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Summary  

Pulmonary hypertension (PH) is  a debilitating dis ease with many causes  that has a  

significant  impact on quality of  l i fe and results in premature death.  Until  recently 

imaging has only played an adjunct ive role to primary diagnostic modalities such 

as echocardiography and right  heart  catheterization in id entifying these patients.    

The advent of  newer imaging techniques and developments in hardware has 

opened up a new scope for imaging.  CT offers excellent  structural detail  while  MRI 

provides superb functional information without the risk of radiation.  The se 

modalities now offer  a robust  and in-depth diagnostic approach for  the 

investigation of  patients with suspected pulmonary hypertension.   

This document explores the role of  MR and CT imaging methods in investigating 

patients  with pulmonary vascular disease and different aspect  of lung disease .  In 

particular,  subgroups of pulmonary hypertension associated with unique 

morphological changes have been closely scrutinized.  In this work the value of  MR 

angiography in patients suspected with chronic thromboembol ic pulmonary 

hypertension or unexplained PH has been explored and in the same subgroup of  

patients,  the role  of 3D MR lung perfusion as a diag nostic tool has also been 

demonstrated.  This research  has also shown that  the thoracic CT offers valuable 

prognostic information and imaging characteristics in patients  with each of  the 

major subcategories of pulmonary arterial  hypertension.  Furthermore,  the 

diagnostic accuracy and prognostic significance of  MR and CT indices for the 

detection of PH in patients with c onnective tissue disease associ ated with PH has 

been highlighted.  Finally,  the feasibility and diagnostic  quality of MRI to identify 

structural parenchymal lung changes have also been analysed and this study 

demonstrates the potential  clinical  uti l ity of  imaging high risk patients  with MRI  

in longitudinal  studies thereby avoiding the hazards of  radiation exposure.   
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1 Introduction  
 

1.1  Imaging of  the Lung and Pulmonary Vasculature  

 

Imaging of the thorax  has played a  vital  role in medicine and has  been used widely 

in the diagnosis,  management and fol low -up of patients with varied pa thologies.  

The techniques that  are commonly used in clinical  practice include the plain chest 

radiograph (X-ray),  computed tomography  (CT),  ventilation-perfusion 

scintigraphy and Positron emission tomography.  The role  of Mag netic resonance 

imaging (MRI) has predominantly  been restricted to that of  a  complementary 

imaging tool  largely in a  research setting .  This section of the intro duction gives an 

overview of  the imaging techniques routinely used for  thoracic imaging.   

1.1.1   Chest Radiograph   

 

The chest radiograph continues to be the f irst l ine imaging tech nique for 

assessment of patients with known or suspected  lung disease and provides a  

general overview of  the lung and pulmonary vasculature.  The two dimensional  

nature of a  chest radiograph  means there is  super position of  imaged structures 

over the lungs and i t  has been estimated that up to 40% of  the lungs are obscured 

on a  conventional  chest radiograph  [1].   In the last  decade ,  the digital  chest 

radiograph has replaced analog  fi lm imaging and several perceptual l imitations of  

the conventional  chest  radiograph have been overcome through newer 

applications,  detectors  and image processing and display techniques.   

Three of the  applications useful for chest imaging are  dual-energy radiography, 

temporal subtraction radiography and digital  tomosynthesis .   With dual-energy 

radiography  (figure 2) two images of different  tissue types can be genera ted and 

this results in improved differentiation of  superimposed structure s.  Temporal  

subtraction radiography  selectively highlights  the new changes on the radiograph  

by subtracting the previous radiograph of the patient  from the current one .  

Digital  tomosynthesis  is  sectional  imaging in which multiple  radiographs of  one 

region are taken at  discrete angles  and an image is  reconstructed.  These 
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applications coupled with image processing and display techniques has  improved 

conspicuity of  abnormalities  [2].     

 

 

Figure 1:  Normal plain chest Radiograph   

 

 

 

 

Figure 2:  Dual  energy radiography shows a  chest radiograph with soft tissue  
(middle) and bone density  (right)  
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1.1.2  Radionuclide imaging  

 

Ventilation-perfusion (V/Q) scintigraphy involves simultaneous imaging of  the 

distribution of pulmonary blood f low and ventilation.  Ventilation studies are 

performed after  inhalation of  Krypton or Technetium -labelled aerosol of  

Diethylene Triamine Pentaacetic acid (DTPA) or Technegas and pe rfusion studies 

are performed after  intravenous injection of radioactive technetium macro 

aggregated albumin (Tc99m -MAA).  The main clinical  application for this technique 

is  in the evaluation of patients suspected with pulmonary embolism (PE).  

However since the introduction of multidetector CT scanners there has been a 

dramatic decline in the use of this technique for investigating PE. This is  also 

compounded by the fact that  the re sults  of  V/Q scintigraphy are probabilistic  

reports  rather than definite and there are also  a high number of  “ indeterminate”  

scans requiring further investigations to confirm the diagnosis [3-5].  Superior to 

planar V/Q scintigraphy is  the single -photon emission computed tomography 

(SPECT) that provides 3D data representation and a  better contrast resolution  

(figure 4) .  Unlike planar imaging ,  there is  no overlap of  structure in SPECT and 

hence it  offers higher specificity and the “indeterminate” scans  are greatly 

reduced [6].  The documented r adiation dose for a  V/Q scintigraphy is  0 .5 to 1mSv 

and for a  SPECT scan is  1.2–2 mSv [7].   
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Figure 3:  Normal perfusion scintigraphy  

 

 

 

   Figure 4:  Axial  and coronal  SPECT  lung perfusion images  
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Radionuclide myocardial  perfusion scintigraphy offers a  method of visualizing 

blood flow to the heart and is  well  established as a  functional cardiac imaging 

technique.   It  is  performed with single  photon emission computed tomography 

(SPECT) or positron emission  tomography (PET) using radioactive material  suc h 

as thallium or technetium . Hybrid imaging methods that combine SPECT  with CT 

or PET with CT are also now available.  Studies show that  the combined scanning 

techniques such as SPECT with CT or PET with CT improve specificity for  

diagnosing coronary artery  disease and also lessen the radiation doses [8-9].   

A recent study showed 1 8 FDG-PET imaging to quantify increased cellular  

metabolism in patients with pulmonary arterial  hypertension .  They found N-

Terminal Probrain natriuteric peptide (NT -ProBNP) to correlate with 18-FDG 

uptake in the right  ventricle (RV)  in those with PH. They also found increased 18-

FDG uptake in the lung parenchyma and RV of subjects with idiopathic pulmonary 

arterial  hypertension [10].   
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Figure 5:  Myocardial  perfusion imaging examination performed with SPECT/CT, 

stress and rest  images  [9]  
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1.1.3  Computed Tomography (CT) 

 

The idea of imaging a  cross section of  the  human body on a  radiographic  fi lm was 

first proposed by an Italian  scientist Alessandro Vallebona in the early 1900s.  

Radon later came up with th e mathematical  basis for  tomographic imaging .  The 

first CT prototype was built  in 1961 by Wil liam Oldendorf .  In this prototype  an X-

ray source and a  detector that was mechanically coupled together  rotated around 

the body to be imaged.  The first  commercial  CT scanner was invented by Sir  

Godfrey Hounsfield  in 1967 at  EMI Central Research Laboratories ,  UK and Allan 

Cormack developed the mathematical  theory behind the currently used  CT 

scanners.   

CT has been the ‘workhorse’ of  thoracic imaging for  over three decades and has  

had a major impact on the evaluation of  disease of the lung and cardiovascular 

system.  

Multidetector  spiral  CT has more or less replaced axial  single-slice CT and these 

scanners have the ability to cover the entire chest in less than 5s breathhold with  

slice thickness of sub-millimetre or less [11].  With narrow collimations detailed 

display of  the pulmonary arteries down to the subsegmental  level  is  now possible 

[12].  These features  make  CTPA useful for  assessment of  various thoracic and 

pulmonary vascular abnormalities .   Hounsfield unit  (HU),  a  quantitative scale for 

describing radiodensity,  differs for  different tissue,  for example HU for air  is  

around −1000 HU and for lung is  −500HU.   

The continuous data from spiral  CT scanners  allow several methods of 2D and 3D 

image processing.  With multiplanar reconstruction  or  MPR a stack of axial  images 

are aligned to form a contiguous image and this can be reconstructed into any 

arbitrary 2D image plane.  3D image display techniques such as maximum  intensity  

projection   (MIP)  or   minimum  intens ity projection   (MINIP) display  structures  

of  interest  that   has the highest  or  lowest  intensity   than  adjacent  structures .  

MINIP is  a  data visualization method that uses all  the data in a  volume of interest 

to generate a  single two dimensional  image with the lowest  attenuat ion value on 

every view and hence  enables detection of low-density structures in a  given 

volume. Similarly MIP consists of  projecting the voxel with the highest 

attenuation value on every view . These techniques are ideal  for  depiction of  

http://en.wikipedia.org/wiki/Godfrey_Hounsfield
http://en.wikipedia.org/wiki/EMI
http://en.wikipedia.org/wiki/Allan_McLeod_Cormack
http://en.wikipedia.org/wiki/Allan_McLeod_Cormack
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pulmonary vessels (MIP) and subtle emphysema (MINIP).  Finally,  Volume 

Rendering Technique  (VRT) allows reconstruction of  a 3D model  from a 2D image 

stack.    

 

 

Figure 6:  Coronal multiplanar reconstruction of  CT pulmonary angiography shows 

bilateral  intravascular fi l l ing defects  
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  Figure 7:  Heart displayed in 3D volume rendering technique  
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Dual-energy CT  is  a  relatively new technique in which datasets  from two x-ray 

tubes operating at  dif ferent energy potentials (80 KV and 120 or 140 KV) are 

simultaneous captured [13].  Using this technique lung venti lati on or perfusion 

images can be acquired by using either intravenous iodine (perfusion) or inhaled 

gas xenon (ventilation) as  contrast agents respectively.  This method provides 

additional  clinically relevant perfusion or ventilation information in the same 

examination.  Thoracic applications  of this technique include perfusion imaging in 

patients  with suspected pulmonary embolism and xenon ventilation-perfusion 

imaging for patients with lung diseases.   C ardiac applications include cardiac 

viability,  cardiac  perfusion and myocardial  iron detection [14].  The approximate 

dose for dual energy CT is  2.70 mSv [15].   

True pulmonary perfusion imaging is  based on quantification of  tissue 

enhancement at  serial  time points after  IV administration of contrast medium.  In 

dual-energy CT the datas are acquired at  a  single  time point  and hence the CT 

assesses the pulmonary blood volume and provides a  map of lung microcirculation 

at a  given time point only [16].  In healthy people,  collateral supply from bronchial  

arteries and other  systemic vessels is  negl igible,  however in p atients with 

pulmonary hypertension there is  considerable increase in collateral supply f rom 

dilated bronchial  arteries and this  is  a  significant l imitation of dual energy CT is  

the assessment of  patients with PH especially CTEPH.  
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Figure 8 :  Ax ial  (A)  a nd sagi ttal  (B )  d ual  energy C T.  I odine ma p shows  homogenous  
perfusion s ignal  intens ity  in  k eeping with no pul mona ry  embol ism  ( attenua tion ra nge of  
−960 HU a nd −600 HU ) [17]  
 
 

 

 

Figure 9:  (a)  C T ( l ung window) s hows s evere bul l ous emphys ema es pecial l y  in the l ef t  
upper lobe ( *)  ( b)  Ima ge from xenon venti la tion C T shows a  vent i lat ion defect  in the a rea  
of  emphys ema ( *)[13]  
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Cardiac gated CT techniques mini mises imaging artifacts caused by cardiac motion 

and improve temporal resolution of  the images.  The imaging data from the same 

point in the cardiac  cycle at every heart beat are then combined together to create 

a 3D volume for each desired cardiac phase.  

High Resolution Computed Tomography (HRCT) is  commonly used to evaluate 

diffuse infi ltrative lung disease.  By using a thin -section CT with narrow 

collimation,  smaller  f ield of view and a  higher spatial  resolution (edge -enhancing) 

algorithm,  HRCT provides ve ry fine architectural details  of  the lung morphology 

up to the level of  pulmonary lobules.  

Lastly ,  computer-aided diagnostic or  CAD tools provide a computer output to 

assist in CT image interpretation by improving the accuracy and consistency of 

radiological  diagnosis and also by reducing the image reading t ime.  
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Figure 10 :  (A) Bilateral panlobular emphysema, (B) bronchiectasis  and (C) fibrosis  
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Figure 11:  Ground glass distribution i n panlobular distribution (A) and 

centrilobular distribution ( B) 

 

1.1.4  Invasive pulmonary  angiography 

 

In recent years  digital  subtraction angiography  (DSA) has replaced conventional 

X-ray angiography.  This modality was previously considered to be the  definitive 

diagnostic test for im aging the pulmonary vasculature and  some centres  consider 

it  to be the ‘gold standard ’  in the diagnosis  of  pulmonary vasculature disorders 

such as chronic thromboembolic disease and pulmonary arteriovenous 

malformations [18].  With the advent of  non-invasive modalities  such as  CT and MR 

pulmonary angiography which provide complementary structural and function 

information,  DSA is  increasingly being confined to image guided interventions and 

specialist pulmonary vascular centres .  It  is  performed following injection of  

iodinated contrast agent usual ly using a 7-French catheter usually via internal  

jugular approach.  The radiation dose with this technique is  approximately 6 mSv 

compared to 4 mSv for a CTPA [19] .   

The main disadvantage of  this technique  is  that the acquisition of high-quality 

images and the interpretation of  angiograms  can be  challenging.  In addition,  this 
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is  an invasive catheter examination associated with local  complications and a 

quoted mortality of   0.5% [20].  

 

 

   Figure 12:  Digital  subtraction angiography  
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1.1.5  Magnetic Resonance Imaging  

  

This section gives  a brief outline of  the qualitative and functional information that  

are possible  with cardiac and pulmonary MR imaging,  details  of  which are 

elaborated in section 1.2.5  of  Introduction (under MRI) and in section 2.7  of  

Methodology.  

The diagnostic  potential  of  MRI was first  suggested by Damadian in 1977 w ith 

reports that  cancerous tissue can be differentiated from normal  tissue using MRI  

[21].  This motivated the development of  MRI for  medical use.   

The inherent excellent soft-tissue contrast with superior  temporal and spatial  

resolution has  led cardiac MRI to occupy a  valuable niche in the diagnosis of 

various congenital  and acquired cardiovascular disorders .  These include imaging 

of the pericardium in constrictive cardiac syndromes,  defining the anatomy in 

congenital  heart  disease  and characterisation of cardiac tumors .   

Cardiac MRI  offers global and regional  analysis of ventricular  morphology and  

function such as  the ventricular volume, ejection fraction and ventricular wall  

motion.   Flow velocit ies and volume of  blood passing thr ough vessels or cardiac 

valves  can be quantif ied by encoding the MRI signal phase for  velocity and this 

technique (phase contrast MRI)  allows quantification of cardi ac  output and intra-

cardiac shunts .  Using contrast enhancement techniques assessment of  myocardial  

perfusion and myocardial  viability is  made feasible .  In MRI,  the blood can  be made 

to appear both darker and lighter compared to surrounding tissue which assists in 

structural  analysis of  the heart  and pulmonary vasculature.  

3D contrast enhanced MR angiography is  most commonly applied for imaging the 

pulmonary vasculature.  This technique uti lises the T1 shortening effect  of  

gadolinium chelate contrast  agents  and by combining with parallel  imaging 

technique and high gradient  strength system the pulmonary vasculature can be 

imaged in a short breath -hold time.  A high spatial  resolution can be achieved by 

following a  monophasic single breath -hold protocols or  by using  time resolved 

multiphase sequence  to study regional haemodynamics and perfusion .   
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MRI is  also used as a  problem solving tool in the assessment  of mediastinal and 

chest wall  abnormalit ies particular ly to evaluate tumours or lesions for 

mediastinal or  chest  wall  extension [22].   

MR imaging for the assessment of the lung parenchyma is  challenging .  This is  

principally because of the  poor inherent  proton density of  normal lung tissue 

resulting in low signal to  noise ratio (SNR).  Secondly,  there is  degradation of the 

signal  from the lung parenchyma due  to T2* dephasing from magnetic 

susceptibility gradients at th e air-soft  tissue interfaces [23] .  Finally suboptimal 

image quali ty also results from c ardiac pulsation and breathin g motion.    
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1.1.6   Radiation concerns  

 

There are several  ways to quantify radiation exposure and the most commonly 

used measurement is  the Effective dose .  Effective dose is  an estimation of the 

whole-body dose that  would be required to produce the same risk as the partial-

body dose that was actually delivered in a  localized radiologic procedure  [24] .  

The below table gives the estimated effective doses for various imaging 

investigations related to the thorax.    

 

Table 1: Comparison of effective doses  

Procedure  Effective Dose(mSV)  

Chest radiograph  0.05 –  0.1  

V/Q scan  1.2 –  2.0  

Q scan 0.8 -  1  

High resolution CT with 10mm intersection gap  0.7 

Chest CT low dose  1.5 

SPECT lung perfusion imaging  2-  3 

Digital  pulmonary angiography  6.0 

Conventional  chest CT/ CTPA  7.0-  12 

Annual background radiation dose  2.5 

           [2 4 -2 6 ]   

 

Advances in imaging techniques have  revolutionised medical imaging and in the 

last 20 to 30 years there has been a considerable increase in the number of  

imaging investigations performed.  Since the turn of  the century there has been a  

two-fold increase in the number of CT examination s [24] and CT alone accounts 

for around 68% of  the total  radiation dose from diagnostic imaging [27].   

This  level of  increase in radiation exposure  from diagnostic radiology  is  of  a  

growing concern particularly in children,  pregnant mothers and patients  needing 

frequent imaging  for therapy fol low up for example .  I t  is  well  established through 

epidemiological  and experimental evidence that  exposure  to ionizing radiation ,  
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even at  low doses,  is  l inked with  the development of  leukaemia and solid cancers  

[28].  According to a risk-model  developed by the Biological  Effects of Ioni zing 

Radiation (BEIR) VII   ‘one individual in 1000  would develop cancer from an 

exposure to effective dose of 10 mSv and one individual  in 100 persons would be 

expected to develop cancer from 100 mSv ’  [29].  USA based studies  have also 

estimated that  1%–2% of al l  cancers  in the future  will  be caused by CT 

examination [30-31].   Although no prospective epidemiologic study  that has  

quantified  adverse effects of low dose radiation exists up-to-date,  the above 

reports show the extent of radiation concern.   Radiation exposure has also been 

associated with increased risk of  cardiovascular disorders and benign tumors 

[29].    

A commonly encountered scenario in clinical  practice is  analysed below from the 

radiation dose point  of view.   A pregnant woman may present  with a  suspected 

Pulmonary Embolism (PE) and V/Q scintigraphy  and CTPA are among the 

investigations to rule  out PE.  The fetal  radiation exposure f or CTPA varies from 

0.003-0.13 mSV with the additional  dose to maternal breast  tissue  [32].  With V/Q 

scan the whole-body dose is  lower than CT (1.2 –2.0 mSv),  however the estimated 

dose to the fetus from a V/Q scanning is  three times higher than for CTPA ( 0.1-

0.37 mSV) [33-34].  The risk for maternal  cancer is  and the risk to the fetus is .  

This example gives an idea of the radiation exposure and highlights the need for 

alternative radiation free modality for high risk p opulation.  This is  the motivation 

for much of the work presented in this thesis .   

As the growth in CT utilization increase  and the concern about the population 

dose from CT began to be expressed and subsequently newer dose reduction 

strategies  have emerged.  Filtered back projection ,  iterative reconstruction 

algorithm and adjusting KV based on patient size are few such techniques.  Of  

these dose reduction methods  the most noted is  the iterative reconstruction 

which allows dramatic  improvements  in image quality [35].  

 

  

http://www.ajronline.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=keywordsfield%3A(%22filtered+back+projection%22)
http://www.ajronline.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=keywordsfield%3A(%22iterative+reconstruction+algorithm%22)
http://www.ajronline.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=keywordsfield%3A(%22iterative+reconstruction+algorithm%22)
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1.2 Overview of Pulmonary hypertension  
 

1.2.1  Introduction  

 

Pulmonary hypertension (PH) is  a debilitating condition of the pulmonary 

vasculature  and was f irst described in 1891 by a  German physician E.  Romber g 

when he noticed the thickening of the pulmonary artery in the absence of  heart  or  

lung disease at  autopsy .  It  is  now a collective term used for a  group of disorders 

that result in elevation of  the pulmonary artery pressure  eventually leading to 

right ventricular dysfunction.  According to the current internationally agreed 

guidelines,  PH is  defined as  an increase in mean pulmonary  arterial  pressure 

(PAP) of at  least  25 mmHg measured at  right heart  catheterization [36].   

The pathogenesis of pulmonary  arterial  hypertension (PAH) is  complex and has  

been attributed to  several  factors.  Three basic mechanisms; vasoconstriction,  

remodelling of  the pulmonary vessel  wall  and thrombosis [37] contribute to 

dysfunction of  the pulmonary vascular endothelium , with an in balance of 

pulmonary vasoconstrictors and vasodilators resulting in an increase the 

pulmonary vascular resistance (PVR).   

According to a USA  National  Institutes of  Health   registry and published in 1987 , 

the annual   incidence  of   primary  PH now known as  idiopathic pulmonary arterial  

hypertension (IPAH)  was  1–2 cases  per  million population  [38].  The French 

national registry recorded data from 17 French c entres between 2002 and 2003  

quoted an annual  incidence of  pulmonary arterial  hypertension (P AH) as  2.4  cases 

per million population [39].  More recently the incidence of  PAH in Europe  was 

estimated at  7.6  cases per million population and this is  based on the data from 

Scotland and other European countries  [40].   
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1.2.2  Classification  

 

A variety of  disorders with diverse aetiology can result  in PH and the 

classification of pulmonary hypertension has undergone a  series of changes over 

the years [41].  Initial ly it  was  classified into two simple categories,  primary PH  

and secondary PH depending on whether  a  cause was identified.  The most recent 

classification was proposed  during the 4 t h  world symposium in Dana point  in 2008 

to group together different conditions with similar clinical  features,  

pathobiological  process  and therapeutic approaches .  This  classification is  shown 

in table  2 [42].  
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Table 2: Updated Clinical  Classification of Pulmonary Hypertension from 4 t h  World 

symposium (Dana Point,  2008)  

 
1 Pulmonary arterial hypertension (PAH) 
1.1 Idiopathic PAH 
1.2 Heritable 
1.2.1 BMPR2 
1.2.2 ALK1, endoglin (with or without hereditary hemorrhagic telangiectasia) 
1.2.3 Unknown 
1.3 Drug- and toxin-induced 
1.4 Associated with 
1.4.1 Connective tissue diseases 
1.4.2 HIV infection 
1.4.3 Portal hypertension 
1.4.4 Congenital heart diseases 
1.4.5 Schistosomiasis 
1.4.6 Chronic hemolytic anemia 
1.5 Persistent pulmonary hypertension of the newborn 

 
1' Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary   
hemangiomatosis (PCH) 

 
2 Pulmonary hypertension owing to left heart disease 
2.1 Systolic dysfunction 
2.2 Diastolic dysfunction 
2.3 Valvular disease 

 
3 Pulmonary hypertension owing to lung diseases and/or hypoxia 
3.1 Chronic obstructive pulmonary disease 
3.2 Interstitial lung disease 
3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 
3.4 Sleep-disordered breathing 
3.5 Alveolar hypoventilation disorders 
3.6 Chronic exposure to high altitude 
3.7 Developmental abnormalities 

 
4 Chronic thromboembolic pulmonary hypertension (CTEPH) 

 
5 Pulmonary hypertension with unclear multifactorial mechanisms 
5.1 Hematologic disorders: myeloproliferative disorders, splenectomy 
5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis: 
lymphangioleiomyomatosis, neurofibromatosis, vasculitis 
5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 
5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on dialysis 
 

            [4 2 ]  
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1.2.3  Pathophysiological  imaging characteristics  

 

The right  ventricular function  and mechanics  play a central role in PH and 

determine the patients’  capability to cope with the disease.  The normal  pulmonary 

vascular bed is  a low pressure syste m with low vascular resistance.  In patients 

with PH pressure is  chronically raised and increases the afterload to the right  

ventricle (RV).   At this stage the RV undergoes remodelling with adaptive 

hypertrophy of  its  wall  and attempts  to counteract  the inc reased afterload by 

increasing systolic  RV contraction.   

This process ,  however,  cannot be sustained and eventually the RV decompensates.  

The RV begins to dilate and the normal thin walled ‘crescent’  shape cavity is  

replaced by a  dilated ‘spherical ’  RV.  The RV contracti lity falls  and there is  an 

increase in RV volume. Dilatation of the RV chamber leads to di latation of  the 

tricuspid annulus causing  functional  tricuspid regurgitation,  fu rther exacerbating 

dilatation.  This also shifts  the inter -ventricular septum, initially causing 

flattening and eventually shifting it  towards the left  ventricle.  The normal 

synchronous interaction of the LV and RV is  lost.  This process affects t he fi l l ing of  

the LV and further compromise s the ventricular perfusion.  The impairment in RV 

perfusion further affects the RV function and the vicious cycle eventually ends in 

RV failure and eventually death .   

In patients with pulmonary arterial  hypertension r emodelling of small  pulmonary 

arteries with proliferation of  endothelial  cells  a nd smooth muscles play a  major 

role in the pathogenesis  of the disease [43].  This abnormal  prol iferation of 

endothelial  cells  results in plexiform lesions [44].   

The exact  pathophysiology of  chronic  thromboembolic pulmonary hypertension 

(CTEPH) sti l l  remains unclear.  I nitially it  was thought to be associated with 

obstruction in larger pulmonary vessels from pulmonary emboli sm. More recently 

it  has been suggested that  CTEPH may be the result  of  primary arteriopathy and 

endothelial  dysfunction that causes in -situ  thrombosis in the lung [45-47].  This 

theory explains why majority of patients with CTEPH have no history of  acute PE 

[48].   
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1.2.4  Clinical work-up of  patients with suspected pulmonary hypertension  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

PRESENTATION 

INVESTIGATION   

CLASSIFICATION   

PROGRESSION   

 Symptoms- fatigue, chest pain, dyspnoea, syncope, 

non specific symptoms 

 Screening 

 Incidental finding 

  

 ECG 

 ECHO 

 Lung function test 

 Exercise testing  

 Blood tests  

 Imaging- Chest radiograph, CT, V/Q scintigraphy, MRI  

 Right heart catheterization 

 

 

  

 History  

 Exercise testing  

 Blood tests  

 Imaging- chest radiograph, CT, V/Q scintigraphy, 

MRI  

 

 Right heart catheterization 

 MRI 

 Exercise test  

 Lung function tests  
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1.2.5  Imaging techniques 

 

Imaging plays a  central  role  in the assessment of patients with PH as it  helps  to 

confirm diagnosis,  clarify clinical  subgroup and determine the underlying cause 

for PH. More importantly,  it  also evaluates  degree of  ventricular  dysfunction and 

extent of haemodynamic impairment ,  thereby providing valuable information on 

severity of the disease and  aids in non-invasive follow up that is  reproducible.  

This section gives  an outline of  imaging findings seen in patients with PH.  

  

 

1.  CHEST RADIOGRAPH 

  

 

 

2.  V/Q SCINTIGRAPHY 

  

 

3.  CT  

 

 

 

 

4.  MRI 

  

Enlarged pulmonary arteries  

Cardiomegaly  

Non specif ic f indings  

 

Perfusion 

defects  

 

Vascular changes  

Cardiac changes  

Lung changes  

 

Mainly useful  to identify 

CTEPH, PAH-CTD, PH-

Lung, PAH-congenital   

Helpful  to rule 

out CTEPH  

Morphological cardiac changes  

RV functional assessment  

Pulmonary artery Angiography  

Haemodynamic quantif ication  

Perfusion  
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Right heart catheterization:  

The current ‘gold standard’ method for assessing P H is right heart catheterization 

(RHC) and based on RHC measurement PH is  defined as mean pulmonary artery 

pressure (mPAP) greater than or equal  to  25 mmHg [42] .  RHC is  performed using a 

Swan-Ganz catheter guided into the right s ide of the heart either via  the internal  

jugular vein or femoral vein  approach.  Pressure measurements a re made at the 

level  of  the right  atrium, right  ventricle  and pulmonary artery.   

Pulmonary capillary wedge pressure (PCWP) is  measured by occluding the distal  

branch of the pulmonary artery with the catheter tip which is  then assumed to be 

reflective  of left  atrial  pressure.   

