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Abstract 

 

Reduced glutathione (GSH) is an abundant low molecular weight thiol that 

fulfils multiple functions in plants, many of which remain poorly characterised. 

The following studies were undertaken in order to characterise the roles of 

GSH in growth, development and signalling in Arabidopsis thaliana. In the first 

experiments, a phenomics approach was used to investigate the effects of 

GSH deficiency on growth and stress tolerance using mutants that are either 

defective either in GSH synthesis (cad2-1, pad2-1 and rax1-1) or the export of 

-glutamylcysteine and GSH from the chloroplast (clt1clt2clt3). Whereas the 

clt1clt2clt3 mutant had a greater rosette area than the wild-type under low light 

growth conditions, the GSH deficient mutants were significantly smaller. 

Moreover, lateral root densities were significantly decreased in GSH deficient 

and clt1clt2clt3 mutants. The redox potentials of the nucleus and cytosol in the 

root cells of the wild-type seedlings measured using roGFP were over -300mV. 

However, in roots grown in the presence of the GSH synthesis inhibitor 

buthionine sulfoximine (BSO), the redox potentials of the nucleus and cytosol 

increased to approximately -260mV. Low GSH-responsive genes were 

identified by transcript profiling analysis of the GSH-deficient                        

root meristemless 1-1 (rml1-1) mutant. These included a large number of 

transcription factors, proteins involved in cell division, redox regulation and 

auxin signalling. Many transcripts modified by low GSH influence plant growth 

and development, and explain the altered root development observed the low 

GSH mutants. These results demonstrate that low GSH leads to significant 

increases in the redox states of the nucleus and cytosol and results in specific 

responses in gene expression that are distinct from those observed under 
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oxidative stress. Moreover, the findings suggest that the cytosolic/nuclear GSH 

pool is important in the control of root development and that low GSH per se 

does not enhance overall sensitivity to abiotic stresses.  
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1 Introduction 

 

Plant performance and the predictability of crop yield are severely hampered by 

environmental factors. Collectively, these "abiotic stresses" restrict plant vigour 

and create a "yield gap". This is the difference between the theoretical maximum 

or "yield potential" of the crop, and the actual yield achieved by the farmer. Over 

the last 50 years, plant breeders have improved the yield potential, but the yield 

gap remains. Why does the yield gap occur? Plants grow best in certain ranges 

of environmental conditions, and stop growing, for example at low or high 

temperatures, and so yield is reduced. If we can widen the range in which plants 

grow, then crops would perform closer to their theoretical maximum. Unlike 

animals, plants grow continuously and growth requires new cells to provide the 

building blocks.  

 

When plants perceive stress, specific signals block cell division. Under extreme 

conditions, this is beneficial, but evidence suggests that plants shut down cell 

division early as a precaution in response to stress. Therefore they stop 

growing, even though conditions are not really bad enough to require this. How 

does abiotic stress stop cell division? An important factor is the cell's ability to 

regulate its capacity for reduction and oxidation (redox), and to protect itself from 

uncontrolled oxidation. The cells reducing power is stored as pools of reductant 

and antioxidant compounds. One of the most important cellular antioxidants is 

glutathione. When cells are depleted of glutathione pool, cell division is blocked 

at a point in the cell cycle called G1. Due to this arrest at G1 in response to 

glutathione depletion, plant development comes to a halt. In the following, GSH 
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refers only to the reduced glutathione, whereas the term glutathione refers 

both to the total pool (GSH plus glutathione disulphide; GSSG). 

 

1.1 Glutathione synthesis, regulation of synthesis and degradation 

 

Glutathione synthesis 

The thiol tripeptide, glutathione (GSH; -L-glutamyl-L-cysteinylglycine), is found 

in almost all organisms. The pathway of GSH synthesis (Figure 1-1) is well 

established in plants and animals (Foyer and Noctor, 2011; Noctor et al., 2011; 

Noctor et al., 2012). It involves two ATP-dependent steps. Firstly, γ-

glutamylcysteine (-EC) is produced from glutamate and cysteine in a reaction 

catalysed enzyme γ-glutamylcysteine synthetase (-ECS). This enzyme is also 

called glutamate-cysteine ligase (GCL). Glycine is then added in a reaction 

catalysed by glutathione synthetase (GSH-S, Figure 1-1; Foyer and Noctor, 

2011; Noctor et al., 2011; Noctor et al., 2012). While the first step solely 

occurrs in the chloroplast, the second step of glutathione synthesis can occur 

in both chloroplast and cytosol. The genes encoding -EC and -ECS are 

GSH1 and GSH2, respectively. Each gene specifically encodes one enzyme of 

the glutathione synthetic pathway. While GSH1 encodes the solely 

chloroplastic -EC, at least for -ECS, which is encoded by GSH2, alternate 

splicing results in variants of the enzyme that are targeted to either the 

chloroplast or cytosol (Foyer and Noctor, 2011; Noctor et al., 2011; Noctor et 

al., 2012)).  
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Regulation of glutathione synthesis 

While glutathione biosynthesis is affected by many factors, the most important 

are considered to be cysteine availability and -ECS activity (Noctor et al., 

2012). Earlier studies were able to demonstrated that overexpression of the 

first enzyme of the glutathione synthesis pathway (-ECS) or of enzymes 

involved in the synthesis of cysteine resulted in constitutive increases in 

glutathione (Strohm et al., 1995; Harms et al., 2000). However, particularly 

transient overexpression of -ECS resulted in light intensity-dependent 

chlorosis or necrosis in these plants reflecting more oxidized conditions 

(Creissen et al., 1999). This oxidative damage seems to be the result of an 

impaired redox sensing process in these plants (Creissen et al., 1999). And 

although transcriptional- or post-transcriptional changes may result in 

increases in -ECS activity relatively through increases in GSH1 and GSH2 

transcripts only few conditions could cause changes in the expression of these 

two genes (May et al., 1998; Noctor et al., 2012). Studies, in which Arabidopsis 

plants were grown in the presence of cadmium or copper, revealed that plants 

respond with increased transcription of GSH1 and GSH2 to heavy metals, 

particularly those that are thought to be scavenged by phytochelatins (Xiang & 

Oliver, 1998). Subsequent experiments further demonstrated that neither 

oxidative stress, nor oxidized or reduced glutathione levels were responsible 

for the activation of transcription in those two genes (Xiang & Oliver, 1998). 

However, neither externally applied or internally generated H2O2 were able to 

cause increases in GSH1 or GSH2 transcripts (Smith et al., 1984; May & 

Leaver, 1993; Willekens et al., 1997; Xiang & Oliver, 1998). Also jasmonic acid 

was demonstrated to induce mRNA levels of GSH1 and GSH2 while parallel 
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increasing the capacity for glutathione synthesis, but without altering the 

overall glutathione content (Xiang & Oliver, 1998). 

 

Despite some evidence that production of -ECS is regulated at the 

transcriptional level more attention has been given to post-translational redox-

control, as initial studies were able to show that purified tobacco -ECS can be 

inhibited by dithiols and that similar effects could also be observed in other 

species (Hell & Bergmann, 1990; Jez et al., 2004; Noctor et al., 2012).  

 

Earlier studies demonstrated structural differences between mammalian and 

Arabidopsis thaliana -ECS (AtECS), where the mammalian -ECS consists of 

a catalytic- and a regulatory-subunit, while the AtECS is regulated and 

functions as a monomeric protein (Jez et al., 2004). These differences also 

allow for conformational changes of the AtECS in response to oxidative stress 

(Jez et al., 2004). Moreover, the Brassica juncea -ECS forms a homodimer 

that is linked by two intramolecular redox-sensitive disulphide bonds (Hothorn 

et al., 2006; also described later in Figure 1-4A, left, CC1 & CC2;). Upon 

reduction of one of these disulphide bonds the structure of the -ECS is 

modified, resulting in a -hairpin motif preventing the access of substrates to 

the active site (Hothorn et al., 2006). Reduction of the second disulphide bond 

is implicated in the activation of the -ECS by reversibly affecting the transition 

from dimer to monomer (Jez et al., 2004; Hothorn et al., 2006; Hicks et al., 

2007; Gromes et al., 2008). These mechanisms are very likely important 

factors in the reversible posttranslational modulation of -ECS activity (Jez et 

al., 2004; Hothorn et al., 2006; Hicks et al., 2007; Noctor et al., 2012). 
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A further important mechanism to regulate glutathione homeostasis is 

feedback inhibition of -ECS by reduced glutathione (GSH). While alleviation of 

feedback inhibition, caused by conditions in which glutathione is consumed 

(e.g. in the synthesis of phytochelatins), is very likely an important mechanism 

leading to increased glutathione synthesis rates, the mechanistic links between 

feedback inhibition and thiol/disulphide redox regulation of -ECS remain to be 

clarified (May et al., 1998; Noctor et al., 2012). 

 

Glutathione degradation 

Breakdown of glutathione can be initiated by four different types of enzymes, 

some of which can directly use GSH, while others show higher affinities for 

GSSG or GS-conjugates (Noctor et al., 2012). These four types of enzymes 

are carboxypeptidase, phytochelatin synthase (PCS), -glutamyl 

transpeptidase (GGT) and -glutamyl cyclotransferase (GGC) (Orlowski & 

Meister, 1973; Steinkamp & Rennenberg, 1984; Steinkamp et al., 1987; 

Meister, 1988; Blum et al., 2007 & 2010).  

 

For example, carboxypeptidase activity, which was detected in barley 

vacuoles, could lead to degradation of glutathione or GS-conjugates 

(Steinkamp & Rennenberg, 1985; Wolf et al., 1996). The cytosolic enzyme 

phytochelatin sythase has also been implicated in the breakdown of GS-

conjugates (Blum et al., 2007 & 2010). For example, studies in Arabidopsis 

using the xenobiotic bimane to track GS-conjugates, revealed that PCS1 

provides the major activity for the conversion of bimane-GS conjugates and 

that it fulfils a double role: mediation of heavy metal tolerance and degradation 

of GS-conjugates (Blum et al., 2007 & 2010). However, it remains unclear to 
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which extent GS-conjugates can accumulate in the cytosol as they are usually 

rapidly transported to the vacuole, outcompeting carboxypeptidation of the -

EC-bimane intermediate via cytosolic PCS (Grzam et al., 2006). Nevertheless, 

PCS may play some role in certain cell types or when the enzyme is activated 

by heavy metals (Grzam et al., 2006; Noctor et al., 2012).  

 

Furthermore,-glutamyl transpeptidase (GGT) has been demonstrated to act 

in the mammalian -glutamyl cycle and to catalyse the hydrolysis or 

transpeptidation of GSH at the plasma membrane (Meister et al., 1988; Martin 

& Slovin, 2000; Storozhenko et al., 2002). The resulting -glutamyl amino acid 

derivates are then further processed by -glutamyl cyclotransferase (GGC) and 

5-oxoprolinase (5-OPase) to produce free glutamate (Martin & Slovin, 2000; 

Storozhenko et al., 2002). In Arabidopsis, GGTs are encoded by at least three 

functional genes, two of which (GGT1 and GGT2) encode apoplastic enzymes 

(Martin & Slovin, 2000; Storozhenko et al., 2002) that are probably involved in 

countering oxidative stress or salvaging excreted GSSG (Ohkama-Ohsu et al., 

2007; Ferretti et al., 2009; Destro et al., 2011). Studies employing ggt1 and 

ggt2 mutant plants were able to demonstrate that cotyledons and older leaves 

of ggt1 plants turned yellow very early during development, while ggt2 plants 

did not exhibit any discernable phenotype (Ohkama-Ohsu et al., 2007). These 

observations suggested that particularly GGT1 is involved in the prevention of 

oxidative stress through metabolizing of GSSG, while GGT2 might facilitate 

glutathione import into the developing seed (Ohkama-Ohsu et al., 2007). 

Furthermore, the GGTs encoded by GGT1 and GGT2 show activity against 

GSH, GSSG as well as GS-conjugates (Martin & Slovin, 2000; Storozhenko et 

al., 2002; Ohkama-Ohsu et al., 2007). In animals, -glutamyl peptides 
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produced by GGT are further metabolized by GGC to 5-oxoproline. Until now 

only one gene (OXP1) could be identified in Arabidopsis to likely encode the 

enzyme 5-OPase, which catalyses the hydrolysis of 5-oxoproline. (Ohkama-

Ohtsu et al., 2008 & 2011). However, studies based on oxp1 single mutants 

and oxp1 ggt1 ggt4 triple mutants allowed to propose that the predominant 

GSH-degradation pathway is initiated by GGC and occurs in the cytosol, rather 

than being initiated by vacuolar or extracellular GGT activity (Ohkama-Ohtsu et 

al., 2007 & 2008). Hence, GGC is considered another type of enzymes 

potentially involved in the initiation of GSH-degradation, despite the fact that 

both rat and tobacco GGC have been demonstrated to be unable to use GSH 

(Orlowski & Meister, 1973; Steinkamp et al., 1987).  

 

Due to the high complexity and the many possible routes for the glutathione 

degradation, many questions remain on glutathione degradation in plants, 

such as cellular/tissue specificities, activities against different forms of 

glutathione, as well as the extent to which glutathione turnover and re-

synthesis occur (Noctor et al., 2012). 

 

1.2 Mutants with defects in the glutathione synthetic pathway  

 

In Arabidopsis thaliana, γ-ECS is encoded by the GSH1 gene (Figure 1-1). 

Knockout mutations in GSH1 produce an embryo-lethal phenotype (Cairns et 

al., 2006).  
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Figure 1-1: A schematic overview of the glutathione synthesis pathway. 

Enzymes are shown in blue; Genes encoding these enzymes are shown in red. 

 

Less severe alleles of this gene, which produce partial decreases in 

glutathione contents, produce viable plants, which have been extremely useful 

in elucidating the functions of glutathione (Howden et al., 1995; Cobbett et al., 

1998; Vernoux et al., 2000; Ball et al., 2004; Parisy et al., 2007; Schlaeppi et 

al., 2008). However, the mutants that have low glutathione contents have 

some marked phenotypic characteristics. For example, the             

rootmeristemless1-1 (rml1-1) mutant that has less than 5% of wild-type 

glutathione contents, fails to develop a root apical meristem because the 

embryonic root cells arrest at the G1 phase of the cell cycle (Vernoux et al., 

2000A; Table 1-1).  

 

Chloroplast 

Cytosol 
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Table 1-1: Literature information on the Arabidopsis thaliana mutants, which are either defective in either glutathione synthesis or 

intracellular partitioning. Amino acid: AA 

Mutant line AGI code 

Glutathione 

content Reference Mutation Description 

cadmium hypersensitive 2-1  

(cad2-1) 
AT4G23100 20 - 25% 

Cobbett et al., 

1998 

6-bp deletion,  

at AA position 

237 and 238 

Mutation in GCL. Required for cell 

proliferation at the root tip.  

Mutants sensitive to cadmium. 

phytoalexin deficient 2-1  

(pad2-1) 
AT4G23100 20% 

Parisy et al., 

2007 

point mutation, 

S to N transition 

at AA position 

298 

Mutation in GCL. Required for cell 

proliferation at the root tip.  

Mutants deficient in phytoalexin 

camalexin. 

regulator of APX2 1-1         

(rax1-1) 
AT4G23100 ≤50% Ball et al., 2004 

point mutation, 

R to K transition 

at AA position 

229 

Mutation in GCL. Required for cell 

proliferation at the root tip.  

Mutants constitutively express 

APX2. 

root meristemless 1-1  

(rml1-1) 
AT4G23101 <5% 

Vernoux et al., 

2000A & Cheng 

et al., 1995 

point mutation, 

D to N transition 

at AA position 

258 

Mutation in GCL. Required for cell 

proliferation at the root tip.  

Mutants fail to establish active 

postembryonic root development. 

CRT-like transporter  

1,2 and 3 triple mutant  

(clt) 

AT5G19380 

(CLT1) 

AT4G24460 

(CLT2) 

AT5G12170 

(CLT3) 

cytosolic GSH 

decreased  

4-fold; 

chloroplastic 

GSH unaltered 

Maughan et al., 

2010 

mutations in 

transporter 

genes CLT1, 

CLT2 and CLT3 

Encodes all of the CRT-Like 

transporters (CLT1, CLT2 & CLT3). 

Required for glutathione 

homeostasis and stress responses. 

Glutathione restricted to chloroplast 



 

10 
 

The shoot phenotype in this mutant is much less affected than the root. By 

combining the rml1-1 mutation with mutations in the two genes encoding 

NADPH-thioredoxin (TRX) reductases (NTRA, NTRB), it was shown that there 

is functional redundancy between glutathione and TRX systems in the control 

of shoot apical meristem functions (Reichheld et al., 2007). 

 

Several other mutations in GSH1 decrease glutathione to a residual but still 

significant level (about 25 to 50% of wild-type). These mutants have not been 

reported to have a markedly different shoot phenotype to the wild-type or to 

show altered development, but were selected on the basis of altered 

responses to biotic and abiotic environmental stress (Parisy et al., 2007; 

Schlaeppi et al., 2008; Table 1-1). For example, the pad2-1 mutant, which is 

phytoalexin-deficient and has decreased camalexin contents, shows enhanced 

susceptibility to pathogens such as the oomycete Phytophthora brassicae 

(Figure 1-2; Table 1-1). These findings demonstrate that glutathione deficiency 

has a negative effect on disease resistance (Parisy et al., 2007). 

 

Furthermore, the cad2–1 mutant was identified by its enhanced sensitivity to 

cadmium (Howden et al., 1995). This mutant has decreased GCS activity 

(Cobbett et al., 1998). Moreover, root growth and GCS activity in the cad2-1 

mutant were less sensitive to inhibition by buthionine sulfoximine (BSO) than in 

the wild-type, indicating that the mutation alters the affinity of the inhibitor 

binding site (Cobbett et al., 1998; Table 1-1).  
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Figure 1-2: Complementation of camalexin deficiency and disease resistance 

phenotypes of the pad2-1. A: Disease resistance phenotype of four-week-old Col-0, 

pad2-1 and complemented lines of pad2-1 (35S::GSH1) after inoculation with P. 

brassicae. B: Bacterial titer determined on leaves of 4.5-week-old plants of Col-0, 

pad2-1 and complemented lines of pad2-1 (35S::GSH1) at 0 and 72h after infection. 

At 72 hours post infection, the bacterial titer in the pad2-1 was significantly higher than 

in the other three genotypes (p<0.01). C: Camalexin content of Col-0, pad2-1 and 

complemented lines of pad2-1 (35S::GSH1). The figure was taken from Parisy et al. 

2007. 

 

B 

A 
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The mutant regulator of APX2 1-1 (rax1-1) was identified by altered expression 

of the ASCORBATE PEROXIDASE2 (APX2) gene, which is induced by photo-

oxidative stress (Ball et al., 2004, Figure 1-3; Table 1-1). The rax1-1 and   

cad2–1 mutants showed altered expression of stress-responsive genes, 

particularly under photo-oxidative stress conditions. 

 

 

Figure 1-3: Comparison of false colour images of transgenic Arabidopsis 

thaliana wild-type and rax1-1 plants constitutively expressing APX2LUC. Shown 

are typical false colour images of luciferase activity in a long day/low light–grown, 17-

day-old wild-type APX2LUC Arabidopsis rosette before and after exposure to a 10-

fold excess light stress for 45 min (LL 17d and EL 17d, respectively) and in long day–

grown APX2LUC/rax1-1 plants at 10, 16, 17, and 32 days after germination. The 

image was taken from Ball et al., 2004. 

 

 

The wild-type phenotype can be restored in gsh2 mutants by complementing 

with targeted expression of the enzyme to the cytosol alone (Pasternak et al., 

2008). Interestingly, GSH2 knockout mutants lack the typical polygonal 

WT 

rax1-1 

rax1-1 
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endoplasmic reticulum (ER) network and accumulate swollen ER-derived 

bodies (Au et al., 2012). These studies showed that the gsh2 mutants did not 

lack an unfolded protein response or suffer from constitutive oxidative ER 

stress, but the accumulation of -EC perturbed ER morphology rather than a 

deficiency in GSH (Au et al., 2012).  

 

The structure of the -ECS protein (Figure 1-4A) is crucially affected by 

mutations in the GSH1 gene (Figure 1-4B), resulting in altered substrate 

binding affinities and catalysis rates (Hothorn et al., 2006). While little 

information is available regarding the effects of the GSH1 allele found in the 

pad2-1 mutant on the structure of the GCL, the alleles found in rax1-1, cad2-1 

and rml1-1 mutants have been described in more detail. For example, the 

point mutation found in the GSH1 gene the rax1-1 mutant causes a 

substitution of Arginine (R) with Lysine (K) at position 229 of the protein (Table 

1-1; Figure 1-4B; Ball et al., 2004; Hothorn et al., 2006). The Arginine was 

identified to be at the proximal side of the cysteine binding pocket of the 

protein, and substitution was shown to alter binding affinity of the -ECS, 

increasing the cysteine affinity approximately 5-fold while the affinity for 

glutamate and ATP remained unaffected (Figure 1-4B; Hothorn et al., 2006). 

This shift can account for the significantly reduced glutathione levels found in 

the rax1-1 mutant (Ball et al., 2004; Hothorn et al., 2006).  

 

On the other hand, the 6-bp deletion in the GSH1 allele of the cad2-1 mutant 

result in the loss of the amino acids at position 237 and 238 of the -ECS 

protein (Table 1-1; Figure 1-4B; Cobbett et al., 1998; Hothorn et al., 2006).  
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Figure 1-4: Plant GCL structural features and known mutations in the 

Arabidopsis GCL gene. A, Front (left) and side (right) views of Brassica juncea         

-ECS shown in ribbon representation. The central -sheet is depicted in dark blue, 

the N- and C-terminal helical regions in light blue, and the plant unique arms in dark 

and light green, respectively. The L-glutamate bound in the active site is represented 

in bond representation along with the Mg2+ ion (in cyan). The two disulfide bridges 

CC1 and CC2 are highlighted in yellow; the -hairpin module is shown in red. B, 

known mutations in the Arabidopsis GSH1 gene are in proximity of the substrate 

binding sites in plant -ECS. -ECS in ribbon representation is shown with BSO and 

ADP (modeled) in bonds representation (in yellow). Small spheres indicate the 

positions of residues affected in Arabidopsis thaliana -ECS mutant plants (in 

magenta). Enlarged versions provide models on how the affected residues in rax1-1 

and rml1-1 mutants may interact with -ECS substrates. The rax1-1 arginine residue 

(Arg220) is shown in a modeled rotamer configuration bringing its guanidinium group in 

close proximity to the terminal methyl of BSO that corresponds to the sulfhydryl group 

of cysteine (in green). Interactions are highlighted by dotted lines (in magenta). 

Images taken from Hothorn et al., 2006. 

A 
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The loss of these residues, which are described to be located in a loop region, 

very likely result in altered position of residues involved in substrate binding 

and thereby the lower -ECS activity and resulting lower amounts of 

glutathione, found in the cad2-1 mutant, can be explained (Cobbett et al., 

1998; Hothorn et al., 2006). 

 

The most severe glutathione depletion was found in the rml1-1 mutant (Cheng 

et al., 1995; Vernoux et al., 2000A). A single point mutation in the GSH1 gene 

results in a substitution of aspartic acid (D) with asparagine (N) at position 258 

of the GCL protein in the rml1-1 mutant (Table 1-1; Figure 1-4B; Cheng et al., 

1995; Vernoux et al., 2000A; Hothorn et al., 2006). This substitution results in 

a complete loss of GCL activity in the rml1-1 mutant, reflecting the importantce 

of the importance of the aspartic acid residue for the binding of the adenine 

nucleotide (Howthorn et al., 2006). 

 

1.3 Buthionine sulfoximine and identification of the 

chloroquinone-like transporter 

 

As well as mutants that are defective in GSH synthesis capacity, 

pharmacological tools have proved very useful in the analysis of glutathione 

functions in plants. In particular, buthionine sulfoximine (BSO), which is a 

specific inhibitor of γ-ECS that binds to the active site of the enzyme, has been 

widely used to inhibit GSH synthesis. BSO is structurally homologous to 

methionine sulfoximine (MSO), which inhibits both γ-ECS and glutamine 

synthetase (Griffith and Meister, 1979). Unlike MSO, however, BSO does not 

inhibit glutamine synthetase (Griffith and Meister, 1979) and so can be used in 
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studies specifically focused on the role of glutathione synthesis and 

concentration in plants. A screen for BSO-insensitive Arabidopsis mutants 

revealed the identity of the chloroplast γ-EC and GSH transporter, called 

chloroquine-resistance-transporter (CRT)-like transporter (CLT; Maughan et 

al., 2010). Three CLTs (CLT1, CLT2 and CLT3) have to date been identified in 

screens using knock out plants in these transporters (Maughan et al., 2010). 

While the growth of wild-type seedlings in the presence of BSO causes 

severely restricted root development (Figure 1-5), mutants lacking a functional 

CLT (CLT1) produced roots comparable to the wild-type, as knock-out of CLT 

transporters renders plants unable to facilitate BSO import into the 

chloroplasts, which in turn makes BSO inhibition of GSH1 impossible (Figure 

1-5; Maughan et al., 2010). Additionally, all three CLTs have been confirmed to 

be plastid-localize in screens using transgenic plants that expressed 

CLT1:GFP, CLT2::GFP or CLT3:GFP respectively (Maughan et al., 2010). 

However, CLT1 and CLT3 in particular seem to transport BSO into the plastid 

(Maughan et al., 2010). And although high resistance to BSO could only be 

demonstrated for clt1 mutants, clt1clt3 double mutants exhibit even higher 

resistance to BSO treatment compared to clt1 mutant plants, suggesting some 

functional redundancy between CLT1 and CLT3 in the maintenance of the 

GSH pool (Maughan et al., 2010). On the other hand, CLT2 seems to 

contribute much less to the mutant phenotype observed in triple clt1clt2clt3 

mutants (Maughan et al., 2010). And although complementary experiments 

monitoring the uptake of GSH in Xenopus oocytes, expressing either CLT1, 

CLT2 or CLT3, showed that all three transporters are capable of GSH 

transport, it seems that only CLT1 and CLT3 transport BSO into the plastid in 

planta.  
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Figure 1-5: A comparison of wild-type and clt mutants grown in the presence of 

BSO (+ BSO) with wild-type plants grown in the absence of BSO (- BSO). WT 

and clt1-1 mutant seedlings were grown for 7 days in the absence and presence of 

0.8-mM BSO on vertical plates. BSO arrests WT primary root growth, whereas clt1-1 

mutations confer resistance to BSO. The image was taken from Maughan et al., 2010. 

 

 

 
Figure 1-6: A comparison of the sensitivity to infection with Phytophthora 

brassicae for the clt1clt2clt3 triple mutant, the cad2-1 mutant and the wild-type. 

A: WT, cad2-1, and clt1clt2clt3 plants were infected with Phytophthora brassicae and 

leaves were observed for spread of the infection. Even though WT plants were 

resistant, neither cad2-1 nor clt1clt2clt3 could halt the spread of infection (n = 5). B: 

PR1 expression was measured in leaves by qRT-PCR 3 day post infection and 

expressed relative to levels in the WT (mean, n = 3). The image was taken from 

Maughan et al., 2010. 

 

 

WT - BSO WT + BSO clt1-1 + BSO 
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This would also explains why a loss of function of the CLT2, which is 

expressed in the same tissues as CLT1 and CLT3, has little impact on the 

phenotypes observed in clt1, clt3, clt1clt3 and clt1clt2clt3 mutants (Maughan et 

al., 2010). 

 

Further analysis revealed that the shoots and roots of the triple clt mutants 

(clt1clt2clt3) had similar amounts of glutathione compared to the wild-type, but 

the intracellular partitioning of glutathione between the plastids and cytosol 

was changed (Maughan et al., 2010). The triple clt1clt2clt3 knockout mutant is 

depleted in cytosolic GSH and enriched chloroplastic GSH (Maughan et al., 

2010). 

 

Additionally, the CLT family of transporter proteins were shown transport both 

γ-EC and glutathione, and that depletion of the cytosolic GSH pool, as 

observed in clt1clt2clt3 mutants, resulted in a more oxidized glutathione redox 

potential in the cytosol, as well as enhanced sensitivity to pathogens, similar to 

that observed in the glutathione-deficient cad2-1 mutant (Figure 1-6). The 

higher sensitivity to pathogens was linked to decreased expression of 

pathogenesis related (PR) proteins (Maughan et al., 2010).  

 

1.4 The functions of glutathione 

 

Glutathione has multiple functions in plants. For example, it is involved in the 

detoxification of xenobiotics particularly heavy metals and in plant responses to 

pathogens (Parisy et al., 2007; Schlaeppi et al., 2008). GSH is the precursor for 

the synthesis of phytochelatins, which are oligomers of GSH that chelate heavy 
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metals for detoxification. The enzyme phytochelatin synthase (PCS), which is 

responsible for the production, also functions in xenobiotic metabolism by 

processing GSH S-conjugates. However, overexpression of an Arabidopsis PC 

synthase (AtPCS1) in transgenic plants led to an unexpected enhanced 

sensitivity to cadmium (Lee et al., 2003). This result is very interesting, as 

higher capacities to produce phytochelatins had been expected to lead to 

enhanced tolerance to cadmium (Lee et al., 2003). However, it was also 

suggested that hypersensitivity to cadmium may result from a toxicity of overly 

abundant phytochelatins (Lee et al., 2003). 

 

Many of the functions of GSH in xenobiotic metabolism require enzymes called 

glutathione S-transferases (GST), which catalyse the S-conjugation of 

electrophilic xenobiotics with GSH (Edwards and Dixon, 2000). Plants contain 

many types of GST, for example, the Arabidopsis genome contains 55 genes 

encoding GST isoforms, which are often divided into 8 groups (Dixon et al., 

2010). Glutathione can form an array of conjugates with endogenous and 

xenobiotic electrophilic compounds thanks to GST activities. Moreover, GSH 

interacts with nitric oxide (NO) to form S-nitrosoglutathione (GSNO; Figure 

1-7), a metabolite that is important in the S-nitrosylation of protein cysteine 

(Cys) residues, a dominant mechanism for the regulation of many plant 

proteins. Enzymes called nitrosoglutathione reductases (GSNOR) or S-

(hydroxymethyl)glutathione (HMGSH) dehydrogenases catalyses the NADH-

dependent reduction of GSNO. GSNO may serve as a reservoir of NO in cells 

and may possibly also act as a transport form and NO donor in distant cells 

and tissues (Foyer and Noctor, 2011; Noctor et al., 2011; Noctor et al., 2012). 
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Many of the functions of glutathione are linked to reversible redox reactions 

involving the cysteine sulphur group. Like other thiols, glutathione can undergo 

numerous redox reactions (Figure 1-7). Oxidized forms include disulphides, 

either with another glutathione cysteine residue to produce glutathione 

disulphide (GSSG) or with a different thiol to form „mixed disulphides‟, as well 

as more oxidized forms in which the thiol group is converted to sulfenic, sulfinic 

or sulfonic acids (Foyer and Noctor, 2011; Noctor et al., 2011; Noctor et al., 

2012).  

 

 
Figure 1-7: A simple model of glutathione homeostasis and functions.  

 

 

Glutathione is a major low molecular weight antioxidant functioning alongside 

ascorbate and catalases in plant defence systems against oxidative stress. 

Through its interactions with ascorbate and peroxiredoxins, GSH participates 
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in high capacity H2O2-processing pathways that regulate cellular redox 

homeostasis and signalling (Foyer & Noctor, 2005A&B; Foyer & Noctor, 2011; 

Noctor et al., 2011; Noctor et al., 2012). For example, in the ascorbate-

glutathione pathway GSH regenerates ascorbate by reducing DHA, either 

chemically or via DHARs (Dixon et al., 2002; Dixon et al., 2010). DHARs are 

enzymes that constitute a class of glutathione S-transferases (Dixon et al., 

2010). Despite the importance of glutathione in maintaining the ascorbate pool 

in a mainly reduced state, the regeneration of ascorbate may be independent 

of GSH, as DHAR represents only one of several routes for GSH oxidation and 

some GSTs have previously been shown to be H2O2-inducible (Levine et al., 

1994; Willekens et al., 1997; Vanderauwera et al., 2005; Dixon et al., 2009; 

Dixon et al., 2010; Foyer & Noctor, 2011). 

 

While plant GPXs use TRXs more efficiently than GSH (Iqbal et al., 2006), 

some glutathione S-transferases show GSH-dependent peroxidase activity 

against H2O2 directly as well as organic peroxides (Dixon et al., 2009). 

Furthermore, some GST-encoding genes were shown to be strongly induced 

by oxidative stress (Vanderauwera et al., 2005). GSH oxidation that is 

independent of DHA or of chemical reactions with ROS could also occur 

through GRX-dependent peroxiredoxin (Rouhier et al., 2002; Tarrago et al., 

2009; Foyer & Noctor, 2011). 

 

Additionally, reactive oxygen species (ROS) such as superoxide and the 

hydroxyl radical were shown to be able to directly oxidize GSH at high rates. 

However, the relatively high cellular concentration of glutathione make it an 

effective antioxidant and allow it to form a highly reducing chemical barrier that 
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prevents excessive or uncontrolled oxidation of sensitive cellular components 

(Foyer & Noctor, 2011; Noctor et al., 2011; Noctor et al., 2012). The cellular 

glutathione pool is maintained in a predominantly reduced state by the enzyme 

GR which is found in the cytosol, plastids, mitochondria, and peroxisomes of 

plants cells and has a high affinity for GSSG and NADPH (Creissen et al., 

1995; Chew et al., 2003; Kataya & Reumann, 2010; Foyer & Noctor, 2011; 

Noctor et al., 2011; Noctor et al., 2012). Hence, GR plays a crucial role in 

maintaining cellular glutathione homeostasis (Creissen et al., 1995; Chew et 

al., 2003; Kataya & Reumann, 2010; Foyer & Noctor, 2011; Noctor et al., 2011; 

Noctor et al., 2012). In Arabidopsis two GRs can be found: GR1 

(cytosolic/peroxisomal localized) and GR2 (plastid-localized; Creissen et al., 

1995; Chew et al., 2003; Kataya & Reumann, 2010; Yu et al., 2013). 

 

Maintenance of a reducing environment is crucial to prevent uncontrolled 

oxidation of proteins and thereby maintaining their functions. And although 

oxidation of proteins might directly lower of overall plant vigour, it is becoming 

more and more evident that oxidation of target or signal molecules represents 

an important mechanism in plants in the perception and response to 

environmental and developmental triggers and that glutathione might be 

directly involved in determining the longevity of these signals (Foyer & Noctor, 

2011; Noctor et al., 2011; Noctor et al., 2012). 

 

1.5 Glutathione and the control of growth  

 

While a complete description of the control of plant growth and its primary 

machinery controlling cell division, the cell cycle, would be too complex and 
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extensive for this thesis, a short induction will be presented in the following. 

More detailed information can be found in the following publications: Dewitte & 

Murray, 2003; Inze & De Veylder, 2006; Francis, 2007; Gutierrez, 2009; 

Komaki & Sugimoto, 2012.  

 

To understand the control of growth in plants knowledge of the basic 

machinery that controls growth, the cell cycle, is required. The cell cycle is 

comprised of four sequential ordered stages, which can be divided into two 

gap phases (G1, postmitotic interphase and G2, premitotic interphase) that 

separate the replication of DNA (S phase, DNA synthesis) and the segregation 

of chromosomes (M phase, mitosis). A fifth phase would be resting stage (G0), 

in which cells have left the cell cycle and do not actively divide anymore 

(Dewitte & Murray, 2003; Inze & De Veylder, 2006; Francis, 2007; Gutierrez, 

2009; Komaki & Sugimoto, 2012). G1 and G2 phase can easily be 

distinguished from each other by the set of chromosomes: G1 exhibits one set 

of chromosomes, while G2 has duplicated set of chromosomes in the nucleus 

(Dewitte & Murray, 2003; Inze & De Veylder, 2006; Francis, 2007; Gutierrez, 

2009). Regulatory proteins, such as cyclins (CYC) and cyclin-dependent 

kinases (CDK) govern progression through the cell cycle (Dewitte & Murray, 

2003; Inze & De Veylder, 2006; Francis, 2007; Gutierrez, 2009). Different 

CDK-cyclin complexes can phosphorylate a large number of substrates at two 

key transition points within the cell cycle to trigger the onset of DNA replication 

and mitosis, respectively (Dewitte & Murray, 2003; Inze & De Veylder, 2006; 

Francis, 2007; Gutierrez, 2009; Komaki & Sugimoto, 2012). As G1 and G2 gap 

phases are considered control points within the cell cycle that allow the 

operation of control mechanisms, which ensure that the respective previous 
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stage has been fully completed, the above mentioned key transition points are 

G1 to S (G1/S) and G2 to M (G2/M), each allowing for a possible arrest of the 

cell cycle (Dewitte & Murray, 2003; Inze & De Veylder, 2006; Francis, 2007; 

Gutierrez, 2009; Komaki & Sugimoto, 2012).  

