
1 
 

The modulation of macrophage apoptosis by 

HIV-1 during Streptococcus pneumoniae 

infection 

 

 

 

A thesis for the degree of Doctor of Philosophy 

 

Paul John Collini 

 

April 2014 

 

Department of Infection and Immunity 

Faculty of Medicine, Dentistry and Health  

University of Sheffield 

  



2 
 

  



3 
 

Contents 
 

Acknowledgements ....................................................................................................................... 9 

Declaration .................................................................................................................................. 13 

Abstract ....................................................................................................................................... 15 

Abbreviations .............................................................................................................................. 17 

List of Figures and Tables ............................................................................................................ 23 

1 Chapter 1. Introduction ...................................................................................................... 27 

1.1 Organisation of the immune system........................................................................... 28 

1.1.1 Innate Immunity .................................................................................................. 28 

1.1.2 Adaptive Immunity .............................................................................................. 33 

1.1.3 Apoptosis ............................................................................................................ 37 

1.2 The spectrum of pneumococcal disease ..................................................................... 40 

1.2.1 Vaccination against Streptococcus pneumoniae ................................................. 41 

1.3 The pathogenesis of Streptococcus pneumoniae infection ........................................ 42 

1.3.1 Colonisation ........................................................................................................ 43 

1.3.2 From colonisation to disease .............................................................................. 44 

1.3.3 Alveolar macrophage control of Streptococcus pneumoniae infection .............. 45 

1.3.4 Pneumococcal bacteraemia and meningitis ....................................................... 48 

1.3.5 Adaptive immune responses to Streptococcus pneumoniae in the lung ............ 50 

1.4 HIV-1 infection ............................................................................................................ 53 

1.4.1 The natural history of HIV-1 infection................................................................. 53 

1.4.2 HIV-1 structure .................................................................................................... 55 

1.4.3 HIV-1 replication ................................................................................................. 56 

1.4.4 The immune response to HIV-1 infection ........................................................... 58 

1.4.5 Consequences of HIV-1 for the immune system ................................................ 60 

1.5 Macrophages in HIV-1 ................................................................................................. 63 

1.5.1 Macrophage apoptosis and its circumvention by HIV-1 ..................................... 65 

1.6 Invasive pneumococcal disease and pneumococcal pneumonia in HIV-1 ................. 69 

1.6.1 The epidemiology of Streptococcus pneumoniae infection in HIV-1 .................. 69 

1.6.2 HIV-1 and Streptococcus pneumoniae pathogenesis .......................................... 73 

1.7 Aims............................................................................................................................. 83 

2 Chapter 2. Materials and Methods ..................................................................................... 85 

2.1 Cell culture and differentiation ................................................................................... 85 



4 
 

2.1.1 Cell lines .............................................................................................................. 85 

2.1.2 Human peripheral blood cells ............................................................................. 86 

2.1.3 Human alveolar cells ........................................................................................... 88 

2.1.4 Counting cell numbers ........................................................................................ 91 

2.2 HIV-1 propagation ....................................................................................................... 92 

2.2.1 HIV-1 propagation in lymphoblasts .................................................................... 92 

2.2.2 HIV-1 propagation in MDM ................................................................................. 92 

2.2.3 HIV-1 titration ..................................................................................................... 93 

2.3 Streptococcus pneumoniae culture and cell challenge ............................................... 97 

2.3.1 Streptococcus pneumoniae culture ..................................................................... 97 

2.3.2 Miles and Misra viable bacterial count ............................................................... 97 

2.3.3 Streptococcus pneumoniae opsonisation with human serum ............................ 97 

2.3.4 Cell challenge with Streptococcus pneumoniae .................................................. 99 

2.3.5 Gentamicin protection assays ........................................................................... 100 

2.4 MDM incubation with HIV-1 gp120 .......................................................................... 100 

2.5 MDM infection with HIV-1 ........................................................................................ 100 

2.6 Flow cytometry ......................................................................................................... 101 

2.6.1 Flow Cytometry ................................................................................................. 101 

2.6.2 Antibodies ......................................................................................................... 101 

2.6.3 Cell viability staining ......................................................................................... 102 

2.6.4 Measurement of alveolar macrophage polarisation ........................................ 103 

2.6.5 Measurement of lymphocyte subsets and activation ...................................... 103 

2.7 Measuring cell death................................................................................................. 107 

2.7.1 Nuclear Morphology ......................................................................................... 107 

2.7.2 TUNEL assay ...................................................................................................... 109 

2.7.3 Measurement of Caspase 3/7 activity .............................................................. 111 

2.7.4 Measuring hypodiploid DNA ............................................................................. 114 

2.8 Measurement of protein expression by Western Blot ............................................. 114 

2.8.1 Protein extraction ............................................................................................. 114 

2.8.2 Protein quantification assays ............................................................................ 115 

2.8.3 SDS PAGE ........................................................................................................... 115 

2.8.4 Western blot semi dry transfer ......................................................................... 115 

2.8.5 Protein detection by chemiluminescence ........................................................ 116 

2.8.6 Densitometry .................................................................................................... 116 



5 
 

2.8.7 Measurement of mitochondrial superoxide ..................................................... 117 

2.8.8 Measurement of mitochondrial density ........................................................... 117 

2.9 Statistical Methods ................................................................................................... 118 

3 Chapter 3. HIV-1 infection is associated with attenuation of macrophage apoptosis in 

response to Streptococcus pneumoniae ................................................................................... 119 

3.1 Introduction .............................................................................................................. 119 

3.2 Results ....................................................................................................................... 122 

3.2.1 U937 and U1 promonocytic cell lines can be differentiated similarly towards a 

macrophage-like phenotype ............................................................................................. 122 

3.2.2 The induction of apoptosis by Streptococcus pneumoniae is reduced in U1 

compared with U937 cells after a brief differentiation period ......................................... 125 

3.2.3 Characterisation of U937 and U1 cell lines following a more extended PMA 

differentiation period........................................................................................................ 128 

3.2.4 The induction of apoptosis by Streptococcus pneumoniae is reduced in U1 

compared with U937 cells after an extended differentiation period. .............................. 130 

3.2.5 There is reduced induction of caspase 3/7 following challenge with 

Streptococcus pneumoniae in U1 compared with U937 cells after an extended 

differentiation period........................................................................................................ 133 

3.2.6 The induction of apoptosis by Streptococcus pneumoniae is reduced in U1 

compared with U937 cells after a prolonged, eight day differentiation period. .............. 135 

3.2.7 Infection of monocyte-derived macrophages with HIV-1................................. 135 

3.2.8 HIV-1 infection of MDM is not associated with altered phagocytosis of 

Streptococcus pneumoniae. .............................................................................................. 136 

3.2.9 HIV-1 infection of MDM is associated with altered induction of apoptosis ..... 141 

3.2.10 HIV-1 infection is associated with reduced induction of caspase 3/7 activity 

following Streptococcus pneumoniae infection. ............................................................... 144 

3.2.11 HIV-1 infection of MDM is associated with reductions in late bacterial killing 144 

3.3 Discussion .................................................................................................................. 147 

4 Chapter 4. HIV-1 infection is associated with persistent alterations in bronchoalveolar 

fluid T lymphocytes and alveolar macrophage phenotype despite antiretroviral therapy ...... 151 

4.1 Introduction .............................................................................................................. 151 

4.2 Results ....................................................................................................................... 154 

4.2.1 Patient demographics ....................................................................................... 154 

4.2.2 Alveolar macrophages from a minority HIV-1-seropositive volunteers on fully 

suppressive ART are infected with HIV-1 .......................................................................... 155 

4.2.3 HIV-1-seropositive individuals have a greater proportion of lymphocytes in their 

BAL fluid than HIV-seronegative controls. ........................................................................ 158 



6 
 

4.2.4 The HIV-1 associated BAL lymphocytosis is predominantly from CD8+ T cells. 160 

4.2.5 Alterations in T lymphocyte subset proportions in the lung are distinct from 

those in the peripheral blood of HIV-1-seropositive individuals ...................................... 165 

4.2.6 Alveolar macrophage cell surface expression of polarisation markers is similar in 

HIV-1-seropositive individuals and controls ..................................................................... 165 

4.2.7 Alveolar macrophages from HIV-1-seropositive and seronegative individuals 

exhibit similar rates of Streptococcus pneumoniae phagocytosis. ................................... 168 

4.2.8 Alveolar macrophages from HIV-1-seropositive individuals on ART undergo less 

apoptosis than those from control individuals following challenge with Streptococcus 

pneumoniae. ..................................................................................................................... 170 

4.2.9 The induction of caspase 3/7 activity by Streptococcus pneumoniae infection is 

reduced in AM from HIV-1-seropositive volunteers on fully suppressive ART compared to 

controls 173 

4.2.10 Killing of internalised Streptococcus pneumoniae may be reduced in AM from 

HIV-1-seropositive volunteers on fully suppressive ART at 20 hours post challenge. ...... 173 

4.3 Discussion .................................................................................................................. 176 

5 Chapter 5. Investigating the mechanism of HIV-1 associated changes in the apoptotic 

response of macrophages to Streptococcus pneumoniae ........................................................ 183 

5.1 Introduction .............................................................................................................. 183 

5.2 Results ....................................................................................................................... 185 

5.2.1 There is no association between the level of MDM HIV-1 infection and 

Streptococcus pneumoniae associated apoptosis ............................................................ 185 

5.2.2 Exposure to HIV-1 gp120 is not associated with any altered early phagocytosis 

of Streptococcus pneumoniae by MDM. ........................................................................... 185 

5.2.3 Exposure to HIV-1 gp120 reduces the degree of apoptosis in MDM following 

Streptococcus  pneumoniae challenge. ............................................................................. 188 

5.2.4 Exposure to HIV-1 gp120 reduces the degree of Streptococcus pneumoniae 

associated caspase 3/7 activation in MDM. ..................................................................... 190 

5.2.5 Exposure to gp120 is associated with increased bacterial survival in MDM at 20 

hours post Streptococcus pneumoniae challenge, despite similar levels of early killing . 192 

5.2.6 HIV-1 infection of MDM is associated with persistent expression of Mcl-1 during 

Streptococcus pneumoniae challenge ............................................................................... 194 

5.2.7 Mitochondrial superoxide is increased by HIV-1 and by Streptococcus 

pneumoniae challenge ...................................................................................................... 196 

5.2.8 The level of induction of AM apoptosis following  Streptococcus pneumoniae 

challenge shows a relationship to the proportion of CD4+ and CD8+ T cells in the 

bronchoalveolar lavage fluid. ............................................................................................ 198 



7 
 

5.2.9 Receipt of a non nucleoside reverse transcriptase inhibitor or protease inhibitor 

as a third agent in an ART regimen is not associated with any difference in the apoptosis 

response of AM to Streptococcus pneumoniae challenge. ............................................... 200 

5.3 Discussion .................................................................................................................. 203 

6 Chapter 6. Discussion ........................................................................................................ 209 

6.1 HIV-1 infection results in decreased macrophage apoptosis following challenge with 

Streptococcus pneumoniae which is linked to impaired bacterial killing. ............................ 209 

6.2 HIV-1 is associated with persistence of Mcl-1 expression and failure to augment 

mitochondrial superoxide by macrophages following Streptococcus pneumoniae challenge

 211 

6.3 HIV-1-seropositive individuals on fully suppressive ART continue to have a CD8+ T 

lymphocytosis with a reversed CD4:CD8 ratio in the BAL .................................................... 213 

6.4 Future work ............................................................................................................... 217 

6.5 Conclusion ................................................................................................................. 219 

Chapter 7.References................................................................................................................ 221 

Appendix 1.Buffers .................................................................................................................... 245 

Appendix 2. Publications & Awards .......................................................................................... 249 

Peer reviewed articles........................................................................................................... 249 

Presented abstracts .............................................................................................................. 249 

Awards .................................................................................................................................. 250 

 

 

  



8 
 

  



9 
 

Acknowledgements 

 
During my PhD and writing this thesis I received invaluable support and advice from many 

people. 

My PhD supervisor, Professor David Dockrell has been a strong source of guidance from the 

inception of this work right through to submission. David helped me enormously to develop 

my early research questions into a successful MRC clinical training fellowship application which 

enabled the research presented here to happen. Only with his constant drive and 

encouragement did each of the grant application, interviews, research applications and ethics 

committee forms and interview get completed with success. David has been thorough in his 

supervision of my experimental work, generous in introducing me to collaborators and has 

given up significant amounts of his evenings and weekends to reviewing abstracts and 

manuscripts that I have submitted, not least this thesis. Most of all David has been a strong 

advocate for my training in the often conflicting world of clinical academic training and 

continues to be a great career mentor.  

I must also acknowledge the support of the Dockrell research group; Dr Helen Marriott, Dr 

Martin Bewley, Dr Julie Preston and Dr Marc Daigneault for teaching me so many core 

techniques as well as Jamil Jubrail, my fellow PhD student in the group, for help with 

microscopy. I have had fantastic technical and moral support from Katie Cooke, Ian Geary, 

Vanessa Singleton and Jon Kilby and, in the early days, Margaret Lee and Anne Cook. Kevin 

Oxley and Katie Cooke have been particularly helpful in keeping the CL3 facility up and running 

for me to work in.  

As mentioned, David introduced me to some very generous collaborators; Dr Maddy 

Noursadeghi and his team Dr Jhen Tsang and Dr Gillian Tomlinson at University College London 

who took me under their wing and taught me the core techniques for HIV propagation and 



10 
 

purification and kindly donated the NP2 cell line for my use in Sheffield.   Professor Steve 

Gordon and his team at the Liverpool School of Tropical Medicine, Dr Sarah Glennie and Dr 

Adam Wright, taught me and advised on alveolar macrophage harvest by bronchoscopy. Dr 

Charlie Elliot, Dr Robin Condliffe, Dr David Kiely, Professor Moira Whyte and the staff in the 

Royal Hallamshire Hospital endoscopy suite and lung MDT office were fantastically 

accommodating arranging and performing bronchoscopies. 

Professor Ian Sabroe has been my PhD mentor and tutor and given freely of his time both in 

my initial MRC application and interview preparation and subsequently during my PhD. He also 

gave me invaluable help when designing the bronchoscopy protocols and preparing my ethics 

applications. Professor Robert Read helped guide my fellowship application and initial work. 

Others in the department of Infection and immunity who gave me very helpful advice during 

my fellowship application and during lab meetings were Professor Moira Whyte and Professor 

Steve Renshaw. Sarah Moll in the STH research office was a great help steering my applications 

through all the research governance bodies. Thank you to Dr Colin Bingle and Dr Mark Thomas 

who carefully read and discussed my transfer report at the end of my first year. I’d also like to 

thank the postgraduate research team, led by Martina Daly at the Medical School for keeping 

my PhD on track. 

I would like to thank my funders, the MRC, who awarded me my clinical training fellowship and 

made this research possible.  

Key to the success of this research were, of course, the patients and healthy volunteers who 

both gave blood and agreed to undergo bronchoscopy and lavage. I am in their debt. Specialist 

HIV nurses Karen Sherry and Charlie Hughes and the research nurses Lynne Smart in 

communicable diseases and Charlotte Morgan and her team in the CRF were a fantastic help 

during patient recruitment and enrolment. 



11 
 

Finally I would like to thank my wonderful family; Magda, Joseph and Matthew for their 

support and understanding, particularly every time I disappeared to the lab in the evening or 

for the weekend and my parents without whose care and guidance I would never have been in 

the position I am. 

  



12 
 

  



13 
 

Declaration 

All the work presented in this thesis is my own. Ian Geary, Katie Cooke and Jonathan Kilby 

helped with peripheral blood mononuclear cell isolation.  

 

  



14 
 

  



15 
 

Abstract 

Invasive pneumococcal disease (IPD) causes significant global morbidity and mortality. IPD is 

also more common in HIV-1-seropositive individuals. Although anti-retroviral therapy (ART) 

has transformed the outlook of HIV-1 infection, IPD remains up to 30 times more common. 

The currently available strategies against IPD, vaccination and antimicrobial therapy, have had 

only modest impact and are less effective in HIV-1. New approaches based on a better 

understanding of the underlying immunology of these two diseases are needed.  

A programme of host-mediated macrophage apoptosis ensures killing of pneumococci when 

canonical phagolysosomal killing capacity is exhausted. HIV-1 is associated with resistance of 

macrophages to apoptosis. I hypothesised that HIV-1 mediated resistance to S. pneumoniae 

associated macrophage apoptosis resulting in reduced bacterial killing.  

 I measured the effect of HIV-1 and the HIV-1 antigen gp120 on rates of macrophage apoptosis 

and bacterial survival in vitro following challenge with S. pneumoniae. Macrophages were 

derived from monocytic cell lines U937 and U1 (latently infected with HIV-1) or primary human 

monocytes or alveolar macrophages (AM) were harvested from the lungs of HIV-1-seropositive 

individuals naïve to, or receiving ART and controls by bronchoalveolar lavage (BAL). I also 

measured the levels of anti-apoptotic Mcl-1 and mitochondrial superoxide following 

pneumococcal challenge. Additionally, I characterized and compared the T lymphocytes 

subsets and AM phenotype from the BAL fluid of each group.  

I found that HIV-1 infection is associated with reduced macrophage apoptosis, a persistence of 

Mcl-1 expression, altered mitochondrial superoxide generation and decreased bacterial killing 

following pneumococcal challenge. Altered apoptosis was observed even with low rates of in 

vitro HIV-1 infection and in AM from virally suppressed, HIV-1 ART treated individuals. gp120 

alone was sufficient to mediate these effects. There was a CD8 T cell predominant 
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lymphocytosis in the BAL of HIV-1-seropositive individuals and, in some cases, evidence of 

ongoing HIV-1 replication in AM, despite ART. 

These observations demonstrate that apoptosis-associated killing of S. pneumoniae is impaired 

in HIV-1 infection, potentially through altered Mcl-1 expression and ROS generation. 

Importantly this defect appears to persist in the alveolar macrophages of virally suppressed 

HIV-1-seropositive individuals on ART and is associated with an altered T lymphocyte 

environment in the lung. It is likely that these immune defects contribute to the increased risk 

of IPD in the HIV-1-seropositive population.  
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1 Chapter 1. Introduction 
 

Human Immunodeficiency Virus (HIV) -1 infection and disease caused by Streptococcus 

pneumoniae (the pneumococcus) have been members of the top five on the World Health 

Organisation’s (WHO) list of global infectious causes of mortality for two decades (WHO 2013). 

Furthermore they are epidemiologically linked; HIV-1-seropositive individuals are also many 

times more likely to suffer illness from pneumococcal infection, especially invasive 

pneumococcal disease (IPD). As made clear by its name, untreated HIV-1 infection results in a 

deficiency of the immune response and is characterised by increased susceptibility to 

opportunistic infections and cancer. Fortunately, the vast majority of HIV-associated diseases 

are significantly less frequent since the advent of highly active antiretroviral therapy (HAART). 

Daily use of this combination drug treatment effectively suppresses the production of HIV-1 

virions enabling reconstitution of the immune system. However, despite HAART being widely 

available for more than a decade, many epidemiological studies have observed that a 

substantially increased risk of IPD and pneumococcal pneumonia remains in HIV-1-seropositive 

individuals. This raises questions about the extent to which the immune system is 

reconstituted in HAART treated individuals living with HIV-1 infection and the degree to which 

subtle deficits remain. 

Of further concern is that vaccination against pneumococcal disease is not effective in all 

populations, particularly those with HIV.  Moreover, even with antimicrobial therapy IPD 

carries a substantial mortality risk in both HIV-1-seropositive and -seronegative individuals. 

New approaches to understanding and strengthening the immune response to the 

pneumococcus are now a growing area of research activity. The role of innate immunity has 

received particular interest and, independently, groups have focused on innate immune 

responses to the pneumococcus and the effects of HIV-1 infection on innate immunity. This 

work has brought new insights into the importance of the macrophage both as a target of HIV-
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1 infection and also a critical element of the body’s immune response against S.pneumoniae 

and HIV-1. Macrophage apoptotic responses are relevant to both diseases; apoptosis is a key, 

host initiated, part of the macrophage immune response to the pneumococcus. By contrast, 

HIV-1 infection is associated with a macrophage phenotype of prolonged survival and 

resistance to apoptosis.    

In this thesis the role of the macrophage during pneumococcal infection in the context of HIV-1 

infection will be considered. In this chapter the fundamental aspects of the innate and 

adaptive immune system will be summarised then the epidemiology, clinical history and 

pathogenesis of pneumococcal disease and then HIV-1 infection will each be described, with a 

specific focus on the importance of macrophage apoptosis. Next the epidemiological 

relationship between HIV-1 and pneumococcal disease will be explored and the current state 

of research into the underlying immunopathogenesis of pneumococcal infection during HIV-1 

will be examined.  

1.1 Organisation of the immune system 

With respect to infection, the role of the immune system is to protect the host from any 

harmful effects of microorganisms. The complexity and time scale of the immune response 

differs with the nature and pathogenic potential of the microorganism; a wide range of 

microorganisms are encountered daily and rapidly dealt with by an immediate and non-

specific innate response. A more specific response is individually tailored to the pathogen, that 

develops over days and results in immunological memory.  

1.1.1 Innate Immunity 

Innate immunity draws on physical barriers (e.g. skin, mucosa), soluble molecules (e.g. salivary 

enzymes, antibacterial peptides) and phagocytic leukocytes (macrophages, neutrophils and 

natural killer cells) which can recognise and then become activated to limit microorganisms’ 

replication and reduce the potential of these to invade host tissues. The principal sites where 
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S.pneumoniae encounters the innate immune system are the upper and lower airways, thus 

the respiratory system provides an appropriate paradigm in which to describe this arm of the 

immune system.  

1.1.1.1 Soluble factors of the respiratory immune system 

Mucus secreted from cells of the respiratory mucosa contains mucin which coats 

microorganisms and inhibits their adherence to epithelial surfaces. Antimicrobial peptides 

include β-defensins which are cationic peptides made by epithelial cells, that destroy bacterial 

cell membranes. Also abundant in the alveolar fluid are surfactant proteins A (SP-A) and D (SP-

D) and mannose binding lectin (MBL), members of the collectin family (named by virtue of 

their collagen and lectin domains). By binding and coating pathogens they aggregate and 

immobilise them to limit their spread, activate complement and enhance their phagocytosis 

(reviewed in (Kadioglu and Andrew 2004)). 

The complement family of proteins is another group of the soluble factors of the innate 

immune system. Complement proteins  interact with one another to generate cascades of 

activated intermediates that opsonise pathogens to promote phagocytosis, directly damage 

the membranes of microorganisms and form chemoattractants for neutrophils aiding the 

induction of an inflammatory response (reviewed in (Paterson and Orihuela 2010)). The 

complement system can be activated by direct interaction with foreign surfaces; 

carbohydrates on microbial surfaces trigger the lectin pathway of complement activation and 

in the absence of inhibitors of complement, present normally on host cells but not microbial 

surfaces, the alternative pathway is stimulated. Complement can also be activated in 

association with signals from the adaptive immune system, in this instance by antibody which 

has bound to an antigen, to set off a third cascade known as the classical pathway (Paterson 

and Orihuela 2010). 

1.1.1.2 Macrophages in innate immunity 
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Should a pathogen breach epithelial and other physical barriers and enter tissue it will usually 

be recognised, ingested and killed by a phagocyte. Macrophages are specialised, long lived 

phagocytes of the myeloid lineage that reside in the tissues and can be replenished from both 

the pool of circulating monocytes or by local proliferation (Jenkins, Ruckerl et al. 2011). In the 

lung, most macrophages are differentiated alveolar macrophages (AM) residing in the alveoli 

(van oud Alblas and van Furth 1979). AM express pathogen recognition receptors (PRR) 

including the mannose receptor (CD206), MARCO and Toll like receptors (TLRs) (Wileman, 

Lennartz et al. 1986; Palecanda, Paulauskis et al. 1999; Droemann, Goldmann et al. 2003).  

PRRs recognise both environmental particles and components of microorganisms, such as the 

lipopolysaccharide component of a bacterial cell wall. These microbial ligands are referred to 

as pathogen associated molecular patterns (PAMPs), and allow the macrophage to identify a 

broad range of pathogens rapidly and without immunologic memory. Ligation of the cell 

surface PRR activates the macrophage and upregulates receptors that stimulate phagocytosis 

of the pathogen and generation of microbicidal molecules such as nitric oxide (NO) which kill 

the pathogen in an intracellular vesicle called the phagolysosome. Macrophage killing of S. 

pneumoniae will be considered in more detail in the next section. PRRs also trigger complex 

intracellular signalling pathways which result in activation of nuclear factor kappa B (NF-κB) 

and interferon regulatory factor (IRF), key transcription factors involved in immune signalling 

(reviewed in (Calbo and Garau 2010)). NF-κB is essential for a second response of the 

macrophage to pathogens, namely the production and release of specialised molecules called 

cytokines and chemokines which signal inflammation and attract neutrophils and plasma 

proteins to the site of the pathogen, thus helping the macrophage co-ordinate the 

inflammatory response more broadly, in addition to helping the macrophage ingest and kill 

pathogens (reviewed in (Janeway and Medzhitov 2002)).  

1.1.1.3 Macrophage polarisation 
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Crucially, and particularly important in the alveolus, the AM has adapted to become an 

efficient phagocyte yet limit cytokine production in the face of constant exposure to 

microorganisms in order to constrain an otherwise damaging inflammatory response (Cassol, 

Cassetta et al.).  It also has a prolonged life span life and estimates suggest it lives for 1-2 years 

or longer (Kjellstrom, Ichimura et al. 2000; Murphy, Summer et al. 2008). These features 

distinguish the resting alveolar macrophage from macrophages seen at the site of acute 

inflammation which are short lived and produce stronger cytokine responses (Maus, Janzen et 

al. 2006; Jenkins, Ruckerl et al. 2011). Plasticity is a hallmark of macrophages and their 

differing phenotypes are recognised to fall along polarised pathways of activation; the 

inflammatory or M1 macrophage is driven by inflammatory signals provided by IFN-γ and 

bacterial LPS and at the other extreme the alternatively activated M2 macrophage is induced 

by a range of different stimuli. M2 polarisation can be subdivided according to the phenotype 

of the resulting cell with specific stimuli associated with each phenotype; M2a (IL-4 and IL-13), 

M2b (immune complexes and TLR ligands) and M2c (IL-10 and glucocorticoids)(Cassol, Cassetta 

et al. ; Ambarus, Krausz et al. 2012) (and reviewed in (Dockrell, Collini et al. 2012)). As a 

consequence of polarisation macrophages differ in expression of surface receptors, cytokine 

production and generation of NO and reactive oxygen species (ROS) with consequences for 

their function in host defence, wound healing or immune regulation (reviewed in (Mosser and 

Edwards 2008)). Thus, the alveolar macrophage has the capacity to alter its phenotype in 

response to the microbiological and immunological environment it encounters.  

1.1.1.4 Macrophage signalling 

The macrophage communicates with other arms of the innate and adaptive immune response 

by releasing cytokines and chemokines, including interleukin (IL) -1β, tumour necrosis factor 

(TNF) –α, IL-6, IL-8 and IL-12.  They serve the ultimate purpose of containing the spread of 

infection when the macrophage is overwhelmed. Their actions may be autocrine (further 

activating the macrophage and enhancing phagocytosis), paracrine (local) or endocrine 
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(inducing responses from remote locations, e.g. leukocyte release from the bone marrow, 

acute phase response protein production by the liver and release of prostaglandin E2 which 

acts on the  hypothalamus to alter the  body's temperature)(reviewed in (Janeway 2001))   

1.1.1.5 Neutrophils, dendritic cells and natural killer cells 

One action of the cytokine response of the macrophage is to upregulate adhesion molecules 

on endothelial cells in both local blood vessels and circulating neutrophils, resulting in 

neutrophil extravasation into the tissue. Here they migrate in huge number along chemokine 

gradients to the epicentre of the infection. Neutrophils, abundant in the blood but not 

normally in healthy tissues, are short lived phagocytes. By devoting the major part of their 

cellular energy to the respiratory burst required to generate toxic oxygen species they have a 

greater capacity than macrophages for intracellular killing but at the cost of their own survival:  

they die soon after completing a round of phagocytosis. Thus the rapid accumulation of 

neutrophils at the site of infection serves to exponentially increase phagocytic capacity while 

also contributing to a dramatic transformation of the local tissue. Dead neutrophils, which are 

the main component of pus, must be removed from the tissue during the resolution of 

infection, another phagocytic role served by the macrophage known as efferocytosis (reviewed 

in (Janeway 2001)). 

Related to macrophages, dendritic cells also have the ability to respond to micro-organisms. 

They are similarly activated through the binding of pathogen constituents to PRRs. Instead of 

being phagocytes they are best adapted to process the microorganisms and migrate to the 

local lymph glands, where after they present pathogen specific molecules, termed antigens, to 

the antigen-specific naive T lymphocytes (T cells, discussed further below). In turn the T cells 

become activated to mature into effector cells and migrate to the original site of the infection. 

Another cell activated in response to macrophage signalling is the natural killer (NK) cell. 

Derived from a common lymphoid progenitor in the bone marrow it is similar to B and T 
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lymphocytes but lacks antigen specific receptors. It recognises host cells that have become 

infected with intracellular pathogens, and by releasing cytotoxic granules onto the surface, 

induces apoptotic death of their target. Related is the invariant natural killer T (iNKT) cell, 

which shares the properties of T cells and NK cells but possesses only invariant receptors 

against non specific lipids and glycolipids displayed by CD1d molecules on infected cells' 

surfaces. They thus act as an innate cell rather than a component of the adaptive immune 

response but can produce considerable quantities of immunoregulatory cytokines including 

IFN-γ, IL-4, IL-17 (reviewed in (Janeway 2001) and (Wu, Gabriel et al. 2009)). Another T cell, 

called the γδ T cell also acts as an innate immune cell and has the capacity to phagocytose. It 

possesses an alternative pair of γδ glycoprotein chains in the T cell receptor (TCR) rather than 

the αβ type of CD4+ and CD8+ T cells (see below) which is more restricted and acts like an 

innate cell PRR (Born, Reardon et al. 2006).  

1.1.2 Adaptive Immunity 

The innate immune response is rapid but lacks immunological memory. To develop a more 

long-lasting response the adaptive immune response is required (Janeway 2001). The adaptive 

immune response also has the potential to be harmful to host tissue and so it is characterised 

by an enhanced capacity to distinguish foreign material from self. This antigen specific 

adaptive immune response is provided by B and T lymphocytes. These cells can act in most 

areas of the body through the secretion into the circulation and body fluids of specialised 

soluble proteins called immunoglobulins, manufactured by B cells, or by migrating to remote 

sites where they have local and direct effects on other cells, a function exemplified by T cells. A 

key feature is the development of long lived immunological memory of this primary response 

to a specific pathogen such that a secondary immune response can be more rapidly induced in 

the event of a subsequent encounter. 

1.1.2.1 B lymphocytes 
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After their generation in the bone marrow, B lymphocytes develop into a diverse number of 

distinct clones. Domain variability, somatic mutation and hypermutation as well as class 

switching all contribute to the diversity of antibody responses using a restricted number of 

genes. Thus B cells have the capacity to produce thousands of subtly distinct immunoglobulins, 

each specific to different antigens on the surfaces of pathogens.  A microorganism specific B-

cell response is generated when a B cell encounters its antigen on an antigen presenting cell in 

a lymph node. The naive B cell becomes activated to divide and expand into a large clonal 

population of mature effector B lymphocytes or plasma cells that secrete immunoglobulin 

specific to that antigen. On binding, immunoglobulin may aid complement fixation or act to 

block viruses or microbial toxins from themselves binding to host cell receptors. Other 

antibodies may agglutinate pathogens preventing them accessing potential attachment sites 

and aiding clearance.  Alternatively the antibody will bind the antigen and mark the pathogen 

for detection and ingestion by phagocytes or the generation of antibody-dependent cell 

mediated cytotoxicity. Key to these cell mediated processes is the Fc region of the 

immunoglobulin molecule that binds specifically to an Fc receptor (FcR) on the surface of 

macrophages, neutrophils, dendritic and NK cells, as well as B lymphocytes, leading to their 

activation. FcRs belong to different classes (e.g. FcαR, FcγR, FcεR) according to which antibody 

type (IgA, IgG, IgE) they bind, with each class having its own individual members too, such as 

FcγRI, FcγRII(A,B,C) and FcγRIII(A,B). The antibody subtype and cell type will determine the 

effect of binding from phagocytosis, when IgG binds to FcγRI on the macrophage to 

degranulation when IgE binds to FcεRI on Eosinophils (Janeway 2001). As the response to the 

infection continues the B cells undergo repeated antigen stimulation and produce 

immunoglobulin with greater antigen binding affinity (affinity maturation). Not all naive B cells 

become effector cells after antigen encounter and some instead multiply and differentiate into 

memory B cells, which are not involved in the response but survive, ready to rapidly generate 

any future, antigen specific, secondary immune response (reviewed in (Alberts 2002)). 
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1.1.2.2 T lymphocytes 

T cells derive from bone marrow precursor cells that migrate to and develop in the thymus. 

Here, through a process of clonal selection akin to that in B cells, they are programmed to 

recognise a foreign antigen by means of a specialised, T cell receptor (TCR). The TCR is made 

up of highly variable immunoglobulin like domains called TCRα and TCRβ chains, which bind to 

antigen but can also recognise ‘self’ surface major histocompatibility complex (MHC) 

molecules that belong to the host. In addition to the αβ TCR there are invariant accessory 

chains CD3γ, CD3δ, and CD3ε which together form the CD3 complex. It is completed by a 

fourth accessory ζ chain which has a large cytoplasmic domain for signal transduction (Janeway 

2001). T cells belong to two main classes and can be distinguished by the presence of co-

receptors that enhance the signalling of the main T cell receptor; T helper cells express the CD4 

co-receptor and cytotoxic T cells express CD8. A T helper cell (CD4+ T cell) is only functional 

once it has been activated by contact with an antigen presenting cell. For this contact to be 

successful two distinct signals must be transmitted between the cells. The first involves sharing 

of the foreign antigen between a class II MHC on the antigen presenting cell and the TCR on 

the T-cell, which triggers receptor clustering. The cytoplasmic domains of the TCR then 

associate with a tyrosine kinase, Fyn. CD4 amplifies the signal from the TCR when it engages 

MHC class II, utilising the tyrosine kinase Lck. These two receptor associated tyrosine kinases 

lead to the phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) in 

the cytoplasmic tails of the TCR and initiate a signalling cascade that propagates to the nucleus 

(reviewed in (Isakov 1997)). The second signal provides co-stimulation and serves to amplify 

the first through binding of B7 proteins (CD80 and CD86) on the antigen presenting cell with 

CD28 on the T cell. This activates the naïve T cell and allows it to differentiate to an effector T 

cell and stimulate its own proliferation in an autocrine manner by generating the cytokine IL-2 

(Janeway 2001). This response is kept in check by production of another protein, cytotoxic T-

lymphocyte-associated protein (CTLA)-4 which binds CD28 and blocks co-stimulation, making 
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the T-cell anergic (reviewed in (Rudd, Taylor et al. 2009)). Prolonged T cell activation is 

dependent on continued antigenic stimulation, which subsides as the infection is cleared. In 

addition sustained activation will in time lead to a down regulation of activity as it results in 

susceptibility to T cell apoptosis. Repeated TCR stimulation leads to the up regulation of Fas 

(CD95) on the activated T cell which on binding of its cognate ligand (FasL, also expressed by T 

cells) triggers apoptosis, a process termed activation-induced cell death (AICD, reviewed in 

(Zhang, Xu et al. 2004)).  

Activated T helper cells serve to help stimulate macrophages, enhancing killing of intracellular 

pathogens or B cells to produce antibody; which of these responses predominates depends on 

the type of cytokine message produced by the antigen presenting cell at the time the naive T 

helper cell is activated. In general intracellular bacteria stimulate antigen presenting cells to 

produce the cytokine IL-12 which pushes T helper maturation towards a macrophage 

activating or ‘TH1’ phenotype involving the production of TNF-α and IFN-γ. Allied to this, TH1 

cells also promote the production of monocytes and the migration of monocytes and 

neutrophils into infected tissues. Alternatively, extracellular parasites such as helminths and 

protozoa stimulate antigen presenting cells to produce cytokines that favour a ‘TH2’ response 

from the T cell that promotes antibody production from B cells and the activation of 

eosinophils through the secretion of IL-4,IL-5, IL-10 and IL-13 (reviewed in (Alberts 2002)). 

CD8 expressing, cytotoxic T cells (CD8+ T cells) recognise and kill host cells infected by 

intracellular pathogens or viruses. This requires the TCR to recognise and binds antigen bound 

to Class I MHC on the surface of the target cell (Janeway 2001). Once activated the CD8+ T cell 

releases the protein perforin which opens channels in the cell membrane and enables the 

delivery of a cargo of proteases such as granzyme B which activates apoptotic death in the 

infected target cell (reviewed in (Berke 1994)).  CD8+ T cells also expresses FasL, which induces 

an additional pro-apoptotic signal on binding to Fas on infected cells. Since activated CD8+ T 
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lymphocytes also express Fas they are also subject to control from AICD, scaling down the 

number of activated effector cells when the immune response is concluded (reviewed in 

(Janeway 2001; Alberts 2002)).   

