A D. melanogaster parkin mutant larval model of Parkinson’s Disease

Amanda Vincent
PhD

University of York
Biology

May
2013
Abstract

Parkinson’s Disease (PD) is a neurodegenerative disease, with severely reduced movement in patients. The main effect is the loss of dopaminergic neurons in the central nervous system (CNS). Null mutations of the parkin gene are known to cause PD. I found that Drosophila melanogaster (D. melanogaster) parkin null (dparkin) mutant larvae show neurophysiological abnormalities, a bradykinesia-like locomotory defect and synaptic overgrowth at the neuromuscular junction (NMJ). Neuronal overgrowth is rescued with either muscle or neuronal expression of wild-type dparkin in dparkin mutant larvae. The ubiquitous expression of antioxidant enzymes have varying degrees of rescue dependent on their properties and site of action in dparkin mutant larvae. Manipulating c-jun-N-terminal kinase (JNK) signaling components or JNK interacting detoxification enzymes (Glutathione-s-transferase (GST) or Thioredoxin reductase 2 (TRX-R2) ameliorated all the types of dparkin mutant larval phenotypes. Superoxide Dismutase 1 (Sod1) expression rescued overgrowth but failed to rescue the neurophysiological defect or the locomotion in dparkin mutant larvae. Additionally, genetically manipulating AMP-activated protein Kinase (AMPK), which is involved in the energy homeostasis, rescued overgrowth and neurophysiological dysfunction but not the locomotory defects. The pharmacological manipulation with dopaminergic drugs, and classical AMPK activators (metformin and 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR)) or resveratrol failed to rescue dparkin larval phenotypes. I conclude that neuronal, rather than muscle, failure is key to the bradykinesia observed in dparkin mutant larvae. The main defect is suggested to be the depletion of neuronal energy reserve leading to synaptic dysfunction, rather than oxidative stress. Together these observations suggest oxidative stress could be a downstream consequence of a metabolic dysfunction.
LIST OF CONTENTS

Abstract
List of Figures v
List of Tables vii
Acknowledgment 1
Declaration 2
Chapter 1: Introduction 3
 1.1 Overview of Parkinson’s Disease 3
 1.2 Classical hallmarks of PD 5
 1.2.1 PD pathology: Lewy bodies, ubiquitin and α-synuclein 5
 1.2.2 Anatomy of the basal ganglia and hypokinetic features of PD 6
 1.3 Braak’s staging of PD pathogenesis 10
 1.4 Models of PD 10
 1.4.1 Overview of PD models 10
 1.4.2 Neurotoxin-induced models 11
 1.4.2.1 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) 11
 1.4.2.2 6-hydroxydopamine (6-ODHA) 12
 1.4.2.3 Common findings from toxin models of PD 12
 1.4.2.4 Evaluation of toxin models of PD 13
 1.4.3 Genetic mutations of PD 13
 1.4.3.1 Genetic models shed light of idiopathic PD 15
 1.4.3.2 parkin gene 15
 1.5 Pathogenesis of PD 19
 1.5.1 Oxidative stress and the generation of reactive oxygen species 19
 1.5.2 Dopamine induced oxidative stress 23
 1.5.3 The Reactive Oxygen Species (ROS) generated from mitochondria 24
 1.5.3.1 Mitochondria and its associated functions 28
 1.5.3.2 Mitochondrial abnormalities in PD 29
 1.5.4 Aggregation induced proteolytic stress and the ubiquitin proteosomal system (UPS) 32
 1.6 Parkin models of PD 36
1.6.1 D. melanogaster models of PD
1.6.1.2 parkin/ PINK1 mitochondrial associated roles

1.7 D. melanogaster approaches to model neurodegenerative diseases
1.7.1 Introduction to D. melanogaster genes and their conservation to human genes
1.7.2 D. melanogaster models of neurodegeneration
1.7.3 Genetic approaches using D. melanogaster
1.7.4 D. melanogaster genetic toolbox used to model Parkinson’s Disease

1.7.5 Advantages and disadvantages of D. melanogaster PD models
1.7.6 Observations made from D. melanogaster PD models
1.7.7 The D. melanogaster life cycle
1.7.8 The D. melanogaster nervous system
1.7.8.1 The D. melanogaster dopaminergic system
1.7.9 Larval locomotion for motor function assays
1.7.9.1 Neuronal network contribution to larval locomotion
1.7.10 Motoneuron development and connectivity to muscle
1.7.10.1 The Neuromuscular junction (NMJ)

1.9 Neurotransmission
1.9.1 Membrane potential and action potentials
1.9.2 Advantages of D. melanogaster NMJ for assessing synaptic function

1.10 Rationale for the thesis project
1.10.1 Aim and objectives of the thesis

Chapter 2: Methods and Materials
Overview

2.1.1 Fly husbandry and protocols
2.1.1 D. melanogaster stocks
2.1.2 D. melanogaster diet
2.1.3 Fly Pushing
2.1.4 Recombination Crossing Scheme

2.2 Molecular Biology
2.2.1 Genomic DNA extraction
2.2.2 Polymerase chain reaction (PCR)
2.2.3 DNA agarose gel electrophoresis
2.3 Techniques to assess D. melanogaster larval physiology
 2.3.1 Experimental Solutions 79
 2.3.2 Larval Dissection 80
 2.3.3 Electrophysiology: Intracellular muscle recordings 80
 2.3.4 Behavioral locomotion assay 84
2.4 Anatomy at the larval neuromuscular junction (NMJ)
 2.4.1 Fixing and immunohistochemistry 88
 2.4.2 Confocal images of the NMJ 89
 2.4.3 Measuring and quantifying at the NMJ 90
2.6 Statistics 95
2.7 Rationale for drug concentration 95
Chapter 3: dparkin larvae show reduced locomotion, synaptic
dysfunction and overgrown synapses
3.1 Introduction 96
3.2 Results 99
3.3 Discussion 138
Chapter 4: Investigating the role of oxidative stress and metabolic
dysfunction in dparkin mutant larvae
4.1 Introduction 149
4.2 Aims 153
4.3 Results 154
4.4 Discussion 185
Chapter 5: Pharmacological manipulation of dopaminergic signaling
and AMPK activity
5.1 Introduction 191
 5.1.1 Role of dopamine 191
5.2 Role of AMPK in the manipulation of ATP synthesis 191
5.3 Aims 195
5.4 Results 196
5.4 Discussion 228
Chapter 6: General Discussion 237
6.1 Summary of main results of my thesis 237
6.2 Main significance of this thesis 237
6.3 Further work investigating the neuronal dysfunction in dparkin larvae 238
6.4 Larval and adult phenotypes 240
6.5 Comparison of pharmacological and genetic approaches 241
6.6 Implication for Parkinson’s Disease therapy 241

Abbreviation List 246
References 251
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The basal ganglia</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic diagram indicating functional domain organization and structural domain boundaries of parkin protein between human and D. melanogaster</td>
<td>17</td>
</tr>
<tr>
<td>1.3</td>
<td>Reactive oxygen species (ROS) and their interaction with reactive nitrogen species (RNS)</td>
<td>21</td>
</tr>
<tr>
<td>1.4</td>
<td>Reactive oxygen species (ROS) are produced during the oxidation of fuels in mitochondria</td>
<td>26</td>
</tr>
<tr>
<td>1.5</td>
<td>The association between familial PD and mitochondrial biology</td>
<td>30</td>
</tr>
<tr>
<td>1.6</td>
<td>Parkin and ubiquitin proteasome system</td>
<td>34</td>
</tr>
<tr>
<td>1.7</td>
<td>parkin-induced mitophagy</td>
<td>39</td>
</tr>
<tr>
<td>1.8</td>
<td>The GAL4-UAS system</td>
<td>46</td>
</tr>
<tr>
<td>1.9</td>
<td>The D. melanogaster life cycle.</td>
<td>51</td>
</tr>
<tr>
<td>1.10</td>
<td>The organization of the neuromuscular junctions (NMJ) of D. melanogaster larvae</td>
<td>59</td>
</tr>
<tr>
<td>2.1</td>
<td>Recombination Crossing Scheme</td>
<td>74</td>
</tr>
<tr>
<td>2.2</td>
<td>PCR of dparkin mutant recombinants</td>
<td>76</td>
</tr>
<tr>
<td>2.3</td>
<td>Recording at the NMJ</td>
<td>82</td>
</tr>
<tr>
<td>2.4</td>
<td>Analysis of larval crawling by ImageJ and MTrack2</td>
<td>86</td>
</tr>
<tr>
<td>2.5</td>
<td>Confocal image of the NMJ anatomy</td>
<td>91</td>
</tr>
<tr>
<td>2.6</td>
<td>Light microscope image of the NMJ</td>
<td>93</td>
</tr>
<tr>
<td>3.1</td>
<td>dparkin mutant larvae show reduced locomotion</td>
<td>100</td>
</tr>
<tr>
<td>3.2</td>
<td>Dopaminergic expression of transgenic dparkin RNAi fails to show dysfunction in larval crawling</td>
<td>102</td>
</tr>
<tr>
<td>3.3</td>
<td>Loss of dparkin-induced overgrowth rescued by neuronal or muscle expression of wild-type dparkin</td>
<td>106</td>
</tr>
<tr>
<td>3.4</td>
<td>Global expression of transgenic dparkin RNAi shows overgrowth phenotype</td>
<td>110</td>
</tr>
<tr>
<td>3.5</td>
<td>dparkin mutant larvae show more positive (depolarized) RMP that is rescued by global, neuronal or muscle expression of wild-type dparkin</td>
<td>114</td>
</tr>
<tr>
<td>3.6</td>
<td>Scatter regression plot show dparkin mutant larvae have depolarized RMPs and smaller EJPs across a range of RMPs</td>
<td>116</td>
</tr>
<tr>
<td>3.7</td>
<td>dparkin mutant larvae show reduced synaptic transmission</td>
<td>118</td>
</tr>
</tbody>
</table>
is not rescued by either global, neuronal or muscle expression of wild-type dparkin

Figure 3.8 dparkin mutant larvae have smaller miniature excitatory junction potentials

Figure 3.9 The distribution of mEJP amplitudes show dparkin mutant larvae have smaller miniature excitatory junction potentials

Figure 3.10 Cumulative frequency curve show dparkin mutant larvae have smaller miniature excitatory junction potentials

Figure 3.11 dparkin mutant larvae have more positive (depolarized) RMP that is rescued by global, neuronal or muscle expression of wild-type dparkin

Figure 3.12 Scatter regression plot show dparkin null mutant larvae have depolarized RMP and reduced synaptic transmission across a range RMP

Figure 3.13 dparkin mutant larvae show a reduction in synaptic transmission and with either global, neuronal or muscle expression shows partial rescue of synaptic function

Figure 3.14 The difference in RMP between dparkin mutant and wild-type larvae is most pronounced at low external potassium concentrations.

Figure 4.1 Cytosolic ROS scavenger, Sod1, rescues overgrowth in dparkin larvae

Figure 4.2 ROS scavengers fail to rescue RMP defect in dparkin larvae

Figure 4.3 Global AMPK activation fail to rescue locomotory dysfunction in dparkin larvae

Figure 4.4 Global expression of AMPK rescues neuronal overgrowth in dparkin larvae

Figure 4.5 Global AMPK activation rescues RMP defect in dparkin larvae

Figure 4.6 Global GST, and not TRX-R2, expression rescues locomotory dysfunction in dparkin larvae

Figure 4.7 Global GST or TRX-R2 expression rescues RMP defect in dparkin larvae

Figure 4.8 Global BSKDN, not JUNDN, expression rescues locomotory dysfunction in dparkin larvae
Figure 4.9 Global JUNDN expression rescues overgrowth in \(dparkin\) larvae

Figure 4.10 Global JUNDN and BSKDN expression rescues RMP defect in \(dparkin\) larvae

Figure 5.1 Dopaminergics fail to rescue locomotory dysfunction in \(dparkin\) larvae

Figure 5.2 A-F Dopaminergics fail to rescue overgrowth in \(dparkin\) larvae

Figure 5.3 The AMPK activating drug AICAR fails to rescue locomotory dysfunction in \(dparkin\) larvae

Figure 5.4 AMPK-activating AICAR, fails to rescue synaptic overgrowth in \(dparkin\) larvae

Figure 5.5 Metformin fails to rescue locomotory dysfunction in \(dparkin\) larvae

Figure 5.6 Metformin fails to rescue depolarized RMP defect in \(dparkin\) larvae

Figure 5.7 Resveratrol fails to rescue locomotory dysfunction in \(dparkin\) larvae

Figure 5.8 Resveratrol fails to rescue synaptic overgrowth in \(dparkin\) larvae

Figure 5.9 Resveratrol fails to rescue depolarized RMP defect in \(dparkin\) larvae

Figure 6.1 Summary of experiments with genetic expression of transgenes
List of Tables

2.1 Table of Stocks 68
2.2 Table of antibodies used for NMJ bouton counts 89
Acknowledgment

Firstly, I would like to thank to my supervisor Chris Elliott for his guidance and support throughout the course of my PhD.

I want to also extend my thanks to past and present members of the fly group at York whom have complimented my knowledge and understanding of the field in a variety of ways. I would like to take this opportunity to thank my TAP committee for their advice and members of technology facility at the York’s Biology Department for their technical help. Additionally, I am grateful to my funders, BBSRC.

Last and by no means least, I would finally like to thank my amazing family (notably my parents) and friends for their enduring encouragement, interest and support of all my endeavours.
Declaration

I hereby declare that the written work in this thesis is my own work except where stated in the text or figures.

Chapters: 1, 2, 3 and 4 contains images from journals adapted or used with modified text.

Chapter 3 contains figures and text derived from this paper, on which I was first author:

Chapter 1 : Introduction

1.1 Overview of Parkinson’s Disease

Parkinson’s Disease (PD), was first described by James Parkinson in 1817, and is the most common movement disorder and the second most common neurodegenerative disease after Alzheimer’s Disease (AD). PD affects 1% of the population over 65 years of age increasing to 4-5 % after 85 years of age for males and females (Farrer, 2006). The mean onset of autosomal recessive juvenile parkinsonism (AR-JP), which gives rise to an early onset form of PD that is characterized by levodopa-responsive Parkinsonism, is 23.2 years for males and females (Saito et al., 1998). PD is a degenerative condition affecting the central nervous system (CNS). Clinically, PD is characterized by resting tremor, bradykinesia, rigidity and postural instability these can be accompanied by non-motor symptoms such as autonomic dysfunction, olfactory deficits, sleep impairment, musculoskeletal abnormalities, skin lesions, dementia and neuropsychiatric disorders (Simuni and Sethi, 2008, Meissner et al., 2011). The profound dopamine deficiency is the cardinal biochemical abnormality in PD. This is primarily (but not exclusively) due to the loss of neurons from the substantia nigra pars compacta. These are dopaminergic neurons with very long axons that project to the striatum (Dauer and Przedborski, 2003). Preceding the neuropathology associated with the death of neurons in the nigrostriatal pathway, are histological abnormalities often characterized by proteinaceous inclusions called Lewy body (LB) and also gliosis (Przedborski and Goldman, 2004). Since the introduction of L-3,4-dihydroxyphenylalanine (Levodopa or L-DOPA) in 1968 it has remained the most efficacious treatment in PD, despite a significant number of dopaminergic reagents becoming available (including dopamine agonists, dopamine reuptake inhibitors, and Monoamine oxidase B (MAO-B) inhibitors, and surgical alternatives. Together, this provides clinicians with a range of viable
treatment options (Cotzias et al., 1969). Although dopamine replacement therapy alleviates some of the motor symptoms, it has its drawbacks as it becomes less effective over the course of the treatment accompanied by intolerable side effects. Motor complications (termed dyskinesias) are observed in patients who have been taking L-DOPA for a long time. By 5 years, dyskinesias are seen in 50% of patients taking L-DOPA, and by 8 years 80% (Golbe, 1991, Forno, 1996, Fahn, 2000). The risk of developing of young onset PD is associated with a higher incidence of L-DOPA induced dyskinesias (LID) (Kumar, 2005). The risk of developing LID for patients on treatment for at least 5 years who are aged between 40-59 years was 50%, whereas it is 16% for those with an onset of 70 years and over. This suggests that there are age-related dynamics with L-DOPA treatment in PD patients. The nigral degeneration or disease severity is suggested also to be a key risk factor. It is reported, that with the administration of clinical dose of L-DOPA idiopathic PD patients develop LID almost exclusively whereas normal and others with different neurological disorders do not develop LID (Markham, 1971, Chase et al., 1973).

Dopaminergic dysfunction contributes to few of the non-motor symptoms (NMS) (Chaudhuri and Schapira, 2009). Depression, anxiety and apathy are due to dopamine deficiency and are improved with L-DOPA treatment but these could lead to side effects including dopamine dysregulation syndrome, drug induced hallucinations, psychosis, hypomania, addiction to the and impulse control disorders (Voon et al., 2009). Additionally, this dopamine replacement treatment is not completely effective on all NMS. For example, depression occurs in approximately 28% of PD patients in the early stage of the disease (Ravina et al., 2007). Depression is thought to involve more than one pathway with damage to serotoninergic (raphe nuclei), dopaminergic (amygdala, cingular cortex, and mesolimbic and mesocortical mesothalamic pathways) and
noradrenergic (locus coeruleus) innervations (Tom and Cummings, 1998, Remy et al., 2005). The majority of NMS are related to non-dopaminergic systems: serotonergic, cholinergic and noradrenergic neurotransmitter transmission (Wolters, 2009). Treatment for depression for PD patients include tricyclic antidepressants, selective serotonin uptake inhibitors and a combination therapy in which medication that acts on several neurotransmitter pathways is given, for example noradrenergic and serotoninergic medication (Devos et al., 2008). There is currently no cure or effective treatment to stop the progression or manage all debilitating symptoms of PD and the quest for novel treatments and to find a definitive cure remains a challenge for both basic science and clinical research.

1.2 Classical hallmarks of PD

1.2.1 PD pathology: Lewy bodies, ubiquitin and α-synuclein

The post mortem brain samples from PD patients show Lewy body (LB) pathology, a classical hallmark of PD. These contain ubiquitin and α-synuclein. Ubiquitin is a cytosolic enzyme that plays a key role in protein degradation (Lecker et al., 2006). α-synuclein is a small protein normally located presynaptically in vivo and suggested to play an important role in synaptic function (Chandra et al., 2004). The importance of α-synuclein in PD is based on the observation that mutations in the α-synuclein gene lead to early onset PD (Polymeropoulos et al., 1997). α-synuclein induced dopaminergic neuronal loss has been successfully demonstrated in animal models including D. melanogaster (Feany and Bender, 2000, Auluck et al., 2002, Park and Lee, 2006) and in mouse (Oliveras-Salvá et al., 2013). The mechanism where by this selective loss of dopaminergic neurodegeneration occurs is unclear. The cytotoxic effect of α-synuclein is likely to be due to a gain-of-function (GOF) rather than from a loss-of-function (LOF), consistent with the dominant inheritance pattern of mutations. This is supported
further by animal studies in mouse with the loss of \(\alpha \)-synuclein that were observed to have minimal effects on their development and function (Abeliovich et al., 2000). \textit{D. melanogaster} models have recapitulated other key anatomical and behavioral features as observed from PD patients including \(\alpha \)-synuclein and ubiquitin positive LB-like pathology (Feany and Bender, 2000, Auluck et al., 2002) and locomotor dysfunction (Feany and Bender, 2000, Pendleton et al., 2002).

Another cause of the disease is the genomic triplication of the wild-type allele \textit{SNCA}, the gene that encodes the \(\alpha \)-synuclein protein (Singleton et al., 2003). The measurement of wild-type protein levels indicates the predicted doubling of \(\alpha \)-synuclein expression in the blood, while in the parts of the cerebral cortex region where LB are found, there is a rise in the levels and deposition of \(\alpha \)-synuclein (Miller et al., 1999, Miller et al., 2004). Patients with \textit{SNCA} duplication have a brainstem associated PD phenotype whereas the triplication of \textit{SNCA} results in a widespread with LB associated PD pathology (Singleton et al., 2003, Fuchs et al., 2007).

1.2.2 Anatomy of the basal ganglia and hypokinetic features of PD

The classical view of PD is that it is the result of the damage in the basal ganglia. The basal ganglia consist of four nuclei (Fig 1.1) that include the following: the striatum (caudate nucleus, putamen and the ventral striatum that includes nucleus accumbens), the globus pallidus, the \textit{substantia nigra} (\textit{pars compacta} and \textit{pars reticulata}) and the subthalamic nucleus. At the anterior part of the striatum it is divided into caudate nucleus and putamen by the internal capsule. The striatum is the main recipient of inputs to the basal ganglia from the cerebral cortex, thalamus, and the brain stem where its neurons project to globus pallidus and \textit{substantia nigra}. Globus pallidus lies medial to the putamen and is divided into two parts, internal and external segments. The
neurons that project from the striatum to the internal globus pallidus segment and to the substantia nigra reticulata use gamma-aminobutyric acid (GABA) as their neurotransmitter. This inhibits neuronal activity. The *Substantia nigra par compacta* zone is a distinct nucleus that lies dorsal to the reticulata zone. The *pars compacta* zone contains dopaminergic neurons and neuromelanin, a black pigment derived from the oxidized dopamine. Dopaminergic neurons are also found in the ventral tegmental area. The subthalamic nucleus is connected both to the globus pallidal segments and the *substantia nigra*. The glutamatergic cells of the subthalamic nucleus are the only excitatory projection in the basal ganglia.

The dopaminergic nigrostriatal projections from the *Substantia nigra pars compacta* to the striatum are important in the modulation of the direct and indirect pathway. The loss of dopaminergic neurons in the nigrostriatal pathway causes an imbalance in the activation and inhibition of the direct and indirect pathway respectively that leads to the PD associated motor dysfunction. As the effects of the functioning nigrostriatal pathway excites the direct pathway and inhibits the indirect one, the loss of these dopaminergic neuronal input, tips the balance in favour of activity of the indirect pathway and the decreased activity on the direct pathway as dopamine has different actions on the two dopamine receptors (D1 and D2, respectively). These changes lead to increased activity of the internal pallidal segment that results in increased inhibition of the thalamocortical and midbrain tegmental neurons leads to the hypokinetic features of PD.
Figure 1.1 The basal ganglia. This region of the brain consists of: the striatum caudate nucleus, putamen and the ventral striatum that includes nucleus accumbens, the globus pallidus, the substantia nigra (pars compacta \((SNc)\) and pars reticulata, \((SNr)\)) and the subthalamic nucleus (STN). At the anterior part of the striatum (STR) it is divided into caudate nucleus and putamen by the internal capsule. The striatum is the main recipient of inputs to the basal ganglia from the cerebral cortex (C), thalamus (Th), and the brain stem where its neurons project to globus pallidus and substantia nigra. The Globus pallidus lies medial to the putamen and is divided into two parts, know as the internal and external segments (GPi and GPe). The GPi segment and SNr neurons release gamma-aminobutyric acid (GABA) as their inhibitory neurotransmitter. The \(SNc\) zone is a distinct nucleus that lies dorsal to the reticulata zone. The \(SNc\) zone contains dopaminergic neurons and neuromelanin, a black pigment derived from the oxidized dopamine. Dopaminergic neurons are also found in the ventral tegmental area. The STN is connected both to the globus pallidal segments and the substantia nigra.

(No permission required to use this diagram (Obeso et al., 2002)).
1.3 Braak’s staging of PD pathogenesis

Braak revolutionized our view of PD, suggesting it was a spreading pathology starting in the neurons of the olfactory and/or digestive system. This was based on observations that some non-motor symptoms preceded the motor symptoms for example, such as the loss of smell (Braak et al., 2003, Braak and Del Tredici, 2008) and frequently constipation (Jost and Schimrigk, 1991, Sakakibara et al., 2001).

In Braak’s hypothesis, the earliest stage of PD is called Stage 1, and it is characterized by the abnormal α-synuclein immunostaining in only the medulla oblongata or the olfactory bulb. Later (Stage “2”), abnormal α-synuclein immunostaining is seen in the caudal raphe nuclei and the locus coeruleus (LC). In Stage 3 and 4 prominent α-synuclein immunostaining is in the substantia nigra pars compacta. This is associated with clinical Parkinsonism and dopaminergic neuronal loss that spreads into the cortex. Thus Braak’s hypothesis proposes that synuclein pathology in the lower brainstem is required for the later appearance of PD. The idea that early stages of PD may start in non-dopaminergic structures of the brain stem or even the in the peripheral autonomic nervous system will continue to influence approaches to early diagnosis of PD, the development of biomarkers and how critically to think about animal models in the future (Burke et al., 2008) and thus reflects PD pathogenesis as a complex multifactorial disease.

1.4 Models of PD

1.4.1 Overview of PD models

Studies on human materials are limited by ethical issues, slow reproductive turnover and by the limited genetic tools available, and thus require us to turn to model systems including the mouse, fly, worm and cell culture to understand etiology, the pathology
and molecular mechanisms of PD. 95% cases of PD are sporadic and are caused by a variety of risk factors including aging (Langston, 2002). However, age is not a risk factor for the early onset form of PD. Other risk factors are genetic susceptibility and environmental association. The association of environmental toxins, herbicides and pesticides with PD (Lees et al., 2009), has led to the development of several toxin-induced models: 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), paraquat and rotenone. These have provided insight into the molecular mechanisms underlying the pathogenesis of PD.

1.4.2 Neurotoxin-induced models

An accidental discovery in 1982 showed that the exposure of mitochondrial toxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) resulted in the death of dopaminergic neurons and induced PD-like motor symptoms in humans (Langston and Ballard, 1983, Bové et al., 2005). Rodent and primate models have used the following model to test compounds that induce both reversible (reserpine) and irreversible (MPTP, 6-hydroxydopamine (6-OHDA), paraquat and rotenone) effects that have been able to reproduce PD associated pathology and disease related symptoms. The two “classical” toxin models, 6-ODHA and MPTP that selectively and rapidly destroy catecholaminergic neurons (Bové et al., 2005), will be discussed further below.

1.4.2.1 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)

As previously discussed above, abnormalities in indirect pathway activation have been studied using microelectrode technology to record activity from brains of monkeys treated with meperidine derivative 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and symptoms have been ameliorated with lesions made to the overactive subthalamic nucleus which reduced the excessive excitatory drive onto the internal pallidal segment. The cardinal motor symptoms (akinesia, tremor and rigidity) were
ameliorated with specific lesions to the sensorimotor portion of the subthalamic nucleus or the internal pallidal segment in MPTP-treated monkeys (Porras et al., 2012).

1.4.2.2 6-hydroxydopamine (6-ODHA)

Systemic administration of 6-ODHA fails to effectively cross the blood brain barrier (BBB) and thus poorly accumulates in the brain parenchyma and does not generate a nigrostriatal lesion, like other toxins (MPTP, rotenone or paraquat). To selectively damage the nigrostriatal dopaminergic pathways, stereotaxic methods have been employed to inject 6-ODHA into the substantia nigra, the medial forebrain bundle that is part of the nigrostriatal tract or the striatum. Injections into these three areas of lesions lead to dopaminergic cell death, reduced dopamine levels and gliosis. LB pathology has not been confidently shown in the brains of 6-ODHA infused rats, a major shortcoming of this model (Bové et al., 2005).

6-OHDA shares some structural similarities to the neurotransmitters dopamine and noradrenaline (also known as norepinephrine). 6-OHDA has a high affinity for plasma membrane transporters including dopamine (DAT) and noradrenaline (NET) transporters (Luthman et al., 1989). As a result of this, 6-OHDA enters both dopaminergic and noradrenergic neurons. Once the toxin enters the neurons via the transporters, it becomes a highly reactive molecule. 6-OHDA induces oxidative stress by generating reactive oxygen species (ROS) and quinones (Cohen, 1984) leading to cell death (Jeon et al., 1995).

1.4.2.3 Common findings from toxin models of PD

A common feature of all toxin models-induced models is their ability to recapitulate oxidative stress (OS) and cell death in the dopaminergic neurons as observed in PD patient samples. Research from the neurotoxic models concluded that mitochondrial
dysfunction via complex I or III and OS are key players in the demise of dopaminergic neurons (Abou-Sleiman et al., 2006). Human samples obtained from PD patients have shown the presence of ROS along with compromised function of the mitochondrial respiratory chain component, complex 1 (Schapira et al., 1990, Mizuno et al., 1989).

1.4.2.4 Evaluation of toxin models of PD
Toxin-induced models fall short because of their acute nature: one or two injections, given over a short period of time, are enough to lead to rapid or immediate onset of symptoms. This limits their usefulness as a model of the slowly progressive PD observed in humans. The failures in clinical trials, after observing positive effects in these mouse models suggested the mechanisms underlying the pharmacological models of PD were different from those occurring in PD patients (Linazasoro, 2004, Meissner et al., 2011, Guo, 2012). There may be compensatory mechanisms that could occur during the course of PD in patients, whereas in these acute toxin models there is little chance of this taking place. Another difference is that, a large proportion of PD occurs in the elderly, whereas the majority of the pathology in these toxin models occurs in the early stages of rodent toxin models because of the cost and inconvenience of housing them for an extended period of time. Other factors which may explain the difference between PD drug trials and rodent experiments are differences in physiology, behaviour and gene expression.

1.4.3 Genetic mutations of PD
Although PD was initially believed to be idiopathic in nature (being of an unknown origin), the discovery of α-synuclein mutations as a cause of PD (Polymeropoulos et al., 1997) led to a revolution in understanding (Hardy et al., 2009, Martin et al., 2011). However genetic mutations are rare and account for approximately 10-15% of all PD cases (Dauer and Przedborski, 2003, Houlden and Singleton, 2012). Nonetheless, the
development of genetic animal models of PD has revolutionized our understanding of the cellular mechanism underlying PD.

Some PD-related mutations are associated with autosomal dominant forms of the disease. These include the amino acid substitutions in α-synuclein protein produced from the SNCA gene (PARK1). The A53T and A30P missense mutations in the α-synuclein gene were discovered in a large Italian-American Greek and German kindred respectively (Polymeropoulos et al., 1997, Spillantini et al., 1997, Krüger et al., 1998). Triplication of SNCA is linked to a second form of inherited PD (called PARK4) where increased dosage of the wild-type α-synuclein gene results in autosomal dominant PD (Singleton et al., 2003). Other autosomal dominant forms include mutations in Leucine rich-repeat kinase 2 (LRRK2, PARK8) (Paisán-Ruíz et al., 2004, Zimprich et al., 2004), vacuolar protein sorting 35 (VPS35, PARK17) (Vilariño-Güell et al., 2011, Chartier-Harlin et al., 2011, Zimprich et al., 2011) and eukaryotic translation initiation factor 4 gamma-1 (EIF4G1, PARK18) (Chartier-Harlin et al., 2011).

Other forms of PD are recessive: genes that are associated with these forms of PD include parkin (PARK2) (Kitada et al., 1998), DJ-1 (PARK7) (Bonifati et al., 2003), and phosphatase and tensin homolog (PTEN)-induced putative kinase-1 (PINK1, PARK6) (Valente et al., 2004b). Additionally, a mutation in ATP13A2 (PARK9) that encodes a lysosomal ATPase has also been linked to an atypical form of autosomal recessive PD (Ramirez et al., 2006). Other mutations have also been shown in FGF20, GIGYF2, ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1, PARK5) and High Temperature Requirement A2 (HtrA2/Omi, PARK13) (Strauss et al., 2005) Heterozygous mutations in GBA gene encoding glucocerebrosidase is linked to Gaucher’s disease has also been linked to typical PD with LB pathology (Clark et al., 2007). Supporting this, genome-
wide association studies have shown a handful of polymorphic variants, mostly genes already identified from familial PD (Peeraully and Tan, 2012).

1.4.3.1 Genetic models shed light of idiopathic PD

The epidemiological studies and the discovery of genes from the rare familial forms of PD have revealed cellular dysfunction implicated in the formation and/or progression of both familial and sporadic PD that include abnormal protein aggregation, oxidative stress and mitochondrial dysfunction. Inherited PD is often indistinguishable in terms of nature and severity from the sporadic form (Savitt et al., 2006, Hardy et al., 2009, Martin et al., 2011). This allows us to speculate that the basic molecular signals are also likely to be similar in both genetic and sporadic form. PD-related genes are used to study \textit{in vivo} function of the disease causing mutations altered in patients to generate reliable animal model of PD. This has encouraged the engineering of genetic models.

The thesis aims to look into the neuronal dysfunction caused by mutations in \textit{parkin} gene in \textit{D. melanogaster} and there will be more of a focus on the impact of the mutations in \textit{parkin} which cause early onset PD.

