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Abstract
This work focuses on the estimation of the ground-plane parameters needed to rectify and
reconstruct crowded pedestrian scenes, projected into 2D by an uncalibrated, monocular
camera. Deformities introduced during the imaging process affect metrics such as size,
velocity and distance, which are often useful when examining the behaviour of agents
within the scene.

A framework is presented to reverse “perspective distortion” by calculating the “ground-
plane”, upon which motion within the scene occurs. Existing methods use geometric
features, such as parallel lines, or objects of known size, such as the height of individuals
in the scene; however these features are often unavailable in densely crowded scenes due
to occlusions.

By measuring only the imaged velocity of tracked features, assumed to be constant in the
world, the issue of occlusion can be largely overcome. A novel framework is presented
for estimation of the ground-plane and camera focal-length for scenes modelled with a
single plane. The above assumption is validated against simulations, outperforming an
existing technique [12] against real-world benchmark data.

This framework is extended into a two-plane world and the additional challenge of deter-
mining the respective topology of the planes is introduced. Several methods for locating
the intersection-line between the two planes are evaluated on simulations, with the effect
of variation in velocity and the height of tracked features on reconstruction accuracy being
investigated, with the results indicating this technique is suitable in real-world conditions.

This framework is generalised, removing the need for prior knowledge of the number
of planes. The problem is reformulated as a linear-series of planes, each connected by
a single hinge, allowing the calculation of a single rotation for each new plane. Again,
results are shown against simulations on scenes of varying complexity, as well as real-
world datasets validating the success of this method given realistic variations in velocity.
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Notation

General Notation

Geometric entities will be represented by column vectors and denoted by bold-face, low-
ercase symbols, such as x. Row vectors are denoted as the transpose of a column vector,
x>. Using this convention, we define the following notation:

Image-space coordinates u = (u,v,1)>

World-space coordinates x = (x,y,z)>

Matrices Uppercase, bold-face symbol. E.g. M

Dot-Product x◦y for vectors x and y

Cross-Product x×y for vectors x and y

Camera and Plane Parameters

We define the plane and camera parameters as follows:

Unit Normal to Plane n = (a,b,c)>

Camera-Plane Distance The scalar, d

Plane Equation n◦x = d

Camera’s Angle of Elevation Rotation in camera’s x-axis, θ (see figure 1)
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Figure 1: This illustrates the orientation of the ground-plane with respect to the camera
axis (x,y,z), showing the ground-plane in world coordinates and the same transformed
into image coordinates. The rotation parameters of the camera, in terms of elevation in
the camera x-axis and yaw in the z-axis (θ and ψ respectively) are also given.

Camera’s Angle of Yaw Rotation in camera’s z-axis, ψ (see figure 1)

Motion Vectors

We define the notion of a motion vector (discussed further in section 3.3.2) as a pair of
points representing the position of a tracked feature at consecutive time intervals. These
are depicted thusly in the text:

Image-space motion vectors ϒ = {(ui,u′i)i=1...Nϒ
}

World-space motion Vectors Ξ = {(xi,x′i)i=1...NΞ
}

Assumed world speed The scalar, l̂

Trajectories

We define a trajectory as a time series of points upon on a plane recorded at equally
spaced time-steps. We observe these in the image-coordinate system and wish to obtain
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their respective points within the camera coordinate system through perspective back-
projection.

Image-space Trajectory τ = (uτ
i )i=1...Nτ

, ∀τ∈T

World-space Trajectory τ = (xτ
i )i=1...Nτ

, ∀τ∈T

Set of all Trajectories T = {τi}i=1...NT

Trajectory Speeds The displacements at each time-step for trajectory τ .
{Lτ

i }
i=Nτ

i=2

Note that i = 2 is chosen as the lower bound since Lτ
i

examines i and i−1.

Mean Speed For some trajectory, τ:
µ(Lτ)

Std. Dev. of Speeds For some trajectory, τ:
σ(Lτ)

Set of all speeds L = {Lτ}τ∈T
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Chapter 1

Introduction

When a camera captures a real-world scene, it transforms the 3-dimensional (3D) coordi-
nates of the world to 2-dimensional (2D) image coordinates. This transformation results
in several obvious distortions, notably the effect of perspective distortion.

Analysis of perspective for the creation of images has been performed throughout history,
from its discussion in Euclid’s “Optics” to the work of Viator in the 16th century [2]
and the artists of the renaissance period. In the 20th and 21st century, knowledge of
perspective geometry has allowed the reconstruction of 3D scenes from their 2D image
projections.

In computer vision, it is not uncommon to take measurements of certain metrics relating
to objects in an image, such as speed or height. It is desirable to take these measure-
ments as they exist in the 3D coordinate system; however, during projection in the image,
that information is lost. Whilst transformation of a 3D system into 2D is a simple task,
reproducing the 3D coordinates from the 2D image coordinates is impossible without
additional information or constraints upon the environment.

By capturing the equation of the “ground-plane” (that is, the plane upon which the tracked
objects are assumed to move), we can negate the effect of perspective distortion and pro-
vide a vastly improved measurement of the objects’ motion.

1
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1.1 Motivation

The world around us is monitored by millions of CCTV cameras; as of 2002, in the UK
alone there were an estimated 4.2 million of them watching over us [88], a number that is
expected to have grown since. Due to the vast numbers, many are not watched constantly,
indeed an operator may have tens of cameras to watch at once. Because of this, the need
has arisen for automated monitoring of video streams so as to minimise the requirement
for human interaction.

This is the basis for several fields in computer vision, including activity analysis for the
purpose of “event” or “anomaly” detection where an automated system uses some model
of “normal” behaviour and identifies when observed behaviour diverges from that model
[7,1,10,11]. In these situations, measurements such as size, speed and shape often provide
important cues for the system to establish what is happening. As an illustrative example,
consider a crowd of people in a busy square. If that crowd suddenly begins to move at
high speed away from a certain scene position, it is not unreasonable to assume something
untoward has occurred to cause such behaviour.

Event detection is often coupled with “density estimation”, the problem of automatically
establishing how busy a scene is in terms of the number of people in the space [86,43,78,
102]. Clearly in this case, a notion of size is important, either in terms of the people in
the scene or the dimensions of the scene itself, so as to ascertain how dense the crowd is.
Both of event detection and density estimation have particular importance in crowd safety
monitoring, where detection of potentially dangerous situations can be used to prevent
them escalating.

As mentioned above, the measurement of these quantities is affected by the process of
projection from the world into an image when it is viewed by a monocular camera. With-
out rectification of the distortion undertaken by the scene, an example of which is shown
in figure 1.1, one cannot reliably use these metrics for further analysis. In many cases
the information to reconstruct the scene is not available for a piece of video footage and
so it must be calculated after the fact. This is particularly relevant given the explosion of
online video hosting services such as YouTube [127]. By using a non-intrusive calibration
method (i.e. one does not require a known calibration object such as a chessboard pattern)
a vast wealth of video information can be capitalised upon.

Different approaches exist to correct for the distortion, from a simple linear normalisation
to full camera calibration. Some methods require manual intervention by a human, such
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(a) (b)

Figure 1.1: The effect of perspective distortion is particularly clear in image (a) (taken
at the University of Leeds). If measurements of size or speed are required, it will be
necessary first to correct for perspective distortion, as has been performed on image (b).

as labelling known points of reference, others focus on automated self-calibration. These
related methods are discussed in detail in chapter 2. The aim of this work is to provide a
reconstruction of the planes upon which motion is observed within a scene, through the
use of ground-plane rectification.

1.2 The Problem of Densely Crowded Scenes

Many CCTV cameras overlook scenes that are likely to be crowded, some very densely,
such as those outside stadiums or arenas. Often at such venues the majority of the crowd
will leave at once, during which time its density will be extremely high.

Much of the existing literature (covered in detail in chapter 2) relies on geometric cues
such as parallelism or the orthogonality of lines in the scene or on the ability to view
an object of constant or known size in several positions of the image. However, in very
densely crowded scenes it is unlikely that reliable detections of such lines or objects will
be possible. Scene geometry is likely to be partially or entirely obscured and extreme
levels of inter-occlusion will inhibit the use of the commonly chosen foot-head measure-
ment. This inter-occlusion within a crowd is also likely to impede the ability to track any
one feature for a prolonged interval. Whilst it is likely that in longer videos the crowd
density will fall, in shorter sequences this is not the case and geometric data cannot be
relied on in these situations.

Additionally, blob trackers are likely to fail to track individuals with much success due to
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the complexity of the view and those that rely on identifying individuals will fail as a large
proportion of bodily features will be obscured. This provides a challenging problem to
any trajectory based techniques and the solution presented in this work is to use a sparse
feature tracker to obtain trajectories that are as long as possible. The methods described
in this thesis need only relatively short trajectories in order to calculate an estimate of the
plane orientation and are shown to apply in scenes of varying crowd density in section
3.6.

1.3 Aims and Objectives

Given the issues outlined above, it is the intention of this work to provide a framework
for the estimation of the parameters describing the ground-plane or planes in pedestrian
scenes, with a focus on those containing dense crowds. Having estimated the ground-
plane or planes, it is trivial to back-project the image-coordinates of the tracked features
onto the camera plane, thus correcting for perspective distortion.

The work shown in this thesis aims to tackle the issues outlined in the previous section
using only the imaged-speed of moving objects as the source of information for rectifica-
tion. Within a crowd, the motion of each individual is restricted such that they are likely
to move together, as a group. It is not therefore, unreasonable to assume that tracked
features within that scene will move at constant (or near-constant) velocity. Under this
assumption, we can intuitively assume that the distance travelled by a tracked feature in
3D coordinates over a fixed time interval remains the same. Given enough of these mea-
surements, we can recapture the distortions undergone by the scene during projection thus
allowing for the removal of perspective distortion.

1.4 Novelty and Significance

This thesis presents three main contributions for the estimation of the parameters required
for the rectification of imaged scenes from an uncalibrated camera. The single-plane and
generalised multi-plane frameworks are unsupervised, and it is not necessary to make
assumptions of scene geometry beyond the expectation in the former method that the
world can be represented by a single, flat plane. Described below are the novel and
significant contributions of the work presented herein:
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1. A framework is presented for reconstructing the ground-plane in crowded scenes
using the imaged speed of pedestrians alone.

2. The single-plane method is shown to extend into a world known to consist of two
adjacent planes. Hitherto no techniques have been applied to such a problem using
speed alone.

3. The two-plane framework is generalised to apply to any number of planes without
prior knowledge of how many are present in the scene. No foresight of topology is
required, with the layout of the planes with respect to each other being established
within the framework.

1.5 Thesis Outline

This thesis begins in chapter 2 with a discussion of relevant research, commencing with
an introduction to the underlying theory in the realm of camera calibration and recon-
struction both in terms of single and multiple view geometry. It then continues to discuss
applications of this theory with a focus on single-view reconstruction in pedestrian scenes
before finishing with a detailed explanation of a conceptually similar method to the work
in this thesis.

In chapter 3 the first novel contribution of this work is introduced – a speed-based re-
construction method for crowded pedestrian scenes in which the world is assumed to be
realistically modelled by a single plane. First the elemental mathematical basis is intro-
duced, before the incremental development of the method is outlined. Next feasibility
studies on controlled, simulated data are discussed, after which experimental results on
real-world data-sets are given, including a comparison to a similar method.

Chapter 4 explains the extension of this single-plane method into a two-plane domain
and a framework for estimating the orientation and topology of the scene is introduced.
Various methods for determining the boundary between planes are shown, along with
an analysis of their robustness when the constant speed assumption is violated. Finally,
improvements are suggested to improve the quality of the reconstruction.

Chapter 5 first proposes a technique for ensuring proper alignment of reconstructed planes
before further generalising the framework such that it no longer requires prior knowledge
of the number of planes within the scene. Results are presented on a range of simulated
views of varying complexity.
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Chapter 6 concludes the thesis with a summary of the presented work and its novel as-
pects. An explanation of the applicability of the work in the pedestrian domain is pro-
vided, before a discussion of other potentially applicable domains. Finally consideration
is given to possible extensions to the work and future research directions.



Chapter 2

Related Work

When imaging a 3D scene using a standard monocular camera, the world coordinate sys-
tem is projected onto the 2D image plane. This projection introduces distortions intrinsic
to the camera, for example perspective distortion, the strength of which is affected by
the focal length of the camera, and radial distortion due to the curvature of the lens. In
various domains within the computer vision field; particularly the field of pedestrian be-
haviour analysis, within which this work is principally directed; it is necessary to examine
properties of objects within the imaged scene. Some of these, such as colour or intensity
gradients, may be less affected by the distortions described above, but many of the metrics
used are affected including object size, location and speed. If one wishes to take measure-
ments of these, the 2D to 3D transformation must first be reversed. This work focuses
on the problem of calculating and reversing the perspective transformation, assuming that
others such as the aforementioned radial distortion are negligible.

Whilst projection from three to two dimensions is trivial, any points lying upon the prin-
cipal axis (i.e. the axis intersecting the optical centre and the principle point as shown
in figure 2.1) project onto the same point in the image [129]. As such, information per-
taining to depth within the image is no longer available. Without additional information,
such as the camera’s calibration parameters one cannot reconstruct the 3D point, hence
the need for the techniques discussed in the remainder of this chapter.

This chapter will examine the existing literature for image rectification and 3D recon-
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struction, beginning with an introduction to the underlying model and mathematics used
throughout much of the literature in section 2.1.1, then wider research into reconstruction
from multiple views in section 2.1.2. The concept of plane to plane homographies is pre-
sented in section 2.1.3, before the idea of “Vanishing Points” is explained along with a
description of how they can be used to rectify an image in section 2.1.4. Work into recov-
ering structure from motion is discussed in section 2.2, before texture-based techniques
are demonstrated in section 2.3.

Section 2.4 discusses methods for rectification of a scene using the geometry within it
such as parallel lines, then section 2.5 discusses the use of objects of known size, with a
particular emphasis on pedestrian scenes as that is the focus of this work. Finally, section
2.6 examines, in detail, a pedestrian motion-based approach that is conceptually similar to
that presented in chapter 3 of this thesis, before an analysis of the applicability of existing
methods is given in section 2.7. The chapter is concluded in section 2.8.

2.1 Common Theory in Scene Reconstruction and Image
Rectification

Before discussing specific techniques for reconstruction, the common theory behind many
of the techniques should be specified. This section will explain some of the more ubiqui-
tous approaches to the reconstruction problem, before specific techniques are elaborated
upon in the subsequent sections.

2.1.1 The Pin-Hole Camera Model and the Projection Matrix

Before one can compensate for the distortions encountered as a result of 3D to 2D pro-
jection, the underlying mathematical model must be identified. The assumption of a
perspective-only transformation leads us to the choice of this model – hereafter this work
assumes the projection undergone by the coordinate system follows the ”pin-hole camera”
model [53]. This embodies the way traditional cameras work and is illustrated in figure
2.1. This section will briefly introduce the pin-hole camera model before discussing the
calibration parameters in more detail.

The aperture of the camera is referred to as the “optical centre” and the distance between
this and the image plane is the focal length of the camera, denoted as f . Note that in



Chapter 2 9 Related Work

Focal Length, f 

Image Plane

z

y

x

Optical
Centre

u

x

Principal Point

Figure 2.1: This work assumes the “Pin-Hole Camera” model as the basis for the trans-
formation from 3D world coordinates to 2D image coordinates. Here we see the camera
axes (x,y,z), with the principal point marked at the centre of the image plane and the focal
length is defined as the distance from the optical centre to the image plane. The projection
of the point x in the world onto the image plane is denoted as u.

real-world cameras the image plane is in fact behind the optical centre, rotated 180◦, but
it is common to simplify the model using a “virtual image plane” in front of the optical
centre as shown here. Henceforth, references to the image plane in fact pertain to the
virtual image plane.

The ray from the optical centre, perpendicular to the image plane is known as the “prin-
cipal axis” and intersects the image plane at the “principal point”. When a point x in
the world is imaged by a camera, it is projected as the point u that intersects the image
plane and the ray between x and the optical centre. By similar triangles, it is clear that
the following mapping gives the projection of some homogenous point in the 3D camera
coordinate system x into the image coordinate space [53]:
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The pin-hole camera models the simple case where the principal point is in the centre of
the image; however this may not be the case. Additional parameters can be added to the
mapping to account for a translation in the more generalised case. Following the nomen-
clature of [53], the pair (px, py)> represents the coordinates of the principal point. The
previous mapping also assumes that pixels will be square, which may not be the case in all
cameras. As such the scaling factor (mx,my) is also introduced into the mapping. Finally,
in rare cases the x and y axes of the camera’s sensor (CCD) may not be perpendicular
to the principal axis. In order to model this, a further “skew” parameter s, is introduced.
These parameters are added to the previous mapping thusly:
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The matrix used in the mapping is known as the “camera calibration matrix” or “intrinsic
matrix” and is commonly (though not always) denoted as K. In this work, we focus on
reconstructing, up a scale factor, into the camera’s own coordinate system, but in some
applications it is useful to know the camera’s position and orientation with respect to the
world coordinate system – the “external parameters”. Therefore, a further mapping is
required, from the 3D world to the 3D camera coordinate systems. This is represented
by the compound rotation matrix R and translation column vector t, both with respect to
the world-coordinate origin. Let us denote a 3D point in world space as the homogenous
vector xw and the corresponding point in camera coordinates as xc. The mapping from
world to camera coordinates is given as:

xc = [R|t]xw (2.3)

It is now possible to map a world point to an image point using K, R and t. This combi-
nation of the internal and external camera parameters is known as the “projective matrix”
and is commonly denoted:



Chapter 2 11 Related Work

P = K[R|t] (2.4)

By assigning correspondences between world and image points, one can solve for the pa-
rameters of the projection matrix and obtain complete calibration such that an image-point
can be back-projected into world coordinates. There are a total of twelve unknowns within
P – six from K, and three each from R and t – however, since it is only solved to scale,
the system has only eleven degrees of freedom. As each correspondence gives an x and y

constraint, a total of 6 correspondences is sufficient. Since it is very likely that correspon-
dences will be subject to at least some noise, it is prudent to produce an over-determined
system and solve using a direct linear transform (DLT) [53]. Given pure translation (that
is, the principal axes of the two views are parallel, only differing by some displacement),
with a minimum of 7 correspondences, a two-stage method involving first solving a linear
system to obtain the external parameters, followed by a non-linear optimisation to find
the internal and refine the external parameters allows for full calibration [124]. A similar
framework can be used to calculate full calibration based on generalised motion of the
calibration object [133].

The correspondence methods outlined above are sufficient in a supervised scenario, but
often an automated or semi-automated solution is sought. Many of the methods in the
forthcoming sections attempt to solve for either the internal parameters (“intrinsic cal-
ibration”) or the full projective matrix (“full calibration”) in an automated way, whilst
others use a less formal approach. One example of this is the use of image-world ho-
mographies, which map points in image space to their world-space counterparts and are
discussed in more detail in the section 2.1.3. First, however, the fundamentals of calibra-
tion and reconstruction from multiple views will be introduced in the following section.

2.1.2 Multiple View Geometry

When reconstructing the geometry of a scene or objects within it, it is often useful to
image it from two or more views. This could involve multiple cameras imaging the same
scene or a single moving camera. In static scenes, these two situations are geometrically
equivalent [53], so the same methodology can be applied to both. In the following section,
if reference is made to multiple cameras one can assume the same methodology can be
employed given one camera in multiple positions.

Within this framework it is possible to reconstruct a 3D or corrected view of the scene
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without prior calibration of the camera or cameras producing the images as shown in
[87, 122, 55] to name but a few. As the work in this thesis is primarily concerned with
reconstruction from a single view, this section will offer only a brief overview of the core
multiple view geometry approaches.

2.1.2.1 Epipolar Geometry

Consider a static scene, imaged in two overlapping views. Given the external calibration
of the cameras, one can reconstruct the 3D position of imaged points [59]. A point in
3D coordinates x is imaged in the first camera at position u and in the second at position
u′. It is not difficult to imagine that some mapping exists between u and u′. Rather than
calculating the actual camera positions in the world, it is generally sufficient to calculate
their positions with respect to one another. This knowledge, in combination with the
internal parameters of the cameras, can be represented by the 3×3 “fundamental matrix”,
denoted in the literature as F. If x is viewed in the cameras as u and u′ respectively as
illustrated in figure 2.2, the image points satisfy u′>Fu = 0 [53].

One can calculate F using the concept of “epipolar geometry”. Denoting the two cameras
as C and C′, C projects onto the image plane of C′ at the “epipole” e′. Similarly C′

projects onto the point e on the image plane of C. The line between u and e is known as
the “epipolar line” (again, see figure 2.2) and the line intersecting e and e′ is called the
“baseline”.

The methods for calculation of F are well described in existing literature [53, 34, 114], so
are only covered briefly here. The fundamental matrix has 9 degrees of freedom; however
it is known to be singular, therefore its determinant is 0. This constrains the system to
7 degrees of freedom. Using 7 of the equations resulting from 4 point correspondences
between the two images, one can solve for the fundamental matrix using a non-linear
optimisation. With 8 or more constraints, (e.g. using additional correspondences) one can
obtain a Maximum Likelihood estimate of it [55].

Each camera has an associated projective matrix and these can be calculated up to a pro-
jective ambiguity by decomposing F [114]. If P and P′ are known, for example having
been calculated using the methods discussed in section 2.1.1, one can calculate the pro-
jective reconstruction of a scene by triangulating the imaged points using the now known
camera centres. Of course, this assumes zero-noise, which is unrealistic in practice. As
such a minimisation of the sum-squared distance between the predicted and measured
image positions of the triangulated point is employed [52].



