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Abstract

This thesis is concerned with addressing the cost analysis challenges in vertically

separated railways. Both the challenges in infrastructure management and passenger

railway operations are considered.

A hedonic cost function is applied to better incorporate measures of heterogeneity of

output into passenger train operation cost analysis. This allows for a richer

understanding of the cost structure of the industry, through explicitly making scale

economies a function of output heterogeneity, which in turn allows for tenders to be

specified in a cost minimising manner. Three example tender re-mappings are

considered for Britain. It is estimated that two out of three actually increase costs,

reflecting that the model implies that for very heterogeneous TOCs, returns to

density can not be exploited.

In addition, the thesis details methodological work in developing analytical

frameworks to exploit a multi layer panel dataset comprising observations on regions

of many individual infrastructure managers. As well as providing extra observations

to estimate cost frontiers, the data structure permits estimation of a dual-level

inefficiency model which separates sub-company persistent inefficiency from sub-

company varying inefficiency. This decomposition gives an indication as to whether

inefficiency predominantly varies within firm or between firms. The example shows

statistically significant inefficiency variation at both levels, and importantly, failure

to take into account the dual-level nature of inefficiency is shown to under predict

inefficiency.
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The thesis also develops new techniques to quantify uncertainty in inefficiency

predictions from stochastic frontier models. This has application across the applied

efficiency analysis discipline and not just in railways.

Overall, this thesis finds that robust cost and efficiency analysis can only be

conducted through explicit allowance for heterogeneity in output (both observed and

unobserved), ensuring sufficient data quantity and that data relates to the

organisational level to which decisions are made and that, in any analysis, the impact

of uncertainty is quantified.
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1. Introduction

1.1. Thesis motivation

This thesis is concerned with addressing the cost analysis challenges in vertically

separated railways. Vertical separation refers to separation in management and

administration of different aspects of the production process. For the purpose of this

thesis, vertically separated railways refer to railways where passenger and freight

operations (the running of trains) are separate to the infrastructure. There can be

other forms of vertical separation in railways such as contracting out maintenance

and/or renewal activity by the infrastructure manager but this is not the primary area

of interest of the thesis.

1.1.1. Policy Context

Railways throughout the world have undergone varying degrees of liberalisation

over the last fifty years or so. Generally, such liberalisation has been motivated by

falling market share and worsening financial performance. In the European Union

several European Commission Directives have been enacted which aim to introduce

competition (especially for freight and cross border passenger) and cost transparency

within railways through separation of accounts between infrastructure management

and train operation functions. In particular Directive 91/440 requires countries to

have separate accounts for infrastructure management and train operations and price

for access to their infrastructure on the basis of incremental (marginal) cost, be it

with an allowance for non-discriminatory mark-ups. Importantly, different countries
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have adopted different organisational systems for their railways which still may

conform to the Directive’s requirements. At one extreme, Britain has opted for

institutional separation between infrastructure and operations while Germany has

essentially opted for divisions of activity (with separated accounts) within the same

holding company. In recent legislation proposals, the European Commission has set

out further steps to encourage competitive tendering in domestic passenger train

operations (European Commission, 2013).

In Britain, privatisation and vertical separation took place between 1993 and 1997

resulting in the formation of a private (subsequently a private firm limited by

government guarantee) monopoly infrastructure manager and franchised passenger

railway services. This is one of the most radical reforms to railways undertaken

within Europe and is certainly one of the fastest reforms (Jupe and Crompton, 2006).

There have been several studies which have documented the performance of the

Great British Railway since privatisation. Demand for rail services has increased by

57% since privatisation (McNulty (2011) Total Passenger Journeys 1996/97-

2009/10). Furthermore, Wardman (2006) concludes that this growth is in excess of

that implied by conventional demand models as detailed in the Passenger Demand

Forecasting Handbook, (Passenger Demand Forecasting Council, 2013), which is the

accepted industry applied demand forecasting methodology in Britain, which take

into such factors as income growth, generalised cost of rail and relative generalised

costs of competing modes. Thus it seems that there is a positive privatisation effect,

which has yet to be fully explained.
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However, on the cost side, the result has been an increase in costs. Costs did initially

fall after privatisation resulting in subsidy falling from £2.9bn in 1992/93 to 1.8bn in

2000/01 in 2012 prices (Smith, Nash and Wheat, 2009). However it is reasonably

well documented in both the industry, academia and the wider press, that the costs of

maintaining, renewing and operating the infrastructure have increased considerably

which coincided both directly and indirectly with the Hatfield accident in October

2000. This accident was found to have resulted from substandard maintenance

practices and prompted an increase in maintenance and especially renewal activity.

Costs for infrastructure rose from £4.5bn in 1999/00 to £8.5bn million in 2003/04 in

2012 prices, an increase of 88% (Wheat, Smith and Nash, 2007). This increase was a

contribution of three factors. The first is that because of the lumpy nature of

renewals expenditure (in practice track is not installed at a uniform rate and to

uniform capability over time), there may be a cost minimising ‘need’ for

expenditures to be greater due to the natural renewal cycle. The second is that at or

even before privatisation, expenditures were below steady state requirements so

there is a need to temporarily do more maintenance, and especially renewal, to catch-

up. Thirdly, the infrastructure manager could have become less efficient in

conducting or planning its maintenance and renewal activities.

The industry structure requires that the Office of Rail Regulation (ORR) regulates

the infrastructure manager such that it does not abuse its market power as a

monopoly provider of railway infrastructure, while still being allowed to make a

reasonable return on its assets. The latter requirement is important given that the

infrastructure is subject to returns to density, which means that the marginal cost of

train usage is below average cost. Some combination of mark-ups above marginal
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cost, two part tariffs and direct subsidy are required for the infrastructure manager to

earn normal profit.

The ORR adopts, like other UK regulators, price cap (also known as RPI-X)

regulation (Beesley and Littlechild, 1988) which requires the regulator to determine

Network Rail’s revenue requirement at each Periodic Review (typically every five

years). RPI-X regulation encourages firms to operate in a cost efficient manner as the

firm can retain any super-normal profit over and above that set by the price

caps/direct subsidy level. Importantly, however, at the Periodic Review period, the

revised price caps/subsidy must ‘recapture’ this over performance (or be relaxed in

the case of underperformance) to prevent the infrastructure manager from abusing its

monopoly position (or making an unviable loss in the case of previous under

performance). Furthermore, the regulator needs to set a challenging profile of price

caps and subsidy so as not to allow the firm to make excessive super-normal profits.

Therefore the regulator needs to understand the scope for cost saving reductions

available to the infrastructure manager. A key strand of research to inform this

understanding is efficiency benchmarking. Within this is a need to understand the

robustness of any analysis; quantifying uncertainty in efficiency predictions is

important. Railways are not unique in being subjected to economic regulation. Many

network industries are similarly regulated. Thus this thesis has many transferable

aspects outside of railways.

As well as the infrastructure cost story, less well documented is that train operating



5

companies costs (TOCs costs) have increased from £10.11 per train-km3 in 1999/00

to £13.65 per train-km in 2005/06, a 35% increase, and a 15% increase since

privatisation (privatisation completed 1996/97) (Smith, Nash and Wheat, 2009). The

reasons for this increase are less understood. Smith, Nash and Wheat discuss three

possible explanations. The first is that costs initially did not fall as much as expected

because they had already been reduced during the pre-privatisation period. Perhaps

as a response, there may have been some unsustainable cost cutting in the earlier

years which required increased expenditure in later years. Secondly, franchising

policy has been through at least three phases (Smith, Nash and Wheat, 2009). In

particular between 2000 and 2004 several train operating companies were moved on

to management contracts, as they were unable to meet their franchise obligations

following too optimistic bidding for the initial franchises. The incentive properties of

such contracts are known to be weak, because the contract is analogous to rate of

return regulation, in the sense that the firm is allowed to make a set return on its

costs, potentially irrespective of the level of the costs. Therefore there is little

incentive for the firm to cut costs. Thirdly there may have been external factors such

as more stringent health and safety regulations and better quality rolling stock which

have increased costs. For example, the average fleet age was 13 years in 2006/07

versus 21 years in 2000/01. However, given the evidence available to Smith, Nash

and Wheat (2009), it was difficult to determine which factors were most important.

The McNulty review was an independent study funded by the ORR and DfT to

examine the “major problem of efficiency and costs” (McNulty, 2011 p. 8). It

concluded that the railway in Britain had costs which were approximately 40%

3 Excluding access charge payments, 2012 prices
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higher than costs elsewhere. The study identified a lack of focus on cost reduction as

a major reason for the high industry costs (McNulty, 2011 p. 37). In addition a key

recommendation (McNulty, 2011, Chapter 7) is the need for the ORR to undertake

benchmarking across both the infrastructure manager and passenger train operating

companies. The government has accepted the main recommendation of the McNulty

Study (Department for Transport, 2012). Thus in Britain there is a clear mandate for

the continuation of cost analysis and cost efficiency analysis in railways.

1.1.2. Pressing issues

Given the above policy context, it is possible to identify several pressing issues

within the sector:

 For passenger train operations, the use of competitive tendering requires the

need to understand the returns to scale and density properties of the activity.

Competition for the market (via competitive tendering) lessens the need for

explicit economic regulation but tenders have to be designed in a manner to

best exploit the cost structure within the constraints of passenger rail

demand. The issue is becoming more pressing given the move to competitive

tendering of passenger railway operations at the EU level and the current re-

mapping of franchises in Britain where reducing cost is a major motivation.

Understanding the scale and density properties of passenger train operations

allows for tenders to be designed so as to minimise overall costs (of

providing the passenger trains services). This includes understanding of both

how costs are affected by the overall geographical size of a tender and also

how costs are affected from combining TOCs that run on the same network,
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taking into account that they may be running different types of services.

In practice tenders may not be specified to minimise total cost if doing so

would eliminate any (beneficial) competition (perhaps there are benefits to

passengers for example from multiple train operators on one section of

track). In such a case a full cost and benefit analysis needs to be undertaken,

but this is not within the scope of this thesis. However, a key input into such

an analysis is related to how (average) costs change between various

mapping scenarios. Thus the motivation for the analysis is still present (and

indeed the research does consider examples of such discrete changes).

 For railway infrastructure managers, economic regulation is much more

important (than in operations) due to the cost structure of the industry

leading to a single monopoly company for a country (or at least for a specific

region). Furthermore, long asset lives makes competition for the market

(through tenders) problematic to implement. At the EU level, there is a

desire to make rail more competitive; this requires a reduction in railway

costs (European Commission, 2013). At the level of Britain, the Office of

Rail Regulation (ORR) has to promote efficiency with respect to the

infrastructure manger (section 4(1)(c), Railways Act, 1993). Given the

recent rises in infrastructure costs there is a pressing public interest in

assessing the scope for cost reduction.

As such, developing models to determine the efficiency of infrastructure

managers is very important. Given the single monopoly supplier in Britain,

there are two broad ways of undertaking efficiency analysis. One approach is
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to seek international comparators. This however presents difficulties in both

getting access to data (and over enough years) and validating that the data

(particularly cost data) conforms to comparable definitions. A further

approach is to undertake internal benchmarking of the firm. This is limited

as it only reveals differences in performance within the firm and not

systematic failings of the firm relative to best practice elsewhere.

There is therefore a need to utilise alternative dataset formulations. In this

thesis, techniques to analyse multi-layer panel datasets are presented.

Utilising data which includes multiple observations within a firm

(geographically disaggregated) over a number of firms can be seen as a way

of combining the two approaches. Utilising data of this type also allows for

scale and density to be modelled at the level at which management decisions

are made, which guards against aggregation bias (Theil, 1954). This

approach is feasible and was used by ORR in the 2008 Periodic Review

(ORR, 2008).

 More generally, there is a need to understand the uncertainty in efficiency

predictions. Public policy is increasingly interested in understanding

uncertainty associated with analysis which supports decision making. This is

particularly important with respect to economic regulation given the large

expenditure under consideration and further with respect to railways, where

a large amount of public money is provided to the industry. Further, the Rail

Regulator in Britain (ORR) has adopted relatively sophisticated statistical

techniques (with respect to those used by regulators of other network
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industries) for their efficiency assessment. Thus understanding uncertainty in

these predictions is important as the debate surrounding the usefulness of

these techniques progresses (this was recommended by a peer review of

work undertaken in the 2008 Periodic Review (OXERA, 2009)).

1.2. Thesis aims and objectives

The aim of this thesis is to apply appropriate econometric techniques to better

analyse the cost structure of vertically separated railways - specifically the

infrastructure management and passenger train operations activities - to inform

regulatory bodies and policy makers. The specific objectives are to:

 Explore the use of a hedonic cost function approach to incorporate measures

of output heterogeneity in the analysis of train operating companies (TOCs)

costs;

 Provide new empirical evidence as to the cost implications of redrawing

franchise boundaries, crucially drawing on the scale and density properties of

the estimated model and how these vary with heterogeneity of the TOC’s

output;

 Explore via econometric analysis the exploitation of a multi-layered panel

dataset to predict the inefficiency level of infrastructure managers;

 Provide new empirical evidence on the potential efficiency saving of the

infrastructure managers in sample;

 Explore the most appropriate predictor of firm efficiency from parametric

stochastic frontier models covering point and interval predictors;

 Provide a new method to incorporate the effect of parameter uncertainty into



10

predictors of firm efficiency and illustrate these concepts via application to

TOCs in Britain.

Each of the three research chapters (Chapters 5 to 7) addresses two of the objectives

in turn. Thus a general trend in the research is to both apply, and in some instances

develop, innovative methods in railways analysis and also to provide new empirical

evidence.

1.3. Structure of the thesis

The remainder of the thesis comprises three literature reviews (Chapters 2, 3 and 4)

and then three core research chapters (Chapters 5 to 7). Finally, Chapter 8 concludes.

Chapter 2 provides the economic foundations for cost function analysis. It outlines

the key features of a cost function in terms of its description of the underlying

technology of production. In particular the cost function relates cost to the level of

outputs, level of input prices and (in the case of panel data) some characterisation of

how costs change (exogenously) over time – technical change. The cost function

concept is further extended to situations in which firms do not successfully minimise

cost and in these cases the cost function describes the minimum cost ‘frontier’ and

(positive) deviations from the frontier are evidence of inefficient management. The

overall conclusion from this chapter is that the cost function or frontier is an

appropriate economic device for this thesis, as it allows for scale and density

properties of the technology to be derived (the subject of Chapter 5), allows for cost

efficiency to be incorporated (the subject of Chapter 6 and 7) and since outputs are
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exogenous, this is the usual approach in the literature.

Chapter 3 considers the econometric techniques necessary to estimate the models put

forward in the research chapters. The conclusion from this chapter is that the

estimation techniques used are well established and the properties of the estimators

are known. Importantly inference can be conducted after estimation relating to the

population parameters and the estimators are shown to have desirable properties

(relative to other estimators), but, as this is the subject of Chapter 7, some challenges

remain relating to understanding interval predictors for firm inefficiency.

Chapter 4 then considers relevant past applications to railways. This extracts railway

specific issues relating to populating a cost function such as output definition and

then summaries the empirical research undertaken. It highlights the limited empirical

work done to date on passenger train operations and the well-developed literature on

infrastructure cost analysis, albeit with the limitation of established data for

comparing one railway with another for efficiency benchmarking purposes.

There are then three research chapters with content as follows.

1.3.1. Chapter 5 – Passenger Train Operating Company cost analysis

As identified in 1.1, a key research need with respect to passenger train operating

company cost is to better understand the cost characteristics with respect to the size

and output make up of tendered areas. This in turn informs policy as to the optimal

size (in terms of minimum cost) of tendered areas given the mixture of services that
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are to be provided. It also provides useful results with respect to the cost implications

of formulating franchises such that there is overlap between franchises (each

providing a slightly different service).

The research in this chapter attempts to determine the influence of heterogeneity of

output on the scale and density properties of franchises. The dataset has been

assembled to include many measures of output and these are formulated as primary

outputs and characteristics of output. There is then the issue as to how to enter such

numerous measures into a cost function. If the standard Translog cost function is

adopted then the model has many parameters (approximately 150 – the sample size

is only 243). It is not feasible to adopt a general to specific methodology for such a

large model and so the chosen solution is to adopt a hedonic output formulation; that

is to nest a function which equates the various characteristics of output within a

Translog cost function. This makes the estimated model manageable in terms of

parameters.

While overall this methodology is not unique in the cost function literature, it is

argued that adopting such methodology allows robust analysis of a relatively

complex problem. This is the first time such a methodology has been applied to the

study of railway operations. The methodology builds on literature, the innovation

being that it allows the interaction of density measures and heterogeneity in a

manageable and parsimonious way



13

1.3.2. Chapter 6 – Infrastructure cost analysis

It was identified in section 1.1 that there was difficulty in assembling sufficient data

to undertake robust statistical benchmarking of railway infrastructure managers. A

potential solution to this data problem is to utilize data on multiple railway

undertakings but disaggregated into regions. This has several advantages over data at

the company level. Firstly, this can often be a way to obtain more data points.

Ultimately to get the same number of observations for regression, less countries

and/or years of data need to be collected since for each year and country there are

multiple observations by regions. This is of much practical importance given the

issues with collecting data from multiple sources. Secondly, the data structure allows

us to distinguish between efficiency variation at two geographical levels; variation

which is systematic across firms but the same for all regions within a firm and

residual variation across regions within a firm.

Chapter 6 outlines an econometric model to utilize the data structure and measure

efficiency at dual-levels. This is a useful decomposition in itself, since it gives an

indication as to whether inefficiency predominantly varies within firm or between

firms which is useful in terms of identifying where efforts should be made to

eliminate inefficiency. Furthermore, the empirical example also indicates that failure

to take account of the dual-level inefficiency variation may result in under estimation

of inefficiency. The dual-level inefficiency model is applied to data on five railway

infrastructure managers, comprising firms from North America alongside European

national infrastructure managers (IMs). Each IM in the sample is divided into a

number of regions. The chapter also considers the Mundlak (1978) transformation of
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fixed effects as a means to control for the influence of time invariant unobserved

heterogeneity in efficiency models of this sort, in addition to the usual measures of

returns to scale and density, thus complementing the work in Chapter 5 which

considers incorporation of observed heterogeneity.

1.3.3. Chapter 7 – Uncertainty in efficiency analysis

The final research chapter considers a key challenge that faces economic regulators;

namely to understand the uncertainty surrounding the inefficiency estimates derived

from their models. This is of crucial importance in utilising the model output in order

to produce robust and defensible efficiency targets for the regulated firm. In Britain,

this is even more relevant given the maturity of the regulatory process. The current

Periodic Review of Network Rail is the fifth undertaken since privatisation and the

third since the Hatfield accident that precipitated a large cost rise. The result is that

top down benchmarking techniques are coming under more scrutiny. Players are

becoming more informed as to their basis. At the same time, the ‘efficiency gap’ for

the regulated firm relative to the best performing firm is decreasing, implying that

greater accuracy is needed in predicting efficiency levels.

A set of statistical techniques relate to understanding uncertainty in firm specific

predictions of inefficiency. Many empirical studies (and the study in Chapter 6) have

simply reported point estimates for firm inefficiency following the methodology of

Jondrow et al (1982). However, in cross sectional models, these point predictors are

known to be inconsistent for the quantity of interest; namely the firm specific

realisation of a random variable. The question then arises; how precise is the
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prediction of firm inefficiency? With this in mind and the general desire of

practitioners to understand uncertainty in their estimates, it is perhaps surprising that

interval predictors are not commonly reported in the empirical literature.

While a body of literature exists on such intervals, overall it is not clear as to what

the properties and limitations are with respect to each innovation. The purpose of

Chapter 7 is to clarify, and in places develop, the existing literature on the subject

that has developed over the last two decades. The literature is decomposed into two

themes. Firstly, the case where the parameters in the model are known (as opposed to

being estimated) is considered. The more realistic case where model parameters are

estimated is then considered. Through taking into account additional uncertainty due

to estimation of parameters, an interval which is truly analogous to a prediction

interval can be developed. Simar and Wilson (2010) have outlined a method using

bootstrapping, however in Chapter 7, a method which samples from the asymptotic

distribution of the parameters is proposed.

The approach is illustrated using a simplified version of the model used in Chapter 5

(now with focus on cost efficiency rather than scale efficiency).

1.3.4. Summary

There are common themes across the research chapters. One is the attempt to model

the cost function/frontier component of any model as accurately as possible. In

Chapter 5, the innovation is bringing in measures of heterogeneity in output directly

into the cost function. In Chapter 6, as well as differentiating between returns to
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scale and returns to density, a benefit of utilising the regional data is that it allows

returns to scale and density to be model at the level that managerial decisions are

made. This in turn reduces any aggregation bias (which is inevitably present to some

extent in micro economic analysis (Theil, 1954)). In addition the consideration of the

Mundlak transformation in Chapter 6 is an attempt to control for the impact of

unobserved time invariant heterogeneity. Finally accounting for the impact of

uncertainty in estimation/prediction is a common theme. Clearly this is the purpose

of Chapter 7, however the trade-off between flexibility and precision of estimates

when determining functional form is the key motivator for the hedonic cost function

approach in Chapter 5.
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2. Economic concepts

2.1. Introduction

In this first literature review, the relevant economic concepts that are considered to

apply to this thesis are examined. The cost function is the central economic tool that

is utilised in this thesis. As such the structure of this review is as follows. Firstly, the

motivation for the use of a cost function is established by relating it to the theory of

firm production. Secondly, the variation in firm’s costs is broken down into

characteristics relating to returns to scale and density, technical change over time,

input prices and efficiency, all of which influence firm’s actual cost of production.

The latter influence of costs, firm efficiency, requires a re-formulation of the cost

function as a cost frontier which implies that the deterministic function conceptually

represents minimum cost of production rather than actual cost. Finally it is discussed

how the cost function device is appropriate for use in this thesis versus other devices

such as production and distance functions.

2.2. The Cost Function

The first empirical application of the formal cost function as it would be recognised

today (a function of output levels and input prices) can be traced back to Nerlove

(1963). His seminal study on the costs of generating electric power was the first to

utilise an analytic relation (developed by Shephard (1953)) between the structure of a

firm’s costs and the structure of the firm’s production transformation function. In

particular, subject to the behavioural assumption that the firm was cost minimising
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and the firm faced exogenous input prices and output levels, Nerlove showed that a

Cobb Douglas cost function could be derived from a Cobb Douglas production

function and input price information. Importantly the resulting (total) cost function

was a function of both output levels and input prices. The Cobb Douglas cost

function is termed “dual to” the Cobb Douglas production function. This work

established the cost function as having meaningful economic interpretation which

provided a strong motivation for estimating such functions.

More generally, the economic model for firm production is the transformation

function, which is in itself a multi-output generalisation of the production function.

This relates inputs to outputs, i.e. it shows the input required to produce an amount

of outputs. (Chambers, 1988 p. 260). Thus it can be represented as:

 xy,T0 (2.1)

where y is a vector of outputs and x a vector of inputs. The cost function is derived

from this relationship by a further assumption that firms minimize costs of

production of a given output, subject to the output being within the feasible set

(contained within the transformation function) and that firms take prices ( p ) for the

inputs as given (they are input price takers). Thus firms choose the level of inputs to

use in order to minimise costs.

Mathematically, the problem is:

 xy,px
x

TC
wrt

 0(s.t.)subject to'min (2.2)
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Let *C denote the minimum cost solution from this constrained minimisation

problem then the solution can be represented as a function of the exogenous factors:

 py,** CC  (2.3)

Thus the cost function relates minimum cost to the outputs and inputs prices which

are taken as given. The question then arises as to whether the cost function can be

used to learn about the underlying production technology of the firm, such as returns

to scale and density and the effects of technological change. If so, the cost function is

said to be ‘dual’ to the transformation function. A set of ‘regularity conditions’ need

to hold for this to be the case. (See Fuss and McFadden (1979) for full details of

these conditions.) It is important to test or at least check that these conditions hold

for an estimated cost function. These are discussed in the following sub-sections

(2.2.1 and 2.2.3 with respect to output and input prices respectively) and in detail in

Chapter 5 when the estimated cost function is checked against these conditions.

Before the properties of the cost function are examined, given the use of panel data

(data over time for a number of cross sectional units) it is useful to explicitly account

for changes in the cost function over time. In (2.3), these are implicitly contained

within the functional form incorporating y and p (C(.)), so such a representation is

still consistent with any underlying duality. Further cross sectional (i=1,…,N) and

time (t=1,…,T) subscripts are added to relate the cost function to an (dual) indexed

set of observations. Thus (2.3) can be expressed as:
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 titit τ,p,y** CC  (2.4)

Where tτ represents a vector of firm invariant (but time varying) variables which

captures changes in the cost function over time. For example this could comprise a

time trend and/or dummy variables suitably coded with time.

Some basic characteristics of the function are described below and these are

illustrated in Figure 2.1. The subsequent sub-sections expand on each of these

aspects.

 Scale effects and other output changes (box b): differences in average costs

of production due to the effect of returns to scale and density. TOCs are

producing different output levels. This is a movement along a given

minimum cost frontier.

 Technological change (box c): over time the best practice technology

(hopefully) improves which means firms can achieve lower costs for the

same output with all other things equal. This is a movement of the position of

the cost frontier over time.

 Input price changes: changes in the price of inputs alters the cost of

producing a given output. Like technological change, input price changes

affects the minimum cost boundary and thus are represented as a shift of the

minimum cost frontier.

 The efficiency of the firm (box d): the ratio of the firm’s actual cost to the

minimum cost possible if the firm adopted best managerial practice – i.e. the
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gap between the firm and cost frontier. As a result some firms do not produce

at minimum possible cost and are thus above the cost frontier.

Figure 2.1 Economic concepts with respect to a cost frontier

2.2.1. Output and returns to scale and density

The (total) cost function requires that the following properties hold4:

C1   0titit τ,p,yC for 0pit  and 0y it  (nonnegativivity)

C2 If
jtit yy  , then    titjttitit τ,p,yτ,p,y CC  (nondecreasing in output)

C3   0tit τ,p0,C (no fixed costs)

4 The precise requirements depend on the actual requirements on the underlying production
technology. The requirements given above, and 2.2.3 for input prices, are sufficient to
describe a fairly general underlying technology (see Chambers, 1988, p. 9 and p 51 for exact
definitions).
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The above properties seem reasonable. However whether cost functions meet the

above conditions depend on the exact functional form.

For some functional forms, the properties hold irrespective of the parameter values.

For other functional forms certain (simple) sign restrictions on the parameters are

sufficient to guarantee the cost function meets the properties for all levels of output

(and input prices). In this case the cost function satisfies the property ‘globally’. An

example is in a Cobb Douglas model which, provided the coefficients on outputs are

all non-negative, conforms to requirements C1 and C2.

For other functional forms it is not possible to provide restrictions that apply to all

possible admissible values of output (and input prices). Instead properties have to be

verified for a given sample, i.e. verified ‘locally’. Many flexible functional forms can

only be verified locally and further have to be checked for conformity post

estimation rather than restricting the admissible parameter values pre estimation.

Such an exercise is undertaken in Chapter 5 when the flexible Translog functional

form is utilised.

Finally, note that sometimes a functional form does not conform to these properties,

at least for some data points. Property C3 is, for example, impossible for a double

logged functional form (such as Cobb Douglas or Translog) to conform to. This is

because the logarithm of zero is undefined, so the functional form is only valid for

positive output levels. Typically however this is not of interest to the analyst as they

are interested in how costs behave in the region of their data (which is ultimately
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where statistics can provide most precision in any case).

Returns to scale refer to how costs change as output varies. Within a cost function

approach, the measure of returns to scale measures how average costs change as

outputs are increased by the same proportion (in the case of multiple outputs). If

there are returns to scale then as outputs increase by a small proportion, costs

increase by a lower proportion; thus average costs fall as outputs increase. Clearly

findings on returns to scale have implication for the optimal scale of operations, at

least from the perspective of minimising unit costs. The minimum efficient scale

output point refers to the output level where the average cost curve is minimised.

In network industries, it is often useful to distinguish between increasing the size of a

network and continuing to utilize the network at the same level as opposed to

increasing the utilization of the network holding the size constant. Indeed, failing to

allow for differences in the cost characteristics associated with scale and density can

lead to model mis-specification and thus bias estimates. The returns to scale and

density results may be of interest in their own right (as opposed to simply guarding

against omitted variable bias) as is the case in Chapter 5 of this thesis.

Caves et al (1981 and 1984) outlined expressions for returns to scale and returns to

density in cost functions. Caves et al’s derivation was based on finding equivalent

definitions of returns to scale and density for the cost function as for the production

function via the duality theorem (as first explained by Nerlove (1963)). To

distinguish between scale and density effects, models should include both traffic

usage variables and variables to capture network size. In Caves et al’s study the
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network size variable was the number of points served, however in other studies

other measures such as track-km have been used (e.g. Farsi et al, 2005a, Gathon and

Perlman, 1992, Coelli and Perelman, 1999,Coelli and Perelman, 2000). Caves et al

showed that returns to scale (RtS) and density (RtD) can be computed as follows:


















1m

1i
Syi

1RtS (2.5)







 1m

1i
yi

1RtD (2.6)

Where
iy

 is the elasticity of cost with respect to the ith output (i=1,…,m-1) and S

is the elasticity of cost with respect to the network size variable5.

The Caves et al measures of scale and density both have the properties that unity

represents constant returns and they are monotonic i.e. the greater the measure, the

greater the degree of returns to either scale or density. In Chapter 5, extensions to

these concepts are utilised which additionally incorporate measures of heterogeneity

of output into the calculation. This extension is motivated from the literature on

hedonic cost functions (Spady and Friedlaender, 1978) and discussed in more detail

in Chapter 5.

5 For notational convenience and consistency with other equations which do not distinguish
between the network size variable and other outputs, the network size variable is treated as
the m’th output and so only the first m-1 output elasticities are used in the RtD equation
(which excludes this output).
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2.2.2. Technical change

Technical change reflects how the underlying technology available to firms’ changes

overtime. In particular, it could be hoped that there are technical innovations,

introduced over time, which result in more output for given amount of inputs. For a

cost function, this is equivalent to costs falling over time for the same amount of

outputs being produced and for the same input prices. Clearly given its temporal

nature, it is only applicable to time series and panel data sets.

Technical change can enter the cost function in a number of ways. First there is an

issue as to whether it is entered as a trend e.g. linear or quadratic or as a set of time

dummy variables. The former approach has the advantage that the trend can be

extrapolated outside the sample to give a prediction of how the cost function may

change further into the future (of course this is subject to past trends being reflective

of future trends). However, such a parametric function requires an assumption on

functional form which may be deemed an undesirable. In contrast, time dummy

variables allow for an unrestricted path of technical change. In panel data this leads

to a ‘two-way’ panel model, with both time invariant effects (firm effects) and firm

invariant effects (time effects). However the limitation of such an approach is not

much can be said for the likely future path of technical change, unless there is some

kind of extra auxiliary regression of the time effects post estimation.

Second, there is, perhaps the more important economic issue, as to how technical

change should interact with output and input prices in the cost function. Does

technical change influence the behaviour of costs with respect to output changes e.g.



26

change the returns to scale properties over time? Similarly, does technical change

influence the relative choice of inputs? If the answer to both of these questions is no,

then technical change simply is a scaling factor on cost. When technical change does

not affect the cost minimising input ratios, then technical change is termed ‘cost-

neutral’ (Chambers, 1988, p. 216). This is equivalent to the cost share equations

being independent of time, which, in a Translog cost function, requires no interaction

terms between the time trend and input prices in the cost function (Chambers, 1988,

p 229).

2.2.3. Input price changes

Nerlove highlighted the importance of including input prices in all cost functions.

Failure to include such prices implicitly assumes that the excluded input prices are

constant across all observations6. If this assumption does not hold then the model is

mis-specified. Also, if at least one input price is excluded it is difficult to impose the

linear homogeneity in input prices restriction (see below for definition).

More formally, and continuing with the list of properties in 2.2.1, for a cost function

to be a valid descriptor of the underlying technology (i.e. dual to a transformation

function), the following properties with respect to input prices need to be adhered to.

6 It is noted that panel data techniques can be used to relax (but not entirely eliminate) this
strict assumption. For example inclusion of time effects may proxy for cross section wide
changes in input prices. However in the context of performance measurement such time
effects (and similarly for cross section effects) have specific interpretations such as technical
change (or inefficiency) and using panel data techniques to control for input price effects is
not ideal.
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C1 (restated)   0titit τ,p,yC for 0pit  and 0y it  (nonnegativivity)

C4 If jtit pp  , then    tjtittitit τ,p,yτ,p,y CC  (nondecreasing in prices)

C5    ttttitit τ,p,yτ,p,y iiCC   for 0 (positively linearly homogenous)

C6  titit τ,p,yC is concave and continuous in itp

C1 is self explanatory. C4 simply states that if all prices are at least as large as

another price vector, then cost must be at least as large. C5 is intuitive as if all prices

increase by the same proportion and the output requirement is the same, then the

optimal choice of input use must be the same, implying input quantities are the same,

thus cost must increase by the same proportion.

C6 is a little more involved and a comprehensive description (and link to Shephard’s

Lemma) is given in Chambers (1988, p 53-55). Figure 2.2 provides intuition as to

why cost functions need to be concave in input prices (a formal proof is contained in

Chambers (1988)). The cost function is drawn with respect to one input price,

holding all outputs and other input prices constant. Consider the situation where the

input price increases from *1p to '1p , again holding outputs and other input prices

constant. In response to this change the firm could continue to utilise the input at the

same level i.e. the firm’s choice of inputs do not change. In this case cost would

increase to  '**** 1111 pxpxC  where *1x is the cost minimising input level at

*1p for input 1. Alternatively the firm could change its input mix (substitute away

from the input 1). In this case, cost must be less than or equal to

 '**** 1111 pxpxC  , otherwise the firm is not cost minimising (it could have

maintained the same input mix). Hence the cost function must be on our below the
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straight line through  **,1 Cp ; that is, concave.

Figure 2.2 The need for concavity in input prices

Source: Reproduced (by own transpose with revised notation) from Chambers (1988,

p53)

As with the properties on outputs, depending on the functional form adopted, the

properties above can exist globally or locally. In the cost function used in Chapter 5,

the Translog, C5 is imposed (globally) prior to estimation, but C6 and C4 are

checked post estimation. C4 corresponds to the elasticity of cost with respect to each

price being positive at all data points (equivalently that the cost shares are all

positive, by Shephard’s Lemma). C6 is verified for each data point, through

computation of the matrix of second derivatives of input prices to verify if it is

negative definite; a necessary and sufficient condition for concavity in prices. See

Chapter 5 for more details.



29

Note, in Chapter 6 only a single input price is available which limits the extent to

which the properties of the cost function can be imposed or checked. In particular,

C5 can not be imposed. However C4 holds for the single input price (as the cost

elasticity with respect to the price is constant – and found to be positive). C6 also

holds in a similar ‘partial’ sense, that is the single second derivative is negative as

required.

2.2.4. Efficiency

It is often assumed in neo-classical economics that firms, or more generally decision

making units, are successful in maximising an objective function. This is often in

contradiction with reality. One example was provided by Hicks (1935, p. 8): “people

in monopolistic positions… are likely to exploit their advantage much more by not

bothering to get very near the position of maximum profit, than by straining

themselves to get very close to it. The best of all monopoly profits is a quiet life”

(cited in Kumbhakar and Lovell, 2000). There are now many formal economic

models which allow for a degree of sub-optimisation. These include a raft of

principal-agent models where the management of a firm has a different objective to

the owners and the owners have an informational asymmetry which prevents them

from successfully monitoring managers (see for example Vickers and Yarrow,

1988). These models lead to a degree of slack in the production process, which

prevents maximisation of the firm principal’s objective; this will subsequently be

termed as the firm as exhibiting a degree of inefficiency.
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Work on developing an analytical framework to measure the degree of sub-

optimisation can be traced back to the 1950s with the work of Koopmans (1951)

who defined technical efficiency, and Debreu (1951) and Shephard (1953) who

developed a closely related concept of the distance function. Importantly, Farrell

(1957) was the first to measure efficiency (the extent to which firms optimise) with

respect to the cost minimising objective and decompose cost efficiency into technical

and allocative components. In the following decades, the literature on measuring

efficiency and, more generally, performance has grown considerably.

Applied to a cost function, efficiency refers to cost efficiency which reflects the

ability of the firm to choose and combine its inputs at minimum cost. This can be

shown to be the product of technical and allocative efficiency. Technical efficiency

refers to the divergence between the output produced by the firm for a given amount

of input and the maximum amount of output possible for the same input

combination. Allocative efficiency refers to the divergence between the chosen ratio

of inputs and the optimal ratio of inputs in terms of that which minimises cost. It is

possible to decompose cost efficiency into technical and allocative efficiency, for

example, by estimating a cost function along with input factor share equations in a

Cobb Douglas model (Kumbhakar and Lovell, 2000).

In terms of formally stating the economic model to account for inefficiency of firms,

it should be noted that the solution of the constrained optimisation in (2.2) yields the

minimum cost frontier, while in practice firms may fail to optimise. Taking

logarithms (the reason for which will simplify computation of cost efficiency
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described below), then actual cost (C)7 can be expressed as a function of the

minimised cost function (C* – now termed the cost frontier) and an additional

component representing the difference between actual cost and minimum cost (u):

   uCCuCC  py,*lnln*lnln (2.7)

By definition u .

Cost efficiency is defined as:

C

C
Eff

*
 (2.8)

Using the model in (2.7)

 
 

u

u
e

eC

C
Eff 




py

py

,*

,*
(2.9)

2.3. The appropriateness of a cost function for this thesis

The cost function is not the only economic device available for the task of efficiency

analysis in railways. Others include the production function, distance function,

revenue function and the profit function. All have been used in railway performance

7 For ease of exposition, time and cross sectional sub-scripts are omitted. Further, and related
to the lack of subscripts, explicit account for technical change is not made; again for
simplification.
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analysis. Each function makes assumptions as to what attributes are and are not

under the firm’s control. Importantly the problem formulated in (2.2) assumes that

firms minimize cost by choosing the level of each input. However, it also requires

that input prices are outside of the firm’s control (they are price takers) and the same

applies to the output level.

Oum et al (1999, p. 36) in concluding their review of the railway literature argue for

the cost function over the production function given that railways produce multiple

outputs and production functions can only accommodate a single aggregate output.

The cost function treats output as exogenous which is likely to be most appropriate

in the case of railways (at least in Great Britain).

For passenger train operating companies, it may be questioned as to whether output

levels are truly exogenous to the firm, especially when we consider characteristics

such as passenger load factor of the primary output (train hours). TOCs in Britain do

have some ticket pricing discretion and thus they can grow output to some extent.

However, this discretion is relatively minor compared to the overriding concern to

produce train services at lowest cost subject to quality constraints. Ultimately,

minimum service levels are set in franchise agreements. Similarly, it can be argued

that TOCs have some price making power in input markets, for example, they

negotiate staff pay with unions.

A similar argument can be made with respect to endogeneity of input prices in

infrastructure cost functions, although, in practice, this is an academic point given

the lack of available input price data for infrastructure maintenance and renewal
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activity in many applications.

However, for regulatory purposes it can be argued that measuring cost efficiency is

the objective of any exercise and thus the cost function is the natural economic

model to utilise. This argument can be applied to the infrastructure analysis where

the objective of the analysis is to determine the potential cost savings feasible for a

firm. Ultimately the regulator is interested in the overall cost of provision of the

service and ensuring prices to users are minimised for a given output.

The alternatives to the cost function are not without flaw and it can be argued, a

priori that the flaws are stronger in the alternatives than the cost function. A

transformation function (or the rearranged variant called the distance function used

with respect to efficiency measurement) could be estimated. This does not require an

assumption of the firm’s economic objective (cost minimization, profit maximisation

etc.). However, it requires exogeneity of input and output levels (with the exception

of the arbitrarily chosen left hand side output). Exogeneity of input levels seems at

odds with the aspiration of competitive tendering, namely to introduce innovation

into the provision of service.

A further alternative is the profit or revenue function. However such a behavioural

assumption seems at odds with the general motivation for competitive tendering (to

lower cost or subsidy) and in any case prices (both input and output) are still

assumed exogenous (firms are price takers). The only alternative is to estimate a

demand and supply system of equations, however the specification of this system is

unclear and constructing data for the demand side which is compatible with the
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supply equation is non-trivial and beyond the scope of this thesis. This is because the

‘raw’ demand data measures origin to destination station trip data, a final output to

use the terminology in 4.2.1, while TOCs produce intermediate outputs (train-hours).

Mapping between the two requires a trip assignment model.

It is concluded that the cost function is preferred over the alternatives.

