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Abstract

In this thesis I extend the theory of integrable partial difference equations (PAEs) 

and reductions of these systems under scaling symmetries. The main approach used is 

the direct linearization method which was developed previously and forms a powerful 

tool for dealing with both continuous and discrete equations. This approach is further 

developed and applied to several important classes of integrable systems.

Whilst the theory of continuous integrable systems is well established, the theory of 

analogous difference equations is much less advanced. In this context the study of 

symmetry reductions of integrable (PAEs) which lead to ordinary difference equations 

(OAEs) of Painleve type, forms a key aspect of a more general theory that is still in its 

infancy.

The first part o f the thesis lays down the general framework of the direct linearization 

scheme and reviews previous results obtained by this method. Most results so far have 

been obtained for lattice systems of KdV type. One novel result here is a new approach 

for deriving Lax pairs. New results in this context start with the embedding of the 

lattice KdV systems into a multi-dimensional lattice, the reduction of which leads 

to both continuous and discrete Painleve hierarchies associated with the Painleve VI 

equation.



The issue of multidimensional lattice equations also appears, albeit in a different way, 

in the context of the lattice KP equations, which by dimensional reduction lead to new 

classes of discrete equations.

This brings us in a natural way to a different class of continuous and discrete systems, 

namely those which can be identified to be of Boussinesq (BSQ) type. The development 

of this class by means of the direct linearization method forms one o f the major parts of 

the thesis. In particular, within this class we derive new differential-difference equations 

and exhibit associated linear problems (Lax pairs). The consistency of initial value 

problems on the multi-dimensional lattice is established. Furthermore, the similarity 

constraints and their compatibility with the lattice systems guarantee the consistency 

of the reductions that are considered. As such the resulting systems of lattice equations 

are conjectured to be of Painleve type.

The final part o f the thesis contains the general framework for lattice systems of AKNS 

type for which we establish the basic equations as well as similarity constraints.
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Chapter 1

Introduction

The notion of a “ soliton” was first introduced in 1965 by Zabusky and Kruskal [1] with 

a numerical solution of the Korteweg-de Vries (KdV) equation

ut +  6uux +  uxxx =  0 . ( 1.0.1)

Two years later, in 1967, Gardner, Greene, Kruskal and Miura [2], were able to give 

an exact solution of the KdV Equation by means a new approach which became known 

as the Inverse Scattering Transform (1ST). These discoveries heralded the birth of the 

subject now known as Integrable systems - nonlinear dynamical systems with exact 

solutions. Since then the subject has grown to become a major field of research and there 

are many textbooks outlining the history and general principles of these systems, see 

for example [3, 4, 5], One of the main reasons for this growth is that integrable systems 

have found applications in a wide variety of fields including quantum field theory, string 

theory, condensed matter, optics and biology, see [6]. Recently, one o f the most fruitful 

branches o f this field has been the study of discrete integrable systems and it is these 

which form the major part of this thesis. However, before concentrating on discrete
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systems, some background is required on integrable systems in the continuous case.
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1.1 Integrability in the Continuous Case

1 .1 .1  Classical Integrability

In classical mechanics the question of integrability for a dynamical system with finite 

degrees of freedom is well understood. For such a system, defined in terms of general­

ized coordinates <&, conjugate momenta p i  and a Hamiltonian H ( q i , . .. , qN,Pi, ■ • ■ ,Pn),  

where N  is the number of degrees of freedom, if

i) There exist N  functionally independent integrals o f motion I ;((ft ,. . .  , qN,Pi, ■ ■ ■ ,Pn ) 

which do not depend explicitly on time,

ii) These integrals of motion are in evolution w.r.t. the Poisson structure, 

i.e. { I i ,  I j  }  —  0 ,

then the system is said to be completely integrable and can be solved in quadratures [7]. 

Unfortunately, this definition cannot be used when dealing with partial differential equa­

tions which have infinite degrees of freedom and, although much work has been done in 

this area, as of yet there is no definitive test for integrability in this case. There are, 

however, several features which all of the known integrable systems have in common, 

each of which is generally taken as a strong indicator of integrability.



1 .1 .2  Conservation Laws and Inverse Scattering

The most closely related to the classical case is the existence of an infinite number of 

conservation laws. A conservation law is an equation of the form

dD dF  _  
dt dx

where D  (the density) and F  (the flux) are functions of x, t ,  the dependent variable and 

derivatives w.r.t. x, but not t, of the dependent variable.

Then, if jF —> constant as |s| —» oo,

chapter 1: Introduction 3

L oo
D dx =  constant.

OO

i.e. the integral of D,  over all x,  is a constant of the motion.

In 1968, it was proved that the KdV equation had an infinite number of constants of 

motion [8]. This was done with the help of the following transformation,

u =  w — ewx — e2u>2, ( 1.1.1)

which, after expanding w as a power series in e leads recursively to an infinite sequence 

o f conserved densities. This, in light of the classical case, strongly suggests that the 

corresponding equation is integrable.

Equation (1.1.1) is a generalization of the Miura transformation

u =  - ( v2 +  vx ). ( 1.1.2)

This transformation allows us to obtain a solution of the KdV equation from solutions 

of the modified KdV equation, namely

vt -  6v2vx +  vxxx =  0, (1.1.3)



and it is this transformation which forms the basis of the Inverse Scattering Transform. 

Equation (1.1.2) is a Riccati equation and as such can be linearized. This is achieved by 

the substitution

v =  V'x/V’ ,

which, after noting that the KdV equation is invariant under Galilean transformations, 

gives the following eigenvalue problem for the linear operator L

Lip =  \ip where L =  d\ +  u, (1-1-4)

for some real A =  A(t).

Now, equation (1.1.4) is the time-independent Schrodinger equation with potential u 

and eigenvalue A. From it, we are able to obtain the scattering data 5 (0 ), consisting of 

the discrete spectrum, « n, the normalization constants, cn and the reflection coefficient, 

b(k), for some initial conditions u{x,  0). The time evolution of this scattering data is well 

behaved and thus we can calculate 5 (f) for any subsequent time. Having found this, the 

inverse problem of reconstructing the potential involves the solution of a linear integral 

equation

POO

K ( x , y )  +  B (x  +  y) +  /  K ( x ,  z )B (y  +  z)dz =  0, (1.1.5)
J X

where

1 f°° ^
B { £ ) = —  J b(k) e x p (ikfldk +  J ]  cl  e x p ( K n £ ) ,

71=1

known as the Gel’fand-Levitan-Marchenko equation, in which i?(£) is a function of the 

scattering data. Solving (1.1.5) for K  we obtain a solution for our potential u(x ,t )  via
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This is the essence of the Inverse Scattering Transform (1ST). It was first introduced 

by Gardner, Greene, Kruskal and Miura in their seminal paper of 1965, [2], and there 

now exists an extensive literature in which the basic theory is explained, see for example 

[3, 4, 5]. The 1ST is in effect a nonlinear version of a Fourier transform. In practice, the 

rigorous implementation of this method can pose major technical difficulties, especially 

with regards to the class of initial conditions one wishes to consider. However, it does 

reduce the solution of a nonlinear partial differential equation to the solution of a linear 

ordinary differential equation (ODE) and a linear ordinary integral equation.

1 .1 .3  Lax Equations

In 1968, Lax [9] reformulated the 1ST by giving it in the form of two linear differential 

operators, L and M,  the first defining the spectral problem and the second giving the 

time evolution o f the eigenfunctions, i.e.

L • ip = Ai/>, (1.1.6a)

ipt =  M  • ip. (1.1.6b)

The nonlinear PDE then arises as the compatibility condition of these two operators, 

namely

Lt +  [L , M]  =  0, where [L, M] =  L ■ M  -  M  • L,

the above equation being Lax’s Equation and the operators L and M  being the Lax Pair. 

This technique relied upon the fact that for the operator L the spectrum is preserved 

and Lax showed that there was and infinite number of M ’s for which this was the case, 

thus giving an infinite hierarchy of compatible flows for the KdV equation. In 1972,
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Zakharov and Shabat extended this technique further, [10], by giving a Lax pair of the 

form
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i ’ x =  

rj}t -

(1.1.7a)

(1.1.7b)

where -0 is now an n-dimensional vector and L and M  are n X n matrices. In the case 

of the modified KdV equation these matrices are the following 2 x 2  matrices

/  \
—i X iv

L =

V
/

-iv —iX

M
-4zA3 — 2iXv2 4iX2v — 2Xvx — ivxx 2iv3

—iiiX2v — 2Xvx +  ivxx — 2 iv3 

The compatibility condition, which is now given by
V 4iA3 +  2iXv‘:

( 1.1.8a)

( 1.1.8b)

Lt — M x +  [L, M ]  — 0, 

yields the modified KdV equation (1.1.3).

This reformulation of the 1ST facilitated the discovery of many more nonlinear equations 

which could be solved via the 1ST. First, Zakharov and Shabat gave the Lax pair for the 

nonlinear Schrodinger equation (NLS), [10], followed in 1973 by Ablowitz, Kaup, Newell 

and Segur (AKNS) who solved the sine-Gordon equation [11], Since then a large class of 

nonlinear PDEs have been shown to be solvable my means of the 1ST and are generally 

considered to be integrable.

1 .1 .4  Backlund Transform ations

Another defining property of integrable systems is the existence of Backlund transfor­

mations which relate two solutions of the integrable PDE to each other, [12]. They arise



from the so called dressing procedure whereby the linear operator o f the relevant spec­

tral problem is factorized, commutation of these factors then gives rise to alternative 

solutions of the PDE, [13].

For example, if we consider the spectral problem associated with the KdV equation

L<f> — (dxx +  u(x, t))(j> =  \(/>.

The linear operator L can be factorized into two linear operators in the following way

L =  Lx ■ L2 =  (dx +  v (x , t ) ) (dx -  v(x , t ) ) ,

from which we immediately obtain the Miura transformation (1.1.2). However, if we 

commute the two operators L\ and L2 we obtain the alternative Miura transformation

u =  - ( v2 - v x),

which relates solutions of the modified KdV equation (mKdV) (1.1.3) to an alternative 

solution, u, of the KdV equation, (note: This alternative Miura transformation can also 

be obtained by noticing that the mKdV equation is invariant under the transformation 

v h-> —v). If we then define u = wx we obtain the following set of equations

wx +  wx =  2A -  ^(w  -  w)2, (1.1.9a)

3 ~wt - w t =  - ( w  -  w)2(wx -  wx) -  wxxx +  wxxx , (1.1.9b)

which is the Backlund transformation for the (potential) KdV equation. Using (1.1.9) 

we are able to build up more complicated solutions of the (potential) KdV equation from 

a known simpler one (even the trivial solution w(x , t )  — 0).

So although, as we have mentioned earlier, there is no definitive test for integrability, 

there are many features which a given PDE can possess which suggest that it is inte-
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grable: infinite conservation laws and commuting higher order flows, Miura and Backlund 

transformations, solvability by the 1ST and a Lax representation.

1.2 Painleve Equations

Closely related to the subject of integrable systems are a class of ODEs known as Painleve 

equations. In this section we shall give a brief review of these equations and show how 

they are linked to the study of integrable systems.

1 .2 .1  The Painleve P roperty

When dealing with an ODE it is natural to consider whether its solution has any singu­

larities and, if so, whether these singularities are fixed or movable. A fixed singularity 

is one whose position does not depend upon initial conditions whereas a movable singu­

larity is one whose position does depend upon the initial conditions. It can be shown 

that for a linear ODE, all the singularities are fixed, see for example [14, 15]. How­

ever, for nonlinear ODEs this is not the case and their solutions may contain movable 

singularities. In 1884, L. Fuchs [16] showed that for a first order ODE of the form

dw f ( z , w )
dz g ( z ,w ) ’

where /  and g are polynomials in w with coefficients analytic in z, the only equation 

with no movable singularities other than poles is the generalized Riccati equation

^  =  Po(z) +  p!(z)w +  p2(z )w2.

Using the transformation
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the Riccati equation can be transformed into a second order linear ODE with no movable 

singularities but possibly movable zeros, as a result, the only movable singularities of 

the Riccati equation will be poles, see [14]. In 1887, Picard [17] extended the problem 

to second order ODEs and attempted to deduce all equations of the form

d2w dw
"ch2 ~

with F  rational in algebraic in w and analytic in z, whose solutions had no movable 

singularities other than poles, a condition which has become known as the Painleve 

Property. The task was completed by Painleve, Picard, Gambier and Fuchs in the period 

1887-1910, [18, 19, 20, 21, 22, 23] with fifty canonical equations being shown to possess 

the Painleve property (see [14] for a full list), among these fifty were six irreducible 

equations, i.e. ones whose solutions could not be expressed in terms of known functions. 

The six equations are

d?w 
~d£ 
d2w
Tz2
d2w 1 f  d w \ 2 1 dw 1 9 , 8
u  =  - ~ z d i  +  i {aw  + «  +  1™ + - ,

d2w 1 f  d w \ 2 3w3 9 , 9  x 0
i ?  =  2 ^ { a )  +  — + 42"  +  2(* - “ ) »  +  -•

d2w _  ^ ^  1 \ /c foA  2 I dw ^ (w -  l ) 2 f  _|_ &w(w +  1)
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6w2 +  z,

2w3 -)- zw +  a,

dz2 \2w w — 1J \dz J z dz z2 \ w )  z w — 1 ’
d2w 1 / 1  1 1 \ /d w \ 2 / l  1 1 \ dw
dz2 2 \w ^  w — l ^ w - z ) \ d z )  \z z -  1 ^  z — w )  dz

w(w — l)(tu -  z) /  0z  7 (z  — 1) ( 8z(z — 1)
2(z — l )2 \ w2 {w — l )2 (w — z )2 J ’ 

in which a , 0 , 7 and 8 are arbitrary parameters.

Of these equations, now known as the Painleve Equations, (P j-P yi), only the first three 

were discovered by Painleve [20], the fourth and fifth were discovered by Gambier [23] and



the sixth by R. Fuchs [21]. Their solutions define new transcendental functions known 

as the Painleve Transcendents. It should be noted at this point that the proof that 

these six equations are irreducible was found to contain flaws. Painleve first attempted 

to prove the irreducibility of Pi [24]. For this he used a definition of irreducibility first 

given by Drach in [25] and later in [26], however this defintion was not complete and 

hence Painleve’s proof was incorrect, see for example Pommaret [27] or Umemura [28]. 

Attempts are currently under way to give a complete proof of their irreducibility. This 

has been achieved for the first equation Pi, see [29], and it is hoped that a rigorous proof 

of the irreducibility of all six equations will be completed in the near future.

The sixth equation, Pyi, is the richest equation as it contains the other five in a coales­

cence chain. For example, if we replace

8 7 6
z by 1 +  ez , 5 by — , 7 b y -------- -

ez e e2

and take the limit e —> 0, then we obtain Py. Similar limiting procedures take you down 

to Pi in the manner indicated schematically below,

/  PlV \
Pvi ~ » Pv P ii —> Pi-

N  Pm ^

Although the Painleve equations are irreducible, it is possible to solve them for certain 

values o f the arbitrary parameters. There is currently much interest in higher order 

equations which posses the Painleve Property, see for example [30, 31, 32, 33], and also 

the search for their discrete counterparts [34] and this will form part of this thesis.
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1.2 .2  A R S -con jectu re

11

In 1977, Ablowitz and Segur first showed that self-similar solutions o f partial differential 

equations, solvable by the 1ST, were of Painleve type, [35]. This led them, along with 

Ramani to conjecture that every nonlinear ODE obtained by an exact reduction of a 

nonlinear PDE of 1ST class is of Painleve-type, [36]. This is now known as the ARS- 

conjecture and is commonly used as a further test for integrability. (In certain cases it 

is necessary to use a slightly weaker version of the Painleve property, see [37]).

For example, The modified KdV equation (1.1.3) is invariant under the scaling transfor­

mation

v (x , t )  /3v(/3x,/33t). ( 1.2.1)

Hence, if we set

V{z ’ t) =  ( 3 ^ 1 7 3 Witl1 f  =  W T * ' (L 2 '2)

then equation (1.1.3) gives us after one integration, the Painleve II equation.

For any particular integrable PDE there may be many different types of self-similar 

solutions, e.g. translations in time or space, Galilean transformations or scaling trans­

formations. These can be obtained systematically by various methods, the most common 

being the Lie group approach, an account of which can be found in numerous texts, e.g. 

[38], [39] or [5]. This method, when applied to an nth order PDE

A ( x , t ,u ,u x,u t,...) =  0, (1.2.3)
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considers a one-parameter Lie group of infinitesimal point transformations

x x +  eX{x ,  t, u) +  0 (e 2)

t* =  t +  eT (x , t ,u )  +  0 ( e 2),

u u +  eU (x , t ,u ) +  0 (e 2),

(described as point transformations as they depend only on the independent variables 

and the dependent variable of the PDE but not derivatives of the dependent variable). 

Requiring that the PDE (1.2.3) is invariant under these transformations provides a set 

of determining equations for the infinitesimals X ( x , t , u ) , T ( x , t , u )  and U(x, t ,u) .  The 

associated Lie algebra of infinitesimal symmetries is the set of vector fields of the form

V  = X d x +  Tdt +  U3U,

where dx =  ^  etc.

and the similarity variable and form are obtained by solving the characteristic equations

dx _  dt _  du 
~X ~  T  =  ~U'

For example, using this method, we can obtain for the Boussinesq equation

(1.2.4)

the following infinitesimals

X  =  ax  +  (3 , T =  2at +  7 , U =  - 2 a(u  -  1). (1.2.5)

Setting a =  0 in (1.2.5) we obtain the traveling wave solution

u ( x , t ) =  / 2(0 > with £ =  z -  ct.



Applying this transformation to (1.2.4) we obtain a fourth order ODE. Integrating this 

ODE twice gives

f l  +  (°2 -  1)f2 +  2^2 =  +  k2, (^2 =  , 

with ki, k2 constants, which is solvable in terms of either the first Painleve equation 

(&i /  0) or elliptic functions (&i = 0).

Setting (3 =  7 =  0 in (1.2.5) gives the scaling reduction

u(x, t ) =  t _ 1 / 3 ( 0  +  1> f

Applying this second transformation to (1.2.4) we obtain the following fourth order ODE

2/ 3 + \ ( A  +  \ e t s + t / a 2 + h i s + / r  =  o,

which is solvable in terms of the fourth Painleve equation, see [40].

However, although this method provides a systematic way of finding similarity reduc­

tions, it is not exhaustive. For example, Quispel, Nijhoff and Capel, [41] and Nishitani 

and Tajiri [42], showed that the Boussinesq equation also possesses the reduction

u ( x , t ) =  / 4(^) -  4c2i2, with £ =  x +  ct2,

Applying this second transformation to (1.2.4) and integrating once we obtain the fol­

lowing third order ODE

2c/ 4 -  8c 2£ -  / '  +  U A  +  f'l' =  *3,

with k3 a constant, which, after a further transformation gives the second Painleve 

equation, see [42].

An alternative method, first proposed by Clarkson and Kruskal, [40, 43], involved looking 

for solutions of the form

u(x,t) — U(x , t ,w(z(x , t ))),
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substituting this into the PDE and requiring that the the result is an ODE in w(z)  

imposes conditions on U, z and their derivatives, the solution of which gives the similarity 

reductions. By this so-called direct method, Clarkson and Kruskal were able to find 

six different similarity reductions of the Boussinesq equation, only two of which were 

obtainable by the classical Lie group approach. The direct method was, however, shown 

to be equivalent to the nonclassical approach of Bluman and Cole, see [44, 45], which adds 

an extra surface condition which must also be invariant under the group of infinitesimal 

point transformations.

The reduction to self-similar solutions can also be expressed through a differential rela­

tionship, for example, ( 1.2.1) can be written

v +  xvx +  3tvt =  0. ( 1.2.6)

As such (1.2.6) can be considered as a differential constraint on the original PDE which 

can be used to reduce the number of independent variables in the PDE. We shall therefore 

refer to equations like ( 1.2.6) as similarity constraints.

As a test for integrability the ARS-conjecture can provide a useful tool. Having found a 

self-similar solution of a PDE it is a relatively straightforward procedure to test whether 

or not the resulting reduction is of Painleve type, see [36]. Unfortunately this is only 

a necessary condition for integrability as it is possible to find PDEs which although 

having self-similar solutions of Painleve type do not appear to be integrable. Hence, the 

ARS-conjecture is a necessary but not sufficient condition for integrability.
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1 .2 .3  Isom onodrom ic D eform ation

chapter 1: Introduction 15

The self-similar solutions of integrable equations also provide a way to obtain a linear 

system, the compatibility condition o f which is an an equation of Painleve type. This 

was first demonstrated in 1980 by Flaschka and Newell, [46].

Applying the similarity reduction

v (x , t )  = r/(0,(3*)1/ 3* 

ip(x,t  : A) =  : k),

(1.2.7a)

(1.2.7b)

with £
(s ty/3

and k =  (3 f)1//3A,

(cf. (1.2.2)), to the Lax pair (1.1.7) we get

(1.2.7c)

Thus, applying (1.2.7) to the Lax matrices for the modified KdV equation (1.1.8), we 

get the following linear system

k —  'f! =  B ^ ,  
dk

( 1.2.8a)

( 1.2.8b)

where

A =

B =

(  \
— ik i f

— i f  —ik

A ik 3 — 2i k f 2 -  ik£ Aik2f  — 2k f  ̂ — iIV

y —4ik2f  — 2k f^ +  it/ Aik3 +  2i k f 2 +  ik£ J



for which the compatibility relation

k - ^ A - B c +  [A,B] =  0 , (1.2.9)

is only satisfied if /  obeys Pn, see [47].

We will refer to the linear system (1.2.8) as a monodromy problem. It is part of the 

theory of isomonodromic deformation, which dates back to the work of R. Fuchs and 

Schlesinger [48, 49] and extended more recently by Jimbo, Miwa and Ueno [46, 50, 51, 52], 

This theory can be seen as an alternative to the 1ST method whereby the solution of a 

nonlinear PDE is is obtained from the monodromy data of the linear system (1.2.8).

1.3 Integrability in the Discrete Case

Having given a brief summary of the main notions o f integrabihty for continuous inte­

grable systems we now turn our attentions to discrete integrable systems. On the whole, 

the general field of discrete systems and difference equations is somewhat underdevel­

oped in comparison to its continuous counterpart. However, in recent years, interest 

in these systems has increased dramatically, especially with regards to integrabihty and 

many international conferences are now dedicated exclusively to discrete systems, most 

notably the SIDE (Symmetries and Integrability of Difference Equations) meetings. In­

tegrable lattice equations have also found applications in the field of numerical analysis, 

for example as convergence accelerators algorithms, see [53, 54], In this section we give a 

short review of how discrete systems are obtained and integrability in the discrete sense.
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1.3 .1  Integrable Difference Equations

An early example of an integrable difference equation was the Toda lattice

=  exp('iim_i — un) — exp(itn — iin+ i), (1.3.1)

given by Toda in 1967, [55]. This is an example of a partial differential-difference equa­

tion in which the dependent variable u is a function of one continuous independent 

variable t and one discrete independent variable n. The integrability of this equation 

was demonstrated by Flaschka in 1974, [56, 57], who solved by means of the 1ST.

Since then many techniques have been used to derive both partial differential-difference 

equations and partial difference-difference equations.

For example, in 1981, Hirota [58] gave the following bilinear generalization of the Toda 

equation

[z iexp tDi)  +  z2 exp(D2) +  z3 exp(D3) ] f  ■ f  = 0,

where z i , z 2, z3 are arbitrary parameters and D\, D 2, D 3 are linear combinations of binary 

operators Dx , Dy, D t, D n, etc., defined by

Using this equation, Hirota was able to derive discrete versions of many equations in­

cluding KdV, modified KdV and Sine-Gordon. The discretization in this case arising 

from the exponentiation of a differential operator.

Earlier, in 1976, Ablowitz and Ladik, [59, 60], using a discretization o f the Lax pair, gave 

discrete versions of the nonlinear Schrodinger equation. This method has applications 

in numerical analysis [61] and has recently been refined by Suris, [62, 54],

Much work has also been done by Bobenko and Pinkall in connecting integrable systems



chapter 1: Introduction 18

with discrete geometries, see [63]. The integrable equations in this case derive from 

conditions on quadrilaterals.

Discrete, integrable equations were also derived by Quispel, Nijhoff et al. using the 

direct linearization technique. This approach was based on a linear integral equation 

given by Fokas and Ablowitz in 1981, [64], and as this technique is used throughout this 

thesis we shall now give a short review of this paper.

1 .3 .2  D irect Linearization

In 1981, Fokas and Ablowitz presented an integral equation which linearized the KdV 

equation [64], Specifically, they showed that if x , t )  was the solution of the integral 

equation

solved the KdV equation (1.0.1). In equation (1.3.2), d\(k) and L are an arbitrary 

contour and measure which satisfy the conditions:

then

u (1.3.3)

i) differentiation with respect to x and t can be interchanged with JL .

ii) the homogeneous integral equation has zero solution.

By specifying the exact form of the contour and measure they were also able to show

the following results:

i) Setting the measure to be

1 dk
dX(k) =  b ( k ) ( - k ) - ,



where b(k) is the reflection coefficient of u(x,0)  and letting the contour L go over all 

the poles of b{k) the integral equation (1.3.2) yields the Gel’fand-Levitan Marchenko 

equation (1.1.5).

ii) Setting the measure to be

N

d\(k) =  E Cj6(k — inj)dk, 

j=i

and letting L pass through the k =  then the integral equation (1.3.2) gives the N- 

soliton solution.

iii) Imposing a self-similar reduction on (1.3.2) and (1.3.3), solutions to the second 

Painleve equation can be derived.

In 1983, Quispel, Nijhoff Capel and J. van der Linden [65, 66], showed how the linear 

integral equation (1.3.2) could be used to derive nonlinear difference-difference equa­

tions via Backlund transformations. We shall save a more detailed explanation of this 

procedure for the next section.