1.4.3.2 \textit{parkin} gene

The \textit{parkin} gene accounts for the majority of the autosomal recessive juvenile Parkinsonism (ARJP) cases, with over 100 pathogenic mutations having been reported (Exner et al., 2012). In 1998, the \textit{parkin} gene was identified as a cause of early onset ARJP (Kitada et al., 1998). The \textit{parkin} gene in humans encodes a polypeptide chain with 465 length amino acid chain containing a ubiquitin-like (UBL) domain at the N-terminus and an RBR (RING-between-RING) domain close to the C-terminus. The in-between RING (IBR) domain sits in the middle of the two RING fingers that make up the RBR region that coordinates the six zinc ions. Additionally, another RING finger
domain has also been identified between the UBL and the RBR regions that are thought to assist in the binding of zinc ions (Hristova et al., 2009). Studies have shown that parkin functions as an E3 ubiquitin protein ligase (Shimura et al., 2000). A single Drosophila orthologue of mammalian parkin, CG10523, has been identified. It has a protein sequence of 482 amino acids (Greene et al., 2003, Pesah et al., 2004) and shows an overall similarity of 59% with its human homologue. The orthologue contains all of the characteristic canonical motifs of human Parkin, including a ubiquitin-like domain, two RING finger domains, and an in-between RING fingers domain (Fig 1.2).
UBL NH2-terminal ubiquitin-like domain
RING(0-2) Really interesting new gene finger domain
IBR In-between ring domain
L Linker
T Tether
RBR RING-between-RING
Figure 1.2 Schematic diagram indicating functional domain organization and structural domain boundaries of parkin protein between human and *D. melanogaster*. Domain structure of parkin protein showing the C-terminal RING1, IBR and RING2 domains found in all RBR E3 ligase proteins. The ubiquitin-like (Ubl) and RING0 domains are specific to the *parkin* E3 ligase. Residue numbering is shown for both the human (top) and *D. melanogaster* (bottom) *parkin* sequences.

(Modified from Spratt et al., 2013)
1.5 Pathogenesis of PD

Animal models have given great insight to the etiology, pathology and molecular mechanisms of PD (Dawson et al., 2010), but the complete disease process has yet to be determined. Over several decades, a variety of animal models have been developed based on toxins or genetic manipulations. Research from animal models has provided clues into the disease pathogenesis and cellular dysfunction: the role of oxidative stress, mitochondrial abnormalities, aggregation-induced toxicity and/or impairment of the proteosomal/lysosomal degradation pathways (Dawson et al., 2010, Corti et al., 2011, Martin et al., 2011, Shulman et al., 2011). These will be reviewed below.

1.5.1 Oxidative stress and the generation of reactive oxygen species

The mechanisms that result in the loss of dopaminergic cells have been debated for decades. The brain in particular, is susceptible to oxidative damage as a result of its high metabolic rate and its relatively reduced renewing capacity compared to other organs. Approximately 20% of the molecular oxygen and a quarter of the glucose consumed by the human body are used for cerebral functions, even though the brain only represents only 2% of the total body mass. The maintenance and restoration of ionic gradients altered by signaling processes results in high brain energy requirements (Attwell and Laughlin, 2001, Alle et al., 2009). Among the signaling processes, synaptic potentials, rather than action potentials, appear to represent by far the main energetic cost related to maintenance of excitability (Alle et al., 2009).

Oxidative stress (OS) is defined as the imbalance between the production of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to scavenge these ROS, leading to an increase in free radicals. Severe OS can cause cell damage and death by several mechanisms (Halliwell, 1992). The balance of ROS production and antioxidant capacity has been shown to be compromised in many neurodegenerative
conditions like PD, AD (Alzheimer’s Disease) and Amyotrophic lateral sclerosis (ALS).

There are several markers of ROS damage reported within specific brain regions (Fig 1.3), which eventually undergo neurodegeneration. These include 4-Hydroxynonenal (4-HNE) and malondialdehyde (MDA) that are markers of lipid peroxidation, and protein nitration that is a marker of protein oxidation, both of which have been reported to be present in all the above conditions. This however does not prove these are involved in the neurodegenerative process. Nigral dopaminergic neurons may be susceptible to OS as a result of dopamine metabolism which give rise to toxic species (Maker et al., 1981, Jenner, 2003).
Figure 1.3 Reactive oxygen species (ROS) and their interaction with reactive nitrogen species (RNS). ROS include the free radical group possessing highly reactive unpaired electrons such as superoxide (O$_2^-$) and hydroxyl (OH) radicals; and the second types of molecular species are hydrogen peroxide (H$_2$O$_2$) and peroxynitrite (ONOOC$^-$). O$_2^-$ is broken down to H$_2$O$_2$ by superoxide dismutases (SOD). H$_2$O$_2$ is broken down by catalase (CAT), glutathione peroxidase (GPX) and peroxiredoxins (PRX) to water (H$_2$O). Additionally H$_2$O$_2$ can also be reduced to the OH$^-$ radical via the Fenton reaction in the presence of reduced transition metals such as iron (Fe$^{2+}$) that can be further reduced to superoxide O$_2^-$. O$_2^-$ is able to also react with a reactive nitrogen species (RNS) called nitric oxide (NO$^-$) radicals to produce another RNS, ONOO$^-$. NO$^-$ is formed from the conversion of conversion of arginine to citrulline by nitric oxide synthase (NOS).

Diagram based on (Bogaerts et al., 2008)
1.5.2 Dopamine induced oxidative stress

Dopamine is a neurotransmitter and itself has been widely held responsible for the induction of oxidative stress and impairment of mitochondrial function. This is due to the oxidization of cytosolic dopamine and its metabolites leading to the generation of highly ROS that oxidize lipids and other compounds (Berman and Hastings, 1999, Gluck et al., 2002, Greenamyre and Hastings, 2004, Sulzer, 2007, Naoi et al., 2009).

Reduced sequestration of dopamine into synaptic vesicles has been proposed as a vulnerability factor of dopamine neurons. This is because at neutral or more alkaline pH dopamine undergoes auto-oxidation, but inside the synaptic vesicle the pH is lower and dopamine is unable to auto-oxidize (Obeso et al., 2010). Dopamine storage dysfunction can be caused by α-synuclein protofibrils, oxidative stress and neurotoxins such as methamphetamine (Caudle et al., 2008). A direct consequence of storage dysfunction is elevated dopamine in the cytosolic compartment resulting in the generation of reactive metabolites via two distinct pathways. Dopamine in the cytoplasmic compartment is metabolized by monoamine oxidase (MAO) located on the outer surface of the mitochondria or by auto-oxidation to generate harmful byproducts such as ROS, and subsequent neuromelanin formation. Oxidation of dopamine by MAO or aldehyde dehydrogenase results in the generation of hydrogen peroxide (H$_2$O$_2$) and dihydroxyphenylacetic acid (DOPAC). The generation of ROS from dopamine metabolism can inhibit complex I of the electron transport chain (Suzuki et al., 1992, Glinka and Youdim, 1995) and complex I activity has been found to be decreased in nigral tissues from PD patients’ brains (Reichmann and Janetzky, 2000). There is reason to question the “excess cytosolic dopamine leads to PD” hypothesis as L-DOPA administration ameliorates motor dysfunction by replacing lost dopamine and shows no accelerating effect on the disease progression of these patients (Fahn and Group, 2005).
This suggests that dopamine does not accelerate oxidative stress induced- PD pathogenesis.

Additionally, there is regional variability in the loss of dopamine containing cells in PD where there are certain regions that show no sign of pathology (Damier et al., 1999). On the other hand a study has shown calcium entry through L-type channels stimulates dopamine metabolism in dopaminergic neurons thereby increasing the cytosolic concentrations to a toxic range with L-DOPA addition (Mosharov et al., 2009). Pro-oxidants produced from dopamine metabolism such as H₂O₂, aldehydes and quinones could also react with other components that could result in cell loss. It should be noted non-dopaminergic cell death also occurs in PD, thereby arguing dopamine itself is unlikely to be the cause.

1.5.3 The Reactive Oxygen Species (ROS) generated from mitochondria

Oxidative damage has been shown to extend its effect to other cellular components such as lipid, proteins, RNA and DNA in the substantia nigra of patients with PD (Zhang et al., 1999), where the source of oxidative stress was shown to originate from the mitochondria. ROS are of two types: first the free radical group. These possess highly reactive unpaired electrons such as superoxide (O₂⁻), nitric oxide (NO⁻) and hydroxyl (OH⁻) radicals. The second type care composed of molecular species including hydrogen peroxide (H₂O₂) and peroxynitrite (ONOO⁻). O₂⁻ is broken down to H₂O₂ by superoxide dismutase (SOD). H₂O₂ is broken down by catalase (CAT), glutathione peroxidase (GPX) and peroxiredoxins (PRX) to water (H₂O). Additionally H₂O₂ can also be reduced to OH⁻ radical via the Fenton reaction in the presence of reduced transition metals such as iron (Fe²⁺) that can be re-reduced to superoxide O₂⁻. O₂⁻ is able to also react with NO radicals to produce ONOO⁻. NO⁻ is formed from the conversion of conversion of arginine to citrulline by nitric oxide synthase (NOS)
Mitochondria generate ATP coupled with the production of superoxide (O_2^-) and ROS. 1–2% of oxygen consumed during physiological respiration is converted into O_2^- when electrons prematurely leak from the electron transport chain (ETC) and are aberrantly transferred to molecular oxygen (O_2). The mitochondrial ETC, responsible for carrying out oxidative phosphorylation, is composed of five multi-subunit protein complexes, coenzyme Q (CoQ) and cytochrome c (Cyt c). Leakage of superoxides (O_2^-) occurs at complex I, II or III. O_2^- from complex I and II is released into the matrix, whereas O_2^- from complex III can be produced on either side of the inner membrane. O_2^- can then cross the outer mitochondria membrane (OMM) via a voltage-dependent anion-selective channel ($VDAC$). Additionally, O_2^- can be converted into H_2O_2 in the matrix by superoxide dismutase 2 ($Sod2$) or in the intermembrane space by $Sod1$. In the cytosol, superoxide is converted by $Sod1$ into H_2O_2, which is further detoxified by the peroxisomal enzyme catalase. H_2O_2 can then freely cross mitochondrial membranes and can be further detoxified by additional antioxidant enzymes including peroxiredoxins (PRX) and glutathione peroxidase (GPX) (Veal et al., 2007) (Fig 1.4).
Figure 1.4 Reactive oxygen species (ROS) are produced during the oxidation of fuels in mitochondria. There are multiple sites of ROS production in the mitochondrion and ROS are kept within tolerable limits by a range of antioxidant systems, including glutathione and thioredoxin systems. The mitochondrial electron transport chain (ETC) is responsible for carrying out oxidative phosphorylation. Leakage of superoxides (O_2^-) occurs at complex I, II or III. O_2^- from complex I and II is released into the matrix, whereas O_2^- from complex III can be produced on either side of the inner membrane. O_2^- can then cross the outer mitochondria membrane (OMM) via a voltage-dependent anion-selective channel ($VDAC$). Additionally, O_2^- can be converted into H_2O_2 in the matrix by superoxide dismutase 2 ($Sod2$) or in the intermembrane space by $Sod1$. In the cytosol, superoxide is converted by $Sod1$ into H_2O_2, which is further detoxified by the peroxisomal enzyme catalase. H_2O_2 can then freely cross mitochondrial membranes and can be further detoxified by additional antioxidant enzymes including peroxiredoxins (PRX) and glutathione peroxidase (GPX).

Mitochondrial ROS emission levels are not simply scaled to fuel oxidation rate, but are affected by fuel type and by mitochondrial membrane potential. Glutathione (GSH) not only quenches ROS but also covalently modifies proteins to affect their function or protect proteins from oxidative damage. The fly does not have a glutathione reductase, and the reduction of glutathione disulphide (GSSG) is undertaken by the fly thioredoxin system (Kanzok et al., 2001).
During the cellular oxidation of fuels, electrons are used to power the proton pumps of the mitochondrial electron transport chain (ETC) and ultimately drive ATP synthesis and the reduction of molecular oxygen to water. During these oxidative processes, some electrons can ‘spin off’ during fuel oxidation and electron transport to univalently reduce O$_2$, forming reactive oxygen species (ROS). In excess, ROS can be detrimental; however, at low concentrations oxyradicals are essential signaling molecules. Mitochondria thus use a battery of systems to finely control types and levels of ROS, including antioxidants. Several antioxidant systems depend on glutathione.

1.5.3.1 Mitochondria and its associated functions

Mitochondria are the “powerhouses of the cell” and they are responsible for the production of cellular energy, in the form of adenosine triphosphate (ATP), from the breakdown of carbohydrates and fatty acids, which are then converted to ATP by the process of oxidative phosphorylation in the inner mitochondrial membrane. The initial stages of glucose metabolism, glycolysis, occurs in the cytosol where glucose is converted into pyruvate. Pyruvate is transported into the mitochondria where pyruvate is converted in the process of being oxidized into Acetyl-Co enzyme A (Acetyl CoA) which is broken down to carbon dioxide in the citric acid cycle. The enzymes of the citric acid cycle is located in the matric of the mitochondria and play a central part in the breakdown of both carbohydrates and fatty acids.

Mitochondria are also involved in other functions including biosynthesis of amino acids and steroids, beta-oxidation of fatty acids, homeostatic levels of cytosolic calcium concentration, buffering of calcium fluctuations and production and modulation of ROS. Mitochondria also play a central role in apoptosis. Taken together, the energy demands of neurons and their poor regenerative capacity, suggests mitochondrial
dysfunction could lead to poor neuronal survival.

The importance of mitochondrial function has been highlighted throughout a variety of neurodegenerative diseases, including PD (Henchcliffe and Beal, 2008, Exner et al., 2012). Toxins that affect mitochondria cause PD phenotypes (Przedborski et al., 2004). One of the first links between PD and mitochondria came in the early 1980s, when it was discovered the neurotoxin MPTP that caused a form of Parkinsonian syndrome after being metabolized into MPP⁺ is taken up into dopaminergic neurons by dopamine transporter, vesicular monoamine transporter 2 (VMAT2), accumulates in the mitochondria and inhibits mitochondrial respiration (Langston and Ballard, 1983, Nicklas et al., 1985). Human post-mortem brain samples show substantial decrease in mitochondrial complex I (NADH ubiquinone oxidoreductase) activity in substantia nigra of PD patients (Mann et al., 1994), which appears to be a result of oxidative damage to complex I (Keeney et al., 2006). Mitochondrial DNA (mDNA) is vulnerable as they are close to the sites of superoxide generation and high levels of superoxide production are a possible cause of the increased number of somatic DNA mutations observed in dopaminergic neurons in the substantia nigra of PD patients (Soong et al., 1992). Mutations in mDNA impact on electron chain function (Bender et al., 2006) and as a consequence cause disruption to the bioenergetics of substantia nigra neurons. 13 proteins associated with the respiratory chain are encoded by the mitochondrial genome, 7 of which are involved in complex I formation (Schapira, 2008).

1.5.3.2 Mitochondrial abnormalities in PD

Several of the genes found to be associated with PD are mitochondrially-linked proteins (Abou-Sleiman et al., 2006, Exner et al., 2012) (Fig 1.5). These include parkin, PTEN-induced kinase 1 (PINK1), DJ1, and α-synuclein.
Respiratory chain activity

Bioenergetics

Fission

Quality Control

Mitophagy

Biogenesis

Fusion

PGC-1α

PARIS

α-syn

α-syn

ROS

parkin

DJ1

PINK1

ATP

MPTP

Rotenone

Ψ

α(syn

PINK1

parkin

DJ1

PINK1

parkin

Mitophagy
Figure 1.5 The association between familial PD and mitochondrial biology. The involvement of autosomal recessive PD proteins (pale blue) or autosomal dominant PD proteins (dark blue) in mitochondrial processes, have been represented in the diagram. This includes their life cycle, bioenergetic capacity, quality control, dynamics, and subcellular distribution.

Adapted from (Exner et al., 2012)
The level of the characteristic muscle and germline defects seen in *D. melanogaster parkin* mutants are not observed to equally manifest in PD patients or mammalian mouse models. Mitochondrial abnormalities on the other hand are far more common in patients with early onset as well as sporadic PD. These organelle-associated defects are conserved in all model organisms and in humans with *parkin* mutations (Müftüoglu et al., 2004, Mortiboys et al., 2008, Palacino et al., 2004).

Additionally, conditional knockout mice, disruptions to the gene for mitochondrial transcription factor A (*Tfam*) in dopaminergic neurons, lead to reduced copy number of mDNA and inefficient respiratory chain function leading the adult onset and progressive decline of motor dysfunction with LB pathology and nerve death (Ekstrand et al., 2007). Dawson and colleagues recently showed a *parkin* interacting substrate, *PARIS*, to suppress peroxisome proliferator-activated receptor γ co-activator (*PGC*)-1α expression induced mitochondrial biogenesis (Shin et al., 2011). When *parkin* is absent this elevates the activity of *PARIS* leading to suppression of *PGC*-1α and causing dopaminergic cell loss (Shin et al., 2011). This implicates mitochondrial stress as an important factor in dopaminergic neuron survival, which could be due to the fact that dopaminergic neurons with their large arbors are metabolically very active than compared to other neurons. The increased metabolic demands may make dopaminergic neurons more vulnerable to mitochondrial dysfunction and cell death.

1.5.4 Aggregation induced proteolytic stress and the ubiquitin proteosomal system (UPS)

In addition to impairments of the respiratory chain component, complex 1, and oxidative stress there is also evidence of aberrant activity of the ubiquitin proteosomal system (UPS) leading to proteolytic stress that may be involved in the demise of
dopaminergic neurons (Chung et al., 2001, McNaught et al., 2003). Two PD-related genes (*parkin* and *UCH-L1*) are involved in the UPS, supporting this notion. *parkin* is an E3 ubiquitin ligase that confers substrate specificity via the process of ubiquitination with the aid of E1 ubiquitin-activating enzyme and E2 ubiquitin-conjugating enzyme, thereby targeting damaged polyubiquitinated proteins to the UPS once recognized by the 26S proteosome (*Fig 1.6*) (Pickart, 2001). The over 30 or so putative *parkin* substrates have been identified including modified glycosylated form α-synuclein (Shimura et al., 2001), including PARIS (Shin et al., 2011). The overexpression some of these substrates has been shown to exert cytotoxicity and the overexpression of *parkin* protects against substrate toxicity (Dong et al., 2003, Ren et al., 2003, Staropoli et al., 2003). *parkin* has been described as a multifaceted neuroprotective agent (Feany and Pallanck, 2003).
Free Ubiquitin

Conjugating enzyme

Activating enzyme

20S core

UBL

Parkin (E3)

RING

RING

RING

IBR

RING

Ligase

26S proteosome

19S cap

ATP

ADP

Degrada*on

Substrate

polyubiquitination

E1 + ATP → ADP

UCH

peptides
Figure 1.6 Parkin and ubiquitin proteasome system. A series of reactions are mediated by the enzymes of the UPS which ubiquitinate substrates and subsequently degrade them. Parkin binds to E2 enzymes and a number of substrates through its C-terminal RING-box domain and promotes ubiquitination of the substrates. Polyubiquitinated substrates are transported to the 26S proteasome, which is thought to bind to the ubiquitin-like domain of Parkin, and are rapidly degraded. This an energy-dependent protein degradation system in which proteins covalently modified with polyubiquitin chains are recognized and degraded by 26S proteasome. Ubiquitination is a sequential enzymatic reaction carried out by three enzymes, E1 (ubiquitin activating enzyme), E2 (ubiquitin conjugating enzyme) and E3 (ubiquitin ligase). E3 specifically recognizes the protein fated to be degraded and promotes its ubiquitination in concert with E2. Human Parkin has an E3 ubiquitin ligase activity (Shimura et al., 2001), a function that requires an intact RING finger and studies in D. melanogaster have shown similar mutations in this domain and others that compromise ubiquitin ligase activity (Cha et al., 2005).
1.6 Parkin models of PD

1.6.1 D. melanogaster models of PD

In *D. melanogaster, dparkin* is highly expressed in the central nervous system (CNS) and in the testis (Horowitz et al., 2001, Bae et al., 2003, Chintapalli et al., 2007). Adult flies with the loss of function of *dparkin* are semi-viable with reduced life span and locomotion (Greene et al., 2003, Pesah et al., 2004). Additionally, there are reports of dopamine-specific neuronal loss in *dparkin* mutant flies (Greene et al., 2003, Cha et al., 2005, Whitworth et al., 2005, Sang et al., 2007, Wang et al., 2007), but one group failed to show this age-dependent dopaminergic specific loss (Pesah et al., 2004). Irrespective of the loss of dopaminergic neurons, *dparkin* mutants have reduced staining in their CNS for tyrosine hydroxylase (*TH*), a key enzyme in the synthesis of dopamine (Greene et al., 2003, Cha et al., 2005, Whitworth et al., 2005, Wang et al., 2007). There is widespread apoptotic degeneration of adult fight muscles that correlates with the motor dysfunction as observed from geotaxis climbing assays of *dparkin* mutant flies (Greene et al., 2003). The locomotory defects observed in *parkin* mutant flies have been mainly shown to be due to muscle abnormalities rather than a neuronal failure (or more specifically to dopaminergic death) (Pesah et al., 2004). Additional defects include sterility in both male and female (Greene et al., 2003, Ottone et al., 2011). Male sterility is a result of late defects in spermatid formation in the germline (Greene et al., 2003).

A key observation from *dparkin* mutant flies was the presence of droopy wings and associated loss of thoracic muscles (Greene et al., 2003). The thoracic muscles showed mitochondrial abnormalities (Greene et al., 2003) suggesting oxidative stress most likely occur in flies with *dparkin* mutations. Firstly, longevity was reduced when flies were fed with a free radical generator agent, paraquat (Pesah et al., 2004). Secondly, a
loss of function allele of Glutathione S-transferase (GST) was identified as an enhancer of *dparkin*\(^{25}\) (null) mutant phenotype from a genomic screen (Pesah et al., 2004). GSTS1 is an antioxidant and the flies without both the *dparkin* and GST genes show progressive loss of dopaminergic neurons and oxidative stress (Whitworth et al., 2005).

Thirdly, *D. melanogaster parkin* is a negative regulator of the c-Jun N-terminal kinase (JNK) pathway suggesting its involvement in oxidative stress mediated signaling cascade (Cha et al., 2005). Finally, the lifespan of *dparkin* mutant flies was extended by enhancing antioxidant pathways (Saini et al., 2010). All of the above has shown that oxidative stress is as important in *dparkin* mutant fly models as in human PD. *dparkin* mutants are not only restricted to mitochondrial stress but also to proteosomal and endoplasmic reticulum stress. Mitochondrial dysfunction could explain the reduction in ATP in energetic tissues, like the muscle for instance, that results in the eventual degeneration (and also may affect some dopaminergic neurons) leading to motor dysfunction. The mitochondrial-associated defects in the form of their morphology, integrity and function observed in *dparkin* mutants has been shown to be ameliorated by up-regulating alternate modes of energy production via AMPK activity (Kim et al., 2012).

As noted above, most *dparkin* phenotypes in flies were not neuronal. Apart from one group that specifically stated that third instar *dparkin* mutant larvae have normal neuromuscular junction physiology, (Pesah et al., 2004) no other groups have reported whether or not they had investigated the any of the larval stages of *dparkin* mutant fly models.

1.6.1.2 parkin/ PINK1 mitochondrial associated roles

Both *parkin* and *PINK1* have been shown to interact (Kim et al., 2008, Xiong et al.,
2009), showing they are both involved in a common pathway to preserve mitochondrial integrity. Mutations in PINK1 gene, that encodes for serine threonine kinase, are also responsible for a proportion of early onset autosomal recessive PD (Valente et al., 2004a). This enzyme possesses a kinase domain, with an additional mitochondrial-targeting signal (Clark et al., 2006). PINK1 is rich in the heads as well as the testes of adult flies, similar to that of parkin expression (Park et al., 2006, Park and Lee, 2006). PINK1 mutants show very similar phenotypes to parkin mutants including reduced longevity, motor defects, mitochondrial abnormalities, male sterility and apoptotic muscle degeneration (Wang et al., 2006, Yang et al., 2006). PINK1 mutants show a decline in mitochondrial numbers from dopaminergic neurons with increasing age. PINK1-parkin double mutants show similar phenotypes as individual mutants. PINK1 mutant phenotypes are rescued by wild-type expression of parkin, whereas PINK1 expression failed to rescue parkin phenotypes, thereby implicating PINK1 action upstream of parkin in the PINK1-parkin pathway. This pathway is vital for the survival of the dopaminergic neuronal loss in PINK1 mutants, as this selective neuronal loss is rescued with wild-type parkin expression (Clark et al., 2006, Park et al., 2006, Vos et al., 2012).

PINK1/parkin regulate mitochondrial integrity (Greene et al., 2003, Pesah et al., 2004, Guo, 2012, Vos et al., 2012). Cultured cells show that PINK1 and parkin regulate mitophagy in D. melanogaster. This is supported by mammalian work and suggests the exciting possibility that failure of mitophagy, a quality control process, underlies the pathogenesis of PINK1/parkin pathway (Fig 1.7).
Low $$\rightarrow$$ Mitochondria
High

Phagophore

Lysosome

Autolysosome

$PINK1$

$parkin$

$p62$

$ubiquitin$
Figure 1.7 *parkin*-induced mitophagy. Under normal physiological conditions that maintain mitochondrial homeostasis: *PINK1* recruits *parkin* to the mitochondria, where these two proteins interact to eliminate abnormal mitochondria through mitophagy. Alterations in mitochondrial membrane potential ($\Delta \Psi_m$; a key indicator of mitochondrial physiology and cell viability) initiates the *PINK1*-*parkin* cascade of events leading to mitophagy. High mitochondrial membrane potential causes *PINK1* to be imported into mitochondria, then to be proteolytically processed and rapidly degraded (to have low endogenous levels of *PINK1*) under basal conditions. In the instance of low mitochondrial membrane potential, *PINK1* accumulates on the mitochondrial surface that signals to *parkin* to translocate to the mitochondria. *parkin* ubiquitinates mitochondrial proteins at the outer membrane, causes the recruitment of adaptor proteins (e.g. p62), which link ubiquitinated cargo to the autophagic machinery. Dysfunctional mitochondria are engulfed by phagophores, which matures into autophagosomes and fuse with lysosomes to autolysosomes, which eventually degrade their content.

Adapted from (Castillo-Quan, 2011).
dparkin (as well as PINK1) mutant phenotypes were rescued with the expression of pro-fission genes and decreasing expression of genes that promote mitochondrial fusion (Deng et al., 2008, Park et al., 2009, Poole et al., 2008, Yang et al., 2008). Reduction in gene copy number of dynamin-related protein 1 (drp1), a pro-fission gene, in a PINK1 mutant background caused lethality (Deng et al., 2008, Poole et al., 2008). Thus, suggesting mitochondrial fission is promoted by both PINK1 and parkin. The difference in the phenotypes of drp1 mutants compared to that of PINK1 or parkin mutant suggests that PINK1/ parkin pathway aid to regulate mitochondrial fission machinery. Parkin is recruited to dysfunctional (depolarized) mitochondria involved in the organelle specific turnover of mitochondria termed mitophagy (Narendra et al., 2009).

1.7 D. melanogaster approaches to model neurodegenerative diseases

1.7.1 Introduction to D. melanogaster genes and their conservation to human genes

D. melanogaster, the common fruit-fly, has over 100 years’ worth of research and has been extensively used for investigating basic questions concerning biological processes (Bellen et al., 2010). The completion of the D. melanogaster and human genome sequences revealed D. melanogaster and humans have many genes they share in common. Although D. melanogaster possesses a compact genome, approximately 1/30 of the human genome, approximately two thirds of the known human genes have a counterpart in D. melanogaster (666 of 911 genes in D. melanogaster) (Reiter et al., 2001), while 77% of human disease related genes are conserved in the fly (Rubin, 2000, Bier, 2005). Additionally, there is a considerable degree of conservation of metabolic and signaling pathways at a cellular level, and more strikingly the molecular mechanisms for complex behaviors such as circadian rhythm, learning and memory, sleep and aggression (Hall, 2003, Mershin et al., 2004, Greenspan et al., 2001, Bellen et al., 2010). D. melanogaster has been widely used to research a variety of biological
processes including cell death, cell proliferation, growth and migration. This remarkable organism is useful in our understanding of disease mechanisms through the identification of novel targets for potential therapeutic approaches towards human diseases (Auluck et al., 2005, Tain et al., 2009).

1.7.2 *D. melanogaster* models of neurodegeneration

The studies on neurodegenerative diseases using *D. melanogaster* models have mostly focused on Huntington disease (HD) (Ravikumar et al., 2004), Parkinson’s disease (PD) (Pendleton et al., 2002) and Alzheimer’s disease (AD) (Torroja et al., 1999), involving the misexpression of the relevant mutant human genes for huntingtin, α-synuclein and Aβ1–42, respectively (Bilen and Bonini, 2005). *Drosophila* was shown to be an excellent model system for neurodegenerative disease (Hirth, 2010). *D. melanogaster* have short life cycles with 10 days generation time and 60-80 day life span allowing age related experiments to be completed within short periods of time. Therefore they are cheap to maintain compared to mammalian models (Guo, 2012). The fully sequenced and annotated *D. melanogaster* genome (Adams et al., 2000), along with the tools available for homology search algorithms, has aided the identification of several candidate *D. melanogaster*-disease homologues. Four of the five well-studied PD-related genes have fly homologues, these include single homologues for Dardarin/ LRRK2, parkin, PINK1 and two closely related homologues for DJ-1. α-synuclein was the first gene associated with PD and the first PD-associated gene to be studied in *D. melanogaster*, although with no orthologue in the fly.

1.7.3 Genetic approaches using *D. melanogaster*

Reverse genetic approaches have been useful in the generation of loss-of-function (LOF) and gain-of-function (GOF) phenotypes that may successfully recapitulate symptoms of certain diseases. LOF phenotypes can be produced by inducing mutations
that lower or abolish the activity of gene of interest, e.g. by EMS mutation or by excision of P-elements. Alternatively, directed expression of an RNAi interfering transgene can be used to achieve subtle LOF phenotypes in, for example, specific types of neurons. A GOF phenotype can be generated through the directed expression of a dominant gene of interest. This could be used to increase the expression of the gene to abnormally high level, in those tissues where it is normally expressed. Alternatively, it may be expressed in tissues where it is not normally expressed. These techniques are facilitated by the *D. melanogaster* stock centers (e.g. Bloomington, Kyoto), which make stocks readily available and the many worldwide research laboratories which generously share reagents (fly lines, antibodies etc.).

1.7.4 *D. melanogaster* genetic toolbox used to model Parkinson’s Disease

An array of sophisticated molecular genetic tools have been developed by the *D. melanogaster* community which has made the common fruit fly a remarkable organism to work with (Adams and Sekelsky, 2002; Johnston, 2002; Venken and Bellen, 2005). Genetic tools to achieve temporally controlled, tissue specific expression *in vivo* began with fusion of a promoter and a structural gene, for example, the *ninaE* promoter and the Rh2 opsin (Zuker et al., 1988). In this technique, the gene to be expressed was inserted next to the promoter, so that a new construct had to be generated for each gene to be expressed. This limited flexibility was overcome in the GAL4-UAS bipartite transcription activation system (Brand and Perrimon, 1993). In the GAL4-UAS system (Fig 1.8), two fly lines are deployed: in one stock, a promoter (or other genomic enhancer) is used to drive expression of GAL4 protein, which has no effect on the fly genome. The second transgenic fly line holds the gene of interest, under the control of Upstream Activating Sequence (UAS) to which GAL4 binds. In this stock, since there
is no GAL4 protein, there is no binding to the UAS and hence no expression of the gene of interest. When these two fly lines are crossed, the progeny contain both GAL4-UAS components, the expressed GAL4 binds to the UAS site, and this activates transcription of the gene of interest in a controlled fashion. The construction of many UAS stocks allows the directed production of a wide range of proteins, all with the same pattern of tissue expression. Equally, the production of many GAL4 lines, each with a different tissue specific pattern, enables comparison of the effects of the protein in a known place. The types of neuron in which a particular promoter drives expression may be identified by expressing a reporter (e.g. lacZ or GFP) which can be easily visualised.

To generate GAL4 lines in *D. melanogaster*, enhancer trapping is often used. The principle of the GAL4 enhancer trap technique is the insertion of the GAL4 gene into a P-element. The P-element contains a weak promoter, which will respond to enhancers from the surrounding region of the genome. When these bind to the weak promoter in the genome, they activate GAL4 production (Bellen, 1999). The P-elements are transposable elements that insert randomly into the genome. Transposable elements are discrete pieces of DNA that are mobile, but the P-elements used in enhancer traps do not have transposase coding regions, which makes them stable insertions into the genome. P-elements used in enhancer trapping commonly also include a marker (e.g. mini-white eye colour gene) and sometimes lacZ or GFP as a reporter. The inclusion of the eye colour gene allows the investigator to trace the presence of the P-element during genetic crosses. By mobilising the P-elements and tracking lethality and expression patterns, new GAL4 lines are readily established (Duffy, 2002).

