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Abstract

Quantum states of Dirac fermions at zero or finite temperature are investigated using
the point-splitting method in Minkowski and anti-de Sitter space-times undergoing

rotation about a fixed axis.

In the Minkowski case, analytic expressions presented for the thermal expectation
values (t.e.v.s) of the fermion condensate, parity violating neutrino current and
stress-energy tensor show that thermal states diverge as the speed of light surface
(SOL) is approached. The divergence is cured by enclosing the rotating system
inside a cylinder located on or inside the SOL, on which spectral and MIT bag

boundary conditions are considered.

For anti-de Sitter space-time, renormalised vacuum expectation values are calcu-
lated using the Hadamard and Schwinger-de Witt methods. An analytic expression
for the bi-spinor of parallel transport is presented, with which some analytic expres-
sions for the t.e.v.s of the fermion condensate and stress-energy tensor are obtained.
Rotating states are investigated and it is found that for small angular velocities €2
of the rotation, there is no SOL and the thermal states are regular everywhere on
the space-time. However, if (2 is larger than the inverse radius of curvature of adsS,

an SOL forms and t.e.v.s diverge as inverse powers of the distance to it.
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dedicated to the study of rotating quantum states on Minkowski space-time, where,
for completeness, the scalar field is also presented, following Refs. [33,52]. Quantum
states on the anti-de Sitter space time with or without rotation are discussed in

chapters 7 and 8.

The construction of thermal states for fermions in unbounded Minkowski space
extends the discussions in Refs. [47, [72]. The analytic expressions for thermal ex-
pectation values calculated in subsection 4.3.2 represent original results which are
published in Ref. [I0]. For the study of rotating thermal states of fermions inside
a boundary, the spectral [43] and MIT bag [23] boundary conditions are considered
in sections 5.2 and 5.3, respectively. The analysis of thermal expectation values and
of the Casimir effect presented therein represents original research which is due to

be published in Ref. [5]. Preliminary results have already been reported in Ref. [§].

Following the preliminary discussion of the construction of two-point functions
using a sum of the modes in Ref. [26] and using the geometric approach introduced in
Ref. [56], renormalised vacuum expectation values are obtained using the Hadamard
renormalisation method. An original result for the analytic expression of the bi-
spinor of parallel transport is used in subsection 7.5.1 to obtain thermal expectation
values. Preliminary results are avaliable in Ref. [7].

The analysis of fermion quantum states on rotating anti-de Sitter space, pre-
sented in chapter 8, draws heavily on the mode solutions and the analytic expression
for two-point functions and for the bi-spinor of parallel transport given in chapter 7.
This section is completely comprised of original results, which are summarised in
Ref. [6].
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Chapter 1. Introduction

Two theories revolutionised the understanding of physics in the twentieth century:
the general theory of relativity and quantum field theory, as successors of special
relativity and quantum mechanics. To date, both theories have been confirmed
experimentally to very high accuracy in their domains of applicability: macroscale
for general relativity and accelerator physics for quantum field theory. Alas, these
two theories are fundamentally incompatible. Since the theory of relativity is entirely
classical, it is expected that it cannot be used for high energy (or small length
scale) systems. Similarly, quantum field theory traditionally singles out a particular
foliation of space-time by fixing a time coordinate to impose equal-time commutation
relations, while at the same time quantum states are defined globally throughout
the space-time, thus appearing to violate the locality principle of general relativity.
While several attempts at formulating a theory which will include both quantum
effects in gravity and interactions between gravity and quantum fields have been
made, no general consensus exists as to which approach will emerge as the theory
of everything. However, it is possible to investigate the departure from classical
theories and the effects of curvature and general covariance requirements on quantum

fields through the semi-classical approach of quantum field theory on curved spaces.

Quantum field theory (QFT) on curved space-times (CS) treats the background
space-time as a solution of the classical Einstein equations. The requirement of
general covariance induces a non-trivial coupling between the propagation of field
quanta and the underlying structure of the space-time through the space-time met-
ric. One of the most highly acclaimed predictions of QFT on CS is the evaporation
of black holes as an example of particle production, through the Hawking effect
[40, 41]. Other areas where quantum phenomena could play important roles are the
creation and stabilisation of wormholes or space-travel through Alcubierre’s mech-
anism [2]. Both these phenomena rely on the existence of negative energy density
sources, an example of which is the Casimir energy induced through the Casimir
effect [46].

While QFT on CS has been studied extensively in the last four decades, most
of the work done in this field was focused on the study of scalar fields, due to their
mathematical simplicity. However, the quantum behaviour of fermions cannot be
inferred directly from that of boson particles, due to the fundamental differences
between them. This difference can be seen explicitly in thermal field theory on
the rotating Minkowski space-time, where thermal states for scalar particles are
impossible to define, while they are regular for fermions up to the speed of light
surface (SOL).
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Two main topics are studied in this thesis: rigidly rotating thermal states on
a Minkowski space-time (with or without a boundary) and fermions on the anti-de

Sitter space-time (both rotating and non-rotating).

In 1978, Vilenkin [72] investigated rigidly rotating quantum thermal states for
scalars, fermions and photons, concluding that thermal states are impossible to
achieve for bosons, unless the space-time is enclosed inside a boundary which cuts
out the unphysical space outside the SOL. The mechanism preventing scalar parti-
cles from settling into thermal states is rooted in the density of states factor given by
Bose-Einstein statistics, which allows infinite occupation numbers for particles with
zero local energy. However, energies measured by co-rotating observers are not the
same as the Minkowski energies. Hence, particles with vanishing co-rotating energy
make infinite contributions to thermal expectation values, rendering thermal states
undefinable. On the other hand, the Fermi-Dirac statistics yields finite occupation
numbers for any value of the frequency, allowing fermions to form thermal distribu-
tions which are regular, but only close to the rotation axis. As the distance from
the axis is increased, co-rotating particles rotate increasingly faster, until they reach
the speed of light on the speed of light surface (SOL), where the thermal states of

fermions break down.

Vilenkin [72] reported spurious temperature-independent terms in the thermal
expectation value of the parity-violating neutrino charge current [71] (which he
evaluated on the rotation axis only), caused by the possibilty of wave functions
extending beyond the SOL. However, Iyer [47] demonstrated that there is a method
to quantise fermion fields such that the spurious terms no longer appear in t.e.v.s,

by eliminating modes of negative frequency from the set of particle modes.

For both bosons and fermions, there is a consensus in the literature that the space
outside the SOL has to be somehow removed for thermal rotating quantum states
to be well defined. In the scalar field case, Ref. [33] presents an implementation of
Dirichlet boundary conditions which renders thermal states for scalars well-defined
and finite as long as the boundary is placed inside or on the SOL. We investigate
in this thesis the spectral [43] and MIT bag [23] boundary conditions for fermion
fields and compare their predictions for rotating thermal states and for the Casimir

divergence.

Before moving on to the investigation of thermal states on anti-de Sitter space-
time (adS) using the point-splitting method, the vacuum Feynman propagator must
be renormalised. Using the modes obtained in Ref. [26] and the expression for the
Feynman propagator obtained in Ref. [56], the Hadamard [59] and Schwinger de-
Witt [24] renormalisation methods are used and the results obtained are in excellent
agreement with the Zeta-function and Pauli-Villars regularisation methods, respec-

tively. Using an exact form for the bi-spinor of parallel transport, both non-rotating



and rotating thermal states can be analysed, as long as the angular velocity of the

rotation does not exceed the inverse radius of curvature of adsS.

An introduction to QFT on CS and to the point-splitting method is provided
in chapter 2, followed by an analysis of thermal field theory of scalar and fermion
particles on non-rotating Minkowski space-time in chapter 3. Rotating quantum
states on the unbounded Minkwoski space-time are considered in chapter 4 and
bounded states are discussed in chapter 5. Chapter 6 discusses the alternative
quasi-Euclidean approach which can be used to investigate bounded rotating thermal

states when the boundary is placed outside the SOL.

The renormalisation of the vacuum propagator and the construction of thermal
states on adS are introduced in chapter 7, while rotation is introduced in chapter 8.

Chapter 9 concludes the thesis.

The numerical results presented in this thesis (chapters 4, 5, 7 and 8 were ob-

tained using Mathematica 8.



Chapter 2. General concepts

In this chapter, a brief introduction to field theory and second quantisation in gen-
eral relativity for the Klein-Gordon (section 2.1) and Dirac (section 2.2) fields is
presented. The aim of this chapter is to introduce the notation and formalism
for calculating vacuum expectation values (v.e.v.s) and thermal expectation values
(t.e.v.s) using two-point functions (i.e. Hadamard’s elementary function, the Feyn-

man propagator or the Euclidean Green’s function).

Subsections 2.1.2 and 2.2.3 present the construction of the classical stress-energy
tensor (SET) starting from the Lagrangian of the field theory under consideration.
Subsections 2.1.3 and 2.2.4 introduce the canonical method for performing second
quantisation and the subsequent expressions for the SET and Hamiltonian opera-
tors in terms of modes and one-particle creation and annihilation operators. The
notion of finite temperature is introduced in subsections 2.1.4 and 2.2.5 and subsec-
tions 2.1.5 and 2.2.6 introduce the tools for calculating v.e.v.s and t.e.v.s using the

formalism of point splitting and two-point functions.

2.1 The quantised scalar field

2.1.1 Second quantisation

The classical theory of a neutral scalar field ¢(x) of mass p has as a starting point

the Lagrangian density

L= —%v —g(x) { " ()0,0(2)0,0(2) + [1* + ER(2)]¢*(2) } , (2.1.1)

where R(x) is the Ricci scalar, g"” is the inverse of the space-time metric g, and £
is a numerical factor giving the coupling between the scalar field and the curvature.
All quantities are evaluated at the same point z = (¢,x) in space-time, where
x = (z', 2% 23) groups the spatial coordinates in a three-vector. The Euler-Lagrange

equation following from the Lagrangian density (2.1.1) is the Klein-Gordon equation:

1
V=3

which is covariant under general coordinate transformations. For simplicity of no-

O+ u*+ERjp =0,  Op=—=0x[V-99"0] (2.1.2)

tation, the coordinate dependence shall not be given explicitly unless there is a risk

4
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of confusion. In the above, /—g is the square root of the determinant of the matrix

formed by the components g,, of the space-time metric.

Canonical quantisation makes use of the conjugate momentum corresponding to

the field ¢(x):
oL

~ 9(0)
The coordinate index of the partial derivative on the right hand side of (2.1.3) has

= /=g g0, = —/—g 0°. (2.1.3)

™

been raised using the familiar rule:
AN =gV A, (2.1.4)

Before stating the quantisation rule, it is instructive to consider the Hamiltonian

density, defined as:

H=700p— L = %\/—_9{—900[30(?]2 +970,00;0 + [1* + ER]¢*} . (2.1.5)

The Hamiltonian of the system is the integral of the Hamiltonian density (2.1.5)

over the spacelike hypersurface ¢t = const:

H= /d3IH = %/d?’xﬁ(a—(;gb, (2.1.6)

where the bilateral derivative is defined as:

fOng = F(D.9) — Ouf)g- (2.1.7)

Expression (2.1.6) follows from an integration by parts of the space derivatives in
(2.1.5), followed by the use of the Klein-Gordon equation (2.1.2).

The quantisation scheme is defined such that the field ¢(¢, ) obeys Heisenberg’s

equation of motion:

[p(t, ), H(t)] = i00p(t, x). (2.1.8)

The standard solution is to impose the following equal time commutation rules:

[p(t, ), n(t, )] =i6*(x — ),
[6(t, ), p(t, x')] = [7(t, x), = (t, x')] =O0. (2.1.9)

The evolution equation (2.1.8) can be solved, with the solution for a Hamiltonian

with no explicit time dependence being:
o(t,x) = e Gt x)e HEH), (2.1.10)

valid for arbitrary initial time ¢'.
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2.1.2 Stress-energy tensor

In general relativity, the SET plays an active role as the right hand side of Einstein’s
equations:
1
Rag — §gagR = 87TTag. (2.1.11)

Einstein’s equations can be derived using Hamilton’s principle of least action along

the physical trajectory, starting from the Einstein-Hilbert action:

d*x
S — 16_7T\/__9R + Smatter; Smatter = /d4CL’ E, (2112)
where the second term is the Lagrangian density of any matter fields present. As a

consequence, the SET is given by [55]:

. 2 5Smatter
NS

Tos = (2.1.13)

and assumes the form [16]:

T/W = (1 - 2€)VM¢VV¢ + (25 - %)gMV(VQS)Q - 2€¢vuvu¢ + %59#V¢D¢
_’5 [R;w - %Rg;w + %(t‘l - 1)€Rguu] ¢2 —2 [% - (1 - %) 5} ,u29uu¢2> (2114>

for the case of a scalar field of mass p in an n-dimensional space-time, described
by the Lagrangian density (2.1.1). Minimal coupling is achieved by setting £ = 0,
while conformal coupling corresponds to & = i% In a 4-dimensional Ricci-flat
space-time (i.e. R,, = 0) with conformal coupling (i.e. £ = %), equation (2.1.14)
simplifies to [19]:
2 1 1 Ak 2 12

T/w - gvu¢vu¢ o §¢VMVV¢ N Egul/[g VAPV + 179 ] <2'1'15)

In what follows, only conformally coupled scalar fields are considered.

It can be seen from Eq. (2.1.15) that, for any solution ¢(z) of the Klein-Gordon
equation (2.1.2), the trace of the SET is proportional to ¢?(x):

T = —p*¢’ (), (2.1.16)

and vanishes for massless particles. The divergence of the SET automatically van-

ishes as a consequence of the Klein-Gordon equation (2.1.2):

v,

v

=0, (2.1.17)

and T, is symmetric by construction.

The classical SET can be promoted to a quantum operator by replacing any term
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quadratic in the field by an anti-commutator:

1 1 1
Ty = 3{Vid, Vit = £ {6, ViVuo} — 50w lg™ {Vae, Vo) + 21767, (2.1.18)

where ¢ = ¢(x) is now the field operator.

2.1.3 Fock space

Let us consider a complete set of mode solutions { f;, fj*} of the Klein-Gordon equa-
tion, with {j} being a set of discrete or continuous labels distinguishing between

independent solutions. The modes are normalised with respect to the inner product:
. 3 * <—0>
(19) = =i [ dav=gly e Pt (21.19)
1%
such that
(Fis Jyr) = Oggrs 5o Ti) = =035 55 fyr) = (s o) = 0. (2.1.20)

In Eq. (2.1.19), g is the determinant of the metric tensor g,,, ﬁ is the bilateral
derivative (2.1.7) and the integration is performed over the three-dimensional hyper-
surface V' of normal dt, where V' can be the whole space or some region contained
inside a closed boundary. In the above, the modes f; are identified as solutions
of the Klein-Gordon equation with positive norm. Consequently, Egs. (2.1.2) amd
(2.1.19) show that their charge conjugates f; also satisfy the Klein-Gordon equation

but they have negative norm.

The inner product (2.1.19) is well-defined if it is time independent:

00 (1.0) = (=) | & [V=g00" )0 + FOuV=g0h) ~ (f = b)] (21210

\%

= (=) [ @ V=gl )G ~ £ (=) — (7 = ] (21.210)
:i/ 45V =3(f P h). (2.1.21¢)
ov

For brevity, only half of the terms have been explicitly written in steps (a) and (b).
Expression (2.1.21b) follows from (2.1.21a) after using the Klein-Gordon equation
(2.1.2), and the last step involves an integration by parts of the term containing
the spatial derivative. The time-invariance of the inner product (2.1.19) requires
that the integral (2.1.21c) over the boundary 0V of the hypersurface V' vanishes.
Assuming that the inner product is well defined, the corresponding completeness

relation can be written as:

& (x — ), (2.1.22)

DLt w) fi ) = £ (@) (0,0 = =

J
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The most general solution of the Klein-Gordon equation can be written as a

linear combination of the mode solutions f; and [}
o(x) = [ Fi(@)a; + £ (@)al]. (2.1.23)
J

Second quantisation promotes ¢(x) to an operator, called the field operator, obeying
the commutation relation (2.1.9). Consequently, the coefficients a; and a; obey the

following commutation relations:

[a], ]} =4, laj,a;] = [aj,aj] = 0. (2.1.24)

The coefficients a; of the positive norm modes f; are called annihilation operators
and are used to define the vacuum quantum state, which has the physical interpre-

tation of a state containing no particles:
a; |0) =0, for all possible j. (2.1.25)

Applying products of creation operators a; to the vacuum state (2.1.25) creates

multiparticle states, which form a basis of the Fock space:

|1 - - =y H al, [0 (2.1.26)

O'ESn =1

The sum runs over all permutations o of the first n natural numbers, all terms in
the sum being equivalent by virtue of the boson commutation relations (2.1.24).

The normalisation factor is chosen such that the vectors obey the normalisation

(1 Jmldr - Z H it (2.1.27)

oS, i=1

condition:

where, again, o is an element of the set .S,, of all permutations of the first n natural

numbers. For the case n = m = 2, equation (2.1.27) reads:

o 1
<]1Jé|]1]2> 9 (5Jm{§]232 + 5]135(5]2]1) (2.1.28)

The identity operator can be written in terms of the basis vectors (2.1.26) as:

) (0] +ZZ lel - Jnl s (2.1.29)
n=1 75
and satisfies:

=1, Iljy- - gu) =1j1--Jn)- (2.1.30)

In terms of one-particle operators, the SET (2.1.18) for a conformally coupled
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scalar field in four space-time dimensions takes the form:

T, = Z [ajafj’,];w(fh fir) + a}a;,%y(f;, f;’)

!

3J
1 o 1 «
+5 {anal Tl 1) + 5 {alar § Tw<fj,fj/>] . (21.31)
where 7,,(f, h) is the bilinear form given by:

2 1 1
Z@(ﬁh)::gvufvyh——gfvuvyh—-EQWEﬁHVAfVHh+4ffh] (2.1.32)

Expression (2.1.31) will prove useful for the computation of the expectation value

of the stress tensor in one-particle or thermal states.

Let us specialise further to mode solutions of the Klein-Gordon equation (2.1.2)

which satisfy the eigenvalue equations:

10 f; = Wj fj, W0 f; = —w;f],
—i0' f; = w; fj, —id'f} = —w; f;. (2.1.33)

An integration of these equations shows that f; ~ e™it. Hence, w; can be interpreted

as the frequency of the mode j. Under the assumptions (2.1.33), the normalisation

conditions (2.1.19) and the completeness relation (2.1.22) take the form:

(v +) [ @ovgs 6 o) lt ) = by,
(wy — w) / &/t ) f (8 ) = 0,

* / * (t 2] = L 3(p — o
zj:wj [fj(t’m)fj (tvm)+fj (tvm)fj(t7 )} \/_—g(S ( )7 (2'1'34)

which requires w; > 0 (i.e., instead of the eigenvalue w; of the Hamiltonian). Thus,
the norm and frequency of a mode f; can have opposite signs if w;w; < 0, forcing

modes with negative frequency in the set of particle modes.

The conjugate momentum (2.1.3) reads:
w(tx) = —iv/—g > w; |fi(t,x)a; — fi(t, x)al (2.1.35)
Y g J J Y ] 7 Y 71
J
hence, the Hamiltonian (2.1.6) assumes the canonical form:

1 ~
H = 5 ij(a;r-aj + aja;). (2.1.36)
J

The key restriction of having positive norm for the particle modes f; implies that
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each particle makes a contribution of w; to the total energy of the system:

|H,ab] = Gy, (2.1.37)
Equation (2.1.37) shows that particles for which w; < 0 make negative contribu-
tions to the total Hamiltonian of the system, while particles for which w; vanishes
do not contribute. These simple remarks will have important consequences for con-
structing rigidly rotating thermal states containing scalar particles, as discussed in

subsection 4.2.2.

2.1.4 Finite temperature field theory

The concept of temperature is implemented by considering a quantum state con-
taining a thermal distribution of particle states, with the Hamiltonian operator H
playing the role of energy. The expectation value of an operator A in a thermal

state at a finite inverse temperature 3 = T~! is defined as:

1, = AN .
(A) = —tx(e PH 4) = Z{ > U dale Al ...m}, (2.1.38)
n=0 J1,J25---Jn

where Z is the grand partition function:

7 = tr(e 7). (2.1.39)

The evaluation of the t.e.v.s of interest in this work requires the t.e.v.s of the
following products of two one-particle operators [72]:

0jj

Oiir
(PR i ii f ot
<ajaj >5 eBoi — 1’

<ajaj’>ﬁ T {aja ) = ( jaj’>ﬁ =0,
(2.1.40)
where the operators a; and a; satisfy the commutation relations (2.1.24) and the

commutator (2.1.37) of a} and H depends on w;.

The requirement (2.1.19) that particle modes have positive norm allows w; to
be negative, in which case the formulae (2.1.40) are no longer correct, since the
expectation value of any operator at T = 0 ( — o0) has to be equal to its vacuum
expectation value (v.e.v.). Therefore, the t.e.v. of an operator in Wick (normal)

order, defined as:
: A=A —(0]A]0), (2.1.41)

should vanish. Using (2.1.24) and (2.1.40), it can be seen that:

(: afay 2), = 0 (2.1.42)
w;<0
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Equation (2.1.42) shows that the difference between the thermal and vacuum ex-
pectation value of, for example, the SET will receive spurious contributions coming

from particle modes with negative frequencies w;, as will be seen in subsection 4.2.2.

The formulae (2.1.40) can be used to compute the t.e.v. of the Hamiltonian

(2.1.36):

J

L I (oo 5 5,
v<.H.>ﬁ:§;wj <coth7—1> ZZeﬂa—_1 (2.1.43)
where V' is the volume of space, and of the SET (2.1.31):

1
(T 1) = Z T (T (f7 i) + T f3, 5] (2.1.44)

J

It is remarkable that the t.e.v. (2.1.43) of the Hamiltonian is finite for all j. This
is not true for the SET, which receives infinite contributions from modes having

w; = 0, as discussed in subsection 4.2.2.

2.1.5 Green’s functions

Another approach to computing expectation values uses Green’s functions. In quan-
tum field theory, operators like the Hamiltonian or SET can have non-vanishing
v.e.v.s. These can be computed using appropriate regularisation and renormalisa-
tion methods to isolate and eliminate pathological divergences occuring from the
point-like singular behaviour of field commutators (2.1.9), as discussed in chap-
ter 7 for the anti-de Sitter space-time. For the purpose of calculating t.e.v.s, only
the difference between thermal states and the (zero temperature) vacuum state are
considered in this thesis. To this end, only t.e.v.s of Wick-ordered operators (i.e. of

operators with their v.e.v. subtracted) are considered in the remainder of this thesis.

The building blocks for the Green’s functions under consideration in this thesis

are the Wightman functions G*(2'z), defined with respect to the vacuum as:

G (z,2") = (0g(z)o(2)|0), G~ (z,2") = (0lp(2")p()[0) - (2.1.45)

The Wightman functions can be used for the construction of Hadamard’s elementary

function G (z, 2):
GO (a,2') = (0 {6(x), 6(2')} [0) = G*(z,") + G~ (2,2 (2.1.46)
and of the Pauli-Jordan or Schwinger function:

iG(z,2') = (0| [o(x), o(2)] |0) = GT(x,2') — G (z,2"). (2.1.47)
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To depart from the vacuum to a thermal state, the Wightman functions (2.1.45)
must be defined as t.e.v.s using (2.1.38). The cyclic property of the trace tr(ABC') =
tr(CAB) and the Heisenberg evolution equation (2.1.10) can be used to show that

Gyt it x') =Z " trle "ol (', ) o(t, )]

=Z"'tle! (¢, a")e e M p(t, )e ]
=2l (¢, ' )e M o(t —if, )]

=Z Yrfe PRt — i, z)pl (¢, ). (2.1.48)

A similar relation can be established for Gg(t,m;t’ ,a'), leading to the following
result:
Gyt m;t', @) = Gt +if, x; 1, x'). (2.1.49)

By virtue of the commutation relations (2.1.9), the commutator of the field oper-
ator with itself is just a number (i.e. it is proportional to the identity operator with
respect to the Fock space). Thus, the Schwinger function (2.1.47) is independent of
the state in which it is evaluated. To use this property, it is useful to consider its

Fourier transform

iG(z,2") = iGg(z,2") = / d—wg(w x, x)e W) (2.1.50)

27
where g(w; x,x’) = gg(w; &, ') is again independent of state. For the Fourier coeffi-
cients gg[ (w; x, &) of the thermal Wightman functions Gg?(x, x'), defined in a similar
fashion, Eq. (2.1.49) implies:

95 (wim, ') = gF (w; @, @)™ (2.1.51)

These coefficients are related to g(w;x,«’) through the definition of the Schwinger

function (2.1.47):
9wz, x')

+ . AN
95 (wiz, @) = £ =

(2.1.52)

Substituting back into Eq. (2.1.46), the following Fourier representation can be

obtained for the thermal Hadamard function:

dw ’
1 —iw(t— w
G(ﬁ)(x,x') :/ %g(w z,x')e ) coth &2, (2.1.53)
Since the construction of the thermal Hadamard function only relies on the Fourier
transform of the Schwinger function, the thermal state does not depend on the choice
of vacuum. However, t.e.v.s do depend on the choice of vacuum, through the Wick

ordering process of the operators under consideration.

The t.e.v. of the SET (2.1.18) can be expressed using the thermal Hadamard
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function, defined as AG(;) = Gg) - GW:

. 2 & v 1
(T 1)5 = 5 lim {gvﬂAGg)(x,x/)V)«g)‘y - gvﬂvyAG(ﬁl)(x,x/)

1
2 z'—z
1 /
g9 [gM V,\AG(ﬁl)(x, x’)<V_,€/ + MQAG(ﬁl)(x, x')] } , (2.1.54)

where ¢, is the bi-vector of parallel transport introduced to parallel transport

tensors from 2z’ to x along the geodesic connecting the two points, as follows:
Alj(z) = ¢, A7 (2'). (2.1.55)
Hence, g, satisfies the parallel transport equations:
2N g =0, 107G = 0. (2.1.56)

The quadratic field fluctuations (2.1.16) can be calculated as:

( (x) )y = 2 lim AGY (x, ). (2.1.57)

2 a'—zx

To introduce the Euclidean Green’s function, useful for the computation of the
contribution to the v.e.v. of the SET due to changes in geometry (the Casimir effect),

it is useful to first consider the Feynman Green’s function, defined as:

iGp(z,2") = (0|T[¢(x)o" (2')]]0)
=0(t — "G (z,2') + 0(t' — )G (z,2), (2.1.58)

where 7' is the time ordering operator, under which operators are in decreasing order
of the time parameter and the Heaviside (step) function 0(x) takes the value 1 when
its argument is positive and vanishes otherwise. The Feynman Green’s function
can be obtained either by using the mode expansion (2.1.23), or by solving the

inhomogeneous Klein-Gordon equation directly:

(@ = 12)Gr(x,a') = Gple, o) (T — 122) = —\/%_954(1: ). (2.1.50)

The v.e.v. of T},, is given in terms of G by (2.1.54) with AG(BU replaced by 2iGFp.

For the practical purpose of calculating expectation values, it is convenient to change

the time coordinate to the imaginary time 7 = ¢¢. This change to imaginary time

can be performed at the level of the manifold, by considering the following Fuclidean
coordinates [16]:

T=it, xl=a. (2.1.60)

If the components of the metric mixing space and time are zero (i.e. if g;; = 0), the
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resulting metric has positive signature and the manifold is Fuclidean. Otherwise, the
resulting manifold is quasi-Euclidean 36}, [67]. Although it involves a complex-valued
metric, the quasi-Euclidean approach can be useful for the investigation of bounded
rotating states where a speed of light surface forms, as discussed in chapter 6. The
Euclidean equivalent of the Feynman Green’s function (2.1.59) is the Euclidean

Green’s function, satisfying the inhomogeneous field equation:

2 AN £E$,<_/—2:—L 7__7_/3213_:1:1
(Be = p7)Gp(z,2") = Gp(z, o) (O — 1) \/g_E5( )0°( ), (2.1.61)

together with the requirement of regularity throughout space-time and appropriate
boundary conditions if the space-time includes a boundary. The following formula

can be used to calculate the v.e.v. of ¢
(0]¢?|0) = lim Gp(z,z"), (2.1.62)

while the SET can be calculated using:

' —x

. 2 nNe— v 1 ’
(0|7,,]0) = lim {EVMGE(x,x Wag", — gvuquE(x,x)

1 ,
g |9 VoGl 2V + 12Gp(e,2)| } . (2.1.63)

where all coordinate indices refer to Euclidean coordinates. In this work, Euclid-
ianisation is used solely for the investigation of the Casimir effect on the rotating
Minkowski space in the presence of a boundary. This is discussed for the scalar case

in subsection 5.1.3.

2.2 The quantised Dirac field

2.2.1 Gamma matrices

To construct the Dirac equation, it is necessary to couple its spin part to an or-
thonormal tetrad es = €40,. The tetrad is defined such that the metric tensor has
the components of the Minkowski metric Nap = diag(—1,1,1,1) with respect to its

dual co-frame, w® = wl‘fdx“:
g = gudx" ®dx" = U@BW@ ® WP, (2.2.1)
The co-frame is dual to the tetrad in the sense that:

=%, (2.2.2)
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In this work, hatted indices refer to components with respect to the orthonormal
tetrad.

To construct the Dirac equation, a set of four anti-commuting matrices, called
the v (gamma) matrices, must be introduced. On flat space-time, these matrices

satisfy the following anti-commutation relations:
{7&,73} = 2™ o8 = diag(—1,+1,+1, +1). (2.2.3)
and are self-adjoint with respect to the Dirac adjoint:
70 = 010 = na (2.2.4)

or equivalently, 70 is hermitian and 7% are anti-hermitian.

Following the requirement of covariance of the Dirac equation (to be introduced
later) under Lorentz transformations, the anti-hermitian generators of Lorentz trans-

formations are given by [46]:

PN 1 . A
o [ O‘,yﬁ] . (2.2.5)

The spin operators (generators of rotations) are given by:

1

¥ = 55231%2%7 (2.2.6)

where &;5; is the Levi-Civitta symbol, taking the value 1 (—1) when (1,7, k) is an

even (odd) permutation of (1,2, 3).

In this thesis, the 7 matrices are taken to be in the Dirac representation, as

follows [46):
A 1 0 : 0 o
0 _ : t_ ‘1, 2.2.7
gl (0 _1> gl <_Ui 0) (2.2.7)

where the Pauli matrices o are given by:

01 0 — 1 0
ol = : ol = ' : — , (2.2.8)
10 t 0 0 —1

and obey the following relations:
{Ui> Uj} = 251']', [Ui, O'j] = Qisijkak- (229)

The anti-hermitian generators of rotations (2.2.6) are:

7 0; 0
Y, = —— , 2.2.10
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and obey the following relations:

1
{22, > } = —2 z], [El, 2]] = 5ijk2k- (2211)

The chirality operator +° can be defined as:

01
7° = iyiy?y3 = <1 O) : (2.2.12)

The anti-commutator of ¥° with any other gamma matrix vanishes:

{»*.4"} =0. (2.2.13)

The chirality operator is especially important for massless Dirac fermions, in which

case the Minkowski Dirac equation iv*0d,1(x) = 0 can be put in the form [46]:
i O = 2pWorh, (2.2.14)

where W, is the helicity operator introduced in Eqs. (3.3.1). If v is a helicity
eigenvector with positive frequency then v% = 2\ measures the helicity of 1. If 9
is a negative frequency eigenvector of the helicity operator, v°1) = —2\, therefore,
negative chirality means negative helicity for positive frequency modes and positive
helicity for negative frequency modes.

2.2.2 Second quantisation

The Lagrangian density for a spin % Dirac field of mass p has the form [16]:

L=v=g|s (WeADw Dy eld) — ud | | (2.2.15)

where D, is the covariant spinor derivative operator:

D,=0,-T, (2.2.16)
written using the spin connection coefficients I',,, defined as:
I, = fuir, s
§ = §w# 56 (2.2.17)

The tetrad vectors {es} and their dual one-forms {w?} are defined (up to a Lorentz

transformation) by Eq. (2.2.1). The connection coefficients 44 are defined as:

[ha = M3y (WPs Vaes) (2.2.18)
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which can also be written in terms of the Cartan coeflficients ¢, ﬁﬂ:

1 . .
Ui = 5(%% + Caas — Ciap)s c&[; = (W, [e@, 63}) . (2.2.19)
The resulting Euler-Lagrange equation is the Dirac equation in a covariant form:

(iv*er Dy — pu)o(z) = 0. (2.2.20)

The Hamiltonian following from the Lagrangian (2.2.15) is:

?

H=3

V=9 (V" 0p — 0y ) . (2.2.21)
Heisenberg’s equation of motion,
[W(t, ), H(t)] = idg)(t, x), (2.2.22)

is satisfied if the following equal time anti-commutation relations hold:

{tha(t, @),y (t, )Y (t, ) } =(—g)?60c6° (@ — @),
{ta(t ), i(t, 2")} =0, (2.2.23)

where the subscripts a, b, ¢ are spinor indices and the summation of repeated indices

is implied. The solution to Heisenberg’s equation of motion is
W(t, ) = eyt z)e ), (2.2.24)

where t' is an arbitrary initial time.

2.2.3 Stress-energy tensor and conserved current

Due to the dependence of the Dirac Lagrangian (2.2.15) on the metric through the
tetrad vectors eg4, it is convenient to replace the derivative with respect to g"” in
(2.1.13) using the chain rule:

) A
_ QB H sV v S
66)) =7 (635 A + 655 )\)69“”7
which gives:
1 oL
T,LLV = —\/—__956777&/@0)5 (2225)

The quantum expression for the SET is obtained by substituting the Dirac La-
grangian density (2.2.15) in (2.2.25) and replacing any terms quadratic in the field
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by a commutator:

T,uu = _i { [Ea ’Y(VD,U,)’QD} - [D(V¢7u)v ¢] } ) (2226)

where round brackets indicate symmetrisation. The commutators above refer to the
order in which the field operators ¢ and 1) act on quantum states, with the spinor

indices left unchanged, as explained in Eq. (2.2.23).

The SET (2.2.26) is conserved by construction if ¢ is a solution of the Dirac
equation (2.2.20), i.e.:
v, " =0. (2.2.27)

The Dirac equation (2.2.20) can be used to write the trace of the SET in terms of

the quantum fermion condensate (FC) operator % W, 1/)}:
T = —L 5 9] (2.2.28)
A 5 [V Y] - 2.
The charge current (CC) is:

JHa) = = [Y."] . VuJH(z) =0, (2.2.29)

N | —

giving rise to the inner product:

() = /V o/ =g, (2.2.30)

where the integration runs over the spacelike hypersurface V' of normal dt. The
inner product is time-independent for any combinations of solutions to the Dirac
equation (2.2.20) if:

A (U, x) = /V &’z [/=g(00)y"x + V=9 07" (Dox) + ¥Io(v/=97°)x]
=- /V &’z {V/=g (007" x + 7' 0ix + [Ta, 7] X) +90:(v'V=9)x }
= — /av dSiv/=g 7' (2.2.31)

where 0V is the boundary of the volume of the system. The second line follows from
an application of the Dirac equation (2.2.20) and the general covariance [D,,7"] =0

of the v matrices:

YOx = — 7' 0ix — 7' Tax — inx,
Oy’ = — 0y + Uy + i),
0(vV=97") == 0(v'V=9) — V=9 [[x,7"] - (2.2.32)

The result is obtained using integration by parts.
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In chapters 3 and 4, where V' is the infinite unbounded space, condition (2.2.31)
is automatically satisfied, but in sections 5.2 and 5.3 it is used as the starting point

for the formulation of boundary conditions for the solutions of the Dirac equation.

2.2.4 Fock space

Let us consider a complete set of mode solutions {U;, V;} of the Dirac equation
(2.2.20), with {j} being a set of discrete or continuous labels distinguishing between
independent solutions. The modes are normalised with respect to the inner product
(2.2.30) as follows:

<Uja Uj'> = <‘/J7 V}'> = 5jj’7 <Uj7 V}'> = 0. (2233)

The modes must satisfy the completeness relation compatible with the Dirac inner

product:
D Uit @)U, (t, &) +Vi(t, @) @ V(1 @)y (t, &) = (—g) /6% (@ —a'). (2.2.34)
J
Hence, a general solution ¢ (x) of the Dirac equation can be expanded as:
Y(z) =3 [Uj@;)bj + Vj(x)d!] . (2.2.35)
J

The upgrade of 1 (z) to a quantum operator requires that it satisfies the anti-
commutation relations (2.2.23), implying that the Fourier coefficients b; and d}

introduced above must obey:

{bj,b},} - {dj,d},} — 5., (2.2.36)

with the anti-commutator of any other combination vanishing. Since ¢(x) is a
complex-valued spinor, b; # d; and b} and d;r- behave as creation operators of particles
and anti-particles, respectively. The vacuum quantum state |0) is defined as the state

vector which is annihilated by all particle and anti-particle annihilation operators:
b; |0) =d;|0) =0, for all possible k. (2.2.37)

Multiparticle states formed by applying products of creation operators are anti-

symmetric with respect to the interchange of any two partices:

e - - Jadi - - Jm) = (n!m!)’% Z (—1)° H b}ai (—=1)7 H dT-Ek |0). (2.2.38)
=1 k=1

0€Sn,0€Sm
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Here ;k denotes an anti-particle created by the operator df}k and the factor (—1)
gives the parity of the permutation o (41 if o represents an even number of trans-
positions, —1 otherwise). The anti-symmetry in the interchange of two particles is
a fundamental difference between fermion and boson matter, being the main cause

for the difference in finite temperature statistics.

In terms of one-particle operators, the SET (2.2.26) takes the form:

Tw=) {djbj'%u(vja Uy) + b}y T (U, Vi)

v/

JJ
1 1
+3 [b},bj'] T (Us, Uy) + 5 [dmd}] ZLU(VBHVJ")} , (2:2.39)
where, 7, (¢, x) is the bilinear form:

TV, x) = %(EWDV)X — D0y X)- (2.2.40)

Expression (2.2.39) can be used to compute the expectation value of the SET in

various states.

Let us specialise further to mode solutions which are eigenvectors of the Hamil-

tonian operator H = 10;:
i0U; = E;U;, i0,V; = —E;V}, (2.2.41)
in which case the Hamiltonian takes the canonical form:

H =" "E;(blb; — d;dl). (2.2.42)
J

By virtue of the anti-commutation relations (2.2.36), each quanta (either particle or

anti-particle) contributes a quantity Ej to the Hamiltonian:

6| = By, Hd] = Byl (2.2.43)

It can be seen that a consistent quantum field theory would require particle
modes to have Ej > 0. Let us recall that in the case of the scalar field, the re-
quirement of having positive norm for the particle modes implied that w; > 0,
allowing both positive and negative values for w;. This is not the case for fermions,
since both particle and anti-particle modes have positive norm, as can be seen from
(2.2.33), therefore, the second quantisation can be performed such that Ej > 0. This
discussion is key for the construction of rotating thermal states on the Minkowski
space-time in subsection 4.3.1 and on the anti de Sitter space-time (adS), in subsec-
tion 8.3.1.
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2.2.5 Field theory at finite temperature

The analogue of the formulae (2.1.40) for the expectation values of products of boson

one-particle operators takes the following form for fermions [72]:

St St
T ) _ Ty Ty
(bjbir) ;= (djdy) , = eﬁﬁjj - (bibj) 5 = (dsdj) 5 = . ;J_@’ (2.2.44)

where the operators b; and d; satisfy the anti-commutation relations (2.2.36) and
their commutator with H depends on Ej. The t.e.v. of any other combination of

two one-particle operators vanishes.

Failure to restrict Ej to non-negative values introduces temperature-independent
terms in thermal expectation values, since the formulae (2.2.44) for Ej < 0 are no
longer valid. In a similar fashion to equation (2.1.42) for scalars, the difference
between the thermal and vacuum expectation values takes the form:

(: b;bj/ :)ﬂ = (: d;r-dj/ ), —— =0 (2.2.45)

B8 B—o0
Ej<0

The t.e.v. of the Hamiltonian, divided by the (infinite) volume of space is:

GG H =Y B (1 -t ) =23 (2.2.46)

B o1
; ePEi +1
and the t.e.v. of the SET (2.2.39) is:

1
(Tw)p= oF 11 (7, (Uy, Uy) + T (V3 Vir)] - (2.2.47)
J
The t.e.v.s of both the Hamiltonian and the SET appear to be regular, since the

1 is regular for all values of E;. In

Fermi-Dirac density of states factor (e’@Ej + 1)
subsection 4.3.2 it is shown that in the case of a rotating space-time, t.e.v.s are

indeed regular for the Dirac field, but only up to the speed of light surface (SOL).

2.2.6 Green functions

As an analogue for fermions of subsection 2.1.5, the content of this subsection un-
avoidably repeats some of the structure and ideas presented in the former. As in
the scalar case, the building blocks of spinor Green’s functions are the Wightman

functions, defined as:

St(@,2") = (0l(x)d(a)]0), 8™ (xz,2") = (0[¥(2)(2)[0) , (2.2.48)
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in terms of which the Schwinger and Hadamard functions can be written as:
S(z,2') = ST (z,2') + S (x,2'), SW(z,2") = ST (x,2") — S~ (x,2'). (2.2.49)

As an anti-commutator, S(z,2’) is just a number, by virtue of the anti-commutation
relations (2.2.23), which makes the Schwinger function independent of the quantum

state.

Using the definition of t.e.v.s (2.1.38) and the evolution equation (2.2.24), the

following relations can be established for the thermal Wightman functions:
Sy (it x') = ST(t+if, @t a'). (2.2.50)
Introducing the Fourier components s? (w;x, ') of the thermal Wightman functions:

Cdw

558 (w; z, x')e ™ t=t) (2.2.51)

Sﬁi(t,w;t’,af:’) :/
and similarly for the Schwinger function S(z,z’), the following equation can be

obtained:
s(wyx, &)

14 eFwB ’

s5(wim,x') =
Using a definition analogous to (2.2.49), the thermal Hadamard function can be

written in terms of the Fourier coefficients of the Schwinger function:

(o] d . ’
s0d) - [ Epm e a2
oo 4T

By construction, the thermal Hadamard function is independent of the choice of
vacuum state. However, in this thesis, t.e.v.s shall be calculated with respect to
certain vacuum states, making their value dependent on the quantisation scheme

employed.

Alternatively, thermal states can be investigated by considering the thermal ana-

logue of the Feynman propagator, defined as:
Sp(z,2') =0t —t)ST(x,2") +0(t' —)S™ (x,2) (2.2.53a)

and satisfying
/ = IN V(] 54 r—a
Se(e =D () - ] = =,

In the maximally symmetric vacuum state of Minkowski space-time, the Feynman

(2.2.53b)

function for the free Dirac field can be written in terms of the Feynman function for
the free Klein-Gordon field [46]:

Sp(x,a') = —(iv" D, + u)Gr(x,x). (2.2.53c)
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At finite temperature, it can be shown that the Feynman propagator is anti-periodic
with respect to imaginary time (i.e. with respect tot — t+ij3, j =0,£1,£2,...).

Hence, it can be calculated as [16]:

[e.e]

Sp(z,a')? = > (1Y Sp(t +ijp, z;t' ). (2.2.54)

j=—o00

The t.e.v.s of the FC (2.2.28), CC (2.2.29) and SET (2.2.26) can be calculated

using the following formulae:

(: Yp Ng == % lim tr [ASgl)(x,x’)A(:c’, x)} , (2.2.55a)
(- TH() )y = — 3 lim e [ ASD (2, 2)A(, 2)] (2.2.55D)

(: T ) g :% ml/lingctr{
DyASY (2, 2) — ASP (&, e Dow g g% | Ala?
Ywdp) 8 ((L’,ZL’) Jé] (ZE,(L’) NV (w9 ) ((L’,l‘) )
(2.2.55¢)

where the bi-spinor of parallel transport A(z,z’) ensures that the spinors at z’ are

parallel transported to x along the geodesic connecting the two points, as follows:
Uyy(x) = Az, 2")y (). (2.2.56)
Hence, A(z,2") satisfies the parallel transport equations for spinors:
n*D,A(z,z") =0, " DAz, 2') =0, (2.2.57)

where D,y A(z,2") = 0,y A(z,2")+ Az, 2")T s (') acts on A(z,z’) from the right. The
initial conditions for Eq. (2.2.57) are:

Az, z) =1, Az, 2") = Az, 2") = A2/, v), (2.2.58)

where the first equation is saying that ¢(z) coincides with its parallel transport at
x, while the second ensures that no parallel transport is performed on scalars of the

form Y.

The Casimir effect can be computed from the Feynman Green’s function Sr by
using the formula (2.2.55¢) with AS él) replaced by 25F. As mentioned for scalars in
section 2.1.4, it is more convenient to calculate the Casimir effect using the Euclidean
Green’s function, defined on the (quasi-)Euclidean equivalent of the manifold, ob-

tained through the coordinate change (2.1.60). In addition, the Euclidean analogue
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of the gamma matrices are defined as [3§]:

=1 ve=-%’ (2.2.59)

and satisfy the anti-commutation relations:
{V@E,VIEE} — 5, (2.2.60)

The Euclidean Green’s function S is a solution to the inhomogeneous field equation:

!/ / —— v
(=D, — 1) Sg(x,2') =Sp(x,2')(Dyr” — p)

1
=— —8(1 -1z — ), (2.2.61a)
V9
where all coordinate indices refer to Euclidean coordinates. In a space-time with

full translational symmetry, it can be obtained from the Euclidean Green’s function
for a scalar field (2.1.61):

Sp(x,2") = (=10, + n)Gp(x,z'). (2.2.61b)

The fermion SET can be expressed in terms of the Euclidean Green’s function by
substituting —2:Sg for Sél) in (2.2.55¢):

—

lim tr |y, (%) D,y (2)Sp(z,2) — Sp(z,2") D, (2)7)(2))| . (2.2.62)

2.3 Summary

Aside from introducing notation and general background material used in this thesis,
sections 2.1.4 and 2.2.5 touch upon the problem of constructing thermal states in
stationary space-times. The key message is that for scalars, the second quantisation
split between particle and anti-particle modes is necessarily performed based on the
sign of the norm, i.e. positive and negative norm modes are interpreted as particle
and anti-particle modes, respectively. Thus, in systems which allow modes to have
opposite signs for their norm and frequency, the construction of thermal states of
scalar particles is problematic, as negative frequency particle modes will have infinite
occupation numbers. On the other hand, fermion modes always have positive norm.
Hence, the split between particle and anti-particle modes can be performed such
that all particle modes have positive frequencies. Only in this scenario can thermal

states be meaningfully defined.



Chapter 3. Minkowski space-time

The present chapter serves as a training ground for the analysis of rotating states
in infinite or bounded Minkowski space-time, discussed in chapters 4 and 5, respec-
tively. Section 3.2 refers to scalars and section 3.3 refers to fermions. The field
equations, their corresponding mode solutions and the second quantisation proce-
dure are presented in sections 3.2.1 and 3.3.1 and thermal states are constructed in
sections 3.2.2 and 3.3.3.

3.1 Space-time characteristics

Minkowski space-time is described by the line element:
ds* = —dt* + da? + dy* + d2* = —dt* + dp?® + p*dp* + d2?, (3.1.1)

in Cartesian and cylinidrical coordinates (z = pcosp, y = psin ) respectively. In

cylindrical coordinates, the non-vanishing Christoffel symbols are

— 1 —
e ,=p " I, =-p (3.1.2)
and the Klein-Gordon equation (2.1.2) has the form:

(—H? =82 —p'0, + p°L2 + P2 + 1i*)¢(x) = 0, (3.1.3)
where H = 10y, P, = —i0, and L, = —i0,, are the Hamiltonian and z components
of the momentum and angular momentum operators, respectively.

The Cartesian tetrad is trivially given by:
Wt = dt, Wt = dz, W = dy, W = dz,
e; = O, ez = Oy, ey = 0y, e; =0, (3.1.4)

and the Dirac equation in the Cartesian gauge (with respect to the Cartesian tetrad)

has the form:
(YH —~- P —p)p(z) =0, (3.1.5)

where H = i0; and P = —iV are the Hamiltonian and momentum operators,

respectively. When the Cartesian tetrad is used, the gamma matrices with respect

25
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to cylindrical coordinates have the following expressions:

N 0 of R 0 o¥
P = , Y = , 3.1.6
7 (—a"’ 0 ) 7 (—0“0 0 ) ( )

where the Pauli matrices ¥ and o” are given by:

0 e
apzalcosg0+a2sing0:(. ),

e 0
0% = —c'sinp + o? — i ° e 3.1.7
= @+ ocosp = —i e o | (3.1.7)

The Klein-Gordon equation (3.1.3) and Dirac equation (3.1.5) are the objects of
study of sections 3.2 and 3.3, respectively. The alternative formulation of the Dirac
theory using a cylindrical tetrad, used in the literature by, e.g., [72], is completely

equivalent to the present one.

Before ending this section, let us note that the only non-trivial conservation
equation for the SET is the p component of (2.1.17):

0,(pT")) =T%,. (3.1.8)

3.2 Scalar field theory in cylindrical coordinates

Starting from Eq. (3.1.3), this section is devoted to the construction of the quan-
tum field theory of the massive Klein-Gordon field using cylindrical coordinates in
Minkowski space-time, forming the basis of the analysis of rotating states in sec-
tion 4.2. The mode solutions and second quantisation are given in subsection 3.2.1,
followed by the computation of the t.e.v. of the SET in subsection 3.2.2, where the

Stefan-Boltzmann law is recovered.

3.2.1 Modes in cylindrical coordinates

In cylindrical coordinates, it is convenient to work with a complete set of commuting
operators (CSCO) which commute with the Klein-Gordon equation (3.1.3). The
CSCO is formed by the z components P, and L, of the momentum and angular
momentum operators P and L, respectively, and the Hamiltonian (energy) operator

H, having the expressions:

H=id, P=-iV, L=—izxxV. (3.2.1)
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The solutions f ., of the Klein-Gordon equation (3.1.3) can be chosen to be simul-

taneous eigenvectors of the above CSCO:

wakm(m) =w fwkma
szwkm(x) =k fwkm:
szwkm(x) =m fwkma (322)

where w and k are real numbers and m = 0, £1,42,.... Since L, = —i0,, the above

equations can be satisfied if fgg,, is put in the form:

Fom = e wttiketimep () (3.2.3)

where R(p) only depends on the distance p from the z axis. The Klein-Gordon
equation (3.1.3) applied to the modes (3.2.3) reduces to Bessel’s equation (A.1.1)
for Rykm(p):

(0202 + pd, + p°¢" — m*] Rugm(p) = 0,

where ¢ = y/w? — p? is the transverse component of the momentum p = /w? — p?.

There are two linearly independent solutions of the above Bessel equation: J,,(gp)

and N,,(qp), however, N,,(qp) diverges at p = 0. Thus,

where M, is a constant. To impose unit norm on the modes (3.2.3), the inner

product (2.1.19) can be used, which can be written in cylindrical coordinates as:

o= | Z 2 / " pdp / " g 6 @i B o). (3.2.5)

Using the orthogonality relation (A.3.1) for the Bessel functions J,,, it can be shown
that the normalised mode solutions of the Klein-Gordon equation have the following

expression:
1

wkm = — ——=¢€
Jo /812 |w]

The above expression allows for negative values of w to be considered, however, the

7iwt+ikz+im<p{]m(qp). (326)

norm of f g, will retain the sign of w:

(fuokms furkrm) = ;qd(k; — KO- (3.2.7)
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Furthermore, the modes (3.2.6) obey the completeness relation

mz—:oo/“ de/ dk wkm t w)latfwkm(t ac)+cc} 5(pp p)5(¢—90')5(z—z’),

(3.2.8)
in agreement with the general formula (2.1.22). In the above, c.c. stands for “com-

plex conjugate” of all previous terms.

Following the discussion in subsection 2.1.3, the split between particle and anti-
particle modes must be made on the basis of the sign of their corresponding norm.

Thus, the expansion of the quantum field operator ¢(x) can be written as:
Z / w dw / dk Ferm(T)azrm + [ (@ )aEkm} , (3.2.9)
m=—oo Y M -p
where the one-particle operators obey the canonical commutation relations:

0(FE — E' ,
[aEkma a;;/k/m/] = (T)é(k — k") 0mm s (3.2.10)

in agreement with the general theory of chapter 2.

3.2.2 Thermal expectation values

As discussed in subsection 2.1.5, the t.e.v.s can be computed from the thermal Hada-
mard function (2.1.53). To construct the thermal Hadamard function AG(ﬂl)(x, x'),
the Schwinger function G(z,z’) and the vacuum Hadamard’s elementary function
G (x,2') are required, which can be constructed using the expansion (3.2.9) of the
field operator in Eqs. (2.1.47) and (2.1.46), respectively:

zkAz—l—zmAcp ]
Z / w dw/ dk ( —iwAt ezwAt>Jm(qp)Jm(qp/)7
m

= 82w
(3.2.11a)
zkAer'LmAgJ ]
Z / w dw / kS (€7 + ) T (qp) T (P
= Ju 8miw
(3.2.11b)

In the above, Ax = x — 2/, where x is ¢, ¢ or z.

The Fourier coefficients of the Schwinger function (3.2.11a) are:

zkAerzmAcp
ama) = 3 / wdw/ 15z — ) = (= + ) ap) I ap),
o (3.2.12)
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thus, the corresponding thermal Hadamard’s function can be written as:

w dw eikAZ-i-imAap i ]
AG, 1) (x, ) Z / / dkw(e WAL 4 8 T (qp) T (ap).
I

m=—00

(3.2.13)

Thermal expectation value of ¢?

The formula (2.1.57) can be used to calculate the t.e.v. of ¢?:

(: ¢ _ZL Z / dw/ J2 (qp). (3.2.14)

The sum over m can be performed using Eq. (A.4.2), after which the k integral

becomes trivial, leading to the result:

1 *© pdw
L2, _
“¢%_wleMA' (3.2.15)

Using the following integration formula:

> T w2
Ac%quww (3.2.16)

the t.e.v. of ¢ in the massless case can be evaluated to:

1
<: ¢2 >B = 1262

(3.2.17)

An asymptotic analysis can be performed for the massive case, which will be deferred

until after the results for the t.e.v. of the SET have been presented.

The t.e.v. of the SET can be computed using the Christoffel symbols (3.1.2) by
substituting (3.2.13) in (2.1.54):

(Tay ), = — i/m d /pdkF (3.2.18)
: av‘,@_247r2m:_oo . ePo — 1 L Y o

where the only non-vanishing components of Fj are:

Fy = (6w* + p7°m* — ¢*) J2 + ¢°J),°,

Fpp = (=3p7°m* +3¢%) J2 + 2qp~ " I}, + 3¢ T2,

Fyp = (5p7°m* + ¢°) J2 = 2qp" " T}, — ¢ J))7,

Fi: = (6K* — p7°m* + ¢*) J3, — ¢°J) % (3.2.19)

In the above, the argument of all Bessel functions is gp and J), represents the deriva-

tive of J,, with respect to its argument. The hatted indices indicate that these are
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components with respect to the tetrad (3.1.4). It can be checked through straight-
forward computation that the trace is proportional to u? and therefore vanishes for a
massless field, and that the SET is conserved since it satisfies the conservation equa-
tion (3.1.8). Although not immediately obvious, the stress-tensor does not diverge

at p = 0. In fact, it is constant throughout all space, as is shown next.

The sum over m can be performed using the summation formulae in section A.4

of the appendix, after which the k integral can be performed:

1 * pdw .
(:Tas )5 = ﬁ/ﬂ eﬁw—_ldlag(w2ap2/3,p2/3apg/3)- (3.2.20)

While asymptotic methods must be employed in the case of general mass, the w

integral can be performed in the massless case using the Bose-Einstein integral:

© Wwidw v
/0 e = 55" (3.2.21)
and the SET reduces to:
w2 111 .
<Z Tdﬁ, :>ﬂ = 3064d1ag <1, g, 5, 5) = dlag(p, P, P, P) (3222)

The energy density p is equal to 227, where

274
T Kpg

is the Stefan-Boltzmann constant, ¢ is the speed of light in vacuum, Kpg is Boltz-
mann’s constant and i = h/27 is the reduced Planck constant [65]. The equation

of state takes the form: .
— =3 (n=0). (3.2.24)

In the massive case, the pressure P and energy density p are given by:

pzi/“ﬂ
672 J, ebw — 1’

1 [ wipdw
S . 3.2.25
P =on . e —1 ( )
A change of variable to ¢ = £ puts (3.2.25) in the form:
4 00
H dt 2 3/2
P= t—1
672 /1 ePrt — 1( )7
4 o)
I dt 2 1/2
— 3P =— t°—1)7°. 3.2.26
p=3P =45 [ e -1) (3.2.26)

The combination p — 3P is equal to minus the trace of the SET and is linked to
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the t.e.v. of ¢ through Eq. (2.1.16). The exponential in the denominator can be

expanded in a Taylor series:

1 oo
T D DL (3.2.27)
k=1

which, together with (A.1.17), gives:

2 0 1
=57 Z K (k).

o0

Ik K1 (kBpu). (3.2.28)

W0 =p =3P = 5

k:

Numerical experiments show that terminating the expansion (3.2.28) at k = 3 gives

an excellent approximation throughout the whole parameter space for p and (.

If S is large, the series (3.2.28) can be terminated at k = 1:

PN o (4 15
P (s ) S (rg),

2 B 3
12 (¢ >ﬁ_p 3P ~ 63(_) (1—1-%—1—...),

P 1 3
S S (3.2.29)

p o Bu 28%p
Here, the asymptotic forms (A.2.4e) for the modified Bessel functions for large values
of the argument have been used. If the argument Su of the Bessel functions is small,
Eq. (3.2.28) can be approximated using (A.2.4b):

7T2 ,U2
P= — O(u?
7T2 ,U2
— - O
P 1 5 !
; :g 1+ §7T2ﬁ2u2 + O(MQ) , (3.2.30)

confirming the expression obtained in Eq. (3.2.17) for the t.e.v. of ¢2. The valid-
ity of these approximations is analysed by comparison with results obtained using
the numerical integration of Egs. (3.2.25). Figure 3.1 shows that massive particles

behave as if they were massless when Gu < 1.
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Figure 3.1: The density p, pressure P and equation of state £ for a thermal distribution
of scalar particles are plotted as functions of the mass p of the quanta (on the left) and
as functions of the logarithm of the temperature 7= 37!, on the right. The solid black
curve shows numerical results obtained by integrating (3.2.25) while the dashed blue and
purple curves show the asymptotic expressions (3.2.29) and (3.2.30) for large and small

values of G, respectively.

3.3 Polarised Dirac fermions in cylindrical coor-

dinates

This section starts with the construction of the mode solutions of the Dirac equation
in cylindrical coordinates, which are then used for the construction of the quantum
field operator in subsection 3.3.1. In subsection 3.3.2, a discussion about our choice
for the Cartesian gauge and its connection to the cylindrical tetrad not infrequently
used in the literature is presented. The modes considered here can be used almost
unchanged in section 4.3, where rotation is introduced. Finally, subsection 3.3.3

ends this section with the construction of thermal states.
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3.3.1 Modes in cylindrical coordinates

In the construction of the mode solutions of the Klein-Gordon equation in subsec-
tion 3.2.1, the Hamiltonian H, momentum P, and angular momentum L, operators
were sufficient to construct a complete set of modes (i.e. they formed a CSCO). The
internal structure of the four-spinor solutions of the Dirac equation leaves room in
the CSCO for an extra operator. In Ref. [I1], this extra operator is chosen to be
the transverse helicity, i.e. the projection of the spin on the transverse part of the
momentum. Instead, here we choose the more familiar helicity operator Wy (i.e. the
time component of the Pauli-Lubanski vector [46]), giving the projection of the spin
on the direction of motion, using which the modes will have a form similar to that
encountered on the Kerr space-time [2I]. Bearing in mind that the angular momen-
tum operator J = L + S for the Dirac field comprises of a spin part S as well as
an orbital part L, the following equations are required to fully define the CSCO:

1(1 0 J-P h 0
J,=—ip+ = , Wy=——= ) 3.3.1a
7T (o —1) Ty (o h> (3.3.12)
The 2 x 2 helicity operator A is defined by:
P, P_
2ph =0 - P = : (3.3.1b)
P, —P,
where
Py =P +iP¥ = —ie™ (0, £ ip™'0,) . (3.3.1c)

It can be checked that (W)? = i, therefore, its eigenvalues are A = j:%.
To solve the eigenvalue equations corresponding to the chosen CSCO, the depen-
dence on t and z of the eigenvectors Up,, , labelled by their respective eigenvalues,

can be put in the form:

1 —1 1kz
ngm(tapa 9072> = %6 bk u)E\k:m(pa ()0)7 (332)

where the four-spinor u}, = only depends on p and ¢ and has the form:

CrimOpen (05 %)
W (0, 0) = | 3w ™5 , (3.3.3)
CEkm pkm<p7 90)
where the Minkowski momentum p is used to label the two-spinors gbzkm. The

constants Cyr® and Cpao™ are constrained through the helicity eigenvalue equation,

as will be shown in what follows. The angular momentum equation,

—i0, + 3 0
0 —i0, — 1

2

SO (P5 ) ( > Ok (P> ©) = MG (1 0), (3.3.4)
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can be solved by setting:

(0 so>=< "0 o () ) (33.5)

6i(m+1)¢¢>§;m(p>

where m = 0, £1, 42, .... The helicity equation constrains the two-spinors ¢, to

obey the following equation:

1 (k P

where \ = i%. Using the property:
PP =P,P.=—-8—p'9,—p %02, (3.3.7)
the functions ¢** can be shown to obey the Bessel equations:

(2202 + 20, + 2* — m2]¢)]§,;m(p) =0,
[220% + 20, + 22 — (m + 1)%|o3; (p) =0, (3.3.8)

where z = ¢p is written in terms of the longitudinal momentum ¢ = \/]m
The general solution of Eq. (3.3.8) can be written as a linear combinations of Bessel
functions of the first and second kind, however, the Bessel functions of the second
kind N,(gp) are not regular at the origin. Hence, the functions ¢/~\E;€im(P) take the

form:

Opom () = N_ T (ap), Y (p) = Ny (qp), (3.3.9)

where AN are normalisation constants. It can now be seen that the operators P,
defined in Eq. (3.3.1c), act as shifters for the angular momentum quantum number,
ie.:

PLe™? T, (qp) = +iqe" ™V T 1 (gp). (3.3.10)

Hence, the helicity equation (3.3.6) implies that N\ = igN_/(k + 2)\p), enabling

Ohr tO be written as:

2iNp A2 T, (gp)

|k
=\[1E (3.3.12)

The overall 1/4/2 factor in Eq. (3.3.11) comes from the generalized orthogonality

where

Pr=pL

N
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relation [11]:
Z Bt (P2 ) B (P2 9) = - (3.3.13)

m=—00

To finalize the construction of the mode solutions (3.3.3), the Dirac equation
(3.1.5) must be used to find the constants Cy® and Cpyoo™:

E—pn  —2pA cyw
xiiwn =0, (3.3.14)
20N —E —pn) \Cgr,

where the compatibility of the above system links the Minkowski energy E and

momentum p through E? = p? 4 p2. Furthermore, the constraint

2pA

o — licgggﬁn (3.3.15)

Ekm_E_

enables u3,,. to be put in the following form:

1 ¢ o
W (0:0) = —= | oap s " (3.3.16)
o V2 \ BEe ¢y,

where

¢, = iht% (3.3.17)

and the overall factor 1/27 ensures that the generalised orthogonality relation [11]
holds:

Z uEkm Ps ) Wik (P, 9) = Oaxr- (3.3.18)

Finally, the norm of the modes is given by the inner product (2.2.30), specialised to

cylindrical coordinates on Minkowski space-time:

00 00 2
:/ dz/ pdp/ doipTy. (3.3.19)
—00 0 0

It can be checked that the modes (3.3.2) satisfy the following orthogonality relation:

J(E— E ,
(Ubtms Upriome) = %5(]? — k') 0mmr O, (3.3.20)

hence, all modes have positive norm, in agreement with the discussion in subsec-
tion 2.2.4.

To conclude the construction of the set of modes, the charge conjugation opera-

tion must be used to link the particle modes Up,,, to the corresponding anti-particle
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modes, as follows:

Vé\km =1y UEkm7 (3'3'2”

1
. 2TTA% o iBt—ikz : 2 A%
YV ULkm _27r€ VY URkm»

Z’}/QUA* :i 0 ia? QSJr pkm

Ax 1 ( 2iAp_xe LT, +1(QP)>

i - (3.3.22)
—pre” " T (qp)

pkm \/5

Using the property (A.1.4) to change the order of the Bessel functions above, it can

be shown that io?¢y = 2iA(—1)"¢) _, _,._;, hence the anti-particle modes are
given by:
1 iBt—ikz
Vé\km(tapa @, Z) :—71_6 Btk U?Z‘km(pv 90)7 (3323&)
—)miE [ e
A p,—k,—m—1
Vkm (0, ) = = : (3.3.23D)
2 |E] ( 2‘2?(’3+¢2 k—m— 1>

So far, no assumption has been made on the sign of the Minkowski energy E.
According to the Dirac sea interpretation, the vacuum state is defined as the state
where all the states for which the eigenvalue of H is negative are filled, while those
with positive eigenvalues of H, considered above sea level, are empty. Hence, the
natural split between particle and anti-particle modes for an inertial Minkowski
observer is done based on the sign of E: particles are described by modes with
positive F, while their corresponding charge conjugates describe anti-particles. This

choice of vacuum can be made manifest by writing the field operator as:
Ze { 2)b; + Vi(x )d}} , (3.3.24)
where

] = (Ej, kj, m]-, )‘j> (3325)

refers to all the labels defining the U and V' modes and the sum runs over all their

possible combinations:

00 0o ?;
2= > / | E] dEj/ dk;. (3.3.26)
J )\]:i% m;j=—00 |EJ_‘iO# —Ppj

The step function §(E) in Eq. (3.3.24) discards all negative values of the Minkowski
energy £. The integration ends for & are £p; = ,/EJZ — p2. The operators b; and

d; annihilate particles and create anti-particles, respectively, and obey canonical
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anti-commutation rules:

{bj,bj,} - {dj,dj./} = 3(j, 7). (3.3.27)

where

o(E; — Ey)
E.