1 .3 .3  D iscrete Painleve Equations and Singularity Confinem ent

As well as discrete versions of integrable partial difference equations, there are also dis­

crete versions of Painleve equations (dP ’s). These first appeared as nonlinear recurrence 

relations for the coefficients in the linear recurrence relations of orthogonal polynomials 

with the relation

an(an -l +  an +  an+l) +  =  n• (1.3.4)

This equation, with the transformation is a discrete version of Pj. However,

although (1.3.4) was first given by Shohat [67], this fact was not realised until much
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later, see [68, 69]. Since then, discrete versions of all six of the Painleve equations have 

been found. For example, the following list of difference equations gives some of the 

most common versions o f discrete Painleve equations, [70].

dPI . -f- -(- xn—i — -f- (z,

i-pTT . , Cn'En "t“ &
d - P I I  . ^ n + l  “h  % n —l —  I  o j

1 ~ Xn

dPIII : Zn+lSn-l = 7----+  +  6)_______(c9n;En +  l)(c^ na:n +  1) ’

dPIV : (gw+1 +  a.w)(gH +  x ^ )  =  {X}  ~ f ){xZ  ~  f
(®n +  U J2 -  C2
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dPV

dPVI

: ( * „ , * „  -  -  1) =  ^ n ( ^  +  ° )(»n  +  . - 1) K  +  t ) ( » „ + t - 1)
(®n +  7?n)(2:n +  <?n)

(®n+l®n T]nVn+l )(®7i®n—1 Vn l̂n—l) _

(® m + l® n  l ) (® n ® m — 1 1 )

(®n ??n®)(®7i Vn / ̂ ) (xn TJnb^(xn ]̂n/b
(®n ^)(®n l/c)(xn — d)(xn 1/ c£)

(where Cn =  are -f /3, ?7n =  7 ^", =  £gn, a,/3,7 ,^,a,6 and c being constants).

These equations were derived by a variety of methods. The first is simply equation

(1.3.4) which we have already discussed, the second was derived in [71] using matrix- 

models of two-dimensional quantum gravity and also by Nijhoff and Papageorgiou [72] 

as a similarity reduction of a lattice equation, the third, fourth and fifth were given by 

Ramani, Grammaticos and Hietarinta [70] using singularity confinement (of which more 

later) and the last was given by Grammaticos and Ramani [73] through “intuition and 

inspiration” .

The numbering of the above discrete equations arises from the fact that in a continu­

ous limit each o f the equations reduces to the relevant continuous Painleve equation. 

However, this correspondence is not unique as there are other discrete equations which 

also, in the continuous limit, reduce to continuous Painleve equations. For example,
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alternative versions of dPj and dPn can be given by-

alt -  dPI n +  1 n
-  n +  a +  bx\,

1 4"

alt -  dPII 71 +  1
=  n +  a +  b [ x.

® n + l® n  +  1 ^ n X n - X +  1
n

The first of these equations was given by Jimbo and Miwa [52], The second was given, 

along with the first, by Ramani, Grammaticos and Hietarinta [74] who derived them 

from Backlund transformations o f continuous Painleve equations. Unlike the continuous 

Painleve equations, there is currently no complete classification of discrete Painleve 

equations although Sakai’s recent paper [75] does attempt such a classification in terms 

of affine root systems.

The main problem concerning discrete Painleve equations is that there is no discrete 

analogue of the Painleve property. In 1991, Ramani, Grammaticos and Papageorgiou 

[76] proposed the singularity confinement method as a possible candidate. This test 

involves determining whether singularities which arise from the initial data of a given 

integrable mapping remain confined, (i.e. they do no propagate indefinitely as the map 

is iterated). As already mentioned, this method has been very successful in providing 

further examples of discrete Painleve equations but as a test for integrability it is not 

complete. It is, for example, only able to deal rational maps and recently, Hietarinta 

and Viallet [77] showed that the following equation

does pass the singularity confinement test but is also seen to be numerically chaotic, 

hence, as a test for integrabihty singularity confinement is not sufficient.

Other approaches proposed as a discrete analogue of the Painleve property include 

Nevanlinna theory and the discrete Painleve property o f Conte and Musette, see [78]

x n + 1  ■(■ •£«.— 1  —  x n  "f~ — o " j
ul

(1.3.5)



for a review of these methods.

This concludes a brief introduction into some of the main aspects of integrable systems, 

in particular, those which shall be o f relevance throughout the rest of the thesis. In the 

next chapter we shall focus more closely on the direct linearization of the KdV equation, 

describing the main results obtainable by this method.
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Chapter 2

The KdV System

In this section we shall review the work of Quispel, Nijhoff, Capel, Papageorgiou, and 

J. van der Linden on the direct linearization scheme, in particular, with reference to 

the KdV system [79, 65, 80, 66, 72, 81, 82, 83], We shall show how the linear integral 

equation (1.3.2) of Fokas and Ablowitz [64] can be generalized to include the modified 

KdV (m KdV) and the Schwarzian KdV (SKdV) equations as well as the KdV equation 

and how the scheme can be used to derive discrete lattice equations, similarity constraints 

and differential-difference equations.

2.1 Direct Linearization of the K dV  System

The Direct Linearization approach of Fokas and Ablowitz can be generalized in such a 

way that the dependent variable Uk is an infinite vector, rather than a scalar [65, 80]. 

Thus we have the following integral equation

(2 .1.1)

23
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where c* is an infinite vector with components (ck)j =  kJ,

Pk is a plane wave factor,

T and dX are arbitrary contour and measure.

Equation (2.1.1) can now be used to derive various integrable systems. The choice of the 

plane plane wave factor pk will determine number of independent variables and whether 

these variables are discrete or continuous, while a choice o f entry in the dependent 

variable will isolate specific members of a Miura chain.

In order to achieve this we must first develop an Infinite Matrix structure. For this 

we will treat the integral equation (2.1.1) as a purely formal tool and not specify any 

particular measures or contours on the integration. We do this in order to derive the 

equations and provide some insight into the algebraic structure underlying the system.

2.2 Infinite Matrix Formalization

Firstly we require an infinite (Z  X Z ) matrix C,  of the form

C  =  j d\(l)p ici tQ. (2.2.1)

As already mentioned, the specific contour and measure will not be defined, but it is 

assumed they can be chosen such that all subsequent objects are well defined. From 

the definition it is clear that this matrix has the symmetry C — tC  (where the left 

superscript t indicates matrix transposition). Using the matrix C  we shall derive various 

linear relationships whose form depends on the choice o f the wave factor pk. In order 

to obtain the more important nonlinear equations we require a second infinite (Z  X Z )
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matrix U defined by

U = (2 .2 .2)

and it is specific entries of this matrix which shall provide us with closed form scalar 

equations. Again, by definition, this matrix has the symmetry U = lU and it is this 

property that defines the KdV system.

These are the two main ingredients, but we also require the following infinite matrices

i) Index raising matrices A and tA, used for left and right multiplication respectively. 

These play the role of either stepping up or down or left or right through a matrix, e.g.

ii) Index counting matrices I  and tI ,  again left and right multipliers respectively, which 

operate on a matrix in the following way

(A ■ c k)j =  k (ck)j and ( tc k ■ tA )j =  k (ck)j. (2.2.3a)

i1 ■ c k)j =  j ( c k)j and ( •  tI ) 3 =  j ( c k)j. (2.2.3b)

iii) Projection matrix O which picks out the central element of a matrix, e.g.

( 0  • c k)j =  S0j c : and ( tc k • 0 ) j  =  Sjfi tc k. (2.2.3c)

iv) Infinite matrix Q which we define in terms of the way it relates to the other infinite 

matrices in the scheme, namely, for the index raising matrices it obeys the relationship

n ■ -  ( -  4a y  ■ o, =  o : , (2.2.3d)

where 0 k =  ^ ^ (— <A )J • 0  ■ A k 1 J (2.2.3e)
j=o

and for the index counting matrices it obeys the relationship

(2.2.3f)



Using these objects, the original integral equation can be expressed in infinite matrix 

form

U = C  -(1 +  n - C ) - 1. (2 .2.4)

We are now free to define the wave factor pk, which as mentioned can depend on ei­

ther discrete or continuous variables. For this section we shall concentrate on discrete 

variables as it is these which shall be used throughout this thesis.
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2.3 Discrete Case

If we choose to work with a discrete system then pk takes on the form

»  =  n  (2-3-1)

where v =  1, 2 ,.., N  with N  being the number of dimensions o f the system.

The factor pk then consists of N  independent discrete variables (these may in fact 

take on non-integer values but are discrete in that they are required to shift by integers, 

i.e. nv =  6V +  Z , 6V € IK), each o f which has an associated lattice parameter pu which 

are in fact the Backlund parameters and a parameter k which takes on the role of the 

spectral parameter.

Now, from this choice of pk we are able to impose three different relationships on C and 

hence also on U .

First we have the discrete evolution, which for pk is given by

T-n  =  <2-3-2) 

where Tu represents the operation of shifting a function i.e. Tvf ( n v) — f { n v +  1).

In [84, 65, 80] it was shown that this shift is equivalent to a singular transformation of the



measure in the integral equation (2.1.1) and as such represents a Backlund transforma­

tion. The resulting lattice equations can therefore be viewed as a sequence of Backlund 

transformations.

This leads us to the following two linear relationships for C

(TUC)  • (p„ — A) =  (pu +  A) • C , (2.3.3a)

(Pv — A) • TVC  =  C • (p„ +  4A), (2.3.3b)

which, given that C  is symmetric i.e. C =  *C, are equivalent.

Equations (2.2.4) and (2.2.3d) then give the nonlinear relationships in U

{TuU ) - ( p - tA) =  (p +  A) ■ U — (TUU) ■ 0  ■ U, (2.3.4a)

( p - A ) - T vU =  U - ( p +  tA ) - U  - 0  ■ TUU. (2.3.4b)

Equations (2.3.4a) and (2.3.4b) are matrix Riccati equations from which the lattice 

equations can be derived.

Again, as we have the condition U =  *11 equations (2.3.4a) and (2.3.4b) are equivalent, 

and by transposing either of the equations we can eliminated the shifts to produce the 

following, purely algebraic relationship

U -*  A2 =  A2 - U - U - 0 - A - U  +  U- tA - 0 - U .  (2.3.5)

In order to derive similarity constraints for the system we must impose a scaling in­

variance on the integral equation. In [72] it was shown that this could be achieved by 

imposing the following constraint on the measure and contour

/ r ^ ( 0 > )  =  °, (2.3.6)

for some function f { l )  which is a solution of the integral equation. In order to implement

(2.3.6) on the level of the infinite matrices the function we must consider is f ( l )p ic ilci
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and we therefore need to know how the plane-wave factor pk behaves under the action 

of the differential operator For this we find that

k W k =  (2.3.7)

and, noting that

d d 
k d k Ck =  I ' ° k and k dk tQk =  tck ' <7,

we find that in infinite matrix notation

C + I  ■ C + C ■ tI  = [Ipici tci\QY +

^ 2 ^ P u ( — \ ~ T ' C - C ------------- ( 2 . 3 . 8 )
\Vv +  A V v -  *A )  y ’

Note: The term and all subsequent terms of this type should be taken to mean

the inverse of ^ ( id )  +  A in the sense of a formal infinite series, where (id) is the 2 x 2  

identity matrix. In all the following calculations involving these terms we shall only 

be interested in the combinatorics of the relevant system and hence do not need to 

calculate the explicit form of these inverses. Also, the term in square brackets represents 

the boundary conditions arising from (2.3.6).

Again, this is a linear equation in C  which we can use to derive the following nonlinear 

equation in terms of the variable U

U +  I  ■ U +  U 1 ■ I  =  [ lpj lui +  (2.3.9)

S  Ui/Pi' ( — T T  ' u  ~ u -------l~ n  +  u ------- l~ n  ‘ 0  — ~—r  ■ u ") >^  \Vv +  A V v -  A Vv ~  A p v  + A )

and from equation (2.3.9) we shall derive similarity constraints for the system.

Finally, we obtain relationships for how the factor pk depends on the lattice variable pv.
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which gives us, in terms of the infinite matrix C, the relation

(--—
\Pv +  A

(2.3.11)

and thus for U we have

■ U - U - ■U . (2.3.12)

This equation gives us the differential-difference relations.

We should note here that the operation of shifting and the dependence on the lattice

parameters commute, namely

(2.3.13)

thus ensuring that the lattice equations and the differential-difference equations are 

compatible.

2.4 Closed Form Scalar Equations

At this stage we are still dealing with an arbitrary number of dimensions N , but for the 

remainder of this section we shall limit ourselves to the 2-dimensional case and make 

the following identifications

nx - n  , n2 =  m , pt =  p , p2 = q.

Along with two different transformations of the factor pk

tions of the objects in (2.2.3) are then interpreted as transformations of functions on a

Pk ^  T\pk — pk Pk T2pk — Pk, (2.4.1)

each of the same type but with different parameters p and q respectively. Transforma-



0,0

two-dimensional lattice with grid points (n,m).

In order to derive closed form lattice equations we must introduce the following objects 

u =  U0,o, sa ,p =  ( s + A  ' ^  ' p + th /

where a and f3 are arbitrary parameters which can take on any value we require.

The main equations (2.3.4) then gives us the following Miura type relations which relate 

u to va

, ~ , ,Vap - q  +  u - u  =  ( p - a ) ^ ----- (q -  a
va va

=  ( P +  P ) —  ~ ( q  +  P )  — ,Vp V/3

p +  q +  u - u  =  (p -  a ) ^  +  (q +  a ) ^ ,
V qi V a

= {p +  P ) ^  +  ( q - P ) ^ ,
V/S V p

along with another set relating va to saip

1 -  (p +  P)sa<p +  ( p -  a )saj3 =  vavp, (2.4.2) 

1 -  (? +  P )sa,/3 + (q ~  a )sail3 =  vavp. (2.4.3)

A process of elimination then gives us various closed form lattice equations. For example, 

for the variable u =  un)7n we have

{P ~ q "h 1 — ^n+l ,m)(P ~̂ q ~  ^n-fl.m+l "f" 'Un,m') — P̂  q^, (2.4.4)

which is the lattice version of the (potential) KdV eqation. For the variable va =  vnm 

we have
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\ v n , m -\-1  /  \ v n + l , m  , ,  \ v n . m + l(.p -  a ) -----------------( q -  a ) --------------- =  (p +  a ) ------------- (q +  a)  ’ T ,
^n + l,m -| -l V n - i - l , m + l  Vn  m
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which, on setting a  =  0 gives us

P'Vn,m'Vn,m+1 “t~ P'^n+l,m'^n-\-l,m+l; (2.4.5)

which is the lattice version of the (potential) modified KdV equation, and for the variable 

sa,p =  srhm we have

1  ~  ( P  +  P ) s n + l , m  +  ( p  ~  « ) - S n , m  _  1  ~  ( g  +  Q p S n + l . m + l  +  ( g  ~  P ) s n + l )7n

1  -  ( ?  +  P ) s n ,m +\  +  ( g  -  a ) \ m  1  ~  ( ?  +  a ) « n + l , m + l  +  ( p  ~  P ) s n ,m + 1  ’

which on setting a =  f3 =  0 and defining znim =  s0i0 _  zt _  2i gjves us

( z n ,m  —  z n + l , m ) ( z n , m + l  ~  ■ Z n + l . m + l )  _  g 2  ( 9  4 )

( z n ,m  —  z n , m . + l ) ( z n + l , m  ~  ^ n + l . m + l )  p 2  ’

which is the lattice version of the (potential) Schwarzian KdV equation.

Now, using equation (2.3.9), we are able to derive the closed form similarity constraints 

for each of the variables u, v0 and z

( A ( - i r +m +  h i u - n p -  mq) =  - — ------ , (2.4.7a)
£ 2p —  u + u 2 q — u  +  u  K ’

\ ( 1 ^n+m _  „ ^0 -  VO , Vo ~  Vo ,n . N/ i - A ( - i )  =  n — ----- +  ^ , (2.4.7b)
^0+^0 v0 +  V0 v ’

/ -t i rj \ o (2 -  2)(z  -  z) Cz — z)fz  — z)
z ( 1 +  2/i) — 2n — —— )- 2m ------ —---------— , (2.4.7c)

z z z — z

where u represents a forward shift through the lattice in the relevant dimension and u 

represents a backward shift.

And from equation (2.3.12) we can derive the closed form differential-difference relations

du (  2 p
—— =  n i l
dp \ 2p +  u — u J ’ (2.4.8a)

d  ,  n n 0  -  v 0

—  logvo = ---- ~ , (2.4 .8b)
d p  p v 0  +  v 0  v >

dz 2n (z  — z)(z  — z )
dp p z — z (2.4.8c)



We now have a complete set of equations for the KdV system, derived from the integral 

equation (2.1.1). These are the lattice equations (2.4.4), (2.4.5) and (2.4.6), the similarity 

constraints (2.4.7) and the differential difference relations (2.4.8). We shall now derive 

the associated linear problems for these equations from the basic equations o f the infinite 

matrix structure.

2.5 Lax Pairs

Each of the preceding types of relationships can also be derived from an associated linear 

problem. For this we must introduce the infinite vector
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The linear problem is then derived by once again picking out certain entries in this 

vector. For the (potential) KdV this is given in terms o f the two-component vector

u k -  Pk( 1 - U • fi) • c k . (2.5.1)

<t>k =  ( p -  k)n(q -  k)m (2.5.2)

V ul

which leads to the Lax pair

(2.5.3b)

(2.5.3a)

where

/ \
r  ( K d V )  _  
Lk

p -  u
(2.5.4)

p +  u

* — product o f the diagonal entries
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and M [KdV) is given by replacing u with u and p with q.

The lattice (potential) KdV equation (2.4.4) is then the compatibility condition

L{KdV) • M {KdV) -  M^Kdy) l-(KdV) k 1V1k ~  M k '  L k

For the modified (potential) KdV equation, the linear problem is given in terms of the 

vector

i>k =  ( p -  k)n(q -  k)r

where iS^  is given by

V u * )

(2.5.5)

u(“ )
a 4- A • u k (2.5.6)

This leads to the Lax pair

ipk

&  =

(2.5.7a)

(2.5.7b)

where

- (mKdV)

V

p — a

k2 —a?
b + a ) ! r

\

/

and is again given by replacing v with v and p with q.

(2.5.7c)

The compatibility condition o f this Lax pair then leads to the lattice (potential) modified 

KdV equation(2.4.5) as follows from a direct calculation.

The lax representations (2.5.3) and (2.5.7) are related to each other via the following 

gauge transformation

(2.5.8)
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where

Uk =

I \
$a. Vot

(2.5.9)

/
k2 — a 2 0

\

(and similarly for the Mk matrices).

For the Schwarzian (potential) KdV equation we must perform a further gauge trans­

formation

4 ” ™ ' ) =  Vt . L ^ . v r \

where

This leads to the Lax pair

where

Vk =

\ 0 — /\ va /

~  r ( S K d V )
Xk =  L \  J - X k,

L ( S K d V )  _

(2.5.10)

(2.5.11)

(2.5.12a)

(2.5.12b)

(2.5.13)

and once again M^SKdV  ̂ is given by replacing z with z and p with q.

The compatibility condition of this Lax pair then leads to the lattice (potential) 

Schwarzian KdV equation(2.4.6).

Using similar methods we are able to derive monodromy problems for each o f the 

ables from the basic equations (2.3.9).

van-
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For the vector (f>k we obtain

ki*  =

35

(
n +  m 0 ]

fa  +  A ( - l ) n+m

/
1 0 \

y —np — mq n -f m +  1 j 2 np +  2 mq
- 1 /

2 np2
(

1 o '
<h ~

2 mq2 (  i
2 p +  u — u

y -P  +  u
2q +  u — u

 ̂ ^
fa, (2.5.14)

which, on using the inverse of the Lax pair (2.5.3) to express fa  and 4>k in term of fa , 

gives a differential equation in terms o f the spectral parameter k.

For the vector tpk we obtain

kTk

\
0 0

ipk +
~(fi  +  1) 0 ^

y 0 n +  m j
I  0

A ( _ l  )n+m

+ -
2nv0 

vo + (°
-   ̂
Vo

11,,+ 2mv°

(
0 -  \

V° - p  j
yk i ^ 
~ v° 1°

i>k- (2.5.15)

Again, the backward shifts can be eliminated using the inverse of the Lax pair (2.5.7), 

giving the purely differential equation.

For the dependence on the Backlund parameter we have the following linear system for 

the u variable

d<b
= M-4> +  A 2 -fa

d4>

dq
= B x - <j> +  B 2

(2.5.16a)

(2.5.16b)

where

A\ — Ti
( o <0

and 4 , -  2np

( 1
V1 ° )

emu T̂-2 — -O
2p +  u — u  ̂- ( P - S ) V

and Bi  and B 2 are given by replacing p with q and n with m.
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While, for the v variable we have the system

dtp
dp
dip
dq

— Ci • tp -f C2 ■ ip, 

=  Z>1 • tp +  D 2 ■ Ip,

(2.5.17a)

(2.5.17b)

where

C \ =
n f i

\
0

and f t -  2nV°

(
0

V u

P v 0 +  2.0 u 1 J
(2.5.17c)

with D\ and D 2 given by the usual replacements.

Finally, by applying the gauge transformation, (2.5.11), we obtain the the following 

linear system for the z variable

dx _  n 
dp p

1 0

2z—z—z
x +

2 n
p(k2 -  p2)(z  -  z)

2k2(z -  z) (z -  z)(z  -  z)
X ,

/
(2.5.18)

with a similar expression for the dependence on q with the usual replacements.

2 .5 .1  A lternative Lax Pairs for the lattice equations

Lax pairs for the discrete equations can also be obtained directly from the lattice equa­

tions. This is a new approach which we shall illustrate using the SKdV lattice equation

(2.4.6).

If we introduce an auxiliary shift of the same type as (2.4 .1), namely

Pk T3pk -  pk,
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with an associated lattice parameter r. If we substitute this shift for the ? , equation

(2.4.6) can be re-expressed in the following form

_ _  (z  -  z)w  -  4 ( z  -  w )z
W ~  ~(------ , r*/--------------r - ’ (2.5.19)

where we have used an auxiliary variable w =  z. This equation is a Riccati equation 

m terms of w and can be linearized using the transformation w =  £, giving us the 

following set of equations

/  =  T [ ( z ~ z + ~ z ) f - ~ z z g ] ,

9 = r i p ^ f + ( z ~ z - ~ z ) g ] ,

wewith r  being an arbitrary factor. A similar set of equations can also be obtained if 

make the substitutions . i-+ ?  and p ^  q, giving us the following linear system

4> = L (2SKdV) ■ <j>, (2.5.20a)

0 =  M [2SKdV) ■ (j>. (2.5.20b)

The factor T must be chosen so that the condition

det& * * * * )  ■ M iSKdV>) =  det(M ^ Kd^  • L[SKdV\  

is satisfied, which in this case gives us

r  =  — l— .z -  z

The Lax matrix L,[SKdV) is then

\
t- {SKdV)
2 —

i +  4 ^ =  - 4 - ^ =pz z—z p2 z — z

r  1 i _  r 2 z
\ p2 z-z p2 z-z J

Bilid 2 given by the substitutions . . and p i—> q. The compatibility of the

Lax pair (2.5.20) again gives the SKdV equation (2.4.6).

LEEDS UNIVERSITY LIBRARY
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Using this method, alternative Lax Pairs can also be derived for the KdV and modified 

KdV lattice equation. For the KdV lattice equation the Lax pair is given by the matrices

L (KdV) ^ p -f r -f u (p -f r 4- u)(p — r — u) ^

1
/

and M^KdV  ̂ given by the substitutions

lattice equation the Lax pair is given by

L ( m K d V )

p — T — U

and p q. While for the modified KdV

/  ~ \P  TV o

X. pJSLvo r  VQ

and M ^ KdV  ̂ given by the substitutions T h ?  and p i-» q. In all these alternative Lax 

pairs r has assumed the role of spectral parameter and the compatibility condition gives 

the relevant lattice equation.

2.6 Schwarzian PDE

rewritten in the following form

dx21

21

dt

dx
dt

n

P

n

P

1 o '

0 a

0 a

X  + k2 — p2

k2 — p2

of z on the lattice parameters

—kn{l +  a) 2 t2zt

kn2(l  — a2)/(2 tz t) —nt(l — a)

—kni^l +  a) 2 t2zt

kn2(l — a2)/(2 tz t) —nt(l  — a)

\
X, (2.6.1a)

\
X, (2.6.1b)

where a and b are auxihary variables. If we cross differentiate (2.6.1a) and (2.6.1b) we 

obtain the following compatibility conditions

1
nsas =  mtb-t = 

stzst

2(5 -  t) 
mt2ztb — ns2zsa

i s2 z.2s * » /i 2̂  2  ̂ Zt r2\n —  — (1 — a ) — m ------ (1 — b )
t zt y J s z s 1

s — t

(2.6.2a)

(2.6.2b)



chapter 2 : The K d V  System 39

By differentiating (2.6.2b) with respect to s and t we obtain expressions for at and bs, 

then, by cross differentiating either the a or the b, for example dsat =  dtas, we are able 

to eliminate the variable a and, surprisingly, also the variable b to obtain the following 

PDE for the variable z

+
1

ts — t 
1

( s - t ) 2 
1 1

^sst

Zs

st
O I [ z stt2 Zt /  5 V zt

z s t z tt 1 zl t

, S‘  Z,
n zsztt\ ,t2 zt

+2 ,  \ Z s t ~  ^ r )  + m  ~2  —  [ Zs t -----------t Z t '  Zt J s2, zs \ Z

2 z.

