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Abstract

Quantum states of Dirac fermions at zero or finite temperature are investigated using

the point-splitting method in Minkowski and anti-de Sitter space-times undergoing

rotation about a fixed axis.

In the Minkowski case, analytic expressions presented for the thermal expectation

values (t.e.v.s) of the fermion condensate, parity violating neutrino current and

stress-energy tensor show that thermal states diverge as the speed of light surface

(SOL) is approached. The divergence is cured by enclosing the rotating system

inside a cylinder located on or inside the SOL, on which spectral and MIT bag

boundary conditions are considered.

For anti-de Sitter space-time, renormalised vacuum expectation values are calcu-

lated using the Hadamard and Schwinger-de Witt methods. An analytic expression

for the bi-spinor of parallel transport is presented, with which some analytic expres-

sions for the t.e.v.s of the fermion condensate and stress-energy tensor are obtained.

Rotating states are investigated and it is found that for small angular velocities Ω

of the rotation, there is no SOL and the thermal states are regular everywhere on

the space-time. However, if Ω is larger than the inverse radius of curvature of adS,

an SOL forms and t.e.v.s diverge as inverse powers of the distance to it.
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Chapter 1. Introduction

Two theories revolutionised the understanding of physics in the twentieth century:

the general theory of relativity and quantum field theory, as successors of special

relativity and quantum mechanics. To date, both theories have been confirmed

experimentally to very high accuracy in their domains of applicability: macroscale

for general relativity and accelerator physics for quantum field theory. Alas, these

two theories are fundamentally incompatible. Since the theory of relativity is entirely

classical, it is expected that it cannot be used for high energy (or small length

scale) systems. Similarly, quantum field theory traditionally singles out a particular

foliation of space-time by fixing a time coordinate to impose equal-time commutation

relations, while at the same time quantum states are defined globally throughout

the space-time, thus appearing to violate the locality principle of general relativity.

While several attempts at formulating a theory which will include both quantum

effects in gravity and interactions between gravity and quantum fields have been

made, no general consensus exists as to which approach will emerge as the theory

of everything. However, it is possible to investigate the departure from classical

theories and the effects of curvature and general covariance requirements on quantum

fields through the semi-classical approach of quantum field theory on curved spaces.

Quantum field theory (QFT) on curved space-times (CS) treats the background

space-time as a solution of the classical Einstein equations. The requirement of

general covariance induces a non-trivial coupling between the propagation of field

quanta and the underlying structure of the space-time through the space-time met-

ric. One of the most highly acclaimed predictions of QFT on CS is the evaporation

of black holes as an example of particle production, through the Hawking effect

[40, 41]. Other areas where quantum phenomena could play important roles are the

creation and stabilisation of wormholes or space-travel through Alcubierre’s mech-

anism [2]. Both these phenomena rely on the existence of negative energy density

sources, an example of which is the Casimir energy induced through the Casimir

effect [46].

While QFT on CS has been studied extensively in the last four decades, most

of the work done in this field was focused on the study of scalar fields, due to their

mathematical simplicity. However, the quantum behaviour of fermions cannot be

inferred directly from that of boson particles, due to the fundamental differences

between them. This difference can be seen explicitly in thermal field theory on

the rotating Minkowski space-time, where thermal states for scalar particles are

impossible to define, while they are regular for fermions up to the speed of light

surface (SOL).

1
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Two main topics are studied in this thesis: rigidly rotating thermal states on

a Minkowski space-time (with or without a boundary) and fermions on the anti-de

Sitter space-time (both rotating and non-rotating).

In 1978, Vilenkin [72] investigated rigidly rotating quantum thermal states for

scalars, fermions and photons, concluding that thermal states are impossible to

achieve for bosons, unless the space-time is enclosed inside a boundary which cuts

out the unphysical space outside the SOL. The mechanism preventing scalar parti-

cles from settling into thermal states is rooted in the density of states factor given by

Bose-Einstein statistics, which allows infinite occupation numbers for particles with

zero local energy. However, energies measured by co-rotating observers are not the

same as the Minkowski energies. Hence, particles with vanishing co-rotating energy

make infinite contributions to thermal expectation values, rendering thermal states

undefinable. On the other hand, the Fermi-Dirac statistics yields finite occupation

numbers for any value of the frequency, allowing fermions to form thermal distribu-

tions which are regular, but only close to the rotation axis. As the distance from

the axis is increased, co-rotating particles rotate increasingly faster, until they reach

the speed of light on the speed of light surface (SOL), where the thermal states of

fermions break down.

Vilenkin [72] reported spurious temperature-independent terms in the thermal

expectation value of the parity-violating neutrino charge current [71] (which he

evaluated on the rotation axis only), caused by the possibilty of wave functions

extending beyond the SOL. However, Iyer [47] demonstrated that there is a method

to quantise fermion fields such that the spurious terms no longer appear in t.e.v.s,

by eliminating modes of negative frequency from the set of particle modes.

For both bosons and fermions, there is a consensus in the literature that the space

outside the SOL has to be somehow removed for thermal rotating quantum states

to be well defined. In the scalar field case, Ref. [33] presents an implementation of

Dirichlet boundary conditions which renders thermal states for scalars well-defined

and finite as long as the boundary is placed inside or on the SOL. We investigate

in this thesis the spectral [43] and MIT bag [23] boundary conditions for fermion

fields and compare their predictions for rotating thermal states and for the Casimir

divergence.

Before moving on to the investigation of thermal states on anti-de Sitter space-

time (adS) using the point-splitting method, the vacuum Feynman propagator must

be renormalised. Using the modes obtained in Ref. [26] and the expression for the

Feynman propagator obtained in Ref. [56], the Hadamard [59] and Schwinger de-

Witt [24] renormalisation methods are used and the results obtained are in excellent

agreement with the Zeta-function and Pauli-Villars regularisation methods, respec-

tively. Using an exact form for the bi-spinor of parallel transport, both non-rotating
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and rotating thermal states can be analysed, as long as the angular velocity of the

rotation does not exceed the inverse radius of curvature of adS.

An introduction to QFT on CS and to the point-splitting method is provided

in chapter 2, followed by an analysis of thermal field theory of scalar and fermion

particles on non-rotating Minkowski space-time in chapter 3. Rotating quantum

states on the unbounded Minkwoski space-time are considered in chapter 4 and

bounded states are discussed in chapter 5. Chapter 6 discusses the alternative

quasi-Euclidean approach which can be used to investigate bounded rotating thermal

states when the boundary is placed outside the SOL.

The renormalisation of the vacuum propagator and the construction of thermal

states on adS are introduced in chapter 7, while rotation is introduced in chapter 8.

Chapter 9 concludes the thesis.

The numerical results presented in this thesis (chapters 4, 5, 7 and 8 were ob-

tained using Mathematica 8.



Chapter 2. General concepts

In this chapter, a brief introduction to field theory and second quantisation in gen-

eral relativity for the Klein-Gordon (section 2.1) and Dirac (section 2.2) fields is

presented. The aim of this chapter is to introduce the notation and formalism

for calculating vacuum expectation values (v.e.v.s) and thermal expectation values

(t.e.v.s) using two-point functions (i.e. Hadamard’s elementary function, the Feyn-

man propagator or the Euclidean Green’s function).

Subsections 2.1.2 and 2.2.3 present the construction of the classical stress-energy

tensor (SET) starting from the Lagrangian of the field theory under consideration.

Subsections 2.1.3 and 2.2.4 introduce the canonical method for performing second

quantisation and the subsequent expressions for the SET and Hamiltonian opera-

tors in terms of modes and one-particle creation and annihilation operators. The

notion of finite temperature is introduced in subsections 2.1.4 and 2.2.5 and subsec-

tions 2.1.5 and 2.2.6 introduce the tools for calculating v.e.v.s and t.e.v.s using the

formalism of point splitting and two-point functions.

2.1 The quantised scalar field

2.1.1 Second quantisation

The classical theory of a neutral scalar field φ(x) of mass µ has as a starting point

the Lagrangian density

L = −1

2

√
−g(x)

{
gµν(x)∂µφ(x)∂νφ(x) + [µ2 + ξR(x)]φ2(x)

}
, (2.1.1)

where R(x) is the Ricci scalar, gµν is the inverse of the space-time metric gµν and ξ

is a numerical factor giving the coupling between the scalar field and the curvature.

All quantities are evaluated at the same point x = (t,x) in space-time, where

x = (x1, x2, x3) groups the spatial coordinates in a three-vector. The Euler-Lagrange

equation following from the Lagrangian density (2.1.1) is the Klein-Gordon equation:

[−� + µ2 + ξR]φ = 0, �φ =
1√
−g

∂λ

[√
−ggλν∂νφ

]
, (2.1.2)

which is covariant under general coordinate transformations. For simplicity of no-

tation, the coordinate dependence shall not be given explicitly unless there is a risk

4
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of confusion. In the above,
√
−g is the square root of the determinant of the matrix

formed by the components gµν of the space-time metric.

Canonical quantisation makes use of the conjugate momentum corresponding to

the field φ(x):

π =
∂L

∂(∂0φ)
= −
√
−g gµ0∂µφ = −

√
−g ∂0φ. (2.1.3)

The coordinate index of the partial derivative on the right hand side of (2.1.3) has

been raised using the familiar rule:

Aλ = gλνAν . (2.1.4)

Before stating the quantisation rule, it is instructive to consider the Hamiltonian

density, defined as:

H = π∂0φ− L =
1

2

√
−g
{
−g00[∂0φ]2 + gij∂iφ∂jφ+ [µ2 + ξR]φ2

}
. (2.1.5)

The Hamiltonian of the system is the integral of the Hamiltonian density (2.1.5)

over the spacelike hypersurface t = const:

H =

∫
d3xH =

1

2

∫
d3x π

←→
∂0 φ, (2.1.6)

where the bilateral derivative is defined as:

f
←→
∂µ g = f(∂µg)− (∂µf)g. (2.1.7)

Expression (2.1.6) follows from an integration by parts of the space derivatives in

(2.1.5), followed by the use of the Klein-Gordon equation (2.1.2).

The quantisation scheme is defined such that the field φ(t,x) obeys Heisenberg’s

equation of motion:

[φ(t,x), H(t)] = i∂0φ(t,x). (2.1.8)

The standard solution is to impose the following equal time commutation rules:

[φ(t,x), π(t,x′)] =iδ3(x− x′),

[φ(t,x), φ(t,x′)] = [π(t,x), π(t,x′)] =0. (2.1.9)

The evolution equation (2.1.8) can be solved, with the solution for a Hamiltonian

with no explicit time dependence being:

φ(t,x) = eiH(t−t′)φ(t′,x)e−iH(t−t′), (2.1.10)

valid for arbitrary initial time t′.
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2.1.2 Stress-energy tensor

In general relativity, the SET plays an active role as the right hand side of Einstein’s

equations:

Rαβ −
1

2
gαβR = 8πTαβ. (2.1.11)

Einstein’s equations can be derived using Hamilton’s principle of least action along

the physical trajectory, starting from the Einstein-Hilbert action:

S =

∫
d4x

16π

√
−g R + Smatter, Smatter =

∫
d4xL, (2.1.12)

where the second term is the Lagrangian density of any matter fields present. As a

consequence, the SET is given by [55]:

Tαβ = − 2√
−g

δSmatter

δgαβ
, (2.1.13)

and assumes the form [16]:

Tµν = (1− 2ξ)∇µφ∇νφ+ (2ξ − 1
2
)gµν(∇φ)2 − 2ξφ∇µ∇νφ+ 2

n
ξgµνφ�φ

− ξ
[
Rµν − 1

2
Rgµν + 2

n
(n− 1)ξRgµν

]
φ2 − 2

[
1
4
−
(
1− 1

n

)
ξ
]
µ2gµνφ

2, (2.1.14)

for the case of a scalar field of mass µ in an n-dimensional space-time, described

by the Lagrangian density (2.1.1). Minimal coupling is achieved by setting ξ = 0,

while conformal coupling corresponds to ξ = 1
4

n−2
n−1

. In a 4-dimensional Ricci-flat

space-time (i.e. Rµν = 0) with conformal coupling (i.e. ξ = 1
6
), equation (2.1.14)

simplifies to [19]:

Tµν =
2

3
∇µφ∇νφ−

1

3
φ∇µ∇νφ−

1

6
gµν [g

λκ∇λφ∇κφ+ µ2φ2]. (2.1.15)

In what follows, only conformally coupled scalar fields are considered.

It can be seen from Eq. (2.1.15) that, for any solution φ(x) of the Klein-Gordon

equation (2.1.2), the trace of the SET is proportional to φ2(x):

T µ
µ = −µ2φ2(x), (2.1.16)

and vanishes for massless particles. The divergence of the SET automatically van-

ishes as a consequence of the Klein-Gordon equation (2.1.2):

∇µT
µ
ν = 0, (2.1.17)

and Tµν is symmetric by construction.

The classical SET can be promoted to a quantum operator by replacing any term
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quadratic in the field by an anti-commutator:

Tµν =
1

3
{∇µφ,∇νφ} −

1

6
{φ,∇µ∇νφ} −

1

12
gµν [g

λκ {∇λφ,∇κφ}+ 2µ2φ2], (2.1.18)

where φ ≡ φ(x) is now the field operator.

2.1.3 Fock space

Let us consider a complete set of mode solutions {fj, f
∗
j } of the Klein-Gordon equa-

tion, with {j} being a set of discrete or continuous labels distinguishing between

independent solutions. The modes are normalised with respect to the inner product:

〈f, g〉 = −i
∫

V

d3x
√
−g[f ∗(t,x)

←→
∂0 g(t,x)], (2.1.19)

such that

〈fj, fj′〉 = δjj′ , 〈f ∗j , f∗j′〉 = −δjj′ , 〈f ∗j , fj′〉 = 〈fj, f
∗
j′〉 = 0. (2.1.20)

In Eq. (2.1.19), g is the determinant of the metric tensor gµν ,
←→
∂0 is the bilateral

derivative (2.1.7) and the integration is performed over the three-dimensional hyper-

surface V of normal dt, where V can be the whole space or some region contained

inside a closed boundary. In the above, the modes fj are identified as solutions

of the Klein-Gordon equation with positive norm. Consequently, Eqs. (2.1.2) amd

(2.1.19) show that their charge conjugates f ∗j also satisfy the Klein-Gordon equation

but they have negative norm.

The inner product (2.1.19) is well-defined if it is time independent:

∂0 〈f, h〉 = (−i)
∫

V

d3x
[√
−g(∂0f

∗)∂0h+ f ∗∂0(
√
−g∂0h)− (f ↔ h)

]
(2.1.21a)

= (−i)
∫

V

d3x
[√
−g(∂0f

∗)(∂0h)− f ∗∂j(
√
−g∂jh)− (f ↔ h)

]
(2.1.21b)

= i

∫
∂V

dΣj

√
−g(f ∗

←→
∂j h). (2.1.21c)

For brevity, only half of the terms have been explicitly written in steps (a) and (b).

Expression (2.1.21b) follows from (2.1.21a) after using the Klein-Gordon equation

(2.1.2), and the last step involves an integration by parts of the term containing

the spatial derivative. The time-invariance of the inner product (2.1.19) requires

that the integral (2.1.21c) over the boundary ∂V of the hypersurface V vanishes.

Assuming that the inner product is well defined, the corresponding completeness

relation can be written as:∑
j

[fj(t,x)∂0f ∗j (t,x′)− f ∗j (t,x)∂0fj(t,x
′)] = − i√

−g
δ3(x− x′), (2.1.22)
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The most general solution of the Klein-Gordon equation can be written as a

linear combination of the mode solutions fj and f ∗j :

φ(x) =
∑

j

[
fj(x)aj + f ∗j (x)a†j

]
. (2.1.23)

Second quantisation promotes φ(x) to an operator, called the field operator, obeying

the commutation relation (2.1.9). Consequently, the coefficients aj and a†j obey the

following commutation relations:[
aj, a

†
j′

]
= δjj′ , [aj, aj′ ] =

[
a†j, a

†
j′

]
= 0. (2.1.24)

The coefficients aj of the positive norm modes fj are called annihilation operators

and are used to define the vacuum quantum state, which has the physical interpre-

tation of a state containing no particles:

aj |0〉 = 0, for all possible j. (2.1.25)

Applying products of creation operators a†j to the vacuum state (2.1.25) creates

multiparticle states, which form a basis of the Fock space:

|j1j2 . . . jn〉 = (n!)−
3
2

∑
σ∈Sn

n∏
i=1

a†jσi
|0〉 . (2.1.26)

The sum runs over all permutations σ of the first n natural numbers, all terms in

the sum being equivalent by virtue of the boson commutation relations (2.1.24).

The normalisation factor is chosen such that the vectors obey the normalisation

condition:

〈j′1 . . . j′m|j1 . . . jn〉 =
δnm

n!

∑
σ∈Sn

n∏
i=1

δjij′σi
, (2.1.27)

where, again, σ is an element of the set Sn of all permutations of the first n natural

numbers. For the case n = m = 2, equation (2.1.27) reads:

〈j′1j′2|j1j2〉 =
1

2
(δj1j′1

δj2j′2
+ δj1j′2

δj2j′1
). (2.1.28)

The identity operator can be written in terms of the basis vectors (2.1.26) as:

I = |0〉 〈0|+
∞∑

n=1

∑
j1

· · ·
∑
jn

|j1 . . . jn〉 〈j1 . . . jn| , (2.1.29)

and satisfies:

I2 = I, I |j1 . . . jn〉 = |j1 . . . jn〉 . (2.1.30)

In terms of one-particle operators, the SET (2.1.18) for a conformally coupled



2.1. THE QUANTISED SCALAR FIELD 9

scalar field in four space-time dimensions takes the form:

Tµν =
∑
j,j′

[
ajaj′Tµν(fj, fj′) + a†ja

†
j′Tµν(f

∗
j , f

∗
j′)

+
1

2

{
aj, a

†
j′

}
Tµν(fj, f

∗
j′) +

1

2

{
a†j, aj′

}
Tµν(f

∗
j , fj′)

]
, (2.1.31)

where Tµν(f, h) is the bilinear form given by:

Tµν(f, h) =
2

3
∇µf∇νh−

1

3
f∇µ∇νh−

1

6
gµν [g

λκ∇λf∇κh+ µ2fh]. (2.1.32)

Expression (2.1.31) will prove useful for the computation of the expectation value

of the stress tensor in one-particle or thermal states.

Let us specialise further to mode solutions of the Klein-Gordon equation (2.1.2)

which satisfy the eigenvalue equations:

i∂tfj = ω̃jfj, i∂tf
∗
j = −ω̃jf

∗
j ,

−i∂tfj = ωjfj, −i∂tf ∗j = −ωjf
∗
j . (2.1.33)

An integration of these equations shows that fj ∼ eieωjt. Hence, ω̃j can be interpreted

as the frequency of the mode j. Under the assumptions (2.1.33), the normalisation

conditions (2.1.19) and the completeness relation (2.1.22) take the form:

(ωj′ + ωj)

∫
d3x
√
−gf∗j (t,x)fj′(t,x) = δjj′ ,

(ωj′ − ωj)

∫
d3x
√
−gfj(t,x)fj′(t,x) = 0,∑

j

ωj

[
fj(t,x)f ∗j (t,x′) + f ∗j (t,x)fj(t,x

′)
]

=
1√
−g

δ3(x− x′), (2.1.34)

which requires ωj ≥ 0 (i.e., instead of the eigenvalue ω̃j of the Hamiltonian). Thus,

the norm and frequency of a mode fj can have opposite signs if ωjω̃j < 0, forcing

modes with negative frequency in the set of particle modes.

The conjugate momentum (2.1.3) reads:

π(t,x) = −i
√
−g
∑

j

ωj

[
fj(t,x)aj − f ∗j (t,x)a†j

]
, (2.1.35)

hence, the Hamiltonian (2.1.6) assumes the canonical form:

H =
1

2

∑
j

ω̃j(a
†
jaj + aja

†
j). (2.1.36)

The key restriction of having positive norm for the particle modes fj implies that
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each particle makes a contribution of ω̃j to the total energy of the system:[
H, a†j

]
= ω̃ja

†
j. (2.1.37)

Equation (2.1.37) shows that particles for which ω̃j < 0 make negative contribu-

tions to the total Hamiltonian of the system, while particles for which ω̃j vanishes

do not contribute. These simple remarks will have important consequences for con-

structing rigidly rotating thermal states containing scalar particles, as discussed in

subsection 4.2.2.

2.1.4 Finite temperature field theory

The concept of temperature is implemented by considering a quantum state con-

taining a thermal distribution of particle states, with the Hamiltonian operator H

playing the role of energy. The expectation value of an operator A in a thermal

state at a finite inverse temperature β = T−1 is defined as:

〈A〉β =
1

Z
tr(e−βHA) =

∞∑
n=0

{ ∑
j1,j2,...jn

〈j1 . . . jn|e−βHA|j1 . . . jn〉

}
, (2.1.38)

where Z is the grand partition function:

Z = tr(e−βH). (2.1.39)

The evaluation of the t.e.v.s of interest in this work requires the t.e.v.s of the

following products of two one-particle operators [72]:

〈a†jaj′〉β =
δjj′

eβeωj − 1
, 〈aja

†
j′〉β =

δjj′

1− e−βeωj
, 〈ajaj′〉β = 〈a†ja

†
j′〉β = 0,

(2.1.40)

where the operators aj and a†j satisfy the commutation relations (2.1.24) and the

commutator (2.1.37) of a†j and H depends on ω̃j.

The requirement (2.1.19) that particle modes have positive norm allows ω̃j to

be negative, in which case the formulae (2.1.40) are no longer correct, since the

expectation value of any operator at T = 0 (β →∞) has to be equal to its vacuum

expectation value (v.e.v.). Therefore, the t.e.v. of an operator in Wick (normal)

order, defined as:

: A := A− 〈0|A|0〉 , (2.1.41)

should vanish. Using (2.1.24) and (2.1.40), it can be seen that:

〈: a†jaj′ :〉
β
−−−→
β→∞eωj<0

−δjj′ , (2.1.42)
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Equation (2.1.42) shows that the difference between the thermal and vacuum ex-

pectation value of, for example, the SET will receive spurious contributions coming

from particle modes with negative frequencies ω̃j, as will be seen in subsection 4.2.2.

The formulae (2.1.40) can be used to compute the t.e.v. of the Hamiltonian

(2.1.36):

1

V
〈: H :〉β =

1

2

∑
j

ω̃j

(
coth

βω̃j

2
− 1

)
=
∑

j

ω̃j

eβeωj − 1
, (2.1.43)

where V is the volume of space, and of the SET (2.1.31):

〈: Tµν :〉β =
∑

j

1

eβeωj − 1

[
Tµν(f

∗
j , fj′) + Tµν(fj, f

∗
j′)
]
. (2.1.44)

It is remarkable that the t.e.v. (2.1.43) of the Hamiltonian is finite for all j. This

is not true for the SET, which receives infinite contributions from modes having

ω̃j = 0, as discussed in subsection 4.2.2.

2.1.5 Green’s functions

Another approach to computing expectation values uses Green’s functions. In quan-

tum field theory, operators like the Hamiltonian or SET can have non-vanishing

v.e.v.s. These can be computed using appropriate regularisation and renormalisa-

tion methods to isolate and eliminate pathological divergences occuring from the

point-like singular behaviour of field commutators (2.1.9), as discussed in chap-

ter 7 for the anti-de Sitter space-time. For the purpose of calculating t.e.v.s, only

the difference between thermal states and the (zero temperature) vacuum state are

considered in this thesis. To this end, only t.e.v.s of Wick-ordered operators (i.e. of

operators with their v.e.v. subtracted) are considered in the remainder of this thesis.

The building blocks for the Green’s functions under consideration in this thesis

are the Wightman functions G±(x′x), defined with respect to the vacuum as:

G+(x, x′) = 〈0|φ(x)φ(x′)|0〉 , G−(x, x′) = 〈0|φ(x′)φ(x)|0〉 . (2.1.45)

The Wightman functions can be used for the construction of Hadamard’s elementary

function G(1)(x, x′):

G(1)(x, x′) = 〈0| {φ(x), φ(x′)} |0〉 = G+(x, x′) +G−(x, x′) (2.1.46)

and of the Pauli-Jordan or Schwinger function:

iG(x, x′) = 〈0| [φ(x), φ(x′)] |0〉 = G+(x, x′)−G−(x, x′). (2.1.47)
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To depart from the vacuum to a thermal state, the Wightman functions (2.1.45)

must be defined as t.e.v.s using (2.1.38). The cyclic property of the trace tr(ABC) =

tr(CAB) and the Heisenberg evolution equation (2.1.10) can be used to show that

G−
β (t,x; t′,x′) =Z−1tr[e−βHφ†(t′,x′)φ(t,x)]

=Z−1tr[φ†(t′,x′)e−βHeβHφ(t,x)e−βH ]

=Z−1tr[φ†(t′,x′)e−βHφ(t− iβ,x)]

=Z−1tr[e−βHφ(t− iβ,x)φ†(t′,x′)]. (2.1.48)

A similar relation can be established for G+
β (t,x; t′,x′), leading to the following

result:

G±
β (t,x; t′,x′) = G∓

β (t± iβ,x; t′,x′). (2.1.49)

By virtue of the commutation relations (2.1.9), the commutator of the field oper-

ator with itself is just a number (i.e. it is proportional to the identity operator with

respect to the Fock space). Thus, the Schwinger function (2.1.47) is independent of

the state in which it is evaluated. To use this property, it is useful to consider its

Fourier transform

iG(x, x′) = iGβ(x, x′) =

∫ ∞

−∞

dω

2π
g(ω; x,x′)e−iω(t−t′), (2.1.50)

where g(ω; x,x′) = gβ(ω; x,x′) is again independent of state. For the Fourier coeffi-

cients g±β (ω; x,x′) of the thermal Wightman functions G±
β (x, x′), defined in a similar

fashion, Eq. (2.1.49) implies:

g±β (ω; x,x′) = g∓β (ω; x,x′)e±ωβ. (2.1.51)

These coefficients are related to g(ω; x,x′) through the definition of the Schwinger

function (2.1.47):

g±β (ω; x,x′) = ±g(ω; x,x′)

1− e∓ωβ
. (2.1.52)

Substituting back into Eq. (2.1.46), the following Fourier representation can be

obtained for the thermal Hadamard function:

G
(1)
β (x, x′) =

∫ ∞

−∞

dω

2π
g(ω; x,x′)e−iω(t−t′) coth βω

2
. (2.1.53)

Since the construction of the thermal Hadamard function only relies on the Fourier

transform of the Schwinger function, the thermal state does not depend on the choice

of vacuum. However, t.e.v.s do depend on the choice of vacuum, through the Wick

ordering process of the operators under consideration.

The t.e.v. of the SET (2.1.18) can be expressed using the thermal Hadamard
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function, defined as ∆G
(1)
β = G

(1)
β −G(1):

〈: Tµν :〉β =
1

2
lim
x′→x

{
2

3
∇µ∆G

(1)
β (x, x′)

←−
∇λ′g

λ′

ν −
1

3
∇µ∇ν∆G

(1)
β (x, x′)

−1

6
gµν

[
gλκ′∇λ∆G

(1)
β (x, x′)

←−
∇κ′ + µ2∆G

(1)
β (x, x′)

]}
, (2.1.54)

where gµ′ν is the bi-vector of parallel transport introduced to parallel transport

tensors from x′ to x along the geodesic connecting the two points, as follows:

Aµ
||(x) = gµ

ν′A
ν′(x′). (2.1.55)

Hence, gµν′ satisfies the parallel transport equations:

nλ′gµ′ν;λ′ = 0, nκgµν′;κ = 0. (2.1.56)

The quadratic field fluctuations (2.1.16) can be calculated as:

〈: φ2(x) :〉β =
1

2
lim
x′→x

∆G
(1)
β (x, x′). (2.1.57)

To introduce the Euclidean Green’s function, useful for the computation of the

contribution to the v.e.v. of the SET due to changes in geometry (the Casimir effect),

it is useful to first consider the Feynman Green’s function, defined as:

iGF (x, x′) = 〈0|T [φ(x)φ†(x′)]|0〉

=θ(t− t′)G+(x, x′) + θ(t′ − t)G−(x, x′), (2.1.58)

where T is the time ordering operator, under which operators are in decreasing order

of the time parameter and the Heaviside (step) function θ(x) takes the value 1 when

its argument is positive and vanishes otherwise. The Feynman Green’s function

can be obtained either by using the mode expansion (2.1.23), or by solving the

inhomogeneous Klein-Gordon equation directly:

(�− µ2)GF (x, x′) = GF (x, x′)(
←−
�′ − µ2) = − 1√

−g
δ4(x− x′). (2.1.59)

The v.e.v. of Tµν is given in terms of GF by (2.1.54) with ∆G
(1)
β replaced by 2iGF .

For the practical purpose of calculating expectation values, it is convenient to change

the time coordinate to the imaginary time τ = it. This change to imaginary time

can be performed at the level of the manifold, by considering the following Euclidean

coordinates [16]:

τ = it, xj
E = xj. (2.1.60)

If the components of the metric mixing space and time are zero (i.e. if git = 0), the
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resulting metric has positive signature and the manifold is Euclidean. Otherwise, the

resulting manifold is quasi-Euclidean [36, 67]. Although it involves a complex-valued

metric, the quasi-Euclidean approach can be useful for the investigation of bounded

rotating states where a speed of light surface forms, as discussed in chapter 6. The

Euclidean equivalent of the Feynman Green’s function (2.1.59) is the Euclidean

Green’s function, satisfying the inhomogeneous field equation:

(�E − µ2)GE(x, x′) = GE(x, x′)(
←−
�′

E − µ2) = − 1
√
gE

δ(τ − τ ′)δ3(x− x′), (2.1.61)

together with the requirement of regularity throughout space-time and appropriate

boundary conditions if the space-time includes a boundary. The following formula

can be used to calculate the v.e.v. of φ2:

〈0|φ2|0〉 = lim
x′→x

GE(x, x′), (2.1.62)

while the SET can be calculated using:

〈0|Tµν |0〉 = lim
x′→x

{
2

3
∇µGE(x, x′)

←−
∇λ′g

λ′

ν −
1

3
∇µ∇νGE(x, x′)

−1

6
gµν

[
gλκ′∇λGE(x, x′)

←−
∇κ′ + µ2GE(x, x′)

]}
, (2.1.63)

where all coordinate indices refer to Euclidean coordinates. In this work, Euclid-

ianisation is used solely for the investigation of the Casimir effect on the rotating

Minkowski space in the presence of a boundary. This is discussed for the scalar case

in subsection 5.1.3.

2.2 The quantised Dirac field

2.2.1 Gamma matrices

To construct the Dirac equation, it is necessary to couple its spin part to an or-

thonormal tetrad eα̂ = eµ
α̂∂µ. The tetrad is defined such that the metric tensor has

the components of the Minkowski metric ηα̂β̂ = diag(−1, 1, 1, 1) with respect to its

dual co-frame, ωα̂ = ωα̂
µdx

µ:

g = gµνdx
µ ⊗ dxν = ηα̂β̂ω

α̂ ⊗ ωβ̂. (2.2.1)

The co-frame is dual to the tetrad in the sense that:

〈ωα̂, eβ̂〉 ≡ ωα̂
µe

µ

β̂
= δα̂

β̂
. (2.2.2)
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In this work, hatted indices refer to components with respect to the orthonormal

tetrad.

To construct the Dirac equation, a set of four anti-commuting matrices, called

the γ (gamma) matrices, must be introduced. On flat space-time, these matrices

satisfy the following anti-commutation relations:{
γα̂, γβ̂

}
= −2ηα̂β̂, ηα̂β̂ = diag(−1,+1,+1,+1). (2.2.3)

and are self-adjoint with respect to the Dirac adjoint:

γα̂ = γ 0̂γα̂†γ 0̂ = γα̂, (2.2.4)

or equivalently, γ 0̂ is hermitian and γ î are anti-hermitian.

Following the requirement of covariance of the Dirac equation (to be introduced

later) under Lorentz transformations, the anti-hermitian generators of Lorentz trans-

formations are given by [46]:

Σα̂β̂ =
1

4

[
γα̂, γβ̂

]
. (2.2.5)

The spin operators (generators of rotations) are given by:

Σî =
1

2
εîĵk̂Σ

ĵk̂, (2.2.6)

where εîĵk̂ is the Levi-Civitta symbol, taking the value 1 (−1) when (̂i, ĵ, k̂) is an

even (odd) permutation of (1, 2, 3).

In this thesis, the γ matrices are taken to be in the Dirac representation, as

follows [46]:

γ 0̂ =

(
1 0

0 −1

)
, γ î =

(
0 σi

−σi 0

)
, (2.2.7)

where the Pauli matrices σi are given by:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.2.8)

and obey the following relations:

{σi, σj} = 2δij, [σi, σj] = 2iεijkσk. (2.2.9)

The anti-hermitian generators of rotations (2.2.6) are:

Σi = − i
2

(
σi 0

0 σi

)
, (2.2.10)
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and obey the following relations:

{Σi,Σj} = −1

2
δij, [Σi,Σj] = εijkΣk. (2.2.11)

The chirality operator γ5 can be defined as:

γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
. (2.2.12)

The anti-commutator of γ5 with any other gamma matrix vanishes:

{
γ5, γµ

}
= 0. (2.2.13)

The chirality operator is especially important for massless Dirac fermions, in which

case the Minkowski Dirac equation iγµ∂µψ(x) = 0 can be put in the form [46]:

iγ5∂tψ = 2pW0ψ, (2.2.14)

where W0 is the helicity operator introduced in Eqs. (3.3.1). If ψ is a helicity

eigenvector with positive frequency then γ5 = 2λ measures the helicity of ψ. If ψ

is a negative frequency eigenvector of the helicity operator, γ5ψ = −2λψ, therefore,

negative chirality means negative helicity for positive frequency modes and positive

helicity for negative frequency modes.

2.2.2 Second quantisation

The Lagrangian density for a spin 1
2

Dirac field of mass µ has the form [16]:

L =
√
−g
[
i

2

(
ψγα̂eλ

α̂Dλψ −Dλψγ
α̂eλ

α̂ψ
)
− µψψ

]
, (2.2.15)

where Dµ is the covariant spinor derivative operator:

Dµ = ∂µ − Γµ, (2.2.16)

written using the spin connection coefficients Γµ, defined as:

Γµ =
1

2
ωα̂

µΓβ̂γ̂α̂Σβ̂γ̂. (2.2.17)

The tetrad vectors {eα̂} and their dual one-forms {ωβ̂} are defined (up to a Lorentz

transformation) by Eq. (2.2.1). The connection coefficients Γβ̂γ̂α̂ are defined as:

Γβ̂γ̂α̂ = ηβ̂ρ̂ 〈ω
ρ̂,∇α̂eγ̂〉 , (2.2.18)
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which can also be written in terms of the Cartan coefficients c γ̂

α̂β̂
:

Γβ̂γ̂α̂ =
1

2
(cβ̂γ̂α̂ + cβ̂α̂γ̂ − cγ̂α̂β̂), c γ̂

α̂β̂
= 〈ωγ̂,

[
eα̂, eβ̂

]
〉 . (2.2.19)

The resulting Euler-Lagrange equation is the Dirac equation in a covariant form:

(iγα̂eλ
α̂Dλ − µ)ψ(x) = 0. (2.2.20)

The Hamiltonian following from the Lagrangian (2.2.15) is:

H =
i

2

√
−g
(
ψγ0∂tψ − ∂tψγ

0ψ
)
. (2.2.21)

Heisenberg’s equation of motion,

[ψ(t,x), H(t)] = i∂0ψ(t,x), (2.2.22)

is satisfied if the following equal time anti-commutation relations hold:

{
ψa(t,x

′), ψb(t,x)γ0(t,x)bc

}
=(−g)−1/2δacδ

3(x− x′),

{ψa(t,x), ψb(t,x
′)} =0, (2.2.23)

where the subscripts a, b, c are spinor indices and the summation of repeated indices

is implied. The solution to Heisenberg’s equation of motion is

ψ(t,x) = eiH(t−t′)ψ(t′,x)e−iH(t−t′). (2.2.24)

where t′ is an arbitrary initial time.

2.2.3 Stress-energy tensor and conserved current

Due to the dependence of the Dirac Lagrangian (2.2.15) on the metric through the

tetrad vectors eα̂, it is convenient to replace the derivative with respect to gµν in

(2.1.13) using the chain rule:

δ

δeλ
α̂

= ηα̂β̂(eµ

β̂
δν

λ + eν
β̂
δµ

λ)
δ

δgµν
,

which gives:

Tµν = − 1√
−g

δL
δeµ

α̂

ηα̂β̂ω
β̂
ν . (2.2.25)

The quantum expression for the SET is obtained by substituting the Dirac La-

grangian density (2.2.15) in (2.2.25) and replacing any terms quadratic in the field
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by a commutator:

Tµν = − i
4

{[
ψ, γ(νDµ)ψ

]
−
[
D(νψγµ), ψ

]}
, (2.2.26)

where round brackets indicate symmetrisation. The commutators above refer to the

order in which the field operators ψ and ψ act on quantum states, with the spinor

indices left unchanged, as explained in Eq. (2.2.23).

The SET (2.2.26) is conserved by construction if ψ is a solution of the Dirac

equation (2.2.20), i.e.:

∇µT
µ
ν = 0. (2.2.27)

The Dirac equation (2.2.20) can be used to write the trace of the SET in terms of

the quantum fermion condensate (FC) operator 1
2

[
ψ, ψ

]
:

T µ
µ = −µ

2

[
ψ, ψ

]
. (2.2.28)

The charge current (CC) is:

Jµ(x) =
1

2

[
ψ, γµψ

]
, ∇µJ

µ(x) = 0, (2.2.29)

giving rise to the inner product:

〈ψ, χ〉 =

∫
V

d3x
√
−g ψγ0(x)χ, (2.2.30)

where the integration runs over the spacelike hypersurface V of normal dt. The

inner product is time-independent for any combinations of solutions to the Dirac

equation (2.2.20) if:

∂0 〈ψ, χ〉 =

∫
V

d3x
[√
−g(∂0ψ)γ0χ+

√
−g ψγ0(∂0χ) + ψ∂0(

√
−gγ0)χ

]
=−

∫
V

d3x
{√
−g
(
∂iψγ

iχ+ ψγi∂iχ+
[
Γλ, γ

λ
]
χ
)

+ ψ∂i(γ
i
√
−g)χ

}
=−

∫
∂V

dΣi

√
−g ψγiχ, (2.2.31)

where ∂V is the boundary of the volume of the system. The second line follows from

an application of the Dirac equation (2.2.20) and the general covariance [Dµ, γ
ν ] = 0

of the γ matrices:

γt∂tχ =− γi∂iχ− γλΓλχ− iµχ,

∂tψγ
t =− ∂iψγ

i + ψΓλγ
λ + iµψ,

∂t(
√
−gγt) =− ∂i(γ

i
√
−g)−

√
−g
[
Γλ, γ

λ
]
. (2.2.32)

The result is obtained using integration by parts.
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In chapters 3 and 4, where V is the infinite unbounded space, condition (2.2.31)

is automatically satisfied, but in sections 5.2 and 5.3 it is used as the starting point

for the formulation of boundary conditions for the solutions of the Dirac equation.

2.2.4 Fock space

Let us consider a complete set of mode solutions {Uj, Vj} of the Dirac equation

(2.2.20), with {j} being a set of discrete or continuous labels distinguishing between

independent solutions. The modes are normalised with respect to the inner product

(2.2.30) as follows:

〈Uj, Uj′〉 = 〈Vj, Vj′〉 = δjj′ , 〈Uj, Vj′〉 = 0. (2.2.33)

The modes must satisfy the completeness relation compatible with the Dirac inner

product:∑
j

[Uj(t,x)⊗U j(t,x
′)+Vj(t,x)⊗V j(t,x

′)]γ0(t,x′) = (−g)−1/2δ3(x−x′). (2.2.34)

Hence, a general solution ψ(x) of the Dirac equation can be expanded as:

ψ(x) =
∑

j

[
Uj(x)bj + Vj(x)d

†
j

]
. (2.2.35)

The upgrade of ψ(x) to a quantum operator requires that it satisfies the anti-

commutation relations (2.2.23), implying that the Fourier coefficients bj and d†j
introduced above must obey:{

bj, b
†
j′

}
=
{
dj, d

†
j′

}
= δjj′ , (2.2.36)

with the anti-commutator of any other combination vanishing. Since ψ(x) is a

complex-valued spinor, bj 6= dj and b†j and d†j behave as creation operators of particles

and anti-particles, respectively. The vacuum quantum state |0〉 is defined as the state

vector which is annihilated by all particle and anti-particle annihilation operators:

bj |0〉 = dj |0〉 = 0, for all possible k. (2.2.37)

Multiparticle states formed by applying products of creation operators are anti-

symmetric with respect to the interchange of any two partices:

|j1j2 . . . jnj̃1 . . . j̃m〉 = (n!m!)−
3
2

∑
σ∈Sn,eσ∈Sm

(−1)σ

n∏
i=1

b†jσi
(−1)eσ m∏

k=1

d†jeσk
|0〉 . (2.2.38)
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Here j̃k denotes an anti-particle created by the operator d†ejk
and the factor (−1)σ

gives the parity of the permutation σ (+1 if σ represents an even number of trans-

positions, −1 otherwise). The anti-symmetry in the interchange of two particles is

a fundamental difference between fermion and boson matter, being the main cause

for the difference in finite temperature statistics.

In terms of one-particle operators, the SET (2.2.26) takes the form:

Tµν =
∑
j,j′

{
djbj′Tµν(Vj, Uj′) + b†jd

†
j′Tµν(Uj, Vj′)

+
1

2

[
b†j, bj′

]
Tµν(Uj, Uj′) +

1

2

[
dj, d

†
j′

]
Tµν(Vj, Vj′)

}
, (2.2.39)

where, Tµν(ψ, χ) is the bilinear form:

Tµν(ψ, χ) =
i

2
(ψγ(µDν)χ−D(µψγν)χ). (2.2.40)

Expression (2.2.39) can be used to compute the expectation value of the SET in

various states.

Let us specialise further to mode solutions which are eigenvectors of the Hamil-

tonian operator H = i∂t:

i∂tUj = ẼjUj, i∂tVj = −ẼjVj, (2.2.41)

in which case the Hamiltonian takes the canonical form:

H =
∑

j

Ẽj(b
†
jbj − djd

†
j). (2.2.42)

By virtue of the anti-commutation relations (2.2.36), each quanta (either particle or

anti-particle) contributes a quantity Ẽj to the Hamiltonian:[
H, b†j

]
= Ẽjb

†
j,

[
H, d†j

]
= Ẽjd

†
j. (2.2.43)

It can be seen that a consistent quantum field theory would require particle

modes to have Ẽj ≥ 0. Let us recall that in the case of the scalar field, the re-

quirement of having positive norm for the particle modes implied that ωj ≥ 0,

allowing both positive and negative values for ω̃j. This is not the case for fermions,

since both particle and anti-particle modes have positive norm, as can be seen from

(2.2.33), therefore, the second quantisation can be performed such that Ẽj ≥ 0. This

discussion is key for the construction of rotating thermal states on the Minkowski

space-time in subsection 4.3.1 and on the anti de Sitter space-time (adS), in subsec-

tion 8.3.1.
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2.2.5 Field theory at finite temperature

The analogue of the formulae (2.1.40) for the expectation values of products of boson

one-particle operators takes the following form for fermions [72]:

〈b†jbj′〉β = 〈d†jdj′〉β =
δjj′

eβ eEj + 1
, 〈bjb†j′〉β = 〈djd

†
j′〉β =

δjj′

1 + e−β eEj

, (2.2.44)

where the operators bj and d†j satisfy the anti-commutation relations (2.2.36) and

their commutator with H depends on Ẽj. The t.e.v. of any other combination of

two one-particle operators vanishes.

Failure to restrict Ẽj to non-negative values introduces temperature-independent

terms in thermal expectation values, since the formulae (2.2.44) for Ẽj < 0 are no

longer valid. In a similar fashion to equation (2.1.42) for scalars, the difference

between the thermal and vacuum expectation values takes the form:

〈: b†jbj′ :〉
β

= 〈: d†jdj′ :〉
β
−−−→
β→∞eEj<0

−δjj′ . (2.2.45)

The t.e.v. of the Hamiltonian, divided by the (infinite) volume of space is:

1

V
〈: H :〉β =

∑
j

Ẽj

(
1− tanh

β eEj

2

)
= 2

∑
j

Ẽj

eβ eEj + 1
, (2.2.46)

and the t.e.v. of the SET (2.2.39) is:

〈: Tµν :〉β =
∑

j

1

eβ eEj + 1
[Tµν(Uj, Uj′) + Tµν(Vj, Vj′)] . (2.2.47)

The t.e.v.s of both the Hamiltonian and the SET appear to be regular, since the

Fermi-Dirac density of states factor (eβ eEj + 1)−1 is regular for all values of Ẽj. In

subsection 4.3.2 it is shown that in the case of a rotating space-time, t.e.v.s are

indeed regular for the Dirac field, but only up to the speed of light surface (SOL).

2.2.6 Green functions

As an analogue for fermions of subsection 2.1.5, the content of this subsection un-

avoidably repeats some of the structure and ideas presented in the former. As in

the scalar case, the building blocks of spinor Green’s functions are the Wightman

functions, defined as:

S+(x, x′) = 〈0|ψ(x)ψ(x′)|0〉 , S−(x, x′) = 〈0|ψ(x′)ψ(x)|0〉 , (2.2.48)
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in terms of which the Schwinger and Hadamard functions can be written as:

S(x, x′) = S+(x, x′) + S−(x, x′), S(1)(x, x′) = S+(x, x′)− S−(x, x′). (2.2.49)

As an anti-commutator, S(x, x′) is just a number, by virtue of the anti-commutation

relations (2.2.23), which makes the Schwinger function independent of the quantum

state.

Using the definition of t.e.v.s (2.1.38) and the evolution equation (2.2.24), the

following relations can be established for the thermal Wightman functions:

S±β (t,x; t′,x′) = S∓β (t± iβ,x; t′,x′). (2.2.50)

Introducing the Fourier components s±β (ω; x,x′) of the thermal Wightman functions:

S±β (t,x; t′,x′) =

∫ ∞

−∞

dω

2π
s±β (ω; x,x′)e−iω(t−t′) (2.2.51)

and similarly for the Schwinger function S(x, x′), the following equation can be

obtained:

s±β (ω; x,x′) =
s(ω; x,x′)

1 + e∓ωβ
.

Using a definition analogous to (2.2.49), the thermal Hadamard function can be

written in terms of the Fourier coefficients of the Schwinger function:

S
(1)
β (x, x′) =

∫ ∞

−∞

dω

2π
s(ω; x,x′)e−iω(t−t′) tanh βω

2
. (2.2.52)

By construction, the thermal Hadamard function is independent of the choice of

vacuum state. However, in this thesis, t.e.v.s shall be calculated with respect to

certain vacuum states, making their value dependent on the quantisation scheme

employed.

Alternatively, thermal states can be investigated by considering the thermal ana-

logue of the Feynman propagator, defined as:

SF (x, x′) = θ(t− t′)S+(x, x′) + θ(t′ − t)S−(x, x′) (2.2.53a)

and satisfying

SF (x, x′)[−i
←−
Dν(x

′)γν(x′)− µ] =
δ4(x− x′)√
−g

. (2.2.53b)

In the maximally symmetric vacuum state of Minkowski space-time, the Feynman

function for the free Dirac field can be written in terms of the Feynman function for

the free Klein-Gordon field [46]:

SF (x, x′) = −(iγνDν + µ)GF (x, x′). (2.2.53c)
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At finite temperature, it can be shown that the Feynman propagator is anti-periodic

with respect to imaginary time (i.e. with respect to t→ t+ ijβ, j = 0,±1,±2, . . . ).

Hence, it can be calculated as [16]:

SF (x, x′)β =
∞∑

j=−∞

(−1)jSF (t+ ijβ,x; t′,x′). (2.2.54)

The t.e.v.s of the FC (2.2.28), CC (2.2.29) and SET (2.2.26) can be calculated

using the following formulae:

〈: ψψ :〉β =− 1

2
lim
x′→x

tr
[
∆S

(1)
β (x, x′)Λ(x′, x)

]
, (2.2.55a)

〈: Jµ(x) :〉β =− 1

2
lim
x′→x

tr
[
γµ∆S

(1)
β (x, x′)Λ(x′, x)

]
, (2.2.55b)

〈: Tµν :〉β =
i

4
lim
x′→x

tr

{
[
γ(νDµ)∆S

(1)
β (x, x′)−∆S

(1)
β (x, x′)

←−−
D(λ′γκ′g

λ′

(µg
κ′

ν)

]
Λ(x′, x)

}
,

(2.2.55c)

where the bi-spinor of parallel transport Λ(x, x′) ensures that the spinors at x′ are

parallel transported to x along the geodesic connecting the two points, as follows:

ψ||(x) = Λ(x, x′)ψ(x′). (2.2.56)

Hence, Λ(x, x′) satisfies the parallel transport equations for spinors:

nµDµΛ(x, x′) = 0, nµ′Dµ′Λ(x, x′) = 0, (2.2.57)

where Dµ′Λ(x, x′) = ∂µ′Λ(x, x′)+Λ(x, x′)Γµ′(x
′) acts on Λ(x, x′) from the right. The

initial conditions for Eq. (2.2.57) are:

Λ(x, x) = 1, Λ−1(x, x′) = Λ(x, x′) = Λ(x′, x), (2.2.58)

where the first equation is saying that ψ(x) coincides with its parallel transport at

x, while the second ensures that no parallel transport is performed on scalars of the

form χψ.

The Casimir effect can be computed from the Feynman Green’s function SF by

using the formula (2.2.55c) with ∆S
(1)
β replaced by 2SF . As mentioned for scalars in

section 2.1.4, it is more convenient to calculate the Casimir effect using the Euclidean

Green’s function, defined on the (quasi-)Euclidean equivalent of the manifold, ob-

tained through the coordinate change (2.1.60). In addition, the Euclidean analogue
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of the gamma matrices are defined as [38]:

γ 0̂
E = γ 0̂, γ ĵ

E = −iγ ĵ (2.2.59)

and satisfy the anti-commutation relations:{
γâ

E, γ
b̂
E

}
= δâb̂. (2.2.60)

The Euclidean Green’s function SE is a solution to the inhomogeneous field equation:

(−γνDν − µ)SE(x, x′) =SE(x, x′)(
←−
Dν′γ

ν′ − µ)

=− 1
√
g
δ(τ − τ ′)δ3(x− x′), (2.2.61a)

where all coordinate indices refer to Euclidean coordinates. In a space-time with

full translational symmetry, it can be obtained from the Euclidean Green’s function

for a scalar field (2.1.61):

SE(x, x′) = (−γν∂ν + µ)GE(x, x′). (2.2.61b)

The fermion SET can be expressed in terms of the Euclidean Green’s function by

substituting −2iSE for S
(1)
β in (2.2.55c):

〈Tµν〉 =
1

2
lim
x′→x

tr

[
γ(ν(x)Dµ)(x)SE(x, x′)− SE(x, x′)

←−−
D(µ(x′)γν)(x

′)

]
. (2.2.62)

2.3 Summary

Aside from introducing notation and general background material used in this thesis,

sections 2.1.4 and 2.2.5 touch upon the problem of constructing thermal states in

stationary space-times. The key message is that for scalars, the second quantisation

split between particle and anti-particle modes is necessarily performed based on the

sign of the norm, i.e. positive and negative norm modes are interpreted as particle

and anti-particle modes, respectively. Thus, in systems which allow modes to have

opposite signs for their norm and frequency, the construction of thermal states of

scalar particles is problematic, as negative frequency particle modes will have infinite

occupation numbers. On the other hand, fermion modes always have positive norm.

Hence, the split between particle and anti-particle modes can be performed such

that all particle modes have positive frequencies. Only in this scenario can thermal

states be meaningfully defined.



Chapter 3. Minkowski space-time

The present chapter serves as a training ground for the analysis of rotating states

in infinite or bounded Minkowski space-time, discussed in chapters 4 and 5, respec-

tively. Section 3.2 refers to scalars and section 3.3 refers to fermions. The field

equations, their corresponding mode solutions and the second quantisation proce-

dure are presented in sections 3.2.1 and 3.3.1 and thermal states are constructed in

sections 3.2.2 and 3.3.3.

3.1 Space-time characteristics

Minkowski space-time is described by the line element:

ds2 = −dt2 + dx2 + dy2 + dz2 = −dt2 + dρ2 + ρ2dϕ2 + dz2, (3.1.1)

in Cartesian and cylinidrical coordinates (x = ρ cosϕ, y = ρ sinϕ) respectively. In

cylindrical coordinates, the non-vanishing Christoffel symbols are

Γϕ
ϕρ = ρ−1, Γρ

ϕϕ = −ρ (3.1.2)

and the Klein-Gordon equation (2.1.2) has the form:

(−H2 − ∂2
ρ − ρ−1∂ρ + ρ−2L2

z + P 2
z + µ2)φ(x) = 0, (3.1.3)

where H = i∂t, Pz = −i∂z and Lz = −i∂ϕ are the Hamiltonian and z components

of the momentum and angular momentum operators, respectively.

The Cartesian tetrad is trivially given by:

ωt̂ = dt, ωx̂ = dx, ωŷ = dy, ωẑ = dz,

et̂ = ∂t, ex̂ = ∂x, eŷ = ∂y, eẑ = ∂z (3.1.4)

and the Dirac equation in the Cartesian gauge (with respect to the Cartesian tetrad)

has the form:

(γ 0̂H − γ · P − µ)ψ(x) = 0, (3.1.5)

where H = i∂t and P = −i∇ are the Hamiltonian and momentum operators,

respectively. When the Cartesian tetrad is used, the gamma matrices with respect

25
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to cylindrical coordinates have the following expressions:

γρ̂ =

(
0 σρ

−σρ 0

)
, γϕ̂ =

(
0 σϕ

−σϕ 0

)
, (3.1.6)

where the Pauli matrices σϕ and σρ are given by:

σρ = σ1 cosϕ+ σ2 sinϕ =

(
0 e−iϕ

eiϕ 0

)
,

σϕ = −σ1 sinϕ+ σ2 cosϕ = −i

(
0 e−iϕ

−eiϕ 0

)
. (3.1.7)

The Klein-Gordon equation (3.1.3) and Dirac equation (3.1.5) are the objects of

study of sections 3.2 and 3.3, respectively. The alternative formulation of the Dirac

theory using a cylindrical tetrad, used in the literature by, e.g., [72], is completely

equivalent to the present one.

Before ending this section, let us note that the only non-trivial conservation

equation for the SET is the ρ component of (2.1.17):

∂ρ(ρT
ρ
ρ ) = Tϕ

ϕ . (3.1.8)

3.2 Scalar field theory in cylindrical coordinates

Starting from Eq. (3.1.3), this section is devoted to the construction of the quan-

tum field theory of the massive Klein-Gordon field using cylindrical coordinates in

Minkowski space-time, forming the basis of the analysis of rotating states in sec-

tion 4.2. The mode solutions and second quantisation are given in subsection 3.2.1,

followed by the computation of the t.e.v. of the SET in subsection 3.2.2, where the

Stefan-Boltzmann law is recovered.

3.2.1 Modes in cylindrical coordinates

In cylindrical coordinates, it is convenient to work with a complete set of commuting

operators (CSCO) which commute with the Klein-Gordon equation (3.1.3). The

CSCO is formed by the z components Pz and Lz of the momentum and angular

momentum operators P and L, respectively, and the Hamiltonian (energy) operator

H, having the expressions:

H = i∂t, P = −i∇, L = −ix×∇. (3.2.1)
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The solutions fωkm of the Klein-Gordon equation (3.1.3) can be chosen to be simul-

taneous eigenvectors of the above CSCO:

Hfωkm(x) =ω fωkm,

Pzfωkm(x) =k fωkm,

Lzfωkm(x) =mfωkm, (3.2.2)

where ω and k are real numbers and m = 0,±1,±2, . . . . Since Lz = −i∂ϕ, the above

equations can be satisfied if fEkm is put in the form:

fωkm = e−iωt+ikz+imϕRωkm(ρ), (3.2.3)

where R(ρ) only depends on the distance ρ from the z axis. The Klein-Gordon

equation (3.1.3) applied to the modes (3.2.3) reduces to Bessel’s equation (A.1.1)

for Rωkm(ρ): [
ρ2∂2

ρ + ρ∂ρ + ρ2q2 −m2
]
Rωkm(ρ) = 0,

where q =
√
ω2 − p2 is the transverse component of the momentum p =

√
ω2 − µ2.

There are two linearly independent solutions of the above Bessel equation: Jm(qρ)

and Nm(qρ), however, Nm(qρ) diverges at ρ = 0. Thus,

Rωkm = NωkmJm(qρ), (3.2.4)

where Nωkm is a constant. To impose unit norm on the modes (3.2.3), the inner

product (2.1.19) can be used, which can be written in cylindrical coordinates as:

〈φ, χ〉 =

∫ ∞

−∞
dz

∫ ∞

0

ρ dρ

∫ 2π

0

dϕ
[
φ∗(x)i

←→
∂t φ(x′)

]
. (3.2.5)

Using the orthogonality relation (A.3.1) for the Bessel functions Jm, it can be shown

that the normalised mode solutions of the Klein-Gordon equation have the following

expression:

fωkm =
1√

8π2|ω|
e−iωt+ikz+imϕJm(qρ). (3.2.6)

The above expression allows for negative values of ω to be considered, however, the

norm of fωkm will retain the sign of ω:

〈fωkm, fω′k′m′〉 =
δ(ω − ω′)
|ω|

δ(k − k′)δmm′ . (3.2.7)
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Furthermore, the modes (3.2.6) obey the completeness relation

∞∑
m=−∞

∫ ∞

µ

ω dω

∫ p

−p

dk [f ∗ωkm(t,x)i∂tfωkm(t,x′) + c.c.] =
δ(ρ− ρ′)

ρ
δ(ϕ−ϕ′)δ(z− z′),

(3.2.8)

in agreement with the general formula (2.1.22). In the above, c.c. stands for “com-

plex conjugate” of all previous terms.

Following the discussion in subsection 2.1.3, the split between particle and anti-

particle modes must be made on the basis of the sign of their corresponding norm.

Thus, the expansion of the quantum field operator φ(x) can be written as:

φ(x) =
∞∑

m=−∞

∫ ∞

µ

ω dω

∫ p

−p

dk
{
fEkm(x)aEkm + f ∗Ekm(x)a†Ekm

}
, (3.2.9)

where the one-particle operators obey the canonical commutation relations:[
aEkm, a

†
E′k′m′

]
=
δ(E − E ′)

E
δ(k − k′)δmm′ , (3.2.10)

in agreement with the general theory of chapter 2.

3.2.2 Thermal expectation values

As discussed in subsection 2.1.5, the t.e.v.s can be computed from the thermal Hada-

mard function (2.1.53). To construct the thermal Hadamard function ∆G
(1)
β (x, x′),

the Schwinger function G(x, x′) and the vacuum Hadamard’s elementary function

G(1)(x, x′) are required, which can be constructed using the expansion (3.2.9) of the

field operator in Eqs. (2.1.47) and (2.1.46), respectively:

G(x, x′) =
∞∑

m=−∞

∫ ∞

µ

ω dω

∫ p

−p

dk
eik∆z+im∆ϕ

8π2ω
(e−iω∆t − eiω∆t)Jm(qρ)Jm(qρ′),

(3.2.11a)

G(1)(x, x′) =
∞∑

m=−∞

∫ ∞

µ

ω dω

∫ p

−p

dk
eik∆z+im∆ϕ

8π2ω
(e−iω∆t + eiω∆t)Jm(qρ)Jm(qρ′).

(3.2.11b)

In the above, ∆x = x− x′, where x is t, ϕ or z.

The Fourier coefficients of the Schwinger function (3.2.11a) are:

g(z; x,x′) =
∞∑

m=−∞

∫ ∞

µ

ω dω

∫ p

−p

dk
eik∆z+im∆ϕ

8π2ω
[δ(z − ω)− δ(z + ω)]Jm(qρ)Jm(qρ),

(3.2.12)
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thus, the corresponding thermal Hadamard’s function can be written as:

∆G
(1)
β (x, x′) =

∞∑
m=−∞

∫ ∞

µ

ω dω

eβω − 1

∫ p

−p

dk
eik∆z+im∆ϕ

4π2ω
(e−iω∆t + eiω∆t)Jm(qρ)Jm(qρ).

(3.2.13)

Thermal expectation value of φ2

The formula (2.1.57) can be used to calculate the t.e.v. of φ2:

〈: φ2 :〉β =
1

2π2

∞∑
m=−∞

∫ ∞

µ

dω

∫ p

−p

dk

eβω − 1
J2

m(qρ). (3.2.14)

The sum over m can be performed using Eq. (A.4.2), after which the k integral

becomes trivial, leading to the result:

〈: φ2 :〉β =
1

2π2

∫ ∞

µ

p dω

eβω − 1
. (3.2.15)

Using the following integration formula:∫ ∞

0

dx
x

eβx − 1
=

π2

6β2
, (3.2.16)

the t.e.v. of φ2 in the massless case can be evaluated to:

〈: φ2 :〉β =
1

12β2
. (3.2.17)

An asymptotic analysis can be performed for the massive case, which will be deferred

until after the results for the t.e.v. of the SET have been presented.

The t.e.v. of the SET can be computed using the Christoffel symbols (3.1.2) by

substituting (3.2.13) in (2.1.54):

〈: Tα̂γ̂ :〉β =
1

24π2

∞∑
m=−∞

∫ ∞

µ

dω

eβω − 1

∫ p

−p

dk Fα̂γ̂, (3.2.18)

where the only non-vanishing components of Fα̂γ̂ are:

Ft̂t̂ =
(
6ω2 + ρ−2m2 − q2

)
J2

m + q2J ′m
2,

Fρ̂ρ̂ =
(
−3ρ−2m2 + 3q2

)
J2

m + 2qρ−1JmJ
′
m + 3q2J ′m

2,

Fϕ̂ϕ̂ =
(
5ρ−2m2 + q2

)
J2

m − 2qρ−1JmJ
′
m − q2J ′m

2,

Fẑẑ =
(
6k2 − ρ−2m2 + q2

)
J2

m − q2J ′m
2. (3.2.19)

In the above, the argument of all Bessel functions is qρ and J ′m represents the deriva-

tive of Jm with respect to its argument. The hatted indices indicate that these are
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components with respect to the tetrad (3.1.4). It can be checked through straight-

forward computation that the trace is proportional to µ2 and therefore vanishes for a

massless field, and that the SET is conserved since it satisfies the conservation equa-

tion (3.1.8). Although not immediately obvious, the stress-tensor does not diverge

at ρ = 0. In fact, it is constant throughout all space, as is shown next.

The sum over m can be performed using the summation formulae in section A.4

of the appendix, after which the k integral can be performed:

〈: Tα̂γ̂ :〉β =
1

2π2

∫ ∞

µ

p dω

eβω − 1
diag(ω2, p2/3, p2/3, p2/3). (3.2.20)

While asymptotic methods must be employed in the case of general mass, the ω

integral can be performed in the massless case using the Bose-Einstein integral:∫ ∞

0

ω3dω

eβω − 1
=

π4

15β4
, (3.2.21)

and the SET reduces to:

〈: Tα̂γ̂ :〉β =
π2

30β4
diag

(
1,

1

3
,
1

3
,
1

3

)
= diag(ρ, P, P, P ). (3.2.22)

The energy density ρ is equal to 2σ
c
T 4, where

σ =
π2K4

B

60~3c2
(3.2.23)

is the Stefan-Boltzmann constant, c is the speed of light in vacuum, KB is Boltz-

mann’s constant and ~ = h/2π is the reduced Planck constant [65]. The equation

of state takes the form:
P

ρ
=

1

3
, (µ = 0). (3.2.24)

In the massive case, the pressure P and energy density ρ are given by:

P =
1

6π2

∫ ∞

µ

p3dω

eβω − 1
,

ρ =
1

2π2

∫ ∞

µ

ω2p dω

eβω − 1
. (3.2.25)

A change of variable to t = ω
µ

puts (3.2.25) in the form:

P =
µ4

6π2

∫ ∞

1

dt

eβµt − 1
(t2 − 1)3/2,

ρ− 3P =
µ4

2π2

∫ ∞

1

dt

eβµt − 1
(t2 − 1)1/2. (3.2.26)

The combination ρ − 3P is equal to minus the trace of the SET and is linked to
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the t.e.v. of φ2 through Eq. (2.1.16). The exponential in the denominator can be

expanded in a Taylor series:

1

eβµt − 1
=

∞∑
k=1

e−kβµt, (3.2.27)

which, together with (A.1.17), gives:

P =
µ2

2π2β2

∞∑
k=1

1

k2
K2(kβµ),

µ2 〈: φ2 :〉β =ρ− 3P =
µ3

2π2β

∞∑
k=1

1

k
K1(kβµ). (3.2.28)

Numerical experiments show that terminating the expansion (3.2.28) at k = 3 gives

an excellent approximation throughout the whole parameter space for µ and β.

If βµ is large, the series (3.2.28) can be terminated at k = 1:

P ∼ 1

β4

(
βµ

2π

)3/2

e−βµ

(
1 +

15

8βµ
+ . . .

)
,

µ2 〈: φ2 :〉β = ρ− 3P ∼ µ

β3

(
βµ

2π

)3/2

e−βµ

(
1 +

3

8βµ
+ . . .

)
,

P

ρ
∼ 1

βµ
− 3

2β2µ2
+ . . . . (3.2.29)

Here, the asymptotic forms (A.2.4e) for the modified Bessel functions for large values

of the argument have been used. If the argument βµ of the Bessel functions is small,

Eq. (3.2.28) can be approximated using (A.2.4b):

P =
π2

90β4
− µ2

24β2
+O(µ2),

ρ =
π2

30β4
− µ2

24β2
+O(µ2),

P

ρ
=

1

3

[
1 +

5

2
π2β2µ2 +O(µ2)

]−1

, (3.2.30)

confirming the expression obtained in Eq. (3.2.17) for the t.e.v. of φ2. The valid-

ity of these approximations is analysed by comparison with results obtained using

the numerical integration of Eqs. (3.2.25). Figure 3.1 shows that massive particles

behave as if they were massless when βµ . 1.
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Figure 3.1: The density ρ, pressure P and equation of state P
ρ for a thermal distribution

of scalar particles are plotted as functions of the mass µ of the quanta (on the left) and
as functions of the logarithm of the temperature T = β−1, on the right. The solid black
curve shows numerical results obtained by integrating (3.2.25) while the dashed blue and
purple curves show the asymptotic expressions (3.2.29) and (3.2.30) for large and small
values of βµ, respectively.

3.3 Polarised Dirac fermions in cylindrical coor-

dinates

This section starts with the construction of the mode solutions of the Dirac equation

in cylindrical coordinates, which are then used for the construction of the quantum

field operator in subsection 3.3.1. In subsection 3.3.2, a discussion about our choice

for the Cartesian gauge and its connection to the cylindrical tetrad not infrequently

used in the literature is presented. The modes considered here can be used almost

unchanged in section 4.3, where rotation is introduced. Finally, subsection 3.3.3

ends this section with the construction of thermal states.
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3.3.1 Modes in cylindrical coordinates

In the construction of the mode solutions of the Klein-Gordon equation in subsec-

tion 3.2.1, the Hamiltonian H, momentum Pz and angular momentum Lz operators

were sufficient to construct a complete set of modes (i.e. they formed a CSCO). The

internal structure of the four-spinor solutions of the Dirac equation leaves room in

the CSCO for an extra operator. In Ref. [11], this extra operator is chosen to be

the transverse helicity, i.e. the projection of the spin on the transverse part of the

momentum. Instead, here we choose the more familiar helicity operator W0 (i.e. the

time component of the Pauli-Lubanski vector [46]), giving the projection of the spin

on the direction of motion, using which the modes will have a form similar to that

encountered on the Kerr space-time [21]. Bearing in mind that the angular momen-

tum operator J = L + S for the Dirac field comprises of a spin part S as well as

an orbital part L, the following equations are required to fully define the CSCO:

Jz = −iϕ+
1

2

(
1 0

0 −1

)
, W0 =

J · P
2p

=

(
h 0

0 h

)
. (3.3.1a)

The 2× 2 helicity operator h is defined by:

2ph = σ · P =

(
Pz P−

P+ −Pz

)
, (3.3.1b)

where

P± = P x ± iP y = −ie±iϕ
(
∂ρ ± iρ−1∂ϕ

)
. (3.3.1c)

It can be checked that (W0)
2 = 1

4
, therefore, its eigenvalues are λ = ±1

2
.

To solve the eigenvalue equations corresponding to the chosen CSCO, the depen-

dence on t and z of the eigenvectors Uλ
Ekm, labelled by their respective eigenvalues,

can be put in the form:

Uλ
Ekm(t, ρ, ϕ, z) =

1

2π
e−iEt+ikzuλ

Ekm(ρ, ϕ), (3.3.2)

where the four-spinor uλ
Ekm only depends on ρ and ϕ and has the form:

uλ
Ekm(ρ, ϕ) =

(
Cλ,up

Ekmφ
λ
pkm(ρ, ϕ)

Cλ,down
Ekm φλ

pkm(ρ, ϕ)

)
, (3.3.3)

where the Minkowski momentum p is used to label the two-spinors φλ
pkm. The

constants Cλ,up
Ekm and Cλ,down

Ekm are constrained through the helicity eigenvalue equation,

as will be shown in what follows. The angular momentum equation,

Jzφ
λ
Ekm(ρ, ϕ)

(
−i∂ϕ + 1

2
0

0 −i∂ϕ − 1
2

)
φλ

Ekm(ρ, ϕ) = mφλ
Ekm(ρ, ϕ), (3.3.4)
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can be solved by setting:

φλ
Ekm(ρ, ϕ) =

(
eimϕφλ,−

Ekm(ρ)

ei(m+1)ϕφλ,+
Ekm(ρ)

)
, (3.3.5)

where m = 0,±1,±2, . . . . The helicity equation constrains the two-spinors φλ
Ekm to

obey the following equation:

1

2p

(
k P−

P+ −k

)
φλ

Ekm(ρ, ϕ) = λφλ
Ekm(ρ, ϕ), (3.3.6)

where λ = ±1
2
. Using the property:

P−P+ = P+P− = −∂2
ρ − ρ−1∂ρ − ρ−2∂2

ϕ, (3.3.7)

the functions φλ,± can be shown to obey the Bessel equations:

[z2∂2
z + z∂z + z2 −m2]φλ,−

Ekm(ρ) =0,

[z2∂2
z + z∂z + z2 − (m+ 1)2]φλ,+

Ekm(ρ) =0, (3.3.8)

where z = qρ is written in terms of the longitudinal momentum q =
√
p2 − k2.

The general solution of Eq. (3.3.8) can be written as a linear combinations of Bessel

functions of the first and second kind, however, the Bessel functions of the second

kind Nν(qρ) are not regular at the origin. Hence, the functions φλ,±
Ekm(ρ) take the

form:

φλ,−
Ekm(ρ) = N−Jm(qρ), φλ,+

Ekm(ρ) = N+Jm+1(qρ), (3.3.9)

where N± are normalisation constants. It can now be seen that the operators P±,

defined in Eq. (3.3.1c), act as shifters for the angular momentum quantum number,

i.e.:

P±e
imϕJm(qρ) = ±iqei(m±1)ϕJm±1(qρ). (3.3.10)

Hence, the helicity equation (3.3.6) implies that N+ = iqN−/(k + 2λp), enabling

φλ
Ekm to be written as:

φλ
Ekm(ρ, ϕ) =

1√
2

(
pλe

imϕJm(qρ)

2iλp−λe
i(m+1)ϕJm+1(qρ)

)
, (3.3.11)

where

p± ≡ p± 1
2

=

√
1± k

p
. (3.3.12)

The overall 1/
√

2 factor in Eq. (3.3.11) comes from the generalized orthogonality
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relation [11]:
∞∑

m=−∞

φλ†
Ekm(ρ, ϕ)φλ′

Ekm(ρ, ϕ) = δλλ′ . (3.3.13)

To finalize the construction of the mode solutions (3.3.3), the Dirac equation

(3.1.5) must be used to find the constants Cλ,up
Ekm and Cλ,down

Ekm :(
E − µ −2pλ

2pλ −E − µ

)(
Cλ,up

Ekm

Cλ,down
Ekm

)
= 0, (3.3.14)

where the compatibility of the above system links the Minkowski energy E and

momentum p through E2 = p2 + µ2. Furthermore, the constraint

Cλ,up
Ekm =

2pλ

E − µ
Cλ,down

Ekm (3.3.15)

enables uλ
Ekm to be put in the following form:

uλ
Ekm(ρ, ϕ) =

1√
2

(
E+φ

λ
Ekm

2λE
|E| E−φ

λ
Ekm

)
, (3.3.16)

where

E± =

√
1± µ

E
(3.3.17)

and the overall factor 1/2π ensures that the generalised orthogonality relation [11]

holds:
∞∑

m=−∞

uλ†
Ekm(ρ, ϕ)uλ′

Ekm(ρ, ϕ) = δλλ′ . (3.3.18)

Finally, the norm of the modes is given by the inner product (2.2.30), specialised to

cylindrical coordinates on Minkowski space-time:

〈ψ, χ〉 =

∫ ∞

−∞
dz

∫ ∞

0

ρ dρ

∫ 2π

0

dϕψ†χ. (3.3.19)

It can be checked that the modes (3.3.2) satisfy the following orthogonality relation:

〈Uλ
Ekm, U

λ′

E′k′m′〉 =
δ(E − E ′)

E
δ(k − k′)δmm′δλλ′ , (3.3.20)

hence, all modes have positive norm, in agreement with the discussion in subsec-

tion 2.2.4.

To conclude the construction of the set of modes, the charge conjugation opera-

tion must be used to link the particle modes Uλ
Ekm to the corresponding anti-particle
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modes, as follows:

V λ
Ekm =iγ2Uλ∗

Ekm, (3.3.21)

iγ2Uλ∗
Ekm =

1

2π
eiEt−ikziγ2uλ∗

Ekm,

iγ2uλ∗
Ekm =

1√
2

(
0 iσ2

−iσ2 0

)(
E+φ

λ∗
pkm

2λE
|E| E−φ

λ∗
pkm

)
,

iσ2φ
λ∗
pkm =

1√
2

(
−2iλp−λe

−i(m+1)ϕJm+1(qρ)

−pλe
−imϕJm(qρ)

)
. (3.3.22)

Using the property (A.1.4) to change the order of the Bessel functions above, it can

be shown that iσ2φλ∗
pkm = 2iλ(−1)mφλ

p,−k,−m−1, hence the anti-particle modes are

given by:

V λ
Ekm(t, ρ, ϕ, z) =

1

2π
eiEt−ikzvλ

Ekm(ρ, ϕ), (3.3.23a)

vλ
Ekm(ρ, ϕ) =

(−1)m

√
2

iE

|E|

(
E−φ

λ
p,−k,−m−1

−2λE
|E| E+φ

λ
p,−k,−m−1

)
. (3.3.23b)

So far, no assumption has been made on the sign of the Minkowski energy E.

According to the Dirac sea interpretation, the vacuum state is defined as the state

where all the states for which the eigenvalue of H is negative are filled, while those

with positive eigenvalues of H, considered above sea level, are empty. Hence, the

natural split between particle and anti-particle modes for an inertial Minkowski

observer is done based on the sign of E: particles are described by modes with

positive E, while their corresponding charge conjugates describe anti-particles. This

choice of vacuum can be made manifest by writing the field operator as:

ψ(x) =
∑

j

θ(Ej)
{
Uj(x)bj + Vj(x)d

†
j

}
, (3.3.24)

where

j = (Ej, kj,mj, λj) (3.3.25)

refers to all the labels defining the U and V modes and the sum runs over all their

possible combinations:

∑
j

=
∑

λj=± 1
2

∞∑
mj=−∞

∫ ∞

−∞
|Ej |>µ

|Ej| dEj

∫ pj

−pj

dkj. (3.3.26)

The step function θ(E) in Eq. (3.3.24) discards all negative values of the Minkowski

energy E. The integration ends for k are ±pj =
√
E2

j − µ2. The operators bj and

d†j annihilate particles and create anti-particles, respectively, and obey canonical
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anti-commutation rules: {
bj, b

†
j′

}
=
{
dj, d

†
j′

}
= δ(j, j′), (3.3.27)

where

δ(j, j′) =
δ(Ej − Ej′)

Ej

δ(kj − kj′)δmjmj′
δλjλj′

. (3.3.28)

All other anti-commutators vanish.

Finally, it can be seen that V λ
Ekm is proportional to Uλ

−E,−k,−m−1:

V λ
Ekm = (−1)m iE

|E|
Uλ
−E,−k,−m−1, (3.3.29)

or, using the notation introduced above,

Vj = (−1)mj
iEj

|Ej|
U, Uj = (−1)mj+1 iEj

|Ej|
V, (3.3.30)

where

 = (−Ej,−kj,−mj − 1, λj). (3.3.31)

Massless Dirac particles are traditionally referred to as neutrinos, and are be-

lieved to be of negative chirality [46]. Anti-neutrinos also have negative chirality,

which means that neutrino and anti-neutrino modes are not related through charge

conjugation. The field operator corresponding to neutrinos and anti-neutrinos is

obtained by filtering out the positive chirality contributions to Eq. (3.3.24) using

the projector PL = 1
2
(1− γ5):

ψν(x) = lim
µ→0

1− γ5

2
ψ(x). (3.3.32)

3.3.2 Dirac’s equation using a cylindrical tetrad

There are quite a few examples in the literature where the Cartesian gauge used

in this thesis is not preferred [38, 71, 72, 21]. Instead, a cylindrical (or spherical,

depending on the symmetry) gauge is preferred, with respect to which the tetrad is:

ωt̂ = dt, ωρ̂ = dρ, ωϕ̂ = ρ dϕ, ωẑ = dz,

et̂ = ∂t, eρ̂ = ∂ρ, eϕ̂ = ρ−1∂ϕ, eẑ = ∂z, (3.3.33)

with the only non-vanishing connection coefficient given by:

Γρ̂
ϕ̂ϕ̂ = −1

ρ
. (3.3.34)
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The Dirac matrices corresponding to the tetrad indices (t̂, ϕ̂, ρ̂, ẑ) are now chosen to

be in the Dirac representation, i.e.:

γ t̂ =

(
1 0

0 −1

)
, γρ̂ =

(
0 σ1

−σ1 0

)
, γϕ̂ =

(
0 σ2

−σ2 0

)
, γ ẑ =

(
0 σ3

−σ3 0

)
,

(3.3.35)

where the Pauli matrices σj are defined in Eqs. (2.2.8).

The link between the Dirac theory with respect to the Cartesian and cylindrical

tetrads can be understood by finding the transformation which maps the former into

the latter. The tetrad in the Cartesian gauge is trivially:

e0̂ = ∂t, e1̂ = ∂x, e2̂ = ∂y, e3̂ = ∂z. (3.3.36)

The change to cylindrical coordinates is described by the transformation matrix:

∂xµ′

∂xν
=


1 0 0 0

0 cosϕ sinϕ 0

0 −ρ−1 sinϕ ρ−1 cosϕ 0

0 0 0 1

 , (3.3.37)

which also changes the components of the tetrad:

e0̂ = ∂t,

e1̂ = cosϕ∂ρ − ρ−1 sinϕ∂ϕ,

e2̂ = sinϕ∂ρ − ρ−1 cosϕ∂ϕ,

e3̂ = ∂z. (3.3.38)

The cylindrical vierbein eµ′

α̂ ∼ δµ′

α̂ can be obtained from the above tetrad by

applying on the tetrad (hatted) indices the following Lorentz transformation:

Λα̂
γ̂ =


1 0 0 0

0 cosϕ sinϕ 0

0 − sinϕ cosϕ 0

0 0 0 1

 = eiϕJ3 , (3.3.39)

which is just a rotation of angle ϕ about the z axis. The Lorentz transformation of

the tetrad also transforms the spinor wave-function:

ψΛ(Λx) = e−ϕD[Σ3]ψ(x) = diag(eiϕ/2, e−iϕ/2, eiϕ/2, e−iϕ/2)ψ(x), (3.3.40)
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which transforms the solutions (3.3.2) to:

(Uλ
Ekm)Λ(Λx) =

1

2π
e−iEt+i(m+ 1

2
)ϕ+ikz 1√

2

(
E+

2λE
|E| E−

)
⊗ 1√

2

(
pλJm(qρ)

2iλp−λJm+1(qρ)

)
,

(3.3.41)

where ⊗ denotes the outer (Kronecker) product, which acts as follows. Let A and

B be matrices of sizes m × n and p × q, having elements aij and bkl, respectively.

The outer product A⊗B creates a matrix of size np×mq according to the following

rule: 
a11 . . . a1n

... . . .
...

am1 . . . amn

⊗B =


a11B . . . a1nB

... . . .
...

am1B . . . amnB

 (3.3.42)

The dependence on the angular coordinate ϕ is now the same for all components of

the four-spinor (Uλ
Ekm)Λ. Since m was initially an integer, m+ 1

2
is now an odd half-

integer, thus guaranteeing the anti-periodicity of spinors under rotations of angle 2π

[46, 70].