The immense flexibility of the enhancer trap and GAL4/UAS system has rapidly advanced the fly as a model of disease as it allows the expression of human disease-
related genes during the course of development and/or adulthood. The GAL4-UAS system has been very useful in the generation of models of PD, where pathological wild-type and mutant proteins (for example \(\alpha\)-synuclein) have been specifically expressed in the fly brain in order to investigate effects on dopaminergic neurons (Feany and Bender, 2000).
Enhancer trap
e.g. Act-GAL4

UAS-dparkin

Genomic
enhancer

P
GAL4
w'

GAL4
UAS
dparkin
Figure 1.8 The GAL4-UAS system. The bipartite expression system that is composed of two separate parental fly lines, the responder (UAS) and the driver (GAL4).
1.7.5 Advantages and disadvantages of *D. melanogaster* PD models

Although many experimental advantages accrue from the lifespan and genetics of flies, the mouse does have some advantages. For disease-related gene homologs, the mouse has a higher degree of conservation to humans than the fly (Waterston et al., 2002). Additionally, having inbred mouse strains with the same genetic background and rapidly developing genetic tools may be able to induce a broad spectrum of phenotypic manifestations associated with PD. A few mouse models have shown mild perturbation of dopamine transmission in nigrostriatal circuits with behavioral defects (Fernagut and Chesselet, 2004) and some *α*-synuclein transgenic mice models show *α*-synuclein-induced aggregation accompanied with neuronal degeneration (Anwar et al., 2011).

Disappointingly, the majority of the genetic mice models fail to show all features of PD and many show no dopaminergic degeneration from *substantia nigra* (Fernagut and Chesselet, 2004, Von Coelln et al., 2004, Kitada et al., 2009, Gispert et al., 2009), whereas very few only show mild dopaminergic degeneration (Ramonet et al., 2011, Shin et al., 2011). The lack of dopaminergic cell death in mice, have been attributed to adaptive changes during the course of development over the life span of the mice. However there has been recent success in the development of mouse models recapitulating key aspects of PD, for example Dawson and co-workers used a conditional knockout mouse, to model the loss of *parkin* function. This model showed a progressive degeneration of dopaminergic neurons (Shin et al., 2011).

1.7.6 Observations made from *D. melanogaster* PD models

Flies have shown to be better at replicating the disease phenotypes as seen in humans, with specific dopaminergic degeneration and also presence of LB-like aggregates in fly
neurons. Manipulating the expression of PD-associated genes in the dopaminergic neurons in flies has been shown to lead to dopaminergic degeneration. For example Feany and Bender (2000) used transgenic flies to aberrantly express high levels of wild-type human α-synuclein in dopaminergic cells and this caused the death of some dopaminergic neurons of the adult fly. Similar results were also obtained from the expression of A53T or A30P (which are PD-related mutations) forms of the α-synuclein gene, in the fly nervous system (Feany and Bender, 2000). More importantly, the serotonergic neuronal population and the gross brain morphology in the α-synuclein-expressing flies were not altered, suggesting that toxicity caused by α-synuclein is specific to dopamine containing neurons in the CNS. Although, there is evidence to suggest α-synuclein toxicity is not restricted to the dopamine neurons as the expression of α-synuclein in the fly eye induced retinal degeneration (Feany and Bender, 2000).

The adult fly brain contains clusters of dopaminergic neurons (Nässel and Elekes, 1992). These dopaminergic neurons have been shown to degenerate when flies are fed with a complex 1 inhibitor, rotenone (Coulom and Birman, 2004). Rotenone has also shown to cause the degeneration of dopaminergic neurons in mammals (Sherer et al., 2003, Bové et al., 2005). Together these provide evidence that the toxin rotenone induces similar effects on the dopaminergic neurons in two different animal models, suggesting the existence of a common conserved mechanism of rotenone between mammals and flies.

Although some D. melanogaster PD models show dopaminergic cell death (Feany and Bender, 2000, Whitworth et al., 2005, Trinh et al., 2008), it is not common to all. PD models show much more than just dopaminergic cell death including non-dopaminergic neuronal dysfunction, locomotory deficits, reduced life span, abnormal wing posture,
aggregate formation, abnormal mitochondrial morphology and organization and energetic tissue degeneration.

1.7.7 The *D. melanogaster* life cycle

Through a series of larval moults, the larva grows approximately 100-fold in size until it crawls out of the food as a third instar larva and selects a site for pupation. When the fly undergoes metamorphosis, the majority of the larval tissues including muscles degenerate and adult tissues develop from imaginal discs and histoblasts. The larval nervous system is not lysed, although further development occurs. Other tissue including the Malpighian tubules (excretory structures), fat bodies and gonads remain.

During pupal development, which lasts 3-4 days, the axons of the motoneurons innervating the degenerating muscles of the larva retract and renew their connections with newly regenerated adult muscles. At the end of the metamorphosis phase, an adult fly ecloses from the pupal case (Fig 1.9).
Drosophila life cycle

Fertilization

Embryo

First instar larva

Second instar larva

Third instar larva

Pupa

3½ - 4½ days in pupal stage

1 day

1 day

1 day

2½ - 3 days
Figure 1.9 The *D. melanogaster* life cycle. The embryo develops and gives rise to a first instar larva, subsequent growth leads to the second and third instar larvae. The transitions between larval instars are moults. The process that converts a third instar larva to a pupa is termed pupariation. Emergence of the adult from the pupal case is termed eclosion.

Derived from Hartwell, Genetics: From genes to genomes, McGraw-Hill (Hartwell et al., 2010).
1.7.8 The *D. melanogaster* nervous system

The developmental period from the time of the unfertilized egg to reach a fully functional larval nervous system (or to the first instar larval stage crawling around the food) takes less than 24 hours. The larval CNS comprises the two lobes and the ventral nerve cord (VNC) where the motor neurons descend their neuronal axons to innervate muscle cells forming synapses at the level of neuromuscular junction (NMJ). The larval CNS contains approximately 125,000 neurons (whereas the fully developed more complex fly brain has 250,000 neurons). This is a million fold less than an average human brain, but with a similar complexity of neuronal variety (Venken et al., 2011).

Flies use the same neurotransmitters (glutamate, GABA and acetylcholine), as mammals, share biogenic amines (e.g. dopamine and serotonin) and also possess a variety of neuro-modulatory peptides. However, flies, unlike vertebrates, use glutamate as an excitatory neurotransmitter at the neuromuscular junction (NMJ) and acetylcholine in most sensory and central synapses. Another difference between the fly and vertebrate nervous system is the ratio of neurons to glia, in flies this is 1:10 whereas in vertebrates it is 10:1 (Venken et al., 2011). This may be because glia surround the bundles or fascicles of neurons, rather than individual neurons in flies. However, a number of glial types exist in flies (Venken et al., 2011).

D. melanogaster neuronal cell bodies are located in a cortical rind encapsulating the brain neuropile and made up of axons, dendrites and synapses. The majority of synapses make contacts with multiple postsynaptic targets often forming diads, triads or tetrads. On average, there are far fewer fly synapses per neuron compared to vertebrate synapse (Venken et al., 2011). A variety of sensory nerves are embedded in the body wall muscles and feedback to the ventral nerve cord occurs through these nerves.
The larval CNS gives rise to segmental nerves (SN), which innervate the body wall sense organs and muscles, with each muscle being consistently innervated in the same way from larva to another, with a recognizable pattern of synaptic boutons (Budnik et al., 1990, Cattaert and Birman, 2001, Barclay et al., 2002).

1.7.8.1 The *D. melanogaster* dopaminergic system

The biosynthesis of the neurotransmitter, dopamine, is conserved between *D. melanogaster* and humans. Dopamine is synthesized in the cytoplasm from its precursor, tyrosine, with two enzymatic steps. Firstly, tyrosine is broken down by tyrosine hydroxylase (TH) to produce L-3,4-Dihydroxyphenylalanine (LEVODOPA or L-DOPA), and then subsequent decarboxylation occurs by the aromatic L-amino acid decarboxylase (AAAD) to produce dopamine. Dopamine does not cross the blood brain barrier (BBB) whereas L-DOPA and AAAD can. Gene products involved in dopamine homeostasis have the potential to hold neuroprotective properties, as dopamine itself is suggested to possess neurotoxic effects (Miller et al., 1999).

The excess dopamine from extracellular spaces is taken up via the plasma membrane dopamine transporters (*DAT*) (Nass and Blakely, 2003, Ritz et al., 2009). Additionally, dopamine packaging into synaptic vesicles via the vesicular monoamine transporter (*VMAT*) removes excess dopamine. *VMATs* are required by all aminergic cells to transport the dopamine synthesized in the cytoplasm to be taken up into the lumen of the synaptic vesicles (Chaudhry et al., 1998). Dopamine is stored in high millimolar concentration in synaptic vesicles (SV) by the vesicular monoamine transporter, where it is kept in a stable form (Staal et al., 2004). Mammals possess two *VMAT* genes (*VMAT1* and *VMAT2*). In mammals, the neural isoform *VMAT2*, is responsible for the
storage of dopamine, serotonin, and noradrenaline in all central aminergic neurons whereas the VMAT1 gene is expressed at the periphery and in neuroendocrine cells (Liu and Edwards, 1997, Erickson and Varoqui, 2000, Eiden et al., 2004). *D. melanogaster* contains a single VMAT ortholog (dVMAT) that is expressed in all dopaminergic, serotonergic, and octopaminergic cells in both larvae and adults (Greer et al., 2005, Chang et al., 2006).

Dopamine is an essential neuromodulator in the mammalian CNS that is involved in attention, movement control, motivation and cognition (Riemensperger et al., 2011). The dopaminergic system is involved in locomotor control in humans as well as in *D. melanogaster* (Yellman et al., 1997, Lima and Miesenböck, 2005), although complete understanding of the underlying circuits that govern locomotion are still unknown. Approximately 70 dopaminergic neurons have been described in the CNS of the fly third instar larva (Budnik et al., 1986). Dense dopaminergic projections almost completely cover the entire neuropil of the *D. melanogaster* larval CNS. The adult fly brain contains additional dopaminergic neurons, in 15 clusters (Budnik and White, 1988, Nässel and Elekes, 1992, Mao and Davis, 2009), some projecting to higher brain centres including the central complex and the mushroom bodies (Tanaka et al., 2008, Mao and Davis, 2009).

1.7.9 Larval locomotion for motor function assays

Although the *D. melanogaster* brain has a far smaller population of neurons compared to a mammal, the fly still exhibits a large number of behaviors. A promising start has been made on understanding the motor circuits involved in escape behavior, larval crawling and flight, but much of the detail remain to be fully defined (Crisp et al., 2008, Fotowat et al., 2009). The simpler larval nervous system controls a number of
stereotyped behaviors including locomotion, and so provides a platform to make an excellent model system to study nervous system related disorders.

The *D. melanogaster* larva possesses a range of motions including peristalsis, bending, turning and feeding: peristaltic movement has been extensively studied (Heckscher et al., 2012). The larva has 10 segments: three thoracic segments (T1-T3) and seven abdominal segments (A1-A7) with specialized structures at the anterior and posterior ends (Keshishian et al., 1996). There are approximately 60 muscles in a segment under the epithelium.

The larva propels forward via contraction from the posterior segments to anterior segments leading to forward peristaltic locomotion. During peristalsis, the muscle contraction travels in approximately 1 second from the posterior to anterior. When the peristaltic wave reaches the anterior segment, the head is moved forward and then attached on the crawling surface with mouth hooks. The next cycle resumes when the peristaltic wave is initiates in the posterior end: cycles may be separated by brief pauses, during which head swinging and turning occurs. For the consecutive waves of peristalsis to follow, motor neurons in each segment have to be sequentially activated throughout the body axis in a highly regulated fashion.

1.7.9.1 Neuronal network contribution to larval locomotion

Electrophysiological manipulations allow the recordings of regular rhythmic bursts of motor neuronal activity that concurrently occur with locomotive waves to be monitored (Fox et al., 2006). Rhythmic motor behaviors like crawling involve specialized circuits, central pattern generators (CPGs), to contribute to the patterned discharges in motor
neurons via their peripheral axons to muscles (Johnston and Levine, 1996, Marder and Bucher, 2001). The activities of motor neurons that innervate the body wall muscles have been used as a measure of output from the CPG (Fox et al., 2006). Both the CPG, the neural network involved in the timing of the motor discharge, and the sensory feedback control the rhythmic movements. This concept has been applied to the neuronal networks involved in larval locomotion although the identity of CPGs responsible is presently unknown. However, there is some evidence that patterned motor outputs can be generated in the absence of sensory outputs by central circuits alone (Fox et al., 2006, Hughes and Thomas, 2007). When sensory feedback is compromised, change in peristalsis pattern is observed. This shows that neural circuits including the motor neurons, sensory feedback and interneurons in the CPG, participate in the regulation of coordinated pattern of peristaltic locomotion.

1.7.10 Motoneuron development and connectivity to muscle

D. melanogaster neurons and glia in the embryonic CNS are derived from progenitor cells called neuroblasts, which undergo asymmetric cell divisions to generate a diversity of cell types (Goodman and Doe, 1993). A population of approximately 400 neurons, including an estimated 38 motor neurons, are generated from 30 distinct neuroblasts within each half-segment (also known as hemisegment) of the embryonic ventral nerve cord (VNC) (Schmid et al., 1999). Abdominal hemisegments in the embryo have 30 highly stereotyped body wall muscles, each of which is innervated by one or more of the 38 different motor neurons (Landgraf et al., 1997).

Several transcription factors have been identified as crucial in regulating the process by which motor neurons choose their peripheral branch to later form contact with the muscle, and form the neuromuscular junction (NMJ) (Landgraf and Thor, 2006b,
These include Even-skipped (Eve), Nkx6, Hb9, LIM, Lim3 and POU (Landgraf et al., 1999, Thor et al., 1999, Broihier and Skeath, 2002, Certel and Thor, 2004). The vertebrate orthologues of these transcription factors have similar functions and molecular mechanisms in motor neuron specification. This shows that there is conservation between fly and higher organisms in synapse formation (Thor and Thomas, 2002). Molecules that participate in axon guidance and regulate branch selection have also been discovered; these include Toll which inhibits motor innervation when expressed in muscles; and Netrin B, which is a secreted protein from the netrin family, that is expressed in certain muscles including muscle 6 and 7 (Ruiz-Cañada and Budnik, 2006).

The connectivity of motor neurons to muscles determines the intricate pattern of motor output. Approximately 38 motor neurons in the ventral nerve cord descend their axons via one of the six branches of the peripheral nerves that include the intersegmental nerves (ISN, ISNb and ISNd), segmental nerves (SNa and SNe), and a transverse nerve (TN) (Keshishian et al., 1996, Landgraf and Thor, 2006a). Internal muscles in the dorsal, ventro-lateral and ventral domains are innervated by ISN, ISNb and ISNd respectively. Both SNa and SNe motor neurons innervate external muscles in the lateral and ventral domains respectively.

1.7.10.1 The Neuromuscular junction (NMJ)

The synaptic connection between the postsynaptic muscle and the presynaptic motor neuron is often interchangeably termed a synapse or a NMJ (Fig 1.10). Both embryonic and larval nervous systems, with particular emphasis on NMJ, have allowed us to understand the basic mechanisms of nervous system development and function.
Figure 1.10 The organisation of the neuromuscular junctions (NMJ) of *D. melanogaster* larvae. Movement of the larva is produced by peristaltic waves of contraction of the body wall musculature. The rhythmic contractions of the body wall segments are coordinated by the central pattern generator (CPG). The motor neurons that drive locomotion are located in the dorsal region of the ventral ganglion. (A) The brain and ventral nerve cord (VNC) of the larval CNS. (B) The stereotyped organization of the peripheral body wall muscles. In each abdominal hemisegment, motor axons from the six main nerve branches (ISN, ISNb, ISNd, SNa, SNe, and TN) innervate the 30 muscles.

Reproduced from (Kim et al., 2009) with permission.
Mammals and arthropods have shown that during the course of their NMJ development, dramatic changes in morphology take place both pre and post-synaptically (Gorczyca et al., 1993). An increase in *D. melanogaster* larval muscle size occurs during the course of development to late larval stage, to accommodate this change, to retain synaptic efficacy, the NMJ expands, making forming new branches and synaptic boutons (Schuster et al., 1996, Zito et al., 1999, Ruiz-Cañada and Budnik, 2006). Thus, this makes the NMJ an excellent model synapse to study synaptic growth and plasticity (Ruiz-Cañada and Budnik, 2006, Collins and DiAntonio, 2007). Another important characteristic of these synapses is their ability to homeostatically regulate synaptic activity for example, by increasing neurotransmitter release or altering their receptivity to pre-synaptic signals in order to retain the consistent physiological levels of postsynaptic potentials, in the instance of muscle expansion (Davis, 2006).

The patterned neuromuscular connection is developed by the end of embryogenesis and this pattern remains throughout larval life with small changes in soma position, axon projection and dendrite morphology (Hoang and Chiba, 2001). The molecular mechanisms that regulate synapse formation and function are inherently similar between vertebrates and *D. melanogaster* (Keshishian et al., 1996, Featherstone and Broadie, 2000). Key molecules and processes that are regulate NMJ development, for example TGFβ/BMP and Wnt/Wg pathways, endocytic machinery, autophagy, and electrical excitability, have been uncovered (Budnik et al., 1990, Keshishian et al., 1996, Featherstone and Broadie, 2000, Marqués, 2005, Dickman et al., 2006, Collins and DiAntonio, 2007, Shen and Ganetzky, 2009). The synaptic growth is achieved typically by a synaptic bouton budding from a parent bouton at the end of the nerve branch, where it extends from the parent bouton and becomes an individual mature
bouton itself thereafter (Zito et al., 1999). The NMJ typically consists of branched chains of varicosities called synaptic boutons (often described as ‘pearls on a string’) that arise (or ‘sprout’) from the motor neurons and are embedded by an elaborate membranous compartment formed by the muscle. The larval NMJ terminals, synaptic boutons, are classified into larger type I endings, smaller type II endings and minor type III endings. Type I are subdivided into type-I small (Is) and type-I big (Ib) (Atwood et al., 1993) (please refer to methods). Motor neurons with terminals type-Ib have bigger boutons with low threshold firing project onto single muscles, whereas type-Is motor neurons have smaller boutons with a high threshold innervate groups of muscles (Choi et al., 2004, Schaefer et al., 2010)

Individual boutons posses multiple release sites, termed active zones, where synaptic vesicles dock and later fuse. In front of each active zone there are postsynaptic glutamate receptors clustered ready to sense the release of glutamate, the transmitter (Marrus et al., 2004). Each bouton contains roughly ten active zones and each motor neuron can form around 500 such synapses onto an individual muscle cell.

1.9 Neurotransmission

1.9.1 Membrane potential and action potentials

The precise electrophysiological understanding of nerve and muscle emerged from the discovery of electricity itself. Techniques were devised by a number of European scientists including Luigi Galvani, Emil Du Boi-Reymond, Carlo Matteucci and Hermann von Helmholtz (Brazier, 1979). These electrophysiologists showed through the application of electrical stimulus to the nerve and the muscles, that the flow of the electricity along the nerve fibres was the cause of movements generated from such commands from the brain to the muscle.
Electrophysiological studies of electrical activity of nerves revealed that the conduction of information along the length of the axon was mediated via the active generation of electrical potential known as the action potential (AP). The squid giant axon is an excellent preparation to study the AP as its diameter (0.5 mm) made it amenable to intracellular recording. Alan Hodgkin and Andrew Huxley demonstrated that axons at rest are electrically polarized thus having a resting membrane potential (RMP) that was negative, ~ -60 mV inside compared to the outside (Hodgkin, 1939, Hodgkin and Huxley, 1945). The RMP is maintained by the sodium-potassium pumps, which extrude 3 sodium ions outwards and 2 potassium inwards, at the cost of ATP hydrolysis. When an AP is generated, the polarization seen at rest is abolished (consequently the cells became depolarized) and shifted toward and beyond 0 mV. At rest all of the sodium permeable voltage gated ion channels are closed. When a stimulus reaches the threshold (~ -55 mV) this causes the initiation of an AP, where the voltage gated sodium channels open allowing the sodium ions to enter the cells. All voltage gated sodium channels open to allow more sodium into the cell until it reaches its equilibrium potential. Thereafter, repolarization occurs and as it becomes slightly more negative in comparison to the RMP. This period of increased polarization is known as the after-hyperpolarization (also known as the undershoot). The AP generation in all types of neurons and muscle cells follows the same principles of those described in the giant squid by Hodgkin and Huxley (HODGKIN and HUXLEY, 1952, Squire et al., 2003). Flies and mammals have sodium channels that propagate action potentials, additionally the potassium and calcium channels that regulate the membrane potential are from the same families (Venken et al., 2011).
1.9.2 Advantages of *D. melanogaster* NMJ for assessing synaptic function

The release of neurotransmitters at the fly NMJ is similar to the chemical transmission at the vertebrate synapses. However the neurotransmitter released at the fly NMJ is glutamate whereas acetylcholine is released from vertebrate motor neurons. The fly NMJ mimics a central synapse. The neurotransmitter is packaged into synaptic vesicles and then releases glutamate into the synaptic cleft upon exocytosis. Miniature excitatory junctional postsynaptic potentials (mEJPs) also known as “minis” occur when single vesicles fuse spontaneously giving rise to individual ‘quantal’ events.

The *D. melanogaster* NMJ is an accessible model synapse for the studying all aspects of synaptic development, function and plasticity. The NMJ has played a significant role in understanding neurotransmitter release. The molecules involved in synaptic transmission are also conserved between *D. melanogaster* and vertebrates. For example, acetylcholine and glutamate are neurotransmitters in both groups, and calcium, syntaxin and synaptobrevin are always involved in vesicle release (Richmond and Broadie, 2002, Broadie and Richmond, 2002). The function of proteins involved in synaptic transmission has been explored using biochemistry and genetics in flies (Broadie, 1995, Broadie et al., 1995, Schulze et al., 1995). Studies now shed light on the nature of exocytotic event, distinctions between exocytotic pathways in neurons and the mechanisms regulating synaptic strength. The mechanism of neurotransmitter release is important in the context of the development of synaptic function and how synaptic activity can shape development.

The third instar larval preparations are well suited for electrophysiological manipulations as they possess large muscle fibers that are relatively easy to access and impale. Additionally, it is possible to draw the segmental nerves from the ventral nerve
cord into a stimulating pipette, so that the neuromuscular junction activity can be controlled precisely. In comparison, the first instar larvae are a little more challenging to work with, but this earlier stage allows recordings of strains with lethal mutations. From embryonic to third instar, quantal events along with evoked (stimulated) postsynaptic responses can be observed and resolved from noise signals (Ruiz-Cañada and Budnik, 2006). Jan and Jan’s (1976) electrophysiological studies demonstrated the multiple motorneurons innervate individual body wall hemi-segment (Jan and Jan, 1976). The stereotypical arrangement of fly NMJ synapses shows comparability and little variation from animal to animal (Keshishian et al., 1996). A physiological saline based on the composition of larval hemolymph, HL3 (Stewart et al., 1994), preserves synaptic transmission as well as muscular function, synaptic integrity and offers extended period in which recordings can be undertaken. The majority of the recordings are undertaken in the third instar larva or an earlier stage, once an incision is made along the dorsal midline, commonly on muscle 6 and 7 due to their accessibility and the large size (Li et al., 2002). These muscles are innervated by two different types (Ib and Is terminals) of motor neuron contributing to the generation of the postsynaptic response, Excitatory Junctional Potentials (EJPs) (Atwood et al., 1993, Hoang and Chiba, 2001, Lnenicka and Keshishian, 2000).

1.10. Rationale for the thesis project

PD is characterized by motor dysfunction accompanied with selective loss of dopamine producing cells. The parkin gene, as previously mentioned, encodes a highly conserved E3 ubiquitin ligase involved in the UPS degradation pathway. LOF mutations in parkin gene are a common cause early onset autosomal recessive juvenile Parkinsonism (ARJP), with an average age of onset of 32 years old. Previous D. melanogaster parkin (dparkin) models confidently describe non-neuronal phenotypes, for example, apoptotic
muscle degeneration, defects in spermatogenesis and droopy wings. Adult fly models of *dparkin* knockouts have shown promising phenotypes (including mitochondrial abnormalities, locomotory defects and dopaminergic loss) that have been related to human forms of PD. Some studies (not all) have shown dopaminergic degeneration in specific clusters. At the start of the investigation, there were no known reports of investigations into the *dparkin* larva except for one group that found normal NMJ morphology and physiology (Pesah et al., 2004). The characteristic neuronal death associated with PD suggested that it was important to examine neuronal (rather than muscle) phenotypes. Finally, working with the larva, a juvenile stage in the fly, offered the opportunity to test for early phenotypes at the start of the (neuro) degenerative process.

1.1.0.1 Aim and objectives of the thesis

The aim of the project was uncover neuronal dysfunction in *parkin* larvae.

Objectives:

1. What are the neurophysiological or anatomical dysfunctions observed in the juvenile *parkin* larvae?
 a. Is their synaptic function altered?
 b. Do they show a motor dysfunction at the level of behavior?
 c. Do they show abnormal synapse morphology?
 d. Is there a metabolic dysfunction?

2. What role does oxidative stress play in *parkin* larval dysfunction?
 a. What is the impact of ubiquitous expression of ‘pure’ antioxidant transgenes?
 b. What is the impact of ubiquitous expression of multi-action antioxidant transgenes?
 c. Are oxidative stress-induced signals up-regulated?
d. What effect does manipulating energy homeostatic mechanism have?

3. What are the benefits of pharmacological manipulation of AMPK or dopamine synthesis?
 a. What does activation of AMPK have on larval phenotypes?
 b. parkin larvae show reduced crawling, is this an indicator of a loss of dopamine signaling?
Chapter 2: Methods and Materials

2.1 Overview

D. melanogaster is one of the most genetically tractable model organisms. This chapter describes the genetic techniques employed in this project. It also describes the ways in which the behavioural, electrophysiological and anatomical changes in *dparkin* mutant larvae were measured.

2.1 Fly husbandry and protocols

2.1.1 *D. melanogaster* stocks

dparkin (*parkin*²⁵ / TM6B and *parkin*²³⁶⁷⁸ / TM6B) mutant *D. melanogaster* lines were kind gifts from Dr Alex Whitworth (University of Sheffield). *D. melanogaster* stocks for this project were originally purchased from Bloomington Stock Centre (Indiana; http://flystocks.bio.indiana.edu/), already present in the lab or created by Dr Sean Sweeney. All the stocks used for this research are outlined in table below.

Stocks obtained from external sources were quarantined for at least two generations. These stocks were transferred twice a week to fresh food to be confident they were free of mites. Mites feed on the eggs and prevent breeding. Thereafter, the flies were maintained either at 25°C or 18°C. Stocks were transferred into fresh food as required, as the *D. melanogaster* life cycle takes 10-11 days at 25°C and twice as long at 18°C.

2.1 Table of Stocks

<table>
<thead>
<tr>
<th>STOCKS</th>
<th>STOCK SPECIFIC INFORMATION</th>
<th>SOURCE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Stocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w<sup>1118</sup></td>
<td>White-eyed mutant</td>
<td>Gift of John Sparrow, (University of York, (UoY))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loss of function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(referred to as w in the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canton S</td>
<td>Wild-type</td>
<td>Gift of John Sparrow, UoY</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Red eyes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS/w</td>
<td>Cross between our Canton S and w^{118} stocks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Balancer Stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
<th>Description</th>
<th>Gift Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CyO-GFP/Iff; TM6b/MKRS</td>
<td>Second and Third chromosome balancers</td>
<td>Gift of Sean Sweeney, UoY</td>
</tr>
<tr>
<td>TM3/TM6b</td>
<td>Third balancer chromosome</td>
<td>Gift of Sean Sweeney, UoY</td>
</tr>
</tbody>
</table>

GAL4 Stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
<th>Description</th>
<th>Source Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>elav^{3E1}-GAL4/TM6b</td>
<td>Embryonic lethal abnormal vision; Third chromosome; Pan-neuronal driver</td>
<td>Bloomington Stock Centre</td>
</tr>
<tr>
<td>G14-GAL4/CyO-GFP</td>
<td>Second chromosome; Muscle driver</td>
<td>Akinao Nose (Tokyo) (Shishido et al., 1998)</td>
</tr>
<tr>
<td>TH-GAL4</td>
<td>Tyrosine hydroxylase driver; Third chromosome; Dopaminergic neuron driver</td>
<td>Friggi-Grelin (Friggi-Grelin et al., 2003)</td>
</tr>
<tr>
<td>Act5c-GAL4/CyO-GFP</td>
<td>Second chromosome; Ubiquitous driver</td>
<td>Bloomington Stock Centre</td>
</tr>
<tr>
<td>STOCKS</td>
<td>STOCK SPECIFIC INFORMATION</td>
<td>SOURCE</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>UAS Stocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAS-fos<sup>DN</sup></td>
<td>Second chromosome; Reduces expression of FOS</td>
<td>Bloomington Stock Centre</td>
</tr>
<tr>
<td>UAS-jun<sup>DN</sup></td>
<td>Second chromosome; Reduces expression of JUN</td>
<td>Sean Sweeney, UoY</td>
</tr>
<tr>
<td>UAS-BSK<sup>(K53R)DN</sup></td>
<td>Third chromosome; Lack of kinase activity</td>
<td>Sean Sweeney, UoY</td>
</tr>
<tr>
<td>UAS-AMPK-α<sup>T184D</sup></td>
<td>Third chromosome; Phosphomimetic, activated version of AMPK</td>
<td>Jay Brennan</td>
</tr>
<tr>
<td>UAS-Sod1</td>
<td>Second chromosome; Wild-type Superoxide dismutase 1 (Cytoplasmic)</td>
<td>Sean Sweeney, UoY</td>
</tr>
<tr>
<td>UAS-Sod2</td>
<td>Second chromosome; Wild-type Superoxide dismutase 2 (Mitochondrial)</td>
<td>Sean Sweeney, UoY</td>
</tr>
<tr>
<td>UAS-Cat</td>
<td>Second chromosome; Wild-type catalase</td>
<td>Fanis Missirlis, Queen Mary’s London (QML)</td>
</tr>
<tr>
<td>UAS-TRX-R2</td>
<td>Third chromosome; Wild-type (mitochondrial) Thioredoxin reductase</td>
<td>Fanis Missirlis, QML</td>
</tr>
<tr>
<td>UAS-gst-SI</td>
<td>Third chromosome; Wild-type glutathione-s-transferase Sigma-1</td>
<td>Alex Whitworth, University of Sheffield (UoS)</td>
</tr>
<tr>
<td>UAS-parkin<sup>C2</sup></td>
<td>Second chromosome; Wild-type Drosophila parkin</td>
<td>Alex Whitworth, UoS</td>
</tr>
</tbody>
</table>
Mutant Stocks

<table>
<thead>
<tr>
<th>STOCK</th>
<th>STOCK SPECIFIC INFORMATION</th>
<th>SOURCE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>parkin^{25}</code> /TM6b</td>
<td>Third chromosome; parkin (null) mutant induced by p-element excision of the full first three exons and half of exon 4. Complete loss of protein.</td>
<td>Alex Whitworth, UoS</td>
<td>(Greene et al., 2003)</td>
</tr>
<tr>
<td><code>parkin^{Z678}</code> /TM6b</td>
<td>Third chromosome; parkin (hypomorph) mutant; an ethyl methanesulfonate (EMS)-induced missense point mutation (stop codon). Some protein produced.</td>
<td>Alex Whitworth, UoS</td>
<td>(Whitworth et al., 2005)</td>
</tr>
<tr>
<td><code>nubian/ CyO</code></td>
<td>Second chromosome; Phosphoglycerate kinase mutant</td>
<td>Troy Littlejohn</td>
<td>(Wang et al., 2004)</td>
</tr>
</tbody>
</table>

RNAi Stocks

<table>
<thead>
<tr>
<th>STOCK</th>
<th>STOCK SPECIFIC INFORMATION</th>
<th>SOURCE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dparkin</code> RNAi</td>
<td>Third chromosome; RNAi knockdown of parkin transcript</td>
<td>Bingwei Lu, (Stanford University, USA)</td>
<td>(Yang et al., 2003)</td>
</tr>
</tbody>
</table>
2.1.2 *D. melanogaster* diet
Experimental crosses were reared at 25°C and parental flies were transferred into fresh fly media every 3-4 days to prevent overcrowding of larvae, mixing of generations or death of parental flies by sticking onto the surface of churned media. All stocks and few experiments, detailed later, were raised on standard yeast-sugar-agar media. The Technology Facility (TF) at the University of York produced autoclaved standard media based on Carpenter’s recipe (Carpenter, 1950). All the following components were mixed in a large conical flask: yeast, 25 g/l sucrose, 3.75 g/l agar, 0.125 g/l calcium chloride, 0.125 g/l ferrous sulphate, 0.125 g/l manganese chloride and 0.125 g/l sodium chloride, and 2g/l potassium-sodium tartrate. After autoclaving and cooling anti-fungal agents were added to the medium: 0.0015 g/l Bavistine and 0.2 g/l p-hydroxybenzoic acid methyl ester (Nipagin). ~8 ml of medium was pipetted into each 25 cm3 vial which was topped with a cotton wool bung (ensuring air circulation but no escape of flies).