Z t Z s s Y

n - z . f  i , ( 4 i - 3 s ) s z s  ̂ 2 t (" (4s -  3t)t ZtX-]
I 1 + ?  7t )  ~ m ^ ' i 1 + — * 7 ).  ' (2'6 3)2 (s — t)3

This equation was the subject o f a paper by Nijhoff, Hone and Joshi [85]. It was shown 

to be integrable in the sense that it has a Lax pair and an infinite number of conservation 

laws as well as forming a compatible parameter-family o f equations. It was also shown 

that by an expansion of the independent variables one could obtain the Lagrangians 

for the whole of the Schwarzian KdV hierarchy and that under a scaling symmetry it 

reduces to the full Pyj equation. In chapter 5 we shall attempt to obtain a similar PDE 

for the Boussinesq system.

In this chapter we have given a relatively brief review of the direct linearization scheme, 

from it we have derived closed form lattice equations for the discrete KdV system, the 

modified KdV system and the Schwarzian KdV system. For each of these systems we 

also have closed form similarity constraints and differential-difference relations. The in­

tegrability of these equations is suggested by the existence of associated linear problems. 

In the next section the integrability of these systems will be investigated further as we 

shall show how the lattice equations can be embedded in a multi-dimensional lattice and 

how the constraints can be used to reduce the system to Painleve type equations.



Chapter 3

Higher Order PVI Equations

3.1 Introduction

In the previous chapter we derived two-dimensional nonlinear partial difference equations 

(PAEs) for the KdV system along with the corresponding two-dimensional similarity 

constraints and differential-difference relations. In this chapter we shall first show that 

the lattice equations can be consistently embedded in a multi-dimensional lattice and 

how both the similarity constraints and the differential-difference equations can also be 

extended to the multi-dimensional case. Having done that, we then show, in general, how 

to reduce the modified PAE to either a coupled system of ordinary difference equations 

(OAEs) using the constraint or, if we also employ the differential-difference relations, a 

coupled system of ordinary differential equations (ODEs). We shall then go on to give 

explicit examples of these reductions in the special cases N  =  2 and N  =  3. As both 

these systems will have been derived by a similarity reduction of an integrable equation, 

they should both be of Painleve type. Indeed in the case N  =  2 we do in fact obtain the

40



full Pyi equation as well as a discrete analogue of the Pyi equation.

3.2 Lattice Equations in Multi-Dimensions

In section (2.4) we derived closed form lattice equations for the KdV family, namely the 

lattice KdV equation (2.4.4), the lattice modified KdV equation (2.4.5) and the lattice 

Schwarzian KdV equation (2.4.6). In each o f these we considered the dependent variable 

to be a function of two discrete independent variables n and m  each with an associated 

lattice parameter, p and q respectfully. In fact, each of these lattice equations actually 

represents a compatible parameter-family of partial difference equations, cf. [81].

If we take for example the lattice mKdV equation

P W + 1 +  Qv n ,m + lt>n+l,771+1 =  q'On ,m'On + l ,m  +  2” >7i+l,mVn+l,m +l>  (3 .2 .1 )

this means that we can embed the equation (3.2.1) into a multidimensional lattice by 

imposing a copy of (3.2.1) with different parameters on any two-dimensional sublattice, 

identifying each lattice direction with a corresponding lattice parameter pi e  C in which 

direction the sites are labelled by discrete variables n{ (noting that these are not neces­

sarily integer-valued, but they shift by units, i.e. m  G +  Z , 9, € C). Thus, combining 

two different lattice directions, labelled by we can write the lattice equation (3.2.1)

on the corresponding sublattice as

Pivv:  +  pjv’ v13 =  pjvv1 +  piv'v'*, (3.2.2)

in which we use the right superscripts i , j  to denote the shifts in the corresponding 

directions, whereas we will use left subscripts i , j  denote shifts in the reverse direction,
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i.e.

v —  v ( n , p )  , vJ  =  T j v ( n ;p )  =  v ( n  +  e y ,p )  , =  T ^ v ^ n ;  p )  =  i ; ( n  —  e y ; p )  ,

where «, denotes the vector of the discrete variables n, for all lattice directions labelled 

by i, each corresponding to the component pl of the vector p  of lattice parameters. We 

use the vector e 0 to denote the vector with single nonzero entry equal to unity in its j th 

component.

The consistency of the lattice equation (3.2.2) along the multi-dimensional lattice is 

illustrated by figure 3.1. Considering the three-dimensional sublattice with elementary 

directions {e i , e 2, e3}, then on each elementary cube in this lattice the iteration of initial 

data proceeds along the six faces of this cube, on each of which we have an equation 

of the form (3.2.2). Thus, starting from initial data v, v 1, v 2, v3 we can then uniquely 

calculate the values of 'V12, v13 and v 23 by using the equation. However, proceeding 

further there are in principle three different ways to calculate the value o f v 123, unless 

the equation satisfies (as is the case for the equation (3.2.2)) the special property that 

these three different ways o f calculating this point actually lead to one and the same 

value. It is indeed at this point that the consistency of the embedding of the lattice 

mKdV into the multidimensional lattice is tested. In fact, by using equation (3.2.2) 

to eliminate all terms shifted in two directions in favour o f terms shifted in only one 

direction we find that this value is given by

yijk _  (Vi ~  Pk)(Pi +  Pk)PjV'lVk +  (Pj -  pi ) (pj  +  p z)pkV^Vl +  (pk -  pj) (pk  +  Pj)pjVJVk 

(.Pi -  Pk){pi +  Pk)PjvJ +  (pj -  Pi)(Pj +  pi)pkv k +  (pk -  p j ) ( p k +

i , j , k =  1,2,3

This is clearly invariant for any permutation of the labels ijk and therefore the value
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of v123 is independent o f the way in which we calculate it! Thus, the equation (3.2.2) 

can be simultaneously imposed on functions v(n1,n 2,n 3, . . . )  of the lattice sites. This is 

precisely the discrete analogue of the hierarchy of commuting higher-order flows of the 

(modified) KdV equation!
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Figure 3.1: Consistency of the lattice equation.

As a consequence of this compatibility we will call the system (3.2.2) a holonomic system 

of partial difference equations, [86].

For the lattice KdV equation (2.4.4), the lattice equation on a two-dimensional sublat­

tices is given by

(Pi ~  Vj +  v? -  uz)(Pl +  Pj -  u + u) =  p2 -  q2. (3.2.3)

The consistency of this equation in the multi-dimensional lattice follows an analogous 

route to that o f the above modified equation. In this case we find that the value for u123



is given by
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u ^k = (:p )  ~  P i ) u ' u 3 +  (p2k -  p j ) u 3u k +  (pj  -  p l ) u ku z +  f a  +  p j )(jpj -  Vk)(Pk +  Pl)u l 

+(P j  +  Pk){pk -  pi){pi + Pj)v? + (pk + pi)(pi -  pk)(pk + p j ) u k /  

v*(Pj -  Pk) +  u : (Pk ~ P i )  +  uHp1 -  Pj) +  (Pi -  Pj){Pj -  Pk){Pk -  Pi) , (3.2.4)

which is again clearly invariant for any permutation of the labels i , j , k  and hence equation 

(3.2.3) is also a holonomic system of partial difference equations.

Finally, for the lattice Schwarzian KdV equation (2.4.6), the lattice equation on a two- 

dimensional sublattices is given by

(z  -  z l ) ( z l -  z i j ) P2
z  f  (3-2-s)

Again, the consistency of this equation in the multi-dimensional lattice follows a similar 

route to that above, and for this equation the value for z123 is given by

zijk =  P i ^ ( zk -  z j ) + p j z j (zi -  z k) + PkZ^z’  -  Zl)

P i ( z k -  z J) +  P2(z' -  z k) + p k(z i  -  z ' )

which, once again, is clearly invariant for any permutation of the labels i , j , k  and hence 

equation (3.2.5) is also a holonomic system of partial difference equations.

The continuous equation for the PVI hierarchy follows from the differential equations 

with respect to the lattice parameters p% given in (2.4.8), which for the variable v now 

reads

d
~ Pidp' gV ~  Uiai ’ (3.2.6)

in which the variable ai is given by



It can be shown that the differential relations (3.2.6) are actually compatible not only 

amongst themselves, but also with the discrete equations on the lattice (3.2.2), i.e. the 

discrete and continuous flows are commuting

d /  3t> \ _  d /  dv \ dvz /  dv \
dpi \  d p j )  dpj \ d p j  ’  dpj ~ Tl \ d p j )  ’

This can actually be demonstrated by explicit calculation exploiting the discrete rela­

tions (3.3.6) below, but we wiU not give the details here (which follow closely the pattern 

o f calculations of [83]). Thus, we have here a large multidimensional system of equations 

with discrete (in terms of the variables rii) as well as continuous (in terms of the pa­

rameters commuting flows, in terms o f which compatible equations o f three different 

types (partial difference, differential-difference and partial differential) figure in one and 

the same framework: the partial difference equations are precisely the lattice equations

(3.2.2), the differential-difference equations are the relations (3.2.6), whilst for the par­

tial differential equations in the scheme we refer back to equation (2.6.3) given in section 

2.6 and to the results given in [85].

3.3 The Pvi Hierarchy

Now, we turn to the issue o f the symmetry reduction o f the multidimensional lattice 

in the sense o f [87]. It follows from the general framework of [83] that the similarity 

constraint for the multidimensional lattice mKdV system is as follows:

y ,  njOj =  i i - t /  , v =  A ( - l ) ^ * n' , (3.3.1)
i

fi and A being constants. The sum in (3.3.1) is over all the i labelling the lattice 

directions, hence, for each dimension in the lattice we get a term of the form nidi on the
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LHS of the constraint (3.3.1).

To analyse the reduction it is convenient to introduce the following variables:
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Xij — iXij _  Ti Xij — , (3.3.2)

Xij =  ^  iXij =  T% X{j =  (3.3.3)

The variables =  Xji and Xij  =  1 /X j i  are not independent, but related via

= P M i ± Pi ^  =  - P i X i i + P i  (3.3.4)
p j x i j + p i  p jX %j - p i

which follow directly from the definitions and (3.2.2). Furthermore, we have

Pi Xij iV 1 a,
(3.3.5)

Xij v1 1 +  a;

which follows from the definitions of al, (3.2.7) and those of Xij and Xij, (3.3.2) and

(3.3.3). In order to obtain explicit equations from the reduction given by the constraint

(3.3.1) we need a number o f relations for the objects a; which follow from (3.2.2), namely

1 +  <4 =  (piXij ~ PjK aj +  ^  +  2Pj , i j L j  (3.3.6)
J P%Xij +  Pj

which expresses shifted aj in terms of unshifted objects, and, from the definition together 

with (3.3.5)

_ Pj iX%j X i j  -)- Pi ( %Xij X i j ) — Pj
Pj iX i j  X { j  Pi( iXi j  -(- X i j ) -f- Pj 

_  ~Pj  ix ij x ij ~  Pi( jXjj ~  Xjj ) -|- Pj i j  (3 3 7)
Pj iXij Xij -f- Pj( iXij -(- Xij ) Pj

which expresses ai in terms of shifted Xij or Xij.

First we will focus now on the reductions under the symmetry constraint (3.3.1) to 

derive closed-from ordinary differential equations (ODEs) choosing one particular lattice 

parameter pi as our independent variable. To implement this reduction explicitly we



first need to derive differential relations for the ar  By using (3.2.6) in combination with

(3.3.5) we easily obtain

~ Pld ^ l° g ( l + O i )  =  U1 ~  a0  ’ ^ ‘3‘^

which, on using (3.3.6), in combination with (3.3.4), to eliminate the forward and back­

ward shifted a2, yields after a lengthy calculation the following differential relation: 

da: n-iPi
d^  =  (Pj -  Pi)(Pj +  p.) tt1 +  ~ a^ X 3i -  ( 2 +  “ jX 1 -  ai)x o\ • ( * ^ i )  (3.3.9)

We also require a differential relation for the variables X%j, so, using the definition (3.3.3) 

and equation (3.2.6) we get

d
~ Pid ^  log Xi] =  n̂i +  “  n%a' ’
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using the constraint (3.3.1) to eliminate the a\ gives

_d_ 
dp,
d

- pi-fo' log Xij =  fj, +  v -  nka\ -  nzaJz ,
k^i

and eliminating the shifts in the a ’s using (3.3.6), yields the following relations for the

reduced variables X,„T>J

d
ft ^ Pi ~r\ log X ij  — Tl{ X ji &i -|- ^   ̂Tlk ̂ ik&k "t" w ~  r ( X j i  X ij')

°Pi . . .  (Pi ~  Pj)\Pi + Pj)k^i

§ " ‘ 5 ^ 5 ^n +  K ) [X 'k ~ Xk' ) ' (3'3'10)

in which we have abbreviated

v  — {PiXij Pj){Pj PiXji) _
X"  =  t o - y O t e  +  w ) -  ~ x *  ■ (3 '3 ' n )

Using (3.3.9) in conjunction with (3.3.10) and using the similarity constraint (3.3.1) to 

eliminate the â , we obtain a coupled first-order system of ODEs w.r.t. the independent 

variable tt =  pj in terms o f the 2 N  -  2 variables ak, X tk , (k ^  i). Solving the variables



ak from the linear system given by the equations (3.3.10) and inserting them into (3.3.9) 

we obtain a coupled set of second-order nonlinear ODEs for the variables Xik- It is this 

set of equations which makes up the continuous PVI hierarchy.

Second, turning our attention to the discrete case, we note that since the left-hand side 

of (3.3.7) depends only on the label i but not on j ,  for fixed i this represents a set of 

N  — 2 coupled first-order ordinary difference equations (OAEs) with respect to the shift 

in the discrete variable n; between the N  — 1 variables X ij ,  j  ^  i. Furthermore, the 

relations (3.3.6), for the same fixed label i, provide us with a set of N  — 1 first-order 

relations between the variables a,j, j  ^  i , and thus together with the similarity constraint

(3.3.1) where a; is substituted by (3.3.7) we obtain a set of 2(N  -  1) first-order nonlinear 

OAEs for the 2(N  — 1) variables X ij,  a,j, j  ^  i, which together form our higher-order 

discrete system.

3.4 Special Cases: N = 2 , N = 3

In the previous section we described how the symmetry constraint (3.3.1) could be used 

to reduce the partial difference equations (3.2.2) and the differential-difference equations

(3.2.6) to coupled systems of ODEs (in the continuous case) and OAEs (in the discrete 

case). We will now give explicit examples of these coupled systems in the particular 

cases N  =  2 and N  =  3.
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3.4.1 N = 2 :

49

For N  =  2 we are not, strictly speaking, dealing with a higher dimensional case, but the 

procedure developed in the previous section will work nonetheless. The results for this 

special case were first given in [83] but we reproduce them here to show that they are a 

special case of larger multi-dimensional system.

So, for this case we have a single lattice equation of the type (3.2.2) along with a similarity 

constraint (3.3.1) which are represented symbolically in figure 3.2.

Figure 3.2: symbolic representation of lattice equation and similarity constraint, N  =  2.

As already mentioned, although the lattice equation and the similarity constraint are, 

in general, compatible, we must show, in each specific case, how an initial value problem 

(IV P ) can be formulated consistently, and to demonstrate that this IVP is well-posed, 

i.e. that given a suitable choice of initial data, we are able to iterate the solution through 

the whole lattice and that the corresponding solution is single-valued at each lattice site.

In figure 3.3 we have indicated how the iteration of the system proceeds. From a given 

configuration of initial data (located at the vertices indicated by •) we move through the 

lattice by calculating each point by means of either the lattice equation (points indicated



by o) or the similarity constraint (points indicated by x ) .  The first point where a possible 

conflict arises, due to the fact that the corresponding values of the dependent variable 

can be calculated in more than one way, is indicated by ®. It is at such points that the 

consistency o f the similarity reduction needs to be verified by explicit computation. This 

was verified in [83] for this two-dimensional case using MAPLE. However, even for this 

case, the iteration involves too many steps and the expression are too large to reproduce 

here.

•  o

•  • X X

o  •  o  !85

X  O

Figure 3.3: consistency of the constrained lattice, N  =  2.

Having proved the compatibility of the lattice equation and the similarity constraint we 

can now proceed to reduce the system to either an ODE or an OAE in one dependent 

variable. In order to simplify the equations we shall adopt a slightly more convenient 

notation, for the dependent variables we use,

a1 =  a , a2 =  b , x 12 =  x , X 12 =  X

while, for the discrete independent variables and the lattice parameters we use

nx =  n , n2 =  m  , px -  p , p2 -  q
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Choosing first to reduce to an OAE and taking n as our independent discrete variable, 

equations (3.3.7) and (3.3.1) now give us

while equation (3.3.6) gives

1 +  6 = ( » * - « ) ( » + B  +  *  (3.4.2)
px +  q v '

in which the variable x can be eliminated using (3.3.4). Solving (3.4.1) for b and substi­

tuting this into (3.4.2) gives a second order nonlinear non-autonomous difference equa­

tion for the variable X . In [83] this equation was given as:

(the notation deviates slightly from the one of [83]), where r =  p /q  and where the 

variables yn are related to the X  by the prescription: y2 n =  X (2 n )  for the even sites, 

whilst y^n+i =  —1 /X (2 n +  1) for the odd lattice sites (the latter choice being mainly 

motivated by the wish to cast the equation into a convenient shape). It was pointed 

out in [83] that whilst a continuum limit of (3.4.3) yields the Pv equation, its general 

solution can be expressed in terms of Pyi transcendents (noting its dependence on four 

arbitrary parameters, n, A, r and m).

Turning now to the reduction to an ODE and choosing the lattice parameter p as our 

independent variable, equation (3.3.9) gives us

!i — v — mb q X X  +  p (X  -  X )  -  q 
q X X  - p ( X  +  X ) - q '

(3.4.1)n

, (3.4.3)

db nq f 1
=  (1 +  « ) ( ! - 4 ) ^ - ( l  +  6 ) ( l - a ) X (3.4.4)



while equation (3.3.10) gives

V +  v + p - ~ l ° g X  =  (7i d - m b ) ^ 1— -----
dp y ’  p2 -  q2

+  (3.4.5)

Using the similarity constraint (3.3.1) to eliminate all the a ’s from these two equations 

we can solve (3.4.5) for b and substitute this into (3.4.4). This gives us the following 

continuous equation for the variable X  in terms of p.

p(p2 - q 2)2X ( q X - p ) ( p X - q ) d2X
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dp,2

\p{v2 -  q2)2 [pq{3 X 2 +  1) -  2(p2 +  q2) X ] +  (3 .4 6)

(q2 -  p2) [2p2X ( p X  -  q){qX  -  p) +  (q2 -  p2)2X 2} —  +a x
dp

1
- q  [ ( a X 2 -  (3)(pX -  q)2(q X  -  p)2 +  (;p2 -  q2) X 2 ((7 -  1 )(q X  -  p)2 - ( 6 -  1 )(pX  -  9)2)] ,

and it is not difficult to show that this is actually the Pyi equation through the identi­

fication w(t) =  pX( p) ,  where t =  p2, and setting q =  1, leading to

—  =  1 ( 1 I 1 M  ( dwY  ( l 1 1 \ dw
dt2 2 \w w - 1  w - t ) \ d t j  \ t  t - l + w - t ) d t

w { w - l ) ( w - t )  (  t t -  1 t ( t -  1 ) \

(3.4.7a)

with the identification of the parameters a,P ,j ,S  as follows:

a =  ( / J , - v  +  m - n ) 2, (3.4.7b)

P =  ^ ~  m  +  n)2, (3.4.7c)

7 =  (/* +  v ~  m  -  n -  l ) 2, (3.4.7d)

f i = ( ^  +  is +  m  +  n +  l ) 2. (3.4.7e)



Equation (3.4.7) is interesting in its own right since it provides us with a covariant way 

of writing Pyi, noting its invariance under the transformations:

n *-*■ m  , p <-> q , X  <-> 1 / X  .

3.4.2 N = 3

This first higher-order case deals with the first genuinely multidimensional situation of 

three two-dimensional sublattices. This is an extension of the work done in [83] and the 

results were first given in our recent paper [86].

On each two-dimensional sublattice we impose a copy of the lattice mKdV equation

(3.2.2). In addition there is also the similarity constraint (3.3.1) which couples the three 

lattice directions. Thus, for the three-dimensional case we have a coupled system of 

equations whose symbolic representation is shown in figure 3.4.

chapter 3: Higher Order P V I Equations 53

Figure 3.4: symbolic representation of lattice equation and similarity constraint,N=3.

In the previous section we have already demonstrated the consistency of the three copies 

of the lattice equation (3.2.2) amongst themselves. What remains, is to show that in 

this higher dimensional case we can still formulate a well-posed IVP. In figure 3.5 we 

show how the iteration scheme works in three dimensions. Again, the initial data points



are indicated by a •, points calculated using the lattice equation by a o, those calculated 

by the similarity constraint by a X and the first point of potential conflict (i.e. that can 

be calculated by either the lattice equation or the constraint) by a 0 .  The consistency 

of this IVP has been verified using MAPLE.
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Figure 3.5: Consistency of the constrained lattice system.

With the consistency of the lattice equation and similarity constraint confirmed we can 

proceed to analyse the explicit reduction to coupled systems of either ODEs or OAEs. 

we redefine the following objects

a,\ — cl , C&2 = b , (Z3 =  c 

X 12 =  X  , X 13 =  Y  , A ’12 — X  , A'13 =  y

using also =  n, n2 =  m, n3 = h, as well as px — p, p2 =  q and p3 =  r to simplify the 

notation.

To start with the continuous equations, fixing the independent variable to be p we obtain
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the following linear system for the quantities b and c from eq. (3.3.10)

2X  X  +  y  

x  +  y  2 y

mb V +  "  +  P § t l°  & x

he P +  v  +  lo§ Y

(M -  v ) X  +  (n +  - X )  +  -  Y )

(j i -  u ) y  + (n + -  y )  + m

—r*6
(3.4.8)

lp2_r2\Y -1 ; T- " ‘■P2_q2 \X 

where we have used the similarity constraint to eliminate the quantity a. Furthermore,

from (3.3.9) we obtain the differential relations

d{mb )

d{hc)
dp

m<7 r/
^2“_  p 2 [(n +  ^ -  * -  mb -  hc){ 1 -  b) —  

- (1  + b)(n -  f i  +  V +  mb + hc)X],

hr i
^ [ ( n  +  n -  v -  mb  -  /ic )( l -  c) —

(3.4.9a)

— (1 +  c)(ra — fi +  i/ +  mfr +  /ic)y] . (3.4.9b)

Solving b and c from the linear system (3.4.8), and substituting the results in the differen­

tial relations (3.4.9a) and (3.4.9b), we obtain a coupled system of second-order nonlinear 

ODEs o f the form:

d2X  _  ( 3 X \ 2 / d Y \ 2 ( d X \  f  dY\ A [ 8 X \  A f  dY\
< V  ' { d p )  +  2 \ d p )  +  3 \ d p ) { d p J + A 4 { d p ) + A 5 { ^ ) +  Ae ’

d2Y  _  ( d X \ 2 ( d Y \ 2 f d X \  f d Y \  „  /<9X\ „  / dY\
dpi -  B' ( aFj + ^ ( i f y )  + B> ( a?J + (a ? )  + (a ? ) +

(3.4.10)

where each of the coefficients A i..A e,  are functions of X ,  Y ,p  and six free param­

eters, namely fi, u, n, m, h and q/r,  these functions have been calculated using Maple 

and although too large to give here are given explicitly in the Appendix.

Alternatively, we can derive a system of second-order ordinary difference equations by 

fixing one o f the discrete variables, say n =  n\, and using the relations (3.3.6) to obtain
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the equations

(p X - q ) b  +  p X  +  q =  P2) * (6 + 1),
q X  - p

{jpY — r)c -f p Y  +  r (r2 — p2)Y
(c +  1) ,

(3.4.11a)

(3.4.11b)
r Y  — p

where the tilde denotes the shift in the lattice direction associated with the variable n. 

Using the similarity constraint

na +  mb +  he =  // — v , u — A( —l ) 7l+m+\ (3.4.12)

to eliminate the variables c, we obtain the following linear system in terms of b and b

(q2 - p 2) X  - ( p X - q ) ( q X - p )  

-m (r2 — p2)Y  m (pY  — r)(rY  — p)
(3.4.13)

(;p X  +  q)(qX -  p) -  (q2 -  p2)X  

(r Y  -  p){{pY  -  r)(fi -  v -  na) +  h(pY  +  r)) -  (r2 -  p2)Y (h  +  fj, +  v -  {n +  l)a ) 

where the a and a can be expressed in terms of X  and Y  by

q X X  + p ( X  -  X )  -  q _  r Y y  +  p ( Y  -  Y )  -
qx x - p ( x  +  X )  +  q ry y - P( y  +  y )  + (3.4.14)

(where the undertilde denotes the backward shift with respect to the discrete variable). 

The system of equations (3.4.11), (3.4.12) and (3.4.14) -  or, equivalently, (3.4.13) to­

gether with (3.4.14) leads effectively to a fourth order ordinary difference equation in 

one variable. In fact, solving b and b from (3.4.13) and then eliminating b altogether by 

a shift in the independent variable n we get a coupled system containing one equation 

in terms of X , X , X , X  and Y , and the equation (3.4.14) which is first order in the both 

X  and Y  with respect to the shift in the variable n. This system of equations depends 

on six free parameters, namely /i, v,  m, h, q/ p and r / p  and is quadratic in Y , hence we 

cannot explicitly reduce it to a single fourth order ordinary difference equation in terms



of X  and n without evoking algebraic expressions. However it can be shown that the 

IVP for the coupled system of equations (3.4.13) and (3.4.14) is well posed, i.e. given 

initial data points X , X , X  and Y  at a fixed value of the discrete variable n,  this system 

allows the subsequent iterates, X  and Y ,  to be calculated uniquely by the following 

equations
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Y
X ( q X  — p)(pY — r) 

p X ( q X  -  p) +  r Y ( p X  -  q) ’
(3.4.15)

and

X [ E i  — E 2 +  E 3  +  E i E $ ] [ p X  — q )  +  [-6/4(71 - f  2) { p X  — 9 )] 

[ E \  — E 2  +  E 3  - f  E ^ E ^ q X  — p )  — [ E ^ n  - f  2) { q X  — p ) ]
(3.4.16)

where

Ei =  (p X  — q) ( q X  — p)

( r Y  - p ) p Y  — r) fj, — v — n { q X X  + p ( X  -  X ) - q )

(r2 - p 2) Y h -f ji v

q X X - p { X  +  X )  +  q 

[ n + l ) ( q X X  +  p ( X - X ) - q )  

q X X - p ( X  +  X )  +  q

+  h ( p Y  +  r)

E 2 =  (q2 - p 2) X ( r Y - p )

( p Y - r ) ( n + 1 ) { q X X + p ( X  -  X ) - q )

q X X - p ( X  +  X )  +  q 

(pY -  r )(rY  -  p ) ( X 2 -  1) -  (r2 -  p2) ( X 2 -  1 ) Y

+  h( p Y  +  r)

mpq

-v2 ^2\/ 2 2

e 3

E 4 =  (q2 -  p2)(r2 -  p 2)(tY  -  p ) X Y , 

E<$ — h -\- ji -\- v .