To prove that m is an integer, let us investigate the behaviour of the wave

function under a rotation of angle δϕ about the z axis. The vierbein changes to:

eΛt̂ = ∂t,

eΛx̂ = cos δϕ ∂x + sin δϕ ∂y,

eΛŷ = − sin δϕ ∂x + cos δϕ ∂y,

eΛẑ = ∂z, (3.3.43)

which is equivalent to a Lorentz transformation Λ = Rz(−δϕ). Consequently, the

Cartesian spinor undergoes the transformation:

ψΛ(ϕ) = D[Rz(−δϕ)]ψ(ϕ− δϕ). (3.3.44)

Since D[Rz(−2π)] = −1, the requirement of anti-periodicity of ψ implies that:

ψ(ϕ− 2π) = ψ(ϕ), (3.3.45)

hence, the m used in the Cartesian formulation is an integer. It is also clear that

m is an integer since m + 1
2

is the eigenvalue of the third component of the total

angular momentum, which is an odd half-integer for fermions.

Under the same transformation (3.3.43), the cylindrical vierbein does not change:

eΛt̂ = ∂t, eΛρ̂ = ∂ρ, eΛϕ̂ = ρ−1∂ϕ̂, eΛẑ = ∂z, (3.3.46)



40 CHAPTER 3. MINKOWSKI SPACE-TIME

therefore, the wave function transforms as:

ψΛ(ϕ) = ψ(ϕ− 2π) = −ψ(ϕ) (3.3.47)

which shows that the m+ 1
2

in (3.3.41) must be an odd half-integer.

In this work, the Cartesian tetrad is preferred due to the close analogy of the

corresponding Dirac spinors and spin parts of quantum operators to those in flat-

space quantum field theory.

3.3.3 Finite temperature expectation values

In this section, the formalism developed in subsection 2.2.6 is used to evaluate the

t.e.v. of the SET and the charged current. The first step is to evaluate the vacuum

Hadamard and Schwinger functions defined in Eqs. (2.2.49). The latter’s Fourier

coefficients are required to construct the thermal Hadamard function (2.2.52). The

t.e.v.s of the fermion condensate (FC), charge current (CC) and stress-energy tensor

(SET) can be computed using Eqs. (2.2.55) by employing the difference between the

thermal and vacuum Hadamard functions.

The thermal Hadamard’s elementary function

The Schwinger function (2.2.49) can be computed using the expansion (3.3.24) of

the field operator:

S(x, x′) =
∑

j

θ(Ej)
[
Uj(x)⊗ U j(x

′) + Vj(x)⊗ V j(x
′)
]
, (3.3.48)

where the outer product ⊗ creates from 4× 1 and 1× 4 matrices Uj and U j a 4× 4

matrix, following the algorithm presented in Eq. (3.3.42).

Using Eqs. (3.3.2) and (3.3.23a), the Fourier coefficients of the Schwinger function

can be calculated:

s(ω; x,x′) =
∑

j

θ(Ej)e
ikj∆z [δ(ω − Ej)uj(x)⊗ uj(x

′) + δ(ω + Ej)vj(x)⊗ vj(x
′)] .

(3.3.49)

Equation (2.2.52) can be used to compute the thermal Hadamard function:

S
(1)
β (x, x′) =

∑
j

θ(Ej) tanh
βE

2

[
Uj ⊗ U j − Vj ⊗ V j

]
. (3.3.50)

The vacuum Hadamard function can be calculated from Eq. (2.2.49):

S(1)(x, x′) =
∑

j

θ(Ej)
[
Uj(x)⊗ U j(x

′)− Vj(x)⊗ V j(x
′)
]
. (3.3.51)
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Subtracting Eq. (3.3.51) from Eq. (3.3.50) gives:

∆S
(1)
β (x, x′) =

∑
j

w(Ej)
[
Uj(x)⊗ U j(x

′)− Vj(x)⊗ V j(x
′)
]
, (3.3.52)

where w(Ej) is the Fermi-Dirac thermal weight, or density of states, factor:

w(Ej) = − 2θ(Ej)

eβEj + 1
. (3.3.53)

Using Eq. (3.3.30) to replace the anti-particle modes Vj by Uj particle modes,

the thermal Hadamard function ∆S
(1)
β reduces to:

∆S
(1)
β (x, x′) =

∑
j

[w(Ej)− w(E)]e
−iEj∆t+ikj∆zMj, (3.3.54)

where  is defined in Eq. (3.3.31) (i.e. E = −Ej) and the 4 × 4 matrix Mj ≡
Mj(x, x

′) = uj(x)⊗ uj(x
′) is given by:

Mj =
1

4π2

(
E2

+ −2λE
|E| E+E−

2λE
|E| E+E− −E2

−

)
⊗
[
φj(ρ, ϕ)⊗ φ†j(ρ′, ϕ′)

]
, (3.3.55)

where the Kronecker product φj(ρ, ϕ)⊗φ†j(ρ′, ϕ′) is copied according to Eq. (3.3.42)

into the matrix on its left, thus producing a 4× 4 matrix. The result MEkm of the

sum over polarisations λj = ±1
2

can be written as follows:

MEkm ≡
∑

λ=±1/2

Mλ
Ekm =

1

4π2

(
Mup

Ekm ◦Mj −M×
Ekm ◦Mj

M×
Ekm ◦Mj −Mdown

Ekm ◦Mj

)
, (3.3.56)

where the Hadamard (Schur) product symbol ◦ has been used for the element-wise

product of two matrices of the same size, defined for two 2× 2 matrices A, B as:

A ◦B =

(
a11b11 a12b12

a21b21 a22b22

)
. (3.3.57)

The matrixMj on the right of the Hadamard product symbol ◦ is defined as:

Mj =

(
eim∆ϕJm(qρ)Jm(qρ′) −iei(m+1)∆ϕ−iϕJm(qρ)Jm+1(qρ

′)

ieim∆ϕ+iϕJm+1(qρ)Jm(qρ′) ei(m+1)∆ϕJm+1(qρ)Jm+1(qρ
′)

)
, (3.3.58)

where E± are defined in Eq. (3.3.17). The matrices M∗
Ekm in Eq. (3.3.56) can be

computed using the explicit expression (3.3.11) for the two-spinors φλ
pkm:

Mup
Ekm = E2

+

(
1 0

0 1

)
, Mdown

Ekm = E2
−

(
1 0

0 1

)
, M×

Ekm =
1

E

(
k q

q −k

)
.
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For the purpose of computing t.e.v.s, it is advantageous to express MEkm as follows:

4π2MEkm =
1

2
I2 ⊗ [(Mup

Ekm −M
down
Ekm ) ◦Mj] +

1

2
σ3 ⊗ [(Mup

Ekm +Mdown
Ekm ) ◦Mj]

+

(
0 −1

1 0

)
⊗ [M×

Ekm ◦Mj]. (3.3.59)

Thus, the following expression is obtained for MEkm:

4π2MEkm =
[ µ
E
I2 + σ3

]
⊗

[(
1 0

0 1

)
◦Mj

]
+

1

E

(
0 −1

1 0

)
⊗

[(
k q

q −k

)
◦Mj

]
.

(3.3.60)

Thermal expectation value of the fermion condensate

The t.e.v. of the fermion condensate (FC) can be computed from (3.3.50) using

(2.2.55a). Since the computation does not involve differentiations, the coincidence

limit can be taken first:

lim
x′→x

∆S
(1)
β (x, x′) =

1

4π2

∞∑
m=−∞

∫ ∞

−∞
|E|>µ

dE

∫ p

−p

dk |E| [w(E)− w(−E)]

×

[( µ
E
I2 + σ3

)
⊗

(
J2

m 0

0 J2
m+1

)

+
1

E

(
0 −1

1 0

)
⊗

(
kJ2

m −iqe−iϕJmJm+1

iqeiϕJm+1Jm −kJ2
m+1

)]
, (3.3.61)

where the density of states factor w(±E) is defined in Eq. (3.3.53). Due to its anti-

symmetry with respect to E → −E, the σ3 terms drops. Similarly, the diagonal

elements in the last term are odd with respect to k → −k and hence, vanish. Fur-

thermore, the sum over m can be performed using (A.4.2), after which the integral

over k is straightforward:

lim
x′→x

∆S
(1)
β (x, x′) = − µ

π2

∫ ∞

µ

p dE

eβE + 1
. (3.3.62)

The fermion condensate is now straightforward to compute:

〈: ψψ :〉β =
2µ

π2

∫ ∞

µ

p dE

eβE + 1
. (3.3.63)

The integral above can be performed exactly in the massless limit using the Fermi-

Dirac integral: ∫ ∞

0

dx
x

eβx + 1
=

π2

12β2
, (3.3.64)
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thus, for small masses, the fermion condensate has the following behaviour:

〈: ψψ :〉β ∼
µ

6β2
+O(µ2). (3.3.65)

A more in-depth analysis of the behaviour of the FC at small and large values of

the mass will be performed when the SET is discussed.

Thermal expectation value of the charge current

Since the coincidence limit (3.3.62) of ∆S
(1)
β is proportional to the identity matrix,

all components of the CC vanish:

〈: Jµ :〉β = −1

2
tr
{

∆S
(1)
β (x, x′ = x)γµ

}
= 0, (3.3.66)

since tr γµ = 0. Moreover, γ5 and γµ anti-commute, hence the t.e.v. of the neutrino

current also vanishes:

〈: Jµ
ν :〉β = −1

2
tr

{
1− γ5

2
∆S

(1)
β (x, x′ = x)γµ

}
= 0. (3.3.67)

The vanishing of the current everywhere is in agreement with the properties of a

thermal state: both particles and antiparticles are in thermal equilibrium at the

same temperature but give contributions of opposite sign because of their opposite

charge.

Thermal expectation value of the stress-energy tensor

The t.e.v. of the SET can be computed from Eq. (3.3.50) using the formula (2.2.55c),

where the coincidence limit can be taken only after the derivatives have been per-

formed. The matrix structure in Eq. (3.3.60) can be used as a guide to see which

terms contribute to which component, based on what gamma matrix is multiplying

∆S
(1)
β when the trace is taken. For example, when γ t̂ is multiplying ∆S

(1)
β , only the

σ3 term contributes. In the case of spatial gamma matrices, only the last term can

contribute. The derivatives with respect to t̂, ϕ and z are trivial to perform, while

the ρ and ρ′ derivatives send products of the form JmJm and Jm+1Jm+1 to 0 and

turn JmJm+1 into a Wronskian, as follows:

lim
ρ→ρ′

[(∂ρ − ∂ρ′)Jm(qρ)Jm(qρ′)] = lim
ρ→ρ′

[(∂ρ − ∂ρ′)Jm+1(qρ)Jm+1(qρ
′)] = 0,

lim
ρ→ρ′

[(∂ρ − ∂ρ′)Jm(qρ)Jm+1(qρ
′)] =− qJ+

m(qρ) + ρ−1(m+ 1
2
)J×m(qρ), (3.3.68)
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where Eqs. (A.1.11) were used to replace the derivatives of the Bessel functions and

the following notation was introduced:

J±m(z) = J2
m(z)± J2

m+1(z), J×m(z) = 2Jm(z)Jm+1(z). (3.3.69)

The components of the SET can now be calculated. All off-diagonal components

vanish, while the diagonal ones reduce to:

〈: Tα̂γ̂ :〉β =
2

π2

∫ ∞

µ

dE

eβE + 1
diag

(
pE2,

1

3
p3,

1

3
p3,

1

3
p3

)
. (3.3.70)

As expected from Eq. (2.2.28), the trace of the SET is proportional to the FC

(3.3.63):

〈: T α̂
α̂ :〉β = −µ 〈: ψψ :〉β = −2µ2

π2

∫ ∞

µ

p dE

eβE + 1
. (3.3.71)

In the massless case E = p, the formula∫ ∞

0

x3 dx

eβx + 1
=

7π4

120β4
(3.3.72)

can be used to integrate (3.3.70):

〈: Tα̂γ̂ :〉β =
7π2

60β4
diag

(
1,

1

3
,
1

3
,
1

3

)
. (3.3.73)

The value obtained for (charged) fermions differs from that for uncharged scalars

(3.2.22) by a factor of 7
2
, which can be explained as follows. A factor of 2 is due

to the equal contributions coming from particles and anti-particles, another factor

of 2 comes from the two different helicity states λ = ±1
2

and finally a factor of 7
8
.

The latter factor is related to the difference between Fermi-Dirac and Bose-Einstein

statistics. The hallmark of the former is the density of states factor (eβE + 1)−1

present in the expression for the t.e.v. of the SET (3.3.70), while the SET for a

scalar field (3.2.20) is written in terms of (eβE − 1)−1. As in the scalar case, the

equation of state P/ρ (where P is the pressure and ρ is the energy density) is equal

to 1
3

in the massless case.

If µ 6= 0, an asymptotic analysis can be performed, along the lines of that for

the massive scalar field in subsection 3.2.2. Changing the variable in Eq. (3.3.73) to

t = E/µ gives:

P =
2µ4

3π2

∫ ∞

1

dt

eβµt + 1
(t2 − 1)3/2,

ρ− 3P =
2µ4

π2

∫ ∞

1

dt

eβµt + 1
(t2 − 1)1/2, (3.3.74a)
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where ρ − 3P is minus the trace of the SET and is linked to the t.e.v. of the FC

through:

ρ− 3P = µ 〈: ψψ :〉β . (3.3.74b)

The exponential in the denominators above can be expanded in a Taylor series:

1

eβµt + 1
=

∞∑
k=1

(−1)k+1e−kβµt, (3.3.75)

which, together with (A.1.17), gives:

P =
2µ2

π2β2

∞∑
k=1

(−1)k+1

k2
K2(kβµ),

ρ− 3P =
2µ3

π2β

∞∑
k=1

(−1)k+1

k
K1(kβµ). (3.3.76)

As in the scalar case, terminating the expansion (3.3.76) at k = 3 gives an excellent

approximation throughout the whole parameter space for µ and β.

The first term in the series (3.3.76) is the same (up to a proportionality factor

of 4) as the corresponding one for scalars in Eq. (3.2.29), showing that fermions and

scalars have the same large-mass behaviour (when the series can be terminated at

k = 1). The behaviour of the FC at large masses is:

〈: ψψ :〉β ∼
1

β3

(
βµ

2π

)3/2

e−βµ

(
1 +

3

8βµ
+ . . .

)
. (3.3.77)

At small masses (or large temperatures), the argument βµ of the Bessel functions

is small and Eq. (3.3.76) can be approximated using (A.2.4b):

P =
7π2

180β4
− µ2

12β2
+O(µ4),

ρ =
7π2

60β4
− µ2

12β2
+O(µ4),

P

ρ
=

1

3

(
1 +

10

7π2
β2µ2 +O(µ4)

)−1

. (3.3.78)

Comparing the above results to the small mass expansion (3.3.65) of the t.e.v. of the

FC confirms Eq. (3.3.74b). Figure 3.2 shows how the asymptotic expressions for the

density, pressure and equation of state for massive fermions at finite temperature

for small values of the mass (3.3.78) compare with results obtained using numerical

integration. To facilitate the comparison with the results obtained for the scalar field,

the plots show the energy density and pressure per degree of freedom, i.e. divided

by 4 for fermions (uncharged scalars have only one degree of freedom).



46 CHAPTER 3. MINKOWSKI SPACE-TIME

2 4 6 8
Μ

0.05

0.10

0.15

0.20

0.25

Ρ

Small Μ

Large Μ

Numerical

2 4 6 8 10
Μ

0.02

0.04

0.06

0.08

0.10

p

Fermions

Bosons

2 4 6 8
Μ

0.02

0.04

0.06

0.08

P

Small Μ

Large Μ

Numerical

2 4 6 8 10
Μ

0.05

0.10

0.15

0.20

0.25

0.30

Ρ

Fermions

Bosons

-3 -2 -1 1 2
Log@ Β-1D

0.05

0.10

0.15

0.20

0.25

0.30

P � Ρ

Small Β

Large Β

Numerical

-3 -2 -1 1 2
Log@ Β-1D

0.05

0.10

0.15

0.20

0.25

0.30

P � Ρ

Fermions

Bosons

Figure 3.2: On the left hand side, the density ρ, pressure P and equation of state P
ρ

per degree of freedom (4 for Dirac fermions) for a thermal distribution of fermions are
plotted as functions of the mass µ of the quanta with β = 1 (first two plots) and as
functions of the logarithm of the temperature with µ = 1 (last plot). The solid black
curve shows numerical results, the dashed blue curve is the large µ approximation
and the dashed purple curve is the small µ approximation. The plots on the right
compare numerical results for the density, pressure and equation of state of fermions
(blue) and bosons (red). The values for the pressure and density are always higher
for bosons, but the equation of state decreases with temperature slower for fermions.
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3.4 Summary

As part of the introductory material, this chapter introduces notation and techniques

to be used throughout this thesis. The mode solutions of the Klein Gordon and

Dirac equations, presented in sections 3.2.1 and 3.3.1, respectively, are used for

the construction of quantum states on unbounded and bounded rotating Minkowski

space-time, in chapters 4 and 5. The methods used for the construction of the

thermal two-point functions and thermal expectation values, presented in sections

3.2.2 and 3.3.3 for the Klein-Gordon and Dirac fields, respectively, are used on the

rotating Minkowski space-time in chapters 4 and 5, as well as on non-rotating and

rotating anti-de Sitter space-time, in chapters 7 and 8, respectively.



Chapter 4. Rotating Minkowski

space-time

Quantum field theory in rotating space-times has been investigated previously. Of

relevance to this chapter are especially the paper by Letaw and Pfautsch [52] on

the problem of second quantisation of scalar particles, Iyer’s paper [47] on the same

problem for fermions and Vilenkin’s paper [72] on the construction of Green’s func-

tions for scalars, fermions and photons. The problem of second quantisation is

considered in a co-rotating coordinate system obtained simply by applying a time-

dependent rotation ϕ = ϕM−ΩtM to the Minkowski coordinates (tM, ϕM), where the

subscript M refers to coordinates with respect to the non-rotating, inertial frame in

Minkowski space-time. All these papers report problems not only with the construc-

tion of thermal states, but also with second quantisation. The resulting space-time

is not physical because the velocity of co-rotating particles increases linearly with

the distance from the rotation axis such that at the finite distance ρ = Ω−1 from

the rotation axis, co-rotating particles rotate with the speed of light. The surface

defined by ρ = Ω−1 is therefore referred to as the speed of light surface (SOL).

There have been attempts at improving this simple description by using a Lorentz

transformation instead of the non-relativistic coordinate transformation ϕ 7→ ϕ −
Ωt [53, 66, 69]. The resulting metric is obtained from the Minkowski metric by

performing the coordinate transformation

t 7→ t cosh Ωρ− ρϕ sinh Ωρ, ϕ 7→ ϕ cosh Ωρ− t
ρ
sinh Ωρ

and suffers from the major drawback of being impractical for exact analytic calcula-

tions. For this reason, the discussion in this thesis is restricted to the simple model

ϕ 7→ ϕ− Ωt, where good analytic results can be obtained and understood.

The results of sections 3.2.1 and 3.3.1 are used here for the analysis of the

quantum scalar and fermion fields, respectively, on a flat space-time rotating about a

fixed axis with constant angular velocity. The space-time metric and other properties

are discussed in section 4.1. Scalars are discussed in section 4.2 and fermions in

section 4.3. In both cases, novel analytic results are presented, which are also

published in Ref. [10].

A main point in our discussion is the fundamental difference between the freedom

in the definition of vacuum states for scalars and fermions. While for the latter,

the only restriction to how the modes are split to represent particles and anti-

particles is the preservation of the charge conjugation symmetry, particle modes

48
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for the former are constrained to having positive norm with respect to the Klein-

Gordon inner product [52]. Thus, the set of particle modes can be forced to contain

modes with negative frequencies (i.e. negative eigenvalues of the Hamiltonian). In

contrast, Iyer [47] shows that for fermions it is possible to choose a vacuum state

such that all particle states have positive frequencies with respect to the co-rotating

Hamiltonian. The possibility of quantising the field such that no negative frequency

modes describe particle states is important for the consistent definition of thermal

states. As discussed by Vilenkin [72], particle modes with negative frequency induce

spurious temperature-independent terms in thermal expectation values.

The main result of this chapter is the derivation of analytic formulae for co-

rotating t.e.v.s of massless fermions, in subsection 4.3.2. These results represent

original work which has been published in Ref. [10]. A similar method which allowed

the analytic analysis of fermion t.e.v.s is applied to the case of the scalar field, where

it is known that co-rotating thermal states are ill-defined, to isolate the divergent

contributions from finite terms which can be interpreted physically.

4.1 Space-time characteristics

The space-time rotating with angular speed Ω about the z-axis can be described

using a co-rotating coordinate system, by performing the coordinate transformation

t = tM , ρ = ρM , ϕ = ϕM − ΩtM , z = zM (4.1.1)

on the original Minkowski coordinates {tM , ρM , ϕM , zM}. Throughout this chapter,

coordinate indices refer to the co-rotating coordinate system, with respect to which

the line element in cylindrical coordinates has the form:

ds2 = −εdt2 + 2ρ2Ω dt dϕ+ dρ2 + ρ2dϕ2 + dz2, (4.1.2)

where

ε = 1− ρ2Ω2 (4.1.3)

decreases to 0 as the SOL is approached. The metric gµν and its inverse gµν have

the following components:

gµν =


−(1− ρ2Ω2) 0 ρ2Ω 0

0 1 0 0

ρ2Ω 0 ρ2 0

0 0 0 1

 , gµν =


−1 0 Ω 0

0 1 0 0

Ω 0 −Ω2 + ρ−2 0

0 0 0 1

 . (4.1.4)
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The non-vanishing Christoffel symbols for the metric (4.1.4) are given by:

Γϕ
tρ =

Ω

ρ
, Γϕ

ϕρ =
1

ρ
, Γρ

tt = −ρΩ2, Γρ
tϕ = −Ωρ, Γρ

ϕϕ = −ρ.

(4.1.5)

In the rotating space-time, the complete system of commuting operators (CSCO)

contains the same operators as in Minkowski space-time, but this time with respect

to the rotating coordinates. Thus, the CSCO for the Klein-Gordon field is comprised

of H, Pz and Lz and for the Dirac field, Lz is replaced by Jz and the helicity operator

W0 is added, as explained in subsection 3.3.1. The main difference is that now the

HamiltonianH = i∂t contains a derivative with respect to the time in the co-rotating

frame and is linked to the Minkowski operators through:

H = HM − ΩLz,M. (4.1.6)

The Klein-Gordon equation (2.1.2) can be written as:

[
−(H + ΩLz)

2 + ρ−2L2
z + P 2

z − ∂2
ρ − ρ−1∂ρ + µ2

]
φ(x) = 0, (4.1.7)

naturally incorporating a coupling between the angular momentum operator L and

the angular velocity Ω of the rotation of the space-time through the term Ω · L =

ΩLz.

Transforming back to Cartesian coordinates, the line element (4.1.2) takes the

form:

ds2 = −[1− (x2 + y2)Ω2]dt2 + 2xΩ dt dy − 2yΩ dt dx+ dx2 + dy2 + dz2, (4.1.8)

where x = ρ cosϕ and y = ρ sinϕ. In matrix form, the metric and its inverse have

components:

gµν =


−(1− (x2 + y2)Ω2) −yΩ xΩ 0

−yΩ 1 0 0

xΩ 0 1 0

0 0 0 1

 ,

gµν =


−1 −yΩ xΩ 0

−yΩ 1− y2Ω2 xyΩ2 0

xΩ xyΩ2 1− x2Ω2 0

0 0 0 1

 . (4.1.9)
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A natural choice for the tetrad coframe defined by (2.2.1) is:

ωt̂ = dt, ωx̂ = −Ωy dt+ dx,

ωẑ = dz, ωŷ = Ωx dt+ dy, (4.1.10)

with the dual frame vectors given by:

et̂ = ∂t − Ω∂ϕ = ∂t + Ωy∂x − Ωx∂y, eî = ∂i, (4.1.11)

or, in cylindrical coordinates:

et̂ = ∂t − Ω∂ϕ, eρ̂ = ∂ρ, eϕ̂ = ρ−1∂ϕ, ez = ∂z. (4.1.12)

The ensuing non-zero Cartan coefficients (2.2.19) are:

c ŷ

t̂x̂
= c x̂

ŷt̂ = Ω. (4.1.13)

The Cartan coefficients can be used to compute the only non-vanishing connection

coefficient (2.2.18):

Γx̂ŷt̂ = −Ω, (4.1.14)

which in turn can be used to calculate the spin connection (2.2.16):

Dt̂ = ∂t − Ω∂ϕ + Σz, Dî = ∂i. (4.1.15)

Here, Σz = 1
2
γ 1̂γ 2̂ is the anti-hermitian spin part of the generator of rotations about

the z-axis. The covariant derivatives (4.1.15) can be expressed with respect to the

operators of the CSCO as follows:

iDt̂ = HΩ + ΩJz, −iDî = Pi (4.1.16)

and can be substituted into Eq. (2.2.20) to write the Dirac equation as:

[γ0(H + ΩJz)− γ · P − µ]ψ(x) = 0, (4.1.17)

where γ = (γx̂, γ ŷ, γ ẑ) contains the spatial gamma matrices defined in subsec-

tion 2.2.1. The Dirac equation also contains the coupling Ω · J = ΩJz between

the angular momentum operator J and the angular velocity Ω of the space-time.

It is also useful to analyse the connection between the components of vectors

and tensors with respect to the Cartesian and cylindrical coordinate bases and with

respect to the Cartesian tetrad. The components of the stress tensor in two different
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coordinate systems {xµ} and {x′λ} are related through:

T ′µν = Tκλ
∂xκ

∂x′µ
∂xλ

∂x′ν
. (4.1.18)

Applying the above prescription to the transition from Cartesian coordinates (x, y, z)

to cylindrical coordinates (ρ, ϕ, z) gives:

Ttρ = T0x cosϕ+ T0y sinϕ,

Tρz = Txz cosϕ+ Tyz sinϕ,

ρ−1Ttϕ = −T0x sinϕ+ T0y cosϕ,

ρ−1Tϕz = −Txz sinϕ+ Tyz cosϕ,

Tρρ = Txx cos2 ϕ+ 2Txy sinϕ cosϕ+ Tyy sin2 ϕ,

ρ−2Tϕϕ = Txx sin2 ϕ− 2Txy sinϕ cosϕ+ Tyy cos2 ϕ,

ρ−1Tρϕ = −Txx sinϕ cosϕ+ Txy(cos2 ϕ− sin2 ϕ) + Tyy sinϕ cosϕ. (4.1.19)

The components of the SET with respect to a tetrad can be written as:

Tα̂β̂ = eµ
α̂e

ν
β̂
Tµν , (4.1.20)

giving rise to the following expressions with respect to the tetrad (4.1.12):

Tt̂t̂ = Ttt − 2ΩTtϕ + Ω2Tϕϕ, Tt̂ρ̂ = Ttρ − ΩTϕρ,

Tt̂ϕ̂ = ρ−1(Ttϕ − ΩTϕϕ), Tt̂ẑ = Ttz − ΩTϕz,

Tϕ̂ρ̂ = ρ−1Tϕρ, Tϕ̂ϕ̂ = ρ−2Tϕϕ,

Tϕ̂ẑ = ρ−1Tϕz, (4.1.21)

which can be inverted as follows:

Ttt = Tt̂t̂ + 2ρΩTt̂ϕ̂ + ρ2Ω2Tϕ̂ϕ̂, Ttρ = Ttρ + ρΩTϕ̂ρ̂,

Ttϕ = ρTt̂ϕ̂ + ρ2ΩTϕ̂ϕ̂, Ttz = Tt̂ẑ + ρΩTϕ̂ẑ,

Tϕρ = ρTϕ̂ρ̂, Tϕϕ = ρ2Tϕ̂ϕ̂,

Tϕz = ρTϕ̂ẑ, (4.1.22)

Similarly, the components of the current vector with respect to the cylindrical

coordinate system can be written as:

Jρ = Jx cosϕ+ Jy sinϕ, Jϕ = −ρ−1 sinϕJx + ρ−1 cosϕJy, (4.1.23)
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and the only tetrad component which differs from the coordinate components is:

J ϕ̂ = ρJϕ + ρΩJ t. (4.1.24)

Before ending this section, it is worth mentioning that Eqs. (4.1.7) and (4.1.17)

can be obtained by applying the following rotation:

R[Ωt] = eiΩtJz , (4.1.25)

on the Minkowski coordinates in Eqs. (2.1.2) and (2.2.20), with Jz replaced by Lz

for the Klein-Gordon field. The above transformation can be used to obtain the

modes and Green’s functions from the Minkowski ones calculated in the previous

chapter.

4.2 Scalar field theory in a rotating background

Subsection 4.2.1 starts this section by summarising the results presented by Letaw

and Pfautsch [52] and Duffy and Ottewill [33] regarding the construction of modes

and second quantisation of the Klein-Gordon field in co-rotating coordinates. In

subsection 4.2.2, the t.e.v. of the SET is shown to be infinite throughout space-time.

Using analytic techniques, the divergences in the t.e.v. of the SET are isolated,

facilitating the understanding of their origin, while physical information can be

extracted from the finite remainder.

4.2.1 Rigidly rotating modes

To obtain the solutions of the Klein-Gordon equation (4.1.7) in co-rotating coor-

diantes (4.1.1), it is sufficient to apply the rotation (4.1.25) to the Minkowski modes

(3.2.6). Since in the scalar case, Jz = −i∂ϕ, the transformation is just a translation

of the ϕ coordinate, i.e.:

eiΩtJzf(ϕ) =
∞∑

n=0

(Ωt)n

n!

∂nf(ϕ)

∂ϕn
= f(ϕ+ Ωt). (4.2.1)

Thus, the following mode solutions are obtained [33]:

fωkm(x) =
1√

8π2 |ω|
e−ieωt+ikz+imϕJm(qρ), (4.2.2)

where ω̃ = ω−Ωm is the eigenvalue of the Hamiltonian H = i∂t and the transverse

momentum is defined as q =
√
ω2 − k2 − µ2. The Klein-Gordon inner product
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(3.2.5) changes according to Eq. (2.1.19) to

〈f, g〉 =

∫ ∞

−∞
dz

∫ ∞

0

ρ dρ

∫ 2π

0

dϕf
(
i
←→
∂t + iΩ

←→
∂ϕ

)
g, (4.2.3)

therefore, the norm of the modes fωkm is still given by Eq. (3.2.7). Hence, even

though the frequency of the mode fωkm is ω̃, the sign of its norm is still controlled

by the Minkowski energy ω, as shown in Eq. (2.1.33).

As discussed by Letaw and Pfautsch [52], in the expansion of the field operator

φ(x), the coefficients of positive norm modes have the interpretation of particle

annihilation operators, thus, the field operator must be expanded as:

φ(x) =
∞∑

m=−∞

∫ ∞

µ

ω dω

∫ p

−p

dk
{
fωkm(x)aωkm + f ∗ωkm(x)a†ωkm

}
, (4.2.4)

where

p =
√
ω2 − µ2. (4.2.5)

The vacuum state is defined as the state annihilated by all aωkm operators:

aωkm |0〉 = 0. (4.2.6)

A comparison at the same point in space-time ϕ = ϕM − ΩtM of (4.2.4) and the

Minkowski expansion (3.2.9) of the field operator shows that the one-particle oper-

ators in the rotating space-time are equal to their Minkowski counterparts, hence,

the vacuum state seen by the rotating observer is simply the Minkowski vacuum. As

discussed in Ref. [52], the norms (rather than the frequencies) of the Klein-Gordon

modes restrict the choice of vacuum such that the only natural choice for a rotating

vacuum is just the Minkowski vacuum. Consequently, the set of particle modes con-

tains modes with negative frequency, which make the construction of thermal states

problematic, as discussed in subsection 2.1.4.

4.2.2 Rigidly rotating thermal states

The vacuum Schwinger (2.1.47) and Hadamard (2.1.46) functions can be obtained

either by applying rotations to their Minkowski analogues in Eqs. (3.2.11a) and

(3.2.11b), respectively, or by using the mode expansion of the field operator (4.2.4):

G(x, x′) =
∞∑

m=−∞

∫ ∞

µ

dω

8π2

∫ p

−p

dk eik∆z(e−ieω∆t+im∆ϕ − eieω∆t−im∆ϕ)Jm(qρ)Jm(qρ′),

G(1)(x, x′) =
∞∑

m=−∞

∫ ∞

µ

dω

8π2

∫ p

−p

dk eik∆z(e−ieω∆t+im∆ϕ + eieω∆t−im∆ϕ)Jm(qρ)Jm(qρ′).

(4.2.7)
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The formula (2.1.53) can be used to compute the thermal Hadamard function. The

t.e.v. of the SET is the difference between the expectation value of the SET at finite

temperature and its v.e.v., which can be calculated using the difference between the

thermal and vacuum Hadamard functions:

∆G
(1)
β (x, x′) =

1

4π2

∞∑
m=−∞

∫ ∞

µ

dω

∫ p

−p

dk
eik∆z

eβeω − 1
(e−ieω∆t+im∆ϕ + eieω∆t−im∆ϕ)

× Jm(qρ)Jm(qρ′). (4.2.8)

The density of states factor (eβeω − 1)−1 becomes infinite when the energy ω̃ =

ω−mΩ measured with respect to the co-rotating frame vanishes, making the thermal

Hadamard function and any quantities derived from it divergent [33]. However,

it is possible to write down expressions for the t.e.v.s and, by applying analytic

techniques, to isolate the divergent parts from a remainder which can be interpreted

physically by direct analogy to the fermion case, presented in subsection 4.3.2.

Mode sum expressions for t.e.v.s

The mode sum expression for the t.e.v.s can be computed using the formulae (2.1.57)

for φ2 and (2.1.54) for the SET. To help simplify notation, it is useful to introduce

the following definition:

Gabc =
1

π2

∞∑
m=−∞

∫ ∞

µ

dω

eβeω − 1

∫ p

0

dk ωaqbmcJ2
m(qρ), (4.2.9)

where Gabc ≡ Gabc(ρ) are functions of the distance ρ from the rotation axis, temper-

ature β, angular momentum of the rotation Ω and the mass µ of the field quanta.

The t.e.v. of φ2 is just half the coincidence limit of the thermal Hadamard function

(4.2.8):

〈: φ2 :〉β =
1

2
G000. (4.2.10)

To evaluate the t.e.v. of the SET, the coefficient of gµν in (2.1.54) must be

computed:

lim
x→x′

[
gκλ′∇κ∆G

(1)
β

←−
∇λ′ + µ2∆G

(1)
β

]
=

1

2π2

∞∑
m=−∞

∫ ∞

µ

dω

eβeω − 1

∫ p

−p

dk

×
[
(ρ−2m2 − q2)J2

m(qρ) + q2J ′m
2(qρ)

]
. (4.2.11)

The terms involving derivatives of Jm can be expressed in terms of Gabc using the
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following relations:

2qJm(qρ)J ′m(qρ) =
d

dρ
J2

m(qρ),

q2J ′m
2(qρ) =

1

2

(
d2

dρ2
+

1

ρ

d

dρ

)
J2

m(qρ) +

(
q2 − m2

ρ2

)
J2

m(qρ), (4.2.12)

allowing Eq. (4.2.11) to be put in the form:

lim
x→x′

[
gκλ′∇κ∆G

(1)
β

←−
∇λ′ + µ2∆G

(1)
β

]
=

1

2

(
d2

dρ2
+

1

ρ

d

dρ

)
G000. (4.2.13)

Equation (4.2.13) can be used in conjunction with the Christoffel symbols (4.1.5) to

obtain the covariant components of the SET (2.1.54) with respect to the cylindrical

coordinate system:

〈: Tµν :〉β =
1

12π2

∞∑
m=−∞

∫ ∞

µ

dω

eβeω − 1

∫ p

0

dk Fµν , (4.2.14)

with the components Fµν given by:

Ftt =
[
6ω̃2 + (ρ−2m2 − q2)(1− ρ2Ω2)

]
J2

m − 2Ω2qρJmJ
′
m + q2(1− ρ2Ω2)J ′m

2,

Ftϕ =
(
−6ω̃m− Ωm2 + Ωq2ρ2

)
J2

m − 2ΩqρJmJ
′
m − Ωq2ρ2J ′m

2,

Fϕϕ =
(
5m2 + q2ρ2

)
J2

m − 2qρJmJ
′
m − q2ρ2J ′m

2,

Fρρ =
(
−3ρ−2m2 + 3q2

)
J2

m + 2qρ−1JmJ
′
m + 3q2J ′m

2,

Fzz =
(
6k2 − ρ−2m2 + q2

)
J2

m − q2J ′m
2, (4.2.15)

where the argument of the Bessel functions is qρ. The tetrad components (4.1.21)

of the SET have a slightly simplified form:

Ft̂t̂ =
(
6ω2 + ρ−2m2 − q2

)
J2

m + q2J ′m
2,

Fϕ̂t̂ = −6ωρ−1mJ2
m,

Fρ̂ρ̂ =
(
−3ρ−2m2 + 3q2

)
J2

m + 2qρ−1JmJ
′
m + 3q2J ′m

2,

Fϕ̂ϕ̂ =
(
5ρ−2m2 + q2

)
J2

m − 2qρ−1JmJ
′
m − q2J ′m

2,

Fẑẑ =
(
6k2 − ρ−2m2 + q2

)
J2

m − q2J ′m
2, (4.2.16)

with the Bessel functions taking the argument qρ. Equations (4.2.12) can be used
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to write the tetrad components of Eq. (4.2.14) in terms of the functions Gabc:

〈: Tt̂t̂ :〉β =
1

2
G200 +

1

24

(
d2

dρ2
+

1

ρ

d

dρ

)
G000

〈: Tϕ̂t̂ :〉
β

=− 1

2ρ
G101

〈: Tρ̂ρ̂ :〉β =

(
1

8

d2

dρ2
+

5

24ρ

d

dρ

)
G000 +

1

2
G020 −

1

2ρ2
G002,

〈: Tϕ̂ϕ̂ :〉β =

(
− 1

24

d2

dρ2
− 1

8ρ

d

dρ

)
G000 +

1

2ρ2
G002,

〈: Tẑẑ :〉β =
1

2
(G200 −G020 − µ2G000)−

1

24

(
d2

dρ2
+

1

ρ

d

dρ

)
G000. (4.2.17)

The functions Gabc can be written as a sum of a divergent (infinite) quantity and

finite terms. The object of the remainder of this subsection is to identify and in-

terpret these finite remainders. The results are given after the following algebraic

digresion in Eqs. (4.2.50) and (4.2.51).

Bose-Einstein integrals for massless rotating states

While often the logical order of presenting results in quantum field theory is for

the scalar field before the fermion field, the method we employ for the analysis of

t.e.v.s is rigorously motivated mathematically for the Dirac field, as described after

Eq. (4.3.24). The idea is to expand the density of states factor (eβeω − 1)−1 about

Ω = 0, as follows:

1

eβ(ω−Ωm) − 1
=

∞∑
n=0

(−Ω)n

n!
mn dn

dωn

(
1

eβω − 1

)
. (4.2.18)

The above expansion is not well defined when ω −Ωm < 0, since the expression on

the right hand side of Eq. (4.2.18) is positive for all ω > 0, while (eβeω − 1)−1 < 0.

This discrepancy arises due to the existence of the pole in the Bose-Einstein density

of states factor at ω = Ωm. In spite of its drawbacks when used for the scalar case,

the present method can still be used to extract physical information from otherwise

infinite t.e.v.s. Thus, substituting the expansion (4.2.18) in Eq. (4.2.9) gives:

Gabc =
1

π2

∞∑
n=0

(−Ω)n

n!

∫ ∞

µ

dω ωa d
n

dωn

(
1

eβω − 1

)∫ p

0

dk qb

∞∑
m=−∞

mn+cJ2
m(qρ).

(4.2.19)

Sum over m. Due to the symmetry of J2
m(qρ) under the transformation m→ −m,

the sum over m in Eq. (4.2.19) vanishes unless n+ c is even, in which case it can be
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written as:
∞∑

m=−∞

m2nJ2
m(z) =

n∑
j=0

Γ(j + 1
2
)

j!Γ(1
2
)
an,jz

2j, (4.2.20)

where the top limit of the sum is n, as will be shown shortly. The coefficients an,j

can be determined by using Eq. (A.1.5) to replace J2
m(z) with a power series, as

follows:

J2
m(z) =

∞∑
j=|m|

Γ(j + 1
2
)

j!Γ(1
2
)

(−1)j−m

(j −m)!(j +m)!
z2j. (4.2.21)

Hence, an,j can be written as:

an,j =

j∑
m=−j

(−1)j−m

(j −m)!(j +m)!
m2n. (4.2.22)

Writing

m2n = lim
α→0

d2n

dα2n
(eαm) , (4.2.23)

the coefficients an,j can be put in the form:

an,j =
1

(2j)!
lim
α→0

d2n

dα2n
eαj

2j∑
m=0

(
2k

m

)
(−e−α)2k−m. (4.2.24)

Since the over m is just the binomial expansion of (1 − e−α)2k, the coefficient an,j

simplifies to:

an,j =
1

(2j)!
lim
α→0

d2n

dα2n

(
2 sinh

α

2

)2j

. (4.2.25)

It is clear that an,j vanishes if j > n, thus proving that the series in Eq. (4.2.20)

terminates at j = n. Of interest for the computation of the t.e.v. of the SET are

the following terms:

aj,j =1,

aj+1,j =
1

12
j(2j + 1)(2j + 2),

aj+2,j =
1

1440
j(2j + 1)(2j + 2)(2j + 3)(2j + 4)(5j − 1). (4.2.26)

The integral with respect to k. Following the steps in the previous paragraph,

the sum over m in the expression (4.2.19) for Gabc is replaced by a sum over j

involving powers of q. The integral over k can be computed by changing variables

to k = p cos θ, such that:∫ p

0

dk qn = pn+1In+1, In+1 =

∫ π
2

0

dθ (cos θ)n+1. (4.2.27)
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An integration by parts shows that In+1 = nIn−1/(n+ 1). Since I0 = π
2

and I1 = 1,

it can be shown that:

In =
Γ(n+2

2
)Γ(3

2
)

Γ(n+3
2

)
, (4.2.28)

implying ∫ p

0

dk qn =
Γ(n+2

2
)
√
π

2Γ(n+3
2

)
pn+1. (4.2.29)

Having found a way to perform the sum overm and the integral over k in Eq. (4.2.19),

it remains to tackle the integral over ω, then finally the sum over n.

Analytic expressions in the massless case. While we do not have a method

to tackle the integrals over ω in Eq. (4.2.19) for arbitrary masses, we present here an

analytic method to compute them in the massless case. To obtain definite expres-

sions, it is necessary to consider the values of a, b and c relevant to the computation

of the t.e.v.s of φ2 (4.2.10) and of the SET (4.2.16), i.e. of the functions G000, G200,

G020, G002 and G101.

Let us start with G000. Performing the sum over m and integral over k in

Eq. (4.2.19) yields:

G000 =
1

π2

∞∑
n=0

Ω2n

(2n)!

n∑
j=0

ρ2jan,j

(2j + 1)

∫ ∞

µ

dω p2j+1 d
2n

dω2n

(
1

eβω − 1

)
. (4.2.30)

It is convenient to interchange the sum over j with the sum over n, which in turn

can be shifted downwards to n→ n+ j, such that G000 takes the form:

G000 =
1

π2

∞∑
j=0

(ρΩ)2j

2j + 1

∞∑
n=0

Ω2nan+j,j

(2n+ 2j)!

∫ ∞

µ

dω p2j+1 d
2n+2j

dω2n+2j

(
1

eβω − 1

)
. (4.2.31)

To proceed further, it is necessary to set µ = 0, in which case p = ω. Before giving

the result for the integral over ω, it is worth noticing that

1

eβω − 1
+

1

e−βω − 1
= −1. (4.2.32)

Hence, apart from the term −1
2
, the series expansion of the Bose-Einstein density

of states factor contains only odd powers of ω, as follows:

1

eβω − 1
=

1

βω
− 1

2
+
βω

12
+O(ω3). (4.2.33)

The first term in the above expansion is divergent as ω → 0, giving rise to the

divergent behaviour of the functions Gabc. Using Eq. (3.2.16), the integral over ω in
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Eq. (4.2.31) can be performed:

∫ ∞

0

dω ω2j+1 d
2j+2n

dω2j+2n

(
1

eβω − 1

)
= (2j + 1)!×



π2

6β2
n = 0,

−1

2
+

1

β
lim
ω→0

1

ω
n = 1,

1

β
(2n− 2)! lim

ω→0

1

ω2n−1
n > 1.

(4.2.34)

All terms with n > 1 diverge at the ω = 0 end of the integral and the n = 1 term

has both a temperature-independent finite part and a divergent part. Therefore,

G000 can be put in the form:

G000 =
1

π2

∞∑
j=0

(ρΩ)2j

[
π2

6β2
− jΩ2

24
+

Ω2

β

∞∑
n=0

Ω2n(2j)!(2n)!an+j+1,j

(2n+ 2j + 2)!
lim
ω→0

1

ω2n+1

]
.

(4.2.35)

The sum over j can be performed for the finite terms using the following formula,

established by induction:

∞∑
j=0

(1− ε)j(2j + 2) . . . (2j + 2k) = 2kk!ε−k−1, (4.2.36)

where

ε = 1− ρ2Ω2. (4.2.37)

Denoting by G∞
abc the infinite terms appearing in Gabc, the result for G000 can be put

in the form:

G000 =
1

6β2ε
− ρ2Ω4

24π2ε2
+G∞

000, (4.2.38)

where the sum involving j in the second term in Eq. (4.2.35) has been shifted

upwards by one unit, giving rise to a ρ2Ω2 factor in Eq. (4.2.38). In the above,

G∞
000 =

Ω2

π2β

∞∑
j=0

(ρΩ)2j

∞∑
n=0

Ω2n(2j)!(2n)!an+j+1,j

(2n+ 2j + 2)!
lim
ω→0

1

ω2n+1
. (4.2.39)

Substituting a = 2 and b = c = 0 in (4.2.19) gives:

G200 =
∞∑

j=0

(ρΩ)2j(2j + 2)(2j + 3)

[
π2

90β4
+

Ω2

72β2
j − Ω4

2880π2
j(5j − 1)

]
+G∞

200

=
π2

15β4ε3
(4

3
− 1

3
ε) +

5ρ2Ω4

18β2ε4
(6

5
− ε

5
)− ρ2Ω6

36π2ε5
(6− 111

20
ε+ 11

20
ε2) +G∞

200,

(4.2.40)

where the round brackets evaluate to 1 on the rotation axis (i.e. when ε = 1). The
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infinite terms are grouped in G∞
200 as follows:

G∞
200 =

Ω4

βπ2

∞∑
j=0

(ρΩ)2j

∞∑
n=0

Ω2n(2j + 3)!(2n)!an+j+2,j

(2j + 1)(2n+ 2j + 4)!
lim
ω→0

1

ω2n+1
. (4.2.41)

Repeating the same steps for G020 yields:

G020 =
∞∑

j=0

(ρΩ)2j(2j + 2)2

{
π2

90β4
+

Ω2

72β2
j − Ω4

2880π2
j(5j − 1)

}
+G∞

020

=
2π2

45β4ε3
(2− ε) +

2ρ2Ω4

9β2ε4
(3

2
− ε

2
)− ρ2Ω6

45π2ε5
(15

2
− 63

8
ε+ 11

8
ε2) +G∞

020, (4.2.42)

with

G∞
020 =

Ω4

π2β

∞∑
j=0

(ρΩ)2j

∞∑
n=0

Ω2n(2j + 2)2(2j)!(2n)!an+j+2,j

(2n+ 2j + 4)!
lim
ω→0

1

ω2n+1
. (4.2.43)

In the computation of G002, the sum over j runs from 0 to n+ 1:

G002 =
1

π2

∞∑
n=0

Ω2n

(2n)!

n+1∑
j=0

an+1,j

(2j + 1)aj,j

ρ2j

∫ ∞

0

dω ω2j+1 d
2n

dω2n

(
1

eβω − 1

)
. (4.2.44)

By treating the j = n + 1 case separately (and relabelling the summation index n

by j), the following expression can be obtained:

ρ−2G002 =
∞∑

j=0

(ρΩ)2j(2j + 2)

[
π2

90β4
(2j + 1) +

Ω2

144β2
(2j + 3)(2j + 4)

− Ω4

2880π2
(2j + 5)(2j + 6)(5j + 4)

]
+ ρ−2G∞

002

=
π2(4− 3ε)

45β4ε3
+

Ω2(2− ε)
6β2ε4

− Ω4

24π2ε5
(4− 27

10
ε− 1

5
ε2 − 1

10
ε3) + ρ−2G∞

002,

(4.2.45)

where

ρ−2G∞
002 =

Ω4

π2β

∞∑
j=0

(ρΩ)2j

∞∑
n=0

Ω2n(2j + 2)!(2n)!an+j+3,j+1

(2n+ 2j + 4)!
lim
ω→0

1

ω2n+1
. (4.2.46)

For G101, the sum over n runs through odd values:

G101 = − Ω

π2

∞∑
n=0

Ω2n

(2n+ 1)!

n+1∑
j=0

an+1,j

(2j + 1)
ρ2j

∫ ∞

0

dω ω2j+2 d
2n+1

dω2n+1

(
1

eβω − 1

)
.

(4.2.47)

Bearing in mind that this time the number of integrations by parts performed in

the integration over ω is odd, consequently changing the minus sign in front of the
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sum over n into a plus, the following result can be obtained:

G101

ρ2Ω
=

∞∑
j=0

(ρΩ)2j(j + 1)(j + 2)

[
2π2

45β4
+

Ω2(j + 2)

18β2
− Ω4(j + 3)(5j + 4)

720π2

]
+
G∞

101

ρ2Ω

=
4π2

45β4ε3
+

2Ω2

9β2ε4
(3

2
− 1

2
ε)− Ω4

30π2ε5
(5− 4ε) +

1

ρ2Ω
G∞

101, (4.2.48)

where

1

ρ2Ω
G∞

101 =
Ω4

π2β

∞∑
j=0

(ρΩ)2j

∞∑
n=0

Ω2n(2j + 4)!(2n)!an+j+3,j+1

(2j + 3)(2n+ 2j + 5)!
lim
ω→0

1

ω2n+1
. (4.2.49)

Thermal expectation values for massless rotating states

Putting all pieces together, the t.e.v. of φ2 (4.2.10) can be written in the massless

case using the result in Eq. (4.2.38) as:

〈: φ2 :〉β =
1

12β2ε
− ρ2Ω4

48π2ε2
+ φ2

∞. (4.2.50)

Similarly, the t.e.v. of the SET (4.2.16) can be written using Eqs. (4.2.40), (4.2.42),

(4.2.45) and (4.2.48) as:

〈: Tt̂t̂ :〉β =
π2

30β4ε3

(
4
3
− 1

3
ε
)

+
Ω2

36β2ε4
(6− 5ε)

− Ω4

144π2ε5

(
12− 171

10
ε+ 31

5
ε2 − 1

10
ε3
)

+ T∞t̂t̂ ,

〈: Tϕ̂t̂ :〉
β

=− ρΩ
[

2π2

45β4ε3
+

Ω2

9β2ε4

(
3
2
− 1

2
ε
)
− Ω4

60π2ε5
(5− 4ε) + T∞ϕ̂t̂

]
,

〈: Tρ̂ρ̂ :〉β =
π2

90β4ε
+

Ω2

36β2ε3
− Ω4

144π2ε4

(
3
2
− 3

5
ε+ 1

10
ε2
)

+ T∞ρ̂ρ̂ ,

〈: Tϕ̂ϕ̂ :〉β =
π2

90β4ε3
(4− 3ε) +

Ω2

36β2ε4
(6− 5ε)

− Ω4

144π2ε5

(
12− 141

10
ε+ 17

5
ε2 − 3

10
ε3
)

+ T∞ϕ̂ϕ̂,

〈: Tẑẑ :〉β =
π2

90β4ε2
− Ω2

36β2ε3
+

Ω4

144π2ε4

(
9
2
− 17

5
ε− 1

10
ε2
)

+ T∞ẑẑ . (4.2.51)
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In the above, ε = 1 − ρ2Ω2. Using Eqs. (4.1.22), the t.e.v. of the SET can be

expressed with respect to the coordinate basis:

〈: Ttt :〉β =
π2

30β4ε
+

Ω2

36β2ε2
− Ω4

144π2ε3

(
9
2
− 19

5
ε+ 3

10
ε2
)

+ T∞tt ,

〈: Tϕt :〉β
ρ2Ω

=− π2

30β4ε2
− Ω2

12β2ε3
+

7Ω4

720π2ε4
(45

14
− 17

7
ε+ 3

14
ε2) +

T∞ϕt

ρ2Ω
,

〈: Tϕϕ :〉β
ρ2

=
π2(4− 3ε)

90β4ε3
+

Ω2(6− 5ε)

36β2ε4
− Ω4

144π2ε5
(12− 141

10
ε+ 17

5
ε2 − 3

10
ε3) +

T∞ϕϕ

ρ2
.

(4.2.52)

All t.e.v.s presented in this section can be written as a sum of three type of

terms, as follows. For a generic operator A, its t.e.v. can be split as:

〈: A :〉β = 〈: A :〉phys
β + 〈: A :〉spurious

β + 〈: A :〉∞β , (4.2.53)

where 〈: A :〉phys
β indicates the physical terms, proportional to β−4 or β−2 (only to

β−2 for φ2), 〈: A :〉spurious
β contains any temperature-independent contributions and

〈: A :〉∞β contains the infinite terms.

The terms proportional to β−4 or β−2 are the terms we were looking for. The ap-

plication of an analogous (but thoroughly rigorous) analysis to the t.e.v.s of fermions

in subsection 4.3.2 reveals terms with similar features when thermal states with

respect to the rotating (Iyer) vacuum are considered (i.e. the vacuum state corre-

sponding to a split of modes which does not allow particle modes to have negative

frequencies). These terms vanish in the vacuum state (as β → ∞) and allow the

non-rotating t.e.v.s in subsection 3.2.2 to be recovered when Ω is set to 0. The

t.e.v. of the SET receives on the rotation axis, where ε = 1 and the terms in the

parentheses reduce to 1, a correction to the non-rotating case proportional to Ω2,

showing that the effects of the rotation can be detected even on its axis. All the

physical terms diverge as the speed of light surface (SOL) is approached (i.e. ε→ 0),

following an inverse power law with respect to the distance to the latter. The terms

proportional to β−4 (in the case of the SET) and to β−2 (for φ2) agree with the

“Planckian forms” given in Ref. [33]. The numerical results presented in subsec-

tion 5.1.2 for rotating thermal states inside a bounding cylinder show a very good

agreement with the Planckian forms at large enough values of βΩ. For completeness,



64 CHAPTER 4. ROTATING MINKOWSKI SPACE-TIME

the physical terms are given below:

〈: φ2 :〉phys

β =
1

12β2ε
− ρ2Ω4

48π2ε2
+ φ2

∞, (4.2.54a)

〈: Tt̂t̂ :〉phys
β =

π2

30β4ε3

(
4
3
− 1

3
ε
)

+
Ω2

36β2ε4
(6− 5ε) , (4.2.54b)

〈: Tϕ̂t̂ :〉phys

β
=− ρΩ

[
2π2

45β4ε3
+

Ω2

9β2ε4

(
3
2
− 1

2
ε
)]
, (4.2.54c)

〈: Tρ̂ρ̂ :〉phys
β =

π2

90β4ε2
+

Ω2

36β2ε3
, (4.2.54d)

〈: Tϕ̂ϕ̂ :〉phys
β =

π2

90β4ε3
(4− 3ε) +

Ω2

36β2ε4
(6− 5ε) , (4.2.54e)

〈: Tẑẑ :〉phys
β =

π2

90β4ε2
− Ω2

36β2ε3
. (4.2.54f)

It is remarkable that the above results allow the analytic prediction that 〈: Tẑẑ :〉phys
β

vanishes on the rotation axis when βΩ = π
√

2/5:

〈: Tẑẑ :〉phys
β

⌋
ρ=0

βΩ=π
√

2
5

= 0. (4.2.55)

The temperature-independent terms 〈: A :〉spurious
β are induced by the inclusion of

modes with ω̃ < 0 in the set of particle modes, through the mechanism explained in

subsection 2.1.4 and are analogous to the temperature-independent terms in t.e.v.s

obtained for fermions with respect to the Minkowski (Vilenkin) vacuum state, as

discussed in subsection 4.3.2. They are spurious in the sense that t.e.v.s with respect

to a thermal state constructed relative to the vacuum state should vanish as the

temperature approaches 0. In a similar manner to the terms proportional to β−4

or β−2, these terms diverge as inverse powers of the distance to the SOL. However,

they vanish identically in the absence of rotation.

The infinite terms 〈: A :〉∞β appear due to the divergent contributions made by

modes with ω̃ = 0. Their exact expression is given by the corresponding infinite

terms G∞
abc in Gabc. All the terms G∞

abc relevant for the t.e.v.s presented above are

proportional to Ω2β−1, thus vanishing when the rotation is absent (i.e. Ω = 0), as

would be expected, since the non-rotating t.e.v.s given in subsection 3.2.2 are all

finite. Taking the limit β →∞ (vacuum state limit) sends the infinite contributions

to 0, showing that they are not spurious in the temperature-independent sense.

In the following section, similar techniques are used to find analytic expressions

for expectation values for fermion thermal quantum states. In contrast to the scalar

case, the method is completely valid and all the results obtained stay finite inside the

SOL. The divergent behaviour as the SOL is approached is retained, together with

the presence of spurious temperature-independent terms when the thermal state is

constructed with respect to the Minkowski (Vilenkin) vacuum.
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4.2.3 Summary

The fundamental requirement that particle modes must have positive norm con-

strains the rotating vacuum state to be equivalent to the Minkowski vacuum state,

forcing modes with negative frequencies with respect to the Hamiltonian of the ro-

tating system into the set of particle modes. Moreover, the Bose-Einstein density

of states factor diverges for modes with vanishing rotating frequencies but non-zero

Minkowski energies, making thermal states unattainable for scalar particles.

Following the analysis of thermal states for Dirac fermions, presented in subsec-

tion 4.3.2, it is possible to isolate the divergences in t.e.v.s and to identify finite

terms which can be interpreted physically. Thus, the Planckian forms of Ref. [33]

emerge, together with extra correction terms having the same form as those obtained

for fermions in subsection 4.3.2.

4.3 Polarised rotating fermions

The quantisation of the Dirac field is less constrained than for scalars, allowing for

vacuum states different from the Minkowski vacuum. In subsection 4.3.1, the ap-

proaches of Vilenkin [72] and Iyer [47] are introduced. The t.e.v.s of the fermion

condensate, neutrino current and SET are calculated in subsection 4.3.2 and the

analytic expression for the current for massless fermions is compared with the result

obtained by Vilenkin on the rotation axis [72]. It is shown that Vilenkin’s quanti-

sation introduces spurious terms in thermal expectation values. Also, the analytic

solutions clearly show that all t.e.v.s diverge as inverse powers of the distance to the

speed of light surface (SOL).

4.3.1 Construction of modes

By analogy to the scalar case, the mode solutions can be obtained by applying the

following rotation to the Minkowski modes:

eiΩtJzψ(ϕ) = I2 ⊗

(
e

i
2
Ωt 0

0 e−
i
2
Ωt

)
ψ(ϕ+ Ωt). (4.3.1)

Hence, the modes with respect to the rotating coordinates take the form:

Uλ
Ekm(x) = e−i eEt+ikzuλ

Ekm(ρ, ϕ), (4.3.2a)

V λ
Ekm(x) = ei eEt−ikzvλ

Ekm(ρ, ϕ), (4.3.2b)

where

Ẽ = E − Ω(m+
1

2
) (4.3.3)
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and u and v are given by (3.3.16) and (3.3.23b), respectively. The modes are nor-

malised with respect to the Minkowski inner product (3.3.19). Since all modes,

regardless of frequency, have positive norm, there are infinitely many possible quan-

tisation schemes, two of which have been used in the literature.

Vilenkin [72] performed the second quantisation for fermions in analogy to the

scalar case, splitting the set of modes into particle and anti-particle modes for E > 0

and E < 0, respectively, allowing particles to be described by modes with negative

frequency Ẽ:

ψV (x) =
∑

j

θ(Ej)
[
Uj(x)bV ;j + Vj(x)d

†
V ;j

]
. (4.3.4)

Comparing (4.3.4) with the analogue expansion (3.3.24) of the field operator at the

same point in space-time ϕ = ϕM −Ωt shows that Vilenkin’s one-particle operators

are equal to the corresponding Minkowski one-particle operators, hence, the vac-

uum corresponding to Vilenkin’s quantisation scheme coincides with the Minkowski

vacuum.

On the other hand, Iyer [47] chose positive frequency modes as particle modes,

which sets Ẽ ≥ 0 and allows for negative E:

ψI(x) =
∑

j

θ(Ẽj)
{
Uj(x)bI;j + Vj(x)d

†
I;j

}
. (4.3.5)

In the above, Ej can take the values ±
√
q2
j + k2

j + µ2 but the step function restricts

the sum to positive values of Ẽj. Using the connection (3.3.30) between the Uj and

Vj modes, the sum over j in Eq. (4.3.5) can be converted to a sum over positive Ej:

ψI(x) =
∑

j

θ(Ej)
{
Uj[θ(Ẽj)bI;j + i2mj+1θ(−Ẽj)d

†
I;]

+Vj[θ(Ẽj)d
†
I;j + i2mj+3θ(−Ẽj)bI;]

}
. (4.3.6)

The one-particle operators in Vilenkin’s expansion (4.3.4), where Ej > 0, can be

related to Iyer’s directly from Eq. (4.3.6):

bV ;j =

bI;j Ẽj > 0,

i2m+1d†I; Ẽj < 0,
d†V ;j =

d
†
I;j Ẽj > 0,

i2m+3bI; Ẽj < 0.
(4.3.7)

Similarly, Eq. (4.3.4) can be written as:

ψV (x) =
∑

j

θ(Ẽj)
{
Uj[θ(Ej)bV ;j + i2m+3θ(−Ej)d

†
I;]

+Vj[θ(Ej)d
†
V ;j + i2m+1θ(−Ej)bV ;]

}
, (4.3.8)
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giving the following inverse transformation between the Iyer and Vilenkin one-

particle operators:

bI;j =

bV ;j Ej > 0,

i2m+3d†V ; Ej < 0,
d†I;j =

d
†
V ;j Ej > 0,

i2m+1bV ; Ej < 0,
(4.3.9)

in agreement with Eqs. (4.3.7). It can be seen that annihilation operators in

Vilenkin’s quantisation scheme can act as creation operators in Iyer’s scheme, there-

fore, the vacuum state corresponding to Iyer’s quantisation differs from the Minkow-

ski vacuum. Both quantisation schemes adopt the canonical quantisation (2.2.36)

of the one-particle operators. Figure 4.1 illustrates the difference between the two

quantisation schemes [47].

E
� =

0

E

WHm+1�2L

I

II

IIIII

IV

IV

Figure 4.1: The filled shapes represent anti-particle modes while the unfilled shapes rep-
resent particle states. The circles represent Vilenkin’s quantisation, which defines particle
modes as modes with positive energy E. Iyer’s quantisation is represented by squares,
particle modes having Ẽ ≥ 0. The two schemes differ in regions I, where Iyer-type an-
tiparticles are Vilenkin-type particles and vice-versa in region III.

4.3.2 Thermal expectation values

As the Schwinger function (2.2.49) is independent of state, it is the same for both

Vilenkin’s (4.3.4) and Iyer’s (4.3.5) quantisations:

S(x, x′) =
∑

j

θ(Ej)
[
Uj(x)⊗ U j(x

′) + Vj(x)⊗ V j(x
′)
]
. (4.3.10)

Therefore, the thermal Hadamard function is the same in the two quantisations:

S
(1)
β (x, x′) =

∑
j

θ(Ej) tanh
βẼj

2

[
Uj(x)⊗ U j(x

′)− Vj(x)⊗ V j(x
′)
]
. (4.3.11)
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The argument of the hyperbolic tangent has changed from βE/2 in the Minkowski

case (3.3.50) to βẼ/2, since in the rotating case, the thermal weights are calculated

using the Hamiltonian of the rotating system, whose eigenvalues are Ẽj.

The inequivalence of the vacuum states corresponding to the two quantisation

schemes gives rise to different vacuum Hadamard functions:

S
(1)
V (x, x′) =

∑
j

θ(Ej)
[
Uj(x)⊗ U j(x

′)− Vj(x)⊗ V j(x
′)
]
, (4.3.12a)

S
(1)
I (x, x′) =

∑
j

θ(Ej)sgn(Ẽ)
[
Uj(x)⊗ U j(x

′)− Vj(x)⊗ V j(x
′)
]
, (4.3.12b)

where in the expression for the Hadamard function S
(1)
I (x, x′) with respect to the

Iyer vacuum, the argument of the step function has been changed from Ẽ to E using

the connection formulae (3.3.30). The two-point functions describing thermal states

with respect to the above vacua can be written as:

∆S
(1)
β =

∑
j

e−i eEj∆t+ikj∆z[w(Ẽj)− w(Ẽ)]Mj, (4.3.13)

where  is defined in Eq. (3.3.31), Mj is defined in Eq. (3.3.60) and the thermal

weight factors depend on the choice of vacuum, as follows:

wV (Ẽj) = − 2θ(Ej)

eβ eEj + 1
, wI(Ẽj) = − 2θ(Ẽj)

eβ eEj + 1
. (4.3.14a)

The weight factor wI(Ẽj) can be written in terms of positive Minkowski energies

using the properties of the sum in Eq. (4.3.11) as follows:

wI(Ẽj) = −2sgn(Ẽj)θ(Ej)

eβ| eEj| + 1
. (4.3.14b)

As discussed in subsection 2.2.5, the thermal Hadamard function (4.3.11) does

not depend on the choice of vacuum. Hence, the differences in t.e.v.s calculated

with respect to different vacuum states will be temperature independent and equal

to the difference between the expectation values with respect to the vacuum states

under consideration. The differences can be calculated from the following difference

of vacuum two-point functions:

S
(1)
V (x, x′)− S(1)

I (x, x′) = −
∑

j

θ(−Ẽj)Mj. (4.3.15)

As discussed in subsection 2.2.5, t.e.v.s with respect to the Minkowski vacuum

(Vilenkin’s quantisation) contain spurious temperature-independent terms. To anal-

yse these spurious contributions, the t.e.v.s analysed for the remainder of this section

are with respect to the Vilenkin vacuum.
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Mode sum expressions for t.e.v.s

As in the scalar case, it is convenient to introduce the notation:

S∗abc =
1

π2

∞∑
m=−∞

∫ ∞

µ

dE

eβ eE + 1

∫ p

0

dk Eaqb(m+ 1
2
)cJ∗m(qρ), (4.3.16)

where ∗ ∈ {+,−,×} as defined in Eqs. (3.3.69). The above functions appear in

t.e.v.s calculated with respect to the Minkowski (Vilenkin) vacuum. At the end of

the section the connection to the t.e.v.s with respect to the Iyer vacuum is made,

after which the results are discussed.

Thermal expectation value of the fermion condensate. To evaluate the

t.e.v.s of the FC and CC, the coincidence limit of the thermal Hadamard function

(4.3.13) must be taken:

lim
x′→x

∆S
(1)
β (x, x′) =

1

4π2

∞∑
m=−∞

∫ ∞

−∞
|E|>µ

|E| dE
∫ p

−p

dk[w(Ẽ)− w(−Ẽ)]

×

[( µ
E
I2 + σ3

)
⊗

(
J2

m 0

0 J2
m+1

)

+
1

E

(
0 −1

1 0

)
⊗

(
kJ2

m −iqe−iϕJmJm+1

iqeiϕJm+1Jm −kJ2
m+1

)]
, (4.3.17)

where all Bessel functions take the argument qρ. The difference compared to the

Minkowski case (3.3.61) is that the thermal weight factors depend on Ẽ rather than

E. The t.e.v. of the FC can be expressed in terms of the functions in Eq. (4.3.16)

as follows:

〈: ψψ :V 〉β = µS+
000, (4.3.18)

where the V indicates that the Wick ordering has been performed with respect to

the Minkowski (Vilenkin) vacuum.

Thermal expectation value of the current. Using Eq. (4.3.17), it can be

checked that all components of the charge current vanish:

〈: Jλ :V 〉β = −1

2
tr
{

∆S
(1)
β (x, x′ = x)γλ

}
= 0. (4.3.19)

The t.e.v. of the neutrino current can be computed by multipling (4.3.17) with the

projector 1
2
(1 − γ5). The µ term does not contribute since tr(γλ) = tr(γ5γλ) = 0,

but there is a non-vanishing contribution coming from the last term (containing the
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off-diagonal matrix) for the charge current parallel to the rotation axis:

〈: Jz
ν :V 〉β = −1

2
S−100. (4.3.20)

Thermal expectation value of the stress-energy tensor The SET is eval-

uated using the derivatives Dα̂ (4.1.15). Applying the techniques used in subsec-

tion 3.3.3, Eq. (3.3.60) can be used to see which terms contribute to any given

component of the SET. Keeping in mind that the density of states factor now de-

pends on m, giving rise to a non-zero value for the Tϕ̂t̂ component of the SET, the

following expressions are obtained for the t.e.v. of the SET:

〈: Tα̂σ̂(x) :V 〉β =
1

π2

∞∑
m=−∞

∫ ∞

µ

dE

eβ eE + 1

∫ p

0

dk Fα̂σ̂, (4.3.21)

where

Ft̂t̂ = E2
(
J2

m + J2
m+1

)
,

Fϕ̂t̂ = −qE (JmJm+1)−
E

2ρ

[
mJ2

m + (m+ 1)J2
m+1

]
,

Fρ̂ρ̂ = q2(J2
m + J2

m+1)−
q

ρ
(2m+ 1)JmJm+1,

Fϕ̂ϕ̂ =
q

ρ
(2m+ 1)JmJm+1,

Fẑẑ = k2(J2
m + J2

m+1). (4.3.22)

The above can be written with respect to the functions S∗abc (4.3.16) as follows:

〈: Tt̂t̂ :V 〉β =S+
200,

〈: Tρ̂ρ̂ :V 〉β =S+
020 − ρ−1S×011,

〈: Tϕ̂ϕ̂ :V 〉β =ρ−1S×011,

〈: Tẑẑ :V 〉β =S+
200 − S+

020 − µ2S+
000,

〈: Tt̂ϕ̂ :V 〉β =1
4
ρ−1S−100 − 1

2
ρ−1S+

101 − 1
2
S×110. (4.3.23)

Next, the functions S∗abc are analysed analytically and exact expressions are derived

in the massless case. The results are presented after Eq. (4.3.48).

Fermi-Dirac integrals for massless rotating states

To compute the functions S∗abc, defined in Eq. (4.3.16), the Fermi-Dirac density of

states factor can be expanded about Ω = 0:

1

1 + eβ[E−Ω(m+ 1
2
)]

=
∞∑

n=0

(−Ω)n

n!

(
m+ 1

2

)n dn

dEn

(
1

1 + eβE

)
, (4.3.24)
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leading to:

S∗abc =
1

π2

∞∑
n=0

(−Ω)n

n!

∫ ∞

µ

dE Ea dn

dEn

(
1

eβE + 1

)
×
∫ p

0

dk qb

∞∑
m=−∞

(
m+ 1

2

)n+c
J∗m(qρ). (4.3.25)

Sum over m. The sum over m in Eq. (4.3.25) vanishes unless n + c is even for

∗ = + and odd for ∗ ∈ {−,×}. Equation (A.1.5) can be used to obtain:

∞∑
m=−∞

(
m+ 1

2

)2n
J+

m(z) =
n∑

j=0

2Γ(j + 1
2
)

j!
√
π

s+
n,jz

2j, (4.3.26a)

∞∑
m=−∞

(
m+ 1

2

)2n+1
J−m(z) =

n∑
j=0

2Γ(j + 1
2
)

j!
√
π

s−n,jz
2j, (4.3.26b)

∞∑
m=−∞

(
m+ 1

2

)2n+1
J×m(z) =

n∑
j=0

2Γ(j + 1
2
)

j!
√
π

s×n,jz
2j+1. (4.3.26c)

The above sums over j are finite and terminate at j = n, as will be shown shortly.

Equation (A.1.5) can be used to express s+
n,j as:

s+
n,j = 2

j∑
m=0

(−1)j−m

(j −m)!(j +m+ 1)!

(
m+ 1

2

)2n+1
. (4.3.27)

As in Eq. (4.2.25) for the scalar case, the sum over m can be written as the derivative

of a binomial expansion:

s+
n,j =

1

(2j + 1)!
lim
α→0

d2n+1

dα2n+1

{
j∑

m=0

(
2j + 1

j −m

)
(−1)j−m

[
eα(m+ 1

2) − e−α(m+ 1
2)
]}

=
1

(2j + 1)!
lim
α→0

d2n+1

dα2n+1

{
eα(j+ 1

2)
2j+1∑
m=0

(
2j + 1

m

)
(−1)2j+1−meαm

}

=
1

(2j + 1)!
lim
α→0

d2n+1

dα2n+1

(
2 sinh

α

2

)2j+1

. (4.3.28)

Clearly, s+
n,j vanishes when j > n. The following values of s+

n,j are important for the

calculation of the t.e.v.s in this section:

s+
j,j =1,

s+
j+1,j =

1

24
(2j + 1)(2j + 2)(2j + 3),

s+
j+2,j =

1

5760
(2j + 1)(2j + 2)(2j + 3)(2j + 4)(2j + 5)(10j + 3). (4.3.29)
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Using the following properties of J∗m:

d

dz

(
zJ+

m(z)
)

= (2m+ 1)J−m(z),
d

dz

(
zJ×m(z)

)
= 2zJ−m(z), (4.3.30)

it can be shown that s−n,j and s×n,j are related to s+
n,j through:

s−n,j =
(
j + 1

2

)
s+

n,j, s×n,j =
j + 1

2

j + 1
s+

n,j. (4.3.31)

Thus, all s∗n,j vanish for j > n, therefore, the sums in Eqs. (4.3.26) terminate at

j = n.

The integral with respect to k. Following the steps in the previous paragraph,

the sum over m involving the Bessel functions in J∗m is replaced by a sum over

j involving powers of q, after which the integral over k can be computed using

Eq. (4.2.29).

Analytic expressions in the massless case. The functinos S∗abc required for

the computation of the expectation values in Eqs. (4.3.18), (4.3.20) and (4.3.23) are

S+
000, S

+
200, S

+
020, S

+
101, S

−
100, S

×
110 and S×011.

Let us start with S+
000. Performing the sum over m and integral over k in

Eq. (4.3.25) yields:

S+
000 =

2

π2

∞∑
n=0

Ω2n

(2n)!

n∑
j=0

ρ2js+
n,j

(2j + 1)

∫ ∞

µ

dE p2j+1 d2n

dE2n

(
1

eβE − 1

)
. (4.3.32)

It is convenient to interchange the sum over j with the sum over n, which in turn

can be shifted downwards to n→ n+ j, such that S+
000 takes the form:

S+
000 =

2

π2

∞∑
j=0

(ρΩ)2j

2j + 1

∞∑
n=0

Ω2ns+
n+j,j

(2n+ 2j)!

∫ ∞

µ

dE p2j+1 d2n+2j

dE2n+2j

(
1

eβE − 1

)
. (4.3.33)

To proceed further, it is necessary to set µ = 0, in which case p = E. Before giving

the result for the integral over E, it is worth noticing that

1

eβω + 1
+

1

e−βω + 1
= 1. (4.3.34)

Hence, apart from the term 1
2
, the series expansion of the Fermi-Dirac density of

states factor contains only odd powers of E, as follows:

1

eβω + 1
=

1

2
+
βE

4
+O(E3). (4.3.35)
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Using Eq. (3.3.64), the integral over E in Eq. (4.3.33) can be performed:

∫ ∞

0

dE E2j+1 d2j+2n

dE2j+2n

(
1

eβE + 1

)
= (2j + 1)!×



π2

12β2
n = 0,

1

2
n = 1,

0 n > 1.

(4.3.36)

The n = 1 term gives rise to temperature-independent terms in t.e.v.s obtained

using Vilenkin’s quantisation. Therefore, S+
000 can be put in the form:

S+
000 =

∞∑
j=0

(ρΩ)2j

[
1

6β2
+

Ω2

24π2
(2j + 3)

]
. (4.3.37)

The sum over j can be evaluated using the geometric series formula (4.2.36), giving:

S+
000 =

1

6β2ε
+

Ω2

8π2ε2

(
2

3
+
ε

3

)
, (4.3.38)

where the parenthesis evaluates to 1 on the rotation axis, where ε = 1− ρ2Ω2 is 1.

After substituting a = 2 and b = c = 0 in Eq. (4.3.25), the expression for S+
200

becomes:

S+
200 =

2

π2

∞∑
j=0

(ρΩ)2j

2j + 1

∞∑
n=0

Ω2ns+
n+j,j

(2n+ 2j)!

∫ ∞

µ

dE E2 p2j+1 d2n+2j

dE2n+2j

(
1

eβE − 1

)
. (4.3.39)

The integral over E can be performed analytically in the massless case:

S+
200 =

∞∑
j=0

(ρΩ)2j(2j + 2)(2j + 3)

[
7π2

360β4
+

Ω2(2j + 3)

144β2
+

Ω4(2j + 5)(10j + 3)

5760π2

]
=

7π2

60β4ε3
(4

3
− 1

3
ε) +

Ω2

8β2ε4
(8

3
− 16

9
ε+ 1

9
ε2) +

Ω4

64π2ε5
(64

3
− 376

15
ε+ 196

45
ε2 + 17

45
ε3),

(4.3.40)

where Eq. (3.3.72) was used to obtain the β−4 term. The parentheses above have

been normalised to evaluate to 1 on the rotation axis.

In a similar fashion, S+
020 can be obtained as follows:

S+
020 =

2

π2

∞∑
j=0

(ρΩ)2j

2j + 1

∞∑
n=0

Ω2ns+
n+j,j

(2n+ 2j)!

2j + 2

2j + 3

∫ ∞

µ

dE p2j+3 d2n+2j

dE2n+2j

(
1

eβE − 1

)
.

(4.3.41)
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Setting µ = 0 gives:

S+
020 =

∞∑
j=0

(ρΩ)2j(2j + 2)2

[
7π2

360β4
+

Ω2

144β2
(2j + 3) +

Ω4

5760π2
(2j + 5)(10j + 3)

]
=

7π2

90β4ε3
(2− ε) +

Ω2

12β2ε4
(4− 10

3
ε+ 1

3
ε2) +

Ω4

96π2ε5
(32− 208

5
ε+ 142

15
ε2 + 17

15
ε3).

(4.3.42)

The last term in which the integrand is even with respect to the transformation

m→ −m− 1 is:

ρ−1S×011 =
2

π2

∞∑
j=0

(ρΩ)2j

2j + 1

∞∑
n=0

Ω2ns+
n+j,j

(2n+ 2j)!

2j + 1

2j + 3

∫ ∞

µ

dE p2j+3 d2n+2j

dE2n+2j

(
1

eβE − 1

)
.

(4.3.43)

The integral over E can be performed in the massless case, yielding:

ρ−1S×011 =
∞∑

j=0

(ρΩ)2(2j + 1)(2j + 2)

[
7π2

360β4
+

Ω2(2j + 3)

144β2
+

Ω4(2j + 5)(10j + 3)

5760π2

]
=

7π2

180β4ε3
(4− 3ε) +

Ω2

24β2ε4
(8− 8ε+ ε2)

+
Ω4

192π2ε5
(64− 456

5
ε+ 124

5
ε2 + 17

5
ε3). (4.3.44)

The simplest term of interest with odd integrand with respect to m → −m− 1

is:

S−100 = − Ω

π2

∞∑
j=0

(ρΩ)2j

∞∑
n=0

Ω2ns+
n+j,j

(2n+ 2j + 1)!

∫ ∞

µ

dE E p2j+1 d2n+2j+1

dE2n+2j+1

(
1

eβE − 1

)
.

