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Abstract 

Marine cloud brightening (MCB) geoengineering has been proposed as a means of 

ameliorating anthropogenic climate change. High concentrations of nanometre-sized aerosols 

would be emitted from seagoing vessels, with the intention of increasing the albedo of low-

lying marine stratocumulus clouds (MSc) via indirect aerosol effects.  

Realistic estimates of the potential effectiveness of MCB are needed to inform policy-making 

on climate change. However, in spite of increasing model complexity and developments in 

representing MCB, the relatively coarse resolution of global-scale models prevents 

implementation details from being captured. This work identified three previously 

unrepresented implementation details, and examined their importance in achieving realistic 

estimates of MCB effectiveness. For this, the Weather Research and Forecasting model 

incorporating aerosol processes (WRF/Chem) was used, allowing clouds to be resolved over 

a kilometre-scale domain. 

Firstly, for a weakly precipitating cloud regime, cloud brightening was found to be sensitive 

to the timing of MCB aerosol emissions. The largest cloud albedo increase occurred for early 

morning emissions, with little change occurring for daytime emissions. Timing was less 

important for the non-precipitating regime where cloud albedo perturbations were generally 

smaller owing to the absence of a large second indirect (or ‘cloud lifetime’) effect. 

Secondly, near-surface evaporative cooling resulting from the more realistic simulation of 

MCB emissions as wet droplets rather than the previously assumed dry aerosols reduced 

aerosol plume heights by up to 30% (40 m), reducing cloud albedo increases by up to one-

third. 

Finally, aerosol coagulation within the MCB aerosol plume (simulated at sub-metre 

resolution) resulted in number concentration decreases of up to 50%, consequentially 

reducing the cloud albedo increases by approximately half for the non-precipitating regime. 

These findings suggest that in omitting these details, global-scale model estimates of MCB 

effectiveness may be exaggerated. The inclusion of these details in global-scale MCB 

modelling could therefore materially improve the realism of future effectiveness estimates. 





 vii 

 

Table of Contents 

Declaration of Authorship ............................................................................................................ i 

Acknowledgements .................................................................................................................... iii 

Abstract ......................................................................................................................................... v 

Table of Contents .......................................................................................................................vii 

List of Figures .............................................................................................................................. xi 

List of Tables ............................................................................................................................. xxi 

Abbreviations ......................................................................................................................... xxiii 

 Introduction................................................................................................................ 1 Chapter 1

1.1 Overview ........................................................................................................................... 1 

1.2 Anthropogenic Climate Change ........................................................................................ 2 

1.3 Traditional Responses to Climate Change ......................................................................... 3 

1.4 Geoengineering Overview ................................................................................................. 3 

1.5 Geoengineering Within Future Climate Change Response Policy .................................... 5 

1.6 The Background of Marine Cloud Brightening ................................................................. 8 

1.6.1 The Role of Clouds in the Climate .........................................................................................8 

1.6.2 A Brief Introduction to Aerosol Indirect Effects .................................................................. 10 

1.6.3 The Marine Cloud Brightening Proposal .............................................................................. 12 

1.7 Developments in Marine Cloud Brightening Research ................................................... 14 

1.7.1 The Identification of Side-Effects In Global-Scale Models ................................................. 17 

1.7.2 The Estimation of Cloud Droplet Number Concentration Perturbations from Global 

Aerosol Models ................................................................................................................. 19 

1.7.3 The Estimation of Marine Cloud Brightening Effectiveness from Global Aerosol-

Climate Models ................................................................................................................. 21 

1.7.4 Mesoscale Simulations of Marine Cloud Brightening .......................................................... 23 

1.8 Research Objectives ........................................................................................................ 26 

1.9 Thesis Structure ............................................................................................................... 28 

 Marine Stratocumulus Cloud Processes ................................................................ 29 Chapter 2

2.1 Introduction ..................................................................................................................... 29 

2.2 Typical Marine Stratocumulus Cloud Characteristics ..................................................... 30 

2.3 Marine Stratocumulus Cloud Processes .......................................................................... 31 

2.3.1 Sources of Turbulence in the Marine Stratocumulus-Topped Boundary Layer ................... 31 

2.3.2 The Diurnal Cycle ................................................................................................................ 32 

2.3.3 Cloud-Top Entrainment ........................................................................................................ 33 



viii 

 

2.3.4 Precipitation ......................................................................................................................... 34 

2.3.5 Open and Closed Cells ......................................................................................................... 37 

2.4 Aerosols .......................................................................................................................... 38 

2.4.1 The First Indirect Aerosol Effect ......................................................................................... 40 

2.4.2 The Second Indirect Aerosol Effect ..................................................................................... 43 

2.4.2.1 The Contribution of Precipitation Effects ................................................................... 43 

2.4.2.2 The Contribution of Cloud-Top Entrainment Effects .................................................. 46 

2.4.3 The Net Indirect Aerosol Effect for Marine Stratocumulus Clouds ..................................... 47 

2.5 Conclusions ..................................................................................................................... 51 

 Marine Stratocumulus Cloud Base Case Simulations ......................................... 53 Chapter 3

3.1 Introduction ..................................................................................................................... 53 

3.2 Model Setup .................................................................................................................... 53 

3.3 Base Case Simulations .................................................................................................... 59 

3.3.1 Precipitating Base Case ........................................................................................................ 59 

3.3.2 Non-precipitating Base Cases .............................................................................................. 62 

3.4 Discussion ....................................................................................................................... 65 

3.5 Conclusions ..................................................................................................................... 69 

 Aerosol Emissions During the Diurnal Cycle ....................................................... 71 Chapter 4

4.1 Introduction ..................................................................................................................... 71 

4.2 Methodology ................................................................................................................... 71 

4.3 Results ............................................................................................................................. 73 

4.3.1 Marine Cloud Brightening Aerosol Emission into the Precipitating Cloud Case ................ 74 

4.3.2 Marine Cloud Brightening Aerosol Emission into the Non-Precipitating Cloud Cases....... 78 

4.3.3 Rate of Marine Cloud Brightening Aerosol Emission into the Precipitating Cloud Case .... 79 

4.4 Discussion ....................................................................................................................... 81 

4.5 Conclusions ..................................................................................................................... 85 

 The Inclusion of Water with Emitted Aerosols .................................................... 87 Chapter 5

5.1 Introduction ..................................................................................................................... 87 

5.2 Methodology ................................................................................................................... 87 

5.3 Results ............................................................................................................................. 89 

5.4 Discussion ....................................................................................................................... 96 

5.5 Conclusions ..................................................................................................................... 99 

 Processes within the Emission Rotor ................................................................... 101 Chapter 6

6.1 Introduction ................................................................................................................... 101 

6.2 Methodology ................................................................................................................. 103 

6.3 Results ........................................................................................................................... 105 

6.4 Discussion and Conclusions .......................................................................................... 107 



 ix 

 

 Detailed Representation of the MCB Aerosol Emission Plume ......................... 109 Chapter 7

7.1 Introduction ................................................................................................................... 109 

7.2 Methodology .................................................................................................................. 111 

7.3 Control Plume ................................................................................................................ 116 

7.3.1 Control Plume: Results ....................................................................................................... 116 

7.3.1.1 Plume Development ................................................................................................... 116 

7.3.1.2 Plume Trajectory ....................................................................................................... 119 

7.3.1.3 Flow Patterns and Pressure Distributions ................................................................ 120 

7.3.1.4 Distribution of Aerosols Across the Plume Cross-section ......................................... 122 

7.3.1.5 Distribution of Aerosols Along the Plume Path......................................................... 124 

7.3.2 Control Plume: Discussion ................................................................................................. 127 

7.4 Sensitivity Experiments ................................................................................................. 130 

7.4.1 Sensitivity Experiments: Results ........................................................................................ 130 

7.4.1.1 Sensitivity Experiments: Aerosol Emission Rates ...................................................... 130 

7.4.1.2 Sensitivity Experiments: Cross-wind Speeds ............................................................. 132 

7.4.1.3 Sensitivity Experiments: Background Temperatures ................................................. 133 

7.4.1.4 Sensitivity Experiments: Initial Aerosol Emission Size Distributions ....................... 133 

7.4.1.5 Sensitivity Experiments: Inclusion of a Rotor Obstacle ............................................ 134 

7.4.1.6 Sensitivity Experiments: Including Water Vapour With the Emission ....................... 137 

7.4.1.7 Sensitivity Experiments: Including Water Droplets With the Emission ..................... 141 

7.4.2 Sensitivity Experiments: Discussion .................................................................................. 144 

7.5 Conclusions ................................................................................................................... 147 

 The Effect of Processes within the Emission Rotor and Plume on Marine Chapter 8

Cloud Brightening Effectiveness ............................................................................................ 151 

8.1 Introduction ................................................................................................................... 151 

8.2 Methodology .................................................................................................................. 151 

8.3 Results ........................................................................................................................... 153 

8.4 Discussion ...................................................................................................................... 157 

8.5 Conclusions ................................................................................................................... 159 

 Conclusions and Recommendations ..................................................................... 161 Chapter 9

9.1 Summary of Major Findings .......................................................................................... 161 

9.2 Conclusions and Recommendations .............................................................................. 163 

9.3 Closing Comments ........................................................................................................ 168 

Appendix A ............................................................................................................................... 169 

References ................................................................................................................................. 171 

 





xi 

 

List of Figures 

Figure 1.1 – Schematic indicating considerations necessary for informed policy-making on 

the response to climate change. Possible research components for the better understanding 

of geoengineering proposals are detailed. .............................................................................. 6 

Figure 1.2 – Annual mean daytime stratocumulus cloud amount. .......................................... 12 

Figure 1.3 – Artist’s impression of a potential cloud brightening vessel (MacNeill, n.d.). .... 14 

Figure 1.4 – Summary of radiative forcing estimates from past studies of geoengineering sea 

salt emissions. Studies are categorised into either emitted aerosol simulations, or fixed 

cloud droplet number concentration (Nd) simulations. The emitted aerosol simulations are 

further divided into simulations that introduce sea salt aerosols in relation to the 

approximate mass fluxes suggested by the Salter et al. (2008) design proposal, or 

simulations that increase background sea salt aerosol concentrations by a factor. The Rap 

et al. (2013) paper investigated removal of sea salt emissions from the present day 

atmosphere. References for each data point are included in the legend. From Kravitz et al. 

(2013) (including Jenkins). .................................................................................................. 16 

Figure 1.5 – Overview of the investigative tools used to examine each of the three marine 

cloud brightening (MCB) implementation detail case studies. ............................................ 27 

Figure 2.1 – An example of marine stratocumulus (MSc) clouds, located in the north-west 

Pacific Ocean, as captured from the International Space Station. ....................................... 30 

Figure 2.2 – Summary of the physical processes important for the development of MSc 

clouds, adapted from Nieuwstadt and Duynkerke (1996). Yellow rounded rectangles show 

external meteorological and aerosol parameters. ................................................................. 31 

Figure 2.3 – Conceptual system dynamics diagram illustrating important feedbacks that serve 

to regulate the thickness, liquid water path (LWP), and cloud cover of MSc clouds. 

Modified from Figure 26 of Wood (2012). Yellow rounded rectangles show external 

meteorological and aerosol parameters, as in Figure 2.2. White boxes show key internal 

variables. Plus and minus signs indicate positive and negative impacts of one variable on 

another, with the key physical processes accompanying the arrows where necessary. Thick 

arrows indicate the cloud-radiation-turbulent-entrainment feedback system that constitutes 

a dominant negative feedback system regulating MSc thickness and cover. Solid lines 

indicate feedbacks that operate on time scales of typically an hour or less, while dashed 

lines indicate feedbacks that operate on markedly longer time scales. The thick dotted grey 

line is used to separate the chart into (top) macrophysical and (bottom) microphysical 

variables, with precipitation straddling the boundary between the macrophysical and 



xii 

 

microphysical realms. Circled notations (e.g. E1, P5 etc.) are used for in-text references. 

Changes associated with changes to the Nd that are faint in this diagram are discussed in 

Section 2.4.2 in terms of the Second Indirect Aerosol Effect, and represented in Figure 2.7 

. ............................................................................................................................................ 34 

Figure 2.4 – Possible MSc-topped boundary layer dynamical responses to precipitation for: 

(a) light precipitation; (b) heavy precipitation; (c) transition to cumulus-type cloud 

structure. .............................................................................................................................. 36 

Figure 2.5 – Example satellite image indicating open and closed cell formations. ................ 37 

Figure 2.6 – Schematic indicating possible first-order influences of the addition of aerosols 

on MSc-topped boundary layer LWP and cloud albedo across different cloud regimes, 

including both the first and second indirect aerosol effects. The added aerosols are 

assumed to be of similar size and composition to those existing in the background, and 

thus possible competition effects are omitted. PREC_A, PREC_B, and PREC_C are three 

different cases of precipitation, as referred to in the text. Red and blue shading is indicative 

of albedo increases and decreases (respectively), although owing to high levels of 

uncertainty in cloud response, they are intended to be suggestive of potential patterns only 

(with uncertainty indicated in the figure through the use of question marks). .................... 42 

Figure 2.7 – As Figure 2.3, but including changes relevant to changes in the Nd. ................. 44 

Figure 2.8 – Example satellite image indicating open and closed cell formations, along with 

ship tracks. ........................................................................................................................... 48 

Figure 3.1 – Total water mixing ratio and potential temperature initialisation profiles. ........ 56 

Figure 3.2 – Background absolute aerosol initialisation for the three MSc base cases based 

on the increasingly polluted aerosol concentrations of: the Southern Ocean; the North-East 

Pacific and the East China Sea. ........................................................................................... 57 

Figure 3.3 – Time evolution of domain averaged cloud properties for the PR control case. 

(a) Nd, (cm
-3

); (b) cloud top and cloud base height (contour at cloud water mixing ratio of 

0.01 g kgdry air
-1

); (c) LWP (g m
-2

); (d) surface rain rate (solid), and cloud base rain rate 

(dotted) (mm day
-1

); (e) cloud fraction (%); and (f) domain averaged cloud albedo 

(calculated from cloud properties, as detailed in Chapter 4, Equation 4.1). Shading 

indicates the night. ............................................................................................................... 59 

Figure 3.4 – Time evolution of domain averaged dynamic and physical properties for the PR 

control case. (a) Vertical velocity variance (<w’
2
>, m

2 
s

-2
); (b) vertical velocity skewness; 

(c) radiative heating rate (K day
-1

); (d) buoyancy (cm
2
 s

-3
); (e) resolved turbulent kinetic 

energy (m
2
 s

-2
); (f) sub-grid scale turbulent kinetic energy (m

2
 s

-2
); (g) total water mixing 

ratio (g kgdry air
-1

); and (h) potential temperature (K). Solid lines indicate the cloud top and 



xiii 

 

cloud base height (a contour at cloud water mixing ratio of 0.01 g kgdry air
-1

). Hatch lines 

indicates the night. ............................................................................................................... 60 

Figure 3.5 – Time evolution of domain averaged cloud properties for the NP-Ch (red) and 

NP-Pa (black) cases. Descriptions as Figure 3.3. ................................................................ 62 

Figure 3.6 – Time evolution of domain averaged dynamic and physical properties for NP-Pa 

control case. Descriptions as Figure 3.4. ............................................................................. 63 

Figure 4.1 – Time evolution for PR 0.5xSA emission-induced perturbations in domain 

averaged: (a) vertical velocity variance (<w’
2
>,m

2
s

-2
); (b) vertical velocity skewness; (c) 

resolved turbulent kinetic energy (m
2
s

-2
); and (d) total water mixing ratio (g kgdry air

-1
). 

Solid lines indicate the perturbed domain average cloud top and base (contour at cloud 

water mixing ratio of 0.01 g kgdry air
-1

). Control case domain average cloud top and base are 

indicated by the dotted lines. The dashed vertical lines indicate the time of aerosol 

emission. .............................................................................................................................. 76 

Figure 4.2 – Domain and time averaged albedo perturbations associated with aerosol 

emission at the 0.5xSA rate, at 03:00:00 local time (LT), 08:00:00 LT, 13:00:00 LT and 

18:00:00 LT into the PR, NP-Pa and NP-Ch cases. In each case, four measures of the 

effects of aerosol emission on albedo perturbations are shown: the change in calculated 

cloud albedo; the change in cloud albedo assuming a LWP fixed at the control magnitudes 

with weighted Nd increases; the change in all-sky planetary albedo; and the change in 

clear-sky albedo. .................................................................................................................. 77 

Figure 4.3 – Time series of domain maximum aerosol concentrations (cm
−3

) for the PR, NP-

Pa and NP-Ch cases (all 0.5xSA aerosol emission rate). Plots include 5 hours prior to 

emission and 5 hours subsequent to emission, with aerosol emission start time being 

indicated by the vertical dashed line. ................................................................................... 78 

Figure 4.4 – Domain and time average albedo perturbations associated with 0.1xSA, 

0.25xSA and 0.5xSA aerosol emission rates at 03:00:00 LT, 08:00:00 LT, 13:00:00 LT and 

18:00:00 LT into the PR regime. In each case, three measures of the effects of aerosol 

emission on albedo perturbations are shown: the change in calculated cloud albedo; the 

change in all-sky planetary albedo; and the change in clear-sky albedo. ............................ 81 

Figure 5.1 – Left column: Colour-filled contours show the difference in surface potential 

temperature (WET minus DRY) for aerosol emission into the NP-Pa regime at 03:00:00 

LT. Arrows show differences in surface flow patterns. Thick black contours outline cold 

pools (buoyancies in excess of -0.005 ms
-2

); Right column: Mean (averaged over the x-

direction) of difference in potential temperature (WET minus DRY) for aerosol emissions 

into NP-Pa regime at 03:00:00 LT. Arrows show differences in mean flow patterns 



xiv 

 

(red=updrafts, blue=downdrafts). Black dashed lines show mean cloud outline. Continued 

overpage for PR regime at 03:00:00 LT. ............................................................................. 90 

Figure 5.2 – For NP-Pa base case. Progression through time for emissions at 03:00:00 LT. 

Left column (WET case): emitted aerosol (bin 3) concentration (grey scale filled contours), 

difference in potential temperature (WET minus NO EMISSION control case) (coloured 

contour lines with scale as in Figure 5.1), and cloud top and base (thick white outline). All 

outputs are averaged over the x-direction; Middle column (DRY case): as left column but 

for the DRY case; Right column (DRY minus WET): Difference in emitted aerosol (bin 3) 

concentrations (DRY minus WET). Continued overpage for PR regime. .......................... 92 

Figure 5.3 – Initial aerosol plume heights: (a) height achieved by DRY and WET aerosol 

plumes averaged over the first hour after emission (bars). Also shown as a proportional 

height, i.e. WET plume height/DRY plume height (green diamonds). Heights are taken as 

the 100 cm
-3

 isoline of the emitted aerosol size bin (bin 3); (b) proportional heights reached 

by DRY aerosol emissions under applied initial negative temperature perturbations (20 

minutes after emission with heights taken as the 50 cm
-3

 isoline of bin 3 aerosols). .......... 94 

Figure 5.4 – (a) Time series of the increase in domain average emitted aerosol concentration 

in the layer below cloud base (ΔBIN3 conc; cm
-3

; dotted line) and the increase in domain 

average Nd (ΔNd; cm
-3

; solid line) for the NP-Pa regime with aerosol emission at 

03:00:00 LT; (b) as ‘(a)’ but for aerosol emission at 08:00:00 LT; (c) as ‘(a)’ but for 

aerosol emission at 13:00:00 LT; (d) as ‘(a)’ but for the PR regime with aerosol emission 

at 03:00:00 LT; (e) time series of the domain average calculated cloud albedo increase for 

the NP-Pa regime with aerosol emission at 03:00:00 LT; (f) as ‘(e)’ but for aerosol 

emission at 08:00:00 LT; (g) as ‘(e)’ but for aerosol emission at 13:00:00 LT; (h) as ‘(e)’ 

but for the PR regime with aerosol emission at 03:00:00 LT. ............................................. 96 

Figure 5.5 – Schematic showing proposed relationship between initial WET and DRY 

aerosol plumes, subsequent transport of aerosols (represented by aerosol isolines) and 

turbulence within the MSc topped boundary layer over time (coloured contour 

transparencies showing the domain average resolved TKE for the NP-Pa case). ............... 97 

Figure 6.1 – Schematic showing regions considered in investigating the effects of aerosol 

coagulation on MCB effectiveness (MCB emission vessel cross-section modified from 

Salter et al. (2008)). ........................................................................................................... 102 

Figure 6.2 – Schematic overview of the region of interest for the estimation of coalescence 

within the rotor. ................................................................................................................. 102 



xv 

 

Figure 6.3 – Calculated ratios of the number concentration (ni) to the initial number 

concentration (ninitial) for droplets up to 8 times the mass of the initial droplets. Ratios are 

shown for various distances travelled through the rotor. ................................................... 105 

Figure 6.4 – The transition of droplets from the initial bin size 3 into the larger bins 4 and 5 

with distance travelled through the rotor. This transition is represented as a proportion of 

the initial number concentration and a proportion of the initial aerosol mass for each of the 

three bin sizes. Also shown is the evolution of the total number concentration and mass 

through the rotor. ............................................................................................................... 106 

Figure 7.1 – Schematic overview of the region of interest for the estimation of aerosol 

coagulation within the plume. ............................................................................................ 109 

Figure 7.2 – Schematic showing the four types of vertical structure in the near-field of a jet 

in a crossflow, emitted flush from a surface. Modified from Fric and Roshko (1994), 

reproduced by permission of Cambridge University Press, from ‘Vortical structure in the 

wake of a transverse jet’, Fric and Roshko, Journal of Fluid Mechanics, 279, 1994. ....... 110 

Figure 7.3 – (a) Schematic showing the direction and composition of the effective crosswind; 

(b) Vertical profiles of the initialisation wind profile. ....................................................... 112 

Figure 7.4 – (a) Schematic of the computational domain;(b) Plan view of the simulated rotor, 

indicating velocity distributions in relation to model cells. ............................................... 113 

Figure 7.5 – Instantaneous isosurface for a given aerosol concentration, illustrating the 

typical structure of a simulated jet in cross-flow in the absence of a solid (bluff) rotor 

during the approximately steady-state phase. (The case shown is a simulation used during 

trials of the methodology). ................................................................................................. 116 

Figure 7.6 – Interstitial aerosol concentrations (total of bin sizes 3 to 8, averaged over the 

y-direction) through time. Crosswind flows from left to right. Black solid arrows indicate 

the location of the aerosol emission. Black dotted arrows at t=88s illustrate the apparent 

vertical bifurcation of the flow which begins at ~14 seconds. ........................................... 117 

Figure 7.7 – Time series for: (a) domain average aerosol mass (µg kgdry air
-1

); (b) domain 

average aerosol number concentration (cm
-3

); and (c) an approximate domain average 

aerosol diameter (µm). Grey shading indicates the time period used for later analysis. ... 118 

Figure 7.8 – Trajectory fitted to Equation 7.1 (solid black line) associated with points of 

maximum aerosol concentration for bin 7 (red data points) along the central y-plane. Blue 

shading indicates empirically derived bounds for the trajectory, having coefficients A=2.6 

with B=0.34 and A=1.2 with B=0.28 which are typical for jets in cross-flows (Margason, 

1993; Muppidi and Mahesh, 2005). ................................................................................... 119 



xvi 

 

Figure 7.9 – (a) Contours showing the difference between the flow speed along the central 

y-plane and the cross-flow speed remote from the emission source. Black solid line 

indicates the trajectory fit to the highest concentration of bin 7 aerosols. Black dashed lines 

indicate the planes perpendicular to the trajectory at distances along the trajectory of 5, 20 

and 40 times the diameter of the rotor (5d, 20d and 40d); (b) Contours showing the 

difference in pressure along the central y-plane and the pressure remote from the emission 

source. Black solid and dashed lines as for panel ‘a’; (c) Sections of planes perpendicular 

to the trajectory at 5d, 20d and 40d, showing the vorticity of flow, overlaid by arrows 

indicating flow velocity. All panels show 44 seconds from the simulation start. ............. 121 

Figure 7.10 – Sections of planes perpendicular to the trajectory at 5, 20 and 40 times the 

diameter of the rotor (5d, 20d and 40d; refer to Figure 7.9 for locations), showing the 

distribution of bin 3 interstitial aerosol concentrations (cm
-3

) for the NO_CHEM 

simulation overlaid by arrows showing velocities of the flow. The black circle at 40d 

indicates the chevron aerosol formation referred to in the text. All show 44 seconds from 

the simulation start. ........................................................................................................... 122 

Figure 7.11 – Sections of planes perpendicular to the trajectory at 5, 20 and 40 times the 

diameter of the rotor, showing the distribution of bin 3 to bin 8 interstitial aerosol 

concentrations (cm
-3

) for the CHEM simulation overlaid by arrows showing velocities of 

the flow. All show 44 seconds from simulation start. Note the different contour colour 

ranges. ............................................................................................................................... 123 

Figure 7.12 – The fraction of the total aerosol number concentration comprising bin 3, bin 4 

and bin 5 aerosols along the domain length averaged over the 24 to 44 second and 24 to 88 

second time periods. Grey hatching indicates the last 5 metres of the domain which is a 

secondary analysis region known as END. ....................................................................... 124 

Figure 7.13 – The percentage loss in total aerosol number concentration in the CHEM 

simulation compared to the NO_CHEM simulation for (a) the domain average along the 

length of the domain, with grey hatching indicating the END region as in Figure 7.12 and 

the solid black arrow indicating the location of the emission point; and (b) the average 

percentage loss in total aerosol number concentration in the END region. Both averaged 

between 24 and 44 seconds. .............................................................................................. 125 

Figure 7.14 – Reproduction of Figure 7.10 c (Distance = 40d) with black arrow outlines 

schematically indicating entrained flow, with chevron pattern of jet wake high aerosol 

concentration circled. ........................................................................................................ 129 

Figure 7.15 – (a) Percentage of the aerosol number concentration in bins 3, 4 and 5 for the 

CHEM simulation compared to the NO_CHEM simulation for the domain average (bars) 



xvii 

 

and for the END region average (circles). For the water vapour and water droplets results, 

this percentage is compared to the control NO_CHEM simulation (therefore omitting both 

water and aerosol coagulation). Aerosol emission rates given as multiples of that proposed 

by Salter et al. (2008) (denoted as xSA). Percentages for the sum of all aerosol size bins (1 

to 8) are stated numerically for the domain average, and for the END section in brackets; 

(b) Percentage of the total mass of bin 3, 4 and 5 aerosols as for ‘a’. ............................... 131 

Figure 7.16 – (a) Percentage reduction in total aerosol number concentration for the CHEM 

simulations compared to the NO_CHEM simulations for various emission rates; (b) 

Aerosol number concentrations against aerosol emission rates for the CHEM simulations. 

Emission rates given as multiples of that proposed by Salter et al. (2008) (denoted as xSA) 

. .......................................................................................................................................... 132 

Figure 7.17 – Trajectories for cross-wind speeds of 6 ms
-1

 and 9 ms
-1

, fitted to Equation 7.1 

(solid lines) associated with points of maximum aerosol concentration for bin 6 along the 

central y-plane. Coefficients for each trajectory fit are stated. Dotted lines indicate 

expected bounds for the trajectory from previous literature (A=2.6, B=0.36; A=1.2, 

B=0.28). Data shown 44 seconds from simulation start. ................................................... 132 

Figure 7.18 – Cross-wind speed: (a) time series of the domain average aerosol number 

concentration (cm
-3

) for the NO_CHEM cases; and (b) the number of cells in the domain 

containing various aerosol number concentrations (cm
-3

) in the 6 ms
-1

 and 9 ms
-1

 

NO_CHEM simulations, averaged over the 24 to 44 second time period. ........................ 133 

Figure 7.19 – (a) Instantaneous isosurface for a given aerosol concentration, showing the 

typical structure of a simulated jet in cross-flow in the presence of a rotor. (b) A schematic 

depicting the jet and rotor wake regions, following Adaramola et al. (2012). .................. 135 

Figure 7.20 – Horizontal sections for the inclusion of rotor case. Rotor located at x=20m, 

flow from left to right. Filled coloured contours show the interstitial aerosol number 

concentration totalled over bins 3 to 8 (cm
-3

); with black line overlay contours indicating 

vorticity (solid = positive, dotted = negative) for the: (a) Rotor wake (~10 m above the 

surface); and (b) Jet wake (~24 m above the surface). Both at 44 seconds from simulation 

start. Labels W1, W2 and W3 indicate vortex tips for discussion in the text. ................... 135 

Figure 7.21 – Domain average aerosol concentrations (total of bin sizes 3 to 8, averaged over 

the y-direction) through time with inclusion of the solid rotor. The crosswind flows from 

left to right. Black solid arrows indicate the location of the emission point. ..................... 136 

Figure 7.22 – Inclusion of rotor: (a) time series of the domain average aerosol number 

concentration (cm
-3

) for the NO_CHEM cases; and (b) the number of cells in the domain 

containing various aerosol number concentrations (cm
-3

) in the rotor and no rotor 

NO_CHEM simulations, averaged over the 24 to 44 second time period. ........................ 136 



xviii 

 

Figure 7.23 – Domain average interstitial aerosol concentrations (total of bin sizes 3 to 8, 

averaged over the y-direction) through time, for the case where water vapour emission is 

included. The crosswind flows from left to right. Black solid arrows indicate the location 

of the emission point. ........................................................................................................ 137 

Figure 7.24 – Sections of vertical planes at 5, 20 and 35 times the diameter of the rotor 

(following the control simulation trajectory), showing the distribution of bin 3 to bin 8 

interstitial aerosol concentrations (cm
-3

) for the CHEM simulation including water vapour 

emission overlaid by arrows showing velocities of the flow. Data shown 44 seconds from 

simulation start. Boxes labelled A, B and C denote areas of dynamical interest for 

discussion in the text. ........................................................................................................ 138 

Figure 7.25 – Sections of vertical planes at 5, 20 and 35 times the diameter of the rotor 

(following the control simulation trajectory), showing the distribution of bin 3 to bin 8 

activated aerosol concentrations (cm
-3

) for the CHEM simulation including water vapour 

emission overlaid by arrows showing velocities of the flow. Data shown 44 seconds from 

simulation start. ................................................................................................................. 139 

Figure 7.26 – Temperature perturbation (K) (coloured contours); cloud water mixing ratio (g 

kgdry air
-1

) (solid black contours) and water vapour mixing ratio (g kgdry air
-1

) (dotted black 

contours) along the centreline of the jet for the case where water vapour emission is 

included. ............................................................................................................................ 141 

Figure 7.27 – Domain average interstitial aerosol concentrations (total of bin sizes 3 to 8, 

averaged over the y-direction) through time, for the case where water droplet emission is 

included. The crosswind flows from left to right. Black solid arrows indicate the location 

of the emission point. ........................................................................................................ 141 

Figure 7.28 – Sections of vertical planes at 5, 20 and 35 times the diameter of the rotor 

(following the control simulation trajectory), showing the distribution of bins 3 and 4 

activated and interstitial aerosol concentrations (cm
-3

) for the CHEM simulation including 

water droplet emission overlaid by arrows showing velocities of the flow. Data shown 

44 seconds from simulation start. Boxes labelled A and B denote areas of dynamical 

interest for discussion in the text. ...................................................................................... 142 

Figure 7.29 – Temperature perturbation (K) (coloured contours); cloud water mixing ratio (g 

kgdry air
-1

) (solid black contours) and water vapour mixing ratio (g kgdry air
-1

) (dotted black 

contours) along the centreline of the jet for the case where water droplet emission is 

included. ............................................................................................................................ 143 

Figure 7.30 – Visualisation of experimentally obtained Kármán vortex streets, as viewed 

from above, for (a) Non-turbulent flow and (b) Turbulent flow. Images from Williamson 



xix 

 

(1996). Flow is from left to right with the obstacle located near to the left edge of each 

panel. .................................................................................................................................. 144 

Figure 8.1 – Schematic overview of the region of interest for estimating the effect of in-

plume aerosol changes on clouds. ...................................................................................... 151 

Figure 8.2 – (top row) Time series of the domain average calculated cloud albedo over time 

for the PR, NP-Pa, and NP-Ch cases, and (bottom row) time series of the domain average 

Nd for the PR, NP-Pa, and NP-Ch cases. Aerosol emissions at 03:00:00 LT. ................... 153 

Figure 8.3 – The perturbation in calculated cloud albedo (colour of data points) that occurs 

upon the emission of aerosols of bin size indicated on the x-axis, at a number flux relative 

to that suggested by Salter et al. (2008) (y-axis), for the increasingly polluted background 

cases: PR, NP-Pa, and NP-Ch. Data points connected with lines indicate the size 

distribution of emitted aerosols.......................................................................................... 156 

Figure 8.4 – Time series for the total Nd and Nd associated with each aerosol size bin for the 

NP-Ch background case, for: (a) monodisperse (bin 3) emissions; (b) coagulation with 

rotor emissions; and (c) bin 8 emissions (all at 0.5xSA emission rate). ............................ 158 

Figure 9.1 – Areas for advancements in MCB research, showing both ongoing developments 

and recommendations based on this work. ........................................................................ 167 





 xxi 

 

List of Tables 

Table 3.1 – Aerosol dry diameter sizes for the 8-bin Model for Simulating Aerosol 

Interactions and Chemistry (MOSAIC) scheme. ................................................................. 56 

Table 4.1 – MCB aerosol emission experiments. PR indicates aerosol emission into the 

precipitating control case. NP-Pa and NP-Ch indicate aerosol emission into the non-

precipitating cases initialised with aerosol concentrations associated with the North-East 

Pacific (intermediately polluted) and the East China Sea (heavily polluted) respectively. 

0.5xSA, 0.25xSA and 0.1xSA describe the aerosol emission rate, as a fraction of the 

emission rate proposed by Salter et al. (2008). .................................................................... 73 

Table 4.2 – Results for the 0.5xSA aerosol emission rate. Domain and time-period averaged 

liquid water path (LWP, g m
-2), cloud fraction (fc, %), cloud droplet number concentration 

(Nd, cm
-3) and surface rain rate (Rr, mm day

-1). The time average is taken for the times of 

shortwave (SW) radiation present in the 5 hours subsequent to aerosol emission. ............. 75 

Table 4.3 – Results for the PR case. Notes as Table 4.2. ........................................................ 79 

Table 5.1 – Summary descriptions of the three simulation sets used in Chapter 5. ................ 89 

Table 7.1 – List of plume simulations, describing the emission rate (xSA), the 10 m cross-

flow velocity (ms
-1

), the background temperature (K), the characteristics of the marine 

cloud brightening (MCB) aerosols emitted into the plume (where ‘Mono’ denotes the 

monodisperse bin 3 emission), the simulation of a solid rotor, the emission of water with 

the aerosols, and the section reference. Each experiment comprised of two simulations: one 

simulation being run under the CHEM configuration (i.e. simulating the effects of aerosol 

coagulation), and the other simulation being run under the NO_CHEM configuration (i.e. 

suppressing aerosol coagulation). ...................................................................................... 115 

Table 7.2 – Domain average perturbation in aerosol number concentrations (cm
-3

) and 

aerosol mass concentrations (µg kgdry air
-1

) from background aerosol concentrations in 

NO_CHEM and CHEM conditions for the control case. Averages for the END section are 

given in brackets. Values are averaged over the 24 to 44 second analysis period. Bins 1 and 

2 are omitted for clarity. .................................................................................................... 126 

Table 7.3 – Domain average perturbation in aerosol number concentrations (cm
-3

) from 

background concentrations for monodisperse (bin 3) emission and rotor output emission. 

Values are averaged over 24 to 44 seconds. END section averages are given in brackets       

. .......................................................................................................................................... 134 

Table 8.1 – Number and mass fractions of emitted aerosols (as a fraction of the monodisperse 

(bin 3) aerosol emission).................................................................................................... 152 



xxii 

 

Table 8.2 – Absolute calculated cloud albedo for the PR, NP-Pa and NP-Ch cloud cases. 

Values are for the base case (with no MCB emissions) and for emission fluxes of 1.0xSA 

and 0.5xSA of four different MCB aerosol emission assumptions. Values are averaged 

over the domain and over the time during the five hours after MCB aerosol emission where 

SW radiation is present (or averaged over the night for values in bold, with grey shading 

indicating incomplete simulations that failed at sunrise). Perturbations in the calculated 

cloud albedo from the (no emissions) base case are shown (Δcalc. cloud albedo), with the 

percentage values shown in italics being the difference in calculated cloud perturbation 

compared with the monodisperse (bin 3) control emission assumption. Also shown are the 

domain averaged Nd and LWP for time periods described above. .................................... 154 

 



xxiii 

 

Abbreviations 

CAM Community Atmospheric Model 

CBMZ Carbon Bond Mechanism–Z [gas phase chemical mechanism scheme] 

CCN Cloud Condensation Nuclei 

CDR Carbon Dioxide Removal [form of geoengineering] 

DYCOMS-II, RF02 Second Dynamics and Chemistry of Marine Stratocumulus            

[Field Study], Research Flight Number 02 

ECHAM-HAM     

(and other versions) 

Global aerosol-climate model based on the European Centre HAMburg 

(ECHAM) general circulation model  

EMAC ECHAM/MESSy Atmospheric Chemistry model [combining the 

ECHAM general circulation model and the Modular Earth Sub-model 

System (MESSy) interface] 

E-PEACE Eastern Pacific Emitted Aerosol Cloud Experiment 

GLOMAP GLObal Model of Aerosol Processes 

HadGAM [Met Office] Hadley Centre Global Atmospheric Model 

HadGEM2(-ES) [Met Office] Hadley Centre Global Environmental Model 

(-Earth System) 

IPCC Intergovernmental Panel on Climate Change 

LT Local Time 

LW Longwave [Radiation] 

LWP Liquid Water Path 

MCB Marine Cloud Brightening 

MOSAIC Model for Simulating Aerosol Interactions and Chemistry 

MSc Marine Stratocumulus [Clouds] 

Nd Cloud Droplet Number Concentration 

RFP Radiative Flux Perturbation 

RRTMG Rapid Radiative Transfer Model for Global Circulation Models 

SRES Special Report on Emissions Scenarios 

SRM Solar Radiation Management [form of geoengineering] 

SW Shortwave [Radiation] 

TKE Turbulent Kinetic Energy 

WRF/Chem Weather Research and Forecasting model including aerosol and 

chemistry processes 



xxiv 

 

Other notation used through this thesis: 

[#]xSA Emission rate of marine cloud brightening aerosols, as a fraction of the 

maximum rate suggested by (Salter et al., 2008) 

CHEM Simulations including aerosol and chemical processes [Chapter 7]               

(see also NO_CHEM) 

DRY Simulation cases representing the emission of marine cloud brightening 

aerosols as dry aerosol particles [Chapter 5] (see also WET) 

END The 5 metre section of the simulation domain space [Figure 7.12; Chapter 7] 

NO_CHEM Simulations where aerosol and chemical processes are suppressed [Chapter 7] 

(see also CHEM) 

NP Simulated non-precipitating marine stratocumulus cloud base cases produced 

and used in this work, with NP-Pa representing the case based on North-East 

Pacific background aerosol conditions, and NP-Ch representing the case 

based on East China Sea background aerosol conditions (see also PR) 

PR Simulated precipitating marine stratocumulus cloud base case produced and 

used in this work (see also NP) 

WET Simulation cases representing the emission of marine cloud brightening 

aerosols as sea water droplets [Chapter 5] (see also DRY) 



 1 

Chapter 1 – Introduction 

 Chapter 1

Introduction 

1.1 Overview 

Geoengineering – involving large-scale human intervention into the climate system – has 

been suggested as a potential means of ameliorating future anthropogenic climate change. 

This thesis focuses on the marine cloud brightening (MCB) proposal. This proposal intends to 

increase the albedo of marine stratocumulus (MSc) clouds, thus increasing the proportion of 

shortwave (SW) radiation reflected back to space, producing a global cooling effect. The 

increase in cloud albedo is intended to be a response to the emission of aerosols formed from 

man-made sea water droplets emitted into the marine boundary layer from sea-going vessels.  

Estimates of the potential effectiveness of such geoengineering proposals are needed to 

inform decisions on the response to climate change. It is therefore imperative that these 

estimates are as realistic as possible. Owing to the considerable risks and moral ambiguities 

surrounding experimental field-testing, the production of such effectiveness estimates is 

currently confined to computer model simulations. The ability of global-scale models to 

capture the response of global-scale climate systems to simulated MCB has led to their 

predominant use in the research of climatic MCB effects to-date. In spite of developments in 

representing MCB realistically within these global-scale simulations, the tens of kilometre 

grid spacing means that they are inherently unable to capture details of the implementation 

mechanism that occur at scales smaller than this. Importantly, the omission of such details 

may impair the realism of the resulting effectiveness estimates. 

This thesis aims to establish the importance of representing implementation mechanism 

details that occur at scales smaller than global-scale computer simulations can capture. In 

order to achieve this, detailed computer simulations, at a cloud-resolving scale, are carried 

out. The findings presented are thus intended to contribute towards the production of 

increasingly realistic estimates of MCB effectiveness, but also to illustrate the importance of 

detailed simulations for geoengineering research more widely. 

This opening chapter begins by introducing the field of geoengineering, contextualised in 

terms of its potential role in responding to anthropogenic climate change. This is followed by 

an overview of the development of the MCB proposal, with a summary of the approach and 

key findings of previous MCB literature. This chapter concludes by introducing the aim of 

this thesis and by presenting an overview of the approach taken herein. 
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1.2 Anthropogenic Climate Change 

Owing to anthropogenic activities, atmospheric concentrations of the greenhouse gas carbon 

dioxide have risen rapidly from ~280 parts per million in the pre-industrial era to nearly 

400 parts per million currently (Dlugokencky and Tans, 2014). These increasing 

concentrations have led to a perturbation in the net radiative flux at the top of the atmosphere, 

with this positive downward forcing leading to a warming effect. As such, global mean 

surface temperatures have risen by approximately 0.7 K over the last century (Trenberth et 

al., 2007). This is in spite of a hiatus in warming over the past decade (NASA, 2013) possibly 

caused by increases in ocean heat uptake, low solar activity, and increased aerosol 

concentrations (Guemas et al., 2013 and references within). This makes it likely that the 

Northern Hemisphere in the latter half of the Twentieth Century was warmer than it had been 

in over 1300 years (Jansen et al., 2007). Sea-levels increased by an estimated 1.75 mm yr
-1

 

between 1950 and 2000 (Church and White, 2006) while Arctic sea ice extent has reduced 

such that the September 2012 minimum extent was almost 50% below the 1979−2000 

average (National Snow and Ice Data Center, 2013). It has also been suggested that heat 

waves and extreme rainfall events have increased over the last decade (Coumou and 

Rahmstorf, 2012). 

While the complexity and natural variability of the Earth system makes attribution of climate 

change challenging, both observational analysis and computer simulations suggest that a 

substantial anthropogenic influence is highly probable (Forster et al., 2007). Hence, future 

climate change will depend on both human actions (including the rate of greenhouse gas 

emissions) and on the sensitivity of the Earth to these changes. In terms of human actions, 

growth rates of global annual anthropogenic CO2 emissions have increased from less than 2% 

in the 1980s and 1990s to over 3% since 2000, with global CO2 emissions reaching 

9.5±0.5 PgCyr
-1

 in 2011 (Peters et al., 2013). These growth rates are in line with the highest 

projected emissions scenarios used in climate change modelling. There remains some 

uncertainty in the response of the Earth’s temperature to increasing atmospheric CO2 

concentrations (Otto et al., 2013). However, the current lack of emissions abatement means 

that constraining global mean warming to 2 K above the pre-industrial value by 2100 will 

become increasingly difficult (Joshi et al., 2011; Rogelj et al., 2012). In addition to global 

mean temperature increases, other changes may include: sea-level rises of half a metre or 

more by the end of the century (Jevrejeva et al., 2010; Slangen et al., 2012); an increase in the 

intensity of tropical storms (Villarini and Vecchi, 2012); and the near total loss of Artic 

summer sea ice by the 2030s (Wang and Overland, 2012). Ecosystems will also be affected. 

This includes both vulnerable species with already restricted ranges (e.g. coral reefs), and 

currently more common species whose ranges may contract (Warren et al., 2013). Finally, 



 3 

Chapter 1 – Introduction 

climate change is expected to impact on global human society in several critical areas. These 

include: global crop productivity (Lobell and Gourdji, 2012); water stress (Arnell et al., 

2011); and increasingly frequent extreme events, as described by Rahmstorf and Coumou 

(2011) and the Intergovernmental Panel on Climate Change (IPCC) (Field et al., 2012). 

1.3 Traditional Responses to Climate Change 

Traditionally considered pathways for responding to climate change are mitigation and 

adaptation. Mitigation – which includes reducing anthropogenic greenhouse gas emissions – 

is generally accepted as the preferred means of limiting climate change (e.g. The Royal 

Society, 2009). However, as demonstrated by the recently increasing global CO2 emission 

rates (and repeated procrastination in formalising effective international agreements on 

emissions reductions) the potential of mitigation in addressing climate change is currently 

unfulfilled (Jacobs, 2012). 

Adaptation does not directly influence climate change, but is a response to it through 

changing behaviours that aim to reduce vulnerability. Examples of adaptation include the 

building of flood defences; the development of drought-tolerant crops; and taking potential 

future climate conditions into account during infrastructure planning. Owing to the long 

atmospheric lifetime of CO2 (up to centuries or longer; Archer et al., 2009) and the high 

thermal capacity of oceans, anthropogenically-induced climate change will continue for some 

time, regardless of future mitigation. For example, the sea-level will continue to rise for 

several hundred years (Meehl et al., 2012). Such ‘locked-in’ changes mean that future climate 

change response will require a component of adaptation (e.g. Klein et al., 2007). There are 

limits to adaptation however. An inability to adapt beyond these limits will lead to, for 

example, the migration of communities or the extinction of species. (Adger et al., 2009; Dow 

et al., 2013). 

