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Abstract 

In September 2008, Lamlash Bay became Scotland’s first and only fully protected marine 

reserve. Dive surveys conducted over a period of four years revealed the abundance of 

juvenile scallops to be 2-5 times greater within this marine reserve than outside. Generalised 

linear models showed that this greater abundance was related to a greater presence of 

macroalgae and hydroids growing within the boundaries of the reserve. My study also 

indicated that the age, size and reproductive biomass of adult king scallops were all 

significantly greater within the reserve. Similarly, potting surveys conducted over a two year 

period showed European lobsters were significantly larger and more fecund within the reserve 

than on neighbouring fishing grounds. However, differences between the reserve and outside 

were less clear after I explored benthic and fish communities within and around Lamlash Bay. 

Live maerl, macroalgae, sponges, hydroids, eyelash worms, feather stars, parchment worms 

and total epifauna were all significantly more abundant within the reserve than on 

neighbouring fishing grounds. In contrast, comparisons of the abundance of mobile benthic 

fauna and fish revealed no difference between the reserve and outside. This was likely due to 

the young age of the reserve (5 years) and its small size (2.67km2), both of which are known to 

reduce the effects of marine reserves on mobile species. Overall, my results are consistent 

with the hypothesis that marine reserves can promote the density, size and age structure of 

commercially exploited species to return to more natural levels. My results also support that 

closed areas can encourage the recovery of seafloor habitats, which can increase the 

recruitment of scallops, cod and other commercially valuable species. 
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Chapter 1. Introduction 

 

1.1. The importance and state of the world’s oceans 

Earth processes and human welfare are strongly linked with the oceans. Marine ecosystems 

play a key role in regulating the climate and atmosphere, receiving and assimilating wastes, 

protecting coastlines and sequestering carbon (Covich et al. 2004; Palumbi et al. 2009). They 

also supply food and other resources, and provide tourism, recreational, cultural, spiritual and 

aesthetic benefits (Cooley et al. 2009; Barbier et al. 2011). Despite their significance, human 

impacts are causing an accelerating loss of populations and species in virtually every marine 

ecosystem on Earth (Worm et al. 2006; Valdes et al. 2009; Barbier et al. 2011). Through a 

combination of land conversion, overexploitation, pollution and climate change, an estimated 

50% of saltmarshes, 35% of mangroves, 30% of coral reefs, and 29% of seagrasses have been 

lost or severely damaged worldwide since the early 1980s (Valiela et al. 2001; Kappel 2005; 

Orth et al. 2006; FAO 2007; Waycott et al. 2009). By impairing the ecosystem services oceans 

provide, a growing number of studies suggest that the declining state of the seas is responsible 

for a global increase in species invasions, harmful algal blooms, anoxic dead zones, fish kills, 

fishery and beach closures, as well as damage from flooding and storm events (Worm et al. 

2006; Barbier et al. 2011; Howarth et al. 2013). These changes can negatively impact resource 

extraction and human welfare (Brand 2009).  

In addition to the important role the oceans play in regulating Earth processes, marine 

ecosystems have been exploited by humans for thousands of years (Roberts 2007) and provide 

one of our most valuable sources of food (Ye et al. 2013). Worldwide, people obtain over 15% 

of their animal protein intake from fish and other seafood (Sumaila et al. 2011; FAO 2012; 

Ruckelshaus et al. 2013). This figure is much higher for coastal communities in developing 

countries, often reaching over 50% (Cooley et al. 2009; Shelton 2014). Marine resources also 

generate substantial levels of employment and income by supporting the fishing industry, 

tourism and recreational angling. The fishing industry alone generates between $80-85 billion 

annually and employs an estimated 43.5 million people (Ye et al. 2013; Shelton 2014), while 

the processing, marketing, distribution and supply businesses associated with this employs 

another 200 million people (Cochrane et al. 2009; Sumaila et al. 2011). However, a number of 

drivers threaten these livelihoods and global food security.  
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Recent technological advancements coupled with rising demand have caused the intensity and 

geographic reach of fisheries to greatly escalate over the last two centuries (Roberts 2007; 

Watson et al. 2013; Howarth et al. 2013). As a result, an estimated 70% of the world’s fish 

populations are currently either fully exploited, overexploited, depleted or have collapsed 

entirely from overfishing (FAO 2012), and the proportion of catches originating from declining 

stocks is rapidly increasing (Jackson et al. 2001; Pauly et al. 2002; Worm et al. 2006; Pauly 

2008; Costello et al. 2012). Some authors argue that the global decline of fish stocks is slowing 

and that fisheries management is showing signs of improvement (e.g. Hilborn 2007a, 2007b; 

Worm et al. 2009; Branch et al. 2011; Fernandes & Cook 2013). However, these improvements 

are localized, confined to a small number of developed countries such as the USA, Australia, 

New Zealand and Iceland. Fishing grounds in Europe largely remain in a state of decline 

(Guénette & Gascuel 2012), and it has been recently argued that unassessed fisheries, which 

account for more than 80% of fisheries worldwide, are in a substantially worse condition than 

most assessed fisheries (Costello et al. 2012). Despite global fishing effort growing 10-fold 

since 1950, fishery catches have not increased since the 1980s (FAO 2012; Pitcher & Cheung 

2013). Our inability to increase global landings or halt their slow decline poses a serious 

problem for food security as the global human population is expected to increase from 7 to 9 

billion by 2050, meaning the demand for seafood commodities will continue to increase 

(Godfray et al. 2010; Lam & Pitcher 2012; Watson et al. 2013; WorldBank 2013). 

To some extent, aquaculture has allowed global seafood production to keep pace with 

increasing protein demand. During the last three decades, world aquaculture production has 

increased from 5 million to 63 million tons (FAO 2012; WorldBank 2013) and currently 

accounts for approximately 50% of all seafood production (FAO 2006; Jiang 2010). 

Unfortunately, in its current state, aquaculture is associated with a large number of negative 

environmental and ecological impacts including habitat loss, disease transmission, 

environmental contamination and genetic pollution (Davenport et al. 2003). Furthermore, 

much of the world’s aquaculture industry relies on feeds derived from marine capture 

fisheries, exerting exploitation pressure on the wild fish stocks they are meant to be protecting 

(Naylor et al. 1998, 2000; Black 2008; Godfray et al. 2010). Until these problems are resolved, 

aquaculture’s potential as a true sustainable alternative to capture-fisheries will not be 

fulfilled.  
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These points highlight the vital importance of the health of the oceans for human welfare. 

They present a clear and strong argument to better protect marine ecosystems, and to 

manage the resources they provide more effectively and sustainably.  

1.2. The physical and ecological impacts of fishing 

The poor state of many of the world’s fisheries is mostly due to unsustainable levels of 

exploitation and the physical and ecological impacts associated with fishing gears. The 

principal and most direct effect of fishing is a reduction in the abundance of target species. 

When exploitation levels are high, the number of adults within a stock can be reduced to such 

low levels that it reduces both the profitability of the fishery and recruitment (i.e. the number 

of individuals which survive juvenile development to enter the fishery) which can lead to the 

sudden collapse of a stock (King 1995; Jennings et al. 2001).  

High levels of fishing can also negatively impact recruitment by truncating age and size 

structures (Beamish et al. 2006). This can occur when larger, older individuals are 

preferentially targeted; as is commonly practiced since large individuals often yield the 

greatest economic return (Law 2000). Contributing to this, many fisheries are also regulated by 

minimum legal landing sizes and mesh in order to protect juveniles and allow adults the 

chance to spawn before they become susceptible to fishing mortality (Kaiser et al. 2005; 

Conover et al. 2009; Fenberg et al. 2012). Additionally, mounting evidence suggests that 

selective harvesting for larger individuals can promote changes in life history traits, including a 

shift in maturation to earlier ages and sizes (de Roos et al. 2006; Jørgensen et al. 2007). All 

these processes mean fewer individuals are able to reach the age and sizes they would 

naturally attain compared to if the population was undisturbed. The problem with this is two-

fold. Not only are larger individuals economically more valuable, they also have more 

developed reproductive organs capable of producing substantially more eggs (Froese 2004). A 

decline in the abundance of larger-bodied individuals can therefore have a disproportionately 

high impact on reproductive output and recruitment, threatening the ability of stocks to breed 

at sustainable levels in the future (Roberts et al. 2005). Age truncation has also been shown to 

increase the variability of fisheries landings and reduce the capacity of populations to buffer 

environmental events (Hsieh et al. 2006).  

Overexploitation of stocks can also cause the mean trophic level of the species targeted by 

fisheries to decline, a process known as “fishing down / through the food web” (Pauly et al. 

1998, 2002; Steneck et al. 2002; Myers & Worm 2003, 2005; Essington et al. 2006; Estes et al. 
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2011). This occurs when stocks of large-bodied fish become overexploited, and in their place, 

new species are targeted (Myers & Worm 2003; Hughes et al. 2007). Generally, this has 

involved fishers switching from targeting large predatory finfish to smaller pelagic species and 

bottom-dwelling invertebrates (Pauly et al. 1998, 2002). The Northwest Atlantic, for example, 

was once home to some of the world’s richest fishing grounds for large predatory groundfish, 

particularly cod and haddock (Acheson & Steneck 1997; Jackson et al. 2001). However, over 

the past 30 years, fisheries within this region have experienced widespread collapse, and 

landings from new fisheries targeting previously unexploited species such as sea urchins 

(Strongylocentrotus droebachiensis), lobster (Homarus americanus), snow crab (Chionoecetes 

opilio) and shrimp (Pandalus borealis) have come to dominate (Worm & Myers 2003; Frank et 

al. 2011; Howarth et al. 2013). Likewise, the overexploitation of tuna (mainly Thunus 

albacares), hake (Merluccius merluccius), mackerel (Scomber scombrus) and anchovy 

(Engraulis encrasicolus) led to a decline in European stocks during the 1950’s and 70’s. Despite 

the decline, overall landings remained relatively stable as this decrease was compensated by 

the exploitation of new species like monkfish (Lophius piscatorius and Lophius budegassa), 

cephalopods and crustaceans (Guénette & Gascuel 2012). These results indicate that present 

rates of exploitation are unsustainable and imply major changes in the structure of marine 

food webs.  

In addition to reducing the abundance of target species, fisheries also capture a wide variety of 

non-target organisms, which can include species targeted by other fisheries. For example, 

longlines and gillnets are well known for generating substantial levels of by-catch of fish, 

sharks, sea turtles, cetaceans and seabirds (e.g. Baum et al. 20003; Lewison et al. 2004). 

Furthermore, gillnets and longlines that become lost or abandoned are capable of generating 

by-catch (“ghost fishing”) for many years after their loss (Japp & Wilkinson 2007). Likewise, 

scallop dredges are also recognized for catching a wide variety of non-target species including 

fish, crustaceans, echinoderms, molluscs and cephalopods (Bradshaw et al. 2001; Craven et al. 

2013). Studies in the Irish Sea, for example, report four items of by-catch for every scallop 

captured, and that the majority is discarded damaged, dying or dead (Beukers-Stewart et al. 

2001; Jenkins et al. 2001; Hinz et al. 2012). When entire fleets are considered, the number of 

non-target individuals removed by scallop dredgers can be quite substantial; the dredge fleet 

operating in the English Channel is estimated to catch 3.3 million non-target fish per year 

(Enever et al. 2007). Despite this seemingly large impact, scallop dredges are considered to be 

relatively “clean” compared to other types of mobile fishing gears, such as beam and otter 

trawls (Kaiser 2007). North American shrimp trawlers, for instance, have been reported to 
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catch up to 15 non-target organisms for every shrimp landed (Hall et al. 2000). By-catch ratios 

are also very high in the Scottish prawn trawl fishery, generating up to 9 kg of by-catch for 

every 1 kg of prawns caught (Bergmann et al. 2002a). Again, mortality rates are high and the 

majority of by-catch is discarded (Bergmann & Moore 2001). High levels of mortality can also 

occur for the non-target organisms that come into contact with fishing gears but remain on the 

seabed uncaptured. For example, over 75% of the benthic megafauna which encounter scallop 

dredges remain on the seafloor but can display even higher levels of mortality than the by-

catch landed on deck due to being passed around, through or under the heavy fishing gear 

(Beukers-Stewart et al. 2001; Jenkins et al. 2001).  

In coming into contact with the seafloor, fishing gears can generate a number of physical 

impacts that can further contribute to the unsustainability of fisheries. Trawl gear can be 

extremely heavy, requiring combinations of bobbins, rock hoppers, warps and chains to 

prevent the net from becoming snagged on uneven surfaces and to maximise catch rates (Japp 

& Wilkinson 2007). Scallop dredges, such as the Newhaven dredge, are also heavy, and are 

equipped with spring-loaded teeth that dig into the seabed or scrape hard substratum to rake 

out scallops living in or on the surface layers of sediment (Eleftheriou & Robertson 1992; 

Jennings et al. 2001). Such gears cause substantial physical disruption of seafloor habitats by 

ploughing sediments and damaging epifaunal organisms attached to the seabed, such as 

corals, sponges, hydroids and maerl (Dayton et al. 1995; Jennings & Kaiser 1998; Kaiser et al. 

2000). However, these organisms are functionally important to marine ecosystems as they 

provide an element of 3-dimensional structure to otherwise featureless seafloors. In doing so, 

they supply important refuges for small / juvenile fish from predators and unfavourable 

environmental conditions (Monteiro et al. 2002; Ryer et al. 2004; Cacabelos et al. 2010), 

represent important feeding sites for fish and invertebrates (Bradshaw et al. 2003; Warren et 

al. 2010), and provide impotant substrate for the settlement of scallop spat and a range of 

other organisms, including the settlement of further epifauna (Beukers-Stewart & Beukers-

Stewart 2009; Howarth et al. 2011). Such locations are therefore often referred to as “nursery 

areas” as they tend to be highly productive, support high levels of juvenile density, growth and 

survival, and contribute disproportionally to the production of adult recruits (Beck et al. 2001; 

Kamenos et al. 2004a; Gibb et al. 2007; Laurel et al. 2009). Commonly cited nursery areas 

include maerl beds (Kamenos et al. 2004b, 2004a; Hall-Spencer et al. 2006), seagrass beds 

(Warren et al. 2010) and areas of dense macrophytes / macroalgae (Christie et al. 2007; 

Cacabelos et al. 2010; Howarth et al. 2011), all of which have been shown to harbour high 

densities of commercially exploited species such as spider crabs (Maja squinado), juvenile cod, 
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edible crab (Cancer pagurus) and edible sea urchins (Echinus esculentus; see previous 

references). In addition, many epifaunal species support unique micro-communities. For 

example, caprellid amphipods on hydroids, the range of invertebrates associated with kelp 

forests, or the diversity of organisms associated with pomatocerid tube worm heads (Kaiser et 

al. 1999; Airoldi et al. 2008). Consequently, the damage sustained by nursery habitats from 

fishing gears can have severe consequences on the recruitment of commercially important 

species and dramatically reduce an area’s capacity to support other biodiversity (Collie et al. 

1997; Bradshaw et al. 2001, 2003; Kaiser et al. 2005; Howarth et al. 2011). 

In addition to damaging nursery habitats, towed fishing gears can also have a number of other 

physical impacts on the seabed. Overall, the general effect is that they cause homogenization 

of sediments and topography through penetration, mixing and flattening of sediments (Collie 

et al. 2000). Natural seabed features such as ripples, pits and burrows can all be eliminated by 

passing fishing gears. In their place, dredges and trawls can sculpt the sediment into ridges 

that can persist for up to three years in low wave / tide energy environments (Hall-Spencer & 

Moore 2000). Dredging and trawling can also move and / or remove significant quantities of 

stones and boulders from fishing grounds (Eleftheriou & Robertson 1992; Bradshaw et al. 

2002) which has been reported to cause shifts in the particle size of surface sediments (Hall-

Spencer & Moore 2000). Such changes in sediment topography can alter near bed 

hydrodynamics and lead to the deposition of fine sediments (Probert 1984; Dernie et al. 2003). 

The removal or disturbance of surface sediments can also change patterns of nutrient cycling 

or / and carbon flux, for example, by exposing underlying anaerobic sediments (Watling et al. 

2001; Kaiser et al. 2002). Furthermore, the disturbance caused by mobile gears can also re-

suspend soft sediments, nutrients, eggs, cysts and small organisms buried within the sediment 

(O’Neill et al. 2013). Particular concerns have been raised about this as high levels of 

suspended sediment can smother surrounding sessile marine life, burying important habitats 

such as corals and maerl, and clogging the feeding and respiratory organs of filter feeding 

organisms, such as mussels and scallops, thereby impacting their reproduction (Brand 2006; 

Dale et al. 2011; Szostek et al. 2013). 

1.3. Marine reserves and marine protected areas (MPAs) 

In response to the wide range of impacts fishing can have marine ecosystems, closing areas to 

some or all types of fishing through the implementation of marine protected areas and marine 

reserves is becoming an increasingly utilised management tool for the conservation of marine 

biodiversity, ecosystem services and fisheries resources (Roberts et al. 2005; Halpern et al. 
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2010). The global coverage of MPAs has increased rapidly in recent years; at an average rate of 

4.6% per year since 1984 (Fox et al. 2012). The past three years alone have seen the global 

coverage of MPAs double, going from 1.17% in 2010, to 2.5% in 2013 (Marinesque et al. 2012; 

Fox et al. 2012; Ye et al. 2013). At first glance, this network looks impressive. Then again, the 

degree of protection afforded by MPAs can vary greatly. In fact, less than 2% of the world’s 

oceans are within fully protected marine reserves which ban all fishing methods within their 

boundaries, and the majority of MPAs worldwide are poorly enforced, meaning they have little 

or no conservation value (Edgar et al. 2014; Halpern 2014). Hence, many argue that the 

protection of the oceans is still greatly lacking and that the creation of MPAs has not kept pace 

with human impacts (Chape et al. 2005; Wood et al. 2008; Fox et al. 2012). 

The global coverage of marine protected areas (MPAs) is set to increase over the next decade 

following a large number of recently established policies and initiatives (Metcalfe et al. 2013). 

Globally agreed marine protection targets, such as the Convention on Biological Diversity’s 

(CBD) ‘Aichi Target’ are encouraging many governments to establish or expand existing MPA 

networks within their jurisdictions (Wood et al. 2008; CBD 2011; Harrop 2011; Wood 2011). 

This interest is reflected in the European Union (EU) as the Marine Strategy Frameworks 

Directive (MSFD), Birds and Habitats Directives, OSPAR (The Convention for the Protection of 

the Marine Environment of the North-East Atlantic), HELCOM (Helsinki Commission) and 

Barcelona regional seas conventions, have all initiated the process of establishing a coherent 

network of MPAs within European waters (Fenberg et al. 2012; Metcalfe et al. 2013). On a 

national level, the planned implementation of Marine Conservation Zones (MCZs; England, 

Wales and Northern Ireland) and Scottish MPAs (Scotland) will all lead to the creation of a 

network of MPAs around the United Kingdom (UK; Jones 2012; JNCC 2013). All these measures 

intend to achieve a variety of management goals; principally to conserve biodiversity and 

promote the sustainability of fisheries (Pomeroy et al. 2005; Metcalfe et al. 2013).  

The growing use of MPAs as a management tool has co-occurred with a paradigm shift in 

fisheries management; with perspectives shifting from traditional single-species management 

to more holistic approaches where management priorities begin with the ecosystem rather 

than the target species (Pikitch et al. 2004; Zhou et al. 2010). The aim of such ‘ecosystem-

based fishery management’ is to sustain healthy marine ecosystems and the fisheries they 

support by addressing some of the unintended consequences of fishing, such as the mortality 

of non-target organisms and the physical impacts of fishing gears (Link 2002; Zhou et al. 2010; 

Stokesbury et al. 2011). Theory suggests that integrating ecosystem level concerns into fishery 
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management will result in the maintenance of more complete ecosystems, and in doing so, 

will generate numerous benefits that flow back to the species targeted by fisheries (Jennings & 

Kaiser 1998).  

One way in which MPAs and marine reserves can achieve ecosystem and fishery benefits is by 

maintaining the integrity of benthic habitats through excluding the use of towed demersal 

fishing gears, such as dredges and trawls. For example, the abundance of sea fans (increase of 

636%), bryozoans (increase of 385%), branched sponges (increase of 414%) and hydroids 

(increase of 229%) were all found to increase within an MPA compared to surrounding fishing 

grounds in Lyme Bay, England, after just three years of protection (Sheehan et al. 2013a,b). 

Such species are known to improve survivorship of juvenile fish by acting as important nursery 

areas (Auster et al. 1996; Bradshaw et al. 2001, 2003) and for encouraging the settlement of 

scallop spat (Howarth et al. 2011). In fact, the commercially valuable king scallop (Pecten 

maximus), which is the main target species of the excluded fishery, was also found to be in a 

state of recovery within the MPA (Sheehan et al. 2013b). Seafloor habitats can also recover 

through cascading ecological effects, whereby early changes trigger subsequent changes, and 

so on. For example, the designation of Mombasa Marine National Park in Kenya was followed 

by significant increases in the predators of sea urchins, which then led to reduced grazing and 

bioerosion of reefs, and subsequent coral recovery after 10 years of protection (McClanahan & 

Mangi 2000). Similarly, the establishment of two marine reserves in New Zealand led to a 

number of sea urchin-dominated barrens reversing back to dense kelp forest within 20 years 

(Shears & Babcock 2003). Evidence suggested that this was due to an increase in the density 

and body size of predators of sea urchins, namely snappers (Pagrus auratus) and rock lobsters 

(Jasus edwardsii; Langlois & Ballantine 2005).  

The rising interest in MPAs is also supported by a growing number of scientific studies which 

indicate that closing areas to fishing can result in direct changes to fish populations within their 

boundaries. For instance, several meta-analyses reveal that the establishment of protected 

areas can lead to an increase in biomass, density and average body size of commercially 

targeted species (Halpern & Warner 2002; Halpern 2003; Micheli et al. 2004; Lester et al. 2009; 

Edgar et al. 2014). One meta-study in particular found the biomass of exploited species located 

within MPAs increased by an average of 166% and by 446% respectively (Lester et al. 2009). In 

many cases, differences in population density and biomass between protected and 

unprotected areas can be much greater. For example, the biomass of spiny lobsters was 25 

times greater within a New Zealand marine reserve compared to previously recorded levels 
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after 22 years of protection (Shears et al. 2006). Even greater densities of the endangered 

dusky grouper (Epinephelus marginatus) were recorded within the Cabo de Palos Marine 

Reserve in Spain, increasing by 40-fold after just 10 years of protection (García-Charton et al. 

2008).  

In allowing the abundance, biomass and body size of exploited species to return to more 

natural, pre-exploited levels, MPAs can generate reproductive benefits. Evidence suggests that 

higher levels of reproduction within MPAs can result in greater production of larvae, juveniles 

and adults which can then disperse (“spillover”) to grounds outside the closed area where they 

contribute to fishery landings (McClanahan & Mangi 2000; Beukers-Stewart et al. 2005; Pelc et 

al. 2010; Harrison et al. 2012). This idea is supported by a number of recent molecular studies 

which have detected exports of fish and mollusc larvae originating from within marine reserves 

at distances of several kilometres away (Cudney-Bueno et al. 2009; Planes et al. 2009; Pelc et 

al. 2010). As a combined result of spillover and larval export, increased landings are a regularly 

reported phenomenon after the creation of MPAs (Roberts & Hawkins 2012). Goñi et al. 

(2008), for example, documented higher catch rates and profits close to the boundaries of six 

Mediterranean MPAs for several different fishing methods targeting a wide variety of different 

fish and shellfish species. Likewise, a study off the Isle of Man, found the density of king 

scallops to be 30 times greater within a closed area than when first protected (Beukers-

Stewart et al. 2005; Beukers-Stewart & Brand 2007). The reduction in fishing mortality also 

allowed scallops within the MPA to reach much older and larger sizes, causing the 

reproductive biomass of king scallops to reach 33 times greater compared to neighbouring 

fishing grounds. Evidence suggests that the greater reproductive biomass within the MPA has 

resulted in higher rates of breeding and larval export, which has boosted populations outside 

the closed area and increased fishery landings (Beukers-Stewart et al. 2004, 2005; Beukers-

Stewart & Brand 2007; Neill & Kaiser 2008).  

Overall, the establishment of MPAs has yielded benefits, but the picture is uneven. Not all 

MPAs have encouraged ecosystems and fish stocks to recover. For instance, an analysis of 14 

years of data from a protected area in Belize demonstrated good recovery of predatory reef 

fish, but only a weak response of herbivores (McClanahan et al. 2011). Correspondingly, there 

was little change in herbivory and coral cover as the reefs remained in an algal-dominated 

state. Likewise, Sciberras et al. (2013) found no difference in the abundance of scallops and 

epifaunal assemblages between unprotected sites and two MPAs in Wales (one closed to 

fishing and one open seasonally) over a period of 23 months. Whilst in the Irish Sea, stocks of 
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Atlantic cod have shown little or no signs of recovery despite the use of a seasonal closed area 

for over five years (Kelly et al. 2006).  

The differing results for MPAs beg the question of why some closed areas are successful and 

some are not. What factors prevent or limit recovery are not always clear but are thought to 

include, amongst others (references below): (i) density-dependent effects (e.g. altered 

predator–prey ratios, recruitment failure through the Allee effect); (ii) local extinction of key 

functional groups; (iii) recovering functional groups not promoting return to a previous state 

(e.g. many reef-based herbivores do not eat late succession macroalgae and therefore do not 

encourage algal-dominated reefs to return to coral-dominated states) (iv) competition with/or 

predation by invasive species; (v) habitat alteration; (vi) life-history traits (e.g. fast-growing 

species such as herring are more likely to recover than long-lived species such as cod and 

halibut); (vii) poor enforcement and illegal harvesting; and (viii) emigration of animals outside 

boundaries because of continuous habitat or inadequate size of reserve (Hutchings & Reynolds 

2004; Hooper et al. 2005; Hughes et al. 2005; Diaz-Pulido et al. 2009; McClanahan et al. 2011; 

Edgar et al. 2014).  

A recent analysis by Edgar et al. (2014) found MPAs displayed a poor overall performance 

worldwide. However, this was due to MPAs being ineffectively designed and managed. In 

contrast, when MPAs were fully protected, well enforced, large (> 100 km2), isolated by deep 

water or sand, and established for 10 years or more, the analysis revealed that MPAs 

contained, on average, twice as many large fish species, five times more large fish biomass, 

and fourteen times more shark biomass than fished areas. Therefore, more emphasis is clearly 

needed on better MPA design, management and enforcement to ensure that MPAs achieve 

their desired conservation and fishery goals. 

Not only do some MPAs fail to generate any benefits, establishing MPAs can also displace 

fishing effort to surrounding areas (Bohnsack 2000; Kaiser 2005), which can cause wider 

environmental damage (Dinmore et al. 2003) and reduce profits through the loss of fishing 

grounds (Rassweiler et al. 2012). Hence, MPAs only truly yield fishery benefits when these 

negative effects are adequately offset by increased recruitment and landings. There are, 

however, a diverse range of other management tools available. Enforcing the use of fishing 

gears that cause less damage to habitats and select for specific species, sizes and ages is one 

way to reduce exploitation and damage to marine ecosystems (Pitcher and Lam 2010). For 

example, cod biomass in the Baltic Sea was found to triple between 2005 and 2009 after a ban 

on trawling led to a sudden reduction in fishing mortality (Cardinale and Svedäng 2011). 
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Likewise, reducing fishing effort through reductions in quotas, total allowable catch and fishing 

capacity have all been shown to promote recovery in a number of fish stocks (Beddington et al. 

2007; Worm et al. 2009). Then again, whilst effort and gear restrictions can help restore the 

abundance of targeted species, they do not necessarily lead to the recovery of biodiversity and 

the wider ecosystem (Pitcher & Lam 2010). Overall then, it is apparent that one management 

tool alone is not enough to promote recovery of stocks and ecosystems. It is therefore widely 

agreed that a combination of managing fishing effort, fishing gears and establishing protected 

areas, all of which have received mutual consent from managers, fishermen and other 

stakeholders, is the  most effective way to achieve both fisheries and conversation objectives 

(Hilborn 2007; Worm et al. 2009; Khan & Neis 2010). 

1.4. The Firth of Clyde 

The Firth of Clyde is a large inlet of sea that extends over 100 km into Scotland’s west coast. 

The area recently gained considerable media attention after it was described as being one of 

the most degraded marine environments in the UK (“BBC Springwatch” 2007, “BBC Panorama” 

2010; Clover & Smith 2010; Smith 2010; The Economist 2013) primarily due to over a century 

of intensive fisheries exploitation (Thurstan & Roberts 2010). During the 19th century and 

before, landings in the Clyde were spread between many different species and targeted by an 

artisanal fleet using sailing vessels, traps, lines and nets (Thurstan & Roberts 2010). These 

fisheries targeted a wide range of species including herring (Clupea harengus), cod, mackerel, 

whiting (Merlangius merlangus), haddock, turbot (Psetta maxima), skate (Dipturus batis) and 

even basking sharks (Cetorhinus maximus) were caught for their meat and oil (Thurstan 2007; 

Thurstan & Roberts 2010). Fishing effort steadily increased during the early 1900s as a greater 

proportion of the fleet began to take advantage of technological advancements such as beam 

trawls, otter trawls, Newhaven scallop dredges and steam- and diesel-powered engines. 

Despite, and likely because of, increasing fishing effort and two spatial closures to trawling 

being revoked in the late 20th century (Heath & Speirs 2011), large catches of fish were not 

sustained, and landings of demersal species, such as haddock and cod, declined by more than 

90% during the early 1990s (Thurstan & Roberts 2010). As a result, a remarkable shift has been 

observed over the last two decades in the groups of species landed from the Clyde. In 1985, 

finfish made up more than 60% of the landings by weight and 37% by value, but by 2008, this 

had fallen to just 2% by weight and 0.5% by value (Howarth et al. 2013). Now, Nephrops 

prawns (Nephrops norvegicus) are the most valuable fishery in the Clyde, making up 84% of 

landings by weight and 87% by value. The remaining percentages are composed solely of other 
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invertebrates such as king scallops, edible crabs and European lobster (Homarus gammarus) 

(Howell et al. 2006; Keltz & Bailey 2010). Since 2003, the only landings of fish in the Clyde have 

been as by-catch from the Nephrops trawl fishery (Heath & Speirs 2011).  

The changes in the Firth of Clyde are problematic for a number of reasons. Firstly, the entire 

fishing fleet now relies on just a handful of invertebrate species. If for any reason these stocks 

were to suddenly collapse, the social and economic consequences would be severe as there 

are few species left to target (Howarth et al. 2013). Secondly, the majority of these 

invertebrate fisheries are targeted by vessels towing mobile gears (Murray & Cowie 2011; 

Dobby et al. 2012). As mentioned above, such gears are associated with high levels of by-catch, 

particularly of juvenile fish, which may prevent the recovery of bottom fish populations in the 

future (Bergmann & Moore 2001; Bergmann et al. 2002a, 2002b). Mobile fishing gears also 

cause substantial damage to seafloor habitats and observations suggest the health and extent 

of maerl, seagrass and other complex habitats have deteriorated greatly in the Clyde (Hall-

Spencer & Moore 2000; Kamenos et al. 2004c; Howarth et al. 2011). The decline in seafloor 

habitats will likely hinder any future recovery of fish stocks as these organisms provide nursery 

habitats for a number of juvenile fish, scallops and other invertebrates (Bradshaw et al. 2001; 

Howarth et al. 2011). Furthermore, many commercially exploited fish species are known to 

spend significant parts of their juvenile life stage in inshore nursery habitats, migrating 

progressively offshore as they age and develop (Zeller & Pauly 2001; Espeland et al. 2007; 

Knutsen et al. 2007; Gibb et al. 2007). Interfering with this transition will therefore also 

contribute to the decline of commercially important fisheries further out at sea. 

In response to the decline in habitats and fish stocks, residents on the Isle of Arran, the largest 

island in the Firth of Clyde, became increasingly concerned for their local marine environment 

and formed a group known as the Community of Arran Seabed Trust or “COAST” 

(www.arrancoast.com). In September 2008, after a decade of campaigning for better 

protection of their seas, COAST helped to establish Scotland’s first and only fully no-take 

marine reserve in Lamlash Bay, located off the south eastern shore of Arran. The no-take 

marine reserve prohibits all resource extraction within its 2.67 km2 area under the Inshore 

Fishing (Scotland) Act of 1984. Therefore, not only is Lamlash Bay the first marine reserve in 

Scotland, it is also the only statutory reserve in the UK that was originally proposed by a local 

community which bans all extractive activities (Prior 2011). The Lamlash Bay Marine Reserve 

was passed by the Scottish parliament under the rationale that the reduction in fishing 

pressure should help regenerate the local marine environment and enhance commercial 

http://www.arrancoast.com/
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shellfish and fish populations in and around Lamlash Bay, particularly with regards to scallops. 

This also makes Lamlash Bay unique as the majority of MPAs in the UK were proposed either 

for  conservation (e.g. Lundy Marine Nature reserve, Hoskin et al. 2011) or fishery purposes 

(e.g. closed areas off the Isle of Man, Beukers-Stewart et al. 2005), not for both.  

1.5. Thesis synopsis 

The global coverage of MPAs set to increase over the next decade. To help guide this change in 

policy and management, it is important to better understand how MPAs promote the process 

of recovery within marine ecosystems. As Lamlash Bay is the first and only fully protected 

marine reserve in Scotland, and only one of three in the UK, studying Lamlash Bay will offer a 

unique insight into the effects of highly protected marine reserves. This thesis can be broadly 

split into three sections: (i) the second chapter reviews the effects of overfishing from a global 

perspective in which the Firth of Clyde is a case study; (ii) the third chapter is a methodological 

study that aims to determine which survey techniques are the most suitable for monitoring 

Lamlash Bay Marine Reserve; and lastly (iii) the fourth, fifth and sixth chapters focus on the 

effects of the protected area.  

To elaborate; in chapter two I explore the general effects of overfishing from a global 

perspective. The Firth of Clyde, and many over-exploited marine ecosystems worldwide, have 

lost their natural populations of large predatory finfish, and in their place, crustaceans and 

invertebrates have come to dominate. Despite the loss in biodiversity, these invertebrate 

species can go on to support highly lucrative fisheries, capable of generating more economic 

revenue than the traditional fisheries they replaced. In this chapter, I document the 

mechanisms underlying these changes and explore how biodiversity can influence the 

resilience and function of marine ecosystems in order to evaluate if our increasing reliance on 

invertebrate fisheries is wise.  

The third chapter of this thesis homes in on Lamlash Bay Marine Reserve. In particular, it aims 

to test which survey methods are the best for monitoring the wide range of species that occur 

in Lamlash Bay. I then use the results of this study to justify the methods I employed in my 

following chapters.  

In chapter four, I explore how Lamlash Bay Marine Reserve has affected the abundance and 

population dynamics of two commercially important species of scallop. This was achieved by 

conducting a series of quantitative diver surveys over a four-year period. These surveys 

investigated whether the reserve is promoting the recovery of nursery habitats and scallop 
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recruitment. Other benefits potentially offered by the reserve were explored by testing for 

differences in scallop density, age structure, body size and biomass between areas situated 

within and outside its boundaries.   

The fifth chapter investigates how Lamlash Bay Marine Reserve is influencing commercially 

important populations of crabs and lobster. The study involved conducting a series of pot 

(“creel”) and tagging surveys to test if: (1) catch rates of crab and lobster were higher within 

the reserve; (2) individuals were larger within the reserve; (3) there was any evidence of 

spillover; and (4) if the reserve was having any effect on lobster fecundity and gender ratios.   

Finally, in my sixth chapter, I investigate if the protection afforded by Lamlash Bay Marine 

Reserve is promoting the recovery of benthic and fish populations. This was achieved by 

conducting a combination of diver, photo and video surveys over a four year period.  
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Chapter 2. The unintended consequences of simplifying the sea: 

making the case for complexity 

 

2.1. Preface 

Worldwide, many over-exploited marine ecosystems have lost their natural populations of 

large predatory finfish and have become dominated by crustaceans and other invertebrates. 

Controversially, some of these simplified ecosystems have gone on to support highly successful 

invertebrate fisheries capable of generating more economic value than the fisheries they 

replaced. This is the case with the Firth of Clyde, in which the Isle of Arran sits. The Firth of 

Clyde used to support a large number of fisheries targeting a wide range of species, including 

cod, haddock and whiting. Now, after a century of intense fisheries exploitation, the only 

fisheries remaining are those targeting bivalve molluscs and crustaceans. However, these 

recently established invertebrate fisheries are proving to be highly lucrative and successful. 