(4.3.45)

An analytic expression can be obtained when µ = 0:

S−100 =Ω
∞∑

j=0

(ρΩ)2j(2j + 2)

[
1

12β2
+

Ω2

48π2
(2j + 1)

]
=

Ω

6β2ε2
+

Ω3

24π2ε3
(4− 3ε). (4.3.46)

In the term S+
101, the sum over j runs between 1 and n+ 1. Treating the j = n+ 1
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case separately by using the property s+
n+1,n+1 = 1 and relabelling n by j gives:

S+
101 =

1

Ω

∞∑
j=0

(ρΩ)2j

[
7π2ρ2Ω2

360β4
(2j + 2)(2j + 4) +

Ω2

144β2
(2j + 2)2(2j + 3)

+
Ω4

5760π2
(2j + 2)(2j + 4)(2j + 5)(10j + 3)

]
=

7π2ρ2Ω

45β4ε3
+

Ω

12β2ε4
(4− 10

3
ε+ 1

3
ε2) +

Ω3

48π2ε5
(16− 84

5
ε+ 9

5
ε2). (4.3.47)

Finally, S×110 can be written using Eqs. (A.1.11) as:

S×110 =
1

ρ
S+

101 −
1

2ρ

d

dρ
(ρS−100)

=ρΩ

[
7π2

45β4ε3
+

Ω2

18β2ε4
(6− 5ε) +

Ω4

240π2ε5
(80− 124ε+ 45ε2)

]
. (4.3.48)

Analytic expressions for t.e.v.s for massless fermions

Substituting Eq. (4.3.38) into Eq. (4.3.18) gives the following result for the FC:

lim
µ→0

1

µ
〈: ψψ :V 〉β =

π2

6β2
ε−1 +

Ω2

8ε2
(2

3
+ 1

3
ε). (4.3.49)

where ε = 1− ρ2Ω2 goes to 0 as the SOL is approached.

The neutrino CC can be obtained by substituting Eq. (4.3.46) into Eq. (4.3.50):

〈: Jz
ν :V 〉β = − Ω

12β2ε2
− Ω3

48π2ε3
(4− 3ε). (4.3.50)

The thermal expectation value of the neutrino current along the rotation axis is

non-vanishing. Intuitively, this result can be understood as follows [71]: If Ω is

pointing along the z axis, the Fermi-Dirac density of states factor (eβ[E−Ω(m+ 1
2
)]+1)−1

will favour particles which, at the same value of the energy, have a larger value

m + 1
2

of the projection of the spin on the z axis. Neutrinos are particles with

negative chirality and therefore have negative helicity, while anti-neutrinos have

negative chirality and positive helicity [46]. Since helicity is the projection of the

spin on the direction of motion, neutrinos with a negative z component of their

velocity will have a positive contribution to their total angular momentum along

the z axis coming from their spin and will therefore be favoured by the Fermi-

Dirac statistics. Moreover, anti-neutrinos will have a tendency of travelling in the

direction of Ω, so that the total current of neutrinos and anti-neutrinos vanishes.

However, the individual contributions to the charge current coming from neutrinos

and anti-neutrinos stay finite and have negative and positive signs, respectively.
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Finally, the tetrad components of the SET using the Vilenkin vacuum have the

form:

〈: Tt̂t̂ :V 〉β =
7π2

60β4ε3

(
4
3
− 1

3
ε
)

+
Ω2

8β2ε4

(
8
3
− 16

9
ε+ 1

9
ε2
)

+
Ω4

64π2ε5

(
64
3
− 376

15
ε+ 196

45
ε2 + 17

45
ε3
)
,

〈: Tϕ̂t̂ :V 〉β =− ρΩ
[

7π2

45β4ε3
+

2Ω2

9β2ε4

(
3
2
− 1

2
ε
)

+
31Ω4

240π2ε5

(
80
31
− 64

31
ε+ 15

31
ε2
)]
,

〈: Tρ̂ρ̂ :V 〉β =
7π2

180β4ε2
+

Ω2

24β2ε3

(
4
3
− 1

3
ε
)

+
Ω4

192π2ε4

(
8− 88

15
ε− 17

15
ε2
)
,

〈: Tϕ̂ϕ̂ :V 〉β =
7π2

180β4ε3
(4− 3ε) +

Ω2

24β2ε4

(
8− 8ε+ ε2

)
+

Ω4

192π2ε5

(
64− 456

5
ε+ 124

5
ε2 + 17

5
ε3
)
, (4.3.51)

and 〈: Tẑẑ :V 〉β = 〈: Tρ̂ρ̂ :V 〉β. It is remarkable that this latter equality holds in

the massive case as well, which can be seen by substituting Eqs. (4.3.38), (4.3.40),

(4.3.42) and (4.3.48) into the relevant equations from the set (4.3.23):

〈: Tρ̂ρ̂ :V 〉β = 〈: Tẑẑ :V 〉β =
2

π2

∞∑
j=0

(ρΩ)2j

2j + 1

∞∑
n=0

Ω2ns+
n+j,j

(2n+ 2j)!

1

2j + 3

×
∫ ∞

µ

dE p2j+3 d2n+2j

dE2n+2j

(
1

eβE − 1

)
. (4.3.52)

Equations (4.1.22) can be used to express the t.e.v. of the SET (4.3.51) with

respect to the coordinate basis:

〈: Ttt :V 〉β =
7π2

60β4ε
+

Ω2

8β2ε2

(
4
3
− 1

3
ε
)

+
Ω4

64π2ε3

(
8
9

+ 56
45
ε− 17

15
ε2
)
,

〈: Tϕt :V 〉β =− ρ2Ω

[
7π2

60β4ε2
+

13Ω2

72β2ε3

(
16
13
− 3

13
ε
)

+
119Ω4

960π2ε4

(
200
119
− 64

119
ε− 1

7
ε2
)]
,

〈: Tϕϕ :V 〉β =ρ2

[
7π2

180β4ε3
(4− 3ε) +

Ω2

24β2ε4

(
8− 8ε+ ε2

)
+

Ω4

192π2ε5

(
64− 456

5
ε+ 124

5
ε2 + 17

5
ε3
)]
. (4.3.53)

All the t.e.v.s presented so far in this section were calculated with respect to the

Minkowski (Vilenkin) vacuum. The results are made up of two types of terms: the

physical terms proportional to β−4 and β−2 (only β−2 for the FC and neutrino CC)

and the spurious temperature-independent terms.

In Ref. [72], Vilenkin argues that, since the temperature-independent contribu-

tion to the neutrino charge current on the rotation axis is due to particle modes with

negative frequency with respect to the rotating Hamiltonian, the first type of terms

mentioned above can be removed by enclosing the system inside a boundary which
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cuts out the space beyond the SOL. This statement is only half-true. As discussed

in sections 5.2 and 5.3, putting the system inside a box does indeed eliminate the

modes with EẼ < 0. However, the quantisation proposed by Iyer yields a vacuum

state with respect to which thermal states are consistently defined, such that t.e.v.s

do not contain spurious temperature-independent terms. The t.e.v.s when the rotat-

ing (Iyer) vacuum is considered are exactly equal to those obtained with respect to

the Minkowski (Vilenkin) vacuum, but without the temperature-independent terms,

as follows:

lim
µ→0

1

µ
〈: ψψ :I〉β =

π2

6β2
ε−1, (4.3.54a)

〈: Jz
ν :I〉β =− Ω

12β2ε2
, (4.3.54b)

〈: Tt̂t̂ :I〉β =
7π2

60β4ε3

(
4
3
− 1

3
ε
)

+
Ω2

8β2ε4

(
8
3
− 16

9
ε+ 1

9
ε2
)
, (4.3.54c)

〈: Tϕ̂t̂ :I〉β =− ρΩ
[

7π2

45β4ε3
+

2Ω2

9β2ε4

(
3
2
− 1

2
ε
)]
, (4.3.54d)

〈: Tρ̂ρ̂ :I〉β =
7π2

180β4ε2
+

Ω2

24β2ε3

(
4
3
− 1

3
ε
)
, (4.3.54e)

〈: Tϕ̂ϕ̂ :I〉β =
7π2

180β4ε3
(4− 3ε) +

Ω2

24β2ε4

(
8− 8ε+ ε2

)
(4.3.54f)

and 〈: Tẑẑ :I〉β = 〈: Tρ̂ρ̂ :I〉β. In the above, the subscript I indicates that the Wick

ordering is performed with respect to the rotating (Iyer) vacuum. The t.e.v.s (4.3.53)

of the SET expressed with respect to the coordinate basis can also be expressed with

respect to the Iyer vacuum:

〈: Ttt :I〉β =
7π2

60β4ε
+

Ω2

8β2ε2

(
4
3
− 1

3
ε
)
, , (4.3.55a)

〈: Tϕt :I〉β =− ρ2Ω

[
7π2

60β4ε2
+

13Ω2

72β2ε3

(
16
13
− 3

13
ε
)]
, (4.3.55b)

〈: Tϕϕ :I〉β =ρ2

[
7π2

180β4ε3
(4− 3ε) +

Ω2

24β2ε4

(
8− 8ε+ ε2

)]
. (4.3.55c)

Equations (4.3.54) represent the second type of terms mentioned above. As in the

scalar case (discussed in subsection 4.2.2), all terms in the t.e.v.s given in this section

diverge as inverse powers of the distance to the SOL, showing that the thermal state

becomes infinitely energetic close to the SOL. Moreover, the non-rotating Minkowski

results in Eqs. (3.3.73) are recovered by setting Ω = 0 in Eqs. (4.3.54). It can be

seen that on the rotation axis (obtained when ε = 1 and the parentheses evaluate to

1), the t.e.v. of the SET receives corrections compared to the Minkowski case, which

are proportional to Ω2. In sections section 5.2 and section 5.3, the t.e.v.s obtained

using the Iyer quantisation are compared to the t.e.v.s obtained when the system is

enclosed inside a boundary.
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Figure 4.2: The curves show the contributions Tt̂t̂[m] made by each value of m (together
with −m−1) to 〈: Tt̂t̂(x) :I〉β for a rigidly rotating Dirac field with µ = 0 (thin solid black
lines) and µ = 2Ω (thick lines) at inverse temperatures (a) βΩ = 2.0 and (b) βΩ = 0.8,
at four distances from the rotation axis. The value of Tt̂t̂[m] increases up to a maximum
value at mρ after which it decreases monotonically to 0. The value mρ increases with the
distance from the rotation axis, which is why the further the point is, the more values
of m must be considered. However, mρ does not seem to depend on β or µ. The curves
terminate according to the algorithm described in the main text.

The features discussed above remain valid when considering massive fermions.

Although we do not have an analytic method for its study, the µ > 0 case can be in-

vestigated numerically and the results are represented in the following subsection.

4.3.3 Numerical results

The t.e.v.s with respect to the rotating (Iyer) vacuum of the FC (4.3.18), neutrino

CC (4.3.20) SET (4.3.23) can be obtained using the following mode sum equations:

〈: ψψ :I〉β =
µ

π2

∞∑
m=−∞

∫ ∞

µ

sgnẼdE

eβ| eE| + 1

∫ p

0

dk J+
m(qρ), (4.3.56a)

〈: Jz
ν :I〉β =− 1

2π2

∞∑
m=−∞

∫ ∞

µ

EsgnẼdE

eβ| eE| + 1

∫ p

0

dk J−m(qρ), (4.3.56b)

〈: Tα̂γ̂ :I〉β =
1

π2

∞∑
m=−∞

∫ ∞

µ

sgnẼdE

eβ| eE| + 1

∫ p

0

dk Fα̂γ̂, (4.3.56c)

with Fα̂γ̂ given by (4.3.21). To obtain the numerical data necessary to produce

the plots in this section, the above t.e.v.s were calculated for each value of m,

individually, as follows:

〈: A :I〉β =
∞∑

m=0

A[m]. (4.3.57)

For the computation of 〈: Tα̂γ̂ :I〉β at a given point ρ, the function Tα̂γ̂[m] was

evaluated for increasing values ofm. The thermal weight factor sgn(Ẽ)(eβ| eE|+1+1)−1

supresses the integrand at large values of β
∣∣∣Ẽ∣∣∣. Hence, the major contribution to
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Figure 4.3: The logarithm of the fermion condensate 〈: ψψ :I〉β (first line), neutrino

current 〈: Jν :I〉ẑ and − 1
ρΩ
〈: Tϕ̂t̂ :I〉β (bottom line) against ρΩ on the left and ln(1/ε)

on the right. The prefactor − 1
ρΩ

has been introduced for to render the argument

− 1
ρΩ
〈: Tϕ̂t̂ :I〉β of the logarithm positive and non-zero on the rotation axis. The

results for fermions of mass µ = 2Ω (coloured dashed lines) are compared to the
corresponding expressions in Eqs. (4.3.56), plotted with dark thin lines.
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Figure 4.4: The logarithm of the diagonal components of the SET against ρΩ (left)
and ln(1/ε) (right). The results for fermions of mass µ = 2Ω (coloured dashed lines)
are compared to the corresponding expressions in Eqs. (4.3.56), plotted with dark
thin lines.
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the integrals in Eqs. (4.3.56) come from the region where E ∼ Ω(m + 1
2
), allowing

convergence problems to be avoided by performing the energy integral over the

domain βE ∈ {max(βµ, βΩm−100), βΩm+100}. The behaviour of the expectation

values is well captured by considering points up to ρΩ = 0.95, where the t.e.v.s are

finite. Knowing that Tα̂γ̂[m] decreases to 0 at sufficiently largem, the series overm in

(4.3.56) was terminated when Tα̂γ̂[m]/maxm(Tα̂γ̂[m]) < 0.01. Figure 4.2 illustrates

this algorithm applied for the computation of the energy density.

The plots of the t.e.v.s of the fermion condensate, neutrino charge current and

SET in Figs. 4.3 and 4.4 present numerical results obtained for fermions of mass

µ = 2Ω to the analytic expressions (4.3.54), calculated with respect to the rotating

(Iyer) vacuum. It can be seen that the profiles of the t.e.v.s for massive fermions set

below those for massless fermions. In the aforementioned figures, the plot on the

left illustrates the logarithm of the t.e.v. of the operator under consideration with

respect to the distance from the rotation axis expressed in units of Ω−1, while the

log-log plots on the right show that close to the SOL, the t.e.v.s behave similarly

for massless and massive fermions. In particular, the leading order of the divergence

as the SOL is approached of the t.e.v.s considered here does not depend on the

mass of the field quanta. Since Eq. (4.3.54d) shows that 〈: Tt̂ϕ̂ :I〉 vanishes on the

rotation axis due to the factor ρΩ, the bottom plot in Fig. 4.3 shows instead the

ratio 〈: Tt̂ϕ̂ :I〉 /ρΩ.

4.3.4 Summary

While the quantisation procedure for the scalar case was restricted such that the ro-

tating and non-rotating vacua were forced to coincide, the property that the norm of

the particle and anti-particle mode solutions of the Dirac equation are both positive

allows different vacuum states for the Dirac field on the rotating space-time, which

can differ from the Minkowski vacuum. As discussed by Vilenkin [72], thermalis-

ing the Dirac field with respect to the Minkowski vacuum state induces spurious

temperature-independent terms in thermal expectation values (t.e.v.s). However, if

second quantisation is performed according to Iyer’s prescription [47], the resulting

vacuum state is different from the Minkowski vacuum and thermal expectation val-

ues are well defined and contain no temperature-independent terms. We refer to

this latter vacuum state as the rotating vacuum.

Our analytic results, also published in Ref. [10], confirm the presence of the

spurious temperature-independent terms reported by Vilenkin [72] in t.e.v.s calcu-

lated with respect to the Minkowski vacuum. Vilenkin [72] argues that these terms

disappear if the space outside the speed of light surface (SOL) is discarded, by en-

closing the system in a boundary. We analyse quantum states for bounded rotating
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Minkowski space-times in chapter 5 and indeed find that placing the boundary in-

side or on the SOL eliminates the spurious temperature-independent terms. We also

confirm that when Iyer’s quantisation [47] is used for the unbounded space-time, the

resulting t.e.v.s contain no temperature independent terms. Hence, we conclude that

the spurious terms are induced by the quantisation method employed, more specif-

icaly, by allowing modes with ẼE < 0 in the set of particle modes, as discussed in

subsection 2.2.5 and subsection 4.3.1.

The analytic results obtained for the t.e.v.s of the fermion condensate, neutrino

charge current and stress-energy tensor for massless fermions show that thermal

states become divergent (i.e. yield infinite expectation values) as the SOL is ap-

proached, with the t.e.v.s diverging as inverse powers of the distance to the SOL.

Furthermore, as explained in Refs. [71, 72] and after Eq. (4.3.50), there is an excess

in the flux of neutrinos and anti-neutrinos anti-parallel and parallel to the rotation

angular momentum vector, respectively.

Through numerical integration, the t.e.v.s for massless and massive fermions can

be compared. The figures in subsection 4.3.3 show that thermal states become less

energetic as the mass of the quanta is increased. However, the t.e.v.s of massless

and massive fermions diverge at the same rate as the SOL is approached, indicating

that the leading order divergences do not depend on the mass of the quanta.

4.4 Chapter summary

The construction of mode solutions and the discussion of vacuum states presented in

this chapter also applies to the bounded rotating Minkowski space-time, discussed

in chapter 5 and to the construction of quantum states on rotating anti-de Sitter

space-time, discussed in chapter 8.

The construction of the rotating vacuum state for the scalar field is restricted

by the interpretation that Klein-Gordon modes of positive or negative frequency

represent particle or anti-particle modes. In consequence, the vacuum state for

rotating scalars is forced to coincide with the Minkowski vacuum. The construction

of thermal states is not possible due to the divergent behaviour of the Bose-Einstein

density of states factor for modes with vanishing co-rotating frequency. Analytic

methods can be used to isolate the divergences of the thermal state, yielding finite

terms which can be interpreted physically.

Two fundamental differences between fermions and scalars allow fermion thermal

states to be rigorously defined. As opposed to the quantisation of the Klein-Gordon,

the norm of Dirac modes is always positive. Hence, the split between particle and

anti-particle modes (or equivalently, the choice of vacuum state) can be performed

such that EẼ > 0 for all particle modes. As discussed in subsection 2.2.5, this
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property guarantees that thermal states can be consistently defined such that the

resulting thermal expectation values contain no temperature-independent terms.

While the Bose-Einstein density of states factor renders thermal states for the scalar

field infinite due to its divergent behaviour for vanishing co-rotating frequencies,

Fermi-Dirac statistics do not allow for infinite occupation numbers. Hence, it is

possible to construct thermal states of fermion particles which are well defined and

regular up to the speed of light surface.



Chapter 5. Bounded rotating

Minkowski space-time

The results of chapter 4 show that scalar particles cannot settle into thermal states

as seen by rotating observers, due to the singular behaviour of the Bose-Einstein

density of states factor for modes with vanishing frequency with respect to the

rotating observer. In contrast, the occupation numbers in Fermi-Dirac statistics are

finite for all frequencies, allowing fermions to thermalise with respect to rotating

observers. For fermions, it is possible to define thermal expectation values (t.e.v.s)

which are finite up to the speed of light surface (SOL), past which they are not

defined. As discussed in Refs. [33, 52, 72], the space-time beyond the SOL is not

physical. Its exclusion through the confinement of the system inside the SOL can

eliminate modes with negative or vanishing frequencies with respect to the rotating

observer from the set of particle modes, making the construction of thermal states

of scalar particles possible.

The system can be bounded by introducing a cylindrical mirror of radius R

parallel to and centred on the rotation axis. Consequently, the transverse momentum

is quantised in such a way that Minkowski particle modes have positive frequencies

with respect to the rotating observer as well, as long as the mirror is inside or

on the SOL. In consequence, there are no modes with infinite density of states

factors, making thermal states attainable for scalar particles. An interesting result

is that at large enough temperatures the t.e.v. of the SET agrees with the β−4

part of the analytic results (4.2.51) and (4.3.51) for the Klein-Gordon and Dirac

fields, respectively, in the vicinity of the axis, but deviates from these values as the

boundary is approached in such a way that even if the boundary is placed on the

SOL, the t.e.v.s stay finite.

The mirror is implemented by imposing Dirichlet boundary conditions for the

scalar field [32, 33], while for fermions, spectral [43] and MIT bag [23] boundary

conditions are considered. The motivation behind presenting these two types of

boundary conditions is their fundamentally different nature: the spectral boundary

conditions are non-local, requiring the knowledge of the Fourier transform of wave

functions, while the MIT bag boundary conditions are expressed and implemented in

a fully local manner. Fundamental differences are noticed in the profiles of thermal

expectation values as well as in the investigation of the Casimir effect.

The Casimir effect arises due to the changes induced in the vacuum state by its

enclosure inside a bounded system [46]. The thermal states discussed in this chap-

ter are computed with respect to the vacuum state corresponding to the bounded

84
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system. The Casimir effect refers to the difference between vacuum expectation

values (v.e.v.s) of operators in the bounded and unbounded vacuum states. In par-

ticular, the difference in the energy component of the SET can be interpreted as

the amount of energy required to confine the system inside the boundary. Deutsch

and Candelas [31] explain that the divergence is due to the unphysical nature of

classical perfect conductor boundary conditions and give a general prescription for

the computation of the leading order divergences for general boundary conditions,

based on the assumption of locality of the SET. While the results obtained for the

scalar field and for fermions obeying MIT bag boundary conditions fit perfectly well

with the predictions of Ref. [31], the non-local character of the spectral boundary

conditions increases the order of the divergence of Casimir v.e.v.s by one unit.

Although the scalar field case has already been analysed in Ref. [33], it is pre-

sented in section 5.1 for completeness. Section 5.2 presents the Dirac theory using

spectral boundary conditions and the MIT bag model is discussed in section 5.3. The

space-time characteristics have already been described in section 4.1. These latter

two sections contain original results which are due for publication [5]. A preview of

the results is available in Ref. [8].

5.1 Scalars in a cylinder

Subsection 5.1.1 opens the discussion of quantum states of scalar particles inside

a cylindrical boundary by presenting the construction of the mode solutions of the

Klein-Gordon equation obeying Dirichlet boundary conditions. Furthermore, ther-

mal expectation values (t.e.v.s) are analysed in subsection 5.1.2 and numerical results

are presented for the case when the boundary is placed inside or on the speed of

light surface (SOL). In subsection 5.1.3 expressions for the Casimir-induced vacuum

expectation value (v.e.v.) of φ2 and of the stress-energy tensor (SET) are derived.

An asymptotic analysis of the Casimir divergence is performed in subsection 5.1.4.

5.1.1 Modes and field operator

To implement a cylindrical boundary at distance ρ = R from the rotation axis, the

modes (4.2.2) must satisfy Dirichlet boundary conditions:

fωkm(ρ = R) = 0, (5.1.1)

which is equivalent to requiring that Jm(qR) = 0. Hence, qR must be in the set

of roots of Jm. Thus, the following quantisation rule for the transverse momentum

arises:

qm` =
ξm`

R
, (5.1.2)
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where ` = 1, 2, . . . labels the roots ξm` of Jm, in ascending order, without the trivial

solution ξm` = 0 which corresponds to a mode function that vanishes at each point

in space. The normalised modes satisfying Dirichlet boundary conditions are given

by [33]:

fkm`(x) =
e−ieωt+ikz+imϕ

2πR |Jm+1(ξm`)|
√
ω
Jm(qρ), (5.1.3)

where the indices (m, `) have been omitted on q and quantities derived from it

(e.g. ω). The modes in Eq. (5.1.3) are normalised according to the following relation:

〈fkm`, fk′m′`′〉 =−
∫ ∞

−∞
dz

∫ R

0

ρ dρ

∫ 2π

0

dϕf ∗km`(t,x)i
←→
∂t fk′m′`′(t,x)

=δ(k − k′)δll′δmm′ . (5.1.4)

The energy spectrum is determined by looking at the form of the Minkowski

energy of mode fkm`:

ω2 = µ2 + k2 +R−2ξ2
m`. (5.1.5)

According to formula (3) in chapter 15.3 of Ref. [73], the roots of the Bessel functions

satisfy:

ξm1 >
√
m(m+ 2) > m+

1

2
(m > 0), (5.1.6)

and ξ01 = 2.4048255577 > 0.5 (see Table 9.5 in Ref. [1]), implying the following

inequality for the allowed frequencies ω̃:

ω̃ = ω − Ωm ≥ R−1ξm1 − Ωm > R−1m(1− ΩR). (5.1.7)

Hence, ω̃ > 0 as long as ΩR ≤ 1, i.e. as long as the boundary is inside or on the SOL.

For the remainder of this section, only this case is considered. The completeness

relation compatible with the inner product (5.1.4) satisfied by the modes (5.1.3) is:

−
∞∑

m=−∞

∞∑
l=1

∫ ∞

−∞
dk
[
f ∗km`(t,x

′)i∂tfkm`(t,x)− fkm`(t,x
′)i∂tf ∗km`(t,x)

]
= δ(ϕ− ϕ′)δ(ρ− ρ

′)

ρ
δ(z − z′). (5.1.8)

Thus, the field operator φ(x) can be expanded with respect to the complete set of

modes (5.1.3):

φ(x) =
∞∑

m=−∞

∞∑
l=1

∫ ∞

−∞
dk
[
fkm`(x)akm` + f ∗km`(x)a

†
km`

]
. (5.1.9)
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5.1.2 Bounded rigidly rotating thermal states

Using the techniques introduced in section 3.2, the thermal Hadamard function

constructed with respect to the bounded vacuum state can be written as:

∆G
(1)
β (x, x′) =

∞∑
m=−∞

∞∑
l=1

∫ ∞

−∞

dk

2π2ωR2J2
m+1(ξm`)

eik∆z

eβeωm` − 1

× (e−ieωm`∆t+im∆ϕ + eieωm`∆t−im∆ϕ)Jm(ξm`ρ)Jm(ξm`ρ
′), (5.1.10)

where

ρ =
ρ

R
. (5.1.11)

The t.e.v. of φ2 can be found using Eq. (2.1.57):

〈: φ2 :〉β =
∞∑

m=−∞

∞∑
l=1

∫ ∞

0

dk

π2ωR2J2
m+1(ξm`)

1

eβeω − 1
J2

m(ξm`ρ). (5.1.12)

The calculation of the t.e.v. of the SET from Eq. (2.1.54) can be performed by

repeating the steps in subsection 4.2.2, yielding:

〈: Tα̂γ̂ :〉β =
∞∑

m=−∞

∞∑
l=1

∫ ∞

0

dk

6π2ωR2J2
m+1(ξm`)

1

eβeω − 1
Fα̂γ̂, (5.1.13)

where Fα̂γ̂ is given by (4.2.16), with q substituted by R−1ξm` in the arguments of

Bessel functions and in all derived quantities (e.g. ω).

Since ω̃ > 0 for all values of k,` and m when RΩ ≤ 1, the integrands in

Eqs. (5.1.12) and (5.1.13) are well-behaved. Hence, the t.e.v. of φ2 and the SET

are finite everywhere inside the bounding surface. Duffy and Ottewill [33] compare

the Planckian forms given by the β−4 part of (4.2.51) corresponding to a rigidly

rotating thermal distribution at a temperature T = β−1 = 20Ω for RΩ = 0.5 and

find an excellent agreement far from the bounding surface. The behaviour of the

SET deviates from the Planckian forms both as the temperature is decreased and

as the bounding surface is approached, in such a way that its value on the bounding

surface stays finite, even if the boundary is on the SOL. Figure 5.1 compares the

Planckian form:

〈: Tt̂t̂ :〉Planck
β =

π2

30β4ε3
(4

3
− 1

3
ε), (5.1.14)

plotted as a dark thin curve, to a numerical evaluation of Eq. (5.1.13) (green curve)

for two values of the temperature. It can be seen that the two curves overlap around

the rotation axis at βΩ = 0.05 but differ everywhere at low temperature βΩ = 2.0.

Figure 5.2 shows that the value of the energy density on the rotation axis departs

from the Planckian value as the inverse temperature is increased and is even further
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Figure 5.1: The logarithm of Tt̂t̂ for a rotating system at temperatures (a) βΩ = 0.05
and (b) βΩ = 2, inside a cylinder located at RΩ = 0.5 (green curve), compared to the
Planckian form (5.1.14) (dark thin curve).
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Figure 5.2: The logarithm of Tt̂t̂ on the rotation axis for a rotating system inside a
cylinder located at RΩ = 0.5 as a function of the inverse temperature. The green curve
represents numerical results, the red curve is the Planckian form 〈: Tt̂t̂ :〉Planck

β (5.1.14) and

the dark curve represents the physical part 〈: Tt̂t̂ :〉phys
β of the t.e.v. of Tt̂t̂ obtained on the

unbounded space-time, given in Eq. (4.2.54b).

away from the physical part 〈: Tt̂t̂ :〉phys
β of the t.e.v. of the SET on the unbounded

space, given in Eq. (4.2.54b).

5.1.3 Casimir effect

The presence of the boundary alters the vacuum state. The change in the v.e.v. of

the SET due to the confinement of the quantum system inside a boundary is referred

to as the Casimir effect [46]. One method of investigating the induced v.e.v.s is to

construct the difference between the two Euclidean Green’s functions corresponding

to the bounded and unbounded systems and then to compute φ2 and the SET using

the formulae (2.1.62) and (2.1.63). This subsection mostly reproduces the results of

[32, 33] and is included for completeness and to establish notation.

Before making the transition to the Euclidean space-time, it is convenient to

switch back to the Minkowski non-rotating coordinates, where the metric has no
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components mixing space and time:

gE
ττ = gE

ρρ = gE
zz = 1, gE

ϕϕ = ρ2. (5.1.15)

In subsection 5.1.2, t.e.v.s are calculated with respect to the Minkowski vacuum, so

in this section it is sufficient to calculate expectation values in the bounded vacuum

state with respect to the same Minkowski vacuum.

The Euclidean Green’s function can be computed as a solution of the Klein-

Gordon equation in Euclidean space (2.1.61), which reads:

(
∂2

τ + ∂2
ρ + ρ−1∂ρ + ρ−2∂2

ϕ + ∂2
z − µ2

)
GE(x, x′) = −δ(τ − τ ′)δ3(x− x′). (5.1.16)

The symmetries of the space-time allow GE to be Fourier transformed with respect

to ∆τ,∆z,∆ϕ:

GE(x, x′) =
∞∑

m=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dk
eiω∆τ+ik∆z+im∆ϕ

8π3
gE(ω,m; ρ, ρ′), (5.1.17)

The Fourier coefficients gE are solutions of the inhomogeneous modified Bessel equa-

tion (A.1.12): [
ρ2∂2

ρ + ρ∂ρ − (m2 + ρ2α2)
]
gE = −ρδ(ρ− ρ′), (5.1.18)

where α is defined as:

α2 = ω2 + k2 + µ2. (5.1.19)

On the unbounded manifold (i.e. infinite R), the Euclidean Green’s function is fixed

by requiring regularity at the origin and infinity [19]:

GE,∞(x, x′) =
1

8π3

∞∑
m=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dk eiω∆τ+ik∆z+im∆ϕKm(αρ>)Im(αρ<).

(5.1.20)

Here, ρ> and ρ< refer to the larger and smaller of ρ and ρ′, respectively, and Im and

Km are modified Bessel functions, introduced in Appendix A.

In the bounded case, the Euclidean Green’s function must satisfy Dirichlet

boundary conditions on the bounding cylinder (i.e. when ρ = R or ρ′ = R). The

Euclidean Green’s function GE,R(x, x′) of the bounded system obeying Dirichlet

boundary conditions can be obtained by adding to the unbounded Euclidean func-

tion (5.1.20) a solution ∆GE,R(x, x′) = GE,R(x, x′)−GE,∞(x, x′) of the homogeneous

equivalent of the Klein-Gordon equation (5.1.16) (i.e. with the right hand side set

to 0) which is regular inside the boundary, as follows:

∆GE,R(x, x′) = − 1

8π3

∞∑
m=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dk eiω∆τ+ik∆z+im∆ϕKm(αR)

Im(αR)
Im(αρ)Im(αρ′).

(5.1.21)
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The v.e.v. of φ2 can be calculated using Eq. (2.1.62):

〈φ2〉Cas = lim
x′→x

∆GE(x, x′) = − 1

8π3

∞∑
m=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dk

Km(αR)

Im(αR)
I2
m(αρ). (5.1.22)

The SET can be computed using the formula (2.1.63):

T α̂
γ̂ = − 1

48π2

∞∑
m=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dk

Km(αR)

Im(αR)
Eα̂

γ̂ , (5.1.23a)

where

E τ̂
τ̂ = (−α2 − ρ−2m2 + 6ω2)I2

m − α2I ′m
2,

E ρ̂
ρ̂ = (−3α2 − 3ρ−2m2)I2

m + 2ρ−1αImI
′
m + 3α2I ′m

2,

Eϕ̂
ϕ̂ = (−α2 + 5ρ−2m2)I2

m − 2ρ−1αImI
′
m − α2I ′m

2,

E ẑ
ẑ = (−α2 − ρ−2m2 + 6k2)I2

m − α2I ′m
2. (5.1.23b)

The argument of the modified Bessel functions is αρ.

Following [33], the double integral over ω and k in Eqs. (5.1.22) and (5.1.23a) can

be viewed as an integral over two-dimensional Euclidean space, admitting a change

of variable to polar coordinates (α, θ), as follows:

ω =
√
α2 − µ2 cos θ, k =

√
α2 − µ2 sin θ. (5.1.24)

The Jacobian of the above transformation is J = α and the integration limits for

the new variables are θ = 0..2π and α = µ..∞. The θ integral can be performed

analytically and α can be non-dimensionalised to x = αR, yielding:

〈φ2〉Cas = − 1

4π2R2

∞∑
m=−∞

∫ ∞

µR

x dx
Km(x)

Im(x)
I2
m(xρ), (5.1.25a)

〈T α̂
σ̂ 〉Cas = − 1

24π2R4

∞∑
m=−∞

∫ ∞

µR

x dx
Km(x)

Im(x)
E α̂

σ̂ ,

E τ̂
τ̂ = (2x2 − 3µ2R2 − ρ−2m2)I2

m(xρ)− x2I ′m
2(xρ),

E ρ̂
ρ̂ = (−3x2 − 3ρ−2m2)I2

m(xρ) + 2ρ−1xIm(xρ)I ′m(xρ) + 3x2I ′m
2(xρ),

E ϕ̂
ϕ̂ = (−x2 + 5ρ−2m2)I2

m(xρ)− 2ρ−1xIm(xρ)I ′m(xρ)− x2I ′m
2(xρ) (5.1.25b)

and 〈T ẑ
ẑ 〉Cas = 〈T τ̂

τ̂ 〉Cas, where ρ = ρ
R

is defined in Eq. (5.1.11). Introducing the

notation:

Iln(ρ) =
1

2π2R4

∞∑
m=−∞

∫ ∞

µR

dx xlmnKm(x)

Im(x)
I2
m(xρ) (5.1.26)
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and using the relations:

2xIm(xρ)I ′m(xρ) =
d

dρ
I2
m(xρ),

x2I ′m
2(xρ) =

[
1

2

d2

dρ2 +
1

2ρ

d

dρ
− x2 − ρ−2m2

]
I2
m(xρ), (5.1.27)

the Eqs. (5.1.25) can be cast in the following form:

〈φ2〉Cas =− R2

2
I10, (5.1.28a)

〈T τ̂
τ̂ 〉Cas =− 1

4
I30 +

(
µ2R2

4
+

1

24

d2

dρ2 +
1

24ρ

d

dρ

)
I10, (5.1.28b)

〈T ρ̂
ρ̂ 〉Cas

=
1

2
I30 +

1

2ρ2I12 −
(

1

8

d2

dρ2 +
5

24ρ

d

dρ

)
I10, (5.1.28c)

〈T ϕ̂
ϕ̂ 〉Cas

=− 1

2ρ2I12 +

(
1

24

d2

dρ2 +
1

8ρ

d

dρ

)
I10 (5.1.28d)

and 〈T ẑ
ẑ 〉Cas = 〈T τ̂

τ̂ 〉Cas. As expected by construction, the trace of the stress tensor

vanishes if the field is massless:

〈T α̂
α̂ 〉Cas = −µ2 〈φ2〉Cas =

µ2R2

2
I10. (5.1.29)

The asymptotic behaviour (A.2.4) of the modified Bessel functions for large val-

ues of their arguments shows that the exponential damping coming from the ratio

Km(x)/Im(x) disappears on the boundary (when ρ = 1):

Km(x)

Im(x)
I2
m(x) =

1

2x
[1 +O(x−1)], (5.1.30)

hence, the functions I`n in Eq. (5.1.26) cannot converge due to the divergence of

the integral over x at large values of ν and x. The asymptotic behaviour of the

functions I`n and of the corresponding expectation values is analysed in the following

subsection.

5.1.4 Casimir divergence near the boundary

The expression (5.1.25b) for the SET is obtained from the difference between the

Euclidean Green’s function (5.1.21) for the space-time bounded by a cylinder of

radius R and the one corresponding to the unbounded space-time (5.1.20). Since

the former vanishes on the boundary but the latter is known to be singular in the

coincidence limit, the SET must diverge as the boundary is approached. Deutsch

and Candelas [31] have shown that the divergence can be expressed as a power series

in the inverse distance from the surface, which is determined in this section using

the methods in Refs. [32, 33].
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The conservation equation (3.1.8) is identical when written for tetrad compo-

nents:

∂ρ(ρT
ρ̂
ρ̂ ) = T ϕ̂

ϕ̂ , (5.1.31)

showing that the divergence of T ρ̂
ρ̂ is one order of magnitude less than that of

T ϕ̂
ϕ̂ . Hence, Eq. (5.1.31) enables the asymptotic behaviour of T ρ̂

ρ̂ to be calculated

order by order from that of T ϕ̂
ϕ̂ without looking at the sub-sub-leading terms of its

constituent functions I`n in Eq. (5.1.28c).

Equation (5.1.30) shows that the SET diverges due to the behaviour of the

integrand in Iln at large values of α, therefore, the leading orders of the divergence

can be safely calculated by considering the field to be massless. The asymptotic

analysis of the functions Iln in Eq. (5.1.26) can be performed after switching the

sum over m into an integral:

I`n ∼ I`n =
1

π2R4

∫ ∞

0

dν

∫ ∞

0

dx x`νnKν(x)

Iν(x)
I2
ν (xρ), (5.1.32)

as explained in the following paragraph.

Application of the Abel-Plana sum formula for the conversion of a sum

to an integral

With the aid of Cauchy’s theorem of residues, a rigorous formula can be obtained

for connecting a sum over integer values m into an integral, called the Abel-Plana

sum formula [64]:

∞∑
m=0

f(m) =
1

2
f(0) +

∫ ∞

0

dν f(ν) + i

∫ ∞

0

dt
f(it)− f(−it)

e2πt − 1

+iπ

{∑
k

sgn(Imzf,k)ResRez>0[f(z)]− i
∑

k

sgn(Imzf,k)ResRezf,k>0[f(z) cot πz]

}
,

(5.1.33)

where the sum over k runs over the poles of f(z) located in the upper complex plane

(where Rez > 0) and ResRezf,k>0[f(z)] represents the residue of the function f at its

k’th pole. For the conversion of the sum over m in Eq. (5.1.26) to the integral over

ν in Eq. (5.1.32), the functions f(m) of interest are:

f`n(m, ρ) =

∫ ∞

0

dx x`mnKm(x)

Im(x)
I2
m(xρ). (5.1.34)
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This conversion is worthwhile only if the difference δ(ρ) between the sum over m

and the integral over ν, defined as:

δ(ρ) =
∞∑

m=−∞

f(m)− 2

∫ ∞

0

dν f(ν), (5.1.35)

does not diverge (or if it diverges at a subleading order) as ρ→ 1.

The residues in Eq. (5.1.33) vanish when ρ = 1, therefore, they can be ignored

in this analysis. Since only even values of n are relevant, fln(−m, ρ) = fln(m, ρ).

Given that K−iν(z) = Kiν(z) and I−iν(z) = I∗iν(z) for real z, the difference δ(ρ) can

be written as:

δ(ρ) = −4

∫ ∞

0

dt

e2πt − 1

∫ ∞

0

dx x`(it)nKit(x)Im

[
I2
it(xρ)

Iit(x)

]
. (5.1.36)

The relations (A.1.20) can be used to simplify Eq. (5.1.36) when ρ = 1 (i.e. on the

boundary):

δ(ρ) =
4

π

∫ ∞

0

dt

e2πt − 1

∫ ∞

0

dx x`(it)nK2
it(x). (5.1.37)

The double integral is now damped in both variables, i.e. by the term (e2πt−1)−1 in

the t variable and by K2
it(x) in the x variable. Thus, the approximation I`n (5.1.32)

exhibits the same divergent behaviour as I`n.

Building blocks for the analysis of the Casimir divergence

The analysis of the Casimir divergence for scalars in a cylinder has been performed

in Ref. [32]. For completeness, this paragraph presents the details of the calculation.

Since the divergence is due to the behaviour of the integrand at large ν and x, the

Bessel functions can be replaced by the uniform asymptotic expressions given in

Eqs. (A.2.5) and the lower limit of the x can be approximated to 0. After a change

in Eq. (5.1.32) to polar variables (ν, α) = (r cos θ, r sin θ), I ln takes the form:

I`n =
1

π2R4

∫ π
2

0

dθ

∫ ∞

0

dr r`+n+1 cosn θ sin` θ
Kr cos θ(r sin θ)

Ir cos θ(r sin θ)
I2
r cos θ(r sin θρ).

(5.1.38)

The asymptotic expansions in Eqs. (A.2.5) can be used to obtain the following

expressions:

Kr cos θ(r sin θ)

Ir cos θ(r sin θ)
=πe−2r−2ν ln sin θ

1+cos θ

[
1− 3− 5 cos2 θ

12r
+O(r−1)

]
, (5.1.39a)

I2
r cos θ(ρr sin θ) =

1

2πr
e
2r+2ν ln ρ sin θ

r−1r+cos θ

[
1 +

3− 5 r2

r2 cos2 θ

12r
+O(r−1)

]
, (5.1.39b)
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where r =
√
ν2 + x2ρ2. Introducting the small quantity

ε = 1− ρ, (5.1.40)

to obtain the leading and next-to-leading order divergent terms, it is sufficient to

ensure the correct capture of the terms of order ε and r−1, ignoring any terms of

order ε2, εr−1 and r−2, for reasons which will become apparent shortly.

Using the following intermediate approximations:

r

r
=1− ε sin2 θ + ε2

2
sin2 θ cos2 θ +O(ε3), (5.1.41a)

r

r
=1 + ε sin2 θ + ε2

2
sin2 θ(1 + sin2 θ) +O(ε3), (5.1.41b)

ln
ρ sin θ

r
r

+ cos θ
= ln

sin θ

1 + cos θ
− ε cos θ − 1

2
ε2 cos θ(1 + sin2 θ) +O(ε3), (5.1.41c)

the exponent in Eq. (5.1.39b) can be approximated as:

2r + 2ν ln
ρ sin θ

r−1r + cos θ
= 2r + 2ν ln

sin θ

1 + cos θ
− 2rε− rε2 cos2 θ + . . . , (5.1.41d)

leading to the following asymptotic expansion:

Kν(x)

Iν(x)
I2
ν (xρ) =

e−2rε

2r

[
1 + ε sin2 θ − ε2r cos2 θ + . . .

]
, (5.1.42)

where terms of order r−2, εr−1 and ε2 have been ignored in the square brackets. The

r integral in Eq. (5.1.38) can be written using Gamma functions. It can be seen

that each power of r−1 in the integrand will contribute a term of order ε, hence, the

integral (5.1.38) reduces to:

I`n ∼
1

2π2R4

∫ π
2

0

dθ

∫ ∞

0

dr e−2rεr`+n+1 cosn θ sin` θ[1 + ε sin2 θ − ε2r cos2 θ + . . . ]

=
(l + n)!

2(2ε)l+n+1π2R4

∫ π
2

0

dθ cosn θ sin` θ
{
1 + [sin2 θ − l+n+1

2
cos2 θ]ε+ . . .

}
.

(5.1.43)

Performing the θ integral for the first two terms in the integrand in (5.1.43) gives

the leading and next-to-leading terms for the four cases of interest:

I10 =
1

8π2ε2R4

[
1 + 1

3
ε+O(ε2)

]
,

I30 =
1

8π2ε4R4

[
1 + 2

5
ε+O(ε2)

]
,

I12 =
1

16π2ε4R4

[
1− 4

5
ε+O(ε2)

]
. (5.1.44)
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Result

Having calculated the asymptotic expansions (5.1.44) of I ln, Eqs. (5.1.28) can be

used to find the asymptotic forms of φ2 and T α̂
γ̂ :

〈φ2〉Cas =− 1

16π2R2ε2
[1 + 1

3
ε+O(ε2)], (5.1.45a)

〈T τ̂
τ̂ 〉Cas =

1

720π2R4ε3
+O(ε−2), (5.1.45b)

〈T ρ̂
ρ̂ 〉Cas

=− 1

720π2R4ε2
+O(ε−1), (5.1.45c)

〈T ϕ̂
ϕ̂ 〉Cas

=− 1

360π2R4ε3
+O(ε−2) (5.1.45d)

and 〈T ẑ
ẑ 〉Cas = 〈T τ̂

τ̂ 〉Cas. In the above, ε = 1 − ρ. The asymptotic form of T ρ̂
ρ̂

was found using Eq. (5.1.31). Equations (5.1.28) and (5.1.44) show that the mass

terms make subleading contributions to the SET. Hence, the Casimir divergence

of massive scalars near the boundary has the same order of magnitude as that of

massless scalars. Equation (5.1.45) is in exact agreement with the results reported

in Refs. [31, 32, 33].

5.1.5 Summary

The removal of the space outside the speed of light surface (SOL) by enclosing the

system inside a boundary renders t.e.v.s regular at every point inside of it, but only

if its location is inside or on the SOL. If the boundary is placed outside the SOL,

the old problems of modes with vanishing frequencies but non-vanishing Minkowski

energies return. The Planckian forms of Ref. [33] give an excellent approximation of

the t.e.v.s of φ2 and the SET around the rotation axis at large enough temperatures.

The correction terms calculated in subsection 4.2.2 would become important as βΩ

is increased, however, the effect of the boundary becomes highly pronounced as β

increases, causing the t.e.v.s to deviate from the analytic expressions obtained in

the unbounded case, as shown in Figure 5.2.

An analysis of the expectation values evaluated in the vacuum state of the

bounded system with respect to the unbounded vacuum, induced through the Casimir

effect, shows that they exhibit the Casimir divergence, diverging as inverse powers

of the distance to the boundary. The leading order of the divergences is in complete

agreement with the results presented in Refs. [31, 33].
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5.2 Dirac fermions obeying spectral boundary con-

ditions

Since the Dirac equation is of first order, its initial (boundary) conditions are also

of first order. Hence, the standard Dirichlet or Neumann boundary conditions

which can be used with the second-order Klein-Gordon equation cannot be used

for fermions. For any choice of boundary conditions, the resulting theory must

preserve the self-adjointness of the Dirac Hamiltonian, as discussed at the end of

subsection 2.2.3. The problem is equivalent to requiring that the time derivative of

the inner product of any two solutions of the Dirac equation, given in Eq. (2.2.31)

in terms of a surface integral, vanishes. For the case of a cylindrical boundary,

Eq. (2.2.31) reduces to:

∂t 〈ψ, χ〉 = R

∫ ∞

−∞
dz

∫ 2π

0

dϕψγ ρ̂χ+

∫ ∞

0

ρ dρ

∫ 2π

0

dϕψγ ρ̂χ

∣∣∣∣z=∞

z=−∞
, (5.2.1)

where ψ and χ are arbitrary solutions of the Dirac equation. The last term above

can be written in integral form as
∫
dz ∂z . . . , which vanishes as the basis modes are

eigenvectors of P z = −i∂z, implying that the result of the z integral thus introduced

is of the form (k − k′)δ(k − k′).

In this section, the spectral model [43] is considered. The formulation of the

boundary conditions, mode solutions and energy spectrum are discussed in subsec-

tion 5.2.1. Thermal states are discussed in subsection 5.2.2 and the Casimir effect

is investigated in subsection 5.2.3. The thermal expectation values obtained with

the spectral model are compared with those obtained in the MIT model in subsec-

tion 5.3.2. Finally, an analysis of the energy density on the rotation axis and on the

boundary is provided in subsection 5.4.1, while the case when the SOL is inside the

boundary is analysed in sections 5.4.2 and 6.2.

5.2.1 Boundary conditions and mode solutions

As discussed at the beginning of section 5.2, the self-adjointness of the Hamiltonian

is guaranteed if the inner product of any two solutions of the Dirac equation is

time-independent. For the spectral boundary conditions, this is implemented by

ensuring that the inner product of any two modes from the set of mode solutions is

time-independent.

Discretisation of transverse momentum

Since the boundary does not change the form of the Dirac equation, the solutions

have the same coordinate dependence as the solutions in the unbounded case, given
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in Eqs. (3.3.2) and (3.3.23a). Hence, the mode solutions satisfying spectral boundary

conditions can be introduced as:

U sp;λ
km`;E(x) = Csp;λ

km`;EU
λ
Ekm(x), V sp;λ

km`;E(x) = Csp;λ ∗
km`;EV

λ
Ekm(x), (5.2.2)

where E ≡ Em` = ±
√
µ2 + q2

m` + k2 controls the sign of the Minkowski energy

(i.e. either plus or minus) and the label ` indexes the discrete set of transverse

momenta that ensures the time-invariance of the Dirac inner product, as will be

discussed shortly. The constants Cλ ∗
km`;E have been introduced to normalise the modes

with respect to the inner product (5.2.8) corresponding to the bounded system.

Choosing ψ and χ in Eq. (5.2.1) as combinations of the above modes yields:

∂t 〈U sp;λ
km`;E, U

sp;λ′

k′m′`′;E′〉 =
R

2
δ(k − k′)δmm′ Csp;λ ∗

km` C
sp;λ′

km`′e
i( eE− eE′)t

×
(

2λ′E ′

|E ′|
E+E′

− +
2λE

|E|
E−E′

+

)
×
[
2iλ′pλp

′
−λ′Jm(qm`R)Jm+1(qm`′R)− 2iλp−λp

′
λ′Jm+1(qm`R)Jm(qm`′R)

]
, (5.2.3a)

∂t 〈U sp;λ
km`;E, V

sp;λ′

k′m′`′;E′〉 =
R

2
(−1)m+1δ(k + k′)δm,−m′−1 Csp;λ ∗

km` C
sp;λ′ ∗
−k,−m−1,`′e

i( eE+ eE′)t
×
(

E+E′
+ −

2λE

|E|
2λ′E ′

|E ′|
E−E′

−

)
×
[
pλp

′
λ′Jm(qm`R)Jm+1(q−m−1,`′R) + 4λλ′p−λp

′
−λ′Jm+1(qm`R)Jm(q−m−1,`′R)

]
,

(5.2.3b)

where E± and p± are defined in Eqs. (3.3.17) and (3.3.12), respectively and Ẽ = E−
Ω(m+ 1

2
) is defined in Eq. (4.3.3). One way to make the above time derivatives vanish

is to choose qm` such that each term in the square brackets vanishes individually.

As discussed in Ref. [43], Eqs. (5.2.3) can be simultaneously set to 0 by making qm`

a root of Jm for positive values of m and of J−m−1 if m is negative, i.e.

qm`R =

ξm` m+ 1
2
> 0,

ξ−m−1,` m+ 1
2
< 0,

(5.2.4)

where ξm` is the `’th root of Jm (i.e. Jm(ξm`) = 0 for all ` = 1, 2, . . . and ξm` <

ξm,`+1).

To understand why Eq. (5.2.4) is referred to as spectral boundary conditions by

the authors of Ref. [43], consider a solution ψ(x) of the Dirac equation. On the

boundary, ψ can be Fourier-transformed with respect to the angular coordinate ϕ:

ψ(x) =
∞∑

m=−∞

eimϕψm(t, R, z). (5.2.5)
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Schematically, the top component of the four-spinor ψm(t, R, z) corresponding to

the particle modes U sp;λ
km` is proportional to Jm(qm`R), while that of the anti-particle

modes V sp;λ
km` is proportional to Jm(q−m−1,`R). If m > 0, Jm(qm`R) = 0 and also

Jm`(q−m−1,`) = 0, by virtue of the second branch of Eq. (5.2.4). When m is negative,

the top component of ψm(t, R, z) no longer vanishes. However, its second component

corresponding to particle and anti-particle modes is of the form Jm(qm−1,`) and

Jm(q−m,`), respectively. Neither of these vanish for positive m, but at negative

values of m, both the particle and the anti-particle contributions to this second

component vanish. Moreover, when the first component vanishes, so does the third,

and similarly for the second and fourth components. Hence, the boundary conditions

(5.2.4) ensure that the first and third components of the Fourier components of any

solution of the Dirac equation with positive spectral index (positive m+ 1
2
) vanish on

the boundary, while for negative spectral indices, the second and fourth components

vanish. Thus, the scheme earns its name of spectral boundary conditions.

Alternatively, Berry and Mondragon [15] suggested setting to 0 the right-hand

side of Eq. (5.2.3) as a whole, keeping individual terms finite, implying:

Jm+1(qR) = Jm(qR)sgn(m+ 1
2
)
2λp+ k

q
. (5.2.6)

The signum function is there to preserve the charge conjugation invariance of the

theory, ensuring that each V mode is obtained from a U mode through the charge

conjugation operation. In this case, the discrete spectrum of the transverse momen-

tum depends on k, m and λ, making its numerical implementation less tractable.

We therefore do not consider this possibility further.

Energy spectrum

As in the scalar case, Eq. (5.1.6) can be used to show that

Ẽm`R ≥ Ẽm1R > (1− ΩR)(m+ 1
2
), (5.2.7)

for E > 0. As discussed in subsection 4.3.1, EẼ > 0 for all modes as long as

the boundary is inside or on the SOL (ΩR ≤ 1). Hence, the zones I and III in

Figure 4.1 contain no particle states, making the Minkowski (Vilenkin) and rotating

(Iyer) vacua equivalent.

Normalisation

The modes (4.3.2a) and their charge conjugates (4.3.2b) must be normalised with

respect to the Dirac inner product (2.2.30), which in the case under consideration

takes the form:

〈ψ, χ〉 =

∫ ∞

−∞
dz

∫ 2π

0

dϕ

∫ R

0

dρ ρψ†(x)χ(x). (5.2.8)
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For the case of two particle modes Uλ
km`;E and Uλ′

k′m′`′;E′ , the above reads:

〈U sp;λ
km`;E, U

sp;λ′

k′m′`′;E′〉 =
1

2
Cλ

km`;ECλ′′
km`′;E′δ(k − k′)δmm′ei( eE− eE′)t

×
(

E+E′
+ + 4λλ′

EE ′

|EE ′|
E−E′

−

)
×
[
pλp

′
λ′

∫ R

0

Jm(qρ)Jm(q′ρ)ρ dρ+ 4λλ′p−λp
′
−λ′

∫ R

0

Jm+1(qρ)Jm+1(q
′ρ)ρ dρ

]
,

(5.2.9)

where the m and ` indices have been omitted on q, q′ and any derived quantities, as

there is no risk of confusion. Its value is determined by requiring that the right-hand

side of the above reads δ(k − k′)δmm′δ``′δλλ′θ(EE
′). Since the boundary conditions

preserve the self-adjointness of the Hamiltonian, the time-independence of the inner

product requires modes of differing energies Ẽ − Ẽ ′ 6= 0 to be orthogonal. For the

evaluation of the integrals of the Bessel functions when q = q′, it is convenient to

use the following results [37]:

I+
m =

∫ R

0

dρ ρ
1

2
[J2

m(qρ) + J2
m+1(qρ)]

=
R2

2

[
J2

m+1(qR)− 2m+ 1

qR
Jm(qR)Jm+1(qR) + J2

m(qR)

]
,

I−m =

∫ R

0

dρ ρ
1

2
[J2

m(qρ)− J2
m+1(qρ)] =

R

2q
Jm(qR)Jm+1(qR), (5.2.10)

where the integrals of the Bessel functions have been performed using Eqs. (A.3.6).

The spectral boundary conditions ensure that the product Jm(qR)Jm+1(qR) vanishes

for all m. For positive m+ 1
2
, the normalisation constants take the following values:

Csp;λ
km`;E = Csp;λ

k,−m−1,`;E =
1

R |Jm+1(ξm,`)|
(m+ 1

2
> 0). (5.2.11)

Using Eq. (3.3.29), it can be seen that the particle modes obeying spectral boundary

conditions are linked with anti-particle modes via:

V sp;λ
km`;E(x) = (−1)m iE

|E|
U sp;λ
−k,−m−1,`;−E(x). (5.2.12)

Second quantisation

Having completed the construction of the set of mode solutions of the Dirac equation

obeying spectral boundary conditions on the bounding cylinder, the field operator
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can be written as:

ψsp(x) =
∑

j

θ(Ẽj)
[
U sp

j (x)bspI;j + V sp
j (x)dsp †

I;j

]
(5.2.13a)

=
∑

j

θ(Ej)
[
U sp

j (x)bspV ;j + V sp
j (x)dsp †

V ;j

]
, (5.2.13b)

with respect to Iyer’s and Vilenkin’s vacua, respectively, as discussed at the end of

Sec. 4.3.1. In the spectral case, j = (kj,mj, `j, λj) and

∑
j

≡
∞∑

mj=−∞

∞∑
`j=1

∫ ∞

−∞
dkj

∑
Ej=±|Ej |

∑
λj=±1/2

. (5.2.14)

5.2.2 Thermal expectation values

In this subsection, the thermal expectation values (t.e.v.s) of the fermion condensate

ψψ (FC), charge current Jµ (CC) and stress-energy tensor Tµν (SET) are calculated

following the methods introduced in subsection 4.3.2.

Formally, the thermal Hadamard function has the same expression as in Eq. (3.3.54)

for the unbounded rotating space-time, but the Fourier coefficients Mkm`, given in

(3.3.60), now have different normalisation:

4π2R2J2
m+1(ξm`)Mkm` =

[ µ
E
I2 + σ3

]
⊗

[(
1 0

0 1

)
◦Mj

]

+
1

E

(
0 −1

1 0

)
⊗

[(
k q

q −k

)
◦Mj

]
, (5.2.15)

whereMj is given in Eq. (3.3.58). The indices m and ` have been omitted on q and

derived quantities.

Fermion condensate

As previously, Eq. (2.2.55a) can be used to calculate the t.e.v. of the FC using the

expression (3.3.54) for the Hadamard function:

〈: ψψ :〉spec

β = −
∞∑

m=0

∞∑
`=1

∫ ∞

0

µdk

Eπ2R2

w(Ẽ) + w(E)

J2
m+1(qR)

J+
m(qρ), (5.2.16)

where

Ẽ = E − Ω(m+ 1
2
), E = E + Ω(m+ 1

2
) (5.2.17)
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and the thermal factors w depend on the vacuum state as shown in Eqs. (4.3.14)

and J∗m(qρ) is defined in Eq. (3.3.69). As before, the indices m and ` are omitted to

simplify notation. Hence, in the spectral model, the t.e.v. of the FC vanishes when

massless fermions are considered.

Neutrino charge current

While the t.e.v. of all components of the CC vanish, there is, as in the rotating

unbounded case, a non-vanishing neutrino current along the rotation axis:

〈: J ẑ
ν :〉spec

β =
∞∑

m=0

∞∑
`=1

∫ ∞

0

dk

2π2R2

w(Ẽ)− w(E)

J2
m+1(qR)

J−m(qρ). (5.2.18)

It can be seen that the sign of the charge current changes from negative on the

rotation axis to positive on the boundary (the weight factors w(Ẽ) and w(E) are

negative):

〈: J ẑ
ν :〉spec

β

⌋
ρ=0

=
∞∑
l=1

∫ ∞

0

dk[w(Ẽ)− w(E)]

2π2R2J1(qR)
, (5.2.19a)

〈: J ẑ
ν :〉spec

β

⌋
ρ=R

=−
∞∑

m=0

∞∑
l=1

∫ ∞

0

dk[w(Ẽ)− w(E)]

2π2R2
. (5.2.19b)

Stress-energy tensor

The following results are obtained:

〈: Tt̂t̂ :〉spec
β =−

∞∑
m=0

∞∑
`=1

∫ ∞

0

Edk

π2R2

w(Ẽ) + w(E)

J2
m+1(qR)

J+
m(qρ), (5.2.20a)

〈: Tρ̂ρ̂ :〉spec
β =−

∞∑
m=0

∞∑
`=1

∫ ∞

0

q2dk

Eπ2R2

w(Ẽ) + w(E)

J2
m+1(qR)

[
J+

m(qρ)−
m+ 1

2

qρ
J×m(qρ)

]
,

〈: Tϕ̂ϕ̂ :〉spec
β =−

∞∑
m=0

∞∑
`=1

∫ ∞

0

qdk

ρEπ2R2

w(Ẽ) + w(E)

J2
m+1(qR)

(m+ 1
2
)J×m(qρ),

〈: Tẑẑ :〉spec
β =−

∞∑
m=0

∞∑
`=1

∫ ∞

0

k2dk

Eπ2R2

w(Ẽ) + w(E)

J2
m+1(qR)

J+
m(qρ),

〈: Tt̂ϕ̂ :〉spec

β
=

∞∑
m=0

∞∑
`=1

∫ ∞

0

dk

ρπ2R2

w(Ẽ)− w(E)

J2
m+1(qR)

×
[
(m+ 1

2
)J+

m(qρ)− 1
2
J−m(qρ) + qρJ×m(qρ)

]
, (5.2.20b)

where the relation

J ′m+1(z)Jm(z)− J ′m(z)Jm+1(z) = J+
m(z)− z−1(m+ 1

2
)J×m(z) (5.2.21)
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has been used to obtain the expression for 〈: Tρ̂ρ̂ :〉β. Equations (5.2.20) can be used

to check the identity:

〈: T α̂
α̂ :〉spec

β = −µ 〈: ψψ :〉spec

β . (5.2.22)

Numerical results

In this section, the results of the numerical integration of the exact expression for

the t.e.v.s of the fermion condensate (5.2.16), charged current (5.2.18) and SET

(5.2.20) are shown and compared with the Planckian forms given by the leading

terms in inverse powers of β in Eqs. (4.3.50). The Planckian forms for the fermion

condensate (FC) and charge current (CC) are given in Eqs. (4.3.54a) and (4.3.54b),

respectively. The Planckian forms for the stress-energy tensor (SET) are:

〈: Tt̂t̂ :〉Planck
β =

7π2

60β4ε3

(
4
3
− 1

3
ε
)
, , (5.2.23a)

〈: Tϕ̂t̂ :〉Planck

β
=− ρΩ 7π2

45β4ε3
, (5.2.23b)

〈: Tρ̂ρ̂ :〉Planck
β = 〈: Tẑẑ :〉Planck

β =
7π2

180β4ε2
, (5.2.23c)

〈: Tϕ̂ϕ̂ :〉Planck
β =

7π2

180β4ε3
(4− 3ε) (5.2.23d)

In Figures 5.3, 5.4 and 5.5, numerical results for massless (µ = 0) and mas-

sive (µ = 2Ω) fermions are represented with thick, dashed coloured lines and thin

coloured lines, respectively, at four values of the inverse temperature β. The Planck-

ian forms discussed above are shown for comparison using thin black lines for each

value of the inverse temperature β, except when the corresponding profile is off the

scale, as explained in the figure captions. It can be seen that increasing the mass

of the field quanta sets the profiles of the corresponding t.e.v.s lower than in the

case of massless fermions. The plots include results when the boundary is located

on (left hand side) or half way (right hand side) between the rotation axis and the

speed of light surface (SOL).

Two distinctive features set the spectral model apart from the MIT model, pre-

sented in section 5.3: firstly, the parity-violating neutrino charge current changes

sign and becomes parallel to the angular velocity of the rotation (as opposed to anti-

parallel in the unbounded case); secondly, 〈: Tϕ̂ϕ̂ :〉spec
β vanishes on the boundary.

According to Figures 5.3 and 5.5, the t.e.v.s 〈: ψψ :〉spec

β , 〈: Tt̂t̂ :〉spec
β and 〈: Tẑẑ :〉spec

β

seem to be lower than the corresponding Planckian form. However, the same figures

together with Fig. 5.4 imply that the profiles of the t.e.v.s 〈: J ẑ
ν :〉spec

β , 〈: Tϕ̂t̂ :〉spec

β
,

〈: Tρ̂ρ̂ :〉spec
β and 〈: Tϕ̂ϕ̂ :〉spec

β set higher than the profiles of the corresponding Planck-

ian forms.



5.2. DIRAC FERMIONS OBEYING SPECTRAL BOUNDARY CONDITIONS103

0.0 0.2 0.4 0.6 0.8 1.0
ΡW

0.1

0.2

0.3

0.4

0.5

ΨΨ�Μ

ΒW = 0.8
ΒW = 1.
ΒW = 1.25
ΒW = 2.
Unbounded

0.0 0.1 0.2 0.3 0.4 0.5
ΡW

0.02

0.04

0.06

0.08

0.10

0.12
ΨΨ�Μ

ΒW = 0.8
ΒW = 1.
ΒW = 1.25
ΒW = 2.
Unbounded

0.2 0.4 0.6 0.8 1.0
ΡW

-0.5

0.5

1.0

1.5

J z
`

ΒW = 0.8
ΒW = 1.
ΒW = 1.25
ΒW = 2.
Unbounded

0.1 0.2 0.3 0.4 0.5
ΡW

-0.10

-0.08

-0.06

-0.04

-0.02

0.02

0.04

J
Ν

z
`

ΒW = 0.8
ΒW = 1.
ΒW = 1.25
ΒW = 2.
Unbounded

Figure 5.3: Fermion condensate (top) and neutrino charge current (bottom) for the
boundary on and half-way to the SOL on the left and right, respectively. The plots
compare numerical results for massless (thick dashed coloured lines) and massive (thin
coloured lines) fermions with the Planckian forms (4.3.54a) and (4.3.54b) corresponding
to the FC and neutrino charge current, respectively. Only the Planckian forms corre-
sponding to βΩ = 2.0 and βΩ = 1.25 are represented for the FC in the case RΩ = 0.5,
the results corresponding to lower values of βΩ being off the scale.

Figure 5.6 (top) indicates that, for βΩ = 0.05, the agreement between the an-

alytic results (4.3.54c) and (4.3.54f) for 〈: Tt̂t̂ :〉spec
β and 〈: Tϕ̂ϕ̂ :〉spec

β and the corre-

sponding numerical results for when the boundary is located at RΩ = 0.5 is very

good around the rotation axis. In the plots on the second line of the same fig-

ure, the values of 〈: Tt̂t̂ :〉spec
β and 〈: Tϕ̂ϕ̂ :〉spec

β on the rotation axis are compared to

the Planckian forms (5.2.23a) and (5.2.23d) and with the aforementioned analytic

results.

5.2.3 Casimir effect

As in the scalar case, it is more convenient to investigate the Casimir effect by con-

sidering the Euclidean equivalent of the manifold. As discussed in subsection 5.2.1,

if the boundary is located inside or on the SOL, the quantisation (5.2.4) of the trans-

verse momentum guarantees that EẼ > 0 for all modes, in which case Eqs. (4.3.7)

imply that the rotating (Iyer) and Minkowski (Vilenkin) vacua coincide. For the

remainder of this section, only the case ΩR ≤ 1 (boundary inside or on the SOL) is

considered. The case when the rotating and non-rotating vacua do not coincide is

not considered here. To simplify the calculations, it is convenient to switch to the

inertial non-rotating (Minkowski) coordinates, with respect to which the metric is
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Figure 5.4: The t.e.v. of−T spec

ϕ̂t̂
/ρΩ forRΩ = 0.5 (right) and of its logarithm forRΩ = 1.0.

The factor −1/ρΩ is introduced to make the result positive and finite (non-zero) on the
rotation axis. Numerical results for massless (thick dashed coloured lines) and massive
(thin coloured lines) fermions are compared with the Planckian form (5.2.23b).

given by (5.1.15). The transition to Euclidean coordinates can be made following

Eqs. (2.1.60) and (2.2.59).

Euclidean Green’s function on the unbounded manifold

The Euclidean Green’s function SE ≡ SE(x, x′) must satisfy the inhomogeneous

Dirac equation (2.2.61a). Following the construction of the mode solutions of the

Dirac equation in subsection 3.3.1, the Euclidean Green’s function can be Fourier-

transformed as:

SE(xE, x
′
E) =

∫ ∞

−∞

dω

8π3

∫ ∞

−∞
dk

∞∑
m=−∞

eiω∆τ+ik∆zχ, (5.2.24)

where the 4× 4 matrix χ can be written in terms of four 2× 2 matrices χab:

χ =

(
χ11 χ12

χ21 χ22

)
. (5.2.25)

Performing an equivalent Fourier transformation of the delta functions on the right

of Eq. (2.2.61a), the inhomogeneous Dirac equation implies:(
iω + µ 2ph

−2ph −iω + µ

)(
χ11 χ12

χ21 χ22

)
=
δ(ρ− ρ′)

ρ
I2 ⊗

(
eim∆ϕ 0

0 ei(m+1)∆ϕ

)
,(

χ11 χ12

χ21 χ22

)(
iω + µ 2ph

′ †

−2ph
′ † −iω + µ

)
=
δ(ρ− ρ′)

ρ′
I2 ⊗

(
eim∆ϕ 0

0 ei(m+1)∆ϕ

)
, (5.2.26)

where h is the 2 × 2 component (3.3.1b) of the helicity operator W0, defined in

Eq. (3.3.1a). For the equation in x′, the corresponding reducd helicity operator h
′ †

has the form:

h
′ † =

1

2p

(
k −P ′

−

−P ′
+ −k

)
. (5.2.27)
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Figure 5.5: The t.e.v. of T spec

t̂t̂
, T spec

ρ̂ρ̂ , T spec
ϕ̂ϕ̂ and T spec

ẑẑ (from top to bottom) for RΩ =
0.5 (right) and of their logarithms for RΩ = 1.0. Numerical results for massless (thick
dashed coloured lines) and massive (thin coloured lines) fermions are compared with the
corresponding Planckian forms in Eqs. (5.2.23).
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Figure 5.6: (a) The profiles of 〈: Tt̂t̂ :〉spec
β and 〈: Tϕ̂ϕ̂ :〉spec

β between the rotation axis and
the boundary located at RΩ = 0.5 at βΩ = 0.05. The profiles for massless and massive
fermions overlap each other throughout the whole range of ρ, but depart strongly from the
analytic results (4.3.54c) and (4.3.54f). (b) The dependency of the values of 〈: Tt̂t̂ :〉spec

β

and 〈: Tϕ̂ϕ̂:〉spec
β on the rotation axis on the value of the temperature, compared with the

Planckian forms (5.2.23a) and (5.2.23d) and with analytic results.

The primes indicate that the derivatives in the operators P ′
±, defined in Eqs. (3.3.1c)

act from the right on ρ′ and ϕ′.

The off-diagonal components of Eqs. (5.2.26) give the following equations:

χ21 =− 2ph

iω − µ
χ11 = χ22

2ph
′ †

iω + µ
,

χ12 =− 2ph

iω + µ
χ22 = χ11

2ph
′ †

iω − µ
, (5.2.28)

while the diagonal components can be written as modified Bessel equations:

[ρ2∂2
ρ + ρ∂ρ + ∂2

ϕ − ρ2α2]
χ11

iω − µ
=ρδ(ρ− ρ′)

(
eim∆ϕ 0

0 ei(m+1)∆ϕ

)
,

[ρ2∂2
ρ + ρ∂ρ + ∂2

ϕ − ρ2α2]
χ22

−iω − µ
=ρδ(ρ− ρ′)

(
eim∆ϕ 0

0 ei(m+1)∆ϕ

)
, (5.2.29)

where α2 = ω2 + k2 + µ2 (5.1.19). It can be shown that the inhomogeneous Dirac

equation in x′ also reduces to the above equation (with ρ and ϕ replaced by ρ′

and ϕ′, respectively), hence χ11 and χ22 can be written as linear combinations of

modified Bessel functions. The Euclidean Green’s function for the Minkowski space-

time must be regular at the origin and at infinity, thus the only non-trivial solution
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satisfying these boundary conditions is:

− χ11

iω − µ
=

χ22

iω + µ

=

(
Im(αρ<)Km(αρ>)eim∆ϕ 0

0 Im+1(αρ<)Km+1(αρ>)ei(m+1)∆ϕ

)
, (5.2.30)

where ρ< and ρ> are the smaller and larger of ρ and ρ′, respectively. The notation

above is equivalent to the following combination of step functions:

f(αρ<)g(αρ>) = θ(ρ− ρ′)g(αρ)f(αρ′) + θ(ρ′ − ρ)f(αρ)g(αρ′). (5.2.31)

The off-diagonal matrices χ12 and χ21 can be obtained from Eqs. (5.2.28), using the

following properties:

P+Im(αρ)eimϕ =− iαei(m+1)ϕIm+1(αρ),

P−Im+1(αρ)e
i(m+1)ϕ =− iαeimϕIm(αρ),

P+Km(αρ)eimϕ =iαei(m+1)ϕKm+1(αρ),

P−Km+1(αρ)e
i(m+1)ϕ =iαeimϕKm(αρ). (5.2.32)

Similar equations hold for P ′
±, which can be applied bearing in mind that I−m(z) =

Im(z) and K−m(z) = Km(z) for all integer orders m.

Thus, the Euclidean Green’s function for the unbounded Minkowski space-time

can be written as:

SE(xE, x
′
E) =

∫ ∞

−∞

dω

8π3

∫ ∞

−∞
dk

∞∑
m=−∞

eiω∆τ+ik∆zχ, (5.2.33a)

with χ given by:

χ = [µI2 − iωσ3]⊗

(
Im(αρ<)Km(αρ>)eim∆ϕ 0

0 Im+1(αρ<)Km+1(αρ>)ei(m+1)∆ϕ

)

+ k

(
0 −1

1 0

)
⊗

(
Im(αρ<)Km(αρ>)eim∆ϕ 0

0 −Im+1(αρ<)Km+1(αρ>)ei(m+1)∆ϕ

)

+ α

(
0 −1

1 0

)
⊗

(
0 (m,m+ 1)

(m+ 1,m) 0

)
, (5.2.33b)

where the Pauli matrix σ3 is defined in Eq. (2.2.8) and the notation (m,n) is a

shorthand for:

(m,n) = iei(mϕ−nϕ′)[θ(ρ′ − ρ)Im(αρ)Kn(αρ′)− θ(ρ− ρ′)Km(αρ)In(αρ′)]. (5.2.33c)
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m+ 1
2
> 0 m+ 1

2
< 0

ρ = R

(
0 0
× ×

) (
× ×
0 0

)
ρ′ = R

(
0 ×
0 ×

) (
× 0
× 0

)
Table 5.1: The behaviour of the 2 × 2 constituent blocks of Lorentzian two-point
functions obeying spectral boundary conditions on a cylinder of radiusR. Depending
on the sign of m+ 1

2
and on which point is on the boundary, certain entries in these

2 × 2 matrices will vanish, as indicated in the table. Entries marked × do not
necessarily vanish.

The solution (5.2.33) is fixed by requiring regularity at the origin (ρ = 0 or

ρ′ = 0) and space-like infinity (ρ → ∞ or ρ′ → ∞) and corresponds to the un-

bounded Minkowski space-time. To obtain the Euclidean Green’s function for a

system enclosed in a boundary, suitable solutions of the homogeneous Euclidean

Dirac equation can be added to the appropriate matrix elements in Eq. (5.2.33).

Euclidean Green’s function for the spectral model

To construct a Euclidean Green’s function which implements spectral boundary

conditions, the behaviour on the boundary of the corresponding vacuum Hadamard

function can be considered. Since the dependence on the radial coordinates ρ and

ρ′ is always that in the 2× 2 matrix given in Eq. (3.3.58), it is sufficient to analyze

its behaviour on the boundary, as shown in Table 5.1. Furthermore, the Green’s

functions must stay regular at the origin. Denoting the Euclidean Green’s function

of the bounded system by Ssp
E (x, x′), the difference

∆Ssp
E (x, x′) = Ssp

E (x, x′)− SE(x, x′) =

∫ ∞

−∞

dω

8π3

∫ ∞

−∞
dk

∞∑
m=−∞

eiω∆τ+ik∆z∆χsp,

(5.2.34)

with respect to the Euclidean Green’s function of the unbounded space is a solution

of the homogeneous version of Eq. (5.2.26) (i.e. with the right hand side set to 0).

To implement the boundary conditions shown in Table 5.1, it is sufficient to add

the following matrices to χ11 and χ22 in Eq. (5.2.30):

∆χsp
11

−iω + µ
=

∆χsp
22

iω + µ
= cm

(
1 0

0 −1

)
◦ Ej, (5.2.35a)

where the Hadamard (Schur) product is taken with the following matrix:

Ej =

(
Im(αρ)Im(αρ′)eim∆ϕ −iIm(αρ)Im+1(αρ

′)ei(m+1)∆ϕ−iϕ

iIm+1(αρ)Im(αρ′)eim∆ϕ+iϕ Im+1(αρ)Im+1(αρ
′)ei(m+1)∆ϕ

)
(5.2.35b)
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and cm is a constant ensuring the structure in Table 5.1, having the value:

cm =


−Km(αR)

Im(αR)
m+ 1

2
> 0,

Km+1(αR)

Im+1(αR)
m+ 1

2
< 0.

(5.2.35c)

Only modified Bessel functions of the first kind (i.e. Im) have been considered, since

their linearly independent partners, Km, do not satisfy the requirement of regularity

at the origin. The structure of the matrices in Eqs. (5.2.35a) is determined by the

compatibility conditions (5.2.28), which give the following off-diagonal matrices:

χsp
21 = −χsp

12 = cm

(
k −α
−α k

)
◦ Ej. (5.2.35d)

Thus, the homogeneous solution of the Euclidean Dirac equation inducing spectral

boundary conditions is:

∆Ssp
E (x, x′) =

∫ ∞

−∞

dω

8π3

∫ ∞

−∞
dk

∞∑
m=−∞

eiω∆τ+ik∆z∆χsp, (5.2.36a)

where the Fourier components ∆χsp can be written as:

c−1
m ∆χsp = (µI2 − iωσ3)⊗

[(
1 0

0 −1

)
◦ Ej

]
+

(
0 −1

1 0

)
⊗

[(
k −α
−α k

)
◦ Ej

]
.

(5.2.36b)

In the following paragraphs, the Casimir induced expectation values of the fermion

condensate and SET are calculated using the difference ∆Ssp
E (x, x′) between the

Euclidean Green’s functions corresponding to the bounded and unbounded systems.

Casimir expectation values

The Casimir expectation values, induced by the difference between the bounded and

unbounded vacua, can be calculated from the difference ∆Ssp
E (x, x′) = Ssp

E (x, x′) −
SE(x, x′). For the fermion condensate (FC), the following expression is obtained:

〈ψψ〉spCas = − µ

2π3

∫ ∞

−∞
dω

∫ ∞

−∞
dk

∞∑
m=0

Km(αR)

Im(αR)
I−m(αR), (5.2.37)

where the notation I−m(z) is analogous to Eqs. (3.3.69):

I±m(z) = I2
m(z)± I2

m+1(z), I×m(z) = 2Im(z)Im+1(z). (5.2.38)
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Switching to polar coordinates (5.1.24), the Casimir FC can be put in the form:

〈ψψ〉spCas = −µR2I−10, (5.2.39)

where

I∗`n =
1

2π2R4

∞∑
m=−∞

∫ ∞

µR

dx x`(m+ 1
2
)ncm I

∗
m(xρ), (5.2.40)

where ρ = ρ/R and cm is defined in Eq. (5.2.35c).

The calculation of the induced SET can be done using the formula (2.2.62), with

SE(x, x′) replaced by ∆Ssp
E (x, x′):

〈T α̂
γ̂ 〉

sp

Cas
=

1

2π3

∞∑
m=0

∫ ∞

−∞
dE

∫ ∞

−∞
dk
Km(αR)

Im(αR)
diag

{
− E2I−m(αρ),

α2I−m(αρ)− αρ−1(m+ 1
2
)I×m(αρ), αρ−1(m+ 1

2
)I×m(αρ), k2I−m(αρ)

}
. (5.2.41)

After a change to polar coordinates (5.1.24), the integration over the polar angle

θ can be performed:

〈T τ̂
τ̂ 〉

sp

Cas = 〈T ẑ
ẑ 〉

sp

Cas =− I−30 + µ2R2I−10,

〈T ρ̂
ρ̂ 〉

sp

Cas
=2I−30 −

2

ρ
I×21,

〈T ϕ̂
ϕ̂ 〉

sp

Cas
=

2

ρ
I×21. (5.2.42)

Equations (A.2.7) can be used to see that the functions I`n diverge at ρ = 1 due to

the large m and x behaviour of their respective integrand:

Kν− 1
2
(x)

Iν− 1
2
(x)

I−
ν− 1

2

(x) =
ν

ν +
√
ν2 + x2

[
1 +

1

2
√
ν2 + x2

+O((ν2 + x2)−1)

]
. (5.2.43)

A more detailed analysis of this divergence can be found in the next subsection.

5.2.4 Casimir divergence near the boundary

As in the scalar case, the divergence of the functions I∗`n is best performed by

switching the sum over m to an integral. The functions appearing in Eqs. (5.2.39)

and (5.2.42) are I−10, I−30 and I×21. Since in all these terms, the summands in the sum

over m are even with respect to the change m→ −m−1, the function I∗`,n obtained

by replacing the sum over m with an integral can be written as follows:

I∗`n =
1

π2R4

∫ ∞

0

dν

∫ ∞

µR

dx x`νn
Kν− 1

2
(x)

Iν− 1
2
(x)

I∗
ν− 1

2
(xρ). (5.2.44)
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Since the symmetry of the summands is different from the scalar case (where it

was with respect to the transformation m→ −m), the Abel-Plana formula used in

subsection 5.1.4 must be adapted, as explained in the following paragraph.