 

While research over the past 50 years provided detailled insights into the 

impact of plant hormones on cell proliferation, showing the crucial importance 

of cytokinins and auxins, as well as their direct influence on cell proliferation 

(Dewitte & Murray, 2003), a further focus was given to the cellular redox status 

as a further regulator of cell cycle progression (May et al., 1998). Cytokinins 

that act in concert with auxin, were shown to directly induce the cyclin 

CYCD3;1 (Dewitte & Murray, 2003). But further evidence strengthens the view 

that the cellular redox status regulates the progression of the cell cycle, 

particularly leading to an arrest of the cell cycle upon exposure to stress in 

plant cells (May et al., 1998), and that the cellular redox status also acts as a 

crucial regulator of the cell cycle in embryonic stem cells (Menon et al., 2003; 

Menon and Goswami, 2007). As unravelling the interplay of hormones and 

cellular redox state in the control of the cell cycle is very complex, further 

research needs to evaluate the individual contribution of hormones and cellular 

redox state in the control of cell proliferation. Glutathione as one of the major 

antioxidants in plants was therefore the main focus of this thesis. The aim was 

to determine its impact on plant growth and to evaluate the extent to which it 

participates in the control of the cell cycle. For example, it has been proposed 

that there is a change in the intracellular compartmentation of GSH between 

the nucleus and cytosol at G1, as illustrated in Figure 1-8 (Diaz-Vivancos et al., 

2010B).  
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Figure 1-8: The glutathione cycle within the eukaryotic cell cycle. Shown here is 

a model for intracellular GSH partitioning between nucleus and the cytoplasm and its 

effects on whole cell glutathione homeostasis during the cell cycle derived from 

studies on mammalian and plant cells (Markovic et al., 2007; Pallardó et al., 2009; 

Diaz-Vivancos et al., 2010A, B; Pellny et al., 2009). Prior to initiation of the cell cycle 

(A) GSH is equally distributed between cytoplasm and nucleus. An appropriate cell 

cycle trigger (cell cycle induction) causes changes in nuclear envelope transport 

properties (B) that include orchestration of GSH-transporting proteins that are either 

rapidly synthesised de novo or activated in order to recruit and sequester GSH in the 

nucleus. GSH sequestration into the nucleus has immediate repercussions for the 

cytoplasm that is starved of GSH. This causes rapid de novo GSH synthesis and 

accumulation. GSH synthesis is stimulated until the GSH pools in the nucleus and 

cytoplasm reach similar levels (C). The cellular GSH pool is divided between the 

newly formed daughter cells (re-distribution; D). Some GSH degradation may occur, 

so that the cellular GSH pools fall to a low level. Presumably, the GSH-transporting 

proteins in the nuclear envelope are either inactivated or degraded so that the GSH 

pools reach in the nucleus and cytoplasms are again in equilibrium (A). Image was 

taken from Diaz-Vivancos et al., 2010A. 
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GSH co-localises with nuclear DNA at the early stages of cell proliferation in 

plant and animal cells (Markovic et al., 2007; Pallardó et al., 2009; Diaz-

Vivancos et al., 2010A, B; Pellny et al, 2009). In particular cytosolic GSH is 

essential in preventing uncontrolled oxidation of proteins and can therefore be 

considered to form a barrier protecting (Diaz-Vivancos et al., 2010A & B). 

However, GSH recruitment and sequestration in the nucleus during the G1 and 

S phases of the cell cycle was shown to have a profound impact on gene 

expression.  

In particular, the cellular oxidative protection is lowered when GSH is localized 

in the nucleus, possibly leading to more oxidized conditions in the cytosol 

(Diaz-Vivancos et al., 2010A & B). 

 

Furthermore, the root phenotype of the rml1-1 mutants and wild-type plants 

treated with BSO, as illustrated in Figure 1-9, is also linked to effects on the 

cell cycle (Cheng et al., 1995; Vernoux et al, 2000). As discussed above the 

Arabidopsis rml1-1 mutant, which has only about 3 % of the wild-type GSH 

levels, is characterised by a drastically reduced root system, all illustrated in 

Figure 1-9 (Cheng et al., 1995; Vernoux et al, 2000). The growth of the primary 

root of the rml1-1 mutants stops at the stage of 17 cells in length because of 

cell cycle arrest (Cheng et al., 1995). Nevertheless, the embryonic root 

undergoes some differentiation with the formation of vascular tissue etc. Such 

observations demonstrate the requirement for GSH in the maintenance of cell 

proliferation at the root tip, after the stage where the root primordium has fully 

formed. 
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Figure 1-9: A comparison of rml1-1 with wild-type plants grown in the absence 

and presence of BSO. A: rml1-1 seedlings at 14 days after germination (DAG) grown 

on two fifths MS medium. Note the short (~1 mm) roots. B: rml1-1 seedlings at 14 

DAG grown on two-fifths MS medium supplemented with 250 mM -EC. C: rml1-1 

seedlings at 14 DAG grown on two-fifths MS medium supplemented with 250 mM 

GSH. D: Top, rml1-1 seedlings at 7 DAG grown on two-fifths MS medium; middle, 

wild-type seedlings at 7 DAG grown on two-fifths MS medium supplemented with 2.5 

mM BSO; bottom, wild-type seedlings at 7 DAG grown on two-fifths MS medium. The 

image was taken from Vernoux et al., 2000A. 

 

 

1.6 Interactions between glutathione and auxin in the regulation of 

root development 

 

Auxin is an important plant hormone controlling plant growth and development. 

It is involved in the development of many organs, gametogenesis, 

embryogenesis, seedling growth, vascular patterning and the initiation of floral 

and root meristems including lateral roots, as well as in other processes such 

as gravitropism, (Mattsson et al., 2003; Zhao, Y., 2010; Marchent et al., 1999; 

De Smet et al., 2010).  

A 

B 

C D 
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Recent studies have revealed a link between glutathione and auxin in control 

of root growth in Arabidopsis (Bashandy et al., 2010; Koprivova et al., 2010). 

The inhibition of GSH biosynthesis by BSO provided evidence of mis-

regulation in auxin transport (Koprivova et al., 2010). Some auxin signalling 

mutants such as axr1-12 and axr3-1 were shown to be less sensitive to BSO-

mediated inhibition of root growth than the wild-type (Koprivova et al., 2010). 

Moreover, the addition of BSO led to a disappearance of the auxin maximum 

in the root tips and the loss of expression of the auxin efflux carrier PIN1 and 

of the quiescent centre (QC) marker AGL42Pro::GFP at higher BSO 

concentrations, as illustrated in Figure 1-10 (Koprivova et al., 2010).  

 

 

 

Figure 1-10: BSO inhibits the expression of the auxin efflux transporter PIN1. 

Arabidopsis DR5Pro::GFP, AGL42Pro::GFP and PIN1Pro::PIN1:GFP lines were grown 

for 6 days on vertical MS-phytagel plates supplemented with increasing 

concentrations of BSO. Roots were stained with propidium iodide and GFP 

fluorescence was recorded by confocal microscopy. Bar 50 µm. Image was taken 

from Koprivova et al., 2010. 
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However, a microarray analysis of BSO-treated wild-type roots relative to wild-

type roots in the absence of the inhibitor showed that the expression of less 

than 100 genes was significantly changed and no specific pathways or 

processes that were regulated by BSO could be identified (Koprivova et al., 

2010). Nevertheless, there was some similarity between some of the genes 

up-regulated by BSO and those affected by inhibitors of auxin synthesis and 

transport. In the analysis reported by Koprivova et al. (2010), the effects of 

BSO were complemented by dithiothreitol (DTT) leading to the conclusion that 

a post-transcriptional redox mechanism was involved in the regulation of PIN 

proteins, and hence auxin transport to the root tip. 

 

Studies performed crossing of the ntra ntrb mutants that lack the cytosolic and 

mitochondrial thioredoxin reductases (NTR) NTRA and NTRB, with rml1-1 led 

to the failure of meristematic activity in shoots as well as roots, demonstrating 

overlapping functions of the glutathione and thioredoxin systems in shoot 

meristem activity (Reichheld et al., 2007). In contrast, the ntra ntrb cad2 triple 

mutants that retain a greater capacity for glutathione biosynthesis than rml1-1 

mutations provided evidence that thiol reduction pathways are required for 

developmental processes associated with auxin signalling (Bashandy et al., 

2010). The ntra ntrb cad2 mutant has an interesting phenotype with the loss of 

apical dominance, vasculature defects, and reduced secondary root production 

that suggest impaired auxin signalling (Bashandy et al., 2010). Crucially, the 

ntra ntrb cad2 mutants develop in a similar manner to the wild-type during 

vegetative development, but following the floral transition, the ntra ntrb cad2 

mutants produced naked stems, as illustrated in Figure 1-11. The flowerless 

phenotype of the ntra ntrb cad2 mutant is similar to the phenotypes of mutants 
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affected in polar auxin transport or biosynthesis (pin1; Vernoux et al., 2000B; 

Bashandy et al., 2010; 2011).  

 

 
Figure 1-11: A comparison of the phenotype of the ntra ntrb cad2 mutant the 

wild-type. A comparison of the phenotypes was performed in five-week-old wild-type 

(Col-0) (A) and ntra ntrb cad2 (B) plants. Arrows indicate emergence of secondary 

rosette stems in ntra ntrb cad2, which were not observed in the wild-type at this stage. 

The image was taken from Bashandy et al., 2010. 

 

 

An analysis of the different phenotypes listed in Figure 1-12, led to the 

conclusion that the pin-like phenotype of ntra ntrb cad2 shoots illustrated in 

Figure 1-11 is the result of a combination of effects related to perturbed auxin 

synthesis and auxin transport while the root phenotype is may be more related 

to the perturbation of polar auxin transport. These observations led to the 

model shown in Figure 1-13 as a way to explain the links between GSH and 

A B 
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TRX pathways in the control of inflorescence development in Arabidopsis 

(Bashandy et al., 2011). 

 

 

Figure 1-12: Summary of auxin-related phenotypes observed in the mutants in 

the study by Bashandy et al. (2011). The image was taken from Bashandy et al., 

2011. P.A.T. = polar auxin transport. 
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Figure 1-13: Hypothetical model explaining the link between cellular redox 

status and auxin signaling in controlling inflorescence development in 

Arabidopsis. The image was taken from Bashandy et al., 2011. Modification of redox 

homeostasis triggered by environmental stress or by developmental signals is relayed 

by glutathione and NTR .The triple ntra ntrb cad2 mutant generated by crossing ntra 

ntrb and cad2 mutants (blue doubleheaded arrow) is mimicking the redox 

perturbation. Inactivation of NTR and decreased GSH availability is relayed by mis-

reduction of GRX and TR Xh and subsequently of TR Xh/GRX target protein(s). 

These redox regulated target protein(s) are involved in meristem activity or/and auxin 

metabolism and their mis-reduction in the ntra ntrb cad2 leads to perturbation of 

inflorescence development and auxin metabolism. Black arrows refer to the direction 

of reduction, crossing is marked by a blue double-headed arrow and inefficient 

reduction by a horizontal line. The ntra ntrb cad2 developmental defect is caused by 

meristematic activity, auxin level, auxin transport or a combination of the three 

(Bashandy et al., 2011). 
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1.7 Hypothesis 

 

Although GSH is clearly required for the operation of the cell cycle, with other 

roles apparent in plant growth and development, the mechanisms by which it 

exerts these effects remain poorly characterised. An in-depth characterisation 

of the growth and defence responses of mutants that are defective in 

glutathione synthesis will provide new insights into the mechanisms that 

underpin the multiple functions of GSH in plants. Moreover, transcript profiling 

of the rml1-1 mutant will increase our understanding of GSH-dependent 

regulation of gene expression that underpins effects on plant growth and 

development.  
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2 Project aims 

 

The overall aim of this project was to provide new mechanistic information 

concerning the GSH functions in plants, with a particular focus on growth and 

abiotic stress tolerance in Arabidopsis thaliana. A multidisciplinary approach 

was employed in these studies incorporating phenomic and transcriptomic 

techniques, as well as in vivo measurements of the glutathione redox potentials 

of the nucleus and cytosol using a roGFP probe.  

 

A range of Arabidopsis thaliana mutants with defects in either the synthesis or 

transport of GSH was used in this study. Together with a pharmacological 

approach using BSO, these mutant lines were used to characterise the 

glutathione redox potentials of the nucleus and cytosol and to define GSH-

responsive genes. The ultimate aim was to link the information obtained from 

these different approaches with effects of low GSH, or of altered intracellular 

partitioning of GSH, on growth and abiotic stress tolerance in order to identify 

the mechanisms of GSH action in plants. 
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3 Chapter 3: Materials and Methods 

 

3.1 Plant materials and growth conditions 

 

Seeds for wild-type Arabidopsis thaliana accession Columbia 0 (Col0), cad2-1 

(Cobbett et al, 1998), pad2-1 (Parisy et al., 2007), rax1-1 (Ball et al., 2004), 

rml1-1 (Vernoux et al., 2000A & Cheng et al., 1995) and clt triple mutants 

(Maughan et al., 2010), were used in these studies. Seeds of the rml1-1 and 

rax1-1 mutants were obtained from Jean-Philippe Reichheld (Universitè de 

Perpignan, France) and Phil Mullineaux (University of Essex, United Kingdom) 

respectively. Seeds of the triple clt and the cad2-1 mutants were obtained from 

Christopher Cobbett (University of Melbourne, Australia). All mutant lines have 

the Col0 background. The transgenic lines GL2 (Deal and Henikoff, 2010b) 

and roGFP2 (Meyer et al., 2007) were obtained from Roger B. Deal and 

Steven Henikoff (Fred Hutchinson Cancer Research Centre, Seattle, USA) and 

from Andreas Meyer (Heidelberg Institute of Plant Sciences, Heidelberg, 

Germany) respectively. Seeds were surface sterilized either in 70% Ethanol or 

with a mixture of bleach and hydrogen chloride (HCl) prior to sowing. 

 

All plants were grown on agar media on plates in controlled environmental 

cabinets under an irradiance of 150 µmol m-2 s-1 with a photoperiod of 16 

hours, a constant temperature of 22 °C ± 2 °C, and a relative humidity of 60 %, 

for up 21 days. The following types of plates were used in these experiments: 

90 mm round plates (Thermo Fisher Scientific, Sterilin, Cat. No.: BS EN 

24998:2008, Waltham, MA, USA), 150 mm round Falcon dishes (BD Falcon, 

Cat. No.: 353025, Franklin Lakes, NJ, USA) or 120 x 120 mm square plates 

(Gosselin, Cat. No.: BP124-05, Hazebrouck, France). Plates were sealed 
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either with Parafilm (Parafilm, Chicago, IL, USA), Urgopore (Urgo GmbH, 

Sulzbach, Germany) or Micropore (3M Company, Maplewood, MN, USA) tape.  

 

3.2 Growth media 

 

Several types of media (designated I, II, III and IV) were used in these 

experiments (see Appendix I to IV for media compositions). Media were 

sterilized in an autoclave at 121 °C for 20 minutes at a pressure of 1 bar, and 

then allowed to cool to 55 °C before plates were poured under sterile 

conditions in a laminar flow hood. For the stress experiments, described in 

sections 3.4.2.1 (Induced stress treatments) and 3.4.2.2 (Continuous stress 

treatments) various reagents were added to the media after sterilization. Plates 

were poured immediately prior to each experiment. 

 

3.3 Determinations of root growth  

 

Root growth was measured on 90 mm round petri dishes or 120 x 120 mm 

square plates containing solid growth medium III or medium IV (Appendix III; 

Appendix IV). For the experiments on round petri dishes, the upper third of the 

medium was removed. In all cases, except for the rml1-1, where root growth 

was determined for roots grown inside the medium, surface sterilized seeds 

were placed along the cut edge of the medium as illustrated in Figure 3-1A, 

leaving a distance of 5 to 7 mm between seeds, so that the roots grew 

vertically into the media, leaving sufficient space for root growth, ensuring that 

the roots from each seedling did not grow into each other. In the case of the 

rml1-1 seeds were placed directly on top of the media. For the experiments on 
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square plates, seeds were placed in two rows onto the media as illustrated in 

Figure 3-1B such that roots grew along the surface of the media.  

 

 
Figure 3-1: Schematic representation of seed placement for the root 

architecture experiments. A: 9 cm round petri dishes with upper third of the medium 

removed. B: 120x120mm square plates; blue represents the media; the black stars 

represent the individual seeds. 

 

 

Each experiment consisted of 5 plates per genotype containing either 10 

(round petri dishes) or 23 (square plates) seeds per plate. In all cases, plates 

were sealed using Parafilm and placed in a vertical orientation, in the growth 

chambers, as shown in Figure 3-2.  

 

Plants were allowed to grow for either 7 (square plates) or 10 days (round petri 

dishes) after which photographs of the roots were taken against a black 

background at a distance of 35 cm using either a Panasonic Lumix DMC-TC9 

camera (Panasonic Corporation, Osaka, Japan) or a Nikon D5100 with an 18-

55 mm f/3.5-5.6G VR objective (Nikon Corporation, Tokyo, Japan). 

 

A B 
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Measurements of primary root length, lateral root length and the number of 

lateral roots were made from the photographs using Image J version 1.41a 

software (http://rsbweb.nih.gov/ij/; Rasband et al., 1997-2012; Abramoff et al., 

2004). 

 

 

Figure 3-2: Representative picture of plates in vertical orientation in growth 

chambers. A: 90 mm round plates and B: 120 x 120 mm square plates. 

 

 

Data obtained was further processed in Microsoft Excel 2010 (Microsoft 

Corporation, Redmond, WA, USA) and statistical analysis was performed 

using SPSS 20 (IBM Corporation, Armonk, NY, USA). 

 

3.4 Determinations of shoot growth and stress tolerance  

 

This part of the work was undertaken in collaboration with Bayer BioScience 

N.V., who was a partner on the EU ITN Network that supported my PhD 

research project. Bayer BioScience N.V., is located in Gent, Belgium      

(Figure 3-3) and is the largest innovation centre of Bayer CropScience world-

wide engaging in research, development and marketing of seeds and solutions 

derived from breeding and biotechnology.  

 

A B 
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The Gent site houses an extensive phenomics facility, where plants are 

routinely screened for growth and stress tolerance. The experiments described 

in the following were performed according to parameters (, such as e.g. light 

intensities, length of stress exposure and evaluation of experiments) of these 

routine screenings within Bayer BioScience N.V. 

 

 

Figure 3-3: Building of Bayer BioScience N.V., Gent, Belgium 

(http://www.mybayerjob.be/export/sites/erecruiting_be/images/Image_gallery/ Ghent 

.jpg) 

 

 

3.4.1 Determinations of shoot growth under standard conditions  

 

Seeds of the wild-type (Col-0) and cad2-1, pad2-1, rax1-1 and clt mutants 

were sown on a sterile 1 µm filter mesh, which was placed on the growth 

medium II (Appendix II) prior to sowing. Shoot growth was determined over a 

period of 17 days under standard conditions or 17 days in short-term stress 

treatments, and 14 days for plants subjected to long- term stress conditions. 

Stress treatments were performed as described below.  

 

For standard growth conditions, photographs were taken with a Canon EOS 

450 D (Canon Inc., Tokyo, Japan) at 66 cm distance with automatic zoom and 
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a shutter speed of 1/250 and an aperture of 1/11, on days 7, 10, 11, 12, 14 

and 17 after sowing. Leaf area was measured using ImageJ 1.41a and values 

processed using Microsoft Excel 2010.  

 

3.4.2 Determinations of shoot growth under stress conditions  

 

For induced stress treatments, photographs were taken on days 10, 11, 12, 14 

and 17, and for continuous stress treatments, photographs were taken only on 

days 11 and 14. Images were analysed using Fiji ImageJ (http://fiji.sc/, 

Schindelin et al., 2012) with an in-house macro from Bayer BioSciences N.V. 

and statistical analysis of the data was performed with R (www.r-project.org, 

Hornik, 2013) using in-house macros from Bayer BioScience N.V. 

 

3.4.2.1 Induced stress treatments 

 

For these experiments, seeds were sown on a sterile 1 µm filter mesh, which 

was placed on the growth medium II (Appendix II: Composition of growth 

medium II:) prior to sowing. Seedlings were grown for 10 days under standard 

conditions and then transferred with the mesh to plates containing growth 

medium II with no further additions (control), or growth media II containing 

either paraquat (1 µM), hydrogen peroxide (4 mM), sorbitol (100 mM), or 

sodium chloride (75 mM). Seedlings were then grown for a further 8 days 

under these conditions and growth analysis performed as described below. 

 

A further set of experiments was performed to study the effects of high light 

stress. For this treatment, seedlings were grown for 10 days under standard 

light levels and then transferred to high irradiance (400 µmol m-2 s-1) for            
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4 days, after which they were transferred back to standard light conditions for a 

further 4 days. Although 400 µmol m-2 s-1 used in the high light experiments 

cannot be considered photoinhibitory conditions, this was the maximum 

possible light intensity that could be obtained. However, relative to the 

standard conditions (150 µmol m-2 s-1) 400 µmol m-2 s-1 can be considered as 

relative high light. Each experiment consisted of four plates (32 seeds per 

plate) per genotype and stress treatment. Each experiment was repeated 3 

times. 

 

3.4.2.2 Continuous stress treatments 

 

For these experiments, seeds were sown on plates containing growth medium 

II with no further additions (control), or containing paraquat (0.1 µM), 3-

methoxybenzamide (0.2 mM), paraquat (0.1 µM) plus 3-methoxybenzamide 

(0.2 mM), sorbitol (100 mM) and sodium chloride (75 mM). Seedlings were 

grown for 14 days under stress conditions. Each experiment consisted of four 

plates (32 seeds per plate) per genotype and stress treatment. Each 

experiment was repeated 3 times. 

 

3.5 Transcriptome analysis 

 

For these experiments, seeds of the wild-type (Col0) and a heterozygous 

population of rml1-1 seeds were placed on growth medium III (Appendix III: ) 

and grown on vertical plates for 7 days. In total, this experiment comprised 100 

plates for the wild-type and 3000 plates for the rml1-1. After 7 days the 

homozygous rml1-1 plantlets were identified by their characteristic root 
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phenotype (an arrest of root growth) compared to heterozygous rml1-1 and 

wild-type plants, as illustrated in Figure 3-4.  

 

The shoots of the wild-type and rml1-1 seedlings were removed from the roots 

with sharp fine scissors by cutting across the transition zone between stem 

and root. Samples with a minimum of 100 roots or shoots per sample were 

prepared. Pooled material was placed in labelled 1.5 mL Eppendorf tubes on 

ice during harvest. Samples were immediately frozen in liquid N2 and stored at 

-80°C until RNA extraction. A total of three biological replicates were prepared 

for the wild-type shoot and root tissues. In the case of the rml1-1 mutant three 

biological replicates could be prepared for the shoot. However, only one 

biological replication could be obtained for rml1-1 root tissue. 

 

 
Figure 3-4: Comparison of wild-type plants with the rml1-1 phenotype on the 

day of harvest. Shown are 7-day old plants; left: wild-type, Col0; right: rml1-1. 
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3.5.1 RNA extractions 

 

Samples were ground to a fine powder in 1.5 mL Eppendorf tubes and RNA 

extractions were performed according to the protocol of the RNAeasy Mini Kit 

(Qiagen, Cat. No.: 74904, Hilden, Germany). The purity of the samples and 

RNA concentrations were measured using a Nano Drop ND-1000 device 

(Nano Drop Technologies, Wilmington, DE, USA). The RNA extracts used in 

these experiments had a ratio of absorbance of 1.8-2.0 (A280/A260) when 

measured at 280 nm and 260 nm respectively and >1.8 (A260/A230) when 

measured at 260 nm and 230 nm respectively, in order to assure sufficient 

purity.  

 

3.5.2 Agronomics1 tiling arrays 

 

RNA samples were sent to the microarray facility of the Vlanders Institute of 

Biotechnology in Leuven, Belgium (MAF VIB, Leuven, Belgium; 

http://www.nucleomics.be/) for microarray analysis on Agronomics1 tiling 

arrays (http://www.agron-omics.eu/index.php/resource_center/tiling-array). 

Microarray target preparation and array hybridization were performed at the 

VIB according to the Agronomics1 Standard Operating Procedures 

(Agronomics1 SOP, 2011; www.agron-omics.eu; Rehrauer et al., 2010), as 

described below. Data and gene ontology analyses were performed at the 

University of Leeds as described further below. And the full microarray data 

can be found at NCBI GEO as Series GSE36893 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36893). 
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Microarray target preparation  

Preparation of the RNA samples for array hybridization was performed using 

the GeneChip® 3' IVT Express Kit (Affymetrix, Cat. No.: 901229, Santa Clara, 

CA, USA). This Kit includes the steps of reverse transcription of the first cDNA 

strand, synthesis of the second cDNA strand, biotin labelling of antisense RNA 

(aRNA), purification and fragmentation. An overview of the workflow is 

depicted in Figure 3-5.  

 

 
Figure 3-5: Schematic representation of the GeneChip® 3' IVT Express assay. 

(http://www.affymetrix.com/_media/images/figures/expresskit_labeling _assay_lg.gif, 

2011). 
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A minimum of 50 ng of RNA were required for double-strand cDNA synthesis. 

After synthesis of double-stranded cDNA the quality and quantity of 

biotinylated cRNA was tested using a NanoDrop ND 1000 and Bioanalyzer 

2100, prior to random fragmentation into 35-200 bp fragments at 94 °C in 

fragmentation buffer (Affymetrix, Cat. No.: 900371, Santa Clara, CA, USA). 

 

Array hybridization 

The fragmented aRNA samples were mixed with Hybridization Mix (Affymetrix,    

Cat. No.: 900720, Santa Clara, CA, USA), Hybridization Controls and Control 

Oligonucleotide B2 (Affymetrix, Cat. No.: 900454, Santa Clara, CA, USA) to a 

final volume of 300 μL according to manufacturer‟s recommendations.  

 

The samples were then hybridized onto Agronomics1 arrays for 16 hours at  

45 °C. After these 16 hours the arrays were washed in an Affymetrix Fluidics 

Station 450 using the FS450_0004 protocol and the arrays were subsequently 

scanned on an Affymetrix GeneChip Scanner 3000 (Agronomics1 SOP, 2011; 

www.agron-omics.eu; Rehrauer et al., 2010).  

 

Data analysis 

The data generated from the Agronomics1 tiling arrays was provided MAF VIB 

as a Microsoft Excel file containing robust microarray averaging (RMA) 

expression values, false discovery rates (FDR), fold-changes (FC) as well as 

p-values, Affymetrix IDs and AGI codes. A pre-selection of the transcripts in 

shoot datasets was performed based on p-values (p<0.05) and false discovery 

rate (FDR<0.05), in order to retain only transcripts whose abundance was 

significantly different in rml1-1 tissues relative to wild-type. Thereafter, 
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transcripts with a 2-fold or higher change in abundance relative to wild-type 

were selected for further analysis. Despite major efforts, extractable RNA from 

the roots of the rml1-1 allowed only for the analysis of on biological replication. 

Hence, for the root datasets, the selection of transcripts was based only on 

fold-change values.  

 

Gene ontology analysis 

Gene ontology analysis was performed using BINGO cytoscape 2.8.1 (Maere 

et al., 2005) and MapMan 3.5.1 (Thimm et al., 2004). Multi experiment Viewer 

4.6.2 (from The Institute for Genomic Research; TIGR-MeV) was used for the 

generation of heat maps (Saeed et al., 2003).  

 

3.6 Quantitative Real-Time (RT)-PCR (qRT-PCR) 

 

In all cases qRT-PCR was performed on tissues harvested from 7 day-old 

plants that had been grown on vertical plates containing growth medium III 

(Appendix III: Composition of growth medium III), as described above. Root 

and shoot samples were harvested and pooled as described above and placed 

in 2.0 mL Eppendorf tubes containing two 3 mm stainless steel beads (Qiagen, 

Cat. No.: 69997, Hilden Germany) and extraction performed essentially as 

described in section 2.6 (Transcriptome analysis) except that frozen samples 

were ground to a fine powder in a TissueLyser LT (Qiagen, Cat. No.: 85600, 

Hilden, Germany) with five, 30 s bursts at 40 Hz. 
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3.6.1 cDNA synthesis 

 

The synthesis of cDNA from RNA samples (1 µg) was performed using the 

QuantiTect Reverse Transcription Kit (Qiagen, Cat. No.: 205311, Hilden, 

Germany).  

 

3.6.2 qRT-PCR procedure 

 

The cDNA equivalent of 20 ng of total RNA was used in a 20 µL PCR reaction 

on a C1000 Thermal Cycler real-time PCR system (BioRad Laboratories, 

Hercules, CA, USA). The 20 µL reaction volume was comprised of 10 µL 2x 

QuantiFast SYBR Green PCR Kit (Qiagen, Cat. No.: 204054, Hilden, 

Germany), 1 µL Primer Mix (0.5 µM final concentration for each primer) and 9 

µL template cDNA (20 ng/9 µL). In all experiments three biological replicates of 

each sample were processed and per sample two to three technical 

replications were performed. Reactions were set up in skirted, low-profile 96-

well PCR plates (StarLab International GmbH, Cat. No.: E1403-5200, 

Hamburg, Germany). Real-time cycler conditions were as follows: (1) 95 °C for 

5 minutes; (2) 40 cycles of amplification consisting of 95 °C for 10 seconds, 

55-60 °C (combined annealing and extension; temperature depending on 

melting temperature of primer pairs); (3) melting curve analysis (to monitor 

possible mispriming or primer dimer artefacts). In all experiments AT1G13320 

(PDF2 – Protein phosphatase 2A subunit A3) was used as reference gene for 

normalization of qRT-PCR data (Czechowski et al., 2005). PDF2 was chosen 

as initial experiments confirmed stable expression of this transcript in all 

experimental conditions and all tissues.  
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All primer combinations were designed using Primer3 

(http://primer3.wi.mit.edu/; Version 3.0.0; Rozen and Skaletsky, 2000; 

Untergasser et al., 2012) and specificity to the desired target was confirmed 

using the NCBI BLAST tool for A. thaliana 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The primer combinations used, 

including sequences and target accessions, are displayed in Table 3-1 

(Primers for auxin-related transcripts) and Table 3-2 (Primers for cell cycle-

related transcripts). To avoid unwanted amplification of genomic DNA, all 

primer pairs were designed to span introns, or to span exon-exon junctions, 

respectively. Amplification efficiencies of al primer combinations were 

calculated using the LinReg software (Ramakers et al., 2003). Relative 

expressions were calculated using the Livak method (2-ΔΔC
T; Livak and 

Schmittgen, 2001). 
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Table 3-1: Primers used for qRT-PCR of auxin-related transcripts in                   

A. thaliana. 

Primer                    Sequence 
Target 

accession 

ACHT 5 FWD 5'-CTGGGGTTTCTCCATTTTCA-3' AT5G61440 

ACHT 5 REV 5'-TTCTCCCACCATCTCATTCC-3' 
 

   
GRXS 17 FWD 5'-GTGAAGGAGAATGCGAAAGC-3' AT4G04950 

GRXS 17 REV 5'-TTTCCTGCTAAACCCACACC-3' 
 

   
HEC 1 FWD 5'-CAATAATGGCACGAACATGG-3' AT5G67060 

HEC 1 REV 5'-TGCAAAATCCGAATCCTCTC-3' 
 

   
HEC 2 FWD 5'-GAATCCGTAAAGCCACCAAA-3' AT3G50330 

HEC 2 REV 5'-GTTAACCACCGCATGTTCCT-3' 
 

   
IAA 20 FWD 5'-GGACATCCTCAGGGACTCAA-3' AT2G46990 

IAA 20 REV 5'-ATGGATGCGTTGAACATGAA-3' 
 

   
MYB 15 FWD 5'-AGGACCATGGACACCTGAAG-3' AT3G23250 

MYB 15 REV 5'-CTGCAATCGCTGACCATCTA-3' 
 

   
MYB 75 FWD 5'-CGACTGCAACCATCTCAATG-3' AT1G56650 

MYB 75 REV 5'-TGTCCCCCTTTTCTGTTGTC-3' 
 

   
RSM 1 FWD 5'-GGCATCAGGCTCAATGTCTT-3' AT2G21650 

RSM 1 REV 5'-CCATTCTCGATGCTTTCGAT-3' 
 

   
RSM 3 FWD 5'-AGAGGGCCTTGGCAGTTTAC-3' AT1G75250 

RSM 3 REV 5'-CAAAGGGACACGACCAGTCT-3' 
 

   
SPT FWD 5'-TTTCTCATCATCCACCGTCA-3' AT4G36930 

SPT REV 5'-CCTTCCTCGCTTTCACAGTC-3' 
 

   
TH 7 FWD 5'-TCCATGAAAGGCTCAAACAA-3' AT1G59730 

TH 7 REV 5'-GTTTGGCTCCAACAACCCTA-3' 
 

   
TH 8 FWD 5'-CCTTGAACCAAAGCTCGAAG-3' AT1G69880 

TH 8 REV 5'-ACCTTCACACCCACAACCAT-3'   
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Table 3-2: Primers used for qRT-PCR for cell cycle-related transcripts in            

A. thaliana. 

Primer                    Sequence 
Target 

accession 

CDKB1;2 FWD 5'-ATACCACCAACGGCTCTCC-3' AT2G38620 

CDKB1;2 REV 5'-ACGCAGAGGAGACGAACG-3' 
 

   
CDKB2;1 FWD 5'-ATGTGGCCAGGAGTGAGC-3' AT1G76540 

CDKB2;1 REV 5'-GAGGTTTGGAACAGCAGAGG-3' 
 

   
CDKB2;2 FWD 5'-TGTTGGGAACACCAAACG-3' AT1G20930 

CDKB2;2 REV 5'-CTCAACGGTTTCCATTGC-3' 
 

   
CYCA1;1 FWD 5'-CGTTAATGCCAGTTTCTCTAGC-3' AT1G44110 

CYCA1;1 REV 5'-TGAGCCATCATCAGATTTGC-3' 
 

   
CYCB1;2 FWD 5'-TTCTTGGAAACCTCGAATGG-3' AT5G06150 

CYCB1;2 REV 5'-TCTGGATCAGACATCGAAGC-3' 
 

   
CYCB1;3 FWD 5'-TCTGTCCTTCCATGCTTGC-3' AT3G11520 

CYCB1;3 REV 5'-ATTCGGAGTAGCCTGTGTGG-3' 
 

   
CYCB1;4 FWD 5'-GCTGTGATCGACATTGATGC-3' AT2G26760 

CYCB1;4 REV 5'-TCCTTCCTCTTCCACAGTCC-3' 
 

   
CYCB2;1 FWD 5'-CCTCAGTTCCAAGTGCTAACG-3' AT2G17620 

CYCB2;1 REV 5'-GGTTTCTCAAGCGACATTGG-3' 
 

   
CYCB2;2 FWD 5'-GGTATCCACCATCGTTACTCG-3' AT4G35620 

CYCB2;2 REV 5'-GCTGTTCCATTCACTGAAGC-3' 
 

   
CYCB2;4 FWD 5'-CCAGCTGGTTCAATTCTTGC-3' AT1G76310 

CYCB2;4 REV 5'-AAGCGCTTCTGGAATGTTCG-3' 
 

   
CYCD3;1 FWD 5'-AACAGTCCTTCATCTGGGAG-3' AT4G34160 

CYCD3;1 REV 5'-CTGCTATGTGCATCAGCCAT-3'   
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3.7 Glutathione measurements 

 

Determinations of the total glutathione pool, GSH and GSSG in the roots of the 

different genotypes were performed as described by Queval and Noctor 

(2007). For this analysis, seedlings were grown for 7 days on vertical plates 

containing medium IV (Appendix IV: Composition of growth medium IV:). 

Whole root samples (50-150 mg per sample) were harvested, weighed and 

immediately frozen in liquid N2. The samples were stored at -80 °C until 

analysis.  