1.4 Geoengineering Overview 

The prospect of potential changes to the climate that are beyond the capacity of adaptation 

has led to the suggestion that geoengineering may be utilised in the future. Geoengineering 

encompasses a broad range of proposed technological schemes that aim to manipulate the 

Earth’s climate at a large scale in order to reduce the radiative flux imbalances caused by 

anthropogenic activities. These proposed schemes are broadly referred to as geoengineering. 

Recent growth and interest in the field of geoengineering has led to high-level reports from 

The Royal Society (2009) and the United States Government (Centre for Science, 

Technology, and Engineering, 2011) along with several detailed reviews (Keith, 2000; 

Vaughan and Lenton, 2011; Caldeira et al., 2013). 
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All proposed geoengineering technologies are currently immature, with uncertainties both in 

the design of the technological implementation mechanisms and in the anticipated effects on 

the climate system (Center for Science, Technology, and Engineering, 2011; Shepherd, 

2012). The nomenclature associated with these schemes (and their classification within the 

mitigation and adaptation spectrum) is also still evolving (e.g. Heyward, 2013; Boucher et al., 

2014). As no consensus on these revised classifications has yet been reached, the terminology 

used here will be consistent with the seminal report by The Royal Society (2009). Thus, 

under this framework, geoengineering proposals are divided into either carbon dioxide 

removal (CDR) schemes or solar radiation management (SRM) schemes. The CDR schemes 

aim to remove carbon dioxide from the atmosphere, with examples of proposed CDR 

proposals including chemical direct air capture devices or ‘CO2 scrubbers’ (e.g. Carbon 

Engineering Ltd., 2013); ocean fertilisation (e.g. Williamson et al., 2012); and enhanced 

weathering (e.g. Hartmann et al., 2013). In gradually drawing down atmospheric CO2 

concentrations, these CDR schemes would be akin to reductions in CO2 emissions, and may 

even enable negative emissions (The Royal Society, 2009). Responding to climate change by 

drawing down atmospheric CO2 concentrations is therefore considered to be relatively safe 

(The Royal Society, 2009). However, the means of achieving such CO2 concentration 

reductions may, in themselves, have potentially dangerous repercussions (for example, 

impacting the biosphere in the case of ocean fertilisation). CDR schemes would also likely 

produce only a slow response to climate change. 

The SRM schemes aim to reduce the amount of SW solar radiation absorbed by the Earth. 

Examples of proposed SRM schemes include space-based reflectors (e.g. Angel, 2006); the 

replication of a volcanic eruption via the addition of sulphate particles to the stratosphere 

(e.g. Crutzen, 2006; Robock et al., 2009); and the enhancement of surface albedo. Proposals 

for surface albedo enhancement include the formation of ocean bubbles (e.g. Seitz, 2011); 

brightening of crops, urban areas and deserts (e.g. Irvine et al., 2011); and the brightening of 

MSc clouds (e.g. Latham et al., 2012a). As the climate response to SRM would be rapid, 

SRM has been suggested as a possible means of delaying climate change sufficiently to 

enable more sustainable climate change responses (e.g. mitigation, adaptation or CDR) to be 

implemented. This possible capacity to ‘buy time’ may be particularly important in so-called 

climate emergency scenarios (Blackstock et al., 2009), although the ability of geoengineering 

to avoid or reverse a climate tipping-point has been questioned (Lenton, 2013). 

While SRM could therefore potentially play a contingency role in responding to climate 

change, it would likely have serious side-effects. Globally inhomogeneous application of 

SRM could lead to regional perturbations in, for example, temperature and precipitation 

(Haywood et al., 2013; Jones et al., 2011a). The resulting creation of regional ‘winners’ and 
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‘losers’ emphasises that decisions on the deployment of SRM geoengineering will be imbued 

with political sensitivities. Importantly, if SRM were to be used in the absence of mitigation 

or CDR techniques, atmospheric CO2 concentrations would continue to rise. As such, ocean 

acidification (which results from dissolved CO2) would persist. Global precipitation could 

reduce in response to the application of SRM owing to reduced rates of surface evaporation 

(Bala et al., 2008; Jones et al., 2011a). The net primary productivity of plants could increase 

however, owing to CO2 fertilisation (Govindasamy et al., 2002). In spite of reduced solar 

radiation fluxes, further enhancements in photosynthesis could also result from the diffuse 

radiation caused by the addition of sulphate particles to the stratosphere, as occurred after the 

eruption of Mount Pinatubo (Gu et al., 2003). Finally, without decreases in atmospheric CO2 

concentrations, SRM would have to continue indefinitely, with sudden cessation causing 

temperatures to rapidly approach those that would have been reached had SRM never been 

deployed. Computer simulations of this ‘termination effect’ suggest that, for the Special 

Report on Emissions Scenarios (SRES) (IPCC, 2000) ‘A2’ emission scenario, this 

temperature recovery could occur at rates of 2 to 4 °C per decade (Matthews and Caldeira, 

2007). 

1.5 Geoengineering Within Future Climate Change Response Policy 

Informed decision-making on climate change response requires a combined consideration of 

mitigation, adaptation, and the possible auxiliary role of geoengineering (Figure 1.1). 

As these climate change response routes are interdependent, it is essential that – alongside 

ethical and political considerations – realistic estimates of the effectiveness and side-effects 

of a geoengineering scheme are produced. Being better informed about the realistic potential 

of geoengineering will prevent ‘false hope’ and an underestimation of the importance of the 

strength and timeliness of mitigation and adaptation measures. 

In order to protect the Earth from possible irreversible damage, experimental geoengineering 

research is limited to small-scales in controlled settings (Convention on Biological Diversity, 

2010). Because of this, the expense of field-testing, and the difficulty of detecting changes to 

the climate associated with geoengineering (e.g. Seidel et al., 2014), estimates of global 

geoengineering effectiveness and side-effects typically utilise computational models 

(Figure 1.1). 

Computer modelling of geoengineering schemes has several benefits. Primarily, computer-

based research poses no risk to the climate. Additionally, multiple global simulations can be 

undertaken over climatically relevant time-scales (up to hundreds of years) and compared 

against control case scenarios. This allows the effects of geoengineering to be easily 
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identified, a process which is aided by the availability of output data on a multitude of 

climate variables. However, computer models have limitations. The degree of realism with 

which computer models can represent the consequences of geoengineering depends on two 

aspects. The first is the ability of the model to represent the Earth’s climate systems and their 

response to a modelled geoengineering perturbation. The second is how realistically the 

geoengineering implementation mechanism is represented within the model.  

 
Figure 1.1 – Schematic indicating considerations necessary for informed policy-making on 

the response to climate change. Possible research components for the better understanding of 

geoengineering proposals are detailed. 

The representation of climate systems within computer models is restricted by issues of scale. 

In reality, climate system processes occur at scales that range over several orders of 

magnitude. For example, teleconnections can span thousands of kilometres while in-cloud 

processes may be dominated by the centimetre-scale. Owing to the immense computational 

intensity associated with numerically representing such a range of processes, it is generally 
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necessary to simplify the system. This is typically achieved by limiting the resolution of the 

model and parameterising sub-grid processes. 

For global-scale models, capturing such a large domain necessitates a horizontal grid cell 

spacing of the order of tens of kilometres. While bulk behaviour is represented through 

parameterisations, processes that occur at scales smaller than these grid cell dimensions 

cannot be explicitly represented, for example, aerosol-cloud interactions (Boucher et al., 

2013). As they are able to capture global-scale climate interactions, these global-scale models 

are the only means of producing global-scale estimates of the climate’s response to 

geoengineering (Figure 1.1). As such, the simulation of geoengineering proposals has been 

predominantly carried out using global-scale computer models. 

While issues of scale are important for climate processes, they similarly affect the ability of 

models to realistically represent geoengineering implementation mechanisms. For example, 

some geoengineering implementation mechanisms are being designed to emit aerosols over 

meter-scales (e.g. aeroplanes for sulphate particle emissions, and sea-going vessels for cloud 

brightening sea spray emissions). Their representation within global-scale models is, 

however, typically simplified, resulting in a uniformly distributed emission over a grid-cell 

covering tens of square kilometres. This disconnect between the real-life 

engineering/technological design and its representation within global-scale models means 

that potentially key processes relating to details of the implementation process are not 

captured. Importantly, such omission of details may impair the realism of the resulting 

estimates of effectiveness and side-effects produced by these global scale models. 

Better representation of the detailed features of both the climate system and geoengineering 

implementation mechanisms can be achieved through higher resolution computer modelling. 

In spite of the advantages of higher resolution computer modelling, the computational costs 

of increasing the resolution lead to restrictions in domain size. Thus, higher resolution 

computer modelling is unable to capture large-scale climate interactions and therefore cannot 

currently produce global estimates of geoengineering effectiveness. However, these higher 

resolution computer simulations are a powerful tool in examining the importance of capturing 

the details of geoengineering implementation mechanisms that cannot be represented within 

global-scale models. Through this enhancement, higher resolution computer simulations of 

geoengineering can contribute to the development of increasingly realistic estimates of 

geoengineering effectiveness and side-effects. Such estimates, portraying the highest possible 

realism, are essential for informed decisions on the response to climate change. 

This thesis focuses on illustrating the importance of capturing details of the geoengineering 

implementation mechanisms in computer simulations. For this, the MCB proposal is 

considered. The MCB scheme, which proposes the manipulation of aerosol-cloud interactions 
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in enhancing MSc cloud albedo (Latham, 1990; 2002; Latham et al., 2008; 2012a), was 

primarily selected for two reasons.  

Firstly, the background climate system, comprising of MSc clouds, exhibits characteristics at 

scales that are well suited to detailed cloud-resolving computer modelling (e.g. Ackerman et 

al., 2009; Wang et al., 2010; Chen et al., 2011). Secondly, the design of the technological 

implementation mechanism (in the form of wind-driven sea-going vessels) is fairly well 

developed, and has been published (Salter et al., 2008). This provides a well-defined basis for 

assumptions, while exhibiting sufficient ambiguities to enable exploration of sensitivities in 

the response. The metre-scale of the proposed sea-going vessels also lends itself to detailed 

computer modelling. 

The remainder of this chapter reviews the background of the MCB proposal. This begins with 

a brief overview of the importance of clouds within the climate and their response to aerosols. 

An introduction to the MCB proposal is then presented, followed by a summary of MCB 

research to-date. This chapter ends with a declaration of the specific research objectives that 

comprise this thesis along with a description of the thesis structure (Section 1.9).  

1.6 The Background of Marine Cloud Brightening 

1.6.1 The Role of Clouds in the Climate 

Clouds cover approximately two-thirds of the Earth’s surface (Rossow and Schiffer, 1999; 

Eastman et al., 2011) and play a significant role in the climate system. Clouds form a crucial 

part of the hydrological cycle, controlling the amount and location of water stored, 

transported and deposited as precipitation. Clouds also have an important role in the Earth’s 

energy budget. In addition to the latent heat fluxes associated with water changing states 

through a cloud’s lifecycle, clouds interact with both longwave (LW) and shortwave (SW) 

radiation. 

As clouds lie above (and are often cooler than) the Earth’s surface, the amount of LW 

radiation that is emitted to space from the cloud-top is typically smaller than the amount 

emitted from the Earth’s surface. This positive downward radiative flux effect will act to 

warm the Earth. However, the optical thickness of clouds acts to reflect incoming SW 

radiation from the Sun, acting to cool the Earth (a negative radiative flux change). Satellite 

observations estimate that globally, the annual average LW radiative perturbation caused by 

all clouds is 31 Wm
-2

, with an estimated SW radiative perturbation of -48 Wm
-2

 (Ramanathan 

et al., 1989; Harrison et al., 1990). Thus, globally, clouds produce a cooling effect, with the 

magnitude of the net downward cloud radiative effect being approximately -17 Wm
-2

 

(Harrison et al., 1990).  



 9 

Chapter 1 – Introduction 

The net radiative effect of a cloud varies according to its type. For example, high, thin cirrus 

clouds are much cooler than the surface, but their optical thicknesses are such that their 

albedo is not markedly higher than the surface below. Thus, reductions to outgoing LW 

radiation (a global average estimated to be ~5.5 Wm
-2

) are larger than increases in the 

reflected SW radiation (estimated to be ~ -4.2 Wm
-2

). This results in an estimated net global 

average downward radiative effect of ~1.3 Wm
-2

, and associated warming (Chen et al., 2000). 

Conversely, low, thick stratiform clouds have temperatures near to that of the surface, yet 

optical thicknesses that produce higher albedos than the surface below. Thus, reductions in 

outgoing LW radiation (estimated to be ~1.2 Wm
-2

) are small compared to the increases in 

reflected SW radiation (estimated to be ~ -12.7 Wm
-2

). This results in an estimated net global 

average downward radiative effect of ~ -11.5 Wm
-2

, and associated cooling (e.g. Chen et al., 

2000). The cooling efficacy of these low stratiform clouds is particularly evident over oceans, 

where difference in cloud and surface albedo is greatest, with a typical albedo of around 0.2 

to 0.5 for clouds (Painemal and Minnis, 2012) and around 0.07 for the sea-surface (Coakley, 

2002). 

These estimated cloud radiative effects can be compared with the +2.3 Wm
-2

 [1.1 to 

3.3 Wm
2

, 90% uncertainty range] estimated radiative forcing associated with anthropogenic 

activities between pre-industrial times and 2011 (Myhre et al., 2013). Thus, it is evident that 

even small cloud changes could be significant for the climate. Indeed, these cloud radiative 

effects are not fixed. As cloud properties are highly sensitive to atmospheric and energetic 

conditions (Stephens, 2005), any changes in these conditions affect cloud properties, and 

therefore the cloud radiative effects. In addition to spatial and periodic variations, of climatic 

interest is how clouds respond to changes associated with increased atmospheric CO2 

concentrations. The magnitude and sign of such cloud changes depend not only on the cloud 

type and location, but additionally on the nature of the change in conditions caused by the 

increase in CO2 concentration. 

Initially, increases in atmospheric CO2 concentrations lead to rapid adjustments in 

tropospheric radiative heating (Andrews and Forster, 2008; Andrews et al., 2012). In turn, 

there are rapid adjustments (timescales of days to weeks) in cloud properties (Andrews and 

Forster, 2008; Andrews et al., 2012). Global-scale computer modelling suggests that these 

rapid adjustments result in reduced cloud fractions. Owing to perturbations in SW radiative 

response, these changes are estimated to result in a net positive cloud radiative adjustment 

(Andrews and Forster, 2008; Andrews et al., 2012; Zelinka et al., 2013). 

After these initial rapid cloud adjustments, cloud properties then go on to respond to the 

longer-term changes to the climate – notably global surface warming. The resulting changes 

in the radiative properties of the clouds can lead either to positive feedbacks (i.e. that enhance 
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the warming) or negative feedbacks (i.e. that act to counteract it). These cloud feedbacks are, 

however, poorly understood (Stephens, 2005) – particularly for low-altitude marine boundary 

layer clouds (Bony and Dufresne, 2005; Boucher et al., 2013; Webb et al., 2013). Global-

scale computer model simulations suggest that in response to surface temperature increases, 

cloud height and thickness tend to increase, while cloud fraction tends to decrease (Zelinka et 

al., 2013). Incorporating the various responses of different cloud types across different 

locations, the changes result in a net positive global mean cloud feedback, largely caused by 

changes to LW radiative effects (Zelinka et al., 2013). The IPCC state that cloud feedbacks 

are very likely to be in the range of -0.2 to +2.0 Wm
-2

K
-1

 (Boucher et al., 2013). Observations 

cannot yet inform on potential long-term trends, however (Zhou et al., 2013). 

1.6.2 A Brief Introduction to Aerosol Indirect Effects 

In addition to atmospheric and energetic conditions, cloud properties are also dependent upon 

the properties and concentrations of available aerosols. This relationship arises from 

fundamental mechanisms of cloud formation, whereby – for the warm (i.e. liquid phase only) 

MSc clouds central to the MCB proposal – cloud droplets form when water vapour condenses 

onto cloud condensation nuclei (CCN). This condensation occurs in the presence of 

supersaturation (i.e. when the relative humidity exceeds 100%). Supersaturation is dependent 

upon the speed of updrafts, which are able to transport moisture upwards from the surface. 

Aerosols that act as CCN can originate from both natural and anthropogenic sources, and 

typically have compositions that make them hygroscopic. Additionally, owing to the 

processes associated with condensation, larger aerosols are activated to cloud droplets 

preferentially to smaller ones (Köhler, 1936). The main source of CCN in the relatively clean 

marine environment is wind-driven sea spray (Lewis and Schwartz, 2004). However, 

anthropogenic sources can increase concentrations, particularly close to coasts and downwind 

of the sources (Lee et al., 2013). Thus, the number, size and composition of available aerosols 

affects the number and size distribution of formed cloud droplets. These attributes in turn 

characterise the optical thickness, albedo and SW radiative response of the cloud. This 

additionally means that changes to the number concentration, size distribution and 

composition of aerosols may cause a perturbation to the radiative response of the clouds. 

While a more detailed review of aerosol-cloud interactions is presented in Chapter 2, briefly, 

increased aerosol concentrations can alter cloud albedo via both the first and second indirect 

aerosol effects1. In the first indirect aerosol effect, the addition of aerosols – assuming a fixed 

                                                      

1 While the Fifth IPCC Assessment Report introduces new terminology for describing these 

effects (Boucher et al., 2013), the terminology used here will remain consistent with the 

Fourth IPCC Assessment Report (Forster et al., 2007). 
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liquid water path (LWP; the vertically-integrated liquid water content) – tends to increase the 

cloud droplet number concentration (Nd). This additionally reapportions the liquid water, 

forming a higher number of smaller cloud droplets. This reapportionment from a lower 

number of larger volume droplets to a higher number of smaller volume droplets in turn 

increases the cross-sectional area of droplets. Owing to the relationship between volume and 

area, this cross-sectional area increases by a factor of   3/1

__ lowerdhigherd NN . As a result, 

the optical thickness of the cloud increases, as does its albedo (Twomey, 1974). The second 

indirect aerosol effect considers changes to the LWP of the cloud. For a cloud precipitating 

sufficiently to lose water at the Earth’s surface, the reduction in cloud droplet size caused by 

the addition of aerosols could reduce droplet collision-coalescence (and hence precipitation) 

sufficiently to cause a net increase in LWP. This resulting LWP increase could boost both the 

albedo and lifetime of the cloud, reinforcing the first indirect effect (Albrecht, 1989). 

However, the second indirect aerosol effect is dependent upon highly sensitive cloud 

processes, background cloud and atmospheric conditions and complex feedbacks (discussed 

in detail in Chapter 2). Therefore, while the second indirect aerosol effect may lead to albedo 

increases in certain conditions, the magnitude and even the sign of the second indirect aerosol 

effect is not well understood. 

Crucially, aerosol production processes are closely linked with climatic conditions (Andreae 

and Rosenfeld, 2008). As such, increases in atmospheric CO2 concentrations – and the 

changes to the climate that they induce – can lead to changes in atmospheric aerosol 

concentrations. These aerosol perturbations can in turn lead to changes in the radiative effect 

of clouds, further to the rapid responses and feedbacks described in Section 1.6.1. 

For example, it has been suggested that the warming caused by increasing atmospheric CO2 

concentrations may enhance the planktonic algae production of dimethyl-sulphide, a 

precursor of sulphate aerosols that can act as CCN. The hypothesised resulting increases in 

cloud albedo would act to cool the planet, resulting in a negative feedback response (Charlson 

et al., 1987). However, subsequent computer simulations suggest that the magnitude of these 

effects will be dependent upon the spatial distribution of emissions (Woodhouse et al., 2013), 

and may be very weak (Woodhouse et al., 2010). Other analysis suggests that locally 

increased wind speeds over the remote Southern Hemisphere oceans since the early 1980s – 

caused by stratospheric ozone losses and increases in greenhouse gases – have increased the 

production of sea spray aerosols (Korhonen et al., 2010a). The magnitude of resulting 

negative radiative forcing, resulting from the associated increase in cloud albedo, is estimated 

to be sufficient to cancel out 70% of the positive radiative forcing resulting from greenhouse 

gases in the region. 
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 It is the potential ability of these indirect aerosol effects to alter the radiative response of 

clouds that has led to the development of the MCB proposal.  

1.6.3 The Marine Cloud Brightening Proposal 

The MCB proposal aims to increase the albedo of MSc clouds by artificially increasing 

aerosol concentrations. The envisioned resulting negative radiative forcing would cool the 

planet and ameliorate climate change (Latham, 1990; Latham, 2002).  

The MCB proposal aims to target MSc clouds for three principal reasons. Firstly, these low 

clouds produce the largest negative radiative effect of all cloud types (owing to the 

domination of SW related cooling over LW related warming as described in Section 1.6.1). 

Secondly, the relatively clean background aerosol concentrations in the marine environment 

are expected to allow a greater albedo enhancement than would occur for more polluted 

background conditions. Thirdly, as artificially-produced sea water droplets could be a suitable 

MCB aerosol, the marine environment constitutes an inexhaustible resource. 

These low-lying MSc clouds cover up to 15% of the Earth’s surface (Rossow and Schiffer, 

1999; Eastman et al., 2011).They have a characteristic diurnal cycle (being thickest during 

the night, and thinning into the day) and tend to form into a cellular structure (with cell 

diameters being of the order of tens of kilometres). The processes that cause these 

characteristic properties are detailed in Chapter 2. Persistent MSc cloud decks reside off the 

west coasts of North America, South America, Africa and Australia (Figure 1.2). 

Global computer simulations have been used to identify the regions which are most 

susceptible to MCB. While the exact locations vary, there is some agreement that the optimal 

regions for MCB are these persistent MSc cloud decks, along with regions in the North 

 

This ISCCP D2 image was obtained from the International Satellite Cloud Climatology Project website 
http://isccp.giss.nasa.gov maintained by the ISCCP research group at the NASA Goddard Institute for Space 
Studies, New York, NY on 23 January, 2012. (Rossow and Schiffer, 1999). 

Figure 1.2 – Annual mean daytime stratocumulus cloud amount. 
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Atlantic and Indian Ocean (Rasch et al., 2009; Jones and Haywood, 2012; Partanen et al., 

2012). These regions are similarly identified as regions of high susceptibility through the 

interrogation of observed patterns of SW radiation intensity, Nd, cloud fraction, and wind 

speed (Salter et al., 2008; Alterskjær et al., 2012). 

The aerosols that would be used for MCB are suggested to be monodisperse with dry aerosol 

diameter of around 200 nm (Latham et al., 2008; Latham et al., 2012a). These aerosols would 

be small enough to maximise the number of aerosols produced from a given mass of sea 

water, whilst being large enough to act as CCN. The suggested monodispersivity is intended 

to delay the onset of precipitation (discussed further in Chapter 2) and hence enhance cloud 

lifetime. 

A design of the implementation mechanism capable of emitting a flux of aerosols for this 

purpose has been proposed (Salter et al., 2008). This design proposes 300-tonne sea-going 

vessels, powered by the wind via rotating Flettner rotors approximately 2.4 m in diameter and 

20 m in height (represented in the artist’s impression; Figure 1.3). These wind-driven rotors 

would drive the motion of the vessel, allowing submerged turbines to power pumps which 

would draw-up filtered sea water to be formed into the sea water droplets. In spite of large 

uncertainties in the cost estimates, it has been suggested that a fleet of such vessels 

(suggested to be of the order of approximately 1500) would likely compare favourably with 

other geoengineering schemes (Keith, 2000). 

There are design problems yet to be solved, including the development of a suitable aerosol 

formation system (Latham et al., 2012a; Neukermans et al., 2014). However, the proposal 

suggests that a maximum sea water pumping rate of 30 kgs
-1

 could be achieved at wind 

speeds of 6-8 ms
-1

 (Korhonen et al., 2010b). The MCB aerosols (of intended dry diameter 

~200 nm) would likely result from the evaporation of formed sea water droplets (Latham et 

al., 2012a). The diameter of these dry aerosols being approximately one quarter of the 

diameter of the sea water droplet (Lewis and Schwartz, 2004). Therefore, for a 30 kgs
-1

 sea 

water mass flux of 800 nm diameter sea water droplets, the resulting aerosol number flux rate 

would be approximately 1.1x10
17

 s
-1

. The sea water droplets would then be blown through the 

centre of the hollow rotor at a velocity of 12 ms
-1

 (Salter et al., 2008). Latham et al. (2008) 

suggest that based on measurements and observations of natural sea salt aerosols, the number 

fraction of MCB emitted sea salt aerosols reaching the cloud base region would depend on 

meteorological conditions and could vary between 0.1 and 0.5. Also, given that the spraying 

process is currently uncertain, the timing and location of the evaporation of the formed sea 

water droplets in the MCB process is also currently unknown. 
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Figure 1.3 – Artist’s impression of a potential cloud brightening vessel (MacNeill, n.d.). 

1.7 Developments in Marine Cloud Brightening Research 

As represented in Figure 1.1, realistic estimates of MCB effectiveness and the identification 

of potential side-effects are essential in order to inform decision-making on the place of MCB 

in addressing future anthropogenic climate change. These estimates should arise from 

assumptions based on the engineering design of the MCB scheme. 

This section discusses key findings resulting from developments in the computer simulation 

of MCB to-date. 

Mesoscale simulations (Wang et al., 2011a) demonstrate that representing MCB at a resolved 

cloud dynamics resolution (and thereby allowing details of the aerosol emissions mechanism 

to be captured) results in responses that could not be simulated at the global scale. These 

outcomes are discussed further in Section 1.7.4. In spite of the insights that more detailed 

model simulations afford, and as introduced in Section 1.5, the majority of research into the 

effects of MCB has been carried out using global-scale models. 

Early global computer simulations of MCB avoided simulating the aerosol and aerosol-cloud 

processes involved in MCB, instead representing the scheme by fixed low-cloud Nd of 

375 cm
-3

 or 1000 cm
-3

 (e.g. Latham et al., 2008; Rasch et al., 2009; Jones et al., 2009). This 

simplification therefore omitted both representation of the possible MCB aerosol emission 

process, and aerosol-cloud interactions, but allowed patterns of effectiveness and side-effects 
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to be identified. A summary of key MCB side-effects identified from global computer models 

is presented in Section 1.7.1. 

Subsequently, Korhonen et al. (2010b) developed a wind-speed dependent MCB aerosol 

emission flux assumption based on the design of the implementation mechanism (Salter et al., 

2008). In utilising a global aerosol model and aerosol activation scheme, global Nd changes in 

response to MCB emissions were estimated for the first time. However, these global aerosol 

models do not include cloud feedbacks on meteorology, and their use does not typically 

extend to the estimation of resulting radiative forcings. Key findings associated with the 

estimation of Nd originating from the use of global climate models are presented in 1.7.2. 

The latest global simulations of MCB utilise aerosol-climate models (e.g. Jones and 

Haywood, 2012; Partanen et al., 2012; Alterskjær and Kristjánsson, 2013). This allows the 

inclusion of MCB aerosol emission processes, aerosol-cloud interactions, climate feedbacks 

and the radiative effects of MCB. The representation of the MCB aerosol emission process 

varies however. While some utilise the wind-speed dependent flux assumption based on 

Korhonen et al. (2010b) (Jones and Haywood, 2012; Partanen et al., 2012), others simulate 

the MCB aerosol emissions as fixed increases (Alterskjær et al., 2012; Alterskjær and 

Kristjánsson, 2013), or multiples of natural sea spray emissions (Hill and Ming, 2012). A 

summary of estimates of MCB effectiveness based on the use of global aerosol-climate 

models is presented in Section 1.7.3. 

In spite of the importance of understanding and quantifying side-effects, Nd perturbations and 

the detailed response of clouds, the potential effectiveness of geoengineering schemes are 

typically quantified using a global mean radiative forcing. Ramaswamy et al. (2001) state that 

“the radiative forcing of the surface-troposphere system due to the perturbation in or the 

introduction of an agent (say, a change in greenhouse gas concentrations) is the change in net 

(down minus up) irradiance (solar plus LW; in Wm
-2

) at the tropopause after allowing for 

stratospheric temperatures to readjust to radiative equilibrium, but with surface and 

tropospheric temperatures and state held fixed at the unperturbed values”. It is noted that as 

the definition of radiative forcing includes only the instantaneous tropospheric albedo 

changes, it takes into account the first indirect aerosol effect alone. In so doing, it omits the 

cloud responses associated with: the second indirect aerosol effect (discussed in 

Section 1.6.2); semi direct cloud effects caused by the absorption of solar radiation by soot 

(Chapter 2); as well as both the rapid cloud adjustments and cloud feedbacks that result from 

changes in the troposphere and surface temperatures (Section 1.6.1). In order to account for 

more of these potential cloud responses, later global MCB modelling studies tend to use an 

adjusted radiative forcing – the radiative flux perturbation (RFP). Similar to radiative forcing, 

this holds sea-surface temperature fixed, but allows the meteorology to change, thus allowing 
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the incorporation of both the first and second indirect effects, along with the semi direct 

effect, and rapid cloud adjustments (Haywood et al., 2009).  

The use of such a radiative forcing measure allows the effectiveness of MCB to be compared 

against both other geoengineering schemes and climate forcing agents. A summary of the 

published radiative forcings produced from global-scale MCB simulations is presented in 

Figure 1.4. Again, for comparison, it is reiterated that – although subject to large uncertainties 

in some components – the radiative forcing associated with anthropogenic activities between 

pre-industrial times and 2011 is estimated to be +2.3 Wm
-2

 (Myhre et al., 2013). This figure 

additionally emphasises the wide range of MCB emission assumptions used in simulating 

MCB, which complicates the inter-comparison of models. 

 

Figure 1.4 – Summary of radiative forcing estimates from past studies of geoengineering sea 

salt emissions. Studies are categorised into either emitted aerosol simulations, or fixed cloud 

droplet number concentration (Nd) simulations. The emitted aerosol simulations are further 

divided into simulations that introduce sea salt aerosols in relation to the approximate mass 

fluxes suggested by the Salter et al. (2008) design proposal, or simulations that increase 

background sea salt aerosol concentrations by a factor. The Rap et al. (2013) paper 

investigated removal of sea salt emissions from the present day atmosphere. References for 

each data point are included in the legend. From Kravitz et al. (2013) (including Jenkins). 
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1.7.1 The Identification of Side-Effects In Global-Scale Models 

While early fixed-Nd global computer simulations omitted any representation of MCB aerosol 

emissions or aerosol-cloud interactions, they were able to identify key potential climate side-

effects, particularly relating to spatially inhomogeneous responses. These patterns of response 

were typically corroborated by the subsequent global scale modelling that incorporated both 

MCB aerosol emissions and aerosol-cloud interactions. The subsequent discussion of side-

effects first considers temperature responses, then precipitation perturbations, followed by 

changes to sea-ice extents, ending with the termination effect. 

Temperature 

MCB-induced temperature decreases were found to be greater local to the MCB target area, 

through the Tropics, and in the Artic (Jones et al., 2009; Rasch et al., 2009; Hill and Ming, 

2012; Jones and Haywood, 2012). The cooling through the Tropics was proposed to result 

from the strong mixing and primary ocean circulations in the region (Rasch et al., 2009; Hill 

and Ming, 2012). The Arctic cooling was suggested to originate from an ice-albedo feedback 

(Jones and Haywood, 2012). In addition to cooling, regions of warming were identified in the 

North-West Pacific (Rasch et al., 2009; Hill and Ming, 2012) and around Antarctica (Jones et 

al., 2009; Rasch et al., 2009; Jones and Haywood, 2012). The former was suggested to be 

caused by teleconnections between the Pacific-North America Oscillation and a MCB 

induced pseudo-La Niña phase of the El-Nino-Southern Oscillation (Hill and Ming, 2012). 

The La Niña phase was also shown to occur in the fixed-Nd modelling of Baughman et al. 

(2012). Warming around Antarctica was suggested to be caused by reduced Antarctic zonal 

winds resulting from MCB (Jones and Haywood, 2012). 

Owing to global-scale interactions occurring outside of the MCB targeted regions, the 

magnitude of the RFP response was non-linearly related to the extent of MCB application 

(Jones et al., 2009). The greatest cooling effect resulted from the application of MCB in the 

South Pacific while temperature changes associated with MCB in the South Atlantic were 

minor (Jones et al., 2009; Hill and Ming, 2012). Applying MCB to all target areas 

concurrently produced an RFP that was 25% lower than the sum total for each individual 

region (Jones et al., 2009). This pattern was also repeated in global mean temperature 

response (Hill and Ming, 2012). 

Precipitation 

Precipitation patterns are crucial for future water security, crop growth and maintenance of 

the biosphere. Like temperature patterns, simulated precipitation patterns were also found to 

respond to MCB. In initial fixed-Nd simulations (using the Hadley Centre Global 

Environmental Model, Version 2 (HadGEM2); Jones et al., 2009), precipitation rates 



18 

Chapter 1 – Introduction 

increased in sub-Saharan Africa, Australia, and Northern India, but decreased over Central 

Asia. Critically precipitation rates also decreased by up to 1 mm day
-1

 relative to the SRES 

‘business-as-usual’ scenario over the Amazon Basin. These patterns were later reproduced in 

further fixed-Nd representations of MCB (Latham et al., 2012a; Latham et al., 2012b), with 

the strength of response increasing when emissions were extended over the whole ocean. 

Similar patterns were found when MCB aerosol emissions and aerosol-cloud interactions 

were simulated (using the HadGEM2-ES (Earth System) model; Jones and Haywood, 2012), 

although the magnitude of perturbation was smaller than was initially found. The simulated 

Amazonian precipitation decreases were found to be a result of MCB applied in the South 

Atlantic region (Jones et al., 2009; Jones and Haywood, 2012). This corresponds with 

observations that show that Amazonian precipitation is sensitive to the sea-surface 

temperature gradient along the Atlantic Ocean (Good et al., 2008). Interrogation of simulated 

precipitation patterns within the HadGEM model suggests that accuracy is reduced close to 

steep mountain ranges, and may therefore affect simulation of the Amazonian Basin region 

(Latham et al., 2012a). Furthermore, reductions in Amazonian precipitation were not present 

for simulations conducted using other models (Community Climate System Model (Rasch et 

al., 2009);  Geophysical Fluid Dynamics Laboratory AM2.1 General Circulation Model (Hill 

and Ming, 2012)). Thus, while simulated precipitation outputs in response to MCB may be 

sensitive to the location of MCB emissions, they may also be sensitive to the model used. 

Disparities between models may result from, for example, the use of different microphysical 

parameterisatons. This was suggested to be the reason why the National Center for 

Atmospheric Research Community Atmosphere Model produced estimates of MCB cloud 

forcing that were around half of the -8.0±0.1 Wm
-2

 simulated by the Hadley Centre Global 

Atmospheric Model (HadGAM) (Latham et al., 2008). Inter-model differences are not always 

significant, however. Similar MCB aerosol emission approaches led to similar radiative 

forcing outputs for the HadGEM2 model (Jones and Haywood, 2012) and the ECHAM5.5-

HAM2 aerosol-climate model (Partanen et al., 2012) for example. 

If MCB were to enter the advanced stages of being considered for deployment, multi-model 

inter-comparisons would be required to determine potential inter-model uncertainties, and to 

quantify a range of simulated outputs. 

Sea-ice Extent 

As for temperature and precipitation perturbations, the computer simulation of MCB also 

produced a spatially inhomogeneous response in sea-ice extent. While MCB resulted in the 

recovery of mean sea-ice extent, the spatial distribution of coverage differed from the control 

situation (Rasch et al., 2009; Latham et al., 2012a). The sensitivity of the sea-ice extent 

response to MCB was also different from the response of precipitation and temperature to 
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MCB. Thus, the application of MCB could never concurrently return all of the elements of a 

changed climate to a selected point in time (i.e. present day, or pre-industrial) (Rasch et al., 

2009) or achieve multiple climate objectives. 

Termination Effect 

The termination effect (as introduced in Section 1.4 for SRM geoengineering techniques 

more widely) has also been investigated for MCB specifically. The fixed-Nd simulation of 

MCB delayed global mean temperature increases resulting from the SRES ‘A1B’ emission 

scenario (IPCC, 2000) by around 25 years. However. its sudden cessation caused 

temperatures to rapidly recover (a 0.6 K increase) within five to ten years (Jones et al., 2009). 

1.7.2 The Estimation of Cloud Droplet Number Concentration 

Perturbations from Global Aerosol Models 

While early fixed-Nd global simulations produced important insights into possible climate 

responses to MCB, limitations of the models meant that both MCB aerosol emission 

processes and aerosol-cloud interactions were not captured. 

As will be discussed in greater detail in Chapter 2, the formation of cloud droplets depends 

on several parameters which describe both the background atmospheric and aerosol 

characteristics, and the characteristics of the emitted MCB aerosols. The background 

condition parameters include such things as: the aerosol size and number distribution; the 

maximum supersaturation of water vapour (which is related to the updraft speed within the 

boundary layer); cloud properties such as cloud thickness; and rate of air that is entrained 

from above. Potentially important emitted MCB aerosol parameters include the number and 

size of emitted aerosols and the chemical composition of the particles. Thus, several factors 

can affect the Nd that may result from an MCB aerosol emission. 

This section describes the contribution of global aerosol transport models in MCB modelling. 

These models require an off-line parameterisation of aerosol activation to calculate Nd. 

However, the ability to produce global estimates of Nd perturbations resulting from MCB 

aerosol emission assumptions (Korhonen et al., 2010b) was an important development in 

MCB modelling. 

Such wind-speed dependent MCB emissions in the North Pacific, South Pacific, Indian 

Ocean, and South Atlantic were simulated in the GLObal Model of Aerosol Processes 

(GLOMAP) by Korhonen et al. (2010b). Utilising a droplet formation parameterisation (with 

an assumed vertical velocity distribution), the MCB emissions produced the greatest Nd 

increase (20%) in the South Pacific. However, the Nd reached only 133 to 177 cm
-3

, less than 

half of the 375 cm
-3

 assumed in previous fixed-Nd modelling.  
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Crucially, in addition to the lower than previously assumed Nd, a 2% reduction in Nd was 

simulated in response to MCB aerosol emissions in the North Pacific region. Such a Nd 

reduction would lead to albedo reductions and a warming effect. This Nd reduction was 

suggested to be caused by a competition effect (Ghan et al., 1998), whereby the larger MCB 

aerosols would activate preferentially to the smaller background aerosols of the relatively 

polluted outflow conditions off the West-coast of North America. As the larger MCB 

aerosols activate preferentially, water condensates on to them, reducing the maximum 

supersaturation in the cloud region. Under suppressed supersaturation levels, the critical 

radius of an aerosol necessary for it to activate as a cloud droplet increases. Hence, the 

smaller background aerosols are no-longer able to activate. Increasing the flux of MCB 

aerosols five-fold, allowed sufficient new aerosols to activate, eliminating any Nd reductions. 

Such Nd and albedo decreases were also simulated in the early cloud parcel modelling of 

Bower et al. (2006) for larger emitted aerosol diameters (>200 nm) into more highly polluted 

background conditions (Nd of 300 cm
-3

). However, no reductions occurred for emission into 

less polluted background conditions (Nd of ~130 cm
-3

). 

A subsequent sensitivity study (using an aerosol activation scheme) considered the effects of 

various hypothetical combinations of background aerosol concentration, updraft velocity and 

MCB aerosol size and emission rate on Nd number (Pringle et al., 2012). Nd was generally 

found to increase asymptotically with MCB aerosol number with MCB aerosols added to 

already polluted background aerosol concentrations resulting in smaller Nd increases. This 

corresponds to results anticipated theoretically (Twomey, 1974; Latham et al., 2008), and 

found in cloud parcel simulations (Bower et al., 2006; Latham et al., 2012a). Increases in Nd 

were also found to be more sensitive to the number of MCB aerosols emitted than to their 

size. This included dry diameters of between 100 nm and 500 nm for Pringle et al. (2012) but 

extended to 4 µm by Bower et al. (2006). Updraft velocity was also found to be important. 

Smaller MCB aerosols activated to cloud droplets only when the updraft velocities (and 

hence available moisture) were of sufficient magnitude and updraft-limited conditions could 

restrict Nd increases regardless of the number and size of MCB aerosols added. However, 

higher updraft velocities increased supersaturations sufficiently to activate a higher number of 

MCB aerosols.  

These sensitivity simulations also established the conditions necessary for Nd losses. These 

conditions were found to be a low MCB aerosol concentration (<100-150 cm
-3

), large MCB 

aerosol diameter (>250-300 nm), large background aerosol concentrations (≥150 cm
-3

) and a 

low cloud updraft velocity (<0.2 ms
-1

). Low updraft velocities produced low enough 

supersaturations that preferential activation of the larger MCB aerosols reduced 

supersaturation to below the critical value needed by the smaller background aerosols to 
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activate to form cloud droplets. However, the resulting low supersaturations were sufficient 

to activate further larger MCB aerosols. Hence, as found in the previous global aerosol study 

of Korhonen et al. (2010b), Nd losses could be overcome by increasing the MCB aerosol 

emission rate. 

Pringle et al. (2012) then went on to depict idealised aerosol concentrations resulting from 

MCB using baseline aerosol data taken from three different global aerosol models 

(GLOMAP, EMAC and ECHAM-HAM). These idealised MCB aerosol representations were 

then used with the same aerosol activation scheme in order to estimate Nd changes resulting 

from MCB. As occurred for the earlier global-scale computer model representation of MCB, 

there were disparities in the Nd responses resulting from the different global aerosol models. 

For example, the background aerosol concentrations in the ECHAM-HAM model were 

typically less than half of those simulated in the other two models. Hence, while the addition 

of MCB aerosols resulted in lower Nd concentrations (60-64 cm
-3

) compared to the GLOMAP 

model (102-120 cm
-3

), the percentage increases were larger (130-160% compared to 

40-56%). These Nd concentrations were again less than those assumed for the initial fixed-Nd 

global-scale computer model simulations, and were also less than those found by Korhonen et 

al. (2010b). However, none of the three models produced a combination of conditions 

necessary to produce a reduction in Nd. This discrepancy between the findings of Korhonen et 

al. (2010b) and Pringle et al. (2012) was suggested to result from an overestimated 

suppression of supersaturation in the former study, owing to the aerosol activation 

parameterisation used. 

1.7.3 The Estimation of Marine Cloud Brightening Effectiveness from 

Global Aerosol-Climate Models 

While the use of global aerosol models allows complex aerosol processes to be simulated, the 

need to perform aerosol activation calculations off-line prevents climate feedbacks from 

being captured. Additionally, as this modelling technique does not involve an interactive 

radiative transfer scheme, the radiative effect of changes to the clouds are typically not 

estimated. 

In the last two years, developments in global-scale computer climate models have included 

the representation of aerosol transport and aerosol-cloud-radiation interactions. Therefore, 

this latest generation of global aerosol-climate models can now simulate the MCB aerosol 

emission processes; interactions between aerosols and clouds; climate feedbacks, and the 

radiative forcing potential associated with such changes.  

Use of the ECHAM5.5-HAM2 aerosol-climate model in simulating MCB aerosol emissions 

(Partanen et al., 2012) resulted in Nd increases of 74-80% (or Nd values of 194-286 cm
-3

). 
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While being larger than previous estimates (Korhonen et al., 2010b; Pringle et al., 2012), 

these again remain below the initial fixed-Nd assumptions. As for the three global aerosol 

models used by Pringle et al. (2012), no Nd losses resulted from MCB aerosol emission. This 

disagreement from the simulation of Korhonen et al. (2010b) was suggested to have been 

contributed to by lower updraft velocities, higher background aerosol concentrations and lack 

of cloud feedbacks in the former study. Such a finding reinforces the importance of accurate 

simulation of such variables as updraft velocity, as demonstrated by the findings of Pringle et 

al. (2012). 

These findings also suggest that the presence of a competition effect associated with MCB 

that may reduce Nd cannot currently be quantified robustly, and will require further 

investigation (both computationally and observationally). 

For the aerosol activation scheme used by Pringle et al. (2012), only larger (accumulation 

mode) aerosols resulted in Nd losses. However, use of the Norwegian Earth System model 

(Alterskjær and Kristjánsson, 2013) found that the emission of large numbers of smaller 

(Aitken sized) aerosols with modal diameter of 22 nm could also lead to Nd losses and a 

positive radiative forcing. This was suggested to be caused by the large surface area of the 

small aerosols producing a large area for condensation of water vapour. While these aerosols 

took on water, and reduced the maximum supersaturation, they did not grow sufficiently to 

activate to form cloud droplets. Thus, in the case where supersaturation fell below the critical 

value needed for activation of background aerosols, Nd reductions resulted. For a mass flux 

approximately 200 times larger than used by Partanen et al. (2012), covering the ocean 

between 30°N and 30°S, a positive radiative cloud forcing of 8.4 Wm
-2

 was produced 

(Alterskjær and Kristjánsson, 2013). It is worth noting that these small aerosols are almost a 

tenth of the size of those proposed in designs (Salter et al., 2008). 

The effect of MCB aerosols on the Earth’s radiative budget has so far been considered in 

terms of the indirect aerosol effects only (i.e. the effect that the aerosols have on clouds). The 

emission of MCB aerosols into the planetary boundary layer would, however, also result in a 

direct aerosol effect where the aerosols themselves scatter and absorb SW radiation. The use 

of aerosol-climate models, that both allow the simulation of the MCB aerosol emission and 

include interactive radiative transfer calculations, now allows the contribution of this direct 

aerosol effect to be estimated. 

For MCB emissions into similar regions as for the 375 cm
-3

 fixed-Nd simulations of Jones et 

al. (2009), the ECHAM5.5-HAM2 aerosol-climate model simulated an RFP associated with 

the indirect effect of -0.7 Wm
-2

 (Partanen et al., 2012). This is just under three-quarters of 

that found in the fixed-Nd simulation (Jones et al., 2009). There was an additional 
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contribution of -0.1 Wm
-2

 from the direct aerosol effect, resulting in an overall RFP of 

-0.8 Wm
-2

. 