2.4. Summary

This chapter has reviewed the economic foundations of the cost function. The

behavioural assumptions underpinning it have been discussed. It has been further

shown that the cost function provides information regarding the underlying

technology of the firm and can provide measures of returns to scale/density and

technical change over time. The economic framework for considering the cost

function as a cost frontier has also been outlined. The cost function still represents

the minimum cost of production but now explicit allowance is made for a degree of

sub-optimisation in terms of allowing the firm’s cost to be on or above the minimum

cost frontier. This allows the measurement of cost efficiency. Finally the chapter has

motivated the use of a cost function/frontier over other economic devices. Ultimately

the cost function provides the measures that are of interest; namely cost efficiency

and scale and density properties of the industry given that output is (best)

characterised as exogenous.

One important point to be made is the inter-dependency of components of the cost

function. Clearly, an analyst cannot expect to measure cost efficiency correctly if
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outputs have been incorrectly specified and/or variation in input prices have not been

taken into account, for example failing to take into account heterogeneity in outputs.

These issues are returned to in Chapter 4, when the details of how to specify a cost

function in the specific application to railways are considered. In particular, a

common theme is that railway output is not homogenous and thus there is a need to

explicitly account for the characteristics of output to accurately specify a cost

function.
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3. Econometric Methodologies

3.1. Introduction

The previous chapter was concerned with relevant economic concepts. Crucially, the

cost function was introduced along with the concept of efficiency where firms can in

reality produce at or above the minimum possible cost. In this chapter, issues relating

to estimation of these economic models using real world data are considered; the

review moves from the economic to the econometric research domain.

The basic precept of moving from the economic to the econometric domain is to

recognise that economic models are abstractions from reality and thus there is a need

to append an error term to an economic model to form an econometric model. This

‘noise’ captures the failure of the economic model to fully explain real world data.

Estimation of the economic model parameters using sample data can then be

undertaken. Of crucial importance to the properties of the estimators is the

assumptions placed on the behaviour of the error term and the relationship between it

and the data.

In addition to the usual desire to obtain the best estimates of model parameters,

exercises which try to measure cost efficiency are concerned with measuring the

realisation of the error term in the model for a given firm. Thus, unlike conventional

econometric analysis, it is no longer sufficient that the error is simply ‘well-

behaved’; the analyst actually cares about its value (Greene, 2008). This presents

unique econometric challenges.
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This chapter is divided into two subsequent themes. In the first theme, comprising

section 3.2, the general econometric techniques are reviewed which are relevant to

‘best’ estimating model parameters. The second theme considers the issue of

measuring firm efficiency. This motivates the methods used in Chapter 6 and also

provides background for the methodological development on uncertainty in

efficiency predictions in Chapter 7. Section 3.3 introduces the econometric

efficiency model. Section 3.4 considers cross sectional data applications and section

3.5 considers panel data applications.

3.2. General econometric concerns

In this section, the basic econometric analysis tools for cost function analysis are

reviewed. For the purpose of this section, firms are assumed to be efficient, or at

least, measuring efficiency is assumed not the objective of the exercise8. The

techniques are thus most relevant to the returns to scale and density research for

TOCs in Chapter 5, although it provides a useful background for techniques

developed in the following sub section specifically for measuring efficiency.

It is not the purpose of this section to provide a comprehensive treatment of

econometric theory. This is beyond the scope and there exist many text books that

provide treatments at a variety of technical sophistications (e.g. Studenmund, 2011

and Greene, 2012). Instead, firstly, the relevant statistical properties of estimators of

8 As discussed in 3.3, some of the general econometric techniques provide consistent
estimates of (most) model parameters even in the presence of inefficiency.
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model parameters, such as unbiasedness, consistency and efficiency are presented.

Being clear on the meaning of these properties is important for justifying the choice

of estimation method invoked in the research chapters and particularly important for

the technical discussion of appropriate prediction intervals for cost efficiency in

Chapter 7. Secondly, two general estimation frameworks are introduced, namely

least squares and maximum likelihood, as they are used in some form throughout the

research.

3.2.1. Properties of estimators

Consider a model which comprises a set of unknown parameters which are contained

in a vector  . One way to learn about what the values are of the elements of  is to

use a sample of data. An estimator is defined in Greene (2012) as:

“An estimator is a rule or strategy for using data to estimate the parameter [( )]. It

is defined before the data is drawn… A point estimate is a statistic computed from a

sample that gives a single value for .” p 1095.

It then follows that “Obviously, some estimators are better than others” (Greene

2012, p 1095). It is the identification of what properties of estimators makes them

‘better’ than others that is considered below.

Let an estimator of  be denoted ̂ . By the definition above, ̂ is a function of

observed sample data. However a given (random) sample of data will not perfectly

mimic the population. Thus for each sample drawn from the population, a different
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value of ̂ will be computed. Thus ̂ will have a sampling distribution i.e. a

probabilistic distribution relating to the value of ̂ from multiple resampling

exercises. The properties of this distribution are used to evaluate various competing

estimators, some of which are considered below.

3.2.1.1.Unbiasedness

“An estimator of a parameter  is unbiased if the mean of its sampling distribution

is  . Formally,    ˆE .” (Greene, 2012 p. 1096)

This would appear to be a very desirable property of an estimator. ‘On average’ the

estimator corresponds to the true parameter value. However, it is important to note

that the properties of the sampling distribution refer to the behaviour of the estimator

through resampling. In practice, researchers generally are faced with a single draw

from a distribution. Thus just as important (and perhaps more important) is to

understand the spread of the sampling distribution, summarised by the variance of

the estimator (    2ˆˆ   Ev ). Indeed an estimator that is biased (i.e. not unbiased)

may be preferred to an estimator which is unbiased if it has a sufficiently smaller

variance of its sampling distribution.

3.2.1.2.Efficiency (of unbiased estimators)

“An unbiased estimator `1̂ is more efficient than another unbiased estimator `2̂ if

the sampling variance of `1̂ is less than that of `2̂ . That is    21
ˆˆ  vv  .” (Greene,
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2012, p 1096)

An estimator that is unbiased and is efficient relative to all other unbiased estimators

is known as the best unbiased estimator (BUE). Note that this is referring to unbiased

estimators only. When biased as well as unbiased estimators are considered, there is

a trade-off between bias and variance. One criterion is to choose the estimator with

the minimum mean squared error but in practice this is difficult to compute.

It is often not possible to obtain measures of the properties described above for all

estimators in finite samples. What is often easier (and indeed feasible) is to obtain

large sample (asymptotic) properties of estimators and use these as the basis of

determining which estimator is best. It is necessary to denote the estimator as `
ˆ

n to

denote in what dimension its sampling distribution changes. Thus, the following

properties concern how the sampling distribution of the estimator changes as n, the

number of observations, increases.

3.2.1.3.Consistency

“The random variable nx converges in probability to a constant c if

0)cxPr(lim nn  for any positive  … [short hand] we write cxn plim ”

(Greene, 2012 p 1107)

“An estimator n̂ of a parameter  is a consistent estimator of  if and only if

 n
ˆplim .” (Greene 2012, p 1109)
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Consistency of an estimator implies that the sampling distribution of the estimator

converges to a point at the true parameter value as the sample size is increased. This

is a very desirable property of an estimator and is generally a prerequisite property of

a useful estimator. Ultimately it states that as more and more data is considered in

the estimation, the probability of the estimate being any distance away from the true

value diminishes. Thus the more data is available the ‘better’ the estimate (in a

probabilistic sense).

It should be noted that in Chapter 7, consistency of predictors of random variables

are considered. In particular the Jondrow et al (1982) predictor (described in 3.4) is

an inconsistent predictor. As stated in the Chapter 7, however, the Jondrow et al

(1982) sample predictor is a consistent estimator of the population expectation;

however this is not the quantity of interest.

3.2.1.4.Convergence in distribution, central limit theorems, and

the asymptotic distribution of an estimator

Knowing that an estimator is consistent for the quantity of interest is useful, however

in finite samples there is a need to understand the spread of the sampling distribution

and undertake statistical inference. Assuming that small sampling properties cannot

be derived, it is necessary to form an Asymptotic Distribution of the estimator:

“An asymptotic distribution is a distribution that is used to approximate the true

finite sample distribution of a random variable.” (Greene, 2012, p 1124)
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In order to determine the asymptotic distribution of an estimator it is necessary to

establish what distribution the estimator converges to (as the sample size is

increased). To do this, it is necessary to define convergence of a random variable to

another random variable:

“ nx converges in distribution to a random variable x with CDF9  xF if

    0lim  xFxF nnn at all continuity points of F(x).” (Greene, 2012, p 1116)

And

“If nx converges in distribution to x, where  nn xF is the CDF of nx , then  xF is

the limiting distribution of nx . This is written xx d
n  .” (Greene, 2012, p 1116)

From the limiting distribution, the asymptotic distribution can be constructed.

Central Limit Theorems provide limiting distributions for the estimators used in this

thesis, namely least squares and maximum likelihood estimators. There are many

types of central limit theorem and also supporting theorems and such exposition is

too detailed for this thesis. Providing an appropriate central limit theorem can be

utilised (which is the case with least squares and maximum likelihood estimators

(Greene, 2012 p 492) subject to several technical requirements (Greene, 2012 p 489-

492)), then for a consistent estimator (here denoted as a vector for generality)

9 For completeness, the Cumulative Distribution Function (CDF) of a random variable X is

defined as    xXxF  Pr .
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   Vθθn ,0ˆ Nn d (3.1)

Then the asymptotic distribution of n̂ is given as:









Vθθn

n
N

a 1
,~ˆ (3.2)

Note that (3.2) does not state that nθ̂ is distributed in this manner, but that it is

approximately distributed. The distribution in (3.2) can be used as a basis of

inference, such as a z or Wald statistic.

3.2.2. Estimation frameworks

In this sub-section, two general estimation frameworks are introduced, namely least

squares and maximum likelihood. The properties of these estimators are considered.

This is deliberately supposed to be high level and merely provides the a priori

motivation for utilising these techniques in the thesis. As such it is brief. A full

survey is provided in Greene (2012).

The econometric model considered in this thesis (bar some extensions for panel data)

can be expressed in a general form as:

  ii fy  βX i ; i=1,…,N (3.3)

That is iy , the dependent variable is modelled as a function  f of some other
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variables, iX , parameterised by a vector β , and a stochastic error term, i .

3.2.2.1.Least squares

Least squares techniques are very common in econometrics. The simplest variant,

ordinary least squares (OLS), involves the minimisation of the sum of squared

residuals. The popularity of OLS is mainly due to its desirable properties in the

linear (in parameters) regression model when only relatively weak assumptions on

the error terms are imposed (relative to the ‘fully parametric’ maximum likelihood

type estimators which require ‘full’ distributional assumptions to be imposed, see

3.2.2.2 below). Least squares techniques applied to linear models yield not just

consistent and unbiased estimates, but under the set of assumptions, attributed to

Gauss-Markov, are minimum variance of possible unbiased estimators. Estimation

can be conducted via closed form linear algebra expressions, which means

computationally they are relatively simple.

The Gauss Markov conditions can be summarised as:

 
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Below, violations of the above assumptions are considered.

G2 is often violated in models involving inefficiency. In the presence of inefficiency,
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errors will have a positive expectation (in the case of a cost inefficiency). This is

because the inefficiency error is defined to be non-negative (in the case of a cost

inefficiency). However this does not present a barrier to applying least squares

techniques. In particular least squares applied to such models (by simply ignoring the

non-zero mean and proceeding as if it were zero) still yields unbiased and consistent

estimates of all parameters except the constant. However as explain in sub-section

3.4.1, a suitable transformation can be applied ex post estimation to produce a

consistent estimate of the constant term (in practice the constant is rarely of interest

and so such a correction is not necessary, however it is necessary with respect to

measuring inefficiency).

Violations of G3 and G4 mean that the error in the model suffers from

hetroscedasticity and correlation across observations. This does not affect the

unbiasedness or consistency properties of OLS, but OLS is no longer efficient.

Instead there exists another least squares estimator, the Generalised Least Squares

(GLS) estimator, which is more efficient, since the extra information contained in the

pattern of hetroscedasticity (in the case of violation of G3) and/or correlation

between observations (in the case of violation of G4) is exploited to better estimate

the parameters. An example is the GLS estimator of the random effects model for

panel data, which is often used in the semi-parametric models containing

inefficiency. The GLS estimator is more efficient than OLS since it exploits the

persistent correlation over time in the errors for each firm, while OLS ignores this.

Violation of G5 is more problematic. If it is the case that the regressors are correlated

with the errors then OLS estimates of parameters will be biased. Intuitively this is
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because the implicit approach of the estimation process is to determine estimates of

the parameters through attributing variation in the dependent variable to variation in

a given explanatory variable. However, in this case, some variation in the error will

also be attributed to variation in the explanatory variable; OLS can not distinguish

between variations in X on y versus variation in the error on y. Instrumental

variables can be used (Greene, 2012, chapter 8), however this is of limited relevance

with respect to this thesis partly due to the difficulty in introducing instrumental

variables into stochastic frontier analysis (the subject of sections 3.3-3.5). The only

instrumental variables estimator used in this thesis is the fixed effects estimator used

in Chapter 6. Here the difference between each regressor and the firm group mean of

the regressor is used as an instrument for each regressor.

In non-linear models,a violation of assumption G1, least squares can still be applied,

although estimation usually has to proceed via iterative techniques. The properties of

these estimators are more difficult to establish and Greene (2012) sets out conditions

for the estimator to be consistent (p. 227) and asymptotically normally distributed (p.

228).

In many economic models there may also be several equations that are linked

through correlation in errors and cross equation restrictions i.e. the same parameters

are contained in each equation. This is the case in the cost function and cost share

equation estimated in Chapter 5. By Shepard’s Lemma, the partial derivative with

respect to (log) price of the (log) cost function is equal to the cost share of the input.

As such the parameters which appear in the cost share equation(s) occur in the cost

function as well. Further, given the economic relationship between to equations, the
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residual errors are likely to be correlated and so this should be exploited in

estimation. Thus, while equation by equation OLS is unbiased and consistent, cross

equation restrictions cannot be imposed and there are more efficient estimation

methods. In particular the Feasible Generalised Least squares method initially

developed by Zellner (1962) can be utilised and cross equation restrictions imposed.

This is known as Seemingly Unrelated Regression (SUR). A non-linear version of

this is used in the estimation of the cost model in Chapter 5.

In the remainder of this thesis, least squares techniques are referred to as ‘semi-

parametric’ techniques, in the sense that the estimation techniques do not require a

full set of distributional assumptions to be placed on the errors. Instead only

assumptions on the first two moments (the mean and the variance covariance) have

been made.

3.2.2.2.Maximum Likelihood

In contrast to least squares estimation techniques, maximum likelihood techniques

require the distribution of the error terms to be fully specified. For example the

classical linear regression model, to which OLS is best linear unbiased, can be

estimated by maximum likelihood by assuming that the error is independently

normally distributed with mean zero and homoscedastic variance. The method of

maximum likelihood proceeds by choosing parameter values which maximise the

probability that the observed sample was drawn from the distribution evaluated at the

parameter values. This therefore requires the specification of a joint probability

density function (PDF, joint over observations); hence the need for distributions to
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be fully specified. Because it is the parameter values which are subject to

manipulation in the maximisation, the joint PDF (which is an expression relating to

the data) is called a likelihood function (denoted L) which is the same function but

gives an expression for the parameters conditioned on the data. For independent data

(once conditioned on the regressors i.e. the errors are independent), this relation can

be written:

   θXXyθ i ,|,|
1

i

N

i
yfL


 (3.4)

Or in logarithms which makes the problem additive rather than multiplicative, aiding

maximisation:

   θXXyθ i ,|ln,|log
1

i

N

i
yfL


 (3.5)

The benefit of this ‘fully parametric’ approach is that the techniques can exploit all

the information contained within the assumed distribution to best fit the parameter

values while semi-parametric approaches only exploit information up to a given

number of moments (the first two in the case of OLS). The result is that maximum

likelihood estimators are in general efficient, at least asymptotically, under the

distributional assumptions. The trade-off is that they are less robust, in the sense that

their attractive properties apply only if the errors are distributed as stated; semi-

parametric methods permit more discretion as to the distribution of errors relative to

fully parametric methods.
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Like in the semi-parametric setting, in the fully parametric setting there are many

ways to estimate the model parameters. The specific method of maximum likelihood

is attractive for its large sample properties. Under regularity conditions reproduced in

Greene (2012, p. 555), the properties of θ̂ , the ML estimator of θ (the vector of

parameters (which in turn would include β and other distributional parameters in

(3.3))) are given below (Greene, 2012, p. 554, Theorem 14.1):

“M1 Consistency: θθ ˆlimp

M2 Asymptotic normality:    1
,ˆ~


θθθ IN

a

, where

   
'

ln2

θθ
θ


 LEI

M3 Asymptotic efficiency: θ̂ is asymptotically efficient [it achieves the Cramer Rao

Lower bound – see Theorem C.2. in Greene, 2012]…

…M4. Invariance: The maximum likelihood estimator of  θγ c is  θ̂c if  θc is a

continuous and continuously differentiable function.” (notation amended to match

this section of the thesis)

M1-3 are clearly desirable properties (see 3.2.1). M4 is very useful in terms of

deriving the maximum likelihood estimator for combinations of parameters and their

asymptotic sampling distribution.

Maximum likelihood methods are used throughout this thesis. They are essential to

efficiency analysis in cross sectional data; without making full distributional

assumptions it is impossible to recover a firm specific prediction of inefficiency.

They are also used extensively in efficiency measurement using panel data (see
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section 3.5).

3.3. Efficiency methods

The previous section considered ‘best’ estimation of the model parameters. However

efficiency is concerned with the ‘gap’ between the estimated frontier and firm’s

actual cost. This presents a challenge to econometric methods given that there are

two other reasons for there being a gap between the estimated frontier and a firm’s

actual cost. Firstly any frontier will be estimated using a sample of data. This implies

a sampling distribution for the model parameter estimates and thus the position of

the frontier has a probabilistic distribution. Secondly, there is inherent noise in the

cost data. This captures all factors outside of the model i.e. it is a recognition that the

model is an abstraction from reality. Using least squares techniques for example,

implies that the estimated frontier represents the conditional mean of cost. In practice

the actual minimum cost for the firm may be higher or lower than this and part of the

computed ‘gap’ may be noise rather than inefficiency.

The economic model for the cost frontier is given in (2.7) as:

   uCC  βpy ;,lnln (3.6)

The parameter vector β is added to indicate that there will be a set of unknown

parameters in the economic model. In addition, to keep the econometric discussion

manageable it is assumed   βpy ;,ln C is linear in parameters. Importantly it should

be noted that data needs to be available on C, y and p. However u is unknown.
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Furthermore, as shown in (2.9) it needs to be recovered from the analysis in order to

compute cost efficiency.

However this is still only an economic model and not an econometric model. In

order for this to become an econometric model and be amendable to estimation of

the relevant parameters, an additional error term must be added. This is the ‘noise’

error term and represents the unexplained element of the economic model with

respect to the real world data generating process. Ultimately it reflects the degree to

which the economic model is an abstraction from reality.

Thus the econometric model is:

   vuCC  βpy ;,lnln (3.7)

For the purpose of this thesis, the above model will be termed a stochastic frontier

(SF) model. The model is a stochastic frontier because it simultaneously accounts for

noise and inefficiency. This terminology is consistent with that in Coelli et al (2005),

but is not strictly consistent with some other authors (e.g. Greene, 2008), particularly

in the panel data context10.

The remainder of this chapter considers how to estimate both the parameters in this

10 Greene (2008) appears to define a stochastic frontier model in terms of the model
estimation approach and whether the efficiency is measured in terms of absolute (with
respect to a population distribution) – the case of a stochastic frontier – or relative to firms in
sample. Importantly Greene defines the semi-parametric models of Schmidt ad Sickles
(1984) and Cornwell, Schmidt and Sickles (1990) to not be stochastic frontier models, while
using the definition in this thesis, they are. In practice this is a difference in terminology and
not anything that precludes the use of either type of model in analysis of efficiency.
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model and how to compute efficiency from the above model. This is a non-trivial

problem and this review proceeds with two cases. Firstly, the model in the presence

of cross sectional data and secondly, in the presence of panel data.

3.4. Cross sectional data analysis

Consider (3.7) using the cross sectional dimension only

   iiiii vuCC  βpy ;,lnln Ni ,...,1 (3.8)

Estimation of the frontier parameters, β , can be undertaken through a variety of

means provided the assumption that the error components are uncorrelated with

regressors, that is   0iiXE  where iii vu  , holds. OLS provides consistent

estimates of β , with the exception of the constant term since the usual assumption of

  0iE  does not hold.

By making explicit distributional assumptions on iu and iv , maximum likelihood

estimation can be used and is the asymptotically efficient estimator, provided the

distributional assumptions are correct. In practice maximum likelihood estimation

tends to be adopted since the prediction of cost efficiency relies on exact

distributional assumptions being made.

The distributional assumption commonly used for iv is
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 2,0~ vi iidNv 

And for iu

 2,0~ ui Niidu  or  2,~ ui iidNu  or  2tialiidexponen~ uiu 

In addition ii uv  i.e. are independent of each other. With the above distributional

assumptions, the models are known as the stochastic frontier normal-half normal,

normal-truncated normal and normal-exponential models respectively.

Given these assumptions, there exists a closed form expression for the log likelihood

of (3.5) (see Aigner et al (1977) for the normal-exponential and normal-half normal

models and Stevenson (1980) for the normal-truncated normal model). As such the

model parameters  22 ,, vu β can be estimated by maximum likelihood and therefore

the estimates are consistent and asymptotically efficient.

There remains the issue of how to predict the level of firm efficiency from these

models, important since it is likely to be the primary motivation for adopting

stochastic frontier analysis.

There exist many possibilities for computation of overall industry wide efficiency

(Jondrow et al, 1982). The aim is to measure the extent to which the “average” firm

in population suffers from inefficiency. The first two possible methods work via

estimates of the mean of iu . One option is to estimate the mean of the composite
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error, i , by use of the residuals from the estimated regression of model, i̂ , and to

use this as the estimate of the mean of iu . Intuitively i̂ can be averaged since the

mean of iv is zero and so any variation of the true mean of i should be due to the

iu error component. The second is to estimate the mean of iu by deriving the mean

of i analytically. In the truncated half normal case this is a function of the variance

of iu and so the estimated value of 2
u is used in the computation. This or the

measure in the first method can then be transformed into a measure of overall

technical efficiency (see Aigner et al, 1977). A further option for calculating overall

industry efficiency is to take the (cost weighted) average of the individual efficiency

scores computed using the methods proposed in Jondrow et al (1982) (see below). It

is not clear which measure is to be preferred and what the differences between the

measures is likely to be.

However, while a measure of overall industry efficiency is useful as a summary

measure for the industry, what early proponents of frontier models envisaged (such

as Farrell (1957)) and indeed what industry regulators require, is a measure of

inefficiency specific to a firm. It was five years from the basic SF model being

proposed until Jondrow et al (1982) showed how to calculate a measure of firm

specific inefficiency. The problem is non-trivial because by estimating parameters in

the SF model, estimates are produced of the variances (and, if applicable, the means)

of each of the component errors, iv and iu . However, the residual from the

estimated model captures the sum of both iv and iu i.e. i . Thus there is a problem

as to how to decompose the residual given only the distributions of the error
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components are known11. The method that Jondrow et al (1982) propose proceeds by

calculating the expected value of iu given i is known.

Jondrow et al (1982) propose the following point predictor of cost efficiency ( iFFE ˆ ):

  iii uEFFE |expˆ  (3.9)

See Jondrow et al (1982) for the specific expressions for the normal-half normal and

normal-exponential model of (3.9).

Battese and Coelli (1988) used the distribution of ii |u  to derive an alternative

predictor of cost efficiency that is optimal in the sense of minimising mean square

prediction error. This is an alternative to the estimate of cost efficiency express

above.

Chapter 7 of this thesis is concerned with predicting inefficiency from cross sectional

stochastic frontier models. As such the detailed discussion of the properties of the

predictor in (3.9) is discussed in that chapter. The following extract however

summarises the key issue:

“Point predictors for firm inefficiency are common in the literature and follow the

11 This problem is further complicated by the fact that i and the variance components of iv

and iu are not known with certainty. Instead only estimates of these quantities are available.

This is issue is returned to in Chapter 7 in terms of computing uncertainty around
inefficiency predictions which incorporate uncertainty from parameter estimation.
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methodology of Jondrow et al (1982). However in cross sectional models, these

point predictors are known to be inconsistent [as the sample size increases] for the

quantity of interest; namely the firm specific realisation of a random variable. The

question then arises; how precise is the prediction of firm inefficiency? With this in

mind, and the general desire of practitioners to understand uncertainty in their

estimates, it is perhaps surprising that interval predictors are not commonly

reported in the empirical literature.” (This Thesis, p.202)

3.4.1. Alternative methods to incorporate cost efficiency

As described in section 3.3, the stochastic frontier model (3.7) is the true

econometric counterpart to the economic model which includes firm inefficiency

(3.6). However it is not without limitations particularly when estimated using cross

sectional data (3.8). These include:

 The inconsistency of the prediction of cost efficiency for the quantity of

interest (the actual level of firm inefficiency as opposed to the expectation of

its distribution).

 The potentially arbitrary distributional assumptions on the error components

It is therefore considered reasonable to examine other approaches to predict the cost

efficiency of firms.

There are two general sets of methods used to analyse the efficiency and productivity

of decision making units (DMUs); those that utilise econometric estimation of

parametric functions, termed parametric methods, and those that do not, termed non-
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parametric methods (Coelli et al, 2005). Subsequent to the release of this text book, a

further class of ‘semi-parametric’ models have emerged which blur the distinction.

However in this section the distinction is maintained. Semi-parametric models for

panel data methods are reviewed in section 3.512. Furthermore, ‘efficiency methods’

refer to methods to measure cost (or technical and allocative) efficiency rather than

scale characteristics (also known as scale efficiency). Parametric and non-parametric

methods are reviewed briefly below.

3.4.1.1.Parametric Methods

The parametric methods, alongside the stochastic frontier model, include restrictions

of the stochastic frontier model in (3.5). Essentially, this involves assuming away

one of the error components comprising i ; eliminating iv produces a deterministic

frontier whilst eliminating iu ignores inefficiency.

Clearly, the latter model is simply the standard regression model and so it can be

consistently estimated by OLS given the usual assumption that regressors are

exogenous with respect to the error,   0iivXE . However no measure of firm

inefficiency can be computed from this model; by assumption there is no

inefficiency.

Given the failure of standard least squares techniques to account for firm

12 The semi-parametric models in section 3.5 are only a sub-set of those in this wider
literature. In particular in the semi-parametric models in section 3.5, the deterministic
frontier is fully parametric while the error is not. However there are other models where the
errors are fully parametric but the deterministic frontier is non-parametric e.g. Stochastic
Non-smooth Envelopment of Data (StoNED) (Kuosmanen and Kortelainen, 2012).
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inefficiency, one method to correct for this is to re-interpret the residual in the

regression as firm inefficiency rather than statistical noise. Thus all errors are

assumed to be positive and using the notation in (3.8), the following model is

considered:

   iiii uCC  βpy ;,lnln Ni ,...,1 (3.10)

Estimation can be undertaken by ‘shifting’ the estimated OLS regression line down

(in the case of a cost function). There are several techniques to do this. One such is

Corrected Ordinary Least Squares (COLS). Shifting of the OLS line can be traced

back to Winsten in his discussion contribution to Farrell (1957). Greene (1980)

discusses the statistical properties of the estimators resulting from this shift.

COLS utilises the estimates of the slope coefficients from ordinary least squares but

determines the intercept ( 1 ) coefficient as the ordinary least squares estimate plus

the minimum residual in the case of a cost function. That is

  iˆmin i
OLS
1

COLS
1  (3.11)

This is illustrated in Figure 3.1 which shows estimation of a cost function using OLS

and then using COLS with respect to one output (all other things equal). The OLS

line has been shifted down by the distance of the lowest residual. Thus the COLS

line is now a frontier since all points are on or above the line.
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Figure 3.1 The Corrected Ordinary Least Squares Method – Cost function

Source: Own analysis for illustration purposes

While this and other deterministic frontier techniques do improve on standard least

squares methods by explicitly recognising firm inefficiency, they do so at the cost of

assuming away any legitimate statistical noise. It should be noted that (3.10) is the

original economic model and not an econometric model in the conventional sense

since it does not allow for noise. Thus all deviations from the actual and fitted level

of cost. are attributed to firm inefficiency as opposed to other sources such as

measurement error and factors outside the firm’s control not captured in the

regression equation by the explanatory variables.

In addition, these techniques tend to be very susceptible to outlying values. An

anomalous observation may appear very efficient relative to other firms, while, in
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fact, this value was subject to substantial measurement error. Thus other firms will

have low efficiency scores due to the presence of the single outlier. In regulatory

uses, regulators have often calculated efficiency scores relative to a frontier which

has been shifted to the 75th percentile residual rather than the minimum (or

maximum) (see Smith, Wheat and Nixon (2008) for an example).

3.4.1.2.Non-parametric methods

The non-parametric models are index number models and can be broken down into

two streams:

 Total Factor Productivity (TFP) Measures which compute the ratio of inputs

to outputs using an appropriate set of weights. This is used to calculate

changes in TFP, but does not distinguish between the three drivers of TFP;

efficiency change, technical change and scale effects; and

 Data Envelopment Analysis (DEA) techniques which use mathematical

programming techniques to determine a frontier and calculate the distance

of firms from the frontier allowing computation of the relative efficiency of

firms.

Total Factor Productivity (TFP) Index Methods

Index number methods are concerned with measuring firm productivity and have

been historically applied to aggregate time series data (Coelli et al, 2005 p. 6). An

index number is defined as “a real number that measures changes in a set of related

variables” (Coelli et al, 2005, p. 86, emphasis added). Essentially, index numbers are
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a method of summarising changes in a variety of variables via a method of

aggregation justifiable either from theory or empirical observation. Productivity is

the ratio of outputs to inputs. However, since a firm often produces several outputs

and/or with several inputs, it is necessary to aggregate outputs and/or inputs using a

set of appropriate weights. The weights that are used are likely to have a major effect

on the results of any application. Index numbers are not considered further since the

focus of this review is efficiency measurement. However, it should be noted that

some index weighting systems have been shown to theoretically represent

productivity growth given a set of assumptions regarding the underlying technology.

See Coelli et al (2005, chapter 4) for a thorough treatment.

Data Envelopment Analysis

A method of accounting for firm inefficiency is using data envelopment analysis

(DEA). This is a non-parametric technique in the sense that no parameters of a

function are estimated. Instead mathematical programming is used to envelop the

data and in particular determine which observations are on the frontier and which are

not. Farrell (1957) was the first to propose the idea of enveloping data using a

piecewise linear-hull i.e. a multi-dimension frontier, however it was not until

Charnes, Cooper and Rhodes (CCR) (1978) proposed the first methodology termed

DEA for the constant returns to scale case.

CCR proposed an input orientated method which can be represented as:

 ,/'max v,u ii xv'qu
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st ,1'' jj xvqu N,...,2,1j  (3.12)

0vu ,

where iq and ix are Mx1 and Nx1 vectors of outputs and inputs respectively for the

ith firm and u and v are corresponding Mx1 and Nx1 vectors of output and inputs

weights. This formulation can be interpreted as the objective is to maximise the

efficiency measure of firm i by choosing output and input weights subject to all

efficiency measures for all the N firms calculated using the same output and input

weights are less than 1 and all weights should be greater or equal to 1.

 ii xv'qu /' is interpreted as an efficiency measure (as opposed to simply a TFP

measure) since this measure has to be between 0 and 1 and because it is calculated

relative to other firms. That is, all firms are constrained to have efficiency measures

between 0 and 1 with the same set of weights. The assumption of constant returns to

scale means that firm i can be compared to all other firms even if the scale of

production of some other firms is substantially different, since the ratio of efficient

input to output is invariant with scale.

This problem has to be solved for each of the N firms (each will potentially have

different weights). In order to get a unique solution, ixv' is set equal to 1.

DEA has a similar limitation as the COLS method since it does not explicitly allow

for statistical noise in the data. Instead, a set of linear programming problems are

solved for each firm and for each time period which determines whether, in relation

to other firms, the firm is on the frontier. This forms a frontier which is piecewise
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linear.

A big advantage of DEA over parametric techniques is that there is no need to

specify a functional form for the cost, production etc. relationship under

consideration. Only a relatively weak assumption that the frontier can be represented

by a piece-wise-linear convex hull is required. Models have been proposed which

assume both constant and variable returns to scale. DEA is attractive to regulators

because it allows each firm to have independent input and output weights which in

turn mean the firm has a high chance of being efficient.

Finally, it should be noted that efficiency measures are computed rather than

estimated in DEA, so that no standard errors and thus no confidence intervals can be

constructed for them. Because of this, while measures of efficiency can be

constructed, the likely reliability of such measures can not be determined13.

3.5. Panel Stochastic Frontier Efficiency methods

In this section of the literature review, efficiency models which utilise panel data are

considered. This is important given that Chapter 6 applies both fully parametric and

semi parametric (to be defined below) methods to a multi-level dataset.

The econometric model considered is as in (3.7) but with amended subscripts to

denote the two dimensions of panel data:

13 It is noted that in recent years there has been considerable research to formulate a
statistical foundation for DEA (see for example Daraio and Simar, 2007). This is very
advanced material and beyond the scope of this review.
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itititit vuXfC  );(0  (3.13)

where i=1,…,N, t=1,…,T and itX comprises k regressors.

While Schmidt and Sickles (1984) were not the first to develop panel data variants of

models (for example Pitt and Lee (1981) proposed a time invariant efficiency model

estimated by maximum likelihood methods), they were the first to articulate the

principal benefits of panel data. These are threefold.

Firstly, the prediction of firm inefficiency is consistent, unlike in the cross sectional

case (see 3.4 and Chapter 7). As the time period under consideration increases, so the

probability that the prediction of firm inefficiency is an arbitrary distance from the

true value tends to zero.

Secondly, it is possible to allow for correlation between explanatory factors and the

inefficiency error component. This can be done by utilising a fixed effects approach

(or some instrumental variables variant) (Schmidt and Sickles, 1984), or in the case

of ML estimated models, incorporate these effects directly into the mean (or

variance) of the inefficiency term (for example Haug and Liu, 1994 and Battese and

Coelli, 1995).

Thirdly, there is a more general problem with the required distributional assumptions

necessary in cross sectional analysis. Specific distributions have to be assumed for

the two error components. Schmidt and Sickles (1984) make two points regarding

this. First, they state that these assumptions have not been shown to be robust in
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terms of the sensitivity of results. Since their paper, there have been several studies

which show, in general, that the results are not sensitive to the distributional

assumptions. For example Greene (1990) found rank correlations between 0.747 and

0.980 when examining efficiency scores from the half-normal, truncated-normal,

exponential and gamma distributions using a cross section of 123 US electric

utilities.

Schmidt and Sickles’ second point is perhaps more troubling, namely that skewness

in the residuals is interpreted as inefficiency. All the distributional forms compared

in the literature (normal-half normal, normal-truncated normal, normal-gamma)

imply the same sign skewness. However there is no reason for suspecting that

inefficiency would imply such skewness; all that is required is that the inefficiency

distribution is one-sided. Indeed, other distributions can yield the opposite sign

skewness (e.g. normal-doubly truncated normal (Qian and Sickles, 2007)) and

further, the shape of these alternative distributions have some economic justification,

for example, the doubly truncated normal mentioned above is motivated by an upper

limit of inefficiency tolerated in a market (above this level the cost conditions force

exit from the market). See Almanidis and Sickles (2010) for a further discussion.

Considering panel data allows either precise distributional assumptions to be

eliminated altogether (for example, by adopting a panel data least squares approach)

or their effect to diminish since an assumption is made regarding the behaviour of

inefficiency over time as well as a specific distributional form. As Schmidt and

Sickles (1984) articulate “essentially, evidence of inefficiency can be found in

constancy over time as well as in skewness” (p. 367).



66

Time invariant models are first discussed and then time-varying models are

considered.

3.5.1. Extension of the simple cross section model to time invariant

models

Schmidt and Sickles proposed four time invariant formulations of the stochastic

frontier model. In a time invariant model, inefficiency is assumed to vary across

firms but is the same for all years for a given firm. The methods proposed (by

Schmidt and Sickles, 1984) were the fixed effects model, generalised least squares

random effects model, maximum likelihood formation of the random effects model

(normal-half-normal model) and Hausman-Taylor instrumental variables (IV)

estimation.

The basic time invariant model can be expressed (where the dependent variable is in

logs) as:

itiitit vuXfC  )β;(α0 (3.14)

where all variables are defined as in (3.13) except iu which is time invariant but firm

variant.

There are several possible distributional assumptions on iu and itv which yield

different econometric models put forward in the literature.
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3.5.1.1.Semi-parametric models

The first set of models are semi-parametric in the sense of the terminology of Sickles

(2005) and the discussion in sub-section 3.2.2. In these specifications no specific

distributions are imposed on either error terms, only assumptions on a set of

moments of each error term and the regessors. Schmidt and Sickles (1984) outlined

two possible specifications. First there is the fixed effects specification, where the iu

are assumed fixed parameters to be estimated.. The model can be written as:

  ititiit vXfC  β;α (3.15)

where ii u 0αα

Once the model has been estimated the iu can be recovered by assuming one firm in

sample is totally efficient. In the case of a cost function (considered in the notation

here), 0i ˆ)ˆmin(  i.e. all other firm intercepts have to be equal or greater to this,

since they are either as or more inefficient than this firm.14

There are two important limitations of this model. Firstly, regressors cannot be time

invariant. This is because it will be perfectly correlated with the fixed effect which

will result in a singular regressor matrix. Secondly, because firm intercepts are fixed

there is no potential to forecast hypothetical future firms. However, given the context

14 Note that for a production function ii u 0αα and so   0i ˆˆmax  .
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of regulation, this seems less of a concern15. Therefore firm specific inefficiency can

be calculated as:

)ˆmin(ˆû iii  (3.16)

An alternative specification is to assume that iu is a random effect. To keep this

specification semi-parametric this model is estimated using generalized least squares

just like any random effect panel data model (see Greene (2012) for the details of the

method). The following is estimated:

  ititit XfC εβ;  (3.17)

where iitit v αε  and ii u 0αα i=1,…,N

Following estimation, firm specific estimates of iα are recovered as the mean of the

firm specific residuals:





iT

t
iti

1

ε̂α̂ where iT is the number of time periods observed for firm i and relative

inefficiency is calculated as in (3.16). Efficiency can then be computed using the

standard transformation for models with log dependent variables given in (2.9).

It is required to assume that the regressors are uncorrelated with both error

15 In regulatory contexts, the firms from year to year tend to be the same and the primary
interest is not to use the model to forecast performance of new firms



69

components16 in order to yield unbiased and consistent parameter estimates. If this

assumption holds, random effects yields more efficient parameter estimates than

fixed effects. This approach can also accommodate time invariant regressors since

coefficients are estimated using a weighting of the within estimator (fixed effects

estimator) which sweeps out these regressors and the between estimator, which

allows identification of these parameters separate to the time invariant firm effect.

The assumption of regressors being uncorrelated with errors can be tested using the

Hausman test (Hausman, 1978 and Hausman and Taylor, 1981).

Finally for the semi parametric models, there exists a set of estimators which are

more efficient than fixed effects should some, but not all, regressors be correlated

with the firm effects. These estimators were proposed by Hausman and Taylor

(1981). Hausman and Taylor showed that under certain conditions, an estimator

could be found which is more efficient than the fixed effects estimator and

importantly could accommodate time invariant regressors. In general, provided the

number of time varying regressors that are uncorrelated with the firm effects is at

least as great as the number of time invariant regressors that are correlated with the

firm effects, then a Hausman Taylor estimator exists. These estimators are called

instrumental variables estimators as they use regressors which are uncorrelated with

the firm effects as instruments for the regressors that are correlated with the firm

effects.

16 In the fixed effects there needs to be only no correlation between regressors and random
noise as the inefficiency term is itself a regressor
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3.5.1.2.Parametric Models

An alternative means of estimating the random effects model is to assume specific

distributions on the two error components. The model is now given directly by

(3.14). In this case the model is referred to as parametric and note that iu represents

absolute inefficiency rather than relative inefficiency. This is because here, iu is

modelled explicitly and is drawn from a distribution of possible iu . This is unlike in

the semi-parametric models where the firm effect, iα is modelled explicitly (either

drawn from a population distribution or assumed fixed) and then iu is computed

from this by setting the firm with least iα equal to zero inefficiency (in the case of a

cost model).

It is common to assume a normal distribution with zero mean for the itv error term

(Kumbhakar and Lovell, 2000). For the one sided term, iu , distributions that have

been applied include the half-normal (Pitt and Lee, 1981), truncated normal (Battese

and Coelli, 1992), exponential (Econometric Software, 2010a) and gamma

(Econometric Software, 2010a).

These models are generally estimated by maximum likelihood estimation although

they can be estimated using Bayesian techniques17 (see Greene, 2008 for a review).