Generalised Abel-Plana formula

The Abel-Plana sum formula (5.1.33) can be generalised to sums over odd half-

integers, as presented in Ref. [64]:

∞∑
m=0

f(m+ 1
2
) =

∫ ∞

0

dν f(ν)− i
∫ ∞

0

dt
f(it)− f(−it)

e2πt + 1

+ iπ

{∑
k

sgn(Im(zf,k))ResRe(zf,k)>0f(z)− i
∑

k

Resf(z) cot πz

}
. (5.2.45)

In the above, zf,k represents the k’th pole of the function f(z) and ResRe(zf,k)<0f(z)

represents the residue of f(z) at z = zf,k in the real half-space of the z-complex

plane. As in the scalar case, there are no residues to evaluate in the transition from

I∗`n to I∗`n.

As opposed to the scalar case, the difference δ∗`n(ρ) between the sum over m in

Eq. (5.2.40) and the corresponding integral over ν in Eq. (5.2.44), given by

δ∗`n(ρ) = i

∫ ∞

0

dt
f ∗`n(it)− f ∗`n(−it)

e2πt + 1
, (5.2.46)

diverges as ε = 1 − ρ approaches 0 for all three cases (I−10, I−30 and I×21) considered

here. In the above, f ∗`n(ν) is

f ∗`n(ν) =
1

π2R4

∫ ∞

µR

dx x`νn
Kν− 1

2
(x)

Iν− 1
2
(x)

I∗
ν− 1

2
(xρ). (5.2.47)

Since the (e2πt + 1)−1 factor in δ∗`n(ρ) suppresses the integrand in Eq. (5.2.46) at

large t, the leading orders of the divergence of δ∗`n(ρ) can be calculated by considering

the large x behaviour of the integrand in Eq. (5.2.47). The following asymptotic

behaviours can be obtained, starting from Eqs. (A.2.4d) and (A.2.4e):

Kν− 1
2
(x)

Iν− 1
2
(x)

=πe−2x

[
1 +

ν(ν − 1)

x
+
ν2(ν − 1)2

2x2
+O(x−3)

]
, (5.2.48a)

I2
ν− 1

2
(x)− I2

ν+ 1
2
(x) =

νe2x

πx2

[
1− (ν − 1)(ν + 1)

2x
− ν2

x2
+O(x−3)

]
, (5.2.48b)

2Iν− 1
2
(x)Iν+ 1

2
(x) =

e2x

πx

[
1− ν2

x
+
ν4

x2
+O(x−3)

]
, (5.2.48c)
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with which the following expressions can be obtained:

Kν− 1
2
(x)

Iν− 1
2
(x)

[I2
ν− 1

2
(xρ)− I2

ν+ 1
2
(xρ)] =

νe−2xε

x2ρ2

[
1−

ν − 1
2

x
−
ν2 − 1

2

x

ε

ρ
+ . . .

]
, (5.2.49a)

2
Kν− 1

2
(x)

Iν− 1
2
(x)

Iν− 1
2
(xρ)Iν+ 1

2
(xρ) =

e−2xε

xρ2

[
1− ν2ε

xρ
− ν

x
+O(x−2)

]
, (5.2.49b)

where ε = 1 − ρ is defined in Eq. (5.1.40). Substituting the above approximations

in Eq. (5.2.46) gives:

δ−10(ρ) =− 2

π2R4

∫ ∞

0

dt

e2πt + 1

∫ ∞

µR

dx

xρ2 e
−2xε

[
1 +O(x−2)

]
,

δ−30(ρ) =− 2

π2R4

∫ ∞

0

dt

e2πt + 1

∫ ∞

µR

dx

ρ2 xe
−2xε

[
1 +

1

2x
+
t2 + 1

2

xρ
ε+O(x−2)

]
,

δ×21(ρ) =− 2

π2R4

∫ ∞

0

t, dt

e2πt + 1

∫ ∞

µR

dx

ρ
xe−2xε

[
1 +

t2

xρ
ε+O(x−2)

]
. (5.2.50)

Since the above expressions diverge due to the large x behaviour of the integrand,

the lower limit of the x integral can be approximated to 0 (i.e. the massless limit

can be taken), allowing the integral over x to be performed in terms of Γ functions:

δ−10 '−
ln 2

π3R4
[ln ε−1 +O(1)],

δ−30 '−
ln 2

4π3R4ε2
[1 + 3ε+O(ε2)],

δ×21 '−
1

96π2R4ε2
[1 + ε+O(ε2)]. (5.2.51)

As shown in Eq. (5.2.55) for the three cases of interest considered above, the leading

order of the divergence of δ∗`n is two orders of magnitude less than that of the

corresponding I∗`n.
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The Casimir divergence near the boundary

Using the polar coorindates (r, θ) introduced in Eq. (5.1.38) and the expansions in

Eqs. (5.1.41), the following asymptotic expansions can be made:

I−
ν− 1

2

(x) =
cot θ e2r+2ν ln x

ν+r

πr

[
1 +

1 + 5 sin2 θ

12r
+

1

2r2

(
1− 29

12
cos2 θ +

205

144
cos4 θ

)
+O(r−3)

]
, (5.2.52a)

I+
ν− 1

2

(x) =
e2r+2ν ln x

ν+r

πr sin θ

[
1 +

cos2 θ

12r
+

cos2 θ(1 + 35 sin2 θ)

288r2
+O(r−3)

]
, (5.2.52b)

I×
ν− 1

2

(x) =
e2r+2ν ln x

ν+r

πr

[
1− 5 cos2 θ

12r
+

cos2 θ(61− 205 sin2 θ)

288r2
+O(r−3)

]
,

(5.2.52c)

Kν− 1
2
(x)

Iν− 1
2
(x)

=
π sin θ e−2r−2ν ln x

ν+r

1 + cos θ

[
1 +

5 cos2 θ

12r
− cos θ

2r2

(
1− 5 cos2 θ

4
− 25 cos3 θ

144

)
+O(r−3)

]
. (5.2.52d)

The asymptotic expansion for I+
ν− 1

2

(x) is included for completeness. Although it is

not required for the asymptotic analysis of the Casimir divergence in the spectral

model, it will become useful for the same analysis in the MIT bag model, in subsec-

tion 5.3.3. In this section, the above functions are evaluated at xρ. If ρ = ρ/R is

close to 1, Eqs. (5.1.41) can be used to derive the following approximations:

I−
ν− 1

2

(xρ) =
e2r+2ν ln x

ν+r
−2rε

πr tan θ

[
1 +

1 + 5 sin2 θ

12r
+ ε(1 + sin2 θ)− rε2 cos2 θ + . . .

]
,

(5.2.53a)

I+
ν− 1

2

(xρ) =
e2r+2ν ln x

ν+r
−2rε

πr sin θ

[
1 +

cos2 θ

12r
+ ε− rε2 cos2 θ + . . .

]
, (5.2.53b)

I×
ν− 1

2

(xρ) =
e2r+2ν ln x

ν+r
−2rε

πr

[
1− 5 cos2 θ

12r
+ ε sin2 θ − rε2 cos2 θ + . . .

]
, (5.2.53c)

where terms of order r−2, r−1ε and ε2 were ignored. Combining Eq. (5.2.52d) with

Eqs. (5.2.53a) and (5.2.53c) gives:

Kν− 1
2
(x)

Iν− 1
2
(x)

I−
ν− 1

2

(xρ) =
e−2rε cos θ

r(1 + cos θ)

[
1 +

1

2r
+ ε(1 + sin2 θ)− rε2 cos2 θ + . . .

]
,

Kν− 1
2
(x)

Iν− 1
2
(x)

I×
ν− 1

2

(xρ) =
e−2rε sin θ

r(1 + cos θ)

[
1 + ε sin2 θ − rε2 cos2 θ + . . .

]
. (5.2.54)
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Hence, the following results are obtained:

I −10 =
1

4π2R4ε2
[
1− ln 2 + ε

(
4
3
− ln 2

)
+O(ε2)

]
,

I −30 =
1

16π2R4ε4
[
1 + 43

30
ε+O(ε2)

]
,

I×21 =
1

16π2R4ε4
[
1 + 1

10
ε+O(ε2)

]
. (5.2.55)

The divergences of the I∗`n terms calculated above are two orders of magnitude

higher than the corresponding error terms δ∗`n calculated in Eqs. (5.2.51). Hence,

the leading and subleading order of the divergence of the functions I∗`n coincide with

the expressions obtained above.

Substituting Eqs. (5.2.55) into Eqs. (5.2.16) and (5.2.20) gives the following

asymptotic behaviours:

〈ψψ〉spCas =− µ

4π2R2ε2
[
1− ln 2 +

(
4
3
− ln 2

)
ε+ . . .

]
,

〈T τ̂
τ̂ 〉

sp

Cas = 〈T ẑ
ẑ 〉

sp

Cas =− 1

16π2R4ε4
[
1 + 43

30
ε+ . . .

]
,

〈T ρ̂
ρ̂ 〉

sp

Cas
=

1

24π2R4ε3
(
1 + 23

20
ε+ . . .

)
,

〈T ϕ̂
ϕ̂ 〉

sp

Cas
=

1

8π2R4ε4
[
1 + 1

10
ε+ . . .

]
, (5.2.56)

where 〈T ρ̂
ρ̂ 〉

sp

Cas
was obtained from 〈T ϕ̂

ϕ̂ 〉
sp

Cas
using Eq. (5.1.31). The divergence of the

Dirac field is one order of magnitude higher compared to the scalar field case (5.1.45).

Before attempting to give a physical explanation for this difference, a comment on

how this result fits in with Deutsch and Candelas’ analysis [31] is worthwhile.

In their paper [31], Deutsch and Candelas assume that the SET can be written

as:

Tµν = ε−n∗T (n∗)
µν + ε−n∗+1T (n∗−1)

µν + . . . , (5.2.57)

with ε measuring the geodesic perpendicular distance from the boundary (ε = R−ρ
for the cylindrical boundary considered in this chapter) and n∗ being the leading

order divergence of the SET (actually T
(n∗)
µν = 0, so n∗ − 1 is the leading order).

Each term T (j)µ
µ is assumed to be traceless. As a consequence, the leading order

divergence of the SET in the present case of a cylindrical boundary is given by:

T µ
ν = α∗ diag[−ε−n∗+1,

2

n∗ − 2
ε−n∗+2, 2ε−n∗+1,−ε−n∗+1), (5.2.58)

where α∗ is a constant which depends on the type of the analysed field. A comparison

with (5.1.45) and (5.2.56) shows that the values for α∗ and n∗ are

αG = − 1

720π2R4
, nG = 4 (5.2.59)
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for scalars and

αsp
S = − 1

16π2R4
, nsp

S = 5, (5.2.60)

for fermions.

It should be noted that Deutsch and Candelas start their analysis by assuming

n∗ = 4 on dimensional grounds. They regard ε as a geodesic distance having the di-

mension of length, then require that the SET is a tensor built exclusively using local

quantities. However, the spectral boundary conditions have an intrinsic global char-

acter, directly involving the size of the system (the radius R of the cylinder). The

results obtained in Refs. [12, 28, 29] for fermions in a 2 + 1-dimensional space-time

obeying inside a cylindrical boundary obeying MIT bag boundary conditions show

that the Casimir divergence of the energy density as the boundary is approached is

two orders of magnitude less than that obtained in this section. One order of mag-

nitude can be attributed to the lower dimensionality of the space-time considered,

while the second comes from the local nature of the MIT bag boundary conditions.

The MIT bag model is considered in section 5.3, with the analysis of the Casimir

effect performed in subsection 5.3.3.

Numerical results

The plots in Fig. 5.7 compare the asymptotic results in Eqs. (5.2.56) with numerical

evaluations of Eqs. (5.2.42) for µR = 0 and µR = 2. The agreement between

the asymptotic and numerical results as the boundary is approached is excellent,

confirming the predicted order of divergence in Eqs. (5.2.56).

5.3 Dirac fermions obeying MIT bag boundary

conditions

In this section, the MIT bag model [23] is considered. The boundary conditions,

modes and energy spectrum are discussed in subsection 5.3.1. Thermal states are

discussed in subsection 5.3.2, where the results obtained using the MIT and spectral

models are compared qualitatively and quantitatively. The Casimir effect is inves-

tigated in subsection 5.3.3 and the result is compared with those obtained in the

spectral case and with predictions from the literature [31].

5.3.1 Boundary conditions and mode solutions

In this subsection, the MIT bag boundary conditions are introduced, with an em-

phasis on the quantisation of the transverse momentum q and the corresponding
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Figure 5.7: Logarithm of the Casimir expectation values of the fermion condensate ψψ
(first line) and stress-energy tensor with respect to the distance from the rotation axis
(left) and the logarithm of the inverse distance ε−1 to the boundary. The plots compare
the results for massless (blue dashed curves) and massive (purple dashed curves) fermions
to the asymptotic results (dark thin curves) in Eqs. (5.2.56).
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energy spectrum. First introduced in Ref. [23], the MIT boundary conditions are

designed to satisfy Eq. (2.2.31) in a purely local manner:

i/nψ(xb) = ς ψ(xb), (5.3.1)

for any point xb on the boundary, where nµ represents the four-normal to the bound-

ary and ς = ±1.

Discretisation of transverse momentum

For a cylindrical boundary, n = dρ, hence, the boundary conditions read as:

iγρ̂ψ(xb) = ςψ(xb). (5.3.2)

It can be checked that if ψ(x) obeys the above boundary conditions, so does its

charge conjugate, iγ 2̂ψ∗(x). Mode solutions UMIT
km`;E that satisfy MIT boundary con-

ditions can be constructed starting from the complete set of modes described in

subsection 4.3.1. Since H, Pz and Mz commute with iγρ̂, the spinor UMIT
km`;E can be

a simultaneous eigenvector of these operators. However, the helicity operator W0

does not commute with iγρ̂, therefore, UMIT
km`;E must be a linear combination of the

modes (3.3.2) corresponding to the two possible helicities, ±1
2
:

UMIT
km`;E(x) = b+

km`;EU
+
Ekm(x) + b−km`;EU

−
km`;E(x), (5.3.3)

where b±km`;E are constants and E ≡ Em` = ±
√
µ2 + q2

m` + k2 controls the sign of the

Minkowski energy (i.e. positive or negative). By analogy to the spectral boundary

conditions case, the index ` has been introduced anticipating the quantisation of the

transverse momentum q. For a given value of m, the allowed values of the transverse

momentum are labeled by ` in increasing order, such that qm,` < qm,`+1. To avoid

cumbersome notation, the indices m and ` are omitted from the corresponding

momentum pm,` or Minkowski energy Em,` where there is no risk of confusion. Thus,

Eq. (5.3.2) becomes:

ςE+(b+
km`;Eφ

+
km` + b−km`;Eφ

−
km`) =

iE

|E|
E−(b+

km`;Eσ
ρφ+

km` − b−km`;Eσ
ρφ−km`), (5.3.4)

where σρ is defined in Eqs. (3.1.7) and E± is defined in Eq. (3.3.17). Equation (5.3.4)

can be written as a set of linear equations in b±km`;E:(
ςE+p+Jm + E

|E|E−p−Jm+1 ςE+p−Jm + E
|E|E−p+Jm+1

ςE−p+Jm − E
|E|E+p−Jm+1 −ςE−p−Jm + E

|E|E+p+Jm+1

)(
b+

km`;E

b−km`;E

)
= 0, (5.3.5)
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where p± is defined in Eq. (3.3.12). The system (5.3.5) has non-trivial solutions if:

j2m` −
2ςµ

qm`

jm` − 1 = 0, (5.3.6)

where

jm` = Jm(qm`R)/Jm+1(qm`R). (5.3.7)

Eq. (5.3.6) can be solved numerically to yield an infinite number of roots. Since

Eq. (5.3.6) is invariant under E → −E, the transverse momentum qm,` does not

depend on the sign of E. Moreover, the relation J−m(z) = (−1)mJm(z) given in

Eq. (A.1.4) ensures that

q−m−1,` = qm,`. (5.3.8)

Equation (5.3.5) fixes b ≡ bkm`;E = b+
km`;E/b

−
km`;E to be

b = −
ςE
|E|E+p−j + E−p+

ςE
|E|E+p+j + E−p−

=

ςE
|E|E−p−j− E+p+

ςE
|E|E−p+j− E+p−

, (5.3.9)

which is invariant under (E, k,m)→ (−E,−k,−m− 1).

There are simpler situations, e.g. the parallel plates system [39], where the MIT

bag model method is easily implemented. A downside of the MIT bag boundary con-

ditions is that they cannot be implemented using neutrinos, since negative chirality

selects only one helicity state for neutrino particle modes (see [54] for a discussion

of the MIT boundary conditions for neutrinos on Kerr). The MIT bag boundary

conditions have been implemented succesfully for fermions confined inside a cylin-

drical boundary in a 2+1-dimensional non-rotating space-time in Refs. [12, 28, 29].

Their results for the Casimir effect are compared with our original results presented

in subsection 5.3.3.

Energy spectrum

To find the energy spectrum of the Dirac theory employing MIT bag boundary

conditions, let us start by considering massless particles. In this case, the solutions

of Eq. (5.3.6) are jm` = ±1, the solutions qm`R of which are guaranteed by theorem

3.1 of Ref. [13] to satisfy:

ξ′m` < qm,2`−1R < ξm` < qm,2`R < ξ′m,`+1, (5.3.10)

where

Jm(qm`R) = (−1)`+1Jm+1(qm`R). (5.3.11)

The first zero ξ′m,1 of J ′m is bounded from below by [73]:

ξ′m,1 >
√
m(m+ 2), (5.3.12)
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Figure 5.8: The first few values of the longitudinal momentum qm` allowed by the
MIT bag boundary conditions at m = 10. The roots are located at the intersection
between the solid line (representing Jm(qR)) and the dashed lines (representing
Jm+1(qR) multiplied by the right-hand side of Eq. (5.3.14)). The dotted curves
correspond to µ = 0, 2, 4, 6, 8 and 10. In the plot on the left, ς = −1, and in the
plot on the right, ς = 1.

ensuring that ξ′m,1 > m+ 1
2

for m > 0, while at m = 0, the first root can be obtained

numerically: q0,1R ' 1.4347. Thus, the following inequality can be established:

|Em`|R ≥ qm`R > m+ 1
2
, (5.3.13)

hence, Ẽm` = Em`−Ω(m+ 1
2
) > 0 for positive Em` and all values of m and ` as long

as RΩ ≤ 1 (i.e. when the boundary is inside or on the SOL).

When the mass is non-zero, j can take the following values:

jm` =
ςµ

qm`

±

√
1 +

µ2

q2
m`

. (5.3.14)

When ς = −1, the positive value taken by j is smaller than 1, meaning that the small-

est value qm,1 for the longitudinal momentum allowed by the boundary conditions

has to be larger than that for the massless case (i.e. when Jm(qm,1R) < Jm+1(qm,1R),

which occurs as Jm,1 decreases from its first maximum towards its first zero). Fig-

ure 5.8(b) illustrates this behaviour. Hence, it is clear that in this case, the lowest

allowed energy obeys ẼR > (1 − ΩR)(m + 1
2
), meaning again that EẼ > 0 for all

R ≤ Ω−1.

If ς = 1, the quantity j increases as the mass increases and qm,1R approaches the

origin. To establish the minimum value allowed for the energy E(µ) =
√
µ2 + q2,

Eq. (5.3.14) can be rearranged as:

q
Jm(qR)

Jm+1(qR)
= µ+ E(µ), (5.3.15)
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Equation (A.1.2) can be used to obtain

lim
z→0

z
Jm(z)

Jm+1(z)
= 2(m+ 1), (5.3.16)

showing that q = 0 is a solution of Eq. (5.3.15) when µR = m + 1. If the mass

increases further, the first root no longer corresponds to j > 0 (i.e. the first root dis-

appears). In this case, ER > m+ 1
2

just from the mass contribution. To investigate

the behaviour of the smallest allowed energy Em,1 between µ = 0 and µ = m + 1,

let us consider its derivative with respect to µ:

∂µEm,1(µ) =
1

Em,1(µ)
[µ+ qm,1(µ)∂µqm,1], (5.3.17)

Since qm,1(µ) decreases as the mass increases, ∂µqm,1 < 0 and ∂µEm,1(µ = 0) < 0.

The energy reaches a minimum when

qm,1∂µqm,1cµ=µ0
= −µ0. (5.3.18)

Using Eqs. (A.1.11) to replace the derivatives of the Bessel functions, the derivative

with respect to µ of Eq. (5.3.15) gives:

∂µE =
µ(2m+ 1)− 2µER + E

E(2m+ 1)− 2E2R + µ
. (5.3.19)

It is easy to see from the above equation that ∂µE(µ = 0) < 0. However, the limit

µ → m + 1 is not so easy to evaluate. By virtue of E(µ = m + 1) = R−1(m + 1),

the limit takes the following value:

lim
µ→m+1

∂µE = (2m+ 1)/[2E(µ)R + 1] = (2m+ 1)/(2m+ 3). (5.3.20)

However,

lim
q→0

∂µE = 1. (5.3.21)

The discrepancy between Eqs. (5.3.20) and (5.3.21) should not come as a surprise,

since m+1 is the largest value of µ at which the first root exists. Since the derivative

is negative at µ = 0, we either admit that the minimum value of Em,1 is R−1(m+1)

(i.e. Em,1 continually decreases as µ increases to R−1(m + 1), or there is a value

µ = µ0 where ∂µE(µ0) = 0. At such a point, Eq. (5.3.19) predicts that the value of

the energy would be:

E(µ0) =
µ0(2m+ 1)

2µ0R− 1
> R−1(m+ 1

2
). (5.3.22)

Equation (5.3.22) seems to imply that the energy cannot be at a minimum with

respect to the mass if µR ≤ 1
2
. If a stationary point occurs for any µR > 1

2
, the
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Figure 5.9: The dependence of the smallest allowed longitudinal momentum (a) and
energy (b) in the MIT bag model corresponding to ς = 1 for µR = 0 . . .m + 1 at
m = 0, 5, 15, 30. The horizontal axis represents the ratio µR/(m + 1), normalizing
the mass such that for any value of m, the range of the x axis is from 0 to 1. The
longitudinal momentum qm,1 and energy Em,1 are divided by R−1(m + 1) and plot
(b) shows the departure of Em,1R/(m+1) from the minimum value m+1. It can be
seen that as m increases, the behaviour of qm,1 tends towards an asymptotic trend.
It can be seen that the energy does not present any stationary points throughout
the range µ = 0 . . .m+ 1.

corresponding value of the energy will be greater than R−1(m+ 1
2
). Since the energy

is above R−1(m+ 1
2
) at the endpoints µ = 0 and µ = m+ 1 and since its stationary

points are also above the aforementioned value, we can conclude that for all E > 0,

Ẽ will satisfy:

Ẽm`R > (1− ΩR)(m+ 1
2
). (5.3.23)

Hence, the MIT bag boundary conditions restrict the energy spectrum such that

EẼ > 0 for all acceptable modes, as long as the boundary is inside or on the SOL.

Our numerical experiments confirm Eq. (5.3.19). Furthermore, the energy seems to

be on a continuous decrease towards m+1 as µ increases from 0 to m+1, as shown

in Figure 5.9.

Normalisation

The overall normalisation of the MIT modes is determined by the following orthog-

onality condition:

〈UMIT
km`;E, U

MIT
k′m′`′;E′〉 = δ(k − k′)δmm′δ``′θ(EE

′), (5.3.24)

with respect to the Dirac inner product (2.2.30). Although an explicit check that

the MIT modes are orthogonal if any of the labels do not match is a good exercise

in algebra, it is unnecessary since the time invariance of the Dirac inner product,

guaranteed to hold in the MIT bag model, ensures that the result of the inner

product of modes with different energies (i.e. non-zero E −E ′) vanishes. Thus, the
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following result is obtained:

〈UMIT
km`;E, U

MIT
k′m′`′;E′〉 =

1

2
δ(k − k′)δmm′δ``′θ(EE

′)
∣∣b−km`;E

∣∣2
×
[
(S+

+ + S−+ )I+
m + (S+

− + S−− )I−m
]
, (5.3.25)

where the coefficients of the integrals I±m (5.2.10) are given by:

S+
± =E2

+(bkm`;Ep+ + p−)2 ± E2
−(bkm`;Ep− + p+)2, (5.3.26a)

S−± =E2
−(bkm`;Ep+ − p−)2 ± E2

+(bkm`;Ep− − p+)2, (5.3.26b)

where bkm`;E is defined in Eq. (5.3.9). The following identities are useful:

S+
± =

4k2

E2

1± j2

( ςE
|E|E+p+j + E−p−)2

,

S−± =
4k2

E2

1± j2

( ςE
|E|E−p+x− E+p−)2

,

S+
± + S−± =

8(1± j2)

p2
+j2 + p2

−
,

S+
± − S−± =− 8(1± j2)

(p2
+j2 + p2

−)2

[
(j2 − 1)

µ2 + q2

µE
+ (j2 + 1)

µk

pE

]
. (5.3.27)

Hence, the modes (5.3.3) are normalised according to Eq. (5.3.24) if

b−km`;E =
1

R
√

2 |Jm+1(qR)|

√
p2
− + p2

+j2

(j2 + 1)(j2 + 1− 2m+1
qR

j)− (j2 − 1) j
qR

, (5.3.28)

which is invariant under (E, k,m) → (−E,−k,−m − 1). Recalling that bkm`;E

(5.3.9) is also invariant under the same transformation and using the properties

(3.3.29) shows that the U and V spinors are equivalent:

V MIT
km`;E = (−1)m iE

|E|
UMIT
−k,−m−1,`;−E, (5.3.29)

or equivalently, in the language of Eq. (3.3.30),

V MIT
j = i(−1)mjUMIT

 , (5.3.30)

where j = (Ej, kj, `j,mj) and  = (−Ej,−kj, `j,−mj − 1).

Equation (5.3.6) can be used to eliminate from Eq. (5.3.28) powers of j higher

than 1:

b−km`;E =
1

2R |Jm+1(qR)|

√√√√√ 1 + ςµj
q

p2
+[

1− ςµ
q2R

(m+ 1) + µ2

q2

]
(1 + 2ςµ

q
j)− j

qR
(m+ 1

2
)
. (5.3.31)
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It is worth mentioning that in the massless limit, b−km`;E simplifies to:

b−km`;Ecµ=0 =
1

2R |Jm+1(qR)|

[
1−

j(m+ 1
2
)

qR

]− 1
2

. (5.3.32)

Second quantisation

Having finished the construction of the field modes, the field operator can be ex-

panded with respect to the rotating and Minkowski vacua:

ψMIT =
∑

j

θ(Ẽj)
[
UMIT

j bMIT
I;j + V MIT

j dMIT †
I;j

]
(5.3.33a)

=
∑

j

θ(Ej)
[
UMIT

j bMIT
V ;j + V MIT

j dMIT †
V ;j

]
, (5.3.33b)

where

j = (k,m, `, E) (5.3.34)

and the sum over j is understood as:

∑
j

≡
∞∑

mj=−∞

∞∑
`j=1

∫ ∞

−∞
dkj

∑
Ej=±|Ej |

. (5.3.35)

5.3.2 Thermal expectation values

In this section, the thermal expectation values (t.e.v.s) of the fermion condensate

ψψ (FC), charge current Jµ (CC) and stress-energy tensor Tµν (SET) are calculated

as described in subsection 4.3.2.

Thermal Hadamard function

The thermal Hadamard function for the MIT model is more challenging to calculate

than in the spectral case due to the combination of positive and negative helicities

in the modes. An expression equivalent to Eq. (3.3.54) can be written for the MIT

case, keeping in mind that the sum over j does not include the helicity λ:

∆S
(1)
β (x, x′) =

∑
j

e−i eEj∆t+ikj∆z[w(Ẽj)− w(−Ẽj)]Mj, (5.3.36)

where the density of states factors w(E) are defined in Eqs. (4.3.14) for the Minkowski

and Iyer vacua, while Mj is defined in terms of the spinors in Eqs. (3.3.16) and
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(3.3.23b) as:

Mj = b2
ju

+
j (x)⊗ u+

j (x′) + bj[u
+
j (x)⊗ u−j (x′) + u−j (x)⊗ u+

j (x′)] + u−j (x)⊗ u−j (x′).

(5.3.37)

In the above, the superscripts ± indicate the helicity. The following direct products

of uj spinors are required:

u±j ⊗ u±j
|b−|2

=

(
E2

+ ∓ E
|E|E−E+

± E
|E|E−E+ −E2

−

)
⊗
[
φ±j ⊗ φ

±†
j

]
,

u±j ⊗ u∓j
|b−|2

=

(
E2

+ ± E
|E|E−E+

± E
|E|E−E+ E2

−

)
⊗
[
φ±j ⊗ φ

∓†
j

]
, (5.3.38)

Using their exact form (3.3.11), the direct products of the φ two-spinors can be

written as:

φ±j ⊗ φ
±†
j =

1

2

(
p2
± ±p−p+

±p−p+ p2
∓

)
◦Mj,

φ±j ⊗ φ
∓†
j =

1

2

(
p+p− ∓p2

±

±p2
∓ −p+p−

)
◦Mj, (5.3.39)

where Eq. (3.3.58) gives the matrix Mj on the right hand side of the Hadamard

(Schur) product sign ◦. Next, Mj can be written in a manner similar to Eq. (3.3.56):

Mj =
|b−|2

4π2

(
Mup

j ◦Mj −M×
j ◦Mj

M×†
j ◦Mj −Mdown

j ◦Mj

)
, (5.3.40)

where the Hadamard product ◦ is taken with the matrixMj defined in Eq. (3.3.58)

and

Mup
j =

E2
+

2

(
(bp+ + p−)2 (bp+ + p−)(bp− − p+)

(bp+ + p−)(bp− − p+) (bp− − p+)2

)
,

Mdown
j =

E2
−

2

(
(bp+ − p−)2 (bp+ − p−)(bp− + p+)

(bp+ − p−)(bp− + p+) (bp− + p+)2

)
,

M×
j =

p

2E

(
(b2p2

+ − p2
−) (bp+ + p−)(bp− + p+)

(bp+ − p−)(bp− − p+) (b2p2
− − p2

+)

)
, (5.3.41)

Using the definition (5.3.9) for b, the following identities can be established:

b =
−2ςE

p

j

p2
+j2 + p2

−
, b2 + 1 =

2(j2 + 1)

p2
+j2 + p2

−
, b2 − 1 = −2k

p

j2 − 1

p2
+j2 + p2

−
.

(5.3.42)
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Thus, the matrices M∗
j given in (5.3.41) can be put in the form:

Mup
j =

E2
+

p2
+j2 + p2

−

j2 + 1− k2

p2 (j2 − 1)− 2ςqE
p2 j −kq

p2

(
j2 − 1− 2ςE

q
j
)

−kq
p2

(
j2 − 1− 2ςE

q
j
)

j2 + 1 + k2

p2 (j2 − 1) + 2ςqE
p2 j

 ,

Mdown
j =

E2
−

p2
+j2 + p2

−

j2 + 1− k2

p2 (j2 − 1) + 2ςqE
p2 j −kq

p2

(
j2 − 1 + 2ςE

q
j
)

−kq
p2

(
j2 − 1 + 2ςE

q
j
)

j2 + 1 + k2

p2 (j2 − 1)− 2ςqE
p2 j

 ,

M×
j =

1

p2
+j2 + p2

−

(
2k
E

q
E

(j2 + 1)− 2ςj
q
E

(j2 + 1) + 2ςj −2kj2

E

)
. (5.3.43)

Employing the symmetrization (3.3.59), Mj can be put in the form:

4π2Mj =
|b−|2

p2
+j2 + p2

−

{
2σ3 ⊗

[(
1 0

0 j2

)
◦Mj

]

+ I2 ⊗

[(
µ
E

(j2 + 1)− 2ςj
qE

(µ2 + q2) 1

1 µ
E

(j2 + 1) + 2ςj
qE

(µ2 + q2)

)
◦Mj

]

+
1

E

(
0 −1

1 0

)
⊗

[(
2k q(j2 + 1)− 2ςE j

q(j2 + 1) + 2ςE j −2k

)
◦Mj

]}
, (5.3.44)

where σ3 is a Pauli matrix, defined in Eqs. (2.2.8).

Fermion condensate

Taking the trace of Eq. (5.3.44) gives the following t.e.v. for the FC:

〈: ψψ :〉MIT

β = −
∞∑

m=0

∞∑
`=1

∫ ∞

0

dk

2DMIT
m`

[w(Ẽ) + w(E)]

×
[

µ
E

(j2 + 1)J+
m(qρ)− 2ςj

qE
(q2 + µ2)J−m(qρ)

]
. (5.3.45)

where J±m(qρ) are defined in Eqs. (3.3.69) and the denominator DMIT
m` is given by:

DMIT
m` = π2R2J2

m+1(qR)

[
(j2 + 1)

(
j2 + 1− 2m+ 1

qR
j

)
− j

qR
(j2 − 1)

]
. (5.3.46)

As opposed to the FC in the spectral model, given in Eq. (5.2.16), the massless limit

of the FC in the MIT model is finite, giving a first qualitative difference between

the models. It is also remarkable that the sign of the massless limit of the FC

depends on the sign of ς. It is also worth evaluating the FC on the boundary, where

Jm(qR) = jJm+1(qR), for the purpose of which the square brackets in Eq. (5.3.45)
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can be divided by J2
m+1(qR):

〈: ψψ :〉MIT

β

⌋
ρ=R

= −
∞∑

m=0

∞∑
`=1

∫ ∞

0

dk
µ J2

m+1(qR)

2EDMIT
m`

[w(Ẽ) + w(E)]

×
[
(j2 + 1)2 − 2ςj

qµ
(q2 + µ2)(j2 − 1)

]
. (5.3.47)

Equation (5.3.6) can now be used to replace j = 2σµ
q

j + 1 to show that the term in

the brackets vanishes. Thus, the FC vanishes on the boundary for any mass and

regardless of the sign of ς.

Neutrino charge current

As in the spectral case, the t.e.v. of the CC vanishes because the summands corre-

sponding to the t, ρ and ϕ, and z components are odd with respect to m→ −m− 1

and k → −k, respectively. The rules for checking the transformation properties

under m→ −m− 1 are:

j→ −1

j
, m+ 1

2
→ −m− 1

2
, J±m → ±J±m, J×m → −J×m,

w(Ẽ)± w(E)→ ±[w(Ẽ)± w(E)]. (5.3.48)

The only non-vanishing component of the neutrino charge current (2.2.55b) is,

like in the spectral model case, the z component:

〈: J ẑ
ν :〉MIT

β =
∞∑

m=0

∞∑
`=1

∫ ∞

0

dk

4DMIT
m`

[w(Ẽ)− w(E)]
[
(j2 + 1)J−m(qρ)− (j2 − 1)J+

m(qρ)
]
.

(5.3.49)

While it is not clear from the above expression whether the charge current changes

sign as ρ increases from 0 to R, it is remarkable that it vanishes on the boundary:

〈: J ẑ
ν :〉MIT

β

⌋
ρ=0

=
∞∑

`=1

∫ ∞

0

dk[w(Ẽ)− w(E)]

2DMIT
m`

(5.3.50a)

〈: J ẑ
ν :〉MIT

β

⌋
ρ=R

=0. (5.3.50b)

The property that the neutrino charge current vanishes on the boundary gives a

second qualitative difference between the spectral and MIT bag models (in the

former case, it reaches a finite value having the sign opposite to its sign on the

rotation axis).
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Stress-energy momentum

The non-vanishing components of the t.e.v. of the SET are:

〈: Tt̂t̂ :〉MIT
β =−

∞∑
m=0

∞∑
`=1

∫ ∞

0

E dk

2DMIT
m`

[w(Ẽ) + w(E)]

×
[
(j2 + 1)J+

m(qρ)− (j2 − 1)J−m(qρ)
]
, (5.3.51a)

〈: Tρ̂ρ̂ :〉MIT
β =−

∞∑
m=0

∞∑
`=1

∫ ∞

0

q2 dk

2EDMIT
m`

[w(Ẽ) + w(E)]

× (j2 + 1)

[
J+

m(qρ)−
m+ 1

2

qρ
J×m(qρ)

]
, (5.3.51b)

〈: Tϕ̂ϕ̂ :〉MIT
β =−

∞∑
m=0

∞∑
`=1

∫ ∞

0

q2 dk

2EDMIT
m`

[w(Ẽ) + w(E)](j2 + 1)
m+ 1

2

qρ
J×m(qρ),

(5.3.51c)

〈: Tẑẑ :〉MIT
β =−

∞∑
m=0

∞∑
`=1

∫ ∞

0

k2 dk

2EDMIT
m`

[w(Ẽ) + w(E)]

×
[
(j2 + 1)J+

m(qρ)− (j2 − 1)J−m(qρ)
]
, (5.3.51d)

〈: Tt̂ϕ̂ :〉MIT

β
=

∞∑
m=0

∞∑
`=1

∫ ∞

0

[w(Ẽ)− w(E)]dk

4ρDMIT
m`

{
(j2 − 1)

[
1
2
J+

m(qρ)− (m+ 1
2
)J−m(qρ)

]
+ (j2 + 1)

[
(m+ 1

2
)J+

m(qρ)− 1
2
J−m(qρ) + qρJ×m(qρ)

] }
. (5.3.51e)

The above results reveal a third qualitative difference between the MIT and spectral

models: 〈: Tϕ̂ϕ̂ :〉β stays finite on the boundary in the MIT model, while Eqs. (5.2.20)

show that it vanishes in the spectral model. As in the spectral case, the rela-

tion (2.2.28) between the trace of the SET and the FC can be verified directly.

Numerical results

The plots in this section show the t.e.v.s of the fermion condensate (FC), neutrino

charge current (CC) and stress-energy tensor (SET) obtained in the MIT model,

using Eqs. (5.3.45), (5.3.49) and (5.3.51).

Figures 5.10 and 5.11 show numerical results for the case when the boundary

is located at ΩR = 0.5. Results for massless fermions (shown with thick dashed

coloured lines) are compared with results for fermions of mass µR = 2 with ς = 1

(left) and ς = −1 (right). The analytic results for the unbounded case obtained with

respect to the rotating (Iyer) vacuum, given in Eqs. (4.3.56), are shown in thin black

lines. The results for massless fermions are independent of ς, except in the case of

the FC, when ς controls its sign. It can be seen from the plots that the profiles for

ς = 1 are more energetic (i.e. correspond to larger values) than those obtained with

ς set to −1. This can be understood by looking at the position of the roots in the
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Figure 5.10: Comparison of t.e.v.s corresponding to massless (thick coloured dashed lines)
and massive (thin coloured lines, µR = 2) to the analytic results (4.3.56) obtained in the
unbounded case with respect to the rotating (Iyer) vacuum. The value of ς on the left and
right columns is −1 and 1. The boundary is placed at RΩ = 0.5. From top to bottom,
the plots display: the fermion condensate, the neutrino charge current along the rotation
axis and 〈: Tϕ̂t̂ :〉

β
.
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two cases, depicted in Figure 5.8. As the mass increases, the value of the first root

for the ς = 1 case decreases, while when ς = −1, it increases. This behaviour can

be extrapolated to subsequent roots. Consequently, the roots from the ς = 1 case

make contributions to t.e.v.s. which are less suppressed by the Fermi-Dirac density

of states factor than in the ς = −1 case, resulting in more energetic t.e.v.s. What is

unexpected is that the profiles for massive fermions at ς = 1 can sit higher than the

massless profile, but we explain this behaviour with the same argument presented

above. Another peculiar feature is that the sign of the FC changes between the

rotation axis and the boundary, for both values of ς. The numerical results confirm

the analytic predictions that the FC and the neutrino CC vanish on the boundary,

while 〈: Tϕ̂t̂ :〉
β

stays finite.

The same comparisons are made (using the same conventions for the line types

and colours) for the case when the boundary is placed on the speed of light surface

(ΩR = 1.0) in Figures 5.12 and 5.13. All plots show the logarithm of the t.e.v.,

except for the plot for the FC when σ = 1, which changes sign between the rotation

axis and the boundary. As for the case when ΩR = 0.5, the t.e.v.s corresponding to

ς = 1 are more energetic (i.e. correspond to larger values) than those obtained with

ς set to −1. The FC and neutrino CC vanish on the axis, while the SET stays finite

throughout the domain.

Figure 5.14 provides a comparison of the behaviour of the t.e.v.s of the neutrino

charge current and SET for the MIT and spectral models. The boundary is on the

SOL and the mass is set to 0. Since the FC is 0 in the spectral case for massless

fermions, it is not shown in the Figure. However, qualitative differences can be seen

between the two models in the plots, as follows. The neutrino CC in the MIT model

stays negative throughout the domain but reaches 0 on the boundary, while in the

spectral case, it changes sign, reaching a positive value on the boundary; and the

component 〈: Tϕ̂ϕ̂ :〉β reaches a finite value on the boundary in the MIT case, but

vanishes on the boundary in the spectral case.

A comparison between the MIT and spectral models and the analytic results

(4.3.56) at large temperature (βΩ = 0.05) is performed in Figure 5.15, which shows

that for β = 0.05 the agreement between the analytic solution for the unbounded

space-time and the numerical results for the space-time inside a boundary at RΩ = 1
2

is excellent at sufficiently large distances from the rotation axis and the surface.

However, the energy density in the spectral model strongly departs from the ana-

lytic profile as the boundary is approached, while the results in the MIT case follow

it closely. There are strong deviations in both models in the profile of the neu-

trino charge current: in the spectral model, 〈: J ẑ
ν :〉β changes sign from negative to

positive, after which it grows, becoming significantly bigger in absolute value than

the analytic prediction; in the MIT bag model, the neutrino charge current sharply

drops to 0 as the boundary is approached.
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Figure 5.11: Comparison of t.e.v.s corresponding to massless (thick coloured dashed lines)
and massive (thin coloured lines, µR = 2) with the analytic results (4.3.56) obtained in
the unbounded case with respect to the rotating (Iyer) vacuum. The boundary is placed
at RΩ = 0.5 and ς is 1 and −1 on the left and right columns, respectively. From top to
bottom, the plots display: 〈: Tt̂t̂ :〉β, 〈: Tρ̂ρ̂ :〉β, 〈: Tϕ̂ϕ̂ :〉β and 〈: Tẑẑ :〉β.
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Figure 5.12: Comparison of t.e.v.s corresponding to massless (thick coloured dashed lines)
and massive (thin coloured lines, µR = 2) to the analytic results (4.3.56) obtained in the
unbounded case with respect to the rotating (Iyer) vacuum. The value of ς on the left
and right columns is −1 and 1. The boundary is placed on the speed of light surface, at
RΩ = 1.0. From top to bottom, the plots display: the fermion condensate, the neutrino
charge current along the rotation axis and 〈: Tϕ̂t̂ :〉

β
. Apart from the FC in the case ς = 1

(where its t.e.v. changes sign in the massive case).
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Figure 5.13: Comparison of t.e.v.s corresponding to massless (thick coloured dashed lines)
and massive (thin coloured lines, µ = 2Ω) with the analytic results (4.3.56) obtained in
the unbounded case with respect to the rotating (Iyer) vacuum. The boundary is placed
at RΩ = 1.0 and ς is 1 and −1 on the left and right columns, respectively. From top to
bottom, the plots display: 〈: Tt̂t̂ :〉β, 〈: Tρ̂ρ̂ :〉β, 〈: Tϕ̂ϕ̂ :〉β and 〈: Tẑẑ :〉β.
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Figure 5.14: Numerical results for t.e.v.s computed in the MIT (thick dashed coloured
lines) and spectral (thin black lines) models are presented for comparison. Apart from the
neutrino charge current (which changes sign between the rotation axis and the boundary),
the plots show the logarithm of t.e.v.s in terms of the distance from the rotation axis. The
boundary is located at RΩ = 1.0 and the field is taken to be massless. It can be seen that
the neutrino current goes to 0 on the boundary in the MIT case and does not change sign
across the channel. It can also be seen that in the spectral case, 〈: Tϕ̂ϕ̂ :〉β and 〈: Tϕ̂t̂ :〉

β

go to 0 on the boundary, while in the MIT, case they stay finite.

0.0 0.1 0.2 0.3 0.4 0.5
ΡW12.0

12.2

12.4

12.6

12.8

13.0

13.2
Log@T

t
`
t
`D

Spectral

MIT

Unbounded

0.0 0.1 0.2 0.3 0.4 0.5
ΡW3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Log@ÈJ z
`ÈD

Spectral

MIT

Unbounded

Figure 5.15: Logarithm of energy density (left) and charge current (right) at βΩ = 0.05
for a system of massless fermions confined inside a cylinder located at RΩ = 0.5. While
both models agree very well with the analytic results in Eqs. (4.3.56) close to the rotation
axis, the energy density in the spectral model strongly departs from the analytic profile
as the boundary is approached, while the results in the MIT case follow it closely.
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Figure 5.16: The plot on the left compares the logarithm of the energy density on the
rotation axis in the MIT bag and spectral models with the analytic results Eqs. (4.3.56)
obtained with respect to the rotating (Iyer) vacuum for the rotating unbounded space-
time, represented in terms of the inverse temperature β. The plot on the right presents
the logarithm of 〈: Tϕ̂ϕ̂ :〉β for massless fermions at βΩ = 0.05, with RΩ = 0.5.

Finally, Figure 5.16 shows the behaviour of the energy density on the rotation

axis (µ was set to 0). While at large temperatures (small values of β), the energy

density in the MIT and spectral models is superposed to that corresponding to the

unbounded case, as the temperature decreases, the energy density in both the MIT

and spectral cases decreases exponentially with β, however, the slope in the two cases

differs (in the unbouded case, the energy density falls off as β−2). The exponential

decrease with β in the bounded case is explained through an asymptotc analysis

in subsection 5.4.1. The difference in the slope is coming from a term of the form

e−βq0,1 , where q0,1 is the smallest value of the transverse momentum corresponding

to m = 0. In the spectral case, q0,1 is the first root ξ0,1 of J0(qR), while in the MIT

case, q0,1R < ξ0,1, as implied by Eq. (5.3.10).

5.3.3 Casimir effect

Euclidean Green’s function for the MIT bag model

Owing to its formal equivalence to the Lorentzian Feynman propagator, the bound-

ary conditions of the MIT bag model that the Euclidean Green’s function for the

bounded space-time must satisfy are analogous to Eqs. (5.3.2):

(iγρ̂ − ς)SMIT
E (x, x′)cρ=R =0,

SMIT
E (x, x′)(−iγρ̂′ − ς)cρ′=R =0. (5.3.52)

To form the Euclidean Green’s function SMIT
E (x, x′) for the bounded system, a solu-

tion ∆SMIT
E (x, x′) of the homogeneous correspondent of Eq. (2.2.61a) (i.e. with the

right hand side set to zero) must be added to the Euclidean Green’s function (5.2.33)

for the unbounded space. A Fourier transform can be performed on ∆SMIT
E (x, x′),



5.3. DIRAC FERMIONS OBEYING MIT BAG BOUNDARY CONDITIONS 135

as described in Eq. (5.2.24):

∆SMIT
E (x, x′) =

∫ ∞

−∞

dω

8π3

∫ ∞

−∞
dk

∞∑
m=−∞

eiω∆τ+ik∆z

(
∆χMIT

11 ∆χMIT
12

∆χMIT
21 ∆χMIT

22

)
, (5.3.53)

where the 2× 2 matrices ∆χMIT
ik can be written as:

∆χMIT
11 =(iω − µ)

(
a11 b11

c11 d11

)
⊗ Ej, ∆χMIT

12 =

(
a12 b12

c12 d12

)
⊗ Ej,

∆χMIT
22 =(iω + µ)

(
a22 b22

c22 d22

)
⊗ Ej, ∆χMIT

21 =

(
a21 b21

c21 d21

)
⊗ Ej, (5.3.54)

where aik, bik, cik and dik are constants, the matrix Ej on the right of the Hadamard

(Schur) product is defined in Eq. (5.2.35b) and j is a generic label for the parameters

m ≡ mj, ω ≡ ωj and k ≡ kj.

The matrix elements of the off-diagonal blocks ∆χMIT
12 and ∆χMIT

21 can be found

using Eqs. (5.2.28), as follows:(
a12 b12

c12 d12

)
=

(
−ka22 − αc22 −kb22 − αd22

αa22 + kc22 αb22 + kd22

)
=

(
ka11 + αb11 −αa11 − kb11
kc11 + αd11 −αc11 − kd11

)
,

(5.3.55a)(
a21 b21

c21 d21

)
=

(
−ka11 − αc11 −kb11 − αd11

αa1 + kc11 αb11 + kd11

)
=

(
ka22 + αb22 −αa22 − kb22
kc22 + αd22 −αc22 − kd22

)
.

(5.3.55b)

These equations can be effectively used to express all matrix elements of ∆χMIT in

terms of the matrix elements of ∆χMIT
11 . Although not required in this calcualtion,

the matrix elements of ∆χMIT
22 are given below with respect to thos of ∆χMIT

11 , for

completeness:
a22

b22

c22

d22

 =
1

α2 − k2


k2 αk αk α2

−αk −k2 α2 −αk
−αk α2 −k2 −αk
α2 αk αk k2



a11

b11

c11

d11

 . (5.3.56)

To begin the construction of ∆SMIT
E (x, x′), the form of the Fourier transform

χ of the Euclidean function SE(x, x′) for the unbounded space on the boundary is



136 CHAPTER 5. BOUNDED ROTATING MINKOWSKI SPACE

required. It can be inferred from Eq. (5.2.33):

χcρ=R =


(µ− iω)Km

Im
0 −kKm

Im
αKm

Im

0 (µ− iω)Km+1

Im+1
−αKm+1

Im+1
kKm+1

Im+1

kKm

Im
−αKm

Im
(µ+ iω)Km

Im
0

αKm+1

Im+1
−kKm+1

Im+1
0 (µ+ iω)Km+1

Im+1

 ◦
(
Ej Ej

Ej Ej

)
,

χcρ′=R =


(µ− iω)Km

Im
0 −kKm

Im
−αKm

Im

0 (µ− iω)Km+1

Im+1
αKm+1

Im+1
kKm+1

Im+1

kKm

Im
αKm

Im
(µ+ iω)Km

Im
0

−αKm+1

Im+1
−kKm+1

Im+1
0 (µ+ iω)Km+1

Im+1

 ◦
(
Ej Ej

Ej Ej

)
,

(5.3.57)

where the modified Bessel functions explicitly displayed in the ratios Km/Im and

Km+1/Im+1 take the argument αR, with the coordinate dependence fully contained

in the matrices Ej. The boundary conditions (5.3.52) give a number of 32 equations

for the matrix elements of ∆χMIT. However, only a small number of equations are

required to fully determine these elements. The (1, 1) components of Eqs. (5.3.52)

(i.e. the top left components of the equations for both ρ = R and ρ′ = R),

−αKm+1 − ς(µ− iω)Km + ς(µ− iω)Ima11 − Im+1c21 =0,

−αKm+1 − ς(µ− iω)Km + ς(µ− iω)Ima11 + Im+1b12 =0, (5.3.58)

show that

c21 = −b12. (5.3.59)

A similar inspection of the (2, 2) components of Eqs. (5.3.52) shows that:

−αKm − ς(µ− iω)Km+1 + ς(µ− iω)Im+1d11 + Imb21 =0,

−αKm − ς(µ− iω)Km+1 + ς(µ− iω)Im+1d11 − Imc12 =0, (5.3.60)

leading to:

b21 = −c12. (5.3.61)

Comparing the expressions for b12 and c21 in Eqs. (5.3.55) shows that:

c11 = b11, (5.3.62)

which can be used together with the expressions for d12, d21, a12 and a21 in the same

equations to show that:

a21 = −a12, d21 = −d12. (5.3.63)
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Using d21 = αb11 + kd11 into the (1, 2) component of Eq. (5.3.52) for ρ = R gives:

b11 =
k(Im+1d11 −Km+1)

ς(µ− iω)Im − αIm+1

, (5.3.64)

where the argument of the modified Bessel functions is, as before, αR. Substituting

the above into b21 = −kb11 − αd11 gives:

b21 =
Km+1k

2 + (µ− iω)d11[Im+1(iω + µ)− αςIm]

ς(µ− iω)Im − αIm+1

. (5.3.65)

Substituting b21 into the second equation in (5.3.60) gives:

d11 =
Km+1

Im+1

− 1

U

Im
Im+1

+
1

U

ςα

µ− iω
, (5.3.66)

where U ≡ Um(αR) is defined as [12, 28, 29]:

Um(αR) = αR[I2
m(αR) + I2

m+1(αR)]− 2ςµR Im(αR)Im+1(αR). (5.3.67)

Substituting d11 back into Eq. (5.3.64) gives:

b11 = − ςk

U(µ− iω)
. (5.3.68)

The constant a11 can be found by substituting a21 = −ka11 − αc11 into the (2, 1)

component of Eq. (5.3.52) for ρ = R:

a11 =
Km

Im
− 1

U

Im+1

Im
+

1

U

ςα

µ− iω
. (5.3.69)

The results in Eqs. (5.3.69), (5.3.68) and (5.3.66) can be summarised as:

∆SMIT
E (x, x′) =

∫ ∞

−∞

dω

8π3

∫ ∞

−∞
dk

∞∑
m=−∞

eiω∆τ+ik∆z

(
∆χMIT

11 ∆χMIT
12

∆χMIT
21 ∆χMIT

22

)
, (5.3.70a)

where the 2× 2 matrix element ∆χMIT
11 is given by:

∆χMIT
11 = −(µ− iω)

(
Km

Im
− 1

U
Im+1

Im
+ 1

U
ςα

µ−iω
− 1

U
ςk

µ−iω

− 1
U

ςk
µ−iω

Km+1

Im+1
− 1

U
Im

Im+1
+ 1

U
ςα

µ−iω

)
◦ Ej.

(5.3.70b)

The 2× 2 matrix ∆χMIT
12 can be found from Eq. (5.3.55a):

∆χMIT
12 =

 k
(

Km

Im
− 1

U
Im+1

Im

)
−α
(

Km

Im
− 1

U
Im+1

Im

)
− ς(µ+iω)

U

α
(

Km+1

Im+1
− 1

U
Im

Im+1

)
+ ς(µ+iω)

U
−k
(

Km+1

Im+1
− 1

U
Im

Im+1

)  ◦ Ej.

(5.3.70c)

The matrix elements of ∆χMIT
21 can be found from Eq. (5.3.70c) using Eqs. (5.3.61),
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(5.3.59) and (5.3.63):

∆χMIT
21 =

 −k
(

Km

Im
− 1

U
Im+1

Im

)
−α
(

Km+1

Im+1
− 1

U
Im

Im+1

)
− ς(µ+iω)

U

α
(

Km

Im
− 1

U
Im+1

Im

)
+ ς(µ+iω)

U
k
(

Km+1

Im+1
− 1

U
Im

Im+1

)  ◦ Ej.

(5.3.70d)

Finally, the components of ∆χMIT
22 can be found by inverting Eq. (5.3.55a):

∆χMIT
22 = (µ+ iω)

(
−Km

Im
+ 1

U
Im+1

Im
− 1

U
ςα

µ+iω
1
U

ςk
µ+iω

1
U

ςk
µ+iω

−Km+1

Im+1
+ 1

U
Im

Im+1
− 1

U
ςα

µ+iω

)
◦ Ej.

(5.3.70e)

Casimir expectation values

The Casimir-induced fermion condensate can be calculated by taking the trace of

Eq. (5.3.53):

〈ψψ〉MIT

Cas = − 1

8π3

∞∑
m=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dk

{
ας

U

[
I2
m(αρ) + I2

m+1(αρ)
]

− µ
[(
−Km

Im
+

1

U

Im+1

Im

)
I2
m(αρ) +

(
−Km+1

Im+1

+
1

U

Im
Im+1

)
I2
m+1(αρ)

]}
, (5.3.71)

where the argument of the modified Bessel functions is αR unless explicitly stated

otherwise. The above expression can be simplified by performing the θ integral

after a change to the polar coordinates defined in Eq. (5.1.24). Afterwards, the terms

involving I2
m(αρ) and I2

m+1(αρ) can be symmetrised to only contain the combinations

I+
m(αρ) and I−m(αρ), defined in Eq. (5.2.38), as follows:

〈ψψ〉MIT

Cas = − 1

2π2R3

∞∑
m=−∞

∫ ∞

µR

dx

Um(x)

[
xµRWm(x) I−m(xρ) + ς(x2 − µ2R2) I+

m(xρ)
]
,

(5.3.72)

where x = αR and Wm(x) is defined as [12, 28, 29]:

Wm(x) = x [Km(x)Im(x)−Km+1(x)Im+1(x)]

− ςµR [Km(x)Im+1(x)−Km+1(x)Im(x)] . (5.3.73)

The Casimir induced expectation value of the SET can be calculated using
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Eq. (2.2.62), grouping terms as for the fermion condensate:

〈T τ̂
τ̂ 〉 = − 1

2π2R4

∞∑
m=0

∫ ∞

µR

dx

Um(x)
(x2 − µ2R2)

[
−ςµR I+

m(xρ) + xWm(x) I−m(xρ)
]

〈T ρ̂
ρ̂ 〉 =

1

π2R4

∞∑
m=0

∫ ∞

µR

x3 dx

Um(x)

[
I−m(xρ)−

m+ 1
2

xρ
I×m(xρ)

]
Wm(x)

〈T ϕ̂
ϕ̂ 〉 =

1

π2R4

∞∑
m=0

∫ ∞

µR

x3 dx

Um(x)

m+ 1
2

xρ
I×m(xρ)Wm(x), (5.3.74)

and 〈T ẑ
ẑ 〉 = 〈T τ̂

τ̂ 〉.

By analogy to Eqs. (5.2.55) for the spectral case, it is convenient to introduce

the following notation:

IM,+
`n =

1

2π2R4

∞∑
m=−∞

∫ ∞

µR

dx

Um(x)
x`(m+ 1

2
)nI+

m(xρ),

IM,−
`n =

1

2π2R4

∞∑
m=−∞

∫ ∞

µR

dx

Um(x)
x`(m+ 1

2
)nWm(x)I−m(xρ),

IM,×
`n =

1

2π2R4

∞∑
m=−∞

∫ ∞

µR

dx

Um(x)
x`(m+ 1

2
)nWm(x)I×m(xρ), (5.3.75)

where the notation I∗m(z) was introduced in Eqs. (5.2.38). The Casimir expectation

values of the FC and SET can be written with respect to the above functions as

follows:

〈ψψ〉MIT

Cas =− µR2IM,−
10 − ςR(IM,+

20 − µ2R2IM,+
00 ), (5.3.76a)

〈T τ̂
τ̂ 〉

MIT

Cas =
1

2
ςµR(IM,+

20 − µ2R2IM,+
00 )− 1

2
(IM,−

30 − µ2R2IM,−
10 ), (5.3.76b)

〈T ρ̂
ρ̂ 〉

MIT

Cas
=IM,−

30 − ρ−1IM,×
21 , (5.3.76c)

〈T ϕ̂
ϕ̂ 〉

MIT

Cas
=ρ−1IM,×

21 (5.3.76d)

and 〈T ẑ
ẑ 〉

MIT

Cas = 〈T τ̂
τ̂ 〉

MIT

Cas . As discussed in subsection 5.2.3 for the case of spectral

boundary conditions, the Casimir-induced expectation values diverge as the bound-

ary is approached. To perform an analysis of this divergence, the sums over m in

Eqs. (5.3.75) are replaced with integrals through the application of the generalised

Abel-Plana formula (5.2.45).
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5.3.4 Casimir divergence near the boundary

The generalised Abel-Plana formula (5.2.45) can be used to convert the sums over

m in Eqs. (5.3.75) to integrals over ν, as follows:

IM,+

`n =
1

π2R4

∫ ∞

0

dν

∫ ∞

µR

dx

Uν− 1
2
(x)

x`νnI+
ν− 1

2

(xρ),

IM,−
`n =

1

π2R4

∫ ∞

0

dν

∫ ∞

µR

dx

Uν− 1
2
(x)

x`νnWν− 1
2
(x)I−

ν− 1
2

(xρ),

IM,×
`n =

1

π2R4

∫ ∞

0

dν

∫ ∞

µR

dx

Uν− 1
2
(x)

x`νnWν− 1
2
(x)I×

ν− 1
2

(xρ). (5.3.77)

The above expressions are more convenient to work with for the purpose of analysing

the asymptotic behaviour of Eqs. (5.3.75) near the boundary (as ρ → 1). The

following paragraph is dedicated to analysing the asymptotic behaviour of the errors

introduced by approximating the sum over m with the integral over ν.

Generalised Abel-Plana formula remainder

To analyse the asymptotic behaviour of the difference between the functions IM,∗
`n

introduced in Eqs. (5.3.77) and the functions IM,∗
`n defined in Eqs. (5.3.75), it is

convenient to introduce the following notation:

IM,∗
`n =

∞∑
m=0

fM,∗
`n (m+ 1

2
),

δM,∗
`n (ρ) =IM,∗

`n − I
M,∗
`n . (5.3.78)

Since fM,∗
`n (ν) does not have residues in the region Re(ν) > 0, Eq. (5.2.45) can be

used to put δM,∗
`n in the following form:

δM,∗
`n (ρ) = 2

∫ ∞

0

dt

e2πt + 1
Im[fM,∗

`n (it)]. (5.3.79)

To investigate the asymptotic behaviour of δM,∗
`n (ρ) as ρ → 1, the asymptotic be-

haviour of the integrand in the integrals with respect to x in Eqs. (5.3.75) must be

investigated. Since the (e2πt + 1)−1 factor ensures the suppression of Im[fM,∗
`n (it)]

at large t, the formulae (A.2.4d) and (A.2.4e) for the asymptotic expansion of the

modified Bessel functions for large arguments can be used.

The factor Uν− 1
2
(x) in the denominators of fM,∗

`n (ν), defined in Eq. (5.3.67), and
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its inverse [Uν− 1
2
(x)]−1, have the following asymptotic behaviours:

Uν− 1
2
(x) =

1

π
e2x
[
1− ν2 + ςµR

x
+
ν2(ν2 + 2µR)

2x2
+O(x−3)

]
, (5.3.80a)

Uν− 1
2
(x) =πe−2x

[
1 +

ν2 + ςµR

x
+
ν4 + 2ςµR ν2 + 2µ2R2

2x2
+O(x−3

]
, (5.3.80b)

where Eq. (5.2.48c) was used for I×
ν− 1

2

(x) and I+
ν− 1

2

(x) can be shown to have the

following asymptotic behaviour:

I+
ν− 1

2

(x) =
e2x

πx

[
1− ν2

x
+

ν4

2x2
+O(x−3)

]
. (5.3.81)

Hence, the asymptotic expansion of the integrand in the integral with respect to x

in fM,+
`n (ν) is:

1

Uν− 1
2
(x)

x`νn I+
ν− 1

2

(xρ) =
1

ρ
x`−1νne−2xε

×
[
1− ν2(1− ρ)

xρ
+
ςµR

x
+
ν4ε2

2ρx2
− ν2ςµR(1− ρ)

ρx2
+
µ2R2

x2
+O(x−3)

]
. (5.3.82)

For the analysis of the Casimir divergence for the FC and SET, only the cases

(`, n) ∈ {(0, 0), (2, 0)} are required. It can be seen that the terms in the bracket

contain only even powers of ν, which stay real under the transition ν → it. Hence,

the following asymptotic behaviour can be obtained:

Im

[
1

Uit− 1
2
(x)

x` I+
it− 1

2

(xρ)

]
=

1

ρ
e−2xεO(x`−3). (5.3.83)

Since ` is either 0 or 2, it can be seen that δM,+
00 (ρ) and δM,+

20 (ρ) do not diverge as

ρ→ 1.

To analyse δM,−
`n (ρ) and δM,×

`n (ρ), the asymptotic behaviour of Wν− 1
2
(x), defined

in Eq. (5.3.73), is required. Using the intermediate expansions:

Kν− 1
2
(x)Iν− 1

2
(x)−Kν+ 1

2
(x)Iν+ 1

2
(x) =

ν

2x3

[
1 +

ν2(ν2 − 1)(ν2 − 13)

24x2
+O(x−4)

]
,

Kν− 1
2
(x)Iν+ 1

2
(x)−Kν+ 1

2
(x)Iν− 1

2
(x) =− ν

x2

[
1− ν2 − 1

2x2
+O(x−4)

]
, (5.3.84)

the following expression can be written for Wν− 1
2
(x):

Wν− 1
2
(x) =

ν

2x2

[
1 + 2ςµR +

(ν2 − 1)(ν4 − 13ν2 − 24ςµR)

24x2
+O(x−4)

]
. (5.3.85)
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Hence, the ratio Wν− 1
2
(x)/Uν− 1

2
(x) can be written as:

Wν− 1
2
(x)

Uν− 1
2
(x)

=
πν

2x2
e−2x

{
1 + 2ςµR +

(ν2 + ςµR)(1 + 2ςµR)

x

+
1

x2

[
ν2(ν4 − 2ν2 + 13)

24
+ (ν4 + 1)ςµR + (2ν2 + 1)µ2R2 + 2ςµ3R3

]
+O(x−3)

}
.

(5.3.86)

Since the asymptotic expansions (5.2.48b) (5.2.48c) for I−
ν− 1

2

(x) and I×
ν− 1

2

(x) contain

only odd and even powers of ν, respectively, the following asymptotic behaviours

can be established:

Im

[
Wit− 1

2
(x)

Uit− 1
2
(x)

x` I−
it− 1

2

(x)

]
=− t2

2ρ2 e
−2xεO(x`−7),

Im

[
Wit− 1

2
(x)

Uit− 1
2
(x)

x2(it) I×
it− 1

2

(x)

]
=− t2

2ρ
e−2xεO(x−4). (5.3.87)

Thus, the functions δM,∗
`n (ρ) are regular as ρ for all the combinations of `, n and

∗ ∈ {+,−,×} of interest. Hence, the asymptotic behaviour of the functions IM,∗
`n ,

defined in Eq. (5.3.77) coincides with that of IM,∗
`n , defined in Eq. (5.3.75).

The Casimir divergence near the boundary

The Casimir divergence occurs due to the divergence of the functions IM,∗
`n , defined

in Eqs. (5.3.75), as ρ → 1. The asymptotic behaviour of these functions can be

analysed by considering the high ν and x expansion of the integrand in the functions

IM,∗
`n , defined with respect to IM,∗

`n in Eq. (5.3.77). Equations (5.2.52b) and (5.2.52c)

can be used to obtain the following asymptotic expansions for Uν− 1
2
(x), defined in

Eq. (5.3.67), and its inverse:

Uν− 1
2
(x) =

1

π
e2r+2ν ln x

ν+r

[
1 +

cos2 θ − 12ςµR

12r

+
cos2 θ

288r2

(
1 + 35 sin2 θ + 120ςµR cos2 θ

)
+O(r−3)

]
,

1

Uν− 1
2
(x)

=πe−2r−2ν ln x
ν+r

[
1− cos2 θ − 12ςµR

12r

+
1

r2

(
µ2R2 +

ςµR

4
cos2 θ +

1

8
cos2 θ − 11

96
cos4 θ

)
+O(r−3)

]
. (5.3.88)
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Using the following asymptotic expansions:

Kν− 1
2
(x)Iν− 1

2
(x)−Kν+ 1

2
(x)Iν+ 1

2
(x) =

cos

2r2

[
1 +

12− 45 cos2 θ + 35 cos4 θ

8r2
+O(r−4)

]
,

Kν+ 1
2
(x)Iν− 1

2
(x)−Kν− 1

2
(x)Iν+ 1

2
(x) =

cot θ

r

[
1− sin2 θ(1− 5 sin2 θ)

8r2
+O(r−4)

]
,

(5.3.89)

the asymptotic expansion of Wν− 1
2
(x), defined in Eq. (5.3.73), and of the ratio

Wν− 1
2
(x)/Uν− 1

2
(x) can be found:

Wν− 1
2
(x) =

cot θ

2r

{
sin2 θ + 2ςµR+

sin2 θ

8r2

[
12− 2ςµR(1− 5 sin2 θ)− 45 cos2 θ + 35 cos4 θ

]
+O(r−4)

}
,

Wν− 1
2
(x)

Uν− 1
2
(x)

=
π cot θ

2r
e−2r−2ν ln x

ν+r (sin2 θ + 2ςµR)

[
1 +

12ςµR− cos2 θ

12r
+O(r−2)

]
.

(5.3.90)

Equations (5.2.53) can be used to obtain the following expansions:

1

Uν− 1
2
(x)

I+
ν− 1

2

(xρ) =
e−2rε

x

[
1 +

ςµR

r
+ ε− rε2 cos2 θ + . . .

]
, (5.3.91a)

Wν− 1
2
(x)

Uν− 1
2
(x)

I−
ν− 1

2

(xρ) =
cot2 θ

2r2
e−2rε(sin2 θ + 2ςµR)

[
1 +

sin2 θ + 2ςµR

2r
(5.3.91b)

(5.3.91c)

+ ε(1 + sin2 θ)− rε2 cos2 θ + . . .
]
,

Wν− 1
2
(x)

Uν− 1
2
(x)

I×
ν− 1

2

(xρ) =
cot θ

2r2
e−2rε(sin2 θ + 2ςµR)

[
1 +

2ςµR− cos2 θ

2r

+ ε sin2 θ − rε2 cos2 θ + . . .
]
. (5.3.91d)

The presence of powers of sin θ in the denominators of Eqs. (5.3.91a) and (5.3.91b)

makes IM,+

00 and IM,−
10 divergent at the lower limit of the integral with respect to

θ. However, this divergence is introduced due to the replacement of the integrand

with its expansion for large arguments and orders, thus being unphysical. It can

be seen by looking at the power of r that both IM,+

00 and IM,−
10 diverge as ε−1 and

thus, contribute subleadingly to the asymptotic behaviour of the expectation values

in Eqs. (5.3.76). The other relevant IM,∗
`n can be analysed using the same techniques
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as in subsections 5.1.4 and 5.2.3:

IM,+

20 =
1

4π2R4ε3
[
1 + 1

2
(1 + 2ςµR)ε+O(ε2)

]
,

IM,−
30 =

1

60π2R4ε3
[
1 + 5ςµR +

(
17
14

+ 9
2
ςµR + 5µ2R2

)
ε+O(ε−2)

]
,

IM,×
21 =

1

60π2R4ε3
[
1 + 5ςµR−

(
2
7

+ 3ςµR− 5µ2R2
)
ε+O(ε−2)

]
. (5.3.92)

The Casimir divergence can now be computed by substituting the above results in

Eqs. (5.3.76):

〈ψψ〉MIT

Cas ∼−
ς

4π2R3ε3
[
1 + ε

2
(1 + 2ςµR)

]
,

〈T τ̂
τ̂ 〉

MIT

Cas ∼−
1

120π2R4ε3
[
1− 10ςµR + ε

(
17
14
− 3ςµR− 10µ2R2

)]
,

〈T ρ̂
ρ̂ 〉

MIT

Cas
∼ 1

120π2R4ε2
[
1 + 5ςµR + ε

(
17
7

+ 9ςµR + 10µ2R2
)]

〈T ϕ̂
ϕ̂ 〉

MIT

Cas
∼ 1

60π2R4ε3
[
1 + 5ςµR + ε

(
5
7

+ 2ςµR + 5µ2R2
)]

(5.3.93)

and 〈T ẑ
ẑ 〉

MIT

Cas = 〈T τ̂
τ̂ 〉

MIT

Cas . It can be checked that Eqs. (5.3.93) satisfy Eq. (2.2.28).

The above expressions are accurate to first and second orders in terms of the distance

to the boundary (i.e. terms of order O(ε2) have been neglected in the brackets). In

contrast to (5.2.56), Eqs. (5.3.93) show that the Casimir divergence of a SET in

the MIT bag model is one order less than in the spectral model, agreeing with the

predictions of Deutsch and Candelas [31]. A possible explanation for this behaviour

is that the MIT boundary conditions can be formulated in a completely local fashion,

while the spectral boundary conditions require knowledge of the spectral components

obtain through a Fourier transform of the wave function, making the definition of the

SET non-local. It is also remarkable that, the divergence of the Casimir expectation

value (5.2.56) of the FC in the spectral model vanishes when µ = 0 (in the MIT

case, the leading order divergence is independent of mass) and its leading order

divergence when µ > 0 is one order of magnitude less than in the MIT case.

Numerical results

Figure 5.17 compares the asymptotic analysis (5.3.93) of the Casimir divergence

with numerical results for a cylindrical boundary for µR = 0 and µR = 2. In the

massless case, ς only influences the sign of the fermion condensate (FC), hence, the

plots do not show separate curves for ς = 1 and −1 in this case. However, there are

significant differences between the cases corresponding to the two values of ς, which

deserve separate curves.

The numerical results confirm the asymptotic results presented in Eqs. (5.3.93),

showing that in the MIT case, the Casimir divergence of the SET is one order of
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magnitude smaller than in the spectral case, presented in Eqs. (5.2.56), while the

Casimir divergence of the FC is one order of magnitude higher. Also, the mass of

the quanta affects the leading order of the divergence, while the sign of ς (i.e. either

+1 or −1) in Eq. (5.3.1), where the MIT boundary conditions are defined, affects

the sign of the Casimir expectation value of the FC even in the massless case.

The plots in the left column show the logarithm of the Casimir expectation

values as functions of the distance from the rotation axis, while the log-log plots on

the right show their logarithms as functions of the logarithm of the inverse distance

ε = 1− ρ from the boundary.

5.4 Estimates of the energy density

The key to estimating t.e.v.s for bounded systems is tackling the integral with respect

to k. After an analysis in subsection 5.4.1 of the value of the energy density on the

rotation axis and the boundary, the case when the boundary is outside the SOL

is discussed in subsection 5.4.2. The purpose of the latter section is to give some

evidence that if the SOL is inside the boundary, t.e.v.s become divergent as the SOL

is approached.

It is important to note that when the SOL is inside the boundary, both scalar

and fermion modes with EẼ < 0 start appearing, as discussed in subsections 5.1.1

(for scalars), 5.2.1 (for fermions obeying spectral boundary conditions) and 5.3.1

(for the MIT bag model). Since thermal states cannot be constructed for scalars if

the system allows such modes, only fermions are discussed in this section. Although

occasionally calculations will be presented for a general mass, the results of this

section are given only for massless fermions.

5.4.1 Boundary inside the speed of light surface

The t.e.v. of the energy density with respect to the rotating (Iyer) vacuum, given in

Eqs. (5.2.20a) and (5.3.51a) for the spectral and the MIT bag model, respectively,

is written in terms of the integral:

F± =

∫ ∞

0

dk
E sgn(E ± E0)

eβ|E±E0| + 1
, (5.4.1)

where E and E0 are given by:

E0 = Ω(m+ 1
2
), E =

√
E2

q + k2, Eq =
√
q2 + µ2. (5.4.2)

As discussed throughout this chapter, Eq > E0 for any value of m when RΩ ≤ 1. In

what follows, an approximation for Eq. (5.4.1) is derived, after which it is used to
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Figure 5.17: Casimir divergence in the MIT model for a cylindrical boundary. The plots
show numerical results (thick dashed coloured curves) for µ = 0 and µ = 2, for both ς = 1
and ς = −1. The plots show the logarithm of the FC (top line) and SET (following three
lines) with respect to the distance to the rotation axis (left) and the logarithm of the
inverse of the distance ε = 1 − ρ to the boundary (right). The asymptotic behaviour of
the Casimir divergence is matched against Eqs. (5.3.93), represented using thin dark lines.
The asymptotic forms have zeroes in the domain due to the second order corrections.



5.4. ESTIMATES OF THE ENERGY DENSITY 147

estimate the energy density on the rotation axis and on the boundary. The results

are validated numerically.

Fermi-Dirac integral for boundary inside SOL

It is convenient to change the integration variable in Eq. (5.4.1) from k to t =

(E/Eq)− 1:

F± = E2
q

∫ ∞

0

dt
(t+ 1)2√
t(t+ 2)

sgn(t+ 1± E0

Eq
)

e
βEq

˛̨̨
t+1±E0

Eq

˛̨̨
+ 1

. (5.4.3)

Since Eq > E0 when the boundary is inside the SOL, the signum function eval-

uates to 1 and the modulus disappears in the Fermi-Dirac factor, which can be

expanded in a power series, as follows:

F± = E2
q

∞∑
j=1

(−1)j+1e−jβ(Eq±E0)

∫ ∞

0

dt(t+ 1)2√
t(t+ 2)

e−jβEqt. (5.4.4)

The integral above can be expressed in terms of modified Bessel functions of the

second kind, starting from:

K0(jβEq) =

∫ ∞

0

dz e−jβEq cosh z =

∫ ∞

0

dt√
t(t+ 2)

e−jβEq(t+1). (5.4.5)

Differentiating the above twice and using the recurrence relations (A.1.21), Eq. (5.4.4)

can be written as:

F± =
E2

q

2

∞∑
j=1

(−1)j+1e∓jβE0 [K0(jβEq) +K2(jβEq)]. (5.4.6)

The energy density in the spectral and MIT models can be written using Eqs. (5.2.20a)

and (5.3.51a), respectively:

〈: Tt̂t̂ :I〉spec
β =

2

π2R2

∞∑
m=0

∞∑
`=1

J+
m(qρ)

J2
m+1(qR)

(F− + F+),

〈: Tt̂t̂ :I〉MIT
β =

1

2π2R2

∞∑
m=0

∞∑
`=1

J+
m(qρ)

J2
m+1(qR)(1 +

m+ 1
2

qR
(−1)`)

(F− + F+). (5.4.7)

For simplicity, the mass µ was set to 0, such that j ≡ jm` = Jm(qm`)/Jm+1(qm`) =

(−1)l+1.
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On the rotation axis

Setting ρ = 0 selects only the m = 0 terms in Eqs. (5.4.7):

〈: Tt̂t̂ :I〉spec
β

⌋
ρ=0

=
2

π2R4

∞∑
`=1

(qR)2

J2
1 (qR)

∞∑
j=1

(−1)j+1 cosh

(
jβΩ

2

)
[K0(jβq) +K2(jβq)],

〈: Tt̂t̂ :I〉MIT
β

⌋
ρ=0

=
1

2π2R4

∞∑
`=1

(qR)2

J2
m+1(qR)[1 + (−1)`

2qR
]

∞∑
j=1

(−1)j+1 cosh

(
jβΩ

2

)
× [K0(jβq) +K2(jβq)]. (5.4.8)

The exponentially decreasing behaviour (A.2.4e) of the MacDonald functions for

large arguments indicates that the sum over j can be safely truncated after the

first term. At sufficiently small temperatures (large β), the ` = 1 represents the

dominant contribution to the sum over `, for the same reason. Also, the modified

Bessel functions can be replaced with the asymptotic expansions (A.2.4e):

K0(z) +K2(z) ∼ e−z

√
2π

z

(
1 +

7

8z
+

57

128z2
− 195

1024z3
+ . . .

)
(5.4.9)

On the rotation axis the terms with m > 0 vanish and Eqs. (5.4.7) reduce to:

〈: Tt̂t̂ :I〉spec
β

⌋
ρ=0

=
2

π2R2

E2
q

J2
1 (qR)

cosh
βΩ

2
e−βEq

√
2π

βEq

,

〈: Tt̂t̂ :I〉MIT
β

⌋
ρ=0

=
1

2π2R2

E2
q

J2
1 (qR)(1− 1

2qR
)
cosh

βΩ

2
e−βEq

√
2π

βEq

, (5.4.10)

where only the leading order term in Eq. (5.4.9) was kept. Thus, for both the

spectral and MIT models, the t.e.v. of the energy density decreases exponentially

as β increases:

〈: Tt̂t̂ :I〉β
⌋

ρ=0
∼ 1√

β
e−

β
R

(EqR−ΩR/2). (5.4.11)

The exponent is negative since EqR > 1
2

(guaranteed by the discussion in the En-

ergy spectrum paragraph of subsection 5.3.1), while ΩR ≤ 1. This exponentially

decreasing behaviour is also confirmed in Figure 5.6. Figure 5.18 compares the

approximations in Eqs. (5.4.21) and (5.4.10) with numerical results.

For small values of β, terms with higher l make significant contributions. The

dependence of the roots for the spectral model at m = 0 (which are related to the

zeros of the Bessel function J0) on the index ` is given in Ref. [1, 60]:

qspec
0,` = π`− π

4
+O(`−1). (5.4.12)

The roots in the MIT case are located between roots of the Bessel functions and for

each root of the Bessel function, there are two roots in the MIT model, as described
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in Figure 5.8. Thus, it is expected that at large enough `, the MIT roots will obey

the law:

qMIT
0,` =

π`

2
+O(`−1). (5.4.13)

We have confirmed the absence of the constant term numerically through linear

regression by considering the first 500 roots of Eq. (5.3.11).

It is now convenient to replace the function J1(q0`R) in the denominators of

Eqs. (5.4.8) using the approximation (A.2.3a) for the Bessel functions at large values

of their argument:

J1(q0`R) ∼
√

2

πq0`R
cos

(
q0`R−

3π

4

)
→


√

2
π2(`− 1

4
)

(spectral),√
2

π2`
(MIT).

