{\text{IC}} \) test.
\(E \) - Young's modulus
\(f(\alpha) \) - dimensionless SIF for the CSTBD specimens under Mode I fracture condition
\(f(\alpha, \theta) \) - dimensionless SIF for the CSTBD specimens under mixed mode fracture
III

condition

\(f_I(\alpha, \theta) \) - Mode I dimensionless SIF component of \(f(\alpha, \theta) \)

\(f_{II}(\alpha, \theta) \) - Mode II dimensionless SIF component of \(f(\alpha, \theta) \)

\(f(\xi), g(\xi) \) - edge dislocation densities

\(F(\phi), G(\phi) \) - nominal edge dislocation densities

\(F_C, F_N \) - rock cutting and normal forces

\(G \) - crack strain energy release rate

\(h \) - rock cutting depth by mechanical tools

\(h_e \) - diamond saw cutting depth for the CCNBD specimen preparation

\(k_B \) - SIF recalibration constant for the Mode I CCNBD fracture problem

\(K \) - dimensional stress intensity factor, or SIF

\(K_I, K_{II} \) - dimensional Mode I and Mode II SIF values

\(K_C \) - rock fracture toughness for any fracture mode

\(K_{IC} \) - rock Mode I fracture toughness

\(M_G \) - rock shear modulus

\(P \) - external force or load

\(P_{max} \) - failure (maximum) external load for a cracked system

\(P_X, P_Y \) - disc boundary traction loads along the X and Y directions

\(P(S) \) - probability of failure when the system is under the action of the external stress

\(S \)

\(P_t, P_n \) - boundary tangential and normal forces

\(r, \beta \) - polar coordinates

\(R \) - disc radius of the CSTBD or the CCNBD specimens

\(r_e \) - size of the micro-cracking process zone

\(r_p \) - size of the plastic process zone

\(r_{mc} \) - size of the micro-cracking zone in the vicinity of crack tips for rock materials

\(R_s, D_s \) - diamond saw radius and diameter for the CCNBD specimen preparation

\(s \) - crack coordinate, \(s \in [-a, +a] \)

\(SD \) - standard deviation

\(SE \) - rock cutting specific energy

\(S_U, S_p, m \) - Weibull distribution constants for rock cutting performance parameters

\(T_X, T_Y \) - disc boundary traction stresses along the X and Y directions

\(u, v \) - geometrical constants for the \(Y^* \) evaluation of the CCNBD specimens

\(U \) - energy term of a cracked system

\(x, y \) - Cartesian coordinates

\(Y(\alpha) \) - dimensionless SIF for the CSTBD specimens under Mode I fracture condition
Y(α, θ) - dimensionless SIF for the CSTBD specimens under mixed mode fracture condition

YI(α, θ) - Mode I dimensionless SIF component of Y(α, θ)

YII(α, θ) - Mode II dimensionless SIF component of Y(α, θ)

Y*(α) - dimensionless SIF for the CCNBD specimens under Mode I fracture condition

Y*I, Y*II - Mode I and Mode II dimensionless SIF components of the mixed mode dimensionless SIF Y*\text{mix} for the CCNBD specimens under mixed fracture condition

Y*\text{mix} - mixed mode dimensionless SIF for the CCNBD specimens

Y*m - critical (minimum) dimensionless SIF values of the CCNBD specimens under Mode I fracture condition

Z - complex coordinate, Z = x + i·y = r·e^{iθ}
Acknowledgement

The Author would like to express his sincere gratitude to all those without whose help much of this research work would have been impossible, especially the followings:

The British Council and The State Education Commission, PRC for their generous financial support through the scholarship.

Professor D.J.Fray, Head of the Department of Mining and Mineral Engineering, University of Leeds and Professor J.Tunnicliffe, Head of the Department of Mining Engineering, University of Newcastle upon Tyne, for providing the research facilities.

Dr. R.J.Fowell, Reader Mining Engineering, for his excellent supervision of the research work, his generous support with the machining equipment and rock samples, and his kindness and hospitality.

The Computing Laboratory of The University of Newcastle upon Tyne, for providing the excellent computing facilities, which were vitally important for this research.

Professor Tiangui Ren and Professor Minghan Feng in the Mining Research Institute, University of Science and Technology Beijing, PRC, for their encouragement, support and understanding during this research.

Dr. N.Brook for his kindness and interest in this research.

Mr. P. Doran, Mr. C. Hudson, Mr. P. Townhill-Rewston, Mr. J.Haigh, Mr. P. Jarvis and other technicians of the department, for their valuable help during the specimen preparation and the experiment. It was a great pleasure to work with them. Thanks are also directed to Mr. P.M. Davey and Mr. A.V. Greenhalgh for their help during the research.

Mr. M. McKenna, chief technician of the Department of Civil Engineering, University of Newcastle upon Tyne, for his help in the transportation of rock samples from Newcastle to Leeds.

Mrs. P. Kirwan and Ms. J. Riestley, secretaries of the department, for their kind help, and most importantly, for their smiles.

Dr. J. Martin, Dr. T. Gillani, Dr. J. Searle, Dr. A. Young and Mr. D. Author for their helpful discussions and friendship. I will miss those days when working together with them.

Mr. C. Christie and Mrs. R. Christie, Mr. R. Scott and Mrs. S. Scott for their hospitality and following the progress of my research.

Last but not least, Lijuan Wang, my wife, for her patience and understanding.
VI

Contents

Keys to Abbreviations .. I
Common Nomenclature .. II
Acknowledgement ... V
Contents ... VI
Lists of Figures and Illustrations ... XII
Lists of Tables ... XVII
Chapter 1 Introduction .. 1
Chapter 2 Overview of Fracture Toughness Measurement 8
 §2.1 Introduction .. 8
 §2.2 Overview of Fracture Mechanics Literature 8
 §2.2.1 Origins of Fracture Mechanics 8
 §2.2.2 Energy Balance Approach ... 9
 §2.2.3 Energy Balance Modification 10
 §2.2.4 Stress Intensity Factor Approach 11
 §2.2.5 Non-singularity Stress Approach 13
 §2.2.6 Internal Equivalence ... 13
 §2.2.7 Extensive Research Areas ... 14
 §2.3 Brief Overview of Rock Fracture Mechanics 15
 §2.3.1 Background .. 15
 §2.3.2 Rock Fracture Strength .. 15
 §2.3.2.1 Coulomb’s Theory ... 16
 §2.3.2.2 Coulomb-Navier Theory 16
 §2.3.2.3 Mohr’s Theory .. 16
 §2.3.2.4 Griffith’s Theory .. 16
 §2.3.3 Some Current Aspects .. 17
 §2.4 Simple Review of Major Rock Fracture Toughness Test Methods . 18
 §2.4.1 Fracture Modes ... 18
 §2.4.2 Fracture Toughness Definitions 19
 §2.4.2.1 Definition I - Stress Intensity Factor Approach 19
 §2.4.2.2 Definition II - Energy Approach 22
 §2.4.3 Specimen Geometry ... 26
Chapter 3 Stress Intensity Factor Evaluations for CSTBD and CCNBD Specimens under Mode I Fracture Condition

§3.1 The Use of Brazilian Disc Geometries for Rock Fracture Toughness Determinations

§3.1.1 Brazilian Disc, the CSTBD and the CCNBD Specimens

§3.1.2 The CCNBD Specimens for Rock Materials

§3.2 Theoretical Solution of SIF for the CSTBD Specimen under Mode I Fracture Condition

§3.2.1 Solid Brazilian Disc

§3.2.2 Former Solutions

§3.2.3 Problem Analysis

§3.2.4 Solutions of Cases (1), (2) and (3) Problems

§3.2.5 The Stepwise Superimposition Procedure

§3.2.6 Results Presentation

§3.3 The Mode I SIF Evaluation of the CCNBD Specimens

§3.3.1 The CCNBD Specimen Geometry - Nomenclature and Relationships

§3.3.2 Relations between the Compliance and the Stress Intensity Factor of the CCNBD Specimens - Compliance Method

§3.3.2.1 Hypothesis I and $Y^*(a)$ Evaluation

§3.3.2.2 Hypothesis II and $Y^*(a)$ Evaluation

§3.3.3 Typical SIF $Y^*(a)$ Results for the CCNBD Specimens

§3.4 Fracture Toughness Evaluation

§3.5 Conclusions and Suggestions for further Researches

Chapter 4 Numerical Calibration of the Mode I CSTBD and CCNBD Fracture Problems

§4.1 Introduction

§4.2 Brief review of the general Methods Used for Numerical Calibration of Stress Intensity Factor for a Cracked Body

§4.2.1 Immediate Displacement Method - IDM

§4.2.2 Direct Stress Method - DSM
§5.4 The Analysis of the CCNBD geometry Influences on Rock K_{IC}

Testing .. 118

§5.4.1 Geometry Influence Analysis - Category I 118

§5.4.2 Geometry Influence Analysis - Category II 119

§5.5 Minimum Size Requirements for Valid CCNBD K_{IC} Test 128

§5.6 The Validation Analysis for the CCNBD K_{IC} Tests 137

§5.7 Conclusions and Suggestions for further Researches 144

Chapter 6 Draft for the Third Suggested Method for Determining the

Mode I Fracture Toughness of Rock 146

1 INTRODUCTION ... 146

2 SCOPE ... 147

3 SPECIMEN DESCRIPTION 147

4 APPARATUS .. 149

- Specimen preparation equipment 149
- Testing machine and load fixtures 150
- Specimen alignment aids .. 150
- Displacement measuring equipment 151
- Recording .. 152

5 PROCEDURE .. 152

- Specimen selection and preparation 152
- Calibration .. 154
- Setting up .. 154
- Testing ... 155

6 CALCULATIONS FOR FRACTURE TOUGHNESS 155

7 VALIDITY ANALYSIS ... 157

- Specimen size ... 157
- Use of the fracture toughness value obtained 157

8 REPORTING OF RESULTS 157

- General data .. 157
- Test sample data .. 158
- Specimen data .. 158

Chapter 7 Theoretical SIF Evaluations for the Mixed Mode CSTBD

and CCNBD Fracture Problems 159

§7.1 Introduction ... 159
§7.2 Background to the Research ... 159

§7.3 Theoretical Analysis of the Problem and the Method of Solution ... 160

§7.3.1 Problem Analysis .. 160

§7.3.2 Basic Theoretical Solutions for Case (1), (2) and (3) Problems ... 162

§7.3.2.1 Case (1) Problem ... 162

§7.3.2.2 Case (2) Problem ... 164

1. Dislocation Method .. 164

2. Complex Stress Function Method - I (Z1 Method) 167

3. Complex Stress Function Method -II (Z2 Method) 170

§7.3.2.3 Case (3) Problem ... 172

§7.3.3 The Evaluations of the Stress Intensity Factors .. 173

§7.3.4 Numerical Superimposition Procedure ... 174

§7.4 The Theoretical SIF for the Mixed Mode CSTBD Problem ... 175

§7.4.1 Dislocation Method .. 175

§7.4.1.1 F(φ) and G(φ) .. 175

§7.4.1.2 T_x and T_y (P_x and P_y) .. 178

§7.4.1.3 σ_N and σ_T .. 181

§7.4.2 Complex Stress Function Method - I (Z1 Method) 181

§7.4.3 Complex Stress Function Method - II (Z2 Method) 185

§7.4.4 Comments on the SIF Evaluations for Mixed Mode CSTBD Fracture Problem ... 185

§7.5 The Calculated SIF (K_i and K_II) Results ... 186

§7.6 The Pure Mode II Fracture Problem for the CSTBD Specimen ... 193

§7.7 Mixed Mode Fracture Strength Locus ... 194

§7.8 The Usage of CCNBD Specimen in Mixed Mode Fracture Studies ... 197

§7.9 Conclusions and Suggestions for further Research ... 200

Chapter 8 Initial Probabilistic Fracture Mechanics Approach to Rock
Lists of Figures and Illustrations

Figure 2.1	- Inglis’ Solution 9
Figure 2.2	- Three Fracture Modes 18
Figure 2.3	- K_Q Definitions 20
Figure 2.4	- K_I Definitions 22
Figure 2.5	- R-Curve Determinations 24
Figure 2.6	- Definition of J-integration 25
Figure 2.7	- J_c by Compliance Method 25
Figure 2.8	- Testing Geometry I 28
Figure 2.9	- Testing Geometry II - Chevron Notched Specimens 32

Figure 3.1	- Diametrically Loaded Brazilian Disc 35
Figure 3.2	- CSTBD Subjected to 2P 37
Figure 3.3	- Problem Analysis of the CSTBD under Mode I Fracture Condition 38
Figure 3.4	- Sneddon’s Solution 40
Figure 3.5	- Boundary Elements 41
Figure 3.6 (a)	- Boundary Loadings - Vertical 41
Figure 3.6 (b)	- Boundary Loadings - Horizontal 41
Figure 3.7	- Mode I SIF Evaluation Results for the CSTBD Specimens 46
Figure 3.8	- The CCNBD Nomenclature 47
Figure 3.9	- Compliance Method 49
Figure 3.10	- Hypothesis II for the CCNBD 50
Figure 3.11	- Typical $Y^*(\alpha)$ Results for some CCNBD Specimens 53
Figure 3.12 (a)	- $Y^*(\alpha)$ for the CCNBD (short crack) 54
Figure 3.12 (b)	- $Y^*(\alpha)$ for the CCNBD (medium crack) 54
Figure 3.12 (c)	- $Y^*(\alpha)$ for the CCNBD (long crack) 55
Figure 3.12 (d)	- $Y^*(\alpha)$ for the CCNBD (B value fixed) 55

Figure 4.1	- Crack tip 60
Figure 4.2	- DSM Extrapolation 61
Figure 4.3	- Calibrated Disc Part 64
Figure 4.4	- Crack Plane Meshing 64
Figure 4.5 - Meshing of a CCNBD Specimen for FEM Analysis 66
Figure 4.6 (a) - COD(r) of the Cracked Part of the CCNBD Specimen 67
Figure 4.6 (b) - COD(α) of the Cracked Part of the CCNBD Specimen 67
Figure 4.7 - Comparison between Calibrated and Theoretical Results (CSTBD) . 68
Figure 4.8 - k_B - α_B Relationship .. 82
Figure 4.9 (a) - Y*(α) Calibration for CNA, CNC, CNI, CNJ, CNK
and CNB Groups .. 83
Figure 4.9 (b) - Y*(α) Calibration for CND, CNE, CNG, CNH, Da01
and Da02 Groups .. 84
Figure 4.9 (c) - Y*(α) Calibration for Da03, Da04, Da05, Da11, Da12
and Da13 Groups .. 85
Figure 4.9 (d) - Y*(α) Calibration for Da14, Db01, Db02, Db03, Db04
and Db11 Groups .. 86
Figure 4.9 (e) - Y*(α) Calibration for Db12, Dc01, Dc02 and TH Groups 87
Figure 4.10 - Y*(α) Comparison .. 88
Figure 4.11 - Y* m Comparison .. 88
Figure 4.12 (a) - Plastic Zone ... 90
Figure 4.12 (b) - Micro-cracking Zone 90
Figure 4.13 - The Valid Geometrical Range for the CCNBD Specimens 92
Figure 4.14 - ε_z at r = 0.5 mm .. 94
Figure 4.15 - ε_z vs α_B ... 94
Figure 4.16 (a) - u Values ... 98
Figure 4.16 (b) - v Values ... 98
Figure 4.17 - u and v vs α_0 and α_B 99
Figure 4.18 - The Correlation Coefficients for the u and v Values 103
Figure 4.19 (a) - Typical Y* m Variations (α_0 = 0.10) 100
Figure 4.19 (b) - Typical Y* m Variations (α_0 = 0.20) 100
Figure 4.19 (c) - Typical Y* m Variations (α_0 = 0.30) 101
Figure 4.19 (d) - Typical Y* m Variations (α_0 = 0.40) 101
Figure 4.20 (a) - Critical Crack Length a_m for α_0 = 0.10 102
Figure 4.20 (b) - Critical Crack Length a_m for α_0 = 0.30 102
Figure 4.21 - Error Evaluation ... 105
Figure 5.1 - Geometrical Positions of the CCNBD Specimens Used
for Experimental Validation ... 111
Figure 5.2 - The Chevron Bend (CB) and the Short Rod (SR)
Specimens with Basic Notations 113
Figure 5.3 - Jig for CCNBD Specimen Preparation 114
Figure 5.4 - CCNBD Specimen Cutting 115
Figure 5.5 - Testing Fixture 116
Figure 5.6 - Setting-up Aid 117
Figure 5.7 (a) - Geometry Influence testing Results for Rock Samples 1-6 125
Figure 5.7 (b) - Geometry Influence testing Results for Rock Samples 7-10 126
Figure 5.8 - K_{IC} Results by Different CCNBD Geometries of Sample 20 127
Figure 5.9 (a) - Size Influence Test Results for Rock Samples 1, 5, 6 and 8 133
Figure 5.9 (b) - Size Influence Test Results for Rock Samples 9-14 135
Figure 5.9 (c) - Size Influence Test Results for Rock Samples 15-18 136
Figure 5.10 - Comparison between K_{IC}^{CCNBD} and K_{IC}^{ISRM} 138
Figure 5.11 - K_{IC} vs E 142
Figure 5.12 (a) - Relationship between K_{IC} and σ_{c} 143
Figure 5.12 (b) - Relationship between K_{IC} and σ_{i} 143

Chapter 6
Figure 1 - The CCNBD Specimen Geometry with Recommended Test Fixture 147
Figure 2 - Valid geometrical Range 149
Figure 3 - Jig for the CCNBD Specimen Preparation 150
Figure 4 - Displacement Measurement 151
Figure 5 - Cutting Procedure 153
Figure 7.1 - Mixed Mode Brazilian Disc 159
Figure 7.2 - Numerical Solution Procedure 160
Figure 7.3 - Loaded Brazilian Disc 163
Figure 7.4 - Normal and Tangential Stress Distributions along Disc Diameter 163
Figure 7.5 - Dislocation Coordinates 164
Figure 7.6 - Z1 Method 168
Figure 7.7 - Polar Coordinates 168
Figure 7.8 - Opening of a Crack by Wedge Forces 170
Figure 7.9 - Case (3) Problem 172
Figure 7.10 (a) - $F(\phi)$ and $G(\phi)$ for $\alpha=0.8$ and $\theta=0^\circ$ 176
Figure 7.10 (b) - $F(\phi)$ and $G(\phi)$ for $\alpha=0.8$ and $\theta=5^\circ$ 176
Figure 7.10 (c) - $F(\phi)$ and $G(\phi)$ for $\alpha=0.8$ and $\theta=50^\circ$ 177
Figure 7.10 (d) - $F(\phi)$ and $G(\phi)$ for $\alpha=0.3$ and $\theta=5^\circ$ 177
Figure 7.11 (a) - T_x and T_y for $\alpha = 0.8$ and $\theta = 0^\circ$... 179
Figure 7.11 (b) - T_x and T_y for $\alpha = 0.8$ and $\theta = 5^\circ$... 179
Figure 7.11 (c) - T_x and T_y for $\alpha = 0.8$ and $\theta = 50^\circ$... 180
Figure 7.11 (d) - T_x and T_y for $\alpha = 0.3$ and $\theta = 5^\circ$... 180
Figure 7.12 (a) - σ_N and σ_T for $\alpha = 0.8$ and $\theta = 0^\circ$... 182
Figure 7.12 (b) - σ_N and σ_T for $\alpha = 0.8$ and $\theta = 5^\circ$... 182
Figure 7.12 (c) - σ_N and σ_T for $\alpha = 0.8$ and $\theta = 50^\circ$... 183
Figure 7.12 (d) - σ_N and σ_T for $\alpha = 0.3$ and $\theta = 5^\circ$... 183
Figure 7.13 (a) - σ_N and σ_T for $\alpha = 0.8$ and $\theta = 0^\circ$ (Z1) ... 184
Figure 7.13 (b) - σ_N and σ_T for $\alpha = 0.8$ and $\theta = 5^\circ$ (Z1) ... 184
Figure 7.14 (a) - $f_l(\alpha, \theta)$ and $f_N(\alpha, \theta)$ vs θ for $\alpha = 0.1$... 188
Figure 7.14 (b) - $f_l(\alpha, \theta)$ and $f_N(\alpha, \theta)$ vs θ for $\alpha = 0.3$... 188
Figure 7.14 (c) - $f_l(\alpha, \theta)$ and $f_N(\alpha, \theta)$ vs θ for $\alpha = 0.5$... 188
Figure 7.14 (d) - $f_l(\alpha, \theta)$ and $f_N(\alpha, \theta)$ vs θ for $\alpha = 0.7$... 188
Figure 7.14 (e) - $f_l(\alpha, \theta)$ and $f_N(\alpha, \theta)$ vs θ for $\alpha = 0.8$... 188
Figure 7.14 (f) - $f_l(\alpha, \theta)$ and $f_N(\alpha, \theta)$ vs θ for $\alpha = 0.9$... 188
Figure 7.15 (a) - $f_l(\alpha, \theta)$ and $f_N(\alpha, \theta)$ vs θ (dislocation method) ... 189
Figure 7.15 (b) - $f_l(\alpha, \theta)$ and $f_N(\alpha, \theta)$ vs θ (Z2 method) ... 189
Figure 7.16 (a) - $Y_1(\alpha, \theta)$ vs α (dislocation method) ... 190
Figure 7.16 (b) - $Y_1(\alpha, \theta)$ vs α (dislocation method) ... 190
Figure 7.16 (c) - $Y_1(\alpha, \theta)$ vs α (Z2 method) ... 191
Figure 7.16 (d) - $Y_1(\alpha, \theta)$ vs α (Z2 method) ... 191
Figure 7.17 - $Y_1(\alpha, \theta)$ and $Y_1(\alpha, \theta)$ vs α_0 and α_1 ... 192
Figure 7.18 - Critical α_0 and θ_0 ... 193
Figure 7.19 - Pure Mode II Y_Π ... 193
Figure 7.20 (a) - Y_{mix} for $k_x = 2.0$, $k_m = 1.0$ and $k_c = 0.0$... 195
Figure 7.20 (b) - Y_{mix} for $k_x = 2.0$, $k_m = 1.2$ and $k_c = 0.0$... 195
Figure 7.20 (c) - Y_{mix} for $k_x = 1.6$, $k_m = 1.0$ and $k_c = 0.0$... 196
Figure 7.20 (d) - Y_{mix} for $k_x = 2.0$, $k_m = 1.0$ and $k_c = 0.5$... 196
Figure 7.21 (a) - Y_1^*, $Y_1\Pi$ and Y_{mix} for $k_x = 2.0$, $k_m = 1.0$ and $k_c = 0$... 198
Figure 7.21 (b) - Y_1^*, $Y_1\Pi$ and Y_{mix} for $k_x = 2.0$, $k_m = 1.2$ and $k_c = 0$... 199

Figure 8.1 - Critical State ... 206
Figure 8.2 - Cutting and Normal Forces ... 211
Figure 8.3 - Force Trace Analysis ... 211
Figure 8.4 (a) - Probability Distribution of IS ... 212
Figure 8.4 (b) - Probability Distribution of FSMI
Figure 8.4 (c) - Probability Distribution of FSMA
Figure 8.4 (d) - Probability Distribution of L
Figure 8.5 - Possible Breaking Routes
Figure 8.6 (a) - \(S_0^c \) vs \(\sigma_c \)
Figure 8.6 (b) - \(S_0^l \) vs \(K_{IC} \)
Figure 8.6 (c) - \(S_0^A \) vs \(K_{IC} \)
Figure 8.6 (d) - \(\lambda \) vs \(S_0^c \)
Figure 8.7 (a) - \(L \) vs \(S_0^A \)
Figure 8.7 (b) - \(\varphi \) vs \(S_0^l \)
Figure 8.8 - \(SE \) vs \(F_c/L \)
Figure 8.9 (a) - \(F_N \) vs \(\sigma_c \)
Figure 8.9 (b) - \(F_c \) vs \(K_{IC} \)
Figure 8.10 - \(SE_p \) and \(SE_M \)
Figure 8.11 (a) - \(SE \) vs \(\sigma_c \)
Figure 8.11 (b) - \(SE \) vs \(K_{IC} \)
Figure 8.12 - Cutting Slot Section
Figure 8.13 - Roadheader Pick Cutting
Lists of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>K_I Evaluation Results of the CSTBD Specimen</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Polynomial Best Fit for $Y(\alpha)$ of the CSTBD Specimen</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>$Y(\alpha)$ Calibration Results for the CSTBD Specimens by IDM Method</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>$Y(\alpha)$ Calibration Results for the CSTBD Specimens by Compliance Method</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>$Y(\alpha)$ Calibration Results for the CCNBD Specimens by IDM Method</td>
<td>73-75</td>
</tr>
<tr>
<td>4.4</td>
<td>$Y(\alpha)$ Calibration Results for the CCNBD Specimens by Compliance Method</td>
<td>76-77</td>
</tr>
<tr>
<td>4.5</td>
<td>$Y(\alpha)$ Calibration Results for the CCNBD Specimens</td>
<td>78-81</td>
</tr>
<tr>
<td>4.6.1</td>
<td>$Y(\alpha)$ Calibration Results for CCNBD TH Group Specimens by IDM Method</td>
<td>81</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Minimum a_B Requirements for Plane Strain State for CCNBD Specimens</td>
<td>93</td>
</tr>
<tr>
<td>4.8</td>
<td>List of ϵ_s vs $Y(\alpha)/a_B$</td>
<td>95</td>
</tr>
<tr>
<td>4.9</td>
<td>Values of u and v</td>
<td>97</td>
</tr>
<tr>
<td>5.1</td>
<td>Rock Samples used for Experimental Validation</td>
<td>109</td>
</tr>
<tr>
<td>5.2</td>
<td>Specimen Design for CCNBD Experimental Validation Studies</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>CB and SR geometries for Comparison Testing</td>
<td>112</td>
</tr>
<tr>
<td>5.4</td>
<td>K_{IC} Test Results by G1, G2 and G3 Group Specimens</td>
<td>120-122</td>
</tr>
<tr>
<td>5.5</td>
<td>Group Average and Comparisons</td>
<td>123</td>
</tr>
<tr>
<td>5.6</td>
<td>Test Results for Rock Sample 20 by Different CCNBD Specimens</td>
<td>125</td>
</tr>
<tr>
<td>5.7.1</td>
<td>K_{IC} Test Results by S1, S2 and S3 Group Specimens</td>
<td>130-133</td>
</tr>
<tr>
<td>5.8</td>
<td>Group Average and Comparisons</td>
<td>134</td>
</tr>
<tr>
<td>5.9</td>
<td>Extra Samples Used for Experimental Validation</td>
<td>139</td>
</tr>
<tr>
<td>5.10</td>
<td>Comparisons between K_{IC}^{CCNB} and K_{IC}^{ISRM}</td>
<td>140</td>
</tr>
<tr>
<td>6.1</td>
<td>Standard CCNBD Geometrical Dimensions</td>
<td>148</td>
</tr>
<tr>
<td>6.2</td>
<td>Values of u and v</td>
<td>156</td>
</tr>
<tr>
<td>8.1</td>
<td>Rock Cutting Samples and Their Mechanical Properties</td>
<td>215</td>
</tr>
<tr>
<td>8.2</td>
<td>Indentation Strength and Fracture Strength Distribution Parameters</td>
<td>215</td>
</tr>
<tr>
<td>8.3</td>
<td>Rock Cutting Performance Prediction Procedure</td>
<td>218</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction

The key to solving rock engineering problems is rock mechanics. Unlike the mechanics of other materials, rock mechanics is dealing with a media where discontinuities, heterogeneity and anisotropy have often to be dealt with. Different from man-made materials, rock is a historical material. It survives and therefore records the long term history of *in-situ* geological events which have been undergone for millions of years. It suffers from being deformed, fractured, weathered, acted on thermally and chemically, permeated, changed in contents and affected by any geological influence. It then turns out to be a kind of media which, when considered at large scale, will commonly possess arbitrarily distributed faults, joints, cracks, voids in the forms of pore spaces or elongated cavities and any other possible mechanical weaknesses. These existing weaknesses within the media will form the mechanical discontinuities which will then operate as the dominant stress concentrators for stress redistribution when the media is subjected to further mechanical actions. Therefore the theories of continuum mechanics will become inapplicable.

Besides, when considered at small scale, rock is an aggregate composed of more than one mineral. These minerals commonly come in the form of individual crystals or as amorphous particles (generally referred to as mineral grains) jointed by varying amounts of cementious materials to form the rock solid. In sedimentary rock, one can always find that different types of rock in the shape of pebbles are cemented together to form this new rock. A microstructural study of rock materials has shown that intergranular cracks (grain boundary cracks) and transgranular cracks (cracks across mineral grains) are often present in rock materials [Whittaker, 1992]. It is generally the case that the sizes and directions of these mineral grains are arbitrarily distributed over the whole media, so will be the sizes and the directions of these micro-cracks.

Therefore it seems more suitable to treat the rock as some sort of discrete media disintegrated by all the discontinuities mentioned above. As a result, discrete rock mechanics has been developed. Amongst them, rock fracture mechanics has made great progress and gained in popularity since the middle 1960’s when significant early investigations were carried out by a few researchers [Bieniawski, 1967]. With a sound background knowledge of fracture mechanics for metallic and other man-made materials accumulated over half of a century, we can now reach some solutions for rock fracture mechanics by combining the existing theories with the specialities of rock materials both flexibly and critically.
It is then essential to appreciate some of the basic special characteristics of rock which are different to metallic and other man-made materials which classic fracture mechanics deals with. These differences have to be in one's mind when adapting the existing theories for rock fracture mechanics studies.

1) As mentioned, rock is intrinsically (naturally) discontinuous, heterogeneous and anisotropic, which generally means that the pre-existing discontinuities and variations in crystal structure and strength ahead of the extending crack will affect the local stress distributions and crack propagation behaviour. Therefore crack propagation in rock materials will include irregularities, random characteristics and a tendency to wander along grain boundaries and the pre-existing discontinuity (weakness) planes. The crack propagation procedure is normally complicated. Crack bifurcation and branching, random propagation, self-arrest and dramatic variations of propagation stability status can always be observed.

2) Fracture problems for most rock materials are brittle or quasi-brittle in almost all rock engineering applications of interest to man. Rock plastic fracturing is only a special case when rock is subjected to some particular environment, extremely high temperature thermal action for instance. Therefore the concept of the plastic fracture process zone in metallic materials has to be changed when dealing with the crack tip fracture status of rock materials. The micro-cracking fracture process zone concept is always the substitution when dealing with rock.

3) On the large scale, rock masses may behave dramatically different to the mechanical characteristics of small scale rock samples coming from the rock mass and measured in the laboratory. Therefore when applying laboratory research results to practical rock engineering, one should always be critical about the scale factor for mechanical behaviour.

4) Rock specimens for laboratory testing are mostly available in the form of rock cores. Therefore core based testing methods are to be preferred.
position in rock fracture research.

Fracture toughness has been found to be the most important parameter to describe the rock materials ability to resist fracturing. Its value is applied widely in rock engineering such as:

1) A parameter for fracture classification of rock materials;
2) A material property to be used in the assessment of the stability of rock structures and in the interpretation of geological features.
3) An index to be used in modelling the rock fragmentation process by cutting, drilling or blasting.

It is believed that, similar to metallic materials, rock fracture toughness K_c is an intrinsic material constant if it is properly measured. It will not be dependent on the test specimen and the external loading conditions. Efforts have been spent on trying to find proper test methods for rock materials for many years. It was Schmidt (1975,1976) who was the first to determine the Mode I (the definition of different fracture modes is given in Figure 2.1) fracture toughness of rock materials following the standard testing method suggested by the ASTM for measuring the plane strain fracture toughness of metallic materials. Thereafter the fracture toughness measurement for rocks with different specimen configurations by researchers was reported [Clifton, 1976]. However the methods used were originally designed for metallic materials, and therefore when used for rock materials, the specimen configurations required unreasonably large size rock samples and extensive machining, which in most cases were impractical or some times found to be impossible.

Meanwhile it had been found that the chevron notched short bar was an ideal specimen for measuring the Mode I fracture toughness of high strength brittle materials [Barker, 1977, 1979, 1983] as the difficult measurement of the critical crack length does not have to be undertaken. With this significant knowledge it was soon found that core based specimens with chevron notches have numerous advantages over other forms for determining rock fracture toughness [Ouchterlony, 1986]. As a result, two suggested standard methods, the chevron bend specimen (CB) and the short rod specimen (SR), for measuring the plain strain fracture toughness of rock materials were recommended in 1988 by the Testing Commission of the ISRM. Therefore consistent and comparable results of fracture toughness values of any rock material can be obtained.

However some disadvantages exist with these two specimen configurations. The following three points always make the testing inconvenient, difficult and sometimes impossible.

1) The failure loads P_{max} for these two specimens are generally very low for most of the rock materials (P_{max} normally less than 1 kN). This puts a high requirement on the low load range testing ability of the apparatus and will induce large system error at the same time.
Sometimes it will cause problems if there is a certain preload applied by the testing machine.

2) The sample preparation for SR specimens is complicated. The machining tolerance for both of the specimens is low and therefore the specimen preparation is inconvenient and it is easy to generate useless specimens because of this tolerance.

3) Both of the testing methods involve complicated loading fixtures, especially the SR method. This is always unwelcome for engineering purposes.

In addition, in rock engineering it is clear that a pure Mode I form of loading seldom represents real conditions. Rock fracturing more commonly occurs under Mode II and mixed Mode I and Mode II loading. As a result, there is an increasing trend for rock fracture mechanics researches to be directed to the investigation of the fracture behaviour of Mode II and mixed Mode I and Mode II loadings of rock materials under complicated external loads. Therefore it is equally important to develop methods for measuring the Mode II fracture toughness and the mixed mode fracture strength locus of rock materials. Unfortunately there is little potential for extending the CB and SR specimens for this purpose as the loading fixtures will become very complicated and therefore impractical.

The introduction of the cracked straight through Brazilian disc (CSTBD) and the chevron cracked notched Brazilian disc (CCNBD) seems to possess great potential for current and future applications and overcomes the disadvantages of the CB and SR specimens. The CCNBD geometry was first used by Shetty [1985, 1986, 1987] for ceramic fracture research and then adopted by Fowell and Chen [1989] for rock materials. Our current researches have shown that many natural advantages are associated with CCNBD specimen for rock fracture investigations over the other chevron notched specimens. Among them, the following are some of the important points:

1) The failure load of CCNBD specimen for Mode I fracture toughness test is at least six times greater compared with the CB specimen and twelve times with the SR specimen. This certainly means that it is convenient, low cost and suitable for testing on most compression testing machines available in rock mechanics laboratories.

2) Larger tolerances for the specimen dimensions are allowed. Thus specimen preparation for the CCNBD is made a simple job.

3) No special loading fixture is required. The testing procedure will be just the same as for the Brazilian disc test to measure the tensile strength of rock materials which is a very common test procedure.

4) Quite interestingly, if the CB, SR and CCNBD specimens are machined from the same rock core, their crack orientations can be selected to be perpendicular to each other in 3-D space. Therefore they together compose a complete specimen set to be used for rock
anisotropic fracture studies. In fact, the CSTBD and the CCNBD themself only are believed to be the ideal specimens for this purpose.

5) In addition, great potential exists for the CSTBD and the CCNBD to be developed for Mode II fracture toughness, mixed mode fracture strength locus measurement and other mixed mode rock fracture investigations. Different combinations of different Mode I and Mode II fracture intensities can easily be obtained simply by altering the crack orientation to the loading direction and the whole testing procedure will still remain unchanged.

It is the purpose of developing the CSTBD and the CCNBD specimens for Mode I, Mode II and mixed mode rock fracture tests that is the principal aim of this research. The results presented in this thesis are only a single step away from practical application of the CSTBD and the CCNBD specimens. It is considered that it is now the time to recommend the CCNBD testing method as the third suggested method for Mode I rock fracture toughness testing to the ISRM. Even though we are satisfied with our test results, the usage of the method by other researchers, or some sort of round robin test are vitally important as the method needs to be substantiated by a large amount of independent testing and the repeatability of the test results under different circumstances needs to be determined.

For pure Mode II fracture toughness measurement and the rock fracture strength locus test by the CSTBD and the CCNBD specimens, much more needs to be done before the same draft documentation as for Mode I by the CCNBD method can be drawn up. However the theoretical evaluations of the CSTBD specimen with the crack length $a > 0.6$ under mixed mode fracture conditions has been solved numerically, which has not yet been reached by the previous researchers. Therefore the Mode I and Mode II stress intensity factors for CSTBD and CCNBD specimens of any crack length ($a = 0.01-0.95$) under the action of any combinations of mixed mode fracture intensities can be theoretically obtained.

Chapter 2 presents an overview of fracture mechanics, rock fracture mechanics and the principal rock fracture toughness measurement tests. The theories, their origination and development history are briefly described.

Chapter 3 concentrates on the theoretical solutions of the pure Mode I fracture problems for the CSTBD and the CCNBD specimens. A stepwise superimposition technique is developed which helps to obtain the theoretical solution of the CSTBD fracture problem numerically. The result is expressed by the best fit polynomial and comparison with the limited existing results shows it to be satisfactory. The theoretical solutions for the CCNBD Mode I fracture problem is also given numerically using two different compliance models, Munz's identical compliance changing rate model and Bluhm's compliance superimposition slice model. It is found that the later one can yield more reasonable results for the case of the
CCNBD fracture problem.

The numerical calibration by boundary element and finite element methods of the CSTBD and the CCNBD fracture problems described in Chapter 2 is presented in Chapter 4, where satisfactory agreement between the theoretical, BEM and FEM calibration results are shown. The CCNBD specimen geometrical requirements for a plain strain fracture environment around the crack front are also studied and it was found that the CCNBD geometries have to be within a certain range in order to have a valid test for the rock plane strain fracture toughness. The critical dimensionless stress intensity factors for any CCNBD specimens with the geometries within the valid range, which have to be used for the fracture toughness calculations when the specimen is used for the test, are finally presented numerically in a tabulated form.

Research then moves on to the experimental calibrations of CCNBD specimens for Mode I rock fracture toughness measurement, by comparison with the test results by the CB and the SR methods. The results are presented in Chapter 5. The experiments substantiated the CCNBD method as a satisfactory test method. The valid range argument reached in Chapter 4 is also proved experimentally. The CCNBD minimum size requirement for a valid plane strain fracture toughness test is studied as well. The samples tested are still far too limited but some sort of approximate conclusions have been reached. More test have to be carried out in order to have a more precise minimum size requirement estimation. Furthermore, the rock Mode I fracture toughness values are correlated with conventional rock mechanical properties, Young's modulus, tensile strength and uniaxial compressive strength. The data is based on the current test results and on the large database presented in [Chen, 1989] and therefore is believed to be able to predict the rock Mode I fracture toughness by these conventional mechanical properties more precisely.

Based on the theoretical, numerical and experimental evaluations mentioned, it is believed that CCNBD is an improved chevron specimen to be used for rock Mode I fracture toughness measurement. It is time to recommend it as the third ISRM suggested standard method. The first draft documentation for this recommendation is presented as Chapter 6 in this thesis.

Due to the importance of Mode II and mixed mode fracture testing and the good features of the CSTBD and the CCNBD geometries for these tests, theoretical investigations for mixed mode CSTBD and CCNBD fracture problems have been carried out in Chapter 7. The existing solutions are only available for the mixed mode CSTBD fracture problem for crack lengths up to $\alpha = 0.6$, but unfortunately the CSTBD with such a short crack can hardly be of any use in practical applications due to machining difficulties. Solution methods for these mixed mode fracture problems have been developed by combining the dislocation method and complex stress function methods with the stepwise superimposition technique developed in Chapter 3, and the solutions for the CSTBD with crack lengths up to $\alpha = 0.95$ have been
Chapter 1: Introduction

reached. The evaluated results are presented graphically and evaluation programs for any cases are listed in Appendix B. The critical crack inclination angles with the loading direction for pure Mode II CSTBD problem and the corresponding stress intensity factor (SIF) are then evaluated and the results are presented by a best fit polynomial for convenience of application. Based on these results, it is believed that pure Mode II fracture toughness of rock materials can be easily measured by this method. Mixed mode fracture strength locus problem of the CSTBD structure have then been theoretically investigated and some typical results are presented graphically. It is believed that with the help of these ideas, the mixed mode fracture test for rock materials can be carried out. At the end of the chapter, the mixed mode CCNBD problem is theoretically investigated. Solutions have been obtained but again the results need numerical and experimental validation. Obviously this chapter is just an opening for further research.

Rocks possess random characteristics, as mentioned above, all rock property "constants" are actually variables changing from point to point within the rock and the external loading conditions are generally uncertain as well. However when a long term and a large number of observations have been made, these uncertainties can turn out to follow certain statistical (probabilistic) distributions. Therefore when applying rock fracture research results to practical rock engineering, these random characteristics have to be carefully considered.

Chapter 8 deals with the rock cutting problem by using rock fracture toughness as one of the most important indices to determine cutting efficiency by probabilistic fracture mechanics. The Weibull probabilistic distribution is introduced to describe the "strength" of rock materials. Cutting performance parameter predictions based on the above considerations are presented. It is believed this probabilistic approach can more suitably describe the rock cutting (fracturing) mechanism. However it is only just an initial theoretical approach to the problem and many mathematically imperfect definitions are still involved. More validation investigations have to be carried out before it can be applied with the confidence required for practical applications.

In the final chapter, Chapter 9, overall conclusions and further research recommendations are summarised.
Chapter 2
Overview of Fracture Toughness Measurement

§2.1 Introduction

The differences between brittle and plastic failure has led to the development of a branch of fracture mechanics dealing particularly with brittle fracturing of engineering materials, such as ceramics, concrete and rock. Fracture toughness test techniques have developed correspondingly and have become one of the most important aspects in this area.

As a material property, the fracture toughness plays a critical principal role in the analysis of material fracture. It provides the foundation for evaluating the strength of materials from the fracture point of view. Therefore, its importance has led to a wide range of investigations into methods of measuring its values to be most suitable for solving practical problems.

§2.2 Overview of Fracture Mechanics Literature

§2.2.1 Origins of Fracture Mechanics

The significance of intense and localized concentration of stress around sharp notches was first emphasized by Inglis (1913). He obtained expressions for the maximum stress \((\sigma_y)_{\text{max}}\) at the apex of the major axis of an ellipse, where the radius of curvature \(\rho = b_e^2/a_e\) is a minimum. He also derived expressions for stress concentrations for cracks with a length of \(2a\) and a notch radius \(\rho\), in the two dimensional plane condition. They are (Figure 2.1):

\[
\begin{align*}
(\sigma_y)_{\text{max}} &= P\left(1 + \frac{2a_e}{b_e}\right) & \text{for an ellipse,} \\
(\sigma_y)_{\text{max}} &= 2\cdot P\left(\frac{a}{\rho}\right)^{\frac{1}{2}} & \text{for a crack}
\end{align*}
\]

Where
- \(P\) -- applied stress at a distance far away, in the Y direction,
- \(a_e\) -- major semi-axis of the ellipse,
- \(b_e\) -- minor semi-axis of the ellipse,
- \(a\) -- semi-length of a crack
- \(\rho\) -- radius of curvature of the crack tip, and
- \(Y\) -- the direction of the short axis \(a_e\) of the ellipse, or the direction perpendicular
to the crack line.

As can be seen from Equation (2.1), the actual stress \(\sigma_{\text{a}} \) at the apex could be extremely large, at least several times larger than the applied stress since \(b \) is very small compared with the \(a \) value. That offered the first clue to the mechanism of fracture mechanics.

However the problem was approached only from the point of view of stress concentration analysis and the results can hardly be used to solve practical fracture problems.

§2.2.2 Energy Balance Approach

Griffith (1921,1924) postulated that brittle materials contained submicroscopic defects (or flaws) from which micro cracks originate and propagate to form the catastrophic macro cracks under the external applied force. He approaches the problem of fracture from the point of thermodynamics or energy balance at the crack tip and assumed the existence of surface energy on two opposite crack surfaces. The crack can only propagate when the dynamic energy (coming from the strain energy release, the work done by the external force) exceeds the newly-created crack surface energy.

From Griffith's theory, the total energy of a strained specimen can be expressed as:

\[
U = U_0 + (U_a - F) + U_Y
\]

(2.2)

where

- \(U \) -- total energy,
- \(U_0 \) -- elastic (strain) energy of the loaded but uncracked specimen, which is a constant for a given load,
- \(U_a \) -- change in the elastic energy caused by introducing the crack with length 2a into the specimen,
- \(U_Y \) -- change in the elastic surface energy caused by the formation of the new crack surface, and
- \(F \) -- work performed by external forces, which is not part of the potential energy.

Therefore this must be subtracted from the total energy.

The sum in the bracket is the total change of the strain energy of the system (referred to as the crack extension force), which provides the energy needed for the crack to propagate. The
change of surface energy term U_s represents the cohesive molecular forces (referred to as the crack resistance force) which should be overcome by introducing some work while creating the new crack surfaces. Equilibrium is achieved when these two opposite energies are balanced, or when the total energy U reaches a critical value, i.e.,

$$\frac{\partial U}{\partial a} = 0$$ (2.3)

Griffith's theory makes it possible to obtain a numerical criterion for crack propagation. However, it is only concerned with changes in energy as a crack grows and hence ignores the details of the fracture process at the crack tip. This may not be sufficient although it gives reasonable predictions when only the initial and the final states of the extension are considered.

Nevertheless, Griffith's theory quickly achieved great popularity and has since provided the basis for newer methods through the critical concept of treating fracture in terms of changes in energy. Some of the related theories and formulas for linear fracture mechanics have already been widely accepted.

§2.2.3 Energy Balance Modification

Since Griffith's theory neglected all forms of energy dissipations other than the surface energy, Irwin (1948) and Orowan (1949) modified the theory by taking account of the small scale plasticity (still in the range of Linear Elastic Fracture Mechanics, or LEFM) around the crack tip and suggested that the analysis for ideally-brittle materials could be modified and applied to slightly-plastic fracture. Then they proposed that the Griffith-type energy balance must be between:

1) the stored strain energy, and

2) the surface energy plus the work done in plastic deformation.

Most importantly, Irwin postulated the ideas and further presented the definitions of the strain energy release rate (crack extension force) G and the crack resistance force R based on the above knowledge. For an infinitesimal crack extension Δa, G and R can be expressed as:

$$G = \frac{\partial}{\partial a} (U_s - F)$$

$$R = \frac{\partial}{\partial a} U - 4\cdot \Delta \cdot \gamma$$ (2.4)
where \(G \) -- strain (elastic) energy release rate or crack extension force, which represents the stored (elastic) energy per unit crack surface area that is available for infinitesimal extension, and

\[R \] -- crack resistance force which represents the surface energy increase that could occur owing to the crack propagation, or the energy needed (absorbed) during this process.

The factor 4 in the equation implies that four new surfaces will be created in association with any infinitesimal crack extension \(\Delta a \). In Equation (2.4), \(\gamma \) is the material-dependent constant which represents the surface energy per unit crack surface area. Originally Griffith designated:

\[\gamma = \gamma_e \quad (2.5) \]

where \(\gamma_e \) is the elastic surface energy. Irwin modified \(\gamma \) by introducing another term signifying the plastic deformation around the crack tip, i.e.,

\[\gamma = \gamma_e + \gamma_p \quad (2.6) \]

where \(\gamma_p \) is the plastic work, which is accompanying the crack extension and consumed irreversibly by the plastic deformation. For relatively ductile materials, \(\gamma_p > \gamma_e \), which means that \(R \) is mainly plastic energy and the elastic surface energy can be neglected.

Furthermore, Irwin (1958a) and Orowan (1955) demonstrated that the thermodynamic surface energy was not only determined by elastic and plastic energy. Other processes such as micro-cracking, acoustic emission, micro-plasticity, heat generation, and some other energy-needed micro-movement around the crack tip should also be taken into account when calculating the value of the practical surface energy \(\gamma \).

However, although the theory is reasonably modified, there still exists problems which cannot be solved simply by the energy balance approach, such as the slow crack growth problem, the crack propagation path and the stress field around the crack.

\section*{§2.2.4 Stress Intensity Factor Approach}

Instead of considering the energy of the entire crack system, Irwin (1957, 1958b) proposed to examine the stress field in the immediate vicinity of the crack tip. In 1946, Sneddon and Elliott took advantage of the Westergaard complex stress function [Westergaard, 1939] and solved the stress field analytically around a crack in an infinite continuum media by means of the Fourier transform technique. The solution can be expressed:
\[\sigma_{ij} = P_0 \left(\frac{a}{2\pi} \right) ^2 f_{x,y}(\beta) + \mu_{x,y}(\frac{r^2}{a^2}) \] \hspace{1cm} (2.7)

where \(P_0 \) -- applied external force,
\(a \) -- semi-length of the crack,
\(r, \beta \) -- the polar coordinates with the origin set at the apex of the crack (Figure 2.1),
\(i, j \) -- designating \(x, y \),
\(x, y \) -- the Cartesian coordinates with the origin set at the centre of the crack,
\(f_{x,y} \) -- function of \(\beta \),
\(\mu_{x,y} \) -- higher order error term, which takes a much smaller value compared with the first term in the equation when considering the immediate vicinity of the crack tip, i.e., \(r \ll a \), hence for approximation it can be neglected.

With the knowledge of Sneddon's results, Irwin derived and analyzed thoroughly the stress state around the immediate vicinity of the crack apex and pointed out that the crack tip stress under the condition of generalized plane stress or plane strain can be expressed by a two parameter equation:

\[\sigma_{ij} = K \frac{f_{y}(\beta)}{\sqrt{2\pi r}} + \mu_{y}(r) \] \hspace{1cm} (2.8)

where \(K \) is a constant which gives the magnitude of the elastic stress field. It is then referred to as a Stress Intensity Factor (SIF) of the stress field by Irwin, and it is this concept that provides the important foundation for fracture mechanics.

Obviously, the SIF \(K \) should be a function of both the crack geometry and the external load value. For two dimensional problems, it takes the form (Irwin):

\[K = \sigma \sqrt{\pi a} \cdot Y(a) \] \hspace{1cm} (2.9)

where \(\sigma \) -- applied external load,
\(a \) -- crack geometry, and
\(Y \) -- a geometrical constant depending on the given specimen configuration only.

Therefore, all the details of the loading and crack geometry are embodied in the constant \(K \), which consequently determine the local stress field. The introduction of this index overcomes the difficulties in describing and comparing the stress field around the crack tip as the local stress will tend to infinity when \(r \to 0 \) by conventional analysis. In other words, when the SIF \(K \) parameter is used, the stress field state around the crack tip can be clearly and distinctly demonstrated. In fact, as \(r \to 0 \), the whole crack system tends to a limit value, that is the numerical definition of \(K \) (Rooke & Cartwright, 1976):
Chapter 2: Overview

\[K = \lim_{r \to 0} \left\{ \sqrt{2 \pi r} \cdot \sigma_i(r,0) \right\} \quad (2.10) \]

The simplicity and convenience of the K description for the crack system makes possible the easier application of fracture mechanics. The critical values of the SIF K for the whole cracked system, which is now broadly referred to as fracture toughness, govern the conditions for crack propagation. As a result, some criterion can be hypothesized to evaluate the strength of the cracked specimen, or to estimate the tolerable flaw size from the point of fracture mechanics.

§2.2.5 Non-singularity Stress Approach

Aiming to overcome the shortcomings of continuum elastic mechanics when it is used to analyse the stress field around the crack tip, Barenblatt (1962) introduced the effect of cohesive forces acting across the faces of the crack within the range of intermolecular distances close to its tip, and proposed the theory called equilibrium cracks. It is based on the following hypotheses:

1) the end region in which the cohesive forces are active is very small compared with the crack length,
2) the stresses at the crack tip are finite, and
3) the crack surfaces close smoothly, i.e. the crack tip has a cusp shape.

He then pointed out that a non-singular stress state was obtained by the superimposition of stress due to the external loads and those due to the cohesive forces. Finally a fracture criterion was derived by putting the combined stress intensity factor equal to zero.

§2.2.6 Internal Equivalence

It is Irwin (1960) who associated the concept of stress intensity factor with the strain energy release rate. He put the work done by the stress field when moving through the displacements corresponding to the crack extension from a to a + da equal to the change of the internal strain energy \(G_{da} \) and derived the following equivalent expression between SIF K and strain energy release rate G:

\[G = \frac{K^2}{E'} \quad (2.11) \]
where,

\[
E' = \begin{cases}
\frac{E}{1 - v^2} & \text{for plane stress condition,} \\
\frac{E}{(1 - v^2)} & \text{for plane strain condition}
\end{cases}
\] \hspace{1cm} (2.12)

Here \(E\) is the Young’s modulus and \(v\) is the Poisson’s ratio.

The equivalence of these two different approaches confirms that they are both reasonable and comprehensive. It is the combination that provides an more powerful tool to study fracture mechanics, especially slightly-plastic linear fracture mechanics, and the more extensive elastic-plastic fracture mechanics (EPFM).

§2.2.7 Extensive Research Areas

The introduction of \(K\) and \(G\) lead to the rapid development of fracture mechanics in the last three decades. The following are some of the main current research areas:

1) more precise solutions to the crack problem,
2) seeking solutions for more complicated crack and loading geometries,
3) investigating single mode or mixed-mode fracture criterion,
4) extending the theory of LEFM, and searching for solutions in the area of EPFM, non-linear fracture mechanics, visco-elastic fracture mechanics, and more importantly, fatigue fracture mechanics,
5) solving some practical engineering problems by applying fracture mechanics,
6) searching for more precise and more convenient techniques for measuring fracture toughness,
7) research into the crack propagation problems, i.e., fracture dynamics, the crack initiation point(s), crack path (route), as well as the extension direction(s) and speed,
8) controlling of crack extension (origination, path and rate) and its application in engineering structures,

Most importantly, the combination of fracture mechanics with probabilistic and statistical theories creates a very powerful technique to solve some engineering problems, especially when:

1) some parameters (strength, crack length, toughness) of some engineering materials (such as rock, ceramics and some other brittle materials) can not be definitely known beforehand for a particular case, but their values follow some statistical law when a large number tests are carried out,
2) the loading conditions (or the boundary conditions) of the system studied are not kept the same for one particular observation, but the large number of tests suggests that they
will follow a certain statistical distribution.

As a matter of fact, these two situations are just the cases met in rock excavation engineering, and therefore it is expected that the relative fracture problems can be better solved by probabilistic fracture mechanics.

§2.3 Brief Overview of Rock Fracture Mechanics

§2.3.1 Background

Research into rock fracture mechanics began with the investigation of rock strength criterion. It developed with general fracture mechanics during the last few decades. The common research methods used at present are by combining the basic theories of general fracture mechanics with particular rock characteristics.

Therefore the history of this subject can be traced back to as early as 1920s, when Griffith proposed his theory for brittle materials (glass). However, owing to the specialties of rock materials, up till now there still cannot be found a satisfactory theory which is encouragingly comprehensive in rock fracture mechanics. From the constitutive standpoint, most engineering materials are relatively homogeneous. However rock is an extremely variable substance no matter whether viewed on the macroscopic, microscopic or even submicroscopic scale, as mentioned in Chapter 1. A very simple block of rock may contain many different smaller elements which may be composed of different materials (minerals) having different mechanical properties, or may have different geological structures which show different mechanical response even if made of the same minerals. Furthermore, owing to its different formation and environmental conditions, any rock can include many mechanical structural defects, such as flaws, cleavage, crystal facets, laminations or micro-cracks. It seems this coincides with Griffith’s hypothesis that all materials contain defects so that general fracture mechanics theories can be adopted directly. But it is these discontinuities that make rock media considerably less homogeneous, less continuous, and more anisotropic. As the general fracture theories are based on the hypothesis of macro-homogeneity, continuity and isotropy except for the crack flaws studied, and therefore it is obviously unsuitable to introduce these theories, without any modification, to solve the rock fracture problems. In addition, rock materials always show apparent non-linearity and large residual deformations which are obviously incompatible with basis of LEFM.
§2.3.2 Rock Fracture Strength

As a result of the complexities mentioned above, rock fracture mechanics started with the investigation of rock fracture strength criterion.

§2.3.2.1 Coulomb's Theory

Coulomb suggested that fracture will occur in rock when a maximum shear stress τ_{max} at a point in the material has reached a specific value σ_r which is referred to as rock shear strength, i.e.,

$$\tau_{\text{max}} = \frac{1}{2}(\sigma_1 - \sigma_3) > \sigma_r \quad (2.13)$$

where σ_1 and σ_3 are the maximum and the minimum principal stresses respectively:

§2.3.2.2 Coulomb-Navier Theory

Navier modified the Coulomb theory by assuming that the normal stress σ_N acting across the failure plane increased the shear resistance of the material by an amount proportional to the magnitude of the normal stress. The fracture criteria will then becomes:

$$|\tau_{\text{max}}| \geq \sigma_r + \mu \sigma_N \quad (2.14)$$

where μ -- coefficient of the internal friction.

§2.3.2.3 Mohr's Theory

Mohr proposed that a material will fracture or deform permanently when the shear stress τ on the fracture plane has increased to a critical value that depends on the normal stress σ_N acting on the same plane, i.e.:

$$\tau = f(\sigma_N) \quad (2.15)$$

where the function relationship $f(\sigma_N)$ must be determined experimentaly. Obviously this curve is the envelope to the Mohr's circles for the values of σ_3 and σ_1 at failure. For the special case when the envelope is a straight line, the Coulomb-Navier and Mohr's theories are identical.

§2.3.2.4 Griffith's Theory

Griffith hypothesized that brittle materials contain randomly oriented cracks and that stress concentrations develop at or near the end of these cracks, causing them to propagate and
ultimately contribute to macro failure. Although his theory was directed to the research of glass, however it soon was adopted to apply to other kinds of brittle materials, especially rock.

The stress analysis approach of the Griffith's theory proposed that the crack would start to extend when the tensile stress at or near its tip attained a critical value, which is referred to as molecular cohesive strength of materials by Orowan (1949). When related to the uniaxial tensile strength \(\sigma_u \), the criteria can be written as:

\[
\frac{(\sigma_1 - \sigma_3)^2}{(\sigma_1 + \sigma_3)} = -8\sigma_t
\]

(2.16)

This equation is based on the results from Inglis (1913) for the solution of the stress distribution of an ellipse in an infinite stressed plate.

Furthermore, McClintock and Walsh (1962) proposed a modification to Grifith's hypothesis, taking account of the crack closure problem (closed cracks) by introducing a coefficient of internal friction between crack faces and rewrote the criterion as:

\[
\sigma_1 - \frac{-4\sigma_t}{(1 - \frac{\sigma_3}{\sigma_1}) \cdot \left(1 + \mu^2\right) - \mu \cdot (1 + \frac{\sigma_3}{\sigma_1})}
\]

(2.17)

where \(\mu \) is the coefficient of internal friction of the rock material.

The Griffith theory applied to brittle materials can also be approached from the viewpoint of energy balance. The results are identical in appearance to the equations mentioned in section 2.2.2. The only difference is that the specific surface energy for rock materials will mainly consist of the energy consumed by micro-cracking, energy dissipation and local micro-deformation, while the plastic surface energy will make much less contribution.

§2.3.3 Some Current Aspects

Rock fracture theories mentioned above deal with problems theoretically (Griffith) or experimentally (Mohr). However only the Griffith's energy theory analyzes the problem from the point of view of the crack fracture mechanism. Mohr's hypothesis is based on the macro-shear failure mode and does not account for the micro fracture mechanism, and hence ignores the initiation, propagation and ultimate formation of the shear plane. Griffith's stress approach theory, on the other hand, is based on the genetic concept, namely the existence of small cracks or flaws, and deals with the initiation problems of crack fracture modelled by a flat ellipse, but it is not suitable to be used for analysing a complete fracture mechanism, or the ultimate failure of the rock material.
Since the 1960s, attention has been turned to directly introducing general fracture mechanics theories for continuous media into the rock fracture mechanics research area by means of some modifications and this has proved successful. Some reasonable explanations of rock fracturing phenomenon and some rock fracture criterion have been proposed (even though not perfect) both from experimental and theoretical analysis for some relatively homogeneous rock materials.

One of the recent research branches in this area is the investigations of fracture toughness testing methods for rock materials, which advanced rapidly especially during the last decade owing to the painstaking endeavours of some researchers in this area (Barker L.M., Ouchterlony F., Atkinson B.K., Ingraffea A.R., Sun Zong Qi). As a result, two specially developed methods, the chevron bend (CB) method and the short rod (SR) method, were authenticated by the ISRM Testing Commission and recommended in 1989 as the two primary methods for rock fracture toughness measurement.

§2.4 Simple Review of Major Rock Fracture Toughness Test Methods

§2.4.1 Fracture Modes

Irwin (1958) defined three different basic modes of fracturing. They are respectively (as shown in Figure 2.2):

Figure 2.2 Three Fracture Modes
Mode I: opening mode, or tensile mode.
Mode II: sliding mode, or in-plane shear mode.
Mode III: tearing mode, or anti-plane shear mode.

As the basic principle, the law of superimposition is also followed in fracture mechanics so that any complicated fracture state can be split into these three basic modes and taken equivalently as the result of their combination.

Mode I and Mode II are by far the most pertinent to fracture problems, especially in brittle materials [Lawn and Willshaw, 1975]. The former is even more important with respect to rock fracturing and therefore attracted most of the attention for fracture toughness researches.

§2.4.2 Fracture Toughness Definitions

Fracture toughness tests were mainly developed in the late 1950s and 1960s. It started with simple geometries, then different configurations were added for different purposes, and eventually formed a large part of fracture research.

Owing to the importance of Mode I fracture in practice, most fracture toughness research was and is still being devoted to Mode I fracture toughness K_{IC} and crack resistance force G_{IC} measurements even though Mode II, Mode III and mixed modes are attracting more and more attention. For comprehensive purposes, the fracture test is no longer limited to within the range of LEFM. Some special techniques have been developed so that experimental fracture mechanics can be extended to the field of EPFM or even Plastic Fracture Mechanics (PFM) without any difficulty.

In the following definitions and discussions, if the symbols are followed by subscript "I", "II" or "III", that means that the definitions and discussions are only suitable for Mode I, Mode II or Mode III fracture condition only. If one of these subscripts is not used, the definitions and discussions will be suitable for any single mode or mixed mode fracture conditions.

§2.4.2.1 Definition I -- Stress Intensity Factor Approach

Taking advantage of the relationship between the SIF, load and the specimen geometry has resulted in this being the most common method for K_c measurements. The SIF K can be expressed as:

$$K = \Omega(P)Y(\alpha)$$

(2.18)
where $\Omega(P)$ -- loading or boundary condition,

$Y(\alpha)$ -- specimen geometry function, including the crack configuration,

α -- dimensionless crack length a/R.

Obviously the functions $\Omega(P)$ and $Y(\alpha)$ are definite for a given configuration, therefore for a particular testing system the critical values of these two functions $\Omega(P_c)$ and $Y(\alpha_c)$ can be obtained provided the critical crack length α_c is known. Hence the critical value of SIF K_c can be calculated from the above expression, and this value is defined as the fracture toughness of the material.

However, the problem lies in the determination of the critical value of crack length α_c and the corresponding critical load P_c. It is the different determinations of α_c and P_c by different criterion which results in many different calculated values as the substitution for the real fracture toughness value K_c.

1) K_Q -- apparent K_c value

$$K_Q = K(\alpha_0, P_Q) \quad (2.19)$$

where α_0 -- dimensionless initial crack length or notch length,

P_Q -- the load magnitude of the intersection point of the load-displacement curve with the 5% offset secant line having slope equal to 0.95 of initial slope (Figure 2.3), which is supposed to correspond to 2% apparent crack growth from initial length according to the E399 K_{IC} testing method [3] recommended by ASTM for metallic materials.

This definition of fracture toughness might not be applicable to rock materials. The compliance of rock material is generally quite small and this results in a much higher slope of the load-displacement curve. In addition, there cannot be observed the obvious "pop-in" phenomenon in rock fracture experiments which is commonly the case in metals. Therefore the intersection point of the 5% offset secant line with the load-displacement curve may come well after the critical load which is to be used for the fracture toughness calculation. Furthermore, it is still uncertain that the 5% offset line is corresponding to the 2% apparent crack growth in rock materials. Thus in rock fracture research the K_Q value can only be used as a reference.
2) K_m -- quasi-effect K_c value

$$K_m = K (a_0, P_m)$$

(2.20)

Brown (1976) used the maximum load value P_m rather than P_Q, but still used the initial crack length a_0, to approximate the K_c value. This is especially recommended for rock specimens with no fatigue precrack, i.e., the notch length a_0 is known.

3) K_a -- adjusted apparent K_c value

$$K_a = K (a_0 + r_{mc}, P_Q)$$

(2.21)

As mentioned above, the determination of P_Q is not definitely corresponding to the 2% apparent crack growth, but it is verified that micro-cracking, micro-plasticity, and some other non-linear behaviour will happen in the process zone immediately ahead of the crack apex before the load and the crack reach their critical values [Ouchertlony, 1982]. Therefore, Schmidt (1980) proposed a micro-cracking adjustment factor r_{mc} to approximate the critical crack length value, which is based on estimating the critical size of the micro-crack zone.

For Mode I fracture condition, r_{mc} is:

$$r_{mc} = 0.2 \left(\frac{K_{IC}}{\sigma_t} \right)^2$$

(2.22)

4) K_i -- Initiation K_c value

$$K_i = K (a_0, P_i)$$

(2.23)

For some special cases, the rock materials are not expected to have any crack extension, i.e., the crack initiation should be prevented. Accordingly, the K_i value will be much more suitable to apply in this situation. Here P_i is the load value of any crack propagation origination, visible or invisible depending on the conditions required, and which can be determined by visual observation or by the sonic radiation detection technique. Obviously the K_i will be accurately representing the real K_c value for the kind of material having an ideal crack resistance curve $R-\Delta a$.

From the definition we know that P_i lies well below P_{max}, therefore the K_i value underestimates K_c and hence can be considered to be a conservative toughness parameter.

5) K_c -- true fracture toughness value

In order to obtain the true value of K_c, it is vitally important to know the crack length and the corresponding load at the critical unstable condition, a_c and P_c. With regards to rock materials, P_c is generally substituted by the maximum (failure) load value P_{max}. This is because that maximum (failure) load P_{max} always corresponds to the critical state, or the
difference between P_{max} and P_c is usually very small. Therefore the major problem is
directed to the determination of the critical length a_c. As a result, some special experimental
measurement and estimation methods have been developed. Amongst them, chevron notched
specimens proved to be the best geometries to solve the problem of a_c determination.

6) Comparison

For the purpose of convenient comparison and clear illustration, all the different
definitions of K_c mentioned above are shown
in the same diagram, Figure 2.4, where all
the relationships can be easily recognized.

Here note should be taken that the above
definitions are not restricted to any particular
fracture mode. In other words, they could
be the fracture toughness of any fracture
mode or their combination.

\[
\begin{align*}
R &= 2 \cdot \gamma_{eff} = \frac{W_r}{A} \\
K(a, P_{\text{max}}) &= K(a, R_c)
\end{align*}
\]

\[\text{Figure 2.4 K_c Definitions}\]

§2.4.2.2 Definition II -- Energy Balance Approach

On the other hand, the fracture toughness can also be measured from the Griffith's energy
balance concept. The crack resistance force G_c or J_c for more non-linear materials can be
obtained experimentally using special techniques. Then the calculated G_c or J_c values can
be used as the rock toughness parameters directly or they can be further converted into the K_c
expression by Equation (2.11) if necessary.

Owing to the special characteristics of the energy approach method to fracture mechanics
research, the fracture toughness thus defined is more suitable for fracture investigations in the
range of EPFM and PFM. Followings are some of the corresponding definitions.

1) R -- The Specific Work of Fracture

R, as defined by the following equation, is supposed to designate the elastic surface energy
parameter based on Griffith’s classical theory (original idea).

\[
\bar{R} = 2 \cdot \gamma_{eff} = \frac{W_r}{A}
\]
where,

\[W_f = \int_0^\infty P \, du \tag{2.25} \]

and \(A \) -- net cross section area of the fracture surface,

\(u \) -- the loading point displacement, LPD, and

\(P \) -- load.

This is quite a simple definition and it only accounts for the average energy consumption over the whole fractured area, and is not concerned with the different stages of crack initiation, propagation and ultimately unstable fracturing. Therefore it may only be suitable when the crack growth is stable and the whole test system is non-energy-dissipative.

Furthermore, the measured \(R \) value varies with the initial crack length \(a_0 \), and this results in the problem of it being used as a material-dependent-only parameter. Olofsson (1978) reached a conclusion, after comprehensive testing, that \(R \) only shows a nearly constant plateau value with a certain varying range of initial crack lengths, and it is only this plateau value that can be taken as the material property constant. In other words, the range of \(a_0 \) suitable for the \(R \) measurement has to be decided before fracture toughness testing when \(R \) values have to be used in special applications.

2) \(R \) -- The Crack Resistance Force, The Determination of the \(R \)-curve

An \(R \)-curve is a plot of crack growth resistance as a function of actual or effective crack extension, \(\Delta a \), which is not characterized in the \(K_c \) values with respect to slow stable crack growth. The crack resistance \(R \) can be expressed in the same units as \(G \), as it was originally proposed from the point of view of the energy consumption concept. But as it is now commonly used, it is always designated in terms of stress intensity factor \(K_R \), converted from \(R \) by the relationship of Equation (2.11). Therefore the \(R \)-curve diagram becomes a continuous record of fracture toughness development plotted against crack extension in the material as a crack is driven under a continuously increased stress intensity factor \(K \).

The method used to determine the \(R \)-curve is a load control technique. Under rising load conditions, the crack extends gradually to the maximum extension \(\Delta a \) when unstable crack growth occurs at \(K_c \). This critical point is determined by the tangential point between the \(R \) curve and one of the lines representing a crack driving force curve, \(K_G = f(P,a) \), as shown in Figure 2.5. Thus by carefully monitoring the effective (or actual) crack length, the \(R \) curve can be obtained.

Obviously the problem may lie in the determination of the effective crack length, \(a_e \). It is recommended for metallic materials by ASTM E561 [4] that \(a_e \) consists of three parts as follows:
\[a_e = a_0 + \Delta a + r_y \]

where \(a_e \) -- effective crack length,
\(a_0 \) -- initial crack length,
\(\Delta a \) -- physical (visible) crack extension length, and
\(r_y \) -- plastic zone adjustment, theoretically.

\[r_y = \frac{1}{2\pi} \frac{K^2}{\sigma_y^2} \]

However, it is not clear whether this adjustment is suitable or not for rock materials by simply changing \(\sigma_y \) to \(\sigma \), \(r_y \) to \(r \), and accordingly naming \(r \) as the micro-cracking zone adjustment [Ouchterlony, 1982]. Hence the R-curve characterization is only suitable for those materials which possess less non-linear behaviour during fracturing. The difficulty of monitoring crack length makes its application in rock materials rather unrealistic.