For the purpose of this review and thesis the focus is on estimation by maximum

likelihood as this has received the most attention in the applied literature. The

17 The Bayesian approach is not considered further as it has not been widely used in the
applied literature. It is noted that this is a growing area of the theoretical literature in this
field.
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likelihood functions for the models are relatively easy to derive given the

independence assumptions between error components and between the error

components and the regressors. The likelihood function for the half normal model

was first derived by Pitt and Lee (1981) and generalised to the unbalanced panel by

Battese and Coelli (1988) who also extended it to the more general truncated normal

model in which the half-normal is nested.

If the distributional assumptions are valid, then the parametric approach yields more

efficient estimates of parameters and efficiency scores than the semi-parametric

models because they utilise the extra information about the precise distribution of the

error. If, however, the distributional assumption is invalid, then estimates are likely

to be inconsistent and biased. See the earlier discussion (p. 69) regarding the

sensitivity of model results to distributional assumptions.

3.5.2. Time varying inefficiency models

All the models considered in the above section assume that inefficiency is time

invariant. As the length of the panel (the size of T) increases, this becomes an

increasingly untenable assumption. This maybe for a number of reasons:

1) The average efficiency of all firms may change over time – all efficiency

scores are scaled over time, all firm rankings stay the same;

2) Some firms ‘catch-up’ with others compared to which they were previously

less efficient – efficiency scores change proportionally more or less for each

firm but rankings stay constant;

3) Firms overtake each other in terms of relative performance – efficiency
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scores vary differently for each firm and so rankings can change

In ascending order, these reasons require more flexible modelling approaches. The

requirement for a model to address either 1, 2 or 3 will depend on the length of the

panel since the longer a firm is observed the more likely it is to have radically

changed performance.

3.5.2.1.Semi-parametric models

The essential problem for a semi-parametric model is that there can never be enough

observations to identify T x N firm and time specific parameters and identify the k

parameters involved in the deterministic frontier. As such some structure has to be

imposed on the model to ensure identification (Kumbhakar and Lovell, 2000 p. 108).

Two semi-parametric approaches are considered. Firstly, there are the methods

proposed by Cornwell, Schmidt and Sickles (1990) which achieve identification by

specifying a deterministic function of efficiency change for each firm. Secondly,

consideration is given to the method of Lee and Schmidt (1993) which does not put

such a ridged parametric function on the path of inefficiency over time but at the cost

of defining the same path for all firms.

Cornwell, Schmidt and Sickles (1990) extended the fixed and random effects model

to the case where in (3.15), iα is replaced with some parametric function of time,

with the following suggested:
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2
321α tt iiiit  (3.18)

It should be noted that this model accommodates all of the three reasons for adopting

a time varying efficiency approach. Relative firm scores and rankings can change

from year-to year and this variation is in a systematic (deterministic) way. This is

because the  parameters vary from firm to firm. The problem is that there are now

N x 3 firm specific parameters to estimate as well as the parameters required to fit

the deterministic frontier. This presents two potential problems. First, there may not

be sufficient observations to even identify all the parameters. For such a complex

specification T must be greater or equal to 4 for the estimators to be computed.

Second, even if estimation can proceed, the resulting parameter estimates may have

large variances reflecting the large numbers of parameters required to be estimated.

This model is either estimated by fixed or random effects. For the fixed effects, the

most simple case is to estimate the model directly by substituting the expression for

itα directly into (3.15). Efficiency is again a relative concept; now measured relative

to the best performing firm in a given year. For each year, efficiency for firm i is

computed as:

 ittititu αminα  (3.19)

This presents an interesting possibility. While the path of itα is smooth for each

firm, the path of itu may not be smooth over time because different firms may define

the frontier at different points in time.
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A further semi-parametric model was proposed by Lee and Schmidt (1993). This

method differs from those imposed by Cornwell, Schmidt and Sickles (1990)

because, unlike Cornwell, Schmidt and Sickles they do not impose a smooth

function of efficiency change for firms. They trade this for the constraint of having

to impose the same path of efficiency change on all firms. As such, this method can

be seen as incorporating the reasons outlined in point 2) but not in point 3) above

i.e., the method allows for all firms efficiency to change over time and for a degree

of catch-up between firms. However the rankings of firms will not change over time.

The general form of the model is the same as in (3.14), however iu is substituted

with:

  iit utu  α (3.20)

where  tα is a set of time dummy variables and iu is defined as before. Importantly,

 tα does not restrict the temporal pattern of inefficiency to any parametric form, but

does apply the same path for all firms. It should be noted that there are T-1

parameters to estimate contained in  tα rather than T since one parameter has to be

fixed (usually set  1α =1) to identify iu . Note also if  tα =1 for all t, then the model

collapses to the time invariant panel model. Lee and Schmidt (1993) consider the iu

to be both fixed and random effects and the  tα to be parameters. Notwithstanding,

all these models are non-linear models which complicates estimation.

Once the model has been estimated, the inefficiency estimates are recovered as:
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   it
i

itit uuu ˆˆminˆˆ   (3.21)

Thus firm efficiency in time t is relative to the best performing firm in time t.

It is important to note that because semi-parametric models yield estimates of

relative efficiency, it is not possible to disentangle the effects of technical change

(movement of the frontier) and movement of the firm which is most efficient, as by

definition of relative efficiency, they are on the frontier. So, unlike in the case of the

time invariant model, where the distinction between absolute and relative efficiency

would seem academic, it matters here in terms of practical output. Indeed, the

assumption of time invariant efficiency is sufficient to identify the technical change.

To illustrate this further consider the restricted case of (3.18) discussed in

Kumbhakar and Lovell (2000, p. 109) where 22  i and 33  i , that is there is

one trend over time for all firms although each firm can have a different starting

value at T=0, i1 . In this case, the lack of identification between the most efficient

firms absolute efficiency and technical change yields two extreme interpretations.

Firstly, all firms improve (or worsen) efficiency over time as dictated by the

relationship for itα . In this case there is no technical change over the period by

implication of the assumption. The second extreme interpretation is that inefficiency

is time invariant and the time varying nature of performance is due to the movement

of the frontier over time. Obviously there exists an infinite number of points between

these extremes. Essentially further information is required in order to identify the
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two effects. In the case of the parametric model, this further information is given by

specifying a population distribution for inefficiency.

3.5.2.2.Parametric models

Pitt and Lee (1981) identified two extremes of efficiency variation over time. The

first is that there is no inefficiency variation across time i.e. inefficiency is time

invariant. These models have been examined in detail in section 3.5.1. The other

extreme is that inefficiency is independent across time. In this case a firm which was

deemed very inefficient in the previous time period is no more likely to be very

inefficient in the subsequent time period than any other firm; that is there is no

correlation between efficiency scores across time. This may be unrealistic and a

detriment to regulators (which want to use efficiency analysis to set efficiency

targets for firms given past trends). However, it is noted that most empirical studies

do report such models and also that some of the models proposed to deal with

unobserved heterogeneity, treat inefficiency in such a way. Therefore this model (the

pooled model) is discussed briefly in the following paragraphs.

This model is exactly the same as the cross section parametric models considered in

the previous section (3.4), because the firm and time dimensions of the data are

treated as one set of observations rather than explicit recognition of the panel nature

of the data; the data could be thought of as a cross section with N x T observations.

As such the model is often referred to as a pooled stochastic frontier model. The

form of the model, assuming a normal-half normal composite error, is given below:
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itititit vuXfC  )β;(α0 (3.22)

where all variables are as defined in equation (3.14) except  2σ,0~ uit Nu  and is

distributed independently of itv and the regressors.

Being ultimately a large cross section model, this has the disadvantage of this class

of models namely the lack of consistent prediction of the firm specific realisation of

the inefficiency term. Only the conditional distribution of the inefficiency term can

be derived and any summary measure of this distribution is not a consistent estimator

of firm inefficiency as either N or T is increased (as effectively the cross section is

just expanding).

Pitt and Lee (1981) also identified an intermediate case where the inefficiency scores

for a firm are correlated over time. They proposed a model using a Seemingly

Unrelated Regression (SUR) procedure (proposed by Zellner (1962) and discussed in

sub-section 3.2.1); however this is not considered further here as it had the major

flaw of not being able to yield firm specific estimates of inefficiency18.

It was not until work by Kumbhakar (1990) and Battese and Coelli (1992), when

parametric time varying models were proposed, that could importanty yield firm

specific estimates of inefficiency. The general formulation of these models is:

18 Indeed Pitt and Lee acknowledged this and proceeded to estimate the model in order to
determine ‘how wrong’ the other two models were.
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itititit vuXfC  )β;(α0 (3.23)

where iit utfu  )( and all other variables and parameters are defined as in (3.14),

including the independence of iu with respect to itv and the regressors. In the

Kumbhakar specification:

   12ttexp1)t(f


 (3.24)

and in the Battese and Coelli (1992) specification:

  Tttf  γexp)( (a) or     2
TtTt1)t(f  (b) (3.25)

These models incorporate reasons 1 and 2 for time varying efficiency (given on page

71), but do not allow for firms to overtake/fall behind each other. This is because the

same pattern of time variation is imposed on all firms. They do allow for catch-up

between firms and the Kumbhakar and the (b) specification by Battese and Coelli

(3.25) allow for a single turning point in the path of inefficiency for each firm over

time. The Battese and Coelli models ‘anchors’ the itu such that iiT uu  ; i.e. the

inefficiency in the last year is equal to the random draw from the distribution. The

Kumbhakar model does not make such an anchor and so iu does not have this

interpretation in this model.

These models can be thought of as analogous to the Cornwell, Schmidt and Sickles
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(1990) models with the constraint of 22  i and 33  i
19. The major

difference is that now there is not ambiguity between whether this trend is the result

of technical change or changes in inefficiency. Because inefficiency is now absolute,

the impact of technical change can be modelled separately.

These models were further generalised by Cuesta (2000) and Orea and Kumbhakar

(2004) to allow for firm specific time variation paths, incorporating reason 3 for

generalising models to time varying inefficiency.

3.5.3. Accounting for unobserved heterogeneity

Time invariant unobserved heterogeneity is a term used in panel data modelling to

describe systematic differences across firms which are constant over time but are not

captured by the explanatory variables (regressors). There are many features of

railways that are difficult to quantify, are constant over time and explain costs.

Examples include the topography and climate in which the railway operates. These

omitted factors form unobserved heterogeneity.

Unobserved heterogeneity can further be disaggregated to that which is correlated

with the regressors and that which is not. Unobserved heterogeneity may be

correlated with regressors if, for example, a variable such as proportion of track

electrified is omitted in an infrastructure cost frontier but this is correlated with

19 Or 22  i and 03  i in the case of the first Battese and Coelli specification. It is

not strictly true since the parametric models adopt an exponential functional form, while the
Cornwell, Schmidt and Sickles models adopt a linear form. However one is still a monotonic
transformation of the other, so properties such as turning points remain.
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passenger usage (as is often the case – greater used lines get electrified). The

implication of ignoring this is that the parameter estimates are biased, which in turn

distorts inefficiency predictions.

Alternatively, failure to account for unobserved heterogeneity which is not correlated

with the regressors does not (at least in linear models) bias parameter estimates.

However, it does mean that all systematic residual differences between firms are

attributed to inefficiency rather than between the two factors. Thus, for efficiency

analysis, accounting for both types of unobserved heterogeneity (i.e. time invariant

inefficiency and other unobserved heterogeneity) is important.

In recent years, incorporating allowances for unobserved heterogeneity in stochastic

frontier models has become a popular topic of research. There are four approaches to

modelling unobserved heterogeneity in stochastic frontier models:

1) Ignore unobserved heterogeneity in the modelling. This is the case in all of

the models considered in section 3.5 to this point. While simple to

operationalize, this does imply that either there is no unobserved

heterogeneity in the model other than inefficiency or that the effect of

unobserved heterogeneity will show up in the parameter estimates and/or in

the inefficiency error. This maybe especially problematic in the models that

assume time invariant inefficiency, since this is likely to capture other time

invariant unobserved heterogeneity.

2) Adopt a ‘True’ formulation. The terms ‘True Fixed Effects’ and ‘True

Random Effects’ models originate in Greene (2005), but similar models can

be traced back to work by Kumbhakar and associates in the 1990’s
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(Kumbhakar and Hjalmarsson, 1995, Kumbhakar and Heshmati, 1995,

Kumbhakar, 1991 and Heshmati and Kumbhakar, 1994). The form of the

models is as the simple pooled model (3.22) but with the addition of a time

invariant firm effect:

itititiit vuXfC  );(  (3.26)

where i is either treated as a random variable, uncorrelated with regressors,

or as a fixed effect. In the model by Greene, i captures time invariant

unobserved heterogeneity. The term ‘True’ could be taken to imply an

attractive property of the model, namely that it is correct in all cases. This is

not the case and was articulated in the papers by Kumbhakar and associates

in the early 1990s. In some papers (Kumbhakar, 1991 and Heshmati and

Kumbhakar, 1994) i is also representative of time invariant unobserved

heterogeneity but in other papers (Kumbhakar and Hjalmarsson, 1995 and

Kumbhakar and Heshmati, 1995), i is taken to represent time invariant

inefficiency. In reality i will represent some element of time invariant

inefficiency and some element of other unobserved heterogeneity. This is to

be expected, since the model in (3.26) has the time varying inefficiency

component ( itu ) that is independent over time, i.e. by assumption there is no

element of inefficiency captured by this component which is persistent over

time. In Chapter 6, the model (3.26) is applied to multi-level ‘sub-company’

data with the persistent and residual interpretation in line with Kumbhakar

and Hjalmarsson (1995) and Kumbhakar and Heshmati (1995). The issue of
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the alternative interpretation, al la Greene (2005), is discussed in the chapter

but also in the further work section of the conclusion.

3) Adopt the model proposed by Kumbhakar et al (2012). This comprises the

following:

itiititiit vwuXfC  );(  (3.27)

where  2,0~ uit Nu  ,  2,0~ wi Nw  ,  2,0~ vit Nv  and  2,0~ wi Nw  and

all error components uncorrelated with itX and all error components

independent from each other.

Kumbhakar et al, propose a three stage approach to estimate this model. This

model appears to solve all problems, in the sense that time invariant

inefficiency ( iw ) is distinguished from other time invariant inefficiency ( i ).

However, this model suffers from a number of arbitrary assumptions. Firstly

it is only valid if the precise distributional assumptions are correct (as in the

cross sectional discussion). Secondly, and perhaps more fundamental,

inefficiency is viewed as comprising a time invariant component and a time

independent component. This must be questioned in long panels, in the sense

that inefficiency evolves over time rather than being persistent with random

variation around such a level.

4) Use the Mundlak transformation (Mundlak, 1978) to account for unobserved

heterogeneity which is correlated with regressors. This is explained in more

detail in Chapter 6, but essentially requires the addition of firm group means

to the model equation. This should eliminate (or at least reduce) any bias to

parameter estimates resulting from unobserved heterogeneity. Importantly
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this results in the correct capture of that part of variation in cost between

firms that is uncorrelated with the regressors (which depending on whether

approach 3 is adopted, is either interpreted as inefficiency or further

decomposed into a mixture of inefficiency and unobserved heterogeneity).

3.6. Summary

This literature review has provided the econometric background for this thesis. It has

covered both general econometric concepts, including properties of estimators and

estimation frameworks, as well as commonly adopted methods to measure the

efficiency of firms. The former material serves as background for Chapters 5 to 7,

but is of particular value to Chapters 6 and 7. Chapter 6 considers methods to

estimate various formulations of a dual level inefficiency model and Chapter 7

considers the statistical interpretation of intervals for firm specific efficiency

predictions from stochastic frontier models. The thesis utilises both least squares

estimation techniques (Chapters 5 and 6) and maximum likelihood techniques

(Chapters 6 and 7).

The econometric literature dealing with efficiency measurement has matured

considerably following the early work by Farrell (1957) and the seminal papers on

stochastic frontier analysis in 1977. There are now a large number of econometric

techniques to investigate and measure firm efficiency, especially when panel data is

available. The key feature of this economic issue that warrants such a dedicated

review of applicable econometric techniques is that the component of the model of

interest, inefficiency, is commonly modelled as a random variable, which means that
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understanding and measuring the residuals of the model is key (Greene, 2008).

If panel data is available then inefficiency can be better disentangled from random

noise. However, there is a trade-off between the need to impose restrictions on the

model and to obtain relatively precise estimates of firm inefficiency, versus allowing

the data to speak and determine the most appropriate form.

Crucially, there is also a need to appraise what exactly is being measured in terms of

the inefficiency gap. Different models impose different assumptions which require

different interpretations as to what the inefficiency error term is actually measuring.

Clearly the (appropriate) incorporation of external influences on firms and their

performance helps to illuminate this, but caution still needs to be taken in simply

interpreting any net inefficiency as something within the firm’s control. Ultimately

inefficiency is modelled as a residual and so is something unexplained by the model.
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4. Review of Applications to Railways

4.1. Introduction

In this chapter, the relevant literature relating to the application of cost analysis to

railways is briefly surveyed. Most of the work prior to the last two decades, has been

applied to vertically integrated railways. This work is examined from the perspective

of highlighting methodological issues rather than focusing on the specific results

Some work has been developed in the infrastructure element of railways, starting

from the need to provide a marginal cost basis for charging for access to the

infrastructure. However, there has over the last decade been a set of analyses focused

on measuring the relative efficiencies of infrastructure managers. Both elements are

reviewed.

Much less work has been undertaken regarding passenger train operations and the

vast majority of this work has been applied to Britain where franchising of passenger

train operations has been most comprehensively implemented within the EU and

there exists a reasonable amount of data for analysis. This is developed further in

Chapter 5.

4.2. Vertically integrated railways

In this section, the key features and results of cost and efficiency studies in vertically

integrated railways are reviewed. This part of the review uses Oum et al (1999) as
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the basis for the studies considered but updates it to the present day. Partial and total

productivity studies are ignored because they do not deal explicitly with inefficiency

as defined in Chapter 2. Furthermore, the studies that have utilised programming

techniques are not surveyed. While these studies are aimed at measuring

inefficiency, their non-parametric nature means that there is little to be learned in

terms of key features applicable to parametric studies which is not covered in the

parametric literature. The reader is directed to Oum et al (1999) for a survey of these

studies. In addition it is noted that the most recent literature on vertically integrated

railways utilise linear programming to study the impact of railway reforms

(Growitsch and Wetzel (2009), Asmild et al (2009), Cantos et al (2010)).

There have been a number of innovative methods used to study the performance of

railways. Table 4.1 summarises the key studies and states what function was

estimated and the key inputs and outputs used. In the remainder of this section, the

key advances in the methodology associated with econometric analysis of railway

performance are surveyed.

Table 4.1 Summary of the characteristics of parametric cost studies in railways

Study Sample Function
estimated

Inputs or
prices used

Outputs used

Andrikopoulos
and Loizides
(1998)

1969-1993.
European rail
companies.

Translog cost function.
Returns to scale and
productivity studied
but not explicit
allowance for
inefficiency

Total cost.
Includes capital
costs (historic
cost depreciation
+ interest).

Sum of passenger km
and freight tonne km.

Christopolous,
Loizides and
Tsionas (2000)

1969-1992
European rail
companies

Input specific
technical inefficiency
via Generalized
McFadden cost
function

Total cost.
Includes capital
costs (historic
cost depreciation
+ interest).

Total train km.

Coelli and
Perelman
(1999)

1988-1983.
European rail
companies.

Deterministic
production function

Number of
employees.
Rolling stock
capacity.

Passenger km.
Freight tonne km.
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Study Sample Function
estimated

Inputs or
prices used

Outputs used

Route kilometres.

Coelli and
Perelman
(2000)

1988-1983.
European rail
companies.

Deterministic
production and input
and output distance
functions

Number of
employees.
Rolling stock
capacity.
Route kilometres.

Passenger km.
Freight tonne km.

Couto and
Graham (2008)

1972-1999 27
European
railway
companies

Short-run variable cost
function with first
order cost shares to
separate out technical
and allocative
inefficiency

Input prices for
labour, service
rendered by third
parties, equipment
(variable inputs)
and measure of
capital stock.
Also some
network
characteristic
variables.

Two models:
1) Passenger-km and
freight tonne-km (final
outputs)
2) passenger train-km
and freight train-km
(intermediate outputs)

Cowie and
Riddington
(1996)

1992.
European rail
companies.

Deterministic
production functions

Number of
employees.
Capital (financial
measure).

Passenger train km.
Service provision index.

Deprins and
Simar (1989)

1970-1983.
Europe + Japan
rail companies.

Deterministic
Production Function

Number of
employees.
Number of
coaches / wagons.
Energy
consumption.
Route kilometres.

Total train km.

Farsi, Filippini
and Greene
(2005a)

50 railway
companies in
Switzerland
1985-1997

Various stochastic
total cost frontier
specifications
examining the effect of
controlling for time
invariant
characteristics

Input prices:
Energy labour and
capital

Passenger-km and
freight ton-km

Gathon and
Perelman
(1992)

1961-1988.
European rail
companies.

Stochastic Factor
Requirement function

Number of
employees.

Passenger train km.
Freight train km.
Route km.

Gathon and
Pestieau (1995)

1961-1988.
European rail
companies.

Stochastic Production
function (also second
stage regression)

Number of
employees.
Number of rolling
stocks.
Route kilometres.

Sum of passenger tonne
km and freight tonne km.

Ivaldi and
McCullough
(2001)

25 US Class 1
Railroads 1978-
1997

Translog Variable
Cost Function

Prices: Indexes of
labour,
equipment, fuel
and materials

Car miles of a) Bulk, b)
high-value, c) general
traffic and replacement
of ties installed
(infrastructure output)
and also average length
of Haul and length of
road miles

Kumbhakar
(1988a)

13 US Class 1
Railroads 1951-
1975

Cobb-Douglas
Stochastic distance
function with demand
system to separate out
technical and
allocative inefficiency

Quantities of
labour, energy
and capital

Passenger-km and
Freight tonne-km
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Study Sample Function
estimated

Inputs or
prices used

Outputs used

Kumbhakar
(1988b)

42 US Class 1
Railroads 1951-
1975

Stochastic distance
function with demand
system to separate out
technical and
allocative inefficiency

Quantities of
labour, energy
and capital

Passenger-km and
Freight tonne-km

Kumbhakar,
Orea,
Rodriguez-
Alvarez and
Tsionas (2007)

1971-1994.
Europe rail
companies

Output and Input
distance function in a
latent class framework

Quantities of
labour, energy
and capital

Passenger-km and
freight ton-km

Lan and Lin
(2006)

39 international
railways 1995-
2002

Two distance
functions one
modelling technical
efficiency the other
modelling service
effectiveness

Efficiency model:
Number of
passenger rolling
units, number of
employees
Effectiveness
model:
Passenger train-
km and freight
train-km

Efficiency model:
Passenger train-km and
freight train-km
Effectiveness model:
Passenger-km and
freight tonne-km

Loizides and
Tsionas (2002)

1969-1992.
Europe rail
companies.

Short-run cost function
(not frontier) with
coefficients which
vary by firm or year

Operating costs.
Capital stock
(financial
measure).

Passenger km.
Freight tonne km.

Parisio (1999) 8 European
Railway
companies for
1973-89

Short-run variable cost
function with first
order cost shares to
separate out technical
and allocative
inefficiency

Input prices:
Labour, energy,
materials. Length
of track is the
measure of the
fixed input.

Passenger-km and
freight ton-km

Cantos and
Villarroya
(2000)

1970-1990.
Europe rail
companies

Stochastic cost Variable cost
(excludes capital
cost).

Passenger train km.
Freight train km.

Cantos and
Villarroya
(2001)

1970-1990.
Europe rail
companies.

Stochastic cost and
revenue functions –
Operating costs,
revenue

Labour price,
energy price,
mater price –
price of passenger
and freight
outputs (rev
model)

Passenger km.
Freight tonne km.

Tsionas and
Christopolous
(1999)

1969-1992.
European rail
companies.

Stochastic Production
frontier with firm
environmental
variables as
determinants of mean
inefficiency

Number of
employees.
Energy
consumption.
Capital (financial
measure).

Sum of passenger km
and freight tonne km.

The multi-output nature of railways has motivated recent studies to use either the

cost frontier or distance function. Distance functions are related to a multi-output

generalisation of the production function (the transformation function) and yield

estimates of technical inefficiency through considering feasible radial expansions
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(contractions) of outputs (inputs) with respect to the production set.

For cost frontier models, both variable cost frontiers (Parisio, 1999, Ivaldi and

McCullough, 2001, Couto and Graham, 2008) and total cost frontiers (Cantos and

Villarroya, 2000 and 2001, Farsi et al, 2005a) have been estimated; the difference

depending on whether the infrastructure is deemed quasi-fixed or variable. This

decision is partly determined by the robustness of the available capital stock level

variable(s) versus the capital price variable. As noted by Parisio (1999), the cost

function approach has not been too popular compared with the production/distance

function approach. This has primarily been because of difficulties in developing data

on input prices, particularly infrastructure capital. Instead, he estimates a variable

cost function which requires data on the levels of capital and not their associated

price.

4.2.1. Outputs Used

Network industries can be viewed as producing many different heterogeneous

outputs. Transport networks in particular, given the non-storability of the product,

the large number of origin and destination combinations and the many different trip

purposes, produce a very large number of outputs. In the limit railways could be

thought as producing individual travel opportunities, by time, space and purpose.

Clearly, such a disaggregation of outputs is likely to be too extreme to undertake

meaningful parametric analysis. As such, a more pragmatic approach has to be taken

in specifying outputs.
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Several common features of the output specification can be considered. First, two

general classifications of outputs are common (Oum and Yu, 1994). One set are

termed “available outputs” which are measures of the service that the railway

produces (capital supplied) which are available to customers to consume. Examples

include train-km, vehicle-km and seat-km. The second set are termed “revenue

outputs” which are measures of consumed outputs. Examples include passenger-km

and tonne-km of freight hauled. These two sets could also be thought of as

intermediate versus final outputs of the railway system, although it must also be

borne in mind that the demand for rail services is often a derived demand.

When choosing whether to use available or revenue outputs, it is important to

consider what is required to be measured in the analysis and whether the implicit

assumptions on what is under the firm’s control versus what is exogenous is

reasonable. For example, using available outputs can be justified when considering

the performance of a railway manager where the required outputs from the railway

are heavily prescribed by a regulator or government. As such the railway manager

does not have much discretion as to how many train-km, vehicle-km etc., can be run.

This is instead set by the regulator. However if analysis of the effect of government

policy is the aim of a study, then it is more appropriate to adopt revenue output

measures as policy makers have discretion in the specification of railway services to

best meet demand. Of course, available outputs might be used in this context,

alongside revenue outputs as a measure of characteristics (quality) of the revenue

output.

Any measured inefficiency from models reflects both inefficiency of the railway
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manager and of policy makers or regulators (Oum and Yu, 1994). Lan and Lin

(2006) cite Fielding et al (1985) who define specific terms for these concepts. They

define the degree of sub-optimal transformation of inputs into intermediate outputs

as “technical inefficiency”, while they define degree of sub-optimal transformation

of inputs into final outputs as “technical ineffectiveness”. They define a further

concept, “service ineffectiveness”, as the degree of sub-optimal transformation of

intermediate outputs into final outputs. They point out that it is the non-storability

property of railway outputs which requires such distinctions. This thesis is concerned

with the “technical inefficiency” concept, since the railway undertaking (at least in

the short run) has to take its outputs as given. “Technical inefficiency” is bounded by

quotation marks in order to distinguish the Fielding et al concepts from the definition

of technical efficiency in production theory. In particular in this thesis, cost

inefficiency is considered which includes allocative as well as technical inefficiency

even though this applies to the transformation of inputs into intermediate outputs

(and not final outputs). This is appropriate given the thesis is evaluating the cost

characteristics and performance of different parts of a vertically separated industry.

The second general distinction that has been made is the need to distinguish between

scale and density effects. Density effects comprise the effect on costs of increasing

all outputs (in equal proportion) while holding network size constant. Scale effects

comprise the effect on costs of increasing all outputs and network size in equal

proportion. It is important to distinguish between density and scale effects since it is

often argued that marginal costs in network transport industries are below average

costs and this is a problem in terms of opening such markets to competition.

However, it is not clear that the marginal cost of expanding the network to



92

accommodate the marginal consumer (here marginal O-D pair) is less than average

cost. There is however, stronger reason to suggest that the marginal cost of

accommodating an additional consumer using the current network size through

greater utilisation, is very small.

It is important to emphasise that network size is viewed in railways as a

characteristic of railway outputs, since the size of the network affects the scope of

travel opportunities available to users. This is in contrast to the use of network size

as a proxy for the capital stock for which empirical estimation of related coefficients

has yielded counter-intuitive signs (see the discussion about inputs below).

Therefore, empirical evidence suggests that network size has a strong relation to the

output of the railway rather than as a measure of the stock of capital of the railway.

As discussed in sub-section 2.2,1, Caves et al (1981 and 1984) outlined expressions

for returns to scale and returns to density in cost functions. To recap, Caves et al

showed returns to scale (RtS) and density (RtD) can be computed as follows:


















1m

1i
Syi

1RtS (4.1)







 1m

1i
yi

1RtD (4.2)

Where
iy

 is the elasticity of cost with respect to the ith output (i=1,…,m-1) and S
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is the elasticity of cost with respect to the network size variable20.

The need to distinguish between scale and density effects or the choice between

revenue versus available outputs is only part of the wider issue of how to account for

the heterogeneity of railway outputs, as introduced at the start of this section. One

way to deal with the heterogeneity in outputs is to group outputs into m groups and

include a further set of r variables which characterise the outputs

 n1r1m1 p,,p,q,,q,y,,yC  (4.3)

The move from potentially hundreds or thousands of outputs to a more manageable

number of m outputs is obviously a simplification. However, the inclusion of output

characteristic variables is an attempt to reintroduce heterogeneity in outputs back

into the model. Such variables may include revenue measures (such as passenger-km

and freight tonnes-hauled) where available measures are adopted as output and vice

versa. As such it can become ambiguous as to what variables represent outputs

versus output characteristics versus network size. By implication it also means that

in practice, the distinction between the “technical inefficiency” and “technical

ineffectiveness” of Fielding et al (1985), discussed earlier, is far from clear e.g. if

train-km and passenger load factor enter the model.

The inclusion of characteristic variables in the cost function specification has

20 For notational convenience and consistency with other equations which do not distinguish
between the network size variable and other outputs, the network size variable is treated as
the m’th output and so only the first m-1 output elasticities are used in the RtD equation
(which excludes this output).
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prompted new definitions of returns to scale and density to be proposed to allow for

the possibility of characteristics of outputs changing along with the outputs or

network size themselves. (See Oum and Zhang (1997) for a discussion.) The ideas

are similar to the discussion in Caves et al (1985) regarding the need to consider

changes in unobserved network effects in RtS described above, however in Oum and

Zhang (1997) these relate to changes in observed rather than unobserved variables.

These ideas are applied to the analysis of TOC costs in Chapter 5 where several scale

and density measures are proposed taking into account variations in output

characteristics as well as ‘primary’ outputs.

While this formulation does simplify the problem to a traceable level, the resulting

function may be very complicated, given the number of variables and possible

interaction and higher order terms for each. As a result, the cost function may still

not be suitably parsimonious. Spady and Friedlaender (1978) developed a hedonic

cost function, which is explained in more detail in Chapter 5, in which it is applied.

4.2.2. Input prices

The measures of the price of inputs should reflect the opportunity cost of a unit of

those outputs. For example, the opportunity cost associated with one hour of labour

is the wage rate. Less obvious is the price of capital. It should reflect the hourly

rental of the capital. This is problematic to measure because of heterogeneity in

capital (see below) but also due to the fact that capital tends to be owned rather than

leased. Methods such as the perpetual inventory method (see Bishop and Thompson

(1992)) have been developed to better capture a measure of capital price.
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A further issue with the price of capital is the relationship between this and the

network size which could be viewed as a measure of capital. In particular because of

a positive coefficient on miles of railroad a negative marginal product of capital is

suggested (Wilson, 1997). However it is clear that in a railway cost function network

size is much more related to the scale of output of operation than a measure of the

capital stock of the network.

In practice, there is a similar problem to defining input prices as in defining outputs,

i.e. the problem of heterogeneity in inputs. For example, average salary is likely to

be a poor measure of the labour price as workers may work a different number of

hours across observations. Likewise there is the possibility of a different mix of

workers across different observations. Thus one firm may face higher labour costs

because it utilises more expensive but higher skilled labour. This is likely to distort

coefficient estimates (and indeed estimates of inefficiency) due to endogeneity of

explanatory variables. The usual way to remedy this is to disaggregate further the

input prices in the model (such as wage rates per staff type), but this adds to the

number of coefficients to be estimated and the data may simply not exist.

4.2.3. Functional form used

Early studies of railway costs used linear cost functions, i.e. cost is characterised by

a fixed component plus a component proportional to output. This was adopted by US

ICC rail road regulators between the 1930s and 1980s. There were several

economists, such as Meyer (1958), Meyer et al (1959), Borts (1960), Meyer and
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Kraft (1961), Friedlaender (1969) and Griliches (1972) also criticised the approach.

One major criticism was the incompatibility of the two part function with economic

theory. In particular, the function lacked input prices which Nerlove clearly showed

were an important component of any cost function which was representative of the

underlying technology. However, this is not necessarily a problem with the linear

functional form, but more with the variables included therein. Likewise, outputs can

be better specified as discussed in the previous sub section.

The most important criticism of the linear functional form related to its simplicity. In

particular, marginal costs were constant across all output levels and indeed any other

domain of the cost function. This has significant implications. Firstly, all other things

being equal, the functional form imposes increasing returns to density (or increasing

returns to scale if there is no network size variable included). Secondly, returns to

density necessarily decrease as usage increases, all other things being equal. While

these may be desirable features of the industry, the function does not allow these to

be tested.

Given the problems with the linear functional form, a natural replacement was the

Cobb Douglas (CD) cost function which Nerlove had shown to be dual to the CD

production function. An m output (each denoted iy ), n input (each price denoted
j

p )

CD cost function can be written
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Importantly taking logarithms yields a model which is linear in parameters making

estimation possible using linear techniques:


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For this function to be compatible with economic theory, the restriction 1
n

1i
i 



has

to be imposed. Provided all input prices are accounted for in the cost function, a

proportional rise in all input prices should increase cost by the same proportion i.e.

cost should be linear homogenous in input prices.

However, like the linear functional form, the CD functional form imposes several

restrictions on the underlying technology. For all inputs, the elasticity of cost is

constant and thus the share of cost is always constant irrespective of the input prices.

An alternative description of this property is that the elasticity of substitution of one

factor for another is always unity. This is a very restrictive way to model how firms

adjust inputs in response to factor price changes.

The model also implies restrictions on the relationships between costs and outputs.

The elasticity of cost with respect to outputs is constant (over the whole domain of

the function) which implies returns to scale and density is constant. This in turn

implies a very restrictive path for marginal costs. In particular:
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i.e. marginal costs are proportional to average costs.

The restrictive nature of the CD and linear functional forms prompted a large amount

of research into less restrictive functional forms. There have been a vast array of

forms proposed. Notable developments include the constant elasticity of substitution

(CES) (Arrow et al (1961)) and Generalised Leontief (Diewert, 1971). The most

widely employed cost function is the Translog (Christensen, Jorgenson and Lau

1971, 1973 and Christensen and Greene, 1976). This nests the CD as a special

(restricted) case but it is not derived from any production function using duality

theory. Instead, the Translog cost function is usually presented as a functional form

which is a second order approximation to any cost function rather than being derived

directly from economic theory21. The general form of the Translog cost function for

m outputs and n inputs is represented as (ignoring time and cross sectional subscripts

as applicable):
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21 This justification can also be applied to the generalized quadratic functional form which
nests the linear as a special case.



99

The function includes both first and second order terms in all variables. As such, the

Translog cost function (like the generalised quadratic) is called a second order

flexible functional form whereas the CD (and the linear) is called first order flexible

forms since they include only first order terms.

There are a number of requirements that a functional form has to obey to be

consistent with economic theory. Some, such as symmetry and homogeneity of

degree one in input prices, can be imposed through suitable parameter restrictions.

However, others such as concavity in input prices cannot be directly imposed in the

Translog cost function. Instead, these restrictions have to be tested at each data point

in sample. As such, the function will not necessarily be globally consistent with

economic theory but the researcher should test whether it is locally consistent. This

illustrates the general difficultly of choosing sufficiently flexible functional forms

while maintaining the functional form has proper economic properties.

Finally, it should be noted that the Translog cost function is often estimated along

with the factor share equations. Factor share equations are expressions for the

proportion of total cost used by each input and are derived using Shephard’s (1953)

Lemma as the partial derivative of the cost function with respect to each input price.

Estimation can then proceed using Zellner’s (1962) Seemingly Unrelated Regression

(SUR) which is more efficient than single equation ordinary least squares.
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4.2.4. Variable Cost function

In many regulatory settings, it is often not reasonable to assume that the firm can

adjust the levels of all inputs. For example the size and configuration of railway

infrastructure is often fixed. In these circumstances, the variable (short run) cost

function is appropriate. It can be derived using duality from a production function

under the assumption of cost minimisation, a level of the fixed input(s) and prices of

the variable inputs. The resulting function for m outputs, n inputs (o of them fixed) is

given as:

 o1on1m1 z,...,z,p,...,p,y,...,yV  (4.8)

where y and p are as before and iz represents the level of the ith fixed input. The

measure of variable cost in the function should only include the costs associated with

the variable inputs and not those associated with the fixed input(s).

The issues raised in the discussions on output, functional form and inputs above are

applicable to the variable cost function in addition to the total cost function but the

measurement of RtS and RtD are subtly different. The reason is that there is a need

to consider the effect of the fixed factor(s) when computing RtS and RtD. Caves et al

(1981 and 1984) give the expressions as:
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It is not entirely clear from the subsequent literature when (4.9) and (4.10) should be

employed vis-à-vis (4.1) and (4.2). For example Wilson (1997) has two variables to

capture the fixed factor. First length of rail road and second average speed rating. He

defines RtS as (4.9) except ௭೔ߝ only includes the variable cost elasticity with respect

to length of rail road. This seems intuitive given the line speed measure is a

characteristic of the track which may a priori not be expected to change with size of

network. However RtD is given as (4.2) rather than (4.10) (Wilson, 1997 footnote

20), which seems odd given the definitions in Caves et al (1981). Caves et al (1984)

compute RtD for their variable cost specification as (4.10) where ௭೔ߝ is the cost

elasticity with respect to capacity (defined as the sum of the annual service flows

(measured in constant 1977 dollars) from flight equipment and ground property and

equipment – footnote 19).

Clearly, either (4.1)/(4.2) and (4.9)/(4.10) could be valid measures of RtS and RtD in

a variable cost function; ultimately the two sets of measures are aimed at answering

subtly different questions. (4.1)/(4.2) are measuring how variable cost is impacted on

by changing scale and density, while (4.9)/(4.10) are measuring how total cost are

impacted on by changing scale and density. What is important in any analysis, is to
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clearly state to what costs RtS/RtD relate. To some extent, for this thesis, this point

is mute, since it is often debatable, in a vertically separated industry such as

railways, whether what is being estimated is a total or variable cost. In particular we

can consider the cost function in Chapter 5 to be a total cost function, in the sense

that cost comprises all costs under direct control of train operating companies.

Similarly in Chapter 6, the sum of maintenance and renewals cost is all that is in

control of the infrastructure manager, so again it is a total cost function. However

from the perspective of the British railway each cost set is only a part of the wider

system.

Related to this discussion is whether network length is viewed as a fixed factor in the

variable cost function or simply an output to distinguish RtS from RtD (as it is

described in the total cost function). Clearly, this decision affects the appropriate

decision as to which expression for RtS and RtD to adopt. Lee and Baumel (1987)

point out that a model with a fixed factor included alongside a capital price in a cost

function violates the properties of both long run and short run cost functions. It is not

clear which measure of RtS and RtD to adopt in practice.

4.2.5. Technical and allocative inefficiency

Early studies utilised deterministic frontier methodologies, such as COLS. These

have now been superseded by the use of stochastic frontier methodologies.

Furthermore, railway studies have often been used to highlight new theoretical

developments. One such area has been in illustrating how cost inefficiency can be

decomposed into technical and allocative inefficiency. This is either undertaken
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using a production frontier and factor demand system (Kumbhakar, 1988a, 1988b) or

a system involving the cost frontier and factor share equations. Essentially to do this,

data is required on both input quantities and prices. The statistics used to estimate the

model are involved, since allocative efficiency appears in both the cost (production)

frontier and in the cost share (input demand) equations. However, allocative

inefficiency has a strictly positive effect on costs in the cost frontier (negative effect

in the production frontier) but has a symmetric effect on the factor share equations.

In order to identify the two sources of inefficiency, an intergratability condition has

to be introduced which relates the two errors.