Such systems have been therefore compared with those created by modern agriculture on 

land, in that existing ecosystems have been converted into those that maximize the production 

of target species. 

In this chapter I investigate whether our increasing reliance on invertebrate fisheries is wise by 

drawing on a number of case studies and ecological concepts.  

This chapter has been written in the style of Fish and Fisheries and was published in April 2013. 

The paper is available at: http://onlinelibrary.wiley.com/doi/10.1111/faf.12041/abstract 
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Abstract 

Many over-exploited marine ecosystems worldwide have lost their natural populations of large 

predatory finfish and have become dominated by crustaceans and other invertebrates. 

Controversially, some of these simplified ecosystems have gone on to support highly successful 

invertebrate fisheries capable of generating more economic value than the fisheries they 

replaced. Such systems have been compared with those created by modern agriculture on 

land, in that existing ecosystems have been converted into those that maximize the production 

of target species. Here, we draw on a number of concepts and case-studies to argue that this is 

highly risky. In many cases, the loss of large finfish has triggered dramatic ecosystem shifts to 

states that are both ecologically and economically undesirable, and difficult and expensive to 

reverse. In addition, we find that those stocks left remaining are unusually prone to collapse 

from disease, invasion, eutrophication and climate change. We therefore conclude that the 

transition from multispecies fisheries to simplified invertebrate fisheries is causing a global 

decline in biodiversity and is threatening global food security, rather than promoting it. 

 

Keywords    Ecosystem change, fisheries, invertebrates, phase shift, resilience, simplification 
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Introduction 

The biodiversity of the world’s oceans is changing. Human impacts are causing an accelerating 

loss of populations and species in virtually every marine ecosystem on the Earth (Worm et al. 

2006; Valdes et al. 2009). As a result, we are seeing marine ecosystems, and the fisheries they 

support change on a global scale (Steneck 1998; Jackson et al. 2001; Sala and Knowlton 2006; 

Daskalov et al. 2007). 

Fisheries that target large predatory finfish are rapidly declining (Myers and Worm 2003, 

2005). To keep up with demand, fishers are increasingly targeting smaller, pelagic species and 

bottom-dwelling invertebrates (Pauly et al. 1998, 2002; Steneck et al. 2002; Essington et al. 

2006; Estes et al. 2011). Behind these all too familiar ‘fishing down’ or ‘through the food web’ 

and ‘boom-and-bust’ cycles lies a complex interplay of ecological, economic, social and 

historical factors. In general, however, they share a common pattern. New fishing technologies 

and rising demand cause the intensity and effects of fishing to escalate over time. As a result, 

stocks of large-bodied fish become depleted, and in their place, new species are targeted 

(Worm and Myers 2003; Hughes et al. 2007). Despite offsetting fishing demand to previously 

little or unexploited species, the ecological functions that larger fish performed within the 

ecosystem (such as grazing macroalgae or feeding on benthic invertebrates) are diminished or 

lost (Holmlund and Hammer 1999; Worm and Duffy 2003). As a result, ecosystems become 

dominated by a handful of species such as prawns, lobster, macroalgae and jellyfish that used 

to form the diet of, or were outcompeted by, larger fish (Myers and Worm 2003) (Fig. 1). This 

cycle of diminishing fish stocks and offsetting fishing demand to new species may occur several 

times, and with this rise and fall of various species, the ecosystem may experience several 

different states each supporting distinct ecological communities (Steneck et al. 2004).  

Paradoxically, species that come to dominate overfished, simplified ecosystems can reach high 

enough densities that they form a resource many times more economically valuable than 

those targeted before (Thurstan and Roberts 2010; Steneck et al. 2011). This may explain why 

calls from scientists for an ecosystem-based approach to help restore depleted fish stocks are 

often met with little enthusiasm, or even resistance, from fishers, managers and politicians 

(Steneck et al. 2011). In the short-term arena, where these players generally make their 

decisions, there appear to be strong economic incentives to maintain ‘business as usual’. It has 

even been suggested that intensive fishing is a necessary process required to keep up with 

rising demand (Pauly et al. 2002; Hilborn 2007a; Harman 2011; Atrill and Halls 2012; Van 

Denderen et al. 2013). That, through overfishing, we are effectively manipulating nature in 
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order to create simplified assemblages dominated by targeted populations, comparable to 

monocultures in agricultural systems. These have the advantage in that they are easier to 

manage, more abundant in the environment and economically more efficient than pre-existing 

fisheries. After all, advances in human civilization have largely been built on this approach in 

terrestrial environments (Foley et al. 2011). 

In response to these arguments, we examine the consequences of simplified, less diverse 

marine ecosystems and the fisheries they support by drawing on economic and ecological 

perspectives, illustrated through several case-studies, and address the question of whether 

simplifying the seas is a sensible management strategy. Based on our findings, we then make 

the case that restoring the diversity of ocean ecosystems is necessary to ensure fisheries 

sustainability and resilience into the future. 

 

Figure 1. The ecological effects of intensive fishing. Fishing effort increases over time (left to 
right). As a result, large finfish become depleted, fishers are forced to target new species, and 
biogenic habitat structures are damaged or lost. However, the ecological functions that larger 
finfish and habitat-forming organisms performed within the ecosystem become diminished or 
lost. Consequently, biodiversity of the system declines, and the ecosystem shifts to a new state 
dominated by species that were once predated by larger fish or are resilient to habitat-
modifying fishing methods. These species can, however, go on to support large and lucrative 
fisheries. 
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The ecology underlying change 

The number and types of species present within an ecosystem (i.e. its biodiversity) determine 

ecosystem function through processes such as predation, herbivory, habitat provision and 

mediating the cycling of energy and nutrients, which maintain ecosystems as the recognizable 

entities they are (Chapin et al. 2000; Loreau et al. 2001; Deutsch 2003; Worm and Duffy 2003). 

However, fishing can reduce the biodiversity of ecosystems by damaging habitats and lowering 

the abundance of target and non-target species (Auster et al. 1996; Collie et al. 1997; Pauly et 

al. 2002; Airoldi et al. 2008). When fishing pressure persists at too high level for too long, 

certain species can be driven to local extinction or at least to such low levels that any influence 

they have on ecosystem structure and function is essentially lost (McClanahan 1995; Sala et al. 

1998). If these species played a key functional role within the ecosystem and the traits they 

conferred are replaced by other species, it can alter ecosystem function and result in the 

emergence of a new, unfamiliar ecological state (Pauly and Christensen 1995; Naeem and 

America 1999). It appears then that a system’s biodiversity may play a key role in maintaining 

its stability. However, recent studies suggest the reality may be more complicated. 

Marine ecosystems are complex and dynamic and are increasingly thought to be able to exist 

in, and shift between, several possible alternate states (Scheffer et al. 2001; Beisner et al. 

2003; Deutsch 2003; Daskalov et al. 2007). An ecosystem is able to slide from one alternate 

state to another when external (e.g. climate change or overfishing) and/or internal 

perturbations (e.g. predator–prey cycles and density-dependent mortality) to the system pass 

a critical threshold. This causes the nature of the system to change, triggering a reorganization 

of its structure, altering its dynamics and bringing about a series of feedbacks that can further 

reinforce the change (Scheffer and Carpenter 2003) (Fig. 2). In some cases, crossing the 

threshold requires only a relatively small perturbation to bring about a sudden and dramatic 

change (Gammaitoni et al. 1998). For example, it has been reported in several lake systems 

that a change in phosphorus input can trigger a sudden shift from clear to turbid water, two 

different states capable of supporting different communities of animals and plants (Jeppesen 

et al. 1999; Van Nes et al. 2002; Ibelings et al. 2007). In other cases, such as the change from a 

grassy to a shrub-dominated rangeland (Ludwig et al. 2000), the response is more gradual. 

Nevertheless, once the threshold has been passed, the feedbacks are altered and the dynamics 

of the system shift from one state to another (Folke et al. 2004).  
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Figure 2. Theory underlying ecosystem change. An ecosystem begins as a stable, recognizable 
entity. However, perturbations to the system trigger an ecological reorganization. If the 
perturbation is weak, the system absorbs the disturbance and reverts back to its previous 
state. If the perturbation is strong, the system shifts to an alternative state and can trigger a 
number of feedbacks that further reinforce the shift and promote its stability. 

The problem with simplified ecosystems 

The extent to which an ecosystem can absorb natural and human disturbances without 

degrading or unexpectedly shifting to an alternate state is often referred to as its ‘resilience’ 

(Holling 1973; May 1977; Steneck et al. 2011). Highly resilient ecosystems can absorb 

perturbations and return to their previous state, whereas low-resilience systems may shift 

under even a relatively small disturbance. But what makes some ecosystems more resilient 

than others? 

In theory, if species with similar functional roles are able to replace or compensate for one 

another, then ecosystems encompassing high species diversity will be more resilient because 

the likelihood of the ecosystem losing all species capable of performing a particular ecological 

function is low (Chapin et al. 1996; Lavorel and Garnier 2002; Hooper et al. 2005). Ecologists 

have therefore frequently proposed that an increase in species diversity will confer an increase 

in resilience by ensuring the system against loss of function (Elton 1958; Mcnaughton 1977; 

Tilman 1996; Yachi and Loreau 1999; Loreau et al. 2001). Despite being an area of intense 

debate (Chapin et al. 2000; Worm and Duffy 2003), there is growing evidence that species 

diversity plays a significant role in ecosystem function and resilience in several systems 

including kelp forests (Johnson and Mann 1988; Steneck et al. 2002, 2004; Hughes et al. 2005; 

Worm et al. 2006), microbial microcosms (McGrady-Steed et al. 1997; Naeem and Li 1997), 

grasslands (Tilman 1996; Walker et al. 1999; MacDougall et al. 2013), mycorrhizal fungi (van 

der Heijden et al. 1988) and marine invertebrate communities (Stachowicz et al. 2002; Levine 

et al. 2004). The relevance of all these to fishing is that as many heavily exploited marine 

ecosystems are inadvertently being transformed into simpler, managed systems, which 
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typically contain only a few dominant species, they too are expected to have low resilience and 

be more susceptible to other human impacts, such as climate change, eutrophication and 

species invasions, and therefore more susceptible to ecological change. 

The Black Sea gelatinous invasion 

The overfishing of large predatory species can often open up suitable niches for other species 

to occupy (Worm et al. 2006; Daskalov et al. 2007; Oguz et al. 2008). Overfishing in the Black 

Sea, for example, has made the system more susceptible to changes in climate, hydrography, 

nutrient loading and invasions by both native and non-native species (Llope et al. 2011). As a 

result, many shallow areas have become oxygen depleted (whereas the deep Black Sea has 

long been anoxic), and the system has shifted from a fish-dominated community to one 

dominated by jellyfish and ctenophores: the most dramatic, large-scale gelatinous plankton 

invasion event to date (Oguz et al. 2008). 

The turning point for these changes occurred in the 1960s when fishing first reached industrial 

levels, and stocks of pelagic predators such as bluefish (Pomatomus saltator, Pomatomidae) 

and dolphinfish (Coryphaena hippurus, Coryphaenidae) became severely depleted (Daskalov 

2002; Sala and Knowlton 2006). As a result, predation pressure was reduced and populations 

of planktivorous fish expanded. This led to greater grazing pressure on zooplankton and, 

coupled with eutrophication, allowed the biomass of phytoplankton to increase abruptly 

during the early 1970s (Daskalov et al. 2007). This had further knock-on effects; phytoplankton 

blooms at the surface meant greater quantities of dead phytoplankton were sinking to the 

depths and being decomposed through bacterial action, a process that consumes oxygen. As a 

result, shelf waters became hypoxic, causing mass mortalities of mussels and other benthic 

filter feeders (Daskalov 2002; Llope et al. 2011). In turn, this led to an increase in unutilized 

detritus and nutrients within the system and, consequently, further oxygen depletion. In this 

altered ecosystem, a gelatinous invader – the comb jelly (Mnemiopsis leidyi, Boinopsidae) – 

proved highly successful, reaching biomasses of more than 2 kg m-2 in some cases (Shushkina 

and Musaeva 1983; Zaitsev and Mamaev 1997). However, cooler temperatures between 1991 

and 1993 countered the invasion and allowed planktivorous fish to recover, meaning small 

pelagics are again controlling the food web as the main top predator of the system. Curiously, 

the Black Sea has shown further signs of recovery since then and appears to be linked to the 

collapse of the Soviet Union and the loss of state subsidies, which previously supported 

intensive farming practices and the application of fertilizers (Mee et al. 2005). 
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Hypoxia in the Baltic 

The Baltic Sea is unusual in that it is essentially a large brackish lake that receives infrequent 

inflows of seawater from the North Sea that rapidly sink into deeper basins as they are forced 

underneath a less-dense layer of freshwater at the surface (Schinke and Matthäus 1998). 

When the period between inflows is long (known as ‘stagnant periods’), continued bacterial 

decomposition in the depths causes natural depletion of oxygen (Hille et al. 2005). However, in 

recent years, overfishing, climate change and eutrophication have intensified this process, 

resulting in severe anoxia and ecosystem shifts at several different trophic levels and time 

periods. 

During the early 20th century, the hunting of marine mammals resulted in the near elimination 

of top predators and, coupled with increasing pollution and climate change, caused the Baltic 

to shift from an oligotrophic to a eutrophic state (Österblom et al. 2007). In response, the 

system became dominated by cod (Gadus morhua, Gadidae), whilst deeper waters became 

severely hypoxic, wiping out important food chains across 100,000 km2 of the seabed (Elmgren 

1989; Folke et al. 2004). Intensive fishing then contributed to a 10-fold decline in cod biomass 

between 1980 and 1992 (MacKenzie et al. 1996) causing the system to shift again, but towards 

a community dominated by planktivorous sprat (Sprattus sprattus, Clupeidae) and herring 

(Clupea harengus, Clupeidae), thereby imposing major changes on zooplankton community 

composition (M€ollmann et al. 2008). These changes are likely being reinforced as cod eggs 

are not adapted for hypoxic waters, and the large populations of sprat and herring may be 

feeding on cod eggs and larvae and also competing with their juveniles (Koster and Möllmann 

2000; Hinrichsen et al. 2002). The collapse of cod and other large predators has also led to an 

increase in smaller organisms, which prey upon the grazers of macroalgae (Roberts 2012). As a 

result, herbivory rates have declined and macroalgae have spread, further driving down 

oxygen levels through their decay.  

Denmark and other nations bordering the Baltic have made several efforts to reduce nitrogen 

runoff to the Baltic Sea. As a result, nitrogen inputs have halved since the early 1980s (Conley 

et al. 2007), yet the ecosystem remains in a low-oxygen state (Roberts 2012). It has been 

proposed that severe hypoxia has eliminated the functional influence of large, deep-burrowing 

organisms within the sediment, hindering the recovery of the system. Normally, these 

organisms ingest particles of food from the water column and deposit their faeces deep into 

the sediment, reducing the nutrient content of the water column (Bianchi et al. 2000; 

Middelburg and Levin 2009; Karlson et al. 2010). However, their absence has allowed 
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sediments to become dominated by smaller opportunistic taxa that live close to the sediment 

surface and release their faeces back into the open water, thereby stimulating further 

plankton blooms at the surface and further oxygen depletion (Hille et al. 2005; Woulds et al. 

2007). Hypoxic sediments are also less able to retain phosphorous, which has triggered a large-

scale relocation of phosphorous from within the sediment to the water column, again boosting 

plankton growth and oxygen depletion (Hille et al. 2005). 

Sulphur eruptions of the Benguela upwelling system   

In some ecosystems, the diversity of lower trophic levels is equally as important as top 

predators. A curious case-study is provided by the recent changes observed in the Benguelan 

upwelling system off Namibia. Here, trade winds drive intense upwelling and force cold, 

nutrient-rich water to the surface, stimulating large blooms of phytoplankton (Bakun 1990; 

Ohde et al. 2007). Like other upwelling areas (Brüchert et al. 2006), high productivity at the 

surface has resulted in severe hypoxia at depth and enabled high concentrations of hydrogen 

sulphide and methane (the waste products of microbial metabolism) to build up within the 

sediment (Brüchert et al. 2009). Such conditions are estimated to cover more than 50% of the 

Benguelan shelf (Brüchert et al. 2006) and further contribute to oxygen depletion as hydrogen 

sulphide reacts with oxygen as it rises to the surface, thereby stripping it from the water 

(Bakun and Weeks 2004; Ohde et al. 2007). Occasionally, this process is so intense that the 

rising gasses rush upwards in a sudden ‘eruption’ of sulphide and methane, turning the sea a 

bright turquoise (Fig. 3). Such effects can persist for more than 2 months and cover an area of 

20,000 km2 (Weeks et al. 2002). 

This phenomenon is not new. Sulphur eruptions have been reported since the 19th century 

(Weeks et al. 2004; Utne-Palm et al. 2010), but observations suggest they are increasing in 

both frequency and intensity (Weeks et al. 2004). It has been hypothesized that the increasing 

eruptions are linked to overfishing of pelagic fish (Bakun and Weeks 2004). Up to a few 

decades ago, sardines (Sardinops sagax, Clupeidae) and anchovy (Engraulis encrasicolus, 

Engraulidae) shoaled off Namibia in great numbers to feed on vast quantities of plankton. 

These large shoals provided prey for tuna (Scombridae), swordfish (Xiphiidae) and large 

colonies of seabirds, sustaining one of the world’s most spectacular concentrations of marine 

life (Roberts 2012). In response, a large industrial sardine fishery was developed during the 

early 1960s, but through a combination of overfishing and environmental fluctuations, the 

fishery collapsed just a decade later (Cury and Shannon 2004). The large sardine stock was 

once estimated to exceed 10 million tons but for the past 30 years has not exceeded 1 million 
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tons, and in some years, fluctuations have been so severe that the population has nearly 

vanished (Boyer 1996; Bakun and Weeks 2004). The Benguela upwelling ecosystem has 

therefore lost a key component that previously limited the extent of phytoplankton blooms 

and resulting sulphur eruptions. 

Increased sulphur eruptions are a cause for concern. Hydrogen sulphide is a respiratory poison 

(Bagarinao 1992), and its diffusion from the sediment to the water column has been 

implicated in several massive kill events of fish and invertebrates. These trigger mass feedings 

by seabirds and large ‘walkouts’ by lobster and other edible crustaceans, which people readily 

collect from the shore as they try to exit the water (Weeks et al. 2002; Bakun and Weeks 

2004). One event in particular killed off 80% of the hake population, leaving few individuals to 

sustain future catches (Bakun and Weeks 2004). Corrosive fogs of hydrogen sulphide are also 

released, which irritate the eyes and throats of coastal inhabitants, and are offensive in smell 

(Weeks et al. 2002, 2004). Climate change is predicted to further increase the frequency of 

sulphur eruptions (Bakun 1990), making the waters even more anoxic and less suitable to 

support fisheries (Bakun and Weeks 2004; Monteiro et al. 2008). 

 

Figure 3. Sulphur eruptions observed off the coast of Namibia. Evidence suggests that this 
natural phenomenon may be increasing in frequency and intensity and may be linked to the 
overfishing of planktivorous fish. Satellite images courtesy of Jacques Descloitres and the 
MODIS Rapid Response Team. 

Other changes linked to the decline in pelagic stocks have been observed in the Benguelan 

upwelling ecosystem. The loss of sardine has forced many animals of higher trophic level to 

switch to feeding almost exclusively on a single species of bearded goby (Taenioides jacksoni), 
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making it the new predominant prey species (Utne- Palm et al. 2010). Despite the increase in 

predation pressure and the decline in water quality, gobies appear to be thriving as they 

possess an unusually high tolerance to hydrogen sulphide and low concentrations of oxygen 

(Boyer and Hampton 2001). In addition, prior to the period of intensive fishing, large jellyfish 

(e.g. Scyphozoa and Hydrozoa) were not a prominent feature of the Benguelan ecosystem, yet 

the abundance of jellyfish now exceeds that of fish, reaching biomasses of more than 12 

million tonnes (Lynam et al. 2006). The jellyfish prove a nuisance as they disrupt fishing, spoil 

catches and block power station coolant intakes (Boyer and Hampton 2001). They will also 

likely hinder any measures to recover fish stocks as jellyfish prey upon fish eggs and larvae and 

are strong competitors for resources (Pauly et al. 2009). 

Impacting ecosystem services 

Some reports suggest that the major shifts observed in the Black Sea, Baltic and Benguela 

upwelling system occurred during a similar time frame (i.e. between the 1980s–1990s) and 

therefore likely involved a common large-scale atmospheric driver (Young 2011). However, all 

these systems underwent dramatic change after intensive fishing simplified their food webs 

and affected the ecological roles performed by various functional groups. Indeed, simplified 

systems are often predicted to be less capable of providing the ecological processes that 

maintain their stability and allow for the long-term exploitation of their resources (Peterson et 

al. 1998; Chapin et al. 2000). In 2006, an extensive meta-analysis conducted by Worm et al. 

found many cases in which loss of biodiversity impaired the filtering and detoxification 

functions performed by filter feeders, submerged vegetation and coastal wetlands and that 

these impairments were likely linked to a global increase in harmful algal blooms, fish kills, 

shellfish fishery and beach closures and oxygen depletion. Their study also revealed that 

increasing occurrences of species invasions have coincided with the loss of native biodiversity 

and that in the majority of cases, the invaders could not compensate functionally for the loss 

of native biodiversity because they comprised of other species, mostly microbes, gelatinous 

plankton and small invertebrate taxa. They also found that fisheries in species- poor 

ecosystems were more prone to collapse and less likely to recover from over-exploitation. 

Their study therefore supports the notion that complex, more intact marine ecosystems 

provide a range of ecological services, which maintain ecosystem function and support the 

long-term exploitation of marine resources. But when we simplify ecosystems to just a few 

dominant species, we trigger ecological changes that impact upon these services thereby 

affecting resource extraction and human welfare (Brand 2009). 
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From finfish to invertebrates 

We have provided evidence that shifting to lower-diversity regimes can cause ecosystems to 

change, which can create a series of knock-on effects to ecosystem services. But what are the 

socioeconomic drivers that cause such adverse effects to occur? As we will now explore, the 

over-exploitation of finfish stocks has, in some ecosystems, resulted in unusually high densities 

of commercially valuable invertebrates, which can go on to support highly lucrative and 

successful fisheries (Caddy and Rodhouse 1998; Steneck et al. 2011). In these cases, the serial 

over-exploitation of fish stocks has created simplified systems – akin to agricultural 

monocultures – of targeted resources that are easier to manage, more abundant in the 

environment and economically more valuable than the finfish fisheries they replaced (Hilborn 

2007a). 

Prawns in the Clyde 

The Firth of Clyde, a large inlet of the sea that extends over 100 km into Scotland’s west coast, 

gained considerable media attention after it was identified as one of the most degraded 

marine environments in the United Kingdom (BBC Springwatch 2007; BBC Panorama 2010; 

Clover and Smith 2010; Smith 2010), primarily due to over a century of intensive fisheries 

exploitation (Thurstan and Roberts 2010). Fishing in the Clyde has origins dating back to 

medieval times (Tivy 1986) and, over the centuries, has supported many important fisheries 

targeting a wide range of species including herring, cod, mackerel, whiting (Merlangius 

merlangus, Gadidae), haddock (Melanogrammus aeglefinus, Gadidae), turbot (Psetta maxima, 

Scophthalmidae), skate (Dipturus batis, Rajidae) and even basking sharks (Cetorhinus maximus, 

Cetorhinidae) (Thurstan 2007; Thurstan and Roberts 2010). Today these fisheries no longer 

exist. 

The Clyde follows the typical ‘boom-and-bust’ pattern exhibited by many of the world’s 

overexploited fisheries. During the 19th century and before, landings were spread between 

many different species and targeted by an artisanal fleet using sailing vessels, traps, lines and 

nets (Thurstan and Roberts 2010). Fishing effort steadily increased as a greater proportion of 

the fleet began to take advantage of technological advancements such as beam trawls, otter 

trawls, Newhaven scallop dredges and steam- and diesel-powered engines. Despite, and likely 

because of, increasing fishing effort and two spatial closures to trawling being revoked in the 

late 20th century, large catches of fish were not sustained (Heath and Speirs 2011), and 

landings of demersal species, such as haddock and cod, declined by more than 90% (Thurstan 

and Roberts 2010). As a result, a remarkable shift has been observed over the last two decades 
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in the groups of species landed from the Clyde. In 1985, finfish made up more than 60% of the 

landings by weight and 37% by value, but by 2008, this had fallen to just 2% by weight and 

0.5% by value (Fig. 4). Now Nephrops prawns (Nephrops norvegicus, Nephropidae) are the 

most valuable fishery in the Clyde, making up 84% of landings by weight and 87% by value. 

These are targeted by around 120 vessels, of which the majority (90%) of landings are made by 

trawlers resident to the Clyde (Thurstan and Roberts 2010; Murray and Cowie 2011). The 

remaining percentages are composed solely of other invertebrates such as scallops (Pecten 

maximus, Pectinidae), crabs (Cancer pagurus, Cancridae) and lobster (Homarus gammarus, 

Nephropidae) (Howell et al. 2006; Keltz and Bailey 2010). Since 2003, the only landings of fish 

in the Clyde have been as by-catch from the Nephrops fishery (Heath and Speirs 2011). 

 

Figure 4. Nephrops prawns now dominate Firth of Clyde landings by value (values corrected for 
inflation using www. thisismoney.co.uk/historic-inflation-calculator. Data from the Scottish 
Government. Data pre-1985 represent all fish landed in the local ports Ayr and Campbeltown, 
whilst data post-1985 represent only those fish caught and landed within the Firth of Clyde. 

The physical and ecological effects of overfishing in the Clyde have resulted in an altered, 

simplified ecosystem in which Nephrops, crabs, scallops and other invertebrates now thrive 

(Thurstan and Roberts 2010) (for contrasting views see Combes 2007). Reversing this shift will 

likely prove difficult as there are several ecological and social feedbacks preventing the return 

of the Clyde to the diverse, highly productive ecosystem it once was (Box 1). 

Although a prawn-dominated state appears beneficial in a fisheries sense, there is a possibility 

that the Nephrops stock may be unusually prone to collapse. It is known that populations 

within low diversity ecosystems are inherently unstable, being more prone to sudden 
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fluctuations in stock size, invasion and disease (Worm et al. 2006). In fact, there are already 

signs of high rates of parasitism of Clyde Nephrops by a microscopic dinoflagellate belonging to 

the genus Haematodinium. This parasite is also known as ‘bitter crab disease’, for its capacity 

to reduce both taste and texture of Nephrops and other crustaceans (Gunnarsson 2010), or as 

‘smoking crab disease’, due to its ability to convert host’s organs into its own propagules. 

When complete, the free-swimming stage of the parasite then erupts from every aperture and 

joint, giving the prawn the appearance of smoking (Roberts 2007). During seasonal peaks, 

Haematodinium prevalence has reached as high as 70% (Field et al. 1992), with infection 

widely believed to lead to the death of the host (Stentiford and Shields 2005; Stentiford and 

Neil 2011). Seasons of high infection have therefore been associated with reductions in 

landings per unit effort and Nephrops burrow density (an accepted indicator of stock density, 

McLay et al. 2008), as well as considerable losses to fishermen who are forced to discard high 

proportions of their catch that are heavily parasitized and therefore unmarketable (Field et al. 

1998; Stentiford 2001; Beevers et al. 2007). Since the initial epidemic period, Haematodinium 

prevalence appears to have stabilised at levels between 20-25% in the Clyde (Beevers et al. 

2012). 

It has been proposed that overfishing in the Firth of Clyde may have encouraged the outbreak 

of Haematodinium through several mechanisms (Thurstan and Roberts 2010; Stentiford and 

Neil 2011). Parasites often modify host behaviour to increase the spread of infection. As 

infected prawns spend more time out of their burrows (Stentiford 2001; Stentiford and Neil 

2011), there may be an increased chance of disease transmission between infected and 

uninfected prawns. When cod and other predatory fish were common in the Clyde, infected 

prawns would have been picked off quickly, limiting the spread of the parasite, but today there 

is little such control. Secondly, Haematodinium prevalence has been found to be highest at 

sites where Nephrops populations are made up of smaller-bodied individuals (Field et al. 1998; 

Stentiford 2001). Because fishing alters population size-structure, fishing could potentially 

increase the prevalence of the disease by creating a shift towards a higher proportion of 

smaller-bodied, more susceptible, individuals within the population (Stentiford and Neil 2011). 
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The arguments above highlight current fishing practices in the Clyde as risky. If the Nephrops 

stock were to crash, the social consequences for Clyde fishermen would be dramatic as few 

species would be left to target. What is more, the value of trawled Nephrops has remained 

static since 1991, whilst the business costs of operating a vessel have steadily increased. In this 

market, fishers face the predicament of fishing for quantity rather than quality. Therefore, if 

landings were to drop, say because of disease or fishery restrictions, the trawl fleet will be 

highly susceptible to economic collapse (Combes 2007). 

Box 1 

Barriers to recovery within the Firth of Clyde 

1. The decline in nursery habitat: Mobile fishing gears, like trawls and scallop dredges, alter the 

physical structure of the seafloor by ploughing sediments and destroying structural biological 

features such as maerl, seagrass and macroalgal beds (Eleftheriou and Robertson 1992; Hall-

Spencer and Moore 1998; Jennings and Kaiser 1998; Kaiser et al. 2000). Such habitats often 

support high levels of juvenile fish density, growth and survival, and contribute 

disproportionally to the production of adult recruits and biodiversity in general (Beck et al. 

2001; Kamenos et al. 2004a,b; Howarth et al. 2011). The decline of these ‘nursery habitats’ 

may hinder any future recovery of fish stocks (Bradshaw et al. 2001). In addition, many 

commercially exploited fish species have been shown to spend significant parts of their 

juvenile life stage in inshore nursery habitats, migrating progressively offshore as they age 

and develop (Zeller and Pauly 2001; Espeland et al. 2007; Gibb et al. 2007; Knutsen et al. 

2007). Interfering with this transition will therefore also contribute to the decline of finfish 

fisheries further out at sea. 

2. High levels of by-catch: In addition to the habitat-altering properties of trawls and dredges, 

the high levels of juvenile by-catch associated with their use (especially given the fine-mesh 

of prawn trawls) will also likely prevent the recovery of bottom fish populations. Discard 

ratios are very high in the Clyde Nephrops fishery, with 9 kg of by-catch produced for every 1 

kg of Nephrops caught (Bergmann et al. 2002), and it is likely that the majority of these 

organisms die when returned to the sea (Bergmann and Moore 2001). 

3. Nephrops are highly valuable: Nephrops alone generate almost as much income as all finfish 

combined did in the past (even when inflation is taken into account, Fig. 4). There is 

therefore likely to be little desire to return to a diverse mixed fishery (Steneck et al. 2011), 

especially given the current level of investment in the Nephrops fishery. Profit margins in this 

fishery may not be as high as they once were (Thurstan and Roberts 2010), but this single 

species remains the mainstay of the fishing industry in the Firth of Clyde. 

4. The abundance of euphausiids and copepods: These planktonic organisms constitute 

important prey for juvenile cod and haddock, yet their abundance is 10–100 times lower in 

the Firth of Clyde than in the 1950s. However, its causes in the Clyde remain unknown, as are 

its consequences on the recovery of groundfish (Bailey et al. 2011). 
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Lobster in the Northwest Atlantic 

The Northwest Atlantic was once home to some of the world’s richest fishing grounds for large 

predatory groundfish, particularly cod and haddock (Acheson and Steneck 1997; Jackson et al. 

2001). However, over the past 30 years, fisheries within this region have experienced 

widespread collapse, and landings from fisheries targeting invertebrates such as sea urchins 

(Strongylocentrotus droebachiensis, Strongylocentrotidae), lobster (Homarus americanus, 

Nephropidae), snow crab (Chionoecetes opilio, Oregoniidae) and shrimp (Pandalus borealis, 

Pandalidae) have come to dominate (Worm and Myers 2003; Frank et al. 2011) (Fig. 5). In 

addition to growing economic dependency on newly established invertebrate fisheries, we 

have also seen several new ecological states emerge throughout the entire Northwest Atlantic, 

what may well be the largest ecological shift recorded to date as a direct consequence of 

overfishing.  

In the Gulf of Maine, cod has been the single most valuable marine resource since the late 

1880s. However, like many fisheries discussed in this study, fishing intensity and its impacts 

escalated over time. During the 1930s, new technologies enabled fishers to boost their catches 

by actively targeting spawning aggregations of coastal cod and haddock, but by 1949, these 

coastal stocks had become depleted (Steneck et al. 2004). Landings of cod and haddock were, 

however, maintained by targeting previously unexploited stocks further offshore between the 

1950s and 1970s. Landings in the area then received another boost between the 1970s and 

1990s due to further technological advancements and the establishment of the 200-mile 

exclusive economic zone. Both contributed to a temporary increase in species diversity of 

landings as fishers began to target new species such as monkfish (Lophius americanus, 

Lophiidae) and sea urchins. Despite the boost to landings, by 1992, stocks of predatory bottom 

fish experienced widespread collapse, and landings fell to just a tenth of what they had been in 

1990 (Steneck and Wilson 2001, 2010). 
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Figure 5. The rise of invertebrate fisheries in the Northwest Atlantic. Predatory groundfish 
fisheries have collapsed in the Northwest Atlantic triggering a dramatic shift in the value and 
composition of species landed. (a) Landings of several groups of species in the Northwest 
Atlantic between 1950 and 2006. Landings of cod split between the three large marine 
ecosystems. In all three regions, cod landings have almost ceased, and invertebrates now 
make up the majority of species landed. (b) The real 2000 adjusted value of several groups of 
species between 1950 and 2006. Invertebrate fisheries are now worth more than the finfish 
fisheries they replaced. Real 2000 value was obtained by multiplying the catch (by species) by 
the deflated ex-vessel price, adjusted by the Consumer Price Index. The group ‘invertebrates’ 
does not include oysters as this fishery had already boomed and collapsed by 1970. Data 
obtained from the Sea Around Us Project (www.seasaroundus.org). 

 

(a) 

(b) 
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In contrast, since the 1950s, landings of lobster have increased dramatically to the point that 

their value has surpassed all other harvested stocks in Maine, representing 80% of the total 

value of Maine’s seafood landings, thereby making it one of the most important fisheries in 

North America (Steneck and Wilson 2001; Steneck et al. 2011). Following this success, the 

number of lobster pots in Maine has increased from around 300,000 in 1930 to well more than 

3 million in 2000. Now, in 2011, more than 4400 commercial fishing vessels actively fish 

lobsters in coastal Maine (Department of Marine Resources 2012). Despite such intensive 

levels of fishing, population densities of lobster remain higher in Maine than in anywhere else 

in the world (Steneck and Wilson 2001; Steneck et al. 2011). With no sign of landings 

diminishing, it is no surprise that the Maine lobster fishery is widely regarded as successful and 

sustainably managed (Ostrom et al. 1994; Acheson and Steneck 1997; Steneck et al. 2011). Yet, 

although managers and fishers have indeed contributed to this success, there is a belief that 

the high abundance of lobster is more a result of them becoming ecologically ‘released’ from 

their overfished predators, allowing the population to expand in size and into new, relatively 

unprotected habitats from which they were previously excluded (Boudreau and Worm 2010). 

In addition, a high proportion of the lobsters’ diet now comes from herring bait used in the 

trap fishery (Saila et al. 2002; Grabowski et al. 2009), creating an artificial trophic link between 

a pelagic fish and a benthic scavenger. Meaning, undersized lobsters receive a high-energy 

meal every time they are caught and released, thereby enhancing their growth (Saila et al. 

2002; Grabowski et al. 2009). This means that the Maine lobster fishery shares more 

characteristics with aquaculture and ranching (such as control of predators, provisioning of 

food and a greatly simplified food web) than most capture fisheries (Steneck et al. 2011). 

Currently, lobsters represent more than 80% of the value of all fish and seafood landings in 

Maine (Steneck et al. 2011). Similar to our previous arguments, this means any future declines 

in lobster will have devastating social and economic consequences as we have effectively ‘put 

all our eggs in one basket’. Furthermore, shallow ocean temperatures in the Gulf of Maine are 

steadily rising (Wanamaker et al. 2008), meaning lobsters may become increasingly stressed 

and more vulnerable to disease (Factor et al. 2006). For example, in the eastern Long Island 

Sound (just 200 km south of the Gulf of Maine), disease and stresses related to increases in 

ocean temperature have resulted in more than a 70% decline in lobster abundance after a 

lethal disease outbreak during the unusually warm summer of 1998 (Castro et al. 2006; Glenn 

and Pugh 2006). Then, in 2010, fisheries managers proposed a 5-year moratorium on lobster 

fishing as lobsters were experiencing recruitment failure in response to warming sea 

temperatures (Steneck et al. 2011), which both lowered oxygen levels and increased the 
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incidence of disease (Castro and Angell 2000; Castro et al. 2006). Recruitment failures as a 

result of climate change have also been observed in rock lobster fisheries in Tasmania (Pecl et 

al. 2009). If a similar epidemic were to occur in Maine, the effects would be more pronounced 

because lobster densities are higher than those in Long Island Sound, enhancing disease 

transmission (Steneck et al. 2011). 