J

5(j, ) = 5(ky — Ky )omym, Grpn, - (3.3.28)

All other anti-commutators vanish.

Finally, it can be seen that Vg, is proportional to Urp ,

m 1B
Vl%\km = (_1) EUL\E,—k,—m_p (3-3-29)
or, using the notation introduced above,
V= (-1)"—=LU, U: = (—1)" =Ly 3.3.30
J ( ) ’Eg| J J ( ) |E]| J ( )
where
7 = (—E] —k?j, —my; — 1, )\]) (3331)

Massless Dirac particles are traditionally referred to as neutrinos, and are be-
lieved to be of negative chirality [46]. Anti-neutrinos also have negative chirality,
which means that neutrino and anti-neutrino modes are not related through charge
conjugation. The field operator corresponding to neutrinos and anti-neutrinos is
obtained by filtering out the positive chirality contributions to Eq. (3.3.24) using
the projector P, = (1 —~°):

U(z). (3.3.32)

3.3.2 Dirac’s equation using a cylindrical tetrad

There are quite a few examples in the literature where the Cartesian gauge used
in this thesis is not preferred [38, [71, [72, 21]. Instead, a cylindrical (or spherical,
depending on the symmetry) gauge is preferred, with respect to which the tetrad is:

Wt = dt, w? = dp, w? = pdop, W =dz,
e; = Oy, e; =0, e =p 10, e: = 0., (3.3.33)

with the only non-vanishing connection coefficient given by:

A 1
| NN—— (3.3.34)

P p
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The Dirac matrices corresponding to the tetrad indices (£, , p, 2) are now chosen to

be in the Dirac representation, i.e.:

where the Pauli matrices o/ are defined in Eqgs. (2.2.8).

The link between the Dirac theory with respect to the Cartesian and cylindrical
tetrads can be understood by finding the transformation which maps the former into

the latter. The tetrad in the Cartesian gauge is trivially:
€y = (9,5, €1 = (%7 €5 = 8y, €3 = 8Z. (3.3.36)

The change to cylindrical coordinates is described by the transformation matrix:

1 0 0 0
ozt _ |0 cosglo sing 0 | (3.3.37)
Oxv 0 —ptsing pltcosep 0
0 0 0 1
which also changes the components of the tetrad:
€y = 3,5,
ej =cospd, — p lsingd,,
es =sinpd, — p ' cos D,
e; = 0,. (3.3.38)

The cylindrical vierbein eg/ ~ 8" can be obtained from the above tetrad by

e}

applying on the tetrad (hatted) indices the following Lorentz transformation:

1 0 0 0

AG 0 cosep sing 0 _— (3.3.39)
K 0 —singp cose 0
0 0 0 1

which is just a rotation of angle ¢ about the z axis. The Lorentz transformation of

the tetrad also transforms the spinor wave-function:

YA (Az) = ePl(z) = diag(e#/2, 92, %12 9 p(z),  (3.3.40)
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which transforms the solutions (3.3.2) to:

| TP T | ¢ 1 Padm(qp)
U)\ m A(Ax = ¢ ZEt+Z(m+2)(p—sz— y K —= )
(en) () = 57 Ve ) V2 e (o)

(3.3.41)
where ® denotes the outer (Kronecker) product, which acts as follows. Let A and
B be matrices of sizes m x n and p X ¢, having elements a;; and by, respectively.
The outer product A® B creates a matrix of size np x mq according to the following

rule:
ai;y ... Q1n anB e alnB

@B=| .. (3.3.42)

Aml - Qmn amiB ... am.B

The dependence on the angular coordinate ¢ is now the same for all components of
the four-spinor (Upy,,)". Since m was initially an integer, m + 3 is now an odd half-
integer, thus guaranteeing the anti-periodicity of spinors under rotations of angle 2w
[46, [70].

To prove that m is an integer, let us investigate the behaviour of the wave

function under a rotation of angle d¢ about the z axis. The vierbein changes to:

eé\ = 0,

e = cos by 0, + sin by Oy,

62 = —sindp 0, + cos dp Oy,

et =0, (3.3.43)

which is equivalent to a Lorentz transformation A = R,(—dp). Consequently, the

Cartesian spinor undergoes the transformation:

V() = DIR.(=00)[Y (¢ — 60). (3.3.44)
Since D[R,(—2m)] = —1, the requirement of anti-periodicity of 1) implies that:
V(e —2m) = Y(p), (3.3.45)

hence, the m used in the Cartesian formulation is an integer. It is also clear that
m is an integer since m + % is the eigenvalue of the third component of the total

angular momentum, which is an odd half-integer for fermions.

Under the same transformation (3.3.43), the cylindrical vierbein does not change:

6? = 8“ e[} = 8p7 eA p_la¢, 61} = az, (3346)

p @ — 2
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therefore, the wave function transforms as:

() = Yo — 2m) = —Y(p) (3.3.47)

which shows that the m + 3 in (3.3.41) must be an odd half-integer.

In this work, the Cartesian tetrad is preferred due to the close analogy of the
corresponding Dirac spinors and spin parts of quantum operators to those in flat-

space quantum field theory.

3.3.3 Finite temperature expectation values

In this section, the formalism developed in subsection 2.2.6 is used to evaluate the
t.e.v. of the SET and the charged current. The first step is to evaluate the vacuum
Hadamard and Schwinger functions defined in Egs. (2.2.49). The latter’s Fourier
coefficients are required to construct the thermal Hadamard function (2.2.52). The
t.e.v.s of the fermion condensate (FC), charge current (CC) and stress-energy tensor
(SET) can be computed using Egs. (2.2.55) by employing the difference between the

thermal and vacuum Hadamard functions.

The thermal Hadamard’s elementary function

The Schwinger function (2.2.49) can be computed using the expansion (3.3.24) of
the field operator:

#') =Y 008) [Uj(e) © Us(a!) + V(o) @ V,(2')] (3.3.48)

where the outer product ® creates from 4 x 1 and 1 x 4 matrices U; and Uj adx4

matrix, following the algorithm presented in Eq. (3.3.42).
Using Eqgs. (3.3.2) and (3.3.23a), the Fourier coefficients of the Schwinger function

can be calculated:

i) = 3 0B 9w = ByJuye) © (o) + 8+ Byus(a) ©74(4).

(3.3.49)

Equation (2.2.52) can be used to compute the thermal Hadamard function:

SO (x,a") Ze tanh—[U RU;—V;®V;]. (3.3.50)

The vacuum Hadamard function can be calculated from Eq. (2.2.49):

SW(x, z") Z 0(E @ U;(') = Vi(z) @ V()] . (3.3.51)
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Subtracting Eq. (3.3.51) from Eq. (3.3.50) gives:

ASY (x,2)) = w(Ey) [Uj(x) @ Tj(a') = Vi(w) @ V()] , (3.3.52)

J
where w(E);) is the Fermi-Dirac thermal weight, or density of states, factor:

20(E;)

W) =T

(3.3.53)

Using Eq. (3.3.30) to replace the anti-particle modes V; by U; particle modes,
the thermal Hadamard function ASS) reduces to:

ASP (x,2') = [w(Ey) — w(Ey)|e  Brdttikidzng, (3.3.54)
J
where 7 is defined in Eq. (3.3.31) (ie. B = —FEj;) and the 4 x 4 matrix M; =
M;(z,2") = uj(x) @ u;(z’) is given by:

M. L( ¢ _%&r@*

Toam \Ble e —e¢2

) ® [@(p, ®) ® ¢}(p’,90’)] 7 (3.3.55)

where the Kronecker product ¢,(p, ¢) ® (D}(pl, ¢') is copied according to Eq. (3.3.42)
into the matrix on its left, thus producing a 4 x 4 matrix. The result Mgy, of the

sum over polarisations \; = :I:% can be written as follows:

Mpim = § My = —5
Ekm 2 X down
A=+1/2 Am Mgy 0 My —=Mpgit o M;

where the Hadamard (Schur) product symbol o has been used for the element-wise

product of two matrices of the same size, defined for two 2 x 2 matrices A, B as:

b b
AoB = (“” e 12) . (3.3.57)

a21b91  ag2bao

The matrix M; on the right of the Hadamard product symbol o is defined as:

o= [ Imlap) Tnlap) i€ IR (gp) T ()
T \demaetie g (gp) m(ap’) @Y T (ap) T (ap)

) . (3.3.58)

where €4 are defined in Eq. (3.3.17). The matrices M}, in Eq. (3.3.56) can be

computed using the explicit expression (3.3.11) for the two-spinors %\km‘

10 10 1 (k ¢
MEP QEQ 7 Mdown — @2_ ’ MX — )
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For the purpose of computing t.e.v.s, it is advantageous to express Mgy, as follows:

1 u own 1 u own
47T2MEkm = 512 ® [(MEIl;m - Mgkm) © M]] + 503 ® [(MEim + Mgkm) S M]]

0 -1
+ (1 . ) ® (M, oM. (3.3.59)

Thus, the following expression is obtained for M gg,:
10 1 {0 —1 k
oM;| + — ® 1. M;| .
01 E\1 0 q —k
3.3.60

Thermal expectation value of the fermion condensate

47T2MEkm = [%12 + 0'3:| ®

The t.e.v. of the fermion condensate (FC) can be computed from (3.3.50) using
(2.2.55a). Since the computation does not involve differentiations, the coincidence

limit can be taken first:

lim AS W Z / dE/ dk || [w(E) — w(—FE)

B>

I J2 0
—1 +U)®
(gt (o Jm>

1 (0 -1 kJ? —iqe™" Jp
oL of Fmo T I g g )
E\1 0 1qe™? Joi1Jm —kJ2
where the density of states factor w(£F) is defined in Eq. (3.3.53). Due to its anti-

symmetry with respect to £ — —F, the o3 terms drops. Similarly, the diagonal

elements in the last term are odd with respect to k — —k and hence, vanish. Fur-
thermore, the sum over m can be performed using (A.4.2), after which the integral

over k is straightforward:

> pdE

1
:vllgr AS ( S 3 ey (3.3.62)
The fermion condensate is now straightforward to compute:
— 2u [ pdE
: De=—% . 3.3.63
=2 g (3.3.63)

The integral above can be performed exactly in the massless limit using the Fermi-

Dirac integral:

& T w2
/0 dxeﬁx 1 = o3 (3.3.64)
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thus, for small masses, the fermion condensate has the following behaviour:

(), ~ 6%2 +O(12). (3.3.65)
A more in-depth analysis of the behaviour of the FC at small and large values of

the mass will be performed when the SET is discussed.

Thermal expectation value of the charge current

Since the coincidence limit (3.3.62) of AS él) is proportional to the identity matrix,

all components of the CC vanish:
1
(), = =5t {Asg”(x, 2 = :c)’y“} — 0, (3.3.66)

since try* = 0. Moreover, v° and v* anti-commute, hence the t.e.v. of the neutrino

current also vanishes:

1 1-— "}/5 (1)
cJE Y = ——tr ———ASy (z, 2" = 2)y* b = 0. 3.3.67
R i b KT (3.3.67)
The vanishing of the current everywhere is in agreement with the properties of a
thermal state: both particles and antiparticles are in thermal equilibrium at the
same temperature but give contributions of opposite sign because of their opposite

charge.

Thermal expectation value of the stress-energy tensor

The t.e.v. of the SET can be computed from Eq. (3.3.50) using the formula (2.2.55¢),
where the coincidence limit can be taken only after the derivatives have been per-
formed. The matrix structure in Eq. (3.3.60) can be used as a guide to see which
terms contribute to which component, based on what gamma matrix is multiplying
AS/él) when the trace is taken. For example, when fyf is multiplying AS;I), only the
o3 term contributes. In the case of spatial gamma matrices, only the last term can
contribute. The derivatives with respect to ¢, ¢ and z are trivial to perform, while
the p and p’ derivatives send products of the form .J,,.J,, and J,,41Jms1 to 0 and

turn J,,Jn 41 into a Wronskian, as follows:

limy [(8, = 8) Jm(ap) T (9p")] = lim0, [(8 = Opr) Jen1 (@) Jena (29)] = O,

p—p

lim (3, = 0pr) T (ap) Tms1(ap")] = — g T (ap) + p~H(m + 3) T (ap),  (3.3.68)

p—p
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where Egs. (A.1.11) were used to replace the derivatives of the Bessel functions and

the following notation was introduced:

Tn(2) = Jn(2) £ Toia(2), T(2) = 20 (2) T (2). (3.3.69)

The components of the SET can now be calculated. All off-diagonal components

vanish, while the diagonal ones reduce to:

2 (> dE 1.1.1
cTas ), = — — i E% —p3 —p3 —p? ). 3.3.70
< 2l >ﬁ 7T2 /u BBE + 1 lag (p ) 3p ) 3p ) 3p ( )

As expected from Eq. (2.2.28), the trace of the SET is proportional to the FC
(3.3.63):

= 2u2/°° pdE

. 3.3.71
2 ePE +1 ( )

In the massless case FF = p, the formula

* p3dx Tt
/0 efr 1 1203 (3:3.72)

can be used to integrate (3.3.70):

(: Tag )y = (s diag (1%% %) . (3.3.73)
The value obtained for (charged) fermions differs from that for uncharged scalars
(3.2.22) by a factor of Z, which can be explained as follows. A factor of 2 is due
to the equal contributions coming from particles and anti-particles, another factor
of 2 comes from the two different helicity states \ = i% and finally a factor of g.
The latter factor is related to the difference between Fermi-Dirac and Bose-Einstein
statistics. The hallmark of the former is the density of states factor (e + 1)7!
present in the expression for the t.e.v. of the SET (3.3.70), while the SET for a
scalar field (3.2.20) is written in terms of (¢ — 1)7!. As in the scalar case, the
equation of state P/p (where P is the pressure and p is the energy density) is equal

to % in the massless case.

If 4 # 0, an asymptotic analysis can be performed, along the lines of that for
the massive scalar field in subsection 3.2.2. Changing the variable in Eq. (3.3.73) to
t = E/p gives:

out [
p—3p="" / b2 gy, (3.3.74a)
1
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where p — 3P is minus the trace of the SET and is linked to the t.e.v. of the FC
through:

p—3P=p(:gy:),. (3.3.74b)

The exponential in the denominators above can be expanded in a Taylor series:

1 - k+1 _—kBut
=1

which, together with (A.1.17), gives:

B 212 0 (_1)k+1

P_ 77252 k2 KQ(kﬁM)7
k=1
2M3 o0 —1)k+1
p—3P = 23 (=1 K (kBp). (3.3.76)
k=1

As in the scalar case, terminating the expansion (3.3.76) at k = 3 gives an excellent

approximation throughout the whole parameter space for p and 3.

The first term in the series (3.3.76) is the same (up to a proportionality factor
of 4) as the corresponding one for scalars in Eq. (3.2.29), showing that fermions and
scalars have the same large-mass behaviour (when the series can be terminated at

k =1). The behaviour of the FC at large masses is:

oo L (BN 3

At small masses (or large temperatures), the argument G of the Bessel functions

is small and Eq. (3.3.76) can be approximated using (A.2.4b):

T I 4
~Ts051 123 T OW)
T s 4
P 1 10 -
Y Iy R H) 3.
C =3 (14 a5 oun) (33.75)

Comparing the above results to the small mass expansion (3.3.65) of the t.e.v. of the
FC confirms Eq. (3.3.74b). Figure 3.2 shows how the asymptotic expressions for the
density, pressure and equation of state for massive fermions at finite temperature
for small values of the mass (3.3.78) compare with results obtained using numerical
integration. To facilitate the comparison with the results obtained for the scalar field,
the plots show the energy density and pressure per degree of freedom, i.e. divided

by 4 for fermions (uncharged scalars have only one degree of freedom).
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Figure 3.2: On the left hand side, the density p, pressure P and equation of state %
per degree of freedom (4 for Dirac fermions) for a thermal distribution of fermions are
plotted as functions of the mass p of the quanta with 5 = 1 (first two plots) and as
functions of the logarithm of the temperature with ;1 = 1 (last plot). The solid black
curve shows numerical results, the dashed blue curve is the large u approximation
and the dashed purple curve is the small ;4 approximation. The plots on the right
compare numerical results for the density, pressure and equation of state of fermions
(blue) and bosons (red). The values for the pressure and density are always higher
for bosons, but the equation of state decreases with temperature slower for fermions.
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3.4 Summary

As part of the introductory material, this chapter introduces notation and techniques
to be used throughout this thesis. The mode solutions of the Klein Gordon and
Dirac equations, presented in sections 3.2.1 and 3.3.1, respectively, are used for
the construction of quantum states on unbounded and bounded rotating Minkowski
space-time, in chapters 4 and 5. The methods used for the construction of the
thermal two-point functions and thermal expectation values, presented in sections
3.2.2 and 3.3.3 for the Klein-Gordon and Dirac fields, respectively, are used on the
rotating Minkowski space-time in chapters 4 and 5, as well as on non-rotating and

rotating anti-de Sitter space-time, in chapters 7 and 8, respectively.



Chapter 4. Rotating Minkowski

space-time

Quantum field theory in rotating space-times has been investigated previously. Of
relevance to this chapter are especially the paper by Letaw and Pfautsch [52] on
the problem of second quantisation of scalar particles, Iyer’s paper [47] on the same
problem for fermions and Vilenkin’s paper [72] on the construction of Green’s func-
tions for scalars, fermions and photons. The problem of second quantisation is
considered in a co-rotating coordinate system obtained simply by applying a time-
dependent rotation ¢ = @y — Qty to the Minkowski coordinates (¢y, ¢m), where the
subscript M refers to coordinates with respect to the non-rotating, inertial frame in
Minkowski space-time. All these papers report problems not only with the construc-
tion of thermal states, but also with second quantisation. The resulting space-time
is not physical because the velocity of co-rotating particles increases linearly with
the distance from the rotation axis such that at the finite distance p = Q! from
the rotation axis, co-rotating particles rotate with the speed of light. The surface
defined by p = Q7! is therefore referred to as the speed of light surface (SOL).

There have been attempts at improving this simple description by using a Lorentz
transformation instead of the non-relativistic coordinate transformation ¢ — ¢ —
Ot [53, 66, 69]. The resulting metric is obtained from the Minkowski metric by

performing the coordinate transformation
t — tcoshQp — ppsinh Qp, @ — pcoshQp — % sinh 2p

and suffers from the major drawback of being impractical for exact analytic calcula-
tions. For this reason, the discussion in this thesis is restricted to the simple model

© — p — Qt, where good analytic results can be obtained and understood.

The results of sections 3.2.1 and 3.3.1 are used here for the analysis of the
quantum scalar and fermion fields, respectively, on a flat space-time rotating about a
fixed axis with constant angular velocity. The space-time metric and other properties
are discussed in section 4.1. Scalars are discussed in section 4.2 and fermions in
section 4.3. In both cases, novel analytic results are presented, which are also
published in Ref. [10].

A main point in our discussion is the fundamental difference between the freedom
in the definition of vacuum states for scalars and fermions. While for the latter,
the only restriction to how the modes are split to represent particles and anti-

particles is the preservation of the charge conjugation symmetry, particle modes

48
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for the former are constrained to having positive norm with respect to the Klein-
Gordon inner product [52]. Thus, the set of particle modes can be forced to contain
modes with negative frequencies (i.e. negative eigenvalues of the Hamiltonian). In
contrast, Iyer [47] shows that for fermions it is possible to choose a vacuum state
such that all particle states have positive frequencies with respect to the co-rotating
Hamiltonian. The possibility of quantising the field such that no negative frequency
modes describe particle states is important for the consistent definition of thermal
states. As discussed by Vilenkin [72], particle modes with negative frequency induce

spurious temperature-independent terms in thermal expectation values.

The main result of this chapter is the derivation of analytic formulae for co-
rotating t.e.v.s of massless fermions, in subsection 4.3.2. These results represent
original work which has been published in Ref. [10]. A similar method which allowed
the analytic analysis of fermion t.e.v.s is applied to the case of the scalar field, where
it is known that co-rotating thermal states are ill-defined, to isolate the divergent

contributions from finite terms which can be interpreted physically.

4.1 Space-time characteristics

The space-time rotating with angular speed 2 about the z-axis can be described

using a co-rotating coordinate system, by performing the coordinate transformation

t=tu, P = pPum, o = oy — Qb Z =2y (4.1.1)

on the original Minkowski coordinates {ts, par, ©ar, 2ar}. Throughout this chapter,
coordinate indices refer to the co-rotating coordinate system, with respect to which

the line element in cylindrical coordinates has the form:
ds* = —edt* + 2p°Qdt dp + dp?® + p*dp* + d2?, (4.1.2)

where
e=1-p°Q? (4.1.3)

decreases to 0 as the SOL is approached. The metric g, and its inverse g"” have

the following components:

—(1—p%Q% 0 p*Q 0 -1 0 Q 0
0 1 0 O y 0 1 0 0
Juv = 9 9 s g“ = 9 9 . (414)
pSd 0 po O Q 0 —Q°+p 0
0 0 0 1 0 O 0 1
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The non-vanishing Christoffel symbols for the metric (4.1.4) are given by:

Q 1
thp = ;a FLPSDP = ;7 Fptt = _pQ2> Fptgo = _Qp7 Fp‘p‘p = —p.
(4.1.5)

In the rotating space-time, the complete system of commuting operators (CSCO)
contains the same operators as in Minkowski space-time, but this time with respect
to the rotating coordinates. Thus, the CSCO for the Klein-Gordon field is comprised
of H, P, and L, and for the Dirac field, L, is replaced by J, and the helicity operator
Wy is added, as explained in subsection 3.3.1. The main difference is that now the
Hamiltonian H = 70, contains a derivative with respect to the time in the co-rotating

frame and is linked to the Minkowski operators through:
H = Hy — QL. (4.1.6)
The Klein-Gordon equation (2.1.2) can be written as:
[—(H+ QL.+ p L2+ P2 = 05— p 10,4 p?] ¢(z) = 0, (4.1.7)

naturally incorporating a coupling between the angular momentum operator L and
the angular velocity €2 of the rotation of the space-time through the term € - L =
QL,.

Transforming back to Cartesian coordinates, the line element (4.1.2) takes the

form:
ds® = —[1 — (2 + y*)Q?]dt* + 220 dt dy — 2yQ dt dx + da® + dy* +dz*,  (4.1.8)

where x = pcosp and y = psin . In matrix form, the metric and its inverse have

components:
—(1— (2 + )% —yQ 20 0
B —y<2 1 0 O
i = 29 0o 1 of’
0 0 0 1
-1 —y<2 x€) 0
—yQ 1 —y?Q? Q2 0
P ’ Y (4.1.9)
6 ryQ?  1—-2202 0
0 0 0 1
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A natural choice for the tetrad coframe defined by (2.2.1) is:

wh = dt, w® = —Qydt + dz,
w® = dz, w? = Qu dt + dy, (4.1.10)

with the dual frame vectors given by:

e; =0 — 00, = 0, + Wo, — Wd,, e =0, (4.1.11)

(2

or, in cylindrical coordinates:
e;=0,—00,, e;=0, e;=p 0, e, =07.. (4.1.12)
The ensuing non-zero Cartan coefficients (2.2.19) are:
e.V=cF=Q. (4.1.13)

The Cartan coefficients can be used to compute the only non-vanishing connection
coefficient (2.2.18):
I.

gt —

—Q, (4.1.14)

which in turn can be used to calculate the spin connection (2.2.16):

D;=08,—Q0,+%., D;=0,. (4.1.15)

(3

Here, 3, = %vivi is the anti-hermitian spin part of the generator of rotations about
the z-axis. The covariant derivatives (4.1.15) can be expressed with respect to the
operators of the CSCO as follows:

1Dy = Ho + QJ, —iD; = P, (4.1.16)
and can be substituted into Eq. (2.2.20) to write the Dirac equation as:
W(H +QJ?) =~ - P — pl(x) = 0, (4.1.17)

where v = (v%,7Y,7*) contains the spatial gamma matrices defined in subsec-
tion 2.2.1. The Dirac equation also contains the coupling Q2 - J = QJ. between

the angular momentum operator J and the angular velocity €2 of the space-time.

It is also useful to analyse the connection between the components of vectors
and tensors with respect to the Cartesian and cylindrical coordinate bases and with

respect to the Cartesian tetrad. The components of the stress tensor in two different
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coordinate systems {z#} and {2/} are related through:

T;IW _ 7 ox* Oz

N A (4.1.18)

Applying the above prescription to the transition from Cartesian coordinates (x, y, 2)

to cylindrical coordinates (p, ¢, z) gives:

Ti, = To, cosp + To,sin g,
T,,= Ty, cosp~+T,,sinp,
p’lTw = —To, sin ¢ + Ty, cos @,
p’lTw = —T,.sinp + T, cos g,
T,, =T cos?  + 2T, sinp cos ¢ + Ty, sin? o,
p 2T, = Ty sin® p — 2T, sin @ cos ¢ + T, cos® p,
p T,y = —Tyysingcos p + Ty, (cos® p — sin® @) + Ty, sin p cos p. (4.1.19)

The components of the SET with respect to a tetrad can be written as:
T.s= egeETw, (4.1.20)

giving rise to the following expressions with respect to the tetrad (4.1.12):

Tff = T;ft - QQ,I;icp + QQT@@; Tgﬁ = j—‘tp — QT%O,

Tip = p_l(Tw = 0Ty, Ty =T, — QT

Top = p_lTwn Ty = p_QTW,,

Type = p T, (4.1.21)

which can be inverted as follows:

Ty = Ty + 2pQT 3, + p* QT Tip = Top + P25,

Tip = pTip + p"QT sy, Ti. = Ty + pQT 5z,

Top = pTpp, Top = p2T¢¢,

Too = pTpz, (4.1.22)

Similarly, the components of the current vector with respect to the cylindrical

coordinate system can be written as:

J? = J" cosp + JYsin p, J? = —plsinpJ® 4+ ptcospJY, (4.1.23)
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and the only tetrad component which differs from the coordinate components is:

J? = pJ? + pQJt. (4.1.24)

Before ending this section, it is worth mentioning that Eqgs. (4.1.7) and (4.1.17)
can be obtained by applying the following rotation:

R[] = %=, (4.1.25)

on the Minkowski coordinates in Eqs. (2.1.2) and (2.2.20), with J, replaced by L,
for the Klein-Gordon field. The above transformation can be used to obtain the
modes and Green’s functions from the Minkowski ones calculated in the previous

chapter.

4.2 Scalar field theory in a rotating background

Subsection 4.2.1 starts this section by summarising the results presented by Letaw
and Pfautsch [52] and Duffy and Ottewill [33] regarding the construction of modes
and second quantisation of the Klein-Gordon field in co-rotating coordinates. In
subsection 4.2.2, the t.e.v. of the SET is shown to be infinite throughout space-time.
Using analytic techniques, the divergences in the t.e.v. of the SET are isolated,
facilitating the understanding of their origin, while physical information can be

extracted from the finite remainder.

4.2.1 Rigidly rotating modes

To obtain the solutions of the Klein-Gordon equation (4.1.7) in co-rotating coor-
diantes (4.1.1), it is sufficient to apply the rotation (4.1.25) to the Minkowski modes
(3.2.6). Since in the scalar case, J, = —i0,, the transformation is just a translation

of the ¢ coordinate, i.e.:

o) = (%)n 82{0@ = flp+Qt). (4.2.1)

Thus, the following mode solutions are obtained [33]:

1

/872 |w]

where w = w — Qm is the eigenvalue of the Hamiltonian H = i0; and the transverse

momentum is defined as ¢ = y/w? — k2 — p?2. The Klein-Gordon inner product

form(x) = e~ Witik=rime 1 (gp), (4.2.2)
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(3.2.5) changes according to Eq. (2.1.19) to

(f.9) :/_Zdz/ooopdp/ozwdgof (70 +i29;) g, (4.2.3)

therefore, the norm of the modes f i, is still given by Eq. (3.2.7). Hence, even
though the frequency of the mode f_,, is W, the sign of its norm is still controlled

by the Minkowski energy w, as shown in Eq. (2.1.33).
As discussed by Letaw and Pfautsch [52], in the expansion of the field operator

o(z), the coefficients of positive norm modes have the interpretation of particle

annihilation operators, thus, the field operator must be expanded as:

Z / wdw / @ { ot (2t + (@)L } (4.2.4)

m=—0oQ

where
p=\Vw?—pu? (4.2.5)

The vacuum state is defined as the state annihilated by all a,,, operators:
Aurm |0) = 0. (4.2.6)

A comparison at the same point in space-time ¢ = @y — Qty; of (4.2.4) and the
Minkowski expansion (3.2.9) of the field operator shows that the one-particle oper-
ators in the rotating space-time are equal to their Minkowski counterparts, hence,
the vacuum state seen by the rotating observer is simply the Minkowski vacuum. As
discussed in Ref. [52], the norms (rather than the frequencies) of the Klein-Gordon
modes restrict the choice of vacuum such that the only natural choice for a rotating
vacuum is just the Minkowski vacuum. Consequently, the set of particle modes con-
tains modes with negative frequency, which make the construction of thermal states

problematic, as discussed in subsection 2.1.4.

4.2.2 Rigidly rotating thermal states

The vacuum Schwinger (2.1.47) and Hadamard (2.1.46) functions can be obtained
either by applying rotations to their Minkowski analogues in Egs. (3.2.11a) and
(3.2.11b), respectively, or by using the mode expansion of the field operator (4.2.4):

Z / 87T2 / dk ezkAz( —iwAt+imAyp uuAt zmAgp)Jm<qp) Jm(qp/),

1) ZE .T Z / 87T2/ dk zk:Az( —iwAt+imAyp te IwWAt— zmAga)Jm(qp)Jm(qpl)

(4.2.7)
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The formula (2.1.53) can be used to compute the thermal Hadamard function. The
t.e.v. of the SET is the difference between the expectation value of the SET at finite
temperature and its v.e.v., which can be calculated using the difference between the

thermal and vacuum Hadamard functions:

zk;Az _ ) . )
AG(l (1: .T 47T2 Z / dtd/ dk’ —uuAt—i—zmAgo + 6zwAt—7,mAtp)
X Jm(ap) Jm(qp). (4.2.8)

The density of states factor (e’ — 1)7! becomes infinite when the energy @ =
w—mf) measured with respect to the co-rotating frame vanishes, making the thermal
Hadamard function and any quantities derived from it divergent [33]. However,
it is possible to write down expressions for the t.e.v.s and, by applying analytic
techniques, to isolate the divergent parts from a remainder which can be interpreted

physically by direct analogy to the fermion case, presented in subsection 4.3.2.

Mode sum expressions for t.e.v.s

The mode sum expression for the t.e.v.s can be computed using the formulae (2.1.57)
for ¢* and (2.1.54) for the SET. To help simplify notation, it is useful to introduce
the following definition:

P
Gare = 73 Z / eﬁw_l / dk w'q'm"Jy (ap), (4.2.9)

where Gape = Gape(p) are functions of the distance p from the rotation axis, temper-
ature 3, angular momentum of the rotation {2 and the mass u of the field quanta.
The t.e.v. of ¢? is just half the coincidence limit of the thermal Hadamard function
(4.2.8):

(9% )5 = %Gooo- (4.2.10)

To evaluate the t.e.v. of the SET, the coefficient of g,, in (2.1.54) must be

computed:

. ,@)\/ 2
lim [V, AGYTy + 2G| = Z/ eﬁw—1/ dk
x [(p72m® — ¢*)J2 (ap) + ¢° T, 2 (qp)] . (4.2.11)

The terms involving derivatives of J,, can be expressed in terms of G, using the



56 CHAPTER 4. ROTATING MINKOWSKI SPACE-TIME

following relations:

d
2qJ,n(ap) 7., (ap) Zd—an(qp),

d> 1d m?
>J! 2(qp ( + ——) J2 (gp) + <q2 - —) J2 (qp), 4.2.12
(gp) = i o (qp) p (gp) ( )
allowing Eq. (4.2.11) to be put in the form:

lim |¢"¥V,AGYV, + 12 AGY 1A, 42.13
z1_r)19} [g Ny } d_p2+pd 000- (4.2.13)

Equation (4.2.13) can be used in conjunction with the Christoffel symbols (4.1.5) to
obtain the covariant components of the SET (2.1.54) with respect to the cylindrical

coordinate system:

(: T )5 = 1%2 Z / eﬁw_l/ dk F, (4.2.14)

with the components F),, given by:

Fy = [60° + (p7°m® — ¢*)(1 — p*)] J7, — 2QPqpJyJ), + ¢ (1 — p*Q*) J} 2,
= (=6am — Qm* + Qq*p®) J2, — 2QqpJnJ), — Qg°p° )2,
Fop = (5m* + ¢*0%) 3, — 2qpJmd;, — ¢p° T2,
= (=3p*m* +3¢°) J}, + 2qp " I dy, + 3¢° T2,
F.. = (6K — p’m* + ¢*) J2, — ¢*J),.%, (4.2.15)

where the argument of the Bessel functions is gp. The tetrad components (4.1.21)
of the SET have a slightly simplified form:

b = (6w —l—p ‘m?—®) I+ 40T
Fpp — ( 3p m + 3q ) JTZn + 2qp_1JmJ7/n + 3q2‘]7/n2’

Fppo = (5p7°m” + ¢%) J2, — 2qp~ " I}, — ¢° )7,
Fip = (6K* — p*m* + ¢*) J2, — ¢*J} 2, (4.2.16)

with the Bessel functions taking the argument gp. Equations (4.2.12) can be used
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to write the tetrad components of Eq. (4.2.14) in terms of the functions G ,:

1 1 d? 1d
(: Tii )5 =5G200 + 57 < + ——) Gooo

2 24 \dp?> pdp

1

(: Tt :>5 = %Glm
1 d? 5 d

(: Typ 1>5 = (gd_p? + 24, dp > Gooo + = Gozo - 2—p2G002,

1 d? 1 d 1
(: Ty 1>5 = (_ﬂd_pQ — S_pd_p) Gooo + 2—p20002,
(- Tse ) =35 (oo — Goan — 12Goo0) — 5 £ 1dyg (4.2.17)
tlzzl)g = 200 020 — M %000 a2 " pdp 000- -4

The functions Gy can be written as a sum of a divergent (infinite) quantity and
finite terms. The object of the remainder of this subsection is to identify and in-
terpret these finite remainders. The results are given after the following algebraic
digresion in Egs. (4.2.50) and (4.2.51).

Bose-Einstein integrals for massless rotating states

While often the logical order of presenting results in quantum field theory is for
the scalar field before the fermion field, the method we employ for the analysis of
t.e.v.s is rigorously motivated mathematically for the Dirac field, as described after
Eq. (4.3.24). The idea is to expand the density of states factor (e’ — 1)~ about
Q =0, as follows:

> ) d” 1
o Z ' (eﬁw—1)' (4.2.18)

n=0

The above expansion is not well defined when w — 2m < 0, since the expression on
the right hand side of Eq. (4.2.18) is positive for all w > 0, while (e’ — 1)~! < 0.
This discrepancy arises due to the existence of the pole in the Bose-Einstein density
of states factor at w = Qm. In spite of its drawbacks when used for the scalar case,
the present method can still be used to extract physical information from otherwise

infinite t.e.v.s. Thus, substituting the expansion (4.2.18) in Eq. (4.2.9) gives:

1 o n o) dm
= — d _ dk n+c 72
abc 2 EO /’u ww* do™ ( — 1) / q E m J qp

) (4.2.19)

Sum over m. Due to the symmetry of J2 (gp) under the transformation m — —m,

the sum over m in Eq. (4.2.19) vanishes unless n + ¢ is even, in which case it can be
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written as: )
2 72 (L) _ 2) .2
Z m Jm(Z) = Z Wandz J7 (4220)
m=—o00 7=0 2
where the top limit of the sum is n, as will be shown shortly. The coefficients a, ;
can be determined by using Eq. (A.1.5) to replace J2(z) with a power series, as

follows:

o TGEY (e,
)= T GG (4.2.21)

j=|m|

Hence, a,; can be written as:

Qn,j = Zj: (j = m*". (4.2.22)

Writing

(€™, (4.2.23)

the coefficients a, ; can be put in the form:

1 . d2n aj 2k —a\2k—m
ap,; = 2 ilir(l] T J mz::o (m) (—e™) : (4.2.24)

Since the over m is just the binomial expansion of (1 — ™) the coefficient a,,

simplifies to:
1 . d*™ A
An,j = @) clyli% T (2 sinh 5) : (4.2.25)

It is clear that a,; vanishes if j > n, thus proving that the series in Eq. (4.2.20)
terminates at j = n. Of interest for the computation of the t.e.v. of the SET are

the following terms:

aj; =1,

1 .. )
A1, :EJ(QJ +1)(25 + 2),

iv2s =130 (27 + 12+ 2)(25 +3)(2 +4)(55 — 1) (4.2.26)

The integral with respect to k. Following the steps in the previous paragraph,
the sum over m in the expression (4.2.19) for Gg. is replaced by a sum over j
involving powers of ¢q. The integral over k£ can be computed by changing variables
to k = pcosf, such that:

P ™
/ dkq" = p" Ly, L = / " d0 (cos 0)". (4.2.27)
0 0
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An integration by parts shows that I, = nl,_1/(n +1). Since Iy = § and I; = 1,

it can be shown that:

I, = —2% : (4.2.28)
L(*?)
implying (252) /7
P L(22). /7
dk " = —2_=—p"*.. 4.2.29
/ o(257) 4229

Having found a way to perform the sum over m and the integral over k in Eq. (4.2.19),

it remains to tackle the integral over w, then finally the sum over n.

Analytic expressions in the massless case. While we do not have a method
to tackle the integrals over w in Eq. (4.2.19) for arbitrary masses, we present here an
analytic method to compute them in the massless case. To obtain definite expres-
sions, it is necessary to consider the values of a, b and c¢ relevant to the computation
of the t.e.v.s of ¢? (4.2.10) and of the SET (4.2.16), i.e. of the functions Gggg, G0,
Go20, Gooz and G-

Let us start with Gpgp. Performing the sum over m and integral over k in
Eq. (4.2.19) yields:

02 p2j n,j 00 9jt1 d2n 1
§ e ’ . 42,
Gooo = < (2n) &= (2j 1 1) /“ dwp™ e (eﬁw — 1) (4.2.30)

7=0

It is convenient to interchange the sum over j with the sum over n, which in turn

can be shifted downwards to n — n + j, such that Gy takes the form:

(pQ)% Oy /OO giyy A2 1
Gooo = dw p™ . . (4.2.31
000 = "~ Z 2j + 1 Z (2n + 2§)! WP 2y \ e ( )

To proceed further, it is necessary to set u = 0, in which case p = w. Before giving

the result for the integral over w, it is worth noticing that

1 1
=—1. 4.2.32
eﬁw—1+e—5w—1 ( )

Hence, apart from the term —%, the series expansion of the Bose-Einstein density
of states factor contains only odd powers of w, as follows:
1 1 Lw
———=————+—+40 4.2.33
ePv —1 ﬁu) 2 12 ("), ( )
The first term in the above expansion is divergent as w — 0, giving rise to the

divergent behaviour of the functions Gg.. Using Eq. (3.2.16), the integral over w in
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Eq. (4.2.31) can be performed:

(72

6_ﬁ2 n = 0,
) ) d2j+2n 1 1 1
2j+1 — : | - - - _
/0 dw w e <€ﬂw_1> (27 + 1! x +ﬁi1£>%w n=1,
1
k5(2n_2) }}L%uﬂ — n>1
(4.2.34)

All terms with n > 1 diverge at the w = 0 end of the integral and the n = 1 term
has both a temperature-independent finite part and a divergent part. Therefore,
Gooo can be put in the form:

1 & w502 02N 02 (29)(2n)a, 1
GOOO _ = Z(IOQ>2J m J + = ( ) ( n) Antj+1,j lim

632 24 B (2n+2j+2)  w-0wnt
(4.2.35)

The sum over j can be performed for the finite terms using the following formula,

J=0

established by induction:

o0

> (1 —ey(2j+2)...(2) +2k) = 2kle ™, (4.2.36)

j=0

where
e=1-p*0% (4.2.37)

Denoting by G

oo the infinite terms appearing in G, the result for Gy can be put

in the form:
1 p*Q4 -
Gooo = 6Pz 2amee? + Gooos (4.2.38)

where the sum involving j in the second term in Eq. (4.2.35) has been shifted

upwards by one unit, giving rise to a p*Q? factor in Eq. (4.2.38). In the above,

> > QQ" (2n)la 1
0o 2 n+j+1,j 1.
Gooo = 25 E (p)~ E 2n 21 2) })12% WESE (4.2.39)

n—=

Substituting a = 2 and b = ¢ = 0 in (4.2.19) gives:

0 2 0?2 . 04 o -
Gao = Z(PQ)2J(2] +2)(2j +3) [9054 72ﬁ2] - 2880#2‘7(5‘] — 1| +Gxo
=0
2 5 ZQ4 QQ6
T 39+ Tema (5~ 5 (6 e+ 1) + G,

" 15343 3672eb

(4.2.40)

where the round brackets evaluate to 1 on the rotation axis (i.e. when € = 1). The
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infinite terms are grouped in G5, as follows:

& = Q27(27 + 3)N(2n) Ay o 1
o 7 0)% PHEI Jim ——— . 4.2.41
oo = 50 ;(p) ; 2+ D)(2n+2j + 4)] w0 w2l (42.41)

Repeating the same steps for Gy yields:

o ) 2 Q2 Q4
Goxo =Y _(p)¥ (2] +2) {9064 + L 55027 (7 ) v+ G5

=0
272 2p2§24 . . QQ6 15 63 11 E
with
2§ Q" (2 + 2)%(25)1(2n) a0 |
0 = a5 2 (1D R Jim 4.2.43
G020 723 jzo(p ) HZ:O (2n o 4) w—>0 T ( )

In the computation of Gygg, the sum over j runs from 0 to n + 1:

()2n n+l Unii. ) 0 ) d2n 1
G nT % / dw Wt . (4.2.44
002 = 2 (2n) , 2] i 1)a”p ; W W don \ oo — 1 ( )

By treating the j = n + 1 case separately (and relabelling the summation index n

by 7), the following expression can be obtained:

P_2G002=Z(PQ)2j(2j+2)[ 2]+ 1) (24 3)(2) + 4)

A 905 14432
7=0
4
988072 (2] + 5)(2j + 6)<5j + 4)] + P_2G882
(4 —3¢)  Q*(2—¢) o 27 1.2 1.3 —2 00
45343 6324 2472ed (4 -5 =58 — 58°) + 0 Gooas
(4.2.45)
where
Q2 (25 + 2)1(2n) Ay jis, 1
,2 ) n+7+3,5+1 1.
P~ "Gooa = 2/8 Z pQ)% (2n+ 2 + 1) }JIE(I) o (4.2.46)

For G1p1, the sum over n runs through odd values:
0 02n n+l Uit . poo g2t 1
Gio1 = — ntli dw W* T2 .
ot WQHZO 2n + 1) 'Z 2]+1 /0 WO ot \ B _ 1

(4.2.47)

Bearing in mind that this time the number of integrations by parts performed in

the integration over w is odd, consequently changing the minus sign in front of the
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sum over n into a plus, the following result can be obtained:

Glot N o2 . 2r? (i +2) (G +3)6i+4)] | G
= DY (j+1 2 -
20 jzo(p PUDUHY |55+ —gp 7202 20
47 202 Q4 1
~5as T ﬁ2€4(§ —38) — g (049 + 20 G (4.2.48)
where
1 QS o= 2727+ DN(2n) iz 1
Gx, = 0)% UaE R | . (424
2000 = 125 JZE(” ) nz; 2+ 3@+ 15) oo (4249)

Thermal expectation values for massless rotating states

Putting all pieces together, the t.e.v. of ¢? (4.2.10) can be written in the massless
case using the result in Eq. (4.2.38) as:

1 0?4

A2\ _ 2
(19" )= op:  asea T ¢ (4.2.50)

[con

Similarly, the t.e.v. of the SET (4.2.16) can be written using Eqgs. (4.2.40), (4.2.42),
(4.2.45) and (4.2.48) as:

(: Ty )5 zﬁigg (5 — 3¢) +er4(6_56)
— %7:255 (12— e 32 — L%y 4 7o)
Tt g =— 22 45254253 T 9;22254 (5-3¢) - 60(73;155 (5—4e) + T3,
( Ton s =g+ o — e (1= 3o 529) + T35,
2 2

™

* 36324

Q4 141 17 2 3 .3 00
— s 12— et e — ) + T3
m Q2 o 9 17 12

T ), = — 1
< >ﬁ 905452 36ﬁ263 + 144724 (2 5 10

e?) + T53. (4.2.51)



4.2. SCALAR FIELD THEORY IN A ROTATING BACKGROUND 63

In the above, ¢ = 1 — p?Q?. Using Egs. (4.1.22), the t.e.v. of the SET can be

expressed with respect to the coordinate basis:

. ) w? 0?2 Q 9 19 3.2 00
CTids = 5055 So ~ T (2 s Tt ) I
<:T@t:>5:_ 72 B 02 N 704 (4—5—1—7€+i€2)+ﬁ
P20 30012 127 | T20met M T T M T a0y
(: Top 2) :W2(4 —3e) | %6 —5¢) - 13 (12—l T — 3% + Sep
P 9031 362" 14dn2ed =TT o '
(4.2.52)

All t.e.v.s presented in this section can be written as a sum of three type of
terms, as follows. For a generic operator A, its t.e.v. can be split as:

(A= (ADEY 4 APV 4 (AT (4.2.53)

where (: A :)ghys indicates the physical terms, proportional to 37* or 372 (only to

72 for ¢?), (- A :);}Mious contains any temperature-independent contributions and

(+ A1) contains the infinite terms.

The terms proportional to 5% or 372 are the terms we were looking for. The ap-
plication of an analogous (but thoroughly rigorous) analysis to the t.e.v.s of fermions
in subsection 4.3.2 reveals terms with similar features when thermal states with
respect to the rotating (Iyer) vacuum are considered (i.e. the vacuum state corre-
sponding to a split of modes which does not allow particle modes to have negative
frequencies). These terms vanish in the vacuum state (as  — oo) and allow the
non-rotating t.e.v.s in subsection 3.2.2 to be recovered when € is set to 0. The
t.e.v. of the SET receives on the rotation axis, where ¢ = 1 and the terms in the
parentheses reduce to 1, a correction to the non-rotating case proportional to 02,
showing that the effects of the rotation can be detected even on its axis. All the
physical terms diverge as the speed of light surface (SOL) is approached (i.e. ¢ — 0),
following an inverse power law with respect to the distance to the latter. The terms
proportional to 37 (in the case of the SET) and to 372 (for ¢?) agree with the
“Planckian forms” given in Ref. [33]. The numerical results presented in subsec-
tion 5.1.2 for rotating thermal states inside a bounding cylinder show a very good

agreement with the Planckian forms at large enough values of 3€2. For completeness,
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the physical terms are given below:

. ;2 .\phys o 1 P2Q4 2
S T2 a8nE | Poo: (4:2.542)
<.TM.>phyS_ U (é_l )+Q—2(6_5) (4254b)
S AR _305483 3 3¢ 36324 € -
hvs 2m? 02
(T 0™ == | f5gis + ggear (2 29| (42.540)
2 2
. \Phys ™ Q
(: T >Z Y _905482 + 36323’ (4.2.54d)
.Tﬂ.phys_ﬂ_2 4-—3 9—26—5 4.2.54
w2 0?

<: Ts: .)phys _

% =505 ~ saFe (4.2.54f)

It is remarkable that the above results allow the analytic prediction that (: T}: :)ghyS
vanishes on the rotation axis when §Q = m4/2/5:

(: Ts :)ghYSJ 0. (4.2.55)

p=0 =
BQ=mn,/2
The temperature-independent terms (: A :>sﬂpmi°us are induced by the inclusion of
modes with w < 0 in the set of particle modes, through the mechanism explained in
subsection 2.1.4 and are analogous to the temperature-independent terms in t.e.v.s
obtained for fermions with respect to the Minkowski (Vilenkin) vacuum state, as
discussed in subsection 4.3.2. They are spurious in the sense that t.e.v.s with respect
to a thermal state constructed relative to the vacuum state should vanish as the
temperature approaches 0. In a similar manner to the terms proportional to 5%
or 372, these terms diverge as inverse powers of the distance to the SOL. However,

they vanish identically in the absence of rotation.

The infinite terms (: A >Z° appear due to the divergent contributions made by
modes with w = 0. Their exact expression is given by the corresponding infinite
terms G35, in Ggpe. All the terms G2, relevant for the t.e.v.s presented above are
proportional to 237!, thus vanishing when the rotation is absent (i.e. = 0), as
would be expected, since the non-rotating t.e.v.s given in subsection 3.2.2 are all
finite. Taking the limit 8 — oo (vacuum state limit) sends the infinite contributions

to 0, showing that they are not spurious in the temperature-independent sense.

In the following section, similar techniques are used to find analytic expressions
for expectation values for fermion thermal quantum states. In contrast to the scalar
case, the method is completely valid and all the results obtained stay finite inside the
SOL. The divergent behaviour as the SOL is approached is retained, together with
the presence of spurious temperature-independent terms when the thermal state is

constructed with respect to the Minkowski (Vilenkin) vacuum.
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4.2.3 Summary

The fundamental requirement that particle modes must have positive norm con-
strains the rotating vacuum state to be equivalent to the Minkowski vacuum state,
forcing modes with negative frequencies with respect to the Hamiltonian of the ro-
tating system into the set of particle modes. Moreover, the Bose-Einstein density
of states factor diverges for modes with vanishing rotating frequencies but non-zero

Minkowski energies, making thermal states unattainable for scalar particles.

Following the analysis of thermal states for Dirac fermions, presented in subsec-
tion 4.3.2, it is possible to isolate the divergences in t.e.v.s and to identify finite
terms which can be interpreted physically. Thus, the Planckian forms of Ref. [33]
emerge, together with extra correction terms having the same form as those obtained

for fermions in subsection 4.3.2.

4.3 Polarised rotating fermions

The quantisation of the Dirac field is less constrained than for scalars, allowing for
vacuum states different from the Minkowski vacuum. In subsection 4.3.1, the ap-
proaches of Vilenkin [72] and Iyer [47] are introduced. The t.e.v.s of the fermion
condensate, neutrino current and SET are calculated in subsection 4.3.2 and the
analytic expression for the current for massless fermions is compared with the result
obtained by Vilenkin on the rotation axis [72]. It is shown that Vilenkin’s quanti-
sation introduces spurious terms in thermal expectation values. Also, the analytic
solutions clearly show that all t.e.v.s diverge as inverse powers of the distance to the
speed of light surface (SOL).

4.3.1 Construction of modes

By analogy to the scalar case, the mode solutions can be obtained by applying the

following rotation to the Minkowski modes:

iQtJ e 0
e h(p) = I ® Y (o + Qt). (4.3.1)

Hence, the modes with respect to the rotating coordinates take the form:

Ut () = €~ B 200 (0, ), (4.3.2a)
Virm (1) = e 0gy (p, 0), (4.3.2b)

where .
E=E—Qm+ =) (4.3.3)
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and u and v are given by (3.3.16) and (3.3.23b), respectively. The modes are nor-
malised with respect to the Minkowski inner product (3.3.19). Since all modes,
regardless of frequency, have positive norm, there are infinitely many possible quan-

tisation schemes, two of which have been used in the literature.

Vilenkin [72] performed the second quantisation for fermions in analogy to the
scalar case, splitting the set of modes into particle and anti-particle modes for £ > 0
and F < 0, respectively, allowing particles to be described by modes with negative
frequency E:

Uvle) = D O0E;) |Us(@)by + Vi)l (4.3.4)
j

Comparing (4.3.4) with the analogue expansion (3.3.24) of the field operator at the
same point in space-time ¢ = p; — 2t shows that Vilenkin’s one-particle operators
are equal to the corresponding Minkowski one-particle operators, hence, the vac-
uum corresponding to Vilenkin’s quantisation scheme coincides with the Minkowski

vacuuln.

On the other hand, Tyer [47] chose positive frequency modes as particle modes,

which sets E > 0 and allows for negative E:

() = 3 0(E) {Us(@)bry + V() (4.3.5)

In the above, Ej; can take the values +, /¢7 + k7 4 12 but the step function restricts

the sum to positive values of Ej. Using the connection (3.3.30) between the U; and

V; modes, the sum over j in Eq. (4.3.5) can be converted to a sum over positive £;:

() = 32 0E;) {U;0(Ebry + 7 0(~E,)d) |
+V;[0(E;)d], + z‘2mj+39(—Ej)bm]} . (4.3.6)

The one-particle operators in Vilenkin’s expansion (4.3.4), where E; > 0, can be
related to Iyer’s directly from Eq. (4.3.6):

br E; >0, . >0
’ ’ di, ;=< " 5 (4.3.7)

by, =
3] . jond ) .
2mHdl . By <0, 23, E; <0,

Similarly, Eq. (4.3.4) can be written as:

Yv(z) = Z 0(E)) {Uj [0(E))bv; + " 20(— Ey)d)]

FVIOE )l + 2 0(~ Byl }, (4.3.8)
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giving the following inverse transformation between the Iyer and Vilenkin one-

particle operators:

_ by Bj>0. di,.; E; >0, (439)
7 I;5 — v
T imedl, By <o, T @y, By <o,

in agreement with Eqs. (4.3.7). It can be seen that annihilation operators in
Vilenkin’s quantisation scheme can act as creation operators in Iyer’s scheme, there-
fore, the vacuum state corresponding to Iyer’s quantisation differs from the Minkow-
ski vacuum. Both quantisation schemes adopt the canonical quantisation (2.2.36)
of the one-particle operators. Figure 4.1 illustrates the difference between the two

quantisation schemes [47].

Qm+1/2) |® S
e o " o o0%0 &b
n n
] IV = I o

[ | IV [ | a E
omg © [ ] [ o o [m| o
[ | (m} (m}
1 I
a a
[ (] .I:I. (o] OD o o
[m}

Figure 4.1: The filled shapes represent anti-particle modes while the unfilled shapes rep-
resent particle states. The circles represent Vilenkin’s quantisation, which defines particle
modes as modes with positive energy F. lyer’s quantisation is represented by squares,
particle modes having £ > 0. The two schemes differ in regions I, where Iyer-type an-
tiparticles are Vilenkin-type particles and vice-versa in region III.

4.3.2 Thermal expectation values

As the Schwinger function (2.2.49) is independent of state, it is the same for both
Vilenkin’s (4.3.4) and Iyer’s (4.3.5) quantisations:

Z 0(E )@ U;(2') + Vi(z) @ V()] . (4.3.10)
Therefore, the thermal Hadamard function is the same in the two quantisations:

Z 9 tanh @ [ ]<$> ®U]($I) — V}(%) ®V]<ZE/>] . (4311)
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The argument of the hyperbolic tangent has changed from GF/2 in the Minkowski
case (3.3.50) to BE/Q, since in the rotating case, the thermal weights are calculated
using the Hamiltonian of the rotating system, whose eigenvalues are Ej.

The inequivalence of the vacuum states corresponding to the two quantisation

schemes gives rise to different vacuum Hadamard functions:
= Ze E)) [Uj(z) @ Uj(2) — Vi(z) @ V;(2')] (4.3.12a)

Z 0(E;)sgn(E ) [Uj(z) @ Uj(2') — Vi(z) @ V()] (4.3.12b)

where in the expression for the Hadamard function S}l)(:ﬂ, x') with respect to the
Iyer vacuum, the argument of the step function has been changed from EtoE using
the connection formulae (3.3.30). The two-point functions describing thermal states

with respect to the above vacua can be written as:

Asél) _ Ze—iEjAt—ijAZ[w(Ej) — w(E;)|M;, (4.3.13)

J

where 7 is defined in Eq. (3.3.31), M, is defined in Eq. (3.3.60) and the thermal

weight factors depend on the choice of vacuum, as follows:

Fy L 20(E) By 20(E)

= , wi(E;) = = . 4.3.14a
B 1 1 1(B) = =5 1 ( )

The weight factor wI(Ej) can be written in terms of positive Minkowski energies

using the properties of the sum in Eq. (4.3.11) as follows:

wr(B) —  2sen(E)O(E)

(4.3.14b)

As discussed in subsection 2.2.5, the thermal Hadamard function (4.3.11) does
not depend on the choice of vacuum. Hence, the differences in t.e.v.s calculated
with respect to different vacuum states will be temperature independent and equal
to the difference between the expectation values with respect to the vacuum states
under consideration. The differences can be calculated from the following difference

of vacuum two-point functions:

S, 2y — SV (z, ') ZQ (4.3.15)

As discussed in subsection 2.2.5, t.e.v.s with respect to the Minkowski vacuum
(Vilenkin’s quantisation) contain spurious temperature-independent terms. To anal-
yse these spurious contributions, the t.e.v.s analysed for the remainder of this section

are with respect to the Vilenkin vacuum.
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Mode sum expressions for t.e.v.s

As in the scalar case, it is convenient to introduce the notation:

P
a b 1\c 7%
o= Z / [ B 5T ), (43.16)

where * € {4+, —, x} as defined in Egs. (3.3.69). The above functions appear in
t.e.v.s calculated with respect to the Minkowski (Vilenkin) vacuum. At the end of
the section the connection to the t.e.v.s with respect to the Iyer vacuum is made,

after which the results are discussed.

Thermal expectation value of the fermion condensate. To evaluate the
t.e.v.s of the FC and CC, the coincidence limit of the thermal Hadamard function
(4.3.13) must be taken:

' —x

fim ASY(r,) = - P /Oo Bl dE [ dklu(E) - w(-E)

B>

L J2 0
(—]2 + 0'3) X
E ( 0 Jm)
1 {0 —1 kJ? —iqe™ % JonJm
- of o R | INCE R 1y
E\1 0 10" Ji1JIm —k
where all Bessel functions take the argument gp. The difference compared to the
Minkowski case (3.3.61) is that the thermal weight factors depend on E rather than

E. The t.e.v. of the FC can be expressed in terms of the functions in Eq. (4.3.16)

as follows:

(: Yy V)5 = 1Sgoos (4.3.18)

where the V indicates that the Wick ordering has been performed with respect to

the Minkowski (Vilenkin) vacuum.

Thermal expectation value of the current. Using Eq. (4.3.17), it can be

checked that all components of the charge current vanish:

(T ), = —§t {AS“ (z,2' = xw} —0. (4.3.19)

The t.e.v. of the neutrino current can be computed by multipling (4.3.17) with the
projector (1 —~°). The p term does not contribute since tr(y*) = tr(y°*) = 0,

but there is a non-vanishing contribution coming from the last term (containing the
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off-diagonal matrix) for the charge current parallel to the rotation axis:
z 1 -

Thermal expectation value of the stress-energy tensor The SET is eval-
uated using the derivatives D, (4.1.15). Applying the techniques used in subsec-
tion 3.3.3, Eq. (3.3.60) can be used to see which terms contribute to any given
component of the SET. Keeping in mind that the density of states factor now de-
pends on m, giving rise to a non-zero value for the T;; component of the SET, the

following expressions are obtained for the t.e.v. of the SET:

(: Tao () - :ﬂ Z/ eﬁE+1/ dk Fas, (4.3.21)

where
Fyp=FE"(Jo+ o),
E

Fip= 2%+ J2,,) — %<2m D),

F@@ = %(2771 + 1)<]me+1,
Foe = K*(J2 + J200). (4.3.22)

The above can be written with respect to the functions S7,. (4.3.16) as follows:

abc

(: Ty > S300-

(: Tpp v) s =St — P~ So11,s

(: Top v) s =P~ ' Soins

(- Tsz :V>g _S;E)O So+20 2So+007

(: Tt}a : >B Sto0 — §P7151+01 - %Sﬁo- (4.3.23)

Next, the functions S*

*.. are analysed analytically and exact expressions are derived

in the massless case. The results are presented after Eq. (4.3.48).

Fermi-Dirac integrals for massless rotating states

To compute the functions S}, ., defined in Eq. (4.3.16), the Fermi-Dirac density of

states factor can be expanded about €2 = 0:
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leading to:
1 — L " 1
= — dE E*
abc 7T Z /M dEm (GBE—f—l)
D oo
x/ dk q° Z (m+%)n+0J;(qp). (4.3.25)
0 m=—00

Sum over m. The sum over m in Eq. (4.3.25) vanishes unless n + ¢ is even for
* = 4 and odd for * € {—, x}. Equation (A.1.5) can be used to obtain:

- 200+ 5) oy
1\2n 7+ 2/ o+ 2
g 5) = E ——==5s, .27 4.3.26
e (m + 2) m(Z) ~ j'ﬁ Sn,]’z ) ( a)
- " 20(j + 3) .
1\2n+1 S 3) _
E : 1 J = § 27— 2 4.3.26b
S~ (m + 2) m(Z) g ]'ﬁ Sn,JZ ) ( )
N 200G +3)
1 2n—+1 % 2 X 27+1
1 J = AR 4.3.26
m:EOO (m+1) ~(2) JEO NG S % ( c)

The above sums over j are finite and terminate at j = n, as will be shown shortly.

- +
Equation (A.1.5) can be used to express s, ; as:

j—m

J
lQ?’L—‘rl

0

(4.3.27)

As in Eq. (4.2.25) for the scalar case, the sum over m can be written as the derivative

of a binomial expansion:
1 2+ (s 25+ 1 | , 1
‘o - Sy [enlmd) - ()]
13 = (2 1 1)) ol da2 {m;) (j —m>( D e

1 . d2n+1 afj+3 A 2j+ 1 2j+1—m am
= @) A gz {e DY ( m >(_1) s

m=0

1 o et ( ' a)2j+1

= 1 4.3.2
(2 + 1) ab da?ntl (4.3.28)

Clearly, s;j vanishes when j > n. The following values of s:;j are important for the
calculation of the t.e.v.s in this section:

+
sj; =L

L. . .
sh :ﬂ@j +1)(25 +2)(25 + 3),

Shiag =g (24 + D@+ D2 +3)(2) + )2 +5)10+3). (43.29)
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Using the following properties of J;' :

diz (2J5(2)) = 2m+1)J,,(2), diz (20%(2)) = 22J,,(z), (4.3.30)

it can be shown that s, ; and s}, ; are related to s, ; through:

; 1

- : Jt3
— 1) o+ X 2
sy =+ )y sy = j+1’

+
i (4.3.31)
Thus, all s;, ; vanish for j > n, therefore, the sums in Egs. (4.3.26) terminate at

Jj=n.

The integral with respect to k. Following the steps in the previous paragraph,
the sum over m involving the Bessel functions in J, is replaced by a sum over
j involving powers of ¢, after which the integral over k can be computed using
Eq. (4.2.29).

Analytic expressions in the massless case. The functinos S, . required for

abc

the computation of the expectation values in Egs. (4.3.18), (4.3.20) and (4.3.23) are

+ + + + - X %
S0005 52000 90205 S1015 S1000 110 and Spyg-

Let us start with Sg,,. Performing the sum over m and integral over k in
Eq. (4.3.25) yields:

9 oo an n p2j5+ ) 00 ) d2n 1
SOOO 2 Z (2n)! Z (2j + 1) /ﬂ dEp dE2n (eﬁE _ 1) : (4'3-32)

n=0 7=0

It is convenient to interchange the sum over j with the sum over n, which in turn

can be shifted downwards to n — n + j, such that Sg, takes the form:

2 0 (pQ>2] 0 QQnS++ o () ' q2nt2i 1
Sty = — LA dE p* ! : . (4.3.33
00T i 41 2 (2n +2j)! /M P g \gr =y ) (4339

n=0

To proceed further, it is necessary to set p = 0, in which case p = E. Before giving

the result for the integral over FE, it is worth noticing that

[ S
efo +1 e B 1

1. (4.3.34)

Hence, apart from the term %, the series expansion of the Fermi-Dirac density of
states factor contains only odd powers of E, as follows:
1 1 pE

- = M= 3
=5t TOE). (4.3.35)
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Using Eq. (3.3.64), the integral over E in Eq. (4.3.33) can be performed:

2

T 0
—_— n f—
0 d2j+2n 1 1262 ’
2j+1 — (94 | 1
/0 dE E TR (eﬁE—i—l) =(2j+ 1) x . n=1, (4.3.36)
\0 n > 1.