So although the system of equations (3.4.13) and (3.4.14) appears to be quadratic, its 

evolution is, surprisingly, linear.



3.5 Isomonodromic Deformation Problem
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The isomonodromic deformation problem for the multidimensional lattice system is of 

Schlesinger type, [49]. In the two-dimensional case it was already presented in section 2.5. 

The extension from the two-dimensional to the multidimensional lattice is immediate: 

one only needs to introduce additional terms of similar form for each additional lattice 

direction. Thus, the Lax representation consists on the one hand of the linear shifts on 

the lattice of the form

r ( k )  =  T ^ i k )  =  Li(k) ■ i> (k ) ,

in which A: is a spectral parameter, and where the Lax matrices Li are given by

(  i \Pi v

(3.5.1)

*
H k )  =

Y V  ^  V  J

(cf. (2.5.7)). Leading to the Lax equations

L\ ■ Li  =  L)  - Li ,

(3.5.2)

(3.5.3)

which lead to a copy o f the lattice MKdV equation on each two-dimensional sublattice 

labelled by the indices On the other hand we have the linear differential equation

for ip(k) with respect to its dependence on the spectral variable k, cf. (2.5.15)

■(1 +  m)

0

(
0

\
ip(k)

\

+ E Uj v

V 1 + {,V

A( - i ) E ,n ' +  /

(3.5.4)
Y 0 -p i  J

the compatibility of which with (3.5.1) leads to the similarity constraint (3.3.1). In 

addition, we have differential equations for ip in terms of its dependence on the lattice
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parameters pi which are of the form

dip __ rij 
dpz Pi

59

(
1 0 ^

lb +  2n'v

(
0

Vi

v °
V 1 -f  {0 1° 1 J

t - ' t P  , (3.5.5)

for each of the variable pi, cf. (2.5.17a). It is the variables ti =  p\ that play the role as 

independent variables in the continuous Pyi hierarchy.

The elimination of the back-shifted vectors T ^ i p  by using the inverse of the Lax relations 

(3.5.1) lead to the following linear differential equation for ip

Aidip
dk

Ap
k £ ■ V’ , (3.5.6)

A0 - -

A{ — 7li

V
/

thus leading to the problem in the Schlesinger form, with regular singularities at 

0, oo, { ti}. The matrices A q and Ai are given by

+ Si “ a0 v '
J

0 A^*Tl‘ +  niai J

\ _  2^(1 +  ®*) 2 ^  ~ )

The continuous isomonodromic deformation is provided by the linear differential equa­

tions in terms of the lattice parameters, namely

\

—  =  I Pi dti V k -  ti
(3.5.7)

where

Pi

\ ^M1 +  ai) 0 )

Eq. (3.5.7) is not quite in standard form, and we need to apply a gauge transformation



chapter 3: Higher Order P V I Equations 60

of the form

/

ip =  V ■ ip , V  =
1 /v  0

(3.5.8)
\ U / v  1

to remove the term with P .̂ With this gauge, the continuous isomonodromic deformation 

(3.5.7) becomes the standard form

tation of (3.5.1).

3.6 Connection with Garnier Systems

M.R. Garnier in his seminal paper of 1912, [88], embarked on the question of finding 

higher-order analogues of the PVI equation, adopting the method that was proposed 

somewhat earlier by R. Fuchs, in [21], which can be identified with the isomonodromic 

deformation approach, cf. also [49]. Garnier gave a general construction of such higher- 

order equations constituting coupled systems of partial differential equations, which are 

the isomonodromic Garnier systems. As a particular example, he wrote down explicitly 

in [88] the first higher-order PVI equation in terms of the following coupled system, 

consisting of the second order ODE in terms of two dependent variables w =  w(t,  s ) and

(3.5.9)

whilst the discrete isomonodromic condition is readily obtained from the Lax represen-
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z(t , s)

d2w
dt2

1 ( \  1
+

1 1 
+

1
2 \w w — 1 w — t w — s w — z

1 1 \ dw

d w N 2 
dt

+

t t — 1 t — s t — w t — z J dt 

1 w(w — l ) (w -  s)(,z -  t) ( d z x 2 w — t dw\ ( dz
2 z(z -  1 )(z -  s)(w -  t)(z -  w) \ d t )  (z -  t)(z -  w) \ dt J \dt
2w(w -  l)(w  — t)(w -  5)(z -  t)2 

t2( t -  l ) 2{t -  s)2(w -  z) X

X
(z — 1) (w — l ) 2

t ( t - l ) ( t - s )  7
(z — t) (w — t)‘ +

s(s -  1 )(s -  t) 6

(z — 5) (w — s)2

(3.6.1a)

together with coupled first order PDEs

t(t — 1) dw s(s — 1) dw w(w — 1)
t — z dt s — z ds w — z

t(t -  1) dz s(s -  1) dz _  z(z -  1)
t — w dt s — w ds z — w

(3.6.1b)

(3.6.1c)

It should be pointed out that the system consisting of (3.6.1a), (3.6.1b) and (3.6.1c) 

amounts actually to a fourth order ODE in terms of w =  w(t)  only, and as such can be 

rightly considered to be the first higher-order member of the Painleve VI hierarchy.

Subsequent work on the Garnier systems was done mostly by K. Okamoto and his school, 

cf. e.g. [89, 90]. However, it seems that in most of these works these systems were 

treated as an overdetermined system of PDEs rather than (as Garnier himself clearly 

had in mind) as a consistent system of ODEs. Although it is not easy to find the explicit 

transformation of the lattice system exposed in section 3.4.2 to the systems that Garnier 

wrote down, in particular to find the explicit relation between the above system (3.6.1) 

and the system consisting of (3.4.8) and (3.4.9), it is to be expected that such a mapping 

exists. The identification is probably most readily obtained via the transformation of the



corresponding Schlesinger type of system as given in section 3.5 and the linear system 

that Garnier exploited in [88]. However, the search for such an identification will be left 

to a future study.
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Chapter 4

The KP System

4.1 The KP Lattice Systems

In this chapter we shall show how the integral equation (2.1.1) can be extended to 

higher dimension and how this leads to either continuous PDEs or lattice equations of 

Kadomtsev-Petviashvili (KP) type. As this was the subject of a 1984 paper by Nijhoff, 

Capel, Quispel and Wiersma, [92] we shall keep the derivation of these equations brief. 

The main aim of this chapter is to show how the KP system is related to the Gel’fand- 

Dikii hierarchy by means of a dimensional reduction. Particular members of which are 

the KdV system and the Boussinesq system which is the subject of the next chapter.

The integral equation for the infinite component wave-vector uk is, in this case

In equation (4.1.1), c j. is the same infinite component vector defined in (2.1.1). However, 

the integration is now performed over an arbitrary region in the complex hyper-plane

Pk Ck • (4.1.1)
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C2 of I and I ' , with integrations over suitable measure d(t{ l , i 1'). Again we shall not be 

specific about the exact choice of the domain of integration or the measure as the integral 

equation is used merely as a formal tool in order to investigate the algebraic structure 

o f the resulting system. To complete the system we must also consider an “ adjoint” 

version of the integral equation (4.1.1), namely

w + J = <’■*''«. (4-L2>
in terms o f an “adjoint” wave-vector V -  Now, equations (4.1.1) and (4.1.2) each contain 

a plane wave factor, pk and ak' respectively. Again we are free to choose whether these 

depend on continuous or discrete variables.

As with the KdV system we shall develop an infinite matrix formalism in order to simplify 

the algebra and derive closed form equations.

Firstly we require the infinite (Z  X Z ) matrix

C =  J  J  d((l, (l)pkak<ct tcl’ i (4.1.3)

which shall be used to derive the linear relationships of the system. While for the 

nonlinear relationships we now require the following two infinite (Z  X Z ) matrices,

U =  J  J  <fC(-M')u/ c ^ ' ,  (4.1.4a)

*U =  J  J  dC(l,l,) c t iu i'Pt. (4.1.4b)

This highlights the main difference between the KP system and the KdV system, in the 

KdV system we needed only to define the matrix U as we had the added symmetry 

U =  tU.

To complete the infinite matrix formalisation we again require index raising matrices A
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and *A, index counting matrices I  and tI ,  a projection matrix 0  and a matrix Cl, but 

these are the same as in the KdV system and are defined in (2.2.3).

This completes the infinite matrix formalisation and using the objects defined above we 

can write equation (4.1.1) in the following way

U =  C - ( 1  +  C l - C ) - 1, (4.1.5)

with a similar expression for equation (4.1.2).

We must now choose the form of the plane-wave factors pk and crk,. We shall first define 

them in terms of continuous time and space variables in order to demonstrate how this 

formalisation can be used to derive the continuous KP hierarchy. We shall then go on to 

define them in terms of discrete variables and derive the lattice equations and similarity 

constraints for the KP system.

chapter 4: The K P  System  65

4.2 Continuous Case

if we choose to work with continuous variables, then the plane wave factor pk takes the 

following form:

Pk = exp t fx j  j  , o ki =  exp ^  (—k ' y x j \  , (4.2.1)

where j  =  1 ,2 ,.., N .

In this case we are now dealing with an N-dimensional system which depends on N  

independent continuous variables x\, x2, x n -

Differentiating these with respect to any any of the continuous variables we get



which leads us to the following linear relationship for C

djC  =  A? - C  -  C  ■ ( -  tA) j . (4.2.2)

which gives us the nonlinear relationship for U

d: U =  • U -  U ■ tA? - U - O j - U .  (4.2.3)

We now deduce recursive definitions of O l+j  and dXi+o U by substituting i +  j  for j  in 

equations (2.2.3e) and (4.2.3) Thus, equation (2.2.3e) becomes

Oi+j =  O i - A j +  ( - iA i) - O j .  (4.2.4)

Similarly, equation (4.2.3) becomes

(■dl+j +  didj)U =  (A l - U  ■ Oi) • djU  +  (.Aj -  U • 0 : ) ■ diU. (4.2.5)

We now consider

( Ak - U - O k) - ( d i+j +  did: )U =  (A h+i -  U ■ Ok+i -  (dkU) • Oi) ■ djU

+ ( A *+> -  u ■ ok+j -  (dku) ■ Oj) • diU.

Adding cyclic permutations o f this equation we obtain

(A 1 - U  ■ Oi) ■ dk+jU +  cycl. = 2di+J+kU +  ^ (didk+j +  djdi+k +  dkdl+ j)U

-  IdidjdkU -  i [(djU) • ok ■ +  m u) ■ok-d:u + cyd .] .

Differentiating this with respect to another independent variable xi and again adding 

cyclic permutations we eliminate all the A ’s to give

2(<9j-j_,j_|_k<9/ -I- dj+k+l&i "I- dk+l+idj -h di+i+jdk)U

—2didjdkdiU — 2(d{+jdk+i +  di+kdj+i +  di+idk+ j)U  =  (4.2.6)

1
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2
1 

+ 2

di [(diU) ■ O k ■ djU +  (djU) ■ O k ■ diU +  cycl(ijk)] +  cycl(ijkl) 

[(di+jU) ■ O k ■ diU -  (diU) ■ O k ■ di+jU  +  cycl(ijk)] +  cycl(ijkl)
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which can be considered as a generating equation for the KP hierarchy. For example, if 

we limit ourselves to the simplest case, namely i = j  — k — I — 1, equation (4.2.6) gives 

us

4<93it f  -  6 d2xU - O - d x U  -  6d2U ■ 0  ■ d1U +  6 3 ^  • 0  ■ d2U -  6 & U  ■ 0  ■ d*U -  d*U  = 3d%U. 

If we now rename our independent variables as follows

Xi =  x , x2 =  y  , x3 =  t , Uoto =  u 

and isolate the central element of equation (4.2.7) we obtain

which is the first of the (potential) KP hierarchy.

In order to dimensionally reduce this system to the KdV system we must impose the 

symmetry

Using this symmetry, equation (4.2.3) provides the further, purely algebraic relation

(4lit 6ux 'U'xxx')x ~— ‘̂ 'U'yy , (4.2.7)

U =  tU. (4.2.8)

U ■ ( -  *AY =  Aj -U  -  U -O j  -U  , j  even. (4.2.9)

This gives, for j  even

dX]U =  0, (4.2.10)

and equation (4.2.7) now gives the first of the KdV hierarchy

4 iif 6wx U-XXX — 0. (4.2.11)

Thus, we have shown that the integral equation (4.1.1) along with a suitable choice

of the plane wave factor pk encodes the whole of the KP hierarchy through equation

(4.2.6) and by imposing the additional symmetry (4.2.8) this can be reduced to the KdV

hierarchy.



4.3 Discrete Case
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If we now choose to work with discrete variables, the plane-wave factors pk and aki take 

the form

Pk =  l i f e  +  k ^ J ’ ak' =  l i f e  “  k ' ^ n: > ( 4 -3 -1 )
3 3

where j  =  1, 2, N.

The system now consists of an N-dimensional lattice, with the dependent variable u k, a 

function now of N  discrete variables n\,n 2 , each of which has an associated lattice 

parameter p3.

The discrete evolution is now given by

TjPk  — ( Pj ~t“ k'jpk , TjO\.i =
Pj  — K

which leads us to the following linear relation for the C

Tj C  ■ (jpj -  tk) =  (;Pj +  A) • C. (4.3.2)

This then gives us the nonlinear relation for the U

Tj U • (pj - * A )  =  (p +  A) • U -  {Tj U) ■ O ■ U. (4.3.3)

For the discrete case, dimensional reduction to the Gel’fand-Dikii hierarchy is achieved 

by iterating equation (4.3.3), this gives us

( n * v U -
’  N

l i f e  -  <A) =
' N  

l i f e  +  A ) • U - ( n « v V
v =l J _i=i _i=i A i= *  J J

(4.3.4)

where

N '3-1 N

O p i , - , P N  = l i f e  -  *A ) ■ O - n  ( p j + a )
i = i .1=1 i —J +  l



The dimensional reduction to the lattice Gel’fand-Dikii hierarchy is obtained by imposing 

a constraint of the form

n T: )  U =  u - (4-3.6)
Vi=i /

For example, for the lattice KdV system, where N  =  2, we have the constraint

TpT-p U =  U. (4.3.7)

And for the lattice BSQ system, where N  =  3, we have the constraint

TvTujvTw2v U =  U. (4.3.8)

This demonstrates how the lattice KP system is connected to the lattice KdV and BSQ 

systems. With this in mind we go on to derive the closed form lattice equations.

In order to derive closed for scalar equations we again need to introduce several objects 

which pick out certain entries o f the infinite matrix U , however, as we no longer have 

the symmetry U =  1U we require more than we did in the KdV case. The objects we 

now require are

u =  C/°'0’ Sa’P ~  (sT a  ' U ' p + t x ) Qfi >

=  1 -  (5Ta • u ) Qfi , w0 =  l + ( u -  z i * ) 0fi > (4 '3'9a)

=  a ~ ( a+A ' U ' *A) 0i0 > ^  =  P ~  (A  • U ■ a ) Qi0 ,

with a and (3 again being arbitrary parameters.

We must also restrict the A-dimensional lattice to a three-dimensional lattice and to 

simplify the equations we make the following identifications

n\ =  n , ri2 =  m  , =  h 

Pi =  P , P2 =  q , P3 =  r
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while for the discrete evolution we introduce the following notation

T i P k  =  P k  , T 2p k =  p k  , T 3p k =  pk

each with their respective lattice parameter p, q and r. Transformations o f the objects 

in (4.3.9) are now interpreted as transformations of functions on a three-dimensional 

lattice with grid points (n , m , h ).

Equation (4.3.3) now gives the following relationships

sa =  (p +  u)va -  ( p -  a)va, (4.3.10a)

tp =  (p +  P ) w p - ( p - u ) w p ,  (4.3.10b)

vawp =  1 ~  (p + P ) s a,p +  ( p - a ) s aip,  (4.3.10c)

along with similar equations for the other two lattice directions.

Using equations (4.3.10a) and (4.3.10b) we can eliminate sa and tp to derive the following 

Miura type relations which relate the variable u to either va or wp

T  g  | q  £r _  ( P  ~  ~  ( q  ~  a ) v a  _  { p  +  p ) w p  -  ( q  +  ( 3 ) w p  3

va wp

again we have two other copies of this equation for each combination of lattice directions.

This Miura relation immediately gives us an equation relating the two objects Vo and w0

pv0 -  qv0 _  pw0 -  qwp (4 3 19)
V Wq ’

and this equation shall appear again as part of the Boussinesq system, see later.

Eliminating either a vp or a wp from equation (4.3.11) we obtain

p — q -\-u — u p — r + u — u 
p — q +  u — u p — r +  u — u ’

which is the lattice version of the (potential) KP equation.

chapter 4: The K P  System 70

(4.3.13)
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We can alternatively eliminate the u from equation (4.3.11) to give a closed form equation 

for the va

(.P ~ a)vg ~  (r -  a)va _  (p -  a)vg -  (g -  a)va +  (g -  a)va -  (r -  a)va 3
V a  V a  V  q .

Setting a =  0 we get the following closed form lattice equation for v0

p ( ^ - i ) + q ( ^ - ^ ) + r ( ^ - ^ )  =  0, (4.3.15)
V^O Vq /  \Vo v 0 J  \Vo Vq J

which is the lattice version o f the (potential) modified KP equation. It is also possible 

to derive similar equations for wp and wq.

Turning now to equation (4.3.10c) and eliminating the va and wn we get the equation

(1 -  (p +  P) sa£  +  (p -  a )?aii9) ( l  -  (r +  P)saj3 +  (r -  a )sa>l3)

(1 ~ {.P +  P)sa,p +  (p -  a ) l 0i/3) ( l  -  (r +  P)sa,p +  (r -  a)saip)

_  (1 -  (g +  P )saJ3 +  (q -  a )sa,p) (4 3 1 6 ) 
(1 -  (g +  (3) s a:P +  ( q -  a ) s aiP) ’

which, if we define z =  5o,o — ~ ~  ~  7 gives us

=  !  (4.3.17)
( z - z ) ( z - z ) ( z - z ) 

which is the lattice version o f the (potential) Schwarzian KP equation.

4.4 Similarity Reduction

For the similarity constraints we must again impose a scaling invariance on the integral 

equation. In the KP case such a constraint is given by

for functions that are solutions of the integral equation (4.1.1), (or some objects

constructed out of them). Again, we will not discuss at this point particular contours
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and measures that obey the constraint (4.4.1), but assume that a well-defined class of

that we are interested in. Our purpose here is to investigate the algebraic structure 

underlying the similarity reductions on the lattice. We note that in equation (4.1.1) we 

have ignored the boundary conditions, leaving this aspect of the similarity constraint to 

future work. Thus, imposing (4.4.1), one aims to obtain a similarity reduction of the 

KP lattices along the same line as in [72].

Imposing (4.4.1) on the level o f the infinite matrix structure, we obtain the following 

nonlinear relationship for the matrix U

From the Miura transformation (1.1.2), one can now derive the following expression

The problem with this expression is that the discrete operators [ T ^ 1 ~^Tpj u in (4.4.4) 

are no longer the elementary translation operators that figure in the lattice KP itself. In 

order to use equation (4.4.4) we must first impose a dimensional reduction to the lattice

such integration measures and domains can be specified in connection with the solutions

U +  /  • U +  U • *1

Using the relation

1 1
P +  A

=  I -
P +  A ’

(4.4.3)

Then the similarity constraint for the lattice KP equation can now be written in the

following suggestive form

(4.4.4)



Gel’fand-Dikii hierarchy before imposing (4.4.4) . The full reduction of the KP lattice 

is therefore a two-fold approach.

We also note that recently there has been much work done on the subject of KP hier­

archies. See, for example, Adler, Shiota and Van Moerbeke’s work on vertex operators 

[93, 94] and Bogdanov and Konopelchenko’s work on Calogero-Moser systems [95, 96].
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Chapter 5

The Boussinesq System

5.1 Linearization of the Boussinesq System

The direct linearization of the Boussinesq (BSQ) system was first introduced in 1982 by 

Quispel, Nijhoff and Capel [41] where it was shown that, with the addition of an extra 

parameter in the kernel of the integral equation (2.1.1), one could obtain both the BSQ 

equation [97]

'U'tt (^ ) l l  4  I^X XX X — 0, (5.1.1)

and the modified BSQ equation [41], (also given as a system earlier in[98])

3 v t t  ^ ^ t ^ x x  ^ ^ x ^ x x  ”1” ^ x x x x  — 0, (5.1.2)

along with Backlund transformation and reductions to the second and fourth Painleve 

equations. In [41] they limited themselves to choosing the extra parameter to the cube 

root of unity, however, in 1991, along with Papageorgiou [99], they showed that in 

the more general case where the extra parameter is the N th root of unity, the integral
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equation then linearized the entire Gel’fand-Dikii Hierarchy. The integral equation in 

this case then reads,

u k +  =  PkCk, (5.1.3)

where c k, pk, T and dX are defined as in (2.1.1), 

uo is the N th root of unity.

If N  — 2 then we simply recover the KdV case and for N  =  3 we have the BSQ system.

In [99] the lattice BSQ and lattice modified BSQ equations were presented along with 

their relevant Lax pairs and a gauge transformation between the two Lax pairs. In [87] 

this work was extended to include a lattice Schwarzian BSQ equation (but no Lax pair) 

and similarity constraints were also given for the BSQ and modified BSQ equations 

along with their associated monodromy problems. In this chapter we shall review the 

derivation of these previous results and extend the results for the BSQ system further.
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5.2 Infinite Matrix Structure for the Boussinesq System

As before, we must now develop the infinite matrix structure. Most of the ingredients 

will be the same as for the KdV system given in section (2.2), but some amendments 

must be made in order to accommodate the addition of the ui in the integral equation

(5.1.3).

The two main infinite matrices C  and U are defined, as before by

C  =  J  dX(l)pictc  , U =  j  d\(l)Ul tc.



As with the KdV system, the matrix C  provides linear relations while the U provides 

nonlinear relations, specific entries of which shall give various closed form scalar equa­

tions. However, unlike the KdV system, we no longer have the symmetry in the matrix 

U i.e. U ±  tU.

Once again we require index raising matrices A and tA, index counting matrices I  and

lI  and a projection matrix 0 ,  all of which are defined as in equations (2.2.3a-2.2.3c). 

However, the matrix must now satisfy the following relations

ft -A J - n  =  Oj,  (5.2.1a)

iI-tl +  Sl - I  +  Sl =  0, (5.2.1b)

k—1
where 0^ =  ^ ( - * A ) J • 0  • A*1-1--7. (5.2.1c)

j =o

With all the ingredients in place we are again able to write the integral equation (5.1.3) 

in the following infinite matrix form

U =  C  - (1 +  n - C ) - 1. (5.2.2)

The form of this equation is the same as for equation (2.2.4) in the KdV case, but 

it should be noted that with the alterations in the infinite matrix scheme the above 

equation now represents the Boussinesq system. We now go on to derive the various 

closed form equations for this system.
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5.3 Discrete Lattice Equations
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For this section we shall limit ourselves to purely discrete variables. For this we choose 

a plane wave factor pk of the form

*  = n  ( £ £ ) ” . <«•»>

giving us N  independent discrete variables ni,ri2 ■ ■ - tin, each with an associated lattice 

parameter pu and a spectral parameter k.

The discrete evolution for the pk is now given by

TvPk =  (  Pv +  k, ) p k ,  (5-3.2)
Kpv +  u>k

which again leads to two linear relations for C

(TVC) • (p +  u>4A) =  (p +  A) • C ,  (5.3.3a)

(P +  u A ) - n C  =  C - ( p +  tA).  (5.3.3b)

However, unlike the KdV case, we now obtain two different nonlinear relations for the 

U variable, one from each of the above equations,

( ^ ■ ( p  + w*A) =  (p +  A ) - U -  ( T „ U ) - 0  -U,  (5.3.4a)

(p +  w2A) ■ (p +  WA) • TVU =  U - ( p  +  oj2tA ) - ( p +  tA)  (5.3.4b)

+  U ■ [(p +  a;2 tA)uj2 • O +  ujO ■ (p +  w2A)] • T„U,

and, by ehminating the U from the above equations we obtain the following, purely 

algebraic expression:

A3 • U =  U -  *A3 +  U - ( 0  ■ A 2 + ^ ^ - 0  - A  +  u>2tA 2 - 0 ) - U .  (5.3.5)



In order to derive the lattice equations of the Boussinesq system we must again introduce 

various scalar objects, however, due to the fact that U ^  tU we will require more than 

in the KdV case. The objects we now need are,
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Aj„ , „  ’ =  +  "  i A ' t f ' ^ l j 0i0(5-3-6c) 

“ ■ a - “ a + " , ( s r f A - l r - ‘ Aa) 0i0 ’

where, as in section 2.4, the subscript (0, 0) indicates the central element of the relevant 

infinite matrix and a  and (3 are free parameters which can take on any complex value. 