3) \(J_c \) -- The Critical J-resistance Value

Owing to micro-cracking and local irreversible deformation, some rock materials show serious non-linearity before crack propagation has reached the critical situation. This makes it unreasonable to use LEFM test parameters, \(K_c \) or \(R \), to designate the fracture characteristics, and the introduction of \(J_c \) characterization becomes necessary.

The application of \(J_c \) is based on its feature of path independence, which implies it is a characteristic scalar measure of the conditions around the crack tip, similar to the SIF in LEFM. As required by its definition, all the related parameters within the process zone should be single-valued functions, therefore the J-integral method is basically limited to non-linear elasticity. It can only be extended to elasto-plastic cases for some special conditions.

There has been no standard for rock non-LEFM test published yet, though Ouchterlony concluded in his comprehensive rock fracture toughness review (1982) that a \(J_c \) evaluation modelled on recommended metal test practice also seems effective for rock, with the exception of the size requirements. With regard to the test methods, the multiple specimen technique is cumbersome, costly and especially unrealistic as it is rather difficult to keep the mechanical parameters of several rock specimens identical as required, so the single specimen test technique seems more suitable for the rock \(J_c \) test.

The calculation equation of the J-integral for experimental usage can be written in the
following expression:

$$J = \eta \frac{W}{A}$$ \hspace{1cm} (2.28)

where W and A are shown in the Figure 2.6 and constant η usually depends both on specimen geometry (especially crack length) and material properties.

When taking the maximum load as the critical condition, by analogy with K_m, J_m is obtained:

$$J_m = J(a_0, W_c) = (\frac{\eta}{A})_{a=a_0} W_c$$ \hspace{1cm} (2.29)

where,

$$W_c = \int_{u_{cr}}^{u_{cr}} P \, du$$ \hspace{1cm} (2.30)

u_e is the corresponding displacement at P_{max}.

When the crack initiation point is taken as the critical condition, the following J_i (by analogy with K_i) can be obtained:

$$J_i = J(a_0, W_i) = (\frac{\eta}{A})_{a=a_0} W_i$$ \hspace{1cm} (2.31)
ui is the displacement when \(P = P_i \). As demonstrated before, \(P_i \) lies well below \(P_{\text{max}} \).

The \(J \) value can also be obtained by the compliance method technique, as shown in Figure 2.7. By loading and unloading, the different compliance values \((C_j \text{ and } C_{j+1}) \) can be used to estimate the different corresponding crack lengths. For the \(J \)-th reloading cycle, the crack length is \(a_j \) and the work done by the external force \(W_j \). Then the \(J \)-integral for this reloading cycle is:

\[
(J_R)_j = J(a_j, W_j)
\]

and,

\[
\Delta a_j = a_{j+1} - a_j
\]

Then the pseudo resistance curve \(J_R(\Delta a) \) can be plotted and \(J_\epsilon \) is therefore defined as:

\[
J_\epsilon = J^0_R - \lim_{\Delta a \to 0} J_R(\Delta a)
\]

In conclusion, different fracture toughness values can be obtained by using different definitions. Therefore it is necessary to decide before-hand which definition should be used according to the practical requirements and situation.

§2.4.3 Specimen Geometries

§2.4.3.1 Geometry I

Specimen geometry plays another important role in fracture toughness experiments. A good configuration can make the toughness determination more precise and convenient. Most of the specimen geometries for rock fracture toughness tests are directly introduced from the geometries popularly accepted for metallic materials and then combined with the characteristics of rock materials. The results are quite encouraging even though not so satisfying. The following is just a list of some of the testing methods for rock Mode I \(K_{IC} \) tests (see Figure 2.8).

1) Single Edge Notched Beam (Rectangular Bar, 3-point Bending) -- SENBB

It is an idealized 2-D toughness test geometry and probably the most widely used specimen type. In addition, it was the first standard specimen recommended by ASTM for \(K_{IC} \) tests of metals when \(S/W = 4 \) and \(B/W = 5 \).
2) Single Edge Cracked Round Bar (3-Point Bending) -- SECRBB

Owing to the difficulty of sample preparation, a core based specimen geometry, SECRBB, was developed by Bush (1976) and Ouchertlony (1981) which is better adapted for rock samples.

3) Double Cantilever Beam -- DCB

4) Compact Tension -- CT

These two specimen variations (3 and 4) are also used for rock materials simply because of their symmetrical geometry with respect to the crack and are ideal for measuring the Mode I fracture toughness. However they are only used for comparison testing owing to their sample preparation complexity.

5) Double Torsion -- DT

This geometry was introduced by Henry (1977) and B. Atkinson (1979) for rock fracture studies. For this configuration, it is assumed that the stress intensity factor around the crack tip will be kept constant as the crack propagates along the shallow surface notch for a certain range. Therefore it makes the toughness calculations easier as it does not have to take into account the critical crack length, which is always very difficult to determine for rock materials.

6) Burst Test Specimen -- BT

It was first introduced by Johnson (1973) and is a test geometry used to determine the rock fracture toughness for blasting and hydrofracturing applications.

7) Semi-Circle Specimen -- SCB

This variation was proposed by Chong (1984). It is a simple configuration specimen which can be obtained from rock samples with very little machining. However the problem may lie in the complexity of the analysis of the stress field around the crack, and this results in some difficulties with the toughness calculations.

8) Direct Indentation Method -- DI

This method has been developing since 1976 as a very simple and quick way for toughness
Chapter 2: Overview

Figure 2.8 Testing Geometry I

1 SENBB
2 SECRBB
3 DCB
4 CT
5 DT
6 BT
7 SCB
8 DI
evaluations. Even though it is not an accurate test, it is still expected to be as a quick fracture toughness estimation method which sometimes is vital for some on site applications.

§2.4.3.2 The Introduction of the Chevron Notched Specimens

In rock fracture research, difficulties with monitoring crack growth, makes it inconvenient to conduct rock fracture toughness testing. Large errors always exist with the estimation of the critical crack length a_c. Therefore chevron notch specimens were specially developed for rocks with satisfying results. Consequently, two kinds of chevron notched geometries, CB and SR, were quickly recommended in 1988 by the ISRM Testing Commission as basic toughness test methods for rock materials.

As expected, the introduction of the chevron notched specimen perfectly solved two difficult problems existing in the conventional geometry:

1) There will be an extremely high stress concentration at the tip of the chevron notch.

Hence the crack will initiate at a low applied load and propagate stably for a certain distance before the whole specimen turns to catastrophic (unstable) fracture. This effect is exact in analogy with and is in fact precracking, therefore the costly precrack procedure (by fatigue technique for instance) is not needed.

2) The SIF for chevron notch specimens can be expressed by the following equation:

$$ K = \frac{P}{\Omega(A)} Y'(\alpha) $$

(2.36)

where P -- load,

$\Omega(A)$ -- function of specimen geometrical dimensions (excluding crack),

$Y'(\alpha)$ -- dimensionless intensity factor which is only the function of specimen geometry (including crack).

As determined by the characteristics of chevron notch specimens, $Y'(\alpha)$ begins with an extremely large value, declines rapidly thereafter, passes through a minimum and then rises again as the crack grows. If we suppose the material fracture toughness K_c to be a constant, then from Equation (2.36) it is known that the applied load P obviously will attain a maximum value when $Y'(\alpha)$ reaches its lowest apex. This is exactly the critical state (theoretical ideal condition) so that the toughness K_c can be evaluated from these corresponding values. Advantageously, the critical state when the crack length a reaches its critical value a_c and $Y'(\alpha)$ at its minimum value Y'_{min} depends only on the specimen's initial geometries for the chevron notched specimens. In other words, there is no need to monitor the crack propagation or to do the accurate load-displacement recording for fracture toughness measurement as long as the specimen
geometries are known beforehand. Certainly, that makes the whole testing procedure very simple.

Furthermore, the points of better crack propagation guidance and minimum crack "pop-in" effect, can also be added into the good features of the chevron-notch specimens over the conventional ones. The reason why we have to use the critical state value P_{max} and Y_{m} for the toughness calculation is mainly based on the following points:

1) It is not necessary to calculate the toughness using the critical values. But when using other states for the toughness evaluation, the monitoring of the load value and the corresponding crack length becomes important and this is normally difficult. However when evaluating the toughness at the critical state, the whole procedure is very simple as the only recorded value needed is the maximum test load.

2) As a material property constant, the calculated toughness values by different test methods should be identical, or very nearly the same (allowing for some error in test data manipulation). As decided by its confinement condition, the plane strain toughness value has been confirmed to show this kind of constant value much better than the plane stress one does because in the later case the stress state around the crack tip is influenced greatly by the so-called surface effect [Kanninen, 1985, Knott, 1973]. Therefore most fracture toughness tests are concentrating on the plane strain state only or trying to be close to that state. With regard to the chevron notch specimen, the state around the crack tip at the beginning of crack propagation is considered to be an unconfined condition. Only the critical state is considered to be the closest to the plane strain condition and therefore the fracture toughness value calculated by this state is believed to be better representing the material constant K_c.

3) The toughness values measured from different specimens for the same material are expected to be unchanged. Taking the critical state as the evaluation point provides an identical criterion for the fracture toughness evaluations.

However, it is necessary to note that owing to the non-linear behaviour of rock materials there may be a small deviation between the maximum test load P_{max} and the critical load P although the difference is usually very small. But this deviation can be satisfactorily accounted for by the non-linearity correction technique proposed by Ouchertlony (1986, 1989).

§2.4.3.3 Specimen Geometry II

Chevron notch geometries did not originate in the research field of rock fracture mechanics. It was first proposed by Nakayama (1964) to measure the fracture energy of brittle, polycrystalline refractory materials by using a bend bar with a non-symmetrical chevron notch. Pook (1971) first suggested using chevron notch specimens to determine the plane strain
fracture toughness of metals, and he further theoretically analyzed the whole estimation procedure for K_{IC} evaluations and reached the important basic concept of chevron notch specimens.

The idea was quickly extended to the whole research field, especially for high-strength brittle materials. The bend bar with a chevron notch symmetrical about the centerline appeared in 1966 by Tahersall, and the chevron notch short rod and bar evolved in 1977 and 1978 by Barker. In the 1980s, these geometries were introduced into rock fracture mechanics.

The chevron specimens suitable for and now popularly accepted for rock fracture toughness tests are short rod (developed as SR) and round bend rod (developed as CB), as these geometries can be easily obtained from rock core samples and need very little machining.

1) Short Rod -- SR (Figure 2.9)

It was first introduced by Barker in 1977 to measure the fracture toughness of high strength metal materials, such as steel, aluminum and titanium alloys. He later extended (1980) his studies to non-metallic materials, mainly rock and ceramics. Costin (1981) used this geometry to measure the toughness of oil shale. The geometry was thoroughly investigated at the beginning of the last decade both from the analytical and the experimental point of view, by using finite element, boundary element and compliance calibration methods (Barker, 1983, Beech & Ingraffea, 1982, Shannon, 1982, Newman, 1984, Ingraffea, 1984), and the basic characteristics of this geometry have been therefore defined.

2) Chevron Notch Bending Rod -- CB (Figure 2.9)

This geometry was first introduced by Bush (1976) for aluminum and then extensively developed by Ouchterlony (1980s) especially for rock materials. The complete theoretical analysis was presented by Ouchterlony (1980a, 1980b) again in 1980 and later the substantive experimental results (Ouchterlony, 1981, 1986).
The theoretical and experimental results from SR and CB research have proved that they are suitable geometries which can be used to correctly measure the toughness value of rock materials. Therefore, in 1988, they were suggested by the ISRM Testing Commission as the two basic recommended methods for rock toughness testing. The requirements for the specimen size, the testing system, the whole procedure of the test and the calculation and calibration methods can be found in "Suggested Methods for Fracture Toughness Testing of Rock Materials", Testing Committee, ISRM, 1988 [145].

However the disadvantages of these two chevron specimens for rock materials make their applications sometimes rather difficult. It is believed that the CCNBD specimen geometry will overcome these disadvantages and it can be developed as a simple and effective chevron specimen for rock fracture toughness measurement.
Chapter 3

Stress Intensity Factor Evaluations for
CSTBD and CCNBD Specimens under Mode I Fracture Condition

§3.1 The Use of Brazilian Disc Geometries for Rock Fracture Toughness Determinations

§3.1.1 Brazilian Disc, the CSTBD and the CCNBD Specimens

The Brazilian disk test technique was originally proposed by Carneiro (1947) and independently by Akazawa (1953) to measure the tensile strength of brittle materials. It then was used to determine the elastic properties of concretes by Hondros (1959), the tensile strength of coal by Berenbaum (1959) and Evans (1961), and the tensile strength of rocks by Berenbaum (1959) and Hobbs (1964). All their findings proved that it is a convenient and effective method to measure the tension related properties of brittle materials (1979, Jaeger & Cook). From these studies, the idea of adapting the geometry for tensile mode (Mode I) fracture toughness test originated.

A diametrical compression Brazilian disk with a central straight-through crack, referred to as CSTBD specimen was first proposed by Yarema & Krestin (1966) and Libatskii (1967) for this purpose. The geometry has then been specially developed in the field of combined mode fracture toughness tests because of its easier generation of mixed mode states. Awaji & Sato used this specimen in 1978 to evaluate the Mode I, combined Mode I and Mode II, as well as purely Mode II fracture toughness of graphite plaster and marble by varying the orientation of the straight-through notch (crack) relative to the line of loading. Atkinson (1982) and Yarema (1984) employed this geometry to measure the fracture toughness of composite materials and cemented carbide materials respectively. Shetty and co-workers also used the geometry for the single and mixed-mode fracture toughness measurement during research into ceramic materials.

Owing to the broad acceptance of the chevron notch specimen geometry and its unique features, Shetty combined this geometry with the CSTBD specimen in 1985 and introduced the cracked chevron notched Brazilian disc (CCNBD) specimen geometry. Compared with the CSTBD, the CCNBD geometry simplifies the specimen preparation, eliminates the pre-cracking and the error caused by the existence of the notch curvature at both tips of the crack,
and makes the whole testing procedure much more convenient and straightforward. Since then, the CCNBD has been mainly used for mixed mode fracture toughness measurements of ceramic materials (Shetty, 1985, 1986, 1987).

§3.1.2 The CCNBD Specimens for Rock Materials

In 1989, Fowell and Chen introduced the CCNBD technique into the field of fracture toughness testing for rock materials. Studies were carried out by means of boundary element analysis (3D) and finite element analysis (2D) and the results were supported by fracture toughness experiments for a large variety of sandstones. It is believed that many unique advantages will be gained by the application of the CCNBD geometry over other chevron notched specimens recommended by the ISRM and others for rock materials. The advantages claimed by the previous research are as follows [Chen, 1989]:

1) The testing rig, the measurement apparatus, and hence the whole test procedure are much simpler.
2) It needs a much smaller rock sample.
3) It can easily be used for mixed mode rock fracture investigations.

It is hoped that this specimen geometry will be internationally accepted as the third ISRM suggested geometry for rock fracture toughness testing following the CB and the SR methods. Therefore it is vitally important at this stage that thorough investigations of the specimen geometry have to be both theoretically and experimentally undertaken before it can be accepted.

§3.2 Theoretical Solution of SIF for the CSTBD Specimen under Mode I Fracture Condition

§3.2.1 Solid Brazilian Disc

Hondros in 1959 solved the mechanical problem of a solid Brazilian disc (with diameter D, radius R and thickness B) subjected to diametrical uniform loading \(P \) over a small arc of contact \(2\omega \) (Figure 3.1.a) by suggesting a Fourier series to represent load distribution. He presented the stress distribution along the central loaded diameter line in the normal direction to this diameter as:

\[
\sigma_N = \frac{2P}{\pi B} \left[\frac{(1 - \frac{r^2}{R^2}) \sin 2\omega}{1 - 2\frac{r^2}{R^2} \cos 2\omega + \frac{r^4}{R^4}} - \arctan \left(\frac{1 + \frac{r^2}{R^2}}{1 - \frac{r^2}{R^2}} \right) \left(\frac{r}{R} \right) \right]
\]
(3.1)
This relationship gives a uniform tensile stress along the central part of the loaded diameter except where the diameter approaches the loading points. When the disc is subjected to a pair of diametrically positioned concentrated loads \(P \) (Figure 3.1.b), this uniform tensile stress \(\sigma_N \) and the related tangential stress along the loaded diameter can be calculated by the following equations [Timoshenko, 1970, Frocht, 1948]:

\[
\begin{align*}
\sigma_N &= \frac{2P}{\pi B D} \\
\sigma_T &= 0
\end{align*}
\]

(3.2)

where \(N \) and \(T \) signify the directions normal and tangential to the loaded diameter.

It is then assumed to be a tensile mode (pure Mode I) fracture problem when introducing a straight through centre crack along the loaded diameter. When the crack is orientated at a certain angle inclined to the loaded diameter (less than a critical value), a mixed mode fracture problem will be generated. Obviously the Mode I fracture problem of the CSTBD specimen is just a special case of its mixed mode (general) fracture problem. In this chapter and the following three chapters, the Mode I fracture problem will be mainly considered for the CSTBD specimen (theoretical solution of the SIF, numerical calibration and Mode I fracture toughness measurement). The general solutions for the mixed mode fracture problem of the CSTBD specimen will be thoroughly investigated in Chapter 7.

§3.2.2 Former Solutions

For the CSTBD specimen under Mode I fracture condition, some solutions of the SIF have been proposed by previous researchers.
1) Libatskii and Kovchik (1967) obtained, by integral transform technique, the SIF solution with an approximate algebraic expression:

\[
\frac{K_I}{K_0} = 1 + \frac{3\zeta}{2} + \frac{3\zeta^3}{4} + \frac{3\zeta^4}{64}
\]

(3.3)

where,

\[
\zeta = \left(\frac{a}{R}\right)^2 - \alpha^2
\]

(3.4)

and,

\[
K_0 = \frac{P}{B \cdot R} \cdot \sqrt{\frac{a}{\pi}}
\]

(3.5)

It is pointed out that the error in this approximation is within 2% for \(\alpha < 0.75\) \(\zeta < 0.56\).

2) Rooke & Tweed (1972, 1973) showed that the SIF due to the diametrical forces \(P\) are the same as those obtained when the crack is opened by an internal pressure \(\sigma_0\) equal to \(P/(\pi R t)\). They used the Mellin transform technique (Tranter, 1947, Tweed, 1971, 1972) to solve the problem and expressed the SIF as:

\[
\frac{K_I}{K_0} = \frac{1}{a} \cdot q(a)
\]

(3.6)

where \(q(a)\) is a complicated function of the system geometry parameters, which includes a solution of an integral equation, and,

\[
K_0 = \frac{P}{\pi \cdot B \cdot R} \sqrt{a}
\]

(3.7)

They finally presented the SIF values in diagramatic form by solving the integral equation numerically.

3) Bowie & Neal (1970) studied the problem of a CSTBD crack subjected to an uniform internal pressure by boundary mapping and collocation methods. The result agreed well with that by Rooke & Tweed, but they did not extend their solution to the diametrical loading condition.

4) Atkinson, Smelser & Sanchez (1982) investigated the mixed mode fracturing problem of CSTBD by the edge dislocation method, and the Mode I SIF of the specimen was given as follows:
where \(N_i \) is the dimensionless SIF and the values were presented by a curve-fit cubic polynomial.

\[
N_i = 0.991 + 0.141 \cdot \alpha + 0.863 \cdot \alpha^2 + 0.886 \cdot \alpha^3
\]

(3.9)

and,

\[
\alpha = \frac{a}{R}
\]

(2.10)

As indicated, the error is less than 0.1% within the range of \(\alpha = 0.1 \sim 0.6 \).

5) Awaji & Sato (1978) also used dislocation and boundary collocation method to study the mixed mode fracture problem of the CSTBD specimen with the dimensionless crack length \(\alpha (= a/R) \) also within the range \(0.1 \sim 0.6 \). The results are shown numerically.

6) Chang Shangchow (1988) studied the problem using the equivalent procedure method and presented the results numerically, which agreed well with those by Rooke & Tweed.

In order to have a more accurate solution for any crack length for the CSTBD specimen, the problem has been approached here simply by stepwise superimposition technique. The results obtained agree well with the results by previous researchers and allow more precise solutions for longer crack cases. This method satisfies the requirements for further studies, especially of interest here for being extended into investigations of the related chevron notched specimen, CCNBD.

§3.2.3 Problem Analysis

Consider a Brazilian disk, diameter \(D \), radius \(R \) and thickness \(B \), with a central straight-through crack \(2a \), subjected to a pair of diametrical compressive load \(P \) along the crack direction (Fig. 3.2). Owing to the specialities of superimposition of mechanical states and magnitudes, this problem can be

Fig. 3.2 CSTBD Subjected to \(P \)
Figure 3.3 Problem Analysis of the CSTBD under Mode I Fracture Condition

divided into the following different smaller problems and the final solution can be obtained simply by summing up all the respective results.

1) A solid Brazilian disk subjected to a pair of diametrical forces P (Figure 3.3.a).

Boundary conditions:

$$\begin{align*}
 XX, YY \text{ axis symmetry,} \\
 P_s = 0 & \quad r = R, \ 0 \leq \beta \leq 2\pi, \\
 P_n = \begin{cases}
 -P & \quad r = R, \ \beta = \pm \frac{\pi}{2} \\
 0 & \quad \text{others}
\end{cases}
\end{align*}$$

(3.11)

2) Case (1) will create a uniform tensile stress $\sigma_N^{(0)}$ along that part of the loading diameter of the solid disk $0 < r < a$, $\beta = \pm \pi/2$. The direction of this tensile stress is in X direction and normal to the loading diameter. By introducing a traction free crack in this particular part of the specimen, this stress should be cancelled. So the second problem will be an infinite media with a central crack $2a$ subjected to an internal pressure $-\sigma_N^{(0)}$ (Figure 3.3.b).

Boundary conditions:

$$\begin{align*}
 XX, YY \text{ axis symmetry,} \\
 \sigma_{r\beta} = 0 & \quad 0 < r < +\infty, \ \beta = 0, \frac{\pi}{2}, \frac{3\pi}{2} \\
 \sigma_r = \sigma_\beta = \sigma_{r\beta} = 0 & \quad r \to \infty \\
 \sigma_\beta = -\sigma_N^{(0)}, \ (i = 0, 1, 2, \ldots) & \quad 0 < r < a, \ \beta = \pm \frac{\pi}{2}
\end{align*}$$

(3.12)
where \(i \) is the step number of the stepwise superimposition procedure, and at this step, \(i = 0 \).

3) Case (2) certainly will produce boundary traction stresses \(T_x^{(0)} \) and \(T_y^{(0)} \) along the circle which is identical to the disk boundary. However the practical disk is traction force free along the boundary and therefore these boundary stresses should be cancelled. Thus the third problem is also a solid Brazilian disk, identical to that in case (1), but subjected to boundary traction stresses instead (Figure 3.3.c).

Boundary condition:

\[
\begin{align*}
XX, YY \text{ axis symmetry}, \\
\sigma_{rb} = 0 & \quad 0 < r < +\infty, \ \beta = 0, \frac{\pi}{2}, \pi, -\frac{\pi}{2}, \\
T_x = -T_x^{(0)} & \quad r = R, \ 0 < \beta < 2\pi, \\
T_y = -T_y^{(0)} & \quad r = R, \ 0 < \beta < 2\pi, \\
i = 0, 1, 2, 3, \ldots
\end{align*}
\]

where \(i \) is the step number of the stepwise superimposition procedure, and at this step, \(i = 0 \).

In practical evaluations, for the reason of simplicity, the disc boundary is divided into \(N \) elements and the boundary stresses are equated by boundary concentrated forces \(P_x \) and \(P_y \) acting at the central points of each element. When the divided elements are small enough this equivalence is believed to be exact.

4) Under the action of the boundary traction forces \(P_x^{(0)} \) and \(P_y^{(0)} \), the tensile stress \(\sigma_N^{(0)} \) will be again set up (certainly \(\sigma_N^{(0)} < \sigma_N^{(0)} \)) along that part of the loading diameter \(0 < r < a, \ \beta = \pm \pi/2 \). As mentioned above, this needs cancelling. Hence the problem will come back to case (2) whilst changing the internal pressure from \(\sigma_N^{(0)} \) to \(\sigma_N^{(0)} \) and the step number will be \(i = 1 \).

5) Therefore the whole superposition procedure carries on between case (2) and (3). Obviously the superimposition is convergent due to the apparent condition:

\[
\begin{align*}
\sigma_N^{(i+1)} & < \sigma_N^{(i)} \\
T_x^{(i+1)} & < T_x^{(i)} \quad i = 0, 1, 2, 3, \ldots \\
T_y^{(i+1)} & < T_y^{(i)}
\end{align*}
\]

6) The final SIF results \(K_i \) can easily be obtained by summing up all the results of stress intensity factor values \(K_i^{(0)} \) (\(i = 0, 1, 2, 3, \ldots \)) calculated from case (2) during the different steps of the whole stepwise superimposition procedure.
§3.2.4 Solutions of Cases (1), (2) and (3) Problems

1) The solution for the case (1) problem is well known as the Brazilian compression problem, (Timoshenko, 1970, Frocht, 1948) and here we rewrite it from Equation (3.2),

$$\sigma_N^{\infty} = \frac{2P}{\pi B D}$$

(3.15)

2) For the case (2) problem, however, the problem is an infinite sheet with a central crack subjected to internal pressure \(-\sigma_N^{\infty}\) \((i=0,1,2,3,...)\).

The problem was solved by Sneddon (1946, 1969), who presented the stress distribution all over the infinite sheet using the Westergaard complex stress function method. As denoted in Figure 3.4, the stress components at any point in the infinite sheet are given by:

$$\begin{align*}
\sigma_x &= \frac{r \cdot K_1}{\sqrt{a \cdot r_1 \cdot r_2}} \cdot \left[\cos(\beta - \frac{\beta_1}{2} - \frac{\beta_2}{2}) + \frac{a^2}{r_1 \cdot r_2} \cdot \sin\beta \cdot \sin \frac{3(\beta_1 + \beta_2)}{2} \right] \\
\sigma_y &= \frac{r \cdot K_1}{\sqrt{a \cdot r_1 \cdot r_2}} \cdot \left[\cos(\beta - \frac{\beta_1}{2} - \frac{\beta_2}{2}) - \frac{a^2}{r_1 \cdot r_2} \cdot \sin\beta \cdot \sin \frac{3(\beta_1 + \beta_2)}{2} \right] \\
\sigma_{xy} &= \frac{r \cdot K_1}{\sqrt{a \cdot r_1 \cdot r_2}} \cdot \frac{a^2}{r_1 \cdot r_2} \cdot \sin\beta \cdot \cos \frac{3(\beta_1 + \beta_2)}{2}
\end{align*}$$

(3.16)

where

$$K_1 = \sigma_0 \cdot a$$

\(\sigma_0\) -- internal pressure, in our case, \(\sigma_0 = \sigma_N^{\infty}\) \((i=0,1,2,3,...)\).

\(\beta, \beta_1\) and \(\beta_2\) -- angles based on the crack line and its central and apex points, as shown in Figure 3.4.

\(\sigma_{xx} = \sigma_{xx}^{\infty}, \sigma_{yy} = \sigma_{yy}^{\infty}\) and \(\sigma_{xy} = \sigma_{xy}^{\infty}\) \((i=0,1,2,3,...)\).

Thus the stress components of the elements along the circumference of the circle \(r = R\), \(0 < \beta < 2\pi\), which symbolizes the boundary of the disk, can be calculated, and hence the pseudo "boundary" traction stresses can be obtained.

Taking one of the pseudo "boundary" elements for instance, as shown in Figure 3.5. The traction stresses acting on the inclined section face which is constructed along the pseudo disk.
"boundary" can be expressed as follows:

\[
\begin{bmatrix}
T_x^{(0)} \\
T_y^{(0)}
\end{bmatrix} =
\begin{bmatrix}
\sigma_{xx}^{(0)} & \sigma_{xy}^{(0)} \\
\sigma_{yx}^{(0)} & \sigma_{yy}^{(0)}
\end{bmatrix}
\begin{bmatrix}
n_x \\
n_y
\end{bmatrix}
\]

(3.17)

where \(n_x\) and \(n_y\) are the direction cosines of the inclined section face, i.e.,

\[
\begin{align*}
n_x &= \cos \beta \\
n_y &= \sin \beta
\end{align*}
\]

(3.18)

Figure 3.5 Boundary Elements

3) The solution for the case (3) problem can be obtained from Frocht (1948). For a disk subjected to a pair of point loads \(P_x\) or \(P_y\) acting horizontally and vertically along a chord, the stress components at any point \(M\) within the disk can be calculated by the following equations (Figure 3.6):

\[
\begin{align*}
\sigma_{xx} &= \frac{2P_y}{\pi B} \left(\frac{\cos \varphi_1 \sin^2 \varphi_1 + \cos \varphi_2 \sin^2 \varphi_2 - \cos \beta}{s_1 + s_2} - \frac{\cos \beta}{D} \right) \\
\sigma_{yy} &= \frac{2P_y}{\pi B} \left(\frac{\cos \varphi_1 \sin^2 \varphi_1 + \cos \varphi_2 \sin^2 \varphi_2 - \cos \beta}{s_1 + s_2} - \frac{\cos \beta}{D} \right) \\
\sigma_{xy} &= \frac{2P_y}{\pi B} \left(\frac{\cos \varphi_1 \sin \varphi_1 - \cos \varphi_2 \sin \varphi_2}{s_1 + s_2} \right)
\end{align*}
\]

(3.19)

Figure 3.6 Boundary Loadings

a) Vertical Load, Figure 3.6.a
where,

\[
\begin{align*}
\sin \varphi_1 &= \frac{(x - x_1)}{s_1} \\
\cos \varphi_1 &= \frac{(y_1 - y)}{s_1} \\
\sin \varphi_2 &= \frac{(x - x_1)}{s_2} \\
\cos \varphi_2 &= \frac{(y - y_2)}{s_2} \\
\end{align*}
\]

\[
\begin{align*}
s_1 &= \sqrt{(x - x_1)^2 + (y - y_1)^2} \\
s_2 &= \sqrt{(x - x_2)^2 + (y - y_2)^2}
\end{align*}
\] (3.20)

b) Horizontal Load, Figure 3.6.b

\[
\begin{align*}
\sigma_{xx} &= \frac{2P_x}{\pi B} \left[\frac{\cos^3 \varphi_1 + \cos^3 \varphi_2 - \cos \beta}{s_1} \right] \\
\sigma_{yy} &= \frac{2P_x}{\pi B} \left[\frac{\cos \varphi_1 \sin^2 \varphi_1 + \cos \varphi_2 \sin^2 \varphi_2 - \cos \beta}{s_2} \right] \\
\sigma_{xy} &= \frac{2P_x}{\pi B} \left[\frac{\cos \varphi_1 \sin \varphi_1 - \cos \varphi_2 \sin \varphi_2}{s_2} \right]
\end{align*}
\] (3.21)

where,

\[
\begin{align*}
\sin \varphi_1 &= \frac{(y - y_1)}{s_1} \\
\cos \varphi_1 &= \frac{(x - x_1)}{s_1} \\
\sin \varphi_2 &= \frac{(y - y_2)}{s_2} - \frac{(y - y_1)}{s_2} \\
\cos \varphi_2 &= \frac{(x_2 - x)}{s_2} \\
\end{align*}
\]

\[
\begin{align*}
\cos \varphi_1 &= \frac{(y_1 - y)}{s_1} \\
\sin \varphi_2 &= \frac{(x - x_1)}{s_2} \\
\cos \varphi_2 &= \frac{(y - y_2)}{s_2} \\
\end{align*}
\]

\[
\begin{align*}
s_1 &= \sqrt{(x - x_1)^2 + (y - y_1)^2} \\
s_2 &= \sqrt{(x - x_2)^2 + (y - y_2)^2}
\end{align*}
\] (3.22)

However, the stress components along the XX axis where the crack is supposed to be introduced are particularly of interest. Therefore the equations above can be simplified by substituting \(Y = 0 \).
§3.2.5 The Stepwise Superimposition Procedure

The circumference and the crack can be discreted by dividing the circle boundary into \(N \) segments, and the crack into \(J \) segments. The superimposition iteration begins from the crack subjected to the initial internal pressure \(\sigma_n^{(0)} \) in an infinite sheet. For the \(i \)-th step, the pressure becomes \(\sigma_n^{(i)} \) (\(i=0,1,2,3,\ldots \)), and the traction stresses on the \(n \)-th element of the pseudo "boundary" can be calculated from Equation (3.17) directly, and hence the forces acting on this boundary element are:

\[
\begin{align*}
(P_x^{(i)})_n &= (T_x^{(i)})_n l_n \\
(P_y^{(i)})_n &= (T_y^{(i)})_n l_n
\end{align*}
\tag{3.23}
\]

where \(l_n \) is the length of the \(n \)-th boundary element.

On obtaining the boundary forces, under their actions, the stresses they create in the \(j \)-th element of the crack can be calculated by summing up all the effects of the \(N/2 \) pair of boundary forces, i.e.,

\[
\frac{N}{2} \sum_{n=1}^{N} [\sigma_N^{(i)}]_n
\tag{2.24}
\]

where \([\sigma_N^{(i)}]_n\) is the effective stress of \(j \)-th crack element due to the traction forces acting on the \(n \)-th boundary element during the \(i \)-th iteration step. Here the asymmetry conditions are used so that the boundary force effect is evaluated in pairs. Then the internal pressure \(\sigma_n^{(i+1)} \) for the next step calculation will be their average over the total \(M \) crack elements. Thereafter, the procedure goes back to the calculating the pseudo "boundary" stresses again. The stepwise superimposition continues.

The SIF value around the crack tip is the sum of the stress intensity factors obtained during each step of the whole superimposition procedure:

\[
K^I = \sum_{i=1}^{J} \sigma_N^{(i)} \sqrt{\pi a} \quad (i = 0, 1, 2, \ldots, I)
\tag{3.25}
\]

where \(\sigma_N^{(i)} \sqrt{\pi a} \) is the individual stress intensity factor of a crack in an infinite sheet subjected to internal pressure equal to the \(i \)-th iteration step stress \(\sigma_n^{(i)} \).

As discussed above, the superimposition is convergent so that the accuracy can be set beforehand. In other words, \(K^I \) will be taken as the final \(K \) value as long as it satisfies the following condition:
\[|K^I - K^{I+1}| \leq \text{ESP} \]

(3.26)

then,

\[K = K^I \]

(3.27)

where \text{ESP} is the set error of the evaluation.

In addition, it should be noted that during the evaluation procedure, the tangential stress along the crack surface do not need to be considered. In fact, for the pure Mode I fracture problem for the CSTBD specimen, the tangential stresses along the crack surfaces \(\sigma_t \) are always zero.

§3.2.6 The SIF Values of the CSTBD Specimen under Mode I Fracture Condition

Table 3.1 is the list of the Mode I SIF evaluation results for the CSTBD specimen. For comparison, the results by Rooke & Cartwright, Libatskii, and Atkinson are also listed. All the results are presented in the dimensionless expression defined as follows:

\[\frac{K_I}{K_0} = f\left(\frac{a}{R} \right) - f\left(\alpha \right) \]

where,

\[K_0 = \frac{P}{\pi B R} \sqrt{\pi a} = \frac{P}{B \sqrt{R}} \sqrt{\frac{a}{\pi}} \]

(3.29)

is the stress intensity factor of a crack in an infinite sheet subjected to the internal pressure equal to \(P/\pi RB \), and \(\alpha \) is the dimensionless crack length. The results are also plotted in Figure 3.7 where the differences between researchers are clearly illustrated.

Furthermore, for the sake of convenient analysis, an eighth order polynomial is used to fit the results listed in Table 3.1 by the least-square technique. Table 3.2 is the list of the coefficients of the polynomial which is the best fit, where the conversion of the SIF value from \(f(\alpha) \) to the more common form \(Y(\alpha) \) has been made by the following equation:

\[Y(\alpha) = f(\alpha) \sqrt{\frac{\alpha}{\pi}} \]

(3.30)
Table 3.1 K_i Evaluation Results of the CSTBD Specimen

<table>
<thead>
<tr>
<th>α (a/R)</th>
<th>Dimensionless SIF $f(\alpha)$</th>
<th>Present Analysis</th>
<th>Libatskii</th>
<th>Atkinson</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>0.9623</td>
<td>1.0038</td>
<td>0.9944</td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td>1.0217</td>
<td>1.0150</td>
<td>1.0195</td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td>1.0432</td>
<td>1.0338</td>
<td>1.0445</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td>1.0583</td>
<td>1.0600</td>
<td>1.0713</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td>1.0843</td>
<td>1.0939</td>
<td>1.1022</td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td>1.1266</td>
<td>1.1356</td>
<td>1.1396</td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td>1.1835</td>
<td>1.1851</td>
<td>1.1860</td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td>1.2498</td>
<td>1.2431</td>
<td>1.2431</td>
</tr>
<tr>
<td>0.45</td>
<td></td>
<td>1.3216</td>
<td>1.3106</td>
<td>1.3118</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td>1.3983</td>
<td>1.3869</td>
<td>1.3925</td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td>1.4839</td>
<td>1.4749</td>
<td>1.4848</td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td>1.5858</td>
<td>1.5758</td>
<td>1.5890</td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td>1.7116</td>
<td>1.6918</td>
<td>1.7071</td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td>1.8658</td>
<td>1.8259</td>
<td>1.8448</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>2.0495</td>
<td>1.9819</td>
<td>2.0147</td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td>2.2686</td>
<td></td>
<td>2.2403</td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td>2.5608</td>
<td></td>
<td>2.5612</td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td>3.0547</td>
<td></td>
<td>3.0399</td>
</tr>
</tbody>
</table>

§3.3 The Mode I SIF Evaluations of the CCNBD Specimens

Owing to the complexity of the specimen geometry, there are not any existing analytical solutions for the SIF values for the CCNBD specimen under any single mode or mixed mode fracture condition. However, the solution can be reached by extending the CSTBD results obtained above and combining with some commonly accepted hypothesis, such as Munz's identical compliance changing rate model or Bluhm's slice superimposition model.

In the following theoretical derivation, if the fracture mode is particularly mentioned or if the symbols in the equations are followed by subscript "I", "II" or "III", then the discussions
Figure 3.7 Mode I SIF Evaluation Results for the CSTBD Specimen

Table 3.2 Polynomial Best Fit for $Y(\alpha)$ of the CSTBD Specimen

\[
Y(\alpha) = \sum_{\kappa=0}^{\infty} c_\kappa \alpha^\kappa \quad \kappa = 0, 1, 2, \ldots, IC
\]

<table>
<thead>
<tr>
<th>α^κ</th>
<th>Present Results c_κ</th>
<th>$\alpha^{\kappa/2}$</th>
<th>Libatskii c_κ</th>
<th>Rooke & Cartwright c_κ</th>
<th>Atkinson c_κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^0</td>
<td>0.035</td>
<td>$\alpha^{1/2}$</td>
<td>0.564</td>
<td>0.020</td>
<td>0.559</td>
</tr>
<tr>
<td>α^1</td>
<td>2.039</td>
<td>$\alpha^{3/2}$</td>
<td>0.297</td>
<td>-0.060</td>
<td>0.080</td>
</tr>
<tr>
<td>α^2</td>
<td>-7.036</td>
<td>$\alpha^{5/2}$</td>
<td>0.846</td>
<td>-0.799</td>
<td>0.487</td>
</tr>
<tr>
<td>α^3</td>
<td>12.815</td>
<td>$\alpha^{7/2}$</td>
<td>5.216</td>
<td>-1.547</td>
<td>0.500</td>
</tr>
<tr>
<td>α^4</td>
<td>8.411</td>
<td>$\alpha^{9/2}$</td>
<td>-0.060</td>
<td>-5.790</td>
<td></td>
</tr>
<tr>
<td>α^5</td>
<td>-30.742</td>
<td>$\alpha^{11/2}$</td>
<td>5.017</td>
<td>-0.122</td>
<td></td>
</tr>
<tr>
<td>α^6</td>
<td>-29.496</td>
<td>$\alpha^{13/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^7</td>
<td>62.974</td>
<td>$\alpha^{15/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^8</td>
<td>66.544</td>
<td>$\alpha^{17/2}$</td>
<td>0.026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^9</td>
<td>-82.134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^{10}</td>
<td>-73.674</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^{11}</td>
<td>73.847</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Xu
2 Rooke & Tweed
3 Atkinson
4 Libatskii
Chapter 3: Theoretical Evaluation

and the equations will be only suitable to that fracture mode condition. Otherwise if no restrictions about fracture mode conditions for the applications of the discussions and the equations are mentioned, then the analysis will be suitable to any single mode or mixed mode fracture conditions.

§3.3.1 The CCNBD Specimen Geometry -- Nomenclature and Relationships

As shown in Figure 3.8, two basic relationship equations between the geometrical parameters can be obtained from the Pythagoras' theorem:

\[
\begin{align*}
 b &= 2\left(\sqrt{R_2^2 - a_1^2} - \sqrt{R_2^2 - a_0^2} + \frac{B}{2} \right) \\
 b &= 2\left(\sqrt{R_2^2 - a_0^2} - \sqrt{R_2^2 - a_0^2} \right)
\end{align*}
\]

Therefore, \(b \) can be easily derived:

\[
b = \frac{2R^2}{B} f_1(\alpha)
\]

where,

\[
f_1(\alpha) = (\alpha_1^2 - \alpha_0^2) + \frac{\alpha_a^2}{4} - \sqrt{\left((\alpha_1^2 - \alpha_0^2)\cdot \alpha_a^2 + (\alpha_1^2 - \alpha_0^2 - \frac{\alpha_a^2}{4})^2\right)}
\]
and,

\[
\begin{align*}
\alpha &= a/R \\
\alpha_0 &= a_0/R \\
\alpha_1 &= a_1/R \\
\alpha_B &= B/R \\
\alpha_s &= R_s/R
\end{align*}
\] (3.34)

Based on the above equations, some useful relationships between the different geometry parameters can be obtained:

\[
\begin{align*}
\alpha_s &= \sqrt{\frac{\alpha_0^2 + (\alpha_1 - \alpha_0 + \alpha_B/4)^2 + \alpha_B^2}{\alpha_0^2 + (\alpha_1 - \alpha_0 + \alpha_B/4)^2}} \\
\frac{h_c - \left(\alpha_0 - \sqrt{\alpha_s^2 - \alpha_0^2} \right) \cdot R}{h_c - \left(\alpha_0 - \sqrt{\alpha_s^2 - \alpha_0^2} \right) \cdot R} &= \frac{\alpha_s - \alpha_0 - \alpha_1}{\alpha_s - \alpha_0 - \alpha_1} \\
\alpha_0 &= \sqrt{\alpha_s^2 - (\sqrt{\alpha_s^2 - \alpha_0^2} + \alpha_B/2)^2} \\
\alpha_1 &= \sqrt{\alpha_s^2 - (\sqrt{\alpha_s^2 - \alpha_0^2} - \alpha_B/2)^2} \\
\alpha_B &= 2\left(\sqrt{\alpha_s^2 - \alpha_0^2} - \sqrt{\alpha_s^2 - \alpha_1^2} \right)
\end{align*}
\] (3.35)

As a final point in this section, it is necessary here to mention the restrictions between the specimen's structural parameters \(\alpha_s, \alpha_1\) and \(\alpha_B\). These three variables are independent from the physical point of view. However, with respect to machining feasibility and in order to obtain a reasonable specimen geometry, the lowest limit between the saw radius \(R_s\) and the crack length \(a_s\) should be satisfied, i.e., \(R_s \geq a_s\). From this limit equation, restriction relations between the three variables can be derived:

\[
\begin{align*}
\alpha_B &\leq 2\sqrt{\alpha_0^2 - \alpha_0^2} \\
\alpha_0 &\leq \sqrt{\alpha_1^2 - \alpha_B^2}/4 \\
\alpha_1 &\geq \sqrt{\alpha_0^2 + \alpha_B^2}/4
\end{align*}
\] (3.36)

§3.3.2 Relations between the Compliance and the Stress Intensity Factor of the CCNBD Specimens -- Compliance Method

Specimen compliance is defined as the reverse of specimen stiffness, i.e.,

\[
C = \frac{u}{P}
\] (3.37)
where \(P \) -- external load, and
\(u \) -- related displacement.

Combined with the definition of the strain energy release rate \(G \) (crack driving force), it is very easy to derive the relation between \(C \) and \(G \). Supposed when the crack propagates stably for an incremental value \(da \) and the change in the compliance value of the specimen is \(dC \), then the relation can be expressed as (Figure 3.9):

\[
G = \frac{P^2}{2b} \cdot \frac{dC}{da}
\]
(3.38)

This equation was also derived by Barker (1979) while he was evaluating the stress intensity factor of the chevron notch SR specimen.

Therefore, the SIF value can be obtained by the relationship between \(G \) and \(K \) (Equation 2.11):

\[
K = P \left[\frac{dC}{da} \cdot \frac{E'}{2b} \right]^{1/2}
\]
(3.39)

Substituting Equation (3.32) into (3.39) will yield:

\[
K = \frac{P}{B \sqrt{R}} \cdot \left[\frac{d(CBE')}{d\alpha} \cdot \alpha^2 \right]^{1/2} - \frac{P}{B \sqrt{R}} \cdot Y^*(\alpha)
\]
(3.40)

where \(CBE' \) is the dimensionless compliance of the CCNB specimen with \(E' \) defined in Equation (2.12) and \(Y^*(\alpha) \) is the dimensionless stress intensity factor (SIF) of the CCNB specimen.

§3.3.2.1 Hypothesis I and \(Y^*(\alpha) \) Evaluation

As a first approximation, Munz (1980) assumed that the change in dimensionless compliance with a crack extension \(da \) (\(d\alpha \)) for the chevron notch specimen is identical to that for a straight through specimen provided the other geometrical values are identical, i.e.

\[
\frac{d(C_{CN} \cdot BE')}{d\alpha} = \frac{d(C_{ST} \cdot BE')}{d\alpha}
\]
(3.41)
This assumption has been used for the study of SR specimens and the results are convincingly satisfactory.

For the CCNBD specimen, from Equation (3.39) we can derive the compliance changing rate expression of CSTBD specimen as the following equation:

\[K_I = \frac{P}{B\sqrt{R}} \left(\frac{1}{2} \frac{d(C_{STBD})}{d\alpha} \right)^{1/2} - K_0 \cdot f(\alpha) = \frac{P}{B\sqrt{R}} \cdot Y(\alpha) \]

(3.42)

hence,

\[\frac{d(C_{STBD})}{d\alpha} = 2 \cdot Y^2(\alpha) \]

(3.43)

Combined with the above assumption, we can then obtain the dimensionless SIF expression for the CCNBD specimen as followed:

\[Y^*(\alpha) = \left[\frac{\alpha_B^2}{2f_1(\alpha)} \right]^{1/2} \cdot Y(\alpha) \]

(3.44)

§3.3.2.2 Hypothesis II and \(Y^*(\alpha) \) Evaluation

Bluhm (1975) developed a quasi-analytical method to solve the general non-straight crack front problem. The basic idea is that the whole specimen can be analytically divided into a number of different slices along the direction of thickness, and the compliance \(C_d \) of the total specimen is given by the sum of the reciprocals of the compliance of all the slices, i.e.,

\[\frac{1}{C_d} = \sum_{i=1}^{n} \frac{1}{C_s^i} \]

(3.45)
The effect of the interlaminar shear stress between different slices can be represented by a constant \(c_n \) which has to be determined by comparison of experimental and analytical results.

For the CCNBD specimen, the idea can be illustrated in Figure 3.10. Divide the specimen into \(n \) slices thus every slice gets a thickness \(\Delta Z = B/n \). Then the compliance of a slice with a dimensionless crack length \(\xi = a/2R \) is obviously as:

\[
C_s' = C(\xi) \cdot \frac{B}{\Delta Z} \tag{3.46}
\]

where \(C(\xi) \) is the compliance value of a CSTBD specimen with thickness \(B \) and a dimensionless crack length \(\xi \). Therefore,

\[
\frac{1}{C_n} = \frac{b}{B} \cdot \frac{1}{C(\alpha)} + \frac{2}{B} \sum \frac{\Delta Z}{C(\xi)} \tag{3.47}
\]

On the other hand, the following equations can be given from the geometry relations:

\[
\begin{align*}
\frac{dZ_\xi}{\xi} &= \frac{1}{2} db_{\xi} \\
\frac{db_{\xi}}{\xi} &= -\frac{2R^2}{B} f_1(\xi) d\xi - \frac{2R^2}{B} f_2(\xi) d\xi
\end{align*} \tag{3.48}
\]

where,

\[
f_2(\xi) = \frac{\alpha_B^2 \cdot \xi}{\sqrt{(\alpha_i^2 - \xi^2)^2 + (\alpha_i^2 - \alpha_o^2 - \alpha_B^2/4)^2}} \tag{3.49}
\]

Substituting these equations into Equation (3.47) will yield:

\[
\frac{1}{C_n} - \frac{2}{\alpha_B^2} \left[\frac{f_1(\alpha)}{C(\alpha)} + \sum_{i=\alpha} f_2(\xi) C(\xi) \Delta \xi \right] \tag{3.50}
\]

Differentiating Equation (3.50) with respect to \(\alpha \), substituting the following relations into Equation (3.50):

\[
\begin{align*}
C(\alpha) &= \int_0^\alpha \frac{2}{BE'} \cdot y^2(\alpha) d\alpha \\
C'(\alpha) &= \frac{2}{BE'} \cdot y^2(\alpha) \\
\int_{\alpha}^{\alpha} \frac{f_2(\xi)}{C(\xi)} d\xi &= \frac{f_2(\alpha)}{C(\alpha)}
\end{align*} \tag{3.51}
\]
and at the same time introducing the interlaminar effect constant c_k, then the following expression can be reached:

$$\frac{dC_d}{da} = \frac{\alpha_B^2}{2BE'f_3(a)} f_1(a)$$ \hspace{1cm} (3.52)

where,

$$\left\{ \begin{array}{l}
 f_3(a) = \left[\frac{1}{BE'} \frac{f_1(a)}{C(a)} + \frac{1}{BE'} \int_a^\infty \frac{f_2(\xi)}{C(\xi)} \, d\xi \right]^2 \\
 f_4(a) = \frac{2}{(BE')^2} \frac{Y(a) f_1(a)}{C^2(a)} - \frac{(1-c_k) f_2(a)}{BE'} \frac{Y(a) f_1(a)}{C(a)}
\end{array} \right.$$ \hspace{1cm} (3.53)

Hence the dimensionless stress intensity factor $Y'(a)$ for the CCNBD specimen can be finally obtained:

$$Y' = \left[\frac{\alpha_B^4 f_4(a)}{8 f_1(a) f_3(a)} \right]^{1/2}$$ \hspace{1cm} (3.54)

Here note should be taken that the theoretical derivations in section §3.3.2.1 and §3.3.2.2 for $Y'(a)$ of the CCNBD specimens are not restricted to a special fracture mode (Mode I, II, III or mixed mode). In other words, $Y'(a)$ could be the dimensionless SIF values for any fracture mode depending on the represented mode of the original $Y(a)$ and $C(a)$ values. However, in the sections of this chapter that follow, unless mentioned, all the $Y'(a)$ values will be concerning Mode I SIF values of the CCNBD specimen only.

§3.3.3 Typical SIF $Y'(a)$ Results for the CCNBD Specimens

Figure 3.11 illustrates the results from Equation (3.44) and (3.54) for the dimensionless SIF $Y'(a)$ of the CCNBD specimen vs crack extension for three typical cases, medium, short and long crack (distinguished by the value of $\Delta a_{CN} = a_C - a_0$). We know from this figure that as the crack propagates from $a = a_0$, the $Y'(a)$ starts with a high magnitude which means that a high stress concentration is generated at the tip of the chevron notched crack and hence the crack initiates at a low externally applied load. Thereafter, $Y'(a)$ drops rapidly with increasing crack length. That signifies that larger increments of applied load are needed in order to keep the crack growing. In other words, the pseudo non-static crack initiation can turn into stable crack propagation under a known increasing rate for the external loads. This reduction of the $Y'(a)$ value will continue until it reaches its minimum $Y'_{m}(a_m)$, corresponding the critical crack
length a_m. After this point, the $Y^*(a)$ value begins to rise, gently (slowly) at the beginning and rapidly afterwards. That demonstrates that the whole system has passed its critical state and the crack turns to unstable propagation, corresponding to the decrease in the external loads.

For the medium and long crack cases, the critical state happens within the chevron part of the crack, i.e., $a_0 < a_m < a_1$. For the short crack case, that state will happen when the crack propagation front hits the uncracked part of the specimen, i.e., as long as the chevron part of the crack ends, or, $a_m = a_1$. In this case the chevron notch functions no more than just as a stable pre-cracking method for the CSTBD specimens, and the CCNBD specimen will loss the good features of a chevron specimen geometry. However in practical usage, the short crack case CCNBD specimens are very difficult to machine therefore the medium or long crack case CCNBD specimens will be commonly used.

![Figure 3.11 Typical $Y^*(a)$ Results for some CCNBD Specimens](image)

It has been proved by numerical analysis of the CCNBD specimen (boundary element and finite element methods, next chapter) that Bluhm's model (hypothesis II) can better simulate the fracture problem of the CCNBD specimen than Munz's model (hypothesis I). The dimensionless SIF $Y^*(a)$ for the CCNBD specimen evaluated by Bluhm's model can yield much closer values to those obtained by the numerical methods. Therefore in the following analysis in this thesis, the theoretical dimensionless SIF $Y^*(a)$ for the CCNBD specimen will be referred
SIF Y^* (Short Crack)

$\text{ALFA}_0 = 0.0995$
$\text{ALFA}_1 = 0.4800$

SIF Y^* (Medium Crack)

$\text{ALFA}_0 = 0.2667$
$\text{ALFA}_1 = 0.6505$

Figure 3.12 (a) and (b) $Y^*(\alpha)$ for the CCNBD (short and medium crack cases)
Figure 3.12 (c) and (d) $Y^*(\alpha)$ for the CCNBD (long crack and fixed B cases)
to those values evaluated by Bluhm's model only.

In order to have a much clearer illustration of the dimensionless SIY $Y^*(\alpha)$ value variation for the CCNBD specimen, we present the $Y^*(\alpha)$ values by Bluhm’s model in Figure 3.12 (a), (b), (c) and (d) where Δa_{CN}, B and α_1 are changing at the same time. From these figures, the relations between the dimensionless SIF $Y^*(\alpha)$ of the specimen and the state of the crack propagation can easily be understood.

It is worthwhile to point out here that the critical state is determined by the CCNBD specimen geometry itself, and is nothing to do with the properties of the materials under investigation and the external loading condition. Therefore for fracture toughness testing, the critical parameters of the specimen can be obtained beforehand. This solves the problem of difficult crack propagation monitoring during conventional fracture toughness testing.

§3.4 Fracture Toughness Evaluation

From relation between the SIF K and the dimensionless SIF $Y^*(\alpha)$ for the CCNBD specimen, Equation (3.40), one can logically conclude that the external load P will reach its maximum value when the $Y^*(\alpha)$ hits its minimum if the K_c of the material is taken as a constant. During practical fracture toughness testing, the maximum external load is the easiest to obtain. Therefore what is important for fracture toughness value determinations is the specimen critical state parameter, in other words, the Y^*_m value.

We can rewrite Equation (3.40) in terms of fracture toughness K_c as followed:

$$K_c = \frac{P_{\text{max}}}{B\sqrt{R}} \cdot Y^*_m$$

(3.55)

Therefore if the Y^*_m is known, we only have to measure the maximum external load for the fracture toughness calculation, obviously it is not necessary to know the critical crack length a_m at the same time. Here note should be taken that the fracture toughness evaluation by this method is not restricted to any particular fracture mode condition. In other words, it is suitable for the fracture toughness calculation for any single fracture mode (K_{IC}, K_{HC} and K_{IIIC}) or mixed mode (fracture strength locus) conditions.

At present, it is important to set up a database of Y^*_m values for different CCNBD specimen geometries, i.e., different α_0, α_1 and α_B. As the Y^*_m value is material independent, so by the help of Equation (3.55) their values for different specimen geometries can be experimentally verified. In fact, if the K_{IC} value of a material and its maximum failure load for a particular geometry during the test are known, the corresponding Y^*_m value can be obtained simply by
reversing Equation (3.55). The Y^*_m values can also be evaluated by numerical methods. By use of finite element or boundary element numerical analysis, the SIF value for any CCNBD specimen geometry can be numerically obtained. Hence the critical Y^*_m and a_m values can be found if a full set of numerical analysis with the same geometry but different crack extension length has been carried out. As this numerical procedure is normally cumbersome and involves a lot of data processing, it is not practical to expect numerical validation of all the different specimen geometries. Therefore in practice, the simple theoretical calculation method will still have to be used but with some modifications based on numerical analysis of limited specimen geometries.

§3.5 Conclusions and Suggestions for further Researches

Based on the above discussions, the following conclusions about the theoretical analysis of the CSTBD and the CCNBD specimens can be drawn:

1) The CSTBD fracture problem can be solved by the stepwise superimposition method from two single elastic problems: solid Brazilian disc subjected to diametrical loadings and central cracked infinite body subjected to internal pressure. The results agree well with those of previous researches within their valid range, and can also give further solutions for the problem of a longer crack case up to $a=0.95$ with the error within 2%.

2) The CCNBD fracture problem can be solved by the compliance method based on the CSTBD results combined with two hypothesis models: the Munz’s identical compliance changing rate model and Bluhm’s slice superimposition model. Bluhm’s model can better simulate the fracture problem of the CCNBD specimen and therefore is used in the following research.

3) The CCNBD specimen geometries can be expressed and distinguished by three basic dimensionless parameters, $\alpha_0(a_0/R)$, $\alpha_1(a_1/R)$ and $\alpha_3(a_3/R)$. In other words, a_0, a_1, a_3, B and R are the basic independent CCNBD geometry dimensions. On knowing them, other CCNBD geometrical dimensions can be calculated.

4) Theoretically CCNBD geometries can vary freely. However restrictions exist between them if a reasonably proportioned and machinable CCNBD specimen is to be obtained.

Apart from the above conclusions, some suggestions for further research are drawn:

1) The theoretical results for CSTBD and CCNBD specimens need validations both numerically and experimentally. The preciseness of the results and the valid applicable crack range have to be decided.

2) Due to its simple and effective features, the stepwise superimposition solution method for the Mode I fracture problem for the CSTBD specimen can also be adopted to solve mixed
mode CSTBD fracture problems. The cracked Brazilian discs (CSTBD or CCNBD) under mixed fracture conditions are believed to be the simplest specimens practically applicable for mixed mode fracture investigations for rock materials.

3) Owing to the good features of the CCNBD specimen geometries and loading alignment, it is suggested that it could be an ideal specimen to be used for rock anisotropic fracture research. Therefore the CCNBD fracture problems under anisotropic conditions should be introduced and theoretically investigated.
Chapter 4

Numerical Calibration of
the Mode I CSTBD and CCNBD Fracture Problems

§4.1 Introduction

The theoretical analysis of the CSTBD and the CCNBD specimen in the last chapter needs validating before the results can be used. In this chapter, Boundary Element and Finite Element methods of analyses are used for the calibration of some CSTBD and CCNBD geometries. The theoretical evaluation has been modified for practical use and some conclusions have been reached.

§4.2 Brief Review of the General Methods Used for Numerical Calibration of Stress Intensity Factor (SIF) for a Cracked Body

§4.2.1 Immediate Displacement Method - IDM

From fracture mechanics, the displacement components around the immediate area of the crack tip within the range of LEFM for the plane strain condition (Mode I) are:

\[
\begin{align*}
V_x &= \frac{K_I}{2\pi M_G} \left(\frac{r}{2\pi} \cos \frac{\beta}{2} \left[1 - 2\nu + \sin^2 \frac{\beta}{2} \right] + \ldots \right) \\
V_y &= \frac{K_I}{2\pi M_G} \left(\frac{r}{2\pi} \sin \frac{\beta}{2} \left[2\left(1 - \nu \right) - \cos \frac{\beta}{2} \right] + \ldots \right)
\end{align*}
\]

where the terms omitted are the components of higher derivatives which can be neglected when the point considered is near the crack tip, i.e., \(r \) is small. Note that only the Mode I fracture problem is considered here.

\(M_G \) in the equation is the shear modulus, its relationship with Young's modulus \(E \) and the Poisson's ratio \(\nu \) is:

\[
M_G = \frac{E}{2(1 - \nu^2)}
\]
Consider the vertical displacement of the two opposite points A and B (or C and D, ..., as shown in Figure 4.1) on the opposite upper and lower crack surface with the same polar coordinate component \(r \). Substitute the condition of \(\beta = \pm 180^\circ \) in the displacement equation we can then reach the following equation:

\[
K_I = \frac{E}{4(1 - \nu^2)} \sqrt{\frac{\pi}{2r}} (V_y^A - V_y^B)
\]

(4.3)

where the term \(V_y^A - V_y^B \) is actually the crack opening displacement, COD(r), hence we can rewrite the above equation as:

\[
K_I = \frac{E}{4(1 - \nu^2)} \sqrt{\frac{\pi}{2r}} \text{COD} (r)
\]

(4.4)

Therefore if the COD(r) can be evaluated by a numerical method, the stress intensity factor SIF \(K_{IC} \) can then be determined.

§4.2.2 Direct Stress Method - DSM

Theoretically the stress distribution around the vicinity of a Mode I crack tip can be expressed as:

\[
\begin{align*}
\sigma_{xx} &= \frac{K_I}{\sqrt{2\pi r}} \cos \beta \left(1 - \sin \frac{\beta}{2} \sin \frac{3\beta}{2} \right) + \ldots \\
\sigma_{yy} &= \frac{K_I}{\sqrt{2\pi r}} \cos \beta \left(1 + \sin \frac{\beta}{2} \sin \frac{3\beta}{2} \right) + \ldots \\
\sigma_{xy} &= \frac{K_I}{\sqrt{2\pi r}} \sin \frac{\beta}{2} \cos \frac{\beta}{2} \cos \frac{3\beta}{2} + \ldots
\end{align*}
\]

(4.5)

Note should be taken that these equations are valid only within the range of LEFM, and when the considered points are near the crack tip.

Reversing the above equations we have:
Henceforth the stress intensity factor K_i can be evaluated as long as the stress component values near the crack tip are obtained by a numerical method.

However owing to inability to express the singularity stresses at the crack tips by numerical BEM or FEM methods, the exact stress intensity factor value K_i^* cannot be obtained directly by this method. Therefore the extrapolation technique should be introduced. The K_i^* value can be derived from the calculated results, as shown in Figure 4.2, where the solid line is the K_i calculation results and the dotted line is the extrapolation line.

§4.2.3 Compliance Method - CM

As derived in the Chapter 3, the stress intensity factor can be calculated from the change in the specimen compliance as:

$$
K = P \left(\frac{dC}{da} \cdot \frac{E'}{2 \cdot b} \right)^{1/2}
$$

(4.7)

Where b is the thickness of the crack front, and dC/da is the compliance change rate with respect to the crack extension. When dealing with the problem of the CCNBD specimen for the Mode I fracture conditions, the above equation can be rewritten as:

$$
K_i = \frac{P}{B \sqrt{R}} \left(\frac{dCBE'/ \cdot \alpha^2}{da \cdot 4f_1(a)} \right)^{1/2}
$$

(4.8)
Therefore if the dimensionless compliance value CBE has been evaluated by a numerical method, the K_i value can be determined.

§4.2.4 Energy Release Rate Method - VCEM

Within the range of LEFM, the strain energy stored in a cracked body having a crack with length a, when it is subjected to external forces, can be calculated as:

$$U_a = \sum_{i=1}^{n} \frac{P_i u_i}{2}$$ \hspace{1cm} (4.9)

where the P_i and u_i are the resulting load and displacement at the i-th node in the body, n is the total number of discrete nodes.

When a virtual crack extension Δa of the crack tip is assumed, the new strain energy $U_{a+\Delta a}$ can be recalculated again according to the new load and displacement values at the nodes. The change in the strain energy due to the virtual crack extension can then be obtained:

$$\Delta U = U_a - U_{a+\Delta a}$$ \hspace{1cm} (4.10)

which is supposed to be a constant whenever the specimen geometry is fixed, no matter whether it is a constant loading or a fixed displacement boundary condition [Knott, 1973]. Therefore the energy release rate according to Griffith's theory will be:

$$G = \frac{\Delta U}{\Delta a}$$ \hspace{1cm} (4.11)

After G is obtained, K_i can then be calculated from the relationship given as Equation (2.11).

However care should be taken here about the fracture modes of the evaluation. If it is a mixed mode problem (Mode I + Mode II for instance) then the contribution of both K_i and K_{ii} in the G value should be considered, i.e.,

$$G = \left(\frac{K_i^2 + K_{ii}^2}{E'} \right)$$ \hspace{1cm} (4.12)

As this method uses the virtual crack extension assumption, it is sometimes referred to as the Virtual Crack Extension Method (VCEM).
§4.2.5 Other Methods

The four methods mentioned above are the most popular and simplest methods for estimating the SIF values of a fracture problem by numerical methods. However there are some more methods, such as Modified Crack Closure Work Method, Closed Form Displacement Method and Line Contour J-integral Method. Owing to their complexity, they are seldom used in practical calculations.

§4.3 Applications of Boundary Element and Finite Element Methods for the Evaluation of the SIF Values for the CSTBD and the CCNBD Specimens

§4.3.1 Brief Introduction to the BEASY Software Package

The BEASY (Boundary Element Analysis SYstem) is a powerful software package developed by the Computational Mechanics Corporation Ltd., USA. It is broadly used for solution of 2-D (imensional) and 3-D numerical analysis of solid and fluid mechanics problems. As far as solid mechanics is concerned, linear elastic continuum mechanics is still followed even though some plastic criteria calculations are available in the package. Therefore LEFM condition will be automatically assumed when using the package to evaluate the solid fracture mechanics problems.

Boundary element meshing can be conducted manually or automatically by the package. This makes it possible to make denser element meshing around interesting parts of the solid investigated.

The discontinuous element meshing facility in the package makes it convenient to simulate a crack in a cracked body. This is one of the biggest advantages of using BEASY in solving fracture mechanics problems as this saves a lot of time to find a suitable element meshing to simulate the crack front.

The boundary conditions accepted could be any combination of stress, displacement or their mixture in any one or mixture of the three directions X, Y and Z. The boundary connection could be free, fully bounded, spring bounded or some other models. This simplifies the procedure to introduce some models to simulate the problems of crack closure or a crack cohesive zone when these phenomena are to be taken into account (the Dougdale model for example).

The BEASY -IMS interface provides a very useful tool for data checking and auto-
correcting. The Post Process is powerful for plotting the calculated results (stress, strain or displacement), value graphs or contour pictures (14 selections).

§4.3.2 Applications of Boundary Element and Finite Element Methods for the Evaluation of the SIF Values for the CSTBD and the CCNBD Specimens

Owing to the symmetry of the CCNBD specimen and the loading geometry, only 1/8 of the investigated disc has to be considered, which is shown in Figure 4.3 where ON(X), OC(Y) and OH(Z) are the three central axes of the specimen, the arc AEI is the machined notch front, BE is the propagating crack front and the shaded area is the uncracked body.

Area OBED is the cracked surface and quadrilateral element meshing is used and the following rules will be followed: in the Z direction the element divisions are equal, in the Y direction, more elements are needed near the crack front BE for more precise expression so that unequal meshing (denser near the crack front) will be used. The same arguments will hold for the notch area DEIHK, and the uncracked area BCGE. Area EFI is a triangle with a side arc line, triangular element meshing will be used. Area FGJI can be equally meshed both along Y and Z directions as there are no special requirements for this part of the body.

One very important point should be noted is that discontinuity element meshing should be used to simulate the crack front BE and the notch front EI. Care should be taken as well to ensure that there are less than 3 common mesh points between the neighbouring elements across the crack front line.

Therefore the meshing commands for area ACJH will be:

\[
\begin{align*}
BR & 1 \ 1 \ 2 \ 8 \ 7 \ 408 \ 3 \\
BR & 2 \ 7 \ 8 \ 5 \ 4 \ 408 \ 4 \\
BR & 3 \ 2 \ 3 \ 9 \ 8 \ -406 \ 2 \\
BR & 4 \ 14 \ 9 \ 6 \ 5 \ 4 \ 4 \\
BD & 5 \ 8 \ 14 \ 5 \ 3 \ 2
\end{align*}
\]

which is shown in the Figure 4.4.
The surface HIJKM and MKLN are equally meshed with respect to their arc length and angle, as there are no special requirements. The external loading surface JCLK can be equally divided into elements as well. However care should be taken again as there is another discontinuity line KL (elastic condition discontinuity instead of specimen geometry discontinuity) between JCLK and MKLN. The reason we introduce this external loading surface is that BEASY does not take external loading singularities, i.e., point load. So that a load band with a central radian angle 4° as the external loading area is introduced, and the external loads are assumed to be uniformly distributed over this band. This assumption (substitution) will generate some error, as will be shown in a later section. It will also enlarge the differences between the numerical results and the theoretical results where a point load is assumed. Therefore the error caused have to be corrected by use of special constants.

Henceforth the commands for meshing the loading band and for the load set input data will be:

\[\text{BR 7 13 6 3 12 1 5}\]
\[\text{PP 7 -1 -100 -100 -100 -100}\]
\[\text{LF 1}\]

The area OHMN and ONCO are the symmetrical planes and they are made to be fully bounded by the following two commands:

\[\text{ZX 1}\]
\[\text{ZZ 1}\]

As the investigated surface OCJH is not taken by the BEASY as a symmetrical plane, in other words, the uncracked area BCKIE is not fully bounded. Therefore some additional boundary conditions should be introduced to enforce practical symmetry. The simplest way is setting the displacement of the area BCKIE in the X direction to zero as an additional boundary condition, i.e.,

\[\text{PD 3 2 0 0 0 0}\]
\[\text{PD 4 2 0 0 0 0}\]
This will be included in load set 1 as well.

For the CSTBD specimen geometry, it can be treated as a special case when the crack front line BE of the CCNBD specimen geometry coincides with the line FI (Figure 4.3). Therefore the input file will be much simpler.