(5.4.14)

Using just the leading order term in Eq. (5.4.12) and approximating [1+(−1)`/π`]−1

by 1 for 〈: Tt̂t̂ :I〉MIT
β in Eq. (5.4.8) gives:

〈: Tt̂t̂ :I〉spec
β

⌋
ρ=0

=
π2

R4

∞∑
j=1

(−1)j+1 cosh
jβΩ

2

∞∑
`=1

`3
[
K0

(
jβπ

R
`

)
+K2

(
jβπ

R
`

)]
,

〈: Tt̂t̂ :I〉MIT
β

⌋
ρ=0

=
π2

16R4

∞∑
j=1

(−1)j+1 cosh
jβΩ

2

∞∑
`=1

`3
[
K0

(
jβπ

2R
`

)
+K2

(
jβπ

2R
`

)]
.

(5.4.15)

The sum over ` can be approximated by an integral, yielding:

〈: Tt̂t̂ :I〉β
⌋

ρ=0
=

1

π2β4

∞∑
j=1

(−1)j+1

j4
cosh

jβΩ

2

∫ ∞

0

dz z3[K0(z) +K2(z)]. (5.4.16)

It is remarkable that the above expression is obtained in both the spectral and the

MIT model. As expected, the above expression does not depend on R. The integral

over z can be performed analytically using the following property [60]:∫ ∞

0

dz zµ−1Kν(z) = 2µ−2Γ

(
µ− ν

2

)
Γ

(
µ+ ν

2

)
, (5.4.17)

after which Eq. (5.4.16) reduces to:

〈: Tt̂t̂ :I〉β
⌋

ρ=0
=

12

π2β4

∞∑
j=1

(−1)j+1

j4
cosh

jβΩ

2
. (5.4.18)

Expanding the hyperbolic function:

cosh
jβΩ

2
= 1 +

1

2

(
jβΩ

2

)2

+ . . . , (5.4.19)
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the sum over j can be performed using the following identities [37]:

∞∑
j=1

(−1)j+1

j4
=

7π4

720
, (5.4.20a)

∞∑
j=1

(−1)j+1

j2
=
π2

12
, (5.4.20b)

leading to:

〈: Tt̂t̂ :I〉β
⌋

ρ=0
∼ 7π2

60β4
+

Ω2

8β2
. (5.4.21)

which matches perfectly the expression (4.3.54c) obtained in the unbounded case.

On the boundary

On the bounding surface, Eqs. (5.4.7) reduce to:

〈: Tt̂t̂ :I〉spec
β

⌋
ρ=R

=
2

π2R2

∞∑
m=0

∞∑
`=1

(F− + F+),

〈: Tt̂t̂ :I〉MIT
β

⌋
ρ=R

=
1

π2R2

∞∑
m=0

∞∑
`=1

1

1 +
m+ 1

2

qR
(−1)`

(F− + F+). (5.4.22)

For large values of β, the dominant contribution to the energy density comes from

the m = 0 and ` = 1 term, in which case Eqs. (5.4.22) reduce to:

〈: Tt̂t̂ :I〉spec
β

⌋
ρ=R

=
q2
0,1

π2R2

√
2π

βq0,1

e−β(q0,1−Ω
2
),

〈: Tt̂t̂ :I〉MIT
β

⌋
ρ=R

=
q2
0,1

2π2R2(1− 1
2q0,1R

)

√
2π

βq0,1

e−β(q0,1−Ω
2
). (5.4.23)

The sum overm can be approximated by an integral and as a first approximation,

the sum over l can be truncated to the first contribution. The roots in the spectral

and MIT cases can be written as:

qν,1R ∼ ν + aν1/3, (5.4.24a)

where the coefficient a can be found in Refs. [1, 60] for the spectral case and it can

be determined numerically through regression for the MIT case:

aspec ' 1.856, aMIT ' 0.804. (5.4.24b)
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Hence, the energy density can be approximated as:

〈: Tt̂t̂ :I〉spec
β

⌋
ρ=R

=
1

π2R4

√
2πR

β

∫ ∞

0

dν ν
3
2 e−

βν
R

(1−ΩR)−βa
R

ν
1
3 ,

〈: Tt̂t̂ :I〉MIT
β

⌋
ρ=R

=
1

2aπ2R4

√
2πR

β

∫ ∞

0

dν ν
13
6 e−

βν
R

(1−ΩR)−βa
R

ν
1
3 . (5.4.25)

If the boundary is on the SOL, the integrals with respect to ν can be written in

terms of the Gamma function:

〈: Tt̂t̂ :I〉spec
β

⌋
ρ=R

=
27
√

2πaΓ(13
2
)

π2R4

(
R

aβ

)8

,

〈: Tt̂t̂ :I〉MIT
β

⌋
ρ=R

=
27Γ(17

2
)

πR4
√

2πa

(
R

aβ

)10

. (5.4.26)

If the boundary is not on the SOL, the ν1/3 term in the exponent can be neglected.

Using the relation [60]: ∫ ∞

0

dz cosh(az)K0(z) =
π

2(1− a2)
1
2

, (5.4.27)

the following expression can be derived:∫ ∞

0

dz z2 cosh(ΩRz)[K0(z) +K2(z)] =
π(2 + Ω2R2)

(1− Ω2R2)
5
2

, (5.4.28)

with which the spectral case can be evaluated analytically:

〈: Tt̂t̂ :I〉spec
β

⌋
ρ=R

=
2

π2Rβ3

∞∑
j=1

(−1)j+1

j3

∫ ∞

0

dz z2 cosh(zΩR)[K0(z) +K2(z)]

=
3ζ(3)

2πRβ3

2 + Ω2R2

(1− Ω2R2)
5
2

, (5.4.29)

where the zeta function is defined as:

ζ(z) =
∞∑

s=1

1

sz
, (5.4.30)

and it evaluates at z = 3 to ζ(3) ' 1.20206. For the MIT case, the ν
1
3 term in the

exponent in Eq. (5.4.25) can be neglected, giving:

〈: Tt̂t̂ :I〉MIT
β

⌋
ρ=R

=
Γ(19

6
)
√

2π

2aπ3R4

(
R

β

) 11
3 1

(1− ΩR)
19
6

. (5.4.31)

In all the cases considered above, the t.e.v. of the energy density is inversely propor-

tional to a power of β. The approximations for the energy density on the rotation
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Figure 5.18: Comparison of numerical results for the energy density on the rotation
axis in the spectral and MIT bag models, using blue and purple coloured dots,
respectively. For low values of β, it can be seen that the numerical results are
superposed with the value of the energy density in the unbounded case (represented
using green lines). The numerical results for large β validate the approximations
given in Eqs. (5.4.10).
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Figure 5.19: Comparison of numerical results for the energy density on the boundary
in the spectral and MIT bag models, using blue and purple coloured dots, respec-
tively. The boundary is placed at RΩ = 0.5. While the analytic approximations
(5.4.29) and (5.4.31) for small β (green lines) seem to agree only qualitatively with
the numerical results, the large β regime is well captured by Eqs.(5.4.23), as shown
by the red lines.

axis at small (5.4.21) and large (5.4.10) values of β are validated numerically in Fig-

ure 5.18. The expressions in Eqs. (5.4.26) for the energy density on the boundary

when the boundary is on the SOL are compared to numerical results in Figure 5.19,

while Figure 5.20 validates Eqs. (5.4.29) and (5.4.31), giving the energy density on

the boundary when the boundary is inside the SOL.

5.4.2 Boundary outside the speed of light surface

The challenging part of this subsection is estimating the integral over k, defined in

Eq. (5.4.3). The next paragraph is dedicated to obtaining an approximation for this

integral.
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Figure 5.20: Comparison of numerical results for the energy density on the boundary
when the boundary is on the speed of light surface (ΩR = 1) in the spectral and MIT
bag models, using blue and purple coloured dots, respectively. The analytic formulae
(5.4.26), shown using green lines, are in excellent agreement with numerical results
at small values of β (in the MIT case, the agreement stays good up to βΩ ∼ 5).
It can be seen that the approximations (5.4.23), plotted in red, capture the large β
behaviour of the energy density.

Fermi-Dirac integral for boundary inside SOL

When q < E0, the integral F+ defined in Eq. (5.4.3) can be tackled using the method

described in subsection 5.4.1:

F+ =
E2

q

2

∞∑
j=1

(−1)j+1e−jβE0 [K0(jβEq) +K2(jβEq)]. (5.4.32)

For the F− term, it is convenient to split the integral over k into two parts:

F− = F∞
− + F0

−, (5.4.33a)

where

F∞
− =

∫ ∞

0

dE

1 + eβE

(E + E0)
2√

(E + E0)2 − E2
q

, (5.4.33b)

F0
− = −

∫ E0−Eq

0

dE

1 + eβ(E0−Eq−E)

(E + Eq)
2√

E(E + 2Eq)
. (5.4.33c)

An approximation for F∞
− above can be derived by considering its values at the

extreme cases Eq = 0 and Eq = E0. For the case Eq = 0, Eq. (5.4.33b) reduces to:

F∞
− (q = 0) =

∫ ∞

0

dE

1 + eβE
(E + E0) =

π2

12β2
+
E0

β
ln 2. (5.4.34)

When Eq = E0, a closed form cannot be obtained, but the method outlined in
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subsection 5.4.2 can be used:

F∞
− (Eq = E0) =

∫ ∞

0

dE

1 + eβE

(E + E0)
2√

E(E + 2E0)

=
E2

0

2

∞∑
j=1

(−1)j+1ejβE0 [K2(jβE0) +K0(jβE0)]. (5.4.35)

After replacing the Bessel functions by the asymptotic series (5.4.9), the sum over

j can be performed:

F∞
− (q = E0) = E2

0

√
π

2βE0

[
ζ̃
(

1
2

)
+

7

8βE0

ζ̃(3
2
) +

57

128(βE0)2
ζ̃(5

2
) + . . .

]
, (5.4.36)

where ζ̃(z) is defined as

ζ̃(z) ≡
∞∑

j=1

(−1)j+1

jz
=

ln 2 z = 1,

(1− 21−z) ζ(z) otherwise.
(5.4.37)

in terms of the ζ function:

ζ(z) =
∞∑

n=1

n−z. (5.4.38)

The values of ζ̃(z) in the first few terms in the series (5.4.36) are:

ζ̃(1
2
) = 0.604899, ζ̃(3

2
) = 0.765147, ζ̃(5

2
) = 0.8672, (5.4.39)

while the rest of the terms are between 0.9 and 1.

The derivative of F∞
− with respect to Eq,

∂EqF∞
− (Eq) = Eq

∫ ∞

0

dE

1 + eβE

(E + E0)
2

[(E + E0)2 − E2
q ]

3
2

, (5.4.40)

is positive for all Eq between 0 and E0, showing that its value increases monotonically

in this domain. To get an idea on what the behaviour of the integral is between the

points Eq = 0 and Eq = E0, the Fermi-Dirac factor (eβE +1)−1 can be expanded as:

F∞
− ∼

∞∑
j=1

(−1)j+1

(jβ)2

∫ ∞

0

dx e−x (x+ jβE0)
2√

(x+ jβE0)2 − (jβEq)2
. (5.4.41)

The square root in the denominator can be expanded in powers of x, after which

the integral over x can be performed, giving:

F∞
− ∼

E2
0

βk0

ln 2 +
π2

12β2

[
2
E0

k0

−
(
E0

k0

)3
]

+
3ζ(3)

4β3k0

[
2− 5

(
E0

k0

)2

+ 3

(
E0

k0

)4
]

+ . . . ,

(5.4.42)
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Figure 5.21: The numerical result for the F∞− integral (solid dark line) is compared with
the approximation (5.4.44) and with the asymptotic limits of the latter in the cases E→0
and E→E0 (the high E0 expansion).

where

k0 =
√
E2

0 − E2
q . (5.4.43)

The coefficients of powers of β lower than −2 should vanish when q = 0, as is the

case for the coefficient of β−3 above. The expansion (5.4.42) is not valid when Eq

approaches E0 (and k0 → 0).

Numerical plots indicate that F∞
− (Eq) can be written as follows:

F∞
− (Eq) =

F∞
− (0)F∞

− (E0)

F∞
− (0) + k0

E0
[F∞

− (E0)−F∞
− (0)]

, (5.4.44)

where F∞
− (0) and F∞

− (E0) are given in Eqs. (5.4.34) and (5.4.36), respectively.

The expression (5.4.44) for F∞
− (q) has the following asymptotic limits:

F∞
− (Eq) ∼F∞

− (0)

{
1 +

E2
q

2E2
0

(
1−

F∞
− (0)

F∞
− (E0)

)
+O(q4)

}
, (5.4.45a)

F∞
− (Eq) ∼F∞

− (E0)

{
1 +

k0

E0

(
1−
F∞
− (E0)

F∞
− (0)

)
+O(k2

0)

}
. (5.4.45b)

Figure 5.21 shows the validity of the above approximations.

As for F0
− in (5.4.33), the value when Eq = E0 is trivially equal to 0. An

expression valid for small Eq can be obtained by expanding [E(E + 2Eq)]
− 1

2 about

Eq = 0. The problem with this expansion is that higher order terms come with

increasing inverse powers of E, which diverge at the lower end of the integral, limiting

the number of terms that can be produced by this method:

F0
− = −

∫ E0−Eq

0

dE

1 + eβ(E0−Eq−E)
(E + Eq + . . . ). (5.4.46)

As before, the Fermi-Dirac factor can be expanded in a power series. The following
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identities shall be used:

∞∑
j=1

(−1)j+1

j
e−jβ(E0−Eq) = ln(1 + e−β(E0−Eq)), (5.4.47)

∞∑
j=1

(−1)j+1

j2
e−jβ(E0−Eq) = −Li2(−e−β(E0−Eq)), (5.4.48)

where Li2(z) is the dilogarithm [60], a particular case of the polylogarithm function,

which is defined as:

Lis(z) =
∞∑

k=1

zk

ks
. (5.4.49)

The best expansion around Eq = 0 obtainable using the method outlined above is:

F0
− ∼ −

[
E0

β
ln 2− Eq

β
ln(1 + e−β(E0−Eq))

]
+

1

β2

[
π2

12
+ Li2(−e−β(E0−Eq))

]
+ . . . ,

(5.4.50)

which reduces when Eq = 0 to:

F0
−(Eq = 0) = −E0

β
ln 2 +

π2

12β2
+

1

β2
Li2(−e−βE0). (5.4.51)

Another way to obtain an approximation for F0
− is to expand the Fermi-Dirac

factor in a power series about x ≡ E
E0

= 0:

F0
− = −E2

0

∞∑
n=0

(−βE0)
n

n!

[
In+2 +

2Eq

E0

In+1 +

(
Eq

E0

)2

In

]
× dn

dzn

1

1 + ez

⌋
z=β(E0−Eq)

,

(5.4.52)

where In is defined as follows:

In =

∫ 1−Eq
E0

0

xndx√
x(x+ 2Eq

E0
)
. (5.4.53)

The integrals In can be solved exactly by starting from the recurrence relation:

In+1 =
1

n+ 1

k0

E0

(
1− Eq

E0

)n

− 2n+ 1

n+ 1

Eq

E0

In, (5.4.54)

which follows by noting that:

x√
x
(
x+ 2Eq

E0

) =
d

dx

√
x(x+

2Eq

E0

)− Eq

E0

1√
x(x+ 2Eq

E0
)
, (5.4.55)
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To start the recurrence, I0 can be computed using:

2
d

dx
ln

(
√
x+

√
x+

2Eq

E0

)
=

1√
x(x+ 2Eq

E0
)
. (5.4.56)

The result is:

I0 = ln
E0 + k0

Eq

. (5.4.57)

Solving Eq. (5.4.54) gives the following expression for In:

In =
Γ(n+ 1

2
)

Γ(1
2
)n!

{
ln
E0 + k0

Eq

+
k0

E0

n−1∑
k=0

k!Γ(1
2
)

Γ(k + 3
2
)

(
1− Eq

E0

)k (
−2Eq

E0

)n−k−1
}
.

(5.4.58)

Using Eq. (5.4.54), the combination in Eq. (5.4.52) can be written as:

In+2 +
2Eq

E0

In+1 +

(
Eq

E0

)2

In =
k0

E0

(
1− Eq

E0

)n [
1 + n

(
1− Eq

E0

)]
(n+ 1)(n+ 2)

+
n2 + n+ 1

(n+ 1)(n+ 2)

(
Eq

E0

)2

In. (5.4.59)

Thus, F0
− reduces to:

F0
− = −E2

0

∞∑
n=0

(−βE0)
n

(n+ 2)!

dn

dzn

1

1 + ez

⌋
z=β(E0−Eq)

×

{
k0

E0

(
1− Eq

E0

)n [
1 + n

(
1− Eq

E0

)]
+

Γ(n+ 1
2
)(n2 + n+ 1)

n!Γ(1
2
)

(
Eq

E0

)2

×

[(
−2Eq

E0

)n

ln
E0 + k0

Eq

+
k0

E0

n−1∑
k=0

k!Γ(1
2
)

Γ(k + 3
2
)

(
1− Eq

E0

)k (
−2Eq

E0

)n−k−1
]}

.

(5.4.60)

The sum over n can be performed for the first term in Eq. (5.4.60) by expanding

the Fermi-Dirac factor in a power series:

− k0E0

∞∑
n=0

[−β(E0 − Eq)]
n

(n+ 2)!

[
1 + n

(
1− Eq

E0

)]
dn

dzn

1

1 + ez

⌋
z=β(E0−Eq)

= −k0E0

∞∑
j=1

(−1)j+1e−jβ(E0−Eq)

∞∑
n=0

[jβ(E0 − Eq)]
n

(n+ 2)!

[
1 + n

(
1− Eq

E0

)]
. (5.4.61)
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The sum over n now looks like the Taylor series expansion of ejβ(E0−Eq):

∞∑
n=0

[jβ(E0 − Eq)]
n

(n+ 2)!

[
1 + n

(
1− Eq

E0

)]
=

2Eq

E0
− 1

[jβ(E0 − Eq)]2
[
ejβ(E0−Eq) − 1

]
+

1

jβE0

[
ejβ(E0−Eq) − Eq

E0 − Eq

]
. (5.4.62)

Using the definition of the dilogarithm function (5.4.49), the sum over j yields:

− k0E0

∞∑
n=0

[−β(E0 − Eq)]
n

(n+ 2)!

[
1 + n

(
1− Eq

E0

)]
dn

dzn

1

1 + ez

⌋
z=β(E0−Eq)

= −k0(2Eq − E0)

β2(E0 − Eq)2

[
π2

12
+ Li2(−e−β(E0−Eq))

]
−k0

β

{
ln 2− Eq

E0 − Eq

ln[1 + e−β(E0−Eq)]

}
.

(5.4.63)

The limit Eq = 0 agrees with Eq. (5.4.51).

The best approximation that we could find can be obtained by combining the

result (5.4.63) with the first three terms in the sum over n in Eq. (5.4.60):

F0
− = −k0(2q − E0)

β2(E0 − q)2

[
π2

12
+ Li2(−e−β(E0−q))

]
− k0

β

{
ln 2− q

E0 − q
ln[1 + e−β(E0−q)]

}
− q2

2(1 + eβ(E0−q))

{
ln

(E0 + k0)

q
− βq

1 + e−β(E0−q)

(
ln
E0 + k0

q
− k0

q

)
+

7(βq)2

16

tanh β(E0−q)
2

1 + e−β(E0−q)

[
ln
E0 + k0

q
− k0

q

(
1− E0 − q

3q

)]
+ . . .

}
. (5.4.64)

As can be seen in Figure 5.22, this approximation captures the essential features

of the integral both at small q and at small ε ≡ E0 − q, and has the following

asymptotic limits:

F0
−(q) ∼ π2

12β2
− E0 ln 2

β
− π2q2

8β2E2
0

− q2 ln 2

2βE0

+O(q4), (5.4.65a)

F0
−(q) ∼

√
2E3

0ε

{
1

β2ε2

[
π2

12
− βε ln(1 + e−βε) + Li2(−e−βε)

]
+

1 + eβε
[
1 + 1

3
βε+ 7

120
β2ε2 tanh βε

2

]
2(1 + eβε)2

+
1

16β2E0ε

[
−3π2 + 16βε ln 2 + 20βε ln(1 + e−βε)− 36Li2(−e−βε)

]
−

ε
E0

960(1 + eβε)

[
760 + eβε(760 + 264βε+ 47β2ε2 tanh

βε

2
)

]
+O(E−2

0 )

}
(5.4.65b)
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Figure 5.22: (a) The numerical result for −F0
− (solid dark line, taken with a negative

sign such that the plot is over positive values) is compared against the following orders of
the approximation (5.4.60): the no n curve represents the k0 term given by Eq. (5.4.63),
the n = 0, 1, 2, 3 represent the k0 term with terms from the sum over n added up to the
inscribed n and finally, the low q and low E0 − q asymptotic limits of the approximation
(5.4.64). (b) The numerical result for F− = F∞− + F0

− compared to the approximation
and asymptotic forms at small q and large E0.

A number of distinctive features can be read from Figure 5.22. The graph of

F− can be roughly divided into three parts. In the first part, where Eq

E0
is small, F−

has a roughly constant value, which we can estimate by combining the asymptotic

expressions for small Eq from Eqs. (5.4.45) and (5.4.65):

F− ∼
π2

6β2
+

q2

βE0

ln 2 + . . . (5.4.66)

The value of F− for q � E0 can be written as a constant temperature-dependent

term plus corrections in inverse powers of E0.

The middle region corresponds to F− < 0. Even though the approximations

obtained in this chapter do not capture the width of this region properly, they can

still be used to estimate the value of F− at the peak and its location. For this

purpose, let us introduce the new variable x = β(E0 − q). We can then construct

the function f(x) as follows:

F− ∼ E2
0

√
2

βE0

f(x), (5.4.67a)

where

f(x) =
ln 2ζ̃(1

2
)
√
π

2(ln 2 + ζ̃(1
2
)
√
πx)
− π2x−

3
2

12
+ x−

1
2 ln(1 + e−x)− x−

3
2 Li2(−e−x)

− x
1
2

2(1 + ex)
−
x

3
2 (1 + 7

40
x tanh x

2
)

6(1 + ex)(1 + e−x)
. (5.4.67b)

The expression for f(x) follows from the first order terms in the expansions in inverse

powers of E0 of F∞
− (5.4.45) and F0

− (5.4.65). The interval we are interested in is
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Figure 5.23: Log-log plot of the numeric result for the F− integral (solid dark line)
evaluated at the point where the asymptotic analysis indicates the minimum value would
be compared with (5.4.71) as functions of (a) β (with E0 = 100.5 fixed); β ranges from
0.2 to 64; and of (b) E0 (with β = 0.2 fixed), ranging from E0 = 100.5 to E0 = 10000.5.

between the zeros of f(x), which we can compute numerically:

xleft = 4.4365, xright = 0.3545. (5.4.68)

The peak is located inside this interval, where the derivative of f(x) with respect to

x vanishes. The derivative of f(x) is given by:

f ′(x) =− ln 2

4x
1
2

[
ζ̃(1

2
)
√
π

ln 2 + ζ̃(1
2
)
√
πx

]2

+
π2x−

5
2

8
− 3x−

3
2

2
ln(1 + e−x) +

3x−
5
2

2
Li(−e−x)

− 5x−
1
2

4(1 + ex)
+

x
1
2

16 cosh2 x
2

(
1 +

3

8
x tanh

x

2
− 7x2

120

1− 2 sinh2 x
2

cosh2 x
2

)
. (5.4.69)

It is remarkable that, in the first order approximation, the position of the extremum

and of the margins of the interval do not depend on any of the parameters E0 and

β only through x. The zero of f ′(x) can be solved using numerical methods:

xpeak ' 1.46338, f(xpeak) ' −0.14783. (5.4.70)

Thus, the value of F− at its minimum is:

F−(xpeak) ' −0.14783E2
0

√
2

βE0

. (5.4.71)

Although the above approximation is about 15% off (mainly due to the inaccuracy

of the approximations obtained for F∞
− and F0

−), the order of magnitude and the

dependence on E0 and β seem to be correctly captured, as illustrated in Figure 5.23.

Finally, there is a narrow strip in the domain 0 ≤ x < xright = 0.3545, where F∞
−

dominates over F0
−. Here, F0

− goes to 0 as x
1
2 , while F∞

− increases as (1 + αx
1
2 )−1,
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where α is a constant. The value of F− at x = 0 is:

F−(x = 0) ' 0.53608E2
0

√
2

βE0

. (5.4.72)

A quantitative measure of the overall significance of the middle part relative

to the third would be a numerical integration of f(x) multiplied by powers of x.

Defining

In = I left
n + Iright

n , (5.4.73)

where

I left
n =

∫ xleft

xright

dx f(x)xn, Iright
n =

∫ xright

0

dx f(x)xn, (5.4.74)

the following values can be obtained through numerical integration:

I left
0 =− 0.344726, I left

1 =− 0.675283, I left
2 =− 1.58059,

Iright
0 =0.0550712, Iright

1 =0.00596215, Iright
2 =0.00106664,

I0 =− 0.289655, I1 =− 0.669321, I2 =− 1.57952. (5.4.75)

The results of the numerical integrations are clearly smaller in absolute value for

the third region than for the second, giving a bigger weight factor to the terms in

the sum over ` in Eqs. (5.2.20a) and (5.3.51a) for which the corresponding discrete

momentum qm` is located inside the second region.

On the boundary

According to Eqs. (5.4.24), qm` > qm1 = 1
R
(m + am

1
3 + . . . ), which implies that at

large enough m, there are a number of values for ` such that Eq − E0 < 0, where

Eq =
√
µ2 + q2, E0 = Ω(m+ 1

2
). (5.4.76)

For simplicity, the discussion in this paragraph will be restricted to massless fermions,

such that Eq = q.

Since excluding the terms for which q < E0 = Ω(m + 1
2
) reduces the discussion

to the case when the SOL is inside the boundary, when the energy density is finite

everywhere inside the boundary, it follows that any divergent behaviour would be

introduced by modes for which q < Ω(m + 1
2
). In this regime, F− dominates espe-

cially when x = β(E0 − q) is between x = xleft = 4.4365 and x = 0 [see Figure 5.23

and Eq. (5.4.68)].

According to Figure 4.2, increasingly higher values of m make significant con-

tributions to the energy density as ρΩ → 1. Hence, the asymptotic behaviour of

the energy density in the spectral (5.2.20a) and MIT bag (5.3.51a) models can be

investigated by considering m→∞.
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Let us first look at the energy density on the boundary, given in Eqs. (5.4.22).

As implied by Eq. (5.4.6), F+ ∼ e−(E0+q) and stays finite for all values of RΩ. The

sum over ` can be approximated by an integral running over x between 0 and xleft,

where F− is dominant. In this domain, F− can be replaced using Eq. (5.4.67) and

Eq. (5.4.75) can be used for the integral over x, yielding:

〈: Tt̂t̂ :I〉β
⌋

ρ=R
∼ Ω

3
2 I0

∞∑
m=0

(m+ 1
2
)

3
2 , (5.4.77)

for both the spectral and the MIT bag models. The sum over m diverges as m
3
2 ,

therefore, the energy density is infinite on the boundary if the boundary is outside

the SOL.

On the SOL

For a point inside, but close to the SOL, q can be approximated such that:

q = Ω(m+ 1
2
). (5.4.78)

In this case, the integral F∞
− is given by Eq. (5.4.36), while F0

− = 0. Let the small

parameter be ε = 1− ρ2Ω2, as defined in Eq. (4.1.3). In this case, qρ < m+ 1
2
, but

because the boundary is outside the SOL, qR > m+ 1
2
.

If the boundary is sufficiently far from the SOL, the term (m + 1
2
)/qR in the

expression for 〈: Tt̂t̂ :〉MIT
β in Eq. (5.4.7) can be neglected, in which case the spectral

and MIT models stand on the same footing. Using Eqs. (A.2.8) to approximate the

Bessel functions in Eqs. (5.4.7) gives:

J2
m(qρ) + J2

m+1(qρ)

J2
m(qR)

∼
√

Ω2R2 − 1

4ε
exp

[
2(m+ 1

2
)

(√
ε+ ln

√
1− ε

1 +
√
ε

)]
. (5.4.79)

Hence, 〈: Tt̂t̂ :〉MIT
β can be approximated close to the SOL as:

〈: Tt̂t̂ :〉β =
Ω

3
2

4π2R2

√
2(R2Ω2 − 1)

βε
ζ̃(1

2
)

∫ ∞

0

dν ν
3
2 exp

[
−ν
(

ln
1 +
√
ε

1−
√
ε
− 2
√
ε

)]
,

(5.4.80)

where the sum over m was approximated by an integral, which can be solved in

terms of Gamma functions:

〈: Tt̂t̂ :〉β =
Ω

3
2

4π2R2

√
2(R2Ω2 − 1)

βε

ζ̃(1
2
)Γ(5

2
)[

ln 1+
√

ε
1−

√
ε
− 2
√
ε
] 5

2

. (5.4.81)
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Thus, 〈: Tt̂t̂ :〉β appears to diverge as the SOL is approached as ε−
17
4 :

〈: Tt̂t̂ :〉β =
9Ω2ζ̃(1

2
)Γ(5

2
)

16π2R2ε
17
4

√
3(Ω2R2)− 1

βΩ
. (5.4.82)

Although the plethora of approximations performed in this analysis are more than

likely to have influenced the result, it is nevertheless compelling evidence confirming

that if the bounding surface is outside the SOL, the t.e.v. of the energy density

no longer converges on the SOL. The order 17
4

of the divergence is very close to

4, which is the leading order of the divergence found for the t.e.v. (4.3.54c) of the

energy density with respect to the rotating vacuum in the unbounded case.

5.4.3 Summary

Enclosing the rotating system inside a boundary placed inside or on the speed of

light surface (SOL) induces regular and well defined thermal states with respect to

which thermal expectation values (t.e.v.s) stay finite throughout the space enclosed

inside the boundary, for both scalars and fermions. The mechanism which allows

the construction of regular thermal states of scalar particles and through which

the divergences near the SOL of the t.e.v.s corresponding to fermion operators are

removed is the quantisation of the transverse momentum q imposed by the boundary

conditions. If the boundary is not outside the SOL, the quantisation of q ensures

that there are no modes for which ω̃ω < 0 (ẼE < 0 for fermions). A consequence of

this restriction is the absence of spurious temperature independent terms in t.e.v.s,

or, in other words, the equivalence of the rotating and non-rotating vacua.

Two models for implementing fermion boundary conditions were considered in

this chapter. The spectral model, discussed in section 5.2, imposes boundary condi-

tions on the Fourier transform of wave-functions, thus having a non-local character.

In the MIT bag model, discussed in section 5.3, the boundary conditions are for-

mulated locally. The graphical comparison in Figure 5.14 between the two models

shows that the t.e.v.s in the MIT model follow the profiles of the corresponding

t.e.v.s in the unbounded case more closely than those corresponding to the spec-

tral model. Three fundamental differences were found between the two models: the

fermion condensate (FC) for massless fermions does not vanish in the MIT model,

but it does in the spectral model; the neutrino charge current (CC) along the rota-

tion axis changes sign between the rotation axis and the boundary, where it attains

a finite (non-zero) value, whereas in the MIT model, its sign does not change while

it’s value on the boundary is 0; finally, 〈: Tϕ̂ϕ̂ :〉β vanishes on the boundary in the

spectral model, but not in the MIT model.

In the analysis of the changes induced in the vacuum state by the presence of

the boundary, the Casimir divergence close to the boundary of the t.e.v. of the
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stress-energy tensor (SET) was one order of magnitude higher in the spectral model

than in the MIT bag model. Also, previous work [31] on the Casimir divergence for

arbitrary boundaries and fields showed that a fully local SET would diverge at most

as in the MIT bag model. The MIT model indeed confirms the results of Ref. [31]

due to the purely local formulation of the boundary conditions, while in the spectral

model, the boundary conditions are formulated in a non-local manner, contradicting

the assumption of locality in Ref. [31]. It is interesting that the Casimir divergence

of the FC has a higher order of magnitude in the MIT bag model than in the spectral

model.

Finally, an attempt at approximating the Fermi-Dirac integral corresponding to

a bounded system brought evidence in subsection 5.4.2 that the t.e.v. of the energy

density in a bounded systems where the SOL is inside the boundary diverge as

the SOL is approached. While the analysis performed in subsection 5.4.2 is not

sufficiently rigorous to show beyond doubt that thermal states suffer from the same

divergent behaviour as in the unbounded case, the quasi-Euclidean approach of

section 6.2 supports this finding.



Chapter 6. Quasi-Euclidean formu-

lation of QFT on a rotating space-

time

The analysis of the Casimir effect performed in chapter 5 showed that in the Eu-

clidean approach the expression for observables has the form of a continuous integral

over the equivalent of the longitudinal momentum q. We would like to retain this

feature in the analysis of thermal states inside a bounding surface, where we previ-

ously had to compute sums over roots of some non-trivial equation involving Bessel

functions. To this end, a quasi-Euclidean approach is considered in this chapter.

The first problem we are faced with is that the metric (4.1.4) of the space-

time has non-diagonal terms which mix space and time coordinates. Changing to

a purely imaginary time coordinate would make these components of the metric

imaginary, therefore rendering the manifold non-Riemannian. Even though it looks

as if the space-time does not lend itself to Euclideanisation, such approaches have

given positive results in, e.g. the analysis of the Kerr space-time [36, 67].

In this chapter, the quasi-Euclidean approach is used to obtain an Euclidean

version of the Lorentzian Feynman propagator, by changing coordinates from real to

imaginary time. After such a propagator is obtained, the method outlined by Groves,

Anderson and Carlsen [38] is used to compute the thermal Euclidean function, from

which thermal expectation values can be computed.

In sections 6.1.1, 6.1.2 and 6.1.3 a consistency check on the Euclidean approach

is performed by comparing the results obtained for the renormalised thermal expec-

tation values (t.e.v.s) in the Minkowski non-rotating, rotating and bounded rotating

space-times, respectively with those already obtained in previous chapters through

the Lorentzian formulation. The highlight of this chapter is section 6.2, where the

behaviour of the t.e.v. of the energy density close to the speed of light surface (SOL)

is investigated for the case when the SOL is inside the boundary.

The aim is to prove that the renormalised expectation value of the energy density

for a system of fermions enclosed in a boundary located outside the SOL surface

diverges as the SOL is approached. The approach, for reasons which shall become

apparent in the appropriate section, is to take the difference between the unrenor-

malised (i.e. without performing Wick ordering) expectation values with respect the

thermal state on the bounded and unbounded spaces. If the bounded thermal state

is regular in the vicinity of the SOL, this difference must diverge exactly as the

unbounded thermal state, i.e. as described in subsection 4.3.2.

165



166 CHAPTER 6. QUASI-EUCLIDEAN QFT ON ROTATING SPACE

6.1 Equivalence between the quasi-Euclidean and

Lorentzian formulations

6.1.1 Quasi-Euclidean formulation of non-rotating thermal

distributions

Starting with the Euclidean Green’s function for the unbounded Minkowski space-

time, given in Eq. (5.2.33), it is possible to construct the corresponding thermal

Euclidean function starting from the Fourier components sE(ω) of the Euclidean

Green’s function SE(x, x′):

SE(x, x′) =

∫ ∞

−∞
dω eiω∆τsE(ω). (6.1.1)

The thermal Euclidean Green’s function can be obtained by replacing the above

integral with a sum [38]:

Sβ
E(x, x′) =

2π

β

∞∑
j=−∞

eiωj∆τsE(ωj), (6.1.2)

where j is an integer and

ωj =
2π

β
(j + 1

2
). (6.1.3)

Thermal expectation values with respect to the vacuum state can be calculated

by subtracting SE(x, x′) from Sβ
E(x, x′), using the generalised Abel-Plana sum for-

mula, given in Eq. (5.2.45).

The t.e.v. of the energy density can be calculated using Eq. (2.2.62):

〈: Tt̂t̂ :〉β =
1

8π3

∫ ∞

−∞
dk

∞∑
m=−∞

[∫ ∞

−∞
dω f(ω)− 2π

β

∞∑
j=−∞

f(ωj)

]
, (6.1.4)

where

f(ω) = ω2[Im(αρ)Km(αρ) + Im+1(αρ)Km+1(αρ)] (6.1.5)

and α =
√
ω2

k + ω2 (5.1.19) is written in terms of

ωk =
√
k2 + µ2. (6.1.6)

Since f(ω) has no residues in the complex plane, the generalised Abel-Plana formula

(5.2.45) can be applied to yield:

〈: Tt̂t̂ :〉β =
−i
2π3

∫ ∞

−∞
dk

∞∑
m=−∞

∫ ∞

0

dω

eβω + 1
[f(iω)− f(−iω)]. (6.1.7)
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The difference f(iω)−f(−iω) can be performed using the following identities [1, 60]:

Im(e±iπ/2z) = e±
1
2
imπJm(z) (−π ≤ ±arg z ≤ π

2
),

Km(eiπ/2z) = −iπ
2
e−

1
2
imπH(2)

m (z) (−π ≤ arg z ≤ π

2
),

Km(e−iπ/2z) =
iπ

2
e

1
2
imπH(1)

m (z) (−π
2
≤ arg z ≤ π), (6.1.8)

which are valid for the ranges of the argument of z (arg z) given in the corresponding

parentheses. where the inequalities in the parentheses give the validity domain of

The phase of α after the transition ω → ±iω is essential for the correct recovery of

the form of f(±iω). Writing

ω = ωRe + iωIm, (6.1.9)

the change in the phase of α can be understood by looking at its square:

α2 =
[
(ω2

k + ω2
Re − ω2

Im) + 4ω2
Reω

2
Im

] 1
2 eiϕ, (6.1.10)

where

ϕ = arctan
2ωReωIm

ω2
k + ω2

Re − ω2
Im

. (6.1.11)

Before the transformation, ωIm = 0 and the phase is 0. After the transformation,

ωRe = 0, but the phase can be 0 or ±ϕ. If ωk > ω, the denominator in the arctan

never vanishes, so the phase becomes positive or negative (following the sign of

ωReωIm) and returns to 0 as ωRe → 0. However, if ωk < ω, the argument of the

arctan becomes ±∞ (again, following the sign of ωReωIm), at which point ϕ = ±π
2
.

As ωRe → 0, ϕ continues departing from 0 to ±π, as follows:

α −−−−→
x→±it


√
ω2

k − ω2 ωk > ω,

e±
iπ
2 q ωk < ω,

(6.1.12)

where q is the familiar transverse momentum:

q =
√
ω2 − ω2

k. (6.1.13)

Equations (6.1.12) imply the following transformation properties:

Im(αρ)Km(αρ) −−−−→
x→±it

Im(ρ
√
ω2

k − ω2)Km(ρ
√
ω2

k − ω2) ωk > ω,

∓ iπ
2
Jm(qρ)[Jm(qρ)± iYm(qρ)] ωk < ω,

(6.1.14)

where the definition (A.1.9) was used to replace the Hankel functions in Eqs. (6.1.8).

If ωk > ω, the product Im(αρ)Km(αρ) stays real and its contribution to the t.e.v. of

the energy density is null. Thus, the integrand in the integral over ω in Eq. (6.1.4)
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is proportional to θ(ω − ωk):

〈: Tτ̂ τ̂ :〉β = − 1

π2

∫ ∞

−∞
dk

∞∑
m=−∞

∫ ∞

0

ω2 dω

eβω + 1
θ (ω − ωk) J

+
m(qρ), (6.1.15)

where J+
m(qρ) = J2

m(qρ) + J2
m+1(qρ), as defined in Eq. (3.3.69). Changing the inte-

gration order reduces Eq. (6.1.15) to:

〈: Tτ̂ τ̂ :〉β = − 1

π2

∞∑
m=−∞

∫ ∞

µ

ω2 dω

eβω + 1

∫ p

0

dk J+
m(qρ). (6.1.16)

Performing the sum over m using Eq. (A.4.2) reduces Eq. (6.1.16) to the familiar

expression in Eq. (3.3.70), taking into account that 〈: Tτ τ̂ :〉β = −〈: Tt̂t̂ :〉β.

6.1.2 Quasi-Euclidean formulation of unbounded rotating

thermal distributions

The coordinate transformation φ = φMink − ΩtMink changes the phase in Eq. (6.1.1)

from ω to ω + iΩ(m+ 1
2
). To construct a co-rotating thermal state, the variable in

the ω integral in Eq. (6.1.1) has to be changed such that the coefficient of sE(x, x′)

becomes eiω∆t:

ΩSE(x, x′) =

∫ ∞

−∞
dω eiω∆τχΩ. (6.1.17)

The subscript Ω indicates that ω is replaced in all explicit and implicit ω dependent

quantities by ωΩ, defined as:

ωΩ = ω − iΩ(m+ 1
2
). (6.1.18)

The t.e.v. of the energy density can be obtained following the same steps as in

subsection 6.1.1:

〈: Tτ̂ τ̂ :〉β =
i

π3

∫ ∞

−∞
dk

∞∑
m=−∞

∫ ∞

0

dω

e2πω + 1
[fΩ(iω)− fΩ(−iω)], (6.1.19)

where fΩ(ω) is defined as in Eq. (6.1.5) the subscript Ω indicates that ω has been

replaced by ωΩ:

fΩ(ω) = ω2
Ω[Im(αΩρ)Km(αΩρ) + Im+1(αΩρ)Km+1(αΩρ)]. (6.1.20)
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Applying the same reasoning as in obtaining Eq. (6.1.12), the following transforma-

tion properties for αΩ can be deduced:

αΩ(iω) =


√
ω2

k − ω̃2 ωk > |ω̃| ,

e
iπ
2

√
ω̃2 − ω2

k ω̃ > ωk,

e−
iπ
2

√
ω̃2 − ω2

k ω̃ < −ωk,

αΩ(−iω) =


√
ω2

k − ω2 ωk > |ω| ,

e−
iπ
2

√
ω2 − ω2

k ω > ωk,

e
iπ
2

√
ω2 − ω2

k ω < −ωk,

, (6.1.21)

where

ω̃ = ω − Ω(m+ 1
2
), ω = ω + Ω(m+ 1

2
). (6.1.22)

Using the transformation properties (6.1.8) together with Eqs. (6.1.21) gives:

〈: Tτ̂ τ̂ :〉β = − 1

π2

∞∑
m=−∞

∫ p

0

dk

∫ ∞

0

ω̃2 dω

eβω + 1
J+

m(ρ
√
ω̃2 − ω2

k)

× [θ(ω̃ − ωk)− θ(−ω̃ − ωk)] , (6.1.23)

where the transformation m→ −m− 1 has been performed for the terms involving

ω, changing ω to ω̃. Changing variable from ω to E = ω−Ω(m+ 1
2
) and converting

the sum over m so it runs only over positive values yields:

〈: Tτ̂ τ̂ :〉β = − 1

π2

∞∑
m=−∞

∫ ∞

µ

dE E2

(
1

eβω + 1
+

sgnẼ

eβ| eE| + 1

)∫ p

0

dk J+
m(qρ). (6.1.24)

A comparison with Eq. (4.3.56c) shows that the t.e.v. of the energy density thus

obtained is expressed with respect to the rotating vacuum. It is remarkable that the

quasi-Euclidean procedure correctly selects the rotating vacuum in detriment of the

Minkowski vacuum.

6.1.3 Quasi-Euclidean formulation of bounded rotating ther-

mal distributions

When a boundary is present, a homogeneous solution of the Dirac equation must

be added to the Euclidean Green’s function Eq. (6.1.17) for the rotating space-

time. Equations (5.2.36) and (5.3.70) give these extra solutions for the spectral

and MIT bag models, respectively, but with respect to Minkowski coordinates. As

in subsection 6.1.2, these functions can be expressed in the rotating system by

changing ω to ωΩ (6.1.18) in all quantities, except for the phase. For simplicity, only

the spectral case is discussed in this subsection.
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The t.e.v. of the energy density can be written for the spectral case as:

〈: Tτ̂ τ̂ :〉β =
2i

π3

∫ ∞

−∞
dk

∞∑
m=0

∫ ∞

0

dω

e2πω + 1
[fΩ,R(iω)− fΩ,R(−iω)], (6.1.25)

where

fΩ,R(ω) = ω2
Ω[Im(αΩρ)Km(αΩρ) + Im+1(αΩρ)Km+1(αΩρ) + f spec

Ω,R (ω)]. (6.1.26)

The boundary term f spec
Ω,R (ω) is given by:

f spec
Ω,R (ω) =

Km(αΩR)

Im(αΩR)
I−m(αΩρ). (6.1.27)

After applying the generalised Abel-Plana sum formula (5.2.45), ω is sent to ±iω.

Let us consider for definiteness the case ω → iω. Three cases emerge: αΩ stays real

or it becomes e±
iπ
2

√
ω̃2 − ω2

k (ω̃2 is replaced by ω2 if ω → −iω). The terms where

α stays real cancel through the subtraction f(iω)− f(−iω), hence they do not need

to be discussed further. In the other two cases, the following transformation occur:

Km(αR)

Im(αR)
I−m(αρ)→

−1
2
πiH

(2)
m (q∼R)

Jm(q∼R)
J+

m(q∼ρ) α→ e
iπ
2 α,

1
2
πiH

(1)
m (q∼R)

Jm(q∼R)
J+

m(q∼ρ) α→ e−
iπ
2 α,

(6.1.28)

where

q∼ =
√
ω̃2 − ω2

k. (6.1.29)

In the Abel-Plana summation formula, the two pieces in Eq. (6.1.28) are subtracted.

Using the definition (A.1.9) of the Hankel functions, the following result is obtained:

Km(e
iπ
2 q∼R)

Im(e
iπ
2 q∼R)

I−m(e
iπ
2 q∼ρ)−

Km(e−
iπ
2 q∼R)

Im(e−
iπ
2 q∼R)

I−m(e−
iπ
2 q∼ρ) = −iπJ+

m(q∼ρ). (6.1.30)

This expression is equal in magnitude but opposite in sign to the equivalent expres-

sions coming from the unbounded terms, thus cancelling their contributions.

However, since the boundary-induced terms have poles on the imaginary axes,

the residue terms in the Abel-Plana formula must also be computed, starting from:

Res

[
1

Im(z)

]
z→iξ

=lim
z→iξ

z − iξ
Im(iξ + z − iξ)

=lim
ε→0

iε

Im[e
iπ
2 (ξ + ε)]

=
ie−

i
2
mπ

J ′m(ξ)
=
−ie− i

2
mπ

Jm+1(ξ)
,

Res

[
1

Im(z)

]
z→−iξ

= lim
z→−iξ

z + iξ

Im(−iξ + z + iξ)
=lim

ε→0

−iε
Im[e−

iπ
2 (ξ + ε)]

=
−ie i

2
mπ

Jm+1(ξ)
, (6.1.31)

where ξ ≡ ξm` is the `’th root of Jm(z). Thus, the residues of the boundary term
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can be calculated as follows:

Res

{
Km(αR)

Im(αR)
I−m(αρ)

}
αR=iξm,l

=− π

2

H
(2)
m (ξm`)

Jm+1(ξm`)
J+

m(ξm`ρ),

Res

{
Km(αR)

Im(αR)
I−m(αρ)

}
αR=−iξm,l

=− π

2

H
(1)
m (ξm`)

Jm+1(ξm`)
J+

m(ξm`ρ), (6.1.32)

where ρ = ρ
R
. It should be noted there are no contributions coming from the case

when α stays real. The Hankel functions in Eqs. (6.1.32) can be written in terms of

Jm+1(ξm`) using the Wronskian relation (A.1.3):

H(1)
m (ξm`) = −H(2)

m (ξm`) = iYm(ξm`) =
2i

πξm`Jm+1(ξm`)
, (6.1.33)

Since the residues need to be computed with respect to the variable x = βω
2π
≥ 0,

the results in Eqs. (6.1.32) need to be multiplied by the factor:

∂x

∂(αR)
=

β

2πR2ω
αR. (6.1.34)

The value of ω corresponding to a given root ξm` depends on the relative sign of ω

and m+ 1
2

after the rotation of ω to ±iω. for positive or negative signs, ω is replaced

by ω̃m` or ω = ωm`, subject to the constraints ω̃m` > 0 or ωm` > 0, respectively.

Here, ωm` has the usual meaning introduced in chapter 5:

ωm` =
√
µ2 + k2 + q2

m`, qm` =
ξm`

R
. (6.1.35)

Explicitly, the residues of the generalised Abel-Plana formula (5.2.45) have the fol-

lowing form:

ResImω>0f
spec
Ω,R (ω)(1− i tan ω

2
) = − iβ

πωm`R2

J+
m(qρ)

J2
m+1(ξm`)

[
θ(ω̃m`)

1 + eβeωm`
− θ(−ω̃m`)

1 + e−βeωm`

]
,

(6.1.36a)

ResImω<0f
spec
Ω,R (ω)(−1− i tan ω

2
) = − iβ

πωm`R2

J+
m(qρ)

J2
m+1(ξm`)

[
θ(ωm`)

1 + eβωm`
− θ(−ωm`)

1 + e−βωm`

]
.

(6.1.36b)

Adding up all the residues gives the final expression for the energy density:

〈: Tτ̂ τ̂ :〉β = − 2

π2R2

∞∑
m=0

∞∑
`=1

J+
m(qm`ρ)

J2
m+1(ξm`)

∫ ∞

0

dk ωm`

[
1

eβω + 1
+

sgnω̃m`

eβ|eω| + 1

]
. (6.1.37)

The quasi-Euclidean approach has again naturally selected the Iyer vacuum, as can

be seen by comparing to Eq. (5.2.20a), obtained using a mode sum.
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6.2 Analysis of bounded thermal states near the

speed of light surface

The preceding section was used to establish that the quasi-Euclidean approach pro-

duces correct results in the systems studied so far. Next, an analysis is performed of

the behaviour of the t.e.v. of the energy density for a bounded rotating system with

the boundary outside the speed of light surface (SOL) as the latter is approached,

using the advantage of having t.e.v.’s expressed as sums over an integer variable

n rather than over roots of some equation involving Bessel functions. To preserve

this aspect of the Euclidean approach, it is clear the vacuum contribution cannot

be subtracted from the corresponding thermal expectation value, as this will reduce

any expression to the corresponding one obtained using mode sums. Therefore, we

anticipate that the singularity structure of the vacuum for the bounded system is

the same as that for its unbounded counterpart and construct the difference between

the t.e.v.s in the rotating bounded and unbounded systems:

(∆Tτ̂ τ̂ )β = 〈Tτ̂ τ̂ 〉β,R,Ω − 〈Tτ̂ τ̂ 〉β,∞,Ω =
2

βπ2

∞∑
m=0

∞∑
n=0

∫ ∞

0

dk f spec
Ω,R (ωn). (6.2.1)

Since the divergent behaviour is induced by large values of m, n and k, the field

quanta can be approximated as massless. Also, for simplicity, only the spectral case

is considered in this section, in which case Eq. (6.2.1) takes the form:

(∆Tτ̂ τ̂ )β = − 2

βπ2

∞∑
m=0

∞∑
n=0

Re[ω2
n,ΩKmn], (6.2.2)

where

Kmn =

∫ ∞

0

dk
Km(αΩR)

Im(αΩR)
I−m(αΩρ), (6.2.3)

where ωn = 2π
β

(n+ 1
2
). To analyse the behaviour of Kmn, the approximations (A.2.5)

for the ratio Km/Im and (5.2.52d) for I−m(αΩρ) are used.

First, the integral over k can be approximated using the method of steepest

descent [51], by introducing the following notation:

Kmn ∼
∫ ∞

0

dk e−η(k)f(k), (6.2.4a)

where

f(k) =
R

νρ[1 + z(R)]z(ρ)
, (6.2.4b)

η(k) = 2ν

[
z(R)− z(ρ) + ln

R

ρ
− ln

1 + z(R)

1 + z(ρ)

]
, (6.2.4c)
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and

z(ρ) =

√
1 +

(αρ
ν

)2

, ν = m+ 1
2
. (6.2.4d)

The first two derivatives of η(k) with respect to k can be computed:

η′(k) =
2k

m

[
R2

1 + z(R)
− ρ2

1 + z(ρ)

]
, (6.2.5)

η′′(k) =
2

m

{
R2

1 + z(R)
− ρ2

1 + z(ρ)
− k2

m2

[
R4

z(R)(1 + z(R))2
− ρ4

z(ρ)(1 + z(ρ))2

]}
.

(6.2.6)

Given that the first derivative η′(k) vanishes when k = 0, the integral Kmn can be

approximated as [51]:

Kmn ∼ e−η(0)

∫ ∞

0

dk e−
1
2
η′′(0)k2

[f(0) +
1

2
f ′′(0)k2 + . . . ]

∼ e−η(0)

√
π

2η′′(0)

[
f(0) +

1

2η′′(0)
f ′′(0) + . . .

]
. (6.2.7)

As can be seen in Figure 6.1, this first order approximation captures reasonably well

the essential features of Kmn, therefore, the higher order terms can be omitted from

the asymptotic result.
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- HΑΡL

Figure 6.1: The plot on the left compares the real part of the integrand in Kmn in
Eq. (6.2.4) to the exact integrand in (6.2.3). On the plot in the middle (right), the real
part (absolute value) of the numerical value of Kmn is compared (as a function of m) to
the numerical value of the asymptotic form of Kmn represented in the plot on the left
(sparser dashed curve) and the asymptotic result (6.2.7) (denser dashed curve).

Next, we anticipate that the contributions made by high values of m will become

increasingly important as the SOL is approached, as can be seen in Figure 4.2. The
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pieces needed for an expansion of η(0) in inverse powers of ν are:

z(ρ) =

[
δ2 − 2iω

νΩ
(1− δ2) +

ω2

ν2Ω2
(1− δ2)

] 1
2

= δ − iω

νΩ

1− δ2

δ
+ . . . , (6.2.8a)

z(R) =

[
−∆2 − 2iω

νΩ
(∆2 + 1) +

ω2

ν2Ω2
(∆2 + 1)

] 1
2

= i∆− ω

ν∆

∆2 + 1

∆
+ . . . , (6.2.8b)

ln[1 + z(ρ)] = ln(1 + δ)− i ω
νΩ

1− δ
δ

+ . . . , (6.2.8c)

ln[1 + z(R)] = ln(1 + i∆)− ω

νΩ

1− i∆
∆

+ . . . , (6.2.8d)

η(k = 0) = 2ν [arctanh δ − δ + i(∆− arctan ∆)]− 2ω

Ω
(∆− iδ) + . . . , (6.2.8e)

where δ, and ∆ are defined as:

δ =
√

1− ρ2Ω2, ∆ =
√
R2Ω2 − 1, ω̂ =

ω

Ω
+
i

2
. (6.2.9)

To illustrate the divergent behaviour of the t.e.v. of the energy density as the SOL

is approached, δ is regarded as tending to 0. To approximate the term z(ρ) in the

denominator of f(0), it is convenient write it as:

z(ρ) =

√
δ2 − (

2iω

νΩ
− ω2

ν2Ω2
)(1− δ2)

∼ 2ω

νΩ
e−

iπ
4 + . . . . (6.2.10)

Hence, the factor multiplying the exponential in Eq. (6.2.7) can be approximated

using: √
π

2η′′(0)
∼

√
νπΩ2

2(δ2 + ∆2)
1
4

e
iπ
4
− i

2
arctan δ

∆ (1 + . . . ) ,

f(0) ∼ RΩ

1 + i∆

√
Ω

2ων
e

iπ
4 ,

f(0)

√
π

2η′′(0)
∼ i+ ∆

2R

√
πΩ2ω∆ + . . . . (6.2.11a)

Putting everything together gives:

(∆Tτ̂ τ̂ )β = − 2

βπ2

∞∑
m=0

∞∑
n=0

Re

{
ω2

n,Ω

i+ ∆

2R

√
πΩ

2ωn∆

×e−2ν[arctanh δ−δ+i(∆−arctan ∆)]e−
2ωn
Ω

(∆−iδ)
}
. (6.2.12)
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The sums over n and m can be approximated with integrals by applying the gener-

alised Abel-Plana sum formla (5.2.45). Each power of ν pulls down a factor of

1

2[(arctanh δ − δ) + i(∆− arctan ∆)]
=

e−
iπ
2

+i arctan arctanh δ−δ
∆−arctan ∆

2[(arctanh δ − δ)2 + (∆− arctan ∆)2]
1
2

,

(6.2.13)

while each power of ωn brings out the following factor:

Ω

2(∆− iδ)
=

Ωei arctan δ
∆

2(∆2 + δ2)
1
2

. (6.2.14)

Neither of these factors diverges when δ → 0 if ∆ > 0, indicating that the difference

in energy density in the bounded and unbounded cases is finite even on the SOL,

when the boundary is outside the SOL. In other words, the t.e.v. of the energy

density diverges in the bounded case just like in the unbounded case.

However, if the bounding surface approaches the SOL (∆ → 0), it seems that

(∆Tτ̂ τ̂ )β diverges as δ → 0. The order of divergence is difficult to estimate from

the above results, but a power count indicates that it is predicted to be higher than

in the analytic expression (4.3.54c). It is possible to conduct similar analyses by

setting δ = 0 and taking ∆→ 0, or ∆ = 0 and taking δ → 0. The conclusion is the

same: the difference between the t.e.v. of the SET on the SOL in the bounded and

unbounded spaces diverges when the bounding surface is on the SOL.

6.3 Summary

The quasi-Euclidean approach was introduced in this chapter. In section 6.1 it is

shown that the quasi-Euclidean formulation leads to the same expressions as the

Lorentzian formulation for thermal expectation values in Minkowski space, in rotat-

ing Minkowski space and in rotating Minkowski space inside a boundary. The true

strength of the quasi-Euclidean approach is in investigating the difference between

thermal expectation values in the bounded and unbounded spaces. Our analysis

shows that if the boundary is placed outside the speed of light surface (SOL), the

difference between the energy densities in the bounded and unbounded systems is

finite on the SOL, implying that the energy density diverges in the bounded case

as the SOL is approached just like in the unbounded case. Setting the boundary on

the SOL shows that the same difference now diverges as an inverse power of the dis-

tance to the SOL. Although the analysis in its current form is not accurate enough

to predict the exact order of the divergence, we expect that a further refinement of

the approximations employed would be sufficient to obtain a more accurate result.



Chapter 7. Anti-de Sitter

space-time

Anti-de Sitter space-time (adS) is maximally symmetric, allowing for elegant ana-

lytic investigations to be performed. It is remarkable that renormalisation can be

performed analytically and that simple expressions can be obtained for the thermal

expectation values (t.e.v.s) of the fermion condensate (FC), charge current (CC)

and stress-energy tensor (SET).

Section 7.1 introduces the features of adS and the tools of geodesic theory neces-

sary for the discussion of the quantum field theory of fermions. The mode solutions

of the Dirac equation are presented in section 7.2 and two-point functions are ob-

tained in section 7.3. Renormalisation is performed in section 7.4 and section 7.5

concludes this chapter with a discussion of thermal states.

7.1 Geometric structure

In this section, the intrinsic geometry of adS is discussed. In subsection 7.1.1, the

metric, connection coefficients and Riemann tensor are presented. The geodesics of

adS are discussed in subsection 7.1.2, where geodesic theory techniques are applied

to introduce the bi-vector and bi-spinor of parallel transport, for which analytic

expressions are given in subsections 7.1.3 and 7.1.4, respectively. Finally, subsec-

tion 7.1.6 is dedicated to the construction of the quantum operators corresponding

to the isometries of adS.

7.1.1 Metric, tetrad and connection

The adS manifold can be considered as a 4-surface embeded in a 5-dimensional flat

space with metric ηab = diag(−1, 1, 1, 1,−1) (a, b, c, · · · ∈ {0, 1, 2, 3, 5} are coordinate

indices in the embedding space). The equation of the adS 4-surface is then:

ηabz
azb = − 1

ω2
, (7.1.1)

where ω = R−1 is the inverse radius of curvature of adS. Equation (7.1.1) can be

satisfied automatically by introducing the adS coordinates {t, xi} such that:

z0 =
1

ω

cosωt

cosωr
, z5 =

1

ω

sinωt

cosωr
, zi =

tanωr

ωr
xi, (7.1.2)

176
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Figure 7.1: Penrose diagram of (a) anti-de Sitter space (adS) and (b) the universal
covering group of adS (CadS). On adS, the horizontal lines corresponding to t = 0
and t = 2π

ω
are identified, thereby giving a periodicity in the time coordinate, while

in CadS, no such identifications are made. The angular coordinates are suppressed.
Null trajectories passing through the origin r = 0 at t = 0 reach spatial infinity
(r = π

2ω
) at t = π

2ω
, from where the origin can be reached at t = π

ω
. As can be seen

from the diagram, the coordinate system in Eq. (7.1.4) covers CadS entirely.
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where i ∈ {1, 2, 3} is the spatial index and xi = {x, y, z} and {r, θ, ϕ} are related

through the standard definition of spherical coordinates:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (7.1.3)

The radial coordinate r varies between 0 at the (arbitrary) origin and π
2ω

on the

boundary. The metric ds2 = ηabdz
adzb on adS is:

ds2 =
1

cos2 ωr

[
−dt2 + dr2 +

sin2 ωr

ω2
(dθ2 + sin2 θdϕ2)

]
. (7.1.4)

In what follows, the domain of t is extended from [0, 2π
ω

) to (−∞,∞), in which case

the space-time is referred to as the covering space of adS. The Lagrangian method

[55] can be applied to the Lagrangian function L = 1
2
gµν ẋ

µẋν corresponding to the

metric (7.1.4) to determine the following non-zero Christoffel symbols:

Γt
tr = Γr

tt = Γr
rr = ω tanωr,

Γr
θθ = − 1

ω
tanωr, Γr

ϕϕ = − 1

ω
tanωr sin2 θ,

Γθ
rθ =

ω

sinωr cosωr
, Γθ

ϕϕ = − sin θ cos θ,

Γϕ
rϕ =

ω

sinωr cosωr
, Γϕ

θϕ = cot θ. (7.1.5)

Alternatively, the adS metric (7.1.4) can be expressed with respect to the Carte-

sian coordinates (7.1.3):

gtt = − 1

cos2 ωr
, gti = 0, gij =

1

cos2 ωr

[
sin2 ωr

ω2r2

(
δij −

xixj

r2

)
+
xixj

r2

]
, (7.1.6a)

gtt = − cos2 ωr, gti = 0, gij = cos2 ωr

[
ω2r2

sin2 ωr

(
δij −

xixj

r2

)
+
xixj

r2

]
. (7.1.6b)

The corresponding Cartesian gauge tetrad [26] is given by:

et̂ = cosωr ∂t, eî = cosωr

[
ωr

sinωr

(
δij −

xixj

r2

)
+
xixj

r2

]
∂j, (7.1.7a)

ωt̂ =
dt

cosωr
, ωî =

1

cosωr

[
sinωr

ωr

(
δij −

xixj

r2

)
+
xixj

r2

]
dxj. (7.1.7b)

The connection coefficients with respect to this tetrad can be computed using the

Cartan method [55], by looking at the exterior derivative of the dual basis ωα̂:

dωt̂ = ω sinωr
xi

r
ωî ∧ ωt̂, dωî =

ω(1− cosωr)

sinωr

xk

r
ωk̂ ∧ ωî. (7.1.8)

The following equation:

dωα̂ + ωα̂
β̂
∧ ωβ̂ = 0 (7.1.9)
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can be used to evaluate the connection 1-forms ωα̂
β̂

= Γα̂
β̂γ̂
ωγ̂:

ωt̂
î
= ω sinωr

xi

r
ωt̂, ωî

ĵ
=
ω(1− cosωr)

r sinωr

(
xjωî − xiωĵ

)
. (7.1.10)

The connection coefficients can be read from the definition of the connection 1-forms:

Γt̂
ît̂

= ω sinωr
xi

r
, Γî

ĵk̂
=
ω(1− cosωr)

r sinωr

(
xjδik − xiδjk

)
. (7.1.11)

For completeness, the Cartan coefficients (2.2.19) are given below:

c t̂
t̂̂i

= ω sinωr
xi

r
, c k̂

îĵ
=
ω(1− cosωr)

r sinωr

(
xjδki − xiδkj

)
, (7.1.12)

which are consistent with the connection coefficients listed in Eq. (7.1.11). The spin

connection coefficients can be calculated using Eqs. (7.1.11) in Eq. (2.2.17):

Γt̂ =
ω sinωr

2r
γ t̂ (x · γ) , Γk̂ = −ω(1− cosωr)

2r sinωr

[
xk + γk (x · γ)

]
,

/Γ =
ω

r sinωr

(
1− cosωr +

sin2 ωr

2

)
(x · γ) . (7.1.13)

We end this section with a calculation of the curvature two-forms and Riemann

tensor, using:

Rα̂
β̂

= dωα̂
β̂

+ ωα̂
γ̂ω

γ̂

β̂
, Rα̂

β̂
=

1

2
Rα̂

β̂γ̂δ̂
ωγ̂ ∧ ωδ̂. (7.1.14)

The exterior derivatives of the connection 1-forms can be expressed as:

dωt̂
î
= ω2

[
cosωrδik + (1− cosωr)

xixk

r2

]
ωk̂ ∧ ωt̂, (7.1.15a)

dωî
ĵ

=
ω2(1− cosωr)

sin2 ωr

[
−2 cosωrδikδjl + (1− cosωr)

xk

r2
(xjδil − xiδjl)

]
ωk̂ ∧ ω l̂,

(7.1.15b)

from which the components of the curvature two-forms, Riemann tensor, Ricci ten-

sor, Ricci scalar and Einstein tensor can be calculated:

Rα̂β̂ = −ω2ωα̂ ∧ ωβ̂, (7.1.16a)

Rα̂β̂γ̂δ̂ = −ω2(ηα̂γ̂ηβ̂δ̂ − ηα̂δ̂ηβ̂γ̂), (7.1.16b)

Rα̂β̂ = −3ω2ηα̂β̂, R = −12ω2, Gα̂β̂ = 3ω2ηα̂β̂. (7.1.16c)

The Riemann tensor (7.1.16b) assumes the standard form for a maximally symmetric

space-time [3].

For completeness, the tetrad 1-forms and connection coefficients for the adS
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metric written in spherical coordinates are listed below:

ωt̂ =
dt

cosωr
, ωr̂ =

dr

cosωr
, ωθ̂ =

1

ω
tanωrdθ, ωϕ̂ =

1

ω
tanωr sin θdϕ,

Γt̂
r̂t̂ = ω sinωr, Γθ̂

r̂θ̂
= Γϕ̂

r̂ϕ̂ =
ω

sinωr
, Γϕ̂

θ̂ϕ̂
= ω cotωr cotωθ. (7.1.17)

7.1.2 Geodesic structure

Using the method introduced in Ref. [14], the geodesics of adS can be computed

as curves of minimum length in the embedding space satisfying Eq. (7.1.1). Using

the connection between Hamilton’s least-action principle and the Euler-Lagrange

formulation, such curves can be derived from the Lagrangian:

L =
1

2
ηabż

ażb +
Λ

2

(
ηabz

azb +
1

ω2

)
, (7.1.18)

where the dot denotes differentiation with respect to the geodesic parameter λ and

Λ is a Lagrange multiplier guaranteeing that the curves lie in adS. The ensuing

Euler-Lagrange equations are:

z̈a − Λza = 0. (7.1.19)

The tensor

Kab = zażb − zbża (7.1.20)

is constant along geodesics, since K̇ab = 0. Using Eq. (7.1.1), it can be seen that

z · ż = 0, hence:

KabK
ab = − 2

ω2
ż2, Kabz

b =
1

ω2
ża, Kabż

b = ż2za. (7.1.21)

Thus, Λ = ω2ż2. Therefore, the geodesics of adS can be written in terms of two

constant vectors, m and n:

za = ma cos(ω
√
−ż2λ) + na sin(ω

√
−ż2λ), (7.1.22)

where m2 = n2 = −ω−2 and m · n = 0.

The distance along a geodesic between two points with coordinates x and x′ in

the adS chart, having geodesic parameters λ1 and λ2, respectively, can be calcuated

as:

s(x, x′) =

∫ λ2

λ1

dλ
√
−ż2 = (λ2 − λ1)

√
−ż2. (7.1.23)

By virtue of Eq. (7.1.22), s(x, x′) simplifies to:

s(x, x′) =
1

ω
arccos

(
−ω2z · z′

)
, (7.1.24)
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which can be written in terms of the adS coordinates as:

cosωs =
cosω∆t

cosωr cosωr′
− cos γ tanωr tanωr′. (7.1.25)

In the above, γ is the angle between x and x′ and

cos γ = cos θ cos θ′ + sin θ sin θ′ cos ∆ϕ (7.1.26)

Two tangents to the geodesic are of particular interest:

nµ ≡ nµ(x, x′) = ∇µs(x, x
′), nµ′ ≡ nµ′(x, x

′) = ∇µ′s(x, x
′), (7.1.27)

where the primed index indicates a derivative with respect to x′. Their components

can be calculated from Eq. (7.1.25):

nt =
1

sinωs

sinω∆t

cosωr cosωr′
,

nr =− 1

sinωs
(cosωs tanωr − cos γ tanωr′) ,

nr′ =− 1

sinωs
(cosωs tanωr′ − cos γ tanωr) ,

nθ =− 1

ω sinωs
tanωr tanωr′ (sin θ cos θ′ − cos θ sin θ′ cos ∆ϕ) ,

nθ′ =− 1

ω sinωs
tanωr tanωr′ (sin θ′ cos θ − cos θ′ sin θ cos ∆ϕ) ,

nϕ =− 1

ω sinωs
tanωr tanωr′ sin θ sin θ′ sin ∆ϕ, (7.1.28)

together with nt′ = −nt and nϕ′ = −nϕ. It can be checked that n2 = −1. The

tangents can also be expressed with respect to the Cartesian basis:

nt =
1

sinωs

sinω∆t

cosωr cosωr′
,

ni =− 1

sinωs

{[
cosωs tanωr + cos γ tanωr′

(
tanωr

ωr
− 1

)]
xi

r

−tanωr tanωr′

ωr

xi′

r′

}
,

ni′ =− 1

sinωs

{[
cosωs tanωr′ + cos γ tanωr

(
tanωr′

ωr′
− 1

)]
xi′

r′

−tanωr tanωr′

ωr′
xi

r

}
, (7.1.29)

with nt′ = −nt. These tangent vectors are also normalised with respect to the

metric in Eq. (7.1.6). The corresponding components with respect to the tetrad in
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Eq. (7.1.7) are:

nt̂ =
1

sinωs

sinω∆t

cosωr′
,

nt̂′ =− 1

sinωs

sinω∆t

cosωr
,

nî =− 1

sinωs

{
[cosωs sinωr + cos γ tanωr′(1− cosωr)]

xi

r
− tanωr′

xi′

r′

}
,

nî′ =− 1

sinωs

{
[cosωs sinωr′ + cos γ tanωr(1− cosωr′)]

xi′

r′
− tanωr

xi

r

}
.

(7.1.30)

Again, these tangent vectors are normalised according to ηα̂β̂nα̂nβ̂ = ηα̂β̂nα̂′nβ̂′ =

−1. Finally, the contraction of the tangent vector with the gamma matrices is:

/n sinωs =
sinω∆t

cosωr′
γ t̂ − [cosωs sinωr + cos γ tanωr′(1− cosωr)]

x · γ
r

+ tanωr′
x′ · γ
r′

. (7.1.31)

According to Allen and Jacobson [3], the following relations hold on maximally

symmetric space-times:

nµ;ν = −A(gµν + nµnν), (7.1.32a)

nµ;ν′ = −C(gµν′ − nµnν′), (7.1.32b)

where A and C are functions of s only, with C related to A through:

dC

ds
= −AC. (7.1.33)

Analytic expressions and a small distance expansion for the bi-vector of parallel

transport gµν′ , essential in the point-splitting method for the computation of ex-

pectation values (see subsection 2.1.5 and subsection 2.2.6) are presented in sub-

sections 7.1.3 and 7.1.5. Having found explicit expressions for nµ and nµ′ , the

coefficients A and C can be computed explicitly. Since the covariant derivative of

nt with respect to t is

∇tnt = −ω cotωs

(
− 1

cos2 ωr
+ n2

t

)
, (7.1.34)

it follows that the functions A and C must be given by:

A = ω cotωs, C = − ω

sinωs
, (7.1.35)

in agreement with the expressions in Ref. [56].

The Van Vleck-Morette determinant ∆(x, x′) is now straightforward to compute,
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starting from the definition of the Van Vleck-Morette matrix [63]:

∆α′

β′(x, x
′) = −gα′

αg
αγσγβ′ , ∆ ≡ det(∆α′

β′) =
det(−σµν′)√
−g(x)

√
−g(x′)

, (7.1.36)

where σ = −1
2
s2 and the indices on sigma denote covariant diferentiation, e.g.

σµν′ = ∇ν′∇µσ. It can be shown that the Van Vleck-Morette determinant obeys the

following equation [30, 63]:

σµ∇µ ln ∆ = 4− σµ
µ. (7.1.37)

On adS, σµ
µ = 3ωs cotωs + 1, by virtue of Eqs. (7.1.32a) and (7.1.35). If we make

the ansatz that, in a space-time with maximal symmetry, ∆ is a function of s only,

the above equation reduces to:

s
d

ds
ln ∆ = 3(1− ωs cotωs), (7.1.38)

with the solution that satisfies the boundary condition ∆(s = 0) = 1 given by:

∆ =
( ωs

sinωs

)3

. (7.1.39)

The above expression is in agreement with the result given in Ref. [50] for the n-

dimensional adS space-time.

7.1.3 Bi-vector of parallel transport

The bi-vector of parallel transport can be obtained explicitly from Eq. (7.1.32b):

gµν′ =nµnν′(1− cosωs) +
1

cosωr cosωr′
g̃µν′ , (7.1.40)

g̃µν′ =


−cω∆t sω∆ttωr′ 0 0

−sω∆ttωr
cos γ−cω∆tsωrsωr′

cωrcωr′

sωr′ (−cθsθ′+sθcθ′c∆ϕ)

ωcωr

sωr′sθsθ′s∆ϕ

ωcωr

0 − sωr(sθcθ′−sθ′cθc∆ϕ)

ωcωr′

sωrsωr′ (sθsθ′+cθcθ′c∆ϕ)

ω2

sωrsωr′cθsθ′s∆ϕ

ω2

0 − sωrsθsθ′s∆ϕ

ωcωr′
− sωrsωr′sθcθ′s∆ϕ

ω2

sωrsωr′sθsθ′c∆ϕ

ω2

 ,

where the standard trigonometric functions have been abbreviated by their initial,

with their argument written as a subscript, e.g. s∆ϕ = sin ∆ϕ. It can be checked

that the equations gµν′n
ν′ = −nµ and nµgµν′ = −nν′ are satisfied. The bi-vector of
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parallel transport can also be written with respect to Cartesian coordinates:

g̃tt′ =− cosω∆t, (7.1.41a)

g̃it′ =− sinω∆t tanωr
xi

r
, (7.1.41b)

g̃ti′ = sinω∆t tanωr′
xi′

r′
, (7.1.41c)

g̃ij′ =
sinωr

ωr

sinωr′

ωr′

(
δij −

xixj

r2
− xi′xj′

r′2

)
+

sinωr′

ωr′
1

cosωr

xixj

r2
+

sinωr

ωr

1

cosωr′
xi′xj′

r′2

+

(
− cosω∆t tanωr tanωr′ + cos γ

ωr′ − sinωr′

ωr′ cosωr′
ωr − sinωr

ωr cosωr

)
xixj′

rr′
. (7.1.41d)

For completeness, subsection 7.1.5 gives a coincidence limit expansion of gµν′ in

powers of σα.

7.1.4 Bi-spinor of parallel transport

The bi-spinor of parallel transport satisfies the parallel transport equation (2.2.57)

for spinors, which on adS takes the form [4, 56]:

DµΛ(x, x′) = −ω
2

2

tan ωs
2

ωs
2

Σµνσ
νΛ(x, x′), (7.1.42)

where Σµν = − i
4
[γµ, γν ] are the anti-Hermitian generators (2.2.8) of Lorentz trans-

formations. Furthermore, it satisfies the conditions in Eqs. (2.2.58):

Λ(x, x) = 1, Λ−1(x, x′) = Λ(x, x′) = Λ(x′, x). (7.1.43)

The covariant γ matrices obey the following parallel transport equation:

Λ(x, x′)γµ′ = gµ′

νγ
νΛ(x, x′). (7.1.44)

To gain some insight on the form of the solution of Eq. (7.1.42), it is instructive

to first consider the case when r′ = 0, where n takes the form:

nt̂

⌋
r′=0

=
sinω∆t

sinωs
, nk̂

⌋
r′=0

= −cosω∆t tanωr

sinωs

xk

r
, (7.1.45)

/n
⌋

r′=0
=

cosω∆t

sinωs

(
tanω∆t −x·σ

r
tanωr

x·σ
r

tanωr − tanω∆t

)
. (7.1.46)
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Using Eq. (7.1.11) for the spin connection matrices, the following equations follow:

∂tΛ
⌋

r′=0
=− ω

2

sinωr

cosω∆t+ cosωr

(
0 x·σ

r
x·σ
r

0

)
Λ, (7.1.47a)

∇Λ
⌋

r′=0
=− ω

2

sinω∆t

cosω∆t+ cosωr

{
sinωr

ωr
tan

ωr

2
tan

ω∆t

2

(
i
r
x× σ 0

0 i
r
x× σ

)

+

(
0 1

1 0

)
⊗
[
sinωr

ωr
σ +

x

r

(x · σ
r

)(
1− sinωr

ωr

)]}
Λ. (7.1.47b)

The second equation can be simplified by multiplying both sides by xj/r:

∂rΛ
⌋

r′=0
= −ω

2

sinω∆t

cosω∆t+ cosωr

(
0 x·σ

r
x·σ
r

0

)
Λ. (7.1.47c)

Eqs. (7.1.47a) and (7.1.47c) can be solved for the 2×2 components Λij (i, j ∈ {1, 2})
of Λ. Both Λ11 and Λ22 satisfy the same equations:(

cosω∆t+ cosωr

sinωr

∂

∂(ωt)2
− sinω∆t

sinωr

∂

∂(ωt)
− 1

4

sinωr

cosω∆t+ cosωr

)
Λii =0,(

cosω∆t+ cosωr

sinω∆t

∂

∂(ωr)2
− sinωr

sinω∆t

∂

∂(ωr)
− 1

4

sinω∆t

cosω∆t+ cosωr

)
Λii =0.

(7.1.48)

The solution of the above equations is:

Λii =
Cii(r, γ) cos ω∆t

2
+ Sii(r, γ) sin ω∆t

2√
cosωr + cosω∆t

, (7.1.49)

where the 2× 2 matrices Cii and Sii are harmonic functions of rω
2

:

Cii = Aii(γ) cos
ωr

2
+Bii(γ) sin

ωr

2
, Sii = Cii(γ) cos

ωr

2
+Dii(γ) sin

ωr

2
. (7.1.50)

The other two components of Λ can be found using:

Λ21 =− 2

ω

cosω∆t+ cosωr

sinωr

x · σ
r

∂tΛ11,

Λ12 =− 2

ω

cosω∆t+ cosωr

sinωr

x · σ
r

∂tΛ22. (7.1.51)

If Cii and Sii do not depend on the angular variables, their values can be found from

the initial conditions:

Λ11

⌋
x=x′

= Λ22

⌋
x=x′

= 1, Λ12

⌋
x=x′

= Λ21

⌋
x=x′

= 0, (7.1.52)
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which show that Aii = Dii = 1 and Bii = Cii = 0. The final solution is:

Λ
⌋

r′=0
=

√
2

cosω∆t+ cosωr

 cos
ωr

2
cos

ω∆t

2
−x · σ

r
sin

ωr

2
sin

ω∆t

2

−x · σ
r

sin
ωr

2
sin

ω∆t

2
cos

ωr

2
cos

ω∆t

2

 ,

(7.1.53)

and it can be checked that it satisfies Eq. (7.1.47b). The following quantity is also

useful to compute:

/nΛ
⌋

r′=0
=

√
cosω∆t+ cosωr

sinωs cosωr/
√

2

 cos
ωr

2
sin

ω∆t

2
−x · σ

r
sin

ωr

2
cos

ω∆t

2
x · σ
r

sin
ωr

2
cos

ω∆t

2
− cos

ωr

2
sin

ω∆t

2

 .