Partanen et al. (2012) also found that this total RFP could be increased by increasing the area 

of MCB emission. As the direct aerosol effect becomes more influential in clear-sky regions, 

extending the MCB emission area to cover all ice-free ocean led to a net global mean RFP of 

-3.6 Wm
-2

, with the contribution of the direct effect increasing to almost 30%. The total RFP 

could also be increased by increasing the MCB emission number flux, or reducing the size of 

the emitted aerosol (e.g. from mean dry diameters of 500 nm to 100 nm) while increasing the 

emission number flux in order to maintain the mass flux. These latter size and number flux 

changes do not influence the RFP associated with the global mean direct aerosol effect, but 

have a more significant effect on the indirect aerosol effect. 

Further understanding of the importance of indirect and direct effects was produced from 

investigations using the HadGEM2 Earth System model (Jones and Haywood, 2012). It was 

found that if the MCB aerosols are targeted to optimise the indirect effect, despite an 

appreciable contribution from the direct effect, enhancements to the radiative forcing result 

from meteorological feedbacks with the cloud changes. This produces a RFP of 

-1.04±0.08 Wm
-2

. Such meteorological enhancements do not result if the MCB aerosols are 

targeted to optimise the direct effect, resulting in a RFP of -0.58±0.1 Wm
-2

. Along with the 

higher RFP, there is an increased cooling efficiency associated with targeting clouds. This 

produces a temperature change per unit RFP of 0.52 K/Wm
-2

 compared to 0.22 K/Wm
-2

 when 

MCB aerosols are emitted to optimise the direct aerosol effect. The poor cooling response for 

the optimised direct aerosol effect was believed to be caused by reductions in the extent of 

surface-driven convective clouds in the Tropics in response to surface cooling by the MCB 

aerosols. 

1.7.4 Mesoscale Simulations of Marine Cloud Brightening 

As demonstrated in Sections 1.7.1 to 1.7.3, global scale MCB modelling has developed. It 

now includes a representation of MCB aerosol emissions, aerosol-cloud interactions, climate 

feedbacks and an estimation of the response of both the radiative balance and a number of 

climate variables to MCB. As discussed in Section 1.5, these global-scale estimates of the 

effectiveness and side-effects of MCB are essential in aiding informed decision-making on 

the place of MCB in response to climate-change. 

However, as introduced in Section 1.5, the necessarily coarse resolution of these global-scale 

models means that they are unable to capture details of the MCB implementation technique. 

Global-scale models are also currently unable to capture features important to the background 

cloud conditions (including the process of entrainment of free-tropospheric air and the 
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resolved dynamics that drive updrafts and hence mesoscale cellular cloud features). In order 

to assess the possible effects of a more detailed representation of MCB implementation on 

explicitly resolved cloud dynamics, Wang et al. (2011a) utilised the Weather Research and 

Forecasting (WRF) cloud-resolving model to simulate MCB at the mesoscale. 

Using a double-moment warm-rain microphysical scheme, Wang et al. (2011a) simulated 

base case conditions that were based on background CCN concentrations of 50, 100 and 

200 mg
-1

 (where 100 mg
-1

 is assumed to be a typical marine case, with 1 mg
-1

 approximately 

equalling 1 cm
-3

). The horizontal resolution of these simulations was 300 m, and 

approximately 30 m vertically. The domain size used was 120 km x 60 km, rising 1.5 km 

vertically. This enabled this study to capture the mesoscale features previously found to be 

important, particularly for horizontally changing aerosol concentrations (Wang and Feingold, 

2009a; Wang and Feingold, 2009b). 

The higher resolution of these simulations compared to the global-scale modelling allowed a 

more detailed representation of the MCB aerosol emission technique. While in global-scale 

models the aerosols are increased over the grid-cell (covering ~100 km x 100 km), in Wang 

et al. (2011a) aerosols were introduced into individual grid cells, simulating aerosol emission 

from individual spraying vessels. This technique, hereinafter described as a point source 

emission, was found to induce complex dynamical feedbacks in precipitating regimes (Wang 

and Feingold, 2009b) and a spatially inhomogeneous albedo response. Thus, the albedo was 

increased along the MCB emission track, but with drier air that is then drawn into adjacent 

regions resulting in neighbouring albedo decreases. This small-scale inhomogeneity deviates 

from the inherent uniformity of both MCB aerosol emission and cloud response in global 

scale models.  

These simulations showed that smaller albedo increases were obtained for MCB emissions 

into higher background aerosol concentrations, as found for Nd changes in previous cloud 

parcel and global-scale modelling. However, the mesoscale modelling found that this pattern 

did not continue down to very low background aerosol concentrations (50 mg
-1

), where the 

albedo increases were weakened compared to the 100 mg
-1

 background condition. This was 

the result of precipitation. For the low background aerosol concentrations, small numbers of 

cloud droplets were formed (<10 mg
-1

), which grew sufficiently to form rain drops and led to 

strong precipitation (up to 2 mm day
-1

). This heavy precipitation removed the emitted MCB 

aerosols through scavenging before they could reach the cloud. Thus, there was little first 

indirect aerosol effect and the increase in Nd was insufficient to reduce precipitation via the 

second indirect aerosol effect.  

The background moisture levels were also important. When drier conditions were simulated 

(9.0 g kg
-1

 in the boundary layer, and 1.5 g kg
-1

 above the cloud-top compared to 9.45 g kg
-1
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in the boundary and 5.0 g kg
-1

 above the cloud top in the moister simulations), while 

additional cloud droplets were being formed, they were also evaporating more readily (via 

processes described more thoroughly in Chapter 2). This offset albedo increases. 

As such, significant cloud albedo increases in response to MCB aerosol emissions occurred 

only for weakly precipitating regimes or conditions of low CCN concentrations (possibly 

following heavy precipitation). The second indirect aerosol effect (leading to the suppression 

of precipitation) was suggested as being the most efficient mechanism for increasing albedo 

in the simulations considered.  

 

In summary, the first part of this chapter has described the concept of MCB, and its potential 

role in responding to climate change. Decisions on the implementation of MCB would, 

however, need to be informed by realistic estimates of the scheme’s potential effectiveness 

and side-effects. 

The only tool capable of producing such estimates is global-scale computer modelling, which 

can simulate the large-scale teleconnections and feedbacks needed for capturing global 

impacts. Such global-scale computer modelling of MCB has developed over time. 

Increasingly complex models that incorporate an increasing number of climatically-relevant 

processes, and the improved representation of MCB within these models have both enhanced 

the realism of simulations. These global-scale simulations have indeed yielded important 

findings regarding MCB (Section 1.7). However, owing to their grid-spacing of tens of 

kilometres, they are inherently unable to capture details of the MCB implementation 

mechanism that occur at scales smaller than this. Hence, global-scale computer modelling of 

MCB may omit important processes. This omission of MCB implementation mechanism 

details may therefore impair the realism of the resulting effectiveness estimates. 

The simulation of such implementation mechanism details will require higher-resolution 

computer modelling. But, as the current domain-size limitations of such models prevents 

them from capturing larger climatic interactions, any findings could only be used to inform 

future global-scale modelling, rather than provide estimates of MCB effectiveness in 

themselves. 

While there have been numerous global-scale computer simulations of MCB, the importance 

of capturing these global-sub-grid-scale details has largely been overlooked, with only one 

previous higher-resolution, mesoscale study having been carried out to-date (Section 1.7.4). 
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1.8 Research Objectives  

This thesis aims to establish the importance of representing details of the implementation 

mechanism of MCB that occur at scales smaller than global-scale computer simulations can 

capture. In doing so, this work is intended to inform future global-scale computer modelling 

of MCB, and, if possible, materially enhance the realism of MCB effectiveness estimates. 

Additionally, this work could also inform future implementation strategies. For example, as 

the proposed MCB vessels would potentially sail throughout the night and day, they would 

encounter the differing cloud and boundary layer conditions that occur over a diurnal cycle. 

Identifying patterns of MCB effectiveness through the diurnal cycle could thus inform future 

implementation strategies. While this work focuses on MCB, this central concept may also be 

applicable to a broader range of proposed geoengineering schemes. 

In order to achieve this aim, three case studies are used, each examining a different MCB 

implementation detail: 

Case Study A: 

The effect of the timing of MCB aerosol emission through the diurnal cycle of MSc 

clouds on MCB effectiveness 

Case Study B: 

The effect of representing the MCB aerosol emission as sea water droplets (rather 

than as ‘dry’ aerosols) on resulting MCB effectiveness 

Case Study C: 

The effect of including aerosol processes that occur within the emission rotor and 

aerosol plume on the number concentration and size distribution of emitted MCB 

aerosols, and the resulting effect on the MCB effectiveness 

In examining these implementation detail case studies, the cloud-resolving Weather Research 

and Forecasting model including aerosol and chemistry processes (WRF/Chem) is used. This 

model is initially configured for use as a cloud-resolving model in order to simulate a range 

of three idealised MSc cloud conditions. These three conditions are initialised with 

increasingly polluted background aerosol concentrations. The cloud-resolving model 

configuration consists of grid cells of 300 m width and a domain size of 

9 km x 9 km x 1.5 km (height). These three simulations act as the MSc cloud base cases. 

Next, with the model still in the cloud-resolving model configuration, the rapid response of 

the cloud system to MCB aerosols is investigated for each of the three case studies 

(Figure 1.5). The cloud-resolving simulations carried out in order to examine the third case 

study (regarding the inclusion of aerosol processes within the plume) are informed by both 

simple numerical calculations and additional computer simulations using the WRF/Chem 

model at higher resolution. These simulations use the model with a grid cell width of 0.5 m 
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and domain size of 120 m x 40 m, with height of ~60 m. These simulations are designed to 

capture details of the high aerosol concentrations and characteristic dynamics of the aerosol 

plume upon emission. These experimental approaches are summarised in Figure 1.5. 

 

Figure 1.5 – Overview of the investigative tools used to examine each of the three marine 

cloud brightening (MCB) implementation detail case studies. 

The ability of cloud-resolving configurations of the WRF model to successfully simulate the 

characteristic patterns of MSc cloud property variation over a diurnal cycle has been 

demonstrated in previous studies (Wang et al., 2011a; Chen et al., 2011). 

The sub-mesoscale domain size chosen for the cloud simulations allows the rapid cloud 

system response to the emitted aerosols to be isolated from the subsequent complex, 

mesoscale feedbacks (Feingold et al., 2010). In spite of omitting these larger, mesoscale 

feedbacks, previous modelling has shown that useful inferences regarding cloud response and 

associated dynamical changes to cloud droplet number changes can be obtained from such 

sub-mesoscale representations (Savic-Jovcic and Stevens, 2008). Similarly, several MSc 

modelling experiments have been undertaken at domain sizes smaller than those necessary to 

produce mesoscale features, for example: Stevens et al. (2005a) (3.4 x 3.4 x ~1.5 km); 

Ackerman et al. (2009) (6.4 x 6.4 x 1.5 km); and Chen et al. (2011) (2.5 x 2.5 x 1.6 km). 

Limiting the domain size additionally allows simulations to be carried out using the more 

computationally expensive WRF/Chem model. The incorporation of chemical and aerosol 

processes in this model has been shown to successfully enhance the ability to examine 



28 

Chapter 1 – Introduction 

realistic aerosol-cloud interactions in MSc cloud fields (Yang et al., 2011b; Saide et al., 2012; 

George et al., 2013). 

Further discussion of the model performance in simulating both resolved cloud features, and 

the cloud properties perturbations in response to the addition of MCB aerosols, are discussed 

in Chapters 3, 4, 5 and 8. The ability of the model to simulate detailed aerosol emission 

plume features (as used in investigating the third case study) is discussed in Chapter 7. 

1.9 Thesis Structure 

This chapter began by introducing geoengineering as a possible means of ameliorating 

climate change. Being the focus of this work, the evolution of the MCB proposal and 

associated research was then presented. This chapter culminated in introducing the focus of 

this work (encapsulated by three case studies), with an overview of the modelling approaches 

and thesis structure being presented in Figure 1.5. 

Chapter 2 provides an overview of the key processes and characteristics of the target MSc 

clouds, necessary for understanding the potential cloud changes in response to MCB. 

Chapter 2 also builds on the fundamental aerosol-cloud interactions – key to the MCB 

proposal – that were introduced in this chapter, further reviewing these complex relationships 

in the context of MSc clouds. The cloud-resolving computer model used in this work, along 

with its setup, are introduced in Chapter 3, which describes the use of the model in forming 

the three MSc base cases that are the basis of subsequent MCB aerosol emission experiments. 

Chapters 4 to 8 constitute the main results of this research. Chapter 4 describes the 

methodology and results achieved in investigating the first case study (regarding the timing 

of the aerosol emission through the diurnal cycle). Chapter 5 describes the methodology and 

results achieved in investigating the second case study (regarding representation of the 

emitted MCB aerosols as sea water droplets). The third, and final, case study (regarding the 

consideration of in-rotor and in-plume processes) spans three chapters. Chapter 6 describes 

the simple numerical integration scheme used to examine in-rotor processes, the results of 

which inform a plume simulation sensitivity experiment. Chapter 7 describes the 

experimental design and results associated with the higher-resolution and smaller domain size 

detailed simulation of the MCB aerosol emission plume. The resulting changes in aerosol 

number concentration and size distribution are used to inform the cloud-resolving simulations 

presented in Chapter 8.  

This thesis closes with Chapter 9, which summarises the key findings associated with each of 

the three case studies. This chapter also draws conclusions as to the importance of the 

detailed computer simulation of MCB in producing increasingly realistic estimates of MCB 

effectiveness. Included in this chapter are suggestions for future research needs. 
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 Chapter 2

Marine Stratocumulus Cloud Processes 

2.1 Introduction 

As introduced in Chapter 1, this work focuses on the MCB geoengineering proposal 

described by Latham et al. (2008) and Salter et al. (2008). This proposal intends to increase 

the albedo of MSc clouds by intentionally adding aerosols that can act as CCN to the marine 

boundary layer via sea-going vessels.  

The MCB proposal was founded on the theory that adding aerosols to the MSc cloud region 

could increase cloud albedo. This was suggested to be the result of both creating a larger 

number of smaller cloud droplets (the First Indirect Aerosol Effect; Twomey, 1977), but also 

by suppressing precipitating (relating to the Second Indirect Aerosol Effect; Albrecht, 1989). 

However, research carried out in the last few decades – including campaigns utilising aircraft 

and ship-based measurements, satellite observations and numerous numerical modelling 

approaches – suggests that the response of clouds to changes in aerosol concentrations is 

highly complex, and particularly sensitive to background conditions (Boucher et al., 2013). 

This chapter presents a review of the current understanding of MSc clouds and is divided into 

two main parts. The first part introduces typical MSc characteristics and discusses the roles of 

key MSc cloud processes in the formation and development of MSc clouds over a diurnal 

cycle. An appreciation of these fundamental principles is essential as they must be adequately 

modelled in the computer simulated MSc clouds (Chapter 3) that form the basis of 

subsequent MCB investigations. The second part of the chapter examines the relationships 

and dominant feedback processes that exist between cloud processes and aerosols (therefore 

being of intrinsic importance to the MCB proposal). Accordingly, this chapter closes with a 

discussion of possible net indirect aerosols effects such as could occur with MCB. 
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2.2 Typical Marine Stratocumulus Cloud Characteristics 

MSc clouds (Figure 2.1) are low, stratus clouds that form below temperature inversions in 

regions of large-scale subsidence. These temperature inversions typically lie at altitudes of 

around 1 km (Wood and Bretherton, 2004) and, by limiting the height of convection, restrict 

the height of the MSc clouds (Klein and Hartmann, 1993). Unlike cumulus-type clouds (that 

form in response to surface-originating convection), MSc clouds typically form in areas of 

lower-tropospheric stability associated with cooler sea-surface temperatures. Hence, 

persistent decks of MSc clouds are located in the mid-latitudes and sub-tropics, over cold 

water upwelling regions off the west coasts of continents (Klein and Hartmann, 1993), as 

shown in Figure 1.2 (Chapter 1). 

MSc clouds are typically 200-400 m thick, with spatial mean LWP of ~150 g m
-2

, and Nd that 

range from less than 10 cm
-3

 (in pristine marine regions) to over 500 cm
-3

 in more polluted 

regions (Wood, 2012). Precipitation occurs in approximately 20 to 40% of MSc clouds 

(Bennartz, 2007; Leon et al., 2008; Christensen and Stephens, 2012). Owing to the low 

altitudes involved, these precipitation processes tend to involve only warm processes 

(i.e. drizzle and rain). The albedo of MSc cloud decks can range from around 0.3 to 0.7 

(Latham et al., 2008).  

 

Figure 2.1 – An example of marine stratocumulus (MSc) clouds, located in the north-west 

Pacific Ocean, as captured from the International Space Station. 
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2.3 Marine Stratocumulus Cloud Processes 

Figure 2.2 shows a summary of the physical processes and background conditions that are 

important in the development of MSc clouds. As introduced in Chapter 1 (Section 1.6.2), 

warm cloud droplets form when water condenses onto CCN. MSc clouds therefore need both 

sufficient moisture for such condensation, and an adequate number of aerosols of suitable 

number concentration, size and composition to act as CCN. As turbulent mixing is a 

fundamental process in maintaining MSc clouds, this section begins with a description of 

sources of turbulence within the MSc-topped boundary layer. 

 

Figure 2.2 – Summary of the physical processes important for the development of MSc 

clouds, adapted from Nieuwstadt and Duynkerke (1996). Yellow rounded rectangles show 

external meteorological and aerosol parameters. 

2.3.1 Sources of Turbulence in the Marine Stratocumulus-Topped 

Boundary Layer 

For the MSc-topped boundary layer, the largest source of turbulence originates from LW 

radiative cooling at the cloud-top (e.g. Nicholls and Leighton, 1986). This cooling is typically 

associated with radiative flux perturbations of between 50 and 90 Wm
-2

 and occurs within the 

upper tens of metres of the cloud (Wood, 2012). This cooling induces negative (downward) 

buoyancy fluxes in this cloud-top region which results in the creation of turbulence and 

consequent mixing within the boundary layer. 

While this LW cloud-top cooling is the dominant source of MSc-topped boundary layer 

turbulence, other contributing sources include wind shear across the inversion (e.g. Wang et 

al., 2008), and sensible and latent heat fluxes at the surface. Upward sensible and latent heat 

fluxes measured during the second research flight of the Second Dynamics and Chemistry of 
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Marine Stratocumulus field study (DYCOMS-II) were 16 Wm
-2

 and 93 Wm
-2

 respectively 

(Ackerman et al., 2009). The magnitude of such surface fluxes will, however, be dependent 

upon the sea-surface temperature, temperature and humidity of the overlying air, and surface 

wind speeds. The emission of LW radiation from the Earth’s surface additionally contributes 

to turbulence by warming the MSc cloud base, and thereby inducing positive buoyancy. 

Finally, additional MSc-topped boundary layer turbulence can result from latent heat 

processes within the MSc cloud itself. These liquid water fluxes occur as water vapour 

condenses to form cloud droplets in updrafts, while cloud droplet water in the descending 

downdrafts evaporates (e.g. Bretherton and Wyant, 1997; Wang et al., 2003). 

In a well-mixed (coupled) MSc-topped boundary layer, turbulent mixing is strong enough to 

mix moisture throughout its depth, from the sea-surface to the cloud layer. MSc-topped 

boundary layers tend to be well mixed for depths below 750 m to 1000 m becoming more 

decoupled for deeper boundary layers (Bretherton and Wyant, 1997; Wood and Bretherton, 

2004; Bretherton et al., 2010). Transition from MSc to more scattered cumulus clouds occurs 

as surface warming dominates cloud-top cooling. This tends to occur as the sea-surface 

warms and the boundary layer deepens towards the equator (Sandu et al., 2010).  

2.3.2 The Diurnal Cycle 

MSc-topped boundary layers characteristically becomes more decoupled, less well-mixed and 

more stratified into the daytime (Caldwell et al., 2005). This is the result of cloud-top 

warming caused by the presence of SW radiation, which acts to offset the cloud-top LW 

radiative cooling (Nicholls, 1984; Rogers and Koracin, 1992). This daytime radiative 

offsetting inhibits the cloud-top production of turbulence and hence tends to decouple the 

cloud and sub-cloud boundary layer (Caldwell and Bretherton, 2009). The presence and 

strength of decoupling is dependent upon several background conditions – including 

boundary layer depth and precipitation rates (Sandu et al., 2008). However, the clouds during 

the day typically exhibit a descent of cloud top (e.g. Blaskovic et al., 1991; Zuidema et al., 

2009). This results in a cloud thinning. This daytime thinning – which may also be 

accentuated by an increase in the height of the cloud base (e.g. Blaskovic et al., 1991; 

Caldwell et al., 2005) – is concomitant with a decreasing LWP (e.g. Bretherton et al., 2004; 

Duynkerke et al., 2004), cloud fraction (e.g. Rosenfeld et al., 2006; Caldwell and Bretherton, 

2009) and cloud albedo (e.g. Minnis et al., 1992; Comstock et al., 2005). In spite of these 

daytime cloud changes, as SW radiation diminishes into the night, the nocturnal balance of 

processes tends to be restored. This results in an increased production of turbulence, leading 

to the re-coupling of cloud and sub-cloud layers and a recovery in cloud layer properties 

(Wang et al., 2010). Thus, the daily influence of SW radiation leads to a characteristic diurnal 

cycle of both dynamic processes and cloud properties in MSc clouds. 
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2.3.3 Cloud-Top Entrainment 

The inversions that cap MSc clouds are characterised by sharp gradients in moisture and 

temperature, with a drier, warmer free troposphere overlying a wetter and cooler boundary 

layer below. Temperatures can increase by more than 10 K in a couple of metres, while 

moisture can decrease by several grams per kilogram of dry air (e.g. Ackerman et al., 2009). 

These acutely different conditions at the inversion become important because, in addition to 

producing mixing within the MSc-topped boundary layer, turbulence at the cloud-top also 

entrains drier, warmer free-tropospheric air into the cloud layer. Typically nocturnal rates of 

cloud-top entrainment are around 4 mm s
-1

 (Stevens et al., 2003a; Wood and Bretherton, 

2004; Caldwell et al., 2005), although they are again dependent upon background conditions. 

As the rate of entrainment is dependent upon turbulence, it also exhibits a diurnal cycle, 

decreasing to nearly zero during the day (Caldwell et al., 2005). 

The entrainment of free-tropospheric air acts to increase the height of the cloud-top, in 

opposition to large-scale subsidence. The entrainment of this free-tropospheric air also leads 

to a complex system of feedbacks, as illustrated schematically in Figure 2.3. Briefly, the 

entrained free-tropospheric air acts to warm and dry the MSc-topped boundary layer (E1; 

Figure 2.3), altering the cloud properties by reducing cloud thickness, cloud fraction and 

LWP. However, as drying of this cloud-top layer reduces the water available for evaporation, 

evaporative cooling in the cloud-top also reduces, leading to reduced entrainment (E2; 

Figure 2.3). The warming effect of entrainment also acts to directly stabilise the cloud-top 

against the turbulence-inducing LW cloud-top radiative cooling (E3; Figure 2.3) which again 

acts to reduce entrainment.  

Thus, while feedbacks associated with both entrainment-induced changes to cloud properties 

and turbulence act to self-regulate the rate of entrainment, the magnitude of the contribution 

of each process to the rate of entrainment is not fully understood (Wood, 2012). 

Understanding cloud-top entrainment – and its effects on clouds – is further complicated by 

its sensitivity to atmospheric conditions. For example, entrainment rates increase for weaker 

temperature and humidity gradients across the inversion (e.g. Moeng, 2000). However, 

particularly warm and dry overlying air will lead to greater drying and warming when 

entrained into the MSc-topped boundary layer (Ackerman et al., 2004). 

As indicated in Figure 2.3, Nd also has an effect on entrainment (E5). As this relationship is 

relevant to the indirect aerosol effects and the MCB proposal, it is discussed separately in 

Section 2.4.2.2. 
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Figure 2.3 – Conceptual system dynamics diagram illustrating important feedbacks that 

serve to regulate the thickness, liquid water path (LWP), and cloud cover of MSc clouds. 

Modified from Figure 26 of Wood (2012). Yellow rounded rectangles show external 

meteorological and aerosol parameters, as in Figure 2.2. White boxes show key internal 

variables. Plus and minus signs indicate positive and negative impacts of one variable on 

another, with the key physical processes accompanying the arrows where necessary. Thick 

arrows indicate the cloud-radiation-turbulent-entrainment feedback system that constitutes a 

dominant negative feedback system regulating MSc thickness and cover. Solid lines indicate 

feedbacks that operate on time scales of typically an hour or less, while dashed lines indicate 

feedbacks that operate on markedly longer time scales. The thick dotted grey line is used to 

separate the chart into (top) macrophysical and (bottom) microphysical variables, with 

precipitation straddling the boundary between the macrophysical and microphysical realms. 

Circled notations (e.g. E1, P5 etc.) are used for in-text references. Changes associated with 

changes to the Nd that are faint in this diagram are discussed in Section 2.4.2 in terms of the 

Second Indirect Aerosol Effect, and represented in Figure 2.7. 

2.3.4 Precipitation 

Precipitation occurs when cloud droplets grow sufficiently to form raindrops. Raindrops 

typically have diameters in excess of ~0.2 mm (American Meteorological Society, 2012). The 

growth of cloud droplets can occur via condensation, but is largely the result of the collision-

coalescence process (Wood, 2012). MSc cloud droplets tend to grow sufficiently to form 

raindrops when their initial diameters are in excess of 15 to 30 μm (Yum and Hudson, 2002; 

Rosenfeld et al., 2012). As such, precipitation tends to occur under lower background aerosol 
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conditions (Bennartz, 2007) which are associated with smaller numbers of larger droplets. As 

a sufficient number of these cloud droplets must coalescence to form a raindrop, precipitation 

also depends upon background meteorological conditions (Wang et al., 2010) that effect the 

cloud thickness and LWP (vanZanten et al., 2005), as indicated in Figure 2.3 (P1). 

If precipitation reaches the surface, there may be a resulting loss of LWP (P2; Figure 2.3), 

although this will depend on dynamical feedbacks that occur in response to precipitation, as 

will be discussed in this section. As for cloud-top entrainment, precipitation also exhibits a 

diurnal cycle, decreasing during the day in response to LWP decreases (Leon et al., 2008). 

The intensity of precipitation can be described according to the rates at the cloud base, and 

broadly classified as: light when less than 0.5 mm day
-1

; moderate when between 0.5 and 

2 mm day
-1

; or heavy when above 2 mm day
-1

 (Wood, 2012). 

Precipitation is associated with several complex and interrelated processes within the MSc-

topped boundary layer including latent heat fluxes, dynamics, stability and moisture 

distributions. For example, the formation of raindrops causes latent heating within the cloud, 

producing a warming of approximately 30 Wm
-2

 for surface rain rates of 1 mm day
-1

 (Wood, 

2012). This effect counters the LW radiative cooling, stabilising the MSc-topped boundary 

layer (P3; Figure 2.3) and reducing turbulent production. Reduced turbulence in turn reduces 

the amount by which droplets are recycled within the cloud layer, thus reducing the 

opportunity for collision-coalescence, leading to decreases in the precipitation rate (P4; 

Figure 2.3) (Feingold et al., 1996). As the precipitation falls from the cloud, it evaporates, 

leading to evaporative cooling and the addition of moisture in the sub-cloud layer (Feingold 

et al., 1999). Around 80% of the precipitation evaporates within 150−250 m of the cloud base 

for the light to moderate precipitation rates of between 0.2 to 0.8 mm day
-1

 at cloud base 

(Wood, 2005). The resulting changes to the temperature and moisture profiles of the MSc-

topped boundary layer induce a dynamical response, and hence affect the subsequent 

structure of the clouds. A simplified schematic representation of possible cases is shown in 

Figure 2.4. 

Light precipitation that evaporates entirely within the sub-cloud layer produces a thin layer of 

evaporatively cooled air below the cloud base (Figure 2.4 a). This leads to destabilisation and 

enhanced mixing within the boundary layer (Feingold et al., 1996) that can maintain or even 

increase cloudiness (Jiang et al., 2002; Stevens and Feingold, 2009). 
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Figure 2.4 – Possible MSc-topped boundary layer dynamical responses to precipitation for: 

(a) light precipitation; (b) heavy precipitation; (c) transition to cumulus-type cloud structure. 

For heavier precipitation, evaporation can continue through the depth of the sub-cloud 

boundary layer (Figure 2.4 b). This deeper cooling can act to stabilise the boundary layer, 

leading to decoupling of the cloud and sub-cloud boundary layers (Feingold et al., 1996; 

Caldwell et al., 2005; Savic-Jovcic and Stevens, 2008). This can lead to cloud dissipation, 

and the formation of pockets of open cells (Wang et al., 2010; Berner et al., 2011). The deep 

evaporative cooling in the boundary layer also increases the temperature gradient between the 

sea surface and the overlying boundary layer. As such, the MSc clouds can transition towards 

more surface-originating, cumulus-type convective behaviour (Figure 2.4 c) (Nicholls, 1984; 

Paluch and Lenschow, 1991; Stevens et al., 1998; Savic-Jovcic and Stevens, 2008). Such a 

transition can be considered analogous to the MSc to cumulus cloud transition that occurs 

over warmer waters (Section 2.3.1). 

As these responses to precipitation are sensitive to the vertical distributions of cooling 

through the boundary layer, they will be highly dependent upon atmospheric and boundary 

layer conditions (Wang et al., 2010). These include sea-surface temperature and the strength 

of large-scale subsidence (Sandu and Stevens, 2011; Berner et al., 2013). Computer 

modelling of such phenomena must also be able to capture the extent of mixing within the 

boundary layer (Sandu et al., 2009). 

As was the case for entrainment (and as indicated in Figure 2.3), Nd also has an effect on 

precipitation (P5 and P6). As this relationship is again relevant to the indirect aerosol effects 

and the MCB proposal, it is discussed separately in Section 2.4.2.1. 
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2.3.5 Open and Closed Cells 

At the mesoscale, MSc clouds exhibit self-organised cellular cloud patterns that occur at 

scales of tens of kilometres (Agee, 1987; Bretherton et al., 2004). These cellular features can 

largely be classified as either open or closed cellular regimes. As exemplified in satellite 

imagery of such features (Figure 2.5), MSc cloud regions comprising an open cellular 

structure are characterised by lower cloud fractions and lower albedos than their closed 

cellular counterparts. Cloud fractions are typically less than 40% for open cell regions 

compared with up to almost 100% for closed cells (Rosenfeld et al., 2006), with albedos of 

~0.35 for open cells, and up to ~0.75 for closed cells (Savic-Jovcic and Stevens, 2008).  

 

Figure 2.5 – Example satellite image indicating open and closed cell formations. 

Dynamically, open cells are characterised by broad regions of downdrafts surrounded by 

narrow columns of updrafts that produce the slender cloud walls of the cells. Such spatial 

dominance of downdrafts is consistent with the subsidence and decent of air associated with 

the evaporative cooling of precipitation. Indeed, open cellular regions tend to be associated 

with strong precipitation (Stevens et al., 2005b; Comstock et al., 2005; Wood et al., 2008; 

Wood et al., 2011). Open cellular regions therefore tend to occur in areas of lower aerosol 

concentrations (Rosenfeld et al., 2006; Wang et al., 2010; Wood et al., 2011). Fields of such 

cellular structures can persist for tens of hours (Stevens et al., 2005b), although observations 

and computer modelling suggest that this apparent steady-state actually comprises of on-

going cyclic transformations (Feingold et al., 2010). For open cells, it is suggested that the 
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cloudy cell walls deepen to the point of precipitation, at which they become the centre of a 

new cell (Wang and Feingold, 2009a). 

In contrast to open cellular regimes, regions of closed cells are less likely to be precipitating 

and tend to occur in areas of higher aerosol concentrations (Wang and Feingold, 2009a). 

Closed cell regimes are dominated by strong downdrafts resulting from cloud-top radiative 

cooling. These strong downdrafts are compensated for by large regions of weaker updrafts, 

producing the large areas of clouds that characterise the centres of the closed cells (Wang and 

Feingold, 2009a).  

2.4 Aerosols 

Aerosols range in size, composition and spatial and temporal distribution and can have either 

natural or anthropogenic sources based in either marine or continental regions. As introduced 

in Chapter 1, marine-originating aerosol largely comprises of wind-driven sea spray. 

Biogenic processes (for example, planktonic emission of the dimethyl sulphide aerosol 

precursor gas) and shipping exhaust products also contribute (Andreae and Rosenfeld, 2008). 

Continental-originating aerosol, comprising soil dust; biogenic aerosols; products of biomass 

and fossil fuel burning; and the products of industrial processes can also be transported to 

marine regions (Andreae and Rosenfeld, 2008). Owing to lower emission rates, marine 

regions tend to be cleaner than continental regions. This is exemplified by CCN 

concentrations that are of the order of tens of aerosols per cm
3
 for marine regions compared 

with hundreds or thousands per cm
3
 for anthropogenic regions, assuming a 0.4% 

supersaturation in both cases (Andreae, 2009). 

Atmospheric aerosol concentrations depend not only on the strength of aerosol sources, but 

also on the strength of aerosol sinks. These sinks can remove aerosols from the atmosphere in 

several ways. Aerosols can be lost from the atmosphere through dry deposition at a surface. 

Aerosols can also be lost from the atmosphere when they are activated to cloud droplets 

(although if the droplet evaporates, the aerosol would be reintroduced). If these cloud droplets 

grow to form rain droplets that reach the surface, the aerosols will be lost via the process 

known as wet deposition (or scavenging). Furthermore, within this wet deposition process, as 

these rain droplets fall through the atmosphere, they can collide with, incorporate, and 

ultimately remove additional aerosols. This wet deposition process can mean that 

precipitation events can locally deplete CCN concentrations to such an extent that clouds 

cannot form. However, computer simulations suggest that a modest replenishment rate of the 

order of 1 mg
-1

 h
-1

 may be sufficient to maintain an open cell regime (Wang et al., 2010). 
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Aerosols play an important role in influencing the top of atmosphere radiative fluxes that are 

central in controlling the Earth’s climate (Boucher et al., 2013). They alter this balance of 

radiative fluxes in a number of ways. Firstly, aerosols can affect the balance of radiative 

fluxes through a direct effect that results from the ability of atmospheric aerosols to scatter 

and absorb SW and LW radiation. The nature of this response depends upon the optical 

properties of the aerosols. Primarily scattering aerosols (e.g. sulphate aerosols, sea spray) 

tend to produce a net negative downward radiative forcing and an associated global cooling 

effect. A positive downward radiative forcing may, however, result from aerosols that contain 

absorbing material (e.g. black carbon), particularly if they overlie areas with higher albedo 

(e.g. snow and clouds). Direct aerosol effects are particularly important in clear-sky 

conditions, or when the aerosols overlie the cloud layer. It has been estimated that the direct 

aerosol effect has resulted in a radiative forcing of -0.35 Wm
-2

 for the period between 1750 

and 2011, or -0.85 to +0.15 Wm
-2

 for the 90% confidence range (Myhre et al., 2013). 

Secondly, aerosols can have a semi-direct effect, whereby absorbing aerosols heat the air, 

leading to a reduction in cloud cover (Johnson et al., 2004). Lastly, aerosols can have an 

indirect effect on the balance of radiative fluxes, resulting from their interaction with clouds. 

It has been estimated this cloud-aerosol interaction has resulted in an effective radiative 

forcing of -0.45 Wm
-2

 for the period between 1750 to 2011, or -1.2 to 0.00 Wm
-2

 for the 90% 

confidence range (Myhre et al., 2013). 

The indirect aerosol effect can be split into first and second indirect aerosol effects. The first 

indirect aerosol effect describes mechanisms by which aerosols modify the microphysics of 

the cloud under a fixed LWP assumption. The second indirect aerosol effect considers the 

effects of aerosol-induced LWP changes (having previously been described as the cloud 

lifetime effect). In reality – and as will be discussed – numerous cloud mechanisms will alter 

the LWP in response to changes in the microphysics of the cloud. As such, the fixed LWP 

assumption of the first indirect aerosol effect could never occur, meaning that this 

partitioning of the indirect aerosol effects is a wholly artificial construct. Such a hypothetical 

division is, however, useful for examining the potential effects of individual cloud 

mechanisms, and will therefore be utilised here. 

Indirect aerosol effects are central to the MCB proposal, and discussions on their potential 

nature in MSc clouds form the focus of the remainder of this chapter. However, 

understanding of indirect aerosol effects is incomplete. While the IPCC describes the level of 

confidence in understanding the mechanisms associated with the direct aerosol effect as high, 

this falls to a low confidence for the first indirect aerosol effect (Boucher et al., 2013). This 

falls further to very low for the equivalent of the second indirect aerosol effect. 
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2.4.1 The First Indirect Aerosol Effect 

As described, the first indirect aerosol effect considers the effects of a change in aerosols on a 

cloud whose LWP is held fixed. Relevant to the MCB proposal are the cloud changes 

associated with an increase in the aerosol concentration caused by the addition of MCB 

aerosols. These MCB aerosols are intended to result from artificially produced sea water 

droplets, and as such would be hygroscopic (Lewis and Schwartz, 2004). The introduction of 

these MCB aerosols is intended to increase the number of available CCN, particularly in the 

clean (and hence CCN limited) marine regions that are the intended target of MCB. Under 

conditions of supersaturation, water vapour condenses on to these CCN, and owing to their 

increased number, results in the formation of a relatively increased Nd. Ignoring cloud 

feedbacks, and assuming that adding aerosols will not alter the levels of supersaturation 

(i.e. omitting any resulting dynamical changes), the reapportionment of this supersaturation to 

the higher Nd will result in a higher number of smaller cloud droplets. It is this resulting 

increase in cloud optical thickness and albedo (Twomey, 1977), with associated enhancement 

of SW radiation reflection, negative radiative forcing, and cooling that is fundamental to the 

MCB proposal. 

The ability of the addition of MCB aerosols to achieve a cloud albedo enhancement via this 

first indirect aerosol effect is, however, contingent on characteristics of both the background 

aerosols and emitted aerosols, and on meteorological conditions. As found in mesoscale 

MCB computer simulations (Wang et al., 2011a) and observations (Sechrist et al., 2012), 

albedo enhancements tend to be greatest when modifying clouds in cleaner (CCN limited) 

background conditions. This response assumes, however, that the MCB aerosols emitted are 

of a suitable size compared to the background aerosols. The size distribution of these 

background aerosols can vary depending on the strength and nature of emission sources and 

sinks. While size distributions of atmospheric aerosols tend to be dominated – in terms of 

mass – by aerosols in the accumulation mode, with dry diameters of 50-500 nm (Seinfeld and 

Pandis, 2006), smaller nucleation mode aerosols can be formed from the nucleation of 

precursor gases (resulting in aerosols with dry diameters of less than ~10 nm). While the 

natural planktonic emission of DMS has already been listed as an example, such precursor 

gases can also result from anthropogenic activities including, for example, sulphuric gases 

emitted from industrial processes (Andreae and Rosenfeld, 2008). These aerosols can then 

grow through condensation and coagulation to intermediate 10-100 nm dry diameters (Aitken 

mode), with the survival probability of nucleated aerosols (3 nm) reaching 100 nm typically 

being below 10% (Kuang et al., 2009). Larger aerosols in the atmosphere, with dry diameters 

over ~2 µm (coarse mode), comprise only around 5-10% of the total aerosol number 

concentration in the marine environment (Seinfeld and Pandis, 2006). Such coarse mode 
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aerosols can consist of dust particles, pollen and sea spray spume drops (O'Dowd et al., 1997; 

Seinfeld and Pandis, 2006). Observations and cloud modelling have shown that giant CCN, 

with diameters of 10µm, can form larger cloud droplets (Lehahn et al., 2011; Ghate et al., 

2007). Hence, they may initiate precipitation, particularly in previously non-precipitating 

clouds (Feingold et al., 1999; Lu and Seinfeld, 2005). 

For the addition of aerosols to result in an increase in cloud droplet concentration (and hence 

albedo) the aerosols must be of a sufficient diameter to activate. However, as discussed in 

Chapter 1, the outputs of global MCB modelling suggest that if the emitted MCB aerosols are 

larger than background aerosols, they may activate preferentially. This may lower the 

supersaturation, preventing background aerosols from activating, and hence reducing the 

cloud droplet concentration (Korhonen et al., 2010b). This competition effect thus results in 

cloud changes that are contrary to those intended from the MCB proposal. An activation 

parameterisation has been used to suggest that such a competition effect may only occur if the 

majority of the following conditions are met (Pringle et al., 2012): a high background aerosol 

concentration (≥150 cm
-3

); a low in-cloud updraft velocity (≤0.2 ms
-1

); a low emitted aerosol 

number concentration (≤150 cm
-3

); and a large emitted aerosol diameter (≥250-300 nm). As 

such, a competition effect could be prevented by limiting MCB aerosol diameters to the 

200 nm suggested in the proposal (Salter et al., 2008) and by maintaining high MCB aerosol 

emission rates. While the most important characteristics of both the background and emitted 

MCB aerosols are the number concentration and size distribution (Feingold, 2003; Dusek et 

al., 2006), there is some smaller sensitivity to chemical composition. This may be altered by 

the fraction of organics for example (Rissman et al., 2004). Consideration of this second-

order sensitivity to such chemical effects is not, however, investigated in this work. 

Assuming that the added aerosols are of suitable size, number concentration and chemical 

composition to produce a first indirect aerosol effect, the anticipated increase in albedo for 

clouds of varying background aerosol concentration is illustrated schematically in Figure 2.6. 

This figure additionally shows the possible effects of wet scavenging, which could remove 

some or all of the aerosols before they reach the cloud layer, thus voiding any potential effect 

on cloud albedo (Wang et al., 2011a). 
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Figure 2.6 – Schematic indicating possible first-order influences of the addition of aerosols 

on MSc-topped boundary layer LWP and cloud albedo across different cloud regimes, 

including both the first and second indirect aerosol effects. The added aerosols are assumed 

to be of similar size and composition to those existing in the background, and thus possible 

competition effects are omitted. PREC_A, PREC_B, and PREC_C are three different cases of 

precipitation, as referred to in the text. Red and blue shading is indicative of albedo 

increases and decreases (respectively), although owing to high levels of uncertainty in cloud 

response, they are intended to be suggestive of potential patterns only (with uncertainty 

indicated in the figure through the use of question marks). 
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2.4.2 The Second Indirect Aerosol Effect 

While the fixed LWP condition inherent to the first indirect aerosol effect produces 

conceptually straightforward cloud changes, it is typically not valid for MSc clouds (Twohy 

et al., 2005). As has been described in Sections 2.3.3 and 2.3.4, both cloud-top entrainment 

and precipitation readily alter the LWP. Owing to the importance of LWP in characterising 

cloud properties (e.g. Feingold, 2003), quantifying such LWP changes is crucial. This section 

will examine how rates of precipitation and cloud-top entrainment are affected by changes in 

Nd, which is in turn affected by the availability of aerosols that can act as CCN. As such, a 

discussion of the second indirect aerosol effect – comprising possible cloud albedo changes 

induced by aerosols via LWP perturbation – is presented. 

The consideration of LWP changes in this second indirect aerosol effect necessitates the 

incorporation of complex feedbacks between processes and MSc-topped boundary layer 

properties. While understanding of individual processes is increasing, the interrelationships 

and sensitivity to various background conditions mean that the ultimate magnitude (and sign) 

of second indirect aerosol effects is not currently well understood. The aim of this section is 

therefore to summarise – within the constraints of current knowledge – possible second 

indirect aerosol effects that may result from the emission of MCB aerosols. This begins with 

a consideration of precipitation changes in response to the addition of aerosols. 

2.4.2.1 The Contribution of Precipitation Effects 

As introduced in Chapter 1 (Section 1.6.2), the second indirect aerosol effect is often 

presented in terms of LWP changes related to precipitation. As smaller cloud droplets tend to 

produce lower precipitation rates (Rosenfeld et al., 2012), it is frequently assumed that the 

addition of aerosols would lead to decreases in precipitation rates and a relative increase in 

LWP (e.g. Albrecht, 1989). The assumed resulting LWP increases would therefore be 

anticipated to increase both the albedo of the cloud, and the cloud lifetime. Such a cloud 

response would be advantageous for the MCB scheme, and would reinforce the first indirect 

aerosol effect. As intimated in Section 1.6.2, however, the cloud response is likely to be 

considerably more complex. 
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As for the first indirect aerosol effect, the initial change that would be expected to result from 

the introduction of additional aerosols is an increase in Nd with a concomitant reduction in 

droplet diameter. The reduced diameter would reduce the sedimentation rate of the cloud 

droplets which in turn would reduce the collision-coalescence efficiency of the droplets (P5; 

Figure 2.7), leading to reduced precipitation rates. In a further feedback, such a reduction in 

precipitation would lead to reduced turbulence within the boundary layer through 

stabilisation owing to changes in the dynamics (P3; Figure 2.7). This reduced turbulence 

would reduce drop recycling, further reducing the formation of precipitation (P4; Figure 2.7). 

Collision-coalescence is also dependent upon the size distribution of the droplets. Droplets of 

similar sizes will fall at similar speeds, reducing the rate of collision-coalescence. The 

presence of larger droplets will result in higher rates of collision-coalescence as these droplets 

fall faster than – and are able to collect -- smaller, slower moving droplets. 

The changes to cloud properties resulting from these reduced droplet sedimentation rates are 

dependent upon the original precipitation rate. 

 

Figure 2.7 – As Figure 2.3, but including changes relevant to changes in the Nd. 

Considering first more heavily precipitating background conditions, where liquid water 

reaches (and is lost at) the surface. The addition of aerosols in such cases may reduce the 
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precipitation rates sufficiently that precipitation no longer reaches the surface. Therefore, as 

the amount of liquid water lost at the surface could be reduced, a comparative LWP increase 

and accompanying albedo enhancement may result (Figure 2.6; PREC_A). In moving away 

from the heavily precipitating condition, the MSc-topped boundary layer may also become 

more destabilised and thus more self-sustaining, with possible associated lifetime 

enhancements (cf. Section 2.3.4). 