A simple example of the datafile for input into the BEASY software package is given in appendix A.

In addition, the finite element method is also used to calibrate the CSTBD and CCNBD specimens. The software used is a self-compiled FEM programme, FEMFR, and the PAFEC software package. The commercial package ABAQUS was also used a few times for comparison. The results obtained are the same as those calculated by BEASY package but much more time was spent on the FEM analysis. Therefore for reasons of time, the BEASY software package was used to do most of the calibrations.

Figure 4.5 is an example of the meshing of a CCNBD specimen for the FEM analysis. The basic element types used are mainly isoparametric linear and quadratic triangular and brick elements. For the elements consisting of the crack front (Figure 4.5.b), the isoparametric quadratic tetrahedral elements are used.

Figure 4.5 Meshing of a CCNBD Specimen for FEM analysis

§4.3.3 SIF Calculation Method for the CSTBD and the CCNBD Specimens

The crack opening displacement (COD) at any point on the crack surface can be calculated
directly by BEASY. Hence the COD along the lines (Figure 4.4) 1-1', 2-2', ..., a-a', b-b', ...
, can be obtained. Two typical CODs along these lines are drawn below:

\[\text{COD}(r) \]
\[\text{COD}(z) \]

a) X Direction
\[a,b,c, \ldots \]

b) Z Direction
\[1,2,3, \ldots \]

Figure 4.6 COD(r) and COD(z) of the Cracked Part of the CCNBD Specimen

where COD(r) is the crack opening displacement along Y direction and COD(z) is the crack opening displacement along the Z direction. As can be seen from the figures, the nearer the points to the free disc surface HJ, the greater the variation of COD. This is due to the limited thickness of the specimen and the plane condition is hard to keep when near the free surface. Therefore the COD results used for the SIF evaluations are the ones within the middle of the specimen where presumably the COD variation is relatively small enough. As the evaluation points for the SIF calculation should be near to the crack front, we will use the COD values along the a-a' line along which the node points are the nearest ones to the crack front BE. Then the results are averaged for the node points from a to a'.

Therefore from the above calculation equations and by using the condition of symmetry, the SIF values for the CCNBD or the CSTBD specimens can be expressed as:

\[
K_I = \frac{E}{4 \cdot (1 - v^2)} \cdot \sqrt{\frac{\pi}{2 \cdot r_a}} \cdot \text{COD}(r_a)
\]

(4.13)

and the dimensionless SIF value \(f(\alpha) \) (\(Y(\alpha) \)) and \(Y'(\alpha) \) (\(Y'(\alpha) \) for the CCNBD specimen and \(Y(\alpha) \) for the CSTBD specimen) can then be calculated by Equations (3.29) and (3.30).

Apart from the SIF numerical calibration for the CSTBD and the CCNBD specimens mentioned above, in the calibration which follows in this chapter, some sections will be concentrating on finding the most reasonable CCNBD geometries for practical use in order to obtain the valid (consistent) \(K_{ic} \) test results (or plane strain \(K_{ic} \) values). The influence of element meshing, loading contact angle, and Poisson's ratio can be found in Chen (1989).

Based on our calibration experience, the numerical analysis generates much closer SIF
results to those theoretical values calculated by hypothesis II theory discussed in the last chapter for the CCNBD specimen geometry. Therefore the greater suitability of this assumption for the simulation of the CCNBD fracture problem over hypothesis I is suggested. As a result, during the following discussion, the theoretical SIF values will be particularly referred to as those based on hypothesis II theory only.

§4.4 Numerical Calibration Results for the CSTBD Specimen

Table 4.1 is the list of calibration SIF results $Y(\alpha)$ for the CSTBD specimens, calculated by the Immediate Displacement Method. The Young's modulus and the Poisson's ratio for the calibration are set to be 10 GPa and 0.3 respectively. The number of elements for the BEM method is between 140-170, which meets the minimum element number requirement set by Chen (1989) in order to keep the precision required. The corresponding theoretical evaluation results are also listed. Their differences are signified by the Ratio values in the table, which is the quotient of the theoretical results over the calibrated ones.

Table 4.2 lists the compliance values for the calibrated CSTBD specimens. The corresponding dimensionless SIF $Y(\alpha)$ values are calculated by the Compliance Method within the same group, where α for each $Y(\alpha)$ value will be the middle point between two adjacent crack length values from which the calibrated compliance values come.

![Figure 4.7 Comparison between Calibrated and Theoretical Results](image-url)
Table 4.1 $Y(\alpha)$ Calibration Results for the CSTBD Specimens by IDM Method

<table>
<thead>
<tr>
<th>ID</th>
<th>D (mm)</th>
<th>α</th>
<th>α_a (mm)</th>
<th>COD ($\times 10^3$)</th>
<th>Y Cali.</th>
<th>Y Theory</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>0.10</td>
<td>0.327</td>
<td>0.1913</td>
<td>0.1753</td>
<td>1.0493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2</td>
<td>0.20</td>
<td>0.412</td>
<td>0.2927</td>
<td>0.2670</td>
<td>1.0964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS3</td>
<td>0.35</td>
<td>0.422</td>
<td>0.4236</td>
<td>0.3950</td>
<td>1.0724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS4</td>
<td>0.50</td>
<td>0.426</td>
<td>0.5678</td>
<td>0.5579</td>
<td>1.0177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS5</td>
<td>75.0</td>
<td>0.65</td>
<td>0.8082</td>
<td>0.7785</td>
<td>1.0381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS6</td>
<td>0.80</td>
<td>0.457</td>
<td>1.1375</td>
<td>1.1448</td>
<td>0.9936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS7</td>
<td>0.85</td>
<td>0.456</td>
<td>1.3333</td>
<td>1.3320</td>
<td>1.0010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS8</td>
<td>0.90</td>
<td>0.454</td>
<td>1.6052</td>
<td>1.6350</td>
<td>0.9817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS9</td>
<td>0.95</td>
<td>0.453</td>
<td>2.0249</td>
<td>2.2043</td>
<td>0.9392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF1</td>
<td>53.0</td>
<td>0.9057</td>
<td>1.5640</td>
<td>1.5630</td>
<td>0.9998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF2</td>
<td>56.0</td>
<td>0.8571</td>
<td>1.3650</td>
<td>1.3653</td>
<td>1.0118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF3</td>
<td>60.0</td>
<td>0.8000</td>
<td>1.2023</td>
<td>1.1498</td>
<td>1.0503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF4</td>
<td>70.0</td>
<td>0.6857</td>
<td>0.8636</td>
<td>0.9473</td>
<td>1.0164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF5</td>
<td>80.0</td>
<td>0.6000</td>
<td>0.7012</td>
<td>0.9630</td>
<td>1.0118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF6</td>
<td>90.0</td>
<td>0.5333</td>
<td>0.5991</td>
<td>0.5990</td>
<td>1.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF7</td>
<td>100.0</td>
<td>0.4800</td>
<td>0.5587</td>
<td>0.5343</td>
<td>1.0457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF9</td>
<td>78.0</td>
<td>0.9487</td>
<td>1.9909</td>
<td>2.2028</td>
<td>0.9650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNK5</td>
<td>75.0</td>
<td>0.6500</td>
<td>0.7680</td>
<td>0.9866</td>
<td>1.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNK6</td>
<td>0.80</td>
<td>1.04</td>
<td>0.9391</td>
<td>1.1449</td>
<td>1.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNJ6</td>
<td>0.70</td>
<td>0.90</td>
<td>0.8734</td>
<td>0.8807</td>
<td>0.9917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNK6</td>
<td>0.75</td>
<td>1.00</td>
<td>0.9271</td>
<td>1.0014</td>
<td>0.9258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNL2</td>
<td>0.35</td>
<td>0.304</td>
<td>0.2471</td>
<td>0.2279</td>
<td>1.0842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNL3</td>
<td>0.362</td>
<td>0.350</td>
<td>0.3362</td>
<td>0.3059</td>
<td>1.0900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNL4</td>
<td>0.42</td>
<td>0.362</td>
<td>0.3482</td>
<td>1.0185</td>
<td>1.0457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNL5</td>
<td>0.45</td>
<td>0.350</td>
<td>0.4629</td>
<td>0.4460</td>
<td>1.0380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNL6</td>
<td>0.40</td>
<td>0.341</td>
<td>0.5002</td>
<td>1.0150</td>
<td>0.9917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNL7</td>
<td>0.76</td>
<td>0.407</td>
<td>0.9483</td>
<td>1.0280</td>
<td>0.9225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNM1</td>
<td>0.92</td>
<td>0.416</td>
<td>1.7051</td>
<td>1.8248</td>
<td>0.9344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNM2</td>
<td>0.12</td>
<td>0.321</td>
<td>0.2071</td>
<td>0.2018</td>
<td>1.0262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNM3</td>
<td>0.28</td>
<td>0.392</td>
<td>0.3307</td>
<td>1.0353</td>
<td>1.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNM4</td>
<td>0.58</td>
<td>0.397</td>
<td>0.4673</td>
<td>1.0394</td>
<td>1.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNM5</td>
<td>0.72</td>
<td>0.411</td>
<td>0.9267</td>
<td>0.9575</td>
<td>1.0414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNM6</td>
<td>0.825</td>
<td>0.417</td>
<td>1.2302</td>
<td>0.9479</td>
<td>1.0414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNM7</td>
<td>0.875</td>
<td>0.341</td>
<td>1.4611</td>
<td>0.9671</td>
<td>1.0414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNM8</td>
<td>0.935</td>
<td>0.344</td>
<td>2.0097</td>
<td>0.9297</td>
<td>1.0414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.2 Y(\(\alpha\)) Calibration Results for the CSTBD Specimens by Compliance Method

<table>
<thead>
<tr>
<th>ID</th>
<th>(\alpha) (Cali.)</th>
<th>CBE'</th>
<th>(\alpha) (Midpoint)</th>
<th>Y (Cali.)</th>
<th>Y (Theory)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>0.10</td>
<td>3.0886</td>
<td></td>
<td>0.2314</td>
<td>0.2279</td>
<td>1.0154</td>
</tr>
<tr>
<td>CS2</td>
<td>0.20</td>
<td>3.0992</td>
<td>0.150</td>
<td>0.3698</td>
<td>0.3265</td>
<td>1.1325</td>
</tr>
<tr>
<td>CS3</td>
<td>0.35</td>
<td>5.1424</td>
<td>0.275</td>
<td>0.5205</td>
<td>0.4727</td>
<td>1.1011</td>
</tr>
<tr>
<td>CS4</td>
<td>0.50</td>
<td>3.2215</td>
<td>0.425</td>
<td>0.6964</td>
<td>0.6556</td>
<td>1.0623</td>
</tr>
<tr>
<td>CS5</td>
<td>0.65</td>
<td>3.3670</td>
<td>0.575</td>
<td>0.9881</td>
<td>0.9387</td>
<td>1.0526</td>
</tr>
<tr>
<td>CS6</td>
<td>0.80</td>
<td>3.6599</td>
<td>0.725</td>
<td>1.2841</td>
<td>1.2302</td>
<td>1.0438</td>
</tr>
<tr>
<td>CS7</td>
<td>0.85</td>
<td>3.8249</td>
<td>0.825</td>
<td>1.3892</td>
<td>1.4611</td>
<td>0.9508</td>
</tr>
<tr>
<td>CS8</td>
<td>0.90</td>
<td>4.0178</td>
<td>0.875</td>
<td>1.5065</td>
<td>1.8817</td>
<td>0.8006</td>
</tr>
<tr>
<td>CS9</td>
<td>0.95</td>
<td>4.2448</td>
<td>0.925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF1</td>
<td>0.9057</td>
<td>4.0200</td>
<td></td>
<td>0.6211</td>
<td>0.5659</td>
<td>1.0975</td>
</tr>
<tr>
<td>CNF2</td>
<td>0.8571</td>
<td>3.8351</td>
<td>0.8814</td>
<td>0.7013</td>
<td>0.6438</td>
<td>1.0893</td>
</tr>
<tr>
<td>CNF3</td>
<td>0.8000</td>
<td>3.6776</td>
<td>0.8286</td>
<td>0.8027</td>
<td>0.7654</td>
<td>1.0488</td>
</tr>
<tr>
<td>CNF4</td>
<td>0.6857</td>
<td>3.4223</td>
<td>0.7429</td>
<td>1.0566</td>
<td>0.7831</td>
<td>1.0747</td>
</tr>
<tr>
<td>CNF5</td>
<td>0.6000</td>
<td>3.3118</td>
<td>0.6429</td>
<td>1.1746</td>
<td>1.2437</td>
<td>0.9444</td>
</tr>
<tr>
<td>CNF6</td>
<td>0.5333</td>
<td>3.2462</td>
<td>0.5667</td>
<td>1.3793</td>
<td>1.5004</td>
<td>0.9193</td>
</tr>
<tr>
<td>CNF7</td>
<td>0.4800</td>
<td>3.2051</td>
<td>0.5067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNL1</td>
<td>0.15</td>
<td>3.0534</td>
<td></td>
<td>0.3542</td>
<td>0.3265</td>
<td>1.0848</td>
</tr>
<tr>
<td>CNL2</td>
<td>0.25</td>
<td>3.0972</td>
<td></td>
<td>0.4272</td>
<td>0.3950</td>
<td>1.0816</td>
</tr>
<tr>
<td>CNL3</td>
<td>0.30</td>
<td>3.1097</td>
<td>0.275</td>
<td>0.5086</td>
<td>0.4727</td>
<td>1.0759</td>
</tr>
<tr>
<td>CNL4</td>
<td>0.40</td>
<td>3.1462</td>
<td>0.350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNL5</td>
<td>0.45</td>
<td>3.1721</td>
<td>0.425</td>
<td>1.0745</td>
<td>1.0625</td>
<td>1.0113</td>
</tr>
<tr>
<td>CNL6</td>
<td>0.76</td>
<td>3.5294</td>
<td></td>
<td>1.2869</td>
<td>1.3320</td>
<td>0.9661</td>
</tr>
<tr>
<td>CNL7</td>
<td>0.92</td>
<td>4.0263</td>
<td></td>
<td>1.4004</td>
<td>1.6774</td>
<td>0.8349</td>
</tr>
</tbody>
</table>
Figure 4.7 illustrates the comparison between the calibrated and the theoretical results from Tables 4.1 and 4.2. The regression suggests that their difference is less than 5%. The calibrated and the theoretical values of $Y(\alpha)$ tend to deviate as $\alpha > 0.95$, which obviously is due to the loading boundary influences. Therefore it is not suggested that the above theoretical evaluation results be used when the dimensionless crack length exceeds this limit.

§4.5 Numerical Calibration Results for the CCNBD Specimens

Ten basic groups of CCNBD specimen geometries were designed for calibration to simulate the median, long and short crack cases respectively. Table 4.3 and 4.4 are the lists of their SIF $Y'(\alpha)$ numerical calibration results by Direct Displacement Method and Compliance Method. The corresponding theoretical SIF $Y'(\alpha)$ values based on the Bluhm's model are also listed in the tables for comparison. Again during the evaluation the Young's modulus is taken to be 10 GPa and the Poisson's ratio 0.30.

In order to reach more comprehensive conclusions, another 17 groups of CCNBD specimen geometries were introduced for the numerical calibration, which were based on the calibration geometries used by Chen (1989). Table 4.5 shows the comparison of the SIF $Y'(\alpha)$ values between the calibration and the theoretical results by Bluhm's model. The Young's modulus and the Poisson's ratio used during the numerical calculation are the same as those used above.

In order to investigate the thickness effect on the SIF $Y'(\alpha)$ values of the CCNBD specimens, an extra group of CCNBD specimen geometries, TH, with the same crack front width b, the same crack length a and α, but with different specimen thicknesses, a_B, varying from $a_B = 0.2667$ to $a_B = 1.1733$ have been calibrated and their geometrical parameters and calibrated results are listed in Table 4.6.

From Table 4.3 to 4.6, the Ratio values between the calibrated (practical) and theoretical results point out that certain differences exist between the numerical calibrated and the theoretical SIF $Y'(\alpha)$ values of the CCNBD specimens with a range of 2% to 15%. From the basic assumptions it is suggested that the main contributory factors for these differences are as follows:

1) The effect of specimen thickness, which changes the stress-strain state within the specimen. The theory is based on the assumption of plane strain condition. However this condition can hardly be satisfied in practical CCNBD specimens. This disagreement will cause deviations of the theoretical SIF results from the practical SIF values (numerical calibrated).

2) The effect of loading contact angles. Obviously some error has to be generated owing to the differences between the point load assumption in the theory and the strip (band) loading
assumption in the numerical calibration. However in practical application of the CCNBD specimens, the strip loading assumption is believed to better represent the practical loading situation, and the point loading assumption is considered to be far too idealized.

3) The influences of different specimen geometries.

Therefore correction of the theoretical results is needed so that they can converge to the practical SIF values. After the determination of this correction relation, the practical SIF \(Y^*(\alpha) \) values for any CCNBD specimen geometry can be calculated directly from theory and the troublesome numerical calibration for that geometry does not have to be conducted. This makes possible the application of the CCNBD specimen geometry for practical fracture toughness measurement, as in a practical situation, the geometrical parameters of the CCNBD specimens are always different but their SIF values needs to be known instantly. It is impossible to use the above numerical methods to calibrate all the possible CCNBD specimen geometries and therefore it is only the theoretical method which can simply and quickly give the SIF value of any CCNBD specimen.

If \(k_B \) is used to designify the Ratio values listed in the above tables, based on the points discussed above, attempts have been made to relate \(k_B \) with the specimen thickness \(\alpha_B \), the loading contact angle, the crack front width \(b \), some other specimen geometries and all their possible combinations, but only the \(k_B - \alpha_B \) shows a simple and clear relationship, as illustrated in Figure 4.8. The regression yields:

\[
k_B = \frac{1.3087}{0.7982 + 0.3806 \cdot \alpha_B}
\]

with regression coefficient of 0.9111. However even though \(k_B \) values are obtained in this way, they should be considered to be the superimposed coefficient from the three contributory factors mentioned above.

Henceforth the corrected theoretical SIF values \(Y^*(\alpha) \) (which will be referred to as the theoretical SIF values for the CCNBD specimens in later sections) can be calculated from the theoretical SIF values based on the hypothesis II (Bluhm's model) discussed in the last chapter as follows:

\[
Y_{Theory}^*(\alpha) = Y_{Corrected}^*(\alpha) - Y_{Re-Cal}^*(\alpha) = k_B \cdot Y_{Hypothesis II}^*(\alpha)
\]
Table 4.3 $Y'(\alpha)$ Calibration Results for the CCNBD Specimens by IDM Method

<table>
<thead>
<tr>
<th>Cases</th>
<th>ID</th>
<th>D (mm)</th>
<th>α_b</th>
<th>α_0</th>
<th>α_i</th>
<th>α</th>
<th>r_s (mm)</th>
<th>COD(r_s) ($\times 10^3$)</th>
<th>Y^* (Cali.)</th>
<th>Y^* (Theo.)</th>
<th>Ratio</th>
<th>Y^* (Re-Cal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.362</td>
<td>7.2058</td>
<td>1.2631</td>
<td>1.0524</td>
<td>1.2001</td>
<td>1.2490</td>
</tr>
<tr>
<td>CNA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.422</td>
<td>6.3752</td>
<td>1.0351</td>
<td>0.8812</td>
<td>1.1747</td>
<td>1.0458</td>
</tr>
<tr>
<td>CNA3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.40</td>
<td>0.424</td>
<td>6.0154</td>
<td>0.9743</td>
<td>0.7851</td>
<td>1.2410</td>
<td>0.9318</td>
</tr>
<tr>
<td>CNA4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
<td>0.472</td>
<td>5.4536</td>
<td>0.8372</td>
<td>0.7116</td>
<td>1.1765</td>
<td>0.8446</td>
</tr>
<tr>
<td>CNA5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60</td>
<td>0.511</td>
<td>5.8196</td>
<td>0.8586</td>
<td>0.7421</td>
<td>1.1570</td>
<td>0.8808</td>
</tr>
<tr>
<td>CS5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
<td>0.65</td>
<td>0.9571</td>
<td>0.8056</td>
<td>1.1881</td>
<td>0.9561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.40</td>
<td>0.483</td>
<td>8.1892</td>
<td>1.2422</td>
<td>0.9433</td>
<td>1.3169</td>
<td>1.1195</td>
</tr>
<tr>
<td>CNC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.543</td>
<td>6.9734</td>
<td>0.9976</td>
<td>0.8268</td>
<td>1.2066</td>
<td>0.9813</td>
</tr>
<tr>
<td>CNC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.55</td>
<td>0.583</td>
<td>6.3492</td>
<td>0.8766</td>
<td>0.7429</td>
<td>1.1800</td>
<td>0.8817</td>
</tr>
<tr>
<td>CNC4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60</td>
<td>0.567</td>
<td>6.1890</td>
<td>0.8665</td>
<td>0.7521</td>
<td>1.1521</td>
<td>0.8926</td>
</tr>
<tr>
<td>CNC5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
<td>0.554</td>
<td>6.4220</td>
<td>0.9096</td>
<td>0.8054</td>
<td>1.1294</td>
<td>0.9559</td>
</tr>
<tr>
<td>CN11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.318</td>
<td>5.7020</td>
<td>1.0659</td>
<td>0.9040</td>
<td>1.1791</td>
<td>1.1113</td>
</tr>
<tr>
<td>CN12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.371</td>
<td>5.0042</td>
<td>0.8399</td>
<td>0.7610</td>
<td>1.1037</td>
<td>0.9355</td>
</tr>
<tr>
<td>CN13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60</td>
<td>0.578</td>
<td>4.6452</td>
<td>0.7965</td>
<td>0.6839</td>
<td>1.1646</td>
<td>0.8407</td>
</tr>
<tr>
<td>CN14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.55</td>
<td>0.426</td>
<td>4.5408</td>
<td>0.7334</td>
<td>0.6385</td>
<td>1.1486</td>
<td>0.7849</td>
</tr>
<tr>
<td>CN15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.55</td>
<td>0.427</td>
<td>4.6014</td>
<td>0.7423</td>
<td>0.6586</td>
<td>1.1271</td>
<td>0.8096</td>
</tr>
<tr>
<td>CN16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60</td>
<td>0.367</td>
<td>5.7258</td>
<td>0.9964</td>
<td>0.7157</td>
<td>1.3922</td>
<td>0.8798</td>
</tr>
<tr>
<td>CN11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.318</td>
<td>7.2304</td>
<td>1.3518</td>
<td>1.2179</td>
<td>1.1099</td>
<td>1.3972</td>
</tr>
<tr>
<td>CN12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.371</td>
<td>6.3178</td>
<td>1.0934</td>
<td>1.0148</td>
<td>1.0775</td>
<td>1.1642</td>
</tr>
<tr>
<td>CN13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.371</td>
<td>6.3178</td>
<td>1.0934</td>
<td>1.0148</td>
<td>1.0775</td>
<td>1.1642</td>
</tr>
<tr>
<td>CN14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
<td>0.2667</td>
<td>0.7000</td>
<td>0.9577</td>
<td>0.8327</td>
<td>1.1501</td>
<td>0.9553</td>
</tr>
<tr>
<td>CN15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.55</td>
<td>0.427</td>
<td>5.4846</td>
<td>0.8848</td>
<td>0.7883</td>
<td>1.1224</td>
<td>0.9044</td>
</tr>
<tr>
<td>CN16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
<td>0.463</td>
<td>5.8846</td>
<td>0.9188</td>
<td>0.8323</td>
<td>1.0955</td>
<td>0.9548</td>
</tr>
<tr>
<td>CN17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.70</td>
<td>0.461</td>
<td>6.6610</td>
<td>1.0343</td>
<td>0.9031</td>
<td>1.1453</td>
<td>1.0361</td>
</tr>
<tr>
<td>CN18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.318</td>
<td>8.1212</td>
<td>1.5182</td>
<td>1.3980</td>
<td>1.0860</td>
<td>1.5521</td>
</tr>
<tr>
<td>CN19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.371</td>
<td>7.0778</td>
<td>1.2249</td>
<td>1.1633</td>
<td>1.0530</td>
<td>1.2915</td>
</tr>
<tr>
<td>CN20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.383</td>
<td>6.1120</td>
<td>1.0412</td>
<td>0.9455</td>
<td>1.1012</td>
<td>1.0497</td>
</tr>
<tr>
<td>CN21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.55</td>
<td>0.427</td>
<td>6.0352</td>
<td>0.9737</td>
<td>0.8793</td>
<td>1.1074</td>
<td>0.9762</td>
</tr>
<tr>
<td>CN22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
<td>0.463</td>
<td>6.3894</td>
<td>0.9899</td>
<td>0.8920</td>
<td>1.1098</td>
<td>0.9903</td>
</tr>
<tr>
<td>CN23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
<td>0.459</td>
<td>7.0552</td>
<td>1.0979</td>
<td>1.0148</td>
<td>1.0819</td>
<td>1.1266</td>
</tr>
</tbody>
</table>

Medium: 75.0
Table 4.3 $Y'(\alpha)$ Calibration Results for the CCNBD Specimens by IDM Method (continued)

<table>
<thead>
<tr>
<th>Cases</th>
<th>ID</th>
<th>D (mm)</th>
<th>α_3</th>
<th>α_0</th>
<th>α_1</th>
<th>α</th>
<th>r_a (mm)</th>
<th>COD(r_a) ($\times 10^3$)</th>
<th>Y^* (Cali.)</th>
<th>Y^* (Theo.)</th>
<th>Ratio</th>
<th>Y^* (Re-Cal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNB1</td>
<td></td>
<td>75.0</td>
<td>0.2667</td>
<td>0.9487</td>
<td>0.30</td>
<td>0.318</td>
<td>11.130</td>
<td>2.0815</td>
<td>1.9461</td>
<td>1.0696</td>
<td>2.3097</td>
<td></td>
</tr>
<tr>
<td>CNB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.371</td>
<td>9.8812</td>
<td>1.7110</td>
<td>1.6185</td>
<td>1.0572</td>
<td>1.9209</td>
<td></td>
</tr>
<tr>
<td>CNB3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.40</td>
<td>0.424</td>
<td>9.4086</td>
<td>1.5239</td>
<td>1.4286</td>
<td>1.0667</td>
<td>1.6955</td>
<td></td>
</tr>
<tr>
<td>CNB4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
<td>0.472</td>
<td>8.9936</td>
<td>1.3807</td>
<td>1.2499</td>
<td>1.1047</td>
<td>1.4834</td>
<td></td>
</tr>
<tr>
<td>CNB5</td>
<td>Long</td>
<td>75.0</td>
<td>0.80</td>
<td>0.2241</td>
<td>0.9487</td>
<td>0.65</td>
<td>0.463</td>
<td>8.7626</td>
<td>1.3582</td>
<td>1.1976</td>
<td>1.1341</td>
<td>1.4214</td>
</tr>
<tr>
<td>CNB6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
<td>0.428</td>
<td>8.9470</td>
<td>1.4423</td>
<td>1.2439</td>
<td>1.1595</td>
<td>1.4763</td>
<td></td>
</tr>
<tr>
<td>CNB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.451</td>
<td>10.474</td>
<td>2.2050</td>
<td>1.4759</td>
<td>1.4940</td>
<td>1.7517</td>
<td></td>
</tr>
<tr>
<td>CNB8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
<td>0.514</td>
<td>12.410</td>
<td>2.4473</td>
<td>1.7926</td>
<td>1.3652</td>
<td>2.1275</td>
<td></td>
</tr>
<tr>
<td>CS9</td>
<td></td>
<td>78.0</td>
<td>0.2241</td>
<td>0.9487</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8698</td>
</tr>
<tr>
<td>CND1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td>0.364</td>
<td>11.971</td>
<td>2.0509</td>
<td>2.2123</td>
<td>0.9270</td>
<td>2.6256</td>
<td></td>
</tr>
<tr>
<td>CND2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.437</td>
<td>10.717</td>
<td>1.6759</td>
<td>1.7625</td>
<td>0.9509</td>
<td>2.0918</td>
<td></td>
</tr>
<tr>
<td>CND3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.40</td>
<td>0.393</td>
<td>8.9484</td>
<td>1.4756</td>
<td>1.3565</td>
<td>1.0878</td>
<td>1.6099</td>
<td></td>
</tr>
<tr>
<td>CND4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
<td>0.443</td>
<td>8.7114</td>
<td>1.3531</td>
<td>1.2126</td>
<td>1.1159</td>
<td>1.4392</td>
<td></td>
</tr>
<tr>
<td>CND5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60</td>
<td>0.484</td>
<td>8.9838</td>
<td>1.3349</td>
<td>1.1778</td>
<td>1.1334</td>
<td>1.3979</td>
<td></td>
</tr>
<tr>
<td>CND6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.70</td>
<td>0.518</td>
<td>9.3416</td>
<td>1.3418</td>
<td>1.1978</td>
<td>1.1202</td>
<td>1.4216</td>
<td></td>
</tr>
<tr>
<td>CND7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
<td>0.547</td>
<td>10.641</td>
<td>1.4873</td>
<td>1.3124</td>
<td>1.1333</td>
<td>1.5576</td>
<td></td>
</tr>
<tr>
<td>CND8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
<td>0.572</td>
<td>13.876</td>
<td>1.8967</td>
<td>1.7911</td>
<td>1.0590</td>
<td>2.1257</td>
<td></td>
</tr>
<tr>
<td>CND9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9487</td>
<td>0.529</td>
<td>16.589</td>
<td>2.3578</td>
<td>2.4022</td>
<td>0.9815</td>
<td>2.8510</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.3 Y*(α) Calibration Results for the CCNBD Specimens by IDM Method (continued)

<table>
<thead>
<tr>
<th>Cases</th>
<th>ID</th>
<th>D (mm)</th>
<th>α_b</th>
<th>α_0</th>
<th>α_1</th>
<th>r_s (mm)</th>
<th>COD(r_s) (x 10^3)</th>
<th>Y* (Cali.)</th>
<th>Y* (Theo.)</th>
<th>Ratio</th>
<th>Y* (Re-Cal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNE1</td>
<td></td>
</tr>
<tr>
<td>CNE2</td>
<td></td>
</tr>
<tr>
<td>CNE3</td>
<td></td>
<td>100.0</td>
<td>0.70</td>
<td>0.0995</td>
<td>0.48</td>
<td>0.12</td>
<td>0.329</td>
<td>6.6664</td>
<td>0.8103</td>
<td>1.3934</td>
<td>0.5815</td>
</tr>
<tr>
<td>CNE4</td>
<td></td>
</tr>
<tr>
<td>CNE5</td>
<td></td>
</tr>
<tr>
<td>CNG1</td>
<td></td>
</tr>
<tr>
<td>CNG2</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>CNG3</td>
<td></td>
<td>1.04</td>
<td>0.6000</td>
<td>0.80</td>
<td>0.70</td>
<td>0.498</td>
<td>8.2108</td>
<td>1.2266</td>
<td>1.1297</td>
<td>1.0858</td>
<td>1.2382</td>
</tr>
<tr>
<td>CNG4</td>
<td></td>
</tr>
<tr>
<td>CNG5</td>
<td></td>
<td>75.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNH1</td>
<td></td>
</tr>
<tr>
<td>CNH2</td>
<td></td>
</tr>
<tr>
<td>CNH3</td>
<td></td>
<td>0.80</td>
<td>0.3500</td>
<td>0.55</td>
<td>0.45</td>
<td>0.425</td>
<td>4.4428</td>
<td>0.7185</td>
<td>0.6390</td>
<td>1.1244</td>
<td>0.7584</td>
</tr>
<tr>
<td>CNH4</td>
<td></td>
</tr>
<tr>
<td>CNH5</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.4 $Y^*(\alpha)$ Calibration Results for the CCNBD Specimens by Compliance Method

<table>
<thead>
<tr>
<th>ID</th>
<th>α</th>
<th>CBE'</th>
<th>α_{MD}</th>
<th>Y^* (Cali.)</th>
<th>Y^* (Theo.)</th>
<th>Ratio</th>
<th>Y^* (Re-Cal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNA1</td>
<td>0.30</td>
<td>2.6876</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNA2</td>
<td>0.35</td>
<td>2.6921</td>
<td>0.325</td>
<td>0.8630</td>
<td>0.9541</td>
<td>0.9045</td>
<td>1.1324</td>
</tr>
<tr>
<td>CNA3</td>
<td>0.40</td>
<td>2.7000</td>
<td>0.375</td>
<td>0.9499</td>
<td>0.8262</td>
<td>1.1497</td>
<td>0.9806</td>
</tr>
<tr>
<td>CNC1</td>
<td>0.40</td>
<td>2.6938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNC2</td>
<td>0.45</td>
<td>2.6988</td>
<td>0.425</td>
<td>0.9963</td>
<td>0.8764</td>
<td>1.1368</td>
<td>1.0401</td>
</tr>
<tr>
<td>CNC3</td>
<td>0.55</td>
<td>2.7212</td>
<td>0.500</td>
<td>0.8468</td>
<td>0.7669</td>
<td>1.1042</td>
<td>0.9102</td>
</tr>
<tr>
<td>CNC4</td>
<td>0.60</td>
<td>2.7460</td>
<td>0.575</td>
<td>0.8976</td>
<td>0.7439</td>
<td>1.2066</td>
<td>0.8829</td>
</tr>
<tr>
<td>CNB1</td>
<td>0.30</td>
<td>2.7040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNB2</td>
<td>0.35</td>
<td>2.7152</td>
<td>0.325</td>
<td>2.3393</td>
<td>1.7532</td>
<td>1.3343</td>
<td>2.0808</td>
</tr>
<tr>
<td>CNB3</td>
<td>0.40</td>
<td>2.7283</td>
<td>0.375</td>
<td>1.7745</td>
<td>1.5088</td>
<td>1.1761</td>
<td>1.7907</td>
</tr>
<tr>
<td>CNB4</td>
<td>0.50</td>
<td>2.7658</td>
<td>0.450</td>
<td>1.5407</td>
<td>1.3149</td>
<td>1.1717</td>
<td>1.5606</td>
</tr>
<tr>
<td>CNB5</td>
<td>0.65</td>
<td>2.8605</td>
<td>0.575</td>
<td>1.4041</td>
<td>1.2049</td>
<td>1.1653</td>
<td>1.4300</td>
</tr>
<tr>
<td>CNB6</td>
<td>0.75</td>
<td>2.9703</td>
<td>0.700</td>
<td>1.4353</td>
<td>1.2103</td>
<td>1.1859</td>
<td>1.4364</td>
</tr>
<tr>
<td>CNB7</td>
<td>0.85</td>
<td>2.1575</td>
<td>0.800</td>
<td>1.5821</td>
<td>1.3189</td>
<td>1.1996</td>
<td>1.5653</td>
</tr>
<tr>
<td>CNB8</td>
<td>0.90</td>
<td>3.2946</td>
<td>0.875</td>
<td>1.7071</td>
<td>1.6077</td>
<td>1.0618</td>
<td>1.9081</td>
</tr>
<tr>
<td>CS9</td>
<td>0.95</td>
<td>3.4756</td>
<td>0.925</td>
<td>1.8240</td>
<td>2.0547</td>
<td>0.8877</td>
<td>2.4386</td>
</tr>
<tr>
<td>CND1</td>
<td>0.25</td>
<td>2.6883</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CND2</td>
<td>0.30</td>
<td>2.6964</td>
<td>0.275</td>
<td>2.3434</td>
<td>1.9528</td>
<td>1.2000</td>
<td>2.3177</td>
</tr>
<tr>
<td>CND3</td>
<td>0.40</td>
<td>2.7191</td>
<td>0.35</td>
<td>1.6398</td>
<td>1.5091</td>
<td>1.0866</td>
<td>1.7911</td>
</tr>
<tr>
<td>CND4</td>
<td>0.50</td>
<td>2.7592</td>
<td>0.45</td>
<td>1.4895</td>
<td>1.2648</td>
<td>1.1777</td>
<td>1.5011</td>
</tr>
<tr>
<td>CND5</td>
<td>0.60</td>
<td>2.8191</td>
<td>0.55</td>
<td>1.4023</td>
<td>1.1866</td>
<td>1.1818</td>
<td>1.4083</td>
</tr>
<tr>
<td>CND6</td>
<td>0.70</td>
<td>2.9118</td>
<td>0.65</td>
<td>1.4207</td>
<td>1.1815</td>
<td>1.2025</td>
<td>1.4022</td>
</tr>
<tr>
<td>CND7</td>
<td>0.80</td>
<td>3.0511</td>
<td>0.75</td>
<td>1.4637</td>
<td>1.2348</td>
<td>1.1854</td>
<td>1.4655</td>
</tr>
<tr>
<td>CND8</td>
<td>0.90</td>
<td>3.2977</td>
<td>0.85</td>
<td>1.6701</td>
<td>1.4715</td>
<td>1.1350</td>
<td>1.7464</td>
</tr>
<tr>
<td>CND9</td>
<td>0.949</td>
<td>3.4659</td>
<td>0.924</td>
<td>1.7782</td>
<td>2.0411</td>
<td>0.8712</td>
<td>2.4225</td>
</tr>
<tr>
<td>CNE1</td>
<td>0.12</td>
<td>2.5646</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNE2</td>
<td>0.20</td>
<td>2.5681</td>
<td>0.16</td>
<td>0.9025</td>
<td>0.9738</td>
<td>0.9268</td>
<td>1.1971</td>
</tr>
<tr>
<td>CNE3</td>
<td>0.30</td>
<td>2.5774</td>
<td>0.25</td>
<td>0.6982</td>
<td>0.6304</td>
<td>1.1076</td>
<td>0.7749</td>
</tr>
<tr>
<td>CNE4</td>
<td>0.40</td>
<td>2.5949</td>
<td>0.35</td>
<td>0.6269</td>
<td>0.5094</td>
<td>1.2307</td>
<td>0.6262</td>
</tr>
<tr>
<td>CNE5</td>
<td>0.48</td>
<td>2.6243</td>
<td>0.44</td>
<td>0.6610</td>
<td>0.5015</td>
<td>1.3181</td>
<td>0.6165</td>
</tr>
</tbody>
</table>
Table 4.4 $Y^*(\alpha)$ Calibration Results for the CCNBD Specimens by Compliance Method

<table>
<thead>
<tr>
<th>ID</th>
<th>α</th>
<th>CBE'</th>
<th>α_{Mid}</th>
<th>Y^* (Cali.)</th>
<th>Y^* (Theo.)</th>
<th>Ratio</th>
<th>Y^* (Re-Cal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNG1</td>
<td>0.613</td>
<td>2.8562</td>
<td></td>
<td>1.4936</td>
<td>1.2663</td>
<td>1.1795</td>
<td>1.3879</td>
</tr>
<tr>
<td>CNG2</td>
<td>0.65</td>
<td>2.8632</td>
<td>0.632</td>
<td>1.3579</td>
<td>1.1753</td>
<td>1.1554</td>
<td>1.2882</td>
</tr>
<tr>
<td>CNG3</td>
<td>0.70</td>
<td>2.8838</td>
<td>0.675</td>
<td>1.2457</td>
<td>1.1176</td>
<td>1.1146</td>
<td>1.2249</td>
</tr>
<tr>
<td>CNG4</td>
<td>0.75</td>
<td>2.9171</td>
<td>0.725</td>
<td>1.2722</td>
<td>1.1256</td>
<td>1.1302</td>
<td>1.2337</td>
</tr>
<tr>
<td>CNG5</td>
<td>0.80</td>
<td>2.9773</td>
<td>0.775</td>
<td>1.2838</td>
<td>1.1753</td>
<td>1.1795</td>
<td>1.3879</td>
</tr>
<tr>
<td>CNH1</td>
<td>0.36</td>
<td>2.6054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNH2</td>
<td>0.40</td>
<td>2.6085</td>
<td>0.38</td>
<td>0.9931</td>
<td>0.7507</td>
<td>1.3229</td>
<td>0.8910</td>
</tr>
<tr>
<td>CNH3</td>
<td>0.45</td>
<td>2.6161</td>
<td>0.425</td>
<td>0.8340</td>
<td>0.6644</td>
<td>1.2553</td>
<td>0.7885</td>
</tr>
<tr>
<td>CN1</td>
<td>0.30</td>
<td>2.5786</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN11</td>
<td>0.35</td>
<td>2.5851</td>
<td>0.325</td>
<td>1.1364</td>
<td>0.8218</td>
<td>1.3828</td>
<td>1.0102</td>
</tr>
<tr>
<td>CN12</td>
<td>0.40</td>
<td>2.5952</td>
<td>0.375</td>
<td>0.9826</td>
<td>0.7168</td>
<td>1.3708</td>
<td>0.8811</td>
</tr>
<tr>
<td>CN13</td>
<td>0.50</td>
<td>2.6244</td>
<td>0.45</td>
<td>0.8344</td>
<td>0.6468</td>
<td>1.2900</td>
<td>0.7951</td>
</tr>
<tr>
<td>CN14</td>
<td>0.55</td>
<td>2.6496</td>
<td>0.525</td>
<td>0.7738</td>
<td>0.6449</td>
<td>1.1999</td>
<td>0.7928</td>
</tr>
<tr>
<td>CN15</td>
<td>0.60</td>
<td>2.7193</td>
<td>0.575</td>
<td>1.1905</td>
<td>0.6815</td>
<td>1.7469</td>
<td>0.8377</td>
</tr>
<tr>
<td>CN16</td>
<td>0.30</td>
<td>2.6367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CJS1</td>
<td>0.35</td>
<td>2.6427</td>
<td>0.325</td>
<td>1.3514</td>
<td>1.1020</td>
<td>1.2263</td>
<td>1.2643</td>
</tr>
<tr>
<td>CN13</td>
<td>0.45</td>
<td>2.6623</td>
<td>0.40</td>
<td>1.0561</td>
<td>0.8989</td>
<td>1.1749</td>
<td>1.0313</td>
</tr>
<tr>
<td>CN14</td>
<td>0.55</td>
<td>2.6962</td>
<td>0.50</td>
<td>0.9490</td>
<td>0.7984</td>
<td>1.1886</td>
<td>0.9160</td>
</tr>
<tr>
<td>CN15</td>
<td>0.65</td>
<td>2.7566</td>
<td>0.60</td>
<td>0.9517</td>
<td>0.7987</td>
<td>1.1916</td>
<td>0.9163</td>
</tr>
<tr>
<td>CN16</td>
<td>0.70</td>
<td>2.8011</td>
<td>0.675</td>
<td>0.9410</td>
<td>0.8612</td>
<td>1.0927</td>
<td>0.9880</td>
</tr>
<tr>
<td>CNI1</td>
<td>0.30</td>
<td>2.6635</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNI2</td>
<td>0.35</td>
<td>2.6694</td>
<td>0.325</td>
<td>1.4635</td>
<td>1.2637</td>
<td>1.1581</td>
<td>1.4030</td>
</tr>
<tr>
<td>CNI3</td>
<td>0.45</td>
<td>2.6893</td>
<td>0.40</td>
<td>1.1652</td>
<td>1.0259</td>
<td>1.1358</td>
<td>1.1390</td>
</tr>
<tr>
<td>CNI4</td>
<td>0.55</td>
<td>2.7221</td>
<td>0.50</td>
<td>1.0290</td>
<td>0.8999</td>
<td>1.1435</td>
<td>0.9991</td>
</tr>
<tr>
<td>CNI5</td>
<td>0.65</td>
<td>2.7793</td>
<td>0.60</td>
<td>1.0300</td>
<td>0.8769</td>
<td>1.1746</td>
<td>0.9735</td>
</tr>
<tr>
<td>CNI6</td>
<td>0.75</td>
<td>2.8854</td>
<td>0.70</td>
<td>1.0934</td>
<td>0.9311</td>
<td>1.1743</td>
<td>1.0337</td>
</tr>
</tbody>
</table>
Table 4.5 $Y'(\alpha)$ Calibration Results for the CCNBD Specimens [36]

<table>
<thead>
<tr>
<th>ID</th>
<th>D (mm)</th>
<th>α_b</th>
<th>α_0</th>
<th>α_i</th>
<th>No.</th>
<th>α</th>
<th>Y^* (Cali.)</th>
<th>Y^* (Theo.)</th>
<th>Ratio</th>
<th>Y^* (Re-Cali.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da01</td>
<td>100.0</td>
<td>0.80</td>
<td>0.30</td>
<td>0.8454</td>
<td>1</td>
<td>0.4000</td>
<td>1.3675</td>
<td>1.2225</td>
<td>1.1186</td>
<td>1.4509</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.5500</td>
<td>1.2862</td>
<td>1.0228</td>
<td>1.2575</td>
<td>1.2139</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.6000</td>
<td>1.1519</td>
<td>1.0112</td>
<td>1.1391</td>
<td>1.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.6569</td>
<td>1.2063</td>
<td>1.0174</td>
<td>1.1857</td>
<td>1.2075</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.7565</td>
<td>1.3166</td>
<td>1.0924</td>
<td>1.2052</td>
<td>1.2965</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.8326</td>
<td>1.5210</td>
<td>1.2928</td>
<td>1.1765</td>
<td>1.5343</td>
</tr>
<tr>
<td>Da02</td>
<td>100.0</td>
<td>0.70</td>
<td>0.30</td>
<td>0.7970</td>
<td>1</td>
<td>0.4000</td>
<td>1.4390</td>
<td>1.0869</td>
<td>1.3240</td>
<td>1.3361</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.5000</td>
<td>1.2014</td>
<td>0.9445</td>
<td>1.2720</td>
<td>1.1610</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.6000</td>
<td>1.1123</td>
<td>0.9199</td>
<td>1.2092</td>
<td>1.1308</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.6565</td>
<td>1.1738</td>
<td>0.9380</td>
<td>1.2514</td>
<td>1.1531</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.7565</td>
<td>1.2756</td>
<td>1.0460</td>
<td>1.2195</td>
<td>1.2858</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.7970</td>
<td>1.3697</td>
<td>1.1491</td>
<td>1.1920</td>
<td>1.4125</td>
</tr>
<tr>
<td>Da03</td>
<td>100.0</td>
<td>0.60</td>
<td>0.30</td>
<td>0.7564</td>
<td>1</td>
<td>0.4000</td>
<td>1.4418</td>
<td>0.9764</td>
<td>1.4767</td>
<td>1.2448</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.5000</td>
<td>1.1441</td>
<td>0.8588</td>
<td>1.3322</td>
<td>1.0948</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.5947</td>
<td>1.0741</td>
<td>0.8511</td>
<td>1.2620</td>
<td>1.0850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.6400</td>
<td>1.1314</td>
<td>0.8716</td>
<td>1.2981</td>
<td>1.1112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.7565</td>
<td>1.2975</td>
<td>1.0308</td>
<td>1.2587</td>
<td>1.3141</td>
</tr>
<tr>
<td>Da04</td>
<td>100.0</td>
<td>0.50</td>
<td>0.30</td>
<td>0.7102</td>
<td>1</td>
<td>0.4000</td>
<td>1.3470</td>
<td>0.8683</td>
<td>1.5513</td>
<td>1.1496</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.4500</td>
<td>1.0734</td>
<td>0.8040</td>
<td>1.3351</td>
<td>1.0644</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.5000</td>
<td>1.0564</td>
<td>0.7751</td>
<td>1.3629</td>
<td>1.0262</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.5900</td>
<td>0.9447</td>
<td>0.7855</td>
<td>1.2027</td>
<td>1.0399</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6400</td>
<td>1.0840</td>
<td>0.8219</td>
<td>1.3189</td>
<td>1.0881</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.7100</td>
<td>1.2000</td>
<td>0.9240</td>
<td>1.2987</td>
<td>1.0909</td>
</tr>
<tr>
<td>Da05</td>
<td>100.0</td>
<td>0.70</td>
<td>0.40</td>
<td>0.8240</td>
<td>1</td>
<td>0.5000</td>
<td>1.4439</td>
<td>1.1051</td>
<td>1.3066</td>
<td>1.3585</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.5593</td>
<td>1.3124</td>
<td>1.0346</td>
<td>1.2685</td>
<td>1.2718</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.6709</td>
<td>1.2601</td>
<td>1.0066</td>
<td>1.2518</td>
<td>1.2374</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.7000</td>
<td>1.2636</td>
<td>1.0181</td>
<td>1.2411</td>
<td>1.2515</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.8241</td>
<td>1.5472</td>
<td>1.2515</td>
<td>1.2363</td>
<td>1.5384</td>
</tr>
<tr>
<td>ID</td>
<td>D (mm)</td>
<td>α_B</td>
<td>α_0</td>
<td>α_1</td>
<td>No.</td>
<td>α</td>
<td>Y^* (Cali.)</td>
<td>Y^* (Theo.)</td>
<td>Ratio</td>
<td>Y^* (Re-Cali.)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Da11</td>
<td>100.0</td>
<td>0.60</td>
<td>0.20</td>
<td>0.4878</td>
<td>1</td>
<td>0.3262</td>
<td>0.7785</td>
<td>0.5532</td>
<td>1.4073</td>
<td>0.7052</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.3600</td>
<td>0.6979</td>
<td>0.5221</td>
<td>1.3367</td>
<td>0.6656</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.4019</td>
<td>0.6753</td>
<td>0.5047</td>
<td>1.3380</td>
<td>0.6634</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.4532</td>
<td>0.6774</td>
<td>0.5139</td>
<td>1.3182</td>
<td>0.6551</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.4879</td>
<td>0.6866</td>
<td>0.5440</td>
<td>1.2621</td>
<td>0.6935</td>
</tr>
<tr>
<td>Da12</td>
<td>100.0</td>
<td>0.50</td>
<td>0.20</td>
<td>0.4664</td>
<td>1</td>
<td>0.3000</td>
<td>0.7333</td>
<td>0.5412</td>
<td>1.3550</td>
<td>0.7165</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.3600</td>
<td>0.6746</td>
<td>0.4874</td>
<td>1.3841</td>
<td>0.6453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.4299</td>
<td>0.6647</td>
<td>0.4870</td>
<td>1.3649</td>
<td>0.6448</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.4664</td>
<td>0.6781</td>
<td>0.5167</td>
<td>1.3124</td>
<td>0.6841</td>
</tr>
<tr>
<td>Da13</td>
<td>100.0</td>
<td>0.40</td>
<td>0.20</td>
<td>0.4382</td>
<td>1</td>
<td>0.2924</td>
<td>0.7036</td>
<td>0.4995</td>
<td>1.4086</td>
<td>0.6878</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.3200</td>
<td>0.6244</td>
<td>0.4715</td>
<td>1.3243</td>
<td>0.6492</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.3550</td>
<td>0.6145</td>
<td>0.4537</td>
<td>1.3544</td>
<td>0.6247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.4019</td>
<td>0.6378</td>
<td>0.4567</td>
<td>1.3965</td>
<td>0.6288</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.4382</td>
<td>0.6513</td>
<td>0.4833</td>
<td>1.3476</td>
<td>0.6655</td>
</tr>
<tr>
<td>Da14</td>
<td>100.0</td>
<td>0.60</td>
<td>0.16</td>
<td>0.4822</td>
<td>1</td>
<td>0.3069</td>
<td>0.6597</td>
<td>0.5495</td>
<td>1.2006</td>
<td>0.7005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.3893</td>
<td>0.6569</td>
<td>0.4954</td>
<td>1.3260</td>
<td>0.6316</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.4100</td>
<td>0.6590</td>
<td>0.4942</td>
<td>1.3335</td>
<td>0.6300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.4445</td>
<td>0.6788</td>
<td>0.5045</td>
<td>1.3455</td>
<td>0.6432</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.4821</td>
<td>0.6873</td>
<td>0.5366</td>
<td>1.2808</td>
<td>0.6841</td>
</tr>
<tr>
<td>Db01</td>
<td>75.0</td>
<td>0.80</td>
<td>0.2667</td>
<td>0.6504</td>
<td>1</td>
<td>0.4000</td>
<td>0.9214</td>
<td>0.7852</td>
<td>1.1735</td>
<td>0.9319</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.4800</td>
<td>0.8754</td>
<td>0.7172</td>
<td>1.2206</td>
<td>0.8512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.5200</td>
<td>0.8450</td>
<td>0.7098</td>
<td>1.1905</td>
<td>0.8424</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.5600</td>
<td>0.8351</td>
<td>0.7175</td>
<td>1.1639</td>
<td>0.8516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6218</td>
<td>0.8761</td>
<td>0.7637</td>
<td>1.1472</td>
<td>0.9064</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.6505</td>
<td>0.9504</td>
<td>0.8062</td>
<td>1.1789</td>
<td>0.9568</td>
</tr>
</tbody>
</table>
Table 4.5 $Y'(\alpha)$ Calibration Results for the CCNBD Specimens (continued) [36]

<table>
<thead>
<tr>
<th>ID</th>
<th>D (mm)</th>
<th>α_b</th>
<th>α_0</th>
<th>α_1</th>
<th>No.</th>
<th>α</th>
<th>$Y'^*(\text{Cali.})$</th>
<th>$Y'^*(\text{Theo.})$</th>
<th>Ratio</th>
<th>Y'^* (Re-Cali.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Db02</td>
<td>75.0</td>
<td>0.6667</td>
<td>0.2667</td>
<td>0.6219</td>
<td>1</td>
<td>0.4000</td>
<td>0.9157</td>
<td>0.7121</td>
<td>1.2859</td>
<td>0.8859</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.4800</td>
<td>0.8535</td>
<td>0.6622</td>
<td>1.2889</td>
<td>0.8238</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.5200</td>
<td>0.8068</td>
<td>0.6636</td>
<td>1.2158</td>
<td>0.8256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.5600</td>
<td>0.8528</td>
<td>0.6822</td>
<td>1.2501</td>
<td>0.8487</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6218</td>
<td>0.9030</td>
<td>0.7539</td>
<td>1.1978</td>
<td>0.9379</td>
</tr>
<tr>
<td>Db03</td>
<td>75.0</td>
<td>0.5842</td>
<td>0.2667</td>
<td>0.5843</td>
<td>1</td>
<td>0.4000</td>
<td>0.8393</td>
<td>0.6431</td>
<td>1.3051</td>
<td>0.8247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.4267</td>
<td>0.8026</td>
<td>0.6234</td>
<td>1.2875</td>
<td>0.7994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.4533</td>
<td>0.8019</td>
<td>0.6129</td>
<td>1.3084</td>
<td>0.7860</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.4867</td>
<td>0.8358</td>
<td>0.6114</td>
<td>1.3670</td>
<td>0.7840</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.5200</td>
<td>0.8521</td>
<td>0.6227</td>
<td>1.3684</td>
<td>0.7985</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.5842</td>
<td>0.8860</td>
<td>0.6889</td>
<td>1.2861</td>
<td>0.8834</td>
</tr>
<tr>
<td>Db04</td>
<td>75.0</td>
<td>0.80</td>
<td>0.2133</td>
<td>0.6429</td>
<td>1</td>
<td>0.4092</td>
<td>0.8443</td>
<td>0.7281</td>
<td>1.1596</td>
<td>0.8641</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.5190</td>
<td>0.8174</td>
<td>0.6895</td>
<td>1.1855</td>
<td>0.8183</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.5467</td>
<td>0.8443</td>
<td>0.6972</td>
<td>1.2110</td>
<td>0.8275</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.5927</td>
<td>0.8796</td>
<td>0.7267</td>
<td>1.2104</td>
<td>0.8625</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.6429</td>
<td>1.0649</td>
<td>0.7923</td>
<td>1.3441</td>
<td>0.9403</td>
</tr>
<tr>
<td>Db11</td>
<td>75.0</td>
<td>0.6667</td>
<td>0.1880</td>
<td>0.8968</td>
<td>1</td>
<td>0.3733</td>
<td>1.5274</td>
<td>1.2133</td>
<td>1.2589</td>
<td>1.5094</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.4984</td>
<td>1.3188</td>
<td>1.0598</td>
<td>1.2444</td>
<td>1.3185</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.6915</td>
<td>1.4913</td>
<td>1.0827</td>
<td>1.3774</td>
<td>1.3470</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.7955</td>
<td>1.5153</td>
<td>1.2141</td>
<td>1.2481</td>
<td>1.5104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.8968</td>
<td>2.0245</td>
<td>1.7233</td>
<td>1.1748</td>
<td>2.1439</td>
</tr>
<tr>
<td>Db12</td>
<td>75.0</td>
<td>0.6818</td>
<td>0.2273</td>
<td>0.5544</td>
<td>1</td>
<td>0.3710</td>
<td>0.7510</td>
<td>0.6228</td>
<td>1.2062</td>
<td>0.7704</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.4567</td>
<td>0.7396</td>
<td>0.5783</td>
<td>1.2789</td>
<td>0.7155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.5150</td>
<td>0.7510</td>
<td>0.5976</td>
<td>1.2567</td>
<td>0.7394</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.5544</td>
<td>0.8103</td>
<td>0.6405</td>
<td>1.2651</td>
<td>0.7925</td>
</tr>
<tr>
<td>ID</td>
<td>D (mm)</td>
<td>a₀</td>
<td>a₁</td>
<td>a²</td>
<td>α</td>
<td>α (Cal.)</td>
<td>Y' (Theo.)</td>
<td>Y' (Cal.)</td>
<td>Y’ (Re-Cali.)</td>
<td>Ratio</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>D01</td>
<td>50.0</td>
<td>0.80</td>
<td>0.40</td>
<td>0.8764</td>
<td>1</td>
<td>0.5000</td>
<td>1.6624</td>
<td>1.2452</td>
<td>1.3255</td>
<td>1.4855</td>
</tr>
<tr>
<td>D02</td>
<td>50.0</td>
<td>0.60</td>
<td>0.40</td>
<td>0.8036</td>
<td>2</td>
<td>0.5463</td>
<td>1.2576</td>
<td>1.2754</td>
<td>1.2662</td>
<td>1.2540</td>
</tr>
</tbody>
</table>

<p>| Table 4.6 Y’(a) Calibration Results for CCNB Group Specimens by ID Method |
|-----|--------|-------|------|------|-------|----------|------------|-----------|----------------|-------|</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>D (mm)</th>
<th>a₀</th>
<th>a₁</th>
<th>a²</th>
<th>α</th>
<th>α (Cal.)</th>
<th>Y' (Theo.)</th>
<th>Y' (Cal.)</th>
<th>Y’ (Re-Cali.)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>50.0</td>
<td>0.80</td>
<td>0.40</td>
<td>0.8764</td>
<td>1</td>
<td>0.5000</td>
<td>1.6624</td>
<td>1.2452</td>
<td>1.3255</td>
<td>1.4855</td>
</tr>
<tr>
<td>D02</td>
<td>50.0</td>
<td>0.60</td>
<td>0.40</td>
<td>0.8036</td>
<td>2</td>
<td>0.5463</td>
<td>1.2576</td>
<td>1.2754</td>
<td>1.2662</td>
<td>1.2540</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cases</th>
<th>Medium</th>
<th>D (mm)</th>
<th>a₀</th>
<th>a₁</th>
<th>a²</th>
<th>α</th>
<th>α (Cal.)</th>
<th>Y' (Theo.)</th>
<th>Y' (Cal.)</th>
<th>Y’ (Re-Cali.)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH1</td>
<td></td>
<td>0.2667</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>4.6568</td>
<td>4.7064</td>
<td></td>
</tr>
<tr>
<td>TH2</td>
<td></td>
<td>0.4000</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>5.3224</td>
<td>5.2074</td>
<td></td>
</tr>
<tr>
<td>TH3</td>
<td></td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>5.3224</td>
<td>5.2074</td>
<td></td>
</tr>
<tr>
<td>TH4</td>
<td></td>
<td>0.6667</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>6.0524</td>
<td>6.0254</td>
<td></td>
</tr>
<tr>
<td>TH5</td>
<td></td>
<td>0.8000</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>6.6740</td>
<td>6.6740</td>
<td></td>
</tr>
<tr>
<td>TH6</td>
<td></td>
<td>0.9330</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>7.3064</td>
<td>7.3064</td>
<td></td>
</tr>
<tr>
<td>TH7</td>
<td></td>
<td>1.0667</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>8.0044</td>
<td>8.0044</td>
<td></td>
</tr>
<tr>
<td>TH8</td>
<td></td>
<td>1.1733</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>8.7086</td>
<td>8.7086</td>
<td></td>
</tr>
<tr>
<td>TH9</td>
<td></td>
<td>1.2800</td>
<td>0.483</td>
<td>0.483</td>
<td>0.5333</td>
<td>0.5000</td>
<td>0.483</td>
<td>0.483</td>
<td>9.4614</td>
<td>9.4614</td>
<td></td>
</tr>
</tbody>
</table>

Legend: TH = Test Group
It is this value Y_{Theory} which will be used to represent the practical dimensionless SIF value $Y^*(\alpha)$ for any CCNBD specimen geometry. It is believed that the error caused will be small enough to be neglected. Therefore in the application of CCNBD specimens, the practical (applicable) dimensionless SIF value for any specimen geometry can be easily obtained.

For the CCNBD specimens calibrated (Table 4.3 - Table 4.7) above, the practical (theoretical) Y^* values re-calculated this way are shown in the column under the heading Y^* (Re-Calibration). One interesting point which can be seen from Equation (4.15) is that the theoretical SIF values of the CCNBD specimens will tend to agree well with the numerical calibration ones with increasing specimen thickness values as the ratio of their difference k_B will tend to 1. This explains the importance of the specimen thickness effect on the validity of the theoretical evaluations.

The SIF $Y^*(\alpha)$ calibration results for all the CCNBD specimens listed above in the tables are illustrated in Figure 4.9 (a) - (e2), where the variations of the dimensionless SIF values with respect to the crack extension evaluated by the theory are shown as solid lines and the numerical calibration values either by IDM method or by compliance method are shown as the discrete points.

From these figures, the generally good agreement between the theoretical and numerical calibration SIF values is illustrated, which implies the suitability of the theoretical evaluations applied. The $Y^*(\alpha)$ values by the compliance method for CNA to CNH groups agreed well with the other results as. As expected, the SIF $Y^*(\alpha)$ values of the CCNBD specimens vary with crack propagation in the pattern typical for chevron cracked specimens, which is discussed in section §2.4.3.2 and §3.3.3.

The theoretical evaluation method for the CSTBD specimens introduced in Chapter 3 can yield accurate SIF results $Y(\alpha)$ up to a long crack case of $\alpha = 0.95$, so that the theoretical SIF values, $Y^*(\alpha)$, for the CCNBD specimens based on the CSTBD SIF results agree well with the numerical calibration values up to the long crack case of $\alpha = 0.90$. This can be seen from the SIF comparison diagrams of the CNB, CND, Da01, Da02, Da05, Db11, Dc01 and Dc02 group CCNBD specimens.

For the CCNBD specimens calibrated above, after the SIF Y^* re-calibration, the overall difference between the theoretical values and the numerical results will be within ±15%, as
Figure 4.9 $Y^*(a)$ Calibration for CNA, CNC, CNI, CNJ, CNK and CNB Groups
Figure 4.9 \(Y^*(\alpha)\) Calibration for CND, CNE, CNG, CNH, Da01 and Da02 Groups
Figure 4.9 $Y'(a)$ Calibration for Da03, Da04, Da05, Da11 Da12 and Da13 Groups
Figure 4.9 $Y^*(\alpha)$ Calibration for Da14, Db01, Db02, Db03, Db04 and Db11 Groups
shown in Figure 4.10. However if we consider the critical SIF $Y^*(\alpha)$ values Y^*_m only, as those will be the only values to be used for fracture toughness calculations, the difference will then be within ±3% for any crack cases, as is shown in Figure 4.11. For some CCNBD specimens whose geometrical parameters satisfy the valid geometrical requirement (which will be discussed in the following section) of practical use for plane strain fracture toughness testing, CNA, CNC, CNI, CNJ, CNK, CNG, CNH, Da11, Da12, Da14, Db01, Db02, Db03 and Db04 specimens for examples, the difference will be even less. Therefore, for fracture toughness measurement using the CCNBD specimen geometry, the above theoretical evaluations can be used to calculate Y^*_m for any CCNBD specimens with confidence.
§4.6 The Valid CCNBD Geometrical Range for Fracture Toughness Measurement

Even though the critical SIF Y_m^* for any CCNBD specimens can be solved as shown above, not all the specimens can yield valid measured fracture toughness values, K_{IC}. Therefore some basic requirements about specimen geometrical parameters, the crack length a_0 and a_1, and the specimen thickness a_B, have to be drawn in order to have a valid fracture toughness test. These requirements have to be determined according to the stress-strain states of the crack tip areas.

In fracture mechanics studies of metallic materials, the acceptable specimen thickness is decided by comparing the plastic zone size around the crack tips with the actual specimen size. Within the range of LEFM, the plastic zone size r_p along the direction of the crack axis for the plane strain condition can be determined either by Von Mises or Tresca yielding criteria as follows:

$$ r_p = \frac{1}{2\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2 \left(1 - 2\nu \right)^2 $$ \hspace{1cm} (4.16)

For the general cases, $\nu = 1/3$, then,

$$ r_p = \frac{1}{18\pi} \left(\frac{K_I}{\sigma_{YS}} \right)^2 $$ \hspace{1cm} (4.17)
Chapter 4: Numerical Calibration

However arguments exist about the exact size of the plastic zone. The above equation is supposed to underestimate the plastic zone size in metallic materials and therefore Irwin (1957) used a plastic constraint factor of 1.68 instead of 3 as used in the above equations to modify the size of the plastic zone and reached the same equation as Equation (4.17) but with 6π in the denominator instead of 18π. Experimentally determined plastic constraint factors for metallic materials are mostly between 1.5 and 2.0, which confirms the correctness of Irwin's modification.

As clearly illustrated in the metallic fracture studies, the ratio of plastic zone size to the specimen thickness is an important factor reflecting the stress-strain state of the crack front, and this state in turn will influence the size of the plastic zone. When the plastic zone is large (or of the same order) compared with the specimen thickness, yielding can take place freely in the thickness direction, and the plane stress shearing deformation and slant fracturing will be the dominant cases. When the plastic zone is very small, yielding in the thickness direction cannot take place freely, i.e., the deformation in this direction is constrained by the surrounding elastic materials. In this case hinge deformation and the square fracturing, implying the plain strain state around the crack front, will be shown. Generally for any specimen, the stress-strain state will be just between these two cases discussed.

It has been determined experimentally in metallic material fracture that the cracking behaviour is typical of plane strain if r_p/B is in the order of 0.025 [Kanninen, 1985]. In the ASTM standard E399 [3], the requirement of r_p/B for a valid test is about 0.021, based on Irwin's modified calculation results.

In brittle rock material however, the plastic zone concept has to be replaced by the micro-cracking (micro tensile failure) zone concept (Figure 4.12). Ouchterlony (1982) suggested the calculation of micro cracking zone size can adopt the equations above simply by replacing the material yielding stress σ_y with the rock material tensile strength σ_t and similar arguments can still be drawn. However owing to the different mechanical characteristics between metallic and rock materials, the micro-cracking zone in rock cannot "transmit" the stress and strain value from the crack apex to the uncracked body as well as the plastic zone in metal does. Therefore it is suggested that the micro-cracking zone size in rock materials will be generally much smaller so that the smaller micro-cracking size calculation is preferred, i.e., Equation (4.17) can be used. As a result, the following relationship can be obtained:

$$r_c = 18\pi \left(\frac{K_{IC}}{\sigma_t} \right)^2 = 18\pi \left[\frac{P_{cmax}}{B\sqrt{R}} \right]^2 - \frac{\pi R}{18} Y^2 \left(\frac{P_{cmax}}{P_{max}} \right)^2$$ (4.18)
If we substitute the plain strain condition \(r_c/B < 0.025 \) we can then reach:

\[
\alpha_B = \frac{40\pi}{18} \gamma^2 \frac{P_{cmax}}{P_{max}}
\]

where the \(P_{cmax} \) and \(P_{max} \) are respectively the failure load of the cracked and the uncracked Brazilian disc with the same diameter \(D \), thickness \(B \) and loading geometries. From experiment it is known that the ratio of \(P_{cmax}/P_{max} \) is normally less than 1/3 for reasonably structured geometries. Therefore this upper bound ratio (1/3) can be used for a conservative prediction of the basic requirement for \(\alpha_B \), and then the following equations can be obtained:

\[
\left\{ \begin{array}{l}
\alpha_B \geq 0.7757 \gamma^2 Y'(\gamma) \quad \text{or} \\
(\alpha_B)_{min} = 0.7757 \gamma^2 Y'(\gamma)
\end{array} \right.
\]

It is suggested that only when the CCNBD specimen geometry satisfies these relations that the stress-strain state around the crack front of the specimen can be considered approximately to be in the plane strain condition. This relation can then be used as a criterion to judge the stress-strain state around the crack front studied. However for a CCNBD specimen, the \(Y'(\gamma) \) value varies as the crack front propagates and therefore the stress-strain state is changing at the same time according to the above argument. But what is important to the \(K_{IC} \) calculation is only the critical situation when \(Y'(\gamma) \) reaches its minimum, \(Y'(\gamma)_{min} \). Therefore only the stress-strain state of the crack front when the specimen reaches its critical condition has to be considered for the test validity analysis.

The minimum \(\alpha_B \) requirements to achieve the plane strain condition around crack fronts,
when the specimens reach their critical states, for some typical CCNBD specimens with $a_0 = 0.10, 0.20, 0.2667, 0.30, 0.35$ and 0.40 are evaluated according to the above discussion. The results are listed in Table 4.7. They are also plotted in Figure 4.13 as discrete points. The regression has been conducted and the best fit equation for this relationship is, with a correlation coefficient $\gamma = 0.994$,

$$\left(a_B \right)_{\text{min}} = 1.1729 \cdot a_1^{1.6666}$$ \hspace{1cm} (4.21)

This relation is shown as line 4 in Figure 4.13. It provides one basic requirement for the CCNBD specimen geometries for a valid fracture toughness test. Therefore during the practical application of CCNBD specimens, the specimen geometries can be designed according to this relation so that the plane strain requirement, in order to obtain a valid (consistent) rock K_{IC} test value, can be easily satisfied.

Apart from the valid specimen geometries set by the plane strain requirement discussed above, some other CCNBD specimen geometry requirements need to be drawn based on specimen machining and the SIF $Y'(a)$ calibration results. These requirements have to be strictly observed in practical applications in order to have a valid CCNBD specimen geometry for the K_{IC} test.

1) According to machining feasibility, the condition $(a_B)_{\text{max}} < 2a_1$ should always be followed, as discussed in the last chapter. This requirement is shown in Figure 4.13 as line 1.