The n = 1 term gives rise to temperature-independent terms in t.e.v.s obtained

using Vilenkin’s quantisation. Therefore, Sgy, can be put in the form:

— T1 0
Soo0 = Y _ (0% [6_@ + a2+ 3)} . (4.3.37)
7=0

The sum over j can be evaluated using the geometric series formula (4.2.36), giving:

1 0 /2 ¢
Siw=Ft—=(5+= 4.3.38
00 = 552 T gr2e2 (3 N 3> ’ ( )

where the parenthesis evaluates to 1 on the rotation axis, where ¢ = 1 — p?Q? is 1.

After substituting a = 2 and b = ¢ = 0 in Eq. (4.3.25), the expression for Sy,

becomes:

[e.o]

9 (pQ)Qj 00 Q2n8++ o %) A d2n+2j 1
Sono = — LARLY / dE E? p* ! : . (4.3.39
200 g2 2 2j + 14 (2n+2j)! J, P g \p =1 )+ )

=0

The integral over E can be performed analytically in the massless case:

> A Tt Q225 +3) Q425 +5)(105 + 3)
g % (25 + 2)(25
S500 ;_O(P )7 (25 +2)(27 +3) [360ﬁ4 14432 576072 }
4

64 _ 376, | 1962 | 17_3
(% e+ e+ ),

T2 02
3 15
(4.3.40)

— 4 1 8
“gogrerts 59 gas

16 1.2
—384‘55)"‘647?_265

where Eq. (3.3.72) was used to obtain the 37* term. The parentheses above have

been normalised to evaluate to 1 on the rotation axis.

In a similar fashion, Sg,, can be obtained as follows:

2 o= (P N Qs 2j+2 [ g A2 1
St = — Z (P : ﬂ‘?]l : s / dEp™? F2n+2j ( BE ) :

T 2]+1n:o(2n+2])'27+3 u d ePt —1
(4.3.41)

J=0
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Setting = 0 gives:

- , T2 0? o
+o= M (25 4+ 2)? 2 — (2§ 104
SOQO ;(ﬂ ) ( J + ) {36064 + 14452( J +3) + 57607T2( J +5)< OJ +3)

T2 0? 1.9 5

_ 10 208 142 2 17 3
~g05izs 2 ) F gzt T 5t ) F g (B2 - Tet e A 5

(4.3.42)

The last term in which the integrand is even with respect to the transformation

m — —m — 1 is:

. 2 (p2)% Qs 25 +1 [ o AP 1

1.ax Sntjig 2j+3

So = dE p?? :
P11 / p 1

2 —2j+14=~ (2n +25)! 25 + 3 JE2nt2)

(4.3.43)

The integral over £ can be performed in the massless case, yielding:

> Tr Q%25 +3) | Q%25 +5)(105 + 3)
“15x =N (0225 + 1)(25 + 2
PS5 ;:0(/) )*(25 + 1)(25 + ){36054+ 14452 576072 }
T2 0
— " (4- —— (8~ 2
EEAR S TI= LA
Q4
n (64 — 438 4 12402 | 175y (4.3.44)

19272¢5

The simplest term of interest with odd integrand with respect to m — —m — 1
is:
0 %) 2 o] an -i-Jr 00 ) d2n+2j+1 1
- & j Sntj.j 2j+1
100 = 773 ]Z%( Z (2n + 25 + 1)! / AEEP™ g \ gr =1 )

n=

(4.3.45)
An analytic expression can be obtained when p = 0:
S :Qi(pfz)?"(zj vt )
e 1232 4872
Q O3
(4 —3e). (4.3.46)

672 T 2apees

In the term S7;, the sum over j runs between 1 and n + 1. Treating the j =n + 1
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case separately by using the property s +1n41 = 1 and relabelling n by j gives:

1 & [ 772p?02 . 0?2 . .
Sior =g D (p2)* {W@J T2+ )+ i+ 2)*(2j +3)
=0

4
W(Qj +2)(25 +4)(25 +5)(105 + 3)

0 Q 9%
= 4 — 10 1.2
Bs T pat T T s

+

(16 — e+ 2e%).  (4.3.47)

Finally, S}, can be written using Eqs. (A.1.11) as:

1 1 d

Sl><10 :_Sf%l - z_pd_p(Psfoo)
T 02 5
= 6—5 —— (80 — 124¢ + 45e?)| . 4.3.48
P 551 T 1ear 0 T %9+ g e +45¢7) (4.3.48)

Analytic expressions for t.e.v.s for massless fermions

Substituting Eq. (4.3.38) into Eq. (4.3.18) gives the following result for the FC:

2 2

: 1 Ty . -1 Q 2 1

where € = 1 — p?Q? goes to 0 as the SOL is approached.
The neutrino CC can be obtained by substituting Eq. (4.3.46) into Eq. (4.3.50):

; Q 03
(s :V>B - 12322 48723

(4 — 3¢). (4.3.50)

The thermal expectation value of the neutrino current along the rotation axis is
non-vanishing. Intuitively, this result can be understood as follows [71]: If Q is
pointing along the z axis, the Fermi-Dirac density of states factor (e#E=2(m+3)l 4 1)-1
will favour particles which, at the same value of the energy, have a larger value
m + % of the projection of the spin on the z axis. Neutrinos are particles with
negative chirality and therefore have negative helicity, while anti-neutrinos have
negative chirality and positive helicity [46]. Since helicity is the projection of the
spin on the direction of motion, neutrinos with a negative z component of their
velocity will have a positive contribution to their total angular momentum along
the z axis coming from their spin and will therefore be favoured by the Fermi-
Dirac statistics. Moreover, anti-neutrinos will have a tendency of travelling in the
direction of €2, so that the total current of neutrinos and anti-neutrinos vanishes.
However, the individual contributions to the charge current coming from neutrinos

and anti-neutrinos stay finite and have negative and positive signs, respectively.
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Finally, the tetrad components of the SET using the Vilenkin vacuum have the

form:
T2 4 0?2 ) 5
¢ Tii v)p =gogis (3~ 36) + gz (5= 9 +a¢)
Qe s 196 2 |, 173
oo (5~ et e tge),
Tr? 20 3 1 310! 80 _ 64 15 _2
CToiviy == M mais + g (3=28) T35 (1 — 5 +3¢) |
s % 4 1 o 88 17 2
CTop s =Tgogizz + aapees 59 + Tggpeat B 158~ )
T 0? 9
<Z T¢¢ :V>,3 :W(4—36)+W (8—8€+€ )
4
456 24 2 | 173

and (: T3z :v)y; = (:Tppiv)s. It is remarkable that this latter equality holds in
the massive case as well, which can be seen by substituting Eqs. (4.3.38), (4.3.40),
(4.3.42) and (4.3.48) into the relevant equations from the set (4.3.23):

9 00 (pQ)QJ 00 Q2n8++-- 1
T v)g = Tesv)g = — o)
( pp V>g ( V>5 7T2Z2j+1n=0 (2n+25)125+3

j=0
oo 0its d2n+2j 1
></u B (dm_l). (4.3.52)

Equations (4.1.22) can be used to express the t.e.v. of the SET (4.3.51) with

respect to the coordinate basis:

(s 2 4 O s s 112
CTu vl =gogiz + gpa (57 39) T g G+ 558~ 52)
T2 1302 11904
SN 2 2
( Tt 'V>ﬁ =—p0 [606452 - 72323 (% o 1%5) + 060724 (?(1]8 - 16149&j o %5 ) ’
T2 0?
: Ly 2 2
(: Top v) g =p [1805453 (4 —3e)+ 51 (8 — 8= +¢&?)
2 2 3
oy (64— Fe+ B+ %) | (4.3.53)

All the t.e.v.s presented so far in this section were calculated with respect to the
Minkowski (Vilenkin) vacuum. The results are made up of two types of terms: the
physical terms proportional to 37* and 372 (only 372 for the FC and neutrino CC)

and the spurious temperature-independent terms.

In Ref. [72], Vilenkin argues that, since the temperature-independent contribu-
tion to the neutrino charge current on the rotation axis is due to particle modes with
negative frequency with respect to the rotating Hamiltonian, the first type of terms

mentioned above can be removed by enclosing the system inside a boundary which
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cuts out the space beyond the SOL. This statement is only half-true. As discussed
in sections 5.2 and 5.3, putting the system inside a box does indeed eliminate the
modes with EE < 0. However, the quantisation proposed by Iyer yields a vacuum
state with respect to which thermal states are consistently defined, such that t.e.v.s
do not contain spurious temperature-independent terms. The t.e.v.s when the rotat-
ing (Iyer) vacuum is considered are exactly equal to those obtained with respect to

the Minkowski (Vilenkin) vacuum, but without the temperature-independent terms,

as follows:
}}L%i (-1 1) :67T—;261, (4.3.54a)
(Jp)g=— %, (4.3.54b)
(: Tit 1) :607;4253 (3—3¢) + 8;22254 (3 —Pe+3e?), (4.3.54c)
(: Tpi i)y = — P92 457;4253 + 9252; (2-19)], (4.3.54d)
: Top ir) :1827;52 + 24%;3 (4-1o), (4.3.54¢)
Ry :#7;153 (4 32) + %;4 (8— 8 +2) (4.3.54f)

and (: T3z :1) 5 = (: Tjp i1) 5 In the above, the subscript [ indicates that the Wick
ordering is performed with respect to the rotating (Iyer) vacuum. The t.e.v.s (4.3.53)
of the SET expressed with respect to the coordinate basis can also be expressed with
respect to the Iyer vacuum:

7 02
T s =gogaz * ggeen (

:— i), (4.3.55a)

1
3

T2 1302
(: Tpe 1)y = — 00 {605452 T (15 — 13—3€>:| : (4.3.55b)
T2 02
. . 2 2

Equations (4.3.54) represent the second type of terms mentioned above. As in the
scalar case (discussed in subsection 4.2.2), all terms in the t.e.v.s given in this section
diverge as inverse powers of the distance to the SOL, showing that the thermal state
becomes infinitely energetic close to the SOL. Moreover, the non-rotating Minkowski
results in Eqgs. (3.3.73) are recovered by setting {2 = 0 in Egs. (4.3.54). It can be
seen that on the rotation axis (obtained when € = 1 and the parentheses evaluate to
1), the t.e.v. of the SET receives corrections compared to the Minkowski case, which
are proportional to Q2. In sections section 5.2 and section 5.3, the t.e.v.s obtained
using the Iyer quantisation are compared to the t.e.v.s obtained when the system is

enclosed inside a boundary.
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Figure 4.2: The curves show the contributions Tj;[m] made by each value of m (together
with —m —1) to (: Ty (z) :1) 5 for a rigidly rotating Dirac field with p = 0 (thin solid black
lines) and p = 29 (thick lines) at inverse temperatures (a) fQ = 2.0 and (b) Q2 = 0.8,
at four distances from the rotation axis. The value of T};[m] increases up to a maximum
value at m, after which it decreases monotonically to 0. The value m,, increases with the
distance from the rotation axis, which is why the further the point is, the more values
of m must be considered. However, m, does not seem to depend on 3 or u. The curves
terminate according to the algorithm described in the main text.

The features discussed above remain valid when considering massive fermions.
Although we do not have an analytic method for its study, the u > 0 case can be in-
vestigated numerically and the results are represented in the following subsection.

4.3.3 Numerical results

The t.e.v.s with respect to the rotating (Iyer) vacuum of the FC (4.3.18), neutrino
CC (4.3.20) SET (4.3.23) can be obtained using the following mode sum equations:

(Y Vi) 7r2 Z / sgnEdE/ dk J} (qp), (4.3.56a)

B1E] 11
EsgnEdE/ _
cJ dk J,,(qp), 4.3.56b
=g 3 [ ks (4:3500)
SgnEdE/
: Tas E / dk Fjs, 4.3.56¢
< g o I ﬁ| | 1 8l ( )

with Fjs given by (4.3.21). To obtain the numerical data necessary to produce
the plots in this section, the above t.e.v.s were calculated for each value of m,
individually, as follows:
=Y Am]. (4.3.57)
m=0
For the computation of (: Ty :r), at a given point p, the function Tys[m| was

evaluated for increasing values of m. The thermal weight factor sgn(E)(e” |E|+1+1)

supresses the integrand at large values of ‘E‘ Hence, the major contribution to
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Figure 4.3: The logarithm of the fermion condensate (: ¥t 1) 5 (first line), neutrino
current (: J, :;)* and —I%Q (: Ty :1>ﬁ (bottom line) against p2 on the left and In(1/¢)
on the right. The prefactor —/% has been introduced for to render the argument
_;% (: Ty 1) g of the logarithm positive and non-zero on the rotation axis. The

%
results for fermions of mass p = 2Q (coloured dashed lines) are compared to the

corresponding expressions in Eqs. (4.3.56), plotted with dark thin lines.
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Figure 4.4: The logarithm of the diagonal components of the SET against p{) (left)
and In(1/¢) (right). The results for fermions of mass u = 2§ (coloured dashed lines)
are compared to the corresponding expressions in Egs. (4.3.56), plotted with dark
thin lines.
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the integrals in Eqs. (4.3.56) come from the region where £ ~ Q(m + %), allowing
convergence problems to be avoided by performing the energy integral over the
domain BE € {max(fBu, FQm—100), 5Q2m~+100}. The behaviour of the expectation
values is well captured by considering points up to p{2 = 0.95, where the t.e.v.s are
finite. Knowing that Ts5[m| decreases to 0 at sufficiently large m, the series over m in
(4.3.56) was terminated when Tj4[m]/ max,,(Tss[m]) < 0.01. Figure 4.2 illustrates
this algorithm applied for the computation of the energy density.

The plots of the t.e.v.s of the fermion condensate, neutrino charge current and
SET in Figs. 4.3 and 4.4 present numerical results obtained for fermions of mass
= 22 to the analytic expressions (4.3.54), calculated with respect to the rotating
(Iyer) vacuum. It can be seen that the profiles of the t.e.v.s for massive fermions set
below those for massless fermions. In the aforementioned figures, the plot on the
left illustrates the logarithm of the t.e.v. of the operator under consideration with
respect to the distance from the rotation axis expressed in units of 27!, while the
log-log plots on the right show that close to the SOL, the t.e.v.s behave similarly
for massless and massive fermions. In particular, the leading order of the divergence
as the SOL is approached of the t.e.v.s considered here does not depend on the
mass of the field quanta. Since Eq. (4.3.54d) shows that (: Tj, i) vanishes on the
rotation axis due to the factor pfl, the bottom plot in Fig. 4.3 shows instead the
ratio (: Tj, :1) /pS2.

4.3.4 Summary

While the quantisation procedure for the scalar case was restricted such that the ro-
tating and non-rotating vacua were forced to coincide, the property that the norm of
the particle and anti-particle mode solutions of the Dirac equation are both positive
allows different vacuum states for the Dirac field on the rotating space-time, which
can differ from the Minkowski vacuum. As discussed by Vilenkin [72], thermalis-
ing the Dirac field with respect to the Minkowski vacuum state induces spurious
temperature-independent terms in thermal expectation values (t.e.v.s). However, if
second quantisation is performed according to Iyer’s prescription [47], the resulting
vacuum state is different from the Minkowski vacuum and thermal expectation val-
ues are well defined and contain no temperature-independent terms. We refer to

this latter vacuum state as the rotating vacuum.

Our analytic results, also published in Ref. [10], confirm the presence of the
spurious temperature-independent terms reported by Vilenkin [72] in t.e.v.s calcu-
lated with respect to the Minkowski vacuum. Vilenkin [72] argues that these terms
disappear if the space outside the speed of light surface (SOL) is discarded, by en-

closing the system in a boundary. We analyse quantum states for bounded rotating
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Minkowski space-times in chapter 5 and indeed find that placing the boundary in-
side or on the SOL eliminates the spurious temperature-independent terms. We also
confirm that when Iyer’s quantisation [47] is used for the unbounded space-time, the
resulting t.e.v.s contain no temperature independent terms. Hence, we conclude that
the spurious terms are induced by the quantisation method employed, more specif-
icaly, by allowing modes with EE < 0 in the set of particle modes, as discussed in

subsection 2.2.5 and subsection 4.3.1.

The analytic results obtained for the t.e.v.s of the fermion condensate, neutrino
charge current and stress-energy tensor for massless fermions show that thermal
states become divergent (i.e. yield infinite expectation values) as the SOL is ap-
proached, with the t.e.v.s diverging as inverse powers of the distance to the SOL.
Furthermore, as explained in Refs. |71} [72] and after Eq. (4.3.50), there is an excess
in the flux of neutrinos and anti-neutrinos anti-parallel and parallel to the rotation

angular momentum vector, respectively.

Through numerical integration, the t.e.v.s for massless and massive fermions can
be compared. The figures in subsection 4.3.3 show that thermal states become less
energetic as the mass of the quanta is increased. However, the t.e.v.s of massless
and massive fermions diverge at the same rate as the SOL is approached, indicating

that the leading order divergences do not depend on the mass of the quanta.

4.4 Chapter summary

The construction of mode solutions and the discussion of vacuum states presented in
this chapter also applies to the bounded rotating Minkowski space-time, discussed
in chapter 5 and to the construction of quantum states on rotating anti-de Sitter

space-time, discussed in chapter 8.

The construction of the rotating vacuum state for the scalar field is restricted
by the interpretation that Klein-Gordon modes of positive or negative frequency
represent particle or anti-particle modes. In consequence, the vacuum state for
rotating scalars is forced to coincide with the Minkowski vacuum. The construction
of thermal states is not possible due to the divergent behaviour of the Bose-Einstein
density of states factor for modes with vanishing co-rotating frequency. Analytic
methods can be used to isolate the divergences of the thermal state, yielding finite

terms which can be interpreted physically.

Two fundamental differences between fermions and scalars allow fermion thermal
states to be rigorously defined. As opposed to the quantisation of the Klein-Gordon,
the norm of Dirac modes is always positive. Hence, the split between particle and
anti-particle modes (or equivalently, the choice of vacuum state) can be performed

such that EE > 0 for all particle modes. As discussed in subsection 2.2.5, this
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property guarantees that thermal states can be consistently defined such that the
resulting thermal expectation values contain no temperature-independent terms.
While the Bose-Einstein density of states factor renders thermal states for the scalar
field infinite due to its divergent behaviour for vanishing co-rotating frequencies,
Fermi-Dirac statistics do not allow for infinite occupation numbers. Hence, it is
possible to construct thermal states of fermion particles which are well defined and

regular up to the speed of light surface.



Chapter 5. Bounded rotating

Minkowski space-time

The results of chapter 4 show that scalar particles cannot settle into thermal states
as seen by rotating observers, due to the singular behaviour of the Bose-Einstein
density of states factor for modes with vanishing frequency with respect to the
rotating observer. In contrast, the occupation numbers in Fermi-Dirac statistics are
finite for all frequencies, allowing fermions to thermalise with respect to rotating
observers. For fermions, it is possible to define thermal expectation values (t.e.v.s)
which are finite up to the speed of light surface (SOL), past which they are not
defined. As discussed in Refs. [33], [52] [72], the space-time beyond the SOL is not
physical. Its exclusion through the confinement of the system inside the SOL can
eliminate modes with negative or vanishing frequencies with respect to the rotating
observer from the set of particle modes, making the construction of thermal states
of scalar particles possible.

The system can be bounded by introducing a cylindrical mirror of radius R
parallel to and centred on the rotation axis. Consequently, the transverse momentum
is quantised in such a way that Minkowski particle modes have positive frequencies
with respect to the rotating observer as well, as long as the mirror is inside or
on the SOL. In consequence, there are no modes with infinite density of states
factors, making thermal states attainable for scalar particles. An interesting result
is that at large enough temperatures the t.e.v. of the SET agrees with the 574
part of the analytic results (4.2.51) and (4.3.51) for the Klein-Gordon and Dirac
fields, respectively, in the vicinity of the axis, but deviates from these values as the
boundary is approached in such a way that even if the boundary is placed on the
SOL, the t.e.v.s stay finite.

The mirror is implemented by imposing Dirichlet boundary conditions for the
scalar field [32, B3], while for fermions, spectral [43] and MIT bag [23] boundary
conditions are considered. The motivation behind presenting these two types of
boundary conditions is their fundamentally different nature: the spectral boundary
conditions are non-local, requiring the knowledge of the Fourier transform of wave
functions, while the MIT bag boundary conditions are expressed and implemented in
a fully local manner. Fundamental differences are noticed in the profiles of thermal

expectation values as well as in the investigation of the Casimir effect.

The Casimir effect arises due to the changes induced in the vacuum state by its
enclosure inside a bounded system [46]. The thermal states discussed in this chap-

ter are computed with respect to the vacuum state corresponding to the bounded

84
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system. The Casimir effect refers to the difference between vacuum expectation
values (v.e.v.s) of operators in the bounded and unbounded vacuum states. In par-
ticular, the difference in the energy component of the SET can be interpreted as
the amount of energy required to confine the system inside the boundary. Deutsch
and Candelas [31] explain that the divergence is due to the unphysical nature of
classical perfect conductor boundary conditions and give a general prescription for
the computation of the leading order divergences for general boundary conditions,
based on the assumption of locality of the SET. While the results obtained for the
scalar field and for fermions obeying MIT bag boundary conditions fit perfectly well
with the predictions of Ref. [31], the non-local character of the spectral boundary

conditions increases the order of the divergence of Casimir v.e.v.s by one unit.

Although the scalar field case has already been analysed in Ref. [33], it is pre-
sented in section 5.1 for completeness. Section 5.2 presents the Dirac theory using
spectral boundary conditions and the MIT bag model is discussed in section 5.3. The
space-time characteristics have already been described in section 4.1. These latter
two sections contain original results which are due for publication [5]. A preview of

the results is available in Ref. [§].

5.1 Scalars in a cylinder

Subsection 5.1.1 opens the discussion of quantum states of scalar particles inside
a cylindrical boundary by presenting the construction of the mode solutions of the
Klein-Gordon equation obeying Dirichlet boundary conditions. Furthermore, ther-
mal expectation values (t.e.v.s) are analysed in subsection 5.1.2 and numerical results
are presented for the case when the boundary is placed inside or on the speed of
light surface (SOL). In subsection 5.1.3 expressions for the Casimir-induced vacuum
expectation value (v.e.v.) of ¢* and of the stress-energy tensor (SET) are derived.

An asymptotic analysis of the Casimir divergence is performed in subsection 5.1.4.

5.1.1 Modes and field operator

To implement a cylindrical boundary at distance p = R from the rotation axis, the

modes (4.2.2) must satisfy Dirichlet boundary conditions:

Jurm(p = R) =0, (5.1.1)

which is equivalent to requiring that .J,,(¢R) = 0. Hence, ¢R must be in the set
of roots of J,,. Thus, the following quantisation rule for the transverse momentum

arises:

Gt = %, (5.1.2)
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where ¢ = 1,2, ... labels the roots &,,,, of J,,, in ascending order, without the trivial
solution &,,, = 0 which corresponds to a mode function that vanishes at each point
in space. The normalised modes satisfying Dirichlet boundary conditions are given
by [33]:

efzwt+zkz+zmtp

2R | Jm-‘rl (gmﬂ) | \/_

where the indices (m, ) have been omitted on ¢ and quantities derived from it

Jm(ap), (5.1.3)

fkmf( )

(e.g. w). The modes in Eq. (5.1.3) are normalised according to the following relation:

(fremes forme) = / dZ/ pd,o/ dg frme(t, ) Za Jermee (L, x)

The energy spectrum is determined by looking at the form of the Minkowski

energy of mode fi:
W=+ K+ R, (5.1.5)

According to formula (3) in chapter 15.3 of Ref. [73], the roots of the Bessel functions
satisfy:

1
Sml > \/m(m~|—2) >m—|—§ (m>0), (516)
and & = 2.4048255577 > 0.5 (see Table 9.5 in Ref. [I]), implying the following

inequality for the allowed frequencies w:
D=w—0m >R, — Qm > R 'm(l - QR). (5.1.7)

Hence, w > 0 as long as QR < 1, i.e. as long as the boundary is inside or on the SOL.
For the remainder of this section, only this case is considered. The completeness

relation compatible with the inner product (5.1.4) satisfied by the modes (5.1.3) is:

S / 0k [ fe (1200 frome (1, @) — Frme (b, @ )i0 fg(t, )]

m=—oo [=1

=d(p — @')@5(2 —2'). (5.1.8)

Thus, the field operator ¢(x) can be expanded with respect to the complete set of
modes (5.1.3):

S | [fuanne + )il . 619

m=—oo [=1
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5.1.2 Bounded rigidly rotating thermal states

Using the techniques introduced in section 3.2, the thermal Hadamard function

constructed with respect to the bounded vacuum state can be written as:

ik:Az

A () /
Gy (z,7) Z Z 27r2wR2J3L+1(§m4) efome — 1

m=—oo [=1

« (efzwmgAt+imAgo +eiwmgAtfimAsﬁ)Jm(fmeﬁ)Jm(fmep/), (5110)

where

__ P

= —. 5.1.11
=% (5.1.11)
The t.e.v. of ¢* can be found using Eq. (2.1.57):

Z Z/ ﬂ-szzJ 1 (Eme) 6551_ 1‘]72n(€m€ﬁ)' (5.1.12)

m=—o0 [=1

The calculation of the t.e.v. of the SET from Eq. (2.1.54) can be performed by
repeating the steps in subsection 4.2.2, yielding:

1
Z Z/ 67 wRQJQ <€m£) eﬁg — 1Fd~77 (5113)

m=—oo [=1

where Fjs is given by (4.2.16), with ¢ substituted by R'¢,,, in the arguments of

Bessel functions and in all derived quantities (e.g. w).

Since w > 0 for all values of k¢ and m when R < 1, the integrands in
Egs. (5.1.12) and (5.1.13) are well-behaved. Hence, the t.e.v. of ¢? and the SET
are finite everywhere inside the bounding surface. Duffy and Ottewill [33] compare
the Planckian forms given by the 3=* part of (4.2.51) corresponding to a rigidly
rotating thermal distribution at a temperature T = $~! = 20Q for RQ) = 0.5 and
find an excellent agreement far from the bounding surface. The behaviour of the
SET deviates from the Planckian forms both as the temperature is decreased and
as the bounding surface is approached, in such a way that its value on the bounding
surface stays finite, even if the boundary is on the SOL. Figure 5.1 compares the

Planckian form: )

X A\ Planck ™
(Tyuog = W(

U

— 36), (5.1.14)

plotted as a dark thin curve, to a numerical evaluation of Eq. (5.1.13) (green curve)
for two values of the temperature. It can be seen that the two curves overlap around

the rotation axis at €2 = 0.05 but differ everywhere at low temperature 52 = 2.0.

Figure 5.2 shows that the value of the energy density on the rotation axis departs

from the Planckian value as the inverse temperature is increased and is even further
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Figure 5.1: The logarithm of T}; for a rotating system at temperatures (a) 52 = 0.05
and (b) fQ = 2, inside a cylinder located at RQ2 = 0.5 (green curve), compared to the
Planckian form (5.1.14) (dark thin curve).

Log[Tﬁ]

10r
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Figure 5.2: The logarithm of T}; on the rotation axis for a rotating system inside a
cylinder located at RS2 = 0.5 as a function of the inverse temperature. The green curve
represents numerical results, the red curve is the Planckian form (: Tj; :)glamk (5.1.14) and

the dark curve represents the physical part (: Tj; :>ghyS of the t.e.v. of T}; obtained on the

unbounded space-time, given in Eq. (4.2.54b).

away from the physical part (: Ty :)ghys of the t.e.v. of the SET on the unbounded
space, given in Eq. (4.2.54b).

5.1.3 Casimir effect

The presence of the boundary alters the vacuum state. The change in the v.e.v. of
the SET due to the confinement of the quantum system inside a boundary is referred
to as the Casimir effect [46]. One method of investigating the induced v.e.v.s is to
construct the difference between the two Euclidean Green’s functions corresponding
to the bounded and unbounded systems and then to compute ¢? and the SET using
the formulae (2.1.62) and (2.1.63). This subsection mostly reproduces the results of

[32, B3] and is included for completeness and to establish notation.

Before making the transition to the Fuclidean space-time, it is convenient to

switch back to the Minkowski non-rotating coordinates, where the metric has no
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components mixing space and time:

gt = glf; =95 =1, gf@ = p-. (5.1.15)

In subsection 5.1.2; t.e.v.s are calculated with respect to the Minkowski vacuum, so
in this section it is sufficient to calculate expectation values in the bounded vacuum
state with respect to the same Minkowski vacuum.

The Euclidean Green’s function can be computed as a solution of the Klein-

Gordon equation in Euclidean space (2.1.61), which reads:
(2402 +p 10,4+ p 202+ 02 — %) Gp(a,2) = —0(1 — 7)8°(x — 2').  (5.1.16)

The symmetries of the space-time allow G'g to be Fourier transformed with respect
to A1, Az, Ap:

zwAT-i-zkAz—i—zmAcp
Z / dw/ kS = ge(w,m;p, p), (5.1.17)

m=—0o0

The Fourier coefficients gg are solutions of the inhomogeneous modified Bessel equa-
tion (A.1.12):
[0°0; + pd, — (m* + p*a®)] gu = —pd(p — ), (5.1.18)

where « is defined as:

o =W+ K+t (5.1.19)

On the unbounded manifold (i.e. infinite R), the Euclidean Green’s function is fixed

by requiring regularity at the origin and infinity [19]:

Gpeol(z,7') = 33 Z /_Oo dw /_Oo dk AT HRAZFMAC | (ap VT (apl).
(5.1.20)

Here, p~ and p. refer to the larger and smaller of p and p’, respectively, and I,,, and

K, are modified Bessel functions, introduced in Appendix A.

In the bounded case, the Euclidean Green’s function must satisfy Dirichlet
boundary conditions on the bounding cylinder (i.e. when p = R or p' = R). The
Euclidean Green’s function Gg gr(x,2’) of the bounded system obeying Dirichlet
boundary conditions can be obtained by adding to the unbounded Euclidean func-
tion (5.1.20) a solution AGg r(x,2') = Gg r(z,2") —GE oo (2, 2') of the homogeneous
equivalent of the Klein-Gordon equation (5.1.16) (i.e. with the right hand side set

to 0) which is regular inside the boundary, as follows:

K,.(aR)
iwWATHIkAz+imA /
AGp,g(x, ") 8W3 Ej / dw/ dke w] (ozR)[ w(@p)Ln(ap)).

(5.1.21)
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The v.e.v. of ¢? can be calculated using Eq. (2.1.62):

(0%) s = lim AGg(z, ') 87r3 Z / dw/ dk ]2 2(ap). (5.1.22)

' —x

The SET can be computed using the formula (2.1.63):

~ 1 oo [e'e) [e’e] Km<aR) )
e T am) B 1.2
' 487 mz—:oo /—00 w /—oo I I,(aR) 7’ (5.1.23a)

where

(—a? — p7?m? + 6w*) 12 — o1} 2,

(=3a? — 3p2m*)I2 + 2p tal, I, + 30”1 2,

(—a® 4+ 5p2mH 1% — 2p tal, I, — oI 2,

(—a? — p7*m? + 6k 12 — oI 2. (5.1.23b)

The argument of the modified Bessel functions is ap.

Following [33], the double integral over w and k in Egs. (5.1.22) and (5.1.23a) can
be viewed as an integral over two-dimensional Euclidean space, admitting a change

of variable to polar coordinates («, 8), as follows:

w=+a?—p?cosl, k=+/a®—p?sinb. (5.1.24)

The Jacobian of the above transformation is J = « and the integration limits for
the new variables are § = 0..27 and o = p..0o. The 6 integral can be performed

analytically and « can be non-dimensionalised to x = aR, yielding;:
1 N o K (%)
2 m 2/ —
=—— E dx ———=1 5.1.25
(D7) Cas Py 2 /#R x dx T = (xp), ( a)

1 > o K,,(x) .-
(T% ) cas = —sz_:oo /“R x dx Im((x))fo‘&,
& = (22 = 3P R? — p*m?) % (xp) — ¥° 1,2 (xP),
£ = (=3x" = 3p °m*) 2, (xp) + 2p "% L (xp) 1}, (xp) + 3% 1}, % (xp),
E%, = (=% +5p "m*) I}, (xp) — 20 "%l (xp) 1}, (xp) — x°I,,*(xp)  (5.1.25D)

and (7% ), = (T7: ) gper Where p = £ is defined in Eq. (5.1.11). Introducing the

notation:

Zin(P) = 2R4 Z / >)12 (xp) (5.1.26)

m=—00



5.1. SCALARS IN A CYLINDER 91

and using the relations:

_ - d _
2x 1L, (xp) I, (xP) Zd—ﬁffn<xp),
1 &2 L 1d
2dp*  2pdp

x*I,,*(xp) = { —x’ - ﬁ‘2m2] 12 (xp), (5.1.27)

the Eqgs. (5.1.25) can be cast in the following form:

R2
(") cas = — 7110, (5.1.28a)

X 1 pWR* 1 d? 1 d

17, =— -7 —t——+——=)TI 5.1.28b
5 1 1 1 d? 5 d

(T75) g =50 + Q—EQLQ - (éd_ﬁ + %d—p) Tho, (5.1.28¢)
5 1 1 d? 1 d

T%) s = — 532 remt = |2 5.1.28d

< 4P>Cas 2p2 12 + (24 dﬁz + 8ﬁdﬁ> 10 ( )

and (T% ) .. = (T7: ) cae- As expected by construction, the trace of the stress tensor
vanishes if the field is massless:

<Tdd >Cas - —,U,2 <¢2>Cas = —IIO- (5129)
The asymptotic behaviour (A.2.4) of the modified Bessel functions for large val-

ues of their arguments shows that the exponential damping coming from the ratio

K,(x)/1,,(x) disappears on the boundary (when p = 1):

Kim(x) 1 -

I = —[1+0®kx"! 5.1.30
P ) = 5oL+ 0], (51.30)
hence, the functions Z;, in Eq. (5.1.26) cannot converge due to the divergence of
the integral over x at large values of ¥ and x. The asymptotic behaviour of the
functions Zy, and of the corresponding expectation values is analysed in the following

subsection.

5.1.4 Casimir divergence near the boundary

The expression (5.1.25b) for the SET is obtained from the difference between the
Euclidean Green’s function (5.1.21) for the space-time bounded by a cylinder of
radius R and the one corresponding to the unbounded space-time (5.1.20). Since
the former vanishes on the boundary but the latter is known to be singular in the
coincidence limit, the SET must diverge as the boundary is approached. Deutsch
and Candelas [31] have shown that the divergence can be expressed as a power series
in the inverse distance from the surface, which is determined in this section using
the methods in Refs. [32, 33].
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The conservation equation (3.1.8) is identical when written for tetrad compo-
nents:
0,(oT",) = T?

5 (5.1.31)
showing that the divergence of T° 5 is one order of magnitude less than that of
T‘%. Hence, Eq. (5.1.31) enables the asymptotic behaviour of 7" 5 to be calculated
order by order from that of T“; without looking at the sub-sub-leading terms of its

constituent functions Z, in Eq. (5.1.28c¢).

Equation (5.1.30) shows that the SET diverges due to the behaviour of the
integrand in Z;,, at large values of «, therefore, the leading orders of the divergence
can be safely calculated by considering the field to be massless. The asymptotic
analysis of the functions Z;, in Eq. (5.1.26) can be performed after switching the
sum over m into an integral:

_ 1 o0 o0 K, (x)
Ton ~ Loy = —— d dx x‘V" =220 P (k7 .1.32
‘n In W2R4A V/() XXV I,,(X) V(Xp)’ (5 3 )

as explained in the following paragraph.

Application of the Abel-Plana sum formula for the conversion of a sum

to an integral

With the aid of Cauchy’s theorem of residues, a rigorous formula can be obtained
for connecting a sum over integer values m into an integral, called the Abel-Plana

sum formula [64]:

627rt -1

if(m) = %f(o) + /OOO dv f(v) +Z-/O°° 1@ = f(=it)

m=

+im {Z sgn(Jmzy i )Resmeso[f(2)] — ¢ Z sgn(JImzy ) Respe., >0l f(2) cot 72] } ,
k k
(5.1.33)

where the sum over k runs over the poles of f(z) located in the upper complex plane
(where Rez > 0) and Resm,., ,~o[f(2)] represents the residue of the function f at its
k’th pole. For the conversion of the sum over m in Eq. (5.1.26) to the integral over

v in Eq. (5.1.32), the functions f(m) of interest are:

Kon(®) 12 () (5.1.34)

fgn(m,ﬁ):/o dxxgmnj_ ) I
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This conversion is worthwhile only if the difference §(p) between the sum over m

and the integral over v, defined as:

IREEY f(m)—2/ooduf(u), (5.1.35)

0

m=—0o0

does not diverge (or if it diverges at a subleading order) as p — 1.

The residues in Eq. (5.1.33) vanish when p = 1, therefore, they can be ignored
in this analysis. Since only even values of n are relevant, fi,(—m,p) = fi.(m,p).
Given that K_;,(2) = K;,(2) and I_;,(2) = I} ,(2) for real z, the difference §(p) can

be written as:

5(7) = —4/000625—15_1/000 dx % (it)" Ko (x)Im [[é(;f))]. (5.1.36)

The relations (A.1.20) can be used to simplify Eq. (5.1.36) when p = 1 (i.e. on the
boundary):

AT at el 2
5(7) = /0 S /0 dx % (it)" K2 (x). (5.1.37)
The double integral is now damped in both variables, i.e. by the term (e*™* —1)~! in
the t variable and by K2(x) in the x variable. Thus, the approximation Z, (5.1.32)

exhibits the same divergent behaviour as Z,.

Building blocks for the analysis of the Casimir divergence

The analysis of the Casimir divergence for scalars in a cylinder has been performed
in Ref. [32]. For completeness, this paragraph presents the details of the calculation.
Since the divergence is due to the behaviour of the integrand at large v and x, the
Bessel functions can be replaced by the uniform asymptotic expressions given in
Egs. (A.2.5) and the lower limit of the x can be approximated to 0. After a change
in Eq. (5.1.32) to polar variables (v,a) = (r cos,rsin @), I;, takes the form:

7 1 : - hntl . omop i b K, cosg(rsind) C
Loy = W/o d@/o drr cos" 0 sin QITCOSQ(TSHIQ) I so(rsinép).
(5.1.38)
The asymptotic expansions in Eqs. (A.2.5) can be used to obtain the following
expressions:
Krcos@(r sin 9) —9p—9y1n —siné 3 — 5C082 0 1
— r VI T os0 1_— O 5139
L’cos€(7n sin 9) ' 12r + (T' ) ’ ( a)
1 9riopy _psine 3 — 52 cos2 0
I s (P sin ) =5 — e P |14 S O(rl)] . (5.1.39h)
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where 7 = /12 + x2p%. Introducting the small quantity
e=1-7 (5.1.40)

to obtain the leading and next-to-leading order divergent terms, it is sufficient to
ensure the correct capture of the terms of order ¢ and r~!, ignoring any terms of

order €2, er~! and 72, for reasons which will become apparent shortly.

Using the following intermediate approximations:

D1 esin?0 + % sin? 0 cos® § + O(e%), (5.1.41a)

r

r ) 2 . :

- =1+ esin® 0 + < sin® §(1 + sin® §) + O(€°), (5.1.41b)
psinf sin ¢

n L} cosf =T s ecos — 2e” cos (1 + sin® §) + O(€°), (5.1.41c)

the exponent in Eq. (5.1.39b) can be approximated as:

. "
&:2r+2ylnL—2re—re2cos29+..., (5.1.41d)

2r +2vl
Tt Vnr—l?—i—cosé’ 1+ cos®

leading to the following asymptotic expansion:

K,,(X) 2 €—2re
WIV(XP) =5

[1+esin®0 — €rcos®0+...], (5.1.42)

2

where terms of order r =2, er~! and €2 have been ignored in the square brackets. The

r integral in Eq. (5.1.38) can be written using Gamma functions. It can be seen

1

that each power of 7~ in the integrand will contribute a term of order €, hence, the

integral (5.1.38) reduces to:

1
212 R4
({4 n)!

:2<2 e 2R4/2 df cos™ Osin’ @ {1 + [sin® @ — F2E cos® Ole + ... }.
€ 7r 0

5 00
Tin / df / dr e 2" cos™ @ sin’ O[1 + esin® 0 — e*rcos® 0 + .. .|
0 0

(5.1.43)

Performing the 6 integral for the first two terms in the integrand in (5.1.43) gives

the leading and next-to-leading terms for the four cases of interest:

= 2
10 :—87T262R4 [1 + %E + O(E )] s
— 1

30 Q2R [
— 1
Tig=——
B2 T 6r2et R [

1+ 2e+0()],

1—2e+0(e)] . (5.1.44)
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Result

Having calculated the asymptotic expansions (5.1.44) of Z;,, Egs. (5.1.28) can be
used to find the asymptotic forms of ¢? and T%:

(0)cas =~ Teaaall + 36+ O], (5.1.45a)
(T7 ) as =m +0(7?), (5.1.45Db)
(T%) s = — m +O0(e™), (5.1.45¢)
(T%) e = = m +O0(e7?) (5.1.45d)

and (T%)q,. = (I )q,.. In the above, e = 1 — 5. The asymptotic form of Tﬁﬁ
was found using Eq. (5.1.31). Equations (5.1.28) and (5.1.44) show that the mass
terms make subleading contributions to the SET. Hence, the Casimir divergence
of massive scalars near the boundary has the same order of magnitude as that of
massless scalars. Equation (5.1.45) is in exact agreement with the results reported
in Refs. [31], 32 [33].

5.1.5 Summary

The removal of the space outside the speed of light surface (SOL) by enclosing the
system inside a boundary renders t.e.v.s regular at every point inside of it, but only
if its location is inside or on the SOL. If the boundary is placed outside the SOL,
the old problems of modes with vanishing frequencies but non-vanishing Minkowski
energies return. The Planckian forms of Ref. [33] give an excellent approximation of
the t.e.v.s of ¢? and the SET around the rotation axis at large enough temperatures.
The correction terms calculated in subsection 4.2.2 would become important as (€2
is increased, however, the effect of the boundary becomes highly pronounced as (3
increases, causing the t.e.v.s to deviate from the analytic expressions obtained in

the unbounded case, as shown in Figure 5.2.

An analysis of the expectation values evaluated in the vacuum state of the
bounded system with respect to the unbounded vacuum, induced through the Casimir
effect, shows that they exhibit the Casimir divergence, diverging as inverse powers
of the distance to the boundary. The leading order of the divergences is in complete

agreement with the results presented in Refs. [31] [33].
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5.2 Dirac fermions obeying spectral boundary con-

ditions

Since the Dirac equation is of first order, its initial (boundary) conditions are also
of first order. Hence, the standard Dirichlet or Neumann boundary conditions
which can be used with the second-order Klein-Gordon equation cannot be used
for fermions. For any choice of boundary conditions, the resulting theory must
preserve the self-adjointness of the Dirac Hamiltonian, as discussed at the end of
subsection 2.2.3. The problem is equivalent to requiring that the time derivative of
the inner product of any two solutions of the Dirac equation, given in Eq. (2.2.31)
in terms of a surface integral, vanishes. For the case of a cylindrical boundary,
Eq. (2.2.31) reduces to:

fe'e) 27 00 2
O (W, x) = R/ dz/ d<p¢7”x—|—/ pdp/ dp Py ; (5.2.1)
NS 0 0 0

zZ=00
2Z=—00
where ¢ and x are arbitrary solutions of the Dirac equation. The last term above
can be written in integral form as [ dz 0, ..., which vanishes as the basis modes are
eigenvectors of P* = —id,, implying that the result of the z integral thus introduced
is of the form (k — k" )d(k — k).

In this section, the spectral model [43] is considered. The formulation of the
boundary conditions, mode solutions and energy spectrum are discussed in subsec-
tion 5.2.1. Thermal states are discussed in subsection 5.2.2 and the Casimir effect
is investigated in subsection 5.2.3. The thermal expectation values obtained with
the spectral model are compared with those obtained in the MIT model in subsec-
tion 5.3.2. Finally, an analysis of the energy density on the rotation axis and on the
boundary is provided in subsection 5.4.1, while the case when the SOL is inside the

boundary is analysed in sections 5.4.2 and 6.2.

5.2.1 Boundary conditions and mode solutions

As discussed at the beginning of section 5.2, the self-adjointness of the Hamiltonian
is guaranteed if the inner product of any two solutions of the Dirac equation is
time-independent. For the spectral boundary conditions, this is implemented by
ensuring that the inner product of any two modes from the set of mode solutions is

time-independent.

Discretisation of transverse momentum

Since the boundary does not change the form of the Dirac equation, the solutions

have the same coordinate dependence as the solutions in the unbounded case, given
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in Egs. (3.3.2) and (3.3.23a). Hence, the mode solutions satisfying spectral boundary

conditions can be introduced as:
A A A Ak
sznZ;E(x) = CanZ;Engm(x)v Vkssw;E(x) = CISfEnZ;EV]é\km(x)7 (5.2.2)

where £ = E,,, = i\/W controls the sign of the Minkowski energy
(i.e. either plus or minus) and the label ¢ indexes the discrete set of transverse
momenta that ensures the time-invariance of the Dirac inner product, as will be
discussed shortly. The constants C3,,.; have been introduced to normalise the modes
with respect to the inner product (5.2.8) corresponding to the bounded system.
Choosing ¢ and y in Eq. (5.2.1) as combinations of the above modes yields:

. Y R . N (v
O Uk Uibon) = S0k — K )i GG P
ONE' . 2\E .
(e e )
X [Qi)\/p)\p/_)\/t]m(QmﬂR)Jm—ﬁ—l(QmE’R) - 2i/\p—)\pl)\"]m+1(QmKR)Jm(QmK’Rﬂ ) (5233)

: Y R Xk aspi N i(E+E'
T Vi) = TV 008+ R G, B

2AE 2N E'
1 /
(oo - T o)
X [pkpl)\’Jm(QmZR)Jm-i-l (Q—m—l,K’R) + 4)\/\/p—)\p/_)\/Jm+1(QmZR)Jm(Q—m—1,Z’R)} )
(5.2.3b)

where €. and p. are defined in Eqs. (3.3.17) and (3.3.12), respectively and E = £ —
Q(m+3) is defined in Eq. (4.3.3). One way to make the above time derivatives vanish
is to choose ¢,,¢ such that each term in the square brackets vanishes individually.
As discussed in Ref. [43], Egs. (5.2.3) can be simultaneously set to 0 by making g,

a root of J,, for positive values of m and of J_,,_; if m is negative, i.e.

Eme m+%>0,

gmeR = (5.2.4)

ffmfl,g m + % < 07
where &0 is the ’th root of J,, (i.e. J(§ne) = 0 for all £ = 1,2,... and &,y <
fm,@Jrl)-
To understand why Eq. (5.2.4) is referred to as spectral boundary conditions by
the authors of Ref. [43], consider a solution v (z) of the Dirac equation. On the

boundary, ¢ can be Fourier-transformed with respect to the angular coordinate ¢:

[e.9]

W(x)= Y et R, 2). (5.2.5)

m=—0Q
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Schematically, the top component of the four-spinor ,,(¢, R, z) corresponding to
the particle modes U;E;? is proportional to J,,(gmeR), while that of the anti-particle
modes V,fglf\ is proportional to J,(¢—m-1,R). If m > 0, Jn(gmeR) = 0 and also
Ime(q—m—-1,) = 0, by virtue of the second branch of Eq. (5.2.4). When m is negative,
the top component of ¥, (t, R, z) no longer vanishes. However, its second component
corresponding to particle and anti-particle modes is of the form J,,(gm-1,) and
Jm(q—my), respectively. Neither of these vanish for positive m, but at negative
values of m, both the particle and the anti-particle contributions to this second
component vanish. Moreover, when the first component vanishes, so does the third,
and similarly for the second and fourth components. Hence, the boundary conditions
(5.2.4) ensure that the first and third components of the Fourier components of any
solution of the Dirac equation with positive spectral index (positive m+ %) vanish on
the boundary, while for negative spectral indices, the second and fourth components
vanish. Thus, the scheme earns its name of spectral boundary conditions.

Alternatively, Berry and Mondragon [15] suggested setting to 0 the right-hand
side of Eq. (5.2.3) as a whole, keeping individual terms finite, implying:

2\p + k

Jnt+1(qR) = Jn(qR)sgn(m + 3) . (5.2.6)

The signum function is there to preserve the charge conjugation invariance of the
theory, ensuring that each V' mode is obtained from a U mode through the charge
conjugation operation. In this case, the discrete spectrum of the transverse momen-
tum depends on k, m and A, making its numerical implementation less tractable.

We therefore do not consider this possibility further.

Energy spectrum

As in the scalar case, Eq. (5.1.6) can be used to show that
EmeR > EpuR > (1 - QR)(m + 1), (5.2.7)

for £ > 0. As discussed in subsection 4.3.1, EE > 0 for all modes as long as
the boundary is inside or on the SOL (2R < 1). Hence, the zones I and III in
Figure 4.1 contain no particle states, making the Minkowski (Vilenkin) and rotating

(Iyer) vacua equivalent.

Normalisation

The modes (4.3.2a) and their charge conjugates (4.3.2b) must be normalised with
respect to the Dirac inner product (2.2.30), which in the case under consideration

takes the form:

woo= [ [Cae [Cappitania (528)
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. !
For the case of two particle modes U}, ., and U}, .5, the above reads:

SP; A sp; A\’ _ ! i(E—E")t
<Ukm€;E7 Uk/m/él;E/) = Ckme Eckme/ p0(k — k) 6pm e’

EFE'
X (€+€/+ +4)\)\/|EEI|€ @l )
R R
X [mp’x / T (ap) I (d'p)p dp + 4XNp_xp"_y, / Jms1(ap) Jms1(d'p)pdp|
0 0

(5.2.9)

where the m and ¢ indices have been omitted on ¢, ¢’ and any derived quantities, as
there is no risk of confusion. Its value is determined by requiring that the right-hand
side of the above reads d(k — k')dpm 0o O30 (EE"). Since the boundary conditions
preserve the self-adjointness of the Hamiltonian, the time-independence of the inner
product requires modes of differing energies E—FE # 0 to be orthogonal. For the
evaluation of the integrals of the Bessel functions when ¢ = ¢, it is convenient to

use the following results [37]:

R
322/0 dpp - [JQ(qp)+J2+1(qp)]

7 [an“(qR) - 2”; ; L J(aR) ia(aR) + 12 (gF)
~— f 2 2 R
I = /0 dpp [J (ap) = T (ap)] = 27" m(qR) Jmi1(qR), (5.2.10)

where the integrals of the Bessel functions have been performed using Egs. (A.3.6).
The spectral boundary conditions ensure that the product J,,(¢R)J+1(gR) vanishes

for all m. For positive m + 5 1 the normalisation constants take the following values:

Csp A Csp A 1

b o - (m+1>0). 5.2.11
kméE — Yk, IZE R|Jm+1(§m,€)| ( 2 ) ( )

Using Eq. (3.3.29), it can be seen that the particle modes obeying spectral boundary

conditions are linked with anti-particle modes via:

sp; (DN
Verp(@) = (=1 ‘E|U‘2Am Lep(®). (5.2.12)

Second quantisation

Having completed the construction of the set of mode solutions of the Dirac equation

obeying spectral boundary conditions on the bounding cylinder, the field operator
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can be written as:

duala) =Y 0(E)) [Ujp(x)bf,‘;’j + v;p(x)di?;] (5.2.13a)

N [U?p(x)bs{}’;j + x/jsp(x)dsvﬁﬂ , (5.2.13b)

J
J

with respect to Iyer’s and Vilenkin’s vacua, respectively, as discussed at the end of
Sec. 4.3.1. In the spectral case, j = (k;, m;,{;,\;) and

>= 3D [ Yy (5.2.14)

m;=—00 £;=1 Ej==%|E;| \j=%1/2

5.2.2 Thermal expectation values

In this subsection, the thermal expectation values (t.e.v.s) of the fermion condensate
Y1p (FC), charge current J# (CC) and stress-energy tensor T}, (SET) are calculated

following the methods introduced in subsection 4.3.2.

Formally, the thermal Hadamard function has the same expression as in Eq. (3.3.54)

for the unbounded rotating space-time, but the Fourier coefficients Mj,,¢, given in

(1 0) o./\/lj]
0 1
1 (0 —1 kg
+ = (1 . ) ® [(q —k) o/\/lj] , (5.2.15)

where M is given in Eq. (3.3.58). The indices m and ¢ have been omitted on ¢ and

(3.3.60), now have different normalisation:

AT R, 1 (Eme) Mt = | %

EIQ + 03} &

derived quantities.

Fermion condensate

As previously, Eq. (2.2.55a) can be used to calculate the t.e.v. of the FC using the

expression (3.3.54) for the Hadamard function:

T = ZZ/ Ezﬁ’;f{}ﬁ - };) ) I+ (ap), (5.2.16)

m=0 ¢=1

where

E=FE-Q(m+13), E=E+Qm+3) (5.2.17)
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and the thermal factors w depend on the vacuum state as shown in Egs. (4.3.14)
and J (qp) is defined in Eq. (3.3.69). As before, the indices m and ¢ are omitted to
simplify notation. Hence, in the spectral model, the t.e.v. of the FC vanishes when

massless fermions are considered.

Neutrino charge current

While the t.e.v. of all components of the CC vanish, there is, as in the rotating

unbounded case, a non-vanishing neutrino current along the rotation axis:

caap =y [Tt . G2y

m=0 (=1

It can be seen that the sign of the charge current changes from negative on the
rotation axis to positive on the boundary (the weight factors w(E) and w(E) are

negative):

5 bpec E
(: J2 ) J 2::/ 2W2R2J1( 1(%) I} (5.2.19a)

( pJ :—ZZ/ dkfw 27T2R2 — w(E)] (5.2.19b)

m=0 [=1

AN

Stress-energy tensor

The following results are obtained:

(T3 =— ;i/{) ﬁﬁwf&;;}g)ﬁ) I (ap), (5.2.20a)
(Tpo 1)y =— ;i/{)m Eq;g]];z w(éi;;g)ﬁ) J(qp) — mq; %Jé(qp)
T g mz Z [ DD )
(- Toe 7% = mZO;/OO ’if;w E) + e BE) )in(qp%
)

e S [ b w(E) - w(E
iy = /o 2R 2. (qR)

x [(m+3) 5 (ap) — 570 (ap) +apJi(ap)] (5.2.20b)

where the relation

Tni1(2)dm(2) = T3, (2) a1 (2) = T (2) = 27 (m + 5) T (2) (5.2.21)
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has been used to obtain the expression for (: Tj; :>B' Equations (5.2.20) can be used
to check the identity:

spec spec

(T D =k PR Dg - (5.2.22)

Numerical results

In this section, the results of the numerical integration of the exact expression for
the t.e.v.s of the fermion condensate (5.2.16), charged current (5.2.18) and SET
(5.2.20) are shown and compared with the Planckian forms given by the leading
terms in inverse powers of (3 in Eqs. (4.3.50). The Planckian forms for the fermion
condensate (FC) and charge current (CC) are given in Egs. (4.3.54a) and (4.3.54b),

respectively. The Planckian forms for the stress-energy tensor (SET) are:

Planck 7’ 4 1
(: Ty 1) = 6051 (3 —3¢),, (5.2.23a)
anc 771'2
anc anc 77T2
( Tpp 20y = Tos )5 =g (5.2.23¢)
anc 77T2

In Figures 5.3, 5.4 and 5.5, numerical results for massless (¢ = 0) and mas-
sive (u = 2Q) fermions are represented with thick, dashed coloured lines and thin
coloured lines, respectively, at four values of the inverse temperature 3. The Planck-
ian forms discussed above are shown for comparison using thin black lines for each
value of the inverse temperature (3, except when the corresponding profile is off the
scale, as explained in the figure captions. It can be seen that increasing the mass
of the field quanta sets the profiles of the corresponding t.e.v.s lower than in the
case of massless fermions. The plots include results when the boundary is located
on (left hand side) or half way (right hand side) between the rotation axis and the
speed of light surface (SOL).

Two distinctive features set the spectral model apart from the MIT model, pre-
sented in section 5.3: firstly, the parity-violating neutrino charge current changes
sign and becomes parallel to the angular velocity of the rotation (as opposed to anti-
parallel in the unbounded case); secondly, (: T4 1)’ vanishes on the boundary.

According to Figures 5.3 and 5.5, the t.e.v.s {: ¥1) :)Sﬁpec, (: Ty )5~ and (: Tss )5

seem to be lower than the corresponding Planckian form. However, the same figures

together with Fig. 5.4 imply that the profiles of the t.e.v.s (: J7 )5, (: Ty :>sﬁpec,
(:Tpp )5 and (: Tpp 1)5 set higher than the profiles of the corresponding Planck-

ian forms.
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Figure 5.3: Fermion condensate (top) and neutrino charge current (bottom) for the
boundary on and half-way to the SOL on the left and right, respectively. The plots
compare numerical results for massless (thick dashed coloured lines) and massive (thin
coloured lines) fermions with the Planckian forms (4.3.54a) and (4.3.54b) corresponding
to the FC and neutrino charge current, respectively. Only the Planckian forms corre-
sponding to 62 = 2.0 and Q2 = 1.25 are represented for the FC in the case R} = 0.5,
the results corresponding to lower values of 32 being off the scale.

Figure 5.6 (top) indicates that, for Q2 = 0.05, the agreement between the an-
alytic results (4.3.54c) and (4.3.54f) for (: Ty )5 and (: Tjpp 1)’ and the corre-
sponding numerical results for when the boundary is located at R} = 0.5 is very
good around the rotation axis. In the plots on the second line of the same fig-
ure, the values of (: Ty 1) and (: Tpg :)7 on the rotation axis are compared to
the Planckian forms (5.2.23a) and (5.2.23d) and with the aforementioned analytic

results.

5.2.3 Casimir effect

As in the scalar case, it is more convenient to investigate the Casimir effect by con-
sidering the Euclidean equivalent of the manifold. As discussed in subsection 5.2.1,
if the boundary is located inside or on the SOL, the quantisation (5.2.4) of the trans-
verse momentum guarantees that EE > 0 for all modes, in which case Eqs. (4.3.7)
imply that the rotating (Iyer) and Minkowski (Vilenkin) vacua coincide. For the
remainder of this section, only the case QR < 1 (boundary inside or on the SOL) is
considered. The case when the rotating and non-rotating vacua do not coincide is
not considered here. To simplify the calculations, it is convenient to switch to the

inertial non-rotating (Minkowski) coordinates, with respect to which the metric is
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Figure 5.4: The t.e.v. of —T;?ec/pQ for RQ = 0.5 (right) and of its logarithm for RQ = 1.0.

The factor —1/p€2 is introduced to make the result positive and finite (non-zero) on the
rotation axis. Numerical results for massless (thick dashed coloured lines) and massive
(thin coloured lines) fermions are compared with the Planckian form (5.2.23b).

given by (5.1.15). The transition to Euclidean coordinates can be made following
Egs. (2.1.60) and (2.2.59).

Euclidean Green’s function on the unbounded manifold

The Euclidean Green’s function Sp = Sg(z,2’) must satisfy the inhomogeneous
Dirac equation (2.2.61a). Following the construction of the mode solutions of the
Dirac equation in subsection 3.3.1, the Euclidean Green’s function can be Fourier-

transformed as:

dw

— (5.2.24)

/OO dk i eiwAT—H'kAzX,

m=—0Q

Sp(rp, 7) = /

where the 4 x 4 matrix y can be written in terms of four 2 x 2 matrices xu:

(Xn X12>
X = .
X21  X22

Performing an equivalent Fourier transformation of the delta functions on the right

(5.2.25)

of Eq. (2.2.61a), the inhomogeneous Dirac equation implies:

iw+p  2ph xi2\ d(p—p) eimAae 0
=—— L ® . ,
_2ph P 0 ez(erl)ALp

X11
—iw + p X21  X22
imAgp
X11 e 0
<X21 L® ( 0 ei(m+1)A¢) , (5.2.26)

xie\ [w+pu 20T\ _d(p—p)
Yoz ) \—2ph'T —iw+p v
where h is the 2 x 2 component (3.3.1b) of the helicity operator Wy, defined in

Eq. (3.3.1a). For the equation in z’, the corresponding reducd helicity operator A’

has the form:
—Pjr —k

= — 5.2.27
» (52.27)
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Figure 5.5: The t.e.v. of Jgpec, T ;gec, T;I:;C and T32°° (from top to bottom) for RQ =
0.5 (right) and of their logarithms for R = 1.0. Numerical results for massless (thick
dashed coloured lines) and massive (thin coloured lines) fermions are compared with the
corresponding Planckian forms in Egs. (5.2.23).
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Figure 5.6: (a) The profiles of (: T; )3 and (: Tjp 1) between the rotation axis and
the boundary located at R{2 = 0.5 at 82 = 0.05. The profiles for massless and massive

fermions overlap each other throughout the whole range of p, but depart strongly from the

analytic results (4.3.54c) and (4.3.54f). (b) The dependency of the values of (: Ty ;)"

and (: T¢¢:)sﬁpec on the rotation axis on the value of the temperature, compared with the
Planckian forms (5.2.23a) and (5.2.23d) and with analytic results.

The primes indicate that the derivatives in the operators P, defined in Egs. (3.3.1c)
act from the right on p’ and ¢'.

The off-diagonal components of Egs. (5.2.26) give the following equations:

2ph 2ph’
X21 = — = X11 = X227 )
w — [ W+ [
2ph 2ph’ T
X12 = — - P X22 = X117 b ; (5.2.28)
w+ W — [

while the diagonal components can be written as modified Bessel equations:

[282—|— ) +a2_ 20é2] X11 _ 5( . /) ema? 0
P p POp %) P tw — 1 po\p —p 0 ei(erl)ALp !

0 ei(erl)Aap

X22 eimae 0

[0*05 + pd, + 02, — pga?]_.—_u =pd(p —p') ( ) ;o (5.2.29)
where o? = w? + k? + p? (5.1.19). It can be shown that the inhomogeneous Dirac
equation in z’ also reduces to the above equation (with p and ¢ replaced by p’
and ¢, respectively), hence x1; and ys2 can be written as linear combinations of
modified Bessel functions. The Euclidean Green’s function for the Minkowski space-

time must be regular at the origin and at infinity, thus the only non-trivial solution
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satisfying these boundary conditions is:

_o_o X X2
w—p  tw -+
Im Km imAp 0
0 L1 (@p<) K (aps )eltmDae

where p. and p- are the smaller and larger of p and p/, respectively. The notation

above is equivalent to the following combination of step functions:

flap<)glaps) = 0(p = p')glap) f(ap’) +0(p" — p) f(ap)g(ap). (5.2.31)

The off-diagonal matrices x12 and x21 can be obtained from Eqs. (5.2.28), using the

following properties:

PyLy(ap)e™ = —iae ™ V2L, 4 (ap),
P_ I 1 (ap)e™ e = —jqe™?1, (ap),
Py Ky (ap)e™ =iad ™K, 4 (ap),
P_ K1 (ap)e™HD% —iae™? K, (ap). (5.2.32)

Similar equations hold for P., which can be applied bearing in mind that I_,,(z) =
I,(z) and K_,,(z) = K,(z) for all integer orders m.

Thus, the Euclidean Green’s function for the unbounded Minkowski space-time

can be written as:

Sp(zp, ) = / = / dk Z wATHiRAZ (5.2.33a)

m=—00

with y given by:

(uly — w0 @ Ln(ap) K (aps )emae 0
= —iwo _
X = (M2 3 0 ]m+1(ap<)Km+l(ap>)€1(m+1)Ago

0 —1 L (ap) K, (aps)e™>e 0
Tk 2 (ap<) K (aps) A
10 0 L1 (ap<) K (aps)eltmihae

0 -1 0 (m,m+1)
ta <1 . ) ® ((m+ L) . > . (5.2.33D)

where the Pauli matrix o3 is defined in Eq. (2.2.8) and the notation (m,n) is a
shorthand for:

(m,n) = i’ [0(p — p)In(cp) Kn(ap') = 0(p — o) Kn(ap) Ln(ap)]. (5.2.33¢)
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| (m+I>0[m+1<0]
oo ()G o)
RN

Table 5.1: The behaviour of the 2 x 2 constituent blocks of Lorentzian two-point
functions obeying spectral boundary conditions on a cylinder of radius R. Depending
on the sign of m + % and on which point is on the boundary, certain entries in these
2 X 2 matrices will vanish, as indicated in the table. Entries marked x do not
necessarily vanish.

The solution (5.2.33) is fixed by requiring regularity at the origin (p = 0 or
p' = 0) and space-like infinity (p — oo or p/ — o0) and corresponds to the un-
bounded Minkowski space-time. To obtain the Euclidean Green’s function for a
system enclosed in a boundary, suitable solutions of the homogeneous Euclidean

Dirac equation can be added to the appropriate matrix elements in Eq. (5.2.33).

Euclidean Green’s function for the spectral model

To construct a Euclidean Green’s function which implements spectral boundary
conditions, the behaviour on the boundary of the corresponding vacuum Hadamard
function can be considered. Since the dependence on the radial coordinates p and
P is always that in the 2 x 2 matrix given in Eq. (3.3.58), it is sufficient to analyze
its behaviour on the boundary, as shown in Table 5.1. Furthermore, the Green’s
functions must stay regular at the origin. Denoting the Euclidean Green’s function
of the bounded system by S¥(z,z'), the difference

ASP(aa') = SF(w.o') = Slo) = [ L5 [ an 30 eerrpe,
- (5.2.34)

with respect to the Euclidean Green’s function of the unbounded space is a solution

of the homogeneous version of Eq. (5.2.26) (i.e. with the right hand side set to 0).