Chapter 2 13 Related Work

CC

u u
l l

x

e e

Figure 2.2: The point x is imaged by two cameras C and C′, producing a ray from C to x
(similarly for C′). This produces the projections u and u′ respectively at the intersection
between the ray and the image-plane. Each camera’s centre projects onto a point on the
other camera’s image plane. These points are known as the “epipoles” and are denoted e
and e′. The “epipolar lines” l and l′, are the lines intersecting e and u (respectively for e′
and u′). As an alternative definition for the epipolar line, consider the plane containing x,
C and C′ pictured here in grey. This is known as the “epipolar plane” and intersects each
camera’s image plane on l and l′.
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Provided the internal parameters of each camera, K and K′ are known, the “essential
matrix” can be found. This encapsulates the relative pose of the two cameras and is found
thusly:

E = K′>FK (2.5)

Obtaining the epipolar geometry in scenes with little overlap can be complex as the prob-
lem can become ill conditioned. Given certain scene assumptions, the infinite homogra-
phy – the homography relating points at infinity between two image planes – can be used
to supplement correspondences to allow for calculation of F [99]. These assumptions
relate to the “vanishing points” of an image and are described in more detail in section
2.1.4.

2.1.3 Homographies

Commonly, scenes being viewed in surveillance applications involve a flat ground-surface
which can clearly be modelled as a plane (the “ground-plane”). Let some point v be
observed in this plane by a camera, creating the projection u in the image-plane of the
camera. The mapping of v to u can be modelled as a 2D projective transformation from
the ground-plane to the image-plane, given by the 3×3 non-singular matrix H known as
a homography:

u′ 'Hu (2.6)

This mapping can apply equally to any two constructs with equal dimensionality. Another
common use for homographies is mapping images from two views to each other such as
those in figure 2.3. Such a technique is commonly used in image-stitching and mosaicing
(stitching of multiple images) [62, 119, 15].

2.1.3.1 Calculating the Homography with Point Correspondences

Calculating the homography matrix is a well researched problem. A minimum of four
point-correspondences between the two planes is necessary [53]. Given precise corre-
spondences, one can use Singular Value Decomposition (SVD) [24]. Let H, from equa-
tion (2.6), be represented by the vector h = (h11,h12,h13,h21,h22,h23,h31,h32,h33)>. For
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(a) (b)

Figure 2.3: Image (b) is the result of applying some 2D projective distortion, modelled as
a 3×3 matrix, to image (a).

some set of n points, we have the relationship Ah = 0, where A is a 2n× 9 matrix. For
each point correspondence ui↔ u′i we obtain two rows of A:

(
xi yi 1 0 0 0 −xix′i −yix′i −x′i
0 0 0 xi yi 1 −xiy′i −yiy′i −y′i

)
(2.7)

The vector h that minimises the residuals of ||Ah|| is given by the eigenvector with min-
imum eigenvalue of A>A, which can be found by decomposing A into three matrices by
SVD, A = UΣV. Where n = 4, h is simply the null-vector of A.

This method can be problematic in real-world situations as inaccurate measurements can
have a distinct effect on the result. Instead, consider the likely situation that there are many
potentially noisy correspondences between the two planes, generated using some feature
detector and some matching algorithm as in figure 2.4. The RANSAC algorithm [38]
works by randomly sub-sampling sets of input data and selecting those that best fit some
model, in this case a homography between the two planes. For each set of correspon-
dences, the homography is calculated and the number of inliers determined. The homog-
raphy with the largest set of inliers is chosen [53, 72, 75]. The result can then be refined
using a Maximum Likelihood estimation over all inliers, before a “guided matching” is
produced, by searching for more matches based on the homography estimate [53].
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Figure 2.4: The homography between two images can be calculated using point corre-
spondences. Here, SURF Features [8] are detected and matches calculated using FLANN
[93] matching. Not all matches are correct so RANSAC is employed to maximise inlying
matches that can be used in calculation of the homography, before a Maximum Likelihood
estimation is used to refine the result.

2.1.3.2 An Alternative to Point Correspondences

The homography can be decomposed uniquely into three matrices [76]. These are the
“pure projective” matrix P, the ‘affine” matrix A and the “similarity” matrix S:

H = SAP (2.8)

These matrices, and therefore the homography, can commonly be calculated in man-made
scenes using pairs of parallel lines using the concept of “vanishing point” theory. The
following section briefly introduces vanishing point theory, whilst applications of its use
in image rectification and reconstruction are described in sections 2.4 to 2.6.

2.1.4 Vanishing Points and the Vanishing Line

When parallel straight lines in the world are imaged, they become distorted such that
they converge (provided they are not parallel with the x-axis of the image plane), a phe-
nomenon observed in the art world for hundreds of years. The point at which they con-
verge is known as the “vanishing point”. Vanishing points can be used to obtain a full
camera calibration [16, 126] or a homography between the ground-plane and the image-
plane [76]. The position of vanishing points is clearly dependant on the direction of the
parallel lines in the world – lines of one direction will form one vanishing point, lines in
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v1
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l∞

l2l1
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Figure 2.5: When imaged under perspective projection, lines that are parallel in the world
become non-parallel. The point at which they converge is known as the “vanishing point”.
Given two such vanishing points, one can calculate the line at infinity or “vanishing line”,
denoted l∞. In the case above, lines l1 and l′1 were parallel in world-space, as were l2 and
l′2 but in the image they converge at the points v1 and v2 respectively.

another form a second. Exploiting this fact, one can obtain the equation for the “vanishing
line”, otherwise known as the line at infinity, as show in figure 2.5.

Let us first assume that a number of parallel lines have been found in an image. It is
entirely feasible that more than two lines of the same direction will be obtained. Given
the presence of realistic detection noise, there is unlikely to be a closed-form solution to
obtain the vanishing-point. This can be addressed by simply taking a weighted mean of
the proposed vanishing point locations [16]; however a Maximum Likelihood estimation
based on reprojection error is likely to yield better results [76] a technique which is preva-
lent throughout much of the vanishing point literature. Alternatively, one can cluster lines
based on their potential vanishing point locations [46] or use RANSAC to iteratively filter
sets of lines onto vanishing points [98, 105].

Thus far this section has focused only on finding two vanishing points which lie on the
vanishing line. By finding a third vanishing point, orthogonal to the other two, it is possi-
ble to achieve full metric rectification [26, 46, 105, 95], or indeed full calibration [73, 67].
Vanishing points are particularly applicable in man-made scenes due to the prevalence of
parallel lines in three orthogonal directions on scene features such as buildings – com-
monly referred to as the “Manhattan Assumption” [23].
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2.1.4.1 Decomposition of the Homography Matrix

The vanishing line has a particularly useful property in scene reconstruction – it allows
the reduction of the projection transformation to an affine one [21, 35, 76]. This gives a
pseudo-frontal view of the scene, meaning that world-parallel lines are now parallel in the
transformed image.

Given two pairs of lines which are parallel in the world, each pair pointing in a different
direction. Denote these (l1, l1′) and (l2, l′2) respectively. (l1 and l1′) converge in image-
space at the vanishing point v1, whilst (l2 and l2′) converge at v2. The two convergence
points form the vanishing line, l∞ = (l1, l2, l3)>, where li, i ∈ (1,2,3) represents the three
coefficients of the vanishing line. Using the formulation of [76], the pure projective ma-
trix, P is now:

P =

 1 0 0
0 1 0
l1 l2 l3

 (2.9)

In order to perform metric rectification, the affine matrix must be found, which takes the
form [76]:

A =


1
β
−α

β
0

0 1 0
0 0 1

 (2.10)

The parameters α and β give the image of the “circular points”, which lie upon l∞. These
are a pair of fixed, complex conjugate points at infinity, at which every circle intersects
l∞, hence their name. A particularly useful property of the circular points is that they
are invariant to Euclidean transformations [53], meaning they can be used to estimate the
projective transformation undergone by the scene. Given any two of the following three
constraints, one can establish the location of α and β and calculate the affine matrix [76]:

1. A known angle between lines

2. Equality of two (unknown) angles

3. A known length ratio

Commonly, right-angles are used in (1) and (2) as they frequently occur in man-made
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v

Figure 2.6: In some scenes only one vanishing point can be found reliably such, as the
example above. Such a scene is referred to as having “one-point perspective”. In such
cases additional information such as scale ratios must be used to obtain the vanishing line.

scenes [23]. Alternatively a measuring object of known length on the ground-plane could
be utilised to satisfy (3).

Finally, the similarity matrix represents rotation R, a translation t and an isotropic scaling
s [76]:

S =

(
sR t
0> 1

)
(2.11)

It is sufficient for most applications to solve up to metric rectification, and as such, existing
methods commonly only solve up to A, disregarding the final similarity matrix.

In certain degenerate situations, there may only be one vanishing point in the scene, an
example of which is shown in figure 2.6. This is what is known as “one-point perspective”.
In these cases, one may still obtain the vanishing point as above, or alternatively a model
of human attention can be used to robustly discover the location [117]. Whilst typically
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the determination of the vanishing line requires two vanishing points, one can use a scale
ratio in combination with the vertical vanishing point to obtain the vanishing line [70].

In this section, the theory common amongst many approaches in the literature has been
discussed. The following sections will examine specific techniques in more detail.

2.2 Structure from Motion

The human interpretation of the world relies on several cues to understand its structure. In
particular, the motion of our viewpoint allows us to infer much about the relative depth and
position of objects within the world. Structure from Motion (SfM) could be considered
an interpretation of this in that the techniques within the field rely on motion information
to derive 3D geometry from 2D views of a scene. Rigid structure from motion assumes
that any observed movement occurs without deformation, an example of which would
be a camera moving across a scene in front of a building. Consider such a situation
and suppose the internal parameters of the camera are known. At each frame a new
view of the scene is produced, allowing for calculation of the essential matrix, which can
then be decomposed to give the position and orientation of the new view with respect
to the last. Now the 3D structure of the building as imaged thus far can be determined
simply by triangulating the imaged points from the two views [53]. This can be performed
equivalently for three views using the trifocal tensor [53]. It is common to perform this
calculation each time a new frame is added, using the latest two or three views.

Due to the noisy nature of the imaging process, this initial alignment may not be suffi-
cient. Therefore an optimisation step known as bundle adjustment is necessary, which
simultaneously optimises both the 3D positions of the reconstruction and the camera pa-
rameters [123]. This approach will result in an point-cloud in 3D space, from which
surface orientations can be roughly estimated, allowing the creation of a dense depth
map [94].

The above is a generic technique for sequential SfM; many others exist in the literature.
Using epipolar geometry to calculate the relation between views is a prevalent theme [101,
54]. Once the camera calibration has been found in the first image-pair, the reconstructed
points can be augmented and updated, for example using the Kalman filter [9] as new ones
are observed, with correspondences between the previous frame and the new one being
used to calculate the updated relative pose and orientation. In some cases assumptions on
camera motion may be used to improve the quality of the reconstruction [39]. In many
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Figure 2.7: Just as the outline of an object deforms with perspective, so does the texture
upon it. Here a simulated circular texture undergoes perspective projection [42], causing
ellipses to become increasingly non-circular as the distance from the camera increases.

applications the scene may not be static, with objects moving separately to the camera.
By assuming the camera moves at constant speed, it is possible account for motions such
as these and capture the path of camera motion and of the moving objects within it under
orthographic projection or weak perspective projection [51].

Alternatively, by assuming the scene to be modelled in a piecewise-planar fashion, one
can use image-image homographies given projective rectification of the cameras and an
assumption that surfaces can be modelled as hinged planes of each other [5].

2.3 Structure from Texture

It has long been observed that texture can provide cues towards the transformation un-
dergone by an object during the imaging process – a concept known as the “texture gra-
dient” [44], an example of which can be seen for a simple circular texture in figure 2.7.
Indeed, this is thought to be another of the key indicators used by human vision to es-
tablish the orientation of an object in the world [118]. The imaging transformation may
be simplified to a pure rotation of a scene object and can be solved given the assumption
of an “isotropic” texture, that is edges in the texture are uniformly spaced [128]. Texture
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gradients can instead be used to generate a texture density map enabling the scene to be
modelled as a planar surface [63]. This information can be supplemented with the effect
of haze upon a distant texture and texture energies [114] to obtain a more accurate ground-
plane estimation [20]. A more complete rectification can be obtained by calculating the
homography between a planar surface and the image using “low-rank textures” [92] –
textures of low-rank when the projective transformation is rectified [134].

In lieu of a global transformation approach, the surface architecture of an object may be
obtained in terms of its surface normals [42, 79, 85, 120].

If the texture of the desired object is assumed to fit some lattice, one can search for the
optimal distortion of that lattice over the objects in the scene using Markov Random fields
[96], thus allowing for the modelling of more complex, non-planar objects. Lattice-fitting
can be extended to allow for full-scene reconstruction from a single image. Commonly
a super-pixel segmentation of the scene is found representing salient regions of an image
[58], which can then be used to fit a mesh constructed of many small polygons [110,109].

Textures need not be static in the scene to provide information for affine rectification – it
is possible to use dynamic textures, i.e. textures which change over time, using optical
flow in the case of translational or homogenous dynamic textures [111].

2.4 Reconstruction from Geometric Features

Given some model of the shape of an object in the world, it is possible to infer the trans-
formation it has undergone during the production of the image. This may be a loose
assumption, such as the Manhattan Assumption, or a more restrictive knowledge of the
exact shape of an object. This section discusses recent approaches to image rectification
and camera calibration under such constraints.

As previously discussed in section 2.1.4, the use of the Manhattan Assumption allows for
the calculation of vanishing points, thus permitting rectification of an image up to at least
a similarity, or indeed full calibration.

This is a technique frequently used in indoor scenes, where one can expect to see chains of
walls, connected to ceilings and floors, the edges of which allow for the determination of
three orthogonal vanishing points followed by semantic segmentation of walls, floors and
ceilings [71, 30, 40]. This can either be done using a single image [71, 30] or vanishing
point information augmented with motion and stereo data in a Bayesian framework, to
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allow a more accurate segmentation [40].

Traffic scenes also provide strong features for perspective correction, although they often
only exhibit 1-point perspective [45]. If the camera is known to be parallel to the ground,
generating the line at infinity and thus a second vanishing point is trivial, otherwise the
width of the road lane can instead be used to constrain the system [45]. Alternatively,
known distances-ratios between road lines can be used to extract the second vanishing
point, allowing for the lane edges to be identified [56].

Alternatively, if curvature of a constant-width road section is observed, one can solve for
rotation about the x-axis of the camera, providing the ability to rectify for perspective
alone [84, 83].

Vehicle wheel bases form ideal vanishing point constraints [48,49] – one can easily detect
the 2 primary directions of the wheel base using a Histogram of Oriented Gradients, giving
two vanishing points. These are also known to be orthogonal in the world, meaning that
for each vehicle observed an extra constraint is placed using the rule of known-angles [76]
allowing for the calculation of the affine matrix [135].

When a circle in the world is imaged by a camera, the distortion it undergoes produces
an ellipse in the image. Using such ellipses it is possible to calculate the orientation and
position of circular objects in the scene [32] or indeed the homography between the world
and image planes [80, 19, 47].

2.5 Reconstruction Using Known Sizes or Ratios in Pedes-
trian Scenes

In many scenes, the size of an object in the world may be known or can be assumed, such
as the height of a pedestrian. By observing this object in many positions, one can obtain
an estimate of the perspective transformation in terms of a rough ratio [17]. Alternatively,
one may manually calculate the expected height distribution at a given pixel [18] or the
model of the ground-plane [103, 116, 14] to normalise object size.

If a full view of a pedestrian is available, the line between the feet and the head is of-
ten assumed to be approximately vertical and can be used in calculation of a homogra-
phy. It is possible to obtain three vanishing points from foot-head measurements taken
at various locations across the scene [82]. Supplementing this with the knowledge of the
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object’s height allows for full metric rectification. However, at low viewing angles the
vertical vanishing point tends towards infinity making estimation of it extremely sensi-
tive to noise. To help minimise the effect of this problem, the additional assumption that
pedestrians will move at constant speed can be used to augment foot-head measurements
in a Bayesian framework [68]. This assumption can be used alongside an extended model
including shadow information to allow computation of not only the camera parameters
(both internal and external) but also the lighting position [106].

Alternatively, provided the scene is imaged from two views with known internal parame-
ters, it is possible to calculate the relative pose of the views avoiding the use of vanishing
points altogether [33]. This foot-head approach can be extended to calculating the homol-
ogy between the feet and head to perform full intrinsic and extrinsic calibration [90, 107]
or “harmonic homologies” across multiple frames [66, 64]. The latter technique can sim-
ilarly be modelled using epipolar geometry [65].

A somewhat distinctive approach to those discussed in this section is to use the average
size of faces imaged in the scene to generate a normalisation map [28], thus providing a
method for correcting observed sizes to scale.

2.6 Using Speed to Rectify Images

Given a consistent time interval in video footage, the projected speed of an object varies
just as its size does in the image [116]. This allows for the rectification of a scene using
an assumption of constant velocity.

One method warrants particular examination due to its conceptual similarities to the work
in this thesis. Bose and Grimson [12], use vanishing point geometry in conjunction with
constant-speed trajectories (detected using the Stauffer-Grimson tracker [115]) in order
to obtain affine and metric rectification of the ground plane. Constant speed paths are
determined by first assuming that any given trajectory is of a constant speed. The 1D
homography between hypothesised trajectories of constant speed and the observed trajec-
tories is then calculated and when the trajectory is back-projected, a small error indicates
constant speed. The inverse of this homography can then be applied to the world vanish-
ing point to obtain its imaged counterpart. With two such paths the vanishing line can be
calculated, providing projective rectification. Affine rectification is then estimated using
the known length ratio rule of [76].
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The paper offers good results in what appear to be reasonably simple scenes, with sparse
motion. The use of the Stauffer-Grimson tracker would hinder the effectiveness of this
system in a dense-crowd situation, as individual blobs would be hard to detect, and par-
ticularly difficult to track for any length of time, which would impede this method due to
its need for long paths taken over 25 frames. In a crowded scene, motion will most likely
be slow, as such the length of the path may not be sufficient since tracking is necessary
across a large section of the scene. It is also difficult to maintain a tracker identity due to
the high inter-occlusion of crowd members.

2.7 Applicability of Existing Methods

This work deals largely with crowded scenes. Introduced in the preceding sections were
the concepts of structure from shape, motion and texture, amongst others. Other recon-
struction techniques exist, but are not closely related to the work presented in this thesis.
Shape from shading is somewhat related to shape from texture and is based on the use of
gradual shadowing on an object’s surface to determine its orientation [132,61]. Depth in-
formation can also be obtained from focus using specialised machinery [114], or defocus
by imaging the scene at various focal lengths and using blurring to infer depth [114]. Pho-
tometric stereo uses multiple lighting conditions when imaging an object to infer surface
data [125, 131]. Shape from shadow uses the outlines of shadows and the directionality
of light to supplement information from a single camera [129, 29].

Many of the methods discussed in the previous sections, particularly those requiring foot-
head measurements will be unable to function in such scenes due to the high levels of
inter-occlusion between agents in the scene. Consequently these are largely inapplica-
ble in this domain. Whilst the use of face-sizes alone bypasses the need for full views
of agents, it does require frontal views throughout the scene which may not always be
available. Additionally, the formulation given in [28] is a coarse normalisation across the
entire image and insufficient to model scenes with any more than one plane of interest.

Scene geometry-based methods suffer from similar drawbacks – when a dense crowd is
present in the scene, it is unlikely that reliable line-estimates will be accessible due to
occlusion. This is highly problematic for any methods based on parallel line projection
for the calculation of vanishing points. Similarly, whilst road lines may be present in
pedestrian images, one cannot guarantee this and many of the techniques found in the
literature are intended to be used from a vehicle’s perspective.



Chapter 2 26 Related Work

The method of Bose and Grimson shows promise in our domain, but its requirement
for prolonged tracking and use of a blob tracker are likely to cause accuracy to dimin-
ish when dense crowds are present within a scene. However, given its similarity to the
method outlined in this work, comparative experiments have been performed to examine
its performance against this work and can be seen in section 3.6.1 of chapter 3.

2.8 Conclusion

This chapter has discussed several aspects of the theory underpinning image rectification
and 3D reconstruction relevant to the work in this thesis, and applications thereof.

The chapter began by discussing single-view projective geometry, specifically the pin-
hole camera model assumed throughout this work. Then the fundamentals of multiple
view geometry were discussed, followed by an explanation of homographies and vanish-
ing point theory. Applications of these areas were then illustrated in sections on Structure
from Motion and Structure from Texture. The following three sections discussed applica-
tions more closely aligned to the work within this thesis, largely in the pedestrian domain
(although some applicable methods from the traffic monitoring literature were included).
The final section discussed the use of speed to rectify images, which to our knowledge is
a relatively unexplored area given a static camera, and an approach similar in concept to
our own was critiqued.



Chapter 3

Single Plane Reconstruction from
Motion

In chapter 2, it was shown that it is possible to construct the 3D scene using information
gleaned from measuring objects of known real-world size at various positions within the
image. The work in this chapter operates on the basis that it is equally possible to use
measurements of object velocity in order to reconstruct the 3D plane upon which observed
agents are moving.

The work presented here makes the assumption of an uncalibrated, stationary “natural
camera” [77], namely zero-skew and square pixels. Additionally we assume the principal
point falls at the image centre, thus in the intrinsic calibration matrix, (px, py) = 0 (see
chapter 2, section 2.1.1 for further details). Such realistic restrictions are not uncommon
in the domain of reconstruction and rectification [25].

Throughout this chapter it is assumed that all objects move on a single, linear plane and
that each observed object is moving at constant (or near-constant) velocity. First, early
work using only motion vectors is discussed in section 3.1, in which all objects are as-
sumed to be moving at the same velocity. Section 3.3 details a development of this idea,
in which the necessity for all agents to move at the same speed is removed. Finally,
section 3.4 describes the final iteration of this work, in which the error function used to
represent the constant speed assumption is reconsidered. Rather than measuring the di-
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rect difference from a fixed speed in the world, the spread of speeds along a trajectory
is minimised, offering improved robustness on larger sets of input data and particularly
those with higher variation in speed between agents.

3.1 Relating Speed to the Ground-Plane

A set of velocity measurements are taken either using the simulation methods discussed
in sections 3.2.2 and 3.3.2 or using the KLT tracker [81, 121, 112]. Further analysis of
tracker choice and post-processing is given in section 3.5.