1.1.3 Apoptosis  

A general property of cells is their capacity to instigate their own death.  This physiological 

process is termed apoptosis and occurs in normal development and homeostasis. Classic 

examples are the removal of tissue between fingers in the formation of the foetal hand or the 

sloughing of the lining of the uterus in menstruation (reviewed in (Alberts 2002)). Apoptosis is 

also a controlled cellular response to danger when the survival of the cell would threaten the 

host, typically if the cell is infected with a pathogen or has damaged DNA, or as with activated 

T cells, is no longer needed. Thus it is also fundamental feature of the immune system, 

illustrated when defects in genes coding apoptosis proteins result in immunodeficiency, cancer 

and autoimmunity (reviewed in (Thompson 1995)).  

Apoptosis differs from unplanned, catastrophic cell death which is termed necrosis. During 

necrotic death a cell swells and ruptures, releasing its contents inducing a potentially 

deleterious inflammatory response in the surrounding tissues (reviewed in (Alberts 2002)). By 

contrast, apoptosis is a pre-programmed and tightly regulated energy dependent death 

response that leads to the safe disposal of the cell (reviewed in (Alberts 2002). Classically 

apoptotic cells are seen to shrink, develop blebs on the membrane and condense their 

chromatin (Kerr, Wyllie et al. 1972). The cellular membranes remain intact and prevent the 

loss of pro-inflammatory cell constituents to the tissues (reviewed in (Opferman and 

Korsmeyer 2003)). Phosphatidylserine, a phospholipid, translocates from the cytosol to the 

outer membrane of the cell to act as a signal for healthy phagocytes to engulf the dying cell 

and its membrane wrapped remnants and safely dispose of them (Verhoven, Schlegel et al. 

1995). Cell death is the culmination of a cascade of intracellular catalytic activity mediated by 
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cysteine proteases known as caspases. These are grouped as initiator caspases 2, 8, 9 and 10 

and effector/executioner caspases-3, -6 and -7 (Thornberry and Lazebnik 1998; Labbe and 

Saleh 2008). A common apoptotic pathway is activated by the triggering of either of two 

proximal pathways, known as the intrinsic and extrinsic pathways of apoptosis, depending on 

whether the original signal comes from within the cell or the extracellular environment 

(Opferman and Korsmeyer 2003).  

1.1.3.1 The intrinsic pathway of apoptosis 

The intrinsic pathway of apoptosis, also referred to as the mitochondrial pathway, is triggered 

by injury within the cell or cellular stress. This may follow the withdrawal of growth factors or 

IL-2, damage to DNA, for example by ultra violet (UV) radiation, a building up of abnormal 

protein, detected through the unfolded endoplasmic reticulum (ER) stress response, or 

oxidative stress (Green and Kroemer 2004). The survival or demise of the cell depends on the 

balance in expression and activity of pro and anti apoptotic members of a group of proteins 

known as the B cell lymphoma (Bcl)-2 family. The Bcl-2 family share up to four conserved 

sequences known as Bcl-2 homologous (BH) domains 1-4. The anti-apoptotic Bcl-2 proteins 

reside on the outer mitochondrial membrane and maintain its stability. They include Bcl-2, 

myeloid cell  leukemia protein (Mcl)-1, Bcl-extra large (XL) , and A1/Bfl-1 and share all four BH 

domains. Pro-apoptotic members share either Bcl-2 homology (BH) 1-3 domains (Bcl-2-

associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak)) or are BH3 domain 

only containing proteins (BH3 interacting-domain death agonist (Bid), Bcl-2-associated death 

promoter (Bad), Noxa and p53 upregulated modulator of apoptosis (PUMA)).  Cellular stress 

and DNA damage, in particular through the activation of p53, leads to increased transcription 

and activation of these proapoptotic proteins while repressing antiapoptotic Bcl-2 members 

(reviewed in (Opferman and Korsmeyer 2003). On activation Bax migrates to the outer 

membrane of the mitochondrion and either directly forms pores or associates with the 

antiapoptotic Bcl-2 through its BH3 domain and inhibits its membrane stabilizing effect, 
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through association with a pore forming protein known as the adenine nucleotide translocator 

(ANT) (Vieira, Haouzi et al. 2000). Activated BH3 only members also migrate to the 

mitochondria but require the presence of Bax or Bak to disrupt the membrane (Cheng, Wei et 

al. 2001). As a consequence of mitochondrial membrane permeabilisation, cytochrome C (Cyt-

C) leaks from the mitochondria into the cytosol where it associates with deoxyadenosine 

triphosphate (dATP) and apoptotic protease activating factor 1 (APAF-1) to form a complex 

known as the apoptosome. The apoptosome cleaves procaspase 9 to the initiator caspase 9 

and so begins a cascade of caspase activity culminating in activation of the effector caspase 3. 

The cell is now committed to apoptosis and caspase 3 causes the digestion of cytoplasmic 

structural proteins, degradation of chromosomal DNA and promotes the phagocytosis of the 

cell by other cells such as macrophages, a process known as efferocytosis. 

1.1.3.2 The extrinsic pathway of apoptosis 

External signals for apoptosis are received when soluble or cell surface expressed ligands, 

TNFα, CD95L (FASL) and TNF-related apoptosis inducing ligand (TRAIL) bind to receptors of the 

TNF receptor (TNFR) family. Fas is the prototypical TNFR having a cell surface receptor and 

cytosolic death domain.  Ligation causes receptor oligomerisation and so clustering of the 

death domains. These can now recruit the adaptor protein Fas-associated via death domain 

(FADD) and subsequently procaspase 8 to form a complex known as death inducing signalling 

complex (DISC). Procaspase 8 cleaves into caspase 8 which can directly activate caspase 3 and 

apoptosis. Alternatively,  the caspase cascade can be initiated indirectly when caspase 8 

cleaves Bid, enabling its migration to the mitochondrial membrane where it binds Bcl-2 and 

triggers the mitochondrial pathway of apoptosis. TNFR1 binding by TNFα ligation can similarly 

initiate caspase activity mediated by death domain clustering and the adapter molecule TNFR-

associated death domain (TRADD). Unlike FAS, TNFR1 mediated apoptosis is only possible if 

the cell has also been sensitized by cellular factors that block protein synthesis. This is itself 

regulated by NF-κB and JNK/AP-1 which are activated downstream of the TNFR1 by an 
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alternative signalling pathway involving the serine-threonine kinase receptor-interacting 

protein (RIP).   

In conclusion, the innate and adaptive immune systems described work in concert to provide 

continual defence from pathogenic micro-organisms. The responses can be scaled up and 

down again as necessary to achieve a sufficient yet not excessive response to clear the 

pathogen while minimising tissue injury. Apoptotic cell death is an important part of this 

process.   

1.2 The spectrum of pneumococcal disease  

Streptococcus pneumoniae is an important human pathogen and the leading cause of bacterial 

upper respiratory tract infections (e.g. otitis media and sinusitis) and pneumonia. Current 

(2013) estimates from the UK are that there are 40,000 hospitalisations a year for 

pneumococcal pneumonia while in primary care there are 63,000 consultations for 

pneumococcal otitis media (Public Health England 2013). In severe cases the pneumococcus 

may also spread beyond these locations to normally sterile sites such as the blood, causing 

bacteraemia, the pleural space which can result in empyema, or the cerebrospinal fluid and 

meninges, leading to in meningitis. For example, 10%-30% of cases of pneumococcal 

pneumonia are also accompanied by bacteraemia (Blasi, Mantero et al. 2012). Such conditions 

are collectively referred to as invasive pneumococcal disease (IPD). Overall there are between 

5000 and 6000 cases of IPD in the UK each year, of which 5.5% are due to meningitis (Public 

Health England 2013). Worldwide the heaviest burden of pneumococcal disease is on the 

developing world with an estimated 1.6 million deaths per year, more than half of these in 

children <5 years old (WHO 2005). 

Individuals at increased risk of IPD are those at extremes of age (<2 or >65 years of age) 

(Robinson, Baughman et al. 2001). In Europe and the United States, the overall incidence of 

IPD is between 11 and 23.2 per 100,000 population rising to near 60 per 100,000 in those over 
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65 years (Robinson, Baughman et al. 2001; Kyaw, Christie et al. 2003). Other individuals with 

reduced immune competence who are at risk of IPD are asplenic individuals (including those 

with sickle cell anaemia), diabetics, alcoholics, those with chronic pulmonary, renal, liver or 

cardiovascular disease, those with primary immunodeficiencies (e.g. immunoglobulin 

deficiency) and those with acquired immunodeficiency secondary to cancer, 

immunosuppressive medication or HIV-1 infection. Penumococcal pneumonia and subsequent 

IPD is also more likely following influenza virus infection (reviewed in (Brundage 2006)).  

Despite the widespread availability of antimicrobial drugs with activity against S. pneumoniae, 

mortality from IPD has remained constant at around 20% over the last 60 years (Harboe, 

Thomsen et al. 2009; Rello, Lujan et al. 2010). While antibiotic resistance is important, most 

deaths generally occur despite appropriate antibiotic treatment (Rello, Lujan et al. 2010; Blasi, 

Mantero et al. 2012). Since factors independent of antimicrobial susceptibility such as host 

response and pneumococcal virulence factors are associated with poor outcome it is likely that 

the this persisting mortality is related to the consequences of sub-optimal host immune 

responses and the capacity of the pathogen to subvert these responses. This will be discussed 

further when the pathogenesis of pneumococcal diseases is considered. 

1.2.1 Vaccination against Streptococcus pneumoniae 

A significant advance in prevention of pneumococcal disease has been the introduction of anti-

pneumococcal vaccination. A 23 valent pneumococcal polysaccharide vaccine (PPV23), which 

covers 95%-90% of IPD strains, has been available since the 1980’s. It is generally used for 

those aged over 65 or those at increased risk of pneumococcal disease due to co-existing 

medical conditions. Randomised controlled trial and observational evidence report a 

protective efficacy of 74% (95% CI 56–85%) in preventing IPD (Moberley, Holden et al. 2008). 

However, efficacy against all cause pneumonia (a common surrogate for pneumococcal 

pneumonia given that causative pathogens are infrequently isolated) is weaker at 29%, and 

has only been demonstrated to make significant impact in low income countries (Moberley, 
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Holden et al. 2013). Importantly PPV23 is not associated with reductions in all cause mortality 

(Moberley, Holden et al. 2013). More recently, 7 valent (PCV7) then 13 valent pneumococcal 

conjugate vaccines (PCV13) have been introduced for immunisation of children less than 2 

years of age. Though covering a smaller range of strains, they produce stronger antibody 

responses in this age group than the poorly immunogenic PPV23 since they generate T-cell 

dependent responses. IPD from vaccine serotypes has dramatically decreased in this age group 

since uptake of PCV7 and, importantly, has also decreased in older age groups, as a 

consequence of herd immunity (Blasi, Mantero et al. 2012; Public_Health_England 2013; 

Public_Health_England 2013). Nevertheless, vaccination has limitations; as stated, protection 

among those >65 years is limited, efficacy in immunocompromised groups is unproven and 

effects on mortality are inconclusive. Those adults most at risk for IPD get least benefit from 

vaccination (e.g. those living with HIV, discussed below). Emerging data also suggest the 

presence of serotype replacement, meaning that non-vaccine serotypes exploit the ecological 

niche left by reduction of colonizing strains and their increased contribution to IPD is likely, to 

some extent, to offset the herd effect (Harboe, Benfield et al. 2010; Moberley, Holden et al. 

2013). 

1.3 The pathogenesis of Streptococcus pneumoniae infection 

Streptococcus pneumoniae is an encapsulated, facultatively anaerobic Gram positive coccus.  It 

typically appears as paired diplococci on a Gram film and on blood agar colonies are α-

haemolytic. Bacteria are catalase positive and usually optochin sensitive. The polysaccharide 

capsule of S. pneumoniae varies in its chemical composition and net charge and over 90 

serologically distinct capsular serotypes have been recognised. The composition of the capsule 

endows strains with differing virulence properties. Additionally, the pneumococcus possesses 

protein virulence factors including pneumolysin, neuraminidase, hyaluronidase and autolysin 
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(Kadioglu and Andrew 2004). Together these are key determinants of pathogenicity, 

influencing colonisation and invasive potential (Paterson and Orihuela 2010).  

1.3.1 Colonisation 

The major reservoir for S.pneumoniae is humans, where it usually colonises the nasopharynx 

asymptomatically. It is transmitted by coughing and sneezing. 4-15% of adults and up to 40% 

of children in industrialised nations carry the pneumococcus, depending on the population 

studied and capsular serotype that predominates (Austrian 1986; Regev-Yochay, Raz et al. 

2004). These rates increase in crowded situations, particularly hospitals and day centres 

(reviewed in (Mook-Kanamori, Geldhoff et al. 2011)). 

Pneumococcal carriage is known to precede the development of disease in an individual, and 

to colonise effectively S. pneumoniae must evade host barriers to adherence and bacterial 

replication. Lysozyme, produced by the host to cleave bacterial cell wall peptidoglycan, is 

rendered ineffective by two pneumococcal enzymes peptidoglycan N-acetylglucosamine-

deacetylase A (PdgA) and an O-acetyltransferase (Adr) which deacetylate the peptidoglycan 

and prevent the action of lysozyme. Pneumococcal IgA protease confers resistance to mucosal 

IgA1, promoting attachment (Kilian, Mestecky et al. 1980; Weiser, Bae et al. 2003). In the 

respiratory tract the mucocilliary escalator may be overcome by the toxin pneumolysin (Ply), 

which decreases epithelial cell ciliary beating, secreted exoglycosidases (e.g. neuraminidase A) 

or by the capsule itself which prevents entrapment in mucus (Nelson, Roche et al. 2007; Mook-

Kanamori, Geldhoff et al. 2011). That some capsular serotypes are better adapted to colonise 

the upper airway is reflected in the varied prevalence of serotypes in colonisation studies 

(Tocheva, Jefferies et al. 2011). However, not all strains that colonise effectively go on to cause 

invasive disease while some invasive isolates are infrequently found in colonisation studies. 

These differences are due, in part, to characteristics of their capsule; colonising strains such as 

6A and 23F are more easily coated with complement and are more readily phagocytosed by 
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AM while the invasive strains 4 and 7F better adhere to the epithelium and resist AM 

phagocytosis by virtue of their more accessible surface adhesions (Weinberger, Trzcinski et al. 

2009; Hyams, Yuste et al. 2010; Sanchez, Hinojosa et al. 2011). The relative ability of a 

pneumococcal serotype to colonise / cause disease is expressed as the case carriage ratio. For 

example serotype 11C has emerged as a more frequently carried serotype since the adoption 

of PCV7 but it does not cause invasive disease. Conversely, serotypes 8, 12F and 22F are 

infrequently carried but are causing IPD (Flasche, Van Hoek et al. 2011).   

1.3.2 From colonisation to disease 

S. pneumoniae may be micro-aspirated from the nasopharynx into the lower airway, spread via 

the airway and across contiguous structures to create localised foci of infection (e.g. otitis 

media, sinusitis, pleural space disease) or invade into the blood and across the blood brain 

barrier to infect the meningeal space. In each setting the likelihood of invasive disease is 

determined by the outcome of the encounter between the pneumococcus, with its array of 

virulence factors, and immune host defence mechanisms.  The pathogenesis of pneumococcal 

pneumonia, the commonest presentation of pneumococcal disease, has been studied in most 

detail and presents a paradigm for understanding the pathogenesis of pneumococcal infection 

in general. Distinct events during the pathogenesis of pneumococcal meningitis will also be 

highlighted. 

Certain capsular serotypes are less easily bound by the soluble factor SP-D (Kadioglu and 

Andrew 2004). Capsule can also influence complement activity; by impairing C-reactive protein 

(CRP) activity and IgG binding to reduce classical pathway activation or by decreasing C3b 

degradation on the bacterial surface to limit the alternative pathway (Hyams, Yuste et al. 2010; 

Sanchez, Hinojosa et al. 2011). Ply also protects against complement; it activates the classical 

pathway in the absence of immunoglobulin leaving less complement available for bacterial 

surface coating (Yuste, Botto et al. 2005). Pneumococcal surface proteins (Psp) A and C are 
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also implicated in resistance to both the classical and alternative pathways (Dave, Carmicle et 

al. 2004; Yuste, Botto et al. 2005). The importance of complement for pneumococcal defence 

is further illustrated by the observations that C3 deficient (affecting all three complement 

pathways) patients suffer recurrent pneumococcal bacterial infections (Paterson and Orihuela 

2010), C1q deficient mice (affecting the classical pathway) develop higher bacterial counts in 

the lung parenchyma, as a smaller proportion of bacteria are bound in the absence of the 

classical pathway, and the intensity of C3 binding is reduced in factor B deficient mice 

(affecting the alternative pathway) (Brown, Hussell et al. 2002). As suggested already, IgG 

found in the bronchoalveolar lavage (BAL) fluid of healthy individuals plays an equally 

important role in the opsonisation of pneumococci (Eagan, Twigg et al. 2007).   

Ultimately, complement and immunoglobulin contribute to opsonic phagocytosis of 

pneumococci by the alveolar macrophage by means of complement (CR1 and CR3) and 

immunoglobulin (FcγRIIA and FcγRIII, but not FcγRIIB) receptors (Ali, Lee et al. 2003; 

Clatworthy and Smith 2004; Endeman, Cornips et al. 2009). The AM also phagocytose non-

opsonised pneumococci by way of the scavenger receptors (SR) SR-A and MARCO (Arredouani, 

Yang et al. 2004; Arredouani, Yang et al. 2006). Again capsule serotype also plays a role in 

resisting non-opsonic phagocytosis, although this appears to be more important for facilitating 

colonisation than invasive disease (Weinberger, Trzcinski et al. 2009).  

1.3.3 Alveolar macrophage control of Streptococcus pneumoniae infection 

The importance of AM in defence against pneumococcal disease is illustrated by mouse 

models of pulmonary infection where low innocula of pneumococci are instilled into the 

trachea. The AM are able to clear the bacteria and infection resolves without neutrophil 

recruitment or bacteraemia occurring (Dockrell, Marriott et al. 2003). AM ingestion of 

opsonised bacteria facilitates fusion of the S. pneumoniae containing phagosome with a 

lysosome to create a phagolysosome where the ingested bacteria are killed (Jonsson, Musher 
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et al. 1985; Gordon, Irving et al. 2000). Impairment of this process results in invasive disease; 

when the mice were depleted of AM they had higher numbers of bacteria in the lung and 

needed to recruit neutrophils to control infection (Dockrell, Marriott et al. 2003). In keeping 

with this model, metal ions in welding fumes, which both inhibit AM phagocytosis and cause 

macrophage apoptosis thus providing a functional AM defect, result in welders having an 

increased rate of IPD and lobar pneumonia (Coggon, Inskip et al. 1994; Antonini, Lawryk et al. 

1999; Antonini, Leonard et al. 2005). In the phagolysosome of the AM pneumococci are killed 

by mechanisms that include generation of NO and potentially also reactive nitrogen species 

(RNS) (Marriott, Ali et al. 2004; Marriott, Hellewell et al. 2007; Bewley, Pham et al. 2011). 

However, AM do not have as complete an arsenal as professional phagocytes like the 

neutrophil, lacking for instance myeloperoxidase and therefore the more potent halogenated 

ROS. Furthermore, macrophages need to be activated before they generate the microbicidal 

molecules required for bacterial killing. This is achieved both through bacterial sensing by 

macrophage pattern recognition receptors and stimulation from CD4+  and CD8+ T cells 

(Mantovani, Sica et al. 2004; Mosser and Edwards 2008). These factors, as well as the fact that 

many fold more neutrophils are involved when clearing bacteria, mean that the capacity of the 

AM to kill pneumococci is finite and can be overwhelmed. 

Mouse experiments with higher innocula of pneumococci illustrate the consequences when 

the AM killing capacity is overwhelmed (Bergeron, Ouellet et al. 1998; Dockrell, Marriott et al. 

2003). Despite partial bacterial clearance, the macrophage generates a neutrophil chemotactic 

and pro-inflammatory cytokine response releasing IL-8 , TNF-, IL-6 and IL-1. Higher levels of 

these cytokines are detectable both in lung and serum. Bacteria grow in the alveoli and 

neutrophils are recruited. By 24-48 hours tissue injury is visible and there follows recruitment 

of monocytes and lymphocytes into the lung. Three to four days post infection alveolar 

architecture is lost, associated with high levels of NO and malondialdehyde (MDA, generated 

from ROS) in the BAL fluid. As the infection progresses, higher proportions of mice become 
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bacteraemic as tissue damage aids translocation of bacteria from the alveolus to the 

bloodstream (reviewed in (Calbo and Garau 2010)).  Thus the neutrophilic response now 

crucial to successful resolution of the infection and control of bacterial replication involves 

significant collateral damage as powerful antimicrobial systems such as NADPH oxidase-

dependent generation of ROS also harm lung parenchyma (Marriott, Jackson et al. 2008). 

In pneumococcal infection, the AM has a further killing strategy which supplements 

phagolysosomal killing. The AM initiates its own apoptosis which destroys persisting 

pneumococci by release and reaction of ROS with NO during apoptotic cell death (Dockrell, Lee 

et al. 2001; Dockrell, Marriott et al. 2003; Bewley, Pham et al. 2011). This is a host mediated 

process, triggered by pneumolysin and involving TLR4 ligation, that through a series of 

signalling steps leads to dynamic changes in the levels of anti-apoptotic Bcl-2 family member 

Mcl-1 and induction of the intrinsic, mitochondrial pathway of apoptosis (Marriott, Bingle et al. 

2005; Srivastava, Henneke et al. 2005). Crucially, this apoptotic response can both control the 

pneumococci and limit the AM generated proinflammatory signal, averting the need for the 

neutrophilic inflammatory response and the consequent damage to the lung.   

Macrophage pattern recognition receptors (PRR), particularly toll like receptors (TLRs) are 

important for the AM recognition of and response to S. pneumoniae. TLR 2 is ligated by cell 

wall lipoteichoic acid (LTA) and structural differences in LTA can underlie differences in 

virulence between pneumococcal strains (Yoshimura, Lien et al. 1999; Paterson and Orihuela 

2010).   Pneumolysin recognition by TLR4 also helps in defence against the pneumococcus and 

TLR4-/- mice are more susceptible to pneumococcal disease (Malley, Henneke et al. 2003; 

Srivastava, Henneke et al. 2005). TLR9, which recognises unmethylated CpG dinucleotides, 

additionally plays a role in activating phagocytosis as evidence by increased disease in TLR 9-/- 

mice (Albiger, Dahlberg et al. 2007). Ultimately, the intracellular signalling triggered by these 

receptors activates NF-κB mediated transcription of proinflammatory cytokines. The 
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importance of TLRs and their contribution to a sufficient yet not over exaggerated immune 

response is illustrated by the observations that single TLR knockout mice have more subtle 

defects in cytokine responses than combined TLR or adaptor protein knockouts (Lee, Scanga et 

al. 2007) and that individuals with heterozygotic variants of the TLR adapter molecule toll-

interleukin 1 receptor domain containing adaptor protein (TIRAP), which mediates TLR2 and 

TLR4 downstream signalling, are more susceptible to IPD (along with malaria and tuberculosis) 

(Khor, Chapman et al. 2007). Other PRRs are also important; nucleotide-binding 

oligomerisation domain (NOD) 1-/- mice are more susceptible to pneumococci (Clarke, Davis et 

al. 2010); while some capsular strains that cause invasive disease are able to avoid NOD like 

receptor (NLR) dependent  Il-1β secretion (Witzenrath, Pache et al. 2011). Once again the 

balance of inflammatory response is critical; the strains evading NLR are more invasive 

because they induce a weaker inflammatory response but this also results in lower mortality 

(reviewed in (Dockrell, Whyte et al. 2012)). The principle that levels of inflammation must be 

carefully controlled is exemplified by the cytokine TNF-α where too much or too little cytokine 

is harmful. AM are the main source of TNF-α and high TNF-α levels result in excess neutrophil 

activation and lung injury, yet anti- TNF-α molecules worsen pneumonia in mouse models 

which have increased bacterial counts in blood, fewer neutrophils and more death (Takashima, 

Tateda et al. 1997; Kirby, Raynes et al. 2005). Similarly, anti-TNF-α therapies have been 

associated with increased risk of IPD in humans (Baghai, Osmon et al. 2001; Colombel, Loftus 

et al. 2004). 

1.3.4 Pneumococcal bacteraemia and meningitis 

Microaspiration may be sufficient to deliver pneumococci to the distal lung with invasive 

disease then following as a consequence of the virulence factors and host mediated 

inflammatory damage allowing translocation across the epithelium lining the lower respiratory 

tract. However, to cause invasive upper respiratory tract or meningeal infection pneumococci 

must cross upper airway epithelial surfaces or the endothelial blood brain barrier which have 
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important histological and anatomical differences compared to the lower airway. The key 

steps in this process have been described in a recent review (Mook-Kanamori, Geldhoff et al. 

2011); the epithelial binding sites of the pneumococcal cell wall are covered by its thick 

capsule. Having successfully colonised the nasopharyngeal epithelium, the capsule undergoes 

phase transformation, decreasing its polysaccharide to become thinner, and exposes cell wall 

phosphorylcholine residues and other cell wall adhesion molecules (Weiser, Austrian et al. 

1994; Cundell, Gerard et al. 1995).  This allows the pneumococcus to bind to surface 

glycoconjugates and the platelet activating factor (PAF) and polymeric immunoglobulin (pIgR) 

receptors on the epithelial cells. Once bound, S. pneumoniae takes advantage of pIgR and PAF 

receptor recycling to become internalised to the basal membrane of the epithelial cell (Zhang, 

Mostov et al. 2000; Radin, Orihuela et al. 2005). Inter epithelial migration can also occur 

following the degradation of tight junctions by pneumococci bound to plasminogen (Attali, 

Durmort et al. 2008). Now the pneumococci are able to bind and degrade the extracellular 

matrix using pneumococcal adhesion and virulence (Pav) A and PavB and secreting 

hyaluronidase (Mook-Kanamori, Geldhoff et al. 2011). Pneumococci also cross the specialised 

endothelial cells of the blood brain barrier by using the PAF receptor recycling mechanism and 

binding to laminin of the basement membrane (Ring, Weiser et al. 1998). Alternatively, 

pneumococci may also be able to disrupt endothelial tight junctions to cross intercellularly. 

Once in the cerebrospinal fluid (CSF) complement is activated and antigen presenting cells, 

including meningeal macrophages and microglial cells, recognise S. pneumoniae through TLR2, 

TLR4 and NLRs (Klein, Obermaier et al. 2008; Liu, Chauhan et al. 2010). There follows 

production of proinflammatory cytokines TNF-α, IL-6 and IL-1 , a key consequence of which is 

an increase in the permeability of the vascular endothelium and influx of neutrophils, protein 

and fluid into the CSF and brain.  While these responses are critical to the clearance of the 

invading bacteria, they also cause significant parenchyma damage which, along with the 
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release of microbial factors like pneumolysin that cause direct cytotoxicity, leaves a significant 

number of survivors with significant neurodisability (reviewed in (Koedel, Scheld et al. 2002)).  

1.3.5 Adaptive immune responses to Streptococcus pneumoniae in the lung 

The importance of adaptive B cell and humoral immune responses to S. pneumoniae are made 

clear from the vaccine efficacy studies discussed above and reflect the clinical evidence of 

increased susceptibility in agammaglobulinaemic patients (reviewed in (Austrian 1984) and 

(Rijkers, Sanders et al. 1993)). 

A role for T cell mediated adaptive immunity in the defence against pneumococcal infection is 

implied by the increased risk of IPD in individuals with hyper-IgE-syndrome who have defects 

of cell mediated immunity and those that are HIV-1-seropositive, in whom risk is inversely 

correlated with CD4+ T cell counts (Hirschtick, Glassroth et al. 1995; Dworkin, Ward et al. 2001; 

Milner, Brenchley et al. 2008). It has been argued that epidemiological data from children and 

infants implicate a greater role for cellular than humoral responses in naturally acquired 

protection against colonisation with pneumococci (Malley 2010). In this population, 

pneumococcal disease incidence falls about 2 years before protective anticapsular 

immunoglobulin levels are naturally developed but when T-cell responses are known to 

mature (Wedderburn, Patel et al. 2001; Malley 2010). The proliferative and cytokine responses 

of CD4+ T cells from adenoidal explants (post adenoidal surgery) to pneumolysin (i.e. protein 

rather than capsule polysaccharide) have been found to be greater in children who are not 

colonised with pneumococci compared to their colonised counterparts, showing the 

importance of these T cell responses in protecting against colonisation (Zhang, Bagrade et al. 

2007). There is also evidence for the role of T cell immunity involvement during carriage 

among adults; in a higher carriage prevalence population in The Gambia, adults have both 

effector memory and resting memory T cell responses to pneumococcal protein antigens. 

Although not correlating with carriage in individuals per se, these responses were more 
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pronounced in rural dwelling volunteers where carriage rates were more than two fold higher 

than those from urban areas (Mureithi, Finn et al. 2009). Supporting these findings are animal 

models, which demonstrate that protection of mice against pneumococcal carriage following 

mucosal exposure to killed whole cell vaccine, is dependent on CD4+ T cells and not humoral 

responses (Basset, Thompson et al. 2007). More specifically in mice this protection may be 

mediated by  IL-17 and T helper (Th) 17 T cells, which activate macrophages to mediate 

clearance during initial episodes of colonisation, but prime neutrophil recruitment during 

secondary bacterial colonization to achieve bacterial clearance  (Malley, Trzcinski et al. 2005; 

Lu, Gross et al. 2008; Zhang, Clarke et al. 2009; Davis, Nakamura et al. 2011). These 

observations have been used to support the hypotheses that T cell immunity is more 

important than humoral immunity in determining carriage (which is driven by responses to 

pneumococcal protein rather than polysaccharide), that current/recent carriage episodes 

result in effector T cell memory while previous or repeated colonisation episodes stimulate 

resting T cell memory , and that Th17 cells recognise pneumococcal antigen and protect 

against colonisation, possibly by recruiting and activating phagocytes with IL-17 (Mureithi, Finn 

et al. 2009; Malley 2010).  

T cells also function in the response to pneumococcal infection in the lung; in mice there is a 

rapid T cell recruitment to areas of pneumococcal invasion where they become activated 

(Kadioglu, Gingles et al. 2000). In keeping with this, MHC Class II knockout, CD4+ T cell deficient 

mice develop a higher burden of pneumococci in their lungs following intranasal inoculation 

(Kadioglu, Coward et al. 2004). However, this finding was not replicated by a Le Messurier et 

al. using the same mouse model, pneumococcal strain (D39) and infective dose, where mouse 

survival was unchanged or even increased and cyclosporine and antibody mediated depletion 

or inhibition of CD4+ T cell activation yielded similar results (LeMessurier, Hacker et al. 2010). A 

suggested explanation is that the inflammatory response, which involved greatly reduced IL-

1β, IL-6, IL-10 in these models, is better matched to the requirements of the infection so that 
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the bacteria can be effectively cleared (LeMessurier, Hacker et al. 2010).  It has subsequently 

been demonstrated that the Th17 - IL17 response, so helpful in protecting against carriage, 

might itself be responsible for harmful effects in the more constrained environment of the 

distal airway where excessive inflammation could have serious consequences to the precarious 

balance of gas exchange in alveolus; Weber et al. found no change in survival in CD4-/- mice 

following S. pneumoniae serotype 3 nasal inoculation, but observed that CD8-/- mice suffered 

greater bacterial dissemination, lung inflammation and lethality than wild type which was 

attributed to increased Th17 cell numbers, IL-17 and neutrophil recruitment (Weber, Tian et al. 

2011). For this serotype, at least, CD8+ T cells may have a role in modulating the damaging 

effects of the inflammatory response to S. pneumoniae (Weber, Tian et al. 2011). Evidence 

from mouse models further demonstrates that excessive T cell activation may have further 

adverse consequences; deficiency of FasL reduces induction of apoptosis in activated T cells 

and an enhanced population of activated T cells results in reduced neutrophil competence, 

causing decreased bacterial clearance during established pneumococcal pneumonia (Marriott, 

Daigneault et al. 2012).  

To conclude, the pathogenic features of pneumococcal infection and disease are the net result 

of an interaction between pneumococcal virulence determinants and multiple facets of the 

innate and adaptive immune response. Experimental and clinical evidence demonstrate the 

consequences of deficiency in each of these responses but also that the immune reaction must 

be finely tuned as excessive responses are also detrimental. HIV-1 and how it contributes to 

the clinical epidemiology of pneumococcal disease and causes specific defects in each layer of 

the immune response against S. pneumoniae is considered next.  
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1.4 HIV-1 infection  

1.4.1 The natural history of HIV-1 infection 

HIV-1 infection is a global pandemic. Recent estimates from UNAIDS in 2011 give a prevalence 

of 34 million (31.4 million–35.9 million) people living with HIV-1 (known as HIV-1-seropositive), 

with an annual incidence of 2.5million (2.2 million–2.8 million) new cases. In 2011 1.7 million 

[1.5 million–1.9 million] people died from acquired immune deficiency syndrome (AIDS) -

related causes (UNAIDS 2012). Worldwide, the most common route of transmission of the 

virus is sexual via unprotected vaginal intercourse. Other routes are sexual spread through 

unprotected anal intercourse, vertical transmission from mother to child, transmission through 

intravenous drug abuse via contaminated needles or contaminated blood transfusion products 

and accidental exposures in health care settings such as needle stick injuries (WHO 2013). 

Following exposure 50 – 70% of people experience an acute clinical syndrome (Fauci, Pantaleo 

et al. 1996); primary HIV-1 infection is a short lived illness of up to four weeks involving fever, 

lymphadenopathy, myalgia and a maculopapular rash though other symptoms and signs may 

occur (Kahn and Walker 1998). The severity is often mild and the sufferer does not consult 

medical advice. It is also fairly non-specific in character being similar to other acute generalised 

viral infections such as infectious mononucleosis or influenza, and so the syndrome is 

frequently not recognised as due to HIV-1 infection (Rosenberg, Caliendo et al. 1999). 

There then follows an asymptomatic phase that may last several years (Alcabes, Munoz et al. 

1993). During this period there is ongoing viral replication and immune activation, so although 

apparently clinically latent, the virus is not dormant or inactive like, for instance, herpes 

viruses. After the asymptomatic phase symptoms or illness may develop as an increasingly 

dysfunctional immune system fails to prevent or control infectious or neoplastic disease or as 

HIV-1 leads to direct damage to the nervous system. HIV-1 infected individuals may at first 

suffer infections that are common in the general population such as bacterial respiratory 
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infections, vaginal thrush or reactivation of dormant herpes zoster infection but at increased 

frequency. Eventually, as immunosuppression becomes more severe, infections or 

malignancies are seen which are rarely seen in those with intact immune systems including 

Kaposi's sarcoma, CMV retinitis, oesophageal candidiasis, PCP pneumonia and intracerebral 

toxoplasmosis, all of which were early indicators of the HIV/AIDS pandemic (Lerner and Tapper 

1984; Hanson, Chu et al. 1995). The development of any of these opportunistic infections or 

AIDS associated malignancies define AIDS, occurring at a median 8-10 years following 

seroconversion (Alcabes, Munoz et al. 1993; O'Brien, Blattner et al. 1996). Diseases resulting 

from the direct pathenogenic effects of the HIV-1 virus, for example HIV-1 encephalopathy, 

may also occur at this time, as the load of replicating virus is often very high by the later stage 

of disease. The progression of HIV-1 disease can be measured by the pattern of opportunistic 

diseases that occur, which forms the basis of the CDC and WHO classification systems of HIV-1 

(WHO 2007; Schneider, Whitmore et al. 2008). 

The speed of progression of HIV-1 infection towards AIDS is a function of both immune 

impairment and the detectable level of HIV-1 RNA in the plasma (Phillips and Pezzotti 2004). 

After an initially high level viraemia in the order of 106 copies per mL of plasma (cpm), the level 

of virus drops to 103 – 104 cpm within several weeks as a result of a relatively vigorous cell 

mediated and humoral host response (Fauci, Pantaleo et al. 1996). This level of viral RNA, a 

balance between viral replication and immune control, is then maintained during the clinically 

latent phase and is known as the viral set point. How high or low the viral set point is 

determines the speed of progression towards AIDS. Thus, most individuals with HIV-1 RNA set 

points of <1000 cpm can continue in the asymptomatic phase for 12 years or more while more 

than 80% of those whose viral load remains > 100,000 cpm develop AIDS by 2 years post 

infection (O'Brien, Blattner et al. 1996; Phillips and Pezzotti 2004). As a marker of HIV-1 

induced immune impairment the CD4+ T lymphocyte cell count (CD4 count) correlates with the 

risk of AIDS and death, and while the plasma levels of HIV-1 RNA (the viral load) gives 
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information on the rate of disease progression the CD4 count provides information on the 

extent to which disease has progressed. The CD4 count is also used to determine the time of 

introduction of antiretroviral medication and along with the viral load is used to monitor 

responses to therapy (Mellors, Munoz et al. 1997; Williams, Churchill et al. 2012). 

Without HAART 90% of individuals died within 2-4 years of the onset of AIDS (Hanson, Chu et 

al. 1995). With administration of HAART to reduce plasma viral load to undetectable levels the 

progression of HIV-1 infection can be halted and CD4 counts increase. Once restoration of 

immune function is established the risk of opportunistic disease risk recedes and individuals 

gain a vastly improved life expectancy (Sterne, Hernan et al. 2005). 