(7.1.54)

Let us now find Λ for general point separations. The connection coefficients

for the covariant derivatives of spinors are given in Eqs. (7.1.11) and the tetrad

components of the tangent vector to the geodesic connecting the points x and x′ are

given in Eqs. (7.1.30). The form of Λ when r′ = 0, given in Eq. (7.1.53), suggests

the following ansatz:

Λ(x, x′) =

√
2

cosωr cosωr′(1 + cosωs)
λ(x, x′). (7.1.55)

It is now necessary to consider the equations involving the derivatives with respect

to both xµ and x′µ. It is simpler to solve the equations involving derivatives with

respect to the time or radial coordinate if they are set out in the following format:(
A B

B A

)
λ = 0, λ

(
A′ B′

B′ A′

)
= 0, (7.1.56a)

where the first and second equations correspond to equations involving derivatives

with respect to t or r, and t′ or r′, respectively, and the relations [A,B] = [A′, B′] = 0

must be satisfied. The above systems of equations can be easily diagonalised using

the property:(
A −B
−B A

)(
A B

B A

)
=

(
A2 −B2 [A,B]

[A,B] A2 −B2

)
. (7.1.56b)

After some algebra, the following expressions are found for the matrices A and
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B required for the equations in t and t′:

At =2 cosωr cosωr′(1 + cosωs)∂ωt + sinω∆t, (7.1.57a)

Bt = [sinωr cosωr′ − cos γ sinωr′(1− cosωr)]
x · σ
r

+ sinωr′
x′ · σ
r′

, (7.1.57b)

A′
t =
←−
∂ ωt′ × 2 cosωr cosωr′(1 + cosωs)− sinω∆t, (7.1.57c)

B′
t =− [sinωr′ cosωr − cos γ sinωr(1− cosωr′)]

x′ · σ
r′
− sinωr

x · σ
r

, (7.1.57d)

The matrices A and B for the equations in r and r′ are:

Ar =
x · σ
r

cosωr cosωr′

×
[
2(1 + cosωs)∂ωr + tanωr + cos γ tanωr′ + i

tanωr′

cosωr

(x× x′) · σ
rr′

]
,

(7.1.57e)

Br = sinω∆t, (7.1.57f)

A′
r =

[
←−
∂ ωr′ × 2(1 + cosωr) + tanωr′ + cos γ tanωr + i

tanωr

cosωr′
(x× x′) · σ

rr′

]
× cosωr cosωr′

x′ · σ
r′

, (7.1.57g)

B′
r = sinω∆t, (7.1.57h)

Finally, the squares A2 and B2 of the above matrices are given by:

A2
t =1 + cos2 ωr cos2 ωr′

×
[
4(1 + cosωs)2∂2

ωt + (1 + cosωs)2 − (1− cos γ tanωr tanωr′)2
]
,

(7.1.58a)

B2
t =1− cos2 ωr cos2 ωr′(1− cos γ tanωr tanωr′)2, (7.1.58b)

A′2
t =1 +

[←−
∂ 2

ωt′ × 4(1 + cosωs)2 + (1 + cosωs)2 − (1− cos γ tanωr tanωr′)2
]

× cos2 ωr cos2 ωr′, (7.1.58c)

B′2
t =1− cos2 ωr cos2 ωr′(1− cos γ tanωr tanωr′)2, (7.1.58d)

A2
r = sin2 ω∆t+ cos2 ωr cos2 ωr′(1 + cosωs)2

[
∂2

ωr +
1

4

]
, (7.1.58e)

B2
r = sin2 ω∆t, (7.1.58f)

A2
r′ = sin2 ω∆t+

[
←−
∂ 2

ωr′ +
1

4

]
cos2 ωr cos2 ωr′(1 + cosωs)2, (7.1.58g)

B′2
r = sin2 ω∆t, (7.1.58h)
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Hence, λ is a solution of the following equations:(
∂2

ωt +
1

4

)
λ = 0,

(
∂2

ωt′ +
1

4

)
λ = 0,

(
∂2

ωr +
1

4

)
λ = 0,

(
∂2

ωr′ +
1

4

)
λ = 0.

(7.1.59)

Due to the translational symmetry with respect to the time coordinate, λii can be

written without loss of generality as:

λii = Cii(r, r′, γ) cos
ω∆t

2
+ Sii(r, r

′, γ) sin
ω∆t

2
, (7.1.60)

where Cii and Sii are harmonic functions of both ωr
2

and ωr′

2
. Their exact forms can

be determined using Eqs. (7.1.57) and the initial conditions in Eq. (7.1.52). Let us

find λ21 by acting with B−1
t At on λ11. The At operator changes the cos into sin and

vice-versa, in the following way:

Atλ11 = C11 sin
ω∆t

2
(1− Cγ) + S11 cos

ω∆t

2
(1 + Cγ) , (7.1.61)

where Cγ is given by:

Cγ = cosωr cosωr′(1− cos γ tanωr tanωr′). (7.1.62)

Hence, the following expression for λ21 is obtained:

λ21 = −
[
(sinωr cosωr′ + cos γ sinωr′ cosωr)

x · σ
r

+ sinωr′
(
− cos γ

x · σ
r

+
x′ · σ
r′

)]
×

(
C11 sin ω∆t

2

1 + Cγ

+
S11 cos ω∆t

2

1− Cγ

)
. (7.1.63)

This expression can be further rearranged into:

λ21 = −x · σ
r

{[
1 + cos γ

2
sinω(r + r′) +

1− cos γ

2
sinω(r − r′)

]
+i

x× x′

rr′
· σ sinωr′

}[ C11 sin ω∆t
2

(1 + cos γ) cos2 ω(r+r′)
2

+ (1− cos γ) cos2 ω(r−r′)
2

+
S11 cos ω∆t

2

(1 + cos γ) sin2 ω(r+r′)
2

+ (1− cos γ) sin2 ω(r−r′)
2

]
. (7.1.64)

Two simple cases can be analysed next:

λ21cγ=0 = tan
ω(r + r′)

2
sin

ω∆t

2

x · σ
r
C11 + cot

ω(r + r′)

2
cos

ω∆t

2

x · σ
r
S11,

λ21cγ=π = tan
ω(r − r′)

2
sin

ω∆t

2

x · σ
r
C11 + cot

ω(r − r′)
2

cos
ω∆t

2

x · σ
r
S11.

(7.1.65)
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According to Eqs. (7.1.59), λ21 is a harmonic function of ωr
2

and ωr′

2
. Thus, C11 must

be proportional to cos ω(r+r′)
2

at γ = 0 and to cos ω(r−r′)
2

at γ = π and similarly for

S11 (with cos replaced by sin). Since Eq. (7.1.53) implies that λ11 must reduce to

cos ω∆t
2

cos ωr
2

when r′ = 0, the following ansatz can be made:

S11 =0,

C11 =
1 + cos γ

2
cos

ω(r + r′)

2
+

1− cos γ

2
cos

ω(r − r′)
2

+ ia
x× x′

rr′
· σ sin

ωr

2
sin

ωr′

2

= cos
ωr

2
cos

ωr′

2
+

[
a
x · σ
r

x′ · σ
r′
− (a+ 1) cos γ

]
sin

ωr

2
sin

ωr′

2

=cos
ωr

2
cos

ωr′

2
−
[
a
x′ · σ
r′

x · σ
r
− (a− 1) cos γ

]
sin

ωr

2
sin

ωr′

2
, (7.1.66)

where a can only depend on γ. The property that λ21 is a harmonic function of
ωr
2

and ωr′

2
transfers individually to the coefficients of x·σ

r
and x′·σ

r′
resulting from

substituting Eq. (7.1.66) in Eq. (7.1.64):

λ21 =− sin
ω∆t

2

{
sin

ωr

2
cos

ωr′

2

x · σ
r

+ sin
ωr′

2
cos

ωr

2

x′ · σ
r′

+
a+ 1

1 + Cγ

sin
ωr

2
sin

ωr′

2

×
[
−x · σ

r

(
sinωr′ + cos γ sinωr cosωr′ − 2 cos2 γ sinωr′ sin2 ωr

2

)
+

x′ · σ
r′

(
sinωr cosωr′ + cos γ sinωr′

(
sin

ωr′

2
− 2 sin2 ωr

2

))]}
. (7.1.67)

The solution is to set a = −1, putting λ21 in the following form:

λ21 = − sin
ω∆t

2

(
sin

ωr

2
cos

ωr′

2

x · σ
r

+ sin
ωr′

2
cos

ωr

2

x′ · σ
r′

)
. (7.1.68)

The final result for Λ(x, x′) can be summarised as:

Λ =

(
cos ωs

2

)−1

√
cosωr cosωr′

[
cos

ω∆t

2

(
cos

ωr

2
cos

ωr′

2
+ sin

ωr

2
sin

ωr′

2

x · γ
r

x′ · γ
r′

)
+ sin

ω∆t

2

(
sin

ωr

2
cos

ωr′

2

x · γ
r

γ t̂ + sin
ωr′

2
cos

ωr

2

x′ · γ
r′

γ t̂

)]
, (7.1.69a)

with /nΛ(x, x′) given by:

/nΛ =

(
sin ωs

2

)−1

√
cosωr cosωr′

[
sin

ω∆t

2

(
cos

ωr

2
cos

ωr′

2
γ t̂ − sin

ωr

2
sin

ωr′

2

x · γ
r

x′ · γ
r′

γ t̂

)
− cos

ω∆t

2

(
sin

ωr

2
cos

ωr′

2

x · γ
r
− sin

ωr′

2
cos

ωr

2

x′ · γ
r′

)]
, (7.1.69b)

Since Λ only contains products of even numbers of γ matrices, all traces involving
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Λ and an odd number of γ matrices vanish:

tr[γµΛ(x, x′)] = 0, tr[γµγνγλΛ(x, x′)] = 0, . . . . (7.1.70)

A bit of algebra shows that Eqs. (7.1.69) satisfy Eqs. (7.1.56a), and it can be

shown that the remaining defining equations, (7.1.43) and (7.1.44), are also satisfied.

For completeness, subsection 7.1.5 gives the coincidence limit expansion of Λ(x, x′).

7.1.5 Coincidence limit expansions

Although in this case, the bi-vector and bi-spinor of parallel transport are known

explicitly, it is still instructive to consider their coincidence limit expansions. The

method of finding these expansions is by employing the differential equations (7.1.73)

and (7.1.42) for the bi-vector and bi-spinor of parallel transport, respectively. We

mention that these equations are exact, representing the anti-de Sitter version of

the coincidence limit expansions of the derivatives of the bi-vector and bi-spinor of

parallel transport reported in the Appendix of Ref. [24].

Expansion of the bi-vector of parallel transport

To derive a coincidence limit expansion of gµν′(x, x
′) in a power series in σµ ≡ −snµ,

the following ansatz can be made:

gµν′ = gµν + gµνασ
α +

1

2!
gµναβσ

ασβ +
1

3!
gµναβγσ

ασβσγ +
1

4!
gµναβγδσ

ασβσγσδ + . . . ,

(7.1.71)

where the coefficients gµνα... are functions of x only and the coincidence limit (σα = 0)

of gµν′ is the metric at x. These coefficients can be found iteratively starting from

the differential equation [56]:

∇λgµν′ = −(A+ C)(gλµnν′ + gλν′nµ), (7.1.72)

which can be written on adS in the following way:

∇λgµν′ =
ω2

2

tan ωs
2

ωs
2

(gµλgν′α − gµαgν′λ)σ
α. (7.1.73)

The prefactor in the RHS of Eq. (7.1.73) can be written as a power series in σα

by using 2σ = −s2 = σασ
α:

tan ωs
2

ωs
2

= 1− ω2

12
gαβσ

ασβ +
ω4

120
gαβgγδσ

ασβσγσδ + . . . (7.1.74)
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Thus, the expansion of the RHS of Eq. (7.1.73) in powers of σα reads:

∇λgµν′ =
ω2

2

{
gµλ

[
gνασ

α + gναβσ
ασβ +

(
1

2!
gναβγ −

ω2

12
gναgβγ

)
σασβσγ + . . .

]

− (ν ↔ α)

}
. (7.1.75)

Next, Eq. (7.1.32a) can be used to expand the covariant derivative of σ:

∇λσ
µ =nµnλ(As− 1) + Asδµ

λ

=δµ
λ + (nµnλ + δµ

λ)

(
ω2

3
gαβσ

ασβ − ω4

45
gαβgγδ + . . .

)
. (7.1.76)

Keeping in mind that gµ′ν is a vector at x, the series expansion of the LHS of

Eq. (7.1.73) is given by:

∇λgµν′ = gµνλ + gµν;λ + Γµνλ + (gµνλα + gµνα;λ + gµκαΓκ
νλ)σ

α

+
1

2!

[
gµνλαβ + gµναβ;λ + gµκαβΓκ

νλ +
2ω2

3
gαβgµνκ (nκnλ + δκ

λ)

]
σασβ

+
1

3!

[
gµνλαβγ + gµναβγ;λ + gµκαβγΓ

κ
νλ + ω2gαβgµνκγ (nκnλ + δκ

λ)
]
σασβσγ + . . .

(7.1.77)

When applied to the non-tensor coefficients gµνα...β, the semicolon notation above

is interpreted as standard covariant differentiation with respect to all coordinate

indices (i.e. not just λ and µ), such that gµν;λ = 0. It should be stressed that, as in

Eq. (21.20) in Ref. [55], the use of the semicolon does not imply that the object to

which it is applied transforms covariantly under general coordinate transformations.

The expressions for the coefficients gµνα...β in Eq. (7.1.71) are obtained by taking

the totally symmetric part (denoted using parenthesis) of Eqs. (7.1.75) and (7.1.77)

with respect to the indices λ and α, β, etc.:

gµνα = −Γµνα, (7.1.78a)

gµναβ = −gµν(α;β) − gµκ(αΓκ
β)ν , (7.1.78b)

gµναβγ = −gµν(αβ;γ) + gµκ(αβΓκ
γ)ν −

2ω2

3
gµνπg(αβ[nγ)n

π + δπ
γ)], (7.1.78c)

gµναβγπ = −gµν(αβγ;π) − gµκ(αβγΓ
κ
π)ν − ω2gµνκ(αgβγ[nπ)n

κ + δκ
π)]. (7.1.78d)

Substituting Eqs. (7.1.78) in Eqs. (7.1.75) and (7.1.77) gives a series of identities

which are automatically satisfied on adS. For example, the equation corresponding

to the first order in σα is:

gµνλα − Γµνα,λ + Γκ
µλΓκνα =

ω2

2
(gµλgνα − gµαgνλ). (7.1.79)
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The identity corresponding to the above equation is:

Γµν[α,β] + Γκµ[αΓκ
β]ν = −ω2gµ[βgα]ν . (7.1.80)

The LHS is just the definition of 1
2
Rµνβα, while the RHS is the Riemann tensor in

adS, given in Eq. (7.1.16), divided by 2. Similar identities follow from the second

and third order equations, but they are omitted since they are of little relevance to

the current work.

Expansion of the metric tensor

To find the expansion of the metric tensor gµ′ν′ at x′ in terms of the metric tensor

gµν at x, the following simple equation can be used:

∇λ′gµ′ν′ = 0. (7.1.81)

The following ansatz can be made:

gµ′ν′ = gµν + g′µνασ
α +

1

2!
g′µναβσ

ασβ +
1

3!
g′µναβγσ

ασβσγ +
1

4!
g′µναβγδσ

ασβσγσδ + . . . ,

(7.1.82)

after which Eq. (7.1.81) takes the form:

g′µνλ + 2Γ(µν)λ +
(
∇λg

′
µνα + 2Γκ

λ(µg
′
ν)κα + g′µνλα

)
σα

+
1

2!

[
∇λg

′
µναβ + 2Γκ

λ(µg
′
ν)καβ + g′µνλαβ +

2ω2

3
gµνκgαβ (nκnλ + δκ

λ)

]
σασβ

+
1

3!

[
∇λg

′
µναβγ + 2Γκ

λ(µg
′
ν)καβγ + g′µνλαβγ + ω2gµνκαgβγ (nκnλ + δκ

λ)
]
σασβσγ

+ · · · = 0, (7.1.83)

where the covariant derivatives act on all the coordinate indices. The coefficients

up to order 4 are:

g′µνα =− Γµνα − Γνµα, (7.1.84a)

g′µναβ =− g′µν(α;β) − g′µκ(αΓκ
β)ν − g′νκ(αΓκ

β)µ, (7.1.84b)

g′µναβγ =− g′µν(αβ;γ) − g′µκ(αβΓκ
γ)ν − g′νκ(αβΓκ

γ)µ −
2ω2

3
g′µνκg(αβ(nκnγ) + δκ

γ)),

(7.1.84c)

g′µναβγδ =− g′µν(αβγ;δ) − g′µκ(αβγΓ
κ
δ)ν − g′νκ(αβγΓ

κ
δ)µ − ω2g′µνκ(αgβγ(n

κnδ) + δκ
δ)).

(7.1.84d)
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Expansion of the bi-spinor of parallel transport

As for the bi-vector of parallel transport, it is possible to express Λ(x, x′) in terms

of functions defined at x multiplied by powers of σµ, using the following ansatz:

Λ(x, x′) = 1+Λασ
α+

1

2!
Λαβσ

ασβ+
1

3!
Λαβγσ

ασβσγ+
1

4!
Λαβγδσ

ασβσγσδ+. . . . (7.1.85)

The coefficients Λα, Λαβ, etc, can be found using Eq. (7.1.42), in which the LHS can

be expanded as:

DµΛ(x, x′) = Γµ + Λµ + (DµΛα + ΛαΓµ + Λµα)σα

+
1

2!

[
DµΛαβ + ΛαβΓµ + Λµαβ +

2ω2

3
gαβΛκ(n

κnµ + δκ
µ)

]
σασβ

+
1

3!

[
DµΛαβγ + ΛαβγΓµ + Λµαβγ + ω2gαβΛγκ(n

κnµ + δκ
µ)
]
σασβσγ +O(s4).

(7.1.86a)

The RHS of the same equation takes the form:

− ω2

2

tan ωs
2

ωs
2

Σµνσ
νΛ =

ω2

2
Σµασ

α

[
1 + Λβσ

β +

(
1

2!
Λβγ −

ω2

12
gβγ

)
σβσγ + . . .

]
.

(7.1.86b)

Equating the coefficients of each power of σ individually in Eqs. (7.1.86a) and

(7.1.86b) gives:

Λα =− Γα, (7.1.87a)

Λαβ =−D(αΛβ) − Λ(αΓβ), (7.1.87b)

Λαβγ =−D(αΛβγ) − Λ(αβΓγ) −
2ω2

3
g(αβ

(
nκnγ) + δκ

γ)

)
Λκ, (7.1.87c)

Λαβγδ =−D(αΛβγδ) − Λ(αβγΓδ) − ω2g(αβ

(
nκnγ + δκ

γ

)
Λδ)κ, (7.1.87d)

where the coefficients Λα...β are considered to be matrices for the purpose of covariant

differentiation, e.g. DαΛβ = ∂αΛβ + [Γα,Λβ]− Γκ
βαΛκ.

As was the case for the bi-vector of parallel transport, substituting the results in

Eqs. (7.1.87) back into Eq. (7.1.42) gives a series of identities satisfied automatically

for the adS space-time. The first such identity is obtained from the coefficient of σα:

∇αΓµ −∇µΓα − [Γµ,Γα] = ω2Σµα, (7.1.88)

where ∇ is the covariant derivative with respect to coordinate indices. Writing

Γµ = −1

2
ωα̂

µηβ̂ρ̂ω
ρ̂
κ∇α̂e

κ
γ̂Σ

β̂γ̂, (7.1.89)
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the following identity can be established:

∇νΓµ −∇µΓν = ωα̂
ν ω

δ̂
µΓκ̂

β̂δ̂
Γκ̂γ̂α̂Σβ̂γ̂ +

1

2
Rλ

πµνe
π
γ̂ω

β̂
λΣ γ̂

β̂
. (7.1.90)

Using the commutation relations of the generators of the Lorentz group [70], it can

be shown that the first term above is equal to the commutator [Γµ,Γα]. The use of

the Riemann tensor (7.1.16) on adS establishes the identity (7.1.88). The identities

supplied by the second and third orders of Eq. (7.1.42) are not discussed here.

To investigate the traces of the bi-spinor of parallel transport Λ(x, x′), it is

convenient to introduce the following notation:

tr(γµ1γµ2 . . . γµs) = −4Ξµ1µ2...µs . (7.1.91)

Using the anti-commutation relation (2.2.3), the following recurrence can be estab-

lished:

Ξµ1µ2...µs = gµ1µ2Ξµ3...µs − gµ1µ3Ξµ2µ4...µs · · ·+ (−1)sgµ1µsΞµ2...µs−1 , (7.1.92)

which links Ξ with s indices with Ξ with s− 2 indices. The sequence generated by

the above recursion can be started with the following values:

Ξµν = gµν , Ξµ = 0. (7.1.93)

Explicitly, tr(γµγνγλγκ) = −4(gµνgλκ−gµλgνκ +gµκgνλ), etc., while Ξ with any odd

number of indices vanishes. Since the exact solution (7.1.69a) shows that Λ(x, x′)

contains only products of even numbers of γ matrices, it follows that the trace of

Λ(x, x′) multiplied by any odd number of γ matrices vanishes, i.e.:

tr(γµΛ) = 0, (7.1.94)

while the opposite holds for /nΛ(x, x′), since /n changes the parity of the products of

γ matrices from odd to even and vice-versa.

The same conclusion can be reached by considering the coincidence limit ex-

pansion of Λ. Equations (7.1.86) show that the coefficient Λα1α2...αs with s indices

can be written in terms of the coefficients with a number of s − 1 or less indices,

multiplied by even numbers of γ matrices coming from Σαβ = 1
4
[γα, γβ], either on

its own in Eq. (7.1.86b) or through the spin connection Γα, defined in Eq. (2.2.17).

The spinor covariant derivative Dµ = ∂µ + Γµ also contributes a product of an even

number of γ matrices. Since the first order term in the expansion of Λ(x, x′) is the

identity, which contains zero γ matrices, it can be concluded that all higher order

terms Γαβ...γ will only contain products of an even number of γ matrices. Hence,

Eq. (7.1.94) is established.



7.1. GEOMETRIC STRUCTURE 195

For completeness, the traces of Λα and Λαβ are given in what follows. For Λα,

Eq. (7.1.87a) can be used to obtain the following results:

tr(Λξ) =0, (7.1.95a)

tr(γµγνΛξ) =− 2Γβ̂γ̂ρ̂ω
ρ̂
ξω

β̂
µω

γ̂
ν , (7.1.95b)

tr(γµγνγλγκΛξ) =ωα̂
ξ Γβ̂

π̂α̂η
π̂γ̂ωδ̂

µω
ρ̂
νω

σ̂
λω

ς̂
κ∆δ̂ρ̂σ̂ς̂β̂γ̂. (7.1.95c)

Higher order traces have been included to facilitate the calculation of the traces of

higher order coefficients (e.g. Λαβ). Hence, the traces of Λαβ are:

tr(Λξζ) =− 1

2
ωα̂

ξ ω
β̂
ζ Γρ̂

γ̂α̂Γγ̂

ρ̂β̂
, (7.1.96a)

tr(γµγνΛξζ) =− 1

2
ωα̂

ξ ω
β̂
ζ

(
ωγ̂

µω
δ̂
νΓγ̂δ̂ρ̂Γ

ρ̂

α̂β̂
+ ωρ̂

[µgν]κ∇α̂∇β̂e
κ
ρ̂ + 2gµνΓ

ρ̂
γ̂α̂Γγ̂

ρ̂β̂

)
=− 1

2
ωα̂

ξ ω
β̂
ζ

(
ωγ̂

µω
δ̂
νΓγ̂δ̂α̂,β̂ + 2gµνΓ

ρ̂
γ̂α̂Γγ̂

ρ̂β̂

)
. (7.1.96b)

7.1.6 Generators of isometries and conserved operators

The generators of isometries corresponding to the symmetries of adS can be deter-

mined using the formalism introduced in Ref. [25]. Starting from the five-dimensio-

nal embedding space, the symmetry group of Eq. (7.1.1) defining the adS four-surface

is SO(3, 2). Using latin letters a, b, c, . . . to denote indices in the embedding space-

time, the 10 Killing vectors kab ≡ k[ab] of the adS manifold can be parametrised as

follows:

(kab)c = (ηadηbc − ηacηbd)z
d, (7.1.97)

where (kab)c represent the covariant components of the Killing vector kab. Differen-

tiating Eqs. (7.1.2), kab can be written with respect to the adS coordinates:

(kij)cdz
c =

(
tanωr

ωr

)2 (
xiδjk − xjδik

)
dxk,

(k0i)cdz
c = −tanωr

ωr

sinωt

cosωr
xidt− cosωt

ω cosωr

[
tanωr

ωr

(
δij −

xixj

r2

)
+
xixj

r2

]
dxj,

(ki5)cdz
c = −tanωr

ωr

cosωt

cosωr
xidt+

sinωt

ω cosωr

[
tanωr

ωr

(
δij −

xixj

r2

)
+
xixj

r2

]
dxj,

(k05)cdz
c =

dt

ω cos2 ωr
. (7.1.98)

The contravariant components of the Killing vectors, obtained from the above co-

variant components using the inverse metric (7.1.6b), can be used to form the orbital

part Lab = −i(kab)
µ∂µ of the generator of the associated symmetry transformations
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(i2 = −1 when i is not an index):

Ljk = −i(xj∂k − xk∂j),

L0j = −i sinωtsinωr
ωr

xj∂t +
i

ω
cosωt

[
ωr

sinωr

(
δjk −

xjxk

r2

)
+ cosωr

xjxk

r2

]
∂k,

Lj5 = −i cosωt
sinωr

ωr
xj∂t −

i

ω
sinωt

[
ωr

sinωr

(
δjk −

xjxk

r2

)
+ cosωr

xjxk

r2

]
∂k,

L05 =
i

ω
∂t. (7.1.99)

The rotation generators Lij have the familiar SO(3) form and L05 generates time

translations. The generators of space-like translations have a more cumbersome

expression:[
sinωr

ωr

(
δij −

xixj

r2

)
+

1

cosωr

xixj

r2

]
(cosωtL0j − sinωtLj5) =

i

ω
∂i. (7.1.100)

The spin part of the isometries generators can be calculated using the for-

mula [25]:

Sab(x) =
i

2
Ωα̂β̂

ab (x)Σα̂β̂, (7.1.101)

where Σα̂β̂ = − i
4

[
γα̂, β̂

]
and

Ωα̂β̂
ab (x) = −〈ωα̂,

[
eβ̂, kab

]
〉 . (7.1.102)

Before embarking on the calculation of the commutators between the Killing vector

fields and the tetrad vectors, it is useful to write the former in terms of the latter:

kij =
tanωr

ωr
(xiδjk − xjδik)ek̂,

k0i = sinωt
tanωr

ωr
xiet̂ −

1

ω
cosωt

[
1

cosωr

(
δij −

xixj

r2

)
+
xixj

r2

]
eĵ,

ki5 = cosωt
tanωr

ωr
xiet̂ +

1

ω
sinωt

[
1

cosωr

(
δij −

xixj

r2

)
+
xixj

r2

]
eĵ,

k05 =
i

ω cosωr
et̂. (7.1.103)

Thus, the spin part of the generators of isometries are given by:

Sjk(x) = iΣĵk̂,

S0j(x) = sinωt

(
δjk −

xjxk

r2
+ cosωr

xjxk

r2

)
iΣt̂k̂ + cosωt

1− cosωr

sinωr

xk

r
iΣĵk̂,

Sj5(x) = cosωt

(
δjk −

xjxk

r2
+ cosωr

xjxk

r2

)
iΣt̂k̂ − sinωt

1− cosωr

sinωr

xk

r
iΣĵk̂,

S05(x) = 0. (7.1.104)
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In particular, the generators of rotations, which become angular momentum opera-

tors in quantum field theory, have the following form:

Jk =
1

2
εkij(Lij + Sij) = −i(x×∇)k + iΣk. (7.1.105)

The spin part of the translation operator with orbital part given in Eq. (7.1.100)

follows from Eq. (7.1.104):

[
sinωr

ωr

(
δjk −

xjxk

r2

)
+

1

cosωr

xjxk

r2

]
[S0k(x) cosωt− Sk5(x) sinωt]

=
1− cosωr

ωr

xk

r
iD[Σĵk̂]. (7.1.106)

Contracting both sides with xj shows that the spin part of the generator of radial

translations, having the orbital part given by Eq. (7.1.100), vanishes:

xj [S0j(x) cosωt− Sj5(x) sinωt] = 0. (7.1.107)

7.2 Mode solutions of the Dirac equation

The Dirac equation with respect to the Cartesian tetrad (7.1.7) for fermions of mass

µ can be written as

(ED − µ)ψ = 0, (7.2.1)

where ED = iγµDµ can be written as:

ED = iγα̂eλ
α̂∂λ +

i

2

1√
−g

∂λ(
√
−geλ

α̂)γα̂. (7.2.2)

The square root
√
−g of the determinant of the adS metric (7.1.6) with respect to

Cartesian coordinates is given by:

√
−g =

1

cos3 ωr

sin2 ωr

ω2r2
(7.2.3)

The mode solutions of the Dirac equation (7.2.1) are already known [26]. For com-

pleteness and to introduce the notation used in the following sections, their con-

struction is rederived here.

A complete set of commuting operators (CSCO) is given by {HD, J3,J
2, K},

where J is the total angular momentum operator (7.1.105), HD = i∂t is the Dirac

Hamiltonian and the spin-orbit operator K is given by [68]:

K = γ t̂(2iΣ ·L + 1). (7.2.4)
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These operators are conserved, since they commute with HD and with ED, hence,

they admit a set of simultaneous igenvectors UE,j,m,κ satisfying the following eigen-

value equations:

HDUE,j,m,κ = UE,j,m,κE, (7.2.5a)

J2UE,j,m,κ = UE,j,m,κj(j + 1), (7.2.5b)

J3UE,j,m,κ = UE,j,m,κm, (7.2.5c)

KUE,j,m,κ = UE,j,m,κ(−κ), (7.2.5d)

where

κ = ±(j +
1

2
) (7.2.6)

is the eigenvalue of K. The solutions of these equations can be written as:

UE,j,κ,m(x) = ωr
(cosωr)

3
2

sinωr
ŨE,j,κ,m(x), (7.2.7a)

where the reduced mode ŨE,j,κ,m, introduced to simplify the Dirac equation, can be

put in the form:

ŨE,j,κ,m(x) =
1

r

[
f+

E,κ(r)Φ
+
m,κ(θ, ϕ) + f−E,κ(r)Φ

−
m,κ(θ, ϕ)

]
e−iEt, (7.2.7b)

The four-spinors Φ±
m,κ are solutions of the angular eigenvalue equations (7.2.5b),

(7.2.5c) and (7.2.5d) and are given by [68]:

Φ+
κ,m =

(
iψm

j+ 1
2
sgnκ

0

)
, Φ−

κ,m =

(
0

ψm
j− 1

2
sgnκ

)
, (7.2.8a)

where the two-spinors ψm
j± 1

2
sgnκ

have the following expressions:

ψm
j± 1

2
=

1√
2j + 1± 1

 √
j + 1

2
∓ (m− 1

2
)Y

m− 1
2

j± 1
2

∓
√
j + 1

2
± (m+ 1

2
)Y

m+ 1
2

j± 1
2

 . (7.2.8b)

The spherical harmonics Y
m± 1

2
` , as well as properties of the two-spinors ψm

` , are

discussed in Appendix C.

The radial functions f±E,κ can be found by solving the reduced Dirac equation

[26]:

H̃DŨE,j,κ,m = ŨE,j,κ,mE, (7.2.9a)

where the Hamiltonian H̃D corresponding to the reduced Dirac equation can be

written in terms of spatial derivatives only as:

H̃D =
−i
r2
γ t̂(γ · x)(1 + x · ∇)− iω

r sinωr
(γ · x)K +

µ

cosωr
γ t̂. (7.2.9b)
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The following identities:

x · γ
r

Φ±
κ,m = −iΦ∓

κ,m,

γ t̂Φ±
κ,m = ∓Φ±

κ,m,

(1 + x · ∇)
1

r
f

(±)
E,κ(r) =

d

dr
f

(±)
E,κ(r), (7.2.10)

can be used to convert Eq. (7.2.9a) into a system of equations for the radial functions:

HrFE,κ =
E

ω
FE,κ, (7.2.11a)

where the radial Hamiltonian Hr is a 2× 2 matrix operator having the expression:

Hr =

(
k

cos ωr
− d

d(ωr)
+

κj

sin ωr
d

d(ωr)
+

κj

sin ωr
− k

cos ωr

)
, (7.2.11b)

and the radial functions have been grouped in a two-vector as follows:

FE,κ =

(
f+

E,κ

f−E,κ

)
. (7.2.11c)

In the above, the ratio between the mass µ and the inverse curvature ω has been

abbreviated using

k =
µ

ω
. (7.2.12)

To solve the system of equations (7.2.11a), it is convenient to put the radial

Hamiltonian Hr in superpotential form [26]:

Ĥr = RHrR
T − 1

2
=

(
k − κ − d

d(ωr)
+ κ cotωr + k tanωr

d
d(ωr)

+ κ cotωr + k tanωr −k + κ

)
,

(7.2.13)

where R is a rotation matrix having the form

R =

(
cos ωr

2
− sin ωr

2

sin ωr
2

cos ωr
2

)
. (7.2.14)

Applying the same rotation to the radial functions gives:

F̂ =

(
f̂+

E,κ

f̂−E,κ

)
= RF (7.2.15)

and Eq. (7.2.11a) become:

ĤrF̂ = εF̂ , (7.2.16)
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where

ε =
E

ω
− 1

2
. (7.2.17)

Equations (7.2.16) can be used to construct a second order differential equation

for f±E,κ: [
− d2

d(ωr)2
+
κ(κ± 1)

sin2 ωr
+
k(k ∓ 1)

cos2 ωr
− ε2

]
f̂±E,κ = 0. (7.2.18)

Changing variable to z = sin2 ωr and letting f̂±E,κ = (sinωr)2s±(cosωr)2p±g±E,κ puts

the above equation in the hypergeometric equation (D.1) form:{
z(1− z) d

2

dz2
+ [2s± + 1

2
− z(2s± + 2p± + 1)]

d

dz
− (s± + p±)2 +

ε2

4

}
g±E,κ = 0,

(7.2.19)

where s± and p± must obey:

2s±(2s± − 1) = κ(κ± 1), 2p±(2p± − 1) = k(k ∓ 1). (7.2.20)

Thus the radial functions take the form:

f̂
(±)
E,κ = N±(sinωr)2s±(cosωr)2p±

2F1(s± + p± − ε
2
, s± + p± + ε

2
; 2s± + 1

2
; sin2 ωr),

(7.2.21)

with N± being arbitrary constants. The above solutions are acceptable only if the

corresponding modes can be normalised. For eigenmodes of the eigenvalue equations

(7.2.5a), the Dirac inner product reduces to:

〈UE,j,m,κ, UE′,j′,m′,κ′〉 =δmm′δjj′δκκ′ 〈FE,κ,FE′,κ′〉

=δmm′δjj′δκκ′ 〈F̂E,κ, F̂E′,κ′〉

=δmm′δjj′δκκ′

∫ π
2ω

0

dr[f̂
(+)
E,κ(r)f̂

(+)
E′,κ′(r) + f̂

(−)
E,κ(r)f̂

(−)
E′,κ′(r)]

=δmm′δjj′δκκ′δ(E,E
′). (7.2.22)

The condition that the modes (7.2.7) have unit norm restricts the values of the

parameters 2p±, 2s± and ε. Firstly, for the hypergeometric functions in f (±) to be

regular at r = ω
2π

, one of its first two arguments must be a negative integer −n±,

leading to a quantisation of the energy:

ε = 2n+ + 2s+ + 2p+ = 2n− + 2s− + 2p−. (7.2.23)

Secondly, the powers of the sines and cosines under the integration sign must be

strictly greater than −1. This restriction, together with Eqs. (7.2.20), give the
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(2p+, 2p−) 2s± n− restrictions

1 (k, k + 1) j + 1± 1
2
sgnκ n+ − 1

2
+ 1

2
sgnκ −1

2
< k

2 (1− k,−k) j + 1± 1
2
sgnκ n+ + 1

2
+ 1

2
sgnκ |k| < 1

2

3 (k,−k) 1± sgnκ n+ + sgnκ k = 0, j = 1
2

4 (1− k, k + 1) 1± sgnκ n+ − k + sgnκ k = ±1, j = 1
2

5 (1− k, k + 1) j + 1± sgnκ n+ − k − 1
2
sgnκ k = ±1

2

Table 7.1: Permissible values for s± and p±

following permissible combinations:

(2p+, 2p−) =



(k, k + 1) k > −1
2

(k,−k) |k| < 1
2

(1− k, k + 1) |k| < 3
2

(1− k,−k) k < 1
2

, (2s+, 2s−) =



(j + 3
2
, j + 1

2
) κ > 0

(j + 3
2
, 1

2
− j) κ = 1

(j + 1
2
, j + 3

2
) κ < 0

(1
2
− j, j + 3

2
) κ = −1

.

(7.2.24)

Since both n+ and n− = n+ + (s+ − s−) + (p+ − p−) must be integers, some of

the combinations in Eq. (7.2.24) are not compatible. Table 7.1 gives the values

of n− corresponding to each permissible combination. The first and second lines

correspond to the regular and irregular modes in Ref. [26], respectively. Even though

the irregular modes are divergence at spatial infinity, they are integrable and thus

are part of the vector space of integrable mode solutions. When k = 1
2

or −1
2
,

the fifth line coincides with the first or second line, respectively, hence, it can be

interpreted as an extension of the latter to k = ±1
2
. The third and fourth lines do

not represent solutions of the Dirac equation, as will be shown shortly. If |k| ≤ 1
2
,

both the first and the second line should be considered when constructing a full

set of modes. In Ref. [26], a detailed discussion of irregular modes is avoided by

only considering k ≥ 1
2
. For completeness, both regular and irregular modes are

considered in this chapter.

Using the relation (B.2), the hypergeometric function in the expression of the

radial functions (7.2.21) can be replaced by Jacobi polynomials, introduced in Ap-

pendix B:

f̂
(±)
E,κ = N±

(
1− z

2

)s± (1 + z

2

)p±

P
(2s±− 1

2
,2p±− 1

2
)

n± (z), (7.2.25)

where z = cos 2ωr and the constants in Eq. (B.2) have been absorbed in the new

normalisation constant N±. The unit norm condition (7.2.22) places the following

constraint on the absolute value of the normalisation constants N±:

|N+|2
Γ(n+ + 2s+ + 1

2
)Γ(n+ + 2p+ + 1

2
)

n+!Γ(n+ + 2s+ + 2p+)
+|N−|2

Γ(n− + 2s− + 1
2
)Γ(n− + 2p− + 1

2
)

n−!Γ(n− + 2s− + 2p−)

= 2ωε. (7.2.26)
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The normalisation constants N+ and N− are related through the Dirac equation

(7.2.16), which reduces to the following system:

N+

[
(1− z)(k − 2p+) + (1 + z)(κ+ 2s+)− 2(1− z)(1 + z)

d

dz

]
P

(2s+− 1
2
,2p+− 1

2
)

n+ (z)

= 2N−(ε+ k − κ)
(

1− z
2

)s−−s++ 1
2
(

1 + z

2

)p−−p++ 1
2

P
(2s−− 1

2
,2p−− 1

2
)

n− (z), (7.2.27a)

N−

[
(1− z)(−k − 2p−) + (1 + z)(−κ+ 2s−)− 2(1− z)(1 + z)

d

dz

]
× P (2s−− 1

2
,2p−− 1

2
)

n− (z)

= 2N+(−ε+ k − κ)
(

1− z
2

)s+−s−+ 1
2
(

1 + z

2

)p+−p−+ 1
2

P
(2s+− 1

2
,2p+− 1

2
)

n+ (z).

(7.2.27b)

The above equations can be used together with Eqs. (B.9) and Eq. (7.2.26) to find

N± up to an arbitrary phase for any of the permissible combinations of p± and s±

listed in Table 7.1. In the following, the normalisation constants N± introduced in

Eq. (7.2.25) are calculated for each entry in Table 7.1.

Line 1, κ > 0: (2p+, 2p−, 2s+, 2s−, n−) = (k, k + 1, j + 3
2
, j + 1

2
, n+).

Since in this case, −κ+ 2s− = 0, it is convenient to use Eq. (7.2.27b) to obtain

the following relation between N− and N+:

N− = N+
n+ + j + 1

n+ + k + 1
2

. (7.2.28)

Substituting N− into Eq. (7.2.26) gives:

N± = η
√

2ω

√
n+!Γ(n+ + k + j + 3

2
)

Γ(n+ + j + 1)Γ(n+ + k + 1
2
)

(
n+ + k + 1

2

n+ + j + 1

)± 1
2

, (7.2.29)

where η is an arbitrary phase.

Line 1, κ < 0: (2p+, 2p−, 2s+, 2s−, n−) = (k, k + 1, j + 1
2
, j + 3

2
, n+ − 1).

Since κ + 2s+ = 0, Eq. (7.2.27a) can be used to show that N− = −N+, thus

Eq. (7.2.26) gives:

N± = ±η
√

2ω

√
n+!Γ(n+ + k + j + 3

2
)

Γ(n+ + j + 1)Γ(n+ + k + 1
2
)
. (7.2.30)
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Line 2, κ > 0: (2p+, 2p−, 2s+, 2s−, n−) = (1− k,−k, j + 3
2
, j + 1

2
, n+ + 1).

Equation (7.2.27b) shows that N+ = N−. The normalisation constants can be

found using Eq. (7.2.26):

N± = η
√

2ω

√
(n+ + 1)!Γ(n+ − k + j + 5

2
)

Γ(n+ + j + 2)Γ(n+ − k + 3
2
)
. (7.2.31)

Line 2, κ < 0: (2p+, 2p−, 2s+, 2s−, n−) = (1− k,−k, j + 1
2
, j + 3

2
, n+).

The relation between N+ and N− is in this case:

N− = −N+

n+ − k + 1
2

n+ + j + 1
, (7.2.32)

thus the normalisation constants are given by:

N± = ±η
√

2ω

√
n+!Γ(n+ − k + j + 3

2
)

Γ(n+ + j + 1)Γ(n+ − k + 1
2
)

(
n+ + j + 1

n+ − k + 1
2

)± 1
2

. (7.2.33)

Line 3, κ > 0: (2p+, 2p−, 2s+, 2s−, n−) = (0, 0, 2, 0, n+ + 1).

Choosing z = 1 in Eq. (7.2.27b) shows that:

− 2N−P
(− 1

2
,− 1

2
)

n++1 (1) = 0, (7.2.34)

implying that:

N+

[
3− 2(1− z) d

dz

]
P

( 3
2
,− 1

2
)

n+ = 0 (7.2.35)

for all values of z. Hence, N± = 0, showing that the combination considered here

does not represent a valid solution of the Dirac equation.

Line 3, κ < 0: (2p+, 2p−, 2s+, 2s−, n−) = (0, 0, 0, 2, n+ − 1).

Choosing z = 1 in Eq. (7.2.27a) shows that:

−N+P
(− 1

2
,− 1

2
)

n+ (1) = 0, (7.2.36)

implying again that N± = 0.

Line 4, κ > 0: (2p+, 2p−, 2s+, 2s−, n−) = (1− k, 1 + k, 2, 0, n+ + 1− k).

Setting z = 1 in Eq. (7.2.27b) gives

− 2N−P
(− 1

2
, 1
2
+k)

n++1−k (1) = 0. (7.2.37)

Hence, N− = 0.
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Line 4, κ < 0: (2p+, 2p−, 2s+, 2s−, n−) = (1− k, 1 + k, 0, 2, n+ − 1− k).
Substituting z = 1 in Eq. (7.2.27a) shows that

− 2N+P
(− 1

2
, 1
2
−k)

n+ (z) = 0. (7.2.38)

Line 5: As discussed previously, line 5 is just an extension of lines 1 and 2 to

k = ±1
2
.

Having found the normalisation constants above, the mode solutions are fully

determined. The negative energy spinors VE,j,m,κ = iγ 2̂(UE,j,m,κ)
∗ can be obtained

from Eq. (7.2.7) through charge conjugation (3.3.21):

VE,j,m,κ = ωr
(cosωr)

3
2

sinωr
ṼE,j,m,κ,

ṼE,j,m,κ = i sgnκ(−1)m− 1
2 eiEt 1

r

[
f

(+)∗
E,κ Φ−

−κ,−m + f
(−)∗
E,κ Φ+

−κ,−m

]
. (7.2.39)

The following property was used:

iγ2
(
Φ±

κ,m

)∗
= i sgnκ(−1)mj−

1
2 Φ∓

−κ,−m. (7.2.40)

Thus, the field operator for the Dirac field can be written as follows:

ψ(x) =
∞∑

n+=0

∞∑
j=−∞

j∑
m=−j

∑
κ=±(j+

1
2
)

[
UE,j,κ,m(x)bE,j,κ,m + VE,j,κ,m(x)d†E,j,κ,m

]
, (7.2.41)

where the sum over j goes over all odd half-integers ±1
2
, ±3

2
, . . . . Second quanti-

sation is performed by promoting the constants bE,j,κ,m and d†E,j,κ,m to particle an-

nihilation and anti-particle creation operators obeying canonical anti-commutation

relations:{
bE,j,κ,m, b

†
E′,j′,κ′,m′

}
=
{
dE,j,κ,m, d

†
E′,j′,κ′,m′

}
= δE,E′δj,j′δκ,κ′δm,m′ . (7.2.42)

All other anti-commutators vanish.

7.3 Two-point functions

The maximal symmetry of adS greatly simplifies the form of two-point functions.

As argued in Ref. [56], the Feynman propagator can be written in the form:

SF (x, x′) = (αF + βF /n) Λ(x, x′), (7.3.1)

where αF and βF are functions of the geodetic interval s (7.1.25) only, /n is the

contraction of the tangent n = ds to the geodesic connecting x and x′ with the
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γ matrices, and Λ(x, x′) is the bi-spinor of parallel transport (2.2.56), given by

Eq. (7.1.69a) on adS. For consistency, two methods of constructing the Feynman

propagator are presented: a mode sum approach in subsection 7.3.1 and solving

the inhomogeneous Dirac equation directly in subsection 7.3.3 [56]. The mode sum

approach has the advantage of being easily applicable to thermal (subsection 7.5.2)

or rotating thermal (subsection 8.3.1) states. The geometric approach can provide

simpler and more easily interpretable algebraic expressions, but unfortunately we

have not been able to apply it to the case of rotating thermal states when the

rotation of the space-time is large enough to pull the speed of light surface (SOL)

at rω ≤ π
2
.

7.3.1 Using mode sums

As presented in subsection 2.2.6, the Hadamard, Schwinger and Feynman two-point

functions can be constructed using the Wightman functions S±(x, x′) (2.2.48). Using

the anti-commutation relations (7.2.42), the Wightman functions can be written as

mode sums over direct products of four-spinors:

S± =
ω2(cosωr cosωr′)

3
2

sinωr sinωr′

∞∑
n+=0

∑
j,κ,m

e∓iE∆t

(
f±f±ψ± ⊗ ψ†± −if±f∓ψ± ⊗ ψ†∓
−if∓f±ψ∓ ⊗ ψ†± −f∓f∓ψ∓ ⊗ ψ†∓

)
,

(7.3.2)

where the following conventions have been used: f± ≡ f±E,κ are the radial functions

introduced in Eq. (7.2.7b) and ψ± ≡ ψm
j± 1

2
sgnκ

are the two spinors introduced in

Eq. (7.2.8b). In products of two functions, the first one depends on x and the second,

on x′, e.g. f−f+ ≡ f−E,κ(r)f
+
E,κ(r

′) and ψ+ ⊗ ψ†− ≡ ψm
j+ 1

2
sgnκ

(θ, ϕ)⊗ ψm †
j− 1

2
sgnκ

(θ′, ϕ′).

The next step is to write out explicitly the terms in the sum over κ, then perform

the summation over m using the formulae (C.4.2):

S±(x, x′) =
ω2

4π

(cosωr cosωr′)
3
2

sinωr sinωr′

∑
n+,j

s±(x, x′), (7.3.3a)

where s± is given by:

s±(x, x′) =

(
e∓iE±∆tf±± f

±
± −ie∓iE∓∆tf±∓ f

∓
∓

x·σ
r

−ie∓iE±∆tf∓± f
±
±

x·σ
r

−e∓iE∓∆tf∓∓ f
∓
∓

)
⊗(j+ 1

2
−σ ·L)Pj+ 1

2
(cos γ)

+

(
e∓iE∓∆tf±∓ f

±
∓ −ie∓iE±∆tf±± f

∓
±

x·σ
r

−ie∓iE∓∆tf∓∓ f
±
∓

x·σ
r

−e∓iE±∆tf∓± f
∓
±

)
⊗ (j + 1

2
+ σ ·L)Pj− 1

2
(cos γ),

(7.3.3b)

where Pj± 1
2
(cos γ) are Legendre polynomials (discussed in section C.1 of the ap-

pendix) and γ is the angle between x and x′, introduced in Eq. (7.1.25). The
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subscripts on f and E refer to the sign of κ, e.g. f+
− ≡ f+

E−,−j−1
2

and E± = represent

the energies corresponding to κ = ±(j+ 1
2
), through Eqs. (7.2.17) and (7.2.23). The

arguments of the radial functions follow the same convention used in Eq. (7.3.2).

According to the ansatz (7.3.1) the Feynman propagator depends on r or r′ only

through s, /n and Λ. Its form for general coordinates x and x′ can thus be inferred

from its expression when r′ = 0, in which case Eq. (7.3.3a) simplifies considerably.

In what follows, the Feynman propagator is calculated separately for regular and

irregular modes.

Regular modes

The construction of the Feynman propagator for arbitrary point separations is con-

siderably simpler by first one of the points at the origin. In the limit of vanishing

r, the hatted radial functions introduced in Eq. (7.2.16) of the regular modes corre-

sponding to the first line of Table 7.1 have the following form:

f̂+
+ ∼(sinωr)j+ 3

2
η
√

2ω

Γ(j + 2)
(n+ + k + 1

2
)

√
Γ(n+ + j + 2)Γ(n+ + j + k + 3

2
)

n+!Γ(n+ + k + 3
2
)

,

f̂+
− ∼(sinωr)j+ 1

2
η
√

2ω

Γ(j + 1)

√
Γ(n+ + j + 1)Γ(n+ + j + k + 3

2
)

n+!Γ(n+ + k + 1
2
)

,

f̂−+ ∼(sinωr)j+ 1
2
η
√

2ω

Γ(j + 1)

√
Γ(n+ + j + 2)Γ(n+ + j + k + 3

2
)

n+!Γ(n+ + k + 3
2
)

,

f̂−− ∼(sinωr)j+ 3
2
η
√

2ω

Γ(j + 2)
n+

√
Γ(n+ + j + 1)Γ(n+ + j + k + 3

2
)

n+!Γ(n+ + k + 1
2
)

. (7.3.4)

Using Eq. (7.2.16) to express f± in terms of f̂±, at r = 0 the former take the form:

1

sinωr
f+

+ −−→
r→0

0,

1

sinωr
f+
− −−→

r→0
2η

√
2ω

π

√
Γ(n+ + 3

2
)Γ(n+ + k + 2)

n+!Γ(n+ + k + 1
2
)

δ
j,

1
2
,

1

sinωr
f−+ −−→

r→0
2η

√
2ω

π

√
Γ(n+ + 5

2
)Γ(n+ + k + 2)

n+!Γ(n+ + k + 3
2
)

δj, 1
2
,

1

sinωr
f−− −−→

r→0
0. (7.3.5)

Given that all the terms of the form f±± vanish when r′ = 0, the terms multiplying

P
j+

1
2
(cos γ) in Eq. (7.3.3b) do not contribute. In what follows, the non-vanishing

contributions to the Feynman propagator are evaluated term by term, starting from
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the following building blocks:

∞∑
n+=0

e∓iE+∆t f̂
+
+ f

−∗
+

sinωr′
−−−→
r′→0

e∓
i
2
ω∆t tan2 ωr χ

3
2
d

dχ
H+,

∞∑
n+=0

e∓iE+∆t f̂
−
+ f

−∗
+

sinωr′
−−−→
r′→0

tanωr

[
e±

i
2
ω∆t

cosωr

(
−1 + k

2
+ χ

d

dχ

)
− e∓

i
2
ω∆tχ

3
2
d

dχ

]
H+,

∞∑
n+=0

e∓iE−∆t f̂
+
− f

+∗
−

sinωr′
−−−→
r′→0

e∓
i
2
ω∆t tanωr

[
1 + k

2
± i tanω(∆t)χ

d

dχ

]
H+,

∞∑
n+=0

e∓iE−∆t f̂
−
− f

+∗
−

sinωr′
−−−→
r′→0

− e∓
i
2
ω∆t tan2 ωr

(
−1 + k

2
+ χ

d

dχ

)
H+, (7.3.6)

where the arguments of the radial functions on the left hand side above follow the

convention introduced in Eq. (7.3.2) and H+ is given by:

H± =
4ω√
π

Γ(1± k)
21±kΓ(1

2
± k)

χ
1±k
2 2F1

(
1± k

2
,
2± k

2
;
1

2
± k;χ

)
, (7.3.7)

where H− has been introduced in anticipation for the construction of the Feynman

propagator using irregular modes. Finally, χ is defined as:

χ =
( cosωr

cosω∆t

)2

(7.3.8)

and is related to the geodetic interval s, defined in Eq. (7.1.25), through:

χ =
1

cos2 ωs

⌋
r′=0

. (7.3.9)

Irregular modes

In the case when k < 1
2
, the contributions coming from irregular modes correspond-

ing to the second line in Table 7.1 must be considered. Repeating the analysis for
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the regular modes, the leading behaviour of f̂± as r goes to 0 is:

f̂+
+ ∼(sinωr)j+ 3

2
η
√

2ω

Γ(j + 2)
(n+ + 1)

√
Γ(n+ + j + 2)Γ(n+ + j − k + 5

2
)

n+!Γ(n+ − k + 3
2
)

,

f̂+
− ∼(sinωr)j+ 1

2
η
√

2ω

Γ(j + 1)

√
Γ(n+ + j + 2)Γ(n+ + j − k + 3

2
)

n+!Γ(n+ − k + 3
2
)

,

f̂−+ ∼(sinωr)j+ 1
2
η
√

2ω

Γ(j + 1)

√
Γ(n+ + j + 2)Γ(n+ + j − k + 5

2
)

(n+ + 1)!Γ(n+ − k + 3
2
)

,

f̂−− ∼− (sinωr)j+ 3
2
η
√

2ω

Γ(j + 2)
(n+ − k + 1

2
)

√
Γ(n+ + j + 2)Γ(n+ + j − k + 3

2
)

n+!Γ(n+ − k + 3
2
)

,

(7.3.10)

giving the following leading order behaviour for f±:

1

sinωr
f+

+ −−−→
r′→0

0,

1

sinωr
f+
− −−−→

r′→0
2η

√
2ω

π

√
Γ(n+ + 5

2
)Γ(n+ − k + 2)

n+!Γ(n+ − k + 3
2
)

δ
j,

1
2
,

1

sinωr
f−+ −−−→

r′→0
2η

√
2ω

π

√
Γ(n+ + 5

2
)Γ(n+ − k + 3)

(n+ + 1)!Γ(n+ − k + 3
2
)
δ
j,

1
2
,

1

sinωr
f−− −−−→

r′→0
0. (7.3.11)

Now the analogues of Eqs. (7.3.6) can be computed:

∞∑
n+=0

e∓iE+∆t f̂
+
+ f

−∗
+

sinωr′
−−−→
r′→0

e∓
i
2
ω∆t tan2 ωr

(
−1− k

2
+ χ

d

dχ

)
H−,

∞∑
n+=0

e∓iE+∆t f̂
−
+ f

−∗
+

sinωr′
−−−→
r′→0

e∓
i
2
ω∆t tanωr

(
1− k

2
± i tanω∆tχ

d

dχ

)
H−,

∞∑
n+=0

e∓iE−∆t f̂
+
− f

+∗
−

sinωr′
−−−→
r′→0

tanωr

[
e±

i
2
ω∆t

cosωr

(
−1− k

2
+ χ

d

dχ

)
− e∓

i
2
ω∆tχ

3
2
d

dχ

]
H−,

∞∑
n+=0

e∓iE−∆t f̂
−∗
− f+

−

sinωr′
−−−→
r′→0

− e∓
i
2
ω∆t tan2 ωr χ

3
2
d

dχ
H−, (7.3.12)

where H− was introduced in Eq. (7.3.7). The similarity to Eqs. (7.3.6) is remark-

able.
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Result

Combining Eqs. (7.3.6) and (7.3.12) for regular modes and irregular modes, respec-

tively, and applying Eq. (7.2.16) to switch from f̂ to f gives:

∞∑
n+=0

e−iE−∆tf
+
− f

+∗
−

sinωr′
−−−→
r′→0

cos ωr
2

cosωr
tanωr

[
e−

i
2
ω∆t

(
1± k

2
− χ d

dχ

)
+ e

i
2
ω∆tχ

3
2
d

dχ

]
H±,

∞∑
n+=0

e−iE+∆tf
−
+ f

−∗
+

sinωr′
−−−→
r′→0

−
cos ωr

2

cosωr
tanωr

[
e

i
2
ω∆t

(
1± k

2
− χ d

dχ

)
+ e−

i
2
ω∆tχ

3
2
d

dχ

]
H±,

∞∑
n+=0

e−iE+∆tf
+
+ f

−∗
+

sinωr′
−−−→
r′→0

−
sin ωr

2

cosωr
tanωr

[
e

i
2
ω∆t

(
1± k

2
− χ d

dχ

)
− e−

i
2
ω∆tχ

3
2
d

dχ

]
H±,

∞∑
n+=0

e−iE−∆tf
−
− f

+∗
−

sinωr′
−−−→
r′→0

sin ωr
2

cosωr
tanωr

[
e−

i
2
ω∆t

(
1± k

2
− χ d

dχ

)
− e

i
2
ω∆tχ

3
2
d

dχ

]
H±.

(7.3.13)

In the above, the + and − signs correspond to contributions from regular and irregu-

lar modes, respectively. The sums involving eiEκ∆t can be found by applying complex

conjugation of the above relations, keeping in mind that the only non-real terms are

the exponentials involving it. It can be checked that, at least when r′ = 0, the

Wightman functions satisfy S+ = −S−. Thus, ignoring iε terms traditionally used

to control the position of the poles in two-point functions, S+ = SF = 1
2
S(1). The

Wightman functions can be obtained by substituting Eqs. (7.3.13) in Eq. (7.3.3a).

Keeping in mind that the iε terms are neglected, the 2×2 matrix elements (i, j) of the

Feynman function can be found from the Wightman functions using Eq. (2.2.53a):

SF (x, x′) =

(
(1, 1) (1, 2)

(2, 1) (2, 2)

)
, (7.3.14a)

where

(1, 1) =
ω2

4π

cos ωr
2

cos
1
2 ωr

[
e−

i
2
ω∆t

(
1± k

2
− χ d

dχ

)
+ e

i
2
ω∆tχ

3
2
d

dχ

]
H±,

(2, 2) =
ω2

4π

cos ωr
2

cos
1
2 ωr

[
e

i
2
ω∆t

(
1± k

2
− χ d

dχ

)
+ e−

i
2
ω∆tχ

3
2
d

dχ

]
H±,

(1, 2) =i
x · σ
r

ω2

4π

sin ωr
2

cos
1
2 ωr

[
e

i
2
ω∆t

(
1± k

2
− χ d

dχ

)
− e−

i
2
ω∆tχ

3
2
d

dχ

]
H±,

(2, 1) =− ix · σ
r

ω2

4π

sin ωr
2

cos
1
2 ωr

[
e−

i
2
ω∆t

(
1± k

2
− χ d

dχ

)
− e

i
2
ω∆tχ

3
2
d

dχ

]
H±.

(7.3.14b)
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Hence, the contributions S±F (x, x′) to the Feynman propagator coming from the

regular (+) and irregular (−) modes can be written as:

S±F (x, x′) = 2ω

[
S±
(

1± k
2
− χ d

dχ

)
+ S∓χ

3
2
d

dχ

]
[−iG±

F (x, x′)], (7.3.15a)

where

S± =
1√

cosωr

 cos ωr
2
e∓

i
2

ω∆t ±i sin ωr
2
e±

i
2

ω∆t x·σ
r

∓i sin ωr
2
e∓

i
2

ω∆t x·σ
r

cos ωr
2
e±

i
2

ω∆t

 , (7.3.15b)

where G±
F are the Feynman propagators of the scalar field [49, 50] corresponding

to the mass parameters k ≡ k± = 1 ± k (using the notation therein), which can be

related to the functions H± in Eq. (7.3.7) through:

H± =
8π

ω
(−iG±

F ). (7.3.16)

The functions S±, defined in Eq. (7.3.15b), can be written in terms of the bi-

spinor of parallel transport Λ discussed in subsection 7.1.4, using Eqs. (7.1.53) and

(7.1.54):

S±(x, x′) =
(
cos

ωs

2
∓ i sin ωs

2
/n
)

Λ(x, x′), (7.3.17)

where the relation cos ωs
2

= [(1+cosω∆t/ cosωr)/2]
1
2 has been used. As discussed in

the introduction of this section, the Feynman propagator on maximally symmetric

space-times can be written as in Eq. (7.3.1), thus depending on the coordinates x

and x′ only through s, /n and Λ. Hence, substituting Eq. (7.3.17) in Eq. (7.3.15a)

allows the Feynman propagator to be written as follows:

S±F (x, x′) = (α±F + β±F /n)Λ(x, x′), (7.3.18)

where α±F and β±F are functions of the geodetic interval s given by:

α±F =±
ω3 cos ωs

2

π
3
2 21±k

Γ(1± k)
Γ(1

2
± k)

[
1± k

2
+ χ(
√
χ− 1)

d

dχ

]
χ

1±k
2 2F1

(
1±k
2
, 2±k

2
; 1

2
± k;χ

)
,

β±F =
iω3 sin ωs

2

π
3
2 21±k

Γ(1± k)
Γ(1

2
± k)

[
−1± k

2
+ χ(
√
χ+ 1)

d

dχ

]
χ

1±k
2 2F1

(
1±k
2
, 2±k

2
; 1

2
± k;χ

)
.

(7.3.19)

It can be seen that the contributions made by irregular modes (−) can be related

to those coming from regular modes (+) by changing the sign of the mass term k = µ
ω
,

as follows:

α−F (k) = −α+
F (−k), β−F (k) = β+

F (−k). (7.3.20)
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7.3.2 Small distance behaviour of two-point functions

To compute renormalised expectation values, the coincidence limit of the Feynman

propagator (7.3.18) and its derivatives are required. It is convenient to extract the

small distance behaviour of α±F and β±F by changing the variable in the hypergeo-

metric functions in Eqs. (7.3.19) from χ = (cosωs)−2 to q = sin2 ωs
2

. This change of

variable can be achieved using standard formulae [1, 60] in three stages, as follows.

Using Eq. (D.4a), the functions α±F and β±F can be written as:

α±F =± ω3N±k

16π2

(
cos

ωs

2

)−3∓2k

2F1

(
±k, 2± k; 1± 2k;

1

cos2 ωs
2

)
, (7.3.21a)

β±F =i
ω3N±k

16π2
sin

ωs

2

(
cos

ωs

2

)−4∓2k

2F1

(
1± k, 2± k; 1± 2k;

1

cos2 ωs
2

)
, (7.3.21b)

with

N±k =
Γ(2± k)

√
π

4±kΓ(1
2
± k)

, (7.3.21c)

where Eqs. (D.3e) and (D.3d) have been used for α and β, respectively. Next,

Eq. (D.4b) can be used to change the argument of the hypergeometric functions to

(sin ωs
2

)−2:

α±F =± ω3N±k

16π2
cos

ωs

2

(
− sin2 ωs

2

)−2∓k

2F1

(
1± k, 2± k; 1± 2k;

1

sin2 ωs
2

)
,

(7.3.22a)

β±F =i
ω3N±k

16π2
sin

ωs

2

(
− sin2 ωs

2

)−2∓k

2F1

(
±k, 2± k; 1± 2k;

1

sin2 ωs
2

)
. (7.3.22b)

Finally, Eq. (D.4c) can be used to change the argument of the hypergeometric func-

tions to sin2 ωs
2

:

α±F =
ω3k(k2 − 1)

16π2
cos

ωs

2

{
− 1

(k2 − 1) sin2 ωs
2

+
[
∓π cotπk + ln

(
− sin2 ωs

2

)]
2F1

(
2 + k, 2− k; 2; sin2 ωs

2

)
+

∞∑
n=0

(2 + k)n(2− k)n

(2)nn!

(
sin2 ωs

2

)n

Ψ(−1)
n

}
,

β±F =− iω3k2(k2 − 1)

16π2
sin

ωs

2

{
− 1

k2(k2 − 1) sin4 ωs
2

(
1 + k2 sin2 ωs

2

)
+

1

2

[
∓π cotπk + ln

(
− sin2 ωs

2

)]
2F1

(
2 + k, 2− k; 3; sin2 ωs

2

)
+

1

2

∞∑
n=0

(2 + k)n(2− k)n

(3)nn!

(
sin2 ωs

2

)n
[
Ψ(−1)

n − 1

2 + n

]}
, (7.3.23a)

where (z)n = z(z + 1) . . . (z + n) is the Pochhammer symbol [1, 60] and Ψ
(−1)
n is
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defined in terms of the polygamma function ψ(z) [1, 60] as:

Ψ(−1)
n = ψ(2 + k + n) + ψ(2− k + n)− ψ(2 + n)− ψ(1 + n). (7.3.23b)

It should be noted that in Eqs. (7.3.23), the geodetic interval s is taken along time-

like geodesics. For space-like geodesics, s would be imaginary and the arguments of

the logarithms above would be positive. It can be seen that the difference between

the contributions of the regular and irregular modes is regular in the coincidence

limit. Alternatively, the polygamma functions in Eq. (7.3.23b) can be expressed in

terms of ±k, as follows:

α±F =
ω3k(k2 − 1)

16π2
cos

ωs

2

{
− 1

(k2 − 1) sin2 ωs
2

+ ln
(
− sin2 ωs

2

)
2F1

(
2 + k, 2− k; 2; sin2 ωs

2

)
+

∞∑
n=0

(2 + k)n(2− k)n

(2)nn!

(
sin2 ωs

2

)n

Ψ±
n

}
,

β±F =− iω3k2(k2 − 1)

16π2
sin

ωs

2

{
− 1

k2(k2 − 1) sin4 ωs
2

(
1 + k2 sin2 ωs

2

)
+

1

2
ln
(
− sin2 ωs

2

)
2F1

(
2 + k, 2− k; 3; sin2 ωs

2

)
+

∞∑
n=0

(2 + k)n(2− k)n

2(3)nn!

(
sin2 ωs

2

)n
[
Ψ±

n −
1

2 + n

]}
, (7.3.24)

where

Ψ±
n = ψ(2± k + n) + ψ(−1± k − n)− ψ(2 + n)− ψ(1 + n). (7.3.25)

For the purpose of calculating the v.e.v. of the SET, the following expansions

around s = 0 are needed:

α±F −−→s→0
− kω

4π2s2
∓ ω3

16π2

(
1± 5k

6
− k2 ± k3

)
+
kω3

8π2
(k2 − 1)

{
1

2
ln

[
−
(ωs

2

)2
]

+ ψ(±k) + γ

}
,

β±F −−→s→0

i

2π2s3
+
iω2(1 + 2k2)

16π2s
,

4i
(ω

2
cot

ωs

2

)
β±F −−→s→0

− 1

2π2s4
− ω2(1 + 6k2)

12π2s2
+

ω4

8π2

(
17

360
∓ k

2
− k2

12
± k3

2
− 3k4

4

)
+
ω4k2(k2 − 1)

8π2

{
1

2
ln

[
−
(ωs

2

)2
]
+ γ + ψ(±k)− 1

2
ln(−4)

}
,

− 4i

(
∂

∂s
− ω

2
cot

ωs

2

)
β±F −−→s→0

− 8

π2s4
− ω2(1 + 3k2)

3π2s2
+

ω4

2π2

(
17

360
+
k2

3
− k4

4

)
.

(7.3.26)
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In the massless limit, α±F and β±F take the following values:

α±F
⌋

k=0
=

ω3

16π2 cos3 ωs
2

, β±F
⌋

k=0
=

iω3

16π2 sin3 ωs
2

. (7.3.27)

It is remarkable that the above expressions are the same for regular and irregular

modes.

7.3.3 Using the spinor parallel propagator

In subsection 7.3.1, an expression for the Feynman propagator at arbitrary point sep-

aration was obtained by extrapolating the result obtained for one point at the origin,

based on the ansatz (7.3.1). Following Ref. [56], the inhomogeneous Dirac equation is

solved directly by substituting the aforementioned ansatz into Eq. (2.2.53b), leading

to the following equation:{
/n

[
iα′F + iαF

3

2
(A+ C)− µβF

]
+ iβ′F + iβF

3

2
(A− C)− µαF

}
Λ =

1√
−g

δ(x−x′),

(7.3.28)

valid for any maximally symmetric space-time. On adS, A and C are given by

Eqs. (7.1.35). As discussed in subsections 7.1.4 and 7.1.5, Λ only depends on prod-

ucts of even number of γ functions, hence, tr(/nΛ) = 0. Taking the trace of the

above equation multiplied by /n shows that the coefficient of /n above has to vanish

identically, leading to the following equations:

iα′F −
3iω

2
tan

ωs

2
αF − µβF = 0, (7.3.29a)

iβ′F +
3iω

2
cot

ωs

2
βF − µαF =

1√
−g

δ(x, x′). (7.3.29b)

These two equations can be combined to form a second order differential equation

for αF :

α′′F + 3ωα′F cotωs+

[
µ2 +

3ω2

2

(
cosωs− 1

sin2 ωs
− 3

2

)]
αF = −µδ(x− x

′)√
−g

. (7.3.30)

Changing variable to z = cos2 ωs
2

and writing αF = z
1
2 α̃F puts Eq. (7.3.30) in the

hypergeometric equation form (D.1):[
z(1− z) d

2

dz2
+ (3− 5z)

d

dz
+ (k − 2)(k + 2)

]
α̃F = − k

ωz
1
2

δ(x− x′)√
−g

, (7.3.31)
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which agrees with the expression in Ref. [56]. Changing variable to q = 1− z puts

Eq. (7.3.31) in the following form:[
q(1− q) d

2

dq2
+ (2− 5q)

d

dq
− (2− k)(2 + k)

]
α̃F = − k

ω(1− q) 1
2

δ(x− x′)√
−g

.

(7.3.32)

The parameters of the hypergeometric differential equation are now a = 2 − k,

b = 2 + k and c = 2, and the two linearly independent solutions are [60]:

αF = λ cos
ωs

2

{
− 1

(k2 − 1)q
+ 2F1(2− k, 2 + k; 2; q)(λ′ + ln q)

+
∞∑

n=0

(2 + k)n(2− k)n

(2)nn!
qn[ψ(2 + k + n) + ψ(2− k + n)− ψ(2 + n)− ψ(1 + n)]

}
.

(7.3.33)

The constants λ and λ′ can be found by matching the small distance behaviour of

αF with that of the Minkowski propagator αMink [56]:

αMink = −
( µ

2π

)2 1

s
K1(µs) −−→

s→0
− ωk

4π2s2
. (7.3.34)

Thus, λ is given by:

λ =
kω3

16π2
(k2 − 1). (7.3.35)

Furthermore, a comparison with the expression (7.3.24) is enough to fix both con-

stants:

λ± =
kω3

16π2
(k2 − 1), λ′± = ∓π cotπk, (7.3.36)

where the upper and lower signs correspond to regular and irregular modes, respec-

tively.

7.4 Renormalised vacuum expectation values

The vacuum expectation values (v.e.v.s) of the fermion condensate (FC), charge

current (CC) and stress-energy tensor (SET) can be calculated using the Feynman

propagator by replacing the thermal Hadamard function ∆S
(1)
β (x, x′) by 2SF (x, x′)

in Eqs. (2.2.55), as follows:

〈ψψ〉 =− lim
x′→x

tr [SF (x, x′)Λ(x′, x)] , (7.4.1a)

〈Jµ〉 =− lim
x′→x

tr [γµSF (x, x′)Λ(x′, x)] , (7.4.1b)

〈Tµν〉 =
i

2
lim
x′→x

tr

{[
γ(νDµ)SF (x, x′)− SF (x, x′)

←−
Dλ′γκ′g

λ′

(µg
κ′

ν)

]
Λ(x′, x)

}
.

(7.4.1c)
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If the ansatz (7.3.1) is made for the form of SF (x, x′), the formula (7.1.42) for the

derivative of Λ, together with the formulae (7.1.32a) for the differentiation of the

tangent vector can be used to write the above v.e.v.s using the functions αF and

βF :

〈ψψ〉 =4 lim
x′→x

αF (s), (7.4.2a)

〈Jµ〉 =4 lim
x′→x

nµβF (s), (7.4.2b)

〈Tµν〉 =4i lim
x′→x

[
−nµnν

(
∂

∂s
− ω

2
cot

ωs

2

)
βF + gµν

ω

2
βF cot

ωs

2

]
. (7.4.2c)

The tangents to the geodesic nµ depend on the direction along which the points

are split. For consistency, their coefficients should vanish identically in the coinci-

dence limit, since the final expressions for the v.e.v.s above must be independent of

the mathematical technique employed. Thus, the v.e.v. of the CC should vanish.

Furthermore, the adS symmetries imply that the FC must be a constant scalar,

while the SET should be a constant multiplying the metric tensor gµν . The above

expressions are infinite due to the divergence in the coincidence limit of αF and

βF , demonstrated in Eqs. (7.3.26). In subsections 7.4.1 and 7.4.2, the Schwinger-

de Witt and Hadamard methods are applied for the renormalisation of the above

expressions.

7.4.1 Schwinger-de Witt method

In the Schwinger-de Witt method, v.e.v.s are renormalised by subtracting from

SF (x, x′) in Eqs. (7.4.1) counter terms which are determined separately. In Ref. [24],

Christensen uses covariant point splitting to calculate the divergent contributions

T div
µν ≡ Tµν(x, x

′) to the SET as point-split tensors, using Eq. (7.4.1c). Renor-

malisation is performed by subtracting T div
µν from the function inside the limit in

Eq. (7.4.2c), after which the limit can be safely taken.

Specialising to adS reduces Christensen’s expressions [24] to the following:

T div
µν = T div,quartic

µν + T div,quadratic
µν + T div,ln

µν + T div,finite
µν , (7.4.3a)

where

T div,quartic
µν =

−1

π2s4
(gµν + 4nµnν),

T div,quadratic
µν =

−ω2

4π2s2

[
gµν

(
1

6
+ k2

)
+ 2nµnν

(
1

3
+ k2

)]
,

T div,ln
µν =

ω4

16π2
k2(k2 − 1)(γ + ln |µs|)gµν ,

T div,fin
µν =

ω4

4π2

[
gµν

(
5

144
− k2

24
− 3k4

16

)
+ nµnν

(
17

360
+
k2

3
− k4

4

)]
, (7.4.3b)
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where γ is Euler’s constant and µ is the mass of the field.

The following identities were used:

RλξκεRλξκε =24ω4,

R
(µ

λRξκn
ν)nλnξnκ =− 9ω4nµnν ,

R
(µ|α β

λ Rξακβn
|ν)nλnξnκ =− 3ω4nµnν ,

Rα
λR

µ
ξακn

νnλnξnκ =0,

RλξR
µ ν
κ εn

λnξnκnε =3ω4(gµν + nµnν),

Rµ α
λ ξR

ν
καεn

λnξnκnε =ω4(gµν + nµnν),

Rα β
λ ξRακβεn

λnξnκnε =3ω4,

RαβR µ
α βλn

νnλ =9ω4nµnν ,

RαβγµRαβγλ =6ω4δµ
λ,

RµανβRαλβξn
λnξ =ω2(−2gµν + nµnν),

RλαR
α(µν)

ξn
λnξ =3ω4(gµν + nµnν),

Rµαβ
λR

ν
βαξn

λnξ =3ω4nµnν ,

Rµαβ
λR

ν
αβξn

λnξ =ω4(−gµν + 2nµnν). (7.4.4)

The renormalised v.e.v. of the SET can be calculated separately for regular (+)

and irregular (−) modes by subtracting T div
µν from the coincidence limit expansions

(7.3.26) of the terms appearing in Eq. (7.4.2c). The coefficient of nµnν vanishes

identically, which is in agreement with the geometrical argument that Tµν should

be proportional to gµν in a maximally symmetric space-time. Therefore, the renor-

malised expectation value of the SET can be written in terms of its trace T as:

〈Tµν〉±SdW =
1

4
gµν 〈T 〉±SdW , (7.4.5)

where

〈T 〉±SdW = − ω4

4π2

{
11

60
± k − k2

6
∓ k3 + 2k2(k2 − 1)

[
ln

2µ

ω
− ψ(±k)

]}
. (7.4.6)

The result (7.4.6) can be compared with the trace TP-V of the renormalised

expectation value 〈Tµν〉P-V of the SET obtained using the Pauli-Villars regularisation

method in Ref. [18]:

TP-V = − ω4

4π2

{
11

60
+ k − k2

6
− k3 + 2k2(k2 − 1)

[
ln
ν

ω
− ψ(k)

]}
, (7.4.7)

where ν is an arbitrary renormalisation mass scale. The agreement with Eq. (7.4.6)

is excellent if only regular modes are considered.
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7.4.2 Hadamard renormalisation

A series of theorems by Hadamard [3, 58] for the scalar field allow the unambiguous

isolation of the singular part of the scalar field propagator in a state-independent

fashion. This approach, extended to fermions in Refs. [42, 59], can be used to

isolate the singular part of the Feynman propagator SF (x, x′) into the Hadamard

form SH(x, x′). Thus, a regularised propagator Sreg(x, x
′) can be obtained as the

remainder of SF (x, x′) after the subtraction of its singular elements:

Sreg(x, x
′) = SF (x, x′)− SH(x, x′). (7.4.8)

Hadamard renormalisation is performed by replacing SF by Sreg in Eqs. (7.4.1).

The first step towards using the powerful Hadamard theorems is to introduce an

auxiliary bi-spinor function GF [24, 59], by analogy with the flat space-time, such

that:

SF (x, x′) = (iγµDµ + µ)GF (x, x′). (7.4.9)

By acting with the Dirac operator i /D−µ on SF , the following equation is obtained:(
�− 1

2
[γµ, γν ]D[µDν] − µ2

)
GF = (−g)−

1
2 δn(x, x′), (7.4.10)

where n is the number of space-time dimensions and the spinor box operator � is

defined by analogy with the scalar case as:

� ≡ gµνDµDν . (7.4.11)

Analogously to the commutator of ordinary (tensor) covariant derivatives, the com-

mutator [Dµ, Dν ] can be written for any number of space-time dimensions using the

Riemann tensor [24]:

[Dµ, Dν ]GF (x, x′) = −1

2
RρλµνΣ

ρλGF (x, x′), (7.4.12)

where Σρλ = 1
4

[
γρ, γλ

]
are the anti-Hermitian spin part of the generators of Lorentz

transformations. Due to the symmetry Rρλµν = Rµνρλ, the commutator term in

Eq. (7.4.10) can be written as:

1

2
[γµ, γν ]D[µDν] = −1

8
Rρλµν

{
Σρλ,Σµν

}
, (7.4.13)

where the anticommutator of the Σ matrices can be written as:

{
Σρλ,Σµν

}
= −1

2
(gρµgλν − gρνgλµ) +

i

2
ερλµνγ 5̂, (7.4.14)
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where

ερλµν = eρ
α̂e

λ
β̂
eµ

γ̂e
ν
ρ̂ε

α̂β̂γ̂ρ̂ (7.4.15)

is written in terms of the Levi-Civita symbol εα̂β̂γ̂ρ̂, with the convention ε0̂1̂2̂3̂ = 1.

Finally, the Bianchi identity Rρ[λµν] = 0 can be used to show that GF satisfies the

following equation [59], irrespective of the number n of space-time dimensions:

(
�− 1

4
R− µ2

)
GF (x, x′) = (−g)−

1
2 δn(x, x′). (7.4.16)

It can be shown by using Eq. (7.1.42) that, if SF = (αF + βF /n)Λ, then:

GF (x, x′) =
αF (s)

ωk
Λ(x, x′). (7.4.17)

Equation (7.4.16) can be written as a set of 16 scalar second order differential equa-

tions involving the matrix elements of the auxiliary propagator GF (x, x′). As dis-

cussed in Ref. [59], extrapolating Hadamard’s theorem to the spinor case allows the

singularity structure of GF to be isolated as follows:

GF (x, x′) =
1

8π2

(u
σ

+ v ln(ν2 |σ|) + w
)
, (7.4.18)

where ν is an arbitrary renormalisation mass scale introduced to make the argu-

ment of the logarithm dimensionless and u, v and w are bi-spinor functions of x

and x′ which are regular in the coincidence limit. However, in the case of a maxi-

mally symmetric space-time, Eq. (7.4.17) shows that they reduce to functions of the

geodetic interval s multiplied by the bi-spinor of parallel transport Λ. According

to the Hadamard theorem, the functions u and v are independent of the quantum

state of the system, being fully determined by the space-time geometry. Hadamard

renormalisation amounts to the subtraction of the Hadamard form GH , defined as

the divergent part of GF :

GH(x, x′) =
1

8π2

[u
σ

+ v ln(ν2 |σ|)
]

=
αH(s)

µ
Λ(x, x), (7.4.19)

where it is understood that GH does not necessarily satisfy the Dirac equation, hence,

αH is not necessarily a solution of Eq. (7.3.30).