Fick and thermo-dilution are two methods of measuring cardiac output .  Thermo -

dilution is  an indicator dilution method and is  based on the principle that when an 

indicator dye is  added to circulating blood, the rate of blood flow is  inv ersely 

proportional  to the change in concentration of  the indicator dye over time. The 

Fick method is  based on principle  that  the rate of  oxygen consumption is  a  

function of rate of  blood flow  and the rate of oxygen picke d up by the red blood 

cells .  In this method the oxygen concentration of  the venous blood and the 

arterial  blood is  used to calculate the  oxygen consumed over a given period o f 

time.  Pulmonary vascular resistance (PVR) is  calculated as follows using 

measurements made at RHC.  
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Vasoreactive  testing determines how much the pulmonary blood vessel  relax over 

a brief  period of  time and its  main purpose is  to identify patients who might 

respond favourably to calcium channel  blockers.  It  also has  prognostic v alue as 

patients  who have significant acute vasodilator responses have a better prognosis 

than non-responders.  Medications used to perform acute vasodi lator testing 

include inhaled nitric  oxi de and intravenous epoprostenol .  A drop in mean 

pulmonary artery pressure of at  least  10 mm Hg (or 20%) to below  40 mm Hg is  

considered significant as suggested by  the American College of Chest Physician 

Guidelines.   

During RHC a left-to-right shunt may be also be detected and localized if  there is  a  

significant  step-up in blood oxygen saturation.  This is  performed by measuring 

the oxygen saturation in blood samples  drawn sequentially from the pulmon ary 

artery,  right  ventricle,  and right  atrium, superior and inferior vena cava.   

Biomarkers:  

Blood biomarkers  have proven to be  strong non-invasive tools in the assessment 

of patients with PH.  The most importan t biomarker is  brain natriuretic  peptides 

(BNP) and has been widely evaluated for its  usefulness in the assessment of RV 

function.  NT-proBNP is  the preferred molecule for an alysis as it  has a longer half -

li fe and superior stability.  I t  has  been shown to correlate with the RV systolic  

dysfunction in patients with PAH and has  proven to be a  strong predictor of  

adverse outcome [49] .  Other  markers with potential  diagnostic  and prognostic 

sensitivity include Troponin T,  endothelin,  inteleukins,  osteoprotoglycin and uric 

acid [50] .    

 

Chest radiograph:  

Chest radiograph y is  routinely performed in al l  pa tients presenting with  cardio-

respiratory symptoms . However i t  is  usual ly at a  later stage of the disease process 

that typical  radiographic changes  of pulmonary hypertension become apparent.   

These include dilated central pulmonary arteries with pruning of  peripheral 

branches and cardiomegaly  specifically ,  r ight-sided chamber dilatation  [51].  

Several  non-specific  features such as lung disease  are also evident on a chest 

radiograph and is  helpful in  pointing towards a particu lar subtype of pulmonary 

hypertension.   
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 Figure 13:  Chest radiograph showing dilated pulmonary arteries  

 

 

Ventilation perfusion  scintigraphy:  

Ventilation perfusion (V/Q) scintigraphy has traditionally been used to rule out 

CTEPH in patients suspected with pulmonary hypertension.  Mismatched ‘wedge 

shaped’ or segmental  perfusion defects diagnosed using  modified PIOPED criteria  

is  classically seen in CTEPH [52-53].  Studies  have shown that  as a simple 

screening tool  perfusion scintigraphy has a very high negative predictive value  

(98%) [54],  but a  large proportion of the scans are indeterminate and the 
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examination becomes inconclusive.  V/Q scintigraphy  also understates the extent 

and severity of  hemodynamic dysfunction  in CTEPH [55].   

Patients with idiopathic pulmonary arterial  h ypertension (IPAH) sometimes 

demonstrate ‘mottled’ patchy subsegmental areas of reduced perfusion that are  

non-segmental  in distribution  [56].  These f indings  however are non-specific  to 

IPAH as they also occur with connective tissue disease ,  pulmonary veno-occulsive 

disease and pulmonary vasculitis  [57].  V/Q scintigraphy is  of  l imited value in 

patients  with lung disease as the distorted lung architecture obscures the pattern 

of perfusion defects.   

 

Computed  Tomograph y:  

 

 

 

 

 

 

 

VASCULAR SIGN 

Pulmonary artery size 

Pulmonary artery aorta ratio 

Dilated bronchial and non-bronchial collaterals 

Pulmonary artery distensibility (ECG gated)   

 

CARDIAC SIGN 

Right to left ventricle ratio 

Right ventricle wall thickness  

Dilated right atrium and ventricle 

Configuration of the interventricular septum 

 

PARENCHYMAL SIGN 

Ground glass lung nodules  

Mosaic pattern of lung perfusion  

Pulmonary infarction 

Pulmonary haemorrhage  

Features of lung disease Eg emphysema 
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Vascular  signs:   

A well  established sign of  pulmonary hypertension is  the size of pulmonary artery  

(PA).  This  sign has been exhaust ively studied and a  transverse PA diameter of  

greater than 29 mm on axial  CT has a  very high positive predictive value (97%) 

for identifying PH  [58].  Similarly a  larger  pulmonary artery diameter compared to 

the adjacent ascending aorta (pulmonary artery -aorta ratio  of  greater than 1)  is  

also a sign of  PH. This measurement has bee n shown to correlate,  to  a  varying  

degree,  with mean pulmonary artery pressure and pulmonary vascular resistance  

(mPAP r=0.626,  p=0<.0001) [59] .  Revel  et  al  analysed  ECG gated-cardiac CT and 

showed decrease in the  distensibility of  the main pulmonary artery was not only a  

marker of  PH but also strongly correlated with the severity of the disease  [60].  In 

PH, there is  increase d blood flow in the bronchial  and non-bronchial  arteries and 

this shunting cause vessel  dilatation.  Dilated bronchial ,  perihilar and mediastinal 

collaterals  are commonly seen in patients with CTEPH,  IPAH and PAH associated 

with congenital  heart  disease.  The classical  CTPA findings of CTEPH are m ural  

thrombosis ,  stenosis ,  occlusion,  post  stenotic dilatation,  webs and bands and 

calcification in the pulmonary arteries.  In CTEPH, patients with dilated bronchial  

arteries show significantly better outcome and lower pulmonary vascular 

resistance following pulmonary endarterectomy compared to patients without 

dilated bronchial  vessels [61].  Another distinctive CT vascular s ign in patients 

with Eisenmenger syndrome is  presence of neovascularity which are tiny,  

serpiginous intrapulmonary vessels [62].   
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Figure 14:  Dilated  pul mona ry  a rterial  trunk  -  a  typical  feature of  
Pul mona ry  hypertension  

 

 

Cardiac  signs:   

PH related effects  on the heart,  which are readily appreciated on a standard CT, 

are rarely seen in the early stages of  the di sease.  Features of right ventricular 

compromise that are evident on CT include dilatation of the right sided cardiac 

chambers,  hypertrophy of  right ventricle (defined as  wall  thickness of more than 

4 mm) [63],  and paradoxical bulging of  the interventricular septum towards the 

left  ventricle  [64-65].  Reflux of  contrast into the inferior vena cava and hepatic 

veins on contrast  enhanced CT is  considered to be a marker of t ricuspid 

regurgitation.   A semi quantitative system to grade tricuspid regurgitation  on CT,  

devised by Groves et  al ,  showed good correlation with  RHC derived systolic  

pulmonary artery pressure (r=0.69,  p<0.001) [66].  Finally,  features of left  
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ventricular failure such as pleural and pericardial  effusions and i nterstitial  

oedema and of  right  ventricular failure such as  ascites and hepatic congestion are 

also evident on CT.  

The use of ECG gated -cardiac CT allows more accurate quantification of  

ventricular function.  Revel  et  al  analysed RV outflow  tract  and quantified RV 

shortening and myocardial  thickness on a  cardiac-gated CT and showed significant 

difference between patients with and without PH [60].  Simon et  al  quantified 

regional RV wall  hypertrophy and concluded that  there are signifi cant phenotypic 

abnormalities  in the right ventricle  in patients with PH even in the absence of  

overt  hemodynamic RV decompensation  [67].  

 

 

 

 F igure 15:  Dilated  r ight  a trium  a nd ventric l e  with  pos terior  dis plac ement  of  
interventricula r  s eptum a nd hypertrophy of  the R V free wal l   
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Parenchymal  signs:   

Ground glass nodules ,  defined as areas of  increased attenuation that  does not  

obscure vessels ,  is  a documented finding in patients  with PH [68-69].   The 

histology of these ground glass changes is  poorly understood; one study in 

patients  with Eisenmenger’s  syndrome demonstrated centrilobular ground glass 

opacities  (GGO) to correlate with dilated capillary networks in alveolar spaces  

[62]  while another isolated study showed them to represent cholesterol 

granulomas [70].   The distribution of  GGO varies  in PH.  The GGO are seen in 

patients  with IPAH and also been described in patients with pulmonary veno -

occulsive disease and pulmonary capillary haemang iomatosis .  Interesting,  in these 

group of patients  centrilobular GGO have been also shown to correlate with poor 

therapeutic outcome [71].   

Other lung parenchymal changes such as pulmonary inf arction,  intrapulmonary 

haemorrhage and segmental mosaic pattern of  lung attenuation are seen in high 

proportion of  patients with CTEPH and congenital  heart  disease associated PAH  

than in other forms of PH  [72].   
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Figure 16:  Centrilobular pattern of ground glass nodules  
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Cine cardiac imaging  
MR angiography   

Volumetric  

Ventricular mass estimation  

RV Shortening  

Interventricular septum 

Delayed myocardial 

enhancement  

 

MRI:  

MRI is  considered as the gold standard for functional and morphological 

assessment of the heart.  The strength of cardiac MRI includes superior spatial ,  

temporal and contrast resolution .  The unlimited spatial  orientation  and 3D data 

information of MR is  similar CT which has high spatial  resolution and MPR image 

reconstruction.  Moreover i t  is  non-invasive,  does not  involve ionizing radiation 

and is  easily reproducible.  So it  is  not surprising that  t here has  been a  growing 

interest  in i ts  uti l ity as a diagnostic and prognostic  tool  in PH [73].  There are  

several sequences involved in imaging patients suspected with PH and each of 

these can provide haemodynamic and structural insight  into the disease process.  
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Ventricular volumes  and eject ion fraction  can be accurately calculated with cine 

cardiac imaging and these MR measurements reflect  RV function in patients with 

PH [74-75].  The prognostic importance of these measurements was  demonstrated 

in one study which showed large RV volume (RV end -diastolic  volume index ≥84 

ml/m2) and low stroke volume (stroke volume index ≤25 ml/m2) independently  

predicted mortality [76] and in another  which proved stable or increase in RV 

ejection fraction (RVEF) (Hazard ratio of  0.929;  p<0.014) t o be associated with 

survival  [77].   

Right ventricular mass  is  routinely measured in patients  with PH and ventricular 

mass index (VMI),  which is  the ratio of  right and left  ventricular end diastolic  

mass,  has been correlated with pulmonary vascular resistance and mean 

pulmonary artery pressure  [78-79].  A study by Hagger et  al  also suggested 

prognostic significance of high VMI in subset of patients with pulmonary arterial  

hypertension associated Systemic Sclerosis  [78].   

Simple semi-quantitative assessment of  RV function can be made by measuring the 

longitudinal  and transverse shortening of  the RV . Kind et al  concluded that 

compared to longitudinal motion  (TAPSE-tricuspid annular systolic  excursion),  

transverse motion of the mid RV show a stronger relationship with RVEF  (R2=0.70,  

p<0.001) [80].  A more recent study on the other hand showed improvement in the 

RV function following vasodilator therapy occurred solely with improvement of 

the longitudinal  RV motion [81].  

As a result of  reduc tion in the  transeptal pressure gradient  in patients with PH 

there is  f lattening or paradoxical motion of the interventricular septum  and 

several groups have qualitatively and quantitatively examined this finding.  The 

paradoxical shift  of  the interventricular septum during  diastole was show n to 

have a  higher sensitivity (100%) for diagnosing PH compared to systole  

(sensitivity of  86%)  when the mean pulmonary artery pressure was ≥30 mmHg 

[74].  Groups who quantified  the configuration of interventricular septum 

concluded that MR–derived curvature ratio (inverse of  the radius) reflects  RV 

systolic  pressure [82] and the curvature of the interventricular septum strongly 

correlate with systolic   pulmonary artery pressure [75].   

Imaging of the myocardium 10 -20 minutes  after gadolinium administration allows 

assessment of the myocardium  for delayed enhancement.   Delayed myocardial  
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enhancement  (DME) occurs at the RV insertion points and is  a  frequent finding in 

patients  with PH from varied etiologies [83].  I t  is  postulated that in PH there is  

exaggerated disarray of myocardial  f ibres  at the RV insertion points an d DME 

occurs as a result  of  pooling of  blood at  the se sites [84].  The extent  of DME has 

been shown to correlate with MR  derived RV indices such as VMI ,  mean pulmonary 

artery pressure,  RVEF [85-86].  Sanz et  al  developed and validated a  simple visual 

score for the  extent of DME and showed results that  were in agreement with 

previous studies [83] .  The presence of  DME at  the RV insertion points in patients 

with PH is  also a marker for more advanced disease and poor prognosis according 

to a recent study in 58 patients with PH [84].   

Valuable quantitative data  can be derived through phase contrast imaging  of  the 

pulmonary artery.  These include pulmonary artery blood flow,  velocity and areas 

and also evaluation of cardiac function  such as the stroke volume .  A study by 

Sanz et  al  demonstrated that  both PA average velocity (of  11.7 cm/s) and 

minimum PA area (≥6.6 cm2) had a high sensitivity (93%) for detecting PH and 

also found excellent correlations between PA average velocity and mean PA 

pressure,  systolic  PA pressure and pulmonary vascular resistance (r of −0.73,  

−0.76,  and −0.86)  [87].  Blood flow pattern in the main PA differs in patients with 

PH compared to healthy people and early onset of  retrograde flow in the PA is  

thought to  be characteristic  of  PAH [88].  Abnormal  stiffness in the PA is  well  

recognised in PH and  has been suggested to be a sensitive indictor of  early PH 

[87].  These studies also suggest  that pulmonary artery stiffness (defined by 

relative area change) relates to  severi ty of  disease [87] and might be useful 

prognostically  [89].   

Pulmonary flow artefacts occur  as a  result  of  slow flowing blood in the PA and are  

appreciated on a double inversion recovery black blood MR sequence.   Our group 

has demonstrated this  to be a  valuable  diagnostic as  well  as a  prognostic  tool  in 

the assessment of  patients suspected with  PH [90].   

3D contrast enhanced MR angiography  is  a well  established tech nique for imaging 

the pulmonary arteries .  The usefulness of  contrast-enhanced MRA in the 

diagnostic work-up of CTEPH has  been studied  and the typical f indings  of CTEPH 

such as the presence of intraluminal  webs and bands,  vessel occlusions ,  and 

organized central  thromboembolic material  can be readily appreciated  on MRA 
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[91-92].  In one study there was 86% agreement between MR angiography and DSA 

and/or CT angiography [93].  However MRA is not reliable for  the diagnos ing 

CTEPH at  the subsegmental  level  as shown by the results of  a small  number of  

studies [91-92].  Dynamic contrast  enhanced 3D MR  perfusion imaging  tracks the 

dynamic passage of  contrast  through the pulmonary circulation and has  been 

quantitatively used to assess the severity of PH [94-97].  A recent study by Swift et 

al  demonstrated its  prognostic  significance in patients with PAH [98].  Example of  

the MR images can be found in chapter 2.   
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1.2.6  Imaging characteristics   

A systematic approach is  required to e valuate patients presenting with features  of 

pulmonary hypertension.  Besides the typical features of  PH described in the above 

section,  there are certain characteristic  features on imaging that point towards a  

certain clinical  subgroups of the disease.   

1.2.6.1  Group 1:  Pulmonary Arterial  Hypertension  

Idiopathic Pulmonary arterial  hypertension (IPAH) :  Patients  with IPAH typical ly 

present with enlarged central pulmonary trunk often accompanied by dilated right  

and left  main branches.   The pulmonary vessels are usua lly dif fusely tortuous with 

abrupt  tapering (pruning) of  segmental  and sub-segmental arteries.  Calcification 

and occasionally wall  adhe rent thrombotic  material  are  seen in patients  with 

severe longstanding disease  [99].  Lung neovascularity due to dilated bronchial  

and non-bronchial  collaterals are less commonly seen in IPAH when compared to 

CTEPH [100].  

 

 

 F igure 17:  B ilateral  c entri lobular  nodul es  due to focal  perivascula r  areas  of  hyper 
attenua tion in IPAH  
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PAH associated with congenital  heart  disease: PH may d evelop from a persistent  

left-to-right shunt and shunt reversal  (Eisenmenger syndrome) in patients with 

congenital  heart  defects.  Transthoracic echocardiography  is  usually used to define 

the anatomy of the cardiac defects;  however when transthoracic views are limited 

transoesophageal  echocardiography or TOE can accurately characterize  simple 

and complex congenital  malformations .   

A large NIH study showed that the structural change se condary to PH was solely 

related to severity of  the pulmonary artery pressure and not to  the type or size of  

the congenital  heart defect [101].  Mural  calcification in  the proximal pulmonary 

artery and neovascularity are occasional  f inding in these patients [102].  

Centrilobular ground glass nodules  are  a nonspecific  f inding commonly 

appreciated in this subgroup [72].  In patients with left -right shunt ,  V/Q 

scintigraphy can reveal early tr acer activity in the kidneys.  Phase contrast  MR I 

can on the other hand accurately quantifies the extent  of intracardiac shunt ing.   

 

 

 

Figure 18:  Axial  C T images  shows pres enc e of  di la ted  bronchia l  col la teral  a rteries  

(arrows ) i n a  pat ient  with  IPA H.  
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Figure 19:  Axial  (A) and sagittal  CT (B) images shows a  patient  with PAH 

secondary to congenital  heart disease - patent Ductus  Arterious comm unicating 

between the aorta and pulmonary trunk (A)  

 

 

 Table 3: Clinical  classification of PAH -Congenital  heart disease  

A Eisenmenger’s syndrome  

B 
Pulmonary arteria l  hypertension associated with systemic -to-pulmonary 

shunts  

C Pulmonary arteria l  hypertension with smal l  defects  

D Pulmonary arteria l  hypertension after corrective cardiac surgery  

            [36]  
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Pulmonary Hypertension Associated with Connective Tissue Disease (PAH -CTD):  

Patients with CTD are at  increased risk of  developing pulmonary arterial  

hypertension.  Amongst the patients with CTD, PAH  is  most commonly seen in 

patients  with systemic sclerosis particularly those with the limited cutaneous 

variant [103].  In patients with CTD , PH can develop secondary to  lung fibrosis ,  

pulmonary arteriopathy or from a combination of  both.  The extent  or degree of 

lung fibrosis however does not  relate to the severity of  PH. In patients  with 

systemic sclerosis ,  non-specific  interstitial  pneumonia (NSIP) is  the commonest 

pattern of interstitial  lung disease and this  is  readily recognized on HRCT. 

Dilatation of  the oesophagus is  another common finding in this group of patients  

and is  secondary to the connective tissue abnormality.   
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1.2.6.2  Group 2:  PH owing to left  heart  disease  

 

PH owing to left  heart disease is  the most common cause of pulmonary 

hypertension seen in a clinical  setting.  This is  frequently identif ied at  scr eening 

through echocardiography and t hese patients distinctly have enlarged  left  atrium 

on imaging.   Classical  left  heart  disease f indings such as  mitral  or aortic  valve 

disease or signs of previous ventricular ischemia or infarction are evident.  These 

changes are best appreciated on cardiac  MRI where the extent of the left  

ventricular dysfunction can be accurately  quantified.   Rarer c ardiac causes of PH 

such as cardiac neoplasm and atrial  throm bus can also be identi fied on CT and MR.  

 

 

  F igure 20:  Chest  radiogra ph -  mas sive ca rdiomegaly  with ma rk ed 
enla rgement  of  both  atrium a nd right  ventric l e   
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Figure 21:  Dilata tion of  the L V on the L VLA  view (A)  a nd 4  c hamber view.  C T show mitral  
valv e calc i f ica tion  a nd pl eural  ef fus ion  
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1.2.6.3  Group 3:  PH owing to lung disease  and or hypoxia  

 

PH is observed in patients  with both restrictive and obstructive lung diseases and 

the commonest of  them are chronic  obstructive pulmonary disease (COPD) and 

interstitial  lung disease (ILD).  Features  of PH in combination with lung changes  

on imaging often point towards a diagnosis of PH secondary to lung disease.  High 

resolution CT can further characteris e the lung changes  and can clarify the 

underlying lung cause of PH.  In patients with pulmonary fibrosis  and emphysema,  

pulmonary artery dilatation can occur in the absence of PH; hence pulmonary 

artery size or pulmonary artery to aorta ratio  is  an unreliable sign to predic t  PH 

in this subgroup of  patients  (Devaraj ,  Wells  et al .  2008).   
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Figure 22:  C T-classica l  fea tures of  PA H -SSc- dila ted PA and r ight  s ided chambers with 
dila ted  oesopha gus  ( red a rrow)  a nd N SIP pa ttern of  pul mona ry  f ibrosis  
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1.2.6.4  Group 4:  Chronic  Thromboembolic  Pulmonary Hypertension  

 

The diagnosis of  CTEPH is made principally through imaging.  The classical  CTPA 

findings of CTEPH are mural thrombosis ,  stenosis ,  occlusion,  post stenotic 

dilatation,  webs and bands and c alcification in the pulmonary arteries.  Mosaic 

pattern of lung perfusion,  in the absence of underlying lung disease,  is  a key 

feature of  CTEPH and is  characterized by sharply demarcated regions of  

hypoattenuation interspersed with areas  of normal  attenuation .  The 

hypoattenuation is  the result  of  hypoperfusion distal  to occlusion with 

hyperperfusion from compensatory increased blood flow [61,  68] .  Dilated 

bronchial  (diameter ≥ 1.5 mm )  and non-bronchial  collaterals and changes 

consistent with lung infarcts are frequent CT findings in CTEPH [104-105].   
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MR pulmonary angiography can clearly portray the changes in the pulmonary 

vasculature associated with CTEPH without the overlap of venous circulation [92].  

Haemodynamic sensit ive MR techniques have the potential  to quantify the 

pulmonary blood flow and regional pulmonary vas cular resistance and predict the 

surgical  outcome [94,  106] .   

On perfusion scintigraphy there is  typically one or more segmental  or larger 

perfusion defect  which is  a  well  recognised feature of C TEPH and pattern of  

defects can help differentiate  large-vessel thromboembolic PH from IPAH [107].   

Invasive pulmonary angiography shows presence of  "pouching" defects,  webs or 

bands,  intimal  irregularitie s,  abrupt vascular narrowing and  or  complete vascular 

obstruction [18],  however in the recent era it  is  not  routinely performed in most 

centres.  Dual energy pulmonary CT angiography performed by simultaneous 

acquisition of data sets at  two different kv  can generate  images of  regional  lung 

perfusion [108].  A study using this technique in CTEPH showed promising results 

with strong correlation between dual -energy CT derived perfusion and mosaic 

lung attenuation when lobar (r  > 0 .6;  n = 20; p < 0.006) and whole -lung scores 

were assessed (r = 0.77; n = 20; p < 0.001) [109].   
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F igure 23:  A xial  C T-  webs  in  the r ight  lower loba r a rter y  (A)  a nd occl usion of  the l eft  
lower bra nch in  a  pa tient  with  C TE PH  ( B)  
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Figure 24:  C oronal  rec onstruc ted C T image s hows c omp l ete occlusion of  the l ef t  lower 

lobe pul mona ry  a rtery in  the pa tient  with C TE PH  
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Figure 25:  SPE CT Perfusion scintigraphy -  bila teral  s egmental  perfus ion defec t  con s istent 

with  diagnos is  of  C TE PH  
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Figure 26:  MIP MR angiography-stenosis in  both the lower lobe branches and right 

upper lobe and occlusion of the right  upper lobar artery in a  patient  with CTEPH  
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 Figure 27:  Pulmonary angiograph shows stenosis (red arrows) with 

posstenotic dilatation in a patient with CTE PH 
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Figure 28:  Ground glass  pattern of  lung attenuation in the perihilar region 

corresponding to the areas of hyperperfusion with surrounding peripheral  

perfusion defects  
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1.2.7  Survival in  pulmonary hypertension  

 

It  is  well  recognized that outcome of PH varies widely depending on multiple  

factors.  Age,  sex,  World Health Organization functional  class,  etiology,  and 

echocardiography and catheter -derived measures of righ t ventricular 

haemodynamics  have been shown to predict outcome [39,  110-112].  Study groups 

have also attempted to derive  mortality risk scores  using the above parameters  

[113-114].   

MR is  increasingly being used as a  prognostic tool  as it  is  easily reproducible  and 

non-invasive.  Direct determinant o f  RV function from cardiac MR have been 

scrutinised for prognostic significance and factors such as  RV mass,  end diast olic  

volume, RV shortening and  stroke volume have emerged to predict prognosis  [76-

77].  More recently functional  MR parameters such as transit t ime of contrast 

through the pulmonary arteries was shown to be a  strong predictor of adverse 

outcome and MR derived pulmonary arterial  stiffness in patients with PAH  predict 

mortality  [89,  115] .  

Uncomplicated CT features such as pericardial  effusion,  mediastinal  

lymphadenopathy,  septal  l ines and ground glass opacities have also been shown to 

correlate with the risk of  treatment failure [71].   
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1.2.8  Sheffield Pulmonary  Vascular Disease Unit  

 

All  patients whose data was used in the research were seen at the Sheffield 

Pulmonary Vascular Diseases Unit.  This unit is  one of  the largest PH centres in 

Europe and is  one of the 5 dedicated PH investigation and treatment centres in 

the UK. I t  serves a  referral population o f 15 million and in the 12 months up to 

March 2012 received  over 500 referrals  and as of  31 March 2012 had 1454 

patients  with PH under its  care.  All  referred patients undergo a thorough 

diagnostic evaluation including CT pulmonary angiography,  high resolut ion CT, 

and cardiac and pulmonary vascular MR I and perfusion scintigraphy and recorded 

through a database,  the ASPIRE registry  [116] .  Ethical  approval  for analysis of  

routinely collected cl inical  data was granted by the North Sheff ield Research 

Ethics Committee (Sheffield,  UK )(Ref  06/Q2308/8) .   Sheffield Pulmonary Vascular 

Disease Unit is  lead by three  specialist  PH clinicians (Drs Kiely,  Elliot and 

Condliffe)  and has experienced radiologists  (Drs Davies and Hil l)  as a  part of  the 

multi-disciplinary te am.  

 

 

Table 4:  Number of  patients seen at each designated centres  

 

          [117]  
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2 Methodology  

The methods used throughout the thesis are described in this chapter.  Some 

methods are repeated to allow for chapters to could be read in isolation.  

 

2.1  Study population  

The study population for this thesis were identified from the ASPIRE registry 

[116].  Ethical  approval for  analysis of  routinely collected cli nical  data was 

granted by the North Sheffield Research Et hics Committee (Sheffield,  UK)  (Ref  

06/Q2308/8).   Patient consent was not required to retrospectively include 

patients  into this data.  In this registry all  consecutive  treatment naive  patients 

undergoing assessment of  suspected PH using an approach based on right heart 

catheterisation are  included. These patients under went a  standardized diagnostic 

assessment including blood tests,  exercise testing,  lung function testing,  

echocardiography, pulse  oximetry and right heart catheterization (RHC) .  They 

also undergo a thorough diagnostic evaluation  in the including perfusion 

scintigraphy,  CTPA, HRCT and MRI.  The ASPIRE registry has  very high levels of  

data completeness at greater than  90% for the vast majority of  variables  [116] .   

 

2.2  Ethics approval  

Local research ethics committee approval  (Ref 06/Q2308/8)  was granted for 

retrospective analysis of imaging techniques  and written informed consent was 

waived for retrospective studies.   

 

2.3   Patient classification 

The form of PH was c lassified according to standard diagnostic criteria [42] at a 

joint  multidisciplinary meeting  by experienced pulmonary vascular physicians and 

specialist  PH radiologists .  For patients with CTEPH,  suitability for pulmonary 

endarterectomy was decided following assessment of clinical  and radiol ogical  

data at the UK national pulmonary endarterectomy centre  at  Papworth Hospital .  A 

mean pulmonary artery pressure ≥ 25 mmHg at right  heart catheterization was 

required to establish a diagnosis of PH.  To be classified as pulmonary arterial  
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hypertension (Group 1)  the pulmonary capillary wedge pressure at R HC was 

required to be ≤15  mmHg.  

2.4  Right heart catheterization  

Right heart  catheterization was performed via  the internal  jugular vein using a 7 

French Swan-Ganz catheter by one of  3  experienced PH consultants .  Quantified 

variables  that were recorded are as follows:  pulmonary capillary wedge pressure,  

mean and systolic  pu lmonary artery pressures,  RV end -diastolic  pressure,  cardiac 

index (measured by thermodilution technique),  pulmonary vascular resistance  

and mixed venous oxygen saturation.  

2.5  Echocardiography  

Echocardiography was performed using a Power vision 8000 machine (Toshiba,  

Japan).  Right  ventricle size and the tricuspid gradient  (TG) were measured using 

the maximum velocity of  tricuspid regurgitation and the simplified Bernoulli  

equation.  

2.6  CT Imaging  

2.6.1  Image acquisition  

The CT was performed on a 64 slice MDCT scanner  (Light-Speed General  Electric 

Medical Systems, Milwaukee,  WI).   