To implement the boundary conditions shown in Table 5.1, it is sufficient to add

the following matrices to x11 and x22 in Eq. (5.2.30):

AP AP 1 0
X1 _ DX _Cm< )ogj’ (5.2.35a)

—iw4p iwp 0 —1
where the Hadamard (Schur) product is taken with the following matrix:

c Ln(ap) L (ap')eimae —i L () L ir (ap)elmTDAe—ie (5.2.35b)
! L1 (p) L (ap)emB2e% % L (0p) Ly (op))elm A2 o
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and c,, is a constant ensuring the structure in Table 5.1, having the value:

Kn(aR
KaloB) 4y
Cm = m(@R) (5.2.35¢)
—Km+1(aR> m+1 <0
Imia(aR) 2 '

Only modified Bessel functions of the first kind (i.e. I,,,) have been considered, since
their linearly independent partners, K,,, do not satisfy the requirement of regularity
at the origin. The structure of the matrices in Egs. (5.2.35a) is determined by the

compatibility conditions (5.2.28), which give the following off-diagonal matrices:

-
X = —X12 = Cm ( a) 0&;. (5.2.35d)
—a k

Thus, the homogeneous solution of the Euclidean Dirac equation inducing spectral

boundary conditions is:
S o zwAT+zkAz S
ASP(z,2') = /_ 53 / dk m_zoo Ax*P, (5.2.36a)
where the Fourier components Ay*P can be written as:
1 0 0 -1 ko —
(@] gj —|— ® @ O gj .
0 —1 1 0 —a k
(5.2.36b)

In the following paragraphs, the Casimir induced expectation values of the fermion

c PAXP = (uly — iwos) ®

condensate and SET are calculated using the difference ASY (z,2’) between the

Euclidean Green’s functions corresponding to the bounded and unbounded systems.

Casimir expectation values

The Casimir expectation values, induced by the difference between the bounded and
unbounded vacua, can be calculated from the difference ASPY (x,2') = S (z,2') —

Sg(x,z’). For the fermion condensate (FC), the following expression is obtained:

(V) s = — 53 / dw / dk: a}];)l (aR), (5.2.37)

where the notation [, (z) is analogous to Egs. (3.3.69):

Ln(2) = I(2) £ I 1 (2), In(2) = 2L(2) I (2). (5.2.38)
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Switching to polar coordinates (5.1.24), the Casimir FC can be put in the form:

() e = —HR°Ty, (5.2.39)
where
1 > 00
Lo = 5551 dx x* Wyne I* (xp 2.4
tn = Qr2 R4 m;oo/m xx'(m+ 3)"cm I, (xp), (5.2.40)

where p = p/R and ¢, is defined in Eq. (5.2.35¢).

The calculation of the induced SET can be done using the formula (2.2.62), with
Sg(x,z') replaced by ASY (z,z'):

& \SP 1 - > o Km(C(R) . 92—
<T5/>Cas - 273 mz:[)/oodE/oodk [m(OéR) dlag E [m(a/p)v

a?L,(ap) — ap™ (m+ 3)Ly(ap),ap™ (m + 3) L3 (ap), kanZ(ap)}- (5.2.41)

After a change to polar coordinates (5.1.24), the integration over the polar angle

0 can be performed:

<T7A—7A' >2)as - <T22 >2)as - "Z’-E}_O + /’L2R2:Zl_07
2

5 \SP _
<Tpp>Cas =213, — EIZXD

5 \SP 2
(T%%) s :5151. (5.2.42)

Equations (A.2.7) can be used to see that the functions Zy, diverge at p = 1 due to

the large m and x behaviour of their respective integrand:

1

v
= |14+ —— b O((*+xHH. 5.2.43
v+Vr24+x2 2V v? 4+ x2 (v =) ( )

A more detailed analysis of this divergence can be found in the next subsection.

5.2.4 Casimir divergence near the boundary

As in the scalar case, the divergence of the functions Z;, is best performed by
switching the sum over m to an integral. The functions appearing in Egs. (5.2.39)
and (5.2.42) are Z,,, Z5, and Z,. Since in all these terms, the summands in the sum
over m are even with respect to the change m — —m — 1, the function Tzn obtained
by replacing the sum over m with an integral can be written as follows:

_1
2

—% 1 K,/_l X)
Ly, = —/ dv dXXZVn[—Q Ir i (xp). (5.2.44)
0 3
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Since the symmetry of the summands is different from the scalar case (where it
was with respect to the transformation m — —m), the Abel-Plana formula used in

subsection 5.1.4 must be adapted, as explained in the following paragraph.

Generalised Abel-Plana formula

The Abel-Plana sum formula (5.1.33) can be generalised to sums over odd half-

integers, as presented in Ref. [64]:

if(er 5) = /OO dv f(v) _i/mdtf(it) — f(—it)

et + 1

+im {Z sgn(Im(zsx) ) Respe(z; )50/ (2) — i ZResf ) cot FZ} . (5.2.45)

In the above, 2y represents the k’'th pole of the function f(z) and Resme(., ,)<0.f(2)
represents the residue of f(z) at z = 2y, in the real half-space of the z-complex
plane. As in the scalar case, there are no residues to evaluate in the transition from
T toZ,,.

As opposed to the scalar case, the difference J;, (p) between the sum over m in

Eq. (5.2.40) and the corresponding integral over v in Eq. (5.2.44), given by

5p(7) =i /0 dtffn(zgm f"1<_“), (5.2.46)

diverges as € = 1 — p approaches 0 for all three cases (Z,,, Z5, and Z3;) considered
here. In the above, f} (v) is

. 1 [ K, ()
finlv) = R /HR dx x‘v" T ) Iy_%(xp). (5.2.47)

1
2

Since the (e*™ 4 1)~! factor in §},(p) suppresses the integrand in Eq. (5.2.46) at
large t, the leading orders of the divergence of d;, (p) can be calculated by considering
the large x behaviour of the integrand in Eq. (5.2.47). The following asymptotic
behaviours can be obtained, starting from Eqgs. (A.2.4d) and (A.2.4e):

}I(V_f((xx)) =me % [1 + V(VX_ D) + V2(V2}; 2k + O(X_3)] . (5.2.484a)
I (x)— I}, (%) :’f—}; {1 = 25{” D 5+ O(XB)} , (5.2.48)

2L, 1 ()11 (x) =— [1 i ”—4 +O(x )} : (5.2.48¢)
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with which the following expressions can be obtained:

KV_;(X) y€—2xe v — 1 1/2 1 €
—2 1? (xp)=1I% ,(x7)] =—— |1 — 2 _ 2- 4 ... 2.4
oy oy )~ L2 00 =" I SaW R LERCY
K, 1 (X) e~ 2xe v¥e v
20— 2 1 (xp)], 1(xp) = 1—— = -2 .2.49b
IV_%(X) u—i(xp) V+§<Xp> J]ﬁQ |: Xﬁ X +O(X ):| y (5 9 )

where € = 1 — p is defined in Eq. (5.1.40). Substituting the above approximations
in Eq. (5.2.46) gives:

o 2 o dt Cdx o, _
510(p) == 7T2R4/0 62”_'_1/# 2 [1—|—O(x 2)}7

R XP°
o 2 [ dt Cdx 1 t?+1 L
530(p)——72R4/0 e2ﬂ+1/“R?X6 [1+§+ 7 e+0x7)],
2 >t dt * dx t?
X (=\ ) il —2xe€ 1 - —2 ) 92
951 (P) 7T2R4/0 o2t 1 1 /MR 3 xe [ + XﬁE +0(x )} (5.2.50)

Since the above expressions diverge due to the large x behaviour of the integrand,
the lower limit of the x integral can be approximated to 0 (i.e. the massless limit

can be taken), allowing the integral over x to be performed in terms of I" functions:

_ In2 .
09 >~ — i lne ™ + O(1)],
B In2 9
030 = = 5|l T3¢+ O(€)],
1 2

As shown in Eq. (5.2.55) for the three cases of interest considered above, the leading
order of the divergence of dj, is two orders of magnitude less than that of the

corresponding 7 .
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The Casimir divergence near the boundary

Using the polar coorindates (r, ) introduced in Eq. (5.1.38) and the expansions in

Eqgs. (5.1.41), the following asymptotic expansions can be made:

cot § > T2 M v 1+5sin?0 1 29 205
I~ = 1+ — 1 — "cos®0+ ——cos*f
1) r { T tTaoe ( 12 9% 0T g o >
+0(r?)], (5.2.52a)
2r4+2vIn £ 2 2 2
e v cos” 6 cos® (1 + 35sin” 0)
It - |1 o(r~ 5.2.52b
0 =g { o " 28812 +olr )} o )
2r4+2vIn £ 2 2 2
e vt 5cos*f  cos* (61 — 205sin” 6)
Irr - |1- -3
v-1 (%) o { 12r 28812 +0(r )} ’
(5.2.52¢)
K, 1(x) msinge 2o 4 5cos’  cost L5 cos’0  25cos’
I,_s (x) 1+ cosd 12r 2r2 4 144
+0(r )] (5.2.52d)

The asymptotic expansion for I;L_ , (%) is included for completeness. Although it is
not required for the asymptotic a121alysis of the Casimir divergence in the spectral
model, it will become useful for the same analysis in the MIT bag model, in subsec-
tion 5.3.3. In this section, the above functions are evaluated at xp. If p = p/R is

close to 1, Egs. (5.1.41) can be used to derive the following approximations:

2r4+2viln £ —2re )
_ . e pEe 1+ 5sin“6 .
Iy_%(xp): rtand _1+T+€(1+Sln20)—T€2C0829+...:| ,
(5.2.53a)
2r+2v1n —2re T 2
e v cos~ 0
I (xp) = 1 —re*cos® 4 ... 5.2.53b
Vﬁé(xp) P _ + 1o +e—re cos®l + , ( )
2r4+-2v1n V—Mere r 5 2 0
I;il(xﬁ) ¢ — clos +esin?@ —re?cos? 0 + .. } . (5.2.53¢)
2 r i 2r

where terms of order 772, r~te and €? were ignored. Combining Eq. (5.2.52d) with

Egs. (5.2.53a) and (5.2.53c) gives:

Ky—% (x) I\ (xp) = e 2" cosf

I, 1) w7 T T cosh)
K, 1(x) e ?sin 6 [
R S— X _
I 7%()() V=3 (14 cosf)

1
1—|—2——|—6<1+Si1’12¢9)—T€2C0820+..l :
r

1+esin®d —re’cos®0+...]. (5.2.54)
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Hence, the following results are obtained:

I;O :471'2—_R4€2 [1 —In?2 +€ (% - 1112) + O(EQ)} y
_ 1 )
T ~Jgmper L3¢ O]

The divergences of the Z,, terms calculated above are two orders of magnitude
higher than the corresponding error terms ¢, calculated in Eqgs. (5.2.51). Hence,
the leading and subleading order of the divergence of the functions Z;, coincide with

the expressions obtained above.

Substituting Eqs. (5.2.55) into Egs. (5.2.16) and (5.2.20) gives the following

asymptotic behaviours:

i sp lu
<¢¢>Casz—m [1-In2+ (3 -I2)e+...],
<T%A >Sp — <T'§A >SP — ; [1 + 96 4 ]
7/ Cas 2/ Cas 1672 R4et 30 el

b \*P 1 23

{ pﬁ>cas T 42 R4e3 (1 T et ) )
5 \SP 1

(T%%) o Ry T 1+ f5e+...], (5.2.56)

where (T7 p )2;8 was obtained from (T’ ‘% )2;5 using Eq. (5.1.31). The divergence of the
Dirac field is one order of magnitude higher compared to the scalar field case (5.1.45).
Before attempting to give a physical explanation for this difference, a comment on

how this result fits in with Deutsch and Candelas’ analysis [31] is worthwhile.

In their paper [31], Deutsch and Candelas assume that the SET can be written
as:
Ty = €T 4 e HT0D (5.2.57)

uv

with € measuring the geodesic perpendicular distance from the boundary (e = R—p
for the cylindrical boundary considered in this chapter) and n, being the leading
order divergence of the SET (actually T,E,CL*) = 0, so n, — 1 is the leading order).
Each term T(j)“u is assumed to be traceless. As a consequence, the leading order
divergence of the SET in the present case of a cylindrical boundary is given by:
Cnt1 2

T = «a,diag|—e —c

—ns+2 —ns+1
v ’ : ) e )
Ny — 2

—e ) (5.2.58)

where «, is a constant which depends on the type of the analysed field. A comparison
with (5.1.45) and (5.2.56) shows that the values for . and n, are

1

Qg =
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for scalars and .
sp __ Sp __
Q{S = —m, TLS = 5, (5260)

for fermions.

It should be noted that Deutsch and Candelas start their analysis by assuming
n, = 4 on dimensional grounds. They regard € as a geodesic distance having the di-
mension of length, then require that the SET is a tensor built exclusively using local
quantities. However, the spectral boundary conditions have an intrinsic global char-
acter, directly involving the size of the system (the radius R of the cylinder). The
results obtained in Refs. [12] 28, 29] for fermions in a 2 + 1-dimensional space-time
obeying inside a cylindrical boundary obeying MIT bag boundary conditions show
that the Casimir divergence of the energy density as the boundary is approached is
two orders of magnitude less than that obtained in this section. One order of mag-
nitude can be attributed to the lower dimensionality of the space-time considered,
while the second comes from the local nature of the MIT bag boundary conditions.
The MIT bag model is considered in section 5.3, with the analysis of the Casimir

effect performed in subsection 5.3.3.

Numerical results

The plots in Fig. 5.7 compare the asymptotic results in Egs. (5.2.56) with numerical
evaluations of Eqs. (5.2.42) for uR = 0 and uR = 2. The agreement between
the asymptotic and numerical results as the boundary is approached is excellent,

confirming the predicted order of divergence in Eqs. (5.2.56).

5.3 Dirac fermions obeying MIT bag boundary

conditions

In this section, the MIT bag model [23] is considered. The boundary conditions,
modes and energy spectrum are discussed in subsection 5.3.1. Thermal states are
discussed in subsection 5.3.2, where the results obtained using the MIT and spectral
models are compared qualitatively and quantitatively. The Casimir effect is inves-
tigated in subsection 5.3.3 and the result is compared with those obtained in the

spectral case and with predictions from the literature [31].

5.3.1 Boundary conditions and mode solutions

In this subsection, the MIT bag boundary conditions are introduced, with an em-

phasis on the quantisation of the transverse momentum ¢ and the corresponding
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Figure 5.7: Logarithm of the Casimir expectation values of the fermion condensate 1)
(first line) and stress-energy tensor with respect to the distance from the rotation axis
(left) and the logarithm of the inverse distance ¢! to the boundary. The plots compare
the results for massless (blue dashed curves) and massive (purple dashed curves) fermions
to the asymptotic results (dark thin curves) in Eqgs. (5.2.56).
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energy spectrum. First introduced in Ref. [23], the MIT boundary conditions are
designed to satisfy Eq. (2.2.31) in a purely local manner:

igfap () = < ¥ (), (5.3.1)

for any point z}, on the boundary, where n, represents the four-normal to the bound-

ary and ¢ = +1.

Discretisation of transverse momentum

For a cylindrical boundary, n = dp, hence, the boundary conditions read as:

ivP)() = s(a). (5.3.2)

It can be checked that if 1)(z) obeys the above boundary conditions, so does its
charge conjugate, iv2¢*(z). Mode solutions U rme.p that satisfy MIT boundary con-
ditions can be constructed starting from the complete set of modes described in
subsection 4.3.1. Since H, P, and M, commute with i7?, the spinor Uy, 5 can be
a simultaneous eigenvector of these operators. However, the helicity operator W)
does not commute with i7?, therefore, U, %}E must be a linear combination of the

modes (3.3.2) corresponding to the two possible helicities, ﬂ:%:

Ullf\fr{ZTE(x) = bsz;EU]JErkm<‘T> + P l;mK;E(x)7 (5.3.3)
where bfmg;  are constants and E = E,,, = £1/p? + ¢2,, + k? controls the sign of the
Minkowski energy (i.e. positive or negative). By analogy to the spectral boundary
conditions case, the index ¢ has been introduced anticipating the quantisation of the
transverse momentum ¢. For a given value of m, the allowed values of the transverse
momentum are labeled by ¢ in increasing order, such that ¢, ¢ < gme1. To avoid
cumbersome notation, the indices m and ¢ are omitted from the corresponding
momentum p,, ¢ or Minkowski energy E,, , where there is no risk of confusion. Thus,
Eq. (5.3.2) becomes:

)

ng-ﬁ‘(bz_mf;Egb;mZ + bI;mE;Egbl;mz) = me— (bli_mé;Eap¢li_mé - bI;mZ;EUpQS;mZ)? (5.3.4)

E

where o” is defined in Eqgs. (3.1.7) and € is defined in Eq. (3.3.17). Equation (5.3.4)

. . . . + .
can be written as a set of linear equations in by, . x:

<§€+p+:]m + %@7P7Jm+1 §€+prm + %67p+*]m+1 ) <b]§+m€,E

=0, (5.3.5)
CG—p-ﬁ-‘]m - %€+p—l]m+l _gé—p—t]m + %e-&-p—f—t]m-ﬁ-l )

by
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where pL is defined in Eq. (3.3.12). The system (5.3.5) has non-trivial solutions if:

) 250,
2,2 1=, (5.3.6)

ml

where

Jme = T (@meR) | T2 (@me R). (5.3.7)

Eq. (5.3.6) can be solved numerically to yield an infinite number of roots. Since
Eq. (5.3.6) is invariant under £ — —FE, the transverse momentum ¢, , does not
depend on the sign of E. Moreover, the relation J_,,(2) = (—=1)"J,,(2) given in
Eq. (A.1.4) ensures that

q—m—-1, = Qm- (538)

Equation (5.3.5) fixes b = bypp = b,jm&E/b,;m&E to be

ECp j+Cpy EE pj—&py
— - , (5.3.9)
P+ CEp HCEpg—Eip

which is invariant under (E, k,m) — (—E, —k,—m — 1).

There are simpler situations, e.g. the parallel plates system [39], where the MIT
bag model method is easily implemented. A downside of the MIT bag boundary con-
ditions is that they cannot be implemented using neutrinos, since negative chirality
selects only one helicity state for neutrino particle modes (see [54] for a discussion
of the MIT boundary conditions for neutrinos on Kerr). The MIT bag boundary
conditions have been implemented succesfully for fermions confined inside a cylin-
drical boundary in a 2 + 1-dimensional non-rotating space-time in Refs. [12] 28] 29].
Their results for the Casimir effect are compared with our original results presented

in subsection 5.3.3.

Energy spectrum

To find the energy spectrum of the Dirac theory employing MIT bag boundary
conditions, let us start by considering massless particles. In this case, the solutions
of Eq. (5.3.6) are j,,e = %1, the solutions g, R of which are guaranteed by theorem
3.1 of Ref. [13] to satisty:

Eont < Gm2e—1R < &me < qmacR < & pp1, (5.3.10)

where

T (@meR) = (=) T (gmeR). (5.3.11)

The first zero &, , of J;, is bounded from below by [73]:

&1 > /m(m+2), (5.3.12)
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Figure 5.8: The first few values of the longitudinal momentum g,,, allowed by the
MIT bag boundary conditions at m = 10. The roots are located at the intersection
between the solid line (representing J,,(¢R)) and the dashed lines (representing
Jm+1(gR) multiplied by the right-hand side of Eq. (5.3.14)). The dotted curves
correspond to p = 0, 2, 4, 6, 8 and 10. In the plot on the left, ¢ = —1, and in the
plot on the right, ¢ = 1.

ensuring that &, | > m—i—% for m > 0, while at m = 0, the first root can be obtained

numerically: go1R =~ 1.4347. Thus, the following inequality can be established:
|Emel R > greR >m+ 1, (5.3.13)
hence, E.,=FE,, Q(m+ %) > 0 for positive F,,, and all values of m and ¢ as long

as RQ) <1 (i.e. when the boundary is inside or on the SOL).

When the mass is non-zero, j can take the following values:

e = - 14 L2 (5.3.14)
dme Qe
When ¢ = —1, the positive value taken by j is smaller than 1, meaning that the small-

est value g, for the longitudinal momentum allowed by the boundary conditions
has to be larger than that for the massless case (i.e. when Jp,,(¢m1R) < Jmt1(gm1R),
which occurs as J,,,; decreases from its first maximum towards its first zero). Fig-
ure 5.8(b) illustrates this behaviour. Hence, it is clear that in this case, the lowest
allowed energy obeys ER > (1 — QR)(m + 1), meaning again that EE > 0 for all
R<Q L

If ¢ = 1, the quantity j increases as the mass increases and ¢, 1 R approaches the
origin. To establish the minimum value allowed for the energy F(u) = v/p? + ¢2,
Eq. (5.3.14) can be rearranged as:

Jm(QR)

qT(qR) =pu+ E(p), (5.3.15)
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Equation (A.1.2) can be used to obtain

lim Z—Jm(z)

w0 T (2) 2(m +1), (5.3.16)

showing that ¢ = 0 is a solution of Eq. (5.3.15) when uR = m + 1. If the mass
increases further, the first root no longer corresponds to j > 0 (i.e. the first root dis-
appears). In this case, ER > m + % just from the mass contribution. To investigate
the behaviour of the smallest allowed energy F,, 1 between p = 0 and g = m + 1,

let us consider its derivative with respect to u:

. [+ Qi1 (1) 0l 1], (5.3.17)

Since ¢m,1(p) decreases as the mass increases, 9,¢m,1 < 0 and 9,E,,1(1 = 0) < 0.

The energy reaches a minimum when

Qm,la,uqm,ljuzuo = —Ho- (5318)

Using Egs. (A.1.11) to replace the derivatives of the Bessel functions, the derivative
with respect to u of Eq. (5.3.15) gives:

pu2m+1) —2uER+ E
E@2m+1)—2E2R+pu’

0,E = (5.3.19)
It is easy to see from the above equation that 9,E(u = 0) < 0. However, the limit
p — m+ 1 is not so easy to evaluate. By virtue of E(u =m +1) = R~Y(m + 1),

the limit takes the following value:

hm+1 O E=02m+1)/2E(p)R+1] = (2m+1)/(2m + 3). (5.3.20)
p—m
However,
lin% o F = 1. (5.3.21)
q%

The discrepancy between Egs. (5.3.20) and (5.3.21) should not come as a surprise,
since m+1 is the largest value of p at which the first root exists. Since the derivative
is negative at u = 0, we either admit that the minimum value of E,,; is R™'(m+1)
(i.e. E,, 1 continually decreases as u increases to R™'(m + 1), or there is a value
p = po where 0,E(p19) = 0. At such a point, Eq. (5.3.19) predicts that the value of
the energy would be:

_ bo(2m+1)

E(po) = R 1 >R Y(m+1). (5.3.22)

Equation (5.3.22) seems to imply that the energy cannot be at a minimum with

respect to the mass if uR < % If a stationary point occurs for any uR > %, the



5.3. DIRAC FERMIONS OBEYING MIT BAG BOUNDARY CONDITIONS 121

gmaR EniR

Figure 5.9: The dependence of the smallest allowed longitudinal momentum (a) and
energy (b) in the MIT bag model corresponding to ¢ = 1 for uR = 0...m + 1 at
m = 0,5,15,30. The horizontal axis represents the ratio pR/(m + 1), normalizing
the mass such that for any value of m, the range of the x axis is from 0 to 1. The
longitudinal momentum g, and energy E,,; are divided by R~'(m + 1) and plot
(b) shows the departure of £, 1 R/(m+1) from the minimum value m+ 1. It can be
seen that as m increases, the behaviour of ¢, tends towards an asymptotic trend.
It can be seen that the energy does not present any stationary points throughout
the range p=0...m + 1.

corresponding value of the energy will be greater than R~ (m + %) Since the energy
is above R~ (m + %) at the endpoints ¢ = 0 and ¢ = m + 1 and since its stationary
points are also above the aforementioned value, we can conclude that for all £ > 0,
E will satisfy:

EnR> (1 - QR)(m+1). (5.3.23)
Hence, the MIT bag boundary conditions restrict the energy spectrum such that
EE > 0 for all acceptable modes, as long as the boundary is inside or on the SOL.
Our numerical experiments confirm Eq. (5.3.19). Furthermore, the energy seems to
be on a continuous decrease towards m + 1 as u increases from 0 to m + 1, as shown

in Figure 5.9.

Normalisation

The overall normalisation of the MIT modes is determined by the following orthog-

onality condition:
(U g, Ui} = 0(k — K')Synpms 60 0 (EE), (5.3.24)

with respect to the Dirac inner product (2.2.30). Although an explicit check that
the MIT modes are orthogonal if any of the labels do not match is a good exercise
in algebra, it is unnecessary since the time invariance of the Dirac inner product,
guaranteed to hold in the MIT bag model, ensures that the result of the inner

product of modes with different energies (i.e. non-zero £ — E’) vanishes. Thus, the
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following result is obtained:

_ 2

(U UMY, ) 5(k — k)i 000 O (EE") ‘bkme;E

kmt;E> 'm'¢' B’

1
2
X [(ST+S8)TH+ (ST +80)7,], (5.3.25)

where the coefficients of the integrals J= (5.2.10) are given by:

S =€ (brmpeps +p-)? £ E (bpmepb- +p4)°, (5.3.26a)
S =€ (bpmemps — p-)? + €L (bgmemp - — py)?, (5.3.26b)

where by, is defined in Eq. (5.3.9). The following identities are useful:

LAk 1432
S:I: :ﬁ ﬁ@ . @ 27
<|E\ b+ €Ep)
s 4R? 1432
R (%Q—PM —&yp )
BEESD
St+8; =010
FUTE P42
- 81+ [, w+eE ik
+ _ o\ 2 2 v
Si -85 BL7 T ) (j 1>—uE + (5% + 1)pE . (5.3.27)

Hence, the modes (5.3.3) are normalised according to Eq. (5.3.24) if

N 1 P+ pij’ |
T RYV2 | (@R) 67+ DG+ 1= 25) — 62 - 1)

(5.3.28)

which is invariant under (E,k,m) — (—E,—k,—m — 1). Recalling that bg,.p
(5.3.9) is also invariant under the same transformation and using the properties

(3.3.29) shows that the U and V spinors are equivalent:

L iE
‘/;CI\'I/SEE = (_]‘) EUE/[kI,T—‘m—LZ;—Ea (5329)

or equivalently, in the language of Eq. (3.3.30),
VMT = i(=1)m U, (5.3.30)

Where ] = (Ej, kj,ﬁj,mj) and 7 = (—E] —k?j fj, —mj — ].)

Equation (5.3.6) can be used to eliminate from Eq. (5.3.28) powers of j higher
than 1:

1 1 Hp2

bl;mK;E = 2 .
2R Tmn (@RI |1 — g (m 4 1)+ 25 ] (14 22 — S (m + 5)

. (5.3.31)
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It is worth mentioning that in the massless limit, b, , » simplifies to:

1
2

! {1 _Jm+ %)} (5.3.32)

bi _ pr—
km&EJ #=0 2R |<]m+1<qR)| g

Second quantisation

Having finished the construction of the field modes, the field operator can be ex-

panded with respect to the rotating and Minkowski vacua:

M = Z O(E;) [T + VI (5.3.33a)
= Z O(E;) [UXTHT + VIR (5.3.33D)

where
j=(k,m,(,E) (5.3.34)

and the sum over j is understood as:

Z Z Z/ dk; : (5.3.35)

mj=—00 ;=1 E]_:tlE |

5.3.2 Thermal expectation values

In this section, the thermal expectation values (t.e.v.s) of the fermion condensate
b (FC), charge current J* (CC) and stress-energy tensor T}, (SET) are calculated

as described in subsection 4.3.2.

Thermal Hadamard function

The thermal Hadamard function for the MIT model is more challenging to calculate
than in the spectral case due to the combination of positive and negative helicities
in the modes. An expression equivalent to Eq. (3.3.54) can be written for the MIT

case, keeping in mind that the sum over j does not include the helicity A:

ASél)(l‘, ) = Z efiEjAt+iijz[w(Ej) — w(—E;)|M;, (5.3.36)

J

where the density of states factors w(E) are defined in Egs. (4.3.14) for the Minkowski
and Iyer vacua, while M; is defined in terms of the spinors in Egs. (3.3.16) and
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(3.3.23b) as:

M; = bjuf () @ T} (2') + bjlu] (2) @75 (¢) +uj (v) @G} (2")] + uj () @ T (2).
(5.3.37)
In the above, the superscripts =+ indicate the helicity. The following direct products

of u; spinors are required:
+ ot E
U U ¢ Fpec - [gbi ®¢¢q
b_|” +heE ¢, —e s
ujf @uF ( ¢ tEee

R |¢pF @ ¢T T, 5.3.38
b_|? +HE €y @2 ) [¢J %} ( )

Using their exact form (3.3.11), the direct products of the ¢ two-spinors can be

written as:

1 i Epo
<Z5ji®¢j[T :_< by Y p+>o/\/lj,

2 \£p-ps  P%
1 (pip-  Fp3
6t @ o7 = (i . i ) o M;, (5.3.39)
P —pap-

where Eq. (3.3.58) gives the matrix M; on the right hand side of the Hadamard

(Schur) product sign o. Next, M; can be written in a manner similar to Eq. (3.3.56):

2 u X
Ib_| (Mjpo/\/lj —M* oM, > (5.3.40)

J 47'('2 MJXT o Mj _Mjgiown OMj

where the Hadamard product o is taken with the matrix M; defined in Eq. (3.3.58)

and
P ( (bpy+p-)2  (bpy +p)(bp- — p+)>
’ 2 \(bpy +p_)(bp_ —py) (bp_ —py)? 7
o _ € ( (bps —p)*  (bpy —p)(bp- + p+)>
! 2\ (bpy —p-)(bp— +p) (bp— + p)’ ’
Y ( (6%2 —p2)  (bps+p)(bp_ + p+>>  (5341)
2B\ (bpy — p-)(bp— —p-) (b°p2 —p3)

Using the definition (5.3.9) for b, the following identities can be established:

N 9 — T 9 .0 . 9 1 — T T T 5.5 9 -
p p2it+p p2i% +p2 p p3i% +p2
(5.3.42)

b
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Thus, the matrices M; given in (5.3.41) can be put in the form:

o @ (rri-fron- (i-1-x)
Lon _% <j2_1_¥j) P14+ 507 1)+ 29E
Loonr "53 (' ”M) L 1)
X = i % %(J +1) — 2
IR p2 \ ey ~ e (5.3.43)
P+ P2 \F(7 + 1) + 2] 4

Employing the symmetrization (3.3.59), M; can be put in the form:

2
, b ] 10
47 Mjm{203® (O ]2 OMJ
FO7 1) - 3 + ¢ 1 oM,
! B+ 1)+ 20 + )

< 2% q(* +1) - 2<Ei) OM.] } (5.3.44)

+0L®

+10—1®
E\1 0

where o3 is a Pauli matrix, defined in Eqs. (2.2.8).

q(> + 1) + 26 Ej —2k

Fermion condensate

Taking the trace of Eq. (5.3.44) gives the following t.e.v. for the FC:

oo o0

(T == 30 /j%[w@w@]
x 262+ DI ap) — B + 1) nlap)] - (53.45)

where JZ(qp) are defined in Eqgs. (3.3.69) and the denominator DMIT is given by:

om + 1 '
Dyt =m°R*J} 1 (qR) {(J’2 +1) (j2 b1 j) L2 1)} . (5.3.46)

As opposed to the FC in the spectral model, given in Eq. (5.2.16), the massless limit
of the FC in the MIT model is finite, giving a first qualitative difference between
the models. It is also remarkable that the sign of the massless limit of the FC
depends on the sign of ¢. It is also worth evaluating the FC on the boundary, where
Jm(qR) = jJmi1(qR), for the purpose of which the square brackets in Eq. (5.3.45)
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can be divided by J2 ,,(¢R):

o) == 23 [T et () + w(®)

x [+ 1) = B¢ + 22— 1)] . (5.347)

Equation (5.3.6) can now be used to replace j = %T“j + 1 to show that the term in
the brackets vanishes. Thus, the FC vanishes on the boundary for any mass and

regardless of the sign of <.

Neutrino charge current

As in the spectral case, the t.e.v. of the CC vanishes because the summands corre-
sponding to the ¢, p and ¢, and z components are odd with respect to m — —m —1
and kK — —k, respectively. The rules for checking the transformation properties

under m — —m — 1 are:

j—>—l, m+ 35— —m-—3, JE — +JE Jo— —=Jx
w(E) + w(E) — +[w(E) £ w(E)). (5.3.48)

The only non-vanishing component of the neutrino charge current (2.2.55b) is,

like in the spectral model case, the z component:

JM:ZZ/ a0 (B) — (B [6* 4 1) (ap) — 6 = )T ap)]
= (5.3.49)

While it is not clear from the above expression whether the charge current changes

sign as p increases from 0 to R, it is remarkable that it vanishes on the boundary:

(J2 MIT Z / dhlw DMIT w(B) (5.3.50a)

3 \MIT
<: JV :>ﬁ

J =0, (5.3.50D)

The property that the neutrino charge current vanishes on the boundary gives a
second qualitative difference between the spectral and MIT bag models (in the
former case, it reaches a finite value having the sign opposite to its sign on the

rotation axis).
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Stress-energy momentum

The non-vanishing components of the t.e.v. of the SET are:

(T T 3% / N %[w@ + w(B)

m=0 (=1
x [6% + 1) (ap) — G* = D (ap)] (5.3.51a)
MIT e [ q* dk = -
(T == 00 [ i w(B) + w(E)
-2 + _ m+ % X
<241 [T - ") (5.3.51b)
AMIT [ Pdk = TN /32 m+% x
(T == [ sl (B) 4w B 02 )
(5.3.51c)

(Tedg == > /OOO 2§Dd§m [w(E) +w(E)]

x [+ 1) (ap) — G* = 1) I (ap)] (5.3.51d)
CT T =305 [T ISR - 1) [ an) — o+ Do)

+ (2 + 1) [(m + 3) 5 (ap) — 57.(ap) + ap o (ap)] }- (5.3.51e)

The above results reveal a third qualitative difference between the MIT and spectral
models: (: Tj :) 5 stays finite on the boundary in the MIT model, while Egs. (5.2.20)
show that it vanishes in the spectral model. As in the spectral case, the rela-
tion (2.2.28) between the trace of the SET and the FC can be verified directly.

Numerical results

The plots in this section show the t.e.v.s of the fermion condensate (FC), neutrino
charge current (CC) and stress-energy tensor (SET) obtained in the MIT model,
using Eqgs. (5.3.45), (5.3.49) and (5.3.51).

Figures 5.10 and 5.11 show numerical results for the case when the boundary
is located at QR = 0.5. Results for massless fermions (shown with thick dashed
coloured lines) are compared with results for fermions of mass uR = 2 with ¢ = 1
(left) and ¢ = —1 (right). The analytic results for the unbounded case obtained with
respect to the rotating (Iyer) vacuum, given in Egs. (4.3.56), are shown in thin black
lines. The results for massless fermions are independent of ¢, except in the case of
the FC, when ¢ controls its sign. It can be seen from the plots that the profiles for
¢ = 1 are more energetic (i.e. correspond to larger values) than those obtained with

¢ set to —1. This can be understood by looking at the position of the roots in the
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Figure 5.10: Comparison of t.e.v.s corresponding to massless (thick coloured dashed lines)
and massive (thin coloured lines, uR = 2) to the analytic results (4.3.56) obtained in the
unbounded case with respect to the rotating (Iyer) vacuum. The value of ¢ on the left and
right columns is —1 and 1. The boundary is placed at R = 0.5. From top to bottom,
the plots display: the fermion condensate, the neutrino charge current along the rotation
axis and (: T5; :>,6'
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two cases, depicted in Figure 5.8. As the mass increases, the value of the first root
for the ¢ = 1 case decreases, while when ¢ = —1, it increases. This behaviour can
be extrapolated to subsequent roots. Consequently, the roots from the ¢ = 1 case
make contributions to t.e.v.s. which are less suppressed by the Fermi-Dirac density
of states factor than in the ¢ = —1 case, resulting in more energetic t.e.v.s. What is
unexpected is that the profiles for massive fermions at ¢ = 1 can sit higher than the
massless profile, but we explain this behaviour with the same argument presented
above. Another peculiar feature is that the sign of the FC changes between the
rotation axis and the boundary, for both values of ¢. The numerical results confirm
the analytic predictions that the FC and the neutrino CC vanish on the boundary,
while (: T¢; :) g stays finite.

The same comparisons are made (using the same conventions for the line types
and colours) for the case when the boundary is placed on the speed of light surface
(QR = 1.0) in Figures 5.12 and 5.13. All plots show the logarithm of the t.e.v.,
except for the plot for the FC when o = 1, which changes sign between the rotation
axis and the boundary. As for the case when QR = 0.5, the t.e.v.s corresponding to
¢ = 1 are more energetic (i.e. correspond to larger values) than those obtained with
¢ set to —1. The FC and neutrino CC vanish on the axis, while the SET stays finite
throughout the domain.

Figure 5.14 provides a comparison of the behaviour of the t.e.v.s of the neutrino
charge current and SET for the MIT and spectral models. The boundary is on the
SOL and the mass is set to 0. Since the FC is 0 in the spectral case for massless
fermions, it is not shown in the Figure. However, qualitative differences can be seen
between the two models in the plots, as follows. The neutrino CC in the MIT model
stays negative throughout the domain but reaches 0 on the boundary, while in the
spectral case, it changes sign, reaching a positive value on the boundary; and the
component (: Ty 1) 5 reaches a finite value on the boundary in the MIT case, but

vanishes on the boundary in the spectral case.

A comparison between the MIT and spectral models and the analytic results
(4.3.56) at large temperature (€2 = 0.05) is performed in Figure 5.15, which shows

that for # = 0.05 the agreement between the analytic solution for the unbounded

1
2

is excellent at sufficiently large distances from the rotation axis and the surface.

space-time and the numerical results for the space-time inside a boundary at RS =

However, the energy density in the spectral model strongly departs from the ana-
lytic profile as the boundary is approached, while the results in the MIT case follow
it closely. There are strong deviations in both models in the profile of the neu-
trino charge current: in the spectral model, (: JZ :) 5 changes sign from negative to
positive, after which it grows, becoming significantly bigger in absolute value than
the analytic prediction; in the MIT bag model, the neutrino charge current sharply
drops to 0 as the boundary is approached.
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Figure 5.11: Comparison of t.e.v.s corresponding to massless (thick coloured dashed lines)
and massive (thin coloured lines, pR = 2) with the analytic results (4.3.56) obtained in
the unbounded case with respect to the rotating (Iyer) vacuum. The boundary is placed
at R) = 0.5 and ¢ is 1 and —1 on the left and right columns, respectively. From top to

bottom, the plots display: (: T}; :>,8’ (: Tpp :>/3’ (: Ty o)

gand (: T:z 1) 5.
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Figure 5.12: Comparison of t.e.v.s corresponding to massless (thick coloured dashed lines)
and massive (thin coloured lines, uR = 2) to the analytic results (4.3.56) obtained in the
unbounded case with respect to the rotating (Iyer) vacuum. The value of ¢ on the left
and right columns is —1 and 1. The boundary is placed on the speed of light surface, at
R = 1.0. From top to bottom, the plots display: the fermion condensate, the neutrino
charge current along the rotation axis and (: 7, o 5 5 Apart from the FC in the case ¢ =1

(where its t.e.v. changes sign in the massive case).
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Figure 5.13: Comparison of t.e.v.s corresponding to massless (thick coloured dashed lines)
and massive (thin coloured lines, p = 2Q) with the analytic results (4.3.56) obtained in
the unbounded case with respect to the rotating (Iyer) vacuum. The boundary is placed
at R2 = 1.0 and ¢ is 1 and —1 on the left and right columns, respectively. From top to
bottom, the plots display: (: Tj; 1) 5, (: Tpp )5, ( Tpg 1) 5 and (: T:z 1) 5.
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Figure 5.14: Numerical results for t.e.v.s computed in the MIT (thick dashed coloured
lines) and spectral (thin black lines) models are presented for comparison. Apart from the
neutrino charge current (which changes sign between the rotation axis and the boundary),
the plots show the logarithm of t.e.v.s in terms of the distance from the rotation axis. The
boundary is located at R{) = 1.0 and the field is taken to be massless. It can be seen that
the neutrino current goes to 0 on the boundary in the MIT case and does not change sign
across the channel. It can also be seen that in the spectral case, (: Tip 1) 5 and (: Ty 2)

B
go to 0 on the boundary, while in the MIT, case they stay finite.
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Figure 5.15: Logarithm of energy density (left) and charge current (right) at Q2 = 0.05
for a system of massless fermions confined inside a cylinder located at R} = 0.5. While
both models agree very well with the analytic results in Eqs. (4.3.56) close to the rotation
axis, the energy density in the spectral model strongly departs from the analytic profile
as the boundary is approached, while the results in the MIT case follow it closely.
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Figure 5.16: The plot on the left compares the logarithm of the energy density on the
rotation axis in the MIT bag and spectral models with the analytic results Eqgs. (4.3.56)
obtained with respect to the rotating (Iyer) vacuum for the rotating unbounded space-
time, represented in terms of the inverse temperature 5. The plot on the right presents
the logarithm of (: Ty, :>ﬂ for massless fermions at 62 = 0.05, with RQ = 0.5.

Finally, Figure 5.16 shows the behaviour of the energy density on the rotation
axis (u was set to 0). While at large temperatures (small values of (), the energy
density in the MIT and spectral models is superposed to that corresponding to the
unbounded case, as the temperature decreases, the energy density in both the MIT
and spectral cases decreases exponentially with 3, however, the slope in the two cases
differs (in the unbouded case, the energy density falls off as 372). The exponential
decrease with [ in the bounded case is explained through an asymptotc analysis
in subsection 5.4.1. The difference in the slope is coming from a term of the form
e P01 where o1 is the smallest value of the transverse momentum corresponding
to m = 0. In the spectral case, g1 is the first root & ; of Jo(¢R), while in the MIT
case, go1 R < &1, as implied by Eq. (5.3.10).

5.3.3 Casimir effect

Euclidean Green’s function for the MIT bag model

Owing to its formal equivalence to the Lorentzian Feynman propagator, the bound-
ary conditions of the MIT bag model that the Euclidean Green’s function for the

bounded space-time must satisfy are analogous to Egs. (5.3.2):

(i7" — <) Sp  (z, 2') ] per =0,

S (2, ') (=" = )] y=r =0. (5.3.52)

To form the Euclidean Green’s function S} (z, z') for the bounded system, a solu-
tion ASMT (2, 2") of the homogeneous correspondent of Eq. (2.2.61a) (i.e. with the
right hand side set to zero) must be added to the Euclidean Green’s function (5.2.33)

for the unbounded space. A Fourier transform can be performed on AS¥M™ (z, '),
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as described in Eq. (5.2.24):

AX T AXMIT
MIT _ WAT+HIkAZ 11
ASY (z,2") = /_ o3 / dk Z (AXQJT Ay | (5.3.53)

m=—00

MIT

where the 2 x 2 matrices Ay;, = can be written as:

b b
AXMIT (z’w _ #) (an dn) 2 Ej, AXMIT <a12 12) 2 5j,
11

C11 ci2 dio

b b
AT —(iw+p) [ "2 ) ee, AT = e, (5.354)
co2  dao Co1  doy

where a;i, by, ¢ and d;j, are constants, the matrix £; on the right of the Hadamard
(Schur) product is defined in Eq. (5.2.35b) and j is a generic label for the parameters

m=mj, w=w; and k = kj.

The matrix elements of the off-diagonal blocks A} and AxM™ can be found

using Egs. (5.2.28), as follows:

a1z bio _ —Fkagy — acay  —kbay — adag _ kay; + abyy  —aay; — kbyy
c12  dio Qg + kcao abgg + kdag ke + adyy —oacyy —kdyy )

(5.3.55a)
az by _ —kayy —acyy —kby — adyy _ kagy + abay  —aagy — kb
Co1 dy aa; +key  aby + kdy kcag + adys  —acas — kdy
(5.3.55b)
These equations can be effectively used to express all matrix elements of AYMT in

terms of the matrix elements of Ay}, Although not required in this calcualtion,

the matrix elements of AY3IT are given below with respect to thos of AxYMIT for
completeness:
a2 E ok ok o? a
b 1 —ak —k* o® —ak b
Gl S —— 5 , S (5.3.56)
Coo o =k | —ak « k> —ak 11
d22 a2 ok ok k’2 d11

To begin the construction of ASM™(x,2’), the form of the Fourier transform

x of the Euclidean function Sg(x,z’) for the unbounded space on the boundary is



136 CHAPTER 5. BOUNDED ROTATING MINKOWSKI SPACE

required. It can be inferred from Eq. (5.2.33):

. Km Km K
(n— zw)ﬁ 0 —k‘K g
o= 0 (p—iw) o —afr kP (g€
=R — . )
P l{:% —a% (1 + zw)% 0 & &
Kum K - N Km
a—lmjll —k—lmjll 0 (1 +iw) Im;rll
(1 — iw) 0 — kK —akin
il = 0 (u—iw)gmr agmn S el I
'=R — . 9
g e akn (1 + iw) B 0 & &
_O[II(HL:; _k Imrll 0 <'LL + Z(U) II(NHTII
(5.3.57)

where the modified Bessel functions explicitly displayed in the ratios K, /I, and
K1/ 11 take the argument aR, with the coordinate dependence fully contained
in the matrices £;. The boundary conditions (5.3.52) give a number of 32 equations
for the matrix elements of AxYMT. However, only a small number of equations are
required to fully determine these elements. The (1,1) components of Egs. (5.3.52)
(i.e. the top left components of the equations for both p = R and p' = R),

—aK 1 —s(p—iw) Ky, + s(p — iw) Lpaiy — Lpgica =0,
—CYKm+1 — §(ILL — ZW)Km + §(,u - iw)[man + Im+1b12 :O, (5358)

show that
Co1 = —b1a. (5.3.59)

A similar inspection of the (2,2) components of Egs. (5.3.52) shows that:

—akKy, —s(p —iw) K1 + s — tw) g1 din + 1,bay =0,
—aK, —¢(p—iw) K1 + s(p — iw) Lpp1di — Leiz =0, (5.3.60)

leading to:
ba1 = —c1a. (5.3.61)

Comparing the expressions for bjs and c; in Egs. (5.3.55) shows that:
c11 = b, (5.3.62)

which can be used together with the expressions for dys, ds1, a1 and as; in the same

equations to show that:

g1 = —Qy2, dgl = _d12- (5363)
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Using dy; = abyy + kdy; into the (1,2) component of Eq. (5.3.52) for p = R gives

b =
(= i) — ol

where the argument of the modified Bessel functions is, as before, aR. Substituting

the above into by; = —kby; — adyy gives
b21 _ Km+1]{;2 + (,u — iw>d11[1m+1 (zw + ,u) — Oégfm] . (5365)
g(,u - Zw)[m — adpq

Substituting be; into the second equation in (5.3.60) gives
1 I, 1
R (5.3.66)

Km+1 -
i'l]m—l-l uM -

Im—l—l

dll =

where U = i, (aR) is defined as [12] 28, 29]:

Un(aR) = aR[IZ(aR) + IZ 1 (aR)] — 26uR I, (aR) L1 (R) (5.3.67)
Substituting d;; back into Eq. (5.3.64) gives:
ck
by = —————. 5.3.68
Tl - iw) ( )
The constant aj; can be found by substituting as; = —kaj; — acqq into the (2,1)
component of Eq. (5.3.52) for p = R:
K, 11, 1
-1 @ (5.3.69)

B T Ty

The results in Egs. (5.3.69), (5.3.68) and (5.3.66) can be summarised as

AX 1T AXMIT
MIT N o TwWwAT+HiIkAZ 11
ASE (z,2) —/_ 87r3/ dkmz_ooe (Axg/{IT A ) (5.3.70a)

where the 2 x 2 matrix element Ay} is given by:

Ky _ 1Imta l_c _1 <k
MIT __ g I, U Iy, Up U p—iw .
Ax1y —(p —iw) 1k Kmy1 1 I 1_ca 0 &;.
M p—iw Im41 U Tt1 M ( b)
5.3.70

The 2 x 2 matrix AY)T can be found from Eq. (5.3.55a):

E(En — LlImt1 o (Em — LImir) _ slutiv)
AXMIT Im U Im I, U Iy, S o0&
o Kmy1 1 I + s(ptiw) —k Kmt1 1 Iy 7
Im+1 LlI’m+1 u I’m+1 ulm«l»l
(5.3.70c)

The matrix elements of Ax>'" can be found from Eq. (5.3.70c) using Egs. (5.3.61)
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(5.3.59) and (5.3.63):

—k(En — 1Imis — Kmy1 1 Iny _ s(ptiw)
AXMIT I L[ Im Im+1 LJ.I,,L+1 ,u Og'
a | B 11Imys + S(putiw) k Kny1i 1 Iy J
Im U Iy, U Im+t1 U T
(5.3.70d)

MIT

Finally, the components of Ays, - can be found by inverting Eq. (5.3.55a):

4 LImir 1 ca 1 _<k
MIT Im a Im U ptiw U ptiw ,
Axsy = (pu+iw) 1 gk  Kmwi 1 de 1 o&;.
L( Im+1 ﬂ[m+1 uu+iw

(5.3.70e)

Casimir expectation values

The Casimir-induced fermion condensate can be calculated by taking the trace of
Eq. (5.3.53):

@Mﬁ—&BZ/"W/ﬂ{ [12.0p) + s p)]

Kp 1l Kmir 1 I\ o
TN —_ - — 3.71
“K s >1( p) + ( P ) Balen)| £ (337

where the argument of the modified Bessel functions is aR unless explicitly stated

otherwise. The above expression can be simplified by performing the 6 integral
after a change to the polar coordinates defined in Eq. (5.1.24). Afterwards, the terms
involving I (ap) and I2 ., (ap) can be symmetrised to only contain the combinations
I (ap) and I, (ap), defined in Eq. (5.2.38), as follows:

<wﬁﬁzﬂp2/ O R, 6) L 6p) + (0 = ) 1 )]

(5.3.72)
where x = R and 20,,(x) is defined as [12], 28] 29]:

W, (x) = % [Kon (%) I (%) — K1 (%) L1 (%))
— SuUR [Ky (%) I 11 (%) — K1 (%) L (%)) . (5.3.73)

The Casimir induced expectation value of the SET can be calculated using
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Eq. (2.2.62), grouping terms as for the fermion condensate:

AT > [ O ) [FSHR I () + 52000 1 47)]
) = g 3 [ ey [0~ )| 2t

; 1 ZOO  x3dx m+ 1
TL,DA — 2 IX ) .. 4
< ¢> 7T2R4 — uR ﬁ[ (X) Xﬁ m(Xp)wm (X)7 (5 3 7 )

and (T%) = (T7).

By analogy to Egs. (5.2.55) for the spectral case, it is convenient to introduce

the following notation:

1 > *© dx
In o2 R4 mzzoo /LR um(X)X (m + 2) m(XIO)7

M,— 1 > /OO dx ¢ 1\n .,
T =53p m:ZOO TG ) W () (D),

1 - ©dx
IM,X - = ? l n [X _ N
T or2R m:z_oo /M ()" ) W ()1 (7). (5.3.75)

where the notation I} (z) was introduced in Egs. (5.2.38). The Casimir expectation

values of the FC and SET can be written with respect to the above functions as

follows:
(D) oe = — LRI — <R(Toy" — P RIN), (5.3.76a)
(7)o =5 onB(T" — PRI~ (T8~ RTT), (5.3.76b)
<Tﬁ,3>l\c/I;T —T30" =P I, (5.3.76¢)
(T%, ) =p ' Ty (5.3.76d)

and (T2, )lgi;r = (T". >1\C/g: As discussed in subsection 5.2.3 for the case of spectral

boundary conditions, the Casimir-induced expectation values diverge as the bound-
ary is approached. To perform an analysis of this divergence, the sums over m in
Egs. (5.3.75) are replaced with integrals through the application of the generalised
Abel-Plana formula (5.2.45).
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5.3.4 Casimir divergence near the boundary

The generalised Abel-Plana formula (5.2.45) can be used to convert the sums over

m in Egs. (5.3.75) to integrals over v, as follows:

—M,+ 1 o0 o0 dX
I, =—— [ d
n n2R4/o ”/HR U1 (x)

2

—M.— 1 o & dx
Ty =t g, 1 (%), (xp
In W2R4A dv /l;R uV71<X)X v mufi(x) V,§<Xp)>

2

XV (xp),

1
2

M, X . 1 > > dx l.n X —
T, _7T2R4/0 du/MR L(l,_l(x)x % QBV_%(X)IW%(X,O). (5.3.77)

2

The above expressions are more convenient to work with for the purpose of analysing
the asymptotic behaviour of Eqs. (5.3.75) near the boundary (as p — 1). The
following paragraph is dedicated to analysing the asymptotic behaviour of the errors

introduced by approximating the sum over m with the integral over v.

Generalised Abel-Plana formula remainder

To analyse the asymptotic behaviour of the difference between the functions flg\i’*
introduced in Egs. (5.3.77) and the functions Ié\ﬁ’* defined in Egs. (5.3.75), it is

convenient to introduce the following notation:
Ly =Y fm (m+3),
m=0
M () =T — M (5.3.78)

Since f,*(v) does not have residues in the region Re(r) > 0, Eq. (5.2.45) can be

used to put 5%’* in the following form:

o dt
Myx—\ ~ M,* (-
N (7) =2 /0 e dmI i) (5.3.79)
To investigate the asymptotic behaviour of 5%’*@) as p — 1, the asymptotic be-
haviour of the integrand in the integrals with respect to x in Egs. (5.3.75) must be
investigated. Since the (€™ + 1)~ factor ensures the suppression of Jm[fy. " (it)]
at large t, the formulae (A.2.4d) and (A.2.4e) for the asymptotic expansion of the

modified Bessel functions for large arguments can be used.

The factor 4, 1(x) in the denominators of f,*(v), defined in Eq. (5.3.67), and

2
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its inverse [4l,_ 1 (x)]7!, have the following asymptotic behaviours:

V2 +ouR A2+ 2uR)
= +
X 2x?

+ O(x_?’)} : (5.3.80a)

2+ cuR L v+ 2cuR v + 21 R?

_ —2x
U, (x) =me [1 + " 52

+ O(X_?’} . (5.3.80Db)

where Eq. (5.2.48c) was used for I

following asymptotic behaviour:

(x) and I ,(x) can be shown to have the

N |=

1-—+—+ O(x3)1 : (5.3.81)

Hence, the asymptotic expansion of the integrand in the integral with respect to x

in fort(v) is:

1 1

= Sk I:r_%(xﬁ) =z e
2 1—7 R 4.2 2 R(1 -7 2R2

V( - p) +§M i ve Ui ( ,0) +:“’ —l—O(Xiz)’) _ (5382)

2 2

—2xe

31

v—

(NI

X [1—

Xp X 2px> s X

For the analysis of the Casimir divergence for the FC and SET, only the cases
(¢,n) € {(0,0),(2,0)} are required. It can be seen that the terms in the bracket
contain only even powers of v, which stay real under the transition v — t. Hence,

the following asymptotic behaviour can be obtained:

Jm

1 1
— %' I;t“é(xﬁ)] = 5e*hf()(xf*?’). (5.3.83)

Since ¢ is either 0 or 2, it can be seen that &3y " (p) and dyy ™ (p) do not diverge as

p— 1.

To analyse 6, (p) and &, (7), the asymptotic behaviour of QBV_%(X), defined
in Eq. (5.3.73), is required. Using the intermediate expansions:

K, s ()], 1(x) = K, 1 ()11 (%) —2_}”(3 {1 V2 (v —214)}55 —13) O(x_4)] |
Ky y (0,3 (0) = Ky (I, (x) = = [1 S o<x-4>] L 38y

the following expression can be written for 20, 1 (x):

v (v? —1)(v* — 1312 — 245uR)
R S
() = g |1 T 2onB 245

+ O(X4)} . (5.3.85)
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Hence, the ratio QHV_%(X)/L[V_%(X) can be written as:

2, _1(x) ™ -2
—r—=—e *{1+2
TOES) L { +2¢uR +

3
{1/2@4 — 212 4+ 13)

(V2 +suR)(1+ 26uR)

X

1
+X— + (v + DsuR + (207 + 1)p*R? + 2§M3R3} + O(X_3)} .

(5.3.86)
Since the asymptotic expansions (5.2.48b) (5.2.48¢) for I", (x) and I , (x) contain
2 2

only odd and even powers of v, respectively, the following asymptotic behaviours
can be established:

mit—%(x) . 2 o "
o L@ Liy®)| == gme 0T,
Qﬁit—%(X) o 1 £2 o »
" Sy (x) (i) Iy (%) | = = goe 0. (5.3.87)

Thus, the functions 5%’*@) are regular as p for all the combinations of ¢, n and
x € {4, —, x} of interest. Hence, the asymptotic behaviour of the functions Tﬁi’*,
defined in Eq. (5.3.77) coincides with that of Z)"*, defined in Eq. (5.3.75).

Zn’

The Casimir divergence near the boundary

The Casimir divergence occurs due to the divergence of the functions IZMn’*, defined
in Egs. (5.3.75), as p — 1. The asymptotic behaviour of these functions can be
analysed by considering the high v and x expansion of the integrand in the functions
fi,\i’*, defined with respect to Z,."* in Eq. (5.3.77). Equations (5.2.52b) and (5.2.52c)
can be used to obtain the following asymptotic expansions for 4, 1(x), defined in
Eq. (5.3.67), and its inverse:

1
2

1 . 20 — 126uR
il,,_g(X) =€ +r {1 + = o o
0
+;ZZ > (1+35sin? 0 + 1206 R cos®0) + O(r~ )}

cos? 6 — 12¢uR
127

x
:7_(_6—27“—2111n Py |:1 .

1 1 11
t3 ( ‘R* + 4R cos” 0 + = 3 cos® ) — 96 cos? 9) + O(r?’)] . (5.3.88)
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Using the following asymptotic expansions:

12 — 45 cos® 0 + 35 cos? 0
cos {1_1_ cos” 6 + 35 cos —|—O(7"_4)],

veg\t/tv—3 o2 8r2
cot sin?§(1 — 5sin” 0 N
Koy 00,y (5) = K,y (a1 ) = [ 1 A3 o]
(5.3.89)

the asymptotic expansion of SZITW%(X), defined in Eq. (5.3.73), and of the ratio
Qﬂy_%(x)/ﬂy_%(x) can be found:

t 0
W, 1(x) :C;) { sin® 0 + 26 R+
2 r
sin?
< (12— 20uR(1 = 5sin®6) — 45 cos” 6 + 35 cos” 6] + O(r—4)},
r
W, 1(x)  7cotd 2oy In X 9 126uR — cos*
2 — —2r—2vin —=—/ s 0 2 1 -2 )
0,0 5 ¢ +7 (sin® 0 + 26uR) [ + o + O(r )]
(5.3.90)
Equations (5.2.53) can be used to obtain the following expansions:
1 —2re R
It 1(xﬁ):e 1—|—i—|—6—7“62(30829—|—...:|, (5.3.91a)
ill,f%(x) V=3 b r
W, 1(x) cot? 0 sin? 6 + 25uR
——I (xp) = “2¢(sin? 0 + 2 [1 Bl e .3.91b
6,00 (xp) 52 ¢ (sin®0 + 2¢uR) |1 + o (5.3.91b)
(5.3.91c)
+ €(1 +sin? ) —T€2C0829—|—...],
2,_1(x) cot 0 26 R — cos® 0
3 ]>< =) — —2re(:..2 0 2 |:1 H
U, 1 (x) v (xp) o2 (sin” 0 + 26 Rt) |1 + 2r
+ e sin®0 — re*cos® 0 + .. } : (5.3.91d)

The presence of powers of sin 6 in the denominators of Egs. (5.3.91a) and (5.3.91b)
makes T};ﬁ’* and f%’_ divergent at the lower limit of the integral with respect to
0. However, this divergence is introduced due to the replacement of the integrand
with its expansion for large arguments and orders, thus being unphysical. It can

I and

be seen by looking at the power of r that both Tﬁ}ﬁ’* and 711\%7 diverge as €~
thus, contribute subleadingly to the asymptotic behaviour of the expectation values

in Egs. (5.3.76). The other relevant TZIL’* can be analysed using the same techniques
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as in subsections 5.1.4 and 5.2.3:

—M,+ 1
ZQO :471_2—]_%463 []. —+ %(1 + 2§/JR)€ + 0(62)} ,
—M,—

30 :607T2R463
=M, x - 1
2 _607r2R4e3[

[1456uR + (2 + 2euR + 50> R*) e + O(e7?)]

1+5¢uR — (24 3cuR — 5p°R*) e + O(e %)) . (5.3.92)

The Casimir divergence can now be computed by substituting the above results in

Egs. (5.3.76):
— MIT 3 .
(W) cas ~ = A2 R3e3 [1+5(1+2uR)],
7 MIT 1 17 2 2
T )cas ~ = To0-2513 [1 - 106uR + € (3 — 3¢uR — 1042 R?)]

b MIT
(17,

MIT

©
<T P >Cas N607T2R463

MIT

o ™ To0m2RIEE |

! 1+ 5¢uR + € (5 4+ 9suR + 10p* R?)|

[1+5cuR + € (2 +2cuR + 51°R?)] (5.3.93)

MIT

and (T% )¢, = (T7. )¢ - It can be checked that Eqgs. (5.3.93) satisfy Eq. (2.2.28).
The above expressions are accurate to first and second orders in terms of the distance
to the boundary (i.e. terms of order O(€?) have been neglected in the brackets). In
contrast to (5.2.56), Egs. (5.3.93) show that the Casimir divergence of a SET in
the MIT bag model is one order less than in the spectral model, agreeing with the
predictions of Deutsch and Candelas [31]. A possible explanation for this behaviour
is that the MIT boundary conditions can be formulated in a completely local fashion,
while the spectral boundary conditions require knowledge of the spectral components
obtain through a Fourier transform of the wave function, making the definition of the
SET non-local. It is also remarkable that, the divergence of the Casimir expectation
value (5.2.56) of the FC in the spectral model vanishes when p = 0 (in the MIT
case, the leading order divergence is independent of mass) and its leading order

divergence when p > 0 is one order of magnitude less than in the MIT case.

Numerical results

Figure 5.17 compares the asymptotic analysis (5.3.93) of the Casimir divergence
with numerical results for a cylindrical boundary for uR = 0 and pR = 2. In the
massless case, ¢ only influences the sign of the fermion condensate (FC), hence, the
plots do not show separate curves for ¢ = 1 and —1 in this case. However, there are
significant differences between the cases corresponding to the two values of ¢, which

deserve Separate curves.

The numerical results confirm the asymptotic results presented in Egs. (5.3.93),

showing that in the MIT case, the Casimir divergence of the SET is one order of
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magnitude smaller than in the spectral case, presented in Egs. (5.2.56), while the
Casimir divergence of the FC is one order of magnitude higher. Also, the mass of
the quanta affects the leading order of the divergence, while the sign of ¢ (i.e. either
+1 or —1) in Eq. (5.3.1), where the MIT boundary conditions are defined, affects

the sign of the Casimir expectation value of the FC even in the massless case.

The plots in the left column show the logarithm of the Casimir expectation
values as functions of the distance from the rotation axis, while the log-log plots on
the right show their logarithms as functions of the logarithm of the inverse distance

e =1 — p from the boundary.

5.4 Estimates of the energy density

The key to estimating t.e.v.s for bounded systems is tackling the integral with respect
to k. After an analysis in subsection 5.4.1 of the value of the energy density on the
rotation axis and the boundary, the case when the boundary is outside the SOL
is discussed in subsection 5.4.2. The purpose of the latter section is to give some
evidence that if the SOL is inside the boundary, t.e.v.s become divergent as the SOL

is approached.

It is important to note that when the SOL is inside the boundary, both scalar
and fermion modes with EE < 0 start appearing, as discussed in subsections 5.1.1
(for scalars), 5.2.1 (for fermions obeying spectral boundary conditions) and 5.3.1
(for the MIT bag model). Since thermal states cannot be constructed for scalars if
the system allows such modes, only fermions are discussed in this section. Although
occasionally calculations will be presented for a general mass, the results of this

section are given only for massless fermions.

5.4.1 Boundary inside the speed of light surface

The t.e.v. of the energy density with respect to the rotating (Iyer) vacuum, given in
Egs. (5.2.20a) and (5.3.51a) for the spectral and the MIT bag model, respectively,
is written in terms of the integral:

[ Esgn(E £ Ep)
fi_/o dh= e ] (5.4.1)

where FE and E, are given by:

Eng(mjL%), E=./E2+ k2 E, = ¢+ 1. (5.4.2)

As discussed throughout this chapter, £, > Ej for any value of m when RQ2 < 1. In

what follows, an approximation for Eq. (5.4.1) is derived, after which it is used to
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Figure 5.17: Casimir divergence in the MIT model for a cylindrical boundary. The plots
show numerical results (thick dashed coloured curves) for 4 = 0 and p = 2, for both ¢ =1
and ¢ = —1. The plots show the logarithm of the FC (top line) and SET (following three
lines) with respect to the distance to the rotation axis (left) and the logarithm of the
inverse of the distance ¢ = 1 — p to the boundary (right). The asymptotic behaviour of
the Casimir divergence is matched against Eqs. (5.3.93), represented using thin dark lines.
The asymptotic forms have zeroes in the domain due to the second order corrections.
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estimate the energy density on the rotation axis and on the boundary. The results

are validated numerically.