For more lightly precipitating background conditions where little or no liquid water is lost at 

the surface (Figure 2.6; PREC_B), the effects on LWP are less obvious and less well 

understood. In these conditions, changes to the dynamics of the MSc-topped boundary layer 

are more important. For example, background conditions could occur where precipitation 

evaporates through much of the boundary layer, producing boundary layer stabilisation and 

potential cloud dissipation, while leaving little precipitation to reach (and be lost at) the 

surface (Wood, 2005). For such a background case, the addition of aerosols could reduce 

precipitation such that all precipitation evaporates in a thin sub-cloud layer – a case that may 

produce destabilisation and a self-sustaining precipitating condition (as discussed in 

Section 2.3.4). Such a transformation could possibly increase the LWP (and albedo) of the 

cloud system additionally enhancing the cloud lifetime. 

Adding aerosols to a cloud exhibiting potentially self-sustaining light precipitation (that 

evaporates in a thin sub-cloud layer), could totally stop precipitation (Figure 2.6; PREC_C). 

In such an event, the cloud system may then transition from a precipitating to non-

precipitating cloud regime (Rosenfeld et al., 2006). This may thus increase the albedo of the 

cloud. However, some computer simulations suggest that under particular conditions, the 

latent heat fluxes that drive the self-sustaining, lightly precipitating cloud may be more robust 

to diurnal radiative flux patterns than clouds driven largely by cloud-top LW radiative 

cooling (Sandu et al., 2008). Under such conditions, the lightly precipitating cloud may be 

better sustained during the day than a non-precipitating counterpart, and hence maintain a 

higher LWP and cloud albedo (Sandu et al., 2008). The frequency with which such 

conditions occur in real-life MSc cloud fields is not known. 

Owing to such subtleties and the considerable parameter space of possible background 

conditions, the response of precipitating MSc clouds to aerosol increases remains poorly 

constrained. Such difficulties in understanding are compounded by the additional wet 

scavenging feedbacks (Figure 2.6 and P6 in Figure 2.7), whereby aerosol concentrations are 

reduced by precipitation. Depending on the strength of precipitation (and the resulting aerosol 

sink) it may not even be possible for added aerosols to reach the cloud layer. If enough 

aerosols were removed by this process, aerosols would not be able to reduce the cloud droplet 

diameters, stymying both the first and second indirect aerosol effects (Wang et al., 2011a). 
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2.4.2.2 The Contribution of Cloud-Top Entrainment Effects 

As was demonstrated in Section 2.3.3, as well as precipitation, cloud-top entrainment can 

also affect the LWP of the MSc-topped boundary layer. This section therefore considers how 

adding additional aerosols may alter the rate of cloud-top entrainment, and hence the LWP 

and albedo of MSc clouds.  

As already stated, the addition of aerosols can lead to a higher number of smaller cloud 

droplets being formed. This reduces their rate of sedimentation, allowing more of the cloud 

droplets to remain in the entrainment zone located at the cloud top. The presence, and 

evaporation, of additional droplets here increases turbulent production. This therefore 

increases rates of cloud-top entrainment of free tropospheric air (Ackerman et al., 2004; 

Bretherton et al., 2007; Hill et al., 2009) as indicated in Figure 2.7 (E5). This increased 

entrainment can be evident as a rise in the cloud-top height (Christensen and Stephens, 2011). 

Such increases in cloud-top entrainment with increasing Nd suggests that higher entrainment 

rates may contribute to the higher cloud-tops exhibited by closed cell clouds compared with 

open cell clouds in similar background conditions (Painemal et al., 2010). This turbulent 

enhancement could be further increased as the smaller cloud droplets evaporate more readily 

(Hill et al., 2009) as indicated in Figure 2.7 (E2). However, the increase in cloud top-

entrainment also results in warming of the cloud-top. This offsets the LW radiative cooling, 

inducing stabilisation of the cloud and hence a reduction in turbulence and resulting reduction 

in entrainment (E3, E4; Figure 2.7). 

The drying effect of enhanced cloud-top entrainment, and hence the magnitude of the LWP 

(and albedo) reductions will be intensified for drier overlying free-tropospheric air 

(Figure 2.6). While the cloud-top entrainment of drier overlying free-tropospheric air is 

known to enhance the evaporation of cloud droplets, the ultimate consequence of increasing 

the cloud-top entrainment is not fully understood. For example, the cloud-top entrainment 

instability hypothesis suggests that the turbulence and further enhanced entrainment 

generated from the enhanced evaporative cooling may result in a feedback loop that leads to 

cloud dissipation (Lilly, 1968; Deardorff, 1980). However, subsequent observations and 

modelling work finds that clouds are maintained even when the conditions for cloud-top 

entrainment instability are met (Stevens, 2010; Yamaguchi and Randall, 2008), suggesting 

that the hypothesis does not fully capture the effect that entrainment has on the clouds. 
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2.4.3 The Net Indirect Aerosol Effect for Marine Stratocumulus Clouds 

In summary, increasing the number of aerosols suitable to act as CCN tends to produce a 

larger number of smaller cloud droplets. The first indirect aerosol effect (Section 2.4.1) leads 

to an increased cloud albedo of larger magnitude for background clouds with lower Nd. Such 

a cloud albedo increase, and associated planetary cooling effect is the basis for the MCB 

proposal. This first indirect aerosol effect assumes, however, that the LWP of the 

MSc-topped boundary layer remains constant. Examination of the second indirect aerosol 

effect (Section 2.4.2) suggests that this constant LWP assumption is unlikely to be the case in 

reality. While cloud-top entrainment tends to reduce the LWP of the cloud system (and hence 

act to reduce cloud albedo), the effects of precipitation changes in response to the addition of 

aerosols are more uncertain. Both increases and reductions in LWP (and cloud albedo) 

possible (Costantino and Bréon, 2013; Section 2.4.2.1). Thus, the second indirect aerosol 

effect could act to either enhance or counteract the cloud albedo increases associated with the 

first indirect aerosol effect. This effect could be either beneficial or detrimental for proposed 

MCB. 

Uncertainties in the magnitudes and sign of cloud response to the addition of aerosols and the 

various timescales of response for different processes (Figures 2.3 and 2.7) along with 

considerable sensitivities to both existing conditions (Wood, 2007; Petters et al., 2013) and 

the attributes of the added aerosols, mean that a comprehensive explanation and 

quantification of the net response of MSc clouds to both first and second indirect aerosol 

effects is not currently possible. Instead, broad possible patterns of cloud response are 

presented for three general categories: heavier precipitation (some reaching the surface); 

lighter precipitation (largely evaporating before reaching the surface); and the non-

precipitating condition (Figure 2.6). These categories span open to closed cell characteristics, 

and increasing Nd. Owing to the complexity of cloud response, there will be further sub-

category variation relating to, for example, the moisture of over-lying free-tropospheric air. 

These broad patterns of net indirect aerosol effect are illustrated schematically in the bottom 

row of Figure 2.6. In addition to being based on conceptual physical mechanisms relating to 

the constituent first and second indirect aerosol effects, these broad patterns of net indirect 

aerosol effect are also informed by observations. Owing to spatially and temporally variable 

background cloud conditions, the identification of the indirect aerosol effect in observations 

is challenging. One example where the indirect effect can be readily seen, however, is in ship 

tracks. Ship tracks (Figure 2.8) are localised regions of perturbed MSc cloud that occur in 

response to the aerosol emissions of ship engines (Hobbs et al., 2000) and hence evince the 

indirect aerosol effect. 
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Figure 2.8 – Example satellite image indicating open and closed cell formations, along with 

ship tracks. 

Consider first the case of heavier precipitation with some reaching the surface (left column of 

Figure 2.6). Under these conditions, increases in albedo from both the first indirect aerosol 

effect and LWP increases from the suppression of precipitation (second indirect aerosol 

effect) are likely to be larger than the albedo decreases caused by the cloud-top entrainment 

induced drying. As such, there is likely to be a net increase in cloud albedo under such 

conditions (Ackerman et al., 2004; Lu and Seinfeld, 2005; George et al., 2013), which would 

be beneficial for MCB. This was found for the open cell, heavily precipitating case during the 

Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) campaign (Russell et al., 

2013), whereby the intentionally introduced aerosol produced increases in LWP and albedo 

(Chen et al., 2012). This was also true for the satellite observation of open cells subject to 

ship tracks, which resulted in more liquid water (39%), but also higher cloud tops 

(Christensen and Stephens, 2011). This feature suggests that the clouds may be experiencing 

an increase in entrainment, but also that they may be moving towards the closed cell regime. 

However, as mentioned in Section 2.4.1, wet scavenging could remove some or all of the 

aerosols before they reach the cloud layer, as evidenced in the ‘Evergreen Evergenius’ ship 

track observed by airborne measurements (Ferek et al., 2000). 

Next, conditions of lighter precipitation which largely evaporate before reaching the surface 

are considered (central column of Figure 2.6). Under such conditions, the first indirect effect 

is again likely to produce an increase in cloud albedo, while increased rates of cloud-top 

entrainment are likely to produce decreases in LWP and thus cloud albedo. Of much greater 

ambiguity is the sign of LWP (and cloud albedo) change associated with changes to the 

precipitation. Thus, for these conditions it is possible that cloud albedo could be either 
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increased or decreased, depending on existing conditions (Lu and Seinfeld, 2005). As 

understanding of the precipitation response is incomplete, the net cloud response in such 

lightly precipitating conditions remains highly uncertain. The variable response for lightly 

precipitating clouds was seen for the two lightly precipitating E-PEACE research flights 

reported by Chen et al. (2012). In one case, the cloud responded to the addition aerosol with 

an increased LWP, cloud thickness and cloud albedo. In the other case, the response was 

reversed, with decreased LWP and cloud albedo. This latter cloud was overlaid by a drier 

free-troposphere. This suggests that possible increases in LWP from the suppression of 

precipitation in both cases may have been overpowered by entrainment-induced drying. This 

drying may have been enhanced by absorption of heat by the ‘dirty’ particles in the case of 

the ship emissions (the semi-direct effect) (Coakley and Walsh, 2002). For a lightly 

precipitating cloud (with a cloud base height of ~200 m) airborne measurements found 

reduced drizzle and increased LWP, with some increase in cloud top height (Lu et al., 2007). 

Finally, non-precipitating clouds are considered (right-hand column of Figure 2.6). For these 

conditions, the situation becomes somewhat simplified in the absence of precipitation. As 

such, the net albedo effect will be a combination of the albedo increases resulting from the 

first indirect aerosol effect, and LWP and albedo decreases resulting from increases in cloud-

top entrainment drying as part of the second indirect aerosol effect. The magnitude of these 

opposing effects, and therefore the net effect on cloud albedo, is critically dependent upon 

background conditions and the number of added aerosols. Indeed, for drier free-troposphere 

air, the non-drizzling E-PEACE cloud case produced reduced LWP and cloud albedo, 

although such decreased albedos occurred in only 30% of the observed ship tracks (Chen et 

al., 2012). Similarly, of 132 satellite observations of ship tracks in closed cells, there was -6% 

change in LWP with no change in cloud height (Christensen and Stephens, 2011). Also 

possible, as found for satellite observations of crossing ship tracks (and as indicated in 

Figure 2.6), is that the LWP decreases, while the albedo increases (Sechrist et al., 2012). This 

could occur where the albedo increase resulting from the first indirect aerosol effect is larger 

than the albedo decrease resulting from the LWP losses associated with the second indirect 

aerosol effect. 

Results of previous computer modelling of the second indirect aerosol effect, as collated by 

Chen et al. (2011), suggest that LWP increases may be expected for clouds that have surface 

precipitation rates of above 0.1 mm day
-1

. Alternatively, modelling by Wood (2007) has 

suggested that at time scales of shorter than a few days, there may be a cloud base height 

threshold for LWP increases and decreases. While clouds with bases below 400 m were 

found to be characterised by LWP increases in response to aerosol increases (as sufficient 
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precipitation reached the surface), clouds with bases above 400 m were more prone to LWP 

losses as less precipitation reaches the surface and cloud-top entrainment drying dominated. 

In this case of added aerosols, the potential decreases in LWP and albedo (second indirect 

aerosol effect) that act to offset the albedo increases associated with the first indirect aerosol 

effect are an example of buffering within the cloud system (Stevens and Feingold, 2009). 

More generally, the buffering concept suggests that changes to the cloud field in response to a 

forcing may be attenuated by cloud processes occurring over a range of spatial and time 

scales (Stevens and Feingold, 2009). The omission of such cloud processes from simulations 

may therefore lead to perturbations in the cloud fields being overestimated (Boucher et al., 

2013). Another potential buffering mechanism has been identified in the mesoscale computer 

simulation of ship tracks (Wang and Feingold, 2009a; Wang and Feingold, 2009b). These 

simulations suggest that a ship track may increase the LWP sufficiently that precipitation 

may be formed, potentially leading to cloud dissipation (Wang and Feingold, 2009a; Wang 

and Feingold, 2009b). Such a response may explain why ship tracks in open cell regimes 

were more frequently observed to have increased rather than decreased precipitation rates in 

one satellite observation study (Christensen and Stephens, 2012). The time necessary for such 

a feedback to dissipate the ship track is, however, unclear, with observations suggesting that 

many ship tracks last longer than 12 hours (Durkee et al., 2000). Another satellite observation 

study suggests that, rather than dissipating the clouds, ship tracks can actually instigate a 

transition from an open cell to a closed cell regimes (Goren and Rosenfeld, 2012). Such a 

mechanism for transitioning from open to closed cells through the addition of aerosols has 

also been proposed theoretically (Rosenfeld et al., 2006). Thus, while both cloud behaviours 

are possible, accurate forecasting and comprehensive understanding of the responses are 

significantly hampered by the high sensitivities to a range of background conditions and 

added aerosols. This is further complicated by the effects of complex feedbacks and potential 

buffering mechanisms.  
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2.5 Conclusions 

The processes that control the formation and development of MSc clouds are complex and 

diurnally varying. In order to examine the three case studies relating to MCB implementation 

details (introduced at the end of Chapter 1), computer simulated MSc base cases are needed 

that authentically reproduce these fundamental cloud system processes. Thus, in addition to 

reproducing characteristic cloud properties (such as thickness, fraction and cloud-top height), 

the fidelity of the simulations must also be judged on the presence and behaviour of key 

processes. These processes include: heating and cooling through the cloud layer; the spatial 

distribution of turbulence; the entrainment of overlying air; and the effects of precipitation. 

Further to these characteristic MSc processes is the relationship between MSc clouds and 

aerosols, which is central to the MCB proposal. The inherent complexities of the system 

currently prevent a comprehensive quantification of this indirect aerosol effect. However, 

based on current evidence, a schematic of anticipated cloud changes to the addition of 

aerosols was developed in this chapter. This was based on how dominant cloud system 

mechanisms may respond to the addition of aerosols, under different background aerosol 

concentrations. In spite of intricate, and typically non-linear, feedback responses, clouds 

formed in conditions of low background aerosol concentrations are most likely to experience 

notable albedo enhancements through the addition of aerosols. The addition of aerosols to 

clouds formed in higher background aerosol conditions could lead to smaller cloud albedo 

enhancements, or even decreases in cloud albedo resulting largely from the second indirect 

aerosol effect. This sensitivity of the indirect aerosol effect (and hence MCB) to background 

aerosol concentrations means that a thorough examination of possible MCB effects requires a 

range of base case MSc simulations. This range of simulations must therefore be informed by 

a range of realistic background aerosol concentrations (Chapter 3). 

The modelling work in this thesis is carried out at a cloud-resolving resolution. Therefore, the 

cloud simulations are able to explicitly capture the MSc cloud system processes and 

feedbacks – described in this chapter – that govern cloud behaviour, the indirect aerosol 

effects, and therefore MCB. This allows the details and assumptions regarding the MCB 

proposal that are encapsulated in the three case studies to be examined in detail. Such detailed 

considerations cannot be carried out in global-scale models owing to the relatively coarse 

resolution, and parameterised cloud behaviour. This detailed approach is therefore a powerful 

and innovative technique for the examination of MCB. 
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 Chapter 3

Marine Stratocumulus Cloud Base Case Simulations 

3.1 Introduction 

To enable the three MCB implementation detail case studies – introduced at the end of 

Chapter 1 – to be examined, computer simulations of the background MSc conditions are 

needed. 

To provide a suitable basis for the subsequent MCB effectiveness experiments, the simulated 

base cases must adequately capture the key MSc cloud processes and cloud properties that 

were described in Chapter 2, for a range of background conditions, over the diurnal cycle. 

Key to representing the MCB process is simulation of indirect aerosol effects (Chapter 2, 

Section 1.4). This necessitates the representation of the relationship between aerosols of 

various size and number concentrations and cloud droplets, and the relationship between 

cloud droplets and precipitation, both under varying dynamical conditions. 

This chapter describes how a cloud-resolving model, capable of representing the indirect 

aerosol effect, is initialised with a range of three realistic background aerosol conditions in 

order to produce three MSc base cases. Of these three MSc base cases, one is precipitating 

while two are non-precipitating. The model, set-up and initialisations used to produce these 

base cases are described in Section 3.2. Key dynamical and physical properties of the 

precipitating and non-precipitating base cases are presented and discussed in relation to the 

understanding of MSc clouds presented in Chapter 2 in order to evaluate the performance of 

the model in simulating MSc clouds (Sections 3.3 and 3.4). 

In establishing that these simulated base cases adequately represent key features of the MSc 

cloud system over a range of conditions and over the diurnal cycle, they are then used as the 

basis of MCB experiments examining the three MCB implementation detail case studies 

(presented in Chapters 4, 5 and 8). 

3.2 Model Setup  

The model used is the WRF/Chem V3.3.1 model (Skamarock et al., 2008) in the large-eddy 

simulation configuration. This non-hydrostatic model incorporates interactive chemistry 

through the Carbon Bond Mechanism–Z (CBMZ) gas phase chemical mechanism scheme 

(Zaveri and Peters, 1999; Fast et al., 2006) and aerosol processes through the 8-bin Model for 
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Simulating Aerosol Interactions and Chemistry (MOSAIC) scheme (Zaveri et al., 2008). The 

size range of each of these bins is stated in Table 3.1. 

Aerosols interact with the cloud through the Morrison et al. (2005) two-moment 

microphysics scheme. Activation of aerosols to cloud droplets follows the Abdul-Razzak and 

Ghan (2000) method. This activation method calculates an activated fraction of aerosols for 

each size bin, basing this calculation on both atmospheric conditions, and on the properties of 

the aerosols. For the atmospheric conditions, the maximum supersaturation is calculated from 

the mean vertical velocity of a grid cell and an assumed Gaussian vertical velocity spectrum. 

The aerosols are considered to have a critical supersaturation, above which they will activate 

to form a cloud droplet. This critical supersaturation depends upon the aerosol size, number 

concentration and composition (with composition being internally mixed within each size 

bin). Thus, the fraction of aerosols activated to form cloud droplets is therefore calculated 

from the fraction of aerosols in a given size bin where the maximum supersaturation exceeds 

the critical supersaturation. 

The Morrison two-moment microphysics scheme uses the cloud droplet number 

concentration and cloud water mixing ratio to determine a gamma distributed cloud droplet 

size spectrum. Raindrops follow an exponential distribution (Morrison et al., 2009). The 

number concentrations and mass mixing ratios of cloud water droplets are altered by sources 

(primarily the activation of aerosols as described above), and sinks (including autoconversion 

and accretion) (Yang et al., 2012). Autoconversion is included using an explicit 

autoconversion rate, based on (Khairoutdinov and Kogan, 2000), where qr is the rain water 

mixing ratio, qc is the cloud water mixing ratio, and Nd is the cloud droplet number 

concentration: 

 
   
     

          
         

      (3.1) 

Collection within the model does not depend upon turbulence. This microphysics scheme 

uses a wet deposition scheme that removes both aerosols that have been activated to form 

cloud droplets, and interstitial aerosols (i.e. those that have not been activated), thus 

removing aerosols from both within and below the cloud. These scavenged aerosols are 

instantly removed, and the scheme does not allow for re-suspension of aerosols during the 

evaporation of rain droplets (Saide et al., 2012). This behaviour is hence likely to lead to an 

overly strong aerosol sink. This scheme also includes cloud droplet sedimentation.  

LW radiation calculations were performed by the Community Atmospheric Model (CAM) 

spectral-band LW scheme (Collins et al., 2004). SW radiation calculations were performed by 

the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) transfer 

scheme. This RRTMG SW radiation scheme uses cloud droplet effective radii from the 
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Morrison microphysics scheme, with these radii being defined as the ratio of the third to the 

second moment of the gamma droplet size distribution (Yu et al., 2013). Sensitivity tests 

using this combination of radiation schemes produced patterns of LW cloud-top radiative 

cooling, daytime SW radiative warming and resulting cloud properties that are characteristic 

of MSc cloud diurnal behaviour (discussed further in the Results section). The two-moment 

nature of the microphysics scheme – allowing cloud droplet effective radii to be estimated 

from information on both the number concentration and mass mixing ratio of cloud droplets – 

is important for capturing aerosol-cloud-radiation interactions and thus, the indirect aerosol 

effects. For example, in the event of the emission of an increased number of accumulation 

mode sized aerosols (as would occur in the proposed MCB scheme), an increased number of 

aerosols would become activated to form cloud droplets. Assuming, as in the first indirect 

aerosol effect, that the LWP is fixed, this would produce a higher number of cloud droplets. 

Under a maintained cloud water mixing ratio, this would alter the size distribution of cloud 

droplets assumed by the microphysics scheme, leading to an increased number of smaller 

droplets. Furthermore, changes to the LWP (and hence the second indirect aerosol effect) are 

captured in the model, largely by alterations in the dynamics in the boundary layer. This is 

contributed to by the explicit calculation of turbulent kinetic energy, along with 

parameterisation of sub-grid turbulence. The 1.5 order 3-D turbulent kinetic energy closure 

scheme (Skamarock et al., 2008) was utilised to simulate sub-grid turbulence. Advection was 

constrained by the monotonic flux limiter option (Wang et al., 2009). Surface layer physical 

processes were represented by the Monin-Obukov scheme. Horizontal boundary conditions 

were periodic, and a 250 m damping layer was included at the model top. The model time 

step was 2 seconds for dynamical processes, and 1 minute for the radiative processes. 

Subsidence was included through a large-scale divergence of 3.75x10
-6

 s
-1

. Large-scale wind 

was initialised at zero, following Wang and Feingold (2009a) and Wang et al. (2011a). Input 

soundings follow Research Flight 02 (RF02) of the DYCOMS-II field campaign which 

observed drizzling stratocumulus (Ackerman et al., 2009). The inversion height was 795 m. 

Total water mixing ratio was initialised at 9.45 g kg
-1

 in the boundary layer, decreasing to 

5.0 g kg
-1

 in the free troposphere. The potential temperature was initialised to 288.3 K in the 

boundary layer, increasing to 303.9 K by 1500 m height. These initialisation profiles are 

illustrated in Figure 3.1. The sea surface temperature was held fixed at 288.8 K. 
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Table 3.1 – Aerosol dry diameter sizes for the 8-bin Model for Simulating Aerosol 

Interactions and Chemistry (MOSAIC) scheme.  

 Bin Number Lower Diameter (µm) Upper Diameter (µm) 
 

 1 0.0390625 0.078125 
 

 2 0.078125 0.15625  

 3 0.15625 0.3125  

 4 0.3125 0.625  

 5 0.625 1.25  

 6 1.25 2.5  

 7 2.5 5.0  

 8 5.0 10.0  

As these simulations are intended to produce a range of base cases for the forthcoming MCB 

simulations, they use a unique combination of initialisations (e.g. background aerosol 

concentrations) and as such are not intended to reproduce either the observed RF02 case, or 

previous simulations of it (Ackerman et al., 2009). The ability of this set-up to achieve 

patterns of dynamics and cloud properties characteristic of MSc clouds is discussed in 

Section 3.4. 

 

Figure 3.1 – Total water mixing ratio and potential temperature initialisation profiles. 

To produce three control cases reproducing a range of stratocumulus cloud conditions, three 

background aerosol concentration initialisations for SO4, NH4, NO3, Na, Cl, black carbon and 

organic carbon were selected from model output of the GLOMAP model (Mann et al., 2010). 

The three representative aerosol locations chosen were: the Southern Ocean (a pristine case); 

the North-East Pacific (the location of the DYCOMS-II mission (Stevens et al., 2003b) and 
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an area of persistent MSc cloud); and the East China Sea (an area of high atmospheric aerosol 

concentration resulting from mainly anthropogenic sources). These three locations were 

chosen to represent the wide range of aerosol conditions that occur in reality. The data was in 

the form of annual means associated with the early-2000s, with each location being 

represented by data from a single representative grid cell from the GLOMAP model. The 

8-bin size distributions for these background aerosol initialisations are presented in 

Figure 3.2. 

 

Figure 3.2 – Background absolute aerosol initialisation for the three MSc base cases based 

on the increasingly polluted aerosol concentrations of: the Southern Ocean; the North-East 

Pacific and the East China Sea. 

The background aerosol budget comprised a natural wind-driven sea spray source (Fuentes et 

al., 2010); nucleation of emitted gases; and a wet deposition sink. The gases SO2, H2O2, NH3, 

CO and O3 were initialised with values typical of the oceanic boundary layer atmosphere in 

regions of MSc (Georgii and Gravenhorst, 1977; Khalil and Rasmussen, 1994; Kazil et al., 

2011). The concentration of SO2 was increased by 1.0 pptv h
-1

 to represent the processes 

associated with dimethyl sulphide, in lieu of an explicit scheme, following the observations 

and modelling of Gray et al. (2011) and Yang et al. (2011a). The model time step for 

chemistry and aerosol processes was 2 minutes.  

The horizontal domain size was 9 km x 9 km with grid cell resolution of 300 m. The model 

extends 1.5 km vertically, with 50 vertical layers (increasing in depth with height). Each 

control case was simulated for 35 hours, starting at 22:00:00 local time (LT) on 21 July 2001. 

The sun rose at 05:20:00 LT, and set at 19:00:00 LT. Control case results are presented from 

the beginning of the model run (and therefore include the model spin-up). The choice of 

relatively coarse horizontal resolution follows Wang and Feingold (2009a) and has been used 
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in subsequent modelling studies (Wang et al., 2011a). Selecting a relatively small horizontal 

domain allows us to perform detailed analysis of the aerosol emission, aerosol interaction 

with clouds, and rapid cloud response within the computational constraints present. It does 

however preclude the representation of mesoscale features associated with MSc cloud decks 

(e.g. Wood and Hartmann, 2006; Wood et al., 2008) and secondary circulations that can be 

triggered by aerosol concentration gradients (e.g. Wang and Feingold, 2009a; Wang and 

Feingold, 2009b; Feingold et al., 2010; Wang et al., 2011a). Despite these exclusions, the 

variations in simulated cloud properties are consistent with characteristic changes in radiative 

and dynamical features of the stratocumulus topped boundary layer over the diurnal cycle 

(discussed further in Sections 3.3 and 3.4), and follow the similar or smaller domain sizes that 

have previously been used to study the behaviour of MSc clouds (e.g. Stevens et al., 2005a; 

Ackerman et al., 2009) and their sensitivities to atmospheric variables over the diurnal cycle 

(Chen et al., 2011). 
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3.3 Base Case Simulations 

Of the three background aerosol concentrations, the pristine marine conditions of the 

Southern Ocean produced a precipitating case (PR). The North-East Pacific location typical 

for MSc, and the most heavily polluted East China Sea background aerosol conditions both 

produced non-precipitating regimes (NP-Pa and NP-Ch respectively). 

3.3.1 Precipitating Base Case 

This PR control case demonstrated a clear diurnal cycle in both cloud properties (Figure 3.3) 

and dynamical and physical processes (Figure 3.4). 

 

Figure 3.3 – Time evolution of domain averaged cloud properties for the PR control case. 

(a) Nd, (cm
-3

); (b) cloud top and cloud base height (contour at cloud water mixing ratio of 

0.01 g kgdry air
-1

); (c) LWP (g m
-2

); (d) surface rain rate (solid), and cloud base rain rate 

(dotted) (mm day
-1

); (e) cloud fraction (%); and (f) domain averaged cloud albedo 

(calculated from cloud properties, as detailed in Chapter 4, Equation 4.1). Shading indicates 

the night. 

Cloud-top LW radiative cooling (Figure 3.4 c) produced a band of negative buoyancy atop 

positive cloud layer buoyancy (Figure 3.4 d). This negative buoyancy produced turbulent 

kinetic energy (TKE) (Figure 3.4 e and f) which led to boundary layer mixing. 
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Figure 3.4 – Time evolution of domain averaged dynamic and physical properties for the PR 

control case. (a) Vertical velocity variance (<w’
2
>, m

2 
s

-2
); (b) vertical velocity skewness; 

(c) radiative heating rate (K day
-1

); (d) buoyancy (cm
2
 s

-3
); (e) resolved turbulent kinetic 

energy (m
2
 s

-2
); (f) sub-grid scale turbulent kinetic energy (m

2
 s

-2
); (g) total water mixing 

ratio (g kgdry air
-1

); and (h) potential temperature (K). Solid lines indicate the cloud top and 

cloud base height (a contour at cloud water mixing ratio of 0.01 g kgdry air
-1

). Hatch lines 

indicates the night. 

The dynamics within the MSc-topped boundary layer can also be considered by using the 

measures of vertical velocity variance (<w
’2

>; Figure 3.4 a) and the skewness of the vertical 

velocity field (Figure 3.4 b). The vertical distribution and strength of <w
’2

> can be considered 

to be analogous to turbulence produced mixing within the MSc-topped boundary layer. 

Where clouds are present in this PR simulation, the boundary layer distribution of <w
’2

> 

shows minima at the cloud top and surface, with a single maximum, as is typical of a well-

coupled MSc-topped boundary layer, or coupled cloud and boundary layers (Wood, 2012; 

Nicholls, 1989; Stevens et al., 2005a). The skewness (or third moment) of vertical velocity is 

a measure of the ratio of the intensity of updrafts to downdrafts (e.g. Moeng and Rotunno, 

1990). As there is precipitation in this case, the large-scale downward sedimentation of 

droplets induces wide-spread downdrafts, balanced by intense updrafts (also characteristic of 
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open-cell behaviour; Section 2.3.5), resulting in a positive skewness in the cloud (Figure 3.4 

b; Stevens et al., 1999).  

The SW radiation, present during the day, offset the cloud-top cooling, reducing the TKE and 

mixing through the boundary layer. The reduced vertical transport of moisture from the 

surface was evident in an accumulation of total water mixing ratio at the surface during the 

day leading to a stratified vertical profile (Figure 3.4 g). As the SW radiation dissipated into 

the second night, the TKE recovered, allowing improved mixing within the boundary layer. 

Simulated surface heat fluxes also demonstrated a diurnal cycle, with domain average surface 

latent heat flux varying between 6 Wm
-2

 during the day and a maximum of 10 Wm
-2

 during 

the night (not shown). Domain average sensible heat flux was approximately 1 Wm
-2

 during 

the day, reaching a maximum of 4 Wm
-2

 during the night. This periodicity in the strength of 

dynamical and physical processes was reflected in the pattern of cloud properties. During the 

more turbulent night (and outside of the initial ~3 to 4 hours where the model was 

spinning-up), cloud fraction reached 70% (Figure 3.3 e), LWP reached 50 g m
-2

 (Figure 3.3 c) 

and the cloud was approximately 400 m deep (Figure 3.3 b). In these conditions, the low Nd 

of around 10 cm
-3

 produced precipitation (Figure 3.3 a and d). The peak surface precipitation 

rate was 0.6 mm day
-1

, whilst the cloud base rate at this time was nearly 1.2 mm day
-1

 

(Figure 3.3 d). The domain average calculated cloud albedo reached 0.35 during the night 

(Figure 3.3 f). Even during the night, the cloud and boundary layers were not well coupled. 

Turbulence (and vertical velocity variance) was largely confined to the cloud layer, 

additionally indicating boundary layer stratification (Figure 3.4 g). During the daytime, the 

continuation of precipitation, augmented by the inhibition of moisture transport to the cloud 

region in the less turbulent conditions resulted in loss of supersaturation below the inversion. 

Therefore, for the combination of radiative and thermodynamic conditions established by this 

formation of atmospheric conditions, cloud formation abated and cloud fraction, LWP, 

precipitation and albedo fell to zero. For this PR case, there was a period of approximately 

6 hours during the day between cloud dissipation and cloud recovery. Over the 35 hour long 

control simulation, cloud top and cloud base heights decreased (by approximately 350 m and 

300 m respectively). This descending cloud top is indicative of smaller entrainment rates, 

which are also typical of open cell-like behaviour (Berner et al., 2013). 

The diurnal pattern of cloud changes can also be considered from an aerosol activation 

viewpoint. During the day, the decrease in turbulence was concomitant with decreases in 

vertical velocity (with the peak vertical velocity falling from ~1.0 ms
-1

 in the night to 

~0.4 ms
-1

 during the day). This reduction in vertical velocities thus reduced the maximum 

atmospheric supersaturation calculated by the Abdul-Razzak and Ghan parameterisation 

(described in Section 3.2). With the maximum atmospheric supersaturation decreasing into 
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the day, fewer aerosols had sufficiently large critical supersaturations to be activated. Hence, 

cloud fraction reduced significantly into the day. Similarly, as vertical velocities recovered 

into the second night (along with turbulence, and qualitatively characterised by the vertical 

velocity variance), maximum supersaturations also increased. Thus, as the critical 

supersaturation of the background aerosols would remain approximately constant throughout 

the simulation, more aerosols were activated to cloud droplets, and cloud fraction recovered.  

3.3.2 Non-precipitating Base Cases 

Similar to the PR case, the NP cases also showed clear diurnal patterns in cloud properties 

(Figure 3.5) and physical and dynamical processes (Figure 3.6). 

 

Figure 3.5 – Time evolution of domain averaged cloud properties for the NP-Ch (red) and 

NP-Pa (black) cases. Descriptions as Figure 3.3. 

The background aerosol concentration initialisations led to cloud average Nd of almost 

200 cm
-3

 for NP-Pa and around 500 cm
-3

 for NP-Ch case. In both cases, the Nd was sufficient 

to inhibit precipitation formation (Figure 3.5 d). As in the PR case, LW cloud-top radiative 

cooling (Figure 3.6 c) produced a band of negative buoyancy at the cloud top (Figure 3.6 d) 

that resulted in TKE (Figure 3.6 e and f). Cloud-top radiative cooling was stronger in the NP 

case than in the PR case, resulting in a stronger vertical velocity variance (Figure 3.6 a) and a 
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better mixed/less stratified boundary layer (Figure 3.6 g and h). The boundary layer can be 

seen to be particularly well mixed during the night (Figure 3.6 g and h) in agreement with 

MSc observations (Bretherton et al., 2004). Simulated surface heat fluxes again demonstrated 

a diurnal cycle, with domain average latent heat flux reaching approximately 10 Wm
-2

 during 

the night, from approximately 3 Wm
-2

 during the day. Domain average sensible heat fluxes 

remained at approximately 0 Wm
-2

 during the day and night. 

 
Figure 3.6 – Time evolution of domain averaged dynamic and physical properties for NP-Pa 

control case. Descriptions as Figure 3.4. 

Whilst SW radiation during the day again heated the clouds (subduing cloud-top LW 

radiative cooling and negative buoyancy; Figure 3.6 c) they did not fully dissipate. Thus, 

although weakened during the day, these dynamical and physical processes were maintained 

over the diurnal cycle. The diurnal cycle was again seen in the cloud properties. Unlike the 

total loss of LWP during the day seen in the PR case, the minimum LWP for both of the NP 
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cases was approximately 10 g m
-2

. This recovered to around 35 g m
-2

 (NP-Pa) and 30 g m
-2

 

(NP-Ch) during the subsequent night (Figure 3.5 c). Similarly, whereas the daytime cloud 

fraction in the PR case fell to zero, in the NP cases this minimum was maintained at 15% for 

NP-Pa, and 5% for NP-Ch, recovering to 90% for both cases into the night (Figure 3.5 e). 

Cloud was also maintained at a higher fraction for longer, with slower dissipation into the 

day, and a shorter period of low cloud fraction. Owing to the inverse relationship between 

cloud droplet radius and optical thickness, the higher cloud average Nd for NP-Ch caused the 

domain average calculated cloud albedo to be consistently higher than the NP-Pa case, 

despite the lower cloud fraction and LWP values (Figure 3.5 f). This cloud albedo also 

showed a diurnal cycle, ranging from approximately 0.35 to 0.6 for the day and night-time 

values in NP-Ch and from approximately 0.3 to 0.5 for NP-Pa.  

As for the PR case, these diurnal patterns of cloud changes can also be considered from an 

aerosol activation viewpoint. Firstly, during the night, the peak vertical velocity in the NP 

cases was slightly smaller than in the PR cases (~0.6 ms
-1

 and ~1.0 ms
-1

, respectively). 

However, in the NP cases, high vertical velocities – and so higher maximum supersaturation 

– cover a larger area than in the PR case (as is demonstrated by the negative skewness in 

Figure 3.6 b). Secondly, the NP simulations are initiated using more polluted background 

aerosol concentrations than were used for the WP simulation (Figure 3.2). In these more 

polluted conditions, there are a greater number of aerosols with critical supersaturations low 

enough to be exceeded by the maximum atmospheric supersaturation. Hence, the number of 

activated aerosols is higher than was the case in the PR simulations. Therefore, with more 

activated aerosols, the Nd in the NP cases exceeds the Nd in the PR case. Similarly to the PR 

case, the maximum vertical velocity reduces into the day (again falling to ~0.4 ms
-1

), 

concomitant with the pattern of turbulence. This again reduces the maximum atmospheric 

supersaturation, meaning that fewer aerosols had sufficiently large critical supersaturations to 

be activated. Cloud fraction again reduced significantly into the day (Figure 3.5 e). 

Cloud-top height decreased by 150 m over the 35 hours simulation, with the decrease being 

more exaggerated during the day as turbulence levels decrease. This is again in agreement 

with MSc observations (Bretherton et al., 2004). There was additionally a diurnal cycle in 

cloud base height, with the base rising during the day, causing cloud thinning to around 

100 m. The cloud doubled in thickness during the night. These cloud height properties were 

similar for both NP cases. Whilst there were some similarities between processes in the PR 

and NP clouds (albeit of differing strength), one area of disparity was the vertical velocity 

skewness (Figure 3.4 b and Figure 3.6 b). In these NP base cases, strong downdrafts driven 

by the cloud top LW radiative cooling descended towards the surface (a feature that is 

characteristic of closed-cell behaviour; Section 2.3.5). This produced a negative skewness 
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throughout the boundary layer. This was in contrast to the PR case, which showed positive 

skewness within the cloud layer.  

3.4 Discussion 

The ability to successfully simulate observed conditions is challenging as several areas of the 

modelling must be adequately realistic. These areas include: the atmospheric conditions 

(including moisture and temperature profiles, and aerosol concentrations and composition) 

and inputs and outputs to the modelled domain (including aerosol sources, changes to 

subsidence, and the advection of heat etc. associated with larger-scale meteorology). 

Importantly, to simulate observed conditions, the representation of processes within the 

model must also be captured realistically. These numerous processes were discussed in detail 

in Chapter 2 (see Figure 2.2), and include radiative heating and cooling within the cloud; 

moisture and heat fluxes at the surface; latent heat fluxes throughout the boundary layer, 

microphysical processes, and dynamical processes including the entrainment of free 

tropospheric air. Simulating the diurnal cycle of marine stratocumulus clouds is particularly 

challenging as the changing balance of processes, atmospheric conditions and cloud 

conditions must all be captured. 

Several aspects of the modelling strategy used here mean that even with the use of detailed 

observed inputs of the atmospheric conditions, reproducing particular MSc observational 

cases would not be possible. These aspects include: periodic boundary conditions 

(i.e. preventing the accountability of large-scale meteorology); a fixed representation of 

subsidence (i.e. no diurnal variability as occurs in reality); and no initialised wind speeds. 

Thus, while the simulations presented in this chapter were based on observed input soundings 

of moisture and temperature, these simulations were not intended to reproduce such 

observations. Instead, the aim of these simulations was to develop MSc base cases that, 

firstly, exhibit a range of cloud conditions (namely, a range in Nd, to which it is known that 

the indirect aerosol effects are sensitive to). Secondly, these clouds were required to exhibit 

patterns of dynamics and cloud properties typical for MSc clouds over a diurnal cycle. Whilst 

these simulations therefore cannot be compared to a single observed case, they can be 

critically assessed against typically observed cloud behaviours. 

The range in Nd was attained by applying aerosols conditions associated with three 

representative aerosol locations in simulations initialised with identical input soundings of 

moisture and temperature (described in Section 3.2). A similar approach was used by Wang 

et al. (2011a), who developed a range of cloud conditions by altering background CCN 

concentrations. The resulting Nd in the simulations presented here ranged from ~10 cm
-3

 in 

the PR case, to ~200 cm
-3

 in the NP-Pa case, reaching ~600 cm
-3

 in the most polluted NP-Ch 
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case. Low values of Nd (typically less than 50 cm
-3

) tend to occur over the remote oceans, 

with Nd of less than 10 cm
-3

 being possible in extremely aerosol-rare conditions (Wood, 

2012). However, satellite-based observations suggest that clouds demonstrating Nd as low as 

those in the PR case are relatively rare (Latham et al., 2012a). The Nd of ~200 cm-3 resulting 

in the NP-Pa simulation is more typical of MSc clouds. This is expected given that the 

background aerosol concentration used in this simulation was based on those typical of MSc 

cloud regions. Satellite-based observations again suggest that, whilst possible, the higher Nd 

value of ~600 cm
-3

 (in the NP-Ch simulation) represents a more extreme MSc cloud case. 

These simulations therefore successfully produce clouds that cover a broad range of feasible 

Nd values, as required. However, it is acknowledged that both the lowest and highest Nd 

captured by the simulations are close to the bounds of observed clouds. In view of this, 

interpretations and conclusions regarding the response of the clouds to MCB aerosol emission 

(presenting in forthcoming chapters) are constrained to broader patterns of change rather than 

focus on narrow quantitative measures. These patterns are taken to be characteristic of 

broader cloud regimes, with the patterns of change also being critically assessed against those 

expected from both theory and observations. It is acknowledged that while some broader 

conclusions can be drawn, the limited number of cloud samples precludes an comprehensive 

interpretation of all possible conditions. Thus, beyond the time and computational constraints 

of this current work, further population of the Nd parameter space would be informative in the 

future. Of particular interest would be conditions between the PR and NP-Pa cases where 

transition occurs between precipitating and non-precipitating conditions.  

The LWP magnitudes of these simulations were somewhat lower than those observed during 

the DYCOMS-II (RF02) research flight (90 to 120 g m
−2) on which the input soundings of 

these simulations were based. Such underestimation of LWP was also experienced in the 

simulations of Wang and Feingold (2009a), Wang et al. (2011a) and Chen et al. (2011).  

While the surface heat fluxes exhibit a diurnal cycle, they are relatively small (cf. measured 

nocturnal surface heat fluxes of 93 Wm
-2

 (latent) and 16 Wm
-2

 (sensible) from DYCOMS-II 

RF02 (Ackerman et al., 2009)). This is likely linked with the initialisation of wind speed to 

zero, which produces maximum base-layer wind speeds from the convergence of downdrafts 

that reach 2 ms
-1

. These are lower than the 5 to 10 ms
-1

 wind speeds typical of MSc regions 

(Fan et al., 2012). In the large-eddy simulation MSc modelling of Chen et al. (2011), cloud 

properties were found to be less sensitive to changes in wind speed than to other 

environmental settings, including sea-surface temperature, free-tropospheric moisture, and 

the strength of large-scale subsidence. As demonstrated in the results, while the surface fluxes 

are relatively low, they are sufficient to maintain cloud during the PR night and NP night and 

day, and to allow a pattern of rebuilding into the second night in both regimes. 
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While cloud dissipation into the day is characteristic of MSc, satellite observations suggest 

that the total cloud dissipation of the PR case is atypical for MSc clouds (Rozendaal et al., 

1995; Stubenrauch et al., 2006). Total daytime cloud dissipation has however been observed 

during aircraft/ground based field campaigns (Albrecht et al., 1988; Minnis et al., 1992), 

suggesting that its occurrence is more likely over small, localised areas rather than being 

evident as a mean cloud property over tens or hundreds of square kilometres. Whilst having 

no cloud to affect, forthcoming experiments whereby MCB aerosols are emitted into the PR 

simulation in the day, will still be of interest. As, during the day, the cloud fraction in reality 

is somewhat smaller than during the night, the direct aerosol effect will play a larger role. 

Again, while the three base cases described in this chapter demonstrate a range of conditions 

across increasing values of Nd, it is acknowledged that these represent only a small subset of 

the considerable parameter space of possible background conditions possible for MSc. This 

reinforces that further simulations in the future, capturing a greater number of possible 

conditions will be of value. 

Other features of these base cases support the conclusion that these cloud simulations can 

capture representative MSc behaviour. Negative vertical velocity skewness in the NP cases, 

peaking in the lower third of the boundary layer, agrees with the observations of Hogan et al. 

(2009). The positive skewness within the cloud in the PR case being consistent with wide 

downward motions associated with droplet sedimentation within the cloud (Ackerman et al., 

2009) and strong, narrow downdrafts, associated with precipitation below the cloud (Wang 

and Feingold, 2009a). Additionally, the stratification observed in the total water mixing ratio 

of the PR case suggests uncoupling of the cloud and boundary layers (Jones et al., 2011b) 

which is typical of precipitating MSc. While cloud conditions do not recover fully into the 

second night owing to imbalances in forcings, the clear diurnal patterns in cloud properties 

and – importantly – in underlying cloud system physics and dynamics allows the cloud 

response to aerosol emission to be related to the characteristic physical status of the cloud 

system at different times of the diurnal cycle. 