CT pulmonary angiography :  CTPA was performed during a single breath -hold  

following  and standard acquisition parameters were used: 100 mA with 

automated dose reduction,  120 kV,  pitch 1,  rota tion time 0.5 s  and 0.625mm 

collimation.  The field of view was 400x400 mm with an acquisition matrix of  512 

x 512. 100ml of intravenous contrast  agent (Ultravist  300; Bayer Schering,  Berlin,  

Germany) was administered at a  rate of  5ml/sec.  The CTPA images w ere 

reconstructed using a  soft f i l ter to provide contiguous 0.625 mm axial  slices from 

the apex of the lung to t he diaphragm for review.  

HRCT :  1.25mm HRCT slices were also reconstructed every 10mm from the contrast  

enhanced acquisition using a high spatia l  resolution fi l ter.   
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2.6.2  Image analysis  

Pulmonary artery-aorta ratio :   The widest  short axis diameter o f the main 

pulmonary artery and the corresponding transverse d iameter of the ascending 

aorta on the same image slice were measured and pulmonary artery aort a ratio 

was derived.   

 

 

Figure 29: The pulmonary artery (PA) aorta ratio was obtained by  measuring 

the widest transverse diameter of the PA  (blue) and the corresponding 

transverse diameter of aorta  (red).  
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Right ventricle  size :   The maximum mid-transverse diameters of the right  and left  

ventricular cavities were measured in the axial  plane at  their widest points 

between the inner surfaces of the free wall  and the int erventricular septum .  This 

may lie  at different image levels .  Using these measurements the ratio  of right  to  

left  ventricle  was obtained [118]  

 

 

Figure 30: The maximum mid-transverse diameters  of the RV (blue arrow) 

and LV (left  arrow) cavities were measured in the axia l  plane at their widest 

points between the inner surfaces of the free wall  and the interventricular 

septum 
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Tricuspid regurgitat ion :   The severity of reflux of intravenous contrast  into the 

inferior vena cava (IVC) or hepatic veins was graded by a  semi -quantitative 

system proposed by Groves et al  [66].    

0 = there is  no reflux into IVC ;  1= there is  trace of reflux into IVC only  2= ref lux 

into IVC but not hepatic veins ; 3= reflux into  IVC and proximal hepatic veins  

 

 

 

Figure 31:  Grading of  tricuspid regurgitation (A) 0 = there is  no reflux into IVC,  

(B) 2 = reflux into IVC but not hepatic veins,  (C) 3 = reflux in to IVC and proximal 

hepatic veins (D)  4 = reflux into IVC and distal  hepatic veins  
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Interventricular septal  configuration :   The configuration  of  the interventricular  

septum was evaluated on a three -point scale as follows:  ‘normal’  when the 

interventricular septum is  convex toward the right ventricle ,  ‘f lattened ’   when the 

interventricular septum is straight  and ‘deviated ’  when the interventricular 

septum is convex toward the left  ventricle  [64].  

 

 

Figure 32:  A xial  C T ima ges s ho w ' normal '  interventricula r  s eptum (A ) a nd ' devia ted'  

interventricula r  s eptum with c onvexity  towa rds the l ef t  ventric le  ( B)  

 

 

 

Right Atrial  size :  For assessing the right  atrial  size on CT ,  right  atrial  length was 

measured from the centre of tricuspid annulus to the superior right atrial  wall  on 

the axial  mid-chamber view. The size of  the right atrium was also qualitatively 

scored using a simple 3 -point  visual  scale as  mild,  moderate and se vere.   
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Figure 33:  For  ass es sing the right  a tr ial  s ize  on CT,  r ight  atr ial  l ength was  

measured from the c entre  of  tr icus pid  a nnulus to  the s uperior  r ight  atr ial  

 

 

RV wall  thickness :  The transverse thickness of the right ventr icular free wall  was 

measured at the mid-chamber view from the axial  images [119] .  
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 Figure 34:  Axial  CT image shows thickening of the right  ventricular free  

 wall  (dotted line) in a patient  with IPA H.  

 

 

Lung and mediastinal  changes:  Ground glass opacity  (GGO) is  defined as increased 

opacity of  the lung parenchyma without obscuring the pulmonary vessels .  When 

GGO was present the pattern of change was noted as centrilobular,  panlobular 

homogenous,  panlobular heterogenous according to the cl assification of  Engeler et  

al  [120].  The craniocaudal distribution of the GGO was recorded as upper,  lower 

or random and the anterioposterior distribution noted as subpleural ,  central  or  

random. [71].   
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         Figure 35: Ground glass opacity in the central pattern of  distribution 

 

 

Fibrosis :  The criteria for positive inter pretation of  f ibrosis included one or more 

of the following: interlobular septal thickening,  intra -lobular interstitial  

thickening,  honeycombing and traction bronchiectasis or ground -glass opacity 

[121-122].  Interstitial  lung changes were graded based on a  grading system used 

by Gay et  al  [123] and is  outlined in table  1.  Each lung w as divided into three  

zones defined as  follows: upper zone was defined as above the aortic arch ,  the 

middle zone was defined as  between the  aortic  arch  and  pulmonary  veins,   and  

the  lower  zone  was defined as below the pulmonary veins [124].  The sum of  the 

scores for all  zones for each patient was obtai ned (a  minimum score was 0 and the 

maximum score was 30 .   
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Table 5: scoring system for grading interstitial  changes on HRCT  

  

*A dapted from Gay  et  a l  [123]  bas ed upon the  relat ive  qua nt ity  of  honeyc ombing  

 

For the purpose of  this thesis mediastinal  lymphadenopathy was considered when 

the short  axis transverse lymph node diameter greater than 10mm  and dilated 

bronchial  collaterals  was defined as transverse vessel diameter greater than 2 

mm[61].   

 

  

Score Characteristics 

0 No interstitial disease 

1 Interlobular septal thickening (no discrete honeycombing) 

2 Honeycombing involving up to 25% of the zone 

3 Honeycombing involving 25 to 49% of the zone 

4 Honeycombing involving 50 to 75% of the zone 

5 Honeycombing involving > 75% of the zone 
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2.7  MR Imaging  

 

2.7.1  Image acquisition  

 

MR imaging was performed on a 1.5 Tesla GE HDx Scanner (GE Healthcare,  

Milwaukee,  USA) with peak gradient strength 40 mT/m and slew rate 120 

mT/m/ms. An 8 channel cardiac receive array RF coil  (GE, A urora,  Ohio,  USA) was 

used throughout.  

Steady-state free precession imaging (SSFP):  

Proton imaging is  performed in the coronal  plane as  a stack of  2D SSFP images (GE 

FIESTA sequence) .  This sequence was performed in full  inspiration with a breath 

hold time of  12 seconds.  The imaging parameters are as follows: TR 2.8 ms,  TE 

1.0ms, Flip angle of 50°,  FOV=48 cm x 43.2 cm, 256 x 256 Matrix,  125 kHz 

bandwidth and slice thickness of 10mm. This sequence is  also used for scout 

images for planning the geometry of t he cine cardiac  scans.  

CINE cardiac imaging :  

Four chamber view and contiguous cine short-axis views are acquired using 

cardiac gated SSFP imaging at  end-expiratory breath-holds.  The following 

parameters are used:  20 frames per cardiac cycle,  slice thickne ss 8-10mm, FOV 48,  

matrix 256 x 256, BW 125 KHz/pixel ,  TR/TE 3.7/1.6 ms).   
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Figure 36:  L ef t  ventric l e  inflow outflow view - LIFOF  (A );  mid  cha mber short  axis  view 
(B);  4  cha mber view (C );  L eft  ventric l e  l ef t  a tr ium view -L VLA  (D) ;  r ight  atrium right  
ventric l e  inflow outflow view (E );  r ig ht  ventric l e outfl ow tract  v iew - RVOT (F)  
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Phase contrast imaging : 

Phase-contrast imaging was  performed in a plane orthogonally positioned to the 

PA trunk and through plane encoding is  used.  Th is was also performed across the 

aorta.   The sequence parameters were as follows:  TR 5.6ms, TE 2.7ms, slice 

thickness 10mm, FOV 48x28.8,  band -width 62.5kHz, matrix = 256x128,  20 

reconstructed cardiac phases and velocity encoding 150cm/s.   

 

 

Figure 37:  Ma gnitude ( A)  a nd veloc ity  ( B)  enc oded images  from  phas e contrast  MR I of  

the pulmonary a rtery  ( yel l ow a rrow) .   

 

 

Delayed myocardial  enhancement imaging :  

Delayed myocardial  enhancement imaging is  performed 10 -20 minutes following 

gadolinium injection (0.2 mmol/kg of gadolinium -DTPA; Magnevist,  Bayer,  

Germany).   The sequence parameters are as follows:  3D -gradient spoiled turbo -

fast field-echo sequence,  TR 7.7ms, echo t ime 3.6ms, slice thickness 8mm, FOV 

45x40.5,  matrix 256x224.  
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Black blood imaging : 

Black blood imaging is  a double inversion recovery sequence and the images are  

acquired at the level  of  the pulmonary arteries.  It  was performed in an axial  plane 

and is  a  cardiac gated sequence performed during breath hold.  The imaging 

parameters are as  fol lows: 8mm slice thickness,  spacing 2mm, TI1 50 ms,  TI2  551 

ms, ETL (Echo train length) 32,  BW 31.2 KHz, ASSET 2,  FOV 4s (0.9 Phase),  TE 

42ms, 256x256 matrix.   

 

 

Figure 38:  double inversion recovery black blood MRI through the 
pulmonary artery in a patient  without PH.  

 

 

 



  Methodology

 

83 
 

Dynamic contrast enhanced MR angiography:  

MR angiography:   MR angiography was performed following an injection of  15ml 

contrast  agent ensuring the total  dose of contrast  doesn’t  exceed 0.3ml/kg.  This 

scan was preceded by a timing bolus of  contrast agent (0.05ml/kg).  The sequence 

parameters used were: 3D Coronal Spoiled Gradient  Echo,  TE 1.0ms, TR 2.8 ms,  

f l ip angle of  30°,  FOV=48 cm2, 2x Asset,  300 x 200 Matrix,  125 kHz bandwidth,  

slice thickness  of 3 mm and average of 60 slices.  This was a breath -hold sequence 

acquired during inspiration.   

MR perfusion:  Contrast enhanced 3D MR lung perfusion images were acquired 

using a  time resolved 3D spoiled gradient echo sequence with view sharing 

(TRICKS) [125].  The sequence parameters  were: coronal  orientation,  TE 1.1ms, TR 

2.5 ms,  f l ip angle of 30°,  FOV=48x48cm, matrix 200 x 80,  ASSET R=2, 250 kHz 

bandwidth,  slice thickness of  10mm. This sequence was acquired during full  

inspiratory breathhold after intravenous administration of 0.05 ml/kg of  Gadovist 

(Schering,  Berlin)  injected at  4 ml/s followed by a 20ml saline flush.   
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Figure 39:  MIP MR  a ngiogra phic  ( A)  a nd coronal  3D c ontras t  enha nc ed perfusion images  
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2.7.2  Image analysis  

 

The MR images were analysed on a  MR GE Advantage Workstation 4.1.  At the time 

of the analysis the observers (SR and AJS) were blinded to the patient  clinical  

information,  other imaging findings and right heart  catheter haemodynamics.   

Volumetric  measurements:    

The contours of  the right ventricle (RV) and left  ventricle (LV) were delineate d 

manually on the cine short axis stack ima ges and processed using GE software to 

obtain RV end diastol ic  and end systolic  volume. The RV ejection fraction and 

stroke volume were subsequently derived.   

 

 

Figure 40:  Short  a xis  c ine diastol ic  (a bove)  a nd s ystol ic  ( bel ow)  im ages  us ed for  deriv ing  

volume meas urements and eject ion frac tion (s ee R OI  trac ed ima ges)  
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Ventricular mass index (VMI):  

The RV epicardial  and endocardial  borders on each end -diastol ic  short axis slice 

image were outlined.   The inter -ventricular septum was considered as part  of the 

LV. The myocardial  volume for each slice was calculated by multiplying the area of 

the RV wall  by the slice thickness.  The product of the sum total  of  the myocardial  

slice volumes for each ventricle and the density of myocardium ( 1.05 g/cm3) gave 

an estimate of RV mass.  RV mass index= RV mass/body surface area (BSA) g/m2.  

The LV epicardial  and endocardial  borders on each end -diastol ic  short axis slice 

were outlined,  LV end diastolic  mass was thus derived.  VMI was defined as RV 

mass divided by LV mass  [79].  

 

 

 

Figure 41:  R epres entat ive image showing how the epi  a n d endoca rdia l  
borders  of  the  ventric l es  a re trac ed for  meas uring  VM I  

 

Longitudinal  and transverse RV wall  motion:  

The RV longitudinal and transverse motion are  quantified by means of the 

tricuspid annular systolic  excursion (TAPSE) and septum -free-wall  distance (SFD) 

respectively by this method described by Kind et  al  [80].  These measurements are 
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obtained at  end diastole and end systole images o n the 4-chamber view.  TAPSE is  

the change in the distance  between the tricuspid annulus and RV apex.  SFD is  the 

change in the perpendicular distance between interventricular  septum and RV 

free wall  at the mid-point between the apex and the base.   

 

 

       F igure 42:  meas urement  of  long itudinal  ( TA PSE) a nd tra nsvers e RV wal l  motion  
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Configuration of the i nterventricular septum:   

The motion of  the interventricular septum was visually analysed on short -axis  and 

four-chamber views for presence or absence of paradoxical septal movement and 

are graded as normal ,  f lattened and paradoxical septal position.   

 

 

Figure 43:  Short  a xis  a nd 4 c hamber ca rdiac  v iews  s howing pa ra doxical  shif t  o f  the 
interventricula r  s eptum to  the l ef t  (red  arrows)  

 

 

Delayed myocardial  enh ancement:   

Presence or absence of delayed myocardial  enhancement was qualit atively  noted.  

Presence of  delayed myocardial  enhancement was  defined as  area of 

hyperintensity at the interventricular septum insertion points on delayed mid -

cavity short axis image following gadolinium administration .   
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2.8  Perfusion scintigraphy 

The perfusion scintigraphy images were obtained with the patient in the supine 

position fol lowing intravenous administration of technetium 99m labelled macr o-

aggregated albumin (dose of 100 -MBq; MAASOL; Amersham Health,  Vienna,  

Austria).  Scanning was performed on a gamma camera system ( GE Millennium, GE 

Infinia,  or Siemens Symbia gamma camera systems) with a  256 x 256 matrix using 

a 20% window centered over the 140 -keV energy peak.  Four standa rd images 

(anterior,  posterior,  right posterior oblique  and left  posterior oblique) were 

obtained for 500,000 to 750,000 counts each.  

 

2.9   Statistical analysis  

Comparisons of measurements between groups were performed using the 

independent t-test for continuous data and the chi -square test  was used for 

categorical  data.  ANOVA testing was employed for multiple group comparisons .  

The diagnostic  accuracy of  a test was determined by deriving the sensitivity ,  

specificity,  negative and  positive predictive value usi ng Fisher’s  exact test.   

Diagnostic strength for the identification of patients with PH was assessed using 

receiver operated characteristic  (ROC) curve analysis  and was measured by the 

area under the ROC curve and a  value closer to  1.0 was considered to ha ve a  

greater the diagnostic uti l ity.  To determine the correlations between continuous 

variables  Spearman’s  correlation coefficient was used .   Kappa statistics were used 

to determine the extent of  intra and inter -observer agreement for categorical  

data.   

Event (death)-free survival  from date of diagnosis was estimated using the 

Kaplan–Meier method with comparison between groups performed by the log -rank 

test.  Cox regression analysis was used to assess individual predictors of survival .   

Software  

The statistical  analyses were performed in GraphPad Prism 5.04 (GraphPad 

Software,  San Diego,  California and SPSS PASW 16 (Chicago,  IL).  A p -value of  

<0.05 was deemed statistically significant  throughout.  
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2.10   Data handling  

Patients identified for the study from the ASPI RE registry were given a unique 

encrypted patient  identifier.  The document linking the patient  to this identifier 

was stored on a separate secured departmental  computer and both the computer 

and the document were password protected.  The datasheet on to whi ch the MR 

and CT data were entered had no patient  identifiable information clinical  f indings 

or right heart catheter haemodynamics.



  Chapter 3-  3D MR  lung perfusion  

 

91 
 

 

3 CHAPTER 3: 3D contrast enhanced MR lung perfusion in 

Chronic Thromboembolic Pulmonary Hypertension  

 

 

The work in this chap ter is  related to the manuscript published in Thorax “3D 

contrast  enhanced lung perfusion MRI is  a n effective screening tool for  chronic 

thromboembolic pulmonary hypertension: results from the ASPIRE Registry”.  

Thorax,  2013 Jan 24 (doi:  10.1136/thoraxjnl -2012-203020).  

 

This chapter of  the thesis is  focussed on patients with chronic thromboembolic 

pulmonary hypertension (CTEPH).  Many patients with CTEPH frequently present 

with a  previous history of  pulmonary embolism. However there are also a  

significant  proportion of  patients who present with progressive breathlessness or 

unexplained PH without a history of embolic disease.   

Currently perfusion scintigraphy is  recommended as the first l ine investigation 

for diagnosing patients with CTEPH. As CTEPH is increas ing being recognized as  a 

treatable cause of PH, a non -ionizing screening tool that has  the ability to provide 

RV functional and pulmonary vasculature structural  information would be 

valuable.    

This chapter is  on the value of  3D MR lung perfusion as a  dia gnostic tool for 

identifying patients with CTEPH.   
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3.1 Abstract  

 

Objective  

 CTEPH is an increasingly recognised complication of  pulmonary embolism. 

Perfusion scintigraphy is  currently advocated as the imaging modality of choice to 

exclude CTEPH in patients with unexplained PH or suspected CTEPH due to its  

high sensitivity .   In this chapter the diagnostic uti l ity of MR lung perfusion with 

currently available  imaging modalities  was compared.   

Methods 

Consecutive patients attending a  PH referral centre undergoing lung perfusion 

magnetic resonance imaging ,  perfusion scintigraphy, CTPA and RHC within 14 

days were enrolled.  Contrast  enhanced MR lung perfusion images were acquired 

on a  1.5 Tesla  scanner using a  time resolved 3D spoiled gradient  echo sequence .  

Results:    

Of 132 patients,  78 patients had CTEPH . Six magnetic resonance  images were 

classed as non-diagnostic due to artefact.  Lung perfusion MRI correctly identified 

76 patients as having CTEPH with overal l  sensitivity of  97%, specificity of 92%, 

positive predictive value  of 95%, negative predictive value  of 96% and accuracy of 

95% compared to perfusion scintigraphy (sensitivity of 96%, specificity of 90% 

and accuracy of  94%). In total  222 lobes were identified as  having perfusion 

defects on  MR images co mpared to 209 on perfusion scintigraphy images.  No 

cases of surgically accessible disease w ere missed with either modality.  

Conclusion:  

MR lung perfusion imaging  has high sensitivity equivalent  to that of perfusion 

scintigraphy, in diagnosing CTEPH but does not  require ionising radiation  making 

it  an attractive initial  imaging modality to assess patients with suspected CTEPH.  
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3.2 Background  
 

In patients with surgically accessible  CTEPH , pulmonary endarterectomy offers a 

prospect of  cure whereas patients wit h surgically inaccessible  disease may benefit  

from targeted drug therapies  [116].  Consequently,  there is  increasing interest  in 

identifying patients with CTE PH.  Many are now seen in dedicated clinics after an 

episode of proven thrombo-embolism, but a significant proportion sti l l  present 

with breathlessness or unexplained PH with or without a history of  embolic 

disease.   

Perfusion scintigraphy is  widely advocated in these patients  as  i t  benefits  from 

being widely avai lable and has high sensitivity for  CTEPH even in inexperienced 

hands [54].  In contrast ,  subtle changes associated with chronic thromboembolic 

disease may be missed on CTPA.  Consequently,  perfusion scintigraphy is  currently 

recommended as the initial  investigation to exclude CTEPH  [36] .   

3D contrast enhanced lung perfusion MRI tracks the dynamic passage of contrast  

bolus providing regional insight  into pulmonary perfusion.  Previous studies have 

demonstrated the feasibility of  this technique and have compared it  with 

perfusion scintigraphy in small  mixed cohort s of patients with various underlying 

lung pathologies  [93,  96,  126-128].  There  is  only l imited data on the performance 

of 3D contrast  enhanced lung perfusion MRI in diagnosing CTEPH in a  high-risk 

population [91,  93,  129] .   

 

3.3 Objective 

 

The aim of this study was  to evaluate the diagnostic accu racy of 3D contrast 

enhanced lung perfusion MRI alongside currently available  imaging modalities in 

the clinical  setting to identify CTEPH in patients with  unexplained PH or 

suspected CTEPH with a history of  pulmonary thromboembolic disease.  
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3.4 Methods  
 

3.4.1  Study cohort  

 

This was a retrospective study of  consecutive patients  with suspected CTEPH  or 

unexplained PH attending a pulmonary hypertension ( PH) referral centre between 

October 2009 and September 2011.  The systematic assessment practiced in our 

centre for evaluation of patients with suspected PH using a  multi-modality 

imaging and right heart catheter approach is  described in the ASPIRE  Registry 

[130].  Inclusion criteria requi red MR lung perfusion imaging,  perfusion 

scintigraphy and CTPA and RHC to be performed within 14 days .  

 

3.4.2  Image acquisition  

MR perfusion:   Contrast enhanced 3D MR lung perfusion images were acquired 

using a  time resolved 3D spoiled gradient echo sequence wi th view sharing 

(TRICKS )[125].  This sequence was acquired during full  inspiratory breathhold 

after intravenous administration of  0.05 ml/kg of Gadovist  (Schering,  Berlin)  

injected at  4 ml/s followed by a 20ml saline flush.  40 3D image volumes were 

acquired consecutively depicting the passage of  contrast bolus at an effective 

frame rate of two 3D volumes per second.   To obtain full  lung c overage an average 

of 24 slices were obtained with a  total  breath hold time of  25 seconds.  The 

perfusion images were generated by subtraction of  the pre -contrast data time 

frame from the peak enhancement post  contrast  time frame on a voxel -by-voxel  

basis on a  MR workstation.   

Perfusion scintigraphy:   The perfusion scintigraphy images were obtained with 

the patient  in the supine position following intravenous administration of 

technetium 99m label led macr o-aggregated albumin (dose of 100 -MBq; MAASOL; 

Amersham Health,  Vienna,  Austria).  Scanning was performed on a  gamma camera 

system (GE Millennium, GE Infinia,  or Siemens Symbia gamma camera systems) 

with a  256 x 256 matrix using a  20% window centered over the 140 -keV energy 

peak.  Four standard images (anterior ,  posterior,  right posterior oblique  and left  

posterior oblique) were obtained for 500,000 to 750,000 counts each.  
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CT pulmonary angiography :   The CT was performed on a  64 slice MDCT scanner 

(Light-Speed General Electric Medical Systems, Milwaukee,  WI).   CTPA was 

performed during a  s ingle  breath -hold  fol lowing  and standard acquisition 

parameters were used: 100 mA with automated dose reduction,  120 kV, pitch 1,  

rotation time 0.5 s  and 0.625mm collimation.  The field of  view was 400x400 mm 

with an acquisition  matrix of 512 x 512. 100ml of intravenous contrast  agent 

(Ultravist 300; Bayer Schering,  Berlin,  Germany) was administered at  a  rate of 

5ml/sec.  The CTPA images were reconstructed using a  soft f i l ter to  provide 

contiguous 0.625 mm axial  slices from the ap ex of the lung to the diaphragm for 

review.   

 

3.4.3  Image analysis  

MR images :  The MR images were independently analysed by two radiologists (2 

years of  experience in PH imaging) who were blinded  to the results of other 

imaging studies and clinical  information.  The MRI images generated are peak 

enhancement maps of  lung pe rfusion.  Images were analysed in the coronal  plane 

and the image quality was graded on a  three -point scale  [131]:  1) un-

interpretable 2) interpretable but  of marginal image quality,  or  3) of  sufficient 

image quali ty to  obtain a confident diagnosis .  The observers  independently 

evaluated the perfusion images for perfusion defects.  A perfusion defect  was 

defined as  a lung region with decreased or no visible cont rast  enhancement.   A 

diagnosis of  CTEPH was made when there were one or more segmental and / or 

circumscribed perfusion defects ,  based on evidence from previous studie s [93,  

132].  The distribution of  perfusion defects was also recorded as upper ,  middle or 

lower zone in the right lung and upper and lower in the left  lung.  If  the observers 

disagreed,  a separate consensus reading took place and the consensus report was 

used in all  further analysis .  MR perfusion images were evaluated without 

referring to other MRI techniques as the purpose was to evaluate the standalone 

value of  perfusion MRI.  

Scintigraphy:   Scintigraphy images were interpreted according to the modified 

PIOPED criteria  [52] and a  high-probability scan was suggestive of chronic 

thromboembolic pulmonary disease [52-53].  The perfusion scans were interpreted 
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by two specialist radiologists who are experienced (12 years)  in reporting 

perfusion images.  The indeterminate scan for the purpose of this study was 

considered as negative.  A single dataset  of perfusion analysis were obtained.  In 

conventional  practice ventilation scan s are performed in the patients with 

indeterminate perfusion scans.  T his is  not in our usual  practice as for the final 

clinical  decision making  at  the MDT the perfusion images were interpreted in 

conjunction with CTPA and MRA.   

CTPA :   CT findings of  lack of contrast  fi l l ing in the arterial  vessel ,  intraluminal  or  

eccentric contrast fi l l ing defects ,  calcified fi l l ing defects,  recanalization,  abrupt 

change in vessel calibre,  strictures,  post -stenotic dilatation,  webs and 

parenchymal  heterogeneity typ ical of  perfusion abnormalities were considered 

suggestive of  chronic  thrombotic  disease [61].  These CTPAs were interpreted by 

two radiologists with 10  years experience in reporting CTPA for presence or 

absence of  chronic thromboembolic disease.  A single dataset  of CTPA analysis 

were obtained.   

Final reference diagnosis  

The final diagnosis of CTEPH or non -CTEPH was made at  a  multi -disciplinary 

meeting.  This decision was based on clinical  assessment,  imaging findings (but not  

3D MR perfusion maps) and right heart  catheter haemodynamics.  Imaging 

techniques of  perfusion scintigraphy, MR angiography and CTPA were used as  

reference studies.   Patients  with a  diagnosis of CTEPH  were then referred to the 

national centre for pulmonary end arterectomy at  Papworth and a final  diagnosis 

of surgically accessible or inaccessible disease was made.  Appropriate patients 

with surgical ly accessible disease were offered pulmonary endarterectomy.  

Follow-up data was retrieved on outcome following pulmonary endarterectomy.  

3.4.4  Statistical  analysis   

Sensitivity,  specif icity,  positive predictive value and negative predictive value 

were calculated with 95% confidence interval  (CI)  for detection of CTEPH on MR 

perfusion images,  perfusion scintigraphy and CTPA. Kappa statistics were used to 

analyze inter-observer agreement and to measure agreement between imaging 

modalities for the detection and location of perfusion defects.   
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3.5 Results 

The mean age of  patients  was 69±12 years.  The mean time between right  heart  

catheterisation and completion of  multi -modality imaging was 1.8 ±6.5 days .  132 

patients  met the entry criteria for  this study.  Three patients  had digital  

subtraction angiography. A summary of patient  classification and demographics is  

outlined in figure 45 and table 6 .   

Non-diagnostic images: 6 patients  (5%) had MR perfusion images  that  were 

considered to be of  non-diagnostic quali ty due to patient breathing motion 

artefact.  For the purpose of this study the non -diagnostic images were excluded 

when calculating the sensitivity,  specificity and accuracy values.  The results with 

the inclusion of the non-diagnostic images are shown in table  9 and 10.  

 

Table 6: Patient demographics and right  heart catheter parameters  

 Whole Group 

n=126 

CTEPH 

n=78 

Non-CTEPH 

n=48 
p-value 

Age (yrs) 62(14) 59 (16) 64 (17) 0.47 

Female (%) 58 56 66 0.9 

mRAP (mmHg) 11(5) 11 (5) 10 (4) 0.67 

mPAP (mmHg) 42 (13) 43 (11) 40 (14) 0.11 

PCWP (mmHg) 12(6) 10(5) 14(6) 0.02 

CI (L.min.m2) 2.7 (0.9) 2.9 (1) 2.7(1) 0.11 

PVR (dyn.s.cm-5) 435 (365) 599(373) 429(365) 0.04 

TPR () 792 (267) 801(231)  789 (181) 0.4 

mVO2 (%) 63 (8) 61(8) 66 (8) 0.008 

mRAP-mean right atrial  pressure;  mPAP -mean pulmonary artery pressure;  PCWP -

pulmonary capil lary wedge pressure;  CI -cardiac index;  PVR –pulmonary vascular 

resistance;  TPR- total  pulmonary resis tance;  mVO2 -mixed venous oxygen saturation 

(standard deviation in brackets )  
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Figure 44:  Patient classification 

 

Abbreviations:   CTEPH-chronic thromboembolic pulmonary hypertension;  PH -  

pulmonary hypertension; IPAH –  idiopathic pulmonary arterial  hypertension;  

PAH- pulmonary arterial  hypertension;  SSc –  Systemic Sclerosis   

 

 

 

Total number of 
patients =132 

CTEPH Group 

n=78  

Surgically 
inaccessible 26 

Surgically 
accessible 52 

Pulmonary Endarterectomy 
performed n= 31 

Awaiting surgery n= 4 

Not operated due to comorbidities 
n= 7 

Patient refused surgery n=10 

Died post 
Pulmonary 

Endarterectomy 
n=3 

Non-CTEPH Group 

n=48  

PAH n=18 

IPAH n=11 

PAH-SSc = 7 

PH Left heart n=12 

PH Lung n= 8 

PH Multifactorial n=5 

No PH n= 5 

Non-diagnostic MR 
images n=6 
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CTEPH group :  78 patients were diagnosed with CTEPH. In 52 patients (67%) 

disease was considered to be surgically accessible by the national centre for  

pulmonary endarterectomy. The MR perfusion sequence correctly identified 76 

patients  to  have CTEPH. 2 patients  were falsely reported as  showing features 

suggestive  of  CTEPH,  giving a sensitivity of  97% (95% CI: 91% to 99%),  specificity 

of 92% (95% CI: 80% to 97% ), positive predictive value (PPV) of 95% (95% CI: 

88% to 99%) and negative predictive value (NPV) of 96% (95% CI:  85% to 99%) . 