Fermi-Dirac integral for boundary inside SOL

It is convenient to change the integration variable in Eq. (5.4.1) from k to ¢t =
(E/Eq) —
o (t+1)2 sen(t+1x2)

Fi=E; [ dt
0 t(t+2) ﬁEq)tHi

(5.4.3)
Hr

Since E, > Ey when the boundary is inside the SOL, the signum function eval-
uates to 1 and the modulus disappears in the Fermi-Dirac factor, which can be

expanded in a power series, as follows:

Fi = F? Z(_l)jﬂe—jﬂ(EqiEo Tt 1) e I0Eat, (5.4.4)

T Vit +2)

The integral above can be expressed in terms of modified Bessel functions of the

second kind, starting from:

Ko(jBE,) = / dz e77PFacosh = — e I0B 1), (5.4.5)
0

> dt
/0 Vit +2)
Differentiating the above twice and using the recurrence relations (A.1.21), Eq. (5.4.4)
can be written as:
E? = . .
Fu= S8 (1)K (5E,) + Ka(j6E,) (5.46)

j=1

The energy density in the spectral and MIT models can be written using Egs. (5.2.20a)
and (5.3.51a), respectively:

MIT J+ qp)
Ty :I > p3 F_+FL). 5.4.7
( X R mZZ 2 (qR)(1+ T2 (- 1>f>( b B

For simplicity, the mass p was set to 0, such that j = e = Jin(Gme) / Tms1 (Gme) =
(_1)l+1'
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On the rotation axis

Setting p = 0 selects only the m = 0 terms in Eqgs. (5.4.7):

o0

oo ) . Q
(: Ty ‘I>,SBPGCJ 0 Wsz; Z 7 qR Z (—1)"** cosh (%) [Ko(jBq) + K2(jBq)],

1 00 ] 60
(- T 31)2/HTJ o omR > ( Z "+ cosh (%)

/=1 sz—i-l(qR)[l—i_ QqR j=1
x [Ko(jBq) + K2(jBq)]- (5.4.8)

The exponentially decreasing behaviour (A.2.4e) of the MacDonald functions for
large arguments indicates that the sum over j can be safely truncated after the
first term. At sufficiently small temperatures (large [3), the £ = 1 represents the
dominant contribution to the sum over /¢, for the same reason. Also, the modified

Bessel functions can be replaced with the asymptotic expansions (A.2.4e):

. |2m 7 57 195
Ko(z) + Ky(z) ~ . (1 + % + 19857~ 102453 +. ) (5.4.9)

On the rotation axis the terms with m > 0 vanish and Eqs. (5.4.7) reduce to:

2 E? Ji9) o
T specJ — q h —BE4
R I 107 R N BE,’
1 E? Ji9) o
T - MITJ - : h2te-0E. [ 2T 5.4.10
CTains | “omm RO = o) e gE; 0410

where only the leading order term in Eq. (5.4.9) was kept. Thus, for both the
spectral and MIT models, the t.e.v. of the energy density decreases exponentially
as [ increases:
1 3
Tyin)y| o~ e RUERCORS) 5.4.11
(: Ty I>5 =0 \/Be ( )

The exponent is negative since E,R > % (guaranteed by the discussion in the En-
ergy spectrum paragraph of subsection 5.3.1), while QR < 1. This exponentially
decreasing behaviour is also confirmed in Figure 5.6. Figure 5.18 compares the
approximations in Eqgs. (5.4.21) and (5.4.10) with numerical results.

For small values of 3, terms with higher [ make significant contributions. The
dependence of the roots for the spectral model at m = 0 (which are related to the

zeros of the Bessel function Jy) on the index ¢ is given in Ref. [1, [60]:

g =l — % +Oo(™). (5.4.12)

The roots in the MIT case are located between roots of the Bessel functions and for

each root of the Bessel function, there are two roots in the MIT model, as described
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in Figure 5.8. Thus, it is expected that at large enough ¢, the MIT roots will obey
the law:

¢
@i = % +Oo(. (5.4.13)

We have confirmed the absence of the constant term numerically through linear

regression by considering the first 500 roots of Eq. (5.3.11).

It is now convenient to replace the function Ji(goR) in the denominators of
Egs. (5.4.8) using the approximation (A.2.3a) for the Bessel functions at large values

of their argument:

2
2 3 —;-Ty (spectral),
Ji(qoeR) ~ 7 ¢ (qoeR - Z) — (=) (5.4.14)
4o 2 (MIT).

Using just the leading order term in Eq. (5.4.12) and approximating [1+4(—1)¢/7¢]

by 1 for (: Ty :I)E/HT in Eq. (5.4.8) gives:

2

%;< 1)7+ cosh 227 Jﬁ 263 {Ko (j]ﬂ%ﬂ ) e (j]ﬁ%w )] 7

: & 50 8 8
Tl =T 2 cosh 25 Zgg {K" <]2f§ )+K2 (j%; )}

>
3
=
5
Q%
@
o
| I
i
o
I

j=1
(5.4.15)
The sum over ¢ can be approximated by an integral, yielding:
LS (s e
(: Ty :1>5J o= 25 ; i cosh 5 /0 dz 2°[Ko(2) + Ka(2)].  (5.4.16)

It is remarkable that the above expression is obtained in both the spectral and the
MIT model. As expected, the above expression does not depend on R. The integral

over z can be performed analytically using the following property [60]:

/Ooo dz 2" VK, (2) = 2472 (“ 5 )F (“;”) , (5.4.17)

after which Eq. (5.4.16) reduces to:

12 o= (—1)itt 50
(: Ty :I>5Jp_ = Z( ji costh. (5.4.18)

. : 2
cos.h‘ﬂzl—k1 (@) +..., (5.4.19)
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the sum over j can be performed using the following identities [37]:

© J+1 7l
Z = (5.4.20a)
= 720
e j+1 2
Z T (5.4.20b)
7=1
leading to:
T2 02

<I 7}{ :I>5J p=0 ~ W + 8_52 (5421)

which matches perfectly the expression (4.3.54c) obtained in the unbounded case.

On the boundary

On the bounding surface, Egs. (5.4.7) reduce to:

(i
(: Ty :I>1[\fl J . 72R ZZ ( l)e(f_juﬂ). (5.4.22)
m=0 /=1 qR -

For large values of (3, the dominant contribution to the energy density comes from

the m = 0 and ¢ = 1 term, in which case Eqs. (5.4.22) reduce to:

T SPGCJ _ —B(q0,1—%)
< tt I)ﬁ -r T2R? 5(10,16 )
2
90,1 2r _a
T MITJ - ’ e Pw01-3), 5.4.23
< tt I>ﬁ p=R 27T2R2(1 _ 2q01,1R) BQOI ( )

The sum over m can be approximated by an integral and as a first approximation,
the sum over [ can be truncated to the first contribution. The roots in the spectral

and MIT cases can be written as:
QiR ~v+av'/? (5.4.24a)

where the coefficient a can be found in Refs. [I], 60] for the spectral case and it can

be determined numerically through regression for the MIT case:

(gpee ~ 1.856,  ayyr ~ 0.804. (5.4.24b)
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Hence, the energy density can be approximated as:

S ec 2TR 3 _ Brv @Vl
CTany 234\/ [ avtesromam-pet
p:
2R Ba
. . A\MIT ZY(1-QR Ba,%
G Tii 1) Jp:R 2a7r2R4 \/ / o (5:4.25)

If the boundary is on the SOL, the integrals with respect to v can be written in

terms of the Gamma function:

. . \spec _27\/%F(E) R 8

<' Tff -1>ﬁ JPZR —TZLQ (@) :

.. \MIT . 27]_—‘(%) R 10
o) = o <%) . (5.4.26)

If the boundary is not on the SOL, the v/3 term in the exponent can be neglected.
Using the relation [60]:

o T
dz cosh(az)Ky(z) = ——, 5.4.27
[ e eoshte o) = o (5.42)
the following expression can be derived:
0 2 + Q2R2)
0z 22 cosh(QR 2)[Ko(2) + Kol2)] = 2 L) 5.4.28
| =7 com@RAIR) + K2 = (5:428)

with which the spectral case can be evaluated analytically:

<. Tir - >specJ — 2 Z _ )j+l /Oo dz 22 COSh(ZQR)[K (Z) + K (Z)]
Ay J¢] =R 7T2R63 — j3 0 0 2

C3(3) 2+ O2R?

- 5.4.29
2mRB (1 - Q2R2)3’ (5429)
where the zeta function is defined as:
=1
((z) = = (5.4.30)
s=1

and it evaluates at z = 3 to ¢(3) ~ 1.20206. For the MIT case, the v3 term in the
exponent in Eq. (5.4.25) can be neglected, giving:

L(§)v2r (R)g( 1 (5.4.31)

2am3 R4 E 1— QR)% '

.. A\MIT -
<-Ttt-l>,3 Jp=R_

In all the cases considered above, the t.e.v. of the energy density is inversely propor-

tional to a power of 3. The approximations for the energy density on the rotation
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Figure 5.18: Comparison of numerical results for the energy density on the rotation
axis in the spectral and MIT bag models, using blue and purple coloured dots,
respectively. For low values of 3, it can be seen that the numerical results are
superposed with the value of the energy density in the unbounded case (represented
using green lines). The numerical results for large § validate the approximations
given in Egs. (5.4.10).
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Figure 5.19: Comparison of numerical results for the energy density on the boundary
in the spectral and MIT bag models, using blue and purple coloured dots, respec-
tively. The boundary is placed at R} = 0.5. While the analytic approximations
(5.4.29) and (5.4.31) for small 3 (green lines) seem to agree only qualitatively with
the numerical results, the large (3 regime is well captured by Eqs.(5.4.23), as shown
by the red lines.

axis at small (5.4.21) and large (5.4.10) values of 3 are validated numerically in Fig-
ure 5.18. The expressions in Eqs. (5.4.26) for the energy density on the boundary
when the boundary is on the SOL are compared to numerical results in Figure 5.19,
while Figure 5.20 validates Eqs. (5.4.29) and (5.4.31), giving the energy density on
the boundary when the boundary is inside the SOL.

5.4.2 Boundary outside the speed of light surface

The challenging part of this subsection is estimating the integral over k, defined in
Eq. (5.4.3). The next paragraph is dedicated to obtaining an approximation for this

integral.
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Figure 5.20: Comparison of numerical results for the energy density on the boundary
when the boundary is on the speed of light surface (2R = 1) in the spectral and MIT
bag models, using blue and purple coloured dots, respectively. The analytic formulae
(5.4.26), shown using green lines, are in excellent agreement with numerical results
at small values of 3 (in the MIT case, the agreement stays good up to 52 ~ 5).
It can be seen that the approximations (5.4.23), plotted in red, capture the large
behaviour of the energy density.

Fermi-Dirac integral for boundary inside SOL

When g < Ej, the integral F defined in Eq. (5.4.3) can be tackled using the method
described in subsection 5.4.1:

92 o0
_ by

Fe= D (F1) IR (B E,) + Ka(jBE,)). (5.4.32)

J=1

For the F_ term, it is convenient to split the integral over k into two parts:

Fo=F>+F, (5.4.33a)
where
F> = /Oo aE (B + Bo)" : (5.4.33b)
o 14e® \/(E+Eo)2 ~ E?
Eo—FE, 2
Fo = —/0 0 = eﬁflEquE) \/% (5.4.33¢)

An approximation for F>° above can be derived by considering its values at the
extreme cases E, = 0 and E, = E. For the case E, = 0, Eq. (5.4.33b) reduces to:

1 + efE 1282

When F, = Fj, a closed form cannot be obtained, but the method outlined in

00 dE 2 E
F*(qg=0)= / ———(E+ Ey) = T +2m2. (5.4.34)
0
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subsection 5.4.2 can be used:

© 4B (E+ E)
F(E, = E _/
o= B = | 1o JmE amy)

Z J+1€J[3EO 2(]ﬁE0) —+ K()(]ﬁEQ)] (5435)

After replacing the Bessel functions by the asymptotic series (5.4.9), the sum over

j can be performed:

- T [+ 7 57~
=) = By [ [C0) + gm0+ faiymet@+ o |+ (6030

where ((z) is defined as

s 1)+ In 2 z=1,
= Z = (5.4.37)
ey (1 —2'"%)((2) otherwise.
in terms of the ¢ function:
=> n (5.4.38)
n=1

The values of ¢ (z) in the first few terms in the series (5.4.36) are:
C(1)=0.604899, (%) =0.765147,  ((3)=0.8672, (5.4.39)

while the rest of the terms are between 0.9 and 1.

The derivative of 7> with respect to Ey,

dE (E + Ep)?
1+ PP [(E + Ey)? — B2

Op, F>(Ey) = Eq / : (5.4.40)
0
is positive for all £, between 0 and Ej, showing that its value increases monotonically

in this domain. To get an idea on what the behaviour of the integral is between the
points E, = 0 and E, = Fj, the Fermi-Dirac factor (e?F 4+ 1)~! can be expanded as:

o N DT (z + jBE)?
7 ; (1B)? /o a \/<x+jﬁE0)2—(jﬁEq)2. (5.4.41)

The square root in the denominator can be expanded in powers of z, after which

the integral over x can be performed, giving:
E2 ™ | Ey  [(Eo\’|  3¢(3) E, Eo\*
> ~—21n2 2— — 2 — —
7= Bko MSTLE 1232 (ko) " 43%ko ’ <k’o) o (k0>

+ ...,

(5.4.42)
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Figure 5.21: The numerical result for the F°° integral (solid dark line) is compared with
the approximation (5.4.44) and with the asymptotic limits of the latter in the cases F_,0
and E_, Ey (the high Ej expansion).

where

ko = \/ E3 — E2. (5.4.43)

The coefficients of powers of 3 lower than —2 should vanish when ¢ = 0, as is the
case for the coefficient of 372 above. The expansion (5.4.42) is not valid when E,

approaches Fy (and ky — 0).

Numerical plots indicate that F*°(E,) can be written as follows:

B F2(0)F>(Ep)
~FR(0) + R Fe(By) - FE(0)]

F>(E,) (5.4.44)

where F>°(0) and F>(Ey) are given in Eqs. (5.4.34) and (5.4.36), respectively.

The expression (5.4.44) for F*°(q) has the following asymptotic limits:

F>(E,) ~F>(0) {1 + jgg <1 - Jgg)) + O(q4)} : (5.4.45a)
F2(B,) ~ () {1 + Z—Z (1 _ %@) + O(k;g>} | (5.4.45D)

Figure 5.21 shows the validity of the above approximations.

As for F° in (5.4.33), the value when E, = Ej is trivially equal to 0. An
expression valid for small £, can be obtained by expanding [E(E + 2Eq)]’% about
E, = 0. The problem with this expansion is that higher order terms come with
increasing inverse powers of F, which diverge at the lower end of the integral, limiting

the number of terms that can be produced by this method:

Fo—Fq dE
o _/0 s (B Bt ) (5.4.46)

As before, the Fermi-Dirac factor can be expanded in a power series. The following
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identities shall be used:

S
Z L emIPE=Eq) — (1 4 ¢ PFo=Ea)y, (5.4.47)
; J
j=1
O (=1t

( Z e IIBEs) _ T, (g P Fo-Ea). (5.4.48)
— ]

7j=1

where Lis(2) is the dilogarithm [60], a particular case of the polylogarithm function,

which is defined as: .

Li(z) =Y Z— (5.4.49)

The best expansion around FE, = 0 obtainable using the method outlined above is:

E E 1 [n? . B(Eq—
FO~— WOIHQ — ?q In(1+ e_B(EO_E‘Z))] + 7 {E + Lig(—e AEo—Ey | 4
(5.4.50)
which reduces when E, = 0 to:
EO 7T2 1 . _
FoE,=0) = -5 In2+ oY + ELQ(_@ BLo). (5.4.51)

Another way to obtain an approximation for F° is to expand the Fermi-Dirac

factor in a power series about z = £ = 0:

— E
>\ (=BEy)" 2F B\’ 1

ooy By 2y —1) T, x o—
- 0 nZ:O ol +2 + 7y 41+ E, X e g ) )
(5.4.52)

where 7, is defined as follows:
_Bg J
E n
7, :/ R (5.4.53)
0 (e + 52

The integrals Z,, can be solved exactly by starting from the recurrence relation:

1k E\" 2m+1E
0(1 q) _ont b (5.4.54)

Tip=——2 (1-F =
T 1E, Ey n+1 E,

which follows by noting that:

x d 2E, E, 1
oy @VYTE) TR LLomy
x<x+E—D‘1> z(z + Ft)

(5.4.55)
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To start the recurrence, Zy can be computed using:

d 2F 1
Qd—ln <ﬁ+ T+ Eq) = — (5.4.56)
Xz q
0 .T(.CE + E_o)
The result is: E ok
Ty = In 2F %0 (5.4.57)
Eq

Solving Eq. (5.4.54) gives the following expression for Z,,:

; T+ [ Bo+ko | ko . EIT < Eq)k<_2Eq>"_k_1
" ! E, 0 = T(k+3) Ey Ey

(5.4.58)

Using Eq. (5.4.54), the combination in Eq. (5.4.52) can be written as:

(58]

Ey " Ey) ™" E (n+1)(n+2)
n?+n+1 E,
(n+1)(n+2) <Eo

In+2 +

)ZIn. (5.4.59)

Thus, F° reduces to:

(e e}

fOZ_Egz(—ﬁEo)' dr 1 zJ
s (n+2)! dzn1+e (B E)

~ {Z (1-2) [+ (- %)} GRS 2'<;z(25n+1> (%)
k'T

(_QEq) . E0+k0 @"i < &)’“< ZE) -1
EO q E k=0 F( EO EO ’

(5.4.60)

X

The sum over n can be performed for the first term in Eq. (5.4.60) by expanding

the Fermi-Dirac factor in a power series:

BB — E)))" { ( Eqﬂ ar 1 J
— kOEO 1 +n 1—— e
% (n+2)! EoJ] dz"1+ €|, 55, g,

= —k:OEOi(— 1)/t emaPEo = i 0 + 2] 2l {1 +n (1 - %)} . (5.4.61)
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The sum over n now looks like the Taylor series expansion of e/#(Fo=Fa).

Eo [ejﬁ(Eo—Eq) _ 1} +

{eW(EO—Eq) — i} . (5.4.62)

JﬁEO EO _Eq

Using the definition of the dilogarithm function (5.4.49), the sum over j yields:

—G(Ey — E )™ E noo1
— (n+2)! Ey dzn1+ e =B (Eo—E,)
kQ(QEq - Eo) 7T2 . _ _ ]{30 E _ _
_ L 4 Lin(—ePEo=E)y [ 20 )19 4 1nh B(Eo—Eq) L
(B, — B, |12 + Lig(—e ) 3 n Fo— E, n[l +e ]

(5.4.63)

The limit E, = 0 agrees with Eq. (5.4.51).

The best approximation that we could find can be obtained by combining the
result (5.4.63) with the first three terms in the sum over n in Eq. (5.4.60):

ko(2q — Ep) [n2 . _B(Eg—
0 __ 0 0 B(Eo—q)
SR Sk VA I
ff ﬁQ(Eo—q)Q |:12+ 12( (& )
ko { q — _
——<¢In2 - In[1 4 ¢~ PEo Q)}
3 Eo—q | ]
B ¢ o (Eo + ko) B Bq n Ey + ko B @
2(1 + ef(Eo—a)) q 1 + e—B(Eo—q) q q

7(8¢)? tanh ﬁ(Eg—q) Eo+ ko ko Ey—q
T Tt In PR 1 - +... 0. (5.4.64)

As can be seen in Figure 5.22, this approximation captures the essential features

of the integral both at small ¢ and at small ¢ = Fy — ¢, and has the following
asymptotic limits:
2 Eyln2 lq? ¢*1n2
~ - - - O(q* 5.4.65
1232 3 832EZ  2BE, +0(q"), ( a)

F2(q) ~\/2Efe { ﬁ; [g — Beln(l+e %) + Lig(—e_ﬂa)}

N 1+ e [1+ §0e + 350%* tanh %]

F(q)

2(1 + ef)?
1
+ 1632 Eye [—37% + 168 In2 + 208 In(1 + ) — 36Lis(—e )]
960(1 + ) {760+6 (760 + 2643 + 473°¢" tan 2) +O(E7?)

(5.4.65b)
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Figure 5.22: (a) The numerical result for —F° (solid dark line, taken with a negative
sign such that the plot is over positive values) is compared against the following orders of
the approximation (5.4.60): the no n curve represents the kg term given by Eq. (5.4.63),
the n = 0,1, 2,3 represent the kg term with terms from the sum over n added up to the
inscribed n and finally, the low ¢ and low Ey — ¢ asymptotic limits of the approximation
(5.4.64). (b) The numerical result for 7~ = F> + F° compared to the approximation
and asymptotic forms at small ¢ and large Ej.

A number of distinctive features can be read from Figure 5.22. The graph of
F_ can be roughly divided into three parts. In the first part, where g—g is small, F_
has a roughly constant value, which we can estimate by combining the asymptotic
expressions for small E, from Egs. (5.4.45) and (5.4.65):

2 2
Fomt L mot . (5.4.66)

T 6 BB,
The value of F_ for ¢ < Ey can be written as a constant temperature-dependent

term plus corrections in inverse powers of Ej.

The middle region corresponds to F_ < 0. Even though the approximations
obtained in this chapter do not capture the width of this region properly, they can
still be used to estimate the value of F_ at the peak and its location. For this
purpose, let us introduce the new variable z = G(Ey — ¢). We can then construct

the function f(x) as follows:

2

2
F_ ~ Ej _5Eof(x)7 (5.4.67a)
where
In 26(%)\/? r7r _ _3.. _
= — —_ 2 1 1 ) — 2L - v
f(x) 2(1n2+§(%)\/ﬁ) 19 +x2ln(l4+e ) -z ip(—e™")
3 x%(l + 4—701: tanh )

21 +er)  6(14en)(1+e ) (5.4.67b)

The expression for f(z) follows from the first order terms in the expansions in inverse
powers of Ey of F> (5.4.45) and F° (5.4.65). The interval we are interested in is
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Figure 5.23: Log-log plot of the numeric result for the F_ integral (solid dark line)
evaluated at the point where the asymptotic analysis indicates the minimum value would
be compared with (5.4.71) as functions of (a) # (with Ey = 100.5 fixed); # ranges from
0.2 to 64; and of (b) Ey (with g = 0.2 fixed), ranging from Fy = 100.5 to Ey = 10000.5.

between the zeros of f(x), which we can compute numerically:
ey = 4.4365, Tright = 0.3545. (5.4.68)

The peak is located inside this interval, where the derivative of f(x) with respect to

x vanishes. The derivative of f(x) is given by:

C(d P R P

2+ C(L)vaz

5p—% o5 3 x 7221 —2sinh®Z
— + 1+ -—ztanh= — —————— 2| 5.4.69
4(1+4e*) 16 cosh? 5 ( 8 2 120 cosh? 5 ( )

B In2

1
4x2

f'(x) =

Li(—e™)

It is remarkable that, in the first order approximation, the position of the extremum
and of the margins of the interval do not depend on any of the parameters Ey and

B only through x. The zero of f'(x) can be solved using numerical methods:
Tpeak = 146338, f(pear) = —0.14783. (5.4.70)

Thus, the value of F_ at its minimum is:

2
(Tpear) =~ —0.147T83E [ ——. 5.4.71
F-(@pea) o (5471)
Although the above approximation is about 15% off (mainly due to the inaccuracy
of the approximations obtained for 7> and F°), the order of magnitude and the

dependence on Ej, and 3 seem to be correctly captured, as illustrated in Figure 5.23.

Finally, there is a narrow strip in the domain 0 < x < @451 = 0.3545, where F=°

. [ . 1v_
dominates over F°. Here, F° goes to 0 as 22, while F* increases as (1 + ax2)7},
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where « is a constant. The value of F_ at z = 0 is:

F_(x =0) ~ 0.53608 £ y /6%' (5.4.72)
0

A quantitative measure of the overall significance of the middle part relative

to the third would be a numerical integration of f(z) multiplied by powers of x.

Defining
I, = It 4 [risht (5.4.73)
where
Tleft . Tright
[Tlleft — / dl’f(l’) lﬂ) Irrzlght — / dx f(x) xn7 (5474)
ZTright 0
the following values can be obtained through numerical integration:
I =—0.344726, I =-0675283, [ = 1.58059,
¥ =0.0550712, I} =0.00596215,  [,*" =0.00106664,
Iy = — 0.289655, I, = —0.669321, I, = —1.57952. (5.4.75)

The results of the numerical integrations are clearly smaller in absolute value for
the third region than for the second, giving a bigger weight factor to the terms in
the sum over £ in Egs. (5.2.20a) and (5.3.51a) for which the corresponding discrete

momentum ¢,,¢ is located inside the second region.

On the boundary

According to Eqs. (5.4.24), ¢me > ¢m1 = %(m +ams + ... ), which implies that at

large enough m, there are a number of values for ¢ such that £, — Ey < 0, where

E, =V i?+ ¢, Ey=Q(m+ 3). (5.4.76)

For simplicity, the discussion in this paragraph will be restricted to massless fermions,
such that F, = q.

Since excluding the terms for which ¢ < Ey = ©(m + 1) reduces the discussion
to the case when the SOL is inside the boundary, when the energy density is finite
everywhere inside the boundary, it follows that any divergent behaviour would be
introduced by modes for which ¢ < Q(m + %) In this regime, F_ dominates espe-
cially when x = G(Ey — q) is between & = zjos, = 4.4365 and = = 0 [see Figure 5.23
and Eq. (5.4.68)].

According to Figure 4.2, increasingly higher values of m make significant con-
tributions to the energy density as p{) — 1. Hence, the asymptotic behaviour of
the energy density in the spectral (5.2.20a) and MIT bag (5.3.51a) models can be

investigated by considering m — oo.
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Let us first look at the energy density on the boundary, given in Eqs. (5.4.22).
As implied by Eq. (5.4.6), F, ~ e~ (Po+9 and stays finite for all values of RQ. The
sum over ¢ can be approximated by an integral running over x between 0 and x.,
where F_ is dominant. In this domain, F_ can be replaced using Eq. (5.4.67) and
Eq. (5.4.75) can be used for the integral over x, yielding:

Ty :1>5J ~ QY (m+ L) (5.4.77)

m=0

for both the spectral and the MIT bag models. The sum over m diverges as m%,
therefore, the energy density is infinite on the boundary if the boundary is outside
the SOL.

On the SOL

For a point inside, but close to the SOL, ¢ can be approximated such that:
q=Q(m+3). (5.4.78)

In this case, the integral F> is given by Eq. (5.4.36), while F° = 0. Let the small
parameter be € = 1 — p?Q?, as defined in Eq. (4.1.3). In this case, gp < m + %, but
because the boundary is outside the SOL, ¢R > m + %

If the boundary is sufficiently far from the SOL, the term (m + 1)/¢R in the
expression for (: Tj; :%/HT in Eq. (5.4.7) can be neglected, in which case the spectral
and MIT models stand on the same footing. Using Eqs. (A.2.8) to approximate the

Bessel functions in Egs. (5.4.7) gives:

Jo(ap) + I3 1 (ap) PR? -1 . JI—z
J2,(qR) "NV P {Q(W +3) (x/E +In rﬁ)} . (5.4.79)

Hence, (: Ty :>2/HT can be approximated close to the SOL as:

R L I 10l VP I L S N AN B SV
(: Ty )5 = PPy 7 5 C(z)/o dvv exp{ 1/(1111_\/E 2\/E>},
(5.4.80)

where the sum over m was approximated by an integral, which can be solved in

terms of Gamma functions:

0f  Jo(r2-1)  CArE)

_ (5.4.81)
Al pe [ln NG

(: T 3>ﬁ

o
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1

Thus, (: Ty :) 5 appears to diverge as the SOL is approached as e~

oy I2CEINE) (3R 1
(T )s= R o

(5.4.82)

Although the plethora of approximations performed in this analysis are more than
likely to have influenced the result, it is nevertheless compelling evidence confirming
that if the bounding surface is outside the SOL, the t.e.v. of the energy density
no longer converges on the SOL. The order % of the divergence is very close to
4, which is the leading order of the divergence found for the t.e.v. (4.3.54c) of the

energy density with respect to the rotating vacuum in the unbounded case.

5.4.3 Summary

Enclosing the rotating system inside a boundary placed inside or on the speed of
light surface (SOL) induces regular and well defined thermal states with respect to
which thermal expectation values (t.e.v.s) stay finite throughout the space enclosed
inside the boundary, for both scalars and fermions. The mechanism which allows
the construction of regular thermal states of scalar particles and through which
the divergences near the SOL of the t.e.v.s corresponding to fermion operators are
removed is the quantisation of the transverse momentum ¢ imposed by the boundary
conditions. If the boundary is not outside the SOL, the quantisation of ¢ ensures
that there are no modes for which ww < 0 (EE < 0 for fermions). A consequence of
this restriction is the absence of spurious temperature independent terms in t.e.v.s,

or, in other words, the equivalence of the rotating and non-rotating vacua.

Two models for implementing fermion boundary conditions were considered in
this chapter. The spectral model, discussed in section 5.2, imposes boundary condi-
tions on the Fourier transform of wave-functions, thus having a non-local character.
In the MIT bag model, discussed in section 5.3, the boundary conditions are for-
mulated locally. The graphical comparison in Figure 5.14 between the two models
shows that the t.e.v.s in the MIT model follow the profiles of the corresponding
t.e.v.s in the unbounded case more closely than those corresponding to the spec-
tral model. Three fundamental differences were found between the two models: the
fermion condensate (FC) for massless fermions does not vanish in the MIT model,
but it does in the spectral model; the neutrino charge current (CC) along the rota-
tion axis changes sign between the rotation axis and the boundary, where it attains
a finite (non-zero) value, whereas in the MIT model, its sign does not change while
it’s value on the boundary is 0; finally, (: T ) 5 vanishes on the boundary in the
spectral model, but not in the MIT model.

In the analysis of the changes induced in the vacuum state by the presence of

the boundary, the Casimir divergence close to the boundary of the t.e.v. of the
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stress-energy tensor (SET) was one order of magnitude higher in the spectral model
than in the MIT bag model. Also, previous work [31] on the Casimir divergence for
arbitrary boundaries and fields showed that a fully local SET would diverge at most
as in the MIT bag model. The MIT model indeed confirms the results of Ref. [31]
due to the purely local formulation of the boundary conditions, while in the spectral
model, the boundary conditions are formulated in a non-local manner, contradicting
the assumption of locality in Ref. [31]. It is interesting that the Casimir divergence
of the FC has a higher order of magnitude in the MIT bag model than in the spectral

model.

Finally, an attempt at approximating the Fermi-Dirac integral corresponding to
a bounded system brought evidence in subsection 5.4.2 that the t.e.v. of the energy
density in a bounded systems where the SOL is inside the boundary diverge as
the SOL is approached. While the analysis performed in subsection 5.4.2 is not
sufficiently rigorous to show beyond doubt that thermal states suffer from the same
divergent behaviour as in the unbounded case, the quasi-Euclidean approach of

section 6.2 supports this finding.



Chapter 6. Quasi-Euclidean formu-
lation of QFT on a rotating space-
time

The analysis of the Casimir effect performed in chapter 5 showed that in the Eu-
clidean approach the expression for observables has the form of a continuous integral
over the equivalent of the longitudinal momentum g. We would like to retain this
feature in the analysis of thermal states inside a bounding surface, where we previ-
ously had to compute sums over roots of some non-trivial equation involving Bessel

functions. To this end, a quasi-Euclidean approach is considered in this chapter.

The first problem we are faced with is that the metric (4.1.4) of the space-
time has non-diagonal terms which mix space and time coordinates. Changing to
a purely imaginary time coordinate would make these components of the metric
imaginary, therefore rendering the manifold non-Riemannian. Even though it looks
as if the space-time does not lend itself to Euclideanisation, such approaches have
given positive results in, e.g. the analysis of the Kerr space-time [36, [67].

In this chapter, the quasi-Euclidean approach is used to obtain an Euclidean
version of the Lorentzian Feynman propagator, by changing coordinates from real to
imaginary time. After such a propagator is obtained, the method outlined by Groves,
Anderson and Carlsen [38] is used to compute the thermal Euclidean function, from

which thermal expectation values can be computed.

In sections 6.1.1, 6.1.2 and 6.1.3 a consistency check on the Euclidean approach
is performed by comparing the results obtained for the renormalised thermal expec-
tation values (t.e.v.s) in the Minkowski non-rotating, rotating and bounded rotating
space-times, respectively with those already obtained in previous chapters through
the Lorentzian formulation. The highlight of this chapter is section 6.2, where the
behaviour of the t.e.v. of the energy density close to the speed of light surface (SOL)
is investigated for the case when the SOL is inside the boundary.

The aim is to prove that the renormalised expectation value of the energy density
for a system of fermions enclosed in a boundary located outside the SOL surface
diverges as the SOL is approached. The approach, for reasons which shall become
apparent in the appropriate section, is to take the difference between the unrenor-
malised (i.e. without performing Wick ordering) expectation values with respect the
thermal state on the bounded and unbounded spaces. If the bounded thermal state
is regular in the vicinity of the SOL, this difference must diverge exactly as the

unbounded thermal state, i.e. as described in subsection 4.3.2.

165
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6.1 Equivalence between the quasi-Euclidean and

Lorentzian formulations

6.1.1 Quasi-Euclidean formulation of non-rotating thermal

distributions

Starting with the Euclidean Green’s function for the unbounded Minkowski space-
time, given in Eq. (5.2.33), it is possible to construct the corresponding thermal
Euclidean function starting from the Fourier components sg(w) of the Euclidean

Green’s function Sg(z,2'):
Sg(x, ") :/ dw e sp(w). (6.1.1)

The thermal Euclidean Green’s function can be obtained by replacing the above

integral with a sum [38]:

SOz, 2") = 7 Z IR s (w;), (6.1.2)
j=—o00
where j is an integer and
2m
wj =5+ 3): (6.1.3)

Thermal expectation values with respect to the vacuum state can be calculated
by subtracting Sg(z, z') from S¥(z, '), using the generalised Abel-Plana sum for-
mula, given in Eq. (5.2.45).

The t.e.v. of the energy density can be calculated using Eq. (2.2.62):

(T =g | b Z [/ wiw) -2 3 fw)]. oL
where
F(@) = (@) Kn(ap) + Tnir(0p) Knia (0p)] (615)

and o = y/w? + w? (5.1.19) is written in terms of

wr = VI + 2. (6.1.6)

Since f(w) has no residues in the complex plane, the generalised Abel-Plana formula
(5.2.45) can be applied to yield:

(: Ty 1)y = 2_—7;) dk:z_:/ eﬁw+1 fliw) — f(—iw)). (6.1.7)
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The difference f(iw)— f(—iw) can be performed using the following identities [1} 60]:

L (e57™22) = ei%im”Jm(z) (—m < fargz < g),
Km(e”ﬂz) — _%@—%imﬂj—]ﬁ)(z) (—m <argz < g),
K (e7™?2) = %e%im”]—]g)(z) (—g <argz <m), (6.1.8)

which are valid for the ranges of the argument of z (arg z) given in the corresponding
parentheses. where the inequalities in the parentheses give the validity domain of
The phase of a after the transition w — +iw is essential for the correct recovery of
the form of f(+iw). Writing

W = Wke + 1Wym, (6.1.9)
the change in the phase of @ can be understood by looking at its square:

1
aQ = [(wg + wg%e - w%m) + 40){2)%&)%;“] 2 ew’ (6110)

where
2WReWrm

2 2 2 °
Wi, + Wige — Wi

¢ = arctan (6.1.11)

Before the transformation, wy, = 0 and the phase is 0. After the transformation,
wme = 0, but the phase can be 0 or £¢p. If wp > w, the denominator in the arctan
never vanishes, so the phase becomes positive or negative (following the sign of
Worewsm) and returns to 0 as w,, — 0. However, if w, < w, the argument of the
arctan becomes 00 (again, following the sign of wgewsm), at which point ¢ = £7.

As wge — 0, ¢ continues departing from 0 to £, as follows:

Vwi —w? wp > w,
o —— g ‘ (6.1.12)

; i
r—=+it €:|:7q Wi < w,

where ¢ is the familiar transverse momentum:

q=/w? —wi. (6.1.13)

Equations (6.1.12) imply the following transformation properties:

I, w? —w)K,, w2 —w?) wp > w,
In(ap)Km(ap) ——— (v =R Knlpy/u = %) (6.1.14)

ot ZF%Jm(QP)[Jm(QP) + Y, (qp)] wy < w,

where the definition (A.1.9) was used to replace the Hankel functions in Egs. (6.1.8).
If wy, > w, the product I,,(ap)K,,(ap) stays real and its contribution to the t.e.v. of
the energy density is null. Thus, the integrand in the integral over w in Eq. (6.1.4)
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is proportional to 6(w — wy):

(: Tos ;>ﬁ:_i Tk 3 / Y o ) T (ap), (6.1.15)

where J}(gp) = J2(qp) + J2.1(gp), as defined in Eq. (3.3.69). Changing the inte-
gration order reduces Eq. (6.1.15) to:

(: Tss ;>B:_i Z: /:O W du /Opdkjnt(qp). (6.1.16)

Performing the sum over m using Eq. (A.4.2) reduces Eq. (6.1.16) to the familiar
expression in Eq. (3.3.70), taking into account that (: Tr+ 1) 5 = — (: Tj; 1) 5.

6.1.2 Quasi-Euclidean formulation of unbounded rotating

thermal distributions

The coordinate transformation ¢ = @nink — Qtmink changes the phase in Eq. (6.1.1)
from w to w + iQ(m + 3). To construct a co-rotating thermal state, the variable in
the w integral in Eq. (6.1.1) has to be changed such that the coefficient of sg(x,z’)

becomes e™“At:

QSE(:L",:E’):/ dw €A xq. (6.1.17)

The subscript €2 indicates that w is replaced in all explicit and implicit w dependent

quantities by wq, defined as:
wo =w —iQ(m + 3). (6.1.18)

The t.e.v. of the energy density can be obtained following the same steps as in

subsection 6.1.1:

7T3 6271'@1 + 1

(: T:s ;>6—i/_oo dk ) /Ooo dw [faliw) — fo(—iw)], (6.1.19)

where fq(w) is defined as in Eq. (6.1.5) the subscript €2 indicates that w has been
replaced by wgq:

fa(w) = Wil (aap) Kn(aap) + Lnii(eap) Kt (aap)). (6.1.20)
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Applying the same reasoning as in obtaining Eq. (6.1.12), the following transforma-

tion properties for aq can be deduced:

7 _ ~2 ~
wp —w wi > @],
. i s ~
ag(iw) =4 e2 /0% — wi o 0> wy,
i
—_ ~ 2 o~
G W —wp W< —w,
)
wi —o? w > W],
. i — —_
OzQ(—Zw) - e 2 w2 — wz w > W, s (6.1.21)
TR -2 T<—
e W —wp W W,

where
w=w—-Q(m+3), G=w+Qm+3). (6.1.22)

e Z/ / ezWiwl Jnlpy/ & = i)

m=—0oQ

< 0@ — wp) — 0(—5 — wp)], (6.1.23)

where the transformation m — —m — 1 has been performed for the terms involving
w, changing @ to @. Changing variable from w to £ = w — Q(m + ) and converting

the sum over m so it runs only over positive values yields:

(: Tes Z/ﬂ dE E? (eﬁ1+1+ sgnby )/Opdw;(qp). (6.1.24)

i AIEl 41

A comparison with Eq. (4.3.56¢) shows that the t.e.v. of the energy density thus
obtained is expressed with respect to the rotating vacuum. It is remarkable that the
quasi-Euclidean procedure correctly selects the rotating vacuum in detriment of the

Minkowski vacuum.

6.1.3 Quasi-Euclidean formulation of bounded rotating ther-

mal distributions

When a boundary is present, a homogeneous solution of the Dirac equation must
be added to the Euclidean Green’s function Eq. (6.1.17) for the rotating space-
time. Equations (5.2.36) and (5.3.70) give these extra solutions for the spectral
and MIT bag models, respectively, but with respect to Minkowski coordinates. As
in subsection 6.1.2, these functions can be expressed in the rotating system by
changing w to wq (6.1.18) in all quantities, except for the phase. For simplicity, only

the spectral case is discussed in this subsection.
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The t.e.v. of the energy density can be written for the spectral case as:

(: Tor2)y = ﬁ/ de/ e2w+1[fQR(w) for(—iw)],  (6.1.25)

3
where
far(w) = W3 Ln(aap)Km(aap) + L1 (aap) K (aap) + for W)  (6.1.26)
The boundary term f& (w) is given by:
spec

ar (W) = m%(agﬁ))- (6.1.27)

After applying the generalised Abel-Plana sum formula (5.2.45), w is sent to +iw.
Let us consider for definiteness the case w — iw. Three cases emerge: agq stays real
or it becomes % \/m (&? is replaced by w? if w — —iw). The terms where
« stays real cancel through the subtraction f(iw)— f(—iw), hence they do not need

to be discussed further. In the other two cases, the following transformation occur:

( im
o) = e ) (6.1.28)
(aR) yrife e It (gp) o — e Ea,
where
g = /@ — Wi (6.1.29)

In the Abel-Plana summation formula, the two pieces in Eq. (6.1.28) are subtracted.
Using the definition (A.1.9) of the Hankel functions, the following result is obtained:

Kn(e™% g R) in

Km % ~ i y
M[n;(ﬁw)_ L(e" 2 gup) = —imJy(gup).  (6.1.30)

I.(e% ¢ R) Ln(e"3q.R)

This expression is equal in magnitude but opposite in sign to the equivalent expres-

sions coming from the unbounded terms, thus cancelling their contributions.

However, since the boundary-induced terms have poles on the imaginary axes,

the residue terms in the Abel-Plana formula must also be computed, starting from:

Res [—1 ] =lim 28 =lim e = Z‘eiémﬂ —ie i
I (2) |, _je 7=i€ I (i€ + 2 — i) =0 [ [eF (€ +¢)] Jn(€) m+1()
1 ) z+ 1€ . —ie —jesmm
R =1 =] . = 6.1.31
~ [Im<z>]zﬂgzﬂmis (€218 S e F et Jen@ O

where £ = 0 is the £'th root of J,,,(z). Thus, the residues of the boundary term
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can be calculated as follows:

(2)
Res { R Tnlon) | == D ),
aR=i&m

[m(aR) m 2 Jerl(gmﬁ) "
K, (aR) o HY () _
Res {m]m(aﬂ)}aR e = §mlr:(§mép)a (6.1.32)

where p = £. It should be noted there are no contributions coming from the case
when « stays real. The Hankel functions in Egs. (6.1.32) can be written in terms of

Jm+1(Eme) using the Wronskian relation (A.1.3):

21
Wémf Jerl (fmf) ’

H (&me) = —HE (&me) = 1Yo (Eme) = (6.1.33)
Since the residues need to be computed with respect to the variable x = g—: > 0,
the results in Eqgs. (6.1.32) need to be multiplied by the factor:

ox 16}

= . 1.34
J(aR) QWRQw&R (6.1.34)

The value of w corresponding to a given root &,,, depends on the relative sign of w
and m—i—% after the rotation of w to +iw. for positive or negative signs, w is replaced
by Wyme O w = Wy, subject to the constraints w,,, > 0 or wW,,, > 0, respectively.

Here, w,,y has the usual meaning introduced in chapter 5:

Wine = \/ 1> + k2 + ¢, Gme = % (6.1.35)

Explicitly, the residues of the generalised Abel-Plana formula (5.2.45) have the fol-

lowing form:

i Julap) [ 0@me) (W)
T2 2 21 (&me) |1+ eFome 14 e=Bome |
(6.1.36a)

6 Thap) [ 0@me) O(—Tme) |
MWt RE T2 (Ee) [T+ Fome 14 e~Fome |

(6.1.36b)

Resmusofo g (W) (1 —itang) =

Y

ReSimw<o [, pec( J(=1 —itan¥) =

Adding up all the residues gives the final expression for the energy density:

2 - T (Gmep) 1 SENWy 0
2 Ths ) g = — dk w,, — . (6.1.37
(T B WQRQZOZl 21 (Eme) / “me 6W+1+eﬂ|“’|+1 ( )

The quasi-Euclidean approach has again naturally selected the Iyer vacuum, as can

be seen by comparing to Eq. (5.2.20a), obtained using a mode sum.
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6.2 Analysis of bounded thermal states near the

speed of light surface

The preceding section was used to establish that the quasi-Euclidean approach pro-
duces correct results in the systems studied so far. Next, an analysis is performed of
the behaviour of the t.e.v. of the energy density for a bounded rotating system with
the boundary outside the speed of light surface (SOL) as the latter is approached,
using the advantage of having t.e.v.’s expressed as sums over an integer variable
n rather than over roots of some equation involving Bessel functions. To preserve
this aspect of the Euclidean approach, it is clear the vacuum contribution cannot
be subtracted from the corresponding thermal expectation value, as this will reduce
any expression to the corresponding one obtained using mode sums. Therefore, we
anticipate that the singularity structure of the vacuum for the bounded system is
the same as that for its unbounded counterpart and construct the difference between

the t.e.v.s in the rotating bounded and unbounded systems:

(AT%%)ﬁ = <T7°'?>ﬂ,R,Q - <T7'7' B,00,0 — 571’2 Z Z/ dk fspec (621>

m=0 n=0
Since the divergent behaviour is induced by large values of m, n and k, the field
quanta can be approximated as massless. Also, for simplicity, only the spectral case

is considered in this section, in which case Eq. (6.2.1) takes the form:

(AT::)p = —W Z Z Re[wi,sz’can (6.2.2)
m=0 n=0
where ~ K (anR)
m (6% —_
Ko = /0 dkTsR)Im(an), (6.2.3)

where w,, = 2%(n—i— %) To analyse the behaviour of /C,,,,, the approximations (A.2.5)

for the ratio K,,/I,, and (5.2.52d) for I, (aqp) are used.

First, the integral over k can be approximated using the method of steepest

descent [51], by introducing the following notation:

Ko ~ / dk e™®) £ (k), (6.2.4a)
0

where
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and

z(p) =1/1+ (ozp)Q’ v=m+ 3. (6.2.4d)

The first two derivatives of n(k) with respect to k can be computed:

oy 2k R P
k) = m L +z(R) 1+ z(p)] ’ (6.2.5)

Y _ z R2 B P2 _k’_2 R4 B p4
”<k>—m{1+z<m T+2(p) [z<R><1+z<R>>2 z<p><1+z<p>>2”'
(6.2.6)

Given that the first derivative 7/(k) vanishes when k = 0, the integral KC,,, can be

approximated as [51]:

e 11 1
Ky~ =10 / Ak ™3 OF[£(0) + S f/O)K + ]
0

~ o0 7T [f(O) i

277(0) 1)+ ... (6.2.7)

217"(0)

As can be seen in Figure 6.1, this first order approximation captures reasonably well
the essential features of IC,,,,, therefore, the higher order terms can be omitted from

the asymptotic result.

et £=02,1=0,m=100,p0=1.0,RN=2.0 p=0.2,RQ=2,p0=1,n=0 B=0.2,RQ=2,p0=1,n=0
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Figure 6.1: The plot on the left compares the real part of the integrand in K,,, in
Eq. (6.2.4) to the exact integrand in (6.2.3). On the plot in the middle (right), the real
part (absolute value) of the numerical value of ICp,,, is compared (as a function of m) to
the numerical value of the asymptotic form of /C,,, represented in the plot on the left
(sparser dashed curve) and the asymptotic result (6.2.7) (denser dashed curve).

Next, we anticipate that the contributions made by high values of m will become

increasingly important as the SOL is approached, as can be seen in Figure 4.2. The
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pieces needed for an expansion of 7(0) in inverse powers of v are:

1
2

24w w?
z(p) = [52 - qll- 6%) + L~ 52)]
: 59
:5—%155 T (6.2.8a)
2 2w o ’ 2 :
z2(R) = |—A m(A +1)+ 2QQ(A +1)
A% +1
—iA — % A+ , (6.2.8b)
1—
In[1 + 2(p)] = In(1 4 6) — Z%T5 +..., (6.2.8¢)
In[1 + 2(R)] = In(1 +iA) — % ! _AZA , (6.2.8d)
2w

n(k =0) = 2v [arctanh § — § + i(A — arctan A)] — ﬁ(A —i0) + ..., (6.2.8¢)
where ¢, and A are defined as:

§=+/1-p202, A=vVRQ—1, @:%Jr%. (6.2.9)
To illustrate the divergent behaviour of the t.e.v. of the energy density as the SOL
is approached, § is regarded as tending to 0. To approximate the term z(p) in the

denominator of f(0), it is convenient write it as:

~ e T (6.2.10)

Hence, the factor multiplying the exponential in Eq. (6.2.7) can be approximated

using:

Q Vﬂ-Q2 iT_ i arctan O
e~ cefzaany (14 ),
2n"(0)  2(62 + A?)1

RO | Q
f(O>N1—|—iA 2w1/e ’

T i+ A
f(0) 277(0) ~ SR VTO2WA + . ... (6.2.11a)

Putting everything together gives:

p 1+ A | 7Q
ATy = ———— 2 /
( TT)B B2 Z Z Re {wn@ 2R 2w, A

m=0 n=0

X6721/[arctanh6*5+i(A7arctan A)}G*%T"(A*ié)} . (6212)
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The sums over n and m can be approximated with integrals by applying the gener-

alised Abel-Plana sum formla (5.2.45). Each power of v pulls down a factor of

iy arctanh 6 —&
1 e 2 +tarctan

2[(arctanh & — 0) + i(A — arctan A)] 2[(arctanh § — §)2 + (A — arctan A)?]z’
(6.2.13)
while each power of w, brings out the following factor:
0O Qei arctan% (6 5 14)
AA ) a(ar i)t *

Neither of these factors diverges when 6 — 0 if A > 0, indicating that the difference
in energy density in the bounded and unbounded cases is finite even on the SOL,
when the boundary is outside the SOL. In other words, the t.e.v. of the energy

density diverges in the bounded case just like in the unbounded case.

However, if the bounding surface approaches the SOL (A — 0), it seems that
(AT:7)5 diverges as § — 0. The order of divergence is difficult to estimate from
the above results, but a power count indicates that it is predicted to be higher than
in the analytic expression (4.3.54c). It is possible to conduct similar analyses by
setting 0 = 0 and taking A — 0, or A = 0 and taking § — 0. The conclusion is the
same: the difference between the t.e.v. of the SET on the SOL in the bounded and

unbounded spaces diverges when the bounding surface is on the SOL.

6.3 Summary

The quasi-Euclidean approach was introduced in this chapter. In section 6.1 it is
shown that the quasi-Euclidean formulation leads to the same expressions as the
Lorentzian formulation for thermal expectation values in Minkowski space, in rotat-
ing Minkowski space and in rotating Minkowski space inside a boundary. The true
strength of the quasi-Euclidean approach is in investigating the difference between
thermal expectation values in the bounded and unbounded spaces. Our analysis
shows that if the boundary is placed outside the speed of light surface (SOL), the
difference between the energy densities in the bounded and unbounded systems is
finite on the SOL, implying that the energy density diverges in the bounded case
as the SOL is approached just like in the unbounded case. Setting the boundary on
the SOL shows that the same difference now diverges as an inverse power of the dis-
tance to the SOL. Although the analysis in its current form is not accurate enough
to predict the exact order of the divergence, we expect that a further refinement of

the approximations employed would be sufficient to obtain a more accurate result.



Chapter 7. Anti-de Sitter

space-time

Anti-de Sitter space-time (adS) is maximally symmetric, allowing for elegant ana-
lytic investigations to be performed. It is remarkable that renormalisation can be
performed analytically and that simple expressions can be obtained for the thermal
expectation values (t.e.v.s) of the fermion condensate (FC), charge current (CC)

and stress-energy tensor (SET).

Section 7.1 introduces the features of adS and the tools of geodesic theory neces-
sary for the discussion of the quantum field theory of fermions. The mode solutions
of the Dirac equation are presented in section 7.2 and two-point functions are ob-
tained in section 7.3. Renormalisation is performed in section 7.4 and section 7.5

concludes this chapter with a discussion of thermal states.

7.1 Geometric structure

In this section, the intrinsic geometry of adS is discussed. In subsection 7.1.1, the
metric, connection coefficients and Riemann tensor are presented. The geodesics of
adS are discussed in subsection 7.1.2, where geodesic theory techniques are applied
to introduce the bi-vector and bi-spinor of parallel transport, for which analytic
expressions are given in subsections 7.1.3 and 7.1.4, respectively. Finally, subsec-
tion 7.1.6 is dedicated to the construction of the quantum operators corresponding

to the isometries of adS.

7.1.1 Metric, tetrad and connection

The adS manifold can be considered as a 4-surface embeded in a 5-dimensional flat
space with metric n,, = diag(—1,1,1,1,—1) (a,b,c,--- € {0,1,2,3,5} are coordinate
indices in the embedding space). The equation of the adS 4-surface is then:

b 1

Nap2"2" = =5, (7.1.1)

1

where w = R~ is the inverse radius of curvature of adS. Equation (7.1.1) can be

satisfied automatically by introducing the adS coordinates {¢,z'} such that:
o 1lcoswt 5 Llsinwt _ tanwr

z = — , 2’ == , Zt= x', (7.1.2)
w coswr w Coswr wr

176
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Figure 7.1: Penrose diagram of (a) anti-de Sitter space (adS) and (b) the universal
covering group of adS (CadS). On adS, the horizontal lines corresponding to t = 0
and t = 27” are identified, thereby giving a periodicity in the time coordinate, while
in CadS, no such identifications are made. The angular coordinates are suppressed.
Null trajectories passing through the origin » = 0 at t = 0 reach spatial infinity

(r = 55) at t = 5, from where the origin can be reached at t = . As can be seen

from the diagram, the coordinate system in Eq. (7.1.4) covers CadS entirely.
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where ¢ € {1,2,3} is the spatial index and z' = {z,y, 2z} and {r,0,p} are related

through the standard definition of spherical coordinates:
x=rsinfcosp, y=rsinfsing, z=rcosh. (7.1.3)

The radial coordinate r varies between 0 at the (arbitrary) origin and ;- on the

boundary. The metric ds? = n,,dz*dz® on ads is:

sin? wr
w2

ds® = —dt* + dr* + (d6? + sin® 0dp?) | . (7.1.4)

cos? wr

In what follows, the domain of ¢ is extended from [0, 2%) to (—o0, 00), in which case
the space-time is referred to as the covering space of adS. The Lagrangian method
[55] can be applied to the Lagrangian function L = % g @*a” corresponding to the

metric (7.1.4) to determine the following non-zero Christoffel symbols:

t _ 17T _T1T7r
rv,=1",=I1", =wtanwr,

1 .
["yyg = ——tanwr, [’ = ——tanwrsin®6,
Py
w w
w :
r,=—, Few = —sinf cos b,
sinwr coswr
w
v, ==, I, = cotf. (7.1.5)
sinwr coswr v

Alternatively, the adS metric (7.1.4) can be expressed with respect to the Carte-

sian coordinates (7.1.3):

1 1 sin? wr z'xd z'z
_ NP g T 1.
Ju costwor’ U 0. 9 cos? wr l w2r? ( Y2 ) = } » (7.162)

) - 2,.2 in] © ]
gtt - _ C082 wr, gtl — O’ g’l] — COS2 wr |: ‘(,()27" <5lj — %) + z f :| . (716b>
S~ wr T r

The corresponding Cartesian gauge tetrad [26] is given by:

wr z'ad ziad
P 4 = c— — _— . 1
e; = coswr Oy, e; = Coswr [sinwr ((5” = ) +3 } 0; (7.1.7a)
S dt .1 s AN S I
W = L W= {Sm“” (@j - %) + 2 } def.  (T.1.7h)
COS Wr coswr | wr r r

The connection coefficients with respect to this tetrad can be computed using the
Cartan method [55], by looking at the exterior derivative of the dual basis w:
x o - w(l —coswr) x”

dw' = wsinwr—w' A wf, dw' = ,——wk AWt (7.1.8)
r sin wr r

The following equation:
dw® +w?; A Ww'=0 (7.1.9)
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can be used to evaluate the connection 1-forms w® 5= Ie muﬂ:
; T : w(l—coswr) / ;o
wh = wsinwr—uw, wh = Q (atjw’ - x’w7> . (7.1.10)
v T J 7 sin wr

The connection coefficients can be read from the definition of the connection 1-forms:

; .t : w(l —coswr) , ;

For completeness, the Cartan coefficients (2.2.19) are given below:

7 . ! ; w(l —coswr . .
cizt = u)smu)r77 C%jk = W (xjéki _ 1515@') 7 (7‘1.12)

which are consistent with the connection coefficients listed in Eq. (7.1.11). The spin

connection coefficients can be calculated using Egs. (7.1.11) in Eq. (2.2.17):

wsinwr ; w(l—coswr) .
FA: . FA = —-—— .
= (@), T o [ @)
2
J——~ (1 — coswr + wr) (x-). (7.1.13)
7 Sin wr 2

We end this section with a calculation of the curvature two-forms and Riemann
tensor, using:

. 1 . . &
RE, = —R*. W AW (7.1.14)

& _ g .6 &
RA—dw6+w7wﬂ, 5= 515

B

The exterior derivatives of the connection 1-forms can be expressed as:

. .k . .
dw', = w? {coswr&k + (1 — coswr) 926 ] WP AWt (7.1.15a)
r
. 2 1— k ) ) . R
dwt. = % ( : QCOS wr) —2 coswrd;pdj + (1 — cos wr)m—(xjéil —x'65) WF A W,
J sin” wr r2

(7.1.15b)

from which the components of the curvature two-forms, Riemann tensor, Ricci ten-

sor, Ricci scalar and Einstein tensor can be calculated:

R = —wl® NP, (7.1.16a)
Rapss = —WQ(%WBS = Nas"55) (7.1.16b)
Ry = —3wn;  R=-120%  G5= 3w, (7.1.16¢)

The Riemann tensor (7.1.16b) assumes the standard form for a maximally symmetric

space-time [3].

For completeness, the tetrad 1-forms and connection coefficients for the adS
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metric written in spherical coordinates are listed below:

2 dt . dr ;o1 |
W= , w = , W’ = —tanwrdd, w®= —tanwrsinfdy,
coswr COS Wr w w
~ ~ N w N
Ftﬁ = wsinwr, Fef@ = F‘pﬁ;} = R F(pétﬁ = w cot wr cot wh. (7117)

7.1.2 Geodesic structure

Using the method introduced in Ref. [14], the geodesics of adS can be computed
as curves of minimum length in the embedding space satisfying Eq. (7.1.1). Using
the connection between Hamilton’s least-action principle and the Euler-Lagrange

formulation, such curves can be derived from the Lagrangian:

1 ca b A a b 1
L= 5 a2 + 5 (nabz 2’ + =) (7.1.18)
where the dot denotes differentiation with respect to the geodesic parameter A and
A is a Lagrange multiplier guaranteeing that the curves lie in adS. The ensuing

Euler-Lagrange equations are:

59— Az* = 0. (7.1.19)

The tensor
Kab = Zazb — Zb,éa (7120)

is constant along geodesics, since Ky, = 0. Using Eq. (7.1.1), it can be seen that
z - 2 =0, hence:

1
—Za, Kp3® = 2%2,. (7.1.21)

2
KabKab - __Z27 Kabzb = 75
w

o2
Thus, A = w?22. Therefore, the geodesics of adS can be written in terms of two

constant vectors, m and n:

2¢ = m" cos(wvV —22X) + n?sin(wv —22X), (7.1.22)

where m? =n? = —w 2 and m-n = 0.

The distance along a geodesic between two points with coordinates z and z’ in
the adS chart, having geodesic parameters A; and Ay, respectively, can be calcuated

as:

5o, 2') = /AQ AMW—Z = (s — M)V—22. (7.1.23)

A1
By virtue of Eq. (7.1.22), s(z,2’) simplifies to:
1

s(z,2') = — arccos (—w?z - 2') (7.1.24)
w
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which can be written in terms of the adS coordinates as:

coswAt ,
cosws = ———————— — cosy tanwr tan wr’. (7.1.25)
COS W COS Wr

In the above, v is the angle between @ and ' and

cosy = cos f cos @ + sin 6 sin 0’ cos Ap (7.1.26)

Two tangents to the geodesic are of particular interest:
n, =nu(z,2") = Vs(z,2'), ny =ny(z,a') =V sz, ), (7.1.27)

where the primed index indicates a derivative with respect to 2’. Their components
can be calculated from Eq. (7.1.25):

1 sin wAt
Ny =— e
Sin ws cos wr cos wr
n, =— — (cosws tan wr — cosy tanwr’)
sin ws
1 !/
Ny = — — (cosws tanwr’ — cosytanwr),
sin ws
ng = — ——— tanwr tanwr’ (sin 0 cos @' — cos @ sin 6’ cos Ayp) ,
wsinws
ng = — ——— tanwr tanwr’ (sin 0’ cos @ — cos @' sin B cos Ayp) ,
wsinws
ne = — ——— tanwr tanwr’ sin @ sin 0’ sin Agp, (7.1.28)
wsinws
together with ny = —n, and ny = —n,. It can be checked that n? = —1. The

tangents can also be expressed with respect to the Cartesian basis:

1 sinwAt
ng =— ,
" sinws cos wr cos wr’
1 , [ tanwr x'
n; =— — cosws tan wr + cos -y tan wr —1 —
sinws wr r
tan wr tan wr’ z*
wr r |
1 , tan wr’ z¥
Ny = — — cosws tanwr’ + cosy tanwr -1 —
sin ws wr’ r’
tan wr tan wr’ o’
_— 5 (7.1.29)
wr’ r
with ny = —n;. These tangent vectors are also normalised with respect to the

metric in Eq. (7.1.6). The corresponding components with respect to the tetrad in
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Eq. (7.1.7) are:

1 sinwAt
ng=————,
sinws coswr
1 sinwAt
TLtA/ = — — s
sinws coswr
i i’
1 : , x T
n; =— — [cos ws sinwr + cos y tanwr'(1 — coswr)] — — tanwr'—- 5,
sinws r r
i i
1 . Ny T x
Ny = — — [coswssinwr’ 4 cos ytanwr(1 — coswr’)] — — tanwr— » .
sinws r r
(7.1.30)

Again, these tangent vectors are normalised according to ndﬁn@nﬁ = né‘ﬁnd/n[g, =

—1. Finally, the contraction of the tangent vector with the gamma matrices is:

sinwAt x -
fsinws = =" — [cosws sinwr + cosy tanwr’ (1 — cos wr)] r
cos wr r
x -
+tanwr’ 7. (7.1.31)
r

According to Allen and Jacobson [3], the following relations hold on maximally

symmetric space-times:

Ny = —A(gu +numy), (7.1.32a)
Ny = —C (g — nypnur), (7.1.32Db)

where A and C are functions of s only, with C' related to A through:

ac'

— =-AC. 7.1.33
s ( )
Analytic expressions and a small distance expansion for the bi-vector of parallel
transport g,,s, essential in the point-splitting method for the computation of ex-
pectation values (see subsection 2.1.5 and subsection 2.2.6) are presented in sub-
sections 7.1.3 and 7.1.5. Having found explicit expressions for n, and n,, the

coefficients A and C' can be computed explicitly. Since the covariant derivative of

n; with respect to t is

cos? wr

1
Viny = —wcotws (— + nf) , (7.1.34)

it follows that the functions A and C' must be given by:

w

A = wcotws, C=- (7.1.35)

sinws’

in agreement with the expressions in Ref. [56].

The Van Vleck-Morette determinant A(x, ') is now straightforward to compute,
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starting from the definition of the Van Vleck-Morette matrix [63]:

/ / / d t(— v/
AY y(z,2") = —g% 19" 0, A =det(A% ) = /1) —, (7.1.36)
V—9(x)y/—g()
where 0 = —%32 and the indices on sigma denote covariant diferentiation, e.g.

oy = Vy V0. It can be shown that the Van Vleck-Morette determinant obeys the
following equation [30, 63]:

o'V,InA =4—o",. (7.1.37)

On adS, o#, = 3ws cotws + 1, by virtue of Egs. (7.1.32a) and (7.1.35). If we make
the ansatz that, in a space-time with maximal symmetry, A is a function of s only,

the above equation reduces to:

d
s InA = 3(1 —wscotws), (7.1.38)

S

with the solution that satisfies the boundary condition A(s = 0) = 1 given by:

A:< 3 )3. (7.1.39)

sin ws

The above expression is in agreement with the result given in Ref. [50] for the n-

dimensional adS space-time.

7.1.3 Bi-vector of parallel transport

The bi-vector of parallel transport can be obtained explicitly from Eq. (7.1.32b):

1 ~

G =Ny (1 — cosws) + ————q,,r, (7.1.40)

COS WT COS WTr
—CuAt SwAttwr! 0 0
—sunl COS Y —Cy At Swr S ! S, (—Cosgr+sececay) 8,01 5059/ S A

~ . wAtbwr CuwrCoypt Wewr wewr

' = 0 _ Swr(Sece —89/COCAP)  SwrS,./ (8089 +CoCHCAY)  SwrSupCoSerSAp |
Wwe,, w? w?