 

3.7.1 Extraction Procedures 

 

Frozen root samples were ground to a fine powder in liquid N2, 1 M HClO4        

(1 mL per 150 mg sample) was added and ground with the frozen root 

material. As the mixture thawed, the samples were mixed again to ensure 

rapid arrest of metabolism. Upon thawing, insoluble material was removed by 

centrifugation in a desktop centrifuge (maximum speed) at 4 °C for 5 minutes. 

Samples (0.5 mL) of the supernatant were decanted into fresh tubes and 0.12 

M NaH2PO4 (pH=5.6; 0.1 mL) was added to each.  

 

Thereafter, sufficient K2CO3 was added to bring the pH of the samples to 

between pH 5 and pH 6. Per 500 µL 1 M HClO4 used in the extraction 

approximately 30-40 µL 5 M K2CO3 were required for neutralization. The 

samples were then centrifuged once more to remove insoluble KClO4. The 

supernatants were decanted into fresh tubes (placed on ice) and glutathione 

was immediately assayed. 
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3.7.2 Principle of glutathione measurement using DTNB 

 

Total and oxidized glutathione are measured as the NADPH-driven 

glutathione-dependent reduction of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB, 

Ellman`s reagent). DTNB is a reagent containing a disulphide bond which can 

be reduced by other thiols. The reduced (thiol) form of DTNB has much greater 

absorbance at 412 nm (A412). In the presence of glutathione and glutathione 

reductase (GR), the reaction proceeds as follows: 

 

2 GSH + DTNBox <=> GSSG + DTNBred   (increase in A412) 

GSSG + NADPH + H+ <=> 2 GSH + NADP+  (catalysed by GR) 

 

Thus, there is no net consumption of glutathione in the reaction – it cycles 

between the reduced and oxidised forms, and acts as an intermediate in the 

electron transfer from NADPH to DTNB.  

 

As can be demonstrated easily with GSH standards, the rate of the reaction is 

proportional to glutathione concentration over a wide range. Because inclusion 

of GR in the assay means that glutathione cycles, the assay will measure both 

GSH and GSSG (as 2 GSH) without distinction. 

 

To distinguish between GSH and GSSG, aliquots of extracts are pre-treated 

with 2-vinylpyridine (VPD). VPD complexes with GSH (but not GSSG) and so 

only GSSG can be measured in treated samples. 
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3.7.3 Assay Procedures 

 

The total glutathione pool (GSH & GSSG) and oxidized glutathione (GSSG) 

were assayed as described below on a FLUOstar Omega microplate reader 

(BMG Labtech GmbH, Ortenberg, Germany) using flat-bottom 96-well Costar 

UV plates (Corning Incorporated, Cat. No.: 3635, Corning, NY, USA). The 

absorbance changes at 412 nm (A412) were measured for 5 minutes in a 

procedure that comprised 12 measurement cycles with mixing before each 

cycle. In all cases, statistical analysis of the data was performed in Microsoft 

Excel 2010. 

 

3.7.3.1 Reaction Mixture: Total glutathione 

 

The reaction mixture contained 0.12 M NaH2PO4 (pH 7.5), 6 mM EDTA,      

0.01 mL 50 mM NADPH, 0.1 mL 6 mM DTNB and 0.02-0.05 mL extract in a 

total volume of 1 mL. Reactions were started by addition of 0.01 mL GR. Each 

assay included a standard curve incorporating 0, 0.2, 0.4 and 1.0 nM GSH. 

 

3.7.3.2 Reaction mixture: Oxidized glutathione (GSSG) 

 

For this analysis VPD (5 µL per sample) was added to extracts (0.2 mL), mixed 

well and left to stand at room temperature for 20 min. The samples were then 

centrifuged at 4 °C at maximum speed for 15 minutes to remove the VPD 

complexes. Aliquots (0.16 mL) of supernatant were transferred to fresh tubes 

and centrifuged again. Aliquots (0.1 mL) of supernatant were then measured 

as for total glutathione. Each assay included a standard curve incorporating 0, 

0.02, 0.04 and 0.08 nM GSSG.  
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3.8 In-vivo measurement of glutathione 

 

For these experiments transgenic Arabidopsis thaliana plants, which 

constitutively express roGFP2, were used. As mentioned above, these roGFP2 

plants were obtained from Roger B. Deal and Steven Henikoff (Fred 

Hutchinson Cancer Research Centre, Seattle, USA) and from Andreas Meyer 

(Heidelberg Institute of Plant Sciences, Heidelberg, Germany). They 

transformed Arabidopsis thaliana plants using the pBinAR binary vector 

carrying the 35S::roGFP2 construct, which had then been electroporated into 

Agrobacterium tumefaciens strain C58C1 (Meyer et al., 2007). These bacteria 

were then ultimately utilized to transform Arabidopsis thaliana plants using the 

floral dip method. A selection of transformants was subsequently performed on 

medium containing 50 µg/ml kanamycin (Meyer et al., 2007). 

 

To study glutathione partitioning between the nucleus and cytosol, these 

roGFP2 (35S:roGFP2) seedlings were grown for 7 days on vertical square 

plates containing growth medium IV (Appendix IV: Composition of growth 

medium IV:) in the absence (control) or presence of various concentrations of 

BSO (0.25 mM, 0.5 mM, 0.75 mM and    1 mM BSO). Each experiment 

involved an analysis of 57 seedlings per plate, with 3 plates per treatment.  

 

3.8.1 Principle of glutathione measurement using confocal microscopy 

 

In-vivo measurements of glutathione are based on the redox properties of the 

roGFP2 probe, which can be reversibly reduced and oxidized in the presence 
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of glutathione. The reduced form has an excitation maximum at 488 nm while 

the oxidized form has an excitation maximum at 405 nm (Figure 3-6).  

 

 
Figure 3-6: Overview of the properties of the roGFP2 biosensor. A: Fluorescent 

excitation spectra for oxidized and reduced recombinant roGFP2 protein isolated from 

Escherichia coli (E. coli) (Meyer, 2008). B: Time course experiment for ratio values 

calculated from CLSM images during successive oxidation and reduction (Meyer et 

al., 2007) 

 

 

The roGFP2 measurements can be used to estimate the redox potential of 

glutathione via glutaredoxin (GRX) in various cellular compartments. GRX 

mediates the reaction between roGFP2 and glutathione. An analysis of the 

relative fluorescence following excitation at these two wavelengths provides 

data that enables the determination of the degree of oxidation of the 

glutathione pool, provided that the concentration of glutathione within the 

sample is known or calculated (Meyer et al., 2007; Schwarzlaender et al., 

2008).  

 

 

 

A B 
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3.8.2 Calculation of the redox state of the glutathione pool 

 

Two standards were used in each experiment. The first standard was 

produced by incubating whole seedlings in 2 mM H2O2 in liquid growth medium 

IV for 5 minutes prior to analysis. The second standard was produced by 

incubating whole seedlings in 2 mM DTT in liquid growth medium IV for 5 

minutes prior to analysis. These standards are considered to represent the 

maximum oxidized and maximum reduced states of the glutathione pool 

respectively and were measured with 405 nm and 488 nm excitation 

immediately after incubation, together with the samples from the different BSO 

treatments.  

 

The degree of oxidation of the roGFP2 sensor was calculated according to the 

following formula (Figure 3-7). The redox potential of the glutathione pool can 

then calculated from the OxDroGFP values, according to the formula shown in 

Figure 3-8 using the mid-point potential of roGFP2, which had previously been 

described to be -272 mV (Hanson, et al. 2004). 

 

 

Figure 3-7: Formula for the calculation of the degree of oxidation for the roGFP2 

sensor. R = ratio of excitation at 405/488 nm, Rred = ratio of fully reduced roGFP2; Rox 

= ratio of fully oxidized roGFP2; I488ox and I488red: intensities at 488 nm for fully oxidized 

respectively reduced roGFP (Schwarzlaender et al., 2008). 
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Figure 3-8: Formula for the calculation of the redox potential of glutathione. R = 

gas constant (8.315 J K-1 mol -1); T = absolute temperature (298.15 K); z = number 

of transferred electrons (2); F = Faraday constant (9.648 * 104 C mol-1); E‟pH
0(roGFP) = 

mid-point redox potential (Schwarzlaender et al., 2008). 

 

 

3.8.3 Procedure of glutathione measurement using confocal 

microscopy 

 

A LSM 510 META confocal microscope (Carl Zeiss, Jena, Germany) with 

lasers for 405 nm and 488 nm excitation using a 505-530 nm emission band-

pass filter was used in all experiments. The power of the lasers was set to     

10 % to avoid photo-bleaching during data acquisition. Images were acquired 

as Z-Stacks of 1-1.5 µm slices depending on the thickness of the sample. 

Each Z-Stack was adjusted to yield a maximum of 25 slices. Images were 

collected using a Plan-Neofluar 40x/1.3 Oil DIC objective (Carl Zeiss, Jena, 

Germany) in multi-track mode with line switching between 405 nm and 488 nm 

illumination. Slides were prepared using liquid growth medium IV without BSO. 

Ratiometric analysis was performed using ImageJ 1.41a to measure 

fluorescence intensities from photographs acquired with the LSM 510 META. 

The intensity values of 405 and 488 nm pictures were copied into Microsoft 

Excel 2010 for the calculation of 405/488 nm ratios. 
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3.9 Extraction of intact nuclei 

 

3.9.1 Principle of nuclei extraction 

 

The method used for nuclei extraction is a modified procedure of the INTACT 

(isolation of nuclei tagged in specific cell types) method (Deal and Henikoff, 

2010A, B). The technique is an affinity-based isolation of nuclei, employing a 

plant line (GL2) that produces biotin-labelled outer envelopes of nuclei via 

transgenic co-expression of a nuclear target fusion protein (NTF) under control 

of a cell-type specific promoter (GLABRA2, GL2) and a constitutively 

expressed biotin ligase (BL) from E. coli. The GL2 promoter targets expression 

of the NTF to non-root hair specific cell types, while constitutive expression of 

the biotin ligase assures biotinylation of outer nuclear envelopes. A schematic 

representation of both NTF and BL constructs for the GL2 transgenic line is 

displayed in Figure 3-9.  

 

 
Figure 3-9: Schematic representation of the constructs used to generate the 

GL2 transgenic line. Shown are nuclear target fusion protein (NTF) and E. coli biotin 

ligase (BL) constucts with their respective promoter combinations (as described by 

Deal and Henikoff, 2010B). 
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3.9.2 Procedure of nuclei extraction 

 

All steps of the nuclear extraction and purification process were performed at   

4 °C in a cold room on ice. Nuclei were extracted from roots (5 g) of GL2 

seedlings that contain a biotin-labelled nuclear envelope tag (GL2; Deal and 

Henikoff, 2010B) that had been grown for 7 days on vertical 120 x 120 mm 

square plates containing growth medium IV. 

 

Harvested roots were placed in a glass petri dish containing modified nuclear 

isolation buffer (mNPB; described in Appendix V: ). The roots were first cut into 

small pieces in 5 mL mNPB with an autoclaved razorblade and the crude 

extracts were then filtered through a 70 µm nylon cell strainer (BD Falcon, Cat. 

No.: 352350, Franklin Lakes, NJ, USA) into a 50 mL Falcon tube to reduce cell 

debris. The roots were placed in 5 mL fresh mNPB, cut again into smaller 

pieces and then filtered again pooling all extracts in one Falcon tube. Extracts 

(~10 ml) were incubated for 20 minutes with streptavidin-coated beads (M-280 

Dynabeads, Cat.No.112-05D, Invitrogen, Carlsbad, CA, USA) that had 

previously been washed in NPB (1ml). During the incubation period, the tubes 

were gently inverted four times to ensure mixing. The procedure used for the 

purification of nuclei, in which the beads with nuclei are captured on the inside 

of a 1 mL pipette tip and then re-suspended in fresh mNPB, is illustrated in 

Figure 3-10.  
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Figure 3-10: Schematic representation of setup for nuclei purification from 

crude nuclear extract. The image was taken from Deal and Henikoff, 2010B. 

 

 

In this procedure, the suspension containing beads with bound nuclei is diluted 

using mNPB to achieve a final volume of 10 mL and then carefully drawn into a 

10 mL serological pipette. The serological pipette is then placed into a 1 mL 

pipette tip that is inserted into the groove of the separation magnet. Nuclei are 

purified by allowing the suspension to flow past the magnet, at a flow rate of 

approximately 0.75 mL min-1, into a 15 mL Falcon tube. Nuclei that are bound 

to beads were captured on the inside of the 1 mL pipette tip, which was then 

removed from the magnet. The nuclei were immediately re-suspended in 1 mL 

mNPB and used for analysis. Fluorescence microscopy was used to determine 

whether intact nuclei were present in these extracts. 
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3.9.2.1 Fluorescence stereomicroscopy determination of intact nuclei 

 

Fluorescence microscopy was performed using an Olympus BX61 multicolour 

fluorescence microscope (Olympus, Tokya, Japan) at 40x or 60x magnification 

on nuclei and bead suspensions and final purified nuclei. Aliquots of samples 

were incubated for 5-10 minutes with Hoechst 33342 (1:100,000) prior to 

image acquisition. Images were then taken of aliquots for bright-field, GFP 

(509 nm emission; nuclear envelope) and Hoechst 33342 (461 nm emission; 

chromatin) stain. 

 

3.9.2.2 Scanning electron microscopy (SEM) determination of intact 

nuclei 

 

For determination of intact nuclear envelopes in solutions of purified nuclei 

bound to beads a FEI Quanta 200 F environmental scanning electron 

microscope was used (FEI Company, Hillsboro, OR, USA). Pictures were 

acquired at 5 or 10 kV with magnifications between 500x up to 80,000x. Prior 

to SEM experiments, purified nuclei were fixed onto 5 mm² polysine slide 

pieces (VWR International, Cat. No.: 631-0107, Radnor, PA, USA) using a 

method described for yeast nuclei (Kisleva et al., 2007). Nuclei were fixed 

using 2 fixative solutions. Fixative solution 1 contained 4 % Paraformaldehyde, 

20 mM Potassium phosphate (pH=6.5), 0.5 mM Magnesium chloride and 0.2 

M Sucrose. Fixative solution 2 comprised 2 % Glutaraldehyde, 0.2 % Tannic 

acid, 20 mM Potassium phosphate (pH=6.5) and 0.5 mM Magnesium chloride. 

Both fixative solutions were prepared freshly and filter sterilized using a 0.2 µm 

Minisart syringe filter (Sartorius AG, Cat. No.: 16532, Göttingen, Germany). 
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Only fixative solution 2 was pH adjusted to pH 7.4 prior to filter sterilization. All 

fixation steps were carried out at room temperature. Aliquots (8 µL) of purified 

nuclei were pipetted onto the polysine slides and nuclei were allowed to 

adhere to the slides for 5 minutes. Slides were then submerged into fixative 

solution 1 and incubated for 10 minutes. A further fixation step was then 

performed by submerging slides into fixative solution 2 for again 10 minutes. 

After fixation slides were briefly rinsed with H2Odd, fixed in aqueous 1 % 

osmium tetroxide for 10 minutes, rinsed again with H2Odd and stained using   

1 % uranyl acetate for 10 minutes. The fixed samples were then dehydrated 

through submerging the slides for 2 minutes into a series of Ethanol. 

Dehydration was performed in 30 %, 50 %, 70 %, two times 95 % and three 

times 100 % Ethanol baths. A final dehydration was performed in liquid CO2 in 

a critical point drying apparatus (to less than 5 p.p.m. water) before coating 

with 1 nm platinum.  
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4 Chapter 4: Phenomics analyses of the effects of glutathione 

depletion 

 

4.1 Introduction 

 

The effects of glutathione depletion on plant development have not been fully 

characterised to date. Earlier studies have shown that knockout mutations in 

the GSH1 or GSH2 genes, which encode for the first and second enzymes of 

the glutathione synthesis pathway, result in embryo- or seedling-lethal 

phenotypes respectively (Cairns et al., 2006). The seeds of the root 

meristemless 1-1 (rml1-1) mutants, which have glutathione levels of less than 

5 % of the wild-type, are able to germinate but they are unable to establish a 

post-embryonic root meristem (Vernoux et al., 2000A). Furthermore, mutants 

with other defects in the GSH1 gene, which restrict glutathione production to 

levels of between 20 to 50 % of the wild-type, exhibit higher sensitivities to 

certain abiotic and biotic stresses, e.g. exposure to cadmium or to virulent 

strains of Pseudomonas syringae or Phytophthora brassicae (Cobbett et al., 

1998; Vernoux et al., 2000A; Ball et al., 2004; Cairns et al., 2006; Parisy et al., 

2006; Schlaeppi et al., 2008). These studies show that glutathione levels play 

an important role in the control of plant development. In addition, the 

intracellular partitioning of glutathione between the different cellular 

compartments is also crucial to glutathione functions. This is demonstrated by 

the properties of the chloroquine-resistance transporter (CRT)-like resistance 

transporter (clt) mutants that exhibit functional knockout mutations in three 

genes encoding plastid thiol (-glutamylcysteine and glutathione) transporters. 

In the clt1clt2clt3 mutants, the cytosol is depleted in glutathione and its 
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precursor -glutamylcysteine, which are largely restricted to the chloroplast 

(Maughan et al., 2010). The cytosolic concentrations of glutathione in the clt 

mutants are 4-fold lower than the wild-type (Maughan et al., 2010). Cytosolic 

glutathione deficiency induces hypersensitivity to abiotic and biotic stresses in 

the mutants (Maughan et al., 2010). These findings demonstrate the 

importance of the cytosolic -glutamylcysteine and glutathione pools in the 

control of plant responses to abiotic and biotic stresses.  

 

The following studies were conducted in order to gain greater insights into the 

role of glutathione in plant development and in plant responses to abiotic 

stresses. The relationships between overall tissue glutathione contents and 

shoot and root growth were determined in A. thaliana under standard growth 

conditions. The responses of shoot growth to a range of different abiotic 

stresses were then compared in the wild-type and in several mutant lines that 

are deficient in overall tissue glutathione contents. Thereafter, the effects of 

cytosolic glutathione depletion in the clt triple mutants (clt1clt2clt3) on shoot 

and root growth were determined under standard growth conditions. The 

responses of shoot growth in the clt mutants to a range of different abiotic 

stresses were compared to those of the wild-type. 

 

4.2 Results – Mutants with low glutathione  

 

4.2.1 Shoot phenotypes 

 

The effects of low tissue glutathione levels on shoot development were 

determined on seedlings grown for 14 days on horizontal agar plates under 
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standard growth conditions. Rosette growth rates were determined as leaf 

areas under low and highlight growth regimes. The mutant (cad2-1, pad2-1 

and rax1-1) genotypes with lower tissue glutathione levels had significantly 

lower leaf areas than the wild-type plants under standard growth conditions 

(Table 4-1; Figure 4-1). The decreases in leaf area varied in the cad2-1, pad2-

1 and rax1-1 mutants, with the cad2-1 mutant having the greatest leaf area of 

these mutant genotypes (83.2 % of the wild-type). The pad2-1 mutant had the 

lowest leaf area (77.3 % of the wild-type). The rax1-1 had 79.4 % of the leaf 

area measured in the wild-type plants (Figure 4-1). 

 

Table 4-1: Comparison of leaf area in a range of GSH deficient mutant 

genotypes grown under standard growth conditions. A comparison of leaf area 

was performed in a range of 14-day old mutant seedlings defective in glutathione 

synthesis compared to wild-type (wt) Arabidopsis. Data are shown as mean ± 

standard error and number of plants assessed. Leaf areas are also shown in graphical 

form in Figure 4-1 with complementary information. 

Genotype Leaf area (mm²) Number of plants 

wt 41.91 ± 0.511 743 

cad2-1 34.86 ± 0.460 792 

pad2-1 32.41 ± 0.654 285 

rax1-1 33.28 ± 0.450 756 

Total 
 

2576 

 

 

Despite the differences in leaf area between the wild-type and mutant 

genotypes, the relative growth rates were similar in all lines under low or high 

light conditions (Figure 4-2A-D). The relative growth rates of the leaves 

decreased with increasing age of the plant (Figure 4-2A-D). However, some 

small variations in relative growth rates between the genotypes were 

observed. For example, the leaves of the pad2-1 mutants had higher relative 
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growth rates than the wild-type and other mutant genotypes on days 11 and 12 

but they were similar on days 12 and 14 (Figure 4-2C). 

 

 

 

Figure 4-1: Comparison of leaf area in a range of GSH deficient mutant 

genotypes grown under standard growth conditions. Comparison of leaf area was 

performed in a range of 14-day old mutant seedlings defective in glutathione synthesis 

compared to wild-type (wt) Arabidopsis, grown under standard (low light) conditions. 

A) Comparison of the leaf area phenotypes. B) Histogram comparison of leaf areas. 

Asterisks indicate the significant differences compared to wt a p<0.01. Data are 

shown as mean ± standard error. The percentages relative to the wt, which were 

calculated on average leaf areas, are displayed above each bar. The bar represents 1 

cm. 

 

 

 

 

 

 

A 

B 
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Figure 4-2: Comparison of growth rates in a range of GSH deficient mutant 

genotypes. A comparison of growth rates was performed for a range of mutant plants 

deficient in glutathione synthesis (cad2-1, pad2-1, rax1-1) relative to wild-type 

Arabidopsis (wt). Plants were grown for 10 days under either standard (low light,      

150 µmol*m-2*sec-1) conditions before they were transferred for another 4 days to 

either standard (low light) or high light (400 µmol*m-2*sec-1) conditions. Data are 

shown as mean growth rates of the leaf area for A: wt, B: cad2-1, C: pad2-1 and D: 

rax1-1. Growth rates were calculated by division of the leaf areas of older plants by 

leaf area of the younger plant, e.g.: leaf area day 11 / leaf area day 10 (Day10-11). 

  

A B 

C D 



 

68 
 

4.2.2 Root phenotypes 

 

The effects of glutathione deficiency on root development were determined on 

seedlings grown on vertical plates for either 7 days along the surface of the 

medium or 10 days inside the medium under standard growth conditions. As 

root growth determinations are not easy and resistance of the medium might 

impair root development, these two sets of independent experiments were 

performed to obtain objective results. 

 

4.2.2.1 Roots grown inside medium 

 

Seeds of the wild-type and glutathione deficient mutant lines were sown along 

the cut edge of the medium and roots were allowed to grow inside the medium 

on vertical plates. After 10 days the primary root lengths, the number of lateral 

roots and lateral root densities were determined. Root architecture was 

determined in a total of 2083 plants (Table 4-2). The lengths of the primary 

roots and the number of lateral roots were significantly different in the GSH-

deficient mutants than the wild-type (Figure 4-3). The rml1-1 mutant showed 

the greatest decrease in primary root length (1.96 mm) relative to the wild-type 

(Table 4-2; Figure 4-3). Moreover, the rml1-1 mutant did not produce any 

visible lateral roots (Figure 4-3A, C and D; Table 4-2). The pad2-1 mutant 

showed the smallest decrease in primary root length relative to the wild-type, 

with an average length of 24.48 mm. The cad2-1 and rax1-1 genotypes had 

similar primary root lengths with values of 21.96 mm and 21.45 mm 

respectively (Figure 4-3A, B; Table 4-2).  
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Table 4-2: Comparison of root architecture in a range of GSH deficient mutant 

genotypes grown inside the medium. A comparison of root architecture was 

performed in 10-day old plantlets of wild-type (wt) and mutant plantlets deficient in 

glutathione synthesis (cad2-1, pad2-1, rax1-1 and rml1-1), which were grown on 

vertical plates inside the medium. Data are displayed as mean± standard error and 

corresponding number of plantlets assessed. This data is also shown in graphical 

form in Figure 4-3 with complementary information. 

Genotype 
Primary root length 

(mm) 

Number of lateral 

roots 

Number of 

plants 

wt 27.74 ± 0.596 1.195 ± 0.065 655 

cad2-1 21.96 ± 0.590 0.712 ± 0.061 468 

pad2-1 24.48 ± 0.953 0.959 ± 0.118 193 

rax1-1 21.45 ± 0.628 0.495 ± 0.052 398 

rml1-1   1.69 ± 0.018 0.000 369 

Total     2083 

 

 

Similar trends to those observed for the effects of glutathione deficiency on 

primary root lengths were found for effects on the number of lateral roots and 

for lateral root densities (Figure 4-3C). The pad2-1 mutants had the highest 

number of lateral roots of all the GSH-deficient mutant lines compared to the 

wild-type, which had lateral root density values of around 1.19 lateral roots per 

cm primary root length (Figure 4-3C). In comparison, the pad2-1 had lateral 

root density values of 0.95. The lateral root density values in the cad2-1 

mutant was 0.71 and in the rax1-1 mutant this value was 0.49                 

(Figure 4-3C, D).  

  



 

 
 

7
0
 

 
Figure 4-3: Comparison of root architecture in a range of GSH deficient mutant genotypes grown inside the medium. A comparison of 

root architecture was performed in 10-day old wild-type (wt) with a range of mutant plantlets deficient in glutathione synthesis (cad2-1, pad2-1, 

rax1-1 and rml1-1). A: Comparison of phenotypes of wt and mutant plantlets. The white bar represents 1 cm and the red lines show start and end 

of the root; B: shows the average length of the primary root; C: the average number of lateral roots and D: the root density as number of lateral 

roots per cm primary root. Data are shown as mean ± standard error. Asterisks represent significant differences p<0.01.  
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4.2.2.2 A comparison of the architecture of roots grown on top of the 

medium 

 

Seeds of the wild-type and glutathione deficient mutant lines were sown on the 

top of the media and roots were allowed to grow along the surface of the 

media. After 7 days the primary root lengths, the number of lateral roots and 

lateral root densities were determined. Root architecture was determined in a 

total of 391 plants (Table 4-3). 

 

Under these growth conditions, the seedlings had longer primary roots and 

more lateral roots than those of the plants described above, where roots were 

allowed to grow inside the media of vertical plates for 10 days (Figure 4-4). 

Comparisons of the architecture of roots grown along the surface of the media 

revealed that the cad2-1 mutant genotype had similar values for the primary 

root length to the wild-type. In contrast, under these conditions the pad2-1 

mutants had significantly longer primary roots than the wild-type seedlings. 

However, the rax1-1 and rml1-1 mutants had significantly shorter roots than 

the wild-type under these conditions (Figure 4-4; Table 4-3; Figure 4-5A). The 

growth conditions had no effect on the architecture of the rml1-1 roots. This 

mutant was only able to develop short primary roots (1.48 mm).  

 

Lateral root densities in the pad2-1, cad2-1 and rax1-1 mutant genotypes were 

decreased relative to the wild-type. The trend to lower lateral root densities in 

the mutants relative to the wild-type was observed when roots were grown 

along the surface of the media, and followed a similar pattern to that reported 

above for roots growing inside the media.  
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Table 4-3: Comparison of root architecture in a range of GSH deficient mutant 

genotypes grown along the surface of the medium. A comparison of root 

architecture was performed in 7-day old plantlets of wild-type (wt), wild-type grown in 

the presence of 1mM BSO (wt+BSO) and mutant plantlets deficient in glutathione 

synthesis (cad2-1, pad2-1, rax1-1 and rml1-1), which were grown on vertical plates 

along the surface of the medium. Data are displayed as mean ± standard error with 

corresponding number of plantlets assessed. This data is also shown in graphical 

form in Figure 4-4 with complementary information. 

Genotype 
Primary root length 

(mm) 

Number of lateral 

roots 

Number of 

plants 

wt 36.34 ± 0.672 3.275 ± 0.186 91 

cad2-1 36.47 ± 0.618 2.526 ± 0.176 61 

pad2-1 39.06 ± 0.954 3.220 ± 0.209 65 

rax1-1 33.21 ± 0.558 1.237 ± 0.104 64 

rml1-1   1.48 ± 0.054 0.000 40 

wt+BSO   2.27 ± 0.059 0.000 70 

Total     391 

 

 

The wild-type plants had the highest lateral root densities, followed by pad2-1, 

cad2-1 and rax1-1 mutants (Figure 4-5C). 

 

The architecture of wild-type roots treated with BSO 

When wild-type plants were grown in the presence of BSO, which is an 

inhibitor of the first enzyme of glutathione synthesis, primary root length was 

decreased relative to the wild-type in the absence of this inhibitor. The average 

lengths of the roots of the wild-type seedlings grown in the presence of BSO 

were almost the same as those of the rml1-1 mutants and no lateral roots 

developed (Figure 4-4; Figure 4-5C). Lateral root densities were therefore not 

calculated in the rml1-1 mutant or the wild-type plants grown in the presence of 

1 mM BSO in these studies (Figure 4-5C). 
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Figure 4-4: Phenotypic comparison of root architecture in a range of GSH deficient mutant genotypes grown along the surface of the 

medium. A comparison of root phenotypes was performed in a range of 7-day old mutant genotypes deficient in glutathione synthesis with wild-

type (wt) Arabidopsis grown in the absence and presence of BSO (1 mM BSO). The white bar represents 1 cm.   
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Figure 4-5: Comparison of root architecture in a range of GSH deficient mutant genotypes grown along the surface of the medium. A 

comparison of root architecture was performed in 7-day old wild-type (wt) and wild-type grown in the presence of BSO (1 mM BSO) with a range 

of mutant plantlets deficient in glutathione synthesis (cad2-1, pad2-1, rax1-1 and rml1-1). A) Comparison of the average length of the primary 

root; B) the average number of lateral roots and D) the root density as number of lateral roots per cm primary root length. Data are shown as 

mean ± standard error. *, significant differences at p<0.05 and **, significant differences at <0.01.  

A B 

C 
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4.2.3 Induced stress 

 

The effects of glutathione deficiency on plant responses to induced exposures 

to various abiotic stresses were determined by comparing the leaf areas of 17-

day old plants that had been exposed to stress for 7 days. The stress 

treatments used in these studies were high light (400 µmol. m-2 sec-1), 

oxidative stress (H2O2), salt stress (sodium chloride), disruption of 

photosynthetic electron transport by paraquat (PQ), which accepts electrons 

from the photosystem I and transfers them to molecular oxygen to generate 

reactive oxygen species, and osmotic stress (sorbitol). In parallel plants were 

grown under standard (low light) conditions for comparison. Leaf areas were 

determined in a total of 2304 plants (384 plants per genotype and per 

condition) and relative leaf growth rates were calculated based on leaf area 

increases between days 10-11, 11-12, 12-14 and 14-17, e.g. leaf area day 11 

divided by leaf area day 10.  

 

With the exception of the treatment with 4 mM H2O2, which had no significant 

effect on leaf area, the stress treatments that were applied generally reduced 

leaf areas in all genotypes relative to the areas measured under control 

conditions (Figure 4-6A, B, C, D, E). For example, the osmotic stress induced 

by the addition of sorbitol to the growth media and salt stress induced by the 

inclusion of NaCl, reduced leaf areas significantly when compared to values 

obtained under standard growth conditions. However, the greatest reduction in 

leaf area was observed in plants grown exposed to paraquat (Figure 4-6A, B, 

C, D, E).  
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Figure 4-6: Comparison of leaf area in a range of GSH deficient mutant 

genotypes grown in induced stress conditions. Phenotypic comparison of leaf 

area phenotypes in 17-day old wild-type and Arabidopsis mutant genotypes with 

general glutathione depletion in the absence of stress (control) and after induced 

exposure to various stress treatments, A:. The black bar represents 1 cm. 

Comparisons of leaf areas are displayed for: B: wt, C: cad2-1, D: pad2-1, E: rax1-1 

and F: all genotypes in low light (control) and high light conditions. Data are shown as 

mean. Asterisks represent significant differences for control vs treatment comparisons 

for one genotype and “a” for comparisons of genotype vs wild-type within control or 

treatment condition (p<0.01). Standard error is not displayed, as too small. 
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Figure 4-7: Comparison of relative growth rate in a range of GSH deficient 

mutant genotypes grown in induced stress conditions. A comparison of relative 

growth rates was performed for leaf areas in wild-type (wt, A, E, I) and a range of 

mutants deficient in glutathione synthesis (cad2-1, B, F, J; pad2-1, C, G, K and rax1-

1, D, H, L). Comparisons were made for 17 day-old plants grown for 7 days under the 

following stress treatments: Low light and high light (A, B, C, D), H2O2 and NaCl (E, F, 

G, H) and PQ and Sorbitol (I, J, K, L). Data are shown as mean growth rates. 

 

 

In contrast, the wild-type and mutant plants grown under high light conditions 

had significantly greater leaf areas than controls grown under low light (Figure 

4-6F). The stress-induced decreases in relative growth rates in plants exposed 

to stress were comparable in the wild-type and mutant lines, except for the 

pad2-1 mutant, which grew better under high light than the wild-type but which 

showed greater decreases in relative growth rates, particularly in plants 
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exposed to osmotic stress (Figure 4-7). Apart from these small differences, the 

wild-type plants and glutathione-deficient mutants showed similar responses in 

relative growth rates to the stress treatments (Figure 4-6, Figure 4-7).  

 

4.2.4 Continuous stress 

 

The effects of glutathione deficiency on responses to continuous exposures to 

various abiotic stresses were determined by comparing the leaf areas of       

14-day old plants that had been exposed to various abiotic stresses throughout 

the growth period. The stress treatments used in these studies were the 

inhibition of PARP activity by 3-methoxybenzamide (3MB), the disruption of 

photosynthetic electron transport by paraquat (PQ), PQ-induced disruption of 

photosynthetic electron transport plus 3MB-induced PARP inhibition 

(3MB&PQ), salt stress (sodium chloride), and osmotic stress (sorbitol). In 

these studies, the growth of the leaf rosettes (leaf area) of the wild-type   

(Figure 4-8B, F) was compared to that of the cad2-1 (Figure 4-8C, F), pad2-1 

(Figure 4-8D, F) and rax1-1mutant (Figure 4-8E, F). Leaf area was significantly 

reduced in all genotypes when plants were grown under continuous stress 

conditions compared to the leaf areas measured in the respective genotypes 

under control conditions (Figure 4-8). As observed previously, the low 

glutathione mutants had significantly lower leaf areas than the wild-type under 

standard growth conditions (Figure 4-8B, C, D, E, F). However, under many of 

the stress conditions applied in these experiments, the mutants exhibited 

significantly larger leaf areas than the wild-type plantlets grown under the 

same stress condition (Figure 4-8B, C, D, E, F; where comparisons were made 

for one treatment at one time point).  
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Figure 4-8: Comparison of leaf area in a range of GSH deficient mutant 

genotypes grown in continuous stress conditions. A: Phenotypic comparison of 

leaf area phenotypes in 14-day old wild-type and Arabidopsis mutant genotypes with 

general glutathione depletion in the absence of stress (control) and after continuous 

exposure to various stress treatments. The black bar represents 1 cm. Comparisons 

of leaf areas are displayed for: B: wt, C: cad2-1, D: pad2-1, E: rax1-1 and F: all 

genotypes in control and 3MB treatment. Data are shown as mean. Asterisks 

represent significant differences for control vs treatment comparisons for one 

genotype and “a” for comparisons of genotype vs wild-type within control or treatment 

condition (p<0.01). Standard error is not displayed, as too small. 
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The exception was the osmotic stress conditions induced by the sorbitol 

treatment, which led to lower leaf areas in the mutants than the wild-type 

(Figure 4-8B, C, D, E, F). However, leaf area in the pad2-1 mutant was less 

changed by the sorbitol treatment than the leaf area in the wild-type plants.  

 

4.3 Results - Cytosolic glutathione deficiency 

 

4.3.1 Shoot phenotype 

 

The effects of cytosolic glutathione deficiency on shoot development were 

determined in plants grown for 14 days on horizontal plates under standard 

growth conditions. Rosette leaf area and relative growth rates were determined 

in plants were grown under low light (control) and high light regimes. A total of 

1448 plants were analysed for these studies (Table 4-4). In the following 

clt1clt2clt3 triple mutants will be referred to as clt mutants. 

 

Table 4-4: Comparison of leaf area in wt and a mutant genotype with cytosolic 

glutathione deficiency grown under standard growth conditions. A comparison of 

leaf area in a range of 14-day old mutant seedlings exhibiting cytosolic glutathione 

depletion (clt) compared to wild-type (wt) Arabidopsis. Data are shown as mean ± 

standard error and number of plants assessed. This data is also shown in graphical 

form in Figure 4-9 with complementary information. 