As well as the above scalars, we need the additional objects,

=  Ult0 , u(0,1) ee U0ii. (5.3.6e)

Closed form equations can be obtained by limiting the system to 2 dimensions and 

considering two different transformations

Pk Tp(pk) =  pk , Pk Tp(pk) =  pk, 

each of the same type, but for different lattice parameters, p and q.



Equation (5.3.4a) then gives us the following relationships:
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Sql =  (p +  u)va -  (p -  a)va, (5.3.7a)

=  ( p -  u(3)wp - ( p -  u)wp, (5.3.7b)

Vawp 1 ”f“ (p ^P)^ot$/3 (P CX.)sajp 1 (5.3.7c)

da =  (p -  a )sa +  psa +  U}VaU^°'l \ (5.3.7d)

b =  ( p -  uP)tp -  ptp +  u^'^wp, (5.3.7e)

CVV.W =  U(1,Q) +  p(u — u) — uu. (5.3.7f)

While equation (5.3.4b) gives us these further relationships:

pvaWf3 -  vat{3 +  sawp =  (p +  a +  u/3) +  (p2 +  a p +  a 2)sa>p

- ( p 2 +  ivfip +  u 2(32)sct)p, (5.3.8a)

aa =  (p(p -  u) -f u^1,0^)va -  (p2 +  pa +  ot2)va +  (p -  u)sa (5.3.8b)

bp =  (ojiS-1,0} -  p(p -f u))u>p +  (p2 -f u>f3p -|- u>2/32)wp +  (p +  u)tp. (5.3.8c)

And finally, from equation (5.3.5) we get the relationship

vabp — daWp = satp +  (a 2 +  a; a/3 +  u>2 (32) -f (a 3 — (5 3)saip, (5.3.9)

note : all of the equations (5.3.7a) - (5.3.9) have a dual obtained by replacing p with q 

and 7 w ith ? .

Before we go on to derive the closed-form lattice equations we shall use the above equa­

tions to derive certain relationships for particular values of the parameters a and /?.



Setting a =  p and /3 =  to2p we obtain from equations (5.3.7b), (5.3.7c) and (5.3.7e)

vPww2p =  1) (5.3.10a)

ôj2p (p u)wLj2.p1 (5.3.10b)

bu*p -  {p{p -  u) +  U^'°^>)wu2p. (5.3.10c)

While the object ^  can be expressed in various ways for the parameter values a  =  (3 =  0
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3 3
3p2 = — - ----- ^-------- h {p — q +  u — u)(2p -f q +  u — u), (5.3.11a)

vp P ~  q +  ]£ ~  u ~
vp v0 p2v0 - q 2v0 v0 pv0 - q v 0 v0 , . , 11U3p— = -------- -------- — +  =------- pc---------1- p — , (5.3.11b)
Vp v0 pvo -  qvo Vo £0 vo

3 ^  =  ^  +  ^  +  (5.3.He)
Vp v 0 w 0 V0 W 0

Equations (5.3.10) and (5.3.11) shall be required throughout the rest of this section for 

deriving the various closed-form relations.

5.3.1 Closed Form Lattice Equations

We now use the relations from the previous section to derive closed-form equations for 

the variables u, vo and so,o-

From equation (5.3.7f) we get the following relationships

uju 0̂,1') — = pu -  qu — u(p — q +  u — u), (5.3.12a)

U*1-0) -  = qu -  pu +  u(p — q +  u — u). (5.3.12b)

While equations (5.3.7a), (5.3.7d) and (5.3.8b) gives us

u ’ -  luu('0’1') -  pq -  (p +  q +  u)(p +  q -  u) -\------------- 1 ( 5 . 3 . 1 2 c )
p — q +  u — u
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Now, by eliminating the variables and from the above three equations we

obtain the following equation in terms of the variable u

P3 -  q3 P3 -  q3
P  Q ^71+1,771 +  1 ^'71+2,771 V  Q H“  ^  71,771 +  2 ^ 7 1 + 1 ,7 7 1 + 1

( j P 9  ^71+1,771 +  2 ^ 7 1 + 2 ,7 7 1 + 1  4 "  H~ ^71,771 +  1 ^71+2,771 +  2 )

^71,771+1 ^71+1,771 ) (2 p + §  + ^71,771 ^n+2,m+l)j (5.3.13)

which is a lattice version of the Boussinesq equation, [99].

Note: in the above equation, for clarity, we use the notation u = Un+i,m> u =  ^n,m+i> 

etc.

A further set o f relationships are obtained from equations (5.3.7a), (5.3.7f) and (5.3.8b) 

( p -  q +  u -  u) ( p +  q - u +  — ) =  (p2 +  ap +  a 2) —
Vex 'Vol

- ( q 2 +  aq +  a 2) — , (5.3.14)
'UoL

p - q + u - u  =  (p ~  a )^~  ~  (q ~  a )zT~- (5.3.15)
Va Vqi

While, equations (5.3.7b), (5.3.7f) and (5.3.8c)

(p -  q +  u -  u)(p +  q +  u -  ^ - )  =  (p2 +  u/3p +  uj2/32) ^ -
W p  W p

- ( q 2 +u(3q +  LU2{32) ^ ,  (5.3.16) 
w p

p — q-\-u — u =  (p — u>/3) —  — (q — uj/3 )~ ^  . (5.3.17)
w p  w p

The first of these set of equations, along with equation (5.3.7a), upon elimination of the 

s and u variables give us the lattice version of the modified Boussinesq equation, [99]

/ w 'Vn.m ’̂ n+l.m+2 \ / \/ ^n,m Vn+2,m+l \
(p -  a ) ( -----1---------------- i------) -  {q -  a ) ( ----------------------------- ) =

vn+2,m+2 vn,m-(-1 vn+2,m+2

(p2 +  ap +  a 2)-i;ra+1|m+1 -  (q2 +  aq +  a 2)vn,m+2 vn+i,m.+ 2  

(p ~  a>n,m+2 -  (q -  a)vn+lim+i Vn.m+l
(p2 +  a p +  a 2)vn+ 2 ,m -  (q2 +  ocq +  a 2)i>n+i,m+i vn+2,m+i

(P — tt)t;n-f- 1 ,m.+l (? a ) vn-\-2,m vn+l,r,
(5.3.18)
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note: again, for clarity, we use the notation va =  vn+hm, va -  vn>m+1, etc.

And the second set, along with equation (5.3.7b) gives us a similar equation in terms of 

the w variable.

Now, equations (5.3.12a), (5.3.12b), (5.3.14) and (5.3.7a) give us the relationship

3 v  +  u - l  = (P2 +  *P  +  Q2)£q ~ (g2 +  aq +  va , gg
{p -  a)va -  (q -  a}va va wp

W/s va

and, equations (5.3.7a), (5.3.7b) and (5.3.8a) give us:

3p + u - Z  =  (p +  a +  uf3) +  (p2 +  ap +  a 2)saiP -  (p2 +  u pp  +  u 2f32)sa:l3

VaW/3

+ (?  -  +  {jp -  a )— .
wp va

By setting a =  (3 = 0 and defining z = s0)0 +  ~ +  j ,  these two relationships give us

~ [p3(z -  z )(z -  z) ~  q3(z -  z)(z -  z )]
v° w° = --------------------— A— <5-3-19>

and equation (5.3.7c) for a =  /3 = 0 can be rewritten as

p { z -  z) =  v0w0, (5.3.20)

noting that

(vg& oT _  (vowo)(voWo)~

( V0W 0) ( V0W0 ) ( V 0W 0 )~

we are able to write a closed-form equation in terms of the z  variable,

( z n + 2 ,m + 2  ~  Zn + l , m + 2 ) ( z n ,m + 2  ~  ^w+l.m+l ) ( z n , m + l  ~  ^ n .m ) _

( 2ri.+2,m +2 ~  zn+2,m+l)(zn+2,m ~  z n + l , m + l ) ( z n + l , m  ~  z n , m )

P  ( * n + l ,m + 2  ~  z n , m + 2 ) ( z n + l , m + l  ~  z n , m + l )  ~  g 3 (^ n + l ,m + 2  ~  ^ n + l .m + l ) (^ n ,m + 2  ~  -Zn.rn+l) 

<l3 ( Z n + 2 , m + l  ~  z n + 2 , m ) ( z n + l i m + 1  -  Zn + 1 ,m )  -  p 3 ( z n + 2 } m + 1 ~  z n + l , m + l ) ( z n + 2 , m  -  Zn + l , m ) ’

which is the lattice version of the Schwarzian Boussinesq equation, [87] 

note: once again, for clarity, we use the notation z =  zn+1<m, z =  zn>m+1, etc.
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5.4 Lax Pairs for Discrete Equations

It is also possible to derive from the integral equation the following linear problem i 

terms of the infinite vectors u k and u k

m

(.p +  wk)uk =  (p + A - U - O ) - u k, 

(p +  uj2k)(p +  k)uk =  (p -f w2A) • (p +  wA) •

(5.4.1a)

Uk

-  U - [ ( p  +  lo2 tA)u:2 ■ 0  -f- uO  ■ (p +  w2A)] • u k. (5.4.1b)

Thus, in terms of the vector

/  o ,  u k ( n , m )

=  (p +  u)k^n{q +  u:hy u (5.4.2)

\ ul(n ,m )  y

we are able to derive the following 3x3 matrix Lax system, [99]

4>{k) =  L[BSQ).<t>(k),

<i>(k) =  m :(BSQ)

where

l (BSQ)

(

(5.4.3a) 

(5.4.3b) 

\
p - u  1 0

- ^ 1 ,0 )  p i 

\ k 3 +  p3 -  (p2 +  pu _  w u(o,i))(p  _  _  (p +  u )~(i,o) wti(o,i) p  +  u j

and M k is obtained from L(b s Q) by replacing p with q and7 w ith ? .

The compatibility condition o f the Lax system

L [ B S Q ) . M (BSQ)  -  Tj (BSQ)  (BSQ)  
k k ~  m k k > (5.4.4)

leads to equations (5.3.12a)-(5.3.12c) which in turn lead to the lattice Boussinesq equa­

tion (5.3.13).
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We are also able to write down a Lax system for the vector

(

V’n.m(fc) =  (p + uk)n(q +  uk)r

For this vector the Lax system is given by

u\ [n, m)
\

u°k(n ,m )

\ ul(n,m) j

4>(k) =  L(mBSl5) ■

$ { k )  =  ■ ' ip(k) ,

where

(

r(mBSQ)

\

\ /

(5.4.5)

(5.4.6a)

(5.4.6b)

p -  a va 0

0 p — u 1

fc3 +  q 3 ( p v + s a ) ( p - u ) - ( p 2 +ap+oc2 )va i Sa
V a  V a  ”

and, again, M ^ nBS<̂ "> js obtained from Xj(mBSQ) by replacing p with q and 7 with ?  . In 

this case the compatibility condition leads to equations (5.3.14), (5.3.15) and (5.3.7a) 

which give the lattice modified Boussinesq equation, [99].

The two vectors (5.4.2) and (5.4.5) are related to each other via the following gauge 

transformation:

v- = v  • </>, (5.4.7)

where



thus, the Lax matrices for the modified BSQ system m (™-BSQ) arg related to

the Lax matrices for the BSQ system l [ BSQ\  m \ ^ SQ  ̂ via
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j j j n B S Q )  __ -y  ' j \ B S Q )   ̂ j / '—l 

M ( m B S Q )  _  p .  _ m ( B S Q )  . y - 1 ^

(5.4.9a)

(5.4.9b)

To acquire the Lax representation of the Schwarzian Boussinesq equation we must apply 

a further gauge transformation

(5.4.10)

where

W  = 0 -i-wo

0

0

I 0 ---- ^  =s- /
\ W q VJ 0 w 0 J

Unlike the previous gauge transformation, this gauge contains a discrete shift. This is 

an arbitrary shift which can be associated with any of the independent variables and is 

hence represented with a “bar” . We can either choose this arbitrary shift to be a T or a 

. or we can leave it as a 7 , both choices yield useful information as we shall see below.

to

(5.4.11)

This leads to the following Lax system,

m  = 4 SBSQ) - x ( k ) ,

X(k)  = M [ SBSQ)- X(k),

(5.4.12a)

(5.4.12b)

where

r ( S B S Q )
L k

p v0w 0 

0 p

£  0Wo

VJ Q 
VJQ

1V Q W o_ W q

VqWO Wo /
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again, M ^ SBS^  is obtained from L^SBS^  by replacing p  with, q an d 7 w ith ? b u t without 

altering T s.

If we leave the Lax matrices like this, the compatibility condition then yields the following 

relations

pv0 -  qvo pw 0 -  qw0 pv0 w0 -  qv0w 0

vo w  o V0 W0
(5.4.13)

with all the . shifts canceling out.

Further shifts of the above equation can be used to eliminate all the w ’s, giving the 

Modified Boussinesq Equation (5.3.18), however there are some advantages to focusing 

on (5.4.13) as a coupled system between variables t>0 and w 0.

Alternatively, if we choose the arbitrary 7 shift to be a 7 shift we can use equations 

(5.3.19) and (5.3.20) to express the Lax matrices purely in terms of z  variables, giving

t ( s b s q ) _  
k -

p p{z  — z) 0

0 p 1

k3p2(z — z)* Q p4(z — z)(z — z)*
V (2 — 2) ( z — z)

\

q q ( z - z )  0

aA S B S Q )
M k =  0 q 1 

k 3pq* 0 .
\ ( z - z ) *  /

'z — z
where * = ------------- ^ ^ ------ .

p3(z  — z ) ( z  — z) — q3(z  — z ) ( z  — z)

W ith the Lax matrices in this form, the compatibility condition immediately yields the 

Schwarzian Boussinesq equation (5.3.22).



5.5 D ifferen tia l-D ifference  E q u a tio n s
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We now go on to derive the differential-difference relations for the Boussinesq system. 

For these we require the dependence of the wave factor p k  on the lattice parameters p v , 

which is given by

dpv Pk U v ^ p v + k p l / + u k ) Pk' (5.5.1)

This leads to two possible linear relations for the m atrix C

j r ~ C  = n v ( — T T ' C - C ------ r —r r l  , (5.5.2a)
° P v  \ P u  +  A  pu +  c o t A  J  v ’

~ c  = n u ( c ------ 3— -------- L — .C 'V  (5.5.2b)
dpv \  Pv +  A Pu + u A  )

which, due to the fact tha t C  and A are both symmetric, are equivalent. However, as 

Q is not symmetric, only the first of these equations (5.5.2a) yields a nonlinear relation 

for the U variable, namely

- £ - U  =  n„ ( — 3—  ■ U -  U ------ ■——t— + U ------- (5.5.3)
dPu \Pu  +  A P v + u tA Pv + lu1 A  pu + A J

Now, using the objects in (5.3.6), equation (5.5.3) gives us the following scalar differential 

relations for each of the main variables in the Miura chain, u, va , w a and satp

dii . .
—  — n  (1 — vpwu2p) , (5.5.4a)

d v a ( vv -  va \
dp ~  n y  p  -  a  ~ vps°‘,u2pJ  > (5.5.4b)

d w a (  u 2(wa -  ww2v) \

w  = n [ w ^ - — j p - r ) '  (5-5-4c)

^ s <x,(3 _  _  ( Sa ,/3  ~  s p,f3 U  ( s a , P  ~  s a , w 2-p) , \  , r  r  ,  i \

dp ~  U +  *«*?**** j  • (5-5'4d)
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Using various relations it is possible write these in the following way

r -  = " f 1 ----------------------------- 3 ^ ( ? - »  + s - » )  ^ ----------------— \  (5 6 5 a )
“P \  p3 — q3 +  (p — q +  u — u ) ( 2p  +  q +  u — u)(p — q + u — u) J

d v 0 n  3pv0v0v 0 (pv0 -  qv0) \
~  ~  I --------------------vo , (5.5.5b)

°P P \ v 0v 0 (p2v0 -  q2v0) +  v(pv0 -  qv0 )(pv0 -  qv0) + pv 0v0 (pv0 -  qv0) J

d z  n  (  3p4(z — z ) ( z  -  z ) ( z  -  z ) (£  — z) \

dp P2 \ p 3(z -  z ) ( z  -  z ) ( z  -  z)  +  p3{z -  z ) ( z  -  z ) ( z  — z) — q3(z  -  z ) ( z  -  z ) ( z  -  z ) )

(5.5.5c)

However, these equations are not strictly closed form as they involve shifts not associated 

with the lattice param eter p. For the variables v0 and wo it is possible to give a closed 

form coupled system, namely

d n ( 2 v0w 0 -  v0 Wq -  v 0w0\
—  log Vo = -  —------ ----------- —SSL—  I (5.5.6a)
op p \  V0w 0 + v0w 0 4- V0w 0 J

<9. n ( 2 v0w 0 -  v0wq -  v0w0 \  .
—  log Wo = -  ~ ,----------  ~ ~ • (5.5.6b)
op p V voWo 4- v0 w 0 4- v0w 0 J

For the variable z  we can give the following closed-form expression for the differential-

difference equation

d (  2> n ( z - z ) ( z - z ) \  zp zv 2 n  , .
—  log ( p ( z - z ) -------i = — ----1- ------ . (5.5.7)
dp \  ~ zv )  Z - Z  P

where zv =  We shall now proceed to derive their associated linear problems and, 

in the spirit of [85], investigate the compatibility condition of the linear system for the 

variable z  in order to  derive the generating PDE for the Schwarzian BSQ hierarchy.

5.6 L in ea r  P ro b le m s  for D iffe ren tia l-D iffe rence  E q u a tio n s

In this section we develop the associated linear problems for the differential-difference 

relations and attem pt to use them to derive the generating equation for the hierarchy of
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Schwarzian Boussinesq equations.

For this we require the linear differential-difference relation in terms of the infinite vector

Uk

— u = n  ( —  -

dp k \ p  +  A p  -f u>k ' p  + u>tA  p  + A
+ U -----,--1..— • O — (5.6.1)

we now pick out certain entries of the vector u k

where

n  I w^ Pu h(p)
u k I .

= n twi vu \  +  u k -
1

d u °k 
dp

dul 
dp

dul  I L (p) 0 , 1
~  n \ h“ 2VUk ~ P Uk +  Uk -

p  +  u>k I ,

J .

(5.6.2a)

(5.6.2b)

(5.6.2c)

u(“ ) _
a A • u k

(V)Eliminating the uY ’ from the above equations using

(5.6.3)

{p  + ( j j k ) u ^  = (p -  a)u^“j + vau°k ,( a ) (5.6.4)

which is obtained from equation (5.4.1a), we obtain the following linear problem for the 

differential of the vector <p(k), (5.4.2), with respect to the lattice param eter p

d<j>
dp

n  A \  • 4> +  n A 2 ■ <j>,

where

/  \  
0 0 0

A x

\

t

A  2 —

/

wu2vvv 0 0
\

t u 2 p V p  0  0

(5.6.5)

1 0 0 

—p  1 0

along with a dual equation for the differential with respect to  q, obtained via the usual 

replacements. Utilizing equations (5.3.10) we can eliminate the auxiliary variables and
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express it purely in terms of the variables u,  u(1,0) and u^0,1) and using the inverse of the 

Lax m atrix from equation (5.4.3a) we obtain

dcf)
dp

= n A 3 + VpW“2v A 4 ■ A 5
p3 -f k 3 <f>,

where

/ \ / \
0 0 0 1 0 0

^3  = 1 0 0 , A i  — (p -  u) 0 0

1 - r 1 V y ( p ( p ~  U) +  ti(1,0)) 0

As  — 0

0

0 0 

0 0

(5.6.6)

vvw u2v
3 p2(p — q + u — u)

p 3 + q3 +  (3? — q + u — u ) ( 2p +  q + u — u) (p — q + u  — u) 

again with a dual obtained via the usual replacements.

In order to derive the linear problem for the modified vector -tftk, (5.4.5), we need the 

additional relation

du (a)

dp
n ( ___ i ___( u ( a ) _  J p ) )  ______ I____y ,1

[ p - a {Uk Uk ] p  + u k U
( a )  S a u ,2p VpU  ̂

p  + u k

which, again having eliminated the using equation (5.6.4) we get

dtp
dp

, B X ■ ip + n  B 2 ■ ~>p,

(5.6.7)

(5.6.8)

where
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Again, there is a dual equation for the differential of ipk with respect to q obtained with 

the usual replacements. As with the linear problem for (f> we can eliminate as many of 

the auxiliary variables as possible and use the inverse of the Lax m atrix j(™BSQ) fr0m 

equation (5.4.6a) to eliminate the undershift in the ip we obtain

dip

where

dp

(  i

=  n

B 3

0 0
p  —  OL

0 0 0

Vr,W,,.2„ 

(pJ +  k^JVa 

(

B  A =

Vs (5.6.9)

\  0 ! 0 /

0 0v—oc

0 0

y - ( p - u o o j

k 3 - f a 3 { p -  a ) (pva + sa ) - ( p  -  a ) v a 

0 0 0

0

vvw u*v =

0 0

3pv0v0 (pv0 -  qv0)

vqvo(p2v 0 -  q2v q) + v(puo -  qv0 )(p'vo -  qvo) +  pvoV0(pvo ~  qvo) 

again with dual for the differential with respect to q.

As with the Lax pairs for the lattice equations, the linear differential relations (5.6.5) 

and (5.6.8), (for param eter value a  = 0), are related via the gauge transformation V,  

(5.4.8), by

Vp - V - 1 + V - A 1 - V ~ 1 + V - A 2 -( £ (B5<3 ))-1 • F -1 =  B 1 + B 2 -( l ^ B S Q ) y \ _

(5.6.10)

Carrying out a similar gauge transformation on the linear differential relation for ipk, 

this time using (5.4.11) we obtain the following linear problem for the vector Xk

n  C'i +  , ; ,V' O'2 • X, (5.6.11)d x
dp ( p 3 +  A:3 )
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where

c 1
1
p

0

0

^ lo§ w o

\  wo y n  dp
^ ( r £ l ogWo + l

0

0

■ip i°g w0

c 2 =

k 3 vp 
P vo - ^ 0  ^ 0 ^ 0

k 3-
vqWq P

2 w0
iuo ~P

VqWq
VO Wo

_ f r 3 wo^ . _ 3 wom  p 2 vowo 
\  r voWoWq c  wow o r  v 0wq J

with a dual obtained from the usual replacements.

We now make the following definitions

w 0
a =  — vvw w2p , b =  — VvW,„2

vo wo
V > c =

V 0 W 0

Vo ,  w 0
e = — VqWw2 , f  = ^ ~ V qWw2 q ,

^0 w0 H

Vo W o  

V qW o 

VqW o

VpW^p

VqWw2q ,

X  = 

Y  =

w  0 
W o  ’ 
W o  

W o  ’

these variables are related, via equation (5.3.11c), by

3 — a “i- b -(- c 3 — e -\- f  + d,

and using these new variables the linear problem can be rewritten as

d x
dp (C3 + C4)-x,

c3 =

C  4 =

n
V

0 

0

1

- n [ b -  I

npbX

0 

0

-n  I b — r

p3 +  k 3
_n2 k2 ab

p 2 Zp

n 2k 3 a b X

p 3 zp

n p 2b

2 \  _ P _ C Z p
bX

n p c
X

\  P
-np3b X  n p 2c

(5.6.13)

(5.6.14a)
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d x
dq

(D3 + Z?4) ■ x,

\

D a =
p3 +  k 3

- m  I T —

m q f Y

rk3

m 2 k2 e f  
q2 2,

m 2k3 e f Y  
q z q

-m

0

CM)
q2dzq ^

' 7 Y~
mqd.
~T~m q 2f  

-mq3 f Y  m q 2d

(where =  gj and zg =  §f).

If we now calculate the compatibility condition for (5.6.14a) and (5.6.14b)

(C3 -f C i ) q — (D 3 + Di)p — [(C3 +  C4 ), (D 3 + Da)} — 0

we obtain the following relations

naq = m e v
q3 — p3

n 2—  I pq
abdX^
T y

+ q3ab

-n2Zi { pqC- ^ j +p3ef

nbq = m f p =
q3 — p3

n 2 f i g3a 6 _ m 2 ^ p3e /

Y  X
+ n m  ( c f —  -  b d y  ) pq

m pzp ( p 2(e -  f )  -  ? ~ )

, 2. d b X \
- n q z q [q  ( a - b ) - p j y  j

M Y ) ) p = - J - - ( q - p X
q3 — p0

2 z q (  2 t Yq ---- J  + n  I q“b + pc
Y  J  \ m  zp f X

- -  ( n - n ( l - p b ) )  ,

(5.6.14b)

(5.6.15)

(5.6.16a)

(5.6.16b)

(5.6.16c)

(5.6.16d)



(log(X )), = * ( q —  -  p )  +  m  ( p 2f  + qd^r
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q3 -  p3 \  X  J  \  n  Zq b \  Y

— -  (m -  m( 1 -  g /))  . (5.6.16e)

This gives us a coupled system for the variables z , a , b , c , e ,  f , d , X , Y ,  but unfortunately 

there is still one discrete shift left in the system so we are unable to derive a closed form 

PDE in 2 . The derivation of the above system follows the same procedure as tha t given 

in section 2.6 for the Schwarzian KdV hierarchy. Indeed, comparing equations (5.6.16) 

with equations (2.6.2) we see tha t there is a close correlation between the two sets of 

PDEs, but as expected the BSQ system is more complicated than the KdV system and 

as such the derivation of a closed form PDE in 2 will also be much more complicated. 

However, this correlation leads us to believe tha t the system (5.6.16) will eventually lead 

to the generating PDE for the Schwarian BSQ hierarchy.

5.7 In te g ra b i l i ty  o f  th e  B ouss inesq  L a tt ic e  E q u a tio n s

In section 5.3 we derived two-dimensional closed form lattice equations for the Boussinesq 

system, namely the BSQ equation (5.3.13), the mBSQ equation (5.3.18) and the SBSQ 

equation (5.3.22), see also the recent papers by Bobenko et al. [100, 101]. In this 

section we wish to investigate whether these equations, as is the case in the KdV system, 

represent compatible parameter-families of  partial difference equations. It turns out that 

in the Boussinesq the process of embedding these equations in a multi-dimensional lattice 

is somewhat more complicated and hence we shall deal with each equation separately. 