As discussed in the notation section (see front-matter), a plane is defined by its normal n
and its distance from the camera d. Additionally, the plane-normal can be expressed in
terms of “elevation” θ and “yaw” ψ rotations, about the x-axis and z-axis respectively of
the camera coordinate system:

n =

 a

b

c

=−

 sin(ψ)sin(θ)
cos(ψ)sin(θ)

cos(θ)

 (3.1)

A full derivation of (3.1) is given in appendix A.

Given a ground-plane n ◦ x = d in world-space, a point upon it, x = (x,y,z)> and some
α , given by equation (3.2) for focal length f ; equations (3.3) to (3.5) show the back-
projection of an imaged point, u = (u,v,1)> onto x. A visual representation of this model
is given in figure 3.1.

α =−1
f

(3.2)

x = αuz (3.3)

y = αvz (3.4)

z =
d

αau+αbv+ c
(3.5)
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Figure 3.1: This illustrates the orientation of the ground-plane with respect to the camera
axis (x,y,z), showing the ground-plane in world coordinates and the same transformed
into image coordinates. The rotation parameters of the camera, in terms of elevation in
the camera x-axis and yaw in the z-axis (θ and ψ respectively) are also given.

3.1.1 Speed as a Measuring Stick

An object’s observed speed varies with perspective as do its other properties such as height
[116]. Assuming the real-world speed of a tracked object is constant over some fixed time
interval, measurements taken at multiple intervals can be used as the “measuring-stick”
from which to gain an estimation of the ground-plane (to scale). Trivially, the speed of the
motion of some tracked point in 3D camera coordinates can be found using the euclidean
distance equation, shown for completeness below. Clearly, when the camera is directly
above the plane, (z− z′) = 0.

D(x,x′) =
√

(x− x′)2 +(y− y′)2 +(z− z′)2 (3.6)

The system must transform 2D image coordinates onto a 3D plane given by n ◦ x = d.
From equations (3.3) to (3.5), it is clear there are four parameters in the system: the
two orientation parameters defined by (a,b,c)> as per equation (3.1), the distance of the
optical centre from the plane d and α . As this work assumes no knowledge of the size of
objects, rectification can only be performed up to scale. Therefore, the observed world-
velocity l̂ is fixed in order to set the scale of the solution and an estimate must be found for
the plane parameters n = (a,b,c)> and d in addition to α . Camera-height, d is encoded
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into the orientation parameters as per equation (3.8).

Given a pair of points in the image, (u,u′), the intention is to back-project them to
the world-coordinates (x,x′) and obtain the distance between them in the real-world
L1(u,u′)2. Substituting the projection equations (3.3) to (3.5) into the Euclidean distance
equation (3.6), the direct relationship between the velocity of tracked points in the world
and its projection into image coordinates can be obtained, given some set of parameters
(α, â, b̂, ĉ), where â is an estimate of the true a (similarly for b̂ and ĉ).

L1(u,u′)2 = α
2
(

u
γ
− u′

γ ′

)
+α

2
(

v
γ
− v′

γ ′

)
+α

2
(

1
γ
− 1

γ ′

)
(3.7)

where,

γ = αuâ+αvb̂+ ĉ and γ
′ = αu′â+αv′b̂+ ĉ

and

(â, b̂, ĉ)> =
(

a
d
,

b
d
,

c
d

)>
(3.8)

3.2 Motion Vectors and Constant Speeds

First, consider the situation where the strict assumption is made that the only moving
agents within a scene are pedestrians. Furthermore, suppose that they all move at the
same velocity (1m/s is observed to be approximately correct) and that all motion occurs
upon the ground-plane. From this it can be surmised that any motion vectors observed
within the scene have equal length in world coordinates, thus providing the “measuring
stick” needed to rectify the scene.

In the manner of Dee [27], short linear (or near linear) motion vectors of moving points in
the image are obtained over short time intervals, characteristically about one second. The
KLT tracker [112] is used on video data taken from an uncalibrated, stationary camera.
The aim is to derive the ground-plane parameters from these motion vectors with no prior
scene knowledge other than an assumption of a real-world plane. The use of such motion
vectors mitigates the problem of tracking loss in very dense crowds as long intervals of
sustained tracking are not required. An example of the motion vector generation output
(using the “students003” dataset, described in section 3.5) is shown in figure 3.2. In some
cases, degenerate movements are observed, such as very slow motion or a rapid change
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of direction during the time-interval over which we track a feature. Whilst the former
issue can be easily overcome by thresholding on minimum velocity, the latter may pose a
problem during estimation as the change in direction will not be captured by the tracker
resulting in motion that appears slower than it actually was.

Using the constant-velocity assumption, it is now possible to assess the fit of a set of plane
parameters to the motion-vector data. As previously mentioned, the expected world-space
velocity l̂, must be fixed so the unit assumption is made: l̂ = 1. Therefore, any deviation
from 1 can be classed as error. With this in mind, the error measure is defined as the
sum-squared difference between the back-projected velocity and l̂, over the set of input
motion vectors, ϒ.

Eϒ =
Nϒ

∑
i=1

(
L1(ui,u′i)−1

)2 where, (ui,u′i) ∈ ϒ (3.9)

It is important to note the assumption that all motion vectors lie upon the ground-plane.
In the vast majority of cases this will not be the case – feature points may be detected at
various positions on an agent’s body, be it the head or the feet. This is a source of error
and the scale of this error is examined in detail in section 3.2.2.

In a real-world scenario, the actual distribution of velocities is likely to vary. In order to
determine the likely levels of variation, the distribution of velocities for motion vectors
back-projected into the camera-coordinate system (using ground-truth camera parame-
ters) is given. These motion vectors are produced from manually ground-truthed trajec-
tories taken from bounding box centroids [3], so give an indication as to the motion of
individual people in the scene. Whilst this differs from the tracking that can be expected
from the KLT feature tracker, it does give a reliable indication as to the variation in speed.
From figure 3.3, it can be seen that the distributions of velocities in the scenes presented
are roughly Gaussian, although the spread within them varies. In those scenes in which
the spread is low, the system presented here should function well; however if the spread is
high, as in figure 3.3d, the likelihood of choosing enough motion vectors of equal velocity
is low, hindering the approximation process.

3.2.1 Sensible Motion Vector Selection

After running the tracker on a video, the size of ϒ will generally be very large, typically of
the order of 10,000 motion vectors per minute of 640x480, 25 FPS video for a moderately
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(a)

(b)

(c)

Figure 3.2: The KLT Tracker [112] is used to collect short motion vectors representing
the motion of tracked features in the scene over some fixed time interval. (a) shows one
frame of video with the detected salient points highlighted in red. (b) then offers a set
of motion vectors resulting from the motion of tracked features and (c) the final set of
vectors by the end of the video.



Chapter 3 33 Single Plane Reconstruction from Motion

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500

Histogram of Velocity For: PETS2009-S1L1-2.csv

F
re
q
u
en
cy

Normalised Vector Lengths

(a)

0 1 2 3 4 5 6
0

500

1000

1500

Histogram of Velocity For: PETS2009-S1L2-1.csv

F
re
q
u
en
cy

Normalised Vector Lengths

(b)

0 2 4 6 8 10 12 14
0

1000

2000

3000

4000

Histogram of Velocity For: PETS2009-S2L2.csv

F
re
q
u
en
cy

Normalised Vector Lengths

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

Histogram of Velocity For: PETS2009-S2L3.csv

F
re
q
u
en
cy

Normalised Vector Lengths

(d)

Figure 3.3: In order to assess the likelihood of selecting motion vectors of approximately
equal velocity in the real world the distribution of velocities was calculated using man-
ually labelled trajectories back-projected using ground-truth camera parameters. We see
that in many cases, the speed has a somewhat Gaussian distribution although in cases
such as (b) and (c) this has a strong frequency peak indicating that it should be possible to
find combinations of motion vectors with approximately equal speed. In (d), there is an
additional peak at near-zero speed - these motion vectors can be readily discarded using
a minimum velocity threshold.
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crowded scene (it is common for many features to be tracked on each person). Addition-
ally, in scenes with strong directional lighting, it is likely that the movement of shadows
will create additional tracked features for each person.

As the system contains only four unknowns, there is a risk of drastically over-constraining
the system should the entire set be used. This work assumes that all tracked points move
at constant velocity in world-space. Realistically this is unlikely to hold at all times,
meaning that using the whole of ϒ is likely to result in the system fitting to invalid data.
Therefore, an approach akin to Random Sampling and Consensus (RANSAC) is taken, in
which the set of all motion vectors ϒ is sampled, creating the new sub-set of four vectors
ϒ̄, which produces an inlying result during estimation. The remainder of this section will
discuss this approach in terms of the selection of a sub-set of four vectors that offer an
accurate estimation of plane parameters.

In the previous section, it was observed that the distribution of velocities in real-world
scenes are approximately Gaussian, it stands to reason (by the Central Limit Theorem
[100]) that the distribution of mean velocities for all subsets will also be roughly Gaussian.
By taking a number of subsets, it is assumed that some of these will contain motion
vectors of similar (or ideally identical) velocities. Those subsets with constant velocity
are expected to provide a better estimation than those without and inliers are determined
by the error function given in equation (3.9).

As the system contains four unknowns, clearly ‖ϒ̄‖ ≥ 4 must hold. The number of poten-
tial subsets of four motion vectors from ϒ makes it computationally intractable to calculate
for them all (for example, after 3 minutes of the “students003” video, there were roughly
30,000 motion vectors – approximately 4× 1016 possible combinations). As such it is
important to choose sensibly from ϒ.

If the motion vectors in ϒ̄ are not well distributed across the scene, the problem be-
comes ill-conditioned. Therefore, those subsets of four highly-separated motion vectors
are likely to offer greater stability during the estimation step than those containing badly
separated motion vectors. To this end, potential subsets ϒ̄ are chosen from a sample of
motion vectors ϒ′ ⊂ ϒ, taken from the outer edges of the image-space.

In order to build ϒ′, the convex hull Kϒ
1 (hereafter referred to as the “primary convex

hull”) of the set of all motion vectors is calculated, as this will include those around the
edges of the observed motion:

Kϒ
1 = convhull(ϒ) (3.10)
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This is likely to only lead to a very small set of motion vectors, in comparison with the
size of ϒ. In order to improve the likelihood of finding subsets of near-constant velocity,
additional motion vectors are included by taking the “secondary convex hull” Kϒ

2 . That
is, the convex hull of the remaining motion vectors once those in Kϒ

1 are removed:

Kϒ
2 = convhull(ϒ\Kϒ

1 ) (3.11)

This leads us to the final set of motion vectors to use in the sampling process:

ϒ
′ = Kϒ

1 ∪Kϒ
2 (3.12)

From ϒ′, sets of four motion vectors are sampled in a Monte-Carlo fashion, with the
constraint that the area of the polygon formed by the four motion vectors must exceed
a threshold of half the area of the image. Figure 3.4 shows the example output of this
method on motion vectors taken from 30 seconds of the “students003” dataset. The set
of all motion vectors is given in figure 3.4a, with b–g showing example subsets of motion
vectors, denoted by the corners of each blue quadrilateral. Also highlighted are the pri-
mary and secondary convex hulls (coloured magenta and green respectively), from which
ϒ′ was formed. It can be seen that the points are well separated, appearing towards the
edge of the image.

The non-linear system shown in equation (3.9) must now be solved. The Levenberg-
Marquadt algorithm is used to iteratively optimise for some initial set of parameters, cho-
sen as it is particularly robust, combining the benefits of both the gradient descent and
Gauss-Newton optimisation methods. This It should be noted that the problem-space is
highly non-convex, particularly when far from the true values, therefore selection of the
initial condition for the optimisation is important. Adopting a Monte-Carlo approach,
initial points in the problem space are randomly chosen from within a feasible range of
values for each parameter. To define this feasible range it is assumed that for most views
in the real-world, θ will fall within the 0◦ to 90◦ range, with ψ being contained in the
range −45◦ to 45◦. Using equation (3.1), a feasible range of values for (â, b̂, ĉ) can be
constructed. The remaining parameter, α is chosen according to the likely range of focal
lengths, giving the range 10−3 to 100.

The algorithm, should it converge, will deliver a parameter set (α ′, â∗, b̂∗, ĉ∗). The fea-
sibility of such a parameter set is assessed by back-projecting all imaged motion vec-
tors onto the ground-plane, then checking the normality of the speed distribution using
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.4: Subsets of four motion vectors are chosen from the outer edges of the motion
so as to maximise the separation between them. This is performed by calculating the
primary Kϒ

1 (magenta) and secondary Kϒ
2 (green) convex hulls of the motion vector set

(the latter being the convex hull of ϒ \Kϒ
1 ). These subsets are then selected in a Monte-

Carlo fashion provided the area of the polygon they form (blue) is greater than 50% of the
area of the image. (a) Shows the initial input set of motion vectors, while (b)–(g) show
examples of the output.



Chapter 3 37 Single Plane Reconstruction from Motion

−1
−0.5

0
0.5

1
−1

0

1

−1

−0.5

0

0.5

1

 

b

a

 

c

Figure 3.5: Initial values (hollow markers) and converged results (solid markers) using
the Levenberg-Marquadt algorithm on noise-free input motion vectors in terms of unit
(a,b,c)> space. For clarity only a representative sub-set of values is shown. The ground-
truth is represented by the intersection of the magenta axes. The majority of initial posi-
tions result in a value that is either reasonably close to it (green circles) or immediately
discountable as incorrect (black, filled squares), either based on the distribution of veloc-
ities, in the case of the point with negative c, or by falling outside of the feasible range
in the case of the remaining black points. Very few initial values result in an identifiably
incorrect answer (red).
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the Kolmogorov-Smirnov test. If the distribution is highly non-normal, we class this
result as infeasible. Large numbers of results can thus be excluded, based on either non-
convergence, non-normality of the speed distribution and if they do not fall within the
ranges mentioned above. The final hypothesis for the ground-plane is found by taking the
mean of the surviving results. Empirically, removing extreme outliers in computation of
the mean offers little effect (positive or negative) as to the final estimation accuracy.

3.2.2 Viability Testing on Controlled Simulations

The assumption of uniform, constant speed throughout the scene implies that all motion
vectors should have a speed of 1, given the correct parametrisation of a perfect world. To
test the feasibility of this method, a “perfect world” is simulated by generating vectors
of length 1 across a plane of known orientation. In each experiment 500 motion vectors
were generated and placed randomly throughout the scene. Therefore, it is possible to
measure the accuracy of the estimations by examining the squared-length error, summed
across all motion vectors and the orientation error in the plane estimation, given by the
angle between the true and estimated planes.

Figure 3.5 shows a representative set of initial conditions for the parameters of the unit
normal (a,b,c)> (hollow markers) and convergence values (solid markers) for noise-free
simulated data, in which all motion vectors were of unit length in the world coordinate
system. Note that the majority of solutions were either correct (defined as close to the
true value and shown in green) or recognisably infeasible (shown in black). Very few
erroneous points survived the filtering process.

Given that this method relies on assumptions that are unlikely to hold precisely true in the
real-world, it was then necessary to assess the effect of adding realistic variation to the
input motion vector data. There are two types of error here:

1. Motion vectors lying on parallel planes above the true ground-plane

2. Motion vectors being of unequal length.

The latter is expected to have a particularly pronounced effect as the assumption of con-
stant speed is particularly strict in this formulation. Clearly, in the real-world other po-
tential sources of noise exist. but in these experiments they are assumed to be negligible
or non-existent – namely poor tracker quality, as is common in low resolution or badly lit
scenes, and non-pedestrian features being tracked, such as swaying tree branches.
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Figure 3.6: Two probable sources of error are examined using controlled, simulated data.
The left-hand column shows the effect of motion vectors being displaced above or below
the plane whilst the right-hand column demonstrates the effect of variations in vector
length. Error is described in two terms. The top row is in terms of the global log10
sum-squared error in vector length (with a log10(1) = 0 as a point of reference), whilst
the bottom row gives the angle error between the ground-truth and estimated normals.
Red bars indicate results identified as infeasible, whilst green shows results the algorithm
accepts as correct. Only those estimations that reached a convergence are shown.
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Height variations are additive and are modelled using a Gaussian distribution with mean
0. The level of height variation is controlled by the standard deviation of the distribution
in the range 0-1. As walking speed is assumed to be approximately 1m/s, represented by
unit length in the world, this gives a feasible range of height deviation. At each noise
level, motion vectors are generated with heights randomly selected from the distribution.
The motion vector still lies parallel to the plane and is merely translated above it.

Variation in speed is also parametrised as a Gaussian distribution, but is multiplicative.
The mean of the distribution is 1 and the level of variation is again controlled using the
standard deviation between 0 and 1, giving a reasonable approximation of the range of
speeds one is likely to observe in the real world. The length of generated motion vectors
is extracted randomly from this distribution, and depending on the standard deviation
could involve stationary points (although these would be filtered out by the estimation
procedure) up to motion vectors of more than twice the average speed.

Figure 3.6 shows the effect of these types of error on estimation accuracy in terms of two
error metrics. Firstly, the angle between the ground-truth unit normal, n its estimated
counterpart n̂, shown in equation (3.13) is examined. Secondly, comparison is made be-
tween the length of motion vectors rectified with the ground-truth and estimated parame-
ters as shown in equation (3.14). Here the true length of a motion vector is described as
lυ and the estimated length as ˆlυ , where υ is some vector in the set of all motion vectors
ϒ.

Ea = cos−1 (n◦ n̂) (3.13)

El =
1
n ∑

υ∈ϒ

(lυ − ˆlυ)2 (3.14)

Figure 3.6 shows the results of experiments taken on 1000 different plane orientation
configurations. It can be seen from figure 3.6a that global vector length error (displayed
on a logarithmic scale for clarity) stays relatively low despite high noise level, but in the
occasions that it does rise, the error is extreme. However, when considering the orientation
error in figure 3.6c, a considerably more pronounced increase in error can be observed as
noise increases. This is due to the enforcement of equal length for all motion vectors, but
those closer to the camera (i.e. raised above the plane) will appear larger in the image.

A more pronounced effect can be observed when considering vector length variation.
In terms of the length error shown in figure 3.6b, not only do more examples of high
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error get classified as correct, but towards higher levels of noise, a much lower density
of completed experiments occurs (that is most ,if not all, plane configurations could not
obtain a result due to the non-linear optimiser not converging). Examining the orientation
error also shows that higher error occurs more quickly than for height, as well as the fact
that considerably fewer experiments were solvable at all.

The error levels discussed above are unacceptable for many applications and are due, in
large part, to the strictness of the constant speed assumption not allowing the system to
function in anything but the most perfect of worlds. We see further evidence of this in
the reconstructions of real-world scenes given in figure 3.7, where there is a noticeable
difference in shape between the ground-truth reconstruction (blue) and the estimated re-
construction (red). In order to improve this situation the constant speed assumption is
loosened still retaining the idea of using only pedestrian motion to solve for the ground-
plane parameters.

3.3 Moving from Motion Vectors to Trajectories

In the previous section it was assumed that all agents in the scene move at the same speed.
Clearly this is not the case and violations of this assumption were a core source of error
in the work presented in the previous section. Instead assume that different individuals
will move at different speeds, but each individual moves at their own constant-speed.
Since all agents are of the same class, pedestrians, sensible restrictions can be placed on
the difference in speeds between people – observations in which one individual moves at
1m/s whilst another moves at 4m/s are unlikely, so these solutions can be disregarded –
otherwise the system freely determines the ratio of speeds between each trajectory.

To this end, the system is enhanced to record not motion vectors but trajectories, dis-
cretised into linear segments over some time-interval. Features are tracked as long as is
feasible using the KLT tracker (using the goodness measure associated with the tracker),
giving a set of trajectories to use as input. Clearly the formulation can no longer rely on
the agent’s speed being 1; however by fixing the speed of one trajectory, the scale of the
reconstruction is fixed as in the previous method. The speeds of the remaining trajecto-
ries are described as being some multiple of the speed of the first. That is, for a set of
trajectories T, there exists a set of speeds:

{lτ}τ∈T (3.15)
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Figure 3.7: Top row: Two reconstructions of motion vectors for real-world scenes using
ground-truth parameters (blue) and their estimated counterparts (red). The reconstruc-
tions include considerable error, with (a) showing too little angle of elevation, whilst
(b) shows considerable skew. The most likely cause of error is different agents moving
at relatively different speeds (some run, some walk). The distributions of vector length
across all motion vectors, back-projected with ground-truth are provided (middle row) as
are those rectified using the estimated parameters (bottom row), further illustrating the
evident skew.
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Scale is set by fixing l1 = 1 , with all further lengths being denoted as lτ = ωτ l1 =
ωτ . Using the notation introduced previously, the set of parameters for the system is
(α, â, b̂, ĉ,ω2,ω3, . . . ,ωNT) – ω1 = 1 so is not included in estimation – giving the error
measure:

E(T) = ∑
τ∈T

Nτ

∑
i=2

(
L1(uτ

i−1,u
τ
i )−ωτ

)2 (3.16)

Again the Levenberg-Marquadt (LM) non-linear solver is used to optimise a series of
initial points; however given the system now requires a solution for a large number of pa-
rameters, choice of initial condition must be taken more carefully than the earlier Monte-
Carlo algorithm. Therefore a multi-resolution global search approach is taken with a final
optimisation step to find the correct solution. Sensible bounds must be placed upon the
search-space and in particular feasible orientation values should be given. Whilst the pa-
rameter sets (â, b̂, ĉ) and (θ ,ψ,d) encode the same information, the latter lends itself more
easily to uniform sampling of the space of plane orientations. Therefore, the parameter
set being searched is modified to (α,θ ,ψ,d,ω2,ω3, . . . ,ωNT).

At the first level all combinations of α , θ and ψ are considered over a coarse mesh –
increments of 15◦ in both the θ and ψ with feasible ranges 0◦ to 90◦ and −45◦ to 45◦

respectively. For α , an exponential search is used to find its initial scale, in the same
range as for the motion-vector experiments, 10−3 to 100.