Sensitivity testing of model resolution and domain size suggests that the enhancement of 

horizontal resolution from 300m to 100m (with the vertical resolution being maintained at 

~30 m) improves recovery of LWP into the second night. However, computational 

restrictions would require such a resolution to be run over a smaller domain size than 

currently used, further limiting the aerosol emission analysis time. Conversely, increasing 

both the horizontal and vertical resolutions from 300 m and ~30m to 100m and ~15m resulted 

in a poorer recovery of LWP and cloud fraction, suggesting that this particular MSc cloud 

modelling set-up did not benefit from the increased resolution as would be expected. 

Similarly, increasing the vertical resolution from 20 m to 5 m did not induce significant 



68 

Chapter 3 – Marine Stratocumulus Cloud Base Case Simulations 

improvements in cloud response in the sensitivity study of Chen et al. (2011). In spite of the 

vertical model resolution being larger than the 5 to10 m typically suggested for resolved 

entrainment (e.g. Bretherton et al., 1999; Stevens and Bretherton, 1999), diurnal variations in 

entrainment (exhibited as cloud top height variations, given the constant large-scale 

divergence) behave as expected, with decreases in entrainment during the day in response to 

weakening cloud-top negative buoyancy, and increased entrainment rates following the 

aerosol emission-induced Nd increases in the PR case as will be presented in the next chapter. 

Beyond the time and computational constraints of this current work, larger domain size 

simulations, with higher resolution in both the horizontal and vertical directions would be a 

desirable feature of future work. Additional future work would benefit from extending the 

simulation durations to incorporate an additional diurnal cycle. This would better inform on 

the recovery of the modelled cloud system into the night, and would hence aid in the 

development of more robust cloud simulations. 

It is important to recognise that these cloud modelling simulations use only one model, and 

one model set-up. These simulations use the Morrison double-moment microphysics scheme. 

While this scheme handles data on both the number and mixing ratio of cloud droplets, it 

assumes a fit to a gamma distribution. The use of a bin (or sectional) scheme may thus handle 

such data on the distribution of cloud droplets more accurately (although this would entail 

even greater computational implications). Similarly, the RRTMG SW radiation scheme 

utilises the assumed two-moment microphysics scheme cloud droplet distribution for its 

calculations. Thus, inaccuracies may persist through to calculations of the radiative impact of 

the clouds in these simulations. While representations of such real-life processes – as in all 

computer modelling – is imperfect, the impacts on the overall realism of the simulated 

behaviour will also depend upon the other factors. For example, the microphysics and SW 

radiation implications of the simulated clouds will also be dependent upon the simulated 

dynamics within the boundary (and thus dependent upon parameterisations of turbulent 

kinetic energy and model resolution etc.) along with initialised parameters and assumed 

physical processes (for example the constant large-scale divergence assumed here to simulate 

subsidence).  

In spite of the limitations of this modelling work, these simulations produce patterns of 

radiative heating, cloud properties and dynamics over the diurnal cycle that are believed to be 

adequately representative of MSc clouds to form the basis of the forthcoming MCB 

simulations. The range of cloud conditions, incorporating moderately precipitating and non-

precipitating conditions, is sufficient to examine the patterns of cloud response to the addition 

of MCB aerosols. However, owing to the constraints of this modelling investigation, and the 

wider uncertainties regarding the indirect aerosol effects (described in Chapter 2), moving 
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beyond the identification of these broader patterns of change would be imprudent at this 

stage. This investigation therefore represents an initial ‘first order’ consideration of the 

possible importance of capturing details of MCB implementation mechanisms. Confidence in 

making more detailed assertions would require a significant number of multi-model 

simulations, ideally integrated with observational data. The possibilities, and ramifications of 

such potential future work are discussed in Chapter 9. 

3.5 Conclusions 

This chapter describes the simulation of three MSc cloud cases using the WRF/Chem cloud-

resolving model. The results show that the methodology adopted is capable of adequately 

producing the spatial and temporal patterns of many aspects characteristic to MSc clouds 

across the diurnal cycle. These key processes and properties include turbulence, skewness, 

cloud thickness, cloud fraction and cloud albedo.  

The MSc clouds simulations were sensitive to background aerosol concentrations. Initialising 

the simulations with a range of three realistic background aerosol concentrations resulted in 

one precipitating case (under the cleanest background conditions), and two non-precipitating 

cases (for the more polluted background conditions). These precipitating and non-

precipitating cloud cases additionally exhibit attributes – including precipitation rates, 

skewness and cloud fraction – associated with open cell and closed cell regimes, respectively. 

Thus, in spite of the limited number of cases, these simulations cover a broad range of cloud 

properties. 

Sufficient confidence is engendered by the concordance between simulated and expected 

cloud characteristics that these three MSc cloud cases are used as the base case conditions for 

the MCB effectiveness experiments, presented in Chapters 4, 5 and 8. 

The first experiment, presented in the next chapter, examines the first MCB implementation 

detail case study in determining how MCB effectiveness varies with the timing of MCB 

implementation through the diurnal cycle of MCB clouds. 
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 Chapter 4

Aerosol Emissions During the Diurnal Cycle 

4.1 Introduction 

While continuing developments in global-scale climate modelling are producing 

improvements in the representation of clouds and precipitation, capturing realistic features 

(such as, for example, diurnal cycles) in these parameterised representations remains 

challenging (Flato et al., 2013). Hence, global-scale models are unable to realistically capture 

how MCB effectiveness varies with changes in MSc cloud and boundary layer properties 

over a diurnal cycle (described in Chapter 2). 

As described in Chapter 2, proposals for the MCB scheme suggest a fleet of sea-going 

vessels. Each vessel would potentially emit aerosols continuously as they sailed. Thus, 

previously unaffected clouds could be targeted at different times throughout the diurnal cycle. 

This chapter uses the cloud-resolving modelled MSc clouds described in Chapter 3 – which 

adequately represent diurnally varying cloud behaviour over a range of conditions – as base 

cases in determining how MCB effectiveness varies with this timing of implementation 

through the diurnal cycle. This work therefore examines the first MCB implementation detail 

case study. 

First, the methodology of the MCB experiments is described (Section 4.2), before cloud and 

cloud system changes, along with albedo perturbations are presented and discussed for both 

the precipitating and non-precipitating base cases (Section 4.3 and 4.4). These sections also 

incorporate an examination of how the rate of MCB aerosol emission affects MCB 

effectiveness. The chapter closes by describing possible implications of the detected variation 

in MCB effectiveness according to implementation timing, for both the MCB proposal and 

the production of future MCB effectiveness estimates (Section 4.5). 

4.2 Methodology 

For each of the three MSc base cases, four aerosol emission simulations were performed, 

corresponding to aerosol emission in the early morning (03:00:00 LT), mid-morning 

(08:00:00 LT), day (13:00:00 LT) and evening (18:00:00 LT). These times represent 

emissions into the various conditions of the diurnally varying MSc. Analysis of the post-

aerosol emission simulations is limited to the five hour period subsequent to emission. After 

this time, the aerosols pervade the domain, and owing to the use of periodic boundary 

conditions would therefore result in unrealistic behaviour. Additional experiments 
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investigated the effects of varying the aerosol emission rate and were carried out for 

precipitating conditions only. 

The spraying vessel was assumed to travel the length of the 9 km domain once, along the 

middle of the domain, at a speed of 5 ms
-1

. This moving aerosol emission was simulated as an 

increase in Na and Cl aerosol in one base-layer grid cell at a time. This follows Wang et al. 

(2011a) in simulating the point source aerosol emission from individual spraying vessels (as 

opposed to uniform emission of the MCB aerosols over the domain as a whole). It is noted 

that whilst this ‘point source’ emission still comprises of a uniform aerosol emission over the 

300 m x 300 m grid cell (and is therefore still two orders of magnitude larger than the 2.4 m 

diameter emission rotors proposed by Salter et al. (2008)), it is more realistic than a uniform 

aerosol emission over the whole domain. The mass and number fluxes were based on 

emission rates estimated by Salter et al. (2008) with an emission rate of 30 kg s
-1

 of sea water 

forming a wet spray of 800 nm diameter. As such, these aerosols were emitted into the third 

size bin, representing a dry diameter one quarter of the diameter of the wet droplets (Lewis 

and Schwartz, 2004), i.e. 200 nm. The number flux (1.24x10
12

 m
-2

 s
-1) was calculated as the 

number of 800 nm diameter sea water droplets (assumed to be spherical) produced for the 

30 kg s
-1

 sea water flux. The mass fluxes of Na and Cl (4436 μg m
-2

 s
-1

 and 6840 μg m
-2 

s
-1

 

respectively) were calculated by assuming a 200 nm dry salt diameter, assuming that the 

fraction of Na and Cl follows the ratio of atomic weights (23.00 : 35.45). In preliminary 

testing, it was found that emission rates greater than half the mass and number fluxes of 

Salter’s full emission rate resulted in failure of the SW radiation scheme, ultimately leading 

to overall simulation failure. Given that the Salter et al. (2008) emission rate is dependent on 

the wind speed and decreases at speeds below 6-8 ms
-1

 (Korhonen et al., 2010b), and that half 

of the maximum Salter emission rate (denoted here as 0.5xSA) produced clear perturbations 

in the cloud and cloud system, this will be the maximum emission rate used. Experiments to 

investigate the effects of varying the aerosol emission rate on the precipitating case consisted 

of emitting a quarter of the Salter emission rate (0.25xSA) and a tenth of the Salter emission 

rate (0.1xSA) at each of the four times through the diurnal cycle. The MCB aerosol emission 

experiments are summarised in Table 4.1. 
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Table 4.1 – MCB aerosol emission experiments. PR indicates aerosol emission into the 

precipitating control case. NP-Pa and NP-Ch indicate aerosol emission into the non-

precipitating cases initialised with aerosol concentrations associated with the North-East 

Pacific (intermediately polluted) and the East China Sea (heavily polluted) respectively. 

0.5xSA, 0.25xSA and 0.1xSA describe the aerosol emission rate, as a fraction of the emission 

rate proposed by Salter et al. (2008). 

 Time of aerosol 

emission (LT) 

Aerosol emission rate  

 0.5xSA 0.25xSA 0.1xSA  

 03:00:00 PR PR PR  

 NP-Pa – –  

 NP-Ch – –  

 08:00:00 PR PR PR  

 NP-Pa – –  

 NP-Ch – –  

 13:00:00 PR PR PR  

 NP-Pa – –  

 NP-Ch – –  

 18:00:00 PR PR PR  

 NP-Pa – –  

 NP-Ch – –  

4.3 Results 

The effects of aerosol emissions on albedo were considered by three measures. Since the 

brightening of clouds is only effective at producing a negative radiative perturbation during 

daylight, all measures of albedo were calculated only when downward SW radiation is 

present. As such, the early morning and evening emission times have a reduced analysis 

period. Emission into the early morning captures the latter portion of cloud alterations, while 

the emission into the evening captures only 40 min after the beginning of emission. The three 

measures were: 

1. A broad estimate of the change in domain average calculated cloud albedo for times 

of SW radiation in the 5 hours subsequent to emission compared to the control. This 

uses the simplified calculation of Twomey (1977) for optical cloud thickness (τ), 

described in Equation 4.1. 

  hrN 22  (4.1) 

where:   

 N  = drop concentration (m
-3

)  

 
r  = a representative mean radius calculated from the mass of 

liquid water and droplet concentration at each grid cell (m) 
 

 h  = depth of the grid cell (m)  
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This was then converted into albedo (A) using the approximation described by 

Equation 4.2 (Lacis and Hansen, 1974; Zhang et al., 2012). 

 







8.6
A  (4.2) 

where:   

   = optical cloud thickness (from Equation 4.1)  

An estimation of the aerosol effect on cloud albedo in the absence of LWP increase 

was also included (i.e. a fixed LWP assumption), whereby the calculation was 

repeated with control case LWP and change in Nd weighted for this control case 

LWP. This fixed LWP calculation is intended only as an approximate indication of 

the contribution of the first indirect aerosol effect. 

These calculated cloud albedo estimates do not include the effects of solar zenith 

angle. As such there is likely a high bias in the calculated cloud albedo for times 

close to noon and a low bias for times of larger solar zenith angle.  

2. The domain average change in all-sky planetary albedo for times of SW radiation in 

the 5 hours subsequent to emission compared to the control was calculated as the 

ratio of upward to downward SW radiation at the top of atmosphere. This 

incorporates the concurrent effects of cloud albedo and cloud fraction changes as well 

as direct aerosol effects, over a constantly low ocean surface albedo. This output is 

calculated using output from the SW radiation scheme. 

3. The domain average change in clear-sky albedo for times of SW radiation in the 5 

hours subsequent to emission compared to the control. This calculates the albedo for 

all columns in the domain, omitting cloud layer effects. Therefore, the masking effect 

of overlying clouds is removed, and the change in clear-sky albedo is a measure of 

the maximum direct aerosol effect. This output is calculated using output from the 

SW radiation scheme. 

4.3.1 Marine Cloud Brightening Aerosol Emission into the Precipitating 

Cloud Case 

The 0.5xSA emission of MCB aerosols into the PR base case resulted in cloud average Nd 

increases at all four emission times during the diurnal cycle. This increase ranged from a five-

fold increase (to 117 cm
-3) for emission into the low cloud fraction during the day 

(13:00:00 LT), to an increase of almost 17 times the original concentration (to 234 cm
-3) for 

emission in the mid-morning (08:00:00 LT) (Table 4.2). 
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Table 4.2 – Results for the 0.5xSA aerosol emission rate. Domain and time-period averaged 

liquid water path (LWP, g m
-2), cloud fraction (fc, %), cloud droplet number concentration 

(Nd, cm
-3) and surface rain rate (Rr, mm day

-1). The time average is taken for the times of 

shortwave (SW) radiation present in the 5 hours subsequent to aerosol emission. 

Case 

Time of 

aerosol 

emission 

(LT) 

LWP, g m
-2

 fc, % Nd, cm
-3

 Rr, mm day
-1

 

Control 0.5xSA Control 0.5xSA Control 0.5xSA Control 0.5xSA 

PR 03:00:00 31.8 45.3 37.9 76.3 10.8 176.3 0.25 0.03 

08:00:00 7.0 15.2 6.8 19.8 13.5 234.3 0.09 0.05 

13:00:00 0.6 0.5 0.4 0.3 20.6 116.9 0.00 0.00 

18:00:00 3.6 3.6 5.6 5.6 19.5 171.1 0.00 0.00 

NP-Pa 03:00:00 59.8 60.8 97.9 98.6 156.2 315.0 0.00 0.00 

08:00:00 31.7 31.6 79.7 79.3 156.2 180.7 0.00 0.00 

13:00:00 14.8 14.8 22.9 22.7 156.5 259.8 0.00 0.00 

18:00:00 14.3 14.3 22.4 22.5 156.3 178.8 0.00 0.00 

NP-Ch 03:00:00 59.6 59.1 98.2 98.7 526.6 632.2 0.00 0.00 

08:00:00 31.6 31.4 80.8 80.3 513.2 517.0 0.00 0.00 

13:00:00 13.4 13.7 18.8 19.1 516.9 556.1 0.00 0.00 

18:00:00 11.8 11.8 9.1 9.1 528.1 528.3 0.00 0.00 

These Nd increases were sufficient to reduce the domain mean precipitation rate by up to 88% 

averaged over the time where SW radiation was present in the 5 hours subsequent to 

emission. However, no change occurred for emission into the cloud-free early afternoon at 

which time background precipitation has already ceased, or for evening emission 

(18:00:00 LT) where precipitation rates had not yet recovered. The precipitation decreases 

produced an increase in LWP compared to the control case of 43% for early morning 

emission (03:00:00 LT), and 114% for mid-morning emission. In addition to LWP increases, 

emitting aerosols into cloudy conditions resulted in an increase in cloud fraction. Early 

morning emission doubled the cloud fraction while mid-morning emission tripled the cloud 

fraction. The cloud fraction, and associated perturbations were negligible for day and evening 

emissions. Aerosol emission also affected the cloud height, particularly when emitted into the 

dissipating cloud in the early and mid-mornings. Here, the cloud top descent seen in the 

control case was replaced by cloud top height maintenance (Figure 4.1). 
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Figure 4.1 – Time evolution for PR 0.5xSA emission-induced perturbations in domain 

averaged: (a) vertical velocity variance (<w’
2
>,m

2
s

-2
); (b) vertical velocity skewness; 

(c) resolved turbulent kinetic energy (m
2
s

-2
); and (d) total water mixing ratio (g kgdry air

-1
). 

Solid lines indicate the perturbed domain average cloud top and base (contour at cloud 

water mixing ratio of 0.01 g kgdry air
-1

). Control case domain average cloud top and base are 

indicated by the dotted lines. The dashed vertical lines indicate the time of aerosol emission. 

A slight cloud top increase was also seen for evening emission, although as this is into the 

post-SW radiation growth phase of the cloud, the perturbation is less marked. Again, no 

cloud changes occurred when emitting into the cloud-free early afternoon. Considering how 

these changes to cloud properties are related to albedo, Figure 4.2 shows the change in 

calculated cloud albedo, change in all-sky albedo and change in clear-sky albedo for an 

aerosol emission rate of 0.5xSA. 
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Figure 4.2 – Domain and time averaged albedo perturbations associated with aerosol 

emission at the 0.5xSA rate, at 03:00:00 local time (LT), 08:00:00 LT, 13:00:00 LT and 

18:00:00 LT into the PR, NP-Pa and NP-Ch cases. In each case, four measures of the effects 

of aerosol emission on albedo perturbations are shown: the change in calculated cloud 

albedo; the change in cloud albedo assuming a LWP fixed at the control magnitudes with 

weighted Nd increases; the change in all-sky planetary albedo; and the change in clear-sky 

albedo. 

For the PR base case, there is a clear variation in the change in calculated cloud albedo for 

aerosol emission at different times during the diurnal cycle. Early and mid-morning 

emissions produced the largest increase in calculated cloud albedo of 0.28 and 0.17 

respectively. As the cloud recovered into the second night, evening emission produced a 

slight increase in calculated cloud albedo of 0.01. There was also a clear variation in both the 

all-sky albedo and clear-sky albedo responses for aerosol emission at different times during 

the diurnal cycle. These variations will be caused by differences in the distribution of the 

MCB aerosols in response to turbulent mixing throughout the boundary layer, and will, as 

such, depend upon the time of day. These patterns of all-sky and clear-sky albedo changes 

were different to those seen in cloud response only. The largest increase in all-sky albedo was 

seen for early morning emission at 0.11, reducing to an increase of 0.06 for mid-morning 

emission, and decreasing further for evening emission at 0.04. The clearest of the deviations 

from the pattern of change of calculated cloud albedo was during the cloud-free early 

afternoon, where the all-sky albedo increase was 0.06. As expected in these cloud-free 

conditions, the increase in all-sky albedo was matched by the increase in clear-sky albedo at 

this time, indicating that the all-sky albedo change was purely from the direct aerosol effect. 

The vertical distribution of the domain maximum unactivated aerosol concentration is shown 

for each emission time in Figure 4.3. The clear-sky albedo also increased the all-sky albedo 

more than the calculated cloud albedo for the evening emission where cloud fraction was low. 

The changes to clear-sky albedo again showed a different diurnal pattern. Early morning 

emission again produced the largest perturbation of 0.08, falling to 0.04 for emission in the 

mid-morning. This recovered into the day, producing a clear-sky albedo increase of 0.07. The 

response was again low for evening emission, producing a clear-sky albedo increase of 0.02. 
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Figure 4.3 – Time series of domain maximum aerosol concentrations (cm

−3
) for the PR, 

NP-Pa and NP-Ch cases (all 0.5xSA aerosol emission rate). Plots include 5 hours prior to 

emission and 5 hours subsequent to emission, with aerosol emission start time being 

indicated by the vertical dashed line. 

4.3.2 Marine Cloud Brightening Aerosol Emission into the Non-

Precipitating Cloud Cases 

Emission into the NP cases resulted in larger absolute Nd increases than in the PR case 

(Table 4.2). Increases were also generally larger for the less polluted NP-Pa case than the 

more polluted NP-Ch case. The maximum resulting domain and time averaged Nd following 

emission ranged from 234 cm
-3

 (PR) to 315 cm
-3

 (NP-Pa) and 632 cm
-3

 (NP-Ch). These values 

decreased for emission at the least effective times of day to 117 cm
-3

, 179 cm
-3

 and 517 cm
-3

 

respectively. It is noted that these averages are for a small domain size, in the time 

immediately after emission and should therefore be larger than those obtained in longer time 

scale and larger domain size simulations. This is true when comparing to the finding of Wang 

et al. (2011), who report average resulting Nd of 65 mg
-1

 and 46 mg
-1

 for their precipitating 

cases (where 1 mg
-1

 is equal to 1 cm
-3

 for an air density of 1 kg m
-3). For these NP cases, as 

there was no precipitation to prevent, no precipitation change occurred (Table 4.2). The LWP 
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changes were small (up to 2%), with small losses during the NP-Ch morning. Cloud fraction, 

cloud top and cloud base heights all showed negligible perturbations. Whilst the magnitudes 

of calculated cloud albedo increase were generally significantly smaller for the NP cases 

compared to the PR cases, these were also sensitive to the timing of emission. For NP-Pa no 

perturbation was produced for mid-morning emission, although an increase in calculated 

cloud albedo of 0.04 resulted from early morning emission. This peak value was only 13% of 

the maximum increase in calculated cloud albedo, reached when emitting into the PR cloud. 

For the more heavily polluted NP-Ch case, the pattern was repeated, although where changes 

to the calculated cloud albedo occur, the magnitude was less than half that of the NP-Pa case. 

The change in all-sky albedo was similarly significantly lower than for the PR case. The 

maximum all-sky albedo increase obtained for the NP cases occurred for emission into the 

day (0.02) and was around a sixth of that achieved in the PR case. The values of the all-sky 

albedo changes were similar for both NP cases. The changes in all-sky albedo followed the 

same alternating pattern as that of the PR case, with higher perturbations in the early morning 

and day. 

4.3.3 Rate of Marine Cloud Brightening Aerosol Emission into the 

Precipitating Cloud Case  

For early and mid-morning emission into the PR case, Nd increased with emission rate. 

However, the relationship was non-linear and tended to flatten at higher aerosol emission 

rates (Table 4.3). 

Table 4.3 – Results for the PR case. Notes as Table 4.2. 

 Time of aerosol 

emission (LT) 
Case 

LWP, 

g m
−2

 

fc,  

% 

Nd, 

cm
−3

 

Rr, 

mm day
−1

 

 

 03:00:00 Control  31.8  37.9  10.8  0.25  

 0.5xSA  45.3  76.3  176.3  0.03  

 0.25xSA  44.6  73.0  141.5  0.04  

 0.1xSA  44.1  69.7  92.9  0.04  

 08:00:00 

 

Control  7.0  6.8  13.5  0.09  

 0.5xSA  15.2  19.8  234.3  0.05  

 0.25xSA  14.4  17.5  200.3  0.05  

 0.1xSA  13.1  14.6  124.4  0.06  

 13:00:00 

 

Control  0.6  0.4  20.6  0.00  

 0.5xSA 0.5  0.3  116.9  0.00  

 0.25xSA  0.5  0.3  134.7  0.00  

 0.1xSA  0.5  0.4  181.6  0.00  

 18:00:00 

 

Control  3.6  5.6  19.5  0.00  

 0.5xSA  3.6  5.6  171.1  0.00  

 0.25xSA  3.6  5.6  180.6  0.00  

 0.1xSA  3.6  5.6  139.9  0.00  
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The opposite relationship occurred for day and evening emissions, with decreasing Nd as 

aerosol emission rates increased. Future investigation of the reason of such a pattern would 

be of interest, although the low cloud fractions during the day reduce the impact that such 

cloud changes have on the overall albedo perturbations. Precipitation rates were uniformly 

reduced across all emission rates for the early and mid-morning. The LWP showed small 

increases with aerosol emission rates for the early and mid-morning emission times, as did 

the cloud fraction. The calculated cloud albedo also increased with increasing aerosol 

emission rates for both the early and mid-morning emissions (Figure 4.4). This relationship 

was non-linear, showing a flattening gradient at higher aerosols emission rates. For example, 

the rate of calculated cloud albedo increase with respect to increase in emission rate reduced 

to a third for the higher emission rates (0.25xSA to 0.5xSA) into the cloud in the mid-

morning compared to the lower emission rates (0.1xSA to 0.25xSA). This reduction was just 

under a half for emission into the early morning cloud. Emitting into the cloud-free 

conditions of the PR early afternoon produced no change in calculated cloud albedo, 

regardless of aerosol concentration. Increasing the emission rate between 0.1xSA and 0.5xSA 

also had little effect on calculated cloud albedo when emitting into the recovering evening 

cloud. The effect of increasing the aerosol emission rates on the change in all-sky albedo also 

varied through the diurnal cycle. The change in all-sky albedo showed a positive correlation 

with increasing emission for early and mid-morning emission. Again, the rate of all-sky 

albedo increase with emission rate was non-linear, the gradient of the response typically 

halving for the higher emission rates. This relationship was again weaker for the evening, 

with little variation in the increase in all-sky albedo for different emission rates. The clear-sky 

albedo again showed a non-linearly increasing response. 

It is noted that the phenomenon of the calculated cloud albedo being lower than the all-sky 

albedo in the 18:00:00 LT case is likely due to the omission of solar zenith angle from the 

cloud albedo calculation.  
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Figure 4.4 – Domain and time average albedo perturbations associated with 0.1xSA, 

0.25xSA and 0.5xSA aerosol emission rates at 03:00:00 LT, 08:00:00 LT, 13:00:00 LT and 

18:00:00 LT into the PR regime. In each case, three measures of the effects of aerosol 

emission on albedo perturbations are shown: the change in calculated cloud albedo; the 

change in all-sky planetary albedo; and the change in clear-sky albedo. 

4.4 Discussion 

The albedo response to aerosol emission for the PR regime is significantly larger than for the 

NP regime, in agreement with the MCB simulations of Wang et al. (2011a) and the behaviour 

expected based on current understanding of MSc (Figure 2.6 and discussions in Chapter 2). 

Whilst aerosol emission into both the NP and PR regimes demonstrate the first indirect 

aerosol effect (Twomey, 1977), only aerosol emission into precipitation in the PR regime 

(i.e. early and mid-morning) demonstrates a strong second indirect aerosol effect (Albrecht, 

1989), as discussed in Section 2.4 (Chapter 2). For the PR case, the LWP increases associated 

with this second indirect aerosol effect and negative radiative forcing are more effective at 

increasing the calculated cloud albedo than the first indirect effect, again in agreement with 

Wang et al. (2011a). However, there is no significant second indirect aerosol effect when 

emitting into the PR regime cloud-free early afternoon or into the PR regime evening where 

the cloud is in a period of regrowth and has not recovered sufficiently for precipitation. The 

LWP increases in the PR regime, and small decreases in LWP in the NP regime illustrate the 

complexities and uncertainties surrounding the magnitude – and sign – of the second indirect 

aerosol effect (discussed in Chapter 2). The slight LWP losses for the early and mid-morning 

aerosol emissions in the NP-Ch case suggest a small positive second indirect aerosol effect. 

As discussed in Section 2.4.3 (Chapter 2), the LWP response to additional aerosols depends 

on comparative gains in water (from either dynamical changes or the suppression of 

precipitation caused by the reduced coalescence of smaller droplets), and increased 

entrainment drying resulting from the presence of smaller cloud droplets in the entrainment 

zone and increased TKE. That section also described two potential thresholds for 

characterising whether a cloud system would gain or lose LWP in response to the addition of 
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aerosols. From these, LWP increases would be expected for clouds with surface precipitation 

rates in excess of 0.1 mm day
-1

 (Ackerman et al., 2004; Chen et al., 2011) , or for clouds with 

bases below 400 m (Wood, 2007). Both of these thresholds hold for the disparity in LWP 

response between the PR and NP regimes (cf. Figures 3.3 and 3.5), suggesting that the LWP 

increases resulting from precipitation suppression in the PR case were sufficient to overcome 

the increased evaporation of cloud droplets that resulted in small LWP losses in the NP case. 

It is noted that small negative fixed LWP calculated cloud albedo changes (evident in Figure 

4.2) are likely artefacts of the approximate nature of the estimation method used rather than 

being symptomatic of a robust a physical feature.  

While the simulations therefore produce an interesting range of responses to the emission of 

aerosol, they are a small subset of possible cloud conditions. Previous global-scale computer 

model simulations have found that the lifetime of the emitted aerosols is up to 4.8 days (Jones 

and Haywood, 2012). Whilst the focus here is on the rapid cloud responses to aerosol 

emission, particularly contrasting the cloud responses at different times in the diurnal cycle, 

we can infer insights into longer time-frame cloud changes from the simulations. Changes in 

cloud properties suggest that the PR cloud subject to MCB aerosol emission is undergoing a 

regime change to a more persistent, non-precipitating cloud type, as discussed in the last 

paragraph of Section 2.4.3 (Chapter 2). Consistent with changes in cloud-top entrainment 

associated with increases in aerosol concentrations as described in Section 2.4.2.2, aerosol 

emissions in the early and mid-mornings produce increased turbulent mixing at the cloud-top 

(evinced by the larger vertical velocity variance at the cloud top; Figure 4.1 a). The associated 

increases in entrainment rate are suggested by the relative increase in cloud top height, 

consistent with the cloud top height increases observed in ship tracks in the open cellular 

regime (Christensen and Stephens, 2011). Emission of aerosols in to the PR case during the 

early and mid-mornings also resulted in both an increase in LWP, and persistence of the 

cloud into the day where enhanced albedo is important for reflection of SW radiation. The 

indication of regime change from a precipitating to non-precipitating regime is also evident in 

changes to the vertical velocity skewness as the positive cloud-top skewness of the control 

case becomes more negative after emission (Figure 4.1 b). The effectiveness of this morning 

emission is consistent with the hypothesis proposed by Wang et al. (2011a), with the stronger 

night-time response also agreeing with the large-eddy simulations of Ackerman et al. (2003). 

Whilst the immediate impact of aerosol emission into the clouds in the evening is reduced 

owing to the lack of SW radiation, regime change may continue through the night, persisting 

into the subsequent day. Indicators of regime change do not occur for emission into the 

cloud-free early afternoon, regardless of aerosol emission rate. Indicators of regime change 

are also not evident for the NP regime at any emission time. 
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Whilst there was no indication of regime change in the cloud-free early afternoon of this 

particular PR simulation, the future investigation of further cloud conditions would be of 

interest. Of particular interest would be the case of a precipitating cloud that was better 

maintained into the daytime than was the case here. Furthermore, the behaviour of clouds 

with weaker precipitation (i.e. evaporating before reaching the surface) would also yield 

interesting results. 

For the PR case, while aerosol emission did not increase cloudiness during the day, the all-

sky albedo was still increased owing to a larger direct effect under the cloud-free conditions. 

This balance of direct and indirect aerosol effect is important, as the direct aerosol effect will 

somewhat compensate for the lack of indirect aerosol effect under lower cloud fractions 

(particularly during the day). This cloud fraction dependent direct aerosol effect therefore 

moderates the diurnal patterns of cloud response to some extent.  

The lack of rapid cloud response for daytime emission may allow the aerosols to disperse 

horizontally within the boundary before being drawn into the cloud region by updrafts during 

the subsequent night. As the aerosols will then cover a larger horizontal extent, the local 

concentration of aerosols will be diminished, and the pattern of aerosol uptake will be altered. 

For example, Wang et al. (2011a) found that cloud albedo enhancement was larger for 

uniform compared to point source emission in their weakly precipitating case, however, the 

converse was true in a more heavily precipitating case. In addition to changes in cloud 

response, both the horizontal and vertical distribution of aerosols will be important for the 

direct aerosol effect. This, importantly, also depends upon cloud fraction which reinforces the 

benefits of exploring a greater range of cloud conditions in future work. 

Considering the effect of aerosol emissions on planetary albedo changes in the PR case 

suggests that an asymptotic limit in increasing the all-sky albedo may lie above 0.5xSA 

(Figure 4.4). 

As described in Chapter 1, the effects of the locally high aerosol concentrations resulting 

from a point source emission cannot be considered in the uniform aerosol application 

assumed in global-scale models. The disparities between changes in the calculated cloud 

albedo and all-sky albedo in the PR case for early and mid-morning emissions (Figure 4.2 

and Figure 4.4) suggests that the large increases in calculated cloud albedo are not being fully 

achieved in the planetary albedo response. While differences in the calculation methods 

between the albedo responses will contribute towards this disparity, it is also suggested that 

the high concentration of aerosols emitted via the point source emission technique could also 

contribute towards this disparity through an offsetting/tempering effect. The high 

concentration of aerosols emitted from the point source produced large increases in Nd, 

particularly in the early/mid-morning and evening PR cases (Table 4.3). These increases 
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cause cloud-top radiative cooling to strengthen, leading to intensification of cloud-top 

turbulence and the entrainment of dry air from the free troposphere above (evidenced by the 

increase in cloud top height). This entrainment of warm, dry air increases the evaporation of 

cloud droplets, leading to the accumulation of interstitial aerosols overlying the cloud top 

(Figure 4.3). 

The sea salt aerosols modelled here are highly scattering, but non-absorbing in the ultra-

violet/visible wavelengths. Whilst a layer of pure NaCl would therefore typically not be 

associated with a reduction in planetary albedo when overlying clouds, several factors could 

cause these overlying aerosols to reduce the upward SW radiation at the top of the 

atmosphere. Radiative transfer modelling of atmospheric concentrations of non-absorbing sea 

salt aerosol overlying a low surface albedo (0.1) have produced a positive SW forcing of up 

to +5 Wm
-2

 for solar zenith angles of up to 30° (Li et al., 2008) (equivalent to between 

10:00:00 LT and 14:00:00 LT in these simulations). Here, the predominantly forward 

scattering of the sea salt aerosols causes the majority of the SW radiation to pass through the 

aerosol layer, with the magnitude of SW radiation being reflected back to space being 

reduced by near-infrared absorption, at which wavelengths sea salt aerosols are more 

absorbing than in the ultraviolet/visible wavelengths (Hatzianastassiou et al., 2007). The 

presence of absorbing material in the sea salt aerosol would exacerbate the effect, with 

previous modelling and observational studies showing that partially absorbing aerosols 

overlying clouds reduce the measured upward irradiance and hence produce low biases in 

satellite retrievals of cloud optical depth (Haywood et al., 2004; Coddington et al., 2010). A 

radiatively positive effect was also shown in the modelling of mildly absorbing organic 

aerosols internally mixed in sea salt aerosols at mass fractions as low as 10% (Randles et al., 

2004). Attenuation of upward radiation may also result from increases in total water mixing 

ratio above the cloud top (Figure 4.1 d), resulting from the emission of the MCB aerosols. 

The apparent offsetting/tempering role of the direct effect increases with increasing emission 

rate, demonstrated by the increasing disparity between changes in calculated cloud albedo 

and all-sky albedo in the early and mid-morning cases (Figure 4.4). However, this is not 

sufficient to overcome the increasing calculated cloud albedo and all-sky albedo with aerosol 

emission rate (Figure 4.4). Without the parameterisation of the effects of the locally high 

(point source originating) aerosol concentration, global-scale models are unable to simulate 

this effect. The possible presence and magnitude of such an offsetting effect could be of 

interest in future observational studies or possible future experimental work. 
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4.5 Conclusions 

The results of this first MCB experiment (examining the first MCB implementation detail 

case study), show that the effectiveness of MCB depends on the timing of MCB 

implementation during the diurnal cycle. The results additionally reaffirm that MCB 

effectiveness is sensitive to the base case cloud regime, with the albedo increases associated 

with the precipitating regime being distinctly larger than those associated with the non-

precipitating regime. For the more efficacious precipitating regime, the optimal timing for 

MCB aerosol emission was the early morning. At this time, the emission of MCB aerosols 

led to a large second indirect aerosol effect and coincident cloud regime change to the more 

persistent non-precipitating state. Such cloud regime changes did not occur when the MCB 

aerosols were instead emitted into the cloud-free early afternoon. In the absence of cloud 

albedo enhancements, and in spite of compensating direct aerosol effect albedo increases, 

MCB was hence less effective when implemented at this time. 

One benefit of identifying this optimal timing of MCB implementation will be in the design 

of efficient MCB operational strategies. In addition to this practical benefit, these results also 

demonstrate that incorporating this diurnally varying MCB efficacy will be essential for 

improving the realism of model-derived MCB effectiveness estimates. For example, MCB 

effectiveness may be overestimated in studies where this feature is omitted. Likewise, owing 

to the challenges of realistically parameterising the MSc diurnal cycle in global-scale models, 

increasingly realistic MCB effectiveness estimates may be informed by accounting for the 

model’s veracity in representing such temporal sensitivities. Further simulations in the future, 

covering a broader range of cloud and atmospheric conditions would be useful in exploring 

this phenomenon. 
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 Chapter 5

The Inclusion of Water with Emitted Aerosols 

5.1 Introduction 

As described in Chapter 1, MCB aerosols could be produced by evaporating sea water 

droplets generated by specifically designed sea-going vessels (Salter et al., 2008). With the 

design of the production mechanism yet to be finalised (Salter et al., 2008; Latham et al., 

2012a; Neukermans et al., 2014), it is possible that such evaporation would not occur until 

the sea water droplets had left the generating mechanism and entered the marine boundary 

layer. This evaporation of sea water droplets could lead to latent heat fluxes large enough to 

change the buoyancy and dynamics of the boundary layer, thus affecting the transport of the 

MCB aerosols to the cloud layer. However, all previous MCB simulations neglect this 

potential real-world formation mechanism, and assume that the MCB aerosols are in 

equilibrium with the background relative humidity upon emission.  

This chapter, in examining the second MCB implementation detail case study, utilises the 

cloud-resolving model described and used in Chapters 3 and 4 to examine how representing 

the emitted MCB aerosols as sea water droplets ultimately affects estimates of MCB 

effectiveness. This chapter begins by explaining the methodology used (Section 5.2) before 

pertinent features of the simulations are presented (Section 5.3). Section 5.4 then discusses 

these outputs, and conceptualises how the diurnally-varying significance of the sea water 

droplet MCB assumption can be related to changing patterns of boundary layer dynamics. 

This chapter concludes by describing the implications that these findings have both for future 

implementation mechanism design considerations and for MCB modelling. 

5.2 Methodology 

To examine the effects of representing the emission of MCB aerosols as water droplets, the 

WRF/Chem model was again used, as for Chapters 3 and 4 (and as described in Section 3.2). 

Two of the MSc base cases described in Chapter 3 (and utilised in Chapter 4) were 

considered here: the non-precipitating NP-Pa case and the precipitating PR case. 

As in Chapter 4, model aerosol emissions simulated the sea-going emission vessel, travelling 

the length of the domain once, at a speed of 5ms
-1

, starting and ending at the centre of the 

domain. Owing to the unnaturally high local aerosol emission causing failure of the SW 

radiation scheme, and ultimately model failure (see Section 4.2), a reduced sea water 
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emission rate of 7.5 kg s
-1 

was used (i.e. 0.25xSA). Aerosols within the model are either 

unactivated interstitial aerosols, or activated in the cloud phase. The simulated emission of 

dry aerosol particles (hereinafter denoted as DRY) used Na and Cl mass fluxes of 1109 and 

1710 µg m
-2

s
-1

, respectively (corresponding to the 7.5 kg s
-1

 sea water emission rate with 

assumed salinity of 35 g of sea salt per litre of sea water), with a number flux of 

0.31x10
12 

m
-2 

s
-1

. These aerosols, simulating a dry diameter of 200 nm, were emitted into the 

interstitial aerosol bin size 3 (dry diameter range of 156–313 nm). It is noted that this DRY 

emission technique is that used for the MCB simulations in Chapter 4.  

The simulation of the emission of sea water droplets (hereinafter denoted as WET), utilized 

the model cloud phase, and thus included microphysical processes (for example, evaporation 

and coalescence). Aerosols were introduced into the cloud phase with mass and number 

fluxes as in the DRY case. Water was introduced into the cloud phase with a mass flux of 

7.5 kg s
-1

 and number concentration equal to that of the aerosols, simulating sea water 

droplets of 800 nm diameter (as suggested by Salter et al. (2008)). 

As in Chapter 4, post-emission analysis was again restricted to 5 hours subsequent to 

emission in order to avoid the effects of aerosol interference at the periodic boundaries. 

On the basis of the hypothesis that the evaporative cooling of the sea water droplets (and 

resulting negative buoyancy) affects the aerosol plume height achieved, an additional set of 

experiments was carried out. DRY aerosols were emitted for 1 minute into the centre 

lowermost grid cell of the NP-Pa regime at 03:00:00 LT coincident with an applied 

temperature perturbation ranging from -0.1 to -2K. Thus the effects of a temperature 

perturbation were isolated from the effects of increases in specific humidity. The subsequent 

plume heights were then analysed. These temperature perturbations are approximately 

equivalent to the cooling associated with sea water emission rates of 2 to 45 kg s
-1

 assuming 

evaporation within one grid cell (between 0.07 and 1.5 times the emission rate proposed by 

Salter et al. (2008)). Descriptions of these three simulation sets are summarised in Table 5.1. 
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Table 5.1 – Summary descriptions of the three simulation sets used in Chapter 5. 

Experiment Description 

DRY MCB simulated as the emission of aerosol particles (as in Chapter 4) 

WET MCB simulated as the emission of sea water droplets 

DRY with 

applied temperature 

perturbation 

DRY aerosol particles emitted in the presence of an applied negative 

temperature perturbation (representing the effects on temperature of the 

evaporative cooling of droplets, in isolation from any changes in 

specific humidity) 

 

5.3 Results 

The WET simulations did not produce any additional precipitation or wet deposition of 

aerosols, with emitted water droplets evaporating within one 2 second model time step in all 

cases. This water droplet evaporation resulted in a cooling and moistening of the lowest 

model layer, in grid cells local to the emissions. Potential temperatures decreased by roughly 

0.3 K in all WET simulations. A maximum moisture increase of 0.1 g kgdry air
-1

 occurred for 

the emission of aerosols at 03:00:00 LT into the PR and NP-Pa regimes (increasing 

background levels by ∼1%). As a result, cold pools – regions of negative buoyancy in excess 

of -0.005 ms
-2

 (Tompkins, 2001; Devine, 2007) – and associated flow patterns were formed 

along the emission path (Figure 5.1). These cold pools were short-lived, dissipating within 

1.5 hours of the WET aerosol emission (Figure 5.1, left-hand column). In contrast, the DRY 

aerosol emissions produced no temperature, moisture or buoyancy changes and as such, the 

WET simulation aerosols remained lower in the boundary layer (Figure 5.2). 
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Figure 5.1 – Left column: Colour-filled contours show the difference in surface potential 

temperature (WET minus DRY) for aerosol emission into the NP-Pa regime at 03:00:00 LT. 

Arrows show differences in surface flow patterns. Thick black contours outline cold pools 

(buoyancies in excess of -0.005 ms
-2

); Right column: Mean (averaged over the x-direction) 

of difference in potential temperature (WET minus DRY) for aerosol emissions into NP-Pa 

regime at 03:00:00 LT. Arrows show differences in mean flow patterns (red=updrafts, 

blue=downdrafts). Black dashed lines show mean cloud outline. Continued overpage. 
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Figure 5.1 continued – Left column: As previous left column, but for PR regime for 

emissions at 03:00:00 LT; Right column: As previous right column but for PR regime for 

emissions at 03:00:00 LT. 
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Figure 5.2 – For NP-Pa base case. Progression through time for emissions at 03:00:00 LT. 

Left column (WET case): emitted aerosol (bin 3) concentration (grey scale filled contours), 

difference in potential temperature (WET minus NO EMISSION control case) (coloured 

contour lines with scale as in Figure 5.1), and cloud top and base (thick white outline). All 

outputs are averaged over the x-direction; Middle column (DRY case): as left column but 

for the DRY case; Right column (DRY minus WET): Difference in emitted aerosol (bin 3) 

concentrations (DRY minus WET). Continued overpage. 
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Figure 5.2 continued – As previously, but for the PR regime. 
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The aerosol plumes in the WET simulations were suppressed to between 70 and 78% of the 

heights reached by the DRY aerosol plumes in the first hour after emission (height reductions 

of between 33.2 and 46.0 m; Figure 5.3 a). The set of DRY experiments initialized with the 

applied temperature perturbations similarly show suppression of the aerosol plume height 

(Figure 5.3 b). 

 

Figure 5.3 – Initial aerosol plume heights: (a) height achieved by DRY and WET aerosol 

plumes averaged over the first hour after emission (bars). Also shown as a proportional 

height, i.e. WET plume height/DRY plume height (green diamonds). Heights are taken as the 

100 cm
-3

 isoline of the emitted aerosol size bin (bin 3); (b) proportional heights reached by 

DRY aerosol emissions under applied initial negative temperature perturbations (20 minutes 

after emission with heights taken as the 50 cm
-3

 isoline of bin 3 aerosols). 

The proportional plume height associated with a temperature perturbation similar to those in 

the WET simulations (i.e. about 0.3 K) was 72%, fitting well with the plume height 

suppressions seen in the WET simulations themselves. This supports the idea that it is the 

temperature decreases resulting from evaporative cooling of the sea water droplets that 

affects the aerosol plume height achieved, rather than changes to the moisture profile 

resulting from the addition of water. It is noted that the plateauing of the proportional heights 

reached in the applied temperature perturbation simulations (Figure 5.3 b) may result from 

physical limits of the horizontal spreading of the plume. Future work could also examine the 

sensitivity of the magnitude of this asymptote to the vertical grid cell resolution, although 

such extension is unlikely to yield significant further insight. 