Even though some conditions have been proposed which reduce the amount of

arbitrariness between this relationship (and thus in the decomposition), the modelling

still requires other assumptions (such as assuming no noise in the share equations)

which mean that this decomposition is far from clear cut. However, it is not the

econometric complexity of this approach which is the model’s main limitation, but

that both input price and input quantity data has to be available for the

decomposition. Furthermore, given that, outside the academic environment, frontier

techniques are primarily used in railways for benchmarking purposes, it is unclear

that the decomposition of cost inefficiency is sufficiently useful to warrant the

collection of the data (more generally the issue of the usefulness of this approach in

practice is noted in Greene (2008)).
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4.3. Cost and efficiency studies for vertically separated railways

The literature in this area is very limited owing to only relatively recent reform of

such railways. Importantly, only in the last two decades has both the data and indeed

the research need developed such that industry and researchers have undertaken

studies on specific vertically separate sections of the railway industry.

4.3.1. Infrastructure studies

4.3.1.1.Marginal Cost studies

While there has been a limited amount of work done on explicit efficiency studies

for railway infrastructure operations, there has been a large amount of work to

understand railway infrastructure maintenance and renewal cost from the perspective

of quantifying the wear and tear by traffic on the infrastructure network. This is to

inform marginal cost based pricing.

Beginning with research by Johansson and Nilsson (2002), there have been several

studies that have estimated variable cost functions for infrastructure maintenance and

for the sum of infrastructure maintenance and renewal costs. Studies have utilized

either track section or regional data sometimes over a number of years.

Generally, there are two commonly defined (high level) cost categories relevant in

determining infrastructure marginal wear and tear costs; maintenance cost and

renewal cost. Maintenance generally contains expenditures on activities associated
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with day-to-day upkeep of the infrastructure, while renewals contains expenditures

on activities on replacement of assets whose life is expired, on a like-for-like basis.

Both cost elements contain substantial elements that are variable with traffic and so

both should be analysed in econometric modelling. However, most studies in this

area have considered maintenance expenditure only as the dependent variables and

the limited number of studies that consider the sum of the two categories suffer from

poor fit. This is because renewals expenditure tends to be lumpy (discrete in nature)

and also depends on past, as well as current, traffic levels.

In terms of the choice of the sum of maintenance and renewal cost versus analysis of

maintenance cost only, there is the obvious benefit of considering maintenance and

renewal cost as the dependent variable, since this considers the majority of the

infrastructure manager’s activity that can (non-arbitrarily) be allocated to individual

track sections or areas. It also avoids problems associated with different definitions

of what exactly comprises maintenance versus renewal which can differ from zone to

zone within an infrastructure manager and particularly from one infrastructure

manager to another. However, there is less certainty that the cost functions for the

maintenance and renewals combined has all of the appropriate variables within it due

to the dynamic and lumpy nature of renewals expenditure. This could bias any

efficiency estimates derived from the model. As such, a model for maintenance only

expenditure is still a useful complement to a model with both cost categories as the

dependent variable.

The type of outputs used are intermediate outputs. The primary reason for this choice

is that the motivation for the costing exercise was to derive marginal costs with
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respect to intermediate outputs. This also corresponds to the type of output which the

infrastructure manager perceives and so intermediate outputs are appropriate for

measuring the efficiency (as opposed to effectiveness, Lan and Lin (2006)) of this

decision making unit. The most popular output measure is gross tonne-km as,

relative to commonly available alternatives, this seems to be most aligned to the true

physical driver of damage and thus explains infrastructure costs. There may be a

priori reason to believe that there is benefit from distinguishing between gross

tonne-km of passenger and freight traffic is more cost reflective. While there has

been some success in doing this (see Wheat et al (2009) for a synthesis of latest

research) there is concern in the plausibility of the relative magnitudes of marginal

costs for the two traffic types. In particular freight traffic seems to do less damage

per gross tonne-km than passenger traffic by up to seven times (on average across

the network) which seems implausible. Therefore, most studies have preferred to

work with a single measure of output.

Much work has gone on into trying to better characterise the nature of the

infrastructure. There seems to be three distinct measures of this input. First,

measures of what the infrastructure actually is, i.e. its characteristics. Second, what

the capability is of the infrastructure, given its composition, in terms of what quality

of train service it can support. Third, there are measures that describe the condition

of the infrastructure, although these are often interrelated with the second category.

Table 4.2 gives examples of measures for each category through review of those

used in several European studies. There a limited number of condition variables used

in these studies. Potentially, the condition measures adopted by Kennedy and Smith

(2004) (number of broken rails and infrastructure manager caused delays) could be
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useful to incorporate into these cost functions.

Table 4.2 Infrastructure variables used in previous railway infrastructure cost studies

Country Great
Britain

Sweden Austria France Switzerland Sweden Finland

Study Wheat and
Smith (2008)

Andersson
(2006)

Munduch et
al (2002)

Gaudry
and Quinet
(2003)

Marti and
N’schwander
(2006)

Johansson
and
Nilsson
(2002)

Johansson
and Nilsson
(2002)

Infrastructure
characteristics

Track length
Route length
Length of
switches

Track
section
distance
Route length
Tunnels
Bridges
Rail weight
Rail gradient
Rail cant
Curvature
Lubrication
Joints
Continuous
welded rails
Frost
protection
Switches
Switch age
Sleeper age
Rail age
Ballast age

Track
section
length
Length of
single-railed
tunnels in
meters
Length of
double-
railed
tunnels in
meters
Track radius
Track
gradient
Length of
the switches
Station rails
(as
percentage
of track
length)

Number of
track
Apparatus
Whether
the track is
electrified
Route
length
Number of
tracks,
Automatic
Traffic
Control
included or
not

Track length
Track
distance
(route
length)
Length of
switches
Length of
Bridges
Tunnels
Level
crossings
Track
Radius
Track
gradient
Noise / fire
protection
Number of
switches (by
type)
Shafts
Platform
edge

Track
length
Switches
Bridges
Tunnels

Track
length
Switches

Capability Continuously
welded rails
Maximum
line speed
Maximum
axle load

Rail weight
Continuous
welded rails
Track
quality class

Maximum
line speed

Maximum
line speed

Track
quality
index
Secondary
lines

Electrified

Average
speed

Condition Rail age Switch age
Sleeper age
Rail age
Ballast age

Rail age Rail age
Sleepers age

Source: Work carried out by Phil Wheat, ITS, University of Leeds. Reproduced from Link et al (2008)

Finally Table 4.3 presents RtD and RtS from a selection of studies in the literature

that have examined infrastructure maintenance cost. The focus is on infrastructure

maintenance cost (as opposed to maintenance and renewal together) given that this is

the cost item used in the empirical example in Chapter 6. These studies have all

found increasing RtD, with elasticities of cost with respect to traffic density of the

order of 0.2-0.4 at the sample mean (Wheat et al (2009)).
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Less clear is the evidence on RtS, with some studies finding large increasing RtS

while other studies find only small increasing RtS. However, the usefulness of the

RtS measure here has to be questioned, especially for studies that utilise observations

by track sections (such studies are Johansson and Nilsson (2004), Tervonen and

Idstrom (2004), Munduch et al (2002), Gaudry and Quinet (2003), Andersson

(2006)). In particular the length of a track section has little to do with the

organisation of maintenance and renewal activities, because typically

maintenance/renewal teams are responsible for a number of track sections. Thus

when analysing track section data, a more appropriate measure of RtS would relate

to the overall track-km maintained/renewed by each operational crew which is likely

to be greater than the track section-km and invariant across track sections within

each operational area. In this review, no instances of any such variables being used

within these cost functions has been found.

Table 4.3 Estimates of Returns to Scale and Density from infrastructure maintenance cost

studies

Study Country Returns to Scale Returns to Density

Johansson and Nilsson
(2004) Sweden

1.256
5.92

Johansson and Nilsson
(2004) Finland

1.575
5.99

Tervonen and Idstrom
(2004) Finland

1.325
5.74-7.51

Munduch et al (2002) Austria 1.449-1.621 3.70
Gaudry and Quinet (2003) France Not reported 2.70
Andersson (2006) Sweden 1.38 4.90
Wheat and Smith (2008) Britain 2.074 4.18
Smith et. al. (2008) International study 1.11 3.25
NERA (2000) US 1.15 2.85

Source: Amended from Wheat and Smith (2008)
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4.3.1.2.Efficiency studies

Published research in the academic literature on performance of railway

infrastructure managers is also limited. As with the train operating company

research, all (published) studies relate to the British infrastructure manager, but some

do involve international comparisons with other infrastructure managers.

At the 2003 Access Charge Review, ORR commissioned LEK (LEK, 2003) to

undertake internal benchmarking of Network Rail. This looked at potential

efficiency savings for various expenditures categories based on comparisons across

Network Rail’s operating areas (seven in total). Some of the work involved statistical

analysis but the analysis was far from a top down econometric efficiency study.

Efficiency techniques employed were limited to OLS adjusted by either a COLS

shift or lower quartile shift.

A more rigorous econometric study aimed at measuring disparity between the

performances of individual geographical areas within the British infrastructure

manager was undertaken by Kennedy and Smith (2004). This internal benchmarking

study adopted both deterministic and stochastic input orientated distance function

models and utilised relatively robust data sourced directly from the industry. They

considered, in two separate models, maintenance only cost and the sum of

maintenance and track renewal cost, as inputs, combined with delay minutes and

broken rails as the two other inputs. The levels of these inputs were then assumed to

be endogenously determined given a set of outputs (hence the input orientation of the

distance function). The outputs were track-km and two traffic density variables –



110

freight tonne-km and passenger train-km both per track-km.

Their findings suggest that the infrastructure manager Railtrack (now replaced by

Network Rail) made substantial improvements in efficiency from privatisation to

2000/01, but then their efficiency deteriorated post this period. There was a key

event in October 2000 (the “Hatfield accident”) which for various reasons prompted

a revision in the behaviour of the infrastructure manager and ultimately led to it

going into administration and being replaced by Network Rail. In particular, they

find that most of the earlier gains in efficiency were wiped out by the determination

post Hatfield. They conclude that the substantial variation in efficiency between the

geographical areas means that there were substantial opportunities to improve

performance going forward.

However their stochastic frontier model can be deemed relatively crude from a

methodological perspective (simple pooled model). In addition, there were only a

limited number of variables included in the function which characterised the

infrastructure. Along with the length of track, there were two variables measuring the

state of the infrastructure manager’s assets (number of broken rails and caused delay

minutes). As discussed below, recent research into cost functions of this industry

have suggested several more variables which should be incorporated to better reflect

the state of the infrastructure. The failure to incorporate more of these variables may

explain why Railtrack was found to be improving performance up to the Hatfield

accident in 2000 when it is a relatively well accepted view that Railtrack was not

necessarily improving but instead under renewing and maintaining its assets (ORR,

2008). However, Kennedy and Smith did successfully demonstrate that suitable data
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existed within infrastructure and could be used to find evidence of inefficient

practice.

Econometric efficiency analysis of Network Rail formed a very important part of the

2008 Periodic Review determinations. This comprised two pieces of analysis, both

benchmarking studies utilising international comparators. The primary piece of

analysis was utilised a data set collected by the UIC (International Union of

Railways) and previously analysed for the Lasting Infrastructure Cost Benchmarking

(LICB) project (UIC, 2008). This was data for a selection of railway infrastructure

managers who were members of the UIC. The original LICB project was based on

adjusted average cost calculations. Thus, unit cost were computed, but adjustments

were made, based on the characteristics of railways (see Smith and Wheat (2010) for

a review of the adjustment factors). However, the subsequent work sponsored by

ORR undertook econometric efficiency analysis of the dataset (1993-2006) (Smith,

Wheat and Nixon (2008) and Smith (2012)). The preferred model utilised a time

varying inefficiency model which estimated firm specific paths of adjustment. The

model found Network Rail to be 58% efficient. This analysis demonstrated that

international comparisons of railway infrastructure managers could be made using

econometric techniques. The modelling did suffer however from a limited number of

explanatory variables (utilised variables were train-km (passenger and freight),

route-km, proportion single track-km and proportion of track electrified – see below

for a discussion of other variables that would ideally be within such models).

A supporting piece of econometric analysis was using a bespoke dataset collected by

ORR comprising five infrastructure managers. This dataset included observations for
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regions within each infrastructure manager and, in some cases, data over time. At

2008 Periodic Review, this dataset was relatively new and so analysis was limited to

verification of the inefficiency estimates from the main LICB data analysis (which

were confirmed). Chapter 6 develops this analysis further. In particular, models are

proposed which best exploit the multi-level structure of the data. It is also hoped that

over time data can be obtained for many more variables than those currently

available for analysis. This is because data is bespoke for this purpose rather than

data such as the LICB data which was collected for a subtly different purpose.

4.3.2. Passenger train operations

There has been limited published work on the performance of passenger train

operating companies (TOCs) in Britain. The papers have used a variety of methods

including non-parametric DEA (Affuso et al., 2003 and 2002, Cowie, 2009, Merkert

et al, 2009) and index number approaches (Cowie, 2002a; Smith et al., 2009), as well

as parametric estimation of cost functions (Cowie, 2002b; Smith and Wheat, 2012a),

production functions (Cowie, 2005) and distance functions (Affuso et al., 2003 and

2002). Clearly, the former methods can only consider cost or technical efficiency and

produce no estimates regarding the actual cost structure.

The papers by Cowie consider three inputs: staff, rolling stock and network. This is

deficient given that the network input is fixed and difficult to characterise. Cowie

(2003) estimates a total cost function and uses access charge per route-km as the

price of network. However the vast majority of the access charge is fixed and so this

measure over estimates the marginal charge for access. Given the regulatory regime,
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network access can easily be thought of as a pass-through with respect to franchised

TOCs since TOCs are compensated directly with respect to changes in access

charges as a condition of the franchise contract. Thus a cost function which considers

TOC cost less access charges as the dependent variable seems most appropriate,

rather than the cost function estimated by Cowie. This is the approach taken in

Chapter 5.

In Cowie (2002b and 2005) route-km are used as the input for network, however as

Cowie (2009) acknowledges this is a poor proxy for the true network input. Cowie

(2009) replaces this with the cost of access for each TOC as measured by the charges

paid to Network Rail. Given the arbitrariness of the allocation of the fixed charge to

individual operators, the usefulness of this measure has to be questioned. Also, post

2002, the infrastructure manager was not fully funded by TOC access payments.

Instead, the Network Grant (direct payment from Government) was introduced

alongside access charges. This further distorts any ‘price’ for network access post

2000 (affecting the Cowie (2009) study).

Affuso et al (2003) do not include any network inputs into their distance function,

but this simple exclusion does not seem optimal since the network may affect the

transformation function. It is considered that a better way to deal with this is to

estimate a variable cost function with infrastructure held fixed.

Finally on data, there are issues with the consistency of data from year to year and

TOC to TOC given the data sources used in the studies referred to above. In

particular, all the studies which estimated cost functions utilise data in TOC accounts
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to determine the cost of network access. However, investigation of the accounts as

part of the background to the research in Chapter 5, revealed inconsistencies across

TOCs and over time as to what elements of access charges are itemised under the

heading. Also, the series on train-km derived from National Rail Trends (ORR,

2012) seems to have unexplained step changes over time for some TOCs indicating

that this series maybe unreliable. In Chapter 5, access charge data and train-km and

vehicle-km data are sourced direct from Network Rail which ensures the quality of

the data.

Turning to the results on TOC performance, all the studies report improved

performance over the period from privatisation to the period 2000/01. A consistent

finding is that this improvement in performance, as measured by a Malmquist total

factor productivity measure, has tended to be driven by positive technical change

with only a small improvement in average technical efficiency over the period. Thus,

while the best performing TOCs seemed to be improving up to 2000/01, there was

little evidence that all firms were converging i.e. that franchising was successfully

driving out poor performance.

Cowie (2009) and Smith and Wheat (2012a) are the only studies to have considered

the period following the Hatfield accident in October 2000. Cowie’s study covered

the years 1996/97-2003/04, while Smith and Wheat extended the sample to 2005/06.

Cowie found that, following Hatfield, there was a deterioration in TFP and this was

across all TOCs i.e. was found to be as a result of negative technical change growth

rather than a deterioration in technical efficiency of a sub-set of firms (see Figures 2

and 3 in Cowie (2009)). In fact Cowie finds that average technical efficiency
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improves over the post Hatfield period. This suggests that, even with the distribution

of some firms moving to renegotiated contracts, franchising had still begun to

proliferate best practice across the industry. This finding has to be moderated

however by the finding that, overall, TFP was not found to be substantially different

at the end of the period than at the first year following privatisation. Smith and

Wheat (2012a) found also found that technical change was, in the early years of their

sample, beneficial in terms of lowering costs, however following the Hatfield

accident, not only was there a statistically significant upward shift in costs, but the

direction of technical change shifted, such that costs began to increase over time.

These observations are the same with respect to overall TFP in the Smith and Wheat

(2012a) model.

For the parametric studies, it should be possible to derive returns to scale and density

results from the models. In Cowie (2005) and Affusso et al (2003) these properties of

the models are not discussed in the text. Furthermore, the fact that the data does not

appear to be normalised at the sample mean, coupled with the adoption of Translog

functional forms, means that the results in the papers cannot be used to derive these

results. Of the non-parametric research, Merkert et al (2009) did estimate a variable

RtS model and found that British and Swedish TOCs were below minimum efficient

scale, while the large German operators were above.

Only Cowie (2002b) and Smith and Wheat (2012a) provide an explicit discussion of

the returns to scale properties of the models. Cowie defines returns to scale simply in

relation to his single output train-km (there are of course different possible measures

of RtS in this context such as returns to network size, train-km and train length). His
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results seem to suggest decreasing returns to scale at low train-km, but then

increasing RtS at higher train-km.

Smith and Wheat (2012a) put forward a model which yields estimates of the extent

of both returns to scale and returns to density, where the primary usage output is

train-km rather than train-hours. They found constant RtS and increasing RtD. One

limitation of the Smith and Wheat (2012a) work was the inability to estimate a

plausible Translog function. Instead, a restricted variant was estimated selected on

the basis of general to specific testing and on whether key elasticities were of the

expected sign. This implicitly restricts the variation in returns to scale and density.

Overall, the received studies on passenger train operations have concentrated on

technical change, cost efficiency and overall TFP trends. The motivation for

concentrating on these issues, were, firstly studies focus on Britain and, secondly, at

the time the railway in Britain suffered from a substantial cost shock which resulted

in several franchises getting into financial difficulty.

However, rail passenger franchising in Britain is now more mature and government

policy is towards larger franchises. Further, as detailed in sub-section 1.1, recent

European Commission policy changes mean that it is likely that competitive

tendering of passenger railway operations will become more wide spread. Thus

research can inform the most cost effective way to design tenders and also provide

analysis as to whether larger franchises are preferred on cost grounds. However, this

is an under researched area. There is a need to account for output heterogeneity in

the cost function.
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4.4. Summary

In this chapter, the railway specific context of cost research has been outlined. The

early material has discussed the difficulty in characterising output of railways. In

reality there are many ‘final’ (user) outputs with train services being provided

between different origins and destinations, departing at different times and taking

different amounts of travel time; all of which implies that some summary measure(s)

are needed for feasible empirical work. The concepts of returns to scale versus

returns to density are important, as are more general measures of the characteristics

of output, but this is still a limited distinction and as such there have been attempts to

measure traffic by type and/or include characteristics of output to enrich the

description of the underlying technology. Better characterising output is the

motivation for the hedonic cost function approach in Chapter 5 for train operations,

and this has been shown to be an under researched area.

The studies on railway infrastructure have shown good progress in developing cost

functions to describe the cost structure within a railway, for the purpose of marginal

wear and tear cost estimation. However, when the exercise is amended to compare

the efficiency performance of railways, then it becomes clear that there is a difficulty

in gathering sufficient data to conduct meaningful analysis. This motivates the

research in Chapter 6 on models to exploit dual-level panel data.
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5. Passenger Train Operating Company cost analysis22

5.1. Introduction

A key outstanding research issue regarding passenger train operations comprises the

optimal size and composition of tender contracts23. This is motivated from two

perspectives.

Firstly, there is a clear policy motivation given the movement towards competitive

tendering in many countries around the world. For example, in Europe, successive

reforms have seen infrastructure separated from operations to a greater or lesser

degree and, though not required yet by legislation, many countries (in particular

Britain, Sweden and Germany) have introduced competitive tendering or franchising

of passenger rail services (see for example Alexandersson and Hulten (2007) and

Brenck and Peter (2007) for a review of the Swedish and German experience

respectively). In recent legislation proposals, the European Commission has set out

further steps to encourage competitive tendering in domestic passenger train

operations (European Commission, 2013). Competitive tendering in rail has also

been used outside Europe. Examples include: Melbourne, Australia; Latin America;

and some North American commuter services (Smith and Wheat, 2012a).

Thus optimal specification of tenders is of importance in transportation operations

22 This chapter is based on Wheat and Smith (2013). The content is essentially the same,
with minor extra material relating to more detail on the model.
23 The chapter, and indeed the thesis as a whole, uses the terms ‘tender’ and ‘franchise’
interchangeably. Franchising is the term used for passenger rail operations contracts in Great
Britain, however competitive tendering is the more common international terminology.
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and this, coupled with the competition for the market that tendering introduces, will

result in services being delivered at least cost. This is in contrast to railway

infrastructure, where there is often a monopoly infrastructure manager. Thus more

direct RPI-X regulation requiring explicit efficiency analysis maybe required.

In the British context, which is the focus of the empirical analysis in this chapter, a

current policy question is whether to remap existing TOCs into fewer, larger TOCs.

This has two impacts. First, individual tenders are likely to increase in size and

geographical coverage with an associated increase in services per tender. Second,

due to the removal of overlap between tenders, utilisation per TOC (train hours per

route-km operated) are also likely to increase (increase in density). The former effect

is measured by defining returns to scale (RtS) as the cost effect of increasing the size

(route-km and stations operated) and usage (primarily train hours) by the same

proportion. The latter effect is measured by defining returns to density (RtD) as the

cost effect of increasing usage, holding network size constant (measured by route-km

and stations operated).

Secondly, in addition to pressing policy issues discussed above, the existing research

literature reviewed in 4.3.2 clearly points to more research being needed to

understand how train operating costs are affected, not just by the size of operation,

but also by the intensity of usage of a given network and the degree of heterogeneity

in service types. More generally, the research is motivated by noting that the

conventional result in transportation economics is that increasing the density of

utilisation of infrastructure will lower average costs (per train-km) (Hensher and

Brewer (2000), Button (2010)). This may be expected when the costs associated with
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infrastructure are considered (e.g. Wheat and Smith (2008), Smith and Wheat

(2012a) and Andersson et al (2012)). However, scale and/or density effects are also

likely to be apparent in situations where industries are structured on an operation

only basis, as in the case where passenger rail services are subject to competitive

tendering, for example in Europe.

For train operations, while fixed costs are not as abundant as in railway

infrastructure, there is a degree of overall management cost which is invariant to the

overall scale of the operation. There are also likely to be improvements in the

utilisation of assets (e.g. rolling stock diagramming) for larger and more intensively

(densely) used networks / operations which ultimately may reduce unit costs.

It should be noted that these two definitions (RtS and RtD) refer to the effect on train

operations costs only and not anything to do with infrastructure costs. RtS and RtD

are distinguished since there are two conceptual ways for a train operator to grow24.

Firstly, a train operator can become geographically larger i.e. operating to and from

more points. This is captured by the RtS concept. Secondly, a train operator can

grow by running more train hours over a fixed network. This is captured by the RtD

concept.

A priori it is reasonable to expect RtD to be larger than RtS given there is likely to

be more scope to reduce unit costs by producing more train hours on a fixed network

(by, say, better diagramming of existing routes) rather than expanding the network

24 See Caves et. al. (1981) and Caves et. al. (1984) for use of the terms returns to scale (RtS)
and returns to density (RtD) in empirical applications.
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(where there may simply be more routes and places to serve).

The key contributions of this chapter are to provide new insights into the structure

RtS and RtD in passenger railway operations and also to consider whether

heterogeneity in services provided by TOCs affects the estimates of RtS and RtD.

This second innovation is important to address the current policy question in Britain

since several of the merged franchises now produce services across the three generic

service types (intercity, regional and London South Eastern commuting) whilst

previously they provide only services from predominantly one service type.

Fundamentally, the research question is, conditional on finding RtS and RtD, can

these still be exploited if the services provided by merging franchises are very

different? For example, there may be difficulties in sharing rolling stock across

different service types. To do this, a hedonic cost function approach is adopted

which allows incorporation of measures of the characteristics of outputs.

Importantly, this allows incorporation of measures of TOC heterogeneity which are

central to evaluate the cost effect of merging heterogeneous TOCs.

The structure of this chapter is as follows. The past literature on RtS and RtD studies

has been reviewed in section 4.3.2. and as such this is not repeated. Section 5.2

outlines the methodological approach and in particular the motivation of the hedonic

cost function and Section 5.3 identifies the data and demonstrates the improvements

in data available for this study relative to previous studies. Section 5.4 discusses the

empirical findings relating to overall scale and density returns and the impacts of

influence on costs of heterogeneity in outputs. It also presents, for illustration,
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predicted cost changes for three re-mappings and discusses the reasons for the each

cost change. Section 5.5 concludes.

5.2. Methodology

In this section the general economic device and estimation method that is used in the

analysis is outlined. The following section populates the model with the choice of

variables. A cost function derived from the behavioural assumption of cost

minimisation is represented as

 β;p,y ititit CC  i=1,...,N t=1,...,T (5.1)

where itC is the cost of firm i in year t, ity and itp are L and M dimension vectors of

outputs and prices of inputs respectively again for firm i in year t. Firms provide a

great deal of different train service outputs. For example, TOCs provide train

services with different stopping patterns and running speeds. Thus, one approach is

to consider this an issue of returns to scope. The amount of each numerous output

however cannot be specified due to a number of reasons. Firstly, the data does not

exist on outputs at such a level of disaggregation. Secondly, if data did exist then the

model would have a large number of parameters such that partial analysis would be

imprecise. Thirdly, the Translog cost function cannot accommodate zero levels of

outputs very satisfactorily. Instead, the hedonic cost function approach first used by

Spady and Friedlaender (1978) is used, which provides a parsimonious method of

incorporating output characteristics (termed output quality in their paper) to

characterise heterogeneity in outputs. This provides a means of incorporating
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measures of heterogeneity of output both across and within firms. The former is

important for consideration of the cost effect of merging TOCs. As discussed in Jara

Diaz (1982), failure to account for output characteristics can result in incorrect

policy recommendations in relation to optimal firm size.

Using the notation of Spady and Friedlaender (1978), replace the lth element of ity ,

lity , with lit where

   Blitlitlitlitlit qqyy ,...,, 1 litq (5.2)

Where lity is now the lth “physical output” and blitq is the bth quality characteristic

of the lth physical output. lit is assumed homogenous of degree one in the physical

output. This implies that a doubling of lity results in a doubling of lit ; this is

required for identification of the function within the wider cost function and sets lity

to be the numeriere of lit . l l is considered to be Cobb Douglas as in Bitzan and

Wilson (2007) (as opposed to Translog as in Spady and Friedlaender’s formulation)

given the large number of quality variables in this formulation.

Spady and Friedlaender (1978) discuss the implicit restrictions associated with

adopting the hedonic formulation. They term the function “quality separable” since

the impact of the quality variables on the associated primary output is independent of

prices (and also of the level of other primary outputs). Ultimately this restriction is

the price of adopting the hedonic function, but it makes the model far more

manageable in terms of parameters to be estimated (34 parameters for the hedonic
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formulation, but the unrestricted Translog would require estimation of circa 140

parameters; there are only 243 observations). Given the Cobb Douglas form for l in

(5.2), an eloquent way to describe the implication of the “quality separable”

restriction is that the elasticity of cost with respect to the quality variable is

proportional to the elasticity of cost with respect to the primary output.

A Translog cost function (in itψ , itp and, given that the model utilises panel data, a

cost non-neutral technology trend, t) is used
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Shephard’s Lemma is applied to (5.3) to yield the cost share equations:
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The model parameters are estimated as a system of the cost function and the factor

shares, to aid both the precision of estimates and also to ensure that the estimated

cost shares are as close as possible to the true cost shares (which by (5.4) is a

requirement of economic theory). In addition to the cost shares, economic theory

associated with the existence of a dual cost function provides a set of useful

restrictions to aid estimation. Firstly, symmetry of input demand with respect to
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price requires cmmc   and also there is symmetry in the cross derivatives of

outputs, bllb   . Secondly, the cost function must be linear homogenous of degree

1 in prices. This requires:
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A convenient way of imposing (5.5) on (5.3) and (5.4) is to divide input prices and

cost by one of the input prices (see Heathfield and Wibe (1987) for this derivation).

Given there are parameters implicit in lit , estimation is undertaken using non-linear

Seeming Unrelated Regression. To avoid the errors in the cost shares summing to

zero for each observation, one of the cost shares has to be dropped. The cost share

for the Mth input is removed from estimation (i.e. the input whose price is used to

divide cost and all other prices by).

Cost efficiency is not modelled explicitly. Partly this is a pragmatic approach;

including cost inefficiency in the cost equation potentially requires an intricate

econometric framework to link the allocative inefficiency component in the cost

shares to the cost inefficiency term in the cost equation (Kumbhakar and Lovell,

2000). Also such modelling is not without assumptions in its own right which maybe

tenuous. For example, the maximum likelihood approach by Kumbhakar (1997)
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allows for allocative inefficiency to enter the model appropriately but with the

expense of assuming away any noise error in the cost share equations. However,

perhaps the most important reason is that the measurement of firm technical or cost

inefficiency is a separate question, and here the focus is on scale and density

efficiency. Furthermore, estimation of the model produces consistent estimates for

the model parameters except the constant term in the cost equation even in the

presence of inefficiency (due to the assumption commonly made in the efficiency

literature that inefficiency is uncorrelated with regressors). Since the constant term is

not of direct interest no correction is made to this.25

Finally on efficiency, as noted in Spady and Friedlaender (1978, p. 162) and

applicable to both the hedonic cost function or other functions where output

characteristic variables are used, there is the potential problem of endogeniety of the

characteristic variables. Some variables may be under the control of the firm and

thus are endogenous. Those variables that are under the firm’s control depend on the

regulatory conditions affecting the market. There are statistical techniques that can

produce consistent estimates of parameters in models with endogenous regressors

(instrumental variables techniques). Spady and Friedlaender caution however that

any estimated function would still be an ambiguous description of the technology of

the firm because such a function would be determined by both the supply and

demand characteristics of the market. This same point applies when input markets

are not perfectly competitive and so input prices can be influenced by firms. The

25 This could however be done (and cost inefficiency measured) by applying a two stage
estimation approach. MLE would be used to estimate the noise and inefficiency variance
components using the residuals from the cost equation estimated using the method in this
chapter (Kumbhakar and Lovell, 2000).
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implication is that inefficiency may be confounded within the parameter estimates

rather than solely in the residuals. It should be noted that it is the inclusion of output

characteristics potentially under the firm’s control that creates the problem, not the

hedonic formulation per se. Thus this is a limitation of any efficiency and indeed

cost study. Given the focus away from measuring efficiency in this chapter and given

the limited opportunities for TOCs to influence the demand side of the market, then

the analysis proceeds as if all regressors (including output characteristics) are

exogenous.

Therefore, after imposing symmetry and linear homogeneity of degree one in input

prices on (5.3) and (5.4), the system of M equations to be estimated is:
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(5.6)

In addition to the symmetry and linear homogeneity in prices, the cost function has

to be concave in input prices. This cannot easily be imposed on the Translog

function form since the restrictions are a function of the data. Instead, the matrix of
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second derivatives of input prices is computed at each data point to verify if it is

negative definite; a necessary and sufficient condition for concavity in prices. The

matrix for the Translog function is given in Diewert and Wales (1987) as:
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A further condition that is not imposed, but checked post estimation, is that the

factor demand own-price elasticities are negative for all inputs. The Allen-Uzawa

own-price elasticities and partial elasticities of substitution are given as:

   2
mmmmmmm S1SS  (5.8)

and

  mcmcmcmc SSSS  (5.9)

respectively. If mc <0, the two inputs are complements, if mc >0 then they are

substitutes.

5.3. Data

A panel data set of 28 TOCs over 11 years (2000 to 201026) is used. The panel is

unbalanced with a total of 243 observations. The unbalanced nature of the panel

26 Quoted years are for year end to 31st March e.g. 2000 is April 1999 to March 2000.
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reflects the re-franchising and, importantly, re-mapping of franchises over time.

TOC cost is defined as total reported cost less access charge payments to Network

Rail (the railway infrastructure manager). This definition follows from Smith and

Wheat (2012a). Netting off access charge payments is important as they are

(indirectly) merely transfer payments from Government to the infrastructure

manager and are not reflective of the cost of network access for a given TOC (at

least in a given year). Importantly, TOCs are compensated for changes in the access

charge payments over time by the construction of the franchise contracts27. It is

therefore important to note that netting off access charge transfer payments to

Network Rail does not mean that a variable cost function is estimated. It should be

noted that it is considered that what is estimated is a total cost function since this

cost represents the total cost under the control of the franchisee (for the duration of

the franchise).

The cost data is sourced from the TOC’s publicly posted accounts, while access

charge payments are sourced direct from Network Rail. These are the best sources of

these data given that the TOC accounts do not report access charges in a consistent

manner across all TOCs.28

Regarding the explanatory variables, Table 5.1 summarises the data. There are three

27 It should also be noted that since 2001/02 Network Rail received some of its funding
directly from central government via the Network Grant. As such the sum of access charges
over all TOCs does not reflect the full cost of infrastructure provision for years beyond
2002. This is another reason that access charges do not reflect the opportunity cost of
network access.
28 In particular it is obvious that some TOCs are itemising in their accounts only variable
access charges rather than the sum of variable and (generally the much larger) fixed charge.
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primary outputs; route-km, train-hours and number of stations operated. It is

considered that TOCs produce train services (train hours) and operating stations. In

addition, route-km is included to distinguish between geographical size and intensity

of operations. Thus it is analogous to the use of route-km in integrated railway

studies to distinguish between scale and density effects (Caves et al, 1985).

Conceivably, route-km could have been included as a characteristic of the primary

train hours output. However, adopting this approach would have imposed, a priori, a

more restrictive relation between scale and density effects; the hedonic function

adopted imposes proportionality between the cost elasticity with respect to the

primary output and the cost elasticity with respect to the quality variable. Given the

focus of this study towards optimal size/utilisation of TOCs, it was deemed that the

more flexible approach should be adopted.

With respect to other studies, there are a number of improvements to note with

regard to the specification of outputs in this study. Firstly, both stations operated and

train operations measures are included. Station operation is an important activity for

some TOCs but less so for others and as such should not be ignored. Only Smith and

Wheat (2012a) considered stations within analysis. Secondly, train hours data are

used in this study. This, along with distance measures (incorporated via average

speed measures) and train length measures are the key drivers of costs since these

measures include both time based and distance based cost drivers. To the author’s

knowledge, no previous railway cost study, either of vertically integrated or

separated railways, has taken account of train hours, length and speed in the model.

A key element of this study is to consider the cost implications of merging TOCs
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which produce outputs with different characteristics. Thus it is important to account

for output characteristics which measure the extent of heterogeneity within a given

TOC as well as across TOCs. In addition to including the average characteristics of

TOC output (train length, speed and passenger load factor), therefore, two further

sets of measures to account for diversity in TOC service provision are included. The

first is the proportion of train-km that correspond to each of three service groups

(intercity, London South Eastern (LSE) commuting and the remainder regional). 42q

and 52q pick up systematic cost differences, over and above that captured by the

other output characteristics, from TOCs providing intercity and LSE commuting

services respectively (the proportion for regional services is dropped to prevent

perfect collinearity). For example, it can be expected that intercity TOCs will, all

other things being equal, be more expensive due to such factors such as the need to

provide higher quality rolling stock and better on train services. As well as including

these terms, interactions between the service group proportions are included. The

majority of TOCs provide only one service group, thus the interaction variables are

only non-zero for a select set of TOCs, the majority of which were formed from re-

mappings of TOCs that provided a single service type but in the same geographical

area, and have subsequently been merged into one. Thus the coefficients on these

interaction variables would provide an indication of any cost increasing (or

decreasing) impact of TOCs providing heterogeneous service mixes, over and above

any change in other service level characteristics.

The second is the number of generic rolling stock types operated by a TOC is to be

included in the model. These are taken from the rolling stock classifications within

the Department for Transport’s Network Modelling Framework model (data supplied
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direct from DfT’s Rail Analysis Division). Essentially they classify rolling stock into

speed bands and traction source (electric or diesel) and whether they are multiple

units or loco-hauled. The more rolling stock types that are operated, the more likely

there is heterogeneity in service provided within a TOC.

It should be noted that when it comes to evaluating franchise re-mappings, it will not

just be the rolling stock type and franchise service type proportion heterogeneity that

affect the cost change. The other average heterogeneity characteristic variables will

be different. Thus it is difficult to assess the impact of changes in heterogeneity by

looking at the signs on the service type and rolling stock type variables in isolation.

This is returned to in the results section at 5.4.

Two input prices are defined; payroll staff costs and non-payroll costs. Payroll staff

costs include all labour costs from staff which are directly employed by the TOC. A

natural price measure is staff cost divided by staff numbers. The divisor for non-

payroll costs is less clear. Firstly, once access charge payments are removed, the

publically available accounts do not allow for costs to be consistently broken up any

further than staff and non-payroll costs. Non-payroll costs includes rolling stock

capital lease, rolling stock non-capital lease and other outsourced maintenance costs

and energy costs. The only divisor that is available is number of rolling stock units

and this is adopted in the price calculation. This is a limitation of the data but it is

believed that this is the best solution. Ex post estimation, concavity in input prices is

checked and this is fulfilled at all data points which gives some reassurance that the

input prices data are not having perverse effects. Perhaps the most important

implication of the definition of input prices is that it would be expected that there is a
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reasonable degree of substitutability between the two inputs at the margin since

functions such as train maintenance can be outsourced and thus staff activity can be

taken off the payroll.

Two TOCs do not operate any stations (Cross Country and Gatwick Express). This

presents a difficulty for the model given that the logarithm of zero is not defined.

There are several small changes to the function which can be made. One option is to

input the variable in levels or via a Box-Cox transformation instead of the logarithm.

Another is to introduce a small positive shift in all of the data (to avoid zeros).

However, inspection of the data reveals that most TOCs operate many stations while

two operate no stations. This would suggest that it is more appropriate to model this

extreme of the sample differently to the rest. Clearly, it is unlikely to be feasible to

produce an entirely separate model for those TOCs that operate no stations due to the

small number of observations for this group. Instead, those TOCs with no stations

are modelled as a cost function comprising only two outputs and the two input

prices. Furthermore, the coefficients with respect to the route-km (and the

interactions with other variables) are allowed to be different for those TOCs that do

operate stations. As a sensitivity exercise, an attempt was made to estimate the

model with different coefficients associated with the train hours variable but this

model failed to converge.
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Table 5.1 variables used

Symbol Name Description Data Source
Generic Outputs ( )

11 y

1y Route - km Length of the line-km
operated by the TOC. A
measure of the geographical
coverage of the TOC

National Rail Trends
(ORR, 2012 and past
volumes)

929282827272626252524242322212

32221222
qqqqqq eeeeeeqqqy  

2y Train Hours Primary driver of train
operating cost

National Modelling
Framework Timetabling
Module

12q Average vehicle length
of trains

Vehicle-km / Train-km Network Rail

22q Average speed Train-km / Train Hours National Modelling
Framework Timetabling
Module

32q Passenger Load Factor Passenger-km / Train km Passenger-km data from
National Rail Trends.
Train-km data from
Network Rail.

42q Intercity TOC Proportion of train services
intercity in nature

National Rail Trends for
the categorisation of TOCs
into intercity, LSE and
regional. Where TOCs
have merged across
sectors a proportion
allocation is made on an
approximate basis with
reference to the relative
size of train-km by each
pre-merged TOC

52q London South Eastern
indicator

Proportion of train services
into and around London
(in general commuting
services)

62q 5242qq Interaction between Intercity
and LSE proportions

72q  524242 1 qqq  Interaction between intercity
and regional (non-intercity and
non-LSE services) proportions

82q  524252 1 qqq  Interaction between LSE and
regional proportions

92q Number of rolling
stock types operated

Number of “generic” rolling
stock types operated

National Modelling
Framework Rolling Stock
Classifications

33 y

3y Stations operated Number of stations that the
TOC operates

National Rail Trends

Prices

1P Non-payroll cost per
unit rolling stock

TOC accounts for cost,
Platform 5 and TAS Rail
Industry Monitor for
rolling stock numbers

2P Staff costs (on payroll) TOC accounts (both costs
and staff numbers)

Given the variable definitions in Table 5.1 the system can be estimated based on
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(5.6) as:
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for those TOCs that operate stations and:
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for those TOCs that do not operate stations. Parameters followed by ’ in (5.11)

indicate those parameters which are allowed to vary relative to those in (5.10).
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5.4. Results

This section is divided into four sub-sections. In the first, the suitability of the

estimated model in terms of being consistent with economic theory and whether the

model is suitably parsimonious is considered. The second focuses on the scale and

density properties of the model. In the third, sub-section the impact of heterogeneity

of output on costs and scale and density is considered. The final section shows how

these three factors (scale, density and heterogeneity) affect the expected cost changes

for two specific mergers in this dataset and also for one hypothetical, but currently

highly topical, potential merger.