Taking the point with minimum error from this search, a finer grid is produced around it;
now searching α linearly and reducing the step size for θ and ψ to 10% of their previous
value, 1.5◦ at the second level. At each node of the mesh an optimisation is performed,
with the intention of moving closer to the true answer quickly. This procedure is repeated
until either the lowest error point is below a given tolerance (empirically 10−5 is sufficient)
or the maximum level allowed for search is reached. Empirically, 3 levels is observed to
be sufficient for an accurate estimation on simulated data with some speed variation.

As it is impossible to know the values for (ω2, . . . ,ωNτ
) in advance, they are simply ini-

tialised unit speed. Since the speed of all agents’ motion is expected to be within the same
order of magnitude, this should be sufficient (an assumption which is explored in more
detail in section 3.3.2).
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3.3.1 Generating Trajectory Simulations

Again, the effect of controlled variations on input data must be assessed. The previous
simulation method did not allow for the creation of continuous trajectories and more re-
alistic output is desired than the randomly placed motion vectors of the previous method.
This section will briefly introduce the simulation method, which is used for the remainder
of this chapter.

First, a surface is defined, in terms of four points on the x-y plane in world coordinates.
These can then be rotated by some given values in any of the three axes to produce a
plane of any orientation with respect to the camera. Once the plane section has been
generated, trajectories must be created upon it. Starting points are randomly generated
along the scene boundaries. At each time-step the next position is generated by rotating
the previous direction vector about the normal to the plane by a value taken at random
from a zero-mean Gaussian distribution.

This allows the simulation of direction changes for agents moving across the plane. By
adjusting the spread of this distribution the erraticism of the simulated motion can be
increased. Similarly, the speed of the agent is chosen at random from a Gaussian distribu-
tion. Here the mean represents the mean speed of the agent, whilst varying the standard
deviation allows intra-trajectory speed variations to be added (an agent can travel at dif-
ferent speeds during their time in the scene). Each agent is assigned a speed distribution
with mean taken from a third Gaussian, allowing the introduction of inter-agent speed
variation (agents can move at different speeds). The final parameter in these simulations
is the height of the tracked point within the scene. Again this is parametrised as a Gaus-
sian distribution with the spread representing the distance of the tracked feature from the
ground-plane.

By manipulating the means and standard deviations of these parameters, the noise levels
and violations of the constant-speed assumption can be assessed. Hereafter, the spread of
these distributions is described as the “noise-level” for each parameter.

In addition to varying the above parameters, the camera position and orientation can be
varied before transforming the scene into image coordinates, allowing observation of the
system in both likely real-world situations and extreme cases (such as a camera close to
the ground-plane with little rotation). A number of example scenes containing simulated
trajectories are shown in figure 3.8.
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Figure 3.8: A series of simulated scenes at varying orientations and focal lengths using
the method described in section 3.3.1. (a) to (e) show the scenes in camera coordinates
with the camera shown as a red square, whilst (b) to (f) show each scene transformed into
image coordinates.
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Level (%) 0 10 20 30 40 50 60 70 80 90 100
Height (◦) 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.01
Intra (◦) 0.00 13.1 31.9 41.1 34.7 39.8 32.6 34.6 31.8 33.1 28.8
Inter (◦) 0.00 0.00 0.00 0.00 0.00 0.71 0.43 2.37 0.00 10.03 2.47

Table 3.1: Controlled, simulated data is used as input to the system outlined here to exam-
ine how the algorithm deals with noise or assumption violations. Three sources of error
are examined: height variation, intra-trajectory speed variation and inter-trajectory speed
variation. Of particular importance is the observation that height variation no longer has
a pronounced effect given the new formulation; however intra-trajectory speed variation
is still a strong factor in estimation accuracy.

3.3.2 Viability Testing on Controlled Simulations

Previously, the effect of two parameters on estimation accuracy was examined:

1. Height variation (assumed to vary between trajectories but remain constant through-
out any particular trajectory) and

2. Speed variation within a trajectory.

The term “speed variation” must now be redefined as the system now has two poten-
tial sources of this. It is now assumed that individuals can move at different speeds. It
would be useful to examine how those speed differences effect estimation of the plane pa-
rameters, particularly as (ω2, . . . ,ωNT) is initialised at unit speed, which may be an over
simplification. This is defined as “inter-trajectory speed variation”. The violation of the
constant-speed assumption is retained; however this is redefined to be “intra-trajectory
speed variation”, that is, the variation in speed in one particular trajectory.

In the previous section it was clear that measuring speeds between ground-truth and esti-
mated reconstructions did not provide a reliable indication of reconstruction error. There-
fore analysis will now focus on the orientation error between the estimated and ground-
truth planes. Table 3.1 shows the resulting error profiles for varying these three types of
noise:

Type 1 Height Variation: Tracking points above the ground-plane

Type 2 Intra-Trajectory Speed Variation: Variation in speed within a trajectory
e.g. person changes speed.

Type 3 Inter-Trajectory Speed Variation: Variation in speed between trajectories
e.g. different people walk at different speeds.
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Let us first examine the effect of height variation on the algorithm. With the previous
formulation, where unit speed was enforced for all motion vectors, this was observed to
be a high source of error on the estimations. From table 3.1 it can be seen that it no longer
has a pronounced effect on error. Instead the estimation accounts for the differences in
observed speed by manipulating the speed ratio ωt for that trajectory.

Type 2 variation is expected to have the most pronounced effect on the quality of the esti-
mation as it violates the core assumption in equally as strong a fashion as in the previous
formulation. Again, the orientation error rises steeply as the noise level increases. How-
ever, the levels of variation given here provide the most extreme of cases – it is unlikely
that one person will change their speed to such a great extent in the real-world. With that
in mind, the strictness of the constant-speed assumption will still limit the ability of the
system to solve for these more difficult cases.

Finally, it can be seen that type 3 noise does have some effect on the quality of estimations,
but only towards the extremes. At a standard-deviation of 0.8, it is possible to have one
person moving many multiples faster than another, providing an extreme situation for
the solver to surmount. Also note, that as the level of intra-trajectory noise increases,
the algorithm sometimes uses (ω2, . . . ,ωNT) to compensate for the more difficult data. It
would be prudent to limit these edge cases to feasible ranges.

Whilst changing from a somewhat naı̈ve system using vectors to a more considered
trajectory-based method has improved matters, the system is prone to error when trajecto-
ries of different speed are observed. With larger sets of input data, the number of degrees
of freedom of the system in turn becomes very large, making finding the correct solution
much more sensitive to initialisation. In the next section, an approach to overcome this
difficulty is presented, along with quantitative analysis of its accuracy.

3.4 Reformulating the Constant Speed Assumption

It has become clear that the primary source of error within the system is the complexity
of the problem space when a large number of trajectories is given as input. Additionally,
the parameters for ω2, . . . ,ωNT are initialised uniformly at one, which is unlikely to truly
represent the variation in trajectory speeds. As such, this chapter introduces a new formu-
lation of the constant speed assumption, such that variation in speeds within a trajectory
can be analysed independently of the mean speed of the trajectory.
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One consequence of this change is that pedestrian speed can no longer be used to set the
scale of the scene. Instead, note that the height of the camera with respect to the ground-
plane, d, acts primarily as a scaling parameter. As this work only aims to reconstruct to
scale, this is fixed such that d = 1 in (3.5), thus simplifying further calculation.

In the majority of scenes, the camera height is observed to be substantial compared to the
height variations of the tracked feature points. Section 3.4.1 offers results showing that
tracked feature height variation does not significantly affect the estimate of ground-plane
orientation.

As d is now fixed, (â, b̂, ĉ) can be exchanged for (a,b,c) in the back-projection function
given in equation (3.7), giving rise to the variation below:

L2(u,u′)2 = α
2
(

u
γ
− u′

γ ′

)
+α

2
(

v
γ
− v′

γ ′

)
+α

2
(

1
γ
− 1

γ ′

)
(3.17)

where,

γ = αua+αvb+ c and γ
′ = αu′a+αv′b+ c

For a single trajectory τ , the set of distances at all time intervals is denoted as:

{Lτ
t }

t=Nτ

t=2 (3.18)

The mean and standard deviation of the above set are denoted as µ(Lτ) and σ(Lτ) re-
spectively. Examining σ(Lτ) gives a measure for how well a given set of parameters,
α , θ and ψ fit the observed data. If a feature point is moving at constant speed and a
good set of parameters has been found, σ(Lτ) should be close to zero. Conversely, a poor
parametrisation is expected to give a high spread in Lτ .

Since it is undesirable to impose the constraint that all objects must move at constant
speed, σ(Lτ) is normalised by µ(Lτ) giving a speed-invariant measure of the spread,
which is posed in terms of a minimisation over the sum of squared errors for each trajec-
tory as shown in equation (3.19).

ET
1 = ∑

τ∈T

(
σ(Lτ)
µ(Lτ)

)2

(3.19)

As tracked feature points are expected to have originated from agents of the same class
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(e.g. all pedestrians, no vehicles), it can reasonably be assumed a priori that they should
all move with similar (although not identical) speed. A set is created consisting of the
mean speeds of all trajectories in T:

{µ(Lτ)}τ∈T (3.20)

If agents move at similar speeds, the spread of the above set should be low, whereas if
different agents move at very different speeds the spread will be large. This concept forms
the basis of a prior:

ET
2 = σ({µ(Lτ)}τ∈T) (3.21)

where σ({. . .}) is used to denote the standard deviation of the set. Applying the above
prior to the error measure in (3.19) penalises a high spread of speeds, thereby preventing
some of the least plausible configurations. A weighted sum of these two terms gives
rise to the error measure ET as given in equation (3.22). Minimising ET over all input
trajectories offers an estimation of the plane parameters (α,a,b,c).

ET = ET
1 +λET

2 (3.22)

3.4.1 Experiments on Simulated Data

In this section, the robustness of the improved error measure given in equation (3.22)
when faced with deviations from the perfect world is examined. As in section 3.3.2, three
sets of experiments are performed on a number of different plane configurations across the
feasible range of orientations and focal lengths. In each case, the potential source of error
is varied in terms of the standard deviation of its Gaussian distribution. Examining the
issues in order, let us first consider the effect of the different agents in the scene moving
at different speeds. Agents’ initial speeds are chosen randomly from the distribution and
remain constant throughout the simulation.

Table 3.2 shows that the variation of the height of tracked features again exhibits negli-
gible effect of the accuracy of the final estimation. Data was generated using a camera
height of 10m, a feasible figure in the real-world; meaning the variation in the height of
tracked features that is likely to be observed is small relative to their distance from the
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Level (%) 0 10 20 30 40 50 60 70 80 90 100
Height (◦) 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03
Intra (◦) 0.01 2.57 3.91 5.53 7.23 8.09 7.00 5.41 6.66 6.81 5.98
Inter (◦) 0.01 2.02 3.36 4.34 4.61 4.50 4.36 4.56 5.18 4.44 4.55

Table 3.2: The results of input data variation experiments for inter-trajectory speed vari-
ation, intra-trajectory speed variation and height variation, in terms of orientation error
from the true ground-plane (in degrees). In all cases, error is low enough so as to produce
a usable reconstruction of the 3D data.

camera.

In consideration of variation in speed between trajectories, it can be observed that even
at high levels of variation, the average error stays low – below 10% of the mean speed.
The effect of intra-trajectory speed variation is expected to be more pronounced as it is
the defining metric used to recover the parameters. The speed of a feature at each frame
is taken from the distribution. We observe that although more error is seen than with
inter-trajectory variation, it is not so substantially pronounced as to seriously damage the
quality of the result.

Whilst it is true that points tracked at different heights (figure 3.2) with a low-positioned
camera will be affected more strongly, in most real-world scenes the distances between
the lowest and highest tracked points are negligible with respect to the camera height.
These experiments on simulated data show that over realistic ranges, the three potential
sources of error identified above have negligible detrimental effect on the accuracy of
estimation. Of particular importance is the intra-trajectory speed variation, which is a
violation of assumptions and yet still does not have an especially pronounced effect on
the quality of the estimation.

3.5 Obtaining Real-World Motion Data

Having confirmed the viability of the method presented in section 3.4 on simulated data,
its accuracy will now be assessed when applied to real-world video footage. In order
to observe imaged-object speed, identifiable features on objects must first be tracked for
some period across a scene. To this end the OpenCV 2.3 implementation of the KLT

tracker [81,121,112] was used, which tracks “corner” features – that is, points which offer
identifiable motion information in two dimensions allowing non-ambiguous measurement
of motion in both directions. Each feature is tracked frame–by–frame until such a time as
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tracking fails.

Clearly, one object may have multiple features assigned to it, just as some objects may be
completely neglected by the feature point detector; however this is not a major concern
provided that information is gathered from various positions in the scene. Also, since this
work is based in the domain of high-density pedestrian crowds, one cannot guarantee that
long-term tracking will be possible. High levels of inter-occlusion between pedestrians
mean that retaining a tracking ID across the entire scene is likely to be infeasible. Due
to this, only relatively short term trajectory segments may be recorded for each tracked
object. Realistically, an object need only be tracked over 20-30 frames to gain useful
information from the trajectory.

As discussed previously, it is assumed that each agent moves at constant speed. Whilst
the formulation discussed thus far is somewhat robust to smaller speed variations that
occur in the real-world, it would be prudent, where possible, to split trajectories where
strong variations in speed are evident within a trajectory. In the original 3D scene, this
would be simple; however due to the nature of the problem discussed in this work, it is
difficult to tell whether a change in observed speed is actually related to a change in the
plane direction. Nonetheless, if given the assumption of a single plane, as is the case in
the work presented in this chapter, it is possible to account for severe changes of speed by
recursively splitting trajectories at positions where the difference in speed in consecutive
intervals is more than some threshold from the mean for that trajectory. A median filter
is used to smooth the difference data prior to performing the splitting since in some cases
there are spikes due to image noise.

Figure 3.9 shows one such trajectory with figure 3.9c indicating definite spikes in ob-
served speed, particularly as the agent slows to turn around. As a result of this procedure
three sub-trajectories are obtained, each with smoother speed profiles in the real-world.

3.5.1 Trajectory Grouping

Over the course of a video, many trajectories are likely to be obtained – far more than
is necessary or in fact, feasible to solve for. In fact, all that is needed is a representative
sub-sample of the set of trajectories to solve the non-linear system described above. A
Monte-Carlo approach is unlikely to yield good results, as only short trajectories or tra-
jectories representing merely a small part of the scene may be chosen. In this case the
resulting non-linear system is likely to be ill-conditioned. Many trajectories may be ob-
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Figure 3.9: Trajectories are split at rapid changes in acceleration as these are likely to
represent the agent changing speed in the real-world scene. In this example, (a) shows the
original trajectory, (c) shows the smoothed speed-difference plot for the trajectory (mean
value shown by a magenta line and the threshold in green) and (b) shows the result of the
split, where the three coloured sections show the resulting sub-trajectories.



Chapter 3 53 Single Plane Reconstruction from Motion

tained from a single person, or indeed a group of people moving together, giving rise to a
number of extremely similar trajectories. Rather than using the entire set of trajectories,
the trajectories are clustered relative to their position and shape in the image, in order to
minimise the number of trajectories required to represent motion across the scene.

Since no prior knowledge is available as to the number of clusters needed to suitably
represent the set, a simple K-Means approach does not apply. Instead Affinity Propagation
[41] is implemented to group similar trajectories.

The first step is to find the optimal alignment for every pair of image trajectories in T. This
is based on two metrics - a measure of distance within the image and the similarity of their
shape. As trajectories of different lengths will be compared, the Hungarian algorithm [69]
is first used to obtain the optimal alignment between each pair of trajectories, taking
the cost matrix generated using the function (3.25) as input. The constituent elements,
distance and shape, will now be introduced in the following sections.

3.5.1.1 Trajectory Distance

For each trajectory pair, {τ,τ ′} the cost of matching each point in τ to each point in τ ′ is
calculated. Given a pair of points {uτ

i ,u
τ ′
j } for time indices i and j in trajectories τ and

τ ′ respectively, the normalised distance between the two points in the image is found as
follows:

‖uτ
i −uτ ′

j ‖
Idiag

(3.23)

where Idiag is the diagonal size of the image frame.

3.5.1.2 Trajectory Shape Difference

The shape ϑ τ
i at the point uτ

i is measured in radians as follows (illustrated in figure 3.10):

1. Find the line vector between homogenous points uτ
i−1 and uτ

i using the vector cross
product [53]:

l{i−1,i} = uτ
i−1×uτ

i

2. Repeat for uτ
i and uτ

i+1:
l{i,i+1} = uτ

i ×uτ
i+1
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Figure 3.10: The shape of a trajectory τ is defined by the changes in direction ϑ τ
i mea-

sured at each consecutive point uτ
i , i ∈ {2, . . . ,Nτ −1}.

3. Calculate the angle ϑ τ
i between the two lines using the dot-product:

ϑ
τ
i = arccos

(
l{i−1,i} ◦ l{i,i+1}
‖l{i−1,i}‖‖l{i,i+1}‖

)

Having calculated the shape for both uτ
i and uτ ′

i′ in trajectories τ and τ ′ respectively,
finding the difference, normalised over π is trivial:

|ϑ τ
i −ϑ τ ′

i′ |
π

(3.24)

3.5.1.3 Trajectory Alignment Cost

These two cost metrics are combined as a weighted sum to define the cost of matching a
point in τ to one in τ ′:

C(uτ
i ,u

τ ′
j ) =

‖uτ
i −uτ ′

i′ ‖
Idiag

+λ
|ϑ τ

i −ϑ τ ′
i′ |

π
(3.25)

The function above is used to generate a cost matrix of assigning every point in τ to every
point in τ ′. This is then passed as input to the Hungarian algorithm, the result of which
is an optimal alignment between τ and τ ′ and its associated minimal cost. This minimal
cost is denoted C+(τ,τ ′):
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C+(τ,τ ′) = argmin
f

∑C(uτ
i ,u

τ ′

f (i)) (3.26)

where f (i) represents some mapping of index i onto another index.

3.5.1.4 Affinity-Based Trajectory Clustering

Having found the optimal alignment of each trajectory onto all others, a Nτ×Nτ matrix of
affinities between trajectories can be built. From the previous section, the cost of matching
two trajectories to each other is known as a result of the Hungarian algorithm’s alignment.
Given a set of trajectories T = {τ1,τ2, . . . ,τNT}, a matrix of trajectory matching costs can
be constructed as follows:

Cmatch =


C+(τ1,τ1) . . . C+(τ1,τNT)

... . . . ...
C+(τNT,τ1) . . . C+(τNT ,τNT)

 (3.27)

This is then normalised over the maximum value of the matrix to give values in the range
0 . . .1, denoted C′match. To use this data as input to the affinity propagation algorithm, it
must first be converted into an affinity, Amatch. This involves first subtracting the values
of Cmatch from 1, and then preventing a trajectory from matching itself by setting the
diagonal of Amatch to zero:

Amatch = 1−C′match (3.28)

diag(Amatch) = 0 (3.29)

The result of running Affinity propagation on the input data is sets of trajectories, clustered
according to their shape similarity and proximity. From each cluster, the most represen-
tative trajectory must be selected. This is a simple case of selecting the trajectory which
maximises the sum affinity across all trajectories in the cluster. Figure 3.11 shows the re-
sult of one such clustering on the “students003” footage from the “Crowds by Example”
dataset [74]. Only relatively long trajectories are shown for clarity.

Whilst some trajectories within certain clusters appear to be outliers in terms of image
distance, it can be noted the shapes are often similar, suggesting that these trajectories
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(a)

(b)

Figure 3.11: Trajectories are optimally aligned with one-another using the Hungarian al-
gorithm [69], before being clustered using Affinity Propagation [41]. Finally, the most
representative trajectory from each set is chosen such that the affinity with all others
within the set is maximised. Here we see one such clustering on the “students003” dataset,
with (a) showing the assignment of trajectories to clusters and (b) showing the most rep-
resentative trajectories for each cluster.
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came from different parts of the agent’s body. Others are simply outliers for which there
were no sensible clusters to be formed. These are automatically discarded when choosing
the most representative trajectory for each cluster.

3.6 Results in the Real World

The majority of evaluation in this chapter is given against the PETS2009 dataset [37],
specifically videos taken from View001 shown in 3.12a - 3.12g. Since these come with
full intrinsic and extrinsic calibration, direct comparison of rotation angles and focal
length is possible. This consists of several scenarios, named “S0” to “S3” and within
those several sub-datasets “RF” (regular flow) in the case of S0 and “L1” to “L3” for the
others.

All scenes contain pedestrian motion containing medium to dense crowds. Only those
sequences within the dataset that are applicable to this work are chosen, including some
challenging sequences containing sudden direction and speed changes and those contain-
ing difficult tracking conditions. Table 3.3 shows results on the selected datasets. The
system converges on the same focal length for all sequences, within 0.05mm of the true
solution of 5mm.

Dataset S0 is described as regular flow, with agents walking along a curved road with
consistent motion from the left to right-hand sides of the scene. The exception is time-
index 14-06, where agents start in the middle of the scene and remain stationary for a
period of time, before walking together to the right. Higher error is observed on this
particular sequence as the motion is somewhat uni-directional, with the lack of directional
data in one direction meaning that one of the rotation axes is ill-conditioned when solving.

S1 is again regular crowd motion, with L1 containing medium crowds and L2 containing
more densely packed individuals. L3 is a particularly challenging sequence for this system
as it contains a change from walking to running at a point within the scene; however, a
good result is still obtained since the rapid speed change is detected by the aforementioned
trajectory splitting algorithm.

In S2, we consider only L2 and L3 as L1 contains a very sparse crowd (a maximum of
8 people at any one time, distributed across the scene). These subsets contain medium
and dense crowds respectively, with unstructured motion throughout the scene. Accuracy
drops in the former sub-set, due to people changing speed and direction rapidly to avoid
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(a) PETS 2009 S0 Regular Flow (b) PETS 2009 S1 L1 (c) PETS 2009 S1 L2

(d) PETS 2009 S1 L3 (e) PETS 2009 S2 L2 (f) PETS 2009 S2 L3

(g) PETS 2009 S3 L1 (h) students003 (i) Madeira Marketplace

Figure 3.12: Example stills from PETS2009 (a)-(g), students003 (h) and Madeira Mar-
ketplace (i) video datasets.
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Table 3.3: Results for plane estimation on videos from the PETS2009 dataset, using View
001. “Speed error” is the mean back-projection error over all trajectories, calculated as a
percentage relative to the reconstruction scale for which the mean speed is 1.