The bi-spinor functions u and v can be found by solving Eq. (7.4.16). The first

derivative of GF in Eq. (7.4.18) is:

8π2DµGF = −uσµ

σ2
+
u;µ + vσµ

σ
+ v;µ ln(ν2 |σ|) + w;µ, (7.4.20)
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and the Dirac equation (7.4.16) reads:

8π2(�− 1
4
R− µ2)GF (x, x′) = − 2

σ2

[
σλu;λ + 1

2
(�σ − 4)u

]
+

2

σ

[
σλv;λ + 1

2
(�σ − 2)v + 1

2
(�− 1

4
R− µ2)u

]
+
[
(�− 1

4
R− µ2)v

]
ln(ν2 |σ|) + (�− 1

4
R− µ2)w, (7.4.21)

where it is understood that the box operator denotes the covariant differentiation

of the object on which it acts, e.g. �σ = gµν∇µ∇νσ and �u = gµνDµDνu. The σ−2

term gives the following equation for u:

σλu;λ + 1
2
(�σ − 4)u = 0, (7.4.22)

which can be solved exactly using Eq. (7.1.37) to link �σ − 4 to the derivative of

the Van Vleck-Morette determinant ∆:

σλDλ

(
∆− 1

2u
)

= 0. (7.4.23)

The solution of the above equation is the bi-spinor of parallel transport (2.2.57),

given explicitly for the adS space-time in Eq. (7.1.69a). The initial condition

Eq. (7.3.34) fixes the integration constant such that u is given by:

u(x, x′) =
√

∆Λ(x, x′), (7.4.24)

as presented in Ref. [59].

Next, the coefficient of ln(ν2 |σ|) in Eq. (7.4.21) vanishes when:(
�− 1

4
R− µ2

)
v(x, x′) = 0. (7.4.25)

If we write v(x, x′) = αv(s)Λ(x, x′), then αv is the solution of Eq. (7.3.32) which is

regular at the origin, as given in Eq. (7.3.33):

v(x, x′) = Cv cos ωs
2 2F1

(
2− k, 2 + k; 2; sin2 ωs

2

)
Λ(x, x′). (7.4.26)

The integration constant Cv can be fixed by requiring that the last divergent term

in the Dirac equation (7.4.21) vanishes. Hence, the following expression must be of

order O(σ):

σλv;λ + 1
2
(�σ − 2)v + 1

2
(�− 1

4
R− µ2)u = O(σ). (7.4.27)

The first term is of order σ. The second term evaluates to:

�σ − 2 = −1 + 3ωs cotωs. (7.4.28a)
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The following intermediate steps are useful for the third term in Eq. (7.4.27):

∇µ

√
∆ =

3

2s
(1− ωs cotωs)

√
∆nµ, (7.4.28b)

�
√

∆ = −3ω2

2

[
1

2(ωs)2
− 1

2 sin2 ωs
+

3

2

]√
∆, (7.4.28c)

�Λ =
3ω2

4
tan2 ωs

2
Λ. (7.4.28d)

Hence, the third term evaluates to:

1

2

(
�− 1

4
R− µ2

)
u =

3ω2

8

(
− 1

(ωs)2
+

1

sin2 ωs
+

1

cos2 ωs
2

− 4k2

3

)
u. (7.4.28e)

Since the leading order term in Eq. (7.4.28e) is ω2

2
(1−k2) and since �σ−2 = 2+O(σ),

the integration constant in v must be Cv = ω2

2
(k2 − 1), hence:

αH =
ωk

8π2

{√
∆

σ
+
ω2

2
(k2 − 1) cos ωs

2 2F1(2− k, 2 + k; 2; sin2 ωs
2

) ln(ν2 |σ|)

}
.

(7.4.29)

The expression (7.4.26) for v can be checked by using the method in [59], ap-

plicable to generic space-times, where Eq. (7.4.17) does not necessarily hold. On a

general space-time, v and w can be written as:

v(x, x′) =
∞∑

n=0

vn(x, x′)σn, w(x, x′) =
∞∑

n=0

wn(x, x′)σn, (7.4.30)

where the bi-spinors vn and wn are regular at the coincidence limit and u is given in

Eq. (7.4.24). Substituting these expansions in Eq. (7.4.21), the following equations

are obtained:

σµv0;µ + 1
2
(�σ − 2)v0 +

1

2

(
�− 1

4
R− µ2

)
u = 0, (7.4.31a)

σλvn+1;λ +
1

2
(�σ + 2n)vn+1 +

1

2(n+ 1)

(
�− 1

4
R− µ2

)
vn = 0, (7.4.31b)

σλwn+1;λ +
1

2
(�σ + 2n)wn+1 +

1

2(n+ 1)

(
�− 1

4
R− µ2

)
wn

+
1

n+ 1
σλvn+1;λ +

1

2(n+ 1)
[�σ + 2(2n+ 1)] vn+1 = 0. (7.4.31c)

The above equations are in exact agreement with [59]. Factorising v0 = f0u in

Eq. (7.4.31a) gives:

∂ωs(ωsf0)u = −1
2

(
�− 1

4
R− µ2

)
u, (7.4.32)



7.4. RENORMALISED VACUUM EXPECTATION VALUES 221

which can be integrated using Eq. (7.4.28e) for the RHS:

f0 =
3ω2

8

[
− 1

(ωs)2
+

cotωs

ωs
−

2 tan ωs
2

ωs
+

4k2

3

]
. (7.4.33)

Similarly, v1 can be found from Eq. (7.4.31b) by using an auxiliary function f1 such

that v1 = f1u. Using the equation:

1
2

(
�− 1

4
R− µ2

)
v0 = − ω

2s
∂ωs

[
ωs∂ωsf0 + 2f0 + 1

ω2 (ωsf0)
2
]
, (7.4.34)

it is straightforward to find that:

f1 =
1

s2

(
f0 − ω2

2
(k2 − 1)

)
+
ω

2s
∂ωsf0 +

1

2
f 2

0

=
1

2
f 2

0 +
ω2

s2

[
3

16ωs
cotωs− 3

16 sin2 ωs
− 3

8ωs
tan

ωs

2
− 3

16 cos2 ωs
2

+
1

2

]
.

(7.4.35)

It is now easy to check that the two approaches presented here give the same

small distance behaviour for αH . The short distance expansion of u and v is:

u =

[
1 +

(ωs
2

)2

+
19

30

(ωs
2

)4

+O(s6)

]
Λ, (7.4.36a)

v =ω2

2
(k2 − 1)

[
1− 1

8
(k2 − 1) (ωs)2 +O(s4)

]
u (7.4.36b)

=ω2

2
(k2 − 1)

[
1− 1

8
(k2 − 3) (ωs)2 +O(s4)

]
Λ, (7.4.36c)

hence, αH has the following coincidence limit expansion:

αH =
kω3

16π2

[
− 4

(ωs)2
− 1 + 2(k2 − 1) ln

ν |s|√
2

+O(s)

]
, (7.4.36d)

where ν is an arbitrary mass scale. The above expansions match exactly the small

distance behaviour of the result in Eq. (7.4.29).

To compute the Hadamard form SH(x, x′) of the Feynman propagator, the func-

tion βH corresponding to αH in Eq. (7.4.29) can be obtained using the defining

equation (7.3.29a):

βH =
iω3

4π2

{ √
∆

2(ωs)3
+

3
√

∆

2(ωs)2 sinωs
+
k2 − 1

2ωs
cos

ωs

2
2F1(2− k, 2 + k; 2; sin2 ωs

2
)

− 1

8
k2(k2 − 1) ln(ν2 |σ|) sin

ωs

2
2F1(2− k, 2 + k; 3; sin2 ωs

2
)

}
. (7.4.37)

The short distance behaviour of βH and other functions appearing in Eqs. (7.4.2),

relevant for the computation of renormalised expectation values, can readily be



222 CHAPTER 7. ANTI-DE SITTER SPACE

derived:

βH =
i

2π2s3
+
iω2(1 + 2k2)

16π2s
− iω4s

8π2

(
1

60
− k2

4
+
k4

16

)
− iω4sk2(k2 − 1)

32π2
ln
ν |s|√

2
+O(s3),

4i
ω

2
cot

ωs

2
βH =− 2

π2s4
− ω2(1 + 6k2)

12π2s2
+

ω4

8π2

(
29

90
− 5k2

3
+
k4

2

)
+
ω4k2(k2 − 1)

8π2
ln
ν |s|√

2
+O(s2),

−4i
(
∂s − ω

2
cot ωs

2

)
βH =− 8

π2s4
− ω2(1 + 3k2)

3π2s2
+

ω4

8π2

(
17

90
+

4k2

3
− k4

)
+O(s2),

(7.4.38)

where, as before, the contributions coming from regular and irregular modes corre-

spond to the + and − signs, respectively.

Finally, by writing the regularised propagator as:

Sreg(x, x
′) = (αreg + βreg/n)Λ(x, x′), (7.4.39)

the expresions (7.3.26) for αF and βF can be regularised by subtracting the corre-

sponding expressions from Eqs. (7.4.38):

α±reg −−→
s→0

ω3

16π2

(
−k3 ± k2 +

k

6
∓ 1

)
+
kω3(k2 − 1)

8π2

(
ln

ω

ν
√

2
+ ψ(±k) + γ

)
,

β±reg −−→
s→0

0,

4i
(ω

2
cot

ωs

2

)
β±reg −−→

s→0
− ω4

16π2

(
11

20
± k − 19k2

6
∓ k3 +

5k4

2

)
+
ω4k2(k2 − 1)

8π2

[
ln

ω

ν
√

2
+ ψ(±k) + γ

]
,

−4i

(
∂

∂s
− ω

2
cot

ωs

2

)
β±reg =0. (7.4.40)

The renormalised expectation values of the FC and CC follow uneventfully by re-

placing αF and βF with their regularised versions given above in Eqs. (7.4.2a) and

(7.4.2b), respectively:

〈ψψ〉Had =
ω3

4π2

[
−k3 ± k2 +

k

6
∓ 1 + 2k(k2 − 1)

(
ln

ω

ν
√

2
+ ψ(±k) + γ

)]
,

(7.4.41a)

〈Jµ〉Had =0. (7.4.41b)
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The calculation of the renormalised expectation value of the SET is, however, not

straightforward. Naively applying the same procedure as above to the expression

(7.4.2c) for the “canonical” SET gives the following trace T can
Had of the SET renor-

malised using the Hadamard method:

T can
Had = − ω4

4π2

(
11

20
± k − 19k2

6
∓ k3 +

5k4

2

)
+
ω4k2(k2 − 1)

2π2

[
ln

ω

ν
√

2
+ ψ(±k) + γ

]
.

(7.4.42)

The above expression for the SET exhibits a trace anomaly, but its magnitude is

different from the one calculated using the Schwinger-de Witt method (7.4.6).

According to Ref. [27], there is also a problem with the conservation of the

regularised SET. These problems stem from the fact that the regularised propaga-

tor (7.4.39) does not satisfy the Dirac equation, hence, the SET obtained using the

canonical definition (7.4.1c) is no longer divergence-free. The non-conservation of

the Hadamard renormalised vacuum stress was also reported in Ref. [17] for photons

and the solution proposed was to change the definition of the stress tensor operator

with a geometry-dependent term which would effectively cancel the renormalisation-

induced divergence. For fermions, Ref. [27] proposes to change the canonical defini-

tion of the SET by adding a multiple of the Dirac Lagrangian (2.2.15) multiplied by

gµν . Since the Dirac Lagrangian vanishes when solutions of the Dirac equation are

considered, this alteration of the definition of the SET does not affect its value in

the classical (unrenormalised) case. However, the freedom of having the multiplier

of the Dirac Lagrangian as an extra parameter can be used to cancel the non-zero

terms in the divergence of the SET, by changing its canonical definition (7.4.1c) to:

T new
µν = T can

µν −
1

6
gµν

[
i

2
ψ /Dψ − i

2
/Dψψ − µψψ

]
, (7.4.43)

The above redefinition guarantees the conservation of the SET for arbitrary space-

times. On adS, the renormalised SET is proportional to gµν . Hence, it can be

written in terms of its trace as:

〈Tµν〉new
Had =

1

4
gµνT

new
Had , (7.4.44)

where the trace of the new SET can be written in terms of the old one as:

T new
Had =

1

3
T can

Had +
2ωk

3
〈ψψ〉Had . (7.4.45)

The result is:

T new
Had =

ω4

4π2

{
−11

60
∓ k +

7k2

6
± k3 − 3k4

2
+ 2k2(k2 − 1)

[
ln

ω

ν
√

2
+ γ + ψ(±k)

]}
,

(7.4.46)

where γ is Euler’s constant. It is worth quoting the result obtained in Ref. [18] using
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zeta-function regularisation for the trace Tζ of the renormalised vacuum expectation

value of the SET:

Tζ =
ω4

4π2

{
−11

60
− k +

7k2

6
+ k3 − 3k4

2
+ 2k2(k2 − 1)

[
ln
ω

νζ

+ ψ(k)

]}
, (7.4.47)

where νζ is an arbitrary renormalisation mass scale. Our result Eq. (7.4.46) obtained

using Hadamard renormalisation is in excellent agreement with the zeta-function

regularisation result above, provided that

ν =
1√
2
νζe

γ. (7.4.48)

7.5 Thermal expectation values

In subsections 2.2.5 and 4.3.2, thermal expectation values (t.e.v.s) were calculated

using the thermal Hadamard function. In adS, it is convenient to use the closed form

expression for the Feynman propagator (7.3.1) to construct its thermal analogue.

The advantage of using the Feynman propagator approach, discussed in subsec-

tion 7.5.1, is that the expressions obtained for the t.e.v.s of the fermion condensate

(FC), charge current (CC) and stress-energy tensor (SET) are simple enough to

facilitate physical interpretation. The mode sum approach is presented as an al-

ternative method in subsection 7.5.2 and the results are represented graphically in

subsection 7.5.3.

7.5.1 Using the Feynman propagator

The t.e.v.s presented in this section are expressed with respect to the vacuum state

and are calculated from the thermal Feynman propagator (2.2.54) after subtracting

the j = 0 term, corresponding to the vacuum contribution:

∆Sβ
F (x, x′) =

∑
j 6=0

(−1)jSF (t+ ijβ,x; t′,x′). (7.5.1)

The t.e.v.s can be calculated by substituting ∆Sβ
F for SF in Eqs. (7.4.1). Since

in this case, the coincidence limit sets the difference along the time coordinate to

∆t = ijβ rather than to 0, the following limits of the bi-spinor of parallel transport

Λ are required:

Λcx=x′ =
cos ω∆t

2

cos ωs
2

, /nΛcx=x′ =
sin ω∆t

2

sin ωs
2

cosωr
γ t̂. (7.5.2)
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Thus, the only non-vanishing traces required in Eqs. (7.4.1) are:

tr(Λ)x=x′ = 4
cos ω∆t

2

cos ωs
2

, tr(γt/nΛ)x=x′ = −
4 sin ω∆t

2

sin ωs
2

cos2 ωr
, (7.5.3)

leading to the following t.e.v.s:

〈: ψψ :〉β =−
∑
j 6=0

∆t=ijβ

(−1)jtr(Λ)αF (s), (7.5.4a)

〈: Jµ :〉β =−
∑
j 6=0

∆t=ijβ

(−1)jtr(γµ/nΛ)βF (s), (7.5.4b)

〈: Tµν :〉β =
i

2

∑
j 6=0

∆t=ijβ

(−1)j lim
x→x′

∆t=ijβ

{
sin

ωs

2
tr
(
γ(µ/nΛ

)
[∂ν) − ∂ν′)]

(
βF

sin ωs
2

)

+ ω cot
ωs

2
tr(Λ)gµνβF

}
, (7.5.4c)

where the coordinates are implicitly given by ∆t = ijβ and x = x′, such that the

geodetic interval s satisfies the following relations:

cosωs =
cosω∆t

cos2 ωr
− tan2 ωr, sin2 ωs

2
=

sin2 ω∆t
2

cosωr2
, cos2 ωs

2
= 1− sin2 ωs

2
.

(7.5.5)

Putting the traces (7.5.3) in Eqs. (7.5.4) gives the following non-zero components:

〈: ψψ :〉β =− 4
∑
j 6=0

∆t=ijβ

(−1)j cos ω∆t
2

cos ωs
2

αF (s),

〈: J t :〉β =− 4
∑
j 6=0

∆t=ijβ

(−1)j sin ω∆t
2

sin ωs
2

βF (s),

〈: T t
t :〉β =

∑
j 6=0

(−1)j∂t

(
4i sin ω∆t

2

sin ωs
2

βF

)
,

〈: T r
r :〉β = 〈: T θ

θ :〉β = 〈: Tϕ
ϕ :〉

β
=
∑
j 6=0

(−1)j 2iω cos ω∆t
2

sin ωs
2

βF . (7.5.6)

We see that the thermal distribution of fermions has the same SET as a perfect

fluid:

〈: T µ
ν :〉β = diag(−ρ, p, p, p). (7.5.7)

Due to the simplicity of the functions αF and βF in the massless case (7.3.27),
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the t.e.v.s when k = 0 simplify greatly, as follows:

iω cos ω∆t
2

sin ωs
2

βF = − ω4

8π2

cos ω∆t
2(

sin ωs
2

)4 , (7.5.8)

hence, the following expressions are obtained:

iω cos ω∆t
2

sin ωs
2

βF =− ω4

8π2

cosh jωβ
2(

sinh jωβ
2

)4 (cosωr)4, (7.5.9a)

∂t

(
4i sin ω∆t

2

sin ωs
2

βF

)
=

3ω4

4π2

cosh jωβ
2(

sinh jωβ
2

)4 (cosωr)4, (7.5.9b)

giving the following formulae for the t.e.v. of the SET:

ρck=0 = −3ω4

4π2
(cosωr)4

∞∑
j=1

(−1)j cosh jωβ
2

(sinh jωβ
2

)4
, pck=0 =

ρ

3
. (7.5.10)

As a consequence of the symmetry with respect to the transformation j ↔ −j of the

summand in 〈: T t
t :〉β, the sum over j now runs only over positive integers. It can

be seen that the trace of the SET vanishes when k = 0, when the equation of state

is p
ρ

= 1
3
. It is interesting to note that, in the massless case, the t.e.v. of the SET

depends on the coordinates only through a factor of (cosωr)4 (for the upper-lower

components).

Two limits can be extracted from Eq. (7.5.10): the small ω and the low temper-

ature (large β) limits. At small ω, the following expansion can be performed:

ρck=0 =− (cosωr)4

∞∑
j=1

(−1)j

(
12

j4π2β4
− ω2

2j2π2β2
+O(ω4)

)
=(cosωr)4

(
7π2

60β4
− ω2

24β2
+O(ω4)

)
=

7π2

60β4
− ω2

24β2

(
1 +

28π2r2

5β2

)
+O(ω4). (7.5.11)

The first term is the Minkowski value of the energy density (8.3.15) of massless

fermions at inverse temperature β, showing that if ω is sufficiently small, an observer

close enough to r = 0 will detect a thermal state very close to the Minkowski state.

For large β (small temperatures), the following expansion can be made:

cosh jωβ
2

(sinh jωβ
2

)4
=8e−

3
2
jωβ 1 + e−jωβ

(1− e−jωβ)4

=8e−
3
2
jωβ

∞∑
n=0

(
1 +

13n

6
+

3n2

2
+
n3

3

)
e−njωβ. (7.5.12)
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A substitution back into Eq. (7.5.10) yields:

ρck=0 =− 6ω4

π2

(cosωr)4

1 + e
3
2
ωβ

∞∑
n=0

e−nωβ

(
1 +

13n

6
+

3n2

2
+
n3

3

)
1 + e−

3
2
ωβ

1 + e−( 3
2
+n)ωβ

=− 6ω4

π2

(cosωr)4

1 + e
3
2
ωβ

(
1 + 5e−ωβ +O(e−2ωβ)

)
(7.5.13)

If k is kept arbitrary, it is more convenient to use the representation (7.3.21) for

β. Expressions analogous to Eqs.(7.5.9) can be obtained:

iω cos ω∆t
2

sin ωs
2

β =−
2ω cos ω∆t

2

(cos ωs
2

)4+2k 2F1

(
1 + k, 2 + k; 1 + 2k;

(
cos2 ωs

2

)−1
)
,

∂t

(
4i sin ω∆t

2

sin ωs
2

β

)
=−

2ω cos ω∆t
2(

cos ωs
2

)4+2k

{
2F1

(
1 + k, 2 + k; 1 + 2k;

(
cos2 ωs

2

)−1
)

+
(2 + k) sin2 ω∆t

2

cos2 ωs
2

cos2 ωr
2F1

(
1 + k, 3 + k; 1 + 2k;

(
cos2 ωs

2

)−1
)}

.

(7.5.14)

The coordinate dependency is non-trivial in this case and the energy density and

pressure now take the form:

ρ =− ω4Γ(2 + k)

4π
3
2 22kΓ(1

2
+ k)

(cosωr)4+2k

∞∑
j=1

(−1)j cosh jωβ
2

(cos2 ωr + sinh2 jωβ
2

)2+k

×

{
2(2 + k) sinh2 jωβ

2

cos2 ωr + sinh2 jβω
2

2F1

(
1 + k, 3 + k; 1 + 2k;

cos2 ωr

cos2 ωr + sinh2 jωβ
2

)

− 2F1

(
1 + k, 2 + k; 1 + 2k;

cos2 ωr

cos2 ωr + sinh2 jωβ
2

)}
, (7.5.15a)

p =− ω4Γ(2 + k)

4π
3
2 22kΓ(1

2
+ k)

(cosωr)4+2k

∞∑
j=1

(−1)j cosh jωβ
2

(cos2 ωr + sinh2 jωβ
2

)2+k

× 2F1

(
1 + k, 2 + k; 1 + 2k;

cos2 ωr

cos2 ωr + sinh2 jωβ
2

)
, (7.5.15b)

where N±k has been substituted according to Eqs. (7.3.21). It can be checked

that the massless limit (7.5.10) is exactly recovered. Graphical representations of

the above results can be found in subsection 7.5.3, where the bi-spinor of parallel

transport approach is validated using the mode sum approach, presented in the

following subsection.
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7.5.2 Mode sum approach

In the mode sum approach, it is easier to work with the renormalised thermal

Hadamard function, which can be written as:

∆S
(1)
β (x, x′) = −ω

2

4π

(cosωr cosωr′)
3
2

sinωr sinωr′

∑
n+,j

1

1 + eβE
(s+ − s−), (7.5.16)

where s± are defined in Eqs. (7.3.3b) and it is understood that the energy E depends

on the particular value of κ for each of the terms in s+ and s−. The coincidence

limit of ∆S
(1)
β (x, x′) is given by:

∆S
(1)
β (x, x′)

⌋
x′=x

= −ω
2

2π

(cosωr)3

sin2 ωr

∑
n+,j,κ

j + 1
2

eβEκ + 1

[
(f+

Eκ,κ)
2 − (f−Eκ,κ)

2
]

(7.5.17)

where the functions f±E,κ are given by Eq. (7.2.11c) and Eκ is defined as:

Eκ = 2n+ + k +
∣∣κ+ 1

2

∣∣ j + 1
2
. (7.5.18)

It is remarkable that in the coincidence limit, the spinor structure of the Hadamard

two-point function is proportional to the identity matrix. Equation (7.5.17) can be

expressed in terms of the functions f̂ using the definition Eq. (7.2.15):

∆S
(1)
β (x, x′)

⌋
x′=x

= −ω
2

2π

(cosωr)4

sin2 ωr

∑
n+,j,κ

j + 1
2

eβEκ + 1

×
[
(f̂+

Eκ,κ)
2 − (f̂−Eκ,κ)

2 + 2 tanωrf̂+
Eκ,κf̂

−
Eκ,κ

]
. (7.5.19)

Starting from the formula for the t.e.v. of the SET:

〈: Tα̂ρ̂ :〉β =
i

4
lim
x′→x

tr

[
γ(α̂Dρ̂)∆S

(1)
β (x, x′)−∆S

(1)
β (x, x′)

←−−
D(α̂′γρ̂)

]
, (7.5.20)

Using Eqs. (2.2.55a) and (2.2.28), the fermion condensate (FC) can be related to

the trace of the SET as follows:

〈: ψψ :〉β = − 1

ωk
〈: T µ

µ :〉
β

= −1

2
lim
x′→x

tr∆S
(1)
β (x, x′). (7.5.21)

Furthermore, since tr(γα̂Γγ̂) = 0, Eq. (2.2.55c) reduces to:

〈: Tα̂ρ̂ :〉β =
i

4
lim
x′→x

tr
{
γ(α̂[∂ρ̂) − ∂ρ̂′)]∆S

(1)
β (x, x′)

}
. (7.5.22)
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If the points are kept arbitrarily split, the trace of the Feynman propagator multi-

plied by γt̂ (as part of the components Tt̂α̂ of the SET) is given by:

i

4
tr
[
γt̂∆S

(1)
β (x, x′)

]
=
ω2

2π

(cosωr cosωr′)
3
2

sinωr sinωr′

∑
n+,j,κ

(j + 1
2
) sinEκ∆t

eβEκ + 1

×
[
f+

Eκ,κf
+
Eκ,κP|κ+ 1

2
|− 1

2
(cos γ) + f−Eκ,κf

−
Eκ,κP|κ− 1

2
|− 1

2
(cos γ)

]
. (7.5.23)

The components 〈: Tt̂ˆ̀ :〉
β

vanish due to the presence of sinEκ∆t, while the time-time

component of the SET is given by:

〈: T t
t :〉β = −ω

2

π

(cosωr)4

sin2 ωr

∑
n+,j

{
E+(j + 1

2
)

eβE+ + 1

[
(f+

+ )2 + (f−+ )2
]

+
E−(j + 1

2
)

eβE− + 1

[
(f+
− )2 + (f−− )2

]}
, (7.5.24)

where the subscript ± of the energy and radial functions refers to the sign of κ,

i.e. E± = E±|j+ 1
2 | and f+

± = f+

E±,±|j+ 1
2 |

.

Next, the trace of ∆S
(1)
β multiplied by γˆ̀ can be safely computed at coincidence

along the time axis, since the components Tt̂ˆ̀ have already been shown to vanish:

i

4
tr
[
γ̂∆S

(1)
β (x, x′)

⌋
∆t=0

]
=
ω2

2π

(cosωr cosωr′)
3
2

sinωr sinωr′

∑
n+,j

{
(

f+
− f

−
−

eβE− + 1
− f−+ f

+
+

eβE+ + 1

)[
x

r

(
j + 1

2

)
Pj+ 1

2
(cos γ) +

x× (x′ × x)

r2r′
P ′

j+ 1
2
(cos γ)

]
+

(
f+

+ f
−
+

eβE+ + 1
− f−− f

+
−

eβE− + 1

)[
x

r

(
j + 1

2

)
Pj− 1

2
(cos γ)− x× (x′ × x)

r2r′
P ′

j− 1
2
(cos γ)

]}
.

(7.5.25)

The operator ∂i−∂i′ has a vanishing commutator with functions which are symmetric

with respect to x and x′, hence:[
∂i − ∂i′ ,

(cosωr cosωr′)
3
2

sinωr sinωr′

]
= 0, [∂i − ∂i′ , cos γ] = 0, [∂i − ∂i′ , Pl(cos γ)] = 0.

(7.5.26)

Thus, cos γ can be replaced by 1 in Eq. (7.5.25) and the Legendre polynomials can

be replaced using P`(1) = 1 and P ′
`(1) = 1

2
`(` + 1), simplifying the calculations
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greatly. The final result is:

〈: Tik :〉β =
ω3

π

(cosωr)2

sin2 ωr

∑
n+,j

(j + 1
2
)

{
xixk

r2

[
Wωr(f

−
− , f

+
− )

eβE− + 1
+
Wωr(f

−
+ , f

+
+ )

eβE+ + 1

]

+
sinωr

(ωr)2
(j + 1

2
)

(
δij −

xixj

r2

)(
f+
− f

−
−

eβE− + 1
− f+

+ f
−
+

eβE+ + 1

)}
, (7.5.27)

where the Wronskian Wωr(f
−
± , f

+
± ) of the functions f−± and f+

± with respect to ωr

can be calculated from the Dirac equation (7.2.11c):

Wωr(f
−
± , f

+
± ) =f−±∂ωrf

+
± − (∂ωrf

−
± )f+

±

=
E

ω

[
(f+
± )2 + (f−± )2

]
∓ 2j + 1

sinωr
f+
± f

−
± −

k

cosωr

[
(f+
± )2 − (f−± )2

]
.

(7.5.28)

To switch from Cartesian components (x1, x2, x3) to components with respect to the

spherical coordinates (r, θ, ϕ), the following formulae are useful:

xixj

r2
→ diag(1, 0, 0), δij → diag(1, r2, r2 sin2 θ), (7.5.29)

where the (i, j) element on the right of the arrow represent the coordinate component

with respect to the basis (dr, dθ, dϕ):

xixj

r2
dxidxj = dr2, δijdx

idxj = dr2 + r2dθ2 + r2 sin2 θdϕ2. (7.5.30)

The t.e.v.s of the FC and of the non-vanishing components of the SET are listed

below:

〈: ψψ :〉β =
ω2

π

(cosωr)3

sin2 ωr

∑
n+,j

(j + 1
2
)

(
f+

+ − f−+
eβE+ + 1

+
f+
− − f−−
eβE− + 1

)
,

〈: T t
t :〉β =−ω

2

π

(cosωr)4

sin2 ωr

∑
n+,j

(j + 1
2
)

{
E+

[
(f+

+ )2 + (f−+ )2
]

eβE+ + 1
+
E−
[
(f+
− )2 + (f−− )2

]
eβE− + 1

}
,

〈: T r
r :〉β =

ω3

π

(cosωr)4

sin2 ωr

∑
n+,j

(j + 1
2
)

[
Wωr(f

−
+ , f

+
+ )

eβE+ + 1
+
Wωr(f

−
− , f

+
− )

eβE− + 1

]
,

〈: T θ
θ :〉β =

ω3

π

(cosωr)4

sin3 ωr

∑
n+,j

(j + 1
2
)2

(
f+

+ f
−
+

eβE+ + 1
− f+

− f
−
−

eβE− + 1

)
,

〈: Tϕ
ϕ :〉

β
= 〈: T θ

θ :〉β , (7.5.31)

where the Wronskian has been left in place to keep notation compact. It can be

checked that the relation (7.5.21) between the FC and the trace of the SET is

satisfied. However, the equality between the spatial components of the SET is
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difficult to prove in this setup. Numerical results show that the individual summands

(i.e. at fixed n+ and j) in the radial and angular components are in general not

equal, however, the components as a whole approach the same value.

Although the mode sums provide a reliable (numerical) check on the geometric

approach of the previous subsection, the massless limit in this formalism is as com-

plicated as the k 6= 0 case. Furthermore, in the geometric approach, the asymptotic

limits for small ω or large β are easily calculated in the massless case, whereas in the

massive case and in the mode sum approach, sending ω to 0 would involve analysing

the infinite order limit of hypergeometric functions or Jacobi polynomials, which are

not well documented.

The mode sum approach can be used almost in a similar fashion for the analysis of

thermal states on the adS space-time rotating at arbitrarily large angular velocities

Ω, as discussed in subsection 8.3.1. In contrast, the bi-spinor of parallel transport

approach is problematic when Ω is sufficiently large to form a speed of light surface

(SOL).

7.5.3 Numerical results

Numerical experiments confirm that the mode sum (7.5.31) and geometric approach

(7.5.15) give identical results. In practise, t.e.v.s can be obtained numerically quicker

when using mode than when using the geometric approach at small values of β, for all

values of k. The geometric approach is slow at k 6= 0 as it involves the computation

of hypergeometric functions.

Figures 7.2 show the dependence of the FC 〈: ψψ :〉β, energy density ρ, pressure

p and equation of state w = p
ρ

on the radial coordinate. The plots on the left keep

βω = 1.2 constant and compare the t.e.v.s corresponding to different masses. The

plots on the right compare the t.e.v.s corresponding to µ = 0 and µ = 2ω at four

values of the temperature.

In the case k = 0, Eq. (7.5.10) shows that ρ depends on r through a factor

of cos4 ωr. Thus its value decreases from a maximum at the origin to 0 on the

boundary, where ωr = π
2
. The same trend is preserved for non-zero values of k,

however, the dependence on the radial coordinate is more complicated, as can be

seen from the plot of the equation of state p
ρ
.

Fig. 7.3 shows the dependence of the energy density ρ at the origin on the inverse

temperature. Two regimes can be identified: when βω is small, the field behaves as

if it were massless and t.e.v.s approach their Minkowski values (7.5.11). At large βω,

the energy density exhibits an exponential decrease, as predicted by Eq. (7.5.13).
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Figure 7.2: Plots showing 〈: ψψ :〉β, the energy density ρ, the pressure p and the
equation of state w = p

ρ
(from top to bottom. The plots on the left show profiles for

four masses k at fixed temperature βω = 1.2. The plots on the right show compare
the profiles for the same quantities corresponding to massless (thin coloured curves)
to those corresponding to fermions of mass µ = 2ω (thick dashed coloured curves)
at four values of the temperature βω.

7.6 Summary

In this chapter, three main results were presented: the renormalised vacuum ex-

pectation values of the fermion condensate (FC) and stress-energy tensor (SET),

the closed form expression of the Feynman propagator (including the bi-spinor of

parallel transport) and the construction of thermal expectation values (t.e.v.s).
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Figure 7.3: The dependence of the energy density at the origin on the inverse tem-
perature β.
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A key ingredient in the construction of the propagator and of thermal states

wass the bi-spinor of parallel transport, for which an analytic expression is obtained

in subsection 7.1.4 by directly solving the parallel transport equation for the maxi-

mally symmetric anti-de Sitter space. The propagator is constructed using two ap-

proaches: through the traditional time-ordered product mode sum approach, where

it is necessary to set r′ at the origin to simplify the calculations. The general form

of the propagator can be inferred from the maximally symmetric character of adS,

by identifying the bi-spinor of parallel transport and by using the ansatz (7.3.1).

The second approach is to find the propagator as a solution of the inhomogeneous

Dirac equation, satisfying appropriate boundary conditions. The two approaches

are presented separately and the results are compared to confirm the consistency

and correctness of the methods.

Renormalisation is performed using two methods: the Schwinger-de Witt method

and the Hadamard method. The application of the Schwinger-de Witt method

consists in subtracting from the point-split vacuum stress-energy tensor (SET) the

counter terms calculated in Ref. [24]. The resulting SET is proportional to the

space-time metric gµν and it matches perfectly the result obtained in Ref. [30] using

the Pauli-Villars regularisation method.

For the Hadamard method, the singular part of the propagator is eliminated

following [59] in a state-independent fashion, leaving behind a remainder which is

no longer a solution of the inhomogeneous Dirac equation. Thus, the SET operator

has to be changed to ensure that the renormalised SET is conserved, as discussed in

Ref. [27]. The result obtained using Hadamard renormalisation matches perfectly

the zeta-function regularisation method presented in Ref. [30].

Thermal states can be constructed either by using mode sums to construct the

thermal Hadamard function (the mode sum approach), or by using the closed form

expression of the Feynman propagator (the geometric approach). The latter ap-

proach exploits the anti-periodicity of the Feynman propagator corresponding to a
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thermal state with respect to imaginary time and requires the closed form expres-

sion of the bi-spinor of parallel transport. The results obtained using the geometric

approach can easily be interpreted physically, showing that the SET of the Dirac

field at finite temperature in adS is that of a perfect fluid.



Chapter 8. Rotating fermions on

anti-de Sitter space

Just as the construction of rigidly rotating states on Minkowski (flat) space, pre-

sented in chapter 4, shares similarities with the construction of vacuum states on

the Kerr (rotating black hole) space-time, it is interesting to study quantum states

on rigidly rotating anti-de Sitter space-time (adS) for its resemblance to the Kerr-

adS space-time. A fundamental difference with respect to the Minkowski space is

that adS incorporates a natural boundary, which prevents the speed of light surface

(SOL) from forming unless the value of the angular momentum Ω = |Ω| of the

rotation is large enough.

A study of rigidly rotating states on adS for the scalar field is presented in

Ref. [49] and will not be repeated here. Instead, the material of this chapter focuses

solely on the investigation of fermion states.

The properties of the space-time are discussed in section 8.1. Section 8.2 presents

the Dirac equation, its mode solutions and second quantisation and thermal states

are discussed in section 8.3. The full content of this chapter represents original work

due for publication in Ref. [9]. A preview of the results is available in Ref. [6].

8.1 Space-time characteristics

By analogy to the rigidly rotating Minkowski space-time, co-rotating coordinates

can be obtained from the adS coordinates in Eq. (7.1.4) using the transformation:

ϕ = ϕadS − ΩtadS, (8.1.1)

as explained in section 4.1. The metric with respect to the co-rotating coordinates

has the form:

ds2 =
1

cos2 ωr

[
−εadS dt

2+ 2ρ2Ω

(
sinωr

ωr

)2

dtdϕ+ dr2+
sin2 ωr

ω2
(dθ2 + sin2 θdϕ2)

]
,

(8.1.2)

where ρ = r sin θ is the distance from the rotation axis and

εadS = 1− ρ2Ω2

(
sinωr

ωr

)2

(8.1.3)

235
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Figure 8.1: The structure of the axi-symmetric SOL, presented at ϕ = 0, for various
values of the ratio Ω/ω. The horizontal and vertical axes represent distances from
and along the rotation axis, respectively. The dotted half-circle centred on (ρ, z) =
(0, 0) represents the boundary of adS, given by r =

√
z2 + ρ2 = π

2ω
.

is analogous to ε = 1 − ρ2Ω2 of the rotating Minkowski space-time, defined in

Eq. (4.1.2). This analogy extends to the definition of the speed of light surface

(SOL), defined as the surface where εadS = 0. Figure 8.1 shows the position of the

SOL for various ratios Ω/ω. A suitable tetrad for the adS metric (8.1.2) is:

et̂ = cosωr [∂t − Ω∂ϕ] ,

eî = cosωr

[
ωr

sinωr

(
δij −

xixj

r2

)
+
xixj

r2

]
∂j, (8.1.4)

having the following associated co-frame one-forms:

ωt̂ =
dt

cosωr
,

ωî =
1

cosωr

[
sinωr

ωr

(
δij −

xixj

r2

)
+
xixj

r2

]
dxj +

tanωr

ωr
(Ω× x)idt. (8.1.5)

The Cartan coefficients are the same as in Eq. (7.1.12), with the addition of c ĵ

t̂̂i
:

c t̂
t̂̂i

= ω sinωr
xi

r
, c ĵ

t̂̂i
= cosωr εijkΩ

k,

c k̂
îĵ

=
ω(1− cosωr)

r sinωr

(
xjδk

i − xiδk
j

)
, (8.1.6)

where Ωk is the k’th component of Ω = (0, 0,Ω). The connection coefficients

corresponding to the Cartan coefficients in Eqs. (8.1.6) can be calculated using
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Eq. (2.2.19):

Γt̂
ît̂

= ω sinωr
xi

r
, Γî

ĵt̂
= −1

2
cosωr εijkΩ

k,

Γî
ĵk̂

=
ω(1− cosωr)

r sinωr

(
xjδi

k − xiδjk
)
. (8.1.7)

As a result, the spin connection changes for the t coordinate:

Γt̂ =
ω sinωr

2r
γ t̂ (x · γ) + cosωr (Ω ·Σ),

Γk̂ =− ω(1− cosωr)

2r sinωr

[
xk + γk (x · γ)

]
. (8.1.8)

8.2 The Dirac equation in rotating coordinates

The co-rotating coordinates can be obtained from the adS coordinates by performing

the time-dependent rotation in Eq. (8.1.1). The adS generators of rotation (7.1.105)

are the same as on Minkowski space, in particular:

Jz = −i∂ϕ − iSz, (8.2.1)

where Sz = 1
2
diag(σ3, σ3). Hence, the rotation operator for the transformation

(8.1.1) takes the form:

Rz[−Ωt] =eiΩt∂ϕ(cos Ωt
2

+ 2i sin Ωt
2
Sz)

=diag(e
i
2
Ωt, e−

i
2
Ωt, e

i
2
Ωt, e−

i
2
Ωt)eiΩt∂ϕ . (8.2.2)

A solution ψ(x) of the Dirac equation with respect to the co-rotating coordinate

frame can be obtained from the non-rotating adS solution ψold by applying the

above rotation operator, as follows:

ψ(x) = Rz[−Ωt]ψold(xold), (8.2.3)

where the co-rotating and non-rotating coordinates x and xold are the same except

for ϕ = ϕold − Ωt. Consequently, the mode solutions of the Dirac equation (7.2.7)
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and (7.2.39) have the following expression:

UE,j,κ,m(x) = ωr
(cosωr)

3
2

sinωr
ŨE,j,κ,m(x), (8.2.4a)

ŨE,j,κ,m(x) =
1

r
e−i eEt

[
f+

E,κ(r)Φ
+
m,κ(θ, ϕ) + f−E,κ(r)Φ

−
m,κ(θ, ϕ)

]
, (8.2.4b)

VE,j,m,κ = ωr
(cosωr)

3
2

sinωr
ṼE,j,m,κ, (8.2.4c)

ṼE,j,m,κ = i(sgnκ)(−1)m− 1
2 ei eEt 1

r

[
f+∗

E,κ(r)Φ
−
−κ,−m(θ, ϕ) + f−∗E,κ(r)Φ

+
−κ,−m(θ, ϕ)

]
,

(8.2.4d)

where the angular functions Φ±
κ,m(θ, ϕ) are defined in Eq. (7.2.8a) and the radial

functions f±E,κ(r) are related to f̂±E,κ(r), given in Eq. (7.2.25) through Eq. (7.2.15).

The co-rotating frequency Ẽ is related to the adS energy E through:

Ẽ = E − Ωm. (8.2.5)

Equation (8.2.5) is actually equivalent to (4.3.3), since m is in both cases the projec-

tion of the total angular momentum on the rotation axis. In spherical coordinates,

m is an odd half-integer, while in Eq. (4.3.3), m is just an integer.

8.3 Thermal expectation values

The construction of rigidly rotating quantum states on adS and bounded Minkowski

space-time share similarities due to adS having a natural boundary. Hence, the co-

rotating and non-rotating vacuum states coincide as long as ẼE stays positive for

all modes. The frequency spectrum of the rotating system is determined by looking

at the allowed adS energy, by substituting Eq. (7.2.23) into Eq. (7.2.17):

Ẽ = ω(2n+ + j + k + 2)− Ωm = ω(2n+ + k + 2) + ωj − Ωm. (8.3.1)

Since |m| ≤ j, Ẽ stays positive at arbitrarily large values of j only if Ω ≤ ω, otherwise

it can become negative. Hence, if Ω ≤ ω, the rotating vacuum coincides with the

adS vacuum. If the vacuum state is the same as in adS, the adS propagator in closed

form, discussed in subsection 8.3.2, can be used for the construction thermal states.

However, if Ω > ω, the vacuum state changes and it no longer is described by the

adS propagator, in which case mode sums have to be used to construct adequate

two-point functions.

The mode sum approach, valid for all values of Ω, is presented in subsection 8.3.1.

The geometric approach involving the closed form of the adS propagator, valid for

Ω ≤ ω, is considered in subsection 8.3.2.
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8.3.1 Mode sums

As in the Minkowski case, there are two choices for the vacuum state: the Vilenkin

[72] and the Iyer [47] vacua. The thermal Hadamard Green’s function ∆S
(1)
β (x, x′)

with respect to either of these vacuum states can be written as:

∆S
(1)
β (x, x′) = ω2 (cosωr cosωr′)

3
2

sinωr sinωr′

∞∑
n+=0

∑
j,κ,m

{

w(Ẽ)e−i eE∆t

(
f+f+ψ+ ⊗ ψ†+ −if+f−ψ+ ⊗ ψ†−
−if−f+ψ− ⊗ ψ†+ −f−f−ψ− ⊗ ψ†−

)

− w(E)eiE∆t

(
f−f−ψ− ⊗ ψ†− −if−f+ψ− ⊗ ψ†+
−if+f−ψ+ ⊗ ψ†− −f+f+ψ+ ⊗ ψ†+

)}
, (8.3.2)

where the conventions of subsection 7.5.2 have been used, i.e. f± ≡ f±E,κ are the radial

functions introduced in Eq. (7.2.7b) and ψ± ≡ ψm
j± 1

2
sgnκ

are two-spinors defined in

Eq. (7.2.8b). In the above, Ẽ = E − Ωm, E = E + Ωm and the thermal weight

factor w(z) depends on the choice of vacuum as follows:

w(z) =


− 2

1 + eβz
for the Vilenkin quantisation,

− 2sgn(z)

1 + eβ|z| for the Iyer quantisation.
(8.3.3)

The weight factor depends implicitly on the sign of κ = ±(j+ 1
2
) through the energy:

E =

ω(2n+ + j + k + 2) κ > 0,

ω(2n+ + j + k + 1) κ < 0.
(8.3.4)

From the above expression for E, it follows that in the case when Ω ≤ ω, the

Vilenkin and the Iyer vacua coincide, since Ẽ > 0:

Ẽ = ω

[
2n+ + k +

1

2
(3 + sgnκ) + j −mΩ

ω

]
. (8.3.5)

The lowest value ω
[
k + 1 + j

(
1− Ω

ω

)]
of Ẽ occurs when n+ = 0, κ < 0 and m = j.

It is clear that if Ω ≤ ω, Ẽ > 0 for all E > 0. However, if Ω > ω, for any value of

n+, there are combinations of j and m such that Ẽ < 0.
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Fermion condensate

The fermion condensate (2.2.55a) can be obtained by multiplying the coincidence

limit of the trace of Eq. (8.3.2) by −1
2
:

〈: ψψ :〉β = −ω
2(cosωr)3

2 sin2 ωr

∑
n+,j,m

(w̃ + w)[(f+2
+ − f−2

− )ψ†+ψ+ + (f+2
− − f−2

+ )ψ†−ψ−],

(8.3.6)

where the radial functions f+
± and f−± , defined in Eq. (7.2.7b), take the argument

r, w̃ ≡ w(Ẽ) and w ≡ w(E). In the above, it is understood that the energy

in the thermal weight factor multiplying radial functions of positive or negative κ

(i.e. their subscript is + of −, respectively) also corresponds to positive or negative

κ, as follows:

(w̃+w)f±2
+ ≡ [w(Ẽ+)+w(E+)]f±2

+ , (w̃+w)f±2
− ≡ [w(Ẽ−)+w(E−)]f±2

− . (8.3.7)

The inner products ψ†±ψ± in Eq. (8.3.6) can be replaced using Eqs. (C.5.1):

〈: ψψ :〉β = −ω
2(cosωr)3

4π sin2 ωr

∞∑
m= 1

2

∞∑
n+=0

∞∑
j=0

(w̃ + w)
(j −m)!

(j +m)!

{(f+2
+ − f−2

− )[(j −m+ 1)2P−2
+ + P+2

+ ] + (f+2
− − f−2

+ )[(j +m)2P−2
− + P+2

− }, (8.3.8)

where P+
± ≡ P

m+ 1
2

j± 1
2

(cos θ) and P−
± ≡ P

m− 1
2

j± 1
2

(cos θ) are the associated Legendre func-

tions introduced in section C.2.

Charge current

First, let us show that the t.e.v. of the charge current 〈: J α̂ :〉β, given by

〈: J α̂ :〉β = −1

2
tr
[
γα̂∆S

(1)
β (x′ = x)

]
, (8.3.9)

vanishes everywhere. Taking the relevant traces on Eq. (8.3.2) gives:

〈: J t̂ :〉β =− ω2(cosωr)3

2 sin2 ωr

∑
n+,j,m

(w̃ − w)[(f+2
+ + f−2

− )ψ†+ψ+ + (f+2
− + f−2

+ )ψ†−ψ−],

(8.3.10a)

〈: J î :〉β =− ω2(cosωr)3

2 sin2 ωr

∑
n+,j,m

(w̃ + w)(−if−+ f+
+ + if−− f

+
− )(ψ†+σiψ− − ψ†−σiψ+).

(8.3.10b)

Equations (C.5.1) show that the ψ†±ψ± terms are even with respect to m → −m,

while w̃ − w is odd. Hence, 〈: J t̂ :〉β = 0. Equations (C.5.9) can be used to show
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that the summand in Eq. (8.3.10b) is odd with respect to m→ −m, implying that

〈: J î :〉β = 0. Hence, the net charge current vanishes everywhere in the space-time.

Neutrino current

As argued in Ref. [71] and confirmed in subsection 4.3.2, rotating space-times induce

a non-vanishing neutrino charge current in thermal states. The charge current for

neutrinos 〈: J α̂
ν :〉β can be calculated using:

〈: J α̂
ν :〉β = −1

2
tr

[
γα̂ 1

2
(1− γ5)∆S

(1)
β (x′ = x)

]
. (8.3.11)

Knowing that the trace of γα̂∆S
(1)
β vanishes, the following expressions can be derived:

〈: J t̂
ν :〉β =− ω2(cosωr)3

4 sin2 ωr

∑
n+,j,m

(w̃ + w)(−if+
+ f

−
+ + if+

− f
−
− )(ψ†+ψ− − ψ

†
−ψ+),

(8.3.12a)

〈: J î
ν :〉β =− ω2(cosωr)3

4 sin2 ωr

∑
n+,j,m

(w̃ − w)[(f+2
+ + f−2

− )ψ†+σiψ+ + (f+2
− + f−2

+ )ψ†−σiψ−].

(8.3.12b)

According to Eqs. (C.5.1), ψ†−ψ+ = ψ†−ψ+, since they are the complex conjugates

of each other and both are real. Hence, 〈: J t̂
ν :〉β = 0, implying that rigidly rotating

thermal states contain the same number of neutrinos and anti-neutrinos.

Using Eqs. (C.5.8), the non-zero components of the neutrino charge current can

be expressed in cylindrical coordinates:

〈: J ρ̂
ν :〉β =− ω2(cosωr)3

4π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(w̃ − w)
(j −m)!

(j +m)!

×
[
(j −m+ 1)(f+2

+ + f−2
− )P−

+P
+
+ − (j +m)(f+2

− + f−2
+ )P−

−P
+
−
]
,

(8.3.13a)

〈: J ẑ
ν :〉β =

ω2(cosωr)3

8π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(w̃ − w)
(j −m)!

(j +m)!

× {(f+2
+ + f−2

− )[(j −m+ 1)2P−2
+ − P+2

+ ]

+ (f+2
− + f−2

+ )[(j +m)2P−2
− − P+2

− ]}, (8.3.13b)
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or, using Eqs. (C.2.7), in spherical coordinates:

〈: J r̂
ν :〉β =

ω2(cosωr)3

8π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(w̃ − w)
(j −m)!

(j +m)!

× (f+2
+ + f−2

− + f+2
− + f−2

+ )
[
(j +m)(j −m+ 1)P−

−P
−
+ − P+

+P
+
−
]
,

(8.3.14a)

〈: J θ̂
ν :〉β =− ω2(cosωr)3

8π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(w̃ − w)
(j −m)!

(j +m)!

× (f+2
+ + f−2

− − f+2
− − f−2

+ )
[
(j +m)P+

+P
−
− + (j −m+ 1)P−

+P
+
−
]
.

(8.3.14b)

In the above, P±
+ ≡ P

m± 1
2

j+ 1
2

(cos θ) and P±
− ≡ P

m± 1
2

j− 1
2

(cos θ) are associated Legendre

functions, introduced in section C.2.

Stress-energy tensor

The t.e.v. of the SET is given by the formula:

〈: Tα̂β̂ :〉
β

=
i

4
lim
x′→x

tr
[
γ(α̂(∂β̂) − ∂β̂′))∆S

(1)
β (x, x′) +

{
γ(α̂,Γβ̂)

}
∆S

(1)
β (x, x′)

]
.

(8.3.15)

For its calculation, the following building blocks are required:

tr
[{
γα̂,Γβ̂

}
∆S

(1)
β (x, x)

]
, lim

x′→x
tr
[
γ(α̂∂β̂)∆S

(1)
β (x, x′)

]
. (8.3.16)

It is convenient to keep the part of Γt̂ induced by the rotation together with the

time derivative, by introducing the following notation:

Dt̂ = ∂Ω
t̂ + Γ0

t̂ , (8.3.17)

where

∂Ω
t̂ = cosωr [∂t − ∂ϕ − (Ω ·Σ)] , Γ0

t̂ =
ω sinωr

2r
γ t̂ (x · γ) , (8.3.18)

where Γ0
t̂

is the time component of the spin connection coefficient in the absence

of rotation, defined in Eq. (7.1.11), and ∂Ω
t̂

contains the time component of the

spin connection coefficient induced by the rotation together with the time derivative

with respect to the tetrad, introduced in Eq. (7.1.7). The following relations can be
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derived:

{
γt̂,Γ

0
t̂

}
=0, (8.3.19a){

γî,Γ
0
t̂

}
=

2iω

r
sinωr γ t̂(x× S)i, (8.3.19b)

{γt̂,Γî} =− 2iω

r

1− cosωr

sinωr
γ t̂(x× S)i, (8.3.19c){

γî,Γĵ

}
=− ω(1− cosωr)

2r sinωr

[
4γ [̂ixj] +

[
γ î, γ ĵ

]
(x · γ)

]
, (8.3.19d)

leading to the following results:

i

4
tr
[
{γt̂,Γt̂}∆S

(1)
β (x, x)

]
=0,

i

4
tr
[{
γ(t̂,Γî)

}
∆S

(1)
β (x, x)

]
=− ω3(cosωr)4(1− cosωr)

4(sinωr)3

∑
n+,j,κ,m

[w(Ẽ)− w(E)]

×
[
(f+)2ψ†+

x× σ

r
ψ+ + (f−)2ψ†−

x× σ

r
ψ−

]
,

i

8
tr
[{
γ(̂i,Γĵ)

}
∆S

(1)
β (x, x)

]
=0. (8.3.20)

Next, the derivatives can be evaluated as:

lim
x′→x

(∂Ω
t̂ − ∂

Ω
t̂′ )∆S

(1)
β (x, x′) = −2iω2(cosωr)4

sin2 ωr

∑
n+,j,κ,m

E

{

w̃

(
(f+)2ψ+ ⊗ ψ†+ −if−f+ψ+ ⊗ ψ†−
−if−f+ψ− ⊗ ψ†+ −(f−)2ψ− ⊗ ψ†−

)

+ w

(
(f−)2ψ− ⊗ ψ†− −if−f+ψ− ⊗ ψ†+
−if−f+ψ+ ⊗ ψ†− −(f+)2ψ+ ⊗ ψ†+

)}
, (8.3.21)

lim
x′→x

(∂î − ∂î′)∆S
(1)
β (x, x′) =

ω2(cosωr)3

sin2 ωr
ej

î

∑
n+,j,κ,m

{

w̃

(
(f+)2(∂j − ∂j′)ψ+ ⊗ ψ†+ W−

−W+ −(f−)2(∂j − ∂j′)ψ− ⊗ ψ†−

)

− w

(
(f−)2(∂j − ∂j′)ψ− ⊗ ψ†− −W+

W− −(f+)2(∂j − ∂j′)ψ+ ⊗ ψ†+

)}
, (8.3.22)

where

W± = i[
xj

r
ωWωr(f

+, f−)± f−f+(∂j − ∂j′)]ψ∓ ⊗ ψ†±, (8.3.23)

The Wronskian Wωr(f
+, f−) can be replaced using Eq. (7.5.28).
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The following traces can be calculated:

i

4
lim
x′→x

tr[γt̂(∂̃t̂ − ∂̃t̂′)∆S
(1)
β (x, x′)] = −ω

2(cosωr)4

2 sin2 ωr

∑
n+,j,κ,m

[w(Ẽ) + w(E)]

× (f+2ψ†+ψ+ + f−2ψ†−ψ−), (8.3.24a)

i

4
lim
x′→x

tr
[{
γ(t̂,Γî)

}
∆S

(1)
β (x, x′)

]
= −ω

3(cosωr)4

8 sin2 ωr
tan

ωr

2

∑
n+,j,κ,m

[w(Ẽ) + w(E)]

×
[
f+2ψ†+

(
x× σ

r

)
i

ψ+ + f−2ψ†−

(
x× σ

r

)
i

ψ−

]
, (8.3.24b)

i

8
lim
x′→x

tr[γt̂(∂î − ∂î′)∆S
(1)
β (x, x′)] =

iω2(cosωr)3

8 sin2 ωr

∑
n+,j,κ,m

[w(Ẽ) + w(E)]

× [(f+)2(∂î − ∂î′)ψ
†
+ψ+ + (f−)2(∂î − ∂î′)ψ

†
−ψ−], (8.3.24c)

i

8
lim
x′→x

tr[γî(∂̃t̂ − ∂̃t̂′)∆S
(1)
β (x, x′)] =

ω2(cosωr)4

4 sin2 ωr

∑
n+,j,κ,m

[w(Ẽ) + w(E)]

× (−if+f−)(ψ†+σ
iψ− − ψ†−σiψ+), (8.3.24d)

i

4
lim
x′→x

tr[γî(∂ĵ − ∂ĵ′)∆S
(1)
β (x, x′)] =

ω2(cosωr)3

4 sin2 ωr

∑
n+,j,κ,m

[w(Ẽ) + w(E)]

×
[
xi

r
cosωrWr(f

+, f−)(ψ†+σ
jψ− + ψ†−σ

jψ+)

+f−f+(∂î − ∂î′)(ψ
†
+σjψ− − ψ†−σjψ+)

]
. (8.3.24e)

The only missing ingredient for the derivation of the components of the SET is

a little patience. For 〈: Tt̂t̂ :〉β, Eqs. (C.5.1) can be used together with Eq. (8.3.24a)

to yield:

〈: Tt̂t̂ :〉β = −ω
2(cosωr)3

4π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(j −m)!

(j +m)!
E[w(Ẽ) + w(E)]

{
(f+2

+ + f−2
− )[(j −m+ 1)2P−2

+ + P+2
+ ] + (f+2

− + f−2
+ )[(j +m)2P−2

− + P+2
− ]
}
.

(8.3.25)

Just as in the rotating Minkowski space, there is an off-diagonal component mixing

time and space. Using Eqs. (C.5.3) in Eq. (8.3.24c), Eqs. (C.5.9) in Eqs. (8.3.24d)

and Eqs. (C.5.4) and (C.5.5) in Eq. (8.3.24b), it can be shown that 〈: Tt̂̂i :〉β ∼
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(x × Ω/ρΩ)i, which in spherical coordinates translates to (0, 0, 1) for the r, θ, ϕ

components, respectively:

〈: Tt̂ϕ :〉
β

=
ω3(cosωr)4

8π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(j −m)!

(j +m)!
[w(Ẽ) + w(E)]

{
[
2E

ω
(f+
− f

−
− − f+

+ f
−
+ )− 1

2
tan

ωr

2
(f+2

+ + f−2
− − f+2

− − f−2
+ )

]
× [(j −m+ 1)P−

+P
+
− + (j +m)P−

−P
+
+ ]

f+2
+ + f−2

−

sin θ sinωr

[
(m− 1

2
)(j −m+ 1)2P−2

+ + (m+ 1
2
)P+2

+

]
+
f+2
− + f−2

+

sin θ sinωr

[
(m− 1

2
)(j +m)2P−2

− + (m+ 1
2
)P+2

−
]}

. (8.3.26)

The spatial components are determined by Eq. (8.3.24e), where the contractions

of the ψ bi-spinors are given by Eqs. (C.5.8d) and (C.5.10e). The terms that ap-

pear in these latter two equations have the following (r, θ, ϕ) tetrad components in

spherical coordinates:

Ω× (x×Ω)

ρΩ2
=(sin θ, cos θ, 0),

Ω

Ω
=(cos θ,− sin θ, 0), (8.3.27a)

x× (Ω× x)

ρΩr
=(0,−1, 0),

Ω× x

ρΩ
=(0, 0, 1). (8.3.27b)

The tensors that enter in the expression of 〈: Tîĵ :〉
β

have the following spherical

components:

x(i

r

[
Ω× (x×Ω)

ρΩ2

]j)

=

 sin θ 1
2
cos θ 0

1
2
cos θ 0 0

0 0 0

 , (8.3.28a)

x(i

r

Ωj)

Ω
=

 cos θ −1
2
sin θ 0

−1
2
sin θ 0 0

0 0 0

 , (8.3.28b)

(
Ω× x

ρΩ

)
i

(
Ω× x

ρΩ

)
j

=

0 0 0

0 0 0

0 0 1

 , (8.3.28c)

(
x× (Ω× x)

ρ2Ω

)
(i

(
Ω× (x×Ω)

ρΩ2

)
j)

=

 0 −1
2

0

−1
2
− cot θ 0

0 0 0

 , (8.3.28d)

(
x× (Ω× x)

ρ2Ω

)
(i

(
Ω

Ω

)
j)

=

 0 −1
2
cot θ 0

−1
2
cot θ 1 0

0 0 0

 . (8.3.28e)



246 CHAPTER 8. ROTATING FERMIONS ON ADS

After changing from (∂i − ∂i′) to ∂î − ∂î′ in Eq. (C.5.10e), the following expression

is found for the r − r component:

〈: Tr̂r̂ :〉β =
ω3(cosωr)4

4π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(j −m)!

(j +m)!
[w(Ẽ) + w(E)]

×
[
Wωr(f

+
+ , f

−
+ ) +Wωr(f

+
− , f

−
− )
]

×
{

sin θ
[
(j −m+ 1)P−

+P
+
− − (j +m)P−

−P
+
+

]
+ cos θ

[
(j +m)(j −m+ 1)P−

+P
−
− + P+

+P
+
−
] }
, (8.3.29)

where the Wronskian Wωr(f
+
± , f

−
± ) can be calculated from Eq. (7.5.28). Equations

(C.2.7) can be used to further simplify the above expression:

〈: Tr̂r̂ :〉β =
ω3(cosωr)4

4π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(j −m)!

(j +m)!
[w(Ẽ) + w(E)]

×
[
Wωr(f

+
+ , f

−
+ ) +Wωr(f

+
− , f

−
− )
] [
P+2
− + (j +m)2P−2

−
]
. (8.3.30)

With a similar application of Eqs. (C.2.7), the θ − θ component evaluates to:

〈: Tθ̂θ̂ :〉
β

=
ω2(cosωr)4 sin θ

4π sin3 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(j −m)!

(j +m)!
[w(Ẽ) + w(E)](f+

+ f
−
+ − f+

− f
−
− )

[
(j +m)Wcos θ(P

+
− , P

−
− ) + (j −m+ 1)Wcos θ(P

+
+ , P

−
+ )
]
, (8.3.31)

where Wcos θ(P
+
± , P

−
± ) are Wronskians of the associated Legendre functions P+

± and

P−
± with respect to cos θ. The explicit form of the associated Legendre functions,

defined in section C.2, can be used to obtain the following expressions:

W (P+
− , P

−
− ) =

1

sin2 θ

[
(j −m)P−

−P
+
+ − (j −m+ 1)P+

−P
−
+

]
, (8.3.32a)

W (P+
+ , P

−
+ ) =

1

sin2 θ

[
(j +m)P−

−P
+
+ − (j +m+ 1)P+

−P
−
+

]
, (8.3.32b)

Hence, Eq. (8.3.31) can be simplified to:

〈: Tθ̂θ̂ :〉
β

=
ω2(cosωr)4

4π sin3 ωr sin θ

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(j −m)!

(j +m)!
[w(Ẽ) + w(E)](f+

+ f
−
+ − f+

− f
−
− )

[
(j +m)(2j − 2m+ 1)P−

−P
+
+ − (j −m+ 1)(2j + 2m+ 1)P+

−P
−
+

]
. (8.3.33)
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The ϕ− ϕ component follows swiftly:

〈: Tϕ̂ϕ̂ :〉β =
ω3(cosωr)4

2π(sinωr)3 sin θ

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

m
(j −m)!

(j +m)!
[w(Ẽ) + w(E)](f+

+ f
−
+ − f+

− f
−
− )

[
(j +m)P−

−P
+
+ + (j −m+ 1)P+

−P
−
+

]
. (8.3.34)

Surprisingly, there appears to be a non-vanishing non-diagonal component in the

spatial sector:

〈: Tr̂θ̂ :〉
β

=
ω3(cosωr)4

8π sin2 ωr

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(j −m)!

(j +m)!
[w(Ẽ) + w(E)]

×
{ [
Wωr(f

+
+ , f

−
+ ) +Wωr(f

+
− , f

−
− )
]

×
(
cos θ

[
(j −m+ 1)P−

+P
+
− − (j +m)P+

+P
−
−
]

− sin θ
[
(j +m)(j −m+ 1)P−

+P
−
− + P+

+P
+
−
])

− ωr

sinωr
sin θ(f+

+ f
−
+ − f+

− f
−
− )

×
(

sin θ
[
(j −m+ 1)Wcos θ(P

−
+ , P

+
− ) + (j +m)Wcos θ(P

−
− , P

+
+ )
]

+ cos θ
[
(j −m+ 1)(j +m)Wcos θ(P

−
+ , P

−
− ) +Wcos θ(P

+
+ , P

+
− )
] )}

. (8.3.35)

Eqs. (C.2.7) can be used to show that the first term in the curly brackets (involving

the Wronskians of the radial functions) is actually 0, while the second term can be

transformed to:

〈: Tr̂θ̂ :〉
β
=−ω

4r(cosωr)4 sin θ

8π(sinωr)3

∞∑
n+=0

∞∑
m= 1

2

∞∑
j=m

(j −m)!

(j +m)!
[w(Ẽ) + w(E)](f+

+ f
−
+−f+

− f
−
− )

d

d(cos θ)

[
P+2
− + (j +m)2P−2

− − (j −m+ 1)2P−2
+ − P+2

+

]
. (8.3.36)

Equation (C.2.7) can be applied again to find that:

〈: Tr̂θ̂ :〉
β

= 0. (8.3.37)

8.3.2 The geometric approach

The geometric approach consists in using the ansatz (7.3.1) for the Feynman prop-

agator together with the results in subsection 7.3.2 to compute thermal expectation

values. This approach can only be used if the rotating vacuum coincides with the

adS vacuum (i.e. when Ω ≤ ω). Since one of the fundamental assumptions used in
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the construction of the adS propagator is that the space-time is maximally symmet-

ric, if the rotating vacuum is no longer the adS vacuum, it becomes the analogue

of the vacuum state considered by Iyer [47] for the rotating Minkowski space-time,

discussed in subsection 4.3.1. This vacuum state no longer characterises a state

which posseses maximal symmetry, hence, the ansatz (7.3.1) does not hold.

Thermal states are described by the thermal Feynman propagator Sβ
F (x, x′),

which can be obtained from the vacuum propagator SF (x, x′) using its anti-periodici-

ty property with respect to imaginary time. In subsection 7.5.1, thermal states on

adS were constructed by thermalising with respect to the Hamiltonian HadS = i∂tadS
.

Rigidly rotating thermal states can be obtained by thermalising with respect to the

Hamiltonian of the co-rotating system H = i∂t = i∂tadS
+ iΩ∂ϕadS

, which can be

most easily performed by changing to rotating coordinates, as described in subsec-

tion 8.3.1. The (adS) Feynman propagator with respect to rotating coordinates can

be written as:

ΩSF (x, x′) = Rz(−Ωt)SF (x,x
′)Rz′(Ωt

′), (8.3.38)

where the rotation operators Rz(−Ωt) and Rz′(Ωt
′), defined in Eq. (8.2.2), act on

the coordinates x and x′ and the the bi-spinor structure.

Thermal states constructed with respect to the adS vacuum are described by the

difference ∆ΩS
β
F (x, x′) between the thermal and vacuum Feynman propagators, as

shown in Eq. (7.5.1):

∆ΩS
β
F (x, x′) =

∑
j 6=0

(−1)j∆ΩSF (t+ ijβ,x; t′,x′). (8.3.39)

Thermal expectation values can now be calculated using Eqs. (7.4.1) by replacing

SF (x, x′) with 2ΩS
β
F (x, x′).

Fermion condensate

The Fermion condensate (FC) can be calculated using Eq. (7.4.1a) by taking the

trace of the coincidence limit of −∆ΩS
β
F (x, x′). Before giving the result, it is worth

noting that scalar product terms of the form x·γ
r

remain unchanged under the action

of the rotation operator Rz(−Ωt) (but not under Rz′(Ωt
′)), since Rz(−Ωt) rotates

both x and γ, keeping the angle between them unchanged. Thus, the following

traces can be computed:

lim
x′→x

tr[Rz(−Ωt)Λ(x, x′)Rz′(Ωt
′)] =

4 cos ω∆t
2

cos Ω∆t
2

cosωr cos ωsΩ

2

,

lim
x′→x

tr[Rz(−Ωt)/nΛ(x, x′)Rz′(Ωt
′)] =0, (8.3.40)
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where sΩ is the geodetic interval defined in Eq. (7.1.25) with ∆ϕ replaced by ∆ϕ−
Ω∆t. The following expression is obtained for the t.e.v. of the FC:

〈: ψψ :〉β = −
∞∑

j=1

(−1)j 8 cosh ωjβ
2

cosh Ωjβ
2

cosωr

αF (sΩ)

cos ωsΩ

2

⌋
x=x′

∆t=ijβ

. (8.3.41)

Equation (7.3.21a) can be used for αF , while the following expression can be used

to eliminate the geodetic interval sΩ:

sin2 ωs

2

⌋
x=x′

∆t=ijβ

= − 1

ζj
, (8.3.42)

where

ζj = cos2 ωr

(
sinh2 ωjβ

2
− sin2 ωr sin2 θ sinh2 Ωjβ

2

)−1

. (8.3.43)

Hence, the t.e.v. of the FC takes the form:

〈: ψψ :〉β = ∓ω
3N±k

2π2

∞∑
j=1

(−1)j cosh
ωjβ

2
cosh

Ωjβ

2

(
ζj

ζj + 1

)2±k

× 2F1

(
±k, 2± k; 1± 2k;

ζj
ζj + 1

)
, (8.3.44)

where the + and − signs correspond to regular and irregular modes, respectively.

It is interesting to note that the sign of the FC changes from positive for regular

modes to negative for irregular modes, resembling the effect of ς on the FC (5.3.45)

for rigidly rotating thermal states of fermions obeying MIT boundary conditions.

In the massless limit, the t.e.v. of the FC reduces to:

〈: ψψ :〉β
⌋

k=0
= ∓ ω3

2π2

∞∑
j=1

(−1)j cosh
ωjβ

2
cosh

Ωjβ

2

(
ζj

ζj + 1

)2

. (8.3.45)

In the case Ω = ω when the speed of light surface (SOL) is just about to form,

Eq. (8.3.44) reduces on the equatorial plane (θ = π
2
) to:

〈: ψψ :〉β
⌋

Ω=ω
θ=π

2

= ∓ω
3N±k

2π2

∞∑
j=1

(−1)j

cosh2 ωjβ
2

2F1

(
±k, 2± k; 1± 2k;

1

cosh2 ωjβ
2

)
.

(8.3.46)

It is remarkable that the FC is constant throughout the equatorial plane (θ = π
2
)

when Ω = ω. In the massless limit, Eq. (8.3.46) further reduces to:

〈: ψψ :〉β
⌋

k=0
Ω=ω
θ=π

2

= ∓ ω3

2π2
C2(βω), (8.3.47)
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where

C`(x) =
∞∑

j=1

(−1)j+1

(cosh jx
2
)2
. (8.3.48)

It is possible to write C2(x) in closed form by expanding the denominator in a series:

C2(x) = 4
∞∑

j=1

(−1)j+1

∞∑
s=0

(−1)ss e−jsx. (8.3.49)

The sum over j can be performed as a geometric series, after which C2(x) can be

put in the form:

C2(x) = −4
d

dx

∞∑
s=0

(−1)s ln(1 + e−sx). (8.3.50)

The function C2(x) can be written in terms of the Q-Pochhammer symbol (a; q)n,

defined as:

(a; q)n =
n∏

s=0

(1− aqs), (8.3.51)

by splitting the sum over s into sums over even and odd values of s, yielding:

C2(x) = −4
d

dx

[
(−1; e−2x)∞ − (−e−x, e−2x)∞

]
. (8.3.52)

Charge current

The charge current (CC) can be calculated using Eq. (7.4.1b) by replacing SF (x, x′)

with ∆ΩS
β
F (x, x′). Using the following traces:

lim
x′→x

tr[γ t̂Rz(−Ωt)/nΛ(x, x′)Rz′(Ωt
′)] =

4 sin ω∆t
2

cos Ω∆t
2

cosωr sin ωsΩ

2

, (8.3.53a)

lim
x′→x

tr[γ
ˆ̀
Rz(−Ωt)/nΛ(x, x′)Rz′(Ωt

′)] =− 4 tanωr

(
x×Ω

Ωr

)` cos ω∆t
2

sin Ω∆t
2

sin ωsΩ

2

,

(8.3.53b)

it is easy to infer that the charge current vanishes, as the above terms are odd with

respect to the transformation ∆t→ −∆t when ∆t→ ijβ:

〈: J α̂ :〉β = 0. (8.3.54)
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Neutrino charge current

The neutrino charge current can be calcualted using Eq. (8.3.11) by replacing

∆S
(1)
β (x, x′) with 2ΩS

β
F (x, x′):

〈: J α̂
ν :〉β = tr

[
γα̂ 1− γ5

2
∆ΩS

β
F (x′ = x)

]
. (8.3.55)

Using the following traces:

lim
x′→x

tr[γ t̂γ5Rz(−Ωt)/nΛ(x, x′)Rz′(Ωt
′)] =0,

lim
x′→x

tr[γ
ˆ̀
γ5Rz(−Ωt)/nΛ(x, x′)Rz′(Ωt

′)] =

[
cosωr

(
δ`z −

x`

r
cos θ

)
+
x`

r
cos θ

]
×

4i sin ω∆t
2

sin Ω∆t
2

cosωr sin ωsΩ

2

, (8.3.56)

the only non-vanishing components of the neutrino charge current can be computed:

〈: J r̂
ν :〉β =

ω3N± cos θ

4π2 cosωr

∞∑
j=1

(−1)j sinh
ωjβ

2
sinh

Ωjβ

2

× ζ2±k
j 2F1 (±k, 2± k; 1± 2k;−ζj) , (8.3.57a)

〈: J θ̂
ν :〉β =− ω3N±k sin θ

4π2

∞∑
j=1

(−1)j sinh
ωjβ

2
sinh

Ωjβ

2

× ζ2±k
j 2F1 (±k, 2± k; 1± 2k;−ζj) . (8.3.57b)

In the massless limit, the neutrino CC simplifies to:

〈: J r̂
ν :〉β

⌋
k=0

=
ω3(cosωr)3 cos θ

4π2

∞∑
j=1

(−1)j sinh ωjβ
2

sinh Ωjβ
2

(sinh2 ωjβ
2
− sin2 ωr sin2 θ sinh2 Ωjβ

2
)2
,

(8.3.58a)

〈: J θ̂
ν :〉β

⌋
k=0

=− ω3(cosωr)4 sin θ

4π2

∞∑
j=1

(−1)j sinh ωjβ
2

sinh Ωjβ
2

(sinh2 ωjβ
2
− sin2 ωr sin2 θ sinh2 Ωjβ

2
)2
.

(8.3.58b)
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When Ω = ω, Eqs. (8.3.57) reduce to:

〈: J r̂
ν :〉β

⌋
Ω=ω

=
ω3N±(cosωr)3±2k cos θ

4π2ε2±k
adS

∞∑
j=1

(−1)j

(sinh ωjβ
2

)2±2k

× 2F1

(
±k, 2± k; 1± 2k;− cos2 ωr

εadS sinh2 ωjβ
2

)
, (8.3.59a)

〈: J θ̂
ν :〉β

⌋
Ω=ω

=− ω3N±(cosωr)4±2k sin θ

4π2ε2±k
adS

∞∑
j=1

(−1)j

(sinh ωjβ
2

)2±2k

× 2F1

(
±k, 2± k; 1± 2k;− cos2 ωr

εadS sinh2 ωjβ
2

)
, (8.3.59b)

where εadS, defined in Eq. (8.1.3), reduces when Ω = ω to:

εadS = 1− sin2 ωr sin2 θ. (8.3.60)

It can be seen that, in the case when Ω = ω, 〈: J r̂
ν :〉β vanishes on the equato-

rial plane, while 〈: J θ̂
ν :〉β attains a constant value. Setting the mass to 0 reduces

Eqs. (8.3.59) to:

〈: J r̂
ν :〉β

⌋
k=0
Ω=ω

=− ω3(cosωr)3 cos θ

4π2ε2
adS

S2(βω), (8.3.61a)

〈: J θ̂
ν :〉β

⌋
k=0
Ω=ω

=
ω3(cosωr)4 sin θ

4π2ε2
adS

S2(βω), (8.3.61b)

where

S`(x) =
∞∑

j=1

(−1)j+1

(sinh jx
2
)`
. (8.3.62)

Following the steps leading to Eq. (8.3.52), it is possible to write S2(x) in a closed

form, by expanding the denominator:

S2(x) = 4
∞∑

j=1

(−1)j+1

∞∑
s=0

s e−jsx. (8.3.63)

Since there is no (−1)s factor in the sum over s, the above equation can be straight-

forwardly written in terms of the Q-Pochhammer symbol (8.3.51) as:

S2(x) = −4
d

dx
(−1; e−x)∞. (8.3.64)
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Stress-energy tensor

The formula giving the t.e.v. of the SET can be obtained from Eq. (8.3.15) by

replacing ∆S
(1)
β (x, x′) with 2∆ΩS

β
F (x, x′). Since 〈: Tα̂γ̂ :〉β is calculated as the trace

of ΩS
β
F (x, x′) multiplied by one gamma matrix γρ̂, the αF term in Eq. (7.3.1) does

not contribute (the trace of the bi-spinor of parallel transport Λ(x, x′) multiplied by

any odd number of gamma matrices vanishes, as discussed in subsection 7.1.4).

Computation of 〈: Tt̂t̂ :〉β. The split (8.3.18) for the covariant time derivative

into ∂Ω
t̂

and Γ0
t̂

is useful, since:

∂Ω
t̂ Rz(−Ωt) = Rz(−Ωt) cosωr∂t. (8.3.65)

According to Eq. (8.3.19a), the Γ0
t̂

term does not contribute to 〈: Tt̂t̂ :〉β. Two traces

are required for this computation: the first is given in Eq. (8.3.53a) and the second

is:

lim
x′→x

tr
[
γt̂(∂

Ω
t̂ − ∂

Ω
t̂′ )Rz(−Ωt)/nΛ(x, x′) sin ωs

2
Rz′(Ωt

′)
]

= −4 cos
ω∆t

2
cos

Ω∆t

2
,

(8.3.66)

where sin ωs
2

was added to cancel the sin ωs
2

factor in the denominator of /nΛ(x, x′)

(7.1.69b). Also, βF/ sin ωs
2

(7.3.22b) is now a function of ζ = −1/ sin2 ωs
2

. Using the

properties:

(∂t − ∂t′)ζ =ζ2 ω sinω∆t

cosωr cosωr′
, (8.3.67a)

∂ζ

(
βF (s)

sin ωs
2

)
=
iω3N±k(2± k)

16π2
ζ1±k

2F1(±k, 3± k; 1± 2k;−ζ), (8.3.67b)

the following result can be obtained:

(∂t − ∂t′)
βF

sin ωs
2

=
iω4N±(2± k) sinω∆t

16π2 cosωr cosωr′
ζ3±k

2F1(±k, 3± k; 1± 2k;−ζ). (8.3.68)

Thus, the t.e.v. of the energy density takes the form:

〈: Tt̂t̂ :〉β = − ω4N±k

4π2 cos2 ωr

∞∑
j=1

(−1)j cosh
ωjβ

2
cosh

Ωjβ

2

×
[
2(2± k) sinh2 ωjβ

2
ζ3±k
j 2F1 (±k, 3± k; 1± 2k;−ζj)

− cos2 ωr ζ2±k
j 2F1 (±k, 2± k; 1± 2k;−ζj)

]
, (8.3.69)

and reduces in the massless limit to:

〈: Tt̂t̂ :〉β
⌋

k=0
= − ω4

4π2

∞∑
j=1

(−1)jζ2
j cosh

ωjβ

2
cosh

Ωjβ

2

(
4ζj sinh2 ωjβ

2

cos2 ωr
− 1

)
. (8.3.70)
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In the case Ω = ω, Eq. (8.3.69) reduces to:

〈: Tt̂t̂ :〉β
⌋

Ω=ω
= −ω

4N±k(cosωr)4±2k

4π2ε3±k
adS

∞∑
j=1

(−1)j cosh2 ωjβ
2

(sinh ωjβ
2

)4±2k

× [2(2± k)2F1 (±k, 3± k; 1± 2k;−ζj)− εadS2F1 (±k, 2± k; 1± 2k;−ζj)] ,
(8.3.71)

The presence of ε3
adS in the denominator shows that the t.e.v. of the energy density

diverges as 1
cos2 ωr

as ωr → π
2
. In the massless limit, Eq. (8.3.71) can be written in

terms of the functions S`(βω), defined in Eq. (8.3.62):

〈: Tt̂t̂ :〉β
⌋

k=0
Ω=ω

= −3ω4(cosωr)4

4π2ε3
adS

[S4(βω) + S2(βω)]. (8.3.72)

Unfortunately, the method used to obtain the expression (8.3.64) for S2(x) in terms

of the Q-Pochhammer symbol cannot be applied to S4(x).