Ecological shifts have not been confined to the Gulf of Maine. The eastern Scotian Shelf has 

experienced similar shifts driven by the collapse of the benthic predatory fish community 

(Frank et al. 2005). Now, in a system where cod and other predatory bottom fish used to 

dominate, landings of northern shrimp and snow crab have increased to such an extent that 

their combined economic value exceeds that of the groundfish fisheries they replaced (Worm 

and Duffy 2003). Furthermore, it is thought that a number of measures designed to help the 

recovery of benthic fish are being hindered by the dramatic rise in forage fish and 

macroinvertebrates (a 900 and 200% increase in biomass, respectively), which may be 

outcompeting their former predators (Frank et al. 2005, 2011). 

As well as impacting the species composition of landings, the decline in predatory groundfish 

has also been observed to cause shifts in seal populations, phytoplankton community 

composition and the prevalence of kelp forests (Frank et al. 2005). Kelp forests, in particular, 

dominated coastal ecosystems of the Northwest Atlantic for more than 4000 years (Steneck 

1990; Jackson et al. 2001; Steneck et al. 2002), but from the mid-1960s to 1990, the 

overfishing of large predators triggered a dramatic increase in the populations of sea urchins 

and other herbivores, leading to widespread deforestation of coastal kelp forests (Steneck et 

al. 2004; Boudreau and Worm 2010). Under this new regime, grazing-resistant coralline algae 

came to dominate the benthos (Steneck 1982; Steneck and Dethier 1994) (Fig. 6), thereby 

reinforcing the shift by replacing quality groundfish nursery habitat (i.e. the kelp) with new 

habitat suitable for sea urchin recruitment (i.e. coralline algae) (Steneck et al. 2004). This new 

ecological state persisted for 2–3 decades before a new fishery targeting the green sea urchin 

was established in 1987 (Vadas and Beal 1999). The fishery quickly depleted the sea urchin 

population from extensive coastal areas of Maine, allowing a return to a kelp-dominated state 

by the mid-1990s. This latest state looks so far to be stable, as the expansion in crustaceans 

appears to be preventing repopulation of sea urchins by feeding on their newly settling 

recruits (Steneck et al. 2004). 
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Figure 6. The shift from kelp forest to coralline algae. Between the 1960s and 1990s, coastal 
kelp forests in the Gulf of Maine were replaced by communities dominated by coralline algae 
due to intense grazing pressure from sea urchins. Picture taken in 1980 and reproduced with 
permission from Robert Steneck, University of Maine. 

Can we ‘farm’ the open sea? 

This study highlights several ecosystems that have undergone dramatic ecological shifts as a 

result of overfishing and other environmental changes. Controversially, some of these shifts 

have appeared to be positive from an economic perspective. Although biodiversity has been 

reduced, intensively fished systems can come to support important high-volume invertebrate 

fisheries, often capable of generating more economic value than the finfish fisheries they 

replaced. So the question remains is simplifying the seas a process that should welcomed, as 

some have argued, improving the harvesting of resources like it does in agricultural systems on 

land? 

Modern agriculture involves converting existing ecosystems into ones that can be controlled 

and reducing habitat heterogeneity and biodiversity to maximize the production of a small 

number of target crops or animals (Kareiva et al. 2007). Reducing biodiversity simplifies 

management, maximizes yield and allows for faster processing through automated planting 

and harvesting (Hooper et al. 2005). Marine capture fisheries are also based on generating 

economic profit from targeted species, and as with farming, fisheries too can be more 

profitable when the biodiversity of their catch is low (Diamond and Beukers-Stewart 2011). 

This is because fisheries rarely land all the species they catch. Instead, they are often governed 

by species specific quotas, meaning that when a fisher’s catch consists of a greater proportion 
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of the target species, less time is spent sorting the catch and more of it can be landed, thereby 

generating greater profit. A simplified ecosystem should therefore provide a more predictable 

product, allowing fishermen to optimize their gear and techniques, and for seafood processors 

and retailers to streamline their supply chains. In many ways, these economic arguments are 

remarkably similar to those driving the dramatic expansion of the aquaculture industry which, 

over the past several decades, has been the fastest growing food production sector in the 

world (Bostock et al. 2010). 

It is, however, widely recognized that monocultures are ecologically unstable. On land, crops 

and animals must be treated with a diverse array of chemicals (e.g. fertilizers, herbicide, 

pesticides, antibiotics, etc.) and biological controls (e.g. the introduction of predators and 

parasitoids) to maintain yields in the face of pests, weeds and diseases (Holt and Hochberg 

1997; Palumbi 2001). Also, farmers often rely on a continuous supply of new crop varieties and 

strains as yields of successful, pest-resistant varieties are typically maintained for only 5–9 

years before pests adapt to overcome them (Tilman et al. 2002). Similar methods are also used 

in aquaculture, but in the open sea, no such mechanisms exist for wild populations, meaning 

terrestrial analogies are misplaced (Roberts 2007). Maintaining low-diversity conditions in the 

marine environment for our long-term exploitation is therefore unlikely to be viable. 

Moreover, the transition from multispecies fisheries to high-volume single-species fisheries 

has largely been limited to crustaceans and molluscs. These organisms lay down protective 

shells made from carbonate, a substance predicted to become increasingly scarce in the future 

as a result of increasing carbon dioxide levels and consequent ocean acidification (Sabine et al. 

2004; Doney et al. 2009). In fact, many experimental studies show that molluscs and 

crustaceans suffer exceptionally high mortality and low recruitment at acidification levels 

predicted to occur by the end of the century (Gazeau et al. 2007; Kurihara 2008; Watson et al. 

2009), meaning shellfish fisheries all over the world are badly exposed to risk if the organisms 

they target cannot adapt. 

Finally, the economic benefits of simplification may in reality only be short term. As we have 

explored, simplification can result in ecosystems shifting to new states that are entirely 

undesirable and result in long-term losses, such as those observed in the Black and Baltic Seas. 

The ecological simplifying effects of overfishing also promote a loss in ecosystem services and 

can result in eutrophication, harmful algal blooms and large-scale invasions, which can affect 

target species and human well-being. 
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Can ecosystem change be reversed? 

In the light of the problems discussed, it is important to know whether adverse ecosystem 

shifts can be reversed. Studies suggest they can. Meta analyses reveal that the establishment 

of protected areas can restore ecosystems and biodiversity and often result in an increase in 

biomass, density and average body size of large predators and herbivores (Halpern and Warner 

2002; Halpern 2003; Micheli et al. 2004). For example, the establishment of two marine 

reserves in New Zealand led to sea urchin-dominated barrens reversing back to macroalgal 

beds within 20 years (Shears and Babcock 2003). Evidence suggested that this was the result of 

an increase in the density and body size of snappers (Pagrus auratus, Sparidae) and rock 

lobsters (Jasus edwardsii, Palinuridae), the primary predators of sea urchins (Langlois and 

Ballantine 2005). Similarly, the designation of Mombasa Marine National Park in Kenya was 

followed by significant increases in predators of sea urchins and subsequent coral recovery 

after just 10 years of protection (McClanahan and Mangi 2000). Marine protected areas have 

also proven effective in large-scale industrial fisheries. In 1994, in the Gulf of Maine, three 

areas totalling 17 000 km2 were closed to fishing gears that targeted ground- fish or were 

damaging to their habitats, in an emergency response to the collapse of groundfish fisheries 

within the region (Murawski et al. 2000). In an area known as Georges Bank, haddock and 

yellowtail flounder (Limanda ferruginea, Pleuronectidae) increased between three- and 

fivefold within the first 5 years of protection (Murawski et al. 2000; Stone et al. 2004) and 

promoted recovery of the seabed through increasing the biomass and structural complexity of 

bottom habitats (Hermsen et al. 2003). 

Equally though, there are many examples where protected areas have not managed to restore 

ecosystems and fish stocks. This is particularly true when they are not enforced or complied 

with (Pitcher and Lam 2010), but some even fail when compliance is absolute (Frank et al. 

2005). In the Northwest Atlantic, for example, most Canadian stocks of Atlantic cod showed 

little or no signs of recovery despite the termination of direct fishing activity for over a decade 

(Hutchings 2001). How much this lack of recovery is down to the effects of continued prawn 

and scallop dredging on cod nursery grounds is unknown, but it seems likely in view of the 

experience we described for the Clyde ecosystem. Returning to the George’s Bank closure, 

although haddock stocks are improving, cod is yet to show any signs of recovery (Mayo and Col 

2006; Mountain and Kane 2010). Likewise, a protected area in Belize demonstrated good 

recovery of predatory reef fish, but only a weak response by herbivores (McClanahan et al. 

2011). Correspondingly, there was little change in total herbivory and coral cover. 
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There are a diverse range of other management tools available. Enforcing the use of fishing 

gears that cause less damage to habitats and select for specific species, sizes and ages is one 

way to reduce exploitation and damage to ecosystems (Pitcher and Lam 2010). For example, 

after the ecological shifts in the Baltic Sea described earlier in this study, cod biomass trebled 

between 2005 and 2009, thought to be mainly driven by a ban on trawling, which led to a 

sudden reduction in fishing mortality (Cardinale and Svedäng 2011). Similarly, reducing fishing 

effort through reductions in quotas, total allowable catch and fishing capacity have all been 

shown to promote recovery in a number of fish stocks (Beddington et al. 2007; Worm et al. 

2009). However, whilst such approaches may help restore the abundance of targeted species, 

they do not necessarily lead to the recovery of biodiversity and the wider ecosystem (Pitcher 

and Lam 2010). In addition, any reductions made to fishing effort can cause social and 

economic instability as processing plant closures, unemployment and bankruptcy inevitably 

follow (Hilborn 2007a). 

It has been heavily argued that protected areas and restrictions on fishing effort and fishing 

gears are not long-term solutions as they do not address the underlying causes behind 

overfishing (Beddington et al. 2007; Hilborn 2007a; Costello et al. 2008; Pitcher and Lam 2010). 

In ‘open-access’ systems, individuals lack secure rights to part of the quota, meaning fishermen 

often attempt to outcompete each other by attaining bigger vessels and better technology. 

Consequently, this leads to lobbying for ever larger quotas, excessive harvests and, eventually, 

the collapse of the stock (Costello et al. 2008). ‘Dedicated access’ systems, on the other hand, 

prevent the ‘race to fish’ by allocating individual rights to a quota or area to individual 

fishermen or communities (Hilborn 2007a). This guarantees fishers a certain proportion of the 

catch, thereby offering a sense of ownership, encouraging them to make more rational 

economic choices to manage their fishery resources more sustainably in the long term 

(Beddington et al. 2007; Pitcher and Lam 2010). Studies show that this approach has 

successfully reduced fishing effort and improved compliance and community participation in 

management processes (Johannes 1981; NRC 2003; Costello et al. 2008; Worm et al. 2009). In 

fact, greater involvement of fishermen and other stakeholders is commonly reported to result 

in more sustainable levels of exploitation, better distribution of power, reduced conflict and 

greater economic returns (Berkes 2007; Gutièrrez et al. 2007). However, there are cases where 

these approaches have not worked (Dulvy and Polunin 2004; Castilla et al. 2007; Chu 2008; 

Branch 2009), and there is little evidence for dedicated access management helping damaged 

ecosystems to recover (Costello et al. 2008). 
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Overall then, it is apparent that one management tool alone is not enough to prevent 

overexploitation and subsequent ecosystem change. It is therefore widely agreed that a 

combination of managing fishing effort, fishing gears and establishing protected areas, all of 

which have received mutual consent from managers, fishermen and other stakeholders, will be 

most effective in achieving both fisheries and conversation objectives (Hil- born 2007; Worm et 

al. 2009; Khan and Neis 2010). 

Despite intervention, many over-exploited fish stocks and ecosystems simply never recover 

(Hutchings 2000, 2001; Hutchings and Reynolds 2004). What factors prevent recovery are 

largely unknown but are thought to include (see Hutchings and Reynolds 2004; Hooper et al. 

2005; Hughes et al. 2005; Diaz-pullido et al. 2009) amongst others: (i) density-dependent 

effects (e.g. altered predator–prey ratios, recruitment failure through the Allee effect); (ii) local 

extinction of key functional groups; (iii) recovering functional groups not promoting return to a 

previous state (e.g. many reef-based herbivores will not eat late succession macroalgae and 

therefore would not encourage the reef to return to a coral-dominated state, McClanahan et 

al. 2011); (iv) competition with/or predation by invasive species; (v) habitat alteration; (vi) life-

history traits (e.g. fast-growing species such as herring are more likely to recover than long-

lived species such as cod and halibut); and (vii) the overall reduction in biodiversity in 

simplified ecosystems, giving fishers less opportunity to switch to alternative taxa and 

therefore less likely to reduce their fishing effort (Worm et al. 2006). Whatever the reason, it 

appears that some ecosystems are altered to such an extent that they have crossed a 

threshold beyond which recovery to previous conditions may be impossible. The overall 

message from our research is clear; it would be easier for managers to maintain ecosystems in 

a more natural state than to try and repair them (Schiermeier 2002; Hughes et al. 2005; Worm 

et al. 2009). 

Conclusions and perspectives 

Recent papers (e.g. Hilborn 2007a, 2007b; Worm et al. 2009; Branch et al. 2011) argue that the 

global decline of fish stocks is slowing and that fisheries management is improving. However, 

these improvements are localized, confined to countries such as the USA, Australia, New 

Zealand and Iceland. One report shows fishing grounds in Europe largely remain in a state of 

decline (Guènette and Gascuel 2012), and unassessed fisheries, which account for more than 

80% of fisheries worldwide, have recently been argued to be in substantially worse condition 

than most assessed fisheries (Costello et al. 2012). We therefore argue that these 

improvements are not universal and that the perspective taken in this study better reflects the 
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global state of fisheries and ecosystems. In addition, the above improvements come after 

many decades of decline, meaning it is too soon to know whether these early signs of recovery 

will be sustained. 

Through overfishing, marine ecosystems worldwide have lost many of their natural 

populations of finfish, resulting in reduced biodiversity and significant ecological change. In a 

growing number of cases, these simplified ecosystems have come to support large 

invertebrate fisheries, often capable of generating more economic value than the fisheries 

they replaced. However, such changes are not a result of directed management, but rather a 

result of management failure, a failure to protect stocks of target species in the face of 

industry innovation and fisheries intensification. 

Simplified ecosystems are only economically beneficial to one or two industry sectors and only 

in the short term, as low-diversity ecosystems are unstable, being more susceptible to sudden 

fluctuations in stock size, invasion and disease. From a wider societal perspective, ecosystem 

simplification makes little economic sense at all. The loss of functional groups can trigger 

dramatic ecosystem shifts to states that are both ecologically and economically undesirable, 

and often difficult and expensive to reverse. Further shifts could also leave fishers with few 

alternative species to turn to. In areas highly dependent on marine fisheries, this would have 

serious socioeconomic consequences. These changes occur because, unlike in terrestrial 

agricultural systems, there are no measures we can take to counter the ecological problems 

generated by simplification of food production systems in the open sea. All these arguments 

suggest that the transition from multispecies fisheries to simplified invertebrate fisheries has 

caused a global decline in biodiversity and ecosystem services, which is threatening global food 

security, rather than promoting it. 

The lowered ecological and economic resilience of fisheries alone provides a strong reason for 

managers to avoid or reverse ecological simplification. When the wider economic costs of 

simplification are also taken into account (loss of ecosystem services, impacts on human well-

being, etc.), it generates a compelling argument for a complete overhaul of present practice. 

We now need to work to implement management regimes that will promote recovery of 

complexity in food webs and habitats. This is why, we urgently need to shift to a management 

system that incorporates extensive protected areas, reduces fishing intensity, eliminates or 

highly constrains use of habitat destructive and unselective fishing methods, promotes 

recovery in the abundance and variety of target and non-target animals, and helps restore 

ecosystem structure and function. 
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Chapter 3. Comparing the utility of SCUBA and camera surveys 

for monitoring a temperate marine protected area 

 

3.1. Preface 

For MPAs to be considered a successful tool in fisheries management and biodiversity 

conservation, it must be demonstrated that the existence of an MPA or MPA-network is 

responsible for generating ecological and/or fishery benefits. Monitoring programs designed to 

detect trends, or changes from pre-MPA conditions, are therefore essential for evaluating 

whether MPAs succeed in fulfilling their objectives.  

In this chapter I compare a number of different survey methods to help determine which were 

most suitable for monitoring the abundance and size of a number of different organisms in 

Lamlash Bay Marine Reserve. 

This chapter has been written in the style of Aquatic Conservation: Marine and Freshwater 

Ecosystems.  

 

I declare that the work submitted is my own. The contribution by co-authors was as follows: 

Callum Roberts, Julie Hawkins and Bryce Stewart: Supervision, review and editing.      
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Abstract 

1. Diver surveys are regularly employed in monitoring of marine protected areas, but in 

light of recent improvements in underwater technology, the use of photo and video surveys 

have increased in popularity over the past decade. These different survey methods often 

overlap in the types of organisms they record and it is not always clear which method should 

be preferred. 

2. This study sought to determine which survey methods were most suitable for 

monitoring the abundance and size of a number of different organisms in the Lamlash Bay 

marine protected area in Scotland. Power analysis suggested that diver surveys were the more 

cost and time-effective method for estimating the density and size of scallops compared to 

photo methods.  

3. Comparing the relative proportional cover of different epifaunal assemblages attached 

to seafloor generated by diver and photo surveys also revealed several differences. It was 

found that photo surveys detected a greater proportion of macroalgae and maerl than diver 

estimates, whereas diver surveys detected a greater proportion of tunicates, sponges, 

hydroids and bryozoans. This highlights the inherent biases created by different survey 

methods.  

4. Diver and baited underwater video surveys differed in their ability to detect different 

species of crustaceans and fish. Diver surveys detected a substantially greater proportion of 

small, cryptic fish species and a greater proportion of smaller-bodied crustaceans. In contrast, 

only baited underwater video surveys were able to detect pelagic fish species such as mackerel 

and sand eels. These species are rarely observed by divers but in the videos were found to 

occur in large shoals consisting of many hundreds of individuals.  

5. Based on the findings, it is argued that diver surveys should be used for the monitoring 

of scallop stocks within Lamlash Bay. In comparison, for the monitoring of epibenthic species, 

fish and crustaceans, diver surveys had no clear superiority over camera and video methods as 

both produced markedly different results for different types of species. Hence, our results 

indicate that scientists studying marine protected areas must first identify the types of species 

they intend to study, and from that, choose the most appropriate monitoring method. 

 

KEY WORDS: Survey methods; Methodology; Baited remote underwater video; Diver surveys; 

Underwater visual census; Photoquadrat; Marine reserves; Firth of Clyde; Scallops 
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Introduction 

Following a large number of recently established policies and initiatives, the coverage of 

marine protected areas (MPAs) is set to increase dramatically over the next decade (Metcalfe 

et al., 2013). Globally agreed marine protection targets, such as the Convention on Biological 

Diversity’s (CBD) ‘Aichi Target’ are encouraging many governments to establish or expand 

existing MPA networks within their jurisdictions (Wood et al., 2008; CBD, 2011; Harrop, 2011; 

Wood, 2011). This interest is reflected in the European Union (EU) as the Marine Strategy 

Frameworks Directive (MSFD), Birds and Habitats Directives, OSPAR (The Convention for the 

Protection of the Marine Environment of the North-East Atlantic), HELCOM (Helsinki 

Commission) and Barcelona regional seas conventions, have all initiated the process of 

establishing a coherent network of MPAs within European waters (Fenberg et al., 2012; 

Metcalfe et al., 2013). On a national level, the planned implementation of Marine 

Conservation Zones (MCZs; England, Wales and Northern Ireland) and Scottish MPAs 

(Scotland) will all lead to the creation of a network of MPAs around the United Kingdom (UK; 

Jones 2012, JNCC 2013). All these measures have been agreed upon by member states to 

achieve a variety of management goals; principally to conserve biodiversity and promote the 

sustainability of fisheries (Pomeroy et al., 2005; Metcalfe et al., 2013).  

For MPAs to be considered a successful tool in fisheries management and biodiversity 

protection, it must be demonstrated that the existence of an MPA or MPA-network is 

responsible for generating ecological and/or fishery benefits. Monitoring programs designed to 

detect trends, or changes from pre-MPA conditions, are therefore essential for evaluating 

whether MPAs succeed in fulfilling their objectives (Van Rein et al., 2009; Götz et al., 2013). 

For such studies, non-destructive and non-extractive methods are clearly preferable, 

particularly when working within the boundaries of MPAs. They must also be cost-effective, 

generating the most accurate, precise and least biased data possible, while requiring the 

smallest investment of money, time and sampling replicates (Legg and Nagy, 2006). The results 

obtained must then inform appropriate reactive management. For example, if an MPA is not 

contributing to the achievement of biodiversity targets, monitoring programmes can inform 

decisions for a change in management approach, or for a change in its geographic location or 

size (Gerber et al. 2005).  

In the case of monitoring the ecosystem changes brought about by MPAs, collecting data that 

can indicate an ecosystem’s environmental state or condition are generally of most interest, 

such as habitat heterogeneity, species diversity and abundance (Van Rein et al., 2009). In 
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comparison, the monitoring of commercially important species requires data on population 

structure such as body size, age, population density and reproductive output (Langlois et al., 

2006). Diver surveys are regularly employed to obtain these latter types of data (e.g. Beukers-

Stewart et al. 2005, Harmelin-Vivien et al. 2008, Howarth et al. 2011, Horta e Costa et al. 

2013). This is because diver surveys require relatively little in the way of expensive high-tech 

survey equipment, they are considered highly accurate (particularly when counting benthic 

megafauna, Beukers-Stewart et al. 2001) and offer the most flexibility by allowing divers to 

record other types of data in situ (Cole et al., 2001; Langlois et al., 2006). However, the total 

coverage offered by diver surveys is generally quite small and they are heavily constrained by 

environmental conditions such as depth (generally < 30m), currents, time of day and visibility 

(Cole et al., 2001). They may also be subject to observer bias as estimates depend on diver 

speed and experience; meaning divers may fail to notice individuals or count them incorrectly 

(Assis et al., 2013). Divers may also affect fish behaviour, survey time is limited, and increasing 

the number of survey replicates can prove time intensive and expensive (Brock, 1982; Mumby 

et al., 1995; Harvey et al., 2001; Willis, 2001).  

In response to the limitations of diver surveys, and in light of recent improvements in 

underwater technology, the use of photo and video surveys have greatly increased in 

popularity over the last decade (Stokesbury and Harris 2006, Leujak and Ormond 2007, Van 

Rein et al. 2009). These optical systems can include diver-operated cameras (Leujak and 

Ormond 2007), drop-down cameras (Collins, 2002; Van Rein et al., 2011), towed cameras 

(Morrison and Carbines, 2006; Sheehan et al., 2010) and remotely operated underwater 

vehicles (ROVs; Neves et al. 2013). All can be used to generate videos and/or still photographic 

images, and as some can be operated remotely, camera surveys can therefore be conducted in 

depths, temperatures, weather conditions and at times (e.g. night) that would be difficult or 

impossible for divers to observe (Jury et al., 2001; Van Rein et al. 2009). Whilst the area 

covered by an individual photo or video frame is small, increasing the number of frames can be 

conducted quickly and at little extra cost, allowing for wider coverage of MPAs to be achieved 

easily. Monitoring areas on a large scale can therefore prove much more efficient using remote 

camera methods than diver surveys, even when taking into account the costs of camera 

equipment and time associated with analysing images/videos (Langlois et al., 2006; Assis et al., 

2013). In addition, observation time can be greatly increased, and their deployment results in a 

permanent record that can be viewed and analysed repeatedly. However, problems of the 

technique include the underestimating of abundance, measurements of body size can be less 
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accurate, and they are unlikely to detect hidden or cryptic species compared to diver surveys 

(Smith and Tremblay, 2003).  

The many pros and cons associated with diver and camera studies have stimulated much 

debate over which methods should be preferred (Willis and Babcock, 2000; Morrison and 

Carbines, 2006; Leujak and Ormond, 2007; Pelletier et al., 2011). Whilst the various tools 

available for monitoring MPAs are relatively well documented in tropical waters (Pelletier et 

al., 2005; Langlois et al., 2006; Morrison and Carbines, 2006; Leujak and Ormond, 2007), 

empirical data concerning the effectiveness of different techniques in temperate and polar 

regions remains relatively scarce by comparison (Russ et al., 2005; Götz et al., 2013). Although 

the monitoring methods used in tropical seas can be applied in temperate and cold waters, 

surveying in more temperate waters does present a number of different challenges from 

tropical areas as the weather conditions are generally less favourable, waters are colder and 

less clear, and the study sites are often deeper. We therefore felt an investigation of 

monitoring techniques in temperate waters was warranted.  

In September 2008, Scotland’s first and only fully no-take MPA was established in Lamlash Bay, 

Isle of Arran, UK, thereby prohibiting all fishing within the MPA under the Inshore Fishing 

(Scotland) Act of 1984 (Axelsson et al., 2009). We began monitoring the MPA in Lamlash Bay in 

2010 to investigate the effects of closed area protection on scallop stocks and other organisms 

(see Howarth et al. 2011). These surveys were then repeated and expanded for the following 

three years by adding more sites and survey methods. However, it was found that a number of 

different survey methods overlapped in the types of organisms they recorded. For example, 

diver surveys gathered abundance data on scallops, fish and benthic megafauna, but so did the 

use of photoquadrats and baited underwater video cameras (BRUVs). It was therefore not 

clear which method should be used for which species. Hence, this study seeks to compare data 

generated by diver and camera surveys for a number of organisms within Lamlash Bay to 

determine which methods were more ideal for monitoring certain species. This was achieved 

by (1) comparing the precision and sampling effort offered by diver and photoquadrat surveys 

in quantifying the density and size of commercially important king scallops (Pecten maximus) 

and queen scallops (Aequipecten opercularis), (2) comparing the relative proportional cover of 

different epibenthic taxa estimated by diver transects and photoquadrats, and (3) comparing 

the proportions of a number fish and crustacean species estimated by diver and baited remote 

underwater video camera (BRUV) surveys.  
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Materials and methods 

Study area  

Surveys were conducted in and around Lamlash Bay on the south-eastern shore of the Isle of 

Arran; an island situated off the west coast of Scotland in The Firth of Clyde. Lamlash Bay MPA 

encompasses an area of 2.67 km2 (Thurstan and Roberts, 2010), with water depths ranging 

between 0 and 29 m below chart datum, but reaching as deep as 43 and 50 m outside to the 

east and the west of the MPA, respectively (Admiralty Chart 1864; Baxter et al. 2008). Previous 

surveys (Duncan, 2003; Axelsson et al., 2009) indicate a seabed of mixed sediments (i.e. mud, 

sand and gravel with various proportions of shell) but that the central and southern regions of 

the bay tend to be characterised by softer sediment, mainly muddy sand. In addition, the area 

has long been identified as containing important maerl beds, although recent evidence points 

to deterioration in their health (Howarth et al. 2011). 

Data collection: survey design 

Monitoring of Lamlash Bay began in 2010 (see Howarth et al. 2011). This present study is 

based on data collected by the 2012 surveys, the most extensive and up to date dataset at the 

time of writing. Thirty two sites were surveyed between July and September 2012, half of 

which were within the boundaries of the MPA and half outside (Fig. 1). Sites were chosen so 

that each site within the MPA could be paired with at least one other suitable control outside 

the MPA, based on similar depth and predominant substrate type. Sites were limited to areas 

of the seabed that were shallow enough to remain within diver no decompression limits (i.e. 

<30 m depth). Surveys were also conducted parallel to depth contours to ensure the depth of a 

single survey did not change by more than 3 m.  

Data collection: survey design Diver and photo transects 

Transects were surveyed along a 50 m leaded line that was laid out straight across the seabed. 

GPS coordinates used for surveys in 2010 and 2011 provided the start and end location of each 

transect. Attached to both ends of the leaded line were weighted anchors to hold the line in 

place, in addition to two floating buoys which reached the surface. A team of two divers then 

placed a 1 m2 quadrat parallel to the transect, but at a distance of 2 m from the leaded line 

thereby ensuring the area about to be photographed had not just been disturbed by the laying 

of the line. The quadrat was divided into four 0.25 m2 sub-quadrats and the area encompassed 

by each was photographed directly overhead. This process was then repeated every 5 m along 

the transect, giving a total of 40 images for each transect. The sub-quadrats were later 
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combined for statistical analysis, giving a total of 10 quadrats for each transect. Although these 

photos were taken by divers, they are comparable to the types of images generated by 

remotely operated drop-down cameras, towed videos and ROVs (Morrison and Carbines, 

2006; Stokesbury and Harris, 2006; Neves et al., 2013).  

 

Figure 1. Site locations of the 2012 surveys. At each, a diver transect, photoquadrat and Baited 
Remote Underwater Video (BRUV) survey was conducted. Also displayed are the boundaries of 
the Lamlash Bay No-Take Marine Protected Area (MPA). The inset shows the location of the 
Isle of Arran off the west coast of Scotland, United Kingdom.  

After a surface interval of two hours, divers returned to the transect line and made their way 

from one end to the other, estimating the abundance of all unattached scallops and other 

megafauna (e.g. fish and crustaceans) encountered within 1.5 m either side of the transect, 

creating a total area surveyed of 150 m2 for each transect, the width of which was marked by a 
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3m long pole which the divers pushed ahead of themselves. In addition, every scallop 

encountered along the transect was collected and brought back to the surface to be aged and 

measured for shell length (Jennings et al., 2001). The data generated by both divers were then 

pooled and adjusted to generate densities of organisms per 100 m2. A SACFOR abundance 

scale (superabundant, abundant, common, frequent, occasional, rare, see Connor et al. 2004) 

was also used by the divers to estimate the area covered by different epibenthic taxa. These 

were live maerl (e.g. Phymatolithon calcareum and Lithothamnion glacial), macroalgae (e.g. 

Laminaria and Ceramium spp) sponges (e.g. Pachymatisma johnstonia), anemones (e.g. 

Cerianthus lloydi), tunicates (e.g. Clavelina lepadiformis and Diazona violacea), hydroids (e.g. 

Obelia geniculata), bryozoans (e.g. Alcyonidium diaphanum and Flustra foliacea) and soft 

corals (e.g. Alcyonium digitatum).  

Still image analysis 

The number of king and queen scallops within each photoquadrat was recorded and converted 

to density per 100 m2. The shell length of every scallop observed was also estimated by using 

the length of the quadrat border as scale. Images were then analysed using the software Coral 

Point Count with Excel Extensions (CPCe) v 4.1 (Kohler and Gill, 2006). The quadrat border was 

positioned and sized manually before placing 50 stratified random points over the image. Any 

organism lying under a point was then identified to species level where possible. If there was 

no organism, the substrate type was identified instead (e.g. mud, pebble, cobble, boulder or 

detritus). Initial attempts used just 25 points and 40 images but the seafloor within Lamlash 

Bay contained such a low proportion of epibenthic fauna that the likelihood of a randomly 

distributed point falling upon anything other than bare substrate was too low. The number of 

points was therefore doubled and the number of images for each site halved. Counting the 

number of scallops was, however, much quicker and easier, and therefore all 40 images 

available for each transect were used.  

Baited Remote Underwater Video (BRUV) 

A BRUV was deployed at each site over the survey period between the hours of 9am-2pm. For 

these, a video camera was fitted to one end of a commercial lobster pot frame and a porous 

bait box was fitted to the other end. Rope was spliced to all four corners of the frame and 

joined at the centre along with three cork floats to prevent the ropes from sinking in view of 

the camera (Fig. 2). As baseline studies in 2010 indicated that fish abundance was relatively 

low in the area, 200g of coarsely cut mackerel was placed inside the bait box prior to 
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deployment in order to attract fish from a wider area. Once recording began, a 40m long rope 

and surface marker buoy were attached to the central snap-shackle and the BRUV was 

carefully lowered to the seafloor. The system’s negative buoyancy ensured the BRUV landed 

upright and remained in a stable position. After approximately one hour, the BRUV was hauled 

back to the boat, the bait replaced, and the BRUV was ready for redeployment at another site.  

 

Figure 2. The Baited Underwater Video Camera (BRUV) set-up comprised of a video camera (a) 
mounted to a lobster pot frame in view of a porous box containing mackerel bait (b). Ropes 
were used to lower the system to the seafloor and cork floats (c) prevented these from 
descending in front of the camera. Two video lights provided lighting (d).  

Video analysis 

To standardise video lengths, analysis began from two minutes after the BRUV landed on the 

seabed and terminated 60 minutes later. For each video the following variables were recorded 

for all fish and crustaceans: (i) identity and total number of species; (ii) total number of 

families; (iii) time of first appearance for each species; (iv) maximum number of individuals of a 

species observed within the same frame (MaxN); and (v) time of MaxN. Due to the inability of 

an observer to recognise repeated entrances of the same individual, MaxN was used as an 

estimator of abundance (Cappo et al., 2004). However, it must be noted that, although MaxN 

is commonly used to measure relative abundance, it does not reflect the detailed interactions 

between individuals and the bait odour plume (Stobart et al., 2007, Colton and Swearer 2010) 
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or the succession of different fish species and sizes visiting the system (Harvey et al., 2012). In 

addition, some studies have found little correlation between abundance estimates generated 

by MaxN and those created from underwater visual census (Dunlop 2013).   

Data analyses 

Scallop density and population structure 

Differences in scallop density between the MPA and outside were compared using a one-way 

Analysis of Variance (ANOVA) for both photoquadrat and diver methods. To compare precision 

between these estimates of scallop density, the co-efficient of variance (CoV) was also 

calculated. Using the statistical package R (www.r-project.org), a power analysis was then 

conducted to determine how many replicates would be required to detect a 20%, 50% and 

100% difference in scallop density between the two treatments using a one-sample t-test 

power calculation. For this, each transect (comprising of 10 photoquadrats) was treated as an 

individual sample in order to calculate how many transects would need to be conducted, 

rather than how many individual photos. In addition, the cumulative standard deviation (SD) of 

scallop density were plotted against number of replicates for both diver and photoquadrat 

surveys to determine which generated the lowest level of error within the fewest number of 

replicates.  

Finally, it was our intention to compare the size composition of king and queen scallops 

between the two treatments and methods. However, in most cases, far too few individuals (N 

< 5 per treatment i.e. MPA and outside) were detected by the camera method. Therefore, only 

the size composition of king scallops generated by the diver surveys and photoquadrat 

methods within the MPA could be explored. This was illustrated using bar charts, and tested 

for significance using a Kolmogorov–Smirnov (K–S) analysis.  

Relative proportional cover of epibenthic taxa 

SACFOR estimates of epibenthic cover were converted into percentage proportional cover in 

order to allow data generated by both diver and photoquadrat methods to be presented on 

the same chart. These data cannot be directly compared as the two methods result in entirely 

different types of data. Instead, our intention was solely to explore how the two methods 

differed in their ability to detect different epibenthic taxa. Consequently, no statistical tests 

were performed as it was deemed inappropriate. For the comparison, SACFOR estimates of 

each epibenthic taxon were converted into a numerical value ranging from 0-6, where a value 

of 0 indicated the absence of a taxon and 6 represented the superabundance of a taxon, as 
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denoted by the SACFOR scale. These numerical values were then converted into percentage 

cover using the following equation: 

          
      

    
     

Where taxon (%) = percentage cover of a taxon category (e.g. maerl), SACFOR = numerical 

value of abundance of an epibenthic taxon derived from the SACFOR scale, MaxS = The 

maximum score possible for a transect if all taxa were superabundant (the maximum score for 

a taxon was 6, and as there were 8 categories, MaxS in this study was 48). A worked example 

of this process is provided in Table 1. It was then assumed that the remaining percentage 

represented the proportional cover of bare substrate. This was calculated using the next 

equation: 

                                   

Table 1. A worked example of how the SACFOR scale was used estimate the proportional cover 
by a number of different epibenthic taxa.   