5.4.1. Consistency with economic theory

It is first appropriate to consider the suitability of the estimated model in terms of

their consistency with economic theory. The parameter estimates are shown in Table

5.2. The R2 measure of fit for the cost function equation and the cost share equation

are 0.928 and 0.489 respectively. The higher R2 for the cost function primarily

reflects the fact that the dependent variable is in logarithms while it is in levels in the

cost share equation. The fitted cost shares are all between zero and one and the

Hessian has been evaluated at each data point and found to be negative definite for

all observations; thus the function is concave in input prices over the relevant range.
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Table 5.2 Parameter Estimates

Parameter Estimate P-val Parameter Estimate P-val

Main parameters Hedonic output ( 2 ) parameters

 7.729 0.001 ***
1 0.701 0.000 ***

1 -1.831 0.000 ***
2 0.856 0.000 ***

2 -0.464 0.256
3 0.059 0.609

3 0.592 0.076 *
4 0.425 0.031 **

1 1.048 0.000 ***
5 0.309 0.005 ***

T 0.039 0.420
6 -1.520 0.002 ***

11 0.100 0.003 ***
7 -0.157 0.763

22 0.048 0.048 **
8 -0.463 0.631

33 0.109 0.000 ***
9 0.021 0.139

12 0.078 0.045 **

13 -0.189 0.000 *** No-stations model free parameters

23 0.010 0.819

11 0.080 0.000 *** '1 -1.170 0.011 **

11 -0.058 0.000 *** '11 0.035 0.323

12 0.067 0.000 *** '13 ' 0.050 0.335

13 0.004 0.545 '11 -0.046 0.000 ***

1T 0.002 0.663 '1T 0.005 0.278

2T -0.008 0.119

3T 0.002 0.545 R2

1T -0.006 0.000 *** Cost Function 0.928

TT -0.001 0.539 Share Equation 0.489

***, **, * Statistically significant from zero at the 1%, 5% and 10% levels respectively

The Allen-Uzawa own-price elasticities and partial elasticities of substitution (given

in (5.8) and (5.9)) have also been computed. The mean estimated own-price

elasticities are -0.297 and -1.345 for other expenditures and staff price respectively,

which are both negative and so in line with expectations. The own-price elasticities

are negative for all observations. The cross elasticity is 0.632 which is positive and
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thus indicates the two inputs are substitutes and this is the case when the elasticity is

evaluated for each observation. This may reflect the degree to which some labour

activity can be taken in-house (therefore appear on payroll costs) versus by out-

sourcing (appearing under non-payroll costs). This is likely to be the case for non-

capital rolling stock expenditure activities where maintenance can be performed in-

house or by a third party or ROSCO. More generally, at the margin it is reasonable

that there are some substitution possibilities between staff and rolling stock (capital)

(choosing rolling stock that requires less staffing costs).

Thus it appears that the estimated function does represent a cost function consistent

with economic theory at least in terms of sensible cost shares, substitution elasticities

and concavity in input prices (other restrictions such as homogeneity of degree one

in input prices and symmetry are guaranteed by imposition). As such, there is

confidence that the estimated cost function can be used to infer the properties of the

underlying technology.

Finally, before reporting on the scale and density properties of the model, several

restrictions on the Translog can be tested both with a view of obtaining a more

parsimonious function and to test economic hypotheses about the underlying

technology. Of interest are:

 Homotheticity – the cost function is homothetic if it can be written as the

product of a function in outputs and a function in input prices (and, since the

study uses panel data, time) i.e.        thgftC .., PψPψ,  . Thus it requires

that 01 l , 0Tl l=1,2,3, 0'12  , 0' 1 T and 01 T - 9 restrictions.
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 Homogeneity – This refers to homogeneity in outputs. It is a special case of

homotheticity in the sense that it implies unchanging returns to scale i.e.

constant output elasticity i.e.   321

321
 ψf . It requires 01 l , 0Tl ,

0lb l=1,2,3 b=1,2,3, 0'12  , 0' 1 T , 01 T and 0' 2 l l=1,2 - 17

restrictions.

 Unitary Elasticity of Substitution – This implies that 112  in (5.8). This

requires 012  which given the restrictions imposed by linear homogeneity

of degree one in input prices implies 011  - 1 restriction

 Homogeneity and Unitary Elasticity of Substitution – This is the Cobb-

Douglas restrictions (if additionally Homogeneity in the time trend is

imposed) – 19 restrictions (additional 0TT )

 No hedonic characteristics – This requires 0i i=1,..,9. If this is supported

the model reduces to one which is linear in parameters – 9 restrictions.

All hypotheses are rejected as reported in Table 5.3. This shows that the flexible

specification is required to describe the underlying technology. Thus the model in

Table 5.2 is retained as the preferred model. Now the findings on returns to scale and

density are considered.

Table 5.3 Results of specification tests

Homotheticity Homogeneity Unitary Elasticity Cobb-Douglas Hedonic

Number of Restrictions 9 17 1 19 9

Test statistic - Chi-sq 142.24 371.11 360.63 660.79 114.48

p - val 0.0000 0.0000 0.0000 0.0000 0.0000
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5.4.2. Returns to Scale and Density

As described in the introduction section returns to scale (RtS) and returns to of

density (RtD) are defined specifically for train operations. RtS measures how costs

change when a TOC grows in terms of geographical size. RtD measures how costs

change when a TOC grows by running more services (measured by train-hours) on a

fixed network. Applying these definitions to the model in (5.10) the expressions are:
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The definition of RtD and RtS adopted is in relation to the hedonic output. Given the

normalisation of train hours within the hedonic function, the findings on RtD and

RtS with respect to 2 can interchangeably be described in terms of variation in

train hours (holding stations operated and network length and other things, including

output characteristics, equal).

The rejection of the null hypothesis of homogeneity in outputs indicates that RtS and

RtD will be non-constant and vary with the levels of the hedonic outputs, time and

the level of prices. Figure 5.1 plots RtS and RtD for all observations against train

hours. 45% and 94% of observations exhibit increasing RtS and RtD respectively.
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The definitions of RtS and RtD are that there are increasing returns if the estimate is

greater than unity, constant returns if the estimate is unity and decreasing returns if

the estimate is less than unity. RtS and RtD evaluated at the sample mean of the data

are 0.891 and 1.209 respectively. Constant RtS is rejected in favour of decreasing

RtS at the 1% level (p-val=0.0055) and RtD is rejected in favour of increasing RtD

at at the 1% level (p-val=0.0034). Thus from these statistics it does seem that British

TOCs exhibit increasing RtD but decreasing RtS.

This is an economically plausible finding. TOCs are likely to be able to lower unit

costs by running more services on a fixed network. For example, by better

diagramming of rolling stock and staff they can reduce wasted time. Thus it is likely

rolling stock can be used more intensively in a given time period which ultimately

spreads any fixed lease charges over more units of output (train hours). Ultimately

inputs into the production process suffer from indivisibilities and these can be more

productively combined at higher usage levels29.

However, TOCs may struggle to make unit cost savings or even prevent unit costs

increasing when the size of the network served increases, holding utilisation (train

hours per route-km) constant. This can arise since (to some extent) indivisibilities in

inputs are route specific rather than network specific. For example, it can be

envisaged that the utilisation benefits of running more trains between point A and B

will be greater than utilisation benefits from running a set of services from A to B

and then adding a new service from two unrelated points C and D. The latter

29 Importantly indivisibility of inputs is a RtD issue rather than a cost efficiency issue since
the explanation relates to the characteristic of the production technology rather than the
extent to which minimum cost conditional on a level of output is achieved.
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scenario (for the same total train hours) is likely to require more rolling stock units

and more staff hours than the former since there are two rather than one operational

routes. To provide a less abstract (but extreme) example, the addition of a branch

line to an existing network would not be expected to exploit higher utilisation of

rolling stock since it is (almost) an independent operation to the rest of the network.

RtS is actually be found to be decreasing for some observations i.e. unit costs

increasing as scale increases. To explain, an appeal is made to the theory of the firm

which considers that there is an optimal scale of a firm and that at some output level

it gets very difficult to coordinate inputs, and thus unit costs start to rise (the firm is

larger than the minimum efficient scale point). Note that the same pattern of

variation in RtD is found, that is there exists a minimum efficient density level, but

no TOC (yet) operates at a high enough density to attain it.

Figure 5.1 Estimated Returns to Scale and Density against Train Hours for the sample

The RtS and RtD findings are now broken down by TOC types – intercity,
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commuting (into London - LSE), regional and mixed TOCs

Figure 5.2 provides a plot which considers RtD against train density for different

TOC types holding all other characteristics30 at the TOC type sample mean. The

density range of only the middle 80% of the distribution observed for each TOC type

is used, as this avoids showing RtD estimates from the model which are clearly out

of sample and not realistic e.g. intercity TOC services always operate at low

densities due to the long distance nature of the services and so are only plotted over

this range.

Overall, holding characteristics at the sample mean and over the middle 80% of the

distribution, Figure 5.2 shows that all TOC types exhibit increasing RtD and that this

does fall with density, although RtD are never exhausted within the middle 80% of

the sample. At any given train hours per route km level, intercity TOCs exhibit the

lowest RtD, while LSE exhibit the strongest (and, indeed, even at the 90th percentile

density in sample, the RtD estimate is in excess of 1.2). Intuitively, the curve for

mixed TOCs is somewhere in-between the curves for intercity and regional.

The policy conclusion from the analysis of RtD is that most TOCs should be able to

reduce unit costs if there is further growth in train hours in response to future

increases in passenger demand. This is important given the strong upward trend in

passenger demand since rail privatisation in Britain and also noting that the trend

seems to be continuing, even during the recession at the end of the sample period

30 In this sub-section ‘characteristics’ refers to all other variables in the cost function and not

just the output characteristic variables in it2 .
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(ORR, 2012). It is also relevant for recent policy in Britain following Sir Roy

McNulty’s Rail Value for Money study, since unit cost reductions of around 25% are

targeted for the TOCs, and according to the results this chapter (increasing RtD), part

of this unit cost reduction will occur naturally as train hours increase on a fixed

network (though other savings will also be needed and the ability to grow volumes

will be constrained to some extent by capacity and also by demand). In the wider EU

context, the European Commission has aggressive targets for rail passenger usage

and market share which will increase passenger train density and therefore should

reduce unit costs (assuming that train-km can be expanded without the need for

investment in infrastructure). The results show that the LSE service type has

substantial scope for unit cost savings from increasing usage and this also holds for

many regional TOCs given the large spread of usage levels across this group.

However there is less scope for unit cost savings (and possibly a risk of decreasing

RtD from large increases in usage) for intercity TOCs and regional TOCs at the high

usage end of the spectrum.
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Figure 5.2 Returns to density for different TOC types holding other variables constant

Figure 5.3 Returns to scale for different TOC types holding other variables constant

Figure 5.3 provides a similar plot for RtS. This shows that for all of the middle 80%

of the train hours distribution, intercity (and mixed TOCs) exhibit decreasing RtS.
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LSE TOCs exhibit increasing returns to scale only for the very smallest in sample,

whilst regional TOCs are the only TOC type to have an appreciable range of scale

exhibiting increasing returns to scale. Thus the results are consistent with a u-shaped

average cost curve, although it would appear that most TOCs are operating at or

beyond the minimum unit cost point.

This finding has important implications for examining the optimal size of TOCs and

is relevant to the recent franchise policy change that has resulted in substantial

franchise re-mapping. The chief aim of these mergers was to capture the benefits of

sharing of staff and rolling stock between services and to reduce the number of

operators running out of London stations, so as to improve timetabling and real time

control of use of infrastructure (platforms etc). This has tended to result in larger

franchises e.g. Great Western re-mapping (an example considered in 5.4.4), which

implies an increase in the size of TOCs which, given the findings on RtS, is likely to

increase rather than reduce unit costs. However, there are a number of other factors

that change through re-mapping TOCs relevant to the model, notably possible

reduction in overlap of franchises (which increases the density of operation) and a

move to a mixture of the type of services provided. The model shows that TOCs tend

to have increasing RtD which acts to reduce unit costs following TOC mergers. As

discussed above, there are also important heterogeneity factors to take into account.

Which effect will dominate in a given situation is an interesting research question.

Next the findings regarding heterogeneity are discussed, followed by consideration

of the cost implications for mergers, via a set of real world examples.

Finally in considering the policy implications of our findings on RtD and RtS, it
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must be remembered that the analysis concerns the costs of passenger train

operations only. Just because unit costs can be reduced by running more train hours

or by franchise remapping does not mean that this is the best course of action; best

from the perspective of either minimizing whole system cost or maximizing welfare.

There may be demand side constraints such that running extra train services may not

yield a sufficiently large increase in passenger usage to justify the extra cost. There

may also be a reduction in competition between franchises if franchise overlap is

reduced, which may result in a net disbenefit. Finally running extra train services

may have negative externalities to other services due to infrastructure congestion and

other infrastructure costs. Thus this analysis should be used alongside analyses of

other aspects of the railway system to evaluate the merits or demerits of specific

interventions. Note that when merging/remapping TOCs is considered in sub-section

5.4.3, then these issues of congestion and demand side constraints are less important

given we are simply rearranging the provision of existing services.

5.4.3. Implications of heterogeneity

This section considers the impact of TOC heterogeneity on costs; the other variables

populating the hedonic cost function i.e. the
2jq j=1,..,9 variables and related

coefficients in Table 5.1. The elasticity of cost with respect to average train length,

train speed and passenger load factor are proportional to the elasticity with respect to

train hours, with the coefficient on the characteristic acting as the proportionality

constant:
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All 2j j=1,2,3 coefficients are less than unity indicating that the cost elasticities

with respect to these characteristics are lower than for train hours. This is intuitive.

Generally from an operations perspective, it is cheaper to add vehicles to existing

trains (q12) rather than run more train services (e.g. there is still only one driver).

Likewise the passenger load factor coefficient (q32) is very low which indicates the

very low marginal cost of carrying extra passengers once the number of train hours

and train length are controlled for. The train speed coefficient (q22) implies that

running trains a greater distance, holding train hours constant, increases costs less

than increasing train hours and distance together. This result is due to both staff and

most of vehicle costs being time based rather than distance based, all other things

being equal.

In terms of implications for RtD and RtS, given the findings of decreasing RtD and

RtS with the size of it2 , a TOC operating the same train hours can be expected to

have greater RtD and RtS if it operates shorter trains, slower trains and/or has a

lower passenger load factor. This follows from the fact that the level of the hedonic

output, it2 is found to be an increasing function of q12, q22 and q32. Furthermore,

these findings are intuitive.

Turning to the findings specifically on the effect of TOCs providing a mixture of

service types, which is given by the coefficients on the interaction proportion

variables and number of generic rolling stock types operated i.e.
it2jq j=4,...,9. To
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explain the findings, it is useful to consider some stylised examples. Table 5.4

presents the growth in the hedonic output 2 from the base case of a wholly

regional TOC. Table 5.4 firstly considers the impact of mixing service types and

then considers the additional impact of a TOC operating more rolling stock types

which is likely when TOCs provide more service types (highlighted grey).

Importantly, it shows that while mixed TOCs are more expensive than regional

TOCs, they are not more expensive than exclusively intercity or LSE TOCs, all other

things being equal. Adding in the effect of increasing rolling stock types increases

the growth rate in the hedonic output further relative to a wholly regional TOC,

however mixed TOCs still are less costly than pure intercity and LSE TOCs.

Thus Table 5.4 would seem to indicate that allowing TOCs to produce mixed

services is beneficial. However, it should be noted that heterogeneity and changes in

heterogeneity are captured in the model via a complex set of variables (including

train speed, train length and passenger load factor) as well as the TOC type

dummies/number of rolling stocks etc. All these characteristics will change

following a franchise re-mapping (and not just the TOC type dummies/ rolling stock

variable). Thus the overall effect is a complex interaction of all heterogeneity

characteristics, density, scale and input prices. As such when specific re-mappings

which result in mixed TOCs are considered, the overall heterogeneity effect may

actually be cost increasing (as is indeed the case in the Greater Western example

consider in the next sub-section).
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Table 5.4 Heterogeneity findings – Growth in hedonic output ( 2 ) relative to a regional only

TOC

Notes: a) The growth rate is constructed as the percentage increase in 2 resulting from a
change in the composition of the TOC relative to the base case (a 100% regional TOC).

Formally, Growth rate =   1929282827272626252524242 qqqqqq eeeeee  .

b) The computation is indifferent to the number of rolling stock types in the base case
c) The impact of combining rolling stock types is included by implicitly assuming each TOC
type operates three unique rolling stock types.

5.4.4. The impact of franchise re-mapping

In this sub-section, the estimated model is used to predict the cost change from re-

mapping franchises31. The franchise re-mapping in recent years has, in most cases,

the following implications:

 In general there has been a rationalisation to larger franchises. Thus there will

be scale effects, which given the finding of decreasing RtS for large TOCs

31 Note simply comparing the sum of costs for the pre-re-mapped TOCs with those from the
post-re-mapped TOCs is not valid because there is output, input price and technical change
growth between the time periods that they are observed in the dataset. Also, the last year and
first year of data are often cost data with the most measurement error given the required
adjustments to align costs to match a standard financial years (when in fact re-mappings
occur within years). Thus the model is used to predict the cost change.

Regional LSE Intercity

100% 0% 0% 0 0.0% N/A

0% 100% 0% 0 36.2% 0.000 ***

0% 0% 100% 0 52.9% 0.000 ***

33% 33% 33% 0 0.7% 0.588

50% 50% 0% 0 3.9% 0.563

0% 50% 50% 0 -1.3% 1.603

50% 0% 50% 0 18.9% 0.000 ***

33% 33% 33% 6 14.5% 0.000 ***

50% 50% 0% 3 10.8% 0.157

0% 50% 50% 3 5.2% 0.002 ***

50% 0% 50% 3 26.8% 0.000 ***

Growth rate

Increase in

rolling stock

types

TOC Type Composition

p-val
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could increase unit costs.

 Irrespective of whether the re-mapped TOC(s) are larger, the move to

integrating TOCs of various service types results in a removal of franchise

overlap which implies that the sum of the route-km for all the re-mapped

TOC(s) will be less than the sum of the route-km for the previous TOCs. This

implies that for a given usage level (train hours), density of usage increases.

Thus, there will be density effects which, given the finding of increasing

returns to density, implies a decrease in unit costs.

 The re-mapped franchises now provide more than one service type, as

opposed to the previous TOCs which, in most part, operated only one service

type. Thus the TOCs formed from re-mapping will have TOC heterogeneity

measures (length of train, average speed etc.) which are weighted averages of

the previous TOCs. This will not necessarily be cost neutral given the

flexible form that the quality variables enter into the model (there are non-

constant elasticity effects in the model). The new TOCs will also have non-

zero values for some of the TOC service type heterogeneity interaction terms

i.e. there will be effects from the TOC providing a mixed service.

Furthermore, they may be operating different numbers of rolling stock types

(see Table 5.4).

The extent to which mergers can deliver cost savings through exploiting

increasing RtD depends on the relative heterogeneity characteristics before

and after re-mapping. This effect is qualified by providing the evaluated 2

divided by route-km for the TOC, which is termed the ‘heterogeneity

adjusted density’ measure. It is this that determines the extent to which a
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TOC can exploit any increasing RtD since RtD is defined with respect to the

hedonic output. It should be noted that it is the proportional change in this

measure from the before to after re-mapping situation which gives the extent

to which density is changing; the absolute number is meaningless (it is a

function of the units of the data). If the proportional change in heterogeneity

adjusted density is greater than the proportional change in train hours density

then heterogeneity is reinforcing the returns to density (and scale) effects.

This is because the density measure that is actually driving RtD/RtS is

increasing more than the naive measure of density (train hours density).

Similarly, if the reverse is true heterogeneity is dampening the RtD (and RtS)

effects.

Clearly, a priori for a given merger, there are conflicting effects; with increasing

density generally reducing costs, increasing scale of operations increases costs and

the impact of changes in heterogeneity being ambiguous. Two real world mergers

are considered and also a hypothetical merger, which is quite topical at present, due

to the policy aspiration of several northern English regions to expand and become

franchisor of the enlarged Northern franchise. The characteristics of each merger are

described in Table 5.5, alongside the predicted cost changes. The following

observations can be made:

 Greater Western merger – This is found to increase costs. This is for two

reasons. Firstly, there is an exhaustion of RtS i.e. the new franchise is simply

too large. Secondly there is a large fall in the impact of heterogeneity on 2 .

The result is that while train hours density increases by 57%, heterogeneity

adjusted train density increases by only 12%. This implies that the Greater
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Western TOC is unable to exploit increasing RtD as much as would be

expected based on the large increase in train density, thus there is only a

weak off-setting cost reduction effect from density relative the cost

increasing scale effect (the impact of heterogeneity is to dampen any density

effect). In any case, the new franchise has even exhausted RtD savings

(being estimated to exhibit roughly constant RtD)

 London Eastern re-mapping – This is found to decrease costs. Importantly

both the new franchises have increasing RtD and one TOC still has

increasing RtS (the other has constant returns to scale). Thus it is concluded

that these TOCs are not operating at output levels above the minimum

efficient scale points.

 New Northern franchise – This results in a small increase in costs. This

seems to be due to the decreasing RtS faced by both the Northern and New

Northern TOCs and constant RtS of Transpennine Express. Furthermore, it is

predicted by the model that the New Northern franchise will have exhausted

RtD. Overall the effect of heterogeneity changes is approximately neutral

from one mapping to the other.
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Table 5.5 The predicted cost impacts of franchise re-mapping

Name

TOC

Type

Route-

km

Train-

hours

Train

Hours

Density

Hetrogeniety

Adjusted

Density RtS RtD

Predicted

Cost

2006/07 Great Western Intercity 1368 598 0.437 165.1 0.815 1.061 278

Great Western Link LSE 581 550 0.947 108.1 1.023 1.267 138

Wessex Regional 1394 529 0.380 26.2 1.021 1.218 92

Total 3343 1677 0.502 97.3 508

2004/05 Anglia Regional 669 312 0.467 69.2 1.087 1.336 47

Great Eastern LSE 235 555 2.362 404.8 1.041 1.417 95

WAGN LSE 414 886 2.139 300.8 0.923 1.256 167

Total 1318 1753 1.330 201.8 308

Northern Regional 2746 2597 0.946 48.5 0.744 0.984 389

Transpennine Express Regional 1251 633 0.506 40.4 1.023 1.170 137

Total 3996 3230 0.808 46.0 527

Name

TOC

Type

Route-

km

Train-

hours

Train

Hours

Density

Hetrogeniety

Adjusted

Density RtS RtD

Predicted

Cost

2006/07 Greater Western Mixed 2129 1677 0.788 109 0.737 0.992 554

Total 2129 1677 0.788 109 554

2004/05 ONE Mixed 1001 1028 1.027 142 0.786 1.091 170

Great Northern LSE 275 725 2.637 383 1.116 1.430 120

Total 1276 1753 1.374 194 290

New Northern Regional 3019 3230 1.070 62 0.724 0.990 579

3019 3230 1.070 62 579

Name

Route-

km

Train-

hours

Hetrogeniety

Adjusted

Density £'000 Percent

2006/07 Greater Western -36% 0% 12% 45.6 9%

2004/05 ONE/Great Northern -3% 0% -4% -17.9 -6%

2010/11 -

hypothetical New Northern -24% 0% 34% 52.6 10%

Year of

remapping

Pre-remapping TOCs

2010/11 -

hypothetical

Year of

remapping

2010/11 -

hypothetical

Post-remapping TOCs

Notes: 1) Method for calculating metrics for Post-remapping TOCs: Route-km: taken from actual values in subsequent years;

Train-hours: sum of pre-remapping TOCs allocated to post-remapping TOCs through proportion split between post-remapping

TOCs in a subsequent year; Predicted cost - in addition to the aforementioned variables, assumptions needed to be made regarding

the level of other variables in the function i) input prices - averages of input prices for pre-mapping TOCs ii) levels of other

variables in the hedonic output function - taken from actual data for post-remapping TOCs in the subsequent year iii) number of

stations operated is taken from subsequent year data for post-remapping TOCs.

2) The New Northern TOC is hypothetical: Measures are calculated as in Note 1) with the exception: i) route-km this is given as

the Northern route-km plus the additional route length of Transpennine Express of the North West route to Glasgow ii) number of

stations operated is the sum of the stations operated by the two merging TOCs.

Year of

remapping

Train Hours

Density

Cost ChangePercentage change in Characteristics (+ indicates increase)

57%

3%

32%
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5.5. Summary

In this chapter, a hedonic Translog cost function for TOCs in Great Britain has been

estimated. The model includes three hedonic outputs: route-km, stations operated

and train hours. The use of train hours (over train-km) is a data innovation in itself

but, in addition, the train hours hedonic output has a number of characteristics also

included within the hedonic function, which characterise TOC heterogeneity. Thus

the model is rich in its characterisation of firms’ technology.

This richness allows establishment of a deeper understanding of the variation in

returns to scale and density in the industry. In particular, different scale and density

effects can be distinguished depending on the output characteristics of the TOC and

not just the usual overall output level and input price level as in a simple (non-

hedonic) Translog cost function. This is important since there has recently been a

move towards re-mapping franchises to larger, more heterogeneous franchises,

which requires such a rich model to determine whether this increases or reduces

costs.

The analysis indicates over 50% of TOCs in the sample operate under decreasing

RtS. Furthermore, returns to scale fall with the size of operation, which is consistent

with a u-shaped average cost curve. The implication of these findings is that the

current mappings of TOCs in Britain are such that operations are above their optimal

size given that most TOCs operate with decreasing RtS i.e. on the upward part of the

average cost curve. Thus there is an argument for more, smaller TOCs.
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However, it is found that there are increasing RtD, i.e. unit cost savings from

running more trains on a fixed network. This has two implications. Firstly,

increasing capacity (train hours) to meet increasing passenger demand should reduce

unit costs. Secondly, there is scope to reduce unit costs by removing franchise

overlap; this effect therefore working in the opposite direction to the scale effect (as

the density finding suggest that TOC mergers with reduce unit costs). There can

however be impacts of changes in the output mix (heterogeneity of services) which

prevent TOCs from exploiting any RtD even though train hours per route-km

increases.

Three examples of the cost changes from mergers are presented which demonstrate

the importance of changes in scale of TOCs which generally increases unit costs,

changes in the density of operation of TOCs which generally reduces unit costs and

changes in the output heterogeneity which affect the extent to which any RtD can be

exploited. It is found that two mergers increase costs while one considered reduces

cost. Overall, the analysis shows that it is important to model the intricate

relationship between cost and scale, density and heterogeneity explicitly, rather rely

on simple heuristics (e.g. large TOCs increase unit costs, but denser TOCs reduce

unit costs) as it is the interactions between these three factors which results in the

direction and magnitude of a cost change. In particular, changes in heterogeneity

characteristics played a substantial role in the Great Western re-mapping since these

changes prevented exploitation of the returns to density, which implied an overall

cost increase due to relatively substantial decreasing RtS. Since franchise mergers

also reduce on rail competition which maybe undesirable (Jones, 2000), the

supposed cost savings from exploiting RtD are important in supporting the case for



157

mergers. It is therefore illuminating that this study suggests that these returns may

not be realised in all cases.

Though the empirical example is focused on the British TOCs and offers some

important insights in respect of rail policy in Britain, it also has wider implications.

The findings suggest that previous estimates of scale and density properties in

railways may have been biased, to the extent that they did not adequately model the

interaction between scale/density and heterogeneity of services. In terms of

regulatory policy, in interpreting evidence on scale and density returns in railways,

the model suggests that policy makers need to take service heterogeneity into

account. Failure to do so may mean that policy decisions are made on the basis of

supposed scale/density returns that cannot be realised in practice. Modelling railway

operations is complex and thus to address specific policy questions (such as the cost

implications of mergers) a rich model, such as that developed in this chapter, is

required.
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6. Infrastructure cost analysis32

6.1. Introduction

One clear finding from the railways infrastructure review (sub-section 4.3.1) was

that railway infrastructure suffers from increasing returns to density i.e. there are

average cost savings from a single infrastructure manager at least in a given

geographical area i.e. between the same origin and destination points. Thus the cost

characteristics and the organisation in Britain is such that there is a single, monopoly

infrastructure manager. With monopoly comes price setting power and as such there

is a need to provide economic regulation in an attempt to correct the market failure.

Economic regulation requires information on the (efficient) cost structure of the

industry and thus some form of benchmarking is required to establish this.

In this chapter, the task of benchmarking a single infrastructure manager in a country

with other international comparators is considered. Relying on time series analysis

for a given infrastructure manager is difficult since efficiency and technical change

cannot be distinguished separately. Furthermore, even assuming away any technical

change factors, any time series approach would rely on a firm having been efficient

in the past to gauge the current performance of the firm relative to best practice.

Thus some cross sectional comparisons need to be made and these may or may not

be augmented with repeat observations over time (forming a panel data set). Past

32 This chapter is based on Smith and Wheat (2012b). There is additional discussion of
potential modelling innovations, covering the use of the Mundlak (1978) transformation in
6.4.3 and Closed Skew Normal distributions as a basis for estimating the dual-level model in
6.4.4.
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econometric analysis has adopted one of two approaches to develop cross sectional

comparators.

Firstly, internal benchmarking can be undertaken. This considers data on business

units within the single company. Thus cross sectional observations are provided by

considering the integrated firm as comprising several smaller units. This was the

approach undertaken by Kennedy and Smith (2004) for seven zones comprising the

British railway network (operated by the single infrastructure manager, Network

Rail). This is likely to provide some indication as to the likely variability of the

performance of the units within a firm but will ignore any persistent under

performance of all of the business units that can arise from inefficiency common to

all units and with respect to joint costs not considered within the analysis. Regarding

data, costs can be reported using consistent definitions across the units given all the

units considered are from same firm, providing the researcher with reassurance that

data is comparable and thus inefficiency measurement based on residuals is robust.

This is with the proviso that the units are meaningful from an organisational

perspective and that joint costs are not arbitrarily allocated to units. Failure of either

of these conditions will result in misleading comparisons.

The second approach is to collect data on a number of infrastructure managers across

different countries. Smith (2012) and Smith, Wheat and Smith (2010) discuss the use

of this approach by benchmarking Network Rail against European comparator

railways using data from the UIC. This approach also underpinned the efficiency

determination for Network Rail in the 2008 Periodic Review (see ORR (2008)). In

general, this method has the advantage of considering performance benchmarks
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outside of the firm of interest; thus comparing the firm to best practice elsewhere. A

key constraint is data, both in terms of collecting data on the same variables across

countries, but more subtly, ensuring that the definitions of variables, particularly cost

definitions are the same. Obviously, failure to collect enough variables will result in

many exogenous cost drivers being excluded from the analysis and, given efficiency

analysis majors on what variation in costs are left over after controlling for observed

factors, lead to misleading efficiency conclusions. Nonetheless, the same problem

will arise if variables are defined in an inconsistent way from firm to firm. The need

for consistent data is likely to constrain the number of firms that can be considered.

The 2008 Periodic Review work is one of the few examples of this approach

undertaken in practice; partly a result that the dataset was already collected over a

number of years for a separate purpose which made analysis feasible.

Clearly either approach is likely to have limitations. The subject of this chapter is to

consider a combination of the two approaches outlined above. It considers how best

to exploit regional data for a number of countries simultaneously.

The structure of the chapter is as follows. Section 6.2 discusses the unique features

of the dataset. Section 6.3 develops a stochastic frontier model to suite the data

structure. Section 6.4 outlines econometric estimation of the proposed models in

section 6.3. Section 6.5 applies the models to a data set of European and North

American railway infrastructure managers.
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6.2. Sub-company data structure

Figure 6.1 shows the structure of the sub-company data that this chapter is focusing

on. The data is collected for business units (here in called “sub-companies”) for a

number of railway infrastructure managers (IMs). This requires the following

notation. Denote infrastructure managers by index i, with i=1,...,N, and the sub-

companies comprising each IM by index s, with s=1,...,S(i). Thus the notation is

flexible enough to accommodate different numbers of sub-companies per IM which

is important given that there is no a priori reason for the same number of sub-

companies to be observed per IM. For cases where the sub-companies are observed

over a number of time periods a further index t is required, t=1,...,T(i); again the

index accommodates different numbers of time periods per IM.

Figure 6.1 Sub-company data structure

Thus the dataset is tiered with multiple regional observations per IM. It is important

to realise, however, that the data itself is only at one geographic level for each firm;

data is collected by sub-company and not at the IM level. The ‘dual-level’ refers to

Infrastructure
Manger

Region (sub-
company)

IM1 IM2 …

R11 R21 RS1… R12 R22 RS2…

Inefficiency due
to systematic
differences
between firms
– external
inefficiency

Inefficiency due
variation in
performance at
regional level –
internal
inefficiency
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the tiered modelling of inefficiency discussed below.

There are two possible advantages of utilising data comprising observations on

business units across a number of companies. The first is that using data on sub-

companies rather than restricting analysis to a single observation per IM implies

more observations, which is clearly an important consideration given sample sizes

are often small for regulatory benchmarking purposes. The second is that, by

comparing the regulated IM to other IMs, benchmarking will be relative to external,

rather than simply internal, best practice.

A more subtle benefit to the data structure is regarding the conceptualisation and

modelling of inefficiency. Utilising this data structure explicitly allows us to

consider inefficiency that may arise due to both overall IM management policies

(head office) and how these are implemented across the sub-companies. In

particular, econometric methods can be used to distinguish between inefficiency that

differs between sub-companies within a given IM and any inefficiency which is

persistent across all the sub-companies in a given IM. This model is labelled as the

‘Dual-Level Inefficiency Model’. This model distinguishes between inefficiency due

to systematic differences between IMs (external inefficiency) and variation in the

performance between sub-companies in a given IM (internal inefficiency). A more

detailed discussion of the economic interpretation of this model is provided in

section 6.3.2.



163

6.3. Sub-company model of inefficiency

In this section, a stochastic frontier cost33 model which allows for both persistent,

firm-specific and sub-company level inefficiency effects (external and internal

inefficiency respectively) is developed. Interesting special cases are also outlined,

which are subsequently used as (nested) comparator models in the empirical

illustration in Section 6.5.

6.3.1. Dual-level inefficiency model

The model consists of a cost frontier which has been transformed by taking

logarithms:

itsitsits vu);(fCln  βXits i=1,…,N, t=1,…,T(i), s=1,…,S(i) (6.1)

where itsC is the cost for sub company unit s in firm i in time period t,  is a

constant, itsX is a k dimension vector of outputs and input prices (and covariants if

applicable), β is the conformable vector of parameters, itsv is a random variable

representing statistical noise and itsu is a variable representing inefficiency. itsv is

assumed to be distributed independently from the regressors and itsu . The

inefficiency term(s), while initially multiplicative, are additive following the

logarithm transformation and thus inefficiency is a Farrell (1957) type radial

33 As widely noted in the literature, the model can easily be translated into a production

function by reversing the sign on itsu .
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measure.

In order to consider inefficiency effects at two levels within the firm, itsu is

decomposed into:

itsititsu  with itsit v , iid~it and iid~its (6.2)

In this formulation itsu is split into two components: it , which is the persistent

element of inefficiency that applies across all sub-companies within the same firm;

and its , which is the residual component that varies randomly across all sub-

companies. Both inefficiency terms may either be fixed over time or vary in some

way.

In order to explain the economic interpretation of the model, and its position within

the literature, the t subscripts from the model are dropped to allow focus on the sub-

company structure of the data. Following this, the different assumptions that may be

made concerning the variation of inefficiency over time are considered. Re-writing

(6.1) and (6.2) without the time subscripts yields:

isisis vu);(fCln  βX is i=1,…,N, , s=1,…,S(i) (6.3)

where isiisu  with isi v , iid~i and iid~is .

This formulation is analogous to that presented in Kumbhakar and Hjalmarsson
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(1995) and Kumbhakar and Heshmati (1995). In their formulation, applicable to

standard panel data (i and t subscripts only), i represents the persistent (over time)

element of inefficiency, and it is the residual component of inefficiency34 (both of

which are one-sided). Here the same distinction between persistent and residual

inefficiency is made, but this time over sub-companies comprising a firm, rather than

time.

Since isu is the inefficiency of each sub-company in the sample (comprising a

persistent and random element), a further step is required to produce an overall

measure of firm inefficiency. Overall inefficiency for an individual firm is computed

therefore as the sum of the persistent element and a weighted average of the random

component for each of the sub-companies within the firm:













s
is

s
isis

ii
C

C

u (6.4)

6.3.2. Economic Interpretation

The model in (6.3) can be interpreted in terms of separating out at what geographic

level inefficiency within an IM varies; either at the IM level or at the sub-company

level. i represents the component of inefficiency which is persistent across all sub-

companies within an IM, thus yields a measure of performance that varies across

34 The terms persistent and residual inefficiency are adopted since they are terminology in
Kumbhakar and Hjalmarsson (1995).
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firms but not across sub-companies within an IM. This is termed external

inefficiency. it gives an additional sub-company performance measure; i.e. the

inefficiency of a given sub-company additional to the inefficiency for all sub-

companies within the IM. This is termed internal inefficiency.

Care should be taken not to confuse the above interpretation with one which states

where the inefficiency resides in terms of which level of management (head office

versus regional) is ‘responsible’ for the inefficiency. Indeed, in presenting this work

at conference35 and other industry/regulatory meetings, the isi v assumption has

been challenged as unrealistic. The criticism arises since it is perceived that i

measures the inefficiency that can be attributed to central management failings,

while it measures the inefficiency that can be attributed to regional management

failings. However, some comments have suggested that if central management have

a high degree of incompetence then they may be less rigorous in their appointment of

regional managers which may in turn lead to on average worse performance of the

managers in the IM. Thus, the argument follows that there is dependence between

the two error components. However this argument only follows if the model is

viewed as yielding measures that can be attributed to each level of management. All

the model actually yields is which element of inefficiency varies by sub-company

versus that which is persistent across all sub-companies in a given IM. If the model

is to be viewed as yielding measures as to where efficiency resides, then care should

be taken to be clear that any inefficiency arising from appointment of incompetent

regional managers (the example above) is the ‘fault’ of the higher level managers; it

35 Workshop on Efficiency and Productivity Analysis (EWEPA) June 2009, Pisa, Italy.
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appears in the high level inefficiency score.

In addition to interpreting the allocation of inefficiency between the two error

components, a discussion is required as to the validity of interpreting i as

inefficiency as opposed to other sub-company invariant unobserved factors. Such

factors may include climate effects e.g., it may be expected the prevailing weather

conditions in different countries will affect the costs of providing railway

infrastructure. If these are not specifically included as regressors in the model and

are to some extent sub-company invariant then it can be expected that these would

influence i . Thus it is not clear that i represents inefficiency vis-à-vis sub-

company invariant unobserved heterogeneity. There is no definitive practical

solution to this dilemma; the preferable mitigating method is to try and incorporate

as many cost driving explanatory variables into the analysis as possible. This is not

an issue confined to the exploitation of sub-company data; in the standard panel

literature the i term has also been interpreted as a measure of time invariant

unobserved heterogeneity (see Greene, 2005, Kumbhakar, 1991, Heshmati and

Kumbhakar, 1994). The use of the Mundlak (1978) transformation/decomposition of

the fixed effects model is discussed in section 6.4.3 as a possible way to separate out

unobserved heterogeneity from inefficiency. Nethertheless, this decomposition

requires the assumption that unobserved heterogeneity is correlated with the

regressors and inefficiency is not.

Finally, as noted in the introduction, the use of sub-company data has benefits for

performance analysis and more generally cost analysis beyond the ability to measure

dual level performance. It can substantially increase the number of observations for
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analysis which addresses a common problem in economic regulation (small N).

Furthermore, aggregation bias can arise in an estimated cost function if data is

aggregated at a level that is not equivalent to the level at which operational decisions

are actually made (Theil, 1954). For example, analysing infrastructure of railways

using national data may lead to misleading estimates of returns to network size if the

railway is in fact organised into zones. A more useful concept would be to look at

the returns relating to network zone size. Much depends on what the analyst is trying

to understand in the first place, but overall sub-company data provides a much richer

dataset to investigate much more subtle distinctions regarding returns of size and

density. Clearly, if aggregation bias is present in the deterministic frontier, then this

will lead to systematic under or over prediction in inefficiency (omitted variable

bias).