(Figure 46,  Table 7 and table  8 ) .  

 

Table 7: Summary of results for  perfusion scintigraphy, 3D MR perfusi on and CT 

images 

Groups 
Perfusion scintigraphy 3D MR perfusion CT 

+ - + - + - 

CTEPH ( n=78) 75 3 76 2 73 5 

Non-CTEPH (n=48) 5 43 4 44 1 47 
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 Table 8: Summary of diagnostic performance of perfusion scintigraphy, MR  

 perfusion and CTPA  

 Q scan MR perfusion* CTPA 

Sensitivity 96 (CI:0.89 to 0.99) 97 (CI:0.91 to 0.99) 94 (CI:0.85 to 0.98) 

Specificity 90 (CI:0.77 to 0.97) 92 (CI:0.80 to 0.97) 98 (CI:0.88 to 0.99) 

Positive predictive value 94 (CI:0.86 to 0.98) 95 (CI:0.88 to 0.99) 99 (CI:0.92 to 0.99) 

Negative predictive value 93 (CI:0.82 to 0.99) 96 (CI:0.85 to 0.99) 90 (CI:0.78 to 0.96) 

Accuracy 94 95 95 

* Inter-observer agreement  for 3D-MR perfusion imaging for the presence or absence 
of CTEPH, kappa of 0 .83;  CI-  conf idence interval  

 

 

Non diagnostic images:  As  an ‘intention-to-analysis ’  the basis the sensitivity,  

specificity,  PPV and NPV  of 3D MR perfusion was calculated including the non -

diagnostic MR images and the results are presented in tables 9 and 10.   

 

 Table 9: Summary of diagnostic performance of MR perfusion with the 

 inclusion of the non-diagnostic scans  

 MR perfusion 

Sensitivity 93 (CI:0.85 to 0.97) 

Specificity 92 (CI:0.80 to 0.97) 

Positive predictive value 95 (CI:0.88 to 0.99) 

Negative predictive value 88 (CI:0.77 to 0.96) 

Accuracy 91 

   6 MR perfusion scan were non-diagnostic 
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 Table 10: Summary of diagnostic performance of MR perfusion with the 

 inclusion of the non-diagnostic scans   

Groups 

3D MR perfusion 

+ - 

CTEPH ( n=82) 76 6 

Non-CTEPH (n=50) 4 46 

6 MR perfusion scan were non -diagnost ic  

 

 

Non-CTEPH group :   48 patients showed no evidence of  CTEPH and were grouped 

as non-CTEPH. This group included patients with a  diagnosis of no PH (n=  5),  and 

all  major forms of PH including pulmonary arterial  hypertension (n=  18),  PH 

associated with left  heart disease (n= 12),  PH associated with lung disease (n= 8) 

and PH multifactorial  (n=5) [42] .  44 of 48 patients  were reported as non-CTEPH 

and 4 patients  were falsely identified as having CTEPH based on MR perfusi on 

images.   

In total ,  MR perfusion images identified perfection defects in 222 lobes  compared 

to 209 identified by perfusion scintigraphy. The inter -observer agreement for  the 

diagnosis of  CTEPH on p erfusion MRI was excellent with kappa of 0.83.  Our 

results also showed CTPA to be effective in the diagnosis of CTEPH with a  

sensitivity of 94% (95% CI: 85% to 98%), specificity of  98% (95% CI: 88% to 

99%), NPV of  99% (95% CI: 92% to 99%) and PPV 90% (95% C I: 78% to 96%).  

Mosaic pattern of pulmonary attenuation on CT was present in 55 % (43/78) of 

patients  in the CTEPH group and in 17% (8/48) in the non -CTEPH group 

confirming that  this feature is  not  specific  for CTEPH [54,  133-134].  None of  the 

imaging modalities missed any of the patients with surgically accessible CTEPH.  
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Interobserver agreement:  

The overal l  inter-observer agreement was a kappa of  0.83 for diagnosing the 

presence or absence of CTEPH  on 3D-MR perfusion images.  The interobserver 

agreement on a  perfusion defect  by perfusion defect  basics was 0.57.   

Intermodality agreement:  

There was an excellent overall  agreement between perfusion sc intigraphy and 3D-

MR perfusion with kappa of  0.97  for diagnosing presence or absence of CTEPH. 

The inter-modality agreement  however varied depending on the location of the 

defect,  with better agreement in the upper lobes  compared to lower lobes (T able  

11).  

 

Table 11: Agreement between MR perfusion and perfusion scintigraphy  

Regions (Q scan/MRI) Kappa  

Right upper lobe 0.84 

Right middle lobe 0.82 

Right lower lobe 0.70 

Left upper lobe 0.80 

Left lower lobe 0.69 

Overall diagnosis  0.97 
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Figure 45:  Example of a  patient with normal lung perfusion on perfusion 

scintigraphy (A) and coronal  representative  MR perfusion images (B)  

 

 

Figure 46:  Bilateral  multiple segmental  perfusion defects  on perfu sion 
scintigraphy (A) and coronal MR perfusi on images (B) consistent with a diagnosis 
of Chronic Thromboembolic Pulmonary Hypertension  
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 Table 12: Summary of False-Positive perfusion MR,  perfusion scintigraphy  

 and CT images  

Modality  Diagnosis  

Perfusion MRI 
1.  Systemic sclerosis  and pulmonary fibrosis (n=2) 

2. PAH with background pulmonary emphysema (n=2) 

Perfusion 
Scintigraphy  

1. Scleroderma and pulmonary fibrosis (n=2) 

2. PAH with background pulmonary emphysema (n=1)  

3. PAH associated with congenital heart disease (n=1) 

4. Pulmonary hypertension secondary to lung disease  (n=1)  

CT 1.  PH associated with Pulmonary fibrosis (n=1) 

 
PAH -pu lmonary arter ia l  hypertension ;  IPAH -id iopathic  pu lmonary ar ter ia l  hypertens ion  

Pat ients  in  1 and 2  were the same for  perfus ion MRI  and perfus ion  scint igraphy  

 

 

The scan time for 3D perfusion MRI is  fast.  T he images are acquired using a 

partial  k-space view sharing algorithm [125] ;  this combined with parallel  imaging 

reduces the scan time making this 3D  time resolved  technique feasible even in 

symptomatic patients  during typical  breath-holds [96,  135].  The spatial  resolutio n 

of 3D contrast enhanced lung perfusion MRI gives better regional characterisation 

of perfusion defects  than  the projection images of perfusion scintigraphy and 

contributes to superior depiction of patterns of lung perfusion.  Moreover the 3D 

perfusion MRI  can be viewed in any sl ice o rientation when compared to the  

projection image of  perfusion scintigraphy.  

Few studies in the literature have evaluated contrast -enhanced MRI for the 

assessment of regional lung perfusion in a  clinical  context.  Amundsen et al  

initially proved the feasibility of 2D MR lung perfusion imaging for detecting 

perfusion defects distal  to pulmonary emboli  [132].  Subsequently further studies 

have reported convincing correlations between 3D MR perfusion with perfusion 

scintigraphy in pati ents with mixed lung pathologies [93,  96,  126-128].  Fink et  al  
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observed significant difference in signal -to-noise ratio (SNR) between normally 

perfused lung and areas of perfusion defects [135] .  Furthermore,  the temporal 

information from 3D dynamic contrast -enhanced MR perfusion also has been 

employed for quantitative spatio -temporal  assessment of regional pulmonary 

perfusion [94,  106] .   This quantitative type of analysis is  fully compatible with 

our data acquisition strategy used here and in current work we are comparing 

map of blood volume and contrast  agent transit ti me using tracer dilution theory .   

Limitations 

The patients included  represent a selected population referred to a PH centre .  

Nonetheless this has allowed a large population of  patients  with CTEPH to be 

studied and represents a group at  high risk of  CTEPH where this imaging 

technique could clearly be employed.  Secondly,  we  used as our gold standard for 

the identification of CTEPH , a  multidisciplinary assessment with diagnosis 

validated at  a  national pulmonary endarterectomy centre.  Pulmonary angiography 

is  often quoted as the ‘gold standard’ investigation supplemented by ri ght heart  

catheterisation for the diagnosis of CTEPH,  however,  our reference standard 

combined a  number of imaging modalities.  Thirdly,  in this study of patients with 

suspected PH there was a low prevalence of lung disease and although this is  

representative of  patients with severe PH undergoing evaluation,  the diagnostic 

accuracy of this technique if  applied to the general  population in particular post 

pulmonary embolism is l ikely to  be lower,  although one would not expect  this to  

affect the abili ty of thi s technique to exclude CTEPH.  Finally,  tomographic 

techniques such as single  photon emission computed tomography (SPECT) lung 

perfusion scintigraphy that have been shown to perform better than planar 

perfusion scintigraphy [136].  This technique is ,  however,  not  currently routin ely 

implemented in clinical  practice and is  associated with higher radiation exposure 

[137].  We have utilised the peak enhancement images to assess for perfusion 

defects of CTEPH. The Patients with CTEPH frequently have delayed pulmonary 

perfusion through  bronchial  and non-bronchial  collateral circulations.  By imaging 

using the  first  pass technique the  delayed lung perfusion via  the collateral 

circulation would be missed.  Perfusion scintigraphy on the other hand gives the 

total  lung perfusion as aggregates do not cross the pulmonary capillary bed and 

the acquisitions time is  longer .  Our results  also show good interobserver 

agreement (kappa of  0.87) for diagnosing presence or absence of CTEPH however 
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the agreement for  identifying defects at a segment –by-segment level was 

moderate with kappa of 0.57.    

3.6 Conclusion  

This study demonstrates that  non -invasive assessment with non-ionising 3D-MR 

lung perfusion imaging has high diagnostic accuracy,  comparable to  that  of  

perfusion scintigraphy, in patients  with suspected CTEPH.  This work 

demonstrates that  normal MR lung per fusion excludes operable CTEPH and 

supports the further evaluation of  MRI in the assessment of patients with 

suspected chronic thrombo -embolic pulmonary hypertension.  

To enable translation of MR perfusion imaging into clinical  prac tice the first  step 

would be to prove the robustness of this technique in non -selected group of 

patients  and to show the reproducibility of  this technique across different lung 

perfusion findings.  This would then be fol lowed by replacing perfusion 

scintigraphy with MR lung perfusi on especially in patients suspected with CTEPH.  

Secondly,  the accuracy of  MR perfusion imaging should also be evaluated for acute 

pulmonary embolism.  By eventually replacing perfusion scintigraphy with MR 

lung perfusion unnecessary radiation dose can be av oided.  
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4 Chapter 4: Contrast-Enhanced MR Angiography in patients 

with Chronic Thromboembolic Pulmonary Hypertension  
 

This chapter was  published in part  i n the manuscript published in European 

Radiology “Diagnostic Accuracy of  Contrast -Enhanced MR Angiograp hy and 

Unenhanced Proton MR Imaging Compared with CT pulmonary  angiography in 

Chronic Thromboembolic Pulmonary Hypertension”  Rajaram S,  Swift  AJ  et  al ,  

European Radiology  2012 Feb; 22(2):310-7  

CTEPH is a major subtype of pulmonary hypertension that is  potentially curable 

surgically and an imaging tool that provides accurate information on the extent 

and pattern of thromboembolic disease  is  essential  for  surgical  planning .   These 

patients  frequently also require follow up imaging to assess for treatment 

response;  hence the imaging method should ideally be reproducible and radiation -

free.   

In the previous chapter of thesis the value of 3D MR lung perfusion as a  screening 

tool  for identifying patients with CTEPH was demonstrated.    

This chapter of  thesis focuses on the value of MRI in characterizing the extent  and 

pattern of the thrombus itself  in chronic thromboembolic disease in patients with 

suspected CTEPH.   

  

http://www.ncbi.nlm.nih.gov/pubmed/21887483
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4.1 Abstract  

Objectives:   

To evaluate the diagnostic accuracy and characterize chronic thromboembolic 

disease with contrast  enhanced MR angiography (ce -MRA) and to assess the added 

benefit  of  unenhanced proton MR angiography compared with CT pulmonary 

angiography (CTPA) in  patients  with chronic thromboembolic disease (CTE).  

Methods:   

A 2 year retrospective study of 53 patients with chronic thromboembolic 

pulmonary hypertension who underwent CTPA and MRI for suspected pulmonary 

hypertension and a control  group of 36 patient s with no CT evidence of  pulmonary 

embolism. The MRI was evaluated for CTE and the combined diagnostic accuracy 

of ce-MRA and unenhanced proton MRA was determined.  

Results:   

The overal l  sensitivity and specificity of ce -MRA in diagnosing proximal and dist al  

CTE were 98% and 94% respectively.  The sensitivity improved from 50% to 88% 

for central  vessel disease when ce -MRA images were analysed in parallel  with 

unenhanced proton MRA. The ce -MRA identified more stenosis (29/18),  post -

stenosis dilatation (23/7) and occlusion (37/29) compared with CTPA.   

Conclusion:  

Ce-MRA has very high sensitivity and specificity for  diagnosing CTE. The 

sensitivity of ce-MRA for visualisation of adherent central  and lobar thrombus 

significantly improves with the addition of  the unenhanced proton MRA that  

clearly delineates the vessel wall .   
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4.2 Background 

 

Traditionally imaging techniques such as nuclear medicine ventilation -perfusion 

(V/Q) scintigraphy,  pulmonary angiography and more recently CTPA have been 

used in the diagnostic  work-up of patients  with suspected CTEPH. I nvasive 

pulmonary angiography depicts the angiographic changes of CTEPH and is  

considered to be the definitive investigation for assessment of  surgically treatable 

CTEPH [138-139].  The main disadvantage of this technique is  the invasive nature 

of this investigation and it  can cause discomfort and comes with a mortality risk  

(0.5%),  albeit small  [20].   

Patients with CTEPH will  often require repeated studies  to conf irm the diagnosis,  

to assess the course of the disease and to monitor outcome and hence an 

alternative radiation-free imaging technique would be ideal .   In the last decade,  

MRI techniques such as pulmonary MR angiograph y (MRA) and lung perfusion 

imaging have proved to be promising for the evaluation of patients with CTEPH 

[92,  140].    

 

4.3 Objective  

 

The aim of our study was to  twofold  

1.  First to evaluate  the diagnostic accuracy and characterize the disease on 

contrast  enhanced MR angiography  (CE-MRA) when compared to CTPA in 

patients  with suspected CTEPH.  

2.  To assess the added benefit  of  unenhanced proton MRA using 2D balanced 

Steady State Free Precession (bSSFP) sequence alongside  CE-MRA and 

compared with  CTPA.   
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4.4 Methods 

4.4.1  Study cohort  

All  patients referred to our institute for  the evaluation of CTEPH in the period 

from January 2008 to March 2010  were considered for this study.  The study 

patients  belonged to the following two groups: 53 patients with CTEPH and 36 

patients  with no pulmonary hypertension (mPAP <25) at right  heart 

catheterisation and no CT evidence of  embolic disease.   All  patients included in 

this study underwent CT and MRI within a  time interval  of  48 h ours.   

4.4.2  Image acquisition 

Contrast enhanced MRA  was performed following an injection of 15ml contrast  

agent ensuring the total  dose of contrast  doesn’t  exceed 0.3ml/kg.  This scan was 

preceded by a  timing bolus of  contrast agent (0.05ml/kg).  The sequence 

parameters used were: 3D Coronal Spoiled Gradient  Echo,  TE  1.0ms, TR 2.8 ms,  

f l ip angle of  30°,  FOV=48 cm2, 2x Asset,  300 x 200 Matrix,  125 kHz bandwidth,  

slice thickness of 3 mm and average of 60 slices.  This was a breath -hold sequence 

acquired during inspiration.   

Unenhanced proton MRA  was performed as a stack of coronal  2D SSFP images,  

with the following parameters: TR 2.8 ms,  TE 1.0ms, f l ip angle of 50°,  FOV=48 cm 

x 43.2 cm, 256 x 256 matrix,  125 -kHz bandwidth and slice thickness of 10 mm. 

This sequence was performed at  full  inspiration and with a total  breath -hold time 

of 12 seconds.   

CTPA  was performed on a  64 slice MDCT scanner (Light -Speed General  Electric 

Medical Systems, Milwaukee,  WI).  CTPA was performed during a single breath -

hold  following  and standard acquisition parameters were used:  100 mA with 

automated dose reduction,  120 kV,  pitch 1,  rotation time 0.5 s  and 0.625mm 

collimation.  The field of view was 400x400 mm with an acquisition matrix of  512 

x 512. 100ml of intravenous contrast  agent (Ultravist  300; Bayer Schering,  Berlin,  

Germany) was adminis tered at a  rate of  5ml/sec.  The CTPA images were 

reconstructed using a  soft f i l ter to provide contiguous 0.625 mm axial  slices from 

the apex of the lung to t he diaphragm for review.  
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4.4.3  Image analysis  

The CTPA and MRA were analysed by two radiologists (2 year s of specialised 

experience in reporting CTPA and MRA for suspected CTEPH).  The data was 

collected by the two radiologists resulting in two independent datasets.   The 

volumetric MRA dataset and the MR maximum intensity projection (MIP) images 

were reviewed on a  standard GE workstation by two radiologists blinded to the CT 

findings.  The MR perfusion images were not available or used for interpretation  of  

CT.  In cases of  discrepancy between observers,  a  consensus r ead was performed 

jointly by the two observers in a  separate setting and this was used in all  further 

analysis .  The image quality was assessed subjectively and graded for artefacts as 

“none”,  “mild”,  “moderate” or  “non -diagnostic” .  For CTPA all  window settings  

including the lung window was available.   

The ce-MRA images were examined for the presence of  thromboembolic disease at  

central ,  lobar,  segmental  and sub -segmental vessels .  The presence or absence of 

signs of  chronic thromboembolism in the pulmonary artery such as complete or 

partial  obstruction,  adherent thrombus,  bands,  webs and post -stenotic dilatation 

was also studied.  The unenhanced proton MRA was similarly evaluated for 

features of  chronic thromboembolism and the combined diagnostic accuracy of ce -

MRA and unenhanced  proton MRA was assessed.  The MR perfusion images 

discussed in the previous section was not  used for the interpretation of MRA.  

 

4.4.4  Statistical  analysi s  

Direct comparison was made between MR and CTPA, using CTPA as the reference 

method. A Chi-squared test  was used to establish sensi tivity,  specificity,  positive 

and negative predictive values for detecting the presence and absence of PE.  The 

Kappa statistic  was used to determine the level  of  agreement between the 

independent observers.  In cases of discrepancy between observers regardi ng 

abnormality detection,  a  final  interpretation was obtained by consensus during a 

second session.  
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4.5 Results 

 

Patient demographics:  

One hundred and six  patients  underwent MRI and CT for suspected CTEPH.  There 

were 63 patients  with CTEPH and 4 3 patients wi th no evidence of pulmonary 

hypertension or pulmonary embolism and for the purposes of this study were 

considered ‘normals ’ .   The mean age of  the patients was 61 years and the female 

to male ratio was 1.2 .  In 9 patients the renal function was impaired henc e a ce-

MRA was not performed.  

Based on qualitative visual assessment of  image resolution,  clarity and breathing 

artefact,  33 MRI were deemed to have mild artefacts,  17 moderate artefacts and 8 

were considered to be non -diagnostic .  89 MRI were of  diagnosti c quality (53 

patients  with CTEPH and 36 ‘normal ’  patients).   

Figure 47: Flowchart  representing study population and MRA quality  

 

  

106 patients had both  
MRI and CTPA 

97 patients had MR 
Angiography  

39 patients with no 
artifacts on MRA 

33 patinets with mild 
artifacts on MRA 

17 patinets with 
moderate artifacts on 

MRA 

8 patients with non-
diagnostic  MRA 

In 9 patients MRA was 
not performed  due to 

impaired renal 
function  
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Diagnostic accuracy:  

Of the 53 patients with CTEPH,  31 patients had proximal disease (involving 

central  and lobar vessels) and 22 had distal  disease (distal  to lobar vessels).  The 

overall  sensitivity and specificity of  ce-MRA in diagnosing CTE were 98% and 94% 

respectively with a  positive predictive value of 96% and n egative predictive value 

of 97%. 1  patient  with isolated distal  CTEPH was missed on ce -MRA and 2 patients 

were misdiagnosed to have CTEPH on ce -MRA. The non-diagnostic MRA images (8 

scans) were excluded from this analysis .   

 

Table 13: Overall  sensitivity and specif icity for  ce-MRA compared with CTPA in 

diagnosing chronic thromboembolic disease  

CTE CTPA Present  CTPA  Absent  Total  

ce-MRA Present  52 2 54 

ce-MRA Absent  1 34 35 

Total  53 36 89 

Sensit iv ity 98% (95% CI:  89 –99),  specif ic ity 94% (81 –99),  posit ive predict ive value 

96% (87–99);  Negative predictive value 97% (85 –99);  ce-MRA: contrast enhanced MR 

angiography  

 

 

Table 14: Overall  sensitivity and specificity for  unenhanced MRA compared with 

CTPA for diagnosing proximal chronic thromboembo lic disease 

Proximal CTE  Present CTPA Absent CTPA Total  

Present Non-contrast MRA 14 11 25 

Absent Non-contrast MRA 17 35 52 

Total  31 46 77 

Sensit iv ity 45% (95% CI:  27 –64),  specif ic ity 76% (61 –87),  posit ive predict ive value 

56% (35–76),  negative predictive value 67% (53–80),  12 unenhanced MRA were non -

diagnostic .   
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Non-diagnostic MR images :  As an ‘ intention-to-analysis’  the basis the sensitivity,  

specificity,  PPV and NPV  of ce-MRA was calculated including the 8 non-diagnostic 

MR images and the results are presented in tables  15 and 16 .   

 

Table 15: Overall  sensitivity and specificity for  ce -MRA compared with CTPA in 

diagnosing CTE with inclusion of non-diagnostic scans  

CTE CTPA Present  CTPA  Absent  Total  

ce-MRA Present  52 2 54 

ce-MRA Absent  3 40 43 

Total  55 42 97 

Sensit iv ity 94% (95% CI:  85 –99),  specif ic ity 95% (84 –99),  posit ive predict ive value 

96% (87–99),  Negative predictive value 93% (81 –99);  ce-MRA: contrast enhanced MRA  

8 ce-MRA images were non-diagnost ic .    
 

 

 

Table 16: Overall  sensitivity and specificity for  unenhanced MRA compared with 

CTPA for diagnosing proximal chronic thromboembolic disease  with inclusion of  

non-diagnostic scans  

Proximal CTE  Present CTPA Absent CTPA Total  

Present Non-contrast MRA 14 11 25 

Absent Non-contrast MRA 21 43 64 

Total  35 54 89 

Sensit iv ity 40% (95% CI:  24 –58),  specif ic ity  80% (66 –89),  posit ive predict ive value 

56% (35–76),  negative predictive value 67% (54 –78); 

12 unenhanced MRA were non -diagnost ic .   
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Figure 48:  CTPA (a),  unenhanced bSSFP MRI (b) and CE-MRA (c) show 

thromboembolic material  adherent to  the right main pulmonary arterial  wall  

 

 

 

Figure 49:  A wall-adherent chronic thromboembolism that was visualised bette r  

on CTPA (A) and unenhanced bSSFP sequence (B)  
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Level of disease:  

The pulmonary vasculature was analysed for CTE at  the central ,  lobar,  segmental  

and sub-segmental levels and the ability of ce -MRA to identify disease at each of 

these levels is  summarised in Table  17.   Our results  showed that  the sensitivity 

for recognising lobar and segmental disease was 74% and 81% respectively.  The 

sensitivity of ce-MRA for appreciating central disease was comparatively low at 

50%, the reason being the poor contras t  of  smooth thromboembolic material  

adherent to  the pulmonary  vessel  wall  on ce-MRA images.  With the addition of  the 

b-SSFP unenhanced MRA sequence,  which depicts the signal  from vessel wall  

better,  the sensitivity improved significantly from 50% to 88% . However we also 

found that using unenhanced  proton MRA when viewed in isolation resulted in 

poor sensitivity (45%) and high false -positive rates for  identifying prox imal 

disease as shown in Table 17 .  12 of  the unenhanced MRA were non-diagnostic .   

 

 

Table 17: Sensitivity of ce-MRA and the added benefit  of  unenhanced MRA in the 

diagnosis of  CTEPH as a function of  site of  disease  

ce-MRA- contrast-enhanced MR angiography ;  pMRA- unenhanced proton MRA.  

Kappa in this context  is  the inter -observer agreement between the two readers for  

MRA.  

 

 

  

 
ce-MRA / 

CTPA 
Sensitivity kappa 

ce-MRA + pMRA 
/ CTPA 

Sensitivity kappa 

Central 4/8 50% 1.0 7/8 87.9% 0.86 

Lobar 20/27 74.07% 0.94 23/27 85.2% 0.79 

Segmental 34/42 80.95% 0.86 34/42 80.95% - 

Sub-segmental 3/29 10.34% 0.74 3/29 10.34% - 
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Pattern of  disease:   

On assessing the various patterns of  CTE disease appreciated on ce -MRA and 

CTPA, ce-MRA helps  to recognise more stenosis (29 vs 18),  post -stenosis 

dilatation (23 vs 7)  and complete vessel obstruct ion (37 vs  29) when compared 

with CTPA.  CTPA was superior to ce -MRA in identifying patients  who had 

pulmonary wall  adherent thromboembolic material  and intra -luminal webs  and 

bands (Table  18).   

 

Table 18: Pattern of morphological c hanges found in ce-MRA and CTPA 

Pattern of CTE  Ce-MRA CTPA kappa 

Webs and bands 12 54 0.86 

Stenosis 29 18 0.82 

Post-stenotic dilatation 23 7 0.79 

Occlusion 37 29 0.80 

Adherent emboli 19 36 0.74 

 (Ce-MRA: contrast-enhanced MR angiography)  
 

Kappa in this context is  the inter -observer agreement between the two readers  
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Table 19: Interobserver agreement* for CTPA and  ce-MRA for the level of  CTE 

disease 

Pattern of CTE   CT  MRA 

Central  1.0  1.0 

Lobar  0.96  0.94 

Segmental  0.88  0.86 

Sub-segmental  0.82  0.74 

* Kappa analysis was used for int erobserver agreement  

 

 

Table 20: Interobserver agreement for  CTPA and ce-MRA for the pattern of  CTE 

disease 

Pattern of CTE   CT  MRA 

Webs and bands  0.92  0.86 

Stenosis  0.89  0.82 

Post-stenotic dilatation  0.86  0.79 

Occlusion  0.90  0.80 

Adherent emboli  0.85  0.74 

* Kappa analysis was used for interobserver agreement  

 
 

Interobserver agreement  for MRA: 

The interobserver agreement for  the two radiologists for  identi fying the pattern 

of disease is  as fol lows; kappa for presence of webs and bands is  0.86,  stenosis is  

0.82,  post-stenotic di latation is  0.79,  occlusion is  0.80,  adherent emboli  is  0 .74.  

For the level  of  disease the level  of  interobserver agr eement between the two 

observers  are for Central disease the kappa is  1.0,  for lobar disease 0.94,  

segmental  disease 0.86,  sub -segmental  disease is  0.74 .    
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Figure 50:  A central  thrombotic web demonstrated clearly on CE -MRA and CTPA 

 

 

 

Figure 51:  An example of a  MIP generated from CE -MRA sequence showing 

complete occlusion of  the left  lower lobar branch and (B) a single slice showing 

stenosis with post stenotic dilatation  (patient diagnosed with CTEP H) 
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Figure 52:  An example of a  maximum intensity projection (MIP) image showing 

perfusion defects in a  patient  with CTEPH ( right)  and in a  normal patient  (left)  
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4.6 Discussion 

 

Principal findings:  We have demonstrated that  ce -MRA has very high sensitivity 

and specificity in diagnosing the presence or absence of  chronic  thromboembolic 

disease in a  population of  patients with and without CTEPH undergoing evaluation 

for suspected PH.  We have also shown that  the addition of unenhanced proton MR 

improves the sensitivity of  MR for the detection of  proximal clot  and that ce -MRA 

is superior in representing stenosis and post -stenotic dilatations compared with 

CTPA. The ce-MRA images were of  sufficient quality to make a  confident diagnosis 

in 92% of cases.  To our knowledge,  there have been no published studies 

analysing the added utility of this unenhanced proton MRA in demonstrating 

chronic thromboembolism.  