Genotype 
Leaf area                                           

(mm²) 
Number of plants 

wt 41.91 ± 0.511 743 

clt 44.54 ± 0.713 705 

Total   1448 

 

 



 

82 
 

 

Figure 4-9: Comparison of leaf area in wt and a mutant line with cytosolic 

glutathione deficiency grown under standard growth conditions. A comparison of 

leaf area was performed in 14-day old mutant seedlings with glutathione deficiency 

(clt) compared to wild-type (wt) Arabidopsis. A: Comparison of the leaf area 

phenotypes. The bar represents 1 cm. B: Histogram comparison of leaf areas. 

Asterisks indicate the significant differences compared to wt a p<0.01. Data are 

shown as mean ± standard error. The percentages relative to the wt, which were 

calculated on average leaf areas, are displayed above each bar. 

 

 

 

Figure 4-10: Comparison of growth rates in wt and a mutant genotype with 

cytosolic glutathione deficiency grown under standard conditions. A comparison 

of relative growth rates was performed for wild-type Arabidopsis (wt, A) and mutant 

plants exhibiting cytosolic depletion of glutathione (clt, B). Comparisons were made 

for 14 day-old plants grown for 14 days under low light conditions before they were 

transferred for another 4 days to low light and high light conditions. Data are shown as 

mean growth rates. 

 

 

a 

A B 
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The clt1clt2clt3 mutant has altered intracellular glutathione partitioning 

resulting in cytosolic glutathione deficiency because glutathione and its 

precursor are restricted to the chloroplast. The clt plants developed 

significantly larger rosettes with greater leaf areas than the wild-type        

(Figure 4-9, Table 4-4). However, relative leaf growth rates, measured 

between days 10 to 14, were similar in the clt triple mutants and wild-type 

plants grown under same conditions (Figure 4-10). 

 

4.3.2 Root phenotype 

 

Root architecture was also examined in the clt mutants under standard growth 

conditions on plants grown for either 7 or 10 days on vertical plates. Primary 

root length, the number of lateral roots and lateral root densities were 

determined on roots, which were allowed to grow either inside the media for 10 

days or along the surface of the media for 7 days.  

 

4.3.2.1 Roots grown inside medium 

 

Seeds of the wild-type and clt mutants with cytosolic glutathione deficiency 

were also sown along a cut edge of the media and grown on vertical plates for 

10 days prior to assessment. In total 1162 plants were assessed under these 

conditions in which the roots grow inside the media (Table 4-5).  

 

The clt mutants had similar primary root lengths to the wild-type plants    

(Figure 4-11B) but they showed a significant reduction in the number of lateral 
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roots. Therefore lateral root densities were significantly lower in the clt mutants 

than the wild-type (Figure 4-11C; Table 4-5). 

 

Table 4-5: Comparison of root architecture in wt and a mutant genotype with 

cytosolic glutathione deficiency (clt) grown inside the medium. A comparison of 

root architecture in 10-day old plantlets of wild-type (wt) an mutant plantlets with 

cytosolic deficiency of glutathione (clt), which were grown on vertical plates inside the 

medium. Data are displayed as mean plus standard error and the number of plantlets 

assessed is shown per genotype and in total. This data is also shown in graphical 

form in Figure 4-11 with complementary information. 

Genotype 
Primary root length 

(mm) 

Number of lateral 

roots 
Number of plants 

wt 27.74 ± 0.596 1.195 ± 0.065 655 

clt 28.38 ± 0.618 0.868 ± 0.063 507 

Total     1162 
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Figure 4-11: Comparison of root architecture in wild-type (wt) and a mutant genotype with cytosolic glutathione deficiency (clt) grown 

inside the medium. A comparison of root architecture in 10-day old wild-type (wt) and mutant plantlets with altered intracellular partitioning (clt). 

A: Comparison of phenotypes of wt and clt. The white bar represents 1 cm and the red lines show start and end of the root; B: shows the average 

length of the primary root; C: the average number of lateral roots and D: the root density as number of lateral roots per cm primary root. Asterisks 

represent significant differences p<0.01.  
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4.3.2.2 Roots grown on top of medium 

 

Seeds of the wild-type and clt mutants were also sown on top of the media and 

grown on vertical plates for 7 days. Under these conditions, the roots grow 

along the surface of the medium. For this analysis, primary root lengths, the 

number of lateral roots and lateral root densities were determined in the roots 

of 131 plants (Table 4-6). 

 

Table 4-6: Comparison of root architecture in wild-type (wt) and a mutant 

genotype with cytosolic glutathione deficiency grown along the surface of the 

medium. A comparison of root architecture in 10-day old plantlets of wild-type (wt) 

and mutant plantlets with cytosolic deficiency of glutathione (clt), which were grown on 

vertical plates along the surface of the medium. Data are displayed as mean plus 

standard error and the number of plantlets assessed is shown per genotype and in 

total. This data is also shown in graphical form in Figure 4-12 with complementary 

information. 

Genotype Primary root length (mm) Number of lateral roots Plant count 

wt 36.34 ± 0.672 3.275 ± 0.186 91 

clt 25.54 ± 0.778 0.700 ± 0.135 40 

Total     131 

 

 

The clt mutants had significantly shorter primary root lengths than the wild-type 

plants (Figure 4-12B). Moreover, the clt mutants had fewer lateral roots. 

Lateral root densities were significantly lower in the clt mutants than the wild-

type (Figure 4-12C, D; Table 4-6). 
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Figure 4-12: A comparison of root architecture in 7-day old wild-type (wt) with mutant plantlets deficient in cytosolic glutathione (clt). 

A) Comparison of the phenotypes of the primary root; The white bar represents 1 cm. B) displays a comparison of the average lengths of the 

primary roots, C) the number of lateral roots and D) the root density as number of lateral roots per cm primary root length. Data are shown as 

mean ± standard error. ** show significant differences compared to wt at p<0.01. 
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4.3.3 Induced stress 

 

The effects of cytosolic glutathione deficiency in the clt mutants on the 

responses to abiotic stress were determined in 17-day old plants.  

 

In these experiments mutant and wild-type plants were grown for 10 days 

under standard conditions and then grown for a further 7 days in the presence 

of various abiotic stresses. These were high light stress (400 µmol m-2 sec-1), 

oxidative stress (H2O2), salt stress (sodium chloride), inhibition of 

photosynthetic electron transport by paraquat (PQ) and osmotic stress 

(sorbitol). The leaf areas of 17-day old rosettes were determined and relative 

growth rates were calculated based on the leaf area increases between days 

10-11, 11-12, 12-14 and 14-17, e.g. leaf area day 11 divided by leaf area day 

10. A total of 768 plants were assessed in these experiments, with 384 plants 

analysed per genotype and per condition. 

 

When the clt mutants were grown under control or induced stress treatments, 

they had significantly larger leaf areas than the wild-type plants (a; Figure 

4-13A, B, C, D). With the exception of the treatment with 4 mM H2O2, which did 

not have any significant effect on leaf area (*; Figure 4-13B, C, D) rosette leaf 

areas were significantly decreased following the stress treatments in both 

genotypes (Figure 4-13). The wild-type plants had significantly higher leaf 

areas when grown under high light than under low light (standard) conditions. 

Likewise, the clt rosette leaf areas were significantly larger under high light 

compared to low light conditions (Figure 4-13D). 
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Figure 4-13: Comparison of leaf area in wt and a mutant genotype with cytosolic 

glutathione deficiency (clt) grown in induced stress conditions. Phenotypic 

comparison of leaf area phenotypes in 17-day old wild-type and an Arabidopsis 

mutant genotype with cytosolic glutathione depletion in the absence of stress (control) 

and after induced exposure to various stress treatments, A). The black bar represents 

1 cm. Comparisons of leaf areas are displayed for: B) wt and C) clt and D) both 

genotypes in low and high light conditions. Data are shown as mean. Asterisks 

represent significant differences for control vs treatment comparisons for one 

genotype and “a” for comparisons of genotype vs wild-type within control or treatment 

condition (p<0.01). 
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Figure 4-14: A comparison of relative growth rates for wild-type Arabidopsis   

(wt, A, C, E) and mutant plants exhibiting cytosolic depletion of glutathione   

(clt, B, D, F) grown in induced stress conditions. Comparisons were made for 17 

day-old plants grown for 7 days under the following stress treatments: Low light and 

high light (A, B), H2O2 and NaCl (C, D) and PQ and Sorbitol (E, F). Data are shown as 

mean growth rates. 

 

 

However, wild-type and clt plants grown under high light conditions did not 

exhibit significant differences in leaf area (Figure 4-13D). The PQ treatment 

resulted in the greatest decrease in leaf areas in the mutant and wild-type 
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plants (Figure 4-13B, C, D). Relative growth rates and the stress-induced 

decreases in this parameter were comparable in wild-type and mutant lines 

(Figure 4-14). The greatest decreases in relative growth rates were observed 

for the PQ and osmotic stress treatments (Figure 4-14E, F).  

 

4.3.4 Continuous stress 

 

The effects of continuous stress exposure were also compared in the wild-type 

and clt mutants. Leaf areas were determined in 14-day old plants that had 

been grown throughout in the absence or presence of the abiotic stresses 

imposed by the inhibition of PARP activity by 3-methoxybenzamide (3MB), the 

disruption of photosynthetic electron transport by paraquat (PQ), PQ-induced 

disruption of photosynthesis plus 3MB-induced inhibition of PARP (3MB&PQ), 

salt stress (sodium chloride), and osmotic stress (sorbitol).  

 

Leaf areas were determined in a total of 768 plants with 384 plants measured 

per genotype and per condition. The clt mutants had significantly smaller leaf 

areas under stress conditions than the controls grown in the absence of stress, 

as did the wild-type plants (*; Figure 4-15B, C, D). However, the clt mutant had 

significantly larger leaf areas than the wild-type for plants grown in the 

presence of 3MB, 3MB&PQ and salt treatments (a; Figure 4-15A, B, C, D). 
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Figure 4-15: Comparison of leaf area in wt and a mutant genotype with cytosolic 

glutathione deficiency grown in continuous stress conditions. A: Phenotypic 

comparison of leaf area phenotypes in 14-day old wild-type and an Arabidopsis 

mutant genotype with cytosolic glutathione depletion in the absence of stress (control) 

and after continuous exposure to various stress treatments. The black bar represents 

1 cm. Comparisons of leaf areas are displayed for: B: wt and C: clt and D: both 

genotypes in the absence (-3MB) and presence of 3MB (+3MB). Data are shown as 

mean. Asterisks represent significant differences for control vs treatment comparisons 

for one genotype and “a” for comparisons of genotype vs wild-type within control or 

treatment condition (p<0.01). 
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4.4 Conclusions 

 

The data presented here show that a general deficiency in GSH decreases 

lateral root density. This effect was observed in the cad2-1, pad2-1 and rax1-1 

mutants. Furthermore, altered intracellular partitioning of glutathione, as occurs 

in the clt1clt2clt3 triple mutants, also resulted in significantly lower lateral root 

densities than in the wild-type. These findings demonstrate that a high 

cytosolic GSH pool is crucial for lateral root development.  

 

 The leaf areas of the cad2-1, pad2-1 and rax1-1 mutants grown under 

standard (low light) conditions were significantly smaller than the wild-type 

plants. In contrast, the altered intracellular partitioning of glutathione in the 

clt1clt2clt3 triple mutants resulted in significantly larger rosette areas under 

these growth conditions. However, growth under high light led to a significant 

increase in overall rosette size in all genotypes and resulted in the restoration 

of the wild-type shoot phenotype in the pad2-1 mutants. This observation 

might be due to the fact that an irradiance of 400 µmol m-2 sec-1 is hardly 

sufficient to elicit photoinhibitory effects, but rather stimulates growth. 

Conversely, the cad2-1 and rax1-1 mutants were still smaller than the wild-type 

under high light. These data suggest that the expression of the low-GSH 

rosette phenotype, observed in the mutants, is irradiance-dependent.  

 

The effects of glutathione depletion and of altered intracellular GSH 

partitioning on growth responses to induced and continuous exposure to 

oxidative stress (paraquat), salt stress and osmotic stress were also analysed 

in this study.  
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All of the stress treatments used in these experiments, except H2O2, 

significantly decreased leaf area in all genotypes. However, the GSH-deficient 

and clt1clt2clt3 mutants were no more sensitive to the stress treatments than 

the wild-type. In fact, in several cases the mutants were less sensitive than the 

wild-type to the stress treatments. These findings would suggest that 

glutathione depletion does not increase sensitivity to abiotic stress. 

 

5 Chapter 5: Transcriptomic analyses of glutathione depletion 

 

5.1 Introduction 

 

Reduced glutathione plays a crucial role in plant development. Literature 

evidence demonstrates that knockout mutations in the gene encoding the first 

enzyme of glutathione biosynthesis (GSH1) results in an embryo-lethal 

phenotype and knockout mutations in the gene encoding the second enzyme 

of biosynthetic pathway (GSH2) results in seedling-lethal phenotypes (Cairns 

et al., 2006). Moreover, glutathione depletion to tissue amounts of less than 

5% of those found in wild-type plants inhibits post-embryonic root 

development. For example, the root meristemless 1-1 (rml1-1) mutant fails to 

establish an active post-embryonic root meristem due to an arrest of the cell 

cycle resulting from low glutathione availability (Vernoux et al., 2000A). The 

resulting phenotype is characteristic for the rml1-1 mutant and is defined by an 

extremely short mature root composed of the same number of cells as the 

embryonic root (Cheng et al., 1995; Vernoux et al., 2000A).  
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However, our current knowledge of the mechanisms that explain glutathione 

functions or how glutathione might regulate gene expression, remains still 

limited (Cobbett et al., 1998; Vernoux et al., 2000A; Ball et al., 2004; Cairns et 

al., 2006; Parisy et al., 2006; Schlaeppi et al., 2008). As knockout mutations in 

the GSH1 and GSH2 gene result in embryo- or seedling-lethal phenotypes 

respectively, the rml1-1 mutant remains the only non-lethal mutant genotype 

available to study the effects of severe glutathione depletion on changes in 

transcriptomic patterns. An analysis of the effects of glutathione on nuclear 

gene expression and a characterization of the genes affected by glutathione 

was one particular aim of this PhD study. 

 

Earlier studies demonstrated that glutathione is recruited into the nucleus 

during early stages of the cell cycle in proliferating cells (Pellny et al., 2009). 

Furthermore, this increase in the nuclear glutathione pool correlates with an 

increase in PARP activity and is further known to precede increases in the 

abundance of PARP1 and PARP2 mRNAs (Pellny et al., 2009). Together with 

studies on glutathione-regulated gene expression in the regulator of 

ASCORBATE PEROXIDASE2 1-1 (rax1-1) and cadmium sensitive 2-1    

(cad2-1) mutants, where transcripts encoding 32 stress-responsive genes 

changed in response to low glutathione in the mutants, available findings 

demonstrate an effect of glutathione on nuclear gene expression (Ball et al., 

2004).  

 

This PhD study had therefore the aim to investigate the effects of glutathione 

depletion on nuclear gene expression by using the rml1-1 mutant, particularly 

focussing on the effects on stress responses, hormone metabolism and 
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signalling, expression of transcription factors and genes encoding components 

of DNA repair mechanisms. Specific objectives were to characterize genes 

clusters most affected by glutathione depletion in greater detail, allowing for 

deeper insights into the function of glutathione in plastid-to-nucleus 

(retrograde) signalling pathways and its impact on plant developmental 

processes, such as e.g. hormone metabolism and signalling or transcription 

factors. In general, characterizations of the effects of glutathione depletion on 

gene expression were performed on the 10 most transcriptionally induced and 

10 most repressed genes for each category separately where possible. 

Analyses were carried out for genes in categories such as: cell cycle 

components, PARP and DNA repair mechanisms, stress responses, hormonal 

pathways with particular focus on auxin, abscisic acid and ethylene, as well as 

transcription factors and redox processes.  

 

While there are various platforms for microarray analysis in Arabidopsis 

thaliana, such as e.g. Affymetrix ATH1 arrays (Redman et al., 2005) or 

Complete Arabidopsis Transcriptome MicroArray (CATMA) spotted 

microarrays (Sclep et al., 2007), Agronomics1 tiling arrays (Rehrauer et al., 

2010) were chosen for this study. Affymetrix ATH1 arrays are the ones most 

widely used for transcriptome profiling in Arabidopsis to date and additionally 

Genvestigator covers more than 4300 hybridization to ATH1 (Rehrauer et al., 

2010). However, Agronomics1 tiling arrays offer considerable advantages, 

such as e.g. coverage of the whole nuclear, chloroplastic and mitochondrial 

genomes of Arabidopsis thaliana (~81% of the known nuclear genome and 

~99% of the organelle genomes), inclusion of all ATH1 perfect match probes, 

ability to measure transcript levels, as well as coverage of both strands of the 
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genome, which further allows obtaining strand-specific information (Rehrauer 

et al., 2010). And although Agronomics1 tiling arrays might represent the best 

possible method available to date for obtaining an initial overall picture of the 

effects of glutathione depletion on gene expression, the standard limitations 

inherent to microarrays still apply, such as e.g. variability of results, lack of 

sufficient reproducibility, insufficient fidelity of gene expression data, possible 

statistical problems or insufficient sensitivity. Hence, the results presented in 

the following can only provide initial insights into the effects of glutathione 

depletion on gene expression. 

 

Agronomics1 tiling arrays and qRT-PCR were applied as methods in this PhD 

study to analyse GSH-dependent effects on leaf and root transcriptome 

patterns. In particular, leaf and root trancriptomes of shoots and roots of the 

rml1-1 mutant were compared relative to the wild-type to identify any tissue 

specific effects. For the annotation of genes in the tiling array analysis, the 

most recent version of the TAIR databases was used (TAIR10, 2012; Lamesch 

et al., 2011). The full microarray data can be found at NCBI GEO as Series 

GSE36893 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36893). 

Changes in gene expression that were identified in the rml1-1 might also 

provide information about the occurrence of the characteristic root phenotype 

in this mutant. qRT-PCR was finally applied to verify changes in the 

abundance of a few selected transcripts in the rml1-1 mutant, in mutant lines 

with less severe glutathione depletion, as well as in wild-type plants that were 

grown in the presence of BSO. Each experiment comprised three independent 

biological replicates per genotype. It was finally hypothesized that less severe 
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alleles of the GSH1 gene, with only 20 to 50 % less glutathione compared to 

the wild-type, would also result in smaller changes in gene expression.  

 

5.2 Results – Microarray analysis of general glutathione deficiency in 

the root meristemless 1-1 (rml1-1) mutant 

 

Transcriptome analyses of rml1-1 roots and shoots and of the wild-type were 

carried out on 7-day old seedlings grown on plates. Preliminary studies had 

shown that this time point allowed seedling growth without the appearance of 

any adverse effects in the shoots resulting from the impaired root development 

in the rml1-1 mutants. RNA samples were analyzed using Agronomics1 tiling 

arrays and normalized data were analysed with BINGO cytoscape 2.8.1 

(Maere et al., 2005; tool for the determination of gene ontology categories that 

are statistically overrepresented), MapMan 3.5.1 (Thimm et al., 2004; tool to 

display large microarray datasets as diagrams of metabolic pathways or other 

processes) and Multi experiment Viewer 4.6.2 (Saeed et al., 2003; microarray 

data analysis tool, incorporating sophisticated algorithms for clustering, 

visualization, classification, statistical analysis).  

 

A total of 1,449 transcripts changed in abundance in the shoots of the rml1-1 

mutants relative to the wild-type (Table 5-1). Of these, 650 decreased in 

abundance in rml1-1, while 799 increased in the rml1-1 shoots (Table 5-1). As 

the initial method for tissue disruption did not allow for the extraction of 

sufficient amounts of highly pure RNA to obtain three separate biological 

replicates, samples had to be pooled and hence no statistical evaluation of the 

transcriptome data obtained for roots was possible. However, a preliminary 
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analysis revealed that 3,771 transcripts were changed in abundance in the 

rml1-1 roots relative to the wild-type (Table 5-1) with 2199 decreasing and 

1572 increasing in abundance in the rml1-1 mutant (Table 5-1). Very few 

transcripts changed in rml1-1 tissues encoding enzymes involved in primary 

metabolism (photosynthesis, TCA cycle and glycolysis) (Figure 5-1). In 

particular relative expression of transcripts encoding -ECS and GSH-S was 

higher in the rml1-1 roots and shoots than in the wild-type (Figure 5-2).  

 

Table 5-1: Overview of transcripts with altered expression identified from an 

initial analysis of the microarray data of the rml1-1 mutant. Shown are the overall 

number of transcripts that are altered in expression in shoots and roots of the rml1-1 

(Total); the number of transcripts after statistical analysis for the shoot (p <0.05); the 

number of transcripts after excluding values with a false discovery rate of larger than 

0.05 for the shoot (FDR<0.05); the number of transcripts with fold changes in 

expression larger than 2-fold or smaller than 0.5-fold relative to the wild-type 

(2<FC<0.5); and the number of transcripts in shoots and roots that show down- 

(Lower in the rml1-1) or up-regulated (Higher in the rml1-1) expression in response to 

glutathione depletion in the rml1-1.  

  Total P < 0.05 FDR < 0.05 2 < FC < 0.5 
Lower 

in rml1-1 

Higher 

in rml1-1 

          
  

Shoot 

30608 

11046 7251 1449 650 799 

Root 
Single sample 

comparison 
3771 2199 1572 
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Figure 5-1: MapMan overview for changes in primary metabolism in rml1-1 

mutant. Depicted are changes in primary metabolism in shoots of rml1-1 plantlets (A), 

and in roots of rml1-1 plantlets (B). 

 

A 

B 
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Although earlier studies were already able to demonstrate strongly diminished 

activities of -ECS under glutathione depleting conditions (Vernoux et al., 

2000A), the results found in this analysis support this finding. Furthermore, it 

seems that rml1-1 plants try and compensate for the non-functional -ECS and 

the resulting lower glutathione amounts with higher expression of genes 

encoding the two enzymes involved in glutathione biosynthesis (Figure 5-2). 

 

 

 

Figure 5-2: Comparison of expression of genes involved in glutathione 

biosynthesis. Displayed are fold-changes in expression of the genes encoding 

enzymes of glutathione biosynthesis (-ECS and GSH-S) for root (black bars; A) and 

shoot (white bars; B) of the rml1-1 mutant relative to the wild-type. 

 

 

5.2.1 Effects on core cell cycle components 

 

In a next step, the effect of glutathione depletion on cell cycle genes was 

investigated. A list of genes was retrieved from TAIR for all genes that were 

annotated as either directly involved in the control of the cell cycle, cell cycle-

related or otherwise related to cell division. This list was then compared with 

transcripts from the rml1-1 tiling array analysis that exhibited altered 

expression. For reasons of simplicity AGI codes were avoided from the 

A B 

-ECS GSH-S -ECS GSH-S 
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graphics in this section, but they can be found in Appendix VI: Overview of 

selected transcripts that are presented in Chapter 5 “Transcriptomic analyses 

glutathione depletion”.. 

 

This analysis revealed that transcripts encoding core cell cycle components, 

such as cyclins (CYCs) and cyclin-dependent kinases (CDKs), were changed 

in rml1-1 roots relative to the wild-type (Figure 5-3A). CDKs are family of 

protein kinases that are governing progression through the cell cycle. 

However, crucial to this control of the cell cycle is the formation of various 

different CDK-cyclin complexes, which then phosphorylate a large number of 

substrates at crucial G1 to S and G2 to M transition points (Inze & De Veylder, 

2006; Francis, 2007; Gutierrez et al., 2009). Upon phosphorylation of certain 

substrates further processes are triggered, such as e.g. DNA replication or 

mitosis (Inze & De Veylder, 2006; Francis, 2007; Gutierrez et al., 2009). Apart 

from the ability to form CDK-cyclin complexes, little is known about the actual 

interaction of cyclins with CDKs. However, it is thought that D-type cyclins 

regulate the G1 to S transition, that A-type cyclins are involved S to M phase 

control, and that B-type cyclins participate in both G2 to M transition as well as 

in M phase control (Inze & De Veylder, 2006; Francis, 2007; Gutierrez et al., 

2009). 

 

Of such cyclins (CYCs) and cyclin-dependent kinases (CDKs), in particular 

CYCD3;1, CYCA1;1, CYCB1;2, CYCB1;3, CYCB1;4, CYCB2;1, CYCB2;2, 

CYCB2;4, CDKB1;2, CDKB2;1, CDKB2;2, CYCP3;2 and CYCP4;1 transcripts 

were at least two-fold lower in rml1-1 roots relative to the wild-type (Figure 

5-3A). 
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Figure 5-3: Comparisons of expression for transcripts involved in cell cycle 

regulation. Relative expression is shown as fold-change in the roots (black bars; A 

and C) and shoots (white bars; B and D) of rml1-1 mutant relative to wild-type plants. 

While A and B represent the relative expression of core cell cycle genes, C and D 

show the genes, whose expression is affected during the cell cycle, in the rml1-1 

seedlings relative to the wild-type. 
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But none of these transcripts changed in abundance in rml1-1 shoots, 

suggesting that the effects of glutathione depletion are stronger in root tissues 

(Figure 5-3B). Literature evidence described a link between glutathione and 

thioredoxin. At least within the shoots functional redundancies between 

glutathione and thioredoxin functions exist, allowing for compensations of a 

loss of either of these compounds, which might explain why the expression of 

these transcripts remains unaffected in the shoots of the rml1-1 (Reichheld et 

al., 2007).  

 

Transcripts related to the cell cycle and cell division-related processes also 

changed in rml1-1 roots relative to the wild-type. Knolle (involved in: acetyl-

CoA metabolic process, cell proliferation, cellular membrane fusion, 

cytokinesis, cytokinesis by cell plate formation, intracellular protein transport, 

microtubule cytoskeleton organization, spindle assembly; TAIR10), AtAUR1, 

AtAUR2 (both are necessary for cytokinesis as well as with the microtubule 

spindle; TAIR10), CKS2 (cyclin-dependent kinase, regulatory subunit; 

TAIR10), PROLIFERA (involved in DNA replication initiation; TAIR10), ATBS1 

(promotes the correct definition of the hypophysis cell division plane; TAIR10), 

BUR1, UVI4-Like (OSD1), PCNA1 (involved in cell cycle regulation; 

TAIR10)and MAD2 (spindle assembly checkpoint protein functions; TAIR10) 

transcripts were at least two-fold lower in rml1-1 roots than in the wild-type       

(Figure 5-3C). These are interesting undocumented findings, which suggest 

that glutathione depletion might result in a full arrest of not only the cell cycle, 

but also of all cell division-related processes.  
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In addition, SIAMESE (SIM) transcripts were 2.4-fold higher in rml1-1 shoots 

than in the wild-type (Figure 5-3C and D). This finding represents another 

indicator for a possible very important role for glutathione in the control of the 

cell cycle, as SIM is required in coordinating cell division and cell differentiation 

and its expression seems to be controlled by glutathione. Earlier studies had 

only shown that gibberellic acid-mediated signalling controls cell proliferation 

and also SIM (Achard et al., 2009). Finally, of the transcripts decreased in 

rml1-1 roots that encode either cyclins or cyclin-dependent kinases, which are 

involved in cell cycle regulation, 11 have functions in the G2 to M transition, 

suggesting that cell cycle progression is likely arrested at an earlier stage and 

therefore expression of proteins required during G2 to M phase may not be 

expressed (Figure 5-4). Additionally, the tiling array analysis also revealed that 

only one repressed transcript in rml1-1 roots was involved in the G1 to S 

transition (CYCD3;1, Figure 5-4). This might indicate that glutathione depletion 

causes a cell cycle arrest at the G1 to S transition and genes involved in later 

stages (CYCA1;1, CYCB1;2, CYCB1;3, CYCB1;4, CYCB2;1, CYCB2;2, 

CYCB2;4, CDKB1;2; CDKB2;1, CDKB2;2, CYCP3;2, and CYCP4;1) of the cell 

cycle are consequently not expressed. This indication can be supported by 

literature evidence provided from studies by Inze and De Veylder (Inze & De 

Veylder, 2006). They described a model of cell cycle control in which CDKA 

plays a pivotal role at both G1 to S as well as G2 to M transition points. 

However, to actually become phosphorylated and facilitate these transitions 

CDKA is required to form a complex with D-type cyclins (Inze & De Veylder, 

2006). CYCD3;1 might be the crucial or one possible interaction partner 

enabling the activation of CDKA via phosphorylation. 
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Figure 5-4: Schematic representation of the cell cycle stages with transcripts. 

Displayed are transcripts that were differentially expressed in the roots of the rml1-1 

mutants relative to the wild-type. Transcripts are shown next to the respective stage of 

the cell cycle they are associated with. 

 

 

In addition, an arrest of the cell cycle at G1 to S transition would be in line with 

other observations made in tobacco cell suspension cultures, where 

glutathione depletion resulted in an arrest of the cell cycle at G1 to S transition 

(Vernoux et al., 2000A). Although these considerations require more profound 

investigation, they can at least serve as stronger indications. 

 

Nevertheless, the findings that CYCD3;1 was the only cell cycle marker that 

could be identified in the tiling array analysis, as related to the G1 to S 

transition of the cell cycle, and the finding that this marker was repressed 

under glutathione depleting conditions has not been documented before. This 

strongly suggests that glutathione might control cell cycle progression by 
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having an important impact on the regulation of cell cycle-related transcript 

expression. 

 

5.2.2 Effects on PARP expression and DNA repair 

 

In a next step, the effect of glutathione depletion was investigated on PARP 

expression and DNA repair. Oxidative stress, induced by reactive oxygen 

species (ROS), such as H2O2, triggers both a programmed cell death and 

various stress responses in plants (Houot et al., 2001; Pellinen et al., 2002, 

Vandenabeele et al., 2003). Reactive oxygen species also modify cellular 

components and cause genotoxic damage resulting in DNA mutations (Bray 

and West, 2005; Møller et al., 2007). The plant‟s ability to trigger programmed 

cell death and to repair damaged DNA relies crucially on the activity of poly 

(ADP-ribose) polymerases (PARPs). DNA damage and the subsequent 

expression of PARPs are associated with cell signalling events with PARP 

activity correlating with an increase in the nuclear glutathione pool during early 

stages of the cell cycle (Foyer and Noctor, 2005A, B; Pellny et al., 2009). 

Therefore, a further interest of this PhD study was to further characterize the 

association between glutathione, PARPs and DNA repair mechanisms. 

 

The tiling array dataset was mined for expression of PARP genes and genes 

involved in DNA repair, which revealed that transcript amounts encoding poly-

(ADP-ribose) polymerase (PARP) 1 and SIMILAR TO RCD ONE (SRO) were 

strongly induced in rml1-1 roots compared to wild-type roots (Figure 5-5). All 

five SRO genes indentified in the tiling array analysis to be responsive to 

glutathione depletion, possess a PARP signature upstream of the C-terminal 
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protein interaction domain. This PARP signature may bind NAD+ and attach 

the ADP-ribose-moiety from NAD+ to the target molecule. The presence of 

particularly PARP signatures in SRO genes suggests a role for the protein in 

ADP ribosylation (TAIR10, 2012). 

 

 
 

 

 

 

 

Figure 5-5: Comparisons of expression for transcripts related to PARP and DNA 

repair. Shown are comparisons of relative expression of suites of genes in the rml1-1 

roots (black bars; A) and shoots (white bars; B) relative to the wild-type. Included are 

PARP1 and PARP2, RCD1, SRO genes, and P5CDH (ALDH12A1). *, p-value<0.05; 

+, fold-change to wild-type>2. 

 

 

In addition, the amount of Δ1-PYRROLINE-5-CARBOXYLATE 

DEHYDROGENASE 1 (P5CDH1), which is described as involved in 

catabolism of proline to glutamate and inducible by exogenous proline (Kirch et 

al., 2004; Verslues & Sharma, 2010; TAIR 10), and SRO5 mRNAs were higher 
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in rml1-1 roots than in the wild-type. The effect of glutathione depletion on 

DNA repair mechanisms seems to not necessarily affect whole gene families, 

but has a rather distinct effect on single genes (Figure 5-5A). P5CDH1 and 

SRO5 represent an overlapping gene in the sense orientation, which together 

can generate 24-nt and 21-nt siRNAs that in turn are components of a 

regulatory loop controlling reactive oxygen species (ROS) production and 

stress response (Deuschle et al., 2001; Borsani et al., 2005; Verslues & 

Sharma, 2010; TAIR10, 2012). Verslues and Sharma suggested that at least 

SRO5 might be linking proline and reactive oxygen (Verslues & Sharma, 

2010). 

 

Furthermore, induction of SIMILAR TO RCD ONE (SRO) genes, which are 

described as homologues to the RADICAL INDUCED CELL DEATH 1 (RCD1) 

gene and belong to the poly (ADP-ribose) superfamily, shows the close 

interaction between the DNA repair mechanisms (Teotia & Lamb, 2011). RCD1 

and SRO genes are described as crucial in maintaining cells in a division-

competent state and to regulate division plane placement (Teotia & Lamb, 

2011). Based on observations made in rcd1-3 and sro1-1 mutants, which both 

exhibit severe defects in the quiescent centre and show abnormal root apical 

meristems, it was hypothesized that RCD1 and SRO1 are involved in redox 

control and that their absence would lead to an altered redox balance causing 

the observed effects (Teotia & Lamb, 2011). 
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5.2.3 Effects of glutathione depletion on stress responses and 

hormones 

 

Earlier studies on the effects of glutathione on expression of stress-responsive 

genes in rax1-1 (regulator of ASCORBATE PEROXIDASE2 1-1) and cad2-1 

(cadmium sensitive 2-1) mutants indicated that transcripts encoding 32 stress-

responsive genes changed in response to a low glutathione content (Ball et al., 

2004). However, these findings only provided an initial and limited insight into 

the effects of glutathione depletion on gene expression, but not any in-depth 

understanding as to why, or how, yield gaps might occur. Yield gaps are 

described as the difference between a plants maximum attainable yield when 

grown under standard conditions and the actual yield for plants grown under 

stress conditions. As plants stop growing early in response to environmental 

stresses, optimal productivity of crops is hampered. As the link between 

glutathione and the expression of stress-responsive genes has already been 

demonstrated, the question remains how it exactly participates in the control of 

plant growth, particularly under stress. A more detailed investigation was 

therefore carried out, particularly determining the effects of glutathione on 

expression of stress- and hormone-related genes, to better understand how 

glutathione participates in plant development and stress responses.  

 

Hierarchically clustered heat maps were produced using the TIGR-MeV to 

determine which categories of stress- and hormone-related genes were most 

affected by glutathione depletion. In this analysis, genes with similar patterns 

of expression were grouped for shoots and roots of wild-type and rml1-1 

mutant plants, respectively (as shown later in Figure 5-6 and Figure 5-8). The 
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most recent version of TAIR was applied (Lamesch et al., 2011; TAIR10, 2012) 

for gene annotation. Genes not precisely annotated in TAIR are displayed in 

Figure 5-6 (pages 118 and 119) and Figure 5-8 (pages 127 and 128) without a 

primary name. 

 

5.2.3.1 Effects on stress-related genes 

 

Several genes involved in biotic stress responses were differentially expressed 

in rml1-1 plants relative to wild-type plants (Table 5-2). For abiotic stress, 

genes changed in expression in rml1-1 relative were particularly involved in the 

heat stress response (Table 5-2).  

 

Table 5-2: Ranked overview of total number of genes with annotation to stress 

responses in clusters. Gene annotations were retrieved from TAIR10, clusters 

created based on the involvement of genes to different types of stress, and ranking 

was performed according to total number of genes present in each cluster. The two 

main clusters are represented by genes involved biotic and abiotic stress responses. 

A more detailed sub-clustering was performed only for the genes involved in abiotic 

stress responses. Some genes in the cluster with abiotic stress-annotated genes 

could be found in more than one sub-cluster. 

Cluster label  Cluster size 

Biotic  136 

Abiotic 42 

Heat 29 

Drought, salt 17 

Cold 8 

Wounding 2 

 

 

As heat-shock proteins (hsps)/chaperones are responsible for a variety of 

processes, such as protein folding, assembly, translocation and degradation, 

in stabilizing proteins and membranes as well as assisting in the refolding of 
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proteins under environmental stress conditions, they play a crucial role in the 

protection of plants from stresses (Wang et al., 2004). The finding that stress-

related genes are down-regulated by glutathione depletion and that the 

majority of these genes are involved in responses to heat stress, suggests a 

major impact of glutathione on a plants proteins and maintaining their 

functions. 