‘Instant media’ Formula 4-24 (Carolina Biological Supplies) was prepared for drug experiments. This proprietary mixture is a trade secret formula. The media was prepared by using equal volume of water (in which drugs or vehicle had been dissolved) and instant media flakes along with a pinch of yeast granules for each vial. This instant media was also used to overcome problems of reliability and viability of *dparkin* mutant lines, because (when they were grown on yeast-sugar-agar media) mould and/or slime sometimes developed.

Fly food was prepared freshly every week as required and extra trays were stored at 18°C before use.

2.1.3 Fly Pushing
A dissection microscope (Zeiss Stemi 2000 Dissection Microscope) was used to distinguish between the sexes, to look for virgin traits and to identify phenotypic
markers. Flies from vials were transferred onto a porous pad connected via tubing leading to an outlet valve on the CO$_2$ gas cylinder (Dutscher Scientific, UK) allowing gas to seep through and anaesthetize the flies.

The primary method of collection of virgin females involves tipping out all flies from the vial in the morning and collecting females within 8 h after the time of emptying the vial, as flies do not mate for up to 8 hours after eclosion. Secondly, flies that had eclosed during the night and early morning can be identified on this basis. Freshly eclosed female flies (less than 2 h old) were identified by their light body color and dark meconium in the gut, or by their unexpanded wings. Females that could be potential virgins were collected separately, dated and left for a week to check their virginity status by ensuing any eggs laid by them remained unhatched.

2.1.4 Recombination crossing scheme

Recombination was employed when a mutation of the recessive third chromosome gene parkin was required along with a third chromosome UAS transgene, for example parkin25 and UAS-AMPK. The scheme for this is shown in (Fig 2.1). First, w$^{+}$;parkin25/TM6b flies were crossed with UAS-AMPK flies and virgin females were selected from the progeny. The virgin females were chosen because recombination only occurs in female in D. melanogaster. These females were individually crossed with a w$^{+}$;TM3/TM6b male. As the parkin25 and UAS-genes are both marked with w$^{+}$, potential recombinants have darker orange eyes.
Parental Cross:

\[
\frac{parkin25}{TM6b} \times \frac{UAS-x}{TM6b}
\]

F1 Generation:
Select females with orange eye and no humeral TM6b marker. Cross with third chromosome balancer males.

F2 Generation:
Select flies with dark colored eyes and cross them individually with third chromosome balancer stock.

F3 Generation:
Create stable Stocks, by selecting and mating, male and virgin females from each recombinant stock.

Set up at least 30 individual crosses to identify a genuine recombinant.

Figure 2.1 Recombination Crossing Scheme
The progeny of this cross was scanned for males or virgin females with dark eyes. 30-40 flies were individually mated with \(w^{+}; TM3/TM6b \) flies. The offspring of each pair carrying a TM6b chromosome 3 (identified by the tubby (Tb) marker) were used to generate stocks of potential recombinants. To confirm recombination, a single fly from each stock was later screened via polymerase chain reaction (PCR) for the \textit{parkin} null mutation (see section 2.3). Other third chromosome UAS stocks included: UAS-AMPK, UAS-BSK-DN, UAS-TRX-R2 and UAS-GST.

2.2 Molecular Biology

Screening for \textit{dparkin} null mutation was performed via polymerase chain reaction (PCR) to identify potential recombined mutant stocks (Fig 2.2).
1kb ladder

10.0 Kilobases

0.5

Wild-type dparkin band

dparkin mutant band
(lane 6 is a recombinant)
Figure 2.2 PCR of dparkin mutant recombinants. Wild-type (CS/w) larvae and dparkin (p^{25}/p^{25}) larvae were used as controls against the possible dparkin mutant recombinants. The PCR products were run in parallel with a 1kb ladder. The sample in Lane 1 was not successfully extracted. Lane 2 shows a successful extraction from a CS/w larva. Lanes 3 and 4 show successful extraction of two dparkin larvae. Lanes 5-8 are from larvae that were possible recombinations of dparkin with UAS-GST; recombination was not successful in samples 5, 7 and 8. However, Lane 6 shows a dparkin (p^{25}/p^{25}) larvae recombinant with UAS-GST transgene.
2.2.1 Genomic DNA extraction
A single fly together with 50 µl of DNA extraction buffer (10 mM Tris pH 8.2, 1mM EDTA, 25 mM NaCl) and with fresh 200 µg/ml proteinase K, was used to rupture and release the DNA by repeated squishing motion using the end of a pipette tip. Then, the homogenized mixture was incubated at 37°C for 30 minutes and then at 85°C for 10 minutes where the proteinase K is deactivated. The mixture was centrifuged at 13,000 for one minute to form a pellet, where 2-3 µl of the supernatant was used as a template PCR reaction thereafter.

2.2.2 Polymerase chain reaction (PCR)
2X PCR mastermix (Promega, UK) was used to make up a 20 µl reaction volume containing 0.5 µM of each primer and 2-3 µl of homogenized fly DNA template to amplify the genomic DNA. Primers were designed using Primer3 software and synthesized by Eurogentec (UK). The melting temperature (T_m) was calculated using Net Primer. The annealing temperature was set 5°C lower than the lowest melting point temperature of all primer pairs used. The elongation time for a fragment was determined based on the fact that 1kb of DNA is produced per minute by Taq polymerase.

Standard PCR cycling were as follows: initial denaturation was at 94°C for 10 minutes, followed by another denaturation step of 94°C for 30 seconds, then annealing step at T_m (explained above) for 60 seconds, followed by 72°C for initial elongations step (1kb for 1 minute), followed by final elongation cycles at 72°C for 5 minutes. Reaction mixtures were set to cool to 4°C.

2.2.3 DNA agarose gel electrophoresis
DNA products from the PCR were analysed by agarose gel electrophoresis made from agarose and 1x TAE buffer (Tris-Acetate and 0.05M EDTA). 0.7 % or 1.4 % agarose gels were made depending on the product size being large (>1kb) or small (<1kb)
respectively. 0.1% SYBR Safe (Invitrogen, UK) was added to the heated and dissolved agarose, to visualize the PCR products later. 10 µl of PCR product was mixed with loading dye (Bromophenol Blue, 10% glycerol) at a time and loaded into individual wells of the solidified agarose gel placed in a tank filled with 1x TAE buffer. A 1 kb or 100kb DNA ladder (NEB, Ipswich or Promega depending on the % agarose gel), was also loaded to determine the size of the PCR products. The gel was run for approximately 45 minutes at 90 volts. The gel was placed on a safe imager 2.0 Blue Light Transilluminator (Life technologies), to visualize the PCR products and the ladder, and an image taken (Fig 2.2).

2.3 Techniques to assess D. melanogaster larval physiology

2.3.1 Experimental Solutions
Phosphate Buffer Solution 1x (PBS) was composed of 10 mM PBS: 137 mM NaCl; 2.7 mM KCl; 10 mM Na₂HPO₄ and 2 mM KH₂PO₄. Modified ‘haemolymph-like buffer ‘HL3’ solution was made with sodium chloride, 70 mM; potassium chloride, 5 mM; calcium chloride, 1mM; sodium hydrogen carbonate, 10 mM; BES (N, N-bis(2-hydroxyethyl)-2-aminoethanesulphonic acid), 5 mM; trehalose, 5mM; sucrose, 115 mM; pH 7.5. This solution was used previously at York (Hill & Elliott, unpubl.) in assays of octopaminergic modulation, and was found to give stable resting membrane potentials. It is based on the original composition detailed by Stewart et al. (1994), but omits magnesium chloride (Stewart et al., 1994). This modified HL3 solution was used to dissect the wandering third instar larvae in all the electrophysiological experiments (see section 2.4.2).

2.3.2 Larval Dissection
Third instar wandering larvae, found on the sides of food vials that have crawled out of the food, were picked using sharp forceps and placed on a Sylgard petri plate (Silicone
elastomer kit, Dow Corning) immersed in either PBS or modified Haemolymph-like buffer ‘HL3 solution’. The larva was pinned down at both anterior and posterior ends using dissection minuten pins (Austerlitz Insect Pins 0.1mm diameter, Fine Science Tools, Heidelburg, Germany). An incision was made using sharp BowSpring scissors (Fine Science Tools, Heidelburg, Germany) at the two ends close to each pin. From the posterior dorsal, the scissors were used to cut open the larva along the dorsal midline, up to the anterior end. All internal organs including trachea, gut, fat bodies and salivary glands were removed cautiously using a plastic Pasteur pipette. The body cavity was washed in fresh PBS or HL3. The larval body wall was fully exposed by pinning out the four corners.

2.3.3 Electrophysiology: Intracellular muscle recordings

All preparations used for recording resting membrane potential (RMP), basal level synaptic activity (excitatory junctional potentials, EJPs) (Fig 2.3) and spontaneous minis (mEJPs) were dissected in a 21-22°C room where the rig was set up for the intracellular recordings and the dissected preparations were used within 5-10 minutes from the start of pinning them down. As temperature affects glutamate receptor kinetics and EJP amplitudes, the room was checked for fluctuations of temperature from 21-22°C and the HL3 solution was left in the room to acclimatize to room temperature before use.

Sharp micropipettes were pulled using 1mm diameter borosilicate glass with a resistance of 10-20Mohms from a puller (Flaming Brown micropipette puller model P-97, Stutter Instrument Co) and filled with 3 M potassium acetate.

RMP recordings were taken from muscles 6, 7, 13, or 12 using a sharp electrode from abdominal A2-A6 segments. When recording basal synaptic transmission, the larval
brain was left in place, so that the motor neurons still synapsed onto the body wall muscles and frequent spontaneous EJPs could be recorded. Spontaneous EJPs were recorded from muscles 6 and 7 of the A3 segment (Fig 2.3). All EJPs from a range RMPs were recorded to disk and later replayed to determine the mean amplitude. The RMP was also noted from the overlaid EJP trace.
Figure 2.3 Recording at the NMJ. Spontaneous EJPs were recorded from muscles 6 and 7 of the A3 segment from wild type (CS/w) and dparkin (p25 p3678) larvae. At the larval NMJ, the Type I synaptic boutons are subdivided into type-I small (Is) and type-I big (Ib) (Atwood et al., 1993). Motor neurons with terminals type-Ib have bigger boutons with low threshold firing, project onto single muscles and produce small EJPs (arrows), whereas type-Is motor neurons have smaller boutons with a high threshold and innervate groups of muscles, producing large EJPs (arrows).
For mEJPs the brain was removed during dissection. All mEJPs were recorded from muscle 6 or 7 of the A3 segments only. Only mEJPs that had a RMP around -60mV were used for analysis. Recordings lasted up for 2 minutes and the first 50 mEJP amplitudes were calculated manually. mEJPs were represented on a cumulative frequency chart.

All data files were recorded using DASYLab software (Dasylab v9, Measurement Computing). The RMP, EJPs or mEJPs were measured using DASYView (Version 2.1.1, customised software, C. Elliott, University of York). A scatter graph was constructed, plotting the EJP values against the RMP at which they had been recorded. The line of best fit (regression or trend line) was calculated for the dparkin mutants using their EJP/RMP points. The residual plot was constructed by calculating the mean distance of all individual points from the dparkin mutant line for all the different genotypes.

2.3.4 Behavioral locomotion assay
Larval crawling was determined as follows: larvae were dipped and washed in HL3 solution in the 25°C room where the apparatus was set up. A camera and computer software VirtualDub (Hill, 2008) (Fig 2.4) was used to record larval tracks on a 1% agar plate (0.01 g/ml agar in water). The AVI video file containing the recording of larval crawling across an agar petri dish was opened using the ImageJ analysis program (Schneider et al., 2012). The average background image was calculated using the median z projection algorithm across the entire file (Image/ Stacks/ Z project). The image showing only the larvae against a dark grey frame was produced by subtracting the background image from their individual frame (Process/ Image calculator- subtract the original from median image). In the Mtrack2 plugin, a minimum object size of 5 pixels was selected to eliminate speckles. The other default settings (maximum object
size (999999), maximum velocity (10) and minimum track length (2)) were used. All the option boxes (Save results file, Display path length, Show labels, Show positions & Show path) were ticked. This produced the larval tracks and the individual x-y coordinates throughout the 2 minutes recording. The x-y coordinates were saved to disk in an Excel format file, and an Excel template used to calculate the distance travelled in 2 minutes by each larva. The number of pixels occupied by a 20 mm bar on the ruler was used to determine the distance represented by each pixel. In daily use, this procedure was automated using the tools at (http://biolpc22.york.ac.uk/drosophila/larvae/) giving an output of the median speed of each larva (Fig 2.4).
Figure 2.4 Analysis of larval crawling by ImageJ and MTrack2. A An AVI file recording the motion of wild-type larvae across the agar plate is opened in the ImageJ analysis program. B ImageJ is used to calculate the median intensity across the entire file of 120 frames, giving a background image. C The image sequence showing just the larvae that is produced by subtracting the background image from each of the individual frames. D MTrack2 is used to locate the center of each larva in each frame. It generates a sequence of frames showing the calculated x-y coordinates for each larva (for example, in the illustration shown, for position 1, $x=304$, $y=170$). These positions are then are saved in an Excel format file by the MTrack2 software.
2.4 Anatomy at the larval neuromuscular junction (NMJ)

2.4.1 Fixing and immunohistochemistry

PBS was completely removed from the freshly dissected larval preparation and replaced with a solution of 3.7% formaldehyde in PBS for 7 mins at room temperature (RT). The pins were taken off the preparation and the preparation was transferred to an Eppendorf tube containing PBS-T (PBS with 0.1% (v/v) Triton X-100) at RT to rinse off any remaining fixative and placed on a rocker, followed by another 3 washes in PBS-T left on the rocker for 10 mins incubation each at RT. Primary antibodies (see Table 2.2) were added at their desired concentrations (1/200 or 1/1000) and left to incubate overnight at 4°C on a rocker. To remove excess primary antibody, 3x 10 mins washes with PBS-T at RT were carried out before adding the secondary antibody (see Table 2.2) for 2 hrs on the rocker at RT. The final 3 washes with PBS-T for 10 mins at RT were undertaken to remove any excess secondary antibody. To reduce air bubbles, the preparations were transferred into fresh Eppendorf tubes containing 70% (v/v) glycerol/PBS and left for 2 h standing upright at RT or 4°C overnight until they sank to the bottom of the tubes. Larval preparations were taken and mounted onto microscope slides with a drop of Vectashield (Vector Laboratories) and a 22mm x 22mm coverslip was placed directly on top. Nail varnish was used to seal the edges of the preparation with Vectashield and the slide was stored in the dark (slide box).
2.2 Table of antibodies used for NMJ bouton counts

<table>
<thead>
<tr>
<th>Antibody/stains</th>
<th>Raised host species</th>
<th>Dilution factor</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Horseradish-peroxidase-Cy3 (HRP-Cy3)</td>
<td>Goat</td>
<td>1:200</td>
<td>(Middleton et al., 2006)</td>
</tr>
<tr>
<td>Neuronal Tissue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-synaptotagmin (Anti-SYT)</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>(Sweeney and Davis, 2002)</td>
</tr>
<tr>
<td>Synaptic Boutons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FITC secondary</td>
<td>Goat</td>
<td>1:200</td>
<td>Jackson Laboratories, USA</td>
</tr>
</tbody>
</table>

2.4.2 Confocal images of the NMJ

NMJ images were taken using a laser scanning confocal microscope (Zeiss LSM 510 meta Axiovert 200M). The following objectives were used: 10x, 20x and 63x oil immersion. The 63x objective was used to take a z-stack image of the NMJ.
2.4.3 Measuring and quantifying at the NMJ

Bouton count quantification was undertaken where individual spherical structures stained with anti-synaptotagmin at the NMJ at the A3 segment from NMJ 6/7 were counted using a Leica DMLA fluorescence microscope using a 40x objective and FITC filter (Fig 2.5). Muscle surface area (MSA) measurement was found by taking an image with a 10x objective using bright field of the A3 muscle (Fig 2.6) which had also been used to count the number of boutons. ImageJ was used toanalyse the resulting images. The length and width of the muscle was measured in pixels and this was converted into μm. An image was taken of a 1mm graticule with 100 divisions using the 10x objective used to take the muscle images. The markings of the graticule permits the calculation of pixel to μm ratio.
Figure 2.5 Confocal image of the NMJ anatomy. *D. melanogaster* wild-type (CS/w) third instar larval NMJ stained with horseradish peroxidase (HRP, purple) and synaptotagmin (SYT, green). HRP stains neuronal membrane and SYT is a synaptic bouton marker, both of which are used together to determine the raw bouton count.

To provide a fair comparison of larvae of different sizes, a normalized bouton count was calculated as follows: for each neuromuscular junction, the actual “raw” bouton count (Fig 2.5) was divided by the corresponding individual MSA (Fig 2.6). To compare different genotypes, or the effects of drug treatment, the mean raw bouton count/MSA for each genotype or treatment was calculated. The mean was then expressed as a percentage of the normalized average of control (normally the wild-type or drug-free) larvae.
Figure 2.6 Light microscope image of the NMJ. *D. melanogaster* wild-type (*CS/w*) third instar larval NMJ muscle 6/7 is indicated on the diagram by a cross. The surface area of this region was measured to normalize bouton count.
2.5 Statistics

Here we report the results of Tukey post hoc tests. While these are not as conservative as the Bonferroni tests, the Tukey tests provide an accurate indication of the significance level. Kolmogorov–Smirnov test statistics was used to calculate the probability for the cumulative frequency histogram plot. In the figures, * → P<0.05; ** → P<0.01; *** → P<=0.001.

2.6 Rationale for drug concentration

Preliminary unpublished data from student projects suggested that L-DOPA at 3 µM concentration was successful in experiments recording behavioral phenotypes in D. melanogaster adults. Metformin and AICAR started with 3 µM concentrations. Additionally, other higher concentrations (50 µM) were used for AICAR and these were starting points for Resveratrol experiments. A 200 µM concentration of Resveratrol used based on studies by Partridge’s group for adult flies (Slack et al., 2012).
Chapter 3: *dparkin* mutant larvae show reduced locomotion, synaptic dysfunction and overgrown synapses

3.1 Introduction

D. melanogaster is a good model system to model PD, which has been reviewed in Chapter 1. Since PD is characterized by motor dysfunction, it was logical to test whether the *dparkin* mutant larvae showed signs of a motor defect. Larval locomotion has been studied using a number of crawling assays (Fox et al., 2006, Steinert et al., 2012), for example showing reduced velocity when octopamine or tyramine levels were manipulated (Hill, 2008, Selcho et al., 2012). The method developed in York by Hill (2008) will be used to measure the overall velocity. The velocity index used for the experiments in this thesis will be the overall distance covered by the larva in a period of 2 minutes. Crawling assays were used to test for locomotory dysfunction in all *dparkin* mutant larvae, as this is characteristic of the human disease.

Morphological and electrophysiological analysis from larval synapses will test for abnormal anatomy and physiology to complement the behavioral analysis. The electrophysiological (*in vivo*) recordings will be taken from larval longitudinal body wall muscles 6, 7, 12 and 13, as these have been well characterized and studied extensively (Atwood et al., 1993). This will allow the comparison of the resting (spontaneous not stimulated) synaptic function between mutants and control.

A key experiment is to assess the extent of overgrown synapses in the *dparkin* larva, as overgrown synapses are indicative of oxidative stress in a range of neurodegenerative and chemically-induced *D. melanogaster* models (Milton et al., 2011). Therefore, we investigated whether there was neuronal overgrowth in *dparkin* mutant larvae that might be caused by oxidative stress. Mitochondrial-associated defects are observed in humans with *parkin* mutations and this is conserved in all model organisms (Müftüoglu et al.,
To investigate the effect of loss of \textit{dparkin}, we deployed 2 well-characterized mutations. Like other mutations in the \textit{PARKIN} gene, these result in a loss of function, (rather than a gain of function as seen with other PD genes such as \textit{α-synuclein} (Eriksen et al., 2003). \textit{parkin}^{25} flies were generated by P-element induced excision, in which the first three exons of the \textit{dparkin} gene have been deleted along with half of exon 4. \textit{parkin}^{25} is a null with complete loss of parkin protein (Greene et al., 2003). \textit{parkin}^{23678} is EMS induced point (missense) mutation (stop codon, Whitworth, personal communication). It is a hypomorph with reduced protein production. A transheterozygote (\textit{parkin}^{25}/ \textit{parkin}^{23678}) mutant combination was normally used to avoid artifacts due to second site mutations, but additionally there will be comparisons of transheterozygote mutant data with the homozygous \textit{parkin}^{25} null mutants in this chapter.

The GAL4-UAS system was used to rescue the mutant phenotypes in a tissue specific manner, expressing wild-type \textit{dparkin} in a mutant background. For ubiquitous expression of \textit{dparkin}, the \textit{Actin5c-GAL4} driver was used, and the \textit{G14-GAL4} enhancer trap line was used to express \textit{dparkin} in all somatic muscles and salivary glands (Aberle et al., 2002). Embryonic lethal abnormal vision (\textit{elav}^{3E1}-GAL4) enhancer trap (Davis et al., 1997) was used to express \textit{dparkin} pan-neuronally. This will test whether the presynaptic or postsynaptic loss of \textit{dparkin} is responsible for the respective mutant phenotypes.

A second approach to manipulate \textit{dparkin} levels was used. In this RNAi targeted at \textit{dparkin} was expressed to knock down parkin protein in all tissues, or in a tissue specific manner (e.g. in muscle, neurons, or specifically in the dopaminergic neurons). Bingwei
Lu’s lab developed an *in vivo* *D. melanogaster* RNAi model with *dparkin*-mediated neurotoxicity and showed targeted expression of *dparkin* dsRNA in fly dopaminergic and serotonergic neurons in which the expression of GAL4 is under the control of the DOPA decarboxylase gene promoter (Ddc-GAL4) (Li et al., 2000) that did not result in neuronal loss. However, targeted overexpression of human Pael-R protein, another parkin substrate, resulted in the reduction of TH-positive dopaminergic neurons. The co-expression of *dparkin* dsRNA and Pael-R protein exacerbated the Pael-R phenotype age dependent selective loss of *D. melanogaster* dopaminergic neurons whereas the co-expression of Pael-R with human parkin resulted in the degradation of Pael-R and prevented the degeneration phenotype (Yang et al., 2003). The knock down of *dparkin* by RNAi under a heat shock (hs)-GAL4 was confirmed with RT-PCR analysis that showed the *dparkin* mRNA transcript levels was undetectable (Yang et al., 2003).
3.2. Results

dparkin larvae crawl more slowly

Motor dysfunction is a classical feature in PD patients. The crawling assay for *D. melanogaster* larvae was used to assess motor dysfunction. This was done by placing larvae on the surface of an agar plate and tracking the full path travelled over the course of 2 minutes. The crawling assay showed that, with a global loss of *dparkin*, the tracks were, on average, 26% shorter. As velocity is distance/time, this corresponds to a 26% reduction in velocity ($p < 0.007$) in *dparkin* (p^{25}/p^{Z3678}) transheterozygote mutant larvae (0.57mm/s) compared to their wild-type (CS/w) controls (0.73mm/s), (Fig. 3.1).

Dopaminergic neurons are metabolically active neurons having extensive arbors and many synapses, and so are prone to oxidative insults and energy depletion. To test the role of *dparkin* on dopaminergic integrity and function, the tyrosine hydroxylase (TH)-GAL4 driver was chosen to induce knock down of *dparkin* specifically in dopaminergic cells by RNAi silencing using *dparkin* RNAi (Yang et al., 2003). TH-GAL4 expression studies are known to target most of the dopaminergic neurons in the central nervous system (CNS) with the exception of protocerebral anterior medial (PAM) cluster (Friggi-Grelin et al., 2003, Botella et al., 2008). Expressing *dparkin* RNAi with the TH-GAL4 did not affect the speed of crawling (0.71mm/s, $p = 0.975$) compared to their wild-type (0.73mm/s, CS/w) controls. The TH-GAL4 (TH/CS) control showed no significant difference to wild-type (CS/w) controls (Fig. 3.2).
Larval Velocity (mm/s², mean ± SE)

Fig 3.1

Wild-type

Mutant

p25/p2678
Figure 3.1 *dparkin* mutant larvae show reduced locomotion

dparkin (p^{25}/p^{23678}) transheterozygote mutant larvae show reduced velocity compared to wild-type control (*CS/w*) larvae ($p = 0.007$).
Fig 3.2

Larval velocity (mm/s², mean ± SE)

- **Wild-type**: CS/w1
- **Knockdown**: TH>dsarin RNAi
- **Control**: TH/CS

Values: 32 (Wild-type), 16 (Knockdown), 33 (Control)

ns ns
Figure 3.2 Dopaminergic expression of transgenic *dparkin* RNAi fails to show dysfunction in larval crawling

The *dparkin* RNAi line was crossed with the *tyrosine hydroxylase* driver (*TH*-GAL4), to induce the loss of *dparkin* specifically in dopaminergic neurons. Such *TH>*dparkin RNAi larvae showed no difference in crawling speed compared to wild-type (*CS/w*) larvae (*p* = 0.975). The GAL4 control larvae (*TH/CS*) showed no difference in crawling to wild-type larvae (*p* = 0.810) or the knockdown (*p* = 0.752). *TH/CS* was used as a control to see whether the insertion of the GAL4 had any effect in a wild-type (*CS*) background.
dparkin mutant larvae show neuronal overgrowth at the neuromuscular junction

With the findings of motor impairment in our *dparkin (p25/pZ3567)* transheterozygote mutant line, we next checked for morphological abnormalities. The neuromuscular junction (NMJ) of *dparkin (p25/pZ3567)* mutant larvae was shown to be 82% overgrown (p = 0.001, Fig. 3.3A) compared to their wild-type (CS/w) controls. The overgrowth is a result of an increase in neuronal growth (24%, p = 0.001, Fig. 3.3B) and a reduction (29%, p = 0.001, Fig. 3.3C) in muscle surface area (MSA) compared to wild-type (CS/w) synapses. The neuronal (elav3E1-GAL4) or muscle (GI4-GAL4) expression of wild-type *dparkin* in the *dparkin (p25/pZ3567)* mutant background rescued the normalized overgrowth to 5% and 10% below wild-type (CS/w) levels respectively (Fig. 3.3). The neuronal or muscle expression of wild-type *dparkin* in a *dparkin (p25/pZ3678)* mutant background also decreased raw bouton number (B, p < 0.001 and p < 0.001 respectively) and increased muscle surface area (C, p = 0.05 and p < 0.001 respectively), when compared to *dparkin (p25/pZ3678)* mutant larvae. There is no difference in overgrowth (normalized bouton count, raw bouton count or muscle surface area) between the neuronal (elav3E1 > dparkin; p25/pZ3678) or muscle (GI4 > dparkin; p25/pZ3678) rescue in a mutant background compared to wild-type control (CS/w) larvae (A, p = 0.984 and p = 0.842; B, p = 0.326 and p = 0.914; C, p = 0.538 and p = 0.823 neuronal or muscle respectively).

To support this data, we used a second technique, expressing *dparkin RNAi* by the ubiquitous Act5c-GAL4 driver. This resulted in an increased overgrowth (49%, p = 0.008, Fig. 3.4A) compared to their wild-type (CS/w) control. The *dparkin* transheterozygote mutants showed overgrowth at approximately twice the level of that of global knockdown of *dparkin RNAi* (Fig. 3.4A). The global knockdown of *dparkin RNAi* shows an increase in raw bouton number (p = 0.008, Fig. 3.4B) and a decrease in
muscle surface area (MSA) \(p < 0.001 \), Fig. 3.4C), when compared to wild-type (CS/w') larvae. There is no significant difference between the actin control (Act5c/CS) and the wild-type (CS/w') control (normalized, raw bouton count and MSA; \(p = 0.918 \), \(p = 0.121 \) and \(p = 0.683 \) respectively; Fig. 3.4A-C).
Normalised bouton counts (% mean ± SE)

Wild-type
Mutant

parkin expression in a mutant background

Pre synaptic
Post synaptic

Fig 3.3 A

Raw bouton count (mean ± SE)

Wild-type
Mutant

parkin expression in a mutant background

Pre synaptic
Post synaptic

Fig 3.3 B
Fig 3.3 C

Muscle surface area (μm^2, mean ± SE)

- **Wild-type**: 32
- **Mutant**: 18
- **Pre synaptic** parkin expression in a mutant background: 10
- **Post synaptic** parkin expression in a mutant background: 12
Figure 3.3 Loss of dparkin-induced overgrowth rescued by neuronal or muscle expression of wild-type dparkin

A-C dparkin (p^{25}/p^{Z3678}) mutant larval neuromuscular junctions show an increase in normalized bouton overgrowth (A, \(p < 0.001 \)), an increase in raw bouton number (B, \(p < 0.001 \)) and a decrease in muscle surface area (C, \(p < 0.001 \)), when compared to wild-type (CS/w') larvae. The neuronal or muscle expression of wild-type dparkin in a dparkin (p^{25}/p^{Z3678}) mutant background also decreased raw bouton number (B, \(p < 0.001 \) and \(p < 0.001 \) respectively) and increased muscle surface area (C, \(p = 0.05 \) and \(p < 0.001 \) respectively), when compared to dparkin (p^{25}/p^{Z3678}) mutant larvae. There is no difference in overgrowth (normalized bouton count, raw bouton count or muscle surface area) between the neuronal (elav\(^{3E1} > dparkin; p^{25}/p^{Z3678}\)) or muscle (G14 > dparkin; p^{25}/p^{Z3678}) rescue in a mutant background compared to wild-type control (CS/w' larvae (A, \(p = 0.984 \) and \(p = 0.842 \); B, \(p = 0.326 \) and \(p = 0.914 \); C, \(p = 0.538 \) and \(p = 0.823 \) neuronal or muscle respectively).
Fig 3.4 A

Normalised bouton counts (%)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Bouton Count (mean ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>29</td>
</tr>
<tr>
<td>p25/p35678</td>
<td>18</td>
</tr>
<tr>
<td>Act5c> dprakin RNAi</td>
<td>13</td>
</tr>
<tr>
<td>Act5c/CS</td>
<td>12</td>
</tr>
</tbody>
</table>

Fig 3.4 B

Raw bouton count (mean ± SE)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Bouton Count (mean ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>29</td>
</tr>
<tr>
<td>p25/p35678</td>
<td>18</td>
</tr>
<tr>
<td>Act5c> dprakin RNAi</td>
<td>13</td>
</tr>
<tr>
<td>Act5c/CS</td>
<td>12</td>
</tr>
</tbody>
</table>
Fig 3.4 C

Muscle surface area (μm², mean ± SE)

- Wild-type
- Mutant
- Knockdown
- Control

Wild-type: 29
Mutant: 18
Knockdown: 13
Control: 12
Figure 3.4 Global expression of transgenic *dparkin* RNAi shows an enhanced overgrowth phenotype.

A-C The global expression of the *dparkin* transgenic RNAi shows an increase in normalized bouton overgrowth (A, \(p = 0.008 \)), an increase in raw bouton number (B, \(p = 0.008 \)) and a decrease in muscle surface area (C, \(p < 0.001 \)), when compared to wild-type (*CS/w*) larvae.
dparkin mutant larvae have depolarized resting membrane potentials

The larval neuromuscular junction (NMJ) is a glutamatergic synapse that models a central synapse of mammals as it uses glutamate as its transmitter in the NMJ synapse. The intracellular recordings from the longitudinal body wall muscles 6 and 7 of dparkin \((p^{25}/p^{Z3678})\) transheterozygote mutant larvae commonly show depolarized resting membrane potentials (RMPs, \(N=34\)), (Fig. 3.5). This is confirmed by the mean data: dparkin \((p^{25}/p^{Z3678})\) mutant larvae show more positive (depolarized) RMPs compared to wild-type \((CS/w^-)\) larvae (mean difference 12 mV, \(p<0.001\), Fig. 3.5). Global \((Act5c-GAL4)\) or neuronal \((elav^{31E})\) expression of wild-type dparkin in a dparkin \((p^{25}/p^{Z3678})\) transheterozygote mutant background failed to rescue the RMP defects \((p=0.734\) and \(p=0.504\) respectively, Fig. 3.5). On the other hand, muscle \((G14-GAL4)\) expression of wild-type dparkin rescued the mutant RMP phenotype \((p=0.017,\) Fig. 3.5). dparkin mutant larvae have smaller EJPs (Fig. 3.6).