Taxon SACFOR Value Cover (%) 

Live maerl Rare 1 2.1 

Macroalgae Super abundant 6 12.5 

Sponge Occasional 2 4.7 

Anemones Abundant 5 10.42 

Soft coral Absent 0 0 

Tunicates Common 4 8.3 

Hydroids Frequent 3 6.3 

Bryozoans Occasional 2 4.7 

  
Bare substrate (%) 60 

  
Sum  100.0 

 

Crustacean and fish abundance 

The mean number of species, individuals and Shannon’s Diversity index of fish and crustaceans 

were calculated from the BRUV surveys and diver surveys. Any differences between the MPA 

and outside were then tested for significance using ANOVA and subjected to endpoint 

adjustment to correct for multiple testing. The false discovery rate (FDR) endpoint adjustment 

was used to reduce the likelihood of Type I errors.  
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Results 

Comparisons of scallop density 

Both diver and photoquadrat estimates revealed king scallop density to be higher within the 

MPA than outside (Fig. 3). According to diver estimates, the mean density of king scallops per 

100 m2 inside the MPA was 7.4 (SE = ±2.1, N = 16), significantly higher than 4.1 (SE = ±2.13, N= 

15) for outside the MPA (ANOVA, F (1, 30) = 4.2, P < 0.05). In contrast, although photoquadrats 

estimated a bigger difference between king scallop density in and outside the MPA; 10.6 (SE = 

±7.7, N = 16) and 2.7 (SE = ±2.2, N = 16) respectively, this difference was not significant 

(ANOVA, F (1, 30) = 2.7, P > 0.05). This was because diver estimates of king scallop density were 

substantially less variable (CoV = 105.6%) than those from photoquadrats (CoV = 181.7%). The 

density of queen scallops was slightly higher within the MPA than outside for both diver and 

photoquadrat estimates (Fig. 3). However, queen scallop density was comparatively much 

lower than king scallops and also offered substantially more variation for both photoquadrat 

(CoV = 203.7%) and diver estimates (CoV = 178.8%). Consequently, no significant difference 

between the MPA and outside was detected using either method (ANOVA, F (1, 30) = 3.3, P > 

0.05). 

In contrast to above, when each transect was explored individually, photoquadrats 

underestimated the density of king and queen scallops relative to the diver surveys in almost 

every instance (Fig. 4). In fact, for many sites where diver estimates detected scallops, 

photoquadrats failed to detect any at all. King scallops generally proved difficult to identify 

from the photographs as they were often buried into and under the sediment (Fig. 5). This 

trend was also pronounced in queen scallops, which were detected at only 6 of the 31 sites by 

photoquadrats, compared to 21 out of 31 sites for diver estimates. However, when scallops 

were detected within a transect, the photoquadrat method often greatly overestimated their 

density. This is a consequence of the much smaller sampling area covered by the 

photoquadrats (40 units of 0.25 m2 each compared to a single area of 150 m2 for diver 

transects). This meant that when a scallop was detected within a photoquadrat and scaled-up 

to a density of individuals per 100m2, the resulting figure was unrealistically high. To overcome 

this, many more photos would have to be taken per transect than the 40 used in this study. In 

fact, 600 images would be needed to obtain the same area sampled as the diver surveys. 

Based on taking 40 images per transect, power analysis suggested far fewer transects (less 

than 15% as many transects) would be required to detect a significant difference in king 

scallop density between the MPA and outside using the diver survey method compared to 

photoquadrats (Table 2). Similarly, plots of cumulative standard deviation indicated that diver 
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surveys generated the lowest levels of variation within the fewest number of replicates. After 

three replicates, the cumulative standard deviation of diver estimates for king and queen 

scallop in and outside the MPA had plateaued at values ranging between 0.8 to 1 SD. By 

contrast, it took the photoquadrat method 6 replicates to level off and this comprised of much 

greater SD values, which ranged between 1 and 7.   

 

 
Figure 3. The density (mean no / 100 m2) of king and queen scallops within and outside the 
Lamlash Bay fully protected MPA as generated by diver and photoquadrat surveys in 2012. 
Error bars represent ±1 SE. 
 
 
 
Table 2. Summary of the one-sample t-test power calculations used to determine how many 
transects (N) would be required to detect a 20%, 50% and 100% difference in king scallop 
density between the MPA and outside using the two different survey methods.  

 

 20%  50%  100% 

Method N Delta  N Delta  N Delta 
         Diver 113 0.82  19 2.1  6 4.13 

Photo 954 0.55  604 1.37  40 2.74 
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Figure 4. The density of king and queen scallops (no / 100 m2) at every site location estimated 
by the two different survey methods in 2012.  

 

Comparisons of scallop population structure 

Photo and diver surveys generated a similar size structure for king scallops sampled within the 

MPA (Fig. 6), however, the small sample size afforded by the photoquadrat method meant that 

some size ranges were not represented in the photo generated data. Hence, the two size 

distributions were found to significantly differ (Kolmogorov–Smirnov, Z = 1.4, P < 0.05). 

Consequently, the photoquadrat method failed to detect a significant difference in mean king 

scallop size between the MPA (x̄  = 115.9, SE = ± 29.2, N = 14) and outside (x̄  = 115, SE = ± 13.5, 

N = 4) (ANOVA, F (1, 17) = 66.9, P > 0.05), whereas diver estimates found mean king scallop size 

to be significantly greater within the MPA (x̄  = 132.9, SE = ± 22.8, N = 162) than outside (x̄  = 

107.3, SE = ± 18.9, N = 125) (ANOVA, F (1, 286) = 0.03, P < 0.05).  
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Figure 5. Examples of the images obtained from the photoquadrat surveys in 2012. King 
scallops often buried themselves into and under the sediment (photos 1-2) which made them 
harder to identify than queen scallops which tended to rest on top of the seabed (photos 3-4).  

 
Figure 6. The size structure of king scallops within the fully protected MPA estimated from 

both the diver (N = 162 scallops) and photoquadrat methods (N = 14 scallops) in 2012.  
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Still image analysis Comparisons of proportional epibenthic cover 

Comparing the relative proportional cover of epifaunal assemblages between diver and 

photoquadrat surveys suggested there were several differences (Fig. 7). Photoquadrats 

detected a greater proportion of macroalgae and maerl than diver estimates. Conversely, diver 

estimates detected a greater proportion of tunicates, sponges, hydroids and bryozoans. Both 

methods detected greater proportional cover of bare substrate outside the MPA.  

Comparisons of crustacean and fish abundance and diversity 

Diver and BRUV surveys detected a similar number of species, families and overall biodiversity 

(Table 3). Neither survey method found a significant difference in these diversity indicators 

between the MPA and outside (ANOVA, F (1, 31) =6.2, P > 0.05).  

Both survey methods detected a similar proportion of the three commercially exploited 

crustaceans (Fig. 8) namely: edible crab (Cancer pagurus), velvet crab (Necora puber) and 

shore crab (Carcinus maenas). However, diver surveys detected a greater proportion of 

smaller-bodied species such as hermit crabs (Pagurus spp) and decorator crabs (Macropodia 

and Inachus spp), whereas BRUV surveys found a greater proportion of harbour crabs 

(Liocarcinus depurator). After end point adjustment, only the diver estimates of harbour crab 

abundance were significantly greater within the MPA than outside (ANOVA, F (1, 29) =11.02, P < 

0.05).  

 

Figure 7. The percentage cover of different epifaunal assemblages within and outside the fully 

protected MPA detected by diver and photoquadrat surveys in 2012.   
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Table 3. The total number of species, families, and mean Shannon Diversity Index of fish 
counts generated from diver and BRUV surveys between sites in and outside the fully 
protected MPA in 2012.  

 MPA OUT 

Number detected Diver BRUV Diver BRUV 

Species 28 27 30 31 

Families 12 12 10 11 

Mean diversity 1.7 1.47 1.46 1.58 

 

In contrast to the crustaceans, there was a substantial difference in the fish species observed 

between the diver and BRUV surveys (Fig. 9). Only BRUVs detected pelagic species such as 

mackerel (Scombridae) and sand eels (Ammodytidae) while diver surveys estimated a much 

greater proportion of small, cryptic species such as scorpion fish (Taurulus bubalis), gobies 

(Family: Gobiidae) and blennies (Family: Blennidae). Again, after end point adjustment, only 

diver estimates detected significantly greater abundance within the MPA, this time just for 

blennies (ANOVA, F (1, 29) =5.49, P < 0.05).  

 

 
Figure 8. The percentage composition of different species of crustacean within and outside the 
fully protected MPA observed by diver and BRUV surveys in 2012.   
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Figure 9. The percentage composition of different species of fish within and outside the fully 
protected MPA observed by diver and BRUV surveys in 2012.   

Discussion 

Camera and video surveys are regularly employed by marine and fishery scientists to study 

commercially important species of shellfish (e.g. Collins 2002, Stokesbury 2004, Rosenkranz 

and Byersdorfer 2004, Boulcott et al. 2012). However, we found this to be a less effective way 

of quantifying scallop density and size when compared to direct SCUBA observation. For king 

scallops this was partly because individuals were often buried into or under the sediment, 

often making them difficult to identify in a photograph. In comparison, queen scallops were 

underestimated because they are highly mobile (Jenkins et al. 2003) and often fled the area 

being photographed (pers. obs.). This meant that for many sites where divers detected 

scallops, photoquadrats often failed to detect any at all. There could even be further issues for 

those studies employing towed video systems to estimate density (as is often the case e.g. 

Rosenkranz and Byersdorfer 2004, Sciberras et al. 2013), as camera motion can result in even 

greater levels of disturbance and less clear images for analysis than what those used in this 

study. Paradoxically, when scallops were detected by the photoquadrat method, scallop 

density was often greatly over-estimated because of the much smaller sampling area covered 

by the photoquadrats (0.25 m2 compared to 150 m2 for diver transects). This meant that when 

a scallop was detected within a photoquadrat and scaled-up to the density of individuals per 

100m2, the resulting figure was unrealistically high. Therefore, if camera methods were used to 

monitor scallop abundance in Lamlash Bay, a far greater number of images would have to be 
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taken than what was used in this study. In fact, 600 images would be needed to obtain the 

same area covered by a single diver survey. In contrast, SCUBA divers were able to scan the 

seafloor ahead from several angles, search for hidden individuals and record any scallops 

(particularly queens) before they fled the transect. Diver estimates of scallop density are 

therefore likely to much more accurate (see also Beukers-Stewart et al. 2001). Consequently, 

our diver surveys provided a reliable indication of density, from which estimates generated by 

the photoquadrats could be compared.  

If a drop-down camera was employed instead of a diver-operated camera, and if more samples 

covering a greater area were taken, the issues associated with the camera method would 

disappear. As it stands though, the number of photoquadrats in this study was too low. 

Photoquadrats generated greater within-sample variation and, as a result, only diver surveys 

were able to detect a significant difference in scallop density between the MPA and outside. 

Photoquadrats also failed to detect that the average king scallop size was higher within the 

MPA than outside, a trend found to be significant by diver surveys. Furthermore, the size 

structure estimated by the photoquadrat method lacked the resolution offered by diver 

estimates, missing several size classes and showing no clear peak in size class. As a result, the 

size structures estimated by the two methods were significantly different from each other, 

despite coming from the same sample population. Again, as the photoquadrat method 

afforded such a low detection rate of scallops, substantially more photoquadrats would need 

to be conducted than what was used in this study if they were to be used to estimating the 

abundance of scallops in Lamlash Bay.  

Power analysis also suggested that diver surveys were the more powerful method for 

estimating scallop density, requiring only 19 transects to detect a 50% difference in scallop 

density, compared to 604 transects for the photoquadrat method. In terms of number of 

individual images, that would mean analysing 24,160 still images compared to the 1,240 used 

in this study. This suggests that diver surveys are a more time-effective, and potentially cost-

effective, method for estimating scallop density, and possibly for other shellfish species. Diver 

surveys would also prove more capable at detecting changes over time as they were far more 

accurate and precise. Finally, during diver surveys there is opportunity to collect scallops for 

age determination. Such information cannot be obtained via remote methods, but provides an 

especially powerful measure of detecting demographic differences between populations (e.g. 

Beukers-Stewart et al. 2005). 
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Despite our findings, it should be recognised that in some circumstances diver surveys may be 

not be an option and remote camera methods must be employed. Camera surveys have been 

extensively used by scientists monitoring populations of the sea scallop Placopecten 

magellanicus off the east coast of North America, often working in depths over 100m 

(Stokesbury 2004). In cases such as these, diver surveys would be unsafe, logistically complex 

and expensive. Fortunately, the ecology and behaviour of sea scallops likely makes them more 

suitable for photographic surveys than either of the scallop species in our study. Sea scallops 

tend to rest on top of the sediment rather than recess into it like king scallops, but are also 

relatively immobile compared to queen scallops (Packer et al. 1999).  

Comparing the relative proportional cover of different epifaunal assemblages attached to the 

seafloor, generated by diver and photoquadrat surveys, also revealed several interesting 

differences. For example, it was found that photoquadrats detected a greater proportion of 

macroalgae and maerl than diver estimates, whereas diver surveys detected a greater 

proportion of tunicates, sponges, hydroids and bryozoans. Why this is remains unclear, but it 

may be due to the different perspectives the two methods afford. For example, divers were 

able to view the seafloor from several angles, meaning they could observe the organisms 

attached to the sides and undersides of rocks and boulders; prime habitat for tunicates, 

sponges, hydroids and bryozoans. Photoquadrats, on the other hand, offered a strictly birds-

eye view of the seabed, meaning they detected a lower proportion of these organisms, and 

instead, revealed a greater proportion of macroalgae and maerl. In addition, tunicates, 

sponges, hydroids and bryozoans are very small and were often difficult to identify in 

photographs, whereas divers were able to get much closer to the substrate. Nonetheless, 

camera methods are likely to be far more precise. This is because, due to air and 

decompression time constraints, the diver surveys only generated SACFOR estimates of 

benthic cover. Such estimates are highly subjective and can differ greatly between different 

scientists analysing the same transect. Although analysis of photoquadrats requires extensive 

training and familiarity with benthic taxa, if a quadrat was repeated and analysed by several 

scientists they would likely generate more consistent and quantitative data than what would 

be obtained from dive surveys due to computer analysis. 

Diver and BRUV surveys also differed in their ability to detect different species of crustaceans 

and fish. Diver surveys detected a substantially greater proportion of small, cryptic, static fish 

species such as scorpion fish, gobies and blennies and a greater proportion of smaller-bodied 

crustaceans, such as hermit crabs and decorator crabs. These results were expected since, as 
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discussed before, divers could inspect the substrate closely for small hidden species. Also, the 

movements of divers often disturbed cryptic species out of hiding, making them more 

apparent. In contrast, the BRUV offered a much narrower horizontal field of view of the 

substrate, thereby reducing the probability of detecting cryptic species. Hence, it is no surprise 

that other studies have concluded video surveys to be unsuitable for recording small, cryptic 

species when compared to other methods (Tessier et al., 2005; Langlois et al., 2010; Pelletier 

et al., 2011). Conversely, only BRUV surveys were able to detect pelagic species like mackerel 

and sand eels. These species are rarely observed by divers (Kay and Dipper, 2009) but in our 

BRUV surveys were found to occur in large shoals consisting of many hundreds of individuals. 

The bait used in the BRUVs may be attracting these species to the field of view (Stewart and 

Beukers, 2000) and /or they may avoid SCUBA divers. Therefore, it may be best to use dive 

surveys to estimate the abundance of small demersal fish, and BRUV surveys to estimate the 

abundance of larger, more pelagic fish.  

This study also highlights some of the problems scientists have in estimating fish abundance.  

When viewing footage generated from BRUVs, it is often not possible to recognise repeated 

entrances of the same individual, meaning estimators of abundance have to be used; in this 

case, the maximum number of fish sighted within a single field of view (MaxN). As it is unlikely 

that all individuals of a species will be recorded within the same frame, BRUVs can only detect 

a proportion of the fish that are attracted to the bait, which can make their estimates 

conservative (Willis and Babcock, 2000; Cappo et al., 2004). Then again, when a diver observes 

an individual they must identify, count and record it, and in doing so, spend at least some time 

looking at their slate. This might allow other individuals to enter or leave the survey area 

without being detected by the diver. Such distractions increase the probability of counting the 

same fish twice or recording more species per survey. Thus, for each method the counts for 

each area can only be viewed as relative estimates of fish density (Willis et al., 2000). 

Overall, our study has revealed a number of differences between data obtained from diver and 

camera methods. For monitoring the density and size of king and queen scallops, and likely 

other similar shellfish species, diver surveys consistently outperformed the photo surveys in 

terms of precision and power, and are likely to be more accurate. We therefore conclude that, 

despite the logistical issues associated with SCUBA diving, especially in temperate/cold waters, 

diver surveys are likely to be the more powerful and effective tool for monitoring these types 

of species and should be used in monitoring the Lamlash Bay MPA. In comparison, for the 

monitoring of epibenthic species, fish and crustaceans, diver surveys had no clear superiority 
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over remote methods as both produced markedly different results for different types of 

species. Hence, our results indicate that scientists responsible for studying MPAs must first 

identify the types of species they intend to study, and from that, choose the most appropriate 

monitoring method.  
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Chapter 4. Ecosystem protection leads to increased scallop 

settlement within a community-led temperate marine reserve 

 

4.1. Preface 

For populations to benefit from the protection afforded by MPAs, it is necessary that a number 

of individuals spend a substantial part of their lives within their boundaries (Roberts et al. 

2005). Thanks to their sedentary nature and fast growth, scallops should therefore be 

particularly responsive to closed area management. In fact, several studies have shown that 

marine reserves can allow scallops to build to greater population density and reach larger, 

older sizes, which in turn can result in greater rates of reproduction (Beukers-Stewart et al. 

2005; Hart et al. 2013). In addition, reductions in fishing pressure can promote recovery of the 

seabed, which can further boost scallop recruitment by providing suitable substrate for the 

attachment of settling scallop spat (Bradhsaw et al. 2001; Howarth et al. 2011)  

In this chapter I test to see if Lamlash Bay Marine Reserve is promoting the recovery of nursery 

habitats and scallop recruitment. Other benefits potentially offered by the reserve were 

explored by testing for differences in scallop density, age structure, body size and biomass 

between areas situated within and outside the reserve.   

This chapter has been written in the style of ICES Journal of Marine Science and was submitted 

on 25th April 2014.  
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This study investigated the effects of a fully protected marine reserve on benthic habitats and 

two commercially valuable species of scallop in Lamlash Bay, Isle of Arran, United Kingdom. 

Dive surveys showed the abundance of juvenile scallops to be significantly greater within the 

marine reserve than outside (two-way ANOVA, P < 0.05). Generalised linear models revealed 

this to be significantly related to the greater presence of macroalgae and hydroids growing 

within the boundaries of the reserve. These complex habitats appeared to have substantially 

increased spat settlement or survival. King scallop density declined 3-fold with increasing 

distance from the boundaries of the reserve (Pearson Correlation, P < 0.05), indicating possible 

evidence of spillover or reduced fishing effort directly outside and around the marine reserve. 

Finally, the age (ANOVA, P < 0.05), size (ANOVA, P < 0.05), and reproductive (two-way ANOVA, 

P < 0.05) and exploitable (two-way ANOVA, P < 0.05) biomass of king scallops were all 

significantly greater within the reserve. In contrast, the population dynamics of queen scallops 

(Aequipecten opercularis) fluctuated randomly over the survey period and showed little 

difference between the reserve and outside. Overall, this study is consistent with the 

hypothesis that marine reserves can encourage the recovery of seafloor habitats which can be 

of benefit to populations of commercially exploited species, emphasising the importance of 

marine reserves in ecosystem-based management of fisheries. 

Keywords: Scallops, Pecten maximus, Aequipecten opercularis, Marine Protected Areas 

(MPAs), No-Take Zone (NTZ), Lamlash Bay, Firth of Clyde, ecosystem-based fishery 

management, nursery habitats 
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Introduction 

Never before has the general public been so well informed about the current state of the 

world’s oceans. A recent surge in environmentally focused films, documentaries and 

campaigns has led to much greater awareness of the methods used to harvest marine 

resources, and of their impacts on the marine environment (Jacquet and Pauly, 2007). In 2013, 

the United Kingdom (UK) based celebrity chef and environmentalist Hugh Fearnley-

Whittingstall launched a television series campaigning for better protection of European 

waters in which the first episode showed a video of the damage to the seabed caused by a 

scallop dredger (www.fishfight.net). Responses from the public and media were strong 

(Brown, 2013; Greenpeace, 2013; Renton, 2013) with one major retailer pledging to stop 

selling dredge-caught scallops (Harvey, 2013), sparking rebukes from both the fishing industry 

and their representatives (Gray, 2013; SeaFish, 2013). Despite the media attention, fisheries 

for shellfish are rapidly increasing in importance in many parts of the world, as are their 

environmental impacts (Essington et al., 2006; Estes et al., 2011; Howarth et al., 2013; Pauly et 

al., 1998, 2002; Steneck et al., 2002).  

In the UK, landings of the king scallop (Pecten maximus) are growing faster than any other 

commercially targeted shellfish species. Generating over £66.9 million per year, king scallops 

represent the UK’s second most valuable fishery resource, over 95% of which are caught by 

scallop dredgers (Keltz and Bailey, 2010; Radford, 2013). Scallop stocks located around 

Scotland account for over half of the UK king scallop fishery (Dobby et al., 2012) but concerns 

have recently been made over increasing mortality, and declining recruitment and spawning 

stock biomass in several major Scottish stocks (Barreto and Bailey, 2013; Hall-Spencer and 

Moore, 2000; Hinz et al., 2011; Howell et al., 2006). These problems are not unique. Scallop 

fisheries all over the world are well known for exhibiting dramatic fluctuations in recruitment, 

landings and abundance (Paulet et al. 1988; Orensanz et al. 1991; Beukers-Stewart et al. 2003; 

Beukers-Stewart & Beukers-Stewart 2009). Such fluctuations are difficult to incorporate into 

fisheries management strategies and can result in their sudden and unexpected collapse 

(Frank & Brickman 2001; Beukers-Stewart & Beukers-Stewart 2009). Furthermore, scallop 

recruitment and mortality are predicted to become increasingly more erratic in the future due 

to ocean acidification (Gazeau et al. 2007, Kurihara 2008, Watson et al. 2009), a process which 

is reducing the amount of carbonate available to scallops to form their protective shells (Doney 

et al., 2009; Sabine et al., 2004). Due to anthropogenic carbon dioxide emissions, ocean acidity 

is currently increasing at a rate unprecedented for tens of millions of years (Doney et al. 2009). 

This means scallop fisheries all over the world are badly exposed to risk if the species they 
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target cannot adapt. Stronger efforts must therefore be made to safeguard the long-term 

sustainability of commercially important scallop stocks whilst reducing the environmental 

impact of their fisheries.  

Although many different management measures exist for maintaining and supporting fish 

stocks, it has been argued that only the establishment of Marine Protected Areas (MPAs) 

closed to some or all types of fishing can allow seafloor habitats to recover (Bradshaw et al., 

2001; Howarth et al., 2011), increase the abundance and size of target species (Halpern and 

Warner, 2002; Halpern, 2003; Lester et al., 2009), enhance local reproductive output (Gaines 

et al., 2003; Grantham et al., 2003; Roberts et al., 2001) and improve the survival and growth 

of juveniles (Beukers-Stewart et al., 2005; Myers et al., 2000). All of these effects may then 

result in the greater production of eggs, larvae, juveniles and adults which can disperse 

(‘spillover’) to grounds outside the MPA and contribute to fishery landings (Harrison et al., 

2012; McClanahan and Mangi, 2000). Then again, establishing MPAs can displace fishing effort 

to surrounding areas (Bohnsack 2000; Kaiser 2005), which can cause wider environmental 

damage (Dinmore et al., 2003) and reduce profits through the loss of fishing grounds 

(Rassweiler et al., 2012). Hence, MPAs only truly yield benefits to fisheries when these 

negative effects are adequately offset by increased recruitment and landings. 

For populations to benefit from the protection afforded by MPAs, it is necessary that a number 

of individuals spend a substantial part of their lives within their boundaries (Roberts et al., 

2005). Thanks to their sedentary nature and fast growth, scallops have been shown to be 

particularly responsive to closed area protection. In 1994, three areas totalling 17,000 km2 

were closed to fishing gears on Georges Bank in the Gulf of Maine, United States of America 

(USA). Ten years later, observations revealed that the reduction in fishing mortality was 

responsible for a 20-fold increase in scallop biomass within the closures, and increased catches 

in neighbouring fishing grounds (Hart et al., 2013; Hart and Rago, 2006; Murawski et al., 2000). 

The scallop fishery on Georges Bank is now the most valuable of any fishery in the USA 

(Lowther, 2013). On a smaller scale, after 17 years of protection a 2 km2 closure off the Isle of 

Man resulted in scallop densities 30 times greater than those observed prior to protection 

(Beukers-Stewart and Brand, 2007; Beukers-Stewart et al., 2005). The reduction in fishing 

mortality also allowed individuals within the closed area to reach much older and larger sizes, 

with exploitable and reproductive biomass of scallops being 20 and 33 times higher 

respectively than on adjacent fishing grounds. In addition, there is growing evidence that 

export of larval scallops, generated from high rates of breeding within the closed area, have 



104 
 

boosted surrounding populations and therefore the fishery (Beukers-Stewart and Brand, 2007; 

Beukers-Stewart et al., 2005, 2004; Neill and Kaiser, 2008).  

In addition to increasing the abundance of target organisms, the exclusion of fishing from an 

area also eliminates the physical impacts created by mobile fishing gears such as dredges and 

trawls (Kaiser et al., 2000, 2007). Such gears can cause substantial physical disruption of 

seafloor habitats by ploughing sediments and fragmenting the biogenic structure of epifaunal 

assemblages such as hydroids, tunicates and maerl beds (Cook et al., 2013; Dayton et al., 1995; 

Eleftheriou and Robertson, 1992; Jennings and Kaiser, 1998; Jennings et al., 2001; Kaiser et al., 

2000). However, these organisms provide essential habitat for the settlement of scallops and a 

large range of other invertebrates (Bradshaw et al., 2001; Kamenos et al., 2004a). 

Consequently, such locations are often referred to as “nursery areas” as they tend to be highly 

productive, support high levels of juvenile density, growth and survival, and contribute 

disproportionally to the production of adult recruits (Beck et al., 2001; Gibb et al., 2007; Laurel 

et al., 2009). The damage inflicted by fishing gears upon nursery habitats has therefore been 

shown to negatively impact scallop recruitment (Bradshaw et al., 2002; Collie et al., 1997), 

whilst the protection of nursery habitats has been shown to enhance scallop settlement levels 

(Howarth et al., 2011).  

The implementation of MPAs may therefore provide a “win-win” solution to safeguarding the 

long-term sustainability of commercially important scallop stocks. Not only can MPAs provide 

fisheries benefits, they also help sustain healthy marine ecosystems by addressing the physical 

impacts of fishing gears (Bradshaw et al., 2002; Kaiser et al., 2000, 2007), which can then 

generate numerous benefits that flow back to the species targeted by fisheries (Jennings and 

Kaiser, 1998; Howarth et al., 2011). It is these ideas that underlie the current push towards 

‘ecosystem-based fishery management’, where management priorities begin with the 

ecosystem, moving away from traditional single-species approaches (Pikitch et al., 2004; Zhou 

et al., 2010). However, the implementation of MPAs in Europe is still at a very early stage 

(Fenberg et al., 2012; Metcalfe et al., 2013) and their use as an ecosystem-based fishery 

management tool remains a highly contentious issue (Boersma and Parrish, 1999; Jones, 2007; 

Kaiser, 2004, 2005; Sciberras et al., 2013).  

MPAs can be implemented via top-down processes which are government led and enforced, or 

by bottom-up mechanisms, whereby local communities and stakeholders propose the 

establishment of an MPA and help in its management, enforcement and monitoring (Jones, 

2012; Kelleher, 1999). There is growing evidence that community and stakeholder involvement 



105 
 

in setting up and running MPAs builds greater support and reduces management costs due to 

lower infringements rates (Pollnac et al., 2012). However, although community-led MPAs are 

common in tropical waters (Johannes, 2002), they are very rare in temperate areas and almost 

non-existent in the UK (Fenberg et al 2012). In September 2008, a fully protected marine 

reserve was established in Lamlash Bay, Isle of Arran, UK, prohibiting all sea fishing within the 

reserve under the Inshore Fishing (Scotland) Act of 1984 (Axelsson et al., 2009). The Firth of 

Clyde, in which the Isle of Arran sits, is known to be one of the most degraded marine 

environments in the UK, primarily due to over a century of intensive fisheries exploitation 

(Howarth et al., 2013; Thurstan and Roberts, 2010). The reserve was therefore passed by the 

Scottish parliament under the rationale that the reduction in fishing pressure should help 

regenerate the local marine environment and enhance commercial shellfish and fish 

populations in and around Lamlash Bay, particularly with regards to scallops. Lamlash Bay 

Marine Reserve came after a decade of campaigning by local residents for better protection of 

their seas (Community of Arran Seabed Trust or “COAST”; www.arrancoast.com) and is the 

first and only fully protected marine reserve in Scotland, and the only statutory reserve in the 

UK that was originally proposed by a local community which bans all extractive activities (Prior, 

2011). Lamlash Bay is also unique in that the majority of MPAs in the UK were proposed either 

for conservation (e.g. Lundy Marine Nature reserve and Lyme Bay Marine Reserve) or fishery 

purposes (e.g. closed areas off the Isle of Man), not for both.  

Our study therefore sought to test the hypotheses that: (1) there is a positive relationship 

between scallop settlement and the abundance of nursery habitat; (2) the marine reserve 

contains a greater abundance of these nursery habitats; and (3) that the density, age, size, 

biomass and growth rates of scallops are higher within the marine reserve than areas located 

outside its boundaries. This was achieved by conducting a series of quantitative diver surveys 

over a four-year study period.  

Materials and methods 

Study area and scallop fishery 

Lamlash Bay Marine Reserve encompasses an area of 2.67 km2 (Figure 1), with water depths 

ranging between 0 and 29 m below chart datum, but reaching as deep as 43 and 50 m outside 

to the east and the west of the reserve, respectively (Admiralty Chart 1864; Baxter et al. 2008). 

Previous surveys (Axelsson et al., 2009; Duncan, 2003) indicated a seabed of mixed sediments 

(i.e. mud, sand and gravel with various proportions of shell) but that the central and southern 

http://www.arrancoast.com/
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regions of the bay tend to be characterised by softer sediment, mainly muddy sand. In 

addition, the area has long been identified as containing important maerl beds, although 

recent evidence points to deterioration in their health (Howarth et al. 2011). 

The king scallop (Pecten maximus) fishery is the second most valuable in Scotland and has 

consistently ranked in the top five most valuable UK fisheries for the past 10 years (Dobby et 

al., 2012). In contrast, landings of the comparatively smaller queen scallop (Aequipecten 

opercularis) have fluctuated greatly, meaning they tend to be fished opportunistically by 

fishers and are worth considerably less (Beukers-Stewart & Beukers-Stewart 2009). European 

Union (EU) legislation specifies a minimum landing size of 100 mm length for king scallops 

(Council Regulation (EC) No. 850/98). There are no size limits for queen scallops (although it is 

generally uneconomic to process them when smaller than 50 mm in width), and there are no 

limits on landings for either species. Under the Prohibition of Fishing for Scallops (Scotland) 

Order 2003, scallop fishing vessels are permitted to tow up to a maximum of 8 individual 

dredges per side in Scottish inshore waters (out to six nautical miles). The Order also prohibits 

the use of “French” dredges (a design incorporating water deflecting plates and rigid fixed 

teeth). The Firth of Clyde scallop fleet is also subject to a weekend ban (Dobby et al., 2012). 

Unofficial observations made by the Community of Arran Seabed Trust (www.arrancoast.com) 

indicate fishing effort by trawlers and dredgers has been consistently low outside the 

boundaries of Lamlash Bay Marine Reserve in recent years, averaging at 2-4 fishing boats 

operating within the area per year since 2008. A small team of commercial scallop divers also 

operate locally within the area.  

Dive surveys 

We began monitoring Lamlash Bay in 2010 (see Howarth et al. 2011). Initially, 40 sites were 

surveyed, half of which were located within the reserve and the other half outside. These 

surveys were then repeated and expanded in 2011, 2012 and 2013 by adding more survey 

methods but reducing the number of study sites. Therefore we surveyed 28 sites in 2011, 31 

sites in 2012, and 32 sites in 2013. Again, these sites were divided so that half fell within the 

boundaries of the marine reserve (Figure 1). Sites were chosen so that each one within the 

reserve could be paired with at least one other suitable control outside, based on similar depth 

and predominant substrate type (Appendix 1-4). Due to lack of data and prior knowledge of 

the area, the initial experimental design was relatively imbalanced. For example, 12 deep 

muddy sand sites were surveyed outside the reserve in 2010 compared to just 6 inside. This 

improved with each survey, and by 2012, our experimental design was balanced. Sites were 

http://www.arrancoast.com/
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limited to areas of the seabed that were shallow enough to remain within diver no 

decompression limits (i.e. <30m depth). Surveys were also conducted parallel to depth 

contours to ensure the depth of a single survey did not change by more than 3m.  

 

Figure 1. Site locations of dive transects for all years. Also displayed are the boundaries of the 
Lamlash Bay fully protected marine reserve. The inset shows the location of the Isle of Arran 
off the west coast of Scotland, United Kingdom.  

Transects were surveyed along a 50m leaded line that was laid out straight across the seabed. 

GPS coordinates used for surveys in 2010 and 2011 provided the start and end location of each 

transect. Attached to both ends of the leaded line were weighted anchors to hold the line in 

place, in addition to two floating buoys which reached the surface. A team of two divers then 

made their way from one end of the transect to the other, recording the abundance of all 

adult unattached scallops and other megafauna (e.g. fish, echinoderms and crustaceans) 
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encountered within 1.5m either side of the transect. The width of the transect was marked by 

a 3m long pipe that the divers pushed ahead of themselves, creating a total area surveyed of 

150m2 for each transect. To generate semi-quantitative estimates of the abundance of juvenile 

scallops (taken to be any scallop still attached to the substrata via byssal threads), a SACFOR 

abundance scale (superabundant, abundant, common, frequent, occasional, rare) was used 

(see Connor et al. 2004). Unfortunately, distinguishing between juvenile king and queen 

scallops whilst underwater was difficult and so these had to be grouped as one category. In 

addition, every adult scallop encountered along the transect was collected and brought back 

to the surface. These were then scrubbed with a wire brush (to help reveal their annual growth 

rings) and aged (Chauvaud et al., 2012), measured for shell length (Jennings et al., 2001), and 

returned to the sea.  

A SACFOR abundance scale was also used by the divers to estimate the abundance of different 

benthic taxa. These were live maerl (e.g. Phymatolithon calcareum and Lithothamnion glacial), 

dead maerl, macroalgae (e.g. Laminaria and Ceramium spp) sponges (e.g. Pachymatisma 

johnstonia), anemones (e.g. Cerianthus lloydi), tunicates (e.g. Clavelina lepadiformis and 

Diazona violacea), hydroids (e.g. Obelia geniculata), bryozoans (e.g. Alcyonidium diaphanum 

and Flustra foliacea) and soft corals (e.g. Alcyonium digitatum). The SACFOR method was 

chosen to provide quick underwater estimates of benthic cover.  

Laboratory analysis 

Scallop dissections were conducted in the years 2010, 2011 and 2013. For these years, 60 king 

scallops and 60 queen scallops were retained for dissection, with half of these individuals 

collected from within the reserve (under a permit from Marine Scotland), and the other half 

from outside. As the number of scallops taken from the reserve was limited, these scallops 

were chosen to cover the full range of different shell lengths observed within the Lamlash Bay 

area. Scallops were preserved in seawater to be dissected within 24 hours of their collection. 

All tissues were then dissected from the samples and blotted dry. From these tissues, the wet 

weight of the total tissue biomass, exploitable biomass (gonad weight and adductor muscle 

weight combined) and reproductive biomass (gonad weight only) were obtained. The 

importance of recording reproductive and exploitable biomass was considered two fold. 

Firstly, the mass of the gonad organ is an indicator of potential reproductive output (Shephard 

et al., 2010). Secondly, the adductor muscle is important both economically, as it partly 

decides the sale value of a scallop, and biologically as it forms the main mechanism of 
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protection from predators such as the common starfish, Asterias rubens (Kaiser et al., 2007) 

and is used for swimming and escaping predation (Labrecque and Guderley 2011).  