We shall however, throughout this section, adopt the notation of section 3.2 in which 

we have a vector n  of discrete independent variables n,, and an associated vector p  of 

lattice param eters p j. Forward shifts of a dependent variable / ( n ; p ) are now denoted



by a right superscript and backward shifts with a left subscript, i.e.

f  =  T j f  ( n;p )  = / ( n  + ei;p) , j f  = ^ / ( n ;  p) = / (n  -  e,; p) , 

where ej is a vector with single nonzero entry equal to unity in its j th component.

5.7.1 T h e  B SQ  Equation

For the lattice BSQ equation (5.3.13) we must first consider the coupled system of 

equations (5.3.7f), (5.3.12b) and (5.3.12c) from which the closed form lattice equation 

is derived. On any two-dimensional sublattice of the multi-dimensional lattice we can 

embed a copy of equations (5.3.7f) and (5.3.12b) giving us

„« =  (5.7. !a)
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Pi -  Pj 4- ui  -  ul

c'l =  u d  + PiPj -  (Pi + Pj + u ) ( p i + p j  -  ul>)+ -----  - _  . , (5.7.1b)
Pi  P j  i

while on any any one-dimensional sublattice we can embed a copy of equation (5.3.12c), 

giving

cod'1 = c + pi(u -  u z) — u u l . (5.7.1c)

(where, for simplicity, we have defined c = and d = i^0,1))

These equations are represented schematically in figure 5.1.

Now, given the initial data points as indicated in figure 5.2 we can, using equations 

(5.7.1a) and (5.7.1b), uniquely calculate the values of u 12, c12, •u13, c13, u 23 and c23, 

while equation (5.7.1c) uniquely determines d 1, d 2 and d 3. However, for the points 

d 12, d 13 and d 23, we have already reached a point of possible inconsistency with, for
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u. d

u x. dx

5.7 .1a 5 .7 .1 b 5.7 .1c

Figure 5.1: Symbolic representation of  equations (5.7.1).  

u , c, d u 1, c1

Figure 5.2: Initial data points for  equations (5.7.1).

example, two ways of calculating <i12. Shifting equation (5.7.1c) and eliminating the u J 

with equation (5.7.1a) we find tha t

cod11 =
PiPj(ul -  ui)  +  pi(cl -  c?) + u lu i(p 3 -  pi) + c%u] cJul

(5.7.2)
p % -  P j  +  U3  -  U l

This expression is invariant on interchanging i and j ,  thus showing tha t any potential 

inconsistency is avoided, hence allowing us to calculate the points d uniquely for all 

successive points in the multi-dimensional lattice. Continuing to iterate through the 

cube, we find tha t there are three different ways to calculate either u 123 or c1"3. Using 

equations (5.7.1) to eliminate all intermediary points in favour of only the given initial



data  points we can show tha t we still do not obtain any inconsistencies, i.e. that
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u ijk =  ujki  =  u kij

jijhc J — CJ — c \

d i j k  _  d j k i  _  d ki j  _  d ik j  _  d k j i  _  d j i k '

(the explicit formula are too large to reproduce here)

Equations (5.7.1) therefore form a compatible parameter-family of coupled partial differ­

ence equations and as a result can be described as a holon om ic  sy s te m  o f coupled p a rtia l 

d ifference equations.

Turning now to the closed form lattice equation for the variable u, (5.3.13), on any 

two-dimensional sublattice we impose a copy of this equation giving

-  (Pi ~  Pj  +  ^  -  u*)(2; +  Pj  +  u  -  u"] ).

(5.7.3)

The consistency for this equation is illustrated by figure 5.3. For the three-dimensional 

sublattice we have nine copies of equation (5.7.3), three in each direction. Imposing a 

given set of initial data points, marked with a •, we can calculate uniquely from one 

copy of the lattice equation all the points marked with a o. However, for the point 

marked with a □ there are three possible ways to calculate it, and it is at this point 

tha t the consistency must verified. If we impose the initial data  points arbitrarily then 

we obtain different values for the function at this point and hence equation (5.7.3), in 

itself does form a compatible param eter family of equations. If, however, we impose 

as initial data points the variables shown symbolically on figure 5.3 and use equations



(5.7.1) to calculate the remainder of the points marked with a • then we find tha t there

is no inconsistency. Although the calculations involved are enormous and extend even

M APLE’s symbolic capabilities, as a result it is only possible to test this consistency

numerically. We therefore consider equation (5.7.3) to be a compatible parameter-family

of equations modulo equations (5.7.1). It should also be noted tha t the KP lattice

equation (4.3.13) can be consistently imposed on any three-dimensional sub-lattice.

u,c,d  u ^ c 1 uu ,cn
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Figure 5.3: Compatibility of the BSQ  lattice equation.
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5 . 7.2 T h e  M o d if ied  B S Q  E q u a t io n

99

For the modified equation we must deal with the coupled system (5.4.13). Embedding 

on each two-dimensional sublattice a copy of these equations we get

w 13 =

(;PiV3 -  P j V l ) w  

Pi 'w'1 - P j W 3 ’

(;PiVlW3 -  PjV3WZ)w 
( p i W 1 — P j W 3 ) v

which are schematically represented by figure 5.4

V  , W V , w

(5.7.4a)

(5.7.4b)

5.7.4a 5.7.4b

Figure 5.4: Symbolic representation of  equations (5.7.i

The consistency is now illustrated by figure 5.5 with v 12, w 1~, v 13, w 13, v 23 and w,23

calculated uniquely by equations (5.7.4) but three ways of calculating v  and w
,,123

Using equations (5.7.4) to eliminate all but the given initial points we find, 

P i W i ( p j V k  -  p k v j ) +  p 2jw j { p k v i  -  P i V k )  +  p 2kw k ( p i v 3 -  p j V l )
i j k

Wi j k  _
P,

p 2Vz(pjW^ -  P k W k )  +  p 2-v3(p kW k -  P i W l )  +  p 2kv k ( p i W l  -  P j W 3 )

2 ( p : V 3 W h  -  P k V k W 3 )  +  p 2 ( p k V k w * -  P i V l W k) +  p 2k( p i V l W 3 -  P j V 3 W l w
(5.7.5b)

p'lvi (pjW3 -  P k W k ) +  p j v i ( p kw k -  P i W { )  +  p 2kv k ( p i W i  -  P : w 3 )

Both of these expressions are invariant for any perm utation of i , j , k thus, any consistency 

is avoided and equations (5.7.4) form a compatible parameter-family of coupled partial 

difference equations.
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v ' w v \ w 1

Figure 5.5: Consistency of  equations (5.7.4).

For the closed-form equation for the variable v, on each two-dimensional sublattice we 

now impose a copy of equation (5.3.18) giving

Pi
v ^
v i v i i j j  J Pj

V  V
(5.7.6)

v 3 J  p i V ^  — P j V P i V — P j V '1'1 v %

The consistency of this equation is illustrated by figure 5.6 and again we find that if 

we impose the initial data points, marked •, completely arbitrarily then at the point 

marked with a □ there is an inconsistency. In this case we must give the initial points 

indicated symbolically in figure 5.6 and use equations (5.7.4) to complete the required 

set of initial points. Given this set of initial data we can again show numerically that 

there is no inconsistency. Hence, equation (5.7.6) is a compatible parameter-family of 

equations modulo equations (5.7.4). Again, it can also be shown tha t the modified KP 

equation (4.3.15) can be consistently imposed on any three-dimensional sub-lattice.

5.7 .3  T h e  Schwarzian B SQ  Equation

For the Schwarzian BSQ equation we simply supplement the coupled system for the 

modified BSQ (5.7.4) with equation (5.3.20). Embedding a copy of this equation on
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v, w V 1 , w 1 v n , w n

Figure 5.6: Compatibility of  the modified B S Q  lattice equation. 

each one-dimensional sublattice we get

v w
z  =  —  +  z.  

Pi
(5.7.7)

The consistency is again illustrated by figure 5.5 to  which we must add one extra initial 

data  point, namely z .  W ith this point added we can use equation (5.7.7) to uniquely 

calculate z 1, z 2 and z 3 . We reach a possible inconsistency at the points z 12 , z 13 and z 23. 

Shifting equation (5.7.7) and eliminating all points except the initial data with equations 

(5.7.4a) and (5.7.7) we find that,

p 2( p : w l z  +  v°wlw) — p 2 ( p i W : z  -f v'l/w3w )

p i p j ( p iw i -  PjVj l )
(5.7.8)



This expression is invariant on interchanging i and j , hence equation (5.7.7) along with 

equations (5.7.4) also forms a compatible parameter-family of equations.

For the closed-form equation for the variable 2 we impose a copy of equation (5.3.22) on 

each two-dimensional sublattice, giving

(z»»  _  Z»JJ)(ZJJ -  z <i){z3 _  z ) _  p3(zw  -  z^ ) ( z % -  z j ) -  q3 (z i^  -  z*J)(z« -  zJ)
(zMJJ — zni ) ( z %% — z l ) (z t — z ) q3 ( zui  — zw)(zlJ — z1) — p 3 (z 1̂  — z ^ )(zn — z*)

(5.7.9)

In this case, to avoid any inconsistencies, we use the same initial points, given symboli­

cally in figure 5.6, for the modified BSQ equation. To this we again add the extra initial 

data  point z and then use equations (5.7.7) and (5.7.4) to calculate the values of z , v  

and w  for each point marked with a •. W ith this set of initial data we can then use 

equation (5.7.9) to calculate the remaining points, finding no inconsistency at the point 

marked with a □. Hence, equation (5.7.9) is a compatible parameter-family of equations 

modulo equations (5.7.7) and (5.7.4).

5.8 S im ila r ity  C o n s tra in ts  for th e  B o u ss in esq  S y s tem

In this section show how to derive the similarity constraints for the Boussinesq system, 

along with their associated monodromy problems. We shall then go on to demonstrate 

th a t, In the case of the modified system, the constraint are compatible with the lattice 

equation derived in section 5.3.

For the Boussinesq system, the dependence of the plane-wave factor pk on the spectral 

param eter k is given by
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This leads us to impose the following linear relationship for the m atrix C

C  + 1 • C  + C  ■ tI  =  [Ipici tci\gr +

> nL'f\ 1 C  -  C  • 1
Kpu +  A ~ p„ +  uj tA )  ’ 

which gives the following nonlinear relationship for the m atrix U

(5.8.2)

U + I - U  + U - ' I  = [lpj~ Uj *Wi]ar +

1
P u

P v  + A
U - U  ■

1
pu + u tA

+ U ------ - 0 -  — ^— U (5.8.3)Pv + U)t A P u  + A

Limiting ourselves to two dimensions, with independent discrete variables n  and m  and 

lattice param eters p  and q, we obtain closed-form similarity constraints for the objects 

defined in (5.3.6). The similarity constraint of the lattice BSQ equation reads

(Au;~n~m(a> — 1) — l ) u  —

3np

+3 mq

p 3 -  q3

p  — q +  u — u

P3 - ?  ^  
p — q-\- u — u

+ (p -  q + u -  u ) ( 2p + q + u -  u) 

-  (p — q + u -  u ) ( 2p -f q +  u — u)

- l

The similarity constraint of the lattice mBSQ equation reads

np
v0 p*vo -  q£v0 , Vq pv0 -  qv0 

P  +  = -------- ^ --------------—  +p v o -  qvo V q y Q

- l

+ m q q +
v0 q2vo -  p2vp ^  v0 qv0 -  pv0 

qv  o -  p v o v0

+

- l 1 -  2 pi 
1 -  w2

(5.8.4)

(5.8.5)

Finally, the similarity constraint for the Schwarzian lattice BSQ equation reads

2 p,z
(z -  z ) ( z  -  z)  ( z ~ z ) ( z  — z)  

Znp-±z---- +  3m q ---------------------- A
p ( z - z )  + v0w  o p ( z - z )  + v0w0 ,

(5.8.6)



where v 0w 0 = ^  ^ ----- -\p3(z  -  z) (z  -  z)  -  q3{z -  z) (z  -  z)\,
p 2(z  — z) ( z  — z)

with a similar expression for v 0 w q .

Alternatively, for the variables v 0 and wo  we obtain the following coupled set of similarity

constraints

1 — 2 / i  _n_m f  2 v 0 w 0 -  v 0 w 0 -  v0 w 0 \  { 2 v 0w 0 -  v 0 w 0 -  v 0 w 0 \
--------------5- +  Xu> 71 m  =  n\ — ------------------------ ------------- —  +  m  — --------------------------------- ------------- ~  ^
1 -  U)z V VOWo +  V0W0 + V0W0 J  \  V0w 0 +  VqWq + V0W0 J
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(5.

. \ _n_m ( 2 v 0 W 0 -  v 0 w 0 -  V 0 w 0 \  f  2 v 0 W 0 -  ^0 ^ 0  -  V0 w 0 \
+ Xuj — —ion ———---------------- ^  — urn ^  ^  . (5.

V VqW q +  V0 W o +  V0W 0 )  \  VqW q +  V0 W 0 +  V 0 W 0 J

1 -  2/1 

1 — U)2

For this coupled system we now investigate the compatibility of these constraints with 

the lattice equation (5.3.18). This will follow closely the scheme described in section

(3.4.1) for the 2-dimensional KdV system, however, in this case the situation is more 

comphcated as we are now dealing with a coupled system for two dependent variables 

Vo and iwo-

So, for this case we have two lattice equations (5.4.13) and two similarity constraints 

(5.8.7). Schematically these are represented by figure 5.7. The compatibility of these 

equations is also illustrated by figure 3.3, however, for each initial data point (marked 

with a •) we must now assign values of both Vo and wq. Again we proceed by calculating 

each successive point using either the lattice equation (5.3.18), points marked with a 0 , or 

the similarity constraints (5.8.7), points marked with a X. For the points calculated using 

the similarity constraint we must solve the system of equations (5.8.7) simultaneously. 

At a certain point in the iteration we reach a point, marked with a which can be 

calculated using either the lattice equations or the similarity constraints and it is at this 

point tha t the compatibility must be confirmed.

Again the calculations involved are very large and cannot be reproduced here, but have 

been verified by MAPLE.
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V,  w

V, w

V, w

+

V,  W  V,  w

►

v ,
Aw  1 w

V,  w t

V , w i
»

v , w  v , w V,

Figure 5.7: Symbolic representation of  lattice equation and similarity constraint.

Thus, we have a coupled system of lattice equations and a compatible system of similarity 

constraints for which we can give a well-posed IVP. In theory we should therefore be 

able to use the similarity constraint to reduce the lattice equation to a OAE of Painleve 

type. However, to date we have been unable to determine the relevant variables which 

would allow us to do this explicitly.

5.9 S em ico n tin u o u s  L im its

In this section we show why we consider the lattice equations and similarity constraints, 

derived in sections (5.3.1) and (5.8), to be of BSQ type. By investigating what happens 

under a continuum limit compatible with the integrability structure, we shall show that 

we recover the continuum situation. As it was established in [41] tha t the similarity 

reduction for the continuum BSQ equation leads to Painleve IV, the discrete similarity



reduction must necessarily lead to a discrete analogue of Piy- Thus, even if we can only 

obtain on the discrete level the reduction in the form of a system containing the lattice 

equation and a similarity constraint, this system reduces in a continuum limit to the 

Painleve equation. Since we have two discrete variables in the lattice equation, namely 

n  and m ,  we have to perform the continuum limit in two steps: one letting the variable 

m  become continuous, reducing our equation to a differential-difference equation, i.e. 

an equation with one discrete and one continuous variable, and a second step in which 

the remaining discrete variable will become continuous. Both steps are achieved by 

shrinking the corresponding lattice step (encoded in the param eters p and q) to zero. In 

this section, we shall perform the first continuum limit in two different ways, one which 

we call the “skew” limit because it involves a change of variables on the lattice, and one 

which we will call the “straight” limit which can be obtained directly. The results in 

both cases are different, but from both the full continuum limit can be obtained and 

leads to the same result. It should also be noted tha t the differential-difference equations 

obtained either by either continuum limit are not the same as those obtained in section 

(5.5).

5.9.1 Skew C ontinuum  Lim it
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The most convenient way of doing this is first, on the lattice, to do a change of discrete 

variables, namely un<m =  un/(m),  and then doing the limit by taking

6 = p  — q h-y 0 , m w o o  , 8 m  k* t  , (5.9.1)
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where n'  = n  +  m  is to remain fixed. This limit is motivated from the behaviour of 

discrete plane-wave factors

P k ( n , m )  =

which under (5.9.1) behave as

k

p +  k \ n f  q-\- k
p  + u k  J  \ q  +  u>k

(5.9.2)

q +  k 
p  4- Luk J  \ q  +  uik

p +  k 
p  +  u k

exp
(1 — u))ki

.(P + k)(P + UĴ ) .
(5.9.3)

cf. [65, 66]. By this limit, the lattice BSQ (5.3.13) goes over into the following differential- 

difference equation (we omit the prime of the v! variable)

3p2<9Tlog(l +  un ) ~  (3p + un_i -  un+2) ( l  + un ) ( l  + un+i)

( 3p -|- Un —2 ^n+1) (1 V’n—l )  ( f +  V'n ) ; (5.9.4)

(u n =  dr un ). In fact, as n'  =  n  + m  remains fixed in the limit, we need to do first a 

change of variables on the lattice, namely u{n, m)  =  un+m(m) , and then use a systematic 

expansion of the form

un(m)  un {r)  + Sun (T) + ~ u n (T) H----- ,

in which one retains the dominant term in the small param eter S to obtain (5.9.4). 

Performing the same limit on the similarity constraint (5.8.4) we obtain

un +  T - n p
0  =  — — ----------- +  { n p  -  3r )

1 un
(5.9

+ [(3p+ Un - 1  -  ^71+2)(1 + Un)(l  +  un+1) +  (3p +  Un_2 -  'Un+l ) ( l  +  un- l ) ( l  + Ur, 
6 p A

which imposes scaling-invariance on the solutions of (5.9.4).

Next, we can apply the same continuum limit to the lattice mBSQ equation (5.3.18),
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leading to

V n + 1  (p 2 +  p a  +  a 2 ) v n  -  ( 2p  +  q)-i 

V n - 1 (p -  O L ) v n  +  V n

^n+1
vn+2

(? - a ) 5 d ±  + l )  _ —  ( ( p _ a ) i n z i  +  1V n -  2 yn - l

1
(5.9.6)

Taking a  =  0 and introducing the variable Q n = 1 + p<9T(log vn) , this equation can be 

cast into the form

3pdT log Qn = ( 1 -  Q n - t Q n  -  3(Qn + Q n- i )
\  » n + l  /

1 -

vn- l
V n + 2  J

) QnQn+1 + 3((5u+l + Qn) (5.9.7)

The similarity constraint in this limit takes the form

n (Qn — 1) — —Qn [3 — [Qn+1 + Qn + Q n -1) +

U1- —) + k il - —)3 V "^n+2 /  3 V V n + 1 J
. (5.9.8)

Finally, the continuum limit of the lattice Schwarzian BSQ (5.3.22) is given by

dr log 3, (̂ "n+l ^n)(^n %n—l) - p ( z n+1 - z n^ ) )  = Z“" 1 ^n+1
Zn—1 Zn—2 ^n+2 -̂ n-f 1

(5.9.9)

whilst the similarity constraint for the variable z reduces to

np  — 3r +

+ p r Zn+l(Zn+2 %n) Zn (zn-(-1 ^n—l)
+

Zn—li^n Zn— 2 )

+  ?

_ (^ n + 2  ^ ti+ I  ) (^ 7 i+ l  ) (-^ n + l ’̂7i)(^'7i l )  (^ n  ^71—1 )(^7i—1 ^ n — 2)

T̂i-f-1 ^ n ^ n —1 ^71+2) ^  V  ^ n ^ n — 1 ( z n — 2 — ^n-f 1 )

3  (Zn-j-2 ^ 7 1 + 1  ) ( ^ 7 1 + 1  ^ 7 l ) ( ^ 7 i  ^7 1 — l )  3  ( ^ 7 1 + 1  ^ '7 l ) ( ^ '7 1  ^ 7 1 — 1 )  (  ^7 1 — 1 ^71 — 2 ) .

(5.9.10)



chapter 5: The Boussinesq System 109

5.9 .2  Straight C ontinuum  Lim it

The limit (5.9.1) is not the only way to obtain semi-continuous versions of the lattice 

BSQ equations. We could equally well apply a “straight” limit, i.e. one tha t doesn’t 

involve a change of variables on the initial lattice. In tha t case we can consider simply

ra
q n  oo , m i - t o o  , — h->a:

9
(5.9.11)

corresponding to the following limiting behaviour of the discrete plane-wave factors

p  + k \ 71 /  q -f k
p  +  u k  J  \ q  + u k

By this limit, using the expansion

(5.9.12)

l—* ^n(®) "I" n 2 ^ ^  "!■••• iq zq

in which u'n =  dxun, the lattice BSQ equations (5.3.13) go over into another set of 

differential-difference equations, namely

dl(un+1 +  un +  iin_ i)  =  3u'n+1(p + un -  un+1) -  3un_x(p +  u„_i -  un)

-f-(p +  U n  -  un+i)3 -  (p+  un—i -  unf  , (5.9.13)

for the BSQ equation, and

d l \og (vn+\ v nvn- \ )  =

J  2 2 < 4-1 vL vL v'n + 1  u n —1 _j_ n + 1  “ n - l + 3p
n+1

Vn v n - 1 +
vn - l  ' v l +1 V„

(5.9.14)

for the mBSQ equation (5.3.18). Finally the continuum limit of (5.3.22) is given by

<9* log p 3 (zn+i -  zn- 1) +
y7 r7 n+1 7i n —1

(■^n+l Z n ) ( Z n  ^n—l ) .

°n+l n —1

^n+1 2n 2n_i
.(5.9.15)
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The continuum limit of the similarity constraints are the following

— 'H'P [l 3p (2 un 'V'n-fl l ) ^

X [(2x in ^71+1 ^ n —1 X ^ n + l  "f~ ^ n —l )  (P  ^ u + l )  (P  "i" ^ n —1 ^ n ) ]

(5.9.16)

for the differential-diiference BSQ (5.9.13), and

- l

(5.9.17)

for the differential-difference mBSQ equation (5.9.14), and

=  ^ 4  +  3 n /  , , , ^ ( -------  (5 9 1 g )
Zn + l Zn Zn - l  “1“ P  ( Zn  z n + l ) ( z n + l  z n - l  ) { z n - l  z n )

for the differential-difference Schwarzian BSQ equation (5.9.15). If we compare the skew

and straight continuum BSQ systems, one immediately observes that, whereas the former

are generally of higher-order in the discrete variable, the la tter ones involve derivatives

with respect to  the shifted variables.

5.9 .3  Full C ontinuum  Lim it

We shall concentrate on the semi-continuous BSQ equation obtained by taking the con­

tinuum limits under the “skew lim it” . To recover the fully continuous BSQ, together 

with its similarity reduction, a second continuum limit is performed by taking

p —> oo , n  —> oo (5.9.19a)

such that

(5.9.19b)



in which case the plane-wave factor pk takes the from

Pk exp [(1 -  u ) k x  -  (1 -  u 2 ) k 2t\ , (5.9.20)

and (5.9.4) goes over into the potential BSQ equation

1'U'tt “1“ ’Z'U'xxxx '̂U’x'U'xx — 0 , (5.9.21)o

which is the integrated version of the BSQ equation.

The full continuum limit of (5.9.6) gives

^tt ^z^xxxx ‘̂'v-t'Uxx ‘2vxvxx —- 0 . (5.9.22)
«3

Which is is the the potential modified BSQ equation.

Finally, for the Schwarzian BSQ equation the full continuum limit of the equation for z, 

gives

3 / z A  +  /fxxx +  3 Z 2 - z 2x x \  =  0 (5  9 2 3 )
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z x J  t \  z x 2 z l

which is the Schwarzian BSQ equation.

Thus we see tha t continuum limits of the lattice equations of section 5.3.1 yield contin­

uous BSQ equations and can rightly be referred to as lattice BSQ equations.



Chapter 6

T h e  A K N S  System

6.1 In t ro d u c t io n

In this section, following on from [80], we shall extend the direct linearization scheme to 

a system of two coupled integral equations in terms of two dependent variables ip,i. and 

ipk . Thus we now have the following set of linear integral equations

V k +  /  dXx =  PkCk, (6.1.1a)
J  C!\

-  I  d x ^ v z i  = °- (6-L lb )J  c  2

In the above system, c k is the infinite vector defined in (2.1.1) for the KdV system. 

However we now have two arbitrary contours C\  and C 2 , two arbitrary measures <iAi 

and d \ 2 and two plane-wave factors pk and a k. As with the previous systems, it is the 

plane-wave factors which shall determine the number of dimensions of the system and 

whether they are discrete or continuous.

If we integrate equation (6.1.1a) over the second contour C2 with respect to d \ 2 and inte­

112



grate equation (6.1.1b) over the first contour C\  with respect to dX\ we find that ipk an-d 

'ipy both satisfy integral equations of the same type but with different inhomogeneous 

terms, i.e.

w+L dMn = nct' < 6 ' L 2 a )

+ L iMi>)L d H i ) (k'p- i ) t - v ) = L dH l) w ^ ) ci' ( 6 ' 1 2 b )

To complete the system we must also define the following adjoint coupled system in 

terms of two further independent variables Xk and 9k

Xk'  +  f  = ak'Ck', (6.1.3a)
J C 2

9 k -  [  dX1( l ' ) ^ f / = 0. (6.1.3b)
J C i

Again, integrating the first of these (6.1.3a) over the first contour C\  with respect to 

dXi  and the second over the second contour C 2 with respect to dX? we find that Xk' an(l 

Ok also both satisfy integral equations of the same type as in (6.1.2) but with different 

inhomogeneous terms, i.e.