In preparations in which the brain and nerves are left intact, intracellular recordings from larval muscles frequently show spontaneous excitatory junctional potentials (EJPs). In recordings from dparkin transheterozygote larvae, the EJPs appear smaller (Fig. 3.6). To examine this in detail we focused on the Is EJPs, finding that the mean size of the dparkin \((p^{25}/p^{Z3678})\) mutant larvae was 14% of the wild-type \((CS/w^-)\) controls.

The size of the EJPs is affected by transmitter binding to the postsynaptic glutamate receptors, but also by the muscle RMP. As the RMP becomes more depolarized, and moves towards the reversal potential (-1mV, (Jan and Jan, 1976)) Jan and Jan, 1976) the EJP will decrease; conversely as the RMP becomes more negative, the EJP will increase. As the RMPs of dparkin \((p^{25}/p^{Z3678})\) transheterozygote mutant larvae were more depolarized compared to wild-type \((CS/w^-)\) controls, the synaptic potentials might
be smaller just because of this difference in membrane potential. To explore this, the size of the Is EJP was plotted against the RMP (Fig. 3.6). It appears that the data points from the dparkin (p^{25}/p^{Z3678}) mutant larvae tend to lie below those from the wild-type (CS/w) controls. To confirm this, the best-fit regression lines were drawn for both genotypes, using data points in which the RMP was between -40 and -75 mV data to construct the line (Fig. 3.7). The lower regression line for dparkin (p^{25}/p^{Z3678}) mutant larva confirmed that their spontaneous EJPs appear smaller than those from wild-type (CS/w) controls at the corresponding RMP (Fig. 3.7). To confirm this statistically, I measured the vertical distance between each data point and the dparkin (p^{25}/p^{Z3678}) mutant larva regression line (the residual). For each genotype, I calculated the mean and standard error of the residual, and plotted this (Fig. 3.7). I tested the null hypothesis, that if each genotype had the same size EJP as the dparkin, the mean deviation from the dparkin regression line should be zero. For the wild-type (CS/w) data, the t-test confirmed that the wild-type larvae have a larger EJP than the dparkin (p^{25}/p^{Z3678}) mutant larvae ($p < 0.001$, Fig. 3.7). On this analysis, which allows for the effect of RMP, the average synaptic potentials of dparkin larvae were estimated to be 7mV smaller than the wild-type (CS/w) controls. In the same way, we examined the effect of expressing wild-type dparkin globally (Act5c-GAL4), neuronally (elav3E1-GAL4) or in muscle (G14-GAL4) in a dparkin (p^{25}/p^{Z3678}) transheterozygote background. In each case this rescued the synaptic transmission defect compared to dparkin (p^{25}/p^{Z3678}) mutant larvae ($p = 0.001$, $p < 0.001$ and $p = 0.033$ respectively).
Fig 3.5

Resting membrane potential (mV)

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

Wild-type Mutant Global Pre synaptic Post synaptic

15 34 19 8 13

*** ns ns **
Figure 3.5 *dparkin* mutant larvae show more positive (depolarized) RMP that is rescued by global, neuronal or muscle expression of wild-type *dparkin*

dparkin (*p^25/p^Z3678*) mutant larvae show more positive (depolarized) RMP (resting membrane potential) compared to wild-type (*CS/w*) larvae (*p* < 0.001). Global (*Act5c-GAL4*) or neuronal (*elav^3E-GAL4*) expression of wild-type *dparkin* in a *dparkin* (*p^25/p^Z3678*) mutant transheterozygote background failed to rescue the RMP defects (*p* = 0.734 and *p* = 0.504 respectively) compared to *dparkin* (*p^25/p^25*) mutant larvae, whereas the muscle (*G14-GAL4*) expression of wild-type *dparkin* rescued the mutant RMP phenotype (*p* = 0.017). These recordings were taken from muscle 6/7.
Fig 3.6

CS/w

p^{25}/p^{23678}
Figure 3.6 Scatter regression plot show *dparkin* mutant larvae have depolarized RMPs and smaller EJPs across a range of RMPs.

dparkin (*p*25/*Z3678*) mutant larvae show more positive (depolarized) RMP compared to wild-type (*CS/w*) larvae. The *dparkin* larval EJPs were on average smaller compared to their wild-type controls across a range of RMPs. The solid lines are the linear regression across *dparkin* and wild-type larvae. These recordings were taken from 6/7 muscles (n = 12, *CS/w* and n = 18, *p*25/*Z3678*).
Fig 3.7

Residual EJP calculated from the p25/pZ3678 regression line (mV, mean ± SE)

- Wild-type: 10
- Mutant: 19
- Global: 6
- Pre synaptic: 6
- Post synaptic: 2

parkin expression in a mutant background

*** ns ns ns

118
Figure 3.7 *dparkin* mutant larvae show reduced synaptic transmission is not rescued by either global, neuronal or muscle expression of wild-type *dparkin*

For each observation, the difference between the recorded EJP and the value expected from the p^{25}/p^{Z3678} regression line was determined. This shows that the *dparkin* (p^{25}/p^{Z3678}) larvae have reduced synaptic transmission compared to wild-type (CS/w') control larvae ($p < 0.001$). Global (Act5c-GAL4), neuronal (elav^{3E}-GAL4) or muscle (G14-GAL4) expression of wild-type *dparkin* on a *dparkin* (p^{25}/p^{Z3678}) mutant transheterozygote background failed to rescue the synaptic transmission defect ($p = 0.829$, $p < 0.093$ and $p = 0.283$ respectively) compared to *dparkin* (p^{25}/p^{Z3678}) mutant larvae.
dparkin mutant larvae have smaller mEJP amplitudes

Synaptic EJPs are the result of release of many transmitter vesicles. In recordings from larval muscles, in which their innervation had been severed, miniature excitatory junctional potentials (mEJPs) were recorded (Fig. 3.8). The mEJPs correspond with spontaneous single vesicle release (Fatt and Katz, 1952, Dudel and Orkand, 1960, Usherwood, 1963). For these experiments mEJPs were recorded in a number of preparations. However, since the size of the mEJP is affected by membrane potential, we analyzed only a few preparations from dparkin (p25/ pZ3678) and wild-type (CS/w) larvae in which the RMPs were similar in both genotypes (range -60 mV to -67 mV). The distribution of mEJP amplitudes in the dparkin (p25/ pZ3678) and wild-type (CS/w) larvae were plotted (Fig. 3.9). The mean and mode of the dparkin (p25/ pZ3678) mEJPs mutant larvae were 0.7 mV and 0.5 mV, 40% and 16% smaller that of wild-type (CS/w) control mEJPs (Fig 3.9). The cumulative frequency graph shows there are many smaller mEJPs in dparkin (p25/ pZ3678) mutant larvae than in wild-type (CS/w) controls (Fig. 3.9).
Figure 3.8 *dparkin* mutant larvae have smaller miniature excitatory junction potentials.

Miniature excitatory junction potentials (mEJPs) are smaller in *dparkin* larvae (p^{25}/p^{23678}) compared to wild-type (CS/w^+) controls, as shown in this sample recording.
CS/w

p^{25}/p^{23678}
Figure 3.9 The distribution of mEJP amplitudes show dparkin mutant larvae have smaller miniature excitatory junction potentials.

Miniature excitatory junction potentials (mEJPs) are smaller in dparkin larvae (p^{25}/p^{Z3678}) compared to wild-type (CS/+) controls. The distribution of mEJP amplitudes in the dparkin (p^{25}/p^{Z3678}) and wild-type (CS/+) larvae are plotted. The mean and mode of the dparkin (p^{25}/p^{Z3678}) mEJPs mutant larvae were 0.7 mV and 0.5 mV, 40% and 16% smaller that of wild-type (CS/+) control mEJPs.
Figure 3.10 Cumulative frequency curve show dparkin mutant larvae have smaller miniature excitatory junction potentials.

Cumulative frequency curves show the median mEJP amplitude from dparkin larvae (p^{25}/p^{23678}) is smaller than that from wild-type larvae (CS/w), (Kolmogorov–Smirnov test statistic = 3.5, $P < 0.001$). Additionally, the lower and upper quartiles of the distribution of mEJPs of dparkin larvae are lower than those of wild-type controls.
dparkin null mutant larvae show electrophysiological deficits

The last sections have shown that *dparkin* transheterozygote larvae have major electrophysiological deficits, in both RMP and synaptic transmission. In the next section we test if these defects are also seen in another *dparkin* mutant, the homozygote *dparkin*\(^{25}\) (*p*\(^{25}/p^{25}\)). In these larvae, no *dparkin* protein is synthesized (Greene et al., 2003, Whitworth et al., 2005, Tain et al., 2009).

Intracellular recordings from larval muscles 6 and 7 of *dparkin* (*p*\(^{25}/p^{25}\)) null mutant show the RMPs are 11 mV (*p* < 0.001) more positive compared to wild-type (*CS/w*) controls (Fig. 3.11A). The global (*Actin5-GAL4*) driver or the pan-neuronal (*elav\(^{3E1}-GAL4\)*) driver or the *G14-GAL4* driver (which expresses in all muscles), was used to express wild-type *dparkin* in the *dparkin* (*p*\(^{25}/p^{25}\)) mutant background. In each case, the RMP deficit was rescued (*p* = 0.009, *p* < 0.001 and *p* < 0.001, respectively, Fig. 3.11A).

These observations were extended by testing a second pair of muscles in the *dparkin* (*p*\(^{25}/p^{25}\)) null mutant, muscles 12/13, which run parallel to muscle 6 and 7 and are also innervated by type I\(_{s}\) motoneuron terminals. These muscles were also 9 and 10 mV more depolarized compared to those of wild-type (*CS/w*) controls (Fig. 3.11B). Global (*Act5c-GAL4*), neuronal (*elav\(^{3E}\)-GAL4) or muscle (*G14-GAL4*) expression of wild-type *dparkin* on a *dparkin* (*p*\(^{25}/p^{25}\)) mutant background failed to rescued the RMP defects (*p* = 0.170, *p* = 0.329 and *p* = 0.906, respectively) compared to *dparkin* (*p*\(^{25}/p^{25}\)) null larvae. *dparkin* transheterozygote (*p*\(^{25}/p^{25}\)/*p*\(^{Z3678}\)) larvae show no difference in RMP compared to *dparkin* null (*p*\(^{25}/p^{25}\) larvae (*p* = 0.396). Wild-type control larvae (*CS* and *CS/w*) show no differences in RMP (*p* = 0.590) (Fig. 3.11B).

In a more extensive experiment, both the *dparkin* null (*p*\(^{25}/p^{25}\) and transheterozygote (*p*\(^{25}/p^{Z3678}\)) larvae were also tested. As two mutant strains were used, two wild-types (*CS*
and CS/w-) were used. The dparkin null recordings of spontaneous EJPs in muscles 6 and 7 showed reduced EJPs. As with the transheterozygote experiment, a scatter graph was plotted of the size of the EJP against RMP (Fig. 3.12). Using the data from dparkin (p25/p25) mutant and wild-type (CS and CS/w) controls, lines of best fit were drawn to calculate the residual between EJP and regression line calculated (Fig. 3.12). dparkin (p25/p25) mutants showed reduced synaptic transmission compared to their wild-type controls (CS and CS/w, p = 0.004 and p = 0.007 respectively, Fig. 3.13). When wild-type dparkin was expressed either in a global (Actin5-GAL4), pan-neuronal (elav3E1-GAL4) or the G14-GAL4 tissue dependent manner in a dparkin (p25/p25) mutant background, the EJP was increased (p = 0.010, p = 0.024 and p = 0.001 respectively, Fig. 3.13A). Muscle 13 and 12 recordings also showed that dparkin (p25/p25) mutant larvae have a reduction in synaptic transmission compared to wild-type (CS, p = 0.007) control larvae, but not with the wild-type outcross (CS/w, p = 0.703, Fig. 3.13B) larvae. Similar data was seen with muscle 6 and 7. The RMP of dparkin (p25/p25) mutant larvae are not significantly different from dparkin (p25/p23678) mutant larvae (p = 0.296). Global (Act5c-GAL4) or muscle (G14–GAL4) expression of wild-type dparkin on a dparkin (p25/p25) homozygous mutant background showed an increase in synaptic transmission (p = 0.001 and p = 0.002, respectively) whereas neuronal (elav3E–GAL4) expression of wild-type dparkin showed no difference (p = 0.199) compared to dparkin (p25/p25) mutant larvae (Fig 3.13B).
Wild-type

Mutant

Global

Pre synaptic

Post synaptic

parkin expression in a mutant background

Fig 3.11A

Residual membrane potential (mV, mean ± SE)

<table>
<thead>
<tr>
<th></th>
<th>Wild-type</th>
<th>Mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>106</td>
<td>-48</td>
</tr>
<tr>
<td>CS/w</td>
<td>89</td>
<td>-49</td>
</tr>
<tr>
<td>p25/p2678</td>
<td>48</td>
<td>-84</td>
</tr>
<tr>
<td>p25/p25</td>
<td>49</td>
<td>-62</td>
</tr>
<tr>
<td>Act5c>dparkin; p25/p25</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>elav3E1>dparkin; p25/p25</td>
<td>62</td>
<td>84</td>
</tr>
<tr>
<td>G14>dparkin; p25/p25</td>
<td>84</td>
<td>84</td>
</tr>
</tbody>
</table>

**
Figure 3.11 *dparkin* mutant larvae show more positive (depolarized) RMP that is rescued by global, neuronal or muscle expression of wild-type *dparkin*

A Muscle 6 and 7 intracellular recordings revealed *dparkin* (*p*/*p* 25/25 or *p* 25/*p* 25) mutant larvae show more positive (depolarized) RMP (resting membrane potential) compared to wild-type (CS or CS/w) larvae (*p* < 0.001). Global (Act5c-GAL4), neuronal (elav^{3E}–GAL4) or muscle (G14–GAL4) expression of wild-type *dparkin* on a *dparkin* (*p* 25/*p* 25) mutant background rescued the RMP defects (*p* = 0.009, *p* < 0.001 and *p* < 0.001 respectively) compared to *dparkin* (*p* 25/*p* 25) mutant larvae. *dparkin* transheterozygote (*p* 25/*p* Z3678 or *p* 25/*p* 25) larvae show no difference in RMP compared to *dparkin* null (*p* 25/*p* 25) larvae (*p* = 0.087). Wild-type control larvae (CS and CS/w) show no differences in RMP (*p* = 1.0). **B** Recordings from muscle 12 and 13 show that *dparkin* (*p* 25/*p* Z3678 or *p* 25/*p* 25) mutant larvae show more depolarized RMP compared to wild-type (CS or CS/w) larvae (*p* < 0.001 and *p* = 0.001, respectively). Global (Act5c-GAL4), neuronal (elav^{3E}–GAL4) or muscle (G14–GAL4) expression of wild-type *dparkin* on a *dparkin* (*p* 25/*p* 25) mutant background failed to rescued the RMP defects (*p* = 0.170, *p* = 0.329 and *p* = 0.906, respectively) compared to *dparkin* (*p* 25/*p* 25) mutant larvae. *dparkin* transheterozygote (*p* 25/*p* Z3678) larvae show no difference in RMP compared to *dparkin* null (*p* 25/*p* 25) larvae (*p* = 0.396). Wild-type control larvae (CS and CS/w) show no differences in RMP (*p* = 0.590).
Fig 3.12B

- **CS** (circle)
- **CS/w-** (triangle)
- **p_{25} / p_{25}** (circle)
- **p_{25} / p_{3678}** (triangle)

EJP amplitude (mV) vs. Resting membrane potential (mV)
Figure 3.12 Scatter regression plot show *dparkin* null mutant larvae have depolarized RMP and reduced synaptic transmission across a range RMP.

dparkin (*p*^{25}/*p*^{Z3678} or *p*^{25}/*p*^{25}, in red) mutant larvae show more positive (depolarized) RMP compared to wild-type (*CS* or *CS/w^*, in green) larvae. The *dparkin* larval EJPs were on average smaller compared to their wild-type controls across a range of RMPs recorded from either muscles 6 and 7, or 12 and 13 ([Fig. 3.12 A and B](#) respectively). The solid lines are the linear regressions across *dparkin* and wild-type larvae.
Fig 3.13A

Residual EJP calculated from p25/p25 expectation (mV, mean ± SE)

Wild-type

Mutant

Global

Pre synaptic

Post synaptic

parkin expression in a mutant background

ns

**

Fig 3.13B

Residual EJP calculated from p25/p25 expectation (mV, mean ± SE)
Figure 3.13 *dparkin* mutant larvae show a reduction in synaptic transmission and with either global, neuronal or muscle of wild-type *dparkin* expression shows partial rescue of synaptic

A *dparkin* (*p*²⁵*/p*²⁵) mutant larvae show a reduction in synaptic transmission in muscle 6 and 7 compared to wild-type (*CS/w*[–] or *CS*) control larvae (*p* = 0.007 and *p* = 0.004, respectively). *dparkin* (*p*²⁵*/p*²⁵) mutant larvae are not significantly different from *dparkin* (*p*²⁵*/p*^{Z3678}) mutant larvae (*p* = 0.964). Global (*Act5c-GAL4*), neuronal (*elav^{3E}-GAL4*) or muscle (*G14-GAL4*) expression of wild-type *dparkin* on a *dparkin* (*p*²⁵*/p*²⁵) homozygous mutant background showed an increase in synaptic transmission (*p* = 0.010, *p* = 0.024 and *p* = 0.001, respectively) compared to *dparkin* (*p*²⁵*/p*²⁵) mutant larvae. B Recordings from muscle 12 and 13 show *dparkin* (*p*²⁵*/p*²⁵) mutant larvae show a reduction in synaptic transmission compared to wild-type (*CS, p* = 0.007) control larvae but not with the other wild-type (*CS/w*, *p* = 0.703) larvae. *dparkin* (*p*²⁵*/p*²⁵) mutant larvae are not significantly different from *dparkin* (*p*²⁵*/p*^{Z3678}) mutant larvae (*p* = 0.296). Global (*Act5c-GAL4*) or muscle (*G14-GAL4*) expression of wild-type *dparkin* on a *dparkin* (*p*²⁵*/p*²⁵) homozygous mutant background showed an increase in synaptic transmission (*p* = 0.001 and *p* = 0.002, respectively) whereas neuronal (*elav^{3E}-GAL4*) expression of wild-type *dparkin* showed no difference (*p* = 0.199) compared to *dparkin* (*p*²⁵*/p*²⁵) mutant larvae. Bold numbers indicate the number of larvae used in each genotype.
dparkin mutant larvae show pronounced difference in RMP at low external potassium concentrations

Altering the external potassium concentration in the 1mM calcium-containing HL3 solution that bathes the preparation caused a more positive shift in both wild-type (CS/\(\omega\)) and **dparkin** (p^{25}/p^{23678}) mutant and RMP as the potassium concentration increased. When the Nernst equation line was plotted for potassium, the higher concentration points of both the wild-type and **dparkin** mutant larvae was consistent with the Nernst line whereas the lower concentration showed a deviation from the line. The deviation from the line suggests that different ions could result in the depolarization of RMP when there is lower a concentration of external potassium (Cl\(^-\) and Na\(^+\) ions).

The changing of extracellular potassium ion concentration caused changes in RMP in both wild-type controls and **dparkin** transheterozygote mutant larvae. **dparkin** mutants show a more depolarized RMP throughout the different concentration of potassium compared to their wild-type controls (Fig 3.14).
Fig 3.14

Concentration of external potassium in HL3 (mM)

Resting membrane potential (mV, mean ± SE)

CS/w

p^{25}/p^{3678}
Figure 3.14 The difference in RMP between *dparkin* mutant and wild-type larvae is most pronounced at low external potassium concentrations.

At higher potassium concentrations, above 4 mM, the RMP of both *dparkin* (*p^{25}/p^{Z3678}* and wild-type (*CS/w*)) muscles were close together and followed the line calculated for the Nernst equation. At lower potassium concentrations the RMP of both genotypes is consistently above the line. At the lowest concentration, the difference between the *dparkin* and wild-type larvae is marked, with the *dparkin* larvae being more positive than the wild-type.
3.3 Discussion

The key findings in this chapter are that dparkin mutant larvae show slower locomotion, overgrown synapses, a reduction in synaptic transmission (both spontaneous EJPs and mEJPs) and a more positive (depolarized) resting membrane potential (RMP), especially at lower extracellular potassium concentrations. These phenotypes are principally due to the neural impact of dparkin. Trans-synaptic signalling plays a key role in the phenotype.

Crawling speed is reduced in dparkin transheterozygote mutant larvae

dparkin transheterozygote mutant larvae show reduced velocity in the crawling assay used to measure motor performance. The homozygotes (p^{25}/p^{25} null) also crawl more slowly (Vincent et al., 2012). Adult dparkin mutants also demonstrate reduced locomotion in adult negative geotaxic assays (Greene et al., 2003, Whitworth et al., 2005). In these assays, locomotion could have been reduced by changes in sensitivity to mechanical stimuli or to changes in locomotory ability. Our assays, monitoring spontaneous crawling, provide a more specific demonstration of the loss of dparkin-induced locomotory failure.

Crawling speed rescued with the neuronal wild-type dparkin expression in dparkin transheterozygote mutant larvae

Since the crawling phenotype was observed in the dparkin transheterozygote mutant larvae, it is likely that the phenotype was due to dparkin loss rather than a second site mutation. The reduced crawling phenotype was rescued by global expression of wild-type dparkin in a dparkin mutant background (Vincent et al., 2012). More importantly, the neuronal expression of wild-type dparkin also rescued, unlike muscle expression of wild-type dparkin in a mutant background (Vincent et al., 2012). This shows the reduced crawling speed was a result of dparkin loss in neurons rather than from the
muscles. Additionally, \textit{dparkin} null mutant larvae show reduced number of contractions as observed from the larval extensometer or ‘bendy-beam’ assay (Vincent et al., 2012), along with a bradykinesia-like phenotype (reminiscent of PD patients). Both phenotypes may lead to an overall reduction in crawling speeds in \textit{dparkin} transheterozygote mutant larvae. Neuronal expression of wild-type \textit{dparkin} in nerve rescues this defect whereas muscle expression does not (Vincent et al., 2012). From this it was concluded that the behavioral (crawling) defect arises from the loss of \textit{dparkin} in neurons and not the muscles.

\textbf{Are dopaminergic neurons key to the crawling defect?}

Our paper hypothesized that reduced dopaminergic function is key to the reduced crawling seen in \textit{dparkin} mutants (Vincent et al., 2012). To test this hypothesis of dopaminergic dysfunction, \textit{dparkin} was knocked down by using the tyrosine hydroxylase (\textit{TH}-GAL4) driver with the \textit{dparkin} \textit{dsRNAi} generated by Yang \textit{et al.} (2003). There was no difference in crawling speed compared to wild-type controls. This result suggests dopaminergic \textit{dparkin} is not absolutely essential for locomotory dysfunction. On the other hand, disruption to aminergic neurotransmission has been reported to have an impact on crawling behavior as seen by \textit{D. melanogaster} vesicular aminergic transporter (\textit{DVMAT}) mutants that exhibit a distinct slow crawling phenotype, thereby suggesting disruption to the aminergic system may be the reason behind the larval bradykinesia phenotype seen in our \textit{dparkin} mutant larvae.

However, we do not know how effective the \textit{TH} > \textit{RNAi} transgenes were at reducing the level of PARKIN protein, as this was not measured in these experiments. Expression of \textit{dparkin} \textit{dsRNAi} with our \textit{Act5c}-GAL4 provided a marked overgrowth phenotype at the neuromuscular junction. Further, expression of this \textit{dsRNAi} using a ubiquitous \textit{heat-shock}-GAL4 driver showed both a reduction in mRNA levels (by PCR)
and an interaction with the *Pael-R* transgene. However, there was no net loss of dopaminergic neurons. My experiments indicate a synaptic role for *dparkin* in the overgrowth phenotype and so the wild-type *dparkin* from the surrounding cells could have provided a neuroprotective effect and thus not induce the *dparkin* transheterozygote mutant larvae crawling phenotype. I conclude that further experiments are needed to confirm if *dparkin* knockdown is effectively achieved in the dopaminergic neurons by the *TH-GAL4*.

Synaptic overgrowth phenotype in *dparkin* mutants

As neuronal loss of *dparkin* was shown to cause locomotory dysfunction I assessed the integrity of both the neuronal architecture involved in carrying signals required for movement by the postsynaptic cell (the muscle). *dparkin* transheterozygote mutants show overgrown synapses brought about with increased raw bouton count and decreased muscle surface area. Additionally, I assessed whether the neuronal or muscle loss was important for the overgrowth phenotype. Morphological analysis of *dparkin* mutant larval neuromuscular junction (NMJ) showed that either muscle or neuronal expression of wild-type *dparkin* is sufficient to reduce the overgrowth phenotype back down to wild-type control levels. This was achieved by either a decrease in raw bouton number alone or with an additional increase in muscle surface area with either (neuronal or muscle respectively) GAL4 driver induced expression of wild-type *dparkin* in a *dparkin* transheterozygote background. This suggests that unlike the crawling where only the neuronal expression of wild-type *dparkin* rescued the speed of *dparkin* mutants, the overgrowth phenotype is rescued by either the muscle or neuronal expression of wild-type *dparkin* and suggests it is sufficient to cause an overgrowth with either muscle or neuronal loss of *dparkin*. This is a non-cell autonomous effect where the tissue specific expression of wild-type *dparkin* (for instance in muscles) is
able to affect other tissues with the mutation (and reduce neuronal growth), as opposed to the tissue in which the wild-type \textit{dparkin} is only being expressed. Global knockdown of \textit{dparkin} showed approximately 50\% of the overgrowth observed in that of \textit{dparkin} transheterozygote mutant larval NMJs affecting both the raw bouton number and muscle surface area. This shows wild-type \textit{dparkin} expression regulates overgrowth through a cell-cell signalling mechanism between neurons and muscle cells.

Studies in \textit{D. melanogaster} studies have identified a number of signalling pathways between postsynaptic targets and presynaptic terminals. These are important in synapse formation, growth and plasticity and survival of the presynaptic neuron. Retrograde signals include Transforming growth factor beta (TGF-\(\beta\)) and reactive oxygen species (ROS). TGF-beta signalling is necessary for normal NMJ associated synaptic growth (Aberle et al., 2002, Marqués, 2005) while enhanced TGF-beta signalling is linked to presynaptic overgrowth the \textit{spinster} (spin) mutant, (Sweeney and Davis, 2002). Induction of autophagy has been shown to cause overgrowth (Shen and Ganetzky, 2009). \textit{spin} and other anti-oxidant compromised mutants are also shown to induce growth in response to the generation of ROS (Milton et al., 2011). Another mutant with an overgrowth phenotype is \textit{highwire} (hiw), where the hiw mutation leads to 200\% expansion of NMJ (DiAntonio et al., 2001). The \textit{highwire} gene encodes an \textit{E3 ubiquitin ligase} which that is expressed at the periactive zone (Wan et al., 2000). Hiw induced overgrowth is suppressed via mutations in \textit{wallenda} a MAP kinase kinase kinase or by mutations that reduce c-jun N-terminal kinase (\textit{JNK}) and \textit{fos} activity. \textit{JNK} or \textit{fos} are required for the \textit{hiw} mutant-induced overgrowth. Signalling by these molecules may account for the non-autonomous rescue that is seen when \textit{parkin} is expressed in the muscle.

There are other mutants in the literature that have altered bouton number but with no
effect on neurotransmission. One of these is another PD-related gene, hLRRK2, where the pathogenic mutation G2019S has NMJ overgrowth (Lee et al., 2010).

Other signalling pathways act in the opposite, anterograde manner. Davis demonstrated in his model that amount of growth factor regulated synaptic growth. It was also postulated in the paper, inhibitory growth and growth promoting signals exist, that balance the growth of synaptic terminals. The main conclusion from Davis paper was alteration to endosomal/lysosomal function, whether it may be pre- or post-synaptic, can cause misregulation of intercellular signalling systems.

This may be the case with dparkin mutant larvae as either neuronal or muscle expression of wild-type dparkin in a mutant background was sufficient to completely rescue the overgrowth.

Synaptic transmission is reduced in dparkin transheterozygote mutants

dparkin transheterozygote larvae show reduced synaptic transmission, even after allowing for the change in RMP. Additionally, dparkin transheterozygote mutants show reduced spontaneous single vesicular release. The mEJPs are smaller in dparkin transheterozygote mutants than in wild-type controls. The EJPs and mEJPs are mediated by glutamate receptors with reversal potentials estimated between 0 and 1.7 mV (Jan and Jan, 1976, Macleod and Zinsmaier, 2006, Macleod et al., 2006). The reduced size of EJP observed in dparkin mutants is likely to be due to reduced size of mEJPs. This leads us to conclude that there is reduced neurotransmitter that is actively recycled into the synaptic vesicles in an ATP-dependent manner. Alternatively, it may also be as a result of the release mechanism failing, as the pre-synaptic motor terminals may be (like the muscles) more depolarized.
dparkin expression partially rescues the synaptic signalling defect

At muscle 6/7, the global, neuronal or muscle expression of wild-type *dparkin* failed to rescue synaptic defects with wild-type *dparkin* expression using any of the above drivers in the *dparkin* transheterozygote mutants. However, at muscle 12/13, global or muscle expression of wild-type *dparkin* partially restored the synaptic transmission defect in *dparkin* null mutants. The global, neuronal or muscle expression of wild-type *dparkin* rescued synaptic defects with wild-type *dparkin* expression using any of the above drivers in the *dparkin* null mutants. Difficulties in collecting enough data due to the variability in food quality from tray to tray limited the sample size. The results may also be more difficult to interpret due to possible differences in genetic background. Nonetheless, overall, I cautiously conclude that *dparkin* global, neuronal and muscle rescue of EJP is likely to be effective with a larger population.

Sang and colleagues showed a decrease in neuronal activity observed from *parkin* mutant adult fly brains (as a result of expression of human mutant *parkin* using *Ddc-GAL4*) compared to their controls, as monitored by the measure of florescence intensity from genetically encoded calcium indicators (G-CaMP) (Sang et al., 2007, Wang et al., 2003). The expression of wild-type human *parkin* (*hparkin*) using the *Ddc-GAL4* driver showed no difference in the signal intensity compared to their wild-type controls, suggesting neuronal activity is not compromised with the overexpression of *hparkin* in aminergic cells in the fly (Sang et al., 2007). As with *dparkin* mutant larvae, another PD–related gene, *LRRK2*, has shown perturbed synaptic transmission in a *dLRRK in vivo* model where there is reduced neurotransmitter release in the *dLRRK* knockout (Lee et al., 2010).

dparkin mutant show depolarized RMP

RMP were more depolarized from the muscles 6/7 of both transheterozygote and the
null larvae and also this trend were as shown in another set of adjacent muscles/ 12/13. This suggests that all muscles are affected, rather than just the most frequently selected muscles. The resting membrane potential of D. melanogaster larval muscles changes with varied extracellular calcium concentrations in physiological studies (Jan and Jan, 1976, Jan et al., 1977, Mackler et al., 2002). These effects are similar between HL-3 and standard saline A (SSA) saline although there are fundamental differences between the two salines’ compositions (Krans et al., 2010). RMP in wild-type larvae in other studies have shown voltage data of < -55 mV (Macleod et al., 2006). Calcium-dependent depolarization was noted in D. melanogaster by Jan and Jan (1976) in their early studies. Elevated potassium in HL3 was shown to have similar effect as the hemolymph concentration of Mg²⁺ that is the same concentration as the HL3 formulae. We had omitted Mg²⁺ from HL3 throughout the course of all electrophysiological experiments as it has deleterious effect on stable membrane potential (Hoyle, 1953, Stewart et al., 1994). Additionally, HL3 contains 20 mM concentration of Mg²⁺, and it has been suggested that high Mg²⁺ would abolish neural activity in many crustaceans (Takeuchi and Takeuchi, 1963). Feng et al. (2004) recently adapted the HL3 with a reduced-Mg²⁺ version called HL3.1 (with a concentration of 4 mM Mg²⁺), which restores some attenuated electrophysiological phenomena in the larva (Feng et al., 2004). Here we note that the difference in RMP was largest at low external potassium concentrations. This suggests other ions (most likely Na⁺, Ca²⁺, Cl⁻) also make a contribution to the RMP.