 

Among the 10 most increased and decreased transcripts, which responded to 

glutathione depletion, genes were identified that are involved in responses to 

drought, cold-acclimation and tolerance to freezing stress, but also encoding 

pathogenesis-related proteins (Table 5-3, Table 5-4). The wide range of 

processes these genes relate to demonstrate the central function of 

glutathione in the control of stress responses in plants. A loss of glutathione 

therefore results in a mis-regulation of responses to various stresses. 

 

For example, in rml1-1 shoots the DROUGHT-INDUCED 21 (DI21) gene was 

1.8-fold up-regulated (Table 5-3) and this gene has previously been shown to 

be up-regulated in leaf- and root-tissues under progressive drought and to be 

responsive to exogenous supply with abscisic acid (Gosti et al., 1995). The 

DROUGHT-REPRESSED 4 (DR4) gene was down-regulated in both rml1-1 

shoots and roots by 1.6- and 4.4-fold, respectively (Table 5-4). DR4 encodes a 

plant-specific protease inhibitor-like protein whose transcripts in roots 

disappear in response to progressive drought stress (TAIR10, 2012).  
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Table 5-3: Overview to the 10 most induced and repressed stress-related genes from shoots of the rml1-1. Shown are AGI codes, 

descriptions, p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

  
AGI code Description p-value fold change 

    (shoot) shoot root 

Is
o
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te

d
 f
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t 
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d
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AT4G23680 Polyketide cyclase/dehydrase and lipid transport superfamily protein 0.000 3.14 2.15 

AT1G72900 Toll-Interleukin-Resistance (TIR) domain-containing protein 0.000 2.31 2.55 

AT1G72920 Toll-Interleukin-Resistance (TIR) domain family protein 0.000 2.25 1.88 

AT1G72070 Chaperone DnaJ-domain superfamily protein 0.000 2.18 0.67 

AT1G55210 Disease resistance-responsive (dirigent-like protein) family protein 0.000 1.91 0.65 

AT4G15910 DROUGHT-INDUCED 21 (DI21) 0.000 1.84 1.05 

AT2G36800 DON-GLUCOYLTRANSFERASE 1 (DOGT1) 0.000 1.79 6.38 

AT2G43590 Chitinase family protein 0.004 1.77 2.93 

AT5G09980 ELICITOR PEPTIDE 4 PRECURSOR (PROPEP4) 0.001 1.50 -1.55 

AT5G42050 DCD (Development and Cell Death) domain protein 0.000 1.41 1.24 

R
e

p
re

s
s

e
d

 

AT1G73330 DROUGHT-REPRESSED 4 (DR4) 0.000 -1.60 -4.41 

AT4G22212 Encodes a defensin-like (DEFL) family protein 0.001 -1.82 -3.97 

AT4G14630 GERMIN-LIKE PROTEIN 9 (GLP9) 0.001 -1.94 -2.81 

AT4G07820 Cysteine-rich secretory proteins, and Pathogenesis-related 1 superfamily protein 0.001 -2.07 -1.72 

AT1G20440 COLD-REGULATED 47 (COR47) 0.000 -2.11 -2.27 

AT2G01530 MLP-LIKE PROTEIN 329 (MLP329) 0.001 -2.15 -3.81 

AT2G43550 Encodes a defensin-like (DEFL) family protein 0.000 -2.49 -2.30 

AT5G36910 THIONIN 2.2 (THI2.2) 0.000 -2.61 0.48 

AT1G65870 Disease resistance-responsive (dirigent-like protein) family protein 0.000 -3.02 -0.27 

AT1G66100 Predicted to encode a PR (pathogenesis-related) protein 0.000 -5.40 -0.68 
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Table 5-4: Overview to the 10 most induced and repressed stress-related genes from roots of the rml1-1. Shown are AGI codes, 

descriptions, p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

  
AGI code Description p-value fold change 

    (shoot) shoot root 

Is
o
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te

d
 f
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m
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o

o
t 

In
d

u
c
e

d
 

AT2G36800 DON-GLUCOSYLTRANSFERASE 1 (DOGT1) 0.000 1.79 6.38 

AT2G43510 TRYPSIN INHIBITOR PROTEIN 1 (TI1) 0.000 1.03 4.54 

AT5G12030 HEAT SHOCK PROTEIN 17.6A (HSP17.6A) 0.910 -0.07 4.40 

AT1G53540 HSP20-like chaperones superfamily protein 0.667 -0.22 3.80 

AT5G12020 17.6 KDA CLASS II HEAT SHOCK PROTEIN (HSP17.6II) 0.173 -1.39 3.73 

AT1G07400 HSP20-like chaperones superfamily protein 0.881 0.05 3.69 

AT1G75830 LOW-MOLECULAR-WEIGHT CYSTEINE-RICH 67 (LCR67) 0.035 0.40 3.62 

AT5G51440 HSP20-like chaperones superfamily protein 0.073 1.09 3.49 

AT1G64160 DIRIGENT PROTEIN 5 (DIR5) 0.070 -0.28 3.39 

AT2G29500 HSP20-like chaperones superfamily protein 0.027 0.88 3.26 

R
e

p
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s
s

e
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AT2G02130 LOW-MOLECULAR-WEIGHT CYSTEINE-RICH 68 (LCR68) 0.028 -0.25 -2.98 

AT3G50460 HOMOLOG OF RPW8 2 (HR2) 0.132 -0.32 -3.03 

AT4G22214 Encodes a defensin-like (DEFL) family protein. 0.236 -0.21 -3.08 

AT2G01530 MLP-LIKE PROTEIN 329 (MLP329) 0.001 -2.15 -3.81 

AT4G22212 Encodes a defensin-like (DEFL) family protein. 0.001 -1.82 -3.97 

AT5G42500 Disease resistance-responsive (dirigent-like protein) family protein 0.774 0.12 -4.35 

AT1G73330 DROUGHT-REPRESSED 4 (DR4) 0.000 -1.60 -4.41 

AT3G26460 Polyketide cyclase/dehydrase and lipid transport superfamily protein 0.016 0.71 -4.66 

AT4G11210 Disease resistance-responsive (dirigent-like protein) family protein 0.193 -0.37 -4.78 

AT2G01520 MLP-LIKE PROTEIN 328 (MLP328) 0.020 -2.34 -5.95 
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The finding that drought-related genes are affected under glutathione depletion 

might be explained by either a regulatory involvement of glutathione in these 

processes or by the root phenotype of the rml1-1 mutant. It is more likely, 

however, that the extremely short primary root might not be able to take up 

sufficient amounts of water to cover the demands of the plant and thereby 

drought-related processes are activated. Nevertheless, literature evidence also 

supports the hypothesis that glutathione might be directly involved in 

regulatory processes in response to drought stress by demonstrating a link 

between glutathione and drought stress responses in glutathione peroxidase 3 

(GPX3) T-DNA insertion mutants of Arabidopsis (Miao et al., 2006). The study 

conducted by Miao suggested that GPX3 fulfils a double function with roles in 

H2O2 homeostasis and as oxidative signal transducer in ABA and drought 

stress signalling specifically transmitting H2O2 signals (Miao et al., 2006). To 

determine peroxidase activity of GPX3 against various substrates Miao and 

colleagues performed further tests and found GPX3 peroxidase activity against 

thioredoxin as substrate, but in the presence of reduced glutathione (Miao et 

al., 2006). Complementary experiments further revealed that the oxidized form 

of the GPX3 peroxidase can be reduced by thioredoxin via the thioredoxin 

reductase system, even after addition of H2O2 (Miao et al., 2006). However, 

GPX3 could not be reduced through the GSH system, suggesting that GPX3 is 

in fact a thioredoxin-dependent peroxidase (Miao et al., 2006). Future 

experiments investigating the role of glutathione in the responses to drought 

might provide more insights into GPX3 function, but would have to take 

thioredoxin and abscisic acid into account. 
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Furthermore, the COLD-REGULATED47 (COR47) gene, a CBF-regulon gene 

related to cold-acclimation, was down-regulated in both rml1-1 shoot- and root- 

tissues by 2-fold (Table 5-3). COR47, a C-REPEAT BINDING FACTOR (CBF) 

regulon gene, is controlled by circadian regulation and is one of at least three 

CBF regulon genes involved in cold acclimation and freezing tolerance (Dong 

et al., 2011). CBF genes on the other hand encode transcriptional activators 

resulting in expression of CBF-targeted genes known as “CBF-regulons” (Dong 

et al., 2011). COR47 represents one of these CBF-targeted CBF-regulon 

genes. Plants carrying mutations in CIRCADIAN CLOCK-ASSOCIATED1 

(CCA1) and LATE ELONGATED HYPOCOTYL (LHY) down-regulate CBF 

genes and COR47 exhibit impaired cold-acclimation (Dong et al., 2011). The 

finding that COR47 is down-regulated in response to glutathione depletion in 

rml1-1 suggests that glutathione is at least partially involved in the 

transcriptional control of cold- and freezing-acclimation in plants. 

 

A gene encoding DON-GLUCOSYLTRANSFERASE 1 (DOGT1) was further 

up-regulated in both rml1-1 shoots and roots by 1.8- and 6.4-fold, respectively 

(Table 5-3). DOGT1 is a UDP-glycosyltransferase involved in the detoxification 

of deoxynivalenol, a mycotoxin produced by the pathogenic fungi Fusarium 

graminearum and Fusarium culmorum (Poppenberger et al., 2003). Expression 

of DOGT1 is developmentally regulated and induced by deoxynivalenol as well 

as salicylic acid, ethylene, but also jasmonic acid. Further, overexpression of 

DOGT1 in Arabidopsis thaliana enhances tolerance against deoxynivalenol 

(Poppenberger et al., 2003). A more recent study in barley has provided 

evidence that overexpression of Arabidopsis thaliana DOGT1 causes a dwarf 

phenotype (Shin et al., 2012). Since this gene is up-regulated in rml1-1 and 
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responds to hormonal stimuli, glutathione very likely interacts with hormonal 

pathways in the control of fungal infections and any glutathione depletion might 

actually confer tolerance to Fusarium infection.  

 

Overall, this part of the study has indicated that expression of a variety of 

genes are affected by glutathione depletion, which strongly supports the 

central function of glutathione in plant developmental and defence processes, 

additional to the functions that had been reported earlier, such as involvement 

in responses to heavy metals, resistance to herbivory and in response to 

oxidative stresses (Cobbett et al., 1998; Parisy et al., 2006; Schlaeppi et al., 

2008). 

 

This study has therefore extended the current knowledge by providing new 

gene expression data indicating that glutathione might have a more important 

role in regulation of plant developmental on processes such as cold-

acclimation, response to heat-stress, resistance to fungal infection and 

expression of pathogenesis-related (PR) proteins than initially thought.  
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Figure 5-6: Heat map of genes involved in stress responses. The heat map 

derived from TIGR-MEV analysis showing hierarchical clustering of genes involved in 

stress responses. The picture was divided into two parts for higher resolution. Colour 

code is displayed in the legend. Not precisely TAIR annotated genes are left without 

description. 
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5.2.3.2 Effects on hormone-related genes 

 

Plant hormones function as crucial regulators of plant growth and 

development. They also serve as signalling molecules triggering responses to 

both biotic and abiotic stresses (Santner et al., 2009). In a previous study, 

glutathione depletion resulted in an arrest of root growth in the rml1-1 mutant 

but also in wild-type plants when grown in the presence of BSO (Vernoux et 

al., 2000A). Arabidopsis root growth crucially depends on glutathione 

interacting with auxin (Koprivova et al., 2010). Glutathione depletion, due to 

BSO treatment, affects root growth similar to mis-regulation of auxin 

homeostasis and results in loss of the polar auxin transporters PIN1, PIN2 and 

PIN7 (Koprivova et al., 2010). Association studies with double mutants for TRX 

reductases (ntra ntrb) and glutathione biosynthesis (cad2-1) also revealed that 

these two components interact in developmental processes through 

modulation of auxin signalling.  

 

Furthermore, the ntra ntrb cad2-1 triple mutant developed normally until 

flowering and then showed a distinct PIN-formed stem phenotype reminiscent 

of that of plants affected in auxin transport and biosynthesis (Bashandy et al., 

2010). 

 

To obtain a more detailed insight into how glutathione depletion affects 

hormone pathways and subsequently plant development, this PhD study also 

aimed in a further step at investigating the expression of genes under 

glutathione depletion related to hormone metabolic and signalling pathways 

with a particular focus on auxin. Hierarchical clustering was therefore 
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performed for genes involved in hormone responses, metabolism and 

signalling. The majority of genes that were identified to respond to the 

glutathione depletion in the rml1-1 were found in the cluster of auxin-related 

transcripts, followed by genes related to ethylene and abscisic acid (Table 

5-5). Figure 5-8 (shown on pages 127 & 128) provides an overview presented 

as heat map, also shown are AGI codes, expression values and primary gene 

annotations where available. 

 

Table 5-5: Overview of total number of transcripts annotated as involved in 

hormone responses and metabolism. Shown is a ranked overview of clusters that 

were created by total number of transcripts that are annotated as involved in hormone 

responses and metabolism for each of the major hormones (e.g. auxin, ethylene, 

abscisic acid, etc.). Gene annotations were retrieved from TAIR10 and ranking was 

performed according to total number of genes present in each cluster. Some genes 

could be found in more than cluster. 

Cluster label  Cluster size 

IAA - (Auxin) 66 

Eth - (Ethylene) 28 

ABA - (Abscisic acid) 17 

GA - (Gibberellic acid) 17 

JA - (Jasmonic acid) 14 

BR - (Brassino steroid) 12 

SA - (Salicylic acid) 8 

Cyt - (Cytokinins) 4 

 

 

An analysis of transcripts involved in hormone response, metabolism and 

signalling was first performed by comparing transcripts that showed altered 

expression in the rml1-1 with all TAIR annotated genes (TAIR10, 2012) 

reported to be involved in plant hormone metabolism signalling and transport. 

The majority of transcripts changed in response to glutathione depletion were 

either linked to abscisic acid, auxin or ethylene (Figure 5-7), and these were 

then analysed separately. 



 

122 
 

 

 

Figure 5-7: Overview of transcripts identified from the rml1-1 tiling array 

analysis with annotations to hormone metabolism and signalling. Displayed are 

percentage enrichments of transcripts as segments of the pie chart relative to the total 

number of transcripts annotated in TAIR. In each segment of the pie chart the 

absolute number of transcripts, which are affected by the glutathione depletion in the 

rml1-1 mutant, is shown. 

 

 

Auxin-related genes 

The 10 most up and down-regulated auxin-related genes in both rml1-1 shoot 

and roots tissues are shown in Table 5-6 and Table 5-7. The majority of genes, 

altered in response to glutathione depletion, were identified as related to 

signalling rather than metabolic processes. Among these were MYB15, 

MYB75, IAA20, IAA24, SAUR-like auxin-responsive genes, and members of 

the BTB AND TAZ DOMAIN subfamily. MYB75 was up-regulated in rml1-1 

shoot and root tissues in response to glutathione depletion by 4.8- and 2.8-

fold, respectively. In contrast, MYB15 was differentially expressed in the rml1-1 

mutant. MYB15 expression remained almost unaltered in the shoot, but 

decreased 3.3-fold in the root compared to the wild-type.  
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Table 5-6: Overview of the 10 most induced and repressed auxin-related genes from shoots of the rml1-1. Shown are AGI codes, descriptions, 

p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

  
AGI code Description p-value fold change 

    (shoot) shoot root 

Is
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AT1G56650 MYB DOMAIN PROTEIN 75 (MYB75) 0.000 4.84 2.80 

AT1G05680 UDP-GLYCOSYLTRANSFERASE 74E2 (UGT74E2) 0.000 3.77 3.77 

AT3G44300 NITRILASE 2 (NIT2) 0.000 3.69 3.16 

AT1G48660 Auxin-responsive GH3 family protein 0.000 3.48 3.23 

AT2G46990 INDOLE-3-ACETIC ACID INDUCIBLE 20 (IAA20) 0.000 2.96 0.26 

AT2G47000 ARABIDOPSIS P-GLYCOPROTEIN 4 0.000 2.73 1.81 

AT5G07990 TRANSPARENT TESTA 7 (TT7) 0.000 2.63 -0.58 

AT1G75580 SAUR-like auxin-responsive protein family 0.000 2.14 0.26 

AT5G27520 PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2 (PNC2) 0.000 2.00 0.93 

AT3G53250 SAUR-like auxin-responsive protein family 0.000 1.79 -0.06 

R
e

p
re

s
s

e
d

 

AT1G72430 SAUR-like auxin-responsive protein family 0.000 -1.40 -1.27 

AT1G29420 SAUR-like auxin-responsive protein family 0.000 -1.47 -0.08 

AT1G29490 SAUR-like auxin-responsive protein family 0.000 -1.51 -0.55 

AT4G34760 SAUR-like auxin-responsive protein family 0.000 -1.68 -2.19 

AT5G57560  XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 22 0.000 -1.69 2.42 

AT3G48360 BTB AND TAZ DOMAIN PROTEIN 2 (BT2) 0.000 -1.84 -0.99 

AT5G17300 REVEILLE 1 (RVE1) 0.000 -1.87 0.05 

AT2G21210 Putative auxin-regulated protein; down-regulated in response to chitin oligomers 0.000 -2.18 -2.40 

AT5G63160 BTB AND TAZ DOMAIN PROTEIN 1 (BT1) 0.000 -3.55 -2.47 

AT4G37610 BTB AND TAZ DOMAIN PROTEIN 5 (BT5) 0.000 -3.82 -2.18 
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Table 5-7: Overview of the 10 most induced and repressed auxin-related genes from roots of the rml1-1. Shown are AGI codes, descriptions, 

p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

  
AGI code Description p-value fold change 

    (shoot) shoot root 
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AT1G05680 URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASE 74E2 (UGT74E2) 0.000 3.77 3.77 

AT1G47510 INOSITOL POLYPHOSPHATE 5-PHOSPHATASE 11 (5PTASE11) 0.822 -0.02 3.46 

AT3G23250 MYB DOMAIN PROTEIN 15 (MYB15) 0.406 -0.25 3.33 

AT1G48660 Auxin-responsive GH3 family protein 0.000 3.48 3.23 

AT3G44300 NITRILASE 2 (NIT2) 0.000 3.69 3.16 

AT5G13370 Auxin-responsive GH3 family protein 0.000 0.96 3.15 

AT1G56650 MYB DOMAIN PROTEIN 75 (MYB75) 0.000 4.84 2.80 

AT4G32810 CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) 0.271 -0.13 2.58 

AT1G19850 INDOLE-3-ACETIC ACID INDUCIBLE 24 (IAA24) 0.217 0.13 2.47 

AT5G57560 XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 22 (XTH22) 0.000 -1.69 2.42 
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AT1G48690 Auxin-responsive GH3 family protein 0.001 -0.53 -2.43 

AT5G63160 BTB AND TAZ DOMAIN PROTEIN 1 (BT1) 0.000 -3.55 -2.47 

AT4G31320 SAUR-like auxin-responsive protein family 0.146 -0.40 -2.50 

AT5G13930 TRANSPARENT TESTA 4 (TT4) 0.000 1.63 -2.62 

AT5G16530 PIN-FORMED 5 (PIN5) 0.000 -1.01 -2.69 

AT4G24670 TRYPTOPHAN AMINOTRANSFERASE RELATED 2 (TAR2) 0.000 -0.61 -2.80 

AT4G19690 IRON-REGULATED TRANSPORTER 1 (IRT1) 0.003 -0.81 -2.86 

AT2G22330 CYTOCHROME P450, FAMILY 79, SUBFAMILY B, POLYPEPTIDE 3 (CYP79B3) 0.566 -0.07 -3.04 

AT5G08640 FLAVONOL SYNTHASE 1 (FLS1) 0.006 0.99 -3.36 

AT4G12550 AUXIN-INDUCED IN ROOT CULTURES 1 (AIR1) 0.419 0.23 -4.29 
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MYB75 has been implicated in anthocyanin biosynthesis and regulation of 

formation of the secondary cell wall in inflorescence stems (Bhargava et al., 

2010; Shin, et al., 2012), According to the Arabidopsis Information Resource, 

MYB15 is involved in abscisic acid-, jasmonic acid- and ethylene-mediated 

signalling pathways as well as in defence responses by callose deposition 

(TAIR10, 2012).  

 

BT1, BT2 and BT5 expression was uniformly down-regulated in rml1-1 shoot 

and root tissues in response to glutathione depletion (Table 5-6 and Table 

5-7). In the shoot, BT1 and BT5 had the greatest down-regulation due to 

glutathione depletion with 3.6- and 3.8-fold decrease, respectively, when 

compared to the wild-type (Table 5-6) whereas BT2 was down-regulated 1.8-

fold (Table 5-6). These genes are members of the BTB and TAZ DOMAIN 

(BT1-BT5) protein family involved in various signalling pathways (Robert et al., 

2009).While BT1 and BT2 are targeted to the nucleus and cytosol, the other 

members of this subfamily are only targeted to the cytosol. BT1 to BT5 have 

been previously found to be required in gametophyte development (Robert et 

al., 2009).  

 

Two IAA genes were differentially expressed in the rml1-1 mutant, namely 

IAA20 and IAA24. IAA 20 expression was 3-fold higher when compared to the 

wild-type, but was almost unaltered in the root (Table 5-6). In contrast, IAA24 

transcription was 2.5-fold higher in rml1-1 root tissue than in the wild-type 

tissue and remained unaltered in shoot tissues (Table 5-7). While currently no 

studies are available investigating the functions of IAA20 specifically, 

information available from TAIR indicates that the gene encodes a member of 
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the AUX/IAA protein family involved in auxin signalling. Furthermore, defects in 

this gene result in changes in gravitropism, root development, root meristem 

maintenance, etiolation, as well as cotyledon vascular development (TAIR10, 

2012). In comparison, IAA24 encodes a transcription factor similar to the 

AUXIN RESPONSIVE FACTOR 1 (ARF1) and is involved in mediating the 

formation of the embryo axis as well as involved in vascular development 

(TAIR10, 2012). 

 

CCD8 was 2.8-fold higher in rml1-1 roots and encodes a protein with similarity 

to carotenoid cleaving deoxygenases (CCD). CCD8 is involved in signalling 

and suppresses axillary root branching. Mutations in this gene cause 

increased shoot branching and, together with CCD7, CCD8 is involved in the 

strigolactone biosynthetic pathway (Bennett et al., 2006; Alder et al., 2012). 

 

Further, UDP-GLYCOSYLTRANSFERASE 74E2 (UGT74E2) transcription 

increased in rml1-1 shoot and root tissue by 3.8-fold in response to glutathione 

depletion. Previous studies identified UGT74E2 as UDP-glycosyltransferase 

acting on indole-3-butyric acid (IBA) and affects auxin homeostasis. 

Transcription and translation of the UGT74E2 are strongly induced by H2O2 

and the protein may act in ROS- and auxin-signalling pathways controlling 

plant architecture and water stress responses (Tognetti et al., 2010). 

 

Summarizing, findings suggest a complex interplay of glutathione and auxin-

related genes in the control of plant development, plant architecture, stress 

responses and hormonal pathways that are interconnected with auxin or act 

downstream of auxin.  
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Figure 5-8: Heat map of genes involved in hormone responses and metabolism. 

The heat map derived from TIGR-MEV analysis showing hierarchical clustering of 

genes involved in hormone responses and hormone metabolism. The picture was 

divided into two parts for higher resolution. Colour code is displayed in the legend. Not 

precisely annotated genes (according to TAIR website) are left without description. 

Abbreviations in the legend are as follows: auxin (IAA), abscisic acid (ABA), 

brassinosteroids (BR), ethylene (Eth), cytokinins (Cyt), jasmonic acid (JA), salicylic 

acid (SA) and gibberellic acid (GA). 
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Abscisic acid-related genes 

When abscisic acid-related genes from rml1-1 shoot and roots tissues were 

investigated, the 10 most up- or down-regulated genes were either 

transcription factors, plasma membrane intrinsic proteins or were related to 

responses to drought and desiccation stress (Table 5-8 and Table 5-9). Among 

these were DR4, PAD3, PIP2;4, PIP2B, PIP3B, and RAP2.6L. DR4 was down-

regulated 1.6-fold in rml1-1 shoots and 4.4-fold in rml1-1 roots in response to 

glutathione depletion (Table 5-9). Little information is available about DR4 

function in plant development. So far, DR4 is known to be a specific protease 

inhibitor whose transcript levels vanish in response to progressive drought 

stress (Gosti, et al., 1995).  

 

PHYTOALEXIN DEFICIENT 3 (PAD3) transcription increased in rml1-1 roots 

3-fold compared to the wild-type (Table 5-9). Earlier studies have shown that 

pad3 mutants are defective in biosynthesis of the indole-derived phytoalexin 

camalexin and that the PAD3 gene encodes a cytochrome P450 enzyme that 

catalyzes the conversion of dihydrocamalexic acid to camalexin (Kettles et al., 

2012). Other studies have demonstrated that pad2 mutants, which are affected 

in -ECS, have increased susceptibilities to the virulent strains of 

Pseudomonas syringae and P. brassicae (Parisy et al., 2006). These findings 

suggest importance of glutathione in plant responses to stress through acting 

on camalexin synthesis. Further, transcription of PIP2;4, PIP2;2, and PIP2;8, 

plasma membrane intrinsic proteins (PIP), decreased 2-fold in rml1-1 (Table 

5-9).  
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Table 5-8: Overview of the 10 most induced and repressed abscisic acid-related genes from shoots of the rml1-1. Shown are AGI codes, 

descriptions, p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

  
AGI code Description p-value fold change 

    (shoot) shoot root 
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AT1G43910 P-loop containing nucleoside triphosphate hydrolases superfamily protein 0.000 3.94 3.03 

AT5G13330 Member of the ERF subfamily B-4 of ERF/AP2 transcription factor family 0.000 3.16 2.63 

AT1G05560 UDP-GLUCOSYLTRANSFERASE 75B1 (UGT75B1) 0.000 2.14 0.09 

AT1G54100 Aldehyde dehydrogenase 0.000 2.08 1.38 

AT1G01720 Member of large family of putative transcriptional activators with NAC domain 0.000 1.87 0.85 

AT2G05710 Encodes an aconitase 0.000 1.84 1.42 

AT4G15910 Encodes a gene whose transcript level in root and leaves increases during drought stress 0.000 1.84 1.05 

AT2G33150 Encodes organellar 3-ketoacyl-CoA thiolase, involved in germination and seedling growth 0.000 1.82 1.66 

AT1G27730 Related to Cys2/His2-type zinc-finger proteins found in higher plants 0.002 1.72 1.99 

AT2G32020 Acyl-CoA N-acyltransferases (NAT) superfamily protein 0.000 1.64 2.88 

R
e

p
re

s
s

e
d

 

AT3G47620 Encodes a transcription factor AtTCP14 that regulates seed germination 0.000 -1.02 -1.33 

AT5G44610 Encodes a protein with seven repeated VEEKK motifs 0.003 -1.08 -1.03 

AT4G22200 Encodes AKT2, a photosynthate- and light-dependent potassium channel  0.003 -1.19 -0.05 

AT1G73330 Encodes a plant-specific protease inhibitor-like protein; disappears in response to drought  0.000 -1.60 -4.41 

AT1G71030 Encodes a putative MYB family transcription factor 0.000 -1.64 -0.50 

AT3G22060 Contains pfam profile: PF01657 Domain of unknown function 0.000 -2.10 -0.68 

AT1G20440 Belongs to the dehydrin protein family 0.000 -2.11 -2.27 

AT5G28770 bZIP protein BZO2H3 mRNA 0.000 -2.63 -1.89 

AT5G45820 Encodes a CBL-interacting serine/threonine protein kinase 0.000 -2.82 -0.51 

AT1G75750 GA-responsive GAST1 protein homolog regulated by BR and GA antagonistically 0.000 -3.02 -0.87 
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Table 5-9: Overview of the 10 most induced and repressed abscisic acid-related genes from roots of the rml1-1. Shown are AGI codes, 

descriptions, p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

  
AGI code Description p-value fold change 

    (shoot) shoot root 

Is
o

la
te

d
 f

ro
m

 r
o

o
t 
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d
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e

d
 

AT3G28580 P-loop containing nucleoside triphosphate hydrolases superfamily protein 0.000 1.42 4.10 

AT1G18100 Encodes a member of the FT and TFL1 family of PE-binding proteins 0.004 1.05 3.76 

AT1G43910 P-loop containing nucleoside triphosphate hydrolases superfamily protein 0.000 3.94 3.03 

AT3G26830 PHYTOALEXIN DEFICIENT 3 (PAD3) 0.000 0.99 3.02 

AT2G05520 GLYCINE-RICH PROTEIN 3 (GRP-3)  0.004 0.34 2.93 

AT2G32020 Acyl-CoA N-acyltransferases (NAT) superfamily protein 0.000 1.63 2.88 

AT4G12480 EARLY ARABIDOPSIS ALUMINUM INDUCED 1 (EARLI1) 0.015 0.71 2.78 

AT5G64750 ABA REPRESSOR1 (ABR1) 0.138 -0.27 2.75 

AT5G25610 RESPONSIVE TO DESSICATION 22 (RD22) 0.001 0.80 2.72 

AT5G13330 RELATED TO AP2 6L (Rap2.6L) 0.000 3.16 2.63 
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AT2G16850 PLASMA MEMBRANE INTRINSIC PROTEIN 3B (PIP2;8) 0.355 -0.13 -1.91 

AT2G37170 PLASMA MEMBRANE INTRINSIC PROTEIN 2 (PIP2;2) 0.067 -0.35 -1.98 

AT1G20450 LOW TEMPERATURE INDUCED 29 (LTI29) 0.016 -0.54 -1.99 

AT2G38750 ANNEXIN 4 (ANNAT4) 0.397 0.09 -2.01 

AT4G35100 PLASMA MEMBRANE INTRINSIC PROTEIN 3A (PIP3A) 0.081 -0.21 -2.05 

AT2G15970 COLD REGULATED 413 PLASMA MEMBRANE 1 (COR413-PM1) 0.019 -0.48 -2.06 

AT3G02850 STELAR K+ OUTWARD RECTIFIER (SKOR) 0.261 0.10 -2.09 

AT1G20440 COLD-REGULATED 47 (COR47) 0.000 -2.11 -2.27 

AT5G60660 PLASMA MEMBRANE INTRINSIC PROTEIN 2;4 (PIP2;4) 0.004 -0.45 -3.68 

AT1G73330 DROUGHT-REPRESSED 4 (DR4) 0.000 -1.60 -4.41 
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Table 5-10: Overview of all induced and repressed ethylene-related genes from shoots of the rml1-1. Shown are AGI codes, descriptions, p-

values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

  
AGI code Description p-value fold change 

    (shoot) shoot root 

Is
o

la
te

d
 f
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m
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h
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t 
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e
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AT5G25190 Encodes a member of the B-6 subfamily of ERF/AP2 transcription factor family (ESE3) 0.000 2.59 2.25 

AT1G28370 Encodes a member of the B-1 subfamily of ERF/AP2 transcription factor family (ERF11) 0.000 1.84 0.25 

AT5G43450 Encodes a protein whose sequence is similar to ACC oxidase 0.000 1.75 4.33 

AT5G47220 Encodes a member of the B-3 subfamily of ERF/AP2 transcription factor family (ERF2) 0.000 1.67 1.74 

AT1G73500 Member of MAP-Kinase Kinase family.  0.000 1.33 0.00 

AT1G25560 Encodes a member of the RAV transcription factor family 0.000 1.24 0.82 

AT5G25350 Arabidopsis thaliana EIN3-binding F-box protein 2 (EBF2) mRNA 0.000 1.23 1.38 

AT1G49820 Encodes 5-methylthioribose kinase, involved in methionine cycle 0.000 1.09 -0.05 

AT5G54190 Light-dependent NADPH:protochlorophyllide oxidoreductase A 0.000 1.07 -0.45 

 ---  ---  ---  ---  --- 
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AT3G25190 Encodes nodulin-like21; repressed under conditions of Fe-deficient growth. 0.000 -1.65 -4.53 

AT1G03400 Encodes a protein with sequence similarity to tomato E8 (ACC oxidase) 0.000 -1.66 -0.33 

AT5G04950 Encodes a nicotianamide synthase 0.000 -1.82 -1.55 

 ---  ---  ---  ---  --- 

 ---  ---  ---  ---  --- 

 ---  ---  ---  ---  --- 

 ---  ---  ---  ---  --- 

 ---  ---  ---  ---  --- 

 ---  ---  ---  ---  --- 

 ---  ---  ---  ---  --- 
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Table 5-11: Overview of the 10 most induced and repressed ethylene-related genes from roots of the rml1-1. Shown are AGI codes, 

descriptions, p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

  
AGI code Description p-value fold change 

    (shoot) shoot root 

Is
o
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te

d
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m
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o
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t 
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e
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AT5G43450 Encodes a protein whose sequence is similar to ACC oxidase 0.000 1.75 4.33 

AT4G26200 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 7 (ACS7) 0.050 -0.20 4.03 

AT5G55620 Unknown protein 0.161 0.22 3.79 

AT1G01480 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2 (ACS2) 0.917 0.01 2.82 

AT1G62380 ACC OXIDASE 2 (ACO2) 0.000 0.86 2.62 

AT5G25190 Encodes a member of the B-6 subfamily of ERF/AP2 transcription factor family (ESE3) 0.000 2.59 2.25 

AT1G68765 INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) 0.713 -0.03 2.01 

AT5G47220 Encodes a member of the B-3 subfamily of ERF/AP2 transcription factor family (ERF2) 0.000 1.67 1.74 

AT3G59060 PHYTOCHROME INTERACTING FACTOR 3-LIKE 6 (PIL6) 0.121 -0.15 1.60 

AT5G19880 Peroxidase superfamily protein 0.407 -0.14 1.41 
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AT5G44030 CELLULOSE SYNTHASE A4 (CESA4)  0.028 -0.30 -1.60 

AT5G38820 Encodes a putative amino acid transporter 0.166 -0.15 -1.61 

AT1G18330 EARLY-PHYTOCHROME-RESPONSIVE1 (EPR1) 0.003 -0.78 -1.66 

AT3G61400 1-aminocyclopropane-1-carboxylate oxidase-like protein  0.365 -0.14 -1.76 

AT4G24180 THAUMATIN-LIKE PROTEIN 1 (TLP1) 0.007 -0.43 -1.80 

AT1G26100 Cytochrome b561/ferric reductase transmembrane protein family 0.370 -0.11 -2.00 

AT3G12900 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein 0.613 -0.08 -2.40 

AT1G76800 Encodes nodulin-like2; repressed under conditions of Fe-deficient growth 0.677 0.08 -2.57 

AT5G56080 NICOTIANAMINE SYNTHASE 2 (NAS2) 0.007 -0.96 -3.02 

AT3G25190 Encodes nodulin-like21; repressed under conditions of Fe-deficient growth 0.000 -1.65 -4.53 
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PIP2;4 is involved in both the response to iron starvation and in the trans-

membrane transport of hydrogen peroxide (TAIR10, 2012) whereas PIP2B and 

PIP3B are involved in the response to abscisic acid, trans-membrane transport 

and water transport (TAIR10, 2012). 

 

Finally, UDP-GLUCOSYLTRANSFERASE 75B1 (UGT75B1) transcription was 

2.2-fold higher in rml1-1 shoots relative to the wild-type. UGT75B1 encodes a 

protein with glucosyltransferase activity and has a high sequence homology 

with UGT2 (AT1G05530). The protein is possibly involved in callose synthesis 

during cell wall biogenesis (TAIR10, 2012).  

 

The findings in this section indicate a crucial requirement of glutathione in plant 

development and stress responses. Glutathione seems to act at the centre of 

these processes and hence low levels of glutathione will severely affect crucial 

regulatory processes in plants leaving them vulnerable to abiotic and biotic 

stress or even disrupting normal plant development. 

 

Ethylene-related genes 

When changes in expression of ethylene-related genes from rml1-1 shoot and 

root tissues were investigated, the majority of genes changed in transcription 

were involved in ethylene signalling (Table 5-10 and Table 5-11).  

 

Some of these genes encoded ethylene response factors (ERF) with an AP2 

domain of the subfamilies B1 (ERF11), B3 (ERF2) or B6 (ESE3). ESE3 

transcription was 2.5-fold higher in both rml1-1 shoots and roots (Table 5-10 
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and Table 5-11). In contrast, ERF2 transcription was only 1.8-fold higher in 

rml1-1 shoots (Table 5-11).  