0 _ SwrSeSe/SAgp _ Swr8,,/S0Ce! SAp Swr S, 5059/ CA

Wwe,, w? w?

where the standard trigonometric functions have been abbreviated by their initial,
with their argument written as a subscript, e.g. sa, = sin Ap. It can be checked

that the equations gw,/n”' = —n, and n*g,,, = —n, are satisfied. The bi-vector of
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parallel transport can also be written with respect to Cartesian coordinates:

G = — cos wAt, (7.1.41a)
7
giv = — sinwAt tanwr—, (7.1.41b)
r
x
G =sinwAt tan wr’ —| (7.1.41c)
,r/
) ) o L, ] o _ L
- sin wr sin wr’ xtxd ot ad n sinwr’ 1 z%27 sinwr 1 2'2f
J wr  wr’ J 72 72 wr’ coswr r? wr coswr’ 1?2
/ ; / : i7"
wr’ —sinwr’ wr — sinwr \ 'z
+ | — cos wAt tan wr tan wr’ 4- cos y—— - —. (7.1.41d)
wr’ coswr!  wrcoswr rr

For completeness, subsection 7.1.5 gives a coincidence limit expansion of g, in

powers of 0.

7.1.4 Bi-spinor of parallel transport

The bi-spinor of parallel transport satisfies the parallel transport equation (2.2.57)
for spinors, which on adS takes the form [4], 56):

2 tan <
DAz, 2) = _% — 2y 0 Az, o), (7.1.42)
2
where X, = —% [7,,7,] are the anti-Hermitian generators (2.2.8) of Lorentz trans-

formations. Furthermore, it satisfies the conditions in Eqs. (2.2.58):
Az, z) =1, ANz, o) = AN, 2') = A/, z). (7.1.43)
The covariant v matrices obey the following parallel transport equation:

Az, )W = g AV Az, o). (7.1.44)

To gain some insight on the form of the solution of Eq. (7.1.42), it is instructive
to first consider the case when ' = 0, where n takes the form:
cos wAt tan wr ¥

. — — 7.1.45
sinws nkJ =0 sin ws r’ ( )

B cos wAt ( tanwAt —Z< tanwr)

sin wAt
an =0 "

] = " (7.1.46)

sinws \ 2 tanwr  — tanwAt
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Using Eq. (7.1.11) for the spin connection matrices, the following equations follow:

w sinwr 0 =g
oA =— = 1A 7.1.47
! JT'ZO 2 cos wAt + coswr (M 0 ) ’ ( a)
VAJ e w sinwAt sin wr tan “" tan wAt %w X o | 0
=0 2 coswAt +coswr | wr 2 2 0 iz x o

1 ) . )
N (0 ) - [smwra+ z (a: a’) (1 B smwr)] } A (7.1.47D)
1 0 wr T r wr

The second equation can be simplified by multiplying both sides by z7 /r:

O,A| w__ sinwAf (0 7) A. (7.1.47¢)

r'=0 2 coswAt +coswr \ TZ )
"

Egs. (7.1.47a) and (7.1.47c) can be solved for the 2 x 2 components A;; (i,j € {1,2})
of A. Both Aj; and Ass satisfy the same equations:

coswAt +coswr 0 B sinwAt 0 1 sin wr 0
sinwr O(wt)?  sinwr O(wt) 4coswAt+ coswr -
coswAt +coswr 0 sinwr 0 1 sin wAt I
sin wAt O(wr)?  sinwAtId(wr) 4coswAt + coswr B
(7.1.48)
The solution of the above equations is:
Cyi(1, ) cos ¥t + S, (7, ) sin “&t
Ay = (r,y) cos 2 (r,7)sin % : (7.1.49)
Vcoswr + cos wAt
where the 2 x 2 matrices C;; and Sj; are harmonic functions of %7:
The other two components of A can be found using:
2 coswAt + coswr x - o
Apyy = — — - O,
w sin wr r
2 At .
Ay — — 2 cosw : + CoOSWr 0-8,5/\22. (7‘1‘51)
w sin wr r

If C;; and S;; do not depend on the angular variables, their values can be found from

the initial conditions:

Alle:x/ - A22J J——; = 1, A12J o = A21J$:I/ = O, (7152)
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which show that A;; = D;; = 1 and B;; = C;; = 0. The final solution is:

wr  wAt T-o . wr . wAt
AJ \/ 2 cos 3 cos 5 T sin 5 sin 5
=0 = . )
coswAt +coswr | _ET W wAt cos L cos wAt
r 2 2 2 2
(7.1.53)

and it can be checked that it satisfies Eq. (7.1.47b). The following quantity is also

useful to compute:

wr . wAt r-o . wr wAL
WAl — VeoswAt + coswr cos 5 s A T S COSA 2
=0 sinwscoswr/\/i m-asinw_rcosw_t _Cosw_rsinw t
T 2 2 2 2
(7.1.54)

Let us now find A for general point separations. The connection coefficients
for the covariant derivatives of spinors are given in Eqs. (7.1.11) and the tetrad
components of the tangent vector to the geodesic connecting the points x and z’ are
given in Egs. (7.1.30). The form of A when 7" = 0, given in Eq. (7.1.53), suggests

the following ansatz:

coswr cos wr’(1 + cosws

Az, ') = \/ 2 ))\(x,x'). (7.1.55)

It is now necessary to consider the equations involving the derivatives with respect
to both z# and z’*. It is simpler to solve the equations involving derivatives with

respect to the time or radial coordinate if they are set out in the following format:

A B A B
A=0, A =0, (7.1.56a)
B A B A

where the first and second equations correspond to equations involving derivatives
with respect to t or r, and ¢’ or 7’| respectively, and the relations [A, B] = [A, B'] =0
must be satisfied. The above systems of equations can be easily diagonalised using

the property:

( A —B) (A B) <A2 —B® [A,B] )
= . (7.1.56b)
B AJ\B A [A,B] A?- B

After some algebra, the following expressions are found for the matrices A and
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B required for the equations in ¢ and t':

Ay =2 coswr coswr’ (1 + cosws)d,; + sin wAL, (7.1.57a)
B, =[sinwr coswr’ — cosysinwr’(1 — coswr)] T 7;0- + sinwr’ :B'r-/o" (7.1.57b)
Al :5wtl X 2 coswr coswr’ (1 + cosws) — sinwAt, (7.1.57¢)
B, = — [sinwr’ coswr — cosysinwr(1 — coswr’)] w,r. T _sinwrZ 7;0-, (7.1.57d)

The matrices A and B for the equations in r and " are:

T o
A, = coS wr cos wr’

,
t / w ) .
X [2(1 + cos ws)d,, + tanwr + cosy tan wr’ + i anwr (2 :13,) a} ;
cos wr rr
(7.1.57¢)
B, =sinwAt, (7.1.57f)
t xx') -
Al = (5W/ X 2(1 4 coswr) + tan wr’ + cosy tan wr + i anwr (@ X @) - o
coswr’ rr’!
x - o
X cos wr cos wr’ . (7.1.57¢g)
B! =sinwAt, (7.1.57h)

Finally, the squares A% and B? of the above matrices are given by:

A? =1 + cos® wr cos® wr’

x [4(1 + cosws)?02, + (1 4 cosws)? — (1 — cosy tanwr tan wr’)?]

57.1.58a)
(7.1.58b)

B? =1 — cos® wr cos® wr'(1 — cos y tan wr tan wr’)?,

A2 =1+ ‘52 x 4(1 + 2 2 1 N2
y = ot cosws)” + (1 4 cosws)” — (1 — cosy tan wr tan wr’)

x cos? wr cos® wr’, (7.1.58¢)
B> =1 — cos® wr cos® wr'(1 — cos 7y tan wr tan wr’)?, (7.1.58d)
1
A2 =sin® wAt + cos® wr cos® wr’(1 + cosws)? {85," + ﬂ : (7.1.58¢)
B? =sin® wAt, (7.1.58f)
1
A2, =sin® wAt + [gfﬂ,/ + Z] cos® wr cos® wr' (1 + cosws)?, (7.1.58g)

BP? =sin®* wAt, (7.1.58h)
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Hence, A is a solution of the following equations:

1 1 1 1
o+ )A=0, (Py+-)A=0, (& +=|r=0, (2. +-)rA=0.
<wt+4) ’ (wt+4) ’ (wr+4 ’ wr+4
(7.1.59)
Due to the translational symmetry with respect to the time coordinate, \; can be

written without loss of generality as:

At At
Ni = Cialr, ¥, y) cos = + Si(r 1, 7) sin . (7.1.60)
where C;; and §;; are harmonic functions of both <+ and ‘%l Their exact forms can
be determined using Eqgs. (7.1.57) and the initial conditions in Eq. (7.1.52). Let us
find Aoy by acting with B, YA, on A\i;. The A, operator changes the cos into sin and

vice-versa, in the following way:

At At
Ay = Ciysin 2= (1 — C,) + Sy cos WT (1+C,), (7.1.61)
where C, is given by:
C, = coswrcoswr’(1 — cosy tanwr tanwr’). (7.1.62)

Hence, the following expression for Ay; is obtained:

Aop = — [(sin wr coswr’ + cosy sinwr’ cos wr) i
) r-o x- o Ci Sin“’TAt S cos“’TAt
+sinwr’ (— cosY——+ —3 )] X ( T C + o) (7.1.63)

This expression can be further rearranged into:

) 1 1—
)\21:_33 U{{ +;Osvsinw(r+r')+%sinw(r—r’)]
r

+,zc><:v’ ) ,} CllSianAt
) o sinwr - ,
rr! (14 cos7y) COS2% + (1 —cosv) 0082@
Sy cos ““TN
+ YT - o | (7.1.64)
(14 cos ) sin” =5~ 4 (1 — cosy) sin” =5~
Two simple cases can be analysed next:
! At x - ! At x -
A2t 4= = tan W(T; ) sin w2 wTUCH + cot w(r;— ) cos w2 wTUSH,
— At x - — At x -
Aot |y=r = tan w(r2 r)sin w2 TUCH + cot w(r2 r) coS w2 TUSH.



7.1. GEOMETRIC STRUCTURE 189

According to Eqgs. (7.1.59), Ag; is a harmonic function o “ and “”" . Thus, C;; must
w(r—l—r ) W(’" ')

be proportional to cos ==— at v = 0 and to cos at v = 7 and similarly for

811 (with cos replaced by sin). Since Eq. (7.1.53) nnplies that A;; must reduce to

cos ‘“—At cos 4 when " = 0, the following ansatz can be made:

Sll :Oa
l+cosy w(r+7r) 1—cosy w(r—r')
Coi —
11 5 CcOos 5 + 5 COS 5
. xax . owr . wr
+1a <0 SIn — sin ——
rr’ 2 2
s coswr/+ z-ox- o (a+1)cosy| s wr wr'’
=cos — cos — + |a — (a in — sin —
2 ‘"7 v T
/ I . /
:cos%r Cos % — {awr/o- a:ra' —(a—1) COS’7:| sin %r sin %, (7.1.66)

where a can only depend on . The property that A\g; is a harmonic function of

“r and “”" transfers individually to the coefficients of ZZ and % 2 resulting from

substltutmg Eq. (7.1.66) in Eq. (7.1.64):

\  wAt wr wr' x - a+ owr! wrax o N a+1 . wr . wr
= —sin ——<sin — cos — sin — cos — sin — sin —
2= 2 2 2 r 2 2 o 1+0C, 2

r-o /. / . / 2 o g Wr

X | — siInwr’ + COS 7y Sl WT COSWTr — 2 cos 7y S CL)T' Sln 7
T

/

. /
+Z /U (sin wr cos wr’ + cos 7y sin wr’ (sin % — 2sin? %) )] } . (7.1.67)
r
The solution is to set a = —1, putting A9; in the following form:
At I o, / I
Aop = —sin 2= (sin 2 cos - 2T 4 gin o cos - Z T ) (7.1.68)
2 2 2 7
The final result for A(z, ") can be summarised as:
ws) 1
(cos <) WAL wr  wr’! wr . wrl'e-yx' -y
A= cos COS —— COS —— + SIn —— Sin —— p
vV coswr cos wr’ 2 2 2 2 2 r r
At / . R / /. R
+sin wT (sm %T cos %mr—vfyt + sin % cos %r mT/77t>] , (7.1.69a)

with #A(x,2’) given by:

. ws -1 / / /
nA = (sm ?) sin wAt cos 2 cos ﬂyi —sin L T AT 77£
Vcoswr cos wr! 2 2 2 2 2 r
At "x -
—COSwT (sin%cos%wr’y —sm%cos%ﬁajﬂ’y)} , (7.1.69b)

Since A only contains products of even numbers of v matrices, all traces involving
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A and an odd number of v matrices vanish:

tr[y*A(z, z")] = 0, tr[y* "y Az, 2')] =0, .. .. (7.1.70)

A bit of algebra shows that Eqs. (7.1.69) satisfy Egs. (7.1.56a), and it can be
shown that the remaining defining equations, (7.1.43) and (7.1.44), are also satisfied.

For completeness, subsection 7.1.5 gives the coincidence limit expansion of A(x,z’).

7.1.5 Coincidence limit expansions

Although in this case, the bi-vector and bi-spinor of parallel transport are known
explicitly, it is still instructive to consider their coincidence limit expansions. The
method of finding these expansions is by employing the differential equations (7.1.73)
and (7.1.42) for the bi-vector and bi-spinor of parallel transport, respectively. We
mention that these equations are exact, representing the anti-de Sitter version of
the coincidence limit expansions of the derivatives of the bi-vector and bi-spinor of

parallel transport reported in the Appendix of Ref. [24].

Expansion of the bi-vector of parallel transport

To derive a coincidence limit expansion of g,/ (z,2’) in a power series in 0, = —sn,,

the following ansatz can be made:

G’ = Guv + Guvad® + %gumgaaoﬁ + %gwama"‘aﬁa7 + %gﬂya@750a050705 + ...,
(7.1.71)

where the coefficients g, are functions of « only and the coincidence limit (c® = 0)

of g, is the metric at x. These coefficients can be found iteratively starting from

the differential equation [50]:
V)\guyl — _(A + C)(g)\uny’ + gAV’nM)7 <7-1.72)

which can be written on adS in the following way:

w? tan %*
v)\guu’ = 5

ws
2 2

(g,u/\gu’a - guagu’A)Ua- (7173)

The prefactor in the RHS of Eq. (7.1.73) can be written as a power series in o

by using 20 = —s? = 0,0
tan £2 2 4
ﬁQ =1- %gagoaaﬁ + %Ogaggvganﬂapya‘s +... (7.1.74)

2
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Thus, the expansion of the RHS of Eq. (7.1.73) in powers of ¢® reads:

w? N N 1 w? N
V)\gul/ = ? Gu |:gVOLO— + Guap0 O_ﬂ + (iguaﬁy - Eguagﬂ’y) a 0/607 + .. :|

— (v a)}. (7.1.75)

Next, Eq. (7.1.32a) can be used to expand the covariant derivative of o:

Vac* =ntny(As — 1) + Asd",
w? 5 w!
=0", + (n'ny + ")) (?gaﬁgag — Ega/ggvg + .. ) . (7.1.76)

Keeping in mind that g¢,, is a vector at x, the series expansion of the LHS of
Eq. (7.1.73) is given by:

v)\g/u/ = gw/)\ + g,uzl;/\ + F,ul/)\ + (gm/)\a + g,uua;)\ + g,umxrﬁy)\)(ja

2w?

1 K K K fo
+ 5 Guvraps + GuvaB\ + g;ma,BF A + Tgaﬁgulm (n ny+ ) )\> o Oﬁ
1 K K K a
+ 5 [g;w)\aﬂ'y + gmxaﬁﬂ{;/\ + g;maﬁfyr v + w2gaﬁguw{'y (n ny + 0 )\):| g aﬁg’y .
(7.1.77)

When applied to the non-tensor coefficients g,...., the semicolon notation above
is interpreted as standard covariant differentiation with respect to all coordinate
indices (i.e. not just A and p), such that g,,,» = 0. It should be stressed that, as in
Eq. (21.20) in Ref. [55], the use of the semicolon does not imply that the object to
which it is applied transforms covariantly under general coordinate transformations.

The expressions for the coefficients ¢,.4.. 5 in Eq. (7.1.71) are obtained by taking
the totally symmetric part (denoted using parenthesis) of Eqgs. (7.1.75) and (7.1.77)

with respect to the indices A and «, 3, etc.:

Juva = _F;wom (7178&)
Guvas = _guu(a;ﬁ) - g,m(arnﬁ)w (7178b)

K 2w? ™ ™
Guvapy = —Guv(afy) T Juniapl ), — —3 Jund(as [nyn™ + 67,1, (7.1.78c¢)
Guvapyr = ~Guv(abyir) — Jur(apr L myy — W Gum(agr [Nmyn” + 0" ). (7.1.78d)

Substituting Eqgs. (7.1.78) in Eqgs. (7.1.75) and (7.1.77) gives a series of identities
which are automatically satisfied on adS. For example, the equation corresponding

to the first order in o is:

2
K w
g;w)\a - F,uya,)\ + r u)\Fm/a = 7(9;0\91/04 - g,uagu)\)~ (7179)
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The identity corresponding to the above equation is:
Lywiens) + Teptal 5, = =02 Gui89al- (7.1.80)

The LHS is just the definition of %nga, while the RHS is the Riemann tensor in
adS, given in Eq. (7.1.16), divided by 2. Similar identities follow from the second
and third order equations, but they are omitted since they are of little relevance to

the current work.

Expansion of the metric tensor

To find the expansion of the metric tensor g, at 2’ in terms of the metric tensor

9w at x, the following simple equation can be used:

ngu/,,/ = 0. (7.1.81)
The following ansatz can be made:
— +/ O‘_i_l’ aﬁ_i_l/ aﬁ'y_'_l/ aﬁ'yé_i_
Gu'v' = G + a0 S19uas? o 3!guvaﬁva 00"+ 19apy0 0000+
(7.1.82)

after which Eq. (7.1.81) takes the form:

g;w/\ + ZF(MV))\ + (v)\g:wa + 21“14)\(“91//),%[ + g;w/\a) o
2
w

1
+ Bl VAngB + QFHA(ug;)naﬁ + g:w)\aﬁ + Tg,ﬂ,,{gaﬁ (TLHTLA + 5’3\) o

B

1 K K K e
+ 5 [ng;waﬂ’y +2r )\(ugllz)naﬁ'y + g;u/)\aﬁ'y + WZQMVRag/B’Y (TL ny + 0 )\)] o 0.,30.’7
4= 0, (7.1.83)

where the covariant derivatives act on all the coordinate indices. The coefficients

up to order 4 are:

g;/u/a = F,uua - szuaa (7184&)
/ . / / K / K
g;u/aﬂ - g;u/(a;ﬁ) - g;m(aF By gw@(ar B> (7184b)
/ _ / / F/{ / FH 2(4)2 / K 5/@
Gpwapy = 7 Juw(aBry) ~ Jusapt v T Jukapt yp T Tguwg(aﬁ(n Ny) + 7)>’
(7.1.84c)

K K 2 K K
Juvapns = = Guvlasrs) ~ Juntasrl o ~ Dontapyl 53 — @ Gum(agoy (0 ns) + 8%)).
(7.1.84d)
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Expansion of the bi-spinor of parallel transport

As for the bi-vector of parallel transport, it is possible to express A(z,z’) in terms

of functions defined at = multiplied by powers of o#, using the following ansatz:

1 1 1
Az, 2') = 1—|—Aa0'a+EAagUaoﬂ—l-gAaﬁWUQOﬂU’Y—FﬁAa@ng’aOﬁO”YO’é—F. ... (7.1.85)

The coeflicients A,, Ayg, etc, can be found using Eq. (7.1.42), in which the LHS can

be expanded as:

DAz, 2") =T, + Ay + (Do + ATy + Ao )o®
2

1 2w
+ 21 DyAas + Napl'y + Mpap + TgocﬁAn(”nnu + 6Hu) oo’

1
+ = [DMAC,g7 + Aoy U+ Mgy + 0 Gaph e (nng, + 5“#)] o%cPo? + O(s*).

3!
(7.1.86a)

The RHS of the same equation takes the form:

w? tan £ w? 1 w?
— ——QEWUVA = TZWJO‘ [1 + Aﬁaﬂ + <5Am — —gm> ol + .. ] .

2w 12

(7.1.86b)
Equating the coefficients of each power of ¢ individually in Eqs. (7.1.86a) and
(7.1.86b) gives:

Ap=—T., (7.1.87a)

Aus = — Diahg) — AT, (7.1.87D)
2w . .

Nagy = = Dialsy) = Magly) = —Z=0lag (019 +0%)) A, (7.1.87c)

Aagrs = — DaNgys) — MapyLs) — ng(ag (n“nv - 5”7) Asyk, (7.1.87d)

where the coefficients A, are considered to be matrices for the purpose of covariant
differentiation, e.g. DaAg = 0aAp + [Ta, A — T3, Ax.

As was the case for the bi-vector of parallel transport, substituting the results in
Egs. (7.1.87) back into Eq. (7.1.42) gives a series of identities satisfied automatically

for the adS space-time. The first such identity is obtained from the coefficient of o*:
Vol = VLo — [, T,] = w’S ., (7.1.88)
where V is the covariant derivative with respect to coordinate indices. Writing

L & T Ry BA
r, = _5%775%3@@%6&2% (7.1.89)
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the following identity can be established:

s R A2 1 4 A

_ & dTR w B
VI = VI = 0wl 5 Dasa 29 + §R’\Wl,eg/wAE 5 (7.1.90)
Using the commutation relations of the generators of the Lorentz group [70], it can
be shown that the first term above is equal to the commutator [I',,T',]. The use of
the Riemann tensor (7.1.16) on adS establishes the identity (7.1.88). The identities

supplied by the second and third orders of Eq. (7.1.42) are not discussed here.

To investigate the traces of the bi-spinor of parallel transport A(x,z’), it is

convenient to introduce the following notation:
tr(yHiyh? L ts) = —4EHIHRs (7.1.91)

Using the anti-commutation relation (2.2.3), the following recurrence can be estab-
lished:

DM Hs — gHIH2 SNt gHUS TH2ba s L ()8 gRaHs TR a1 (7.1.92)

which links = with s indices with = with s — 2 indices. The sequence generated by

the above recursion can be started with the following values:
= =g, = =0. (7.1.93)

Explicitly, tr(y#y*7y?%) = —4(g" g™ — g g"" + gHFg**), ete., while = with any odd
number of indices vanishes. Since the exact solution (7.1.69a) shows that A(z,2’)
contains only products of even numbers of v matrices, it follows that the trace of

A(z, ') multiplied by any odd number of v matrices vanishes, i.e.:
tr(y*A) =0, (7.1.94)

while the opposite holds for #A(x,z"), since 1t changes the parity of the products of

~ matrices from odd to even and vice-versa.

The same conclusion can be reached by considering the coincidence limit ex-
pansion of A. Equations (7.1.86) show that the coefficient Ay, a,. .o, With s indices
can be written in terms of the coefficients with a number of s — 1 or less indices,
multiplied by even numbers of v matrices coming from Y,5 = }l [Ya, V8], either on
its own in Eq. (7.1.86b) or through the spin connection I',, defined in Eq. (2.2.17).
The spinor covariant derivative D, = d,, +T',, also contributes a product of an even
number of v matrices. Since the first order term in the expansion of A(x,2’) is the
identity, which contains zero v matrices, it can be concluded that all higher order

terms I'4p.~ will only contain products of an even number of v matrices. Hence,

Eq. (7.1.94) is established.
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For completeness, the traces of A, and A,s are given in what follows. For A,,

Eq. (7.1.87a) can be used to obtain the following results:

tr(Ag) =0, (7.1.95a)
tr(y, 7 Ae) = — 215 Buﬂ (7.1.95Db)

Bypeuu
tr(%%%%/\g) :W?Fﬁﬂanﬂ’yw WPWAWCA (71950)

0p5BY

Higher order traces have been included to facilitate the calculation of the traces of

higher order coefficients (e.g. A,p). Hence, the traces of A, are:

1 .
tr(Age) = — §wf w; Fp FVW (7.1.96a)
L 4 5 x p A
tr(/Y/.LrYVA§C) = — 5&)5 w? (WZWSFA/(SPFPQ + w[ZgV]HV@VBeﬁ + Qg#yrp&dr7ﬁ3>
1 o
= — swfw? (Wlwllsga + 20w 50T ) (7.1.96b)

7.1.6 Generators of isometries and conserved operators

The generators of isometries corresponding to the symmetries of adS can be deter-
mined using the formalism introduced in Ref. [25]. Starting from the five-dimensio-
nal embedding space, the symmetry group of Eq. (7.1.1) defining the adS four-surface
is SO(3,2). Using latin letters a, b, ¢, ... to denote indices in the embedding space-
time, the 10 Killing vectors kq, = kjqp of the adS manifold can be parametrised as

follows:
(kab)c = (nadnbc - nacnbd>zd7 (7197)

where (kq). represent the covariant components of the Killing vector k. Differen-

tiating Eqs. (7.1.2), k4 can be written with respect to the adS coordinates:

tan wr

2
(e = (2) (= o)

tanwr sinwt . coswt [tanwr xlad xlad -
S 22 2

wr coswr W COS Wr wr r2 r2
tanwr coswt sinwt |tanwr xixd il
(Kis)ed2® = — a'dt + 0 ——5 | + da’,
wr coswr w cos wr wr r2 72
dt
(Kos)edz” = ——5—. (7.1.98)

The contravariant components of the Killing vectors, obtained from the above co-
variant components using the inverse metric (7.1.6b), can be used to form the orbital

part Lo, = —i(kqp)"0, of the generator of the associated symmetry transformations
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(i* = —1 when 7 is not an index):

ij = —i(l’jﬁk — xk('?j),

. sin wr j 1 wr xdak xdak
Ly; = —isinwt 270 + — coswt | — Ojk — —5— | +coswr——1 O,
wr w sin wr r r
. sinwr T, wr rx rx
L.s = —icoswt 270y — —sinwt | — Oip — + coswr O
J J 2 2 ’
wr w sinwr r r
1
L05 - —8t. (7199)
w

The rotation generators L;; have the familiar SO(3) form and Lgs generates time
translations. The generators of space-like translations have a more cumbersome

expression:

. i 1 0] )
[Sm“” (52-]- - ) + i } (coswt Lo — sinwt Lj5) = ~8;.  (7.1.100)
w

wr 72 coswr 12

The spin part of the isometries generators can be calculated using the for-
mula [25]: .
1 a8
Sun(w) = 5% ()55, (7.1.101)

where E&/@ = —i [yd,ﬁ] and
Q3 () = — (W, [%, kab:|> : (7.1.102)

Before embarking on the calculation of the commutators between the Killing vector

fields and the tetrad vectors, it is useful to write the former in terms of the latter:

tan wr ,
7
hij = ——— (@0, — 270u)ey,
) tanwr 1 1 x'’ 'z’
ko; = sinwt z'e; — — coswt 0;i — —— | + e
t 2 2 7’
wr w coswr r r
tanwr | 1 . 1 xizd xiad
kis = coswt r'e; + —sinwt (52--——2 +— €
wr w coswr r r
;
kos = ————e;. (7.1.103)
W COS Wr
Thus, the spin part of the generators of isometries are given by:
Sula) = iy,
ik j .k k
) ' x| 1 —coswr x®
Soj(r) = sinwt | djx — —5— + coswr—— | i%y + coswt——————iX;,
r r sinwr r J
j .k ik k
rlx Iz ) 1 —coswrz"
Sis(x) = coswt | djx — —5— + coswr—— | iXy — sinwt—————i35;,
r r sinwr r J

Sos(z) = 0. (7.1.104)
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In particular, the generators of rotations, which become angular momentum opera-

tors in quantum field theory, have the following form:

1
The spin part of the translation operator with orbital part given in Eq. (7.1.100)

follows from Eq. (7.1.104):

. Gk J ok
[smwr <5jk T ) N 1 2z } [Sor () coswt — Sys(x) sin wi]

wr r2 coswr 12

1 — coswr z*
- T T D> (7.1.106
wr rl [ Jk] ( )

Contracting both sides with 27 shows that the spin part of the generator of radial

translations, having the orbital part given by Eq. (7.1.100), vanishes:

27 [Sp; () coswt — Sjs5 () sinwt] = 0. (7.1.107)

7.2 Mode solutions of the Dirac equation

The Dirac equation with respect to the Cartesian tetrad (7.1.7) for fermions of mass

[ can be written as
(Ep — p) =0, (7.2.1)

where Ep = iy*D,, can be written as:
11
2V=

The square root y/—g of the determinant of the adS metric (7.1.6) with respect to

Cartesian coordinates is given by:

On(vV=gez)7". (7.2.2)

Ep = iy%e)0y +

1 sin? wr

V=g = (7.2.3)

cosdwr w?r?
The mode solutions of the Dirac equation (7.2.1) are already known [26]. For com-
pleteness and to introduce the notation used in the following sections, their con-
struction is rederived here.

A complete set of commuting operators (CSCO) is given by {Hp, Js, J? K},
where J is the total angular momentum operator (7.1.105), Hp = i0; is the Dirac

Hamiltonian and the spin-orbit operator K is given by [68]:

K =+'2is-L+1). (7.2.4)
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These operators are conserved, since they commute with Hp and with Ep, hence,
they admit a set of simultaneous igenvectors Ug ; n . satisfying the following eigen-

value equations:

HDUEJ}WLH = UE,j,m,fiEa (7.2.5&)
T Ug jmw = U jmwd(j + 1), (7.2.5b)
J3UE,j,m,fi = UE,j,m,nm7 (7.2.5C)
KUg,jmn = Ugjmux(—K), (7.2.5d)
where .

r=20+5) (7.2.6)

is the eigenvalue of K. The solutions of these equations can be written as:

(coswr)? ~

UE,j,N,m(x) - wT—UE,j,N,m(-T); (727&)

sin wr

where the reduced mode U E.j.x,m, introduced to simplify the Dirac equation, can be

put in the form:

Upjnm(w) = % [fi (1) ®F (0,0) + fr,.(r)®,, . (0,0)] e, (7.2.7b)

The four-spinors ®Z . are solutions of the angular eigenvalue equations (7.2.5b),

(7.2.5¢) and (7.2.5d) and are given by [68]:

)" 0
of, = ) e = , (7.2.8a)
’ 0 7 wj—%sgnn

where the two-spinors wﬁ Lignn have the following expressions:
2

m_l
w1 Vit 3F m - v (7.2.8h)
ity T 2 F1E1 ¢\/j+%i(m+%)y}$% -

2

The spherical harmonics ngi%, as well as properties of the two-spinors 9}, are
discussed in Appendix C.
The radial functions f]i;'iN can be found by solving the reduced Dirac equation
[26]:
HpUg jpm = U jnmE, (7.2.9a)

where the Hamiltonian H p corresponding to the reduced Dirac equation can be

written in terms of spatial derivatives only as:

HDz;—va("/W)(HwV)—

Y (ya)K + A (7.2.9b)
S wr COSwWr
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The following identities:

T Vot = —idF

r K,m?
VO, =FP
1 d
(14 x- V);fgg(r) — W,gfgm, (7.2.10)

can be used to convert Eq. (7.2.9a) into a system of equations for the radial functions:

E
H,Fgr=—Fpn (7.2.11a)
w

where the radial Hamiltonian H, is a 2 x 2 matrix operator having the expression:

_k —_d_ 4 K
H, = ] coswrm d(wr) i siwr - (7.2.11b)
J
d(wr) + sinwr " coswr

and the radial functions have been grouped in a two-vector as follows:

fe

Frr= (fEH> ) (7.2.11¢)

In the above, the ratio between the mass p and the inverse curvature w has been

abbreviated using
k=

€=

(7.2.12)

To solve the system of equations (7.2.11a), it is convenient to put the radial

Hamiltonian H, in superpotential form [26]:

H, = RH,RT —

L _
2 d(zr) + kcotwr + ktanwr —k+k

( k—k —d(fjr) + Kk cotwr + ktanwr)

(7.2.13)

where R is a rotation matrix having the form

R= (COS% s %> . (7.2.14)

P wr wr
S 5 COS 3

Applying the same rotation to the radial functions gives:
£+
F = (Ji’f’“) =RF (7.2.15)
E.k

and Eq. (7.2.11a) become:
H,F =¢F, (7.2.16)
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where

(7.2.17)

Equations (7.2.16) can be used to construct a second order differential equation

for fg,n:

wr)?  sinfwr  cos?wr

{_d(dQ pRaED  HEFD) 52] ft.=o. (7.2.18)

Changing variable to z = sin® wr and letting fgﬁ = (sinwr)?*(coswr)?+gy; . puts

the above equation in the hypergeometric equation (D.1) form:

d2 d g2
{z(l —2)— + (254 + 5 — 2(2s4 + 2py + 1)]@ — (84 +ps)®+ —} 95x =0,

dz? 4
(7.2.19)
where s+ and py must obey:
254(2s4 — 1) =r(k £ 1), 2p+(2py — 1) =k(kF1). (7.2.20)

Thus the radial functions take the form:

féi,z = N (sinwr)?*(coswr) P+, F) (54 + py — 5,8+ +pr+ 5284 + %; sin? wr),
(7.2.21)
with Ny being arbitrary constants. The above solutions are acceptable only if the
corresponding modes can be normalised. For eigenmodes of the eigenvalue equations

(7.2.5a), the Dirac inner product reduces to:

<UE,j,m,m UE’,j’,m’,n/> :5mm’5jj’5nn’ <fE,me’,/~c’>
:5mm’5jj’5km’ <-,/tE,n7fE’,n’>

2w ~ A Nan N
R SIS )+ Fo )5 ()]

:5mm/5jj/5,€,{/(s(E, El) (7222)

The condition that the modes (7.2.7) have unit norm restricts the values of the
parameters 2p., 25, and €. Firstly, for the hypergeometric functions in f&) to be
w

regular at r = 5 one of its first two arguments must be a negative integer —n..,

leading to a quantisation of the energy:
e=2n,+2s; +2py =2n_+2s_+2p_. (7.2.23)

Secondly, the powers of the sines and cosines under the integration sign must be

strictly greater than —1. This restriction, together with Eqs. (7.2.20), give the
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‘ (2p+,2p-) ‘ 254 ‘ n_ ‘ restrictions
1] (kk+1) |j+1%3sgns | ny— 1+ 3sgnk -2 <k
2| (1—k,—k) | j+1+isgnk | ny + 3 + 3580k k| < 3
3 (k,—k) 1+ sgnk Ny + sgnk k=0,7= %
41 (1 =k k+1) 1+ sgnk ny — k + sgnk k:il,j:%
5/ (1—kk+1)| j+1Esgnr | ny —k— 3sgnk k =+
Table 7.1: Permissible values for sy and p
following permissible combinations:
(k;,k+1) k> -1 G+32,j+3) £>0
k,— k| <2 +3 1) k=1
opeap )= "7 M2 o, 06 = ({ v )
(1—kk+1) |kl <2 (G+3.7+2) k<0
|((L—k,—k) k<3 ((G—Ji+3) k=-1
(7.2.24)
Since both ny and n_ = ny + (s — s_) + (p; — p_) must be integers, some of

the combinations in Eq. (7.2.24) are not compatible. Table 7.1 gives the values
of n_ corresponding to each permissible combination. The first and second lines
correspond to the regular and irregular modes in Ref. [20], respectively. Even though
the irregular modes are divergence at spatial infinity, they are integrable and thus

are part of the vector space of integrable mode solutions. When k = 1 or —2

2 2
the fifth line coincides with the first or second line, respectively, hence, it can be
interpreted as an extension of the latter to k = i%. The third and fourth lines do
not represent solutions of the Dirac equation, as will be shown shortly. If |k < %
both the first and the second line should be considered when constructing a full
set of modes. In Ref. [20], a detailed discussion of irregular modes is avoided by

1

only considering k > 5. For completeness, both regular and irregular modes are

considered in this chapter.

Using the relation (B.2), the hypergeometric function in the expression of the

radial functions (7.2.21) can be replaced by Jacobi polynomials, introduced in Ap-

. 1 _ S+ 1 b+ s
LﬁZM(Qﬂ (r)Rﬁzm”U, (7.2.25)

pendix B:

where z = cos2wr and the constants in Eq. (B.2) have been absorbed in the new
normalisation constant N.. The unit norm condition (7.2.22) places the following

constraint on the absolute value of the normalisation constants N4:

2 T(ne +2s_ + HT(n- +2p_ + 1)
n_l'(n_ 4+ 2s_ +2p_)
= 2we. (7.2.26)

L(ns + 25, + 3)0(ny +2ps + )
ni!l(ng + 254 + 2py)

[N [? +|N-|
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The normalisation constants N, and N_ are related through the Dirac equation

(7.2.16), which reduces to the following system:

Ny {(1 —2)(k—2py) + (1 +2)(k +2s4) —2(1 — 2)(1 + z)%} plamea) )

1— 2\ "tz /1 P-prt3 o 1o 1
=2N(s+k—ﬁ)< 2Z> ( +Z> P T), (7.2.27a)

2

N_ {(1 —2)(=k—=2p_)+ (14 2)(—r+2s_) —2(1 —2)(1 + z)i}
x PRI

1—2\* "2 /1 e N
:2N_~_(—5—|—k5—/{) (_Z) ( ‘|‘Z) P?Ei+ 52D+ 2)(2)

2 2
(7.2.27D)

The above equations can be used together with Eqs. (B.9) and Eq. (7.2.26) to find
N4 up to an arbitrary phase for any of the permissible combinations of py and s4
listed in Table 7.1. In the following, the normalisation constants /N1 introduced in
Eq. (7.2.25) are calculated for each entry in Table 7.1.

Line 1, k > 0:  (2py,2p_,2s4,2s_,n_) = (k,k+ 1,5+ 2,7+ 1 ny).

Since in this case, —k + 2s_ = 0, it is convenient to use Eq. (7.2.27b) to obtain

the following relation between N_ and N,:

N =N L]Jrl

7.2.28
+n+ + k + % ( )

Substituting N_ into Eq. (7.2.26) gives:

+1
Ny =nv2w n Ly + K47+ 5) (”++k+%) ’ (7.2.29)
n++y+1)F(n++k+%) ng+j+1)

where 7 is an arbitrary phase.

Line 1, K < 0:  (2py,2p_,2s4,2s_,n_) = (k,k+1,j+ 3,7+ 3,ny —1).

Since k + 2s; = 0, Eq. (7.2.27a) can be used to show that N_ = —N,, thus
Eq. (7.2.26) gives:

nyD(ny +k+j+3)
Ny = +nv/2 . 7.2.30
== \/ n++j+1)r(n++k+§) ( )
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Line 2, k > 0: (2p,2p_,2s,,2s_,n_)=(1—k,—k,j+ %,j + %,mr +1).

Equation (7.2.27b) shows that N, = N_. The normalisation constants can be
found using Eq. (7.2.26):

+D)I0(ny —k+j+3
Ni =12 \/”+ ity (7.2.31)

n++j+2 L(ny —k+2)

Line 2, K <0:  (2py,2p_,2s4,2s_,n_) = (1 —k,—k,j+ 3,7+ 3,ny).

The relation between N, and N_ is in this case:

_k_|_l
N — N, 2

—_— 7.2.32
ny+j+1 ( )

thus the normalisation constants are given by:

IT( k:+ + 1\t
— /2 \/ nilllne —k+j+5) (Z++]+> . (7.2.33)

Line 3, k > 0: (2p4,2p_,2s4,25_,n_)=(0,0,2,0,ny + 1).
Choosing z = 1 in Eq. (7.2.27b) shows that:

—oN P3P (1) =0, (7.2.34)
implying that:
YN BC
Ny [3=2(1—2) | Pl =0 (7.2.35)

for all values of z. Hence, Ny = 0, showing that the combination considered here

does not represent a valid solution of the Dirac equation.

Line 3, k <0: (2p4,2p_,254,2s_,n_) =(0,0,0,2,n, — 1).
Choosing z = 1 in Eq. (7.2.27a) shows that:

1

_ 1
—N.PTP) =0, (7.2.36)

implying again that N. = 0.
Line 4, x > 0:  (2py,2p_,2s4,2s_,n_)=(1—k,14+k,2,0,n, +1—k).
Setting z = 1 in Eq. (7.2.27b) gives
5:35+k)

—aN_ PPy =o. (7.2.37)

Hence, N_ = 0.
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Line 4, K < 0: (2py,2p_,2s,,2s_;n_)=(1—k,14+k,0,2,n, —1—F).
Substituting z = 1 in Eq. (7.2.27a) shows that

(_l7l_k)
—oN, P () =0 (7.2.38)

Line 5: As discussed previously, line 5 is just an extension of lines 1 and 2 to
1
k=+£3.

Having found the normalisation constants above, the mode solutions are fully

determined. The negative energy spinors Vg jm . = i’yQ(U Bjmx)’ can be obtained

from Eq. (7.2.7) through charge conjugation (3.3.21):

(coswr)? ~

VE,j,m,n =WwWr——— E jmks

sinwr
7 1 * —)*
Ve = isgue(=1)" FeP [fr0n, 4 fprer, ], (7.2.39)

The following property was used:
* 1
i (P,,) =isgne(—1)""20F, . (7.2.40)

Thus, the field operator for the Dirac field can be written as follows:

00 00 i
Py =Y > Y [UEyjyﬁvm(’x)bE:j:&m+VE’j,ﬁym(x)dTE,j,/i,m]7 (7.2.41)

e

where the sum over j goes over all odd half-integers i%, ig, .... Second quanti-

T
E.j,km

nihilation and anti-particle creation operators obeying canonical anti-commutation

sation is performed by promoting the constants bg j .., and d to particle an-

relations:

{bE,j,n,ma bTE/J/,H’,m’} = {dE,j,n,mth/,j',m,m/} = 05,50,/ On wOmr- (7.242)

All other anti-commutators vanish.

7.3 Two-point functions

The maximal symmetry of adS greatly simplifies the form of two-point functions.

As argued in Ref. [56], the Feynman propagator can be written in the form:
Sp(z,2") = (ap + Br) Az, 2'), (7.3.1)

where ap and Bp are functions of the geodetic interval s (7.1.25) only, 7 is the

contraction of the tangent n = ds to the geodesic connecting x and 2’ with the
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~ matrices, and A(z,z’) is the bi-spinor of parallel transport (2.2.56), given by
Eq. (7.1.69a) on adS. For consistency, two methods of constructing the Feynman
propagator are presented: a mode sum approach in subsection 7.3.1 and solving
the inhomogeneous Dirac equation directly in subsection 7.3.3 [56]. The mode sum
approach has the advantage of being easily applicable to thermal (subsection 7.5.2)
or rotating thermal (subsection 8.3.1) states. The geometric approach can provide
simpler and more easily interpretable algebraic expressions, but unfortunately we
have not been able to apply it to the case of rotating thermal states when the
rotation of the space-time is large enough to pull the speed of light surface (SOL)

at rw < %

7.3.1 Using mode sums

As presented in subsection 2.2.6, the Hadamard, Schwinger and Feynman two-point
functions can be constructed using the Wightman functions S*(z, z’) (2.2.48). Using
the anti-commutation relations (7.2.42), the Wightman functions can be written as

mode sums over direct products of four-spinors:

ot _ w?(cos wr coswr’)2 i Z i FEfE, @0k —ift [Ty, ® wsz
sin wr sin wr’ —i fF fE ®1/J:Tt —fTfTe ®¢:TF 7
(7.3.2)
where the following conventions have been used: f* = f;m are the radial functions

introduced in Eq. (7.2.7b) and ¢y = ¢

]:I:%sgnn
Eq. (7.2.8b). In products of two functions, the first one depends on x and the second,

ona', eg fTf = fp () fh. () and vy @t =y, (0,0) @Y™ (0,¢).

j+%sgnn J—5SgnkK

ny=0j,k,m

are the two spinors introduced in

The next step is to write out explicitly the terms in the sum over &, then perform

the summation over m using the formulae (C.4.2):

2 na
w? (coswr coswr’)?
SE(x,2)) = — st (x, o 7.3.3a
(z,7) 47 sinwrsinwr’ Z:] ( ) ( )
n+7
where sT is given by:
6¥iEiAtfifi _Z-€$iEjFAtf:|: Fzo
+ /£ FIF Ty .
= ( L TiELAL fF pr oo TiB£ At £F §F ®(]+%_U'L)Pj+%(cosw
—e f:l:f:tT —€ ® f$f¥
e:FiE;FAtfifi _ieZFiEiAtfif¥M
S FiEF At l: I:z:-a B Ati . ®(‘7+%+0L)P37%<C087>’
—1etE f:F F —eToE fIfI
(7.3.3b)

where P, %(COS ) are Legendre polynomials (discussed in section C.1 of the ap-

pendix) and v is the angle between & and «/, introduced in Eq. (7.1.25). The
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subscripts on f and E refer to the sign of k, e.g. f* = ft | and Fy = represent
—=J—3
the energies corresponding to £ = +(j+ 1), through Egs. (7.2.17) and (7.2.23). The

arguments of the radial functions follow the same convention used in Eq. (7.3.2).

According to the ansatz (7.3.1) the Feynman propagator depends on 7 or 7’ only
through s, 7t and A. Its form for general coordinates x and z’ can thus be inferred
from its expression when 7 = 0, in which case Eq. (7.3.3a) simplifies considerably.
In what follows, the Feynman propagator is calculated separately for regular and

irregular modes.

Regular modes

The construction of the Feynman propagator for arbitrary point separations is con-
siderably simpler by first one of the points at the origin. In the limit of vanishing
r, the hatted radial functions introduced in Eq. (7.2.16) of the regular modes corre-
sponding to the first line of Table 7.1 have the following form:

ez V2w k] )\/F(n++j+2)F(n++j+k+%)

Ti+2) (e +h+3)
f+ N(Sin(wa)]—i-; nv 2w [(ny +j+1)F(n++j+k_|_%)
’ L(j+1) ny!(ny +k+3) )
f7 ~(sinwr)y*zs 1Y 2w |T(ny +j+2)0(ny +j+k+3)
- [L(j+1) n+!F(n++k+%) )

s V2w \/F(n++j+1)F(n+—|—j+k:+%) (734

f= ~(sinwr) TG+2) " n T(ng +k+ 1)

Using Eq. (7.2.16) to express f* in terms of f*, at r = 0 the former take the form:

1
sin wr

7“—>0
1 f+ 2w n++ n++k+2)5
sinwr” ™ rao V nl(ng +k+ 5 ) jv%’

1 f_ 2w n++ n++k+2)5
sinwr” " —e AV nT(ny +k+3) 53

= —0. (7.3.5)

sinwr®~ r—0

+
+

Given that all the terms of the form f3 vanish when 7’ = 0, the terms multiplying
Pj 1 (cos7) in Eq. (7.3.3b) do not contribute. In what follows, the non-vanishing
2

contributions to the Feynman propagator are evaluated term by term, starting from
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the following building blocks:

- FiE Atfif-;* FLiwAt 2 3 d

E et e ——e T2 fan” wr x2 ——H,
sinwr’ r'—0 dx

ny=0

e}

N AL 14k d ioar 3 d
Z €$’E+At—f+f+ —— tanwr [e : (_ 9 +X—) — TG H

) sinwr’ -0 coswr dx dx
ny=
o i k d
Z eizEfAtff_f*/ — eTaWAt o or [ + itanw(At)X—} Hy,
- sinwr’ -0 dx
ny=
oo A F— 4 i 1 k d
Z e:FzEfAtf:— f— _ e:FgwAt tan2 wor _L +x— H+’ (736)
A sinwr’ r'—0 2 dx
ny=

where the arguments of the radial functions on the left hand side above follow the

convention introduced in Eq. (7.3.2) and H, is given by:

do T(1+k) 1a (1il<; 2+k 1
'Hi_ 1 < ;

= — F|— — =%k 7.3.7
\/7_T21ikr<%j:k)x 2 2471 ’X)? ( )

2 7 92 2

where H_ has been introduced in anticipation for the construction of the Feynman

propagator using irregular modes. Finally, y is defined as:

cCoswr \ 2
— 7.3.8
X (cos wAt) ( )

and is related to the geodetic interval s, defined in Eq. (7.1.25), through:

cos? ws

Y= — JW:O. (7.3.9)

Irregular modes

In the case when £k < %, the contributions coming from irregular modes correspond-

ing to the second line in Table 7.1 must be considered. Repeating the analysis for
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the regular modes, the leading behaviour of f * as r goes to 0 is:

fi ~(sin wr)ﬂ%

nJZJ(#+D¢rm++j+mrm++j—k+@

TG+2) n (g — k + 2) ’
A 1 mV2 r +2)I j—k+3
[T ~(sinwr)’ 2 A g +3 4 2)0(n, +33 - 2>7
I'(G+1) ny!l(ng —k+3)
A . V2 r +2)I j—k+2
fr ~(sinwr)/ 2 A s 34200y 47 3 +2);
L'(j+1) (ny + DT (ny —k+3)
. V2w r +2)0 —k+3
f o~ — (sinwr)its il (ny —k+1) (ny +5+2) (n++33 +2),
I'(j+2) nl(ng —k+3)
(7.3.10)
giving the following leading order behaviour for f*:
1
+
Sincurf+
1 2 —l— —k+2
e Al 2m/ v, [H )5 1,
sinwr nﬂF ny — k +3) )
1 _ 20) n+ ‘|‘ —k+ 3)
: f+ ' 3 51’
sinwr (ny +1 Fn+ kE+3) 73
1
- . 311
sinwrf_ 7”—>0 (7.3.11)

Now the analogues of Egs. (7.3.6) can be computed:

o . o i 1—-k d
Z e:F’E*At—f.Jr f+/ ——eT298 tan? wr <—— + X—> H_,
= sinwr’ r—0 2 dx

O i ; 1—k d
Z egE*Atffi ——eT2@A tan wr (T + itan wAth—) H_,
X

sinwr! r—0
’I’L+ :O

oo ) r+ otk +iwAt 1 -k d : d
Z €$1E’_Atff f, tan wr [6 2 (_ 5 + X_) - €$2“)Atxg—] H_,

/ /
0
= sinwr’ r'— COS Wr dx dx
) A_*]H_
) = f i s d
E eFl-Atl— 1= eFaBltan? wr y2 —H_, (7.3.12)
sinwr! -0 dx
TL+:0

where H_ was introduced in Eq. (7.3.7). The similarity to Eqs. (7.3.6) is remark-
able.
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Result

Combining Egs. (7.3.6) and (7.3.12) for regular modes and irregular modes, respec-
tively, and applying Eq. (7.2.16) to switch from f to f gives:

> M A cos < 1+k d ; d ]
Z e—ZE*Atf,_ f‘/ > tan wr {e swAl ( X—) + GEwAtX%— Hy,
n+70 sinwr! #—0 coswr dx dx |
cos & 1+k d ; d ]
Z e tE+AL EE — 2 tanwr{m‘”m( X—) FeavAE
Kt sinwr’ r—0  coswr dx dx |
> ) T sin £ 1+k d i d ]
Z e~ A f.+ f+, — 2 tanwv{w ( X—) - 6_5WAtX%— He,
- sinwr’ #—0  coswr 2 dx dy |
N
+x sip @r 1+k d i d |
Z e - acf= 1= 2 tan wr |:€_2 ( X—) — s I H,.
) sinwr’ #—0 coswr 2 dx dx |
ny=
(7.3.13)

In the above, the + and — signs correspond to contributions from regular and irregu-

iErAt can be found by applying complex

lar modes, respectively. The sums involving e
conjugation of the above relations, keeping in mind that the only non-real terms are
the exponentials involving it. It can be checked that, at least when ' = 0, the
Wightman functions satisfy St = —S~. Thus, ignoring ie terms traditionally used
to control the position of the poles in two-point functions, S* = Sp = %S(l). The
Wightman functions can be obtained by substituting Eqgs. (7.3.13) in Eq. (7.3.3a).
Keeping in mind that the ic terms are neglected, the 2x 2 matrix elements (i, 7) of the

Feynman function can be found from the Wightman functions using Eq. (2.2.53a):

Sp(z,2') = (1,1) (1,2) : (7.3.14a)
(2,1) (2,2)
where

w? cos < i 1tk d d

(1,1) = In COSl {@_QWN (—2 - Xa) + 62“’“)&@1 Hy,
2 wWr

w? cos< [ 1+k d ; s d
29 §wAt iV R 7§wAt 2_1 H ,
(2.2)= 4 cosé wr {e ( 2 XdX) ‘ X dx]

2 sin ; 1+k d i d
(1,2) = a: ow 5 |:e2wAt (_ _ X@) _ e2wAtX§d_] He,

r 47'(' COS§ wr 2

: 2 sin¥ i 1+k d i d
(2,1) = — Z,a: ow 51111 2 {eﬂm (_ _ X—) _ €2wAtX§d_] He.

r AT cos? wr
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Hence, the contributions S (z,2’) to the Feynman propagator coming from the

regular (+) and irregular (—) modes can be written as:

1+%& d d
SE(z,2') = 2w [Si <T X ) +S¥X3a] [—iGE(, 2], (7.3.15a)
where
S 1 cos < cFawAt +i sin <F eiz“’“ zo (73.15)
+ = ; , .3.
v/ COSWr :FZ Sln wr :szﬂta; o coS %6:&5@At

where Gf are the Feynman propagators of the scalar field |49 50] corresponding
to the mass parameters ¢ = ¢4 = 1 + k (using the notation therein), which can be
related to the functions Hy in Eq. (7.3.7) through:

Ho — T(—zGi) (7.3.16)

The functions Sy, defined in Eq. (7.3.15b), can be written in terms of the bi-
spinor of parallel transport A discussed in subsection 7.1.4, using Eqgs. (7.1.53) and
(7.1.54):

Si(z,2) = (cos % Fisin ﬁ%> Az, 2'), (7.3.17)
where the relation cos 2* = [(14+coswAt/ coswr)/ 2] has been used. As discussed in

the introduction of thls section, the Feynman propagator on maximally symmetric
space-times can be written as in Eq. (7.3.1), thus depending on the coordinates x
and 2’ only through s, 7% and A. Hence, substituting Eq. (7.3.17) in Eq. (7.3.15a)

allows the Feynman propagator to be written as follows:
Sz (z,2') = (aF + BEp)A(x, o), (7.3.18)

where ozf and Bljﬁ are functions of the geodetic interval s given by:

3 ws
ST(1+k) |[1+E d
alj?:iw cos %5 I'( ){

1+k
A B o e 2:i:k 1ik
z‘w%in%l*(lj:k){ 1+k

ﬁ?: 3 1
T2 1k F(§:|:k') 2

d | 1zk
X(\/%-}- ]_)a:| X 2 2F1 (1:5k72:tk 1 :]:k X)

(7.3.19)

It can be seen that the contributions made by irregular modes (—) can be related
to those coming from regular modes (+) by changing the sign of the mass term k = £,

as follows:
ap(k) = —ap(=k),  Bp(k) = Bn(—k). (7.3.20)
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7.3.2 Small distance behaviour of two-point functions

To compute renormalised expectation values, the coincidence limit of the Feynman
propagator (7.3.18) and its derivatives are required. It is convenient to extract the
small distance behaviour of Ozf and ﬁf by changing the variable in the hypergeo-

Qws

metric functions in Egs. (7.3.19) from y = (cosws)™2 to ¢ = sin® 2. This change of

variable can be achieved using standard formulae [I], [60] in three stages, as follows.

Using Eq. (D.4a), the functions a% and ﬁ?ﬁ can be written as:

3 —3F2k
+ LW Ny ws F . . 1
oy ==+ 162 (cos 7) 2 F1 <:|:k:, 24 ki1 £ 2k; @> 7 (7.3.21a)
3N —4F2k 1
+ +k . WS ws . ‘
Br 62 sin - (COS 7) oI (1 +k, 24+ k14 2k; @) , (7.3.21b)
with

L2+ k)7
= —— 7.3.21
where Egs. (D.3e) and (D.3d) have been used for o and 3, respectively. Next,
Eq. (D.4b) can be used to change the argument of the hypergeometric functions to

(sin %)_2:

3N. —2Fk 1
ot = 4 N Sﬁ<_sin2w_3> P (1 k24 k1 42k —— ),
1672 2 2 sin® *
(7.3.22a)
+ W Nyy . ws 5 WS\ ~2Fk ' 1
BF ].67'('2 S1n 7 <— sin 7) 2F1 :i:k', 2+ k, 1+ 2]{?, @ . (7322b)

Finally, Eq. (D.4c) can be used to change the argument of the hypergeometric func-

tions to sin® “’25
37.(1.2
T 2 U (R - Dsin

n® 4
+ [$7rc0t 7wk + In (— sin —ﬂ o Fy ( +k,2 — k; 2; sin? %)

+ i 24 Mu(2 = k) (sin 22) " wi
1

s (2)nn! 2

R 1) - ws

+ 2 2W3>
= il 1+ k2sin? =
br 1602 2 { k2(k:2—1)sin4§( TSI

1

+ 5 [:FWCOth—l—ln (—sm2 %)} o F <2—|—k:,2 — k; 3; sin? ?)

I & 2—|—k k) o WS\ 7 3 1

5 - =) e - 7.3.23
3 G () [a ] g

where (2), = z(z + 1)...(2z + n) is the Pochhammer symbol [I], 60] and i s
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defined in terms of the polygamma function ¢ (z) [1l, 60] as:
D =24+ k4+n) +0v2—k+n) —v2+n) — (1 +n). (7.3.23b)

It should be noted that in Eqs. (7.3.23), the geodetic interval s is taken along time-
like geodesics. For space-like geodesics, s would be imaginary and the arguments of
the logarithms above would be positive. It can be seen that the difference between
the contributions of the regular and irregular modes is regular in the coincidence
limit. Alternatively, the polygamma functions in Eq. (7.3.23b) can be expressed in

terms of £k, as follows:

(24 k(2 k) [ yws\™
+§ 2)nn] (Sm 3) v
31.2(1.2
L Wk (k-1 5. 2 WS
br 167 sm4 o <1 A sin 2 )
1 o . g WS
+§ln<—sm —>2F1 <2+k,2—k,3,sm 7)
(2+k n (sin? ”5) { - } , (7.3.24)
— nn' 2+4+n
where
UE =y 2+k+n)+(—1+tk—n)—24+n) (1l +n). (7.3.25)

For the purpose of calculating the v.e.v. of the SET, the following expansions

around s = 0 are needed:

kw w3 ok
+ _ O g9 3
W T A + 1672 (1 + 6 MR >
kw? 1 ws
N GERR I B +k
bz -0 {gm |- () ]+ ven +a
. i (14 2k2)
& s—0 2723 16m2s '

w o ws 1 w2(1+6k2 wl ko kK 3k!
4i (G 00t ) BF — —5 5 - = ALl
NGt )0 0 “oma ~ ame s (360 > 1272 4 )

W2 —-1) (1 ws 1
- (%) +k) — = In(—4
Ll {2 [ 5 }MW( k) = 5 In( )},
0 w  ws 8 Ww2(1+3k% Wt 1 kK
4 (LYot g ST
' (85 2 ' >6F s—0  mlst 3ns? * 272 (360 - 3 4)

(7.3.26)
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In the massless limit, Ozf and Bfﬁ take the following values:
4 w3 iw?

O‘ijfo: 2 3 ws’ 6§Jk;70: 2 i3 ws®
= 1672 cos = = 1672 sin 5

(7.3.27)

It is remarkable that the above expressions are the same for regular and irregular

modes.

7.3.3 Using the spinor parallel propagator

In subsection 7.3.1, an expression for the Feynman propagator at arbitrary point sep-
aration was obtained by extrapolating the result obtained for one point at the origin,
based on the ansatz (7.3.1). Following Ref. [56], the inhomogeneous Dirac equation is
solved directly by substituting the aforementioned ansatz into Eq. (2.2.53b), leading

to the following equation:

{% [ia}; - iapg(A +C) — plr| +i6y + iﬁpg(A —C) - uap} A= \/%_95(33—1‘/),

(7.3.28)
valid for any maximally symmetric space-time. On adS, A and C are given by
Eqs. (7.1.35). As discussed in subsections 7.1.4 and 7.1.5, A only depends on prod-
ucts of even number of v functions, hence, tr(#A) = 0. Taking the trace of the
above equation multiplied by # shows that the coefficient of 1 above has to vanish

identically, leading to the following equations:

3;

iy — % tan %Sap — uPrp =0, (7.3.29a)
31 1

B+ 5 cot =B — oy = =07, (7.3.20b)

These two equations can be combined to form a second order differential equation

for ap:

2 -1 o
af + 3waly cot ws + [,uZ + e (COSWQS - §>} ap = —MM. (7.3.30)

2 sin® ws 2 N

2 ws
2

hypergeometric equation form (D.1):

Changing variable to z = cos and writing ap = Z2ap puts Eq. (7.3.30) in the

2(1—z)(j—;—i—(3—5z)d%+(k—2)(k+2)1 aF:—w]z 5(96—\/:_;/), (7.3.31)

N[
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which agrees with the expression in Ref. [56]. Changing variable to ¢ = 1 — 2z puts
Eq. (7.3.31) in the following form:

d2 - i o o k d(z —2a)
[qu “DgatC g~ 2R R = -t T
(7.3.32)

The parameters of the hypergeometric differential equation are now a = 2 — k,

b=2+k and ¢ = 2, and the two linearly independent solutions are [60]:

ws 1
ap = )\C087 {—m +oF1(2—k, 24 k;2;9) (N +1ngq)

(24 k). (2 -k
+§( éﬁm |

"q"[w(2+k+n)+w(2—k+n)—z/1(2+n)—z/z(1+n)]}.
(7.3.33)

The constants A and A can be found by matching the small distance behaviour of

ap with that of the Minkowski propagator anink [56]:

B w21 wk
OMink = (2%) SKl(,us) sy (7.3.34)
Thus, A is given by:
_ ke (k2 — 1) (7.3.35)
1672 ' o
Furthermore, a comparison with the expression (7.3.24) is enough to fix both con-
stants:
kw® ,
Ay = 167r2(k - 1), A, = Frcot 7k, (7.3.36)

where the upper and lower signs correspond to regular and irregular modes, respec-

tively.

7.4 Renormalised vacuum expectation values

The vacuum expectation values (v.e.v.s) of the fermion condensate (FC), charge
current (CC) and stress-energy tensor (SET) can be calculated using the Feynman
propagator by replacing the thermal Hadamard function ASél)(a:, z') by 2Sp(x,2')
in Egs. (2.2.55), as follows:

(@) = — lim tr [Sp(z,2')A(2', 7)) (7.4.1a)

(J") = = lim tr [y"Sp(z, 2 )A(2', x)] (7.4.1b)
) t ! ’

<T#V> :% rl,u_n)x tr { |:7(VDN)SF(‘r7 xl) - SF(Z‘, ZZ'/)D)\/’}/H/g)\ (lug"‘C 1/):| A(J]/, Z‘) .

(7.4.1c)
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If the ansatz (7.3.1) is made for the form of Sg(x,2’), the formula (7.1.42) for the
derivative of A, together with the formulae (7.1.32a) for the differentiation of the

tangent vector can be used to write the above v.e.v.s using the functions ar and

Br:

() =4 lim ap(s), (7.4.2a)

(J*) =4 lim n"Bp(s), (7.4.2b)
. 0 w ws w ws

(T,,) =4i wl/n_nm {—n#ny <% —3 cot 7) Or + guyiﬂp cot > | (7.4.2¢)

The tangents to the geodesic n, depend on the direction along which the points
are split. For consistency, their coefficients should vanish identically in the coinci-
dence limit, since the final expressions for the v.e.v.s above must be independent of
the mathematical technique employed. Thus, the v.e.v. of the CC should vanish.
Furthermore, the adS symmetries imply that the FC must be a constant scalar,
while the SET should be a constant multiplying the metric tensor g,,. The above
expressions are infinite due to the divergence in the coincidence limit of ap and
Br, demonstrated in Eqs. (7.3.26). In subsections 7.4.1 and 7.4.2, the Schwinger-
de Witt and Hadamard methods are applied for the renormalisation of the above

expressions.

7.4.1 Schwinger-de Witt method

In the Schwinger-de Witt method, v.e.v.s are renormalised by subtracting from
Sp(x,2") in Egs. (7.4.1) counter terms which are determined separately. In Ref. [24],
Christensen uses covariant point splitting to calculate the divergent contributions
7oV = T, (z,2') to the SET as point-split tensors, using Eq. (7.4.1c). Renor-
malisation is performed by subtracting ’];ﬁjv from the function inside the limit in

Eq. (7.4.2¢), after which the limit can be safely taken.