It must also be noted the rare depolarized RMP phenotype accompanied by synaptic dysfunction reported in this parkin model may have been detected here and not in other parkin models as a result of differences in the electrophysiological approach. Firstly, it was important to report on spontaneous recording rather than stimulated EJPs. It must
be noted with electrophysiological recordings such as postsynaptic responses there is a chance there may be damage to the preparation, improper adjustment of the stimulating voltage, a result of high-frequency stimulating voltage or a mutant phenotype. All of which may cause one of the two axons being stimulated and thus cause a decrease in EJP amplitude. Secondly, the modified HL3 omitted magnesium chloride from the original recipe of HL3 solution (Stewart et al., 1994). This could have possibly affected the production of ATP (Ko et al., 1999) and so disrupted the RMP. Thirdly, a voltage clamp was not used to clamp the resting membrane potential to a set voltage. This means the residual plot had to be used. Working in high calcium saline with large EJP amplitudes helps to observe a clear distinction in amplitude reduction and failure of one of the axons to contribute to the EJP. In the case when one of the two is intermittently activated, the EJP amplitudes will fluctuate dependent on axons that have signaled. The failure of an action potential to spread throughout all the terminal branches of the axons onto the postsynaptic muscle also affects EJP amplitude. Since M6/7 and M12/13 are each innervated by two motoneurons this provides extra ambiguity. This could have been avoided by working with a muscle receiving input from only one motoneuron, for example muscle 5 (Hoang and Chiba, 2001). Such recordings would be more straightforward to interpret.

dparkin rescues the RMP phenotype

Electrophysiological data from muscle recordings showed the muscle expression of wild-type dparkin rescued the RMP in the transheterozygote background from muscle 6 and 7 recordings, whereas the global, neuronal or muscle expression only partially rescue the RMP defect in dparkin null mutants. In muscles 12 and 13 of dparkin null larvae the RMP was also more depolarized compared to wild-type controls. In these muscles, the wild-type expression of dparkin globally, neuronally or in muscles failed
to show any rescue. This could be a result of the reduced count of muscle recordings for the muscle 12 and 13 data set compared to the muscle 6 and 7 for the \textit{dparkin} null mutant larvae. The muscle recordings presented here from muscle 6 / 7 or 12 / 13 were from two complete data sets, each from one food batch to limit variability. The \textit{dparkin} transheterozygote mutant data from muscle 6 / 7 had overall fewer data points compared to \textit{dparkin} null mutant larvae but these were all undertaken in one day.

Metabolic Dysfunction in parkin larvae is key to RMP depolarization and synaptic dysfunction

Few \textit{D. melanogaster} mutants show a depolarized RMP, but one which does is \textit{nubian} (Wang et al., 2004). This is a mutation in phosphoglycerate kinase (\textit{PGK}). This enzyme is key in the terminal stage of glycolysis that leads to the production of ATP, one of the two ATP steps before oxidative phosphorylation. This glycolytic mutant shows severe depletion of ATP, leading to the failure to maintain a more negative RMP. \textit{dparkin} null mutant larvae have 30% less oxygen consumption compared to wild-type larvae with ATP levels that were 14% of controls (Vincent et al., 2012). These both suggest aerobic respiration and mitochondrial production of ATP have been compromised. Recently, adult \textit{dparkin} null mutant flies were reported to recover from their motor deficits after being fed with Vitamin K2. This compound targeted the respiratory chain and increased ATP generation (Vos et al., 2012). The depolarized RMP in \textit{dparkin} mutant larvae is also suggested to be a result of metabolic dysfunction (a depletion of ATP stores to facilitate the ATP dependent pumps). RMP are maintained by the selective permeability of ions (potassium, sodium and chloride) and by the sodium-potassium (\textit{Na}^+ / \textit{K}^+\text{-ATPase}) electrogenic pump that is ATP dependent.

The \textit{D. melanogaster} sodium pump only becomes functional as an α–β heterodimer (Lingrel and Kuntzweiler, 1994, Lingrel et al., 1994a, Lingrel et al., 1994b). The fly,
Na\(^+\) K\(^-\)-ATPase α subunit is encoded by a single gene (Lebovitz et al., 1989), and but two β subunit genes (Nervana 1 and 2) code for three different β isoforms, which are expressed in a tissue specific manner (Sun and Salvaterra, 1995). During fictive crawling (when the peristaltic rhythm is recorded from the isolated CNS) each burst of action potentials are followed a brief period of hyperpolarisation. This is essential for restoration of neural activity (Pulver and Griffith, 2010). During the hyperpolarisation, ions are transported via ATP-dependent pumps to restore ionic balance. If the RMP is compromised, pumping deficits arising from ATP depletion could result in a much slower restoration of ionic balance, and thus causing a reduction in CPG activity. This would slow the initiation of subsequent contraction.

Metabolic dysfunction has been observed in PD patients. Neuronal samples cannot be readily obtained from human patients. Therefore skin biopsies were used to obtain fibroblasts to determine the metabolic status of tissue with a loss of parkin. Fibroblasts, which are known to make skin, were obtained from patients with mutations in parkin. These show metabolic failure with reduced complex I mediated ATP production (Mortiboys et al., 2008), similar to the ATP depletion observed in parkin larvae (Vincent et al., 2012).

Locomotory deficits accompanied by synaptic dysfunction

dparkin mutant flies have previously focused on describing adult phenotypes, with a single study reporting no larval phenotypes observed in dparkin null mutant (Pesah et al., 2004). My thesis is the first to report larval phenotypes at the level of behavior, physiology and anatomy caused by mutations in this early-onset gene. The homozygous dparkin null mutants and the transheterozygote hypomorph mutants we raise on our standard food in our laboratory conditions often fail to survive beyond
pupal stage. However, in other laboratories they seem to emerge into adults and have an average life span of 28 - 50 days (Greene et al., 2003, Whitworth et al., 2005, Tain et al., 2009). This difference could arise from their diet, as our food contains 0.125 g/l manganese chloride: manganese is known to reduce the viability of parkin mammalian cell lines (Roth et al., 2012, Higashi et al., 2004) and is associated with the risk of developing Parkinson’s disease (Roth, 2014). Furthermore, low levels of other minerals may impact the survival of dparkin mutants since PARKIN interacts with Metal-Responsive Transcription Factor (MTF-1) (Saini et al., 2011).

Summary of key findings:

* dparkin mutant larvae have synaptic dysfunction, locomotory defect and overgrown synapses at the NMJ

*Expression of wild-type dparkin rescues synaptic potentials

* Expression of dparkin rescue muscle RMP

* dparkin mutant larvae have depolarized muscle RMP, as a global mutant thus suggesting the neurons too could be depolarized

* Synaptic overgrowth is rescued with either muscle or neuronal dparkin expression
Chapter 4: Investigating the role of oxidative stress and metabolic dysfunction in *dparkin* mutant larvae

4.1 Introduction

Chapter 3 established that *dparkin* mutant larvae show reduced locomotion, overgrown synapses, a reduction in synaptic transmission and depolarized resting membrane potentials. This was also reported by Vincent et al., (2012). Global overexpression of scavengers of reactive oxygen species (ROS), acting in either cytoplasmic or mitochondrial compartments, reverted the synaptic overgrowth normally seen in the *dparkin* null background (Vincent et al., 2012). Further, the transcriptional profile clearly shows the up-regulation of oxidative stress response elements, while mutations in these oxidative response elements enhance *dparkin* mutant phenotypes (Greene et al., 2005). All this supports the oxidative stress hypothesis of the *dparkin* phenotype.

Oxidative stress is also a key driver of synaptic overgrowth in other fly systems (Milton et al., 2011). This suggested that oxidative stress was a key component of the *dparkin* synaptic overgrowth phenotype.

However, ROS scavengers did not revert the reduced locomotion, synaptic or resting membrane potential (RMP) physiology in the *dparkin* null larvae. This is contradictory to other studies, in the case of adult flies, where eliminating oxidative stress rescued all *dparkin* mutant phenotypes (Umeda-Kameyama et al., 2007, Underwood et al., 2010, Whitworth et al., 2005).

These observations suggest we should explore the impact of oxidative stress in more detail. I therefore used the same (or related) transgenes as previously used in adults. These transgenes were for glutathione-S-transferase S1 (*GST* or *GST-S1*) and a mitochondrial enzyme thioredoxin reductase (Umeda-Kameyama et al., 2007, Whitworth et al., 2005). These systems are important in the brain where catalase
activity is very low. Both the thiol-reducing systems via thioredoxin or glutathione with glutathione peroxidase activity break down hydrogen peroxide to water and oxygen thus reducing oxidative damage.

Studies have shown Complex I activity is redox-dependent and thiol-regulated (Sriram et al., 1998, Annepu and Ravindranath, 2000). PD pathogenesis has shown to consistently be associated to reactive oxygen and nitrogen species generation (Bové et al., 2005, Li and Holbrook, 2003, Przedborski and Ischiropoulos, 2005) and this may be the reason, at least in part, why complex I is inhibited. Thus, depletion of glutathione (GSH), an antioxidant and redox modulator, may be one of the early events leading to the inhibition of complex I activity and loss of mitochondrial function (Chinta et al., 2006, Jha et al., 2000). This is relevant as dparkin larvae show reduced oxygen consumption suggesting mitochondrial abnormalities (Vincent et al., 2012).

Thioredoxin has been found in the submicromolar range to protect neuronal cell lines from toxin-induced oxidative stress, which normally would lead to apoptosis (Andoh et al., 2002). The reduced forms of thioredoxin suppressed hydroxyl radicals, and the inhibition of thioredoxin reductase abolished the protective effects (Andoh et al., 2002). Reduced thioredoxin not only binds to and inhibits ASK-1 (Saitoh et al., 1998), it also enhances DNA binding to transcription factors including nuclear factor-kB and AP1. Thioredoxin system has a variety of actions that are neuroprotective due to suppression of hydroxyl radical damage, lipid peroxidation, caspase activation, cytochrome c release and apoptosis (Andoh et al., 2002, Andoh et al., 2003, Svensson and Larsson, 2007). D. melanogaster do not have glutathione reductase, but have thioredoxin reductase in which is part of the thioredoxin system, and which causes the glutathione disulphide (GSSG) reduction reaction (Kanzok et al., 2001).
Glutathione-S-transferases are a set of enzymes that aid in the detoxification process as they promote the conjugation of glutathione to a variety of electrophilic substrates. Findings from Whitworth’s group suggested altered GST-S1 activity influenced dparkin mutant phenotypes: for example, increased GST-S1 activity rescued the dopaminergic neuronal loss seen in dparkin mutant adult brains. Additionally, a member of the GST family, Glutathione-S-transferase Omega 1 (GST-O1), rescues both degeneration of neuronal and muscle phenotypes of dparkin mutants including increased ATP production (Kim et al., 2012).

dparkin has also been suggested to negatively regulate c-jun-N-terminal kinase (JNK) signaling (Cha et al., 2005) and oxidative stress activates JNK/AP-1 signaling pathway, thereby promoting overgrowth in D. melanogaster oxidative stress induced mutant larvae (Milton et al., 2011). Vincent et al. (2012) proposed that the oxidative stress-induced overgrowth seen in dparkin mutants was a result of increased JNK/AP-1 signaling (Milton et al., 2011, Vincent et al., 2012). Therefore the relationship of JNK activation and oxidative stress in dparkin mutant larvae was investigated.

AMPK is activated in response to oxidative stress, hypoxia, high ATP consumption and low nutrient availability. This is regulated by elevated levels of adenosine monophosphate (AMP), adenosine diphosphate (ADP) or Ca^{2+} (Hardie, 2007, Hardie, 2011, Hardie et al., 2011). AMPK activation is regulated by high concentrations of ATP, therefore the system is responsive to rises in AMP: ATP ratio rather than AMP alone.

AMPK is a heterotrimeric complex that includes the following subunits: a catalytic alpha (α), regulatory gamma (δ) that bind AMP and a scaffolding beta (β) subunit. AMPK activity is increased upon phosphorylation of the Thr172 residue of the catalytic α-subunit by an upstream kinase, Ca^{2+} calmodulin kinase kinase (CaM KK) or liver
kinase B1 (LKB1) transforming growth factor beta activated kinase 1 (TGFβ1) (Shaw et al., 2004, Peng et al., 2010).

AMPK activation has been shown to increase mitochondrial biogenesis via the expression of peroxisome proliferator-activated receptor-γ co-activator (PGC)-1α (Jäger et al., 2007). AMPK has many other targets including autophagy initiator ATG1 and phosphofructokinase-2 (PFK-2), and results in activation of autophagy and glycolysis respectively. These targets are relevant to dparkin mutant larvae as they show energy perturbation and oxidative stress. AMPK activation targets include autophagy gene, ATG1 (Egan et al., 2011, Kim et al., 2011). dparkin is also involved in mitophagy (Narendra et al., 2008, Narendra et al., 2009).

As well as responding to oxidative stress, AMPK is a key sensor of cell autonomous energetic changes. This is important as there is an ATP deficit in dparkin mutants larvae (Vincent et al., 2012). I wish to investigate alternative modes of energy production via altering the expression of AMPK by expressing a constitutively active AMPK^{T184D}-α form. This AMPK^{T184D}-α construct is generated from a transgenic line, in which the Thr184 is replaced by an aspartate, which mimics the activating phosphorylation of this site by LKB1 (Lizcano et al., 2004). It has been shown to rescue LKB1 mutants from energetic stress (Mirouse et al., 2007).

The use of PD-toxin induced mouse models have shown AMPK function is increased and additionally this activity is inhibited with, the AMPK inhibitor, compound C leading to cell death (Choi et al., 2010). More recently in dparkin and dLRRK2 have been shown to interact with AMPK in adults both genetically and pharmacologically (Ng et al., 2012).
4.2 Aims

My aim in this chapter was to evaluate the role of oxidative stress on *dparkin* larvae. The experimental approach was to rescue *dparkin* larval phenotypes with transgenes known to play a role in oxidative stress in adult flies. The objectives were to test the effects of the transgenes on neuromuscular junction overgrowth, larval locomotion and resting membrane potential.
4.3 Results

Cytosolic Sod1 ROS scavenger rescues overgrowth

To investigate the possible mechanisms underlying the neuronal overgrowth phenotype induced by the global loss of dparkin as shown in chapter 1, I determined whether the global expression of antioxidants Superoxide Dismutase 1 (Sod1), Sod2 or Catalase (Cat) would lead to the prevention of the overgrowth phenotypes in dparkin \((p^{25}/p^{Z3678})\) mutant larvae. Sod1 is an antioxidant enzyme present in the cytosol, nucleus, peroxisomes and mitochondrial intermembrane space of eukaryotic cells. Sod2 is expressed in the mitochondrial membrane whereas Cat is expressed in the cytosol. Global expression of Superoxide Dismutase 1 (Sod1) in a dparkin \((p^{25}/p^{Z3678})\) transheterozygote mutant background shows 22 % reduction in overgrowth from normalized bouton counts \((p = 0.016)\), whereas Sod2 and Cat did not show an effect, when compared to dparkin \((p^{25}/p^{Z3678})\) mutant controls (Fig. 4.1A). Global expression of Sod1, Sod2 or Cat all failed to affect raw bouton number (Fig. 4.1B), whereas the muscle surface area was only increased 31% by Sod1 \((p = 0.001)\) but not by either the expression with Sod2 or Cat (Fig. 4.1C). As reported in chapter 3, there is overgrowth (60 %) in dparkin \((p^{25}/p^{Z3678})\) larval neuromuscular junctions \((p < 0.001, p < 0.001\) and \(p = 0.036, \text{ respectively}\) compared to wild-type \((CS/w)\) larvae (Fig. 4.1A). There are no differences between the GAL4/UAS control NMJ growth (normalized bouton count, raw bouton number or muscle surface area) compared to wild-type \((CS/w)\) larvae (Fig. 4.1).
Global expression in a mutant background

4.1A

Normalised bouton counts (% mean ± SE)

Wild-type

Mutant

GAL4 UAS Control

4.1B

Raw bouton count (mean ± SE)

Wild-type

Mutant

GAL4 UAS Control
4.1C

Muscle surface area (µm², mean ± SE)

- Wild-type
- Mutant
- Global expression in a mutant background

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Muscle Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS/w-</td>
<td>43</td>
</tr>
<tr>
<td>p25/p3678</td>
<td>22</td>
</tr>
<tr>
<td>Act5c> Cat;p25/p3678</td>
<td>14</td>
</tr>
<tr>
<td>Act5c> Sod1,p25/p3678</td>
<td>19</td>
</tr>
<tr>
<td>Act5c> Sod2,p25/p3678</td>
<td>16</td>
</tr>
<tr>
<td>Act5c> CS</td>
<td>18</td>
</tr>
<tr>
<td>Act5c> Cat</td>
<td>13</td>
</tr>
<tr>
<td>Act5c> Sod1</td>
<td>15</td>
</tr>
<tr>
<td>Act5c> Sod2</td>
<td>14</td>
</tr>
</tbody>
</table>

*** ns

GAL4 UAS Control
Figure 4.1 Cytosolic ROS scavenger, Sod1, rescues overgrowth in dparkin larvae.

A-C Global expression of Superoxide Dismutase 1 (Sod1) in a dparkin (p25/p23678) transheterozygote mutant background shows a 22% reduction in overgrowth from normalized bouton counts (A, p = 0.016), whereas Catalase (Cat) (A, p = 0.239) and Superoxide Dismutase 2 (Sod2) (A, p = 0.084) did not show an effect, when compared to mutant controls. Global expression of Sod1, Sod2 or Cat all failed to affect raw bouton number (B, p = 0.742, p = 0.538 and p = 0.970 respectively), whereas the muscle surface area was only by 31% increased by Sod1 (C, p = 0.001) and not by either Sod2 or Cat (C, p = 0.998 and p = 0.853 respectively). As reported in chapter 3, there is an overgrowth of 60% in dparkin (p25/p23678) larval neuromuscular junctions (A, B and C, p = 0.001) compared to wild-type (CS/w) larvae. There are no differences in NMJ growth (normalized bouton count, raw bouton number or muscle surface area) between the GAL4/UAS control (Act5c/CS, Act5c > Sod1, Act5c > Sod1 and Act5c > Cat) and wild-type (CS/w) larvae.
ROS scavengers fail to rescue RMP

To further investigate the involvement of oxidative stress as a mechanism involved in other mutant phenotypes, we globally expressed Sod1, Sod2 or Cat in a dparkin \((p^{25}/p^{23678})\) transheterozygote mutant background and measured the RMP and found no differences in RMP compared to dparkin \((p^{25}/p^{23678})\) larvae. dparkin \((p^{25}/p^{23678})\) larvae show 13% more positive (depolarized) RMP compared to wild-type \((CS/w)\) larvae \((p < 0.001)\). There are no differences between the any of the controls \((Act5c/CS, Act5c > Sod1, Act5c > Sod1 and Act5c > Cat)\) RMP compared to wild-type \((CS/w)\) larvae (Fig. 4.2).
Resting membrane potential (mV, mean ± SE)

Wild-type Mutant Global expression in a mutant background GAL4 UAS Control

CSiWr p25/p23678 Act5C> Cat;p25/p23678 Act5C> Sod1;p25/p23678 Act5C> Sod2;p25/p23678 Act5C> Cat Act5C> Sod1 Act5C> Sod2

45 46 35 44 30 25 18 38

*** ns ns ns ns

159
Figure 4.2 ROS scavengers fail to rescue RMP defect in *dparkin* larvae.

Global expression of ROS scavengers (*Sod1*, *Sod2* or *Cat*) in a *dparkin* (*p^25/p^{23678}* *) transheterozygote mutant background showed no difference in RMP (*p = 0.923*, *p = 0.123* and *p = 0.752* respectively) compared to mutant (*p^25/p^{23678}*) larvae. As previously reported in chapter 3, *dparkin* (*p^25/p^{23678}*) larvae show 13% more positive (depolarized) RMP compared to wild-type (*CS/w* -) larvae (*p < 0.001*). There are no differences between the any of the GAL4/UAS control (*Act5c/CS, Act5c > Sod1, Act5c > Sod1* and *Act5c > Cat*) RMP compared to wild-type (*CS/w* -) larvae (*p = 0.902*, *p = 0.913* *p = 0.319* and *p = 0.482*, respectively).
AMPK activation fail to rescue locomotory dysfunction

When ATP is consumed there is a rise in AMP levels. This change requires activation of ATP synthesis, and a key mediator of the response is AMPK. dparkin (p^{25}/p^{Z3678}) larvae show reduced ATP levels (Vincent et al., 2012). To determine whether AMPK activation mechanism is sufficient to revert the locomotory phenotype, we globally expressed constitutively active AMPK-\(a^{\text{T184D}}\) (AMPK) in a dparkin (p^{25}/p^{Z3678}) transheterozygote mutant background and found no differences in average velocity compared to dparkin (p^{25}/p^{Z3678}) larvae. As previously reported in chapter 3, dparkin (p^{25}/p^{Z3678}) larvae have reduced speed compared to wild-type control (CS/w) larvae that was not rescued by global expression of AMPK in the mutant background (Fig. 4.3).
Larval velocity (mm/s, mean ± SE)

- Wild-type: 76
- Mutant: 85
- Act5c>AMPK: 74
- Act5c>AMPK; p25/pZ3678: 54
- Act5c/CS: 47

*** Global expression in a mutant background
Figure 4.3 Global AMPK activation fail to rescue locomotory dysfunction in dparkin larvae.

Global expression of constitutively active $\text{AMPK-}\alpha^{T184D}$ (AMPK) in a dparkin (p^{25}/p^{Z3678}) transheterozygote mutant background shows no differences in average velocity compared to dparkin (p^{25}/p^{Z3678}) larvae ($p = 0.512$). dparkin (p^{25}/p^{Z3678}) larvae have 25% reduced speed compared to wild-type control (CS/w^-) larvae ($p < 0.001$) that was not rescued by global expression of AMPK in the mutant background ($p = 1.0$).
AMPK activation rescues overgrowth

To determine whether AMPK activation independent antioxidant mechanism is sufficient to revert the mutant overgrowth we used the global expression of constitutively active AMPK-αT184D (AMPK) in a dparkin (p25/pZ3678) transheterozygote mutant background shows a 32% reduction in overgrowth from normalized bouton counts compared to mutant controls (p < 0.001). As reported in chapter 3, there is an overgrowth at the dparkin (p25/pZ3678) larval NMJ (p > 0.001) compared to wild-type (CS/w) larvae. There are no differences between the GAL4 control NMJ normalized growth, compared to wild-type (CS/w) larvae (Fig. 4.4).
Normalised bouton count (% mean ± SE)

- Wild-type
- Mutant
- Global expression in a mutant background
- GAL4 UAS Control

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Normalised Bouton Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5/Nr</td>
<td>18</td>
</tr>
<tr>
<td>p25/pZ3678</td>
<td>14</td>
</tr>
<tr>
<td>Act5c>AMPK; p25/pZ3678</td>
<td>24</td>
</tr>
<tr>
<td>Act5c>AMPK</td>
<td>10</td>
</tr>
<tr>
<td>Act5c/C5</td>
<td>12</td>
</tr>
</tbody>
</table>
Global expression of constitutively active AMPK-αT184D (AMPK) in a $dparkin$ (p^{25}/p^{Z3678}) transheterozygote mutant background shows a 32% reduction in overgrowth from normalized bouton counts compared to mutant controls ($p < 0.001$). There is a 60% overgrowth in $dparkin$ (p^{25}/p^{Z3678}) larval neuromuscular junctions ($p > 0.001$) compared to wild-type (CS/w^-) larvae. There are no differences between the GAL4 controls ($Act5c > AMPK, Act5c/CS$) and wild-type (CS/w^-) larvae ($p = 1.0$).
AMPK activation rescues RMP defect

Global expression of *constitutively active AMPK-α*T184D (AMPK) in a dparkin (*p*^25/2678*) transheterozygote mutant background shows a 7% more negative RMP (*p* = 0.012) compared to the dparkin (*p*^25/23678*) larvae. The mean difference is 4mV. As previously reported in chapter 3, dparkin (*p*^25/23678*) larvae again show a more positive (depolarized) RMP compared to wild-type (CS/w) larvae (*p* < 0.001). There are no differences between the GAL4 or UAS controls (Act5c/CS and AMPK/CS) RMP or the rescue compared to wild-type (CS/w) larvae (*p* = 0.908 and *p* = 0.911 respectively). The GAL4 control also has a 30% more negative RMP compared to dparkin (*p*^25/23678*) larvae (*p* < 0.001). There is no difference in RMP between the UAS control and wild-type (CS/w) muscles (**Fig. 4.5**).
Res = ng mem

Global expression in a mutant background

GAL4 UAS Control

Wild-type Mutant

AMPK/CS Act5C/CS

AMPK/ p25/pZ3678

p25/pZ3678

CS/Wp

0 10 20 30 40 50 60 70 80

-80 -70 -60 -50 -40 -30 -20 -10 0

Resting membrane potential (mV, mean ± SE)
Figure 4.5 Global AMPK activation rescues RMP defect in dparkin larvae.

Global expression of constitutively active $\text{AMPK-}\alpha^{T184D} (\text{AMPK})$ in a parkin (p^{25}/p^{Z3678}) transheterozygote mutant background shows a 7% more negative RMP ($p = 0.012$) compared to the dparkin (p^{25}/p^{Z3678}) larvae. dparkin (p^{25}/p^{Z3678}) larvae show more positive (depolarized) RMP compared to wild-type (CS/w^-) larvae ($p < 0.001$). There are no differences between the UAS control ($\text{Act5c}/CS$ and AMPK/CS) RMP or the rescue compared to wild-type (CS/w^-) larvae ($p = 0.908$ and $p = 0.911$ respectively). The GAL4 control is different compared to dparkin (p^{25}/p^{Z3678}) larvae ($p < 0.001$).
GST, and not TRX-R2, expression rescues locomotory dysfunction

Global expression of GST expression in a dparkin (p^{25}/p^{Z3678}) transheterozygote mutant background shows a 28% increase in the average velocity (p = 0.001), whereas global TRX-R2 expression in the mutant background did not show any differences in velocity compared to dparkin (p^{25}/p^{Z3678}) larvae. As previously reported in chapter 3, dparkin (p^{25}/p^{Z3678}) larvae have reduced speed compared to wild-type control (CS/w−) larvae (p < 0.001). There are no differences between the GAL4/UAS control speeds compared to wild-type (CS/w−) larvae for Act5c > GST or Act5c > TRX-R2 (Fig 4.6).
Larval velocity (mm/s², mean ± SE)

- **Wild-type**
 - GAL4
 - UAS Control
- **Mutant**
 - p25/pZ3678
 - Act5c-GST
 - Act5c-TRX-R2
- **Global expression in a mutant background**
 - p25/pZ3678
 - Act5c-GST
 - Act5c-TRX-R2

Results:

- **Wild-type**
 - Control: 76
 - Mutant: 90
- **Mutant**
 - p25/pZ3678: 76
 - Act5c-GST: 24
 - Act5c-TRX-R2: 31
 - Act5c-TRX-R2: 35

Additional notes:

- ***: Significant difference
- **ns:** No significant difference

171
Figure 4.6 Global GST, and not TRX-R2, expression rescues locomotory dysfunction in dparkin larvae.

Global expression of GST expression in a dparkin (p25/p23678) transheterozygote mutant background shows a 28% increase in the average velocity, whereas global TRX-R2 expression in the mutant background did not show any differences in velocity compared to dparkin (p25/p23678) larvae (p = 0.001 and p = 0.329, respectively). dparkin (p25/p23678) larvae have a reduced speed compared to wild-type control (CS/w+) larvae (p < 0.001). There are no differences between the GAL4 UAS control (Act5c > GST or Act5c > TRX-R2) speeds compared to wild-type (CS/w+) larvae (p = 0.995 and p = 0.469 respectively).
GST or TRX-R2 expression rescues RMP defect in parkin larvae

Global expression of either GST or TRX-R2 in a dparkin (p25/p23678) transheterozygote mutant background shows a 20 % and 29% more negative RMP (p = 0.001 and p < 0.001 respectively) compared to mutant (p25/p23678) larvae. As previously reported in chapter 3, dparkin (p25/p23678) larvae show more positive (depolarized) RMP compared to wild-type (CS/w) larvae (p < 0.001). There are no differences between the GAL4/UAS control RMP, Act5c > GST or Act5c > TRX-R2 compared to wild-type (CS/w) larvae (Fig. 4.7).
Resting membrane potential (mV, mean ± SE)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Wild-type</th>
<th>Mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>C51 w/</td>
<td>34</td>
<td>24</td>
</tr>
<tr>
<td>p25/pZ3678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act5c GST/p25/pZ3678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act5c TRX-R2/p25/pZ3678</td>
<td>19</td>
<td>16</td>
</tr>
</tbody>
</table>

Global expression in a mutant background

GAL4 UAS Control

*** *** ***
Figure 4.7 Global GST or TRX-R2 expression rescues RMP defect in dparkin larvae.

Global expression of either GST or TRX-R2 in a dparkin (p25/pZ3678) transheterozygote mutant background shows a 20% and 29% more negative RMP (p = 0.001 and p < 0.001 respectively) compared to mutant (p25/pZ3678) larvae. As previously reported in chapter 3, dparkin (p25/pZ3678) larvae show more positive (depolarized) RMP compared to wild-type (CS/w) larvae (p < 0.001). There are no differences between the GAL4 UAS control (Act5c > GST or Act5c > TRX-R2) RMP compared to wild-type (CS/w) larvae (p = 0.191 and p = 0.396, respectively).
BSKDN, not JUNDN, expression rescues locomotory dysfunction in parkin larvae

Global expression of \textit{BSK}DN expression in a \textit{dparkin} (p25/pZ3678) transheterozygote mutant background shows a 20 % increase in the average velocity (p = 0.018), whereas global \textit{JUN}DN expression in the mutant background did not show any differences in velocity compared to \textit{dparkin} (p25/pZ3678) larvae (Fig. 4.8).
Larval velocity (mm/s², mean ± SE)

- Wild-type
- Mutant
- Global expression in a mutant background
- GAL4 UAS Control

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS+/w+</td>
<td>0.76</td>
<td>0.02</td>
</tr>
<tr>
<td>p25/pZ3678</td>
<td>0.85</td>
<td>0.03</td>
</tr>
<tr>
<td>Act5c> JUN-DN/p25/pZ3678</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>Act5c> Bsk-DN/p25/pZ3678</td>
<td>0.48</td>
<td>0.01</td>
</tr>
<tr>
<td>Act5c/Cs</td>
<td>0.59</td>
<td>0.02</td>
</tr>
<tr>
<td>Bsk-DN/Cs</td>
<td>0.15</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Global expression in a mutant background

- ***
- **
- ns
Figure 4.8 Global BSK^{DN}, not JUN^{DN}, expression rescues locomotory dysfunction in $dparkin$ larvae.

Global expression of BSK^{DN} expression in a $dparkin$ (p^{25}/p^{Z3678}) transheterozygote mutant background shows a 20% increase in the average velocity ($p = 0.018$), whereas global JUN^{DN} expression in the mutant background did not show any differences in velocity ($p = 0.472$) compared to $dparkin$ (p^{25}/p^{Z3678}) larvae. As previously reported in chapter 3, $parkin$ (p^{25}/p^{Z3678}) larvae have reduced speed compared to wild-type control (CS/w^-) larvae ($p < 0.001$).
JUN^{DN} expression rescues overgrowth

Global expression of JUN^{DN} in a dparkin (p^{25}/p^{Z3678}) transheterozygote mutant background shows a 54% reduction in overgrowth from normalized bouton counts compared to mutant controls ($p < 0.001$). As reported in chapter 3, there is an overgrowth in dparkin (p^{25}/p^{Z3678}) larval neuromuscular junctions ($p > 0.001$) compared to wild-type (CS/w^-) larvae. There are no differences between the GAL4 control or the JUN^{DN} rescue, NMJ normalized growth, compared to wild-type (CS/w^-) larvae (Fig. 4.9).
Normalised bouton count (% mean ± SE)

- **Wild-type**
 - C5/w: 29
 - p25/pZ378: 24
 - Act5c-JUN-DN/p25/pZ378: 28
 - Act5c/CS: 18

- **Mutant**
 - Global expression in a mutant background
 - GAL4 Control

- Statistical significance:
 - ns
 - ***
Figure 4.9 Global JUN^{DN} expression rescues overgrowth in $dparkin$ larvae.

Global expression of JUN^{DN} in a $dparkin$ (p^{25}/p^{Z3678}) transheterozygote mutant background shows a 54% reduction in overgrowth from normalized bouton counts compared to mutant controls ($p < 0.001$). As reported in chapter 3, there is an overgrowth in $dparkin$ (p^{25}/p^{Z3678}) larval neuromuscular junctions ($p > 0.001$) compared to wild-type (CS/w^-) larvae. There are no differences between the GAL4 control ($Act5c/CS$, $p = 0.896$) NMJ normalized growth, compared to wild-type (CS/w^-) larvae.
JUN^{DN} and BSK^{DN} expression rescues RMP defect

Global expression of or either JUN^{DN} or BSK^{DN} in a dparkin (p^{25}/p^{Z3678}) transheterozygote mutant background shows a (%) more negative RMP (p < 0.001 and p < 0.001 respectively) compared to mutant (p^{25}/p^{Z3678}) larvae. As previously reported in chapter 3, dparkin (p^{25}/p^{Z3678}) larvae show more positive (depolarized) RMP compared to wild-type (CS/\text{w}) larvae (p < 0.001). There are no differences between the GAL4 control RMP or either of the rescues (JUN^{DN} or BSK^{DN}) compared to wild-type (CS/\text{w}) larvae (Fig. 4.10).
Resting membrane potential (mV, mean ± SE)

- CS/w- 27
- p25/pZ3678 18
- Act5c> JNK-DN/p25/pZ3678 11
- Act5c> BSK-DN/p25/pZ3678 16
- Act5c/CS 6

Global expression in a mutant background
Figure 4.10 Global JUN^{DN} and BSK^{DN} expression rescues RMP defect in $dparkin$ larvae.