 

All three genes are involved in ethylene-mediated signalling and cell 

communication with ERF11 also involved in the response to salinity and being 

a crucial repressor of ethylene biosynthesis. ERF2 is very likely a DNA-

dependent positive regulator of transcription (Zhang et al., 2011; TAIR10, 

2012). Besides being ethylene inducible, ESE3 is also salt-inducible and has 

functions in seed dormancy (Zhang et al., 2011; TAIR10, 2012). 

 

When finally ACS2 and ACS7 transcription was determined, both changed 2.8- 

and 4-fold, respectively, but only in rml1-1 roots (Table 5-11). Both genes are 

involved in ethylene biosynthesis (Yoon and Kieber, 2013; TAIR10, 2012) with 

ACS2 being a downstream target of ERF11 (Zhang et al., 2011). 

 

Glutathione depletion affects primarily ethylene-related transcripts of genes 

encoding proteins involved in signalling and cell-to-cell communication 

processes. Differential expression of the identified transcripts in shoot and root 

tissues suggests a complex interplay between glutathione and ethylene in the 

control of signalling processes. It seems that glutathione has important 

functions at the centre of these ethylene-mediated signalling processes, but 

glutathione-dependent changes in transcription are not as severe as identified 

for abscisic acid-related genes, auxin-related gene or genes related to stress 

responses. 
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5.2.4 Effects on transcription factors 

 

The effects of glutathione depletion on the expression of transcription factors 

were also investigated with a particular focus on genes either related to auxin 

or redox processes. The 10 most up- and down-regulated transcription factors 

are shown in Table 5-12 and Table 5-13. Some of these will be described 

separately in the two subsections below.  

 

Transcription factors related to growth 

The transcription factors presented in the following are involved in processes 

controlling plant growth. Transcription factors involved in both auxin expression 

and signalling were analysed together with all members of their gene family 

(Figure 5-9). While INDOLE-3-ACETIC ACID INDUCIBLE GENE 20 (IAA20) 

was over-expressed in rml1-1 shoot tissue relative to the wild-type, both IAA30 

and IAA 31 were not differentially expressed. IAA20 is induced by auxin 

treatment, and over-expression leads to defects in gravitropism, root 

development, root meristem maintenance, etiolation, and also cotyledon 

vascular development (Sato et al., 2008). Furthermore, members of radialis-

like SANT/MYB (RSM) gene family were down-regulated in rml1-1 shoots, with 

much smaller transcription differences in rml1-1 roots (Figure 5-9B). Also, 

transcription of the hookless1 (HLS1) gene was up-regulated in rml1-1 shoots 

but down-regulated in rml1-1 roots (Figure 5-9B). Mutations in the hookless1 

(HLS1) gene causes a phenotype similar to RSM1 overexpressing plants 

resulting in loss of apical hooks and defects in gravitropism (Hamaguchi et al., 

2008).  
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Table 5-12: Overview to the 10 most induced and repressed transcription factors from shoots of the rml1-1. Shown are AGI codes, 

descriptions, p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

 

AGI code Description p-value fold change 

    (shoot) shoot root 

Is
o
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te
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e
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AT1G56650 PRODUCTION OF ANTHOCYANIN PIGMENT 1 (MYB75; PAP1) 0.000 28.73 6.94 

AT1G66390 PRODUCTION OF ANTHOCYANIN PIGMENT 2 (MYB90; PAP2) 0.000 12.88 8.99 

AT5G67060 HECATE 1 (HEC1) 0.000 10.99 3.92 

AT5G13330 RELATED TO AP2 6L (RAP2.6L) 0.000 8.93 6.19 

AT2G46990 INDOLE-3-ACETIC ACID INDUCIBLE 20 (IAA20) 0.000 7.78 1.20 

AT3G50330 HECATE 2 (HEC2) 0.000 6.47 1.08 

AT4G36930 SPATULA (SPT) 0.000 5.66 2.86 

AT4G09820 TRANSPARENT TESTA 8 (TT8) 0.000 5.44 1.39 

AT5G28300 TRIHELIX DNA-BINDING PROTEIN, PUTATIVE 0.000 3.80 3.59 

AT3G48920 MYB DOMAIN PROTEIN 45 (MYB45) 0.001 3.71 5.27 
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AT2G32550 RCD1-LIKE CELL DIFFERENTIATION FAMILY PROTEIN 0.000 0.25 0.47 

AT1G73870 ZINC FINGER (B-BOX TYPE) FAMILY PROTEIN 0.000 0.24 0.84 

AT2G21650 MATERNAL EFFECT EMBRYO ARREST 3 (RSM1; MEE3) 0.000 0.22 0.25 

AT4G37540 LOB DOMAIN-CONTAINING PROTEIN 39 (LBD39) 0.000 0.20 0.22 

AT4G36570 ARABIDOPSIS RAD-LIKE 3 (ATRL3) 0.000 0.19 0.39 

AT3G46130 MYB DOMAIN PROTEIN 111 (MYB111) 0.000 0.19 0.15 

AT1G66230 MYB DOMAIN PROTEIN 20 (MYB20) 0.000 0.18 0.52 

AT1G75250 ARABIDOPSIS RAD-LIKE 6 (RSM3; ATRL6) 0.000 0.18 0.96 

AT5G07690 MYB DOMAIN PROTEIN 29 (MYB29) 0.000 0.16 0.92 

AT5G28770 BZO2H3 0.000 0.16 0.27 
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Table 5-13: Overview of the 10 most induced and repressed transcription factors from roots of rml1-1.Shown are AGI codes, descriptions, 

p-values from statistical analysis of the shoot as well as fold changes in expression for shoot and root. 

 

AGI code Description p-value fold change 

    (shoot) shoot Root 
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AT2G38340 AP2 domain-containing transcription factor, putative (DRE2B) 0.000 1.74 32.31 

AT4G06746 related to AP2 9 (RAP2.9) 0.007 0.77 14.66 

AT2G47520 AP2 domain-containing transcription factor, putative; HRE2 0.002 1.84 14.29 

AT3G23250 MYB DOMAIN PROTEIN 15 (MYB15) 0.406 0.84 10.07 

AT4G18170 WRKY28; transcription factor 0.479 0.92 9.87 

AT3G01600 Arabidopsis NAC domain containing protein 44 (anac044) 0.000 2.85 9.61 

AT1G66390 PRODUCTION OF ANTHOCYANIN PIGMENT 2 (MYB90; PAP2) 0.000 12.88 8.99 

AT5G59820 RESPONSIVE TO HIGH LIGHT 41 (RHL41; ZAT12) 0.005 2.59 7.93 

AT3G01970 WRKY45 0.003 1.53 7.90 

AT2G28700 AGAMOUS-LIKE 46 (AGL46) 0.773 0.98 7.46 
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AT1G13300 HRS1; myb family transcription factor 0.000 0.58 0.12 

AT2G44940 AP2 domain-containing transcription factor TINY, putative 0.797 0.97 0.12 

AT3G56970 BHLH038 0.364 1.24 0.12 

AT5G07030 aspartic-type endopeptidase 0.006 0.75 0.11 

AT2G40750 WRKY54 0.672 1.03 0.10 

AT3G48940 remorin family protein 0.021 0.80 0.10 

AT3G49760 Arabidopsis thaliana basic leucine-zipper 5 (AtbZIP5) 0.577 0.92 0.10 

AT1G62975 basic helix-loop-helix (bHLH) family protein (bHLH125) 0.123 1.27 0.10 

AT4G00670 DNA binding 0.791 1.04 0.09 

AT4G04840 methionine sulfoxide reductase domain-containing protein 0.000 0.49 0.06 
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Figure 5-9: Comparison of the relative expression in the rml1-1 for suites of 

transcription factor families. Comparisons were made between roots (black bars) 

and shoots (white bar) relative to expression in wild-type seedlings. The transcription 

factor families analysed are related to IAA20 (A), RMS1 (B) and HEC1 (C). Underlined 

genes are represented in the top 10 most induced / repressed transcription factors 

(Table 5-12 and Table 5-13).  

 

 

Two HECATE (HEC) genes and the SPATULA (SPT) gene were also found 

among the most-induced transcription factors linked to growth. HEC encodes 

putative basic helix-loop-helix (bHLH) transcription factors with overlapping 

functionality. Depending on which HEC function is missing, plants have a 

        IAA20                          IAA30                        IAA 31 

RSM1 
(MEE3) 

RSM2 
(ATRL1) 

RSM3 
(ATRL6) 

RSM4 
(ATRL5) 

HLS1 

      HEC1                 HEC2                HEC3                  SPT 
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varying degree of infertility, defects in septum, transmitting tract and stigma 

development and impaired pollen tube growth (Gremski et al., 2007). In 

addition, these phenotypes are similar to those with mutations in the SPATULA 

gene. SPT encodes a bHLH transcription factor required for development of 

plant tissues regulating the development of the female reproductive tract 

together with the HEC genes (Gremski et al., 2007). While HECATE1 (HEC1) 

transcription was strongly induced in rml1-1shoots (7.7-fold) and roots (3.9-

fold) relative to the wild-type, HEC2 transcription was only 6.4-fold induced in 

rml1-1 shoots (Figure 5-9C). In contrast, HEC3 transcription decreased in 

rml1-1 shoots and roots relative to the wild-type (Figure 5-9C), while SPT 

transcription increased 5.6-fold in rml1-1 shoots and 2.8-fold in roots relative to 

the wild-type. This result indicates a particular involvement of glutathione in the 

control of transcriptional regulation of hormones and subsequently plant 

development. Novel is the strong effect of glutathione depletion on 

transcription induction and in particular on certain hormone-related genes and 

hormone-related transcription factors suggesting a regulatory effect of 

glutathione in transcription control. However, the effects of glutathione 

depletion on transcription of these genes vary with differential expression in 

shoots and roots.  

 

Transcription factors linked to redox processes 

To obtain insight into how glutathione depletion affects transcription of redox 

process associated transcription factors, shoot transcripts encoding 

glutathione-s-transferases (GSTs), dehydroascorbatereductases (DHAR), h-

type thioredoxins (TH), glutaredoxins (GRX) and glutathione peroxidases 

(GPX) were analysed (Figure 5-10). Glutathione depletion affected 



 

141 
 

transcription of a large number of genes encoding GSTs, TRXs and GRXs, 

with a major effect on the transcription of various GSTs and TRXs (Figure 

5-10). 

 

In particular mRNAs encoding two h-type TRXs, TH7 and TH8, were greatly 

increased in abundance in shoots in response to GSH depletion (Figure 5-10). 

TH7 and TH8 were induced by 2.5- and 5.5-fold, respectively (Figure 5-10). 

These two TRXs are involved in cellular redox homeostasis, in the organization 

of the nucleolus and N-terminal myristoylation of proteins (TAIR10, 2012). The 

induction of TRX expression in shoots is an expected response to glutathione 

depletion, as the antioxidants glutathione and thioredoxin share functional 

redundancies and thioredoxins can at least partially compensate for a loss of 

glutathione and its antioxidant functions.  

 

Furthermore, transcription of the gene encoding dehydroascorbate reductase 1 

(DHAR1) was found to be increased by 1.5-fold in response to glutathione 

depletion. DHAR1 is implicated in protein glutathionylation, thereby suggesting 

an involvement in signalling pathways in plants (TAIR10, 2012). Glutathione 

depletion does seem to affect the expression of DHAR 1, but not DHAR2 and 

thereby might at least partially affects down-stream signalling components. 

However, it seems likely that the induction of DHAR expression under GSH 

depletion occurs in response to the loss of glutathione‟s ROS scavenging 

function.  
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Figure 5-10: The effect of GSH depletion on the expression of redox-related 

genes. Differential expression of transcripts encoding GST and 

dehydroascorbatereductases (DHAR) (A) and h-type thioredoxins (TH), glutaredoxins 

(GRX) and glutathione peroxidases (GPX) (B) in rml1-1 shoots relative to the wild-

type tissues. Genes, identified from the tiling array analysis, that are in bold script 

indicate involvement in auxin-related processes. Underlining indicates genes that are 

induced by H2O2 in the catalase2 mutants (Queval et al., 2012). 
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5.3 Results of the qRT-PCR analysis of the effects of glutathione 

depletion on selected transcripts 

 

The effects of glutathione depletion on transcript abundance were also studied 

using qRT-PCR. These analyses were performed firstly to confirm selected 

findings of the Agronomics1 tiling array, with a particular focus on core cell 

cycle components in the rml1-1 mutant. The analysis of core cell cycle 

components was used to validate the findings from the tiling array analysis. 

 

The primary aim was to compensate for the lack of three independent 

biological replications for the rml1-1 root in the tiling array experiments. Thanks 

to using the improved tissue disruption method higher extractable RNA yields 

were possible. Secondly, these analyses should reveal whether glutathione 

depletion affects abundance of auxin-related transcripts only in the rml1-1 

mutant or also in other glutathione-related mutants. Both analyses were 

performed to find possible explanations for the occurrence of the very 

characteristic rml1-1 root phenotype. Therefore, qRT-PCR analyses were also 

performed on a set of selected auxin-related genes on mutant genotypes 

(cad2-1, pad2-1, rax1-1) that had less severe alleles of the GSH1 gene and 

therefore higher GSH amounts compared to the rml1-1 mutant. All experiments 

were performed relative to wild-type plants and also relative to wild-type plants 

treated with BSO. Per each genotype at least three independent biological 

replicates were used. 
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5.3.1 qRT-PCR analysis of the effects of glutathione depletion on core 

cell-cycle components 

 

Transcripts encoding core cell cycle marker proteins from the CYC and CDK 

families decreased in abundance in rml1-1 roots but not in rml1-1 shoots 

(Figure 5-11). The qRT-PCR analysis (Figure 5-11B) therefore confirmed the 

findings of the transcriptome analysis shown in Figure 5-11A. Interestingly, the 

only exception was the abundance of CYCD3;1 mRNAs, which was similar in 

the mutant and wild-type when analyzed by qRT-PCR (Figure 5-11B).  

 

 

 
Figure 5-11: Relative expression of core cell-cycle marker transcripts. Relative 

expression was determined by A: transcriptomic analysis and by B: quantitative real-

time PCR. Black columns represent roots; white columns shoots. Asterisks indicate 

significant differences p<0.05 (*) and p<0.01 (**) compared to the wild-type.  
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The result that CYCD3;1 transcript down-regulation could not be validated by qRT-

PCR, as found in the tiling array analysis, might point towards a different reason for 

the cell cycle arrest at the G1 to S transition stage. As transcripts related to G2 stage 

of the cell cycle were found to be uniformly repressed, the cell cycle might actually 

arrest between S and G2 stage of the cell cycle. However, an arrest of the cell cycle 

has to happen before entering G2 stage. While earlier studies demonstrated that cell 

cycle arrest at G1 to S phase in response to glutathione depletion leads to a down-

regulation of two mitotic cyclins (CYCA1;1 & CYCA3;2; Vernoux et al., 2000A), the 

findings in this study can only partially support the previous findings, in that the cell 

cycle cannot progress past the S phase.  

 

5.3.2 qRT-PCR analysis of the effects of general glutathione depletion 

on auxin-linked transcription factors 

 

Abundance of selected transcripts, identified from the tiling array experiment, 

was further compared in the roots of 7-day old wild-type (Col0) seedlings in the 

absence or presence of 1 mM BSO and in rml1-1, cad2-1, pad2-1 and rax1-1 

mutants (Figure 5-12). Transcripts encoding ATYPICAL CYS HIS RICH 

THIOREDOXIN 5 (ACHT5) decreased in presence of low GSH amounts in 

wild-type seedlings when treated with BSO and in the rml1-1 mutants (Figure 

5-12). This observation was also made for ACHT5 in the tiling array analysis of 

the rml1-1 mutant. However, this decrease was not observed in the other 

mutant lines with less severe glutathione depletion (Figure 5-12). Furthermore, 

the abundance of other mRNAs, such as GRXS17, TH8, HEC1, SPT and the 

MYB15 and MYB75, were strongly induced under low GSH amounts in BSO-

treated wild-type seedlings and in rml1-1 mutants (Figure 5-12). The strong 
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induction of gene expression in these genes under glutathione-depleting 

conditions was also observed in the tiling array analysis.  

 

However, the amount of GRXS17, TH8, HEC1 and SPT transcripts and those 

of the MYB transcription factors 15 and 75 were similar in cad2-1, pad2-1 and 

rax1-1 mutants (Figure 5-12). The abundance of TH7 transcripts was only 

higher in the rml1-1 mutants, but not in BSO-treated wild-type seedlings 

(Figure 5-12). As shown in the next chapter (Figure 6-4A) BSO-induced 

glutathione depletion results in significantly lower levels of glutathione 

comparable to those found in the rml1-1 mutant. These findings suggest that 

the rml1-1 mutation itself might lead to additional effects on gene expression 

than sole BSO-induced glutathione depletion. Overall, these results indicate 

that gene expression and transcript abundance do not correlate with 

glutathione amounts in those mutants. However, results also suggest that a 

certain low amount of glutathione is required before effects on gene expression 

are detectable since only low glutathione rml1-1 mutant plants and wild-type 

plants treated with 1 mM BSO were similarly affected in gene expression.  
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Figure 5-12: The effect of general GSH depletion on gene expression in roots. 

The relative expression of selected transcripts was measured by qRT-PCR in the 

roots of 7-day old wild-type (Col0) seedlings in the absence or presence of 1 mM BSO 

and in the rml1-1, cad2-1, pad2-1 and rax1-1 mutants that are deficient in GSH 

synthesis and accumulation: GRXS17, ATYPICAL CYS HIS RICH THIOREDOXIN 

(ACHT) 5, TH7, TH8, IAA20, HECATE (HEC) 1, SPATULA (SPT), MYB15, MYB75, 

and RADIALIS-LIKE SANT/MYB (RSM) 1. Asterisks indicate significant differences 

p<0.05 (*) and p<0.01 (**) compared to the wild-type.  
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5.4 Conclusions 

 

An analysis of the effects of glutathione depletion in the rml1-1 mutant using 

AGRONOMICS1 tiling arrays revealed that transcription factors represent the 

largest proportion among the genes that are the most affected by low cellular 

amounts of glutathione. Particularly the transcription of transcription factors 

involved in the control of plant development and associated with auxin were 

strongly induced. These transcription factors exhibited the highest fold-change 

inductions of all analysed genes. Cluster analysis of genes involved in 

hormone metabolism and signalling pathways further demonstrated that the 

largest numbers of genes, which are changed in response to glutathione 

depletion, are related to either abscisic acid- or auxin-related genes. And 

despite various source of possible variability inherent to microarray 

experiments (, such as e.g. differences arising from dye labelling, efficiency in 

reverse transcription and hybridization, as well as biological variation within 

samples), the findings presented in this study indicate a more profound 

involvement of glutathione in particularly plant developmental, cell cycle-

related and hormone-related processes than reported previously.  

 

The results from this study support earlier studies reporting an involvement of 

glutathione in plant development by regulation of hormonal pathways 

(Koprivova et al., 2010). Earlier studies further suggested altered PIN-protein 

expression (PIN1, PIN2 and PIN7) due to glutathione depletion (Koprivova et 

al., 2010) with altered polar auxin transport in response to glutathione 

depletion. However, the results identified in this study indicate that only the 

endoplasmatic reticulum-located PIN5 might be changed in response to 
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glutathione depletion, pointing more towards an intracellular disruption of auxin 

transport. Moreover, among genes related to stress responses, the majority 

were involved in the heat stress responses. Heat-shock proteins/chaperones 

are involved in protein folding, assembly, translocation and degradation, in 

stabilizing proteins and membranes as well as assisting in the refolding of 

proteins under environmental stresses. Glutathione depletion, which leads to 

more oxidized conditions (unsuitable for proper protein folding) might possibly 

negatively affect protein folding impairing the maintenance of protein function, 

rather than altering expression of particularly PIN-proteins. To better 

understand whether the effects of glutathione depletion are manifested on the 

protein- or on transcriptional-level, further experiments might also include a 

focus on PIN-protein expression and folding.  

 

In this study glutathione depletion also resulted in a down-regulation of 

expression of core cell cycle genes associated with the G2 stage of the cell 

cycle. It has previously been shown that adequate amounts of glutathione are 

required for the G1 to S transition (Vernoux et al., 2000A). However, 

transcription of G1 to S transition marker genes were not affected in the qRT-

PCR experiments. Instead a large number of G2 stage marker genes were 

strongly down-regulated, particularly in the root. To further understand, 

whether glutathione directly acts on the expression of those cell cycle markers 

or whether the redox state of the cell determines progression of the cell cycle, 

further experiments are required. In addition, experiments are also required to 

investigate if glutathione depletion might impair protein folding of core cell 

cycle proteins and thereby causing a loss of protein function. 
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6 Chapter 6: Localisation of glutathione in the nucleus 

 

6.1 Introduction 

 

GSH is found in every compartment of the cell, including the nucleus 

(Zechmann et al., 2008). Moreover, GSH is recruited into the nucleus during 

the early phases of the cell cycle (Markovic et al., 2007; Diaz-Vivancos et al., 

2010A & B). In mammals, many functions of nuclei, such as transcription, 

chromatin stability, nuclear protein import and export, as well as DNA 

replication and repair depend on the function of proteins with oxidizable thiols 

(Go & Jones, 2010). Glutathione is essential in preventing oxidation and loss 

of function of such proteins, as well as in re-reducing and restoring functions of 

these proteins (Go & Jones, 2010).  

 

Although glutathione is as yet considered to diffuse freely from the cytosol into 

the nucleus through the nuclear pore complex (Zechmann et al., 2008; García-

Giménez et al., 2013), little is known about the processes by which it is 

imported and accumulated in the nucleus during the cell cycle. In animals, 

GSH transport into mitochondria and the nucleus appears to be actively 

controlled by the Bcl-2 protein (Voehringer et al., 1998). Bcl-2 is considered to 

be a pore-forming protein in the particularly the nuclear envelope and 

considered a major glutathione transporter (Voehringer et al., 1998; 

Zimmermann et al., 2007). For example, studies on proliferating 3T3 

fibroblasts have demonstrated that higher levels of the Bcl-2 protein coincide 

with higher nuclear glutathione concentrations (Voehringer et al., 1998; 

Zimmermann et al., 2007; García-Giménez et al., 2013). No genes that encode 

Bcl-2 proteins have been identified in plants and therefore other proteins must 
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be present that facilitate an active glutathione import into the nucleus that 

could possible explain the pronounced accumulation of GSH in the nucleus at 

the G1 stage of the cell cycle (Markovic et al., 2007;Pellny et al., 2009; Diaz 

Vivancos et al., 2010A & B). Possible candidates of glutathione transporters 

that might facilitate the import into the nucleus include the BAG (Bcl-2-

associated athanogene) family of proteins (Doukhanina et al., 2006). However, 

very little information is available on GSH transport into the nucleus and its 

functions in the nucleus of plant cells. 

 

Earlier studies using roGFP probes have been used to determine the 

glutathione redox potential of the cytosol (Meyer et al., 2007; Schwarzlaender 

et al., 2008). However, this approach has never been used to measure the 

GSH pool of the nuclei even though the roGFP2 probe can diffuse freely into 

the nuclei. In addition, staining methods have been used to investigate the 

partitioning of glutathione between the cytosol and nucleus during cell cycle 

progression (Diaz-Vivancos et al., 2010A & B). The import of glutathione into 

the nucleus is likely to lead to increases in the cytosolic redox potential, and 

may also affect glutathione-associated signalling functions in the cytosol. For 

example, previous studies have shown that responses to pathogens are 

impaired when GSH is sequestered in the chloroplasts (Maughan et al., 2010). 

While roGFP probes have long been recognised as specific sensors of the 

glutathione redox potential (Meyer et al., 2007; Schwarzlaender et al., 2008), 

they have not been used to investigate the partitioning of GSH between the 

nuclear and cytosolic GSH pool of plant cells. The following studies were 

therefore undertaken to investigate the GSH pool in the nucleus. Several 

different approaches were used to measure GSH in the nucleus. These 
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included the use of several techniques to isolate intact nuclei, as well as 

confocal laser scanning microscopy (CLSM) to measure the nuclear GSH pool 

in planta.  

 

For the isolation of intact nuclei, a specific focus was placed on methods that 

allow the extraction of nuclei with intact outer envelopes. Moreover, for further 

studies on glutathione functions, the isolated nuclei should ideally retain 

glutathione during the extraction procedures. A range of different extraction 

procedures was therefore tested including the INTACT method (Deal and 

Henikoff, 2010A & B). The INTACT method involves the use of transgenic 

Arabidopsis thaliana plants that expresses a biotin-tagged GFP on the outer 

membrane of the nucleus envelope. Extracted nuclei can then be purified 

using streptavidin-coated magnetic beads and GFP used for visualization of 

the intact nuclei. It is important to note that all methods for nuclear isolation in 

the literature incorporate extraction from tissue that has been frozen in liquid 

nitrogen. Moreover, all literature methods include the use of detergents, 

particularly Trition X-100. Freezing and detergent treatments will favour 

disruption and loss of function of the nuclear envelope (McKeown et al., 2008; 

Carrier et al., 2011). Hence, such methods will tend to impair the essential 

functions of the nuclei with regard to glutathione transport and accumulation, 

as well as having possible effects on the oxidation state of the glutathione 

pool. In the following studies, therefore the use of liquid nitrogen and Triton X-

100 was avoided as far as possible.  

 

In the following studies, confocal microscopy was used to analyse the redox 

potential of the nuclei and cytosol of transgenic roGFP2 Arabidopsis thaliana 
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lines grown in the absence and presence of BSO. Previous studies have often 

used an averaging method for images taken for multiple layers of root material 

(Meyer et al., 2007; Schwarzlaender et al., 2008). In the present study, laser 

intensities were modified to allow the analysis of glutathione redox potentials in 

1 µm sections of intact root tissue. The glutathione content was also measured 

in intact roots using standard plate reader methods (Queval & Noctor, 2007). 

 

6.2 Results – Nuclear glutathione redox potential 

 

6.2.1 The nuclear redox potential  

 

The redox potential of the nucleus was determined in the roots of transgenic 

Arabidopsis plants that constitutively express roGFP2. All measurements were 

performed on cells in the elongation zone of the primary roots of 7-day old 

roGFP2-expressing seedlings that had been grown on vertical plates, as 

illustrated in Figure 6-1. A comparison of the images obtained in this way, with 

those obtained using the staining procedures for chromatin with Hoechst 

33342 and for GSH with CMFDA (García-Giménez et al., 2013) illustrates that 

the roGFP2 method allows the identification of GSH in both the nuclei and 

cytosol.  

 

Seedlings were then grown for 7 days either in the absence (0.00 mM BSO; 

Control) or presence of BSO (0.25, 0.50, 0.75 and 1.00 mM BSO; Treatment). 

Confocal images of the roGFP2 root cells grown in the absence of BSO show 

that the fluorescence intensity measured at 405 nm is lower than that 

measured at 488 nm (Figure 6-1 and Figure 6-2A, F).  
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Figure 6-1: Confocal microscopy of A. thaliana roots with in situ detection of 

glutathione in the nuclei and cytosol. Images A, B and C show the primary root tip, 

while, D, E and F show the elongation zone in the primary root. A: chromatin (nuclei) 

stained with Hoechst 33342 (blue); B: reduced glutathione (GSH) stained with 

CMFDA (green); C: overlay image of A and B. D: redox sensitive green fluorescence 

protein 2 (roGFP2) with fluorescence excitation at 405 nm; E: roGFP2 fluorescence 

excitation at 488 nm; F: D/E (405/488) ratio. The scale bar in F indicates the variations 

from reduced (purple) to oxidised (yellow) states. White bars represent 50 µm.           

c, cytosol; n, nucleus; v, vacuole. 
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Figure 6-2: A comparison of confocal images obtained of 7-day old roGFP2 seedlings. Displayed are confocal images obtained with a LSM 510 

Meta confocal laser scanning microscope at wavelengths 488 nm (A-E) and 405 nm (F-J) for seedlings grown for 7 days in the absence (0.00 mM 

BSO; Control; A and F) or presence of BSO (0.25, 0.50, 0.75 and 1.00 mM BSO; Treatment; B-E and G-J). Ratios were calculated from fluorescence 

intensities of nuclei in images obtained at wavelengths 405 nm and 488 nm and averaged across 3 independent biological replications. Average 

ratios (Ratio405/488) and total number of nuclei assessed (n) are shown for each treatment independently.  
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However, in roots grown in the presence of BSO, the fluorescence intensity 

measured at 405 nm is increased relative to that measured at 488 nm (Figure 

6-2B-E, G-J). 

 

Growth in the presence of BSO significantly decreased the abundance of GSH 

and GSSG in the roots but it had no effect on the GSH/GSSG ratio (Figure 

6-3A). The treatment with 1 mM BSO decreased the total glutathione pool in 

the roots by over 90% (Figure 6-3A). Moreover, seedlings grown in the 

presence of the highest concentration of BSO exhibited the highest        

405/488 nm ratios (Figure 6-2E, J; Figure 6-3A, B). Quantification of the data 

derived from these images (Figure 6-3B, C) shows that growth with increasing 

levels of BSO led to a significant increase in the 405 nm/488 nm ratios of the 

nuclei in the root cells compared to those grown under control conditions (0.00 

mM BSO). The ratio obtained in roots under the 1 mM BSO treatment was 

over 30% greater than values observed in the absence of BSO (Figure 6-2E, J; 

Figure 6-3B). 

 

The redox potential of the nuclear glutathione pool calculated from these ratios 

(Figure 6-3B) reveals that the redox potential of the nuclei in the root cells is 

highly reduced (-316 mV; Figure 6-3C). However, in the presence of 1 mM 

BSO, the redox potential of the nuclear glutathione pool was increased by 

approximately 49 mV (-266.65 mV; Figure 6-3C).  
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Figure 6-3: Effect of BSO treatment on glutathione concentration in roots and 

nuclear redox potential. Comparisons were made for plants grown in the absence 

(0.00 mM BSO, Control) or presence of BSO (0.25, 0.50, 0.75 and 1.00 mM BSO). A 

comparison of root glutathione contents, with GSH (bold script) and GSSG (normal 

script) displayed above each bar, is shown in A), ratios (405 nm/488 nm) obtained for 

nuclear roGFP for each condition as well as the H2O2 and DTT standards are 

displayed in B), and the redox potentials calculated from the ratios are shown in mV in 

C). * significant differences compared to control conditions p<0.05; ** significant 

differences compared to control conditions p<0.01.  
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Figure 6-4: Root glutathione contents and redox potentials of the nuclei and 

cytosol in Arabidopsis thaliana in the absence or presence of BSO, and in the 

rml1-1 mutants. A: GSH (white bars) and GSSG (black bars) in wild-type roots in the 

absence or presence of BSO (1 mM) and in the rml1-1 mutant. B: The glutathione 

redox potentials of the nuclei and cytosol measured using roGFP2. In B, black 

columns: nuclei; white columns: cytosol. Letters and asterisks indicate significant 

differences p<0.01. 

 

 

Growth in the presence of 1 mM BSO decreased the total glutathione pool in 

the roots by over 90% (Figure 6-3A; Figure 6-4A), resulting in low levels of root 

glutathione that were comparable to those determined of the rml1-1 mutants 

(Figure 6-4A). The redox potentials of the nuclei were similar to those of the 

cytosol (-316 and -320 mV) in the cells at the root tips in the absence of BSO 

(Figure 6-4B). Moreover, the values of these parameters increased to the 

same extent as a result of BSO treatment. In both cases, the redox potentials 

increased to approximately -260 mV (Figure 6-4B). Although the redox 

potentials of the nuclei tended to be more negative than those of the cytosol, 

the values were not significantly different.  
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6.2.2 The nuclear and cytosolic redox potentials during cell cycle 

progression 

 

While an analysis of the distribution of GSH between the cytosol and nucleus 

during cell proliferation using the roGFP2 techniques described above was 

beyond the scope of the present study, it was possible to gain some insights 

into how the redox potentials of each compartment might change during the 

cell cycle from an analysis of unpublished results obtained by Ying Ping Dong, 

a colleague in the lab, using the staining procedures illustrated in Figure 6-1. In 

these experiments, Hoechst 33342 (for chromatin) and CMFDA (for GSH) 

were used to analyse the distribution of GSH between the cytosol and nucleus 

of Arabidopsis cells growing in culture, in which the cell cycle was 

synchronized using aphidicolin. In this experiment a double-staining method 

was used employing CMFDA as a specific stain for glutathione and Hoechst 

33342 to counterstain nuclei. The re-distribution of glutathione between 

nucleus and cytosol was then determined from confocal images of cells at 

various stages in the cell cycle, which derived from the synchronized cell 

suspension cultures.  

 

Due to the availability of only overall GSH concentrations (from Pellny et al., 

2009), the glutathione pool was assumed to be 95 % reduced in order to allow 

calculations of the redox potential. The overall glutathione concentrations from 

Pellny which used for calculating nuclear and cytosolic concentrations shown 

in the following as nmol GSH/mg protein: G0=150, G1=150; S=300, G2=450, 

P/M=450, A=450, e-T=450 and l-T=450 (Pellny et al., 2009). Based on these 

values the concentration for nucleus and cytosol were calculated using the 
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nuclear GSH % values shown in Figure 6-5A, which were obtained from 

double staining experiments performed by Ying Ping Dong (described above). 

 

This particular analysis of the redox potentials during different stages of the 

cell cycle is to be regarded as a very initial idea of how the redox potential of 

nucleus and cytosol might change in response to glutathione redistribution and 

neglects any possible shifts in GSH/GSSG ratio. Further experiments are 

required to actually measure the hypothetical values found here and to fully 

evaluate changes in the redox potential during the cell cycle, which might not 

only be based on the overall glutathione concentration, but also need to take 

shifts in GSH to GSSG ratio into consideration, as well as magnitude of the re-

synthesis of glutathione when GSH is sequestered into the nucleus at G1. 

Synchronized root tissue analysis, employing roGFP2 transgenic plants, might 

provide a useful tool in the analysis of evaluating the redox potentials of 

glutathione during progression through the cell cycle.  

 

However, based on the present analysis, which allowed a rough approximation 

of the nuclear and cytosolic glutathione pools at the different stages of the cell 

cycle, calculations of the redox potentials were performed using the Nernst 

equation. 

 

The distribution of GSH between the nucleus and cytosol varied at the different 

stages of the cell cycle. For example, compared to the cells that were not 

dividing, where only about 19% of the total GSH pool was localized in the 

nucleus, the percentage of GSH found in the nucleus increased at G1     

(Figure 6-5A). Moreover, at some stages of the cell cycle, such as G1 and 
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telophase stages, over 70 % of the GSH pool was localized in the nucleus 

(Figure 6-5A).  

 

In contrast, at S, only about 48 % of the GSH pool was localized in the nucleus 

(Figure 6-5A). It is important to note that the redox potentials calculated from 

these data are much higher (more positive) than the values obtained with 

roGFP techniques. Nevertheless, the calculated redox potentials of both the 

nucleus and cytosol varied at different stages of the cell cycle (Figure 6-5B). In 

particular, the glutathione redox potential of the nucleus increased by about   

19 mV (G0: -171.3 mV to G1:-189.4 mV; Figure 6-5B; lower panel).  

 

The nuclear glutathione redox potential remained steady during S phase and 

then decreased again by about 10 mV (S: -191.1 mV to G2: -201.0 mV; Figure 

6-5B; lower panel). A constant redox potential of glutathione of around              

-200 mV was maintained throughout the later stages of the cell cycle (Figure 

6-5B; lower panel). In contrast to the nuclear glutathione redox potential, the 

redox potential of the cytosol was decreased by about 15 mV at G1 compared 

to G0 (Figure 6-5B; upper panel).  

 



 

162 
 

  

Figure 6-5: Nuclear and cytosolic portions of the cellular glutathione pool and 

corresponding glutathione redox potentials during cell cycle progression. A: 

The proportion of GSH present in the nucleus, as % of the overall cellular glutathione 

pool, during cell cycle progression: O, Prior to proliferation; Mitosis: P/M, 

pro/metaphase; A, anaphase; e-T, early telophase; l-T, late telophase. The proportion 

of GSH in the nucleus was established by dividing the mean values for CMFDA 

fluorescence of the nucleus area by the mean values for CMFDA fluorescence of the 

whole cell. B: Calculated glutathione redox potentials of the nucleus (lower panel) and 

cytosol (upper panel) at the different stages of the cell cycle. The redox potentials are 

shown as white numbers inside the corresponding bar in mV.  
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Values remained low and constant from G1 phase and late telophase being 

approximately –200 mV, with exception of early telophase, which exhibited a 

redox potential of around -185 mV (Figure 6-5B; upper panel). 