2) As will be discussed in the Section §4.7, the CCNBD specimen thickness parameter a_B value is recommended to be within the range of $0.44 \sim 1.04$ in order to obtain the SIF results $Y'(a)$ coinciding (equivalent to) the practical values while using the theoretical evaluations. Furthermore, CCNBD specimens which are too thick are difficult to prepare and sometimes are impossible to machine, and based on experience of the CCNBD specimen preparation, $a_B = 1.04$ should be taken as the upper limit for the specimen thickness. These two requirements are shown in Figure 4.13 as lines 5 and 2.

3) As discussed in the last section, the error in the SIF evaluations for the CSTBD and the CCNBD specimen geometries, $Y(a)$ and $Y'(a)$, will tend to deviate from the practical values as the crack length a increases. As mentioned, one of the reasons for this deviation is due to the differences in the boundary loading assumption between the theory (point load loading assumption), the numerical calibration (strip load loading assumption) and the practical loading condition. Obviously the longer the crack in the CSTBD or the CCNBD specimens, or the nearer the crack tips to the boundary loading point(s), the greater the error in the SIF values caused by the differences in the boundary loading assumption. Therefore a limit of the crack length a should exist below which the correctness (or preciseness) of the evaluated SIF, $Y(a)$ or $Y'(a)$, can be guaranteed. According to the calibration results shown in the last section,
this limit is around $\alpha_1 = 0.90$. Based on the experiments conducted by Chen (1989), the CCNBD specimens with crack length $\alpha_1 > 0.8$ always generated inconsistent K_{IC} values for rock materials. Therefore the restriction of $(a_1)_{\text{max}} = 0.80$ is set as another CCNBD specimen geometry requirement in order to obtain a valid CCNBD K_{IC} test. The boundary influence of the CCNBD specimens with α_1 less than this upper limit value is assumed to be extremely small so that it can be neglected without the sacrifice of accuracy in the SIF results. This requirement is put in Figure 4.13 as line 3.

4) As mentioned in the last chapter, the CCNBD specimens with the crack length α_1 less than a certain limit will be difficult or even impossible to machine. Based on experience on CCNBD specimen preparation, this limit is around $\alpha_1 = 0.4$. Therefore another geometrical requirement for the CCNBD specimens can be concluded which is $(\alpha_1)_{\text{min}} = 0.40$ and this requirement is shown in Figure 4.13 as line 0.

Figure 4.13 The Valid Geometrical Range for the CCNBD Specimens
Therefore theoretically, the CCNBD specimen geometry parameters α_B and α_1 should be within the range outlined by lines 0, 1, 2, 3, 4 and 5 in Figure 4.13 in order to have a valid K_{IC} test from the specimen. This range is called the valid geometrical range for CCNBD specimens. The α_B value however, seems play little influence in the specimen geometry requirements for a valid test so that it can be taken as the passive parameter dependent on (determined by) the α_B, α_1 and the available saw diameter D_s.

These conclusions about the valid CCNBD specimen geometrical range are vitally important for practical application of the CCNBD specimens to rock K_{IC} tests. It will be validated extensively and intensively by experiments for rock K_{IC} tests using a large range of different CCNBD geometries in the next chapter.

Table 4.7 Minimum α_B Requirement for Plane Strain State for CCNBD Specimens

<table>
<thead>
<tr>
<th>α_0</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.35</th>
<th>0.40</th>
<th>0.2667</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td>0.460</td>
<td>0.450</td>
<td>0.450</td>
<td>0.435</td>
<td>0.430</td>
<td>0.44</td>
</tr>
<tr>
<td>0.38</td>
<td>0.500</td>
<td>0.505</td>
<td>0.495</td>
<td>0.500</td>
<td>0.500</td>
<td>0.52</td>
</tr>
<tr>
<td>0.44</td>
<td>0.570</td>
<td>0.570</td>
<td>0.560</td>
<td>0.555</td>
<td>0.550</td>
<td>0.60</td>
</tr>
<tr>
<td>0.50</td>
<td>0.600</td>
<td>0.620</td>
<td>0.600</td>
<td>0.595</td>
<td>0.590</td>
<td>0.68</td>
</tr>
<tr>
<td>0.56</td>
<td>0.660</td>
<td>0.650</td>
<td>0.640</td>
<td>0.645</td>
<td>0.645</td>
<td>0.76</td>
</tr>
<tr>
<td>0.62</td>
<td>0.700</td>
<td>0.690</td>
<td>0.700</td>
<td>0.690</td>
<td>0.690</td>
<td>0.84</td>
</tr>
<tr>
<td>0.68</td>
<td>0.740</td>
<td>0.720</td>
<td>0.720</td>
<td>0.730</td>
<td>0.740</td>
<td>0.92</td>
</tr>
<tr>
<td>0.74</td>
<td>0.760</td>
<td>0.760</td>
<td>0.775</td>
<td>0.785</td>
<td>0.790</td>
<td>1.00</td>
</tr>
<tr>
<td>0.80</td>
<td>0.790</td>
<td>0.795</td>
<td>0.815</td>
<td>0.840</td>
<td>0.840</td>
<td>1.08</td>
</tr>
<tr>
<td>0.86</td>
<td>0.820</td>
<td>0.825</td>
<td>0.840</td>
<td>0.860</td>
<td>0.870</td>
<td>1.16</td>
</tr>
<tr>
<td>0.92</td>
<td>0.840</td>
<td>0.860</td>
<td>0.880</td>
<td>0.895</td>
<td>0.905</td>
<td>1.24</td>
</tr>
<tr>
<td>0.98</td>
<td>0.880</td>
<td>0.900</td>
<td>0.905</td>
<td>0.920</td>
<td>0.920</td>
<td>1.00</td>
</tr>
<tr>
<td>1.04</td>
<td>0.910</td>
<td>0.920</td>
<td>0.940</td>
<td>0.940</td>
<td>0.940</td>
<td>1.00</td>
</tr>
<tr>
<td>1.06</td>
<td>0.940</td>
<td>0.960</td>
<td>0.965</td>
<td>0.980</td>
<td>0.965</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>0.960</td>
<td>0.965</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>0.980</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td>0.990</td>
<td></td>
<td>1.000</td>
<td>0.995</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Furthermore, if the strain values of the crack front of all the calibrated CCNBD specimens in the Z direction (Figure 4.3) are examined, Table 4.8 can be obtained, where ϵ_z is the average strain value of the crack front in the specimen thickness direction (Z) at $r=0.5\text{mm}$ directly calculated from the numerical calibration results. Attempts have been made to relate ϵ_z to the geometrical parameters and only $\epsilon_z \sim Y/\alpha_B$ shows a clear relationship. This relation is shown in Figure 4.14 and its regression line is:

$$
\epsilon_z = 2.945 \times (\frac{Y}{\alpha_B})^{0.435} \times 10^{-4}
$$

(4.22)

with the regression coefficient $\gamma = 0.974$.

According to this relation, it is found that, when the CCNBD specimens reach their critical states, the strain condition corresponding to the minimum α_B requirement [Equation (4.20), (4.21)] for a valid test is:

$$
\epsilon_z \leq 3.8 \times 10^{-4}
$$

(4.23)

When the thickness of the CCNBD specimens, α_B, is changing, the ϵ_z values calculated by Equation (4.22) will vary in a pattern as shown in Figure 4.15, where the condition of Equation (4.23) is shown as well. As can be seen, there will be not much difference between the strain values ϵ_z after its value is less than 3.8×10^{-4} for different thickness CCNBD specimens. In other words, the satisfaction of Equation (4.23) means the satisfaction of the plane strain requirement around the crack front when the specimen is at its critical state. This substantiates the valid geometrical requirement argument discussed above from the point of the strain values in the specimen thickness direction, as Equation (4.23) is actually derived from Equation (4.20).
Table 4.8 List of $\varepsilon_i \times 10^{-3}$ vs Y^*/α_B

<table>
<thead>
<tr>
<th>ID</th>
<th>Y^*/α_B</th>
<th>ε_i</th>
<th>ID</th>
<th>Y^*/α_B</th>
<th>ε_i</th>
<th>ID</th>
<th>Y^*/α_B</th>
<th>ε_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNA1</td>
<td>32.313</td>
<td>11.994</td>
<td>CNC1</td>
<td>32.059</td>
<td>11.754</td>
<td>CNJ1</td>
<td>37.412</td>
<td>17.458</td>
</tr>
<tr>
<td>CNA3</td>
<td>5.0449</td>
<td>4.4920</td>
<td>CNC3</td>
<td>1.9541</td>
<td>3.0448</td>
<td>CNJ3</td>
<td>3.5593</td>
<td>4.2375</td>
</tr>
<tr>
<td>CNA4</td>
<td>2.0000</td>
<td>3.0640</td>
<td>CNC4</td>
<td>1.2854</td>
<td>2.9055</td>
<td>CNJ4</td>
<td>1.7324</td>
<td>3.2152</td>
</tr>
<tr>
<td>CNA5</td>
<td>1.1188</td>
<td>2.9091</td>
<td>CNC5</td>
<td>0.8688</td>
<td>3.0348</td>
<td>CNJ5</td>
<td>1.0354</td>
<td>3.1574</td>
</tr>
<tr>
<td>CNA6</td>
<td>104.04</td>
<td>22.390</td>
<td>CNJ1</td>
<td>160.96</td>
<td>43.826</td>
<td>CNJ6</td>
<td>0.8781</td>
<td>3.2963</td>
</tr>
<tr>
<td>CNA2</td>
<td>37.272</td>
<td>15.307</td>
<td>CND1</td>
<td>40.395</td>
<td>18.375</td>
<td>CNK1</td>
<td>45.181</td>
<td>21.080</td>
</tr>
<tr>
<td>CNA5</td>
<td>3.4370</td>
<td>5.1944</td>
<td>CND4</td>
<td>3.9436</td>
<td>5.2157</td>
<td>CNK4</td>
<td>2.0990</td>
<td>3.5832</td>
</tr>
<tr>
<td>CNA6</td>
<td>3.5357</td>
<td>5.1263</td>
<td>CND5</td>
<td>2.7236</td>
<td>5.1070</td>
<td>CNK5</td>
<td>1.2772</td>
<td>3.815</td>
</tr>
<tr>
<td>CNA7</td>
<td>2.8190</td>
<td>5.0440</td>
<td>CND6</td>
<td>2.1815</td>
<td>5.1489</td>
<td>CNK6</td>
<td>0.8389</td>
<td>3.5712</td>
</tr>
<tr>
<td>CNA8</td>
<td>2.6977</td>
<td>4.7279</td>
<td>CND7</td>
<td>2.0748</td>
<td>4.7431</td>
<td>CNK7</td>
<td>40.390</td>
<td>13.015</td>
</tr>
<tr>
<td>CS</td>
<td>0.2164</td>
<td>1.4579</td>
<td>CNE1</td>
<td>87.822</td>
<td>29.606</td>
<td>CNG1</td>
<td>3.3045</td>
<td>4.2377</td>
</tr>
<tr>
<td>CS</td>
<td>0.3311</td>
<td>1.6528</td>
<td>CNE2</td>
<td>8.5690</td>
<td>6.1366</td>
<td>CNG2</td>
<td>1.8134</td>
<td>3.8832</td>
</tr>
<tr>
<td>CS</td>
<td>0.6422</td>
<td>2.1877</td>
<td>CNE3</td>
<td>2.6267</td>
<td>2.9863</td>
<td>CNG3</td>
<td>3.9962</td>
<td>3.8285</td>
</tr>
<tr>
<td>CS</td>
<td>0.9141</td>
<td>3.0913</td>
<td>CNE4</td>
<td>1.1966</td>
<td>2.2200</td>
<td>CNG4</td>
<td>47.199</td>
<td>12.490</td>
</tr>
<tr>
<td>CS</td>
<td>1.2866</td>
<td>4.3097</td>
<td>CNE5</td>
<td>0.7223</td>
<td>2.1004</td>
<td>CNG5</td>
<td>6.6001</td>
<td>4.3105</td>
</tr>
<tr>
<td>CS</td>
<td>1.5080</td>
<td>4.6450</td>
<td>CNF1</td>
<td>2.0219</td>
<td>5.0711</td>
<td>CNH1</td>
<td>2.5467</td>
<td>2.8169</td>
</tr>
<tr>
<td>CS</td>
<td>1.8156</td>
<td>4.6024</td>
<td>CNF2</td>
<td>1.7646</td>
<td>5.0800</td>
<td>CNH2</td>
<td>1.3339</td>
<td>2.4280</td>
</tr>
<tr>
<td>CS</td>
<td>2.2904</td>
<td>4.3034</td>
<td>CNF3</td>
<td>1.5543</td>
<td>4.5566</td>
<td>CNH3</td>
<td>0.8849</td>
<td>2.3659</td>
</tr>
<tr>
<td>TH</td>
<td>3.6642</td>
<td>2.9911</td>
<td>CNF4</td>
<td>1.1164</td>
<td>3.1873</td>
<td>CNH4</td>
<td>4.7199</td>
<td>12.490</td>
</tr>
<tr>
<td>TH</td>
<td>4.1880</td>
<td>3.5735</td>
<td>CNF5</td>
<td>0.9064</td>
<td>2.7615</td>
<td>CNH5</td>
<td>6.6001</td>
<td>4.3105</td>
</tr>
<tr>
<td>TH</td>
<td>4.5083</td>
<td>3.8684</td>
<td>CNF6</td>
<td>0.7744</td>
<td>2.2964</td>
<td>CNH6</td>
<td>2.5467</td>
<td>2.8169</td>
</tr>
<tr>
<td>TH</td>
<td>4.7410</td>
<td>4.0448</td>
<td>CNI1</td>
<td>25.013</td>
<td>11.641</td>
<td>CNH7</td>
<td>1.3339</td>
<td>2.4280</td>
</tr>
<tr>
<td>TH</td>
<td>5.0518</td>
<td>4.4920</td>
<td>CNI2</td>
<td>7.0580</td>
<td>5.3718</td>
<td>CNH8</td>
<td>0.8849</td>
<td>2.3659</td>
</tr>
<tr>
<td>TH</td>
<td>5.1509</td>
<td>4.2919</td>
<td>CNI4</td>
<td>1.5598</td>
<td>2.6496</td>
<td>CNI5</td>
<td>1.1342</td>
<td>2.5684</td>
</tr>
<tr>
<td>TH</td>
<td>5.2526</td>
<td>4.3682</td>
<td>CNI6</td>
<td>1.0877</td>
<td>2.6204</td>
<td>CNI7</td>
<td>4.7199</td>
<td>12.490</td>
</tr>
<tr>
<td>TH</td>
<td>5.3219</td>
<td>4.4188</td>
<td>CNI8</td>
<td>1.0877</td>
<td>2.6204</td>
<td>CNI9</td>
<td>4.7199</td>
<td>12.490</td>
</tr>
</tbody>
</table>
§4.7 The Evaluation of the Y^*_m Values for CCNBD Specimens for K_{IC} Calculations

As discussed above, the important part of the SIF value, $Y^*(\alpha)$, of a CCNBD specimen is its critical value Y^*_m which will be used for practical K_{IC} calculation. It is necessary then to have a list of the Y^*_m values for all the possible CCNBD specimens which satisfy the valid geometrical range requirement discussed in the last section.

Y^*_m values for the CCNBD specimens are determined by their geometries α_0, α, and α_B only, and are independent of the rock materials and the external loading conditions, as discussed in Chapter 3. From the calculations it is found that when the specimen geometrical parameters α_0 and α_B are fixed, the Y^*_m value of the specimen can be expressed by the exponential relation with respect to specimen crack length α_1, i.e.,

$$Y^*_m = u \cdot \exp[v \cdot \alpha_1]$$ \hspace{1cm} (4.24)

where the coefficients u and v will be decided by α_0 and α_B of the specimen only. A large number of calculations for the u and v values have been conducted for the different CCNBD specimens with different geometrical parameters α_0 (= 0.05, 0.10, 0.15, 0.175, 0.20, 0.225, 0.25, 0.275, 0.30, 0.325, 0.35, 0.375, 0.40, 0.425, 0.45) and α_B (ranging from 0.20 to 1.46 at the interval of 0.04). The results are illustrated in Figure 4.16 (a), (b) and Figure 4.17 (a), (b), where the variations of the u and v values for a large range of CCNBD specimens with the geometrical parameters α_0 and α_B are presented. The "ALFA0" and "ALFAB" printed in Figure 4.17 are the "α_0" and "α_B" of the specimens. For the CCNBD specimens satisfying the valid geometrical range requirement, the u and v values are listed in Table 4.9. It is necessary to mention here that, for the valid CCNBD specimens, the correlation coefficients for Equation (4.24), while carrying out the evaluation of the u and v values, are normally over 0.99. In other words, the u and v values listed in Table 4.9 have 99% confidence in their preciseness. This conclusion is well illustrated in Figure 4.18, where C_r is the correlation coefficient of the regression of u and v values.

Therefore in practical use, the Y^*_m value for any valid CCNBD specimen can be calculated jointly by Equation (4.24) and Table 4.9. For those valid CCNBD specimens which α_0 and α_B are not listed in Table 4.9, the linear interpolation technique is recommended to find the u and v values corresponding to the actual α_0 and α_B.

In order to have a clear illustration of the variation of Y^*_m for CCNBD specimens with respect to the specimen geometries, the three dimensional variation diagrams have been generated for some typical groups $\alpha_0 = 0.10, 0.20, 0.30$ and 0.40, which are shown in Figure
Table 4.9 Values of u and v

<table>
<thead>
<tr>
<th>α_B</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.440</td>
<td>0.2747</td>
<td>0.17813</td>
</tr>
<tr>
<td>0.480</td>
<td>0.2727</td>
<td>0.17748</td>
</tr>
<tr>
<td>0.520</td>
<td>0.2708</td>
<td>0.17694</td>
</tr>
<tr>
<td>0.560</td>
<td>0.2689</td>
<td>0.17644</td>
</tr>
<tr>
<td>0.600</td>
<td>0.2667</td>
<td>0.17600</td>
</tr>
<tr>
<td>0.640</td>
<td>0.2649</td>
<td>0.17561</td>
</tr>
<tr>
<td>0.680</td>
<td>0.2632</td>
<td>0.17523</td>
</tr>
<tr>
<td>0.720</td>
<td>0.2611</td>
<td>0.17488</td>
</tr>
<tr>
<td>0.760</td>
<td>0.2598</td>
<td>0.17455</td>
</tr>
<tr>
<td>0.800</td>
<td>0.2582</td>
<td>0.17423</td>
</tr>
<tr>
<td>0.840</td>
<td>0.2572</td>
<td>0.17394</td>
</tr>
<tr>
<td>0.880</td>
<td>0.2562</td>
<td>0.17367</td>
</tr>
<tr>
<td>0.920</td>
<td>0.2553</td>
<td>0.17341</td>
</tr>
<tr>
<td>0.960</td>
<td>0.2549</td>
<td>0.17317</td>
</tr>
<tr>
<td>1.000</td>
<td>0.2547</td>
<td>0.17296</td>
</tr>
<tr>
<td>1.040</td>
<td>0.2544</td>
<td>0.17278</td>
</tr>
<tr>
<td>1.080</td>
<td>0.2543</td>
<td>0.17262</td>
</tr>
<tr>
<td>1.120</td>
<td>0.2542</td>
<td>0.17248</td>
</tr>
<tr>
<td>1.160</td>
<td>0.2542</td>
<td>0.17237</td>
</tr>
<tr>
<td>1.200</td>
<td>0.2542</td>
<td>0.17228</td>
</tr>
<tr>
<td>1.240</td>
<td>0.2542</td>
<td>0.17220</td>
</tr>
<tr>
<td>1.280</td>
<td>0.2542</td>
<td>0.17213</td>
</tr>
</tbody>
</table>

Chapter 4: Numerical Calibration
Figure 4.16 (a), (b) u and v Values
(a) u Value

(b) v Value

Figure 4.17 u and v vs α_0 and α_b
Figure 4.19 (a) and (b) Typical Y^*_m Variations ($\alpha_0 = 0.10$ and 0.20)
Figure 4.19 (c) and (d) Typical Y_m^* Variations ($\alpha_0 = 0.30$ and 0.40)
Figure 4.20 (a) and (b) Critical Crack Length a_m for $\alpha_0 = 0.10$ and 0.30
4.19 (a), (b), (c) and (d) respectively. For reference, the critical dimensionless crack length values a_m for the groups of $\alpha_o = 0.10$ and 0.30 are presented in Figure 4.20 (a) and (b) as well even though they are not required to be known for K_{IC} calculation. The "Y_m", "a_m", "ALFA0", "ALFA1" and "ALFAB" printed in these two figures are the "Y^*", "a_m", "α_o", "α_1" and "α_b" of the CCNBD specimens respectively.

From these figures shown above, it is found that the Y^*_m values vary widely when the α_b values of the specimens are outside the range of 0.44 - 1.04. This suggests the unsuitability of using the α_b values outside that range for the CCNBD specimens as larger errors could be introduced. Therefore these lower and upper bound values for the α_b requirement for a valid CCNBD specimen can be added into the valid specimen geometrical requirements and they are shown in Figure 4.13 as line 2 and line 5 respectively.

The combination of Equation (4.24) and Table 4.9 provides a simple tool for the Y^*_m evaluation of any CCNBD specimen. Therefore in practical application, the designed CCNBD specimen geometries do not have to be strictly controlled during the specimen machining. The actual specimen geometrical dimensions can be measured after specimen preparation or even after the test. As long as these geometrical parameters meet the valid
geometrical range requirements, the CCNBD specimens will generate valid (consistent) fracture toughness values K_{ic}. The actual Y^*_m values of these valid specimens will be calculated according the practical values of α_o, α_i and α_B. This good feature of the CCNBD specimens makes practical experiment much easier as we can always choose freely the specimen geometrical dimensions according to the availability of rock samples and the capacities of the machining equipment.

Another especially good feature of the CCNBD specimens is shown in the evaluation of the critical SIF Y^*_m for the specimens. The practical Y^*_m values for any CCNBD specimen is normally around 1.0 only, compared with 10.42 and 24.0 for the standard CB and SR specimens. If K_{ic} for a material is a constant, then from Equation (3.54) it is known lower Y^*_m values will always mean a larger failure load P_{max}. Take the suggested standard CCNBD specimen CNC geometry (as listed in the last section) for example, $Y^*_m = 0.8798$, the output readings of failure load P_{max} in kN will be magnitudely 6.6032 times larger than the K_{ic} magnitude in MPa/\sqrt{m}. The same factors will be only 1.0092 and 0.4382 for the suggested CB and SR standard geometries when $D=48.0$ mm. In other words, a CCNBD specimen can work like an amplifier to increase the output reading magnitude from a generally very small input of fracture toughness value. But the output readings P_{max} (kN) for the standard CB specimens will remain at the same order as the K_{ic} (MPa/\sqrt{m}) magnitude, while P_{max} (kN) for the standard SR specimens will be only around half of the K_{ic} (MPa/\sqrt{m}) magnitude. Therefore when the CCNBD specimens are used for practical K_{ic} measurement, this good feature of the specimens will greatly reduce the extremely high requirement on the testing machine’s low load range test ability set by the CB and SR methods, and will reduce the experimental measurement error at the same time. This good feature is of great significance especially for engineering purposes as it makes the test procedure cheaper, gives greater precision to the test results and allows the test to be conducted in most rock mechanics laboratories.

§4.8 Error Evaluation

The errors in the determination of the CCNBD specimen geometrical parameters α_o, α_i and α_B will cause a deviation of the calculated Y^*_m from the actual value. These geometrical errors could be due to the precision of measurement or some other random influences. If the errors in the CCNBD specimen geometrical parameters and the deviation of Y^*_m from the actual values are expressed as a percentage of their practical values, then their relations are illustrated in Figure 4.21. It is shown from the figure that there is generally low Y^*_m deviation from
its actual values caused by the error in the determination of the specimen geometrical dimensions, which implies that large tolerance in the specimen dimensions can be given in practical application. However note should be taken that deviation in \(Y_m \) value by the error in \(a_1 \) is much greater than those by the errors in \(a_0 \) and \(a_B \). Therefore in a practical situation, a higher precision is required for the \(a_1 \) measurement than for the other two dimensions.

\[
\begin{array}{c}
\text{Error in } a_0, a_1 \text{ and } a_B (%) \\
\end{array}
\]

Figure 4.21 Error Evaluations

§4.9 Conclusions from the Numerical Calibrations and Suggestions for further Research

Based on the above evaluation and discussion, the following conclusions can be drawn:

1) The theoretical SIF evaluation method developed in Chapter 3 can generate SIF values which agree well with numerical calibration results up to the long crack case (\(\alpha = 0.05-0.95 \)). This substantiates the suitability of the theory and the assumptions.

2) Bluhm's slice superimposition model is more suitable for simulating the CCNBD fracture problem compared with other models. The theoretical SIF \(Y^*(\alpha) \) values for the CCNBD specimens evaluated based on this model generally agree well with the numerical calibration results. Their differences, when the critical SIF values of the specimens, \(Y^*_m \), are concerned, have been found to be within \(\pm 5\% \). Therefore this theoretical method developed
can be used to calculate the practical Y^*_m values for any CCNBD specimen with confidence.

3) In practical application, most of the CCNBD specimens designed for fracture toughness tests can be classified as the medium crack case. Therefore as the crack propagates, the dimensionless SIF $Y^*(a)$ of the specimen will reach its critical value, hence the system is at its critical state, before the crack propagation front arrives at the end of the chevron-notched part of the geometry. This reinforces the suitability of using the CCNBD as a chevron notched specimen for K_{IC} tests as it will keep all the advantages of a chevron notched specimen.

4) In order to have a valid rock fracture toughness test, the geometrical parameters of the CCNBD specimens should be within the valid geometrical range outlined in Figure 4.13. For a CCNBD specimen with the geometries within this range, its crack front when the specimen reaches its critical state can be considered to be under an approximate plane strain condition, and therefore it will generate valid (consistent) K_{IC} values for rock materials.

5) For any valid CCNBD specimen geometry, the critical (minimum) dimensionless SIF value, Y^*_m, can be jointly calculated by Equation (4.24) and Table 4.10 according to its actual geometrical parameters. These values have been intensively and extensively calibrated and they can be used with confidence.

6) The minimum (critical) SIF values for the CCNBD specimens, Y^*_m, are much less than those for the CB and SR specimens. Therefore in the CCNBD K_{IC} tests, the maximum (failure) load P_{max} will be much higher than those obtained in the other two test methods. In other words, a CCNBD specimen can work as an amplifier to enlarge the output readings (failure load) for small input (fracture toughness values). This considerably reduces the extremely high requirement on the testing machine’s low load range test ability compared with the CB and SR methods. As a result, rock fracture toughness measurement will become a simple, convenient and low cost engineering practice which can be easily conducted in most of the rock mechanics laboratories.

7) The resulting deviation in Y^*_m from its actual value of a CCNBD specimen is insensitive to the errors in the geometry parameter determination. This gives greater tolerance to the determination of specimen geometries a_0, a_1 and B in the practical application and therefore more convenience and less error in the K_{IC} test can be expected.

8) The designed values D, α_0, α_1 and α_B for CCNBD specimens can be used for approximate control of the specimen preparation but their values do not have to be
strictly observed during preparation. Their actual values can be measured after the specimens have been prepared or even after the test has been carried out. This is of great significance for practical application as less strict requirements for specimen preparation always means more convenient and less costly jobs. It also makes it possible for practical engineering users to always choose the specimen geometries according to the availability of rock samples and the capacities of the machining equipment.

Further research suggestions are proposed as follows:

1) The suitability of adopting metallic fracture research results to the analysis the plain strain requirement for the CCNBD specimens for rock materials has to be investigated both theoretically and experimentally. The research into this aspect is one of the areas studied in the experimental validation of the CCNBD specimens which will be presented in the next chapter.

2) It is believed that the CCNBD specimens could be the best chevron notched geometry at the present to be used for rock mixed mode fracture studies and rock anisotropic studies. Therefore numerical calibrations for these purposes are recommended.
Chapter 5

Experimental Validation of the CCNBD Geometry for Mode I Rock Fracture Toughness Measurement

§5.1 Introduction

For practical application reasons, the CCNBD specimens for K_{IC} measurement of brittle materials have to be experimentally validated. By comparing the K_{IC} results with those obtained by other testing methods, the conclusions reached by the theoretical evaluation argued in the last chapters can then be substantiated experimentally. This will provide a solid basis for recommending the CCNBD as a better K_{IC} measurement method for brittle materials, especially rock. According to the theoretical discussion, the validation will include the studies of the influences of specimen geometry and the investigations of minimum specimen size requirements. The reference K_{IC} testing methods selected are the ISRM recommended CB and SR methods for rock materials.

§5.2 Specimen Design

§5.2.1 Rock Samples

Eighteen rock samples ranging from soft sandstone to hard granite were chosen for this purpose. Some conventional rock mechanical properties, Young's modulus E, uniaxial compressive strength σ_c, tensile strength σ_t, Poisson's ratio v and some other rock characteristics have been measured. They are classified into two categories according to these property parameters and the validation requirements. Table 5.1 is the list of these rock samples and their measured mechanical properties.

For uniaxial compressive strength σ_c test, two groups of specimens were prepared for each rock sample with $\phi 48 \times L 96$ (mm x mm) and $\phi 25 \times L 50$ (mm x mm) (where ϕ is the specimen diameter and L is the length) respectively. There were at least two test specimens in each group for each rock sample. The Young's modulus E and Poisson's ratio v were measured by strain gauges glued on the $\phi 48$ mm diameter test samples. The tensile strength σ_t was determined by the Brazilian disc method. Two groups of specimen geometries of $\phi 75 \times B 37.5$
Table 5.1 Rock Samples Used for Experimental Validation

<table>
<thead>
<tr>
<th>Spl.</th>
<th>Sample Descriptions</th>
<th>E (GPa)</th>
<th>(\nu)</th>
<th>(\varphi) (T/m³)</th>
<th>(\sigma_c) (MPa)</th>
<th>(\sigma_c) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yellow sandstone, fine grained.</td>
<td>10.598</td>
<td>0.360</td>
<td>2.243</td>
<td>50.930</td>
<td>3.4766</td>
</tr>
<tr>
<td>2</td>
<td>red sandstone, fine grained.</td>
<td>15.551</td>
<td>0.264</td>
<td>2.308</td>
<td>73.227</td>
<td>3.3568</td>
</tr>
<tr>
<td>3</td>
<td>red sandstone, coarse grained.</td>
<td>11.116</td>
<td>0.340</td>
<td>2.204</td>
<td>47.612</td>
<td>4.0287</td>
</tr>
<tr>
<td>4</td>
<td>grey sandstone, medium grained.</td>
<td>13.751</td>
<td>0.301</td>
<td>2.146</td>
<td>48.484</td>
<td>3.4568</td>
</tr>
<tr>
<td>5</td>
<td>green sandstone, very fine grained.</td>
<td>12.110</td>
<td>0.173</td>
<td>2.384</td>
<td>102.64</td>
<td>7.3958</td>
</tr>
<tr>
<td>6</td>
<td>cream limestone, soft.</td>
<td>7.794</td>
<td>1.964</td>
<td>17.526</td>
<td>15.019</td>
<td>2.0194</td>
</tr>
<tr>
<td>7</td>
<td>anhydrite, very fine grained, fractured.</td>
<td>22.845</td>
<td>0.267</td>
<td>2.964</td>
<td>104.31</td>
<td>8.0132</td>
</tr>
<tr>
<td>8</td>
<td>Scotish white granite, very hard.</td>
<td>43.705</td>
<td>0.096</td>
<td>2.628</td>
<td>217.53</td>
<td>11.046</td>
</tr>
<tr>
<td>9</td>
<td>dolomite, fine grained, very hard.</td>
<td>56.702</td>
<td>0.256</td>
<td>2.928</td>
<td>295.55</td>
<td>20.857</td>
</tr>
<tr>
<td>10</td>
<td>dolomite, coarse grained.</td>
<td>40.269</td>
<td>0.161</td>
<td>2.894</td>
<td>191.71</td>
<td>13.565</td>
</tr>
<tr>
<td>11</td>
<td>pink mottled sandstone.</td>
<td>10.147</td>
<td>2.152</td>
<td>62.844</td>
<td>3.0599</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>pink sandstone, medium grained.</td>
<td>9.928</td>
<td>2.179</td>
<td>66.350</td>
<td>2.6733</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>grey limestone, coarse grained.</td>
<td>12.105</td>
<td>2.715</td>
<td>54.407</td>
<td>4.1511</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>white limestone, fractured.</td>
<td>26.082</td>
<td>2.524</td>
<td>102.28</td>
<td>7.9612</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>grey limestone, fined grained.</td>
<td>26.110</td>
<td>2.714</td>
<td>98.578</td>
<td>5.4919</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>cream bedded sandstone, fine grained.</td>
<td>18.632</td>
<td>2.550</td>
<td>147.15</td>
<td>13.419</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>grey limestone, fine grained.</td>
<td>12.644</td>
<td>2.470</td>
<td>82.803</td>
<td>8.3319</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>grey dolomite, fine grained, with quartz.</td>
<td>37.009</td>
<td>2.747</td>
<td>156.99</td>
<td>17.576</td>
<td></td>
</tr>
</tbody>
</table>
(mm x mm) and φ48 x B24 (mm x mm) (where φ is the disc diameter and B is the thickness of the disc) were prepared for each rock sample and there were at least two test specimens in each of these two groups. The property parameters presented in Table 5.1 are the average of the measured values for the tested samples.

§5.2.2 Specimen Geometry I -- Geometry Influence Studies

From the evaluations in the last chapter, any CCNBD specimens with the geometry parameters inside the range outlined in Figure 4.13 should theoretically generate the same value when used in a practical experiment. This point was to be validated by two categories of CCNBD specimens. The first category of the CCNBD specimens for this geometry influence study consists of three groups of specimens, G1, G2 and G3, with different geometrical parameters. Rock sample 1 to sample 10 were selected for this test. The geometrical dimensions for the specimens in the same groups but from different rock samples were kept identical. At least four test specimens were prepared for each group of each rock sample. The geometrical positions of these three groups are shown as G1, G2 and G3 in Figure 5.1 respectively and the details of the designed specimen dimensions are listed in Table 5.2.

The second category of CCNBD specimens for geometry influence study came from Chen [1989]. One single rock sample (block) was used to produce 24 groups of CCNBD specimens with different geometrical parameters. The geometrical dimensions of these 24 groups are identical to those of the CCNBD specimens used for the numerical calibration studies discussed in the last chapter. The geometrical positions of these 24 groups of specimens are also shown in Figure 5.1. As can be seen, they were designed to be within, around and far outside the valid geometrical range obtained from numerical calibration. They are widely distributed all over the \(\alpha_1-\alpha_n \) range and are intended to cover all the possible CCNBD geometrical range, therefore the characteristics for different possible CCNBD geometries can be obtained. Rock sample 20 which is listed in Table 5.9 was selected for this study.

§5.2.3 Specimen Geometry II -- Specimen Size Influence Studies

Specimen size, taken as the CCNBD diameter D, is another important factor, apart from the geometries, for the determination of the validity of the \(K_{ic} \) test. Large specimens are always recommended so that it will be easier to satisfy the plane strain conditions, which is believed to generate a consistent material property value \(K_{ic} \), and therefore less error will be caused by the boundary conditions. However it is not practical to use extremely large specimens, but a valid specimen size must be used instead. Therefore a valid minimum (critical) specimen
Another three groups of specimens S1, S2 and S3 were designed for this size influence study. The geometrical parameters α_0, α_1, α_B, and α_A of these three groups were kept identical, but different specimen diameters, $D = 65$, 75, and 100 mm, were used for these three groups respectively. The details of their dimensions are listed in Table 5.2 and their geometrical positions are shown in Figure 5.1 as points S1, S2 and S3. Rock samples 1, 5, 6, 8, 9, 10, and 11 to 18 were chosen for this test. At least four test specimens were prepared for each size group (S1, S2 or S3) from each rock sample.

§5.2.4 Specimen Geometries Used for Reference Testing

In addition, CB and SR specimen geometries were selected for comparison testing. The diameter of $D = 48$ mm and $D = 42$ mm were used for these two specimens and their geometrical details are listed in Table 5.3. Their configurations are shown in Figures 5.2. The tests were conducted on every rock sample used for the CCNBD experimental validation study.
Table 5.2 Specimen Design for CCNBD Experimental Validation Studies

<table>
<thead>
<tr>
<th>Name</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (mm)</td>
<td>75.0</td>
<td>100.0</td>
<td>100.0</td>
<td>65.0</td>
<td>75.0</td>
<td>100.0</td>
</tr>
<tr>
<td>α₀</td>
<td>0.2667</td>
<td>0.30</td>
<td>0.25</td>
<td>0.2674</td>
<td>0.2674</td>
<td>0.2674</td>
</tr>
<tr>
<td>α₁</td>
<td>0.6505</td>
<td>0.7262</td>
<td>0.4960</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>α₈</td>
<td>0.80</td>
<td>1.0</td>
<td>0.60</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Dₛ (mm)</td>
<td>52.0</td>
<td>75.0</td>
<td>52.0</td>
<td>52.0</td>
<td>60.0</td>
<td>80.0</td>
</tr>
<tr>
<td>αₛ</td>
<td>0.6933</td>
<td>0.75</td>
<td>0.52</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>C.D. (mm)</td>
<td>17.0</td>
<td>28.1307</td>
<td>18.202</td>
<td>16.12</td>
<td>18.6</td>
<td>24.8</td>
</tr>
<tr>
<td>Rock Samples Used</td>
<td>1,2,..., 10</td>
<td>1,2,..., 10</td>
<td>1,2,..., 10</td>
<td>1,5,6,8,9,10,...,18</td>
<td>1,5,6,8,9,10,...,18</td>
<td>1,5,6,8,9,10,...,18</td>
</tr>
</tbody>
</table>

Table 5.3 CB and SR Geometries for Comparison Testing

<table>
<thead>
<tr>
<th>Notations</th>
<th>CB</th>
<th>Notations</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (mm)</td>
<td>48.0</td>
<td>42.0</td>
<td>D (mm)</td>
</tr>
<tr>
<td>L (mm)</td>
<td>200.0, 160.0</td>
<td>80.0, 100.0, 150.0</td>
<td>W (mm)</td>
</tr>
<tr>
<td>S</td>
<td>3.33D, 2.5D</td>
<td>3.33D, 2.5D, 1.5D</td>
<td>θ (°)</td>
</tr>
<tr>
<td>θ (°)</td>
<td>90.0</td>
<td>90.0</td>
<td>α₀</td>
</tr>
<tr>
<td>a₀</td>
<td>0.15D ± 0.02D</td>
<td>0.15D ± 0.02D</td>
<td>W-a₁</td>
</tr>
<tr>
<td>†C.D. (mm)</td>
<td>0.25D</td>
<td>0.25D</td>
<td>C.D. (mm)</td>
</tr>
</tbody>
</table>

†C.D.: Diamond saw cutting depth.

For all the different test geometries mentioned in these three sections, at least four test specimens were prepared for each group for each rock sample. For the CCNBD geometry, as mentioned in the last chapter, the designed specimen geometries listed in Table 5.2 were only used as a guideline for the specimen preparation. Therefore the practical geometrical dimensions after specimen preparation were slightly different from the values of the experimental design, dependent on the rock sample's size availability and the machining condition. Their actual values were measured after specimen preparation or after the test. It is these actual values which are to be used for the actual Y_m evaluation for each tested specimen.
Figure 5.2 The Chevron Bend (CB) and the Short Rod (SR) Specimens with Basic Notations

(a) Chevron Bend (CB) Specimen

(b) Short Rod (SR) Specimen

Notations:
- \(A \) = Ligament area
- \(D \) = Specimen diameter
- \(I \) = Loading span, 3.33D
- \(a \) = Crack length
- \(a_0 \) = Chevron tip distance from specimen surface, 0.15D
- \(h \) = Depth of cut in notch flank
- \(B \) = Crack front width
- \(t \) = Notch width
- \(L \) = Specimen length
- \(P \) = Applied load
- \(\theta \) = Chevron angle, 90°

Notations:
- \(A \) = Ligament area
- \(D \) = Specimen diameter
- \(a \) = Crack length
- \(a_0 \) = Chevron tip distance from load line, 0.48D
- \(a_1 \) = Maximum depth of chevron flanks, \(a_1 = W \)
- \(B \) = Crack front width
- \(t \) = Notch width
- \(W \) = Specimen height
- \(P \) = Applied load at the notch mouth
- \(\theta = \frac{\pi}{2} \) = Chevron angle, 54.6°
§5.3 Testing Methodology and Equipment

§5.3.1 Specimen Preparation

A workshop milling machine was used for the CCNBD specimen preparation. Simple jigs were required to hold the rock sample. The dimensions of the jig are shown in Figure 5.3, where \(D \) and \(B \) are the diameter and thickness of the specimen to be machined, \(L \) is the width of the jig and the range of \(L > 1.5D \) is used, \(\angle A \) is the angle of slot for holding the rock specimen and the range of \(\angle A = 110^\circ - 130^\circ \) was used, and \(H \) is the thickness of the jig and the range of \(0.25D - 0.35D \) was used in order to provide a good guide for specimen machining alignment.

![Figure 5.3 Jig for CCNBD Specimen Preparation](image)

For a rock mechanics laboratory preparing these specimens, a series of these jigs for \(D = 65, 75, 85 \) and 100 mm CCNBD specimens is suggested. It is recommended that for the jig’s thickness \(H \), the high bound value \(\sim 0.35D \) for small \(D \) and low bound value \(\sim 0.20D \) for large \(D \) is to be used.

The rock cores were in good condition when they were used. They were cut into discs according to the designed specimen thickness by a diamond saw. The cutting speed is controlled so that the disc surfaces were smooth and there were no rough cutting traces. The perpendicularity of the disc surfaces to the disc central axis (rock sample core axis) was well controlled to within the recommended 1%. If these conditions were not met a grinding
machine was then used to ensure the satisfaction of these requirements.

Thereafter the designed crack orientations were decided and clearly marked on both sides of the disc surfaces. The disc was then mounted in a jig and then fixed on to the milling machine. The mounted disc surfaces were kept perpendicular to the plane of the surface of the cutting saw. The starting cut point was right in the centre of the disc. Then cutting continues to the cutting depth \(C.D. = h \), which can be calculated by the following equation from the designed geometrical values,

\[
h_c = \left(\alpha_s - \sqrt{\alpha_s^2 - \alpha_1^2} \right)R = \left(\alpha_s - \sqrt{\alpha_s^2 - \alpha_0^2} \right)R + \frac{B}{2}
\]

Then the other side of the disc was turned to the cutting saw and the same cutting depth \(h \) was taken. The cutting procedure is shown in Figure 5.4, where \(D_s \) is the diamond saw diameter, \(d_s \) is the diameter of the rotating axis holding the diamond saw and in our machining requirement \(d_s = 10 \text{ mm} \) was used. Clean tap water was used as the cutting cooling liquid.

The specimen was removed from the jig and the mud inside the notch slot were washed away using clean tap water. After 24 hours of drying in the oven at a temperature of 104° the specimens were ready to be tested.

The following dimensions were then measured: specimen diameter \(D \), thickness \(B \) and crack length \(a_1 \). The error in the measurement was kept within \(\pm 0.01 \text{ mm} \) for the dimensions measured, especially for the \(a_1 \) measurement according to the discussion in section §4.8. Generally the measured geometrical dimensions will be slightly different from the original designed values. The dimensions \(a_1 \) and \(B \) were then converted into dimensionless expressions \(\alpha_1 \) and \(\alpha_B \).

It is worth here to point out that by careful design of the crack orientations, the CB, SR and CCNBD specimens can be machined from the same cores and their crack orientations can be arranged to signify three perpendicular planes of the rock sample respectively. In other words, the rock anisotropic fracture characteristics can be easily modelled by a set of these three specimens from a single core. Therefore they together will compose a complete set of specimens for \(K_{ic} \) measurement for rock materials.
§5.3.2 Testing and Recording Equipment

The testing alignment used in our experiment is shown in Figure 5.5. The CCNBD specimen was placed between the upper and the lower loading plates. The crack plane was kept perpendicular to the loading plates within 0.5%. A specimen setting up and alignment checking aid was designed which is shown in Figure 5.6, where the thickness of the thin metal plate is equal to the chevron notch slot width in order to keep the perpendicularity requirement. The checks were carried out each time before loading.

As an alternative, two LVDT displacement transducer can be mounted on each side of the specimen to measure the relative displacement of the upper and lower plates if both the load and the displacement are to be recorded.

A MAND testing machine was used for our experiment. The main features related to our studies are listed as follows:

1. Load Range: 0-25, 0-50, 0-100, 0-250 kN
2. Loading Control:
 - Manual Control
 - Servo Control: Displacement Control: Rate Range: 0.001-1.0 mm/s
 - Preload: 0 kN
 - Load Control: Rate Range: 0.1-10 kN/s
 - Preload: 0.76 kN
3. Displacement Range: ±5 mm, ±50 mm
The load P vs loading point displacement u was recorded by an X-Y plotter. Then the recorded traces were analyzed with the help of a data scanner machine connected to a PC computer, where the maximum (failure) load P_{max} and the compliance value CBE' corresponding to the different load magnitudes were calculated.

One important point about the testing is the determination of the loading rate. As suggested by Ouchterlony [1989], the crack propagation rate for rock fracture toughness tests should be higher than 0.01 mm/s in order to have a valid result. If we still use this criteria for the CCNBD test, the loading rate for the tests should be over 0.007 mm/s for displacement control or 0.10 kN/s for load control. Too low a loading rate will initiate the fatigue propagation of the crack and should be avoided. As different K_{IC} will correspond to different failure loads therefore the loading rate should be related to the K_{IC} value for each rock sample. Further investigation on the loading rate effect on K_{IC} is recommended.

§5.3.3 The Calculations of the Fracture Toughness Values

After the test on the CCNBD specimen was conducted, the disc was broken into two halves along the cracked diameter. Then another specimen dimension a_0 was measured and converted into dimensionless expression α_e. This α_e value, together with the α_1 and α_B values
obtained before are the specimen geometrical parameters to be used to calculate the dimensionless critical (minimum) SIF values, \(Y_{m}^{*} \), for the CCNB specimens. The calculations of the \(Y_{m}^{*} \) values are based on Equation (4.24) and Table 4.9. After the determination of the \(Y_{m}^{*} \) value for the CCNB specimen, the rock fracture toughness value is then obtained from the following calculation:

\[
K_{IC} = \frac{P_{\text{max}}}{B \sqrt{D}} Y_{m}^{*}
\]

(5.2)

where \(P_{\text{max}} \) is the maximum (failure) load of the tested CCNB specimen.

§5.4 The Analysis of the CCNB Geometry Influences on Rock \(K_{IC} \) Testing

§5.4.1 Geometry Influence Analysis -- Category I

In the first category of geometry influence studies, each of the rock samples 1-10 was machined into three groups of specimens according to the G1, G2 and G3 designed geometrical dimensions listed in Table 5.2. Table 5.4 is the list of their \(K_{IC} \) experimental results where the unit for \(K_{IC} \) is MPa\(\sqrt{m} \). The fracture toughness average and standard deviation values for each group, \(K_{IC}^{G} \) and \(SD_{IC}^{G} \), were calculated and are listed in Table 5.5. Listed in Table 5.5 are also the sample average and standard deviation values, \(K_{IC} \) and \(SD_{IC} \). The sample average fracture toughness value means the \(K_{IC} \) value averaged over all the valid \(K_{IC} \) test results obtained by the CCNB, CB and SR tests (the later two tests will be discussed in a later section) conducted on this rock sample. These valid tests include some of the tests on the CCNB specimens used for the size requirement study which will be presented in the next section. The comparison between the group and the sample average are also listed in the Table 5.5, where the deviation means the deviation of group average, \(K_{IC}^{G} \), from the sample average, \(K_{IC} \).

As expected, the actual geometrical dimensions of the specimens in the same group are slightly different. This is due to the fact that the specimens are machined according to the size of the rock cores available. This slight difference will not affect their common characteristics of the specimens in the same group. In other words, the CCNB specimens in the same group, even though slightly different in geometrical dimensions, will still show the same behaviour.

Figure 5.7 (a)-(j) clearly shows the comparison between the \(K_{IC} \) values measured by different groups for rock samples 1-10, where the error bars show the scatter of the
experimental results. For reason of comparison, the K_{IC} values measured by the CB method for all the rock samples are also plotted in Figure 5.7 (their values and calculations will be discussed in section §5.6). As expected, the K_{IC} values generally agree well between the three groups. The deviations of K_{IC} values from sample averages are within 10%. For samples 3, 4, 5, 6, the deviations are only within 5%. Compared with the K_{IC} value measured by the CB method, it can be concluded that the K_{IC} values measured by these two methods are varying in the same range (a more detailed discussion is given in Section §5.6).

§5.4.2 Geometry Influence Analysis -- Category II

In the second specimen geometry study, 24 different CCNBD specimens with different geometrical dimensions were designed and taken from a single rock sample, sample 20, the mechanical properties of which are listed in Table 5.9. At least four test specimens were prepared for each designed geometry. The geometrical positions of the 24 different designs are shown in Figure 5.1, where note should be taken that geometries Da06, Da07, Da08, Db21 and Db22 are not shown because their dimensions are outside the limit plotted in the figure. These designs are widely spread over the α_1-α_B range investigated and they are considered to be comprehensively representative, i.e., their behaviour should outline the characteristics of all CCNBD specimens with all possible dimensional combinations.

Table 5.6 gives the K_{IC} test results from the specimens in this category, where the group and sample averages and standard deviations have the same meaning as those discussed in the first category and K_{IC}^{SRM} is the average test values by both CB and SR methods. Figure 5.8 clearly shows the comparison between the different geometries, where the sample average and the $\pm 10\%$ deviations from the average are also shown.

By comparison of the K_{IC} deviations from the sample average for different geometries, one will soon find out that the measured fracture toughness values generally agree well as long as the tested geometries are within the valid geometrical range outlined in Figure 5.1 by lines 0-5. This is the same conclusion as that reached by the analysis of the K_{IC} test results in the first geometry influence study.

On the contrary, the specimens with a geometry outside the valid geometrical range generated K_{IC} results greatly deviated from the sample average value. For some geometries, these deviations are even around 50%. The further the distance between the geometrical position of the specimen and the valid geometrical boundary, the larger the K_{IC} deviation from the sample average. Obviously the invalidity of the test will automatically be assumed if too
Table 5.4 K_{IC} Test Results by G1, G2 and G3 Group Specimens

<table>
<thead>
<tr>
<th>Rock</th>
<th>Grup.</th>
<th>D (mm)</th>
<th>α_R</th>
<th>α_0</th>
<th>α_1</th>
<th>α_B</th>
<th>Y^* (KN)</th>
<th>P_{max} (KN)</th>
<th>K_{IC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-1</td>
<td>1</td>
<td>74.05</td>
<td>0.256</td>
<td>0.648</td>
<td>0.808</td>
<td>0.833</td>
<td>4.201</td>
<td>2.682</td>
<td>0.609</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>74.05</td>
<td>0.263</td>
<td>0.648</td>
<td>0.802</td>
<td>0.836</td>
<td>3.942</td>
<td>0.757</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>74.03</td>
<td>0.311</td>
<td>0.652</td>
<td>0.767</td>
<td>0.854</td>
<td>4.019</td>
<td>0.632</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>74.03</td>
<td>0.295</td>
<td>0.648</td>
<td>0.778</td>
<td>0.848</td>
<td>4.119</td>
<td>0.632</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>1</td>
<td>74.03</td>
<td>0.303</td>
<td>0.727</td>
<td>0.966</td>
<td>0.949</td>
<td>7.639</td>
<td>0.653</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.7</td>
<td>0.321</td>
<td>0.732</td>
<td>0.979</td>
<td>0.958</td>
<td>6.777</td>
<td>0.598</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.9</td>
<td>0.326</td>
<td>0.727</td>
<td>0.996</td>
<td>0.949</td>
<td>7.439</td>
<td>0.639</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>99.9</td>
<td>0.303</td>
<td>0.727</td>
<td>0.997</td>
<td>0.948</td>
<td>7.989</td>
<td>0.682</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>99.9</td>
<td>0.191</td>
<td>0.727</td>
<td>1.074</td>
<td>0.907</td>
<td>8.074</td>
<td>0.612</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>1</td>
<td>99.5</td>
<td>0.251</td>
<td>0.491</td>
<td>0.599</td>
<td>0.654</td>
<td>6.131</td>
<td>0.603</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.5</td>
<td>0.261</td>
<td>0.491</td>
<td>0.593</td>
<td>0.656</td>
<td>6.573</td>
<td>0.656</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.9</td>
<td>0.251</td>
<td>0.493</td>
<td>0.603</td>
<td>0.653</td>
<td>7.639</td>
<td>0.745</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>99.9</td>
<td>0.253</td>
<td>0.489</td>
<td>0.657</td>
<td>0.635</td>
<td>8.864</td>
<td>0.774</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>99.9</td>
<td>0.201</td>
<td>0.489</td>
<td>0.651</td>
<td>0.636</td>
<td>6.651</td>
<td>0.586</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>99.9</td>
<td>0.201</td>
<td>0.489</td>
<td>0.651</td>
<td>0.636</td>
<td>6.651</td>
<td>0.586</td>
<td></td>
</tr>
<tr>
<td>G1-1</td>
<td>1</td>
<td>74.3</td>
<td>0.256</td>
<td>0.648</td>
<td>0.832</td>
<td>0.818</td>
<td>3.769</td>
<td>0.521</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>74.3</td>
<td>0.276</td>
<td>0.646</td>
<td>0.795</td>
<td>0.837</td>
<td>4.036</td>
<td>0.594</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>74.3</td>
<td>0.269</td>
<td>0.648</td>
<td>0.810</td>
<td>0.829</td>
<td>3.845</td>
<td>0.551</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>74.3</td>
<td>0.276</td>
<td>0.646</td>
<td>0.797</td>
<td>0.836</td>
<td>4.004</td>
<td>0.588</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>74.3</td>
<td>0.201</td>
<td>0.489</td>
<td>0.651</td>
<td>0.636</td>
<td>6.651</td>
<td>0.586</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>1</td>
<td>99.7</td>
<td>0.316</td>
<td>0.727</td>
<td>0.975</td>
<td>0.960</td>
<td>7.221</td>
<td>0.637</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.8</td>
<td>0.316</td>
<td>0.726</td>
<td>0.978</td>
<td>0.957</td>
<td>6.655</td>
<td>0.582</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.8</td>
<td>0.306</td>
<td>0.727</td>
<td>0.995</td>
<td>0.948</td>
<td>7.845</td>
<td>0.673</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>99.6</td>
<td>0.306</td>
<td>0.727</td>
<td>0.976</td>
<td>0.960</td>
<td>8.365</td>
<td>0.737</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>99.9</td>
<td>0.240</td>
<td>0.726</td>
<td>1.051</td>
<td>0.917</td>
<td>7.949</td>
<td>0.622</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>99.9</td>
<td>0.240</td>
<td>0.726</td>
<td>1.051</td>
<td>0.917</td>
<td>7.949</td>
<td>0.622</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>1</td>
<td>99.0</td>
<td>0.258</td>
<td>0.490</td>
<td>0.594</td>
<td>0.658</td>
<td>4.895</td>
<td>0.492</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.0</td>
<td>0.253</td>
<td>0.495</td>
<td>0.593</td>
<td>0.658</td>
<td>6.195</td>
<td>0.626</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.0</td>
<td>0.248</td>
<td>0.492</td>
<td>0.606</td>
<td>0.654</td>
<td>6.186</td>
<td>0.606</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>99.0</td>
<td>0.253</td>
<td>0.490</td>
<td>0.594</td>
<td>0.658</td>
<td>6.364</td>
<td>0.639</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>99.0</td>
<td>0.131</td>
<td>0.490</td>
<td>0.699</td>
<td>0.623</td>
<td>8.704</td>
<td>0.703</td>
<td></td>
</tr>
<tr>
<td>G1-1</td>
<td>1</td>
<td>74.0</td>
<td>0.277</td>
<td>0.649</td>
<td>0.796</td>
<td>0.840</td>
<td>5.107</td>
<td>0.759</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>74.0</td>
<td>0.270</td>
<td>0.649</td>
<td>0.796</td>
<td>0.840</td>
<td>4.971</td>
<td>0.738</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>74.0</td>
<td>0.274</td>
<td>0.649</td>
<td>0.789</td>
<td>0.843</td>
<td>4.653</td>
<td>0.699</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>74.0</td>
<td>0.280</td>
<td>0.649</td>
<td>0.789</td>
<td>0.843</td>
<td>4.653</td>
<td>0.699</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>1</td>
<td>99.7</td>
<td>0.301</td>
<td>0.727</td>
<td>0.997</td>
<td>0.948</td>
<td>8.003</td>
<td>0.683</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.7</td>
<td>0.306</td>
<td>0.727</td>
<td>0.991</td>
<td>0.951</td>
<td>7.929</td>
<td>0.683</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.7</td>
<td>0.306</td>
<td>0.727</td>
<td>0.992</td>
<td>0.951</td>
<td>7.884</td>
<td>0.678</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>99.7</td>
<td>0.306</td>
<td>0.727</td>
<td>0.992</td>
<td>0.951</td>
<td>7.884</td>
<td>0.678</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>1</td>
<td>99.5</td>
<td>0.261</td>
<td>0.493</td>
<td>0.587</td>
<td>0.659</td>
<td>7.089</td>
<td>0.718</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.5</td>
<td>0.256</td>
<td>0.488</td>
<td>0.597</td>
<td>0.655</td>
<td>7.832</td>
<td>0.773</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.5</td>
<td>0.256</td>
<td>0.489</td>
<td>0.598</td>
<td>0.655</td>
<td>7.371</td>
<td>0.727</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.4 K_{ic} Test Results by G1, G2 and G3 Group Specimens (continued)

<table>
<thead>
<tr>
<th>Rock</th>
<th>Grup.</th>
<th>D (mm)</th>
<th>α_r</th>
<th>α_o</th>
<th>α_i</th>
<th>α_B</th>
<th>Y_m^*</th>
<th>P_{max} (kN)</th>
<th>K_{ic}</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-1</td>
<td>2</td>
<td>74.0</td>
<td>0.257</td>
<td>0.649</td>
<td>0.808</td>
<td>0.833</td>
<td>4.597</td>
<td>0.667</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>2</td>
<td>99.8</td>
<td>0.306</td>
<td>0.724</td>
<td>0.992</td>
<td>0.950</td>
<td>8.297</td>
<td>0.710</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>2</td>
<td>99.7</td>
<td>0.256</td>
<td>0.492</td>
<td>0.602</td>
<td>0.652</td>
<td>6.414</td>
<td>0.626</td>
<td></td>
</tr>
<tr>
<td>G1-1</td>
<td>3</td>
<td>74.2</td>
<td>0.276</td>
<td>0.647</td>
<td>0.798</td>
<td>0.836</td>
<td>6.040</td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>3</td>
<td>99.9</td>
<td>0.301</td>
<td>0.726</td>
<td>0.998</td>
<td>0.947</td>
<td>11.34</td>
<td>0.963</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>3</td>
<td>100.0</td>
<td>0.373</td>
<td>0.735</td>
<td>0.976</td>
<td>0.986</td>
<td>9.247</td>
<td>0.837</td>
<td></td>
</tr>
<tr>
<td>G1-1</td>
<td>4</td>
<td>74.0</td>
<td>0.284</td>
<td>0.649</td>
<td>0.795</td>
<td>0.840</td>
<td>2.325</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>4</td>
<td>99.4</td>
<td>0.290</td>
<td>0.731</td>
<td>1.006</td>
<td>0.947</td>
<td>4.673</td>
<td>0.397</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>4</td>
<td>99.3</td>
<td>0.275</td>
<td>0.491</td>
<td>0.600</td>
<td>0.654</td>
<td>3.738</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>G1-1</td>
<td>5</td>
<td>74.15</td>
<td>0.263</td>
<td>0.647</td>
<td>0.797</td>
<td>0.838</td>
<td>6.965</td>
<td>1.025</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>5</td>
<td>99.4</td>
<td>0.275</td>
<td>0.491</td>
<td>0.600</td>
<td>0.654</td>
<td>3.888</td>
<td>0.365</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>5</td>
<td>99.3</td>
<td>0.263</td>
<td>0.491</td>
<td>0.600</td>
<td>0.654</td>
<td>3.888</td>
<td>0.365</td>
<td></td>
</tr>
<tr>
<td>G1-1</td>
<td>6</td>
<td>74.15</td>
<td>0.263</td>
<td>0.647</td>
<td>0.797</td>
<td>0.838</td>
<td>6.965</td>
<td>1.025</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>6</td>
<td>99.4</td>
<td>0.275</td>
<td>0.491</td>
<td>0.600</td>
<td>0.654</td>
<td>3.888</td>
<td>0.365</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>6</td>
<td>99.3</td>
<td>0.263</td>
<td>0.491</td>
<td>0.600</td>
<td>0.654</td>
<td>3.888</td>
<td>0.365</td>
<td></td>
</tr>
<tr>
<td>G1-1</td>
<td>7</td>
<td>74.15</td>
<td>0.263</td>
<td>0.647</td>
<td>0.797</td>
<td>0.838</td>
<td>6.965</td>
<td>1.025</td>
<td></td>
</tr>
<tr>
<td>G2-1</td>
<td>7</td>
<td>99.4</td>
<td>0.275</td>
<td>0.491</td>
<td>0.600</td>
<td>0.654</td>
<td>3.888</td>
<td>0.365</td>
<td></td>
</tr>
<tr>
<td>G3-1</td>
<td>7</td>
<td>99.3</td>
<td>0.263</td>
<td>0.491</td>
<td>0.600</td>
<td>0.654</td>
<td>3.888</td>
<td>0.365</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.4 K_{IC} Test Results by G1, G2 and G3 Group Specimens (continued)

<table>
<thead>
<tr>
<th>Rock</th>
<th>Grup.</th>
<th>D (mm)</th>
<th>α_R</th>
<th>α_0</th>
<th>α_1</th>
<th>α_B</th>
<th>Y^* (kN)</th>
<th>P_{max}</th>
<th>K_{IC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>G2-1</td>
<td>99.9</td>
<td>0.355</td>
<td>0.736</td>
<td>0.995</td>
<td>0.947</td>
<td>13.57</td>
<td>1.177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.305</td>
<td>0.730</td>
<td>0.991</td>
<td>0.944</td>
<td>12.28</td>
<td>1.041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.305</td>
<td>0.730</td>
<td>0.993</td>
<td>0.948</td>
<td>14.24</td>
<td>1.220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3-1</td>
<td>99.9</td>
<td>0.250</td>
<td>0.489</td>
<td>0.596</td>
<td>0.653</td>
<td>14.89</td>
<td>1.462</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.250</td>
<td>0.491</td>
<td>0.597</td>
<td>0.653</td>
<td>12.73</td>
<td>1.250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.255</td>
<td>0.491</td>
<td>0.591</td>
<td>0.655</td>
<td>14.92</td>
<td>1.483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0.245</td>
<td>0.491</td>
<td>0.594</td>
<td>0.654</td>
<td>12.26</td>
<td>1.209</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>G1-1</td>
<td>74.3</td>
<td>0.249</td>
<td>0.646</td>
<td>0.798</td>
<td>0.835</td>
<td>12.36</td>
<td>1.807</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.269</td>
<td>0.646</td>
<td>0.787</td>
<td>0.841</td>
<td>11.43</td>
<td>1.702</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.269</td>
<td>0.646</td>
<td>0.794</td>
<td>0.837</td>
<td>12.68</td>
<td>1.867</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2-1</td>
<td>100.2</td>
<td>0.300</td>
<td>0.728</td>
<td>0.999</td>
<td>0.945</td>
<td>18.91</td>
<td>1.597</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.295</td>
<td>0.727</td>
<td>1.001</td>
<td>0.948</td>
<td>20.27</td>
<td>1.705</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.280</td>
<td>0.724</td>
<td>1.007</td>
<td>0.954</td>
<td>22.53</td>
<td>1.869</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3-1</td>
<td>100.2</td>
<td>0.243</td>
<td>0.489</td>
<td>0.589</td>
<td>0.654</td>
<td>19.89</td>
<td>1.969</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.255</td>
<td>0.489</td>
<td>0.579</td>
<td>0.658</td>
<td>19.97</td>
<td>2.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.256</td>
<td>0.489</td>
<td>0.579</td>
<td>0.658</td>
<td>20.12</td>
<td>2.034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0.245</td>
<td>0.489</td>
<td>0.579</td>
<td>0.658</td>
<td>20.89</td>
<td>2.113</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>G1-1</td>
<td>74.3</td>
<td>0.283</td>
<td>0.646</td>
<td>0.791</td>
<td>0.839</td>
<td>17.80</td>
<td>2.639</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.281</td>
<td>0.646</td>
<td>0.786</td>
<td>0.841</td>
<td>18.04</td>
<td>2.696</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.262</td>
<td>0.646</td>
<td>0.814</td>
<td>0.827</td>
<td>13.77</td>
<td>1.960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0.267</td>
<td>0.646</td>
<td>0.808</td>
<td>0.830</td>
<td>17.05</td>
<td>2.455</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2-1</td>
<td>100.0</td>
<td>0.300</td>
<td>0.728</td>
<td>0.998</td>
<td>0.945</td>
<td>30.91</td>
<td>2.620</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.305</td>
<td>0.728</td>
<td>0.992</td>
<td>0.948</td>
<td>30.34</td>
<td>2.595</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.316</td>
<td>0.728</td>
<td>0.980</td>
<td>0.954</td>
<td>31.40</td>
<td>2.735</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3-1</td>
<td>100.0</td>
<td>0.253</td>
<td>0.490</td>
<td>0.588</td>
<td>0.655</td>
<td>28.85</td>
<td>2.778</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.260</td>
<td>0.490</td>
<td>0.580</td>
<td>0.658</td>
<td>28.52</td>
<td>2.897</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.263</td>
<td>0.490</td>
<td>0.576</td>
<td>0.658</td>
<td>28.37</td>
<td>2.904</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1-1</td>
<td>74.3</td>
<td>0.262</td>
<td>0.646</td>
<td>0.805</td>
<td>0.847</td>
<td>12.60</td>
<td>1.931</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.296</td>
<td>0.650</td>
<td>0.775</td>
<td>0.839</td>
<td>12.27</td>
<td>1.820</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.283</td>
<td>0.646</td>
<td>0.791</td>
<td>0.837</td>
<td>12.89</td>
<td>1.898</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0.269</td>
<td>0.646</td>
<td>0.794</td>
<td>0.837</td>
<td>12.89</td>
<td>1.898</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>G2-1</td>
<td>100.0</td>
<td>0.323</td>
<td>0.728</td>
<td>0.977</td>
<td>0.956</td>
<td>20.95</td>
<td>1.835</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.300</td>
<td>0.728</td>
<td>1.000</td>
<td>0.944</td>
<td>22.62</td>
<td>1.912</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.305</td>
<td>0.727</td>
<td>0.992</td>
<td>0.948</td>
<td>23.71</td>
<td>2.026</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0.300</td>
<td>0.728</td>
<td>1.000</td>
<td>0.944</td>
<td>22.13</td>
<td>1.871</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3-1</td>
<td>100.0</td>
<td>0.250</td>
<td>0.490</td>
<td>0.591</td>
<td>0.655</td>
<td>21.70</td>
<td>2.149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.253</td>
<td>0.487</td>
<td>0.587</td>
<td>0.656</td>
<td>20.65</td>
<td>2.058</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.251</td>
<td>0.490</td>
<td>0.591</td>
<td>0.655</td>
<td>21.30</td>
<td>2.111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0.243</td>
<td>0.485</td>
<td>0.593</td>
<td>0.654</td>
<td>21.76</td>
<td>2.135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>0.200</td>
<td>0.485</td>
<td>0.634</td>
<td>0.640</td>
<td>25.80</td>
<td>2.317</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.5 Group Averages and Comparisons

<table>
<thead>
<tr>
<th>Rock</th>
<th>Groups</th>
<th>Group Average</th>
<th>Sample Average</th>
<th>Deviation from Sample Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$K_{IC}^G \pm SD_{IC}^G$ (MPa√m)</td>
<td>$K_{IC} \pm SD_{IC}$ (MPa√m)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>G1</td>
<td>0.6125 ± 0.0223</td>
<td>0.6567 ± 0.0290</td>
<td>-6.7306</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>0.6367 ± 0.0300</td>
<td></td>
<td>-3.0455</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>0.6745 ± 0.0687</td>
<td></td>
<td>2.7105</td>
</tr>
<tr>
<td>2</td>
<td>G1</td>
<td>0.5671 ± 0.0274</td>
<td>0.6100 ± 0.0339</td>
<td>-7.0328</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>0.6500 ± 0.0521</td>
<td></td>
<td>6.5574</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>0.6130 ± 0.0688</td>
<td></td>
<td>0.4918</td>
</tr>
<tr>
<td>3</td>
<td>G1</td>
<td>0.7380 ± 0.0237</td>
<td>0.7197 ± 0.0271</td>
<td>2.5427</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>0.6813 ± 0.0024</td>
<td></td>
<td>-5.3356</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>0.7397 ± 0.0184</td>
<td></td>
<td>2.7789</td>
</tr>
<tr>
<td>4</td>
<td>G1</td>
<td>0.6273 ± 0.0438</td>
<td>0.6352 ± 0.0056</td>
<td>-1.2437</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>0.6389 ± 0.0636</td>
<td></td>
<td>0.5825</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>0.6394 ± 0.0606</td>
<td></td>
<td>0.6612</td>
</tr>
<tr>
<td>5</td>
<td>G1</td>
<td>0.9650 ± 0.0505</td>
<td>0.9452 ± 0.0258</td>
<td>2.0948</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>0.9251 ± 0.0539</td>
<td></td>
<td>-2.1265</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>0.9675 ± 0.0280</td>
<td></td>
<td>2.3593</td>
</tr>
<tr>
<td>6</td>
<td>G1</td>
<td>0.3310 ± 0.0314</td>
<td>0.3435 ± 0.0195</td>
<td>-3.6390</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>0.3532 ± 0.0363</td>
<td></td>
<td>2.8239</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>0.3458 ± 0.0268</td>
<td></td>
<td>0.6696</td>
</tr>
<tr>
<td>7</td>
<td>G1</td>
<td>1.2150 ± 0.1349</td>
<td>1.2374 ± 0.0851</td>
<td>-1.8102</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>1.1462 ± 0.0763</td>
<td></td>
<td>-7.3703</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>1.3510 ± 0.1228</td>
<td></td>
<td>9.1805</td>
</tr>
<tr>
<td>8</td>
<td>G1</td>
<td>1.7923 ± 0.0682</td>
<td>1.9058 ± 0.1461</td>
<td>-5.9555</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>1.7234 ± 0.1120</td>
<td></td>
<td>-9.5708</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>2.0345 ± 0.0514</td>
<td></td>
<td>6.7531</td>
</tr>
<tr>
<td>9</td>
<td>G1</td>
<td>2.4372 ± 0.2899</td>
<td>2.8028 ± 0.0916</td>
<td>-13.044</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>2.6499 ± 0.0614</td>
<td></td>
<td>-5.4553</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>2.8595 ± 0.0578</td>
<td></td>
<td>2.0230</td>
</tr>
<tr>
<td>10</td>
<td>G1</td>
<td>1.8828 ± 0.0467</td>
<td>2.0449 ± 0.1088</td>
<td>-7.9270</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>1.9108 ± 0.0718</td>
<td></td>
<td>-6.5578</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>2.1541 ± 0.0872</td>
<td></td>
<td>5.3401</td>
</tr>
</tbody>
</table>
Table 5.6 K_{IC} Test Results for Rock Sample 20 by Different CCNBD Specimens

<table>
<thead>
<tr>
<th>ID</th>
<th>Y_m^*</th>
<th>K_{IC}^{ISRM}</th>
<th>Group Average $K_{IC}^G \pm SD_{IC}^G$ (MPa√m)</th>
<th>Sample Average $K_{IC} \pm SD_{IC}$ (MPa√m)</th>
<th>K_{IC}^G Deviation from K_{IC} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da01</td>
<td>1.1519</td>
<td></td>
<td>0.598 ± 0.012</td>
<td></td>
<td>-1.5314</td>
</tr>
<tr>
<td>Da02</td>
<td>1.1123</td>
<td></td>
<td>0.615 ± 0.006</td>
<td></td>
<td>1.2679</td>
</tr>
<tr>
<td>Da03</td>
<td>1.0741</td>
<td></td>
<td>0.610 ± 0.004</td>
<td></td>
<td>0.4446</td>
</tr>
<tr>
<td>Da04</td>
<td>0.9447</td>
<td></td>
<td>0.619 ± 0.005</td>
<td></td>
<td>1.9266</td>
</tr>
<tr>
<td>Da05</td>
<td>1.2601</td>
<td></td>
<td>0.616 ± 0.012</td>
<td></td>
<td>1.4326</td>
</tr>
<tr>
<td>Da06</td>
<td>1.4220</td>
<td></td>
<td>0.451 ± 0.005</td>
<td></td>
<td>-25.7370</td>
</tr>
<tr>
<td>Da07</td>
<td>1.5245</td>
<td></td>
<td>0.462 ± 0.021</td>
<td></td>
<td>-23.9256</td>
</tr>
<tr>
<td>Da08</td>
<td>1.2891</td>
<td></td>
<td>0.436 ± 0.006</td>
<td></td>
<td>-28.2068</td>
</tr>
<tr>
<td>Da09</td>
<td>1.2261</td>
<td></td>
<td>0.430 ± 0.002</td>
<td></td>
<td>-29.1950</td>
</tr>
<tr>
<td>Da21</td>
<td>1.1766</td>
<td></td>
<td>0.620 ± 0.003</td>
<td>0.6073 ± 0.0114</td>
<td>2.0912</td>
</tr>
<tr>
<td>Da22</td>
<td>1.0939</td>
<td></td>
<td>0.617 ± 0.008</td>
<td></td>
<td>1.5972</td>
</tr>
<tr>
<td>Da11</td>
<td>0.6689</td>
<td>0.6250</td>
<td>0.599 ± 0.006</td>
<td></td>
<td>-1.3667</td>
</tr>
<tr>
<td>Da12</td>
<td>0.6647</td>
<td></td>
<td>0.625 ± 0.010</td>
<td></td>
<td>2.9145</td>
</tr>
<tr>
<td>Da13</td>
<td>0.6145</td>
<td></td>
<td>0.587 ± 0.002</td>
<td></td>
<td>-3.3427</td>
</tr>
<tr>
<td>Da14</td>
<td>0.6590</td>
<td></td>
<td>0.608 ± 0.010</td>
<td></td>
<td>0.1153</td>
</tr>
<tr>
<td>Db01</td>
<td>0.8351</td>
<td></td>
<td>0.605 ± 0.010</td>
<td></td>
<td>-0.3787</td>
</tr>
<tr>
<td>Db02</td>
<td>0.8068</td>
<td></td>
<td>0.616 ± 0.013</td>
<td></td>
<td>1.4326</td>
</tr>
<tr>
<td>Db03</td>
<td>0.8019</td>
<td></td>
<td>0.618 ± 0.007</td>
<td></td>
<td>1.7619</td>
</tr>
<tr>
<td>Db04</td>
<td>0.8174</td>
<td></td>
<td>0.600 ± 0.004</td>
<td></td>
<td>-1.2020</td>
</tr>
<tr>
<td>Db21</td>
<td>1.5245</td>
<td></td>
<td>0.420 ± 0.015</td>
<td></td>
<td>-30.8414</td>
</tr>
<tr>
<td>Db22</td>
<td>1.2891</td>
<td></td>
<td>0.325 ± 0.013</td>
<td></td>
<td>-46.4844</td>
</tr>
<tr>
<td>Db23</td>
<td>1.2261</td>
<td></td>
<td>0.358 ± 0.012</td>
<td></td>
<td>-41.0500</td>
</tr>
<tr>
<td>De01</td>
<td>1.3619</td>
<td></td>
<td>0.558 ± 0.026</td>
<td></td>
<td>-8.1179</td>
</tr>
<tr>
<td>De02</td>
<td>1.2134</td>
<td></td>
<td>0.526 ± 0.015</td>
<td></td>
<td>-13.3870</td>
</tr>
</tbody>
</table>
Figure 5.7 a) Geometry Influence Testing Results for Rock Samples 1 - 6
large a deviation is the situation. These invalid K_{IC} tests are marked with a "#" in Table 5.6 and their K_{IC} values will not be counted when conducting the sample average evaluation.