Computation of 〈: Tîk̂ :〉
β
. Equation (8.3.19d) shows that the anti-commutator{

γî,Γĵ

}
is anti-symmetric with respect to i � j, therefore, it does not contribute to

〈: Tîk̂ :〉
β
. Since the spatial derivatives ∂j and ∂j′ do not commute with the rotation

operators Rz(−Ωt) and Rz′(Ωt
′), it is convenient to take them after the rotation is

applied. The traces required for this calculation are Eq. (8.3.53b) and:

lim
x′→x

tr
[
γî(∂ĵ − ∂ĵ′)Rz(−Ωt)/nΛ(x, x′) sin ωs

2
Rz′(Ωt

′)
]

= 4 cos
ω∆t

2
cos

Ω∆t

2
δij.

(8.3.73)

The spatial derivative of βF (sΩ) sin ωsΩ

2
can be calculated using a chain rule with

the intermediate variable

ζΩ = ζc r′=r
θ′=θ

ϕ=−Ω∆t

, (8.3.74)

the spatial derivative of which can be calculated as follows:

(∂ĵ − ∂ĵ′)ζ
Ω = ζ2

Ω tanωr sin Ω∆t sin θ

(
x× Ω

Ωr

)j

. (8.3.75)

The spatial derivative of βF can be calculated by combining Eqs. (8.3.67b) and

(8.3.75):

(∂ĵ − ∂ĵ′)
βF (sΩ)

sin ωsΩ

2

=
iω3N±(2± k)

16π2
sin Ω∆t tanωr

(
x×Ω

rΩ

)j

× ζ3±k
2F1(±k, 3± k; 1± 2k;−ζ). (8.3.76)
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Thus, the t.e.v. of the spatial components of the SET can be written as:

〈: Tîˆ̀ :〉
β

= − ω4N±k

4π2 cos2 ωr

∞∑
j=1

(−1)j cosh
ωjβ

2
cosh

Ωjβ

2

×

[
2(2± k) sinh2 Ωjβ

2
sin2 ωr

(
x×Ω

rΩ

)i(
x×Ω

rΩ

)̀
ζ3±k
j 2F1 (±k, 3± k; 1± 2k;−ζj)

+δij cos2 ωr ζ2±k
j 2F1 (±k, 2± k; 1± 2k;−ζj)

]
. (8.3.77)

The first term in the curly brackets only contributes to 〈: Tϕ̂ϕ̂ :〉β, while the sec-

ond term makes contributions along the diagonal, leading to the following non-zero

components:

〈: Tr̂r̂ :〉β =− ω4N±k

4π2

∞∑
j=1

(−1)j cosh
ωjβ

2
cosh

Ωjβ

2
ζ2±k
j 2F1 (±k, 2± k; 1± 2k;−ζj) ,

(8.3.78a)

〈: Tϕ̂ϕ̂ :〉β =− ω4N±k

4π2

∞∑
j=1

(−1)j cosh
ωjβ

2
cosh

Ωjβ

2

[
ζ2±k
j 2F1 (±k, 2± k; 1± 2k;−ζj)

+2(2± k) sinh2 Ωjβ

2
tan2 ωr sin2 θ ζ3±k

j 2F1 (±k, 3± k; 1± 2k;−ζj)
]

(8.3.78b)

and 〈: Tθ̂θ̂ :〉
β

= 〈: Tr̂r̂ :〉β. It is remarkable that while 〈: Tr̂r̂ :〉β and 〈: Tθ̂θ̂ :〉
β

clearly

have the same expression in the geometric approach, it was necessary to use numeri-

cal calculations to show that their expressions in the mode sum approach give equal

t.e.v.s.

In the massless limit, Eqs. (8.3.78a) and (8.3.78b) simplify to:

〈: Tr̂r̂ :〉β
⌋

k=0
=− ω4

4π2

∞∑
j=1

(−1)j cosh
ωjβ

2
cosh

Ωjβ

2
ζ2
j , (8.3.79a)

〈: Tϕ̂ϕ̂ :〉β
⌋

k=0
=− ω4Γk

4π2 cos2 ωr

∞∑
j=1

(−1)j cosh
ωjβ

2
cosh

Ωjβ

2

×
(

cos2 ωr ζ2
j + 4 sinh2 Ωjβ

2
sin2 ωr sin2 θ ζ3

j

)
. (8.3.79b)
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In the case when Ω = ω, the components 〈: Tr̂r̂ :〉β and 〈: Tϕ̂ϕ̂ :〉β reduce to:

〈: Tr̂r̂ :〉β
⌋

Ω=ω
=− ω4N±k(cosωr)4±2k

4π2ε2±k
adS

∞∑
j=1

(−1)j cosh2 ωjβ
2

(sinh ωjβ
2

)4±2k

× 2F1 (±k, 2± k; 1± 2k;−ζj) , (8.3.80a)

〈: Tϕ̂ϕ̂ :〉β
⌋

Ω=ω
=− ω4N±k(cosωr)4±2k

4π2ε2±k
adS

∞∑
j=1

(−1)j cosh2 ωjβ
2

(sinh ωjβ
2

)4±2k

× [2(2± k)ε−1
adS sin2 ωr sin2 θ 2F1(±k, 3± k; 1± 2k;−ζj)

+ 2F1(±k, 2± k; 1± 2k;−ζj)]. (8.3.80b)

While 〈: Tr̂r̂ :〉β (and hence, 〈: Tθ̂θ̂ :〉
β
) approach a constant value throughout the

equatorial plane, 〈: Tϕ̂ϕ̂ :〉β diverges as (cosωr)−2 as ωr → π
2

in the equatorial plane.

The above expressions can be written in terms of the functions S`(βω) (8.3.62):

〈: Tr̂r̂ :〉β
⌋

k=0
Ω=ω

=− ω4(cosωr)4

4π2ε2
adS

[S4(βω) + S2(βω)], (8.3.81a)

〈: Tϕ̂ϕ̂ :〉β
⌋

k=0
Ω=ω

=− ω4(cosωr)4

4π2ε3
adS

(4 sin2 ωr sin2 θ + εadS)[S4(βω) + S2(βω)].

(8.3.81b)

Computation of 〈: Tît̂ :〉β. The following traces are useful for the computation of

〈: Tît̂ :〉β:

lim
x′→x

tr
{
γˆ̀Rz(−Ωt)[(∂t̂ − ∂t̂′)/nΛ(x, x′) sin ωs

2
]Rz′(Ωt

′)
}

=

4ω sinωr

(
x×Ω

Ωr

)`

sin
ω∆t

2
sin

Ω∆t

2
, (8.3.82a)

lim
x′→x

tr
{
γt̂Rz(−Ωt)[(∂ˆ̀− ∂ ˆ̀′)/nΛ(x, x′) sin ωs

2
]Rz′(Ωt

′)
}

=

− 4ω tan
ωr

2

(
x×Ω

Ωr

)`

sin
ω∆t

2
sin

Ω∆t

2
, (8.3.82b)

lim
x′→x

tr
[
({γt̂,Γî}+

{
γî,Γ

0
t̂

}
)Rz(−Ωt)/nΛ(x, x′) sin ωs

2
Rz′(Ωt

′)
]

=

− 4ω cosωr tan
ωr

2

(
x×Ω

Ωr

)`

sin
ω∆t

2
sin

Ω∆t

2
, (8.3.82c)

where Eqs. (8.3.19b) and (8.3.19c) were used to establish the last equality. Using

Eqs. (8.3.68) and (8.3.76) for the derivatives of βF (s)/ sin ωs
2

, the following expression
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is obtained for 〈: Tît̂ :〉β:

〈: Tt̂ϕ̂ :〉
β

=
ω4N±k(2± k) sinωr sin θ

4π2 cos2 ωr

∞∑
j=1

(−1)j sinh
ωjβ

2
sinh

Ωjβ

2

×
(

cosh2 ωjβ

2
+ cosh2 Ωjβ

2

)
ζ3+k
j 2F1 (k, 3 + k; 1 + 2k;−ζj) . (8.3.83)

The massless limit is:

〈: Tt̂ϕ̂ :〉
β

⌋
k=0

=
ω4 sinωr sin θ

2π2 cos2 ωr

∞∑
j=1

(−1)j sinh
ωjβ

2
sinh

Ωjβ

2
ζ3
j , (8.3.84)

while in the Ω = ω case, Eq. (8.3.83) reduces to:

〈: Tt̂ϕ̂ :〉
β

⌋
Ω=ω

=
ω4N±k(2± k)(cosωr)4

2π2ε3±k
adS

sinωr sin θ
∞∑

j=1

(−1)j cosh2 ωjβ
2

(sinh ωjβ
2

)4±2k

2F1 (k, 3 + k; 1 + 2k;−ζj) . (8.3.85)

Taking the massless limit on the above equation allows 〈: Tt̂ϕ̂ :〉
β

to be written in

terms of the S`(x) functions (8.3.62):

〈: Tt̂ϕ̂ :〉
β

⌋
k=0
Ω=ω

=
ω4(cosωr)4

π2ε3
adS

sinωr sin θ S4(ωβ). (8.3.86)

The advantage of the geometric approach is that the resulting expressions can be

easily interpreted physically, however, this approach only works when the thermali-

sation is performed with respect to the maximally symmetric adS vacuum state. The

following section presents graphical representations of the t.e.v.s discussed here.

8.4 Numerical results

The plots in this section show the thermal expectation values (t.e.v.s) of the fermion

condensate (FC), neutrino charge current (CC) and stress-energy tensor (SET) for

massless fermions and for fermions of mass µ = 2ω at four values of the inverse

temperature βω = {2.0, 1.2, 1.0, 0.8}, for various values of the angular momentum

Ω = |Ω| of the rotation. All plots presented in this section are in the equatorial

plane.
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Figure 8.2: Thermal expectation values across the equatorial plane (θ = π
2
) of the

fermion condensate (first line), neutrino charge current (second line) and Tr̂r̂ = Tθ̂θ̂

(third line) for Ω/ω < 1 (no speed of light surface present). The thin coloured
lines represent results for massless fermions. The mass for the thick dotted lines is
µ = 2ω. The non-rotating case Ω = 0 is also discussed in subsection 7.5.3.

0.2 0.4 0.6 0.8 1.0

Ω r

Π � 2

0.05

0.10

0.15

0.20

0.25
ΨΨ

W�Ω=1

ΒW = 2.
ΒW = 1.2
ΒW = 1.
ΒW = 0.8 0.2 0.4 0.6 0.8 1.0

Ω r

Π � 2

-6

-5

-4

-3

-2

-1

Log@J ΘD
W�Ω=1.

ΒW = 2.
ΒW = 1.2
ΒW = 1.
ΒW = 0.8

0.2 0.4 0.6 0.8 1.0

Ω r

Π � 2

-5

-4

-3

-2

-1

Log@Tr
`

r
`D

W�Ω=1.

ΒW = 2.
ΒW = 1.2
ΒW = 1.
ΒW = 0.8

Figure 8.3: Profiles of the fermion condensate (first line), neutrino charge current
(second line) and Tr̂r̂ = Tθ̂θ̂ (from left to right) for Ω = ω (speed of light surface
just forming at (r, θ) = ( π

2ω
, π

2
)). The profiles are constant across the equatorial

plane. Results for massless fermions (thin coloured lines) are compared to those for
fermions of mass µ = 2ω (thick dotted lines)
.
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Figure 8.4: Logarithm of neutrino charge current (first line) and Tr̂r̂ = Tθ̂θ̂ (second
line) for Ω = 1.5ω across the equatorial plane (the vertical gray line indicates the
position of the SOL). The horizontal axis shows the distance from the horizontal
axis on the left and the logarithm of the distance to the SOL on the right plot. The
plot on the right indicates that the t.e.v.s considered here diverge as inverse powers
of the distance to the SOL. Results for massless fermions (thin coloured lines) are
compared to those for fermions of mass µ = 2ω (thick dotted lines)
.
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When Ω < ω, no speed of light surface (SOL) forms and t.e.v.s stay regular through-

out space. In this regime, both the mode sum and the geometric approaches, pre-

sented in subsection 8.3.1 and subsection 8.3.2, respectively, can be applied and

numerical tests confirm that they yield equivalent results. Plots in this regime of

the t.e.v.s of the FC, θ component of the neutrino CC (the r component vanishes

in the equatorial plane) and Tr̂r̂ are given in Figure 8.2 and the plots for 〈: Tt̂t̂ :I〉β,

〈: Tϕ̂ϕ :I〉β and 〈: Tϕ̂t̂ :I〉β are given in Figure 8.5. The plots compare the profiles cor-

responding to various values of the angular velocity of the rotation Ω < ω for two

values of the temperature: β = ω−1 (left column) and β = 2ω−1 (right column). At

small values of Ω, the profiles corresponding to the rotating states exhibit features

close to those of the non-rotating adS space (also discussed in subsection 7.5.3),

decreasing from a maximum value on the rotation axis to 0 on the boundary, at

ωr = π
2
. As Ω increases, the maximum value shifts away from the rotation axis in-

creasingly closer to the boundary. Also, the component Tϕt̂ becomes non-zero when

Ω > 0.

When Ω = ω, the SOL just starts to form on the equator of adS, located at ωr = π
2

and θ = π
2
. As in the Ω < ω case, both the mode sum and the geometric approaches

can be used to compute t.e.v.s. Figure 8.3 shows the t.e.v.s which stay constant

throughout the equatorial plane, namely 〈: ψψ :I〉β, 〈: J θ̂
ν :I〉β and 〈: Tr̂r̂ :I〉β. The

numerical results confirm the analytic predictions of Eqs. (8.3.46), (8.3.59b) and

(8.3.80a), obtained using the geometric approach. In Figure 8.6, the t.e.v.s of Tt̂t̂,

Tϕ̂ϕ̂ and Tϕ̂t̂ are presented. It can be seen that they diverge as the SOL is approached.

Our numerical results confirm that the order of the divergence is O(ε−1
adS), as shown

using the geometric approach in Eqs. (8.3.71), (8.3.80b) and (8.3.85).

Finally, in the regime Ω > ω the geometric approach can no longer be used. In

lack of a suitable asymptotic analysis of the mode sum expressions for the t.e.v.s

under consideration, an estimate of the order of magnitude of the divergence of

t.e.v.s can be made based on numerical results, as follows:

〈: J θ̂
ν :I〉β ∼ O(ε−2

adS),

〈: Tr̂r̂ :I〉β = 〈: Tθ̂θ̂ :I〉β ∼ O(ε−2.5
adS . . . ε−3

adS),

〈: Tt̂t̂ :I〉β ∼ 〈: Tϕ̂ϕ̂ :I〉β ∼ 〈: Tϕ̂t̂ :I〉β ∼ O(ε−3.5
adS . . . ε−4

adS), (8.4.1)
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Figure 8.5: Profiles across the equatorial plane (θ = π
2
) of 〈: Tt̂t̂ :〉β, 〈: Tϕ̂t̂ :〉

β
and

〈: Tϕ̂ϕ̂ :〉β (from top to bottom). The thin coloured lines represent results for massless
fermions. The mass for the thick dotted lines is µ = 2ω. The non-rotating case Ω = 0
is also discussed in subsection 7.5.3
.
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β
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at Ω = ω (speed of light surface just forming at (r, θ) = ( π
2ω
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2
)), plotted against

the distance from the rotation axis (left) and logarithm of the distance to the SOL
(right). The t.e.v.s here diverge as the SOL is approached. Results for massless
fermions (thin coloured lines) are compared to those for fermions of mass µ = 2ω
(thick dotted lines)
.
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.
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where the notation O(ε−3.5 . . . ε−4) indicates that for various combinations of Ω and

β, out numerical results indicate divergences of orders between O(ε−3.5
adS ) and O(ε−4

adS).

Unfortunately, the result for 〈: ψψ :I〉β is currently not available, due to unexpected

difficulties in its numerical computation.

After a short digression in section 8.5, the conclusions of this chapter are pre-

sented in section 8.6.

8.5 Thermal states using the geometric approach

on Minkowski space-time

In section 8.3, rigidly rotating thermal states on anti-de Sitter space-time (adS) were

investigated using two approaches: with mode sums and using the explicit form of

the Feynman propagator. Since the Feynman propagator calculated in section 7.3

describes the maximally symmetric vacuum state of adS, the latter approach can

only be used when the vacuum state of the rotating space-time coincides with the

adS vacuum.

The simplicity of the t.e.v.s obtained using the geometric approach makes its

limitation to the case Ω ≤ ω frustrating. In the hope that (maybe in future work)

there would be a possibility to extend the geometric method to the case of the

non-maximally symmetric rotating vacuum so that it could be used for cases when

Ω > ω, this section is dedicated to answering whether the geometric approach can be

used in the case of unbounded rotating Minkowski space, where there is no regime

(apart from when Ω = 0) in which the rotating and non-rotating vacua coincide. The

answer is neither yes, nor no. The t.e.v.s calculated in subsection 4.3.2, including

the temperature-independent spurious terms, can be extracted from the geometric

approach expressions, but the method used is a very peculiar regularisation method

which unfortunately does not directly generalise to the case of rotating adS.

8.5.1 Minkowski propagator and thermal expectation values

In this subsection, the geometric approach introduced in Ref. [56] and used in sub-

section 7.3.3 for the anti-de Sitter space-time is used to obtain the Minkowski (non-

rotating) propagator and to calculate thermal expectation values.

Minkowski propagator

Given the maximal symmetry of Minkowski space-time, the Feynman propagator

can be written using the ansatz (7.3.1):

SF (x, x′) = αM(s) + βM(s)/n, (8.5.1)
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where the bi-spinor of parallel transport is just the identity matrix and the geodetic

interval is

s2 = −ηµν∆x
µ∆xν = (∆t)2 − (∆x)2, (8.5.2)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric and ∆xµ = (t − t′,x − x′).

The tangents to the geodesic can be computed from the geodetic interval (8.5.2):

nµ = −∆xµ

s
, (8.5.3)

The inhomogeneous Dirac equation can be written in the same way as for adS,

hence, the resulting equations for αM and βM can be obtained from Eqs. (7.3.29)

by taking the limit ω → 0:

βM =i
∂αM

∂(µs)
, (8.5.4a)

i

[
∂

∂(µs)
+

3

µs

]
βM − αF =

1

µ
δ4(x, x′), (8.5.4b)

resulting in the following equation for αM :

(µs)2 ∂
2αM

∂(µs)2
+ 3µs

∂αM

∂(µs)
+ µ2s2 αM = −µs2δ4(x− x′). (8.5.5)

The solution of the above equation (ignoring the pole structure induced by the delta

function on the right hand side) which is regular at spatial infinity (s2 → −∞) is

[16, 45]:

αM = − iµ2

8π2s
H

(1)
1 (µs), (8.5.6)

where H
(1)
1 (µs) is the Hankel function of the first kind (A.1.9) and the overall con-

stant was chosen to match the short-distance behaviour of Eq. (7.3.34) [56]. Sub-

stituting Eq. (8.5.6) in (8.5.4a) and using Eq. (A.1.21d), the following result can be

obtained:

βM = − µ2

8πs
H

(1)
2 (µs). (8.5.7)

Thermal expectation values

Using the anti-periodicity of the Feynman propagator with respect to imaginary

time [57], the Feynman propagator ∆Sβ
F (x, x′) for the thermal state (with respect

to the Minkowski vacuum) can be written as

∆Sβ
F (x, x′) =

∑
j 6=0

(−1)jSF (t+ ijβ,x; t′,x′). (8.5.8)
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The t.e.v.s of the fermion condensate (FC) and stress-energy tensor can be cal-

culated from the above using Eqs. (7.4.1):

〈: ψψ :〉β =− µ

2π2β2

∞∑
j=1

(−1)j

j2

[
iπ

s
µsH

(1)
1 (µs)

]
, (8.5.9)

where

s2 = −j2β2 (8.5.10)

was used in the denominator. Due to its imaginary argument µs = ijβµ, the Hankel

function can be replaced with the corresponding modified Bessel function (A.1.16):

〈: ψψ :〉β = − µ

2π2β2

∞∑
j=1

(−1)j

j2
[jβµK1(jβµ)] , (8.5.11)

which agrees with Eq. (3.3.74b).

The t.e.v. of the SET can be calculated in a similar fashion:

〈: Tt̂t̂ :〉β =− iµ2

π

∞∑
j=1

(−1)j

s2

[
µsH

(1)
1 (µs)− 3H

(1)
2

]
, (8.5.12a)

〈: Tîˆ̀ :〉
β

=− iµ2

π

∞∑
j=1

(−1)j

s2
H

(1)
2 (µs)δi`. (8.5.12b)

Applying the connection formula (A.1.16) for the case when µs = ijβµ allows the

SET to be written using modified Bessel functions:

〈: Tt̂t̂ :〉β =− 2µ2

π2β2

∞∑
j=1

(−1)j

j2

[
jβµH

(1)
1 (jβµ) + 3K2(jβµ)

]
, (8.5.13a)

〈: Tîˆ̀ :〉
β

=− 2µ2

πβ2

∞∑
j=1

(−1)j

j2
K2(jβµ)δi`, (8.5.13b)

in perfect agreement with Eqs. (3.3.74).

The above results validate the geometric approach for the construction of thermal

states on the maximally symmetric Minkowski space. The next section presents an

attempt at applying this method for rotating states.

8.5.2 Rotating thermal states

Let us now switch to co-rotating coordinates. The transformation ϕ → ϕ − Ωt

(meaning ϕnew = ϕold−Ωtold) can be written using the generator of rotations about

the z axis Jz = Lz + Sz. Since the orbital part Lz of Jz commutes with the spin
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part Sz, the spin part can be calculated for the transformation in question:

Rz(−Ωt) = e−iΩtSz = cos
Ωt

2
− 2i sin

Ωt

2
Sz = diag(e−

i
2
Ωt, e

i
2
Ωt, e−

i
2
Ωt, e

i
2
Ωt), (8.5.14)

hence, the transformed Feynman propagator has the following form:

ΩSF (x, x′) =

(
αM(sΩ) +

βM(sΩ)

sΩ

γ t̂∆t

)(
cos

Ω∆t

2
− 2iSz sin

Ω∆t

2

)
− βM(sΩ)

sΩ

[
γ ·∆x cos

Ω∆t

2
+ 2i sin

Ω∆t

2
(γ · xSz − Szγ · x′)

]
, (8.5.15)

where sΩ is given by Eq. (8.5.2) with ∆ϕ rotated to ∆ϕ− Ω∆t:

s2 = (∆t)2 − (∆ρ)2 − 4ρρ′ cos2 ∆ϕ− Ω∆t

2
− (∆z)2. (8.5.16)

The FC is given by the αM part of Eq. (8.5.15):

〈: ψψ :〉β =−
∑
j 6=0

(−1)jα(sΩ)

=− µΩ2

2π2

∞∑
j=1

(−1)j cosh zj

z2
j − ρ2Ω2 sinh2 zj

[−iµsK1(−iµs)] , (8.5.17)

where

zj =
jβΩ

2
. (8.5.18)

It is interesting that the sum above is actually not equal to 〈: ψψ :〉β (4.3.49). In

particular, the SOL is predicted to be at ρΩ = 1, where Eq. (8.5.17) is still finite.

Moreover, there are values of ρ, Ω and β where the denominator vanishes for some

value of j, meaning there are irregularity points different from the SOL. However, the

insight gained by looking at the analytic result (4.3.49) for the t.e.v. of the FC with

respect to the Minkowski (Vilenkin) vacuum suggests that results in the massless

case can be obtained by expanding Eq. (8.5.17) in powers of β. Since β only appears

in the combination zj, an expansion in powers of β is equivalent to an expansion in

powers of zj. Since positive powers of j come with positive powers of β, a mechanism

is needed to make their coefficients vanish. The problem is that if j > 0, the sum

over j becomes divergent. In an attempt to eliminate such terms (which shouldn’t

be making contributions anyway), the sum over j can be regularised by replacing
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(−1)j with (−z)j, for all j ≥ 0, for some 0 ≤ z < 1, and using:

−
∞∑

j=1

(−1)j

j4
=

7π2

720
, (8.5.19a)

−
∞∑

j=1

(−1)j

j2
=
π2

12
, (8.5.19b)

−
∞∑

j=1

(−z)j =
z

1 + z
, (8.5.19c)

−
∞∑

j=1

(−z)jj2n =− Li−2n(−z), (8.5.19d)

where Lis(x) is the polylogarithm function [1, 60], defined as:

Lis(x) =
∞∑

`=1

x`

`s
. (8.5.20)

The polylogarithm converges for all complex values of s if |z| < 1. It also converges

for |z| = 1 if Res > 1. In the present case, we seek to extend the polylogarithm by

analytic continuation to the ζ function, as follows:

Li−2n(−1) = (1− 21+2n)ζ(−2n). (8.5.21)

According to [60],

ζ(−2n) = 0, n = 1, 2, 3, . . . , (8.5.22)

hence:

−
∞∑

j=1

(−z)jj2n ∼ (1− z), (8.5.23)

meaning that the above sum vanishes in the limit z → 1. Thus, we justify ignoring

terms of higher order than j0 in the expansion of the t.e.v.s obtained using the

geometric approach and find for the t.e.v. of the FC (8.5.17) the familiar result

(4.3.49):

〈: ψψ :〉β =
π2

6β2ε
+

Ω2

8ε2
(2

3
+ 1

3
ε), (8.5.24)

where ε = 1− ρ2Ω2 vanishes on the SOL.

For the remainder of this section, the t.e.v. of the SET is be considered only for

the case of massless fermions. Unfortunately, we do not have a method to deal with

mass terms in a consistent manner (a simple expansion in powers of j of the modified

Bessel functions containing the mass dependence would lead to a result polynomial

in the mass, which would only hold for very small masses). The massless limit of
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the propagator (8.5.15) is:

ΩSF (x, x′) =
i

2π2s4
Ω

[
γ t̂∆t

(
cos

Ω∆t

2
− 2iSz sin

Ω∆t

2

)
−γ ·∆x cos

Ω∆t

2
− 2i sin

Ω∆t

2
(γ · xSz − Szγ · x′)

]
. (8.5.25)

Noting that:

Dt̂Rz(−Ωt) = Rz(−Ωt)∂t, (8.5.26)

the trace in the expression for 〈: Tt̂t̂ :〉β selects only the γ t̂ term:

〈: Tt̂t̂ :〉β = − Ω4

4π2

∞∑
j=1

(−1)j cosh zj

3z2
j + ρ2Ω2 sinh2 zj

(z2
j − ρ2Ω2 sinh2 zj)3

, (8.5.27)

where, as before, zj = 1
2
jβΩ. The terms corresponding to non-positive powers of zj

are:

〈: Tt̂t̂ :〉 =
7π2

60β4

(
4

3
− ε

3

)
+

Ω2

8β2ε4

(
8

3
− 16ε

9
+
ε2

9

)
+

Ω4

64π2ε5

(
64

3
− 376ε

15
+

196ε2

45
+

17ε3

45

)
. (8.5.28)

The above result matches exactly the mode sum result obtained with respect to the

Minkowski vacuum (Vilenkin’s quantisation), given in Eqs. (4.3.51).

The t.e.v.s of the spatial components of the SET can be evaluated using the

following properties:

(∇−∇′)sΩcx=x′ =
4

sΩ

sin
Ω∆t

2
cos

Ω∆t

2

(
x×Ω

Ω

)
,

tr (γ [x · γ, Sz]) =− 4i

(
x×Ω

Ω

)
, (8.5.29)

yielding:

〈: Tîˆ̀ :〉
β

= − Ω4

4π2

∞∑
j=1

(−1)j cosh zj

[
δi`

(z2
j − ρ2Ω2 sinh2 zj)2

+
4ρ2Ω2 sinh2 zj

(z2
j − ρ2Ω2 sinh2 zj)3

(
x×Ω

ρΩ

)i(
x×Ω

Ω

)`
]
. (8.5.30)
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The last term above only contributes to 〈: Tϕ̂ϕ̂ :〉β:

〈: Tρ̂ρ̂ :〉β =− Ω4

4π2

∞∑
j=1

(−1)j cosh zj

(z2
j − ρ2Ω2 sinh2 zj)2

. (8.5.31a)

〈: Tϕ̂ϕ̂ :〉β =− Ω4

8π2

∞∑
j=1

(−1)j cosh zj

z2
j + 3ρ2Ω2 sinh2 zj

(z2
j − ρ2Ω2 sinh2 zj)3

(8.5.31b)

and 〈: Tẑẑ :〉β = 〈: Tρ̂ρ̂ :〉. Employing the summation technique used previously, the

following results are obtained:

〈: Tρ̂ρ̂ :〉 =
7π2

180β4ε2
+

Ω2

24β2ε3

(
4

3
− ε

3

)
+

Ω4

192π2ε4

(
8− 88ε

15
− 17ε2

15

)
, (8.5.32a)

〈: Tϕ̂ϕ̂ :〉β =
7π2

180β4ε3
(4− 3ε) +

Ω2

24β2ε4
(8− 8ε+ ε2)

+
Ω4

192π2ε5

(
64− 456ε

5
+

124ε2

5
+

17ε3

5

)
. (8.5.32b)

The only non-vanishing non-diagonal term, 〈: Tt̂ϕ̂ :〉, can be calculated using:

〈: Tt̂ϕ̂ :〉
β

=
i

4

∑
j 6=1

(−1)j lim
x→x′

∆t=ijβ

tr {[γt̂(∂ϕ − ∂ϕ′)γϕ̂(Dt̂ −Dt̂′)] ΩSF (x, x′)} . (8.5.33)

Performing the derivatives yields:

〈: Tt̂ϕ̂ :〉
β

=ρΩ
Ω4

2π

∞∑
j=1

(−1)j zj sinh zj(1 + cosh2 zj)

(z2
j − ρ2Ω2 sinh2 zj)3

=− ρΩ
{

7π2

45β4ε3
+

2Ω2

9β2ε4

(
3

2
− ε

2

)
+

31Ω4

240π2ε5

(
80

31
− 64ε

31
+

15ε2

31

)}
.

(8.5.34)

8.5.3 Summary

In this section, the Feynman propagator corresponding to the fully symmetric Minkowski

vacuum was used to construct rotating thermal states. The construction is physi-

cally not possible, since the rotating vacuum does not coincide with the Minkowski

vacuum and it lacks maximal symmetry. The resulting t.e.v.s do not describe the

rotating system, but the information corresponding to rotating thermal states can

still be extracted, by employing carefully chosen analytic techniques.

Unfortunately, the massive case requires perhaps a different technique, or maybe

a completeley diferent approach. However, given the success of the technique in

the present circumstances, it is maybe not that unreasonable to hope that a similar
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technique might exist for rotating states on adS which would allow the extension

of the domain of applicability of the geometric approach into the case when Ω > ω

(i.e. when an SOL forms).

8.6 Summary

Two methods are employed in this chapter for the construction of rigidly rotating

thermal states: the mode sum method and the geometric method.

In the mode sum method, the Hadamard function for the thermal state is con-

structed using mode sums, resulting in thermal expectation values (t.e.v.s) written

as sums over the main quantum number n+, total angular momentum j and z-axis

projection m of the angular momentum. The resulting expressions are unfortunately

too complicated to be interpreted physically, but they are amenable to analysis using

numerical methods.

The geometric approach exploits the equivalence of the rotating and adS vacua

for the case when the angular velocity Ω of the rotation obeys Ω ≤ ω. In this case,

it is possible to obtain the Feynman propagator of the rotating thermal state by

rotating and then thermalising the adS vacuum propagator, obtained in section 7.3.

Important features of the t.e.v.s of the fermion condensate (FC), neutrino charge

current (CC) and stress-energy tensor (SET) can be inferred using the geometric

approach. In the limiting case Ω = ω, the FC, neutrino CC and 〈: Tr̂r̂ :I〉β (i.e. the

t.e.v. of Tr̂r̂ with respect to the Iyer vacuum) stay constant throughout the equatorial

plane. A more in depth discussion is presented in section 8.4.

At the end of this chapter (in section 8.5), an attempt at extending the geometric

approach to the case of rotating thermal states on Minkowski space is made, where

the rotating vacuum does not coincide with the Minkowski vacuum for any non-zero

value of the angular velocity of the rotation. A knowledge of the analytic formula

for t.e.v.s in the rotating Minkowski space time is crucial to devising a technique

which extracts the relevant information out of expressions which do not correspond

to rotating thermal states on Minkowski space-time. Our hope is to generalise this

procedure to the case of the adS space-time, where the geometric approach can be

used with such great success in the cases where it is valid, i.e. when Ω ≤ ω.



Chapter 9. Conclusion

Two topics are investigated in this thesis: rotating quantum states on Minkowski

and anti-de Sitter space-times and the renormalisation of vacuum expectation values

on anti-de Sitter space.

Rigidly rotating thermal states are impossible to construct using scalar particles,

while for fermions, our analytic results, presented in subsection 4.3.2, show that

thermal expecation values (t.e.v.s) diverge as inverse powers of the distance to the

speed of light surface (SOL). Following the discussion of Ref. [47], the spurious

temperature-independent terms appearing when the thermal states are constructed

with respect to the Minkowski vacuum (as performed by Ref. [72]) are shown to

disappear if an appropriate rotating vacuum state is considered, with respect to

which no particle mode has negative frequency.

The investigation of rigidly rotating thermal states of fermion particles can prove

relevant to the physics of Kerr black holes, where Kay and Wald [48] proved that

Israel-Hartle-Hawking (IHH) states are not regular for scalar particles [61]. In 1989,

Frolov and Thorne [35] obtained an alternative IHH state which was well defined on

the rotation axis by using different thermalisation procedures for normal and super-

radiant modes. However, Ottewill and Winstanley [62] showed that Frolov and

Thorne’s state is ill defined everywhere throughout the rest of the space-time. In

2005, Casals and Ottewill [22] looked at the quantised Maxwell field on a Kerr back-

ground space-time, arriving at the same conclusion that the IHH state is not regular.

However, the difference in the fundamental nature of fermions and bosons, reflected

in their corresponding Fermi-Dirac and Bose-Einstein statistics, respectively, allows

fermions to form IHH states [21].

The discussion of rotating quantum states on Minkowski space-time is concluded

by enclosing the system inside a boundary. As discussed in Ref. [33], thermal states

for scalar fields can now be defined and yield finite t.e.v.s everywhere in the space-

time as long as the boundary is inside or on the SOL. In Ref. [34], Frolov and

Thorne’s [35] suggestion of enclosing the Kerr space-time inside a box before consid-

ering the problem of IHH states is implemented by enclosing the space-time inside

a cylindrical mirror. The expectation value of the stress-energy tensor in this IHH

state is regular everywhere inside the box and thermal close to the horizon.

The boundary is essential for thermal states of rotating fermions as well, due to

the divergences occuring as the SOL is approached. The enclosure of the system

inside the boundary on which spectral [43] and MIT bag [23] boundary conditions

are implemented yields all t.e.v.s finite and well-defined, as long as the boundary
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is not outside the SOL. The quasi-Euclidean approach is used in chapter 6 to show

that thermal states diverge on the SOL if the boundary is pushed outside the SOL.

Similar results are expected for the case of fermion IHH states inside a boundary.

The analysis of the Casimir effect shows that the global nature of the spectral

boundary conditions makes their corresponding Casimir divergence one order of

magnitude worse then for purely local boundary conditions, for which predictions

were made in Ref. [31]. The results for the Casimir divergence obtained using the

MIT bag boundary conditions are similar to those obtained in Refs. [12, 28, 29] for

fermions inside a cylindrical boundary in a 2 + 1-dimensional space-time obeying

MIT bag boundary conditions.

On anti-de Sitter space, the renormalisation of vacuum expectation values with

the Schwinger de-Witt and Hadamard methods give vacuum expectation values in

perfect agreement with the results obtained using the Pauli-Villars and Zeta-function

regularisation techniques, as discussed in subsection 7.4.1 and subsection 7.4.2, re-

spectively. While on adS fermions in thermal states behave as perfect fluids, intro-

ducing rotation changes expectation values by the addition of an SOL at values of

the angular velocity Ω of the rotation larger than the inverse radius of curvature ω of

adS. As in the unbounded Minkowski case, the thermal state is not well defined on

and outside the SOL. As Ω is decreased down to ω, the SOL collapses down to the

equatorial circle of adS, after which it disappears completely and all t.e.v.s become

finite throughout the space-time.



Appendix A: Properties of Bessel

functions

This appendix contains some definitions and properties of Bessel functions relevant

to the work presented in this thesis. The first section introduces Bessel functions

of the first, second and third kind as well as modified Bessel functions. The second

section gives asymptotic forms for the Bessel functions for both small and large

values of their argument. Some integrals involving Bessel functions over infinite and

finite are presented in section A.3, including orthogonality relations. Section A.4

is dedicated to the discussion of infinite sums over the order of products of Bessel

functions.a

Most of the properties presented in this appendix are reproduced from standard

reference books, e.g., [1, 37, 60, 73].

A.1 Definition

This section covers the definition of Bessel functions of the first, second and third

kind as well as of modified Bessel functions and presents some of the recurrence

relations they satisfy.

The Bessel functions of the first, second and third kind are solutions to Bessel’s

equation: [
z2 d

2

dz2
+ z

d

dz
+ (z2 − ν2)

]
Zν(z) = 0. (A.1.1)

The Bessel functions of the first kind of order ±ν are the series solutions to (A.1.1)

about z = 0:

J±ν(z) =
(z

2

)±ν
∞∑

k=0

(−1)k

k!Γ(k ± ν + 1)

(z
2

)2k

. (A.1.2)

The Wronskian of Bessel functions of opposite order is given by:

W{J−ν(z), Jν(z)} =
2 sin νπ

πz
. (A.1.3)

The two solutions of order ν and −ν are linearly independent for non-integral ν, but

for integer order obey the equation:

J−m(z) = (−1)mJm(z). (A.1.4)
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A product of two Bessel functions of the first kind can be written as a series about

z = 0 using the following formula:

Jν(z)Jµ(z) =
(z

2

)ν+µ
∞∑

k=0

(−1)k

k!Γ(ν + k + 1)Γ(µ+ k + 1)

Γ(ν + µ+ 2k + 1)

Γ(ν + µ+ k + 1)

(z
2

)2k

.

(A.1.5)

The Bessel functions of the second kind (Neumann functions) can be constructed

from J±ν :

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
. (A.1.6)

If the order of the Neumann function is an integer m, the definition (A.1.6) should

be understood as the limit ν → m, in which case Ym(z) admits the following series

representation:

Ym(z) =− 1

π

(z
2

)−m
m−1∑
k=0

(m− k − 1)!

k!

(z
2

)2k

+
2

π
ln
{z

2
Jm(z)

}
− 1

π

(z
2

)m
∞∑

k=0

(−1)k

k!(m+ k)!
[ψ(k + 1) + ψ(m+ k + 1)]

(z
2

)2k

, (A.1.7)

valid for m ≥ 0, with Y−m(z) = (−1)mYm(z). Here, ψ(z) = Γ′(z)/Γ(z) is the

digamma function.

The functions Yν(z) and Jν(z) form a linearly independent set, as can be seen

from their Wronskian:

W{Jν(z), Yν(z)} =
2

πz
. (A.1.8)

The Bessel functions of the third kind (Hankel functions) are defined by:

H(1)
ν (z) = Jν(z) + iYν(z), H(2)

ν (z) = Jν(z)− iYν(z), (A.1.9)

where H(1) and H(2) are Hankel functions of the first and second kind respectively.

A series expansion for the Hankel functions of integer order can be obtained using

the series expansions for Jm(z) (A.1.2) and Ym(z) (A.1.7). The Wronskian of the

Hankel function of the first kind and the Hankel function of the second kind is given

by:

W{H(1)
ν (z), H(2)

ν (z)} = − 4i

πz
, (A.1.10)

and does not vanish, therefore, the two functions are always linearly independent.

Denoting by Cν any of the Bessel functions introduced so far, the following rela-
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tions stand:

2ν

z
Cν(z) = Cν−1(z) + Cν+1(z), (A.1.11a)

2C ′ν(z) = Cν−1(z)− Cν+1(z), (A.1.11b)

C ′ν(z) = Cν−1(z)−
ν

z
Cν(z), (A.1.11c)

C ′ν(z) = −Cν+1(z) +
ν

z
Cν(z). (A.1.11d)

Let us now turn to the modified Bessel equation, which can be obtained from

(A.1.1) by replacing z with iz:[
z2 d

2

dz2
+ z

d

dz
− (z2 + ν2)

]
Zp(z) = 0. (A.1.12)

The modified (hyperbolic) Bessel function of order ±ν is the series solution to

(A.1.12) about z = 0:

I±ν(z) =
(z

2

)±ν
∞∑

k=0

1

k!Γ(k ± ν + 1)

(z
2

)2k

(A.1.13)

and is related to the Bessel function of the first kind (A.1.2) through:

Iν(z) = e∓
1
2
iνπJν(e

± 1
2
iπz). (A.1.14)

The function Iν(z) grows exponentially as z →∞ and is regular at the origin.

Conversely, the modified Bessel function of the second kind (the MacDonald

function), defined as

Kν(z) =
π

2

I−ν(z)− Iν(z)
sin νπ

, (A.1.15)

is singular at the origin but decays exponentially at large values of the argument.

The functions Kν(z) are related to the Hankel function of the first kind (A.1.9)

through:

Kν(z) =
iπ

2

e
1
2
νπiH

(1)
ν (e

1
2
iπz),−π ≤ arg(z) ≤ π

2

−e− 1
2
νπiH

(2)
ν (e−

1
2
iπz),−π

2
≤ arg(z) ≤ π

(A.1.16)

and admit the integral representation:

Kν(z) =

√
π

Γ(ν + 1/2)

(z
2

)ν
∫ ∞

1

dz e−zt(t2 − 1)ν/2−1. (A.1.17)

If the order of Kν(z) is an integer, the modified Bessel functions of the second kind
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admit the following series expansion:

Km(z) =
1

2

(z
2

)−m
m−1∑
k=0

(m− k − 1)!

k!
(−1)k

(z
2

)2k

− ln
{z

2
Im(z)

}
+

(−1)m

2

(z
2

)m
∞∑

k=0

ψ(k + 1) + ψ(m+ k + 1)

k!(m+ k)!

(z
2

)2k

. (A.1.18)

Some useful Wronskians are:

W{Iν(z), I−ν(z)} =− 2
sin νπ

πz
, (A.1.19a)

W{Kν(z), Iν(z)} = Kν+1(z)Iν(z) +Kν(z)Iν+1(z) =
1

z
. (A.1.19b)

The modified Bessel functions of opposite orders are related through:

I−ν(z) = Iν(z) +
2

π
Kν(z) sinπν, K−ν(z) = Kν(z). (A.1.20)

Denoting by Zν either Iν(z), e
νπiKν(z) or any linear combination of the two, the

following recurrence relations hold:

2ν

z
Zν(z) = Zν−1(z)−Zν+1(z), (A.1.21a)

2Z ′ν(z) = Zν−1(z) + Zν+1(z), (A.1.21b)

Z ′ν(z) = Zν−1(z)−
ν

z
Zν(z), (A.1.21c)

Z ′ν(z) = Zν+1(z) +
ν

z
Zν(z). (A.1.21d)

A.2 Asymptotic forms

At small z but fixed and non-vanishing ν, the Bessel functions of the first, second

and third kind admit the following asymptotic expansions:

Jν(z) =
1

Γ(ν + 1)

(z
2

)ν

+O(zν+2), (A.2.1a)

Yν(z) = −Γ(ν)

π

(z
2

)−ν

O(z−ν+2), (A.2.1b)

H(1)
ν (z) =

(
2

z

)ν
Γ(ν)

iπ
+
(z

2

)ν 1 + i cot(πν)

Γ(1 + ν)
+O(z2±ν), (A.2.1c)

H(2)
ν (z) = −

(
2

z

)ν
Γ(ν)

iπ
+
(z

2

)ν 1− i cot(πν)

Γ(1 + ν)
+O(z2±ν). (A.2.1d)
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If ν = 0, the Bessel functions have the following leading order behaviour:

J0(z) = 1 +O(z2), (A.2.2a)

Y0(z) = 2
π

ln{ z
2
J0(z)}+O(z2), (A.2.2b)

H
(1)
0 (z) = 2i

π
ln{ z

2
J0(z)}+O(z2), (A.2.2c)

H
(2)
0 (z) = −2i

π
ln{ z

2
J0(z)}+O(z2). (A.2.2d)

Keeping ν fixed, at large z the functions can be approximated by:

Jν(z) =

√
2

πz

[
cos
(
z − νπ

2
− π

4

)
+O(z−1)

]
, (A.2.3a)

Nν(z) =

√
2

πz

[
sin
(
z − νπ

2
− π

4

)
+O(z−1)

]
, (A.2.3b)

H(1)
ν (z) =

√
2

πz
ei(z− νπ

2
−π

4 )
[
1 +O(z−1)

]
, (A.2.3c)

H(2)
ν (z) =

√
2

πz
e−i(z− νπ

2
−π

4 )
[
1 +O(z−1)

]
. (A.2.3d)

The asymptotic forms of the modified Bessel functions Iν(z), Kν(z) for small

values of the argument z and non-vanishing ν are:

Iν(z) =
1

Γ(ν + 1)

(z
2

)ν

+O(zν+2), (A.2.4a)

Kν(z) =
1

2
Γ(ν)

(z
2

)−ν

+
1

2
Γ(−ν)

(z
2

)ν

+O(z±ν+2). (A.2.4b)

If ν = 0, the leading order term in Kν(z) is:

K0(z) = − ln
{

z
2
I0(z)

}
+O(z2). (A.2.4c)

At fixed ν and large z, the modified Bessel functions can be approximated by:

Iν(z) =
ez

√
2πz

[
1− µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
− (µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+O(z−4)

]
,

(A.2.4d)

Kν(z) =
e−z√
2z/π

[
1 +

µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
+

(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+O(z−4)

]
,

(A.2.4e)

where µ = 4ν2. If both ν and z are allowed to increase, the following approximations
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can be used [19, 60]:

Iν(α) =
exp(
√
ν2 + α2 + ν ln α

ν+
√

ν2+α2 )√
2π(ν2 + α2)1/4

[
1− A√

ν2 + α2
+O((ν2 + α2)−1)

]
,

(A.2.5a)

Kν(α) =
exp(−

√
ν2 + α2 − ν ln α

ν+
√

ν2+α2 )√
2/π(ν2 + α2)1/4

[
1 +

A√
ν2 + α2

+O((ν2 + α2)−1)

]
,

(A.2.5b)

where

A = −1

8
+

5ν2

24(α2 + ν2)
. (A.2.6)

For the analysis of the Casimir divergence for fermions, the asymptotic expansions

of the following combinations can be calculated using Eq. (A.2.5a):

I2
ν− 1

2
(α)− I2

ν+ 1
2
(α) =

ν

πα
√
ν2 + α2

exp

(
2
√
ν2 + α2 + 2ν ln

α

ν +
√
ν2 + α2

)
×
[
1 +

1

12
√
ν2 + α2

(
1 +

5α2

ν2 + α2

)
+O((ν2 + α2)−1)

]
,

(A.2.7a)

2Iν− 1
2
(α)Iν+ 1

2
(α) =

1

π
√
ν2 + α2

exp

(
2
√
ν2 + α2 + 2ν ln

α

ν +
√
ν2 + α2

)
×

[
1− 5ν2

12(ν2 + α2)
3
2

+O((ν2 + α2)−1)

]
, (A.2.7b)

Kν− 1
2
(α)

Iν− 1
2
(α)

=
πx

ν +
√
ν2 + α2

exp

(
−2
√
ν2 + α2 − 2ν ln

α

ν +
√
ν2 + α2

)

×

[
1 +

5

12(ν2 + α2)
3
2

+O((ν2 + α2)−1)

]
. (A.2.7c)

Similarly, the Bessel functions of the first kind admit the following uniform

asymptotic expansions:

Jν(z > ν) =

√
2

π

1

(z2 − ν2)
1
4

[
cos
(√

z2 − ν2 − νarcsec
z

ν
− π

4

)
+O

(
1

z

)]
,

(A.2.8a)

Jν(z < ν) =
1√
2π

1

(ν2 − z2)
1
4

exp

{√
ν2 − z2 + ν ln

z

ν +
√
ν2 − z2

}[
1−O

(
1

z

)]
.

(A.2.8b)
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A.3 Orthogonality relations satisfied by Bessel

functions and some integrals

If the range of the argument z is 0..∞, the following relation holds:∫ ∞

0

dz z Jν(kz)Jν(k
′z) =

δ(k − k′)
k

. (A.3.1)

It is possible to write down orthogonality relations if z is confined to a finite interval:∫ z0

0

z dz Jν

(
ξνl

z
z0

)
Jν

(
ξνm

z
z0

)
= δ`m

1
2
z2
0J

2
ν+1(ξνm), (A.3.2)

with ξν` being the `’th positive zero of Jν(z):

Jν(ξνl) = 0, ξν,`+1 > ξν`. (A.3.3)

A similar orthogonality relation for Jν+1 reads:∫ z0

0

z dz Jν+1(ξν`
z
z0

)Jν+1(ξνm
z
z0

) = δ`m
1
2
z2
0J

2
ν+1(ξν`). (A.3.4)

Using the property

ρJ2
m(qρ) =

d

dρ

{
ρ2

2
[J2

m(qρ) + J ′m
2(qρ)]− m2

2q2
J2

m(qρ)

}
, (A.3.5)

which can be proven using the differential equation (A.1.1) satisfied by Bessel func-

tions, the integral of the LHS in (A.3.5) can be written as:∫ R

0

ρ dρ J2
m(qρ) =

R2

2

[
J2

m(qR) + J2
m±1(qR)− 2m

qR
Jm(qR)Jm±1(qR)

]
. (A.3.6)

Starting from the Bessel equation (A.1.1), the following results can be estab-

lished:∫ R

0

ρ dρ Jm(q′ρ)Jm(qρ) = ± R

q2 − q′2
{qJm(q′R)Jm±1(qR)− q′Jm±1(q

′R)Jm(qR)} .

(A.3.7)
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A.4 Formulae for summation over order involving

a product of two Bessel functions

Using Neumann’s Addition Theorem:

Cν(u± v) =
∞∑

k=±∞

Cν∓k(u)Ck(v), (A.4.1)

valid for any Bessel function C, it follows that:

∞∑
m=−∞

Jm(z)Jm+`(z) = δl,0. (A.4.2)

Formula (A.4.2) can be used in conjunction with the recursion relations (A.1.11) to

further show that:

∞∑
m=−∞

mJm(z)Jm+`(z) =
z

2
(δ1` + δ−1`), (A.4.3)

∞∑
m=−∞

Jm(z)J ′m+`(z) =
1

2
(δ1` − δ−1`), (A.4.4)

∞∑
m=−∞

mJ ′m(z)Jm+`(z) =
z

2
(δ2` − δ−2`), (A.4.5)

∞∑
m=−∞

J ′m(z)J ′m+`(z) =
1

2
δ0` −

1

4
(δ2` + δ−2`), (A.4.6)

∞∑
m=−∞

m2Jm(z)Jm+`(z) =
z2

4
(δ2` + 2δ0` + δ−2`)−

z

2
(δ1` − δ−1`). (A.4.7)



Appendix B: Jacobi Polynomials

This appendix provides properties of Jacobi polynomials relevant to the construction

of mode solutions of the Dirac equation on anti-de Sitter space-time, in chapter 7.

The following material is provided for completeness, from standard reference books

[1, 60].

The Jacobi polynomials are solutions of the Jacobi equation:{
(1− z2)

d2

dz2
+ [(β − α)− (α+ β + 2)z]

d

dz
+ n(n+ α+ β + 1)

}
P (α,β)

n (z) = 0,

(B.1)

and are related to the hypergeometric function through the following equation:

P (α,β)
n (z) =

(
n+ α

α

)
2F1

(
−n, α+ β + n+ 1;α+ 1;

1− z
2

)
. (B.2)

The Rodriguez representation of the Jacobi polynomial is:

P (α,β)
n (z) =

(−1)n

2nn!
(1− z)−α(1 + z)−β d

n

dzn

[
(1− z)α+n(1 + z)β+n

]
, (B.3)

which is equivalent to the following explicit representations:

P (α,β)
n (z)=

Γ(α+ n+ 1)Γ(β + n+ 1)

n!Γ(α+ β + n+ 1)

n∑
m=0

(
n

m

)(
α+ β + n+m

α+m

)
(−1)m

(
1− z

2

)m

(B.4a)

=
Γ(α+ n+ 1)Γ(β + n+ 1)

n!Γ(α+ β + n+ 1)

n∑
m=0

(
n

m

)(
α+ β + n+m

β +m

)
(−1)n−m

(
1 + z

2

)m

(B.4b)

=
n∑

s=0

(
n+ α

s

)(
n+ β

n− s

)(
z − 1

2

)n−s(
z + 1

2

)s

. (B.4c)

The Jacobi polynomials obey the following orthogonality relation:

∫ 1

−1

dz(1− z)α(1 + z)βP (α,β)
n (z)P (α,β)

m (z)

=
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
δnm, (B.5)

are normalised according to:

P (α,β)
n (1) =

(
n+ α

α

)
(B.6)
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and obey the following reflection rule:

P (α,β)
n (−z) = (−1)nP (β,α)

n (z). (B.7)

Using the explicit representation (B.4a), the following identity can be established:

dk

dzk
P (α,β)

n (z) =
Γ(α+ β + n+ k + 1)

2kΓ(α+ β + n+ 1)
P

(α+k,β+k)
n−k (z). (B.8)

Eq. (B.4b) can be used to show that:[
(1 + z)

d

dz
+ β

]
P (α,β)

n (z) = (β + n)P (α+1,β−1)
n (z), (B.9a)

while with the help of Eq. (B.4a), the following identity follows:[
−(1− z) d

dz
+ α

]
P (α,β)

n (z) = (α+ n)P (α−1,β+1)
n (z). (B.9b)

A formula useful in subsection 7.3.1 for the computation of the Feynman prop-

agator relates a sum over Jacobi polynomials to a hypergeometric function:

∞∑
n=0

Γ(α+ β + n+ 1)

Γ(β + n+ 1)
tnP (α,β)

n (z) =
Γ(α+ β + 1)

Γ(β + 1)
(1 + t)−α−β−1

× 2F1

(
α+ β + 1

2
,
α+ β + 2

2
; β + 1;

2t

(1 + t)2
(1 + z)

)
. (B.10)



Appendix C: Properties of spheri-

cal harmonics and applications to

the

Dirac equation

This appendix contains some standard properties of the spherical harmonics, to-

gether with some mathematical details formulae derived for usage in chapters 7 and

8. In particular, the summation formulae in section C.4 are crucial for computing

the sum over m in the construction of two-point functions using mode sums on anti-

de Sitter space (adS) in subsection 7.3.1 and the contraction formulae in section C.5

are useful when writing t.e.v.s on rotating adS in subsection 8.3.1.

C.1 Properties of Legendre polynomials

The Legendre polynomials are solutions of the Legendre differential equation:

d

dz

[
(1− z2)

d

dz
P`(z)

]
+ `(`+ 1)P`(z) = 0, (C.1.1)

having the following polynomial form:

P`(z) =
1

2`

b `
2
c∑

j=0

(
`

j

)(
2`− 2j

`

)
(−1)j z`−2j, (C.1.2)

which is equivalent to the following Rodriguez representation:

P`(z) =
(−1)`

2``!

d`

dz`
(1− z2)`. (C.1.3)

Another way of expressing the Legendre polynomials is through their integral rep-

resentation:

P`(z) =
1

π

∫ π

0

dϕ(z + i
√

1− z2 cosϕ)`. (C.1.4)

The Legendre polynomials are normalised according to:

P`(1) = 1 (C.1.5)
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and satisfy the following orthogonality relation:∫ 1

−1

dxP`(x)P`′(x) =
2

2`+ 1
δ``′ , (C.1.6)

Using the Rodriguez representation (C.1.3) and with the help of the property:

x
dn

dxn
f(x) =

dn

dxn
xf − n dn−1

dxn−1
f, (C.1.7)

the following identities can be established:(
x
d

dx
− `
)
P`(x) =

d

dx
P`−1(x), (C.1.8a)(

x
d

dx
+ `+ 1

)
P`(x) =

d

dx
P`+1(x). (C.1.8b)

A useful identity which follows from (C.1.8a) is:[
d2

dx2
(1− x2) + (`+m+ 2)

d

dx
x−m(`+ 1)

]
P`(x) = (`+m)

d

dx
P`−1(x). (C.1.9)

The following identities [20, 44] are useful for the the construction of two-point

functions on anti-de Sitter space-time, in subsection 7.3.1:

∞∑
`=0

2`+ 1

4π
P`(cos γ) =

δ(1− cos γ)

2π
= δ(cos θ − cos θ′)δ(ϕ− ϕ′),

∞∑
`=0

P`(cos γ) =
1

2 sin γ
2

∼ 1

γ
+

γ

24
+

7γ3

5760
+O(γ5). (C.1.10)

C.2 Properties of associated Legendre functions

The associated Legendre functions are generalisations of the Legendre polynomials,

satisfying the following differential equation:[
d

dx
(1− x2)

d

dx
+ `(`+ 1)− m2

1− x2

]
Pm

` (x) = 0. (C.2.1)

The associated Legendre functions can be written in terms of the Legendre polyno-

mials:

Pm
` (x) = (−1)m(1− x2)

m
2
dm

dxm
P`(x), (C.2.2)

or in the Rodriguez representation:

Pm
` (x) =

(−1)`

2``!
(1− x2)

m
2
d`+m

dx`+m
(1− x2)` (C.2.3)
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and satisfy the following orthogonality relation:∫ 1

−1

dxPm
` (x)Pm

`′ (x) =
2

2`+ 1

(`+m)!

(`−m)!
δ``′ . (C.2.4)

Another useful property is the behaviour of Pm
` under the transformation m→ −m:

P−m
` (x) = (−1)m (`−m)!

(`+m)!
Pm

` (x). (C.2.5)

The relation (C.2.2) between Pm
` and P` can be used together with the identity

(C.1.9) to establish the following identities:

√
1− x2Pm+1

` (x)− (`−m)xPm
` (x) =− (`+m)Pm

`−1(x), (C.2.6a)

(`−m)
√

1− x2Pm
` (x) + xPm+1

` (x) =Pm+1
`−1 (x), (C.2.6b)

√
1− x2Pm+1

` (x) + (`+m+ 1)xPm
` (x) =(`−m+ 1)Pm

`+1(x), (C.2.6c)

(`+m+ 1)
√

1− x2Pm
` (x)− xPm+1

` (x) =− Pm+1
`+1 (x). (C.2.6d)

In the language of chapter 8, the above identities can be translated to:

sin θ P+
+ − (j −m+ 1) cos θ P−

+ =− (j +m)P−
− , (C.2.7a)

(j −m+ 1) sin θ P−
+ + cos θ P+

+ =P+
− , (C.2.7b)

sin θ P+
− + (j +m) cos θ P−

− =(j −m+ 1)P−
+ , (C.2.7c)

(j +m) sin θ P−
− − cos θ P+

− =− P+
+ , (C.2.7d)

where the argument of the generalised Legendre polynomials is cos θ and the + and

− signs in the superscripts and subscripts control de values of m and j, respectively,

i.e. P+
− = P

m+ 1
2

j− 1
2

.

C.3 Properties of spherical harmonics

The spherical harmonics are solutions of the following eigenvalue equations:

LzY`m = mY`m, Lz = −i d
dϕ
, (C.3.1a)

L2Y`m = `(`+ 1)Y`m, L2 = − d2

dθ2
− cot θ

d

dθ
− 1

sin2 θ

d2

dϕ2
(C.3.1b)

and are written in terms of the associated Legendre functions Pm
` (cos θ):

Y`m(θ, ϕ) = eimϕ

√
2`+ 1

4π

√
(`−m)!

(`+m)!
Pm

` (cos θ). (C.3.2)
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The spherical harmonics are normalised according to the following normalisation

relation: ∫ 2π

0

dϕ

∫ 1

−1

d cos θY ∗
`′m′(θ, ϕ)Y`m(θ, ϕ) = δ``′δmm′ , (C.3.3)

where the complex conjugate of Y`m can be written as:

Y ∗
`m(θ, ϕ) = (−1)mY`,−m(θ, ϕ). (C.3.4)

A useful property of the spherical harmonics is the addition theorem:

∑̀
m=−`

Y m
` (θ, ϕ)Y m∗

` (θ′, ϕ′) =
2`+ 1

4π
P`(cos γ), (C.3.5)

in which cos γ = sin θ sin θ′ cos(ϕ−ϕ′)+cos θ cos θ′. In conjunction with Eq. (C.1.10),

this can be used to establish the completeness relation:

∞∑
`=0

∑̀
m=−`

Y ∗
`m(θ′, ϕ′)Y`m(θ, ϕ) = δ(ϕ− ϕ′)δ(cos θ − cos θ′), (C.3.6)

The azimuthal number m can be shifted using the standard so(3) shifters:

L±Y`m =
√

(`±m+ 1)(`∓m)Y`,m±1, L± = e±iϕ(±∂θ + i cot θ∂ϕ). (C.3.7)

Explicitly, the action of the shifters is given by:

eiϕ(∂θ + i cot θ∂ϕ)Y`m =
√
`(`+ 1)−m(m+ 1)Y`,m+1, (C.3.8a)

e−iϕ(−∂θ + i cot θ∂ϕ)Y`m =
√
`(`+ 1)−m(m− 1)Y`,m−1. (C.3.8b)

The relation (C.3.2) between the spherical harmonics and the associated Legen-

dre functions can be used together with the identity (C.2.6a) to prove the following

identities:

cos θ

√
`−m
`+m

Y m
` (θ, ϕ)− e−iϕ sin θ

√
`+m+ 1

`+m
Y m+1

` (θ, ϕ) =

√
2`+ 1

2`− 1
Y m

`−1(θ, ϕ),

(C.3.9a)

cos θ

√
`+m

`−m
Y m

` (θ, ϕ) + eiϕ sin θ

√
`−m+ 1

`−m
Y m−1

` (θ, ϕ) =

√
2`+ 1

2`− 1
Y`−1,m(θ, ϕ).

(C.3.9b)

The second of the above identities can be obtained by taking the complex conjugate

of the first and replacing m with −m. Combining the above with the action (C.3.8)
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of the shifters L±, the above equations can be cast in the form:√
2`+ 1

2`− 1

√
`2 −m2Y`−1,m = (` cos θ − sin θ∂θ)Y`m, (C.3.10a)√

2`+ 1

2`+ 3

√
(`+ 1)2 −m2Y`+1,m = [(`+ 1) cos θ + sin θ∂θ]Y`m. (C.3.10b)

Finally, Eqs. (C.3.10) can be combined with Eqs. (C.3.8) and the differential equa-

tion for the spherical harmonics (C.3.1) to prove the following identities:

Y m−1
`+1 =

e−iϕ√
(`−m+ 1)(`−m+ 2)

√
2l + 3

2`+ 1

[
− cos θ∂θ +

i∂ϕ

sin θ
+ (`+ 1) sin θ

]
Y m

` ,

(C.3.11a)

Y m+1
`+1 =

eiϕ√
(`+m+ 1)(`+m+ 2)

√
2`+ 3

2`+ 1

[
cos θ∂θ +

i∂ϕ

sin θ
− (`+ 1) sin θ

]
Y m

` ,

(C.3.11b)

Y m−1
`−1 =

e−iϕ√
(`+m− 1)(`+m)

√
2`− 1

2`+ 1

[
− cos θ∂θ +

i∂ϕ

sin θ
− l sin θ

]
Y m

` , (C.3.11c)

Y m+1
`−1 =

eiϕ√
(`−m− 1)(`−m)

√
2`− 1

2`+ 1

[
cos θ∂θ +

i∂ϕ

sin θ
+ ` sin θ

]
Y m

` . (C.3.11d)

C.4 Useful summation formulae

The aim of this section is to compute sums over m of direct products of the form

Φ(θ, ϕ)⊗Φ(θ′, ϕ′), where the four-spinors Φ±
κ,m are the solutions (7.2.8) of the angular

eigenvalue problem in a spherically symmetric space-time. The terms of interest are:

ψm

j+
1
2

⊗ ψm†
j+

1
2

=
1

2j + 2

(
(j −m+ 1)Y −

+ Y
−∗
+ −

√
(j + 1)2 −m2Y −

+ Y
+∗
+

−
√

(j + 1)2 −m2Y +
+ Y

−∗
+ (j +m+ 1)Y +

+ Y
+∗
+

)
,

ψm

j+
1
2

⊗ ψm†
j−1

2

=
1√

2j(2j + 2)

×

(√
(j +m)(j −m+ 1)Y −

+ Y
−∗
−

√
(j −m+ 1)(j −m)Y −

+ Y
+∗
−

−
√

(j +m+ 1)(j +m)Y +
+ Y

−∗
− −

√
(j +m+ 1)(j −m)Y +

+ Y
+∗
−

)
,

ψm

j−1
2

⊗ ψm†
j+

1
2

=
1√

2j(2j + 2)

×

(√
(j +m)(j −m+ 1)Y −

− Y
−∗
+ −

√
(j +m+ 1)(j +m)Y −

− Y
+∗
+√

(j −m+ 1)(j −m)Y +
− Y

−∗
+ −

√
(j +m+ 1)(j −m)Y +

− Y
+∗
+

)
,

ψm

j−1
2

⊗ ψm†
j−1

2

=
1

2j

(
(j +m)Y −

− Y
−∗
−

√
j2 −m2Y −

− Y
+∗
−√

j2 −m2Y +
− Y

−∗
− (j −m)Y +

− Y
+∗
−

)
. (C.4.1)

The convention used in the above expressions is that the first function depends on

(θ, ϕ), while the second one depends on (θ′, ϕ′). The shorthand used for the spherical
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harmonics is Y +
± = Y

m+ 1
2

j± 1
2

and Y −
± = Y

m− 1
2

j± 1
2

.

Using the addition theorem (C.3.5) and the identities (C.3.11), the following

results follow:

j∑
m=−j

ψm
j+ 1

2
⊗ ψm†

j− 1
2

=
1

4π

(
j + 1

2
− σ ·L

)
Pj+ 1

2
(cos γ),

j∑
m=−j

ψm
j+ 1

2
⊗ ψm†

j− 1
2

=
x · σ
4πr

(
j + 1

2
+ σ ·L

)
Pj− 1

2
(cos γ),

j∑
m=−j

ψm
j− 1

2
⊗ ψm†

j+ 1
2

=
x · σ
4πr

(
j + 1

2
− σ ·L

)
Pj+ 1

2
(cos γ),

j∑
m=−j

ψm
j− 1

2
⊗ ψm†

j− 1
2

=
1

4π

(
j + 1

2
+ σ ·L

)
Pj− 1

2
(cos γ). (C.4.2)

C.5 Contractions of the ψm
j±1

2
bi-spinors

Due to loss of symmetry, the sums over m cannot be performed in the expressions

for t.e.v.s on rotating adS, in subsection 8.3.1. Instead, the contractions of the

bi-spinors have to be performed and simplified accordingly.

C.5.1 Contractions of ψ±

The simplest contractions to perform are those coming up in the t.e.v. of the

charge density (8.3.10a) and (8.3.12a) and of the energy density (8.3.24a). Since

the derivatives of these contractions are required for Tt̂ϕ̂, the results below are for

arbitrary point splitting:

ψ†+ψ+ =
1

4π

(j −m)!

(j +m)!

[
ei(m− 1

2
)∆ϕ(j −m+ 1)2P−

+P
−
+ + ei(m+ 1

2
)∆ϕP+

+P
+
+

]
, (C.5.1a)

ψ†−ψ− =
1

4π

(j −m)!

(j +m)!

[
ei(m− 1

2
)∆ϕ(j +m)2P−

−P
−
− + ei(m+ 1

2
)∆ϕP+

−P
+
−

]
, (C.5.1b)

ψ†+ψ− =
1

4π

(j −m)!

(j +m)!

[
ei(m− 1

2
)∆ϕ(j −m+ 1)(j +m)P−

−P
−
+ + ei(m+ 1

2
)∆ϕP+

−P
+
+

]
,

(C.5.1c)

ψ†−ψ+ =
1

4π

(j −m)!

(j +m)!

[
ei(m− 1

2
)∆ϕ(j −m+ 1)(j +m)P−

+P
−
− + ei(m+ 1

2
)∆ϕP+

+P
+
−

]
.

(C.5.1d)

Here, the first and second bi-spinors on the LHS takes arguments (θ′, ϕ′) and (θ, ϕ),

respectively. On the RHS, the arguments of the Legendre functions are cos θ for

the first occurence and cos θ′ for the second, i.e. P−
+P

−
− ≡ P−

+ (cos θ)P−
− (cos θ′). The
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super- and sub-script signs on the Legendre functions change the value of m and j,

respectively, by adding or subtracting 1
2
, depending on the sign, i.e.:

P+
± ≡ P

m+ 1
2

j± 1
2

, P−
± ≡ P

m− 1
2

j± 1
2

. (C.5.2)

It can be checked using Eq. (C.2.5) that the above expressions are even with respect

to m→ −m.

The coincidence limit of the following derivatives can be computed:

(∇−∇′)ψ†+ψ+

⌋
x′=x

=
i(Ω× x)

2πρ2Ω

(j −m)!

(j +m)!

[
(m− 1

2
)(j −m+ 1)2P−2

+ + (m+ 1
2
)P+2

+

]
,

(C.5.3a)

(∇−∇′)ψ†−ψ−

⌋
x′=x

=
i(Ω× x)

2πρ2Ω

(j −m)!

(j +m)!

[
(m− 1

2
)(j +m)2P−2

− + (m+ 1
2
)P+2

−
]
.

(C.5.3b)

The above equations are odd with respect to m→ −m.

C.5.2 Contractions of ψ± sandwiching a σ

The charge current vector and the components of the SET other than Tt̂t̂ require

contractions of ψ’s and their derivatives sandwiching a σ matrix.

Let us start with the ±,± combinations, the coincidence limits of which are

required for the spatial components of the neutrino charge current (8.3.12b). The

(+,+) combinations reduce to:

ψ†+σ1ψ+ =− cosϕ

2π

(j −m+ 1)!

(j +m)!
P−

+P
+
+ , (C.5.4a)

ψ†+σ2ψ+ =− sinϕ

2π

(j −m+ 1)!

(j +m)!
P−

+P
+
+ , (C.5.4b)

ψ†+σ3ψ+ =
1

4π

(j −m)!

(j +m)!

[
(j −m+ 1)2(P−

+ )2 − (P+
+ )2
]
, (C.5.4c)

ψ†+

(
x× σ

r

)
ψ+ =

x×Ω

4πρΩ

(j −m)!

(j +m)!

[
(j −m+ 1)P−

+P
+
− + (j +m)P+

+P
−
−
]
,

(C.5.4d)

where Eqs. (C.2.7) were used to obtain the last expression. All the above equations
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are odd with respect to m→ −m. Similarly, the −,− combinations are given by:

ψ†−σ1ψ− =
cosϕ

2π

(j −m)!

(j +m− 1)!
P−
−P

+
− , (C.5.5a)

ψ†−σ2ψ− =
sinϕ

2π

(j −m)!

(j +m− 1)!
P−
−P

+
− , (C.5.5b)

ψ†−σ3ψ− =
1

4π

(j −m)!

(j +m)!

[
(j +m)2(P−

− )2 − (P+
− )2
]
, (C.5.5c)

ψ†−

(
x× σ

r

)
ψ− =− x×Ω

4πρΩ

(j −m)!

(j +m)!

[
(j −m+ 1)P−

+P
+
− + (j +m)P+

+P
−
−
]
.

(C.5.5d)

These equations are, again, odd with respect to m→ −m.

The (±,∓) combinations are required for the spatial components of the charge

current (8.3.10b), Tt̂̂i and Tîĵ, the latter also requiring their derivatives. For the

(+,−) combinations, the following expressions can be found:

ψ†+σ1ψ−=
1

4π

(j −m)!

(j +m)!

[
eiϕ+i(m− 1

2
)∆ϕ(j−m+1)P+

−P
−
+ − e−iϕ+i(m+ 1

2
)∆ϕ(j+m)P−

−P
+
+

]
,

(C.5.6a)

ψ†+σ2ψ−=
−i
4π

(j −m)!

(j +m)!

[
eiϕ+i(m− 1

2
)∆ϕ(j−m+1)P+

−P
−
+ + e−iϕ+i(m+ 1

2
)∆ϕ(j+m)P−

−P
+
+

]
,

(C.5.6b)

ψ†+σ3ψ−=
1

4π

(j −m)!

(j +m)!

[
ei(m− 1

2
)∆ϕ(j+m)(j−m+1)P−

−P
−
+ + ei(m+ 1

2
)∆ϕP+

−P
+
+

]
,

(C.5.6c)

and the combinations −,+ follow through complex conjugation and swapping of x

and x′ in the above:

ψ†−σ1ψ+=
1

4π

(j −m)!

(j +m)!

[
e−iϕ+i(m+ 1

2
)∆ϕ(j−m+1)P−

+P
+
−− eiϕ+i(m− 1

2
)∆ϕ(j+m)P+

+P
−
−

]
,

(C.5.7a)

ψ†−σ2ψ+=
i

4π

(j −m)!

(j +m)!

[
e−iϕ+i(m+ 1

2
)∆ϕ(j−m+1)P−

+P
+
−+ eiϕ+i(m− 1

2
)∆ϕ(j+m)P+

+P
−
−

]
,

(C.5.7b)

ψ†−σ3ψ+=
1

4π

(j −m)!

(j +m)!

[
ei(m− 1

2
)∆ϕ(j+m)(j−m+1)P−

+P
−
−+ ei(m+ 1

2
)∆ϕP+

+P
+
−

]
.

(C.5.7c)
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The coincidence limit of the combinations (+,−) + (−,+) is:

ψ†+σ1ψ− + ψ†−σ1ψ+ =
cosϕ

2π

(j −m)!

(j +m)!

[
(j −m+ 1)P−

+P
+
− − (j +m)P−

−P
+
+

]
,

(C.5.8a)

ψ†+σ2ψ− + ψ†−σ2ψ+ =
sinϕ

2π

(j −m)!

(j +m)!

[
(j −m+ 1)P−

+P
+
− − (j +m)P−

−P
+
+

]
,

(C.5.8b)

ψ†+σ3ψ− + ψ†−σ3ψ+ =
1

2π

(j −m)!

(j +m)!

[
(j +m)(j −m+ 1)P−

+P
−
− + P+

+P
+
−
]
, (C.5.8c)

ψ†+σψ− + ψ†−σψ+ =
Ω× (x×Ω)

2πρΩ2

(j −m)!

(j +m)!

[
(j −m+ 1)P−

+P
+
− − (j +m)P−

−P
+
+

]
+

Ω

2πΩ

(j −m)!

(j +m)!

[
(j +m)(j −m+ 1)P−

+P
−
− + P+

+P
+
−
]
.

(C.5.8d)

The coincidence limit of the combinations (+,−)− (−,+) is:

ψ†+σ1ψ− − ψ†−σ1ψ+ =
i sinϕ

2π

(j −m)!

(j +m)!

[
(j −m+ 1)P−

+P
+
− + (j +m)P−

−P
+
+

]
,

(C.5.9a)

ψ†+σ2ψ− − ψ†−σ2ψ+ =
−i cosϕ

2π

(j −m)!

(j +m)!

[
(j −m+ 1)P−

+P
+
− + (j +m)P−

−P
+
+

]
,

(C.5.9b)

ψ†+σ3ψ− − ψ†−σ3ψ+ =0, (C.5.9c)

ψ†+σψ− − ψ†−σψ+ =
−iΩ× x

2πρΩ

(j −m)!

(j +m)!

[
(j −m+ 1)P−

+P
+
− + (j +m)P−

−P
+
+

]
.

(C.5.9d)
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Finally, the coincidence limit of the derivatives of the above combinations yield:

(∇i −∇i′)
(
ψ†+σ1ψ− − ψ†−σ1ψ+

)
=

1

2π

(j −m)!

(j +m)!

{
(C.5.10a)

− 2m sinϕ

(
Ω× x

ρ2Ω

)i [
(j −m+ 1)P−

+P
+
− + (j +m)P+

+P
−
−
]

+ cosϕ

[
x× (Ω× x)

Ωr3

]i[
(j −m+ 1)Wcos θ(P

−
+ , P

+
− ) + (j +m)Wcos θ(P

−
− , P

+
+

] }
,

(∇i −∇i′)
(
ψ†+σ2ψ− − ψ†−σ2ψ+

)
=

1

2π

(j −m)!

(j +m)!

{
(C.5.10b)

2m cosϕ

(
Ω× x

ρ2Ω

)i [
(j −m+ 1)P−

+P
+
− + (j +m)P+

+P
−
−
]

+ sinϕ

[
x× (Ω× x)

Ωr3

]i[
(j −m+ 1)Wcos θ(P

−
+ , P

+
− ) + (j +m)Wcos θ(P

−
− , P

+
+

] }
,

(∇i −∇i′)
(
ψ†+σ3ψ− − ψ†−σ3ψ+

)
=

[
x× (Ω× x)

2πΩr3

]i
(j −m)!

(j +m)!

[
(C.5.10c)

(j −m+ 1)(j +m)Wcos θ(P
−
+ , P

−
− ) +Wcos θ(P

+
+ , P

+
− )
]
,

(∇i −∇i′)
(
ψ†+σjψ− − ψ†−σjψ+

) 1

2π

(j −m)!

(j +m)!
=

{
(C.5.10d)

2m

ρ

(
Ω× x

ρΩ

)
i

(
Ω× x

ρΩ

)
j

[
(j −m+ 1)P−

+P
+
− + (j +m)P+

+P
−
−
]

+
1

r

[
x× (Ω× x)

Ωr2

]i [
Ω× (x×Ω)

ρΩ2

]j

×
[
(j −m+ 1)Wcos θ(P

−
+ , P

+
− ) + (j +m)Wcos θ(P

−
− , P

+
+

]
+

1

r

[
x× (Ω× x)

Ωr2

]i(
Ω

Ω

)j[
(j−m+1)(j+m)Wcos θ(P

−
+ , P

−
− )+Wcos θ(P

+
+ , P

+
− )
]}

,

(C.5.10e)

where Wcos θ((P
±
+ , P

∓
− ), Wcos θ((P

±
+ , P

±
− ), etc. are Wronskians of the functions inside

the brackets with respect to cos θ:

Wcos θ(f, g) = f
∂g

∂(cos θ)
− ∂f

∂(cos θ)
g. (C.5.11)



Appendix D: Gauss’ hypergeome-

tric function

This appendix contains some properties of hypergeometric functions extracted from

standard reference books [1, 60], useful throughout chapters 7 and 8.

The hypergeometric functions can be used to construct solutions to Euler’s hy-

pergeometric differential equation:

z(1− z)d
2w

dz2
+ [c− (1 + a+ b)z]

dw

dz
− abw = 0. (D.1)

The two linearly independent solutions given as series about z = 0 are 2F1(a, b; c; z)

and z1−c
2F1(1+a−c, 1+b−c; 2−c; z), where the hypergeometric series 2F1(a, b; c; z)

is defined as:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
. (D.2)

From this explicit series, the following identities can be established [60]:

2F1(a+ 1, b+ 1; c+ 1; z) =
c

ab

d

dz
2F1(a, b; c; z), (D.3a)

2F1(a+ 1, b; c; z) =
z1−a

a

d

dz
za

2F1(a, b; c; z), (D.3b)

2F1(a+ 1, b; c+ 1; z) =
c

a(c− b)

[
a− (1− z) d

dz

]
2F1(a, b; c; z), (D.3c)

2F1(1 + k, 2 + k; 1 + 2k; z) =
2

z
[2F1(k, 2 + k; 2k; z)− 2F1(k, 1 + k; 2k; z)] , (D.3d)

2F1(k, 2 + k; 1 + 2k; z) =
2

z
[2F1(k, 1 + k; 2k; z) + (z − 1)2F1(k, 2 + k; 2k; z)] .

(D.3e)
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Abramowitz and Stegun [1] give the following connection formulae:

2F1

(
a, a+

1

2
; c; z

)
=(1 +

√
z)−2a

2F1

(
2a, c− 1

2
; 2c− 1;

2
√
z

1 +
√
z

)
, (D.4a)

2F1 (a, b; c; z) =(1− z)−a
2F1

(
a, c− b; c; z

z − 1

)
, (D.4b)

2F1 (a, a+m; c; z) =
Γ(c)(−z)−a

Γ(a+m)

m−1∑
n=0

Γ(m− n)(a)n

Γ(c− a− n)
z−n

+
Γ(c)(−z)−a−m

Γ(a+m)Γ(c− a)

∞∑
n=0

(a)n+m(1− c+ a)n+m

n!(n+m)!
z−n

× [ln(−z) + ψ(1 +m+ n) + ψ(1 + n)− ψ(a+m+ n)− ψ(c− a−m− n)].

(D.4c)
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