Although the cold pools were short-lived, the height suppression of the WET simulation 

aerosols continued for the duration of the simulations (Figure 5.2, right-hand columns). As 

such, the number of emitted aerosols reaching the cloud base was smaller in all WET cases 

compared with DRY. This difference was dependent on regime and emission time 

(Figure 5.4 a to d).  
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Considering first the NP-Pa regime. For emission at 03:00:00 LT, the number of aerosols 

reaching the cloud base was consistently halved for the WET compared with DRY emissions 

(reaching domain averages of 62 and 125 cm
-3

 respectively by the end of the simulations; 

Figure 5.4 a). For emissions at 08:00:00 LT into the increasingly uncoupled boundary layer, 

the number of aerosols reaching cloud base was small for both WET and DRY emissions 

(fewer than 10 cm
-3

 averaged over the domain; Figure 5.4 b). While aerosols emitted at 

03:00:00 LT began to reach the cloud base after 1 hour (Figure 5.4 a), DRY aerosols emitted 

at 13:00:00 LT took around 2 hours to begin to reach the cloud base (Figure 5.4 c). WET 

aerosols emitted at 13:00:00 LT, took approximately 3 hours to begin to reach the cloud base 

(Figure 5.4 c). By the end of the 13:00:00 LT simulations, the increase in aerosol number 

concentration of bin 3 aerosols (the emitted aerosol size) just below the cloud base was 

~170 cm
-3

 for the DRY and ~50 cm
-3

 for WET emissions. In terms of calculated cloud albedo 

increases (Figure 5.4 e to h), emissions at 13:00:00 LT into the NP-Pa cloud showed most 

sensitivity to the WET/DRY aerosol assumption. Here, the average calculated cloud albedo 

over the 5 hour simulation increased by 0.014 (4.3%) for the DRY emission but by only 

0.005 (1.4%) in response to the WET emission (Figure 5.4 g). Including water in the 

simulated aerosol emission therefore lessened the calculated cloud albedo increase by 67%. 

For emission at 03:00:00 LT, the calculated cloud albedo increased by 0.018 (2.9%) for the 

DRY emission and by 0.012 (1.9%) for the WET emission (Figure 5.4 e). For emission at 

08:00:00 LT into the increasingly uncoupled boundary layer, the calculated cloud albedo 

increases were 0.002 (0.6%) for the DRY emission and 0.001 (0.3%) for the WET 

(Figure 5.4 f). For emission at 03:00:00 LT into the PR regime, the average increase in 

calculated cloud albedo was 0.160 (94.1%) for the DRY emission and 0.148 (88.5%) for the 

WET (Figure 5.4 h). So, whilst including water in the simulated aerosol emission lessens the 

calculated cloud albedo increase by only 7.5%, this equates to an absolute difference in 

calculated cloud albedo increase of 0.012. This is larger than the 0.009 difference in 

calculated cloud albedo increase for NP-Pa 13:00:00 LT emissions.  
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Figure 5.4 – (a) Time series of the increase in domain average emitted aerosol concentration 

in the layer below cloud base (ΔBIN3 conc; cm
-3

; dotted line) and the increase in domain 

average Nd (ΔNd; cm
-3

; solid line) for the NP-Pa regime with aerosol emission at 

03:00:00 LT; (b) as ‘(a)’ but for aerosol emission at 08:00:00 LT; (c) as ‘(a)’ but for aerosol 

emission at 13:00:00 LT; (d) as ‘(a)’ but for the PR regime with aerosol emission at 

03:00:00 LT; (e) time series of the domain average calculated cloud albedo increase for the 

NP-Pa regime with aerosol emission at 03:00:00 LT; (f) as ‘(e)’ but for aerosol emission at 

08:00:00 LT; (g) as ‘(e)’ but for aerosol emission at 13:00:00 LT; (h) as ‘(e)’ but for the PR 

regime with aerosol emission at 03:00:00 LT. 

5.4 Discussion 

The speed at which droplets evaporate within these simulations is consistent with calculations 

for similarly sized droplets (Lewis and Schwartz, 2004). The absence of sufficient water 

droplet coalescence to cause the loss of aerosols through wet deposition may however be a 

consequence of the initial dispersal of the emitted droplets within the grid cell; lack of 

sensitivity of the microphysics scheme to turbulence; and the way in which the emission is 

represented in this simulation (i.e. no upward velocity). Whilst model grid cell spacings of 

hundreds of metres are able to resolve cloud processes (Wang and Feingold, 2009a), they are 

too coarse to capture the detailed emission processes occurring from a proposed rotor 

diameter of 2.4 m (Salter et al., 2008). Further investigation of these processes are carried out 

in Chapters 6 and 7. The initial suppression of WET aerosol plume heights was fairly uniform 

across all regimes and emission times (Figure 5.3 a). The analysis suggests that subsequent 

differences in the plume heights, Nd and cloud albedo response for the NP-Pa regime are 

related to the turbulent structure of the boundary layer through the diurnal cycle, and are 

hence dependent on time of emissions. This is represented schematically in Figure 5.5.  
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Figure 5.5 – Schematic showing proposed relationship between initial WET and DRY 

aerosol plumes, subsequent transport of aerosols (represented by aerosol isolines) and 

turbulence within the MSc topped boundary layer over time (coloured contour transparencies 

showing the domain average resolved TKE for the NP-Pa case). 

The turbulent structure of the system is illustrated by the TKE (Figure 5.5). Whilst turbulence 

is maintained throughout the boundary layer, its distribution varies over the diurnal cycle (as 

discussed in Chapter 2). Early in the morning, turbulence that originates from cloud-top LW 

radiative cooling penetrates deep into the boundary layer, meeting turbulent mixing in the 

layer near the surface that results from surface fluxes and wind shear. In this coupled state, 

aerosols are able to be drawn up to the cloud. It is proposed that as the WET aerosol plume 

height is suppressed compared with the DRY case, more aerosols stay closer to the surface, 

and thus fewer are drawn to the cloud base, resulting in smaller cloud albedo increases (cf. 

Figure 5.4 a and e). Into the day, as solar heating offsets the cloud-top originating production 

of turbulence, the depth of cloud-originating TKE penetration decreases, and the boundary 

layer becomes uncoupled. Thus, for MCB emissions at 08:00:00 LT, whilst mixing of the 

aerosol plumes still occurs close to the surface, the lack of coupling inhibits transport of the 

aerosols up to the cloud region, and hence little cloud albedo change occurs (cf. Figure 5.4 b 

and f). Into the evening, solar heating of the cloud diminishes and the strength of turbulent 

production at the cloud top increases. Whilst the cloud and boundary layers remain poorly 

coupled at the time of 13:00:00 LT aerosol emission, after approximately 2 hours, the cloud-

top originating turbulence has penetrated deep enough into the boundary layer to coincide 

with the mixed region of DRY aerosols, thus transporting them up to the cloud layer. Owing 

to the suppression in plume height characteristic to the WET aerosol assumption, aerosols are 

not drawn up into the cloud layer until TKE has deepened into the boundary layer and 

recoupling of the cloud and boundary layers has occurred. This occurs approximately 1 hour 

later than for the DRY assumption (cf. Figure 5.4 c and g). Previous large-eddy simulation 



98 

Chapter 5 – The Inclusion of Water with Emitted Aerosols 

modelling has similarly suggested that transport of ship effluents to the cloud layer may be 

inhibited by boundary layer decoupling (Liu et al., 2000).  

As the magnitude of cloud albedo perturbation is dependent on aerosol height, it is also 

sensitive to the aerosol emission height assumption. For emission into the second model layer 

from bottom for the NP-Pa regime, the maximum difference in mean cloud albedo 

perturbation between the WET and DRY simulations increases to 0.011 (from 0.009 for 

emission into the bottom layer). 

Whilst these simulations provide estimates of the sensitivity to the WET/DRY assumption for 

both NP-Pa and PR cloud regimes, it is again acknowledged that these simulations represent 

only a small subset of potential conditions encountered in MSc cloud regions. For example, 

the low cloud base in the PR regime allowed a sufficient number of aerosols to reach the 

cloud base to instigate a strong second indirect aerosol effect in both WET and DRY cases. 

This resulted in a relatively small percentage difference in cloud albedo increase. The 

sensitivity to the WET/DRY assumption may increase for PR clouds with higher cloud bases 

as the vertical gradient of emitted aerosols becomes more important. Future experiments, 

exploring the sensitivity of aerosol transport to the cloud under a range of atmospheric 

conditions including moisture and temperature profiles, large-scale divergence rates, wind 

speeds and inversion heights would be of interest. The relative humidity of the boundary 

layer will also affect the rate of evaporation of emitted droplets, affecting temperature 

perturbations and resulting plume suppression. Furthermore, conditions may exist where the 

near-surface boundary layer relative humidity is close to saturation, while the emitted 

droplets contain a lower fraction of water. Under such conditions, it may be possible that the 

boundary layer could then condense onto the emitted MCB droplets, instead causing them to 

grow. While such high relative humidity near-surface conditions are not considered to be 

widespread in regions of potentially target marine stratocumulus clouds, future work could 

investigate the ramifications of such conditions. 

Finally, these simulations use emission rates equivalent to one quarter of those suggested by 

Salter et al. (2008). The DRY experiments initialized with forced temperature perturbations 

suggest that the greater evaporative cooling associated with increased sea water emission 

rates may lead to the aerosol plume heights being suppressed by up to 46% (Figure 5.3 b). 

This larger disparity between initial aerosol emission plume heights may lead to more 

significant sensitivities across many of the cases (although the daytime emissions would 

likely remain relatively insensitive).  
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5.5 Conclusions 

The results of this second MCB experiment (in examining the second MCB implementation 

detail case study), expose an important mechanism that affects the efficiency of aerosol 

transport to the cloud layer, associated with emitting MCB aerosols as sea water droplets. 

This mechanism results from the rapid evaporation of the emitted MCB sea water droplets, 

producing a cooling local to the emission path. The resulting negative buoyancy alters the 

dynamics of the marine boundary layer, reducing the initial height of the MCB aerosol plume 

by nearly a third. This impedes the subsequent transport of MCB aerosols to the cloud layer, 

and produces smaller cloud albedo increases. 

The magnitude of this effect depended both on background cloud conditions and timing 

through the diurnal cycle, with the largest percentage reductions in cloud brightening 

occurring in the simulations when the MCB sea water droplets were emitted into the non-

precipitating cloud regime in the afternoon. The time dependency was a consequence of the 

dependence of MCB aerosol transport on the vertical extent of turbulent mixing through the 

marine boundary layer. The effect was exacerbated in the afternoon because the descending 

turbulence originating from the cloud-top reached the stunted aerosol plume – associated with 

(‘WET’) MCB sea water droplet emission – later than it reached the taller aerosol plume 

associated with (‘DRY’) MCB aerosol emission. The lower sensitivity of the precipitating 

cloud regime is suggested to result from the CCN-limited conditions allowing even lower 

numbers of MCB aerosols to substantially increase the cloud albedo. Additionally, with the 

base of the precipitating clouds being over 100 m lower than in the non-precipitating case, 

delays in the transport of aerosols to the cloud layer over these shorter distance became less 

critical.  

The identification of this mechanism is of practical interest, and could inform the design of 

both future physical experiments, and eventual implementation strategies. However, because 

the impact on cloud albedo perturbations is modest, taking account of this mechanism would 

likely not vastly improve the realism of global-scale MCB effectiveness estimates. 
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 Chapter 6

Processes within the Emission Rotor 

6.1 Introduction 

The final MCB implementation detail case study considers the effect that processes within 

the emission rotor and emission plume have on the number concentration and size 

distribution of emitted MCB aerosols, and the effect that these changes have on the resulting 

albedo perturbations. 

Consideration of the coagulation process – where aerosols (or coalescing droplets) join 

together to produce fewer, but larger aerosols (or droplets) – is critical for the rotor and plume 

regions. This is because these regions have high aerosol concentrations and because 

coagulation rates increase with the square of particle concentration (Smoluchowski, 1916). 

The effect of the coagulation process on the emitted MCB aerosols is important for the 

overall effectiveness of MCB as the coagulation process results in both larger aerosols, and a 

reduced number concentration. Results in Chapters 4 and 5 showed that reducing the number 

of MCB aerosols reaching the cloud layer reduced the achievable cloud brightening. 

Additionally, previous MCB research has similarly shown that lower MCB aerosol number 

concentrations are associated with smaller cloud albedo increases (Chapter 4; Bower et al., 

2006; Latham et al., 2008; Korhonen et al., 2010b; Latham et al., 2012a; Partanen et al., 

2012; Pringle et al., 2012; Alterskjær and Kristjánsson, 2013), while larger MCB aerosols 

have been shown to be a possible mechanism for reducing cloud albedo via the competition 

effect (Bower et al., 2006; Korhonen et al., 2010b; Latham et al., 2012a; Pringle et al., 2012; 

Alterskjær and Kristjánsson, 2013). By uniformly distributing the MCB aerosols across the 

coarse grid cells, previous global-scale modelling omit these areas of locally high aerosol 

concentrations, and hence cannot capture the realistic effects of coagulation. 

The research performed to examine this final MCB implementation detail case study is 

presented in three chapters (Figure 6.1). This chapter uses a simple numerical integration to 

estimate the effects of droplet coalescence within the rotor. Chapter 7, for the first time, uses 

a large-eddy simulation to capture details of the plume structure and dynamics, quantifying 

the effects of aerosol coagulation within the MCB aerosol emission plume. Chapter 7 

includes several sensitivity experiments, one of which utilises the in-rotor estimates of 

aerosol change in size and number concentration derived in this chapter. Chapter 8 then 

utilises the findings of the plume simulations to evaluate how the changes to the MCB 

aerosols ultimately affect the effectiveness of MCB. 
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Figure 6.1 – Schematic showing regions considered in investigating the effects of aerosol 

coagulation on MCB effectiveness (MCB emission vessel cross-section modified from Salter 

et al. (2008)). 

This chapter focuses on the rotor section, with the proposed technology designs (Salter et al., 

2008) suggesting that the MCB aerosols would be formed as sea water droplets near to the 

base of the rotor, which is approximately 20 m in length and 2.4 m in diameter (Figure 6.2). 

These droplets would be blown through the rotor by a 12 ms
-1

 air flow, whereby evaporation 

of the droplets may also occur. The processes that occur for droplets in turbulent pipe flow 

include complex fluid flow, droplet dynamics and droplet-wall interactions (Friedlander, 

2000). The coalescence of these droplets potentially reduces the droplet number 

concentration, increases the size of droplets, but conserves the mass if losses to the wall are 

neglected (discussed below) (Figure 6.2). In this chapter, a first order estimate of the effects 

of these processes on monodisperse water droplets as they travel through the rotor 

(Figure 6.2) is calculated. This estimate is obtained by using a simple numerical integration 

turbulent coagulation scheme, with the outputs being used to inform one of the sensitivity 

experiments for the MCB aerosol emission plume, presented in Chapter 7. 

 

Figure 6.2 – Schematic overview of the region of interest for the estimation of coalescence 

within the rotor. 
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6.2 Methodology  

The numerical integration scheme used is based on the work of Saffman and Turner (1956) 

which describes the fundamental principles of turbulent coagulation (e.g. Friedlander, 2000). 

The simplicity of the selected scheme allows estimates of the changes in number 

concentration and droplet size to be made efficiently without the use of complex 

computational modelling. This coagulation scheme estimates the collision rate (N) of droplets 

to be dependent upon characteristics of the droplets (radii (r1, r2) and number concentration 

(n1, n2)), and flow characteristics (rate of turbulent energy dissipation (ε) and kinematic 

viscosity (υ)) according to Equation 6.1. 

 0.5
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The collision of droplets during coalescence leads to the growth of droplets, and the depletion 

of droplet number concentrations. This process can be approximated by Equations 6.2, where 

ni is the droplet number concentration with the subscript i representing multiples of the initial 

droplet mass, and time denoted as t. All droplets are input into n1 at initialisation. Thus, a 
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(6.2) 

To estimate the changes in number concentration and size distribution of the droplets along 

the length of the rotor resulting from coalescence, Equations 6.2 were extended to n32 and 

integrated numerically with respect to time, using a time step of 1x10
-3

 seconds. The base 

droplet number concentration (n1) was initialised with a number concentration of 2.061x10
15

 

droplets per m
3
, equivalent to a 30 kg s

-1
 flux of water comprising 800 nm diameter water 

droplets (equivalent to a dry diameter of 200 nm), travelling through a 2.4 m diameter rotor at 

a velocity of 12 ms
-1

. The length of the rotor is assumed to be 20 m (Salter et al., 2008). 

The use of this scheme is suitable for this situation because of the high (~1.9x10
6
) Reynolds 

Number associated with the flow through the rotor (described by the standard Equation A.1, 
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included for completeness in Appendix A, for a flow velocity of 12 ms
-2

, through a rotor of 

diameter 2.4 m with kinematic viscosity of air of ~1.5x10
-5

 m
2 

s
-1

). This exceeds the 4000 

threshold needed for turbulent flow behaviour. 

This situation also fulfils the requirement for the droplet number concentration to be 

sufficiently high that the distance between the particles (λp = 7.9x10
-6

 m as defined by 

Equation 6.3; Friedlander (2000)) is less than the characteristic Kolmogorov microscale 

(λk = 2.1x10
−4

 m as defined by Equation 6.4; Friedlander (2000)). 

The use of this simple numerical integration scheme also necessitates several assumptions. 

Assumption 1: The first assumption is that no evaporation occurs through the rotor. Thus, the 

initially monodisperse droplets remain as droplets. If the droplets were to evaporate in the 

rotor, the size reduction may reduce the likelihood of collisions, thus reducing coalescence 

rates. Thus, the omission of evaporation may overestimate these coalescence rates. 

Assumption 2: The second assumption omits interaction of droplets with the interior walls of 

the rotor. If droplets collides with the rotor wall, they may be deposited. However, as the non-

slip condition at the wall causes the flow speed to fall to zero, for a droplet to reach the wall, 

it would require sufficient inertia to overcome this quiescence. This tends to occur for 

droplets diameters larger than 1 µm (Friedlander, 2000), and may be less significant for the 

smaller droplets considered in this case. Also, the 2.4 m diameter of the rotor provides a 

larger volume to surface area ratio than occurs for the millimetre or centimetre diameter pipes 

typically considered (Friedlander, 2000), again reducing the significance of rotor wall effects. 

 3
1

 np  (6.3) 

where:   

 p  = distance between particles (m)  

 n  = particle concentration = 2.061x10
15

 droplets per m
3
  

  

25.0
3














k  (6.4) 

where:    

   = kinematic viscosity of air ~ 1.5x10
-5

 m
2
s

-1
 at 20 °C  

   = rate of turbulent energy dissipation per unit mass (m
2
s

-3
) LU 3 0025.0~  

 U  = velocity through the rotor = 12 ms
-1

  

 L  = length scale = diameter of the rotor = 2.4 m  
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Assumption 3: Finally, this scheme does not include treatment of enhanced coalescence rates 

resulting from differences in relative droplet motion caused by the widening of the size 

distribution. Thus, this approach leads to an underestimation of the coalescence rates. 

The potential implications of these assumptions are discussed in Section 6.4. 

6.3 Results 

Initial testing of the numerical integration scheme (against previously published results) 

showed that the method of execution formulated for this work performed successfully. As 

such, the numerical integration scheme was then applied as described in Section 6.2. 

Figure 6.3 shows how coalescence increases the number concentrations of larger droplets as 

they move through the rotor. At initialisation (at the base of the rotor), all droplets were in n1. 

 

 

Figure 6.3 – Calculated ratios of the number concentration (ni) to the initial number 

concentration (ninitial) for droplets up to 8 times the mass of the initial droplets. Ratios are 

shown for various distances travelled through the rotor. 

These droplets were then sorted into the equivalent WRF/Chem dry aerosol size bins, with n1, 

n2 and n3 remaining in the initial bin size 3 (equivalent dry diameters up to 312 nm), with n4 

to n30 entering bin size 4 (equivalent dry diameters up to 625 nm), with the remaining n31 and 



106 

Chapter 6 – Processes within the Emission Rotor 

n32 entering bin size 5 (dry diameters above 625 nm). The transition of droplets from the 

initial bin size 3 into the larger bin sizes is shown in Figure 6.4. 

 

Figure 6.4 – The transition of droplets from the initial bin size 3 into the larger bins 4 and 5 

with distance travelled through the rotor. This transition is represented as a proportion of 

the initial number concentration and a proportion of the initial aerosol mass for each of the 

three bin sizes. Also shown is the evolution of the total number concentration and mass 

through the rotor. 

Thus, on leaving the rotor (after travelling 20 m), the total mass of aerosols is conserved, 

while the number concentration reduces by approximately 32%. The mass of aerosols in bin 3 

has reduced to around 85% of the initial value, with around 15% of the initial mass now 

being in bin 4. A negligible number of droplets grew to enter bin 5 through the rotor (less 

than 1x10
-7

% of the initial mass). The number concentration of aerosols in bin 3 reduced to 

around 65% of the initial value. The number concentration of aerosols in the larger bin 4 was 

around 3% of the initial aerosol number concentration on leaving the rotor. Again, a 

negligible number of aerosols were present in bin 5. 
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6.4 Discussion and Conclusions 

This chapter has described the novel use of a simple numerical integration scheme in 

estimating the amount of droplet coalescence that could occur through the MCB rotor. In so 

doing this contributes towards the examination of the final MCB implementation detail case 

study. The use of the turbulent coagulation assumption produced estimates of aerosol number 

concentration losses of approximately one third, while aerosol growth was largely restricted 

to the equivalent of the next model aerosol size bin. 

The coalescence of droplets caused by turbulence is not fully understood, with estimates 

suggesting that the rate of coalescence estimated via this mechanism be considered 

approximate to a factor of 10, and likely overestimated (Friedlander, 2000). This could cause 

the resulting estimates of MCB aerosol number concentration reductions within the rotor to 

be overestimated. In addition to the fundamental uncertainties regarding turbulence in 

coalescence, the assumptions made here omit the increases in coalescence that occurs owing 

to the relative motion of droplets. This has been estimated to become important when the 

ratio of droplet radii becomes larger than 2. Considering Figure 6.3, approximately one in 

1000 of the original aerosol number would be sufficiently large to meet this criteria by the 

end of the rotor. This suggests that the coalescence rates would be underestimated, 

particularly near the end of the rotor. Finally, the assumption that no evaporation occurs 

through the rotor may, as discussed in Section 6.2, lead to an overestimation of the 

coalescence rates. However, such phase changes may also induce temperature and dynamical 

changes through the rotor, the effects of which cannot be anticipated here owing to the 

complexity of such flow of aerosols. 

Refinements to these coalescence estimates could be achieved through more complex, 

computationally expensive, computational fluid dynamics modelling for example. However, 

there are sufficient unknowns in the engineering design of the rotor and aerosol formation 

mechanism to suggest that more intricate rotor flow modelling at this stage would be 

imprudent. 

These estimates of the effects of droplet coalescence through the rotor are used to inform one 

of the plume region sensitivity experiments (Section 7.4.1.4) in the latter part of next chapter.  
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 Chapter 7

Detailed Representation of the MCB Aerosol Emission Plume 

7.1 Introduction 

Chapter 6 examined the effect that aerosol processes within the emission rotor could have on 

the number concentration and size distribution of MCB aerosols that would then be emitted 

as the plume. 

This chapter examines the second part of this final case study, and examines the effects that 

aerosol processes (primarily coagulation) within the aerosol plume have on the number 

concentration and size distribution of MCB aerosols (Figure 7.1). The ultimate impact that 

these changes have on the potential effectiveness of MCB are considered in Chapter 8. 

 

Figure 7.1 – Schematic overview of the region of interest for the estimation of aerosol 

coagulation within the plume. 

As explained in Section 6.1, coagulation becomes increasingly important for higher aerosol 

concentrations. To produce realistic estimates of the effect of coagulation, it is therefore 

necessary to capture details of the highly concentrated aerosol plume upon emission from the 

rotor of a Salter et al. (2008) designed vessel. These highly concentrated aerosol plumes – 

and hence the effects of coagulation – are not captured by the uniform distribution of aerosols 

across coarse grid cells of previous global-scale modelling. According to the Salter et al. 

(2008) design, the aerosol plume would be formed by a jet of air carrying the MCB aerosols 

upwards out of the rotor, into the boundary layer cross-winds (inset, Figure 7.1), a situation 
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called a ‘jet in a cross-flow’ (Figure 7.2). Jets in cross-flows are common in several 

engineering scenarios, with comprehensive overviews of the field being presented by 

Margason (1993), Mahesh (2013) and Balachandar and Eaton (2010). 

Fundamentally, as the jet and the cross-flow interact, the jet deflects, with the trajectory 

depending on the ratio of jet momentum to cross-flow momentum. This interaction of flows 

additionally produces characteristic vortical structures (Figure 7.2), with a pair of counter-

rotating vortices being a dominant structure (Cortelezzi and Karagozian, 2001; Kelso et al., 

1996). This counter-rotating vortex pair can lead to a split plume, a phenomenon that has 

been observed in chimney stack emissions (Fanaki, 1975), wildfires (Cunningham et al., 

2005; Haines and Smith, 1987), and volcanic eruptions (Ernst et al., 1994). As these 

characteristic vortices govern the jet dispersal (Campolo et al., 2005), they also influence the 

aerosol concentrations within the plume, and ultimately, the rates of coagulation. 

 

Figure 7.2 – Schematic showing the four types of vertical structure in the near-field of a jet 

in a crossflow, emitted flush from a surface. Modified from Fric and Roshko (1994), 

reproduced by permission of Cambridge University Press, from ‘Vortical structure in the 

wake of a transverse jet’, Fric and Roshko, Journal of Fluid Mechanics, 279, 1994. 

The structure of the plume can, however, be altered by other conditions. For example, the 

presence of the solid rotor, in acting as non-aerodynamic (bluff) body, could induce the 

weaving vortex shedding distinctive of Kármán vortex streets. 

While Gaussian distributions of plumes (modified by dispersal parameters) are capable of 

producing estimates of aerosols concentrations, and hence coagulation rates (e.g. Turner, 

1970; Stuart et al., 2013), they do not simulate details of the plume dynamics and vortical 

structures.  

This chapter describes how, for the first time, the MCB aerosol plume was modelled using a 

large-eddy simulation to capture details of the plume structure. For this, the WRF/Chem 

model was again utilised, at the higher resolution of 0.5 m (horizontal), with limited domain 
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size of 120 m x 40 m x ~60 m (height). The set-up of the model and experimental 

methodology are detailed in Section 7.2. 

Section 7.3 goes on to describe the simulation of the control plume. This control plume is 

interrogated to evaluate the ability of the model to capture key critical characteristics of the 

MCB aerosol plume. 

After this initial validation, the model is then used to determine how coagulation rates – and 

the resulting changes in MCB aerosol concentration and size distribution – vary under a range 

of different assumptions as may occur in reality (Section 7.4). These sensitivity experiments 

cover a range of: aerosol emission rates (Section 7.4.1.1); cross-wind speeds 

(Section 7.4.1.2); and background temperatures (Section 7.4.1.3). Additionally considered 

are: the effects of emitting the number concentration and size distribution of aerosols 

associated with those expected to result from coagulation within the rotor (as found in 

Chapter 6) compared to the monodisperse bin 3 emission (Section 7.4.1.4); changes to the 

plume dynamics resulting from the simulation of a solid rotor as an obstacle to the cross-wind 

(Section 7.4.1.5); the inclusion of water vapour in the emission of aerosols (Section 7.4.1.6); 

and the inclusion of water droplets in the emission of aerosols (Section 7.4.1.7). 

7.2 Methodology 

As for previous experiments, the WRF/Chem model was used in large-eddy simulation 

configuration, with the 8-bin MOSAIC aerosol scheme and CBMZ gas phase chemical 

mechanism scheme. The coagulation rate varies with the square of particle concentrations and 

the Brownian coagulation kernel (Jacobson et al., 1994). This form of coagulation is typically 

dominant for nanoparticles (Miller and Garrick, 2004; Yu et al., 2006; Jacobson et al., 1994) 

and is therefore suitable for the simulation of the proposed 200 nm dry diameter MCB 

aerosols of the Salter et al. (2008) design. Aerosol dry deposition was included in the 

simulations. Aerosol interaction with droplets was carried out by the Morrison two-moment 

microphysics scheme and included droplet sedimentation. The coalescence of droplets uses a 

parameterisation based on an assumed distribution of sub-grid vertical velocities. The CAM 

spectral-band LW, and RRTMG SW radiation schemes were again used, although as 

simulations were carried out during the night (22:00:00 LT) SW radiation was not an 

important factor. The 1.5 order 3-D turbulent kinetic energy closure scheme was again used 

to simulate sub-grid turbulence. Advection was again constrained by the monotonic flux 

limiter option. Surface layer physical processes were represented by the Monin-Obukov 

scheme. In a preliminary sensitivity test, a numerical timestep of 0.006 s was found to induce 

spurious dynamical rippling above the outlet. This phenomenon was removed by halving the 

timestep to 0.003 s, which is the timestep that was used subsequently. The aerosol and 
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chemistry timestep was 0.36 s. Whilst a chemistry timestep of 0.06 s produced smoother time 

series in preliminary testing, the difference in performance was not deemed significant 

enough to warrant the significantly increased computational expense. Owing to 

computational limitations, most simulations were run for a 44 second model time, with 

analysis using the last 20 seconds. An extended run up to 88 seconds was carried out for the 

control run to assess the implications of the development of the plume before, during and 

after the standard analysis period. 

The large-scale cross-wind (which would result from a combination of both wind speed and 

vessel motion; Figure 7.3 a) was initialised with a 10 m wind speed of 6 ms
-1

 and the profile 

shown in Figure 7.3 b. The boundary layer total water mixing ratio was initialised at 

10 g kgdry air
-1

, with potential temperature initialised at 288.3 K. The background aerosol 

profile used was that of the previously described PR case, although, as the simulated aerosol 

emissions are so high, the simulations are unlikely to be very sensitive to this selection.  

              (a)               (b) 

 
 

Figure 7.3 – (a) Schematic showing the direction and composition of the effective crosswind; 

(b) Vertical profiles of the initialisation wind profile. 

The domain was 120 m long, 40 m wide and approximately 60 m high, and is shown 

schematically in Figure 7.4 a. There was a 3 m damping layer at the model top and the 

horizontal boundaries were open, allowing the emitted MCB aerosol plume to leave the 

domain. The horizontal resolution was 0.5 m, with the vertical resolution being 

approximately 1 m. To represent the rotor outlet height, the jet was located 20 m from the 

longitudinal ‘input’ boundary at a height of ~20 m. The geometry and assumptions used in 

simulating the rotor are shown in Figure 7.4 b. Two variations of the rotor geometry are 

assumed. For the first variation, the presence of a long solid rotor is omitted and the rotor 

emission is assumed to occur in one model layer only. To simulate the rotor dynamics, the 13 

central cells are assigned an upward velocity of 12 ms
-1

 (based on the updraft velocity 

suggested by Salter et al. (2008)). This uniform velocity assignment essentially produces a 

‘top-hat’ velocity profile which is akin to turbulent flow in the pipe. The upward and 
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horizontal velocities of the surrounding cells are held at 0 ms
-1

 to simulate the solid rotor 

walls. In the second variation, where a long solid rotor is assumed, these dynamic conditions 

are extended down in the model to ~2 m above the surface. 

Aerosol emissions again followed the Salter et al. (2008) assumptions of a 30 kg s
-1

 sea spray 

emission rate (1.0xSA). While the aerosols were assumed to be water droplets while 

travelling through the rotor (Chapter 6), here, as in Chapter 4, the aerosols are emitted as 

interstitial aerosols with a dry diameter of 200 nm. Water associated with the aerosol 

emission is only included as part of the sensitivity experiments, as discussed below. While 

the aerosols are now emitted over the more confined rotor area (Figure 7.4 b) compared to the 

300 m x 300 m grid used previously, the emission number flux is maintained at 1.1x10
17

 s
-1

 

for the 1.0xSA emission rate. This is equivalent to a mass emission fluxes of 123 g m
-2

 s
-1

 for 

Na and 189 g m
-2

 s
-1

 for Cl. The aerosol (and later the water) emission height coincides with 

the top of the rotor (20 m). 

  (a)     (b) 

 

   

Figure 7.4 – (a) Schematic of the computational domain;(b) Plan view of the simulated rotor, 

indicating velocity distributions in relation to model cells.  

The simulations undertaken are tabulated in Table 7.1. The initial control simulation, of a 

1.0xSA emission rate of aerosols into bin 3 (simulating assumed monodisperse aerosols of 

200 nm dry diameter) is initially considered over an extended time period (88 seconds). This 

simulation is then used as the baseline for later comparisons in this section. 

In addition to this initial baseline simulation, additional simulations are undertaken over a 

time period of 44 seconds (with the choice of this duration discussed in Section 7.3.1.1). 

These attempt to capture sensitivities owing to uncertainties and variability in the design of 

the MCB emission technology (aerosol emission rates, Section 7.4.1.1), and to natural 

variability in the atmospheric conditions (cross-wind speed and background temperature, 

Sections 7.4.1.2 and 7.4.1.3). These sensitivity experiments were chosen to represent a range 

of feasibly encountered conditions. While the number of conditions simulated for cross-wind 
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speed and background temperature are small, they allow trends in behaviour to be identified, 

and allow verification that the model simulates physically plausible output. 

Further simulations aim to quantify the sensitivity of aerosol coagulation within the plume to 

alterations that may increase the realism of the simulated output. Therefore, one case includes 

the simulation of the MCB aerosol emission number concentration and size distribution 

resulting from the coalescence processes within the rotor as found in Chapter 6 

(Section 7.4.1.4). Another case includes the representation of a solid rotor acting as a bluff 

body (Section 7.4.1.5). 

For each case, two simulations are carried out: one including aerosol and chemical processes 

(denoted as ‘CHEM’) and another where the aerosol and chemical processes are suppressed 

(denoted as ‘NO_CHEM’). The differences between these CHEM and NO_CHEM simulations 

are assumed to result primarily from aerosol coagulation. The NO_CHEM simulations are 

intended to provide a baseline scenario, approximating the substantially reduced rates of 

coagulation that would occur for the more broadly dispersed MCB aerosol emissions over the 

tens-of-kilometre scale grid cells in global-scale models. 

The last two simulations (summarised in Table 7.1) include water with the aerosol emissions, 

either as water vapour (Section 7.4.1.6), or as water droplets (Section 7.4.1.7). Both water 

emission assumptions add water with a mass flux of ~30 kg s
-1

. As these simulations may 

incorporate droplet coalescence as well as aerosol coagulation, they are compared against the 

control case NO_CHEM simulation which omits both emitted water and aerosol coagulation. 

It is noted that the water vapour sensitivity experiment is unlikely to be realistic. 

Fundamentally, the mechanism that would be needed to produce water vapour from sea water 

would be highly energy intensive, and so undesirable from a practical design standpoint. This 

largely hypothetical simulation is therefore presented here in order to offer some possible 

points of interest, likely relevant more for future design decisions.  
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Table 7.1 – List of plume simulations, describing the emission rate (xSA), the 10 m cross-flow 

velocity (ms
-1

), the background temperature (K), the characteristics of the marine cloud 

brightening (MCB) aerosols emitted into the plume (where ‘Mono’ denotes the monodisperse 

bin 3 emission), the simulation of a solid rotor, the emission of water with the aerosols, and 

the section reference. Each experiment comprised of two simulations: one simulation being 

run under the CHEM configuration (i.e. simulating the effects of aerosol coagulation), and the 

other simulation being run under the NO_CHEM configuration (i.e. suppressing aerosol 

coagulation). 

 
Emission 

rate 

(xSA) 

Cross-flow 

velocity 

(ms
-1

) 

B/g 

Temp. 

(K) 

MCB 

aerosols 

emitted 

Solid 

rotor? 

Emission 

of water 

Section 

ref. 

CONTROL Plume 

 

1.0 6.0 288.3 Mono No None 7.3 

Sensitivity experiments 

 

 

 

Aerosol emission rates  

5.0 6.0 288.3 Mono No None 

7.4.1.1 

3.0 6.0 288.3 Mono No None 

0.5 6.0 288.3 Mono No None 

0.25 6.0 288.3 Mono No None 

0.1 6.0 288.3 Mono No None 

Cross-wind speed 1.0 9.0 288.3 Mono No None 7.4.1.2 

Background temperature 1.0 6.0 300.0 Mono No None 7.4.1.3 

No. concentration and size 

distribution of emitted aerosols 
1.0 6.0 288.3 

From 

rotor 
No None 7.4.1.4 

Inclusion of a solid rotor 

(acting as a bluff body) 
1.0 6.0 288.3 Mono Yes None 7.4.15 

Inclusion of water vapour in 

the emission of aerosols 
1.0 6.0 288.3 Mono No 

As water 
vapour 

7.4.1.6 

Inclusion of water droplets in 

the emission of aerosols 
1.0 6.0 288.3 Mono No 

As water 
droplets 

7.4.1.7 
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7.3 Control Plume 

7.3.1  Control Plume: Results 

To aid orientation, Figure 7.5 illustrates the shape of a typical jet in cross-flow simulated 

output (for the case where a solid rotor is omitted). To demonstrate the model behaviour, this 

section first presents, and then discusses key characteristics of the control plume. 

 

Figure 7.5 – Instantaneous isosurface for a given aerosol concentration, illustrating the 

typical structure of a simulated jet in cross-flow in the absence of a solid (bluff) rotor 

during the approximately steady-state phase. (The case shown is a simulation used during 

trials of the methodology). 

7.3.1.1 Plume Development 

The development of the plume through time is shown in Figure 7.6, showing the 

displacement of the emitted aerosols caused by the 12 ms
-1

 vertical air jet and crossflow. 

In the first 24 seconds of the simulation, formations similar to shear-layer vortices were 

observed on the windward edge of the plume. These stayed near to the head of the plume, 

leaving the domain after around 28 seconds. From this time on, the distribution of plume 

aerosols remained fairly uniform. The upper and lower boundaries maintained approximately 

constant paths, with the upper boundary rising by approximately 0.048 m per second between 

28 and 88 seconds. Aerosols descended into the jet wake rapidly upon emission, creating a 

lower aerosol boundary up to 10 m below the 20 m aerosol emission height. Bifurcation of 

the plume in the y-plane was also evident (as illustrated at t=88 seconds in Figure 7.6). In this 

bifurcation, high concentrations of aerosols followed both the upper boundary, and a 

trajectory around mid-way between the upper and lower plume boundaries. 
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Figure 7.6 – Interstitial aerosol concentrations (total of bin sizes 3 to 8, averaged over the 

y-direction) through time. Crosswind flows from left to right. Black solid arrows indicate the 

location of the aerosol emission. Black dotted arrows at t=88s illustrate the apparent vertical 

bifurcation of the flow which begins at ~14 seconds. 

Figure 7.7 (panels a and b) shows the time series of the domain averaged aerosol mass and 

aerosol number concentration for simulations including and omitting aerosol coagulation 

(CHEM and NO_CHEM respectively). During the initial 18 seconds of the simulation, both the 

aerosol mass and aerosol number concentration increased as the plume extended to fill the 

domain. After this time, aerosols were able to exit at the open boundary and the mass and 

number concentrations reached an approximate steady-state. A true steady-state in domain 

average aerosol mass was not reached, with a continuing increase in mass suggesting that the 

mass of aerosols being emitted into the domain exceeded the mass of aerosols exiting the 

domain. This increase in mass over the latter 70 seconds of the simulation was equivalent to 

around 25% of the mass needed to initially fill the domain. 
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Figure 7.7 – Time series for: (a) domain average aerosol mass (µg kgdry air

-1
); (b) domain 

average aerosol number concentration (cm
-3

); and (c) an approximate domain average 

aerosol diameter (µm). Grey shading indicates the time period used for later analysis. 

The time series for mass concentrations for the CHEM and NO_CHEM simulations were the 

same (coagulation does not alter the total mass of aerosols; Figure 7.7 a). However, the 

domain average number concentration was reduced by approximately half for the CHEM 

simulation compared to the NO_CHEM simulation (Figure 7.7 b). The maintenance of mass, 

but reduction in aerosol number concentration caused by aerosol coagulation, produced an 

increase in the approximate particle diameter for the CHEM simulation compared to the 

NO_CHEM simulations (Figure 7.7 c). It is noted that this particle diameter is presented as an 

approximate indication of aerosol size changes only. 

These results also show that there is little difference between the coagulation-induced aerosol 

number concentration reductions over a 24 to 44 second time interval (shaded grey in 

Figure 7.7), and a longer 24-88 second time interval, with the number concentration 

reductions averaging 48.1% and 46.9% respectively. Therefore, to enhance computationally 

efficiency, subsequent simulations were run for only 44 seconds, with analysis being carried 

out over the 24 to 44 second time interval. 

To evaluate the ability of the model in adequately representing key features of the jet in 

cross-flow, simulation outputs will now be presented from the end of the analysis period 

(44 seconds after the start of the simulation). 
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7.3.1.2 Plume Trajectory 

The plume trajectory was found using the height of the maximum aerosol concentrations 

located on the central y-plane (refer to Figure 7.4 panel a, for illustration). The location of the 

maximum aerosol concentration for bin size 7 is shown in Figure 7.8 (red data points)1. 

Figure 7.8 also shows the fit of these data points to the standard trajectory equation (solid 

black line) described in Equation 7.1 (Margason, 1993; Muppidi and Mahesh, 2005). This fit 

to the trajectory equation used the coefficients A=1.19 and B=0.48. Finally, Figure 7.8 also 

shows upper and lower bounds for a fit to Equation 7.1 using the empirically derived 

coefficient limits of A=2.6 with B=0.34, and A=1.2 with B=0.28 which are typical for jets in 

cross-flows (blue shading; Margason, 1993; Muppidi and Mahesh, 2005). 

  

Figure 7.8 – Trajectory fitted to Equation 7.1 (solid black line) associated with points of 

maximum aerosol concentration for bin 7 (red data points) along the central y-plane. Blue 

shading indicates empirically derived bounds for the trajectory, having coefficients A=2.6 

with B=0.34 and A=1.2 with B=0.28 which are typical for jets in cross-flows (Margason, 

1993; Muppidi and Mahesh, 2005). 

 

                                                      

1 Owing to the effects of the coagulation of emitted bin size 3 aerosols (presented in Section 

7.3.1.4 and discussed in Section 7.3.2), the counter-rotating vortex pair structure was most 

consistently traced over the length of the domain by aerosols in bin sizes 5 to 7. These 

aerosols followed similar trajectories, with only bin size 7 being shown here for clarity. 
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(7.1) 

 where:  

 z  = distance vertically upwards  

 x  = distance in the direction of the cross-flow  

 
r  = the ratio of jet to cross-flow velocities 

   (assuming approximately equal jet and cross-flow densities) 

 d  = jet diameter at emission  

 A  = coefficient   

 B  = coefficient   

 

7.3.1.3 Flow Patterns and Pressure Distributions 

Figure 7.9 (panel a) shows that the cross-flow speed decreased over the height of the jet, with 

the jet acting as an obstacle. This cross-flow speed decrease was larger in three regions: 

upwind of the initially bending vertical jet emission (labelled ‘F1’); in the lee of the initial jet 

emission (labelled ‘F2’); and in the lee of the upper portion of jet flow (labelled as ‘F3’). The 

jet obstacle also led to an increase in pressure of up to 20 Pa on the upwind side of the jet, 

shown in Figure 7.9 b. While the flow speed reduced, momentum would be conserved owing 

to the subsequent rotation of the flow in forming the counter-rotating vortex pair. This 

counter-rotating vortex pair can be seen in both the flow structures and regions of opposing 

vorticity (Figure 7.9 c). The development of these counter-rotating vortices with distance 

from jet emission led to a weakening in vorticity, with a growth in vortex diameter. For this 

6 ms
-1

 cross-flow case, the distance between the vortex pair centres increased from 

approximately 3 m to 5 m between distances along the trajectory of 5 and 40 times the 

diameter of the rotor (denoted as ‘5d’ and ‘40d’ respectively). 

Preliminary sensitivity experiments found that these dynamical features of the jet in cross-

flow resulted from the fluid flows and were not affected by the presence of aerosols.  
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Figure 7.9 – (a) Contours showing the difference between the flow speed along the central 

y-plane and the cross-flow speed remote from the emission source. Black solid line indicates 

the trajectory fit to the highest concentration of bin 7 aerosols. Black dashed lines indicate 

the planes perpendicular to the trajectory at distances along the trajectory of 5, 20 and 40 

times the diameter of the rotor (5d, 20d and 40d); (b) Contours showing the difference in 

pressure along the central y-plane and the pressure remote from the emission source. Black 

solid and dashed lines as for panel ‘a’; (c) Sections of planes perpendicular to the trajectory 

at 5d, 20d and 40d, showing the vorticity of flow, overlaid by arrows indicating flow velocity. 

All panels show 44 seconds from the simulation start. 
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7.3.1.4 Distribution of Aerosols Across the Plume Cross-section 

The distribution of aerosols within these dynamical flow patterns is demonstrated in 

Figure 7.10. To readily observe these aerosol distributions in the absence of complicating 

aerosol processes, the NO_CHEM case is shown for bin 3 aerosols (into which the MCB 

aerosols were emitted). In the absence of aerosol processes including coagulation, the emitted 

aerosols remained in bin 3 during the simulation. Over the whole trajectory, the aerosols were 

preferentially concentration within the counter-rotating vortex pair. However, the maximum 

aerosol concentration decreases further from the emission source as the cross-sectional area 

of the plume increased. This increased area resulted largely from a vertical spreading that was 

also seen in Figure 7.6, and was related to the increasing upper boundary height of the plume, 

but maintenance of the lower plume boundary just below the emission height. The bifurcation 

of higher aerosol concentration that was also evident in Figure 7.6 is manifest in the cross-

sections of Figure 7.10. This secondary peak in aerosol concentrations became more distinct 

further from the source, resulting the chevron formation at a height of 30 m in the ‘40d’ 

section (circled in Figure 7.10). 

 Distance = 5d Distance = 20d Distance = 40d  

   

Figure 7.10 – Sections of planes perpendicular to the trajectory at 5, 20 and 40 times the 

diameter of the rotor (5d, 20d and 40d; refer to Figure 7.9 for locations), showing the 

distribution of bin 3 interstitial aerosol concentrations (cm
-3

) for the NO_CHEM simulation 

overlaid by arrows showing velocities of the flow. The black circle at 40d indicates the 

chevron aerosol formation referred to in the text. All show 44 seconds from the simulation 

start. 