However some exceptions exist for specimen groups Da01-Da05, Da21 and Da13 where the measured K_{IC} values do not deviate considerably from the sample average even though their geometrical positions are outside the valid range boundary. They are marked with a "#" in the table. A simple interpretation is that their geometries are just outside the valid range boundaries and are not far enough to definitely produce invalid results. That suggests a transitional geometrical band between the valid and invalid geometrical range starting from the valid boundary outlined in Figure 5.1 instead of a sudden change of validity over the border. Interestingly this point has to be true as mathematically the variations of CCNBD specimen
geometries are all continuous functions and there should not be any sudden change in the specimen behaviour characteristics. However in practice, this transitional band should be avoided as the validity for different rock samples cannot be theoretically guaranteed.

Based on the above analysis on the two categories for the geometrical influence studies, it can be concluded that CCNBD specimens with geometrical parameters within the valid geometrical range outlined in Figure 5.1 (or Figure 4.13) will generate valid consistent K_{IC} values. This will provide CCNBD users with a greater choice for their practical geometry design. They can always design the specimen geometries according to the availability of their rock cores and their machine capacity. On the other hand, according to this conclusion, the designed CCNBD geometrical dimensions do not have to be strictly controlled during the machining. As long as the final geometrical parameters of the specimens are still within the valid geometrical range, they will generate the same (consistent) K_{IC} results. In practical situations, one will soon find out that less strict requirements for geometrical dimensions always mean easier machining, more productivity in terms of specimen production and higher utilization of rock samples.
Furthermore, another good feature of the CCNBD specimens was shown during the K_{IC} tests for the geometry influence studies. The magnitude ratio (neglecting the units) P_{max}/K_{IC} for all the valid CCNBD specimens tested are normally over 10.0, while the same ratios will be just about 1.5 for the CB specimens and about 1.0 for the SR specimens (as discussed in the last chapter). This ratio physically signifies the output reading of the maximum (failure) load, P_{max}, in kN per unit rock fracture toughness value, K_{IC}, in MPa√m for a particular test geometry. The ratio values shown above suggest that the CCNBD specimen geometry works as an amplifier to enlarge the output reading P_{max} from the generally small K_{IC} input, while the CB and the SR specimen geometries will just maintain the same order of magnitude. Therefore the strict requirements on the testing apparatus' ability for low load range testing, set by the CB and the SR test methods, can be reduced when the CCNBD specimen geometry is used. From this point of view, it is believed that the CCNBD test method is much more practical for engineering purposes.

§5.5 Minimum Size Requirement Studies for Valid CCNBD K_{IC} Tests

Specimen size, reflected by diameter D for the CCNBD specimen geometry, affect the stability of the measured K_{IC} values. Large specimens can generally generate the desired stable K_{IC} results as the crack front at its critical condition can easier meet the plain strain condition and the surface effect can be neglected. However too large a specimen is uneconomical, and sometimes impractical due to the availability of the sample core sizes. Therefore there should exist a valid minimum specimen size for each rock. The CCNBD specimens with sizes over this minimum value will yield valid (stable) plain strain K_{IC} result, which is believed to be precise enough to represent the true material constant K_{IC}^{T}.

The relation between the valid specimen geometry study and the valid specimen minimum size study for the CCNBD is dependent, i.e., validity study for one is based on the knowledge of the satisfaction of the validity for the other. In other words, the investigation of the valid minimum CCNBD specimen size is based on the assumption that the specimen geometries used have already met the requirements of valid geometrical range outlined in Figure 4.13 (or Figure 5.1), and vice-versa.

The actual geometrical dimensions D, B, a_0 and a_1 (hence α_0, α_1 and α_B) of the CCNBD specimens in the three designed groups, S_1, S_2 and S_3, for the size influence study are measured after specimen preparation and the corresponding Y_m^{*} values are calculated from Equation (4.24). Again there was not much difference between the dimensions of the CCNBD specimens in the same group so that each of them can behave in the same pattern. After the maximum (failure) load P_{max} for each specimen was obtained from the test, the K_{IC}
value was then calculated from Equation (5.2).

Care should be taken while conducting the validity analysis as the smallest specimen size used in our research is only \(D = 65 \text{ mm} \) (S1) due to the limitation of our machining ability for specimen preparation. This size sometimes may not be small enough to represent the minimum specimen size for a valid test for some rock materials.

Table 5.7 is the list of all the test details for rock samples 1, 5, 6, 8, and 9 to 18. The results are illustrated in Figure 5.9 (a)-(n) where the error bars show the scatter for the measured \(K_{IC} \) values. The group averages and their comparisons with sample averages are listed in Table 5.8. The average \(K_{IC} \) values measured from the geometrical influence studies discussed in the last section are listed in the table as well.

Some information can be drawn from these test results. For samples 5, 6, 9, 10, 11 and 15, the \(K_{IC} \) values generally agree well within the three size groups. In other words, the size range used is suggested to be already large enough to generate stable (consistent) \(K_{IC} \) values for these six samples. For samples 1, 12, 13 and 14, it is quite obvious that the \(K_{IC} \) values will tend to be stable only after size \(D \) is larger than 75 mm (S2). In other words, the valid \(K_{IC} \) results can only be obtained when \(D > 75 \text{ mm} \). From the \(K_{IC} \) test results of these four samples, we know that smaller sized specimens always produce smaller \(K_{IC} \) values. This is just on the contrary to the results obtained in metallic material fracture toughness measurement studies where small specimen sizes (signifying plain stress condition) can always generate larger \(K_{IC} \) values than the plain strain material property values \(K_{IC}^T \). Similar conclusions were obtained for some other rock materials by Oucterlony (1991) while doing the CB and SR round-robin investigations. The investigation on the reason for this difference is therefore suggested.

For sample 16 however, it is certain that the CCNBD specimens with size \(D \) over 75 mm will produce stable (consistent) \(K_{IC} \) values, but the \(K_{IC} \) values obtained by smaller sized specimens \(D = 65 \text{ mm} \) appear larger. The explanation is being investigated but obviously the CCNBD specimens with size \(D \) less than 75 mm are not recommended for valid tests for this sample. For sample 8, the results do not show a clear trend of a stable \(K_{IC} \) so that a clear valid statement about this sample can not be made. But from the deviation values of the group averages from the sample average (Table 5.8), -5% (S1), 2% (S2) and 12% (S3), it is suggested that the valid specimen size should be lying somewhere between 65 mm - 100 mm, and most possibly around 75 mm. For the last two samples 17 and 18, only the specimens of the S2 and S3 groups were tested due to the shortage of sample blocks for machining the S1 group specimens. However clear trends are already shown for both of the samples that \(D \) over 75 mm will produce stable (consistent) \(K_{IC} \) values. It is suggested that the minimum valid size \(D_{min} \) for both samples may be less than 75 mm but without any further proof this
Table 5.7 K_{IC} Test Results by S1, S2 and S3 Group Specimens

<table>
<thead>
<tr>
<th>Rock</th>
<th>Grup.</th>
<th>D (mm)</th>
<th>α_R</th>
<th>α_0</th>
<th>α_1</th>
<th>α_B</th>
<th>Y^*_m</th>
<th>P_{max}</th>
<th>K_{IC}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1-1</td>
<td>63.2</td>
<td>0.158</td>
<td>0.190</td>
<td>0.206</td>
<td>0.889</td>
<td>0.937</td>
<td>2.572</td>
<td>0.483</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.1</td>
<td>0.173</td>
<td>0.202</td>
<td>0.189</td>
<td>0.924</td>
<td>0.941</td>
<td>4.741</td>
<td>0.677</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.05</td>
<td>0.202</td>
<td>0.242</td>
<td>0.222</td>
<td>0.900</td>
<td>0.940</td>
<td>7.644</td>
<td>0.627</td>
</tr>
<tr>
<td></td>
<td>S2-1</td>
<td>63.15</td>
<td>0.206</td>
<td>0.139</td>
<td>0.206</td>
<td>0.887</td>
<td>0.939</td>
<td>4.904</td>
<td>0.933</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.1</td>
<td>0.259</td>
<td>0.229</td>
<td>0.222</td>
<td>0.907</td>
<td>0.938</td>
<td>5.686</td>
<td>0.890</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.8</td>
<td>0.261</td>
<td>0.278</td>
<td>0.226</td>
<td>0.866</td>
<td>0.969</td>
<td>5.912</td>
<td>0.906</td>
</tr>
<tr>
<td></td>
<td>S3-1</td>
<td>63.0</td>
<td>0.159</td>
<td>0.151</td>
<td>0.143</td>
<td>0.911</td>
<td>0.921</td>
<td>1.432</td>
<td>0.262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.0</td>
<td>0.216</td>
<td>0.216</td>
<td>0.189</td>
<td>0.907</td>
<td>0.938</td>
<td>2.256</td>
<td>0.332</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.4</td>
<td>0.221</td>
<td>0.221</td>
<td>0.206</td>
<td>0.892</td>
<td>0.941</td>
<td>3.694</td>
<td>0.354</td>
</tr>
<tr>
<td></td>
<td>S1-1</td>
<td>63.25</td>
<td>0.253</td>
<td>0.174</td>
<td>0.174</td>
<td>0.851</td>
<td>0.962</td>
<td>8.298</td>
<td>1.676</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.2</td>
<td>0.239</td>
<td>0.191</td>
<td>0.208</td>
<td>0.872</td>
<td>0.964</td>
<td>12.08</td>
<td>1.862</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.25</td>
<td>0.205</td>
<td>0.215</td>
<td>0.213</td>
<td>0.894</td>
<td>0.935</td>
<td>22.15</td>
<td>2.069</td>
</tr>
<tr>
<td></td>
<td>S2-1</td>
<td>63.25</td>
<td>0.174</td>
<td>0.174</td>
<td>0.213</td>
<td>0.900</td>
<td>0.929</td>
<td>13.81</td>
<td>2.559</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.0</td>
<td>0.80</td>
<td>0.215</td>
<td>0.725</td>
<td>0.900</td>
<td>0.926</td>
<td>15.72</td>
<td>2.891</td>
</tr>
<tr>
<td></td>
<td>S3-1</td>
<td>63.25</td>
<td>0.806</td>
<td>0.738</td>
<td>0.738</td>
<td>0.885</td>
<td>0.939</td>
<td>15.32</td>
<td>2.914</td>
</tr>
</tbody>
</table>
Table 5.7 \(K_{IC} \) Test Results by S1, S2 and S3 Group Specimens (continued)

<table>
<thead>
<tr>
<th>Rock</th>
<th>Grup.</th>
<th>(D) (mm)</th>
<th>(\alpha_r)</th>
<th>(\alpha_o)</th>
<th>(\alpha_i)</th>
<th>(\alpha_b)</th>
<th>(Y^*_m)</th>
<th>(P_{max})</th>
<th>(K_{IC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>S2-1</td>
<td>74.2</td>
<td>0.206</td>
<td>0.737</td>
<td>0.850</td>
<td>0.979</td>
<td>13.03</td>
<td>2.093</td>
<td>2.053</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>274.2</td>
<td>0.220</td>
<td>0.727</td>
<td>0.889</td>
<td>0.939</td>
<td>31.18</td>
<td>2.948</td>
<td>2.635</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40.2</td>
<td>0.222</td>
<td>0.740</td>
<td>0.890</td>
<td>0.943</td>
<td>21.26</td>
<td>3.136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>107.6</td>
<td>0.210</td>
<td>0.739</td>
<td>0.896</td>
<td>0.943</td>
<td>27.55</td>
<td>2.615</td>
<td></td>
</tr>
<tr>
<td>S3-1</td>
<td>2</td>
<td>99.9</td>
<td>0.210</td>
<td>0.737</td>
<td>0.889</td>
<td>0.939</td>
<td>31.18</td>
<td>2.948</td>
<td>2.635</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>63.25</td>
<td>0.206</td>
<td>0.737</td>
<td>0.885</td>
<td>0.939</td>
<td>11.67</td>
<td>2.216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>40.2</td>
<td>0.174</td>
<td>0.737</td>
<td>0.901</td>
<td>0.928</td>
<td>10.98</td>
<td>2.059</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>S1-1</td>
<td>63.2</td>
<td>0.206</td>
<td>0.737</td>
<td>0.885</td>
<td>0.939</td>
<td>11.67</td>
<td>2.216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>274.2</td>
<td>0.190</td>
<td>0.738</td>
<td>0.893</td>
<td>0.933</td>
<td>13.78</td>
<td>2.059</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40.2</td>
<td>0.174</td>
<td>0.737</td>
<td>0.901</td>
<td>0.928</td>
<td>15.40</td>
<td>2.191</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>107.6</td>
<td>0.253</td>
<td>0.730</td>
<td>0.866</td>
<td>0.955</td>
<td>21.74</td>
<td>2.155</td>
<td></td>
</tr>
<tr>
<td>S3-1</td>
<td>2</td>
<td>99.8</td>
<td>0.234</td>
<td>0.730</td>
<td>0.878</td>
<td>0.947</td>
<td>21.41</td>
<td>2.075</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>63.2</td>
<td>0.206</td>
<td>0.737</td>
<td>0.885</td>
<td>0.939</td>
<td>11.67</td>
<td>2.216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>40.2</td>
<td>0.174</td>
<td>0.737</td>
<td>0.901</td>
<td>0.928</td>
<td>10.98</td>
<td>2.059</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>S1-1</td>
<td>63.2</td>
<td>0.222</td>
<td>0.736</td>
<td>0.862</td>
<td>0.955</td>
<td>3.101</td>
<td>0.613</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>274.2</td>
<td>0.270</td>
<td>0.736</td>
<td>0.858</td>
<td>0.974</td>
<td>3.219</td>
<td>0.511</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40.2</td>
<td>0.256</td>
<td>0.734</td>
<td>0.864</td>
<td>0.970</td>
<td>4.606</td>
<td>0.724</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>107.6</td>
<td>0.250</td>
<td>0.734</td>
<td>0.872</td>
<td>0.965</td>
<td>4.189</td>
<td>0.642</td>
<td></td>
</tr>
<tr>
<td>S3-1</td>
<td>2</td>
<td>99.3</td>
<td>0.217</td>
<td>0.729</td>
<td>0.886</td>
<td>0.951</td>
<td>6.491</td>
<td>0.625</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>63.2</td>
<td>0.224</td>
<td>0.730</td>
<td>0.856</td>
<td>0.970</td>
<td>5.244</td>
<td>0.535</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>S1-1</td>
<td>63.2</td>
<td>0.248</td>
<td>0.737</td>
<td>0.880</td>
<td>0.943</td>
<td>3.283</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>274.2</td>
<td>0.286</td>
<td>0.736</td>
<td>0.846</td>
<td>0.982</td>
<td>4.176</td>
<td>0.678</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40.2</td>
<td>0.243</td>
<td>0.733</td>
<td>0.875</td>
<td>0.963</td>
<td>5.064</td>
<td>0.779</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>107.6</td>
<td>0.240</td>
<td>0.729</td>
<td>0.880</td>
<td>0.950</td>
<td>7.711</td>
<td>0.753</td>
<td></td>
</tr>
<tr>
<td>S3-1</td>
<td>2</td>
<td>99.3</td>
<td>0.237</td>
<td>0.730</td>
<td>0.879</td>
<td>0.951</td>
<td>6.940</td>
<td>0.679</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>63.2</td>
<td>0.250</td>
<td>0.738</td>
<td>0.885</td>
<td>0.939</td>
<td>2.452</td>
<td>0.468</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>S1-1</td>
<td>63.25</td>
<td>0.198</td>
<td>0.740</td>
<td>0.898</td>
<td>0.930</td>
<td>1.918</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>274.2</td>
<td>0.168</td>
<td>0.738</td>
<td>0.909</td>
<td>0.923</td>
<td>2.543</td>
<td>0.464</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40.2</td>
<td>0.231</td>
<td>0.738</td>
<td>0.885</td>
<td>0.939</td>
<td>2.452</td>
<td>0.468</td>
<td></td>
</tr>
<tr>
<td>S2-1</td>
<td>2</td>
<td>74.1</td>
<td>0.283</td>
<td>0.736</td>
<td>0.850</td>
<td>0.979</td>
<td>3.761</td>
<td>0.607</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40.2</td>
<td>0.266</td>
<td>0.737</td>
<td>0.858</td>
<td>0.974</td>
<td>3.311</td>
<td>0.526</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>107.6</td>
<td>0.290</td>
<td>0.736</td>
<td>0.838</td>
<td>0.978</td>
<td>3.989</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td>S3-1</td>
<td>2</td>
<td>100.0</td>
<td>0.240</td>
<td>0.725</td>
<td>0.876</td>
<td>0.947</td>
<td>6.478</td>
<td>0.626</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>63.2</td>
<td>0.250</td>
<td>0.726</td>
<td>0.872</td>
<td>0.949</td>
<td>6.609</td>
<td>0.644</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.7 KIC Test Results by S1, S2 and S3 Group Specimens (continued)

<table>
<thead>
<tr>
<th>Rock</th>
<th>Grup.</th>
<th>D (mm)</th>
<th>α_R</th>
<th>α_0</th>
<th>α_1</th>
<th>α_B</th>
<th>Y_m^*</th>
<th>P_{max}</th>
<th>KIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-1</td>
<td>2</td>
<td>63.25</td>
<td>0.213</td>
<td>0.728</td>
<td>0.884</td>
<td>0.940</td>
<td>6.318</td>
<td>1.206</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>63.25</td>
<td>0.234</td>
<td>0.738</td>
<td>0.904</td>
<td>0.926</td>
<td>5.156</td>
<td>0.960</td>
<td></td>
</tr>
<tr>
<td>S2-1</td>
<td>2</td>
<td>74.0</td>
<td>0.233</td>
<td>0.737</td>
<td>0.866</td>
<td>0.970</td>
<td>8.507</td>
<td>1.335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.8</td>
<td>0.254</td>
<td>0.728</td>
<td>0.862</td>
<td>0.958</td>
<td>14.86</td>
<td>1.476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>99.8</td>
<td>0.236</td>
<td>0.727</td>
<td>0.864</td>
<td>0.956</td>
<td>11.85</td>
<td>1.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>99.8</td>
<td>0.264</td>
<td>0.726</td>
<td>0.870</td>
<td>0.952</td>
<td>14.04</td>
<td>1.376</td>
<td></td>
</tr>
<tr>
<td>S3-1</td>
<td>2</td>
<td>63.2</td>
<td>0.254</td>
<td>0.728</td>
<td>0.864</td>
<td>0.956</td>
<td>14.86</td>
<td>1.476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>100.0</td>
<td>0.230</td>
<td>0.725</td>
<td>0.875</td>
<td>0.947</td>
<td>15.64</td>
<td>1.511</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>100.0</td>
<td>0.245</td>
<td>0.728</td>
<td>0.872</td>
<td>0.949</td>
<td>12.49</td>
<td>1.218</td>
<td></td>
</tr>
<tr>
<td>S1-1</td>
<td>2</td>
<td>63.2</td>
<td>0.297</td>
<td>0.736</td>
<td>0.837</td>
<td>0.988</td>
<td>9.298</td>
<td>1.537</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>74.1</td>
<td>0.270</td>
<td>0.734</td>
<td>0.862</td>
<td>0.971</td>
<td>10.36</td>
<td>1.634</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>74.1</td>
<td>0.236</td>
<td>0.736</td>
<td>0.869</td>
<td>0.967</td>
<td>7.692</td>
<td>1.241</td>
<td></td>
</tr>
<tr>
<td>S2-1</td>
<td>2</td>
<td>100.0</td>
<td>0.230</td>
<td>0.725</td>
<td>0.875</td>
<td>0.947</td>
<td>15.64</td>
<td>1.511</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>100.0</td>
<td>0.245</td>
<td>0.728</td>
<td>0.872</td>
<td>0.949</td>
<td>12.49</td>
<td>1.218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>100.0</td>
<td>0.210</td>
<td>0.725</td>
<td>0.891</td>
<td>0.937</td>
<td>15.35</td>
<td>1.441</td>
<td></td>
</tr>
<tr>
<td>S3-1</td>
<td>2</td>
<td>63.2</td>
<td>0.166</td>
<td>0.737</td>
<td>0.907</td>
<td>0.925</td>
<td>8.686</td>
<td>1.591</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>74.05</td>
<td>0.216</td>
<td>0.736</td>
<td>0.886</td>
<td>0.956</td>
<td>9.125</td>
<td>1.393</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>74.05</td>
<td>0.230</td>
<td>0.736</td>
<td>0.886</td>
<td>0.956</td>
<td>9.815</td>
<td>1.482</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>74.05</td>
<td>0.216</td>
<td>0.736</td>
<td>0.886</td>
<td>0.956</td>
<td>8.634</td>
<td>1.358</td>
<td></td>
</tr>
<tr>
<td>S3-1</td>
<td>2</td>
<td>99.8</td>
<td>0.236</td>
<td>0.727</td>
<td>0.880</td>
<td>0.946</td>
<td>14.23</td>
<td>1.373</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99.8</td>
<td>0.224</td>
<td>0.883</td>
<td>0.944</td>
<td>13.58</td>
<td>1.302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1-1</td>
<td>2</td>
<td>74.1</td>
<td>0.256</td>
<td>0.736</td>
<td>0.864</td>
<td>0.970</td>
<td>5.595</td>
<td>0.879</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>74.1</td>
<td>0.256</td>
<td>0.736</td>
<td>0.864</td>
<td>0.970</td>
<td>5.953</td>
<td>0.936</td>
<td></td>
</tr>
<tr>
<td>S2-1</td>
<td>2</td>
<td>74.1</td>
<td>0.256</td>
<td>0.736</td>
<td>0.864</td>
<td>0.970</td>
<td>5.348</td>
<td>0.833</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.7 K_{IC} Test Results by S1, S2 and S3 Group Specimens (continued)

<table>
<thead>
<tr>
<th>Rock</th>
<th>Grup.</th>
<th>D (mm)</th>
<th>α_R</th>
<th>α_0</th>
<th>α_1</th>
<th>α_B</th>
<th>Y^*</th>
<th>P_{max}</th>
<th>K_{IC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>S3-1</td>
<td>99.6</td>
<td>0.803</td>
<td>0.231</td>
<td>0.728</td>
<td>0.880</td>
<td>0.948</td>
<td>9.131</td>
<td>0.885</td>
</tr>
<tr>
<td></td>
<td>S2-1</td>
<td></td>
<td></td>
<td>0.803</td>
<td>0.293</td>
<td>0.732</td>
<td>0.881</td>
<td>8.806</td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>S3-1</td>
<td></td>
<td></td>
<td>0.803</td>
<td>0.169</td>
<td>0.735</td>
<td>0.891</td>
<td>7.914</td>
<td>0.915</td>
</tr>
<tr>
<td>18</td>
<td>S1</td>
<td>74.2</td>
<td>0.809</td>
<td>0.216</td>
<td>0.732</td>
<td>0.881</td>
<td>0.957</td>
<td>14.85</td>
<td>2.241</td>
</tr>
<tr>
<td></td>
<td>S2-1</td>
<td></td>
<td></td>
<td>0.809</td>
<td>0.239</td>
<td>0.733</td>
<td>0.837</td>
<td>14.95</td>
<td>2.322</td>
</tr>
<tr>
<td></td>
<td>S3-1</td>
<td></td>
<td></td>
<td>0.809</td>
<td>0.169</td>
<td>0.735</td>
<td>0.914</td>
<td>17.76</td>
<td>2.539</td>
</tr>
<tr>
<td></td>
<td>S3-1</td>
<td>100.1</td>
<td>0.799</td>
<td>0.200</td>
<td>0.723</td>
<td>0.891</td>
<td>0.936</td>
<td>24.90</td>
<td>2.326</td>
</tr>
</tbody>
</table>

Figure 5.9 (a) Size Influence Test Results for Rock Samples 1, 5, 6 and 8
Table 5.8 Group Averages and Comparisons

<table>
<thead>
<tr>
<th>Rock Groups</th>
<th>Group Average</th>
<th>Sample Average</th>
<th>Deviation from K_{ICc}</th>
<th>K_{ICc} by G_i Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$K_{IC} \pm SD_{IC}(\text{MPa/m})$</td>
<td>$K_{ICc} \pm SD_{ICc}(\text{MPa/m})$</td>
<td>(%)</td>
<td>(MPa/m)</td>
</tr>
<tr>
<td>1 - S1</td>
<td>0.4829 ± 0.0029</td>
<td>0.6567 ± 0.0290</td>
<td>-26.466**</td>
<td>1.2791</td>
</tr>
<tr>
<td>S2</td>
<td>0.6651 ± 0.0328</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.6948 ± 0.0226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 - S1</td>
<td>0.9495 ± 0.0289</td>
<td>0.9452 ± 0.0258</td>
<td>0.4549</td>
<td>-5.0042</td>
</tr>
<tr>
<td>S2</td>
<td>0.8979 ± 0.0076</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.9661</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - S1</td>
<td>0.3121 ± 0.0397</td>
<td></td>
<td>-9.1412</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>0.3429 ± 0.0082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.3757 ± 0.0162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 - S1</td>
<td>1.8039 ± 0.1022</td>
<td>1.9058 ± 0.1461</td>
<td>-5.3468</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>1.9433 ± 0.0679</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>2.1371 ± 0.0679</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 - S1</td>
<td>2.7879 ± 0.1623</td>
<td>2.8028 ± 0.0916</td>
<td>-0.5316</td>
<td>4.3671</td>
</tr>
<tr>
<td>S2</td>
<td>2.9252 ± 0.1245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>2.7916 ± 0.1565</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 - S1</td>
<td>2.1427 ± 0.0646</td>
<td>2.0449 ± 0.1088</td>
<td>4.7826</td>
<td>0.9145</td>
</tr>
<tr>
<td>S2</td>
<td>2.0636 ± 0.0937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>2.1151 ± 0.0399</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 - S1</td>
<td>0.6129</td>
<td>0.6065 ± 0.0193</td>
<td>1.0552</td>
<td>2.8195</td>
</tr>
<tr>
<td>S2</td>
<td>0.6263 ± 0.0758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.5804 ± 0.0450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 - S1</td>
<td>0.6347</td>
<td>0.7223</td>
<td>-12.128**</td>
<td>0.8722</td>
</tr>
<tr>
<td>S2</td>
<td>0.7286 ± 0.0501</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.7160 ± 0.0370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 - S1</td>
<td>0.4299</td>
<td>0.6088</td>
<td>-29.386**</td>
<td>-2.1682</td>
</tr>
<tr>
<td>S2</td>
<td>0.5956 ± 0.0527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.6220 ± 0.0195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 - S1</td>
<td>1.0606</td>
<td>1.3640</td>
<td>-22.243**</td>
<td>0.3959</td>
</tr>
<tr>
<td>S2</td>
<td>1.3694 ± 0.0254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>1.3586 ± 0.1115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - S1</td>
<td>1.2858 ± 0.0479</td>
<td>1.4113 ± 0.01121</td>
<td>-8.8925</td>
<td>10.3947</td>
</tr>
<tr>
<td>S2</td>
<td>1.5580 ± 0.2093</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>1.3900 ± 0.1246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 - S1</td>
<td>1.7564 ± 0.1656</td>
<td>1.3778</td>
<td>27.479**</td>
<td>0.4282</td>
</tr>
<tr>
<td>S2</td>
<td>1.3837 ± 0.0656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>1.3719 ± 0.0564</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 - S2</td>
<td>0.8827 ± 0.0420</td>
<td>0.8702</td>
<td>1.4365</td>
<td>1.4479</td>
</tr>
<tr>
<td>S3</td>
<td>0.8576 ± 0.0277</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 - S2</td>
<td>2.3673 ± 0.1258</td>
<td>2.3012</td>
<td>2.8724</td>
<td>2.8768</td>
</tr>
<tr>
<td>S3</td>
<td>2.2350 ± 0.0910</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.9 b) Size Influence Test Results for Rock Samples 9 to 14
limit can be used.

Based on the above discussions on the stability of the measured K_{IC} values, it is concluded that there is a certain minimum size limit for each rock when using the CCNBD specimens for fracture toughness measurement. The CCNBD specimens with the sizes over this minimum limit will generate stable (consistent) K_{IC} values which can then be taken as the material constant property values K_{IC}^T, and on the other hand, the specimens with sizes below this limit will yield invalid (unstable) K_{IC} values which should be discarded when evaluating the material fracture properties. For the CCNBD tests conducted above, the invalid tests will be marked with a "*-" in the tables.

For most of the rock materials, this valid minimum specimen size is believed to be around
75 mm and therefore in practical usage $D \geq 75$ mm should always be the first choice. The CCNBD specimens with $D < 75$ mm are not recommended unless a smaller minimum valid size for that particular rock is known beforehand. Furthermore, validity of any test always has to be checked each time after the test. The most effective way for this checking is by comparing the measured K_{ic} values from different CCNBD specimens with different sizes. Or alternatively, it can be conducted according the following approximate validity criteria.

It is rather difficult to reach a precise criteria about the minimum size requirement for the CCNBD K_{ic} testing with these initial experimental results on a limited number of rock samples. Nevertheless approximation can always be made. If the valid minimum specimen size D_{min} discussed above for the 14 rock samples tested is related to the K_{ic}/σ_t values for each sample (where K_{ic} takes the sample average), then the following approximate criteria for valid minimum size requirement can be obtained:

$$D_{min} \approx 8.88 + 1.4744 (\frac{K_{ic}}{\sigma_t})^2$$

(5.3)

At this stage, Equation (5.3) will be accepted for the approximate judgement of the valid minimum size requirement for a valid K_{ic} test by the CCNBD specimens, on condition that no other more precise criteria exists. The K_{ic} for this purpose should use the sample average values.

One extra point needs to be made is that if the ratios of P_{max}/K_{ic} for the tests in these three groups are examined, the same conclusion, as drawn in the last section, about the relations of the output maximum (failure) load readings P_{max} and the input fracture toughness values K_{ic} for the CCNBD specimens will be reached.

§5.6 The Validation Analysis for the CCNBD K_{ic} Test

Apart from the validation studies of the specimen geometries and the specimen sizes for the valid CCNBD K_{ic} tests, in this section the CCNBD method is validated by comparing its results with those obtained by the CB and the SR methods based on 41 different rock samples.

The specimens for the CB and the SR test groups were machined according to the dimensions designed in Table 5.3. The minimum dimensionless SIF A_{min} of the specimens were then calculated according to the suggested method [145] as follows:

$$A_{min} = \left[1.835 + 7.15 a_{ij}/D + 9.85 (a_{ij}/D)^2 \right] \left(S/D \right) [CB]$$

$$A_{min} = 24.0 \left[1 - 0.6 \cdot \Delta W/D + 1.4 \cdot \Delta a_{ij}/D - 0.01 \cdot \Delta (28) \right] [SR]$$

(5.4)
The experimental level I K_{ic} values for the rock samples were then calculated by the following equation:

$$K_{ic} = \frac{A_{min} \cdot P_{max}}{D^{1.5}} \quad [\text{CB, SR}]$$ \hspace{1cm} (5.5)

Some similar comparison tests are introduced from Chen (1989) to substantiate the validation arguments here. There was a total of 23 rock samples. One valid single CCNBD specimen geometry is used for the test which is the CNA geometry listed in Table 4.4, except rock sample 20. Table 5.9 is the list of the rock samples' related mechanical properties. For reason of clarity, these samples are renumbered here starting from number 20.

Table 5.10 presents the comparison results between the K_{ic} values for each rock sample (samples 1 to 43) by the CCNBD method and the ISRM suggested methods (CB and SR). The comparison results are plotted in Figure 5.10. The K_{ic}^{ISRM} values shown here are the averaged values over those obtained by the CB and SR methods. Owing to the limitation of our testing equipment only the first step test results (level I tests) are used. The best fit regression yields the following relationship between K_{ic}^{CCNBD} and K_{ic}^{ISRM}:

$$K_{ic}^{\text{CCNBD}} = 0.0521 + 0.8788 \cdot K_{ic}^{\text{ISRM}}$$ \hspace{1cm} (5.7)

![Figure 5.10 Comparison between K_{ic}^{CCNBD} and K_{ic}^{ISRM}](image)
Table 5.9 Extra Samples Used for Experimental Validation [36]

<table>
<thead>
<tr>
<th>Spl.</th>
<th>Sample Descriptions</th>
<th>E (GPa)</th>
<th>ν</th>
<th>ρ (T/m³)</th>
<th>σ_c (MPa)</th>
<th>σ_i (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Sandstone - 1</td>
<td>11.26</td>
<td>0.23</td>
<td>2.32</td>
<td>47.25</td>
<td>2.87</td>
</tr>
<tr>
<td>21</td>
<td>Pennant Sandstone</td>
<td>17.86</td>
<td>0.23</td>
<td></td>
<td>197.17</td>
<td>11.22</td>
</tr>
<tr>
<td>22</td>
<td>Sandstone - DOS</td>
<td>13.58</td>
<td>0.24</td>
<td>69.35</td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Sandstone - DISC</td>
<td>11.26</td>
<td>0.23</td>
<td>47.03</td>
<td>2.87</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Limestone - EIM</td>
<td></td>
<td></td>
<td></td>
<td>62.91</td>
<td>2.72</td>
</tr>
<tr>
<td>25</td>
<td>Limestone - 2</td>
<td>10.28</td>
<td></td>
<td>58.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Limestone - Hard</td>
<td>31.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Gneiss - Eim5</td>
<td></td>
<td></td>
<td></td>
<td>292.66</td>
<td>12.40</td>
</tr>
<tr>
<td>28</td>
<td>Rhyolite - Eim4</td>
<td>30.74</td>
<td></td>
<td>126.42</td>
<td>8.81</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Gypsum - DOS</td>
<td></td>
<td></td>
<td>34.47</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ore - Eim</td>
<td></td>
<td></td>
<td>133.38</td>
<td>3.82</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Sandstone - Fai</td>
<td>9.26</td>
<td></td>
<td>47.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Sandstone - 7</td>
<td>9.73</td>
<td></td>
<td>58.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Sandstone - 9</td>
<td>11.28</td>
<td></td>
<td>63.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Sandstone - 31</td>
<td>12.86</td>
<td></td>
<td>71.34</td>
<td>4.58</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Sandstone - 33</td>
<td>11.76</td>
<td></td>
<td>27.46</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Sandstone - 34</td>
<td>12.13</td>
<td></td>
<td>68.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Sandstone - Spr. 41</td>
<td>11.90</td>
<td>0.28</td>
<td>38.30</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Gypsum - Pink 48</td>
<td>13.19</td>
<td></td>
<td>63.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Limestone - 54</td>
<td>19.26</td>
<td></td>
<td>121.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Sandstone - 15</td>
<td></td>
<td></td>
<td>33.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Sandstone - 18</td>
<td></td>
<td></td>
<td>37.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Sandstone - 25</td>
<td></td>
<td></td>
<td>29.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Sandstone - 26</td>
<td></td>
<td></td>
<td>21.23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.10 Comparison between K_{IC}^{CONBD} and K_{IC}^{ISRM}

<table>
<thead>
<tr>
<th>Sample</th>
<th>$K_{IC}^{CONBD} \pm SD^{CONBD}$</th>
<th>$K_{IC}^{ISRM} \pm SD^{ISRM}$</th>
<th>$K_{IC}^{CONBD}/K_{IC}^{ISRM}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6567 ± 0.0290</td>
<td>0.6041 ± 0.0045</td>
<td>1.0871</td>
</tr>
<tr>
<td>2</td>
<td>0.6100 ± 0.0339</td>
<td>0.5433 ± 0.0413</td>
<td>1.1228</td>
</tr>
<tr>
<td>3</td>
<td>0.7197 ± 0.0271</td>
<td>0.6677 ± 0.0304</td>
<td>1.0779</td>
</tr>
<tr>
<td>4</td>
<td>0.6352 ± 0.0056</td>
<td>0.6479 ± 0.0107</td>
<td>0.9804</td>
</tr>
<tr>
<td>5</td>
<td>0.9452 ± 0.0258</td>
<td>1.0195 ± 0.0463</td>
<td>0.9304</td>
</tr>
<tr>
<td>6</td>
<td>0.3435 ± 0.0195</td>
<td>0.4166 ± 0.0170</td>
<td>0.8245</td>
</tr>
<tr>
<td>7</td>
<td>1.2374 ± 0.0851</td>
<td>1.4727 ± 0.1257</td>
<td>0.8402</td>
</tr>
<tr>
<td>8</td>
<td>1.9058 ± 0.1461</td>
<td>1.9824 ± 0.0917</td>
<td>0.9761</td>
</tr>
<tr>
<td>9</td>
<td>2.8028 ± 0.0916</td>
<td>3.0704 ± 0.1133</td>
<td>0.9128</td>
</tr>
<tr>
<td>10</td>
<td>2.1189 ± 0.1088</td>
<td>2.3544 ± 0.0462</td>
<td>0.9000</td>
</tr>
<tr>
<td>11</td>
<td>0.6088</td>
<td>1.1641</td>
<td>1.1717</td>
</tr>
<tr>
<td>12</td>
<td>1.4113 ± 0.1121</td>
<td>1.7931</td>
<td>0.7684</td>
</tr>
<tr>
<td>13</td>
<td>0.8702</td>
<td>1.0088</td>
<td>0.8626</td>
</tr>
<tr>
<td>14</td>
<td>2.3012</td>
<td>2.8606</td>
<td>0.8044</td>
</tr>
<tr>
<td>15</td>
<td>0.6073 ± 0.0114</td>
<td>0.6300 ± 0.0900</td>
<td>0.9640</td>
</tr>
<tr>
<td>16</td>
<td>1.9165</td>
<td>1.8400 ± 0.2230</td>
<td>1.0416</td>
</tr>
<tr>
<td>17</td>
<td>0.4715</td>
<td>0.5042 ± 0.0490</td>
<td>0.9351</td>
</tr>
<tr>
<td>18</td>
<td>0.6140 ± 0.0042</td>
<td>0.6685 ± 0.0641</td>
<td>0.9185</td>
</tr>
<tr>
<td>19</td>
<td>0.7560</td>
<td>0.8648 ± 0.1317</td>
<td>0.8742</td>
</tr>
<tr>
<td>20</td>
<td>0.7200 ± 0.0441</td>
<td>0.8293 ± 0.1134</td>
<td>0.8682</td>
</tr>
<tr>
<td>21</td>
<td>2.4790</td>
<td>2.5615</td>
<td>0.9678</td>
</tr>
<tr>
<td>22</td>
<td>2.0463 ± 0.1269</td>
<td>2.3115</td>
<td>0.8853</td>
</tr>
<tr>
<td>23</td>
<td>1.8617 ± 0.0833</td>
<td>2.0743 ± 0.1243</td>
<td>0.8975</td>
</tr>
<tr>
<td>24</td>
<td>0.5580</td>
<td>0.6383 ± 0.0689</td>
<td>0.8742</td>
</tr>
<tr>
<td>25</td>
<td>1.4150</td>
<td>1.5990 ± 0.0900</td>
<td>0.8849</td>
</tr>
<tr>
<td>26</td>
<td>0.3845</td>
<td>0.4000 ± 0.0200</td>
<td>0.9613</td>
</tr>
<tr>
<td>27</td>
<td>0.5825</td>
<td>0.5008 ± 0.0110</td>
<td>1.1631</td>
</tr>
<tr>
<td>28</td>
<td>0.7170</td>
<td>0.7770 ± 0.0568</td>
<td>0.9228</td>
</tr>
<tr>
<td>29</td>
<td>0.5743 ± 0.0048</td>
<td>0.6873 ± 0.0904</td>
<td>0.8356</td>
</tr>
<tr>
<td>30</td>
<td>0.3700</td>
<td>0.3520 ± 0.0225</td>
<td>1.0511</td>
</tr>
<tr>
<td>31</td>
<td>0.5915</td>
<td>0.6080 ± 0.0316</td>
<td>0.9729</td>
</tr>
<tr>
<td>32</td>
<td>0.6765</td>
<td>0.6918 ± 0.0298</td>
<td>0.9779</td>
</tr>
<tr>
<td>33</td>
<td>0.8790</td>
<td>0.9083 ± 0.0436</td>
<td>0.9677</td>
</tr>
<tr>
<td>34</td>
<td>1.3735</td>
<td>1.4605 ± 0.1444</td>
<td>0.9404</td>
</tr>
<tr>
<td>35</td>
<td>0.3325</td>
<td>0.3455</td>
<td>0.9624</td>
</tr>
<tr>
<td>36</td>
<td>0.3580</td>
<td>0.4085 ± 0.0611</td>
<td>0.9764</td>
</tr>
<tr>
<td>37</td>
<td>0.3345</td>
<td>0.3375</td>
<td>0.9911</td>
</tr>
<tr>
<td>38</td>
<td>0.3155</td>
<td>0.3285</td>
<td>0.9604</td>
</tr>
</tbody>
</table>
Therefore the K_{IC} values measured by the CCNBD specimens turn out to be around 10% lower than those by the ISRM suggested methods (level I). However according to recent reports by Ouchterlony (1991) where some new calibrations have been added, the ISRM suggested methods seem to generate the K_{IC} values around 10% higher than the "true" values. So that it is suggested that the CCNBD method may be just the one to produce closer K_{IC} values to the actual ones compared with the first step K_{IC} results by the ISRM suggested method. Certainly this point needs to be carefully investigated in more details in the future.

Sample 1-18 are the same samples used above for the geometry and size influence studies, and the K_{IC} values shown in the tables are the averages of all the valid test results from different specimens.

If only the standard CCNBD specimen geometry (the CNA geometry listed in Table 4.3) was used, as was the case for rock samples 20 to 43, then the scatter of the K_{IC} test results came out to be much less than that by the standard CB or SR specimen geometries. Therefore it is suggested that if the practical situation allows the use of the standard CCNBD geometry only, a more reliable K_{IC} test value can be obtained with less test specimens. This is another good feature which is of great significance for practical applications.

![Figure 5.11 K_{IC} vs E](image)
Based on the K_{IC} test results on some limited particular rock materials, Ouchterlony (1991) concluded that for rock materials the relationship between the second step (level II) K_{IC} test values by the ISRM suggested method and the rock Young's modulus E will roughly follow the following equation:

$$K_{IC} = 0.23 \cdot E^{0.65} \quad (5.7)$$

Plotting the K_{IC} test results by the CCNBD specimens against E for all the rock samples tested in the current investigation, Figure 5.11 was obtained, where Equation (5.7) is plotted as well. Again differences exist between them. The K_{IC} values by the CCNBD method turn out to follow the trend of -80% of the values by Equation (5.7) shown as the lower dotted line, which is supposed to be around the first step (level I) K_{IC} values by the CB and SR methods [Ouchterlony, 1991]. The regression relation for K_{IC} test results in the current research is:

$$K_{IC} = 0.054 \cdot E^{1.0143} \quad (5.8)$$

However, Equation (5.7) is based on the test results on a few rock samples, therefore Equation (5.8) is believed to be the better prediction for rock K_{IC} values from rock Young's modulus E.

If the K_{IC} values are related to the rock compressive strength σ_c and tensile strength σ_t, the relationships shown in Figure 5.12 a) and b) will be obtained. The best fit regressions for these relations will yield:

Figure 5.12 (a) and (b) Relationships between K_{IC} and σ_c, σ_t.
Equations (5.8) and (5.9) are only the regressed relationships based on the available results. They should not be taken as definite analytical relations. In other words they can only be used as some sort of prediction. For practical use, the minimum valid specimen size prediction for instance, it is suggested that the K_{IC} value for a particular rock be jointly predicted by these three equations, i.e.,

$$K_{IC}^\text{Pred.} = \frac{K_{IC}^E + K_{IC}^{\sigma_e} + K_{IC}^{\sigma_t}}{3}$$

(5.10)

where K_{IC}^E, $K_{IC}^{\sigma_e}$ and $K_{IC}^{\sigma_t}$ are the predicted values from E, σ_e and σ_t respectively. This prediction is normally very useful as, in order to have the valid experimental results, the specimen size and the testing loading rate should be designed according to the most liable K_{IC} value before conducting the testing.

§5.7 Conclusions and Suggestions for Further Research

The following conclusions have been made from the CCNBD experimental validation studies based on the above test results:

1) It has been experimentally proven that CCNBD specimens with the geometrical dimensions inside the range outlined by lines 1, 2, 3, 4 and 5 in Figure 4.13 (or Figure 5.1) will generate valid stable (consistent) K_{IC} values for rock materials. This range is referred to as the valid geometrical range. The CCNBD specimens with geometrical dimensions within the transitional band immediately outside the valid range boundary and within the invalid geometrical range far away from the boundary will produce invalid inconsistent K_{IC} values and therefore they should be avoided for practical applications.

2) The tested specimen geometries show that for CCNBD specimen preparation, the designed geometrical dimensions do not have to be strictly controlled as long as the finished specimens’ dimensions are still within the valid geometrical range in order to have a valid test. Certainly the minimum (critical) dimensionless SIF Y_m will change according to the practical dimensions however they will still generate valid consistent fracture toughness values. This will make the CCNBD specimen preparation much easier and much more productive.

3) In order to obtain a valid material constant plain strain K_{IC} value of rock materials, the CCNBD specimen size D is recommended to be at least 75 mm unless a smaller size has been
validated beforehand. For any specimen size, the validation study should be checked each time before the K_{IC} value can be taken as a valid material constant. The studies can be carried out easier by comparing the results for different specimen sizes, or alternatively can be approximately evaluated by Equation (5.3) as the former way is always troublesome, costly and sometime impossible due to the limited rock available and the machining ability.

4) The CCNBD specimens can generate less scatter and closer "true" K_{IC} values compared with the first step (level I) testing of the ISRM suggested CB and SR methods, so that the CCNBD testing method can be recommended as an engineering simple and accurate K_{IC} measurement method. It has been proved that the CCNBD specimens will produce less scattered K_{IC} results if one single geometry is used. This suggests that the CCNBD testing is less influenced by the outside conditions and can always generate more consistent results.

5) Valid CCNBD specimens will generate 10% lower K_{IC} values compared with the first step (level I) K_{IC} values by current ISRM suggested CB and SR methods.

6) Based on the relations obtained, rock K_{IC} values for experimental design or for prediction purposes can be jointly predicted by the rock Young's modulus E, the tensile strength σ_t and the compressive strength σ_c by Equation (5.8), (5.9) and (5.10).

7) Owing to the much lower dimensionless SIF values for the CCNBD geometry, the specimen can work like an amplifier when used for rock fracture toughness testing. It will enlarge the low K_{IC} value input and give a high P_{max} reading output. In other words, it is much less sensitive compared with CB and SR methods, while too sensitive testing method for material property measurement purposes always means much larger induced system error. This certainly will reduce the costly requirement on the testing machines' low load range capability and will also greatly reduce the induced error due to testing machines' resolution.

8) Based on the experience of using the CCNBD specimens for rock fracture toughness studies, there are no complicated machining, no difficult setting up, no high and costly requirement on the testing system and no troublesome calculations.

9) Quite interestingly, if the CCNBD, CB and SR specimens are machined from the same rock cores, their crack orientation plane can be constructed perpendicular to each other in 3-D space. In other words, they together form a complete set of specimens for rock anisotropic fracture studies. Therefore by carefully selecting the coring direction with the rock anisotropic plane, the rock anisotropic fracture problems can be ideally modelled jointly by these three specimen geometries from a single core. This will greatly reduce the error caused by testing the rock cores from different blocks.

Apart from the conclusions above, some further research into aspects of this work are strongly recommended:
1) More rock samples and a larger specimen size range are suggested to investigate the size effect on the K_{IC} test results so that a more accurate minimum size requirement criteria for a valid CCNBD test can be reached.

2) Some attention should be paid to the loading rate effect on K_{IC} test results so that the valid loading rate can be decided before the test.

3) Compared with the second step (level II) K_{IC} values by the ISRM suggested CB and SR methods, the K_{IC} values by the CCNBD method are much lower. Further investigations into this aspect are strongly recommended.

4) A database is suggested to be set up to establish the relations between rock K_{IC} values and some other rock properties so that rock K_{IC} values can be more precisely predicted. Furthermore, the relations for rock K_{IC} values with some engineering practice performance parameters (the specific energy in rock cutting engineering for instance) should be investigated.

5) It is believed that the cracked Brazilian discs (the CSTBD or the CCNBD specimens) are ideal specimens to be used for rock mixed mode fracture studies and rock anisotropic fracture studies. Therefore further theoretical and experimental investigations in this area are strongly recommended.
Chapter 6
Draft for the Third Suggested Method for
Determining the Mode I Fracture Toughness of Rock

Suggested Method for Determining Mode I Fracture Toughness Using
Cracked Chevron Notched Brazilian Disc (CCNBD) Specimens

1 INTRODUCTION

Historically a large variety of specimen types and methods have been used for the rock fracture toughness K_{IC} test, and the results generated were normally not comparable [145]. Therefore in 1988, the ISRM Testing Commission recommended two suggested methods aiming to provide testing methods which would yield consistent fracture toughness values. These two methods very soon achieved general acceptance.

The introduction of the Cracked Chevron Notched Brazilian Disc (CCNBD) specimen into the suggested methods would form a complete set of specimens for a full rock anisotropic fracture toughness investigation since the crack orientations of these three suggested specimen geometries can be easily arranged to be orthogonal to each other if they are machined from the same rock core. Additional advantages are much higher failure loads, fewer restrictions on the testing apparatus, larger tolerance on the specimen machining error, simpler testing procedure and lower scatter of test results. It is suggested that this method is even more suitable for practical purposes.

Furthermore, the CCNBD specimen and its original model Cracked Straight Through Brazilian Disc (CSTBD) are both ideal specimens for pure mode II or mixed mode fracture studies of rock materials. Different combinations of mode I and mode II fracture intensities can be easily obtained and the test can be carried out just as simply as that in the pure mode I fracture toughness test. Other documentation for this purpose is under preparation.

In this version of the document for the CCNBD test method, only one level of experiment is presented. It is anticipated that some research results for the non-linearity influences on fracture toughness value measured by CCNBD specimen will be added in a future version.
2 SCOPE

1. (a) This test is intended to measure the fracture toughness of rock materials. The main use of this property is for the classification and characterization of intact rock with respect to its resistance to crack propagation. Other important uses are either as an index for rock fragmentation processes such as crushing and tunnel boring, or in the analysis of hydraulic or explosive fracturing and stability.

(b) The test uses rock material in the form of core specimens. The core axis should be oriented either parallel or perpendicular to any anisotropy features such as planes of weakness. The present method uses a specimen, called a Cracked Chevron Notched Brazilian Disc (CCNBD) specimen (Figure 1), with a chevron or V-shaped notch cut along the core diameter direction.

(c) The testing requires only the recording of the maximum load.

![Figure 1. The CCNBD Specimen Geometry with Recommended Test Fixture](image)

3 SPECIMEN DESCRIPTION

2. (a) The geometry of the CCNBD specimen is illustrated in Figure 1. The chevron notch causes crack propagation to start at the tip of the V alignment and to proceed radially outwards in a stable fashion until the point where the fracture toughness is evaluated.
(b) All the geometry dimensions should be converted into dimensionless parameters with respect to the specimen radius R and diameter D as follows:

\[
\begin{align*}
\alpha_0 &= \frac{a_0}{R} \\
\alpha_1 &= \frac{a_1}{R} \\
\alpha_B &= \frac{B}{R} \\
\alpha_s &= \frac{D_s}{D}
\end{align*}
\]

(c) The suggested standard specimen geometry dimensions are to be as in Table 1. Other selections of specimen geometry dimensions are possible, but in order to have a valid test, the selected geometry dimensions \(\alpha_1 \) and \(\alpha_B \) should satisfy the following restrictions, which are shown in Figure 2.

\[
\begin{align*}
\alpha_1 &\geq 0.4, & \text{Line 0} \\
\alpha_1 &\geq \alpha_B / 2, & \text{Line 1} \\
\alpha_B &\leq 1.04, & \text{Line 2} \\
\alpha_1 &\leq 0.8, & \text{Line 3} \\
\alpha_B &\geq 1.1729 \cdot \alpha_1^{1.6666}, & \text{Line 4} \\
\alpha_B &\geq 0.44, & \text{Line 5}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Values</th>
<th>Dimensionless Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter D (mm)</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>Thickness B (mm)</td>
<td>30.0</td>
<td>(\alpha_B = B/R = 0.80)</td>
</tr>
<tr>
<td>Initial Chevron Notched Crack Length (a_0) (mm)</td>
<td>9.89</td>
<td>(\alpha_0 = a_0/R = 0.2637)</td>
</tr>
<tr>
<td>Final Chevron Notched Crack Length (a_1) (mm)</td>
<td>24.37</td>
<td>(\alpha_1 = a_1/R = 0.65)</td>
</tr>
<tr>
<td>Saw Diameter (D_s) (mm)</td>
<td>52.0</td>
<td>(\alpha_s = D_s/R = 0.6933)</td>
</tr>
<tr>
<td>Cutting Depth (h_c) (mm)</td>
<td>16.95</td>
<td></td>
</tr>
<tr>
<td>(Y_{\text{max}}) (dimensionless)</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>(a_m) (mm)</td>
<td>19.31</td>
<td>(\alpha_m = a_m/R = 0.5149)</td>
</tr>
</tbody>
</table>
(d) The initial crack length a_0 for specimen preparation purpose in practical applications could be arbitrarily set between $(0.20-0.30)R$.

(e) $\alpha_0(a_0)$, $\alpha_1(a_1)$ and $\alpha_B(B)$ are the three basic dimensions in the CCNBD geometrical parameters. When known, the other geometrical dimensions (Figure 1) can then be calculated from the following interrelations:

$$\alpha_s = \frac{R_s}{R} = \sqrt{\frac{\alpha_0^2 + (\alpha_1 - \alpha_0 + \alpha_B/4)^2}{\alpha_B^2}}$$
$$h_c = (\alpha_s - \sqrt{\alpha_s^2 - \alpha_0^2})R - (\alpha_s - \sqrt{\alpha_s^2 - \alpha_0^2})R + B/2$$
$$\alpha_0 = \sqrt{\alpha_s^2 - (\sqrt{\alpha_s^2 - \alpha_0^2} + \alpha_B/2)^2}$$
$$\alpha_1 = \sqrt{\alpha_s^2 - (\sqrt{\alpha_s^2 - \alpha_0^2} - \alpha_B/2)^2}$$
$$\alpha_B = 2(\sqrt{\alpha_s^2 - \alpha_0^2} - \sqrt{\alpha_s^2 - \alpha_1^2})$$

(3)

4 APPARATUS

Specimen preparation equipment

3. A circular diamond saw shall be used to cut the required notch. The flanks of the chevron notch shall be straight, which requires a saw with a linear cutting motion. A preparation fixture should be used for cutting the notch, which will help to ensure that the chevron notches are exactly in the centre of the disc and the geometrical dimensions conform to the given tolerances. A specimen preparation fixture is shown in Figure 3. D and B values are the diameter and thickness of the specimen to be machined. L is the width of the jig and the range of $L > 1.5D$ is used. $\angle A$ is the angle of slot for locating the rock specimen and the range of $\angle A$ is 110°-130°. H is the thickness of the jig and the range 0.25D ~ 0.35D is suggested in order to provide a good guide for specimen machining alignment. For a rock mechanics laboratory, a series of these jigs for $D = 65, 75, 85$ and 100 mm specimens are suggested. For the jig’s thickness H, it is recommended to use the high bound value of $\sim 0.30D$ for small D and low bound value of $\sim 0.20D$ for large D.

![Figure 2 Valid Geometrical Range](image)
Testing machine and load fixtures

4. (a) The testing shall have sufficient capacity for the peak load required and shall be capable of applying load at the rate conforming to the requirements of paragraph 11 below. It shall be calibrated at regular time intervals and shall comply with accepted national requirements.

(b) At the present test level, the testing prescribes the recording of the maximum load only. This requires a testing machine in which the loading rate can be controlled. Such equipment could be portable. However a testing machine with displacement servo control is preferred as it will help the specimen alignment set-up and it has the advantage of zero preload.

(c) The loading fixture should be as shown in Figure 1, where the lower and the upper loading plates should be rigid and should be parallel to each other to ensure a concentrated vertical loading.

Specimen alignment aids

5. (a) No special setting up aid is required for the CCNBD test. However simple aids can be used to help make the setting up easier.
(b) A simple right angle level is always required. This will help to ensure that the loading plates are perpendicular to the crack orientation. Two small smooth wedges could be used at the same time to help the setting-up by simply putting them on both sides of the specimen to prevent the CCNBD disc from rolling.

(c) The design of any setting up aid should be such that the alignment aid can be removed easily when the specimen has been secured in position.

(d) Checks should be carried out each time before loading. The checks should include the perpendicularity of the crack orientation to the loading plates and the alignment of the crack orientation with the loading direction. The error should be controlled within 0.5%.

Displacement measuring equipment

6. (a) The loading point displacement (LPD) and crack mouth opening displacement (CMOD) could be measured during the test for the compliance studies even though they unnecessary at this stage for the fracture toughness calculation. The equipment shall use a transducer with electric output signals. The LPD should be the primary displacement variable measured on the disc specimen.

(b) A recommended arrangement of displacement measurements uses two linear variable differential transformer (LVDT) transducers mounted on two magnetic supports. They should be arranged on both sides of the specimen, with each sitting on one loading platen but pointing to the other. The LVDTs should be set up straight and should touch the point as close to the loading point as possible (Figure 4).

![Figure 4 Displacement Measurement](image-url)
(c) The equipment for the displacement measurement should possess the capability of measuring accurately within 0.001 mm.

Recording

7. An analogue or digital recording system is required such that the accuracies specified for force and displacement systems can be realized. A testing machine recording maximum load only is also acceptable for the fracture toughness determination provided it has good recording accuracy.

5 PROCEDURE

Specimen selection and preparation

8. (a) A test sample is defined as a set of core pieces (specimens) with the same diameter, same thickness, similar properties and identical orientation of the core axis (see 8b below) for which the fracture toughness is to be determined. Each set of specimens with identical loading direction (see 8l below) forms a sub-sample that is to be treated separately.

(b) The core pieces shall be marked with a reference, using a waterproof pen, before specimen preparation so that core axes and rotation angles relative to the material fabric and to block sample faces are known. They should be stored in such a way as to preserve their natural water content, as far as possible, until the time of specimen preparation.

(c) The moisture content of each test sample should be measured and reported.

(d) At least one thin section should be made from each test sample set in order to describe mineral content, grain size, texture and pore volume and configuration. The accuracy of these determinations should be better than ± 3% for model analysis, ± 5% for grain size, and ± 0.2% for porosity. If the core pieces appear anisotropic or are found to be anisotropic as a result of later testing, then three mutually perpendicular thin sections should be cut, parallel and perpendicular to the anisotropy, and analyzed.

(e) The direct tensile strength of the rock material, \(a_t \), should be measured.

(f) The diameter, \(D \), of the core should be related to the size of the largest grain in the rock by the ratio of at least 10:1. A smooth piece of core without abrupt irregularities and straight to within 0.5 mm shall be chosen for specimen preparation. The diameter could be roughly measured at this stage.

(g) The core should be cut to the desired length according to the specimen thickness required and notched using a diamond saw with clean water as coolant. Though the preparation of the specimen thickness does not have to follow exactly the original design, a deviation within 10% is recommended.
(h) The disc surfaces of the cut specimen should be smooth and flat and shall not depart from perpendicularity to the disc axis by more than 0.25 mm in 100 mm. Surface grinding should be applied if these requirements are not satisfied. The required crack orientation should be clearly marked on both sides of the surfaces by a waterproof pen.

(i) The notch width, t, should be measured and it should not exceed 1.5 mm.

(j) The notch shall be made with two cuts from both sides of the disc along the disc rotating axis on the same diametrical cutting plane, which is to be the designed crack orientation direction (Figure 5). The fixture shown in Figure 3 holds the disc straight up with the disc surface facing the diamond wheel. Before each cut, a check should be made to ensure that the cut is going to be exactly in the centre of the disc surface, vertically and horizontally. This could be made by matching the diamond wheel with the centre mark of the disc surface circle, or automatically set by the mechanical settings of the machine. The error for the centre alignment should not exceed 0.5 mm. The disc central axis line should match the diamond wheel rotating plane, which will ensure the perpendicularity of the cutting plane to the disc surfaces. The error in this matching shall be within 0.25 mm in 100 mm.

(k) Set the gap between the disc surface and the rotating wheel to zero. The first cut is made by moving the disc toward the rotating wheel up to the designed cutting depth \(h_c \), which can be calculated from the designed values as follows:

\[
h_c = (\alpha_x - \sqrt{\alpha_z^2 - \alpha_1^2})R - (\alpha_x - \sqrt{\alpha_z^2 - \alpha_1^2})R + \frac{B}{2}
\]

After this cut, the specimen together with the fixture are removed from the fixing vice and turned 180° with the other disc surface facing the diamond wheel. After the centre alignment and the cutting plane perpendicularity checks have been made, the specimen is cut to the same depth \(h_c \) as the first cut.

(l) The angle of the chevron notch plane with respect to the core reference shall be recorded so that both the plane of the crack and its direction of propagation relative to material fabric
and to block sample faces are known. This angle must coincide with the intended direction of loading (crack propagation direction), which may be inclined to the rock anisotropic features at the desired angle (parallel, perpendicular or some defined angle).

(m) After machining, the specimen is removed from the fixture and the silt trapped inside the notch crack is washed away.

(n) Two lines are drawn on both sides of the disc along the notch plane direction. The two loading lines contacting the lower and upper loading plates can be obtained by joining the four end points of the two lines drawn. Along these two loading lines, the rock surface should be flat and smooth in order to ensure full contact with the loading platens. The parallelity of these two lines to the disc axis, or their perpendicularity to both sides of the disc surfaces should meet the basic requirement mentioned above, i.e., within 0.25 mm in 100 mm.

(o) After machining, the specimen should be dried at 104° for 24 hours to remove the water absorbed during preparation.

(p) At this stage, the specimen geometry dimensions, disc diameter D, disc thickness B, and maximum chevron notch crack length 2a, should be precisely measured to the nearest 0.1 mm. D should be measured by averaging two diameters at right angles near both sides of the disc surfaces. B should be measured by averaging four measured values obtained at the four end points of a pair of orthogonal diameters. 2a, should be measured as the mean of the two values measured on both sides of the disc surfaces. After the measurement, the geometry should be converted into dimensionless expressions aB and a,.

(q) The specimens should be discarded if the measured geometries a, and aB do not meet the valid geometrical requirement outlined in Equation (3) and illustrated in Figure 2.

Calibration
9. (a) The load cell calibration shall be checked at regular intervals.

(b) If the LPD or the CMOD is measured, the displacement measuring equipment shall be checked for linearity and calibrated before each series of tests.

Setting up
10. (a) The specimen shall be carefully installed in the testing machine in such a way that the load transfer system is properly aligned. Alignment aids (see 5) should be used to help the setting up of the specimen and the perpendicularity requirement (see 5) of the crack plane to the loading plates should be checked as the last step before the actual load is applied. A small holding load should be used to secure the specimen in the correct position. The contact loading lines on both the lower and upper loading plates should be checked to ensure that full contact is made between the plates and the specimen.
(b) The setting of the ram or cross-head position and position limits should be chosen so that no damage to the machine or displacement gauges can occur if the specimen should fail prematurely in a sudden or unexpected manner.

Testing

11. (a) The test can be run both under the load or displacement control. The load history shall be recorded and test shall be run until the specimen fails. The average stress intensity loading rate during the test shall be not less than 0.25 MPa√m/sec or such that failure occurs within 20 sec of initial load application.

(b) At least two unloading-reloading cycles should be performed at the load point of about 20% of the maximum load to ensure a perfect contact between the loading plates and the specimen.

(c) The maximum load on the specimen should be recorded with an error less than ±1.0%.

(d) If the LPD and the CMOD displacements are measured, they should be determined to the accuracy of 0.001mm.

(e) The results shall be considered invalid and a further test conducted if the crack deviates from symmetrical crack plane defined by the notch plane by more than 0.05D within 0.5D from the centre of the disc surface.

(f) After the test, the geometrical dimension 2a₀ shall be measured from the broken sample and converted into a dimensionless expression (see 3) α₀.

6 CALCULATIONS FOR FRACTURE TOUGHNESS

12. (a) The fracture toughness of the specimen shall be calculated by the following formula:

\[K_{IC} = \frac{P_{\text{max}}}{B\sqrt{D}}Y_{\text{min}}^* \]

(5)

where \(Y_{\text{min}}^* \) is the critical dimensionless stress intensity value for the specimen, which is determined by the specimen geometry dimensions \(\alpha_0, \alpha_1 \) and \(\alpha_n \) only.