Dataset Time
Index

Traj.
Clusters

θ Error
(deg.)

ψ Error
(deg.)

Focal Length
Error (mm)

Speed
Error (%)

S0 RF 13-57 5 -2.1 +3.8 +0.0481 3.87%
S0 RF 13-59 5 -5.2 -1.8 +0.0522 3.17%
S0 RF 14-03 8 -6.7 -0.3 +0.0467 4.68%
S0 RF 14-06 9 -5.3 +1.1 +0.0511 3.26%
S0 RF 14-29 7 -6.1 -19.7 +0.0546 9.65%
S1 L1 13-57 4 -8.4 +4.9 +0.0524 8.38%
S1 L1 13-59 4 +1.1 +11.7 +0.0452 3.55%
S1 L2 14-06 7 +7.5 -0.5 +0.0490 3.64%
S1 L3 14-17 72 -4.8 -7.2 +0.0532 3.34%
S2 L2 14-55 19 -8.7 +13.8 +0.0467 2.36%
S2 L3 14-55 8 -4.8 -7.0 +0.0498 4.85%
S3 L1 14-13 29 -4.8 +3.1 +0.0522 3.89%
S3 L1 14-37 7 -4.8 +0.1 +0.0513 5.28%

others, meaning that the constant speed assumption is violated on a regular basis.

S3 contains some particularly challenging subsets and those not applicable to this work
are disregarded, such as the entire L2 sub-set, designed for event detection, in which
motion is extremely irregular with rapid speed changes. Of those studied in L1, good
results are achieved – within 5◦ for θ and approximately 3◦ for ψ .

One other video dataset, “students003” from the University of Cyprus is examined, a
frame of which is given in figure 3.12h. This is provided with an image to ground-plane
homography; however without knowledge of the intrinsic calibration of the camera it is
not possible to uniquely decompose the homography to obtain the planar orientation [6].
Therefore the homography is used to determine the 2D feature coordinates on the ground-
plane and compare the speed ratios for each trajectory. In section 3.6.1 rectified trajec-
tories produced using the method in [12] (discussed in detail in chapter 2) are compared
with those generated using this method.

Table 3.3 shows the orientation error for several scenes in terms of direct difference for the
two rotation components, θ and ψ . Also given in the table are the mean reconstruction
errors (“Speed Error”). These are calculated by first normalising both the ground-truth
and estimated reconstructions such that the mean speed is 1, then calculating the mean of
the differences in speeds at each time interval, summed over all trajectories. Our recon-
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Figure 3.13: Comparison of trajectory speeds rectified using the ground-truth (black,
dashed) and estimated parameters (red, solid). Examples are the 10 longest trajectories
from the Madeira Marketplace dataset.

structions are very close to the true solutions in all cases.

A further dataset for comparison was captured above a busy marketplace in Funchal,
Madeira, a frame of which can be seen in figure 3.12i. This footage contained extremely
dense crowds with limited movement both due to the number of pedestrians in view and
the layout of the market itself. The system performed well, obtaining a good estimate
of the plane parameters, as evidenced by a close reconstruction of trajectory speeds, as
shown in figure 3.13. No comparison could be drawn against the Bose and Grimson
algorithm demonstrated in the following section as the system was unable to produce an
estimate of the plane parameters due to the high levels of variation within the input data.
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3.6.1 Comparison with Bose and Grimson [12]

In this section, a comparison with the method of Bose and Grimson [12], discussed in
detail in chapter 2, is offered. As no public implementation of the method was available,
this was developed as part of this work, based on the details within the paper. The use of a
blob-tracker in the original work was substituted for the aforementioned KLT approach as
the former provided tracks of insufficient quality (compared to ground-truth trajectories)
for reliable estimation when applied to our data.

Figures 3.14 and 3.15 show some example comparisons of normalised trajectory speeds
from the PETS 2009 S1L1 and “students003” datasets respectively. For each result
the speeds are presented as rectified using the provided calibration data or ground-truth
(black), the estimation from the system presented here (red) and the method of [12] (blue).
The reconstruction based on the system in this work is generally very close, even on tra-
jectories with some tracking error, whereas the method of Bose and Grimson performs
poorly. This is likely due to the flexibility of this approach in minimising spread rather
than the strict constant speed assumption of their method.

3.7 Conclusions

The work described in this chapter has considered the problem of reconstructing 3D ge-
ometry from 2D observations taken from videos of pedestrian data taken using a sin-
gle uncalibrated camera. This method differs from previous techniques as it requires no
knowledge of scene geometry or a fixed size object; needing only motion of individuals.
Evidence was provided on simulations for the validity of the method and the assumptions
held within. Results were then given on the PETS2009 dataset which illustrate the success
of the method in a number of cases and have given a qualitative comparison for another.
A limitation of this work is that it assumes the scene to contain only one ground-plane,
an assumption that may not be valid in real-world scenes as ramps and similar deviations
from a single plane can often be observed. Therefore, the following chapter will consider
the problem of a scene containing two planes, before generalising this to an unknown
number of planes in chapter 5.
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Figure 3.14: Comparison of trajectory speeds rectified using the ground-truth (black,
dashed) and estimated parameters (red, solid) and Bose (blue, dot-dashed). Examples
are the 10 longest trajectories from PETS 2009 S1 L1, 13-59. In general, the system
presented here outperforms Bose in terms of reconstruction quality.
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Figure 3.15: Comparison of trajectory speeds rectified using the ground-truth (black,
dashed) and estimated parameters (red, solid) and Bose (blue, dot-dashed). Again, the
10 longest trajectories from the students 003 dataset are shown. In general, the system
presented here outperforms Bose in terms of reconstruction quality.



Chapter 4

Two Plane Reconstruction

The previous chapter describes a system to estimate the parameters of a single ground-
plane. In this chapter an extension of the system is presented, allowing it to work in a
scene consisting of two planes; establishing the parameters for each and the boundary
line between them. Whilst in principle this seems like a relatively simple extension, in
practice the accuracy of the plane and the parameters of the line intersecting the planes are
dependant upon one another, meaning that a poor estimate of one leads to a poor estimate
of the other. This chapter discusses the various approaches we have taken to overcome
this problem and the resulting system, which can determine both the plane parameters and
boundary sufficiently well to allow for generalisation to a multi-planar world described in
chapter 5.

4.1 Testing Multi-Planar Methods

Controlled, simulated data, generated using a multi-plane extension of the simulation
technique discussed in section 3.3.1, is used to test the method. In order to allow the gen-
eration of multiple scenes, two different world-creation algorithms were implemented.
The first takes input of Wavefront “obj” files, meaning realistic world scenes can be gen-
erated in 3D rendering software such as Blender and imported into the system. The second

64
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method creates a linear chain of planes, with the rotation of each plane being taken from
a Gaussian distribution centred at 25◦. The spread of this distribution can be altered to
create more or less extremely slanted scenes.

4.2 Estimating the Plane Parameters

The previous chapter illustrated that accurate estimates for a single plane can be obtained
using only the motion of pedestrians in the scene; however the work presented therein
uses trajectory data from across the entire scene to obtain those estimates. Assuming
there are two distinct planes within a scene, such a global approach no longer applies.
Instead this work proposes the use of a sliding window across the scene, using only the
sections of trajectories within the set radius of the window’s centre to estimate the plane
parameters. Since α is related to the intrinsic parameters of the camera rather than the
planes, this is solved globally across all regions, as opposed to finding a value of α for
each.

Clearly, the dimensions of the sliding window will affect the accuracy of the localised es-
timates; too small and the problem will be ill-posed as there will be too little information,
too large and there is a high chance of the window overlapping multiple planes. In order
to assess a sensible window size, a number of simulated scenes were generated (details
of the two-planar extension of the simulation method are given in section 4.1), and the
accuracy of the estimates produced was assessed. All scenes used in this experiment had
image-dimensions 352x288 pixels – a standard size for much CCTV footage in the real
world – and a focal length of 720mm. Each scene had randomly generated orientation
parameters for each plane, whereby the θ and ψ of each plane was chosen randomly from
within their respective feasible ranges.

As the number of planes for this experiment is known to be 2, k-means, with k = 2 is
used to cluster the set of all estimates and obtain the correct number of hypotheses to
planes. Accuracy is measured in terms of the orientation error obtained using the dot
product of the true normal and the estimated one and the α-error - the difference between
the true alpha and the estimated one. The results are given in figure 4.1, which shows a
window size of 25-30 pixels generates minimum error. Windows above 80 pixels did not
successfully generate hypotheses in these experiments.

Having obtained a number of estimates, the next task is to assign them to the rele-
vant pixels. The initial approach was to perform a k-means clustering of all estimates,
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Figure 4.1: The size of the sliding window affects the accuracy of the localised estimates.
Here, a number of noise-free scenes were generated and the window size was adjusted and
estimation accuracy was calculated in terms of (a) the summed orientation error across
both planes and (b) the error in α compared to a ground truth of 1.4×10−3.

where k = 2, then assign the hypothesis with minimum error to each pixel given the sub-
trajectories in its window. To calculate the fit of a hypothesis to a set of sub-trajectories,
the error measure listed in equation (3.17) is used, as in the single-plane system.

In theory, this should be sufficient; however, in practice there are often poor estimates
for some regions, which skew the cluster centres away from the true values. Many of
these are a result of a region’s window containing too little trajectory information, as is
often the case towards the edge of a scene, which leads to an ill-conditioned system when
an attempt is made to estimate the parameters. Therefore, those regions containing no
trajectories with more than 4 constituent motion vectors are excluded from calculation.
Estimation error also increases noticeably in regions where a region-window crosses a
plane boundary. In such cases the system clearly attempts to average out the two planes,
often with little success.

It should also be noted that the assignment is often not smooth – in an imperfect world
the trajectory lengths in some windows will not be exactly equal so the minimum-error
hypothesis is actually incorrect compared to the ground truth causing an uneven labelling.
This is illustrated in figure 4.2. Therefore these raw assignments are insufficient to seg-
ment the two planes. Instead consider the problem modelled as a bipartite graph, with
each pixel being a node within the graph and edges inter-connecting each pixel. The seg-
mentation can now be generated using the well-known minimum graph-cut algorithm to
find the smoothed division between the planes. In the simple case of two planes, graph-
cut is sufficient; however this will not extend to more than two planes as the algorithm
only considers binary labels. Since this work will later generalise the problem to that of
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Figure 4.2: A circular sliding window is passed across the image of the scene and hypothe-
ses are generated at each window using the single-plane method described in chapter 3.
The resulting hypotheses are then clustered and the regions labelled in such a way as to
minimise the error at that window (irrespective of its neighbours). Windows with too little
information or for which reliable estimates could not be obtained are discounted from the
process. In the example above, discounted windows are shown in pink, with the remain-
der of the regions labelled with one of the two hypotheses (green and blue). We see that
the segmentation is fragmented and not smooth, particularly around the boundary.

more than two planes (discussed in the next chapter), the alpha-expansion [13], a gen-
eralised approximation of minimum graph-cut for more than two labels, is employed to
approximate the division between the planes.

The alpha-expansion requires two terms:

The data term The cost of assigning some hypothesis, f = (α̂, â, b̂, ĉ) to some input data

The smoothness term The cost of assigning differing labels to neighbouring pixels.

For some window w, the set of sub-trajectories contained within it is denoted Tw. The
data term is taken to be the spread of speeds across Tw, rectified using the hypothesis
assigned to w, denoted as fw:

Ew = ∑
τ∈Tw

(
σ(Lτ)
µ(Lτ)

)2

+λ σ
τ∈Tw

(µ(Lτ)) (4.1)

where σ
τ∈Tw

(µ(Lτ)) denotes the standard deviation of the set of mean speeds for all tra-
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jectories Tw in window w – this is equivalent to the prior described in equation (3.21).

For the smoothness term, the angle between the normals of plane-hypotheses is used to
define whether two plane assignments are similar to each other. This is shown in equation
4.2 for the normals n and n′ resulting from two hypotheses, f and f′ respectively as per
equation (3.1).

ang(n,n′) =
1
π

arccos
(

n◦n′

‖n‖‖n′‖

)
(4.2)

This angle measurement is not sufficient on its own. In the graph being cut, all pixels
are attached to all others, but when smoothing only proximal pixels need be considered.
Therefore the smoothness cost is normalised over the image-space distance between the
pixels being examined, meaning that distant pixels have little influence over the labelling
decision. This normalisation function is shown in equation 4.3 for two imaged points u
and u′ and with Idiag representing the diagonal size of the imaged scene (i.e. the distance,
in pixels, from the top-left corner to the bottom-right):

dist(u,u′) = 1−
√

(u−u′)2 +(v− v′)2

Idiag
(4.3)

The energy of some labelling F over the set of all windows W is calculated as below.
Using the notation outlined in the Alpha-Expansion paper [13], fw refers to the hypothesis
assigned to window w ∈W. Again Tw is the set of sub-trajectories present within w.

EF = ∑
w∈W

Ew + ∑
{w,w′}∈W

ang(nw,nw′)
dist(w,w′)

(4.4)

The result of minimising the energy function EF is a smoothed segmentation of window
labels with the plane-hypotheses generated in the first step. This gives a set of regions,
which, given perfect data, should be closely associated with the plane segmentation. Re-
alistically this is unlikely to be the case, as noise within the data will cause some degree
of misassignment, exacerbated by the relatively small window size, meaning some error
will be observed within the hypotheses. What we are likely to have is a set of contiguous
regions which should fall close to the actual plane boundaries.

Using these new, larger regions as input to the estimator, much as was done initially with
the localised regions, more accurate hypotheses for the plane orientations can be obtained.
Iterating the hypothesis generation and alpha-expansion stages should lead to a smooth
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segmentation with accurate hypotheses. There is one key problem that prevents this being
the case in reality – the sensitivity of the algorithm to the smoothing term. If this is
weighted too highly, the algorithm simply assigns one label to all regions, too low and the
benefits of using graph-cuts are lost. Therefore, this method requires manual supervision
to find a sensible weighting.

4.3 A Framework For Plane Parameter and Boundary
Line Estimation

Generally speaking, if the boundary line between two planes is accurately estimated, the
parameters for those planes are also accurately discovered and vice-versa. As these pa-
rameters are coupled it makes sense to solve them together.

In a bi-planar scene, there are many possible methods to feasibly solve for the boundary
line. Whilst the implementation of the estimation method used may differ between each,
the general framework remains the same. This section will describe the framework and
the various estimation methods used within.

The previous section showed that a number of rough hypotheses for the plane parameters
can be obtained using localised estimates, based on data from a sliding window across
the scene. This technique forms the initialisation step of the framework. Hypotheses are
generated as above and are then clustered using k-means with the number of clusters set
to two; one for the estimate of each plane. Regions that have too little information to
successfully obtain a result, hereafter referred to as “empty regions”, are excluded. The
two reliable estimates are used in the boundary line estimation algorithm of choice. It is
important to note that it is assumed here that each plane can be separated from another by
a single boundary line. The realism of this assumption and therefore the applicability of
this method in complex scenes are discussed further in section 6.3.

Having obtained an estimate of the boundary line, a segmentation of the scene into two
distinct planar regions can be produced. Each of these regions now has a set of sub-
trajectories associated with it. These new regions can be used as input to re-estimate both
the plane hypotheses and the boundary. As each new region contains considerably more
trajectory information than is available in the localised sliding windows, the estimation
is generally much more robust (given a reasonable estimate of the boundary line). The
increase in error around the boundary line is also notably less influential on the estimations
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Figure 4.3: By iterating the location of boundary lines and plane parameter estimation,
more accurate results can be obtained than by the initial labelling. This is because the
local windows are generally much smaller than the segmented regions causing the non-
linear optimisation to be less well conditioned.

as the number of trajectories within the region that are not near the boundary tends to
be much larger. By iteratively repeating this procedure as per the flowchart in figure
4.3, considerable accuracy improvements can be obtained over simply using the localised
estimates used to initialise the framework.

This section has thus far introduced the general estimation framework, but not the bound-
ary line estimation techniques vital to obtain an accurate estimation of the plane parame-
ters. The following sections will address the various techniques used within this work to
estimate the boundary line.
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Table 4.1: Quantitative comparison of true and estimated parameters for the two-plane
scene pictured in figure 4.4 at various levels of speed variation.

Plane 1 Plane 2
θ ψ θ ψ α

Ground Truth 30.0 15.0 40.8 -32.9 0.0014
0% Speed Variation 29.9 15.2 40.8 -33.0 0.0014
10% Speed Variation 31.1 14.3 40.6 -33.2 0.0015
20% Speed Variation 31.1 16.3 40.0 -31.6 0.0017

4.3.1 Exhaustive Search

We consider the problem of finding the boundary line in terms of its direction vector and
a point upon it. This could be posed as an exhaustive search across the scene, moving and
rotating a line across the scene to find the location that minimises the cost of assigning the
hypotheses from the previous iteration to the segmented regions. This search is slow so
only lines that pass through the central horizontal and vertical scan-lines are considered
as it can be reasonably assumed that in most cases the boundary line will pass through
at least one of these. In addition, the rotation of the line is initially discretised into 5◦

increments, before refining the search around the global minimum.

Qualitative results for the accuracy of the boundary line estimation on simulated data are
shown in figure 4.4 with the qualitative measurement of plane orientation accuracy shown
in table 4.1. The method is shown to work well on clean data and is robust to varia-
tions in speed provided the resulting hypotheses are reasonable; however, this method
is inefficient and the simplifying assumption that the boundary passes through either the
horizontal or vertical scan-lines means it is not robust to all scene configurations.

4.3.2 Combining Boundary and Orientation Parameters

Let the boundary line be represented as a homogenous image point upon the line u =
(u,v,1)> and its direction in terms of a rotation ϕ from the vertical. Clearly in a “per-
fect” world, where there is no variation in the speed of individual tracked features, the
global error minimum should fall where the plane parameters and boundary line are cor-
rect. As a result, it should be possible to combine the boundary line parameters with the
plane parameters and solve the entire system at once. This gives the new parameter set
(α,θ0,ψ0,θ1,ψ1,d1,u,v,ϕ) to be estimated by the non-linear solver.

To initialise the plane parameters, hypotheses from the first step of the framework are



Chapter 4 72 Two Plane Reconstruction

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

x

y

 

 

Iteration 1
Iteration 2

(a)

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

x

y

 

 

Iteration 1
Iteration 2
Iteration 3

(b)

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

x

y

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

(c)

Figure 4.4: The most robust method for finding the boundary between two planes is an
exhaustive search across the scene, rotating the line at each position and assigning one
hypothesis to either side of the line. The configuration of position, angle and hypoth-
esis labelling with minimum error is assumed to be at the boundary. When used in an
iterative framework this process converges quickly given perfect data as seen in 4.4a. At
higher levels of speed variation (10% and 20% in (b) and (c) respectively), more itera-
tions are required but the algorithm still converges on a very close approximation. In all
experiments, a window size of 30 pixels is used. The quantitative results for the three
experiments pictured here are given in table 4.1.
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taken. Initialising the boundary position and direction is more difficult as no prior knowl-
edge is given as to where it may lie within the scene. To find a potential initial site and
orientation for the line a fast, coarse version of the aforementioned exhaustive search
method was used, with the point of lowest error being chosen to initialise the boundary
line.

To examine the feasibility of this estimation, the error-volume of the boundary-line pa-
rameters alone was calculated, first with all other parameters fixed at their true value
(figure 4.5a), then with hypotheses generated with 20% speed variation (figure 4.5b). Ex-
perimental results show that the problem space is smooth in places, but very rough in
others, meaning that this technique is particularly sensitive to the initial conditions, even
with the plane orientations fixed. On perfect data, the result is often still not exact even
when the initial estimate is close to the true answer, as can be seen in figure 4.6. Once
variation in speed is applied to the trajectories used in the non-linear optimisation, it rarely
converges before reaching a local minimum, even at relatively low levels. This makes this
method infeasible in scenarios with anything but perfect data and therefore, it will not be
used in the forthcoming experiments. Instead a new technique will be introduced, which
considers the problem of the boundary line as though finding the separating hyperplane
in supervised classification data.

4.3.3 Training an SVM to Segment the Plane

Consider the problem of identifying the boundary between planes as a binary segmenta-
tion, with the separation between segmented regions defined by a linear function. The
intention of this method is to label pixels to one side of the boundary with one label, and
those on the other with the other label. As the parameters are not exact and the input data
is not perfect, some degree of mislabelling is expected, particularly around the boundary.

Support Vector Machines (SVMs) [22] have proven popular in recent years for learn-
ing the boundary hyper-plane between two classes, particularly in cases where the initial
labelling is imperfect. By introducing slack variables to account for some error in the su-
pervised labelling, the system obtains a “soft-margin” between the two classes, balancing
the margin between the groups and the label assignment error.

This property of SVMs can be exploited in order to find the line between the pixels la-
belled with each plane hypothesis. The SVM is trained in the 2D image domain and the
resulting separation line between the labelled pixels in the image represents the line, again
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Figure 4.5: To examine the feasibility of combining the boundary line parameters with
the orientation estimation, the orientation parameters were fixed and the error-space of
the boundary line parameters examined. For representation, the euclidean distance of
u = (u,v) and the difference in ϕ in degrees from their true values are used as the metric.
The figures above show error in reconstructed trajectory speeds, in comparison to the
distance of the parameter set from the true answer. The error-space was examined for
two scenarios: (a) used precise orientation parameters and (b) used hypotheses generated
at 20% intra-speed variation. It can be observed that the error space is largely smooth,
although there are deep local minima and sharp maxima, particularly in the latter case,
requiring careful consideration of the initial parameters for the optimisation.
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Initial Estimate
Optimised Estimate

Figure 4.6: An initial estimate for the boundary line is produced using a coarse version of
the exhaustive search algorithm described in section 4.3.1. The boundary line parameters
in terms of a point on the line and its rotation in the image are then appended to the
parameter set for the plane orientations before a solution is sought using a non-linear
optimisation. Even on perfect data, this method fails to produce a reliable estimate of the
boundary line due to the irregular nature of the error space.

in image-space, best separating the pixels assigned those two labels.