1.4.2 HIV-1 structure 

HIV-1 is a retrovirus and belongs to the genus lentivirus. Lentiviruses include several viruses 

that typically cause chronic infections involving a long period of clinical latency accompanied 

by ongoing viral replication. Examples are Visna-Maedi in sheep, simian immunodeficiency 

virus (SIV) and feline immunodeficiency virus (FIV) (Dimmock, Easton et al. 2007). 

Virions of HIV-1 consist of a lipoprotein membrane, enveloping a matrix protein and within 

that a capsid protein that houses 2 copies of HIV-1 ribonucleic acid (RNA).  Incorporated in the 

membrane are glycoprotein complexes, composed of trimers of glycoprotein (gp) gp120, 

which is external, and gp41 which spans the membrane. gp120 can be detached easily as it is 

only weakly bound to gp41 and hence is present free in the serum of HIV-1-seropositive 

individuals (Oh, Cruikshank et al. 1992). Also within the virion are 3 viral enzymes required for 

replication; a reverse transcriptase (RT), an integrase and a protease (Dimmock, Easton et al. 

2007). 

The viral genome contains 3 major genes; gag (group antigen), pol (polymerase) and env 

(envelope) flanked by long terminal repeat (LTR) regions at the 5' and 3' ends of the RNA. HIV-

1 gag codes for the capsid, env for the glycoproteins and pol for the enzymes (reverse 
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transcriptase, protease, integrase and RNAse H). The LTR enables integration of the viral 

genome into host DNA. In addition 6 "accessory" genes, so called as they have been found not 

to  be essential for replication in vitro, are nef (negative factor), rev (regulator of expression of 

virion proteins), tat (trans-activator), vif (viral infectivity factor), vpr (viral protein R), vpu (viral 

protein U) (Dimmock, Easton et al. 2007). Tat encodes a transcriptional regulator of the LTR, 

and with rev is also responsible for regulation of viral gene expression and RNA transport to 

the cytosol after viral gene transcription (reviewed in (Karn and Stoltzfus 2012)). Nef has 

functions that interfere with aspects of the antiviral immune response including T cell 

activation and the surface expression of CD4 and MHC class I (Kerkau, Bacik et al. 1997). These 

functions help HIV-1 evade immune responses such as CD8+ T cell killing, and deletions in nef 

have been associated with long term non progression (LTNP) of HIV-1 (Kirchhoff, Greenough et 

al. 1995; Learmont, Geczy et al. 1999). vpr allows viral replication in non dividing cells such as 

the macrophage (reviewed in (Kogan and Rappaport 2011)). A key role of vif is to antagonise 

the naturally occurring host cell restriction factor apolipoprotein B mRNA-editing, enzyme-

catalytic, polypeptide-like 3G (APOBEC3G) that would otherwise cause hypermutation of 

proviral DNA through its cytidine deaminase activity (Sheehy, Gaddis et al. 2002). This results 

in inhibition of replicative capacity but vif induces ubiquitination and proteasomal degradation 

of APOBEC3G allowing the virus to escape this restriction. vpu antagonises another host viral 

restriction factor known as tetherin. Without vpu, new cytosolic HIV-1 virions are bound by 

tetherin, which prevents budding and release of the particle from the cell (Neil, Zang et al. 

2008). 

1.4.3 HIV-1 replication 

As with other retroviruses, HIV-1 lacks the capacity to replicate its RNA without utilizing the 

necessary host cell machinery inside the cell.  The primary receptor necessary for HIV-1 

attachment and entry is the CD4 molecule, to which the virus binds using gp120. The binding 

of gp120 to CD4 generates a conformational change in its V3 loop to promote co-receptor 
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binding. As a consequence a conformational change in gp41 is induced which enables it to 

insert into the host cell, achieve membrane fusion and deliver the viral capsid into the cytosol 

(Dragic, Litwin et al. 1996; De Clercq and Schols 2001). However, CD4 alone is not sufficient for 

HIV-1 binding and entry and a chemokine receptor, either CCR5 or CXCR4 acting as a second 

viral co-receptor, must be present (Gorry and Ancuta 2011). Different viral isolates will 

preferentially use one or the other of these, or sometimes both, and can be differentiated 

according to their propagation efficiency in macrophage and lymphocyte based cell-line 

cultures; monocytotropic isolates use CCR5 (M-tropic), T cell tropic isolates use CXCR4 (T- 

tropic). A common deletion in the CCR5 gene, Δ32, has been found to render the 1% of 

individuals carrying homozygous deletions resistant to infection with CCR5 utilising HIV-1 

infection, while heterozygous carriers are more likely to be long term non progressors (Dean, 

Carrington et al. 1996; Liu, Paxton et al. 1996). M-tropic viruses are the predominant isolates 

until advanced stages of infection when CXCR4 using T-tropic strains become more frequent, 

possibly as these are better adapted to infecting naive T cells and are thus better able to 

replicate when memory T-cells are significantly depleted as they expand the range of T-cells 

within which they can replicate (reviewed in (Gorry and Ancuta 2011)).  

 Within the cytosol the viral enzyme reverse transcriptase converts viral RNA into proviral 

double stranded DNA. Using a mechanism common to most retroviruses vpr, integrase and 

host proteins are formed into a ‘pre-integration complex’ which is transported to the nucleus, 

allowing insertion of the proviral DNA into the host genome (Dimmock, Easton et al. 2007). 

Successful integration of the proviral DNA depends on the host cell being activated. Activation 

is also required for the subsequent transcription of integrated viral DNA, at least in part 

because NF-κB activation and binding to the LTR is needed for viral transcription (reviewed in 

(Bieniasz 2012). Activation occurs through stimuli such as T cell receptor engagement by 

antigen, activation during infection (particularly for macrophages) or by gp120 binding to CD4. 

If the cell remains un-activated, as can occur with macrophages or quiescent T cells, 
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integration may not take place and these cells with un-integrated DNA may persist for 

extended periods, so called pre-integration latency (Chun, Carruth et al. 1997). While pre-

integration latency contributes to a reservoir of inducible productive infection when the cell 

becomes activated, it has been demonstrated that in T cells this form of proviral DNA is highly 

labile so it is probable that the major contributor to the RNA reservoir is latent integrated 

proviral DNA (Zhou, Zhang et al. 2005). In the activated cell viral transcription can begin, 

initially with the production of proteins coded by rev and tat, the HIV-1 regulatory proteins, 

which in turn facilitate transcription of precursors of structural and enzymatic proteins from 

gag, pol and env. HIV-1 protease now starts to cleave these precursor proteins both as the 

virus is assembled and after budding. During assembly, viral particles move to the surface 

membrane and new virions are formed as the cell membrane buds off, incorporating viral 

particles within the viral envelope that are derived from the host cell membrane (NIAID 2012). 

In untreated HIV-1 infection approximately 109 virus particles are produced a day (Perelson, 

Neumann et al. 1996). Retroviral transcription is inherently error prone and 5 -10 transcription 

errors occur per replication cycle in T cells, with an even greater rate in macrophages (Preston, 

Poiesz et al. 1988; Levy, Aldrovandi et al. 2004). The resulting viral progeny are thus highly 

varied and include many replication incompetent virions but also others with mutations that, 

by chance, confer resistance to the selective pressure exerted by the immune system (viral 

escape mutants) or antiretroviral drugs.   

1.4.4 The immune response to HIV-1 infection 

In the majority of cases HIV-1 is acquired via the genital or rectal mucosa as stated before. 

While the inoculum may contain many virus particles it is likely that, for most, infection is 

initiated by only a single 'founder' virus (Keele, Giorgi et al. 2008). Initial mucosal infection 

involves macrophages, dendritic cells (including Langerhans cells), and CD4+ T cells (Morrow, 

Vachot et al. 2007).  From here antigen presenting cells carrying HIV-1 migrate to draining 

lymphoid tissues to present antigen to the adaptive cellular immune system (Lore, Smed-



59 
 

Sorensen et al. 2005). However, HIV-1 is well adapted to the environment it encounters within 

the lymphoid tissue; here there is close cell to cell contact between antigen presenting cells 

and CD4+ T cells, the latter having become activated by the locally high levels of pro-

inflammatory cytokines, and HIV-1 is able to transfer directly from the antigen presenting cell 

to infect the T cell.  With the infection of CD4+ T cells viral production increases rapidly and this 

is reflected in a steep increase in the plasma viral load (Fauci, Pantaleo et al. 1996). 

Meanwhile, and still early on in the course of infection,  resting memory T cells and 

macrophages are becoming non-productively infected, creating the reservoir of latent HIV-1 as 

discussed previously (Chun, Engel et al. 1998; Sloan and Wainberg 2011).  

In most cases, the HIV-1 viral load will begin to drop from its peak within a few weeks of 

infection. This is associated with the development of a CD8+ T cell response as virus-infected 

cells are recognised and this response is thought to result in elimination of these cells 

(reviewed in (Fauci, Pantaleo et al. 1996)). Additionally, the activated CD8+ T cells produce 

cytokines such as IFN-y, that render nearby cells resistant to productive viral infection, and the 

chemokines  macrophage inflammatory protein-1 alpha (MIP-1α), MIP-1β and regulated on 

activation normal T expressed and secreted (RANTES) which are natural ligands of the CCR5 

receptor and block HIV-1 gp120 binding (Cocchi, DeVico et al. 1995). The strength of these 

responses will determine the decline in viraemia and thus the viral set point (Fauci, Pantaleo et 

al. 1996). The failure to achieve total control is in part due to the appearance of viral escape 

mutants and in part due to down regulation of MHC I by nef leading to inefficient presentation 

of epitopes on the infected cells in the absence of the appropriate class I stimulus (Kerkau, 

Bacik et al. 1997). Individuals differ in the strength of their CTL responses, by virtue of their 

differing HLA alleles and capacity to present viral antigen. These differences are associated 

with varying clinical courses of infection; thus LTNP demonstrate greater numbers of HIV-1 

specific CD8+ T cells with broader specificity, a lower or even undetectable viral set point  and 
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preservation of CD4+ T cell counts, which ensures they do not develop the clinical features 

associated with significant immunosuppression (Harrer, Harrer et al. 1996).   

Individuals with HIV-1 also develop a vigorous antibody response to HIV-1 (Gurtler 1996). 

Immunoglobulin and complement form immune complexes with circulating virus which 

become trapped in the reticulo-endothelial system and further contribute to the control of the 

initial viraemia (reviewed in (Fauci, Pantaleo et al. 1996)). However, neutralizing antibody 

(NAb) responses with the potential to prevent HIV-1 binding and fusion with target cells take 

several months to develop and are too slow to prevent infection becoming established. 

Additionally, both heavy glycosylation of HIV-1 env and the trimerisation of the env gp120-

gp41 complex serve to shield epitopes from antibody binding (reviewed in(Burton, Desrosiers 

et al. 2004)). LTNP generally have broader and more persistent HIV-1 neutralising responses 

but it is not clear if these are causal in slowing progression (Carotenuto, Looij et al. 1998). A 

more fundamental problem is that genetic changes in HIV-1 and the development of escape 

mutants make the antibody response ineffectual (Richman, Wrin et al. 2003). These difficulties 

also present major hurdles to producing an effective neutralising antibody vaccine against HIV-

1 and efforts continue to find conserved, yet accessible epitopes to direct antibody against 

(Burton, Desrosiers et al. 2004; Johnston and Fauci 2007).   

1.4.5 Consequences of HIV-1 for the immune system  

The hallmark of HIV-1 infection is a progressive decline in peripheral blood CD4+ T cell number. 

There is an initial fall both in mucosal and plasma CD4+ T cell counts during the peak viraemia 

that follows initial infection with variable recovery of the circulating counts, which may only be 

partial in some patients. The counts then slowly decline during the clinically latent phase and 

with the progressive loss of control of viral replication, CD4+ T cell decline accelerates. At the 

early stages it is memory CD4+ T cells that are lost, particularly at mucosal sites but later naive 

subsets are also affected (Roederer, Dubs et al. 1995). Although HIV-1 infection is directly 
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cytotoxic to CD4+ T cells it is indirect factors that are chiefly responsible for their loss. Only 

0.01–1% of circulating CD4+ T cells are directly infected with HIV-1 but a much larger 

proportion become activated (as a result of the generalised immune activation caused by HIV-

1) and these undergo activation induced cell death by apoptosis (Haase, Henry et al. 1996; 

Patki, Zielske et al. 2000). Increased expression of adhesion molecules in the activated 

lymphatic system leads to sequestration of CD4+ T cells, which may be reflected clinically as a 

persistent generalised lymphadenopathy (Bucy, Hockett et al. 1999). CD4+ T cell production 

from the bone marrow is reduced at later stages of disease either because of HIV-1 infection of 

progenitor cells or opportunistic infections such as Mycobacterium avium complex (MAC). 

Furthermore,  there is evidence that CD4+ T cell development in the thymus may be impaired 

as those who fail to restore CD4 counts on HAART have been found to have thymic failure 

(Teixeira, Valdez et al. 2001). Thus the decline in CD4+ T cell counts reflects the combinatorial 

effects of decreased production, sequestration and increased destruction due to direct and 

indirect effects of HIV-1 (reviewed in (Douek 2003)). 

HIV-1 infection is also associated with a generalized activation of the immune system which 

has been demonstrated to correlate with clinical progression; there are increased levels of 

activation markers on CD8+ and CD4+ T cells and B cells and increased levels of pro-

inflammatory  cytokines TNF-α, IL-1 and IL-6 and chemokines MIP-1α, MIP-1β and RANTES 

(reviewed in (Appay and Sauce 2008)). In fact, the clinical usefulness of CD4 count in predicting 

prognosis notwithstanding, immune activation is likely to be the key driver of pathogenesis in 

HIV-1.  For instance, CD38 expression on CD8+ T cells predicts the CD4+ T cell decline (Giorgi, Liu 

et al. 1993). In primate SIV infections, rhesus macaques have high levels of immune activation 

and progress to AIDS whereas sooty mangabes do not demonstrate comparable immune 

activation and show no CD4+ T cell decline or disease progression (Silvestri, Sodora et al. 2003). 

The drivers of immune activation in HIV-1 are not fully understood but are likely to include; 

translocation of microbial products such as LPS from a CD4+ T cell depleted intestinal mucosa; 
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loss of regulatory responses following Treg (regulatory T cell) depletion; innate immune 

stimulation by viral gene products such as gp120, nef and tat; and autoactivation through 

molecular mimicry between HIV-1 and self proteins such as HLA, as exemplified by epitopes 

from  gp120 C2 and C5 domain peptide binding regions which can stimulate autoreactive T 

lymphocyte activation (reviewed in (Cadogan and Dalgleish 2008)). As stated above one of the 

consequences is activation induced CD4+ T cell loss. The influx of pathogen associated 

microbial proteins like LPS from the gut and elevated levels of pro-inflammatory cytokines also 

induce up-regulation of programmed death (PD)-1 on monocytes which, following ligation by 

PD-L1 expressed on other cell types, produce IL-10 and reduced CD4+ T cell expansion (Said, 

Dupuy et al. 2010). Activation of CD8+ T cells leads to their differentiation into memory cells, 

but the repeated antigenic stimulation of HIV-1 specific CD8+ cells, which otherwise control the 

virus, results in exhaustion of their replicative capacity again through up-regulation of PD-1 

expression. This also correlates positively with higher viral load and inversely with CD4+ T cell 

counts (Day, Kaufmann et al. 2006). Meanwhile, inflammation induced fibrosis of lymphatic 

tissue, involution of the thymus, and loss of bone marrow progenitor pool capacity means 

there is also a reduction in naïve T cell regeneration to replace these depleted and exhausted 

cells (reviewed in (Appay and Sauce 2008)).  

HIV-1 infection is also associated with chronic humoral immune system activation. It is 

characterised by hyperactivation and polyclonal expansion of B cells, that react to both viral 

and non viral antigens, which results in generation of high levels of non specific antibodies and 

produces hypergammaglobulinaemia  (Shirai, Cosentino et al. 1992; Shen and Tomaras 2011). 

The hypergammaglobulinaemia persists even in LTNP (Titanji, De Milito et al. 2006). Despite 

the enhanced activation, there is a paradoxical reduction in antigen specific memory B cell 

numbers, which correlates with the decline in CD4+ T cell numbers and the B cells are 

hyporesponsive, as illustrated  by the failure to develop protective responses to immunization 

(Steinhoff, Auerbach et al. 1991; Moir, Malaspina et al. 2001). 
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Thus HIV-1infection elicits an immune response that is able to partially control the early 

viraemia. However, a lack of broad NAb responses, the high mutation rate of the virus 

favouring escape from the selective pressure of the immune system, down regulation of HLA 

molecules and viral latency within quiescent T cell and macrophage reservoirs ultimately 

contribute to a failure to eliminate the virus. Persistent viral replication and a vigorous but 

incompletely effective immune responses is associated with pathological chronic activation of 

the immune system which through CD4+ T cell loss and CD8+ T cell exhaustion, as well as a 

hyporesponsive humoral response, underlies the immunopathogenesis of HIV-1 infection, the 

clinical progression to AIDS and ultimately death. 

1.5 Macrophages in HIV-1 

Tissue macrophages can be infected by HIV-1. Macrophage tropism is a common feature of 

many lentiviruses, and contributes significantly to the pathogenesis of this virus family. In 

sheep, Visna-Maedi predominantly infects macrophages, rather than T lymphocytes, yet 

causes an AIDS like wasting syndrome (Gendelman, Narayan et al. 1986). Similarly, SIV infected 

macrophages sustain high virus loads  and pathogenic infection whereas SIV strains that are 

unable to productively infect macrophages fail to cause high level viraemia or pathogenesis in 

rhesus macaques (Whetter, Ojukwu et al. 1999; Igarashi, Brown et al. 2001). In humans, 

macrophages in the genital and rectal mucosa are a key cell where initial HIV-1 infection 

becomes established (reviewed in (Meltzer and Gendelman 1992; Morrow, Vachot et al. 

2007)). The virus binds and fuses with the cell by means of the same gp120/gp41 interaction 

with CD4 and CCR5 as described previously for CD4+ T cells. These HIV-1 infected macrophages 

are an important source of virus replication and contribute to CD4+ T cell infection with HIV-1 

(Eckstein, Sherman et al. 2001; Swingler, Brichacek et al. 2003; Groot, Welsch et al. 2008). 

They are also contribute to CD4+ T cell depletion (Badley, Dockrell et al. 1997; Orlikowsky, 

Wang et al. 1997). Similarly HIV-1 infected microglia, the tissue macrophages of the central 
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nervous system, are strongly implicated in the death of neuronal cells in the pathogenesis of 

HIV encephalopathy (HIVE) (Aquaro, Calio et al. 2002). 

Given their prominent role in HIV-1 pathogenesis, a surprisingly small proportion of 

macrophages are actually infected with HIV-1 in vivo. Highest infection rates have been 

reported in the brain at 1-10 per 100 cells (Koenig, Gendelman et al. 1986; Stoler, Eskin et al. 

1986), with lower estimates of 60 per 100,000 cells in intestinal lamina propria in AIDS (Smith, 

Fox et al. 1994). In the lung as few as 3 per 100,000 AM have been observed to contain 

integrated HIV-1 DNA (Lewin, Kirihara et al. 1998). However, the number infected and the 

overall level of HIV-1 RNA or DNA detected from purified ex vivo AM may be greater with 

advanced HIV-1 disease, particularly with lymphocytic interstitial pneumonitis (Chayt, Harper 

et al. 1986; Jeffrey, Israel-Biet et al. 1991; Clarke, Gates et al. 1994; Sierra-Madero, Toossi et al. 

1994; Lewin, Kirihara et al. 1998). In vitro studies find that monocytes are less permissive to 

HIV-1 infection possibly as a consequence of type 1 IFN responses to HIV-1 (which are not seen 

in macrophages), that upregulate host restriction factors such as TRIM5α or APOBEC3G 

(Stremlau, Owens et al. 2004; Williams and Burdo 2009). Nevertheless, HIV-1 DNA has been 

detected in up to 125 per 100,000 peripheral blood monocytes, verifying that some monocytes 

are also infected (McElrath, Pruett et al. 1989; Spear, Ou et al. 1990; McElrath, Steinman et al. 

1991; Lewin, Kirihara et al. 1998).  

In the modern era, with widespread availability of HAART, many research groups have focused 

on an additional pathenogenic role of the macrophage as a reservoir of HIV-1; as with resting T 

lymphocytes, non replicating HIV-1 can persists within macrophages even with antiretroviral 

therapy (Aquaro, Calio et al. 2002; Crowe, Zhu et al. 2003; Contreras, Lenasi et al. 2006). 

Although there is some evidence that antiretroviral compounds may not penetrate 

macrophages as effectively as T cells, the integrated HIV-1 DNA is untouched by HAART and 

contributes to the reservoir of HIV-1 (Crowe and Sonza 2000). Furthermore, unlike activated 
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CD4+ T cells, even productively infected macrophages remain relatively resistant to the 

cytopathic effects  of HIV-1 and can harbour infective virions for prolonged periods in their 

cytoplasm (Meltzer and Gendelman 1992; Sharova, Swingler et al. 2005; Cassol, Alfano et al. 

2006). Crucially in HIV-1 infection, macrophages not only fail to die but actually exhibit a 

prolonged lifespan as a result of specific interactions between the virus, its proteins and the 

pathways that regulate host cell apoptosis (Lum and Badley 2003). These longer lived HIV-1 

infected macrophages are believed to contribute to the slower, second phase of viral decay 

with HAART following the initial rapid elimination of virus (Perelson, Essunger et al. 1997) and 

to be one source of re-emergent virus following discontinuation of therapy (Chun, Davey et al. 

2000).  

1.5.1 Macrophage apoptosis and its circumvention by HIV-1  

One option for the macrophage on becoming infected with a pathogen is to trigger its own 

demise through the induction of apoptosis, and so prevent productive infection (reviewed in 

(Behar, Divangahi et al. 2010)). There are many examples of pathogens that have evolved 

counter regulatory measures to undermine this defence strategy. These include intracellular 

bacteria such as Mycobacterium tuberculosis (Behar, Martin et al. 2011) and Legionella 

pneumophila (Banga, Gao et al. 2007) and the protozoal Leishmania spp. (Akarid, Arnoult et al. 

2004) among others (reviewed in (Ashida, Mimuro et al. 2011)). Viruses, which absolutely rely 

on the host to support their replication, are particularly adept at preventing apoptosis in a 

variety of host cells, for instance EBV carries a gene that resembles human Bcl-2 (Vaux, 

Haecker et al. 1994) while in monocytes/macrophages cytomegalovirus (CMV) upregulates 

Mcl-1 (Chan, Nogalski et al. 2010). There have been several lines of enquiry into the 

mechanisms by which HIV-1 perturbs the apoptotic process in macrophages.  Unbiased gene 

expression analyses show that in monocytes and macrophages, in contrast to CD4+ T cells, 

there is upregulation of anti-apoptotic gene expression resulting from differential modulation 

of p53, TNF-α and extracellular-signal-regulated kinase mitogen-activated protein kinase (ERK 
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MAPKinase) signalling pathways in response to HIV-1 (Giri, Nebozyhn et al. 2009). This anti-

apoptotic gene expression profile is seen both in monocytes/macrophages isolated from HIV-

1-seropositive individuals and when healthy MDM are exposed to HIV-1 in vitro (Coberley, 

Kohler et al. 2004; Vazquez, Greenwell-Wild et al. 2005; Giri, Nebozyhn et al. 2009; Van den 

Bergh, Florence et al. 2010). For example, immediate-early response gene (IEX-1L), Bcl-xL and 

p21 were upregulated in 7 day MDM by HIV-1BAL (Vazquez, Greenwell-Wild et al. 2005).   

A number of mechanistic studies have shown that HIV-1 changes the activity of the Bcl-2 family 

members with consequences for the regulation of the intrinsic pathway of apoptosis, reflecting 

the strategies of the herpes viruses above; higher levels of the anti-apoptotic proteins Bcl-2 

and Bcl-xL and decreased expression, with or without inactivation, of the pro-apoptotic 

proteins Bax and Bad have been observed following HIV-1 infection of MDMs (Zhang, Li et al. 

2002; Guillemard, Jacquemot et al. 2004). More specifically, nef plays a key role inducing BcL-

xL (Choi and Smithgall 2004) and inactivating Bad through hyper-phosphorylation (Wolf, Witte 

et al. 2001; Olivetta and Federico 2006). Additionally, exogenous tat leads to Bcl-2 

upregulation (Zhang, Li et al. 2002) and HIV-1 env/gp120, through engagement with CCR5 on 

MDM, upregulates Mcl-1 and Bcl-2-related protein A1 (A1, also known as Bfl-1) transcription 

(Swingler, Mann et al. 2007). HIV-1 has been demonstrated to activate the phosphoinositide 3-

kinase (PI3K)/Akt pathway in primary human macrophages and monocytic cell lines (Chugh, 

Bradel-Tretheway et al. 2008; Patel, Swan et al. 2009). This pathway regulates survival of 

differentiated macrophages through Mcl-1 (Liu, Perlman et al. 2001). The advantage for HIV-1 

is that by activating PI3K/Akt in an infected macrophage, the cell is rendered resistant to stress 

induced death (for example from NO) and ongoing HIV-1 replication is enhanced (Chugh, 

Bradel-Tretheway et al. 2008). Compared with U937 cells U1 cells, a subclone of the 

promonocytic U937 cell line with inducible integrated proviral HIV-1 DNA, exhibit decreased 

apoptosis in response to hydrogen peroxide (H2O2) or staurosporine (Fernandez Larrosa, Croci 

et al. 2008) and preservation of the mitochondrial inner transmembrane potential when 

http://en.wikipedia.org/wiki/Phosphoinositide_3-kinase
http://en.wikipedia.org/wiki/Phosphoinositide_3-kinase
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treated with TNF-α and cyclohexamide (Pinti, Biswas et al. 2003). HIV-1 also blocks 

proteasomal activity in MDM (Haorah, Heilman et al. 2004) and while the functional 

consequences of this have not been explored in depth, impaired proteasomal activity would be 

predicted to further contribute to the maintenance of rapidly turned over proteins such as 

Mcl-1 (Nijhawan, Fang et al. 2003).  

Extrinsic pathways of apoptosis may also be perturbed by HIV-1. The M-CSF induced signalling 

pathway can be activated by gp120 and downregulates the TNF-related apoptosis-inducing 

ligand (TRAIL) receptor TRAIL-R1 (DR4) blocking an extrinsic, death receptor pathway 

(Swingler, Mann et al. 2007). HIV-1 also interferes with death receptor signalling. Using HIV-1 

expressing specific nef mutations it was identified that regions of nef, distinct from those 

which inactivate Bad as described above, also inhibit apoptosis signal-regulating kinase (ASK)-1 

in lymphocytes, a kinase that plays a role in Fas signalling (Geleziunas, Xu et al. 2001; Olivetta 

and Federico 2006). Monocytes from HIV-1-seropositive individuals show enhanced resistance 

to the pro-apoptotic stimuli cadmium chloride (which activates p38MAPK, downstream of Fas) 

and FasL (Giri, Nebozyhn et al. 2009), with the latter effect also demonstrated in U1 cells (Pinti, 

Biswas et al. 2003). Another mechanism by which HIV-1 may protect against apoptosis is 

through production of an HIV-1 derived microRNA which downregulates pro-apoptotic host 

factors (Klase, Winograd et al. 2009).  

Despite this evidence of macrophage resistance to apoptosis, in specific circumstances HIV-1 

may in fact be responsible for increasing macrophage apoptosis. HIV-1 infected MDM are 

susceptible to apoptosis when exposed to leucine zipper TRAIL, a potent trimeric form of 

TRAIL, while mock-infected MDM remain resistant. This is in contrast to the lack of activity 

observed with soluble TRAIL described by others in response to HIV-1 env / gp120 (Lum, Pilon 

et al. 2001; Swingler, Mann et al. 2007). Recombinant human (rh) TRAIL was identified by 

other groups as able to induce apoptosis in MDM infected with env pseudotyped virus or HIV-1 
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in vitro (Huang, Erdmann et al. 2006; Zhu, Shi et al. 2011). Zhu et al. attributed this 

susceptibility to apoptosis to down regulation of TRAIL decoy receptors DcR1 and DcR2 and 

intracellular FADD-like IL-1β-converting enzyme (FLICE)- inhibitory protein (c-FLIP) a negative 

regulator of TRAIL-induced signalling (Zhu, Shi et al. 2011). Huang and colleagues reported that 

HIV-1 infection decreased Akt phosphorylation, in contrast to many other reports, thus 

enhancing rather than reducing apoptosis. Moreover they established that adding 

constitutively active Akt-1 blocked rhTRAIL-induced apoptosis in HIV-1 infected MDM (Huang, 

Erdmann et al. 2006). They went further to suggest that HIV-1 mediated Akt inhibition impairs 

inactivation of the transcription factor FOXO3A leading to upregulation of the pro-apoptotic 

Bcl-2 family protein PUMA (Cui, Huang et al. 2008).  Importantly though, other than the 

leucine zipper TRAIL study, these studies have shown relatively low levels of apoptosis by 

widely recognised apoptosis assays and only low levels of fold induction of apoptosis when 

compared to control macrophages (Lum, Pilon et al. 2001; Huang, Erdmann et al. 2006; Cui, 

Huang et al. 2008).  

Supporting the notion that specific circumstances dictate whether HIV-1 leads to a pro–

apoptotic or anti-apoptotic outcome are data from studies using HIV-1 vpr. vpr induces 

apoptosis in monocytes and promonocytic cell lines (Busca, Saxena et al. 2012). It achieves this 

when its C terminal region binds to the adenine nucleotide translocator of the inner 

mitochondrial membrane causing its permeabilisation (Jacotot, Ravagnan et al. 2000). 

However, once differentiated into macrophages, vpr no longer induces apoptosis and this is 

attributed to greater levels of anti-apoptotic Bcl-2 family members; Bcl-xL and Mcl-1 (Busca, 

Saxena et al. 2012). In contrast, resistance to apoptosis in monocytes from asymptomatic HIV-

1-seropositive individuals (Elbim, Pillet et al. 1999) and promonocytic U937 cells is relatively 

transient; have been shown to upregulate Bcl-2 transcription after HIV-1 infection, a response 

that follows an initial downregulation at the protein level secondary to oxidative stress of 

initial infection (Aillet, Masutani et al. 1998). More recent work supports the view that 
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observed differences in apoptotic response may be related to the phase of HIV-1 infection 

being studied; monocytes from healthy human volunteers were infected with R5 tropic HIV-1 

24 hours following isolation and allowed to differentiate for 5 days into MDM in the presence 

of HIV-1 (to model acute HIV-1 infection) or were isolated from rhesus macaques during the 

acute phase SIV infection (Laforge, Campillo-Gimenez et al. 2011). The MDM were observed to 

be sensitised to TRAIL or FasL mediated apoptosis and showed reduced anti-apoptotic Mcl-1 

but increased pro-apoptotic Bax and Bak. Significantly though, after the acute phase of 

infection (14 days) monocytes from the macaques no longer exhibited the pro-apoptotic 

phenotype (Laforge, Campillo-Gimenez et al. 2011). This dynamic balance of pro and 

antiapoptotic factors has also been demonstrated in a genomic and proteomic analysis 

(Brown, Kohler et al. 2008). Two days after MDM infection with R5 tropic virus there was 

upregulation of pro-apoptotic Bad, Bid, ASK-1 and caspase-7 with downregulation of anti-

apoptotic Bcl-2. However, this balance of expression was reversed by seven days post infection 

(Brown, Kohler et al. 2008). 

In summary, HIV-1 infection of the macrophage is central to its pathogenesis and is a 

mechanism through which HIV-1 can persist during HAART and contribute to the viral 

reservoir. Furthermore, many lines of enquiry show that perturbation of macrophage 

apoptosis is a recurring theme in HIV-1 infection that promotes HIV-1 replication and 

persistence but may have additional consequences for the regular immune function of this 

cell.  

1.6 Invasive pneumococcal disease and pneumococcal pneumonia in 

HIV-1  

1.6.1 The epidemiology of Streptococcus pneumoniae infection in HIV-1 

There is a clear epidemiological association between pneumococcal disease and HIV. The first 

signals of an increased incidence of both IPD and pneumococcal pneumonia were reported 
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within only a few years of the emergence of the HIV pandemic (Polsky, Gold et al. 1986; Witt, 

Craven et al. 1987). Subsequent studies of individuals living with untreated HIV-1 infection 

found IPD to be as much as 100 times more common with incidence rates from 1 to 24 per 

1000 patient years (py) compared to 0.1 per 1000py in HIV-seronegative individuals in the 

comparable settings (Janoff, Breiman et al. 1992; Hirschtick, Glassroth et al. 1995; Jordano, 

Falco et al. 2004; Heffernan, Barrett et al. 2005; Grau, Ardanuy et al. 2009). This relationship is 

also seen with bacterial meningitis during HIV-1 infection, where there is similarly a greater 

than 100 fold greater incidence in pneumococcal meningitis in HIV-1-seropositive individuals 

(Almirante, Saballs et al. 1998). For bacterial pneumonia more broadly, which is most 

commonly due to S. pneumoniae infection, rates are higher in HIV-1-seropositive individuals, 

for example one study observed 5.5 cases per 100py in HIV-1-seropositive individuals 

compared with 0.9 per 100py in seronegative controls (Dworkin, Ward et al. 2001). S. 

pneumoniae has consistently been found to be the most common cause of pneumonia not due 

to Pneumocystis jirovecii (PCP); in HIV-1-seropositive individuals the pneumococcus accounts 

for between 32% and 82% of infections where organisms are isolated, both in the pre- and the 

post-HAART eras (Polsky, Gold et al. 1986; Witt, Craven et al. 1987; Le Moing, Rabaud et al. 

2006; Curran, Falco et al. 2008; Madeddu, Porqueddu et al. 2008). Rates of HIV-1 associated 

IPD are substantially greater in resource poor settings at 4250 per 100,000py and 

proportionally more non-pneumonic pneumococcal disease is seen (meningitis, sinusitis or 

occult bacteraemia)(Gilks, Ojoo et al. 1996; Gordon 2004). These numbers are at least in part 

due to the higher prevalence of pneumococcal disease, increased rates of HIV-1 in young 

children and the less developed health infrastructure in these settings. 

As with opportunistic infections like PCP, the importance of an intact adaptive immune 

response to pneumococcal infection is demonstrated by an inverse correlation between the 

incidence of pneumococcal disease and the absolute CD4 count (Hirschtick, Glassroth et al. 

1995). However, whereas the incidence of PCP rapidly declines as CD4 counts improve, 
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individuals with a normal CD4 count early in the course of HIV-1 infection or following HAART 

driven recovery still have a significantly elevated risk of IPD compared with the background 

population (Dworkin, Ward et al. 2001; Barry, Zetola et al. 2006). Again, the risk of bacterial 

pneumonia in HIV-1 infection mirrors this and is as high as 2.3 episodes per 100py for those 

with normal range CD4 counts of >500 cellsμL-1  compared with 0.9 per 100py (Hirschtick, 

Glassroth et al. 1995). Likewise, hospitalisation for non-PCP pneumonia in the latter HAART era 

(2005-207) was 5.8 fold higher in those with CD4 counts of >500 cellsμL-1 compared with HIV-

seronegative controls (Sogaard, Lohse et al. 2008). HAART reduces the incidence of IPD 

significantly (odds ratios of 0.37 – 0.5) (Dworkin, Ward et al. 2001; Grau, Pallares et al. 2005; 

Heffernan, Barrett et al. 2005). While it is likely that much of this reduction is secondary to CD4 

count recovery, the SMART study, which compared intermittent with continuous HAART, 

found a 55% increased incidence of IPD and pneumonia in the intermittent therapy arm and 

this correlated with HIV-1 viral load independently of the CD4 count (Gordin, Roediger et al. 

2008). 

Thus, both replicating virus and suppressed CD4 counts independently contribute to the risk of 

pneumococcal disease in HIV-1 but do not explain the entire excess risk. Despite the 

widespread availability and use of HAART with consequent improvements in average CD4 

counts, pneumococcal disease continues to be more common in the current late HAART era; a 

35 fold or greater incidence of IPD in HIV-1-seropositive populations (423 v 9 per 100,000py ) 

(Grau, Pallares et al. 2005; Heffernan, Barrett et al. 2005) (Kyaw, Rose et al. 2005), 20 fold as 

many hospitalisations for bacterial pneumonia (Sogaard, Lohse et al. 2008) and 20 times as 

many cases of bacterial meningitis (Domingo, Suarez-Lozano et al. 2009) than in those who are 

seronegative.  