* W e / A2(,) I ,  -  ° W - V )  = ° k'Ck' ’ (6' 1'4a)
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°k+L ^ J o ^ w ^ o  = L iMl']w ^r  ( 6 ' L 4 b )

Thus we have a coupled system of integral equations, (6.1.1) and (6.1.3), in terms of four 

dependent variables ipki V’fc) Xk ancl each of which satisfy second order lineai integral 

equations of the same type. As before, in order to simplify the equations and investigate 

the underlying algebraic structure, we must develop an infinite m atrix structure foi this 

system.



6.2 In fin ite  M a tr ix  F o rm aliza tio n
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Firstly we require two infinite (Z X  Z) matrices defined by

(p°= d \ 2{l)pici tci , ip°= dXi(l')ai'Cii *cj/, 
i/ C*2 1̂

(6.2 .1)

which we incorporate into the following (2 X  2) m atrix

(  \
0 ip° (6.2.2)

\ - r  0

This  (2 X  2) m atrix will be used to derive the linear relationships for the system. 

For the nonlinear relations we must introduce the following four infinite matrices

(p= d \ 2(l)(pitci , ijj
i c 2

= [  dX1(l,)r/,
JCX

V c l’ i (6.2.3a)

which we again incorporate into a (2 X  2) matrix

H  =

(  \
if) (p

(6.2.4)

\ - x  » }

A part from these main objects, we again require several other infinite matrices

i) Index raising matrices A and tA.

ii) Projection m atrix O.

iii) Index counting matrices I  and tI .

iv) M atrix Cl.

All of which are as defined in (2.2.3) for the KdV system. However, we also require 

similar objects which we can consistently use along with the matrices C  and H . For



this purpose we define the following (2 X 2) matrices, 

A
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( \ / \ (
n  \

A  0 t A 0 0 0

fA = o =

1 °  V V
0 l A  ) K 0 ° J

( \ (  t \ / \
I  0 lI 0 Q 0

I = ‘ /  = , n  =

1 ° 7 ) \  ° v °
f i  y

, (6.2.5a)

.(6.2.5b)

As each of these is a multiple of the identity matrix, equations (2.2.3d)-(2.2.3e) still hold 

for these 2 x 2  matrices, i.e.

(6.2.6a)

k —1

where O k  = ^ ^ ( ~  1 A ) : ■ O  ■ A
i =o

ti-ci + si-i + n = o.

k —i —j

(6.2.6b)

We now have a set of objects which will allow us to describe our system in terms of 

either infinite matrices or in terms of (2 X  2) matrices, each entry of which is an infinite 

m atrix (these (2 X 2) matrices shall be written in boldface). For example, the system 

of integral equations (6.1.1) and (6.1.3) can be written in terms of infinite matrices as 

follow

<p +  -*/> • f i  • (p° — i p ° , 

tp — (p • f l  ■ Tp° — 0 ,

x +  e • n  • r  = v ,  

e - x ■ ^ • <p = o.

While, in terms of (2 X  2) matrices, this becomes

h  = c  ■ (i + n ■ c y 1.

(6.2.7a) 

(6.2.7b) 

(6.2.7c) 

(6.2.7d)

(6.2.8)
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The form of the above equation is the same as (2.2.4) in the KdV case, however, now it

describes a system of coupled equations.

6.2 .1  S y m m etr ies

The infinite matrices in (6.2.3) can be shown to have certain symmetries which shall 

lead us to an im portant symmetry for the object H

i) Symmetry of <p and x

From the definition of ip, if we eliminate the f ci using the transpose of equation (6.1.1a)

we obtain

Expanding this and using equation (6.1.1b) we find that

This expression is clearly invariant under transposition, and hence

(6.2.9)

Starting with the definition of x , a similar argument using equations (6.1.3a) and

(6.1.3b), yields

X (6 .2 .10 )

ii) Symmetry of ip and 9

Starting now with the definitions of ip and 9 a similar calculation gives us the following

two results
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From these results we can clearly see that

9 = - t i>.

Applying (6.2.9)-(6.2.11) to the definition of H  we find 

t H  =

which gives us the following symmetry for H

t H  =  - c o f ( H ) ,  

where we use co f  to indicate the m atrix of cofactors of a 2 X  2 m atrix
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/  , ,  \ ( \
V V e - v

j
\ x i> J

(6 .2 .11)

( 6 .2 . 12 )

6 .2 .2  U sefu l Identit ies

Throughout the rest of this section we shall be dealing mainly with 2 x 2  matrices, each 

entry of which is an infinite (Z X  Z) matrix, and it will be useful at this point to clarify 

the notation and give some of the identities these matrices obey tha t shall be used in the 

calculations to come. We have already defined most of the 2 x 2  matrices we shall require 

in (6.2.2), (6.2.4) and (6.2.5), but along with these we shall also require the following 

2 x 2  matrices each entry of which is a scalar

v  =

(
V

\
0

, p  =

(
Pi

° )

1 ° 1 J { 0
P2 j

although these matrices have scalar entries we write them in boldface as they shall be 

used in calculations along with the 2 x 2  matrices with infinite m atrix entries.

Given tha t we have matrices within matrices, these are two possible ways of transposing 

these objects. We can either transpose each entry of the 2 X  2 m atrix or we can transpose
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the the whole matrix, we use a left superscript t  for the former and a right superscript 

T  for the later, i.e. for

A  =
( Aa b

c i f
a, b, c, d infinite Z X Z matrices,

C+ II ii
Eh

/
a

\
c

H  ) d)
Using this notation we can give the following identities

\ A - B ) t  = ( tB T ■ tA T), 

( c o f { A) ) T =  cr2 ■ A  ■ a2,

(6.2.13a)

(6.2.13b)

where A  and B  are 2 x 2  matrices, each entry of which is a Z X  Z m atrix and cr2 is the 

Pauli m atrix

/  \
0 —i

o-i =
i 0

Fox diagonal matrices we use a “bar” to indicate tha t the entries of the diagonal have 

been swapped, this should not be confused with the previous chapters in which a “bar” 

was used as a shift in one of the lattice directions, i.e.

( \ (  ; \
a 0 b 0

A  = , A  =

1 ° b ) 1 °
a )

Thus, for diagonal matrices we have the relation

c  2 ' A  — A  ■ a 2 ■ (6.2.14)

W ith these definitions and identities in place we can proceed to derive the lattice equa­

tions for the AKNS section.



6.3 A lg eb ra ic  R e la tio n s

In order to  derive a purely algebraic relation for the system we return to the original 

integral equations. Multiplying through equation (6.1.2a) by k v with p € N we obtain 

the following

kpcpk +  dXi(l') dX2( l ) , k _ P̂ v  =  kPP*c " ( 6 ' 3 ‘ 1 )

- L S c ,  - L L

Using the following identity

p - l  

j = o

and the integral equations (6.1.1b), equation (6.3.1) can be expressed as

kp<pk + J c  dXi ( l' ) j c  dX^ l \ k P- ] ' ) { v - T )  =  kVp ^ ~ ^ - ° v c ^

- v O T j c dH

Thus, using the integral equations (6.1.2a) and (6.1.4b) this gives us

kp -<pk = A.p ■ <Pk -  ip ■ Op ■ <fik ~  ■ Op ■ Ok- (6.3.2a)

Similar arguments yield

■ V v -  V’ ’ Op • V’fc' + ‘ Op ■ Xk' i  (6.3.2b)

k l p -Xk'  = A -Xk'  -  9 - Op- Xk '  -  X - O p - ^ k ,  (6.3.2c)

kp -Ok = A O k -  0 Op -Gk + x-Op-<pk-  (6.3.2d)

Integrating equations (6.3.2a) and (6.3.2d) over C2 with respect to dX2 and integrating 

equations (6.3.2b) and (6.3.2c) over C\  with respect to dX-[, equations (6.3.2) can be
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expressed in term of the (2 X  2) m atrix H , giving us

H  l \ v = (AP - H  O p) H .  (6.3.3)

This is our purely algebraic relation for H  in which p is an arbitrary param eter which 

can take on any integer value.

6.4 D isc re te  L a tt ic e  E q u a tio n s

For this section we shall concentrate on discrete equations and immediately limit our­

selves to the two-dimensional case, Hence we define the plane-wave factors p^ and a ^

by

n  = V ^ = ~ k )  v 1 ^ )  ’ ak' - \ v ¥ ^ )  ■ ( '

The factors pk and a^i now depend on two independent discrete variables n  and m  each 

of which now has two lattice parameters associated with it, P\ ,P 2 and 91,92 respectively, 

as well as an extra param eter for each independent variable, rj and rj' respectively.

For the discrete evolution we can impose on pk and a ^  two different transformations of 

the same type but for each of the discrete dimensions, namely

Pk Pk = Pk ( n+ l , m )  , pk h* f)k = p k ( n , m +  1), 

with similar expressions for ov . The discrete evolution of pk and a ^  is therefore given

by,

? * = 1  <t‘ ' ’ ( w '2)

with similar expressions for the ?  shifts given by replacing Pi,P2 ,V  with q i ,q 2 ,v '-  

This leads us to impose the following linear relationships for <p° and ip°
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which, in terms of 2 X  2 matrices can be expressed as

C - ( P -  t A ) - r j  = r j - ( P - A ) - C .  (6.4.3)

Equations (6.2.8) and (6.2.6a) can now be used to give the following nonlinear relation 

for H

H  - { P -  t A ) - r i  = V ( P - A )  H  + H  V 0  H ,  (6.4.4)

from which the lattice equations will be derived.

6.5 S im ila r ity  R e d u c t io n
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In order to  derive the similarity constraints we need to see how the factors pk and cTk 

behave under the action of the differential operator k - ^ .  This is given by

4 w  =  , ( - £ - . J L ) n  , *  ®  (6 .5 .1 )
dk  \ p 2 — k pi — k J  dk  \ p i  — k p 2 — k )

now consider the object

( 0 ( i ^ P i W 01 =  J c d \ 2 ( l ) ^ i ( lp ic i tci) -  d \ 2( l)pici ici

-  J  d \ 2(l)pi(l^jCi) tci — d \ 2(l)piCi(l-Qi tci),

hence

dX2(l ) ( l^jPi)ci tci =  [IpiCi tci\dc2 ~ [  dX2(l)pi)ci tci 
oL J c 2

c) f  ddX2(l)pi(l-QjCi)tci -  j  dx^piciil—̂ci),
JC2 UL J C 2

now, ignoring boundary conditions and noting tha t

9 T i  , 9  t t tj-ci — I  ■ ci and (— c; =  c; • 1 ,
d r ~  di
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we have

Similarly

J C\ 91

Now, by inserting equation(6.5.1) into the above equations we get

, P 1 o o P  2TO | -------■ (p — (p ■

n

Pi  -  A 

Pi t\>° -  tJ>c

P i  -  56A 

P2

(6.5.2)

vPi -  A T p2 -  4A

transposing the second of these equations gives

71
P2 pi
-  A v 'r 7 v T '  p i -  ‘A , 

equations (6.5.2) and (6.5.3) can now be expressed in terms of 2 X 2 matrices, giving us 

the following linear relation for C

where

C  + 1 C  +  C  *1 = n
P  -  A

C - C
P  -  * A

(6.5.4)

P  -  A
P i - A

V
0 - aP 2

/

- A  /

V l 
P i - ‘A 0

_£2_

\
P  -  1A

P 2 - ‘A /

Having obtained an equation for C  we now wish to obtain the corresponding nonlinear

equation for £T. Which is given by,

H  + I  H  +  H  • V  

P
n

P  -  A
P  P  P

H - H —----- 3—— — H  ■ — ----- T-r O —------- • #  ) .
P  -  lA

(6.5.5)

It is particular entries of this equation which will give us the similarity constraints for 

the AKNS system.
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6.6  L att ice  E qu ation s
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In order to derive the lattice equations of the AKNS system we must introduce the 

following objects

<» = “ + ( ^ a - h - ‘a L  • { MA C)

where the subscript (0,0) now means to pick out the central element of each of the 

infinite matrices in the relevant 2 x 2  matrix. This means tha t each of the objects in

(6.6.1) is a 2 x 2 m atrix with scalar entries.

Using the relations in section (6.2.2) and the symmetry of H , it is possible to show that 

these objects possess the following symmetries

s a ,p =  - a 2, (6.6.2a)

V a  =  o 2 ■ ( w a ) T  ■a 2 , W p  =  a 2 ■ ( v -^ )T  ■ a 2, (6.6.2b)

t a  =  02  • ( S a ) T  ■ 02 , s p  =  02 ■ ( t p ) T  ■ 02.  ( 6 .6 .2 c )

We now proceed to derive the lattice equations and similarity constraints.

6.6.1 A lgebraic  L attice  E quations

Starting with the algebraic relation (6.3.3), taking p = 1 we get

H  1A =  A H - H  O H .  (6.6.3)



This equation now gives us the following algebraic relations for the objects in (6.6.1)

v q - w q  =  1, (6.6.4a)

1 — aiSc^o = v a ■ wo,  (6.6.4b)

v o - W /3 =  l  +  /3s0ip,  (6.6.4c)

V a - w p  = 1 + (3saip -  a s a>p. (6.6.4d)

Turning now to the shifted equation (6.4.4) we obtain the following Miura type equation

V -  s a ,p • ( p  -  (3) ■ V +  V ■ { P  -  ot) ■ s a ,p =  v a - T) - wp,  (6.6.5a)

and by considering a second transformation of the same type but with different param­

eters Q and r)' we obtain the similar relation

v'  ~ Scx,p ■ {Q ~ (3) • v'  +  r)' ■ (Q -  a ) ' s <*,p -  V a - v ' - w p ,  (6.6.5b)

now, by applying the symmetries (6.6.2) to equations (6.6.5b) and (6.6.5b) we get

rj+ rj • (P - a)-sa>p - sa,p-(P - 0 ) -Tj - va rjwp,

V1 +  v '  ■ { Q -  <*) ' S(x,p ~  s<x,p ' {Q  -  /3) ' v'  =  v a r j ' - wp,

applying extra shifts to these equations gives

r j + V  • ( P  ~ <*)- s ^ P  ~s <x , p - ( P ~ P ) - V  =  v a rj wp ,  (6.6.5c) 

V1 +  v '  ■ ( Q -  ot) - Saf i  -  s aip • (Q -  (3) rj' = Va rj' w p ,  (6.6.5d)

eliminating w p  from equations (6.6.5a) and (6.6.5b) gives

v a - v - ^ - v ~ 1 =  [77 -  s a<p • ( P  -  f3) ■ 77 +  77 • ( P  -  a )  ■ s a>/3] X 

x[v' - s aip ■ ( Q -  (3) ■ r] +  77' • ( Q -  a )  •
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while eliminating w p  from equations (6.6.5c) and (6.6.5d) gives

V a v ' z z - V n 1 =  [rj' +  rj' ■ (Q -  ct) - s aip -  s a ,/3 • (Q ~  P)  -rj'] X
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x [v +  V ■ ( P  -  a )  • Sa,p -  s a<p ■ ( P  -  P)  ■ T)]- l

In order to derive a closed-form equation from the above equations the LHS of each 

equation must be equivalent. This is the case only if we apply the extra condition 

rj = r]', in this case we get

[V ~  s a ,p ■ ( P  -  P) ■ V  +  V ■ ( P  ~  a ) ■ s a i p]  X

x[v' -  s<*,p ■ (Q -  P) ■ v' + v' ■ (Q -  a) ■ sq,/3]_1 =

W  + rj' ■ (Q -  a )  ■ s aip -  s aj3 ■ ( Q -  (3) ■ rj'] x

X[rj + V ■ ( P  — a )  ■ s aip -  s atp • ( P  — (3) (6 .6 .6 )

If we now introduce the following object

z =  s 0,o — n P ~ l — m Q ~ l , co f ( z )  = z '  = —s 0|o -  n P  1 — m Q  l . (6.6.7)

Equation (6.6.6) gives

(77 • P  ■ z  -  z  ■ P  ■ rj) X  (rj1 ■ Q ■ z  -  z  ■ Q ■ v ' ) - 1  —

(z'  Q  -rj1 - r j '  Q  - z )  X  ( z '  P  rj - r j  P  • z ' ) " 1 . ( 6 .6 .8 )

We can also obtain from equation (6.4.4) the following relations

t a  r) = v a ■ 77 • ( P  -  h) -  77 • ( P  -  a )  ■ v a , (6.6.9a)

t a  rj =  v a rj ■ ( P  - h )  -  ( P  -  a )  rj - v a , (6.6.9b)



now, by applying different shifts to these equations we we obtain another set of Miura 

type relations, namely

T]' ■ Q  ■ T] -  T) ■ P  ■ rj' -  T]1 ■ h, ■ ri + T) ■ h  ■ T]1 =

(£a ) -1 ■ (vr • (Q -  a ) ■ Va ■ 77 -  77 • ( P  -  a) ■ va ■ V), (6 .6 .1 0 a)

rj' Q ■ 77 -  rj ■ P  ■ rj' +  77 ■ h ■ rj' -  rj' h ■ 77 =

( £ a ) - 1  ' (rf ■ (Q ~  “ ) • v a ■ 77 -  77 • ( P  -  a )  ■ v a ■ rj1), (6 .6 .1 0 b)

for which, certain param eter values will yield further closed form equations.

6.6 .2  S im ilarity  L attice  Equations

In the case of the similarity constraint we obtain the following equations

h  = n  ( -  ■ J — ■ P  ■ 77 • v P -  p )  +  m  ( — ■ —  ■ Q ■ 7/' ■ v Q -  Q ) (6.6.11a) 
\ v v P  J  W  v q  J

( 1  1 „ 1 „  1 A0 =  n [ —-■ — ■ v 0 • ■ V ■ P  ■ v p  - 1
\ P  77 Vp Vo J

+ m  ( -p- ■ — • vo ■ ^— 771 ■ Q ■ v q  -------- 1^ , (6.6.11b)
\ Q  rj' v Q v 0 J

/  1 1 ~ 1 p  1 1 1 \
- z  = 7Z — • — -v0 -—  rj P v p - r ] -  —  • — • —

\ P  77 v P V.o V P J

+ m  ( .  1 . 8 0 . J -  . n’ ■ Q  ■ vQ ■ n' ■ -  ■ , (6.6.11c)
\ Q  77' v q  w  Vo V  Q )

where the fractions in the above equations should be treated as the inverse of the relevant 

2 x 2  matrix.

These equations may be used as the basis for deriving closed-form similarity constraints.

In this section we have succeeded in laying down the foundations of the direct lineariza­

tion method for the lattice AKNS system. We have formulated the infinite matrix 

structure and defined the basic equations needed to derive the relevant lattice equations
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and similarity constraints. The derivation of these equations is however left for the 

subject of future work.
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Chapter 7

Conclusions

This thesis deals with the subject of integrable lattice equations and their similarity 

reductions, in particular to equations of Painleve type.

In Chapter 1 some key notions of continuous integrable systems are highlighted. In 

particular we review the Inverse Scattering Transform, Lax pairs, Backlund and Miura 

transformations and conservation laws. We also recall ingredients from the classical 

theory of Painleve equations and the Painleve property and showed how this is related 

to integrability via the ARS-conjecture. Having summarized the main features of 

continuous integrable systems, we consider their discrete analogues, giving examples of 

both integrable PAEs and discrete Painleve equations. Emphasis was given here to the 

the linearization of the KdV equation by Fokas and Ablowitz as this is the basis of the 

direct linearization method employed throughout the thesis.

In chapter 2 we review the direct linearisation of the KdV system. Whilst most of the 

results in the chapter have already appeared in the literature we need to establish the 

notations and to develop the tools for the subsequent chapters. In particular this entails
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the setting up of an infinite m atrix structure, which, albeit being a strictly formal tool, 

has proven to be extremely powerful in establishing the algebraic properties of the 

system. It is demonstrated how this infinite m atrix structure can be used to derive a 

host of results including closed-form lattice equations, associated differential-difference 

equations and similarity constraints tha t govern their symmetry reductions. Further­

more the linear systems associated with each of these equations are derived. In this 

chapter also, a new method for obtaining Lax pairs for the lattice equations directly 

from the equations themselves is presented. This relatively simple technique is expected 

to become a useful way of obtaining Lax pairs in cases were they are unknown. Finally 

in this section we recalled the nonlinear PDE which are the generating equation for the 

entire hierarchy of Schwarzian KdV equations.

The next chapters in the thesis contain new material. In chapter 3 we deal with 

extending the reduction of the lattice KdV equations to Painleve type equations of 

higher order. This reduction is achieved by means of a similarity constraint, compatible 

with the lattice equation, linking the various dimensions of the multi-dimensional 

lattice. Thus, we show tha t both the lattice equations and the differential-difference 

equations for the KdV system can be consistently embedded in the multidimensional 

lattice and hence form compatible parameter-families of equations. Extending the 

similarity constraint in a similar way, we derive a coupled set of second-order nonlinear 

ODEs which make up the continuous Pvi hierarchy along with a coupled set of first 

order nonlinear OAEs which give the discrete analogy of this hierarchy. With these 

systems in place we give explicit examples of these reductions for the two and three 

dimensional cases. The results for the two-dimensional case, although already known, 

were reproduced by means of the general multi-dimensional systems. For the three
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dimensional case, it was shown tha t an IVP could be well-posed and that this does 

indeed lead to higher order Painleve type equations. These systems were then compared 

to the Garnier systems.

In chapter 4 we introduce the higher dimensional KP system. We indicate how this 

system can be dimensionally reduced to the lattice GePfand-Dikii hierarchy. We also 

develop the direct linearisation method for the lattice KP system and give closed form 

lattice equations. For the similarity reductions we shown tha t the system must first 

be dimensionally reduced to the Gel’fand-Dikii hierarchy before the similarity can be 

implemented.

In chapter 5 we extend the direct linearisation method to the Boussinesq system, 

deriving the lattice equations and their associated Lax pairs as well as new differential- 

difference equations along with their linear systems. Using these linear systems we 

derive a coupled system of nonlinear PDEs from which we expect the analogue of the 

generating PDE for the Schwarzian BSQ hierarchy can be extracted. However, so far, 

we have not been successful in obtaining a closed-form equation of this type. We then 

proceed to show how the lattice BSQ equations can be consistently embedded in a 

multi-dimensional lattice and hence can also be considered as compatible parameter- 

families of equations. It is seen tha t this is best achieved by considering these lattice 

equations as coupled systems rather than closed-form equations. Finally we rederive 

the similarity constraints for the BSQ system along with the associated monodromy 

problems. The compatibility of these constraints with the lattice equations is confirmed 

for the case of the modified system. Again this is best achieved via coupled systems 

for both the lattice equation and the constraint. In theory the constraint can therefore 

be used to reduce the lattice equation to an OAE and as this OAE will have been
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derived as a self-similar reduction of an integrable lattice equation we would expect it 

to be of Painleve type, however this reduction is not done explicitly as we are unable to 

determine the necessary similarity variables.

In the final chapter we develop the direct linearisation method for the lattice AKNS 

system. We introduce the notation and derive the m atrix equations from which the 

lattice equations and similarity constraints can be found. The derivation of the explicit 

form of these equations is left to future work.