 

6.3 Results – Isolation and visualization of nuclei with intact outer 

envelopes 

 

6.3.1 Isolation of nuclei with intact outer nuclear envelopes 

 

The following studies were performed to isolate nuclei with intact outer 

envelopes. Techniques that are generally used to isolate nuclei include steps 

using liquid nitrogen and detergent, such as e.g. Trition X-100, agents that 

would favour loss of nuclear envelope integrity and alter permeability, such 

that nuclear proteins might be lost during extraction. A number of attempts 

were made to isolate nuclei in the absence of these steps and to optimize 

protocols for purification of nuclei.  

 

Various methods for tissue disruption were tested in relation to the extraction 

of nuclei using the extraction buffers in the CelLytic PN Kit from Sigma in the 

first instance (as outlined in Figure 6-6, left panel). Each experiment involved  

5 g of roots from 7-day old plantlets, applying appropriate buffer volumes. 

However, the grinding techniques illustrated in Figure 6-6 (left panel) in 

combination with the buffers of Sigma‟s CelLytic PN Kit failed to yield nuclei, as 

measured by absence of the nuclear envelope GFP signal, as well as the 

absence of chromatin fluorescence from the chromatin staining using Hoechst 

33342. An alternative approach using a modified version of the INTACT 

method (Deal and Henikoff, 2010B) was therefore tested.  
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The INTACT method depends on the generation of “biotinylated nuclei” in 

transgenic Arabidopsis thaliana plants that express a fusion protein consisting 

of a nuclear envelope-targeting sequence, green fluorescent protein (GFP), 

and the biotin ligase recognition peptide, in the presence of Escherichia coli 

biotin ligase. A transgenic line expressing a GL2p:NTF/ACT2p:BirA his 

construct (GL2 line), and hence containing biotinylated nuclei in the non-hair 

root cells, was used in the following studies. The fluorescence of the tagged 

nuclei is readily observed in the intact roots (Figure 6-7). 

 

In the original method described by Deal and Henikoff (2010B) nuclei are 

obtained from homogenised frozen root material that is ground to a fine 

powder. Moreover, one of the purification buffers that are subsequently used 

contains detergent, and no osmolytes were used. The protocol of Deal and 

Henikoff (2010B) was therefore modified to avoid liquid nitrogen and 

detergents, as illustrated in Figure 6-6 (right panel) and 0.3 M Mannitol was 

included in all buffers in order to avoid swelling of the nuclei due to changed 

osmolality. In all cases, the extraction and purification steps, illustrated in 

Figure 6-6 (right panel), were performed twice, but in combination all 

procedures took no longer than 60 minutes from intact tissue to pure intact 

nuclei. Various tissue disruption and homogenisation procedures were tested, 

including grinding and cutting the roots. The most successful method, as 

shown in Figure 6-8, in terms of the yield of pure nuclei, involved cutting the 

roots in modified nuclear isolation buffer (mNIB), followed by filtering the 

homogenate through a 70 µm mesh, followed by centrifugation and purification 

(Figure 6-8).   
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Figure 6-6: Comparison of procedures for extraction of intact nuclei and amounts of recoverable nuclei for each method. Shown are 

workflows and the different methods of tissue disruption performed. Single red line shows steps that were performed only once, double red line 

shows procedure steps performed twice.    
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Figure 6-7: Images of GFP-tagged nuclei in root tissue of the GL2 line. A: 

Confocal image of a root of the transgenic Arabidopsis thaliana GL2 line expressing 

NTF in the epidermal non-hair cells. GFP is shown in green and cell walls are shown 

in red (Deal and Henikoff, 2010B). B and C: Fluorescence microscopic image of the 

nuclei inside the root of the GL2 line, which were obtained during this study. 

 

 

The nuclei prepared as described in Figure 6-8 were intact as determined by 

bright field images (Figure 6-9A-F), GFP-fluorescence (green, Figure 6-9G-L; 

white arrows) and chromatin staining with Hoechst 33342 (blue, Figure 6-9M-

R; white arrows). While the nuclei prepared in this way were intact, the yield 

was too low to perform other studies. Therefore, numerous attempts were 

made to improve this method so as to achieve higher yield. Despite all these 

efforts, the highest yields obtained were between 17 and 20 nuclei per 20 µL 

purified preparation (Figure 6-9). Therefore, only about 865 nuclei were 

obtained from each 5 g of starting root material. In comparison, Deal and 

Henikoff (2010A) reported a routine recovery of 1-3*105 nuclei per 3 g of 

starting root material. The difference in the yields between the present study 

and that reported by Deal and Henikoff (2010A) implies that other methods of 

tissue disruption need to be used, such as for example protoplast extraction 

from cells grown in suspension and lysis of these protoplasts.  

 

A B C 
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Figure 6-8: Best working method for the extraction of nuclei. The workflow 

required for the extraction of nuclei is shown in A, and the setup for the purification as 

described by Deal and Henikoff (2010B) in B. The arrow in A is colour-coded to 

display the care required during each step (red, extremely careful handling; white, 

careful handling). All steps of the purification were performed at 4°C in a cold-room 

and on ice. mNIB (modified Nuclear Isolation Buffer), is the buffer used for the 

extraction of nuclei as described by Deal and Henikoff (2010B) plus added 0.3 M 

mannitol. 
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Figure 6-9: Visualization of extracted nuclei. Visualization of nuclei, extracted by cutting 2 g of root tissue of 7-day old GL2 seedlings and a 

two-step filtering approach, was performed at wavelengths 488 nm for the nuclear envelope GFP and 461 nm for HOECHST 33342. Shown are 

bright field (nuclei, A-F), GFP (nuclear envelope, red arrows, G-L) and HOECHST (chromatin, white arrows, M-R) images under 100x 

magnification for 3 independent extraction replications of the best extraction method. The yields of nuclei are displayed for each replication 

separately. The white bar represents 5 µm. 



 

169 
 

6.3.2 Visualization of extracted nuclei 

 

Scanning electron microscopy (SEM) using a FEI Quanta 200 F environmental 

scanning electron microscope, was also used to visualise the structure of the 

isolated nuclei. For this analysis, the nuclei were fixed onto slides using a 

protocol that has been used in yeast (Kiseleva et al., 2007). Nuclei prepared 

as in Figure 6-8 were fixed onto 5 mm² polysine glass slides. In total, 4 slides 

were prepared for each nuclear isolation. 

 

This analysis revealed that while the M280 streptavidin-coated beads were 

clearly visible, very few intact nuclei were present following the fixation 

procedures (Figure 6-10). In many cases, the M280 beads were associated 

with cell debris, presumably nuclear envelopes (blue arrows, Figure 6-10A, B 

and C). Nevertheless, the single nucleus, which is indicated by the green 

arrows on Figure 6-10C and D) is very similar in appearance to images of 

isolated nuclei in published work (Fiserova et al., 2009). 
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Figure 6-10: Scanning electron microscopy images of nuclear debris and 

extracted nuclei. Images were acquired using a FEI Quanta 200 FEG scanning 

electron microscope. Displayed are selected images of M280 streptavidin-coated 

magnetic beads used during the extraction of nuclei (A, E and F), debris of nuclei 

(blue arrows A, B and C) bound to beads (blue arrow, B), and a nucleus at different 

magnifications (green arrow; C, right half and D). For comparison M280 beads were 

visualized separately at different magnifications (E and F). All images were acquired 

at 5.00 kV using an ETD detector. Magnifications factors were either 22000x (A), 

12500x (B), 6600x (C), 40000 (D), 60000x (E), or 3600x (F). The white bars provide a 

size scale for each image individually. Red arrows point to M280 streptavidin-coated 

beads used in the purification process of nuclei from plant extracts. 

 

 

6.4 Conclusion 

 

The roGFP probe used in this analysis has been widely used previously to 

determine the glutathione redox potential of the cytosol. The data presented 
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here demonstrate that the roGFP probe that is targeted to the cytosol can also 

be used to determine the glutathione redox potential of the nucleus. 

Presumably this is possible because the probe can diffuse across the nuclear 

envelope.  

 

GSH is abundant in the cytosol of plant cells (Zechmann et al., 2008). It is 

considered to diffuse freely from the cytosol into the nucleus through the 

nuclear pores (García-Giménez et al., 2013). However, there are no published 

values for the redox potential of the nucleus in plant cells. In this study the 

glutathione redox potential of the nucleus and cytosol were measured in A. 

thaliana roots in the absence or presence of BSO using the roGFP system 

(Meyer et al., 2007). The data presented in this chapter not only confirm 

previous estimates of the cytosolic glutathione redox potential in the absence 

of BSO (Meyer et al., 2007), but provide the first measurements of the redox 

potential of the nucleus in plant cells. Moreover, the redox potential of the 

cytosol and nucleus were also measured in root cells in which the glutathione 

pool had been severely depleted by BSO treatment. The addition of BSO 

significantly decreased the cellular glutathione concentration (p<0.01; Figure 

6-3A), without markedly affecting the GSH to GSSG ratio. In the presence of 

BSO the 405 nm/488 nm ratios for the nucleus and cytosol were greatly 

increased compared to control conditions (0.00 mM BSO). However, the redox 

potentials of the nucleus and the cytosol were decreased to a similar extent as 

a result of GSH depletion. Therefore, the pools of GSH in the nucleus and the 

cytosol fluctuate in a similar manner. A recent study on yeast indicated that the 

redox states of the nucleus and cytosol were independent, at least to some 

extent (Dardalhon et al., 2012). It will be interesting to determine the the redox 
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potential of the cytosol and nucleus during the cell cycle in synchronized A. 

thaliana roots using the roGFP system. The movement of GSH into the 

nucleus at G1 should lead to changes in the redox potentials of both the 

nucleus and cytosol. However, this would be technically challenging because 

the cell cycle has first to be synchronised in the root cells. The data presented 

in Figure 6-5, which are derived from measurements made in synchronised    

A. thaliana cells proliferating in culture, provide a first approximation of how 

GSH sequestration in the nucleus might alter the redox potentials of both the 

nucleus and cytosol. It is important to note that the redox potentials calculated 

from these data are much higher than the values obtained with roGFP 

techniques. Such differences might be explained by the different methods 

used in each case. Whereas the measurements made by roGFP probe directly 

reflect the GSH pool in either the cytosol or the nucleus, the data presented in 

Figure 6-5 were obtained from values for GSH and GSSG in tissue extracts, 

which include all cellular compartments.  

 

While the purification procedures for intact nuclei used in this study failed to 

yield the quantities required for further analysis, the data nevertheless illustrate 

that nuclei with intact envelopes can be prepared by these procedures. The 

data presented here demonstrate that it is difficult to obtain nuclei when 

avoiding liquid nitrogen and detergent steps during the extraction without 

comprising on yield. Therefore, an alternative method of tissue disruption, 

circumventing the use of liquid nitrogen or detergents, might be the extraction 

of nuclei from protoplasts through lysis and subsequent affinity purification 

(using transgenic line that would ubiquitously and constitutively generate 

biotin-labeled nuclei through expression of 35S:NTF/ACT2p:BirA instead of 
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non root-hair specific GL2p:NTF/ACT2p:BirA). This technique might therefore 

be considered as an alternative that would enhance not only tissue disruption, 

but also increase recoverable nuclei yields. Furthermore, this approach would 

allow production of high densities of single cells, which could also be subjected 

to further treatments, such as glutathione depletion by BSO, prior to 

protoplastation and isolation of nuclei. 
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7 Discussion 

 

Although the functions of glutathione in plants have been intensively studied 

for many years, and genetic evidence has demonstrated links between 

glutathione levels and shoot and root meristem activity (Bashandy et al., 2010; 

Koprivova et al., 2010; Reichheld et al., 2007; Vernoux et al., 2000A), the 

precise roles of GSH in plant growth, development and signalling remain 

poorly characterised. A multidisciplinary approach was therefore employed 

incorporating phenomic, transcriptomic, pharmacological and cell biology 

techniques in order to obtain new mechanistic information on the GSH 

functions in Arabidopsis thaliana, with a particular focus on growth, abiotic 

stress tolerance and signalling. Mutants that were defective in GSH synthesis 

capacity, particularly the rml1-1 mutant, have proved to be useful tools in this 

analysis.  

 

Earlier studies, using BSO had demonstrated that inhibition of GSH synthesis 

also leads to an arrest of root growth and provided evidence of effects of GSH 

depletion on auxin signalling (Koprivova et al., 2010). Although the inhibition of 

GSH synthesis by BSO appeared to have little effect on gene expression in 

experiment (Koprivova et al., 2010), rml1-1 mutant plants were used in the 

present studies for comparative purposes. The data presented here 

demonstrate that low GSH, in the rml1-1 mutant, regulates the expression of a 

wide range of genes, particularly those that encode transcription factors and 

proteins involved in hormone-dependent regulation of plant growth and 

development. Taken together, the findings presented in this thesis provide new 

information concerning the effects of a low abundance of GSH on growth, 
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abiotic stress tolerance and gene expression patterns, and also the effects of 

altered intracellular partitioning of GSH on these parameters. These studies 

enable several conclusions to be drawn: 

 

7.1 Low GSH availability, particularly in the cytosol, decreases lateral 

root density 

 

While the very low levels of GSH found in the rml1-1 mutants and in the wild-

type treated with BSO led to an inhibition of the growth of the primary roots at 

an early stage, which is linked to an arrest of the cell cycle, less severe 

depletion of the GSH pool led to a specific decrease in lateral root density. The 

effect of low GSH on lateral root density was observed in the cad2-1, pad2-1 

and rax1-1 mutants, as described previously (Marquez-Garcia et al., 2013).  

 

Moreover, like the GSH synthesis mutants, the clt1clt2clt3 triple mutants, which 

show specific decreases in the cytosolic GSH pool (Maughan et al., 2010), 

have significantly lower lateral root densities than the wild-type. These data 

demonstrate that a high cytosolic GSH pool is required in the control of lateral 

root development. This suggests that a cytoplasmic factor controlling root 

architecture is sensitive to the availability of this thiol.  

 

7.2 GSH availability exerts an influence on leaf area 

 

The data in the literature concerning the properties of the cad2-1, rax1-1 and 

the pad2-1 mutants do not describe effects of low GSH availability on leaf 

growth development. The phenomics approach used in these studies, which 

allowed the analysis of between 300 to 2000 plants per experiment, revealed 
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that the cad2-1, rax1-1 and the pad2-1 rosettes were significantly smaller than 

the wild-type at similar time points of measurement. In contrast, the rosettes of 

the clt1clt2clt3 triple mutants were significantly larger than the wild-type under 

low light growth conditions. These data implicate GSH in the control of leaf 

area. However, growth under high light led to a significant increase in leaf area 

in all genotypes. The overall size of the rosettes was significantly enhanced by 

high light. This effect was pronounced in the pad2-1 mutants, which 

outperformed the cad2-1 and rax1-1 mutants, achieving leaf areas that were 

similar to or even slightly higher than the wild-type. This finding suggests that 

the effect of light can overcome the adverse influence of low GSH in signalling 

that controls leaf area. This observation may also explain why previous studies 

have not reported a change in rosette parameters in the low GSH mutants.  

 

7.3 Low GSH does not increase sensitivity to a range of abiotic 

stresses 

 

Abiotic stress tolerance is an important factor determining plant growth and 

productivity. Antioxidants, such as glutathione, are considered to be important 

in abiotic stress tolerance because they protect against stress-induced 

oxidation (Noctor et al., 2013). The data presented in chapter 4 shows that 

induced exposures to oxidative stress (paraquat), salt stress and osmotic 

stress resulted in a decrease in leaf area in all genotypes. However, the stress 

effects were similar in the GSH synthesis mutants and in the clt1clt2clt3 triple 

mutants to the wild-type, the only exception was the rax1-1 mutant, which was 

slightly more sensitive to the paraquat treatment. Continuous abiotic stress 

treatments caused larger decreases in leaf area in all genotypes. However, in 
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contrast to the clt1clt2clt3 triple mutants, which showed a similar response to 

the abiotic stresses to the wild-type plants, the GSH synthesis mutants, with 

the exception of pad2-1, had a significantly greater leaf area than the wild-type 

under oxidative stress and high salt treatments. These results suggest that, 

rather than increasing sensitivity to abiotic stress, low GSH synthesis capacity 

mitigates the adverse effects of some abiotic stresses, such as salt and 

osmotic stress on leaf growth. This finding emphasises the specificity of GSH 

in protection against some forms of abiotic stress, such as those caused by 

exposure to heavy metals, where GSH is required for defence pathways such 

as phytochelatin biosynthesis. The observation that GSH deficiency decreases 

the adverse effect of salt stress and dehydration on leaf growth may be related 

to the central role of glutathione in the regulation of gene expression linked to 

oxidative stress signaling (Noctor et al., 2013). In addition, the altered 

intracellular compartmentalization of glutathione in the clt1clt2clt3 triple 

mutants led to either no change (relative to the wild-type) or a small, but 

significant, increase in abiotic stress tolerance. These findings contrast with the 

effects of low cytosolic GSH on biotic stress tolerance, which is impaired in the 

clt1clt2clt3 triple mutants (Maughan et al., 2010).  

 

7.4 The redox potential of the nucleus is similar to that of the cytosol  

 

The redox potential of the nucleus and cytosol were determined in the roots of 

wild-type plants and the wild-type treated with BSO to deplete the GSH pool. 

The glutathione redox potential, which is a key factor governing interactions 

between oxidative signals and protein targets, is related to [GSH]2:[GSSG] and 

is hence influenced by the absolute concentration of GSH as well as by 
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changes in GSSG relative to GSH (Meyer et al., 2007). Thus, changes in GSH 

levels alone are sufficient to increase the redox potential in a given cellular 

compartment, even if the GSH: GSSG ratio is unchanged (Meyer at al., 2007). 

The roGFP measurements reported here demonstrate that the redox potentials 

of the nuclei and cytosol are similar. Moreover, the redox potentials of the 

nuclei and cytosol were changed to similar extent by BSO (Figure 6-1). These 

data suggest that the nuclear GSH pool of non-dividing cells is no more 

resistant to GSH depletion than that of the cytosol. This finding is perhaps not 

surprising given that the redox state of the nucleus and cytosol are often 

considered to inter-dependent (García-Giménez et al., 2013). However, there 

are very few reports in the literature in which the redox states of the nucleus 

and cytosol have been measured. A recent study in yeast suggested that the 

redox states of the nucleus and cytosol were independent, at least to some 

extent (Dardalhon et al., 2012). Moreover, the finding that GSH is accumulated 

and sequestered in the nucleus during cell proliferation (Pallardó et al., 2009; 

Diaz-Vivancos et al., 2010A & B; Go & Jones, 2010; García-Giménez et al., 

2013) suggests that the redox states of the nucleus and cytosol would also be 

independent under some circumstances in plants. A first analysis of how GSH 

sequestration in the nucleus during might affect the relative redox states of the 

nucleus and cytosol is shown in Figure 6-5. Oxidative activation of the 

CDK/CYC D complex at the G1-to-S transition initiates the cell cycle in animal 

cells (Menon et al., 2003; Menon & Goswami, 2007), but this type of regulation 

has not been reported in plants.  

 

The estimates of redox potentials of the nuclei and cytosol were calculated 

from measurements of the glutathione pool in extracts (Pellny et al., 2009), 
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together with data obtained from dual staining technique for GSH and 

chromatin, illustrated in Figure 6-1. These calculations suggest that a transient 

oxidation of the cytosolic GSH pool occurs at G1, but the redox potential of the 

cytosol is restored to values similar to G0 at S and thereafter. Conversely, the 

redox potential of the nucleus is decreased at G1 and the nuclei remain at a 

higher reduction level throughout mitosis. Low GSH synthesis capacity causes 

cell cycle arrest at G1, as occurs in the rml1-1 mutants. Hence, the capacity to 

overcome the transient oxidation of the cytosolic GSH pool in the G1/S 

transition is crucial to the progression of the cell cycle.  

 

7.5 Low glutathione alters cell cycle transcripts in roots but not 

shoots 

 

The data presented in Chapter 5 allow the identification of transcripts involved 

in cell cycle regulation, whose abundance is changed by low GSH availability 

(Figure 5-3). In these studies on the rml1-1 mutants, it is in parts possible to 

distinguish changes in transcripts that are a result of growth inhibition (rml1-1 

mutant) from those that occur because of the lack of GSH per se (wild-

type+BSO; Figure 5-12). However, low GSH decreased the abundance of 

transcripts encoding core cell cycle components only in the rml1-1 root, and 

not in the shoot (Figure 5-3). This finding suggests a localised organ-specific 

response of the thiol-sensing component that regulates these genes either 

directly or indirectly. The majority of the mRNAs that were changed in 

abundance in response to low GSH encode CYCs and CDKs that are required 

for the G2 to M transition (Inze and De Veylder, 2006; Gutierrez, 2009). Other 

low GSH-responsive transcripts that were decreased in abundance in rml1-1 
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roots include Knolle, AtAUR1, AtAUR2, CKS2, PROLIFERA, ATBS1, BUBR1, 

OSD1 (UVI4-Like), PCNA1, MITOTIC ARREST-DEFICIENT (MAD)2. These 

genes encode proteins that are involved in processes related to cell cycle 

regulation. The data presented here therefore demonstrate that redox 

regulation involving GSH is important for a component that controls a step prior 

to the G2 to M transition. The changes in the levels of cell cycle transcripts 

reported here not only provide new insights into how GSH deficiency 

influences cell cycle progression but also help to explain the molecular 

mechanisms that lead to the failure of the root meristem in the    rml1-1 

mutants (Vernoux et al., 2000A) and the defects in root development observed 

in wild-type plants treated with BSO. 

 

7.6 Low GSH alters transcripts involved in auxin-dependent 

processes 

 

Of the large number of transcripts encoding transcription factors and enzymes 

involved metabolism, protein turnover, stress responses, transport and 

signalling were differentially changed in abundance in the rml1-1 mutants 

relative to the wild-type, many, such as IAA17/AXR3, IAA20, SPT, HEC1 and 

RSM1, are linked to the regulation of growth and development. In particular, 

the transcriptome signature of the rml1-1 revealed a large proportion of 

transcripts that are involved in auxin-dependent processes. For example, the 

levels of HEC1 transcripts were increased in rml1-1 relative to the wild-type 

and they were also increased in the roots of the wild-type following treatment 

with BSO (Figure 5-12). This finding is interesting, because the                    

ntra ntrb cad2-1 triple mutants that are deficient in both reduced TRX and GSH 
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have a similar pin-like phenotype compared to HEC1 overexpressing lines 

(Gremski et al., 2007; Bashandy et al., 2010). Both the HEC1 overexpressing 

lines and the ntra ntrb cad2-1 triple mutants suffer from impaired polar auxin 

transport (Gremski et al., 2007; Bashandy et al., 2010).  

 

Furthermore, the levels of SPT mRNAs, which restrain growth (Josse et al., 

2011) were also increased in rml1-1 relative to the wild-type. Moreover, SPT 

transcripts were also significantly increased in the roots of the wild-type 

following treatment with BSO. Other transcripts involved in pathways that 

regulate growth were also increased in rml1-1 relative to the wild-type. For 

example, IAA20 transcripts were increased in rml1-1 relative to the wild-type. 

The overexpression of IAA20 was found to cause root meristem collapse (Sato 

and Yamamoto, 2008).  

 

GSH depletion decreased the abundance of RSM1 and HLS1 mRNAs, which 

are involved in the control early morphogenesis (Hamaguchi et al., 2008). 

These findings are consistent with the observations from previous studies 

showing that glutathione homeostasis exerts a strong influence on the auxin 

signalling pathways that control growth (Bashandy et al., 2010, Koprivova et 

al., 2010; Gao et al., 2013). An earlier study had reported decreased 

fluorescence from a PIN1Pro::PIN1:GFP construct expressed in A. thaliana 

roots following BSO treatment (Koprivova et al., 2010). In the present study 

however, the abundance of transcripts encoding all the PIN transporters were 

similar in the rml1-1 and wild-type seedlings. The exception was the PIN5 

mRNAs that encodes an ER-localized PIN auxin transporter (Mravec et al., 

2009), which were decreased as a result of low GSH. The apparent 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mravec%20J%22%5BAuthor%5D


 

182 
 

discrepancy between these findings might be explained by GSH availability 

influencing post-translational mechanisms that regulate the abundance of PIN 

proteins. 

 

The abundance of transcripts encoding several UDP-glycosyltransferases 

(UGT), such as IAGLU, UGT74E2, UGT75B1 and UGT75B2, which are 

involved in auxin glucosylation was changed in rml1-1 relative to the wild-type. 

UGT75B1 and UGT75B2 encode enzymes that use IAA as a substrate 

(Jackson et al., 2001). UGT74E2 regulates the balance between indole-3-

butyric acid (IBA) and indole-3-acetic acid (IAA) to control plant architecture 

under stress conditions (Tognetti et al., 2010).  

 

7.7 GSH availability alters the abundance of redox-related transcripts 

 

The data presented here allows the identification of TRX transcripts, whose 

abundance is responsive to GSH depletion. In particular, mRNAs encoding two 

cytosolic h-type TRXs (TH7 and TH8) and an ACHT5, were changed in rml1-1 

relative to the wild-type. The levels of TH7 and TH8 mRNAs were greatly 

increased by GSH depletion. The abundance of these transcripts was not 

changed by increased H2O2 in the cat2 mutants (Queval and Foyer, 2012). 

Little is known about the functions of h-type TRXs, or their target proteins, but 

they are localized to the nucleus, mitochondria, plasma membrane and the 

apoplast (Gelhaye et al., 2004; Serrato et al., 2008). For example, one of the 

10 members of the h-type TRX family in rice (OsTRXh1) is important in the 

regulation of the redox state of the apoplast (Zhang et al., 2011). A 

plasmamembrane-associated TRX (H9) in Arabidopsis was found to move 
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between cells suggesting a role in intercellular communication (Meng et al., 

2009). GSTs and GRXs, such as GRXS17, can also link GSH to auxin 

transport and the regulation of the cell cycle, through altering auxin sensitivity 

and perturbing polar auxin transport (Edwards & Dixon, 2010; Cheng et al., 

2011). The expression of GSTU genes, such as GSTU5, is regulated by auxin, 

(van der Kop et al., 1996; Cheng et al., 2005) as is the expression of GSTF2, 

which binds IAA, NAA and NPA (Smith et al., 2003). The GSH-dependent 

changes in the levels of MYB29, GSTU20 and GSTU11 mRNAs are consistent 

with a possible influence on auxin-dependent regulation of glucosinolate 

synthesis (Sonderby et al., 2010). However, the abundance of transcripts 

encoding GRXS17, which has been implicated in the regulation of the cell 

cycle and to auxin transport (Cheng et al., 2011), was not significantly changed 

by GSH depletion. The levels of GRXS13 and GRX480/ROXY19 mRNAs were 

decreased by GSH depletion in rml1-1 tissues. Like other GSH-related proteins 

GRX480/ROXY19 and GRXS13 interact with TGA transcription factors to 

regulate growth and defence responses (Ndamukong et al., 2007; La Camera 

et al., 2011; Laporte et al., 2012) and they also exert an influence over other 

phytohormone signalling pathways (Cheng et al., 2011; La Camera et al., 

2011). 

 

7.8 Low GSH availability appears to have an altered gene expression 

in a different manner to enhanced oxidative stress 

 

Accumulating evidence supports the concept that glutathione status is involved 

in the cross talk between oxidative signalling and hormones signalling 

pathways (Mhamdi et al., 2010; Han et al., 2013A, B). In particular, enhanced 
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oxidative signalling in the cat2 mutants led to changes in salicylic acid and 

jasmonic acid signalling that were to a large extent dependent on glutathione 

(Mhamdi et al., 2010; Han et al., 2013A, B). However, a comparison of 

transcriptome profiles of the rml1-1 mutants reported here and that of the cat2 

mutants revealed little overlap in the patterns of transcript changes (Queval & 

Foyer, 2012). In particular, relatively few salicylic acid and jasmonic acid 

responsive transcripts were differentially changed in the rml1-1 mutants 

relative to the wild-type (Figure 5-7). This finding indicates that thiol deficiency 

(i.e. low GSH) alone results in a different response to that observed in GSH-

dependent oxidative signalling in the cat2 mutants (Han et al., 2013A). Other 

aspects of the transcriptome profiles are also different in the cat2 and rml1-1 

mutants. For example, while the expression of GST type U genes, which are 

considered to be markers for oxidative (H2O2) signalling (Vanderauwera et al., 

2005; Queval et al., 2012) were increased by GSH depletion, the abundance 

of TRX-related AT3G62950 transcripts, which encode a CC-type GRX, was 

greatly decreased in the rml1-1 leaves, but increased in the leaves of cat2 

mutants (Queval et al., 2012). While little is known about AT3G62950 in 

particular, CC-type GRX are described as specific to land plants and are 

implicated in functions, such as general plant development, petal development, 

response to pathogens and are further considered to interact with TGA 

transcription factors in the regulation of pathogenesis-related genes 

(Kesarwani et al., 2007; Li et al., 2009; Ziemann et al., 2009). One example is 

ROXY1 that encodes a GRX with CC-type motif and is suggested to interact 

with TGA factors during flower development, by probably modulating TGA 

factors (Li et al., 2009). Moreover, transcripts encoding proteins involved in the 

heat shock response were decreased, rather than increased, in the rml1-1 
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mutants, suggesting that low GSH is accompanied by a decrease in ROS-

specific signalling. These differences between observations in the cat2 and 

rml1-1 mutants might be explained by the absence of a change in the 

GSH:GSSG ratio in the rml1-1 tissues. Hence, the oxidative signalling 

pathways that trigger altered salicylic acid and jasmonic acid responsive genes 

may be more dependent on a shift in the GSH:GSSG ratio than on changes in 

the abundance of GSH alone. Finally, the absence of an oxidative stress 

transcript signature in plants with low GSH is important, because it 

demonstrates that thiol deficiency, leading to significant increases in the redox 

states of the nucleus and cytosol, may result in a different response to that 

observed in GSH-dependent oxidative signalling.  
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8 Perspectives 

 

While there are many possible experiments that would extend existing 

knowledge on glutathione functions in plant growth, development and 

signalling that might beautifully complement this thesis, the ones that I 

consider the most interesting would be e.g.: 

 

I) Further experiments to evaluate if the effects, in induced and continuous 

stress treatments, observed the mutant genotypes in this study are directly 

related to the GSH level or not.  

The use of only use wild-type plants across all induced and continuous stress 

treatments, which include growth in the absence or presence of various 

concentrations of BSO (and all combinations of stress and BSO treatments) 

would allow a more detailed insight into how the GSH level affects stress 

responses in general. These experiments would be designed to allow for in 

parallel testing of e.g. wild-type grown in the absence and presence of BSO 

without stress compared to wild-type grown in the absence and presence of 

stress with BSO. Using only wild-type plants would also bypass possible 

mutant genotype-specific effects that might not have been detected in this 

study. 

 

II) Experiments that allow a determination of how directly GSH level is related 

to gene expression. 

To allow for a determination of how directly GSH level is related to gene 

expression, qRT-PCR on selected genes, which were identified in the 

transcriptomic analysis in this study, seem to be the best possible route. 
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Comparisons of gene expression in wild-type plants grown in the absence and 

presence of BSO (various concentrations) with gene expression in the rml1-1 

mutant, might allow establishing a link between GSH level and gene 

expression, as well as allowing identification of possible rml1-1-specific effects. 

In parts this study performed such experiments (Figure 5-12; Figure 6-4A), 

however, 1mM BSO treatment did not seem sufficient to obtain fully block GSH 

synthesis in a way comparable to that found in the rml1-1 mutant, and hence 

gene expression might not have shown uniform patterns among rml1-1 mutant 

and wild-type plants grown in the presence of 1mM BSO. Therefore using a 

wider range of BSO treatment (e.g. 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM up to 3.0 

mM BSO), as well as a higher maximum BSO treatment (e.g. 3mM BSO), 

might allow to identify possible linear correlations of GSH level with gene 

expression levels and might also provide more insights, as to whether the 

maximum possible BSO inhibition leads to similar effects to that observed in 

the rml1-1 mutant. 

 

III) Experiments determining the specific effects of GSH depletion compared 

to those found in the rml1-1 mutant plants. 

Proteomics of wild-type plants grown in the absence and presence of BSO 

(only maximum BSO concentration, e.g. 3 mM) in comparison to proteomics of 

the rml1-1 mutant might be a useful tool. These experiments would follow up 

on the ones described in II) and might provide more in-depth knowledge as to 

the specific effects of glutathione depletion compared to possible rml1-1 

mutant-specific effects relative to the wild-type. Taken together the 

experiments proposed in II) and III) would also allow to differentiate between 
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possible transcriptional and post-transcriptional effects of glutathione 

depletion.  

 

IV) A full analysis of glutathione redox potentials throughout all stages of the 

cell cycle with in parallel determinations of overall glutathione, GSH and 

GSSG concentrations. 

A detailed analysis of the redox potential of glutathione throughout the cell 

cycle stage would allow better insights into the possible redox control of the 

cell cycle. This analysis would particularly benefit from a combination with 

experiments aimed on an evaluation of the effects of glutathione on nuclear 

proteins. One possibility to investigate the redox potential of glutathione during 

the various stages of the cell cycle could be the use of roGFP2 plants. Earlier 

studies showed that it possible to achieve a stress-induced synchronization of 

Arabidopsis root meristems using hydroxyurea (Toon et al., 2010). 

Synchronization of the cells in roots of roGFP2 plants using hydoxyurea 

treatment and alleviation of this stress might allow to directly follow changes in 

the redox potential of glutathione using confocal imaging, as well as 

distribution of glutathione within cellular compartments as the cell cycle 

resumes. In combination with a determination overall glutathione, GSH and 

GSSG this kind of experiments might provide actual insights into the redox 

potential of glutathione for each stage of the cell cycle, the GSH to GSSG ratio 

at a certain stage in the cell cycle and might also allow to identify stages at 

which glutathione synthesis could be induced to compensate for more oxidized 

conditions in the cytosol. 
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V) Establishing a functional method that allows for the isolation of nuclei with 

intact outer envelopes and subsequent visualization of the nuclear pore 

complex, as well as proteomics. 

As the procedure to isolate nuclei with intact outer envelopes, which is 

described in this study, did not allow for the extraction of sufficient amounts of 

nuclei that would allow follow-up experiments, a completely different approach 

might yield better results. This study identified amount of plant material and in 

particular tissue disruption method as the crucial steps to a successful isolation 

of nuclei. Hence, isolating nuclei from protoplasts generated from high-density 

cell suspension cultures might be one possibility that would allow for the 

generation large quantities of single cells, while at the same time reducing 

excess plant material. A further improvement to this method might be the use 

of transgenic plants that constitutively generate biotinylated nuclei in all plant 

tissues, rather than the lines used in the present study, which used a non-root 

hair specific promotor to achieve tagging in specific cell types. However, this 

would rather be a longer term project, as the generation of transgenic plants 

and the validation of stable expression of the transgene is very time-

consuming. Nevertheless, the advantage of obtaining large quantities of nuclei 

in highly-pure preparations would pay off in follow-up experiments, such as 

e.g. proteomics on nuclear genes, or visualization of nuclear pore complexes 

via SEM. A further advantage might be the ability to subject the cell cultures to 

various treatments like e.g. BSO-induced glutathione depletion prior to the 

isolation of nuclei. This might in turn allow direct identification of possible 

effects of glutathione depletion on nuclear proteins and distinguish between 

transcriptional and posttranslational effects of glutathione depletion on these 

proteins. Furthermore, this would also allow for a determination of possible 
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posttranslational effects on e.g. proteins involved in the formation of the 

nuclear pore complex. 
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Appendices  

 

Appendix I: Composition of growth medium I:  

1x Murashige & Skoog (MS) medium 

Component   
Amount per 

Litre 

MS basal salts    4.40 g 

Sucrose 
 

30 g 

Agar-Agar (A/1080/53, Fisher Scientific)   10 g 

pH not adjusted   

 



 

224 
 

 

 

Appendix II: Composition of growth medium II:  

0.5x Murashige & Skoog (MS) medium 

Component   
Amount per 

Litre 

MS basal salts without vitamins   2.15 g 

Glucose 
 

12 g 

B5 vitamins 
 

0.112 g 

Agar-Agar    7 g 

pH adjusted with 1 M KOH to pH=5.80   
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Appendix III: Composition of growth medium III  

(modified PANG2 medium) 

Component   
Amount per 

Litre 

CaCl2 
 

150 µM 

NaH2PO4 
 

100 µM 

MgSO4 
 

20 µM 

KNO3 
 

1000 µM 

KI 
 

1.80 µM 

H3BO3 
 

20 µM 

ZnSO4  
 

3 µM 

CuSO4 
 

0.06 µM 

NaMoO4  
 

0.40 µM 

CoCl2  
 

4 µM 

Ferrous sulphate chelate solution (Sigma Aldrich) 
 

0.04 %  (v/v) 

MES 
 

0.05 % (w/v) 

Sucrose 
 

0.50 % (w/v) 

Agar-Agar   1.00 % (w/v) 

pH adjusted with 1 M KOH to pH=5.80     
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Appendix IV: Composition of growth medium IV: 

0.5x Murashige & Skoog (MS) medium 

Component   
Amount per 

Litre 

MS basal salts  
 

2.15 g 

Sucrose 
 

10 g 

MES 
 

0.50 g 

Myo-Inositol 
 

0.10 g 

Agar-Agar    10 g 

pH adjusted with 1 M KOH to pH=5.70     
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Appendix V: Composition of the mNPB buffer for isolation of nuclei 

 

Component   Concentration 

MOPS (pH=7) 
 

20    mM 

NaCl 
 

40    mM 

KCl 
 

90    mM 

EDTA 
 

2    mM 

EGTA 
 

0.5 mM 

Spermidine 
 

0.5 mM 

Spermine 
 

0.2 mM 

Complete protease inhibitors 
 

1 x 

Mannitol   0.3 mM 

Prepare freshly on the day of use, filter sterilized and cooled down to 4°C prior 

to use. 
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Appendix VI: Overview of selected transcripts that are presented in Chapter 5 “Transcriptomic analyses glutathione depletion”. 