A potential explanation for the higher incidence of IPD and pneumococcal pneumonia in HIV-1-

seropositive individuals despite HAART would be that other risk factors, not directly related to 

HIV-1 infection, are over-represented among this population; and that while these additional 



72 
 

factors were always present, it is only since the HAART era that their contribution to IPD risk 

has become apparent. Intravenous drug use (IVDU) and cigarette smoking, risk factors for IPD, 

are more common in some HIV-1 cohorts (Mathers, Degenhardt et al. 2008; Tesoriero, Gieryic 

et al. 2010; Lifson and Lando 2012). IVDU, smoking and alcohol abuse have been identified as 

additional risk factors for IPD in HAART era HIV-1 cohorts (Grau, Pallares et al. 2005; Heffernan, 

Barrett et al. 2005; Kyaw, Rose et al. 2005; Gordin, Roediger et al. 2008; Rodriguez-Barradas, 

Goulet et al. 2008; Sogaard, Lohse et al. 2008). Additionally medical comorbidities (liver 

cirrhosis, COPD, haematological malignancy, splenectomy) also bring independent risk and 

appear to be more frequently seen in IPD cases now than the pre HAART era (Grau, Pallares et 

al. 2005). However, among intravenous drug users HIV-1 infection increases the risk of 

pneumonia 4 fold even in the absence of AIDS (Selwyn, Feingold et al. 1988; Mientjes, 

Spijkerman et al. 1996) and in one of the largest comparisons of IPD incidence among HIV-1-

seropositive and seronegative individuals in the HAART era fewer than 11% were ever IVDU 

yet IPD was still substantially more common in the HIV group (Sogaard, Lohse et al. 2008). 

Intriguingly, mortality rates with IPD or pneumococcal pneumonia in the HAART era have risen, 

in one report from 9% to 25% (Grau, Ardanuy et al. 2009), and it has been speculated that 

could be the result of the restoration of a more aggressive immune response (Jordano, Falco et 

al. 2004).  

Taken together, these clinical observations indicate that HIV-1 infection adversely effects  the 

immune response to the pneumococcus, increasing both the risk of infection and potentially 

also the severity of disease. Furthermore, given that increased susceptibility persists even 

when CD4 counts are restored with HAART, it is likely that this immune impairment to S. 

pneumoniae is more complex than can be explained by the effects of reduced CD4+ T cell 

function alone or the over representation of other risk factors for S. pneumoniae such as 

smoking and IVDU. This strongly suggests the presence of additional, and as yet unrecognised, 

factors underlying the pathogenesis of IPD in HIV-1-seropositive individuals receiving HAART.    
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1.6.2 HIV-1 and Streptococcus pneumoniae pathogenesis 

1.6.2.1 Pneumococcal carriage in HIV-1 

Pneumococcal pneumonia and IPD is preceded by a period of bacterial colonisation of the 

nasopharynx, although for some strains causing IPD the upper airway interaction is transient 

and the strains rarely cause asymptomatic colonisation. It has been suggested that the greater 

risk of IPD might be a consequence of increased carriage rates in HIV-1-seropositive 

individuals, whereby HIV-1 associated immune defects impair S. pneumoniae clearance from 

the nasopharynx. An alternative possibility is that different health seeking behaviour among 

those with HIV-1, such as more frequent hospital visits, might involve greater exposure to S. 

pneumoniae and consequently an increased likelihood of carriage.  

The strength of the evidence for increased colonization rates of S. pneumoniae among HIV-1-

seropositive individuals varies. Higher colonisation rates have been reported for HIV-1-

seropositive children up to 5 years old at 76% versus 66% for controls in Kenya (Abdullahi, 

Karani et al. 2012), while lower rates have been observed in younger (< 6 months old) HIV-1-

seropositive infants in Tanzania (Kinabo, van der Ven et al. 2013). However, the lack of well 

controlled epidemiological carriage surveys makes it impossible to draw firm conclusions 

about the effect of HIV-1 on S. pneumoniae colonisation in the African paediatric population, 

where carriage of S. pneumoniae is particularly high anyway in children under 5 years (Hill, 

Akisanya et al. 2006). There are a greater number of studies in adults with HIV-1. Two studies 

from the pre-HAART reported no significant difference in pneumococcal carriage rates 

between HIV-1-seropositive and adults in the USA. However, the numbers were small and both 

showed trends towards higher carriage rates in HIV-1 than control individuals with 14% versus 

9% in one and 20% versus 10% in the other, respectively (Janoff, O'Brien et al. 1993; 

Rodriguez-Barradas, Tharapel et al. 1997). A study from Nairobi, Kenya observed 28% carriage 

in HIV-1-seropositive adults compared to 16% in controls (Paul 1997). These are similar to 

carriage rates detected in adults with both HIV-1 and a previous history of IPD in Uganda 
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(French, Nakiyingi et al. 2000). Reports of two Malawian adult cohorts with no previous IPD 

history and asymptomatic, WHO Stage I HIV-1 observed lower carriage rates at 14% and 19%, 

which were not significantly different from the carriage rates in the respective seronegative 

control groups (16% and 13%) (Glennie, Sepako et al. 2011; Glennie, Banda et al. 2013). By 

contrast, symptomatic HIV-1-seropositive individuals with advanced, WHO stage IV HIV-1 

infection had considerably higher carriage rates at 38%, implying the difference between the 

Kenyan and Malawian studies may be due to the stage of HIV-1 clinical disease progression 

(Glennie, Banda et al. 2013). In keeping with this, a study among HIV-1-seropositive South 

African mineworkers, where the median CD4 was 290 cellsμL-1, found that lower CD4 counts 

were also associated with increased carriage (Pemba, Charalambous et al. 2008).  Overall S. 

pneumoniae carriage rates, at 8.8%, were lower for this cohort but no HIV-seronegative 

control group was reported (Pemba, Charalambous et al. 2008). Notably, the carriage rates in 

the mineworkers roughly doubled for those living with a child or reporting recent 

hospitalisation (Pemba, Charalambous et al. 2008), in keeping with similar evidence from non 

HIV-1 studies (Hendley, Sande et al. 1975). Importantly colonisation in the Glennie study from 

Malawi was not found to decrease in those established on ART for 6-12 months (33%) or even 

18 months (52%), despite a rise in median CD4 counts from 218 cellsμL-1 to 328 cellsμL-1. 

Furthermore, HIV-1-seropositive individuals carried a broader range of both invasive and non-

invasive serotypes compared to controls (Glennie, Banda et al. 2013). In contrast, carriage 

rates among a Brazilian cohort of HIV-1-seropositive adults did not correlate directly with CD4 

count or viral load, but were lower in those individuals that had been stable on ART for a year 

or longer (Nicoletti, Brandileone et al. 2007). These apparently different findings with may 

reflect that this Sao Paolo based cohort had earlier access to ART than the Malawi cohort so 

were less likely to suffer advanced HIV-1 before ART; more than two thirds had CD4 counts 

greater than 200 cellsμL-1 and for 30% counts were greater than 500 cellsμL-1 (Nicoletti, 

Brandileone et al. 2007).  
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Possible immune mechanisms that could underlie differential carriage rates with HIV-1 have 

also been investigated.  T cell mediated immunological memory has been seen to be relevant 

to protection against colonisation in HIV-seronegative populations (Mureithi, Finn et al. 2009), 

as discussed already. The findings that T cells from the peripheral blood of colonised HIV-1-

seropositive individuals demonstrate impaired pneumococcal antigen-specific proliferation, 

and a defect in pneumococcal-specific T-cell IFN-γ production, compared to HIV-seronegative 

controls suggest that impaired T cell immunity may in part be responsible for loss of control of 

colonisation (Glennie, Banda et al. 2013). Glennie and colleagues have shown reduced 

pneumococcal specific memory T cell responses in the HIV-1-seropositivie cohort, with 

senescence of the functional effector memory subset and decreased proliferation of the 

central memory population from which these cells would ordinarily be replenished (Glennie, 

Sepako et al. 2011).   

Taken together, these data show that carriage is increased in some HIV-1-seropositive 

populations and that there is a relationship with immune impairment. Additionally increased 

exposure to S. pneumoniae, be it in hospital, through contact with young children or simply 

from living in a region with high prevalence of S. pneumoniae disease like sub-Saharan Africa, 

also contributes to S. pneumoniae carriage in those with HIV-1. However, though it remains 

unclear whether the immune restoration with ART is or is not sufficient to allow clearance of 

colonising S. pneumoniae, it seems unlikely that levels of colonisation are sufficiently greater 

than those of seronegative individuals to adequately explain the excess risk of IPD described in 

HIV-1-seropositive individuals with good CD4 recovery on ART, particularly in regions where 

pneumococcal carriage prevalence in the general population is not as high as in Africa.  

1.6.2.2 Immunoglobulin, HIV-1 and Streptococcus pneumoniae 

As already outlined, humoral immunity plays an important role in the defence against S. 

pneumoniae and in HIV-1 infection there is B cell hyperactivation, a non-specific 
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overproduction of antibody and reduced antigen specific memory B cell numbers. Reduced 

titres of anti-pneumococcal capsular polysaccharide IgG have been found both in the serum 

(Janoff, O'Brien et al. 1993; Carson, Schut et al. 1995; Janoff, Fasching et al. 1997; Titanji, De 

Milito et al. 2006) and in response to  ex vivo B cell stimulation with S. pneumoniae 

polysaccharide antigen in primary and chronic HIV-1 infection (Titanji, De Milito et al. 2006).  

Of interest, some type-specific IgG have been found to be elevated in the serum of HIV-1-

seropositive Ugandans (type 3 and type 9) (Takahashi, Oishi et al. 2003) and both the serum 

and BAL fluid of Malawians with HIV-1 compared with seronegative controls (S. pneumoniae 

type 1) (Eagan, Twigg et al. 2007). However, irrespective of the absolute levels of IgG, impaired 

functional opsonic activity and opsonophagocytic activity of IgG from both lung and blood 

have been described (Eagan, Twigg et al. 2007).  

HIV-1-seropositive individuals do mount significant antibody responses to PPV23, but these are 

neither as broad nor as high as those in seronegative controls  (Carson, Schut et al. 1995; 

Janoff, Fasching et al. 1997; French, Gilks et al. 1998). The antibody responses are greater in 

those with higher CD4 at time of vaccination but decline over time  and remain abnormal, even 

in individuals receiving ART, especially in those with lower CD4 counts (Hung, Chang et al.).  A 

meta-analysis of prospective, randomised controlled PPV23 trials in developed settings during 

the pre-HAART era did not show any protective benefit against pneumococcal pneumonia in 

HIV-1-seropositive subgroups in contrast with HIV-seronegative groups (Fine, Smith et al. 

1994). However, retrospective case-control studies did suggest some benefit of PPV23 in HIV-1 

in preventing IPD (including pneumococcal pneumonia) (Dworkin, Ward et al. 2001) (Breiman, 

Keller et al. 2000).  Some HAART era, observational PPV23 studies have also found reduced 

incidence of IPD (including pneumococcal pneumonia) (Penaranda, Falco et al. 2007) and also, 

surprisingly, reduced incidence of pneumonia in general  even though the vaccine is not 

generally thought to reduce pneumonia but rather to mainly effect IPD in at risk groups 

(Rodriguez-Barradas, Goulet et al. 2008; Teshale, Hanson et al. 2008). Reductions in IPD 
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severity and mortality in HIV-1-seropositive adults who received PPV23 are also reported 

(Imaz, Falco et al. 2009). Currently PPV23 is used in HIV-1 if the CD4 count is > 200 cellsµL-1 

(Geretti, Brook et al. 2008).  Of particular importance is the discovery that despite developing 

raised anti-pneumococcal titres post PPV23, Ugandan adults with HIV-1 were not protected 

from IPD, but more susceptible to all cause pneumonia (French, Nakiyingi et al. 2000). The 

reason for the excess disease with vaccination, which was still apparent in extended follow up 

of the cohort, is not clear. One postulated mechanism is that there was vaccine induction of 

polysaccharide responsive B-cell clones leading to exhaustion and a subsequent selective 

defect in pneumococcal immunity following re-challenge, reflecting the hyperactivity of B 

lymphocytes and loss of antigen specificity in HIV-1 in general described above (Brichacek, 

Swindells et al. 1996; French, Nakiyingi et al. 2000; Watera, Nakiyingi et al. 2004). 

In adults with HIV-1, PCV7 has been shown to produce similar levels of anti- S. pneumoniae 

antibody to PPV23 (Feikin, Elie et al. 2001) (Miiro, Kayhty et al. 2005). The increase in IgG is not 

as large as in HIV-seronegative individuals, particularly when CD4 cell counts are low but, 

unlike PPV23, vaccination also results in good mucosal responses in the lung as demonstrated 

by increasing capsule specific IgG levels in BAL fluid at 1 and 6 months (Gordon, Kayhty et al. 

2007). Prime-boost strategies with PCV7 then PPV23 further strengthen antibody responses in 

adults (Kroon, van Dissel et al. 2000; Lesprit, Pedrono et al. 2007). Significantly, a 2 dose 

strategy of PCV7 has been shown to significantly reduce recurrent pneumococcal disease 

caused by vaccine serotypes in HIV-1-seropositive adults in Malawi by 75% (French, Gordon et 

al. 2010). In this study half of IPD events began as pneumonia (as in the PPV23 trial) which may 

imply that PCV7 protection came through greater induction of mucosal immunity than was the 

case with the PPV23 trial (French, Nakiyingi et al. 2000). Impaired IgG response to 

pneumococcal conjugate vaccination is also seen in HIV-1-seropositive children (Madhi, Adrian 

et al. 2007). Nevertheless they too can still acquire protection; a PCV9 vaccine reduced IPD 

incidence by 53% in HIV-1-seropositive children in South Africa (Klugman, Madhi et al. 2003), 
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albeit that efficacy against vaccine serotypes was lower than in HIV-seronegative children and 

there was no evidence of any reduction against radiologically confirmed pneumonia. This was 

disappointing since one of the benefits of PCV in comparison to PPV, at least in children, has 

been a reduction in pneumonia, presumably because of the induction of mucosal immunity 

(Madhi, Levine et al. 2008).  

The levels and protective efficacy of antibody to protein rather than capsular targets on S. 

pneumoniae such as pneumococcal surface protein A (PspA) or pneumolysin (Ply) have also 

been investigated in HIV-1; serum titres of anti-Ply IgG and BAL titres of both anti-Ply IgG and 

anti-PspA IgG are higher in HIV-1-seropositive patients compared to HIV-seronegative controls 

(Etuwewe, Swann et al. 2009; Collins, Batrawy et al. 2013). The higher levels may represent 

repeated antigenic stimulation due to greater carriage of S. pneumoniae and, for the BAL 

compartment at least, were not a consequence of the non-specific systemic polyclonal 

hypergammaglobulinaemia seen in HIV-1 as ratios of S. pneumoniae specific IgG were still high 

(Collins, Batrawy et al. 2013). Thus, as seen with IgG directed against capsular antigen, 

apparently appropriate immunoglobulin levels do not correlate with protection from clinical 

disease.  

Overall, these studies in HIV-1-seropositive individuals imply that while the humoral immune 

system retains capacity to produce anamnestic responses to S. pneumoniae, either a functional 

or quantitative (at least for polysaccharide responses) problem persists with the 

immunoglobulin. It is also likely that the humoral responses to pneumococcal protein and 

capsular antigens are not the only determinant of IPD risk in HIV-1. 

1.6.2.3 Streptococcus pneumoniae phagocytosis and killing in HIV-1  

Successful clearance of S. pneumoniae from the lung involves phagocytosis by AM and, as 

discussed when they are overwhelmed, by neutrophils.  HIV-1 can affect phagocytosis both 

with and without the presence of opsonins, including immunoglobulin; reduced non-opsonic 
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ingestion has been observed for Pneumocystis jirovecii by AM from HIV-1-seropositive 

individuals in association with down-regulation of the mannose receptor (Koziel, Eichbaum et 

al. 1998). In vitro, reduced expression of the macrophage mannose receptor on macrophage 

cells line is mediated by HIV-1 nef and tat (Caldwell, Egan et al. 2000; Vigerust, Egan et al. 

2005).  Opsonic, complement-mediated phagocytosis is has also been seen to be less efficient, 

as demonstrated in directly HIV-1 infected MDM (Azzam, Kedzierska et al. 2006). In addition, 

impairment of immunoglobulin mediated, opsonic phagocytosis in HIV-1 has also been 

observed (Crowe, Vardaxis et al. 1994; Leeansyah, Wines et al. 2007) and appears to be related 

to dysfunction of FcγR signalling or Fcγ subunit expression rather than macrophage surface 

expression of Fcγ receptors per se (Capsoni, Minonzio et al. 1994; Kedzierska, Vardaxis et al. 

2001; Kedzierska, Ellery et al. 2002). However, none of these studies of phagocytosis in HIV-1 

have specifically looked at S. pneumoniae phagocytosis. It appears that for macrophages at 

least, HIV-1 does not result in impaired uptake of S. pneumoniae; ex vivo, AM from HIV-1-

seropositive subjects were as efficient at phagocytosis of S. pneumoniae opsonised with IgG 

from healthy, PPV23 vaccinated individuals as AM from HIV-seronegative controls (Gordon, 

Molyneux et al. 2001). This may be explained by the fact that although the mannose receptor 

and FcγR1 and FcγRIII receptors are impaired in HIV-1 infection, these are not critical to the 

phagocytosis of S. pneumoniae, which can be internalised by other routes, principally FcγRIIa 

(Endeman, Cornips et al. 2009), the function of which appears preserved during HIV-1 infection 

(Kedzierska, Ellery et al. 2002). 

Following internalization by the macrophage, the phagosome and lysosome fuse to form a 

phagolysosome, where S. pneumoniae are killed, as previously described. Defects in microbial 

killing by macrophages have been demonstrated in HIV-1 infection but not consistently, which 

may be due to variation in the type of pathogen, macrophage model and strain of virus studied 

(Nottet, de Graaf et al. 1993; Cameron, Granger et al. 1994; Gordon, Gordon et al. 2007) 

(Eales, Moshtael et al. 1987; Baldwin, Fleischmann et al. 1990; Biggs, Hewish et al. 1995; 
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Chaturvedi, Frame et al. 1995; Reardon, Kim et al. 1996; Ieong, Reardon et al. 2000). In vitro, 

gp120 can inhibit phagolysosomal fusion (Moorjani, Craddock et al. 1996) and nef similarly 

inhibits autophagosome-lysosome fusion (Kyei, Dinkins et al. 2009). In circumstances where IL-

10 is increased, driven by soluble HIV-1 proteins such as gp120, tat or vpr, macrophage ROS 

production has been shown to be reduced and result in impaired killing of P. jirovecii (Muller, 

Rollag et al. 1990; Koziel, Li et al. 2000). Importantly however, no impairment of S. 

pneumoniae killing has been reported in macrophages. 

As discussed already, the capacity of the macrophage to control pneumococcal infection can 

be overwhelmed and necessitate a neutrophil response to clear infection. Neutrophil counts in 

the peripheral blood are often reduced in HIV-1 infection (Brettle 1997; Kuritzkes 2000). In 

AIDS opportunistic disease and suppression of bone marrow function both contribute to 

reduced production. More generally, there is accelerated loss due to either antibody mediated 

destruction or increased apoptosis, in part mediated by nef and associated with enhanced 

expression of Fas (Pugliese, Cantamessa et al. 1999; Salmen, Teran et al. 2004). Of note is the 

finding that neutrophil apoptosis is accelerated in pathenogenic (Rhesus macaque) but not 

non-pathenogenic (African green monkey) SIV infection (Elbim, Monceaux et al. 2008). 

Chemotaxis and activation of neutrophils may also be impaired as in HIV-1 neutrophils show 

reduced expression of the complement 5a receptor, reduced IL-8 and altered responsiveness 

to IL-8, potentially affecting degranulation and chemotaxis (Meddows-Taylor, Martin et al. 

1999; Meddows-Taylor, Pendle et al. 2001). However, the literature is inconsistent with 

respect to alterations in neutrophil phagocytic function and respiratory burst following HIV-1 

infection, which have been described as reduced, normal or increased, and as with 

macrophages, observations may depend on the stage of HIV, neutrophil model employed and 

the pathogen in question (Lazzarin, Uberti Foppa et al. 1986; Baldwin, Gasson et al. 1988; 

Bandres, Trial et al. 1993; Dobmeyer, Raffel et al. 1995; Munoz, Salmen et al. 1999). Neutrophil 

microbicidal killing has been observed to be reduced in one model that could be reversed with 
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G-CSF therapy for HIV-1-seropositive individuals (reviewed in (Pitrak 1999)). None of these in 

vitro studies have specifically looked at neutrophil responses to S. pneumoniae. A single clinical 

study of IPD in HIV-1-seropositive Kenyan females did find a significant positive correlation 

between peripheral blood neutrophil and CD4 counts at presentation, documenting that 

neutrophil responses were blunted in those with HIV-1 infection (Gilks, Ojoo et al. 1996). 

However, a causal relationship between quantitative or qualitative neutrophil dysfunction and 

increased incidence or severity of IPD or outcomes in HIV-1 has, to date, not been 

demonstrated. 

In conclusion, despite evidence that HIV-1 infection is associated with impairments of 

macrophage and neutrophil function in certain circumstances, these have not been shown to 

extend to any deficit in the phagocytic killing of S. pneumoniae by macrophages or neutrophils. 
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1.7 Aims 

It is clear that invasive pneumococcal disease continues to be a significant predicament for 

HIV-1 seropositivie individuals. The incidence is increased and mortality is significant. 

Antiretroviral treatment, even where universal coverage is achievable, has not resolved these 

problems and in addition pneumococcal vaccine efficacy is limited in HIV-1.  Research focused 

on understanding the immune deficit in HIV-1 that underlies the increased risk of IPD has 

demonstrated impairments in adaptive immunity to the pneumococcus but there is no clear 

evidence for a defect in innate immune responses. Moreover, these studies do not fully 

explain the reasons for the increased rates of IPD in HIV-1 seropositive individuals on 

antiretrvoiral therapy.  

Macrophage apoptosis-associated killing of S. pneumoniae has emerged as an important 

determinant of successful, innate defence against the pneumococcus. Meanwhile, there exists 

a body of evidence showing that macrophage apoptosis is impeded by HIV-1.  I was interested 

to see if HIV-1 causes any impairment of macrophage apoptosis in the context of 

pneumococcal infection and whether this might reduce apoptosis-associated bacterial killing. 

I hypothesised that:  

HIV-1 modulates the macrophage apoptotic response to S. pneumoniae resulting in enhanced 

susceptibility to IPD in HIV-1-seropositive individuals 

  

On this basis the aims of my doctoral work were:  

 1. To examine the effect of HIV-1 infection on macrophage apoptosis and bacterial killing 

following pneumococcal challenge 

2. To observe whether any defects extend to ex vivo alveolar macrophages from HIV-1-

seropositive individuals on fully suppressive antiretroviral therapy 

3. To elucidate the possible mechanisms by which this happens 
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2 Chapter 2. Materials and Methods 

2.1 Cell culture and differentiation 
 

2.1.1 Cell lines 

2.1.1.1 U937 and U1 cell lines 

The U937 and U1 cell lines were obtained from the AIDS Research and Reference Reagent 

Program, Division of AIDS, NIAID, NIH, USA.  U937 is a promonocytic cell line from a histiocytic 

lymphoma and the U1 cell line is a U937 subclone latently infected with HIV-1 (Folks, 

Justement et al. 1987). Cells were maintained in T25 tissue culture flasks (Nunc) at 37C in 5% 

CO2 in the containment level 3 laboratory (CL3), University of Sheffield Medical School. Cells 

were passaged every 3-4 days by splitting 1 in 10 in growth medium: Roswell Park Memorial 

Institute (RPMI) 1640 medium (Lonza) supplemented with 10% heat inactivated, ultra-low 

endotoxin, fetal calf serum (HIFCS; Bioclear) and 2 mmolL-1 L-glutamine (Gibco BRL). Healthy 

cells were counted in a disposable haemocytometer (KOVA® GLASSTIC® Slide, Hycor 

Biomedical Ltd.) using trypan blue exclusion to exclude non viable cells (see section 2.1.4). 

U937 or U1 cells from synchronised passages were seeded at a density of 1 x106 mL-1 in 24 (1 

mL) or 12 well (2 mL) tissue culture plates (Costar). To differentiate the cell lines toward a 

macrophage phenotype, and in the case of U1 to also activate HIV-1 transcription, cells were 

incubated with 50-100 nM phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich) for 24 or 72 

hours. PMA is a phorbol ester which activates protein kinase C (PKC). PMA containing medium 

was then removed and replaced with fresh growth medium for a further 2 or 5 days.  A range 

of differentiation protocols were tested, derived from published work; 50 nM PMA for 24 

hours then rested in growth medium alone for 3 days (50 nM PMA1r3), 100 nM PMA for 2 

days then 3 days rested (100 nM PMA2r3) and 100 nM PMA for 3 days then 5 days rested (100 

nM PMA3r5) (Tachado, Zhang et al. 2005; Nicol, Mathys et al. 2008; Daigneault, Preston et al. 

2010). 
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2.1.1.2 NP2 cell line 

NP2 cells are an astrocytoma cell line that has been stably transfected with CD4 and CCR5 and 

express CD4 and CCR5 (kindly donated by Dr. M Noursadeghi, University College London). Cells 

were maintained in NP2 medium: Dulbecco's Modified Eagle Medium (DMEM) (Lonza) with 

10% HIFCS and 2 mmolL-1 L-glutamine, 1 μgmL-1 puromycin (Sigma-Aldrich) and 100 μgmL-1 

geneticin ( G418 Sigma-Aldrich) at 37oC, 5% CO2 in the tissue culture laboratories, University of 

Sheffield Medical School (TCL). NP2 cells were passaged weekly: medium was removed from 

flasks and the adherent cells washed twice with PBS. 1 mL of trypsin-versene (Lonza) was 

added and the flask returned to the incubator for 2-3 minutes. The flask was tapped and 

checked to ensure cells were detaching then 9 mL of working medium (DMEM + 10% HIFCS) 

was added and the mixture pipetted vigorously to break up any clumps. Cell suspensions were 

then diluted 1 in 10 in NP2 medium and placed in a new flask. 

2.1.1.3 Ghost cell line 

Ghost cells are a human osteosarcoma cell line that act as an indicator of HIV-1 infection 

(Programme EVA Centre for AIDS Reagents, NIBSC, UK). They express CD4 and CCR5 and 

contain a green fluorescent protein (GFP) gene which is controlled by an HIV-2 LTR promoter, 

expressed during HIV-1 infection via Tat transactivation (Janas and Wu 2009). Ghost cells were 

maintained in the TCL in T25 flasks at 37 oC, 5% CO2 in parent medium: DMEM + 10% HIFCS, 

100 unitsmL-1 penicillin (Lonza), 100 gmL-1 streptomycin (Lonza) and 500 μgml-1 geneticin 

(G418, Sigma-Aldrich). 100 μgml-1 hygromycin (Calbiochem) and 1 μgml-1 puromycin (Sigma-

Aldrich) were added to the parent medium for GFP and chemokine receptor selection in 

subsequent passages (selection medium). Cells were passaged 1 in 10 every 2-3 days until 

passage 14-16 using trypsin-versene to detach the cells as described in section 2.1.1.2.  

2.1.2 Human peripheral blood cells 

2.1.2.1 Peripheral blood mononuclear cell isolation 
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Blood was donated by healthy volunteers recruited from staff and students of STH or The 

University of Sheffield and HIV-1-seropositive patients recruited from the HIV treatment clinics 

of STH. STH research directorate sponsored the study (STH14625) and ethical approval was 

granted by The South Sheffield Research Ethics Committee (07/Q2305/7). Volunteers gave 

written, informed consent. Peripheral blood mononuclear cells (PBMC) were isolated from 

whole blood by Ficoll-Paque™ (GE Healthcare Life Sciences) density centrifugation in the TCL. 

Up to 25 mL of blood was carefully layered onto 12.5 mL of Ficoll-Paque™ in a 50 mL centrifuge 

tube (Starstedt), then centrifuged at 500g  (1500 rpm) for 23 minutes with no brake (FALCON 

6/300). The flocculent layer containing mononuclear cells was transferred to a new 50mL 

centrifuge tube, made up to 50mL with phosphate buffered saline (PBS, Oxoid) and 

centrifuged at 300g  (1000 rpm) for 10minutes with the brake on. The pellet was washed in 

PBS and centrifuged again in the same manner. 

2.1.2.2 Human monocyte-derived macrophages 

The PBMC pellet was resuspended in 10 mL of AB medium: RPMI 1640 medium and 2 mmolL-1 

L-glutamine containing 10% human AB serum (First Link (UK) Ltd). Cells were counted using a 

haemocytometer (see section 2.1.4), resuspended at 2 x 106 mL-1 then incubated in 24-well 

tissue culture plates, with or without glass coverslips, 6 wells plates or T25 flasks. After 24 

hours, medium containing non adherent cells was removed, and the remaining adherent cells 

were cultured in growth medium, changed every 3-4 days, at 37 oC, 5% CO2 and allowed to 

differentiate into macrophages for fourteen days. The final concentration of the monocyte-

derived macrophages (MDM) was measured using a haemocytometer after removing the 

medium, washing twice with PBS, gently scraping adherent cells from the base of the well with 

a rubber cell scraper (Sarstedt), and resuspending the cells in 1mL of PBS. Typically this yielded 

approximately 2 x 105 ml-1 MDM.  

2.1.2.3 Human lymphoblasts 
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Peripheral blood lymphocytes (PBL) were purified from PBMC by performing 2 plastic 

adherence steps to remove monocytes; the previously isolated PBMC were resuspended at 2 x 

106 mL-1 in RPMI containing 10% AB serum in a T75 tissue culture flask (Nunc) and incubated 

for 2 hours at 37 oC, 5% CO2 in the TCL. Flasks were gently agitated and medium containing non 

adherent wells was transferred to a second T75 flask and incubated overnight. The non 

adherent PBL were then centrifuged at 500g  x 10 minutes in a 50 mL centrifuge tube and then 

resuspended in a T75 flask at 1 x 106 cellsmL-1 in growth media with 20 μmL-1 interleukin (IL)-2 

(PeproTech) and 0.5 gmL-1 phytohemagglutinin (PHA, Sigma-Aldrich) for 3 days to activate 

them into lymphoblasts. Activation was confirmed visually by the presence of cell aggregation.  

2.1.3 Human alveolar cells   

2.1.3.1 Recruitment of volunteers 

HIV-1-seropositive and seronegative volunteers were recruited for bronchoscopy and 

bronchoalveolar lavage (BAL) in order to obtain alveolar macrophages and lymphocytes. HIV-1-

seropositive volunteers were recruited by advertisement and direct invitation from the HIV 

treatment clinics of the STH directorate of communicable diseases and the wider South 

Yorkshire HIV Clinical Network clinics. Control volunteers were recruited from the staff and 

students of STH and The University of Sheffield. All volunteers were given at least 24 hours to 

read written information sheets and then had a face to face interview with a study 

investigator. To be enrolled volunteers had to be non smoking adults with no active or chronic 

lung disease. Selection involved clinical history and examination, review of clinic notes for HIV-

1-seropositive volunteers and spirometry and peripheral blood analyses. Full inclusion and 

exclusion criteria for enrolment are set out in Table 2-1. Three groups of HIV-1-seropositive 

patients were enrolled: those on non nucleotide reverse transcriptase inhibitor (NNRTI) based 

antiretroviral therapy (ART), those on protease inhibitor (PI) based ART and those who were 

antiretroviral therapy naive. A sample size was calculated from preliminary in vitro work which 



89 
 

had demonstrated a 17% difference in the rates of apoptosis of differentiated U937 and U1 

cells following S.pneumoniae challenge. It was calculated that a 17% difference in macrophage 

apoptosis following challenge with S. pneumoniae could be detected with a power of 80% and 

p <0.05 if there were at least seven in each group. The study protocol was approved by the 

scientific advisory board of the STH Clinical Research Facility (CRF), the STH research 

directorate and through the University of Sheffield internal scientific review system. The study 

sponsor was STH (STH15411) and the study was granted portfolio status by the South 

Yorkshire Comprehensive Local Research Network (UKCRN11811). Ethical approval was 

granted by the NRES Committee Yorkshire & The Humber - South Yorkshire (11/YH/0217). 

Table 2-1 Inclusion and Exclusion criteria for study enrolment 

Inclusion criteria 

HIV seropositive adults aged 18-69 years who are either 
a) Antiretroviral naive  
b) Already receiving a first line antiretroviral regime using a backbone of 2 
nucleoside/nucleotide analogues and either a protease inhibitor (lopinavir, atazanavir or 
darunavir boosted with ritonavir) or efavirenz, with no prior alterations 

HIV seronegative controls aged 18-69 years 

Exclusion criteria 

Febrile illness or other symptoms of acute infectious illness within two weeks 

Receipt of any vaccine within two weeks 

Malignancy 

Active Hepatitis B or C infection (defined as detectable HB surface antigen/DNA or HCV RNA) 

Ongoing anaemia or any symptoms (shortness of breath, chronic fatigue, chest pain or 
pallor) suggestive of possible anaemia  

Donated >200 ml of blood for any reason within the last 6 months 

Abnormal clotting screen 

Pregnancy or breast feeding 

Current participation in any clinical trial 

Inability to communicate in English or convey willingness to participate 

Active lung condition including; infection, malignancy, asthma, Chronic Obstructive Pulmonary 
Disease, Interstitial lung disease, FEV1 <70% predicted  

 

2.1.3.2 Bronchoscopy and bronchoalveolar lavage 

Bronchoscopy and lavage was carried out in the Sheffield Teaching Hospitals endoscopy suite 

by a consultant respiratory physician. Volunteers were taken through consent for the 

procedure and an IV cannula was secured. Lidocaine local anaesthetic jelly and spray were 
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used to anaesthetise the nasopharynx. Midazolam sedation was offered to all volunteers. A 

fibre optic endoscope (Olympus) was passed into the trachea by intubating through the nostril 

then further anaesthetic was applied to the vocal chords, carina and bronchial branches. The 

medial and lateral segments of the right middle lobe were each intubated in turn and 2 x 50 

mL sterile saline was instilled and then aspirated under 23 kPa suction pressure in each 

segment up to a total of 200ml as tolerated. Lavage fluid was collected in a trap (Argyle™, 

Coviden) that had been pre cooled in ice and then kept on ice for transfer to the CL3. Following 

extubation, volunteers were monitored for two hours in the endoscopy recovery suite before 

discharge. 

2.1.3.3 Human alveolar macrophage and lymphocyte isolation from 

bronchoalveolar lavage fluid 

The volume of BAL fluid was documented and then sieved through sterile gauze into a 50mL 

falcon centrifuge tube. Sealed tubes were inverted twice to mix the contents and then 5 x 1 mL 

aliquots were removed and stored at -80 oC. The remaining BAL fluid was centrifuged at 400g  

x 10 minutes. 30 mL of supernatant was reserved and frozen at -80 oC and the rest discarded. 

The pellets were immediately disrupted by vortex to avoid cell clumping and then resuspended 

in 10 mL of antibiotic medium; RPMI + 10% AB serum + 40 mL-1 penicillin (Lonza) + 40 μgmL-1 

streptomycin (Lonza) + 0.5 μgmL-1 amphotericin (Fungizone™, GIBCO). 100 μL was aliquoted 

into a microcentrifuge tube (Eppendorf) and diluted 1:1 with HIFCS with low LPS. 50 μL of 4% 

paraformaldehyde (PFA, Fisher Scientific) was then added and the tube reserved for making a 

cytospin slide. A 50 L aliquot of this suspension was then diluted 1:10 in PBS then 10 μL 

diluted 1:1 with 0.4% Trypan Blue (Sigma)(see 2.1.4). Alveolar macrophages were counted with 

a KOVA™ slide using an inverted bright field microscope (Olympus CK2) with a 25 x lens, final 

magnification 250 x, to accurately distinguish epithelial cells and lymphocytes from live and 

dead (taking up trypan blue) AM. BAL fluid samples that contained visible red blood cells were 

subjected to Ficoll-Paque density centrifugation to remove red cells (as described in section 
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2.1.2.1) after the cytospin aliquot had been removed. Antibiotic medium was added to 

resuspended BAL cells to achieve a final suspension of cells with AM at a density of 2 x 105 

cellsmL-1. Cells were incubated overnight at 37oC, 5% CO2 in 6 well, 24 well and 96 well cell 

culture plates (Costar). The following day medium with non adherent cells was removed and 

reserved and fresh RPMI + 10% HIFCS without antibiotics was added. The non adherent cells 

from each donor were pooled then prepared for flow analyses of the lymphocytes as described 

in section 2.6.5. The adherent AM were allowed to incubate for a further 24 hours before 

being used for S. pneumoniae challenge experiments. For each donor, one well was incubated 

with anti-p24 / β galactosidase secondary antibody (see section 2.2.3.1) to detect intracellular 

HIV-1 p24 antigen as a measure of the rate of HIV-1 infection of AM. 