Global expression of or either JUN^{DN} or BSK^{DN} in a $dparkin$ (p^{25}/p^{Z3678}) transheterozygote mutant background shows a more negative RMP ($p < 0.001$ and $p < 0.001$ respectively) compared to mutant (p^{25}/p^{Z3678}) larvae. As previously reported in chapter 3, $dparkin$ (p^{25}/p^{Z3678}) larvae show more positive (depolarized) RMP compared to wild-type (CS/w) larvae ($p < 0.001$). There are no differences between the RMP of the wild-type (CS/w) larvae, the GAL4 control $(Act5c/CS, p = 0.413)$ and the rescues (JUN^{DN} or $BSK^{DN}, p = 0.701$ and $p = 0.629$ respectively).
4.4 Discussion

Globally expressing the ROS scavengers Sod1, Sod2 or Cat fails to rescue RMP. Ubiquitous expression of Sod1 partially rescues overgrowth, whereas expression of Sod2 or Cat fails to show a significant rescue. GST rescued both RMP and locomotion whereas TRX-R2 only rescued RMP. Inhibiting D. melanogaster JNK globally via BSKDN rescues RMP and locomotion. On the other hand, inhibiting JUN via JUNDN globally rescues only overgrowth and RMP but fails to rescue locomotion. Expressing the AMPK catalytically active subunit globally, rescues overgrowth and RMP but fails to rescue locomotion.

\textit{Sod1 expression rescued overgrowth but failed to rescue RMP in dparkin larvae.}

Of the ROS scavengers tested, only the expression of Sod1 rescued the synaptic overgrowth seen in the \textit{dparkin} knockout. The synaptic growth depends on both the number of boutons and the muscle surface area. The expression of Sod1 showed rescue of the overgrowth through the increase in muscle surface area, but not by changes in the raw bouton count. The differences in rescue between Sod1 and the other two ROS scavengers (Cat and Sod2) might be explained by differences in their location: SOD1 is predominantly cytoplasmic with some expression in the inner mitochondrial membrane while Sod2 is expressed in the mitochondrial matrix and Cat, located in the peroxysomes in the cytoplasm. Another, less likely explanation is the difference in function: both forms of Sod aid the break down of superoxide radicals to oxygen and hydrogen peroxide, while Cat accelerates the breakdown of hydrogen peroxide, into water and oxygen.

An increase in Sod levels alone might increase the hydrogen peroxide levels in the cell. This might lead to a problem if the physiological levels of Cat are insufficient to keep
up with the levels of hydrogen peroxide. Mitochondrial hydrogen peroxide levels seem
to exceed that of antioxidant defence. The right balance of antioxidants to break
hydrogen peroxide down to maintain physiological levels of reactive oxygen species
(ROS) are absent in dparkin larvae (Whitworth et al., 2005, Vincent et al., 2012). This
suggests there is increase sensitivity to mitochondrial insult with hydrogen peroxide
compared to the cytosolic insult in dparkin mutant. A dual expression of Sod and Cat
together on the other hand could generate better rescues of other phenotypes.
Expression of both Sod1 and Cat together has been shown to increase lifespan of D.
melanogaster (Orr and Sohal, 1994). However, another study did not find a significant
increase in lifespan in D. melanogaster (Sun et al., 2004). Globally expressing either
Cat, Sod1 or Sod2 was shown to rescue the synaptic overgrowth in a dparkin null
background (Vincent et al., 2012), but in my data from the transheterozygote
background, there was no change with locomotion and RMP in dparkin larvae.

**Thioredoxin reductase, TRX-R2, expression rescues RMP but fails to rescue
locomotion in dparkin larvae**

The electrophysiological readout, the RMP of muscle, was rescued in the dparkin larvae
with the global expression of TRX-R2. The Act5c-GAL4 transgene in a wild-type (CS)
background showed no significant difference in RMP compared to wild-type controls
(CS/w).

Adult flies expressing wild-type thioredoxin in a dparkin toxicity-induced model had
increased locomotor activity and no degeneration of dopaminergic neurons compared to
aged matched controls. Additionally, it was found that neuronal function and anatomy
were restored as a result of thioredoxin’s chaperone activity rather than its antioxidant
function (Umeda-Kameyama et al., 2007). The global expression of thioredoxin
reductase (TRX-R2) in dparkin larvae, failed to rescue the locomotion. This could be as
a result of different GAL4 transgenes used to drive expression (elav as opposed to the Act5c used here) and/or due to different mutant backgrounds. The tissues in which the transgene is expressed may have different degree of impact on larval locomotion (CNS v global).

Glutathione-S-transferase, GST, expression rescues both RMP and locomotion

Glutathione-S-transferases participate in the detoxification process and have been shown to prevent dopaminergic neuronal loss in dparkin mutants in a range of models of PD (Whitworth et al., 2005, Trinh et al., 2008, Kim et al., 2012). GST ameliorates viability, locomotory deficits and dopaminergic cell death in dparkin adults. The expression of GST in muscle partially rescues climbing defects, and the expression in dopaminergic neurons prevents the death of these neurons in dparkin adults (Whitworth et al., 2005). In dparkin larvae the global expression of GST rescues locomotion close to wild-type speed, whereas dparkin adults shows only partial rescue of the climbing defect. The differences in the level of behavioral rescue could arise from the different GAL4 drivers used. The adult study used a muscle specific driver: the reasoning being that the deficit seemed to be in the muscle, GST would be best expressed in adult flight muscle. However, some expression was seen in the adult head (Clayton et al., 1998). In our study, we used a global GAL4 driver that provided a complete rescue of the behavioral phenotype possibly due to both muscle and neuronal effects of GST expression. Future studies following this may test for neuronal expression of GST in dparkin larvae to dissect the importance for a more complete rescue of behavior.

The same effective rescue is seen in the RMP data. The RMP was also rescued with global expression of GST suggesting the importance of GST expression in dparkin larvae to ameliorate muscle phenotype close to wild-type RMP voltage. These results show neuronal and muscle phenotypes of dparkin larvae are rescued with varying
degrees. It would be interesting to observe how neuronal verses muscle expression of
GST impacts the rescue levels of dparkin larval phenotypes. The expression levels may be quantified by Western Blots of larval brain verses the muscle with the GST expression using the neuronal and global GAL4 drivers.

JUN-DN expression rescued overgrowth and RMP but failed to rescue locomotion whereas BSK-DN expression rescued RMP and locomotion.

Similar to the GST and TRX-R2, c-jun dominant negative (JUNDN) globally expressed rescued overgrowth and RMP, unlike Cat or either of the Sods. On the other hand, D. melanogaster JNK, basket dominant negative (BSKDN) rescues RMP and locomotion. JNK signaling has been shown to be up-regulated in dopaminergic neurons of dparkin mutants (Cha et al., 2005). dparkin has been shown to suppress JNK signaling by reducing BSK transcription (Hwang et al., 2010). Inhibiting BSKDN, globally rescues overgrowth, RMP and locomotion. On the other hand, inhibiting JUN-DN globally rescues only overgrowth and RMP but fails to rescue locomotion. dparkin has been shown to be a repressor of JNK signalling via BSK and our dparkin loss of function mutants show rescue of oxidative stress, neurophysiological and behavioural phenotypes with inhibition of basket function. This suggests JNK signalling is activated in dparkin larvae, like in adult dopaminergic neurons in dparkin flies (Cha et al., 2005).

It is likely that dparkin has a role in inhibiting BSK and thus inhibiting downstream phosphorylation targets such as the transcription factor c-jun, GST and TRX-R2, are detoxification genes also shown to be involved in oxidative stress mediated signaling via inhibition of JNK or ASK-1 respectively. GST or BSKDN when globally expressed rescued both locomotion, unlike Cat or either of the Sods or AMPK. Data suggests that inhibiting JNK activity (BSKDN) may likely attenuate JNK-associated apoptosis-induced degeneration in dparkin mutants.
AMPK expression rescues overgrowth and RMP but fails to rescue locomotion in dparkin larvae

Genetic activation of AMPK by expressing constitutively active AMPK in dopaminergic neurons and in muscles of dparkin flies rescued abnormal upright wing posture, climbing and mitochondrial pathology seen in adults (Ng et al., 2012). Unlike in the adults, global expression of AMPK in dparkin larvae fails to rescue the locomotion phenotype. Similar to the rescue of mitochondrial phenotype in adults, in dparkin larvae upregulating AMPK rescues the muscle RMP phenotype by restoring a more negative voltage (nearly to the wild-type RMP level). This suggests there is an increase in the availability of ATP and so a reduction in energetic stress. Additionally, synaptic overgrowth was also rescued in dparkin larvae by increased AMPK activity, possibly through its action on the suppression of oxidative stress or on autophagy. The overgrowth rescues could be explained as a result of mitophagy induction, as AMPK is known to phosphorylate ATG1 (Hardie, 2011), leading to activation of the processes that remove damaged mitochondria from the cell. This alleviates the oxidative stress burden caused from damaged mitochondria.

Finally, it should be noted that AMPK has been found to interact with both dparkin- and dLRRK2-related models of Parkinsonism, thus implicating these three genes in a common pathway in PD pathogenesis (Ng et al., 2012).

Summary of key findings:

* The neurophysiological and locomotory defects results from the metabolic dysfunction rather than oxidative stress in dparkin larvae.

* The AMPK-related regulatory effects of metabolic homeostasis are important for restoring muscle-associated deficits (opposed to neuronal) in dparkin larvae.
* Oxidative stress is a downstream consequence of metabolic dysfunction.

* Oxidative stress-induced signaling plays a role in dparkin larval phenotypes. Targeting JNK signaling components or JNK-interacting (detoxification) enzymes alleviate both neuronal and muscle-related dparkin larval phenotype.
Chapter 5: Pharmacological manipulation of dopaminergic signalling and AMPK activity

5.1 Introduction

In chapter 3, I demonstrated that the dparkin larvae showed reduced locomotion, defects in neural signalling and overgrowth. This raised the question of whether these phenotypes could be rescued pharmacologically.

5.1.1 Role of dopamine

Dopamine is a biogenic amine. In D. melanogaster, dopamine plays a role in insect neural networks controlling locomotor activity and stereotypical behaviors (Yellman et al., 1997, Friggi-Grelin et al., 2003, Lima and Miesenböck, 2005). As noted earlier in the Introduction (Chapter 1) the main therapy for PD patients is L-DOPA. Administering L-DOPA to adult dparkin flies resulted in partial restoration of impaired locomotion suggesting reduced dopamine levels in their brain is partially responsible for their locomotory dysfunction (Cha et al., 2005). To address whether the crawling defect is a result of reduced dopamine signaling, L-DOPA, and a control D-DOPA, was used to replace lost dopamine signaling in the brain to potentially rescue the crawling defects observed in our dparkin mutant larvae.

5.2 Role of AMPK in the manipulation of ATP synthesis

As described in chapter 3 parkin larvae show depolarized resting membrane potential (RMP), defects in synaptic transmission and reduced crawling. This suggested a metabolic deficit. Since the RMP is highly dependent on ATP production due to the requirements of the sodium potassium-ATPase (Na⁺/K⁺-ATPase) to maintain the electrochemical gradients of Na⁺ and K⁺ ions that are necessary for normal resting potentials and ion flow across the membrane (Attwell and Laughlin, 2001, Niven and Laughlin, 2008, Howarth et al., 2012), the metabolism of the p^{25}/p^{25} larvae was
examined. These had reduced oxygen consumption, higher sensitivity to metabolic poisons, low ATP levels and increased lactate (Vincent et al., 2012). This suggested a switch from aerobic respiration to glycolysis to keep up with the ATP demand (Vincent et al., 2012). Additionally, dparkin larvae exhibit oxidative stress induced overgrowth possibly as a result of increased energy demands (as previously described in chapter 3 and Vincent et al., (2012)).

AMP-activated protein kinase (AMPK) is a metabolic sensor of intracellular energy metabolism, acting through a combination of homeostatic mechanisms including autophagy and protein degradation at the cellular, organ and whole body level (Steinberg and Kemp, 2009). The background to this enzyme has been introduced in Chapter 4.

5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) is a pharmacological activator of 5'-AMP-activated protein kinase (AMPK). In the cell, AICAR is metabolized to AICAR monophosphate (ZMP) (Sabina et al., 1985), which mimics the effects of AMP on AMPK. This causes its activation while the cellular levels of AMP, ADP and ATP remain unaffected (Corton et al., 1995, Hardie et al., 2003).

A characteristic feature in Type 2 diabetic patients is their diminished activity of 5'-AMP-activated protein kinase (AMPK) compared to healthy individuals. Metformin (1,1-dimethylbiguanide), from the family of biguanides, is a potent antihyperglycemic agent commonly used to treat type-2 diabetes (T2D) to at least to 120 million people worldwide (Adler et al., 2009, Nathan et al., 2009). Despite the introduction of metformin clinically in the 1950s the exact mechanism of action has not been fully uncovered. Clinical trials undertaken in recent years have shown extensive benefits of metformin beyond the treatment of T2D, and have highlighted therapeutic value in other
conductions including diabetic nephropathy, cardiovascular diseases, polycystic ovarian syndrome and cancer. This drug acutely decreases hepatic glucose production via mild and transient inhibition of the respiratory chain component, complex I. As a result of decrease in hepatic energy levels, this causes the activation of AMPK (Zhou et al., 2001).

Another way to affect AMPK is by using a polyphenol, e.g. resveratrol. Dietary intake of polyphenols is thought to be sufficient to achieve nutritional benefits. At this level, they may activate one or more pathways (Schroeter et al., 2007, Vauzour et al., 2007, Schroeter et al., 2001, Mandel et al., 2008). In neurons, activation of hormetic pathways leads to the synthesis of cytoprotective proteins including neurotrophic factors, protein chaperone, antioxidant and Phase II enzymes and apoptotic proteins (Mattson, 2006, Mattson and Magnus, 2006, Calabrese, 2008). Polyphenols are characterized by their multiple hydroxyl groups on aromatic rings. They are divided into two groups: flavonoid and non-flavonoid, which are determined by the number of phenol rings and the ways in which the rings interact. Resveratrol possesses a 1,2-diarylethenes structure based on the \(\text{C}_6-\text{C}_2-\text{C}_6 \) backbone and classed as the main stilbene in the non-flavanoid group (Vauzour, 2012). This polyphenolic compound is a naturally occurring phytochemical present in over 70 plant species including grapes, berries and peanuts (Das and Maulik, 2006).

Resveratrol (3, 4, 5-trihydroxystilbene), rich in red wine, has been suggested in a variety of studies to show positive effects on health including in cancer, aging stress, cardiovascular and in neurological diseases (Howitz et al., 2003, Baur and Sinclair, 2006, Valenzano and Cellerino, 2006, Goswami and Das, 2009).
Resveratrol affects multiple proteins and pathways (Baur et al., 2006, Baur and Sinclair, 2006, Fröjdö et al., 2008, Pacholec et al., 2010, Park et al., 2012). In the nervous system a protective pathway involving the transcription factor NF-E2-related factor-2 (Nrf2) that has been known to be activated. During basal conditions Nrf2 interacts with a cytosolic repressor protein Keap1 (Kelch ECH associating protein) and prevents Nrf2-mediated gene expression. In oxidative stress conditions, Nrf2 is released from Keap1 and then it translocates to the nucleus (Itoh et al., 1999a, Itoh et al., 1999b). Nrf2 is involved in the upregulation of genes implicated in the regulation of the cellular redox status and the protection of the cell from oxidative insult, when it binds to the antioxidant-responsive element (ARE) and it activates ARE-dependent transcription of phase II and antioxidant defense enzymes, for example glutathione-S-transferase (GST), glutathione peroxidase (GPx), and heme oxygenase-1 (HO-1) (Nguyen et al., 2003). Resveratrol was observed to protect H$_2$O$_2$-mediated oxidative stress in vitro (Chen et al., 2005) and to attenuate cerebral ischemic injury in rat (Ren et al., 2011) via the activation of Nrf2 and the upregulation of HO-1.

The mechanism by which resveratrol acts is still controversial: Park et al. (2012) have recently shown that SIRT1 is indeed activated indirectly by down stream signalling cascade involving cyclic AMP, Epac1 (a cAMP effector protein) and AMPK by resveratrol in a response to phosphodisesterase enzyme inhibition, its direct target (Park et al., 2012).

SIRT1 has many cellular substrates such as the tumor suppressor p53, the transcription factor NF-κB, the forkhead box class O (FoxO) family of transcription factors, the peroxisome proliferator-activated receptor (PPAR)-γ, the PPAR-γ coactivator 1α (PGC-1α), and endothelial nitric oxide synthase (eNOS) (Michan and Sinclair, 2007).
Using pharmacological activation of AMPK directly and indirectly by using AICAR, Metformin or Resveratrol was fed to dparkin mutants, as an aim to rescue their metabolic deficits (including ATP deficiency and increase in compensatory anaerobic metabolism, glycolysis) (Vincent et al., 2012) arising from mitochondrial abnormalities in dparkin mutant flies. The RMP defects in dparkin mutants are suggested to be associated with metabolic deficits in these mutants (Vincent et al., 2012), which are similar to the ATP deficient RMP defects described in an glycolytic mutant nubian (Wang et al., 2004).

5.2 Aims

The aim of this chapter is to address whether the crawling, RMP and synaptic overgrowth phenotypes observed in dparkin mutant larvae can be relieved pharmacologically. Dopaminergics (L-DOPA and D-DOPA) will be used to observe whether the effects the dopamine induced loss of signaling is the cause of dparkin larval bradykinesia-like phenotype.

Secondly, to observe the impact on locomotion, RMP and neuronal overgrowth and other phenotypes in dparkin larvae with an increase in AMPK activity, I will use pharmacological agents that target AMPK directly (AICAR) or indirectly (Resveratrol and Metformin).
5.3 Results

Dopaminergics fail to rescue crawling defect

To address whether the crawling defect described in chapter 3 in dparkin mutants were a result of reduced dopamine signaling, I fed the larvae with either L- or D-DOPA with a final concentration of 3 µM in food. D-DOPA did not rescue crawling defect in dparkin mutant larvae (p25/pZ3678) larvae. D-DOPA increases by 32% the crawling speed of wild-type (CS/w-) larvae (A, p = 0.004). (As described before, chapter 3), dparkin (p25/pZ3678) larvae crawl with a reduced speed compared to wild-type (CS/w-) larvae (A, p = 0.009) (Fig 5.1A). 3 µM L-DOPA has no effect on the crawling velocity of either wild-type larvae (CS/w-) or the parkin larvae (p25/pZ3678) (Fig 5.1B).
Figure 5.1 Dopaminergics fail to rescue locomotory dysfunction in *dparkin* larvae.

A D-DOPA (3 µM) does not affect the crawling speed of *dparkin* (*p*²⁵/p⁻³⁶⁷⁸) larvae (*p* = 0.564). D-DOPA increases the crawling speed of wild-type (*CS/w*) larvae (*p* = 0.004). (As described before, chapter 3), *dparkin* (*p*²⁵/p⁻³⁶⁷⁸) larvae crawl with a reduced speed compared to wild-type (*CS/w*) larvae (*p* = 0.009). **B** L-DOPA has no effect on the crawling velocity of either wild-type larvae (*CS/w′, p* = 1) or the *dparkin* larvae (*p*²⁵/p⁻³⁶⁷⁸, *p* = 0.272).
Dopaminergics fail to rescue overgrowth

To test whether dopamine causes further oxidative stress induced by dopamine neuronal overgrowth, dopaminergics were dissolved in the instant food (final concentration 3µM) throughout the larval stage. D-DOPA in instant food did not affect *dparkin* overgrowth compared to their mutant controls (*p*25/*p*Z3678). L-DOPA treatment did not affect *dparkin* overgrowth compared to mutant controls (*p*25/*p*Z3678) (Fig 5.2A-F).
5.2A

Nominalised bouton counts (% ± mean SE)

D-DOPA

p25/p23678 10 ns p25/p23678 3μM

5.2B

Raw bouton count (mean ± SE)

D-DOPA

p25/p23678 10 ns p25/p23678 3μM
Muscle surface area (μm², mean ± SE)

<table>
<thead>
<tr>
<th>DBDOPA</th>
<th>p25/pZ3678</th>
<th>p25/pZ3678</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

ns
5.2D

Normalized bouton counts (% mean ± SE)

L-DOPA

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>SE</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>p25/pZ3678</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>p25/pZ3678 3μM</td>
<td>100</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

5.2E

Raw bouton counts (mean ± SE)

L-DOPA

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>SE</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>p25/pZ3678</td>
<td>60</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>p25/pZ3678 3μM</td>
<td>60</td>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

ns
Muscle surface area (μm², mean ± SE)

L-DOPA

0 10 20 30 40 50 60 70 80 90 100

p25/p2578

p25/p2578 3μM

ns

10 16

5.2F
Figure 5. 2 A-F Dopaminergics fail to rescue overgrowth in dparkin larvae.

A-C D-DOPA (3 µM) does not affect the normalized bouton counts of *dparkin* (*p*¹⁵⁵/*p*₂³⁶⁷⁸) larvae raised on instant food (**A**, *p* = 0.107) or the raw bouton number or muscle surface area (µm²) compared to their mutant controls (**B**, *p* = 0.062 and **C**, *p* = 1) respectively. **D-F** L-DOPA (3 µM) also does not affect the normalized bouton counts of *dparkin* (*p*¹⁵⁵/*p*₂³⁶⁷⁸) larvae raised on instant food (**D**, *p* = 0.676). There was also no difference in raw bouton number or muscle surface area compared to their mutant controls (**E**, *p* = 0.433 and **F**, *p* = 0.989, respectively).
AICAR, an AMPK activating drug, fails to rescue crawling

dparkin (p25/pZ3678) larvae raised on instant food mixed with 2.5 µM to 50 µM AICAR at different concentrations have the similar average crawling speed as parkin (p25/pZ3678) larvae with no AICAR (with the vehicle, 50 µM PBS, added to the instant food). Furthermore, the AICAR concentration does not affect the velocity of wild-type (CS/w-) larvae. As shown in chapter 3, dparkin (p25/pZ3678) larvae crawl slowly on average compared to wild-type (CS/w-) larvae (p < 0.001). Wild-type (CS/w-) larvae crawl 35% faster than dparkin (p25/pZ3678) larvae at each AICAR concentration tested (P < 0.001) (Fig 5.3).
Larval velocity (mm/s², mean ± SE)
Figure 5.3 The AMPK activating drug AICAR fails to rescue locomotory dysfunction in dparkin larvae.

dparkin (p25/p23678) larvae raised on instant food mixed with AICAR (2.5, 5, 10, 25 or 50 µM dissolved in PBS) have the same average crawling speed as dparkin (p25/p23678) larvae with no AICAR (with only 50 µM PBS), (p = 1). Again the AICAR concentration does not affect the velocity of wild-type (CS/w) larvae, (p = 1). As shown in chapter 3, dparkin (p25/p23678) larvae crawl slowly on average compared to wild-type (CS/w) larvae (p < 0.001). Wild-type (CS/w) larvae crawl faster than parkin (p25/p23678) larvae at each AICAR concentration tested (p < 0.001).
AICAR, the AMPK-activating drug, fails to rescue synaptic overgrowth

dparkin (p^{35}/p^{23678}) larvae raised on instant food with a range of concentrations of AICAR (2.5, 10 or 50 µM, dissolved in PBS) had the same synaptic overgrowth as the dparkin larvae raised on the vehicle control (Fig 5.4).
5.4A

Normalized bouton counts (% mean ± SE)

AICAR

5.4B

Raw bouton count (mean ± SE)

AICAR
Muscle surface area (μm², mean ± SE) in response to AICAR treatment at different concentrations. The treatments include p25/p3678 and p25/p3678 with varying AICAR concentrations (2.5μM, 10μM, and 50μM). The results indicate no significant difference (ns) among the treatments.
Figure 5.4 AMPK-activating AICAR, fails to rescue synaptic overgrowth in \textit{dparkin} larvae.

\textbf{A} There is no difference in normalised bouton count in \textit{dparkin} (p^{25}/p^{23678}) larvae raised on instant food with a range of concentrations of AICAR (2.5, 10 or 50 µM, dissolved in PBS) compared with \textit{dparkin} controls without AICAR (with only 50 µM PBS), ($p = 0.669$, $p = 0.995$ and $p = 0.952$ respectively). \textbf{B-C} \textit{dparkin} (p^{25}/p^{23678}) larvae raised on AICAR showed no difference in raw bouton number ($p = 0.995$, $p = 0.823$ and $p = 0.348$ respectively) or muscle surface area ($p = 0.319$, $p = 0.968$ and $p = 0.996$ respectively), across a range of concentrations compared to \textit{dparkin} controls without AICAR.
Metformin fails to rescue crawling

Metformin used at a final concentration of 3 µM or 6 µM does not affect the speed at which \(dparkin (p^{25}/p^{23678}) \) larvae crawl, nor does it affect the speed of wild-type larvae (\(CS/w^- \)). As previously reported in chapter 3, \(dparkin (p^{25}/p^{23678}) \) larvae crawl 20% more slowly than wild-type (\(CS/w^- \)) larvae (\(p = 0.006 \)) (Fig 5.5).
Larval velocity (mm/s, mean ± SE)

Metformin

- CS/w-
- CSW-6μM
- p25/p2678
- p25/p2678 3μM
- p25/p2678 6μM

22 25 37 26 23
Figure 5.5 Metformin fails to rescue locomotory dysfunction in *dparkin* larvae.

Metformin (6 μM or 3 μM) does not affect the speed at which *parkin* (*p*25/*p*Z3678) larvae crawl (*p* = 1.0 or *p* = 0.987, respectively), nor does it affect the speed of wild-type larvae (*CS/w*′, 6 μM, *p* = 0.798). As previously reported in chapter 3, *dparkin* (*p*25/*p*Z3678) larvae crawl more slowly than wild-type (*CS/w*′) larvae (*p* = 0.006). *dparkin* (*p*25/*p*Z3678) larvae raised on instant food mixed with metformin (3 μM or 6 μM) results in no overall change in velocity compared to mutant larvae without the drug (with only 6 μM water), (*p* = 1.0). The wild-type larvae raised on instant food mixed with 6 μM metformin (dissolved in water) has no effect on overall crawling speed compared with wild-type (*CS/w*′) controls without metformin (with only 6 μM water), (*p* = 1.0).
Metformin fails to rescue depolarized RMP defect

Metformin does not affect the RMP of *dparkin* larvae raised on instant food mixed with 3 \(\mu \text{M} \) of metformin \((p = 0.969)\). *dparkin* \((p^{25}/p^{Z3678})\) larvae show more positive (depolarized) RMP compared to wild-type \((CS/w)\) larvae \((p < 0.001)\), as previously described in chapter 3 (Fig 5.6).
Resting membrane potential (mV, mean ± SE)

- CS/w-
- p25/pZ3678
- p25/pZ3678 3μM

Metformin

NS

Figure 5.6 Metformin fails to rescue depolarized RMP defect in *d parkin* larvae.

Metformin does not affect the RMP of *d parkin* larvae raised on instant food mixed with 3 µM of metformin (*p* = 0.969). *d parkin* (*p^{25}$/p^{23678}$) larvae show 29% more positive (depolarized) RMP compared to wild-type (CS/w*) larvae (*p* < 0.001), as previously described in Chapter 3.
Resveratrol fails to rescue locomotory dysfunction

Resveratrol does not affect the mean crawling speed of either wild-type (CS/w) or dparkin \((p^{25}/p^{23678})\) larvae. As previously reported in chapter 3, dparkin \((p^{25}/p^{23678})\) larvae crawl with a reduced speed compared to wild-type (CS/w) larvae \((p < 0.001)\) (Fig 5.7).
Larval velocity (mm/s^2, mean ± SE)

- CS/w-ctl
- CS/w-200μM
- p25/p3678-ctl
- p25/p3678 200μM

Resveratrol

- ns
- ***
- ns
Figure 5.7 Resveratrol fails to rescue locomotory dysfunction in dparkin larvae.

Resveratrol (200 μM) does not affect the mean crawling speed of either wild-type (CS/w) or dparkin (p^{25}/p^{Z3678}) larvae ($p = 0.923$ and $p = 0.819$). As previously reported in chapter 3, dparkin (p^{25}/p^{Z3678}) larvae crawl with a reduced speed compared to wild-type (CS/w) larvae ($p < 0.001$). All data are from flies raised on instant food containing 200 μM ethanol.
Resveratrol fails to rescue synaptic overgrowth in parkin larvae.

dparkin (p25/pZ3678) larvae raised on instant food with Resveratrol (200 µM dissolved in ethanol) did not rescue dparkin (p25/pZ3678) overgrowth (Fig 5.8). There is no significant difference between the wild-type raised in 200 µM Resveratrol compared to their wild-type control raised in vehicle. The vehicle controls, dparkin (p25/pZ3678) and wild-type larvae, show a similar increase in synaptic growth (p = 0.023) as the larvae raised on solely instant food (Chapter 3).
5.8A

![Bar chart showing normalized bouton count (% mean ± SE) for different conditions.](chart5.8A)

Resveratrol

5.8B

![Bar chart showing raw bouton count (mean ± SE) for different conditions.](chart5.8B)

Resveratrol

ns%
Muscle surface area (μm², mean ± SE)

- C57/6 ctrl
- C57/6 200μm
- p25/p23978 ctrl
- p25/p23978 200μm

Resveratrol

Significance levels: ns, ***
Figure 5.8 Resveratrol fails to rescue synaptic overgrowth in *dparkin* larvae.

A There is no difference in normalised bouton count in *dparkin* (*p*^{25}/*p*^{Z3678}) larvae raised on instant food with Resveratrol (200 µM dissolved in ethanol) compared with *dparkin* (*p*^{25}/*p*^{Z3678}) controls without Resveratrol (only with 200 µM ethanol), (*p* = 0.061). There is no significant difference between the wild-type raised in 200µM Resveratrol compared to their wild-type control raised in only 200 µM ethanol (*p* = 0.890). **B-C** *dparkin* (*p*^{25}/*p*^{Z3678}) larvae raised on Resveratrol showed no difference in raw bouton number (*p* = 0.710) or muscle surface area (*p* = 0.125), compared to *dparkin* (*p*^{25}/*p*^{Z3678}) controls without Resveratrol. *dparkin* (*p*^{25}/*p*^{Z3678}) control larvae (with only ethanol) have overgrown synapses when normalised and compared to wild-type control (with only ethanol) larvae (*p* = 0.023).
Resveratrol fails to rescue depolarized RMP defect

Resveratrol does not affect the RMP of \textit{dparkin} larvae. \textit{dparkin} (\textit{p}^{25}/\textit{p}^{23678}) larvae show 36% more positive (depolarized) RMP compared to wild-type (\textit{CS/w}) larvae (\(p < 0.001\)), as previously described in chapter 3. The wild-type (\textit{CS/w}) larvae raised in 200 \(\mu\text{M}\) Resveratrol (dissolved in ethanol) were 10% depolarized compared to wild-type (\textit{CS/w}) control (ethanol vehicle only) larvae (\(p = 0.003\)) (\textbf{Fig 5.9}).
Resveratrol

Resting membrane potential (mV, mean ± SE)

CS/w-ctl CS/w-200μM p25/pZ3678 ctl p25/pZ3678 200μM

** *** *** ns

Res:ng$membrane$poten:al$(mV,$mean$±$SE)$
Figure 5.9 Resveratrol fails to rescue depolarized RMP defect in *dparkin* larvae.

The RMP of *dparkin* larvae raised on instant food mixed with 200 µM of Resveratrol is the same as that of larvae raised on instant food alone (*p* = 0.338). *dparkin* (*p*25/*p*Z3678) larvae show more positive (depolarized) RMP compared to wild-type (*CS/w−*) larvae (*p* < 0.001), as previously described in chapter 3. The wild-type (*CS/w−*) larvae raised in 200µM Resveratrol (dissolved in ethanol) were more depolarized compared to wild-type (*CS/w−*) control (in 200 µM ethanol only) larvae (*p* = 0.003).
5.4 Discussion

The main findings of this chapter can be summarized as follows: both L-DOPA and the inactive stereoisomer control, D-DOPA, failed to rescue *dparkin* locomotory defect or the overgrowth. AICAR failed to rescue locomotory defects or the overgrowth in *dparkin* larvae. Metformin had no impact on crawling or RMP of *dparkin* larvae. Resveratrol failed to rescue locomotory or the overgrowth or the RMP defects in *dparkin* larvae.