(b) \(Y_{\text{min}}^* \) shall be calculated by the following formula:

\[Y_{\text{min}}^* = u e^{v\alpha_1} \]

(6)
Table 2 Values of u and v

<table>
<thead>
<tr>
<th>α_B</th>
<th>0.440</th>
<th>0.480</th>
<th>0.520</th>
<th>0.560</th>
<th>0.600</th>
<th>0.640</th>
<th>0.680</th>
<th>0.720</th>
<th>0.760</th>
<th>0.800</th>
<th>0.840</th>
<th>0.880</th>
<th>0.920</th>
<th>0.960</th>
<th>1.000</th>
<th>1.040</th>
<th>1.080</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>0.2747</td>
<td>0.2752</td>
<td>0.2765</td>
<td>0.2779</td>
<td>0.2784</td>
<td>0.2793</td>
<td>0.2802</td>
<td>0.2812</td>
<td>0.2833</td>
<td>0.2856</td>
<td>0.2882</td>
<td>0.2918</td>
<td>0.2954</td>
<td>0.2994</td>
<td>0.3039</td>
<td>0.3100</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>0.7813</td>
<td>1.7820</td>
<td>1.7820</td>
<td>1.7833</td>
<td>1.7863</td>
<td>1.7893</td>
<td>1.7923</td>
<td>1.7967</td>
<td>1.7966</td>
<td>1.7977</td>
<td>1.7997</td>
<td>1.7997</td>
<td>1.7997</td>
<td>1.7997</td>
<td>1.7997</td>
<td>1.7997</td>
<td>1.7997</td>
</tr>
</tbody>
</table>
where \(u \) and \(v \) are constants determined by \(\alpha_a \) and \(\alpha_b \) only. Their values can be found in Table 2 if the dimensionless specimen geometrical parameters \(\alpha_a \) and \(\alpha_b \) are matching the values listed in the table. Otherwise linear interpolation should be used to calculate their values.

7 VALIDITY ANALYSIS

Specimen size

13. (a) Since no distinct validity criterion relating to specimen size can be given at this stage, a valid specimen size for a valid experimental fracture toughness test shall be obtained from the comparison of the \(K_{IC} \) values by different specimen diameters \(D \). The minimum valid \(D \) value \(D_{\text{min}} \) will be the specimen diameter of the CCNBD which generates \(K_{IC} \) values consistent to larger diameter specimens. At this stage, \(D_{\text{min}} \) can be estimated by the following equation:

\[
D_{\text{min}} = 8.88 + 1.4744 \left(\frac{K_{IC}}{\sigma_t} \right)^2
\]

(7)

where \(\sigma_t \) is the tensile strength of the rock sample. Generally for rock materials \(D_{\text{min}} = 75 \text{mm} \).

(b) There is no guarantee at the present that a fracture toughness value determined according to the present method accurately represents a material property. However current research has shown that the value obtained will be closer to the real material property value for more brittle rocks.

Use of the fracture toughness value obtained

14. The fracture toughness values obtained using this method are considered to be conservative for design analysis, provided that the defects analyzed are much smaller than structural dimensions and much larger than the characteristic microstructure of the material. If this is not the case, then such values should be used to assess the relative fracture resistance of different materials.

8 REPORTING OF RESULTS

15. All reports of results should contain the following information:
General data

16. Details of testing equipment and procedures employed. Reference may be made to the present method, describing the departures from recommended procedure and the reasons for these.

Test sample data

17. (a) The sample number, source location and rock type, and the nature and in situ orientation of any planes of anisotropy and weakness.
(b) Core axis with respect to in situ geology and structures, in the case of sub-samples, the direction of loading.
(c) Storage history and environment, water content and degree of saturation at the time of testing.
(d) A tabulation of specimen data related to the fracture toughness determination, including auxiliary parameters (see 18 below).
(e) For each sub-sample a summary tabulation of mean fracture toughness values ± standard deviation.
(f) Index properties obtained by other types of testing, and physical data such as specific gravity, grain size, porosity, and permeability, citing the method of determination for each.

Specimen data

18. For each specimen in the sample the information should contain the following:
(a) Specimen dimensions D, D, B, a, a, and h.
(b) The loading rate p, or the time to failure t.
(c) Maximum load P max.
(d) Critical SIF Y m.
(e) Fracture toughness value K IC.
Chapter 7

Theoretical Analysis of Mixed Mode Fracture Problems
for CSTBD and CCNBD Specimens

§7.1 Introduction

In this chapter, theoretical solutions for mixed mode fracture problems for the CSTBD and CCNBD specimens are presented using dislocation theory and complex stress function methods. It is believed that these results will provide a theoretical foundation for the development of these two specimens for mixed mode fracture research of rock materials.

§7.2 Background to the Research

Mixed Mode I and Mode II fracture situations can simply obtained by inclining the crack orientation [A-A] in the CSTBD or CCNBD geometry to the diametrical loading direction [Y] to a certain angle θ, as shown in Figure 7.1. By changing this inclined angle, combinations of different fracture intensities for the two different fracture modes can be obtained by which mixed mode fracture problems, such as the mixed mode fracture initiation, mixed mode crack propagation and mixed mode fracture strength locus for different materials can be examined.

The mixed mode fracture problems for the CSTBD specimen geometry has been investigated by Awaji & Sato (1978), Sanchez (1979) and Atkinson (1982) using dislocation and boundary collocation methods. They studied short crack cases by assuming the crack in the CSTBD specimen behaves like a crack in an infinite sheet [Whittaker, 1992] and therefore the higher order components describing crack behaviour and the interaction between the crack and the boundary can be neglected. As a result, this approximation will only be valid for crack cases
with length $\alpha < 0.6$ [Whittaker, 1992]. Based on our experience of using the CCNBD specimen for Mode I fracture toughness measurement, a CSTBD specimen with $\alpha < 0.6$ or a CCNBD with $\alpha_1 < 0.6$ will be difficult to machine and the upper limit of $(\alpha$ or $\alpha_1)_{\text{upper}} = 0.65-0.80$ are considered to be appropriate for practical applications. Therefore theoretical evaluations of the SIF for the mixed mode CSTBD geometry with a crack length $\alpha > 0.6$ has to be obtained.

The stepwise superimposition technique developed in Chapter 3 has been successfully used for the Mode I CSTBD SIF evaluations for any crack length, as shown in the last few chapters. By taking advantages of this technique, we develop three different evaluation methods in this chapter based on dislocation theory and complex stress function theories, which are believed to be able to calculate correctly the SIF values for the mixed mode CSTBD geometry with any crack lengths up to $\alpha = 0.95$ and with an error of less than 1% for each evaluation.

§7.3 Theoretical Analysis of the Problem and the Method of Solution

§7.3.1 Problem Analysis

As for the method given in Chapter 3, we consider a Brazilian disk, diameter D, radius R and thickness B, subjected to a pair of diametrical compressive loads P, with a central straight-through crack $2a$ inclined to the loading direction with an angle of θ (Figure 7.1). The problem can then be divided into the following three different problems and the solution can be obtained simply by summing up all the respective results.

Figure 7.2 Numerical Solution Procedure
1) A solid Brazilian disk subjected to a pair of diametrical loads \(P \) (Figure 7.2.a).

Boundary conditions:

\[
\begin{cases}
 P_s = 0 & r=R, \ 0 \leq \beta \leq 2\pi, \\
 P_n = \begin{cases} -P & r=R, \ \beta = \pm \frac{\pi}{2} \\
 0 & \text{others} \end{cases}
\end{cases}
\]

(7.1)

2) Case (1) will create a distributed normal and tangential stresses \(\sigma_N^{(0)} \) and \(\sigma_T^{(0)} \) along the pseudo crack part of the solid disk diameter \(0 < r < a, \ \beta = \pm \pi/2 - \theta \). By introducing a traction free crack in this part, the stresses should be cancelled. So the second problem will be an infinite region with a central crack \(2a \) subjected to internal distributed normal and tangential stresses \(-\sigma_N^{(0)} \) and \(-\sigma_T^{(0)} \) (Figure 7.2.b).

Boundary conditions:

\[
\begin{cases}
 \sigma_r - \sigma_\beta = \sigma_{r\beta} = 0 & r \to \infty \\
 \sigma_N = -\sigma_N^{(i)} & 0 < r < a, \ \beta = \pm \frac{\pi}{2} \\
 \sigma_T = -\sigma_T^{(i)} & 0 < r < a, \ \beta = \pm \frac{\pi}{2} \\
\end{cases}
\]

(7.2)

where \(i \) is the step number of the stepwise superimposition and at this step, \(i = 0 \).

3) Case (2) will produce stresses \(T_x^{(0)} \) and \(T_y^{(0)} \) along the pseudo circumference which is identical to the disc boundary. However the practical disk is traction force free along the boundary and therefore these stresses should be cancelled. Thus the third problem is also a solid Brazilian disk, identical to that in case (1), but subjected to boundary traction stresses instead (Figure 7.2.c).

Boundary condition:

\[
\begin{cases}
 T_x = -T_x^{(i)} & r = R, \ 0 < \beta < 2\pi \\
 T_y = -T_y^{(i)} & i = 0,1,2,3,\ldots \\
\end{cases}
\]

(7.3)

where \(i \) is the step number of the stepwise superimposition procedure, and at this stage, \(i = 0 \).

4) Under the action of the boundary traction stresses \(-T_x^{(0)} \) and \(-T_y^{(0)} \), the normal and tangential stresses \(\sigma_N^{(0)} \) and \(\sigma_T^{(0)} \) will be again set up \((\sigma_N^{(i)} < \sigma_N^{(0)} \) and \(\sigma_T^{(i)} < \sigma_T^{(0)}) \) along that part of the diameter \(0 < r < a, \ \beta = \pm \pi/2 - \theta \). As mentioned above, these need cancelling.
Hence the problem will come back to case (2) while changing the internal pressure from \(\sigma_N^{(0)} \) to \(\sigma_N^{(i)} \) and \(\sigma_T^{(0)} \) to \(\sigma_T^{(i)} \) and the step number will be \(i = 1 \).

5) Therefore the whole superimposition procedure carries on between case (2) and (3). Obviously the iteration is convergent due to the apparent condition:

\[
\begin{align*}
\sigma_N^{(i+1)} &< \sigma_N^{(0)} \\
\sigma_T^{(i+1)} &< \sigma_T^{(0)} \\
T_x^{(i+1)} &< T_x^{(0)} \\
T_y^{(i+1)} &< T_y^{(0)} \\
i & = 0, 1, 2, 3, \ldots
\end{align*}
\] (7.4)

6) The final SIF results can then be obtained by summing up all the results of the SIF values calculated from case (2) during the different steps of the whole iteration.

§7.3.2 Basic Theoretical Solutions for Case (1), (2) and (3) Problems

§7.3.2.1 Case (1) Problem (Figure 7.2.a)

The solutions for case (1) problem can be derived from the basic solutions of a solid disc subjected to an arbitrary boundary loading presented by Timoshenko (1970). As shown in Figure 7.3, we derived the normal and tangential stresses at any point \(M \) with \(r = s \) along the A-A diameter where the crack will lie within the range of \(-a \leq s \leq +a\) as given by the following equations:

\[
\begin{align*}
\sigma_N &= -\frac{2P\cos\phi_1}{\pi r_1} \sin^2(\theta + \phi_1) - \frac{2P\cos\phi_2}{\pi r_2} \sin^2(\theta - \phi_2) + \frac{2P}{\pi D} \\
\sigma_T &= -\frac{2P\cos\phi_1}{\pi r_1} \frac{\sin[2(\theta + \phi_1)]}{2} - \frac{2P\cos\phi_2}{\pi r_2} \frac{\sin[2(\theta - \phi_2)]}{2}
\end{align*}
\] (7.5)

where,

\[
\begin{align*}
r_1 &= \sqrt{s^2\sin^2\theta + (s\cos\theta - R)^2} \\
r_2 &= \sqrt{s^2\sin^2\theta + (s\cos\theta + R)^2} \\
\phi_1 &= \arcsin\frac{s\sin\theta}{r_1} \\
\phi_2 &= \arcsin\frac{s\sin\theta}{r_2}
\end{align*}
\] (7.6)
Figure 7.4 is the distribution of \(\sigma_N \) and \(\sigma_T \) along a diameter of the disc with inclined angle \(\theta \) to the loading direction varying from 0° to 90°. Uneven stress distributions are shown except for the special case of \(\theta = 0 \)°.

Atkinson (1982) used polynomial lines to fit the above normal and tangential stress distributions so that the solutions of the equations in his theoretical evaluation can be reached. Certainly this approximation will cause error in the final results especially when the stresses vary considerably. In our analysis, the diameters are divided into small segments and the stresses acting on the segments are stored in the form of arrays according their actual values instead of in the form of an approximate functional relation. Therefore no approximation for the distribution has been made and the results are believed to
§7.3.2.2 Case (2) Problem

The Case (2) problem is an infinite sheet with a central crack subjected to internal normal and tangential stresses σ_N^i and $\sigma_T^i \ [i = 0,1,2,3,....]$. Sneddon's results used in Chapter 3 can no longer be used as the internal loads are not evenly distributed. Therefore we seek solutions from dislocation and complex stress function methods. In the following sections, unless otherwise defined, variable s will be referred to as the local coordinate along the crack line with the origin point sitting at the central point of the crack (Figure 7.6 - 7.8 below). For instance, the coordinates of the tips of a crack with length $2a$ will then be $s = \pm a$.

1. Dislocation Method

One of the common methods to solve the problem of an infinite region with a central crack (two dimensional, mixed Mode I and Mode II) subjected to arbitrary surface normal and tangential stresses σ_N and σ_T is by assuming that the problem can be solved by introducing two distributional infinitesimal edge dislocation densities $f(\zeta)$ and $g(\zeta)$ ($\zeta \in [-a, +a]$) between the crack tips $-a$ and a, which simulate the normal and tangential behaviour of the crack respectively [Atkinson, 1972] [Awaji & Sato, 1978] [Ioakimidis, 1982]. For the basic theories and its application to macro-fracture mechanics of dislocation theory, the following references can be consulted, [Hull & Bacon, 1984] and [H. Liebowitz, 1971].

The origin of the x-y coordinates is set at the centre of the crack and the x-axis in the crack direction, as shown in Figure 7.5. Under the action of the continuous edge dislocations $f(\zeta)$ and $g(\zeta)$, the total Burgers vector [Hull, 1984] of dislocation intensities between ζ and $\zeta + d\zeta$ will be $b_1 f(\zeta) \cdot d\zeta$ and $b_1 g(\zeta) \cdot d\zeta$ respectively for the two different dislocations. The stresses they produce are $\sigma_1^i = f(\zeta) \cdot d\zeta/(x-\zeta)$ and $\sigma_II^i = g(\zeta) \cdot d\zeta/(x-\zeta)$, where, σ_1 or $\sigma_II = \frac{G b_1 \ (or \ G b_II)}{2\pi (1 - \nu)} \ (7.7)$
\(b_i \) and \(b_n \) are the material intrinsic Burgers vectors related to Mode I and Mode II fracture simulations respectively. \(G \) is the shear modulus and \(v \) is the Poisson's ratio. Then from the requirements of equilibrium of the dislocations, \(f(\zeta) \) and \(g(\zeta) \) should satisfy the following equations:

\[
\begin{align*}
\mathcal{E}_i \int_{-a}^{a} \frac{f(\zeta)}{x - \zeta} \, d\zeta + \sigma_N(x) &= 0 \\
\mathcal{E}_n \int_{-a}^{a} \frac{g(\zeta)}{x - \zeta} \, d\zeta + \sigma_f(x) &= 0
\end{align*}
\] (7.8)

These integration equations are of the Cauchy type and are solved by Muskhelishvili (1953a, 1953b) by the inverse theorem. The solutions of \(f(\zeta) \) and \(g(\zeta) \) can be expressed as follows:

\[
\begin{align*}
f(\zeta) &= \frac{1}{\mathcal{E} \pi^2 \sqrt{a^2 - \zeta^2}} \int_{-a}^{a} \frac{\sqrt{a^2 - \zeta^2}}{x - \zeta} \left[\begin{array}{c} \sigma_N(x) \\ \sigma_f(x) \end{array} \right] \, dx \\
g(\zeta) &= \frac{1}{\mathcal{E} \pi^2 \sqrt{a^2 - \zeta^2}} \int_{-a}^{a} \frac{\sqrt{a^2 - x^2}}{x - \zeta} \left[\begin{array}{c} \sigma_N(x) \\ \sigma_f(x) \end{array} \right] \, dx
\end{align*}
\] (7.9)

where for the reason of simplicity, \(\mathcal{E}_i \) and \(\mathcal{E}_n \) are expressed by \(\mathcal{E} \) only.

From Equation (7.9) it is very easy to see that the values of \(f(\zeta) \) and \(g(\zeta) \) will tend to infinity at the two extreme points \(\zeta = \pm a \) when the right hand side integration exists. To avoid this mathematical difficulty for numerical analysis we make a substitution of the dislocation density functions in the following forms:

\[
\begin{align*}
F_0(\omega) &= \frac{1}{\mathcal{E}_0 \pi^2 \sqrt{a^2 - \zeta^2}} \int_{-a}^{a} \frac{\sqrt{a^2 - \zeta^2}}{x - \zeta} \left[\begin{array}{c} \sigma_N(x) \\ \sigma_f(x) \end{array} \right] \, dx \\
G_0(\omega) &= \frac{1}{\mathcal{E}_0 \pi^2 \sqrt{a^2 - \zeta^2}} \int_{-a}^{a} \frac{\sqrt{a^2 - x^2}}{x - \zeta} \left[\begin{array}{c} \sigma_N(x) \\ \sigma_f(x) \end{array} \right] \, dx
\end{align*}
\] (7.10)

Take \(F_0(\zeta) \) and \(G_0(\zeta) \) as the new dislocation density functions and from the above relations we can obtain their expression as followed:

\[
\begin{align*}
\begin{bmatrix} F_0(\zeta) \\ G_0(\zeta) \end{bmatrix} &= \frac{1}{\mathcal{E}_0 \pi^2} \int_{-a}^{a} \sqrt{a^2 - \zeta^2} \left[\begin{array}{c} \sigma_N(x) \\ \sigma_f(x) \end{array} \right] \, dx
\end{align*}
\] (7.11)

After this substitution, \(F_0(\zeta) \) and \(G_0(\zeta) \) will then become finite continuous functions within the range of \(\zeta \in [-a, a] \). It will be proved later that this substitution will yield equivalent results.

For the reason of greater convenience, we make a transformation of variable \(\zeta \) into variable \(\phi \) by the relation of \(\zeta = a \cdot \sin \phi \), then functions \(F(\phi) = F_0(\zeta) = F_0(a \cdot \sin \phi) \) and \(G(\phi) = G_0(\zeta) = G_0(a \cdot \sin \phi) \) will become continuous functions with a constant variation range \(\phi \in [-\pi/2, +\pi/2] \) independent of the crack length. From the above equations we can write the expressions for \(F(\phi) \) and \(G(\phi) \) in the following equations:
For an edge dislocation with Burgers vector value b in the two dimensional condition, the stress field caused is presented by Hull & Bacon (1984) as follows. Suppose the dislocation is in the x direction, i.e., Mode II fracture simulation,

$$
\begin{align*}
\sigma_{xx} &= -\frac{x^2 + y^2}{(x^2 + y^2)^2} \\
\sigma_{yy} &= 3x^2 + y^2 \\
\sigma_{xy} &= 0
\end{align*}
$$

(7.13)

For the edge dislocation in y direction, simulating Mode I fracture, the stress field can be obtained simply by changing x to y, y to x and \mathcal{E}_h to \mathcal{E}_l in Equation (7.13).

Under the action of the dislocations suggested for the case (2) problem, the basic dislocation Burgers vector intensities are $b_1 \cdot f(\xi) \cdot d\xi$ and $b_II \cdot g(\xi) \cdot d\xi$ acting at the point $(\xi, 0)$. By replacing the dislocation value b_1 and b_II (implied in the \mathcal{E}_l and \mathcal{E}_h) in Equation (7.13) by these two dislocation intensities and changing x to $(x-a \cdot \sin \phi)$ in the equations, the resulting stress field at any arbitrary point (x, y) in the region can be obtained by summing up all the stress components caused by all the individual dislocations distributed over the crack line $[-a, +a]$, i.e.,

$$
\left[\begin{array}{c}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{xy}
\end{array} \right] - \sum_{\zeta=-a}^{a} \left[\begin{array}{c}
\sigma_{xx}^I \\
\sigma_{yy}^I \\
\sigma_{xy}^I
\end{array} \right] \cdot f(\xi) \cdot d\xi + \left[\begin{array}{c}
\sigma_{xx}^I \\
\sigma_{yy}^I \\
\sigma_{xy}^I
\end{array} \right] \cdot g(\xi) \cdot d\xi
$$

(7.14)

where $\sigma_{xx}^{I,II}$, $\sigma_{yy}^{I,II}$ and $\sigma_{xy}^{I,II}$ are the stress field caused by dislocation Burgers vectors b_1 and b_II in y (Mode I) and x (Mode II) directions acting at the crack point of $s=\xi$, $\xi \in [-a, +a]$ respectively, and their values can be calculated from Equation (7.13) above. Substitute Equation (7.9), (7.13) and $\zeta = a \cdot \sin \phi$ into Equation (7.14) we can finally reach the following calculation integrations:
As can be seen from these equations, the final expression is only concerned with the substituted version of the dislocation densities $F(\phi)$ and $G(\phi)$. The actual version of the dislocation density $f(\gamma)$ and $g(\gamma)$ originally defined do not have to be calculated. This eliminates the difficulties of expressing the infinity values of the $f(\zeta)$ and $g(\zeta)$ when $\zeta = \pm a$ during the numerical evaluation procedure.

For the superimposition procedure, during the i-th iteration step, the cancelling stresses acting on the crack line $[-a, +a]$ are σ_n^0 and σ_T^0 [$l = 0, 1, 2, 3, \ldots$]. Substituting the σ_n and σ_T in the above equations by σ_n^0 and σ_T^0 values the corresponding dislocation densities in the i-th iteration step $F(\phi)^0$ and $G(\phi)^0$ can be obtained from Equation (7.12) and then the stress field in the infinite region during this step σ_{xx}^0, σ_{yy}^0 and σ_{xy}^0 can be solved by Equation (7.15).

2. Complex Stress Function Method – I (Z1 Method)

For an infinite sheet containing a central crack subjected to a pair of arbitrary concentrated loads P and Q acting on its surface at point $(s,0)$ (Figure 7.6), Erdogan proposes a complex stress function to solve the stress and displacement filed in the region, which originated from Hilbert's problem of stresses in plates with straight cuts [Erdogan, 1962]. By defining two complex stress functions $\Phi(Z)$ and $\Omega(Z)$, the stress field in the region can then be expressed as:

\[
\begin{align*}
\sigma_{xx} + \sigma_{yy} &= 2\{ \Phi(Z) + \Phi'(Z) \} \\
\sigma_{yy} - \sigma_{xx} &= 2i \cdot \sigma_{xy} - 2\{ \frac{Z - Z'}{Z} \Phi'(Z) - \Phi(Z) + \Omega(Z) \}
\end{align*}
\]
Erdogan then proposed the complex stress function expressions for the problem shown in Figure 7.6 as followed:

\[
\begin{align*}
\Phi(Z) &= \frac{P - iQ}{4\pi i(Z - s)} \left[\sqrt{\frac{s^2 - a^2}{Z^2 - a^2}} + 1 \right] - \frac{\kappa - 1}{\kappa + 1} \frac{P - iQ}{4\pi i\sqrt{Z^2 - a^2}} \\
\Omega(Z) &= \frac{P - iQ}{4\pi i(Z - s)} \left[\sqrt{\frac{s^2 - a^2}{Z^2 - a^2}} - 1 \right] - \frac{\kappa - 1}{\kappa + 1} \frac{P - iQ}{4\pi i\sqrt{Z^2 - a^2}}
\end{align*}
\]

where \(Z = x + iy = r \cdot e^{i\phi}\) is the complex coordinate. \(x\) is a constant and it is defined as follows \(x = 3 - 4\cdot v\).

With the help of the following relationship between the coordinates (Figure 7.7):

\[
\begin{align*}
Z &= r e^{i\phi} \\
Z - a &= r_1 e^{i\phi_1} \\
Z + a &= r_2 e^{i\phi_2} \\
Z - s &= r_3 e^{i\phi_3}
\end{align*}
\]

the explicit expressions for \(\Phi'(Z), \Phi(Z)\) can be derived as Equation (7.19) and Equation (7.20). \(\Omega(Z)\) comes out in the same form as Equation (7.20) but the signs in lines 3 and 4 have to be changed from "+" to "-" and from "-" to "+". After obtaining these expressions, the stress field can therefore be determined. During the superimposition procedure, for the \(i\)-th iteration step of an infinite region with a central crack subjected to internal normal and tangential surface stress \(\sigma_N^{(0)}\) and \(\sigma_T^{(0)} [i = 0, 1, 2, 3, \ldots]\) within the crack range \(s \in [-a, +a]\), the crack line can be divided into \(J\) small segments and the stress field in the region caused by the stresses \(\sigma_N^{(0)}\) and \(\sigma_T^{(0)}\) acting on a segment \(ds [s, 0]\) is equal to that caused by the resulting concentrated loads \(P_j^{(0)}\) and \(Q_j^{(0)}\) acting at the central point of that segment, where \(P_j^{(0)} = (\sigma_N^{(0)})_j \cdot ds\) and \(Q_j^{(0)} = (\sigma_T^{(0)})_j \cdot ds\). The final stress field in the whole region can then be obtained by summing up all the stress components caused by the forces acting on each of the \(J\) crack segments, i.e. (Equation (7.21)),

\[
\Phi'(Z) = -\frac{P\sqrt{a^2 - s^2}}{4\pi r_3^2 \sqrt{\tau_1 \tau_2}} \cos \beta_1 + \beta_2 + 4\beta_3 \frac{1}{2} \\
+ i \cdot \frac{P\sqrt{a^2 - s^2}}{4\pi r_3^2 \sqrt{\tau_1 \tau_2}} \sin \beta_1 + \beta_2 + 4\beta_3 \frac{1}{2} \\
- \frac{Q\sqrt{a^2 - s^2}}{4\pi r_3^2 \sqrt{\tau_1 \tau_2}} \sin \beta_1 + \beta_2 + 4\beta_3 \frac{1}{2} \\
+ i \cdot \frac{Q\sqrt{a^2 - s^2}}{4\pi r_3^2 \sqrt{\tau_1 \tau_2}} \cos \beta_1 + \beta_2 + 4\beta_3 \frac{1}{2} \\
- \frac{P\sqrt{a^2 - s^2}}{4\pi r_3^2 \sqrt{\tau_1 \tau_2}} \cos \frac{2\beta - 3\beta_1 - 3\beta_2 - 2\beta_3}{2} \\
- i \cdot \frac{P\sqrt{a^2 - s^2}}{4\pi r_3^2 \sqrt{\tau_1 \tau_2}} \sin \frac{2\beta - 3\beta_1 - 3\beta_2 - 2\beta_3}{2} \\
- \frac{Q\sqrt{a^2 - s^2}}{4\pi r_3^2 \sqrt{\tau_1 \tau_2}} \cos \frac{2\beta - 3\beta_1 - 3\beta_2 - 2\beta_3}{2} \\
+ i \cdot \frac{Q\sqrt{a^2 - s^2}}{4\pi r_3^2 \sqrt{\tau_1 \tau_2}} \sin \frac{2\beta - 3\beta_1 - 3\beta_2 - 2\beta_3}{2} \\
+ \frac{P}{4\pi r_3^2} \sin 2\beta_3 + i \cdot \frac{P}{4\pi r_3^2} \cos 2\beta_3 \\
- \frac{Q}{4\pi r_3^2} \cos 2\beta_3 + i \cdot \frac{Q}{4\pi r_3^2} \sin 2\beta_3 \\
- \frac{\kappa - 1}{\kappa + 1} \frac{Pr}{4\pi \sqrt{(\tau_1 \tau_2)^3}} \sin \frac{2\beta - 3\beta_1 - 3\beta_2}{2} \\
+ i \cdot \frac{\kappa - 1}{\kappa + 1} \frac{Pr}{4\pi \sqrt{(\tau_1 \tau_2)^3}} \cos \frac{2\beta - 3\beta_1 - 3\beta_2}{2} \\
- \frac{\kappa - 1}{\kappa + 1} \frac{Qr}{4\pi \sqrt{(\tau_1 \tau_2)^3}} \cos \frac{2\beta - 3\beta_1 - 3\beta_2}{2} \\
+ i \cdot \frac{\kappa - 1}{\kappa + 1} \frac{Qr}{4\pi \sqrt{(\tau_1 \tau_2)^3}} \sin \frac{2\beta - 3\beta_1 - 3\beta_2}{2} \\
(7.19)
\]
\[
\Phi(Z) = \frac{P \sqrt{a^2 - s^2}}{4\pi r_3 \sqrt{r_1 r_2}} \cos \beta_1 + \beta_2 + 2\beta_3 + i \cdot \frac{P \sqrt{a^2 - s^2}}{4\pi r_3 \sqrt{r_1 r_2}} \sin \beta_1 + \beta_2 + 2\beta_3
\]
\[
+ \frac{Q \sqrt{a^2 - s^2}}{4\pi r_3 \sqrt{r_1 r_2}} \sin \beta_1 + \beta_2 + 2\beta_3 + i \cdot \frac{Q \sqrt{a^2 - s^2}}{4\pi r_3 \sqrt{r_1 r_2}} \cos \beta_1 + \beta_2 + 2\beta_3
\]
\[
- \frac{P}{4\pi r_3} \sin \beta_3 - i \cdot \frac{P}{4\pi r_3} \cos \beta_3
\]
\[
- \frac{Q}{4\pi r_3} \cos \beta_3 - i \cdot \frac{Q}{4\pi r_3} \sin \beta_3
\]
\[
+ \frac{k - 1}{\kappa + 1} \cdot \frac{P}{4\pi \sqrt{r_1 r_2}} \sin \beta_1 + \beta_2 + i \cdot \frac{k - 1}{\kappa + 1} \cdot \frac{P}{4\pi \sqrt{r_1 r_2}} \cos \beta_1 + \beta_2
\]
\[
+ \frac{k - 1}{\kappa + 1} \cdot \frac{P}{4\pi \sqrt{r_1 r_2}} \sin \beta_1 + \beta_2 + i \cdot \frac{k - 1}{\kappa + 1} \cdot \frac{P}{4\pi \sqrt{r_1 r_2}} \cos \beta_1 + \beta_2
\]

(7.20)

\[
\sigma_{xx}^{(i)} = \sum_{j=1}^{J} \left(\sigma_{xx}^{(i)} \right)_j + \left(\sigma_{xx}^{(i)} \right)_j \text{ for } j-th \text{ segment, Coordinate: } (s, 0), \text{ and}
\]

\[
\sigma_{yy}^{(i)} + \sigma_{xy}^{(i)} = P_j^{(i)} - Q_j^{(i)} ds, \quad Q_j^{(i)} = (\sigma_T^{(i)})_j ds
\]

(7.21)

where \((\sigma_{xx}^{(i)}), (\sigma_{yy}^{(i)}), (\sigma_{xy}^{(i)})\) are the stress fields caused by the resulting concentrated forces \(P_j^{(i)}\) and \(Q_j^{(i)}\) acting at the central point of the crack segment \(ds (s,0)\) during the \(i\)-th iteration step. They can be calculated by the above equations (7.16) to (7.20) while changing \(P\) and \(Q\) to \(P_j^{(i)}\) and \(Q_j^{(i)}\) respectively.

3 Complex Stress Function Method --II (Z2 Method)

Another complex stress function solution for an infinite region containing a central crack had been proposed by Irwin in 1957 which takes care of the situation as shown in Figure 7.8, i.e., infinite region with central crack opened by a pair of wedge forces \(P\) acting at point \((s,0)\). The complex stress function proposed for this case is:

\[
\Phi(Z) = \frac{P \sqrt{a^2 - s^2}}{\pi (Z - s) \sqrt{Z^2 - a^2}}
\]

(7.22)
Then the stress field caused will be

\[\begin{cases}
\sigma_{xx} = \Re \Phi(Z) - y \Im \Phi'(Z) \\
\sigma_{yy} = \Re \Phi(Z) + y \Im \Phi'(Z) \\
\sigma_{xy} = -y \Re \Phi'(Z)
\end{cases} \] (7.23)

where \(\Re \) and \(\Im \) means the real and the imaginary values of the complex functions respectively.

With the help of the relationship shown in Equation (7.18), the expressions for \(\Phi(Z) \) and \(\Phi'(Z) \) can be derived as followed:

\[
\Phi(Z) = -\frac{P \sqrt{a^2 - s^2}}{\pi r_3 \sqrt{r_1 r_2}} \left\{ \cos \frac{\beta_1 + \beta_2 + 2 \beta_3}{2} - i \sin \frac{\beta_1 + \beta_2 + 2 \beta_3}{2} \right\}
\]

(7.24)

and,

\[
\Phi'(Z) = -\frac{P \sqrt{a^2 - s^2}}{\pi r_3 \sqrt{r_1 r_2}} \left\{ \cos \frac{\beta_1 + \beta_2 + 4 \beta_3}{2} - i \sin \frac{\beta_1 + \beta_2 + 4 \beta_3}{2} \right\}
\] - \[
\frac{P r \sqrt{a^2 - s^2}}{\pi r_3 \sqrt{(r_1 r_2)^3}} \left\{ \cos \frac{2 \beta - 3 \beta_1 - 3 \beta_2 - 2 \beta_3}{2} + i \sin \frac{2 \beta - 3 \beta_1 - 3 \beta_2 - 2 \beta_3}{2} \right\}
\]

(7.25)

From these equations, the stress field can then be determined. During the superimposition procedure, the solutions for the case when the crack is subjected to distributed normal and tangential surface stresses \(\sigma_n(i) \) and \(\sigma_t(i) \) during the \(i \)-th step can be treated the same as for the \(Z_1 \) method as mentioned in the last section. As can be seen, the complex stress function proposed by Irwin is much simpler. Unfortunately it doesn't include the case when the acting force is tangential to the crack surface. Therefore while evaluating the stress field caused by the tangential surface stress \(\sigma_t \) acting on the crack surface, the solutions from Erdogan's complex functions have to be used, in other words, Erdogan's solutions will be used for evaluating the Mode II \(K_{II} \) SIF values in the \(Z_2 \) method.

After the stress field for case (2) problem during the \(i \)-th iteration step \((i=0,1,2,3,...) \) is obtained, the stress components along the pseudo disc boundary in this infinite region can then be calculated. The corresponding traction stresses \(T_x(i) \) and \(T_y(i) \) can then be obtained by Equation (3.17) described in Chapter 3.

During the superimposition procedure, the disc boundary is divided into \(N \) elements and the boundary traction stresses \(T_x \) and \(T_y \) are equated by \(N \) pairs of boundary concentrated forces \((P_x)_{n} \) and \((P_y)_{n} \) \((n=1,2,3,...,N)\) acting at the central points \((x_n,y_n)\) of each element. When the
divided elements are small enough, this equivalence is believed to be exact. Again these boundary forces need cancelling as the real disc is traction force free along its boundary. This is the case (3) problem to be discussed in the next section.

§7.3.2.3 Case (3) Problem

For the problem of a solid disc subjected to arbitrary boundary concentrated forces \(-P_x\) and \(-P_y\), the normal and tangential stress set up over the pseudo crack line \(s \in [-a, +a]\) can be calculated with the help of the basic solutions presented by Timoshenko (1970), who presented the stress components at any arbitrary point inside the disc when the disc boundary is subjected to one arbitrary concentrated load. When considering all the boundary traction forces acting along the whole disc circumference, we divide the whole disc boundary into \(N\) discrete elements. The boundary traction stresses are then divided into \(N\) pairs of boundary traction stresses in the \(X\) and \(Y\) directions \((T_x)_n\) and \((T_y)_n\) \([n = 1, 2, 3, \ldots, N]\) respectively. Then the action by these stresses are equated by \(N\) pairs of concentrated boundary forces \((P_x)_n\) and \((P_y)_n\) \((n = 1, 2, 3, \ldots, N)\) acting at the central points \((x_n, y_n)\) of each corresponding small segment. These equivalent concentrated forces are calculated by the following relations:

\[
\begin{align*}
(P_x)_n &= (T_x)_n \frac{l_n}{1} \\
(P_y)_n &= (T_y)_n \frac{l_n}{1}
\end{align*}
\]

where \(l_n\) is the length of the \(n\)-th boundary element.

The stress components of any point inside the disc will then be the resulting values superimposed from all the stresses caused by \(N\) pairs of the boundary forces \((P_x)_n\) and \((P_y)_n\) \((n = 1, 2, 3, \ldots, N)\). When the elements are small enough (\(N\) is big enough), this equivalence will be exact. Values of \((T_x)_n\) and \((T_y)_n\) can be calculated by the method discussed in the last section.

In the following derivation, the minus signs of each pair of boundary traction forces are omitted for clearance reasons in the expression. However we should bear in mind that these are cancelling forces and their directions should be opposite to those obtained directly from the case (2) calculation.

According to the nomenclature in Figure 7.9, we derived the normal and tangential stresses
\(\sigma_N \) and \(\sigma_T \) at any point \((s,0)\) along the pseudo crack line for this problem discussed above as follows:

\[
\begin{align*}
\sigma_N &= \sum_{n=1}^{N} \left[\frac{2(P_x)_n \cos \delta_1}{\pi r_1} + \frac{2(P_y)_n \sin \delta_1}{\pi r_1} \right] \sin^2 \delta_1 \\
&\quad + \sum_{n=1}^{N} \left[\frac{(P_x)_n \sin 2 \cdot \delta_2}{\pi D} + \frac{(P_y)_n \sin 2 \cdot \delta_3}{\pi D} \right] \\
\sigma_T &= \sum_{n=1}^{N} \left[\frac{(P_x)_n \cos \delta_1}{\pi r_1} + \frac{(P_y)_n \sin \delta_1}{\pi r_1} \right] \sin^2 \delta_1
\end{align*}
\] (7.27)

where,

\[
\begin{align*}
r_1 &= \sqrt{(x_n - s)^2 + y_n^2} \\
\sin \delta_1 &= \frac{y_n}{r_1}, \quad \cos \delta_1 = \frac{x_n - s}{r_1} \\
\delta_2 &= \arctan \frac{x_n}{y_n + R}, \quad \delta_3 = \arctan \frac{y_n}{x_n + R}
\end{align*}
\] (7.27a)

During the superimposition procedure, the \(N \) pairs of boundary forces acting at the \(n \)-th boundary element in the \(i \)-th step \((P_x^{(i)}),_n \) and \((P_y^{(i)}),_n \) \([i = 0,1,2,3,...]\) can be evaluated by the case (2) solutions and Equation (7.26). Therefore the normal and tangential stresses for the next iteration step \([(i+1)-th \text{ step}]\) acting on the crack line \([-a,+a]\) to cancel the stresses produced by these \(i \)-th step boundary forces \((P_x^{(i)}),_n \) and \((P_y^{(i)}),_n \) can then be calculated by Equation (7.27), where the corresponding changes of \(\sigma_N = \sigma_N^{(i+1)} \), \(\sigma_T = \sigma_T^{(i+1)} \), \((P_x)^+_n = (P_x^{(i)}),_n \) and \((P_y)^+_n = (P_y^{(i)}),_n \) should be made, i.e.,

\[
\begin{pmatrix}
\sigma_N^{(i+1)} \\
\sigma_T^{(i+1)}
\end{pmatrix} = \sum_{n=1}^{N} \begin{pmatrix}
(\sigma_N^{(i+1)})_n \\
(\sigma_T^{(i+1)})_n
\end{pmatrix}
\] (7.28)

Again these set-up stresses need to be cancelled. Therefore the calculation procedure goes back to the case (2) problem again. The whole stepwise iteration procedure continues until some desired degree of accuracy is reached.

§7.3.3 The Evaluations of the Stress Intensity Factors

During the above stepwise superimposition procedure, only case (2) involves the analysis of the crack fracture problem. Therefore it is only this case which should be taken into account when the SIF values \(K_1 \) and \(K_2 \) of the original problem are going to be evaluated.
Obviously the resulting K_i and K_{II} values will be the superimposed SIF values generated by each step of the iteration procedure, i.e.,

$$
\begin{bmatrix}
K_I \\
K_{II}
\end{bmatrix} = \sum_{i=0}^{I} \begin{bmatrix}
K_{I}^{(i)} \\
K_{II}^{(i)}
\end{bmatrix} \quad i\text{-th Step}
$$

(7.29)

where $K_{I}^{(0)}$ and $K_{II}^{(0)}$ are the SIF values produced at the i-th superimposition step and they should be calculated according to the normal and tangential stresses $\sigma_N^{(0)}(s)$ and $\sigma_T^{(0)}(s)$ [$i = 0,1,2,3,...$] acting on the crack line to cancel the stresses during the i-th iteration step.

The calculations of K_i and K_{II} are based on Sih's results. Sih (1962) presented the SIF calculations for an infinite region with a central crack subjected to internal distributed normal and tangential stresses. Combined with our case, the expressions will be:

$$_{\text{normal}} \begin{bmatrix} 1 \end{bmatrix} \cdot \int_{-a}^{a} \left[\sigma_N^{(i)}(s) \right] \cdot \frac{a + s}{a - s} \cdot ds$$

$$_{\text{tangential}} \begin{bmatrix} 1 \end{bmatrix} \cdot \int_{-a}^{a} \left[\sigma_T^{(i)}(s) \right] \cdot \frac{a + s}{a - s} \cdot ds$$

(7.30)

As the crack line has already been divided, therefore the above calculations can be evaluated numerically.

§7.3.4 Numerical Superimposition Procedure

As with the procedure used in Chapter 3, the crack line $2a$ and the disc boundary circumference are divided into J and N segments respectively. In the dislocation method, the range for the variable ϕ $[-\pi/2, +\pi/2]$ has to be divided into M segments as well so that the dislocation function $F(\phi)$ and $G(\phi)$ can be numerically expressed. Calculation begins with the evaluation of the normal and tangential stresses $(\sigma_N^{(0)})_{j=0}$ and $(\sigma_T^{(0)})_{j=0}$ for each of the crack elements j ($j = 1,2,...,J$) set up along the pseudo crack line $s \in [-a, +a]$ when the solid disc is loaded with a pair of diametrical loads P inclined to the pseudo crack direction with an angle θ (Figure 7.2.a). When the stresses $(\sigma_N^{(0)})_{j=0}$ and $(\sigma_T^{(0)})_{j=0}$ $(j = 1,2,...,J)$ are superimposed on the crack elements to cancel these induced stresses, the iteration procedure starts. At this stage the SIF values are calculated the first time, $K_{I}^{(0)}|_{i=0}$ and $K_{II}^{(0)}|_{i=0}$. For dislocation method, the program turns to calculate the dislocation densities $(F(\phi)^{(0)})_{m=0}$ and $(G(\phi)^{0})_{m=0}$ $(m = 1,2,...,M)$ values for the M ϕ elements. Then for all the methods, the boundary traction stresses $(T_x^{(0)})_{n=0}$ and $(T_y^{(0)})_{n=0}$ $(n = 1,2,...,N)$ on the N circumference elements produced by the cancelling surface stresses acting on the crack surface are calculated,
and thereafter so are the boundary concentrated forces \(\{P_x^i\}_{i=0} \) and \(\{P_y^i\}_{i=0} \) (\(n = 1, 2, 3, \ldots, N \)). By superimposing the traction forces \(\{-P_x^i\}_{i=0} \) and \(\{-P_y^i\}_{i=0} \) back on the N circumference elements, these boundary forces can be cancelled. This certainly will set up the normal and tangential stresses \(\{\sigma_n^i\}_{i=1} \) and \(\{\sigma_t^i\}_{i=1} \) \((j = 1, 2, \ldots, J) \) again on the J crack elements and these can be cancelled by superimposing \(\{-\sigma_n^i\}_{i=1} \) and \(\{-\sigma_t^i\}_{i=1} \) back on the crack surface. At this step the SIF values \(K_{1}^{(0)}|_{i=1} \) and \(K_{II}^{(0)}|_{i=1} \) are calculated a second time and the values are superimposed on \(K_{1}^{(0)}|_{i=0} \) and \(K_{II}^{(0)}|_{i=0} \) values calculated above to obtain an approximation of the true \(K_{I}^{T} \) and \(K_{II}^{T} \) values. Then as the iteration procedure goes on the superimposed SIF values approach the true ones, i.e.,

\[
\begin{align*}
K_{1,II}^{(i)} &= K_{1,II}^{(0)} + K_{1,II}^{(1)} + K_{1,II}^{(2)} + \cdots + K_{1,II}^{(i)} \\
K_{I,II}^{(i)} &= K_{I,II}^{T}, \quad \text{when } i = \infty
\end{align*}
\] (7.31)

The iteration procedure stops when the approximate SIF values satisfy the accuracy requirement, i.e.,

\[
\begin{align*}
&\text{When } |K_{I,II}^{(i)} - K_{I,II}^{(i-1)}| \leq ESP \\
&\text{then } K_{I,II} - K_{I,II}^{(i)}
\end{align*}
\]

where \(ESP \) is the accuracy requirement parameter. In the current evaluations, we set \(ESP = 0.008 \), which means that we have the confidence to say that the results only have an error of within 1%.

\textbf{§7.4 The Theoretical SIF for the Mixed Mode CSTBD Problem}

\textbf{§7.4.1 Dislocation Method}

\textbf{§7.4.1.1 \(F(\phi) \) and \(G(\phi) \)}

The dislocation density \(F(\phi) \) and \(G(\phi) \) for each iteration step were evaluated by Equation (7.12). One should pay attention to this equation while doing the integration as it is an infinite integrand. Care should be taken at the interrupted point of \(x^0 \) which makes the integrated function on the right hand side tend to infinity. \(x^0 \) is depending on the value of \(\phi \) with \((x^0-a\cdot\sin\phi) = 0 \). A small infinitesimal value \(\epsilon \) was introduced in our calculation to replace \(x^0 \) with \(x^0-\epsilon \) and \(x^0+\epsilon \) while the integration is passing this interrupted point and the final integrated value is obtained by taking the limit of \(\epsilon \) tending to zero.
Chapter 7: Mixed Mode Solutions

Figure 7.10 a) $F(\phi)$ and $G(\phi)$ for $\alpha=0.8, \theta=0^\circ$

Figure 7.10 b) $F(\phi)$ and $G(\phi)$ for $\alpha=0.8, \theta=5^\circ$
Figure 7.10 c) $F(\phi)$ and $G(\phi)$ for $\alpha = 0.8$, $\theta = 50^\circ$

Figure 7.10 d) $F(\phi)$ and $G(\phi)$ for $\alpha = 0.3$, $\theta = 5^\circ$
The $F(\phi)$ and $G(\phi)$ values will be dependent on the magnitude and the distribution form of the normal and the tangential stresses acting on the crack surface. For the particular case of the mixed mode CSTBD problem, they will vary according to the crack length $2a$ and the inclination angle between the crack orientation and the loading diametrical line θ, (Figure 7.1).

Figure 7.10 a) shows their values for $\theta = 0^\circ$ and $a = 0.8$. As can be seen, $G(\phi)$ is zero valued because the cancelling tangential stress σ_r is always zero in this case. The numbers shown in the figures means the iteration step number i and as can be seen the $F(\phi)$ value tend to zero as the iteration step tend to infinity, which illustrates the whole iteration procedure is convergent.

Figure 7.10 b) and c) show the $F(\phi)$ and $G(\phi)$ values for the same crack length $a = 0.8$ but different inclination angles $\theta = 5^\circ$ and $\theta = 50^\circ$, where the numbers are the iteration step number. As can be seen again, both the $F(\phi)$ and $G(\phi)$ values will tend to zero as the iteration step i tends to infinity which again proves the convergent conclusion above. Figure 7.10 d) shows the $F(\phi)$ and $G(\phi)$ variations for the case of $\theta = 5^\circ$ but the smaller crack length $a = 0.3$. As can be seen, much smaller values are obtained. Compared with the figures shown in a) and b) we know that:

1). Crack length $2a$ decides the magnitude of the $F(\phi)$ and $G(\phi)$ functions.
2). It is the inclination angle θ between the crack orientation and the loading direction which mainly determines the shape and the signs of the $F(\phi)$ and $G(\phi)$ functions.
3). As θ changes from 0° to 90°, the signs of $F(\phi)$ will change from positive to negative for $\phi < 0$ and from negative to positive for $\phi > 0$. That means that the edge dislocations for the Mode I fracture simulation will change from positive dislocations to negative dislocations. Therefore there should be a turning point of θ at which this simulated Mode I dislocations are zero. In other words, a certain angle should exist for θ where the fracture state at the crack tip for the mixed mode CSTBD problem will be just the pure Mode II fracture problem.

§7.4.1.2 T_x and T_y (Hence P_x and P_y)

The boundary traction stresses created by the cancelling stresses acting on the crack surface can be evaluated by Equation (7.15) and Equation (3.17). Some of the calculated examples are shown as follows. Figure 7.11 a) illustrates the T_x and T_y values along the disc circumference for $a = 0.8$, $\theta = 0^\circ$. The numbers again show the iteration step from which it can be seen that the force values will tend to zero as the step number increases. This demonstrate the convergent iteration procedure by means of the boundary forces. Figure 7.11 b) and c) illustrate the boundary stress variations for the same crack length $a = 0.8$ but for $\theta = 5^\circ$ and 50° respectively. Figure 7.11 d) gives the result for $\theta = 5^\circ$ but for a small crack length of $a = 0.3$. From these figures, the following two points can be drawn:
Figure 7.11 a) T_x and T_y for $\alpha = 0.8$, $\theta = 0^\circ$

Figure 7.11 b) T_x and T_y for $\alpha = 0.8$, $\theta = 5^\circ$
Figure 7.11 c) T_x and T_y for $\alpha = 0.8, \theta = 50^\circ$

Figure 7.11 d) T_x and T_y for $\alpha = 0.3, \theta = 5^\circ$
1) The boundary traction stresses T_x and T_y are symmetrical to the X and Y axes while $\theta = 0^\circ$, but are unsymmetrical generally when $\theta \neq 0^\circ$.

2) For small crack lengths, the variations of T_x and T_y are much less severe when compared with the long crack cases.

After the T_x and T_y are obtained, P_x and P_y can then be calculated from Equation (7.26).

§7.4.1.3 σ_N and σ_T

Figure 7.12 a) - d) show the σ_N and σ_T values for different iteration step number i (shown as the numbers in the figures) for a) $\alpha = 0.8$, $\theta = 0^\circ$, b) $\alpha = 0.8$, $\theta = 5^\circ$ c) $\alpha = 0.8$, $\theta = 50^\circ$ and d) $\alpha = 0.3$, $\theta = 5^\circ$. As clearly shown, the iteration steps needed for the σ_N and σ_T to be convergent to zero are much less for the smaller crack case compared with those for the longer crack case. Generally the stress variation patterns of σ_N and σ_T will no longer keep their original forms as can be seen from these four figures.

§7.4.2 Complex Stress Function Method -- I (Zl Method)

While using the complex stress function method I to do the evaluation, the disc circumference traction stresses T_x and T_y (and hence P_x and P_y) can be calculated directly from Equations (7.16) - (7.21) from the crack surface cancelling stresses σ_n and σ_T as shown in section §7.3.2.2. Similar variation patterns to those by the dislocation method are shown but there is some difference in the magnitude. This difference can be clearly shown when these boundary traction are used to calculate the next step crack surface normal and tangential stresses. Figure 7.13 a) - b) show the σ_N and σ_T values calculated by this method for $\alpha = 0.8$ but $\theta = 0^\circ$ and 50° respectively. Compared with those calculated by dislocation method as shown in Figure 7.12, it can be seen that at the crack tip region the "returned" normal stress σ_N has changed sign from its original sign. Even though the iteration procedure can still be convergent, it is suggested that the results will not be able to represent correctly the true fracture status of the crack in the CSTBD as the stress situations in the crack tip region are wrongly expressed. Therefore the K_I results evaluated this way are considered to be inexact. This point suggests that Erdogan's proposed complex stress function $\Phi(Z)$ and $\Omega(Z)$ may not be perfect. There may be some unimportant terms neglected in the equations in other situations which turn out to be important in our case.

However the above arguments only hold for the normal stress acting on the crack surface σ_N, in other words, only affecting the K_I value evaluations. For the tangential stress σ_T acting on the surface, it appears to yield similar results compared with the dislocation method (Figure 7.12 c and Figure 7.13 b). Therefore for the K_{II} evaluations, the results will be valid.
Figure 7.12 a) σ_N and σ_T for $\alpha=0.8$, $\theta=0^\circ$

Figure 7.12 b) σ_N and σ_T for $\alpha=0.8$, $\theta=5^\circ$
Figure 7.12 c) σ_N and σ_T for $\alpha = 0.8$, $\theta = 50^\circ$

Figure 7.12 d) σ_N and σ_T for $\alpha = 0.3$, $\theta = 5^\circ$
Figure 7.13 a) σ_N and σ_T for $\alpha=0.8$, $\theta=0^\circ$ (Z1)

Figure 7.13 c) σ_N and σ_T for $\alpha=0.8$, $\theta=50^\circ$ (Z1)
§7.4.3 Complex Stress Function Method -- II (Z2 Method)

As discussed above, the K_1 values calculated by the complex stress function method I are not exact, another complex stress function had to be sought to express the action of normal force on the crack surface. Therefore a complex stress function proposed by Irwin for the Mode I fracture problem is introduced. The T_x and T_y (and hence P_x and P_y) values can be calculated from the cancelling stresses acting on the crack surface directly from Equation (7.22) - (7.25) shown in section §7.3.2.2. Then the normal and tangential stresses on the crack surface due to the boundary cancelling forces can be obtained from the equations shown in section §7.3.2.3. Very encouragingly, the T_x, T_y, σ_n, σ_t and K_1 values calculated by this method yield exactly the same results as those calculated by the dislocation method, i.e., their variations are the same as those shown in Figure 7.11 and Figure 7.12.

§7.4.4 Comments on the SIF Evaluations for Mixed Mode CSTBD Fracture Problem

As the concluding remarks for this section, the following three points are made.

1). It is suggested at this stage that the K_1 value evaluated by the dislocation method and complex stress function method II be the exact solution.

2). Unfortunately a third tool to solve the Mode II SIF in the mixed mode CSTBD fracture problem could not be found at this stage. Therefore under the condition of no further proof, the K_{II} values calculated both by the dislocation method and the complex stress function methods have to be accepted even though there exist some differences. Numerical and experimental calibrations are recommended.

3). One important point should be made which is the crack closure problem in the mixed mode CSTBD fracture problem. As for a crack with ideal zero width, when θ is greater than a certain angle the K_1 value will change from positive to negative, i.e., the crack tip will be subjected to compressive Mode I loading instead of the splitting one. In this case the crack will close. This closure certainly will create extra normal forces on the crack surface and shearing resistance will come to exist when Mode II fracture loading is applied. This will then affect the K_1 and K_{II} values. However in practical applications, the CSTBD is always machined with the central crack having a certain width. In this case it is suggested that the crack surfaces can not close under compressive Mode I fracture loading under the condition of LEFM. The specimen will still behave in the LEFM range before the disc fails. Therefore the above evaluations can still be regarded as valid.
§7.5 The Calculated SIF (K_I and K_{II}) Results

The following diagrams show the K_I and K_{II} results calculated by the above three evaluation methods. They are expressed in the forms of $f_I(\alpha, \theta)$, $f_{II}(\alpha, \theta)$, $Y_I(\alpha, \theta)$ and $Y_{II}(\alpha, \theta)$ variations which are defined as followed:

$$f_{I,II}(\alpha, \theta) = \frac{K_{I,II}}{K_0}$$

Where $K_{I,II} = \text{Calculated SIF Values}$

$$K_0 = \frac{P}{B\sqrt{R}} \sqrt{\frac{\alpha}{\pi}}$$

and,

$$Y_{I,II}(\alpha, \theta) = f_{I,II}(\alpha, \theta) \sqrt{\frac{\alpha}{\pi}}$$

(7.34)

(7.35)

The cases of crack length $\alpha = 0.1, 0.3, 0.5, 0.7, 0.8, 0.9$ for different crack inclination angles θ are shown together in the Figure 7.14. As can be seen, for the small crack cases ($\alpha \leq 0.5$) the f_I and f_{II} results by the three methods basically agree well. If these results are compared with those obtained by Awaji and Sato (1978) and by Atkinson (1982) for short crack cases, it can then be concluded that the current evaluated K_I and K_{II} results coincide with theirs for the small crack case as the error in their evaluation results made by the approximation can really be neglected.

As the crack length tends larger, $\alpha > 0.5$, the K_{II} values by the dislocation method (marked d in the figure) and the complex stress function methods (marked with $Z1$ and $Z2$ respectively) will tend to diverge, and when $\alpha = 0.9$ this difference will be around 30%. However for K_I values, the same results by these three methods will hold up to a crack length of $\alpha = 0.7$. After that the dislocation method (d) and the complex stress function method II ($Z2$) will still yield the same K_I results for any crack length (less than 2% difference for large values) while the K_I value by the complex stress function method I ($Z1$) will differ more and more from those obtained by d and $Z2$ methods as the crack length increases.

From these findings, it is suggested that the K_I value for mixed mode CSTBD fracture problem should adopt the results by the d or the $Z2$ method, and the results by $Z1$ method
Chapter 7: Mixed Mode Solutions

should be discarded. However for K_{II} values, it is still not possible to conclude which one
will yield more precise results for the problem at this stage. A third evaluation method
should be sought or a numerical or experimental method should be used to help to judge the
correctness of the evaluation. For the sake of clearer illustration, $f_1(\alpha, \theta)$ and $f_{II}(\alpha, \theta)$ by d
and $Z2$ methods are displayed in Figure 7.15 a) and b) respectively for all the crack lengths.

As can be seen again, the $f_1(\alpha, \theta)$ values shown in these two figures are generally the same.
Only less than 2\% difference is shown for the cases of $\alpha = 0.9$ and $\theta = 70^\circ \sim 90^\circ$. $f_1(\alpha, \theta)$,
$f_{II}(\alpha, \theta)$ can also be expressed in forms of $Y_1(\alpha, \theta)$ and $Y_{II}(\alpha, \theta)$ which was defined in Equation
(7.35). These transformations will make easier the connection of SIF values to specimen
compliance (for the SIF evaluation of the CCNBD specimen) and also make simpler the
calculation of fracture toughness value K_{IC} or K_{IC} in practical usage. Figure 7.16 a) and b)
clearly illustrate the variations of $Y_1(\alpha, \theta)$ and $Y_{II}(\alpha, \theta)$ with α and θ by the dislocation method,
where the variation pattern for different α and θ can be easily obtained. The similar diagrams
of $Y_1(\alpha, \theta)$ and $Y_{II}(\alpha, \theta)$ by $Z2$ method are displayed in Figure 7.16 c) and d). The three
dimensional variation diagram of them is shown in Figure 7.17.

Based on the results shown above, it is known that the CSTBD specimen can be taken as
an ideal specimen to be used to study mixed mode fracture problems. By only fixing the
different inclination angle θ between the crack orientation and the loading direction (which is
an easy job), different combinations of Mode I and Mode II fracture intensities can be easily
obtained and therefore the mixed mode fracture problem can be investigated.

If we compare the $Y_1(\alpha, \theta)$ values in Figure 7.16 a) for the case of $\theta = 0^\circ$ with the results
evaluated in Chapter 3 for pure Mode I SIF values $Y(\alpha)$ of the CSTBD specimen, we will
realize that their difference over the whole crack length range is negligible (less than $\pm 1.1\%$).
This again substantiates the correctness of both the evaluations in Chapter 3 and in this chapter.
In fact, the evaluation in Chapter 3 is just one of the special cases included in the general
solutions discussed here.
Figure 7.14 $f_1(\alpha, \theta)$ and $f_2(\alpha, \theta)$ for mixed mode CSTBD problem by d, Z1 and Z2 Methods
Figure 7.15 a) $f_1(\alpha, \theta)$ and $f_\Pi(\alpha, \theta)$ for mixed mode CSTBD problem by dislocation Method

Figure 7.15 b) $f_1(\alpha, \theta)$ and $f_\Pi(\alpha, \theta)$ for mixed mode CSTBD problem by Z2 Method
Figure 7.16 a) $Y_I(\alpha, \theta)$ for mixed mode CSTBD problem by Dislocation method

Figure 7.16 b) $Y_{II}(\alpha, \theta)$ for mixed mode CSTBD problem by Dislocation method
Figure 7.16 c) $Y_1(\alpha, \theta)$ for mixed mode CSTBD problem by Z2 method

Figure 7.16 d) $Y_\alpha(\alpha, \theta)$ for mixed mode CSTBD problem by Z2 method
Figure 7.17 \(Y_1(\alpha, \theta) \) and \(Y_{11}(\alpha, \theta) \) for Mixed Mode CSTBD Fracture Problem by Dislocation Method
§7.6 The Pure Mode II Fracture Problem for The CSTBD Specimen

As can be seen from the K_I and K_{II} results shown above, for any crack length, the Mode I SIF K_I will start from a positive maximum when $\theta = 0^\circ$ (Split Mode I), decrease, become negative (Compression Mode I) and then reach the negative maximum as θ changes from 0° to 90°. Therefore there should be a certain angle for each crack length $\alpha (\alpha/R)$ where $K_I = 0$, i.e., the crack tips will be subjected to pure Mode II fracture loading K_{II} only. Figure 7.18 shows the relationship between this pure Mode II critical crack length α_{II} and the critical crack inclination angle θ_{II}, where the solid line is our evaluation result. Some discrete evaluation results by Atkinson (1982), Sanchez (1979) and Awaji and Sato (1978) for crack length $\alpha \leq 0.6$ are also shown in the figure.

By making use of this relationship, the pure Mode II fracture toughness K_{IIc} can be measured if these critical values α_{II} and θ_{II} are used for the CSTBD test fixture.

Figure 7.19 gives the pure Mode II SIF values Y_{II} for this situation. Again the results for $\alpha \leq 0.6$ by Awaji and Sato are also shown and the good agreement is clearly illustrated. For practical usage, 8 order polynomial lines are best fitted to these two lines and the relations are shown in the following functional forms:

\[
\begin{align*}
\theta_{II} &= 30.4406 - 4.6734 \alpha - 17.6741 \alpha^2 - 9.6827 \alpha^3 + 3.9819 \alpha^4 \\
&\quad + 12.9163 \alpha^5 - 13.3222 \alpha^6 + 12.8001 \alpha^7 - 13.1239 \alpha^8 \\
Y_{II} &= 0.06462 + 2.8956 \alpha - 6.8663 \alpha^2 + 9.8566 \alpha^3 - 0.4455 \alpha^4 - 1.0494 \alpha^5 \\
&\quad - 13.2492 \alpha^6 + 9.0783 \alpha^7 - 10.7354 \alpha^8 + 28.4775 \alpha^9 - 6.3197 \alpha^{10} \\
&\quad + 10.6626 \alpha^{11} - 10.0268 \alpha^{12} - 34.2997 \alpha^{13} + 1.7292 \alpha^{14} + 25.2216 \alpha^{15}
\end{align*}
\] (7.36)
The calculations of \(\theta \) and \(Y \) by these two relations will yield the results within 1% error. With the help of this calculation, the critical fixture for any pure Mode II fracture situation of the CSTBD specimen with any crack length can be easily obtained.

§7.7 Mixed Mode Fracture Strength Locus

Fracture strength locus is one of the main subjects in mixed mode fracture research [Whittaker, 1992]. A large number of expressions have been proposed to describe this fracture criteria relationship between the SIF values, \(K_I \) and \(K_{II} \), and the fracture toughness, \(K_{IC} \) and \(K_{IIc} \), on the foundation of the fracture theories (Maximum Stress Theory -- \(\sigma \) Criterion, Maximum Strain Energy Release Rate Theory -- \(G \) Criterion or Minimum Strain Energy Density Theory -- \(S \) Criterion) [Whittaker, 1992][9] or simply on the basis of experimental results [10][9]. However they can be summarized in the following form:

\[
\left(\frac{K_I}{K_{IC}} \right)^{k_s} + k_c \left(\frac{K_{II}}{K_{IIc}} \right)^{k_s} + \left(\frac{K_{IIc}}{K_{IIc}} \right)^{k_s} = 1
\]

(7.37)

where \(k_s \) is within the range of 1.6 ~ 2.0 [10], \(k_c \) is the interaction coefficient between the two fracture modes and \(K_{IC} \) and \(K_{IIc} \) are the Mode I and Mode II fracture toughness. It has been proved experimentally that \(K_{IIc} \) is normally around 0% ~ 20% larger than \(K_{IIc} \) value [159][10][9]. If we substitute \(K_{IIc} = k_m \cdot K_{IC} \) (\(k_m = 1.0 \sim 1.2 \)) and the relation of \(K_{IIc} = Y_{IIc} \cdot P/(B \cdot \sqrt{R}) \) into the above relation we will have an alternative form for Equation (7.37) as followed:

\[
Y_{MX} = Y_I^{k_s} + k_c \frac{Y_{IIc}}{k_m} + \left(\frac{Y_{II}}{k_m} \right)^{k_s} + \left(\frac{P}{B \sqrt{R}} \cdot K_{IC} \right)^{k_s}
\]

(7.38)

where \(Y_{MX} \) can be viewed as the mixed mode SIF value.

Therefore the criteria of fracture will turn to the mixed SIF value \(Y_{MX} \) reaching a certain limit which is connected to the material fracture toughness as \([P \cdot K_{IC}/(B \cdot \sqrt{D})]^{k_s}\). \(Y_{MX} \) will behave like a single SIF and obviously its value will mainly be determined by \(Y_I \) and \(Y_{II} \) values and will be affected by the coefficients \(k_s \) and \(k_m \). Figure 7.20 a), b), c) and d) are some of the examples of calculated \(Y_{MX} \) based on different coefficients for different crack inclination angles.

In practical application, both the theoretical solutions and experiments are suggested to decide the fracture strength locus of a material. The usage of the CSTBD specimen makes it easier to have different combination of \(K_I \) and \(K_{II} \) fracture intensities and therefore the fracture strength locus can be easily determined by limited experiments.
Figure 7.20 a) Y_{mix} for $k_x=2.0$, $k_m=1.0$ and $k_z=0.0$

Figure 7.20 b) Y_{mix} for $k_x=2.0$, $k_m=1.2$ and $k_z=0.0$
Figure 7.20 c) Y_{mix} for $k_s = 1.6$, $k_m = 1.0$ and $k_c = 0.0$

Figure 7.20 d) Y_{mix} for $k_s = 2.0$, $k_m = 1.0$ and $k_c = 0.5$
§7.8 The Usage of CCNBD Specimen in Mixed Mode Fracture Studies

The good features of the chevron notched crack specimen, especially the CCNBD, appearing in the fracture studies inspire us to introduce the CCNBD for mixed mode fracture studies. As discussed in the last section, the dominated SIF in determining the fracture will be the mixed SIF Y_{mix} value. Therefore for the CCNBD geometry, it is the change of this Y_{mix} which will decide the critical state of the specimen.

However attention should be paid that in the CCNBD specimen, the propagation of the crack within the chevron part of the specimen is constraint by the notch and cannot behave as freely as the crack front in the CSTBD specimen (where the crack front is not subjected to any constraint and is free to propagate in any direction according to the different combinations of the Mode I and Mode II fracture intensities). In other words, the crack has to propagate in the chevron notch direction within the chevron part of the crack in the CCNBD specimen.

The reason is geometrically obviously as the new crack surface created when the crack is propagating in the chevron notch direction within the chevron part is always less than that created by the propagation in any other direction and therefore the energy needed is certainly a minimum from Griffith's energy theory. As a result, the σ-, G- and S- mixed mode fracture propagation theories are considered to be valid for the mixed mode CCNBD fracture problem only after the crack propagation front reaches the un-notched part of the specimen.

Based on the above arguments, in chevron crack propagation analysis, if we suggest that the total energy release rate or energy resistance G of the constrained propagation is the sum of the energy release rate or energy resistance for each fracture mode G_I and G_{II}, and that the crack will propagate when the total energy release rate reaches a certain limit G_C, i.e.,

$$G = G_I + G_{II} = G_C \quad (7.39)$$

then within the range of LEFM, from the relation between $G_{I,II}$ and $K_{I,II}$ as shown in Equation (2.11), we will soon reach the same crack propagation criteria as Equation (7.37) but with $k_\sigma=2.0$ and $k_G=0.0$ in particular.

What is needed to be determined are the variations of SIF Y_{mix}^{*} for the CCNBD specimen as the crack propagates because this will decide the critical situation of the specimen as discussed above. As mentioned in Chapter 3, the equations for the CCNBD SIF Y^* evaluations are valid for any fracture mode or mixed mode condition. Therefore if we substitute Y_I, Y_{II} and Y_{mix} for the CSTBD specimens determined in the last few sections into the evaluation formulas listed in Chapter 3, we will then get the variations of the Mode I, Mode II and mixed mode SIF values, Y^*_I, Y^*_{II} and Y^*_{mix}, for the mixed mode CCNBD specimen. Based on the
experience of pure **Mode I** fracture analysis, we suggest the usage of Bluhm's slice model to simulate the behaviour of the CCNBD specimen under the mixed mode fracture condition. Therefore Equation (3.53) is used for the Y^*_I, Y^*_II and Y^*_mix evaluations.

Figure 7.21 a) and b) are just two of the examples of the variations of Y^*_I, Y^*_II and Y^*_mix for the CCNBD specimen as the crack propagates for different crack inclination angles. One should bear in mind that it is the variation of Y^*_mix which will decides the critical state of the specimen. Again the behaviour of chevron crack is shown and therefore an unproven

![Figure 7.21 a) Y_I, Y_II and Y_mix for k_m = 2.0, k_m = 1.0 and k_c = 0.0](image_url)
suggestion can be made that the CCNBD specimen may still be suitable for use as a mixed mode fracture toughness testing specimen and the good features of the chevron cracked specimen will still hold. Certainly the point needs investigating in more detail.

However one particular point should be taken care of for the CCNBD specimen if we consider the crack closure problem when the crack propagates. As in the CCNBD specimen, the initial part of the chevron crack behaves more or less like a pre-cracking procedure. Therefore the crack can be viewed as being with zero width and when the Mode I SIF is negative or the fracture force is compressive, the crack will close. In this case the evaluations based on no crack closure will be no longer valid. Therefore in order to keep the validity of

Figure 7.21 b) Y^*_I, Y^*_II and Y^*_mix for $k_u = 2.0$, $k_m = 1.2$ and $k_c = 0.0$
the results, the crack inclination angle θ should be kept within a certain value to ensure positive K_I values or split Mode I fracture condition. This value can be decided from Figure 7.18 for $K_I > 0$ according to different crack lengths where the upper limit of the θ value is shown as the solid line. In the two cases shown in Figure 7.21 for $\alpha = 0.65$ and 0.80 respectively the two upper limits of θ to keep the validity of the evaluations within the chevron part of the crack will be 17.3° and 13°.