Contrast-enhanced MRA is increasingly recognised as a valuable technique for 

imaging the pulmonary vasculature in patients with suspected CTEPH [73].  With 

the application of faster gradients and parallel  imaging techniques,  the duration 

of the breath-holding for the MRA sequences are significantly reduced and can 

rapidly characterise the pulmonary vasculature even in a symptomatic patient 

(breath-hold < 20 s).  The presence of  dilated bronchial  arteries has been shown to 

correlate with a lower mortality rate after pulmonary endarterectomy and ce -MRA 

has been shown to accurately estimate the flow in the bronchial  arteries in 

patients  with CTEPH [141].  An MR technique that  can demonstrate pulmonary 

vasculature without the use of  contrast  agent would be very useful and bSSFP is  

particularly suitable  as it  offers  good contrast from the blood pool because of  its  

inherent long T2 compared with tissue.  Studies using this sequence in the imaging 

of coronary arteries  have shown promisin g results [142-143].  One of  the main 

difficulties of 3D SSFP coverage is  the prolonged breath -hold time which can 

potentially be overcome by using a  free -breathing navigator-gated technique 

[144].  

Previous studies  in patients with CTEPH have shown misdiagnosis of central wall -

adherent thromboembolic material  with both pulmonary angiography and CT and 

this was thought to  be due to multiple factors [133,  145-146].  In chronic  CTE, the 

residual thrombus is  incorporated into the vessel wall  and is  covered by a  new 

epithelial  layer smoothing the intimal surface [145].  In ce-MRA,  as in DSA and 
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CTPA, the vessel lumen is  f i l l ed with contrast and in the absence of a  wall  

irregularity an adherent thrombus may easily be missed.    

The main problem in our study arose in viewing adherent thrombotic material  

that was flush with the vessel wall .  One of  the reasons for the insensitivit y of  ce-

MRA in identifying central  disease was that the vessel  wall  is  not visualised in 

axial  image data or the MIP images.  This makes it  difficult  to  appreciate the wall -

adherent changes in some patients.  In a 2D bSSFP image,  the thrombus is  

demonstrated as an area of  very low signal  intensity compared with hyper -

intensity surrounding flowing blood.  As the vessel wall  is  clearly visualised with 

this sequence,  any wall -adherent thromboembolic material  is  readily recognised.  

We have shown that  addition of a  simple unenhanced bSSFP MRA sequence the 

vessel wall  is  clearly delineated,  which significantly improved the identification of  

the central  and lo bar adherent thrombotic disease .  

 Our study showed that there were false -positive results  when unenhanced MRA 

images were used in isolation.  The high false -positive rate was due to the 

relatively low spatial  resolution of the bSSFP sequence  (Figure 6) ,  but this could 

be improved easily by increasing the data acquisition time or performing repeat 

imaging at  higher  resolution on selected sl ices of interest (Figure 7).   Hence o ur 

recommendation is  to use unenhanced MRA images as a routine adjunct  to ce -MRA 

especially when assessing for proximal disease.   

 

Limitations 

There are several  l imitations to our study.  The patients included were referred to 

a PH referral  centre with suspected PH and represent a selected population  and 

does not  represent the wider general population .  Secondly,  we have compared 

MRA with CTPA rather than using pulmonary angiography.  This we feel  is  

acceptable as the aim was the compared the performance of  MRA against  CTPA 

that is  widely used for the assessment of the emboli c load.  A recent report  also 

showed ECG gated CTPA and MRA to be superior to pulmonary angiography in 

detecting CTEPH [147].  Although we have performed interobserver agreement for 

the pattern and level of  disease a more thorough evaluation of  a  pattern-by-

pattern basics would be more accurate.   



  Chapter 4-  3D MR  A ngiogra phy   

 

123 
 

4.7  Conclusion  

In conclusion,  ce-MRA has very high sensitivity and specificity in ident ifying 

patients  with  CTEPH.  One of the limitations of ce -MRA,  as with DSA, is  the 

inability to accurately identify wall -adherent thromboembolic  material .  This can 

be overcome to an extent  with the use of a n unenhanced bSSFP sequence.  The non-

ionising nature of  this investigation makes it  attractive in the initial  evaluation of  

patients  with persisting breathlessness fol lowing acute PTE and in the fol low -up 

of patients with CTEPH.  This sequence also provides a  paral lel  means of 

assessment of lung parenchyma (see chapter 7).
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5 CHAPTER 5-CT features of pulmonary arterial hypertension 

and its major subtypes 
 

The focus of the previous two chapters  was on the usefulness of  MRI in patients 

with CTEPH.  In this chapter another major  group of  PH, pulmonary arterial  

hypertension,  is  studied with CT.  Although this group share a  similar clinical  

presentation,  pathogenesis and treatment options,  the y are heterogenous 

disorders with varied outcome and imaging characteristics.    

Patients with PAH commonly present with cardio-respiratory symptoms and 

routinely undergo thoracic CT . There are several features  on thoracic CT that 

would point  towards an underlying cause of pulmonary arterial  hypertension.   In 

this chapter the prevalence of  these CT changes in each of the major subc ategories 

of PAH is analysed and usefulness of  CT as a prognostic tool  is  also evaluated.     

This work forms the basis of a  paper in preparation for European journal of  

Radiology.   
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5.1 Abstract   

 

Objective :    To study the prevalence and prognostic valu e of  cardiac,  vascular 

and parenchymal CT f indings  in PAH and i ts  major subtypes from a large cohort of  

consecutive treatment naive patients.    

Methods:   444 patients with PAH were identified from a major UK PH centre as 

part  of the ASPIRE Registry.  From this database,  292 patients  who had mutlislice 

CTPA within 3 months of RHC were identif ied.  Several measurements such as RV 

size,  thickness of  the RV free wall ,  aorto-pulmonary ratio,  IVC s ize,  pericardial  

effusion and tricuspid regurgitation.  Images were also assessed for ground glass 

opacity (GGO),  lymphadenopathy,  bronchial  collaterals ,  septal  l ines,  ascites and 

oesophageal  dilatation.   

Results:   The pulmonary artery: aortic ratio was 1.16(0.21) and significantly 

greater in PAH-CHD-Eisenmenger 1.46(0.45 ),  p<0.05.  Pulmonary artery 

calcification (13%) and thrombus (10%) were exclusively seen in PAH -CHD.  

Collateral  vessels were most common in PAH -CHD-Eisenmenger (55%).  The right  

to left  ventricular (RV: LV) ratio  was 1.25(0.42) with no statist ically signifi cant  

differences between groups.  Pericardial  (38%) and pleural  effusions (11%) were 

found in PAH and were least  common in PAH -CHD-Eisenmenger.  Ground glass 

opacification (GGO) was commonly seen in PAH (41%) most common in PAH -CHD 

(60%) and least  common in PAH-portal  (21%), p<0.05.  A central pattern of  ground 

glass change was seen with high frequency in PAH -SSc.  Lymphadenopathy was 

found in 19% of PAH and oesophageal  dilation (46%) was most common in PAH -

SSc.  In multivariate analysis age,  WHO functional Clas s,  cardiac output,  and CT 

measures including RV/LV ratio,  size of  pericardial  effusion and inferior vena 

caval area predicted outcome. CTPA may suggest  the form of  PAH and provides 

prognostic information.   

Conclusion:  We have showed the prevalence of seve ral  cardiac,  vascular and 

lung changes on a  standard CT that is  routinely preformed in patients with 

suspected PAH. Our results a lso show several CT features can predict outcome.  
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5.2  Background  

 
Pulmonary hypertension (PH) is defined at  r ight heart  catheteris ation as a mean 

pulmonary artery pressure of at  least  25 mmHg. It  ranges from a mild elevation in 

pressure commonly seen in severe cardiac and respiratory disease to rare conditions 

where severe elevation of pressure results in right heart  fai lure and earl y death. The 

current system of classification identifies 5 major groups which define prognosis (1) 

and treatment.  Whereas specific drug therapy can improve outcome in pulmonary 

arterial  hypertension (PAH, Group 1) patients with chronic thrombo -embolic 

pulmonary hypertension (CTEPH, Group 4) can potentially be cured by surgery. 

Classification within subgroups is important.  In patients with PAH, survival  in 

idiopathic pulmonary arterial  hypertension (IPAH) is superior to PAH associated with 

connective t issue disease (PAH-CTD) but inferior to PAH associated with congenital  

heart  disease (PAH-CHD) (1).  Accurate phenotyping of disease is  therefore crucial  to 

accurately estimate prognosis and define treatment.  

 

The approach to the investigation of patients with su spected PH has evolved over  the 

past  decade [148].  Imaging is increasingly recognized as a valuable non -invasive tool 

in the assessment of pulmonary hypertension providing diagnostic and prognostic 

information [80, 87, 147, 149]  that  supplements data from right heart  catheterisation. 

Perfusion scintigraphy has been tradit ionally used to exclude CTEPH, card iac MR 

provides functional information on the performance of the right ventricle and 

pulmonary vasculature, whereas CT provides detailed structural  information and 

depicts features such as emphysema,  interst i t ial  lung disease or thrombo -embolic 

disease which may cause PH. In addit ion CT demonstrates morphological  changes 

such as right ventricular dilat ion seen as a consequence of PH. P revious  studies that  

have attempted to describe CT features in PH have mainly been in mixed groups of 

patients and while a  small  number of CT parameters have been extensively studied 

only sporadic reports exist  for many others.  There is also interest  in prognostic scores 

in PAH but l imited information on the uti l i ty of CT markers in various forms of PAH.  
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5.3 Objective 

  To evaluate the prevalence of  several cardiac,  vascular and parenchymal CT 

findings in pulmonary arterial  hypertension and its  5 major subtypes namely 

idiopathic pulmonary arterial  hypertension,  PAH associated with systemic 

sclerosis ,  PAH associated with non syste mic sclerosis connective tissue 

disease,  PAH associated with portal  hypertension and PAH associated with 

congenital  heart  disease .   

  To explore the prognostic value of CT findings from a large cohort of  

treatment naive patients.   

 

5.4 Methods 

5.4.1  Study cohort  

444 patients  with PAH were identified from the ASPIRE Registry (Assessing the 

spectrum of pulmonary hypertension identified at  a referral centre) [130].  We 

then retrospectively se lected from this database consecutive patients who had 

undergone mutlislice CTPA.  All  patients  included in the study had RHC except 

patients  with Eisenmenger’s  Syndrome in whom RHC was not routinely required.   

5.4.2  Image analysis  

CTPA were analyzed by two radio logists (2 years of specialised experience in 

reporting CT for patients suspected with PH) who were blinded to haemodynamic 

parameters,  clinical  f indings  and outcome.  They were jointly collected resulting in 

a single dataset.  A randomly selected 50 patient s were analysed for interobserver 

agreement for  the various CT findings .   

Cardiac changes:   

Ratio of  right  to  left  ventricle (RV/LV ratio) was obtained as previously described  

in the methods section 2.6.2 and figure 26 to figure 31 .  From the axial  mid-

chamber view, right  atrial  length was measured from the centre of tricuspid 

annulus to the superior right atrial  wall .  The size of the right  atrium was also 

qualitatively evaluated using a  simple 3 point visual scale:  mild,  moderate and 
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severe.  Displacement of  the IV septum was evaluated on a three -point scale  as 

normal,  f lattened and deviated septum  [64].  Abnormal thickness of the right 

ventricular free wall  was recorded from the axial  imag es [119].   

Vascular changes:  

Pulmonary to aorta ratio (PA/AO ratio)  and the maximum depth of pericardial  

effusion[63]  were recorded.  Reflux of  contrast  into the hepatic veins was assessed 

as previously described [66].  The size of the inferior vena cava (IVC) was 

measured by calculating the cross sectional area of the IVC above th e level  of  the 

diaphragm,  below the right  atrium .  

Lung and mediastinal changes:   

The images were assessed for presence of  ground glass opacity (GGO).  When GGO 

was present the pattern was noted as centrilobular,  panlobular homogenous,  and 

panlobular  heterogenous.  The craniocaudal and anterioposterior distribution of 

GGO was also recorded [71].  

CT scans were also assessed for the presence of f ibrosis ,  pleural  effusio ns,  

mediastinal lymphadenopathy,  dilated bronchial  collaterals ,  septal  l ines and 

oesophageal  dilatation.  

5.4.3  Statistical  analysis  

Continuous variables are presented as mean and standard deviation and tested 

between groups using analysis of variance.   Categorical  variables are presented as  

number and percentage.  Prognostic value of CT signs  and of  baseline 

characteristics was assessed by means  of both univariate and multivariate Cox 

proportional  hazards .  

5.5 Results 

The study population is  outlined in detail  in figure 1.  Of  444 consecutive patients 

with PAH identified from the ASPIRE registry,  292 patients had mutlislice CTPA 

within 3 months or right heart  catheterisation and were included in the study.  The 

mean age of  the study population was 62 (± 16) years with a female 

preponderance of 73%. There were 74 patients with a diagnosis of idiopathic 

pulmonary arterial  hypertension (IPAH),  95 patients with PAH associated with 
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Systemic Sclerosis (PAH-SSc),  39 with PAH associated with other connective 

tissue disease (PAH-CTD not SSc),  63 patients had PAH with congenital  heart  

disease (PAH-CHD) of  which 31 had Eisenmenger syndrome, 14 patients with PAH 

associated with porto -pulmonary hypertension (PAH -portal),  3  patients  with 

Haemolytic anaemia,  2 with drug induced PAH  and 2 with familial  PAH. Table 19  

summarizes baseline hemodynamic and demographic characteristics for the 5 

main subgroups of  PAH.  

 

Figure 53: Study characteristics  

 

*RHC not  performed in 26 pts with PAH -Congenital  

 

Patients with PAH identified from ASPIRE registry 
between Jan 2006 to Jan 2010 (n= 444) 

Study population (n=292) 

Connective tissue disease not SSc 
(n=39)  

6 MCTD ,7 RA ,7 SLE ,6 UCTD , 

8 overlap , 5 others  

PAH congenital (n=63) * 

31 Eisenmenger 

13 corrective surgery 

12 large defect 

7 small defect  

Idiopathic PAH (n=74) 

PAH-SSc (n=95) 

Portal (n=14) 

Haemolytic anaemia (n=3) 

Drugs (n=2) 

Familial (n=2 

HRCT only (n=60)  

Single-slice CT (n= 12) 

CT & RHC not within 3 
months (n=33) 

Non available CT (n= 47) 
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Table 21: demographics and haemodynamics of the study population  

Characteristics PAH IPAH PAH-SSc 
PAH-CTD 
nonSSc 

PAH-Portal PAH-CHD 

No. of patients 292 74 95 39 14 63 

Age (yrs) 62 (16) 62 (16)†‡ 69 (9) *†# 60 (16)†‡ 59 (12) 51 (18)*#‡ 

Female (%) 73 59‡# 85* 84* 64 71 

WHO III/IV (%) 62:11 69: 12 69: 13 74: 10 64:0 59: 10 

mRAP (mmHg) 9 (5) 10 (6)#‡ 6 (5)* 7 (4)* 9 (7) - 

mPAP (mmHg) 46 (14) 51 (11)#‡ 42 (14)* 43 (11)* 47(10) - 

PCWP (mmHg) 10 (4) 10 (3) 10 (4) 9 (4) 11 (2) - 

CI (L.min.m2) 2.8 (0.9) 2.4 (0.7)#‡§ 3 (0.83)* 3.2 (1.03)* 3.4 (0.8)* - 

PVR (dyn.s.cm-5) 702 (431) 889 (415) 568 (378) 586 (398) 482 (202) - 

mVO2 (%) 65 (9) 62 (7) 66 (9) 65 (8) 70 (8) - 

FVC (%) 89 (19) 95 (11)† 95 (14)† 85 (18)† 94 (20)† 72 (23)*‡§# 

FEV1 (%) 74 (20) 83 (15)#† 80 (17)† 73 (17)* 77 (18)† 64 (20)*‡§ 

TLCO (% ) 55 (23) 50 (19)†‡ 37 (16)†§* 48 (8)†§ 66 (7)#‡ 71 (23)*‡# 

ISWD (m) 185 (160) 176 (179)†‡ 166 (137)*†# 130 (95)‡ 236 (126) 213 (123)*‡ 

 

 

Cardiac changes Table 22:  

The RV/LV ratio for patients PAH was 1.25±0.42 (mean ±standard deviation) and 

among the subgroup, patients with IPAH had the highest  value (1.37±0.46)  although 

there were no statist ically significant differences between groups .   The mean right 

ventricle wall  thickness (RVWT) was 6±2.7 mm for the whole group and within 

subgroups a lesser degree of RV hypertrophy was seen in patients with PAH -

connective t issue disease (4±1.78 and 4±3.21 for PAH SSc and PAH non SSc 

respectively).   
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Qualitat ive visual grading of the right atrium showed a large number of patients with 

PAH (82%), and in par ticular those with IPAH (79%) and PAH -CHD (83%) had RA 

enlargement.  A higher  proportion of pa tients  with IPAH (24%) and PAH-CHD (27%) 

were graded to have severe RA enlargement compared to other subgroups. The mean 

RA size for  patients with PAH was 55mm±12.1 and was based on quanti tat ive 

measurement of the long axis length of  the RA. Deviation of  t he interventricular 

septum towards the lef t  ventricle was evident  in 27% of patients with PAH and 41% of 

patients with IPAH. 38% of patients with PAH had pericardial  effusion with maximum 

mean depth of 12±5mm.  Within the subgroup, pericardial  effusion was  particularly 

prevalent in  patients with PAH-CTD-nonSSc (71%) and was relatively less  frequent is 

patients with PAH-CHD-Eisenmenger (22%).   

 

 

Table 22: Frequency (expressed in percentage) of  cardiac features in PAH and its  

major subgroups 

Cardiac  
CT Parameters 

PAH 
(n=292) 

IPAH 
(n=74) 

PAH-SSc 
(n=95) 

PAH-CTD-
nonSSc 
(n=39) 

PAH-
Portal 
(n=14) 

PAH-CHD 
(n=63) 

PAH-CHD- 
Eisenmenger 
(n=31) 

RV/LV ratio~ 1.25(0.42) 
1.39(0.46
) 

1.19(0.48) 1.19(0.36) 1.25(0.35) 1.15(0.30) 1.23(0.38) 

RVH (mm) ~ 6(2.7) 6(2.3) 4(1.78) 4(3.21) 6(1.89) 7(4.26) 8(2.5) 

RA size (mm) ~ 55(12.1) 57(10.9) 53(12.5) 52(13.1) 56(17.2) 59(13.4) 59(14.6) 

RA size   
  

  
 

 

Mild 25 20 30 31 28 21 16 

Moderate 28 35 20 26 36 35 42 

Severe 19 24 16 10 14 27 22 

IV septum  
  

  
 

 

Normal 42 24 57 59 36 37 42 

Flattened 31 35 24 26 43 30 29 

Deviated 27 41 19 15 21 33 29 

Pericardial 
effusion 

 
  

  
 

 

Present 38 31 42 71 36 22 19 

Depth (mm)~ 12(5) 8 (7) 14 (6) 13 (6) 14 (5) 13 (4) 11(4) 

Numbers  represent  percentages;  ~  mean (standard  deviat ion)  
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Vascular changes Table 23:  

The average pulmonary artery-aorta ratio (PA/Ao ratio) for patients with PAH in our 

study was 1.16±0.21. This ratio was highest  for patients with PAH -CHD-Eisenmenger 

(1.46±0.45) followed by patients with IPAH who h ad an average of 1.19±0.18. 

Regurgitation of contrast  into the hepatic veins was frequent across the major 

subgroups with grade 4 reflux (contrast  into the distal  hepatic veins) seen in 24% of 

patients with IPAH and 28% of patients with PAH -CHD. A higher degree of IVC 

dilatation was observed in patients with PAH -portal  and PAH-CHD with average IVC 

size of 632±156mm
2
 and 647±209 mm

2
,  respectively. Pulmonary ar tery calcification 

and mural thrombus were noted only in patients with PAH -CHD and occurred in 16% 

(calcification) and 13% (mural thrombus) in PAH -CHD-Eisenmenger group.  

 

 

  Figure 54:  There is  marked dilatation of the pulmonary artery   
   with PA/Ao ratio  of 2.1 in this patient  with IPAH .  
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  Figure 55:  Grade 5 tricuspid regurgitation with contrast  

  refluxing  into the distal  hepatic veins  

 

Table 23: Frequency (expressed in percentage) of  vascular features in PAH and its  

major subgroups 

Vascular signs 
 CT Parameters 

PAH 
(n=292) 

IPAH 
(n=74) 

PAH-SSc 
(n=95) 

PAH-CTD-
nonSSc 
(n=39) 

PAH-Portal 
(n=14) 

PAH-CHD 
(n=63) 

PAH-CHD- 
Eisenmenger 
(n=31) 

PA/Ao ratio~ 1.16 (0.21) 1.19 (0.18) 1.04(0.16) 1.07 (1.16) 1.08 (0.17) 1.26 (0.40) 1.46(0.45) 

IVC size(mm
2
) ~ 596(207) 583 (200) 570 (203) 546 (206) 632(156) 647 (209) 659(212) 

TR  Present 73 80 67 62 57 85 93 

Grade 1 18 15 20 23 36 14 16 

Grade 2 21 24 23 15 14 22 23 

Grade 3 12 24 13 13 0 21 22 

Grade 4 22 24 12 10 7 28 32 

Calcification in PA 3 0 0 0 0 13 16 

Thrombus  in PA 2 0 0 0 0 10 13 
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Lung and mediastinal changes (table 24 ):  

Ground glass  opacit ies were a frequent finding in patients with PAH (41%) and 

occurred mostly commonly in patients with PAH -CHD (60%). Patients with IPAH and 

PAH-CTD had a higher intensity of GGO with 58% o f IPAH, 50% of PAH-CTD-

nonSSc and 47% of PAH-SSc graded as having GGO in more than two -thirds of the 

lung (grade 3).  The predominant pattern of GGO in PAH (55%) and i ts major subgroup 

was centri lobular pattern (61% in PAH -SSc,  60% in PAH-CTD-nonSSc, PAH-portal  

and PAH-CHD). In pat ients with IPAH centri lobular and panlobular changes occurred 

in equal frequency (55% of centri lobular and 52% of panlobular heterogenous).   When 

panlobular involvement of GGO occurred, i t  was principally in a heterogenous (38% -

PAH) rather than a homogenous distribution (8% -PAH).  Assessment of distribution of 

GGO in anterioposterior and craniocaudal direction showed the dis tribution was 

mainly random (79% random for  anterioposterior and 86% random for craniocaudal) 

except in patients with PAH-SSc.  In patients with PAH-SSc 51% of patients had 

central  distribution of GGO and 49% had non central  distribution; compared to low 

occurrence of central  distribution in other subgroups. Dilated collateral  vessels were 

most prevalent in patients  with PAH-CHD (35%) and within this subtype occurred 

55% of patients with Eisenmenger syndrome. 19% of patients with PAH had enlarged 

mediastinal  lymph nodes and i t  was relatively more frequent in IPAH (22%) and PAH -

CTD subgroup (25% of PAH-SSc and 27% of  PAH-CTD-nonSSc).  Oesophageal 

dilatation was appreciated mainly in patients with PAH -CTD (46% of PAH-SSc and 

36% of PAH-CTD-nonSSc) compared to other subgroups.   
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Table 24: Frequency (expressed in percentage) of  lung and oth er features in PAH 

and its  major subgroups  

Lung  and mediastinal  
CT Parameters 

PAH 
(n=292) 

IPAH 
(n=74) 

PAH-SSc 
(n=95) 

PAH-CTD-
nonSSc 
(n=39) 

PAH-Portal 
(n=14) 

PAH-CHD 
(n=63) 

PAH-CHD- 
Eisenmenger 
(n=31) 

GGO Present 41 42 38 26 21 60 58 

Intensity 1/ 2/ 3 20/34/46 16/26/58 25/28/47 0/50/50 67/33/0 18/55/27 17/50/33 

centri/pan homo/pan 
hetero 

55/8/38 48/0/52 61/22/19 60/0/40 67/33/0 53/0/47 56/0/44 

central /random/peripheral 21/79/0 10/90/0 51/49/0 10/90/0 0/67/33 5/95/0 6/94/0 

upper/random/lower 10/86/4 6/81/13 11/86/3 10/90/0 33/67/0 11/89/0 22/78/0 

Septal lines 21 30 23 5 21 18 23 

Collaterals vessel 11 9 1 8 0 35 55 

Lymphadenopathy 19 22 25 27 0 10 16 

Pleural effusion 11 14 15 8 14 5 3 

Right/left/bilateral 25/22/53 10/40/50 21/15/64 33/0/67 50/50/0 67/0/33 1/0/0 

Oesophageal dilatation 23 7 46 36 7 6 10 

Ascites 5 5 4 8 14 2 0 

 

 

Survival result:    

The maximal duration of follow up was 6 years with a mean follow -up of 3 years.   

During this period there were 112 deaths. For all  PAH univariate Cox regression 

analysis demonstrated that  cardiac parameters of RV/LV ratio, r ight atrial  size, 

deviation of interventricular septum and presence and depth of pericardial  effusion to 

predict  outcome.  Reflux of contrast  into the distal  hepatic veins and size of IVC  and 

lung changes of septal  l ines, presence of pleural  effusion and mediastinal  

lymphadenopathy also concurred with poor outcome in patients with PAH.  

Multivariable Cox proportional hazard analysis incorporating hemodynamic and CT 

parameters showed that  the RV/LV ratio, the depth of pericardial  effusion and inferior 

vena caval size were all  significant predictors of death. Univariate predictors of 

outcome in the 5 major groups of PAH are shown in Table 25.  
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Table 25: Univariate and Multivariate survival analysis  

Parameters Univariate HR(CI) P -value Multivariate 
HR(CI) 

P -value 

Age 1.04(1.02-1.05) <0.05 1.18(0.75-1.04) <0.05 

Gender      

WHO classification  1.68(1.35-2.08) <0.05 1.01(0.70-1.08) <0.05 

mRAP 1.01(0.98-1.05) 0.39   

mPAP 0.99(0.98-1.01) 0.91   

Cardiac output 0.83(0.73-0.94) <0.05 1.37(1.14-1.64) <0.05 

PVR 1.10(1.00-1.21) <0.05 1.00(1.00-1.00) 0.07 

smVO2 0.95(0.95-0.98) <0.05 0.98(0.94-1.01) 0.31 

Cardiac signs     

PA/Ao ratio 0.49(0.24-1.10) 0.09   

RV/LV ratio 2.59(1.89-3.57) <0.05 1.93(1.00-3.72) <0.05 

RA size 1.35(1.17-1.56) <0.05 1.18(0.95-1.45) 0.12 

RV hypertrophy  1.00(0.94-1.06) 0.96   

IV septal position      

           Normal Reference   Reference   

           Straightening 1.49(0.91-2.42) 0.11 1.19(0.91-2.41) 0.11 

           Deviated 3.10(1.98-4.86) <0.05 2.11(1.80-3.86) 0.12 

Pericardial effusion      

          presence  1.65(1.17-2.47) <0.05 1.04(0.70-1.54) 0.82 

         Depth 1.71(1.28-2.11) <0.05 1.84(1.01-3.35) <0.05 

Vascular signs     

IVC size 1.0(1.00-1.002) <0.05 1.11(1.00-1.24) <0.05 

Hepatic vein reflux       

          None Reference    

          trace into IVC 1.40(0.73-2.50) 0.25   

          proximal hepatic vein 1.45(0.83-2.52) 0.19   

          mid hepatic vein 1.27(0.63-2.53) 0.49   

          distal hepatic vein 1.79(1.05-3.06) <0.05   

Collaterals  0.55(0.28-1.10) 0.09   

Lung signs      

GG nodules      

     Present 1.00(0.69-1.47) 0.96   

     extent <1/3
rd

 Reference     

                    1/3
rd

-2/3
rd

 0.88(0.39-1.98) 0.75   

                    >2/3
rd

 0.95(0.45-2.01) 0.89   

     centrilobular vs panlobular   1.04(0.57-1.86) 0.91   

     central vs non-central  1.71(0.72-4.04) 0.22   

Pleural effusion 3.21(2.05-5.08) <0.05 1.42(0.70-2.86) 0.32 

Septal  lines 2.64(1.78-3.95) <0.05   

Lymphadenopathy 1.71(1.13-2.60) <0.05 0.75(0.42-1.36) 0.35 
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Figure 56:  Kaplan Meier Plots for  RV/LV ratio above and below median value 

(1.18) in patients with PAH  (Chi  square –  18.09;  p value -  0.00 .) 