Both simulation and analytic evidence to confirm the above point has been provided

by Brorsen and Kim (2013) for the stochastic frontier model. In particular they

consider the case where managerial autonomy is at the disaggregated level, but costs

are modelled at the aggregate level. The empirical example used to inform their

simulation is schools (disaggregate level) and school districts (aggregate level). It is

shown that if costs are modelled at the aggregate level then returns to scale estimates

are biased downwards (towards decreasing returns) and inefficiency (measured by

the magnitude of the inefficiency variance) is also biased downwards (under

estimated).
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6.3.3. Sub-company inefficiency invariance model

One interesting special case that is nested within the model outlined in (6.3) is the

sub-company inefficiency invariance model. Where it is reasonable to assume that

s,i0is  , that is, all inefficiency is persistent across sub-companies in a firm, and

thus there is no additional inefficiency variation between sub-companies comprising

a firm, then the model can be written:

isiis v);(fCln  βXis i=1,…,N, s=1,…,S(i) (6.5)

In this case the model has reduced to a more conventional model, analogous to the

time invariant inefficiency models of Pitt and Lee (1981) or Schmidt and Sickles

(1984) but with inefficiency invariance in sub-companies comprising a firm rather

than across time.

It should be noted that one of the weaknesses of the time invariant model in the

standard panel inefficiency model literature is that it may not be appropriate to

assume that inefficiency is invariant over time, particularly when panels are long

(and it is exactly when panels are long that the benefits of the panel approach to

inefficiency estimation are fully felt). Whilst the assumption of sub-company

inefficiency invariance may likewise be challenged – in fact, the presence of sub-

company effects is the motivation behind the dual-level efficiency model – this

assumption may be a reasonable approximation in some circumstances (when there

is little sub-company autonomy). Furthermore, the assumption does not necessarily

become more implausible as the number of sub-company units is increased (as is the
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case for long panels). Importantly, since this model is nested within the dual-level

inefficiency model, the absence of sub-company inefficiency variation can be tested.

6.3.4. The pooled model

The restriction 0i  i yields a simple pooled model in which the inefficiency of

each sub-company ( isisu  ) is assumed to be identically and independently

distributed across all sub-company units irrespective of which firm they belong to. In

this case the central management in each firm plays no role at all from an

inefficiency perspective. Since this model is nested within the dual-level inefficiency

model, the absence of a persistent, firm-specific inefficiency component can be

statistically tested.

6.3.5. Assumptions about inefficiency variation over time

The empirical application comprises data both at sub-company level and over time.

The focus of the sections above has been on the sub-company dimension of the data

structure. Therefore, the dual-level inefficiency model outlined in (6.1) and (6.2)

makes a simple assumption concerning the variation in inefficiency over time (

iid~it and iid~its ). The pooled model likewise makes a simple assumption

regarding the variation in inefficiency over time ( iid~u itsits  ). In the sub-

company invariance inefficiency model (6.5), where 0its  , firm inefficiency ( i )

is assumed to be invariant over both sub-company and over time.
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It is possible to make alternative assumptions about the behaviour of both the it

and its inefficiency terms over time. These include independence and invariance

over time as noted above, but could be extended to allow varying inefficiency over

time via a deterministic scaling model (presented in the most general forms in

Kumbhakar and Lovell (2000), Orea and Kumbhakar (2004)). Section 6.4 shows

how to estimate such paths for the case of the sub-company invariance model.

Importantly, sub-company data structure potentially provides a powerful way to

estimate firm specific paths of inefficiency over time, since there can be many

observations per firm relative to the number of time periods. This is in contrast to the

use of panel data where the number of observations per firm is equal to the number

of time periods to which they are observed.

6.4. Estimation

6.4.1. Dual-level inefficiency level model

The estimation framework draws on the approach by Kumbhakar and Hjalmarsson

(1995) and Kumbhakar and Heshmati (1995). Consider (6.1) re-written as:

݈݊ ௜௧௦ܥ = +௜௧ߙ (ߚ;௜௧௦ݔ݂) + ௜߬௧௦+ ௜௧௦ݒ (6.6)

where itit  .

At this stage, no distributional assumptions on the two inefficiency error components

have been made, except that they are distributed independently of the random noise
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term itsv and independently of each other. Now additional assumptions are made to

facilitate estimation. Firstly, assumptions need to be made as to whether it or

correspondingly it are correlated with the regressors. If so, it is considered to be

a fixed effect. If not, then it is considered to be a random effect. This assumption

is considered in more detail in section 6.4.2 and an alternative formulation to

decompose the fixed effect is outlined. Secondly, the assumption that its is

uncorrelated with the regressors and its is a random effect is made. Treating its as

a random effect is a necessary assumption for the case of T=1 since fixed effects can

not be identified from the regressors for T=1.

This model could be estimated in several ways. The first two methods use maximum

likelihood to estimate the model in one stage. These are variants of the ‘True’ fixed

and random effects models proposed by Greene (2005). In both cases

 2
its ,0Niid~  and  2

vits ,0iidN~v  , however it is possible to relax the

assumption of homoscedasticity and zero mean of the (untruncated) distributions

(Greene 2005). The formulation is the same as the original formulation of the pooled

stochastic frontier model proposed by Aigner et al (1977), but with effects by firm

per time period36.

36 Note that by effects by firm per time period it is not meant that the model has two way
effects in firm and time. Instead there is one set of effects, with one effect for each year and
firm. This is very general and could be replaced with an assumption that the persistent
inefficiency of sub-companies in a firm is also time invariant, in which case

iiit  . This is the assumption that is used in the empirical application. A

further assumption could be that 2
3i2i1iit tt  , i.e. that the persistent

inefficiency follows a Cornwell et. al. (1990) type variation over time.
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In the True fixed effects case, it is treated as a fixed effect and maximum

likelihood is used to estimate the model. This case allows it to be correlated with

the regressors. A potential disadvantage of this estimation approach is that, because

of the presence of fixed effects, estimates of all parameters in the model (not just the

fixed effects) may be inconsistent and biased. This is known as the incidental

parameters problem (Neyman and Scott, 1948 and Lancaster, 2000). Greene (2005)

provides Monte Carlo evidence that the bias does not appear to be substantial when

T=5, which is encouraging given the short nature of panels typically available for

performance analysis studies.

Estimation of this model by maximum simulated likelihood yields estimates of

22
vit ,,,  β . Ignoring for now the fact that the it ’s are estimates and not

population values, following Schmidt and Sickles (1984),

  
pitmin T N 37 (6.7)

As such a consistent estimator of it is given by

 
itpititit minˆ  T N 38 (6.8)

For finite N and T, this method of recovery of it results in a measure of relative

37 This is a correction to the published paper. Consistency in this case requires both N and T
to expand (given the effect varies by time and firm).
38 The use of “min” is also a correction from the published paper. This also effects equations
(6.9) and (6.14).
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inefficiency (relative to the best performing firm/time observation). However this

estimator cannot be constructed because the it ’s have to be estimated. Thus the

feasible estimator of it is:

 ititit
ˆminˆˆ̂  (6.9)

The conditional expectation predictor proposed by Jondrow et al (1982) can be used

to calculate a point predictor for the residual component of inefficiency, its :

   
 **its

**its
**itsitsits

/1

/
|E




 (6.10)

where  2
v

2
its

2
*its   ,  2

v
22

v
22

*   and   and   are the

standard normal PDF and CDF respectively. To operationalise this, 2
 and 2

v are

replaced with their corresponding estimates and its with

)ˆ;(fˆClnˆ
ititsits βX its (6.11)

In the true random effects case, it is treated as random and assumed independent

of the regressors. Estimation proceeds by the method of simulated maximum

likelihood, rather than simple maximum likelihoods because simulation is used to

integrate out the random effect it from the likelihood function. Unlike the

formulation in Greene (2005), a normal distribution cannot be assumed for this

effect, since this variable is truncated from below at  . Instead, it is assumed to
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comprise:

itit   2
it ,0Niid~  (6.12)

The model now comprises the usual composite error term as proposed by Aigner et

al (1977) distributed independently by each sub-company and by time, but also a

random parameter, the constant term, which varies independently by firm and by

time period. Estimation of this model by maximum simulated likelihood yields

estimates of 222
v ,,,,   β . Firm and time specific predictions of it , denoted it̂ ,

are predicted as the expectation of it conditional on the data and the estimated

parameters as given in equation 32 in Greene (2005). This is a consistent predictor as

S 39 (Train 2009, p. 269). This is approximated during the simulation of the

likelihood function in estimation. it is then predicted as:

 ˆˆˆ̂
itit (6.13)

Importantly, it should be noted that the prediction of it is a prediction of absolute

persistent inefficiency as opposed to the relative measures which are produced by the

other estimation methods discussed in this chapter. This is because  is estimated

through the maximum simulated likelihood process since it is the truncation point

and mean of the underlying normal distribution of it . A prediction of the residual

39 This is a correction to the published paper. In Train’s case the effect varies by firm
(individual, N). Here it varies by firm and time, so consistency requires expansion of the S
dimension.
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component of sub-company inefficiency, its , is the same as for the True fixed

effects case.

An alternative estimation framework is the multistage approach outlined in

Kumbhakar and Hjalmarsson (1995) and Kumbhakar and Heshmati (1995). In this

approach, the model is first estimated by either within or generalised least squares

estimation, depending on whether the it s are treated as fixed or random effects

respectively. Following this estimation, the residuals, its̂ , are computed and these

are used to compute the fixed or random effects, it̂ (as outlined in Kumbhakar and

Hjalmarsson (1995) and Kumbhakar and Heshmati (1995)). An estimate of it is

then recovered as

 ititit
ˆminˆˆ̂  (6.14)

The second stage comprises the use of conditional maximum likelihood estimation40

to estimate the parameters of the specified distributions of its and itsv . Kumbhakar

and Hjalmarsson (1995) and Kumbhakar and Heshmati (1995) utilise a half normal

and normal distribution for the two error components. Adopting these distributions

for its and itsv the conditional log likelihood function (for each observation) is41:

40 Conditional on the (consistent) estimates in the first stage.
41 Note that the sign on  its is reversed vis-à-vis Kumbhakar and Heshmati (1995)

since a cost frontier is being estimated.



177

     2

itsitsitsist
2

1
lnlnconstant,,|,  β (6.15)

Where itsitsits v , v  and 2
v

2   . To operationalise the

model, its is replaced with the consistent estimates given in the earlier stages by

ititsits
ˆ̂ˆˆ  .

Summing over all observations and maximising with respect to  and  yields

consistent estimates of the parameters of the distributions of its and itsv . Following

this, the Jondrow et al (1982) estimator can be applied as above to yield a prediction

of its .

Importantly in the first stage, no distributions have been specified for any error

components. As such, the main parameter estimates, β , are consistently estimated

even if the resulting distributional assumptions in the second stage prove incorrect.

Also, if the it ‘s are treated as fixed effects, the multistage approach has the

advantage that this model does not suffer from the incidental parameters problem in

the first stage, since in this first stage the incidental parameters are swept out by the

within transformation. Thus, it is possible to introduce correlation between the firm

persistent inefficiency component and the regressors without the potential

inconsistency resulting from the incidental parameters problem. Of course, the

incidental parameters problem may be present for the second stage parameters, since

the estimated fixed effects implicitly enter the conditional likelihood function. The

inevitable trade-off against this robustness is a loss of estimation efficiency relative
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to specifying (correctly) a full maximum likelihood function (such as using the

approach by Greene (2005) above).

Since the remaining error components ( itsits v ) are assumed not to be correlated

with the regressors and it both estimation methods are consistent42.

6.4.2. Sub-company inefficiency invariance model

When sub-company inefficiency invariance is imposed, as in (6.5), then a host of

‘standard’ panel data models can be applied to model inefficiency (at the firm level

only by assumption). As explained in section 6.3, the choice of model to apply

depends on the assumption regarding inefficiency variation over time.

The case of both time invariant inefficiency and independence over time is an

extension of the Pitt and Lee model with slightly different subscripts. As such the

reader is referred to Pitt and Lee’s (1981) paper for details of the likelihood function.

Likewise for the time varying models these are trivial extensions of the general time

varying presented in Kumbhakar and Lovell (2000) and Orea and Kumbhakar

(2004). The likelihood function for the model for standard panel data is presented in

Kumbhakar and Lovell (2000) and this requires only trivial sub-script amendments

to form the required likelihood functions for the variants of the model discussed in

3.5. It is assumed that the distribution of the inefficiency term is:

42 Provided, in the GLS case, the regressors and it are uncorrelated as discussed earlier.
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 2,~  iit N  when independence over time is assumed for inefficiency and

  iiit g   itZδ' with  2,~  ii N  when dependence of inefficiency over time

is allowed for.

For all of these models, except the model which assumes independence over time of

inefficiency, a prediction of firm inefficiency is given by the conditional expectation

of the inefficiency component and is amended from Greene (2008) and given below:
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The equivalent estimator for the case of independence across time is a trivial

adaptation of the estimator presented in Battese and Coelli (1988) (summation over s

rather than over t) and so it is not presented here.
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6.4.3. An alternative approach for accounting for correlation between

and࢚࢏ࣆ the regressors

In the dual-level inefficiency model, the interpretation of ௜௧ߤ is that it represents firm

inefficiency. Clearly, it could also capture some unobserved sub-company invariant

factors. A further issue arises when ௜௧ߤ is found to be correlated with the regressors.

As Farsi et al (2005b, footnote 16 p. 2131) argue, it is not clear why cost inefficiency

would be correlated with the regressors, since cost inefficiency here does not take

into account such things as scale inefficiency and conceptually is a measure of the

incompetence of management to manage resources given the outputs and input

prices that the firm faces. Thus, if regressors are correlated with ,௜௧ߤ then it can be

argued that such correlation arises due to other unobserved sub-company invariant

factors apart from inefficiency.

Assuming that unobserved heterogeneity is correlated with regressors, but

inefficiency is not, a natural question to ask is whether unobserved heterogeneity can

be separated out from inefficiency. One approach would simply be to impose the no

correlation assumption and adopt a random effects approach for .௜௧ߤ This is

unsatisfactory since it simply ignores the correlation, thus random effect estimation

(1st stage) of the model parameters will be biased. An alternative approach is to

partition the fixed effect into two parts:

௜௧ߙ = +࢙࢚࣋࢏′࢞ ௜௧௦ߜ ఋߪ,௜௧௦~݅݅݀൫0ߜ
ଶ൯ (6.17)

The first term captures the correlation between ௜ߙ and the regressors and represents
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the impact on the fixed effects from unobserved heterogeneity. The second term is a

random variable which is uncorrelated with the regressors and (once transformed by

the Schmidt and Sickles operation (6.14)) is assumed to represent inefficiency which

is persistent across all sub-company units within a given firm. This decomposition

was first proposed by Mundlak (1978) to highlight the relationship between fixed

effects and random effects estimation. The relationship in (6.17) becomes highly

useful when it is averaged over sub-company units:

௜௧ߙ = ′തܠ +ૉܜܑ ௜௧ߜ ఋߪ,௜௧~݅݅݀൫0ߜ
ଶ൯ (6.18)

(6.18) has become known as the Mundlak transformation (Farsi et al, 2005a and

2005b). Now substitute (6.18) into (6.6):

݈݊ ௜௧௦ܥ = ′തܠ +ૉܜܑ +௜௧ߜ ܠ݂) (઺;ܛܜܑ + ௜߬௧௦+ ௜௧௦ݒ (6.19)

where ఋߪ,௜௧~݅݅݀൫0ߜ
ଶ൯, ௜߬௧௦~݅݅ ఛߪ,0)ܰ݀|

ଶ)|, ௩ߪ,௜௧௦~݅݅݀ܰ(0ݒ
ଶ) and ⊥௜௧ߜ ௜߬௧௦ ⊥ ௜௧௦ݒ

Thus the model simply has k additional regressors (relative to the fixed effects

model), with the inefficiency components being random variables. The model can be

estimated in three ways. First, GLS random effects can be applied to (6.19), and then

ML estimation can be applied to the residuals from this regression (as is the case for

the multi- stage random effects formulation described in sub-section 6.4.1).

Second, a three stage approach can be adopted. Firstly, a fixed effects regression is
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undertaken, then, secondly, the fixed effects are regressed on the group means of the

regressors. The residuals of this decomposition then form the predictor of it .

Through application of the transformation in (6.14), sub-company invariant

(external) inefficiency can be predicted. Thirdly, the residuals from the original fixed

effects regression can be used (in the same way as detailed for the multi-stage

approach in sub-section 6.4.1) to predict sub-company varying (internal) inefficiency

via a further ML estimation.

Third and the final way to estimate (6.19), is to estimate (6.19) via the single stage

‘True Random Effects’ procedure as detailed in sub-section 6.4.1.

Importantly (and the fundamental result of Mundlak’s paper), the estimates of the ࢼ

using the multistage procedure are identical to the fixed effects approach. As such

they are consistent (unlike running random effects ignoring the correlation). The

implication is that the sub-company varying (internal) inefficiency from this model

(estimated via the multi-stage method only) is the same as from a fixed effects

formulation without the Mundlak decomposition. The single stage estimation

method is non-linear and it is not necessarily the case that the fixed effects estimates

will coincide with the estimates from (6.19) (Farsi et al, 2005b, footnote 6, p. 2128).

The benefit of this approach is the orthogonal decomposition of the fixed effects; the

value of which is dependant on the researcher’s view as to whether inefficiency is

correlated with the regressors or not. If they are willing to assume it is not correlated

with the regressors, which Farsi et al (2005b) argue is reasonable, then it would seem

that the Mundlak approach is a useful way to ‘strip out’ an element of unobserved
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heterogeneity from the prediction of sub-company invariant (external) inefficiency.

Finally, note that if 0ρ  then the model in (6.19) becomes the random effects

formulation of (6.6). As such the joint test of the null hypothesis of 0ρ  is a test of

random effects against fixed effects i.e. an alternative test statistic of the Hausman

test (Greene, 2012, p. 421). This can be tested using a Wald test and is known as a

(Wu) variable addition test.

An important caveat to this approach is to note that for (6.17) to be an identified

relationship, there has to be sufficient unique values of xത୧୲ to identify ૉ and σஔ
ଶ. This

is equivalent to there being at least k+1 fixed effects (in the equivalent fixed effects

dummy variable model) and this may not be a trivial requirement when using sub-

company data since there may be data on only a small number of firms and/or a wish

to impose time invariant inefficiency effects. This requirement is indeed an issue in

the empirical application (section 6.5) where there are only 5 firms, but 5 regressors

and time invariant inefficiency. Thus there are only 5 unique values of each group

mean, which is not sufficient to identify 6 parameters.

One option to implement the approach by excluding one group mean. It was decided

not to take this approach forward into the empirical example. The main concern was

that it would be arbitrary which group mean was dropped and this still would mean

there are only just enough unique observations to identify the extra parameters.

Further, when such an approach was implemented in statistical software (LIMDEP

v9 (Econometric Software, 2010)), the standard errors did not seem plausible

(relative to the estimation output from the fixed effects model) and, further, the test
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statistic for the Wu variable addition test was highly volatile to the random effects

estimation routine applied.43

The issue of small N relative to k, is one limitation of the sub-company data

structure. One of the key reasons put forward in section 6.1 for using sub-company

data is that N is often small (however it should be noted that there are other reasons).

The Mundlak transformation is a useful device which would appear to better

disentangle inefficiency from unobserved heterogeneity. Thus, further work to

understand the robustness of the transformation when N is small (or not substantially

larger) relative to k would be of value, however this is out of scope for this thesis.

6.4.4. An alternative means to estimate the random effects dual-level

inefficiency model

It should be noted that the paper referred to in sub-section 6.2 by Brorsen and Kim

(2013), does consider, as an extension to their work, a dual-level inefficiency model

(see the Appendix of their paper)44. Their model is estimated using the results

relating to Closed Skew Normal (CSN) distributions. Essentially, such distributions

can be used to provide an analytic expression for the true random effects type models

explained in sub-section 6.4.1. See Brorsen and Kim (2013) for a survey of such

distributions.

43 This was the case as well when Eviews v6 (Quantitative Micro Software, 2007) was used
for comparison.
44 It should be noted that the Smith and Wheat (2012b) paper, on which this chapter is based,
was published before the Brorsen and Kim paper.
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A CSN distribution can, in theory, be maximized directly with respect to parameters,

rather than appealing to the simulation methods outlined in Greene (2005) and sub-

section 6.4.1. In practice however, such maximization is difficult in the case multiple

regressors. Brorsen and Kim (2013) state,

“We demonstrate estimating such a model on a very simple example. Because of the

difficulties in estimating the closed skew normal distribution, the focus of our paper

is not about estimating such models. Our paper is trying to determine what would

happen if such a model was the true model and a stochastic frontier model was

estimated with the aggregated data.” p. 27.

Brorsen and Kim also state that the simulation approach by Greene (2005) (one of

the methods proposed in this chapter) is a more feasible way to estimate the model.

The use of CSN distributions is relatively new to stochastic frontier modelling and,

given the difficulties in estimation, are not taken forward into the empirical example

section of this chapter.

6.5. Application to international railway infrastructure comparisons

6.5.1. Context

The dual-level inefficiency model is now applied to data on five railway

infrastructure managers, comprising firms from North America alongside European

national infrastructure managers (IMs). A railway infrastructure manager is

responsible for the management (maintenance and renewal) of the railway
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infrastructure (permanent way, structures, lineside equipment and stations and

depots). An infrastructure manager is different conceptually from a train operator

who actually runs the train services. In the case of Britain, the infrastructure manager

is institutionally separate from train operating companies. For the other companies,

the IM also runs the train services but, importantly, separate accounts are available

for the IM side and also the structure of the companies is such that the two functions

can be considered divorced in terms of business organisation.

This analysis builds on a previous study conducted for the British Office of Rail

Regulation (ORR) as part of the 2008 Periodic Review of the British infrastructure

manager’s efficiency performance45. In that work, which was exploratory in nature,

and based on a smaller sample than is now available, the authors estimated the

simplest, single-level efficiency versions of the models presented in this Chapter

(namely the pooled and sub-company invariant models; see sub-section 6.3.3 and

6.3.4 respectively).

Each IM in the sample is divided into a number of regions. The number of regions

per IM (S(i) using the terminology in section 6.3) ranges from 3 to 18. The

difference in the number of regions per IM reflects both the availability of data (in

respect of the number of years available for each firm) and also, importantly, the

organisational structure of the IM. Thus the definition of regions for each IM is such

that it is expected that there exists some management autonomy at the regional level

as well as at the firm head office level. Hence, there is a need at least to consider a

45 See Smith et. al. (2008) and ORR (2008) for details of the work undertaken. Note that the
list of railway companies considered are slightly different in the analysis for this Chapter
than in the Periodic Review analysis.
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dual-level inefficiency model.

As noted in section 6.3, it is beneficial for both efficiency performance analysis and

more generally cost analysis to analyse data at a level of geographical aggregation

that corresponds to how firms organize their activities. This allows both for any dual-

level inefficiency to be captured, but also allows for the true scale and density

properties of the cost frontier to be established. Thus while the range of regions per

IM may appear large, this is partly due to the overall size differences of the IMs

considered. Furthermore, assurances have been received from the participating IMs

that these breakdowns have degrees of autonomy, thus making it appropriate to

analyse efficiency at this level.

For some IMs the dataset is supplemented by having repeat observations over time

(T(i) ranges from 1 to 5). The panel covers the period 2002 to 2007, though is

unbalanced in time as noted. Overall there are a total of 89 observations on the five

IMs. As discussed in section 6.3.5, an assumption about how inefficiency behaves

over time is required in this case. Given the unbalanced nature of the observations

over time and the generally small number of time periods for most IMs, a time

invariant model is adopted. Thus both the firm and sub-company inefficiency

components are time invariant in the model.

The data structure enables the investigation of efficiency variation between rail

systems in different countries, whilst also looking at inefficiency at the sub-company

level within each country. The use of sub-company data also expands the sample size

substantially without the need to collect a long panel. The utilisation of sub-company
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data can thus be seen as interesting and important in an international benchmarking

context where cross-sections may well be small and panels short.

For data confidentiality reasons, data is anonymised and it is not possible to

publically reveal which firms were involved in the study and what the corresponding

efficiency score was for each firm. The firms are however identified in a confidential

Appendix for the benefit of the examiners (subsequently removed from this

published version).

6.5.2. Data

The data is summarised in Table 6.1. The dependent variable is maintenance cost,

comprising all elements of railway infrastructure maintenance (e.g. permanent way,

structures and signalling). Note that in railway accounts, maintenance is distinct

from renewals activity, where renewals expenditure is the like-for-like replacement

of assets following life expiration, and maintenance expenditure is the day to day

upkeep of the assets to keep them in safe and operable condition. Whilst there could

be definitional differences between countries which affect this variable (as is the case

in any international study) as part of the data collection process, considerable efforts

were made to harmonise definitions across countries which adds to confidence.

Country specific cost data is converted into US dollars using purchasing power

parity (PPP) exchange rates and data is also converted to 2006 constant prices.

The explanatory variables comprise tonne density, defined as gross tonne-km per

track-km (TTKD) and track-km (Track) for outputs in order to account for scale and
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density effects. In addition, the proportion of track length that is electrified

(ProElect) is included as a proxy for the quality of the infrastructure. Price indices

for capital between countries are not available, but the PPP exchange rate adjustment

should account for some of the differences across countries. Wage rate data is used

for each of the IMs. However, it should be noted these are company-wide rather than

sub-company specific and that in some cases the data is based on all staff employed

by the railway, not just infrastructure maintenance. Thus the Wage variable is

relatively crude and as such the sensitivity of the results to its inclusion is discussed

in the results. The data is normalised to the sample mean which implies the

coefficients on the first order variables represent elasticities at the sample mean46.

Table 6.1 Summary of data used in the study (un-normalised data)

Note: costs are in 2006 US $

6.5.3. Results

Table 6.2 presents the parameter estimates from the dual-level efficiency models,

estimated by assuming the i are fixed and random effects in turn (LIMDEP v9 is

used to operationalise the multistage fixed and random effects estimation approaches

(details of the code are available on request)). The parameter estimates for the two

special (nested) cases of the dual-level model as discussed in section 6.3 are also

46 Note ProElect is not normalised to the sample mean.

Variable Mean

Standard

Deviation Min Max

Maintenance Cost 43,801,077 28,162,452 9,103,240 114,210,161

Tonne Density (Tonne-km / Track-km) (TTKD) 8,059,323 6,157,594 1,077,481 21,808,976

Track-km (Track) 928 588 252 2,988

Proportion of track-km electrified (ProElect) 0.65 0.41 0.00 1.00

Average staff cost per staff member (Wage) 57,408 9,473 39,791 84,378
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presented. First, the sub-company inefficiency invariance model (fixed and random

effects cases), which corresponds to the fixed/random effects models used as the first

stage in the dual-level model. Second, the special case where inefficiency is only

sub-company varying (no persistent, firm-specific effects) is shown, which is

referred to as the pooled model in line with the terminology used in section 6.347.

Table 6.2 Parameter estimates for dual-level Inefficiency models and comparator models

The functional form was chosen by first estimating a Translog and then testing

down. The vast majority of second order terms had very low t statistics and in

addition to the squared track term, only an interaction term between wage and track

was significant at any reasonable significance level. However inclusion of this term

yielded a model with implausible negative wage elasticities for many observations

within the sample. For this reason, this term was dropped. Importantly, the joint

restriction that all of the omitted second order terms (including the wage/track

47 Note that while the terminology “pooled model” accurately describes the pooled nature of
the data over sub-companies, it should be noted that time invariance is assumed. As such the
model is actually an analogue to the time invariant model first proposed by Pitt and Lee
(1981).

Fixed

Effects1

Random

Effects1

lnTrack 0.84514 *** 0.88682 *** 0.84514 *** 0.88682 *** 0.93453 ***

lnTTKD 0.27821 *** 0.30374 *** 0.27821 *** 0.30374 *** 0.3465 ***

ProElect 0.27771 ** 0.18201 0.27771 ** 0.18201 0.06895

lnWage 0.00809 0.45837 ** 0.00809 0.45837 ** 0.61462 ***

(lnTrack)2 -0.23589 *** -0.19374 *** -0.23589 *** -0.19374 *** -0.15511

*** statistically significant at the 1% level, ** statistically significant at the 5% level

Deterministic Frontier

1Note that these parameter estimates are the same as for the dual-level models due to the

two stage estimation approach of the dual-level models used in this example.

Dual Level Inefficiency

Models

Random

Effects

Treatment of μ

Fixed Effects

Treatment of

μ

Sub-company inefficiency

invariance model

Comparator Models

Pooled

model
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interaction) were equal to zero could not be rejected at any reasonable significance

level (e.g. Wald test in random effects model treatment gave a statistic value of

12.12 and an associated p value of 0.19804 (9 degrees of freedom)). As such it is

concluded that the specification is both a useful and intuitive economic model of the

underlying cost characteristics while its parsimony is supported by the data.

Turning to the choice of fixed versus random effects, it should be firstly noted as

discussed in section 6.3, this refers to the persistent, firm-specific effect in the model

( i ). The Hausman test gives a p value of 0.0861 which indicates a preference for

random effects at the 5 per cent significance level. Nonetheless, the fixed effects

results are still reported for comparative purposes to compare with the random

effects results, given that evidence of correlation between effects and regressors is

found at the 10% level.

A key feature of any cost frontier is how costs change with output. As explained in

the literature review of applications to railways (Chapter 4), it is usual to distinguish

between returns to scale (RtS) and returns to density (RtD). The inverse of the sum

of the coefficients on lnTrack and lnTrack^2 give the estimates of RtS and because

the data is normalised to the sample mean, the inverse of the coefficient on lnTrack

gives RtS at the sample mean. The inverse of the coefficient on lnTTKD give the

estimate of RtD in this model. For the preferred random effects treatment of 1.13 (at

the sample mean) and 3.29 for RtS and RtD respectively. The two separate

restrictions of constant RtS and RtD (=1) can be rejected for each at the 5% and 1%

levels respectively (p values of 0.0156 and 0.0000 respectively). Thus the cost

frontier indicates moderate RtS and large RtD. RtD being greater than RtS is
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intuitive given the fixed costs of providing railway infrastructure (for reference see

the results and supporting commentaries in the references in Table 6.3).

Table 6.3 compares the estimates of RtS and RtD from this study to those studies

considered in Chapter 4 for infrastructure managers. In terms of RtS, the estimate is

towards the lower end of the received literature (although all studies indicate

increasing RtS point estimates). The estimate of RtD is consistent with the received

literature and indicates that 30% of maintenance cost is deemed variable with usage.

This is in line with the recommendations from the CATRIN project which also

recommended 30% of maintenance cost to be variable with traffic (Wheat et al,

2009) for the purpose of setting access charges based on marginal wear and tear cost.

Table 6.3 Estimates of Returns to Scale and Density from infrastructure maintenance cost

studies

Study Country Returns to Scale Returns to Density

This chapter
International
study 1.13 3.29

Johansson and Nilsson
(2004) Sweden 1.256 5.92
Johansson and Nilsson
(2004) Finland 1.575 5.99
Tervonen and Idstrom
(2004) Finland 1.325 5.74-7.51
Munduch et al (2002) Austria 1.449-1.621 3.70
Gaudry and Quinet (2003) France Not reported 2.70
Andersson (2006) Sweden 1.38 4.90
Wheat and Smith (2008) Britain 2.074 4.18
Smith et. al. (2008) International study 1.11 3.25
NERA (2000) US 1.15 2.85

Source: Amended from Wheat and Smith (2008)

The a priori sign of ProElect is ambiguous given the extent to which the variable is a

proxy for track quality (i.e. higher quality track might be expected to have lower

maintenance costs). On the other hand, electrification means that there are more
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assets to maintain, makes access to the infrastructure more complex and may also be

associated with higher speed services which increases cost. Thus the positive

coefficient on ProElect (only significant in the fixed effects model) is neither in line

nor at odds with prior expectations. The literal interpretation of the coefficient in the

random effects model, given that ProElect is a proportion variable, is that

electrifying the network (from 0% to 100% track-km electrified) increases

maintenance costs by exp(0.18201)-1=20%.

The coefficient on the wage variable is statistically significant in the random effects

model. It is believed that the wage coefficient is insignificant in the fixed effects

model since this variable is invariant for each IM at a given point in time. Thus it is

likely there is some correlation between this and the fixed effects. However, in both

models, the null hypothesis that the coefficient is different from the average labour

cost share (65%)48 fails to be rejected even at the 10% level. Dropping the wage

variable does not seem to affect the estimates of the deterministic cost frontier.

Overall, the results show that the parameter estimates are in line with expectations

and previous evidence, thus giving confidence in the resulting efficiency findings,

which are now discussed.

Firstly, the statistical significance for each of the inefficiency components within the

model is considered49. The persistent, firm-specific inefficiency effects are modelled

48 Owing to lack of data, this is an estimate based solely on Network Rail data.
49 As noted in sub section 6.5.1, given the unbalanced nature of the observations over time
and the generally small number of time periods for most IMs, both the firm-specific and sub-
company inefficiency components are time invariant in the model.
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as either fixed or random effects, the latter being estimated by generalised least

squares in the two-stage approach that is adopted here. As such LR tests are not

undertaken for whether the variance parameters are zero as these are not estimated in

this estimation framework. Instead an F test is used to test the joint significance of

the fixed effects and an LM test for the appropriateness of a model without effects.

The F test has a value of 5.34 which yields a p value of 0.00073. The conclusion of

the test is that the fixed effects are jointly statistically significant.

For the LM test, the Moulton/Randolph standardised form (SLM, Moulton and

Randolph (1989)) is adopted which is appropriate for unbalanced panels and is a one

sided test (the variance of the random effect can only be non-negative). Thus it can

be expected that the test should have greater power than the more standard Breusch

and Pagan (1980) test. The value of the SLM statistic is 4.59 and is distributed

standard normal under the null of zero random effect variance. Thus a model with no

effects can be rejected at any reasonable significance level. Thus all of the tests

provide evidence of significant persistent firm-specific effects. These are then

transformed into persistent efficiency scores via a Schmidt and Sickles (1984)

transformation as described in section 6.4.

Turning now to the statistical significance of the sub-company varying inefficiency

term, in the two stage approach adopted for this example, this term is estimated by

maximum likelihood. As such an LR tests is undertaken with respect to the

significance of the variance parameter of the inefficiency distribution. For the dual-

level random effects model, the LR statistic is 18.15 and for the dual-level fixed

effects model the LR statistic is 33.23. As described in Coelli et al (2005), this
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statistic has a non-standard mixed chi square distribution (1 degree of freedom). The

large statistic values mean that in both cases the null hypothesis of zero variance is

rejected at any reasonable significance level. As such it is concluded that the data set

exhibits dual-level inefficiency.

6.5.3.1.Efficiency scores from the dual-level models

Table 6.4 shows overall firm efficiency scores for each infrastructure manager. It

also decomposes the efficiency scores into the two components; persistent and sub-

company varying. As explained in section 6.3, these two components can be

interpreted as the degree of external and internal inefficiency respectively. In this

example, the average persistent efficiency scores for the dual-level models are 0.849,

0.835 and 0.840 (random and fixed effects formulations respectively), and 0.851 and

0.690 for the sub-company varying component (random and fixed effects

formulations respectively). Thus the random effects formulation points to roughly

equal external and internal components, while the fixed effects formulations point to

more internal than external inefficiency. As discussed earlier, at the 5% significance

level the random effects results are preferred due to the result of the Hausman test.

Overall firm efficiency is the product of the two components, and is higher, on

average, for the random effects dual level model (0.724) than for the fixed effects

alternatives (0.564). The overall efficiency scores for the preferred random effects

dual level model are within plausible ranges while the fixed effects scores appear

slightly low.
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Table 6.4 Summary of efficiency results

6.5.3.2.Comparator models

The comparator models are the pooled model and sub-company inefficiency

invariance model. The former assumes that there is no persistent inefficiency within

firms, and the inefficiency of each sub-company is assumed to be identically and

independently distributed across all sub-company units irrespective of the firm to

which they belong. The second comparator model comprises persistent, firm-specific

effects only, representing the case where there is no variation in efficiency

performance between sub-company units within the same firm (the model

parameters for these models are simply those for the dual-level models reported in

Firm Fixed Effects

Random

Effects

1 1.000 1.000 1.000 1.000 1.000

2 0.770 0.880 0.770 0.880 1.000

3 0.925 0.840 0.925 0.840 1.000

4 0.617 0.687 0.617 0.687 1.000

5 0.862 0.839 0.862 0.839 1.000

Average 0.835 0.849 0.835 0.849 1.000

1 0.621 0.881 1.000 1.000 0.916

2 0.734 0.857 1.000 1.000 0.879

3 0.593 0.819 1.000 1.000 0.779

4 0.853 0.849 1.000 1.000 0.761

5 0.649 0.850 1.000 1.000 0.830

Average 0.690 0.851 1.000 1.000 0.833

1 0.621 0.881 1.000 1.000 0.916

2 0.565 0.754 0.770 0.880 0.879

3 0.549 0.688 0.925 0.840 0.779

4 0.527 0.583 0.617 0.687 0.761

5 0.560 0.713 0.862 0.839 0.830

Average 0.564 0.724 0.835 0.849 0.833

Persistent Efficiency Score - External Efficiency

Sub-company Varying Efficiency Score - Internal Efficiency

Overall Efficiency Score

Dual-Level Inefficiency

Models

Comparator Models

Sub-company inefficiency

invariance model

Pooled model

Fixed Effects

Treatment of μ

Random

Effects

Treatment of μ
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Table 6.2). It should be noted that the average overall firm efficiency is considerably

lower using the dual-level model as compared to all three of the comparator models.

This is because the comparator models are constrained models and only consider one

source of inefficiency. As discussed above, both restrictions are rejected for this

dataset so the dual-level models are preferred.

In summary, this empirical example has demonstrated the possibility of separating

firm inefficiency into a persistent and a sub-company varying component. Thus the

dual-level model can be applied successfully to real data.

It also shows that the failure to account for the dual-level nature of inefficiency, for

example, by estimating one of the three, simpler comparator models, may cause

overall firm inefficiency to be systematically under predicted. This is an additional

issue to the influence of aggregation bias on inefficiency predictions discussed in

sub-section 6.3.2 (since in this empirical example, the correctly aggregated scale

measure is included in the deterministic frontier). Here the under prediction emerges

since some residual error in the comparator models (be it sub-company varying (in

the case of the sub-company invariance model) or sub-company invariant (in the

case if the pooled model)) is not being characterised as inefficiency and will instead

be capture by the random noise term.

6.6. Summary

This chapter has outlined econometric techniques to analyse data on geographical

regions of multiple companies. This is termed ‘sub-company’ data. This is data
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which both exists and is desirable for performance analysis of horizontally integrated

elements of vertically separated railways. This is commonly the infrastructure

managers and at a simple level can be used to overcome the problem of few external

comparator observations.

Importantly, as well as providing extra observations to estimate cost frontiers, the

data structure permits estimation of a dual level inefficiency model which separates

sub-company persistent inefficiency from sub-company varying inefficiency. This is

a useful decomposition in itself, since it gives an indication as to whether

inefficiency predominantly varies within firm or between firms which is useful in

terms of identifying where efforts should be made to eliminate inefficiency. In

addition to benefits with respect to the capturing of inefficiency variation, since

management decisions are often made (to some extent) at sub-company levels within

firms, it is likely that failure to disaggregate data to this level will lead to bias in

returns to scale results. This is because the inappropriate aggregate measure of scale

is used in an aggregate firm analysis. Further this will also bias inefficiency

predictions as these are transforms of the residuals.

The techniques have been applied to railway infrastructure managers. This has

shown that there is statistically significant dual-level inefficiency. The empirical

example also indicates that failure to take account of the dual level inefficiency

variation may result in under estimation of inefficiency. Average efficiency is 0.724

for the preferred model, comprising 0.849 and 0.851 for the persistent and sub-

company varying components respectively.
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Appendix 6 – Identification of infrastructure managers included in the

empirical example (Confidential)

[This has been removed from the published thesis for reasons of commercial

confidentially]
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7. Uncertainty in efficiency analysis50

7.1. Introduction

It is common in efficiency analysis to present point predictors for firm efficiency.

This was the approach in the preceding chapter. However, less common is the

computation of interval predictors for firm efficiency (Simar and Wilson, 2010). As

highlighted in section 3.4 of the econometric literature review and developed further

in this chapter, there are many sources of uncertainty associated with predictors of

firm inefficiency. Thus it is reasonable to suppose that under some circumstances

such uncertainty is non-trivial and it would be wise for practitioners to present

interval predictions alongside point predictions.

This chapter develops interval predictors for firm efficiency for cross sectional

stochastic frontier models. That is the models are fully parametric in the sense that

full distributional assumptions are applied to all error components. At the outset it is

important to note how this fits into the analysis elsewhere in the thesis. Clearly

Chapter 5 does not consider efficiency measurement. Chapter 6 does consider

efficiency measurement, but it should be noted that the models developed are using a

multi-dimensional data set (analogous to panel data). As such the discussion in this

chapter is not strictly applicable, although the techniques can easily be applied to

panel data settings.