2.1.4 Counting cell numbers 

As glass is not permitted in the CL3 a disposable plastic counting chamber was used to count 

cells (KOVA® GLASSTIC® Slide, Hycor Biomedical Ltd., UK). 50 μL of cell suspension was added 

to 450 μL of PBS and 10 μL allowed to enter the 6.6 μL chamber by capillary action. The 

average number of cells per small square of an 81 square grid were counted using an Olympus 

CK2 inverted bright-field microscope (Olympus) with a 10 x lens and 10 x eye piece to give 

100x magnification. This number was then multiplied by 90 (as per manufacturer’s 

instructions) and then by 10 (to account for dilution) to give the number of cells μl-1 then by 

1000 to obtain cellsmL-1. In all other TCL cells were counted in a haemocytometer (Weber 

Scientific International) using the same type of microscope and magnification. The number of 

cells in four 4 x 4 grids was calculated, divided by 4 and then multiplied by the dilution factor of 

10 to give cellsμL-1 and then by 10,000 to give cellsmL-1. To determine Trypan Blue exclusion 10 

μL of diluted cell suspension was mixed with 10 μL of 0.4% Trypan blue vital dye (Sigma) in a 

microcentrifuge tube before transfer to the haemocytometer / KOVA™ slide. Dead cells were 

identified as those that took up the Trypan blue dye and stained blue (Strober 2001). 
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2.2 HIV-1 propagation  

2.2.1 HIV-1 propagation in lymphoblasts   

Lymphoblasts were centrifuged and re-suspended in 1 mL HIV-1BAL (AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH, USA)  ± 10 μgmL-1 polybrene 

(Millipore), incubated in the CL3 facility for 2 hours at  37oC, 5% CO2, then diluted to 1 x 106 

cellsmL-1 in growth media + 20 µmL-1 IL-2 (PeproTech). After 3 days incubation, suspensions of 

HIV-1 infected lymphoblasts were centrifuged at 400g  x 5 minutes and all but 1 mL of the 

supernatant was filtered through a 0.45 µm syringe filter (MF-Millpore ™, Millipore) into an 

ultracentrifuge (UC) tube (Beckman Coulter). The virus containing medium was carefully 

underlayed with 5 mL of the 25% weight for weight sucrose (Fisher Scientific) and PBS solution, 

then topped up with PBS within the UC bucket. Buckets were carefully balanced to within 100 

mg and loaded into an ultracentrifuge (Optima K-100 XP, Beckman Coulter) in the CL3. These 

were then centrifuged for 2 hours at 23,000 g. Supernatant was removed and purified virus 

was re-suspended in 10 mL AB media and stored in 1 mL aliquots in liquid nitrogen (LN). 

Lymphoblasts from a second donor were re-suspended at 1 x 106 mL-1 and added to the 

remaining 1 mL of HIV-1 containing supernatant and the propagation / purification cycle 

repeated a total of 4 times.  

2.2.2 HIV-1 propagation in MDM 

MDM, isolated from healthy volunteers as above, were re-suspended in T25 flasks (Nunc) in 

RPMI + 10% heat inactivated autologous human serum supplemented with 20 ngmL-1 

macrophage colony-stimulating factor (M-CSF, R&D Systems). After 3 days non adherent cells 

were removed and the cultures were refreshed with growth medium (without M-CSF). After a 

total incubation time of 7 days flasks were transferred to the CL3. Here the medium was 

removed and 1 mL of lymphoblast propagated HIV-1Bal, at a concentration of 1 x 105-6 

infectious units (IU) mL-1, or medium (for sham control) was added and flasks were incubated 
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at  37oC, 5% CO2. After 16 hours the inoculum was removed and 10 mL of growth medium 

added. At 7, 14, 21 and 28 days following virus inoculation, 9 mL of medium was removed and 

replaced with fresh growth medium. Virus containing medium was filtered and 

ultracentrifuged through 25% sucrose as before (see 2.2.1) to yield purified, macrophage-

passaged HIV-1 or sham which was stored in 1 mL aliquots in LN.  

2.2.3 HIV-1 titration 

2.2.3.1 NP2 cell line titration method 

HIV was titrated using the NP2 cell line titration method previously developed by Noursadeghi 

et al. (Noursadeghi, Tsang et al. 2009). NP2 cells were washed x 2 with PBS then detached from 

flasks with trypsin-versene as described (see 2.1.1.2). Cells were resuspended in fresh NP2 

medium at a concentration of 1.5 x 105 mL-1 and cultured in volumes of 200 μL per well in a 96 

plate (Costar) for 24 hours at 37 oC, 5% CO2. The plates were transferred to the CL3 where 

medium was removed and the wells then inoculated in duplicate with 8 serial log10 dilutions of 

purified HIV-1BAL from lymphoblast or MDM propagations and incubated for 3 days at 37 oC, 

5% CO2. Medium was then removed and the wells washed with PBS before being fixed and 

permeabilised in an ice cold mixture 1:1 of pure acetone and methanol for 5 minutes and then 

washed x 3 in PBS. Each well was incubated with PBS containing 2% HIFCS and 1:25 p24 

antibody (IgG1κ monoclonal antibody to HIV-1 gag p24, Programme EVA Centre for AIDS 

Reagents, NIBSC, UK) for 2 hours at room temperature. Cells were then washed in PBS x 3 and 

then incubated with PBS containing 2%HIFCS + 5 μgmL-1 goat anti-mouse antibody  conjugated 

to β galactosidase (IgM+IgG+IgA (H+L) pooled antisera, Southern Biotechnology Associates) for 

1 hour at room temperature. The cells were then incubated overnight at 37 oC in a 

galactosidase substrate solution of 0.5 mgmL-1 5-bromo-4-chloro-3-indolyl—galactopyranoside 

(X-gal) (Melford) in PBS containing 3 mmolL-1 potassium ferricyanide (FLUKA), 3 mmolL-1 

potassium ferrocyanide (FLUKA), and 1 mmolL-1 magnesium chloride (Sigma). Blue stained cells 
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positive for p24 were counted by microscope (Figure 2-1) and a virus titre of focus forming / 

infectious units per mL was derived using the following formula; IUmL-1 = dilution factor of well 

with the lowest countable number of blue cells / number of blue cells counted (averaged for 

both duplicates). 

 

Figure 2-1 Photomicrographs of four wells of NP2 cells stained for HIV-1 p24 

Wells of a 96 well plate were seeded with 3x104 NP2 cells then inoculated with serial log10 

dilutions of purified HIV-1BAL for 3 days. Cells were permeabilised, fixed and then stained with 

anti-HIV-1 p24 and a β galactosidase conjugated secondary antibody. Images show wells at 40 

x magnification with dilutions of HIV-1BAL at (A) 10-3, (B) 10-4, (C) 10-5 and (D) medium alone. 

p24 positive cells stain blue.    

  

1mm 
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2.2.3.2 Ghost cell titration method 

Ghost cells were resuspended at 1 x 104 in ghost cell parent medium (as above 2.1.1.3) and 

incubated for 24 hours in volumes of 2mL per well of a 12-well tissue culture plate (Costar). 

Cultures were removed to the CL3 where they were washed in PBS x 2 and innocula of 25μL, 

50μL and 100μL of each viral stock to be measured were added to individual wells, which were 

then brought up to a final volume of 300 μL per well with parent medium. Typically three 

separate virus stocks were tested per plate along with three negative control (medium only) 

well totalling 12 wells.  Cells were incubated overnight for 16 hours at 37oC, 5% CO2 and then 

medium was replaced. After a further 48 hours cells were gently washed with PBS x 2, 

detached with 250 μL of trypsin-versene, incubated for 2-3 minutes in the incubator and then 

resuspended in 1mL of DMEM +10% FCS.  Cell counts were performed on one of the negative 

control wells using the KOVA™ cell counting chamber. Cells from individual wells were 

transferred to microcentrifuge tubes (Eppendorf) and centrifuged for 10 mins at 500g at 40C. 

Each pellet was resuspended in 600 μL of PBS with 2% PFA, thoroughly pipetted and left on ice 

for 1 hour in the dark. Next cells were washed in PBS, centrifuged as before then resuspended 

in 200μL FACS buffer: PBS  with 0.01% bovine serum albumin (BSA, First Link). Flow cytometry 

was performed on the FACSCalibur™(BD) in the University of Sheffield Medical School core 

facility, capturing 10,000 events. Forward scatter (FSC) and side scatter (SSC) plots were used 

to exclude debris and gate the intact cells as described (see 2.6.1). GFP expression was 

measured with the 488 nm blue laser and the 515/45 nm filter (FL1-H channel). GFP positive 

cells were identified from this population as those events with a greater than 1 Log10 increase 

in fluorescence intensity compared with negative control cells (Figure 2-2) .Virus titre was then 

calculated based on the following formula: Infectious Units (IU)/mL= (cell number) x (% of GFP-

positive cells) x (dilution factor) (Janas and Wu 2009).  
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Figure 2-2  Photomicrographs and histograms of GFP expression in ghost cells indicating HIV-

1 infection 

Ghost cells were incubated with 25 µL, 50 µL and 100 µL of HIVBAL or medium alone for 3 days 

then cells were analysed for GFP expression by fluorescent microscopy and flow cytometry. 

Events with ≥ 1 Log10 increase in FL1-H intensity than control were considered GFP positive. (A) 

Brightfield (left panel) and FITC filter images (right panel) of ghost cells showing the presence 

(empty arrow) or absence (white arrow) of green fluorescent protein expression (GFP). (B) 

Histograms of control (left) and HIV inoculated cells (right) with GFP expressing proportions; 25 

µL  (23.5% positive, green line), 50 µL (40.6% positive, blue line) and 100 µL (45.4% positive, 

red line).  

A 

B 
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2.3 Streptococcus pneumoniae culture and cell challenge 

2.3.1 Streptococcus pneumoniae culture 

Streptococcus pneumoniae serotype 2 strain D39 (NCTC7466) were cultured in 20 mL brain-

heart infusion broth (BHI, Oxoid Unipath) with 20% HIFCS in the University of Sheffield Medical 

School containment level 2 laboratory (CL2). Growth curves were constructed from hourly 

measurement of the optical density (OD) by spectrophotometer (Jenway) and the number of 

colony forming units (cfu) per mL of broth using the Miles and Misra viable count technique 

(see 2.3.2) every hour in parallel. Subsequently OD readings were used to determine the point 

of mid log growth at which time broth was aliquoted and immediately frozen in 1 mL aliquots 

at -80 oC, typically at a concentration of 5 x 108 cfumL-1. S. pneumoniae colonies were 

confirmed by their typical α-haemolytic appearance on Columbia blood agar (CBA) plates 

(Oxoid) and optochin sensitivity as demonstrated by growth inhibition with an optochin disk 

(Oxoid).  

2.3.2 Miles and Misra viable bacterial count 

To accurately count the number of viable bacteria in a suspension the Miles and Misra 

technique was used (Miles, Misra et al. 1938). Eight serial log10 dilutions of the suspension 

were made by adding 100 μL of the suspension to 900 μL of PBS in a microcentrifuge tube and 

then mixing for 10 seconds with a bench top vortex. Three 10 μL drops of each dilution were 

then dropped onto each of four quadrants of two CBA plates, allowed to dry and then 

incubated at 37oC, 5% CO2 overnight for 18-20 hours. The number of colonies of S. pneumoniae 

per quadrant was counted and the viable count calculated using the formula: cfumL-1 = 

(number of colonies in quadrant / 30) x 1000 x dilution factor. 

2.3.3 Streptococcus pneumoniae opsonisation with human serum 

S. pneumoniae aliquots were rapidly thawed, centrifuged at 7600g and washed x 2 in PBS. 

Pellets were resuspended in RPMI plus 10% human serum pooled from three volunteers 
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previously vaccinated with the 23 valent polysaccharide pneumococcal vaccine, and in whom a 

documented vaccine response has been demonstrated. The bacteria were incubated for 30 

minutes at 37oC, 5% CO2 in the CL2, then centrifuged at 3000g x 3 minutes, washed x 2 in PBS 

and resuspended in RPMI + 10% HIFCS and kept on ice.  Miles Misra viable counts were 

performed on aliquots of opsonised bacteria for every infection to confirm the final multiplicity 

of infection (MOI). To confirm binding of antibody after opsonisation treatments, both serum 

treated and untreated S. pneumoniae were washed in PBS and 106 bacteria resuspended in 

100 mL of 0.1% PBS-azide (Lonza). Bacteria were incubated with 1 mg of fluorescein 

isothiocyanate (FITC)-conjugated goat anti–human IgG Fc (Dako) for 15min at 20 oC. Samples 

were then centrifuged at 2500g for 2 min, then the pellet was washed and resuspended in 400 

mL of 0.5% PFA. Bacteria were analyzed using a LSRII™ (BD Biosciences) flowcytometer. 

FSC/SSC plots were used to identify the bacterial population (see 2.6.1). 10,000 events from 

this population were analyzed for FITC expression with the 488 nm blue laser and the 530/30 

filter (Figure 2-3).  
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Figure 2-3 Human serum from PCV-23 vaccinated subjects opsonises D39 Streptococcus 

pneumoniae 

Dot plots and histograms showing FITC expression by D39 that had been incubated for 30 

minutess with PBS (A) or with anti-Spn human immune serum (B) washed and then incubated 

with FITC-conjugated goat anti–human IgG Fc. SSC  side scatter 

2.3.4 Cell challenge with Streptococcus pneumoniae 

All pneumococcal challenge experiments were performed with opsonised S. pneumoniae 

serotype 2 (D39). Wells containing cells were washed x 1 in PBS.  Cells were then inoculated 

with medium for mock infection or S. pneumoniae at MOI of 10, topped up to a final volume of 

1 mL with growth medium and immediately placed on ice to facilitate bacterial adherence. 

After 1 hour, tissue culture plates were transferred to an incubator at 37 oC, 5% CO2. After a 

further 3 hours adherent cells were washed x 2 with PBS and then incubated with fresh, 

bacteria free, growth medium for up to a total of 20 hours. Cells from a representative well 

were counted prior to infection to confirm cell numbers, typically 2 x 105mL-1 and this informed 

the volume of the bacterial inoculum to achieve an MOI of 10. As a positive control for 
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apoptosis, two uninfected wells were treated with 1 μM staurosporine (STS) (Calbiochem) at 

the 4 hour time point and incubated for a further 16 hours.  

2.3.5 Gentamicin protection assays 

To determine the number of viable, internalised bacteria in monocytes/macrophages at 4 

hours post infection wells were washed x 2 in PBS then returned to the incubator for 30 

minutes in fresh medium containing 40 unitsmL-1 benzyl penicillin (Crystapen™, Genus 

Pharmaceuticals) and 20 μgmL-1 gentamicin (Cidomycin™, Sanofi) or 20 μgmL-1 gentamicin 

alone. Wells were again washed x2 in PBS and incubated for 12 minutes with 200μL sterile 

filtered 2% saponin (Sigma) before being made up to 1mL with PBS and scraped and pipetted 

vigorously to break up cell membranes and release bacteria into the medium. Miles and Misra 

viable counts were performed. To determine the number of viable intracellular bacteria at 

later time points whilst preventing ongoing bacterial replication in the medium, other wells 

were returned to the incubator following penicillin/gentamicin treatment in medium 

containing 0.7 μgmL-1 vancomycin (Sigma) until the desired time point. Wells were again 

washed x2 with PBS and incubated for 12 minutes with 2% saponin to lyse cells and then viable 

counts were performed as before.   

2.4 MDM incubation with HIV-1 gp120 

MDM from human donors were treated with recombinant HIV-1LAI/IIIB envelope glycoprotein 

gp120 (Programme EVA Centre for AIDS Reagents, NIBSC, HPA, UK) at concentrations of 10 

ngmL-1 and 100 ngmL-1 from 1 hour prior to and then throughout the challenge with opsonised 

S. pneumoniae / mock infection. 

2.5 MDM infection with HIV-1 

For MDM infections, macrophage passaged HIV-1BAL was removed from the liquid nitrogen 

store and rapidly thawed in a water bath. Virus was resuspended in growth media at 105 IUmL-

1. 7-14 day old MDM from human donors were washed x2 with PBS and then inoculated with 



101 
 

200 μL per well (24 well plates) or 80 μL per well (96 well plate) of this viral suspension and 

incubated at 5% CO2 37oC for 16 hours in the CL3. Wells were then topped up with 1 mL / 200 

μL growth medium respectively and incubated for a further 7 days. Rates of macrophage cell 

infection were measured by detecting the presence of intracellular HIV p24 antigen using the 

anti-p24 / β-galactosidase secondary antibody as described for NP2 HIV-1 titration (see section 

2.2.3.1). Alternatively, HIV-1 infected MDM were identified using confocal fluorescence 

microscopy.  MDM were seeded onto coverslips then infected with HIV-1BAL and incubated 

with anti-p24 as above. Coverslips were then incubated with an Alexa 488 conjugated goat 

anti-mouse IgG (H+L) secondary antibody (Molecular Probes™, Life Technologies), inverted and 

sealed with nail polish and image capture was performed with a Zeiss LSM 510 confocal 

microscope with a Zeiss 63×/1.4 oil objective and processed with AxioVision 4.7.2 software. 

2.6 Flow cytometry 

2.6.1 Flow Cytometry 

Measurements were made in the University of Sheffield Medical School Flow Cytometry core 

facility using a two laser, 4 colour FACSCalibur™ (BD Biosciences) and CellQuest™ PRO version 

4.0.2 software (BD Biosciences) or a four laser, 13 colour LSRII™ (BD Biosciences) and BD 

FACSDiva version 6.1.1 software (BD Biosciences). Forward scatter (FSC) and side scatter (SSC) 

were used to exclude debris and to identify cell populations by measuring the size and 

granularity or internal complexity of events respectively. 10,000 gated events were recorded 

unless otherwise stated. Analyses of data were performed using FlowJo™ software version 

9.3.2 (Tree Star, Inc.).  

2.6.2 Antibodies  

To identify cell types and cell surface molecules fluorophore conjugated antibodies (Table 2-2) 

were used at 0.1-0.25 µg per 105-106 cells in 100μL of 0.1% BSA in PBS (FACS buffer) and 

incubated for at least 30 minutes at 4 oC as per the manufacturers’ instructions.  Washes were 
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with FACS buffer and centrifugation at 400g x 10 minutes unless otherwise stated and 

performed in 1.5 mL flow cytometer tubes. To avoid non specific antibody binding, cells were 

initially resuspended in 100 μL FACS buffer and incubated with recombinant human IgG 

(sigma-Aldrich) for 10-20 minutes at 4oC to block Fc receptors. To control for any residual non 

specific binding of antibodies, a second aliquot of the same cells were incubated with isotype 

control antibodies with the same fluorophores and the difference in fluorescence intensity 

between the specific antibody and isotype control was measured. Following incubation with 

antibodies, cell suspensions were centrifuged at 500g (Heraeus), washed, and pellets 

resuspended and fixed in 200 μL FACS buffer with 1% PFA prior to removal from the CL3. Cells 

were stored at 4 oC until run on the flowcytometer.   

Table 2-2 Fluorophore labelled antibodies  

Antibody Fluorophore Species Isotype Clone Manufacturer 

anti-Human CD3  PE Mouse Mouse IgG1 kappa SK7 eBiosciences 

anti-Human CD38  FITC Mouse Mouse IgG1 kappa HB7 eBiosciences 

anti-human CD4  APC Mouse Mouse IgG2a S3.5 Invitrogen 

anti-human CD8a  Brilliant Violet 421 Mouse Mouse IgG1 kappa  RPA-T8 Biolegend 

anti-human CD206  APC Mouse Mouse IgG1 kappa 19.2 eBiosciences 

anti-human CD163 PE Mouse Mouse IgG1 kappa GHI/61 eBiosciences 

anti-human CD80 PE Mouse Mouse IgG1 kappa 2D10.4 eBiosciences 

anti-human CD200r PE Mouse Mouse IgG1 kappa OX108 eBiosciences 

LIVE/DEAD® Fixable 
Dead Cell Stain 

blue fluorescent 
reactive dye 

- -  Invitrogen  

 

2.6.3 Cell viability staining 

Cell viability was confirmed during flow analyses with a LIVE/DEAD® Blue Fixable Dead Cell 

Stain Kit (L23105, Molecular Probes, Invitrogen). This contains an amine reactive viability dye 

(ViD) which reacts with free amines both in the cell interior and on the surface. As the dye is 

non cell permeable and only dead cells have permeable membranes, dead cells take up more 

ViD resulting in increases of 1 Log10 or greater in fluorescence intensity compared with live 
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cells (Perfetto, Chattopadhyay et al. 2006). Cells were prepared and incubated with 1 μL 

LIVE/DEAD® Blue per 105-6 cells in the same manner described in section 2.6.2 

2.6.4 Measurement of alveolar macrophage polarisation 

On the day following BAL, adherent AM were washed twice in ice cold FACS buffer then gently 

removed with a cell scraper and resuspended in FACS buffer.  Cells suspensions were divided 

into five equal volumes and labelled with (1) unstained, (2) anti-CD206-allophycocyanin (APC) , 

(3) anti-CD206-APC and anti-CD80- phycoerythrin (PE), (4) anti-CD206-APC and anti-CD163-PE 

and (5) anti-CD206-APC and anti-CD200r-PE and with corresponding APC and PE isotype 

controls (as described in section  2.6.2). Cell surface expression of these markers was then 

measured using the FACSCalibur™. FSC and SSC detectors were set while running unstained 

samples and then FL2-H (excited by 488 nm blue laser, detected by 575/26 BP filter) and FL4-H 

(excited by 635 nm red laser, detected by 650 LP filter) detectors were set using isotype 

control and antibody labelled samples. The settings were saved and used for subsequent 

sample analyses. Data were analyzed with FlowJo™ software version 9.3.2 (Tree Star, Inc.). 

Gates were set on FSC/SSC to exclude debris and identify intact cells (see section 2.6.1). APC 

(CD206+) geometric mean fluorescence intensity (MFI) expression was measured on this 

subpopulation using the FL4-H channel. PE (CD80 / CD163 / CD200r) MFI for each conjugated 

antibody was measured on the CD206+ gated subpopulation using the FL2-H channel (Figure 

2-4). Values were expressed as the ratio of the MFI of the marker (APC or PE) to the MFI of the 

isotype control. 

2.6.5  Measurement of lymphocyte subsets and activation 

24 hours after BAL fluid collection non adherent cells from all tissue culture plates were pooled 

in a 50mL centrifuge tube and centrifuged at 500g for 10 minutes at 4oC. The pellet was 

resuspended and washed x 2 in FACS buffer and then resuspended in three aliquots of 80 L 

with FACS buffer in FACS tubes. The cells were incubated (1) unstained, (2) with fluorophore 
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conjugated antibodies to CD3, CD4, CD8 and CD38 and LIVE/DEAD® Blue stain or (3) isotype 

control and LIVE/DEAD® Blue stain, and then washed and fixed (as described in section 2.6.1). 

In parallel anti-mouse Ig kappa and negative control compensation beads (BD™ Compbeads, 

BD Biosciences) were incubated with each antibody conjugate separately. Labelled cells were 

then analysed on the LSRII. The beads were used to set a compensation matrix, unstained cells 

were used to set FSC and SSC, and isotype control labelled cells used to set the red 633nm 

(660/20 filter, APC), blue 488 nm (575/26 filter, PE and 530/30 filter FITC), violet 405nm 

(450/40 filter, brilliant violet),  and UV 355nm (450/40 filter UV) laser voltages and filters. 

These were then kept the same for each subsequent donor sample. Lymphocytes were 

identified on FSC/SSC plots as before. Doublet cells were excluded using a FSC-A versus FSC-H 

event plot. Cells with high UV 450/40 (LIVE/DEAD® Blue) intensity on the singlet cell gate were 

considered to be dead lymphocytes and excluded. T lymphocytes were identified as CD3+ cells, 

defined as blue 575/26+ events in the live cell population. Back gating was performed to 

confirm that the CD3+ cells were within the original lymphocyte gate on FSC/SSC. CD4-/CD8+ 

(CD8+ T lymphocyte) cells were defined as violet 450/40+ red 660/20- events and CD4+/CD8- ( 

CD4+ T lymphocyte) cells were defined as violet 450/40- red 660/20+ in CD3+ population (Figure 

2-5). The expression of CD38 on CD8+ T cells was defined as the ratio of the MFI on the blue 

530/30 channel for CD3+/CD4- /CD8+ gated events to that of isotype control.  
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Figure 2-4 Gating strategy for measuring macrophage surface markers 

Alveolar macrophages were isolated from donor BAL fluid and then labelled with anti-CD206-

APC and anti-CD80-PE/ anti-CD163-PE/anti-CD200r-PE or isotype controls. Macrophages were 

identified on FSC/SCC (A) and red and blue laser voltages were set on this population with 

APC/PE isotype controls (B). CD206-APC expression was measured on the FL4 channel with PE 

isotype control (C) then CD163-PE expression was measured on the CD206+ subpopulation on 

the FL2 channel (D). The MFI of CD163 expression and isotype control were compared (E) to 

derive the GMR. CD80 and CD200r expression was measured as for CD163. FSC forward 

scatter, SSC side scatter, MFI geometric mean fluorescence intensity, GMR geometric mean 

ratio, APC allophycocyanin, PE phycoerythrin, IC isotype control 
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Figure 2-5 Gating strategy for measurement of BAL fluid lymphocyte subsets 

Cells were isolated from BAL fluid and after 24 hours non adherent cells were washed and 

labelled with anti-CD3-PE, anti -CD4-APC,anti -CD8-brilliant violet, and a viability die. 

Lymphocytes were identified on FSC/SSC (A) and doublets excluded using FSC-A/FSC-H (B). 

Cells expressing >1 log10 viability die on the UV 450/40 channel were considered dead and 

excluded (C). CD3 expressing cells were identified on the blue 575/26 filter (D) and CD4+ T cells 

(APC+ brilliant violet-) and CD8 T cells (APC-, brilliant violet+) identified using the red 660/20 and 

violet 450/50 channels (E). Cells incubated with PE, APC and brilliant violet isotype controls are 

shown for comparison (F). FSC forward scatter, SSC side scatter, APC allophycocyanin, PE 

phycoerythrin, IC isotype control 
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2.7 Measuring cell death 

2.7.1 Nuclear Morphology 

After 16-20 hours of infection, for wells with coverslips, media was removed and wells were 

gently washed with 1mL PBS which was then aspirated and replaced with 2% PFA for 1 hour. 

Subsequently the PFA was removed and the wells left in PBS at 4 oC overnight. Wells were 

aspirated to dryness and the glass coverslips were removed, inverted onto glass slides (Thermo 

Scientific)  in 4',6-diamidino-2-phenylindole (DAPI) containing mounting medium 

(Vectorshield™, Vector Laboratories) and fixed in place with nail polish. When non adherent 

cells were to be analysed slides were made by centrifuging (Cytospin3, Standon) 150 μL of cell 

suspension onto glass slides at 10g  (300 rpm) for 3 minutes, allowed to air dry and were fixed 

with methanol. Vectorshield™ medium was then dropped directly onto the slide and mounted 

with a glass coverslip and nail polish. Slides were read in blinded fashion to measure the rate 

of apoptosis by nuclear morphology. The DAPI filter of a fluorescence microscope (Leica DMRB 

1000) was used with a 100 x oil emersion objective and 10 x eyepiece (1000 x magnification) to 

study the morphology of the nuclei of macrophages. Cells with condensed or fragmented 

nuclei were counted as apoptotic (Figure 2-6). At least 10 high power fields (HPF) or 300 cells 

(whichever the greater), starting at a set distance of 5 fields from the edge of the coverslip, 

were systematically counted in the same manner for each slide.   
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Figure 2-6 Chromatin fragmentation and nuclear condensation in DAPI stained U937 nuclei 

following Streptococcus pneumoniae challenge 

U937 cells were seeded in 24 well plates at 2 x 106 and differentiated with 100nM PMA for 3 

days then rested for 5 days before being challenged with S. pneumoniae at MOI = 10 for 20 

hours. Cells were fixed and stained with 4',6-diamidino-2-phenylindole (DAPI) then examined 

with the DAPI filter of a fluorescence microscope at 1000 x magnification. Full arrow indicates 

condensed, apoptotic nucleus, empty arrow indicates non apoptotic nucleus.    
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2.7.2 TUNEL assay 

In certain experiments, terminal deoxynucleotidyl transferase 2’ –deoxyuridine, 5’ –

triphosphate (dUTP) nick end labelling (TUNEL, Millipore) was used to label apoptotic nuclei. In 

this method the 3'-OH ends of 180 bp DNA fragments, cleaved specifically during apoptosis, 

are labelled with digoxigenin-nucleotides by the catalytic action of terminal deoxynucleotidyl 

transferase (TdT) and a fluorescein isothiocyanate (FITC) conjugated anti-digoxigenin antibody 

is then used to identify these DNA fragments.   Cells on coverslips were fixed with 2 % PFA and 

were permeabilised with ice cold 2:1 (100%) ethanol:acetic acid and then washed x2 with PBS. 

Each coverslip was then incubated at room temperature for 10 minutes with 13 μL of 

equilibration buffer then 11 μL of TdT enzyme - reaction buffer mix (containing nucleotides) for 

1 hour at 37oC in a humidified chamber in the dark. Stop wash buffer was then applied for 10 

minutes and then washed x 2 with PBS. Finally, the coverslips were incubated for 30 minutes in 

a humidified chamber in the dark at 37oC with 13 μL of anti-digoxigenin fluorescin conjugate all 

as per the manufacturer’s instructions. Coverslips were then mounted with Vectorshield™ 

DAPI and inspected by fluorescence microscopy as described above (see 2.7.1). Cells 

demonstrating nuclear fragmentation and condensation were considered to be apoptotic if 

they also fluoresced green on the FITC filter (Figure 2-7).  

  



110 
 

 

 

Figure 2-7 Photomicrograph of DAPI and TUNEL staining nuclei 

U937 cells were seeded in 24 well plates at 2 x 106 and differentiated with 100nM PMA for 3 

days then rested for 5 days before being challenged with S. pneumoniae at MOI = 10 for 20 

hours. Cells were fixed and stained with terminal deoxynucleotidyl transferase 2’ –

deoxyuridine, 5’ –triphosphate (dUTP) nick end labelling (TUNEL) and then 4',6-diamidino-2-

phenylindole (DAPI) then examined with the DAPI and fluorescein isothiocyanate(FITC) filters 

of a fluorescence microscope at 1000 x magnification. Examples of TUNEL + condensed nuclei 

(full arrow) and TUNEL – non apoptotic nuclei (empty arrow) are shown.  
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2.7.3 Measurement of Caspase 3/7 activity 

2.7.3.1 Luminescent Caspase 3/7 assay 

Sixteen hours following challenge with S. pneumoniae or mock infection, a luminescent 

Caspase-Glo™ 3/7 (Promega) assay was used to measure caspase 3 and caspase 7 activity. In 

accordance with the manufacturer’s instructions, the reagent was made by combining 

Caspase-Glo™ 3/7 substrate and buffer and allowing them to equilibrate to room temperature. 

An equal volume of reagent (100μL) was added to each well of the 96 well plate containing 

cells and their medium, agitated to mix and then incubated at room temperature for 90 

minutes. Luminescence was then measured for each well using a plate reader (Varioskan™ 

Flash Multimode Reader with SkanIt™ Software). The assay has a luminogenic substrate with 

an Asp-Glu-Val-Asp (DEVD) caspase 3/7 specific cleavage site. Active caspase 3/7cleaves and 

releases an amino-luciferin substrate which interacts with luciferase and results in 

luminescence.  

2.7.3.2 Fluorimetric Caspase 3/7 assay 

Caspase 3 and 7 activity was also measured with a combined caspase 3 and caspase 7 

fluorimetric assay kit (SensoLyte® Homogeneous AMC Caspase - 3/7 Assay Kit, Anaspec). As 

caspase 3 and caspase 7 cleave the same amino acid sequence Asp-Glu-Val-Asp (DEVD), this kit 

uses acetyl Asp-Glu-Val-Asp 7-amido-4-methylcoumarin (Ac-DEVD-AMC) as a substrate which 

on proteolytic cleavage by these caspases generates the fluorogenic indicator 7-amino-4-

methylcoumarin (AMC). This fluoresces bright blue and is detected at excitation/emission 

spectra 354 nm/ 442nm. The kit contains a buffer which also lyses the cells allowing 

fluorescence to be measured in the tissue culture plate by a plate reader. Sixteen hours 

following challenge with S. pneumoniae or mock infection adherent cells from 2-4 wells were 

washed twice with PBS, the wells were aspirated to dryness and the cells lysed with 300μL of 

kit lysis buffer. The lysate was transferred to a microcentrifuge tube and kept at on a rotor at 4 
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oC for 30 minutes. Samples were then centrifuged for 10 minutes at 1000g and supernatants 

were analysed for caspase 3/7 activity using the SensoLyte® fluorimetric assay as per the 

manufacturer’s instructions. 100 μL of each supernatant was mixed with the Ac-DEVD-AMC  

substrate in an opaque 96 well plate (Costar) and incubated on a plate shaker for 1 hour 

before fluorescence was measured on a plate reader (excitation 380 nm, emission filter  460 

nm,  Varioskan™ plate reader). A standard curve was generated by making 2-fold serial 

dilutions of 60 µM AMC from the kit to obtain 30, 15, 7.5, 3.75, 1.88, 0.94, 0.47 μM 

concentrations along with a water blank which were included in the 96 well plate with the 

supernatants. Fluorescence intensity readings were converted to relative caspase activity by 

interpolation from the AMC standard curve using GraphPad prism v5.04 software (GraphPad 

Inc.)(Figure 2-8). Supernatants were also analysed for protein content using a Pierce BCA 

Protein Assay (see section 2.8.2). Relative caspase 3/7 activity results were then normalised for 

each sample according to the protein content.  
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Figure 2-8 Representative AMC standard curve as used to derive relative caspase activity 

from RFU measurements with fluorimetric caspase 3/7 assay 

Serial 2-fold AMC dilutions of known concentration and cell lysates from S. pneumoniae 

challenge experiments were treated with fluorogenic caspase 3/7 kit reagents and the RFU 

measured at excitation/emission spectra 380/460 nm. A standard curve was created and the 

AMC concentration extrapolated for samples to give a measure of caspase 3/7 activity. AMC 7-

amino-4-methylcoumarin, RFU relative fluorescence units 
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2.7.4 Measuring hypodiploid DNA  

After 16-20 hours of infection, adherent cells were removed with a cell scraper and, together 

with the media and any non adherent cells in the well, centrifuged at 400g for 5 minutes and  

then washed x 2 in PBS. They were then re-suspended in 300 μL of ice cold PBS, then made up 

to a 1 mL suspension with 100% ice cold ethanol (final concentration 70% ethanol) and kept at 

4 oC overnight. Cell suspensions were washed x 2 in PBS and re-suspended in 200 µl of PBS 

with 0.2 mgml-1 of RNAse A (DNAse free) (Sigma) with 20 µgml-1 propidium iodide (PI, Sigma) 

for 30 minutes. Samples were run on the FACSCalibur with cells identified and gated using FSC 

versus SSC event plots. Doublets were excluded from this population using FL2-W versus FL2-A 

event plots. PI intensity was measured on this population in the FL-2 channel (562-588nm) on 

a linear scale to enable cell cycle analysis and after gating for debris, the sub G0/G1 population 

of cells with accumulation of hypodiploid DNA were recorded as a proportion of the total cells,  

as a measure of apoptosis (Nicoletti, Migliorati et al. 1991).  

2.8 Measurement of protein expression by Western Blot 

2.8.1 Protein extraction 

At the desired time point, typically 20 hours post infection, protein was extracted from the 

cells using the tri-chloroacetic acid (TCA) precipitation method (Wang, Posner et al. 1996). 

Cells were washed in PBS x1 and then 600 μL of sodium dodecyl sulphate lysis buffer was 

added (20mM TRIS-HCl pH7.4, 5mM Ethylenediaminetetraacetic acid (EDTA), mM ethylene 

glycol tetraacetic acid (EGTA), 150mM NaCl and 1% SDS) along with a commercial protease 

inhibitor cocktail containing inhibitors of pancreas extract, metalloprotease, chymotrypsin, 

trypsin and papain (Complete™, Roche). After a few seconds cells were scraped vigorously with 

a cell scraper (Costar). 100 μL of 100% TCA (Sigma-Aldrich) was then added to the lysate to 

precipitate out the DNA, which was carefully removed.  The remaining lysate was centrifuged 

in a bench top centrifuge (Eppendorf) at 12,000g  for 5 minutes, the supernatant discarded and 
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pellet washed in 1 ml 2.5% TCA. After a second centrifugation at 12,000g x 5 minutes the 

supernatant was removed and the pellet dissolved in 40 μL 3M Tris base at 4 oC overnight. An 

equal volume of water was then added to dilute to 1.5M Tris and the samples then stored at -

20°C. 

2.8.2 Protein quantification assays 

Protein concentrations were determined using commercial colorimetric kits: DC Protein Assay 

(Biorad) and Pierce BCA Protein Assay  (Thermo Scientific). A standard curve of protein 

concentration was generated using duplicate serial dilutions of bovine serum albumin (BSA) in 

the same plate as test samples. Reagents were added as per the manufacturer’s instruction 

and then, for the DC assay, colour formation estimated in a plate reader at a wavelength of 

630 nm. For the Pierce assay, absorbance was measured at 562 nm. Protein concentrations 

were determined by interpolating from the standard curves using GraphPad Prism™ v6.01 

(GraphPad Software Inc.). 

2.8.3 SDS PAGE 

Protein separation was performed using sodium dodecyl sulphate poly acrylamide gel 

electrophoresis (SDS PAGE). Equal quantities of protein from each sample were denatured by 

diluting 1:1 in reducing Laemmli buffer (Laemmli 1970) and heating to 90oC for 5 minutes. 

These were each then loaded into the lanes (either 10 or 15) of a 1.5 mm thick, 12% poly 

acrylamide gel in running buffer (0.25M Tris-Base, 1.9M glycine and 1% SDS). The electric 

current was applied at 80 V until the protein had passed the stacking gel and then at 180-200 V 

until the dye in the buffer had passed to the bottom of the resolving gel. 5 μL of a protein 

ladder (Colour plus protein ladder™ S7711, New England Biolabs) was added to the first lane.     