 

 

 
Figure 57:  Kaplan Meier Plots for  IVC size above and below median v alue (559) in 

patients  with PAH (Chi square –  6.73; p value -  0.009) 
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5.6 Discussion 
 

Principle findings :  This study is the first  comprehensive report  of the prevalence of 

vascular,  cardiac, and lung parenchymal  and mediastinal  changes on CT in patients 

with PAH and i ts major subgroups.  It  has shown that  certain features such as 

oesophageal dilat ion and pulmonary artery calcification are more common in certain 

forms of PAH and fea tures usually associated with intrinsic lung disease such as 

ground glass change are frequently seen in all  forms of PAH.  We have also 

demonstrated that  cardiac and vascular morphology can independently predict  outcome 

in PAH and that  simply made measures  at  CT such as RV/LV ratio and pericardial  and 

IVC size are of independent predictive prognostic value.  

In addit ion to well  established features such as a high PA/Ao ratio several  

quantifiable CT findings including elevated RV/LV ratio, deviated intervent ricular 

septum, dilated right atrium, hypertrophy of the RV free wall ,  pericardial  effusion, 

contrast  regurgitation into the hepatic veins and presence of ground glass opacit ies 

occur frequently in patients with PAH and i ts major subgroups. Pat ients with I PAH 

and PAH-CHD-Eisenmenger  have a higher proportion of patients with severe RA 

dilatation, contrast  regurgitation into the hepatic veins and ground glass opacit ies.  

However , while more patients with IPAH have deviated interventricular septum and 

greater RV/LV ratio, the Eisenmenger group had a higher PA/Ao ratio, pulmonary 

artery calcification and mural thrombus and dilated collaterals vessels.  Interestingly 

we also noted that  central  distribution of ground glass opacity was particularly 

frequent in patients with PAH-SSc whereas a  centri lobular pattern was more common 

in IPAH and PAH-CHD-Eisenmenger.  Pulmonary artery size and pulmonary artery -

aortic ratio have been extensively studied and shown to have diagnostic accuracy but 

do not reflect  disease severit y.  In our study,  patients with Eisenmenger syndrome had 

the highest  pulmonary artery to aorta ratio.   

We have also shown that  CT features can predict  outcome in treatment naive patients 

with PAH at the t ime of init ial  diagnosis .  These CT features include simple 

measurements such as  ratio of the right  to left  ventricle,  r ight atrial  size,  posit ion of 

interventricular septum, inferior vena caval size, the presence of pericardial  and 

pleural  effusions, mediastinal  lymphadenopathy and septal  l ines. Most of the se 

parameters also predict  survival in  individual major subgroups. A number of  these 

measures including RV/LV ratio, pericardial  and IVC size were predictors of outcome 



  Chapter 5-  CT features  of  PAH

 

139 
 

independent of pulmonary haemodynamic variables and WHO functional class,  

highlighting the potential  prognostic value of CT. In this study PA size was  not a 

predictor or outcome, however, a  recent study has shown that  marked pulmonary 

artery dilat ion was a n independent risk factor for IPAH with marked dilation >4.8cm 

being associated with a  7 fold increase risk of unexpected death  (Chest  

2012;142:1406) . A recent work showed mediastinal  lymphadenopathy was not 

associated with right heart  haemodynamic in patients with IPAH [150].  

In PAH right ventricular function is a major prognostic determinant [151-152].  The 

increase in ventricular pressure in PAH stretches t he right ventricular wall ,  which 

leads init ial ly to RV hypertrophy. Over t ime,  this response cannot be sustained and 

eventfully the RV starts to dilate.  As the RV expands, the crescentic shape of the RV 

cavity is lost  and the interventricular septum bulges  towards the LV cavity [153-155]. 

Displacement of  the interventricular septum and dilatation of RV as shown by a high 

RV/LV ratio on CT are l ikely to reflect  a fail ing RV and i t  is  not surprising that  they 

have prognostic signif icance. A fail ing RV and tricuspid regurgitation also elevate 

right atrial  pressure. This impedes the mediastinal  lymphatic and venous drainage 

[156-157] results in the development of septal  l ines, medi astinal  lymphadenopathy and 

pleural  and pericardial  effusions. These features which can be easily quantifiable on 

CT are not surprisingly associated with a  poor outcome. Reflux of contrast  into the 

inferior vena cava and hepatic veins is thought to reflect  tr icuspid regurgitation [66] 

and our results have demonstrated that  a significant number of patients with PAH have 

features which would be consistent with tr icuspid regurgitation.  Severity of TR on 

echocardiography has been shown to be a significant predictor of outcome [158-159];  

however this was not seen using CT estimates and  is l ikely to reflect  how TR is 

estimated using CT. Tricuspid va lve insufficiency is  measured behind the level of 

tr icuspid valve leaflets on echocardiography using colour flow Doppler [160],  

however, the severity of TR on CT is estimated using indirect  measures such as reflux 

flow of contrast  into the hepatic veins. This method is influenced by factors such as 

the extent and phase of breath hold and rate of contrast  injection [161]. Interestingly 

inferior vena caval size has demonstrated to be a strong predictor of outcome.  This is 

not surprising as vena caval diameter reflects the pressure in the right atrium [162] 

which is an important prognostic marker in PH[158, 163] .  

Ground glass  attenuation is a documented finding in patients with PH [68-69] and our 

results show that  GGO is seen in all  major subgroups of PAH. The histology of GGO 
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is  poorly understood, one study in patients with Eisenmenger’s syndrome 

demonstrated centri lobular GGO to correlate with dilated capil lary networks i n 

alveolar spaces [62] while another isolated s tudy showed them to represent cholesterol  

granulomas [70].  A more recent study has correlated centri lobular ground glass 

changes with histopathological  changes in a  small  number of patients with IPAH, 

pulmonary capil lary haemangiomatosis and pulmonary veno -occlusive disease. They 

demonstrated that  patients with PCH had larger vascular abnormalit ies which 

corresponded to larger  areas of ground glass on CT. Interes tingly  In a study by 

Resten et  al [71] centri lobular pattern of GGO correlated with poor  outcome following 

treatment in patients with PAH, however in our study this f inding was restricted to 

patients with IPAH and was not appreciated in other major subgroups. Finally an 

interesting observation tha t  has not been reported previously is that  the central  pattern 

of ground glass  attenuation was seen more frequently in patients with PAH -SSc (51%) 

compared to other subgroups of PAH.  

Limitations :   First ly,  we have used non -gated axial  images for  assessmen t of cardiac 

morphology. Given the complex nature of cardiac anatomy, relying on simple 

measurement might only provide l imited information. However , our  study in a large 

patient cohort  shows the value of uncomplicated measurements in a non -gated CT that  

is  frequently performed as a first  l ine examination. Secondly, our analysis involved 

relatively few patients in less common subgroups of PAH such as  patient with HIV, 

drugs related PAH and this precluded the detailed analysis of these subgroups.  

Finally,  a rare category of PAH, pulmonary veno -occlusive disease (PVOD) has 

several  overlapping cl inical  and pathological  features with IPAH which can be 

difficult  to recognise without lung biopsy or  unti l  transplantation. It  is  possible that  a  

number of  patients with IPAH in our cohort  may have had an element of PVOD. 

Resten et  al ,  found that  a proportion of patients with GGO have PVOD at post -mortem 

examination, al though this was a small  number of patients [71].  This is a large set  of 

data on various CT changes and the next stage of this work is to perform an 

interobserver agreement on the various measurable and quali tat ive CT changes.  

 

5.7 Conclusion 

We report  features of PAH and i ts major subgroups on a  pre -treatment CT and also 

show parameters that  predict  outcome in this patient group.  There are many 
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characterist ic features on a standard CT that  are suggestive of PAH and a few 

dist inctive features that  are more prevalent in certain subgroups of  PAH. Presence of 

dilated right atrium and ventricle,  deviated interventricular septum, pleural  and 

pericardial  effusions on CT are associated with worse survival.
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6 CHAPTER 6: Diagnostic value of MR and CT in patients with 

PH secondary to connective tissue disease  
 

This chapter is  based on the paper published in Journal of  Rheumatology  

“Cardiac  MRI predicts mortality and is  superior to  thoracic CT in the assessment 

of suspected pulmonary arterial  hypertension in connective tissue disease” 

Rajaram S et  al ,  Journal  of  Rheumatology 2012 Jun; 39(6):1265-74.   

In the previous chapters the roles of  MRI and CT in distinctive subgroups of 

patients  with PH have been studied.   In this chapter  the focus is  on a  unique 

subgroup of patients with connective  tissue disease .  These patients  are at risk of 

developing PH which is  a leading cause of mortality for  this group.  

Physical  l imitation and non-specific  symptoms are common with CTD and when 

these patients develop PH it  is  often overlooked. To date the optimal screening 

tool is  echocardiography however it  is  not  without f laws often resulting in 

unnecessary right heart catheterization.    

This chapter investigates the diagnostic and prognostic uti l i ty of CT and MRI that 

would aid in risk stratification of  patients with connective tissue disease.   
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6.1 Abstract  

Background:  

PAH is a l i fe threatening complication of  connective tissue diseas es.  The aim of 

this study was to compare the diagnostic uti l ity of non -invasive modalities,  MRI 

and CT in the evaluation of these patients.  

Methods:  

81 consecutive patients with CTD and suspected PH underwent cardiac MRI,  CT 

and RHC within 48 hours.  Funct ional  cardiac parameters: ventricle areas and 

ratios,  delayed myocardial  enhancement,  position of  the inter -ventricular septum, 

RV mass and pulmonary artery distensibil ity were all  evaluated.  The PA size,  

PA/Ao ratio,  RV/LV ratio,  RV wall  thickness and gra de of  tricuspid regurgitation 

were measured on CT.  

Results:   

In our study of  81 patients with CTD, 55 patients had PAH and 22 patients had ‘no 

PH’.  There was a good correlation between mPAP  measured at  RHC and MR 

derived RV mass (r_0.71 p <0.001),  systoli c  (r_0.70 p <0.001) and diastolic  (r_0.64 

p <0.001) RV/LV area ratios.  In contrast  parameters measured from CT 

demonstrated only a moderate correlation with mPAP (RV/LV ratio r_0.43 p 

0.0008;  hepatic vein reflux r_  0.53 p 0.001 and right ventricle wall  thi ckness r_  

0.47 p 0.0002).  MR performed better as a diagnostic test for PAH than CT derived 

parameters:  PA-distensibility had a sensitivity of 80%, specificity 78% and 

likelihood ratio (LR) of 3.6.  Univariate Cox regression analysis showed the MR 

parameters  to better predict mortality.  Patients with a RVEDV of <135ml had a  

better prognosis than those with a  value >135ml with a 1 year survival  of  95% vs 

66 % (log rank test  of  0.024).   

Conclusion:  

In patients with CTD and suspected PAH,  MR is  superior to  CT i n the identification 

of PAH and in risk stratification.  
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6.2 Background 

Pulmonary arterial  hypertension (PAH) is  a serious complication of  connective 

tissue disease and is  one of  the leading causes of mortality [164].   The prevalence 

of connective tissue disease associated PAH (CTD -PAH) is  estimated to be as  high 

as 13% based on right heart catheterization (RHC) [165].  This is  most commonly 

seen in the settin g of systemic sclerosis (SSc),  whereas  in patients with System 

Lupus Erythematosus (SLE) the estimated prevalence is  less than 1% [112].  

Patients with CTD-PAH generally have a  poor outcome compared to idiopathic 

pulmonary artery hypertension (IPAH) [112, 130,  166] .  Within this group,  

patients  with PAH associated with SSc have the poorest  prognosis.   

Diagnostic tools capable of  identifying the presence of  PAH with a high degre e of 

accuracy and identifying patients at increased risk of  early mortality are highly 

desirable in this patient population.  Currently echocardiography is  recommended 

as a screening test,  with annual echocardiography recommended in patients with 

SSc and in other forms of CTD when patients have symptoms of  breathlessness.  

However,  estimates of pulmonary artery pressure cannot always be made and 

echocardiography can both underestimate and overestimate pulmonary artery 

pressure.  RHC remains the gold standard i nvestigation to confirm a diagnosis of 

pulmonary hypertension but this is  an invasive investigation.  In addition i t  only 

gives l imited information on the cause of  PH and gives no detail  of  the 

morphology of  the cardiac chambers or the pulmonary vascular be d.  A non-

invasive test  that  may aid the clinician in risk stratification  of  patients  with CTD, 

who have a poor quality echocardiogram or in whom the results  are equivocal ,  

would clearly be of  value  in both diagnosing the presence of PH and aiding 

classification.  

 

6.3 Objective 

  To compare the diagnostic uti l ity of variou s MR, CT and echo-cardiographic 

parameters with RHC in patients with CTD and suspected PH  

  To evaluate the ability of  the above  imaging modalities  to assess PAH 

severity and predict mortality.   
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6.4 Methods 
 

6.4.1  Study cohort  

 This was a retrospective study of 81 consecutive patients suspected with CTD -PH 

identified from patients referred to our centre with suspected PH. Patients  were 

referred to our centre for further evaluation of  clinical  features sugges ting 

pulmonary hypertension or  after  implementation of  a screening protocol  using the 

combination of echocardiography,  lung function testing and assessment of 

symptoms of breathlessness .  From the screening programme, patients underwent 

cardiac catheterisat ion if  i )  Tricuspid Gradient (TG)  ≥ 40 mmHg, i i)  i f  the TG was 

≥ 30mmHg but < 40 mmHg with a TLco < 50% or i i i)  in the presence of symptoms 

of unexplained progressive breathlessness regardless of  the results of the 

echocardiogram [167].  The diagnosis of  CTD was made according to standard 

criteria and in most cases this was by the referring physician [168-170].  The 

patients  included in the study were required to have had CT,  MRI and RHC 

performed within 48 ho urs.  For comparison with echocardiography this had to be 

performed at our centre within 3 months of RHC.  Al l  the CT and MRI were 

reviewed by two chest radiologists  blinded to RHC haemodynamics.   

The study included patients from January 2008 to March 2010 w ith a  median 

follow-up of  24 months.  The census date for mortality was 31st  March 2011. 

Patients were treated according to nat ional guidelines and prescription  of  

therapies was in accordance with the UK national  commissioning policy.   

6.4.2  Image acquisition  

CTPA  was performed during a single  breath -hold  fol lowing  and standard 

acquisition parameters were used:  100 mA with automated dose reduction,  120 

kV, pitch 1,  rotation t ime 0.5 s  and 0.625mm collimation.  The field of  view was 

400x400 mm with an acquisition  matrix of  512 x 512.  100ml of intravenous 

contrast  agent (Ultravist 300; Bayer Schering,  Berlin,  Germany) was administered 

at a  rate of 5ml/sec.  The CTPA images were reconstructed using a soft  f i lter to  

provide contiguous 0.625 mm axial  slices from the ap ex of the lung to the 

diaphragm for review.  
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MR imaging was performed on a 1.5 Tesla GE HDx Scanner (GE Healthcare,  

Milwaukee,  USA) with peak gradient strength40 mT/m and slew rate 120 

mT/m/ms. An 8 channel cardiac receive array RF coil  (GE, Aurora,  Ohio,  USA) was 

used throughout.   

SSFP is  performed in the coronal plane as a stack of 2D SSFP images (GE FIESTA 

sequence).  This sequence was performed in ful l  inspiration with a breath hold 

time of 12 seconds.  The imaging parameters are as follows: TR 2.8 ms,  T E 1.0ms, 

Flip angle of  50°,  FOV=48 cm x 43.2 cm, 256 x 256 Matrix,  125 kHz bandwidth and 

slice thickness of 10mm. This sequence is  also used for scout images for planning 

the geometry of the c ine cardiac scans.   

CINE cardiac imaging: Four chamber view and contiguous cine short-axis views 

are acquired using cardiac gated SSFP imaging at end -expiratory breath-holds.  

The following parameters are used:  20 frames per cardiac  cycle ,  slice thickness 8 -

10mm, FOV 48,  matrix 256 x 256, BW 125 KHz/pixel ,  TR/TE 3.7/1.6  ms).   

 

6.4.3  Image analysis  

The CT and MRI images are analysed by two radiologists with 2 years of  

specialized experience in interpreting CT and MR images for patients with 

suspected PH.  The data was collected by two radiologists and a  single  dataset was 

obtained at  the end.  

CT:  The fol lowing CT parameters were measured: The following parameters were 

calculated using the method described in the methods section.  Pulmonary artery 

to aorta ratio,  ratio of the short axis distance between right  to  left  ventricle,  

reflux of contrast  into the hepatic views were graded.  The HRCT images were also 

graded for presence or absence of  interstitial  l ing disease (ILD) using a  scoring 

system used by Bezante [171].  

MRI:  The RV end diastolic  volume (RVEDV),  RV end systolic  volume (RVESV),  RV 

ejection fraction (RVEF),  stroke volume (SV) and cardiac output (CO) were 

subsequently calculated  as described in the methods section .  The systolic  and 

diastolic  areas of  the RV and LV chambers were me asured on the mid 4 chamber 

view and a ratio was derived.  The RV end diastolic  mass (RVEDM), left  ventricular 
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end diastolic  mass (LVEDM) and the ventricular mass index as  the ratio  of 

RVEDM/LVEDM (VMI) were calculated from the end diastolic  short axis stac k of 

images [78] .  Tricuspid annular systolic  excursion (TAPSE) and septum -free-wall  

distance (SFD) were also recorded [80].  From the mid 4-chamber image the RV 

relative area change (RV area in end diastole−RV area in end systole/RV area in 

end diastole×100) and systolic  and diastol ic  RV/LV area ratios were measured.  

Phase-contrast MR images were processed using specialized software.  The 

contours of  the main PA were traced simultaneously on magnitude and velocity -

map images and peak velocity,  pulmonary artery blood flow and pulmonary artery 

distensibility were calculated [172].  The motion of  the interve ntricular septum 

was visually analysed on short -axis and four-chamber views for presence or 

absence of  paradoxical septal movement.  The presence or absence of myocardial  

delayed enhancement at the interventricular septum insertion points was also 

noted.  The degree of delayed myocardial  enhancement was not  quantified.   

 

6.4.4  Statistical  analysis  

To compare CT and MR parameters between patients  with PH and no PH subjects,  

the independent t -test and χ 2  tests were used as appropriate.  To determine the 

correlations between imaging and RHC parameters a Pearson’s test was used.  

Diagnostic strength,  for the identification of patients with PAH,  was assessed 

using receiver operated characteri stic  (ROC) curve analysis .  The s urvival curves 

were derived using the Kaplan -Meier method and were compared using a  log -rank 

test.  Median values were used to separate continuous variables into two groups.  

The univariate Cox regression analysis was used to calculate the hazard ratio  and 

confidence interval  for the following predictors:  age,  mean right atrial  pressure 

(mRAP),  mixed venous oxygen saturation (mSVO 2),  cardiac index (CI),  mPAP,  PVR,  

RVEDM, RVEDV, PA/Ao ratio  and RV wall  thickness.  A P  value of  less than 0.05 was 

considered to be statistically significant  for all  statistical  a nalysis .  
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6.5 Results 

 

Demographics:  

 81 patients were identified with CTD of  whom 55 patients had PAH and 4 patients 

had PH owing to left  heart disease.  22 patients with CTD had ‘no PH’.  Phase 

contrast  MRI was performed in 51 patients and the ventricular mas s was available  

for 62 patients.  The median time interval between echocardiogram and RHC was 

34 days (interquartile range of 3  to  59 days).   In 9 patients  the echocardiogram 

data was not available.  

The study profile  is  outlined in figure 1 and demographic details  of  the patients 

are summarized in table 26 .   

 

Table 26: Patient classification  

 

 

 

 

 

Total number of patients with 
CTD = 81 

PH LHD n=4 

Limited Systemic 
sclerosis = 4 

Patients with PAH n=55 

Limited Systemic sclerosis = 35 

Diffuse Systemic sclerosis = 8 

SLE=  4 

Mixed CTD = 3 

Rheumatoid arthritis = 3 

Undifferentiated CTD = 2 

Patients with no PH n=22 

Limited Systemic sclerosis = 14 

Diffuse Systemic sclerosis = 5 

Mixed CTD = 1 

SLE = 1 

Undifferentiated CTD  =1 
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Ta bl e 27:  Pa tient  c lass i f ica tion  

 Whole Group 
n=81 

No PH 
n=22 

PAH 
n=55 

p-value 

Age (yrs) 62(14) 59 (16) 64 (17) 0.47 

Female (%) 85 85 85 0.90 

WHO II/III/IV (%) 25:63:9 40:55:0 20:66:13 <0.001 

FVC (% predicted) 85 (22) 91 (15) 82 (24) 0.11 

TLCO (% predicted) 47 (19) 67 (21) 40 (12) <0.001 

mRAP (mmHg) 8 (5) 6 (3) 9 (5) 0.007 

mPAP (mmHg) 35 (15) 19 (3) 40 (14) <0.001 

CI (L.min.m2) 3.3 (0.8) 3.7 (0.8) 3.2 (0.7) 0.004 

PVR (dyn.s.cm-5)* 417 (393) 112 (46) 524 (404) <0.001 

mVO2 (%) 69 (8) 73 (7) 67 (8) 0.008 

FV C-for ce d  v i ta l  ca pa ci t y ;  TL CO -ga s  tra n sfe r ;  m R AP -me a n r i gh t  a tr ia l  p re ss u re ;  mP AP - me a n 
pu lmo na ry  a rte r y  pre ss u re ;  P VR -p u lm ona ry  va sc u la r  re si sta nce ;  m VO2 - mi x e d  ve nou s sa t ura tion ;  
CI- ca rd ia c  ind e x;  P VR  - pu lmo na ry  va sc u la r  re s i sta n ce ;  m VO - mi xe d  ve n ous  o xyge n  sa t ura tion  
(n= 4  pa tie nt s  wi t h L HD a re  inc lud e d  w it hin  t he  w ho le  gro up)  

 

 

Assessment of  severity:   

Table 28 summarises the correlations between MR measurements and RHC derived 

mPAP and PVR.   Good correlation was found between mPAP and PVR and VMI,  

RVEDM, systolic  and diastolic  RV/LV area ratio and a  moderate correlation was 

found with TAPSE, PA distensibili ty and RV RAC. The pulmonary artery average 

blood flow measured from phase contrast  MR showed a moderate correlation with 

RHC derived cardiac output (r_0.59 p<0.001) but not  with mPAP or PVR.  For 

parameters measured from CT;  PA size,  PA/Ao, RV wall  thickne ss,  RV/LV ratio and 

graded hepatic vein reflux showed only a  moderate corre lation with the mPAP and 

PVR. Tricuspid gradient from echocardiography correlated strongly with mPAP 

and PVR measured at  RHC (mPAP =0.84,  P < 0.001 and PVR =0.76,  P < 0.001) .  
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 Table 28: Correlations of cardiac MR parameters with mPAP and PVR  

 

 

mPAP PVR 

r value p-value r value p-value 

RV Mass ** (g/cm3) 0.70 <0.001 0.60 <0.001 

Systolic RV/LV area ratio 0.69 <0.001 0.68 <0.001 

Diastolic RV/LV area ratio 0.64 <0.001 0.64 <0.001 

PA distensibility* (%) -0.58 0.0011 -0.54 0.0012 

RVRAC (%) -0.53 <0.001 -0.56 <0.001 

TAPSE (cm)       -0.55 <0.001 -0.58 <0.001 

SFD (cm) -0.39 0.0019 -0.44 <0.001 

RVEF (mL) -0.44 <0.001 0.50 <0.001 

RVESV (mL) 0.40 <0.001 0.43 <0.001 

RVEDV (mL) 0.24 0.09 0.20 0.12 

RVSV (mL) -0.37 0.0026 -0.41 <0.001 

N=81(study group) *N=51 (PA d istensib i l i ty )  **N=62 (RV Mass) .  RVEDV –  r ight  ventr ic le end  
d iasto l ic  vo lume;  RVESV –r ight  ventr ic le  end systol ic  volume; RVEF –r ight  ventr ic le  e ject ion  
fract ion ;   SV–stroke vo lume;  RVEF –r ight  ventr ic le eject ion fract ion;  TAPSE -transverse 
annular  systol ic  excurs ion;  SFD –septal - free wal l  d i stance;  RVRAC - RV relat ive area change;  
RV mass–r ight  ventr ic le mass  

 

 

Table 29: Correlations of CT parameters with mPAP and PVR  

 
mPAP PVR 

r value p-value r value p-value 

RV wall thickness 0.47 <0.001 0.35 0.007 

PA size 0.37 0.003 0.28 0.03 

PA/Ao ratio 0.43 <0.001 0.36 0.004 

RV/LV ratio 0.40 0.005 0.35 0.015 

Hepatic vein reflux 0.53 0.001 0.58 0.001 

RV/L V ra tio– right  ventric l e  l eft  ventric l e tra nsvers e dis ta nc e ra tio;  PA/Ao rat io –

Pul mona ry  a rtery  A orta  rat io;  PA –  Pulmona ry  a rtery;  R VWT – right  ventric l e wal l  

thick nes s  
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Diagnostic value:  

The performance of the MR and CT are outlined in table  30 and 31.  VMI was the 

best performing MR parameter with a  cut off  value ≥ 0.45 as determined by the 

ROC analysis (AUC 0.87) having a  sensitivity of  85%, specificity 82% and 

l ikelihood ratio of  4.5.  PA distensibility with the cut off  point ≤ 15 (AUC 0.85 ) had 

a sensitivity of  80%, specificity 78% and LR 3.6.  Of  the CT parameters evaluated,  

presence of  PA/Ao ratio of ≥1 (AUC 0.71) had a low sensitivity of 59%, specificity 

73% and LR 2.2.  RV wall  thickness ≥ 3.5mm as determined by the ROC analysis 

(AUC 0.73) showed a sensitivity of 65%, specificity 67% and LR 1.9.  Although the 

presence of  pericardial  effusion had 100% specificity,  the sensit ivity was poor 

(23%) as  this was present in only 12 patients.  Tricuspid gradient performed 

strongly as a  diagnostic tes t for the group in our study (AUC 0.87).  The strongest 

TG threshold for diagnosing PH was 40 mmHg and at this cutoff  point the 

sensitivity was 86%, specificity was 82% and LR of 4.6 for  diagnosing PH.  
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Table 30: Diagnostic performance of MR parameters  

Variables 
sensitivity / 

specificity 
PPV/NPV LR ROC AUC 

PA distensibility ≤ 15 80/78 90/59 3.60 0.85 

RV Mass ≥ 30 72/80 91/50 3.57 0.84 

RV area change≤36% 69/75 89/47 2.76 0.70 

Systolic RV/LV area ratio ≥ 0.8 67/75 88/45 2.70 0.78 

Diastolic RV/LV area ratio ≥0.8 60/75 87/40 2.40 0.73 

Transverse excursion ≤2cm 67/65 83/45 1.9 0.70 

Septal free wall distance ≤1 70/60 81/45 1.73 0.67 

Delayed Myocardial Enhancement  74/82 89/63 4.09 - 

Paradoxical Septal Movement 23/100 100/35 - - 

PPV-positive predictive value; NPV- negative predictive value; LR- likelihood ratio; ROC AUC- receiver operator 
characteristics are under the curve; TAPSE-transverse annular systolic excursion; SFD–septal-free wall distance; 
RVRAC- RV Relative area change; PA distensibility – pulmonary artery distensibility; RV mass–right ventricle mass. 

 

 

 

Table 31: Diagnostic performance of CT parameters  

Variables 
sensitivity/ 
specificity 

PPV/NPV LR ROC AUC 

PA size ≥ 2.9 59/73 87/37 2.1 0.71 

PA/Ao ratio ≥ 1 54/74 87/40 2.2 0.73 

RV/LV ratio 55/53 76/30 1.2 0.54 

RV wall thickness≥ 3.5 mm 65/67 88/35 1.9 0.74 

Hepatic vein reflux (present/absent) 41/85 89/35 2.7 0.73 

PPV-positive predictive value; NPV- negative predictive value; LR- likelihood ratio; ROC AUC- receiver operator 
characteristics are under the curve; RV/LV ratio–right ventricle left ventricle transverse distance ratio; PA/Ao ratio–
Pulmonary artery Aorta ratio; PA– Pulmonary artery; RVWT–right ventricle wall thickness 
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Survival analysis:   

The mean follow up period was 24 months and there were 10 deaths during the 

study period.  Univariate Cox regression analysis demonstrated that mean RA 

pressure,  mixed venous oxygen saturation,  RVEDV, RVESV, VMI an d RVEDM 

predicted mortality in PAH (Table 32).  Kaplan Meier survival curves showed 

patients  with a RVEDV < 135ml had significantly better survival  than those with 

RVEDV >135ml (log rank test,  P 0.024).  The Kaplan Meier survival curve for 

RVEDV is shown in Figure 59.  In our group of patients,  Kaplan Meier survival 

curve for VMI using a  median valu e of 0.75 also predicted mortality with a  p -value 

of 0.04 (Figure 60).  A multi -variable analysis was not  performed due to the low 

number of  deaths.   