Specialising to adS reduces Christensen’s expressions [24] to the following:

div __ ~~div,quartic div,quadratic div,Iln div,finite
1, =1, +7, +7,""+ T, , (7.4.3a)
where
. . —1
div,quartic __
7;1/ - 71_254 (gMV + 4”#77‘1/)7

g div,quadratic _ —w? 1 L2 9 1 k2
u = s Juv 6—|— + 2n,n, 3+ ;

4
divin _ W ;2.9
pv - 167T2k (k - 1)(7+1n‘:u’8‘)gl“/7

| i 5 K skt 17 KK
lev,ﬁn — w_ | — == - — v | — _—— — 7.4.3b
w T {g“ (144 24 16 > T (360 B )1 (T
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where v is Fuler’s constant and p is the mass of the field.
The following identities were used:

RM’% R)@-ca :24w4 s

R(”)\R@in”)n’\nfn“ = — Qwin'n”,
R("'a/\ﬁRga,ign‘”)n’\n{n“ = — 3winfn’,
R°\R", n"n*n n" =0,

RyeRM.V nnfn"n® =3w* (g™ + nFn"),
R”/\O‘gltil’menAngn”“n€ =w(g" + n"n”),
Ro‘/\ﬂgRa,.iﬁgrﬁnfn’%8 =3w?,

Ro‘ﬁRa“mn”n’\ =9wintn,
RPMR 55 =6,
RFOYBR agen™n® =w?(—2g" + n¥n"),
RMRO‘(””)En’\nf =3w*(g" + n¥n"),
Ji’“o‘ﬁ/\R”gOéén’\ng =3wintnY,

R“o"g/\R”aﬁgn’\n§ =wt(—g" + 2n¥n"). (7.4.4)

The renormalised v.e.v. of the SET can be calculated separately for regular (+)
and irregular (—) modes by subtracting ’];dyiv from the coincidence limit expansions
(7.3.26) of the terms appearing in Eq. (7.4.2c). The coeflicient of n,n, vanishes
identically, which is in agreement with the geometrical argument that 7}, should
be proportional to g,, in a maximally symmetric space-time. Therefore, the renor-

malised expectation value of the SET can be written in terms of its trace T as:

1
<Tul/>sidw = Zguu <T>side (7.4.5)

4 2

11 k 2
(Dhzaw = —4w—7r2 {@ th-—F k42K (k% — 1) {mf‘ - w(ik)] } . (7.4.6)

The result (7.4.6) can be compared with the trace Tp.y of the renormalised
expectation value (7},,)p, y, of the SET obtained using the Pauli-Villars regularisation
method in Ref. [1§]:

wt (11 k? v
Tow= -2 o o — 1) m Y — 4.
mv 4772{60+k 6 K+ 20k >[nu) w(k)}}’ (7.4.7)

where v is an arbitrary renormalisation mass scale. The agreement with Eq. (7.4.6)

is excellent if only regular modes are considered.
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7.4.2 Hadamard renormalisation

A series of theorems by Hadamard [3, 58] for the scalar field allow the unambiguous
isolation of the singular part of the scalar field propagator in a state-independent
fashion. This approach, extended to fermions in Refs. [42, 59], can be used to
isolate the singular part of the Feynman propagator Sg(z,z’) into the Hadamard
form Sy (x,2’). Thus, a regularised propagator Siee(z,2’) can be obtained as the

remainder of Sg(x,z’) after the subtraction of its singular elements:
Sreg(z,2") = Sp(x,2") — Sp(z,2"). (7.4.8)
Hadamard renormalisation is performed by replacing Sp by Sy in Egs. (7.4.1).

The first step towards using the powerful Hadamard theorems is to introduce an
auxiliary bi-spinor function Gp [24, [59], by analogy with the flat space-time, such
that:

Sp(z,2") = (i"D,, + p)Gr(z,2'). (7.4.9)

By acting with the Dirac operator i) — j on Sg, the following equation is obtained:

1 ,
(D =5 "Y1 DD — uQ) Gr = (—g) 26"z, '), (7.4.10)

where n is the number of space-time dimensions and the spinor box operator [ is

defined by analogy with the scalar case as:
O0=¢"D,D,. (7.4.11)

Analogously to the commutator of ordinary (tensor) covariant derivatives, the com-
mutator [D,, D,] can be written for any number of space-time dimensions using the

Riemann tensor [24]:

/ 1 /
[D,, D)) Gr(x,2") = —§RWV2PAQF(:£, 7', (7.4.12)

where Y9 = % [7’) , 7)‘} are the anti-Hermitian spin part of the generators of Lorentz
transformations. Due to the symmetry R, = Rupn, the commutator term in
Eq. (7.4.10) can be written as:

1 ) 1 )
5 "7 1 DpDy = =2 R {zP 5}, (7.4.13)

where the anticommutator of the > matrices can be written as:

1 ' :
{22} = =5 (6™ = "™ + %epk“”ﬁ (7.4.14)
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where

PN = P ehet el cOPIP (7.4.15)

is written in terms of the Levi-Civita symbol 55‘5%, with the convention €y555 = 1.
Finally, the Bianchi identity R, = 0 can be used to show that G satisfies the
following equation [59], irrespective of the number n of space-time dimensions:

(0= 1R — 12 Grla,2") = (—g) 26"(x, 2"). (7.4.16)

4

It can be shown by using Eq. (7.1.42) that, if Sp = (ap + Brit)A, then:
——A(x, ). (7.4.17)

Equation (7.4.16) can be written as a set of 16 scalar second order differential equa-
tions involving the matrix elements of the auxiliary propagator Gp(x,z’). As dis-
cussed in Ref. [59], extrapolating Hadamard’s theorem to the spinor case allows the

singularity structure of G to be isolated as follows:

B 1
872

Gr(z,2") (g +vln(v?|o]) + w) , (7.4.18)

where v is an arbitrary renormalisation mass scale introduced to make the argu-
ment of the logarithm dimensionless and u, v and w are bi-spinor functions of x
and x’ which are regular in the coincidence limit. However, in the case of a maxi-
mally symmetric space-time, Eq. (7.4.17) shows that they reduce to functions of the
geodetic interval s multiplied by the bi-spinor of parallel transport A. According
to the Hadamard theorem, the functions v and v are independent of the quantum
state of the system, being fully determined by the space-time geometry. Hadamard
renormalisation amounts to the subtraction of the Hadamard form Gy, defined as

the divergent part of Gp:

1 1w
Gy (x,x') =52 [; +vIn(v?|o])

_an(s)
L

Az, x), (7.4.19)

where it is understood that Gy does not necessarily satisfy the Dirac equation, hence,

ay is not necessarily a solution of Eq. (7.3.30).

The bi-spinor functions u and v can be found by solving Eq. (7.4.16). The first
derivative of Gr in Eq. (7.4.18) is:

uo U., + vo
B g0 2
_l’_

87°D,Gr = — 2 + v, In(v?|o]) + w.,, (7.4.20)
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and the Dirac equation (7.4.16) reads:

2

8730 — iR — 1*)Gp(z,2') = —= [0 u + (0o — 4)u]
2

+ - [0 v+ 200 — 2)v+ (O — 1R — p*)u]

+ [0~ 2R — )] (o) + (O~ LR — 2w, (7.4.21)

where it is understood that the box operator denotes the covariant differentiation
of the object on which it acts, e.g. Oo = ¢"*V,V,0 and Ou = ¢"* D, D, u. The 02

term gives the following equation for w:
oc*uy + 2(00 — 4)u = 0, (7.4.22)

which can be solved exactly using Eq. (7.1.37) to link Oo — 4 to the derivative of
the Van Vleck-Morette determinant A:

a*DA<A*%Q::o. (7.4.23)

The solution of the above equation is the bi-spinor of parallel transport (2.2.57),
given explicitly for the adS space-time in Eq. (7.1.69a). The initial condition
Eq. (7.3.34) fixes the integration constant such that u is given by:

u(z, ') = VAN(z, z'), (7.4.24)

as presented in Ref. [59].
Next, the coefficient of In(v? |o|) in Eq. (7.4.21) vanishes when:

(D—iR—uﬁuquzo (7.4.25)

If we write v(z, ') = a,(s)A(x,2’), then «, is the solution of Eq. (7.3.32) which is
regular at the origin, as given in Eq. (7.3.33):

v(z,2') = Cycos $oFy (2 — k, 24 k; 2;sin® ) A(x, ). (7.4.26)

The integration constant C, can be fixed by requiring that the last divergent term
in the Dirac equation (7.4.21) vanishes. Hence, the following expression must be of
order O(o):

ooy + (00 —2)v+ O - iR — p?)u = O(o). (7.4.27)

The first term is of order o. The second term evaluates to:

Oo — 2 = —1+ 3ws cotws. (7.4.28a)
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The following intermediate steps are useful for the third term in Eq. (7.4.27):

V.VA = (1 — wscotws)VAn,, (7.4.28Db)
3w2 1 1 3
OVA = — - S| vA 7.4.28
VA 2 [2(w5)2 DsinZws | 2] va, (7.4.28¢)
OA = 3% tan® ”2‘9 (7.4.28d)

Hence, the third term evaluates to:

1 1 3.7 | | a2
—<D——R—u2>u:w<— P _—>u, (7.4.28¢)

8 (ws)?  sin‘ws  cos? 3

Since the leading order term in Eq. (7.4.28e) is ‘“7(1 k?) and since Jo—2 = 24+0(0),
2

the integration constant in v must be C, = “’;(k‘ — 1), hence:

(k* — 1) cos Lo F1 (2 — k, 2 + k; 2;sin” %) In(v? | o)

\/_ w?
o 2

(7.4.29)

The expression (7.4.26) for v can be checked by using the method in [59], ap-
plicable to generic space-times, where Eq. (7.4.17) does not necessarily hold. On a

general space-time, v and w can be written as:

= Zvn(x,x')an, w(z,z") = an(x, z')o", (7.4.30)
n=0

n=0

where the bi-spinors v,, and w,, are regular at the coincidence limit and u is given in
Eq. (7.4.24). Substituting these expansions in Eq. (7.4.21), the following equations

are obtained:

1
O"LLUOM 2(DU—2)U0+§(D %R—MQ)UZO, (7431&)
1

oMy + (Da+2n)vn+1+2(n+1)( — IR — ) v, =0, (7.4.31b)

1

0 MWpy1:x + (Da+2n)wn+1+2(n+1>( _iR—uz)wn

1
A1 —— 0 2(2 ] v, = 0. 7.4.31
+n+1av+“+2(n+1)[ o+ 2(2n+ 1) vy ( c)

The above equations are in exact agreement with [59]. Factorising vy = fou in
Eq. (7.4.31a) gives:
Ous(wsfo)u=—3 (00— 1R —p?)u, (7.4.32)

4
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which can be integrated using Eq. (7.4.28¢) for the RHS:

_3w2 1 cotws 2tan< 42

fo

(7.4.33)

8 (ws)? ws ws 3

Similarly, v; can be found from Eq. (7.4.31b) by using an auxiliary function f; such

that v; = fiu. Using the equation:

w

(O—1R— ) v = — 5 0s (w8 fo + 2fo + 2z (wsfo)?] (7.4.34)

[N

it is straightforward to find that:

]_ 2 w ]_
= _ W k:2—1> — 0, —£2
fi= (fo= 502 = 1) + S-0uto + 5
1f2+w2 3 ; 3 3 tan 25 3 +1
=— — cot ws — — an— — ———— 4+ —
270 " 52 | 16ws 16sin®ws  8ws 2 16(3082%5 2

(7.4.35)

It is now easy to check that the two approaches presented here give the same

small distance behaviour for ay. The short distance expansion of u and v is:

= [1 + (%)2 + % (%)4 + O(sﬁ)} A, (7.4.362)
v=2(k* 1) [1 - L(k* = 1) (ws)® + O(sM)] u (7.4.36h)
=< (k% — 1) [1 = L(k* = 3) (ws)* + O(s")] A, (7.4.36¢)

hence, ay has the following coincidence limit expansion:

_kW? 4
1672 | (ws)?

2 v|s|
—14+2(k*—=1)In ﬁ +O(s) ], (7.4.36d)

where v is an arbitrary mass scale. The above expansions match exactly the small
distance behaviour of the result in Eq. (7.4.29).

g

To compute the Hadamard form Sy (z,2’) of the Feynman propagator, the func-
tion By corresponding to ay in Eq. (7.4.29) can be obtained using the defining
equation (7.3.29a):

B =

2

iw3{ VA n 3VA E2—1 ws

“OF(2—k, 24 k; 2;sin? 2
472 | 2(ws)®  2(ws)?sinws  2ws cos 5 i ;2 + k; 2;sin” 5°)

1
— gF 0 = ) In([o])sin ?m(z — k, 2+ k; 3; sin? g)}. (7.4.37)

The short distance behaviour of Sy and other functions appearing in Egs. (7.4.2),

relevant for the computation of renormalised expectation values, can readily be
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derived:
i iw?(1+2k%)  dwis (1 kK2 k4
Bu = 2¢3 2 2=\l 71 T e
2m2s 1672s 8 60 4 16
iwisk?(k* — 1), v |s|
_ In 3
w o ws 2 w?(1 + 61{:2 wt (29 5k‘2 k:4
42 cot Ly = — 2
it S On == 5 d T Tonre T ge2 90
4/€2 k2 _
w ( ) ‘ ’ (82)7
872 \/_
| L 8 wXl+3kY) Wt (17
4 (0 = oot ) i = - st 3m2s? (90+ ) +0),

(7.4.38)

where, as before, the contributions coming from regular and irregular modes corre-

spond to the + and — signs, respectively.

Finally, by writing the regularised propagator as:

Sreg(2,2") = (Qreg + Pregh) A, '), (7.4.39)

the expresions (7.3.26) for ap and [z can be regularised by subtracting the corre-

sponding expressions from Egs. (7.4.38):

3
+ w 13 2 E
O‘regﬁmﬂ( Rk +6]F1)

i) (ln 5 VR + ”y) ,
e —20,
4 (g cot %) e Ty 12}:;2 (;(1) k= 196k2 TR+ 57164)
w4k2§i i) [m yjﬁ (k) + ’y] :
-y (% - gcot ?) £ 0. (7.4.40)

The renormalised expectation values of the FC and CC follow uneventfully by re-
placing ap and Br with their regularised versions given above in Egs. (7.4.2a) and
(7.4.2b), respectively:

— w?’

(V) ta =73 { L ]g F1+2k(K - 1) (m—“’ +1p(+k) +7>} ,
vy2
(7.4.41a)

(J*) 11ag =0 (7.4.41b)
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The calculation of the renormalised expectation value of the SET is, however, not
straightforward. Naively applying the same procedure as above to the expression
(7.4.2c) for the “canonical” SET gives the following trace T\5*% of the SET renor-

malised using the Hadamard method:

Wt 11 1962 . 5EY\ w21 w
THad = 4 (20 + k- 6 F k + 7) + o2 [ln 1/\/§ + ’Qb(:l:k?) + ’7:| .
(7.4.42)

The above expression for the SET exhibits a trace anomaly, but its magnitude is
different from the one calculated using the Schwinger-de Witt method (7.4.6).

According to Ref. [27], there is also a problem with the conservation of the
regularised SET. These problems stem from the fact that the regularised propaga-
tor (7.4.39) does not satisfy the Dirac equation, hence, the SET obtained using the
canonical definition (7.4.1c) is no longer divergence-free. The non-conservation of
the Hadamard renormalised vacuum stress was also reported in Ref. [17] for photons
and the solution proposed was to change the definition of the stress tensor operator
with a geometry-dependent term which would effectively cancel the renormalisation-
induced divergence. For fermions, Ref. [27] proposes to change the canonical defini-
tion of the SET by adding a multiple of the Dirac Lagrangian (2.2.15) multiplied by
g Since the Dirac Lagrangian vanishes when solutions of the Dirac equation are
considered, this alteration of the definition of the SET does not affect its value in
the classical (unrenormalised) case. However, the freedom of having the multiplier
of the Dirac Lagrangian as an extra parameter can be used to cancel the non-zero

terms in the divergence of the SET, by changing its canonical definition (7.4.1c) to:

1
Tt =T0" = g9 ww - —lpw p| (7.4.43)

The above redefinition guarantees the conservation of the SET for arbitrary space-
times. On adS, the renormalised SET is proportional to g,,. Hence, it can be

written in terms of its trace as:

new 1 new
<TMV>Had = Z_Lg’“/THad’ (7.4.44)

where the trace of the new SET can be written in terms of the old one as:

1
Tiad = 3TC?&+ <w¢>Had (7.4.45)
The result is:
wt 11 Tk? 3k4
e = — T4 — 4k — - 4 2k%(k% — 1) [In——= +k
- EITRL -+ 200 - 1) [y |},

(7.4.46)

where v is Euler’s constant. It is worth quoting the result obtained in Ref. [18] using



224 CHAPTER 7. ANTI-DE SITTER SPACE

zeta-function regularisation for the trace T of the renormalised vacuum expectation
value of the SET:

w 11 7k? 3k* w

= —q———k+—+k - —+2°(K* - 1) |In— k 7.4.47
where v, is an arbitrary renormalisation mass scale. Our result Eq. (7.4.46) obtained
using Hadamard renormalisation is in excellent agreement with the zeta-function

regularisation result above, provided that

1
v= Eucef (7.4.48)

7.5 Thermal expectation values

In subsections 2.2.5 and 4.3.2, thermal expectation values (t.e.v.s) were calculated
using the thermal Hadamard function. In adS, it is convenient to use the closed form
expression for the Feynman propagator (7.3.1) to construct its thermal analogue.
The advantage of using the Feynman propagator approach, discussed in subsec-
tion 7.5.1, is that the expressions obtained for the t.e.v.s of the fermion condensate
(FC), charge current (CC) and stress-energy tensor (SET) are simple enough to
facilitate physical interpretation. The mode sum approach is presented as an al-
ternative method in subsection 7.5.2 and the results are represented graphically in

subsection 7.5.3.

7.5.1 Using the Feynman propagator

The t.e.v.s presented in this section are expressed with respect to the vacuum state
and are calculated from the thermal Feynman propagator (2.2.54) after subtracting

the 7 = 0 term, corresponding to the vacuum contribution:

ASP(x,2') = (=1)Sp(t+ijB, @t 2). (7.5.1)

370
The t.e.v.s can be calculated by substituting AS? for Sp in Eqs. (7.4.1). Since
in this case, the coincidence limit sets the difference along the time coordinate to

At = ij( rather than to 0, the following limits of the bi-spinor of parallel transport

A are required:

cos £Aat sin @At )
Mamar = cos é ’ M gy = sin £8 cés wrﬁyt' (7.5.2)

2 2
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Thus, the only non-vanishing traces required in Eqgs. (7.4.1) are:
wAt wAt
cos “5= 4 sin #=
tr(A)geg =4 2 t Ngeg = ———2— 7.5.3
t(A)a= cos % r(uid) sin % cos? wr ( )
leading to the following t.e.v.s:
(: P Ng == Z (=17 tr(A)ap(s), (7.5.4a)
J7#0
At=ijp3
(T =— ) (=1 tr(y"hA)Br(s), (7.5.4b)
Jj#0
At=ij8
. N . . ws Or
(: T g =3 Z (—1) a}Er:lc' {sm Ttr (VuitA) [0y — Our)] (sinﬂ)
Jj#0 At=ijf3 2
At=ijp
+ wcot %Str(A)gWﬁF}, (7.5.4¢)

where the coordinates are implicitly given by At = 50 and ¢ = x

' such that the
geodetic interval s satisfies the following relations:

coswAt 9 ,ws sin® “’TN o WS o WS
COSWSs = — tan®wr, sin? =~ = : cos” — =1 —sin® —
cos? wr 2 cos wr? 2
(7.5.5)
Putting the traces (7.5.3) in Eqs. (7.5.4) gives the following non-zero components:
wAt
;€08 “3=
=—4
< Z cos @S aF(S)7
570 >
At=ij3
wAt
;Sin “2*
< —4 Z ws ﬁF( )
370
At=ij3
4 44 sin @2t
T = J =
< ) Z( ) o < sin ¢ F) ’
370

At

(T )y =T g = (1% 9, = D (-1) M—

Bp. (7.5.6)
J#0

We see that the thermal distribution of fermions has the same SET as a perfect
fluid:

(:T%, 1) 5 = diag(—p, p, p, p)- (7.5.7)

Due to the simplicity of the functions ap and Gp in the massless case (7.3.27)
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the t.e.v.s when k = 0 simplify greatly, as follows:

wAt 4 wAt
1w CoS “5= w* cos £
N ——— 0 = _@W’ (7.5.8)
(Sln 7)
hence, the following expressions are obtained:
WAL 4 JwB
W cos “5= cosh ££5
—2ﬁp = - w——,24(cos wr)t, (7.5.9a)
sin 2 872 (sinh Jw_ﬂ)
2
4i sin “5¢ 3wt cosh &8
| ——=20r| = w2 2 (coswr)*, (7.5.9b)
sin 47 (siuh 222)

giving the following formulae for the t.e.v. of the SET:

Jwﬂ

plimo =2 (7.5.10)

> - cosh
PJk:O——— coswr4z )’ 3

‘= (sinh J“’ﬁ)

As a consequence of the symmetry with respect to the transformation j «» —j of the
summand in (: T :),, the sum over j now runs only over positive integers. It can
be seen that the trace of the SET vanishes when k& = 0, when the equation of state
is f—Z = % It is interesting to note that, in the massless case, the t.e.v. of the SET
depends on the coordinates only through a factor of (coswr)? (for the upper-lower

components).

Two limits can be extracted from Eq. (7.5.10): the small w and the low temper-

ature (large ) limits. At small w, the following expansion can be performed:

o0

pli—o = — (coswr)* Z(_l)j (

12 w?
JAr2pt T 25223

+0)

2
_ 4
=(coswr) <6054 2462—1-0@1 ))
W2

Tn? 287%r 4
T 6054 2432 (1+ 532 )+O(w )- (7.5.11)

The first term is the Minkowski value of the energy density (8.3.15) of massless
fermions at inverse temperature (3, showing that if w is sufficiently small, an observer

close enough to r = 0 will detect a thermal state very close to the Minkowski state.

For large 3 (small temperatures), the following expansion can be made:

jwB —jwp
cosh. 2 g~ biw 1+e ‘]w
(sinh WT’g)4 (1 —e—gwB)4

13n 3n? n? .
-3 2jwB ST D) Wl 7.5.12
ez Z( >+ 3)e ( )
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A substitution back into Eq. (7.5.10) yields:
6wt (coswr)t N g 13n 302 03\ 1+4e 2l
Plizo = D ( 6 2 3

14 == 27 - - -
R + 29 — " " " 1+ e (GHn)ws

6w (coswr)? B owp
=== m(1+5e + O(e ")) (7.5.13)

If & is kept arbitrary, it is more convenient to use the representation (7.3.21) for

(. Expressions analogous to Egs.(7.5.9) can be obtained:

iw cos wAt 2w cos LAt

-1
0= = e P (14 k24 k1 2k (cos? )
sin &2 “smz P (cos “’3)4+2k2 1( 2 L 2 cos 2 ’

47 sin @&t 2w cos ¥at -1
Oy —25 :——41% o F (1+k,2+k;1+2k; (cos2g> )

2

2 + k) sin? @2t -1
MChL 2F1(1+k,3+k;1+2k;(c032%) ) .

cos? o cos? wr

(7.5.14)

The coordinate dependency is non-trivial in this case and the energy density and

pressure now take the form:

p= 4F(2 + k) COS wr)4+2k f:(_l)j cosh Jwﬂ '
4 22T (5 + k) - (cos?wr + Smh2 J“’Tﬂ)%k

2 + k) sinh? 8 2
W RECha) 225 JF [ 14k, 34 ko 1+ 2k Sl
cos? wr 4+ sinh® 2% cos? wr -+ sinh %

cos? wr
—oF [ 1+ K2+ K1+ 2k; . , 7.5.15a
2 ( cos? wr + sinh? ]“Tﬁ> } ( )
_ Wil(2 + k) o5 wp 26 Z B cosh J“’Tﬁ |
4ms 22T(1 + k) — (cos? wr + sinh? 222)2+k
cos? wr
ol (14 k24 k1 + 2k; __ ) 7.5.15b
2 ( cos2 wr + sinh? JW) ( )

where Ny, has been substituted according to Egs. (7.3.21). It can be checked
that the massless limit (7.5.10) is exactly recovered. Graphical representations of
the above results can be found in subsection 7.5.3, where the bi-spinor of parallel
transport approach is validated using the mode sum approach, presented in the

following subsection.
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7.5.2 Mode sum approach

In the mode sum approach, it is easier to work with the renormalised thermal

Hadamard function, which can be written as:

w? (coswr coswr’) 2 Z 1

47 sinwr sin wr’ 1 4+ efE
n4,J

ASM (w,2) = (st —s7), (7.5.16)

where s* are defined in Eqgs. (7.3.3b) and it is understood that the energy E depends
on the particular value of x for each of the terms in s™ and s~. The coincidence

limit of AS/(;)(J:, x') is given by:

2 3 C 1

1 w? (coswr) Z J+3 _

ASE )(:c,:c’)J v—e 27 sin’or ePEx —i 1 [(fg“’”)z B (fE“’“>2] (7.5.17)
ny,j,k

where the functions fg’ﬁ are given by Eq. (7.2.11c) and F, is defined as:
E.=2n, +k+ |+ 3|j+3 (7.5.18)

It is remarkable that in the coincidence limit, the spinor structure of the Hadamard
two-point function is proportional to the identity matrix. Equation (7.5.17) can be

expressed in terms of the functions f using the definition Eq. (7.2.15):

ASél)(x,x')J - _w_2_(coswr)4 Z Jt+s

pv— 27 sin® wr < efEr 4]
n+,5K

X [(fEK,H)Q - (fAJEM)Q + 2tanwrf§mf]§mﬁ] . (7.5.19)

Starting from the formula for the t.e.v. of the SET:

/' —x

Ty =Ly D ASD () — ASD (2. 2D -
(: Tap1)g = 7 Im tr |vaDpAS (z,2") — ASy (2, ") Diaryp) | (7.5.20)

Using Egs. (2.2.55a) and (2.2.28), the fermion condensate (FC) can be related to
the trace of the SET as follows:

_ 1 1. ,
()= ((TH )y = —5961}36@5;”(;5,3; ). (7.5.21)

Furthermore, since tr(vsI'5) = 0, Eq. (2.2.55¢) reduces to:

(- Tap )y = = lim tr {m[aﬁ — 9))A80 (x, 93')} . (7.5.22)

' —x
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If the points are kept arbitrarily split, the trace of the Feynman propagator multi-
plied by 7; (as part of the components T;; of the SET) is given by:

. 2 ’ 3 . 1 .
i (1) _ w? (coswrcoswr’)? (j + 3)sin B, At
2 [’YEASQ (x,x')} E

21 sinwr sin wr’ . ePEr 41
n4,J,K

X [fgmnfgmﬁﬂﬁé‘_%(cosy) - fgmﬁfgmnﬂﬁ_%‘_;(cosy)] . (7.5.23)

2

The components (: T}; :) , vanish due to the presence of sin £, At, while the time-time

s
component of the SET is given by:

(1, =~ L S B (s 17

T sin®wr ePE+ 1
Nt,j
E_(j+3)
ePE- + 1

()2 +(f2)7] } . (7.5.24)

where the subscript 4+ of the energy and radial functions refers to the sign of k,

Lo, By = Eypyypand fE = ff

Next, the trace of AS /él) multiplied by v; can be safely computed at coincidence

along the time axis, since the components T}; have already been shown to vanish:

. ) .y
%tr [’A)’ASE)(x,x/)J At:o} w? (coswr coswr”’) Z{

- 27 sinwr sin wr’ :
n+7j
( frr- fiff x X (' x x)

x,. /
PE- 11 PBy +1> {; (J+§) Pﬁé(cos’y)—l-TPjJré(cosy)}

(B Y 264 )y - P ) }

ePE+ 11 ePE- 11

The operator 0;—0; has a vanishing commutator with functions which are symmetric

with respect to & and x’, hence:

(coswr coswr’)

[ai — Oy, 2] =0, [0;—0y,cosv] =0, [0;— 0y, Pi(cosy)]=0.

sin wr sin wr’

(7.5.26)
Thus, cos~y can be replaced by 1 in Eq. (7.5.25) and the Legendre polynomials can
be replaced using Py(1) = 1 and Pj(1) = 3/(¢ + 1), simplifying the calculations
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greatly. The final result is:

w3 (coswr)? o) (W (f2 ) W (FEL )
(: Tig ->ﬁ—?m Zj(]+§) 2 { ePE- 1+ q eBEL 11 1
ny,

sinwr , . iyt frf- frs
ozl 3) ((51-. — ) (eﬁE i 1) } (7.5.27)

where the Wronskian W,,.(f%, fi) of the functions fi and fI with respect to wr

can be calculated from the Dirac equation (7.2.11c):

er(f:l?f:-li:_) :fzzawrfl_ - (awrf:z)f:—li:_

B PR E DV
2 (D + ) F o S - ——

()7 = (f2)7].-
(7.5.28)

To switch from Cartesian components (z', 2%, #3) to components with respect to the

spherical coordinates (r,0, ¢), the following formulae are useful:

xta?
r2

— diag(1,0,0), 8ij — diag(1,7%, r*sin 0), (7.5.29)

where the (7, j) element on the right of the arrow represent the coordinate component
with respect to the basis (dr,df, dy):

ipd o
Y Gridat = dr?, Sijdr'dr? = dr® + r*d6® + r? sin® 0dp*. (7.5.30)

r2

The t.e.v.s of the FC and of the non-vanishing components of the SET are listed

below:

3

w? (coswr -1 t—fc
()= uZ(ﬁ%)("c+ fe | I f),

T 1 sinwr : ePE+ +1  ePE- 41
n4,J

1 sinwr ePE+ 11 ePE- 41

n4,J

T g = MQMZ(j+%){E+ [(fF) —|—(f;)]+E, (/) —|-(f__)}}’

w? (coswr)? — e
(T, = LW g [er(f+,f+) Ww(f,f)} |

o1 sin?wr ePE+ 41 ePE- +1

ni,j
3 4 + r— + p—
oy _Weoswr)t s o (fEfE fT
¢ T >ﬁ 7 sin®wr Zj(]+2) ePB+r 11 ePE-41)7
Nt
(T%, 0,=(T% )4 (7.5.31)

where the Wronskian has been left in place to keep notation compact. It can be
checked that the relation (7.5.21) between the FC and the trace of the SET is

satisfied. However, the equality between the spatial components of the SET is
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difficult to prove in this setup. Numerical results show that the individual summands
(i.e. at fixed ny and 7) in the radial and angular components are in general not

equal, however, the components as a whole approach the same value.

Although the mode sums provide a reliable (numerical) check on the geometric
approach of the previous subsection, the massless limit in this formalism is as com-
plicated as the k # 0 case. Furthermore, in the geometric approach, the asymptotic
limits for small w or large (3 are easily calculated in the massless case, whereas in the
massive case and in the mode sum approach, sending w to 0 would involve analysing
the infinite order limit of hypergeometric functions or Jacobi polynomials, which are

not well documented.

The mode sum approach can be used almost in a similar fashion for the analysis of
thermal states on the adS space-time rotating at arbitrarily large angular velocities
(), as discussed in subsection 8.3.1. In contrast, the bi-spinor of parallel transport

approach is problematic when € is sufficiently large to form a speed of light surface

(SOL).

7.5.3 Numerical results

Numerical experiments confirm that the mode sum (7.5.31) and geometric approach
(7.5.15) give identical results. In practise, t.e.v.s can be obtained numerically quicker
when using mode than when using the geometric approach at small values of 3, for all
values of k. The geometric approach is slow at k # 0 as it involves the computation

of hypergeometric functions.

Figures 7.2 show the dependence of the FC (: R ) 5. energy density p, pressure
p and equation of state w = % on the radial coordinate. The plots on the left keep
fw = 1.2 constant and compare the t.e.v.s corresponding to different masses. The
plots on the right compare the t.e.v.s corresponding to u = 0 and u = 2w at four

values of the temperature.

In the case k = 0, Eq. (7.5.10) shows that p depends on r through a factor
of cos*wr. Thus its value decreases from a maximum at the origin to 0 on the
boundary, where wr = 7. The same trend is preserved for non-zero values of £,
however, the dependence on the radial coordinate is more complicated, as can be

seen from the plot of the equation of state %'

Fig. 7.3 shows the dependence of the energy density p at the origin on the inverse
temperature. Two regimes can be identified: when (w is small, the field behaves as
if it were massless and t.e.v.s approach their Minkowski values (7.5.11). At large fw,

the energy density exhibits an exponential decrease, as predicted by Eq. (7.5.13).
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Figure 7.2: Plots showing (: v :) 5, the energy density p, the pressure p and the
equation of state w = % (from top to bottom. The plots on the left show profiles for
four masses k at fixed temperature fw = 1.2. The plots on the right show compare
the profiles for the same quantities corresponding to massless (thin coloured curves)
to those corresponding to fermions of mass u = 2w (thick dashed coloured curves)

at four values of the temperature fw.

7.6 Summary

In this chapter, three main results were presented: the renormalised vacuum ex-

pectation values of the fermion condensate (FC) and stress-energy tensor (SET),

the closed form expression of the Feynman propagator (including the bi-spinor of

parallel transport) and the construction of thermal expectation values (t.e.v.s).
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Figure 7.3: The dependence of the energy density at the origin on the inverse tem-
perature /3.
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A key ingredient in the construction of the propagator and of thermal states
wass the bi-spinor of parallel transport, for which an analytic expression is obtained
in subsection 7.1.4 by directly solving the parallel transport equation for the maxi-
mally symmetric anti-de Sitter space. The propagator is constructed using two ap-
proaches: through the traditional time-ordered product mode sum approach, where
it is necessary to set 1’ at the origin to simplify the calculations. The general form
of the propagator can be inferred from the maximally symmetric character of adS,
by identifying the bi-spinor of parallel transport and by using the ansatz (7.3.1).
The second approach is to find the propagator as a solution of the inhomogeneous
Dirac equation, satisfying appropriate boundary conditions. The two approaches
are presented separately and the results are compared to confirm the consistency

and correctness of the methods.

Renormalisation is performed using two methods: the Schwinger-de Witt method
and the Hadamard method. The application of the Schwinger-de Witt method
consists in subtracting from the point-split vacuum stress-energy tensor (SET) the
counter terms calculated in Ref. [24]. The resulting SET is proportional to the
space-time metric g,,, and it matches perfectly the result obtained in Ref. [30] using

the Pauli-Villars regularisation method.

For the Hadamard method, the singular part of the propagator is eliminated
following [59] in a state-independent fashion, leaving behind a remainder which is
no longer a solution of the inhomogeneous Dirac equation. Thus, the SET operator
has to be changed to ensure that the renormalised SET is conserved, as discussed in
Ref. [27]. The result obtained using Hadamard renormalisation matches perfectly

the zeta-function regularisation method presented in Ref. [30].

Thermal states can be constructed either by using mode sums to construct the
thermal Hadamard function (the mode sum approach), or by using the closed form
expression of the Feynman propagator (the geometric approach). The latter ap-

proach exploits the anti-periodicity of the Feynman propagator corresponding to a
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thermal state with respect to imaginary time and requires the closed form expres-
sion of the bi-spinor of parallel transport. The results obtained using the geometric
approach can easily be interpreted physically, showing that the SET of the Dirac
field at finite temperature in adS is that of a perfect fluid.



Chapter 8. Rotating fermions on

anti-de Sitter space

Just as the construction of rigidly rotating states on Minkowski (flat) space, pre-
sented in chapter 4, shares similarities with the construction of vacuum states on
the Kerr (rotating black hole) space-time, it is interesting to study quantum states
on rigidly rotating anti-de Sitter space-time (adS) for its resemblance to the Kerr-
adS space-time. A fundamental difference with respect to the Minkowski space is
that adS incorporates a natural boundary, which prevents the speed of light surface
(SOL) from forming unless the value of the angular momentum Q = || of the

rotation is large enough.

A study of rigidly rotating states on adS for the scalar field is presented in
Ref. [49] and will not be repeated here. Instead, the material of this chapter focuses

solely on the investigation of fermion states.

The properties of the space-time are discussed in section 8.1. Section 8.2 presents
the Dirac equation, its mode solutions and second quantisation and thermal states
are discussed in section 8.3. The full content of this chapter represents original work

due for publication in Ref. [9]. A preview of the results is available in Ref. [6].

8.1 Space-time characteristics

By analogy to the rigidly rotating Minkowski space-time, co-rotating coordinates

can be obtained from the adS coordinates in Eq. (7.1.4) using the transformation:

¢ = Pads — Maas, (8.1.1)

as explained in section 4.1. The metric with respect to the co-rotating coordinates

has the form:

. . 2 .2
ds?=—— [—5adg A+ 20°0 (Sm ”) dtdp + dr*+ (06 + sin? €d<p2)] ,
cos? wr wr w
(8.1.2)
where p = rsin 6 is the distance from the rotation axis and
sinwr ) 2
Eads = 1 — p*Q? ( ) (8.1.3)
wr

235
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Figure 8.1: The structure of the axi-symmetric SOL, presented at ¢ = 0, for various
values of the ratio {2/w. The horizontal and vertical axes represent distances from
and along the rotation axis, respectively. The dotted half-circle centred on (p, z) =
(0,0) represents the boundary of adS, given by 7 = /2% + p? = .

is analogous to ¢ = 1 — p?0? of the rotating Minkowski space-time, defined in
Eq. (4.1.2). This analogy extends to the definition of the speed of light surface
(SOL), defined as the surface where €,qs = 0. Figure 8.1 shows the position of the
SOL for various ratios {2/w. A suitable tetrad for the adS metric (8.1.2) is:

e; = coswr [0 — Q0] ,

% 0] )
e;:cw[ wr (aij_@) +ﬂ} 5 (8.1.4)
T

sin wr 72

having the following associated co-frame one-forms:

i dt
w' = ,
coswr
3 1 sinwr x'a’ 'z’ - tanwr ;
w = 52']‘ - 5 + 5 dx’ + (Q X w) dt. (815)
coswr | wr r r wr

The Cartan coefficients are the same as in Eq. (7.1.12), with the addition of cﬁi :

)

b il j_ Ok
¢ = wsinwr o Cy = coswrska ,
: w(l —coswr , :
éék — g (Ijékz — xzékj) s (816)
R TSN wr

where QF is the k’th component of Q@ = (0,0,€). The connection coefficients

corresponding to the Cartan coefficients in Egs. (8.1.6) can be calculated using
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Eq. (2.2.19):

. @ 4 1
Ft% = wsinwr—, F’ﬁ =3 coswr eijkﬂk,
r
T w(1 — coswr)
Ik rsinwr

(278, — 2'6;1,) - (8.1.7)

As a result, the spin connection changes for the ¢ coordinate:

I =220 (@) + coswr (23,
r
w(1l — coswr
Fk:—g [xk—l—vk (a:'y)} . (8.1.8)

2r sin wr

8.2 The Dirac equation in rotating coordinates

The co-rotating coordinates can be obtained from the adS coordinates by performing
the time-dependent rotation in Eq. (8.1.1). The adS generators of rotation (7.1.105)

are the same as on Minkowski space, in particular:
J, = —10, — 1S, (8.2.1)

where S, = %diag(ag,ag). Hence, the rotation operator for the transformation
(8.1.1) takes the form:

R.[—Qt] =% (cos £ + 2isin £S,)

:diag(e%m, e 2% 3% e_%m)emw@. (8.2.2)

A solution ¥ (z) of the Dirac equation with respect to the co-rotating coordinate
frame can be obtained from the non-rotating adS solution .4 by applying the

above rotation operator, as follows:

P(x) = R, [—Qt|oia(zo1a), (8.2.3)

where the co-rotating and non-rotating coordinates xz and z,q are the same except

for o = @oq — 2. Consequently, the mode solutions of the Dirac equation (7.2.7)
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and (7.2.39) have the following expression:

(coswr)? ~
j =wr—————UE, 24
UE:.jzﬁvm(:L.) wr Sin wr UE7J7N7m<x)7 (8 a’)
[7 L b - _
UE,j,H,m(‘r> - ;6 o [fg,n<r)¢)jn,n(07 90) + fE,m(T)(bm,n(07 @)] ’ (824b)
(coswr)? ~
Vijma = wr————"=VEjmn; (8.2.4c)

T : m—1 iE 1 * - — %
VE,j,m,fi - Z(Sgn/{)(_]') ze Et; [ g,n(r)q)—ﬁ,—m(07 90> + fE,m(T)(I)—i——n,—m(97 @)} )
(8.2.4d)

where the angular functions ®;, (6, ¢) are defined in Eq. (7.2.8a) and the radial
functions ffEt’H(r) are related to fgﬁ(T), given in Eq. (7.2.25) through Eq. (7.2.15).
The co-rotating frequency E is related to the adS energy E through:

E=E-Qm. (8.2.5)

Equation (8.2.5) is actually equivalent to (4.3.3), since m is in both cases the projec-
tion of the total angular momentum on the rotation axis. In spherical coordinates,

m is an odd half-integer, while in Eq. (4.3.3), m is just an integer.

8.3 Thermal expectation values

The construction of rigidly rotating quantum states on adS and bounded Minkowski
space-time share similarities due to adS having a natural boundary. Hence, the co-
rotating and non-rotating vacuum states coincide as long as EE stays positive for
all modes. The frequency spectrum of the rotating system is determined by looking
at the allowed adS energy, by substituting Eq. (7.2.23) into Eq. (7.2.17):

E=wni+j+k+2)—Qm=w2ny +k+2)+wj—Qm. (8.3.1)

Since |m| < j, E stays positive at arbitrarily large values of j only if 2 < w, otherwise
it can become negative. Hence, if () < w, the rotating vacuum coincides with the
adS vacuum. If the vacuum state is the same as in adS, the adS propagator in closed
form, discussed in subsection 8.3.2, can be used for the construction thermal states.
However, if €2 > w, the vacuum state changes and it no longer is described by the
adS propagator, in which case mode sums have to be used to construct adequate

two-point functions.

The mode sum approach, valid for all values of €2, is presented in subsection 8.3.1.
The geometric approach involving the closed form of the adS propagator, valid for

) < w, is considered in subsection 8.3.2.
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8.3.1 Mode sums

As in the Minkowski case, there are two choices for the vacuum state: the Vilenkin
[72] and the Iyer [47] vacua. The thermal Hadamard Green’s function ASél)(:B, ')

with respect to either of these vacuum states can be written as:

3
2

/ o0
AgD ) = 5 (coswr cos wr’)
h (x a:) “ sin wr sin wr’ Z Z

ny=0j,km

w(B)e-iEar ( Frfe el it w*)
—iffro- eyl —f oo eyl

_ w(E)eiEAt ( frroeyl  —if fry-e wi) } (8.3.2)
—ift el —fr e el ) [

where the conventions of subsection 7.5.2 have been used, i.e. f* = ffEtK are the radial

functions introduced in Eq. (7.2.7b) and ¢ = AR
Eq. (7.2.8b). In the above, E=F- Om, E = E + Qm and the thermal weight

factor w(z) depends on the choice of vacuum as follows:

are two-spinors defined in

2
T for the Vilenkin quantisation,
_ e
for the Iyer quantisation.
1 4 efl=l

The weight factor depends implicitly on the sign of Kk = £(j+ %) through the energy:

w2ny +74+k+2) k>0,
g @t ) (8.3.4)

w2ny +j+k+1) k<O0.

From the above expression for E, it follows that in the case when 2 < w, the
Vilenkin and the Iyer vacua coincide, since E > 0:

~ 1 Q
E=w 2n++k+§(3+sgnr§)+j—m— : (8.3.5)
w

The lowest value w [k +1+4+y (1 — %)} of E occurs when ny =0,k <0and m=j.
It is clear that if Q < w, E >0 for all E > 0. However, if €2 > w, for any value of

n4, there are combinations of j and m such that E <0.
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Fermion condensate

The fermion condensate (2.2.55a) can be obtained by multiplying the coincidence
limit of the trace of Eq. (8.3.2) by —3:

2 3
(o), = -2 > @+ = [k + (122 = f)wle ],

o (8.3.6)

where the radial functions ff and fi, defined in Eq. (7.2.7b), take the argument

r,w = w(E) and w = w(E). In the above, it is understood that the energy

in the thermal weight factor multiplying radial functions of positive or negative

(i.e. their subscript is + of —, respectively) also corresponds to positive or negative

k, as follows:
(@+w) [ = [w(B ) +w(EL] P, (@+) 22 = [w(E)+w(E )] f**. (8.3.7)
The inner products wlwi in Eq. (8.3.6) can be replaced using Eqgs. (C.5.1):

— (coswr)? m)!
Gy :>ﬁ: 47rsm wr Z ZZ j+—m§

m_1n+ 0] 0

{(f22 = 20 = m + 1P+ PP+ (£27 = £9)[( 4+ m)* P22 + P}, (8.3.8)

*(cosf) and Py = P! 2(cos#) are the associated Legendre func-

m+
where Pf = P,
Ji§

+1
JE3
tions introduced in section C.2.

Charge current

First, let us show that the t.e.v. of the charge current (: J¢ :>5, given by
& 1 & @),
(1 J% 5= —étr [7 ASS (2" = x)] : (8.3.9)

vanishes everywhere. Taking the relevant traces on Eq. (8.3.2) gives:

w?(coswr)?

(I)y == s D @ = mIE ek + (2 el
o (8.3.10a)

(== OSSO — o)
o (8.3.10D)

Equations (C.5.1) show that the wl@bi terms are even with respect to m — —m,

while @ — @ is odd. Hence, (: J* 1)3 = 0. Equations (C.5.9) can be used to show
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that the summand in Eq. (8.3.10b) is odd with respect to m — —m, implying that

(: J:) 5 = 0. Hence, the net charge current vanishes everywhere in the space-time.

Neutrino current

As argued in Ref. [71] and confirmed in subsection 4.3.2, rotating space-times induce
a non-vanishing neutrino charge current in thermal states. The charge current for

neutrinos (: J¢ :) 5 can be calculated using;

: 1 [ 41 ,
(I g = 5t [765(1 —")ASY (2" = )| . (8.3.11)

Knowing that the trace of vdASél) vanishes, the following expressions can be derived:

iy = LI S )i ) — ),
o (8.3.12a)
Ty = LIS w22 o+ (2 2]
o (8.3.12b)

According to Egs. (C.5.1), Q/JT_¢+ — T )., since they are the complex conjugates
of each other and both are real. Hence, (: Jf ) 5 = 0, implying that rigidly rotating

thermal states contain the same number of neutrinos and anti-neutrinos.

Using Eqs. (C.5.8), the non-zero components of the neutrino charge current can

be expressed in cylindrical coordinates:

5 (coswr)? (G —m)!
2 JP =
SR Arsin®wr Zzzw ) j—i—m)'

ny= Om—1] m

< [(G=m+ D2+ 2P P — (G +m)(f7 + f7) P2 P
(8.3.13a)

: (coswr)? G=—m)!
o w — W)
(o e)s = Srsinwr ;()mz:l]z;b j—l—m)

A2+ 129G —m+1)*P? = P
+ (P + £[G +m)PP? — PP, (8.3.13D)
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or, using Eqs. (C.2.7), in spherical coordinates:

; cos wr —m)!
cJ)
(T2 = 8mw222w w] )]

ny= Omflj m
(P24 2+ 12 [G+m) G —m+1)P- P — PEPY,
(8.3.14a)

) (coswr)? G=-m)!
S JY =
s Srsinwr gozljzmw ) j+m)

X (fP2+ 2= 2= () [G+m)PE P+ (j—m+1)P{PY].
(8.3.14b)

o

1 matl
In the above, Pi = f)]+i2(COS f) and P* = ij"’

functions, introduced in section C.2.

(cos @) are associated Legendre

Stress-energy tensor

The t.e.v. of the SET is given by the formula:

i . / /
<Z TOAZB :>5 = Z__L lim tr [7(@(85) — aﬁ,))ASél) (:C, X ) + {’7(@, Fé)} ASé1)<x7aj )] .

z/—x

(8.3.15)
For its calculation, the following building blocks are required:
H”Ya, ﬁ} AS (x, )] : lim tr [’y(daﬁ)ASS)(m,x’)} : (8.3.16)

It is convenient to keep the part of I'; induced by the rotation together with the

time derivative, by introducing the following notation:

D= % O, (8:3.17)
where
of —coswr(0,— 0, (), TV =@y, (3318)

where Fg is the time component of the spin connection coefficient in the absence
of rotation, defined in Eq. (7.1.11), and (959 contains the time component of the
spin connection coefficient induced by the rotation together with the time derivative

with respect to the tetrad, introduced in Eq. (7.1.7). The following relations can be
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derived:
{7, 7} =0, (8.3.19a)
(56T =22 sinwrf(z x S, (8.3.19D)
r
2wl —coswr ,
— ’ 3.1
i} = o @xS) (8.3.19¢)
v w(l coswr) [ i g P 3
{71} = T orsinor [47 T+ [7 Y ] (x 'y)} : (8.3.19d)
leading to the following results:
1
Ztr |:{757 Fi} ASél)(;U7x>:| =0,
i w3(coswr)*(1 — coswr) ~ _
1 =— E)—w(E
ni,j,K,m
TXo
x [(f*)Q ()%l Tw_]
i
ctr [{7@, ])} ASP(x, )] 0. (8.3.20)

Next, the derivatives can be evaluated as:

lim (92 — 99)ASY (2,2) = _ 2uw(coswr)! 3 E{

z/—x sm
ny,j,K,m

- ( (fF)2; @ M —if fte, @ @zﬂ)
—if frp_@el —(f)v-®yl

_ b i
W( U-oul  —if f;w_ew;) } (3.21)
—if Y @vl —(fT) Yy @)

2 3
) AW n_w (coswr) j
mlglx(a ) ASS (z,2") o C E

- <<f+>2<aj 0y © W )
-Wy —(f7)2(0; = 0y)p- @yt
\2(9. — . T _
o ((f V(05 = 0y)u- @yt W, T) } 3322)
W —(FH)%(0; — 0y )by @ P,
where ;
Wae = il—w Wor (5, £7) £ f7 150 = )z @ 0L, (8.3.23)

The Wronskian W,,.(fT, f~) can be replaced using Eq. (7.5.28).
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The following traces can be calculated:

"t i@, - 3)ASY (w.0")] = ~ ST S u(E) + w(E)

' e 2sin? wr .
n4,J,K,m

X (fP2le, + 20tyl), (8.3.24a)

w3(coswr)? wr

%g}/iinmtr [{vt, ) }AS( uen: )} Sl tan7n+;m[w(ﬁ) +w(E)]

y {fﬂﬁbl (w X 0') v+ f20 (“TU)@@_} (8.3.24b)

iw?(coswr)?

§ lim tr[y;(8; — 3,)ASY (x,27)] =

' —x 8 SiIl2 wr

Y [w(E) +w(B)

n+ 7J7H7m

< [(F5)2(0; — )iy + (f7)%(0; — 9y)w' 4], (8.3.24c)

g lim tr['yz(a 8,)AS ( )] = w?(coswr)

=z 4 sin® wr

> w(B)+w(E)

+1J5 K,

x (—if )Wo'y —yla'yy), (8.3.24d)

2(coswr)?

) (1 n ¥ I ¥o)
1 xhgctr[%(a )8y (w,2)] = = ; [w(E) +w(E)]
n4,7,K,m

)

X x?coswr W(f*, )@ ol + 9l alapy)
+f N0 = 0) (o —vlalyy)| . (8.3.24e)
The only missing ingredient for the derivation of the components of the SET is

a little patience. For (: Tj; :) 5, Egs. (C.5.1) can be used together with Eq. (8.3.24a)
to yield:

(T =~ 2 ZZ B+ v

(24 12310 = m+ VPP + PP+ (42 4 £+ m)*P=2 + P22}
(8.3.25)

Just as in the rotating Minkowski space, there is an off-diagonal component mixing
time and space. Using Egs. (C.5.3) in Eq. (8.3.24¢c), Egs. (C.5.9) in Egs. (8.3.24d)
and Egs. (C.5.4) and (C.5.5) in Eq. (8.3.24b), it can be shown that (: Tj; 1), ~
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(x x /pQ);, which in spherical coordinates translates to (0,0,1) for the 7,0, ¢

components, respectively:

&7 sin? wr
ny= Omfé] =m

(: Ty, :)5— (coser)’ Z ZZ j—l—: )+w(E)]{

7( -7-_2 +f_—2 o fi—2 o f;Z):|

x [(j =m+ )PP+ (j+m)P- P[]

[%(fif: —fHfD) - §tan “r

M[(m_lx . 1 P P+2
sin 6 sin wr ) —m+ ) +(m+ ) }
JARES N Y R
o [m = )+ m) P2 (m o )P . (8.3.26)

The spatial components are determined by Eq. (8.3.24¢), where the contractions
of the 1 bi-spinors are given by Eqgs. (C.5.8d) and (C.5.10e). The terms that ap-
pear in these latter two equations have the following (r, 6, ) tetrad components in

spherical coordinates:

QX (xxQ)

Q
o =(sinf, cos 0, 0), Q =(cosf,—sinb,0), (8.3.27a)
x x (2 xx) Qxax
— =(0,-1,0 =(0,0,1). 8.3.27b
,OQT ( ) ) )7 /)Q ( » Vo ) ( )
The tensors that enter in the expression of (: T}; :) 4 have the following spherical
components:
Qx( Q) sin 6 %cos@ 0
X (x x
. [ poE } =|2cosd 0 0f, (8.3.28a)
0 0 0
o cos —Llsinf 0
10 L 2 8.3.28b
| sin ¢ 0 0], (8. )
0 0 0
000
(Qxaz) (me) o 0 0 (8.3.28¢)
Q ). Q B ’ o
U PR o o1
Q Q Q 0 = 0
(az X (2 X a:)) ( X (a:2>< )) — -1 —cote o). (8.3.284)
AUt AL )
0 0 0
@ ) O 0 —%cotﬁ 0
zx (Axz .
i S ) — =] -1 . 3.2
(= )(i(fz)j) SN

0 0 0
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After changing from (9; — dy) to 0; — 0; in Eq. (C.5.10e), the following expression

is found for the r — r component:

oo X

T 25 = 4ﬂcs?iw£r 22 Z ( +Z§ (B) + w(E)]

ny= Om—é] =m
X [er(f;i_?f;)_}_wwr(fj_af:)}
X {sin@ (j —m+1)P Pt — (j + m)P_P}]
+cos§ [(j+m)(j —m+1)P; P~ + PYPY] |, (8:3.29)

where the Wronskian W,,.(ff, f£) can be calculated from Eq. (7.5.28). Equations

(C.2.7) can be used to further simplify the above expression:

(7, = 5 S5 Uy

=0 m=1j=m

X W (5, F7) + Wor(f5, fO)] [P+ (G +m)?P7%] . (8.3.30)

With a similar application of Egs. (C.2.7), the § — 6 component evaluates to:

0 _
( Ty, = LTI 5 5 S U By w BN 5 1)
ny= Omfé] =m

[+ m)Weaso(PT, P7) + (5 — m + DWeoo(P{, Py)], (8.3.31)

where Weosg(Pf, PL) are Wronskians of the associated Legendre functions PJ and
Py with respect to cosf. The explicit form of the associated Legendre functions,

defined in section C.2, can be used to obtain the following expressions:

1 ) _ ) _

W(P*, P7) ey [(j —m)P-Pf —(j —m+1)PTP]], (8.3.32a)
_ 1 . _ . _

W(PL PL) =) [((j +m)P-Pf — (j+m+1)PTP], (8.3.32b)

Hence, Eq. (8.3.31) can be simplified to:

oo 0 0

T s = oo 3 30 2 Sl E) + w(ENE S - £4)

[(G+m)(2j —2m + 1)P= P} — (j —m+1)(2j +2m + 1)PTP;]. (8.3.33)
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The ¢ — ¢ component follows swiftly:

( Top =5 Saniwsme 33 zm 7 ﬂ [w(E) +wENfEf5 ~ 20

n4= Om—lj m

[(j +m)P-P} +(j —m+1)PtP;]. (8.3.34)

Surprisingly, there appears to be a non-vanishing non-diagonal component in the

spatial sector:

T = o) 5 S S U

n4= Om—lj m
X { [er(f—k’f—;)—}_er(fjvf—_)}
X (cosf [(j —m+1)P; Pt — (j + m)P} P~]
—sin@ [(j +m)(j — m+1)P; P~ + P{ P*])
Sij:ﬂ sin0(fFfr — f417)

x (sinf [(j = m + 1)Weoso(PL, PH) 4 (G + m) Weasa(P7, PY)]

0080 [(j = m+ 1) + 1) Weosa( P2, P2) + Wesa(PF, PH)] )} (8:3.35)

Egs. (C.2.7) can be used to show that the first term in the curly brackets (involving
the Wronskians of the radial functions) is actually 0, while the second term can be

transformed to:

wr(coswr) sm@ —m) —
¢ Lo 0= =g temor ZOZZ e B) e BN =)

d
d(cos )

[P+ (j+m)*P=? — (j —m+1)*P% — P?] . (8.3.36)
Equation (C.2.7) can be applied again to find that:

(:Thg1)5=0. (8.3.37)

8.3.2 The geometric approach

The geometric approach consists in using the ansatz (7.3.1) for the Feynman prop-
agator together with the results in subsection 7.3.2 to compute thermal expectation
values. This approach can only be used if the rotating vacuum coincides with the

adS vacuum (i.e. when Q < w). Since one of the fundamental assumptions used in
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the construction of the adS propagator is that the space-time is maximally symmet-
ric, if the rotating vacuum is no longer the adS vacuum, it becomes the analogue
of the vacuum state considered by Iyer [47] for the rotating Minkowski space-time,
discussed in subsection 4.3.1. This vacuum state no longer characterises a state

which posseses maximal symmetry, hence, the ansatz (7.3.1) does not hold.

Thermal states are described by the thermal Feynman propagator S}g(a:, x'),
which can be obtained from the vacuum propagator Sg(x, z’) using its anti-periodici-
ty property with respect to imaginary time. In subsection 7.5.1, thermal states on
adS were constructed by thermalising with respect to the Hamiltonian Hoqs = 10, .
Rigidly rotating thermal states can be obtained by thermalising with respect to the
+ 1§20,

most easily performed by changing to rotating coordinates, as described in subsec-

Hamiltonian of the co-rotating system H = 0, = i0; which can be

adS adS?

tion 8.3.1. The (adS) Feynman propagator with respect to rotating coordinates can
be written as:

aSr(z,2") = R,(=Qt)Skp(z 2") R (Qt), (8.3.38)

where the rotation operators R,(—t) and R, (2t'), defined in Eq. (8.2.2), act on

the coordinates x and 2’ and the the bi-spinor structure.

Thermal states constructed with respect to the adS vacuum are described by the
difference AQSg(x, z') between the thermal and vacuum Feynman propagators, as
shown in Eq. (7.5.1):

AgSp(,2') = (~1) AaSp(t +ijf, a; t',a'). (8.3.39)
J#0

Thermal expectation values can now be calculated using Eqs. (7.4.1) by replacing
Sp(x, ') with 2059 (z, z').

Fermion condensate

The Fermion condensate (FC) can be calculated using Eq. (7.4.1a) by taking the
trace of the coincidence limit of —AQSQZ (x,2'). Before giving the result, it is worth
noting that scalar product terms of the form 2 remain unchanged under the action
of the rotation operator R,(—€t) (but not under R..(2t')), since R,(—t) rotates
both & and =, keeping the angle between them unchanged. Thus, the following

traces can be computed:

4 cos @At cog 24t
lim tr[R,(—Qt)A(x, 2 )R, ()] = 2 2
ke R JA(@, ) s (OF)] coswr cos 42
lim tr[R,(—Qt)pA(x, 2") R, (Qt)] =0, (8.3.40)

' —x
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where sq is the geodetic interval defined in Eq. (7.1.25) with Ay replaced by Ap —
QAt. The following expression is obtained for the t.e.v. of the FC:

(8.3.41)

8 cosh 42 cosh % aF(sQ)J

_ —1y 2
;( ) COS Wr

Q /
2 L=T
At=ij(

Equation (7.3.21a) can be used for ap, while the following expression can be used

to eliminate the geodetic interval sq:

5 WS

1
sin —J = (8.3.42)
2 Aqft fg,@ Cj

where

w
G = cos® wr (Slnh2 %ﬁ — sin?

(8.3.43)

wr sin? @ sinh? ——=

Qjg\
)

Hence, the t.e.v. of the FC takes the form:

_ 3 Ngp & 8 s G O\
<I¢@D2>ﬁ:$%;( 1)? cosh ‘7 cosh ; (Cj+1>

Gj
Cj—l—l

X o F} <ik:, 2+ k1 £ 2k; ) , (8.3.44)
where the + and — signs correspond to regular and irregular modes, respectively.
It is interesting to note that the sign of the FC changes from positive for regular
modes to negative for irregular modes, resembling the effect of ¢ on the FC (5.3.45)

for rigidly rotating thermal states of fermions obeying MIT boundary conditions.

In the massless limit, the t.e.v. of the FC reduces to:

3 o

_ Qi -\ ?
(: D :szo—;%y( 1)/ cosh jﬁ cosh ;ﬁ (c-il) . (8.3.45)
j=1 J

In the case @ = w when the speed of light surface (SOL) is just about to form,
Eq. (8.3.44) reduces on the equatorial plane (¢ = 7) to:

W3
(: G ;>ﬁJ§2:§ 2]7\rfjkz::coshwﬂ2ﬂ (ik 2 ki 1+ 2k - M5>
(8.3
It is remarkable that the FC is constant throughout the equatorial plane (§ = %)
when 2 = w. In the massless limit, Eq. (8.3.46) further reduces to:

3

53 Cal(w), (8.3.47)

— 1

£ o

k=
Q=
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where ,
> (_1)g+1
Ci(z) = —_ 8.3.48
=3 oy (8:3.48)
It is possible to write Cy(x) in closed form by expanding the denominator in a series:

o0

Cy(z) = 42(-1)]‘+1 D (—1)fse (8.3.49)

s=0

The sum over j can be performed as a geometric series, after which Cy(z) can be

put in the form:

Co(x) = —4— (=1)"In(1 + ™). (8.3.50)

The function Cy(z) can be written in terms of the Q-Pochhammer symbol (a; q)n,
defined as:

n

(a;q)n = H(l —aq’), (8.3.51)

Cy(x) = —4% [(—Le )0 — (—e ", e72) ] - (8.3.52)

Charge current

The charge current (CC) can be calculated using Eq. (7.4.1b) by replacing Sg(x, 2’)
with AgSY (z,2'). Using the following traces:

2 4 8in YA cog LAt
lim tr[y' R, (—Qt)pA(z, 2 )R ()] = 2 2 8.3.53
Jim ) R (—Q0A(, 2 )R ()] =22 (8.3.53)

2
(:c X Q) ¢ cos —‘”QAt sin —QzAt

lim tr['ngZ(—Qt)yiA(x, )R (Qt')] = — 4tanwr

v Qr sin®2

(8.3.53b)

it is easy to infer that the charge current vanishes, as the above terms are odd with

respect to the transformation At — —At¢ when At — ij3:

(:J%:5=0. (8.3.54)
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Neutrino charge current

The neutrino charge current can be calcualted using Eq. (8.3.11) by replacing
AS/él)(x,x’) with 2055 (z, 2'):

. 1 =45
() g =tr {'yo‘ 27 AoSP(x' = x)] : (8.3.55)
Using the following traces:

lim tr[y'y° R.(—Qt) A (2, ') R ()] =0,

A ¢ ¢
lim tr[yy° R.(—Qt)A(z, 2" )R ()] = {cos wr (&Z — 2 cos 9) + = cos 0}
x' —x r r
wA QA
 disin %y SHLSQTt, (8.3.56)
coswr sin

2

the only non-vanishing components of the neutrino charge current can be computed:

3
(- Jﬁ:)B:MZ( 1)/ snh%ﬁs nh 0

42 coswr 4= 2
X CFRo Y (£k, 2 + k14 2k; (), (8.3.57a)
3 . [e.@]
9, wNipsing wjpl Qjﬁ
(: J? '>ﬁ__4—7r2;( 1)7s h—51 h —E
X (R (£k,2 + k14 2k (). (8.3.57b)

In the massless limit, the neutrino CC simplifies to:

(—1)7 sinh “’J’g sinh Qjﬁ

o  wi(coswr)?® cos 6
(i Lot

k=0 i sinh? %ﬂ — sin® wr sin® 0 smh2 %)27
(8.3.58a)
0 J _ W¥(coswr)*sinf i (—1)7 sinh “48 sinh 22
P k=0 42 o (sinh? % — sin? wrsin QSmh2 %)2

(8.3.58h)
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When Q = w, Egs. (8.3.57) reduce to:

e w3 N (coswr)?*2F cos ) (—1)
(-, >5J N An2o2Ek (sinh wjB\2+2k
= adS j=1 m T)
2
¥ oFy |tk 24 k14 2k —— S ET ) (8.3.59a)
€2adS sinh? %ﬁ
w3 N (cos wr)4E2k gin 6§ & —1)J
.JG’. _
(: J, >5J o7 Am2o2EF (sinh <2822k
2
oy | £k, 2 £ k1 £ 2k —— 2 X ) (8.3.59D)
’ " caas sinh? €48

where €,qg, defined in Eq. (8.1.3), reduces when Q2 = w to:
Eads = 1 — sin® wr sin? 0. (8.3.60)

It can be seen that, in the case when Q = w, (: J7 :) 5 vanishes on the equato-
rial plane, while (: J? :) 5 attains a constant value. Setting the mass to 0 reduces
Egs. (8.3.59) to:

. w3(coswr)? cos 6
(- J, :>BJ o = ( 120 Sa(Bw), (8.3.61a)
Q=w adS
5 w3(coswr)*sinf
(.0 %J o = S(Bw), (8.3.61b)
Q=w adS
where
s (—1)7+!