2.8.4 Western blot semi dry transfer 

Protein from the SDS PAGE gel was transferred to a nitrocellulose membrane (BioRAD) by 

semi-dry blotting.  The membrane was cut to the size of the gel and activated by soaking in 
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distilled H2O. Six similarly sized pieces of filter paper were soaked in Towbin transfer buffer 

(25mM Tris-Base, 192mM glycine, 20% methanol). The gel was placed on top of the membrane 

and sandwiched between filter paper and then placed in a semi-dry transfer blotter (Trans-Blot 

SD transfer cell, BioRad) and the current applied at 15 V for 30 minutes (Towbin, Staehelin et 

al. 1979). 

2.8.5 Protein detection by chemiluminescence  

After transfer the presence of protein bands on the nitrocellulose membrane were confirmed 

using Ponceau S stain. The membranes were then washed in Tris buffered saline (TBS)-Tween 

then blocked with 5% milk buffer (5% w/v fat free milk in TBS containing 0.05% Tween) for 60 

minutes at room temperature on a plate shaker. Membranes were then incubated overnight 

with primary antibodies at 1:5000 – 1:500 dilutions in 5% milk buffer. The following antibodies 

were used: anti-Mcl-1 (rabbit polyclonal, 1:500 S-19: sc-819, Santa Cruz Biotechnology, INC.) 

and anti-actin (rabbit polyclonal, 1:5000 Sigma-Aldrich),was used as a loading control for total 

protein. After incubation with the primary antibody, membranes were washed three times in 

TBS-Tween for a total of 15 minutes and then incubated with 1:5000 dilution horseradish 

peroxidise (HRP)-conjugated goat anti rabbit antibody (Dako) for one hour at room 

temperature on a shaker. The membranes were washed in TBS-Tween as before and then 

protein labelled with antibody was detected by enhanced chemiluminescence (ECL) and light 

sensitive film (Amersham).  

2.8.6 Densitometry 

The optical density of bands on the light sensitive film detected by western blot was measured 

by densitometry to enable a semi quantitative analysis of protein expression. Transparencies 

were scanned using a document scanner (Epson perfection V330 photo) to create a JPEG 

image. The density of the bands was measured using ImageJ™ software v1.440. To correct for 

differential loading of the gel lanes the ratio of the density of each band to the actin loading 



117 
 

control was measured using spreadsheet software (Excel ™ Microsoft). This ratio was then 

compared with the control condition for each MDM S. pneumoniae challenge experiment, 

namely sham MDM, mock-infected , to derive a measure of change from control. 

2.8.7 Measurement of mitochondrial superoxide 

To measure the generation of mitochondrial superoxide (O2
-) a fluorogenic dye, MitoSOX™ 

Red (Invitrogen) was used. This dye contains dihydroethidine which is targeted to the 

mitochondria and undergoes O2
-
  dependent hydroxylation to 2-hydroxyethidium which 

fluoresces at excitation/emission spectra of 400/590nm  (Robinson, Janes et al. 2008). The 

MitoSox dye was dissolved in dimethyl sulfoxide (DMSO) and then diluted in Hank's Balanced 

Salt Solution (HBSS, Gibco) without phenol red to make a 2.5 µM staining solution as per the 

manufacturer's instructions. MDM were cultured in 96 well plates at a final density of 4 x 104 

per well for subsequent HIVBAL or sham infection followed by pneumococcal challenge 

experiments. At the end of infection 0.5 mL of staining solution was added to each well and 

incubated for 15 minutes at 37 oC in the dark. Wells were then washed three times with HBSS 

warmed to 37oC. 200 µL of PBS was added to each well and the plate kept on ice for no more 

than 30 minutes while it was sealed, cleaned and removed from the CL3 facility. Fluorescence 

was then measured on a Varioskan™ Flash Multimode Reader plate reader using SkanIt™ 

Software (Thermo Fisher Scientific Inc.)  at excitation/emission spectra of 410/590nm.  As the 

dye is not retained after fixation, plates were analysed with unfixed cells but then immediately 

resealed and returned to the CL3 facility for disposal. 

2.8.8 Measurement of mitochondrial density 

To measure any change in the number of mitochondria a green-fluorescent mitochondrial 

stain MitoTracker™ Green FM (Invitrogen) was used. This localizes to the mitochondria and the 

density of mitochondria can be inferred from the intensity of the signal at excitation/emission 

spectra of 490/516 nm. MDM were cultured in 96 well plates and infected with HIV-1 or sham 
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then subsequently challenged with pneumococci or mock-infected as above (see 2.8.7). A 1 

mM working solution was made by diluting the supplied dye in 74.4 µL of DMSO and a staining 

solution made by adding 1 µL of working solution to 2 mL of serum free RPMI 1640 medium. At 

the end of pneumococcal challenge, medium was removed and wells washed in PBS prior to 15 

minutes incubation at 37 oC with 200µL of staining solution per well. The solution was then 

replaced with pre-warmed PBS and taken to be read on the Viroskan plate reader at the 

490/516nm settings and then disposed of as above (see 2.8.7). 

2.9 Statistical Methods 

All data are shown as mean plus or minus the standard error of the mean unless otherwise 

indicated. Statistical analyses were performed using GraphPad Prism (GraphPad Inc.) version 6. 

Matched data from within experiments were compared with paired Student’s t-test 

(parametric data) or Wilcoxon matched pairs test (non parametric). Alternatively, for 

unmatched groups where data were derived from different experiments, unpaired Students t-

test or Mann Whitney test were used. One way ANOVA (parametric) and Kruskall Wallace 

(unmatched, non parametric) or Friedman’s (matched, non parametric) tests were used where 

3 or more groups were compared and Two-way ANOVA was used where two factors were 

being compared simultaneously. Categorical data were compared using Chi square and 

Fischer’s exact tests. The strength of correlation was measured with Pearson’s test. For flow 

cytometry data geometric means were calculated using FlowJo™ software version 9.3.2 (Tree 

Star, Inc.). All tests were 2 way and statistical significance was defined as p< 0.05.  
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3 Chapter 3. HIV-1 infection is associated with attenuation of 

macrophage apoptosis in response to Streptococcus 

pneumoniae 
 

3.1 Introduction 

Macrophages play a crucial role in the defence against potentially invasive S. pneumoniae, 

particularly in the lung; alveolar macrophages recognise, phagocytose and kill S. pneumoniae 

(Jonsson, Musher et al. 1985). An additional capability of the macrophage is the ability to 

engage apoptosis-associated killing that occurs after the initial phase of phagolysosomal killing 

and may be sufficient to contain infection without the need for neutrophil recruitment to the 

lung (Dockrell, Marriott et al. 2003; Marriott, Bingle et al. 2005; Bewley, Marriott et al. 2011). 

HIV-1 infection is associated with attenuation of apoptosis in macrophages, contributing to 

their persistence as a latent reservoir of HIV-1 (Crowe, Zhu et al. 2003; Giri, Nebozyhn et al. 

2009). It is not known whether the perturbation of apoptosis by HIV-1 has any impact on S. 

pneumoniae associated macrophage apoptosis.  

Both in vitro cell culture of macrophage cell lines and primary macrophages as well as in vivo 

mouse models have been used to describe the contribution of apoptosis-associated killing by 

macrophages to pneumococcal clearance (Dockrell, Marriott et al. 2003; Marriott, Hellewell et 

al. 2006; Bewley, Marriott et al. 2011).  Cell lines can be expanded in culture to enable 

experimental protocols requiring high numbers of cells and both monocyte-derived 

macrophages (MDM) and cell lines are more accessible than whole animal models. The 

promonocytic cell line, THP-1 can be induced to differentiate towards a macrophage-like 

phenotype by treatment with phorbol 12-myristate 13-acetate (PMA), a phorbol ester which 

activates protein kinase C (PKC) (Daigneault, Preston et al. 2010) and can be used to model S. 

pneumoniae associated macrophage apoptosis (Bewley, Marriott et al. 2011). U937 is a 

promonocytic cell line similar to THP-1, that originates from a hystiocytic lymphoma 
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(Sundstrom and Nilsson 1976), and can also be differentiated into a macrophage-like 

phenotype (reviewed in (Harris and Ralph 1985)). The U1 line is a clonal derivative of U937 

cells that have been infected with the X4 HIV-1LAI/IIIB strain. Integrated HIV-1 pro-viral DNA is 

latent in U1 but its expression can be induced with PMA (Folks, Justement et al. 1988). 

Together, U937 and U1 have been used as in vitro models to compare the effect of HIV-1 

infection on monocyte/macrophage behaviour (Cassol, Alfano et al. 2006; Patel, Zhu et al. 

2007). Published studies comparing U937 and U1 have used short periods of exposure to PMA 

(typically 24 to 48 hours) to activate transcription of HIV-1 in the U1 (Tachado, Zhang et al. 

2005; Nicol, Mathys et al. 2008). In addition, PMA exposure for this duration starts to 

differentiate cells towards a macrophage like phenotype but the extent of differentiation is 

less well characterised (Tachado, Zhang et al. 2005; Nicol, Mathys et al. 2008). Thus the U937 

and U1 cell lines present a potential macrophage model with which to study the effect of HIV-1 

on S. pneumoniae associated apoptosis.  

MDM from healthy human volunteers are a source of primary macrophages recognized as an 

in vitro model of differentiated tissue macrophages (Gantner, Kupferschmidt et al. 1997) and 

have also been employed as models of the interaction between macrophages and S. 

pneumoniae infection (Ali, Lee et al. 2003). MDM express CD4 and CCR5 on their surface and 

can be productively infected in vitro with CCR5 tropic HIV-1 (HIV-1BAL) (Tsang, Chain et al. 2009) 

making it possible to interrogate of the effects of HIV-1 infection on macrophage responses to 

pathogens (Crowe, Vardaxis et al. 1994).   

I have therefore set out to differentiate U937 and U1 cells and compare how they develop 

towards a macrophage-like phenotype. Next I have compared the effect of HIV-1 infection on 

the cell lines’ apoptotic responses to S. pneumoniae at different stages of differentiation. 

Subsequently, after propagating the CCR5 tropic laboratory strain HIV-1BAL in vitro, I have set 
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up cultures of productively HIV-1-infected MDM and examined the consequences of HIV-1 on 

the apoptotic responses of MDM to S. pneumoniae infection.  
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3.2 Results 

3.2.1 U937 and U1 promonocytic cell lines can be differentiated similarly towards 

a macrophage-like phenotype  

Both the U937 and U1 are promonocytic cell lines and need to be induced to differentiate 

further before they can be used as models of monocytes or macrophages. PMA induces the 

differentiation of promonocytic cell lines like THP-1 towards a macrophage-like phenotype that 

resembles MDM (Daigneault, Preston et al. 2010). As the effect of PMA on U937 and U1 

differentiation has been less extensively evaluated, a range of PMA concentrations and 

incubation times were used to characterize and compare the differentiation of these two cell 

lines towards a macrophage phenotype. 1 mL of 2 x 106 cells/mL of each cell type were seeded 

in 24 well culture plates, treated with 0, 10, 50, 100 or 200 nM PMA for 24 hours and allowed 

to adhere to the plastic before the medium was then refreshed. Granularity, autofluorescence 

and cell survival were measured using flow cytometry and trypan blue exclusion after a further 

1 day (PMA1r1) or 3 days (PMA1r3) of resting in growth medium ( 

Figure 3-1). Both protocols resulted in significant and similar increases in granularity of U937 

and U1 cells; after a single day of resting granularity (geometric mean side scatter) increased a 

similar amount with all concentrations of PMA (p<0.0001, 2 way ANOVA); after three days 

resting maximal changes in granularity were achieved with concentrations of 100 nM PMA or 

greater (p<0.0001, 2 way ANOVA). Autofluorescence increased with PMA concentrations of 50 

- 200nM in the PMA1r3 protocol, but with no difference between U1 and U937 (p<0.05, 2 way 

ANOVA). Autofluorescence did not increase when only one day resting (PMA1r1) was used 

regardless of the concentration of PMA. All strategies resulted in loss of viable cells which were 

greater with longer resting, although the differences were not statistically significant (2 way 

ANOVA). The 50nM PMA1r3 protocol was judged to result in the optimal balance of 



123 
 

differentiation and cell loss and so was chosen as an initial differentiation protocol to prepare 

cells for exposure to S. pneumoniae.  
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Figure 3-1 Characterisation of morphological changes in U937 and U1 following treatments 

with PMA. 

U937 and U1 cells were treated with 10, 50, 100 or 200nM PMA or medium alone for 24 hours. 

The medium was then refreshed and morphological changes were measured after a further 24 

hours (left hand column) or 3 days of resting (right hand column). Granularity (A) and auto-

fluorescence (B) were measured using flow cytometry and cell survival (C) using trypan blue 

exclusion. ut= untreated, n=3-4, ns= non significant (for PMA dose) 2 way ANOVA. 
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3.2.2 The induction of apoptosis by Streptococcus pneumoniae is reduced in U1 

compared with U937 cells after a brief differentiation period  

U937 and U1 cells were differentiated with 50nM PMA for one day then rested for 3 days 

(50nM PMA 1r3). The differentiated U937 and U1 cell lines were challenged with opsonised S. 

pneumoniae serotype 2 (D39) at a multiplicity of infection (MOI) of 10 or mock-infected for up 

to 20 hours. After infection the number of cells remaining adherent to coverslips was 

significantly lower (p=0.002) and there was a trend for this to be more pronounced in U937 

(11.5±4.1% remaining) than the U1 cells (33.3±16.6%) by 20 hours following S. pneumoniae 

challenge vs. 20 hours mock infection (n=5, p=0.065, paired t test) (Figure 3-2). After infection 

cells were also gently scraped from the plastic, stained with propidium iodide (PI) and 

subjected to cell cycle analysis by flow cytometry. Cells containing less DNA than those in 

growth phase (sub G0/1) were considered to be apoptotic (hypodiploid DNA). Apoptosis was 

compared between U937 and HIV-1-infected U1. There were significant increases in the 

number of cells with hypodiploid DNA for both U1 (p<0.01) and U937 (p<0.0001) after 20 

hour’s exposure to S. pneumoniae compared with 20 hours mock infection and for U937 the 

increase in apoptosis from  16 hours to 20 hours post S. pneumoniae was alsp significant  (2 

way ANOVA with Bonferroni’s post test) (Figure 3-3A). Comparison of the 20 hour mock-

infected cells showed a trend towards a higher level of apoptosis in U1 than U937 cells at 9.3 ± 

0.7% vs. 6.0 ± 0.7%, although the difference was not significant (n=3) (Figure 3-3A).  However, 

with exposure to S. pneumoniae the increase in apoptosis at each time point was significantly 

greater in U937 than U1 (p<0.05, 2 way ANOVA), with an absolute difference in the level for 

U937 vs. U1 cells at each time point; 12 hours (1.4%), 16 hours (4.3%) and 20 hours (8.5%)  

(Figure 3-3B).  
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Figure 3-2 After a brief differentiation protocol there is loss of adherent cells following 

challenge with Streptococcus pneumoniae, which is less marked for U1 than U937  

U937 and U1 cells were treated with 50nM PMA for 24 hours then rested for 3 days (PMA1r3) 

before being challenged S. pneumoniae or mock-infected (MI). At the indicated time points 

(hours), wells were washed and fixed and the numbers of adherent cells per high power field 

were counted by microscopy. Values represent % of adherent cells compared with paired 20 

hour mock-infected replicates at each time point, n=5, ***p<0.001, **p<0.01, *p<0.05 2 way 

ANOVA with Bonferroni’s post test. 
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Figure 3-3 After a brief differentiation protocol U1 demonstrate less induction of apoptosis 

than U937 during infection with Streptococcus pneumoniae. 

U937 and U1 cells were treated with 50nM PMA 1for one day then rested for 3 days (PMA1r3) 

before being challenged with S. pneumoniae or mock-infected. At the indicated time points 

(hours), hypodiploid DNA content of cells was measured using flow cytometry.  Cells with less 

DNA content than cells in growth phase (sub G0/1) were considered to have hypodiploid DNA 

and be apoptotic. (A) The proportion of cells with hypodiploid DNA and (B) the difference 

between S.pneumoniae challenged and mock-infection.  MI = 20 hours mock-infection 

n=3,*p<0.05, ****p<0.0001, 2 way ANOVA with Bonferroni’s post test.  
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3.2.3 Characterisation of U937 and U1 cell lines following a more extended PMA 

differentiation period 

To further differentiate the U937 and U1 cells further toward a macrophage-like phenotype, 

the differentiation protocol was extended. U937 and U1 cells were incubated with 100nM 

PMA for 3 days and then rested for a further 2 to 5 days in fresh growth medium, a variation 

on the strategy of prolonged resting to allow greater differentiation that has been shown to be 

effective in the THP-1 cell line (Daigneault, Preston et al. 2010) . As they differentiated, both 

U937 and U1 cells became significantly more granular (Figure 3-4 A, p<0.0001), larger (Figure 

3-4 B, 2 way ANOVA, p<0.01) and developed increasing autofluorescence (Figure 3-4 C, 

p<0.0001). Increases in size and granularity were less pronounced in U1 compared with U937 

but while these morphological differences were also visible microscopically (Figure 3-4 E, F), 

the differences were not statistically significant. There was a decline in the number of cells 

during the differentiation process (Figure 3-4 D). At the end of the extended differentiation 

protocols, surviving cells were generally more adherent than those differentiated with the 

briefer protocol (data not shown). Cells differentiated for 5 days (PMA3r2) demonstrated 

marked increases in granularity, size and autofluorescence which were similar to the longer 

protocol 8 day protocol (PMA3r5) but with less cell loss. The PMA3r2 protocol was therefore 

used to differentiate cells further toward a macrophage phenotype for repeat S. pneumoniae 

challenge experiments.  
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Figure 3-4 Characterisation of morphological changes in U937 and U1 following extended 

PMA differentiation protocols. 

U937 and U1 cells were treated with 100nM PMA for 3 days and then allowed to rest in fresh 

medium for up to 5 days. Cells were fixed then analysed by flow cytometry for (A) cell 

granularity (SSC), (B) cell size (FSC) and (C) auto-fluorescence (FL1-H). (D) Cell viability rates 

were measured by trypan blue exclusion. Photomicrographs of U937 (E,F) and U1 (G,H) cells at 

day 0 and day 8. UT = untreated, n≥3, 2 way ANOVA. 
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3.2.4 The induction of apoptosis by Streptococcus pneumoniae is reduced in U1 

compared with U937 cells after an extended differentiation period.   

U937 and U1 cells treated with 100nM PMA for 3 days and rested in fresh media for a further 2 

days were challenged with S. pneumoniae or mock-infected as before. At various time points 

following infection cells were gently scraped from the plastic, stained with propidium iodide 

(PI) and subjected to cell cycle analysis by flow cytometry. Cells with hypodiploid DNA were 

considered to be apoptotic. The gating strategy to exclude debris and perform cell cycle 

analysis is shown in Figure 3-5. With mock-infection only, U1 showed a trend for greater 

apoptosis compared with U937 with 26.1±4.7% vs. 16.9±2.5% hypodiploid DNA (n=3, ns) 

(Figure 3-6 A). A population of cells with decreased forward scatter was seen 20 hours 

following challenge with S. pneumoniae for both cell types. There were significant increases in 

the number of cells with hypodiploid DNA by 16 hours post S. pneumoniae challenge for U937 

and by 20 hours for both cell types (Figure 3-6 A + B). The induction of apoptosis 20 hours 

following D39 challenge was significantly greater for U937 than U1 (p<0.01, 2 way ANOVA), 

with a mean difference of 12.9±4.7% at 20 hours (p<0.05, Bonferroni’s post test)(Figure 3-6 C).  
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Figure 3-5 Representative flow cytometry dot plots and histograms for U937 and U1 

hypodiploid DNA measurement following Streptococcus pneumoniae challenge or mock-

infection. 

A gate was set on FSC/SSC event plot to exclude debris and PI intensity was measured in 

100nM PMA 3r2 differentiated cells. (A) U937  and (C) U120 hours mock-infected, (B) U937 

and (D) U1 20 hours after S. pneumoniae challenge. Hypodiploid DNA containing cells are 

those to the left of the G0/1 peak on a linear scale. SSC side scatter, FSC forward scatter, PI 

propidium iodide 
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Figure 3-6 After an extended differentiation period U1 demonstrate less induction of 

apoptosis than U937 following challenge with Streptococcus pneumoniae. 

U937 and U1 cells were treated with 100nM PMA for 3 days then rested for 2 days before 

being challenged with S. pneumoniae or mock-infected (MI). At the indicated time points 

(hours), hypodiploid DNA content of cells was measured using flow cytometry. Cells with less 

DNA content than cells in growth phase (sub G0/1) were considered apoptotic. (A) Proportion 

of cells with hypodiploid DNA at 16 hours and (B) at 20 hours. (C) Difference between 

S.pneumoniae challenged and 20 hours mock-infection.  n= 6-8 *p< 0.05, **p<0.01, *** 

p<0.0001,, 2 way ANOVA, with Bonferroni’s post test). 
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3.2.5 There is reduced induction of caspase 3/7 following challenge with 

Streptococcus pneumoniae in U1 compared with U937 cells after an extended 

differentiation period   

S. pneumoniae associated macrophage apoptosis involves caspase 3/7 activation (Bewley, 

Marriott et al. 2011). Increased caspase 3/7 activity can be used to measure apoptosis (Akhter, 

Gavrilin et al. 2009; Daigneault, De Silva et al. 2012). U937 and U1 cells were differentiated 

with 100nM PMA for three days and rested for 2 days as above (PMA3r2). Lysis buffer from the 

kit was then added to whole wells 16 or 20 hours following mock-infection or D39 challenge 

and caspase 3/7 activity was measured in the lysates. Fold change in caspase 3/7 activity 

compared to mock-infection was calculated for each time point and cell type. The fold change 

in caspase 3/7 activity was significantly greater for U937 at 16 hours (3.1 fold) and 20 hours 

(3.5 fold)  vs. 20 hours mock infection than U1 cells (n=4, two-way ANOVA with Bonferroni’s 

post test p=0.0002)(Figure 3-7). 
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Figure 3-7 Following an extended differentiation period U1 demonstrate less induction of 

caspase 3/7 activity than U937 cells following Streptococcus pneumoniae challenge. 

At the indicated number of hours following S. pneumoniae challenge or 20 hours mock-

infection (MI) cells were lysed and caspase 3/7 activity was measured using fluorometric 

caspase 3/7 assay. n=4, **** p<0.0001, *** p<0.0005, 2 way ANOVA with Bonferroni’s post 

test.  
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3.2.6 The induction of apoptosis by Streptococcus pneumoniae is reduced in U1 

compared with U937 cells after a prolonged, eight day differentiation period.  

THP-1 cells differentiated for as long as eight days and have been shown to have many of the 

characteristics of MDM and work well as a macrophage model for S. pneumoniae challenge 

experiments (Daigneault, Preston et al. 2010; Bewley, Pham et al. 2011). To reflect this 

prolonged protocol, U937 and U1 cells were treated with 100nM PMA for 3 days and rested in 

fresh media for a further 5 days (PMA 3r5), and then challenged with S. pneumoniae or mock-

infected. Wells were washed and fixed at 16 and 20 hours after bacterial challenge. Apoptosis 

was measured by observation for typical changes in nuclear morphology. Hypodiploid peak 

analysis was not used as these more differentiated macrophages are not so easily detached by 

scraping without significant damage to the cells (data not shown). By 20 hours post S. 

pneumoniae challenge a similar proportion of U937 and U1 (31.6% vs. 28.8%, ns, n=4) 

remained adherent to the glass cover slips. However, there was a significant increase in the 

proportion of apoptotic nuclei for U937 at 53.7%±14.5 (p=0.0134), but not U1 at 24.2%±11.4 

when compared to 20 hours mock-infection (ns, n=4). Overall, U1 showed a reduced induction 

of apoptosis when compared to U937 at 20 hours post challenge with S. pneumoniae 

(difference in induction = 29.5±13.2%, p=0.0442, 2 way ANOVA with Fisher’s post test)(Figure 

3-8). 

3.2.7 Infection of monocyte-derived macrophages with HIV-1 

To investigate the effect of HIV-1 on the behaviour of primary macrophages, monocyte-

derived macrophages (MDM) were infected with HIV-1BAL, a CCR5 / macrophage tropic strain 

of HIV-1 (HIV-1 MDM). HIV-1 infection of the MDM was confirmed by detection of intracellular 

p24 using mouse anti-HIV-1 gag (p24) monoclonal antibody and a goat anti-mouse Ig Ab 

conjugated to β-galactosidase. Positively staining cells were counted microscopically to 

calculate the proportion of infected cells. MDM were also inoculated with sham virus 

(supernatant from macrophage cultures that had been identically treated to those used for 
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HIV-1 propagation except for the exclusion of an HIV-1BAL infection step), to serve as controls 

for both the S. pneumoniae challenge experiments and the HIV-1 p24 assays (control MDM). 

Successful infection was defined as the presence of at least 5 blue, p24 positive cells from the 

HIV-1BAL inoculated well, when the paired negative control well had zero blue cells (Figure 3-9, 

upper panel). For certain HIV-1 infections of MDM, a goat anti-mouse - Alexa488 conjugated 

secondary antibody was used instead of the β-galactosidase conjugated antibody (Figure 3-9, 

lower panel). As an additional indicator of successful HIV-1 infection the cells were inspected 

for the presence of mulitnucelated giant cells (the combination of 2 or more macrophages). A 

giant cell was only counted as a single p24 positive cell when calculating the proportion of 

infected cells. In total MDM from 69 different donors were used, of which 7 (10.1%) failed to 

show any evidence of HIV-1 infection. The proportion of cells infected with HIV-1 varied 

considerably across donors and followed a bimodal distribution (see Figure 3-10). 16 (23.2%) of 

the donors had 100% infection rates with this protocol.    

3.2.8 HIV-1 infection of MDM is not associated with altered phagocytosis of 

Streptococcus pneumoniae. 

To compare early bacterial internalization and killing between HIV-1 MDM and control MDM, 

at 4 hours post infection viable internalized bacteria were extracted and counted using a 

gentamicin protection assay.  There was no difference in the recovered viable count between 

HIV-1 and control MDM (17168±2658 vs. 17789±4572 CFU/mL, n=27), even though there was 

marked inter-donor / inter experimental variability in the number of bacteria recovered with 

yields ranging from 167 to 140000 cfu/mL (Figure 3-11). When a subset of  donor MDM with at 

least 80% HIV-1 positive cells were compared with their matched controls, there was still no 

difference in viable counts (2028±715.5 vs. 2194±711.6 CFU/mL, n=6).  
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Figure 3-8 After a prolonged, 8 day differentiation protocol U1 demonstrate less induction of 

apoptosis than U937 following exposure to Streptococcus pneumoniae. 

U937 and U1 cells were treated with 100nM PMA for 3 days then rested for 5 days before 

being challenged with S. pneumoniae or mock-infected. Apoptosis was measured by nuclear 

morphology at 20 hours. n=4,  *p<0.05, 2 way ANOVA with Fisher’s post test. 
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Figure 3-9 Photomicrographs of sham and HIV-1 treated MDM. 

MDM were inoculated with sham treatment (left) or HIV-1BAL (right) overnight and then media 

replaced and incubated for 7 days. Cells were washed, permeabilised and fixed and wells then 

incubated with anti-p24. A β-galactosidase conjugated secondary antibody was used to show 

p24 containing cells as blue (top panels, 200 x magnification, black scale bar 100µm). 

Alternatively, cells were incubated with an Alexa488 conjugated secondary antibody and 

examined by confocal fluorescence microscopy (bottom panel, p24 positive cells show as 

green, red scale bar  100μm). 
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Figure 3-10 HIV-1 infection of monocyte-derived macrophages is variable and donor 

dependent 

MDM were inoculated with HIV-1BAL or sham virus overnight then incubated for 7 days. Cells 

were washed, permeabilised and fixed in wells then treated with anti-p24 and a β-

galactosidase secondary in the presence of 5-bromo-4-chloro-3-indolyl—galactopyranoside 

(Xgal). The rate of p24 positive (HIV-1-infected) cells was calculated as the number of blue 

cells/total number of cells. Numbers on the x axis refer to the centre of the bin on the 

histogram.  
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Figure 3-11 HIV-1 infection is not associated with any alteration in internalisation of 

Streptococcus pneumoniae at 4 hours 

7 days after inoculation with HIV-1 or sham-infection (Control), monocyte-derived 

macrophages (MDM) were challenged with S. pneumoniae (D39). After four hours viable 

internalized bacteria were counted using a gentamicin protection assay. n=26, p=0.36, 

Wilcoxon matched-pairs signed rank test. Data show median with IQR (box) and range 

(whiskers) CFU = colony forming units. 
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3.2.9 HIV-1 infection of MDM is associated with altered induction of apoptosis 

Healthy donor MDM were either infected with HIV-1BAL (HIV-1 MDM) or sham-infected (control 

MDM) for 7 days and then challenged with S. pneumoniae or mock-infected. 20 hours 

following challenge significantly fewer HIV-1 MDM (20.86±4.2%) had morphological changes of 

apoptosis compared with control MDM (34.07±5.8%, n=14, p=0.0023 by Wilcoxon matched-

pairs signed rank test) (Figure 3-12). By contrast, more apoptosis was seen in the 20 hour 

mock-infected HIV-1 MDM (3.25±0.51%) than control MDM (2.25±0.46%, p<0.05 )(Figure 

3-12). When the difference in apoptosis between 20 hour mock-infected and D39 challenged 

MDM was compared, the induction of apoptosis was significantly smaller in HIV-1 MDM 

(+15.64 ±4.1%) than control MDM (+31.57±5.6%, n=14, p=0. 0.001 Wilcoxon matched-pairs 

signed rank test). For 4 donors, additional experiments were performed to determine the level 

of apoptosis at 16 hours and 20 hours. These demonstrated that significant divergence in S. 

pneumoniae associated apoptosis between HIV-1 MDM and control MDM occurred between 

16 and 20 hours (p=0.0301, 2 way ANOVA with Bonferroni’s posttest)(Figure 3-13).  
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Figure 3-12 HIV-1 infection is associated with reduced induction of apoptosis by MDM after 

Streptococcus pneumoniae challenge. 

Monocyte-derived macrophages (MDM) were challenged with HIV-1BAL (HIV) or sham-infected 

(Control) for 7 days and then challenged with S. pneumoniae (D39) or mock-infection (MI). At 

20 hours fixed cells were stained with DAPI and examined for nuclear morphological changes 

of apoptosis. n=14, *p<0.05, **p<0.005 Wilcoxon matched-pairs signed rank test.  

  



143 
 

%
 a

p
o

p
to

s
is

1 6 2 0

0

1 0

2 0

3 0

4 0

5 0

C o n tro l M I

H IV  M I

C o n tro l D 3 9

H IV  D 3 9

*
*
*

 

Figure 3-13 HIV-1 infection is associated with reduced induction of MDM apoptosis between 

16 and 20 hours following Streptococcus pneumoniae challenge. 

Monocyte-derived macrophages (MDM) were challenged with HIV-1BAL (HIV) or sham-infected 

(Control) for 7 days and then challenged with S. pneumoniae (D39) or mock-infection (MI). At 

16 and 20 hours fixed cells were stained with DAPI and examined for nuclear morphological 

changes of apoptosis. n=4, ** p<0.005, * p<0.05, 2 way ANOVA with Bonferroni’s posttest.  
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3.2.10 HIV-1 infection is associated with reduced induction of caspase 3/7 activity 

following Streptococcus pneumoniae infection. 

Healthy donor MDM were either infected with HIV-1BAL (HIV-1 MDM) or sham-infected (control 

MDM) for 7 days and then challenged with S. pneumoniae  (D39) or mock-infected. Caspase 

3/7 activity was measured at 16 hour post infection. To normalize for variability in the cell 

numbers between donors results were normalised for numbers of cells and fold induction in 

caspase 3/7 activity from mock-infection to S. pneumoniae challenge was calculated for each 

donor’s paired MDM. The fold increase in caspase 3/7 activity was significantly smaller in HIV-

1-infected MDM (1.64 fold ±0.14) than control (2.16 fold ± 0.27, n=11, p=0.0386, Wilcoxon 

matched-pairs signed rank test) (Figure 3-14). 

3.2.11 HIV-1 infection of MDM is associated with reductions in late bacterial killing 

Bacterial killing at 20 hours post infection was compared between HIV-1 MDM and control 

MDM. At 4 hours post bacterial challenge cells were incubated with gentamicin for 30 minutes 

to kill extracellular bacteria then incubated in fresh medium in the presence of vancomycin 

until 20 hours when and the number of viable intracellular bacteria was measured. At 20 

hours, greater numbers of viable pneumococci were recovered from HIV-1 MDM (1299 ±563.2 

cfumL-1) than control MDM (467.9 ±238.9 cfumL-1, n=25, p=0.0017, Wilcoxon matched-pairs 

signed rank test)(Figure 3-15).   
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Figure 3-14 HIV-1 infection is associated with reduced induction of caspase 3/7 activity by 

MDM following Streptococcus pneumoniae challenge. 

Monocyte-derived macrophages (MDM) were challenged with HIV-1BAL (HIV) or sham-infected 

(Control) for 7 days and then challenged with S. pneumoniae or mock-infection. At 16 hours 

post infection with S. pneumoniae caspase 3/7 activity was measured using a luciferase based 

assay. Caspase 3/7 activity is expressed as fold change from mock-infection. n=11, *p<0.05, 

Wilcoxon matched-pairs signed rank test. 
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Figure 3-15 HIV-1 infection is associated with reduced killing of internalised Streptococcus 

pneumoniae in MDM at 20 hours post infection. 

Monocyte-derived macrophages (MDM) were challenged with HIV-1BAL (HIV) or sham-infected 

(Control) for 7 days and then challenged with S. pneumoniae or mock-infection. The numbers 

of viable intracellular S. pneumoniae in MDM were measured at 4 hours after bacterial 

challenge using a gentamicin protection assay and at 20 hours after bacterial challenge in 

cultures incubated from 4-20 hours in the presence of vancomycin. cfu colony forming units, 

n=25 ** p<0.01, Wilcoxon matched-pairs signed rank test. Data show mean and standard error 

of the mean. 4 hour data are from the same experiments as shown in Figure 3-11 
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3.3 Discussion 

In this chapter I have demonstrated that challenge with serotype 2 S. pneumoniae is associated 

with apoptotic cell death in differentiated U937 and U1 cells. I confirmed that PMA was able to 

induce both cell lines to differentiate in a broadly similar fashion towards a macrophage-like 

phenotype, with increases in size, autofluorescence and granularity , which are surrogate 

measures of the increased numbers of mitochondria and lysosomes that are seen when 

macrophages differentiate (Daigneault, Preston et al. 2010). Apoptosis-associated DNA 

fragmentation was demonstrated using the hypodiploid peak assay which identifies cells 

containing less than the diploid compliment of DNA. Nuclear fragmentation, the classical 

morphological feature of apoptosis, was seen using fluorescence microscopy. Caspase 3/7 

activity, a critical component of the S. pneumoniae associated apoptosis programme in 

macrophages, also increased following exposure to S. pneumoniae. These findings are 

consistent with those described in differentiated THP-1 cells following S. pneumoniae infection 

(Bewley, Marriott et al. 2011).  

For each of these measures, the S. pneumoniae associated apoptosis was significantly less in 

U1 than U937 cells, implying that the HIV-1 infection of U1 cells reduces the apoptotic 

response to S. pneumoniae. This finding is consistent with work showing reduced U1 apoptosis 

compared with U937 in other settings (Pinti, Biswas et al. 2003; Patel, Zhu et al. 2007; 

Fernandez Larrosa, Croci et al. 2008). However, the experiments in these other studies had 

used U1 and U937 cells that had been allowed to differentiate for no more than 48 hours. I 

have shown that the HIV-associated effect on apoptosis was consistent whether cells were 

studied after 4, 5 or 8 days of differentiation with 50-100nM PMA and resting, therefore 

demonstrating they were also a feature of a more differentiated macrophage phenotype. 

Although the degree to which a monocytic cell has differentiated toward a macrophage 

phenotype will affect the magnitude of the apoptotic response to S.pneumoniae (Ali, Lee et al. 
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2003), and I cannot absolutely exclude the possibility of subtle differences in the 

differentiation of U1 and U937 cells, I found that for cells with a broadly similar level of 

differentiation there was an association between HIV-1 infection and resistance to apoptosis 

during S. pneumoniae infection. 