 

Table 32: Univariate predictors of  mortali ty in CTD -PH patients  

Variables Hazard Ratio 95% CI p-value 

Age (yr) 1.00 0.95–1.05 0.93 

mRAP ( mm Hg) 1.2 1.06–1.35 0.003 

mPAP (mm Hg) 1.01 0.96–1.06 0.009 

mVO2 (% ) 0.91 0.84–0.98 0.02 

Cardiac index (L/min−1/m−2) 0.59 0.21–1.68 0.328 

PVR (dyne/s/cm−5) 1.00 0.99–1.00 0.307 

RV systolic volume(mL/mm Hg−1) 1.01 0.98–1.04 0.186 

RV ejection fraction 0.99 1.05–1.03 0.923 

RV end diastolic volume (mL) 1.02 1.01–1.03 0.002 

RV end systolic volume (mL) 1.01 1.00–1.02 0.027 

RV end diastolic mass (g/cm3) 1.03 1.00–1.06 0.040 

PA distensibility (%) 0.87 0.64-1.18 0.388 

 

RVEF– right  ventric l e ;  mRA P-mea n right  a tr ia l  press ure;  mPA P -  mea n pulmonary a rtery  
pressure;  PVR- pul mona ry  vasc ula r res ista nc e ;  mVO2-mixed venous  sa turat ion  
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Figure 58:  Kaplan-Meier survival curve for patients with Connective Tissue 
Disease associated Pulmonary Hypertension based on right  ventricle end 
diastolic  volume  

 

 

 

 
 Figure 59:  Kaplan-Meier survival curve for patients with Connective Tissue 

 Disease associated Pulmonary Hypertension based on right  ventricle end 
diastolic  mass  
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6.6 Discussion 
 

Principal findings:   We have compared the diagnostic uti l ity of  MRI with CT and 

selected echocardiographic parameters,  for the first time, in a large unselected 

group of patients with CTD and suspected PAH.  We have demonstrated that  both 

MR and echocardiographic indices have a good correlation with mPAP and PVR 

made at right  heart catheter and performed well  in predicting the presence of PAH 

in a high risk population.  In addition,  MR derived measures of  volume and mass 

predicted outcome. In contrast,  CT indices  correlated only moderately with 

invasive measures of pulmonary haemodynamics and had poorer diagnostic uti l ity 

for PAH.  To the best  of our knowledge,  our study is  the first  to  analyse several 

quantitative MR measures in a  subgr oup of  patients with CTD and suspected PAH 

in comparison to ‘gold standard’ RHC.  

There are interests  in measures that are l ikely to reflect  the remodelling process 

such as RV mass and fluid overload as ref lected by change in chamber volume. In 

our cohort,  right ventricular mass showed the best  correlation with mPAP 

(RVEDM = r_0.70;  VMI r_0.68) and this is  not surprising as  RV mass partially 

reflects the effect  of  RV afterload [76].  We and others ,  have previously shown that  

VMI can predict disease severity in patients with PAH  [78-79],  however both 

acquisition and post-processing for RV mass assessment is  a time consuming 

process.  In this study we have demonstrated that  simple r and quicker to  perform 

measurements such as RV/LV  systolic  area ratio  also show  good correlation with 

the catheter hemodynamics (mPAP r_0.68; PVR r_0.69).  A simple approach to 

quantify systolic  RV function has  been to measure RV wall  motion.  Tricuspid 

annular plane systolic  excursion (TAPSE) quantifies the longitudinal motion and 

SFD the transverse motion of  the RV.  Both these parameters have previously been 

applied in MRI in patients with IPAH [80,  173] and our results showed a better 

relationship of TAPSE with mPAP compared to SFD.  Primary myocardial  

involvement has been reported in systemic sclerosis and established myocardial  

involvement characteristically results in myocardial  f ibrosis [174].  Our study 

examined the prevalence of delayed myocardial  enhancement in patients with 

suspected PAH and interestingly 4 patients  with systemic sclerosis had delayed 

myocardial  enhancement in the absence of  PAH based on right heart 
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catheterization.  The process of ‘Pri mary’  myocardial  involvement in systemic 

sclerosis may account for  this finding in our study patients  without PAH  [175].   

The development of PAH in patients with CTD is  known to have a major impact on 

survival  and this group of patients have poorer prognosis compared to other 

forms of PAH [112,  166, 176] .  VMI was noted to predict outcome in a  selected 

group of patients with systemic sclerosis associated PAH [78].  In a  further work,  

Van Wolferen et al  found low stroke volume, RV end diastolic  volume index and 

impaired left  ventricular filling to independently predict mortality in patients 

with PAH [76].   We have shown that these findings are broadly applicable in 

patients  with CTD-PAH and have demonstrated the ability of MR measure of RV 

volume and ventricular mass index to identify patients with better outcome.   

In a  recent study,  we have demonst rated moderate correlation between CT 

measured RV/LV ratio and reflux of contrast into hepatic veins  and pulmonary 

haemodynamics  [177].  However,  as  individual measurements,  the role  of 

morphological CT parameters appears to  be limited as a prognostic and diagnostic 

tool .  We have reproduced a similar correlation in a  subgroup of patients with CTD 

using non-cardiac gated CT. T his study,  however,  does establish that  MRI has 

greater diagnostic  accuracy than CT ,  which is  not  surprising given the gated 

nature of the acquired images and the functional information that can be gleaned 

from MRI.  

Limitations  

There are limitations to ou r study.  The study was carried out  in a quaternary 

referral  centre for PH where patients  were referred with suspected PH either from 

screening programmes or due to the presence of symptoms. This group are at  

particularly high risk of having PAH.  They are t herefore an important group of 

patients  in whom it  would be most appropriate to consider further non -invasive 

assessment.  The CTPA that was used for evaluation of  the cardiac measurements 

was not cardiac-gated.  However CT performed for suspected PH is  not  routinely 

cardiac-gated and our study ref lects the uti lity of CT that  is  typically performed in 

a routine clinical  sett ing.  Finally delayed myocardial  enhancement have 

previously been quantified and have shown to predict outcome in patients  with 

PH, in our  group delayed myocardial  enhancement was not quantified although 

qualitative analysis showed a relationship with mortali ty [178].   
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6.7 Conclusion  

 

In conclusion,  our results show that cardiac MR had similar diagnostic  accuracy to 

TG, when this could be assessed using echocardiography and is  superior to  CT in 

assessing the severity of  disease and diagnosing PAH in patients with CTD who are 

at high risk of having PAH. MR can identify with a high degree of certainty 

patients  l ikely to have PAH and may be of  particular value in patients with 

suspected PAH who have poor quality echocardiograms or in patients reluctant  to  

have invasive investigation in establishing a positive diagnosis of PAH. In 

addition,  cardiac MR also offers the added advantage of  predicting mortality in 

this subgroup of  patients with CTD -PAH and may be valuable in identifying 

patients  for  more aggressive therapy.  Neither imaging test can confidently exclude 

PAH nor does right  heart catheterisation remain  the definitive investigation to do 

so in patients with on-going symptoms despite re -assuring non-invasive 

investigations.   
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7 CHAPTER 7: Balanced steady-state Free Precession MRI for 

imaging Lung parenchyma 
 

 

This chapter is  based a paper published in Radiology  “Lung morphology 

assessment with balanced steady state free precession (bSSFP) MRI compared to 

computed tomography “  Rajaram S et al , Radiology 2012 May; 263(2):569-77.  

  

As we are aware chest radiography and CT have traditionally been considered as 

the modalities of  choice for imaging lung parenchyma and CT gives excellent 

anatomical detail  of  the lung.  However regardless of the low radiation dose 

volume CT protocols  radiation exposure is  sti l l  a  great  concern in paediatric 

patients  and pregnant women .  Furthermore,  patients with chronic lung disorders 

may require multiple CT scans resulting in a high cumulative dose of radiation.  

Hence a  radiation free screening tool for the lung is  desirable particularly in high 

risk patients.  

This final  chapter of  the thesis  uti l ity of balanced steady state free precession  

lung MRI is  compared to CT for imaging morphological  lung changes.    
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7.1 Abstract   

 

Objective:  

The purpose of  this study was to evaluate the uti lity of  1.5T non -contrast  MR 

imaging of the lung parenchyma and compare it  to CT in the assessment of 

interstitial  lung disease and other morphological lung abnormalities.  

Methods:   

236 patients  who underwent MRI and CT investigations as part  of their  

assessment for suspected PH were included in thi s study.  Lung MRI was 

performed on a  1.5 T system as a stack of  c oronal  2D Steady State free precession 

acquisitions.  Two radiologists independently evaluated the CT and MRI images for 

various morphological abnormalities such as pulmonary fibrosis ,  pleural  and 

mediastinal disease,  solid lesions,  b ronchial  disease and emphysema.  

Results:    

The sensitivity and specificity of MRI in identifying pulmonary f ibrosis (n=47) 

was 89% and 92% respectively.  80% of cases of mild fibrosis and 100% of  severe 

fibrosis were seen on proton SSFP MRI.  In comparison to CT,  MRI demonstrated 

75% of ground glass opacification.  9  out of the 12 non -calcified nodules  were 

identified on MRI.  Bronchial  changes and effusion were also well  visualized on 

MRI.  MRI was however less effectiv e in depicting emphysema, minor fibrosis and 

nodules less that  5mm in size.   

Conclusion:  

bSSFP MRI is  inferior to CT in imaging parenchymal lung disease.  This study does 

however demonstrate a potential  role for the bSSFP sequence as  an alternative 

radiation free,  non-contrast  imaging modality for young patients,  pregnant women 

and in fol low-up of patients with known lung disease.   
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7.2 Background 
 

Until  recently,  MR imaging of  the lung has  been a challenge.  This is  principal ly due 

to poor inherent proton dens ity of normal lung tissue resulting in low signal to 

noise ratio  (SNR).  Secondly,  there is  degradation  of the signal from the lung 

parenchyma due to T2* dephasing from magnetic susceptibility gradients  at  the 

air-soft tissue interfaces [23].  Cardiac pulsation and breathing  motion add further 

challenges  to image quality.  

The advent of  newer MRI techniques that exploit  developments in MR hardware 

namely faster switched field gradients  and parallel  imaging have opened up new 

scope for imaging lung parenchyma [179].   Techniques such as short echo time 

three dimensional (3D) breath -hold gradient echo [180-181],  single  shot fast spin 

echo [182-183] and post  contrast T1 weighted gradient  echo [184-185] have been 

considered for structural lung imaging.   Studies and experimental work using 

these MRI sequences have shown them to be helpful in the assessment of 

malignant and benign lung changes [186-188].  More recently Failo et al  [189]  

showed good visualization of  lung parenchyma in patients with cystic fibrosis 

(CF) using a non-contrast,  short  TR/TE 2D balanced steady state free precession 

(bSSFP) technique.  Nevertheless,  experience with this bSSFP sequence for imaging 

lung morphology has been limited to comparisons with gradient  echo methods in 

dynamic breathing studies [190] .  Moreover comparison of  bSSFP with CT in adult 

patients  with lung disease has not  been previously reported.   

 

7.3 Objective 

 

The purpose of  this study was to evaluate the uti lity of  1.5T non -contrast  MR 

imaging of the lung parenchy ma and compare it  to CT in the assessment of 

interstitial  lung disease and other morphological lung abnormalities.  
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7.4 Methods  
 

7.4.1  Study cohort  

 

This was a retrospective study of  236 consecutive patients who underwent MRI 

and CT investigations as part of  thei r  routine assessment for  suspected pulmonary 

hypertension between January 2008 and March 2010.  Al l  patients included in this 

study had CT and MRI performed within a  time interval  of  48 hours.  11 patients 

did not undergo MRI either due to claustrophobia or presence of  MR incompatible  

metallic  device.  The study group included patients  with no PH (n=36),  and al l  

major forms of PH [42] including pulmonary arterial  hypertension (n= 81),  

chronic thromboembolic PH (n= 63),  PH owing to left  heart disease (n= 26) and 

PH owning to lung disease (n= 30).   CT was considered as  the ‘reference standard’  

imaging modality for  morphological imaging of  the parenchyma.  

7.4.2  Image acquisition 

 

MR: A stack of  coronal two dimensional  bSSFP ( G E Fiesta sequence) images were 

acquired,  with the fol lowing parameters:  TR 2.8 ms,  TE 1.0ms, Flip angle of 50°,  

FOV=48 cm x 43.2 cm, 256 x 256 Matrix,  125 kHz bandwidth and slice thickness of 

10mm. The lung apex to the diaphragm was covered in a  single bre ath hold.  This 

sequence was performed in ful l  inspiration and with a  breath hold time of  12 

seconds.  As part  of the patients’  workup for evaluation of PH,  these bSSFP 

breathhold  scans serve as scout images for planning the geometry of the cine 

cardiac scans used to assess right  heart  function.    

The CT was performed on a 64 slice MDCT scanner (Light -Speed General  Electric 

Medical Systems, Milwaukee,  WI).   

CTPA: CTPA was performed during a single breath -hold  following  and standard 

acquisition parameters wer e used:  100 mA with automated dose reduction,  120 

kV, pitch 1,  rotation t ime 0.5 s  and 0.625mm collimation.  The field of  view was 

400x400 mm with an acquisition matrix of  512 x 512.  100ml of intravenous 

contrast  agent (Ultravist 300; Bayer Schering,  Berlin ,  Germany) was administered 

at a  rate of 5ml/sec.  The CTPA images were reconstructed using a soft  f i lter to  
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provide contiguous 0.625 mm axial  slices from the apex of the lung to t he 

diaphragm for review.  

HRCT: 1.25mm HRCT slices were also reconstructed ev ery 10mm from the contrast  

enhanced acquisition using a high spatial  resolution fi l ter.   

7.4.3  Image analysis  

 

The MR images were reviewed on a standard GE workstation by two independent 

radiologists blinded to the CT findings.  For evaluation of pulmonary fibros is ,  

bronchial  disease and emphysema, HRCT images were used.  CTPA was used for 

assessment of pleural  and mediastinal  disease and solid lung lesions.  

The images were evaluated for the presence or absence of the following 

morphological abnormalities: pulmonar y f ibrosis ,  pleural and mediastinal disease,  

solid lesions,  bronchial  disease and emphysema. The criteria for  positive 

interpretation of  f ibrosis on CT and MRI included one or more of the following: 

interlobular septal  thickening,  intra -lobular interstitia l  thickening,  honeycombing 

and traction bronchiectasis or ground -glass opacity [121-122].  Ground glass 

opacity on MR was defined as an area of increased signal intensity without 

obscuration of the pulmonary vessels  as  shown on a  previous work by Muller et  al  

[191].   

Interstitial  lung changes were graded based on a grading system used by Gay et  al  

[123]  and is  outlined in table  33.  Each lung was divided into 3 zones defined as  

follows:  upper zone was defined as above the aortic arch,  the middle zone was 

defined as between the  aortic  arch  and  pulmonary  veins,   and  the  lower  zone  

was defined as below the pulmonary veins [124].  The sum of the scores for all  

zones for each patient was obtained (a  minimum score was 0 and the maximum 

score was 30).  

The CT and MR images were also studied for pleural and pericardial  effusions and 

enlarged mediastinal lymph nodes.    

Calcified and non-calcified pulmonary nodules and consolidation were assessed 

under ‘solid lesions’.  The nodules were measured along their  largest  diameter.  
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Consolidation on MR was defined as homogenous increase in signal  intensity wi th 

obscuration of margins of the vessels [192].  

Bronchiectasis  was considered when there was cylindrical  dilatation .   Emphysema 

on MRI was defined as area of  low signal intensity with sparsity of  pulmonary 

vasculature [193].  

7.4.4  Statistical  analysis  

 

Exact 95% confidence interval  (CI) of  sensitivity,  specificity,  and positive and 

negative predictive values for presence or absence of  pulmonary fibrosis were 

computed by using the binomial  distributions.  Kappa ana lysis was used to 

determine the extent  of agreement between the two observers.  In cases of  

discrepancy between observers  regarding abnormality detection,  a  final  

interpretation was obtained by consensus during a  second session.   

7.5 Results  

 

236 patients  underwent MRI and CT within 48 hours and were included in the 

study.  The mean age was 62 years  ± 13 (± standard deviation);  (149 women; mean 

age,  62 years ± 14; 87 men; mean age,  62 years ± 12).  224 MRI scans were of 

diagnostic quality,  only 12 (12/236 - 5.08%) had significant artefacts and were 

considered to be non -diagnostic .  33 patients had no lung or mediastinal disease 

on CT  and for the purpose of this paper were considered as ‘normals’ .  The 

interobserver agreement was performed for MRI but not CT data .   

Fibrosis  

Forty seven patients had pulmonary fibrosis on CT and the sensitivity and 

specificity of MRI for  identifying pulmonary fibrosis was 89 % (95% CI:  77 to 96) 

and 91% (95% CI:  76 to 98) respectively with a positive and negative predictive 

value of  93% (95% CI: 82 to 99) and 86% (95% CI:  70 to 95) (Table 3 4).  The 

bSSFP MRI identified (12/18) 78% of patients with total  f ibrosis score of 1 -5 and 

(5/5) 100% patients with total  f ibrosis score of >15. In comparison to CT,  MRI 

demonstrated 75% (9/12) of  grou nd glass opacification,  67% (10/15) of  traction 

bronchiectasis and 45% (5/11) of  c ystic  reticular changes (Table 35 ).  All  the 

images were reviewe d by two radiologists with 5 years of  clinical  experience with 
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substantial  inter-observer agreement with inter -observer kappa of 0.79 (Table 

36).   

 

Table 33: HRCT interstitial  score  

Score Characteristics 

0 No interstitial disease 

1 Interlobular septal thickening (no discrete honeycombing) 

2 Honeycombing involving up to 25% of the zone  

3 Honeycombing involving 25 to 49% of the zone 

4 Honeycombing involving 50 to 75% of the zone 

5 Honeycombing involving > 75% of the zone 

*Adapted from Gay et  al  [123] based upon the  relative  quantity of honeycombing 

 

 

 

Table 34: Overall  accuracy of  MRI in the overall  diagnosis of pulmonary fibrosis  

Fibrosis CT  Present CT  Absent Total 

MR  Present 41 3 44 

MR Absent 5 30 35 

Total 46 33 79 

 
Sensitivity 89.13% (95% CI: 77 - 96), specificity 91% (95% CI: 76 - 98), positive predictive value 93% (95% 

CI: 82 - 99), negative predictive value 86% (95% CI: 70 - 95) 
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Table 35: Sensitivity of MRI in the diagnosis of pulmonary fibrosis  

*based on sum of the scores in 6 zones (minimum score was 0 and the maximum score was 30) 
**Inter-observer agreement (Kappa) between the two readers for MRI; CI -confidence interval 

 

 

 

Table 36: Inter-observer variation between two observers for  diagnosis of  f ibrosis  

on MRI  

 
Observer 1 

Total 
Fibrosis absent Fibrosis  present 

Observer 2 
Fibrosis absent 

 
32 

 
6 

 
38 

Fibrosis present 2 40 42 

Total 34 46 80 

Inter-observer agreement 90%, kappa=0·79 for presence of absence of fibrosis. 
In 8 patients consensus reading on a second session was required. 

 
 

 

 

 

 

  
 

 
MR/CT 

 
Sensitivity 95% CI 

Kappa**  
(p value) 

Degree of 
Fibrosis* 

Score 1-5 12/18 66.67% 41 to 87 

0.79  Score 6-15 22/23 95.65% 78 to 99 

Score >15 5/5 100% 48 to 100 

Pattern  
of  

Fibrosis 

Ground glass opacification 9/12 75% 43 to 94 0.58  

Traction bronchiectasis 10/15 66.67% 38 to 88 0.61  

honeycombing involving  
≤ 25%  of a zone  on CT 

22/27 81.48% 61 to 93 0.43  

honeycombing involving  
≥ 25%  of a zone  on CT 

19/19 100% 82 to 100 0.62  
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Figure 60:  Typical  NSIP pattern of  f ibrosis with presence traction bronchiectasis 
appreciated on both CT (A) and bSSFP MRI (B)  
 

 

 

Figure 61:  CT (A) and bSSFP MRI images (B) show the presence of cystic  reticular 
pattern of f ibrosis in the lung bases  
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Solid lesions:  

Twelve non calcified lung nodules and 2 consolidations were see n on CT in 7 

patients .  MRI identified 9 of  12 non calcified lung nodules.  The nodules ranged in 

size from 4 to 20mm and MRI identified 75% (6/8) of  nodules between 6 -10mm 

and 100% (6/8) of no dules above 11mm (3/3) .  In one patient  with background 

pulmonary fibrosis ,  a  6mm nodule was hyperintense and hence was appreciated 

better on MRI than CT. MRI failed to identify an additional  12 calcified 

granulomas that  were visualized on CT.  The sensitivity was also poor for mosaic 

pattern of attenuation with MRI demonstrating only 3 of  33 patients (9.09%) 

(3/33).                        

 

 

 

Figure 62:  Small  pleural based nodule seen on CT and MRI  
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Figure 63:  A peripheral 12mm lu ng nodule seen on both CT (A) &  bSSFP MRI (B)  

 

 

 

Figure 64:  A peripheral nodule  in the right  upper lobe is  appreciated on MRI (B) 
and CT (A)  
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Pleural and mediastinal disease:  

MRI identified all  patients with pleural  (n=15) and pericardial  effusions (n=12).  

Seventeen patients had enlarged mediastinal and hilar lymph nodes on CT,  

visualized in 12 patients on MRI with sensitivi ty of 70.58% (12/15)  

 

 

Figure 65:  Small  lymph node in the mediastinum and tiny right  side effusion  

 

 

 

 

 

 

 

 



  Chapter 7- bSSFP in lung imaging  

 

170 
 

 

 

Figure 66:  Small  pleural effusion in b oth lungs  

 

Bronchial  disease:  

Six patients  had bronchiectasis on CT. MRI depicted 4 patients with central  

disease (4/6;  67%), but 2 patients with peripheral  disease were missed.  Two 

patients  were thought to  have mucus plugging on CT and this was confirmed on 

MRI with characteristic  hyperintensity in the bSSFP signal  [189] .  Patients with 

traction bronchiectasis secondary to pulmonary fibrosis on CT were analysed 

under the pulmonary fibrosis group.  

Emphysema:  

Forty f ive patients had emphysematous changes on CT. On CT assessment,  13 

patients  had severe disease,  9 patients had moderate and 23 patients had mild 

disease.  Bullous emphysema was seen in 5 patients.  MRI was able to  identify 7 

emphysematous patients,  of  which 4 had bullous disease and 3 had severe 

emphysema with marked sparsely  of pulmonary vasculature.  None of  the cases of 

mild centrilobular or paraseptal emphysema (n=21) were recognised on MRI.   
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Figure 67:  Bullae in the right  apex  

 

 

 

 

Figure 68:  A peripheral bulla in the right  middle lobe is  appreciated on MRI  
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Table 37: Sensitivity of MRI in the diagnosis of various morphological lung 

abnormalities  and inter -observer agreement (K appa) between the two readers for  

MRI 

 Sensitivity (%) No. detected on MRI No. detected on CT 
Kappa 

( p value)* 

Pleural effusion  100 15 15 0.89  

Pericardial effusion 100 12 12 0.83  

Consolidation   100 2 2  0.66  

Fibrosis  89 41 46 0.79  

Nodules 75 9 12 0.71  

Lymph nodes 71 12 17 0.65  

Bronchiectasis * 67 4 6 0.61  

Atelectasis  64 20 31 0.75  

Mucus plugging 50 2 4 0.56  

Emphysema   16 7 45 0.60  

Mosaic pattern  9 3 33 0.53  

*non cystic fibrosis patients; patients with traction bronchiectasis not included 
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7.6 Discussion  

In this study an ultra -short TR/TE 2D bSSFP MRI sequence has  been used.  In an 

observational  study in healthy volunteers and phantom models [190],  bSSFP was 

shown to provide good quali ty images with superior spatial  resolution and signal,  

and equal  temporal resolution to spoiled gradient  echo.  More recently,  Failo et al  

[189]  showed bSSFP to be effective in the detection of  clinically relevant 

structural abnormalit ies such as bronchiectasis ,  mucus plugging and atelectasis in 

children with cystic  f ibrosis .  Our study is  the first to assess bSSFP MRI against CT 

in a large group of adult patients with various lung abnormalities and in 

particular a large  group of patients with pulmonary fibrosis .  The potential  

advantages of 2D bSSFP when compared to the 3D gradient echo (VIBE) sequence 

described in [180]  are the shorter acquisition times that facilitate volume 

coverage in a single  breath -hold as  opposed to multiple  3D slabs in separate 

breaths.  The bSSFP protocol we used provided a fast and efficient means of quick 

assessment of structural and vascular abnormality in the patients chosen. The 2D 

bSSFP method could also be readily extended to 3D acquisition with an associated 

increase in acquisition time. Caution should be taken with regard  to characteristic  

off-resonance banding artefacts that  are seen with bSSFP in regions of magnetic 

inhomogeneity such as close to the diaphragm. As  the lung signal is  intrinsically 

dark,  the propagation of such a  banding artefact into the lung field could 

obliterate focal  hyperintense signal from nodules and vessels .  Care was taken to 

scrutinise for such artifacts in this work and these could be further reduced with 

a shorter TE. The VIBE sequence described in [180]  could potentially be 

accelerated further in to  a  single  breathhold with shorter TE and TR now 

achievable on state of the art  systems. A side-by-side evaluation of the different 

contrasts and sensitivity to  different lung pathologies offered by bSSFP,  HASTE 

and VIBE for structural lung imaging alongside ultra -short  echo time radial  

imaging is  work in progress in our institute and  is  beyond the scope of this paper 

[194].   

Further work is  also required to assess the most sensitive MR sequence for 

detection of f ibrosis ,  presence of  inflammation and pulmonary nodules which 

currently may be pre - and post-contrast breath-hold 3D gradient echo sequences 

[180].   
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The potential  advantages of  the bSSFP sequence over the HASTE sequence are; the 

shorter TE, acquisition time a nd lower Specific  Absorption Rate (SAR) intensity.  

bSSFP also offers a different mixed T2 and T1 contrast  as compared to the T2 

weighted contrast of  HASTE. The faster acquisition times explain the absence of  

cardiac motion artefact.  This sequence does not  require intravenous contrast and 

hence can be performed in patients with impaired renal function.  The normal lung 

parenchyma has a  low signal -to-noise ratio (SNR) in MRI and in a small  

representative sample in our study,  the normal lung parenchyma showed a  mean 

signal  intensity of 30.4±12.15 with the mean background noise signal  of  

23.19±7.45.  With further decreases in echo time the SNR of  the lung parenchyma 

could be further improved which could open up increased sensit ivity to 

emphysema. The MR signal  int ensity of the lung parenchyma also visually 

increases on expiration compared to inspiration on MRI and this may be used for 

the assessment of  air  trapping and emphysema. The pathological  changes usually 

have higher proton density and hence appear brighter due to increased signal 

intensity.  Therefore,  the lung abnormalities are more conspicuous in MRI [195].  

This could be a  potential  solution to the problem of  imaging the pregnant women 

without the use of  contr ast  agent or exposing to them harmful effects of ionising 

radiation.   

The high tissue contrast of MRI is  generally expected to be useful for  

differentiation of active inf lammation from fibrosis in ILDs,  thereby aiding in the 

management.  Initial  studies sho wed the presence of high signal  intensity lesions 

were a  useful predictor of treatment response and clinical  outcome [191,  196].  

Subsequent reports focused on the enhancement pattern in the areas of active 

alveolitis  [197-198].  Our results show that  bSSFP MRI has a  good specificity and 

sensitivity for  anatomical resolution of  pulmonary fibrosis ,  especially in patients 

with severe disease.  Areas of  ground glass attenuation,  t raction bronchiectasis 

and cystic reticular change were appreciated on MRI.  Patients  with chronic 

interstitial  lung disease have relapsing and remitting symptoms and need 

frequent imaging to assess disease status and also response to treatment.  MRI 

could potential ly be used as a follow up in patients with known lung changes 

visible on MRI and thus preventing multiple radiation exposures .  Although 

sensitivity of detection of  pulmonary nodules greater than 5mm was 81% (9/11),  

the detection of  small  pulmonary nodules and even larger ground glass nodules,  
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especially when patients do not breath -hold adequately,  was significantly 

decreased.  This mandates that  we continue to offer patients CT as a first  l ine 

means of fol low-up for pulmonary fibrosis ,  given the incr eased risk of lung cancer 

in these patients.  MRI was able  to  identify bullae in a  background of  normal or  

fibrosed lung tissue.  In few patients,  severe emphysema was appreciated due to 

marked paucity of pulmonary vasculature.  However,  due to decreased lung  tissue 

in emphysematous patients,  MRI was generally poor in depicting subtle  

emphysematous changes.  By virtue of  the inherent hyper -intensity of  bSSFP 

images to f luid signals,  pleural and pericardial  effusions were more easily 

depicted by MRI and the find ings  in the small  number of  patients with 

bronchiectasis were also encouraging Overall  bSSFP MRI does demonstrate a wide 

range of  parenchymal  lung abnormalities and our findings  were comparable to 

other studies with different sequences [199].   