Data analysis 

Multivariate analyses of juvenile scallop distribution 

All data were tested for normality using histograms, boxplots, QQ plots and the Shapiro–Wilk 

test. These basic exploratory measures were conducted within the statistical package R 

(www.r-project.org). The Shapiro–Wilk test was chosen as it is widely accepted to be the most 

suitable for small and medium-size samples (N up to 2000; Royston 1982, Conover 1999). For 

statistical analysis, the SACFOR scale used to estimate juvenile scallop abundance and benthic 

cover was converted into numerical categories ranging from 0 to 6, where a value of 0 would 

indicate the absence of a taxon and 6 would represent the superabundance of a taxon as 

denoted by the SACFOR scale. Whereas the counts of adult scallops collected by both divers 

were pooled and adjusted for each transect to generate densities of organisms per 100m2. 

The abundance of juvenile scallops was compared between the two treatments (i.e. ‘reserve’ 

and ‘fishing grounds’) and across the years using a two-way ANOVA, with protection and year 

as the two fixed factors. Levene’s test for equality of variances showed that there was 

homogeneity of variance between the two treatments (P > 0.05). To determine whether 

environmental and ecological data recorded during diver surveys reflected the distribution and 

abundance of juvenile scallops, a Generalised Linear Model (GLM) was created. Predictor 

variables used in the GLM were treatment, depth, density of predators, and the SACFOR 

abundance estimates of maerl, macroalgae, sponges, hydroids, anemones, bryozoans, 

tunicates and soft corals. Predators of scallops were taken to be all species of starfish, 

although this is likely to be just a partial characterisation of the total predator assemblage for 

scallops. Although our monitoring program also collected higher quality data on the 

percentage cover of different benthic taxa through the use of photographic surveys, these 

surveys did not begin until 2011 and therefore could not be used in this full analysis. Before 

construction of a GLM, scatter plot and intercorrelation matrices (based upon Spearman’s rank 

correlation) were created to explore basic relationships and determine whether any variables 

were strongly intercorrelated (i.e. -0.7 ≤ r  ≥ 0.7) as such variables would not be allowed 

together within a GLM (Crawley, 2005). As a Kolmogorov–Smirnov (K–S) test found juvenile 

abundance to not significantly differ from a poisson distribution (P > 0.05) a GLM based upon a 

Poisson family error was created in R. Backward-forward stepwise reduction was then used to 

http://www.r-project.org/
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create a minimal adequate model. Diagnostic and Cleveland dotplots were subsequently used 

to explore how well the models fitted the data and to identify any extreme outliers. An 

Analysis of Deviance utilising Pearson’s Chi-square test (χ2) was then conducted to determine if 

the reduced model accounted for significantly less variance than the full model.  

Density of king and queen scallops 

Densities of king and queen scallops were compared between the two treatments and across 

the years using a two-way ANOVA as before. However, the density data did have to be square 

root transformed before they complied with the assumption of normality. Density data was 

also split between individuals of sub-legal and legal size classes. For king scallops, this was any 

individual greater than 100mm in length (Keltz and Bailey, 2010). For queen scallops, a size of 

50mm was used as the cut-off point (see above). Differences in the density of these size 

classes between the two treatments were tested for significance using a Mann–Whitney–

Wilcoxon test as the data no longer complied with the assumption of normality when split into 

different size classes.  

In an attempt to investigate any spillover of scallops and / or a potential “halo effect” of 

reduced fishing effort close to the boundaries of the reserve, the distance of each sampling 

site from the boundaries of the marine reserve was calculated in the Geographical software 

ArcGIS 10.1. The mean density of king scallops was then calculated for all sites within the 

reserve, and sites 0.5 km, 1 km, 1.5 km and >2 km away from the marine reserve. This data 

was then plotted against distance utilising error bars of ±1 Standard Error (SE) and fitted with a 

polynomial trend line. This trend was tested for significance by calculating the Pearson 

product-moment correlation coefficient.   

Population structure of king and queen scallops 

Size and age distributions were compared between the two treatments for each year using a 

K–S two sample test. In addition, a one-way ANOVA was used to test the final difference in size 

and age between treatments for data collected during the last year of monitoring. Size 

composition data on king scallops (greater than minimum legal landing size) were then 

compared with government fisheries size data on king scallops caught and landed within the 

Firth of Clyde region in 2012 and 2013 (data provided by Shona Kinnear of Marine Scotland 

Science). This was done by performing two K–S tests, one to compare the size of scallops 

landed within the Clyde against the size of scallops sampled within the reserve, and the other 
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to compare the size of scallops landed within the Clyde against the size of scallops sampled 

outside the reserve.  

Fisheries statistics 

The mean density per age class of king scallops combined across all years was compared 

between the two treatments using a line graph. A catch curve analysis was then performed by 

transforming the data (natural log) and fitting linear trendlines. The gradient of these trend 

lines then provided an indication of total mortality (Z). In addition, the mean length at age for 

both scallop species was plotted using the statistical software Simply Growth (version 1.7, 

http://www.pisces-conservation.com/) and fitted with two Von Bertalanffy growth curves to 

the separate treatments. The log-likelihood ratio test of co-incident curves (Kimura, 1980) was 

then used to test whether the two sampled population curves would differ from a curve 

created by combining the two sampled populations. 

Biomass data 

For the years where scallop dissections were conducted, exploitable and reproductive biomass 

for both species were tested for differences between the two treatments and across all years 

using two-way ANOVA. To investigate for any differences in the weight of gonads and adductor 

muscle per unit shell length between the reserve and outside, the weight of the adductor 

muscle and the reproductive biomass of king scallops greater than 100mm length were plotted 

against shell length and fitted with linear trendlines. ANCOVAs were then performed which 

took into account differences in body size (i.e. with shell length as the covariate). For this, a 

Levene's Test of Equality of Error Variances showed homogeneity of variance between the two 

samples (P > 0.05) and comparing the beta values revealed that samples had equal co-

variance. 

Results 

Juvenile scallop abundance and the relationship with benthic habitats 

The abundance of juvenile scallops was significantly greater within the marine reserve than 

outside for all years except 2013, when only two sites out of the 32 surveyed contained any 

juvenile scallops both of which were located outside the reserve (Table 1). Year, protection 

and the interaction between the two were all found to be significantly influencing the 

abundance of juvenile scallops. Overall, the abundance of juvenile scallops has fluctuated from 
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low to high every two years (Figure 2), with 2010 and 2012 being years of high abundance, and 

2011 and 2013 being years of low abundance. It should be noted that graphical 

representations of these differences are very conservative as they treat differences between 

abundance categories as proportional, whereas measures of abundance on the SACFOR scale 

actually differ on an exponential scale. 

Table 1. Two-way ANOVA comparing juvenile scallop abundance between the marine reserve 
and outside across the years 2010-2013. Significant results are denoted by (*).  

Test variable SS df MS F P 

Year 55.89 3 18.63 13.96 *<0.001 

Protection 23.33 1 23.33 17.48 *<0.001 

Year x Protection 18.57 3 6.19 4.63 *0.004 

Residual 206.82 155 1.33   

 

 

Figure 2. The mean estimated abundance (SACFOR) of juvenile scallops within and outside the 
fully protected marine reserve across four years. Error bars represent ±1 SE.  

In 2010, we found the higher levels of juvenile scallop abundance to be associated with greater 

levels of macroalgae and other nursery habitats growing within the marine reserve’s 

boundaries (see Howarth et al. 2011). To further explore these relationships, SACFOR 

estimates of benthic cover and juvenile scallop abundance were combined for the years 2010 

and 2012 (i.e. years of high juvenile scallop abundance). After employing backward-forward 

stepwise reduction, a GLM indicated protection and the presence of macroalgae, sponges and 

hydroids to be significantly influencing the distribution of juvenile scallops (Table 2). This 

reduced model accounted for 66% of the variance in juvenile scallop abundance and did not 

explain significantly less variance than the full model (Pearson’s Chi-squared; df = 67, χ2 = 0.78, 

P > 0.05). The relationship between juvenile scallop abundance and the presence of 
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macroalgae was found to be positive (Figure 3a), as was their relationship with hydroids 

(Figure 3b). A parallel study (Howarth et al., in review) revealed the percentage cover of these 

benthic habitats to be significantly greater within the reserve than outside, and that their 

abundance steadily increased over the study period. In contrast, the relationship between 

juvenile scallops and sponges was negative. However, as sponge abundance was very low 

across all sites, their relationship was comparatively unclear.  

Table 2. The reduced and full models were created from a Poisson GLM to test whether 
environmental and ecological data reflected the distribution and abundance of juvenile 
scallops. Significant terms are denoted by (*). 

Variables retained by reduced model 

Variable SE Z P 

Macroalgae 0.07 7.98 *<0.001 

Hydroids 0.12 3.91 *<0.001 

Sponge 0.16 -1.7 * 0.043 

Protection 0.22 1.7 * 0.046 

Variables removed from model 

Variable SE Z P 

Depth 0.04 -0.75 0.449 
Dead maerl 0.06 -0.47 0.635 
Live maerl 0.2 -0.8 4.432 
Anemones 0.11 0.72 0.474 
Soft coral 0.19 -1.78 0.076 
Tunicates 0.1 -0.01 0.994 
Bryzozoans 0.11 -0.41 0.68 

 

 

Figure 3. Mean abundance of juvenile scallops in relation to the mean abundance of 
macroalgae (a) and hydroids (b). These trends were highlighted as significant by a GLM. Error 
bars represent ±1 SE.  
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Comparisons of scallop density 

When monitoring began in 2010, the density of king scallops was initially lower within the 

boundaries of the marine reserve, estimated at 6.2 individuals per 100m2 (± 2.1 SE) within the 

reserve compared to a value of 7.6 (±2.3 SE) outside the reserve. However, surveys conducted 

over the following three years revealed that the density of king scallops had steadily increased 

within the reserve but decreased outside (Figure 4). Despite these apparent differences, a two-

way ANOVA identified neither year nor level of protection (i.e. in or outside the reserve) as 

having a significant influence on king scallop density (Table 3).  

 
Figure 4. The density of king scallops in and outside the fully protected marine reserve across 
four years. Error bars represent ±1 SE.  

Table 3. Two-way ANOVA comparing scallop densities (sqrt transformed) between the marine 
reserve and outside across the years 2010-2013. Significant results are denoted by (*).  

Species     Test variable SS df MS F P 

King 
scallops 

Year 0.14 3 0.05 0.02 0.99 

Protection 0.79 1 0.8 0.38 0.54 

Year x Protection 4.61 3 1.54 0.74 0.53 

Residual 254.3 123 2.1   

       

Queen 
scallops 

Year 18.45 3 6.15 3.506 *0.01 

Protection 0.07 1 0.07 0.04 0.84 

Year x Protection 1.9 3 0.62 0.36 0.79 

Residual 215.78 123 1.75 
  

 

Compared to king scallops, queen scallop abundance fluctuated greatly over the study period 
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estimated at densities of 6.1 (±1.8 SE) and 6.0 (± 2.1 SE) per 100m2 in and outside the reserve 

respectively. Since then, the density of queen scallops has been in decline, fluctuating from 

being greater within the reserve some years, to being lower within the reserve for others. For 

example, the density of queen scallops was 206% greater within the reserve in 2011, but fell to 

just 29% greater in 2012, before falling to 30% lower within the reserve than outside in 2013. 

In 2013, the density of queen scallops hit a low of 3 (± 0.8 SE) per 100m2 inside the reserve and 

2.3 (± 0.9 SE) outside. As a consequence of these strong yearly fluctuations, multivariate 

analysis found only the year to significantly affect queen scallop density (Table 3).  

Differences in scallop density between the reserve and outside were more pronounced when 

split between sub-legal and legal size classes (Figure 5). King scallops over 100 mm in length 

(i.e. individuals of legal landing size) were on average 79.3% more abundant within the reserve 

than outside in 2013. However, this trend was not significant (Mann-Whitney: U = 84, N = 32, P 

> 0.05). Similarly, queen scallops over 50mm were 39% more abundant within the reserve than 

outside but was also non-significant (Mann-Whitney: U = 71, N = 32, P > 0.05). In contrast, 

smaller-bodied king scallops less than 100mm were 80% less abundant within the reserve than 

outside (Mann-Whitney: U = 84, N = 32, P > 0.05) and smaller-bodied queen scallops less than 

50mm were 96% less abundant within the reserve (Mann-Whitney: U = 118, N = 32, P > 0.05) 

both of which were non-significant.  

 

Figure 5. The density of different size classes of two scallop species sampled in 2013 within and 
outside a fully protected marine reserve. Error bars represent ±1 SE.  

Plotting the mean density of king scallops combined for all years against distance from the 

boundaries of the marine reserve revealed a strong spatial interaction (Figure 6). It was found 

that the density of scallops significantly declined with increasing distance from the marine 

reserve (Pearson Correlation; N = 91, R = -2.4, P < 0.05). In fact, sites within or close to the 
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marine reserve supported scallop densities three times greater than sites located over two 

kilometres away.  

 

Figure 6. Mean density of king scallops for the years 2010-2013 plotted against distance from 
the marine reserve. A distance of 0 represents those sites located within the marine reserve. 
Error bars represent ±1 SE.  

Comparisons of population structure 

For both scallop species, the mean size and age were significantly greater within the marine 

reserve than outside across all years. In 2010, king scallops were on average 18mm larger 

(ANOVA, F(1,109) = 40.45, P < 0.05) and 1.1 years older (ANOVA, F(1,109) = 42.99, P < 0.05) within 

the reserve than outside. In 2013, the final year of monitoring, these differences had grown 

stronger with king scallops being on average 28mm larger (ANOVA, F(1,250) = 66.51, P < 0.05) 

and 1.7 years older (ANOVA, F(1,250) = 47.88, P < 0.05) within the reserve than outside. Queen 

scallops were on average 13mm larger (ANOVA, F(1,108) = 11.96, P < 0.05) and 0.8 years older 

(ANOVA, F(1,108) = 10.88, P < 0.05) within the reserve than outside in 2013.  

Comparing the overall size and age distributions for both species of scallop between the two 

areas also revealed scallops within the marine reserve to be made up of significantly older and 

larger individuals (Table 4). In greater detail, the size (Figure 7) and age (Figure 8) of king 

scallops have been continually higher within the reserve for the past four years. In 2010, king 

scallops peaked at 131-140mm in length and 4 years in age within the reserve, and at 101-

110mm and 2 years in age outside. The subsequent year saw this peak size class within the 

reserve strengthen whilst the peak age class increased to 6 years. This was then followed by 

the peak size class within the reserve increasing to 141-150mm in 2012 and finally becoming 

bi-modal in 2013. In contrast, outside the reserve scallop densities declined sharply after the 

first year of monitoring across all size and age classes. Subsequent years saw scallop densities 
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outside the reserve recover slightly but remain at levels far lower than those observed in 2010. 

The year 2013 saw a sudden boost in recruitment of young scallops outside the reserve. 

However, this event was far less pronounced within the marine reserve.  

Table 4.  Outputs from the Kolmogorov–Smirnov (K–S) 2 sample tests used to compare the size 
and age distributions (% composition) of two commercially important species of scallop 
located in and outside the fully protected marine reserve.  

    Size Age 

 Year Reserve (N) Outside (N) KS-Z P K-S Z P 

King 
scallops 

2010 181 237 4.12 * <0.001 3.38 * <0.01 

2011 139 98 2.83 * <0.001 2.59 * <0.01 

2012 162 125 3.97 * <0.001 2.42 * <0.01 

2013 133 118 3.65 * <0.001 3.09 * <0.01 

        

Queen 
scallops 

2010 179 161 1.64 * 0.009 2.26 * <0.01 

2011 81 24 1.39 * 0.041 1.39 * 0.04 

2012 74 53 1.4 * 0.04 5.17 * <0.01 

2013 133 54 5.77 * <0.001 3.77 * <0.01 

 

In 2010, queen scallops differed from king scallops in that their size (Figure 9) and age (Figure 

10) distributions were similar. However, as observed for king scallops, queen scallop 

abundance suddenly declined across all age and size classes outside the reserve. Queen 

scallops then began to recover in 2012 and 2013 to sizes and ages slightly lower than those 

observed within the reserve.  

Utilising government data on the size composition of king scallops caught and landed within 

the Firth of Clyde region revealed scallop populations in the Lamlash Bay area to be made of 

larger individuals compared to the Firth of Clyde region as a whole (Figure 11). When only 

scallops of legal landing size were considered, individuals sampled within the marine reserve 

were the largest in size, followed by individuals sampled directly outside it. For example, in 

2012, king scallops were on average 21mm larger (± 1.77 SE) within the reserve compared to 

those landed from the wider Firth of Clyde, whilst scallops located directly outside the 

boundaries of Lamlash Bay Marine Reserve were 5mm larger (± 2.66 SE). These size 

distributions were found to be significantly different in both 2012 (K-S; N = 8966, Z= 3.54, P < 

0.05) and 2013 (K-S; N = 9241, Z= 3.74, P < 0.05).  
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Figure 7. The size structure of king scallops sampled within and outside the fully protected 
marine reserve across four years. The number (N) of individuals sampled from each population 
is available in Table 4.  
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Figure 8. The age structure of king scallops sampled within and outside the fully protected 
marine reserve across four years. The number (N) of individuals sampled from each population 
is available in Table 4.  
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Figure 9. The size structure of queen scallops sampled within and outside the fully protected 
marine reserve across four years. The number (N) of individuals sampled from each population 
is available in Tables 4.  
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Figure 10. The age structure of queen scallops sampled within and outside the fully protected 
marine reserve across four years. The number (N) of individuals sampled from each population 
is available in Table 4.  
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Figure 11. The size composition of king scallops above legal landing size sampled within and 
outside the fully protected marine reserve across two years. Also displayed is the size 
composition of king scallops caught and landed within the Firth of Clyde region. Data provided 
by Shona Kinnear of Marine Scotland - Science.  

Comparisons of mortality rates 

Combining the mean density-at-age data for all four years also revealed distinct differences in 

the population dynamics of king scallops between the two areas (Figure 12a). Catch curve 

analysis (Figure 12b) of these data (natural log transformed) produced linear regressions that 

estimated the total mortality of scallops in the fished area (Z = 0.67) to be 76.3% higher than in 

the closed area (Z = 0.38) (Figure 14b). As fishing mortality should not be occurring within the 

fully protected marine reserve, this calculation suggests the rate of natural mortality for king 

scallops to be 0.38.   

Comparisons of growth rates 

Overlaying Von Bertalanffy growth curves for king scallops within and outside the reserve 

across all years suggested a faster growth rate (or more accurately, rate of approach to 

theoretical maximum size) for scallops within the reserve (k = 0.46, L∞ = 151.01, T0 = 0.13) 

compared to outside (k = 0.38, L∞= 153.18, T0 = 0.13). The Kimura likelihood ratio test of co-
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incident curves revealed that these two growth models were significantly different from one 

another (RSSω=26784.47, Χ2=6.77, df =1, P < 0.05). In contrast, there was no difference in 

growth rates between in and outside the reserve for queen scallops (RSSω=10215.69, Χ2=5.30, 

df =1, P > 0.05). Plotted growth curves are available in Appendix 6.  

 

Figure 12. (a) The density per age-class of king scallops within and outside the reserve across 
the years 2010-2013. (b) Catch curve analysis (total mortality estimates) of king scallops within 
and outside the reserve across the years 2010-2013.  

Comparisons of exploitable and reproductive biomass 
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increased to become 2 and 2.5 times more than in the fished area. Two-way ANOVA found 

level of protection, but neither year nor the interaction between the two, to significantly affect 

king scallop biomass (Table 4).  

Similar to the fluctuations in queen scallop density, the exploitable and reproductive biomass 

of queen scallops also fluctuated greatly over time. In 2010, there was little difference in both 

the exploitable and reproductive biomass of queen scallops between the reserve and outside. 

However, in 2011, the exploitable biomass of queen scallops tripled within the reserve before 

returning to 2010 levels in 2013. Overall, the exploitable biomass of queen scallops was higher 

within the reserve across all years. In contrast, reproductive biomass was lower within the 

reserve across all years and also fluctuated heavily. Two-way ANOVA found level of protection, 

but not year nor the interaction between the two, to significantly influence the exploitable 

biomass of queen scallops (Table 5). In comparison, level of protection, year and the 

interaction between the two were all found to significantly influence the reproductive biomass 

of queen scallops.  

Figure 13. The mean exploitable (a) and reproductive (b) biomass of king scallops within and 
outside the fully protected marine reserve for the years when scallop dissections were 
conducted. Error bars represent ±1 SE. 

0 

100 

200 

300 

400 

500 

B
io

m
as

s 
(g

/1
0

0
m

2
) 

Reserve 
Outside 

a 

0 

20 

40 

60 

80 

100 

2010 2011 2013 

B
io

m
as

s 
(g

/1
0

0
m

2
) 

Year 

b 



125 
 

Plotting the exploitable and reproductive biomass of king scallops greater than 100mm in 

length combined for all years against shell length revealed little difference between the 

reserve and outside, suggesting that the weight of gonads and adductor muscle per unit shell 

length were not greater within the reserve than outside. Confirming this, ANCOVAs that took 

into account differences in body size did not find any significant difference in the exploitable 

biomass (ANCOVA; F(1, 180) = 0.05, P > 0.05) and reproductive biomass (ANCOVA; F(1, 180) = 0.34, P 

> 0.05) of king scallops between the reserve and outside.  

Table 5. Two-way ANOVAs comparing the exploitable and reproductive biomass of two species 
of scallop between the marine reserve and outside. Significant results are denoted by an (*).   

Source Test variable SS df MS F P 

King scallops 
(exploitable 

biomass) 

Year 2235.37 2 1117.68 0.36 0.69 

Protection 17447.68 1 17447.68 5.61 *0.02 

Year x Protection 2613.66 2 1306.83 0.42 0.66 

Residual 8343594.12 94 78655.26   

 
      

King scallops 
(reproductive 

biomass) 

Year 34078.71 2 17039.35 0.22 0.81 

Protection 625559.91 1 625559.91 7.95 *<0.01 

Year x Protection 229638.67 2 114819.33 1.46 0.24 

Residual 7393594.64 94 78655.26    

 
      

Queen scallops 
(exploitable 

biomass) 

Year 1508.74 2 754.37 2.42 0.1 

Protection 1138.27 1 1138.27 3.65 *0.05 

Year x Protection 884.79 2 442.39 1.42 0.25 

Residual 29332.83 94 312.05    

 
      

Queen scallops 
(reproductive 

biomass) 

Year 766.83 2 383.42 7.76 *<0.01 

Protection 298.31 1 298.31 6.04 *0.02 

Year x Protection 306.65 2 153.33 3.10 *0.05 

Residual 4645.80 94 49.42     

 

Discussion 

This paper highlights a number of differences in the abundance, age, size and biomass of 

scallops between the fully protected marine reserve in Lamlash Bay and surrounding fishing 

grounds. However, it must be stressed that there is no data available prior to the 

establishment of the reserve. Ideally, a before-after control‐impact (BACI) approach would 

have been employed, capable of definitely proving that differences between the reserve and 

outside were due to the protection afforded by the marine reserve (Hilborn et al. 2004; Sale et 
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al. 2005). As this was not possible, we instead compared sites within the reserve to reference 

sites located outside its boundaries over a study period of four years. Several trends observed 

in this study showed an interaction between year and protection, meaning that the protection 

afforded by the marine reserve is likely to be responsible. Elsewhere, we have evidence that 

differences between the reserve and outside exist, but cannot conclude that protection is 

responsible for creating them. 

Juvenile scallops were between two and five times more abundant within the marine reserve 

than surrounding areas, and that their increased abundance was related to a greater presence 

of nursery habitat growing within the boundaries of the marine reserve. That is, the 

distribution of juvenile scallops was strongly positively associated with the presence of 

macroalgae and hydroids, confirming that scallop spat settle more successfully in structurally 

complex habitats (Bradshaw et al., 2001; Kamenos et al., 2004b, 2004a; Minchin, 1992; Paul, 

1981). Although data prior to the establishment of the reserve was not collected, a parallel 

study (Howarth et al., in review) found the abundance of these nursery habitats to be twice as 

great within the reserve than on neighbouring fishing grounds, and that the abundance of 

these habitats had steadily increased within the reserve over the four year study period. 

Theory and empirical evidence suggest that differences between MPAs and references sites 

should become more pronounced the longer the reserve is established (Roberts et al. 2005; 

Edgar et al. 2014). These results therefore provide evidence that protecting areas from fishing 

can allow seafloor habitats to recover, and as a result, can generate benefits that flow back to 

commercially important species. In the long term, these effects are highly likely to increase the 

numbers of juvenile scallops entering the adult stock as a greater proportion of juveniles 

survive to reach maturity (Beukers-Stewart et al., 2003; Vause et al., 2007). 

Over the four year study period, we found the abundance of juvenile scallops to fluctuate 

greatly, alternating between high and low levels every two years. Since king and queen 

scallops typically undergo at least one major spawning event around spring/summer (Brand, 

2006; Orensanz et al., 2006), and as our dive surveys were conducted between June-

September, it is unlikely that they were conducted too early in the year to detect the presence 

of juvenile scallops. Rather, it is more likely that the populations were exhibiting the strong 

natural fluctuations in recruitment typically observed in most scallop species (Paulet et al. 

1988; Orensanz et al. 1991; Beukers-Stewart et al. 2003; Beukers-Stewart & Beukers-Stewart 

2009). However, it is argued that by allowing populations and spawning stock biomass to 

recover, MPAs should offer higher and less variable catches in adjacent fishing grounds 
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(Bradshaw et al., 2001; Roberts et al., 2001, 2005). The following lines of discussion support 

this.  

When monitoring began in 2010 it was concluded that, despite providing apparent benefits to 

juvenile scallops, the reserve in Lamlash Bay was yet to have a significant effect on the density 

of adult scallops (Howarth et al., 2011). Likewise, in this extended study, neither time, nor level 

of protection (i.e. in or outside the reserve), nor the interaction between the two were found 

to be significantly influencing the density of king scallops. This result was surprising as the 

density of king scallops had been consistently greater within the reserve than outside for the 

past three years, and their density within the reserve had steadily increased over the four year 

study period. Nonetheless, as scallops breed by releasing both male and female gametes into 

the water column during synchronised spawning events (Brand, 2006), any increase in 

population density will likely result in a rapid increase in fertilisation success (Macleod et al., 

1985; Stoner and Ray-Culp, 2000; Vause et al., 2007).  

Despite finding no difference in the density of adult between the two treatments, we did find 

that scallop density significantly declined with increasing distance from the boundaries of the 

marine reserve. Many studies have detected similar gradients (Halpern et al., 2010; Harmelin-

Vivien et al., 2008; Ludford et al., 2012; McClanahan and Mangi, 2000) and several possibilities 

could explain such a trend. Environmental gradients and spatial heterogeneity of habitats are 

known to result in gradients of abundance (Vandeperre et al., 2011) but as our survey design 

was balanced (i.e. we surveyed an equal number of sites of similar habitat and depth) this is 

unlikely. It could be that spillover of larvae and juveniles from within the reserve to outside is 

occurring, and that its effects diminish with increasing distance from the reserve (Kellner et al., 

2007). This is possible as the larvae of these two species typically spend 3–6 weeks in the 

water column where they can disperse over considerable distances (Brand et al. 1980; 

Macleod et al. 1985). Then again, it may be that fishers avoid areas immediately outside and 

around the marine reserve, meaning fishing pressure would consequently increase with 

distance from the reserve. This could be occurring as the marine reserve protects the north 

entrance to Lamlash Bay (see Figure 1), meaning fishers may choose to bypass the general 

area. Otherwise they would have to haul their fishing gears whilst they passed over the 

reserve, or attempt to turn around while fishing in the unprotected southern half of Lamlash 

Bay. As scallop densities were similar out to 1 km away from the reserve, but then suddenly 

dropped at 1.5 km and remained similar out to >2 km, this may be evidence of such a “halo 
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effect” occurring. Furthermore, scallops from the wider Clyde were substantially smaller than 

those measured in the Lamlash Bay area, further supporting this idea.  

We also found evidence that Lamlash Bay Marine Reserve was allowing the age and size 

structure of scallop populations within its boundaries to return to a more natural and 

extended state. The size and age of both scallop species were consistently greater within the 

reserve than surrounding areas over the study period. On average, we found king scallops to 

be 28mm larger and 1.7 years older within the reserve than outside. Likewise, we found queen 

scallops to be 13mm larger and 0.8 years older within the reserve. King scallops within Lamlash 

Bay Marine Reserve were also substantially larger than king scallops caught and landed by the 

wider Firth of Clyde scallop fishery, suggesting this was not just a localised phenomenon. The 

greater abundance, age and size of scallops within the reserve are consistent with the 

hypothesis that closing areas to fishing can protect individuals within their boundaries from 

fishing-induced mortality. This was confirmed by catch curve analysis, which suggested 

mortality was 76.3% greater outside the reserve than within its boundaries. The overall 

reduction in fishing pressure should mean that scallops within the marine reserve are rarely 

being damaged by mobile fishing gears and having to divert energy into shell repair. One study 

found that this allowed scallops within the boundaries of an MPA to invest a greater 

proportion of metabolic energy into body growth and gonad development (Kaiser et al., 2007). 

On the contrary, we observed no difference in the weight of adductor muscle or gonads per 

unit shell length between Lamlash Bay Marine Reserve and fishing grounds. However, we did 

find that the exploitable biomass of king scallops within the reserve was twice than what was 

observed outside, and the reproductive biomass 2.5 times greater. As there was no significant 

interaction between protection and year, we could not attribute this difference to protection. 

Nonetheless, the greater levels of reproductive biomass within the reserve should mean the 

reserve is contributing disproportionally to recruitment compared to the size of area it 

protects by exporting large amounts of larvae to surrounding areas (Beck et al., 2001; Gibb et 

al., 2007; Harrison et al., 2012; Laurel et al., 2009). Furthermore, because scallops are 

broadcast spawners, the high densities of scallops inside the reserve would have increased the 

proximity of individuals to one another, which will enhance rates of fertilisation success and 

further add to levels of larval export (Beukers-Stewart et al., 2005). 

The differences between the Lamlash Bay Marine Reserve and control areas observed in this 

study are less pronounced than those documented in other MPAs (Beukers-Stewart et al., 

2005; Hart et al., 2013). However, those studies were conducted over a decade after MPA 
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implementation and in control areas subject to much greater fishing pressure. If anything, 

these studies suggest further improvements in scallop stocks are likely to occur within Lamlash 

Bay Marine Reserve in the future, since it had only been established for 2-4 years during the 

period of study (Roberts et al., 2001, 2005). Our findings also present an interesting 

comparison to a recent study conducted in Wales, which found no evidence of scallop recovery 

within an MPA (Sciberras et al., 2013). This lack of response was attributed to high levels of 

natural disturbance. However, this study was conducted during just the first 23 months of 

protection and high levels of illegal fishing within the MPA have since been detected (Milford 

& West Wales Mercury, 2012; Misstear, 2012; Morris, 2014). In contrast, due to almost 

constant visual surveillance of Lamlash Bay Marine Reserve by COAST and its members, illegal 

fishing has been comparatively rare in Lamlash Bay (VMS data Marine Scotland 2014). It is 

therefore possible that the action and involvement of the local community in establishing and 

monitoring Lamlash Bay Marine Reserve has contributed to its success in improving scallop 

stocks.  

In summary, we have presented several lines of evidence that suggest Scotland’s first and only 

fully protected marine reserve is benefitting two commercially important scallop species. The 

growing abundance of nursery habitats within the marine reserve appears to be substantially 

increasing the settlement juvenile scallops, suggesting that protecting areas from fishing can 

generate ecological benefits that flow back to species commercially targeted by fisheries. Then 

again, for fisheries to truly benefit from marine reserves, it is essential that larvae, and / or 

juveniles and adults originating from within reserve spillover into surrounding fishing grounds 

where they can then contribute to landings (McClanahan and Mangi, 2000; Stelzenmüller et 

al., 2007). However, the greater size, age and reproductive biomass observed within the 

reserve should translate to higher reproductive output and scallop recruitment both within the 

marine reserve and surrounding fishing grounds (Pelc et al., 2010). Overall, our results suggest 

that the implementation of MPAs can be a useful tool in ecosystem-based fishery 

management. 
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Chapter 5. Scotland’s first fully protected marine reserve 

provides potential improvements to lobster stocks 

 

5.1. Abstract 

This study investigated the effects of the fully protected marine reserve in Lamlash Bay, Isle of 

Arran, United Kingdom, on commercially valuable populations of crustaceans. Potting surveys 

conducted over two years revealed catch per unit effort, weight per unit effort and size of 

lobsters to be significantly greater within the reserve than on neighbouring fishing grounds. 

Spatial gradients were detected in catch and weight per unit effort, suggesting that lobsters 

were migrating from within the reserve to surrounding fishing grounds. Preliminary tagging 

surveys supported this notion. Pregnant (berried) lobsters were more abundant within the 

reserve than outside and had greater mean potential reproductive output, which together 

suggested that the 2.67 km2 marine reserve had a potential egg output equivalent to an 

unprotected area of 19.1 km2. In contrast to lobsters, the catch per unit effort of crabs 

declined substantially over the study period in both areas. However, this may be a 

consequence of increased competition with lobsters. Overall, this study suggests that Lamlash 

Bay marine reserve is acting as a safe haven for those lobsters within its boundaries, allowing 

them to reach sexual maturity, greater fecundity and larger sizes.  

 

5.2. Introduction 

Scottish fisheries targeting crustaceans, such as lobster and crab, date as far back as the 12th 

century. These fisheries have greatly expanded and now make up the fifth most economically 

important fishery in Scotland (Mill et al. 2009; Barreto & Bailey 2013). However, concerns have 

recently been raised over declining recruitment, truncating age structures, failures in egg 

production and unsustainable levels of fishing mortality in several major crab and lobster 

stocks around Scotland (Tully et al. 2001; Mill et al. 2009; Barreto & Bailey 2013).  

Although many different management measures exist for maintaining and supporting fish 

stocks, it has been argued that the establishment of Marine Protected Areas (MPAs) and 

marine reserves closed to some or all types of fishing are some of the most effective ways to 

reduce mortality and boost recruitment by increasing the abundance of target species, 

restoring and maintaining size and age structures (Halpern & Warner 2002; Halpern 2003; 

Lester et al. 2009), enhancing local reproductive output (Roberts et al. 2001; Gaines et al. 
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2003; Grantham et al. 2003) and improving the survival and growth of juveniles (Myers et al. 

2000; Beukers-Stewart et al. 2005; Howarth et al. 2011). All of these effects may then result in 

the greater production of larvae, juveniles and adults which can disperse (“spillover”) outside 

the MPA and contribute to fishery landings (McClanahan & Mangi 2000; Harrison et al. 2012).  

For populations to benefit from the protection afforded by MPAs, it is necessary that a number 

of individuals spend a substantial part of their lives within their boundaries (Roberts et al. 

2005). Lobsters, crabs and other crustaceans have therefore been proposed as ideal species 

for closed area management thanks to their high value and relatively low mobility (Follesa et 

al. 2009, 2011; Moland & Olsen 2011; Moland et al. 2013a). In fact, several studies have found 

the abundance of lobsters to increase within MPAs 2-25 fold (Shears et al. 2006; Fenberg et al. 

2012; Moland et al. 2013b) and that such increases can become evident after just 18 months 

of protection (Hoskin et al. 2011). Studies also report increases in mean body size (Hoskin et al. 

2011; Moland et al. 2013a) and increased catches in neighbouring fishing grounds (Goñi et al. 

2006, 2010; Díaz et al. 2011). Despite the potential for MPAs to provide fishery benefits, there 

are currently very few MPAs which currently exist in the United Kingdom (UK; Jones 2012). Of 

these, only three are fully protected marine reserves which ban all fishing activity within their 

boundaries (i.e. are “No-Take Zones” – NTZs). These are Lundy Island, in Devon; Flamborough 

Head, in North Yorkshire; and Lamlash Bay, in Scotland.  

The Lamlash Bay NTZ was established in September 2008, prohibiting all sea fishing within its 

boundaries under the Inshore Fishing (Scotland) Act of 1984 (Axelsson et al. 2009). Uniquely, 

this fully protected marine reserve was passed by the Scottish parliament under the rationale 

that the reduction in fishing pressure should help regenerate both the local marine 

environment and enhance commercial shellfish and fish populations in and around Lamlash 

Bay.  Our study therefore sought to conduct a series of crustacean surveys and tagging studies 

to determine if the Lamlash Bay Marine Reserve was providing benefits to commercially 

important populations of crabs and lobster. Specifically, these surveys were designed to test if: 

(1) catch rates of crab and lobster were higher within the reserve; (2) individuals were larger 

within the reserve; (3) there was any evidence of spillover from the reserve to fishing grounds; 

and (4) if there was any difference in lobster fecundity and gender ratios between the reserve 

and fishing grounds.   