50 This chapter is based on an early draft of a paper with William Greene and Andrew Smith
(Wheat, Greene and Smith, 2013) but differs from the paper in that i) there is an extended
introduction, ii) it provides more clarification on the nature of prediction intervals for firm
specific inefficiency estimates in section 6.2 and iii) it provides more interpretation of the
quantitative results empirical example.
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7.2. Methodological Background

There are a number of means to evaluate the appropriateness of a stochastic frontier

model. Firstly, the econometric approach provides estimates of the frontier. These

can be compared with a priori expectations and should they match or at least not be

inconsistent with expectations, give reassurance that the frontier is appropriate,

which is important given that the frontier is what efficiency is measured against.

Secondly, the rankings and summary statistics (mean, maximum and minimum) of

the firm efficiency scores can be compared with the researchers and/or industry’s a

priori expectations as to performance in the sector.

The above methods clearly fit into the category of comparing statistical results to

underlying economic/industry expectations. Complementing these diagnostics are

various statistical inference procedures that can help the researcher understand the

uncertainty associated with estimates. The obvious candidates are hypothesis tests on

the model parameters such as those defining the frontier and the variance parameters

on the inefficiency distribution. These provide useful information as to whether the

frontier parameters are statistically significant and whether there is statistically

significant levels of inefficiency in the sample as a whole.

A further set of statistical techniques relate to understanding uncertainty in firm

specific estimates of inefficiency. Many empirical studies (and the study in chapter

5) have simply reported point estimates for firm inefficiency. There exists a wider set

of techniques which have been applied to firm specific inefficiency predictions but



202

there is a complication to applying the usual techniques since firm inefficiency is

modelled as a realisation of a random variable and not a parameter to be estimated.

Understanding the implications of this complication is the subject of this chapter,

both in terms of appropriate interpretation of the techniques that have been proposed

in the literature and also extensions to the techniques in order for the techniques to

truly represent prediction intervals for firm inefficiency, which is the interpretation

put forward in this chapter.

To understand better the features of the stochastic frontier model which make

intervals for firm inefficiency interesting from a statistical point of view, it should be

noted that stochastic frontier models have the attractive property that the unobserved

residual component of the model is comprised of both noise and inefficiency. Thus

the model can discriminate between observed factors (regressors), noise and

inefficiency. Point predictors for firm inefficiency are common in the literature and

follow the methodology of Jondrow et al (1982). However in cross sectional models,

these point predictors are known to be inconsistent for the quantity of interest;

namely the firm specific realisation of a random variable. The question then arises;

how precise is the prediction of firm inefficiency? With this in mind, and the general

desire of practitioners to understand uncertainty in their estimates, it is perhaps

surprising that interval predictors are not commonly reported in the empirical

literature.

While a body of literature exists on such intervals, overall it is not clear as to what

the properties and limitations are with respect to each innovation. The purpose of this

chapter is to clarify, and in places develop, the existing literature on the subject that
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has grown over the last two decades. The literature is decomposed into two themes.

As a starting point, the case where the parameters in the model are known (as

opposed to having to be estimated) is considered. The starting point are the intervals

proposed by Horrace and Schmidt (1996) (HS intervals). Importantly an

interpretation is offered that the correct way to view HS intervals are prediction

intervals for firm inefficiency rather than confidence intervals. This point has

previously been made either explicitly in the case of Simar and Wilson (2010) and

eluded to in both Coelli et al (2005) and Greene (2008). For the purpose of this

chapter, it is considered that this distinction is beyond simple semantics. Viewing the

HS intervals as prediction intervals does help evaluate some of the further claims

made in the literature. For example the chapter shows that the intervals are not

confidence (or otherwise) intervals for [௜ߝ|௜ݑ]ܧ since ݒܽ [௜ߝ|௜ݑ]ݎ is not the variance

of .[௜ߝ|௜ݑ]ܧ An important further implication is that the HS intervals cannot be used

for hypothesis testing as implied by Bera and Sharma (1999). It is also shown that

the HS intervals do not represent minimum width intervals for ௜andݑ as such are not

optimal interval predictors. How to calculate minimum width intervals is then

discussed and how such intervals either include or exclude zero as a lower bound

depending on where the probability mass of the distribution of ௜ߝ|௜ݑ resides. This is

important since it has useful implications for practitioners and policy makers. In the

empirical example, the difference between the two-sided HS intervals and minimum

width intervals is illustrated using data from Chapter 5.

The more realistic case where model parameters are estimated is then considered.

Thus how, through taking into account additional uncertainty due to estimation of

parameters, an interval which is truly analogous to a prediction interval can be
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developed is outlined. Simar and Wilson (2010) have outlined a method using

bootstrapping, but in this chapter, a method which samples from the asymptotic

distribution of the parameters is proposed. Irrespective of the method taken to

compute the parameter uncertain prediction intervals, it is considered that the

reporting of this interval is crucial for understanding uncertainty surrounding firm

specific estimates of inefficiency, particularly where sample sizes are small when

uncertainty due to parameter estimation may be high.

The remainder of the chapter is structured as follows. Section 7.3 formalises the

model under consideration, outlines the HS interval computation, brings together the

literature and discusses what are the key features of the received intervals under the

assumption that the model parameters are known. Section 7.4 discusses approaches

to incorporating parameter uncertainty, which is required for the intervals to be truly

analogous to prediction intervals for .௜ݑ Within this, an alternative method based on

numerical distributional sampling methods rather than bootstrapping is presented.

Section 7.5 presents an empirical example where the proposed intervals are

compared with those from the received literature and section 7.6 concludes.
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7.3. The case of known parameters

In this section, interval estimation for firm specific inefficiency estimates is

considered, assuming that the model parameters are known. Importantly this

assumption means that intervals can be derived analytically.

The stochastic frontier model was first proposed simultaneously by Aigner et al

(1977) and Meeusen and van den Broeck (1977). The simple cross sectional normal-

half-normal formulation for a cost function can be represented as:

=௜ݕ (ࢼ;࢏݂࢞) + ,௜ߝ iii vu   2
i uu ~ N 0, ,  2

vi ,0N~v  i=1,…,N (7.1)

where ௜ݕ is the dependent variable (cost), ܑܠ is a vector of regressors, parameters

ી = (઺,ߪ௨
ଶ,ߪ௩

ଶ), ௜ݑ is the one sided cost inefficiency random variable and iv is the

symmetric noise variable. In order for ௜ݑ to yield a Farrell (1957) type radial

measure of efficiency, it is assumed that the dependent variable is in logarithms.

Estimation usually proceeds via maximum likelihood which is a consistent and

efficient estimator given the distributional assumptions.

Jondrow et al (1982) provided the expression for the conditional density of ௜givenݑ

the realised value of the composite error term ,௜ߝ (௜ߝ|௜ݑ) under different

unconditional distributional assumptions for iu . For the model in (7.1), the density is

∗ߪ,∗௜ߤ)ାܰ~(௜ߝ|௜ݑ)
ଶ)
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∗௜ߤ =
ఌ೔ఙೠ

మ

൫ఙೠ
మାఙೡ

మ൯
(7.2)

∗ߪ
ଶ =

ఙೡ
మఙೠ

మ

൫ఙೠ
మାఙೡ

మ൯

Jondrow et al suggest the mean or mode of this distribution as a point estimator of

firm inefficiency. Waldman (1984) provides theoretical results for cross sectional

models that show that the Jondrow et al (1982) conditional expectation estimator is

superior to the best linear estimator in terms of correlation with the underlying

inefficiency error and mean-squared error. Intuitively, this is because the Jondrow et

al estimator exploits the distributional information available while the best linear

estimator does not. As such, there is some theoretical justification for some point

estimators of inefficiency over others. However, in cross sectional models, and

indeed pooled panel models, the variance of the distribution in (7.2) does not tend to

zero as the sample size increases51. Thus point estimators of firm inefficiency are

inconsistent, even though ෣[పෝߝ|పݑ]ܧ
௣
՜ [௜ߝ|௜ݑ]ܧ as the sample size increases. The

limitation of the Jondrow et al estimator is not that the sample estimator is

inconsistent for its population equivalent but that the population equivalent is not the

statistic of interest to the researcher. [௜ߝ|௜ݑ]ܧ is just one point within the distribution

of ;௜ߝ|௜ݑ understanding the spread of this distribution should also be of interest. As

such interval prediction for ௜ݑ is important.

51 Notable exceptions are point estimates of firm inefficiency from the class of time invariant
panel models (Pitt and Lee, 1981) and the class of deterministically time varying models
(Batesse and Coelli, 1992 and Cuesta, 2000) which yield consistent estimates as ܶ→∞. For
the purpose of this chapter, however, attention is restricted to cross sectional models (or
equivalently pooled panel models).



207

Horrace and Schmidt (1996) provided expressions for interval brackets of the

conditional distribution in (7.2) and propose two-sided intervals of the conditional

distribution of firm inefficiency as a measure of the uncertainty surrounding firm

specific inefficiency. The percentile-ߙ is given by (see Simar and Wilson (2010) and

Horrace and Schmidt (1996) for derivation):

ఈߩ = ∗௜ߤ + Φ∗ߪ
ିଵቂ1 − (1 − α)Φቀ

ఓ೔∗

ఙ∗
ቁቃ (7.3)

where Φ(∙) is the standard normal CDF and Φିଵ[∙] is the standard normal quantile

function.

Horrace and Schmidt (1996) consider cross sectional models as well as time

invariant panel models, while Hjalmarsson et al (1996) extended the Horrace and

Schmidt (1996) analysis to produce intervals for time varying inefficiency models.

Bera and Sharma (1999) derived the same intervals. Simar and Wilson (2010) note

that Taube (1988) proposed similar intervals to Horrace and Schmidt with the

expectation that they were one-sided intervals.

The first observation, and one from which the rest of the results follow, is that the

intervals given in (7.3) do not correspond to the usual definition confidence intervals

for firm inefficiency. As discussed in Simar and Wilson (2010, footnote 9), but also

alluded to in Coelli et al (2005) and Greene (2008), Horrace and Schmidt (1996)

incorrectly used the terminology ‘confidence intervals’ when in fact they are

prediction intervals for the random variable ௜ݑ (and not a parameter), using the

information available in the realized composite error term. Importantly, a prediction
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interval does not collapse in width as N , which is clearly the case here. The

useful distinction emphasized here is that a prediction interval is a statement about

likely values of a random variable that is the object of forecast.

Following from the above, and also pointed out in Simar and Wilson (2010), the

intervals in (7.3) are therefore not confidence intervals for an estimator of .[௜ߝ|௜ݑ]ܧ

Horrace and Schmidt (1996) did not make this claim but there seems to have been

some misinterpretation in the literature (Simar and Wilson, 2010), particularly since

this is the point estimator reported commonly in the literature. The HS intervals are

brackets for the distribution of ௜ߝ|௜ݑ only. The variance of the estimator of [௜ߝ|௜ݑ]ܧ

is not the variance of .௜ߝ|௜ݑ Given the conditioning on ௜ߝ (and ௨ߪ
ଶ and ௩ߪ

ଶ), the

estimator of [௜ߝ|௜ݑ]ܧ is computed with certainty, since all of the parameters

comprising (௜ߝ|௜ݑ݂) are (assumed at this point to be) known – there is no sampling

distribution.

A further point, and one not discussed in the literature, given that the intervals are

prediction intervals, it is not possible to use them to conduct hypothesis testing on

specific values of firm specific inefficiency (random variable). Of particular interest

is the null hypothesis of =௜ݑ 0 (no inefficiency). This is highlighted since Bera and

Sharma (1999) seem to contradict this by providing ‘critical values’ for such an

hypothesis test. However, these ‘critical values’ are simply the one sided percentiles

of the conditional distribution (corresponding to one minus the significance level).

They suggest that the computed ݒܽ)/[௜ߝ|௜ݑ]ܧ ଴.ହ([௜ߝ|௜ݑ]ݎ should be compared to the

critical values. However, this is not hypothesis testing for ௜andݑ not even hypothesis

testing for [௜ߝ|௜ݑ]ܧ given ݒܽ ෣[పߝ|పݑ]ܧ൫ݎ ൯= 0 ≠ ݒܽ .(௜ߝ|௜ݑ)ݎ To clarify, classical
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hypothesis testing proceeds by using the distribution of a sample statistic to

determine if a null hypothesis regarding an unknown population parameter can be

rejected at a given level of statistical significance. Conditioned on a given realisation

of ,௜ߝ there is no sampling involved in determining the distribution (௜ߝ|௜ݑ݂) and thus

no sample statistic. Furthermore, there is no unknown parameter(s); ௜ݑ is a random

variable and all the other parameters comprising the distribution are assumed known.

Finally, the probability that a given firm can have zero inefficiency (or any specific

value for that matter) is itself zero; this is by construction of the model. To ask

whether it is likely that a firm’s inefficiency would be ‘near’ would be best given by

an interval estimator, but this is not inference in its familiar sense.

It is suggested that a better candidate for inference regarding firm specific

inefficiency estimates might be the set of techniques outlined in Horrace (2005) and

Flores-Lagunes, Horrace, and Schnier (2007) which provide inference on the

rankings of independent truncated normal distributions. These techniques yield a

probability of firms being efficient (relative to other firms in sample). It should be

noted, however, that these techniques do not take into account parameter uncertainty

and so at present are only valid when the model parameters are known.
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7.3.1. Construction of minimum width intervals

The intervals proposed by Horrace and Schmidt and others are central two sided

intervals. Because the distribution of (௜ߝ|௜ݑ) is asymmetric, these will not be

minimum width and so such an interval does not represent an efficient interval

predictor for .௜ݑ Greene (2012) discusses how to compute minimum width intervals

for distribution functions which are asymmetric or otherwise. He considers the

solution to the Lagrangian problem of minimising the width of the prediction

interval subject to the interval containing the desired probability mass. Formally, the

problem is

݉ ݅݊ ܷ:(ܷ,ܮ) − +ܮ (ܮ)ܨ൫ߣ + ൫1 − −൯(ܷ)ܨ ൯ߙ (7.4)

where L and U are the lower and upper bounds of the prediction interval

respectively, (∙)ܨ is the cumulative distribution function of the random variable

under consideration (here ,((௜ߝ|௜ݑ) ߙ is the desired significance level and ߣ is the

Lagrange multiplier.

The first order conditions yield two possible solutions (∗ܷ,∗ܮ) depending on the

exact shape of the distribution. If ≠ߣ 0, (∗ܷ,∗ܮ) are such that (∗ܮ݂) = (݂ܷ∗) where

(݂. ) is the probability density function. Alternatively, if =ߣ 0, the solution will be

∗ܮ = 0 and ܷ∗ such that 1 − (∗ܷ)ܨ = ;ߙ for the case of a negatively skewed

distribution truncated at zero. This is the interval corresponding to the one sided

interval proposed by Taube (1988). The two solutions are illustrated in Figure 7.1. If

the probability mass of the distribution is sufficiently away from zero, then there
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exists non-zero (∗ܷ,∗ܮ) such that (∗ܮ݂) = (݂ܷ∗) (represented by a and b

respectively in Figure 7.1). Thus this is a minimum width prediction interval for ௜ݑ

which does not include the zero boundary of the distribution. However if the

probability mass is sufficiently close to zero, then no (∗ܷ,∗ܮ) exists such that

(∗ܮ݂) = (݂ܷ∗) and in this case the minimum width interval includes the zero

boundary of the distribution, the upper bound being the one sided interval

represented by c in Figure 7.1. Note that the minimum width interval corresponds to

the highest posterior density (HPD) interval in Bayesian inference.

It is worth emphasising the practical importance of the above result. Under some

circumstances the minimum width prediction interval for ௜doesݑ not include =௜ݑ 0

(no inefficiency) while in other circumstances it does. While this result should not be

confused with “inference” (see the discussion above), it is envisaged that adopting

such a prediction interval will convey useful information to policy makers/regulators

regarding whether a firm suffers from inefficiency or not. Thus the minimum width

interval provides useful information regarding whether firm specific inefficiency is

likely to be close to zero or not.
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Figure 7.1 Possible minimum prediction intervals for ࢏࢛

Greene (2012) considers that the easiest way to determine the minimum width

interval in a practical setting is via a grid search. Given analytic expressions for the

percentiles of the distribution are known (given in (7.3)), this should not be an

onerous task. This approach is used in the empirical example.

However, for the normal/truncated-normal, normal/exponential stochastic frontier

model it should be noted that (௜ߝ|௜ݑ) is distributed truncated normal (see Jondrow et

al, 1982). In these cases it is possible to derive minimum width predictive intervals

analytically. For a random variable ∗ߪ,∗௜ߤ)ାܰ~(௜ߝ|௜ݑ)
ଶ) the lower and upper bounds

of the minimum width predictive intervals are given as:

a bc0

ݑ݂) (ߝ݅݅|

௜ݑ
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ܷ∗ = ∗௜ߤ + Φ∗ߪ
ିଵቈቀ1 −

ఈ

ଶ
ቁቆ1 − Φቀ

ఓ೔∗

ఙ∗
ቁቇ቉ (7.5)

∗ܮ = ∗௜ߤ + Φ∗ߪ
ିଵቈቀ

ఈ

ଶ
ቁቆ1 − Φቀ

ఓ೔∗

ఙ∗
ቁቇ቉ (7.6)

Provided ∗ܷ,∗ܮ ≥ 0, otherwise

∗ܮ = 0 (7.7)

ܷ∗ = ∗௜ߤ + Φ∗ߪ
ିଵቂ1 − α.Φቀ

ఓ೔∗

ఙ∗
ቁቃ (7.8)

The derivation is given in the Appendix 7A.

It should be noted that one property of minimum width intervals, in contrast to

central two-sided or one sided intervals, are that the percentiles that provide the

minimum width bounds for one distribution are not necessarily those that provide

minimum width bounds for a monotone transformation of the original distribution.

In particular, the minimum width bounds for efficiency are not necessarily simple

transformations of the minimum width bounds for inefficiency. This analysis has not

attempted to provide analytic intervals for efficiency and it is recommended that

these are determined numerically via a grid search over the intervals of this

distribution. This is relatively easy to undertake, since the ߙ percentile of the

distribution of the efficiency distribution is just ݁(ିఘഀ) where ఈߩ is as defined in

(7.3).
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7.4. Incorporating parameter uncertainty into prediction intervals for ࢏࢛

The received prediction intervals are computed using population parameters that are

in reality unknown. Therefore, in finite samples, they are likely to be too narrow.

This section is concerned with techniques to incorporate such additional uncertainty.

Before the chapter proceeds to discuss methods regarding how to incorporate

parameter uncertainty within the prediction intervals, a brief comment is needed on

the underlying distribution of .[௜ߝ|௜ݑ]ܧ For clarity, it is the sampling properties of a

function of ી෡= ൫઺෡,ߪ௨ଶ෢ ௩ଶ෢ߪ, ൯ that is the estimator of [௜ߝ|௜ݑ]ܧ that is being considered

here. The analogous case would be an estimator of [࢞|ݕ]ܧ in a linear regression

context. While [௜ߝ|௜ݑ]ܧ is indeed a random variable with a mean and variance

(Wang and Schmidt, 2009), only if parameter estimation uncertainty is taken into

account is there uncertainty regarding the estimator of .[௜ߝ|௜ݑ]ܧ
52 Simar and Wilson

(2010) show how to compute confidence intervals for an estimator of [௜ߝ|௜ݑ]ܧ

assuming that model parameters are estimated, using the bootstrapped distribution of

the model parameters. The resulting intervals are confidence intervals for [௜ߝ|௜ݑ]ܧ in

the strict statistical sense since [௜ߝ|௜ݑ]ܧ is an unknown parameter when i is known

(realized), and the sampling distribution of the estimator of it, ෣[పߝ|పݑ]ܧ is used to

provide an interval estimate with the usual resampling properties. In particular, since

the population parameters are consistently estimated, the estimator ෣[పߝ|పݑ]ܧ will

converge in probability to the function evaluated at the realized .௜ߝ

52 Professor Greene should be credited with this remark.
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While such a confidence interval does help to clarify the received literature, it is not

what is sought here, because this interval ignores the decompositional uncertainty

surrounding ௜ݑ (the uncertainty in distinguishing ௜ݑ from ௜ݒ given ;௜ߝ the exact

uncertainty that the distribution of .(௜capturesߝ|௜ݑ A prediction interval for ,௜ݑ itself,

will capture both sources of uncertainty and thus give a true reflection of likely upper

and lower boundaries of inefficiency for a given firm.

One further interesting digression, not discussed elsewhere in the literature but

relevant to the discussion about hypothesis testing in section 7.2, is whether

computing a standard error for the estimator of ݒܽ [௜ߝ|௜ݑ]ݎ could yield a hypothesis

test for the null of no inefficiency for a given firm. In particular, if ݒܽ� [௜ߝ|௜ݑ]ݎ = 0,

then the distribution of ௜ߝ|௜ݑ collapses to zero. A standard error could be computed

using bootstrapping or a simulation approach similar to that proposed in 7.4.2. Bera

and Sharma (1999) have analysed the expression for ݒܽ [௜ߝ|௜ݑ]ݎ and provided useful

results. Importantly ݒܽ [௜ߝ|௜ݑ]ݎ can only equal zero if ௨ߪ
ଶ=0. Thus any test would

reduce to a test for whether the model as a whole exhibits inefficiency rather than the

desired test at the firm level.

To date, the only analytical work to incorporate parameter uncertainty with firm

inefficiency estimates has been outside the maximum likelihood (ML) stochastic

frontier framework. The multiple and marginal comparisons of best approaches

(Horrace and Schmidt (1996, 2000) and Kim and Schmidt (2008)) incorporate such

variability but these apply to the fixed effects model. Amsler et al (2010) have

computed confidence intervals taking into account parameter uncertainty for

deterministic frontier models, i.e. models with a single error term rather than a
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composite error term, under a variety of distributional assumptions. They state

however that expressions for “[exact prediction intervals in finite samples are] not

possible in stochastic frontier models or in non-parametric models like DEA” (p.5)

Kumbhakar and Löthgren (1998) show by Monte Carlo simulation that applying the

HS intervals to cases with parameter uncertainty does not provide the required

coverage (e.g. 95% of the realisations of (௜ݑ by some margin for small sample sizes.

This is as expected since the intervals need to be wider than that indicated by the

Horrace and Schmidt expressions to cover the additional parameter uncertainty. It

should be noted that Kumbhakar and Löthgren’s model only has one regressor

parameter to estimate. The impact of parameter uncertainty may be expected to be

greater for models with more regressors.

7.4.1. Simar and Wilson’s bagging approach

Two approaches to incorporate parameter uncertainty within prediction intervals for

firm inefficiency are considered. Simar and Wilson (2010) outline a method of

bootstrapping, known as bootstrap aggregating, or bagging, to compute such

intervals. Drawing on the notation in their paper, the approach proceeds via the

following steps:
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Algorithm 1

[1] Maximize the log-likelihood function for the model in (7.1) to obtain ML

estimates ી෡. Recover estimates ො௨ߪ
ଶ and ො௩ߪ

ଶ from elements of ી෡.

[2] Set b=1.

[3] For ݅= 1, … ,ܰ draw ௜ݒ
ො௩ߪ,0)ܰ~∗

ଶ) and ௜ݑ
∗~ܰା(0,ߪො௨

ଶ) and compute ௜௕ݕ
∗ =

݃൫ݔ௜ห઺෡൯݁
௩೔
∗ା௨೔

∗
.

[4] Using the pseudo-data ত௕,௡
∗ = ܠ} ௜௕ݕܑ,

∗ }௜ୀଵ
௡ , compute bootstrap estimates ી௕

∗෢ =

ݎ݃ܽ ൫ીหত௕,௡ܮીݔܽ݉
∗ ൯.

[5] Draw ௜௕௞ݑ
∗ , ݇= 1, … ,ܭ, from ݂൫ݑ௜หી෡ୠ

∗ ܠ, ௜൯ݕܑ, given in (7.2), for each ݅=

1, … ,ܰ .

[6] Increment b by one

[7] Repeat steps [3]-[6] B times, yielding a set য = ௜௕௞ݑ}
∗ }௕ୀଵ,௞ୀଵ

஻,௄ of BK values for

each ݅= 1, … ,ܰ .

[8] Form the set য௜
∗ = ௜௕௞ݑ}

∗ ௜௕௞ݑ|
∗ ∈ য௜,ݑ௜௕௞

∗ ≠ 0} for each ݅= 1, … ,ܰ .

[9] Order set য௜
∗ and compute the percentiles of interest.

Prediction intervals for each observation i are then computed by ranking the

elements of set ॏ݅∗ and choosing the appropriate percentiles as the lower and upper

bounds. Essentially, like all bootstrapping procedures, the validity of this approach

relies on the distribution ൫ࣂ∗෢ − ෡൯approximatingࣂ the distribution of ൫ࣂ෡− .൯ࣂ
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Step [5] in their procedure is relatively computationally undemanding (it is simply

drawing from a truncated distribution a total of BK times following the iterations).

However, step [3] requires B re-estimations of the model. While the values of B and

K used by Simar and Wilson are not stated in the paper, their model is very simple (a

constant and one other regressor). When a more complex model is estimated, it is

reasonable to assume that this approach may involve substantial computing time.

7.4.2. An alternative asymptotic approach

As an alternative, this study proposes to draw from the multi-variate distribution

 Ωθθ ˆ,ˆN~ˆ in place of steps [3] and [4]. This is not bootstrapping and appeals to the

asymptotic properties of ી෡ as an approximation of the small sample distribution of ી෡.

Such an approach can be traced back to Krinsky and Robb (1986) who used the

approach to approximate the distribution of estimated substitution elasticities in a

Translog cost model. The method is commonly used in the literature as a means of

approximating the distribution of relatively complicated functions of estimated

parameters as an alternative to the delta method (e.g. willingness to pay in mixture

discrete choice models (Train, 2009) – see Greene (2012 p 649-651) for a discussion

on application). This approach is termed the multi-variate normal approach. More

formally, by asymptotic theory:

 Ωθθ ,N~ˆ
a

(7.9)

where Ω is the asymptotic variance covariance matrix.
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To operationalise this distribution there is a need to substitute ી෡ for �ી, which is the

ML estimate of ી and Ω̂ for Ω which is the estimated asymptotic variance

covariance matrix.

It is necessary to sample from the truncated normal distribution for different draws

of ી෡ to determine empirically the shape of the distribution for iiu ̂|ˆ , i.e.:

   
θ

ii θxθxΩθ
ˆ

ˆ,,ˆ|ˆ,,,|ˆ dyufyuf iiii (7.10)

In sum, the following alternative approach is proposed:

Algorithm 2

[1] Maximize the log-likelihood function for the model in (7.1) to obtain ML

estimates ી෡. Recover ̂ , the estimator of the asymptotic covariance matrix of ી෡.

[2] Set b=1.

[3] Draw ી෡܊
∗ from N൫ી෡,ષ෡൯.

[4] For i = 1, … , N draw ௜௕௞ݑ
∗ , ݇= 1, … ,ܭ, from ݂൫ݑ௜หી෡ୠ

∗ ܠ, ௜൯givenݕܑ, in (7.2), for

each ݅= 1, … ,ܰ .

[5] Increment b by one

[6] Repeat steps [3]-[5] B times, yielding a set য = ௜௕௞ݑ}
∗ }௕ୀଵ,௞ୀଵ

஻,௄ of BK values for

each ݅= 1, … ,ܰ .

[7] Form the set য௜
∗ = ௜௕௞ݑ}

∗ ௜௕௞ݑ|
∗ ∈ য௜,ݑ௜௕௞

∗ ≠ 0} for each ݅= 1, … ,ܰ .
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[8] Order set য௜
∗ and compute the percentiles of interest.

Thus, apart from the change in steps [3] and [4], the bagging and multi-variate

normal approaches are the same. The multi-variate normal approach has the

advantage of not requiring re-estimation of the model which saves computing time.

However it is not clear to what extent the ી෡ do follow the distribution in (7.9) in

finite samples, both in terms of the multi-variate normal shape and the extent to

which the estimated covariance matrix ષ෡ does approximate the true covariance

matrix. This is analogous to the extent to which the distribution ൫ࣂ∗෢ − ෡൯ࣂ

approximates the distribution of ൫ࣂ෡− ൯ࣂ in the bagging approach in finite samples.

Thus, both approaches are approximations to the true distribution in finite samples

but, due to the asymptotic results, it is likely that by adopting either approach the

intervals will better reflect the true intervals over simply ignoring parameter

uncertainty.53

53 An issue that arises in comparing the 'bagging' and asymptotic approaches is the
possibility that the point estimate of the variance of the inefficiency term is zero - this is the
'wrong skewness' problem. In this instance, the asymptotic approach produces a zero width
interval, by construction, but the bagging approach may still produce a nonzero width
interval (Simar and Wilson, 2010). This issue has attracted some attention in recent
discussions of stochastic frontier modelling. The possibility is noted, but, an attempt to
confront this substantive issue is not made in this chapter (the analysis assumes a nonzero
estimate of the variance). This question is for further research. [Note that Professor Greene
should be credited with this remark.]
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7.5. Empirical Example

In this section, the various prediction intervals referred to in the chapter using a

dataset for a stochastic frontier model reported within the transport economics

literature, are computed. This model considers the cost and efficiency of train

operating companies (TOCs) in Great Britain between 1996 and 2006 (see Smith and

Wheat, 2012a). This work is a forerunner to the work reported in Chapter 5 but the

emphasis of the Smith and Wheat work was to examine changes in cost efficiency

from different contract types.

An actual ‘real world’ dataset and model specification is used, rather than a

simulated or a more stylised empirical example. This provides a realistic number of

parameters that have to be estimated – the model has 28 regressors – when compared

to models which may be estimated in practice. Thus it is envisaged that there may be

a realistic degree of parameter uncertainty.

The model parameter estimates and a description of the variables used are given in

Appendix 7B. A pooled model is estimated, when in fact the preferred Smith and

Wheat (2012a) model was a panel data model (based on the formulation by Cuesta

(2000)). Only the pooled model is considered since the purpose of its inclusion in

this chapter is to provide an illustrative example. Analysing a panel dataset as a

pooled dataset is, for this purpose, essentially the same as analysing a dedicated

cross sectional dataset; cross sectional data being the focus of this chapter. Given

potential temporal correlation in errors the corrected covariance matrix presented in
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Alvarez et al (2006) is utilised, although this makes very little difference to this

analysis’s findings on interval widths.

The following discussion follows the delineation used between section 7.3 and 7.4;

namely, to first consider the difference between central two sided intervals and

minimum width prediction intervals for firm efficiency. The extension to incorporate

parameter uncertainty is then considered. The estimation of the pooled stochastic

cost frontier model and the bagging runs of the stochastic cost frontier model were

undertaken using LIMDEP v9 (Econometric Software Inc., 2010b). The computation

of the central and minimum width intervals under both the assumption of known

parameters and estimated parameters were undertaken using the matrix programming

language suite [R] (R Development Core Team, 2010). Codes for both packages are

available on request.

7.5.1. Findings on the width of intervals parameter known case

Table 7.1 summarises the results for the upper and lower bounds of the central and

minimum width intervals for 95th, 90th and 85th percentage prediction levels for firm

efficiency, by displaying the observations which comprise each decile ordered by

lower bound.

The minimum width intervals are at least as narrow as the central intervals. On

average, the minimum width intervals are 5.9%, 6.2% and 6.4%. narrower than the

central intervals for the 95th, 90th and 85th percentile prediction intervals
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respectively54. For some observations, in particular those with small ,[௜ߝ|௜ݑ]ܧ the

minimum width intervals are up to 17% narrower than the corresponding central

interval (90th percentile prediction interval).

Several further points help illuminate the reasons for these findings. Firstly, as

described in section 7.3, the upper bound for efficiency for the minimum width

intervals is one for those observations with probability mass of ௜ߝ|௜ݑ close to zero.

Given the homoscedastic variance assumption on ,௜ݑ this is equivalent to those

observations with small [௜ߝ|௜ݑ]ܧ having an upper predictive bound for efficiency of

one. This conveys useful information to practitioners and policy makers regarding

the likely inefficiency of a given observation. By definition, central intervals cannot

make this distinction.

Secondly, as the predictive interval significance level increases, so the number of

observations with upper bounds of one decreases and the intervals becomes

narrower. 75%, 62% and 54% of observations have minimum width upper

boundaries of one for efficiency for the 95%, 90% and 85% predictive intervals

respectively.

Thirdly, for observations with large ,[௜ߝ|௜ݑ]ܧ the minimum width interval

approaches the central interval. This is because the distribution of ௜ߝ|௜ݑ tends to a

symmetric normal distribution as [௜ߝ|௜ݑ]ܧ increases. Thus adopting minimum width

intervals over central intervals gives most gains in terms of shrinkage of intervals for

54 Given efficiency is often expressed as a percentage it is worth clarifying that the
percentage reductions given above are percentages of the interval width rather than absolute
percentage points.
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those observations with little inefficiency. As discussed above, this can be a

substantial savings for these observations.

Fourthly, as discussed in Bera and Sharma (1999, p.205) for central intervals, it is

found that the minimum width intervals appear at first to be monotonically

increasing with ,[௜ߝ|௜ݑ]ܧ however for the larger ,[௜ߝ|௜ݑ]ܧ the intervals start to

decrease in width. Bera and Sharma (1999) attribute this behaviour to the

exponential transformation associated with efficiency in the multiplicative SF

models (they show a strictly monotonically increasing relationship between

inefficiency and width). Given that for large ,[௜ߝ|௜ݑ]ܧ the minimum width intervals

approach the central intervals, it is not surprising that the same results are found here

as in Bera and Sharma.
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Table 7.1 Deciles of the upper and lower predictive interval bounds for firm efficiency – the case of known parameters – ordered by minimum width lower bound

UB – Upper Bound, LB – Lower Bound.

Table 7.2 Deciles of the upper and lower 90% predictive interval bounds for firm efficiency – incorporating parameter uncertainty– ordered by minimum width
lower bound

Diff. Diff. Diff.

Decile UB LB Width UB LB Width % UB LB Width UB LB Width % UB LB Width UB LB Width %

0% 0.773 0.597 0.176 0.779 0.603 0.176 0.2% 0.756 0.609 0.148 0.763 0.615 0.148 0.2% 0.747 0.618 0.129 0.753 0.624 0.129 0.2%

10% 0.971 0.759 0.212 0.967 0.756 0.212 0.1% 0.951 0.771 0.180 0.951 0.771 0.180 0.2% 0.939 0.781 0.158 0.940 0.782 0.158 0.1%

20% 0.993 0.790 0.203 0.983 0.778 0.205 0.8% 0.977 0.801 0.176 0.971 0.794 0.176 0.3% 0.965 0.809 0.156 0.961 0.805 0.156 0.0%

30% 1.000 0.809 0.191 0.988 0.793 0.196 2.4% 0.990 0.822 0.169 0.979 0.809 0.171 1.2% 0.980 0.829 0.150 0.972 0.820 0.152 1.1%

40% 1.000 0.821 0.179 0.992 0.805 0.187 4.4% 1.000 0.840 0.160 0.985 0.821 0.164 2.6% 0.992 0.847 0.144 0.979 0.832 0.147 1.7%

50% 1.000 0.835 0.165 0.994 0.819 0.176 6.2% 1.000 0.855 0.145 0.989 0.835 0.154 5.6% 1.000 0.868 0.132 0.984 0.846 0.138 4.4%

60% 1.000 0.850 0.150 0.996 0.834 0.163 7.8% 1.000 0.869 0.131 0.992 0.850 0.142 8.2% 1.000 0.882 0.118 0.989 0.861 0.128 8.0%

70% 1.000 0.866 0.134 0.997 0.849 0.148 9.3% 1.000 0.885 0.115 0.995 0.866 0.129 10.4% 1.000 0.897 0.103 0.992 0.877 0.115 11.0%

80% 1.000 0.875 0.125 0.998 0.859 0.138 10.1% 1.000 0.894 0.106 0.996 0.875 0.120 11.7% 1.000 0.906 0.094 0.993 0.886 0.107 12.6%

90% 1.000 0.894 0.106 0.998 0.878 0.120 11.6% 1.000 0.911 0.089 0.997 0.894 0.103 13.9% 1.000 0.923 0.077 0.995 0.904 0.092 15.5%

100% 1.000 0.924 0.076 0.999 0.911 0.088 14.2% 1.000 0.939 0.061 0.998 0.924 0.074 17.3% 1.000 0.948 0.052 0.997 0.933 0.065 19.5%

Minimum Width Minimum Width Central (HS)Central (HS) Minimum Width Central (HS)

85% Predictive Interval90% Predictive Interval95% Predictive Interval

UB LB Width UB LB Width UB LB Width (2)/(1) (3)/(1) (3)/(2) UB LB Width UB LB Width UB LB Width (2)/(1) (3)/(1) (3)/(2)

0% 0.756 0.609 0.148 0.784 0.589 0.195 0.839 0.541 0.298 32.3% 101.8% 52.5% 0.763 0.615 0.148 0.792 0.595 0.197 0.885 0.564 0.320 33.2% 117.0% 63.0%

10% 0.951 0.771 0.180 0.961 0.765 0.196 0.971 0.753 0.219 8.8% 21.5% 11.6% 0.951 0.771 0.180 0.960 0.764 0.195 0.972 0.752 0.220 8.4% 22.2% 12.7%

20% 0.977 0.801 0.176 0.979 0.797 0.182 0.987 0.789 0.198 3.7% 12.5% 8.5% 0.970 0.794 0.176 0.974 0.791 0.183 0.981 0.781 0.200 4.1% 13.4% 8.9%

30% 0.990 0.822 0.169 0.992 0.817 0.175 1.000 0.817 0.183 4.0% 8.6% 4.4% 0.979 0.809 0.170 0.981 0.803 0.179 0.985 0.798 0.187 4.8% 9.9% 4.8%

40% 1.000 0.840 0.160 1.000 0.834 0.166 1.000 0.832 0.168 4.0% 5.5% 1.5% 0.985 0.821 0.164 0.986 0.815 0.172 0.988 0.812 0.176 4.8% 7.5% 2.6%

50% 1.000 0.855 0.145 1.000 0.849 0.151 1.000 0.852 0.148 3.7% 1.7% -2.0% 0.989 0.835 0.154 0.990 0.828 0.161 0.991 0.832 0.159 4.9% 3.0% -1.8%

60% 1.000 0.869 0.131 1.000 0.865 0.135 1.000 0.870 0.130 3.6% -0.3% -3.8% 0.992 0.850 0.142 0.993 0.844 0.149 0.994 0.849 0.145 4.8% 1.9% -2.7%

70% 1.000 0.885 0.115 1.000 0.880 0.120 1.000 0.890 0.110 3.8% -4.6% -8.1% 0.995 0.866 0.129 0.995 0.859 0.135 0.996 0.871 0.124 5.1% -3.5% -8.2%

80% 1.000 0.894 0.106 1.000 0.889 0.111 1.000 0.901 0.099 4.3% -6.2% -10.1% 0.996 0.876 0.120 0.996 0.869 0.126 0.996 0.883 0.114 5.3% -5.2% -10.0%

90% 1.000 0.911 0.089 1.000 0.907 0.093 1.000 0.922 0.078 5.0% -12.5% -16.7% 0.997 0.894 0.103 0.997 0.888 0.109 0.998 0.906 0.092 5.9% -11.1% -16.1%

100% 1.000 0.939 0.061 1.000 0.936 0.064 1.000 0.951 0.049 5.3% -19.2% -23.2% 0.998 0.925 0.074 0.998 0.920 0.079 0.999 0.938 0.061 6.8% -16.9% -22.2%

Central Intervals

No Parameter

Uncertainty (1)

Asymptotic Approach

(2) Bagging Approach (3) Differences

Minimum Width

Decile

No Parameter

Uncertainty (1)

Asymptotic Approach

(2) Bagging Approach (3)

Percentage

Differences
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7.5.2. Findings on incorporating parameter uncertainty

Table 7.2 gives the deciles for the 90th percentile prediction intervals for observation

specific efficiency for three cases; assuming the parameters are known (as in sub-

section 7.5.1), approximating the distribution of the parameters as multi-variate

normal (Krinsky and Robb, 1986) and alternatively using the bagging approach of

Simar and Wilson (2010). The discussion is restricted to the 90th percentile

prediction intervals as similar observations can be made for other percentiles. It is

important to note that the purpose of implementing both bagging and the multi-

variate normal approach is to illustrate the feasibility of each approach and to discuss

the increase in interval widths relative to the shrinkage from adopting minimum

width. Any differences should not be taken as evidence that one method is superior

to another. Such conclusions can only be drawn from a robust simulation study

where the coverage of intervals can be assessed. This is left for further research.