Dopaminergics failed to rescue crawling or the overgrowth

Locomotor activity in both vertebrates and invertebrates relies on signaling from the brain dopaminergic system (Beninger, 1983, Giros et al., 1996, Yellman et al., 1997, Riemensperger et al., 2011). Studies have reported behavioral impairment that is accompanied by a gradual loss of dopaminergic neurons or tyrosine hydroxylase (*TH*) immunoreactivity in selective cell clusters of the brain (Feany and Bender, 2000, Auluck et al., 2005, Trinh et al., 2008). These studies highlight how brain dopamine plays an important role in the locomotor control in *D. melanogaster*. However, dopaminergics failed to rescue *dparkin* induced crawling or overgrowth defects in the larvae. L-DOPA is a substrate of the terminal step of dopamine synthesis. D-DOPA is an inactive stereoisomer (Cha et al., 2005). In adult flies, the *dparkin* induced locomotor defect was partially rescued by 1mM L-DOPA administration for a period of 10 days after emergence (Cha et al., 2005). This was a concentration approximately 300 times the one I used, and the duration of L-DOPA application was much longer. There are other reasons for the lack of effect seen by either L-DOPA or D-DOPA. The 3 μM final concentration of the drug made in instant food may have been reduced before reaching the larvae. There are two reasons for this: firstly, the breakdown of these drugs may...
start in the food (e.g. by yeast or light). Secondly, L-DOPA may be metabolized in the gut of the larvae and may not reach the neural tissue. Gut metabolism of L-DOPA is extensive in the human (Granerus et al., 1973) and so the inhibitor of peripheral metabolism, Carbidopa, is commonly administered along with L-DOPA (e.g. 1:10 Carbidopa-Levodopa). Additionally, the intake of food by larvae can also vary and may fail to reach the optimum concentration in the larval neuronal tissues. Experiments cited in the literature use adult flies, which feed less than larvae (Cha et al., 2005).

My experiments are in contrast to those with the dominant mutations (parkinQ311X and parkinT240R). In these flies, knockdown of dVMAT increased cytosolic dopamine, along with the vulnerability of dopamine neurons (Sang et al., 2007). By contrast, increasing dVMAT expression in dparkin mutants partially rescues pupal lethality and dopaminergic degeneration most likely by reducing cytosolic dopamine. We commonly observe pupal lethality with only a few dparkin flies reaching eclosion where they die shortly.

A weak base compound, methamphetamine, is known to cause damage to both dopaminergic and serotonergic nerve endings. The dopamine released from the synaptic vesicle resulted in the cytosolic oxidization induced dopaminergic injury as a result of methamphetamine exposure. Superoxides and hydroxyl radicals are generated by auto-oxidation from cytosolic dopamine after methamphetamine exposure. The spontaneous oxidation of the catechol ring of dopamine, this generates reactive oxygen species (ROS) including superoxide and reactive electron-deficient quinones (Sulzer and Zecca, 2000). Superoxide is converted by superoxide dismutase to hydrogen peroxide. Superoxide reacts with nitric oxide radicals to generate peroxynitrate of reactive nitrogen species (RNS) (Sulzer and Zecca, 2000, Sulzer, 2007). Transition metals are abundant in dopaminergic neurons and hydrogen peroxide can react with these, in
particular with iron, to forms hydroxyl radicals (Hastings, 1995). The reactive quinones have the potential to react with cellular nucleophiles for example reduced sulfhydryl group on a small peptide and also protein cysteinylin residues. Protein thiols are targets and their structures are covalently modified by dopamine quinones. Protein modification and the resulting inactivation of their function may be detrimental to cell survival and may cause the degenerative process observed in PD patients (Stokes et al., 1999).

As noted in the Introduction (Chapter 1), Braak suggested PD did not start in the dopaminergic neurons, and that the early stages of the disease developed in the neurons of the olfactory and/or digestive system. Since our *dparkin* mutation is effective in all neurons, and L-DOPA administration does not seem to rescue the effects, it is possible that many of the effects of *dparkin* are mediated by non-dopaminergic neurons. Thus this larval model of an early stage form of PD, is (in this manner) reminiscent of the spreading pathology of the human disease.

AICAR fails to rescue locomotion and the overgrowth defect

AICAR failed to rescue crawling and the overgrowth. *AMPK* activation with the larval administration of AICAR treatment failed to rescue either the locomotion or the overgrowth defects. This may be due to the low concentrations of ZMP-induced activation of *AMPK* and the reduced level of effectiveness compared to the activation via phosphorylation of *AMPK*. In the literature ZMP has been reported not to be as a potent activator as AMP itself (Suter et al., 2006).

Additionally, other *D. melanogaster* models of PD (including *LRRK2* and *PINK1*) have shown metabolic dysfunction as key to tissue (dopaminergic) neurodegeneration, synaptic dysfunction and motor dysfunction (Morais et al., 2009, Vos et al., 2012,
Hindle et al., 2013). Recently in two fly models of PD, LRRK2 and parkin, mutant phenotypes were shown to be alleviated via increased AMPK activity using AMPK mimetics such as metformin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Additionally, Ng and colleagues recently showed LRRK2- and parkin-dysfunction (including mitochondrial and dopaminergic defects) were rescued with a green tea-derived catechin, epigallocatechin gallate (EGCC) mediating its effects via AMPK (Ng et al., 2012). AICAR or its metabolites (ZMP or ZTP) can act on the ATP-sensitive potassium (K\textsubscript{ATP}) channels. ZTP has shown to exert inhibitory action of K\textsubscript{ATP} channel at particular concentrations (Malaisse et al., 1994). Another member of the KIR family (Kir2.1) has been recently shown to be inhibited by AMPK (Alesutan et al., 2011). AICAR toxicity is little to none and has shown promise as an in vivo exercise mimetic.

Metformin failed to rescue crawling or RMP defect

Metformin failed to rescue the crawling and RMP in dparkin mutant larvae. Metformin was confirmed to robustly activate AMPK in a dose dependent manner in *D. melanogaster* via mass spectrometry and western blot analysis (Slack et al., 2012). The efficacy of oral administration of metformin in the fly was measured by quantifying its accumulation in fly tissues. Adult flies were fed increasing concentrations of metformin for a period of 7 days. The fly extracts were prepared after the gut was cleared of ingested food by incubating them for period of 5 hours in the absence of metformin treatment. Western blot analysis of phospho-Thr172-AMPK expression was undertaken using the whole-fly protein extracts. After 7 days of metformin treatment at concentrations of 0, 5, 10, 25, 50 and 100 mM, the flies were sampled. A dose-dependent increase in phospho-Thr172-AMPK levels was observed compared to actin as a loading control. A high concentration of Metformin (from 10 mM and 100 mM
dose in female or males respectively) was found to be toxic to flies. There was no increased survival observed in males or females with administration of Metformin at concentrations between 1 mM-100 mM (Slack et al., 2012). The concentrations of metformin used in this study were significantly lower than the levels found to be toxic to flies. The lowest level of metformin concentration (1 mM) was detected in the fly in the mass spectrometry experiment (Slack et al., 2012).

The molecular targets of Metformin have not been well understood. In mammals Metformin is known to activate AMPK (Zhou et al., 2001), via phosphorylating LKB1 (Fryer et al., 2002) to exert majority of it effects. Another hypothesis is that Metformin inhibits AMP deaminase, thereby reducing ATP concentration thus activating AMPK (Ouyang et al., 2011). The effects of metformin is preserved in liver-specific AMPK deficient mice, thus suggesting not AMPK but complex 1 of the respiratory chain as the primary target of metformin action (El-Mir et al., 2000, Owen et al., 2003). Metformin has been suggested to have lower maximal inhibitory action of complex 1 compared to rotenone (Batandier et al., 2006, Kane et al., 2010). It has also been proposed that in contrast to rotenone, metformin additionally exerts an inhibitory effect on mitochondrial ROS production by selectively blocking the reverse electron flow through the respiratory chain complex 1 (Batandier et al., 2006, Kane et al., 2010).

Resveratrol failed to rescue crawling, overgrowth or RMP defect

200 µM resveratrol final concentration in instant food administered larval treatment failed to rescue crawling, overgrowth or the RMP defect. Resveratrol treatment of adult flies exposed to manganese (Mn) results in an increase in life span and increase in motor activity. However, when Resveratrol is given after Mn-exposure, resveratrol is unable to ameliorate the motor dysfunction caused by the metal (Bonilla et al., 2012).
0.43 mM concentration was used to feed the adult flies, a much higher dose than the one I used for my experiment (Bonilla et al., 2012). A lower concentration of 200 µM was used in my experiments as larvae are in the food, whereas adults are on the food.

The uptake of resveratrol into the larvae could be checked via mass spectrometry and SIRT1 fluorimetric analysis as described by Partridge group (Bass et al., 2007). The activity of resveratrol samples was measured using the SIRT1 Fluorimetric Drug Discovery Kit. Previous studies have reported that polyphenols may be neuroprotective in D. melanogaster acutely treated with oxidative stress inducing agents (Pallàs et al., 2009, Chandrashekara and Shakarad, 2011). Polyphenol exposure is suggested to increase life span and restore motoric defects of D. melanogaster chronically exposed to paraquat compared to their controls fed with only paraquat (Ortega-Arellano et al., 2011).

Howitz and colleagues and also other groups have shown resveratrol activated SIRT1 NAD-dependent deacetylase in vitro and then in vivo and in some cases it did so directly (Baur and Sinclair, 2006, Knutson and Leeuwenburgh, 2008). On the other hand, there we reports suggesting resveratrol and sirtuins were not associated thereby claiming the activation of SIRT1 by resveratrol an artefact of the assay used (Baur, 2010). Park and colleagues findings now show that SIRT1 is indeed activated indirectly by down stream signalling cascade involving cyclic AMP, Epac1 (a cAMP effector protein) and AMPK by resveratrol in a response to phosphodiesterase enzyme inhibition, its direct target (Park et al., 2012). The pathway to SIRT1 activation occurs via AMPK, an enzyme that is known to be essential for many of resveratrol’s beneficial metabolic effects (Park et al., 2012). These observations support previous reports that AMPK lies upstream of SIRT1 activity upon resveratrol exposure, as AMPK activation is still persistent in cells lacking SIRT1 (Dasgupta and Milbrandt, 2007).
concentration used to achieve these beneficial effects *in vitro* exceed the those achieved *in vivo*, raising concerns about its specificity. Although, rolipram a phosphodiesterase enzyme inhibitor mimics the effects of resveratrol such as the prevention of diet induced obesity in mice (Park et al., 2012), all the beneficial effects are brought about via the downstream action of *AMPK* activity and thus could be mediated through alternative mechanisms of resveratrol treatment *in vivo*. Resveratrol treatment has been shown to enhance nitric oxide production (Wallerath et al., 2002) and in another study it was found to stimulate adenylate cyclase (El-Mowafy and Alkhalaf, 2003) either of these could result in phosphodiesterase inhibition. The impact of *SIRT1* activation on *AMPK* has not been addressed *in vivo*. A range of more potent *SIRT1* activators than resveratrol have now been developed that show promise with therapeutic potential (Milne et al., 2007), some of which are being tested in phase 1 and phase 2 clinical trials for the treatment of cardiovascular, inflammatory and metabolic disease. The role *SIRT1* plays is regulation of neurodegenerative disorders is an important one (Tang and Chua, 2008). *SIRT1* inhibitors, sirtinol and nicotinamide, have shown to reverse the protective effects of resveratrol in a neuronal culture model of Huntington’s Disease (HD) (Tang and Chua, 2008). *SIRT1* cellular substrates include the tumor suppressor p53, transcription factor NF-kappaB, the forkhead box class O (FoxO) family of transcription factors, the peroxisome proliferator-activated receptor (PPAR)-gamma, the PPAR)-gamma co-activator 1-alpha and the endothelial nitric oxide synthase (Michan and Sinclair, 2007).

As cytosolic dopamine and its metabolites are involved in the conjugation of cytosolic protein substrates such as *parkin*, it is likely this is the case in our *dparkin* transheterozygote mutants as they produce very little wild-type *dparkin*. This possibly results in the inactivation of the low levels of *dparkin* and consequently thereby leading to the increase in ROS levels (as *parkin* is involved in both degradation of misfolded
proteins via proteosomal degradation pathway and also autophagy). This could lead to neuronal vulnerability as well as affecting other tissues such as muscles. This is further supported by the fact that $dVMAT$ mutant flies show reduced numbers of dopaminergic neurons and the degeneration deteriorates further when these mutants are exposed to oxidative stress inducing agents such as paraquat or rotenone. Lawal and colleagues also show the effects of the $dVMAT$ overexpression on $dVAMT$ mutant flies, which inhibits the rotenone induced dopaminergic loss (Lawal et al., 2010). This is possibly closely linked to rotenone’s action, where it inhibits the mitochondrial respiratory chain component complex I and causes severe loss energy that leading to the failure of the monoamine transporters, such as $dVMAT$, which allow the ATP-dependent reuptake of extracellular amines (Lawal et al., 2010). The reuptake of rotenone into the synaptic vesicles prevents its interaction with mitochondria and further cause oxidative stress. The most plausible explanation is that cytosolic dopamine is limited as it is taken up into synaptic vesicles to prevent the interaction with the cytosolic rotenone to cause oxidative damage (Lawal et al., 2010). This model suggests the interaction of cytosolic dopamine with ROS or sites of ROS (mitochondria) could result in cell damage or death. This also could implicate the dopaminergic cell loss seen in this mutant as a non-cell autonomous effect and caused by the defective signaling of other aminergic cells.

Summary of key findings:

* $dparkin$ larvae support ‘Braak’s hypothesis’ and fail to exhibit dopaminergic dysfunction in this early model of PD.

* Metformin and AICAR, the classical $AMPK$ activators, fail to show an effect on $parkin$ larval phenotypes at their respective concentrations.
* Resveratrol fails to rescue overgrowth, locomotory or neurophysiological defects.
Chapter 6: General Discussion

6.1 Summary of main results of my thesis

The aim of this thesis was to test for early neuronal dysfunction in dparkin mutant larvae. These mutant larvae show locomotory defects, neurophysiological dysfunction, and overgrowth at the neuromuscular junction (NMJ). Neuronal loss of dparkin is key to the synaptic failure observed in dparkin larvae. Oxidative stress induced signaling contributes to the dparkin mutant larval phenotypes, as increased expression of SOD1 or the detoxification enzymes Glutathione-s-transferase (GST) or Thioredoxin reductase (TRX-R2) rescues the phenotypes. Genetic manipulation of the c-jun-N-terminal kinase (JNK) signaling pathway also rescued the dparkin phenotype. Additionally, genetically manipulating AMP-activated protein Kinase (AMPK), which is involved in the energy homeostasis, rescued the overgrowth and neurophysiological dysfunction but failed to rescue the locomotory defects. Pharmacological manipulation with classical AMPK activators (metformin and 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR)) failed to show a rescue of dparkin mutant larval phenotypes. Resveratrol also failed to rescue either overgrowth, neurophysiological or locomotory defects. Dopaminergic manipulations, either pharmacological (L-DOPA) or genetic (TH> dparkin RNAi) failed to show an effect on overgrowth or locomotory defect.

6.2 Main significance of this thesis

The most significant finding is that it is the neuronal, rather than muscle, loss of dparkin that causes locomotory defect in the larva. As noted in chapter 3, previous work had focused on muscle phenotypes; my work is a direct demonstration of a neuronal phenotype at the centre of the dparkin defects, and these conclusions were supported by other assays in our lab (Vincent et al., 2012). This makes this larval model of dparkin, a particularly useful model of PD. In particular, the demonstration of defects in synaptic
signaling and synaptic overgrowth at a non-dopaminergic (glutamatergic) synapse is important for two reasons. First, it shows that dparkin affects not just the dopaminergic system, but other types of neurons, in accord with Braak’s hypothesis. Here I note that a larval phenotype was not induced by either TH > dparkin RNAi or L-DOPA application. Second, glutamatergic neurons are the most important excitatory neurons in the human brain and the fly neuromuscular junction (NMJ) is proving a significant model of their synapses. This means that the armory of the fly NMJ can, in the future, be deployed to examine the dparkin synapse in more detail.

It was also demonstrated here (chapter 4) that oxidative stress was not the cause of neuronal dysfunction, but a secondary consequence. Again, this work was supported by other data presented in Vincent et al. (2012), showing metabolic deficits lead to a failure to maintain the normal RMP and synaptic failure, and subsequent oxidative stress.

6.3 Further work investigating the neuronal dysfunction in dparkin larvae

One of the key observations in chapter 3, was that dparkin expression in nerve or muscle provided rescue both pre- and post-synaptically (of at least some phenotypes). This implied trans-synaptic, non autonomous signaling. It was hypothesized that this trans-synaptic rescue could be mediated by D. melanogaster PARKIN itself, by ROS-dependent signals or by a range of growth factors. The fly genetic toolbox provides ways to test these hypotheses. The first hypothesis could be tested by generating a tagged version of dparkin, e.g. with a GFP or his/or FLAG tag could be expressed, and immunocytochemistry used to test for its presence in/around the synapse. Secondly, reactive oxygen species (ROS)-signaling could be reduced either pre- or post – synaptically by using elav- or G14-GAL4 expression of GST, in a manner similar to the ubiquitous expression in chapter 4. This would show if ROS signaling were key.
Equally, a range of growth factor transgenes could be deployed in the *dparkin* background, in a nerve/muscle specific manner.

An exquisitely sensitive approach in this context would be to attempt rescue of *dparkin* in one muscle, while the adjacent muscle was still *dparkin*. The fly offers a suitable tool: the H94-GAL4 line that would drive wild-type UAS-*dparkin* in a mutant background in some of the muscles (not all). This would allow particular muscles to contain wild-type *dparkin* and others to possess a mutant background, all in a single larval (NMJ preparation). The H94 driver will drive specific expression of *dparkin* in few muscles including 6, 13 and moderately in 12 (and very low levels in some motoneurons) whilst others will contain the *dparkin* mutation (Davis et al., 1997). This will measure the RMP and synaptic activity within one preparation, thus limiting variability between preparations. Other drivers also exist such as 5053A-GAL4 line that drives highly in muscle 12 (Ritzenhaler et al., 2000). Similarly, ROS signaling or growth factors could be expressed in this way. Muscles 13 and 13 are innervated by two motoneurons, V and RP5, providing the opportunity for transgenic manipulation of a single motoneuron while using the muscle and other motoneuron as reporters.

The depolarization of the muscle RMP in *dparkin* larvae suggested that the motoneuron may also be depolarized, as the same ATP-dependent system is required to maintain both nerve and muscle RMP. The development of novel, genetically encoded voltage sensors offers the opportunity to record the motoneuron resting membrane potential directly (Jin et al., 2011). The change in mEJP suggested that calcium dynamics may be affected, and the latest genetically modified calcium indicators (G-CAMP) sensors provide tools to investigate this. Again the use of the specific GAL4 lines provides the opportunity to use in preparation controls.
6.4 Larval and adult phenotypes

A key reason for investigating the *dparkin* larva was to assess the early steps in the toxic cascade of PD. It is clear from Fig 6.1 that the physiological rescue by transgenes mostly results in behavioral rescue; whereas if the transgene only rescues the synaptic overgrowth, behavioral rescue is less likely. The larvae can, at this early stage, compensate for the neuronal overgrowth, but not for physiological failure. Third instar larvae are under a maximal metabolic load, as they prepare to pupate (Rechsteiner, 1970a, Rechsteiner, 1970b). Those *dparkin* larvae that do eclose successfully as adults will have a lower metabolic stress, and so may be more responsive to genetic or pharmacological manipulations, for example, with the expression of GST or BSK^{DN} as observed in chapter 4.
Does loss of *parkin* cause dysfunction in the early juvenile fly?

<table>
<thead>
<tr>
<th>Transgenes involved in the rescue of dparkin dysfunction?</th>
<th>Behavioral: Reduced crawling</th>
<th>Anatomical: Overgrown synapses</th>
<th>Physiological: Synaptic dysfunction and resting potential defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>parkin</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SOD1</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>SOD2</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>CAT</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>GST</td>
<td>✓</td>
<td>???</td>
<td>✓</td>
</tr>
<tr>
<td>TRX-R2</td>
<td>✗</td>
<td>???</td>
<td>✓</td>
</tr>
<tr>
<td>JNK<sup>DN</sup></td>
<td>✓</td>
<td>???</td>
<td>✓</td>
</tr>
<tr>
<td>JUN<sup>DN</sup></td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AMPK</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Figure 6.1 Summary of experiments with genetic expression of transgenes. *dparkin* mutant larvae show locomotory defects, neurophysiological dysfunction, and overgrowth at the neuromuscular junction (NMJ). Neuronal loss of dparkin is key to the synaptic failure observed in *dparkin* larvae. Oxidative stress induced signaling contributes to the *dparkin* mutant larval phenotypes, as increased expression of *SOD1* or the detoxification enzymes Glutathione-s-transferase (*GST*) or Thioredoxin reductase (*TRX-R2*) rescues the phenotypes. Genetic manipulation of the c-jun-N-terminal kinase (*JNK*) signaling pathway also rescued the *dparkin* phenotypes. Additionally, genetically manipulating AMP-activated protein Kinase (*AMPK*), which is involved in the energy homeostasis, rescued the overgrowth and neurophysiological dysfunction but failed to rescue the locomotory defects.
6.5 Comparison of pharmacological and genetic approaches

Whereas all the transgenes tested showed at least a partial rescue on either the dparkin transheterozygote (chapter 3) or on the dparkin homozygote (Vincent et al., 2012), none of the drugs tested showed significant rescue. Although feeding drugs to larvae in this way proved useful for the fly model of LRRK2-PD (Afsari et al., 2014), my work suggests that the genetic approach is more powerful than the pharmacologic. In this context, it should be noted that Vos et al. (2012) used bacterial culture of E. coli to provide vitamin K\textsubscript{2} in their pharmacologic rescue of PINK1 or dparkin larvae (Vos et al., 2012).

6.6 Implication for Parkinson’s Disease therapy

Oxidative stress is commonly seen in a variety of neurodegenerative conditions, including PD. Oxidative stress has been an attractive target for the treatment of PD although it has been a challenge to place this pathogenic factor in the cascade of PD pathogenesis. A large clinical study, known as DATATOP, showed the lack of effect of \(\alpha\)-tocopherol (Vitamin E) on the progression of PD (Shoulson, 1998). Coenzyme Q\textsubscript{10} is responsible to shuttle electrons via the electron chain. Additionally, ubiquinol (Coenzyme Q\textsubscript{10} reduced form) functions as an antioxidant (Ernster and Dallner, 1995). In one pilot study, positive effects were observed in PD patients, such as increased complex 1 activity, with administration of Coenzyme Q\textsubscript{10} (Shults et al., 1998). Another later study showed negative effects in PD patients (Shults et al., 2002), thus showing mixed results from clinical trials. My data suggests that relieving oxidative stress does not affect the primary dparkin deficit, and (if this is a faithful model) that such clinical trials need further investigation and more care.

The failure of the trials is not conclusive enough to state that oxidative stress is not
important in PD but may be attributable to the defects in the pharmacological agent used in patients. Small anti-oxidant molecules such as vitamin E seem to be far less effective. I speculate from the effective genetic rescue that a more promising approach could result from focusing our attention on the up-regulation of endogenous anti-oxidant systems such as the thioredoxin and glutathione defence mechanisms. Thus, dysfunctional mitochondria, alterations in mitochondrial dynamics, increased ROS, mtDNA damage, and the loss of energy production are important contributors to the pathophysiology associated with several neurodegenerative diseases including Alzheimer’s (AD), PD, and Huntington Disease (HD), and also cancer.

However, the treatment of one or few antioxidants is too simplistic, as reported by the several clinical studies that have shown modest success with antioxidants in the treatment of neurodegenerative diseases (Firuzi et al., 2011). This study showed the importance of energy maintenance to keep up with the demands of neuronal metabolism. A cocktail of drugs with a combination of antioxidant or combination of drugs targeted to other factors of PD such as the metabolic defects, may increase the likelihood of producing significant neuroprotective effect as PD is multi-factorial disease. Current drugs used to target other diseases, for instance metformin used to treat patients with type-2 diabetes could be trailed in PD to target metabolic dysfunction that could result in a neuroprotective effect in PD itself. More effort need to be put into solving energetic failure, as this is the root cause results in secondary effects (i.e. oxidative stress). Creatine/ phosphocreatine system provides an alternative pathway (from glycolysis and oxidative phosphorylation) to promote ATP synthesis. Supporting this, studies with creatine have shown to boost pathways that promote energy synthesis and additional antioxidant actions. Although efforts have begun on this potential neuroprotective agent in PD models (Matthews et al., 1999), there is need for other.
Creatine has been tested and shows signs as a promising agent, but large clinical trials need to be undertaken to validate it as a neuroprotective agent (Ravina et al., 2003).
Abbreviation List

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Alzheimer's Disease</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine Diphosphate</td>
</tr>
<tr>
<td>AICAR</td>
<td>5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine Monophosphate</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated Protein Kinase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AP</td>
<td>Action Potential</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator Protein-1</td>
</tr>
<tr>
<td>ARJP</td>
<td>Autosomal Recessive Juvenile Parkinsonism</td>
</tr>
<tr>
<td>ASK</td>
<td>Apoptosis Signal Regulating Kinase</td>
</tr>
<tr>
<td>ATG</td>
<td>Autophagy Related Gene</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>Ca^{2+}</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CPG</td>
<td>Central Pattern Generator</td>
</tr>
<tr>
<td>CS</td>
<td>Canton-S</td>
</tr>
<tr>
<td>Cy3</td>
<td>Cyanine-3 dye</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CyO</td>
<td>Curly of Oyster</td>
</tr>
<tr>
<td>D-DOPA</td>
<td>3-(3,4-Dihydroxyphenyl)-D-alanine</td>
</tr>
<tr>
<td>DA</td>
<td>Dopaminergic Neurons</td>
</tr>
<tr>
<td>DDC</td>
<td>DOPA decarboxylase</td>
</tr>
<tr>
<td>DN</td>
<td>Dominant Negative</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribose Nucleic Acid</td>
</tr>
<tr>
<td>DOPAC</td>
<td>Dihydroxyphenyl Acetic Acid</td>
</tr>
<tr>
<td>DVMAT</td>
<td>Drosophila Vesicular Aminergic Transporter</td>
</tr>
<tr>
<td>EJP</td>
<td>Excitatory Junctional Potential</td>
</tr>
<tr>
<td>Elav</td>
<td>Embryonic Lethal Abnormal Vision</td>
</tr>
<tr>
<td>EM</td>
<td>Electron Microscopy</td>
</tr>
<tr>
<td>EMS</td>
<td>Ethyl Methane Sulfonate</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ETC</td>
<td>Electron Transport Chain</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-s-Transferase</td>
</tr>
<tr>
<td>H2O</td>
<td>Water</td>
</tr>
</tbody>
</table>
H$_2$O$_2$ Hydogen Peroxide

HL3 Hemolymph-like Buffer solution 3

HRP Horseradish Peroxidase

JNK c-jun N-terminal kinase

K$^+$ Potassium ions

L-DOPA Levodopa

MAO Monoamine Oxidase

MDA Malondialdehyde

mDNA Mitochondrial Deoxyribose Nucleic Acid

mEJP Minature Excitaotry Junctional Potential

minis Minature Excitaotry Junctional Potential

min Minute

MKKK Mitogen-Activated Protein Kinase Kinase Kinase

MKRS Third Chromosome Stubble Marker

mm Millimeter

mM Millimolar

MPP$^+$ 1-Methyl-4-Phenyl-Pyridinium

MPTP 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine

mRNA Messenger RNA
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA</td>
<td>Muscle Surface Area</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolts</td>
</tr>
<tr>
<td>Na<sup>+</sup></td>
<td>Sodium ion</td>
</tr>
<tr>
<td>Na<sup>+</sup>/K<sup>+</sup> - ATPase</td>
<td>Sodium/Potassium-ATPase</td>
</tr>
<tr>
<td>NMJ</td>
<td>Neuromuscular junction</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric Oxide Synthase</td>
</tr>
<tr>
<td>Nrf2</td>
<td>Nuclear factor (erythroid-derived 2)-like 2</td>
</tr>
<tr>
<td>O<sub>2</sub></td>
<td>Oxygen</td>
</tr>
<tr>
<td>O<sup>-</sup><sub>2</sub></td>
<td>Superoxide Anions</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl Radical</td>
</tr>
<tr>
<td>OH<sup>-</sup></td>
<td>Hydroxyl Anion</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PBS-T</td>
<td>Phosphate Buffered Saline-Triton</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s Disease</td>
</tr>
<tr>
<td>PDE</td>
<td>Phosphodiesterase enzyme</td>
</tr>
<tr>
<td>PGK</td>
<td>Phosphoglycerate Kinase</td>
</tr>
<tr>
<td>RMP</td>
<td>Resting Membrane Potential</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>RNAi</td>
<td>(Interfering) Ribonucleic Acid</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive Nitrogen Species</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>Sec</td>
<td>Second</td>
</tr>
<tr>
<td>SN</td>
<td>Segmental Nerve</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide Dismutase</td>
</tr>
<tr>
<td>SPSS</td>
<td>Software for Statistical Analysis</td>
</tr>
<tr>
<td>SYT</td>
<td>Synaptotagmin</td>
</tr>
<tr>
<td>TH</td>
<td>Tyrosine Hydroxylase</td>
</tr>
<tr>
<td>TM6B</td>
<td>Third Chromosome Tubby Marker</td>
</tr>
<tr>
<td>TOR</td>
<td>Target of Rapamycin</td>
</tr>
<tr>
<td>TORC</td>
<td>Target of Rapamycin complex</td>
</tr>
<tr>
<td>Trx</td>
<td>Thioredoxin</td>
</tr>
<tr>
<td>Trx-R</td>
<td>Thioredoxin Reductase</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream Activating Sequence</td>
</tr>
<tr>
<td>VMAT</td>
<td>Vesicular Aminergic Transporter</td>
</tr>
<tr>
<td>ZMP</td>
<td>AICAR Monophosphate</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
</tbody>
</table>
References

12. ANWAR, S., PETERS, O., MILLERSHIP, S., NINKINA, N., DOIG, N.,

58. CHARTIER-HARLIN, M. C., DACHSEL, J. C., VILARIÑO-GÜELL, C., LINCOLN, S. J., LEPRÊTRE, F., HULIHAN, M. M., KACHERGUS, J.,

73. CORTI, O., LESAGE, S. & BRICE, A. 2011. What genetics tells us about

113. FOTOWAT, H., FAYYAZUDDIN, A., BELLEN, H. J. & GABBIANI, F.

130. GREENE, J. C., WHITWORTH, A. J., KUO, I., ANDREWS, L. A.,
FEANY, M. B. & PALLANCK, L. J. 2003. Mitochondrial pathology and
apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci
USA, 100, 4078-83.

Sleep and the fruit fly. Trends Neurosci, 24, 142-5.

132. GREER, C. L., GRYGORUK, A., PATTON, D. E., LEY, B., ROMERO-
CALDERON, R., CHANG, H. Y., HOUSHYAR, R., BAINTON, R. J.,
vesicular monoamine transporter contains a conserved trafficking domain and
functions in the storage of dopamine, serotonin, and octopamine. J Neurobiol,
64, 239-58.

133. GUO, M. 2012. Drosophila as a model to study mitochondrial dysfunction

134. HALL, J. C. 2003. Genetics and molecular biology of rhythms in

137. HARDIE, D. G. 2011. AMP-activated protein kinase: an energy sensor that

Management of cellular energy by the AMP-activated protein kinase system.

140. HARDY, J., LEWIS, P., REVESZ, T., LEES, A. & PAISAN-RUIZ, C.
2009. The genetics of Parkinson's syndromes: a critical review. Curr Opin Genet
Dev, 19, 254-65.

158. HOYLE, G. 1953. Intracellular recording of 'slow' and 'fast' fibre activity from an insect muscle. *J Physiol*, 121, 32P-33P.

161. HWANG, S., KIM, D., CHOI, G., AN, S. W., HONG, Y. K., SUH, Y. S.,

175. KEENEY, P. M., XIE, J., CAPALDI, R. A. & BENNETT, J. P. 2006. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci, 26, 5256-64.

207. LIZCANO, J. M., GÖRANSSON, O., TOTH, R., DEAK, M., MORRICE,

241. MÜFTÜOĞLU, M., ELIBOL, B., DALMIZRAK, O., ERCAN, A.,

264. PALLÀS, M., CASADESÚS, G., SMITH, M. A., COTO-MONTES, A.

272. PESAH, Y., PHAM, T., BURGESS, H., MIDDLEBROOKS, B.,

312. SCHAPIRA, A. H. 2008. Mitochondria in the aetiology and pathogenesis of

sensing and signaling. Mol Cell, 26, 1-14.

pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A, 103, 10793-8.