The use of the U937 / U1 cell lines has the advantage that they are easily cultured, the U1 cell 

line is already infected with inducible HIV, preventing the need for more complex in vitro 

infection protocols, and being clonal the cell lines behave with uniformity. Additionally they 

have been widely used to study the effect of HIV-1 on monocytes/macrophages. However, as 

models of HIV-1 infection of macrophages they present a number of deficiencies. Originally 

derived from the pleural effusion of a man with hystiocytic lymphoma, U937 are promonocytic 

cells, less differentiated than the monocytic cell lines THP-1, and express RNA for the c-myc 

oncogene (reviewed in (Cassol, Alfano et al. 2006). They are also subject to potential clonal 

variability. Thus, even with PMA treatment they will not share all of the characteristics of 

differentiated tissue macrophages and represent at best a partially differentiated macrophage 

phenotype. The nature of HIV-1 infection of U1 is also different from that in macrophages. The 

U1 were obtained from U937 cells acutely infected with the X4 HIV-1LAI/IIIB strain, which is not a 

macrophage tropic strain in vivo. Furthermore, they require PMA stimulation to produce TNFα 

in order to up-regulate their HIV-1 expression, which is otherwise latent due to a defective Tat 

interaction with the trans-activating response element (TAR) of HIV-1 RNA, and may support 

only low levels of HIV-1 replication (Cassol, Alfano et al. 2006).  For these reasons, I established 

a second model of HIV-1 infection of macrophages by differentiating primary human 

monocytes into macrophages and then infecting them with a macrophage tropic strain of HIV-

1, HIV-1BAL. Although it is possible to achieve high levels of uniform and productive MDM 

infection by HIV-1 (Tsang, Chain et al. 2009), I was able to achieve a range of infection rates by 

using a smaller virus inoculum, to reflect the fact that only a proportion of tissue macrophages 

are HIV-1-infected in vivo. However, there was considerable donor variability in the rate of 
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HIV-1 infection and it was difficult to accurately count the rate of p24 antigen positive cells due 

to multinucleated giant cell formation among HIV-1-infected cells, both recognized 

consequences of MDM infection with HIV-1 (Novak, Holzer et al. 1990).   

I have shown that S. pneumoniae infection is associated with MDM apoptosis as previously 

described (Dockrell, Lee et al. 2001; Ali, Lee et al. 2003). While at 4 hours following infection 

the phagocytosis and killing of S. pneumoniae by MDM was not affected, HIV-1 infection was 

associated with a significantly smaller degree of apoptosis induction; both the induction of 

caspase 3/7 activity at 16 hours and the number of cells with morphological features of 

apoptosis at 20 hours were lower.  These findings are consistent with those from the U937 and 

U1 cell lines. I have also demonstrated that at 20 hours following S. pneumoniae infection the 

HIV-1-infected MDM are more likely to contain viable bacteria, and at higher rates, even 

though at four hours the balance of phagocytosis and killing is no different. This implies an 

HIV-1 associated impairment in MDM killing of S. pneumoniae after the initial phase of 

phagolysosomal killing. This is the same period when reduced apoptosis was observed. When 

macrophage apoptosis is prevented by inhibiting caspase activation, similar impairments in 

pneumococcal killing are observed (Dockrell, Marriott et al. 2003) .  

These experiments and their interpretation are subject to some limitations. Firstly, S. 

pneumoniae serotype 2 (D39) was used as it is a well characterized laboratory isolate. This 

serotype is less commonly associated with invasive pneumococcal disease (IPD) or carriage in 

HIV-1-seropositive individuals and may be less relevant to clinical disease (Rodriguez-Barradas, 

Tharapel et al. 1997). However, S. pneumoniae associated apoptosis in macrophages is also 

observed with other serotypes known to cause IPD, such as type 1 and type 4 (Dockrell, Lee et 

al. 2001; Daigneault, De Silva et al. 2012) making it unlikely that the HIV-1 associated effects 

demonstrated are limited to this strain.  A second limitation is that some assays of apoptosis 

could not be used with HIV-1-infected macrophages. All cell culture work with HIV-1 is carried 
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out in a containment level three laboratory (CL3) and material must be fixed in 

paraformaldehyde before removal from the CL3, limiting the use of assays that require unfixed 

cells. It therefore proved not possible to measure lysosomal membrane permeabilisation, 

dissipation of the inner mitochondrial transmembrane potential (ΔΨm) and the cell surface 

expression of phosphatidylserine using flowcytometry based techniques to describe stages in 

the S. pneumoniae associated apoptotic cascade preceding nuclear fragmentation (Bewley, 

Marriott et al. 2011).  Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) 

was used to corroborate the nuclear morphological changes of apoptosis seen with DAPI in 

MDM. However, when MDM S. pneumoniae infections were performed in the CL3 

laboratories, with and without HIV-1 infection, and subsequently fixed and transferred to 

standard laboratories, the performance of the TUNEL assay was very inconsistent and it was 

not possible to use this additional assay of apoptosis. One additional, albeit indirect, assay of 

apoptosis that would be unlikely to be influenced by the constraints of the CL3 working 

conditions is the measurement of cytochrome c translocation. As a consequence of changes in 

mitochondrial  outer membrane permeability cytochrome c is released into the cytosol, a 

change that can be measured by SDS page and western blot of separated cytosolic and 

mitochondrial compartments of the cell (Bewley, Marriott et al. 2011).  

In conclusion, the results of these experiments suggest that there is an HIV-1 associated 

reduction in macrophage apoptosis following S. pneumoniae challenge which is linked to 

impaired clearance of viable S. pneumoniae by HIV-1-infected macrophages.  

  



151 
 

4 Chapter 4. HIV-1 infection is associated with persistent 

alterations in bronchoalveolar fluid T lymphocytes and 

alveolar macrophage phenotype despite antiretroviral 

therapy 

4.1 Introduction 

The evidence from cell lines and primary monocyte-derived macrophages (MDM) presented so 

far demonstrates that HIV-1infection is associated with a defect in the macrophage’s host-

mediated apoptotic response following challenge with S.pneumoniae, which is associated with 

reduced killing of internalized bacteria.  

To investigate whether this defect is pertinent to the increased risk of invasive pneumococcal 

disease (IPD) in those living with HIV-1 infection it is essential to establish whether these 

observations reflect the responses of differentiated macrophages from HIV-1-seropositive 

individuals, when challenged with S. pneumoniae ex vivo. As it is necessary to use live and 

virulent S. pneumoniae in these experiments, in vivo work with human volunteers is not safe or 

possible. The closest animal models to HIV-1infection in humans are either primates, such as 

SIV infected rhesus macaques, or ‘humanized mice’, mice that have been reconstituted with a 

human immune system then infected with HIV-1 (Hatziioannou and Evans 2012). These 

animals could be used in experiments to model pulmonary S. pneumoniae infection as has 

been done elsewhere without HIV-1 (Marriott, Hellewell et al. 2006). However, these animal 

HIV models are beyond the technical and financial constraints of this PhD.  One option is to 

work with differentiated primary tissue macrophages from human volunteers ex vivo. An 

accessible source of differentiated macrophages which is particularly relevant to 

pneumococcal disease is the pool of alveolar macrophages (AM) in the lung. These can be 

retrieved and isolated using fibre optic bronchoscopy with no harm to the individual. The 

advantage of working with ex vivo AM is that they will have differentiated over a longer time 

period, with exposure to virus and in an environment that is not well replicated by the in vitro 

models; AM are very long lived, differentiated cells. Their maturation is influenced by their 
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local environment and they may derive from either peripheral blood monocytes or interstitial 

macrophages depending on inflammation (Jenkins, Ruckerl et al. 2011; Dockrell, Collini et al. 

2012). By comparison, the promonocytic U1 and U937 cells and MDM have been differentiated 

in isolation and for no more than 8 or 21 days respectively. HIV-1 virus exposure is likely to be 

very different given the clinical observation that the increased risk of IPD in HIV-1-seropositive 

individuals pertains even when they have been treated with antiretroviral therapy (ART) for 

prolonged periods and have undetectable plasma viral loads (Jordano, Falco et al. 2004; Grau, 

Ardanuy et al. 2009). If the alveolar environment has similarly low or undetectable levels of 

HIV-1 then the AM’s exposure to the virus will have been substantially different from the in 

vitro models where anywhere up to 100% of the cells will be infected with replication 

competent virus. Additional to this point, macrophages in the in vitro models are responding 

to a new, acute infection with a laboratory propagated virus while any viral exposure for the 

AM will have been more prolonged and with a strain adapted to that host. The third important 

difference is that the alveolar microenvironment is not replicated in vitro; AM are in contact 

with other cells, principally T lymphocytes and epithelial cells and they are also exposed to 

soluble factors such as cytokines and chemokines. Each of these may be altered in HIV-1-

seropositive individuals, who have detectable levels of free HIV-1 proteins such as gp120 in the 

lung microenvironment (Klasse and Moore 2004).  The alveolar microenvironment can 

influence the differentiation and activation/polarisation phenotype of the AM, as shown for 

example in smokers (Shaykhiev, Krause et al. 2009) and thus could be relevant to any observed 

differences in apoptotic responses.  

For these reasons human alveolar macrophages were studied soon after retrieval from the 

lungs by bronchoalveolar lavage (BAL) from HIV-1-seropositive individuals and HIV-

seronegative, matched controls.  Another advantage of this approach was that it enabled 

additional analyses of the BAL fluid to describe the alveolar microenvironment. The cellular 

constituents of the BAL fluid from each volunteer were analysed and the AM separated for 
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characterisation of their phenotype and response to ex vivo S. pneumoniae challenge, 48 hours 

after isolation. Volunteers were recruited to allow comparison between HIV-1-seropositive 

individuals on protease inhibitor (PI) based or non nucleoside reverse transcriptase inhibitor 

(NNRTI) based ART or naive to ART treatment and HIV-seronegative controls.  
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4.2 Results 

4.2.1 Patient demographics 

Ethical approval for BAL of HIV-1-seropositive and control volunteers had been granted 

volunteer to review of the cell line and primary MDM model data presented in the previous 

chapter. These data were reviewed by a data review committee in June 2012 which consisted 

senior academics from the University of Sheffield medical school who were independent of 

this study. They considered that the in vitro model results justified further work involving 

clinical volunteers. Recruitment commenced in July 2012 and BAL were performed between 

July 2012 and September 2013.  Over 500 sets of notes from the STH HIV clinics were screened 

for inclusion criteria and 20% of these patients were approached regarding the study. In total, 

31 individuals were recruited and 29 individuals underwent BAL (Table 4-1). 22 HIV-1-

seropositive individuals attended a full screening appointment and 19 went on to have BAL. 

With agreement from the ethics committee each volunteer was paid £150 for their 

participation. One volunteer declined to take part, one failed screening as he was subsequently 

discovered to be a smoker and a third failed as her forced expiratory volume in 1 second 

(FEV1) was <70%.  11 HIV-seronegative control volunteers were recruited, screened and 

enrolled in parallel to match the age, sex and ethnicity of the HIV-1-seropositive volunteers. 

No control volunteer screened positive for HIV, hepatitis B virus (HBV) or hepatitis C virus 

(HCV). 10 of these went on to have BAL. No control volunteers failed screening but one 

declined BAL following successful screening. Only 3 of a planned 7 ART naïve HIV-1-

seropositive (ART naïve) volunteers were recruited, due in most part to the small number of 

such individuals attending clinic who were not already involved in other clinical trials. 

Additional volunteers were recruited to the HIV-1-seropositive on ART (HIV ART) and control 

arms to increase numbers after some assays had failed to achieve a result for technical 

reasons. There were no statistically significant differences detected between HIV ART and 

control donors for their age (unpaired t-test), sex and ethnicity (Fischer’s exact test). Following 
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bronchoscopy three HIV-1-seropositive volunteers were excluded from further analyses. One 

(white female, age 38) was found to have a suspicious endobronchial lesion during the 

bronchoscopy and subsequently diagnosed as having immune reconstitution inflammatory 

syndrome (IRIS) due to pulmonary tuberculosis. One (black male, age 52) was seen to have 

multiple black inclusion bodies within the isolated alveolar macrophages which, although he 

was a never smoker, were similar in appearance to those seen in smokers’ AM. A third (white 

male, age 39) had been in receipt of both NNRTI and PI based ART. 

All but 6 volunteers tolerated the instillation of the maximum 200 mL of saline. The median 

volume returned was 96 mL (48%) and 6.8 x 106 alveolar macrophages per volunteer. When 

compared by donor group, there were no differences in the volume returned or yield of 

alveolar macrophages (Figure 4-1).   

4.2.2 Alveolar macrophages from a minority HIV-1-seropositive volunteers on 

fully suppressive ART are infected with HIV-1  

The alveolar macrophages from 11 HIV ART and 2 ART naïve donors were tested for the 

presence of HIV-1 p24 antigen detected by immunohistochemistry with anti p24 and a β-

galactosidase conjugated secondary antibody. 3 of 11 (27%) HIV ART donors had detectable 

p24 in 1.1%, 4.3% and 51.6% of the AM (Figure 4-2). Both of the 2 ART naïve donors tested had 

detectable p24 in 7.6% and 21.3% of their AM.  
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HIV ART ART Naive Control 

N 16 3 10 

male (%) 9 (56%) 3 (100%) 7 (70%) 

age (years) 
  

  

median (IQR) 40.3 (37.5-49.0) 46.2 (38.7 - 47.0) 40.4 (34.2 - 46.8) 

mean  42.7 41.7 41.7 

ethnicity   
 

  

White 10 (62.5%) 3 (100%) 8 (80%) 

Black 5 (31.3%) 0 2 (20%) 

other 1 (6.2%) 0 0 

ART type 
  

  

NNRTI 8 - - 

PI 7 - - 

Mixed 1 - - 

Naive - 3 - 

duration of ART (weeks)  
  

  

(median, IQR) 325 (207 - 454) - - 

range 65 -884 - - 

mean 373 - - 

log10 VL (median, range) all undetectable 4.39 (4.22 - 4.61) - 

 CD4 
  

  

 (median, IQR) 633.5 (500.3 - 730.0) 500 (495 -762.5) - 

range 257.0 - 1112.0  490 – 1025 - 

CD4% (median, IQR) 30.5 (27.8 - 35.8) 31 (30.0 - 31.5) - 

range 11.0 - 39.0 29.0 - 32.0 - 

Nadir CD4 (median, IQR) 211.0 (130.5 - 200.6) - - 

CD8 (median, IQR) 831.5 (635.3-1104.8) 760 (747.5 - 1160) - 

range 400.0 - 1501.0  735 – 1560 - 

CD8% (median, IQR) 40.0 (34.8 - 47.0) 46 (45.0 - 47.0) - 

range 27.0 - 56.0  44.0 - 48.0 - 

CD4:CD8 (median, IQR) 0.81 (0.62 - 0.98) 0.66 (0.66 - 0.66) - 

range 0.24 - 1.31 0.66-0.67 - 

Interval between BAL and blood test (days) 
  

Median (IQR) 24 (17.5 – 44) 26 (25 – 46) - 

    
 

Table 4-1 Volunteers undergoing bronchoalveolar lavage 

Peripheral blood results were recorded from clinic notes at the visit closest to the BAL (14 

prior, 5 after). ART = antiretroviral therapy, VL = plasma viral load, BAL = bronchoalveolar 

lavage, IQR inter-quartile range. 
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Figure 4-1 Alveolar macrophage yields from BAL 
 

Bronchoalveolar lavage (BAL) fluid was collected from HIV-1-seropositive volunteers and 

controls, and cells filtered and resuspended in growth medium. Alveolar macrophages were 

identified by their morphology and counted with a haemocytometer at 100 times 

magnification. Data show as median ± IQR and range of live alveolar macrophages per mL of 

BAL fluid. 

 

Figure 4-2 Representative photomicrograph showing alveolar macrophages from an HIV-1 

seropositive donor on fully suppressive ART staining positive for p24 

Bronchoalveolar lavage fluid was collected from HIV-1-seropositive volunteers and controls, 

filtered and cells resuspended in growth medium. After 48 hours adherent alveolar 

macrophages (AM) were washed, permeabilised and fixed and then incubated with anti-p24 

antibody and a β-galactosidase conjugated secondary antibody. Bright-field microscopy at x 

400 magnification. AM with p24 stain as blue (black arrow) without are clear (white arrow), 

scale bar 50 µm.    
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4.2.3 HIV-1-seropositive individuals have a greater proportion of lymphocytes in 

their BAL fluid than HIV-seronegative controls. 

Immediately following bronchoscopy, bronchoalveolar cells were isolated from BAL fluid by 

centrifugation and resuspended in 10 mL medium. 100 µL of this cell suspension was diluted 

with 20% heat inactivated foetal calf serum (HIFCS) and fixed in 0.5% PFA and added to a 

cytospin chamber, centrifuged, fixed with methanol and stained with Diff-Quik™. A differential 

white cell count was performed at 100 times magnification using bright field microscopy. 

Results were available for 24 of the 29 individuals that underwent bronchoscopy: 2 control 

donors’ cell cytospins failed to adhere to the slide and 3 HIV-1-seropositive cases were 

excluded after bronchoscopy as above. The age and sex and ethnicity of these 3 groups 

remained similar despite these exclusions. Epithelial cells and erythrocytes were excluded 

from cell counts. For all donors the predominant leukocytes were alveolar macrophages (≥ 

65%), followed by lymphocytes and then neutrophils (≤ 2.5%). Only 2 of 25 donors (both HIV 

ART) had any eosinophils identified so these were not included in the counts. The HIV ART 

group had significantly greater proportions of lymphocytes (12.91±2.07%, n=13) than control 

volunteers (7.66±1.27%, n=9, p=0.0313 Mann Whitney test)(Figure 4-3 A). ART naïve donors 

had even higher proportions of lymphocytes (21.06±6.03%, n=3). When all three groups were 

compared there was a significant association between HIV-1 with and without ART and BAL 

lymphocytosis (p=0.0348, Kruskal-Wallis test)(Figure 4-3 B). The proportion of alveolar 

macrophages was correspondingly lower for both HIV ART (86.24±2.05%) and ART naïve 

donors (78.19±5.99%) than controls (91.14±1.39%). There were no differences in the 

proportions of neutrophils across the groups, which were measured as 0.75±0.17%, 

0.79±0.40% and 1.32±0.27% respectively.  
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Figure 4-3 Bronchoalveolar lavage fluid lymphocyte proportions are elevated in HIV-1-

seropositive volunteers. 

Bronchoalveolar (BAL) fluid was collected from HIV-1-seropositive volunteers and controls by 

bronchoalveolar lavage. Cells were centrifuged in a cytospin chamber and slides fixed and 

stained with Diff-Quik™ for differential white cell count measurement. (A) Leukocytes from 13 

HIV-1 ART treated (HIV ART) and 9 control donors expressed as percentage of total BAL 

leukocytes (eosinophils not shown) *p <0.05 Mann Whitney test. (B) Lymphocytes from 9 

control, 13 HIV ART and 3 HIV ART naive donors (HIV naive) expressed as percentage of total 

BAL leukocytes, Kruskal-Wallis test. Data shown as median with IQR and range.   
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4.2.4 The HIV-1 associated BAL lymphocytosis is predominantly from CD8+ T cells. 

The HIV-1 associated BAL lymphocytosis became apparent after the first 5 volunteers had been 

studied. To further characterize the nature of the lymphocytes, subset analyses were 

performed on subsequent donors’ BAL. Following overnight culture in plastic tissue culture 

plates, medium was removed and centrifuged for 10 minutes at 400 g to isolate non-adherent 

cells. These were washed and stained with fluorophore conjugated antibodies against CD3, 

CD4, CD8 (or isotype control) to identify CD3+/ CD4+ and CD3+/ CD8+ T lymphocyte subsets by 

flowcytometry. Dead cells were identified with a viability dye and excluded from analysis. A 

further group of larger, CD3- / CD4+ cells were identified as non adherent alveolar macrophages 

and also excluded from analysis. Complete data were available for 6 control and 11 HIV ART 

volunteers. There were no significant differences between these groups with respect to age, 

sex and ethnicity. Compared with controls, HIV ART donor BAL contained a significantly smaller 

percentage of CD4+ T cells (46.53±3.68% vs. 70.05±3.95%, p=0.0006, Mann Whitney) but 

significantly more CD8+ T cells (45.01±3.88% vs. 22.33±4.01%, p=0.0031, Mann Whitney) 

(Figure 4-4). This alteration in the relative proportions of CD4+ and CD8+ T lymphocytes in HIV 

ART volunteers was also reflected in a much reduced BAL lymphocyte CD4:CD8 ratio 

(1.16±0.15 vs. 3.79±0.76, p=0.0019, Mann Whitney)(Figure 4-5). To determine if the greater 

proportion of CD8+ T cells might contain greater numbers of activated lymphocytes, the cells 

were also incubated with fluorescein isothiocyanate (FITC) conjugated anti-CD38 or isotype 

control.  Enhanced CD38 expression on CD8 cells is well described characteristic of immune 

activation associated with untreated HIV (Barry, Johnson et al. 2003). The geometric mean 

fluorescence intensity (MFI) of FITC was compared to isotype control to calculate a geometric 

mean fluorescence intensity ratio (GMR) for each donor. CD38 was only weakly expressed and 

no difference in GMR was seen between 9 HIV ART and 5 control volunteers (1.275±0.12 vs. 

1.324±0.30, ns, Mann Whitney). In addition, it was not possible to consistently identify a 
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distinct CD38+ or CD38bright population in the event plots and histograms of the CD3+ 

/CD8+subset that was different for HIV ART compared with control donors (Figure 4-6). 
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Figure 4-4 There are fewer CD4+ and more CD8+ T-cells in the bronchoalveolar lavage fluid of 

HIV-1-seropositive individuals on fully suppressive antiretroviral therapy 

BAL fluid was collected from HIV-1-seropositive volunteers on ART (HIV ART) and controls by 

bronchoalveolar lavage. At 24 hours cells were labelled with fluorophore conjugated 

antibodies against CD3, CD4 and CD8 and analysed by flow cytometry. (A) Representative 

event plots showing the CD3+ lymphocyte gate with CD4 (APC, y axis) against CD8 (Brilliant 

violet, x axis) for HIV ART (left) and control (right) donor BAL. (B) median ± IQR and range 

CD3+/CD4+/CD8- (CD4) and CD3+/CD4-/CD8+ (CD8) cells expressed as a percentage of CD3+ BAL 

cells for 6 control and 11 HIV ART donors *** p<0.001, **p<0.005, Mann Whitney test.  
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Figure 4-5 The BAL T lymphocyte CD4:CD8 ratio is reduced in HIV-1-seropositive individuals 

on fully suppressive antiretroviral therapy . 

BAL fluid was collected from 11 HIV-1-seropositive volunteers on ART (HIV ART) and 6 controls 

by bronchoalveolar lavage. At 24 hours cells were labelled with fluorophore conjugated 

antibodies against CD3, CD4 and CD8 and analysed by flow cytometry. CD3+/CD4+/CD8- (CD4) 

and CD3+/CD4-/CD8+ (CD8) are expressed as a ratio ** p<0.01, Mann Whitney Data shown as 

median ± IQR and range. 

  



164 
 

 

G
M

R
 C

D
3

8
 F

IT
C

0 .5

1 .0

1 .5

2 .0

H IV  A R TC o n tro l

%
 F

IT
C

 b
r
ig

h
t 

e
v

e
n

ts

0

2

4

6

8

1 0

H IV  A R TC o n tro l

E F

 

Figure 4-6 There is similar low level expression of CD38 on CD8 T lymphocyte from BAL of 

HIV-1-seropositive individuals on fully suppressive antiretroviral therapy and controls  

BAL fluid was collected from 9 HIV-1-seropositive volunteers on ART (HIV ART) and 5 controls 

by bronchoalveolar lavage. At 24 hours cells were labelled with fluorophore conjugated 

antibodies against CD3, CD4 and CD8 and CD38 then analysed by flow cytometry. Geometric 

mean fluorescence intensity of FITC (CD38) expression was measured in the CD3+/CD4-/CD8+ 

subset (blue) and compared with isotype control (red). Representative event plots and 

histograms for control (A, C) and HIV ART (B,D). The ratio of intensity of FITC fluorescence 

between isotype and stained cells was calculated (GMR, E). CD38bright cells were identified as 

events to the right of histograms (F). FSC-A forward scatter - area. 
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4.2.5 Alterations in T lymphocyte subset proportions in the lung are distinct from 

those in the peripheral blood of HIV-1-seropositive individuals 

 For the HIV-1-seropositive donors, BAL lymphocyte counts were compared with peripheral 

blood lymphocyte subsets, treatment history and age.  Peripheral blood lymphocyte counts 

were not collected for the control subjects.   There was a non significant trend for a positive 

correlation between the peripheral blood CD4% and nadir CD4 count as well as a negative 

correlation between duration of ART and peripheral blood CD8%. When the peripheral blood 

CD4 and CD8 T-cell subsets were compared with those recovered from the BAL, no correlation 

was found between blood and BAL CD4% (r=0.29, p=0.34), CD8% (r=0.27 p=0.37) or CD4:CD8 

ratio (r= 0.11 p=0.72, n=13, Pearson’s correlation)(Figure 4-7). 

4.2.6 Alveolar macrophage cell surface expression of polarisation markers is 

similar in HIV-1-seropositive individuals and controls 

The polarisation status of alveolar macrophages was studied. BAL cells were cultured overnight 

before the adherent AM were isolated and incubated with fluorophore conjugated anti-CD206, 

CD80, CD163 and CD200r or isotype control and then measuring surface expression of these 

proteins by flowcytometry. AM were studied after overnight resting rather than immediately 

following BAL in keeping with established protocols with HIV-1 seropositive donors (Gordon, 

Molyneux et al. 2001; Gordon, Jarman et al. 2005) and as the extraction procedure may 

transiently cause a pro- inflammatory phenotype in AM (Tomlinson, Booth et al. 2012). The 

geometric mean fluorescence intensity was measured for each antibody and compared with 

isotype control as the geometric mean ratio (GMR). CD206 was strongly expressed on all AM 

from both groups. CD80 and CD163 were moderately expressed but CD200r expression was no 

different from isotype control. HIV ART donors’ AM showed no significant differences in the 

GMR of any of the four surface proteins (Figure 4-8).    
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Figure 4-7 T lymphocyte subsets and ratios in the blood and bronchoalveolar lavage fluid of 

HIV-1-seropositive individuals on fully suppressive antiretroviral therapy show no 

association 

CD3+/CD4+/CD8- and CD3+/CD4-/CD8+ lymphocyte subsets were measured by flow cytometry in 

the BAL fluid of 13 HIV-1-seropositive individuals on fully suppressive antiretroviral therapy 

within 24 hours of bronchoscopy and compared with paired peripheral blood CD4+ and CD8+ 

lymphocyte percentages.   
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Figure 4-8 Cell surface expression of polarisation markers on AM from HIV-1-seropositive 

individuals on fully suppressive antiretroviral therapy is similar to controls 

AM were extracted from BAL fluid of 11 HIV-1-seropositive volunteers on ART (HIV ART) and 6 

controls. After 24 hours the expression of cell surface markers associated with macrophage 

polarisation was measured by flow cytometry. Data shown are median ± IQR and range of the 

ratio of geometric mean intensity of antibody to isotype control (GMR) for each of CD206, 

CD80, CD163 and CD200r. 

  



168 
 

4.2.7 Alveolar macrophages from HIV-1-seropositive and seronegative individuals 

exhibit similar rates of Streptococcus pneumoniae phagocytosis. 

48 hours after BAL and isolation AM were challenged with opsonised serotype 2 S. 

pneumoniae (D39) at an MOI of  10. To compare bacterial internalization and early killing 

between AM from HIV ART and control donors, at 4 hours post infection viable internalized 

bacteria were extracted and counted using a gentamicin protection assay.  To correct for 

variation in the density of AM between donors at the start of each infection, the CFU/mL was 

adjusted according to the average number of AM per high power field (x 1000 magnification) 

on a coverslip from an uninfected well for each donor. Of the eligible volunteers who 

underwent BAL, not all donors yielded sufficient AM from the BAL and in some cases the assay 

failed (4 control and 1 HIV-1ART), leaving only 5 control ( 3 male, 3 white) and 13 HIV ART (8 

male 9 white) donor AM available for full analysis. The ages of two groups were not different 

(p=0.43, Man Whitney). There was no difference in the number of viable internalized S. 

pneumoniae at four hours between HIV ART and control donors (p=0.9958, Mann Whitney) 

(Figure 4-9).    
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Figure 4-9 Rates of Streptococcus pneumoniae phagocytosis by alveolar macrophages from 

HIV-1-seropositive on fully suppressive antiretroviral therapy and control volunteers are 

similar 4 hours after bacterial challenge. 

48 hours after BAL, AM from 13 HIV-1 seropositive individuals on ART (HIV ART) and 5 controls 

were challenged with S. pneumoniae for four hours. Viable internalized bacteria were counted 

using a gentamicin protection assay. the density of cells on an uninfected coverslip was 

counted and the measured CFU normalized for cell numbers (*cfu/mL). Data are shown as 

median with IQR and range. 
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4.2.8 Alveolar macrophages from HIV-1-seropositive individuals on ART undergo 

less apoptosis than those from control individuals following challenge with 

Streptococcus pneumoniae. 

48 hours following BAL AM were challenged with S. pneumoniae at an MOI of 10 or mock-

infected for 20 hours. Adherent cells were then washed, fixed in PFA, stained with DAPI and 

examined by fluorescence microscopy. Compared with mock-infection, S. pneumoniae 

challenge was associated with a significant reduction in the number of cells remaining 

adherent to coverslips for control (from 20.1± 3.4 to 10.9±3.4 cells/HPF, n=7, p=0.0313 

Wilcoxon matched-pairs signed rank test) but not for HIV ART donors (from 25.4±3.4 to 

22.0±4.4 cells/HPF, n=14, ns). When compared together with 2 way ANOVA there was a 

significant interaction for S. pneumoniae for control alone (Figure 4-10).  

When fluorescence microscopy was used to count the number of cells with condensed or 

fragmented nuclei 20 hours after challenge with S. pneumoniae a smaller proportion of  AM 

from HIV ART donors had undergone apoptosis (11.92±3.09%, n=14) than from control 

(29.83±5.8, n=7, p=0.031 Wilcoxon matched-pairs signed rank test). Conversely, AM from HIV 

ART donors exposed to 20 hours of mock-infection exhibited greater levels of apoptosis than 

controls (0.36±0.11% vs. 0.05±0.03%, p=0.018 Mann Whitney), although absolute levels 

remained low for both. Consequently, the S. pneumoniae related induction of apoptosis (the 

difference between mock-infection and S. pneumoniae) was smaller in the HIV ART donor AM 

(11.57±3.1) compared with control AM (27.75 ±6.9%, p=0.022, Mann Whitney). When 

compared together, HIV was associated with a significant reduction in  S.pneumoniae 

associated apoptosis, p<0.001, 2 way ANOVA (Figure 4-11).  
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Figure 4-10 There is significant loss of AM from control donors but not HIV-1-seropositive 

volunteers on fully suppressive ART 20 hours following challenge with Streptococcus 

pneumoniae. 

Alveolar macrophages were isolated from BAL fluid of 14 HIV-1-seropositive individuals on ART 

(HIV ART) and 7 controls then rested for 48 hours before being challenged with S. pneumoniae 

(D39) or mock-infected. After 20 hours cells were fixed and stained with DAPI and the number 

of adherent cells per high power field (HPF) were counted microscopically. * p<0.05, ns = non 

significant, 2 way ANOVA with Bonferroni’s post test. 
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Figure 4-11 AM from HIV-1-seropositive volunteers on fully suppressive ART show reduced 

levels of apoptosis following Streptococcus pneumoniae challenge when compared with AM 

from controls. 

Alveolar macrophages were isolated from BAL fluid of 14 HIV-1-seropositive individuals on ART 

(HIV ART) and 7 controls then rested for 48 hours before being challenged with S. pneumoniae 

(D39) or mock-infected (MI). After 20 hours cells were fixed and stained with DAPI and 

examined microscopically for nuclear morphological changes of apoptosis. **** p<0.0001, 

***p<0.001, **p<0.01 2 way ANOVA with Bonferroni’s post test.   
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4.2.9 The induction of caspase 3/7 activity by Streptococcus pneumoniae infection 

is reduced in AM from HIV-1-seropositive volunteers on fully suppressive 

ART compared to controls 

AM caspase 3/7 activity was measured at 16 hours following S. pneumoniae challenge or 

mock-infection in the two groups. To normalize for variability in the cell numbers between 

donors the fold induction in caspase 3/7 activity between mock-infected and S. pneumoniae 

exposed AM was calculated. The fold increase in caspase 3/7 activity was significantly smaller 

in AM from the 11 HIV ART donors (1.76±0.17) than 5 controls (4.8±1.91, p=0.0483 Mann 

Whitney)(Figure 4-12) 

4.2.10 Killing of internalised Streptococcus pneumoniae may be reduced in AM from 

HIV-1-seropositive volunteers on fully suppressive ART at 20 hours post 

challenge. 

48 hours after BAL AM were challenged with S. pneumoniae at an MOI of 10. To compare 

bacterial killing at 20 hours after challenge between AM from HIV-1ART and control donors a 

modified gentamicin protection assay was used.  The CFU/mL was adjusted to correct for 

variation in AM density at the start of infection as before (see Alveolar macrophages from HIV-

1-seropositive and seronegative individuals exhibit similar rates of Streptococcus pneumoniae 

phagocytosis.4.2.7). The same donors were available as for the 4 hour internalization assay 

(see 4.2.7) except for 1 from each group where the 20 hour assay failed to give an 

interpretable result. Although only 1 of 4 control AM failed to kill all bacteria by 20 hours, 

viable bacteria survived in 5 of 12 HIV ART AM. This difference was not statistically significant 

(Fischer’s exact test). The average yield of viable bacteria was also greater for HIV ART than 

control AM at 20 hours (25.2±10.8 vs. 9.7±9.7 adjusted CFU/mL) but this difference was not 

statistically significant (Mann Whitney)(Figure 4-13).    
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Figure 4-12 AM from HIV-1-seropositive volunteers on fully suppressive ART demonstrate 

less induction of caspase 3/7 activity following Streptococcus pneumoniae challenge. 

Alveolar macrophages were isolated from BAL fluid of 11 HIV-1-seropositive on ART (HIV ART) 

and 5 control volunteers then rested for 48 hours before being challenged with S. pneumoniae 

or mock-infected. At 16 hours caspase 3/7 activity was measured by a luminogenic assay. 

Induction of caspase 3/7 activity is presented as the fold change from mock infection. * p<0.05 

Mann Whitney test. 
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Figure 4-13 There was a non significant trend for greater bacterial survival in AM from HIV-1-

seropositive volunteers on fully suppressive ART compared with controls  after 20 hours of 

Streptococcus pneumoniae challenge.  

48 hours post BAL, AM from 12 HIV-1-seropositive volunteers on ART (HIV ART) and 5 controls 

were challenged with S. pneumoniae for 20 hours. Viable internalized bacteria were counted 

using a modified gentamicin protection assay. *cfu/mL = colony forming units per mL 

normalised to cell count. 
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4.3 Discussion 

These experiments demonstrate that AM from HIV-1-seropositive donors on ART are less likely 

to undergo apoptotic cell death in response to challenge with S. pneumoniae. Both the 

induction of caspase 3/7 activity, a key event in the apoptotic pathway during the macrophage 

response to S. pneumoniae (Dockrell, Lee et al. 2001; Bewley, Marriott et al. 2011), and the 

proportion of cells showing nuclear chromatin condensation and nuclear fragmentation were 

at lower levels. The relative survival of HIV ART AM was reflected in the smaller reduction in 

cell loss overall during bacterial challenge.  

As the induction of macrophage apoptosis by S. pneumoniae requires internalization and killing 

of the bacteria (Dockrell, Lee et al. 2001; Ali, Lee et al. 2003) it is important that in these 

experiments no difference in the early phagocytosis and killing of S. pneumoniae was detected 

in the AM from HIV ART and control donors. This implies that the observed difference in 

proportions of apoptosis is the result of an HIV-1 related alteration in the apoptosis 

programme rather than simply a consequence of different levels of initial phagocytosis and 

early killing. These results are consistent with the literature, as discussed in chapter 1, that 

demonstrates no defect in macrophage phagocytosis and early killing of S. pneumoniae in HIV-

1 infection (Gordon, Molyneux et al. 2001).  There was a trend towards an increased frequency 

and number of bacteria surviving through to 20 hours after pneumococcal challenge in the AM 

of the HIV-1-seropositive donors, suggesting a defect in late bacterial killing that could be 

related to the relative failure of apoptosis. However, the difference did not reach statistical 

significance. This may be due to insufficient power resulting from the small number of donors 

used and the variability of the modified gentamicin protection assay. These results are 

consistent with those from the models of HIV-1 infected macrophages described in the 

previous chapter.  With HIV-1 infection, primary monocyte-derived macrophages (MDM) and 

cell lines have been demonstrated to produce similarly altered apoptotic responses to ex vivo 
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alveolar macrophages with exposure to agents including Mycobacterium tuberculosis, TLR 

ligands, staurosporine and cadmium chloride (Patel, Zhu et al. 2007; Nicol, Mathys et al. 2008; 

Giri, Nebozyhn et al. 2009; Kalsdorf, Scriba et al. 2009). 