Given two hypotheses obtained as discussed in the previous section, a raw labelling is
produced by assigning each pixel the minimum-error hypothesis. That is, input to the
SVM training step is a set of (u,v) image coordinates and their estimated best-fit label.
Now, the SVM is trained on this labelling to obtain the soft margin between those pixels
labelled with the first hypothesis, and those labelled with the second. This soft margin
is assumed to represent the boundary between those two planes in image space, which
clearly can then be rectified using the estimates of the plane parameters to back-project it
into camera coordinates. An example of this process is shown in figure 4.7, in which the
two labels are indicated by red and green data points, with the support vectors obtained
during training highlighted by black circles around each relevant data point.

As the initial labelling is likely to be erroneous as the localised windows are relatively
ill-posed in terms of the overall scene, this process can be iterated to improve accuracy,
with the vast majority of experiments showing improved accuracy with iteration.

With perfect data, a very accurate estimate of the plane parameters is produced and there-
fore the boundary parameters are also closely approximated, meaning that the planes line
up well and almost precisely match the true reconstruction as can be seen in figure 4.8,
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Figure 4.7: An example of the first iteration of the SVM based boundary location method
on input data under 10% speed variation. The image project of the planes and trajec-
tories is shown (top), with the labelling indicated by red and green data points at each
pixel(bottom). The support vectors obtained by training the SVM on this labelling are
indicated by black circles around the relevant pixels. The boundary line is approximated
reasonably, although further iterations are required to refine it.
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Figure 4.8: Given “perfect” data (that is, data with zero intra-trajectory speed variation),
the boundary can be precisely located using a Support Vector Machine. Under these
conditions, the system performs a perfect reconstruction of the true planes and their tra-
jectories.



Chapter 4 78 Two Plane Reconstruction

Table 4.2: Quantitative comparison of true and estimated parameters for a two-plane “per-
fect” scene, pictured in figure 4.8.

Plane 1 Plane 2
θ ψ θ ψ α

Ground Truth 36.0 -4.0 -32.2 -42.6. 0.0014
Estimated 35.8 -3.9 -31.9 -42.4 0.0014

Table 4.3: Quantitative comparison of true and estimated parameters for a two-plane scene
at 20% noise, pictured in figure 4.9.

Plane 1 Plane 2
θ ψ θ ψ α

Ground Truth 30.0 -3.0 38.3 -46.0 0.0014
Estimated 23.0 2.7 38.1 -43.9 0.0015

the numerical results of which are given in table 4.2.

As variation in speed increases, the plane estimations clearly become less precise; how-
ever in a bi-planar world, this is coupled with a new issue – the planes no longer line-up
along the plane boundary as illustrated in figure 4.9, the quantitative results of which are
given in table 4.3.

4.4 Enforcing Plane Alignment at the Boundary

Previously when estimating planes, the value assigned to d was arbitrary, only providing
scale. When estimating multiple planes in the same scene, this condition only applies to
one of them, hereafter referred to as the “reference plane”. All additional planes introduce
a further parameter to the estimation procedure – their scale relative to d. Therefore the
set of parameters to be solved within a bi-planar system is now (α,θ0,ψ0,θ1,ψ1,d1).

Including d1 in the estimation does not in itself prevent drift between the planes; it merely
allows the second plane to vary in scale. To this end, a further prior is included in the error
function for estimation. Let u1 and u2 be two image points on the line of intersection
between the two planes. In addition, let x∗1 and x∗2 be those points back-projected with
the estimated parameters for the reference plane. The prior dictates that the second plane,
when reconstructed using the estimated parameters, passes through these two points. In
the following, let n1 be the normal for the second plane, and d be its distance from the
camera:
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Figure 4.9: Given clean data and using the SVM based line estimation method a perfect
estimation of the true planes can be calculated (see figure 4.8). However; introducing
variation in intra-trajectory speed skews the estimation causing an imperfect estimation.
Under these conditions the two planes drift apart from each other, indicating some crite-
rion is required to enforce alignment at the plane boundary.
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Figure 4.10: By applying a prior to the optimisation function, dictating that the plane
should pass through a point on the boundary line (rectified using the hypothesis for the
reference plane), the reference and second planes now intersect at the boundary. (a) shows
the estimation without the prior and (b) shows the same data but with the second plane
estimated with the prior applied. The camera is illustrated by the dark-grey pyramid.

distboundary = ∑
i∈(1,2)

|n1x∗i −d|
‖n1‖

(4.5)

Figure 4.10 illustrates the effectiveness of this prior on an estimation of parameters using
input data under 20% speed variation. The second plane is estimated such that it cor-
rectly intersects the back-projected boundary line and the two planes are suitably aligned.
Whilst this method proves to be effective, it is inefficient. The system to be solved is
being constrained by the prior, but the same number of parameters must still be solved to
estimate the orientation of the second plane.

Instead reconsider the situation. Given an approximation of the reference plane and the
boundary between it and a connected plane, the orientation of the second plane is simply a
rotation of the unit-normal of the reference plane about the back-projected boundary line.
In this manner, intersection at the boundary can be enforced and the number of unknowns
to be solved can be minimised. The following chapter will detail how this was achieved
and how accurate the solution was.
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4.5 Conclusions

The contribution of this chapter has been an iterative framework for estimating the rela-
tive position and orientation of planes in the world, given the prior knowledge that there
are exactly two in the view of the camera. The presence of multiple planes introduces
problems that do not arise in a single-plane world – namely one can no longer use input
trajectories from across the entire scene and that finding the location of the intersection
line between the two planes relies on reasonable estimates for the plane orientation pa-
rameters and the camera focal length.

Several methods were discussed for locating the intersection line. Exhaustive search is a
possibility, but it is computationally expensive, even when simplifying assumptions are
introduced to minimise the search space. Including the boundary parameters into the non-
linear optimisation works to some extent with perfect data; however as the boundary line
and plane parameters are dependant on one-another, noisy data such as that likely to arise
from real-world situations badly affects the quality of the result. The most promising
method involves training a Support Vector Machine, using a minimal-error independently
labelling assigned to each region. The SVM approach was the most robust to noise as
shown in results on controlled simulated data.

The limitation of this framework as currently described is the necessity for there to be
exactly two planes in the scene. Instead it would be more useful in a real-world scenario
to automatically determine the number of planes prior to segmentation. This problem
is the focus of the following chapter, in which the existing framework is generalised to
account for any number of flat planes in the scene.



Chapter 5

Reconstruction of Hinged Planes

The previous chapter discussed various methods to determine the parameters of two
planes and the boundary line between them. It also highlighted the issues associated
with multi-planar estimation, namely that given error in the input data, the two planes
rectified with estimated parameters may not align correctly. The end of the chapter al-
luded to an alternative approach to solving the multi-planar estimation problem whereby
the parameters of the second plane are calculated as a rotation of the reference plane’s
unit-normal about the boundary between the two planes. This chapter will discuss this
concept in the domain of a bi-planar world, before extending the technique to apply to a
more generalised world where the number of planes is not known in advance.

5.1 Hinging in a Bi-Planar World

In section, 4.3, a framework was introduced for determining the intersection line between
two planes using a variety of methods. Hereafter, the SVM-based method shown in sec-
tion 4.3.3 is used to find the boundary line. Once an estimate for the reference plane and
the boundary line are obtained, the estimation of the second plane is reposed using the
hinged formulation discussed below.

Given the estimated parameters for the reference plane θ and ψ , it is trivial to obtain the
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Figure 5.1: Ground-truth (left) and estimated (right) reconstruction of a bi-planar scene
using the hinged estimation framework. Input data here was “perfect”, i.e. there was no
speed variation. Quantitative analysis of the estimated parameters is given in table 5.1.
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Figure 5.2: Ground-truth (left) and estimated (right) reconstruction of a bi-planar scene
using the hinged estimation framework. Input data was under the influence of 20% intra-
trajectory speed variation. The result is still very close to the ground-truth although there
is some orientation error. Quantitative analysis of the estimated parameters is given in
table 5.1.
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Table 5.1: Quantitative comparison of true and estimated parameters for a two-plane scene
at 20% speed variation, pictured in figures 5.1 and 5.2.

Plane 1 Plane 2
θ ψ θ ψ α

Ground Truth 30.0 15.0 49.2 75.1 0.0014
0% Speed Variation 32.2 12.1 50.0 78.7 0.0014
20% Speed Variation 39.4 16.0 42.7 69.6 0.0017

estimated normal to the reference plane, n0 using the mapping presented in chapter 3,
equation 3.1. The boundary line rectified with the estimated parameters is denoted by the
direction vector b and a point upon it xb

∗.

Assume the angle of rotation φ about the boundary line, between reference plane and the
second is known. Finding n1, the normal of the second plane, is simply a case of rotating
n0 about the boundary. In order to solve for d1, a point known to lie on the rotated plane
is needed. As the boundary line is known to lie upon the second plane, any point upon
it xb

∗ can be used. Therefore, given n1 and xb
∗, d1 can be found by the plane equation

n1 ◦xb
∗ = d1.

Finding the optimum rotation is a simple extension of this method. Searching values
of φ between 0 and 180◦ allows us to find the angle that produces a plane orientation
minimising the trajectory error function given in the previous chapters. Not only does this
method of search improve upon the previous iterative method discussed in chapter 4, it is
less computationally expensive as there is only one additional unknown to search instead
of three.

Qualitative results are given on perfect data in figure 5.1 with figure 5.2 showing the
result at 20% speed variation. The results are quantified in table 5.1. Note that whilst the
estimations obtained by this algorithm under the influence of speed variation are lower
(since the system has to skew both planes to allow them to align correctly), the actual
reconstruction is closer to the true solution due to the hinging constraint.

5.2 Beyond the Two-Plane World

The system mentioned so far can solve for a bi-planar world with a reasonable degree
of accuracy, yet many real-world scenes, such as the one in figure 5.3 contain more than
two planes and it would be useful to have generalised system that does not need to know
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(a) (b)

Figure 5.3: Some scenes cannot be modelled by a single plane and require a more complex
topology. This example, taken at the Trinity Shopping Centre in Leeds shows such a
scene.

in advance the number of planes. This section focuses on the development of a system
with these stipulations in mind. The work is again based on the framework discussed in
the previous chapter; however it must now be generalised such that any number of planes
and the boundaries between them can be detected. Hereafter, it is assumed the world
can be modelled as a tree of connected planes in which each node is considered to be
a plane, with edges representing the boundary lines between them. The reference plane
forms the root-node of the tree. Some examples of such graphs are given in figure 5.6.
Implicit in this assumption is the further constraint that no combination of planes connect
in a cyclic manner. The simulations presented here provide examples of relatively simple
scenes – all planes are of approximately equal size in the world and the layout allows the
reconstruction algorithm to be applied sequentially along a linear boundaries.

5.2.1 Hypothesis Clustering For Multiple Planes

In the aforementioned framework, the number of clusters is fixed as the number of planes
is known a priori. In the generalised system, this knowledge is no longer present and
therefore the clustering approach must be adapted accordingly. Various iterative exten-
sions to the traditional k-means approach exist to hierarchically determine a sensible num-
ber of clusters to fit the data. One can find the point where increasing the number of
clusters by splitting them, no longer increases the distance between clusters in the param-
eter space [108]. Many start with one cluster and split until some fitting criterion is met,
such as each cluster fitting a Spherical Gaussian distribution. This could be done through
direct computation [50, 36] or using a statistical model such as the Bayesian Information
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Criterion [97] to assess the quality of a split. In this work we use the G-Means method
described in [50], which begins with k = 1, and increases k until the clusters created fit
with the Gaussian assumption.

5.2.2 Differentiating One Plane from Another

In the earlier case where the scene was known to have two planes, separating them is
relatively easy as simple K-Means clustering can be used to enforce the detection of two
different hypotheses. However, when taking a generalised view, one cannot know in ad-
vance how many hypotheses should be generated, hence the use of the G-Means algorithm
discussed in the previous section.

The ability of this method to differentiate between two planes is affected by the angular
difference between them (in terms of the rotation about the hinge axis). In cases where the
two planes are almost parallel, one would expect the algorithm to smooth these hypothe-
ses together, essentially merging the planes. Clearly this is undesirable, as over several
hinges, error will propagate, causing poor final reconstructions. In order to examine the
effect of hinging angle on the system’s ability to differentiate planes, an experiment was
run for bi-planar scenes with different angular differences. In this test, 100 two-plane con-
figurations were simulated at each required angle. The number of resulting hypotheses
was calculated using G-Means and the mean number of estimated planes plotted against
the angle between the planes in 3D space. One would expect that the accuracy of the
estimation would decrease as the amount of speed variation in the input data increases.
As such this experiment was carried out on data with zero, 10% and 20% speed variation.

From figure 5.4, it can be observed that the system requires between 15◦ and 20◦ between
the planes to reliably obtain estimates. As one would expect, the zero-variation results are
show the least variation in the number of estimated planes, providing reliable estimates at
around 15◦ difference. At 10% variation, more difference is required as the hypotheses
generated prior to clustering are exhibit larger spread. An example of this can be observed
in figure 5.5, in which 3D histograms of the estimated parameters (in terms of θ and ψ)
are given, for zero and 10% variations. This is even more prevalent in the 20% variation
experiment.

As the angle between planes nears 90◦, the ability of the algorithm to correctly estimate
the planes diminishes as the angular difference is on the limit of the search-space for the
hinged rotation. However, in real-world scenarios such large differences are unlikely to
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Figure 5.4: The angle between the planes in the world affects the ability of the system to
differentiate them. Here, the number of planes estimated is compared against the angle of
the planes in simulated scenes, averaged over 100 configurations at each angular interval.
Three levels of speed variation were examined, zero variation (solid, blue), 10% (dashed,
green) and 20% (dot-dashed, red). Depending on input speed variation, the algorithm
tends to require between 15◦ and 20◦ degrees difference before it reliably estimates the
correct number of planes. As the angle reaches 90%, the system struggles to obtain quality
estimations as this is at the limit of the search space.

be part of the motion plane.

5.2.3 Hinged Rotations for Plane Estimation

Suppose that the location and orientation of the boundary lines is known. In order to
perform the hinged rotation estimation, one must first obtain the location of the reference
plane and the plane connection tree. As the graphs are assumed to be acyclic, for NP

planes, there are NP−1 boundary lines, each with their own rotation. This leads to the set

(a) (b)

Figure 5.5: At higher levels of input speed variation, the full set estimated parameters
across all localised windows show more spread. Above are illustrative 3D histograms of
the approximated values for θ and ψ under (a) zero variation and (b) 10% speed variation.
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of unknowns Φ = (φ0 . . .φNP−1) to be calculated.

Assume that all φi are known and reliable estimates for the boundary lines and reference
plane parameters have been determined. A reconstruction is generated by first rectifying
all planes by the hypothesised parameters of the reference plane. Then each set of children
of that plane is rotated in turn by the edge connecting it to its parent. As an illustrative
example, consider the plane configuration given in figure 5.6b. Let Pi represent the plane
at node i, where i ∈ (0, ...,NP), and Ei,i′ give the edge between Pi and Pi′ in reconstructed
3D space. First all planes are rectified by the parameters for the root plane P0. Next P1

and P2 are rotated about E0,1, before finally P2 is rotated about E1,2.

The quality of such a reconstruction is assessed by examining the spread of trajectories
within each plane. The resulting spread values are then squared and summed to give a
final metric for the fit. An exact reconstruction on perfect input trajectories would result
in zero sum-squared-spread, with an increasing value showing a worse reconstruction
quality.

Using this error metric, one can perform a non-linear optimisation over Φ using the
Levenberg-Marquadt algorithm as discussed in previous chapters. This introduces an-
other problem - how can such a parameter set be initialised? The rough plane hypotheses
generated while estimating the boundaries are assigned to each plane, in order to min-
imise the assignment cost (the case where the same hypothesis is assigned to more than
one plane is discussed further in section 5.2.4.2). The unit-normal of each plane is ob-
tained, allowing an approximation of the angle between connected planes to be calculated.
The set of these approximations is then used to initialise the optimisation over Φ.

5.2.4 Generalised Boundary Location Algorithm

Having found some number of hypotheses, the boundaries between the planes must be
found. This section discusses the various approaches trialled to discover the locations
of the plane intersection lines without foreknowledge of the number of planes or their
locations prior to calculation.

5.2.4.1 Capitalising on the Error Around Boundaries

When the localised regions overlap the boundary, the assignment error tends to be high,
relative to the rest of the scene. Figure 5.7 illustrates an example scene for which hypothe-
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Figure 5.6: Example scenes of varying complexity generated using Blender and their
respective plane-graphs used in the hinging process.
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Figure 5.7: The error in regions proximal to the boundary lines between planes is gener-
ally noticeably higher than in regions encapsulating only one plane. Here, each pixel in
the image is manually assigned the correct plane and the error of that assignment within
the region surrounding the pixel is calculated. We observe that the raw assignment error
about the boundary lines follows this observation, allowing the rough location of the area
containing the boundary region to be established. The actual plane layout in image-space
is projected onto the x-y axis.
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Figure 5.8: At the boundary between planes the local-region assignment error rises due
to trajectories within such regions spanning multiple planes as shown in (a). By taking
the line through the centroid of the blob parallel with its primary direction as per (b),
an estimate for the boundary lines between planes can be automatically obtained without
prior knowledge of the number of planes, displayed as dashed magenta lines in (c).
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Figure 5.9: As the variation in speed increases, the error landscape becomes decreasingly
usable as a means of finding the boundary points as can be seen in the example above,
generated with 30% variation. As a result this method is infeasible in real-world scenarios.
Whilst connected component analysis could be used to remove small erroneous regions,
the clear error peaks observed about the boundary with perfect data are not evident here.
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ses have been estimated on perfect data and assigned based on minimising error for each
local region (regions containing too little trajectory data are excluded). It should be noted
that the error is also high at the non-connected extremities of the centre plane. These
regions can be excluded simply by increasing the minimum amount of data required for
a region to be considered in calculation. We note that even though the hypotheses are
extremely close to the true values, there is still a sharp increase in error at the boundary
lines.

In order to use this error profile regions of higher error must first be segmented– thresh-
olding at the mean error value is sufficient to produce clear blobs about the boundary
lines. Given the heat map of error shown in figure 5.8a, thresholding at the mean gives
rise to two clear regions around the boundary lines, shown in 5.8b. In order to find the
boundary lines from the regions, Principal Component Analysis (PCA) is performed on
the blobs to find their principal directions in the image. The boundary line is then taken
to be the line passing through the centroid of each blob, parallel to its principal direction.
Figure 5.8c gives the result of overlaying these vectors over the true plane configuration.
In this case, the estimated boundary lines are extremely close to the true positions and
orientations (centroids are ten and nine pixels apart with an orientation difference of two
and one degrees respectively compared to true values); however this is to be expected as
the input data was free of speed variation.

Upon examining the effect of speed variation on the method it becomes clear that thresh-
olding the error space at the correct level is no longer a trivial matter. By examining the
error space in figure 5.9a, the sharp peaks seen at the boundary lines when using perfect
input data are no longer present, and instead much of the area covered by the planes is of a
somewhat uniform error level. This makes thresholding extremely unreliable at best. We
also note that many small regions are detected. Whilst these could be filtered out based
on their area in comparison with other detected blobs, the issue regarding the lack of clear
boundaries prevents the use of this method in the real-world.

5.2.4.2 Smoothing the Raw Labelling

An initial labelling is produced using the rough hypotheses from the initialisation step
of the framework described in the previous chapter, see figure 5.10a. The raw labelling
contains many artifacts, particularly around the boundaries, which disrupt attempts to
segment the planes.

In order to reduce this occurrence of such labelling errors prior to segmentation, the la-
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Figure 5.10: The result of minimally assigning labels based on the labelling cost contains
many irregularities, particularly around the boundaries of two planes where the window
overlaps multiple planes. An example of this on a three-plane scene is shown in figure (a).
To minimise these, a kernel is passed across scene. Each element in the kernel represents
a pixel in the window surrounding the central point and each pixel has a measure of
labelling error assigned to it. This error is used to create the measure of “importance”
placed upon the label assigned to that pixel. The label of maximum sum-importance is
then chosen.
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belling must be smoothed. The “importance” of a label at a given pixel is based on the
label assignment error. If the error is low, it is not unreasonable to assume the labelling
is reliable as the data fits the hypothesis well. Conversely if the best-fitting label does not
represent the observed data well, the error will be high and the labelling is assumed to be
incorrect.

Using this definition of importance, smoothing is achieved by passing a sliding window
of size w×w pixels across the scene labels. The aim is to calculate the best label for pixel
u given all pixels in the window surrounding it, Nu ≡ u′i, j,{i, j} ∈ {1 . . .w}. Each pixel
u′i, j in the window has a minimally assigned label and the cost of assigning that label,
denoted e(u′i, j).

An “importance matrix” Iu is then calculated, the same size as the window, in which the
error at each pixel is normalised by the maximum error within the window, emax to give a
value in the range 0 . . .1, which is then subtracted from 1.

Iu = 1−


e(u′1,1)

emax
. . .

e(u′1,w)
emax

... . . . ...
e(u′1,w)

emax
. . .

e(u′w,w)
emax

 (5.1)

The total importance for each unique label within the window is then calculated as the sum
of the importances of all pixels assigned that label. The label with highest importance is
chosen for u.

It is not uncommon, particularly in scenes containing planes of similar orientation, for
more than one region to be assigned the same label as can be seen in figure 5.11a. In such
cases, connected components analysis is used to identify the two distinct regions and a
new label is created for each additional region as shown in figure 5.11b.