Although Lamlash Bay Marine Reserve was established in 2008, no crustacean surveys were 

conducted in the area prior to protection and monitoring of these populations only began in 

2012 (i.e. four years after protection). A before-after control‐impact (BACI) approach would 
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have been more capable at establishing that any differences between the reserve and outside 

were due to protection (Hilborn et al. 2004; Sale et al. 2005). As this was not possible, I 

decided to monitor crustacean populations within the reserve and in several control areas 

located outside the reserve over a period of two years on the basis that a divergence of 

crustacean population characteristics over time would be indicative of an effect.   

5.3. Materials and method 

Study area and fisheries 

I conducted this study around the southern and eastern shores of the Isle of Arran; an island 

situated off the west coast of Scotland within The Firth of Clyde. The Firth of Clyde is regarded 

as one of the most degraded marine environments in the UK, primarily due to over a century 

of intensive fisheries exploitation (Thurstan & Roberts, 2010; Bailey et al. 2011; Heath & Speirs, 

2011; Howarth et al. 2013). The fully protected marine reserve encompasses an area of 2.67 

km2 (Thurstan & Roberts 2010) where water depths range between 0 and 29 m below chart 

datum, but can reach as deep as 43 and 50 m outside to the east and the west of the reserve, 

respectively (Admiralty Chart 1864; Baxter et al. 2008). Previous surveys (Duncan 2003; 

Axelsson et al. 2009; Howarth et al. 2011; SNH 2013) indicate the area to contain a mix of 

sediments (i.e. mud, sand, gravel and boulders with various proportions of shell) supporting a 

diverse range of habitats including kelp forests, seagrass and maerl beds. In addition, the area 

has long been identified as containing important maerl beds, although recent evidence points 

to deterioration in their health (Howarth et al. 2011). 

Of the crab and lobster species investigated in this study, brown crab (Cancer pagurus) are the 

most important in Scotland; generating over 11,900 tonnes in landings and a first sale value of 

£14.2 million in 2011 (Barreto & Bailey 2013). In comparison, landings of the European lobster 

(Homarus gammarus) are much smaller but command the highest price per kilogram out of all 

the species landed in the UK (up to £19 per kg during seasonal highs), generating £13.1 million 

from just 1,200 tonnes of landings in 2011 (Mill et al. 2009; Mesquita et al. 2011). Lastly, velvet 

crabs (Necora puber) are one the smallest and recent fisheries in Scotland. Fished 

opportunistically by fishers, 2,600 tonnes of velvet crabs were landed in 2011 and generated 

£4.7 million. Despite concerns over declining recruitment and increased fishing mortality, 

these fisheries are regulated solely by minimum legal landing size, which is currently set at 87 

mm carapace length for lobster, 130 mm carapace width for brown crab and 65 mm for velvet 

crab.  
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Sampling design 

Targeted pot sampling surveys were conducted during one week in mid-July and one week in 

mid-August in 2012 and 2013. The catchability of crustaceans can vary heavily depending on 

their moult stage, reproductive condition, size, sex, seasons, habitats, water temperature and 

the number of crustaceans already in the trap (Jury et al. 2001; Smith and Tremblay, 2003). 

Hence, splitting the surveys over two months was designed to counter any shorter term 

fluctuations in the catchability of crustaceans.  

Sampling occurred along the southern shore of the marine reserve (R1) and at near control 

sites (N1-N3) as displayed in Figure 1. All sites were located on shallow boulder slopes less 

than 10m in depth and were chosen by an experienced fisherman on the premise that he had 

caught lobster from those areas in the past. Near control sites were located less than 2.5 km 

from the boundaries of the marine reserve and were situated to the north, east and west of 

the reserve. Initially, it was our intention to sample along both the southern (R1) and northern 

(R2) shores of the marine reserve. However, SCUBA surveys (Howarth et al. 2011) indicated R2 

to differ markedly from other sampling sites in that the substrate was primarily composed of 

sandy mud with shell. R2 was therefore excluded as a sampling site in this study.  

Crustaceans were sampled using standard specification commercial shellfish pots of two side 

eye entrance design. Each pot was 65 mm in mesh size and measured 64 x 38 x 41 cm, with 

two entrances measuring 21 x 18 cm. Pots were baited with a mix of mackerel (Scomber 

scombrus) and redfish (Sebastes spp) and deployed in fleets of five with 20 m between each 

pot. Marker-buoys were attached to both ends of the fleets and pots were considered heavy 

enough to act as their own anchor. For each day of sampling, three fleets were deployed 

parallel to the shore within the reserve, and three were deployed outside. These were then 

left to “soak” for approximately 48 hours before being hauled and the catch sampled.    

In 2012, a total of 32 fleets were deployed over the two sampling periods, half of which were 

inside the reserve and the other outside. In 2013, one fleet of pots intended to be placed 

outside the reserve was inadvertently deployed inside. Therefore 19 sites were sampled within 

the reserve and only 17 were sampled in the near control. Additionally, the surveys in 2013 

were bolstered with some additional fishing observations made aboard two different 

commercial creeling vessels. These took place between July-August within the far control sites 

(F1-F3) 10-20km south of the marine reserve. The fishing gear used during these observations 

differed slightly from our pot sampling surveys in that the fleets were between 5-10 pots in 

length and were left to soak between 48-72 hours. While these differences have the potential 



142 
 

to inflate measures of abundance, it has been observed that when soak times are five days or 

less, small variations in soak time have no significant effect on the catch rate of lobster (Bennet 

& Lovewell 1977; Montgomery 2005). In addition, measurements of Catch Per Unit Effort 

(CPUE) used in this study were based upon the average number of individuals caught per pot, 

largely negating the impact of varying fleet lengths. Fishing observations also differed from the 

pot sampling surveys in that the habitat of where these fleets were deployed was unknown.  

 

 

Figure 1. The locations of our pot sampling surveys. Baited shellfish pots were deployed in 
each area during July and August for the years 2012 and 2013. The maps on the left put these 
sites into geographical context within the UK and the Isle of Arran. Also displayed are the 
boundaries of the Lamlash Bay fully protected marine reserve.  
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Data collection 

The abundance of all species captured per pot was recorded. All crustaceans of commercial 

importance were then measured (to the nearest 1mm), sexed and tagged (lobsters and brown 

crab only – see below) before being returned to the sea in the location where they were 

caught. Lobsters were measured from behind the eye stalk to the posterior edge of the 

carapace where the connection with the abdomen is formed. In comparison, crabs were 

measured at the widest point of the carapace. Signs of biological condition (e.g. berried) were 

recorded along with environmental conditions such as the weather, time of day, depth and 

location of capture, determined from a Geographical Positioning System (GPS). Again, the 

methodology for the additional fishing observations differed slightly. For these, the abundance 

of all species was recorded but only those individuals above minimum landing size were 

measured, sexed and inspected for biological condition.  

Tagging 

All lobsters (both years) and brown crabs (2012 only) caught in this study were fitted with a 

double T-bar anchor tag (Hallprint Pty. Ltd) measuring 55mm in length. These tags were 

selected for their quick application and high rate of retention during the moulting phase 

(González-Vicente et al. 2012).  Each tag was imprinted with a unique identification number, 

the University of York telephone number, and coloured either green or orange depending on 

whether individuals were caught from within or outside the reserve respectively. Tags were 

inserted using a Monarch Marking 3030 tagging gun. Lobsters were tagged in their abdominal 

muscle immediately behind the posterior edge of the carapace, either side of the midline, in 

order to avoid puncturing the dorsal abdominal artery and the gut (Smith et al. 2001). Brown 

crabs were tagged where their fourth leg (on either side) joined the rear of the carapace. 

Data analysis 

Comparisons of CPUE 

All analyses treated the three near control sites and three far control sites as just two 

independent areas (i.e. near control and far control). All variables were tested for normality 

using histograms, boxplots, QQ plots and the Shapiro–Wilk test. These basic exploratory 

measures were conducted within the statistical package R (www.r-project.org). The Shapiro–

Wilk test was chosen as it is widely accepted to be the most suitable for small and medium-size 

samples (N up to 2000; Royston 1982, Conover 1999). The mean number of individuals caught 

per pot (calculated for each species) was used as an indicator of CPUE. This was done because 
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the additional observations made aboard the various commercial fishing boats only recorded 

data at the fleet level, rather than at the level of individual pots. CPUE was calculated from the 

following equation: 

CPUE = 
Number of individuals caught in      

Number of pots in      
 

The CPUE of velvet swimming crabs, brown crabs and European lobster were compared 

between treatments (i.e. reserve, near control and far control) for both years (where 

appropriate) using Mann–Whitney–Wilcoxon tests. This test was chosen as the two groups 

were independent and could not be transformed to a normal distribution.  

The distance of each sampling location from the boundaries of the marine reserve was 

calculated using the spatial analysis software ArcGIS 10.1. The mean CPUE of lobsters was then 

calculated for all sites 0 km, 5 km, 10 km, 15 km and 20 km away from the marine reserve. 

Sites at a distance of 0 km were located within the marine reserve. This data was then plotted 

against distance utilising error bars of ±1 Standard Error (SE) and fitted with a polynomial trend 

line. Trends were tested for significance by calculating the Pearson product-moment 

correlation coefficient.   

Comparisons of size and weight  

The mean size of lobsters and crabs sampled in both years were compared between the 

reserve and near control using one-way ANOVAs. In addition, their overall size distributions 

were compared for both years using a Kolmogorov-Smirnov (K-S) two sample test. K-S tests 

were also used to compare the size distributions of lobsters (greater than minimal legal landing 

size) between the reserve and far control, and between the near control and far control.   

The weight of lobsters was estimated by applying length-weight relationships inferred from 

another study conducted on lobsters off the west coast of Scotland (Leslie et al. 2006). The 

equation used depended on whether lobsters were male or female: 

Weight of male lobster (g) =0.0022 x length2.7416 

Weight of female lobster (g) =0.0016 x length2.8134 

In order to explore the weight of lobster caught per pot, Weight Per Unit Effort (WPUE) was 

then calculated using the following equation: 
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WPUE  g  = 
Total weight of lobster in      

Number of pots in      
 

The WPUE of lobster was compared between the reserve and near control for both years using 

one-way ANOVAs. The mean WPUE of lobsters was then calculated for all sites 0 km, 0.5 km, 1 

km, and 1.5 km away from the marine reserve. This data was then plotted against distance 

utilising error bars of ±1 Standard Error (SE) and fitted with a polynomial trend line. Trends 

were tested for significance by calculating the Pearson product-moment correlation 

coefficient. Distances greater than 1.5 km could not be used as these data were collected 

during the fishing observations. Fishing observations were bias in that they only measured the 

lengths of legally sized lobsters.  

Comparisons of gender ratios and fecundity 

A Pearson chi-squared (χ2) test was used to determine if the frequency of male and female 

lobsters within the reserve and near controls differed from an equal 1:1 male/female ratio. 

The same test was then used to see if the frequency of male and female lobsters significantly 

differed between the reserve and near control sites for both years. Lastly, the test was utilised 

to determine if the frequency of berried and non-berried females differed from the reserve 

and near control sites. For any instances where expected values were less than five, Fisher’s 

exact test was used instead of Pearson chi-squared to handle the low sample size (Dytham 

1999).   

Similar to the calculations of WPUE, fecundity-length relationships inferred by a study on 

European lobsters in southwest Scotland (Lizárraga-Cubedo et al. 2003) were used to estimate 

the potential reproductive output of each female lobster caught in this study: 

Potential reproductive output = (1.55.4 x length) - 10286 
                           (number of eggs per female) 

The mean potential reproductive output per female was then compared between the reserve 

and near control for both years using a Mann–Whitney–Wilcoxon test. Again, data collected 

from the fishing observations could not be used.    

Investigating lobster growth and movements 

Differences in size between tagging and recapture were used to investigate the growth of 

lobsters in and outside the reserve. The absolute minimum distance travelled by recaptured 

tagged lobsters was calculated in ArcGIS 10.1. Differences in the distance travelled by lobsters 
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between the reserve and outside were tested for significance using a Mann–Whitney–

Wilcoxon test. Although 55 brown crabs were tagged in 2012, none have been recaptured to 

date. Therefore analysis of tagged brown crabs was not possible. 

5.4. Results 

5.4.1. Lobster catch rates  

In 2012, the mean CPUE of lobster was 1.33 (±0.16 SE) and 1.3 (±0.16 SE) in the reserve and 

near control respectively, and was not found to significantly differ (Mann-Whitney: U = 132, N 

= 32, P > 0.05). However, surveys conducted the following year saw the CPUE of lobster within 

the reserve increase to 1.65 (±0.11 SE) and decrease in the near control to 1.23 (±0.15 SE). This 

difference of 34.2% (Fig 2a) was statistically significant (Mann-Whitney: U = 100, N = 36, P < 

0.05). The differences observed in 2013 became even more apparent when data were split 

between legal and sub-legal sized individuals. In 2013, the CPUE of legal sized lobsters was 

1.11 (±0.1 SE) and 0.5 (±0.1 SE) in the reserve and near control respectively. This difference of 

188.9% (Fig 2b) was also found to be significant (Mann-Whitney: U = 98, N = 36, P < 0.05). In 

contrast, there was no difference in the CPUE of sub-legal sized lobsters in either 2012 (Mann-

Whitney: U = 130.1, N = 32, P > 0.05) or 2013 (Mann-Whitney: U = 89, N = 39, P > 0.05). 

CPUE data from the far control sites suggested that the differences observed in lobster CPUE 

were not restricted to areas just outside the boundaries of the marine reserve. In 2013, the 

CPUE of legal sized lobsters was 180.5% greater within the reserve than that observed in far 

control sites (mean values displayed in Fig 3). This difference was found to be significant 

(Mann-Whitney: U = 149.5, N = 57, P < 0.05). In contrast, there was no difference in CPUE 

between near control and far control sites (Mann-Whitney: U = 243, N = 55, P > 0.05).  

 



147 
 

 
Figure 2. The mean catch per unit effort (no. lobsters / pot) of (a) all lobsters and (b) legal sized 
lobsters only within the fully protected marine reserve and near control across the two year 
study period. Error bars represent ±1 SE.  

 

Figure 3. The mean catch per unit effort (CPUE) of legal sized lobsters in the fully protected 
marine reserve, and far and near controls in 2013. Error bars represent ±1 SE. Numbers within 
the bars represent the mean value of CPUE.  

Plotting the mean CPUE of lobsters combined for both years against distance from the 

boundaries of the marine reserve revealed strong spatial interactions. It was found that the 

CPUE of lobsters declined with increasing distance from the marine reserve (Fig 4a). Sites 

within the marine reserve supported an average CPUE 42.1% greater than sites located at a 

distance of 20 km away. This negative relationship was found to be significant (Pearson 

Correlation; N = 125, R = -0.2, P < 0.05). Again, restricting the dataset to just lobsters of legal 

landing size made these trends even more pronounced (Fig 4b), with sites within the reserve 

supporting CPUE values 156.8% greater than sites 20 km away. This negative relationship was 

also found to be significant (Pearson Correlation; N = 126, R = -0.34, P < 0.05). 
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Figure 4. Mean CPUE of (a) all lobsters and (b) legal sized lobsters for the years 2012 and 2013 
combined plotted against distance from the boundaries of the fully protected marine reserve. 
A distance of 0 represents those sites located within the marine reserve. Error bars represent 
±1 SE. 

5.4.2. Lobster size and weight 

The mean size of lobsters was significantly greater within the marine reserve than on near 

control sites for both years. Lobsters were on average 5.9 mm larger in 2012 (ANOVA, F(1,198) = 

9.06, P < 0.05) and 7.3mm larger in 2013 (ANOVA, F(1,262) = 25.6, P < 0.05). Comparing the 

overall size distribution for lobster between the two treatments also revealed lobster 

populations within the reserve to be composed of more large individuals (Fig 5). In fact, large 

lobsters greater than 111 mm were entirely absent from near control sites in both years. 

Consequently, the size distribution of lobsters within the reserve significantly differed from 

both control sites, whereas no difference was detected between the near and far control sites 

(Table 1).  

In 2012, the mean WPUE did not differ between the reserve and near control (ANOVA, F(1,32) = 

0.45, P > 0.05). However, the following year saw WPUE increase within the reserve (mean 

values displayed in Fig 6) to become 45% greater within the reserve than near control sites 

(ANOVA, F(1,36) = 12.29, P < 0.05). Similar to CPUE, it was found that WPUE significantly 

declined with increasing distance (Fig 7) from the boundaries of the marine reserve (Pearson 

Correlation; N = 78, R = -0.57, P < 0.05). On average, sites within the reserve provided over 250 

g (± 77 SE) more lobster caught per pot than sites 1.5 km away.  

 

0 

0.4 

0.8 

1.2 

1.6 

0 5 10 15 20 

C
P

U
E 

Distance (km) 

a 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 

C
P

U
E 

Distance (km) 

b 



149 
 

Table 1. Outputs from the Kolmogorov–Smirnov (K–S) 2 sample tests used to compare the size 
distributions (% composition) of lobster populations in the fully protected marine reserve and 
near and far control sites. Tests involving far control sites are restricted to lobsters above 
minimum legal landing size. Significant terms are denoted by a (*).  

Year Test N KS-Z P 

2012 Near control & Reserve  108 & 90 1.57 *  0.014 

2013 Near control & Reserve  157 & 105 2.12 *>0.001 

2013 Near control & Far control   103 & 42 0.73      0.66 

2013    Far control & Reserve 105 & 103 1.88 *>0.001 

 

 

 

Figure 5. The size structure of lobsters sampled within the fully protected marine reserve and 
near control sites across the two year study period. The number (N) of individuals sampled 
from each population is available in Table 1. 
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Figure 6. The mean weight per unit effort (WPUE) of lobster caught within the fully protected 
marine reserve and near control in 2012 and 2013. Error bars represent ±1SE. Numbers within 
the bars represent the mean value of WPUE.  

 

Figure 7. The mean estimated weight per unit effort (WPUE) for the years 2012 and 2013 
combined, plotted against distance from the boundaries of the fully protected marine reserve. 
A distance of 0 represents those sites located within the marine reserve. Error bars represent 
±1 SE. 

5.4.3. Lobster gender ratios and fecundity 

In both the reserve and near control sites across both years, the frequency of male and female 

lobsters significantly differed from an equal 1:1 male/female-ratio, with male lobsters being 

significantly more abundant than females across all groups (Table 2). Further tests revealed no 

significant difference in the frequency of male and female lobsters between the reserve and 

near control sites (Table 3). However, berried lobsters were found to be significantly more 

abundant within the reserve. Combining data across both years, the ratio of berried to non-

berried females was 1:21 in near control sites, whereas the ratio of berried to non-berried 
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females within the reserve 3:10. This meant the frequency of berried lobsters was 3.5 times 

greater within the reserve than outside in 2012, and 5.5 times greater in 2013. In addition, the 

mean potential reproductive output per female lobster was 27.3% (1.3 times) greater within 

the marine reserve than near control sites in 2013, but this was not statistically significant 

(Mann-Whitney: U = 149.5, N = 57, P > 0.05). Therefore, the 2.67 km2 marine reserve had a 

potential egg output equivalent to an unprotected area of 19.1 km2 (2.67 x 5.5 x 1.3).        

Table 2. Outputs from Pearson chi-squared tests used to compare frequencies of male and 
female lobsters from an expected male/female ratio of 1:1. Significant terms denoted by a (*). 

  Male Female   

Year Group Observed Expected Observed Expected χ2 P 

2012 
Reserve 62 52 42 52 3.84 *0.05 

Near control 75 53 31 53 18.64 *<0.001 

 
       

2013 
Reserve 26 22 18 22 1.45 *0.04 

Near control 100 78.5 57 78.5 11.77 *<0.001 

 

Table 3. Outputs from Pearson chi-squared tests used to compare the frequency of berried 
and non-berried female lobsters within the fully protected marine reserve and near control 
sites. Significant terms are denoted by a (*). One test, denoted by a (+), had expected counts 
less than 5 and therefore Fishers Exact test was used instead.   

Year Gender Test Reserve Near control χ2 P 

2012 

Male 
Observed 75 62 

2.872 0.92 
Expected 69.2 67.8 

Female 
Observed 31 42 

Expected 36.8 36.2 

2013 

Male 
Observed 100 26 

0.311 0.57 
Expected 98.4 27.6 

Female 
Observed 57 18 

Expected 58.6 16.4 

2012 

Non-berried 
Observed 24 40 

5.239 *0.03+ 
Expected 27.2 36.8 

Berried 
Observed 7 2 

Expected 3.8 5.2 

2013 

Non-berried 
Observed 49 44 

4.055 *0.04 
Expected 52.3 40.7 

Berried 
Observed 10 2 

Expected 6.7 5.3 
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5.4.4. Crustacean growth and movements  

In 2012, a total of 206 lobsters were tagged, 104 from inside the reserve and 102 from the 

near control. In 2013, a total of 233 lobsters were tagged, 130 from the reserve and 103 from 

the near control. In the 12 month period following the August 2012 surveys, a total of 29 

recaptures were recorded. Eleven of these recaptures were reported from local fishermen. 

These recaptures comprised of 27 unique individuals, representing a recapture rate of 6.12%. 

Only 8 lobsters had moulted and grown since tagging. These grew an average of 1.83 mm per 

month (±0.2 SE) and had all originated from within the reserve. Given the low numbers of 

moulted individuals (and that they all came from inside the reserve) it was not viable to 

conduct a more detailed analysis of these growth data.  

Lobsters within the reserve displayed higher levels of site fidelity, moving an average distance 

of 0.4 km (±0.2 SE) over an approximate period of one year, compared to 1.2 km outside (±0.5 

SE). However, these differences were not found to be significant (Mann-Whitney: U = 100, N = 

27, P > 0.05). There was some evidence of spillover occurring in Lamlash Bay. Two lobsters had 

moved from within the reserve to the near control, representing a spillover rate of 0.85%. 

Conversely, two lobsters originating from the near control sites had moved into the reserve, 

representing a net movement rate of 0. No recaptures of brown crab were made.  

5.4.5. Catch rates and size of other commercially important crustaceans  

In contrast to the CPUE of lobster, the CPUE of other commercially important crustaceans 

declined within the reserve over the two year study period. In 2012, the mean CPUE of brown 

crab was 0.28 (±0.01 SE) and 0.33 (±0.01 SE) in and outside the reserve respectively. This 

difference was not significant (Mann-Whitney: U = 150.5, N = 32, P > 0.05). However, in 2013 

CPUE had declined within the reserve by 49% and increased outside by 62.5%. Consequently, 

the CPUE of brown crab was 0.15 (±0.14 SE) and 0.53 (±0.15 SE) in and outside the reserve 

respectively. This difference was significant (Mann-Whitney: U = 80.5, N = 36, P < 0.05).  

In contrast, the CPUE of velvet crabs in 2012 was 1.45 (±0.48 SE) and 0.51 (±0.14 SE) in the 

reserve and near control respectively, a significant difference of 200% (Mann-Whitney: U = 58, 

N = 32, P < 0.05). In 2013, CPUE declined by 87% within the reserve and increased outside by 

45.1%, resulting in a CPUE of 0.22 (±0.2 SE) and 0.74 (±0.32 SE) in the reserve and near control 

respectively. This difference was not significant (Mann-Whitney: U = 136, N = 36, P > 0.05). 

Overall, the CPUE crabs (velvet and brown crabs) and lobsters were found to be significantly 

negatively correlated (Pearson Correlation; N = 68, R = -0.4, P < 0.05). The size distributions of 
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velvet (Fig 8) and brown crabs (Fig 9) did not differ between the reserve and near control for 

all years (Table 4).  

 

 

Figure 8. The size structure of velvet crabs sampled within the fully protected marine reserve 
and near control sites across the two year study period. The number (N) of individuals sampled 
from each population is available in Table 4. 

Table 4. Outputs from the Kolmogorov–Smirnov (K–S) 2 sample tests used to compare the size 
distributions (% composition) of crab populations in the fully protected marine reserve and 
near control sites. Significant terms are denoted by a (*).  

Year Species Reserve (N) Near control (N) KS-Z P 

2012 
Brown crab 29 26 0.48 0.98 

Velvet crab 141 38 0.55 0.93 

2013 
Brown crab 14 45 0.74 0.65 

Velvet crab 21 63 1.01 0.26 
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Figure 9. The size structure of brown crabs sampled within the fully protected marine reserve 
and near control sites across the two year study period. The number (N) of individuals sampled 
from each population is available in Table 4. 

5.5. Discussion 

This study provides evidence that, after four years of protection, Lamlash Bay Marine Reserve 

is potentially benefitting commercially important populations of European lobster. Lobsters 

were significantly larger within the reserve than on neighbouring fishing grounds during both 

years of study. In fact, large lobsters (> 111 mm) were entirely absent outside the reserve, 

meaning individuals were on average 5.9 mm larger within the reserve in 2012, and 7.3 mm 

larger in 2013. This trend of increased body size within Lamlash Bay reserve is consistent with 

other studies (Hoskin et al. 2011; Moland et al. 2013a) and supports that individuals located 

within the boundaries of MPAs experience increased survivorship, owing to the cessation of 

fishing. As egg production in lobsters is a function of population size, maturity, fecundity and 

body size, the greater abundance of larger-bodied lobsters within the reserve should translate 

to higher reproductive output and recruitment both within the reserve, and to surrounding 

areas (Pelc et al. 2010). Corresponding with this, size-fecundity relationships suggested that 
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the mean potential reproductive output per female lobster (in terms of number of eggs) was 

27.3% higher within the reserve than outside by 2013. I also found the frequency of berried 

female lobsters within the reserve to be 5.5 times greater than outside in 2013. Taking into 

account the greater frequency of berried lobsters and reproductive output suggested that the 

2.67 km2 marine reserve had a potential egg output equivalent to an unprotected area of 19.1 

km2. These results support the idea that MPAs can contribute disproportionally to recruitment 

in relation to the actual size of area they protect (Beck et al. 2001; Gibb et al. 2007; Laurel et 

al. 2009).  

I found no difference in the sex ratios of lobster between the reserve and outside, meaning 

that differences in gender ratios were not likely responsible for the higher abundances of 

berried lobster recorded within the reserve. Therefore, it might be related to the greater 

abundance of large lobsters within the boundaries of the reserve. To explain, female lobsters 

reach sexual maturity at approximately 77 mm in size, or 4-12 years old in age (Simpson 1961; 

Barreto & Bailey 2013). As large-bodied adults were less abundant outside the reserve it is 

highly likely that sexually mature, berried female lobsters were equally less abundant. Added 

to this, berried female lobsters tend to exhibit less mobility and therefore lower catchability 

than that of unberried females (Agnalt et al. 2007) further lowering the probability of catching 

berried lobsters outside the reserve. Government reports indicate male and female lobsters 

are generally landed in equal proportions in Scotland (Mill et al. 2009) whereas I caught 

significantly more males than females. Again, this could be explained by the lower catchability 

of berried lobsters which would reduce the number of females caught both within and outside 

the reserve. Whatever the reason for the trend, it has been legal to land berried lobsters in the 

UK since 1966 (Bennet & Edwards 1981), meaning the marine reserve should act as a safe 

haven for those sexually mature lobsters within its boundaries allowing them to contribute to 

recruitment.    

In addition to greater reproductive output, catch rates of lobster were 34.2% higher within the 

reserve than on sites located directly outside its boundaries in 2013. This difference increased 

to 188.9% when I considered just legal sized lobsters, reflecting the greater abundance of large 

lobsters within the reserve. Similar differences were observed between the reserve and 

control sites located 10-20 km away, suggesting these differences were not restricted to areas 

just outside the boundaries of the marine reserve. Greater levels of CPUE imply lobster density 

had increased within the reserve. However, as lobsters are solitary, territorial animals, they are 

known to fight each other when in close proximity (Debuse et al. 1999; Williams et al. 2006). 
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Therefore, an effective way for lobsters to avoid intraspecific competition would be to move 

outside the boundaries of the reserve where lobster densities are lower. It is therefore quite 

plausible that the spillover of individuals from within the reserve to neighbouring grounds is 

occurring. Additionally, as large lobsters were more abundant within the reserve, we can 

expect a greater proportion of juvenile lobsters to be displaced by territorial disputes, meaning 

lobster size should decrease with increasing distance from the reserve (Follesa et al. 2009). In 

support of these two theories, I found lobster CPUE to gradually decline with distance from the 

reserve, and that this declining trend was substantially stronger for legal sized lobster. In fact, 

the CPUE of legal sized lobster within the reserve was 156.5% greater than sample sites 

located 20 km away. Similarly, the weight of lobster caught (indicative of size and abundance) 

also significantly declined with distance from the reserve. Models and empirical evidence 

suggest that, as CPUE and WPUE formed gradients in the form of negatively sloping curves, 

these trends are likely to be evidence of spillover (Kellner et al. 2007). However, this assumes 

that levels of fishing mortality are consistent outside the reserve.  

Data from our tagging study confirmed that spillover had occurred in Lamlash Bay, as has been 

observed for lobsters in several other studies of MPAs (Díaz et al. 2011; Goñi et al, 2006, 

2010), but that these spillover events had been offset by lobsters migrating from outside the 

reserve to inside. However, our recapture rates were too low to draw any solid conclusions on 

spillover. Overall, a total of 441 lobsters were tagged in this study, of which only 29 were 

recaptured. Of these 29 lobsters, two had migrated from within the boundaries of the reserve 

to outside. However, two lobsters originating from outside had also migrated into the reserve, 

representing an overall net movement of 0. Hence, the low rates of recapture made it difficult 

to make any strong conclusions about spillover and movement of lobsters in Lamlash Bay. 

Similarly, of the 29 recaptured lobsters, only 8 had exhibited any growth, all of which were 

tagged and recaptured within the reserve, which made it impossible to compare growth rates 

between the reserve and outside.  

The 34.2% difference in lobster CPUE between in and outside Lamlash Bay Marine Reserve is 

considerably less than those documented by other studies of MPAs. In the Lundy NTZ, which is 

only slightly larger than the one in Lamlash Bay, the CPUE of European lobsters was 171% 

higher within the reserve than control sites after just four years of protection (Hoskin et al. 

2011). Likewise, several MPAs off the coast of Norway, all similar in size to the Lamlash Bay 

Marine Reserve, were shown to increase lobster CPUE by 245%, again after just four years of 

protection (Moland et al. 2013a). A limited amount of suitable lobster habitat within the 
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Lamlash Bay Marine Reserve may be responsible for the smaller differences in CPUE observed 

by this study. To explain, a pilot study was conducted on the northern shore of the reserve in 

2012 and resulted in the capture of zero lobsters. SCUBA surveys (Howarth et al. 2011) 

revealed this area to differ from the other sampling sites used in this study, in that it was 

composed primarily of muddy sand and shell. As already mentioned, our pilot studies revealed 

that the rocky and boulder habitats preferred by lobsters (Mehrtens et al. 2005; Mill et al. 

2009; Barreto & Bailey 2013) were only present along the southern shore of the reserve. In 

effect, this reduces the area within the reserve available for lobster habitation, thereby 

limiting the extent of any benefits the reserve can bestow on lobsters. The smaller area 

available to lobsters within the reserve is also problematic because the reserve can only 

protect those individuals that remain in its boundaries. Although several studies have shown 

that 95% of lobsters move less than 4 km in a single year (Agnalt et al. 2007; Galparsoro et al. 

2009; Moland & Olsen 2011), such movements would be enough to place the lobsters outside 

the boundaries of Lamlash Bay Marine Reserve where they may then be captured by fishing 

gears. The small size of Lamlash Bay Marine reserve may also be why no tagged brown crabs 

were recaptured during this study period. Brown crabs are known to take extensive seasonal 

migrations (Barreto & Bailey 2013) and have been documented to travel over 245 km over a 

period of 2-4 years (Fahy & Carroll, 2009). Considering the small size of the Lamlash Bay 

Marine Reserve, it is likely that these species receive minimal, if any protection in the long 

term. Hence, marine reserves must be well designed; incorporating suitable habitat and being 

of adequate size to protect species of interest (see Edgar et al. 2014).  

In contrast to observing greater catch rates of lobster in 2013, there was no difference 

between the reserve and outside in 2012. Due to the lack of data available prior to the 

establishment of the reserve, explaining the sudden increase in 2013 is difficult. Additional 

years of monitoring might reveal that lobster abundance in the area is highly variable, 

fluctuating naturally from year to year. Or further monitoring might reveal that lobster 

abundance is increasing every year, and that in 2013, the abundance of lobster within the 

reserve finally passed that of outside. Either way, this study is limited by only having two years 

of data. Our surveys should therefore be repeated for at least another two years to determine 

whether the trends I observed are continuing, or simply fluctuating.  

Analyses of CPUE and WPUE suggest that increasing densities of lobster within the reserve may 

be forcing juvenile lobsters to areas outside the reserve where densities are lower. If true, the 

same interaction may be occurring between lobsters and crabs. During the two year study 
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period, the abundance of legal sized lobsters increased by 188.9% within the reserve 

compared to outside. During the same period, the abundance of brown and velvet crab 

declined steeply. Aggression, predation and territorial behaviour between adult lobsters and 

crabs may be responsible for these contrasting trends as adult lobsters have been shown to 

predate on smaller crustaceans and compete aggressively with larger individuals for food 

(Cobb & Castro 2006; Williams et al. 2006). An alternative explanation is that the trend is an 

artefact of the sampling method. In locations where pots were catching increasing numbers of 

lobsters, fear of predation may have reduced velvet and brown crabs’ willingness to enter pots 

and/or made them more likely to exit if already inside (Hoskin et al. 2011). Either response 

would result in a false appearance of declining abundance of crabs in areas with high 

abundance of lobsters. However, I believe this is unlikely as lobster and crabs were frequently 

caught in the same pot, and showed no evidence of predation between the two (although 

there was evidence of fighting/cannibalism between lobsters).  

In summary, this study has provided several lines of evidence that the fully protected marine 

reserve in Lamlash Bay may be benefitting commercially important populations of European 

lobster. Firstly, a greater number of lobsters appear to be reaching larger sizes within the 

reserve, increasing their fecundity and reproductive output. I also observed that catch rates of 

lobster were higher within the reserve, and that catches decreased with increasing distance 

from its boundaries, possibly indicating spillover. However, as there are  no data available prior 

to protection, I could not conclude that protection was responsible for these trends. Further 

years of monitoring will help resolve this issue. Overall, this study is consistent with the 

hypothesis that marine reserves can act as a safe haven for lobsters within its boundaries, 

allowing them to reach sexual maturity, greater fecundity and reach larger sizes.  
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Chapter 6. Sessile and mobile components of a benthic 

ecosystem display mixed trends within a temperate marine 

reserve 

 

6.1. Preface 

Fishing can have a wide range of impacts on marine ecosystems. Namely, it can damage 

seafloor habitats and reduce the abundance of target and non-target species (Bradshaw et al. 

2001; Jenkins et al. 2001). Since closing areas to fishing is the surest way of protecting marine 

ecosystems from the physical impacts of fishing gears, marine reserves should provide the best 

management tool available for encouraging the recovery of fish and benthic communities. 

However, the use of marine reserves as both a fisheries and conservation tool remains highly 

debated (Kaiser, 2004, 2005; Jones 2007; Sciberras et al., 2013).  

In this chapter I investigate differences in benthic and fish communities between the Lamlash 

Bay fully protected marine reserve and surrounding fishing grounds. This was achieved by 

conducting a series of quantitative diver, photo and video surveys over a four-year period.  

This chapter has been written in the style of Conservation Biology.  
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Sessile and mobile components of a benthic ecosystem display 

mixed trends within a temperate marine reserve 
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Abstract: This study investigated the changes within a recently established, fully protected 

marine reserve on benthic communities and fish populations in Lamlash Bay, Isle of Arran, 

United Kingdom over a four year period. A combination of photo and diver surveys found live 

maerl, macroalgae, sponges, hydroids, feather stars and eyelash worms to be significantly 

more abundant within the marine reserve than on surrounding fishing grounds. Likewise, the 

overall composition of epifaunal communities ins and outside the reserve was significantly 

different. Both results are consistent with the hypothesis that protecting areas from fishing can 

encourage seafloor habitats to recover. In addition, the greater abundance of complex habitats 

within the reserve appeared to providing nursery habitat for juvenile cod and scallops. In 

contrast, there was little difference in the abundance of mobile benthic fauna between the 

reserve and outside. Similarly, the use of baited underwater video cameras revealed no 

difference in the abundance and size of fish between the reserve and outside. Limited recovery 

of these ecosystem components may be due to the relatively small size (2.67 km2) and young 

age of the reserve (5 years), both of which might limit the extent of any benefits afforded to 

mobile fauna and fish communities. Overall, this study suggests that fully protected marine 

reserves can encourage seafloor habitats to recover, which in turn, can create a number of 

benefits that flow back to species of commercial importance. This study therefore emphasizes 

the important role marine reserves can play in the ecosystem-based management of fisheries.  