Sy(z) = Z_; G B (8.3.62)

Following the steps leading to Eq. (8.3.52), it is possible to write Sa(x) in a closed

form, by expanding the denominator:
So(aw) =4 (1)) seio (8.3.63)
j=1 5=0

Since there is no (—1)* factor in the sum over s, the above equation can be straight-
forwardly written in terms of the Q-Pochhammer symbol (8.3.51) as:
d

So(x) = —4%(—1; e oo (8.3.64)
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Stress-energy tensor

The formula giving the t.e.v. of the SET can be obtained from Eq. (8.3.15) by
replacing ASél)(a:, ') with 2085 (x,2'). Since (: Thy )5 1s calculated as the trace
of QSg(x,a:’) multiplied by one gamma matrix v°, the ap term in Eq. (7.3.1) does
not contribute (the trace of the bi-spinor of parallel transport A(z,z") multiplied by

any odd number of gamma matrices vanishes, as discussed in subsection 7.1.4).

Computation of (: Tj; :),. The split (8.3.18) for the covariant time derivative

into 81? and F? is useful, since:
IR (—Ot) = R.(—0) coswrd. (8.3.65)

According to Eq. (8.3.19a), the Fg term does not contribute to (: Tj; :) 5. Two traces
are required for this computation: the first is given in Eq. (8.3.53a) and the second

1S:

At QAL
lim tr [v:(07 = 07 Ro(—Qut)hA(z, 2') sin L R, (Qt')] = —4 cos wT cos —5—,
(3.3.66)

where sin %* was added to cancel the sin %* factor in the denominator of #A(xz,2')

(7.1.69b). Also, Br/sin g (7.3.22b) is now a function of ( = —1/sin*%*. Using the

properties:

o wsinwAt
IERCEA T I —— 3.67
(9 = 9)¢ CCosu)r coswr’’ (8 a)
WP Nok(2 £k
9% (fff_)) SN OER) s p k3 2 k1 22k —0), (8367))
2

the following result can be obtained:

(0, — 0) Br iwtNy (2 £ k) sinwAt
p — Oy )= =

sin < 1672 cos wr cos wr’

GRS F (£k,3 £k 1+ 2k; —¢).  (8.3.68)

Thus, the t.e.v. of the energy density takes the form:

W'Nep ¢ ; wjp Q56
(: Ty )= P ey Z(—1)9 cosh 5 cosh —~5

wip
2
—cos® wr Cfingl (+k,2 £ k51 £+ 2k; —Cj)} , (8.3.69)

X [2(2 + k) sinh® == (R Py (k3 4 by 1+ 2k; —())

and reduces in the massless limit to:

4 o0 . . . 2 w]ﬂ
o W - wjp Qjp [ 4¢; sinh” ==
(: T >5J k=0 4m? j_l(_l)JCj cosh 2 cosh 2 ( cos? wr

- 1) . (8.3.70)
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In the case Q = w, Eq. (8.3.69) reduces to:

) 2 1
T Wi Ny (coswr)iE2 ; cosh —”éﬁ
<- tt ~>,8 O—w - 47T2€3:tk - (sinh wj5)4:|:2k
adS j=1 2

X [2(2 + k)QFl (:l:k, 3+ k, 1+ 2k', _CJ) - gadS2F1 (:l:k, 2+ k', 1+ 2]{7, —Cj)] y
(8.3.71)

The presence of €2, in the denominator shows that the t.e.v. of the energy density

diverges as —5— as wr — 7. In the massless limit, Eq. (8.3.71) can be written in
terms of the functions Sy(fw), defined in Eq. (8.3.62):
3wt(coswr)?
(- Ty 1>5J koo = _47T2—€§ds[54(ﬁw) + S2(Bw)]. (8.3.72)
Unfortunately, the method used to obtain the expression (8.3.64) for Sy(z) in terms
of the Q-Pochhammer symbol cannot be applied to Sy(z).

Computation of (: T3; :),. Equation (8.3.19d) shows that the anti-commutator

{7;, Fj} is anti-symmetric \fvith respect to ¢ = 7, therefore, it does not contribute to

(: T3 1) 3 Since the spatial derivatives 0; and 0y do not commute with the rotation

operators R,(—Qt) and R, ('), it is convenient to take them after the rotation is

applied. The traces required for this calculation are Eq. (8.3.53b) and:

wl/linw tr [7;(9; — 0 ) Ro(—Qt)hA (2, ") sin L R., ()] = 4 cos WTAt cos %@j.

(8.3.73)

The spatial derivative of Br(sq)sin “52 can be calculated using a chain rule with

the intermediate variable

C=d ey (8.3.74)
p=—QAt

the spatial derivative of which can be calculated as follows:

r

J
(83 — 85,)CQ = (3 tanwr sin QAt sin 6 (:1:;; Q) . (8.3.75)

The spatial derivative of Sz can be calculated by combining Egs. (8.3.67b) and
(8.3.75):

- i
(05 — 65,)5F(SQ) T V(22 F) sin QAt tan wr (a: a Q)

in ¥22 r{)

sin “52 1672
x PRy (£k,3 £ k; 14 2k; —¢). (8.3.76)
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Thus, the t.e.v. of the spatial components of the SET can be written as:

o0

w* Ny, wjB Q56
(Tit s = = gz gogp o 2 (71 cosh = cosh ==

o Q Q
22 + k) sinhQ%ﬁsin%}r(m)}z )("”Q >C3ik2F1 (£k, 3+ k; 1+ 2k; —())
T T

+6i5 cos® wr G Py (2,2 £ k; 1+ 2k; —(;)] . (8.3.77)

The first term in the curly brackets only contributes to (: Tjs :) 5, while the sec-
ond term makes contributions along the diagonal, leading to the following non-zero

components:

W NLp, Qj
(T )y =— 47r2ik Z( 1) cosh%ﬁc h%ﬁﬁikgﬂ (£k,2 £ k; 1+ 2k;—(;),
j=1

(8.3.78a)

wNek - m Q)3
(Top 1)y =— 47;1@ Z( 1)’ cosh == co ShT [CjikQE (£k,2 £ k1 £ 2k; ()
j=1

0
+2(2 + k) sinh? %ﬂ tan? wrsin® 0 (7, Fy (k3 + k5 1+ 2k; ()

(8.3.78b)

and (: Ty; 1) 5 = (: Ty 1) 5. 1t is remarkable that while (: Ty 1) 5 and (: Tj; 1) 4 clearly
have the same expression in the geometric approach, it was necessary to use numeri-
cal calculations to show that their expressions in the mode sum approach give equal

t.e.v.s.

In the massless limit, Eqgs. (8.3.78a) and (8.3.78b) simplify to:

4 o0
w Jﬁc < QB

T J __ Y 1) cosh 222 , 3.
( >g o 12 < 1( ) cos 5 5 ] (8.3.79a)
4 [o¢]
e _ Wy S (-1 Jﬁ Q50
C Tge >5J k=0 4m2cos?wr — )! cosh == cosh 2

0
X ((3052 wr ¢} + 4sinh? %ﬁ sin? wr sin® 6 CJS) . (8.3.79Db)
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In the case when €2 = w, the components (: Tj; :) 5 and (: T 1) 4 reduce to:

W Ny (cos wr)#2k - cosh? <’
(: Ty :>BJ T U222k Z(_l)JTﬁiﬁk
X oF) (£k,2 £ k1 + 2% —G) | (8.3.80a)
W Ny (cos wr)i#2k & - cosh® <%
(: Tpe 3>5J - 9 2%k Z(_l)j - 1 wiB 24i2k
O—w 4r2e2Eh — (sinh £22)
au ‘]—1 2

X [2(2 & k)e g sin® wrsin® 0 o Fy (£k, 3 + k; 1 4 2k; —(;)

While (: T3 )5 (and hence, (: Ty;:);) approach a constant value throughout the

equatorial plane, (: T4 @) 5 diverges as (coswr)™? as wr — % in the equatorial plane.

The above expressions can be written in terms of the functions Sy(fw) (8.3.62):

wi(coswr)?
(Toe ] g == s 5u(00) + Sa(Bw) (3.3.81a)
1 1
(: Tgp 3>gJ k=0 =- %(4 sin? wrsin® 0 + €,45)[S4(Bw) + Sa(Bw)].

(8.3.81b)

Computation of (: T}; :) g+ The following traces are useful for the computation of
(- Ty :>,g:

lim tr {v;R.(—Qt)[(9; — 9 ) A(z, ) sin L] R (Qt') } =

' —x

Q\" . wAt QA
4w sin wr (m;;r )sinw2tsin Qt, (8.3.82)
lim tr {7iR.(—Q)[(0; — Op )t A(z, 2") sin L]R, (') } =
wr (2xQ\" | wAt | QAL
—4wtan7( ar )sm 5 sin——, (8.3.82h)
tim b [({3. T3} + {7 TN R QA (e, ') sin 45 R ()] =
Q\° | wAt . QA
— 4w coswr tan%(wgr ) sinw2 sin 5 (8.3.82¢)

where Eqgs. (8.3.19b) and (8.3.19¢) were used to establish the last equality. Using
Egs. (8.3.68) and (8.3.76) for the derivatives of fr(s)/sin %, the following expression
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is obtained for (: Tj; :) ;:

<: T‘tAcﬁ :>5

W'Nir(2 £ k) sinwr sin wip . QB
— E 1 h —— sinh ——
472 cos? wr = (= ) n 2 sin 2

wjp Q6
X <cosh2 5 + cosh? T) C;’+k2F1 (k,3+4+k;142k;—(;). (8.3.83)

The massless limit is:
4

wsinwr sin f «— wip . QB 3
o J = 1) sinh 222 sinh 227 .3.84
(: Tig >5 k=0 272 cos? wr ;< ys 2 sin 2 (8:3.84)

while in the 2 = w case, Eq. (8.3.83) reduces to:

WINL(2 & k) (cos wr)? - . cosh? 28
T J = sinwr sin @ -1y 2
( Ty >5 Q=w 2m2e iatsk Z (sinh —“’%ﬁ )AE2k

oFy (k3 + ki 142k —C;) . (8.3.85)

Taking the massless limit on the above equation allows (: Tj, > to be written in
terms of the Sy(x) functions (8.3.62):

w(coswr)?

:>5J = ———5——sinwr sinf Sy(wpB). (8.3.86)

k=0 2
O—w To€,4s

The advantage of the geometric approach is that the resulting expressions can be
easily interpreted physically, however, this approach only works when the thermali-
sation is performed with respect to the maximally symmetric adS vacuum state. The

following section presents graphical representations of the t.e.v.s discussed here.

8.4 Numerical results

The plots in this section show the thermal expectation values (t.e.v.s) of the fermion
condensate (FC), neutrino charge current (CC) and stress-energy tensor (SET) for
massless fermions and for fermions of mass u = 2w at four values of the inverse
temperature fw = {2.0,1.2,1.0,0.8}, for various values of the angular momentum
Q2 = |Q| of the rotation. All plots presented in this section are in the equatorial

plane.
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Figure 8.2: Thermal expectation values across the equatorial plane (¢ = %) of the

fermion condensate (first line), neutrino charge current (second line) and T = T,
(third line) for Q/w < 1 (no speed of light surface present). The thin coloured
lines represent results for massless fermions. The mass for the thick dotted lines is
it = 2w. The non-rotating case {2 = 0 is also discussed in subsection 7.5.3.
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Figure 8.3: Profiles of the fermion condensate (first line), neutrino charge current
(second line) and T = Tp; (from left to right) for @ = w (speed of light surface
just forming at (r,0) = (55,%)). The profiles are constant across the equatorial
plane. Results for massless fermions (thin coloured lines) are compared to those for
fermions of mass p = 2w (thick dotted lines)
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Log[1/gads]

Q/w=15
Log[T¢¢] mmem Pw=0.8
-=- Bw=1.

Log[1/gaus]

Figure 8.4: Logarithm of neutrino charge current (first line) and T3 = T}, (second
line) for 2 = 1.5w across the equatorial plane (the vertical gray line indicates the
position of the SOL). The horizontal axis shows the distance from the horizontal
axis on the left and the logarithm of the distance to the SOL on the right plot. The
plot on the right indicates that the t.e.v.s considered here diverge as inverse powers
of the distance to the SOL. Results for massless fermions (thin coloured lines) are
compared to those for fermions of mass u = 2w (thick dotted lines)
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When ) < w, no speed of light surface (SOL) forms and t.e.v.s stay regular through-
out space. In this regime, both the mode sum and the geometric approaches, pre-
sented in subsection 8.3.1 and subsection 8.3.2, respectively, can be applied and
numerical tests confirm that they yield equivalent results. Plots in this regime of
the t.e.v.s of the FC, § component of the neutrino CC (the r component vanishes
in the equatorial plane) and T}; are given in Figure 8.2 and the plots for (: Tj; :1) 4,
(: Ty t1) g and (: Ty i) 5 are given in Figure 8.5. The plots compare the profiles cor-
responding to various values of the angular velocity of the rotation 2 < w for two
values of the temperature: 3 = w™! (left column) and 8 = 2w~ (right column). At
small values of €2, the profiles corresponding to the rotating states exhibit features
close to those of the non-rotating adS space (also discussed in subsection 7.5.3),
decreasing from a maximum value on the rotation axis to 0 on the boundary, at

wr = 7. As (2 increases, the maximum value shifts away from the rotation axis in-

creasingly closer to the boundary. Also, the component 7, ; becomes non-zero when
Q>0.

us

2
and 0 = 7. Asin the {2 < w case, both the mode sum and the geometric approaches

When €2 = w, the SOL just starts to form on the equator of adS, located at wr =

can be used to compute t.e.v.s. Figure 8.3 shows the t.e.v.s which stay constant
throughout the equatorial plane, namely (: 1) 1)y Jo 1) and (: Ty i1) . The
numerical results confirm the analytic predictions of Egs. (8.3.46), (8.3.59b) and
(8.3.80a), obtained using the geometric approach. In Figure 8.6, the t.e.v.s of T},
T34 and T};; are presented. It can be seen that they diverge as the SOL is approached.
Our numerical results confirm that the order of the divergence is O(e ), as shown
using the geometric approach in Egs. (8.3.71), (8.3.80b) and (8.3.85).

Finally, in the regime {2 > w the geometric approach can no longer be used. In
lack of a suitable asymptotic analysis of the mode sum expressions for the t.e.v.s
under consideration, an estimate of the order of magnitude of the divergence of

t.e.v.s can be made based on numerical results, as follows:
.70 -2
(- Jy -1>5 ~ O(g,45);

(Ten)g =Ty i) g~ Olenis - - €aas)s

(: T 1)~  Tog i) g ~ ( T i1y ~ Olegs” - - €aas), (8.4.1)
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Figure 8.5: Profiles across the equatorial plane (8 = 7) of (: Tj; 1) 5, (: Ty :>6 and
(: Tip 1) 4 (from top to bottom). The thin coloured lines represent results for massless
fermions. The mass for the thick dotted lines is 4 = 2w. The non-rotating case 2 = 0

is also discussed in subsection 7.5.3
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Q/w=1.

6l ---- p2=08

wr

On/2

5 Logl1/&as]

Q/w=1.

Q/w=1.

Figure 8.6: Logarithms of (: Tj; )4, (: Ty :)ﬂ and (: Tipg 1) 5 (from top to bottom)
at 0 = w (speed of light surface just forming at (r,0) = (55, 7)), plotted against
the distance from the rotation axis (left) and logarithm of the distance to the SOL
(right). The t.e.v.s here diverge as the SOL is approached. Results for massless

fermions (thin coloured lines) are compared to those for fermions of mass p = 2w
(thick dotted lines)
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Figure 8.7: Logarithms of (: Tj; 1), (: Ty :)B and (: Tipg 1) (from top to bottom)
across the equatorial plane at 2 = 1.5w (the SOL is shown using a gray vertical
line), plotted against the distance from the rotation axis (left) and logarithm of the
distance to the SOL (right). These t.e.v.s here diverge as the SOL is approached.
Results for massless fermions (thin coloured lines) are compared to those for fermions

of mass p = 2w (thick dotted lines)
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where the notation O(¢™35...e7%) indicates that for various combinations of  and
/3, out numerical results indicate divergences of orders between O(e_15°) and O(g, ).
Unfortunately, the result for (: 1) :7) 5 1s currently not available, due to unexpected

difficulties in its numerical computation.

After a short digression in section 8.5, the conclusions of this chapter are pre-

sented in section &.6.

8.5 Thermal states using the geometric approach

on Minkowski space-time

In section 8.3, rigidly rotating thermal states on anti-de Sitter space-time (adS) were
investigated using two approaches: with mode sums and using the explicit form of
the Feynman propagator. Since the Feynman propagator calculated in section 7.3
describes the maximally symmetric vacuum state of adS, the latter approach can
only be used when the vacuum state of the rotating space-time coincides with the

adS vacuum.

The simplicity of the t.e.v.s obtained using the geometric approach makes its
limitation to the case Q0 < w frustrating. In the hope that (maybe in future work)
there would be a possibility to extend the geometric method to the case of the
non-maximally symmetric rotating vacuum so that it could be used for cases when
() > w, this section is dedicated to answering whether the geometric approach can be
used in the case of unbounded rotating Minkowski space, where there is no regime
(apart from when © = 0) in which the rotating and non-rotating vacua coincide. The
answer is neither yes, nor no. The t.e.v.s calculated in subsection 4.3.2, including
the temperature-independent spurious terms, can be extracted from the geometric
approach expressions, but the method used is a very peculiar regularisation method

which unfortunately does not directly generalise to the case of rotating adS.

8.5.1 Minkowski propagator and thermal expectation values

In this subsection, the geometric approach introduced in Ref. [56] and used in sub-
section 7.3.3 for the anti-de Sitter space-time is used to obtain the Minkowski (non-

rotating) propagator and to calculate thermal expectation values.

Minkowski propagator

Given the maximal symmetry of Minkowski space-time, the Feynman propagator

can be written using the ansatz (7.3.1):

Sr(z, ") = an(s) + Bu(s)n, (8.5.1)
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where the bi-spinor of parallel transport is just the identity matrix and the geodetic

interval is

s* = —n,Ar'Az” = (At)? — (Ax)?, (8.5.2)

where 7, = diag(—1,1,1,1) is the Minkowski metric and Az* = (t — ', — &’).
The tangents to the geodesic can be computed from the geodetic interval (8.5.2):
A
N, = ——2 (8.5.3)

S

The inhomogeneous Dirac equation can be written in the same way as for adS,
hence, the resulting equations for ay; and [y can be obtained from Egs. (7.3.29)

by taking the limit w — 0:

. aOZM
= 8.5.4
ﬁM Za(,U/S)J ( a)
0 3 1
s + 2] o = ar =1 5w, (8.5.40)
resulting in the following equation for a,:
82aM 0aM
2 Bus—— + st ay = —pus’st(x — a'). 8.5.5
() rots + B g s gy = st = ) (8.5.5)

The solution of the above equation (ignoring the pole structure induced by the delta
function on the right hand side) which is regular at spatial infinity (s? — —o0) is
[16, [45):

i
ap — —

8m2s
where HF) (us) is the Hankel function of the first kind (A.1.9) and the overall con-
stant was chosen to match the short-distance behaviour of Eq. (7.3.34) [56]. Sub-
stituting Eq. (8.5.6) in (8.5.4a) and using Eq. (A.1.21d), the following result can be

obtained:

HY (us), (8.5.6)

2
_ P O
By = 87TSH2 (us). (8.5.7)

Thermal expectation values

Using the anti-periodicity of the Feynman propagator with respect to imaginary
time [57], the Feynman propagator ASg(ac, x') for the thermal state (with respect

to the Minkowski vacuum) can be written as

ASp(x,a') = (1Y Sp(t +ijf, @; t, @), (8.5.8)
Jj#0
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The t.e.v.s of the fermion condensate (FC) and stress-energy tensor can be cal-

culated from the above using Egs. (7.4.1):

(sahtp )y = 27252 Z l ,usH(l)(,us)] , (8.5.9)

where

§* = —j23? (8.5.10)

was used in the denominator. Due to its imaginary argument pus = ¢j3u, the Hankel

function can be replaced with the corresponding modified Bessel function (A.1.16):

o0

(T )= 5 O (_j?J BuE (B (8.5.11)

which agrees with Eq. (3.3.74Db).

The t.e.v. of the SET can be calculated in a similar fashion:

T —1)/
( Ty = "5 O Lo sy - 3] (85120)
j=1
-9 o ;
i (—1)
( Ty =—— > H (115) 834 (8.5.12b)
j=1

Applying the connection formula (A.1.16) for the case when pus = ijGu allows the

SET to be written using modified Bessel functions:

Ty = — 2 Z“j?] 80 H (81) + 3K2(iBw)] (8.5.13a)

)die, (8.5.13D)

in perfect agreement with Eqgs. (3.3.74).

The above results validate the geometric approach for the construction of thermal
states on the maximally symmetric Minkowski space. The next section presents an

attempt at applying this method for rotating states.

8.5.2 Rotating thermal states

Let us now switch to co-rotating coordinates. The transformation ¢ — ¢ — Qt
(meaning @pew = Yold — ola) can be written using the generator of rotations about

the z axis J, = L, + S,. Since the orbital part L, of J, commutes with the spin
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part S., the spin part can be calculated for the transformation in question:
R.(—Qt) = e7*% = cos o 2i sin 7SZ = diag(e 2%, 2 72U 3%) (8.5.14)

hence, the transformed Feynman propagator has the following form:

oSp(z,2") = (OdM(SQ) + M’fAt) (cos % — 245, sin %)
S0 2 2
_ Bulsa) {'y - Az cos QTN + 2isin QZAt (v xS, — S.v- :1:’)] , (8.5.15)
SQ

where sq is given by Eq. (8.5.2) with A rotated to Ay — QAE:

Ap — QAL
s> = (At)*> — (Ap)? — 4pp’ cos® e (Az)*. (8.5.16)
The FC is given by the ay, part of Eq. (8.5.15):
(i )y == (~1Ya(sa)
370
P2 = (—1)7 cosh z; , ,
—_ —ips Ky (—ips)], 8.5.17
272 = 27 — p2Q? sinh? z; [—insK(=ips)] ( )
where 530

It is interesting that the sum above is actually not equal to (: 1 :) 5 (4.349). In
particular, the SOL is predicted to be at p{2 = 1, where Eq. (8.5.17) is still finite.
Moreover, there are values of p, 2 and 3 where the denominator vanishes for some
value of j, meaning there are irregularity points different from the SOL. However, the
insight gained by looking at the analytic result (4.3.49) for the t.e.v. of the FC with
respect to the Minkowski (Vilenkin) vacuum suggests that results in the massless
case can be obtained by expanding Eq. (8.5.17) in powers of 5. Since 3 only appears
in the combination z;, an expansion in powers of 3 is equivalent to an expansion in
powers of z;. Since positive powers of j come with positive powers of 3, a mechanism
is needed to make their coefficients vanish. The problem is that if 7 > 0, the sum
over j becomes divergent. In an attempt to eliminate such terms (which shouldn’t

be making contributions anyway), the sum over j can be regularised by replacing
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(—1)7 with (—3)7, for all 5 > 0, for some 0 < z < 1, and using:

_ i (=1y _7r (8.5.192)

Lt 0
_g <_j_i)j :71T_; (8.5.19D)
_ i(_a)j :1%:,’ (8.5.19¢)
p
_ i(—a)jj% = — Li_on(—3), (8.5.19d)
j=1

where Lig(x) is the polylogarithm function [1I [60], defined as:

l

Liy(z) = i —. (8.5.20)

The polylogarithm converges for all complex values of s if |z| < 1. It also converges
for |z] = 1 if PRes > 1. In the present case, we seek to extend the polylogarithm by

analytic continuation to the ¢ function, as follows:

Li_gn(—1) = (1 —22")¢(—2n). (8.5.21)
According to [60],
((=2n)=0, n=123,..., (8.5.22)
hence:
=) (=3Vi ~ (1 =), (8.5.23)
j=1

meaning that the above sum vanishes in the limit z — 1. Thus, we justify ignoring
terms of higher order than j° in the expansion of the t.e.v.s obtained using the
geometric approach and find for the t.e.v. of the FC (8.5.17) the familiar result

(4.3.49):
2 2

T Q
+ @(% + %5), (8.5.24)

B 6%
where € = 1 — p2Q? vanishes on the SOL.

(: W 3)5

For the remainder of this section, the t.e.v. of the SET is be considered only for
the case of massless fermions. Unfortunately, we do not have a method to deal with
mass terms in a consistent manner (a simple expansion in powers of j of the modified
Bessel functions containing the mass dependence would lead to a result polynomial

in the mass, which would only hold for very small masses). The massless limit of
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the propagator (8.5.15) is:

{”yiAt (cos % — 215, sin Q?t)

QAL

QSF<:E7 x/) =
2m2 s,

t
—v - Az cos - 2i sin (v-xS, — S.v- az’)} . (8.5.25)

Noting that:
D;R,(—Qt) = R,(—Qt)0, (8.5.26)

the trace in the expression for (: Tj; :) ; selects only the ~t term:

A&

 4n2?

-y
322 + p*Q* sinh” z;

—1)’ cosh z; ,
=) (22 — p*Q?sinh?® z;)

(: Ty 1) = (8.5.27)

J=1

where, as before, z; = % jB€2. The terms corresponding to non-positive powers of z;

are:

<‘TM‘>_77T2 4_6 n 02 8_166+€2
6084 \3 0 3 832¢4 \3 9 9

ot <64_376€ 196¢*  17¢

3
— | = . D2
64m2ed \ 3 15 * 45 * 45 ) (8:5.28)

The above result matches exactly the mode sum result obtained with respect to the

Minkowski vacuum (Vilenkin’s quantisation), given in Egs. (4.3.51).

The t.e.v.s of the spatial components of the SET can be evaluated using the

following properties:

4 . QAt QAL [ xQ
—_ / — Q1
(V=V")50] 40 ” sin —— cos — < O ) :
X
tr(y[x-~,5.]) =—4i ( q ) : (8.5.29)
yielding:
[ E - ) 0
Ty, = —— —1)’ cosh z; .
SERE 472 jl( Vi coshz; (27 — p*Q? sinh? z;)2

4?02 sinh? 2, zxQ\' [z xQ\"
T (8.5.30)
(27 — p?Q2 sinh” 2;) p<2 Q
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The last term above only contributes to (: T 1) 5

& (—1)7 cosh z;
T i) s =—— J . 8.5.31
o 205 42 Z (22 — p?Q?sinh? z;)? ( 2)

7j=1
&
(Toptlg=—353

19
23 4 3p*Q? sinh” z;

2
(27 — p*Q2sinh” ;)3

(—=1)’ cosh z; (8.5.31b)

Jj=1

and (: T%z 1) 3 = (: Tjp ;). Employing the summation technique used previously, the

following results are obtained:

T2 0? 4 € % 88  17¢?
:T“A:: - — = —_— _— — — 2
1o 2) =15051e + e (3 3) T 192m2a (8 15 15 ) - (8:5:323)
T’ Q0?2 9

(8.5.32b)

n 5 6 456¢ . 124¢€2 . 1763
1927265 5 5 5

The only non-vanishing non-diagonal term, (: Tj; :), can be calculated using:

1

(Tip )y = = (=107 lim tr {[3(0, — 0 )ra(Ds — Dyl aSr(e.2')} . (8.5.33)

4 - r—x’
J#1 At=ij8

Performing the derivatives yields:

& - zjsinh 2;(1 + cosh? ;)

Ty :Q—E —1)7 = I J

(¢ Tig g = 2m 4= =) (22 — p2Q2sinh? 2;)3
J=1 J

Lol T 20 (3 e\ 310 (80 6de 15
TP N\t Topa \2 2) T a0 \31 31 1 31 ) [

(8.5.34)

8.5.3 Summary

In this section, the Feynman propagator corresponding to the fully symmetric Minkowski
vacuum was used to construct rotating thermal states. The construction is physi-
cally not possible, since the rotating vacuum does not coincide with the Minkowski
vacuum and it lacks maximal symmetry. The resulting t.e.v.s do not describe the
rotating system, but the information corresponding to rotating thermal states can

still be extracted, by employing carefully chosen analytic techniques.

Unfortunately, the massive case requires perhaps a different technique, or maybe
a completeley diferent approach. However, given the success of the technique in

the present circumstances, it is maybe not that unreasonable to hope that a similar
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technique might exist for rotating states on adS which would allow the extension
of the domain of applicability of the geometric approach into the case when 2 > w

(i.e. when an SOL forms).

8.6 Summary

Two methods are employed in this chapter for the construction of rigidly rotating

thermal states: the mode sum method and the geometric method.

In the mode sum method, the Hadamard function for the thermal state is con-
structed using mode sums, resulting in thermal expectation values (t.e.v.s) written
as sums over the main quantum number n,, total angular momentum j and z-axis
projection m of the angular momentum. The resulting expressions are unfortunately
too complicated to be interpreted physically, but they are amenable to analysis using

numerical methods.

The geometric approach exploits the equivalence of the rotating and adS vacua
for the case when the angular velocity €2 of the rotation obeys €2 < w. In this case,
it is possible to obtain the Feynman propagator of the rotating thermal state by

rotating and then thermalising the adS vacuum propagator, obtained in section 7.3.

Important features of the t.e.v.s of the fermion condensate (FC), neutrino charge
current (CC) and stress-energy tensor (SET) can be inferred using the geometric
approach. In the limiting case 2 = w, the FC, neutrino CC and (: T}; :I)ﬁ (i.e. the
t.e.v. of T with respect to the Iyer vacuum) stay constant throughout the equatorial

plane. A more in depth discussion is presented in section 8.4.

At the end of this chapter (in section 8.5), an attempt at extending the geometric
approach to the case of rotating thermal states on Minkowski space is made, where
the rotating vacuum does not coincide with the Minkowski vacuum for any non-zero
value of the angular velocity of the rotation. A knowledge of the analytic formula
for t.e.v.s in the rotating Minkowski space time is crucial to devising a technique
which extracts the relevant information out of expressions which do not correspond
to rotating thermal states on Minkowski space-time. Our hope is to generalise this
procedure to the case of the adS space-time, where the geometric approach can be

used with such great success in the cases where it is valid, i.e. when €2 < w.



Chapter 9. Conclusion

Two topics are investigated in this thesis: rotating quantum states on Minkowski
and anti-de Sitter space-times and the renormalisation of vacuum expectation values

on anti-de Sitter space.

Rigidly rotating thermal states are impossible to construct using scalar particles,
while for fermions, our analytic results, presented in subsection 4.3.2, show that
thermal expecation values (t.e.v.s) diverge as inverse powers of the distance to the
speed of light surface (SOL). Following the discussion of Ref. [47], the spurious
temperature-independent terms appearing when the thermal states are constructed
with respect to the Minkowski vacuum (as performed by Ref. [72]) are shown to
disappear if an appropriate rotating vacuum state is considered, with respect to

which no particle mode has negative frequency.

The investigation of rigidly rotating thermal states of fermion particles can prove
relevant to the physics of Kerr black holes, where Kay and Wald [48] proved that
Israel-Hartle-Hawking (IHH) states are not regular for scalar particles [61]. In 1989,
Frolov and Thorne [35] obtained an alternative IHH state which was well defined on
the rotation axis by using different thermalisation procedures for normal and super-
radiant modes. However, Ottewill and Winstanley [62] showed that Frolov and
Thorne’s state is ill defined everywhere throughout the rest of the space-time. In
2005, Casals and Ottewill [22] looked at the quantised Maxwell field on a Kerr back-
ground space-time, arriving at the same conclusion that the IHH state is not regular.
However, the difference in the fundamental nature of fermions and bosons, reflected
in their corresponding Fermi-Dirac and Bose-Einstein statistics, respectively, allows
fermions to form THH states [21].

The discussion of rotating quantum states on Minkowski space-time is concluded
by enclosing the system inside a boundary. As discussed in Ref. [33], thermal states
for scalar fields can now be defined and yield finite t.e.v.s everywhere in the space-
time as long as the boundary is inside or on the SOL. In Ref. [34], Frolov and
Thorne’s [35] suggestion of enclosing the Kerr space-time inside a box before consid-
ering the problem of IHH states is implemented by enclosing the space-time inside
a cylindrical mirror. The expectation value of the stress-energy tensor in this IHH

state is regular everywhere inside the box and thermal close to the horizon.

The boundary is essential for thermal states of rotating fermions as well, due to
the divergences occuring as the SOL is approached. The enclosure of the system
inside the boundary on which spectral [43] and MIT bag [23] boundary conditions

are implemented yields all t.e.v.s finite and well-defined, as long as the boundary

272
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is not outside the SOL. The quasi-Euclidean approach is used in chapter 6 to show
that thermal states diverge on the SOL if the boundary is pushed outside the SOL.
Similar results are expected for the case of fermion IHH states inside a boundary.
The analysis of the Casimir effect shows that the global nature of the spectral
boundary conditions makes their corresponding Casimir divergence one order of
magnitude worse then for purely local boundary conditions, for which predictions
were made in Ref. [3I]. The results for the Casimir divergence obtained using the
MIT bag boundary conditions are similar to those obtained in Refs. [12] 28| 29] for
fermions inside a cylindrical boundary in a 2 + 1-dimensional space-time obeying

MIT bag boundary conditions.

On anti-de Sitter space, the renormalisation of vacuum expectation values with
the Schwinger de-Witt and Hadamard methods give vacuum expectation values in
perfect agreement with the results obtained using the Pauli-Villars and Zeta-function
regularisation techniques, as discussed in subsection 7.4.1 and subsection 7.4.2, re-
spectively. While on adS fermions in thermal states behave as perfect fluids, intro-
ducing rotation changes expectation values by the addition of an SOL at values of
the angular velocity €2 of the rotation larger than the inverse radius of curvature w of
adS. As in the unbounded Minkowski case, the thermal state is not well defined on
and outside the SOL. As () is decreased down to w, the SOL collapses down to the
equatorial circle of adS, after which it disappears completely and all t.e.v.s become

finite throughout the space-time.



Appendix A: Properties of Bessel

functions

This appendix contains some definitions and properties of Bessel functions relevant
to the work presented in this thesis. The first section introduces Bessel functions
of the first, second and third kind as well as modified Bessel functions. The second
section gives asymptotic forms for the Bessel functions for both small and large
values of their argument. Some integrals involving Bessel functions over infinite and
finite are presented in section A.3, including orthogonality relations. Section A.4
is dedicated to the discussion of infinite sums over the order of products of Bessel

functions.a

Most of the properties presented in this appendix are reproduced from standard
reference books, e.g., [1I, 37, [60] [73].

A.1 Definition

This section covers the definition of Bessel functions of the first, second and third
kind as well as of modified Bessel functions and presents some of the recurrence

relations they satisfy.

The Bessel functions of the first, second and third kind are solutions to Bessel’s

equation:

sz—Q—i—zi—F(zQ—VQ) Z,(2) =0 (A.1.1)
dz? ~ "dz S .

The Bessel functions of the first kind of order v are the series solutions to (A.1.1)

Ja(2) = (§>i§ k;!r<(_il)yk+ 0 (%)% (A-12)

The Wronskian of Bessel functions of opposite order is given by:

about z = 0:

WAT ) (2), J)(2)} = 250 (A.1.3)

U4

The two solutions of order ¥ and —v are linearly independent for non-integral v, but

for integer order obey the equation:
J_m(2) = (=1)" T (2). (A.14)

274
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A product of two Bessel functions of the first kind can be written as a series about

z = 0 using the following formula:

L [2\ Ve (—1)* TC(v+p+2k+1) r2\2%
To(2)u(2) = (5) ; KT+ k+ D)0 (p+k+1) T(v+p+k+1) <5>
(A.1.5)

The Bessel functions of the second kind (Neumann functions) can be constructed

from Ji,:
Jy(z)cosvm — J_,(2)

sin v

Y,(z) = (A.1.6)

If the order of the Neumann function is an integer m, the definition (A.1.6) should

be understood as the limit ¥ — m, in which case Y,,(z) admits the following series

representation:
=1 (G) R () i)
_ % (%)mi M((n;—f;)![w(k; 1)+ p(m+k+1)] (%)% (A.1.7)

valid for m > 0, with Y_,,(2) = (=1)"Y,.(2). Here, ¢(z) = I"(2)/T'(2) is the

digamma function.

The functions Y, (z) and J,(z) form a linearly independent set, as can be seen
from their Wronskian: 5
W{J,(2),Y,(2)} = —. (A.1.8)

T2

The Bessel functions of the third kind (Hankel functions) are defined by:

HWY(2) = J,(2) +1iY,(2), HP(2) = J,(2) —iY,(2), (A.1.9)

v

where H) and H® are Hankel functions of the first and second kind respectively.
A series expansion for the Hankel functions of integer order can be obtained using
the series expansions for J,,(z) (A.1.2) and Y;,(2) (A.1.7). The Wronskian of the
Hankel function of the first kind and the Hankel function of the second kind is given
by: .

W{HD (), HY (2)) =~ (A.1.10)

and does not vanish, therefore, the two functions are always linearly independent.

Denoting by C, any of the Bessel functions introduced so far, the following rela-
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tions stand:

%”cy(z) = Cy 1 (2) + Cona(2), (A111a)
2C! (2) = Cp_1(2) — Copa(2), (A.1.11Db)
C(2) =Cpr(2) — gcy(z), (A.1.11c)
C(2) = —Cpra(2) + gcy(z) (A.1.11d)

Let us now turn to the modified Bessel equation, which can be obtained from

(A.1.1) by replacing z with iz:

|:2’2d—2 + z% — (22 + 1/2)] Z,(z) = 0. (A.1.12)

The modified (hyperbolic) Bessel function of order +v is the series solution to
(A.1.12) about z = 0:

L (2) = (%)i ]; NG i v+1) (9% (A4.1.13)

and is related to the Bessel function of the first kind (A.1.2) through:
I(2) = 377 J, (e*37 7). (A.1.14)
The function I,(z) grows exponentially as z — oo and is regular at the origin.

Conversely, the modified Bessel function of the second kind (the MacDonald

function), defined as
ml () — L(2)

2 sin v

K,(z) =

(A.1.15)

is singular at the origin but decays exponentially at large values of the argument.
The functions K,(z) are related to the Hankel function of the first kind (A.1.9)
through:

K(2) =7

e g 2 (A.1.16)
2 | e (e bm), 5 < arg(s) <7

and admit the integral representation:

K, (2) = F(?ﬁlﬂ) (%) /100 dz e~ (12 — 1)7/*71, (A.1.17)

If the order of K, (z) is an integer, the modified Bessel functions of the second kind
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admit the following series expansion:

>—‘

m

Rt =3 () R o (5) )

( m(g) Zq/; (E+1)+p(m+k+ )<2>2k' (A.1.18)

kl(m + k)!
Some useful Wronskians are:
WAL (2), I_,(2)} = — Qsmzm, (A.1.192)
T
1
W{K,(2),1,(2)} = K,s1(2)1,(2) + K, (2)],11(2) = (A.1.19b)

The modified Bessel functions of opposite orders are related through:

[o(z) = L(2) + %K,,(z) sinmy, Ko (2) = Ko (2). (A.1.20)

Denoting by Z, either I,(z), /™ K,(z) or any linear combination of the two, the

following recurrence relations hold:

%”zy(@ = 2, 1(2) — 2o (2), (A.1.21a)
22/(2) = Z,1(2) + Z,41(2), (A.1.21D)
Z(2) = Z,1(2) — gzy(z), (A.1.21c)
Z/(2) = 2,01 (2) + gzy(z). (A.1.21d)

A.2 Asymptotic forms

At small z but fixed and non-vanishing v, the Bessel functions of the first, second

and third kind admit the following asymptotic expansions:

To(2) = ﬁ (5) +oe, (A.2.1a)
FE:) (%) 27, (A.2.1Db)

HM(2) = (%)V Z.? + (5) ﬁéc—f](j;”) L O, (A.2.1¢)
HP)(2) = - (%) FZ.(? +(5) ) (ilcf(;;”) +O(2). (A-2.1d)
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If v = 0, the Bessel functions have the following leading order behaviour:

Jo(2) =1+ 0(2%), (A.2.2a)
Yo(2) = 2In{3Jo(2)} + O(2?), (A.2.2b)
HV(2) = ZIn{ZJy(2)} + O(z?), (A.2.2¢)
HP (2) = =2 {2 Jy(2)} + O(z2). (A.2.2d)

Keeping v fixed, at large z the functions can be approximated by:

J(z) = \/g [cos (z — g — Z) + O(zil)] : (A.2.3a)
N,(2) = % [sin <z — g - %) + 0(2_1)} , (A.2.3b)
HO () = %ei(z”z"ﬁ 1+ 0", (A.2.30)
HO (2) = %M'Z?I) [1+0(:"). (A.2.3d)

The asymptotic forms of the modified Bessel functions [,(z), K,(z) for small

values of the argument z and non-vanishing v are:

L(z) = ﬁ (%) +O(z"), (A.2.4a)
K, (2) = %r(y) (%)_ + %F(—u) (g) O, (A.2.4b)

If v = 0, the leading order term in K, () is:
Ko(z) = —In{2Iy(2)} + O(z?). (A.2.4c)

At fixed v and large z, the modified Bessel functions can be approximated by:

I,(2) =

e? [1_u—1 (k=DE=9) (p—=1)(x—9)(pn—25)
2mz

T P A 31(82)3 +O(Z_4)}’

(A.2.4d)
+ O(z“")] :

(A.2.4e)

e p—1 (p=DE-=9  (-=1)(k—9)(u—25
K, (z) = {1 + 32 21(82)? 31(82)3

2z /T

where 1 = 4v%. If both v and z are allowed to increase, the following approximations
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can be used [19, [60]:

/1,2 2
o) = SRV T AR GamD) [} A (2 a2
v \/ﬂ(zﬂjta?)l/‘l ’

(A.2.5a)
e (a) _ eXP(—\/z/2 +a?2—vin ,,+\/32+a2) { L n O((VQ + a2) 1)}
” V2R + at)i VT a? |
(A.2.5b)
where . -2
A=— 4+ —v——. (A.2.6)

8  24(a?+1?)
For the analysis of the Casimir divergence for fermions, the asymptotic expansions

of the following combinations can be calculated using Eq. (A.2.5a):

V2 4+ a2+ 2vln —MMM—

I? () =TI () :;exp( )
"2 vta TaV/v? + o? v+ \/1/2 +a?
5’ 2 2\—1
—+a2)—|—0((1/ +a®) )|,

1
X |14+ —— 1+
{ 12\/1/2+a2( I
(A.2.7a)

2vVr? + a2+ 2vin )
1/—{—\/1/2—1—&2

, (A.2.7b)

1
= ¢x
T2 + o2 P <
5 2
1— ;3 +O0((W* +a*)™)
12(v%2 4 a?)?

exp <—2\/ V2 +a?2—2vin

«
y—l—\/m)

+O((v* + a2)_1)] . (A.2.7¢)

T
I_i(a) v+ Vi2+a?
5

[ R —
12(v% + a?)?

X

Similarly, the Bessel functions of the first kind admit the following uniform

asymptotic expansions:

J(z>v)= 21 [cos (\/ 22— 12— Varcsecg — %) +0 (1)] ,

m (22 — ]/2)%

(A.2.8a)

J(z<v)= Jl_( L )1exp{m+ulny+\/j}{ 0(%)}
(A.2.8b)
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A.3 Orthogonality relations satisfied by Bessel

functions and some integrals

If the range of the argument z is 0..00, the following relation holds:

/00 dzz J,(kz)J, (K z) = M (A.3.1)

It is possible to write down orthogonality relations if z is confined to a finite interval:

20
/ zdz Ju (fuli) Jl/ (&/m%) = 5€m%Z§J3+1(£Vm)7 (A32>
0
with &,, being the £’th positive zero of J,(2):

Ju(ful) = Oa SV,K—H > gué- (ABS)

A similar orthogonality relation for J,,; reads:

| 2 D2 s 2) = bun 821 o) (A3.4)
0

Using the property

waa} (ass)

pJo(ap) = dip {%[Ji(qp) + J;, 2 (ap)] — 2

which can be proven using the differential equation (A.1.1) satisfied by Bessel func-
tions, the integral of the LHS in (A.3.5) can be written as:

/RdJQ 2 R £ 2 (R — 2T (R TR A3.6
Oppm(qp)—7 m(qR) + J5 1 (gR) q_Rm(Q>mﬁ:1(Q)- (A.3.6)

Starting from the Bessel equation (A.1.1), the following results can be estab-
lished:

R
/ p dp Jn(q' p)Jm(qp) = 2 i%q,Q {¢7n(qd' R) Jins1(qR) = ¢ Jns1 (¢ R) Jin(qR) } -
0 (A.3.7)
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A.4 Formulae for summation over order involving

a product of two Bessel functions

Using Neumann’s Addition Theorem:

Colutv) =Y Copn(u)Ci(v), (A.4.1)

k=+o00

valid for any Bessel function C, it follows that:
D Jn(2) Jmse(2) = G10. (A.4.2)

Formula (A.4.2) can be used in conjunction with the recursion relations (A.1.11) to
further show that:

_Z M (2) Tse(2) = g(aﬁ(s,w), (A.4.3)
f_: Tn(2) Te(2) = %(M—(S-u), (A4.4)
> I nel) = 20— ). (A4.5)
i T (2) Tne(2) = %5% - %(6%%_%), (A.4.6)
f: M2 (2) e (2) = %2(5% + 2000 + 6_o¢) — g(aw — 6 1). (A4.7)

m=—0oQ



Appendix B: Jacobi Polynomials

This appendix provides properties of Jacobi polynomials relevant to the construction
of mode solutions of the Dirac equation on anti-de Sitter space-time, in chapter 7.
The following material is provided for completeness, from standard reference books

[T, 601,

The Jacobi polynomials are solutions of the Jacobi equation:

d? d
{(1 — Zz)@ +[(8—a) = (a+B+2)z]—+nnta+B+ 1)} PP (2) =0,
(B.1)
and are related to the hypergeometric function through the following equation:
1 —
PeB)(2) = <n * a>2F1 <—n, a+pf+n+la+1; 5 Z) . (B.2)
a
The Rodriguez representation of the Jacobi polynomial is:
P(a’ﬁ)(z) = (_1)n(1 —2) Y1+ z)_ﬁﬂ [(1 —2)**" (1 + z)BJF”} (B.3)
" 21! dz" ’

which is equivalent to the following explicit representations:
P?gaﬁ)(z)zf(a—l—n—i-1)F(ﬁ+n+1)z n\(a+pF+n+m (—1)m 1—2
nll(a+f+n+1) £=\m a+m 2
(B.4a)

:F((x—i—n—i—1)F(ﬁ+n+1)i(n)<a+ﬁ+n+m)(_1)n_m<1—l—z)m

nll(a+f+n+1) “=\m B+m 2
(B.4b)

(0 E) &) B

The Jacobi polynomials obey the following orthogonality relation:

/1 dz(1 — 2)(1 + 2)P PP (2) PP ()

1
B 2006+ Pln+a+1)l(n+B+1)
S 2n4a+p+1 nln+a+p+1)

Onm, (B.D)

are normalised according to:

o

P = (") (B.6)

282
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and obey the following reflection rule:

POA)(—z) = (—1)"PBe)(2), (B.7)

Using the explicit representation (B.4a), the following identity can be established:

d* Fa+pB+n+k+1) bBk
& pB) () — (@ kBHR) (Y. B.
Eq. (B.4b) can be used to show that:
d _
(25 48] POOGE) = (84 mpPsto(s), (B.9w)
while with the help of Eq. (B.4a), the following identity follows:
d
[—(1 — Z)dz + a] P( ﬁ)(z) = (a+ n)PéO‘_mH)(z). (B.9b)

A formula useful in subsection 7.3.1 for the computation of the Feynman prop-

agator relates a sum over Jacobi polynomials to a hypergeometric function:

o

Dla+B+n+1) , swp, Lla+B8+1)
E: L(B+n+1) rEEE) = L(B+1)

+6+4+1 + 6+ 2 2t
2F1(a g 704 g B+ 1;

(1470

n=

)(1+@).(B1m

(1+1)?



Appendix C: Properties of spheri-
cal harmonics and applications to
the

Dirac equation

This appendix contains some standard properties of the spherical harmonics, to-
gether with some mathematical details formulae derived for usage in chapters 7 and
8. In particular, the summation formulae in section C.4 are crucial for computing
the sum over m in the construction of two-point functions using mode sums on anti-
de Sitter space (adS) in subsection 7.3.1 and the contraction formulae in section C.5

are useful when writing t.e.v.s on rotating adS in subsection 8.3.1.

C.1 Properties of Legendre polynomials

The Legendre polynomials are solutions of the Legendre differential equation:

d% {(1 B Z2>%PZ(Z>1 F 0L+ 1)Py(z) =0, (C.1.1)

having the following polynomial form:

Py(z) = %in <f) (% ; 2j> (—1)7 272, (C.1.2)

which is equivalent to the following Rodriguez representation:

(C.1.3)

Another way of expressing the Legendre polynomials is through their integral rep-

resentation: 1
Py(z) = — / dp(z +ivV1 — 22 cos p)*. (C.1.4)
0

™

The Legendre polynomials are normalised according to:

P(1) =1 (C.1.5)
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and satisfy the following orthogonality relation:

1
2
dx Py(z)Pp(x) = ——— 0, C.1.6
/1 () P () 1 ( )

Using the Rodriguez representation (C.1.3) and with the help of the property:

dn dn dn —1

p (@) = nf —n ], (€.L17)

xnl

the following identities can be established:

(1’% - €> () :%Pg_l(l'), (C.1.8a)
(w% +0+ 1) Py(z) :%Pg+l(f£). (C.1.8b)

A useful identity which follows from (C.1.8a) is:

L p (). (C.1.9)

{dQ 1-z )+<€+m+2)d%;x—m(€+1)] Pg(x):(€+m)dx

dx?

The following identities |20, [44] are useful for the the construction of two-point

functions on anti-de Sitter space-time, in subsection 7.3.1:

=20+ 1 1-—
Z £+ Py(cosy) :m d(cos@ — cos0)d(p — ),
— 47 2

1 L 7y 5
Py( ~ — O . C.1.10
Z e(cos ) 281n7 'y+24+5760+ ) ( )

C.2 Properties of associated Legendre functions

The associated Legendre functions are generalisations of the Legendre polynomials,

satisfying the following differential equation:

d d m?

dx P (x) =0. (C.2.1)

The associated Legendre functions can be written in terms of the Legendre polyno-

mials: g
P (z) = (—1)™(1 — x2)%dxmpg(a;), (C.2.2)
or in the Rodriguez representation:
m <_1)€ m dﬁ—i—m
P (x) = > (1—2%)2 dx“m(l — 22 (C.2.3)
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and satisfy the following orthogonality relation:

/1 de PP (2) P () — %i 1 Eﬁf”ml;:(su (C.2.4)

Another useful property is the behaviour of P;” under the transformation m — —m:

YT pmg, (C.2.5)

The relation (C.2.2) between P;* and P, can be used together with the identity
(C.1.9) to establish the following identities:

V1—22P"(z) — (0 — m)x P*(z) = — (€ +m) P (z), (C.2.6a)
(6 —m)V1 — 22P"(z) + 2P (z) =P (2), (C.2.6Db)
V1—22P" () + (C+m+ Dz P (z) =0 —m + 1) P (z), (C.2.6¢)
(C+m+1)V1— 2P (z) — 2P (z) = — P (). (C.2.6d)

In the language of chapter 8, the above identities can be translated to:
sinf Py — (j —m+1)cos P, =— (j +m)P", (C.2.7a)
(j —m+1)sinf P_ + cos§ P| =P~ (C.2.7b)
sinf P* + (j +m)cos P~ =(j —m+1)P_, (C.2.7¢)
(j +m)sin® P= — cos PT = — P, (C.2.7d)

where the argument of the generalised Legendre polynomials is cos § and the + and

— signs in the superscripts and subscripts control de values of m and j, respectively,

. m+1
ie. PT = Pj_12.
2

C.3 Properties of spherical harmonics

The spherical harmonics are solutions of the following eigenvalue equations:

d
LYo = mYom, L, = —i@, (C.3.1a)
d? d 1 a2
L?Y,,, = (L + 1Yy, L’=— —cothQ— — ——— C.3.1b
tm = L+ 1)Yom, a2~ "0 T snZodp? (C.3.1b)

and are written in terms of the associated Legendre functions P;"(cos6):

2€+1 (¢ —m)!
Yo (0 " | 1/ T m) 7 ( (cosf). (C.3.2)
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The spherical harmonics are normalised according to the following normalisation

relation:

2m 1
/ dgp/ dcosO0Yy,.(0,0) Y (0, 9) = 8o dmm, (C.3.3)
0 -1

where the complex conjugate of Yy, can be written as:
Yim(0,90) = (=1)"Y (8, @) (C.3.4)

A useful property of the spherical harmonics is the addition theorem:

4

Z Y,"(0, (p)}/ém*(‘g/7 30,) =

m=—/{

20+ 1

Py(cos ), (C.3.5)

in which cosy = sin 0 sin 6’ cos(¢—¢')+cos @ cos . In conjunction with Eq. (C.1.10),

this can be used to establish the completeness relation:
0 )4

Z Z Y (0,0 Yo (0, 0) = 6(p — ¢')0(cos @ — cos b)), (C.3.6)

=0 m=—4

The azimuthal number m can be shifted using the standard so(3) shifters:

L.Y,, = \/(E +m+ 1) Fm)Yemat, Ly = e*%(£0y + i cot 60,). (C.3.7)

Explicitly, the action of the shifters is given by:

(9 + i cot 00,)Yym = VL + 1) —m(m + 1)Ymi1, (C.3.8a)
e (=g + 1 cot 00,) Yo = /(L + 1) — m(m — 1)Yyn_1. (C.3.8b)

The relation (C.3.2) between the spherical harmonics and the associated Legen-

dre functions can be used together with the identity (C.2.6a) to prove the following

identities:
[L—m_ . Cio o M AT /%+1
cos f—i—mYe (0,p) —e ¥ sinb H—ng i Ye W
C39a)
[l , [l — 1 /2€ 1
cos 0 £+mY£ (0, ) + ¥ sind %Y[@l i Yg 1m(
(C.3.9b)

The second of the above identities can be obtained by taking the complex conjugate

of the first and replacing m with —m. Combining the above with the action (C.3.8)
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of the shifters Ly, the above equations can be cast in the form:

git i\/@ m2Y,_1m = (L cos® — sin00p) Yo, (C.3.10a)

20+ 1
\ 2? i 5V D2 = m2Veo = [(€ 4 1) cos 6+ sin 60y] Vi, (C.3.10D)

Finally, Egs. (C.3.10) can be combined with Egs. (C.3.8) and the differential equa-

tion for the spherical harmonics (C.3.1) to prove the following identities:

ym—1 _ e ' [20+3 [
T mr)(—mr2) V2041
(C.3.11a)

i 2043 [ i,
yit = ¢ cos 00y + ¢+ 1)sin 9] Y,”,
BT lamr)(lrmr2V2ert| eny Rl ¢

10y : m
Sine—i—(f—kl)smﬁ]}/,Z :

(C.3.11b)
—ig 20— 1 i0
ymol = ¢ N {_ e i ]Ym, C.3.11c
! VIl+m—1)l+m)V20+1 sin 0 N )
i 20— 1
ymH = ‘ { 69 }Y . (C.3.11d
ST e mep—m Va1 [ o )

C.4 Useful summation formulae

The aim of this section is to compute sums over m of direct products of the form
(0, 0)@® (¢, ¢'), where the four-spinors &, are the solutions (7.2.8) of the angular

eigenvalue problem in a spherically symmetric space-time. The terms of interest are:

m o mi 1 (j—m+1>Y‘Y‘* —V/(j +1)? = m?Y Y
3 ity 27 +2\—\/(J+1)2—m2Y]Y (j+m+ 1Y Y]
1
vy @Y =

(VMG —m+ DYIYT (= m 4 D —m) VY
\/ +m+1) j+m)Y+Y* —\/ +m+1)(j—m)YIY_“‘*
1
\/]+m ]—m—l—l)Y Y_ _\/j+m+1)(j+m)Y_Y+*
\VT—m DG myrye /G rm s DG - my2 vy

1 <j+m)}/j}/t* ] m2)—)—* 4
m R mt

The convention used in the above expressions is that the first function depends on

(0, ¢), while the second one depends on (€', ¢’). The shorthand used for the spherical
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harmonics is Y = YZI% and Y =Y
Using the addition theorem (C.3.5) and the identities (C.3.11), the following

results follow:

1 .
Ve

_1(cos). (C.4.2)

C.5 Contractions of the wﬁl bi-spinors
2

Due to loss of symmetry, the sums over m cannot be performed in the expressions
for t.e.v.s on rotating adS, in subsection 8.3.1. Instead, the contractions of the

bi-spinors have to be performed and simplified accordingly.

C.5.1 Contractions of 9.

The simplest contractions to perform are those coming up in the t.e.v. of the
charge density (8.3.10a) and (8.3.12a) and of the energy density (8.3.24a). Since
the derivatives of these contractions are required for Tj;, the results below are for

arbitrary point splitting:

1 (j m) i(m—2 . — - i(m++
s = e (=229 (j —m 4 1)2P7 Py + ¢ +2>A¢P1Pﬂ . (C.5.1a)
1 I |
ly. =— Ej . mg‘ MDA (j 4 M2 PT P 4 el<m+%>A¢P_+P_+} , (C.5.1b)
m(j+m)lL
1 J m)!r i(m—32 : : - pD— i(mA4-1 ]
Pl = E] + mgv DR —m o+ 1)(j + m)PT P DA PEPE
(C.5.1¢)
1 ) — 1, 1
Yy, = % "2 (j —m 4 1)(j + m) Py P~ + €3 WP*P* .
T (j+m)lL

(C.5.14)

Here, the first and second bi-spinors on the LHS takes arguments (¢', ¢’) and (6, ¢),
respectively. On the RHS, the arguments of the Legendre functions are cosf for
the first occurence and cos @’ for the second, i.e. PP~ = P/ (cos#)P~(cos@'). The
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super- and sub-script signs on the Legendre functions change the value of m and 7,

respectively, by adding or subtracting %, depending on the sign, i.e.:

1
pt=pP" 2 P;

1
Ji§

m—

SIS

P

" (C.5.2)

1
2

It can be checked using Eq. (C.2.5) that the above expressions are even with respect

tom — —m.

The coincidence limit of the following derivatives can be computed:

(=] TGS = ) = m o 1PPE o n+ DPE.
(C.5.3a)

i@ x x) (j —m)!
a:’:x_ 27Tp29 (] —l—m)'

[(m =) +m)’P2 + (m + 3)PP?].

(C.5.3b)

(v - Vel |

The above equations are odd with respect to m — —m.

C.5.2 Contractions of v, sandwiching a o

The charge current vector and the components of the SET other than 7j; require

contractions of ¢’s and their derivatives sandwiching a o matrix.

Let us start with the £, &+ combinations, the coincidence limits of which are
required for the spatial components of the neutrino charge current (8.3.12b). The

(+,+) combinations reduce to:

cosp (j —m+1)!

TO_]_ + = — + .0.4a
Yoy o Gm) PP} (C.5.4a)
t sinp (j —m +1)! +
Whowsy == L ES PP (C.5.4b)
( ) 2

TXo ilJXQ(j— m)! (i b
¢+( )¢+ o ()l (G —m+1)P.PT+ (j+m)PiP],

(C.5.4d)

where Eqs. (C.2.7) were used to obtain the last expression. All the above equations
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J+i
are odd with respect to m — —m. Similarly, the —, — combinations are given by:
oS j—m)! _
o = 27:0 (j(+ — _)1)'13_ P, (C.5.5a)
sin —m)! B
Ulonp_ = 27:0 (j(i p- _>1)|P_ P, (C.5.5b)
1 (G—m)! - . _
AReY :ZW [(j +m)*(P7)? — (Pf)z} , (C.5.5¢)
i [T XoO oz xQy-m)l Lo 4o
Pl ( " )w_ = a0 (£ m)] [(j—m+1)P P+ (j+m)PP].
(C.5.5d)

These equations are, again, odd with respect to m — —m.

The (£, F) combinations are required for the spatial components of the charge
current (8.3.10b), T} and T;

i;» the latter also requiring their derivatives. For the

(4, —) combinations, the following expressions can be found:

1 (7 — Ir . . L
wigﬂ/}i: M[ewJﬂ(m%)Ag@(‘j_m —|—1)PjPJ: _ efz<p+z(m+%)A<p(j+m)P:Pi:| ’
7w (J !

4z (j 4 m)!
(C.5.6a)
7 (19 — Ir . X 1 . . 1
st = T o805 1) P2 Py e Py
(C.5.6b)
1 (j—m)r, .
wiagwfﬂ% R (o) (j—m +1)PZ Py et DAepEp]
(C.5.6¢)

and the combinations —, 4+ follow through complex conjugation and swapping of x

and 2’ in the above:

1 (71— 't o 7
¢Tgl¢+:4_% e—w+l(m+%)ﬁw(j_m +1)P;Pj— ew“(m_%)A“"(j+m)PiP__ ’
7 (5 +m)ll ]
(C.5.7a)
(7 — 't . 1
¢T02¢+:4L% eIPTImE DA (4 1) PP DAY () PP
7 (5 +m)ll ]
(C.5.7h)
] 1 (j—m) i(m—1)Ap : - p—_ ,i(m+3)A¢ p+ p+
¢_U3¢+=Em TR (j+m)(j—m +1)PrPT+ e sDPJrP—]-

(C.5.7¢c)
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The coincidence limit of the combinations (4, —) + (—, +) is:

) — |
Plowp_ +yloy ZCZ:P 8 n Z;, [((j —m+1)PLPT — (j +m)P-P}],
(C.5.8a)
o
o +olop, =7 8 . :Z;, [(j —m+ )P PT — (j+m)P~P7],
(C.5.8b)
1 (= m)

Whosh_ + ol ogh, = [(j +m)(j —m+1)P;P- + PfP*], (C5.8¢)

21 (j +m)!
Qx(xxQ)(j—m)!
2mpQ2 (j+m)!
Q (j—m)!

27 (j +m)!

viev +ylov, = (G = m+1)PLPT — (j +m)P-PY]

[((j +m)(j —m+ )Py P- + P P*].

(C.5.84)

The coincidence limit of the combinations (+, —) — (—, +) is:

U
low. —vlow, =207 8 - ”m?i [(j —m+ )P, Pt + (j +m)P- P,
(C.5.9a)
o
vlowp —ulosp, =228 8 . :3' [(j — m+ )PP+ (j + m)P~P}],
(C.5.9D)
Yhosy_ —ylogy, =0, (C.5.9¢)
o) —m)!
Yoy —vloy, = ;Wp?)zc 8 n Z;, [(j —m+1)P_PF+ (j+m)P_P}].

(C.5.9d)
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Finally, the coincidence limit of the derivatives of the above combinations yield:

(Vi—Vy) (Tﬂraﬁﬁ— - ¢T_011/1+> = % 8 1 Zg:{ (C.5.10a)

Q A
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where WCOSQ((Pf, PT), Wcosg((Pf, P*), etc. are Wronskians of the functions inside

the brackets with respect to cos6:

dg af
d(cosf)  d(cos 9)9'

WCOSG(f?.g) = f (C511)



Appendix D: Gauss’ hypergeome-

tric function

This appendix contains some properties of hypergeometric functions extracted from

standard reference books [11, [60], useful throughout chapters 7 and 8.

The hypergeometric functions can be used to construct solutions to Euler’s hy-
pergeometric differential equation:

d? d
z(l—z)d—:§+[c—(1+a+b) }d—f—abw—o (D.1)
The two linearly independent solutions given as series about z = 0 are 2 F(a, b; ¢; 2)
and 21" Fy(14+a—c, 1+b—c;2—c; z), where the hypergeometric series o F (a, b; c; 2)

is defined as:

F () =T(a+n)T(b+n)z"
Fi(a,b; D.2
2Fifa,biciz) nz ['(c+n) nl’ (D-2)
From this explicit series, the following identities can be established [60]:

Fila+1,b+ e+ 1i2) ==L m (b e; 2) (D.3a)
YA AN y ,C y 2 —abd22 1\a,0;¢c 2), oa

1—a d
oFi(a+1,b;¢2) = 77 9 F(a,b;c; z), (D.3b)

a
d

oFi(a+1,b;c+ 1;2) :ﬁ {a - (1- Z>E] o Fi(a,b;¢; 2), (D.3c)

2
oF (1 + k24 k14 2k; 2) =2 [2F1 (K, 2+ k;2k; 2) — o Fy (K, 1 + k; 2k; )], (D.3d)

2
z
(D.3e)
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Abramowitz and Stegun [I] give the following connection formulae:

1 1 2
o <a,a + 5; c; z) =1+ \/E)_zagFl (2(1,0 — 5; 2c —1; T\/\Z/E) ,

oy (a,b;¢;2) =(1 — 2) "% ) (a, c—b;c; ﬁ) ,

Sy (a0 + mi 6 2) =

D(c)(—2)"" = D(m —n)(a), _,
I'(a+m) z:% I'(c—a—n) :

o0

L(e)(=2)""
[(a+m)T'(c—a)

n!(n +m)!

n=0

(a’)n+m(1 —c+ a)n+m —n
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(D.4a)

(D.4b)

X [In(—=z) + (1 +m+n)+¢(14+n) —¢(a+m+n) —(c—a—m—n)].

(D.4c)
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