5.2.4.3 Extending the Two-Class SVM Approach

In the previous chapter several methods were introduced, with an SVM-based method
best balancing efficiency and accuracy. Support Vector Machines in their original config-
uration can only separate two classes. The generalisation of SVM’s to train for multiple
classes tends to involve one of two approaches:

One Versus All A classifier is trained for each class individually, finding the hyperplane
separating it from the rest of the data
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(b)

Figure 5.11: In circumstances where more than one plane of similar orientation exists,
or when error is particularly high about the boundary, the same label may be assigned to
multiple regions, as seen above. In such cases the additional regions are assigned new
labels with the same parameters as the original. Here each colour is a different label.
We observe the magenta label has been assigned to two separate regions in (a). After
connected components analysis to identify the distinct regions, the second is assigned the
a new cyan label in (b). Note that the labelling about the intersection is still incorrect -
this will require a further iteration of estimation to compensate for the initial mislabelling.
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One Versus One A classifier is trained for each pair of classes such that the hyperplane
separating each is found

The argument as to which technique is more suitable under general circumstances is ongo-
ing [104,91,60], and both have their merits in different applications. For the use intended
here, “One vs All” is the more suitable approach. For each label, a binary segmentation is
produced in which regions assigned that label are set as positive examples and all others
as negative, as per figure 5.12c. Once a label has been used as the positive example, all
regions labelled with it are removed from further calculation, as shown in figure 5.12d.
Each SVM offers a boundary line for the plane used as its positive example. This method
requires that the ordering is sensibly chosen such that no more than one plane boundary
exists for each SVM during training (i.e. planes only have at most one connected plane
remaining during training).

Having performed smoothing on the label assignment, the multi-class SVM approach can
begin. It is reasonably assumed that a plane region can be found for which only one other
hinged-plane is connected to it by along some intersection line (in the example in 5.10b,
this could be either the large red or blue regions). There may be cases where adjacent
planes are not connected by a hinge, meaning that the reference plane cannot be readily
identified automatically; this is a limitation of the system and will be discussed further in
chapter 6. In order to determine adjacency of planes, the following procedure is used:

1. For each label, generate a binary image with “on” pixels being those assigned the
label and all others “off”.

2. Generate a list of connected components in the binary image.

3. Remove small components (those whose area is below the mean of component area
minus two standard deviations) to discount some mislabellings.

4. In each binary image, grow the remaining components by 1 pixel.

5. For every pair of grown binary images, find the overlapping areas - if there is over-
lap, the regions are adjacent.

6. Pick, at random, any region with only one adjacency – the label assigned to this
region is chosen as the positive example in the multi-SVM method.

Using the chosen label as a positive example and all other labels as negative, an SVM
is trained on the (x,y) locations of each pixel, giving a boundary line. This label is then
discounted and the above procedure is repeated on the remaining labels. By calculating



Chapter 5 99 Reconstruction of Hinged Planes

−150 −100 −50 0 50 100 150

−100

−80

−60

−40

−20

0

20

40

60

80

100

x

y

(a)

−150 −100 −50 0 50 100 150

−100

−80

−60

−40

−20

0

20

40

60

80

100

x

y

(b)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

x

y

 

 

Negative Examples

Positive Examples

Support Vectors

(c)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

x

y

 

 

Negative Examples

Positive Examples

Support Vectors

(d)

−150 −100 −50 0 50 100 150

−100

−80

−60

−40

−20

0

20

40

60

80

100

x

y

(e)

Figure 5.12: A multi-class SVM-based approach is used to obtain the boundary lines
between planes in the image. An initial labelling of localised regions, as shown in (a), is
generated using the framework described in chapter 4. This contains noisy observations
that can skew the SVM classification so the labelling is smoothed using the importance
based smoothing function described in section 5.2.4.2, giving the result in (b). SVM’s
are then trained for each plane in a “One Versus All” manner, with regions removed from
further calculation once their SVM has been trained (c)-(d). The final result is a set of
boundary lines in the image for each plane (e). The ground-truth plane separation is
overlaid on all images as the black polygons in (a) to (d) and as coloured polygons in (e).
The input data used here was subject to 10% speed variation.
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Figure 5.13: The framework outlined in section 4.3 of chapter 4 is generalised to allow for
an unlimited number of planes. The method is initialised as in the previous framework;
however once raw assignments have been made, the data is smoothed to reduce erroneous
assignments near plane boundaries. A labelled region with only adjacent region is chosen
as the positive example for the first iteration of a multi-SVM to find a boundary line. All
regions assigned this label are then removed, before the next plane is used. This process
is repeated until there is only one unprocessed label, by which point an estimate has been
found for all boundaries. The scene is then segmented and error estimated. This process
can be iterated to improve the plane estimates and boundary line locations.
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Table 5.2: Quantitative comparison of true and estimated parameters for a single-plane
scene with 10% speed variation, pictured in figure 5.14a.

θ ψ α

Ground Truth 67.0 20.0 0.0014
Estimated 67.7 12.6 0.0017

Table 5.3: Quantitative comparison of the true and estimated parameters obtained when
applying the generalised framework to a two-plane scene containing 10% speed variation,
pictured in figure 5.14b.

Plane 1 Plane 2
θ ψ θ ψ α

Ground Truth 24.0 8.0 36.2 60.6 0.0014
Estimated 28.3 3.4 36.2 60.5 0.0012

the SVM at all but one labels as positive examples, the boundary lines corresponding to
the estimated hypotheses are approximated. The example shown in figure 5.12 shows a
typical set of boundary lines computed on a three-plane scene.

5.3 Results on Simulated Data

The method outlined above has been tested on a range of simulated datasets. In this
section, examples of input data of varying complexity will be given as well as numerical
analysis of how error rates vary with the complexity of the scene.

In order to fully assess the generalisation of this method, it must first be shown to work
on data already considered by the previous two chapters, namely scenes containing one
and two planes. The method correctly identifies a single plane, under 10% speed variation
with reasonable accuracy as shown qualitatively in figure 5.14a and quantitatively in table
5.2. When considering scenes containing two planes, again with motion consisting of
10% speed variation, the parameters of the two planes are well approximated and the
intersection between them found as shown in figure 5.14b and table 5.3.

The next type of scene considered here contains three planes. An example result on “per-
fect data” is given in figure 5.15. We see the system is able to identify both the positions
of the plane intersections as well as the orientations of the plane itself. Quantitative results
for the example given here are provided in table 5.4.

In order to assess the effect of speed variation on a scene of this complexity, a number of
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Figure 5.14: Single and two plane configurations were tested using the generalised estima-
tion algorithm outlined in the latter part of this chapter. In both cases the system correctly
identifies the number of planes and produces usable estimations of their parameters based
on input trajectories exhibiting 10% variation in speed. The camera is indicated by the
grey pyramid.
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Figure 5.15: In this example of a three-plane world, generated using “perfect” data, the
system correctly identifies the topology of the three planes, accurately estimates the inter-
sections between the planes and their orientations. The final result is almost identical to
the ground-truth reconstruction. Quantitative evaluation of this example is given in table
5.4.

Table 5.4: Quantitative comparison of true and estimated parameters for a three-plane
scene with zero and 10% speed variation, pictured in figures 5.15 and 5.16 respectively.

Plane 1 Plane 2 Plane 3
θ ψ θ ψ θ ψ α

Ground Truth 30.0 15.0 52.2 -48.4 44.8 69.4 0.0014
0% Speed Variation 27.3 17.2 51.6 -49.2 42.7 70.1 0.0015
10% Speed Variation 30.6 22.1 50.2 -42.5 45.3 71.5 0.0018
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Figure 5.16: In this example of a three-plane world, generated using input data featuring
10% speed variation, the system again produces a very good approximation of the topol-
ogy of the three planes and their orientations. Quantitative evaluation of this example is
given in table 5.4.
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Figure 5.17: The effect of variation in speed in terms of the average trajectory speed
error is an important factor in terms of the robustness of the method. Here we see that
as variation increases, so the error starts to rise rapidly. However, at lower levels, more
likely to observed in the real-world (e.g. 20-25% speed variation), a good reconstruction
is still produced.

scenes were generated and trajectories placed upon them with increasing degrees of speed
variation. Figure 5.17 offers insight into the increase of error in the orientation parameters
as speed variation increases. As the standard variation of intra-trajectory speeds gets to a
0.5, in relation to a mean-speed of 1, the ability of the system to estimate sensible param-
eters is heavily impeded. However, this is a high level of variation and is not that likely
to be observed in the real world. At more realistic levels (10-20%) usable, though not
perfect sets of parameters are still obtained. An example of the quality of reconstruction
at 10% input speed variation is given in figure 5.16.

An example of a four-plane scene with zero noise variation is given in figure 5.18, with the
quantitative comparison given in table 5.5. The result is close to the true reconstruction;
however there is more error in the orientations. This is likely to be due to the fact that
each plane has less proportional area in the scene, meaning the solution to each is less well
conditioned. Despite lower accuracy than the three plane method, the resulting parameters
still provide a usable reconstruction of the scene.
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Figure 5.18: In this example of a four-plane world, generated using “perfect” data, the
system correctly identifies the topology of the four planes, estimates the intersections
between the planes and their orientations with reasonable accuracy. (a) gives the true re-
construction, whilst (b) shows the scene reconstructed using estimated parameters. Quan-
titative evaluation of this example is given in table 5.5.
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Table 5.5: Quantitative comparison of true and estimated parameters for a four-plane
scene with zero speed variation, pictured in figure 5.18.

Plane 1 Plane 2 Plane 3 Plane 4
θ ψ θ ψ θ ψ θ ψ α

Ground Truth 45.0 5.0 57.7 55.9 47.2 27.1 46.7 -14.4 0.0014
Estimated 39.2 -10.4 54.3 59.5 37.9 25.4 39.2 -10.4 0.0014
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Figure 5.19: An example frame from the UoL steps dataset along with the most repre-
sentative trajectories (coloured randomly) from the clusters obtained using the method
described in chapter 3. The steps themselves are assumed to approximate a single linear
plane. The extremely oblique angle of the camera makes this scene a challenge for the
system presented here.

5.4 Application to the Real-World

The experiments presented thus-far describe the estimation of multi-planar scenes gen-
erated by a controlled simulation method. Of course, this is insufficient to indicate the
systems applicability in the real-world, particularly as the simulations used above con-
tained plane regions of approximately equal size, a configuration that cannot be assumed
to be present in a real-world scenario.

This section will present results on two multi-planar datasets, UoL Steps and the Kingston
Hill Dataset [130]. In both cases the generalised algorithm presented in this chapter was
applied to trajectories generated by the KLT tracker and a reconstruction of the scene
was generated. Ground-truth orientations were calculated using geometric features of the
scene to calculate the orientation of each plane.

The UoL Steps dataset, a frame of which is shown in figure 5.19 has two key issues that
may prove problematic for the system presented here:

1. The camera angle is very low, offering minimal view of the steps themselves
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Figure 5.20: The segmentation of the scene into individual planes is given. Whilst the
general area of segmentation is roughly correct, it is clear that the system has misidentified
the plane boundaries. This is most likely due to the low camera angle, meaning that the
variation in tracked feature height was extreme in comparison with the distance of the
camera to the plane.

2. The scene contains a number of steps, which for the purposes of this experiment
are assumed to roughly approximate a single plane.

The segmentation of the scene is given in figure 5.20, in which the approximation can be
seen to roughly represent the true segmentation, although some miscalculation is evident,
largely due to the low viewing angle. Despite this, the plane configuration is quite well
estimated, with many of the trajectories being well reconstructed using the estimated pa-
rameters. Figure 5.21 shows a comparison of the internal speeds of trajectories estimated
using the estimated parameters (red) and ground-truth ones (black), with both well and
poorly reconstructed trajectories shown. The former are clearly very close to the true re-
sult, being those for which the segmentation has been correctly identified, whilst the poor
ones are due to those regions of the scene being incorrectly labelled. It is also noticeable
that reconstruction quality deteriorates from the top of the steps to the bottom. Here, the
top plane was taken as the root node for the hinging mechanism, meaning that errors early
in the segmentation propagate at each plane.
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Figure 5.21: Comparison of trajectory speeds rectified using the ground-truth (black,
dashed) and estimated parameters (red, solid). Examples are from the UoL steps dataset.
Good quality (left) and poor (right) reconstructed trajectories are highlighted for each
plane.
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Figure 5.22: An example frame from the Kingston Hill dataset (camera 2) along with the
most representative trajectories (coloured randomly) from the clusters obtained using the
method described in chapter 3. The steps themselves are again assumed to approximate a
single linear plane.
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Figure 5.23: Results for camera 2 of the Kingston Hill dataset. (a) shows the segmentation
of the scene into individual planes. The algorithm correctly identifies the walkway as a
separate plane, although assumes a hinge attachment which is not present. Again, the
segmentation at the top of the stairs is skewed by the low position of the camera. (b)
gives the reconstructed exemplar trajectories using the estimated parameters. Whilst the
top and lower planes have been well approximated, the disconnected walkway plane has
not, due to the assumption of a hinged plane.

The Kingston Hill dataset, an example frame of which is shown in figure 5.22, also pro-
vides a challenging environment for estimation using this system. Again, the camera
height is low, in some cases below the motion evident in the scene. Additionally, motion
occurs on disconnected planes, meaning that the assumption of all planes being con-
nected by a hinge is unlikely to apply. Indeed, from the results presented in figure 5.23,
we see that although the angle calculated between the two connected planes is calculated
reasonably well, the offset plane from the walkway is clearly incorrect. However, the
segmentation of the planes shows promise, as the three planes exhibiting motion are all
identified fairly well, notwithstanding a similar issue to that observed on the UoL Steps
dataset, where the low camera angle relative to the top plane means that identification of
regions is somewhat skewed around the top of the stairs.

To compare the rectifying trajectories using the parameters from our method, the ho-
mography of each plane to the image was calculated using the well-established vanishing
point method. A comparison of rectified trajectory speeds is given in figure 5.24 for the
top of the steps and the steps themselves (walkway results were entirely infeasible due to
the limitations discussed above). The result from the method presented here is close to
the solution calculated using the homographies, showning that on connected planes this
framework recreates suitable parameters for rectification.
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Figure 5.24: Comparison of trajectory speeds rectified using the ground-truth (black,
dashed) and estimated parameters (red, solid). Examples are from the Kingston Hill
dataset (camera 2). The system presented here recreates trajectories with speeds closely
resembling the true values. Trajectory speeds appear to fluctuate, particularly on the steps.
This is mostly likely a combination of the low camera angle meaning that limb articula-
tion is particularly visible and the natural human motion on stair-cases. The walkway is
omitted as the estimated plane parameters were entirely incorrect.
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5.5 Conclusions

This chapter has sought to efficiently address the plane alignment issues encountered in
the previous chapter. By considering the intersection of planes as a hinge, one can not only
constrain them to realistic alignments when rectified, but also minimise the parameter-
space. In the previous chapter, it was necessary to search for α , two orientation parameters
(θi,ψi) for each plane and the distance from the camera di for all but the reference plane –
a total of 3NP parameters. With the multi-label SVM method presented in this chapter, the
dimensionality of the parameter space has been decreased for all planes but the reference
plane. The parameter space now contains (α,θ0,ψ0) and a hinge-angle for each plane,
(φ0, . . . ,φNP−1), giving a parameter space of dimensionality 3+NP−1.

By reducing the number of degrees of freedom in the system in this way, no flexibility has
been lost; however robustness has improved. Because the hinge-rotation parameters of all
planes are solved globally, the optimisation step can correct errors during the estimation
much more reliably than if an iterative solution were used.

Assuming a linear-chain of planes, the system can obtain near-perfect reconstructions of
three-planar scenes at varying levels of speed variation. Estimation on higher numbers
of planes is less accurate as there is more influence from the error at plane boundaries
and the relative amount of information each planar region offers lessens; however the
resulting reconstructions still provide usable rectifications, with the correct topology and
layout found, even with speed variation on the input data.

In more complex scenes, such as the Kingston Hill dataset, presented in the previous sec-
tion the algorithm can identify planar regions with reasonable accuracy, given sufficient
trajectory information. The system is reliant on being able to obtain sufficient informa-
tion about each plane to produce an estimate, therefore in situations such as that shown
in the photograph of the shopping centre, figure 5.3, where a relatively narrow plane is
present, it is likely that some over-smoothing will occur, potentially missing small planes
altogether. If disconnected planes are observed under the hinged plane formulation, the
estimation of those planes is extremely poor. As further work, it would be worthwhile
including a checking step, whereby if the error when attaching a region as a hinge is too
high, that region is re-estimated without the hinging assumption. This is discussed in
more detail in chapter 6

The experiments presented here, both on simulations and real-world data have proven the
applicability of this framework to real-world multi-planar scenes in situations with rel-
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atively simple, although not uncommon, topology. Further experiments are required to
fully analyse the usability of the system in more complex situations, with some enhance-
ment needed within the system to allow for disconnected planes. The details of these
extensions are discussed in the following chapter.



Chapter 6

Summary and Further Work

6.1 Overview

This thesis has proposed three techniques for reconstructing the world using only informa-
tion gleaned from trajectories in crowded pedestrian scenes. The first assumes the scene
can be modelled as a single plane and three incremental approaches are given along with
examination of their success. The second method assumes the world contains two distinct
planes and discusses the challenges that arise when the assumption of a single-plane no
longer applies. An iterative framework is introduced whereby the coupled problem of
solving the plane segmentation and orientation is refined after an initial estimate. The
third builds on this by generalising the framework to apply to a piecewise-planar recon-
struction of unknown order.

In this chapter, the main contributions of this work are presented in section 6.2. The
applicability of the method in the domain is assessed and other possible domains are
considered in section 6.3. Finally, section 6.4 will identify improvements and extensions
to the techniques outlined herein and possible new research avenues will be discussed.

114
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6.2 Contributions

In this section, the novel contributions in this thesis are discussed in the order they were
presented. First, the single-plane estimation method will be recapped along with a brief
discussion of its comparison to the similar method of [12]. Next, the two-plane method
will be summarised before in the final section, the generalised hinged-plane model is
reviewed.

6.2.1 Single-Plane Estimation Framework

This work contributes to the somewhat under-developed area of rectification from speed-
information. A novel method of for ground-plane estimation was presented in chapter 3,
using only the motion of tracked features to determine a single ground-plane. It was as-
sumed in this technique that each agent moves across it at constant speed, though speeds
may differ between agents. First, the mathematical basis was introduced and feasibility
studies were conducted on simulated data with the method showing promise for appli-
cation in the real-world. The majority of existing methods require clear geometric fea-
tures, strong texture of objects of known size in order to estimate the parameters of the
plane. The work presented here shows that using data from short imaged trajectories can
provide a ground-plane estimation with sufficient accuracy to rectify the trajectories for
perspective distortion. The system was evaluated on a number of video data-sets and was
compared to the conceptually similar work in [12]. The method presented in this work
achieved its intended aim for the estimation of the ground-plane in single-planar scenes,
as evidenced by the superior results obtained on trajectories from a real-world data-set
containing medium density crowds when compared to existing techniques.

6.2.2 Modelling a Bi-Planar World

Further enhancement to the field of scene reconstruction is evidenced in the second chap-
ter, in which a method for solving the parameters for two planes is discussed. Introducing
more than one plane presents a problem not experienced in a single-plane world – it is
necessary to not only solve the parameters of the plane but also the topology of the plane-
pair. To this end, an iterative framework was developed that first generates hypotheses
for the plane-parameters based on localised estimates from a sliding window, then ap-
proximates the boundary line between the planes. The process can then be iterated until
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the improvement on rectification error drops below a threshold or a maximum number of
iterations is reached. The primary contribution of this chapter lies in the novel use of a
Support Vector Machine in the 2D image domain to estimate the location of the intersec-
tion line of the two planes, taking labels at each pixel as input. Results were given on
simulated data showing that detection and reconstruction of the two planes can be per-
formed accurately, even given input data containing speed variation. Again, the system
achieved its intended objective for estimation in dual-plane scenes, shown by the levels
of accuracy achieved on simulated trajectory data.

6.2.3 Generalised Piecewise-Planar Reconstruction

The final contribution of this work is to generalise the bi-planar estimation method to al-
low rectification of a piecewise-planar world in which the number of planes may not be
known in advance. Without prior knowledge of the number of planes, simple k-means
clustering no longer applies. As such a hierarchical clustering algorithm was used in its
place. Again, an iterative framework was produced to generate the localised hypothe-
ses before the boundary line is located using a one-vs-all hierarchical Support Vector
Machine technique to learn the separation line between the assigned planes. Within this
framework it was necessary to perform pre-processing such as filtering the rough labelling
before input to the SVM. Promising results are presented on simulated data from a num-
ber of scenes exhibiting a range of levels of speed variation as well as two real-world
scenes. Whilst the method did achieve reasonable segmentations and roughly accurate
reconstructions on real-world data, further work is necessary to enhance the robustness of
the method to more complex situations, such as disconnected planes and irregular config-
urations of planes.

6.3 Applicability of this Work

In this section, the applicability of the techniques in this work are discussed. The primary
intention of this work is to allow accurate measurements of metrics such as object size,
distance or speed from video taken using a stationary, uncalibrated monocular camera.
The particular domain of focus is crowded pedestrian scenes as it is in those that exist-
ing methods fail to produce a satisfactory result. Good results were obtained on video
sequences with a range of crowd densities, from sparse scenes with only a small number
of people meandering within it to a large, dense group moving across the image. The



Chapter 6 117 Summary and Further Work

reconstructed trajectories display very close correlation to the ground-truth ones, signi-
fying that the system has indeed captured and reversed the perspective transformation
undergone during the imaging process.

The multi-planar methods described in chapters 4 and 5 recreate the simulated scenes
closely, showing that the method could be applied to real-world data of similar complex-
ity. Results were presented on real-world datasets, with reasonable accuracy where planes
were connected by a hinged intersection line as is assumed in this method. The neces-
sity for such a line does limit the potential applications of this method to some degree;
however many pedestrian scenes to exhibit configurations that meet this assumption. As
such we believe this work to be a valid technique in many pedestrian scenes and could be
incorporated into a density estimation or event detection method to improve the accuracy
of observations.