 

Keywords: Recovery, benthos, megafauna, epifauna, nursery habitat, marine protected area, 

ecosystem based fishery management 
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Introduction 

A recent surge in environmentally focused films, documentaries and campaigns have caused 

the environmental impacts associated with exploitation of marine resources to come under 

close scrutiny by scientists, policy makers and the general public (Stewart 2007; Clover 2009; 

Psihoyos 2009; Channel 4 2010, 2013). Closing areas to some or all types of fishing through the 

implementation of marine protected areas (MPAs) and marine reserves is becoming a common 

approach to conserve marine biodiversity, ecosystem services and fisheries resources (Wood 

et al. 2008; CBD 2011; Harrop 2011; Wood 2011; Fenberg et al. 2012; Metcalfe et al. 2013). 

With the global coverage of MPAs set to increase rapidly over the next decade (CBD 2011), the 

growing use of MPAs as a management tool has co-occurred with a push towards “ecosystem-

based fishery management”; with many scientists arguing that we need to shift away from 

traditional single-species management, to more holistic approaches where management 

priorities begin with the ecosystem rather than the target species (Pikitch et al. 2004; Zhou et 

al. 2010). To help guide these changes in management, it is important to better understand 

how MPAs promote the process of recovery within marine ecosystems (Van Rein et al. 2009; 

Götz et al. 2013).  

Of all fishing methods, the use of mobile fishing gears such as dredges and trawls is considered 

to be the most damaging to marine ecosystems (Collie et al. 2000; Kaiser et al. 2006). This is 

because they cause substantial physical disruption of seafloor habitats by ploughing sediments 

and fragmenting the biogenic structure of epifaunal organisms such as hydroids, bryozoans 

and maerl beds (Eleftheriou & Robertson 1992; Dayton et al. 1995; Jennings & Kaiser 1998; 

Kaiser et al. 2000; Jennings et al. 2001). However, these organisms are functionally important 

to marine ecosystems as they provide an element of 3-dimensional structure to the seafloor. 

In doing so, they supply important refuges for small / juvenile fish from predators and 

unfavourable environmental conditions (Monteiro et al. 2002; Ryer et al. 2004; Cacabelos et al. 

2010), represent important feeding sites for fish and invertebrates (Bradshaw et al. 2003; 

Warren et al. 2010) and provide essential habitat for the settlement of scallop spat and a range 

of other organisms, including the settlement of further epifauna (Bradshaw et al. 2001; 

Howarth et al. 2011). Such locations are therefore often referred to as “nursery habitats” as 

they tend to be highly productive, support high levels of juvenile density, growth and survival, 

and contribute disproportionally to the production of adult recruits (Beck et al. 2001; Gibb et 

al. 2007; Laurel et al. 2009). Commonly cited nursery habitats include maerl beds (Kamenos et 

al. 2004b, 2004a; Hall-Spencer et al. 2006), seagrass beds (Warren et al. 2010) and areas of 

dense macrophytes / macroalgae (Christie et al. 2007; Cacabelos et al. 2010; Howarth et al. 
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2011), all of which have been shown to harbour high densities of commercially exploited 

species such as spider crabs, Maja squinado, juvenile cod, Gadus morhua, edible crab, Cancer 

pagurus, and edible sea urchins, Echinus esculentus (see references above). Consequently, the 

damage sustained by nursery habitats from fishing gears can dramatically reduce an area’s 

capacity to support biodiversity and negatively impact the recruitment of commercially 

important species (Collie et al. 1997; Bradshaw et al. 2001, 2003; Kaiser 2005).  

As well as damaging seafloor habitats, mobile fishing gears often capture a wide variety of 

non-target organisms, which can include species targeted by other fisheries (Bradshaw et al. 

2001; Craven et al. 2013). The majority are discarded damaged, dying or dead (Beukers-

Stewart et al. 2001; Jenkins et al. 2001). In addition to by-catch, a large proportion of 

organisms are killed or damaged by passing gears but remain on the seafloor uncaptured 

(Jenkins et al. 2001). Both of these impacts can cause a decline in the abundance of target and 

non-target organisms (Currie & Parry 1996; Bradshaw et al. 2001; Lambert et al. 2011). 

Paradoxically, some species are attracted to areas that have been fished and consequently 

increase in abundance. In disturbing the sediment, damaging / killing organisms and 

generating by-catch / discards, the local density of scavengers and predators can increase by 

up to 200 times in fished areas (Veale et al. 2000; Kaiser & Hiddink 2007), elevating predation 

pressure (Ramsay & Kaiser 1998), particularly on injured individuals  (Veale et al. 2000; Jenkins 

et al. 2004). However, due to the dispersion of odour plumes, resettlement of sediment and 

predation of damaged organisms, the high densities of scavengers gathering at fishing grounds 

is likely to be a relatively short-lived event. Then again, Bradshaw et al. (2002) found that the 

abundance of mobile, robust, and scavenging invertebrate species in the Irish Sea had 

increased over a 60 year period of increasing fishing pressure, while slow-moving or sessile, 

fragile taxa had decreased. Likewise, a study in the Isle of Man found the density of scavenging 

dog fish to substantially increase over a 14 year period, whereas the density of slow-growing 

yet commercially important monkfish decreased (Craven et al. 2013).  

It is widely known that fishing can cause the structure and function of marine ecosystems to 

change. The degree of this change tends to vary with different seabed types, levels of 

background disturbance, local hydrography, fishing intensity and the characteristics of the 

ecological community (Kaiser et al. 1996; Auster et al. 1996; Bradshaw et al. 2001). In general, 

the majority of studies report that ecological communities in areas subject to high levels of 

fishing effort shift from one state to another, going from diverse communities containing 

fragile and slow growing organisms, to ones dominated by a handful of opportunistic, fast 
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growing species that are comparatively much more resistant to fishing disturbance (Currie & 

Parry 1996; Bradshaw et al. 2001; Lambert et al. 2011; Brown 2013; Howarth et al. 2013). 

Since closing areas to fishing is the surest way of protecting marine ecosystems from the 

physical impacts of fishing gears (Beukers-Stewart et al. 2005; Roberts et al. 2005), MPAs 

should provide the best management tool available for encouraging their recovery. However, 

the implementation of MPAs is still at a very early stage in most parts of the world, including 

the United Kingdom (UK - Fenberg et al. 2012; Metcalfe et al. 2013) and their effectiveness as a 

fishery management tool is highly debated (Boersma and Parrish, 1999; Jones, 2007; Kaiser, 

2004, 2005; Sciberras et al., 2013). This is because establishing MPAs can displace fishing effort 

to surrounding areas (Bohnsack 2000; Kaiser 2005), which can cause wider environmental 

damage (Dinmore et al. 2003) and reduce profits through the loss of fishing grounds 

(Rassweiler et al. 2012). Hence, MPAs only truly yield fishery benefits when these negative 

effects are adequately offset by increased recruitment and landings.  

In September 2008, Scotland’s first fully protected marine reserve was established in Lamlash 

Bay, Isle of Arran, UK, prohibiting all fishing within the reserve under the Inshore Fishing 

(Scotland) Act of 1984 (Axelsson et al. 2009). The Firth of Clyde, in which the Isle of Arran sits, 

is known to be one of the most degraded marine environments in the UK, primarily due to 

over a century of intensive fisheries exploitation (Thurstan & Roberts 2010; Howarth et al. 

2013). The marine reserve was therefore passed by Scottish parliament under the rationale 

that the reduction in fishing pressure should help regenerate the local marine environment 

and enhance commercial shellfish and fish populations. Hence, our study sought to test the 

hypotheses that: (1) the abundance of benthic and fish assemblages were higher within the 

reserve than outside; (2) fish were larger within the reserve; (3) fish assemblages were 

positively related to the abundance of complex habitat; and (4) complex habitats were more 

abundant within the reserve. This was achieved by conducting a series of quantitative diver 

visual, photo and video surveys within and outside the reserve over a four-year period.  

Methods 

Study Area 

We conducted our study in and around Lamlash Bay on the south-eastern shore of the Isle of 

Arran, off the west coast of Scotland in The Firth of Clyde. Lamlash Bay Marine Reserve covers 

2.67 km2 (Thurstan & Roberts 2010), with water depths ranging between 0 and 29 m below 

chart datum, but reaching as deep as 43 and 50 m outside to the east and the west of the 

reserve, respectively (Admiralty Chart 1864; Baxter et al. 2008). Previous surveys (Duncan 
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2003; Axelsson et al. 2009) indicated a seabed of mixed sediments (i.e. mud, sand and gravel 

with various proportions of shell) but that the central and southern regions of the bay tend to 

be characterised by softer sediment, mainly muddy sand. In addition, the area has long been 

identified as containing important maerl beds, although recent evidence points to 

deterioration in their health (Howarth et al. 2011). 

Unofficial observations made by the Community of Arran Seabed Trust (www.arrancoast.com) 

indicate fishing effort has been consistently low in unprotected parts of Lamlash Bay during 

recent years, averaging at 2-4 trawling / scallop vessels operating within the area per year 

since 2008. However, several static fishermen (i.e. employing fish pots) targeting lobster and 

crab routinely operate in the area, in addition to a small team of commercial scallop divers. 

Although these latter fishing methods cause little direct damage to the seafloor, they can alter 

ecosystems by removing large numbers of targeted species (Eno et al. 2001).   

Data collection 

Diver and Photo Transects 

We began monitoring Lamlash Bay in the summer of 2010 (see Howarth et al. 2011; Howarth 

et al. in review). Initially 40 sites were surveyed, half within the reserve and half outside 

(Figure 1). These surveys were then repeated and expanded in the summers of 2011, 2012 and 

2013 by adding more survey methods but reducing the number of study sites. Therefore, we 

surveyed 28 sites in 2011, 31 sites in 2012, and 32 sites in 2013. Again, sites were divided so 

that half fell within the boundaries of the marine reserve. Sites were chosen so that each one 

within the reserve could be paired with at least one other suitable control outside, based on 

similar depth and predominant substrate type (Appendix 1-4). Due to lack of data and prior 

knowledge of the area, the initial experimental design was relatively imbalanced. For example, 

12 deep muddy sand sites were surveyed outside the reserve in 2010 compared to just 6 

inside. However, this improved with every survey, and by 2012, our experimental design was 

balanced. Sites were limited to areas of the seabed shallow enough to remain within diver no 

decompression limits after a 25 minute survey (i.e. <30m depth). Surveys were also conducted 

parallel to depth contours to ensure the depth of a single survey did not change by more than 

3m.  

Transects were surveyed along a 50 m leaded line laid out straight across the seabed. 

Weighted anchors at each end held the line in place, in addition to two floating buoys which 

reached the surface. A team of two divers then made their way from one end to the other, 

http://www.arrancoast.com/


171 
 

recording the abundance of all megafauna (e.g. fish and crustaceans) encountered within 1.5 

m either side of the transect, the width of which was marked by a 3m long pole which the 

divers pushed ahead of themselves This gave a total survey area of 150 m2 for each dive 

transect. After a surface interval of approximately two hours, divers returned to the transect 

line and placed a 1 m2 quadrat parallel to the transect, but at a distance of 2 m from the leaded 

line, thereby ensuring the area about to be photographed had not been disturbed by the line 

or the previous survey. The quadrat was divided into four 0.25 m2 sub-quadrats which were 

photographed from directly overhead. This process was repeated every 5 m along the transect, 

giving a total of 40 images for each transect. Sub-quadrats were later combined for statistical 

analysis, giving a total of 10 quadrats for each transect.  

 

Figure 1. Site locations of dive transects for all years. Also displayed are the boundaries of the 
Lamlash Bay fully protected marine reserve. The inset shows the location of the Isle of Arran 
off the west coast of Scotland, United Kingdom.  
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Still Image Analysis 

Photoquadrats were analysed using the software Coral Point Count with Excel Extensions 

(CPCe) v 4.1 (Kohler & Gill 2006). The quadrat border was positioned and sized manually 

before overlaying 50 stratified points (10 rows x 5 columns containing 1 point each) which 

were randomly generated for every image. Any organism lying under a point was then 

identified to species level where possible. If there was no organism, the substrate type was 

identified instead (i.e. mud, pebble, cobble, boulder or detritus). Initial attempts used just 25 

points and 40 images but the seafloor within Lamlash Bay contained such a low proportion of 

benthic fauna that the likelihood of a randomly distributed point falling upon anything other 

than bare substrate was very low. Hence, the number of points was doubled and the number 

of images for each site halved.  

Baited Remote Underwater Video (BRUV) 

At the same time as the diver surveys, a BRUV was deployed at each site between the hours of 

09.00-14.00 for the surveys conducted in 2011, 2012 and 2013. For these, a video camera was 

fitted to one end of a commercial lobster pot frame and a porous bait box was fitted to the 

other. Two video lights provided lighting. Rope was spliced to all four corners of the frame and 

joined at the centre along with three cork floats to prevent the ropes from sinking into view of 

the camera. As baseline surveys in 2010 indicated that fish abundance was relatively low, 200g 

of coarsely cut mackerel was placed inside the bait box prior to deployment in order to attract 

fish from a wider area. Once recording began, a 40m long rope and surface marker buoy were 

attached to the frame and the BRUV was carefully lowered to the seafloor. The system’s 

negative buoyancy ensured the BRUV landed upright and remained in a stable position. After 

approximately one hour, the BRUV was hauled back to the boat, the bait replaced, and the 

BRUV was ready for redeployment at another site.  

Video Analysis 

To standardise video lengths, analysis began from two minutes after the BRUV landed on the 

seabed and terminated 60 minutes later. For each video the following variables were recorded 

for all fish: (i) identity and total number of species; (ii) total number of families; (iii) time of first 

appearance for each species; (iv) maximum number of individuals for each species observed 

within the same frame (MaxN). Due to the inability of an observer to recognise repeated 

entrances of the same individual, MaxN was used as an indiciator of abundance (Cappo et al. 

2004); (v) time of MaxN; and (vi) the body length (for fish) or carapace width (for crustaceans) 
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of all individuals at MaxN that faced side-on to the camera and were aligned between the two 

front posts of the BRUV frame. This was estimated by using 10 mm reference markers which 

were painted on the front frame of the BRUV.  

Data Analysis 

Benthic Epifauna 

Data on the percentage cover of epibenthic organisms were extracted from CPCe. These taxa 

included anemones (e.g. Ceriaanthus lloydi), soft corals (e.g. Alcyonium digitatum), hydroids 

(e.g. Nemertesia ramosa), sponges (e.g. Cliona celata), tunicates (e.g. Corella 

paralellogramma) and macroalgae (e.g. Laminaria hyperborea). The percentage of epifaunal 

taxa and bare substrate were tested for differences between treatments (i.e. in or outside the 

reserve) and years using simple line plots. Any trends were tested for significance with a two-

way Analysis of Variance (ANOVA) using treatment and year as factors. The DIVERSE function 

within the software package PRIMER v6 (Clarke & Gorley 2006) was then used to generate 

univariate measures of biodiversity such as total number of species, total number of 

individuals, Pielou’s evenness and Shannon’s biodiversity. Again, these were plotted in line 

graphs and any trends were tested using two-way ANOVA (as above).  

A resemblance matrix using the Bray-Curtis similarity measure (Bray & Curtis 1957) was 

created in PRIMER and a Permutational Multivariate Analysis of Variance (PERMANOVA+) was 

conducted to test for differences in epifaunal community composition. The analytical design 

had four factors: Year (fixed: 2011, 2012, 2013), Treatment (fixed: reserve, outside), Depth 

(fixed: shallow <15 m and deep >15 m), and Substrate (fixed: soft, maerl and hard). Soft 

substrates referred to muddy, sandy and gravelly seabeds, whilst hard substrates referred to 

sites containing cobbles and boulders. Each term in the analyses used 9999 permutations. Any 

significant multi-level interactions were further explored using PERMANOVA+ pairwise tests. 

PERMANOVA was considered to be an appropriate test as it is robust to datasets with many 

zeros, and allows the testing of interactions in complex multifactorial designs. It has significant 

advantages over conventional MANOVA in that it makes no assumptions about underlying 

data distributions and is robust to unbalanced survey designs, as is the case with this study 

(Anderson & Ter Braak 2003). Visualisation of the similarity matrices was achieved using non-

metric Multi-Dimensional Scaling (nMDS). Additionally, a Similarity Profile (SIMPROF) routine 

was used to highlight if any alternative a posteri groups existed within the data. Finally, a 

Similarity of Percentages (SIMPER) was performed to determine the contribution of individual 

species to the average dissimilarity between treatments. 
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Benthic Megafauna 

The total number of species, individuals, Pielou’s evenness and Shannon’s biodiversity of 

benthic megafauna observed during the diver transects were tested between treatments and 

years using line plots, and by using two-way ANOVAs if appropriate. In addition, the density of 

the 10 most abundant species was also investigated for differences between years and 

treatments by creating stacked bar charts and using two-way ANOVAs if appropriate. 

PERMANOVA+ was then used to test for differences in overall community composition using 

the same analytical design as before.  

Fish Assemblages 

The abundance of dog fish (Scyliorhinus canicula), gurnards (Family: Triglidae), flat fish (Family: 

Pleuronectidae), wrasse (Family: Labridae), gobies (Family: Gobiidae), cod and other gadoids 

(i.e. saithe - Pollachius virens, pollack - Pollachius pollachius, whiting - Merlangius merlangus, 

haddock - Melanogrammus aeglefinus, and poor cod - Trisopterus minutus) observed during 

the BRUV surveys were tested for differences between treatments and years using line graphs 

and two-way ANOVAs. Additionally, the total number of species, individuals, Pielou’s evenness 

and Shannon’s biodiversity were also tested in the same way. The mean size of fish were then 

combined across all years (due to small sample size) and plotted in bar charts. Any differences 

between treatments were tested for significance using one-way ANOVAs.  

To determine whether environmental and ecological data affected the distribution and 

abundance of cod and other gadoids, negative binomial Generalised Linear Models (GLM) 

were created. Predictor variables used in the GLMs were treatment, depth, the abundance of 

crustaceans and echinoderms, and the percentage cover of bare substrate, bryozoans, soft 

coral, hydroids, macroalgae, sponges, tunicates, and dead and live maerl. Before construction 

of a GLM, scatter plot and intercorrelation matrices (based upon Spearman’s rank correlation) 

were created to explore basic relationships and determine whether any variables were 

strongly intercorrelated (i.e. -0.7 ≥ r ≤ 0.7) as such variables would not be allowed together 

within a GLM (Crawley 2005). The percentage cover of macroalgae was found to be negatively 

intercorrelated with depth and the percentage cover of bare substrate. Therefore a total of 

four GLMs were constructed, two testing cod abundance (one including macroalgae and the 

other including bare substrate and depth) and two testing the abundance of other gadoids 

(same design as before). Backward-forward stepwise reductions were then conducted to 

create minimal adequate models. Diagnostic and Cleveland dotplots were then used to explore 

how well the models fitted the data and to identify any extreme outliers. Lastly, analyses of 

http://en.wikipedia.org/wiki/Triglidae
http://en.wikipedia.org/wiki/Pleuronectidae
http://en.wikipedia.org/wiki/Wrasse
http://en.wikipedia.org/wiki/Gobiidae
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deviance utilising Pearson’s Chi-square test (χ2) were conducted to determine if the reduced 

models accounted for significantly less variance than the full models.  

Results 

Composition of Benthic Epifauna 

A total of 77 different epibenthic species were recorded from the photoquadrat surveys. 

Overall, the mean number of species (Figure 2) was significantly greater within the reserve 

than surrounding areas (Table 1) as was the percentage cover of live maerl, sponges, hydroids, 

macroalgae and all epifaunal species combined. The percentage cover of these different taxa 

were found to be between 2 - 4 times greater within the reserve than in neighbouring fishing 

grounds. In many cases, their abundance within the reserve appeared to increase over the 

survey period but there was no significant interaction between year and protection across all 

taxa. In contrast to epibenthic abundance, the percentage cover of bare substrate was 

significantly lower within the reserve than outside. Two-way ANOVAs were not conducted for 

Pielou’s eveness, Shannon’s diversity index and the percentage cover of soft coral, anemones, 

bryozoans and tunicates, as line plots indicated no difference between the reserve and 

outside.  

PERMANOVA+ analysis revealed the composition of the epibenthic community to significantly 

differ between treatments, depth and year (Table 2). The interaction protection x depth was 

also found to be significant and subsequent pairwise testing showed that differences between 

the reserve and outside only existed for sites located at shallow depths. Exploring these 

differences further, nMDS of shallow sites in 2011 revealed substantial variation in community 

composition between the reserve and outside (Figure 3a). Consequently, SIMPROF could not 

distinguish samples from within and outside the reserve (P > 0.05) and clustered them all 

together. However, nMDS of shallow sites sampled in 2013 revealed that epibenthic 

communities located within the reserve had become comparatively more distinguishable from 

communities located outside (Figure 3b). Therefore, in contrast to 2011, SIMPROF detected 

statistical differences between treatments (P < 0.05) and clearly separated sites located within 

the reserve from sites located outside.  

SIMPER analysis also found strong differences between the reserve and outside (Table 3). Sites 

were characterised by a similar range of species, however sites within the reserve were 

characterised more strongly by bushy red seaweeds (Heterosiphonia plumose), kelps 

(Lamanaria saccharina and Lamanaria hyperborea), thin branching brown seaweeds, and 
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upright hydroids (Nemertesia antennia), whereas sites outside the reserve were characterised 

more strongly by red algal turf and burrowing anemones (Cerianthus lloydi). Overall, the 

reserve was characterised by 10 species, whilst sites outside the reserve were characterised by 

just 7, suggesting sites outside the reserve were dominated by a smaller set of species.  

Table 1. Two-way ANOVA comparing the total number of species and percentage cover by 
different epifaunal assemblages between the marine reserve and outside across the years 
2011-2013. Significant results are denoted by (*). 

Source Test SS df MS F P 

No of 
species 

Year 370.3 2 185.1 5.86 *0.004 

Protection 403.8 1 403.8 12.78 *0.001 

Year * Protection 60.2 2 30.1 0.95 0.39 

Residual 2558.3 81 31.5   

Total 
epifauna 

Year 7476.9 1 7476.9 14.40 0.381 

Protection 1012.7 2 506.3 0.97 *0.002 

Year * Protection 53.4 2 26.7 0.05 0.95 

Residual 42559.6 82 519   

Bare 
substrate 

Year 7037.5 1 7037.5 13.81 0.384 

Protection 986.6 2 493.3 0.96 *0.004 

Year * Protection 52.1 2 26.1 0.051 0.95 

Residual 41775.5 82 509.4   

Live 
maerl 

Year 11.1 1 11.1 5.77 0.859 

Protection 0.5 2 0.2 0.15 *0.019 

Year * Protection 0.9 2 0.4 0.24 0.783 

Residual 158.6 82 1.9   

Macro 
algae 

Year 3720.3 1 3720.3 7.9 0.852 

Protection 1507 2 75.3 0.16 *0.006 

Year * Protection 114.5 2 57.2 0.12 0.886 

Residual 38604.8 82 470.7 
  

Sponge 

Year 0.3 1 0.3 8.7 0.148 

Protection 0.1 2 0.07 1.95 *0.004 

Year * Protection 0.07 2 0.03 0.95 0.388 

Residual 3.2 82 0.03   

Hydroids 

Year 40.3 1 40.3 3.71 0.053 

Protection 66.3 2 33.1 3.05 *0.048 

Year * Protection 17.8 2 8.9 0.82 0.444 

Residual 891.8 82 10.8 
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Figure 2. The total number of species and percentage cover of the seafloor by different 
epifaunal assemblages recorded by photoquadrat surveys across three years. Error bars 
represent ±1 SE.  
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Table 2. Results from the PERMANOVA+ analysis of epibenthic community composition. a) 
Main test and b) pairwise testing for the interaction Protection x Depth. Pr = level of 
protection, De = depth, Ye = year, Su = substrate, Out = sites outside the reserve, Res = sites 
within the reserve.  

a)      

Source df SS MS F P 

Pr 1 7549.2 7549.2 3.28 *0.001 

De 1 26222 26222 11.4 *0.001 

Ye 2 11581 5790.3 2.51 *0.002 

Su 2 14321 4680.1 0.48 0.576 

PrxDe 1 7826.7 7826.7 3.4 *0.002 

PrxYe 2 5011.8 2505.9 1.08 0.356 

PrxSu 2 4625.1 2762.6 0.99 0.45 

DexYe 2 4505.1 2252.6 0.97 0.46 

DexSu 2 4115.1 2992.2 0.98 0.47 

YexDe 3 5175 1725.1 0.97 0.492 

YexSu 6 1031 1719.4 0.96 0.562 

b)  
Shallow 

 
Deep 

 

Groups t P t P  

      Out, Res 2.4 *0.001 1.09 0.285  

 

Table 3. Results from the SIMPER analysis of epibenthic communities sampled in shallow sites 
within and outside the marine reserve in 2013. This analysis was conducted after a 
PERMANOVA+ indicated an interaction between protection and depth (see Table 2).  

Treatment Taxon 
Average 

abundance 
% 

contribution 
Cumulative 

% 
Overall 

similarity 

      

Outside 
 

Red algal turf 5.36 30.13 30.13 

34.38 

Heterosiphonia japonica 3.85 20.85 50.98 

Cerianthus lloydi 4.43 15.45 66.44 

Filamentous brown seaweeds 2.49 12.31 78.74 

Laminaria saccharina 1.87 8.47 87.22 

Laminaria hyperborea 1.04 2.68 89.89 

Dark encrusting reds 2.07 1.92 91.81 

Reserve 

Heterosiphonia japonica  20.1 40.43 40.43 

42.26 

Filamentous brown seaweeds 7.24 16.11 56.54 

Laminaria saccharina  6.64 8.7 65.24 

Nemertesia antennia  7.17 5.78 71.02 

Heterosiphonia plumosa  4.98 4.87 75.88 

Laminaria hyperborea  3.42 3.94 79.82 

Dark encrusting reds 1.61 3.72 83.54 

Red algal turf 3.54 3.04 86.58 

Thin branched browns  2.99 2.85 89.43 

Cerianthus lloydi  3.94 2.22 91.64 
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Figure 3. nMDS plots illustrating similarities in epibenthic assemblages between shallow sites 
(< 15 m depth) within and outside the marine reserve sampled in 2011 (a) and 2013 (b).  

Composition of Benthic Megafauna 

A total of 50 different benthic megafaunal species were recorded from the dive transects. 

Overall, the 10 most abundant species in descending order were hermit crabs (Pagurus spp), 

feather stars (Crinoidea), harbour crabs (Liocarcinus depurator), king scallops (Pecten 

maximus), common starfish (Asterias rubens), parchment worms (Chaetopterus spp), queen 

scallops (Aequipecten opercularis), cushion stars (Porania pulivillus) and decorator crabs 

(Macropodia spp). Graphs were created to see how the abundance of these taxa changed over 

time, however, as the population dynamics of king and queen scallops have already been 

explored elsewhere (see Howarth et al. In review) the abundance of spiny starfish 

a) 

b) 
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(Marthasterias glacialis) and eyelash worms (Myxicola infundibulum) were explored instead 

(i.e. the 11th and 12th most abundant species respectively).  

Separating taxa into mobile and sessile groups revealed little difference in the abundance of 

mobile megafauna between the reserve and outside, and over time (Figure 4a). In contrast, 

both feather stars and eyelash worms were significantly more abundant within the reserve 

than outside (Table 4), and although their abundance appeared to increase over the survey 

period (Figure 4b), no significant interaction was found between year and protection. 

However, the total number of megafauna species did significantly increase during the study 

period and was significantly greater within the reserve than outside (Table 4). Line plots 

revealed little difference in the total number of individuals, evenness and biodiversity between 

the reserve and outside and therefore were not tested for significance using two-way ANOVA.    

PERMANOVA+ analysis revealed the composition of the benthic megafauna community to 

significantly differ between depths, year and substrates but not between treatments (Table 5). 

The interaction between protection and substrate was also found to be significant, and 

subsequent pairwise testing revealed that differences between the reserve and outside existed 

for maerl, soft and hard substrates. However, further exploration of these differences using 

nMDS and SIMPROF did not clearly distinguish between sites located within and outside the 

reserve (P > 0.05). Although, SIMPER did suggest that maerl, soft and hard substrates within 

the reserve were more strongly characterised by eyelash worms and feather stars.  
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Figure 4. The density of the 10 most abundant benthic megafaunal species across the years 
2010-2013 split between mobile (a) and sessile (b) species.  
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Table 4. Two-way ANOVA comparing the density of different benthic fauna between the 
marine reserve and outside across the years 2010-2013. Significant results are denoted by (*). 

Source Test SS df MS F P 

       

Feather stars 

Year 711.5 1 711.5 0.60 0.103 

Protection 7498.4 3 2499.5 2.10 *0.041 

Year * Protection 525.6 3 175.2 0.15 0.931 

Residual 146213.4 123 1188.7 

  

Eyelash worms 

Year 73.4 1 73.4 5.35 0.494 

Protection 33.0 3 11.0 0.80 *0.022 

Year * Protection 27.1 3 9.0 0.66 0.579 

Residual 1686.7 123 13.7 

  

Parchment worms 

Year 5.1 1 5.1 0.14 *0.002 

Protection 1677.4 3 559.1 15.14 0.711 

Year * Protection 71.7 3 23.9 0.65 0.586 

Residual 4542.5 123 36.9 

  

No of species 

Year 55.1 1 55.1 5.70 *0.018 

Protection 436.9 3 145.6 15.06 *0.001 

Year * Protection 11.2 3 3.7 0.39 0.764 

Residual 1189.2 123 9.7 

   

Table 5. Results from the PERMANOVA+ analysis of benthic megafaunal community 
composition. a) Main test and b) pairwise testing for the interaction Protection x Substrate. Pr 
= level of protection, De = depth, Ye = year, Su = substrate, Out = sites outside the reserve, Res 
= sites within the reserve.  

a)           

 Source df SS MS F P 

 Pr 1 1908.2 1908.2 1.07 0.382 
 Ye 3 13076 4358.8 2.45 *0.001 
 De 1 6393.1 6393.1 3.60 *0.001 
 Su 2 10692 5346.1 3.01 *0.001 
 PrxYe 3 5284.8 1761.6 0.99 0.488 
 PrxDe 1 1661.3 1661.3 0.94 0.503 
 PrxSu 2 5476.3 2738.2 1.54 *0.039 
 YexDe 3 5175.3 1725.1 0.97 0.492 
 YexSu 6 10316 1719.4 0.97 0.562 
 DexSu 2 5466.8 2733.4 1.54 0.054 
 b)       

maerl soft hard 

Groups t P t P t P 

Out, Res 1.3 *0.08 1.5 *0.009 1.4 *0.044 
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Composition of Fish Assemblages 

A total of 1447 individual fish were recorded from the BRUV surveys, these were from 30 

different species belonging to 14 different families. Of these individuals, 803 were recorded 

within the reserve and 644 from outside. Despite more individuals being recorded within the 

reserve, neither year (Two-way ANOVA; F(1, 82) = 1.6, P > 0.05) nor protection (Two-way ANOVA; 

F(1, 82) = 2.7, P > 0.05) significantly influenced fish abundance (MaxN). As before, the total 

number of individuals, evenness and diversity were not tested as line plots revealed no 

difference between the reserve and outside. Overall, the most common species were all 

gadoids of which cod were the most abundant (408 observations), followed by whiting (303 

observations) and haddock (163 observations). Over 98% of these gadoids were in their 

juvenile form. In rare cases (4 out of the 82 BRUV surveys), large pelagic shoals of mackerel 

and sand eels consisting of many hundreds of individuals were recorded.  

Exploratory bar plots revealed no difference in the mean size of different fish taxa between 

sites in and outside the reserve, and therefore no statistical tests were conducted. Comparing 

the abundance of different taxa over time also revealed little difference between the reserve 

and outside (Figure 5). However, cod abundance did exponentially increase over the study 

period but did not significantly differ between the reserve and outside, nor was there an 

interaction between the two (Table 6). In contrast, the abundance of other gadoids appeared 

to increase outside the reserve over time and decrease inside. However, neither year, nor 

protection, nor the interaction between the two were significant.  

 
Figure 5. The abundance of a range of fish taxa within and outside the marine reserve across 
the years 2011-2013. For each taxa, the year increases from 2011, to 2012 and 2013 going 
from the left to the right.  
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Table 6. Two-way ANOVA comparing the abundance of cod and other gadoids between the 
reserve and outside over the years 2011-2013. Significant terms are denoted by (*). 

Source Test SS df MS F P 

Other 
gadoids 

Year 7.4 2 3.7 0.06 0.946 

Protection 123.6 1 123.6 1.85 0.177 

Year * Protection 20.3 2 10.2 0.15 0.859 

Residual 5068.3 76 66.7     

Cod 

Year 772.5 2 386.2 10.59 *0.001 

Protection 9.0 1 9.0 0.25 0.621 

Year * Protection 11.7 2 5.9 0.16 0.852 

Residual 2772.2 76 36.5     

 

As gadoids are of commercial importance and were the most abundant fish species recorded 

throughout the BRUV surveys, GLMs were constructed to determine what environmental and 

ecological factors were important in determining their abundance and distribution. After 

employing backward-forward stepwise reduction, models indicated that cod abundance was 

significantly positively associated with year and with the presence of macroalgae and maerl, 

but was negatively associated with the presence of anemones and echinoderms (Table 7). In 

contrast, the abundance of other gadoid species was found to be positively associated with the 

percentage cover of bare substrate, year, treatment and crustacean abundance, but negatively 

associated with the presence of sponges. A GLM including macroalgae, but excluding depth 

and the percentage cover of bare substrate, could not be constructed for other gadoid species 

as the model would not converge, likely because it had insufficient predictive power. In all 

cases, the reduced models did not explain significantly less variance than the full models 

(Pearson’s Chi-squared; df = 81, χ2 = 0.78, P > 0.05). 
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Table 7. The reduced models created from a negative binomial GLM to test whether 
environmental and ecological data reflected the distribution and abundance of cod and other 
gadoid species. Significant terms are denoted by (*). 

Response Model Deviance explained Variable SE Z P 

Cod 
Including 

macroalgae 
60.43% 

Year 0.24 5.63 *0.001 

Anemones 0.12 -2.29 *0.022 

Echinoderm 0.5 -2.3 *0.019 

Macroalgae 0.28 1.87 *0.041 

Maerl 0.1 2.72 *0.006 

Cod 

Including 
bare 

substrate 
and depth 

71.40% 

Year 0.25 5.09 *0.001 

Bare substrate 0.01 -0.48 0.632 

Treatment 0.21 0.435 0.664 

Crustacean 1.13 1.09 0.273 

Sponge 0.84 -1.6 0.11 

Other 
gadoids 

Including 
bare 

substrate 
and depth 

68.53% 

Year 0.16 4.51 *0.001 

Bare substrate 0.01 3.7 *0.001 

Treatment 0.14 2.91 *0.003 

Crustacean 0.73 3.04 *0.002 

Sponge 0.55 -3.16 *0.001 

 

Discussion 

The paper highlights a number of differences in ecological communities between the fully 

protected marine reserve in Lamlash Bay and surrounding fishing grounds. However, it must 

be stressed that there is no data available prior to the establishment of the reserve. Ideally, a 

before-after control‐impact (BACI) approach would have been employed, capable of definitely 

proving that differences between the reserve and outside were due to the protection afforded 

by the marine reserve (Hilborn et al. 2004; Sale et al. 2005). As this was not possible, we 

instead compared sites within the reserve to reference sites located outside its boundaries 

over a study period of three to four years. As all of the trends explored in this study showed no 

interaction between year and protection, all we have is evidence that differences between the 

reserve and outside exist, but cannot conclude that protection is responsible for creating 

them. 

Overall, we found a large number of differences between the marine reserve and outside. 

After four years since its establishment, live maerl (348% greater), macroalgae (100% greater), 

sponges (268% greater), hydroids (15-267% greater), eyelash worms (184% greater), feather 

stars (52% greater), parchment worms (36% greater) and total epifauna (77% greater) were all 

found to be significantly more abundant within the reserve than on neighbouring fishing 
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grounds by the end of the study. Whilst the abundance of macroalgae, sponges, hydroids and 

eyelash worms appeared to steadily increase within the reserve over the duration of the study 

and remained relatively stable outside, no significant interaction was found. Likewise, nMDS 

plots and SIMPER analysis suggested an increasing divergence between the epifaunal 

community in and outside the reserve, but again no significant interaction was found.  