In conclusion, in this thesis we have presented new examples of similarity reduced lattice 

equations and demonstrated tha t there is an intim ate interplay between continuous 

and discrete systems. We are confident tha t these these results will prove to be of 

im portance in the development of a coherent theory of integrable partial difference 

equations. In first instance, further analysis of the AKNS system is required as well 

as a full picture for the entire lattice Gel’fand-Dikii hierarchy. In future extensions to 

lattice systems of elliptic type, e.g. the lattice Krichever-Novikov system, need to be 

investigated.
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Appendix: Coefficients for 

equation (3.4.10)

In section 3.4.2 we gave the following coupled system of second-order nonlinear ODE’s, 

equation (3.4.10)

d2*  A f d X \  f d Y \  . ( d X \  , . ( d Y \

d2Y  „  f d X \ 2 n f d Y \ 2 n f d X \  ( d Y \  ( d X \  ( d Y \

w  ~ («p)+ +M^)UJ UJ UJ 6
where the coefficients, as calculated by MAPLE, are given by:

/ q { p X - q ) ( q - ^ - )  \ (  [P Y  -  r) (r -  £ )  p (p2 -  q2) 2

^  =  - 2 ( ------------ „ 2 „ 2 —  +  r ]  %2 K ,  * TT,-------p ^ +P2 - V 2 V  "  \  (p2 - r 2) % S ( p X - q ) 2 ( q - f ) 2

%2 p (p 2 -  q2)(py{p)~ r) ( r  -  |r)
2 ( p Y - r ) ( r -  ~ t ~s ) p( p  ~ Q  ) _  2 — ——------ —  p

y(p) [  ( p x  -  q)2 (p - r ) 

■ %2%12P J %  H p Y - r ) ( r - y )  %22% l p

+  2 (P2 -  42 )2 (P2 -  92) (P2 “  r 2) (p I -  9 )2 ( g _  L . ) 2

/
(p2 -  r2) %32 ( p X  -  q ) ( q -  y ) )  -  q

x  V

( — % 6  +  2 % 4)  ( p Y  — r) (r -  y ) p ( p 2 -  q2) 2 

{p2 - r 2) % Z ( p X - q ) 2 { q - ^ ) 2
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( p Y  -  r ) ( r - ~ ) p ( p  -  q2) ( % 6 - 2 %4) Y
+  2 ----------------------—---------------------------p - --------- | / (g  - p )  \ K p (p ))

(p2 -  r2) %3( pX - q ) ( q -  ^r)

p3 ( p X  -  q) 2 (g -  j p ) 2 q Y  p { p X -  q) 2 (q -  j ^ ) 2 q r 2 YP

(P2 ~  q2f (P2 -  q2) 2

pA( p x - q ) ( q - y ) y  v2 (p x - q ) ( q - y ) 7'2 y  ,
+ 2 ---------------------^ ---------2 -----------------5------^ -------------qp3 Y

p2 -  q2 p2 _  q2

p3 { p X  - q ) ( q -  ) Y 2 r q2 ( p X  - q ) ( q ~  y ) p >"2 
+  q p r 2 Y --------------------------^ A

P

p2 -  q2 p2 — q2

P P (p3 ( p X  -  g ) ( g -  — ) r  q2 ( p X  -  q ) ( q - — ) r p

p2 -  q2 p2 -  q2
% b p ( p 2 -  q2)

\

% 2 p ( p 2 — q2) ( p Y  — r) (r — —) ^ % 2 %12
+ 2

( p X  -  q) 2 (g -  ^r)2 (p2 -  r2) (V2 ?2)"

p % l ( p y ( p )  -  r ) ( r -  y )  

{p2 ~  q2) (p2 —r2)
-  2 + 2 %22 %1 p (%3 2 ( p X - q )

(« -  £ »
2\2%5p (p2 -  g )

*  % 3 ( ; p X - g ) 2 ( g - | 0 2

( —%6 +  2 %4) %5 p ( p 2 — q2) % 5p(% 6 —2% 4)'

% 3 ( p X  -  q ) ( q -  ~ r )Y %3

r 2 — p2

r % i  +

+
' (p X - q)2 ( q - ^ ) 2 

%3 ( p X - q ) { q - ^ )
/ ( p Y ( p 2 - r 2) ( p2 - q 2))

%1 :=  g - P(P2 -  92)
( p X  - q ) { q ~  -y )

p ( p X  -  g) (g -  ^r)
%2 : = p2 _  g2

%3 := - 2
% 2 % l ( p y - r ) ( r -  |r) % 22 % 12 ~  r ?  (r “

(p2 -  q2) (p2 -  r2) (p2 - q 2)2 + (p2 — r 2)2

%4 :=
(p Y  -  r) (r -  —) p (p2 -  g2)

(p2 -  r2) % 3 ( p X  - q ) ( q -  ~^)

p2 _  g2 _  r 2

%6 :=
%5p(p2 -  g2)

%3 ( p X  -  g)(g -  |r)
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A 2 =  - 2  —
q ( p X  - q ) ( q -

P _ s

X '
p 2 _  q i +  p\ %4

V

(2 %8 — %7)  %6p (p2 — r2) (p2 -  g2) % 6 p ( - 2 % 8  +  %7)

% 5 (> Y  -  r ) ( r  -  -  g) (g -  -^) %5

g2 - p 2

% 6 p (p 2 - 7 -2)2n2

% 5 ( p Y  — r )2 (r -  —)
%6 p (p 2 -  r2) -  2

%4 %3 %2 p (p2 — r2)

(p2 ~  Q2) (P Y  -  r )2 (r -  ^ -)2

-  2
%4 %3p %1 + 2 %2 %1 p

+  2 .
%22 % l p

(p2 -  q2) (p2 -  r2) (p2 — r 2) 2 -  r ) 2 (r -  y ) 2 /
(%52

p %  1 % 2 p ( p 2 -  r2)

( p Y  — r) (r
y(p) )) +

vP2 - r 2 ' (j)Y  — r )2 (r — £ ) 2

%5  ( p 7  -  r )  ( r
y( p) ‘

p ( p 2 ~ r 2)\

/
/ (p(p2 -  q2)) -

P3 y )
(p2 — g2)2 (p2 — r2) 

p ( p X - g ) 2 ( g -  ^ ) 2 ? 7’2 ( p y - r ) ( r -  |r) 

(p2 — g2)2 (p2 — r2) 

p4 ( p X -  g ) ( g -  | - ) ( p y - r ) ( r -  |r)
+  2

(p2 ~ q2) (p2 ~ r2)
? U 2 ,g2 ( p X - g ) ( g -  - ) r 2 ( p y ( p ) - r ) ( r -  — ) qp3 ( p Y  -  r ) ( r  -  — )

(p2 -  g2) (p2 -  r2) p2 — r2

+

+

q p r 2 {jpY -  r ) ( r -  p3 ( p l  -  ? ) ( g -  ^ ) ( P y  “  r )2 (r _  ^ ) 2r
p2 _  r 2 {p2 ~ q 2 ) ( p2 ~ r 2) 2

q2 { p X  - g ) ( g -  j ^ ) p { p Y  -  ?’ )2 (r -  |r)2r p3 ( p X - g ) ( g -  ^ ) r

(p2 — g2) (p2 — r2)2 p2 — g2

g2 ( p i  -  g ) ( g -  ^ ) r - p
+ X '

p2 - q 2

2\2( 2 % 8 - % 7 ) % 4 % 3 p ( p 2 - r 2)

(p2 -  g2) %5 ( p Y  -  r ) 2 (r -  ^ : )2

%4 %3p (p2 -  r2) ( - 2  %8 +  %7) ( p l - g ) ( ? - ^ )
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■* -  —j -----Ẑ— ^ - ---------=: 6%
(~d

( 4  -  J ) ( ^ -  A d)
— — ----------------------------------------------------------------x

izx ~ z d) d
Z%

l % i d ( ^  - b ) { b - X d)(zb - z d) ( j  - ■ * ) ( ■ * -  A d)
7h — ?d fb ,___ ?____?----------1--------£-------------- +  n -f- rl =:

^ b d ( m  +  u) 9% 9 % { * - ri)
~h ~d

* -  ~y — ' ------------------= : 9%
(~d ~ b^ b ~ X d) d

( X - b ) ( b - x d)

V ? m— 6=:s%

X  Z* ~ ---------------- E% = :
( 4 - 6 ) ( 6 - X ^ )

( f  - S ) ( * - ( ^ ) x d )

zf i - z d
= : e%

z(zd zd) s(z^ z^)

zb 2dz( 4  -  -0 z(J “  A<0 e( f  -  5) E(6 -  x ^ )

z;(e® _  zd) z(zd zd)

vd zb z ( f  -  6 ) z(6 -  X d) z ( j  ~  -0 z(d ~  A d)
Z +

z(zb ~ zd) z{zX zd)_______________ g _j_

z ^ z ( f  ~ b)z(b ~ X d) >d z( j  -  •*) z{d -  A d)

xipuaddy



Appendix144

? (p*-?)(?--§0 \ ^ 
A* = ~2 I--------P2.q2 X +PJ %4

\

?((-

, o %2 %1 %10 0 %4%3%13 %11 %13 %11 %10. w 
+* ~ U + 2 (p2 - r’) %5 + 2 (f'-q?) %5 " %5--------------%5~)%llp

(p2 - r2) j(%5(pY - r) (r - |:))

, /oo/1c o/,„w , o %2%1%10 %11 %13.. , 2 2\ v x 
+ (2 %15 - %14) (m + 2 (y2 _ r2)-^ - - /UP*- *)

. p., .. o %2%1%10 %11 %13 o0. 0/i,̂ ,2 2x
(ff - f)) - (("» - 2 + —955—) (-2 %15 + %14) + %11P (P - r)

. n %2 %1 %10 n %4%3%13 %11 %13 %11%10.
(n- » +2 (p2 - r2) %5 ~ 2 (p2 - ,2) %5 + %5 + /(%5

(pY - r) (r - |:)))(p Y - r) (r - |:)/(p2 - r-2))/(g2 - p2)

%H ^~ v) %2p (p2 — r2) + (ti - %12) p r%16 + %g + (^ - v)p% 1 
1 (p7-r)2(r--)2 p2 _ r2 0 p2 _ r2

J....................................................——Y--------------------------------------------------------------------------------------------------
%5

%2 %l(p7 - r)(r - ^)(p2 - q2) (pi -?)(?- -^r)pr%16
+ 2---------------------------------±----------------------------------------^--------------

%5(p2 - r2)%8

_ P%1%10 _ %2p (p2 - r2) %10 / (pX -g){g- j)% 3 

(p2 - r2) %5 (py-r)2(r_ |:)2%5 + ^ (P2-?2)2

(py -r)(r- |r)%i %2 %4
+ - r

(P2 r2)2 (pY -r)(r- y) (pX-q)(q- £)

0 %2%lp o %4%3p
Zj . ~ r\ \ £ (p2 _ 7*2^2 ^p2 _ ^2p (p2 - r2) j(%5 (py - r) (r - |r))

_P%1^ + %2P(P2 - ,J)_ 3 

p r (;pY-r)2(r--)2J %2 %1 %10 %17 %11%13%17
+ 2

%5 (p2 — 7*2) %5 %5

%llp(p2 - r2)

(pi - g)(9- |:)%3%2%1
2̂ „2\ I r> ____-A____________

(p2 — g2)2 (p2 — r2) 

%22%1 4%42%32p

(p2 — r2) (py — 71) (r - (P2 Q ) 

%4%2%1 , %4%3%2%lp %4%3%2%lp
l~  ̂T) . I ^ _.9W_9 _9\9 ' ^ (pX-g)(g- — )(p2-r2) (p2 - g2)(p2 - 7-2)2 (p2 _ ?2)2 (p2 _ r2)



Appendix 145

% 4 % 3 ( p Y - r ) ( r - £ ) % l  %4 %32 ( p X  -  q) (q -  £ )
Y I O ^

3(p2 — g2) (p2 — r2)2 (p2 — q2)

________ %4 %3 %2__________ %22 %12 p

+  ~ (p2 - q 2) ( p Y - r ) ( r -  2 ) (p2 ~  r2) 3

P

+  2 ------------t o------op------- —-----2 —  - — n I / ( % 5

\

%2 % l2 ( p Y - r ) ( r - ^ )   ̂ %42 %3

(p2 - r 2)3 (p2 _ q2n p X _ q H q _ L )

i p Y ~ r n r ~ w ) )]
/ ( p ( p 2 - g 2) ) -  ^

p3 { p X - q ) 2 ( q -  ~ ) 2 q ( p Y  -  r) (r -  y )

(p2 -  q2) 2 (p2 -  r2) 

p ( p X  -  q)2 ( q -  ~ ) 2 q r 2 ( p Y  -  r) (r -  y )

(P2 ~  92)2 (P2 ~ r2)

P4 ( P ^  -
+  2

p4 ( p l  -  g ) ( g -  ^ ) ( P Y  ~  r) (r  -  y )

-  2

(p2 — q2) (p2 — r2) 

q2 ( p X  - q ) ( q -  ~ ) r 2 ( p y ( p ) - r ) ( r -  y )  qp3 (p Y  -  r) (r -  y )  

(p2 ~ q2) (P2 — t 2) p2 — r2

q p r 2 ( p Y  -  r ) [ r  -  y )  p3 (p X  -  q) (g -  ^- )  ( p Y  -  r )2 (r -  |r)2r 

p2 _  r 2 (p2 — q2) (p2 — r 2) 2

q2 ( p X  - q ) ( q -  ^ ) p ( p Y  -  r )2 (r -  ^-)2 r p3 ( p i  -  5) (g -  ^ ) r

(p2 — q2) (p2 ~ r2)2 p 2 ~ Q2

q2 (p X - q ) ( q -  ^ ) r p s

+ p2 -  q2

(

\

%11 %10 %17
%5 2

p %  1 +  %2 P y - r ^ _ .  %1()

b Y - r W ' - Z t y _____ + 2 % 4 % 3 % 1 3 % 1 7 + 2 % 4 % 3 p
%5 (p2 -  q2) %5

2 2 ( p l - g ) ( g - | r ) % 3 % 2 % l  __________%22 %1_________

2 (p2 -  g2)2 (p2 -  r 2) 2 (p2 — r 2) (p Y  — r) (r — ^r)

%42 %32p %4%2%1 % 4 % 3 % 2 % lp

4 (p2 -  g2)3 +  ( p X - q ) ( q - ^ ) ( p 2 -  r2) (P2 "  <72) W  ~
J\.

% 4% 3% 2% 1 p ^ % 4 % 3 ( p Y - r ) ( r -  | :)% 1 
+  4  (p2 _  ? 2)2 ( p 2 _  r 2 ) (p2 -  g2) (p2 -  r2)2

% 4 % 3 2 ( p X  — q ) ( q -  y )  % 4 % 3 % 2
+  2 ------------ 7—5 I" 2(p2 — g2)3 (p2 _  g 2 ) ( p Y  -  y ) ( r -

, % f % l 3p %2 % 1̂ - K r - l )
(p2 -  r2)3 + (p2 -  r2)3



Appendix 146

-  2 ----------- %42%3 .-------p - l  / ( ( y 2 - « 2)% 5 \ V Y
( f - q 2) ( p X - g ) ( q - f ) i

( n - v ) % 2 p( p2 - r 2) , ( n -  % 12)pr% 16 | ^  , ( / z - i / ) p % l '
—-----------  pTT" +  n2 _ t.2 +  /0° +  t)2 — r’2

X
(  ( II __ 7/̂  QfrxO n (  '.

%4%3 

2 ----------
{ p Y - r f { r - ^ f  P2 ~ r 2 P

(p2 -  q2) %5

% l l ( p Y - r ) ( r -  |r)(p2 ~ q 2) ( p X  -  q)(q -  J ^ j ) P r % 1 6

%5 %8
( p X - g ) ( g - f ) % 3 p ( p 2 - r 2)

A — p - - K ( 2
(p2 - q 2)2 % 5 ( p Y - r ) ( r - ^ )

%2%1%10 %4%3%13 % 1 1 % 1 3 _  %
(n +  ^ _  „  +  2 ^  ^  +  2 (p2 _  ?2) %5 % 5 %5

(p2 - r 2) j ( ( p 2 - q 2) % 5 ( p Y - r ) ( r -  y ) )

+  ( 2 % 1 5 -  %14) ( - * 1 2  -  +  2 ( P ^ ) ) ( P 2 -  r2) / ( ( , y  -  r)

( , _ £ ) ) _  (( %  12 +  _  2 ( - 2  %15 +  *14) -  2%4 %3p

% 2 % 1% 1 0  „  % 4%3%13 , %11 %13 | % H % 10 
(p _ r ) ( n _ ^  +  ;, _ 2 ^ — ;2 ) % ^ - 2 (p2 _ 92) % 5 + %5 + %5

j ((:V2 -  q2) %5 ( p y - r ) ( r -  y ) ) ) { p X  - ? ) ( ? -  f ) / ( ? '  "  ?2) ) / ( r2 "  ? 2)

2 ______________% 4p(p2 - r 2)_____________
( p l - g ) ( g - ^ ) % 5 ( p y - r ) ( r -  |r)

\
% 4% 3p2 (p2 -  r2)

+  4 ------------------—  ; —  “  p ~

Y  J
p{ p 2 - r 2)

(p2 -  q2) 2 %5 (p y(p) -  r) (r -  

%1 := r -

%2  :=

/ { p { p Y - r ) ( r -  ^ ) { p 2 - q 2))

%3 :=  q

r ----------
( p Y -  r) (r

p ( p Y  - r) (r — - )
p2 -  r2

P {P2 ~  Sr2)
(P X - ? ) ( ? x ’

p { p X  - ? ) ( ? - L )X 1%4  : = ------- 2 2p2 -  g2
% 4% 3% 2% 1 , %42 %32 , %22 %12 

~ 2 (p2 -  q2) ( p2 - r 2) (p2 -  g2)2 (p2 -  t-2)2



{ p X - q f { q - ^ ) :i{ p Y - r f { r - ^ ) 2pqri 
%8 := - 4 (p2 __q2)3 (p2 _ r2)2

J p X - q ) ( q - ^ ) l p Y - r ) { r - y ) q p 2r3
+ 2 (p2 _ g2) (p2 _ r2)

(pX-g)(g- |0(p^ -?•)(?■- f)<?3P2r
+  2  ( p 2  _  g2) ( p 2  _  r 2 )

(p X -  q)3 (g -  j f  (p Y  -  r)3 ( r - J f p V  

2 (p2 -  g2)3 (p2 -  r2)3
(pX-g)3(g- j f ( p Y - r ) 3 ( r -  y ) 3p2qr3 

+ 2 (p2-g2)3(p2 -r 2)3
( p X - g ) 2( g - f ) 2( p y - r ) ( r - |: )p3r3

4 (p2 _ g2)2 (p2 _ r2)
( p X - q ) ( q - ~ ) ( p Y -  r) (r -  £ )  qp^

~  2 (p2 -  g2) (p 2 - r>2)
(p X -  g)3 (g -  ^)3 (p Y  -  r)3 (r -  £)3 p2 g3 r

+ 2 (p2-g 2)3 (p2 - r 2)3
( p X - g ) 3 ( g - f ) 3 ( p y - r - ) ( r - ^ ) p 4gr

_ 2  (p2 -  g2)3 (p2 -  t*2)

( p i - g ) 2 ( g - 7 ) 2(Py - r )2(r - F )2P2r4
+ 4 (p2_g2)2(p2_r.2)2

( p X - g ) 2 (? -  f  )2 (py  -  o 3 (r -  f ) 3 ^
" 4 (p2-g2)2(p2-r 2)3

(pX -  g)2 (g -  f  )2 (py -  -)2 (r -  f  )2 «V
+  4 ( p 2 - g 2) 2 ( p 2 - r 2) 2 

( p X - g ) 2 ( g - f ) 2 ( p ^ - r ) ( r - | : ) g 4rp

~4 (p2 — g2)2 (p2 — r2)
g4 (pX-g)2(g -| )2r2 

+ ( ^ ? ) 2

(py-r)2(r- |:)2p3(pX-g)(g-
+ 4 (p2 _ r2)2 (p2 — g2)

( p y  -  r)2 (r -  £ ) 2?4 ( p i -  g)2 (g -  f ) 2r2 
+ 2 (p2 -  r2)2 (p2 -  g2)2

( p y  -  r)2 ( r -  |:)2 g3p ( p X  ~ q ) ( q ~

+ 4 '(p2 -r 2)2(p2 -g2)
(pX-g)2(g- |:)2P4(py(p)-r)4(r -  f ) 4r2

+ (p2-g2)2(p2-r 2)4
(pX -  g)2 (g -  |r)V (py-r)4(r- |:)4r2g2 

2 (p2 ~ 92)2 (P2 — r2)4

Appendix 147



Appendix 148

( p X - q ) 3 ( q -  j ) 3 ( p Y - r ) ( r -  y ) p 2 q r 3

+  2 (p2 _  g2)3 (p2 — r 2)

(P I - 9)3 ( g - | ) 3 ( p y - r ) ( r - ^ 2 g3 r
+  2

-  2

(p2 -  g2)3 (p2 -  r 2)

( p i  -  g)3 (q ~  y ) 3 ( p Y  — r) (r — y )  q3 r3

(p2 -  g2)3 (p2 -  r 2)
( p X - q ) 2 { q - ^ ) \ P Y - r ) 3 { r - ^ ) 3 p3 r3

^  ( P 2 ~  <72 ) 2 ( ? 2 ~  r 2 ) 3

 ̂ ( p i  -  g)3 (g -  y ) 3 ( p Y  -  r ) 3 (r -  ^r)3 g3 r3
- 2 (p2 _  g2)3(p2 _  r2)3

( p y - r )2 ( r -  £ )  V ( p i - g ) 2 ( g -  y f  q2
+  2 (p2 — r2)2 (p2 — g2)2

{ p Y  -  r f  {r -  y f  p2 ( p i  -  g)4 (g -  |r)4 g2r 2 
2 -------------  r

+  4

(p2 -  r2)2 (p2 -  g2)4 

(p Y  -  r ) 2 ( r - ^ ) 2p3 ( p l - g )3 { q - y f q r 2

(p2 -  r2)2 (p2 -  g2)3 

( p l - g ) ( g -  y ) ( p Y - r ) 3 ( r -  ^ f q p Ar

+

+  4

(p2 -  g2) (p2 -  r2)3 

( p y  _  r )2 (r _  | ,)2 ( p i  -  g)4 (g - - | ) 4 g2r4
( p 2  _  r 2̂ 2 (p2 _  g2)4

(p y  -  r )2 (r -  £ )2 p (p I  -  g)3 (g -  y  )3 <?3

16

( p 2  _  r 2 ) 2  ( p 2  _  q 2 y

( p y  -  r )2 (r -  ^ ) 2P2 ( p i  -  g)2 (g -  f  )2 <?2 r2
( p 2  _  r 2 ^ 2  ( p 2  _  g 2 ) 2

( p i  -  g)2 (g -  y ) 2 p3 ( p y ( p ) -  r ) ( r -  | r ) rg 2
+  4

+

+  4 

+  2 

+  2

(p2 -  g2)2 (p2 -  r 2)

i y v r  ̂ '  v y
( p X - qy ( , - h 2 ( p Y

(.p2 — q2) 2 (p2 — r2)4
( p i  -  g)2 (g -  y ) 2 r3 P { p Y  — r) {r — y )  q2

(.P2 — <z2)2 (p2 — r2) 
( p l - g ) ( g -  ^ ) ( p Y - r ) 3 ( r -  y ) 3 <iP2r3

(p2 -  g2) (p2 -  r 2)3 
( p l - g ) ( g -  ^ ) ( p y - r ) 3 ( r -  | :)3 g3p2 r

(p2 — g2) (p2 — r2)3 
P_
I( p l - g ) ( g -  J ) ( p y - 0 3 (7' -  f O V ^3

(p2 — g2) (p2 — r 2)3
_ P w _ v  -N2 /_ P 
X

( p X  -  q ) ( q -  y ) ( p Y  -  r ) 2 (r -  - ) 2 g p r 4 
- 4 - ---------- (p2 -  g2) (p2 -  r2)2



Appendix 149

P2 { p X - q f ( q -  y ) 2 q2 r 2
_  o ----------------------------^ -----------(p2 _  q2y

(v Y - r ) \ r - ^ f V^ p X - q f ( q - ^ Y q 2

(p2 _  r 2̂ 2 (^2 _  g2^4

(p Y  -  r )2 (r -  y ) 2 q2 p2 r2 p4 ( p X  -  q) 2 (q -  r2 

2 (p2 - r 2) 2 +  (p2 -  q2) 2

( p X - q ) ( q -  j )  ( p Y  -  r ) 2 (r -  | : )2 <?3p3

^ (P2 ~  I 2) (P2 ~  r2)2
( p X - q ) ( q - ^ ) ( p Y - r ) ( r - ^ ) q 3 r3

(.P2 ~  92) (P2 _  r2)
(P y  -  r-)2 (r -  |r)2 <?2p4 ( ? y -  r-)2 (r -  ^ ) 2 <?2 r4 

+  (p2 _  r2)2 +  (p2 _  r2)2

_ (PX  -  q f  (q - ^ ) 2P3 (PY  -  r)3 (r -  ^ ) 3 r g2 

+  4 (p2 -  <?2)2 (p2 -  r2)3

 ̂ ( p X - « ) 2 ( g - | : ) 2p ( p y ( p ) - r - ) 3 (r— | ) W  
+ 4 (p2 _  q2y  (jp. _  r2y

J p Y -  r ) 2 (r -  £ ) 2p4 ( p *  -  q)2 (? -  | ) 2 
+  2 (p2 _ r2)2(?,2 _ ?2)2

r 2

J p y  -  T-)2 (r -  £ ) 2 ( p i  -  <?)2 (9 -  f  )2 92 ^  
+  2 (p2 _  r2)2 (p2 _  ^2)2

( p X - q ) 3 ( q - ^ ) 3 ( p Y - r ) 2 ( r - ^ ) 2 p3 q3
— 4 ------------  A ---------------------------

(p2 — 92)3 (p2 ~ r2)2
Po (-n a — a i i a — ■

P -  9
.2 „2 ( p X  -  q){q -  y

%9  : —  D o 2
(px(p) — g) (g — y )  P ~ 9

( u - y ) % 4 % 3  (to +  m )p g % 9  
% 1 0 := /x  +  ^ +  p 2 _  q2 +  p2 - q 2

( p Y - r ) ( r - y ) ( p 2 - q 2 ) ( p X - q ) ( q - j ) p r % 7

%12 :=
(p2 _ r 2) ( p y - r ) ( r - ^ ) ( p 2 - g 2) ( p X - ? ) ( ? -

%8
( a - v ) % 2 % l  (n — %12) p r %7 m p q %  9

% 1 3 : = M  +  I / +  p 2 _  r 2 +  p 2 _  r 2 '  +  p 2 _  92

%14 :=  % H ? ( P 2 - ’-2)
% 5 ( p y - r ) ( r - | )

^  % 4 % 3 p (p 2 -  r2)
/ol5 .— — 7}

(p2 — <?2) %5 ( p Y  — r) (r — — )
(p2 _  r2 ĵ2 
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Appendix

-  (m -  2 %8 +  (n -  n +  1/ -  2 %8 -  2 %7 +  ^  

b X ( p 2 - r 2)(p2 - g 2))

%1 := p4 X 2r2 -  4 X Y 2 q3 p3 - 2 X Y q 3 r3 +  Y 2 q2p4 + Y 2 q2 r4 

+  4 I 2p3 7 3r ?2 +  4 X 2Py 3 r3 g2 +  Ax(p)2 p3 Y  r q2 +  X 2 Y 4 r2 q4 

+  A X 2r3p Y q 2 +  2 X Y 3 qp2 r3 +  2 X Y 3 q3 p2 r - 2 X Y 3 q3 r3

-  A X  Y 2 qpr 4 — 2p2 X 2 q2 r2 +  Y 2 p4 X 4 q2 +  2 Y 2 p4 X 2 r2

+  2 Y 2 p4 X 2 q2 -  2 Y 2 p2 X 4 q2 r2 +  4 Y 2 p3 X 3 q r2 -  2 X  Y 3 q p4 r 

+ Y 2 X A q2 r4 +  A Y 2 p X 3 q3 r2 -  16 Y 2 p2 X 2 q2 r2 +  2 Y 2 X 2 q2 r4 

+  A Y 2 p3 X  qr2 +  2 Y 2 q4 X 2 r2 -  2 Y 2 q2 p2 r2 +  A Y 2 q3p X r 2 

+  X 2 p4 Y 4 r2 -  2 X 2 p2 Y 4 r2 q2 +  2 X 3Y  p2 qr3 +  2 X 3 Y  p2 q3 r
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