Transcripts are displayed sorted by AGI code together with their primary gene name (where available inside the description), a general 

description, annotation, as well as fold-changes in expression level in shoots and roots, relative to the wild-type. The full microarray data 

can be found at NCBI GEO as Series GSE36893 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36893).  

 

AGI Description Annotated as: fold-change 

   
Shoot Root 

AT1G01480 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2 (ACS2) Ethylene-related 0.01 2.82 

AT1G01720 MEMBER OF LARGE FAMILY OF PUTATIVE TRANSCRIPTIONAL ACTIVATORS WITH NAC DOMAIN ABA-related 1.87 0.85 

AT1G02930 GSTF6/ERD11 Redox-related 3.07 5.11 

AT1G02940 GSTF5 Redox-related 2.06 0.60 

AT1G03020 TRX FAMILY Redox-related -1.47 0.07 

AT1G03400 ENCODES A PROTEIN WITH SEQUENCE SIMILARITY TO TOMATO E8 (ACC OXIDASE) Ethylene-related -1.66 -0.33 

AT1G03850 GRXS13 Redox-related -2.43 -1.27 

AT1G05560 UDP-GLUCOSYLTRANSFERASE 75B1 (UGT75B1) ABA-related 2.14 0.09 

AT1G05680 UDP-GLYCOSYLTRANSFERASE 74E2 (UGT74E2) Auxin-related 3.77 3.77 

AT1G05680 URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASE 74E2 (UGT74E2) Auxin-related 3.77 3.77 

AT1G07370 PCNA1 (PROLIFERATING CELLULAR NUCLEAR ANTIGEN) Cell cycle-related -0.41 -1.35 

AT1G07400 HSP20-LIKE CHAPERONES SUPERFAMILY PROTEIN Stress-related 0.05 3.69 

AT1G08560 SYP111 (SYNTAXIN OF PLANTS 111); SNAP RECEPTOR Cell cycle-related -0.15 -2.17 

AT1G10370 GSTU17/ERD9 Redox-related -1.22 0.84 

AT1G13300 HRS1; MYB FAMILY TRANSCRIPTION FACTOR Transcription factor -0.79 -3.12 

AT1G17170 GSTU24 Redox-related 4.55 1.88 

AT1G17180 GSTU25 Redox-related 3.94 1.79 

AT1G18100 ENCODES A MEMBER OF THE FT AND TFL1 FAMILY OF PE-BINDING PROTEINS ABA-related 1.05 3.76 

AT1G18330 EARLY-PHYTOCHROME-RESPONSIVE1 (EPR1) Ethylene-related -0.78 -1.66 

AT1G19570 DHAR1 Redox-related 1.22 -0.73 

AT1G19850 INDOLE-3-ACETIC ACID INDUCIBLE 24 (IAA24) Auxin-related 0.13 2.47 

AT1G20440 COLD-REGULATED 47 (COR47) Stress-related -2.11 -2.27 

AT1G20440 BELONGS TO THE DEHYDRIN PROTEIN FAMILY ABA-related -2.11 -2.27 

AT1G20440 COLD-REGULATED 47 (COR47) ABA-related -2.11 -2.27 

AT1G20450 LOW TEMPERATURE INDUCED 29 (LTI29) ABA-related -0.54 -1.99 

AT1G20930 CDKB2;2 (CYCLIN-DEPENDENT KINASE B2;2) Cell cycle -0.11 -1.43 
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AGI Description Annotated as: fold-change 

   
Shoot Root 

AT1G23550 SRO2 (SIMILAR TO RCD ONE 2) DNA repair -0.28 2.42 

AT1G25560 ENCODES A MEMBER OF THE RAV TRANSCRIPTION FACTOR FAMILY Ethylene-related 1.24 0.82 

AT1G26100 CYTOCHROME B561/FERRIC REDUCTASE TRANSMEMBRANE PROTEIN FAMILY Ethylene-related -0.11 -2.00 

AT1G27730 RELATED TO CYS2/HIS2-TYPE ZINC-FINGER PROTEINS FOUND IN HIGHER PLANTS ABA-related 1.72 1.99 

AT1G28370 ENCODES A MEMBER OF THE B-1 SUBFAMILY OF ERF/AP2 TRANSCRIPTION FACTOR FAMILY (ERF11) Ethylene-related 1.84 0.25 

AT1G29420 SAUR-LIKE AUXIN-RESPONSIVE PROTEIN FAMILY Auxin-related -1.47 -0.08 

AT1G29490 SAUR-LIKE AUXIN-RESPONSIVE PROTEIN FAMILY Auxin-related -1.51 -0.55 

AT1G32230 RCD1 (RADICAL-INDUCED CELL DEATH1); PROTEIN BINDING DNA repair 0.44 0.93 

AT1G43910 P-LOOP CONTAINING NUCLEOSIDE TRIPHOSPHATE HYDROLASES SUPERFAMILY PROTEIN ABA-related 3.94 3.03 

AT1G43910 P-LOOP CONTAINING NUCLEOSIDE TRIPHOSPHATE HYDROLASES SUPERFAMILY PROTEIN ABA-related 3.94 3.03 

AT1G44110 CYCA1;1 (CYCLIN A1;1); CYCLIN-DEPENDENT PROTEIN KINASE REGULATOR Cell cycle 0.27 -1.51 

AT1G47510 INOSITOL POLYPHOSPHATE 5-PHOSPHATASE 11 (5PTASE11) Auxin-related -0.02 3.46 

AT1G48660 AUXIN-RESPONSIVE GH3 FAMILY PROTEIN Auxin-related 3.48 3.23 

AT1G48660 AUXIN-RESPONSIVE GH3 FAMILY PROTEIN Auxin-related 3.48 3.23 

AT1G48690 AUXIN-RESPONSIVE GH3 FAMILY PROTEIN Auxin-related -0.53 -2.43 

AT1G49820 ENCODES 5-METHYLTHIORIBOSE KINASE, INVOLVED IN METHIONINE CYCLE Ethylene-related 1.09 -0.05 

AT1G49860 GSTF14 Redox-related -2.64 -1.71 

AT1G53540 HSP20-LIKE CHAPERONES SUPERFAMILY PROTEIN Stress-related -0.22 3.80 

AT1G54100 ALDEHYDE DEHYDROGENASE ABA-related 2.08 1.38 

AT1G55210 DISEASE RESISTANCE-RESPONSIVE (DIRIGENT-LIKE PROTEIN) FAMILY PROTEIN Stress-related 1.91 0.65 

AT1G56650 MYB DOMAIN PROTEIN 75 (MYB75) Auxin-related 4.84 2.80 

AT1G56650 MYB DOMAIN PROTEIN 75 (MYB75) Auxin-related 4.84 2.80 

AT1G56650 PRODUCTION OF ANTHOCYANIN PIGMENT 1 (MYB75; PAP1) Transcription factor 4.84 2.80 

AT1G59700 GSTU16 Redox-related 1.02 1.27 

AT1G59730 TH7 Redox-related 2.52 -0.71 

AT1G62380 ACC OXIDASE 2 (ACO2) Ethylene-related 0.86 2.62 

AT1G62975 BASIC HELIX-LOOP-HELIX (BHLH) FAMILY PROTEIN (BHLH125) Transcription factor 0.34 -3.33 

AT1G64160 DIRIGENT PROTEIN 5 (DIR5) Stress-related -0.28 3.39 

AT1G65870 DISEASE RESISTANCE-RESPONSIVE (DIRIGENT-LIKE PROTEIN) FAMILY PROTEIN Stress-related -3.02 -0.27 

AT1G66100 PREDICTED TO ENCODE A PR (PATHOGENESIS-RELATED) PROTEIN Stress-related -5.40 -0.68 

AT1G66230 MYB DOMAIN PROTEIN 20 (MYB20) Transcription factor -2.50 -0.95 

AT1G66390 PRODUCTION OF ANTHOCYANIN PIGMENT 2 (MYB90; PAP2) Transcription factor 3.69 3.17 

AT1G66390 PRODUCTION OF ANTHOCYANIN PIGMENT 2 (MYB90; PAP2) Transcription factor 3.69 3.17 

AT1G68765 INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) Ethylene-related -0.03 2.01 
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AGI Description Annotated as: fold-change 

   
Shoot Root 

AT1G69880 TH8 Redox-related 5.49 5.25 

AT1G70440 SRO3 (SIMILAR TO RCD ONE 3); NAD+ ADP-RIBOSYLTRANSFERASE DNA repair 1.00 4.21 

AT1G71030 ENCODES A PUTATIVE MYB FAMILY TRANSCRIPTION FACTOR ABA-related -1.64 -0.50 

AT1G72070 CHAPERONE DNAJ-DOMAIN SUPERFAMILY PROTEIN Stress-related 2.18 0.67 

AT1G72430 SAUR-LIKE AUXIN-RESPONSIVE PROTEIN FAMILY Auxin-related -1.40 -1.27 

AT1G72900 TOLL-INTERLEUKIN-RESISTANCE (TIR) DOMAIN-CONTAINING PROTEIN Stress-related 2.31 2.55 

AT1G72920 TOLL-INTERLEUKIN-RESISTANCE (TIR) DOMAIN FAMILY PROTEIN Stress-related 2.25 1.88 

AT1G73330 DROUGHT-REPRESSED 4 (DR4) Stress-related -1.60 -4.41 

AT1G73330 DROUGHT-REPRESSED 4 (DR4) Stress-related -1.60 -4.41 

AT1G73330 ENCODES A PLANT-SPECIFIC PROTEASE INHIBITOR-LIKE PROTEIN; DISAPPEARS IN RESPONSE TO DROUGHT  ABA-related -1.60 -4.41 

AT1G73330 DROUGHT-REPRESSED 4 (DR4) ABA-related -1.60 -4.41 

AT1G73500 MEMBER OF MAP-KINASE KINASE FAMILY Ethylene-related 1.33 0.00 

AT1G73870 ZINC FINGER (B-BOX TYPE) FAMILY PROTEIN Transcription factor -2.06 -0.25 

AT1G74500 BHLH FAMILY PROTEIN Cell cycle-related 0.00 -2.31 

AT1G75250 ARABIDOPSIS RAD-LIKE 6 (RSM3; ATRL6) Transcription factor -2.45 -0.06 

AT1G75270 DHAR2 Redox-related 1.10 0.33 

AT1G75580 SAUR-LIKE AUXIN-RESPONSIVE PROTEIN FAMILY Auxin-related 2.14 0.26 

AT1G75750 GA-RESPONSIVE GAST1 PROTEIN HOMOLOG  ABA-related -3.02 -0.87 

AT1G75830 LOW-MOLECULAR-WEIGHT CYSTEINE-RICH 67 (LCR67) Stress-related 0.40 3.62 

AT1G76310 CYCB2;4 (CYCLIN B2;4); CYCLIN-DEPENDENT PROTEIN KINASE REGULATOR Cell cycle -0.08 -1.12 

AT1G76540 CDKB2;1 (CYCLIN-DEPENDENT KINASE B2;1); CYCLIN-DEPENDENT PROTEIN KINASE Cell cycle 0.18 -2.04 

AT1G76760 TY1 Redox-related 1.03 -0.42 

AT1G76800 ENCODES NODULIN-LIKE2; REPRESSED UNDER CONDITIONS OF FE-DEFICIENT GROWTH Ethylene-related 0.08 -2.57 

AT1G78370 GSTU20 Redox-related -1.54 -2.61 

AT2G01520 MLP-LIKE PROTEIN 328 (MLP328) Stress-related -2.34 -5.95 

AT2G01530 MLP-LIKE PROTEIN 329 (MLP329) Stress-related -2.15 -3.81 

AT2G01530 MLP-LIKE PROTEIN 329 (MLP329) Stress-related -2.15 -3.81 

AT2G02130 LOW-MOLECULAR-WEIGHT CYSTEINE-RICH 68 (LCR68) Stress-related -0.25 -2.98 

AT2G02390 GSTZ1 Redox-related 1.90 0.79 

AT2G05520 GLYCINE-RICH PROTEIN 3 (GRP-3)  ABA-related 0.34 2.93 

AT2G05710 ENCODES AN ACONITASE ABA-related 1.84 1.42 

AT2G15970 COLD REGULATED 413 PLASMA MEMBRANE 1 (COR413-PM1) ABA-related -0.48 -2.06 

AT2G16850 PLASMA MEMBRANE INTRINSIC PROTEIN 3B (PIP2;8) ABA-related -0.13 -1.91 

AT2G17620 CYCB2;1 (CYCLIN B2;1); CYCLIN-DEPENDENT PROTEIN KINASE REGULATOR Cell cycle 0.10 -1.14 
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AGI Description Annotated as: fold-change 

   
Shoot Root 

AT2G21210 PUTATIVE AUXIN-REGULATED PROTEIN; DOWN-REGULATED IN RESPONSE TO CHITIN OLIGOMERS Auxin-related -2.18 -2.40 

AT2G21650 MATERNAL EFFECT EMBRYO ARREST 3 (RSM1; MEE3) Transcription factor -2.18 -1.99 

AT2G22330 CYTOCHROME P450, FAMILY 79, SUBFAMILY B, POLYPEPTIDE 3 (CYP79B3) Auxin-related -0.07 -3.04 

AT2G25080 GPX1 Redox-related -1.27 0.59 

AT2G25880 ATAUR2 (ATAURORA2); HISTONE KINASE(H3-S10 SPECIFIC) / KINASE Cell cycle-related -0.36 -1.90 

AT2G26760 CYCB1;4 (CYCLIN B1;4); CYCLIN-DEPENDENT PROTEIN KINASE REGULATOR Cell cycle 0.10 -2.08 

AT2G27970 CKS2 (CDK-SUBUNIT 2); CYCLIN-DEPENDENT PROTEIN KINASE / REGULATOR Cell cycle-related 0.36 -1.48 

AT2G28700 AGAMOUS-LIKE 46 (AGL46) Transcription factor -0.03 2.90 

AT2G29420 GSTU7 Redox-related 1.85 0.08 

AT2G29440 GSTU6 Redox-related 1.83 -0.39 

AT2G29460 GSTU4 Redox-related 3.20 3.95 

AT2G29490 GSTU1 Redox-related 2.53 0.69 

AT2G29500 HSP20-LIKE CHAPERONES SUPERFAMILY PROTEIN Stress-related 0.88 3.26 

AT2G31320 PARP1 (POLY(ADP-RIBOSE) POLYMERASE 1) DNA repair -0.09 0.28 

AT2G32020 ACYL-COA N-ACYLTRANSFERASES (NAT) SUPERFAMILY PROTEIN ABA-related 1.64 2.88 

AT2G32020 ACYL-COA N-ACYLTRANSFERASES (NAT) SUPERFAMILY PROTEIN ABA-related 1.64 2.88 

AT2G32550 RCD1-LIKE CELL DIFFERENTIATION FAMILY PROTEIN Transcription factor -1.99 -1.09 

AT2G33150 ENCODES ORGANELLAR 3-KETOACYL-COA THIOLASE, INVOLVED IN GERMINATION AND SEEDLING GROWTH ABA-related 1.82 1.66 

AT2G33560 BUB1-RELATED (BUDDING UNINHIBITED BY BEZYMIDAZOL1); SPINDLE CHECKPOINT PROTEIN-RELATED Cell cycle -0.41 -1.32 

AT2G35510 SRO1 (SIMILAR TO RCD ONE 1); NAD+ ADP-RIBOSYLTRANSFERASE DNA repair 0.10 0.27 

AT2G36800 DON-GLUCOYLTRANSFERASE 1 (DOGT1) Stress-related 1.79 6.38 

AT2G36800 DON-GLUCOSYLTRANSFERASE 1 (DOGT1) Stress-related 1.79 6.38 

AT2G37170 PLASMA MEMBRANE INTRINSIC PROTEIN 2 (PIP2;2) ABA-related -0.35 -1.98 

AT2G38340 AP2 DOMAIN-CONTAINING TRANSCRIPTION FACTOR, PUTATIVE (DRE2B) Transcription factor 0.80 5.01 

AT2G38620 CDKB1;2 (CYCLIN-DEPENDENT KINASE B1;2); CYCLIN BINDING Cell cycle 0.03 -1.06 

AT2G38750 ANNEXIN 4 (ANNAT4) ABA-related 0.09 -2.01 

AT2G40750 WRKY54 Transcription factor 0.04 -3.38 

AT2G43510 TRYPSIN INHIBITOR PROTEIN 1 (TI1) Stress-related 1.03 4.54 

AT2G43550 ENCODES A DEFENSIN-LIKE (DEFL) FAMILY PROTEIN Stress-related -2.49 -2.30 

AT2G43590 CHITINASE FAMILY PROTEIN Stress-related 1.77 2.93 

AT2G44740 CYCP4;1 (CYCLIN P4;1); CYCLIN-DEPENDENT PROTEIN KINASE Cell cycle -0.15 -2.06 

AT2G44940 AP2 DOMAIN-CONTAINING TRANSCRIPTION FACTOR TINY, PUTATIVE Transcription factor -0.04 -3.06 

AT2G46990 INDOLE-3-ACETIC ACID INDUCIBLE 20 (IAA20) Auxin-related 2.96 0.26 

AT2G46990 INDOLE-3-ACETIC ACID INDUCIBLE 20 (IAA20) Transcription factor 2.96 0.26 



 

 
 

2
3

2
 

AGI Description Annotated as: fold-change 

   
Shoot Root 

AT2G47000 ARABIDOPSIS P-GLYCOPROTEIN 4 Auxin-related 2.73 1.81 

AT2G47520 AP2 DOMAIN-CONTAINING TRANSCRIPTION FACTOR, PUTATIVE; HRE2 Transcription factor 0.88 3.84 

AT3G01600 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 44 (ANAC044) Transcription factor 1.51 3.26 

AT3G01970 WRKY45 Transcription factor 0.61 2.98 

AT3G02850 STELAR K+ OUTWARD RECTIFIER (SKOR) ABA-related 0.10 -2.09 

AT3G03190 GSTF11 Redox-related -2.12 -2.69 

AT3G09270 GSTU8 Redox-related 1.03 -0.60 

AT3G11520 CYCB1;3 (CYCLIN B1;3); CYCLIN-DEPENDENT PROTEIN KINASE REGULATOR Cell cycle -0.07 -1.31 

AT3G12900 2-OXOGLUTARATE (2OG) AND FE(II)-DEPENDENT OXYGENASE SUPERFAMILY PROTEIN Ethylene-related -0.08 -2.40 

AT3G21460 GRX FAMILY Redox-related -1.03 -0.06 

AT3G22060 CONTAINS PFAM PROFILE: PF01657 DOMAIN OF UNKNOWN FUNCTION ABA-related -2.10 -0.68 

AT3G23250 MYB DOMAIN PROTEIN 15 (MYB15) Auxin-related -0.25 3.33 

AT3G23250 MYB DOMAIN PROTEIN 15 (MYB15) Transcription factor -0.25 3.33 

AT3G25190 ENCODES NODULIN-LIKE21; REPRESSED UNDER CONDITIONS OF FE-DEFICIENT GROWTH. Ethylene-related -1.65 -4.53 

AT3G25190 ENCODES NODULIN-LIKE21; REPRESSED UNDER CONDITIONS OF FE-DEFICIENT GROWTH Ethylene-related -1.65 -4.53 

AT3G25980 MITOTIC ARREST DEFICIENT 2 (MAD2); MITOTIC SPINDLE CHECKPOINT PROTEIN, PUTATIVE Cell cycle-related 0.15 -2.16 

AT3G26460 POLYKETIDE CYCLASE/DEHYDRASE AND LIPID TRANSPORT SUPERFAMILY PROTEIN Stress-related 0.71 -4.66 

AT3G26830 PHYTOALEXIN DEFICIENT 3 (PAD3) ABA-related 0.99 3.02 

AT3G28580 P-LOOP CONTAINING NUCLEOSIDE TRIPHOSPHATE HYDROLASES SUPERFAMILY PROTEIN ABA-related 1.42 4.10 

AT3G44300 NITRILASE 2 (NIT2) Auxin-related 3.69 3.16 

AT3G44300 NITRILASE 2 (NIT2) Auxin-related 3.69 3.16 

AT3G46130 MYB DOMAIN PROTEIN 111 (MYB111) Transcription factor -2.38 -2.76 

AT3G47620 ENCODES A TRANSCRIPTION FACTOR ATTCP14 THAT REGULATES SEED GERMINATION ABA-related -1.02 -1.33 

AT3G47720 SRO4 (SIMILAR TO RCD ONE 4); NAD+ ADP-RIBOSYLTRANSFERASE DNA repair -0.17 -0.14 

AT3G48360 BTB AND TAZ DOMAIN PROTEIN 2 (BT2) Auxin-related -1.84 -0.99 

AT3G48920 MYB DOMAIN PROTEIN 45 (MYB45) Transcription factor 1.89 2.40 

AT3G48940 REMORIN FAMILY PROTEIN Transcription factor -0.33 -3.36 

AT3G49760 ARABIDOPSIS THALIANA BASIC LEUCINE-ZIPPER 5 (ATBZIP5) Transcription factor -0.12 -3.35 

AT3G50330 HECATE 2 (HEC2) Transcription factor 2.69 0.11 

AT3G50460 HOMOLOG OF RPW8 2 (HR2) Stress-related -0.32 -3.03 

AT3G53250 SAUR-LIKE AUXIN-RESPONSIVE PROTEIN FAMILY Auxin-related 1.79 -0.06 

AT3G56970 BHLH038 Transcription factor 0.31 -3.03 

AT3G57860 UVI4-LIKE (UV-B-INSENSITIVE 4-LIKE) Cell cycle 0.06 -1.04 

AT3G59060 PHYTOCHROME INTERACTING FACTOR 3-LIKE 6 (PIL6) Ethylene-related -0.15 1.60 
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AGI Description Annotated as: fold-change 

   
Shoot Root 

AT3G60550 CYCP3;2 (CYCLIN P3;2); CYCLIN-DEPENDENT PROTEIN KINASE Cell cycle -0.10 -1.44 

AT3G61400 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE-LIKE PROTEIN  Ethylene-related -0.14 -1.76 

AT3G62930 TRX FAMILY Redox-related -2.21 -0.91 

AT3G62950 TRX FAMILY Redox-related -3.40 -0.04 

AT4G00670 DNA BINDING Transcription factor 0.06 -3.52 

AT4G02060 PRL (PROLIFERA); DNA REPLICATION INITIATION Cell cycle-related -0.46 -1.13 

AT4G02390 PARP2 (POLY(ADP-RIBOSE) POLYMERASE 2) DNA repair 1.36 1.49 

AT4G04840 METHIONINE SULFOXIDE REDUCTASE DOMAIN-CONTAINING PROTEIN Transcription factor -1.02 -4.13 

AT4G06746 RELATED TO AP2.9 (RAP2.9) Transcription factor -0.38 3.87 

AT4G07820 CYSTEINE-RICH SECRETORY PROTEINS, AND PATHOGENESIS-RELATED 1 SUPERFAMILY PROTEIN Stress-related -2.07 -1.72 

AT4G09820 TRANSPARENT TESTA 8 (TT8) Transcription factor 2.44 0.48 

AT4G11210 DISEASE RESISTANCE-RESPONSIVE (DIRIGENT-LIKE PROTEIN) FAMILY PROTEIN Stress-related -0.37 -4.78 

AT4G11600 GPX6 Redox-related 1.07 0.49 

AT4G12480 EARLY ARABIDOPSIS ALUMINUM INDUCED 1 (EARLI1) ABA-related 0.71 2.78 

AT4G12550 AUXIN-INDUCED IN ROOT CULTURES 1 (AIR1) Auxin-related 0.23 -4.29 

AT4G14630 GERMIN-LIKE PROTEIN 9 (GLP9) Stress-related -1.94 -2.81 

AT4G15690 TRX FAMILY Redox-related -2.05 -0.74 

AT4G15700 TRX FAMILY Redox-related -2.18 0.50 

AT4G15910 DROUGHT-INDUCED 21 (DI21) Stress-related 1.84 1.05 

AT4G15910 ENCODES A GENE WHOSE TRANSCRIPT LEVEL IN ROOT AND LEAVES INCREASES DURING DROUGHT STRESS ABA-related 1.84 1.05 

AT4G18170 WRKY28; TRANSCRIPTION FACTOR Transcription factor -0.12 3.30 

AT4G19690 IRON-REGULATED TRANSPORTER 1 (IRT1) Auxin-related -0.81 -2.86 

AT4G19880 GST FAMILY Redox-related 1.34 0.20 

AT4G22200 ENCODES AKT2, A PHOTOSYNTHATE- AND LIGHT-DEPENDENT POTASSIUM CHANNEL  ABA-related -1.19 -0.05 

AT4G22212 ENCODES A DEFENSIN-LIKE (DEFL) FAMILY PROTEIN Stress-related -1.82 -3.97 

AT4G22212 ENCODES A DEFENSIN-LIKE (DEFL) FAMILY PROTEIN Stress-related -1.82 -3.97 

AT4G22214 ENCODES A DEFENSIN-LIKE (DEFL) FAMILY PROTEIN Stress-related -0.21 -3.08 

AT4G23100 GSH1 (GLUTAMATE-CYSTEINE LIGASE) Glutathione synth. 0.54 0.83 

AT4G23680 POLYKETIDE CYCLASE/DEHYDRASE AND LIPID TRANSPORT SUPERFAMILY PROTEIN Stress-related 3.14 2.15 

AT4G24180 THAUMATIN-LIKE PROTEIN 1 (TLP1) Ethylene-related -0.43 -1.80 

AT4G24670 TRYPTOPHAN AMINOTRANSFERASE RELATED 2 (TAR2) Auxin-related -0.61 -2.80 

AT4G26200 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 7 (ACS7) Ethylene-related -0.20 4.03 

AT4G31320 SAUR-LIKE AUXIN-RESPONSIVE PROTEIN FAMILY Auxin-related -0.40 -2.50 

AT4G31870 GPX7 Redox-related -1.32 -0.06 
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AGI Description Annotated as: fold-change 

   
Shoot Root 

AT4G32810 CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) Auxin-related -0.13 2.58 

AT4G32830 ATAUR1 (ATAURORA1); HISTONE KINASE (H3-S10 SPECIFIC)  Cell cycle-related -0.13 -1.73 

AT4G33040 TRX FAMILY Redox-related 2.27 2.35 

AT4G34160 CYCD3;1 (CYCLIN D3;1); CYCLIN-DEPENDENT PROTEIN KINASE REGULATOR Cell cycle 0.15 -1.03 

AT4G34760 SAUR-LIKE AUXIN-RESPONSIVE PROTEIN FAMILY Auxin-related -1.68 -2.19 

AT4G35100 PLASMA MEMBRANE INTRINSIC PROTEIN 3A (PIP3A) ABA-related -0.21 -2.05 

AT4G35620 CYCB2;2 (CYCLIN B2;2); CYCLIN-DEPENDENT PROTEIN KINASE REGULATOR Cell cycle -0.09 -1.43 

AT4G36570 ARABIDOPSIS RAD-LIKE 3 (ATRL3) Transcription factor -2.41 -1.36 

AT4G36930 SPATULA (SPT) Transcription factor 2.50 1.51 

AT4G37540 LOB DOMAIN-CONTAINING PROTEIN 39 (LBD39) Transcription factor -2.33 -2.18 

AT4G37610 BTB AND TAZ DOMAIN PROTEIN 5 (BT5) Auxin-related -3.82 -2.18 

AT5G04470 SIM (SIAMESE); CYCLIN-DEPENDENT PROTEIN KINASE INHIBITOR Cell cycle-related 1.26 0.06 

AT5G04950 ENCODES A NICOTIANAMIDE SYNTHASE Ethylene-related -1.82 -1.55 

AT5G06150 CYC1BAT; CYCLIN-DEPENDENT PROTEIN KINASE REGULATOR Cell cycle -0.12 -1.47 

AT5G06690 WCRKC1 Redox-related -1.67 -0.82 

AT5G07030 ASPARTIC-TYPE ENDOPEPTIDASE Transcription factor -0.41 -3.18 

AT5G07690 MYB DOMAIN PROTEIN 29 (MYB29) Transcription factor -2.66 -0.11 

AT5G07990 TRANSPARENT TESTA 7 (TT7) Auxin-related 2.63 -0.58 

AT5G08640 FLAVONOL SYNTHASE 1 (FLS1) Auxin-related 0.99 -3.36 

AT5G09980 ELICITOR PEPTIDE 4 PRECURSOR (PROPEP4) Stress-related 1.50 -1.55 

AT5G12020 17.6 KDA CLASS II HEAT SHOCK PROTEIN (HSP17.6II) Stress-related -1.39 3.73 

AT5G12030 HEAT SHOCK PROTEIN 17.6A (HSP17.6A) Stress-related -0.07 4.40 

AT5G13330 MEMBER OF THE ERF SUBFAMILY B-4 OF ERF/AP2 TRANSCRIPTION FACTOR FAMILY ABA-related 3.16 2.63 

AT5G13330 RELATED TO AP2 6L (RAP2.6L) ABA-related 3.16 2.63 

AT5G13330 RELATED TO AP2 6L (RAP2.6L) Transcription factor 3.16 2.63 

AT5G13370 AUXIN-RESPONSIVE GH3 FAMILY PROTEIN Auxin-related 0.96 3.15 

AT5G13930 TRANSPARENT TESTA 4 (TT4) Auxin-related 1.63 -2.62 

AT5G14070 ROXY2 Redox-related -1.45 -1.91 

AT5G16530 PIN-FORMED 5 (PIN5) Auxin-related -1.01 -2.69 

AT5G17220 GSTF12/TT19 Redox-related 4.10 2.28 

AT5G17300 REVEILLE 1 (RVE1) Auxin-related -1.87 0.05 

AT5G18600 TRX FAMILY Redox-related -2.28 0.35 

AT5G19880 PEROXIDASE SUPERFAMILY PROTEIN Ethylene-related -0.14 1.41 

AT5G25190 ENCODES A MEMBER OF THE B-6 SUBFAMILY OF ERF/AP2 TRANSCRIPTION FACTOR FAMILY (ESE3) Ethylene-related 2.59 2.25 
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AGI Description Annotated as: fold-change 

   
Shoot Root 

AT5G25190 ENCODES A MEMBER OF THE B-6 SUBFAMILY OF ERF/AP2 TRANSCRIPTION FACTOR FAMILY (ESE3) Ethylene-related 2.59 2.25 

AT5G25350 ARABIDOPSIS THALIANA EIN3-BINDING F-BOX PROTEIN 2 (EBF2)  Ethylene-related 1.23 1.38 

AT5G25610 RESPONSIVE TO DESSICATION 22 (RD22) ABA-related 0.80 2.72 

AT5G27380 GSH2 (GLUTATHIONE SYNTHETASE 2); GLUTATHIONE SYNTHASE Glutathione synth.- 0.63 0.34 

AT5G27520 PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2 (PNC2) Auxin-related 2.00 0.93 

AT5G28300 TRIHELIX DNA-BINDING PROTEIN, PUTATIVE Transcription factor 1.93 1.84 

AT5G28770 BZIP PROTEIN BZO2H3 MRNA Transcription factor -2.63 -1.89 

AT5G36910 THIONIN 2.2 (THI2.2) Stress-related -2.61 0.48 

AT5G38820 ENCODES A PUTATIVE AMINO ACID TRANSPORTER Ethylene-related -0.15 -1.61 

AT5G40370 GRXC2 Redox-related 1.16 0.85 

AT5G42050 DCD (DEVELOPMENT AND CELL DEATH) DOMAIN PROTEIN Stress-related 1.41 1.24 

AT5G42500 DISEASE RESISTANCE-RESPONSIVE (DIRIGENT-LIKE PROTEIN) FAMILY PROTEIN Stress-related 0.12 -4.35 

AT5G43450 ENCODES A PROTEIN WHOSE SEQUENCE IS SIMILAR TO ACC OXIDASE Ethylene-related 1.75 4.33 

AT5G43450 ENCODES A PROTEIN WHOSE SEQUENCE IS SIMILAR TO ACC OXIDASE Ethylene-related 1.75 4.33 

AT5G44030 CELLULOSE SYNTHASE A4 (CESA4)  Ethylene-related -0.30 -1.60 

AT5G44610 ENCODES A PROTEIN WITH SEVEN REPEATED VEEKK MOTIFS ABA-related -1.08 -1.03 

AT5G45820 ENCODES A CBL-INTERACTING SERINE/THREONINE PROTEIN KINASE ABA-related -2.82 -0.51 

AT5G47220 ENCODES A MEMBER OF THE B-3 SUBFAMILY OF ERF/AP2 TRANSCRIPTION FACTOR FAMILY (ERF2) Ethylene-related 1.67 1.74 

AT5G47220 ENCODES A MEMBER OF THE B-3 SUBFAMILY OF ERF/AP2 TRANSCRIPTION FACTOR FAMILY (ERF2) Ethylene-related 1.67 1.74 

AT5G51440 HSP20-LIKE CHAPERONES SUPERFAMILY PROTEIN Stress-related 1.09 3.49 

AT5G54190 LIGHT-DEPENDENT NADPH:PROTOCHLOROPHYLLIDE OXIDOREDUCTASE A Ethylene-related 1.07 -0.45 

AT5G55620 UNKNOWN PROTEIN Ethylene-related 0.22 3.79 

AT5G56080 NICOTIANAMINE SYNTHASE 2 (NAS2) Ethylene-related -0.96 -3.02 

AT5G57560 XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 22 (XTH22) Auxin-related -1.69 2.42 

AT5G59820 RESPONSIVE TO HIGH LIGHT 41 (RHL41; ZAT12) Transcription factor 1.37 2.99 

AT5G60660 PLASMA MEMBRANE INTRINSIC PROTEIN 2;4 (PIP2;4) ABA-related -0.45 -3.68 

AT5G61440 ACHT5 Redox-related -1.50 -2.34 

AT5G62520 SRO5 (SIMILAR TO RCD ONE 5); NAD+ ADP-RIBOSYLTRANSFERASE DNA repair -0.31 2.75 

AT5G62530 ALDEHYDE DEHYDROGENASE 12A1 (ALDH12A1) DNA repair 0.40 1.94 

AT5G63160 BTB AND TAZ DOMAIN PROTEIN 1 (BT1) Auxin-related -3.55 -2.47 

AT5G63160 BTB AND TAZ DOMAIN PROTEIN 1 (BT1) Auxin-related -3.55 -2.47 

AT5G64750 ABA REPRESSOR1 (ABR1) ABA-related -0.27 2.75 

AT5G67060 HECATE 1 (HEC1) Transcription factor 3.46 1.97 
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