The greater abundance of macroalgae within Lamlash Bay Marine Reserve was one of the first 

observations made when monitoring began in 2010 (Howarth et al. 2011). Several well-known 

studies have also reported differences in macroalgal abundance between reserves and 

reference sites (Shears & Babcock 2003; Hawkins & Roberts 2004; Langlois & Ballantine 2005). 

In all cases, this was due to populations of predators and herbivores recovering within the 

reserves, thereby altering the grazing rates on macroalgae. This study, on the other hand, did 

not detect any major trends in herbivore or predator abundance other than for juvenile cod, 

which exponentially increased in both the reserve and outside over the three year study 

period. However, as the diet of juvenile cod consists predominantly of copepods and other 

planktonic crustaceans (Demain et al. 2011) there is unlikely to be a connection. Significantly, 

an associated study (Howarth et al. In review) found that the greater abundance of macroalgae 

and hydroids growing within Lamlash Bay Marine Reserve was significantly increasing the 

settlement levels of juvenile scallops by providing nursery habitat. These results are consistent 

with the hypothesis that protection can encourage seafloor habitats to recover which can 

generate benefits that flow back to commercially important species. In the long term, these 

effects should increase the numbers of juvenile scallops entering the adult stock as a greater 

proportion of juveniles survive to reach maturity. 

It is interesting that live maerl was over 300% more abundant within the reserve as evidence 

suggests that the recovery of maerl beds should take several decades, due to their extremely 

slow growth (Giraud & Cabioch 1976; Hall-Spencer & Moore 2000; Foster 2001; Kamenos et al. 

2003Grall & Hall-Spencer 2003). As the abundance of live maerl showed no clear signs of 

increasing over the study period, the greater levels of maerl within the reserve may just be an 

artefact of maerl being more prevalent within the reserve than outside prior to its 

establishment. In addition, the abundance of live maerl was very low throughout both study 

areas, varying between 0 - 8%. These low levels of live maerl contrast greatly with earlier 

studies of Lamlash Bay (Kamenos et al. 2004c), which detected over 90% live maerl in some 

maerl beds, suggesting recent degradation in their health. Nonetheless, the reserve should act 
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as a safe haven for any patches of live maerl remaining within the reserve and may encourage 

their recovery in the future. 

In addition to observing differences in specific species, there were also a number of differences 

in the overall epifaunal community between the reserve and outside. In 2013, four years after 

the reserve was established, PERMANOVA+ analysis revealed strong differences in community 

composition between the two treatments for sites located less than 15 m in depth.  Shallow 

sites within the reserve were more strongly characterised by a range of bushy and upright 

seaweeds and hydroids, whereas sites outside the reserve were more strongly characterised 

by red algal turf and fast-growing burrowing anemones. Sites outside the reserve are therefore 

likely to be providing comparatively less structural complexity and may, in turn, be providing a 

smaller range of ecological niches. However, despite observing broad differences in epifaunal 

communities, there was no difference in overall community evenness and diversity, or in the 

abundance of soft coral, anemones, bryozoans and tunicates.  

In contrast with the epifaunal community, comparisons between the reserve and outside in 

the abundance of mobile benthic fauna revealed little difference. This was surprising 

considering the number of studies that have reported changes in the abundance of scavengers 

and predators, such as dog fish and star fish, in response to protection (Marino et al. 2007; 

Brown 2013) and differing levels of fishing disturbance (Veale et al. 2000; Bradshaw et al. 

2001; Jenkins et al. 2004; Kaiser & Hiddink 2007; Craven et al. 2013). However, comparisons of 

the abundance of sessile fauna did reveal several differences between the reserve and outside. 

Both feather stars and eyelash worms were found to strongly characterise communities 

sampled within the marine reserve. This was because they were 52% and 184% more 

abundant within the reserve than outside respectively, although no significant interaction 

between protection and year was found. These organisms can be important to benthic 

diversity and commercially valuable species as they provide structural complexity to the 

seabed, and they can modify local hydrodynamics and influence the vertical and horizontal flux 

of nutrients (Auster et al. 1995; Thrush et al. 2001; Thrush & Dayton 2002).  

Compared to other taxa, relatively few trends were detected in fish populations. The most 

common species were all gadoids, a group containing commercially important species such as 

cod, haddock and whiting. Over 98% of these individuals were in their juvenile form, 

suggesting that Lamlash Bay is providing nursery habitats to several commercially important 

species. This was confirmed by constructing several models, which found cod abundance to be 

positively associated with the presence of macroalgae, live maerl and year of study. This came 
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as no surprise as coastal areas containing high levels of kelp, seaweeds and maerl are often 

reported to support large numbers of juvenile cod (Borg et al. 1997; Kamenos et al. 2004c; 

Gibb et al. 2007; Laurel et al. 2009; Caddy 2013). Although cod abundance appeared greater 

within the reserve than outside, this difference was not statistically significant. Likewise, there 

were no significant differences in mean fish size between inside and outside of the reserve. 

Nonetheless, in protecting macroalgal and maerl beds, the marine reserve should, to some 

degree, help boost the early survival of juvenile cod as they make the important transition 

from pelagic to benthic habitats (Demain et al. 2011). Cod was also found to increase 

exponentially over the survey period both within and outside the reserve, and is thought to be 

the result of exceptionally cold winter temperatures in recent years (Sophie Elliott pers. 

comm). In contrast to cod, models found the abundance of haddock and whiting to be 

positively associated with the percentage cover of bare substrate, crustacean abundance, and 

level of protection (likely because more gadoids were detected within the reserve). This was 

supported by diver observations which regularly reported high levels of whiting and haddock 

on deep soft / muddy sediments. Stocks of adult finfish (especially cod and other gadoids) are 

currently at historically low levels in the Clyde (Thurstan & Roberts 2010; Heath & Speirs 2011; 

McIntyre et al. 2012). Hence, an important area for future research is to establish the origin of 

these gadoid recruits and whether they are contributing to the recovery of stocks. 

Unfortunately, there are strong indications that high levels of by-catch from the Clyde 

Nephrops trawl fishery may limit the chances of these fish reaching maturity (Bergman et al. 

2002).   

One of the most commonly cited results of establishing MPAs and marine reserves has been an 

increase in fish abundance, biomass and size (Mumby et al. 1995; Hawkins & Roberts 2004; 

Micheli et al. 2004; Lester et al. 2009; Moland et al. 2013). However, this study found no 

statistical difference in fish abundance between the reserve and outside. This was likely due to 

the young age of the reserve (5 years) and its small size (2.67km2), both of which are known to 

reduce the effects of marine reserves on mobile fish species (Halpern 2003; Molloy et al. 2009; 

Edgar et a. 2014). Additionally, when viewing the BRUV footage it was not possible to 

recognise repeated entrances of the same individual, meaning estimators of abundance had to 

be used; in this case, the maximum number of fish sighted within a single frame (MaxN). As it 

is unlikely that all individuals of a species are recorded within the same frame, BRUVs can only 

detect a proportion of the fish that are attracted to the bait, which can make their estimates 

relatively conservative (Willis & Babcock 2000; Cappo et al. 2004). This means that any 

differences detected between sites within and outside MPAs are also likely to be conservative. 
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More worryingly, recent research has shown little correlation between the abundance 

estimates generated by MaxN and those created from underwater visual census (Dunlop 

2013).  Our study also revealed no difference in fish size between the reserve and outside. 

Again this may be due to the age and size of the reserve, or the method we used to estimate 

fish size. The use of recently developed technologies, such as stereo video cameras would have 

generated much more accurate and precise estimates of fish size than those obtained in this 

study, which would reduce variation and increase the chance of detecting differences in fish 

size, if they exist (Harvey et al. 2001; Cappo et al. 2004; Langlois et al. 2010).  

In summary, we have presented several lines of evidence that suggest Scotland’s first and only 

fully protected marine reserve is potentially being of some benefit to ecological communities. 

Epifaunal assemblages, such as feather stars, eyelash worms, maerl, sponges, hydroids and 

macroalgae were all found to be significantly more abundant within the reserve than outside. 

As well as increasing the structural complexity of the seabed, the greater abundance of these 

habitats has substantially increased the recruitment of commercially important scallops, 

suggesting that protecting areas from fishing can generate ecological benefits that flow back to 

species commercially targeted by fisheries (see also Howarth et al. In review). In contrast, 

there was no difference in the abundance of mobile benthic fauna and fish populations 

between the reserve and outside. This may be due to the short duration of protection received 

to date, the small size of the reserve, and / or the methods used to estimate the abundance 

and size of fish. Nonetheless, it was revealed that the marine reserve contained significantly 

more nursery habitat for juvenile cod, which may help boost their early survival as they make 

the important transition from pelagic to benthic habitats. Overall, our results are consistent 

with the hypothesis that MPAs can encourage seafloor habitats to recover, which can provide 

nursery habitat for species of commercial importance.  
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Chapter 7. General Discussion 

 

7.1. Summary of thesis aims and results 

In this study, I set out to measure differences between sites located within Scotland’s first and 

only fully protected marine reserve and reference sites located outside its boundaries after 

having been established for four years. In particular, I aimed to investigate the population 

dynamics of a number of commercially important species, and the abundance of a wide range 

of other organisms.  

In my introductory chapter, I placed my research into context by reviewing the global 

importance of marine ecosystems and the services they provide. This chapter highlighted the 

declining state of the world’s oceans and detailed how marine protected areas (MPAs) and 

marine reserves can be used to help conserve biodiversity and fish stocks. I finished by setting 

out my research aims and by briefly describing the structure of the chapters that follow.  

In chapter 2, I explored the general effects of overfishing from a global perspective. I reported 

how many over-exploited marine ecosystems, including the Firth of Clyde, have lost their 

natural populations of large predatory finfish, and in their place, have become dominated by 

crustaceans and invertebrates. Controversially, some of these simplified ecosystems have gone 

on to support highly successful invertebrate fisheries capable of generating more economic 

value than the fisheries they replaced. Such systems have therefore been compared with those 

created by modern agriculture on land, in that existing ecosystems have been converted into 

those that maximize the production of target species. By drawing on a number of ecological 

concepts and case-studies, I argued that this is in fact highly risky. This is because invertebrate 

stocks within simplified ecosystems are unusually prone to collapse from disease, invasion, 

eutrophication and climate change. Furthermore, the loss of large finfish has triggered many 

ecosystems to shift to states that are both ecologically and economically undesirable, and 

difficult and expensive to reverse. Hence, I concluded that the transition from multispecies 

fisheries to simplified invertebrate fisheries is causing a global decline in biodiversity, and is 

threatening global food security, rather than promoting it. 

In chapter 3, I aimed to investigate which survey methods were the most ideal for monitoring 

the wide range of species that occur in Lamlash Bay. This was an important step as many of the 

survey methods used in this study overlapped in the types of species they recorded, and it was 

not clear which data should have been analysed in my later chapters. For example, data on the 
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abundance of scallops was generated by both diver and photoquadrat surveys. However, by 

conducting a power analysis, I found that diver surveys were the more precise method for 

estimating the density and size of scallops. I therefore decided to analyse the data generated 

by diver surveys for exploring the abundance and size of scallops within Lamlash Bay. In 

estimating the percentage cover of epifaunal organisms on the seabed, I found that photo 

surveys detected a greater proportion of macroalgae and maerl than diver estimates, whereas 

diver surveys detected a greater proportion of tunicates, sponges, hydroids and bryozoans. 

Differences between survey methods were also detected in the monitoring of fish and 

crustacean species. Diver surveys detected a greater proportion of small, cryptic fish species 

and crustaceans. In contrast, only baited underwater video surveys were able to detect pelagic 

shoals of mackerel and sand eels. Based on these findings, I concluded that diver surveys had 

no clear superiority over camera and video methods in monitoring benthic and fish species as 

both produced markedly different results for different types of species. Hence, my study 

indicated that scientists studying marine protected areas must first identify the types of 

species they intend to study, and from that, choose the most appropriate monitoring method. 

In chapter 4, I investigated the effects of the Lamlash Bay Marine Reserve on nursery habitats 

and commercially valuable scallops. Dive surveys conducted over a period of four years 

revealed the abundance of juvenile scallops to be 2-5 times greater within the marine reserve 

than outside. Generalised linear models showed that the greater abundance of juvenile 

scallops within the reserve was related to a greater presence of macroalgae and hydroids 

growing within its boundaries. This effect was supported by diver observations, which regularly 

reported high levels of scallop settlement within these complex habitats. My study also 

indicated that the marine reserve was having a positive effect on adult scallops. The age (1.7 

years older), size (28 mm larger) and reproductive biomass (2.5 times higher) of king scallops 

were all significantly greater within the reserve and should translate to higher reproductive 

output and scallop recruitment both within the marine reserve and surrounding fishing 

grounds. Finally, scallop density significantly declined with increasing distance from the 

boundaries of the reserve, possibly indicating evidence of spillover or reduced fishing effort 

directly outside the reserve, a phenomenon I coin as the “halo effect”.  

In chapter 5, I investigated the effects of the Lamlash Bay Marine Reserve on commercially 

valuable populations of lobster and crabs. Potting surveys conducted over a two year period 

showed European lobster were significantly larger within the reserve than on neighbouring 

fishing grounds. In fact, large lobsters (> 111 mm) were entirely absent outside the reserve, 
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meaning individuals within the reserve were on average 7.3 mm larger. As egg production in 

lobsters is a function of population size, maturity, fecundity and body size, the greater 

abundance of larger-bodied lobsters within the reserve should result in higher reproductive 

output and recruitment both within the reserve and to surrounding areas. In support of this, 

size-fecundity relationships suggested the mean potential reproductive output per female 

lobster was 27.3% higher within the reserve than outside. In addition, the frequency of berried 

female lobsters was 5.5 times greater within the reserve than outside. Based on these findings, 

I proposed that the 2.67 km2 marine reserve had a potential egg output equivalent to an 

unprotected area of 19.1 km2; supporting the concept that MPAs can contribute 

disproportionally to recruitment in relation to the actual area they protect. However, as there 

were no data prior to protection, and as this study was based on only two years of data, I could 

not confidently conclude that the reserve was responsible for these differences. Further years 

of monitoring will resolve this issue.  

Finally, in chapter 6, I explored the composition of benthic and fish communities in Lamlash 

Bay Marine Reserve and surrounding fishing grounds. Live maerl (348% greater), macroalgae 

(100% greater), sponges (268% greater), hydroids (15-267% greater), eyelash worms (184% 

greater), feather stars (52% greater), parchment worms (36% greater) and total epifauna (77% 

greater) were all found to be significantly more abundant within the reserve than 

neighbouring. The greater abundance of these complex habitats growing within the reserve 

appeared to be providing nursery habitat for juvenile cod and scallops. There were also broad 

differences in the overall epifaunal community. Sites within the reserve and less than 15 m in 

depth were more strongly characterised by a range of bushy and upright seaweeds and 

hydroids, whereas sites outside the reserve were more strongly characterised by red algal turf 

and fast-growing burrowing anemones. Sites outside the reserve are therefore likely to be 

providing comparatively less structural complexity and may, in turn, be providing a smaller 

range of ecological niches. In contrast to sessile organisms, comparisons of the abundance of 

mobile benthic fauna and fish revealed little difference between the reserve and outside. This 

was likely due to the young age of the reserve (4 years) and its small size (2.67km2), both of 

which are known to reduce the effects of marine reserves on mobile species.  

7.2. Future research 

My research shows that a number of fishery and ecological differences exist between 

Scotland’s first and only fully protected marine reserve and surrounding fishing grounds. This 

conclusion was drawn from conducting a range of field surveys over a period of four years, and 
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by comparing sites of similar depth and substrate between the marine reserve and outside. 

However, as I now discuss, this study does have a number of limitations and leaves several key 

questions unanswered.  

My research presents several lines of evidence that Lamlash Bay Marine Reserve is generating 

reproductive benefits by increasing the reproductive biomass of scallops and the fecundity of 

lobsters. In theory, this should translate to higher reproductive output and recruitment both 

within the marine reserve and surrounding fishing grounds (Beck et al. 2001; Gibb et al. 2007; 

Laurel et al. 2009). My study also revealed the abundance of lobster and scallops to decline 

with increasing distance from the boundaries of the reserve, and may be evidence of spillover 

/ larval export. Whilst many studies have detected similar gradients in abundance (Harmelin-

Vivien et al. 2008; Halpern et al. 2010; Ludford et al. 2012), they share a problem in that they 

cannot confidently conclude that such trends are a consequence of protection, and may 

instead be a result of differing levels of fishing activity or spatial heterogeneity in habitats. A 

much more suitable, although arguably more cost and time intensive, approach would be to 

conduct a molecular study capable of detecting larval export and spillover from within marine 

reserves to fishing grounds (e.g. Cudney-Bueno et al. 2009; Planes et al. 2009; Pelc et al. 2010). 

Such a study would be highly informative for Lamlash Bay and other marine reserves around 

the world.  

Many studies document the phenomenon of “fishing the line”, whereby greater catches and 

profit near to marine reserves has resulted in fishers preferentially setting their gears close to 

the boundaries of marine reserves (Stelzenmüller et al. 2007; Goñi et al. 2008; Halpern et al. 

2010). However, my research proposes a counter phenomenon called the “halo effect”, in 

which fishers may be wary of fishing near marine reserves due to potential conflict with local 

communities and compliance organisations, and of the logistical difficulties of having to haul 

up their gear to pass through reserves. It would be highly interesting and informative to 

analyse Vessel Monitoring System (VMS) data to investigate whether fishing vessels do avoid 

the fishing grounds immediately surrounding Lamlash Bay Marine Reserve, in order to test if 

this unexpected phenomenon is occurring.  

Theory and empirical evidence suggest that differences between the reserve and outside will 

become more pronounced the longer the reserve is established (Roberts et al. 2005; Edgar et 

al. 2014). Therefore, by conducting my study over four years, I was able to observe that some 

of the differences I recorded between the reserve and outside became stronger over time. 

Hence, these trends were likely to be a response to protection. Nonetheless, this research will 
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greatly benefit from future monitoring. This is particularly true for the crustacean surveys 

which were only conducted during the final two years of monitoring. The first year of these 

surveys found few differences in lobster populations in and outside the reserve, whilst the 

following year detected strong differences between the reserve and outside in lobster 

abundance, size and fecundity. At least one more year of study is essential in determining 

whether this trend continues, or is simply an artefact of natural variation.  

Lastly, no blinding was used in this study, meaning the scientist in charge of analysing the 

videos, images and scallops knew whether samples were collected within or outside the 

reserve, which could have generated “confirmation bias” (Ruxton and Coldgrave 2010). This 

describes when scientists testing pre-existing hypotheses (e.g. the reserve is having a positive 

effect) search for evidence that confirm those hypotheses, rather than evidence which can 

disconfirm them (Jones and Sudgen 2001). If monitoring of Lamlash Bay does continue, 

blinding must be used to reduce these possible sources of bias.  

7.4. Conclusions 

Recent technological advancements coupled with rising demand have caused the intensity and 

geographic reach of fisheries to greatly escalate over the last two centuries (Roberts 2007; 

Watson et al. 2012; Howarth et al. 2013). As a result, an estimated 70% of all world fish 

populations are currently either fully exploited, overexploited, depleted or have collapsed 

entirely from overfishing (FAO 2012), and the proportion of catches originating from declining 

stocks is rapidly increasing (Jackson et al. 2001; Pauly et al. 2002; Worm et al. 2006; Pauly 

2008). The poor state of the world’s fisheries is largely due to unsustainable levels of 

exploitation and the physical and ecological impacts associated with fishing gears. High levels 

of fishing can reduce the abundance of target species and truncate age and size structures, 

both of which can have severe consequences on recruitment (Jennings et al. 2001; Beamish et 

al. 2006). In addition, many fishing gears capture a wide variety of non-target organisms which 

can dramatically alter the ecological composition of benthic and fish communities (Bradshaw 

et al. 2001; Hinz et al. 2012). Mobile fishing gears are considered the most damaging to marine 

ecosystems as they plough sediments and fragment the biogenic structure of epifaunal 

organisms, which can negatively impact the recruitment of commercially important species 

and reduce an area’s capacity to support biodiversity (Collie et al. 1997; Bradshaw et al. 2001, 

2003; Howarth et al. 2011).  
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Despite the large impacts fishing can have on the aquatic environment, my study contributes 

towards a rapidly growing field which argues that closing areas to some or all types of fishing 

through the implementation of MPAs and marine reserves can conserve biodiversity and 

enhance fish stocks. My research shows that Lamlash Bay Marine Reserve contains a greater 

abundance of juvenile scallops and lobster, and that these commercially important species are 

both older and larger within the reserve.  These effects have resulted in greater levels of 

fecundity and reproductive biomass, which will likely boost reproductive output and 

recruitment both within the reserve and in neighbouring fishing grounds. My study also reveals 

that Lamlash Bay Marine Reserve contains a greater abundance of nursery habitats, which are 

increasing the settlement levels of commercially important scallops and providing nursery 

habitat for juvenile cod.  

As already discussed, there are a number of limitations with this study. As there were no data 

available prior to the establishment of Lamlash Bay Marine Reserve, I could not conclude 

whether the differences I observed between the reserve and outside were due to protection. 

Rather, all of these differences may have existed before the reserve was created, or may be 

due to some other phenomenon. To help account for this I decided to compare sites within the 

reserve with reference sites located outside the reserve over a period of four years. Although 

lacking “before” data, my design still retains all the elements of a before-after control‐impact 

(BACI) approach in that the: “before” condition is two years after protection;  my “after” 

conditions are three and four years after protection; and my “control” and “impact” conditions 

refer to those sites located in and outside the reserve. The bigger problem in my study lies 

with there being only one marine reserve and only one control, meaning there is no true 

replication, meaning if I wish to interpret any differences as being due to protection the design 

would be pseudo-replicated  (Hurlbert 1984). Such lack of replication is a common problem 

encountered in ecological studies (Stewart-Oaten et al. 1986), particularly those investigating 

MPAs (Willis et al. 2003; Claudet et al. 2006). However, this does not mean single-replication 

experiments have no purpose. In fact, when all the lines of evidence in this study are 

considered (see Appendix 6) they together provide a compelling argument that the protection 

afforded by Lamlash Bay Marine Reserve is generating a number of positive effects.   

My research comes at a key time. Following a large number of recently established policies and 

initiatives, the global coverage of MPAs is set to increase over the next decade (Metcalfe et al., 

2013). Globally agreed marine protection targets, such as the Convention on Biological 

Diversity’s (CBD) ‘Aichi Target’ are encouraging many governments to establish or expand 
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existing MPA networks within their jurisdictions (Wood et al. 2008; CBD 2011; Harrop 2011; 

Wood 2011). This interest is reflected in the European Union (EU) as the Marine Strategy 

Frameworks Directive (MSFD), Birds and Habitats Directives, OSPAR (The Convention for the 

Protection of the Marine Environment of the North-East Atlantic), HELCOM (Helsinki 

Commission) and Barcelona regional seas conventions, have all initiated the process of 

establishing a coherent network of MPAs within European waters (Fenberg et al. 2012; 

Metcalfe et al. 2013). On a national level, the planned implementation of Marine Conservation 

Zones (MCZs; England, Wales and Northern Ireland) and Scottish MPAs (Scotland) will all lead 

to the creation of a network of MPAs around the United Kingdom (UK; Jones 2012; JNCC 2013). 

All these measures intend to achieve a variety of management goals; principally to conserve 

biodiversity and promote the sustainability of fisheries (Pomeroy et al. 2005; Metcalfe et al. 

2013).  

Although the use of MPAs and marine reserves as management tools is receiving increasing 

attention, the creation of a UK and European MPA network is still at a highly vulnerable stage. 

Many conservation bodies and scientists are concerned that the MPA process is being changed 

and diluted to something far less effective than what is needed  in order to maintain fish stocks 

and marine ecosystems in a healthy state (Chape et al. 2005; Wood et al. 2008; Monbiot 2012; 

Fox et al. 2012; Carrington 2013). In addition, studies into the effects of MPAs are far less 

common in temperate and colder waters, and are particularly limited in Europe and the UK. 

Consequently, some members of the fishing industry, and indeed some government managers, 

are sceptical about how effective marine reserves will be in UK waters (e.g. NFFO 2010). 

Lamlash Bay is the first and only fully protected marine reserve in Scotland, and the only 

statutory reserve in the UK that was originally proposed by a local community which bans all 

extractive activities (Prior 2011). Lamlash Bay is also unique in that the majority of MPAs in the 

UK were proposed either for  conservation (e.g. Lundy Marine Nature reserve) or fishery 

purposes (e.g. closed areas off the Isle of Man), not for both.  Researching the marine reserve 

in Lamlash Bay has therefore offered a vital insight into the benefits that highly protected 

marine reserves can provide. In particular, my work has highlighted that full protection and 

support from the local community, is likely to be highly important in maximising the 

effectiveness of MPAs as any illegal extraction would have further weakened the differences 

between Lamlash Bay Marine Reserve and surrounding fishing grounds. As my results are 

consistent with the hypothesis that MPAs can provide benefits to scallop and lobster 

populations, as well as to seafloor habitats, my research is of great interest to scientists, 

conservationists, managers, UK and EU administrations, and other bodies further afield.  
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Appendices 

Assigned Category Treatment Depth BCD (m) Substrate types 

Deep boulders 

Out 23.1 Boulders, sand 

Out 24.5 Boulders, muddy sand 

Reserve 16.8 Boulders, sand 

Reserve 17 Boulders, muddy sand, dead maerl 

Reserve 19.1 Boulders, muddy sand 

Reserve 27 Boulders, muddy sand 

Reserve 28 Boulders, muddy sand, cobbles 

Deep muddy sand 

Out 16.75 Muddy sand 

Out 17.2 Muddy sand 

Out 18 Muddy sand 

Out 18 Muddy sand, dead maerl 

Out 19 Muddy sand 

Out 21 Muddy sand, pebbles, cobbles 

Out 21.9 Muddy sand 

Out 21.9 Muddy sand 

Out 22.4 Muddy sand 

Out 22.7 Muddy sand 

Out 22.7 Muddy sand 

Out 23.7 Muddy sand, pebbles, cobbles 

Reserve 18.7 Muddy sand, dead maerl 

Reserve 18.9 Muddy sand 

Reserve 19 Muddy sand, dead maerl 

Reserve 21.1 Muddy sand 

Reserve 23 Muddy sand, pebbles, cobbles 

Reserve 23.1 Muddy sand 

Maerl 

Out 15.1 Dead maerl, muddy sand 

Out 14.3 Dead maerl, muddy sand, pebbles 

Reserve 9.1 Dead maerl 

Reserve 10 Dead maerl 

Reserve 10.7 Dead maerl, muddy sand 

Reserve 12.5 Dead maerl, muddy sand 

Reserve 13.8 Dead maerl, sand, pebbles, boulders 

Mud 

Out 19 Mud 

Out 20.8 Mud 

Reserve 13.3 Mud 

Reserve 18.7 Mud 

Shallow muddy sand 

Out 11.8 Muddy sand 

Out 13.5 Muddy sand 

Reserve 15.5 Muddy sand, pebbles, cobbles 

Reserve 15.5 Muddy sand 

 
Appendix 1. The depth below chart datum (BCD), substrate types, treatment and assigned 

category for each site surveyed in 2010. Sites highlighted in grey were located within the 

marine reserve. 

 

 



209 
 

Assigned Category Treatment Depth BCD (m) Substrate types 

Deep boulders 
Out 18.5 Boulders, sandy mud, pebbles 

Reserve 17 Boulders, muddy sand, cobbles 

Deep muddy sand 

Out 19.3 Muddy sand 

Out 16.48 Muddy sand 

Out 17 Muddy sand, dead maerl 

Out 22.8 Muddy sand, cobbles 

Out 21.5 Muddy sand,  pebbles 

Reserve 19 Muddy sand  

Reserve 17.4 Muddy sand 

Reserve 20.8 Muddy sand, cobbles 

Maerl 

Out 8 Dead maerl 

Out 10.7 Dead maerl 

Reserve 6.8 Dead maerl, sand 

Reserve 11.2 Dead maerl, muddy sand 

Reserve 8.45 Dead maerl, muddy sand 

Mud 
Out 24 Mud 

Reserve 15.6 Fine muddy sand 

Shallow boulders 

Out 14.35 Boulders, muddy sand, cobbles 

Out 15.4 Boulders, muddy sand, dead maerl 

Reserve 13.8 Boulders, muddy sand,  pebbles 

Reserve 15.2 Boulders, dead maerl  

Reserve 10.8 Boulders, sand, dead maerl, cobbles  

Shallow muddy sand 

Out 11.6 Muddy sand, pebbles 

Out 15.2 Muddy sand, pebbles 

Out 15 Muddy sand, pebbles 

Reserve 11.25 Muddy sand, cobbles  

Reserve 15.2 Muddy sand, dead maerl 

Reserve 15.1 Muddy sand  

 

Appendix 2. The depth below chart datum (BCD), substrate types, treatment and assigned 

category for each site surveyed in 2011. Sites highlighted in grey were located within the 

marine reserve. 
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Assigned Category Treatment Depth BCD (m) Substrate types 

Deep boulders 

Out 20 Boulders, sand 

Out 18.5 Boulders, sand, dead maerl 

Out 18.5 Boulders, sand 

Reserve 27.5 Boulders, muddy sand, dead maerl 

Reserve 20.2 Boulders, muddy sand, pebbles 

Reserve 17.35 Boulders, sandy mud 

Deep muddy sand 

Out 16.1 Muddy sand  

Out 23.4 Muddy sand, pebbles, cobbles 

Out 21.3 Muddy sand 

Out 24.5 Muddy sand 

Reserve 18.6 Muddy sand 

Reserve 18 Muddy sand, pebbles 

Reserve 19 Muddy sand 

Reserve 22.5 Muddy sand, pebbles, cobbles 

Reserve 21.4 Muddy sand 

Maerl 

Out 13.8 Dead mearl, muddy sand, boulders 

Out 12.7 Dead maerl, sand  

Out 11.5 Dead maerl 

Reserve 9.2 Dead maerl, sand  

Reserve 14.1 Dead maerl  

Reserve 10 Dead maerl, sand, pebbles 

Shallow boulders 

Out 14.4 Boulders, muddy sand 

Out 14.9 Boulders, muddy sand 

Reserve 11.8 Boulders, muddy sand, dead maerl 

Reserve 14.9 Boulders, muddy sand, dead maerl 

Shallow muddy sand 

Out 13.6 Muddy sand, pebbles 

Out 14.2 Muddy sand 

Out 12 Muddy sand, cobbles, lebbles 

Reserve 13.3 Muddy sand, pebbles 

Reserve 14 Muddy sand, dead maerl 

Reserve 15.2 Muddy sand 

 
Appendix 3. The depth below chart datum (BCD), substrate types, treatment and assigned 

category for each site surveyed in 2012. Sites highlighted in grey were located within the 

marine reserve. 
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Assigned Category Treatment Depth BCD (m) Substrate types 

Deep Boulders 

Out 22.15 Boulders, muddy sand, pebbles 

Out 20.25 Boulders, muddy sand, pebbles  

Reserve 22.65 Boulders, cobbles, muddy sand 

Reserve 27.6 Boulders, muddy sand, pebbles 

Deep muddy sand 

Out 16.55 Muddy sand, cobbles 

Out 18.65 Muddy sand, cobbles, dead maerl 

Out 23.35 Muddy sand 

Out 15.45 Muddy sand, pebbles 

Out 15.7 Muddy sand 

Out 20 Muddy sand 

Reserve 18.7 Muddy sand 

Reserve 18.7 Muddy sand 

Reserve 19.05 Muddy sand 

Reserve 16.2 Muddy sand 

Reserve 18.15 Muddy sand, cobbles 

Reserve 24.05 Muddy sand 

Maerl 

Out 10.2 Dead maerl 

Out 8.95 Dead maerl 

Reserve 8.7 Dead maerl 

Reserve 10.4 Dead maerl 

Shallow muddy sand 

Out 13.75 Muddy sand, dead maerl 

Out 9.8 Muddy sand, pebbles 

Out 8.9 Muddy sand 

Out 13.8 Muddy sand 

Reserve 12.75 Muddy sand, cobbles 

Reserve 12.5 Muddy sand 

Reserve 13.25 Muddy sand 

Reserve 13.85 Muddy sand 

Shallow Boulders 

Out 12.85 Boulders, sand 

Out 10.35 Boulders, sand 

Reserve 11.45 Boulders, sand 

Reserve 15.05 Boulders, muddy sand 

 
Appendix 4. The depth below chart datum (BCD), substrate types, treatment and assigned 

category for each site surveyed in 2013. Sites highlighted in grey were located within the 

marine reserve. 
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Appendix 5. The density of queen scallops in and outside the fully protected marine reserve 
across four years. Error bars represent ±1 SE.  

 

 

Appendix 6. Von Bertalanffy growth curves for king (top) and queen (bottom) scallops sampled 

between 2010-2013 from within (solid black line) and outside (dashed grey line) the fully 

protected marine reserve. 
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Hypothesis Variables Test 
Evidence of 
protection 

Juvenile scallops more 
abundant within reserve 

SACFOR estimates of juvenile 
abundance, protection, year 

Two-Way ANOVA ++ 

Juvenile scallop abundance 
related to benthic habitats 

SACFOR estimates of juvenile 
abundance, benthic cover, 
year, protection and depth 

GLM ++ 

Benthic habitats more abundant 
within reserve 

Percentage cover of benthic 
organisms, year, protection 

Two-Way ANOVA + 

Scallops more abundant within 
reserve 

Density of king and queen 
scallops, year, protection 

Two-Way ANOVA - 

Scallop abundance declined 
with distance from reserve 

Density of king scallops, 
distance from reserve 

Pearson 
Correlation 

+ 

Mean size of scallops greater 
within reserve 

Shell length of king and queen 
scallops, protection 

ANOVA + 

Size distributions differed 
between reserve, outside and 
wider Clyde 

Shell length of king and queen 
scallops, protection 

K-S Test + 

Scallop mortality lower within 
the reserve 

Age and density of king 
scallops, protection 

Catch curve 
analysis 

+ 

Scallop growth rates higher 
within reserve 

Age and size of king and 
queen scallops, protection 

Kimura likelihood 
ratio test 

+ 

Exploitable and reproductive 
biomass of scallops higher 
within reserve 

Exploitable and reproductive 
biomass, year, protection 

Two-Way ANOVA + 

Lobster CPUE higher within 
reserve than both controls 

CPUE, protection Mann-Whitney + 

Lobster WPUE higher within 
reserve than both controls 

WPUE, protection ANOVA + 

Lobster CPUE and WPUE 
declined with increasing 
distance from reserve 

CPUE, WPUE and distance 
from reserve 

Pearson 
Correlation 

+ 

Mean size of lobster greater 
within reserve 

Carapace length, protection ANOVA + 
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Appendix 7. Table summarising all hypotheses tested and whether tests showed evidence of 
an interaction between protection and year (++), of a positive difference between the reserve 
and outside (+), no difference between reserve and outside (-), a negative difference between 
reserve and outside (- -) and results that are neither positive nor negative (NA).  
 

Size distributions differed 
between the reserve and  both 
controls 

Carapace length, protection K-S Test + 

Males and female lobsters not 
different from a 1:1 ratio 

Gender frequency, protection Pearson Chi-
Squared 

NA 

No difference in gender ratios 
between reserve and outside 

Gender frequency, protection Pearson Chi-
Squared 

+ 

No difference in  pregnant 
females frequency between 
reserve and outside 

Pregnant female frequency, 
protection 

Pearson Chi-
Squared and 
Fisher's Exact  

+ 

Lobsters spilling over into 
fishing grounds 

GPS coordinates of recaptures ArcGIS - 

Crab CPUE higher within reserve 
than both controls 

Velvet and brown crab CPUE, 
protection 

Mann-Whitney - - 

Crabs larger within reserve Carapace length, protection K-S Test - 

Epibenthic community 
composition differed between 
reserve and outside 

Percentage cover of benthic 
organisms, year, protection, 
depth, substrate 

PERMANOVA + 

Epibenthic community 
composition of shallow sites 
differed between reserve and 
outside 

Percentage cover of benthic 
organisms 

SIMPER + 

Benthic megafauna more 
abundant within reserve 

Abundance of benthic 
organisms, protection, year 

Two-Way ANOVA + 

Megafauna community 
composition differed between 
reserve and outside 

Abundance of benthic 
organisms, year, protection, 
depth, substrate 

PERMANOVA - 

Fish more abundant within 
reserve 

MaxN of fish, year, protection Two-Way ANOVA - 

Fish abundance was related to 
benthic habitats 

MaxN of fish, year, 
protection, substrate, 
percentage cover of benthic 
organisms 

GLM NA 