Now considering the effect of coagulation on these aerosol distributions, Figure 7.11 shows 

bin sizes 3 to 8 for the CHEM case. Again, planes perpendicular to the trajectory at distances 

of 5, 20 and 40 times the rotor diameter are shown.  

The highest concentrations were again for bin 3 aerosols close to the emission source, 

however, their coagulation resulted in a decrease in their concentration further from the 

emission source (Figure 7.11) as the aerosols move into the larger size bins. This pattern was 

reversed for the higher bin sizes, with bins 6 and 7 particularly clearly illustrating higher 
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aerosol concentrations further from the emission source (Figure 7.11). The aerosol 

concentrations for each size bin diminished with increasing size (with peak concentrations of 

bin 7 aerosols being around eight orders of magnitude smaller than those for the emission 

bin 3), with no aerosols growing sufficiently to enter size bin 8.  

 Distance = 5d Distance = 20d Distance = 40d  
  

Bin 3 

    
  

Bin 4 

     
  

Bin 5 

     
  

Bin 6 

     
  

Bin 7 

          
  

Bin 8 

     
Figure 7.11 – Sections of planes perpendicular to the trajectory at 5, 20 and 40 times the 

diameter of the rotor, showing the distribution of bin 3 to bin 8 interstitial aerosol 

concentrations (cm
-3

) for the CHEM simulation overlaid by arrows showing velocities of the 

flow. All show 44 seconds from simulation start. Note the different contour colour ranges. 
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7.3.1.5 Distribution of Aerosols Along the Plume Path 

These changes in aerosol size distributions along the length of the domain are shown in 

Figure 7.12. The greatest aerosol transfer rate from bin 3 to bin 4 occurred close to the 

emission source (indicated by the steepest gradients in aerosol number fraction) and 

approached a steady state by the end of the domain. As this steady state would approach 

conditions typical to the wider plume (outside of the modelled domain), in addition to domain 

average changes, a section close to the domain end will also be used for analysis. This 5 m 

end section, indicated in Figure 7.12, will be referred to as the END section. 

 

Figure 7.12 – The fraction of the total aerosol number concentration comprising bin 3, 

bin 4 and bin 5 aerosols along the domain length averaged over the 24 to 44 second and 24 

to 88 second time periods. Grey hatching indicates the last 5 metres of the domain which is 

a secondary analysis region known as END. 

In this END section, the majority of aerosols (around 90%) were still in bin 3, while the 

remaining 10% largely comprised of bin 4 aerosols. Only a small percentage (0.17%) of the 

aerosols were in bin 5, with less than 0.001% in bins 6 and above. 

Increasing the analysis time period from between 24 and 44 seconds to between 24 and 

88 seconds resulted in a slightly larger number fraction of aerosols in the larger size bins. For 

bin 4, this number fraction increased from 9.04% to 9.54%, while for bin 5, the increase was 

from 0.17% to 0.19%. There was a correspondingly reduced number fraction of aerosols in 

the original bin 3 (90.27% compared 90.79%). 

The similarities demonstrated in Figure 7.12 again suggest that the shorter analysis time 

period (24 to 44 second) adequately captures the aerosol processes that are apparent over 

longer time periods (24 to 88 second), as discussed in Section 7.3.1.1. 
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As coagulation leads to the formation of larger aerosols, there is an accompanying decrease in 

total aerosol number (as demonstrated in Figure 7.7). The spatial distribution of this total 

aerosol number concentration decrease is shown in Figure 7.13 (as the percentage reduction 

between the CHEM and NO_CHEM simulations). The percentage losses in total number 

concentrations increase with distance from the emission source. In the END section, the total 

number concentration has reduced by up to ~85%, with this highest value corresponding to 

the counter-rotating vortex pair region.  

 

(a) 

 

 (b) 

 

 

Figure 7.13 – The percentage loss in total aerosol number concentration in the CHEM 

simulation compared to the NO_CHEM simulation for (a) the domain average along the 

length of the domain, with grey hatching indicating the END region as in Figure 7.12 and 

the solid black arrow indicating the location of the emission point; and (b) the average 

percentage loss in total aerosol number concentration in the END region. Both averaged 

between 24 and 44 seconds.  

Considering the domain and END section averages, Table 7.2 details the perturbations in 

aerosol number concentration and mass from the background concentrations for the proposed 

Salter et al. (2008) emission rate (denoted as 1.0xSA) over the 24 to 44 second analysis 

period. Bins 1 and 2 are omitted from the table as the effects of the comparatively small 

maximum aerosol perturbations (e.g. -2 cm
-3

 for bin 1 CHEM simulation) on cloud droplet 

activation would be negligible. 

In the NO_CHEM simulation (where coagulation was not included), the aerosol number 

concentration increased by a domain average of 7.5x10
6
 cm

-3
, almost entirely in the emission 

bin 3. The domain average aerosol mass increased by 5.8x10
4
 µg kgdry air

-1
. These values were 

larger in the END section, being increases of 7.9x10
6
 cm

-3
 and 6.1x10

4
 µg kgdry air

-1
 for the 

number concentration and mass respectively. In the CHEM simulation (where coagulation 

was included), the aerosol number concentration increased by a domain average of 

4.0x10
6 
cm

-3
 and an END section average of 3.3x10

6
 cm

-3
. Thus, including coagulation 
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caused number concentration increases to be reduced by 46.9% for the domain, and 58.1% 

for the END section. Masses were conserved however. 

Table 7.2 – Domain average perturbation in aerosol number concentrations (cm
-3

) and 

aerosol mass concentrations (µg kgdry air
-1

) from background aerosol concentrations in 

NO_CHEM and CHEM conditions for the control case. Averages for the END section are 

given in brackets. Values are averaged over the 24 to 44 second analysis period. Bins 1 and 

2 are omitted for clarity. To aid readability, small increases (i.e. below 1 cm
-3

) are indicated 

by italics. 

 
 

Aerosol number conc. (cm
-3

)  Aerosol mass (µg kgdry air
-1

) 

NO_CHEM CHEM  NO_CHEM CHEM 

 Bin 3 
7.5x10

6
 

(7.9x10
6
) 

3.8x10
6
 

(3.0x10
6
) 

 
5.8x10

4
 

(6.1x10
4
) 

2.9x10
4 

(2.3x10
4
) 

       

 Bin 4 
7.8x10

–3
 

(7.7x10
–3

) 

2.4x10
5
 

(3.0x10
5
) 

 
1.6x10

–1
 

(1.6x10
–1

) 

2.6x10
4 

(3.3x10
4
) 

       

 Bin 5 
1.9x10

–3
 

(1.8x10
–3

) 

3.4x10
3
 

(5.5x10
3
) 

 
6.0x10

–1
 

(6.0x10
–1

) 

3.0x10
3 

(4.8x10
3
) 

       
 Bin 6 

1.3x10
–3

 

(1.3x10
–3

) 

7.5x10
0
 

(1.5x10
1
) 

 
4.5x10

–1
 

(4.5x10
–1

) 

5.4x10
1 

(1.0x10
2
) 

       

 Bin 7 
4.7x10

–4
 

(4.8x10
–4

) 

3.2x10
–3

 

(6.4x10
–3

) 
 

3.8x10
–1

 

(3.8x10
–1

) 

5.4x10
–1 

(7.3x10
–1

) 

       

 Bin 8 
6.8x10

–5
 

(6.8x10
–5

) 

6.8x10
–5

 

(6.8x10
–5

) 
 

4.9x10
–1

 

(4.9x10
–1

) 

4.9x10
–1 

(4.9x10
–1

) 

       

 TOTAL (all bins) 
7.5x10

6
 

(7.9x10
6
) 

4.0x10
6
 

(3.3x10
6
) 

 
5.8x10

4 

(6.1x10
4
) 

5.8x10
4 

(6.1x10
4
) 

The number concentrations in each size bin also changed for the CHEM case compared to the 

NO_CHEM case. The domain average number concentration increase in bin 3 in the CHEM 

simulation was 3.8x10
6
 cm

-3
, or 49.9% of that in the NO_CHEM case. In the CHEM 

simulation, coagulation allowed aerosols to grow. This coagulational growth resulted in there 

being an increased aerosol number concentration in bin 4 of 2.4x10
5
 cm

-3
. This number of 

aerosols equates to 3.1% of the total aerosol number concentration increase that occurred in 

the NO_CHEM case (when coagulation was prohibited). For bin 5, these values were 

3.4x10
3
 cm

-3
 (0.04% of the NO_CHEM case), falling to 7.5 cm

-3
 (0.0001%) for bin 6, and 

falling further to increases below thousandths per cm
3
 for bins 7 and 8. The bin 3 aerosol 

number concentrations are smaller still for the CHEM simulation averaged over the END 

section, whilst in this region the larger aerosols (bins 4, 5 and 6) increase in number by more 

than the domain average. 
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7.3.2 Control Plume: Discussion 

The ability of the model to simulate structures characteristic of a jet in a cross-flow is now 

discussed. These structures are important as they govern the flow, and hence control aerosol 

distributions and coagulation rates (Soldati and Marchioli, 2009). 

The model successfully simulated the interaction of the jet and cross-flow. These interactions 

can be seen in the changes in flow speed and pressure resulting from the presence of the jet of 

air and aerosols that acts as a physical obstacle. This produces, for example, the region of 

high pressure on the upwind side of the jet, illustrated in Figure 7.9 (Keffer and Baines, 1963; 

Muppidi and Mahesh, 2005). This interaction additionally caused the jet to deflect, with the 

trajectory of the plume generally falling within a range expected from previous empirically 

derived bounds, illustrated by the blue shading in Figure 7.8 (Margason, 1993; Muppidi and 

Mahesh, 2005). However, the coefficients associated with fitting the plume data to the 

standard trajectory (Equation 7.1) were outside of the empirically derived ranges of 1.2 to 2.6 

and 0.28 to 0.34 (for coefficients A and B respectively) for both the 6 ms
-1

 and 9 ms
-1

 cross-

flow velocities. The shape of the simulated flow particularly differed from that expected from 

the empirical limits close to the emission point. The discrepancy may arise from several 

factors. Firstly, in forming the counter-rotating vortex pair, the jet flow rotated (Mahesh, 

2013) and caused the planar jet speed along the centreline of the jet to diminish within 5 rotor 

diameters of the source (Figure 7.9 a). To facilitate analysis, rather than fitting the trajectories 

to the peak flow speeds (which are commonly used for the empirical derivation of the 

equation coefficients), the trajectories were instead fitted to the more easily identifiable peak 

aerosol concentrations. These peak aerosol concentrations have previously been shown to 

follow shallower trajectories than the peak flow speeds (Campolo et al., 2005). Secondly, the 

profile of the jet velocity across the jet exit has been observed to be important in dictating 

resulting flow patterns (Su and Mungal, 2004). In this model, the fairly coarse resolution 

compared with the rotor diameter may have exaggerated the slowing of the flow near the jet 

edges, leading to an overly shallow exit angle.  

In addition to deflecting the jet, the model also successfully captured the formation of a 

counter-rotating vortex pair, a dominant feature in the cross-sectional behaviour of the jet in 

cross-flow (Cortelezzi and Karagozian, 2001). As the ratio of particle response time to air 

flow response time was significantly smaller than one (~1x10
-6

 for bin 3 aerosols, as captured 

by the Stokes Number – described for completeness by Equation A.2 in Appendix A), the 

MCB aerosols behaved as tracers, following the fluid flow (Crowe et al., 1985; Eaton and 

Fessler, 1994; Diez et al., 2011). Thus, aerosols congregated towards the vortex cores, as 

demonstrated in Figures 7.12 and 7.13 and in agreement with the numerical modelling of Tu 

and Liu (2012) and the observations of Wen et al. (1992). Analogously, higher concentrations 
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of gas tend to co-locate with regions of high vorticity (Fairweather et al., 1988; Crabb et al.; 

Smith and Mungal, 1998; Huq and Dhanak, 1996). The structure of the counter-rotating 

vortex pair changed with distance from the emission point (Figure 7.9 c). The increase in 

diameter of the vortices, weakening of the vorticity and spreading of the vortex pair centres 

demonstrate the entrainment of cross-flow air that acts to dilute the jet flow (Miller and 

Garrick, 2004). 

In terms of other vortical structures in the simulation, shear layer vortices were apparent as 

the plume filled the domain (up to t=24 s, Figure 7.6). They were, however, absent in the 

later, approximately steady-state, flow. This suggests that despite having a scaling of 

horizontal grid to rotor which is similar to the previous large-eddy simulation experiments of 

Rudman (1996), the vertical grid spacing may have been insufficient to represent these 

structures here. As the Brownian coagulation kernel (which depends on aerosol concentration 

rather than turbulence) was used, these secondary shear layer vortices were less critical than 

the counter-rotating vortex pair that governs the flow, and hence the distribution of aerosols. 

These small-scale features would, however, become more critical if a turbulent coagulation 

kernel were to be used instead (Fu et al., 2013). Simulations investigating the sensitivity of 

the plume representation to such a turbulent coagulation kernel may be of interest for future 

work. 

While horseshoe and filament-like wake vortices (Figure 7.2) are associated with jets emitted 

flush from a surface, and were therefore neither expected, nor seen in these elevated jet 

simulations, other wake phenomenon were present. Aerosols were drawn into the wake of the 

jet wake, with some vertical bifurcation (Figure 7.6). These phenomena may be the result of 

physically realistic behaviour, artefacts of the model set-up, or a combination of both. 

Wind-tunnel observations have shown that when the jet velocity is less than twice that of the 

cross-flow velocity – as was the case in these simulations – downwash of the jet fluid into the 

wake of a jet can occur (Huang and Hsieh, 2002; Huang and Hsieh, 2003). The ensuing 

horizontal path of the aerosols in these simulations (Figure 7.6) could be a result of their 

subsequent transport through the domain by the cross-wind. A similar splitting of the plume 

has been additionally been observed in horizontally-emitted buoyant jets (Arakeri et al., 

2000; Deri et al., 2011). 

However, the model set-up, particularly the grid spacing, may also contribute towards the 

vertical bifurcation of the plume. Again, the fairly coarse resolution compared with the rotor 

diameter may have exaggerated the slowing of the flow near the jet edges. Thus, the faster-

moving jet core could have produced the primary trajectory (and counter-rotating vortex 

pair), while the overly slowed edge flow could have produced the shallower, secondary flow 

path. Overly coarse model resolution has previously been suggested as a possible cause for 
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the over-intensification of similar flow patterns in large-eddy simulation modelling of a jet 

emitted flush to the surface (Majander and Siikonen, 2006). 

Aside from the initial cause of the vertical spread of aerosols, it is likely that flow dynamics 

reinforced the bifurcation apparent in the flow further from the jet emission point (Figure 7.6 

and Figure 7.10). As the rotation of the counter-rotating vortex pair entrained surrounding air 

into the leeside of the jet (Figure 7.14), it created wedges of relatively low aerosol 

concentration, forcing the more heavily aerosol loaded air into a chevron pattern located 

below the counter-rotating vortex pair (circled; Figure 7.14). 

 
Figure 7.14 – Reproduction of Figure 7.10 c (Distance = 40d) with black arrow outlines 

schematically indicating entrained flow, with chevron pattern of jet wake high aerosol 

concentration circled. 

As the coagulation rate varies with the square of the number concentration (Smoluchowski, 

1916), the areas of high aerosol concentration in the counter-rotating vortices exhibited the 

greatest reductions in aerosol number concentration caused by coagulation (Figure 7.13 b). 

Further from the emission source, aerosols had more opportunity to coagulate owing to the 

longer residence times (Yu et al., 2006; Tu and Liu, 2012). This led to the greatest reductions 

in aerosol number concentration occurring further from the emission source (Figure 7.13 a). It 

also meant that more larger bin size aerosols were similarly located further from the emission 

source (Figure 7.11). 

These discussions show that the model in this configuration is capable of adequately 

capturing several key features of the jet in cross-flow behaviour. The validity of these 

simulations is also supported by the similar coagulation rates achieved using a Gaussian 

plume model (Stuart et al., 2013). This large-eddy simulation plume model was therefore 

further utilised to determine how coagulation rates – and the resulting changes in MCB 

aerosol concentration and size distribution – vary under a range of different assumptions. 

These sensitivity experiments are presented and discussed in the next section.  
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7.4 Sensitivity Experiments 

This section presents and discusses a range of sensitivity experiments, as detailed in 

Table 7.1. 

7.4.1 Sensitivity Experiments: Results 

7.4.1.1 Sensitivity Experiments: Aerosol Emission Rates 

The changes in number concentration and mass distribution for the control case are shown in 

Figure 7.15, along with data for a range of aerosol emission rates from 5.0xSA to 0.1xSA. 

Owing to the small percentage contribution of the larger bin sizes to the total aerosol number 

concentration, only bins 3 to 5 are shown. These values are represented as percentages of 

number concentration or mass in bins 3, 4 and 5 of the CHEM simulation, compared with the 

sum of number concentration or mass over all bin sizes in the NO_CHEM equivalent 

simulation. For the domain averages of the lowest emission rate considered (0.1xSA), 90.1% 

of the aerosol number concentration present in the NO_CHEM case remained in bin 3 in the 

CHEM simulation. Coagulation led to a number concentration in bin 4 of 0.7% of the total 

NO_CHEM aerosol number concentration, with 0.001% being present in bin 5. The total 

aerosol number loss associated with coagulation in the 0.1xSA case was therefore less than 

10%. For the domain averages of the highest emission rate considered (5.0xSA) however, 

only 18.0% of the aerosol number concentration present in the NO_CHEM case remained in 

bin 3 in the CHEM simulation, with 3.8% in bin 4 and 0.2% in bin 5. Thus, the total aerosol 

number loss associated with coagulation in the 5.0xSA case was almost 80%. 

The relationship between the numbers of aerosols lost and the emission rate is shown in 

Figure 7.16 (panel a). Increasing emission rates led to increasing percentages of aerosol 

number concentration loss, although this relationship was not linear with losses increasing 

rapidly between 0.1xSA and 1.0xSA, but increasing more slowing between 1.0xSA and 

5.0xSA. This relationship produced a non-linear increase in total aerosol number with aerosol 

emission rate (Figure 7.16 b). Thus, the bulk coagulation rates causing this pattern of 

behaviour appear to not follow the simple proportionality with the square of aerosol 

concentration relationship (for example, Section 7.2). This phenomenon may be related to the 

non-uniform distribution of the aerosol concentration through the plume (Section 7.3.1.4) 

associated with the higher concentrations of aerosols in the counter-rotating vortex pair 

region. The relative distributions of aerosol concentrations will likely alter under the different 

aerosol emission rates, leading to the divergence from the bulk ‘proportionality with the 

square’ relationship. 
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Figure 7.15 – (a) Percentage of the aerosol number concentration in bins 3, 4 and 5 for the 

CHEM simulation compared to the NO_CHEM simulation for the domain average (bars) and 

for the END region average (circles). For the water vapour and water droplets results, this 

percentage is compared to the control NO_CHEM simulation (therefore omitting both water 

and aerosol coagulation). Aerosol emission rates given as multiples of that proposed by 

Salter et al. (2008) (denoted as xSA). Percentages for the sum of all aerosol size bins (1 to 8) 

are stated numerically for the domain average, and for the END section in brackets; 

(b) Percentage of the total mass of bin 3, 4 and 5 aerosols as for ‘a’. 
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Figure 7.16 – (a) Percentage reduction in total aerosol number concentration for the CHEM 

simulations compared to the NO_CHEM simulations for various emission rates; (b) Aerosol 

number concentrations against aerosol emission rates for the CHEM simulations. Emission 

rates given as multiples of that proposed by Salter et al. (2008) (denoted as xSA). 

7.4.1.2 Sensitivity Experiments: Cross-wind Speeds 

Increasing the cross-wind speed from 6 ms
-1

 to 9 ms
-1

 resulted in a shallower trajectory 

(Figure 7.17). 

 

Coefficients to fit 

Equation 7.1 

 A B 

6 ms
-1

 

(Bin 6) 
1.19 0.48 

9 ms
-1

 

(Bin 6) 
1.03 0.47 

 

Figure 7.17 – Trajectories for cross-wind speeds of 6 ms
-1

 and 9 ms
-1

, fitted to Equation 7.1 

(solid lines) associated with points of maximum aerosol concentration for bin 6 along the 

central y-plane. Coefficients for each trajectory fit are stated. Dotted lines indicate expected 

bounds for the trajectory from previous literature (A=2.6, B=0.36; A=1.2, B=0.28). Data 

shown 44 seconds from simulation start. 

Owing to the increased cross-flow, the aerosols emitted in the jet travelled through the 

domain faster for the 9 ms
-1

 flow compared to the 6 ms
-1

 flow. This produced both a lower 

domain average number concentration (Figure 7.18 a) and lower concentrations of aerosols in 

each grid cell (Figure 7.18 b) for the 9 ms
-1

 flow compared to the 6 ms
-1

 flow. 

The resulting changes in aerosol number concentration and mass distribution are shown in 

Figure 7.15. The increased wind speed reduced the growth of aerosols to the larger size bins. 

The inclusion of coagulation therefore reduced domain average aerosol number concentration 

increases by 39.6% in the 9 ms
-1

 case, compared to a reduction of 46.9% for the 6 ms
-1

 case. 

(a) (b) 
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Figure 7.18 – Cross-wind speed: (a) time series of the domain average aerosol number 

concentration (cm
-3

) for the NO_CHEM cases; and (b) the number of cells in the domain 

containing various aerosol number concentrations (cm
-3

) in the 6 ms
-1

 and 9 ms
-1

 NO_CHEM 

simulations, averaged over the 24 to 44 second time period. 

7.4.1.3 Sensitivity Experiments: Background Temperatures 

Increasing the background temperature from 288.3 K to 300.0 K increased the rate of 

coagulation. This increased the transfer of aerosols from bin 3 to the larger bin sizes 

(Figure 7.15). In doing so, the domain average aerosol losses increased from 46.9% to 54.0%. 

7.4.1.4 Sensitivity Experiments: Initial Aerosol Emission Size Distributions 

The effect of emitting aerosols into the jet in cross-flow with a size distribution resulting 

from coagulation within the rotor, as estimated in Chapter 6, is now compared to the case of 

emitting a monodisperse bin 3 aerosol. Figure 7.15 shows the remaining number 

concentration and mass when compared to the NO_CHEM monodisperse bin 3 aerosol 

emission. Thus, the rotor output emission values incorporate both changes that occurred 

within the rotor, and those that occurred within the plume. 

Including the estimated coagulation that occurred within the rotor led to a larger transfer of 

aerosols from bin 3 to larger bin sizes. This led to an overall decrease in domain averaged 

total number concentration of 57.7% compared to the monodisperse bin 3 emission case 

(which led to a total number decrease of 46.9%). For the END section, these coagulation-

induced number concentration decreases were 64.9% and 58.1% respectively. Table 7.3 states 

the number concentrations of aerosols compared to the background case for the monodisperse 

(bin 3) emission case and the rotor output emission case. The increased losses in bin 3 

number concentration for the rotor output emission case compared to the monodisperse 

emission case, and resulting increases in number concentrations in larger bins (notably bins 4 

and 5) can be seen. 
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Table 7.3 – Domain average perturbation in aerosol number concentrations (cm
-3

) from 

background concentrations for monodisperse (bin 3) emission and rotor output emission. 

Values are averaged over 24 to 44 seconds. END section averages are given in brackets. 

 

Bin size 
Aerosol number conc. (cm

-3
)  

 Monodisperse (bin 3) emission Rotor output emission  

 Bin 3 
3.8x10

6
 

(3.0x10
6
) 

2.5x10
6
 

(2.0x10
6
) 

 

     
 Bin 4 

2.4x10
5
 

(3.0x10
5
) 

6.8x10
5
 

(8.0x10
5
) 

 

     
 Bin 5 

3.4x10
3
 

(5.5x10
3
) 

8.0x10
3
 

(1.2x10
4
) 

 

     
 Bin 6 

7.5x10
0
 

(1.5x10
1
) 

1.8x10
1
 

(3.4x10
1
) 

 

     
 Bin 7 

3.2x10
–3

 

(6.4x10
–3

) 

6.9x10
–3

 

(1.4x10
–2

) 
 

     
 Bin 8 

6.8x10
–5

 

(6.8x10
–5

) 

6.8x10
–5

 

(6.9x10
–5

) 
 

 

In an additional test, the rotor output emission was scaled up such that the total number 

concentration was equal to the monodisperse (bin 3) emission. This experiment resulted in 

coagulational total number concentration losses of 46.2% for the domain (and 57.4% for the 

section average). These were similar to the monodisperse (bin 3) emission number 

concentration reductions of 46.9% and 58.1% respectively, suggesting that coagulation rates 

are more sensitive to changes in aerosol number concentrations than they are to the presence 

of larger aerosols that could potentially be formed within the rotor. 

 

7.4.1.5 Sensitivity Experiments: Inclusion of a Rotor Obstacle 

Emitting the jet in to the cross-flow in the absence of the rotor produced a straight plume and 

obvious counter-rotating vortex pair (Figure 7.5). The Kármán vortex street flow pattern 

induced by the inclusion of a rotor is shown in Figure 7.19 (panel a). Figure 7.19 b is a 

schematic of the cross-section of this rotor case, defining terminology used in presenting and 

discussing this case. 
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(a) 

 

 (b) 

 

Figure 7.19 – (a) Instantaneous isosurface for a given aerosol concentration, showing the 

typical structure of a simulated jet in cross-flow in the presence of a rotor. (b) A schematic 

depicting the jet and rotor wake regions, following Adaramola et al. (2012). 

Figure 7.20 shows horizontal sections through the rotor and jet wakes, with flow vorticities, 

indicating a weaving flow pattern. Vortices shed from either side of the rotor can be 

identified by the opposing signs of vorticity. The oscillations observed in the rotor wake 

(Figure 7.20 a) exhibit a more regular structure than those in the jet wake (Figure 7.20 b) 

which appear to be elongated. This is illustrated by the labelled points (W1, W2 and W3) in 

the figure. Over the final 20 seconds of the simulation, approximately four cycles were shed, 

leading to a vortex shedding frequency of approximately 0.2 Hz. 

 
Figure 7.20 – Horizontal sections for the inclusion of rotor case. Rotor located at x=20m, 

flow from left to right. Filled coloured contours show the interstitial aerosol number 

concentration totalled over bins 3 to 8 (cm
-3

); with black line overlay contours indicating 

vorticity (solid = positive, dotted = negative) for the: (a) Rotor wake (~10 m above the 

surface); and (b) Jet wake (~24 m above the surface). Both at 44 seconds from simulation 

start. Labels W1, W2 and W3 indicate vortex tips for discussion in the text. 
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The vertical distribution of aerosols in response to the inclusion of the rotor is shown in 

Figure 7.21. The aerosols were rapidly drawn lower than was the case when the rotor was 

omitted (cf. Figure 7.6). Further differences include a shallower trajectory of the upper bound 

of the plume compared to the rotor omitted case, and the previously smooth flow path 

becoming disordered (although some periodicity in the flow pattern is evident). 

 

 

 

 
Figure 7.21 – Domain average aerosol concentrations (total of bin sizes 3 to 8, averaged 

over the y-direction) through time with inclusion of the solid rotor. The crosswind flows 

from left to right. Black solid arrows indicate the location of the emission point. 

The inclusion of the rotor increased the domain average total number concentration compared 

to when the rotor is omitted by around 13% by the end of the simulation (Figure 7.22 a), 

suggesting that the rotor influenced plume was slower to leave the domain. Figure 7.22 b 

indicates that the presence of the rotor results in a narrower distribution of aerosol 

concentrations, with a larger number of grid cells having a lower aerosol concentration, and 

fewer grid cells containing a high aerosol concentration. 

             
 

Figure 7.22 – Inclusion of rotor: (a) time series of the domain average aerosol number 

concentration (cm
-3

) for the NO_CHEM cases; and (b) the number of cells in the domain 

containing various aerosol number concentrations (cm
-3

) in the rotor and no rotor 

NO_CHEM simulations, averaged over the 24 to 44 second time period. 

Figure 7.15 shows that there was an increase in coagulation when the rotor was included, 

with a reduction in aerosol number concentration of 52.1% (compared to 46.9% for omission 

of the rotor). This increase in coagulation may be caused by the higher domain average 
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aerosol number concentration when the rotor is included, in spite of there being fewer cells 

with higher aerosol concentrations. 

7.4.1.6 Sensitivity Experiments: Including Water Vapour With the Emission 

Including water vapour with the jet and MCB aerosol emission into the cross-wind resulted in 

a more disordered plume (Figure 7.23) compared with the case where water vapour was 

omitted (cf. Figure 7.6). The lower edge of the plume generally rose higher than the water 

vapour omitted case, while in some locations, the upper edge of the plume was also several 

meters higher. The plume also reached the end of the domain more rapidly. Unlike the plume 

resulting from the inclusion of the rotor, there was no apparent periodicity in the plume 

structure (cf. Figure 7.21). 

 

 

 

 
Figure 7.23 – Domain average interstitial aerosol concentrations (total of bin sizes 3 to 8, 

averaged over the y-direction) through time, for the case where water vapour emission is 

included. The crosswind flows from left to right. Black solid arrows indicate the location of 

the emission point. 

In the plume cross-section (Figure 7.24), a counter-rotating vortex pair was still present with 

similarly spaced centres and rotational directions as for the non-water vapour simulation 

(labelled ‘A’). However, including water vapour in the jet emission did alter portions of the 

plume cross-sections. Close to the emission source (at a distance of approximately 5 rotor 

diameters, ‘5d’) and at a height approximately equal to it, arose an area of updrafts 

(labelled ‘B’, Figure 7.24). This region of updrafts was coupled to the overlying counter-

rotating vortex pair via a series of eddies which extended to around double the width of the 

counter-rotating vortex pair. Further from the emission source (at approximately 20 rotor 

diameters, ‘20d’; Figure 7.24), these updrafts diverged (labelled ‘C’; Figure 7.24) resulting in 

a broadening of the plume. Here, the symmetry of the counter-rotating vortex pair was lost. 

No indication of the counter-rotating vortex pair remained further from the emission source 

(at approximately 35 rotor diameters, ‘35d’). Here, the outward flow of the deflected updrafts 

continued to widen the plume, which now filled the domain, and several eddy structures were 

present throughout the plume. 
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INTERSTITIAL AEROSOLS 

 Distance = 5d Distance = 20d Distance = 35d  
  

Bin 3 

    
  

Bin 4 

    
  

Bin 5 

    
  

Bin 6 

    
    

Bin 7 

    
    

Bin 8 

    

Figure 7.24 – Sections of vertical planes at 5, 20 and 35 times the diameter of the rotor 

(following the control simulation trajectory), showing the distribution of bin 3 to bin 8 

interstitial aerosol concentrations (cm
-3

) for the CHEM simulation including water vapour 

emission overlaid by arrows showing velocities of the flow. Data shown 44 seconds from 

simulation start. Boxes labelled A, B and C denote areas of dynamical interest for discussion 

in the text. 
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ACTIVATED AEROSOLS 

Bin 3 

    
    

Bin 4 

    
    

Bin 5 

    
    

Bin 6 

    
    

Bin 7 

    
    

Bin 8 

    

Figure 7.25 – Sections of vertical planes at 5, 20 and 35 times the diameter of the rotor 

(following the control simulation trajectory), showing the distribution of bin 3 to bin 8 

activated aerosol concentrations (cm
-3

) for the CHEM simulation including water vapour 

emission overlaid by arrows showing velocities of the flow. Data shown 44 seconds from 

simulation start. 
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The distribution of interstitial aerosols within these flow structures (Figure 7.24) again 

showed preferential concentration in areas of high vorticity, similar to the simulations that 

omitted water vapour emission. Thus peaks in interstitial aerosol concentration were again 

formed in vortical regions. Also as occurred for the water vapour omitted simulation, the 

interstitial aerosols grew in these regions of aerosol. However, the aerosol concentrations in 

bin sizes 4, 5 and 6 were consistently an order of magnitude smaller than the water vapour 

omitted case (Figure 7.24, cf. Figure 7.11). 

The increase in supersaturation associated with this emission of water vapour was sufficient 

for some aerosols to become activated (Figure 7.25). The distribution of activated aerosols 

shows bin 8 interstitial aerosols were being activated at a concentration of up to ~0.01 cm
-3

, 

resulting in an apparent depletion of bin 8 interstitial aerosols in these areas. The number 

concentration of activated bin 3 aerosols was, however, approximately four orders of 

magnitude larger (~100 cm
-3

). The concentration of activated aerosols increases with distance 

from the source. 

Figure 7.26 shows that the inclusion of water vapour in the emission led a maximum 

temperature increase of 78 K resulting from the condensation of water onto the aerosol 

particles. Close to the emission source, the water vapour mixing ratio rose by 500 g kgdry air
-1

, 

while the cloud water mixing ratio rose by 25 g kgdry air
-1

. Further from the source, where the 

plume has dispersed, temperature increases along the centreline were below 10 K and cloud 

water and water vapour mixing ratio increases were 1 g kgdry air
-1

. While the sign of these 

changes are as expected (i.e. with warming associated with condensational heating), the 

magnitudes of the perturbations are unlikely to be realistic, particularly close to the emission 

source. From an energy conservation viewpoint, temperature increases of this magnitude 

reinforce that significant energy inputs would be needed in order to produce this water vapour 

emission scenario. Such an energy intensive process would likely prevent this scenario from 

being practically viable. Owing to lack of comparable observed cases, the performance of the 

model under these extreme conditions cannot be verified. 

Finally, Figure 7.15 shows the aerosol number and mass changes associated with the 

inclusion of both water vapour and coagulation. Aerosols include both interstitial and 

activated aerosols. The inclusion of water vapour increased the total aerosol mass over the 

domain to 125.5% of the case where both water vapour and coagulation were omitted. This 

total aerosol mass was, however, only 102.5% for the END region, indicating similar aerosol 

amounts in this location. Both the number concentration and aerosol mass plots indicated that 

more aerosols remained in bin size 3 than grew sufficiently to enter bin 4 compared to the 

non-water vapour emitting case, both for the domain as a whole, and for the END region. 
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7.4.1.7 Sensitivity Experiments: Including Water Droplets With the Emission 

Including water droplets with the jet and MCB aerosol emission into the cross-wind produced 

a plume with the shear-layer vortex type structures (Figure 7.27), and latterly smooth 

configuration as was associated with the dry aerosol emission simulation (cf. Figure 7.6). 

However, for this water droplet emission, the plume descended, with the lower edge reaching 

the surface approximately 16 seconds after the simulation start. The depth of the plume was 

also reduced compared to the non-droplet simulation. 

 

 

 

 

Figure 7.27 – Domain average interstitial aerosol concentrations (total of bin sizes 3 to 8, 

averaged over the y-direction) through time, for the case where water droplet emission is 

included. The crosswind flows from left to right. Black solid arrows indicate the location of 

the emission point. 

A counter-rotating vortex pair was again present in the plume cross-section close to the 

emission point (labelled ‘A’ in Figure 7.28). While the directions of rotation were the same as 

for the non-droplet simulation, these counter-rotating vortices were smaller and had closer 

centres. The simulation of the emission as droplets again altered portions of the plume cross-

section. Here, close to the emission source (at a distance of approximately 5 rotor 

 

Figure 7.26 – Temperature perturbation (K) (coloured contours); cloud water mixing 

ratio (g kgdry air
-1

) (solid black contours) and water vapour mixing ratio (g kgdry air
-1

) (dotted 

black contours) along the centreline of the jet for the case where water vapour emission is 

included. 
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diameters, ‘5d’), an additional weaker counter-rotating vortex pair is formed below the main 

vortex pair feature. The rotations of this peripheral counter-rotating vortex pair are contrary 

to the main vortex pair, with flow being directed downwards at the centreline. 

ACTIVATED AEROSOLS 

 Distance = 5d Distance = 20d Distance = 35d  

Bin 3 

         
    

Bin 4 

        
 

            
 

INTERSTITIAL AEROSOLS 

Bin 3 

        
    

Bin 4 

        

     

Figure 7.28 – Sections of vertical planes at 5, 20 and 35 times the diameter of the rotor 

(following the control simulation trajectory), showing the distribution of bins 3 and 4 

activated and interstitial aerosol concentrations (cm
-3

) for the CHEM simulation including 

water droplet emission overlaid by arrows showing velocities of the flow. Data shown 

44 seconds from simulation start. Boxes labelled A and B denote areas of dynamical interest 

for discussion in the text. 

Further from the emission source (at approximately 20 rotor diameters, ‘20d’), the double 

pairing of counter-rotating vortices is lost and only one counter-rotating vortex pair structure 

remains. This remaining counter-rotating vortex pair has the rotation of the lower vortices, 

characterised by the now more strongly descending central region. By approximately 35 rotor 

diameters (‘35d’), this vortex structure remains, although the downward motion has forced it 

to the sea surface. 
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While all aerosols were emitted into the activated bin size 3, evaporation of the droplets led to 

aerosols entering the interstitial phase (Figure 7.28). In this simulation set-up, around ten 

times the number of aerosols remained as activated droplets than evaporated to interstitial 

aerosols. Evaporation caused a small amount of cloud water mixing ratio to move to the 

water vapour phase (0.1 g kgdry air
-1

; Figure 7.29). This evaporation additionally resulted in a 

temperature decrease of just under 1 K in the region of the plume (Figure 7.29). 

Very few of the activated droplets grew sufficiently to enter the activated bin size 4. Thus, no 

droplets grew to form raindrops, and no wet scavenging occurred. Aerosols that evaporated to 

the interstitial phase grew to bin 4 size, although the resulting number concentrations were 

around four orders of magnitude smaller than occurred in the dry aerosol emission case. 

 
Figure 7.29 – Temperature perturbation (K) (coloured contours); cloud water mixing 

ratio (g kgdry air
-1

) (solid black contours) and water vapour mixing ratio (g kgdry air
-1

) (dotted 

black contours) along the centreline of the jet for the case where water droplet emission is 

included. 

The aerosol number concentration and mass changes for the emission of droplets is compared 

to the simulation of dry aerosol, with no coagulation in Figure 7.15. Aerosols again include 

both interstitial and activated aerosols. 

Emitting the aerosols as droplets did not largely affect the total domain mass (104.5% of the 

dry aerosol simulation), suggesting that – despite the different dynamics – similar amounts of 

aerosols were present in the domain. The number of aerosols growing to larger size bins in 

this droplet emission case was smaller than for all previous conditions considered, with the 

majority of aerosols remaining in bin size 3. 
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7.4.2 Sensitivity Experiments: Discussion 

The counter-rotating vortex pair arose for sensitivity experiments covering the aerosol 

emission rates, cross-wind speeds, background temperatures and aerosol emission size 

distributions. The counter-rotating vortex pair was no longer apparent when the solid rotor 

was included in the simulated. Instead, the jet formed a Kármán vortex street. Unlike the 

distinct and sustained vortices that would be formed for a non-turbulent flow around a solid 

rotor (exemplified in Figure 7.30; Williamson, 1996), the Kármán vortex street formed here 

exhibited faster dissipation and correspondingly less uniform properties associated with 

turbulent flow (Roshko, 1954). 

 

Republished with permission of Annual Reviews Inc., from ‘Vortex dynamics in the cylinder wake’, Williamson, 

Annual Review of Fluid Mechanics, 28, 1996; Permission conveyed through Copyright Clearance Center, Inc. 

Figure 7.30 – Visualisation of experimentally obtained Kármán vortex streets, as viewed 

from above, for (a) Non-turbulent flow and (b) Turbulent flow. Images from Williamson 

(1996). Flow is from left to right with the obstacle located near to the left edge of each panel. 

This turbulent nature is consistent with the high 1x10
6 

Reynolds Number associated with the 

flow (described by the standard Equation A.4 included for completeness in Appendix A, for 

an assumed fluid velocity of ~6 ms
-1

, past a rotor of diameter 2.5 m with kinematic viscosity 

of air of ~1.5x10
-5

 m
2 

s
-1

), which exceeds the 5x10
5
 threshold needed for turbulence. 

Figure 7.20 indicates that there was dynamical ‘lock-in’ between the flows in the rotor wake 

and in the jet wake (Moussa et al., 1977; Eiff et al., 1995). The apparent offsetting and 

elongation of the jet wake likely resulted from the faster cross-flow above the rotor obstacle, 

although details of the linkages between the two wakes are complex and currently not well-

understood (Adaramola et al., 2012). To further validate the authenticity of these wake 

formations, Equation 7.2 can be used: 

 Vortex shedding frequency
D

StU
  (7.2) 

 where:  

 St  = Strouhal Number  

 U  = fluid flow velocity (ms
-1

)  

 D  = obstacle diameter (m)  
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The simulated frequency of vortex shedding observed in the simulations (~0.2 Hz), cross-

flow velocity (~4 ms
-1

; reduced from the free-flow velocity of 6 ms
-1

 in the wake of the rotor 

obstacle) and rotor diameter (~2.5m) suggests a Strouhal Number of 0.125. While this value 

is lower than the 0.2 typical for a rough cylinder (Lienhard, 1966; Achenbach and Heinecke, 

1981), the fit can be improved to 0.175 by increasing the rotor diameter to account for the 

crudity of the simulated rotor (Figure 7.4 b).  

The resolution of the model necessitates the representation of the rotor as an essentially rough 

cylinder. However, in practice, the rotor would likely be smooth. Smooth cylinders have 

Strouhal Numbers of approximately 0.5 (Lienhard, 1966; Achenbach and Heinecke, 1981), 

which would increase the frequency of vortex shedding by more than two. The possible 

presence and nature of Kármán vortex streets has been explored by Latham et al. (2012a) 

using computational fluid dynamics. While Kármán vortex streets were simulated for a non-

rotating rotor in turbulent flow (as here), rotating the rotor led to the organised wake 

structures breaking-down forming “unsteady three-dimensional structures”. Adding the Thom 

discs (which are beneficial for the vessel’s propulsion efficiency) eliminated Kármán vortex 

streets for the non-rotating rotor case, and decreased the amplitude of wake disturbances 

greatly compared to the bare rotor when rotating. Latham et al. (2012a) concede that further 

investigation would be needed to determine whether wake oscillations would be present. The 

slightly higher, more homogeneous, aerosol concentrations resulting from the rotor induced 

Kármán vortex street only slightly increased coagulation in the simulations presented here. 

This coagulation increase was less than increasing the background temperature from 288.3 K 

to 300.0 K, as so may not have a significant effect in reality. 

The effect of the rotation of the rotor on the aerosol plume has not been considered here. 

Possible changes that may result to the turbulent profile of the plume, and therefore to the 

coagulation rates of aerosols within the plume would be an interesting feature to consider in 

future work. 

As discussed in Chapter 5, while it is anticipated that the MCB aerosols would be formed 

from sea water (Salter et al., 2008), the formation mechanism has yet to be finalised. It is 

therefore possible that either water vapour or water droplets could be emitted as a result of 

this process. In these plume simulations, the inclusion of water affected both the structure of 

the counter-rotating vortex pair, and the trajectory of the plume. 

When water vapour was added to the emission of interstitial aerosols, condensation onto the 

aerosols led to temperature increases, peaking close to the emission source. While the 

resulting temperature increases were likely larger than realistically feasible (particularly close 

to the emission point), the simulations can yield qualitative information on possible ensuing 

patterns of behaviour. For example, the resulting buoyancy increases caused by these 
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temperature increases led to updrafts in the plume (box labelled B; Figure 7.24). These 

updrafts disrupted the counter-rotating vortex structure and caused the plume cross-sectional 

area to expand, resulting in lower aerosol concentrations and, in spite of the temperature 

increases, consequently lower rates of coagulation. This plume expansion is likely 

underestimated, particularly further from the emission source, as the buoyant plume now 

impinges on the upper domain boundary. The lower coagulation rates, and increased plume 

height would likely be beneficial for both cloud perturbations and for the delivery of the 

aerosols to the cloud. 

While the concentrations of activated aerosols are several orders of magnitude smaller than 

the interstitial aerosols, coalescence may still be sufficient to induce precipitation, which 

could deplete the total aerosol concentration via wet scavenging. Owing to current model 

limitations, it is unclear whether the potential benefits for MCB of the buoyancy-induced 

plume rise and expansion would outweigh the potentially detrimental effects of condensing 

the emitted water vapour to form droplets. For modelling of this scenario to produce such 

information, it would have to be further developed, particularly to address the currently 

unrealistic droplet coalescence behaviour and magnitudes of temperature perturbations. It is 

again noted that producing sea salt aerosol from the evaporation of sea water – as is assumed 

in this particular scenario – would be a highly energy intensive production method 

(Neukermans et al., 2014). As such, it is unlikely that this particular scenario would occur in 

reality. 

When the aerosol emission was simulated as sea water droplets, evaporation of these droplets 

led to temperature decreases throughout the plume. This finding reinforces the coarser 

resolution simulations performed in Chapter 5 and supports the idea that cold pools will hold 

the aerosol plume closer to the surface. The resulting negative buoyancy again disrupted the 

counter-rotating vortices, and caused the plume to descend to the surface. The small aerosol 

growth rates that occurred in this simulation are likely the result of two effects. Firstly, 

evaporation led to concentrations of interstitial aerosols that were at least two orders of 

magnitude smaller than previously simulated. Hence, along with the lower temperatures, the 

rates of interstitial aerosols coagulation were significantly reduced. Secondly, the rates of 

droplet coalescence were likely to be severely underestimated owing to the inadequacies of 

the representation of droplet coalescence within the two-moment microphysics 

parameterisation, as discussed for the water vapour simulation. Importantly, with the plume 

now being forced to the sea-surface, surface aerosol losses would be expected. Model 

inadequacies in simulating this case (just discussed) prevent realistically founded estimates of 

such losses from being produced from these simulations. This finding will likely be of 

significant interest in future work however. 
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The use of large-eddy simulations in modelling of MCB aerosol plume details is novel. The 

introduction of further details such as the rotor and water upon emission increasingly 

challenged the model’s ability to represent the plume behaviour. Yet, the model was 

successful in simulating feasible responses, such as plume trajectories, counter-rotating 

vortex pairs, aerosol distributions, Kármán vortex streets, and responses to buoyancy changes 

resulting from the inclusion of water. The development of these findings could be extended 

along several routes. Firstly, the simulations presented here form only a small subset of 

possible conditions. These could be extended to provide a more comprehensive 

understanding of the sensitivities within the plume. Secondly, limitations of this model set-up 

have been demonstrated, particularly in the crudity of the rotor representations and in the 

likely underestimations of droplet coalescence in the droplet emission scenario. To advance 

these simulations, higher resolutions would be necessary, as well as refinements to the 

microphysical scheme suited to this application. Other modelling techniques, including 

computational fluid dynamics, may also improve the representation, with variable resolutions 

allowing detailed grid-cell spacing near to the emission source. However, the usefulness of 

extensive further simulations at this time may be limited owing to the uncertainties arising 

from both lack of observational data for verification, and design details. For example, 

validation of the flow behaviour here has largely been qualitative, owing to the paucity of 

appropriate experimental data. The data gained from scaled experiments with appropriate 

flow attributes and rotor dimensions would therefore be beneficial. 