However if the CCNBD is used for practical mixed mode testing to determine the fracture strength locus, the Y_{mix} cannot be evaluated beforehand as the coefficients k_u, k_m and k_c are unknown. In this case the theoretical values of $k_u = 2.0$, $k_m = 1.0$ and $k_c = 0.0$ can always be suggested.

Much more work has to be done in order to apply the CCNBD specimen to mixed mode fracture testing. The first important thing is to determine the critical state and its corresponding critical K_I (Y_I) and K_{II} (Y_{II}) values for the specimens of different geometrical dimensions. Numerical or experimental validations for the theoretical evaluations are also needed. There is certainly much more and complicated work required compared with the pure Mode I CCNBD problem. As the period of the current research is limited, it has not been possible to complete these investigation at the moment.

§7.9 Conclusions and Suggestions for further Research

The following conclusions can be drawn from the above sections:

1) The superimposition technique developed in Chapter 3 to solve the crack problem for the CSTBD specimen has been successfully used to solve the mixed mode fracture problem. As a matter of fact, the method is applicable to any crack problem.

2) The long crack cases for $\alpha > 0.6$ for the mixed mode CSTBD fracture problem has been solved using dislocation and complex stress function methods by the technique mentioned in (1). The error in the solution is believed to be within 1%.

3) The CSTBD and CCNBD specimen geometries are believed to be ideal specimens for mixed mode fracture experimental studies of rock materials, fracture toughness (K_{IC} and K_{IIc}) measurement, material fracture strength locus testing and crack propagation investigation are some examples. It is very easy to obtain the different combinations of the Mode I and Mode II fracture intensities and the loading fixture will still remain as simple as for the Brazilian disc test.

4) The pure Mode II fracture condition can be easily realised in the CSTBD specimen geometry by fixing the crack inclination angle to the loading direction with a fixed value. The loading fixture will still remain very simple.
5) The CCNBD specimen will keep the good features of the chevron cracked specimen when used in mixed mode fracture studies.

At the same time, some further researches are strongly suggested:

1) Numerical or experimental validations are needed to validate the above theoretical results.

2) Much more work is needed to investigate the applications of the CSTBD and CCNBD specimens for mixed mode fracture studies.

3) Consideration should be given to drawing a draft for the pure Mode II fracture toughness K_{IC} and mixed mode fracture test for rock materials by the CSTBD and CCNBD specimen geometries.
§8.1 Introduction

In rock excavation engineering, rock cutting performance prediction plays an important role in cutting tool and machine design. Many researches have been carried out on the connections between the cutting parameters (i.e. forces and energy consumed), and the rocks conventional properties (i.e. compressive and tensile strength). However the cutting models have always been theoretically idealized.

Evans (1962), on the basis of investigations into the penetration of wedges into coal, proposed that the breaking of coal is essentially a tensile failure and suggested a tensile theory for coal cutting. The cutting force, F_c, for a symmetrical wedge penetrating into a rectangular buttock of coal can be calculated by the following formula:

$$F_c = \frac{2\cdot \sigma_t \cdot h \cdot \sin(\Theta + \phi)}{1 - \sin \Theta}$$ \hspace{1cm} (8.1)

where σ_t -- coal tensile strength (MPa),
h -- cutting depth (m),
Θ -- half wedge angle and,
ϕ -- the friction angle between the wedge and the coal.

This formula was derived based on the following three assumptions:
1) The failure surface is a circular arc (two dimensional),
2) the tensile stress induced by the wedging is uniformly distributed over the failure surface, and failure occurs when the tensile stress exceeds the tensile strength of the coal, and
3) at the tip of the wedge, the arc is tangential to the bisector of the wedge angle.

Roxborough extended the theory to rock cutting in 1973 with a similar model and calculation formula and provided experimental validation of his conclusions. It has been concluded that the general principles fundamental to coal cutting mechanics and the design of efficient coal cutting systems might be equally tenable in rock cutting engineering.

Late in the 1970s, Evans introduced a three dimensional model based on the same tensile failure assumptions for the point attack cutting geometry and some evaluation formulas were produced. However, the above mentioned two dimensional theory is still popular because of its simplicity and acceptable closeness between the predicted and practical values.
Another cutting model was proposed by Merchant in 1945 for metal cutting and has also been adopted for rock cutting. This theory is based on the following different assumptions:

1) Rock failure under drag tool cutting is a shearing problem, and the shear failure surface is a straight line (two dimensional), or plane (three dimensional),

2) the shear stress is uniformly distributed over the failure line or plane, shear failure occurs when the shear stress exceeds the material's shear strength, and the failure line or plane is decided by the criteria where the cutting force needed is a minimum.

The corresponding calculation formula based on this theory is therefore given as:

\[F_C = 2 \cdot \sigma_s \cdot h \cdot \Omega(\beta, \phi) \] \hspace{1cm} (8.2)

where \(\sigma_s \) -- is the shear strength of the rock,

\(h \) -- cutting depth and,

\(\Omega \) -- is a function determined by the cutting alignment angles.

Nishimatsu in 1972 derived some estimation formula for rock cutting and normal forces based on the same model assumptions as that of Merchant's theory, but taking into account the compressive and tensile stress induced by the tool's cutting and normal action and using the Mohr's strength criteria. Deliac suggested a cutting model based on mixed mode fracture theory in 1990. In addition, Hardy (1973), Ingraffea (1986) and Saouma (1985) have also used the finite element method to simulate the cutting procedure as well.

However all the existing theories approach the problem by assuming that rock is an ideal solid material, i.e., ignoring the rock inhomogeneities, anisotropy, discontinuities and other random influences. Unfortunately the aspects neglected are just the dominating cases in practical engineering. It is this latter point that suggests the introduction of probabilistic fracture mechanics for rock cutting mechanics as it will take into account all the different rock random characteristics and approach the problem from a statistical point of view.

All large solids can be considered to consist of many different smaller parts, called consistent elements, which can behave in the same or different way according to their mineral content and discontinuity size, orientation and distribution. Obviously the behaviour of the whole solid body will be determined by the characteristics of the individual parts and their interactions. This discrete property can easily be seen in brittle materials, especially rock whose composition varies widely and randomly from part to part. When the observed sample size (or the number of the investigated parts) is large enough, there will be a common rule which the consistent parts will tend to follow from the point of statistics. This statistical rule can then be taken as the basic mechanical characteristic of the whole body. If some assumptions about the interaction between the consistent parts are made, thereafter the mechanical behaviour of the whole solid can then be derived.
§8.2 Local Strength Theory, Strength of Elementary Parts, Parent Distribution

For a certain material, supposed there is a "threshold strength" or "lower bound strength", S_u, below which the material consistent elements will never fail, therefore the probability of failure of one element when subjected to an external force S can be defined as:

\[
\text{Probability of Failure} = \begin{cases}
P(S), & S > S_u \\
0, & S \leq S_u
\end{cases}
\]

(8.3)

Different expressions for $P(S)$ can be obtained based on different assumptions. $P(S)$ is called the element strength distribution, and is also referred to as the local strength distribution or parent strength distribution.

§8.2.1 Weibull Distribution

Weibull suggests an empirical but widely accepted form for the $P(S)$ expression as follows:

\[
P(S) = \begin{cases}
\left(\frac{S - S_u}{S_0'}\right)^m, & S > S_u \\
0, & S \leq S_u
\end{cases}
\]

(8.4)

where S_u, S_0' and m are material dependent constants.

The form has been successfully applied in the probabilistic fracture research field and is believed to be able to satisfactorily describe the strength distribution of the elementary parts over the whole range.

§8.2.2 Type III Extreme Value Distribution Assumption

When investigating the whole solid strength, we can divide the whole solid into N small consistent elements. What is important to us is the possible minimum strength value out of the N consistent parts which will dominantly determine the failure of the whole body. This is a typical problem for type III extreme value statistics of random variables, i.e., minimum value statistics. Therefore with regard to the element strength distribution equation, what really matters to contribute to the evaluation of the whole solid strength is the low tail of the distribution function. As a result, it is always possible and reasonable to make some simple mathematical approximation to that low tail part because normally it possess a low value of the
probability of failure no matter what the element's real strength distribution is (which can be seen from the general Equation (8.3) where the \(P(S) \) value will converge to 0 as the \(S \) approaches the lower bound value \(S_u \) along the low tail of the element strength distribution function). Two general types of approximations are normally introduced as follows. With these two approximations, the evaluation of the minimum strength value out of the \(N \) elements can be carried out without knowing the exact element strength distribution beforehand.

a) Cauchy Type (Power Equation) Approximation

Suppose the element strength probability distribution falls down approximately in the power pattern when the force \(S \) approaches the lowest strength bound \(S_u \) from the right hand side, then the \(P(S) \) expression can be drawn:

\[
P(S) = \begin{cases}
\delta (S - S_u)^m, & S > S_u \\
0, & S \leq S_u
\end{cases}
\]

(8.5)

This pattern is referred to as the Cauchy type pattern bounded at \(S_u \). The \(\delta, m \) are material constants.

b) Exponential Type Approximation

When the element strength probability distribution in the lower part falls in the same way as an exponential function, an approximation \(P(S) \) can then be obtained:

\[
P(S) = \delta \cdot \exp(-\upsilon \cdot S)
\]

(8.6)

Again, \(\delta \) and \(\upsilon \) are material constants. It is important to note that there is no lower bound for this approximation, so that its application is only limited to some special occasions.

§8.2.3 Elementary Strength Distribution Derived from Griffith's Theory

We can always divide any solid body into many elementary parts each containing one crack (micro flaw) only. The critical state of the cracked element is, from fracture mechanics, when the stress \(S \) and the crack length \(a \) satisfy the following equation:

\[
S\sqrt{a} = K_c
\]

(8.7)
where K_c is the material fracture toughness. Therefore the probability of failure can be expressed as Equation (8.8), where $Fe(x)$ is an artificially specified probability function which describe the probability of finding a crack with the length less than x in any arbitrary element. It is presented by Frechet in 1927 [45] in Equation (8.9). Here the δ and ν are material constants.

Submit the equation of $Fe(x)$ in Equation (8.8) and make the substitution of $a(x) = \frac{K_c \sqrt{\delta}}{\nu}$, we can then reach the following distribution:

$$P(S) = P\{z < S\} = P\{x > a\} = P\{x > \frac{K_c^2}{S^2}\} = 1 - Fe\left(\frac{K_c^2}{S^2}\right)$$ \hspace{1cm} (8.8)

$$Fe(x) = \exp\left[-\left(\frac{x}{\delta}\right)^{\nu}\right]$$ \hspace{1cm} (8.9)

$x = K_c \sqrt{\delta}$, we can then reach the following distribution:

$$P(S) = 1 - \exp\left[-\left(\frac{K_c^2}{S^2 \delta}\right)^{-\nu}\right] = 1 - \exp\left[-\left(\frac{S}{K}\right)^{2\nu}\right]$$ \hspace{1cm} (8.10)

Here note should be taken that there is no particular fracture mode restriction on the above derivation. But the application conditions for Equation (8.10) should follow the assumptions given below:

1) The flaws of varying severity distribute throughout the whole body,

2) The whole body is divided into elements in such a way that every element contain one flaw only, and there is no interactions between the flaws so the strength of every element can be evaluated independently,

3) the strength of the element is determined by the flaw only according to Griffith’s theory of crack instability.

§8.3 Evaluation of the Strength of the Whole Solid Body

In probabilistic strength theory, the interactions between the consistent parts of a solid are always simulated by two different models, weakest link (series link) model and bundle link
§8.3.1 Weakest Link Model

It was first proposed by Weibull in 1923 as an universal engineering mathematical model, and later widely developed by many of the following researchers [45,61,110]. It is founded on the following assumptions:

1) The whole body Ω is isotropic and statistically homogeneous, i.e., the probability of finding a flaw of a given severity within an arbitrary small volume in the body is the same throughout the whole body.

2) The whole body Ω is divided into N elementary parts V_i ($i=1,2,3,...,N$). The local strength distribution of each element V_i is supposed to be identical according to assumption 1), and the failure of each element is an independent random event.

3) All the N elements are connected using the series chain link model to mechanically compose the whole body. Therefore the failure of the whole body will be defined as when any one of the N links (or elements) fails.

Based on these assumptions, the solution for the body strength problem will be mathematically to find the minimum strength value out of the samples of size N.

Suppose S is the smallest out of S_i ($i=1,2,...,N$), then,

$$P(S) = P\{S' \leq S\} = 1 - P\{S' > S\}$$ \hspace{1cm} (8.11)

and from the theory of probability,

$$P\{S' > S\} = P\{(S_1 > S) \cap (S_2 > S) \cap ... \cap (S_N > S)\}$$ \hspace{1cm} (8.12)

As the events are mutually independent and possess an identical parent distribution, i.e.,

$$P_1(S) = P_2(S) = ... = P_N(S),$$

$$P\{S' > S\} = P\{S_1 > S\} \cdot P\{S_2 > S\} \cdot ... \cdot P\{S_N > S\}$$

$$= 1 - \left[1 - P_1(S)\right] \cdot \left[1 - P_2(S)\right] \cdot ... \cdot \left[1 - P_N(S)\right]$$ \hspace{1cm} (8.13)

and,

$$P(S) = P\{S' > S\} = 1 - \left[1 - P_i(S)\right]^N$$ \hspace{1cm} (8.14)
Therefore when the sample size \(N \), hence the considered body volume \(V \), is large enough, the asymptotic form of \(P(S) \) can be written as:

\[
\lim_{N \to \infty} P(S) = 1 - \lim_{N \to \infty} \left[1 - P_i(S) \right]^N = 1 - \exp \left[-N \cdot P_i(S) \right] \tag{8.15}
\]

which is under the assumption that \(N \cdot P_i(S) \) is small enough compared with \(N \).

If we substitute the Weibull function as the parent distribution \(P_i(S) \), the final form of the \(P(S) \) equation will be:

\[
P(S) = 1 - \exp \left[-\left(\frac{S - S_U}{S_0} \right)^m \right] \tag{8.16}
\]

where the substitution has been made that \(S_U = S_0' / N^{1/m} \).

If we substitute the Cauchy type approximation as the parent distribution, the identical form of the probability equation to Equation (8.16) will be obtained. If the element strength distribution derived from Griffith’s fracture theory is used as the parent distribution instead, the evaluation equation for the whole body strength probability distribution will be:

\[
P(S) = 1 - \exp \left[-N \left[1 - \exp \left(-\frac{S}{\sigma} \right)^2 \right] \right] \tag{8.17}
\]

Freudenthal [45] simplified the above equation by linear transformation and gave the expression in the following simpler form:

\[
P(S) = 1 - \exp \left[-\left(\frac{S}{\sigma} \right)^2 \right] \tag{8.18}
\]

where some constant substitution between \(\sigma \) and \(\vartheta \) has been made. Again this is another form of Weibull’s distribution.

Therefore we can conclude that as long as the weakest link model applies, the body strength distribution will all come out to be in the same form as Equation (8.16) no matter what the parent distribution is.

§8.3.2 Bundle Link Model

This theory was first introduced by Daniels in 1930 when he was investigating the strength of materials consisting of threads. Four basic assumptions are suggested:

1) and 2) The same as assumptions 1) and 2) in the weakest link model.

3) All the \(N \) elements are connected as a parallel model to mechanically compose the whole body, i.e., all the elements will "work" directly to the external force independently instead of
via the other elements. When one element (link) fractures and fails, a redistribution of load to the remaining ones will occur and the whole body may survive. Henceforth the whole body failure will be defined as when all the elements (links) have fractured and failed.

4) All the elements have the same priority (or responsibility) to take the external load, i.e., when the external load acting on the body will be statistically uniformly distributed over the surviving elements.

Suppose the body is subjected to an external force S, then by the above assumptions, failure of the whole body will follow procedures set out below, where S_i is denoted as the local strength of the i-th element,

$$
\begin{align*}
0 & \leq S_N \leq \frac{S}{N} \\
S_N & \leq S_{N-1} \leq \frac{S}{N-1} \\
& \vdots \\
S_2 & \leq S_1 \leq S
\end{align*}
$$

(8.19)

The reason for using the inequality forms here instead of equality conditions is that during the i-th element’s fracture step, any external force value between S_{i} and S_{i+1}, from the point of statistics, can possibly cause the element to fracture, and each corresponding to a probability value of failure.

Writing Equation (8.19) in the mathematical form, we can reach the following equation:

$$
P(S) = P(0 \leq S_N \leq \frac{S}{N}) \cap (S_N \leq S_{N-1} \leq \frac{S}{N-1}) \cap \cdots \cap (S_2 \leq S_1 \leq S)
$$

(8.20)

Substitute the independent condition and the identical parent distribution condition, we have:

$$
P(S) = N! \int_0^S \int_{S_{N-1}}^{S_{N}} \cdots \int_{S_2}^{S_1} P_i(S_1) \, dS_1 \cdots \int_{S_3}^{S_2} P_i(S_2) \, dS_2 \cdots \int_{S_N}^{S} P_i(S_N) \, dS_N
$$

(8.21)

where the introduction of $N!$ accounts for all the possible orderings of link breakage.

Tracy (1982) use the Weibull function as the parent distribution $P_i(S)$ and conducted the numerical solution of the body strength distribution for different sample size N. The conclusion has been drawn that the body strength will tend to follow the normal distribution when the sample size is large enough ($N > 14$).

Daniels (1930) simulated the fracture procedure and concluded that for those parent distributions following the law:

the resulting body strength distribution will be normal. Interestingly, the parent distribution
Daniels (1930) simulated the fracture procedure and concluded that for those parent distributions following the law:

$$\lim_{S \to \infty} S \cdot [1 - P(S)] = 0$$

(8.22)

the resulting body strength distribution will be normal. Interestingly, the parent distribution function discussed in probabilistic fracture mechanics all satisfy this criteria. Therefore if the bundle link theory applies, the normal (Gaussian) strength probability distribution will be the result.

§8.4 Force Distribution Model for Rock Cutting

Practical cutting problems include different rock fragmentation mechanism which makes it unreasonable to use a single model based on a particular mechanism to describe the whole cutting procedure. However if we approach the problem from the point of statistics based on probabilistic fracture mechanics, we can then view all the results as a combination of all the different cutting mechanisms. Henceforth the cutting performance will be better predicted.

A typical section of cutting force and normal force recorded signals is shown in Figure 8.1. Each peak value (local maximum) corresponds to one chipping event, which represents one rock breakout during the cut. These small chips will be referred to as minor chipping (MI) and they are marked as "x" in Figure 8.2. Major chipping (MA) (marked as boxes "□" and circles "○" in the figure) means the forming of a relatively larger chip, which normally will comprise several minor chipping points. Major chipping length L will be the distance the tool moves from the start to the end of the major chipping cycle.

When analysing a particular cut, the rock breakage strength can be denoted by rock cutting strength (notified as CS) and rock indentation strength (notified as IS), which are the cutting force and normal force magnitudes correspondingly at the points of chipping. Obviously the strength values CS and IS can be seen as random variables which will be determined by some other random variables at the chipping points, such as the mineral content, micro-structure and tool cutting state. It can be assumed that when the observed sample size N is large enough, the strength values will follow some kind of probabilistic distribution.

The defined CS value will be contributed to from two main sources. The first is the cutting force needed just to fracture the rock immediately in front of the cutting tool to form the chips. We can denote this part of the cutting strength CS as rock cutting fracture strength, or FS for short. The other component of CS is the force in the cutting direction
Figure 8.2 Cutting and Normal Forces

Figure 8.3 Signal Analysis
caused by the friction between tool and rock surface as the tool moves across the rock, which is obviously in proportion to the rock cutting normal force components and the friction coefficient between the tool and the rock surface.

Obviously there will be two different fracture strength FS values. When investigating the minor chipping, it is minor chipping fracture strength or FSMI for short, and when analysing the major chipping, we can find one maximum FSMI during every major chipping cycle and this value will be called the rock major chipping fracture strength or FSMA for short.

Figure 8.4 Some Typical Distributions of Rock Indentation Strength IS (a.), Minor Chipping Fracture Strength FSMI (b.), Major Chipping Fracture Strength FSMA (c.) and Major Chipping Length L (d.)

Nine different rock samples varying from sandstones to granites were chosen to conduct the
instrumented rock cutting test. At least four cuts were made for each rock sample. For every cut, the IS, FSMI, FSMA and the major chipping length L were sampled and analyzed along the whole cutting length. Figure 8.4 illustrate some selected typical histograms of their values, where the percentage corresponding to a certain strength value range means the portion of the number of times when the sampled strength values fell in that range out of the total number of the sample.

As clearly shown in Figure 8.4, the strength values and the chip length distribution are skewed to the left. This signifies that during cutting, the chips with smaller breakage strength and smaller chip length will form a higher proportion of all the chips. This result coincides with the practical observation that small chips always dominate in the size distribution of the cut debris. The solid curves shown in Figure 8.4 are the corresponding analogous Weibull distribution curves for the strength values and the chip length. Quite encouragingly, all the investigated values can be satisfactorily expressed by this distribution function.

Based on these distribution illustrations, we can no longer hold the opinion that the variations of the rock cutting and normal forces (or rock cutting strength CS and indentation strength IS) follow the normal (Gaussian) probabilistic distribution, as is commonly believed. But the Weibull distribution to describe the variations of their values is to be assumed instead. According to the analysis in section §8.3, it is then suggested that rock breaking in rock cutting will follow the weakest link theory.

The coinciding point is that in rock fragmentation, there are always many possible fracturing routes when the rock is subjected to an external load (such as being acted on by the cutting tool bit), as illustrated in Figure 8.5. The actual breaking trace (corresponding to the actual breakage strength) is always the route which requires the lowest energy consumption, in other words, which is the easiest (or weakest) breakage route compared with the others. Certainly this particular route will change from point to point according to the different mineral content, micro structures, external loading conditions and the rock residual (damage) strength owing to the previous loading or breakage history. This causes the random characteristics of the breakage strength.

In practical rock cutting, the studied rock boundary condition is normally supposed to be "infinite". Therefore in the following analysis an identical investigated rock volume will be automatically assumed. That will eliminate the volume influences which are signified as the
value of N in the original Weibull distribution.

Three distribution parameters S_U, S_0 and m should be determined in order to use the Weibull's model to express rock cutting performance. The linear goodness of fit estimation method is normally used because of its preferable simplicity over the maximum likelihood method and the other methods. If we rewrite the Weibull function in the following form:

$$1 - P(S) = \exp\left[-\left(\frac{S - S_U}{S_0} \right)^m \right]$$ (8.23)

then double log both sides of the equation we finally reach:

$$\log\{-\log[1 - P(S)]\} = -m \log S_0 + m \log (S - S_U)$$ (8.24)

Therefore the relation between $\log\{-\log[1 - P(S)]\}$ and $\log(S - S_U)$ will be linear as $Y = a + bX$, and the distribution parameters can then be expressed as $m = b$ and $S_0 = \exp(-a/m)$. Therefore by fitting in the observed data S_j, $P(S_j)$ ($j = 1, 2, 3, ..., J$), the distribution parameters can be calculated.

The calculation of $P(S_j)$ is normally by the technique of order statistics. Rearrange the J sampled values (strength or chip length) in order from the smallest value S_1 to the maximum value S_J as:

$$s_1 < s_2 < \cdots < s_J$$ (8.25)

Then from order statistics, the preferred estimate of $P(S_j)$ will be:

$$P(S_j) = \frac{j}{J+1}$$ (8.26)

Which is considered to be an unbiased statistical estimator.

The estimations of the distribution parameters from all the cuts on the nine rock samples has been conducted and the results are listed in Table 8.2. Table 8.1 lists the related mechanical properties of the samples used for the test, where E is the Young’s modulus in GPa, σ_c and σ_t are the compressive and tensile strength in MPa, K_{ic} is the Mode I fracture toughness value in MPa\sqrt{m}, F_c and F_N are the average cutting force and normal force in kN, and SE is the specific energy in MJ/m3 obtained from the instrumented cutting test.

Of the three distribution parameters, S_0 is more important as its value determines the magnitude of the distribution and signifies the practical strength value or major chip length.
Table 8.1 Rock Samples and Their Mechanical Properties

<table>
<thead>
<tr>
<th>Sample</th>
<th>E</th>
<th>σ_c</th>
<th>σ_t</th>
<th>K_{IC}</th>
<th>F_C</th>
<th>F_N</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.60</td>
<td>50.93</td>
<td>3.48</td>
<td>0.657</td>
<td>1.81</td>
<td>2.30</td>
<td>10.56</td>
</tr>
<tr>
<td>2</td>
<td>15.55</td>
<td>73.23</td>
<td>3.36</td>
<td>0.610</td>
<td>2.22</td>
<td>3.23</td>
<td>16.23</td>
</tr>
<tr>
<td>3</td>
<td>11.12</td>
<td>47.61</td>
<td>4.03</td>
<td>0.720</td>
<td>1.39</td>
<td>2.13</td>
<td>10.60</td>
</tr>
<tr>
<td>4</td>
<td>13.75</td>
<td>48.48</td>
<td>3.46</td>
<td>0.635</td>
<td>1.81</td>
<td>2.25</td>
<td>10.98</td>
</tr>
<tr>
<td>5</td>
<td>12.11</td>
<td>102.64</td>
<td>7.40</td>
<td>0.95</td>
<td>2.66</td>
<td>3.27</td>
<td>13.68</td>
</tr>
<tr>
<td>6</td>
<td>7.79</td>
<td>17.53</td>
<td>2.02</td>
<td>0.344</td>
<td>1.06</td>
<td>1.20</td>
<td>8.14</td>
</tr>
<tr>
<td>7</td>
<td>22.85</td>
<td>104.31</td>
<td>8.01</td>
<td>1.237</td>
<td>3.43</td>
<td>5.66</td>
<td>27.70</td>
</tr>
<tr>
<td>8</td>
<td>56.70</td>
<td>295.55</td>
<td>20.86</td>
<td>2.803</td>
<td>5.55</td>
<td>21.25</td>
<td>53.56</td>
</tr>
<tr>
<td>9</td>
<td>40.27</td>
<td>191.71</td>
<td>13.56</td>
<td>2.119</td>
<td>4.40</td>
<td>9.47</td>
<td>28.88</td>
</tr>
</tbody>
</table>

Table 8.2 Indentation Strength and Fracture Strength Distribution Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>IS</th>
<th>FSMI</th>
<th>FSMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_U^c</td>
<td>S_0^c</td>
<td>m^c</td>
</tr>
<tr>
<td>1</td>
<td>2.454</td>
<td>1.418</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.969</td>
<td>1.327</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.330</td>
<td>1.302</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.465</td>
<td>1.228</td>
<td>0.163</td>
</tr>
<tr>
<td>5</td>
<td>0.222</td>
<td>1.185</td>
<td>0.163</td>
</tr>
<tr>
<td>6</td>
<td>1.242</td>
<td>1.147</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6.439</td>
<td>1.395</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25.66</td>
<td>1.442</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11.13</td>
<td>1.366</td>
<td></td>
</tr>
</tbody>
</table>
The m value will change the shape of the distribution and physically it means the scatter of the strength or in terms of rock mechanics, the brittleness of rock materials [Jayatilaka, 1979]. On knowing these distribution parameters, the rock cutting characteristics can be clearly understood. Therefore these parameters can be taken as rock property constants describing rock cuttability.

§8.5 Rock Cutting Performance Prediction from the Point of Probabilistic Statistics

One useful analysis is relating the above distribution parameters with conventional rock properties based on rock fragmentation (fracture) mechanisms so that rock cutting characteristics can be predicted. Of the two force components needed for cutting, normal force is the force required to crush the rock and to keep the tool at the required depth of cut. Its value is mainly decided by the rock compressive strength, cutting depth and tool wear flat (determining the crushing area underneath the tool). If the cutting depth is fixed and the sharp tool state is assumed (which is generally the case when doing rock cuttability assessment), the S_c for rock indentation strength S_c^c could be related to rock compressive strength in a simple form. On the other hand, the rock fracture strength will be mainly influenced by rock fracture properties and therefore the rock fracture toughness K_c value can be taken as the vital variable to determine the S_c value for minor and major chipping fracture strength FSMI and FSMA, S_c^1 and S_c^A. If it is assumed that rock fracturing in rock cutting is mainly a tensile (Mode I) fracture problem, then the Mode I rock fracture toughness K_{ic} can be used to determine the above mentioned relations. If mixed mode fracturing is suggested to be the main case in rock cutting, then the rock’s mixed mode fracture strength K_{ic}^m should be used instead. In fact, mixed mode fracturing is the dominant situation in rock cutting. However at this stage, we are short of data for rock mixed mode fracture strength values and therefore the K_{ic} values for rock materials was be used for the current investigation.

Figure 8.6 a. - c. show the relationships of S_c^c, S_c^1 and S_c^A values with σ_c and K_{ic}. The best fit regressions for these relationships have been conducted. Therefore if we take these results as the basis, the cutting performance can be predicted step by step by following the procedure listed in Table 8.3. Some points about the derivation of the procedure listed in the table are discussed as follows.

1) For a random variable following the Weibull distribution, its expected value (or mean
Figure 8.6 Relationships between S_0^c, S_0^l and S_0^λ with σ_c and K_{IC} (a, b and c).
Relationship between Friction Coefficient λ and S_0^c (d.)

Value) is obtained in the following way:

$$E[S] - \bar{S} = \int_0^1 S dP(S) = \int_0^1 [1 - P(S)] dS$$ (8.27)

Substitute the $P(S)$ equation and the integration will yields:

$$\bar{S} = S_U + S_O \cdot \Gamma (1 + \frac{1}{m})$$ (8.28)
<table>
<thead>
<tr>
<th>No.</th>
<th>Descriptions</th>
<th>Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S_0 of IS</td>
<td>$S_0^C = 1.48 \exp(0.0102 \cdot \sigma_C)$</td>
</tr>
<tr>
<td>2</td>
<td>Mean IS, or Normal Force</td>
<td>$F_N = 0.222 + 0.913 \cdot S_0^C$</td>
</tr>
<tr>
<td>3</td>
<td>Friction Coefficient</td>
<td>$U = 0.30 \cdot (S_0^C)^{-0.771}$</td>
</tr>
<tr>
<td>4</td>
<td>S_0 of FSMI</td>
<td>$S_0^I = 2.486 \cdot K_{IC}^{1.010}$</td>
</tr>
<tr>
<td>5</td>
<td>Mean FSMI</td>
<td>$F_{CM} = 0.915 \cdot S_0^I$</td>
</tr>
<tr>
<td>6</td>
<td>Proportional Coeff.</td>
<td>$\varphi = 1.024 + 0.027 \cdot S_0^I$</td>
</tr>
<tr>
<td>7</td>
<td>Mean Peak Cutting Force</td>
<td>$F_{C\text{MAX}} = F_{CM} + U \cdot F_N$</td>
</tr>
<tr>
<td>8</td>
<td>Mean Cutting Force</td>
<td>$\bar{F}C = F{C\text{MAX}} / \varphi$</td>
</tr>
<tr>
<td>9</td>
<td>S_0 of FSMA</td>
<td>$S_0^A = 2.948 \cdot K_{IC}^{1.065}$</td>
</tr>
<tr>
<td>10</td>
<td>Major Chipping Length</td>
<td>$\bar{L} = 1.12 \cdot (S_0^A)^{-0.34}$</td>
</tr>
<tr>
<td>11</td>
<td>Specific energy</td>
<td>$SE = 3.667 + 4.172 \left(\frac{F_C}{\bar{L}} \right)$</td>
</tr>
</tbody>
</table>
where $\Gamma(1 + 1/m)$ is the Gamma function, whose value can be found in a mathematical handbooks.

The value calculated by Equation (8.28) theoretically equals the mean of the investigated strength. If the distribution parameters of IS, FSMI or FSMA are substituted, their mean values will be obtained. The variance of these values can be estimated by the following equation:

$$\text{Var}[S] = S_o \sqrt{\frac{2}{m} - \frac{1}{m^2}}$$

(8.29)

2) Based on our experimental results the friction coefficient λ shows a clear variation tendency with respect to the S_0^{c}, as illustrated in Figure 8.6 d. In the case discussed here, this coefficient is defined as the ratio of the friction force between the tool and the rock cutting surface in the cutting direction over the total tool normal force.

3) The mean major chip length L has a power relationship with S_0^{A}, which is shown in Figure 8.7 a.

4) As has been discussed above, the mean peak cutting force (minor chipping) will be the superimposition of the mean minor chipping fracture strength (mean of FSMI) and the friction force caused by the action of normal force, which is shown in Table 8.3 as formula 7.

5) For the mean cutting force evaluation, another proportional coefficient should be introduced which is the ratio of mean peak cutting force (minor chipping) over the mean cutting force. This proportional coefficient φ can be determined from the distribution parameter S_0^{I}. Figure 8.7 b. shows their relation.
6) The specific energy will be in proportion to the magnitude of the cutting force. The other determining variable will be the chip (debris) volume which is certainly in proportion to the mean major chip length. It is reasonable to suggest that specific energy is a function of the quotient of mean cutting force divided by the mean major chip length, i.e.,

\[SE = \Psi\left(\frac{F_c}{L}\right) \]

The current experimental results, which are shown in Figure 8.8, clearly shows a linear relationship for this relation.

6) Due to the limited rock samples tested, the variation of the Weibull distribution parameter \(m \) value does not show any clear relationship with any conventional rock property. Therefore at this stage its mean value has to be accepted while the model is used to evaluate the cutting performance. Further investigation of the relationship of \(m \) to rock brittleness properties should be conducted.

§8.6 Application 1 -- Cutting and Normal Force Prediction

Nevertheless, we used the above procedure to predict some cutting parameters. From equation 2 and equation 8 in Table 8.3 the mean normal force and mean cutting force for a rock can be obtained directly. Their values have been calculated for the rock samples used in our experiment and Figure 8.9 shows the predicted relations of normal force with rock compressive strength and the cutting force with rock fracture toughness. As discussed above, the cutting performance parameters are connected to these two conventional rock properties in a complicated way, so we cannot expect to predict the force value knowing only one single property value. The force values should be always viewed as the effect of their combination.
§8.7 Application 2 -- Specific Energy Prediction

Further, we used the above procedure to predict specific energy values from published data [36]. Figure 8.10 shows that the predicted and the measured values are within ±10%. Figure 8.11 shows the predicted and the measured SE values varying with two conventional rock properties, compressive strength σ_c and fracture toughness K_{IC}. The data are from the same source as used in Figure 8.10, but some fracture toughness values are estimated from the available Young's modulus value E, tensile strength σ_t and compressive strength σ_c of the rock materials according to their relationships discussed in Chapter 5. The results shown in these figures suggest that the above prediction expresses well the intrinsic relations between rock properties and cutting performance parameters. Further investigations are recommended.
§8.8 Some Prospects for the further Applications of the Predictions

The above predictions based on the probabilistic fracture mechanics were especially developed for the rock instrumented cutting test which is widely used for the rock cuttability assessment. However, the basic ideas and the whole methodology are generally applicable for different cutting tools. Based on this method, the statistics from a large number of experiments on a wide range of rocks will certainly yield the suitable coefficients and constants which can then be used for further rock cutting performance predictions for that particular cutting tool.

Furthermore, while investigating the combined effects of cutting tools, such as studying the whole cutting head with tools, the statistics of function variables could be used. Some common and useful relations are given below, which allows the prediction of cutting head performance from one instrumented cutting test.

In the following equations, \(X_1, X_2, \ldots, X_n, X\) and \(Y\) are random variables. \(Z\) is the function and \(E[Z]\) and \(V[Z]\) are the corresponding expected (or mean) value and the square of the standard deviation.

1) \(Z = aX\),

\[
\begin{align*}
E[Z] &= aE[X] \\
V[Z] &= a^2V[X]
\end{align*}
\]

(8.31)
2) \(Z = X \pm Y \),

\[
\begin{align*}
E[Z] &= E[X] \pm E[Y] \\
V[Z] &= V[X] + V[Y] \pm 2 \cdot \rho \sqrt{V[X] \cdot V[Y]}
\end{align*}
\]

3) \(Z = XY \),

\[
\begin{align*}
E[Z] &= E[X] \cdot E[Y] + \rho \sqrt{V[X] \cdot V[Y]} \\
V[Z] &= \frac{E[X]^2 \cdot V[Y] + E[Y]^2 \cdot V[X] + 2 \cdot \rho \cdot E[X] \cdot E[Y] \sqrt{V[X] \cdot V[Y]} + (1 + \rho^2) \cdot V[X] \cdot V[Y]}{E[X] \cdot E[Y]}
\end{align*}
\]

4) \(Z = Y/X \),

\[
\begin{align*}
E[Z] &= \frac{E[Y]}{E[X]} \left(1 + \frac{V[X]}{E[X]^2} \right) \\
V[Z] &= E[X]^2 \cdot V[Y] + V[X]^2 \cdot \frac{E[Y]}{E[X]} \left(1 + \frac{V[X]}{E[X]^2} \right) - 2 \cdot \rho \cdot \frac{\sqrt{V[X] \cdot V[Y]}}{E[X] \cdot E[Y]}
\end{align*}
\]

5) and finally, for a general function, \(Z = f(X_1, X_2, \ldots, X_n) \),

\[
\begin{align*}
E[Z] &= f(E[X_1], E[X_2], \ldots, E[X_n]) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 Z}{\partial X_i^2} \cdot V[X_i] \\
V[Z] &= \left(\sum_{i=1}^{n} \left(\frac{\partial Z}{\partial X_i} \right)^2 \cdot V[X_i] \right)^{1/2}
\end{align*}
\]

Further applications for cutting heads are being carried out. Take the TBM cutting head for instance. It is worth pointing out that when the whole cutting head is considered, the rigidity of the machine should be taken into consideration. Owing to the fact that the rock cutting face is normally very rough because of the brittle fracture properties of rock materials, not every tool on the cutting head is cutting the rock at the same time and no tools are cutting the rock all the time. The number of tools which are cutting the rock out of the whole tool set and the cutting time out of the whole operational time for every single tool can be viewed as a random process. Their distribution parameters can be determined by statistics as well.

Suppose the rock type and the cutting geometries are fixed, the forces needed for the cutting can then be viewed as a function of the cutting depth only, i.e., \(F = \mathcal{L}(h) \) (\(F = F_C \) or \(F_N \)). On the other hand, the rock breakage volume per unit cutting length \(V_u \) is a function of the cutting depth and the cutting breakout angle, or in mathematical form, \(V_u = \mathcal{R}(h, \phi) \) (Figure 8.12). Therefore the specific energy for rock cutting should be in the following form:
The commonly accepted form for V_u is based on the assumption that both sides of the cutting slot are upside down triangles (Figure 8.12), and it is expressed as:

$$\mathcal{F}(h, \phi) = bh + h^2 \tan \phi$$ \hspace{1cm} (8.37)

where b is the cutting tool width. Practically the extreme form for the specific energy will be infinity as the cutting depth tends to infinity. Therefore combining Equation (8.36) and Equation (8.37), we can predict that the form for the expression of $\mathcal{L}(h)$ for cutting force should be the exponential type function or the power type function with the power coefficient larger than two.

For reasons of simplicity, we can use the later one. If we introduce the threshold force value, or lower bound force value, whose physical implications have been discussed in Section §8.2, we can then analogously express the force equation as:

$$F_C = F_C(h) = S_U + a h^b$$ \hspace{1cm} (8.38)

where S_U is the threshold force value, b is the power coefficient with a value larger than 2, and its actual value, together with a, will be decided by the rock and the cutting alignment, and they can be decided by the Weibull distribution parameters as well. For this purpose, the easier and more precise way is by doing a few rock cutting tests at different cutting depths and then doing the statistical regression analysis.

For the normal force value, theoretically we know that the force value increase rate (or the derivative) increases with the cutting depth h. Therefore the power relationship with the power greater than 1 between the normal force and the cutting depth can be assumed, i.e.,

$$F_N = F_N(h) = c h^d$$ \hspace{1cm} (8.39)

Again the constants can be related to the Weibull distribution parameters by the cutting tests at different depths.

After the determination of the relationship of Equation (8.37) to (8.39), the mean force values and their variance can be obtained by the mathematical relationships listed above in this section. Thereafter the mean value and variance of the specific energy can be determined by the following equations:

$$SE = \frac{F_C}{V_u} - \frac{\mathcal{L}(h)}{\mathcal{F}(h, \phi)}$$ \hspace{1cm} (8.36)
\[
\begin{align*}
E[SE] &= \frac{E[F_c]}{E[Vu]} \left(1 + \frac{V[Vu]}{E[Vu]^2}\right) \\
V[SE] &= \frac{E[F_c]^2 \cdot V[Vu] + E[Vu]^2 \cdot V[F_c]}{E[Vu]^4}
\end{align*}
\] (8.40)

where the condition of variable independence is assumed and \(E[Vu] \) and \(V[Vu] \) can be obtained by:

\[
\begin{align*}
E[Vu] &= b \cdot h + h^2 \cdot E[\tan \phi] \\
V[Vu] &= h^4 \cdot V[\tan \phi]
\end{align*}
\] (8.41)

For the cutting tool array performance prediction, the mean total force values and their variance can be derived from the single tool cutting characteristics. As an instructive example, let us take a model of a TBM for instance. Suppose there is a simple model of TBM cutterhead mounted with \(N \) number of drag tool cutting picks, each with the same cutting geometries and having the rotating radius \(r_i \) (\(i = 1, 2, \ldots, N\)). Therefore the machine torque value contributed by all the cutting tools can be expressed as:

\[
T = \sum_{i=1}^{N} T_i - \sum_{i=1}^{N} F_c \tau_i
\] (8.42)

with the mean and variance,

\[
\begin{align*}
E[T] &= \sum_{i=1}^{N} E[F_c \tau_i] - E[F_c] \sum_{i=1}^{N} r_i \\
V[T] &= \sum_{i=1}^{N} V[T_i] - \sum_{i=1}^{N} V[F_c \tau_i^2] = V[F_c] \sum_{i=1}^{N} r_i^2
\end{align*}
\] (8.43)

Here the non-influenced relationship between the cutting tools is supposed. Based on this same assumption, the total machine thrust force \(TR \) can be obtained from the following calculations:

\[
\begin{align*}
E[TR] &= \sum_{i=1}^{N} E[F_N^i] - N \cdot E[F_N] \\
V[TR] &= \sum_{i=1}^{N} V[F_N^i] - N \cdot V[F_N]
\end{align*}
\] (8.44)
Note should be taken that the above evaluation account for the force values from the cutting tools only. The friction forces coming from other parts of the machine are not included.

While estimating the tool combination performance for a roadheader cutting head, the cutting force and normal force values for each pick will change from zero to their maximum and then back to zero as the pick cutting depth changes in the same pattern while that pick is cutting the rock, as shown in Figure 8.13. Then the torque value produced by the ith pick will be:

\[
\begin{align*}
E[T_i] &= r_i F_c^i \\
V[T_i] &= r_i^2 V[F_c^i]
\end{align*}
\]

(8.45)

Where the \(F_c^i \) value is not constant as the cutting depth is changing, and furthermore the equations are only valid when that particular pick is cutting the rock. For the summing force and the vertical force produced by the \(i \)-th cutting pick, their values are affected both from the cutting force and the normal force set up by that cutting tool. The following equations demonstrate their relationship.

\[
\begin{align*}
F_s^i &= F_c^i \sin \theta^i + F_N^i \cos \theta^i \\
F_v^i &= F_c^i \cos \theta^i + F_N^i \sin \theta^i
\end{align*}
\]

(8.46)

where \(\theta^i \) is the angle between the pick position radius and the level axis, which is positive when the pick is over the level axis and negative when under it. Their mean and variance can be evaluated as follows:

\[
\begin{align*}
E[F_s^i] &= E[F_c^i] \sin \theta^i + E[F_N^i] \cos \theta^i \\
E[F_v^i] &= E[F_c^i] \cos \theta^i + E[F_N^i] \sin \theta^i \\
V[F_s^i] &= (\sin \theta^i)^2 V[F_c^i] + (\cos \theta^i)^2 V[F_N^i] \\
V[F_v^i] &= (\cos \theta^i)^2 V[F_c^i] + (\sin \theta^i)^2 V[F_N^i]
\end{align*}
\]

(8.47)
Henceforth, the whole cutting torque value, the whole lumping force and the whole vertical force can be obtained simply by summing up the values contributed by different picks.

\[
\begin{align*}
E[T] & = \sum_{i=1}^{n} E[T_i] - \sum_{i=1}^{n} E[F_{c_i}]T_i \\
V[T] & = \sum_{i=1}^{n} V[F_{c_i}]T_i^2
\end{align*}
\]

(8.48)

and,

\[
\begin{align*}
E[F_s] & = \sum_{i=1}^{n} E[F^i_s] , \quad E[F_r] = \sum_{i=1}^{n} E[F^i_r] \\
V[F_s] & = \sum_{i=1}^{n} V[F^i_s] , \quad V[F_r] = \sum_{i=1}^{n} V[F^i_r]
\end{align*}
\]

(8.49)

It is vitally important to note that the above equations are only valid for the \(n \) tools which are cutting the rock at the time of evaluation out of the \(N \) total tools mounted on the cutting drum. As for the roadheader cutting head, the \(N \) tools are not cutting the rock at the same time. Therefore the rotating phase of the drum will be very important as it will decide the cutting state of different tools at different times.

The above prospects have only approached the problem theoretically. It provides guidelines for related estimations. The practical work is under consideration.

§8.9 Conclusions and Suggestions for further Research

1) Weibull's weakest link strength theory is applicable in rock fragmentation engineering and is believed to be able to better solve the problem from a statistical point of view because of the random characteristics of rock materials. It is suggested that this method can be adopted for some other rock mechanics research.

2) In rock cutting engineering, the rock indentation strength and rock fracture strength are random variables varying from point to point along the rock cutting path determined by many other random variables, and their values follow Weibull probabilistic distribution, instead of the commonly suggested normal (Gaussian) distribution.

3) The Weibull distribution parameters \(S_0 \), \(S_0 \) and \(m \) of the above mentioned strength can be taken as material constants particularly for rock cutting. On knowing them, not only can the cutting performance parameters, such as cutting force, normal force and specific energy, be predicted, but their values' scatter and distribution can also be found. Further research is suggested to use the distribution parameters to assess the rock cuttability and to do rock
classification for rock cutting engineering.

4) The prediction procedure discussed in this work is based on the rock cutting mechanism and is therefore believed to be illustrating well the cutting performance parametric relationships. However the experiments that have been conducted are still far too limited. Therefore some error should be allowed for at this stage when using the procedure listed in Table 8.3 for practical prediction. Even though the prediction carried out above is quite satisfactory, a large amount of statistical research is suggested in order to reach the more generally applicable cutting performance prediction. However it is unrealistic to expect a universal prediction estimation. All estimations have their own restrictions.

5) As long as the cutting performance of a single tool has be determined, their combination effect for any kind of tool array, expected value and variance, can be evaluated as well.
Chapter 9

Conclusions

1. The **Mode I** fracture problem for a cracked straight-through Brazilian disc (CSTBD) subjected to a pair of diametrical concentrated loads on the disc boundary directed along the crack orientation has been found to be best solved numerically by a stepwise superimposition technique. The problem can be divided into two simpler problems, an uncracked Brazilian disc subjected to arbitrary boundary loadings and an infinite region with a central crack subjected to internal surface loadings. Then the solution for the original problem can be reached by superimposing the solutions of these two simpler problems continuously (iteratively) until the desired accuracy requirements have been met. The final solution for the **Mode I** stress intensity factor (SIF) for the CSTBD specimen can be expressed by the best fit polynomial given in the following formula in terms of dimensionless SIF values $Y(\alpha)$ defined as $Y(\alpha) = \frac{K_I}{K_0} = \frac{K_I}{P/(B-N/R)}$, where K_I is the dimensional SIF value, B and R are the thickness and the radius of the disc, P is the external load and α is the dimensionless crack length a/R (a is the semi crack length).

$$Y(\alpha) = 0.0354 + 2.0394 \cdot \alpha - 7.0356 \cdot \alpha^2 + 12.8154 \cdot \alpha^3 + 8.4111 \cdot \alpha^4$$
$$- 30.7418 \cdot \alpha^5 - 29.4959 \cdot \alpha^6 + 62.9739 \cdot \alpha^7 + 66.5439 \cdot \alpha^8$$
$$- 82.1339 \cdot \alpha^9 - 73.6742 \cdot \alpha^{10} + 73.8466 \cdot \alpha^{11}$$

(9.1)

The error in this evaluation is within 1%. It is believed that this solution can best represent the true SIF values of the **Mode I** CSTBD problem for the long crack case up to $\alpha = 0.95$ compared with existing solutions by previous researchers.

2. A mixed **Mode I** and **Mode II** fracture situation can be easily obtained from the cracked Brazilian disc problems simply by inclining the crack orientation direction to the diametrical loading direction with a certain angle θ. By changing the value of this angle, different combinations of **Mode I** and **Mode II** fracture intensities can be obtained while the loading fixture remains very simple. Therefore the cracked Brazilian discs (CSTBD and CCNBD) are obviously the ideal specimen geometries which can be used for mixed mode fracture investigation of brittle materials, especially of rock.

By taking advantage of the same stepwise superimposition technique developed for solving the **Mode I** CSTBD problem, the mixed mode fracture problems of the CSTBD specimen with any crack length has now been solved with the help of dislocation and complex stress function
methods. The stage of the solutions for crack length \(a > 0.6 \) has not yet been reached by previous researchers. The dimensionless SIF solutions of the problem, \(Y_1(\alpha, \theta) \) and \(Y_\Pi(\alpha, \theta) \) (defined as \(Y_1(\alpha, \theta) = K_1/K_0, \quad Y_\Pi(\alpha, \theta) = K_\Pi/K_\theta \) and \(K_\theta = P/(B \cdot \sqrt{R}) \), representing the two components of the mixed mode fracture intensity, Mode I and Mode II fracture intensities respectively, are graphically presented in Figure 7.14 - Figure 7.17.

One of the special cases is when the inclined angle between the crack direction and the loading diameter is zero, i.e., \(\theta = 0^\circ \), then the mixed mode fracture problem will come back to the pure Mode I CSTBD fracture problem. Quite encouragingly, the SIF \(Y_1(\alpha, \theta) \mid \theta = 0^\circ \) value representing the Mode I fracture intensity in this special case obtained from mixed mode fracture analysis coincides with the \(Y(\alpha) \) value directly derived from the pure Mode I fracture evaluation, i.e., Equation (9.1). This substantiates the correctness of both of the evaluations.

In corresponding to a crack length \(\alpha \) (\(a \)), a certain inclination angle \(\theta_\Pi \) between the crack direction and the loading direction can always be found under which the mixed mode CSTBD fracture problem will be reduced to pure Mode II fracture problem only, i.e., \(Y_1(\alpha, \theta) = 0 \) when \(\theta = \theta_\Pi \). This is another special case of mixed mode fracture problem for the CSTBD specimen. By using this condition, Mode II fracture problems can be investigated, such as the Mode II fracture toughness measurement and Mode II crack propagation studies. \(\theta_\Pi \) and the corresponding pure Mode II SIF values, \(Y_\Pi(\alpha, \theta) \mid \theta = \theta_\Pi \), for the CSTBD can be accurately (error within \(\pm 1\% \)) calculated by the following equations:

\[
\begin{align*}
\theta_\Pi &= 30.4406 - 4.6734 \cdot \alpha - 17.6741 \cdot \alpha^2 - 9.6827 \cdot \alpha^3 + 3.9819 \cdot \alpha^4 \\
&\quad + 12.9163 \cdot \alpha^5 - 13.3222 \cdot \alpha^6 + 12.8001 \cdot \alpha^7 - 13.1239 \cdot \alpha^8 \\
Y_\Pi &= 0.06462 + 2.8956 \cdot \alpha - 6.8663 \cdot \alpha^2 + 9.8566 \cdot \alpha^3 - 0.4455 \cdot \alpha^4 - 1.0494 \cdot \alpha^5 \\
&\quad - 13.2492 \cdot \alpha^6 + 9.0783 \cdot \alpha^7 - 10.7354 \cdot \alpha^8 + 28.4775 \cdot \alpha^9 - 6.3197 \cdot \alpha^{10} \\
&\quad + 10.6626 \cdot \alpha^{11} - 10.0268 \cdot \alpha^{12} - 34.2997 \cdot \alpha^{13} + 1.7292 \cdot \alpha^{14} + 25.2216 \cdot \alpha^{15}
\end{align*}
\]
\[
\left\{ \begin{array}{l}
\alpha_s = R_s / R = \sqrt{\alpha_0^2 + (\alpha_1^2 - \alpha_0^2 + \alpha_2^2/4)^2 + \alpha_B^2} \\
h_c = (\alpha_s - \sqrt{\alpha_s^2 - \alpha_1^2}) \cdot R = (\alpha_s - \sqrt{\alpha_s^2 - \alpha_0^2}) \cdot R + B/2 \\
\alpha_0 = \sqrt{\alpha_s^2 - (\sqrt{\alpha_s^2 - \alpha_1^2} + \alpha_B/2)^2} \\
\alpha_1 = \sqrt{\alpha_s^2 - (\sqrt{\alpha_s^2 - \alpha_0^2 - \alpha_B/2})^2} \\
\alpha_B = 2\sqrt{\alpha_s^2 - \alpha_0^2 - \sqrt{\alpha_s^2 - \alpha_1^2}} \\
\end{array} \right. \\
(9.3)
\]

However these three basic dimensions cannot vary freely. They are restricted by each other by the following relations:

\[
\left\{ \begin{array}{l}
\alpha_B \leq 2\sqrt{\alpha_1 - \alpha_0^2} \\
\alpha_0 \leq \sqrt{\alpha_1^2 - \alpha_B^2/4} \\
\alpha_1 \geq \sqrt{\alpha_0^2 + \alpha_B^2/4} \\
\end{array} \right. \\
(9.4)
\]

One interesting feature about the CCNBD specimen geometry is that, when the CCNBD, CB and SR specimens are machined from the same rock cores, their crack orientation planes can be constructed perpendicular to each other in 3-D space. In other words, these three specimens together form a complete set of specimens for rock anisotropic fracture studies. This will greatly reduce the error caused by the different rock block selections when conducting anisotropic fracture analysis.

4. Combining the SIF solution of the CSTBD problem under any single mode or mixed mode fracture conditions with the compliance method, the fracture problem for the CCNBD specimen under the corresponding fracture mode condition can be solved. It has been concluded that Bluhm's slice superimposition model better simulates the CCNBD fracture problems than any other model. The dimensionless SIF values for the CCNBD fracture problems in terms of \(Y*(\alpha) \), based on Bluhm’s model, can be expressed in the following formula:

\[
Y^*(\alpha) = \left[\frac{\alpha_B^4 \cdot g_3(\alpha)}{8 \cdot g_1(\alpha) \cdot g_2(\alpha)} \right]^{1/2} \\
(9.5)
\]

where \(Y^*(\alpha) \) is defined as:

\[
Y^*(\alpha) = \frac{K^*(\alpha)}{K_0} = \frac{K^*(\alpha)}{P} \cdot \frac{B \sqrt{R}}{B \sqrt{R}} \\
(9.6)
\]
and,

\[
\begin{aligned}
 g_1(a) &= \frac{a_1^2 - a_0^2 + \frac{a^2}{4} - \sqrt{(a_1^2 - a^2)a_B^2 + \left(\frac{a_1^2 - a_0^2 - \frac{a^2}{4}}{4}\right)^2}}{2}
 \\
g_2(a) &= \frac{1}{BE'} \frac{g_1(a)}{C(a)} + \frac{1}{BE'} \int_{a_1}^{a} \frac{g_4(\xi)}{C(\xi)} \, d\xi
 \\
g_3(a) &= \frac{2}{(BE')^2} \frac{Y(a)}{C(\alpha)} - \frac{1-c_1}{BE'} \frac{g_4(a)}{C(a)}
 \\
g_4(a) &= \frac{a_B^2}{\sqrt{(a_1^2 - a^2)a_B^2 + \left(\frac{a_1^2 - a_0^2 - \frac{a^2}{4}}{4}\right)^2}}
\end{aligned}
\]

(13)

\(c_x\) is the interlaminar effect constant in the Bluhm's model. \(C(a)\) in the above equations is the dimensionless compliance value for the corresponding CSTBD specimen and it is calculated by the following relation:

\[
C(a) = \int_{a}^{a_1} \frac{2}{BE'} Y^2(\alpha) \, d\alpha
\]

(9.8)

The above equations are not restricted to any particular fracture mode. In other words, the SIF \(Y^*(\alpha)\) for the CCNBD fracture problems can be Mode I, Mode II, Mode III or mixed mode SIF values depending on the fracture mode which the original \(Y(\alpha)\) and \(C(\alpha)\) of the CSTBD fracture problem represents. If we substitute the SIF solution for the pure Mode I CSTBD fracture problem (Equation (9.1)) into the above expressions, the SIF solution for the CCNBD specimen under Mode I fracture condition can then be obtained.

5. Based on these evaluations, it has been concluded that the CCNBD specimen will behave in a way typical of a chevron cracked geometry and most of the applicable CCNBD specimens will fall in the range of medium crack case. The CCNBD specimens with short cracks are difficult to machine and those with long cracks are unsuitable for practical fracture toughness measurement.

In the case of the applicable CCNBD specimens with medium length cracks, they will reach their critical states when the crack fronts are somewhere between the initial and the final crack length \(a_0\) and \(a_1\). These critical states, hence the critical crack length \(a_m\) and the critical (minimum) SIF values \(Y^*_m\) are specimen geometry dependent only. They are not influenced by the external loading conditions. It is mathematically self-evident that these critical states will correspond to the maximum (or failure) external load under the LEFM conditions. Therefore by recording the maximum external load when the CCNBD specimens are used to measure the fracture toughness of rock materials, the fracture toughness values can then be calculated by the following equations:
\[K_C = \frac{P_{\text{max}}}{B\sqrt{R}} Y_m^* \]

Again no particular fracture mode is implied by this calculation so this equation is equally suitable for fracture toughness measurements for any fracture mode condition.

Unless otherwise stated, the following conclusions will be directed to the Mode I fracture condition only.

6. Numerical calibration of Mode I fracture problems for the CSTBD and CCNBD specimens both by boundary element method (BEM) and by finite element method (FEM) have proved the validity of the theoretical evaluations of the Mode I SIF values for the CSTBD and CCNBD fracture problems. The methods used for the SIF calculations are immediate displacement method and compliance method. The differences of the \(Y(\alpha) \) values for the CSTBD specimen and \(Y^*_m \) values for the CCNBD specimens between the theory and the numerical calibration are within \(\pm 5\% \).

7. The specimen geometry requirement studies for rock Mode I fracture toughness \((K_{IC}) \) measurement by the CCNBD specimens show that the dimensionless specimen geometries \(\alpha_1 \) and \(\alpha_B \) should be within the range outlined by the following six restrictions in order to obtain satisfactory conditions for plane strain fracturing which is believed to generate constant fracture toughness values dependent on materials only. These requirements are:

\[
\begin{align*}
\alpha_1 & \geq 0.4, & \text{Line 0} \\
\alpha_1 & \geq \alpha_B/2, & \text{Line 1} \\
\alpha_B & \leq 1.04, & \text{Line 2} \\
\alpha_1 & \leq 0.8, & \text{Line 3} \\
\alpha_B & \geq 1.1729\alpha_1^{1.6666}, & \text{Line 4} \\
\alpha_B & \geq 0.44, & \text{Line 5}
\end{align*}
\]

These requirements are referred to as valid CCNBD geometrical range.

It is the CCNBD specimens with the specimen geometries within these range which will be used for practical determination of Mode I fracture toughness values of rock materials. For these CCNBD specimens, the critical Mode I SIF values \(Y^*_m \) which are to be used for fracture toughness calculations can be expressed by the following equation:

\[Y_m^* = u e^{v\alpha_1} \]
where \(u \) and \(v \) are geometrical constants which are dependent on \(\alpha_a \) and \(\alpha_b \) only and can be obtained from Table 4.9. Equation (9.11) is substantiated both theoretically and numerically and can therefore be used for practical measurement with confidence.

8. Experiments by 40 different CCNBD specimen geometries on 42 different rock samples have proved that the CCNBD specimens with the geometry dimensions within the range defined by Equation (9.10) will yield consistent fracture toughness \((K_{ic}) \) values for rock materials, which are believed to be the valid material constants. The fracture toughness values obtained from specimens with geometries far outside the valid range were found to vary considerably. Therefore in order to have a valid rock fracture toughness test, the valid geometry requirements expressed in Equation (9.10) should be strictly observed.

It has been further proved that the rock \(K_{ic} \) values generated by the CCNBD specimens are around 10% lower than the first step (Level I) \(K_{ic} \) values determined by CB and SR methods, see the Equation (9.12). However those determined by the CCNBD specimens are believed to be closer to the actual material fracture toughness values.

\[
K_{ic}^{CCNBD} = 0.0521 + 0.8788 K_{ic}^{SRM} \tag{9.12}
\]

9. Experimental specimen size requirement studies suggest that in order to obtain a valid consistent material constant fracture toughness value \(K_{ic} \), the CCNBD specimen diameter \(D \) is recommended to be at least 75 mm unless a smaller size has been validated beforehand. For any specimen size, the validation study should be carried out each time before the \(K_{ic} \) value can be taken as a valid material constant. The studies can be conducted easier by comparing the results from different specimen sizes, or alternatively can be approximately validated by the following equation:

\[
D_{min} = 8.88 + 1.4744 \left(\frac{K_{ic}}{\sigma_t} \right)^{-2} \tag{9.13}
\]

10. Based on the experimental results, good relationships between the measured fracture toughness \((K_{ic}) \) and the conventional rock properties, Young’s modulus \(E \), tensile strength \(\sigma_t \) and UCS \(\sigma_c \), have been obtained. For the purpose of estimation, the \(K_{ic} \) value of a rock material can be jointly predicted by averaging the calculated values from the following three equations:
11. Many good features when using the CCNBD specimens for rock fracture toughness measurement have been shown during the current experimental investigation. Some of the important points are summarized as follows.

a). The critical SIF values $Y^*{m}$ for the CCNBD specimens which are to be used for calculations of fracture toughness values are around 1.0 only, compared with those critical values of 10.42 and 24.0 for the standard CB and SR specimens recommended by the ISRM. This means, by the comparison of Equation (9.9) with Equation (5.5), if the suggested standard geometries for these three specimens are used to measure the K_{lc} of the same rock material, the maximum (failure) load for CCNBD specimen P_{max} in kN will be around 6.6 times larger than the measured K_{lc} in MPa√m, while the multiplication factors for the CB and SR specimens are just around 1.0 and 0.44 only. In other words, CCNBD specimens can work as an amplifier to increase the magnitude of the output reading from the generally very small input of fracture toughness value. The failure load of the CCNBD specimen will be around 6.6 times greater than that of the CB specimen and 15.0 times than the SR specimen, if their suggested standard specimen geometries are used for the fracture toughness testing of the same rock material. This is of great significance for practical purposes as the extremely high requirement on the testing machine’s low load range test abilities set by the CB and SR methods can be reduced. This will certainly increase the availability, test ability and suitability of the testing apparatus and will make the testing easier to carry out. In addition, larger output reading always means less system error in the experiment. Experimental results have proved these arguments.

b) No complicated setting-up aid and loading fixture are required for the CCNBD test. The testing will be as simple as that for using a normal Brazilian disc to measure the rock tensile strength.

c) Much larger tolerance can be given to the CCNBD geometrical dimensions during specimen preparation. The designed geometrical dimensions a_0, a_1 and a_2 can be just used for the approximate control of the specimen geometries to be prepared but their final values do not have to be strictly the same as the designed values. In fact, the actual CCNBD specimen dimensions do not have to be measured before the prepared specimen are ready for test, and the a_0 value can be more precisely measured after the test when the CCNBD specimens have
been cracked into two halves. The critical SIF value Y_m^* is only to be decided by Equation (9.11) according to the actual specimen dimensions. The specimens are considered to be valid for fracture toughness (K_{IC}) measurement as long as these measured geometrical dimensions are within the range outlined by Equation (9.10). This flexibility for the sample preparation makes the CCNBD specimen more convenient and easier to prepare compared with other chevron notched specimens, and this is always of great benefit for engineering purposes.

With respect to the accuracy of the specimen dimension measurement after the sample preparation, it has been concluded that amongst the three cardinal dimensionless geometrical dimensions (α_0, α_1 and α_B), α_0 and α_B are less important in the determination of Y_m^* value for the CCNBD specimen compared with α_1 value. In other words, the induced error in the Y_m^* values will be mainly influenced by the error in the α_1 determination. Therefore for the determination of α_0 and α_B values, greater tolerance can be given during the measurement. For the determination of α_1 value, the error of ±0.1mm is accepted.

d). It has been experimentally proved that the CCNBD specimen geometry generates less scattered K_{IC} values if only one single geometry is used compared with CB and SR methods.

e). Based on theoretical investigation of the mixed mode fracture analysis for the CSTBD and the CCNBD geometries, great potential has been shown for these two geometries to be the ideal specimens to be used for rock pure Mode II and mixed mode fracture research, such as the Mode II fracture toughness test, mixed mode fracture strength locus test and the studies of crack propagation in rock materials under mixed mode fracture situations. Different combinations of Mode I and Mode II fracture intensities can be easily obtained by inclining the crack orientation to the loading direction at a different angle, and the testing will remain the same, simple and convenient to carry out. Besides, these two specimens are believed to be good geometries which can be adapted for rock anisotropic fracture studies.

12. When applied to rock cutting mechanics analysis, rock fracture toughness K_{IC} can be used jointly with rock UCS, σ_r, for the prediction of rock cutting parameters based on Weibull’s probabilistic fracture model. It is believed that Weibull’s weakest link strength theory based on statistical (probabilistic) fracture mechanics can better represent the cutting mechanism in rock cutting from a statistical point of view as there are involved many random characteristics of the rock material. It has been experimentally proved that rock indentation strength and rock fracture strength (which represent the rock’s resistance to the tool’s normal force and cutting force respectively) are random variables, varying from point to point along the rock cutting route and their values follow the Weibull’s probabilistic distribution, instead of the commonly suggested normal distribution.

The Weibull distribution parameters obtained above can be taken as rock material constants.
for rock cutting. On knowing them, not only the cutting performance parameters, such as the mean cutting force, mean normal force and mean specific energy are known, but also their values' distribution can be predicted. At this stage, it is believed that rock fracture toughness K_{IC} and rock UCS strength σ_c play the main important roles in determining the rock cutting force and rock normal force respectively and the rock cutting specific energy. Some application of this initial prediction method have yielded quite encouraging results, though much more needs to be done before this prediction method can be accepted as an applicable theory.

Based on the above conclusions, some further researches are strongly recommended.

1. For the Mode I rock fracture toughness (K_{IC}) test by the CCNBD specimen, the research results given above are far from complete. More rock samples and a larger specimen size range are suggested for the investigation of the size effect on the K_{IC} test values so that a more accurate size requirement criteria for a valid CCNBD test can be reached. Attention should also be directed the loading rate effect on the K_{IC} test values so that more precise valid loading rates can be decided before the test. Compared with the Level II K_{IC} values determined by the ISRM suggested CB and SR methods, the K_{IC} values obtained by the CCNBD method are still much lower. Further investigation into this aspect is strongly suggested. In addition, a round robin test by different rock mechanics research laboratory is also strongly suggested to be organized in the near future so that the reproducibility and the repeatability of the fracture toughness values obtained from the tests by the CCNBD specimen geometry can be investigated.

2. Similar to the rock Mode I fracture toughness K_{IC} test, a draft for recommending the CSTBD or the CCNBD specimens for rock pure Mode II and mixed mode fracture test, such as fracture toughness K_{IC} measurement, fracture strength locus test and mixed mode crack propagation investigation, has to be drawn at some stage. Therefore numerical and experimental calibrations of pure Mode II and mixed mode CSTBD and CCNBD fracture problems have to be carried out to substantiate the theoretical evaluations.

3. As it is believed that the CSTBD and the CCNBD are ideal specimens to be used for rock anisotropic fracture studies, further theoretical and experimental investigations in this area are to be conducted.

4. The combination of the probabilistic fracture mechanics with rock cutting mechanics for cutting performance prediction is just a first step approach. Even though encouraging predicted results have been shown, they are based on many mathematically imperfect assumptions. Many more theoretical and experimental investigations have to be carried out before this initial theory can be accepted.
Bibliography and References

17. Barker, L.M., (1984), Specimen Size Effects in Short Rod Fracture Toughness Measurements,

34. Chang, S., (1988), Stress Intensity Factors in a Circular Cylinder Containing a Pair of Radial
35. Chell, G.G., et. al., (1977), A Post Yield Fracture Mechanics Analysis of Three-Point Bend
Specimens and Its Implications to Fracture Toughness Testing, *Engineering Fracture Mechanics*,
Vol. 9, pp. 101-121.
for Rock Fracture Toughness Measurement and Tunnelling Machine Performance Prediction,
38. Chong, K.P. & Kuruppu, M.D., (1984), New Specimen for Fracture Toughness Determination
Stress Intensity Factor, K_{IC}, from Internally Pressurised Thick-walled Vessels, *Experimental
Mechanics*, 16, pp.233-238.
Ceramics, Rocks and Concrete*, ASTM STP 745, eds.: S.W. Freiman et. al..
42. Davies, D.G.S., (1973), The Statistical Approach to Engineering Design in Ceramics,
Econ. Dept., Ecole des Mines de Paris, Fontainebleau, France.
44. Erdogan, F., (1962), On the Stress Distribution in Plates with Collinear Cuts under Arbitrary
Analysis of Fracture, *Journal of the American Ceramic Society*, Vol. 61, No. 3-4, March - April,
pp.156-160.
47. Evans, I. & Pomeroy, C.D., (1966), *The Strength, Fracture and Workability of Coal*, Published
by Pergamon Press, 1st edn..
Research to Application, *Proceedings of the 22nd US Symposium on Rock Mechanics*, MIT,
pp.21-46.
241

Bibliography and References

at the SME-AIME Annual Meeting, New Orleans, Louisiana, USA.