Beyond the pedestrian domain, this work would also be highly applicable in traffic scenes.
It is common for a camera to view roadways where traffic will be flowing freely and as
such it is likely that vehicles will be moving at a constant speed for their duration in
the imaged scene. Therefore the previous methods should apply to trajectories captured
from moving vehicles. In scenes where both traffic and pedestrian motion is observed
the system may be over-constrained by the similar speeds prior, but this could easily be
modified to allow multi-modal distributions of speed, thus providing a further application
area of this work.

6.4 Improvements and Further Work

Within this monograph, work has been presented to identify and reverse the perspective
transformation undergone by a scene in the world as it is imaged by a camera. Potential
extensions and further experiments consider various aspects of the domain and will be
summarised within this section.

6.4.1 The Ability to Identify Disconnected Planes

As shown in the experiment on the Kingston Hill dataset, the current system cannot accu-
rately estimate disconnected planes. It would be prudent to incorporate a detection system
for such planes whereby disconnected planes can then be estimated as separate entities.
Clearly this re-introduces the problem of establishing scale. A potential solution for this
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would be to use the observed speeds of the tracked features as a scaling measure, selecting
values for the camera distance so as to approximately equalise observed speeds across all
detected planes.

6.4.2 Allowing Cyclic Planes

The existing system makes the assumption that planes are organised in a tree-like manner,
meaning there are no cycles in the adjacency graph. However, real-world scenarios do
exist where planes are connected in a cyclic fashion, so including the ability to parse them
would increase the applicability of this method in the real world.

Additionally, identification of cyclic planes would allow the system to further constrain
the system of parameters through the necessity for loop closure. This is a common con-
cept in the area of Simultaneous Localisation and Mapping [31, 4] and it is likely that
inspiration can be gleaned from these methods.

6.4.3 Modelling the Height Difference and Limb Articulation in Tracked
Features

Currently this work does not model the fact that tracked features are not observed upon the
ground-plane itself, but are in fact almost without exception, tracked above the ground-
plane at various heights. Some features may be tracked on the head of individuals, others
on shoulders, others on feet. We currently hypothesise, on the basis of experiments on
controlled simulations, that the algorithm presented in chapter 3 recovers gracefully from
this deficiency, using the relative speed of the trajectory to normalise for the difference
in proximity to the camera; however, allowing for variation in tracked feature height is
likely to improve the quality of the resulting estimates.

Additionally, feature points tracked on articulate regions, such as limbs in the case of the
pedestrian domain, do not move in line with the pedestrian’s centre of mass. Rather they
produce their own additional displacements relative to it. It is not unlikely that this is a
source of error within our real-world estimations so modelling this, perhaps as a Gaussian
centred at the pedestrian’s centre of mass, may be advantageous. This would, however,
rely on identifying individuals, something this work has attempted to avoid due to its
complexity in densely crowded scenes.
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6.4.4 Improved Models of Pedestrian Motion

The model of crowd motion used throughout this work is naı̈ve, in the sense that it does
not take into account human nature, merely working on the ideal of individuals walking
at constant speed. Research has been performed into various models for crowd behaviour
patters, including the use of the “social force” model first published by Helbing in [57],
which places various attractive and repulsive forces on individuals and groups with respect
to each other and the scene around them. This has been used with some success to model
the behaviour of crowds [89, 113] and could be used here to augment our predictions of
how tracked features will move.

6.4.5 Support for Multiple Classes of Moving Object

As was mentioned previously in the discussion regarding the applicability of the work
contained in this thesis, the system can currently only support motion observed from a
single class of object, such as only pedestrians. However, in the real-world, pedestrians
often walk on pathways next to roads, upon which cars are likely to be moving. By
enhancing the prior used to prevent infeasible reconstructions, a multi-modal approach
could be implemented. This could further be extended to classify the moving objects
themselves.

6.4.6 Applying the Method to Density Estimation Normalisation

The techniques in this work were developed with the aim of allowing measurements of
object shape and speed to be determined more accurately than they can be from an unrec-
tified image. By applying these techniques to normalise density estimation methods, the
true utility of the work can be observed.

6.5 Concluding Statements

This thesis introduced techniques to obtain rectification of imaged data through the use
of pedestrian trajectories, using only their speed to determine the parameters of the plane
or planes upon which the pedestrians have moved. The single-plane method has been
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evaluated on both simulated and real-world data and shown to outperform the most con-
ceptually similar algorithm from the literature. The multi-plane estimation framework has
been analysed on realistic simulations to assess its accuracy and robustness to variations in
world trajectory speed. Scenes containing two and three planes in relatively simple con-
figurations can be reconstructed with high accuracy and whilst approximations of scenes
containing four planes are less accurate, they still provide an informative approximation
of the topology and orientation of the planes held therein. As discussed above, the system
can roughly segment multi-planar scenes with acceptable accuracy; however the more
complex configurations present in real-world scenarios diminish the ability of the system
to produce accurate orientation estimates, particularly in the case of disconnected planes.
Despite this, we believe the work presented here comprises a novel contribution to the
field of image rectification and reconstruction providing a suitable framework for many
real-world applications.
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tors, Computer Analysis of Images and Patterns, volume 970 of Lecture Notes in

Computer Science, pages 190–197. Springer Berlin Heidelberg.



Chapter 6 126 BIBLIOGRAPHY

[53] Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision.
Cambridge University Press, 2nd edition.

[54] Hartley, R. I. (1992). Estimation of relative camera positions for uncalibrated cam-
eras. In Computer Vision ECCV 1992, volume 588, pages 579–587.

[55] Hartley, R. I. (1997). In Defense of the Eight-Point Algorithm. IEEE Trans. Pattern

Anal. Mach. Intell., 19 (6):pages 580–593.

[56] He, Q. and Chu, C.-H. H. (2007). Lane detection and tracking through affine
rectification. In MVA, pages 536–539.

[57] Helbing, D. and Molnár, P. (1995). Social force model for pedestrian dynamics.
Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary

topics, 51 (5):pages 4282–4286.

[58] Hoiem, D., Efros, A., and Hebert, M. (2007). Recovering Surface Layout from an
Image. Int. J. Comput. Vision, 75 (1):pages 151–172.

[59] Horn, B. K. (1986). Robot Vision. McGraw-Hill Higher Education, 1st edition.

[60] Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for multiclass support
vector machines. Neural Networks, IEEE Transactions on, 13 (2):pages 415–425.

[61] Hurt, N. E. (1991). Mathematical methods in shape-from-shading: A review of
recent results. Acta Applicandae Mathematica, 23 (2):pages 163–188.

[62] Iiyoshi, T. and Mitsuhashi, W. (2008). Homography-based image mosaicing for
automatically removing partial foreground objects. In Signal Processing and Com-

munication Systems, 2008. ICSPCS 2008. 2nd International Conference on, pages
1–9. IEEE.

[63] Jau, J. Y. and Chin, R. T. (1990). Shape from texture using the Wigner distribution.
Computer Vision, Graphics, and Image Processing, 52 (2):pages 248–263.

[64] Junejo, I. and Foroosh, H. (2006). Robust Auto-Calibration from Pedestrians. In
Video and Signal Based Surveillance, 2006. AVSS ’06. IEEE International Confer-

ence on, page 92. IEEE.

[65] Junejo, I. N. and Foroosh, H. (2007). Trajectory Rectification and Path Modeling
for Video Surveillance. In Computer Vision, 2007. ICCV 2007. IEEE 11th Inter-

national Conference on, pages 1–7. IEEE.



Chapter 6 127 BIBLIOGRAPHY

[66] Junejo, I. N. and Foroosh, H. (2008). Euclidean Path Modeling for Video Surveil-
lance. Image Vision Comput., 26 (4):pages 512–528.

[67] Keren, S., Shimshoni, I., and Tal, A. (2002). Placing Three-dimensional Models
in an Uncalibrated Single Image of an Architectural Scene. In Proceedings of the

ACM Symposium on Virtual Reality Software and Technology, VRST ’02, pages
186–193. ACM, New York, NY, USA.

[68] Krahnstoever, N. O. and Mendonca, P. R. S. (2006). Autocalibration from Tracks
of Walking People. In BMVC06, pages 107–116.

[69] Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval

Research Logistics, 2 (1-2):pages 83–97.

[70] Lai, P.-L. and Yilmaz, A. (2009). A new approach for vanishing line estimation.
ASPRS Annual Conference, Baltimore, Maryland, 2:pages 472–477.

[71] Lee, D. C., Hebert, M., and Kanade, T. (2009). Geometric reasoning for single im-
age structure recovery. In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2136–2143. IEEE.

[72] Lee, J. J. and Kim, G. (2007). Robust estimation of camera homography using
fuzzy RANSAC. In Proceedings of the 2007 international conference on Compu-

tational science and its applications - Volume Part I, ICCSA’07, pages 992–1002.
Springer-Verlag, Berlin, Heidelberg.

[73] Lefler, M., Hel-Or, H., and Hel-Or, Y. (2013). Metric plane rectification using sym-
metric vanishing points. In Image Processing (ICIP), 2013 20th IEEE International

Conference on, pages 300–304. IEEE.

[74] Lerner, Alon, Chrysanthou, Yiorgos, Lischinski, and Dani (2007). Crowds by
Example. Computer Graphics Forum, 26 (3):pages 655–664.

[75] Li, X., Liu, Y., Wang, Y., and Yan, D. (2005). Computing homography with
RANSAC algorithm: a novel method of registration. In Electronic Imaging and

Multimedia Technology IV , volume 5637 of Society of Photo-Optical Instrumenta-

tion Engineers (SPIE) Conference Series, pages 109–112.

[76] Liebowitz, D. and Zisserman, A. (1998). Metric rectification for perspective im-
ages of planes. In Proceedings. 1998 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (Cat. No.98CB36231), pages 482–488. IEEE
Comput. Soc.



Chapter 6 128 BIBLIOGRAPHY

[77] Liebowitz, D. and Zisserman, A. (1999). Combining scene and auto-calibration
constraints. In Computer Vision, 1999. The Proceedings of the Seventh IEEE In-

ternational Conference on, volume 1, pages 293–300 vol.1. IEEE.

[78] Lin, S.-F., Chen, J.-Y., and Chao, H.-X. (2001). Estimation of number of people in
crowded scenes using perspective transformation. IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, 31 (6):pages 645–654.

[79] Lindeberg, T. and Garding, J. (1993). Shape from texture from a multi-scale per-
spective. In Computer Vision, 1993. Proceedings., Fourth International Conference

on, pages 683–691. IEEE.

[80] Lourakis, M. I. A. (2009). Plane metric rectification from a single view of mul-
tiple coplanar circles. In Image Processing (ICIP), 2009 16th IEEE International

Conference on, pages 509–512. IEEE.

[81] Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with
an application to stereo vision. In IJCAI81, pages 674–679.

[82] Lv, F., Zhao, T., and Nevatia, R. (2002). Self-Calibration of a Camera from Video
of a Walking Human. In Pattern Recognition, 2002. Proceedings. 16th Interna-

tional Conference on, volume 1, pages 562–567. IEEE Computer Society, Los
Alamitos, CA, USA.

[83] Maduro, C., Batista, K., and Batista, J. (2009). Estimating Vehicle Velocity Using
Image Profiles on Rectified Images. In Araujo, H., Mendonça, A., Pinho, A.,
and Torres, M., editors, Pattern Recognition and Image Analysis, volume 5524 of
Lecture Notes in Computer Science, pages 64–71. Springer Berlin / Heidelberg.

[84] Magee, D. (2004). Tracking multiple vehicles using foreground, background and
motion models. Image and Vision Computing, 22 (2):pages 143–155.

[85] Malik, J. and Rosenholtz, R. (1997). Computing local surface orientation and
shape from texture for curved surfaces. International Journal of Computer Vision,
23 (2):pages 149–168.

[86] Marana, A. N., Velastin, S. A., Costa, L. F., and Lotufo, R. A. (1998). Automatic
estimation of crowd density using texture. Safety Science, pages 165–175.

[87] Maybank, S. and Faugeras, O. (1992). A theory of self-calibration of a moving
camera. Int. J. Comput. Vision, 8 (2):pages 123–151.



Chapter 6 129 BIBLIOGRAPHY

[88] McCahill, M. and Norris, C. (2002). CCTV in london. Working Paper 6, Report
to the European Commission Fifth Framework RTD as part of UrbanEye: on the
threshold of the urban panopticon.

[89] Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal crowd behavior detec-
tion using social force model. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 935–942. IEEE.

[90] Micusik, B. and Pajdla, T. (2010). Simultaneous surveillance camera calibration
and foot-head homology estimation from human detections. In Computer Vision

and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1562–1569.

[91] Milgram, J., Cheriet, M., and Sabourin, R. (2006). one against one or one against
all: Which one is better for handwriting recognition with svms? In Tenth Interna-

tional Workshop on Frontiers in Handwriting Recognition.

[92] Mobahi, H., Zhou, Z., Yang, A. Y., and Ma, Y. (2011). Holistic 3D reconstruction
of urban structures from low-rank textures. In 2011 IEEE International Conference

on Computer Vision Workshops (ICCV Workshops), pages 593–600. IEEE.

[93] Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with au-
tomatic algorithm configuration. In In VISAPP International Conference on Com-

puter Vision Theory and Applications, pages 331–340.

[94] Newcombe, R. A. and Davison, A. J. (2010). Live dense reconstruction with a
single moving camera. In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 1498–1505. IEEE.

[95] Palaio, H., Maduro, C., Batista, K., and Batista, J. (2009). Ground plane veloc-
ity estimation embedding rectification on a particle filter multi-target tracking. In
Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on,
pages 825–830. IEEE.

[96] Park, M., Brocklehurst, K., Collins, R. T., and Liu, Y. (2009). Deformed Lat-
tice Detection in Real-World Images Using Mean-Shift Belief Propagation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31 (10):pages 1804–
1816.

[97] Pelleg, D. and Moore, A. (2000). X-means: Extending K-means with efficient
estimation of the number of clusters. In In Proceedings of the 17th International

Conf. on Machine Learning, pages 727–734.



Chapter 6 130 BIBLIOGRAPHY

[98] Pflugfelder, R. and Bischof, H. (2005). Online auto-calibration in man-made
worlds. In DICTA ’ 05. Proceedings Digital Image Computing: Technqiues and

Applications, 2005., pages 519–526. IEEE.

[99] Pflugfelder, R. and Bischof, H. (2006). Computing of the epipolar geometry of
slightly overlapping views. In Chum, O. and Franc, V., editors, Proceedings of the

Computer Vision Winter Workshop 2006, pages 58–63.

[100] Pollard, D. (1982). A central limit theorem for empirical processes. Journal of the

Australian Mathematical Society (Series A), 33:pages 235–248.

[101] Pollefeys, M., Koch, R., Vergauwen, M., and Van Gool, L. (1999). Hand-held ac-
quisition of 3D models with a video camera. In 3-D Digital Imaging and Modeling,

1999. Proceedings. Second International Conference on, pages 14–23. IEEE.

[102] Rabaud, V. and Belongie, S. (2006). Counting crowded moving objects. In 2006

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

- Volume 1 (CVPR’06), volume 1, pages 705–711. IEEE.

[103] Renno, J., Orwell, J., and Jones, G. A. (2002). Learning Surveillance Tracking
Models for the Self-Calibrated Ground Plane. Zidonqhua Xuebao [Acta Automat-

ica Sinica], 29 (3):pages 381–392.

[104] Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification. The

Journal of Machine Learning Research, 5:pages 101–141.

[105] Rother, C. (2002). A new approach for vanishing point detection in architectural
environments. In In Proc. 11th British Machine Vision Conference, pages 382–
391.

[106] Rother, D., Patwardhan, K., Aganj, I., and Sapiro, G. (2008). 3D priors for scene
learning from a single view. In Computer Vision and Pattern Recognition Work-

shops, 2008. CVPRW ’08. IEEE Computer Society Conference on, pages 1–8.
IEEE.

[107] Rother, D., Patwardhan, K. A., and Sapiro, G. (2007). What Can Casual Walkers
Tell Us About A 3D Scene? In Computer Vision, 2007. ICCV 2007. IEEE 11th

International Conference on, pages 1–8. IEEE.

[108] Salvador, S. and Chan, P. (2004). Determining the number of clusters/segments
in hierarchical clustering/segmentation algorithms. In Tools with Artificial Intelli-



Chapter 6 131 BIBLIOGRAPHY

gence, 2004. ICTAI 2004. 16th IEEE International Conference on, pages 576–584.
IEEE.

[109] Saxena, A., Sun, M., and Ng, A. (2007). Learning 3-D scene structure from a
single still image. In Computer Vision, 2007. ICCV 2007. IEEE 11th International

Conference on, pages 1–8.

[110] Saxena, A., Sun, M., and Ng, A. Y. (2009). Make3D: Learning 3D scene structure
from a single still image. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31 (5):pages 824–840.

[111] Sheikh, Y., Haering, N., and Shah, M. (2006). Shape from Dynamic Texture for
Planes. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, volume 2, pages 2285–2292. IEEE.

[112] Shi, J. and Tomasi, C. (1994). Good Features to Track. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’94), pages 593–600. Seattle.

[113] Sochman, J. and Hogg, D. C. (2011). Who knows who-inverting the social force
model for finding groups. In Computer Vision Workshops (ICCV Workshops), 2011

IEEE International Conference on, pages 830–837. IEEE.

[114] Sonka, M., Hlavac, V., and Boyle, R. (2014). Image Processing, Analysis, and

Machine Vision. Cengage Learning, 4th edition.

[115] Stauffer, C. and Grimson, W. E. L. (2002). Adaptive background mixture mod-
els for real-time tracking. Computer Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on., 2:page 252 Vol. 2.

[116] Stauffer, C., Tieu, K., and Lee, L. (2003). Robust Automated Planar Normalization
of Tracking Data. In Joint IEEE International Workshop on Visual Surveillance and

Performance Evaluation of Tracking and Surveillance.

[117] Stentiford, F. (2006). Attention-Based Vanishing point detection. In In Proc. ICIP

2006, pages 8–11.

[118] Stevens, K. and of Technology, M. I. (1980). Surface Perception from Local Anal-

ysis of Texture and Contour. Ph.D. thesis, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory.

[119] Szeliski, R. (1996). Video mosaics for virtual environments. Computer Graphics

and Applications, IEEE, 16 (2):pages 22–30.



Chapter 6 132 BIBLIOGRAPHY

[120] Terzopoulos, D. (1983). Multilevel computational processes for visual surface re-
construction. Computer Vision, Graphics, and Image Processing, 24 (1):pages
52–96.

[121] Tomasi, C. and Kanade, T. (1991). Detection and tracking of point features. Tech-
nical Report CMU-CS-91-132, Carnegie Mellon University.

[122] Triggs, B. (1998). Autocalibration from planar scenes. In Burkhardt, H. and Neu-
mann, B., editors, Computer Vision ECCV’98, volume 1406 of Lecture Notes in

Computer Science, pages 89–105. Springer Berlin Heidelberg.

[123] Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle Ad-
justment A Modern Synthesis. In Triggs, B., Zisserman, A., and Szeliski, R.,
editors, Vision Algorithms: Theory and Practice, volume 1883 of Lecture Notes in

Computer Science, chapter 21, pages 298–372. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[124] Tsai, R. (1987). A versatile camera calibration technique for high-accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses. Robotics

and Automation, IEEE Journal of , 3 (4):pages 323–344.

[125] Vogiatzis, G. and Hernández, C. (2010). Practical 3D Reconstruction Based on
Photometric Stereo. In Cipolla, R., Battiato, S., and Farinella, G., editors, Com-

puter Vision, volume 285 of Studies in Computational Intelligence, chapter 12,
pages 313–345. Springer Berlin Heidelberg, Berlin, Heidelberg.

[126] Wang, L. L. and Tsai, W. H. (1991). Camera Calibration by Vanishing Lines for
3-D Computer Vision. IEEE Trans. Pattern Anal. Mach. Intell., 13 (4):pages 370–
376.

[127] Wang, Z., Zhao, M., Song, Y., Kumar, S., and Li, B. (2010). YouTubeCat: Learn-
ing to categorize wild web videos. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 879–886. IEEE.

[128] Witkin, A. P. (1981). Recovering surface shape and orientation from texture. Arti-

ficial Intelligence, 17 (1-3):pages 17–45.
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Appendix A

Derivation of Elevation and Yaw from
Plane Normal

In chapter 3, section 3.1 it is shown that the unit-normal of a plane in camera coordinates
can be decomposed into two rotations of the camera, see equation 3.1. The aim of this
appendix is to explicitly demonstrate the derivation of that mapping.

First, consider the case of a camera looking directly down at a plane, such that it has a
bird’s eye view of it. In this situation, the z-axis of the camera is towards the optical centre
and the plane’s normal in camera-space is:

n =

 0
0
−1

 (A.1)

Now suppose that the camera is no longer looking directly down the normal of the plane
and instead views it at an angle. In the world-coordinate system, the plane orientation
remains fixed as above and the camera rotates about the world-origin. In this case, rotating
the camera about the x-axis can be achieved using the standard 3D rotation matrix in the
x-axis:
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Rx(θ) =

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (A.2)

However, the model used in this work dictates that the camera and its axes are fixed, rather
the plane must rotate in camera-space. As a result, the directionality of the angle must
change. As the cosine function is even, its terms do not change; however the sine function
is uneven, so its terms must change sign. This gives the rotation matrix for the angle of
elevation θ :

RAoE =

 1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 (A.3)

Applying the above to the plane normal gives:

RAoEn =

 1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)


 0

0
−1

 (A.4)

=

 0
−sin(θ)
−cos(θ)

 (A.5)

Yaw is a rotation about the z-axis of the camera, again with directionality changed to
reflect the conversion from world to camera coordinates:

Ryaw =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 (A.6)

The final step is to apply the yaw rotation ψ to the elevation-corrected vector:
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RyawRAoEn =

 −sin(ψ)sin(θ)
−cos(ψ)sin(θ)
−cos(θ)

 (A.7)

=−

 sin(ψ)sin(θ)
cos(ψ)sin(θ)

cos(θ)

 (A.8)
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