For the multi-variate normal method, the minimum width prediction intervals are

always larger than the corresponding intervals assuming no parameter uncertainty.

On average they are 4.7% wider. For the bagging method, the intervals are 4.8%

wider. Overall, it would seem that incorporating parameter uncertainty increases the

interval width by slightly less compared to the reduction in width by adopting

minimum width as opposed to central intervals. It should be recalled that the

empirical example was chosen because there are many parameters to be estimated

within the frontier. Thus, a priori while it may be expected that there is a relatively

large contribution from parameter uncertainty for this example, in practice the added

uncertainty is still less than the gain from adopting minimum width intervals.



227

Furthermore, incorporating parameter uncertainty increases the width of intervals

(even in proportional terms) for those observations with the greatest ;[௜ߝ|௜ݑ]ܧ the

opposite relationship to that found between the width saving from adopting

minimum width over central intervals in the parameter known case. The relationship

appears to not be strictly monotonic, which is to be expected given that the

additional uncertainty is arising from several parameters which are multiplied by

regressors, taking different values for each observation. Even with this caveat,

overall observations which benefit the most from adopting minimum width over

central prediction intervals (in terms of shrinkage of intervals), i.e. those

observations with least inefficiency, are the observations whose intervals increase

proportionally least when additionally allowing for parameter uncertainty. For

example, even when parameter uncertainty is taken into account, adopting minimum

width intervals can still reduced predictive intervals by 13.5% for the most efficient

observations (90% predictive interval) in this example.

One difference between the bagging approach and the multi-variate normal approach

is that where [௜ߝ|௜ݑ]ܧ is relatively small, the bagging prediction intervals are

narrower than the intervals computed assuming parameters are known. This is a

counter intuitive result, given that incorporating parameter uncertainty should

introduce more uncertainty and thus widen the distribution. At the other end of the

efficiency scale, the bagging intervals are considerably wider than both the intervals

where parameter uncertainty is not taken into account and those from the multi-

variate normal approach. Thus while the bagging and multi-variate normal

approaches yield similar increases in widths in terms of average interval width gain,

the extremes are very different, with the bagging approach yielding counter intuitive
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results at the extremes. This is left for future research to determine if the results hold

in more applications.

7.5.3. Specific illustrations of intervals for the analysis of TOCs

In order to highlight the applicability of the techniques in this chapter to vertically

separated railways, Table 7.3 presents 90 and 95 per cent prediction intervals for the

TOCs in the last year of sample. The Jondrow et al (1982) point estimator (of

efficiency) is provided for comparison. The rank of TOCs implied by each boundary

is also presented. The estimated average efficiency score for this year of the model is

90%. This is similar to the average for the model as a whole (91%).

The following observations can be made:

 Irrespective of which interval type (HS versus minimum width), the width of

prediction intervals is large. For example, the average width for 90% Horrace

and Schmidt prediction interval is 14 percentage points. Clearly there is a

need to report interval predictors as well as the Jondrow et al (1982)

efficiency point predictor.

 The minimum width intervals distinguish between those TOCs which have a

one-sided interval with an upper bound at 100% from those that have two

sided intervals. As such this provides a criterion to distinguish between those

firms that exhibit strong evidence of inefficiency versus those that do not. It

is found that 14 and 15 out of 23 TOCs (for the 90 and 95 per cent intervals

respectively) have upper bounds for the minimum width intervals which
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include 100%. As such there is some evidence that these firms are efficient

(although this is not inference in the conventional sense).

 Contrasting the above findings to those that can be gleaned from the two

sided HS intervals, by construction the upper bound must be less than 100%.

While it is clear that many upper bounds are close to 100%, it is not clear

whether there is a sensible means to judge how close is close enough to make

meaningful statements about which TOCs are likely to be efficient versus

inefficient. For example, at the 90% prediction level, ONE has a two sided

upper bound of 98.3% but is still consistent with a minimum width interval

that includes 100%.

 With the exception of the rankings implied by the upper bounds of the

minimum width intervals; the rankings for each TOC seem consistent,

irrespective of which measure is used55. This is as expected given the results

of Bera and Sharma (1999) regarding the monotonic relationship between the

(inefficiency) point estimate and the width of intervals.

 The reason for the inconsistency of the ranking from the upper bound of

minimum width intervals is that there are multiple TOCs ranked first given

the construction of the intervals. An implication of this result may be that, if

relative rankings are of interest, then a useful measure for policy/regulatory

purposes which summaries whether a firm is inefficient or not and, if it is,

how it compares to other TOCs, is to use the ranking of the minimum width

upper bound. Thus, 14 TOCs occupy the top rank with the remainder having

a position assigned. It should be noted that this is not inference in the

conventional sense. It would be interesting to compare this approach to that

55 Small differences are likely to be due to sampling error.
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yielded from the work by Horrace (2005) and Flores-Lagunes, Horrace, and

Schnier (2007), although neither technique is ideal given the latter ignores

parameter uncertainty.
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Table 7.3 Efficiency predictions for TOCs in the final year of the dataset (2006)

Rank is given in underlined italics

Arriva Trains Wales 88.5% 16 80.0% 15 96.7% 16 79.6% 16 98.2% 16 78.1% 16 98.4% 16 78.6% 15 99.7% 16

Central Trains 87.2% 17 78.3% 17 95.9% 18 77.6% 17 97.4% 18 76.7% 18 97.6% 18 76.3% 18 99.0% 18

Chiltern 97.2% 1 93.0% 1 99.7% 1 93.7% 1 100.0% 1 91.1% 1 99.9% 1 92.1% 1 100.0% 1

Southern 95.9% 5 90.2% 5 99.6% 3 91.0% 5 100.0% 1 88.0% 5 99.9% 5 89.1% 5 100.0% 1

South Eastern 87.1% 19 78.2% 19 96.0% 17 77.5% 18 97.5% 17 76.6% 19 97.6% 19 76.2% 19 99.1% 17

Cross Country 94.1% 8 86.7% 8 99.2% 8 87.6% 8 100.0% 1 84.9% 8 99.7% 8 85.6% 8 100.0% 1

Gatwick Express 96.0% 4 90.4% 4 99.6% 3 91.2% 4 100.0% 1 88.3% 4 99.9% 4 89.3% 4 100.0% 1

GNER 96.1% 3 90.7% 3 99.6% 3 91.5% 3 100.0% 1 88.6% 3 99.9% 3 89.7% 3 100.0% 1

Great Western 92.7% 10 85.0% 10 98.8% 10 85.9% 10 100.0% 1 82.8% 10 99.6% 10 83.9% 10 100.0% 1

c2c 88.8% 15 79.8% 16 97.2% 15 79.9% 15 99.0% 15 78.4% 15 98.5% 15 78.5% 16 100.0% 1

Merseyrail 87.2% 17 78.3% 17 95.9% 18 77.5% 19 97.3% 19 76.7% 17 97.6% 17 76.3% 17 99.0% 19

Midland Main Line 95.4% 6 89.3% 6 99.5% 6 90.2% 6 100.0% 1 87.0% 6 99.8% 6 88.3% 6 100.0% 1

Northern 90.2% 14 80.1% 14 98.2% 14 81.2% 14 100.0% 1 79.9% 14 99.0% 14 78.7% 14 100.0% 1

Scotrail 95.3% 7 88.8% 7 99.4% 7 89.7% 7 100.0% 1 86.9% 7 99.8% 6 87.7% 7 100.0% 1

Silverlink 91.6% 12 83.5% 12 98.4% 11 84.4% 12 100.0% 1 81.4% 12 99.4% 12 82.3% 12 100.0% 1

South West Trains 83.8% 21 75.3% 21 93.1% 21 73.8% 21 94.0% 21 73.6% 21 94.9% 21 72.5% 21 96.3% 21

Thameslink 77.6% 22 69.3% 22 86.8% 22 67.6% 22 87.5% 22 68.1% 22 88.0% 22 66.0% 22 89.8% 22

Thames Trains First Great Western Link 91.8% 11 83.9% 11 98.4% 11 84.8% 11 100.0% 1 81.7% 11 99.4% 11 82.8% 11 100.0% 1

WAGN 96.7% 2 91.9% 2 99.7% 1 92.6% 2 100.0% 1 89.9% 2 99.9% 2 90.9% 2 100.0% 1

Wessex 85.8% 20 77.1% 20 94.8% 20 76.0% 20 95.9% 20 75.4% 20 96.6% 20 74.7% 20 97.9% 20

West Coast 93.8% 9 86.4% 9 99.1% 9 87.3% 9 100.0% 1 84.5% 9 99.7% 9 85.3% 9 100.0% 1

Transpennine Express 68.7% 23 60.7% 23 78.1% 23 58.9% 23 78.6% 23 60.3% 23 77.9% 23 57.5% 23 81.1% 23

One 91.4% 13 83.4% 13 98.3% 13 84.3% 13 100.0% 1 81.3% 13 99.3% 13 82.2% 13 100.0% 1

95% Prediction Interval

LB UB LB UB

Minimum Width with

Parameter Uncertainty

90% Prediction Interval

HS Interval

Jondrow et al

(1982)

efficiency

predictor LB UB LB UB

Minimum Width with

Parameter Uncertainty HS Interval

TOC name
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7.6. Summary

The prediction of firm specific inefficiency is the primary objective of any analysis

which utilises stochastic frontier techniques (or, at the very least, one of the most

important).56 Interval prediction is notable given that the available point estimates,

for use with cross sectional data, first proposed by Jondrow et al (1982) are

inconsistent for the underlying quantity of interest; namely the realisation of a

random variable representing inefficiency. Ultimately, there is likely to be

substantial uncertainty surrounding predictions of firm specific inefficiency and this

needs to be quantified.

In this chapter, the prediction intervals proposed by Horrace and Schmidt (1996) for

firm specific inefficiency estimates in cross sectional stochastic frontier models have

been considered. The chapter makes two contributions to the literature. Firstly,

prediction intervals assuming the model parameters are known (as assumed in the

original Horrace and Schmidt paper) have been examined. It is noted that the

existing intervals are not efficient predictive intervals in the sense that they do not

correspond to the minimum width prediction intervals. How to compute these is

explained and it is pointed out that as well as being statistically efficient, the

minimum width interval provides policy makers with useful information in terms of

whether the firm prediction interval spans zero inefficiency or not. This in turn can

be used by policy makers as evidence as to whether a given firm has scope for

56 This is a logical statement, given that under the assumptions of the majority of stochastic
frontier models, OLS estimation provides consistent and unbiased estimation. Therefore the
motivation for using specific stochastic frontier estimation techniques must come from the
desire to measure inefficiency, rather than to correct or provide more robust slopes relative
to OLS.
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efficiency improvement or not. In contrast, by construction, central intervals cannot

make this distinction since there will always be some probability mass below the

lower bound.

Secondly, the extensions required to the intervals to incorporate parameter

uncertainty, given that model parameters have to be estimated, are considered. An

alternative to the bagging procedure presented in Simar and Wilson (2010) which

utilises an approximation to the asymptotic distribution of the estimated parameters

(following Krinsky and Robb (1986)) is introduced, partly for its computational

simplicity. Nonetheless, either is a candidate method given that both methods

implicitly make distributional approximations. It is considered to be a further

research issue as to which performs best in different circumstances, and the analysis

leaves investigation to such methods as a rigorous simulation experiment and/or

further empirical applications.

The empirical illustration utilises data from a published railway operations study. It

is found that the minimum width prediction intervals are approximately 6-6.5%

narrower than the equivalent central two sided width interval reported in the

literature (parameters assumed known). Furthermore, adopting the minimum width

interval reduces the width of predictive intervals most (vis-à-vis central intervals) for

those observations with little inefficiency since the distribution for inefficiency for

these observations is highly asymmetric. When additionally uncertainty associated

with parameter estimation is added, it is found that the minimum width predictive

intervals expand by about 4.5%. Thus, overall, even after incorporating parameter
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uncertainty, it is found that the minimum width predictive intervals are narrower

than the two sided parameter known intervals discussed in the literature.

Appendix 7A – Derivation of minimum width predictive intervals for the

truncated normal distributions

Consider ∗ߪ,∗௜ߤ)ାܰ~(௜ߝ|௜ݑ)
ଶ) (7.11)

There are two solutions to the Lagrangian problem. Either:

(∗ܮ݂) = (݂ܷ∗) exists such that ∫ (௜ߝ|௜ݑ݂)
௎∗

௅∗
=௜ݑ݀ (1 − (ߙ and ∗ܷ,∗ܮ ≥ 0 (7.12)

Otherwise

∗ܮ = 0 and ܷ∗ such that ∫ (௜ߝ|௜ݑ݂)
௎∗

଴
=௜ݑ݀ 1 − ߙ (7.13)

ܷ∗ for the case in (7.13) is given by Horrace and Schmidt (1996) and reproduced in

(7.3) as

ܷ∗ = ∗௜ߤ + Φ∗ߪ
ିଵቂ1 − ൫1 − (1 − α)൯Φቀ

ఓ೔∗

ఙ∗
ቁቃ

ܷ∗ = ∗௜ߤ + Φ∗ߪ
ିଵቂ1 − α.Φቀ

ఓ೔∗

ఙ∗
ቁቃ (7.14)

Now consider (7.12).
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Define, X~N(ߤ௜∗,ߪ∗
ଶ)

Then

∫ (௜ߝ|௜ݑ݂)
௎∗

௅∗
=௜ݑ݀ 1 − ↔ߙ ∫ (݂ܺ)

௎∗

௅∗
݀ܺ = (1 − ∫(ߙ (݂ܺ)

ஶ

଴
݀ܺ

∫ (݂ܺ)
௎∗

௅∗
݀ܺ = (1 − ቆ1(ߙ − Φቀ

ఓ೔∗

ఙ∗
ቁቇ (7.15)

Given the symmetry of (݂ܺ), for (∗ܮ݂) = (݂ܷ∗),

∫ (݂ܺ)
௎∗

ିஶ
݀ܺ = ቀ1 −

ఈ

ଶ
ቁቆ1 − Φቀ

ఓ೔∗

ఙ∗
ቁቇ (7.16)

∫ (݂ܺ)
௅∗

ିஶ
݀ܺ = ቀ

ఈ

ଶ
ቁቆ1 − Φቀ

ఓ೔∗

ఙ∗
ቁቇ (7.17)

Yielding

ܷ∗ = ∗௜ߤ + Φ∗ߪ
ିଵቈቀ1 −

ఈ

ଶ
ቁቆ1 − Φቀ

ఓ೔∗

ఙ∗
ቁቇ቉ (7.18)

∗ܮ = ∗௜ߤ + Φ∗ߪ
ିଵቈቀ

ఈ

ଶ
ቁቆ1 − Φቀ

ఓ೔∗

ఙ∗
ቁቇ቉ (7.19)

Intuitively, ∗ܮ and ܷ∗ in (7.12) are the boundaries of the central interval of the

untruncated normal distribution with mean ∗௜ߤ and variance ∗ߪ
ଶ, since the normal

distribution is symmetric. However, they do not correspond to the usual
ఈ

ଶ
and

ቀ1 −
ఈ

ଶ
ቁ percentiles of the normal distribution since the actual distribution is
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truncated and thus a correction is necessary for the untruncated distribution to

integrate to unity.

Appendix 7B – Parameter estimates for the empirical example

Table 7.4 gives the output for the preferred model in Smith and Wheat (2012a) re-

estimated for a normal-half normal pooled model (See Smith and Wheat (2012a) for

more details on the model formulation and interpretation). Overall, it is considered

that the model parameter estimates are broadly in line with those from the Smith and

Wheat model, which was a panel data model, but here the data is analysed as a

pooled model. Importantly, the conclusions regarding constant returns to scale are

the same as that found in Smith and Wheat, although returns to train density at the

sample mean are no longer found (see Smith and Wheat (2012a) for details of

computation in this context). The average point efficiency scores ( (([௜ߝ|௜ݑ]ܧ−)݌ݔ݁

are 0.90 for the panel model and 0.91 for the pooled model, although the correlation

between the scores is only 0.6 which is not surprising given the added structure

imposed to efficiency variation in the panel model. Overall, while a pooled model is

not the preferred model for modelling TOC costs, it is considered to be a reasonably

credible alternative for the illustrative purpose of this chapter.
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Table 7.4 Model coefficient estimates

Variable Description Coefficient

Dependent variable

LCOST Operating cost of train operating companies (1996/97 to 2005/06) - 238 observations

Explanatory variables

ONE Constant 5.39046 ***

ROUTE ln(route length) 0.819282 ***

TDEN ln(traffic density)=ln(train-km/route-km) 1.02807 ***

STAT1 Number of stations operated 0.210935 ***

TIME Time trend -0.09417 ***

INP ln(Wage) 0.401388 ***

TLEN ln(average length of train)=ln(vehicle-km/train-km) 0.270768 ***

LFAC ln(average passenger load factor) 0.148172 **

LNAGE ln(average age of rollingstock) 0.056336 **

TDEN2 TDEN^2 0.103867 ***

STAT12 STAT1^2 -0.02384 **

TIME2 TIME^2 0.007183 ***

TLEN2 TLEN^2 0.277243 ***

DENSTAT1 TDEN*STAT1 -0.00343

TDENLEN TDEN*TLEN -0.20026 ***

STAT1LN STAT1*TLEN 0.08822 **

ONWARDS2 Dummy variable: = 1 for observations in year 2000 onwards 0.170486 ***

_1_YEAR_ Dummy variable: = 1 iff franchise in last year -0.03871

MANBF

Dummy variable: = 1 for years before a franchise was placed on to a management

contract if it was subsequently placed on to such contract 0.052184

MANAF

Dummy variable: = 1 for years after a franchise was placed on to a management

contract if it was placed on to such contract 0.247369 *

RENBF

Dummy variable: = 1 for years before a franchise was placed on to a renegociated

contract if it was subsequently placed on to such contract 0.143143 **

RENAF

Dummy variable: = 1 for years after a franchise was placed on to a renegociated

contract if it was placed on to such contract 0.341777 **

INTERCIT Dummy variable: = 1 iff franchise is classed as an intercity operator 0.475924 ***

LSE Dummy variable: = 1 iff franchise is classed as a London South Eastern operator -0.02452

MANBFT MANBF*TIME -0.02055

RENBFT RENBF*TIME -0.03906 **

MANAFT MANAF*TIME -0.01966

RENAFT RENAF*TIME -0.03312

Cost frontier error component parameters

Lambda 1.52756 ***

Sigma 0.14271 ***

***,**,* Statistically significant at the 1%, 5%, 10% level respectively
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8. Conclusion

8.1. Introduction

In this final chapter, the thesis is concluded. The structure is that section 8.2 provides

a summary of the thesis context. Section 8.3 describes how the research aims and

objectives have been achieved through a detailed examination of the conclusions

from each research chapter. Section 8.4 provides a wider, more holistic view of the

research in terms of cross chapter conclusions. Finally, section 8.5 ends the thesis by

considering further research opportunities.

8.2. Summary of thesis context

Vertical separation refers to separation in management and administration of

different aspects of the production process. For the purpose of this thesis, vertically

separated railways refer to railways where passenger and freight operations (the

running of trains) are separate to the infrastructure. Such separation is becoming

more important in railways, both in Europe and the wider world, with market

reforms aimed at opening up operations to competition and infrastructure managers

to greater cost (reduction) pressures.

Research has been directed to examine several pressing needs within the sector,

identified as:

 The need to understand the returns to scale and density properties of

passenger train operations – this is important given the move to competitive
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tendering of railway operations in terms of specifying cost minimising

tender specifications.

 the need to exploit multi-layered datasets to better predict the efficiency of

infrastructure managers – this is of particular importance given the limited

number of comparators available to make an assessment and it is of

particular relevance to the railway in Britain given the recent rises in

infrastructure costs and the need to assess the scope for cost reduction.

 The need to understand the uncertainty in efficiency predictions – this is of

significance given the maturing of the rail regulatory sector in Britain and

the perceived elimination of the ‘easy wins’ for efficiency improvements

post privatisation.

8.3. Reconciliation against aims and objectives

The aim of this thesis is to apply appropriate econometric techniques to better

analyse the cost structure of vertically separated railways - specifically the

infrastructure management and passenger train operations activities - to inform

regulatory bodies and policy makers. The research chapters have all contributed to

this aim.

Six specific objectives were set and addressed through three research chapters

(Chapters 5 to 7). Below, for each of the research chapters, the contribution to the

relevant objectives are outlined. This is a prelude to discussion of more general

conclusions in section 8.4.
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8.3.1. Chapter 5 Passenger Train Operating Company cost analysis

Objectives addressed:

 To explore the use of a hedonic cost function approach to incorporate

measures of output heterogeneity in the analysis of train operating companies

(TOCs) costs

 To provide new empirical evidence as to the cost implications of redrawing

franchise boundaries, crucially drawing on the scale and density properties of

the estimated model and how these vary with heterogeneity of the TOC’s

output

In Chapter 5 a hedonic Translog cost function for TOCs in Great Britain has been

estimated. The model includes three hedonic outputs: route-km, stations operated

and train hours. The model is rich in output characteristic variables which is unique

in the railway operations literature. The approach in Chapter 5 is pragmatic; given so

many measures of heterogeneity of output available, a feasible manner to

operationalize a Translog type functional form, in order to keep the number of

parameters manageable, is to use a hedonic approach.

The estimated cost function conforms with the economic restrictions required for the

cost function to represent the underlying technology. The use of train hours (over

train-km) is a data innovation in itself but, in addition, the train hours hedonic output

has a number of characteristics also included within the hedonic function, which

characterize TOC heterogeneity. Thus the model is rich in its characterisation of

firms’ technology.
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This richness allows establishment of a deep understanding of the variation in returns

to scale and density in the industry. In particular, different scale and density effects

can be distinguished, depending on the output characteristics of the TOC, not just the

usual overall output level and input price level as in a simple (non-hedonic) Translog

cost function. This has importance since there has recently been a move towards re-

mapping franchises to larger, more heterogeneous franchises which requires a rich

model to determine whether this increases or reduces costs.

The analysis indicates over 50% of TOCs in the sample operate under decreasing

RtS. Furthermore, returns to scale fall with the size of operation, which is consistent

with a u-shaped average cost curve. The implication of these findings is that the

current mappings of TOCs in Britain are such that operations are above their optimal

size given that most TOCs operate with decreasing RtS i.e. on the upward part of the

average cost curve. Thus there is an argument for more, smaller TOCs.

It is also found however that there are increasing RtD, i.e. unit cost savings from

running more trains on a fixed network. This has two implications. Firstly,

increasing capacity (train hours) to meet increasing passenger demand should reduce

unit costs. Secondly, there is scope to reduce unit costs by removing franchise

overlap; this effect therefore working in the opposite direction to the scale effect (as

the density finding suggests that TOC mergers will reduce unit costs). Nethertheless,

there can be impacts of changes in the output mix (heterogeneity of services) which

prevent TOCs from exploiting any RtD even though train hours per route-km

increases. Of the three example mergers considered, it is found that two mergers
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actually increase cost (Greater Western and New Northern) and one reduces cost

(ONE/Greater Northern).

The findings suggest that previous estimates of scale and density properties in

railways may have been biased to the extent that they did not adequately model the

interaction between scale/density and heterogeneity of services. The model in

Chapter 5 contains both measures on inter and intra TOC heterogeneity which

permits control for both average differences in output heterogeneity between TOCs

and also the extent to which output differs within each TOC. This in turn leads to a

complex interplay between heterogeneity and more ‘standard’ concepts of returns to

density and scale. In terms of regulatory policy, in interpreting evidence on scale and

density returns in railways, the model suggests that policy makers need to take

service heterogeneity into account. Failure to do so may mean that policy decisions

are made on the basis of supposed scale/density returns that cannot be realised in

practice. Modelling railway operations is complex and thus to address specific policy

questions (such as the cost implications of mergers) a rich model, such as that

developed in Chapter 5, is required.

8.3.2. Chapter 6 Infrastructure cost analysis

Objectives addressed:

 To explore via econometric analysis the exploitation of a multi-layered panel

dataset to predict the inefficiency level of infrastructure managers

 To provide new empirical evidence on the potential efficiency saving of the

infrastructure managers in sample.
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Chapter 6 has outlined econometric techniques to analyse data on geographical

regions of multiple companies. This is termed ‘sub-company’ data. This is data

which both exists and is desirable for performance analysis of horizontally integrated

elements of vertically separated railways. This is common for infrastructure

managers and, at a simple level, can be used to overcome the problem of few

external comparator observations.

Importantly, as well as providing extra observations to estimate cost frontiers, the

data structure permits estimation of a dual-level inefficiency model which separates

sub-company persistent inefficiency from sub-company varying inefficiency. This is

a useful decomposition in itself, since it gives an indication as to whether

inefficiency predominantly varies within firm or between firms, as well as having

utility in terms of identifying where efforts should be made to eliminate inefficiency.

Furthermore, it is often more sensible from an economic perspective to model

infrastructure costs using sub-company data. This is because aggregation bias can be

avoided particularly with reference to measurement of returns to scale.

Several candidate estimation techniques have been proposed and their properties

discussed. A selection of techniques have been applied to the analysis of 5 railway

infrastructure managers. Given the small number of firms and the short panel length,

it is only by having data at the sub-company level that estimation of a cost model is

feasible from the perspective of having sufficient data for reasonable precision in

estimation. It is shown that the parameter estimates are in line with the received

literature. With respect to inefficiency, there is statistically significant dual-level
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inefficiency. The empirical example also indicates that failure to take account of the

dual-level inefficiency variation may result in under estimation of inefficiency.

The average efficiency score is 0.724 for the preferred model, comprising 0.849 and

0.851 for the persistent and sub-company varying components respectively. Thus

there exists a large amount of cost saving potential for infrastructure managers to

assimilate best practice from other infrastructure managers, but also to consistently

apply their own best practice across sub-companies within their organisation.

8.3.3. Chapter 7 Uncertainty in efficiency analysis

Objectives addressed:

 To explore the most appropriate predictor of firm efficiency from parametric

stochastic frontier models covering point and interval predictors

 To provide a new method to incorporate the effect of parameter uncertainty

into predictors of firm efficiency and illustrate these concepts via application

to TOCs in Britain.

In Chapter 7, the appropriate way to predict inefficiency for specific firms, as

opposed to industry average inefficiency, from stochastic frontier models which

utilise cross sectional data is considered. The majority of stochastic frontier studies

simply report a point predictor for firm inefficiency, following the method of

Jondrow et al (1982). However, it is well established that such a predictor is not

consistent for the quantity of interest, a specific realisation of a random variable.

Thus in cross sectional models, firm specific inefficiency is likely to be predicted
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with a large amount of uncertainty, irrespective of sample size. Such an observation

is borne out in numerous empirical applications, including Horrace and Schmidt

(1996), Bera and Sharma (1999) and the empirical example in Chapter 7.

With the above in mind, interval prediction of firm inefficiency is of value as it

quantifies uncertainty. A literature exists on such intervals and the first part of

Chapter 7 clarifies the literature in terms of what uncertainty is captured and what

uncertainty is not captured within the received literature, starting with the intervals

proposed by Horrace and Schmidt (1996).

In terms of methodological advancements, the chapter makes two contributions to

the received literature. Firstly, it is noted that the existing intervals are not efficient

predictive intervals in the sense that they do not correspond to the minimum width

prediction intervals. How to compute these is explained and it is pointed out that, as

well as being statistically efficient, the minimum width interval provides policy

makers with useful information in terms of whether the firm inefficiency prediction

interval includes zero inefficiency or not (equivalently whether the prediction

interval for firm efficiency includes unity). This in turn can be used by policy makers

as evidence as to whether a given firm has scope for efficiency improvement or not.

In contrast, by construction, central intervals cannot make this distinction since there

will always be some probability mass either side of the boundaries.

Secondly, what extensions are required to the intervals to incorporate parameter

uncertainty given that model parameters have to be estimated are considered. An

alternative to the bagging procedure (Simar and Wilson, 2010) which utilises an
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approximation to the asymptotic distribution of the estimated parameters (following

Krinsky and Robb, 1986) is introduced. This is partly introduced for its

computational simplicity; however either is a candidate method given that both

methods implicitly make distributional approximations.

The empirical example highlights that prediction uncertainty is not trivial in cross

sectional models. For example, the average width for 90% Horrace and Schmidt

prediction interval is 14 percentage points for TOCs in the last year of the sample.

The innovations proposed in Chapter 7 do not, on average, change the interval width

substantially. This is because the use of minimum width contracts the intervals,

while additionally accounting for uncertainty in parameter estimates results in

expanded interval. However, the innovations proposed do result in changes in the

width, upper bounds and lower bounds for individual observations. In particular,

those observations with small residuals have intervals for efficiency with the upper

bound at unity and width considerably narrower (of the order of 13.5% narrower).

For those observations with the largest residuals, the intervals tend to be wider than

the received intervals in the literature. The reason is that accounting for parameter

uncertainty increases the width of intervals while for those observations with large

residuals, the minimum width interval corresponds to the central interval. Thus there

are substantial increases in width from incorporating uncertainty in estimating

parameters but no (or very little) contraction from adopting minimum width.

For the TOCs considered in the empirical example, it is found that 14 and 15 out of

23 TOCs in the final year of sample (for the 90 and 95 per cent intervals
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respectively) have upper bounds for the minimum width intervals which include

100%. As such there is some evidence that these firms are efficient.

8.4. Overall Conclusions

The three research Chapters 5, 6 and 7 have necessarily focused on addressing

specific pressing issues in vertically separated railway cost analysis. Taken together,

the material does provide several insights into key challenges in vertically separated

railway cost analysis and these are explored below:

8.4.1. Data

Any cost analysis, be it primarily to understand characteristics of the cost function or

measure inefficiency requires high quality data. This in turn has many facets.

Clearly, there needs to be enough observations with sufficient variation to facilitate

precise estimation of parameters. Panel data is obviously desirable since it increases

both the number of observations (relative to a single cross sectional of the same

data), but also allows for a richer analysis of the data, since both between and within

group variation in the data can be exploited. Also, the effect of omitted time

invariant factors can be controlled. Panel data was available in a reasonable

dimension for the analysis of train operating company costs.

However such data is not always easily to come by – as in the infrastructure case –

and may suffer from limited variation over time in the case of industries with very

long asset lives, such as railway infrastructure. Expanding the sample size is one of
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the key motivations for the models exploiting multi-layer ‘sub-company’ datasets

but, more subtly, there is the advantage that there is likely to be more variation in the

dataset relative to a standard panel, with the total number of observations held

constant, for the reason of lack of time variation in panel data in this context.

For both efficiency analysis and more general cost analysis, Chapter 6 clearly

demonstrates that there is a need to model costs at the level that management

autonomy resides. Failure to do so can result in misleading predictions of efficiency

as it mismatches returns to scale properties of the cost function with efficiency. This

point has also been made by Brorsen and Kim (2013) who used data on schools and

school districts to show that if the model was estimated using data at district level

then returns to scale are found to be decreasing rather than finding that these schools

are inefficient. Ultimately the aggregation bias is resulting in correlation between

errors and regressors, since true measures of scale/density (at the disaggregate level)

are not included in the model.

Chapter 6 also showed that in the presence if disaggregate, sub-company, data,

failure to take into account dual-level inefficiency results in under prediction of

inefficiency. Thus, such data, while desirable, should be analysed through a dual-

level inefficiency model.

8.4.2. Accounting for heterogeneity

All chapters illustrate the need to explicitly account for heterogeneity of railways in

any cost analysis. In Chapter 5, it was clearly shown the importance of output
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heterogeneity in accurately determining the RtS and RtD characteristics of passenger

train operations franchises. Importantly the policy implications can be quite different

when only high level RtS and RtD results are available. In practice, RtD results, for

example, may not be able to be realised in practice (such as for two out of three of

the merger examples considered in Chapter 5).

In Chapter 6, the results of Mundlak (1978) were exploited to demonstrate the

importance of modelling explicit relationships between unobserved heterogeneity

(heterogeneity which is not directly measured by explanatory variables) and the

regressors, in obtaining accurate predictions of cost inefficiency. Failure to take this

into account may result in bias parameter estimates (if a random effects estimation

approach is implemented) or lead to attribution of sub-company invariant

unobserved heterogeneity (or time invariant in the case of a standard panel model) to

sub-company invariant cost inefficiency (if a fixed effects estimation approach is

implemented).

Finally, Chapter 7 provides a treatment of prediction intervals for firm inefficiency.

Of crucial importance for valid intervals to be constructed, is the need for the

residual from any regression to tend in probability to the realisation of the error term

for a given observation ( ipi  ˆ ). This only occurs if the frontier function is

specified correctly i.e. if all variables that explain costs are included in the model i.e.

heterogeneity needs to be accounted for.
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8.4.3. Accounting for uncertainty in estimation, prediction and

interpretation

Chapter 7 is concerned with quantifying uncertainty with respect to efficiency

predictions in cross sectional stochastic frontier models. What is clear from Chapter

7 is that ignoring uncertainty in efficiency predictions, through simply reporting the

Jondrow et al (1982) predictor gives a misleading impression of the accuracy of a

cross sectional stochastic frontier model.

It is not just Chapter 7 which considers uncertainty. All the research chapters

contribute to a better understanding of uncertainty. Chapter 5 is concerned with

uncertainty in the estimation of the cost model parameters. In particular, the use of

the hedonic cost function is a pragmatic approach to deal with the availability of so

many output characteristics. Adopting a full Translog cost function would require the

estimation of over 140 parameters as opposed to the 35 in the adopted functional

form.

The issue of uncertainty is a characteristic throughout Chapter 6 since the chapter is

concerned with the interpretation of various stratifications (averages) of residuals

from models. What elements of the dual model represent inefficiency versus other

unobserved time or sub-company invariant factors affecting cost? To some extent,

the chapter simply assumes away other factors, with the exception of the attempt to

utilise the Mundlak transformation to decompose sub-company invariant unobserved

factors into invariant inefficiency and unobserved heterogeneity. However,

throughout the chapter, it is acknowledged that there are potentially other
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interpretations of the error components and this is discussed further in sub section

8.5.1 below.

8.5. Future research needs

In this final section, the scope for further research is examined. Four areas can be

identified and each is taken in turn below.

8.5.1. A stochastic hedonic cost frontier

Chapter 5 demonstrated the value of the hedonic cost function for incorporating

characteristics of output. This led to a richer understanding of the cost characteristics

of the industry, and, importantly, led to different policy conclusions in terms of

optimal franchise sizes than relying on simpler measures of RtS and RtD. However

Chapter 5 does not incorporate allowance for cost inefficiency in the analysis.

Incorporating cost inefficiency is desirable both in the context of Chapter 5 and more

generally. It should be noted that following the McNulty (2011) review, ORR is

expected to provide oversight on TOCs costs as well as for the IM, Network Rail.

Thus it is likely that cost benchmarking will be relevant to this aim. More generally,

the hedonic cost function is a useful device to incorporate characteristics of output

into cost functions. Such incorporation is also desirable from an efficiency

measurement perspective. Ultimately, inefficiency should capture the extent to

which actual costs are above best practice minimum cost. Thus, controlling for

output characteristics which are outside the control of management will enhance the
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measurement of cost efficiency.

One difficulty with considering cost inefficiency in the model in Chapter 5 is that the

cost share equations would contain the impact of allocative inefficiency. As

explained in Chapter 5, this implies a intricate error structure between the cost share

equations and the cost function (see p. 125 of this thesis for further discussion).

An approach to estimating such a model could be to estimate the cost frontier as a

single equation and ignore the cost share equations. This could be undertaken using

maximum likelihood estimation. However, it should be noted that this would require

bespoke computer code, as, to the author’s knowledge, no commercially available

software, such as LIMDEP (Econometric Software, 2010a), FRONTIER (Coelli,

1996) and STATA (STATA Corp., 2013) allows for non-linear (in parameters)

functional forms in the context of stochastic frontier models. Even if this could be

programmed, it is likely that the estimator would be less efficient relative to one

which exploited the cost share relationship.

One pragmatic approach would be to use the parameter estimates from the SUR

estimation and undertake further ML regression of the residuals to decompose them

into noise and cost inefficiency. This is a multi-stage procedure similar to those

considered in Chapter 6 (see footnote 25, p. 126).
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8.5.2. Unobserved heterogeneity in the dual level inefficiency model

Chapter 6 considered the multi-level dataset comprising sub-company observation

on several companies. In Chapter 6, apart from the noise error term and the group

means in the model with the Mundlak decomposition, all other error components

were interpreted as representative of inefficiency at either the sub-company level or

the more aggregate firm level. As discussed in section 3.5.3 and in Chapter 6, there

are alternative interpretations on the error components that they are actually

representative of other sub-company invariant and/or time invariant unobserved

factors, not just inefficiency.

The recent paper by Kumbhakar et al (2012) provides a useful starting point, in

terms of decomposing a time or sub-company invariant effect into two components.

The Kumbhakar et al (2012) model was given in (3.23) and reproduced below

itiititiit vwuXfC  );(  (8.1)

where  2,0~ uit Nu  ,  2,0~ wi Nw  ,  2,0~ vit Nv  and  2,0~ wi N  and all error

components uncorrelated with itX and all error components independent from each

other.

A clear analogy for sub-company data using the notation in Chapter 6 is:

itsiisitsiit vwuXfC  );(  (8.2)
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where  2,0~ uis Nu  ,  2,0~ wi Nw  ,  2,0~ vits Nv  and  2,0~ wi N  and all error

components uncorrelated with itsX and all error components independent from each

other.

Thus this model distinguishes between unobserved heterogeneity which is time and

sub-company invariant, inefficiency which is sub-company and time invariant and

inefficiency which is time invariant (but differs across sub-companies). Thus this is

the Kumbhakar et al, type extension of the model used in the empirical example in

Chapter 6 (with time invariant inefficiency).

There are potentially other formulations which could be investigated to exploit the

multi-level nature of the data (such as additionally controlling for sub-company

varying but time invariant unobserved heterogeneity). The feasibility of estimation

and sensitivity to distributional assumptions should be examined. However, it is

important to remember that ultimately inefficiency is modelled as a residual and so is

something unexplained by the model. As such, in the absence of including actual

measures of heterogeneity directly into the cost function, there will always be some

arbitrary distinction between (unobserved) inefficiency and unobserved

heterogeneity, irrespective of the sophistication of the modelling approach. The

approach in Chapter 5 to incorporating heterogeneity within cost functions still has

substantial merit.
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8.5.3. Accounting for uncertainty in panel data stochastic frontier

models

Chapter 7 applied methods of approximating prediction intervals for firm specific

inefficiency in stochastic frontier models using cross sectional data. Further research

would apply the techniques to fully parametric panel data models. Note that the

distributions required both the bagging and multi-variate normal approaches (the

equivalent distribution to that in (7.2)) are known for panel data models, hence such

an application should be possible to implement. Note, however, that the semi-

parametric models (e.g. the time invariant models of Schmidt and Sickles (1984))

require different techniques such as Multiple Comparisons with the Best (Horrace

and Schmidt, 1996 and Horrace and Schmidt, 2000).

There is an interesting research question which emerges from such an extension.

What is the trade-off between parameter uncertainty and decomposition uncertainty

with respect to panel data model formulation? In particular, panel data models such

as Pitt and Lee (1981), Battese and Coelli (1992) and Cuesta (2000) have the

property that decompositional uncertainty diminishes over time (as a result of

exploiting persistency in inefficiency over time in the data). However, parametric

functions are needed in order to allow for variation in inefficiency over time. For full

flexibility in variation over time, this requires firm specific parameters to be

estimated, which in small samples will add to parameter uncertainty. Thus there

emerges an interesting research topic - the extent to which inefficiency is predicted

more precisely in panel models vis-à-vis pooling the data.
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8.5.4. Uncertainty in regulatory application

More generally, there is an issue as to how regulators of infrastructure companies

should use top down efficiency analysis. In particular, to determine the ‘X’ in the

RPI-X regulatory approach, regulators tend to weight the results of a number of

studies. This can often involve implicitly weighting the results of studies which use

different datasets (and methods), but also models which adopt different

methods/formulations using the same dataset. For example, ORR’s efficiency

determination for Network Rail in the 2008 Periodic Review which considered a

mixture of top down and bottom up analysis as well as examining a number of

models estimated on two data sets (one of which is the dataset used in Chapter 6)

(ORR, 2008).

Chapter 7 is concerned with quantifying uncertainty in the prediction of firm specific

inefficiency. Several questions emerge. To what extent does this quantification

capture the same uncertainty as that of (somehow) synthesising the results of many

models estimated using the same or an alternative dataset? How should regulators

weigh the evidence at their disposal? Are there any particular issues with the fact that

‘robustness’ often refers to the robustness of the prediction of the inefficiency of one

firm (the regulated firm) out of many firms, when most statistical tests of a model

relate to how costs are described over all firms? Clearly a model which is robust for

all firms is desirable, but what if a model gives odd predictions for the regulated firm

(which of course is possible due to ‘luck’ in sampling)? These are exciting and

highly relevant future research questions.
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