57. Frocht, M.M., (1948), Photoelasticity, John Wiley & Sons, Inc..

Bibliography and References

160. Williams, M.L., et. al., (1957), On the Stress Distribution at the Base of a Stationary Crack,

Appendix A: An Input Data File for BEASY Numerical Calibration

BEASDT 0 0
TITLE D = 75, R' = 26.3, a0 = 10, a1 = 24.39262,
a = 15.00, b = 5.526479
BP 1 0 0 0
BP 2 0 0 0 0 15.00
BP 3 0 0 0 37.5
BP 4 15.0 0 0
BP 5 15.0 0 24.392622
BP 6 15.0 0 37.5
BP 7 2.763239 0 0
BP 8 2.763239 0 15.00
BP 9 2.763239 0 37.5
BP 10 0 0 15.0 37.5
BP 11 0 0 37.5
BP 12 0 1.308731 0 0 37.477156
BP 13 15.0 0 1.308731 0 37.477156
BP 14 2.763239 0 24.392622
BP 20 24.00000 0 0
BC 1 1 1 1 1
BC 2 1 2 3 1 1
BC 3 1 1 0 13 4 1
BC 4 1 3 4 6 1 1
BC 5 8 5 20 1
BC 6 6 0 1 0 6 4 1
BR 1 1 2 8 7 408 2
BR 2 7 8 5 4 08 5
BR 3 2 3 9 8 -408 1
BR 4 1 4 9 6 5 5 8
BD 5 8 1 4 5 4 5
BR 6 6 1 0 13 12 11 6 3
BR 7 1 3 6 3 12 1 1 5
BR 8 4 6 1 0 4 6
ZN 1
ZP 0.3
ZE 10000
ZB 1 8
PL 0
PD 3 2 0 0 0 0 0
PD 4 2 0 0 0 0 0
PD 5 2 0 0 0
PP 7 -1.00 -100 -100 -100 -100
LF 1
EN

Appendix B: Programs for the SIF Evaluation of the CSTBD and CCNBD Fracture Problems

1. Program SIFE
(for SIF Evaluation of Mode I CSTBD Fracture Problem)

PROGRAM SIFE
C
C THE STRESS INTENSITY FACTOR
C EVALUATION OF THE CRACKED STARIGHT-THROUGH BRAZILIAN DISK SUBJECTED
C TO A PAIR OF DIAMETRICAL LOADS
C UNDER MODE I FRACTURE CONDITION
C
DIMENSION CET(100), CET1(100), CET2(100),
RCC1(100), RCC2(100)
DIMENSION TXX(100), TYY(100), SYY(100),
SYY1(100), SYY2(100)
DIMENSION SIFF(100), SIFFP(100)
C
OPEN(1, FILE = 'data3')
OPEN(2, FILE = 'data4')
READ (1, *) DIAM, RID, THICK, PER
READ (1, *) NUMBI, NUMBJ, EPS
READ (1, *) CETBEG, CETEND
C
DO 1500 IH = 1, 99
SIF = 0.
PC0 = 0.
PCC = 0.
P1 = PI = 3.1415926
CRACK = CRACK + 0.01
C
C COMPUTE THE INITIAL STRESSES ALONG
C THE XX-AXIS
C
SYY0 = 2. *PER/(PI*THICK*DIAM)
PCO = SYY0
SIF = SIF + SYY0*SQRT(PI*CRACK)
C
C COMPUTE THE BOUNDARY GEOMETRIES
C
WRITE (6, 20)
20 FORMAT (//, 'THE BOUNDARY GEOMETRIES')
WRITE (6, 30)
30 FORMAT (/, 'J CET(I) LENGTH CET1(I) CET2(I)
* RCC1(I) RCC2(I)')
C
WRITE (6, 40)
40 FORMAT (/, 'B CETBI = CETBEG
STEP1 = (CETEND - CETBI) / NUMBJ
DO 100 I = 1, NUMBJ
CRTD = (CETBI + STEP1/2.)*PI/180.
C
CETBI = CETBI + STEP1/2.'
Appendix

```
ALEN = 2.*RID*SIN(STEP1*PI/360.)
CET1(I) = ATAN2(RID*SIN(CET(I))),
         (RID*COS(CET(I)) - CRACK))
CET2(I) = ATAN2(RID*SIN(CET(I))),
         (RID*COS(CET(I)) + CRACK))
RCC1(I) = SQRT(RID*SIN(CET(I))**2 + (RID*COS(CET(I)) - CRACK)**2)
RCC2(I) = SQRT(RID*SIN(CET(I))**2 + (RID*COS(CET(I)) + CRACK)**2)
CET5 = CET(I)*180. /PI
CET6 = CET1(I)*180. /PI
CET7 = CET2(I)*180. /PI
WRITE (6.40)I, CET5, ALEN, CET6, CET7, RCC1(I), RCC2(I)
40 FORMAT (15,6F9.4)
100 CONTINUE
105 CONTINUE
SIFO0 = SIF
C COMPUTE THE SHEAR AND NORMAL FORCE
C ON THE BOUNDARY
WRITE (6, 110)
110 FORMAT (//, 'THE SHEAR AND NORMAL FORCE
ON THE BOUNDARY')
WRITE (6, 120)
120 FORMAT (I, 'NUMBI CET(I) ALEN TXX(I)
* TYY(I)')
XBEG = -CRACK
STEP2 = 2.*CRACK/NUMBI
DO 200 I= 1, NUMBI
CET3 = CET(I)-CET1(I)/2. -CET2(I)/2.
CET4 = 3.* (CET1(I) + CET2(I))/2.
A1= RID*PCO/SQRT(RCC1(I)*RCC2(I))
A2 = CRACK*CRACK/(RCC1(I) *RCC2(I))
SIGXX = A1 * (COS(CET3)-A2*SIN(CET(I))
         *SIN(CET4))-PC0
SIGYY = A1 *(COS(CET3) + A2*SIN (CET(I))
         *SIN(CET4))-PCO
SIGXY = A1 *A2*SIN (CET(I))*COS(CET4)
TXX(I) =SIGXX*COS(CET(I)) +SIGXY*SIN(CET(I))
TYY(I) = SIGXY*COS(CET(I)) + SIGYY*SIN (CET(I) )
IF (JJJ. EQ. 1) GOTO 200
WRITE (2,130) I, CET(I), TXX(I), TYY(I)
130 FORMAT (15,3F9.4)
200 CONTINUE
JJJ =1
C COMPUTE STRESSES ON THE XX-AXIS DUE
C TO THE BOUNDARY FORCE
WRITE (6,210)
210 FORMAT (//, 'STRESS ALONG THE X-AXIS DUE
TO THE BOUNDARY FORCE')
WRITE (6,220)
220 FORMAT (I, 'NUMBI XI STEP SYY(I)
* SYY2(I)')
XBEG = -CRACK
STEP2 = 2.*CRACK/NUMBI
DO 400 I = 1, NUMBI
XI = XBEG + STEP2/2.
XBEG = XI + STEP2/2.
DO 300 J=1, NUMBJ
ALFA1= PI/2.-CET(J)
ALFA2 = CET(J)
X1 = RID*COS(CET(J))
Y1 = RID*SIN(CET(J))
R1 = SQRT((X1-XJ)**2 + Y1*Y1)
SINC1 = (XJ-X1)/R1
COSC1 = Y1/R1
R21 = SQRT((X1+XJ)**2 + Y1*Y1)
SINC21 = (XJ+X1)/R21
COSC21 = Y1/R21
R22 = SQRT((X1-XJ)**2 + Y1*Y1)
SINC22 = (XJ-X1)/R22
COSC22 = Y1/R22
A3 = COSC21*SINC21**2/R21
A4 = COSC22*SINC22**2/R22
SYY11 = -2.*TYY(J)*ALEN*(COSC1**3/R1
       -COS(ALFA1)/DIAM)
SYY22 = -2.*TXX(J)*ALEN*(A3 + A4*COS(ALFA2)/DIAM)
SYY11 = SYY11/PI
SYY22 = SYY22/PI
PC1 = PC1 + SYY11
PC2 = PC2 + SYY22
300 CONTINUE
SYY(I) =PC1
SYY2(I) = PC2
WRITE (6,310) I, XJ, STEP2, PC1, PC2
310 FORMAT (I5,4F10.4)
PC1=0.
PC2 = 0.
PC3 = 0.
400 CONTINUE
WRITE (6,410)
410 FORMAT (//, 'SYY(I):')
DO 500 I=1, NUMBI
NUM1= NUMBI-I +1
SYY(I) = 2.*SYY2(I) + SYY1(I) + SYY1(NUM1)
PCC = PCC + SYY(I)
WRITE (6,420) I, SYY(I)
420 FORMAT (I5, F10.4)
500 CONTINUE
PCO = PCC/FLOAT(NUMBI)
PCC=0.
SIF = SIF+ PCO*SQRT(PI*CRACK)
PO = PER/(THICK*SQRT(RID))
SIFO = SIF/PO
WRITE (6,900) CRACK, SIF, SIFO
900 FORMAT (CRACK =', F9.4, ' SIF=', F10.6, '
SIFO =', F9.4)
IF (ABS(SIF-SIFO0). LT. EPS) GOTO 1000
GOTO 105
1000 CONTINUE
SIFO0 = SIF
SIFO0(I) = SIF/SYY0*SQRT(PI*CRACK))
WRITE (6,1800)
1100 FORMAT (//)
1500 CONTINUE
C DO 1520 JJ =1.99
```
2. Program SIFCN
(for SIF Evaluation of Mode I
CCNBD Fracture Problem)

PROGRAM SIFCN
C
C STRESS INTENSITY FACTOR EVALUATION OF
C THE CRACKED CHEVRON-NOTCHED
C BRAZILIAN DISK SUBJECTED TO
C DIAMETRICAL COMPRESSION
C
implicit double precision (a-h,o-z)
OPEN (1, FILE='data9')
OPEN (2, FILE='data10')
WRITE (6,10)
10 FORMAT ('STRESS INTENSITY EVALUATION
OF CCNBD SPECIMEN',/)
AK= 1.0
DELTA = 0.0004
READ (*,*), ALFA0,ALFA1,ALFA8,K
DO 2000 I=1,25
ALFA = ALFA0 + DELTA/2.
ALFA0 = ALFA + DELTA/2.
A11 = ALFA1**2-ALFAO**2 + ALFAB**2/4.
A1A = (ALFA1**2-ALFAO**2-ALFAB**2/4)**2
A2 = (ALFA1**2-ALFA**2)*ALFAB**2
A8C = 0.5717*SQRT(AFAC)-0.385*SQRT(AFAC**3)
+ 5.2946*SQRT(AFAC**5)
A9C = -17.1177*SQRT(AFAC)**7 + 19.9932*SQRT(AFAC**9)
A1OC = 11.0711*SQRT(AFAC**11)
-16.2871*SQRT(AFAC**13)
A11B = -29.0685*SQRT(AFAC**15)
+ 29.5453*SQRT(AFAC**17)
C
C 250 CONTINUE
C
CLOSE(1)
CLOSE(2)
STOP
END

C
AA = ALFA
AY1 = 0.03537 + 2.0394*AA-7.0356*AA**2
+ 12.8154*AA**3 + 8.4111*AA**4
AY2 = -30.7418*AA**5-29.4959*AA**6
+ 62.9793*AA**7 + 66.5439*AA**8
AY3 = -82.1339*AA**9-73.6742*AA**10 + 73.8466*AA**11
AY = AY1 + AY2 + AY3
C
F1 = A1-SQRT(A2*A1A)
F2 = ALFA*ALFAB**2/SQRT(A2+A1A)
YALFA = A8 + A9 + A10 + A11
IF (I.NE.1) GOTO 300
CALFA = 0.
CY = 0.
AA = 0.
JJ = INT(ALFAO/STEPO)
DO 250 III =1, JJ
AA = AA + STEPO/2.
AY = AY + STEPO/2.
A8B = 0.5717*SQRT(AFAB)-0.385*SQRT(AFAB**3)
+ 5.2946*SQRT(AFAB**5)
A9B = -17.1177*SQRT(AFAB)**7 + 19.9932*SQRT(AFAB**9)
A10B = -16.2871*SQRT(AFAB**11)
CYB = -29.0685*SQRT(AFAB**15)
+ 29.5453*SQRT(AFAB**17)
C
C 250 CONTINUE
C
CLOSE(1)
CLOSE(2)
STOP
END

C
AA = ALFA
AY1 = 0.03537 + 2.0394*AA-7.0356*AA**2
+ 12.8154*AA**3 + 8.4111*AA**4
AY2 = -30.7418*AA**5-29.4959*AA**6
+ 62.9793*AA**7 + 66.5439*AA**8
AY3 = -82.1339*AA**9-73.6742*AA**10 + 73.8466*AA**11
AY = AY1 + AY2 + AY3
C
F1 = A1-SQRT(A2*A1A)
F2 = ALFA*ALFAB**2/SQRT(A2+A1A)
YALFA = A8 + A9 + A10 + A11
IF (I.NE.1) GOTO 300
CALFA = 0.
CY = 0.
AA = 0.
JJ = INT(ALFAO/STEPO)
DO 250 III =1, JJ
AA = AA + STEPO/2.
AY = AY + STEPO/2.
A8B = 0.5717*SQRT(AFAB)-0.385*SQRT(AFAB**3)
+ 5.2946*SQRT(AFAB**5)
A9B = -17.1177*SQRT(AFAB)**7 + 19.9932*SQRT(AFAB**9)
A10B = -16.2871*SQRT(AFAB**11)
CYB = -29.0685*SQRT(AFAB**15)
+ 29.5453*SQRT(AFAB**17)
C
C 250 CONTINUE
C
CLOSE(1)
CLOSE(2)
STOP
END
3. Program MIXCSTBD
(for SIF Evaluation of Mixed Mode CSTBD Fracture Problem)
(Dislocation Method)

PROGRAM MIXCSTBD
DIMENSION FFI(300), GFI(300)
DIMENSION SXX(300), SYY(300), SXY(300), TXX(300), TYY(300)

+29.5453*SQRT(AFAC**17)
YAFC = A8C + A9C + A10C + A11C

AC = AFAC
AY1C = 0.03537 + 2.0394*AC - 7.0356*AC**2
AY2C = -30.7418*AC**5 - 29.4959*AC**6
AY3C = -82.1339*AC**9 - 73.6742*AC**10 + 73.8466*AC**11
AYC = AY1C + AY2C + AY3C

IX = 80
IF1 = 100
IB = 180
EPSK = 0.008
R = 1.0
D = 2.0
P = 31.4159
READ (*,*) CETA
PI = 3.1415926

CC = YALFA/AY
SINC1 = SIN(RCET)*COSB1 + COS(RCET)*SINB1
COSC1 = COS(RCET)*COSB1 + SIN(RCET)*SINB1
SIGMA1 = -2.*P*COSB1/(PI*R1)
SIGMA2 = -2.*P*COSB2/(PI*R2)
SIGN1 = SIGMA1*SINC1**2
SIGN2 = SIGMA2*SINC2**2
SIGN3 = SIGMA1*SINC1*COSC1
SIGN4 = SIGMA2*SINC2*COSC2
PP(0) = SIGN1 + SIGN2 + 2.*P/(PI*D)
QQ(0) = SINT + SINT2
QQ(0) = -QQ(0)
WRITE (3,3) XX, PP(I), QQ(I)

CC = YALFA/AY
SINC2 = SIN(RCET)*COSB2 + COS(RCET)*SINB2
SIGMA3 = -2.*P*COSB3/(PI*R3)
SIGMA4 = -2.*P*COSB4/(PI*R4)
SIGN5 = SIGMA3*SINC3**2
SIGN6 = SIGMA4*SINC4**2
SIGN7 = SIGMA3*SINC3*COSC3
SIGN8 = SIGMA4*SINC4*COSC4
PP(0) = SIGN5 + SIGN6 + 2.*P/(PI*D)
QQ(0) = SINT3 + SINT4
QQ(0) = -QQ(0)
WRITE (3,3) XX, PP(I), QQ(I)

3 FORMAT (3F11.5)
5 CONTINUE
C

3. Program MIXCSTBD
(for SIF Evaluation of Mixed Mode CSTBD Fracture Problem)
(Dislocation Method)
DELTX = DX/1000.
DELTFI = PI/FLOAT(IFT)
FI = -PI/2.-DELTFI

C
AK1 = 0.
AK2 = 0.
XX = -C-DX
DO 30 I = 1, IX
XX = XX + DX
IF (I .NE. IX) GOTO 25
DEX = DX/10.
XX = XX - DEX
DPP = (PP(I + 1) - PP(I))/10.
DQQ = (QQ(I + 1) - QQ(I))/10.
P = PP(I) + (PP(I + 1) - PP(I))*DX/DX
Q = QQ(I) + (QQ(I + 1) - QQ(I))*DX/DX
X02 = X2
III = 1
GOTO 78

50 DXX = X-X0
IF (DXX.NE.0.) GOTO 55
X02 = X2
III = 1
55 X02 = X0 + DXX/2.
X01 = X0 - DXX/2.
GOTO 78

73 IF (ABS(X0-X1).GT.DELTX) GOTO 78
I = (I .NE. 1) GOTO 75
74 P2 = PP(J) + (PP(J+1) - PP(J))*DX/DX
Q2 = QQ(J) + (QQ(J+1) - QQ(J))*DX/DX
BETA = PP(J) - XX*(P1-PP(J))/DX
GOTO 79
D2G = DG*ASIN(X01/C)
F1 = 2.*C*X01*ASIN(C/FI)
F2 = 2.*C*X01*ASIN(C/FI)

BETAF = F2-X02*(PP(J) + 1.) /PP(J+1) /PP(J+1)
ALFAF = (PP(J) + 1.) /PP(J+1) /PP(J+1)
ALFAG = (PP(J+1) - PP(J)) / (X2-XX)

BETAG = QQ(J) - XX*(QQ(J+1) - QQ(J)) / (X2-XX)
ALFAG = (QQ(J+1) - QQ(J)) / (X2-XX)

EF = C*(COS(FI)+ALFAF*C*SIN(FI)+BETAF)
EG = C*(COS(FI)+ALFAF*C*SIN(FI)+BETAF)
F1 = 2.*C*X02*SIN(FI)
F2 = 2.*C*X02*SIN(FI)

D2F = DF*ASIN(X2/C)
F1 = ABS((XX-C*SIN(FI))/F1)
F2 = ABS((X01-C*SIN(FI))/F2)
E1F = EF*ALOG(F1)
E1G = EG*ALOG(F1)

IF (III. NE. 1) GOTO 79
F1 = 2.*C*X02*SIN(FI)
F2 = 2.*C*X02*SIN(FI)

D1F = DF*ABS((XX-C*SIN(FI))/F1)
F1 = ABS((XX-C*SIN(FI))/F1)
F2 = ABS((X2-C*SIN(FI))/F2)
E1F = EF*ALOG(F1)
E1G = EG*ALOG(F1)

BETAF = PP(J)-XX*(PP(J+1)-PP(J)) / (X2-XX)
ALFAF = (PP(J+1)-PP(J)) / (X2-XX)

BETAG = QQ(J)-XX*(QQ(J+1)-QQ(J)) / (X2-XX)
ALFAG = (QQ(J+1)-QQ(J)) / (X2-XX)

EF = C*(COS(FI)+ALFAF*C*SIN(FI)+BETAF)
EG = C*(COS(FI)+ALFAF*C*SIN(FI)+BETAF)
F1 = 2.*C*X2*SIN(FI)
F2 = 2.*C*X2*SIN(FI)

D2F = DF*ASIN(X2/C)
F1 = ABS((XX-C*SIN(FI))/F1)
F2 = ABS((X2-C*SIN(FI))/F2)
E1F = EF*ALOG(F1)
E1G = EG*ALOG(F1)

BETAF = PP(J)-XX*(PP(J+1)-PP(J)) / (X2-XX)
ALFAF = (PP(J+1)-PP(J)) / (X2-XX)

BETAG = QQ(J)-XX*(QQ(J+1)-QQ(J)) / (X2-XX)
ALFAG = (QQ(J+1)-QQ(J)) / (X2-XX)

EF = C*(COS(FI)+ALFAF*C*SIN(FI)+BETAF)
EG = C*(COS(FI)+ALFAF*C*SIN(FI)+BETAF)
F1 = 2.*C*X2*SIN(FI)
F2 = 2.*C*X2*SIN(FI)

D2F = DF*ASIN(X2/C)
F1 = ABS((XX-C*SIN(FI))/F1)
F2 = ABS((X2-C*SIN(FI))/F2)
E1F = EF*ALOG(F1)
E1G = EG*ALOG(F1)
TXX(I) = (SXX(I)*COS(BB) + SXY(I)*SIN(BB))*AL
TYY(I) = (SXY(I)*COS(BB) + SYY(I)*SIN(BB))*AL
WRITE (3,350) BB, TXX(I), TYY(I)
350 FORMAT (3F10.5)
400 CONTINUE

DB = 2.*PI/FLOAT(IB)
B = -DB
SIG = 0.
DO 450 I=1, IB
B=B+DB
BB =B +DB/2.
XB = R*COS(BB)
YB = R*SIN(BB)
XXX = R+ ABS(YB)
YYY = R+ ABS(XB)
XCET = 2.*ATAN(XB/XXX)
YCET= 2.*ATAN(YB/YYYY)
SIG = SIG + TXX(I)*SIN(XCET)/(2.*PI*R)
SIG = SIG + TYY(I)*SIN(YCET)/(2.*PI*R)
450 CONTINUE

DX = 2.*C/FLOAT(IX)
XX = -C-DX
DO 600 I=1, IX+1
XX=XX+DX
R1=SQRT(XX**2*(SIN(RCET))**2 + (YX*COS(RCET)-R)**2)
R2 = SQRT(XX**2*(SIN(RCET))**2 + (XX*COS(RCET) + R)**2)
SINB1= XX*SIN(RCET)/R1
COSB1= (R-XX*COS(RCET))/R1
SINO1 = -2.*TXX(I)*COSC1(IP*PI*R1)
SIG1 = SINO1/SINC1*IP*PI*R1
SINO2 = -2.*TYY(I)*SINC1/IP*PI*R1
SIG2 = SINO2/SINC1*IP*PI*R1
PP(I) = PP(I) + SIG(I) + SIG2 + 2.*P/(PI*D)
QQ(I) = SIGT1 +SIGT2
500 CONTINUE
PP(I) = PP(I) + SIG
WRITE (4,510) XX, PP(I), QQ(I)
510 FORMAT (3F11.5)
600 CONTINUE

GOTO 20
400 CONTINUE

C
END
AK0 = P*SQR(T(ALFAC/P1)/SQR(T(R))

FFAK1 = 0.,
FFAK2 = 0.,
YYAK1 = 0.,
YYAK2 = 0.,
YAK10 = 0.,
YAK20 = 0.,

DX = 2.*C/FLOAT(IX)
DELTX = DX/1000.

XX = -C-DX
DO 30 J = 1, IX
XX = XX + DX
IF (I .NE. IX) GOTO 25
DEX = DX/10.
XX = XX - DEX
DPP = (PP(IX + 1) - PP(IX))/10.
DQQ = (QQ(IX + 1) - QQ(IX))/10.
P = PP(IX) - DPP
QB = QQ(IX) - DQQ
DO 23 J = 1, 10
XX = XX + DEX
XX = XX + DEX/2.
P = PM + DPP
QB = QB + DQQ
DO 200 J = 1, IX
PM = DX*X + DQ
QB = QB + DQQ
CET = B
XB1 = XB - C
XB2 = XB + C
XB3 = XB - XX
CET1 = ATAN2(YB, XB1)
CET2 = ATAN2(YB, XB2)
CET3 = ATAN2(YB, XB3)
IF (CET1 .GT. O.) GOTO 120
CET1 = CET1 + 2.*PI
120 IF (CET2 .GT. O.) GOTO 121
CET2 = CET2 + 2.*PI
121 IF (CET3 .GT. O.) GOTO 122
CET3 = CET3 + 2.*PI
122 IF (I.EQ.1) CET1 = 0.
IF (I.EQ.1) CET2 = 0.
IF (I.EQ.1) CET3 = 0.
RR = SQRT(XB**2 + YB**2)
R1 = SQRT((XB - C)**2 + YB**2)
R2 = SQRT((XB + C)**2 + YB**2)
R3 = SQRT((XB-XX)**2 + YB**2)
C
C1 = (CET1 + CET2 + 4.*CET3)/2.
C2 = SQRT(C**2-XX**2)/(4.*PI*R3**2*SQRT(R1*R2))
PRE1 = PM*C2*COS(C1)
PIM1 = PM*C2*SIN(C1)
QRE1 = -QM*C2*SIN(C1)
QIM1 = -QM*C2*COS(C1)
PRE2 = PM*SIN(2.*CET3)/(4.*PI*R3**2)
PIM2 = PM*COS(2.*CET3)/(4.*PI*R3**2)
QRE2 = -QM*COS(2.*CET3)/(4.*PI*R3**2)
QIM2 = QM*SIN(2.*CET3)/(4.*PI*R3**2)
C1 = (2.*CET-3.*CET1-3.*CET2)/2.
C2 = SQRT(C**2-XX**2)*RR/(4.*PI*R3*SQRT(R1*R2))
PRE3 = -PM*C2*COS(C1)
PIM3 = -PM*C2*SIN(C1)
QRE3 = QM*C2*SIN(C1)
QIM3 = -QM*C2*COS(C1)
PRE4 = -PM*C2*COS(C1)
PIM4 = -PM*C2*SIN(C1)
QRE4 = -QM*C2*SIN(C1)
QIM4 = -QM*C2*COS(C1)
FDREP = PRE1 + PRE2 + PRE3 + PRE4
FDREQ = QRE1 + QRE2 + QRE3 + QRE4
FDIMP = PIM1 + PIM2 + PIM3 + PIM4
FDIMQ = QIM1 + QIM2 + QIM3 + QIM4
C
ZFREP = 2.*FDIMP*RR*SINC1
ZFREQ = 2.*FDIMQ*RR*SINC1
ZFIMP = -2.*FDREP*RR*SINC1
ZFIMQ = -2.*FDREQ*RR*SINC1
C
OMIMP = -OMIMP
OMM1Q = -OMM1Q
AAP = 4.*FIREP
AAQ = 4.*FIREQ
BBP = 2.*ZFREP-FIREP + OMREP
BBQ = 2.*ZFREQ-FIREQ + OMREQ
SXYP(I) = SXYP(I) + ZFIMP-FIIMP + OMIMP
SXYQ(I) = SXYQ(I) + ZFIMQ-FIIMQ + OMIMQ
SYYP(I) = SYYP(I) + AAQ + BBP/2.
SYYQ(I) = SYYQ(I) + (AAQ + BBQ)/2.
SXXP(I) = SXXP(I) + (AAP + BBP)/2.
SXXQ(I) = SXXQ(I) + (AAP + BBQ)/2.
C
200 CONTINUE
300 CONTINUE
C
DO 320 I = 1,IB + 1
J = IB + 2 - I
SXY(I) = SXY(I) + SXY(J) + SXYQ(I) + SXYQ(J)
SYY(I) = SYY(I) + SYY(J) + SYYQ(I) + SYYQ(J)
SXX(I) = SXX(I) + SXXP(I) + SXXQ(I) + SXXQ(J)
320 CONTINUE
C
B = -DB
AL = 2.*PI*R/FLOAT(IB)
DO 460 I = 1,IB
B = B + DB
IB = B + DB/2.
SXX(I) = SXX(I) + SXX(I + 1)/2.
SYY(I) = SYY(I) + SYY(I + 1)/2.
SXY(I) = SXY(I) + SXY(I + 1)/2.
TXX(I) = (SXX(I)*COS(BB) + SXY(I)*SIN(BB))*AL
WRITE (3,433) BB, TXX(I), TYY(I)
433 FORMAT (3F10.5)
400 CONTINUE
C
B = -DB
SIG = 0.
DO 450 I = 1,IB
B = B + DB
BB = B + DB/2.
XB = R*COS(BB)
YY = R*SIN(BB)
SIG = SIG + TXX(I)*SIN(2.*CET3)/(4.*PI*R3**2)
SIG = SIG + TYY(I)*SIN(2.*CET3)/(4.*PI*R3**2)
450 CONTINUE
C
DX = 2.*C/FLOAT(IX)
XX = -C-DB
DO 600 I = 1,IX + 1
XX = XX + DX
B = -DB
PP(I) = 0.
QQ(I) = 0.
DO 500 J = 1,IB
B = B + DB
BB = B + DB/2.
XP = R*COS(BB)
YP = R*SIN(BB)
SINC1 = YP/R1
COSC1 = (XP-XX)/R1
SIG1 = -2.*TXX(J)*COSC1/(PI*R1)
SIG2 = -2.*TYY(J)*SINC1/(PI*R1)
PP(I) = PP(I) + (SIG1 + SIG2)*SINC1**2
QQ(I) = QQ(I) + (SIG1 + SIG2)*SINC1**2
500 CONTINUE
PP(I) = PP(I) + SIG
WRITE (4,510) XX, PP(I), QQ(I)
510 FORMAT (3F11.5)
600 CONTINUE
C
GOTO 20
C
1000 CLOSE (3)
CLOSE (4)
CLOSE (5)
STOP
END
5. Program Z2
(for SIF Evaluation of Mixed Mode
CSTBD Fracture Problem)
(Complex Stress Function Method - II)
(Z2 Method)

PROGRAM Z2
DIMENSION PP(150), QQ(150), SXX(400), SYY(400), SYYP(400), SYYQ(400)
DIMENSION SXXP(400), SXXQ(400), SYYP(400), SYYQ(400)
DIMENSION TXX(400), TYY(400)
CHARACTER IC1*1, IC3*5, ICJ*8
INTEGER JC

IX = 80
IB = 180
Pi = 3.1415926
D = 2.0
R = 1.0
P = 3.1415926
V = 0.3
W = 3.4 * V
EPSK = 0.008

READ (*,*) C
CETA = -1.0
CTO = 0.0

ICA = -1
IC1 = 'c'
IC3 = 'z.dat'

DO 3000 KC = 1, 61

JC = ICA + KC
IF (KC.GT.31) JC = 30 + 2*(KC-31)
OPEN (1, FILE='DD')
READ (1, *) ICJ
CLOSE (1)

WRITE (1,1) IC1, JCC, JC, IC3
1 FORMAT (A1, I1, I1, A5)

WRITE (1,2) IC1, IC3, JC
2 FORMAT (A1, I2, A5)

WRITE (1,3) IC1, IC3, JC
3 FORMAT (A1, I2, A5)

CLOSE (1)
OPEN (1, FILE='DD')
READ (1, *) IC1
CLOSE (1)
OPEN (1, FILE='DD')
READ (1, ICJ)
CLOSE (1)
OPEN (1, FILE='DD')
READ (1, ICJ)
CLOSE (1)
OPEN (1, FILE='DD')
READ (1, ICJ)
CLOSE (1)

IF (KC.GT.31) CT0 = 1.0
CETA = CETA + 1.0 + CTO

WRITE (*,*) KC, U, C
RCET = CETA*Pi/180.
DX = 2.0*C/FLOAT(IX)
DB = 2.0*PI/FLOAT(IB)

XX = -C+DX
DO 5 I = 1, IX + 1
XX = XX + DX
IF (XX.LT.-C) XX = -C
IF (XX.GT.C) XX = C
R1 = SQRT(XX**2*|SIN(RCET)|)**2
+ (XX*COS(RCET)-R)**2
R2 = SQRT(XX**2*|SIN(RCET)|)**2
+ (XX*COS(RCET)+R)**2
SINB1 = XX*|SIN(RCET)|/R1
COSB1 = |R-XX*COS(RCET)|/R1
SINB2 = XX*|SIN(RCET)|/R2
COSB2 = |R+XX*COS(RCET)|/R2
SIGMA1 = 2.0*|COSB1|/|PI*R1|
SIGMA2 = 2.0*|COSB2|/|PI*R2|
SIGN1 = SIGMA1*|SIN1**2|
SIGT1 = SIGMA1*|SIN1+COSC1|
SIGN2 = SIGMA2*|SIN2**2|
SIGT2 = SIGMA2*|SIN2+COSC2|
PPD = SIGN1 + SIGN2 + 2.0*|PI*D|
QQD = SIGT1 + SIGT2
QQD = -QQD

CONTINUE

ALFAC = C/R
AK0 = 1.0*|SQRT(ALFAC*Pi)/SQRT(R)|

FFAK1 = 0.0
YAK1 = 0.0
YAK2 = 0.0
YAK10 = 0.0
YAK20 = 0.0

DO 4000 KC = 1, 61

DX = 2.0*C/FLOAT(IX)
DELTX = DX/1000.

WRITE (*,*) KC, U, C
RCET = CETA*Pi/180.
DX = 2.0*C/FLOAT(IX)
DB = 2.0*PI/FLOAT(IB)

XX = -C+DX
DO 5 I = 1, IX + 1
XX = XX + DX
IF (XX.LT.-C) XX = -C
IF (XX.GT.C) XX = C
R1 = SQRT(XX**2*|SIN(RCET)|)**2
+ (XX*COS(RCET)-R)**2
R2 = SQRT(XX**2*|SIN(RCET)|)**2
+ (XX*COS(RCET)+R)**2
SINB1 = XX*|SIN(RCET)|/R1
COSB1 = |R-XX*COS(RCET)|/R1
SINB2 = XX*|SIN(RCET)|/R2
COSB2 = |R+XX*COS(RCET)|/R2
SIGMA1 = 2.0*|COSB1|/|PI*R1|
SIGMA2 = 2.0*|COSB2|/|PI*R2|
SIGN1 = SIGMA1*|SIN1**2|
SIGT1 = SIGMA1*|SIN1+COSC1|
SIGN2 = SIGMA2*|SIN2**2|
SIGT2 = SIGMA2*|SIN2+COSC2|
PPD = SIGN1 + SIGN2 + 2.0*|PI*D|
QQD = SIGT1 + SIGT2
QQD = -QQD

CONTINUE
PE = PB + DPP
QE = QB + DQQ
PM = (PB + PE)/2.
QM = (QB + QD)/2.
AK1P = DEX*PM*SQRT((C +X1)/(C-X1))/SQRT(PI*C)
AK2Q = DEX*QM*SQRT((C +X1)/(C-X1))/SQRT(PI*C)
AK1 = AK1 + AK1P
AK2 = AK2 + AK2Q
23 CONTINUE
GOTO 30
25 X1 = X + DX/2.
PM = DX*(PP(I) + PP(I + 1))/2.
QM = DX*(QQ(I) + QQ(I + 1))/2.
AK1P = DEX*PM*SQRT((C +X1)/(C-X1))/SQRT(PI*C)
AK2Q = DEX*QM*SQRT((C +X1)/(C-X1))/SQRT(PI*C)
AK1 = AK1 + AK1P
AK2 = AK2 + AK2Q
30 CONTINUE
FAK1 = AK1/AKO
FAK2 = AK2/AKO
YAK1 = FAK1*SQRT(ALFAC/PI)
YAK2 = FAK2*SQRT(ALFAC/PI)
FFAK1 = FFAK1 + FAK1
FFAK2 = FFAK2 + FAK2
YYAK1 = YYAK1 + YAK1
YYAK2 = YYAK2 + YAK2
C WRITE (7,32) ALFAC, FFAK1, FFAK2, YYAK1, YYAK2
FORMAT (5F11.5)
C1 = (2*CET-3*CET1-3*CET2-2*CET3)/2.
C2 = SQRT((C**2-XX**2)**2)*RR/(PI*R3*SQRT((R1*R2)**3))
 PRE2 = -PM*C2*SIN(C1)
FDRE = PRE1 + PRE2
FDIM = PIM1 + PIM2

SXX(I) = SXXQ(I) + SXXQ(J) + SXYP(I)
SYY(I) = SYYQ(I) - SYYQ(J) + SYYP(I)
SXX(I) = SXXQ(I) - SXXQ(J) + SXXP(I)

DO 320 I = 1, IB + 1
 J = IB + 2 - I
 SXY(I) = SXYQ(I) + SXYQ(J) + SXYP(I)
 SYY(I) = SYYQ(I) - SYYQ(J) + SYYP(I)
 SXX(I) = SXXQ(I) - SXXQ(J) + SXXP(I)
320 CONTINUE

B = -DB
AL = 2*PI*R/FLOAT(IB)

DO 400 I = 1, IB
 B = B + DB
 BB = B + DB/2.
 SXX(I) = (SXX(I) + SXX(I + 1))/2.
 SYY(I) = (SYY(I) + SYY(I + 1))/2.
 SXY(I) = (SXY(I) + SXY(I + 1))/2.
 TXX(I) = (SXX(I)*COS(BB) + SXY(I)*SIN(BB))*AL
 TYY(I) = (SXY(I)*COS(BB) + SYY(I)*SIN(BB))*AL
400 CONTINUE

WRITE (3, 433) BB, TXX(I), TYY(I)
433 FORMAT (3F10.5)

6. Program MIXCN
(for SIF Evaluation of Mixed Mode CCNBD Fracture Problem)

PROGRAM MIXCN
C STRESS INTENSITY FACTOR EVALUATION OF
C THE CRACKED CHEVRON-NOTCHED BRAZILIAN DISK
C SUBJECTED TO DIAMETRICAL COMPRESSION
C implicit double precision (a-h, o-z)
DIMENSION C(100), Y1(100), Y2(100), Y3(100)
OPEN (11, FILE='c00my.dat')
OPEN (12, FILE='c02my.dat')
OPEN (13, FILE='c05my.dat')
OPEN (14, FILE='c08my.dat')
OPEN (15, FILE='c10my.dat')
OPEN (16, FILE='c13my.dat')
OPEN (17, FILE='c15my.dat')
OPEN (18, FILE='c17my.dat')
C WRITE (3, 433) BB, TXX(I), TYY(I)
C433 FORMAT (3F10.5)
400 CONTINUE
C B = -DB
SIG = 0.

DO 450 I = 1, IB
 B = B + DB
 BB = B + DB/2.
 XB = R*COS(BB)
 YB = R*SIN(BB)
 XXX = R + ABS(YB)
 YYY = R + ABS(XB)
 XCET = 2*ATAN(XB/XXX)
 YCET = 2*ATAN(YB/YYY)
 SIG = SIG + TXX(I)*SIN(XCET)/(2*PI*R)
 SIG = SIG + TYY(I)*SIN(YCET)/(2*PI*R)
450 CONTINUE
C
C 6. Program MIXCN
(for SIF Evaluation of Mixed Mode CCNBD Fracture Problem)
OPEN (29, FILE= ’c20myn.dat’)

C

AK = 1.0
DELTA = 0.0004
READ (*, *) ALFA0, ALFA1, ALFAB, K

C

AO = ALFA0
STEP = (ALFA1-ALFA0)/FLOAT(K)
STEP0 = STEP/2.

C

DO 2000 IC = 1, 9
C

DO 30 I = 1, 91
GO TO (1, 2, 3, 4, 5, 6, 7, 8, 9) IC
1 READ (11, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
GOTO 30
2 READ (12, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
GOTO 30
3 READ (13, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
GOTO 30
4 READ (14, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
GOTO 30
5 READ (15, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
GOTO 30
6 READ (16, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
GOTO 30
7 READ (17, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
GOTO 30
8 READ (18, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
GOTO 30
9 READ (19, 20) C(I), CETA, Y1(I), Y2(I), Y3(I)
20 FORMAT (5F11.5)
30 CONTINUE
C

AAA = ALFA0-STEP
STEPCS = (0.95-ALFA0)/FLOAT(K)
ACS = ALFA0-STEPCS
DO 1000 I = 1, K + 1
C

IF (I .EQ. K + 1) GOTO 550
C

ACS = ACS + STEPCS
ACST = ACS + STEPCS/2.
IA = INT((ACST-0.04)/0.01)
AI = 0.01*FLOAT(IA) + 0.04
IF (ACST .GE. AI) GOTO 32
Y1B = Y1(IA-1)
Y1E = Y1(IA)
Y2B = Y2(IA-1)
Y2E = Y2(IA)
Y3B = Y3(IA-1)
Y3E = Y3(IA)
AAB = AI-0.01
GOTO 45
40 Y1B = Y1(IA)
Y1E = Y1(IA + 1)
Y2B = Y2(IA)
Y2E = Y2(IA + 1)
Y3B = Y3(IA)
Y3E = Y3(IA + 1)
AAB = AI
45 Y1B = Y1B + (Y1E-Y1B)*(ALFA-AAB)/0.01
Y2B = Y2B + (Y2E-Y2B)*(ALFA-AAB)/0.01
Y3B = Y3B + (Y3E-Y3B)*(ALFA-AAB)/0.01
AAB = A1
50 IF (I .NE. 1) GOTO 300
CALFAI = 0.
CALFA2 = 0.
CALFA3 = 0.
AFAB = -STEP0
JJ = INT(ALFA0/STEP0)
QY1 = Y1(1)/SQRT(0.05)
QY2 = Y2(1)/SQRT(0.05)
QY3 = Y3(1)/SQRT(0.05)
C

DO 250 III = 1, JJ
AFAB = AFAB + STEP0
AB = AFAB + STEP0/2.
IF (AB .GE. 0.05) GOTO 60
YIB = QY1*SQRT(AB)
Y2B = QY2*SQRT(AB)
Y3B = QY3*SQRT(AB)
GOTO 70
60 IA = INT((AB-0.04)/0.01)
AI = 0.01*FLOAT(IA) + 0.04
IF (AB .GE. AI) GOTO 62
Y1B = Y1(IA-1)
Y1E = Y1(IA)
Y2B = Y2(IA-1)
Y2E = Y2(IA)
Y3B = Y3(IA-1)
Y3E = Y3(IA)
AAB = AI-0.01
GOTO 65
62 Y1B = Y1B + (Y1E-Y1B)*(ACST-AAB)/0.01
Y2B = Y2B + (Y2E-Y2B)*(ACST-AAB)/0.01
Y3B = Y3B + (Y3E-Y3B)*(ACST-AAB)/0.01
C

AAA = AAA + STEP
ALFA = AAA + STEP/2.
C

A1 = ALFA1**2-ALFA0**2+ALFAB**2/4.
A1A = (ALFA1**2-ALFA0**2-ALFAB**2/4.)**2
A2 = (ALFA1**2-ALFA2**2)*ALFAB**2
F1 = A1-SQRT(A2 + A1A)
F2 = ALFA*ALFAB**2/SQRT(A2 + A1A)
C

IA = INT((ALFA-0.04)/0.01)
AI = 0.01*FLOAT(IA) + 0.04
IF (ALFA .GT. AI) GOTO 40
Y1B = Y1(IA-1)
Y1E = Y1(IA)
Y2B = Y2(IA-1)
Y2E = Y2(IA)
Y3B = Y3(IA-1)
Y3E = Y3(IA)
AAB = AI-0.01
GOTO 45
40 Y1B = Y1(IA)
Y1E = Y1(IA + 1)
Y2B = Y2(IA)
Y2E = Y2(IA + 1)
Y3B = Y3(IA)
Y3E = Y3(IA + 1)
AAB = AI
45 Y1B = Y1B + (Y1E-Y1B)*(ALFA-AAB)/0.01
Y2B = Y2B + (Y2E-Y2B)*(ALFA-AAB)/0.01
Y3B = Y3B + (Y3E-Y3B)*(ALFA-AAB)/0.01
AAB = A1
45 Y1A = Y1B + (Y1E-Y1B)*(ALFA-AAB)/0.01
Y2A = Y2B + (Y2E-Y2B)*(ALFA-AAB)/0.01
Y3A = Y3B + (Y3E-Y3B)*(ALFA-AAB)/0.01
C

IF (I .NE. 1) GOTO 300
CALFA1 = 0.
CALFA2 = 0.
CALFA3 = 0.
AFAB = -STEP0
JJ = INT(ALFA0/STEP0)
QY1 = Y1(1)/SQRT(0.05)
QY2 = Y2(1)/SQRT(0.05)
QY3 = Y3(1)/SQRT(0.05)
C

DO 250 III = 1, JJ
AFAB = AFAB + STEP0
AB = AFAB + STEP0/2.
IF (AB .GE. 0.05) GOTO 60
YIB = QY1*SQRT(AB)
Y2B = QY2*SQRT(AB)
Y3B = QY3*SQRT(AB)
GOTO 70
60 IA = INT((AB-0.04)/0.01)
AI = 0.01*FLOAT(IA) + 0.04
IF (AB .GE. AI) GOTO 62
Y1B = Y1(IA-1)
Y1E = Y1(IA)
Y2B = Y2(IA-1)
Y2E = Y2(IA)
Y3B = Y3(IA-1)
Y3E = Y3(IA)
AAB = AI-0.01
GOTO 65
62 Y1B = Y1B + (Y1E-Y1B)*(ACST-AAB)/0.01
Y2B = Y2B + (Y2E-Y2B)*(ACST-AAB)/0.01
Y3B = Y3B + (Y3E-Y3B)*(ACST-AAB)/0.01
C
Y3E = Y3A(IA + 1)
AAB = A1
F32 = (F1/CALFA2 + A992)**2
65 Y1B = Y1B + (Y1E-Y1B)*(AB-AAB)/0.01
Y2B = Y2B + (Y2E-Y2B)*(AB-AAB)/0.01
Y3B = Y3B + (Y3E-Y3B)*(AB-AAB)/0.01
C
70 CALFA1 = CALFA1 + 2.*STEP*Y1B**2
CALFA2 = CALFA2 + 2.*STEP*Y2B**2
CALFA3 = CALFA3 + 2.*STEP*Y3B**2
C
250 CONTINUE
300 CALFA1 = CALFA1 + 2.*STEP*Y1A**2
CALFA2 = CALFA2 + 2.*STEP*Y2A**2
CALFA3 = CALFA3 + 2.*STEP*Y3A**2
C
J = INT(ALFA1-ALFA)/DELTA
AFAC = ALFA-Delta
A991 = 0.
A992 = 0.
A993 = 0.
C
500 CONTINUE

Appendix C: Program CUT for Rock Cutting Performance Analysis

PROGRAM CUT
DIMENSION FC(3000), FN(3000), FCMAX(3000), FCMIN(3000)
DIMENSION FMAX(3000), FMIN(3000), ICMAX(3000), ICMIN(3000)
DIMENSION INMAX(3000), INMIN(3000)
DIMENSION U(3000), U1(3000)
DIMENSION XCMAX(300), YCMAX(300), XNMAX(300), YNMAX(300)
DIMENSION XCPMA(200), YCPMA(200), XNPMA(200), YNPMA(200)
DIMENSION XFCCA(200), YFCCA(200), YFCCA(200), YWFCCA(200)
DIMENSION XWFC(200), YWFC(200), XWFC(200), YWFC(200)
DIMENSION XC(300), YC(300), XN(300), YN(300)
DIMENSION XWFC1(200), YWFC1(200)
DIMENSION FCX(3000), XFCX(100), YFCX(100)
DIMENSION FCY(3000), XFCY(100), YFCY(100)

C
STOP
END
FC(JI) = FC(JI)
FN(JI) = FN(JI)
WRITE (8,106) JI, FC(JI), FN(JI)

106 FORMAT (I8,2F8.4)
IF (FN(JI), LT, 0.01) GOTO 110
JI = JI + 1
U(JI) = FC(JI) / FN(JI)
CONTINUE
C
P = FLOAT(JI) / FLOAT(U)
II = JI
JS = 20
CALL STAT (II, FC, FCMEAN, FCSTD)
CALL STAT (II, FN, FNMEAN, FNSTD)
CALL DIST (II, FC, XI, YI, JII, JS, DCC)
CALL DIST (II, FN, XI, YN, JII, JS, DNN)
FCMAX(I) = FC(I)
FCMIN(I) = FC(I)
FNMAX(I) = FN(I)
FNMIN(I) = FN(I)
C
FCM = FC(I)
FN = FN(I)
IC = 0
IN = 0
ICM = 0
INM = 0
C
DO 200 I = 2, II
IF (FC(I), GT, FCM) GOTO 120
IF (IC, LT, 1) GOTO 115
FCMAX(I) = FCM
ICMAX = I-1
FCM = FC(I)
IC = 2
GOTO 116
115 FCM = FC(I)
116 GOTO 130
120 IF (IC, GT, I) GOTO 125
ICM = ICM + 1
FCMIN = FC(I)
ICMIN = ICM - 1
FCM = FC(I)
IC = 2
GOTO 130
125 FCM = FC(I)
130 CONTINUE
IF (FN(I), GT, FN) GOTO 140
IF (IN, LT, 1) GOTO 135
FNMAX(INM) = FN
INMAX(INM) = I-1
FNMIN(INM) = I-1
INM = IN + 1
GOTO 200
135 FNMIN = FN(I)
GOTO 200
140 IF (IN, GT, I) GOTO 145
INM = IN + 1
FNMIN(INM) = FN
INMIN(INM) = I-1
FNMIN(INM) = FN
IN = 2
GOTO 200
145 FN = FN(I)
CONTINUE
C
CALL STAT (ICM, FCMIN, FCMINM, FCMINM)
CALL STAT (ICM, FCMAX, FCMAXM, FCMAXS)
CALL STAT (INM, FNMIN, FNMINM, FNMINM)
CALL STAT (INM, FNM, FNM, FNM, FNM)
CALL DIST (ICM, FCMAX, XCMAX, YCMAX, SD, DCMA)
CALL DIST (INM, FNM, XNMAX, YNMAX, SD, DCM)
U = 0
IP = 0
ICMP = 0
FCPM = FCMIN(I)
ICPM = ICMIN(I)
DO 300 I = 1, ICM
IF (IJ, GT, 1) GOTO 225
IF (FCM, GT, FCM) GOTO 220
IF (FCM, LT, FCP) GOTO 240
IF (FCM, LT, FCP) GOTO 240
FCM = FCM(I)
ICOPM = ICMP(I)
INPM = INM(I)
120 IF (IC, LT, 1) GOTO 125
IF (IP, LT, 1) GOTO 300
FCMIN(IFCM) = FC(M)
ICPM = ICMAX(I)
IP = 0
GOTO 300
125 FCM = FC(I)
130 CONTINUE
C
IF (FN(I), GT, FN) GOTO 140
IF (IN, LT, 1) GOTO 135
FNMIN(INM) = FN
INMIN(INM) = I-1
FNMIN(INM) = FN
IN = 0
GOTO 200
135 FNMIN = FN(I)
GOTO 200
140 IF (IN, GT, I) GOTO 145
INM = IN + 1
FNMIN(INM) = FN
INMIN(INM) = I-1
FNMIN(INM) = FN
IN = 2
GOTO 300
145 FN = FN(I)
CONTINUE
C
CALL STAT (INM, FNM, XNMAX, YNMAX, SD, DCM)
CALL STAT (INM, FNM, XNMAX, YNMAX, SD, DCM)
U = 0
IP = 0
INMP = 0
FNPM = FNMIN(I)
INPM = INM(I)
DO 390 I = 1, INM
IF (IJ, GT, 1) GOTO 375
IF (FNMIN(I), GT, FNPM) GOTO 370
FNPM = FNMIN(I)
140 IF (IN, LT, 1) GOTO 390
IF (IN, LT, 1) GOTO 390
IP = IP + 1
INMP = INMP + 1
140 CONTINUE
FNPM(I(INMP)) = FNPM
INPM(I(INMP)) = INPM
FNPM = FNMAX(I)
INPM = INMAX(I)
I = 2
IP = 0
GOTO 390
375 IF (FNMAX(I).LT.FNPM) GOTO 380
FNPM = FNMAX(I)
INPM = INMAX(I)
IP = 0
GOTO 390
380 FNPM = FNP = 0.90*FNPM
IF (FNMAX(I).LT.FNP) GOTO 381
FNPM = FNMIN(I)
INPM = INMIN(I)
390 CONTINUE
C
CALL STAT (ICMP, FCPMA, FCPMAM, FCPMAS)
CALL STAT (INMP, FNPMA, FNPMA, FNP MAS)
CALL DIST (ICMP, FCPMA, XCPMA, YCPMA, JCPMA, DCPMA)
CALL DIST(INMP, FNPMA, XNPM, YNPM, JNPM, DNPM)
JJ = 0
DO 400 J = 1, ICMP
IF (FC(J).EQ.0.) GOTO 400
WRITE (7,3044) XFCA(I), YFCA(I), XFCA1(I), YFCA1(I),
XWFC(I),YWFC(I), XWFC1(I),YWFC1(I),
XDL(I),YDL(I)
U1(JJ) = FC(J)/FN(J)
JJ=JJ+1
400 CONTINUE
DO 550 J = JI, JA
FCCO = FC(J-1)-UMFAN*FN(J-1)
FCC1 = FC(J)-UMFAN*FN(J)
F0001 = FC(J-1)-U1M*FN(J-1)
FCC2 = FC(J)-U1M*FN(J-1)
SUM = SUM + FC(J)
SUMC = SUMC + FCC1
IF (FCMAX(I).LT.0.01) GOTO 3900
W1 = W1 + DELL*(FC(J) + FC(J-1))/2.
ICMS = ICMS + 1
W2 = W2 + DELL*(FCCO + FCC1)/2.
FCC2 = FCC2 - U1M*FN(J-1)
W3 = W3 + DELL*(FCC01 + FCC2)/2.
550 CONTINUE
C
FCA(J) = SUM/FLOAT(A-J+2)
FCCA(J) = SUM/FLOATA(J-J+2)
FCCAJ(J) = SUMC/FLOATA(J-J+2)
DL(J) = DELL*FLOAT(A-J+1)
WFC(J) = W1
WFCC(J) = W2
WFCC1(J) = W3
600 CONTINUE
C
CALL STAT (ICMP, FCA, FCAM, FCAS)
CALL STAT (ICMP, FCPA, FCPAM, FCAPS)
CALL STAT (ICMP, FCCA1, FCCA1M, FCCA1S)
CALL DIST (ICMP, FCA, XFCA, YFCA, JS, DCA)
CALL DIST (ICMP, FCPA, XFCA, YFCA, JS, DCPA)
CALL DIST (ICMP, FCCA1, XFCA1, YFCA1, JS, DCPA1)
CALL STAT (ICMP, FCPA, FCPAM, FCPMAS)
CALL STAT (ICMP, FCPA1, FCPA1M, FCPA1S)
CALL STAT (ICMP, FCPA1, FCPA1M, FCPA1S)
CALL DIST (ICMP, FCPA, XFCP, YFCP, JS, DCPA)
CALL DIST (ICMP, FCPA1, XFCP1, YFCP1, JS, DCPA1)
CALL STAT (ICMP, FCPA1, XFCP1, YFCP1, JS, DCPA1)
CALL STAT (ICMP, DLM, DLS)
CALL STAT (ICMP, DLM, DLS)
C
CHF = 10000.*FLOAT(ICM)/FLOAT(J)
CHFM = 10000.*FLOAT(ICMP)/FLOAT(J)
WRITE (2,3000) FCMEAN, FCSTD, FNMEAN, FNSTD,
UMEAN, USTD, P, CHF, CHFM
3000 FORMAT (7F8.4, 2F8.2)
DO 3010 I = 1, JS
CALL STAT (ICMP, FCPMA, FCPMAM, FCPMAS)
WRITE (2,3001) XC(I), YC(I), XN(I), YN(I), XU(I), YU(I)
3001 FORMAT (6F8.2)
CALL DIST (ICMP, FCPMA, XCPMA, YCPMA, JS, DCPMA)
3010 CONTINUE
CALL DIST(INMP, FNPMA, XNPMA, YNPMA, JS, DNPM)
CALL STAT (INMP, FNPMA, FNPMA, FNP MAS)
CALL STAT (INMP, FNPMA, FNPMA, FNP MAS)
CALL DIST(INMP, FNPMA, XNPMA, YNPMA, JS, DNPM)
JJ = 0
DO 400 I = 1, ICMP
IF (FC(I).EQ.0.) GOTO 400
WRITE (7,3044) XFCA(I), YFCA(I), XFCA1(I), YFCA1(I),
XWFC(I),YWFC(I), XWFC1(I),YWFC1(I),
XDL(I),YDL(I)
U1(JJ) = FC(I)/FN(I)
JJ=JJ+1
400 CONTINUE
DO 550 I = 1, ICMP
IF (FCMIN(I).LT.0.01) GOTO 3900
FCAJ(I) = SUM/FLOAT(A-J+2)
FCCAJ(I) = SUMC/FLOATA(J-J+2)
DLJ(I) = DELL*FLOAT(A-J+1)
WFC(J) = W1
\text{ICPM} (ICPS) = ICPM (I)
\text{FCPM} (ICPS) = FCPM (I)
\text{ICPM} (ISPS) = ICPM (I)
\text{FCPM} (ISPS) = FCPM (I)
\text{CONTINUE}
\text{ICMP} = ICPS
\text{CALL WBUL (ICM, FCMAX, SUM, SMM, RM, S0M1, SM1, R1)}
\text{CALL WBUL (ICM, FCPMA, SUP, S0P, SMP, RP, S0P1, SM1, R1)}
\text{DO 4900 I = 1, ICMP}
\text{J = ICPM (I)}
\text{FCY (I) = FCPMA (I) - U1M * FN (J)}}
\text{CONTINUE}
\text{CALL STAT (ICM, FCY, FCYM, FCYS)}
\text{CALL DIST (ICM, FCY, XFCY, YFCY, JS, DCY)}
\text{CALL WBUL (ICM, FCY, SUP, SOP, SMP, RP, SOP1, SM1, R1)}
\text{WRITE (4, 3030) FCPMA, FCPMA, FNPM, FNPM, RN, RM, SM, SM1, R1)}
\text{WRITE (4, 3031) XCPMA (I), YCPMA (I), XCPMA (I), YCPMA (I), XCPMA (I), YCPMA (I), XCPMA (I), YCPMA (I)}
\text{CONTINUE}
\text{CLOSE (4)}
\text{DO 5000 I = 1, ICM}
\text{J = ICM (I)}
\text{FCX (I) = FCMAX (I) - U1M * FN (J)}}
\text{CONTINUE}
\text{CALL STAT (ICM, FCX, FCXM, FCXS)}
\text{CALL DIST (ICM, FCX, XFCX, YFCX, JS, DCX)}
\text{CALL WBUL (ICM, FCX, SUM, SMM, RM, S0M1, SM1, R1)}
\text{WRITE (3, 5002) SUM, SMM, RM, S0M1, SM1, R1}}
\text{FORMAT (69F, 4)}
\text{WRITE (3, 5004) SUP, S0P, SMP, RP, S0P1, SM1, R1)}
\text{FORMAT (79F, 4)}
\text{WRITE (3, 5006) SUMM, SMM, RM, S0M1, SM1, R1)}
\text{FORMAT (79F, 4)}
\text{WRITE (3, 5007) SUY, S0Y, SMY, RY, S0Y1, SMY1, RY1)}
\text{FORMAT (79F, 4)}
\text{WRITE (3, 3020) FCMINM, FCMINS, FCMAXM, FCMAXS, FCMINM, FCMINS, FCMAXM, FCMAXS)}
\text{WRITE (3, 3021) FCMINM, FCMINS, FCMAXM, FCMAXS, FCMINM, FCMINS, FCMAXM, FCMAXS)}
\text{WRITE (3, 3021) FCMINM, FCMINS, FCMAXM, FCMAXS, FCMINM, FCMINS, FCMAXM, FCMAXS)
\text{CONTINUE (3)}
\text{CLOSE (3)}
\text{C}
\text{SUX = SUMM}
\text{S0X = S0M1}
\text{SMX = SMM1}
\text{S0X1 = S0M1}
\text{SMX1 = SMM1}
\text{C}
\text{JMA = 0}
\text{JPA = 0}
\text{JXA = 0}
SUMYB = SUMYB + Y(FCY(I))/FSYB

CONTINUE

YMA = SUMMA/FLOAT(JMA)

YPA = SUMPA/FLOAT(JPA)

YXA = SUMXA/FLOAT(JXA)

YYA = SUMMA/FLOAT(JYA)

YMB = SUMMB/FLOAT(JMB)

YPB = SUMPB/FLOAT(JPB)

YXB = SUMXB/FLOAT(JXB)

YYB = SUMYB/FLOAT(JYB)

C

X1M = XCMAX(1) - DCMAX/2.

X1P = XCPMA(1) - DCPMA/2.

X1X = XFCX(1) - DCX/2.

X1Y = XFCY(1) - DCY/2.

X2M = XCMAX(JS) + DCMAX/2.

X2P = XCPMA(JS) + DCPMA/2.

X2X = XFCX(JS) + DCX/2.

X2Y = XFCY(JS) + DCY/2.

DM = (X2M - X1M)/100.

DP = (X2P - X1P)/100.

DX = (X2X - X1X)/100.

DY = (X2Y - X1Y)/100.

XM = X1M

XP = X1P

XX = X1X

XY = X1Y

OPEN (2, FILE='odist')

DO 9000 I = 1, 100

XM = XM + DM

XP = XP + DP

XX = XX + DX

XY = XY + DY

FSMA1 = SMM*((XM - SUM)/SOM)**(SMM-1.)/SOM

FSPA1 = SMP*((XP - SUP)/SOP)**(SMP-1.)/SOP

FSXA1 = SMX*((XX - SUX)/SOX)**(SMX-1.)/SOX

FSYA1 = SMY*((XY - SUY)/SOY)**(SMY-1.)/SOY

FSMB1 = SMM1*((XM - SUM)/SOM1)**(SMM1-1.)/SOM1

FSPB1 = SMP1*((XP - SUP)/SOP1)**(SMP1-1.)/SOP1

FSXB1 = SMX1*((XX - SUX)/SOX1)**(SMX1-1.)/SOX1

FSYB1 = SMY1*((XY - SUY)/SOY1)**(SMY1-1.)/SOY1

FSMB2 = EXP(0. -((XM - SUM)/SOM1)**SMM1)

FSPB2 = EXP(0. -((XP - SUP)/SOP1)**SMP1)

FSXBM = SMX1*((XX - SUX)/SOX1)**(SMX1-1.)/SOX1

FSYBM = SMY1*((XY - SUY)/SOY1)**(SMY1-1.)/SOY1

FSM1 = SMM1**((SM - SUM)/SOM)**(SMM-1.)/SOM

FSP1 = SMP**((SP - SUP)/SOP)**(SMP-1.)/SOP

FSX1 = SMX**((SX - SUX)/SOX)**(SMX-1.)/SOX

FSY1 = SMY**((SY - SUY)/SOY)**(SMY-1.)/SOY

FSM1 = EXP(0. -((SX - SUX)/SOX)**SMM1)

FSP1 = EXP(0. -((SY - SUY)/SOY)**SMP1)

FSXBM = EXP(0. -((XX - SUX)/SOX1)**SMX1)

FSYBM = EXP(0. -((XY - SUY)/SOY1)**SMY1)

FSM = FSM1*FSM2*YMA

FSMA = FSM1*FSMA2*YMA

FSPA = FSPA1*FSPA2*YPA

FSPA = FSPA1*FSPA2*YPA

FSX1 = FSX1*FSX2*YXA

FSX1 = FSX1*FSX2*YXA

FSY1 = FSY1*FSY2*YMM

FSY1 = FSY1*FSY2*YMM

WRITE (2, 8990) XM, FSM, FSM1, XP, FSPA, FSM1

* XX, FSM, FSM1, YAX, YAY, YMM

WRITE (2, 8990) XM, FSM, FSM1, XP, FSPA, FSM1

* XX, FSM, FSM1, YAX, YAY, YMM

WRITE (2, 8990) XM, FSM, FSM1, XP, FSPA, FSM1

* XX, FSM, FSM1, YAX, YAY, YMM

8990 FORMAT (13P9.3)

9000 CONTINUE

CLOSE (2)

C

OPEN (2, FILE='opm')

WRITE (2, 2000)

2000 FORMAT (6, 20X, 'Cutting Test Analysis Results', //)

WRITE (2, 2010) NS, NC

2010 FORMAT ('Sample No: ', I3, 27X, 'Cut No: ', I3)

WRITE (2, 2020) ALEN, WEIGHT

2020 FORMAT ('Cutting Length L = ', F9.4, ' (mm)', 9X, 'Weight * of Debris W = ', F9.4, ' (g)')

WRITE (2, 2022) P

2022 FORMAT ('Probability of Cutting Action P = ', F7.4)

WRITE (2, 2024) CHF

2024 FORMAT ('Minor Chipping Frequency CHF = ', F8.2, ' (Hz)')

WRITE (2, 2025) CHFM

2025 FORMAT ('Major Chipping Frequency CHFM = ', F8.2, ' (Hz)')

WRITE (2, 2028) U1M, UIS

2028 FORMAT ('Friction Coefficient U = ', F8.4, '9X, 'Standard Deviation = ', F8.4)

WRITE (2, 2030) FCMEAN, FCSTD

2030 FORMAT ('Mean Cutting Force = ', F8.4,'* (KN)', 9X, 'Standard Deviation = ', F8.4)

WRITE (2, 2080) FNM, FNMSTD

2080 FORMAT ('Mean Normal Force = ', F8.4,'* (KN)', 9X, 'Standard Deviation = ', F8.4)

WRITE (2, 2090) FCX

2090 FORMAT ('Mean Minor Chipping Maximum Active Cutting * Force = ', F8.4)

WRITE (2, 2100) FCXS

2100 FORMAT ('Mean Minor Chipping Maximum Normal Force * = ', F8.4)

WRITE (2, 2110) FCYM

2110 FORMAT ('Mean Major Chipping Maximum Active Cutting * Force = ', F8.4)

WRITE (2, 2120) FCYS

2120 FORMAT ('Mean Major Chipping Maximum Normal Force * = ', F8.4)

WRITE (2, 2125) FCX

2125 FORMAT ('Mean Major Chipping Maximum Normal Force * = ', F8.4)

WRITE (2, 2126) FNPMAS

2126 FORMAT ('Mean Minor Chipping Maximum Active Cutting * Force = ', F8.4)

WRITE (2, 2130) FCAM

2130 FORMAT ('Major Chipping Cycle Mean Cutting Force * = ', F8.4)

WRITE (2, 2140) FCAS

2140 FORMAT ('Major Chipping Cycle Mean Active Cutting * Force = ', F8.4)

WRITE (2, 2150) FCAM

2150 FORMAT ('Major Chipping Cycle Mean Active Cutting * Force = ', F8.4)

WRITE (2, 2160) FCA1M

2160 FORMAT ('Major Chipping Cycle Mean Total Work Done * = ', F8.4)

WRITE (2, 2170) WFPM

2170 FORMAT ('Major Chipping Cycle Mean Total Work Done * = ', F8.4)
SUBROUTINE STAT (JJ, F, FMEAN, STD)
DIMENSION F(3000)
SUM = 0.
SUMU = 0.
DO 1500 M = 1, JJ
SUM = SUM + F(M)
1500 CONTINUE
FMEAN = SUM/FLOAT(JJ)
SUM = 0.
DO 1510 M = 1, JJ
SUM = SUM + (F(M) - FMEAN)**2
1510 CONTINUE
STD = SQRT(SUM/FLOAT(JJ-1))
RETURN
END

SUBROUTINE DIST (JJ, F, X, Y, JS, DEL)
DIMENSION F(3000), X(100), Y(100)
FMAX = F(1)
FMIN = F(1)
DO 1600 M = 2, JJ
IF (F(M).GT. FMIN) GOTO 1520
FMIN = F(M)
1520 IF (F(M).LT. FMAX) GOTO 1600
FMAX = F(M)
1600 CONTINUE
DEL = (FMAX-FMIN)/FLOAT(JS)
XX = FMIN
DO 1700 M = 1, JS
XX = XX + DEL
X(M) = XX
Y(M) = 0.
1700 CONTINUE
DO 1800 M = 1, JJ
DO 1710 N = 1, JS
IF (N.EQ. JS) GOTO 1705
IF (X(N).LT. F(M)) GOTO 1710
Y(N) = Y(N) + 1.
1705 CONTINUE
DO 1900 M = 1, JS
X(M) = X(M) - DEL/2.
1900 CONTINUE
RETURN
END

SUBROUTINE WBUL (IQ, SQ, SU, S0, SM, R, S01, SM1, R1)
DIMENSION(3000), SS(3000), SA(3000), SI(3000), SQ(3000)
II = IQ
DO 5089 I = 1, 11
S(I) = SQ(I)
5089 CONTINUE
J = 0
IIJ = 1I
SM = S(1)
DO 6000 I = 1, 11
IF (S(I).GT. SM) GOTO 6000
SM = S(I)
IS = I
6000 CONTINUE
J = J + 1
SM = SQ(I)
IF (II.EQ.I) GOTO 6010
II = II + 1
6010 CONTINUE
CLOSE (2)
STOP
END

SUBROUTINE STAT (UI,F,FMEAN,STD)
DIMENSION F(3000)
SUM = 0.
SUMU = 0.
DO 1500 M = 1, UI
SUM = SUM + F(M)
1500 CONTINUE
FMEAN = SUM/FLOAT(UI)
SUM = 0.
DO 1510 M = 1, UI
SUM = SUM + (F(M) - FMEAN)**2
1510 CONTINUE
STD = SQRT(SUM/FLOAT(UI-1))
RETURN
END
SU = 1.05 * SS(I)
GOTO 6022

6021 SU = 0.95 * SS(I)
6022 DO 6040 I = 1, J
 IF (I .EQ. J) GOTO 6023
 SA(I) = FLOAT(I) / FLOAT(J)
6023 S1(I) = FLOAT(I) / FLOAT(J + 1)
 IF (I .EQ. J) GOTO 6024
 SA(I) = ALOG(0. - ALOG(1. - SA(I)))
6024 S1(I) = ALOG(0. - ALOG(1. - S1(I)))
 SS(I) = ALOG(SS(I) - SU)
6040 CONTINUE
 JQ = J - 1
 CALL REG (JQ, SS, SA, A, B, R)
 CALL REG (J, SS, S1, A1, B1, R1)
 SM = B
 SM1 = B1
 S0 = EXP(-A/B)
 S01 = EXP(-A1/B1)
 RETURN
END

SUBROUTINE REG (N, XX, YY, A, B, R)
DIMENSION XX(3000), YY(3000)
SX = 0.
SY = 0.
SQX = 0.
SQY = 0.
SQXY = 0.
DO 8000 I = 1, N
 SX = SX + XX(I)
 SY = SY + YY(I)
8000 CONTINUE
 XM = SX / FLOAT(N)
 YM = SY / FLOAT(N)
 DO 8010 I = 1, N
 SQX = SQX + (XX(I) - XM)**2
 SQY = SQY + (YY(I) - YM)**2
 SQXY = SQXY + (XX(I) - XM)*(YY(I) - YM)
8010 CONTINUE
 B = SQXY / SQX
 A = YM - B*XM
 R = SQXY / SQRT(SQX*SQY)
 RETURN
END