7.5 Conclusions 

This chapter – the second to examine the final MCB implementation detail case study – 

presents simulations of the highly concentrated MCB aerosol plumes produced upon 

emission into the marine boundary layer. 

The initial control plume, presented in the first part of this chapter, shows that the 

WRF/Chem model (used at increased resolution compared to previous cloud-resolving 

modelling) is capable of reproducing a number of features expected for a jet in a cross-flow 

scenario. These features include feasible plume trajectories, patterns of pressures and aerosol 

distributions within the plume, and the formation of a counter-rotating vortex pair. The ability 

to capture these details attests to the validity of these simulations. Coagulation within this 

highly concentrated MCB aerosol plume simulation approximately halved the total emitted 

aerosol number concentration, causing the diameter of some aerosols to increase by ~8 times. 

Following on from the confidence gained in the performance of the model during this initial 

detailed examination of the control plume, the latter part of the chapter presented results of 

sensitivity experiments using the same model. Rates of coagulation were found to be 
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sensitive to a number of factors. However, the magnitude of these sensitivities varied. For 

example, increasing the MCB aerosol emission rate to five times the control rate increased 

aerosol number concentration reductions to nearly 80%, while reducing the emission rate to a 

tenth of the control rate decreased the reductions to less than 10%. However, increasing the 

wind speed from 6 ms
-1

 to 9 ms
-1

 only decreased number concentration reductions from 47% 

to 41%, while increasing the temperature from 288.3 K to 300.0 K only increased number 

concentration reductions from 47% to 54%. This limited number of experiments additionally 

reinforced the validity of the model by confirming that the simulated change in behaviour 

matched those expected based on physical principles. Covering the wider parameter space 

associated with all possible MSc conditions would require further simulations, and is outside 

of the scope of this current work. 

A further sensitivity experiment included the additional coagulation that may occur within the 

rotor (resulting from the simple numerical integration scheme presented in Chapter 6). Along 

with increased number concentration reductions (from 47% to 58%), this deviation in the 

initial aerosol emission size distribution from the monodisperse assumption more than 

doubled the number concentrations of larger aerosols, with this change in size distribution 

being possibly important for how effectively the MCB aerosols alter cloud albedo.  

By introducing a solid rotor into the simulations, the expected Kármán vortex streets in both 

the rotor and jet wakes were successfully reproduced. While the change in simulated 

dynamics was sufficient to disrupt the formation of the counter-rotating vortex pair, 

coagulation rates were not significantly altered, with number concentration losses increasing 

only from 47% to 52%.  

Finally, while the inclusion of water in the plume led to some feasible features being 

represented (for example, latent heat fluxes and buoyancy perturbations), the inability of the 

model to adequately relate turbulence to droplet coalescence for this plume modelling, likely 

led to underestimated droplet growth. The inclusion of water did lead to evaporative cooling 

and plume descent (in support of the coarser model simulations of Chapter 5). Importantly, 

with the plume descending to the surface, aerosol losses to the surface in such circumstances 

could be significant. 

That the number concentration and size of emitted MCB aerosols can be altered by processes 

that could realistically occur in the course of MCB implementation – thus potentially altering 

the effectiveness of MCB – is an important finding that has several implications. 

Firstly, these results show that the MCB emission plume would be a complex and interesting 

region, apt for further modelling or observational investigation. This work suggests that 

measurements of plume trajectories and dispersion, along with distributions of aerosol 
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number concentrations and size through the plume would be of particular value for furthering 

understanding and validating and informing simulations. Secondly, the plume characteristics 

identified in this work could additionally be useful for informing the development of MCB 

implementation mechanism designs. The next chapter uses the findings presented here to 

determine how these aerosol number concentration and size changes alter MCB effectiveness. 
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 Chapter 8

The Effect of Processes within the Emission Rotor and Plume on 

Marine Cloud Brightening Effectiveness 

8.1 Introduction 

Chapter 7 showed that aerosol coagulation within the plume can approximately halve the 

MCB aerosol number concentration, and increase the initial diameter of some aerosols by 

approximately 8 times. Previous research has found that lower MCB aerosol number 

concentrations, and larger MCB aerosols, can reduce the effectiveness of MCB (discussed in 

Section 6.1). 

This chapter determines the effect that aerosol processes within the emission rotor and plume 

have on the resulting MCB albedo perturbations (Figure 8.1), and concludes the final MCB 

implementation detail case study. 

 

Figure 8.1 – Schematic overview of the region of interest for estimating the effect of in-

plume aerosol changes on clouds. 

To achieve this, aerosol number concentrations and sizes from Chapter 7 are used to inform 

cloud-resolving modelling. The methodology of these simulations is described in Section 8.2 

before the results of the simulations are presented and discussed (Sections 8.3 and 8.4, 

respectively). In closing this chapter, the implications of these findings for the MCB proposal 

and the production of future MCB effectiveness estimates are advanced (Section 8.5). 

8.2 Methodology 

For these simulations, the WRF/Chem model was used at the 300 m horizontal and ~30 m 

vertical grid spacing and 9 km x 9 km x ~1.5 km domain size used in Chapters 3, 4 and 5. 

For these final cloud-resolving simulations, the monodisperse (bin 3) aerosol emission 

assumption used previously is compared with three selected size distributions and number 
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concentrations. These three selected outputs are based on: the inclusion of aerosol 

coagulation within the plume only (as for the ‘CONTROL’ plume experiments described in 

Chapter 7, Section 7.3); the inclusion of coagulation within both the rotor and plume (based 

on the case described in Chapter 7, Section 7.4.1.4); and an experiment where all aerosols are 

emitted into the bin 8 aerosol size bin. For the bin 8 emission, all aerosols were assumed to 

have a dry diameter of 10 µm. As the mass is conserved, the aerosol number flux is therefore 

equivalent to reducing the number flux of the monodisperse (bin 3) control case (assuming a 

200 nm dry diameter) by a factor of 125,000. The 10 µm dry diameter aerosols of the bin 8 

case are larger than the aerosols found to result from in-plume coagulation (Chapter 7). This 

bin 8 case is therefore intended to serve as an extreme, rather than realistic, case of 

coagulation. The aerosol number and size compositions for these four cases are described in 

Table 8.1 and are based on the END section values of the plume simulations for a 1.0xSA 

aerosol emission flux. These END values are assumed to simulate the wider plume values 

more realistically than the domain averaged plume values that include the highly 

concentration conditions near to the emission source. The mass and number fractions 

described in Table 8.1 were applied to both a full 1.0xSA emission rate, and to a 0.5xSA 

emission rate. As the 0.5xSA emissions flux would have less coagulation and hence smaller 

reductions in aerosol number concentrations than the 1.0xSA flux (e.g. number 

concentrations reducing by 32.0% for 0.5xSA compared with 46.9% for the 1.0xSA aerosol 

emission cases; Chapter 7, Figure 7.16), the application of the 1.0xSA fractional reductions 

will lead to overestimated number losses. The aerosol emission configurations were input 

into the cloud model for the background PR, NP-Pa and NP-Ch cases, with the methodology 

described in Chapter 4. 

In addition to the changes in cloud albedo perturbation, the effect of aerosol changes on the 

direct aerosol effect were considered. This case is important in the clear-sky conditions more 

frequently encountered for lower cloud fraction conditions during the day and for the open-

cellular structure typically associated with precipitating clouds. 

Table 8.1 – Number and mass fractions of emitted aerosols (as a fraction of the 

monodisperse (bin 3) aerosol emission). 

  
Number and mass fractions 

Bin 3 Bin 4 Bin 5 Bin 6  Bin 8 Total 

No coagulation  

(monodisperse, bin 3) 

Number 1.0    –   –   –   – 1.0 

Mass 1.0   –   –   –   – 1.0 

Coagulation (in plume only) 
(based on case described in Section 7.3) 

Number 0.3803 0.0377 0.0007 2x10
-6

   – 0.419 
Mass 0.3803 0.5390 0.0790 0.0017   – 1.0 

Coagulation (in rotor and plume) 
(based on case described in Section 7.4.1.4) 

Number 0.2488 0.1006 0.0016 4x10
-6

   – 0.351 

Mass 0.3250 0.4932 0.1778 0.0039   – 1.0 

Aerosols emitted into bin 8 
Number  –   –   –   –  8x10

-6
 8x10

-6
 

Mass  –   –   –   –  1.0 1.0 
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8.3 Results 

Time series of the domain averaged calculated cloud albedo and Nd for the base cases and 

simulations including MCB aerosols emitted at 03:00:00 LT are presented in Figure 8.2. 

Values of the domain and time averaged calculated cloud albedo, Nd and LWP are 

summarised in Table 8.2. 

As occurred in previous PR simulations (Chapter 4), emission of the full spray rate (1.0xSA) 

led to simulation failure upon sunrise at 05:20 LT. Reducing the emission rate to 0.5xSA 

allowed the control emission to run successfully through the day, increasing the calculated 

cloud albedo (in the 5 hours after MCB aerosol emission where SW radiation was present) 

from 0.203 to 0.503. Simulations into the PR regime that included coagulation (both in the 

plume only, and in the rotor and plume cases) also failed at sunrise for both the 1.0xSA and 

0.5xSA concentrations. Up to the point of simulation failure, including the effects of aerosol 

coagulation within the rotor and plume led to increases in the calculated cloud albedo that 

were around 13% smaller for the 1.0xSA emission rate, and over 20% smaller for the 0.5xSA 

emission rate. 

 

Figure 8.2 – (top row) Time series of the domain average calculated cloud albedo over time 

for the PR, NP-Pa, and NP-Ch cases, and (bottom row) time series of the domain average Nd 

for the PR, NP-Pa, and NP-Ch cases. Aerosol emissions at 03:00:00 LT. 
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Table 8.2 – Absolute calculated cloud albedo for the PR, NP-Pa and NP-Ch cloud cases. 

Values are for the base case (with no MCB emissions) and for emission fluxes of 1.0xSA and 

0.5xSA of four different MCB aerosol emission assumptions. Values are averaged over the 

domain and over the time during the five hours after MCB aerosol emission where SW 

radiation is present (or averaged over the night for values in bold, with grey shading 

indicating incomplete simulations that failed at sunrise). Perturbations in the calculated 

cloud albedo from the (no emissions) base case are shown (Δcalc. cloud albedo), with the 

percentage values shown in italics being the difference in calculated cloud perturbation 

compared with the monodisperse (bin 3) control emission assumption. Also shown are the 

domain averaged Nd and LWP for time periods described above. 

 
   1.0xSA   0.5xSA  

 
 

Base Case 

(no 
emissions) 

Monodis. 

(bin 3) 
control 

Coag. 

(plume 
only) 

Coag. 

(rotor and 
plume) 

Bin 8  

Monodis. 

(bin 3) 
control 

Coag. 

(plume 
only) 

Coag. 

(rotor and 
plume) 

Bin 8 

P
R

 

Calc. 
cloud 
albedo 

0.203 

0.270 
0.292 0.290 0.289 0.203  

0.503 

0.290 
0.287 0.286 0.200 

Δcalc. 
cloud 
albedo 

– +0.022 
+0.020 

-10.0% 

+0.019 

-13.3% 
+0.000 

-100.0% 
 

+0.300 

+0.020 

+0.017 

-17.4% 

+0.016 

-21.5% 

-0.003 

-101.0% 

Nd, 
cm

-3
 

10.9 

11.7 
39.5 38.4 36.4 11.0  

185.1 

38.2 
31.9 30.4 10.8 

LWP, 
g m

-2
 

32.2 

42.9 
43.4 43.3 43.4 32.9  

49.1 

43.3 
43.3 43.3 32.8 

N
P

-P
a 

Calc. 
cloud 
albedo 

0.630 0.668 0.659 0.652 0.633  0.656 0.649 0.647 0.629 

Δcalc. 
cloud 
albedo 

– +0.038 
+0.029 

-24.1% 

+0.022 

-40.9% 
+0.003 

-91.9% 
 +0.025 +0.019 

-25.4% 

+0.017 

-33.8% 

-0.002 

-107.0% 

Nd, 
cm

-3
 

178.4 387.2 296.4 282.1 179.3  308.8 247.5 235.8 177.6 

LWP, 
g m

-2
 

60.7 59.9 60.7 59.9 61.0  59.5 60.4 60.3 60.2 

N
P

-C
h

 

Calc. 
cloud 
albedo 

0.706 0.718 0.710 0.711 0.695  0.711 0.707 0.705 0.697 

Δcalc. 
cloud 
albedo 

– +0.012 +0.004 

-67.6% 

+0.005 

-57.4% 

-0.011 

-192.0% 
 +0.005 +0.001 

-81.1% 

-0.001 

-122.8% 

-0.009 

-271.1% 

Nd, 
cm

-3
 

521.4 724.4 630.4 622.0 491.0  650.4 591.7 577.9 497.2 

LWP, 
g m

-2
 

59.1 57.6 57.1 57.8 57.4  57.3 57.4 57.1 57.8 

For the PR regime, the bin 8 aerosol emissions cases ran successfully for both 1.0xSA and 

0.5xSA fluxes. The 1.0xSA bin 8 emission produced no change in the baseline cloud albedo, 

while the 0.5xSA bin 8 emission resulted in a small reduction in mean calculated cloud 

albedo of 0.003 (equating to a 1% decrease in calculated cloud albedo over this time). This 

reduction in absolute cloud albedo was concomitant with a slight decrease in Nd from 

10.9 cm
-3

 to 10.8 cm
-3

. 
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For the intermediately polluted case (NP-Pa) all simulations ran successfully. For both the 

1.0xSA and 0.5xSA emission rates, inclusion of the effects of coagulation within the plume 

reduced the increases in calculated cloud albedo by approximately 25% (over times where 

SW radiation was present). Inclusion of the effects of coagulation within both the rotor and 

the plume reduced the increases in calculated cloud albedo by 41% for 1.0xSA emission flux, 

and by 34% for 0.5xSA emission flux. Emitting bin 8 aerosols at the 1.0xSA flux produced a 

small increase in calculated cloud albedo of 0.003. This cloud albedo increase was 92% 

smaller than the monodisperse bin 3 control case emission. However, emitting bin 8 aerosols 

at the 0.5xSA flux resulted in an absolute cloud albedo decrease of 0.002 (or 0.3% of the 

background cloud albedo). As for the absolute cloud albedo decrease for the PR regime, this 

was accompanied by a small decrease in Nd (from 178.4 cm
3
 to 177.6 cm

-3
). 

For the most polluted background conditions considered (NP-Ch), all simulations again ran 

successfully. In spite of lower overall albedo perturbations compared to the NP-Pa case, the 

comparative reductions caused by the effects of coalescence within the plume were larger. 

For the 1.0xSA emission rate, inclusion of the effects of coagulation within the plume 

reduced the increases in calculated cloud albedo by 68%. For the 0.5xSA emission rate, 

inclusion of the effects of coagulation within the plume reduced the increases in calculated 

cloud albedo by 81%. The reduction in calculated cloud albedo increase caused by 

coagulation within both the rotor and plume was 57% for the 1.0xSA emission rate, while the 

0.5xSA emission rate led to small decrease in the absolute cloud albedo of 0.001 (or 0.1% of 

the background cloud albedo). Unlike for the PR and NP-Pa cases, this decrease in absolute 

cloud albedo was accompanied by an increase in Nd (from 521.4 cm
-3

 to 577.9 cm
-3

). Finally 

for the NP-Ch background condition, emitting bin 8 aerosols at both the 1.0xSA and 0.5xSA 

emission rates led to decreases in the absolute cloud albedo (of 1.5% and 1.2% of the 

background cloud albedo respectively). As for the PR and NP-Pa background cases, these 

decreases in cloud albedo were concomitant with decreases in Nd (from 521 cm
-3

 to 491 cm
-3

 

for the 1.0xSA emission rate, and to 497 cm
-3

 for the 0.5xSA emission rate). 

The relationship between the emitted aerosol size, emitted aerosol number and calculated 

cloud increase for the three increasingly polluted background cases are depicted in Figure 8.3, 

which shows several key patterns (following Figure 2 of Pringle et al. (2012)). 

Figure 8.3 illustrates that as the background aerosol concentration is increased, the increase in 

albedo for a given emitted aerosol size and number flux decreases. For a given background 

aerosol concentration, decreasing the number of emitted aerosol decreases the resulting 

albedo increase. Thus, the smallest increases in albedo were for lower aerosol emission 

numbers into the more polluted background. As has been described, decreases in the absolute 

calculated cloud albedo occurred in five of the 17 cases simulated here, typically occurring 
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for low concentrations of large emitted aerosols. The largest absolute decreases in calculated 

cloud albedo occurred for the most polluted NP-Ch case. 

 

 

Figure 8.3 – The perturbation in calculated cloud albedo (colour of data points) that occurs 

upon the emission of aerosols of bin size indicated on the x-axis, at a number flux relative to 

that suggested by Salter et al. (2008) (y-axis), for the increasingly polluted background 

cases: PR, NP-Pa, and NP-Ch. Data points connected with lines indicate the size 

distribution of emitted aerosols. 

In addition to altering the magnitude of the calculated cloud albedo increases, the changing 

aerosol profiles that resulted from the coagulation process also affected the direct aerosol 

effect. The 1.0xSA monodisperse (bin 3) aerosol emission resulted in a mean clear-sky ratio 

of upward to downward SW radiation at the top of atmosphere of 0.222 (averaged over the 

time during the five hours after 03:00:00 LT MCB aerosol emission where SW radiation is 

present) for the NP-Pa case. The 1.0xSA in-plume coagulation simulation reduced this to 

0.212, while the 1.0xSA coagulation within both the rotor and plume produced an increase to 

0.224. For the less realistic 1.0xSA bin 8 emission, this ratio decreased to 0.168 (which is 

only slightly larger than the 0.164 found for the case when no aerosol was emitted). The 

implications of these changes in the direct aerosol effect will largely be dependent on the 

extent of the clear sky fraction in the region of emissions. While it would be of interest to 

investigate these direct aerosol effects further in the future, these results suggest that in spite 

of the lower aerosol number concentrations, the larger aerosols present in the ‘rotor and 

plume’ simulations are effective at scattering the light, and so result in the larger fraction of 

SW reflected upwards than occurs in the monodisperse or ‘in-plume only’ cases. Conversely, 

in spite of the large aerosol size of the ‘bin 8’ emission simulations, the low numbers of 

aerosols result in only small increases in reflected SW radiation compared to the ‘no aerosol 

emission’ case. 
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8.4 Discussion 

The simulations described in this chapter show that in addition to the coagulation of MCB 

aerosols that occurs within the plume and rotor (Chapters 6 and 7), further coagulation would 

occur as the aerosols are transported through the boundary layer to the cloud layer. This is 

suggested in these simulations by the increased concentrations in bin 4 aerosols activated to 

cloud droplets (and to a lesser extent, bin 5 aerosols) in response to the emission of 

monodisperse bin 3 aerosols in both the PR and NP-Ch cases (Figure 8.4 a). 

When coagulation associated with aerosol processes within both the rotor and plume is 

included, MCB calculated cloud albedo increases are reduced. These reductions range from 

13% for the cleanest background conditions (based on limited-duration simulations), to 41% 

for the intermediately polluted background conditions, to 57% for the most polluted 

background condition (all for a 1.0xSA emission flux). The inclusion of a Gaussian plume 

model-derived parameterisation of in-plume coagulation in a global-scale aerosol-climate 

model showed that the radiative flux perturbations produced over the emission regions would 

be reduced by around 25% (Stuart et al., 2013). That this value falls within the range of 

reductions in cloud albedo increases determined from this experiment suggests some 

agreement between findings, in spite of notably different methodologies. It is noted that the 

global-scale aerosol-climate model also found that the global reduction in radiative flux 

perturbation was greater than the reductions local to the aerosol emissions (Stuart et al., 

2013). This 47% global reduction in radiative flux perturbation resulted, in part, from lower 

cloud fractions when coagulation was included (Stuart et al., 2013) and suggests that the 

inclusion of global-scale feedbacks would similarly inflate the reductions in cloud albedo 

enhancement found here. 

As has been discussed in Chapter 1 and Section 2.4 of Chapter 2, previous studies have 

suggested that a competition effect may occur, whereby preferentially activated larger 

aerosols may reduce the supersaturation sufficiently to result in a decrease in the Nd. Such 

reductions in Nd, and calculated cloud albedo, were found in four of the cases simulated here 

(Table 8.2). The background condition most susceptible to decreases in both Nd and absolute 

cloud albedo in response to the emission of aerosols is the most heavily polluted (NP-Ch) 

case. This increased sensitivity of more polluted clouds to albedo reductions via the 

competition effect agrees with previous modelling of the effect (Pringle et al., 2012; Chapter 

2). Absolute calculated cloud albedo losses for this NP-Ch case are simulated for both 

1.0xSA and 0.5xSA bin 8 emissions. It is reiterated, however, that these bin 8 aerosol 

emissions are intended as an extreme (rather than realistic) case, as it would be anticipated 

that such large aerosols would neither be emitted intentionally (e.g. Salter et al., 2008) nor 

created via coagulation upon emission (Chapters 6 and 7). In these cases, there is also a 
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reduction in LWP compared to the base case (where no MCB aerosols were emitted). This 

decrease in LWP may be caused by reduced turbulence leading to less mixing within the 

cloud layer (Chapter 2). Such decreases in LWP (associated with the second indirect aerosol 

effect) would add to decreases in absolute cloud albedo caused by decreases in Nd (associated 

with the first indirect aerosol effect). 

The effect of competition on aerosol activation to cloud droplets is illustrated in Figure 8.4. 

While the number concentration of activated bin 3 size aerosols (dark blue line, Figure 8.4 a) 

increases in favour of bin 2 background aerosols (purple line, Figure 8.4 a) for the emission 

of bin 3 aerosols, sufficient bin 3 aerosols are activated to cloud droplets for the total Nd 

(dotted black line in figure) to increase over time. A similar process occurs for the emission 

of aerosols that includes the effect of coagulation in the rotor and plume (Figure 8.4 b). In 

this case, there is an increase in activation of the aerosols emitted into bins 3, 4, 5 and 6. 

Concurrently there is a reduction in the number of smaller bin 2 aerosols. Again, the increase 

in activated emitted aerosols is sufficient to overcome the decrease in activated background 

aerosols, again resulting in an overall increase in Nd over time. However, when bin 8 aerosols 

are emitted (Figure 8.4 c), the increase in the number of these larger aerosols activated to 

cloud droplets is smaller than the decrease in the number of smaller aerosols (particularly 

bin 2 aerosols) that are activated to cloud droplets, producing a reduction in the total Nd 

compared to the background condition. 

 

Figure 8.4 – Time series for the total Nd and Nd associated with each aerosol size bin for 

the NP-Ch background case, for: (a) monodisperse (bin 3) emissions; (b) coagulation with 

rotor emissions; and (c) bin 8 emissions (all at 0.5xSA emission rate). 

The intermediately polluted NP-Pa case is also subject to small Nd losses and absolute albedo 

decreases upon 0.5xSA emission of the bin 8 aerosols. However, in agreement with previous 

modelling of the competition effect (Pringle et al., 2012; Chapter 2), increasing the emission 

rate to 1.0xSA is sufficient to overcome these losses. 
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The final case that resulted in a slight reduction in Nd and reduction in cloud albedo is for the 

0.5xSA emission of bin 8 aerosols into the PR background. For this case, the precipitation 

rate increases by approximately 8%. This can be surmised to be related to the behaviour of 

the two-moment microphysics scheme, which uses an explicit autoconversion rate (described 

in Chapter 3). Thus, in the model, autoconversion increases with cloud water mixing ratio 

and the inverse of Nd. In this 0.5xSA emission of bin 8 aerosols into the PR background, the 

slightly lower number of cloud droplets formed, whilst maintaining a similar cloud water 

mixing ratio, may therefore result in higher autoconversion rates and so more precipitation. In 

spite of this increase in precipitation, there is an increase in LWP of around 2% (from 

32.2 g m
-2

 to 32.8 g m
-2

). This suggests that while more water may be lost through 

precipitation, water is gained through reduced evaporation of the larger cloud droplets 

(Chapter 2, Section 2.4.2). In spite of the increase in LWP, the small decrease in Nd is 

sufficient to produce a net decrease in calculated cloud albedo. 

While, in the aforementioned cases, reductions in absolute cloud albedo are concomitant with 

competition effects linked to decreases in Nd, there is one additional case where a reduction 

in absolute cloud albedo occurs with an increase in Nd. This case is for 0.5xSA aerosol 

emission including coagulation within both the plume and rotor into the most polluted 

(NP−Ch) background. In this case, the LWP (averaged over the period of SW radiation 

present during the 5 hours subsequent to MCB aerosol emission) decreases, from 59.1 g m
-2

 

to 57.1 g m
-2

 (a 3% decrease). This LWP reduction is likely the result of increased droplet 

evaporation owing to the increased surface area of the smaller droplets. Thus, the increase in 

cloud albedo inferred from the increase in Nd (first indirect aerosol effect) is exceeded by the 

decrease in cloud albedo related to LWP losses (second indirect aerosol effect). While this 

decrease in albedo was small (less than 0.2% of the mean calculated cloud albedo), the 

pattern of change is in agreement with the possible net indirect aerosol effects proposed in 

Figure 2.5 (Chapter 2) for background conditions with higher Nd.  

8.5 Conclusions 

The cloud-resolved modelling of coagulation-affected MCB aerosol emissions presented in 

this chapter forms the closing part of the final MCB implementation detail case study. 

The results show that accounting for the MCB aerosol number concentration reductions and 

size increases produced by coagulation within the emission rotor and plume (modelled in 

Chapters 6 and 7) reduces MCB effectiveness. As for the previous two MCB experiments 

(Chapters 4 and 5), the magnitude of the impacts was dependent upon the base case cloud 

conditions. Here, the coagulation effects resulted in the cloud albedo enhancement being 

reduced by 13% for limited-duration simulations undertaken into the precipitating cloud 
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regime, but by up to 57% for the non-precipitating cloud regime. The larger absolute values 

of cloud brightening associated with the precipitating regime mean, however, that the effects 

of these aerosol changes on cloud brightening in both cloud regimes could be climatically 

important. 

No competition effect (or absolute decrease in Nd or cloud albedo) resulted from the emission 

of the coagulation-altered MCB aerosols. Contrived simulations involving the emission of the 

largest possible aerosols within the model (up to 10 μm dry diameter) did produce such a 

competition effect, with the most polluted background case being the most susceptible. As 

these aerosols were considerably larger than those likely to result from coagulation within the 

rotor and plume, this finding is of limited value for MCB research. However, this simulation 

is of conceptual interest, and bolsters confidence in the ability of the model to capture cloud-

aerosol behaviour. 

The conditions included in this chapter represent only a select number of possible conditions. 

For example, simulations in Chapter 7 of the effects of representing the aerosol emission with 

wet droplets reinforced the findings of Chapter 5 in showing that the plume may descend. 

Thus, in addition to the implications on transport of aerosols to the cloud layer (described in 

Chapter 5), significant aerosol losses at the surface may also occur. Owing to inadequacies in 

the higher resolution simulations of this effect, this possible condition was not included in the 

analysis of this chapter. However, it is recommended that future consideration of this case 

may be beneficial in the future.  

The finding that MCB effectiveness is reduced by the effects of rotor and plume region 

coagulation has important implications for MCB research. As the resolution of global-scale 

models prevents the representation of these detailed features, these models will have 

overlooked this effect. As such, MCB effectiveness estimates previously produced by global-

scale models will likely be overestimations. It will therefore be critical that future global-

scale modelling of MCB takes these effects into account.  
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 Chapter 9

Conclusions and Recommendations 

9.1 Summary of Major Findings 

This study set out to determine whether accounting for details of geoengineering 

implementation mechanisms (currently not captured by global-scale computer models) could 

enhance the realism of modelled estimates of geoengineering effectiveness. In doing so, this 

work focussed on the MCB proposal, using three implementation details as case studies. 

These case studies were interrogated over a range of three base case MSc cloud conditions, 

the salient features of which were successfully simulated over a diurnal cycle using a limited 

domain-size, cloud-resolving WRF/Chem model (Chapter 3). 

This work found that accounting for the effects of MCB implementation details markedly 

altered the magnitude of achievable MCB in two of the three case studies considered. 

The first implementation detail that was found to be consequential for the modelled 

effectiveness of MCB was the timing of the MCB aerosol emission (Chapter 4). The 

importance of this MCB aerosol emission timing was found to be related to the characteristic 

diurnal cycle of cloud processes and cloud properties (introduced in Chapter 2). Conducting 

these experiments against the range of three base case MSc cloud conditions also facilitated 

the additional finding that the MCB effectiveness varied non-linearly with background 

conditions. As expected from theoretical understanding (presented in Chapter 2), MCB 

effectiveness was markedly higher for the precipitating cloud conditions (that showed 

characteristics of open cell behaviour) compared to the non-precipitating clouds (that showed 

characteristics of closed cell behaviour). For the more susceptible precipitating cloud 

condition, the optimal MCB aerosol emission time for maximum MCB effectiveness was into 

the early morning. Aerosol emission at this time caused a suppression of precipitation, with 

the newly non-precipitating cloud being more persistent through the radiatively-important 

daytime. This change in behaviour was predominantly manifest as an increase in LWP, 

associated with the second indirect aerosol effect. This change in precipitation was 

additionally concomitant with changes in cloud behaviour that were indicative of a change in 

regime from open to closed cell characteristics. No such response was evident when the MCB 

aerosols were emitted into these clouds during the daytime, when they are characteristically 

thinner and more dissipated. In spite of a compensating direct aerosol effect at this time, all-

sky albedo increases were only half as large as they were for the early-morning emissions. 
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The second implementation detail that was found to be consequential for the modelled 

effectiveness of MCB regarded the coagulation of aerosols during the emission process and 

resulting plume of MCB aerosols (Chapters 6, 7 and 8). Using a simple numerical integration 

scheme for coagulation within the rotor, and the WRF/Chem model at resolutions sufficient 

to simulate key features of the aerosol emission plume, it was found that accounting for 

aerosol coagulation within these regions of high aerosol concentration typically led to the 

aerosol number concentration decreasing by approximately half, with the diameter of some 

aerosols also increasing by approximately 8 times. Simulations exploring the sensitivity of 

the model outputs to changes in aerosol emission rate, wind speed and temperature showed 

that changes in the coagulation rate were in agreement with theoretical expectations. The 

greatest coagulation-induced loss in MCB aerosol number concentration occurred when the 

emission rate was increased by five times, resulting in number concentration losses of nearly 

80%. However, while including a simulated solid rotor altered the shape of the plume – 

successfully producing the expected Kármán vortex streets – its incorporation did not 

significantly alter rates of coagulation. Ultimately, the reductions in the number concentration 

of emitted MCB aerosols resulting from the coagulation of aerosols during the emission 

process led to MCB-induced calculated cloud albedo increases being approximately halved 

for the non-precipitating cloud cases. 

Finally, while the impacts of representing the emitted MCB aerosols as sea water droplets 

rather than ‘dry’ aerosols produced only small changes in the effectiveness of MCB 

(Chapter 5), the identified processes associated with the assumption are of practical interest. 

Notably, the evaporation of the emitted sea water droplets resulted in a negative buoyancy 

that suppressed the initial height of the emitted aerosol plume by almost one third (40 m). 

Transport of these MCB aerosols to the cloud-layer is dependent upon mixing within the 

boundary layer. This is, in turn, controlled by the diurnally-varying vertical distribution of 

turbulence in the boundary layer. Therefore, the implications of this plume height suppression 

depends on both the cloud conditions (i.e. cloud base height) and on the phase of turbulent 

mixing through the marine boundary layer (dictated by the diurnal cycle). The largest impact 

in these simulations was for the emission of MCB aerosols into the non-precipitating cloud 

regime in the early afternoon. At this time, the descending turbulence, originating from the 

cloud-top, took longer to reach (and mix) the suppressed MCB aerosol plume associated with 

the emission of wet droplets than it did the taller plume associated with the emission of ‘dry’ 

aerosols. The effect was important for the non-precipitating cloud conditions owing to the 

higher cloud bases, and hence greater delays in the transport of the MCB aerosols from near 

the surface. However, the wet droplet versus ‘dry’ aerosol emission assumption merely 

resulted in delays to the transport of the MCB aerosols to the cloud-layer, with the ultimate 

impact therefore having little consequence to MCB effectiveness overall. 
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9.2 Conclusions and Recommendations 

The direct conclusion of this work is that accounting for the effects of details of the MCB 

implementation scheme can markedly alter the magnitude of the resulting simulated 

effectiveness of the scheme. This major finding leads to several corollaries: 

Corollary 1 – Values of MCB effectiveness, produced by global-scale computer models that 

do not account for the effects of MCB implementation details, may be overestimated. Such 

overestimations of geoengineering effectiveness may lead to the urgency of anthropogenic 

climate change mitigation and adaptation measures being downplayed. 

It is therefore suggested that the findings presented here be used to qualitatively reframe 

existing global-model derived estimates of MCB effectiveness. However, it is considered that 

extending this reframing beyond broad patterns of behaviour and indications of strength 

would be imprudent at this stage. For, while the conspicuous patterns of behaviour found in 

response to the inclusion of implementation details match well with the those expected based 

on the theoretical understanding of processes (discussed throughout this thesis) and have 

additionally been supported by the contemporary studies of colleagues (Stuart et al., 2013), 

there are limitations to this work. For example, these values result from single model runs 

carried out using a single model. Additionally, the number of base case cloud conditions was 

constrained, as was the model domain size and length of the simulations. Furthermore, 

extrapolating explicit values for the effects of implementation details from this work would 

overlook the uncertainties still associated with the incompletely understood behaviour of 

cloud feedback behaviours in response to aerosol concentration changes under different cloud 

conditions (described in Chapter 2). 

More broadly, these findings emphasise that an understanding and acknowledgement of the 

scale of the uncertainties surrounding computer model-derived geoengineering effectiveness 

estimates will be crucial at the policy-making level (Patt, 2009). 

Corollary 2 – The process of identifying implementation details that are potentially 

pertinent for realistic computer simulations should be extended for the MCB scheme and 

undertaken for other geoengineering schemes. 

This work focussed on three possible details of the MCB implementation scheme. While 

these details were considered by the author to be most likely to have a significantly impact on 

MCB effectiveness, further relevant details may remain unidentified.  

While relating solely to MCB, the findings presented here also suggest that the effect of 

implementation details could be important for other geoengineering schemes. For example, 

the realism of global-scale modelling of sulphate injection into the stratosphere may be 
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improved by detailed consideration of the aerosol coagulation processes that may occur as the 

aerosols are emitted from the aircraft-based mechanisms (Rasch et al., 2008).  

Identifying such pertinent details would benefit from open and active communication 

between climate modellers and the designers of the proposed geoengineering technologies. It 

is noted, however, that while private sector-led research may expedite design developments, 

matters of copyright may impinge upon the transparency necessary for such cooperation. 

Corollary 3 – Further detailed modelling of the three case studies considered here, and 

other implementation details identified as being potentially pertinent to MCB and other 

geoengineering schemes, could be valuable. 

While this work has identified that implementation details are important in the computer 

modelling of MCB, continuing detailed modelling of the MCB implementation processes 

themselves will also yield further insights. For example, it would be valuable to expand the 

work presented here beyond the current limitations to include a larger number of MSc base 

cases covering a larger parameter space of cloud and atmospheric conditions. Particularly 

interesting would be in the aforementioned transition between precipitating and non-

precipitating conditions, which is currently poorly characterised. This region of transition 

could, for example, exhibit a discrete step-change (as suggested by Rosenfeld et al. (2006)). 

Such a step-change transition could relate to: the open or closed cell regime of the 

background cloud (as considered for the observation analysis of ship tracks, as discussed in 

Chapter 2); threshold precipitation rates (Figure 2.5; cf. Chen et al., 2011); or specific cloud 

structure characteristics, such as cloud base height (cf. Wood, 2007). Further valuable 

developments in the cloud-resolving modelling of MCB implementation detail effects would 

be to expand the domain size to incorporate mesoscale effects (Feingold et al., 2010; Wang et 

al., 2011a) and extend the timescale to incorporate the full aerosol life-span. Such enlarged 

simulations would additionally facilitate a more extensive detailed examination of the role of 

the direct aerosol effect under differing cloud conditions. The MCB implementation details 

could alternatively be explored using different modelling approaches. For example, the 

dynamics and coagulation of aerosols within the rotor and in the aerosol plume could be 

explored in more depth using a computational fluid dynamics model. The conspicuousness 

and theoretical rationality of the findings of this work suggest that while extended modelling 

may be able to produce some refinements, the broad patterns of behaviour will remain robust. 

Detailed computer modelling processes could also help to assess the importance of 

implementation details identified for other geoengineering schemes. 

Unlike the recommendations of reframing previous MCB effectiveness estimates, and 

working with geoengineering scheme designers to identify potentially pertinent 
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implementation details, such further resolved computer modelling would involve the 

dedication of considerably more resources.  

Corollary 4 – The effects of pertinent implementation details should be taken into account 

in the future estimates for MCB and other geoengineering schemes derived from global-

scale computer modelling. 

In addition to affecting how previous estimates are interpreted, these findings should also be 

used to inform the future production of MCB effectiveness estimates. Without significant 

developments in global-scale models – such as sufficient increases in resolution, or the 

incorporation of multi-scale modelling frameworks (also known as ‘super-parameterisations’) 

(e.g. Khairoutdinov and Randall, 2001; Wang et al., 2011b) – these models will be inherently 

unable to explicitly capture the implementation details. As such, the inclusion of the effects 

of the implementation details would likely be through the development and refinement of 

specific parameterisations (e.g. Stuart et al., 2013). This would be more easily achievable for 

the effects of coagulation within the plume, where the effect could be represented by proxy 

size and number concentrations of MCB aerosols emitted into the global-scale model. The 

effect of timing of MCB emissions would be more challenging to capture owing to 

fundamental difficulties in the representation of MSc diurnal cycle within the global-scale 

computer models. 

Corollary 5 – Geoengineering research would benefit from a multi-disciplinary approach. 

As already stated, enhanced communication between climate modellers and the designers of 

the proposed geoengineering technologies could lead to the more efficient identification of 

implementation details pertinent to computer modelling. Such benefits could, however, be 

reciprocal, with the findings of these modelling case studies being of use in the development 

of the aerosol production technology design; the development of an MCB implementation 

strategy; and the design of prospective limited-area MCB testing. For example, the finding 

that the emission of MCB aerosols as wet droplets inhibits their transport to the cloud layer 

suggests the encouragement of developments in technologies able to produce ‘dry’ aerosols. 

However, the detrimental effects of aerosol coagulation within the plume on MCB 

effectiveness could not be reduced without a significant redesign of the proposed Salter et al. 

(2008) sea-going vessel implementation mechanism. For the implementation strategy, the 

knowledge that optimised MCB effectiveness may be achieved by targeting precipitating 

clouds early in the morning suggests the development of a sophisticated time and condition-

dependent emission scheme. Future testing of MCB could also be informed by these findings. 

For example, this work identifies that the influence of the time-varying boundary layer 

dynamics on MCB aerosol transport would be of particular interest. This would require 

concurrent and collocated measurements of flow patterns and aerosol concentrations through 
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time. Observations could link aerosol dispersal patterns with characteristic MSc turbulent 

phases through the day, further elucidating the importance of daytime decoupling of the 

boundary and cloud layers on MCB effectiveness. These findings also indicate that 

observations of the dynamics and changes in aerosol size and number concentration within 

the MCB aerosol emission plume would also be of particular value. Hence, the design, 

observed testing, and computer modelling of geoengineering proposals will need to draw on 

the expertise and knowledge of engineers, observational scientists, computer modellers and 

climate scientists covering a range of specialisms (for example, from detailed cloud 

microphysics, to global patterns of dynamics and teleconnections). Of course, intertwined 

with these scientific and practical factors will be the crucial social, governance and moral 

considerations. 

 

Further to these conclusions and recommendations based specifically on the findings 

presented in this thesis, there will be ongoing developments that will also contribute towards 

the future advancement of MCB research. A summary of these possible areas of future 

advancement, focussing specifically on MCB, is presented in Figure 9.1. The ongoing 

developments will include enhancements in the understanding of the complex and 

incompletely understood behaviour of MSc clouds and their interaction with aerosols. This 

development will be contributed to through the use of observational data and computer 

modelling. Furthermore, ongoing developments will improve the representation of clouds and 

their interaction with aerosols in models. An area in which this current study could have been 

developed is the more detailed examination of underlying microphysical process rates. Such 

information could have additionally informed interpretation of the causes of changes to the 

clouds in response to the addition of aerosols, as well as changes across the diurnal cycle. It is 

recommended that provision for such detailed analysis is incorporated into future studies of 

this kind. 

While the cloud-resolved modelling presented here successfully captured key properties and 

processes associated with the base case MSc cloud over the diurnal cycle (Chapter 3), further 

work could refine the representation of heat fluxes, the effects of wind shear, and temporal 

patterns of large-scale subsidence for example. Additionally, increasing the resolution of the 

model may be possible in the future. In particular, high vertical resolutions have long been 

considered desirable in the detailed representation of entrainment at the interface between the 

cloud-top and free-troposphere (e.g. Bretherton et al., 1999; Stevens and Bretherton, 1999). 

Ongoing model developments could also include progress in cloud representation in global-

scale climate modelling. This could occur through improved parameterisations or, as 

described in Corollary 4, increased model resolution or the use of multi-scale modelling 
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frameworks. Aside from these ongoing enhancements in the fundamental understanding and 

modelling of clouds, there will also be ongoing developments in the design of the MCB 

aerosol production technique (Neukermans et al., 2014) and subsequent field testing (Wood 

and Ackerman, 2013). 

 
Figure 9.1 – Areas for advancements in MCB research, showing both ongoing 

developments and recommendations based on this work. 

The recommendations for future work based on the conclusions presented here can be ranked 

in terms of priorities. The most immediate pathways for advancing geoengineering research 

will be through the reframing of previous MCB effectiveness estimates, and through the 

identification of potentially pertinent details omitted from the modelling of other 

geoengineering schemes. Following this, the utilisation of these findings in future global-

scale MCB modelling and MCB implementation design and testing should naturally ensue. 

However, as there remains significant unknowns regarding the design of the MCB aerosol 

production technique (Neukermans et al., 2014) – unless it can be of mutual benefit to the 

wider understanding of cloud processes – the significantly more research-intensive 

continuation of detailed MCB modelling may be premature. Waiting for the development of a 

tangible MCB aerosol production technique would both reduce the need for assumptions in 
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such detailed modelling, and could also yield highly useful experimental data. Even isolated 

from the wider atmosphere and clouds, experiments would be invaluable in identifying 

unanticipated phenomena in the production and emission processes, while data would allow 

the evaluation of computer model simulations. 

9.3 Closing Comments 

The discovery here, that details of the MCB implementation process must be accounted for in 

producing realistic computer modelled estimates of MCB effectiveness, is timely. 

Geoengineering is increasingly part of the mainstream climate change debate, as illustrated 

by its inclusion in the Summary for Policymakers of the Fifth Assessment Report of the IPCC 

(IPCC, 2013). While policy relevant assessments of geoengineering (e.g. The Royal Society, 

2009; Center for Science, 2011; Bracmort and Lattanzio, 2013) at present continue to be 

limited to broader qualitative assessments, future debate surrounding geoengineering will 

inevitably demand more realistic, quantified predictions of its effects. While such quantitative 

global-scale computer modelling of MCB has already begun (see Chapter 1), this work shows 

that by omitting the effects of implementation details, the resulting estimates of MCB 

effectiveness may be currently overestimated. As future geoengineering research will 

continue to rely on such computer modelling (because of necessary constraints on in-situ 

testing), the findings of this work offer an opportunity to materially enhance the realism of 

future MCB effectiveness estimates. More broadly, this work also indicates the potential 

benefits that could be achieved by expanding this approach – of identifying potentially 

pertinent implementation details currently omitted from the global-scale modelling – to other 

geoengineering proposals. 

Ultimately, the benefits of improving the realism of geoengineering effectiveness estimates 

will extend beyond the field of geoengineering, contributing valuably towards informed 

decision-making on our response to anthropogenic climate change as a whole. 
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Appendix A 

Supplementary Information Relevant to the Coagulation of MCB 

Aerosols within the Emission Rotor, and the Detailed Representation 

of the MCB Aerosol Emission Plume (Chapters 6 and 7) 

 

I. Reynolds Number (for flow through a pipe): 

 
 

(A.1) 

 where:  

 U = velocity of the flow through the pipe  

 D = hydraulic diameter of the pipe  

 υ = kinematic viscosity of air  

II. Stokes Number: 

 
 

(A.2) 

 where:  

    = particle response time (s) and,  
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ppd
  (A.3) 

 pd  = particle diameter  

 p  = particle density  

   = kinematic viscosity of air  

 0U  = fluid free velocity  

 D  = characteristic dimension of the flow  
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III. Reynolds Number (for flow relative to a surface): 

 DU flowNumber Reynolds  (A.4) 

where:   

 flowU  = velocity of the fluid   

 D  = dimension of the rotor   

   = kinematic viscosity of air  
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