Limitations  

One of  the limitations of our study was that,  despite a  large number of  study 

patients,  the number of patients for some morphological changes was low and 

hence the true positive and negative predictive values could not be assessed.  The 

MR sequence was performed without intravenous contrast  and the potential  role  

of the contrast  enhanced b -SSFP sequence to differentiate active inflammation 

from fibrosis and detection of  smaller lung nodule s has  not  been explored.  T his 

was a retrospective review of  patients  undergoing imaging investigations as part 

of the routine assessment of  suspected PH  and hence a highly selected group of 

patients .  Although MR images were reported in isolation some features such as 

oesophageal  dilatation m ay have inf luenced the diagnosis of lung fibrosis .  Given 

the number of  patients studied,  our results prove the feasibility of  MRI in 

interpreting a  wide variety of pulmonary pathologies in a non -specific  consecutive 

group of subjects  with and without lung disease.  

7.7 Conclusion  

In conclusion,  bSSFP MRI is  inferior to CT in imaging parenchymal lung disease.  

However,  the study does demonstrate that  there is  a potential  role for  the bSSFP 

sequence as an alternative radiation free,  non -contrast imaging modality.  In 

particular we have demonstrated for the first time the utili ty of  this  potential  
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technique in the evaluation of  the severity of pulmonary fibrosis .   A larger study 

on the uti lity of  MR in diagnosing fibrosis in a non -selected population is  required 

before this can be applied in clinical  practice.  
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8 Future directions   
 

This body of  research has shown that  several simple and reproducible CT and 

MRI indices  and pulse sequences  have value in the assessment of subgroups of  

patients  with pulmonary hypertension  and associated lung disease .  These 

imaging modalities have been compared with the ‘gold standard’ methods and 

have shown promising results .   

From this thesis ,  MR angiography  is  a  valuable tool for the assessment of the 

pulmonary vasculature.  The data also proves that 3D MR perfusion has a high 

diagnostic accuracy s imilar to  perfusion scintigraphy i n the assessment of 

thromboembolic disease.  Pulmonary embolism  has a quoted incidence of 42 per 

100000 (95% CI,  39-46) [200]  and is  increasingly being recognized and 

suspected in clinical  practice.  The average radiation dose from the  current 

standard investigation CT pulmonary angiography is  7 -8mSV. Using MR 

angiography combined with 3D MR perfusion imaging for investigating acute 

pulmonary embolism will  provide a radiation free alternative and this need to 

be explored further  for future patient  benefit .  Newer non-contrast MR 

angiographic techniques are emerging and value of  these techniques for 

identifying pulmonary embolism should be examined as they would provide an 

ideal investigation tool for  pregnant patients with suspected pulmo nary 

embolism.  

 

This body of  work also show n for the first  time that  several uncomplicated 

indices on a  standard CT can identify subgroups of  patients with pulmonary  

arterial  hypertension and can also recognise patients who are at risk of having 

a poor outcome with disease  process .  This thesis has highlighted the potential  

value of  morphological MRI and CT indices in comparison to invasive right 

heart catheter measurements in the diagnostic work -up of patients presenting 

with suspected PH.  Further more,  it  has also shown the utility of  these 

techniques in assessing disease severity and prognosticating the outcome.  

Similar analysis in other groups in particular PH owing to left  heart disease or 

PH secondary to chronic thromboembolic disease  must be done to evaluate the 

diagnostic impact  and sensitivity across groups of pulmonary hypertension.  
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This should also be performed in multiple  centres to find the eff iciency of 

recognising these changes by general and specialist  radiologists .   

Another important outcome of this thesis is  that for the first  time the 

diagnostic value of balanced SSPF MR I for detecting lung parenchymal 

abnormalities  has been studied .  The results show that although inferior  to  CT, 

MRI has a  good accuracy for identifying moderate to severe fib rosis .  This 

improved anatomic resolution of  balanced SSFP sequence can be utilized ,  for 

instance,  to differentiate inflammation and fibrosis-predominant lesions in the 

patients  with interstitial  lung disease types such as usual  and nonspecific  

interstitial  pneumonias.  

Techniques such as utrashort echo time (UTE) MRI have been shown to 

demonstrate much higher signal  intensity in the lung parenchyma and finer 

pulmonary structures.  The balanced SSFP sequence must  also be compared 

with these sequences  for anato mical resolution of  lung parenchymal changes  

and radiological  comparison are ful ly made .    
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The basic principle of  CT is  that  it  generates two -dimensional  cross-sectional 

images of the body by using X -rays.  The X -rays are generated by the X -ray tube 

that rapidly rotates  360° around the patient.  The transmitted radiation is  then 

measured by a  ring of  sensitive radiation detectors located on the gantry 

around the patient.  Finally ,  the acquired images fro m multiple X-ray 

projections are reconstructed using appropriate algorithm depending of  the 

body parts imaged and the clinical  situation.   

There are two modes of CT scan,  step and shoot technique or  the helical  or  

spiral  CT.  The step and shoot (which is  tw o alternate stages of  data acquisition 

and patient positioning) is  replaced by the spiral  CT scanners.  With spiral  CT,  

X-ray tube rotates  continuously in one direction whilst  the table mechanically 

moves forward. The patient  is  thus exposure to a helical  o r  spiral  beam of 

radiation and with this technique the information can be acquired as a  

continuous volume of  contiguous slices.  The scan time is  exponentially faster 

with this technique.  

 

 

Figure 69:  A  repres ents  a  s ingle  s l ic e  s ys tem and B  repres ents  a  mutl is l ic e  sys tem  
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A major turning point for  using CT for clinical  imaging was the introduction of  

mutlislice CT. The key difference between a single and mutlislice CT is  in the 

detector array design.  Single slice CT consists of a  large detector element in a  

single row to intercept the transmitted radiation across the slice .  It  is  mono 

directional  and controls both the slice thickness and resolution.  In MS CT, 

detector elements  are divided into several  smaller detector elements,  for ming 

a 2-dimensional array forming multiple  parallel  rows of  detectors unlike single  

row of  detectors intercepting the X -ray fanbeam.   

 

 

 F igure 70:   This  repres ents  a  hel ical  mutl is l ic e  sys tem with  four  detec tors .   
 The X-ray  tube rota tes  cont inuously  a nd the patient  moves through the X - ray   
 bea m a t  a  c onsta nt  ra te .   

 

 

Most mutlislice scanners are based on the third generator CT platform. In this 

design the detector array is  rigidly l inked to the x-ray tube,  so that both the 

tube and the detectors rotate undergo a  single  rotational motion together 

around the patient.  
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Figure 71:  Singl e  s l ic e CT detectors  containing s ingl e  a rra y  of  l ong  elements  along z -
axis .  (Right )  whil e  mutl is l ic e  C T a rrays hav e s everal  rows  of  small  detector el ements .  
Dia gra ms  tak en from [201]  

 

 

 

 

F igure 72:  This  is  an exampl e of  third -generat ion C T detectors .  Tube and  detec tors   
were r ig idly  l ink e d a nd underwent  s ingl e  rota tional  motion and large a rra y of  
detec tors  measure  da ta  ac ross  width  of  fa n  [201]  

 

http://tech.snmjournals.org/content/35/3/115/F8.expansion.html
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Finally,  cardiac gated CT techniques minimizes imaging artifacts caused by 

cardiac motion and improve temporal  resolution of  the images.  There are two 

approaches to ECG gating; one is  prospective ECG triggering and the other is  

retrospective ECG gating.  The total  radiation dose is  substantially higher with 

retrospective gating as the X -ray tube is  ‘on’  throughout the examination and 

while with prospective gating the X -ray tube is  on only during a  short burst  

(‘step-and-shoot’  method).   With both approaches,  the imaging data from the 

same point in the cardiac cycle at every heart beat  are combined together to 

create a  3D volume for each desired cardiac phase.
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When a patient enters the magnetic field randomly moving protons in the body 

align under the inf luence of an external magnetic field.  The direction in which 

the net magnetization (Z axis)  aligns is  represented as longitudinal 

magnetization.  By sending a  radiofrequency  (RF) pulse of  certain strength and 

for a certain period of time  it  is  possible  to rotate or ‘f l ip’  ( f l ip angle) the net 

magnetization into a plane  perpendicular to the Z axis  cal led the transverse 

magnetization (X-Y axis).   

This process of excitation with the radiofrequency  pulse sends the protons into 

a higher energy state and the process of  returning back to equilibrium or 

original  state  results  in T1 relaxation .  The T1 relaxation time is  different for  

each tissue and depends on the molecular binding in the tissue;  t ightly bound 

protons such as fat  tissue will  release their energy m uch quicker than the 

protons that  are loosely bound. The RF pulse  also causes phase coherence of 

proton along transverse magnetization and the de -phasing of  protons is  named 

as the T2 relaxation t ime .   

 

 

 

Figure 73:  RF  puls e  of  certa in a mpli tude a nd for  a  period of  t ime ca n rotate  the net  
magnetiza tio n vector ( red a rrows)  into a  plane perpendicula r  to the Z  axis ,  which  is  
X- Y  

 



  Appendix  C  

 

188 
 

 

 

Figure 74:  B 0 repres ents  the main ma gnet ic  f iel d.  The rec eive coil  must  be posi t ioned 
at  r ight  angl es  to  the main magnetic  f ield  to  ac hieve ma ximum s ignal  

 

 

 

 

Figure 75:  The RF signal  caus es  the net  ma gnetiza tion to  f l ip  from Z  axis  to  X - Y 
direct ion,  th is  caus es  dephas ing  of  the s ignals  a nd the output  that  is  rec eived is  
analys ed and a  MR ima ge is  generated on the screen.   Th is  f igure shows  the entire  
proc ess  gra phical ly  
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MR terms  

Repetition Time:   TR is  the time between two 90º excitation pulses.   

Echo Time: This is  the time between the 90º excitation pulse and the echo.   

Flip Angle : Refers to the degree the net-magnetization is  f l ipped into the X -Y 

plane.   

Phase encoding: The phase of proton spins  in one dimension is  altered with a 

pulsed magnetic field gradient .  This process localizes the  MR signal  along that 

dimension prior to  the acquisition of  the signal .  

Frequency encoding: The process of spatial  localization of  MR signals  by  

modifying the Larmor frequencies in the horizontal  direction throughout the 

time it  is  applied.   

SNR: signal to noise ratio  

The MRI pulse sequence is  a sequence of events  needed to acquire a MR im age 

and two of the principal pulse sequences that the  widely used highlighted 

below.  

Spin Echo Sequence:   

This is  one of the most common pulse sequences used in MR imaging.  I t  uses a  

90° radiofrequency (RF) pulses to excite the magnetization and one or mor e 

180° pulses to  refocus the spins  to generate spin echoes.  
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Figure 76:  i l l ustra ted diagra m of  s pin  echo s equenc e  

 

 

 

 

The slice to be imaged is  selected by switching the slice select  gradient.  A 90º 

RF pulse is  applied to fl ip the net  magnetization into the X -Y plane.  The phase 

encoding gradient is  switched on.  A 180º rephasing pulse is  applied at  the 

sometime as the slice select gradient  is  switched on.  The 180º pulse causes the 

dephasing protons in the X -Y plane re-phase and when all  the spins are re -

phase the signal  is  high.  Final ly the frequency encoding or the read out  

gradient is  applied and the signal  or echo is  sampled.   

The advantages of  the spin echo sequence are that the signal  is  strong and 

there is  compensation for local  f ield inhomogeneities with lesser artifacts.  It  

also generates “true”  T1 and T2 images .  However rephasing pulse takes  time 

and thus the total  scan time is  more and it  is  also susceptible  to motion 

artifacts.    

Gradient  Echo Sequence:  

In the Gradient  echo (GE) sequence there is  no refocusing RF pulse,  it  uses a  

single RF pulse followed by a pulse gradient to create the echo,  which also 

measures the signal intensity [202] .  This is  achieved by using a  bipolar 

gradient;  a  negative pulse gradient to dephase  the spins followed by a  positive 

pulse gradient of  opposite polarity  to re-phase the spins to generate the echo.   
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The main advantage of this sequence is  that the short  TR facilitates a short 

scan time and enables acquisitions in a single breath -hold and allows dynamic 

imaging.  However this sequence is  sensitive to T2* inhomogeneity artefacts  

and also has a  lower signal  compa red to spin echo sequence.    

 

 

Figure 77:  I l lustra ted diagra m of  gra dient echo puls e  s equenc e  

 

 

The first slice selection gradient is  switched on and the excitation pulse 

applied.  Then phase encoding takes place.  Next the read ou t or  frequency 

encoding gradient is  switched on,  f irst  with negative polarity and then changed 

to positive polarity.  Finally the signal is  obtained.   

 

11.1 Cardiac MRI - GE sequences used for contrast MR 

angiography and perfusion 
 

11.1.1  Balanced Steady State Free Precession sequence  

Steady state free precession is  a type of gradient  echo sequence in which non-

zero steady state develops for  both transverse and longitudinal  magnetization .  

This is  achieved by using a  repetition time that  is  shorter than the T2 
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relaxation time of tissue so that  the MR signal  never completely decays and the 

spin along the transverse magnetization never completely dephase.   When the 

same sequence of  RF excitation and relaxation are repeated,  a  steady state is  

reached in which the magnetizat ion becomes constant from one repetition to 

the next .  Balanced SSFP (bSSFP) is  a type of  SSFP sequence where the net 

gradient-induced dephasing within the repetition time is  exactly zero and  is  

achieved by refocusing all  of  the three encoding gradients  in  each repetition 

interval to keep the gradient  moment constant  [202-203].   

There are several  factors that make this sequence ideal for cardiac imaging.   

The contrast  in bSSFP depends on  the T1/T2 ratio and this ratio is  higher for  

blood than the myocardium. This high blood myocardial  contrast enables  better  

delineation between ventricular  myocardial  borders  facilitating reliable  

segmentation of  the ventricles.  I t  has  an intrinsically high signal to  noise ratio 

(SNR) that makes it  possible to image at a  very short  TR and hence faster 

acquisition speed.  Finally this sequence is  also insensitive to f low. The features 

make this sequence ideal for  anatomical imaging of the heart and assessment of  

the myocardium [202].  

 

 

 F igure 78:  i l l ustra ted diagra m of  bala nc ed s teady  sta te  free prec ision s equenc e  
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11.1.2  Double inversion recovery black blood  technique 

Double inversion recovery (DIR) MRI is  a  T1 weighted black blood MR sequence 

where the signal from the blood is  suppressed .  The readouts  are acquired when 

the longitudinal  magnetization of  blood reaches the zero and thus the bloo d in 

the imaged slice gives no signal  or  appears ‘black’ .  In cases where the images 

are obtained in-plane or the blood flow is  slow the suppression of the signal 

from blood becomes incomplete.   

DIR sequences can be fast spin echo  technique with longer acqu isition time 

performed with separate breath hold  or fast spin-echo and single-shot 

techniques single  shot acquired in one breath hold.  This technique is  

performed during breathhold with one image per acquisition  and the DIR 

images can also be  cardiac gated to remove the motion artefacts from the 

images.  The advantage of this technique is  that it  provides fine details  of  the 

boundaries  between the vessel lumen and the wall  of  the cardiac chambers and 

pericardium, and mediastinum. 

 

11.1.3  Phase contrast MR angiograp hy  

In a  magnetic field ,  protons f lowing in the direction of  the  magnetic field 

gradient acquire a  phase shift  compared to the stationary protons and phase 

contrast  MRI uti lizes this phase change to quantify velocity.   This is  achieved 

by applying paired g radients ,  one with no f low sensitivity and a  second 

gradient that  is  a f low sensitive sequence.  The stationary tissue undergoes no 

effective phase change after  the a pplication of  the two gradients while a  phase 

shift  is  created in the flowing blood due to  different  spatial  localization of  

f lowing blood compared to stationary tissue.  The two raw data sets are 

subtracted and an accurate degree of motion induced phase change determined.  

Signal  intensities from MR imaging data are processed into a  magnitude image 

(anatomical image) and a  phase or velocity image  where pixel brightness is  

proportional  to spatial  velocity.   Thus on phase contrast MR  images signal 

from  stationary tissue  appear  grey while   f low in one  direction of  the 

magnetic field appears  br ighter  and  f low  in  the opposite  direction has 

darker signal intensity .  Both 2D and 3D acquisition techniques can be applied 

with this technique.   
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Clinical  applications of this technique include evaluation of vascular flow 

through aorta,  pulmonary arter ies and cerebrovascular arteries .  Quantification 

of cardiac output and diastolic  dysfunction and evaluation of  intra -cardiac 

shunts are also feasible with this technique [204-205].    

 

11.1.4  Contrast  enhanced MR angiograph y 

Contrast  enhanced MR angiography utilizes the T1 shortening effect of  

gadolinium and causes the blood to appear bright  thereby creating an 

angiographic effect.  This technique unlike time -of-fl ight  MR angiography and 

phase contrast MR angiography is  not d ependent on the phase shift  or in -flow 

velocity of the f lowing blood.  This sequence is  performed with a  short TR to 

have low signal  from the stationary tissue and short TE to minimize T2* 

effects.  The contrast agent injection  is  timed in  such a way that  the period of  

maximum arterial  concentration corresponds to the k -space acquisition to  

obtain maximum enhancement  and there a re different techniques such as bolus 

timing or  automatic  bolus detect ion to ensure optimal  contrast in the arteries.   

Images of the region of interest are performed with 3D spoiled gradient echo 

pulse sequences.  3D MRA has  the freedom of plane orientation which allows 

greater vessel coverage which can be obtained at high resolution with fewer 

slices.   

 

11.1.5  Cardiac gated MRI 

MR applications can be synchronized with the cardiac cycle  to  minimize cardiac 

pulsation artifacts .  An electric trigger that  corresponds with the patient ’s  

cardiac cycle is  used to ‘activate’  the  RF excitation for the  MR image 

acquisition and an ECG voltage source is  used as this  electric  trigger.  In the 

ECG voltage,  the R wave is  used as the trigger because it  voltage peak is  usually 

much higher than the other points of the ECG waveform  thereby allowing easier 

detection.  In simple cardiac  gating,  a  single image line is  acquired in each 

cardiac cycle.  Lines  for multiple  images can then be acquired successively in 

consecutive gate intervals.  By using the standard multiple  slice imaging and a 

spin echo pulse sequence ,  a  number of  slices at different anatomical levels can 

http://www.mr-tip.com/serv1.php?type=db1&dbs=Cardiac%20MRI
http://www.mr-tip.com/serv1.php?type=db1&dbs=Gating
http://www.mr-tip.com/serv1.php?type=db1&dbs=Cardiac%20MRI
http://www.mr-tip.com/serv1.php?type=db1&dbs=Multiple%20Slice%20Imaging
http://www.mr-tip.com/serv1.php?type=db1&dbs=Spin%20Echo
http://www.mr-tip.com/serv1.php?type=db1&dbs=Pulse%20Sequence


  Appendix  C  

 

195 
 

be obtained.  The repetition time during an ECG-gated acquisition equals the RR 

interval ,  and the RR interval  defines the minimum possible repetition time. If  

longer TRs are required,  multiple  integers of the RR interval  can be selected.  

When using a  gradient echo pulse sequence,  multiple  phases of  a single 

anatomical level  or multiple slices at different anatomical levels can be 

acquired over the cardiac  cycle.  Using this application desired phases in the 

cardiac cycle such as  the diastolic  or systolic  phase can be imaged. There are 

also other cardiac compensation techniques such as phase -encode reordering 

and retrospective gating can minimize the cardiac pulsation artifacts [206-

207].  

 

 

Figure 79:  This  dia gra m repres ent ing  ca rdiac  ga ted MR I.  T he R wa ve is  used as  the 
tr igger due to  i ts  high  volta ge peak .  Using th is  tec hnique mul tipl e images  ca n then be 
acquired suc c essively  in  cons ec ut ive ga te interv al  
 

 

  

http://www.mr-tip.com/serv1.php?type=db1&dbs=Repetition%20Time
http://www.mr-tip.com/serv1.php?type=db1&dbs=Repetition%20Time
http://www.mr-tip.com/serv1.php?type=db1&dbs=Gradient%20Echo
http://www.mr-tip.com/serv1.php?type=db1&dbs=Pulse%20Sequence
http://www.mr-tip.com/serv1.php?type=db1&dbs=Cardiac%20MRI
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11.2  Lung imaging  
 

11.2.1  Challenges  

Proton MR imaging of  the lung has been more difficult  than proton imaging of  

the other organs in the body.  One of the reasons  for this  is  that the lung 

parenchyma is  mainly comprised of  numerous air -containing alveoli  and  air  

passages and the soft  tissue constitutes only about 10% of  the lung [208].  This 

causes poor inherent proton density from the normal  lung tissue resulting in a  

low signal  to noise ratio (SNR).  Secondly,  inflated lung has a  unique 

combination of air  soft tissue and blood interfaces with different magnetic 

susceptibilities.  This induces local magnetic field gradients at each of these 

air-tissue interfaces.  This affects  the homogeneity of the static  magnetic field 

and shortens the T2 and T2* relaxation times resulting in significant 

susceptibility artifact  [23].  Final ly,  physiological  cardiac pulsation and 

breathing motion further compound the challenges for fast  imaging.   Several 

MR techniques have been proposed to overcome these limitations and to 

improve image quality and are discussed in detail  under MR sequences.   

 

11.2.2    Respiratory gated MRI 

Strategies such as cardiac gating and respiratory gating can minimize image 

degradation due to m otion artefacts.  Using faster MRI techniques and 

performing the acquisition in a breathhold is  the simplest  way to avoid 

respiratory blurring.  For longer acquisitions,  images can be acquired in free 

breathing by using respiratory gating.  In a respiratory t riggered sequence,  all  

images are acquired at identical  position of the diaphragm. This can be 

achieved either through pneumatochographic or navigator triggering.  With 

pneumatochographic triggering,  a monitoring belt is  used to record breathing 

motion with  the aid of a pressure sensor or infrared reflector [209].  In the 

navigator technique a prepulse readout projection sequence records the 

position of  the diaphragm and imaging data are only accepted when the 

position of  the interface falls  within a range of  pre -specified range [210].   
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11.2.3    Spin echo sequence with short  echo time  

The use of spin echo sequence with short  echo time (TE) can minimize the 

signal  loss of both T2 and T2*  and improve visualization of  the lung 

parenchyma [211].  Mayo et al  showed an increase in th e SNR by 3.5-fold with a 

short TE (7ms) when compared with the conventional SE with TE of 20ms 

[212].  The short  TE also reduces motion artifacts.  The reduced TE makes this 

sequence relatively T1 weighte d and thus very sensitive to effect of  contrast  

agents.  Several  studies have shown this MR sequence to detect  pulmonary 

nodules and infi ltrative lung disease when compared to CT [186, 191,  213-

215].  Disadvantages  of  the sequence are the long acquisition time necessitated 

by the multiple TR periods and longer TR needed to refocus a  spin echo .  

 

11.2.4    Fast spin echo  

Fast Spin Echo (FSE) also described as Turbo Spin Echo (TSE) or Rapid 

Acquisition with Refocusing Echoes (RA RE)  is  characterized by a series of  

rapidly applied multiple 180°  RF refocusing pulses changing the phase 

encoding gradient for  each echo [216].  In this sequence,  the scan time is  vastly 

reduced and this enables breath -hold imaging of  the chest.  The susceptibility 

artifact is  also minimized and the images are T2 weighted with a n effective 

echo time representing the point  in time in the echo time that  the centre of  k -

space is  crossed.   Kersjes et  al  evaluated 23  patients and showed that  a  T2 -

weighted TSE sequence  enabled  correct  identification of 286 of 340 

pulmonary  metastases [217] .  This sequence has also been proved to be 

feasible in determining disease activity in patients with inters titial  lung 

disease and detecting pneumonia [192, 197-198].  Shortening the inter -echo 

spacing has  the advantage of  reducing imaging time,  thus reducing artifacts 

due to cardiac and respiratory motion [218].  
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Figure 80:  The fas t  spin  echo s equenc e als o  makes  us e of  the mul ti - echo principl e.  In  

fast  s pin  echo s equenc e the 90º  RF  puls e is  fo l lowed by  a  s eries  of  180º  puls es .  Eac h 

180º  puls e  genera tes  a n echo.  

 

11.2.5    Short TI Inversion Recovery  

Short TI Inversion Recovery (STIR) is  an inversion recovery FSE pulse 

sequence with suppression of signal from fat.  The advantage of  this sequence is  

that it  offers  fat  signal suppression with low sensitivity to magnetic field 

heterogeneities.  This sequence has a dditive T1 and T2 characteristics inherent 

to the FSE readout and a high contrast  of disease tissue.  The fat suppression 

allows easy distinction between lung pathology from adjacent mediastinal and 

pericardial  fat and this is  particularly helpful for  ident ification of lung nodules  

[214].  Comparative studies showed a high sensitivity of the STIR sequence (82 

%) for identifying pulmonary nodules when compared to conventional  T2 -

weighted SE [186,  214] .   

 

11.2.6    Half-Fourier-acquisition single-shot  turbo spin-echo 

Half-Fourier-acquisit ion single-shot turbo spin-echo (HASTE) is  a rapid form of 

single shot  FSE or RARE, where the initial  RF excitation pulse is  followed by a 

very long echo train of multiple  180 pulses over which all  phase encode steps 

are acquired.  A partial  Fourier technique is  used to reduce the number of  

phase-encoding steps and decreasing the acquisition time. As a result ,  this 

technique is  relatively insensitive to moti on artifacts and allows the entire 

chest to be imaged in a single  breath -hold [207].  The multiple spin echoes also 

minimize magnetic susceptibility by limiting T2* decay [202].   
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The SNR from the lung parenchyma is  higher on the HASTE sequence when 

compared to SE,  FSE and GRE (that are attainable at  modest echo times of 1.5 

ms) techniques [183,  218] .   Various pulmonary disorders  such as bronchogenic 

cancers,  lymphadenopathy and bronchial  wall  thickening have been 

appreciated using this sequence [183,  219].  Schroeder et  al  showed 95% 

sensitivity for  detecting lung nodules  greater than 5mm. Most  cancerous tissue,  

due to hypervascularity,  have an intrinsic high signal on T2 weighted images 

and the high T2 of  the HASTE sequence makes lung nodules  more conspicuous.  

Furthermore,  arteries and vein s  are less apparent in HASTE as a result  of  

signal  void.  Hence this sequence is  particularly preferred for visualization of  

lung nodules.  [182].  

 

11.2.7  Gradient echo sequence  

A study using a  dynamic GE sequence showed higher signal  intensity for 

malignant lung nodule s during the first  transit of  contrast agent and showed 

its  potential  to characterize lung nodules [206, 220] .  However this sequence is  

more sensitive to magnetic field inhomogeneities,  therefore magnetic 

susceptibi lity artifacts are more pronounced on GE sequences compared to SE 

sequences for a given TE [202, 221].   

 

11.2.8    3D Gradient-Echo Technique  

The main advantage of the 3D gradient -echo technique over 2D is  its  ability to  

rapidly acquire a volumetric data set during a single  breath -hold,  which 

enables  acquisition of contiguous thin -slice images with no inter -slice gap.  

Volumetric interpolated breath -hold examination (VIBE),  a  type of rapid 3D 

gradient-echo MR sequence was initially applied for abdominal  imaging.   Few 

studies have confirmed the feasibility of  VIBE  sequence for lung imagin g and 

demonstrated its  abil ity for the assessment of various lung abnormalities 

including lung nodules [180,  187,  219] .  A comparative study of 2D GE sequence 

and VIBE proved VIBE to have a better image quality with statistically lower 

degree of phase contrast artifacts.  The degree of image graininess,  however,  
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was significantly higher on the 3D gradient -echo VIB images than on the 2D 

gradient-echo images [185].   

 

11.2.9    Balanced Steady State Free Precession sequence  

When compared to al l  other MR sequences ,  bSSFP has the highest SNR and this 

makes it  an ideal technique for imaging the lung parenchyma. In this relatively 

fast acquisition,  the quality is  very dependent on the homogeneity of  the 

magnetic field or shim, i f  the shim is poor,  there can be dark banding artifacts 

which may be difficult t o  discern in the context of the low SNR in the lung.  

Failo et al  [189]  showed good visualization of  lung parenchyma in patients 

with cystic fibrosis (CF) using a non -contrast,  short  TR/TE 2D bSSFP technique .
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12 Appendix D –  Abbreviations 
 

Balanced Steady State Free Precession: bSSFP  

Cardiac output:  CO  

Cardiac index:  CI   

Chronic thromboembolic disease: CTE  

Chronic thromboembolic pulmonary hypertension:  CTEPH  

Computed tomography:  CT  

Connective tissue disease : CTD 

Contrast-enhanced MR angiography:  ce -MRA 

CT pulmonary angiography: CTPA  

Forced vital  capacity:  FVC  

Gas transfer:  TLCO 

Idiopathic pulmonary arterial  hypertension :  IPAH 

Magnetic resonance angiography:  MRA  

Magnetic resonance imaging: MRI  

Mean pulmonary artery press ure:  mPAP 

Mean right  atrial  pressure : mRAP 

Mixed venous oxygen saturation :  mVO2  

Left  heart  disease: LHD 

Pulmonary arterial  hypertension : PAH 

Pulmonary capillary wedge pressure : PCWP   

Pulmonary embolism: PE  

Pulmonary hypertension: PH  
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Pulmonary vascular re sistance: PVR 

Systemic sclerosis :  SSc 

Total pulmonary resistance :  TPR 

Ventilation perfusion: V/Q  
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