As discussed already, the MDM and U1 models may not adequately represent the polarisation 

or activation status of tissue macrophages in human HIV-1 seropositive volunteers as exposure 

to virus and the specific microenvironment are different. Levels of HIV-1 infection were lower 

in HIV-1 donor AM than in U1 cells, and while most HIV-1BAL inoculated MDM cultures had 

some level of productive infection only a minority of donors who were receiving antiretrovirals 

had detectable intracellular HIV-1 p24, suggesting that the remainder of donor AM were either 

not productively infected or not infected with HIV-1 at all. Despite the fact that donors on 

antiretrovirals were receiving suppressive levels of antiretroviral therapy it is noteworthy that 

as many as 3 of 11 ART treated HIV-1-seropositive donors had detectable HIV-1 p24. Although 

these volunteers had undetectable peripheral blood viral loads before and after BAL, because 

they were not tested on the same day as the bronchoscopy, the possibility of a brief plasma 

viral load elevation (blip) at this time cannot be excluded. However, it would seem more likely 

that the results suggest many donors may have on-going viral replication in the lung. Although 

alveolar macrophages from untreated HIV-1-seropositive individuals are known to be infected 

with HIV-1 (Chayt, Harper et al. 1986; Jeffrey, Israel-Biet et al. 1991; Jambo, Banda et al. 2014), 

detectable virus is thought to be lost from the bronchoalveolar compartment with ART, in 

parallel to reductions seen in the peripheral blood (Twigg, Weiden et al. 2008; Twigg, 

Schnizlein-Bick et al. 2010). It is not clear how frequently and at what rates AM from HIV-1-

seropositive individuals established on ART are infected with HIV.    

To determine whether the cellular environment of the alveolar macrophage may be altered in 

the HIV-1-seropositive volunteers a differential white cell count from the BAL was compared 

with control donors. For the 3 ART naïve donors the average lymphocyte count was higher 
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than controls. This finding is consistent with the well described lymphocytic alveolitis 

associated with untreated HIV-1 infection (Guillon, Autran et al. 1988; Twigg, Soliman et al. 

1999). Importantly, the differential BAL leukocyte count in the controls in this study is similar 

to that described elsewhere in healthy populations (De Brauwer, Jacobs et al. 2002; Heron, 

Grutters et al. 2012). However, an unexpected finding was that a BAL lymphocytosis persisted 

in the ART treated group of HIV-1-seropositive volunteers (HIV ART), albeit at a lower level. 

This was despite the fact that these volunteers had been on treatment for many years, all had 

undetectable HIV-1 viral loads and had reconstituted the CD4 count in their peripheral blood 

to normal or near normal range. Only one previous study has reported on the fate of the BAL 

lymphocyte count with ART (Twigg, Weiden et al. 2008). This compared the same group of 

volunteers before and up to 24 weeks following the initiation of ART and demonstrated that 

on average the BAL lymphocyte counts reduced towards a level similar to that of control 

volunteers. However, when smokers, who typically have low BAL lymphocyte counts (Heron, 

Grutters et al. 2012),  are removed from this analysis, the average BAL lymphocyte count at 24 

weeks remains elevated at 22% (Twigg, Weiden et al. 2008).  My data extends on these 

findings by studying a group with a much longer duration of ART. 

Further subtype analysis of the BAL lymphocytosis demonstrated that the HIV-1-seropositive 

volunteers had a predominance of CD8+ T cells in their BAL, and a reduced CD4:CD8 ratio. HIV-

1 infection is known to be associated with both a peripheral blood and pulmonary CD8+ T cell 

expansion relative to the CD4+ T cell subset which also results in a reduced or reversed 

CD4:CD8 ratio in both compartments (Agostini, Poletti et al. 1988; Twigg, Soliman et al. 1999; 

Robbins, Spritzler et al. 2009).  With prolonged ART the peripheral blood CD8 T cell level 

reduces, but for most cases it does not return back to the level seen in HIV-seronegative 

individuals (Robbins, Spritzler et al. 2009; Ronsholt, Ullum et al. 2012; Emu, Moretto et al. 

2014). Only a single study has reported the fate of the CD8 lymphocytosis in the lung with ART 

and has shown that it is a fall in the CD8+ lymphocytes that exclusively contributes to the 
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reduction in overall lymphocyte counts (Twigg, Weiden et al. 2008). The present work was not 

designed to assess the actual numbers of CD8+ and CD4+ T cells in the BAL, as no correction for 

the dilution of BAL fluid was possible. Thus it is not possible to definitively determine if the 

difference in the ratio represents a surfeit of CD8+ T cells rather than a loss of CD4+ T cells (or 

both) in the lungs of these HIV-1-seropositive volunteers.  However, from haemocytometer 

counts of BAL cells and estimates of percentages it appears that for the HIV ART donors there 

was approximately a three-fold increase in numbers of CD8+ T cells with only a modest 

reduction in CD4+ T cells.  

Despite the persistence of a CD8+ T cell lymphocytosis in the HIV ART donor group, no evidence 

was found of any increase in expression of CD38 either in general or in a subpopulation of the 

CD8 cells of HIV ART donors compared with controls. CD8+ T cells from the lungs and blood of 

untreated HIV-1 seropositive individuals have higher levels of CD38 expression compared with 

HIV-seronegative individuals and these also correlate with viral load and the immune 

activation of HIV (Barry, Johnson et al. 2003). In addition other states of increased immune 

activation such as the tuberculosis immune reconstitution syndrome (TB IRIS) that can follow 

ART initiation in those with TB and HIV-1 co-infection are associated with transient increases in 

CD38 expressing CD8+  T cells (Espinosa, Romero-Rodriguez et al. 2013). CD38 is expressed on 

activated T cells and signalling induces secretion of IL-6, IFN-γ and granulocyte-macrophage 

colony-stimulating factor (GM-CSF)(Ausiello, la Sala et al. 1996) whereas it is not found on 

resting memory cells (Savarino, Bottarel et al. 2000). With antiretroviral treatment the 

proportion of CD38+ CD8+ T cells in the blood is known to decline (Tilling, Kinloch et al. 2002; 

Landay, da Silva et al. 2007) but changes in the lung compartment have not been studied.  It is 

therefore possible that the low level expression of CD38 on CD8+ T cells from the BAL in this 

study is a consequence of the suppressive ART and the fact that these volunteers all had no 

active lung disease.  However, it may also be the case that the reconstitution of normal 

immune cells in lung compartment of HIV-1 seropositive individuals with ART does not exactly 
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mirror the changes in the blood. That no found no correlation between BAL and blood T cells 

was observed in these donors may reflect that the bronchoalveolar space is a compartment in 

which T cell responses to HIV-1 are distinct from those of the blood, as has been described by 

others  (Twigg, Spain et al. 1999).  An important question that cannot be answered here is that 

if not activated CD8+ T cells, what subtype or subtypes of CD8+ T cell are contributing to excess 

numbers that have been observed.  

The activation status of the macrophages was directly measured using four cell surface 

markers known to be altered in their expression in different polarisation states. As discussed in 

chapter 1, a fundamental property of macrophages is that they are plastic, responding to local 

and exogenous stimuli. They can become differentially activated or polarized and exhibit 

phenotypes on a spectrum from highly inflammatory to tissue repair (Mosser and Edwards 

2008). In one classification macrophages have been labelled as M0, M1 and M2a,b,c each 

being  associated with different gene transcription programmes which lead to altered cytokine 

production and cell surface protein expression (Mantovani, Sica et al. 2004).  For example, 

priming of MDM with IFN-γ, and LPS or TNFα induces the cell to become more inflammatory or 

M1 and upregulate cell surface CD80 and CD86. Alternatively treatment with IL-4 increases 

expression of CD206 and induces the M2a phenotype (Ambarus, Krausz et al. 2012). Alveolar 

macrophages show similar patterns of polarisation and altered polarisation has been detected 

in those who smoke or have chronic obstructive pulmonary disease (COPD) (Shaykhiev, Krause 

et al. 2009). In this study, no significant differences in the expression of CD80, CD163, CD200r 

or CD206 were found between HIV-1and control volunteers. AM from viraemic, untreated HIV-

1-seropositive volunteers were found by one group to express 10 of 35 genes associated with 

classical activation ≥2 fold greater than AM from seronegative controls (Gordon, Jagoe et al. 

2013) but there are no reports for AM from virus suppressed ART treated patients.  The lack of 

a detectable difference in this study may be because there is no difference in the activation 

status of AM in HIV-1-seropositive volunteers once established on treatment, particularly 
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when they have no recent history of any pulmonary disease or infection. Alternatively, as the 

activation of macrophages is a dynamic process it is possible intrinsic differences in 

polarisation could be lost with the isolation and culture process (Agostini, Zambello et al. 1999; 

Tomlinson, Booth et al. 2012) and a refinement would be to repeat these studies both 

immediately post BAL and following overnight culture. However, it is quite likely that this 

limited range of markers was insufficiently sensitive at detecting changes in macrophage 

polarisation and analysis of a broader range of markers is required. Numerous markers can be 

differentially expressed by macrophages depending on their polarisation status (Shaykhiev, 

Krause et al. 2009; Cassol, Cassetta et al. 2010; Ambarus, Krausz et al. 2012). Thus the lack of 

any difference expression of CD206, CD80 CD163 and CD200r in these experiments does not 

completely exclude the possibility that HIV-1 infection is associated with an effect on AM 

polarisation.  

In conclusion, findings in this chapter support those from chapter 3 of this thesis that HIV-1 

inhibits macrophage apoptosis following exposure to pneumococci. These findings are 

discussed in more depth in my concluding chapter. Overall there are persistent changes in the 

cellular environment of the lung despite longstanding suppressive ART. In particular I found 

sustained increases in CD8+ T cells and evidence that at least in some donors there was on-

going HIV-1 replication in some AM. Although these differences did not alter AM polarisation, 

as assessed in my preliminary screen, phagocytosis or early bacterial killing they were 

associated with defects in AM apoptosis and potentially with delayed bacterial killing. 
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5 Chapter 5. Investigating the mechanism of HIV-1 associated 

changes in the apoptotic response of macrophages to 

Streptococcus pneumoniae 

5.1 Introduction 
 

The experimental data presented in the previous chapters demonstrate a change in the 

apoptotic behaviour of macrophages in the context of HIV-1 infection. HIV-1 alters diverse 

cellular functions and, as discussed in chapter 1, can alter transcription (Vazquez, Greenwell-

Wild et al. 2005), intracellular signal transduction (Giri, Nebozyhn et al. 2009) and surface 

receptor expression (Zhu, Shi et al. 2011), each being associated with the regulation of 

apoptosis in macrophages. Thus a number of potential mechanisms could underlie the 

observations so far presented. In choosing candidates for further investigation, a key 

consideration is whether the effect is mediated directly within HIV-1 infected macrophages or 

indirectly on bystander cells. While in the U1 macrophage model there is universal HIV-1 

infection, available evidence shows that fewer than 0.1% of alveolar macrophages (AM) from 

HIV-1-seropositive individuals are productively infected (Chayt, Harper et al. 1986; Lewin, 

Kirihara et al. 1998). In this study HIV-1 was only detected in the AM of 3 out of 11 donors 

receiving antiretroviral therapy who were tested, and in the monocyte-derived macrophage 

(MDM) HIVBAL infection model infection rates ranged from <1% to 100%. The size of the HIV-1 

associated difference in the induction of apoptosis in these latter two models cannot be 

explained by altered behaviour of the directly HIV-1 infected macrophages alone.  

In this chapter I set out to investigate whether the observed effects are likely to be the 

consequence of direct HIV-1 infection or an alternative indirect effect on uninfected 

macrophages. I have studied the HIV-1 env gene product gp120 as a candidate indirect 

mediator. Given the central role of Mcl-1 as a regulator of mitochondrial outer membrane 

permeabilisation and macrophage survival I also look at Mcl-1 expression in the HIV-1 MDM 

model. I next investigate the role of superoxide, a  reactive oxygen species generated in the 
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mitochondria, which has been linked to both HIV-1 (Lassiter, Fan et al. 2009) (Vilhardt, Plastre 

et al. 2002) and mitochondrial stress responses including apoptosis (Madesh and Hajnoczky 

2001; Ricci, Pastukh et al. 2008). Finally I have addressed whether there may be other features 

of the alveolar environment which are associated with the altered apoptosis, including the 

antiretroviral therapy compounds the alveolar macrophages of the donors are exposed to in 

vivo.  
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5.2 Results 

5.2.1 There is no association between the level of MDM HIV-1 infection and 

Streptococcus pneumoniae associated apoptosis 

The relationship between HIV-1 infection of human MDM and the cells’ apoptotic response to 

S. pneumoniae was examined. The proportions of MDM staining positive for p24 were 

calculated to give a percentage of infected cells for each donor HIV-1 preparation. The 

increment in macrophage apoptosis between mock-infection and serotype 2 S. pneumoniae 

(D39) exposure for 20 hours was then determined as a function of the level of HIV-infection in 

the culture. The calculation was based not on the increment in apoptosis in the HIV-infected 

cultures alone but on the value obtained when the value in the HIV-infected culture was 

subtracted from the sham-infected culture to correct for any variability in rates of apoptosis 

between donors. It was calculated as [(sham-infected MDM D39 apoptosis – MI apoptosis) – 

(HIV-1 MDM D39 apoptosis – MI apoptosis)]. Across a full range of HIV-1 infection levels (<1% 

to 100%) there was no correlation between the direct HIV-infection of MDM and induction of 

apoptosis, n-13, r=0.13, p=0.66, Pearson’s correlation (Figure 5-1). 

5.2.2 Exposure to HIV-1 gp120 is not associated with any altered early 

phagocytosis of Streptococcus pneumoniae by MDM.  

In view of the lack of a relationship between direct infection of macrophages with HIV-1 and 

levels of apoptosis I reasoned that release of an HIV-1 protein might be responsible for the 

observed reduction in apoptosis through effects on uninfected bystander cells. Since gp120 is 

easily shed from the HIV-1 virion (Oh, Cruikshank et al. 1992; Klasse and Moore 2004) and can 

mediate effects on uninfected macrophages (Conti, Fantuzzi et al. 2004), I first examined 

whether it was sufficient to inhibit apoptosis. 

14 day old MDM were treated with recombinant gp120 at concentrations of 10 ngmL-1 or 100 

ngmL-1 from 1 hour prior to and then during exposure to S. pneumoniae. After 4 hours viable 
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internalized bacteria were extracted using a gentamicin protection assay and counted. There 

was no significant difference in the number of internalized viable S. pneumoniae between the 

conditions (Kruskal-Wallis)(Figure 5-2). 
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Figure 5-1 The level of direct MDM infection with HIV-1 does not correlate with the 

difference in level of induction of apoptosis following Streptococcus pneumoniae challenge. 

HIV-1 or sham-infected monocyte-derived macrophages (MDM) were challenged with S. 

pneumoniae or mock-infected.  Apoptosis was measured at 20 hours by counting the 

percentage of 4',6-diamidino-2-phenylindole (DAPI) stained cells with nuclear fragmentation. 

The difference in induction of apoptosis in S. pneumoniae challenged as compared to mock-

infected MDM was compared between sham-infected and HIV-1 infected MDM. Data show the 

correlation between the difference in induction of apoptosis for each donor’s paired MDM (y 

axis) against the observed rate of HIV-1 infection (x axis).   
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Figure 5-2 Rates of viable internalised Streptococcus pneumoniae in MDM four hours after 

infection are similar irrespective of gp120 exposure 

Monocyte-derived macrophages (MDM) were challenged with S. pneumoniae for four hours in 

the presence of gp120 at 10 ngmL-1 or 100 ngmL-1 and medium alone (control). Viable 

internalized bacteria were counted using a gentamicin protection assay. Data are shown as 

median, IQR and range, n ≥ 5, cfu colony forming units and compared with Kruskal-Wallis.  
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5.2.3 Exposure to HIV-1 gp120 reduces the degree of apoptosis in MDM following 

Streptococcus  pneumoniae challenge.  

14 day old MDM were treated with gp120 at concentrations of 10 ngmL-1 or 100 ngmL-1 from 1 

hour prior to and for 20 hours S. pneumoniae challenge or mock-infection. Recombinant gp120 

from a baculovirus expression system was used to avoid any potential contamination of the 

cultures with lipopolysaccharide (LPS) from bacterial systems. Adherent cells were then 

washed, fixed in paraformaldehyde (PFA), stained with 4',6-diamidino-2-phenylindole (DAPI) 

and examined by fluorescence microscopy for morphological changes of apoptosis. There was 

no difference in the rate of apoptosis following mock-infection between gp120 10 ngmL-1 

treated MDM (3.6±0.7%) and control (2.4±0.6%). 20 hours post infection the number of 

apoptotic cells was smaller in gp120 10 ngmL-1 exposed MDM (19.2±5.4%) than control 

(36.2±7.4%), resulting in a significant difference in S. pneumoniae associated apoptosis (n=7, 

p=0.0313 Wilcoxon matched pairs signed rank test). When compared together the same patter 

of significance was seen using 2 way ANOVA (Figure 5-3 A and B). The same pattern was 

observed when MDM were exposed to gp120 at 100 ngmL-1; after 20 hours mock-infection 

gp120 and control MDM showed similar low rates of apoptosis (1.1±0.3% vs. 0.9±0.3%), but 

there was a significantly lower level of apoptosis counted after S. pneumoniae infection in 

gp120 than control (18.2±3.6% vs. 34.0±4.2%, n=6, p=0.0313 Wilcoxon matched pairs signed 

rank test), which represented a significantly smaller S. pneumoniae associated induction of 

MDM apoptosis with gp120 exposure (Figure 5-3 C and D).  
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Figure 5-3 gp120 exposure reduces the induction of MDM apoptosis following Streptococcus 

pneumoniae challenge. 

Monocyte-derived macrophages (MDM) were treated with medium alone (control) or gp120 

10 ngmL-1 (A+B) or 100 ngmL-1 (C+D) then challenged with S. pneumoniae (D39) or mock-

infection. At 20 hours cells were fixed and stained with DAPI to measure nuclear morphological 

changes of apoptosis (A,C) and the increment in apoptosis from mock-infection to 20 hours 

post bacterial challenge (B,D). n = 6-7, * p<0.05, Wilcoxon matched pairs signed rank test. 

**p<0.01, ***p<0.001, ****p<0.0001, 2 way ANOVA with Bonferroni’s post test. 
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5.2.4 Exposure to HIV-1 gp120 reduces the degree of Streptococcus pneumoniae 

associated caspase 3/7 activation in MDM.  

To measure caspase 3/7 activity, 14 day old MDM were exposed to gp120 10 ngmL-1 or 

medium alone for one hour before and during challenge with S. pneumoniae or mock-

infection. After 16 hours cells were lysed and caspase 3/7 measured using a fluorescent assay. 

The protein concentration was also quantified in each lysate as a measure of cell density and 

fluorescence readings were adjusted accordingly to normalize for variability in the cell 

numbers between donors.  The level of caspase 3/7 activity was significantly smaller in gp120 

exposed MDM after both 16 hours mock-infection (0.7±0.1 vs. 1.1±0.1 RFU, p<0.0156) and S. 

pneumoniae (3.0±0.5 vs. 4.7±0.6 RFU, p<0.0313 Wilcoxon matched-pairs signed rank test) 

challenge compared with control MDM. When compared together with 2 way ANOVA there 

was a significant interaction for gp120 after S.pneumoniae challenge (Figure 5-4). 
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Figure 5-4 gp120 treatment is associated with reductions in MDM caspase 3/7 activity with 

and without Streptococcus pneumoniae challenge. 

Monocyte-derived macrophages (MDM) were treated with medium alone (control) or gp120 

10 ngmL-1 then challenged with S. pneumoniae (D39) or mock-infection. Caspase 3/7 activity 

was measured using a fluorescent assay. Data show relative fluorescent units normalized to 

protein concentration. n=7, * p<0.05, **p<0.01, ****p<0.001 2 way ANOVA with Bonferroni’s  

post test. 
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5.2.5 Exposure to gp120 is associated with increased bacterial survival in MDM at 

20 hours post Streptococcus pneumoniae challenge, despite similar levels of 

early killing 

14 day old MDM were again exposed to gp120 10 ngmL-1, gp120 100 ngmL-1 or medium alone 

(control) for one hour and during challenge with S. pneumoniae. Using a modified gentamicin 

protection assay viable internalized bacteria were measured at 4 and 6 hours, as measures of 

early phagocytosis and killing and at 20 hours after infection and compared with those 

counted at four hours. Similar reductions in the number of viable bacteria were seen between 

four and six hours for all conditions (mean difference 1.07, 1.26 and 1.31 log10 cfumL-1 for 

gp120 10 ngmL-1, gp120 100 ngmL-1 and control respectively). At 20 hours post infection the 

number of viable bacteria in control and gp120 10 ngmL-1 exposed MDM had continued to fall. 

However, this was not seen in MDM that had been treated with the higher concentration of 

100 ngmL-1 gp120; there was a significant difference between the viable counts in gp120 100 

ngmL-1 (2.87± log10 cfumL-1) vs. control MDM (0.83±0.83 log10 cfumL-1, p=0.0403, Mann 

Whitney) at 20 hours post infection (Figure 5-5).  These data suggest that while initial killing of 

S. pneumoniae by MDM is not affected by exposure to gp120, gp120 at 100 ngmL-1 results in a 

reduction of later phase killing of internalized S. pneumoniae by MDM. 
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Figure 5-5 Exposure to gp120 is associated with reduction in late phase killing of 

Streptococcus pneumoniae by MDM. 

Monocyte-derived macrophages (MDM) were treated with medium alone or gp120 10 ngmL-1 

or 100 ngmL-1 then challenged with S. pneumoniae (D39). At the indicated time points viable 

intracellular bacteria were counted using a modified gentamicin protection assay. n=5-10, * 

p<0.05, gp120 100ngmL-1 vs. control at 20 hours Mann Whitney test. 4 hour data are those 

shown also in Figure 5-2.  
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5.2.6 HIV-1 infection of MDM is associated with persistent expression of Mcl-1 

during Streptococcus pneumoniae challenge 

These observations that gp120 reduces S. pneumoniae associated macrophage apoptosis are in 

keeping with the findings of Swingler et al. that gp120 protects macrophages from the 

apoptotic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) (Swingler, 

Mann et al. 2007). This group also reported that the anti-apoptotic effect of gp120 was 

associated with up regulation of the anti-apoptotic B cell lymphoma (Bcl)-2 family member 

Mcl-1. Given that dynamic expression of Mcl-1 plays a key role regulating macrophage 

apoptosis following S. pneumoniae challenge, I next questioned whether HIV-1 infection 

modified the expression of Mcl-1 (Marriott, Bingle et al. 2005). HIV-1 and sham infected MDM 

were challenged with S. pneumoniae or mock-infected as before. After 20 hours cells were 

lysed and the expression of Mcl-1 was measured in MDM by western blot. To give a semi 

quantitative estimate of any change in the levels of Mcl-1 expression the blots from 5 separate 

experiments were analysed using densitometry. The ratio of the density of the Mcl-1 bands to 

the loading controls were calculated and compared with the sham virus treated (control), 

mock-infected result. As expected, Mcl-1 was expressed in the control macrophages but the 

level fell significantly following challenge with S. pneumoniae (p = 0.0293, 2 way ANOVA with 

Fisher’s post test). Mcl-1 expression was similar in HIV-1 infected MDM after mock-infection 

but there was no reduction following S. pneumoniae challenge (Figure 5-6).   
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Figure 5-6 HIV-1 infection is associated with persisting expression of Mcl-1 in MDM at 20 

hours following Streptococcus pneumoniae challenge. 

Monocyte-derived macrophages (MDM) were infected with HIV-1 or sham infected (sham) for 

7 days and then challenged with serotype 2 S. pneumoniae (D39) or mock-infected (MI). Cells 

were lysed and Mcl-1 expression measured by western blot. (A) Representative western blot 

(B) densitometry bar chart. Data shown as fold change in band density compared with mock-

infected, sham MDM after adjustment for any fold change in actin. n= 5 * p < 0.05, 2 way 

ANOVA with Fisher’s post test 

 

  



196 
 

5.2.7 Mitochondrial superoxide is increased by HIV-1 and by Streptococcus 

pneumoniae challenge 

Mitochondrial superoxide contributes to intracellular bacterial killing (West, Brodsky et al. 

2011) and its release is enhanced during induction of apoptosis (Ricci, Pastukh et al. 2008). As 

HIV-1 has also been linked with alteration in both reactive oxygen species and antioxidants I 

therefore investigated whether S. pneumoniae and HIV-1 infection influenced mitochondrial 

superoxide (O2
-) in macrophages. Generation of mitochondrial O2

- was measured using 

MitoSOX Red™. MDM were differentiated as before and then inoculated with HIV-1BAL (HIV-1 

MDM) or sham infected (control) in 96 well tissues culture plates. They were then challenged 

with S.pneumoniae or mock-infected. Generation of fluorescent signal was detected in unfixed 

cells using a plate reader. Initial experiments at 8, 12 and 16 hours established that changes in 

O2
-  were best detected at 16 hours post S. pneumoniae challenge. To ensure that any 

differences in mitochondrial O2
-  were not due to alteration in the number of mitochondria the 

density of mitochondria was measured on the plate reader using Mitotracker Green FM™, a 

green-fluorescent mitochondrial stain. No difference in the mass of mitochondria was 

detected between MDM irrespective of HIV-1BAL or S. pneumoniae infection (Figure 5-7 A). 

When control MDM were challenged with S. pneumoniae, the level of O2
-  increased (to 

0.09±0.01 RFU, p=0.043, Friedman test with Dunn's post test), consistent with previous results 

from my host group. There were significantly greater levels of mitochondrial O2
-  in HIV-1 MDM 

(0.08±0.01 RFU) than control MDM (0.05±0.01 RFU, p= 0.043, Friedman test with Dunn's post 

test) 16 hours after mock-infection. Of note, however, the level of superoxide in HIV-1 MDM 

did not increase further with S. pneumoniae infection (0.07±0.02 RFU, ns)(Figure 5-7 B). These 

data show that while both HIV-1 infection leads to increased generation of mitochondrial 

superoxide, and HIV-1 MDM are unable to generate an additional increment in mitochondrial 

O2
-  in response to S. pneumoniae. 
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Figure 5-7 In MDM HIV-1 infection and Streptococcus pneumoniae infection are associated 

with elevated mitochondrial superoxide levels without any alteration in mitochondrial 

density. 

(A) Monocyte-derived macrophages (MDM) were mock-infected (MI) or exposed to S. 

pneumoniae (D39) for 20 hours in sham-infected (Control) or HIV-1BAL infected (HIV) MDM and 

then the mitochondrial density measured in MDM using Mitotracker Green™. The RFU define 

was measured on a fluorescence plate reader(B) Production of mitochondrial superoxide was 

also measured by MitoSOX Red™ in parallel wells from the same experiments. n=5, * p<0.05, 

Friedman test with Dunn's post test. Data are shown as median with IQR and range 
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5.2.8 The level of induction of AM apoptosis following  Streptococcus pneumoniae 

challenge shows a relationship to the proportion of CD4+ and CD8+ T cells in 

the bronchoalveolar lavage fluid.   

I next addressed whether the immunological environment and more specifically the persistent 

alterations in pulmonary T-cells also contributed to apoptosis resistance of the AM. To 

investigate whether there was a relationship between the observed differences in S. 

pneumoniae associated AM apoptosis between HIV-1 and control donors and the proportion 

of CD4+ and CD8+ T cells counted in their bronchoalveolar lavage fluid (BAL) fluid these two 

parameters were compared using Pearson correlation.  Paired data were available from 11 

HIV-1-seropositive and 4 controls donors. Positive correlations were seen between both the 

CD4:CD8 ratio (r=0.69, p=0.005) and the CD4% (r=0.59, p=0.024, n=15, Pearson’s correlation) 

in the BAL and the induction of apoptosis (Figure 5-8). There was however, no significant 

association between total lymphocyte % and apoptosis.  

I also analysed whether AM apoptosis had a relationship with more general donor factors that 

can impact on immune responses, namely duration of ART, nadir CD4 count before 

commencement of ART and volunteer age.  No significant correlation was found between any 

of these and the level of AM apoptosis after S. pneumoniae challenge. Additionally, in keeping 

with the lack of any detectable influence of HIV-1 on AM surface polarisation markers, no 

association was found between apoptosis induction and expression of CD80, CD163, CD200r or 

CD206 AM for these subjects. 
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Figure 5-8 Induction of AM apoptosis following Streptococcus pneumoniae challenge 

correlates with the bronchoalveolar lavage CD4:CD8 ratio and CD4%. 

Induction of apoptosis following S. pneumoniae challenge was measured in AM from HIV-1-

seropositive and control donors and compared with (A) the ratio of CD4+:CD8+ CD3+ cells, and 

(B) the proportion of CD3+ /CD4+ T-cells in paired BAL samples. Induction of apoptosis is 

calculated as the % of cells with fragmented nuclei 20 hours after S. pneumoniae challenge 

minus the value from mock-infected cells at 20 hours.  
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5.2.9 Receipt of a non nucleoside reverse transcriptase inhibitor or protease 

inhibitor as a third agent in an ART regimen is not associated with any 

difference in the apoptosis response of AM to Streptococcus pneumoniae 

challenge. 

Antiretroviral protease inhibitors can inhibit apoptosis (Weaver, Tarze et al. 2005; Vlahakis, 

Bennett et al. 2007) and unpublished data from my host group has shown inhibition of alveolar 

macrophage apoptosis in mice during pneumococcal infection (Marriott 2010). I therefore 

explored whether protease inhibitors (PI) influenced the apoptotic responses to S. pneumoniae 

observed in the AM from HIV-1-seropositive donors.  The HIV ART group was divided into 

those in receipt of PI vs. non nucleoside reverse transcriptase inhibitor (NNRTI) based ART. To 

avoid the possibility that past exposure might have an ongoing influence, individuals were 

enrolled who had exclusively received drugs from only one of these classes during their total 

treatment history. Of 12 available HIV-1 donors 7 (4 male, 4 white) had been on NNRTI 

(efavirenz, nevirapine, rilpivirine) and 5 (4 male, 3 white) on PI based HAART (nelfinavir, 

saquinivir, atazanavir, darunavir). The rates of S. pneumoniae associated apoptosis induction 

by AM at 20 hours were 17.09±4.015% for PI donors and 10.36±5.22% for NNRTI donors. While 

both groups demonstrated lower rates of apoptosis than control donors (29.83±5.90%), they 

did not differ significantly from each other (p= 0.20, Mann Whitney, Figure 5-9). In view of the 

relationship between the CD4 % and CD4:CD8 ratio in the BAL and levels of AM apoptosis 

described above I also assessed whether the different ART regimens had an influence on these 

BAL T cell subsets. There was no difference in the CD4 (41.56±7.07% vs. 48.53±5.45%, p=0.32) 

and CD8 (51.26±7.34% vs. 39.78±3.84%, p=0.25, Mann Whitney) T cell populations in BAL fluid 

between the PI and NNRTI groups respectively, although only 5 and 6 donors respectively were 

available for these analyses (Figure 5-10). Taken together these data suggest that the altered 

rates of apoptosis observed in the AM from HIV-1 compared with control donors is unlikely to 

be related to any effect from their antiretroviral drugs. 
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Figure 5-9 Receipt of protease inhibitor or non-nucleoside reverse transcriptase inhibitor 

therapy is not associated with any difference in Streptococcus pneumoniae associated AM 

apoptosis.  

AM isolated from HIV-1-seropositive individuals on fully suppressive ART were mock-infected 

or challenged with S. pneumoniae (D39). At 20 hours fixed cells were stained with 4',6-

diamidino-2-phenylindole (DAPI) and examined for nuclear morphological changes of 

apoptosis. n= 5 protease inhibitor (PI) and n=7 on non nucleoside reverse transcriptor (NNRTI) 

based therapy.  ns = non significant, Mann Whitney test.  
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Figure 5-10 Receipt of protease inhibitor or non-nucleoside reverse transcriptase inhibitor 

therapy is not associated with any difference in the proportions of CD4+ and CD8+ 

lymphocytes in the BAL. 

Bal fluid was collected from 5 protease inhibitor (PI) and 6 non nucleoside reverse 

transcriptase inhibitor (NNRTI) therapy treated HIV-1 seropositive individuals. At 24 hours cells 

were labelled with fluorophore conjugated antibodies against CD3, CD4 and CD8 and analysed 

by flow cytometry. ns = non significant, Mann Whitney test, data shown as median ± IQR and 

range. 

 

 

  



203 
 

5.3 Discussion 

The work described in this chapter addresses the mechanisms and associations of S. 

pneumoniae associated apoptosis in macrophages and its reduction by HIV-1. First I focused on 

whether the HIV-mediated effects were influenced directly or indirectly.  No correlation was 

found between the rate of MDM infection with HIV-1 and the induction of apoptosis following 

bacterial challenge in the MDM model. It follows that, as well as directly infected MDM, 

uninfected macrophages are also being influenced by the effects of HIV-1 in these models. 

Furthermore, it is also unlikely that this effect requires direct contact of uninfected with 

infected cells as demonstrated by the four donors where even though fewer than 10% of MDM 

were infected, making it unlikely they were in contact with many of the uninfected cells, rates 

of apoptosis were nevertheless reduced. A refinement of these experiments would be to label 

p24 antigen containing cells with a fluorescent secondary antibody and then simultaneously 

observe whether apoptosis occurred in p24 expressing MDM, p24 negative MDM or both. 

However, the lack of correlation between HIV-1 infection and apoptosis level and the low 

levels of infection in many cultures despite reduced apoptosis make a direct effect of HIV-1 

less likely. These observations lead to the hypothesis that a soluble factor, released by HIV-1 

infected macrophages mediates an alteration in apoptosis of the uninfected cells.  

HIV-1 proteins, and in particular HIV-1 env gp120, can mediate indirect effects of HIV-1 on 

uninfected macrophages. Free gp120 is detectable in the serum and lung of HIV-1-seropositive 

individuals (Oh, Cruikshank et al. 1992; Klasse and Moore 2004). Purified or recombinant 

gp120 is sufficient to alter the phagocytosis and intracellular killing by macrophages of 

Cryptococcus neoformans and Mycobacterium avium (Wagner, Levitz et al. 1992; Denis and 

Ghadirian 1994) and recombinant gp120 alone mimics the action of replication competent 

HIV-1 in MDM cultures, inducing the secretion of IL-10  and  macrophage inflammatory protein 

1 α (MIP-1α), MIP-1β, RANTES, and tumour necrosis factor alpha (Borghi, Fantuzzi et al. 1995; 
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Choe, Volsky et al. 2001). Furthermore, gp120 is a relevant candidate as it is a modulator of 

apoptotic responses (Herbein, Mahlknecht et al. 1998; Swingler, Mann et al. 2007). I therefore 

investigated whether exposure to the HIV-1 env gene product, gp120 was associated with an 

alteration in MDM apoptosis. I found that 10-100 ngmL-1 of gp120 was not associated with any 

change in the number of viable bacteria contained within MDM at 4 and 6 hours following S. 

pneumoniae exposure. This implies that up to this time, the balance of phagocytosis and killing 

of S. pneumoniae is not affected by gp120, which is in keeping with the lack of any impairment 

of macrophage phagocytosis of pneumococci in HIV-1 infection in general (Gordon, Molyneux 

et al. 2001). However, there was significantly less apoptosis in gp120 exposed MDM following 

challenge with S. pneumoniae, which was further associated with reductions in bacterial killing 

between 6 and 20 hours where MDM were exposed to 100ngmL-1 gp120. In addition, although 

the rate of MDM apoptosis in mock-infected cultures was low, gp120 exposure reduced this 

background rate of apoptosis further. Taken together these results suggest that gp120 affects 

the apoptotic programme of macrophages in a manner that includes, but is not limited to, the 

S. pneumoniae associated apoptotic response in MDM. These results are consistent with the 

evidence that gp120 can reduce apoptosis in macrophages, as discussed in chapter 1 (Swingler, 

Mann et al. 2007). A potential limitation to this interpretation is that the concentration of free 

gp120 in HAART treated HIV-1-seropositive individuals is not well defined.  10 ngmL-1 to 100 

ngmL-1 equates to the concentration of free and antibody bound gp120 detected in the serum 

of HAART naïve individuals (Oh, Cruikshank et al. 1992) but these levels may not be the same 

in other compartments (Klasse and Moore 2004). Further experiments would need to measure 

the level of gp120 in the MDM HIV-1 infection model and use env deficient HIV-1. I would also 

measure the gp120 concentration in the BAL fluid of HIV-1 donors on HAART and establish 

both to what extent the BAL gp120 is bound to immunoglobulin and whether such bound 

gp120 has the same effect on MDM apoptosis regulation.   
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The reduction in apoptosis attributed to gp120 by Swingler et al. was associated with changes 

in the expression of Mcl-1 (Swingler, Mann et al. 2007). I also measured the expression of Mcl-

1 in MDM following S. pneumoniae infection and found that there was a significant reduction 

in Mcl-1 expression in sham infected MDM which was not seen in MDM treated with HIV, 

despite similar expression without S. pneumoniae. Increased Mcl-1 expression is a feature of 

differentiated macrophages (Liu, Perlman et al. 2001). Changes in Mcl-1 expression have also 

been demonstrated during S. pneumoniae infection of macrophages with a reduction in Mcl-1 

expression between 16 and 20 hours post infection regulating the induction of apoptosis 

(Marriott, Bingle et al. 2005). Over expression of Mcl-1 in transgenic mice is associated with 

both delayed alveolar macrophage apoptosis and delayed clearance of S. pneumoniae from 

mouse lungs (Marriott, Bingle et al. 2005).  My results suggest that one mechanism of HIV-1 

associated reduction in macrophage apoptosis following S. pneumoniae infection could involve 

the increased or persistent expression of Mcl-1, and this may be mediated by soluble gp120 

produced by HIV-1 infected MDM. Thus adding gp120 alone to healthy MDM would be 

predicted to have the same effect on Mcl-1 expression following pneumococcal challenge. This 

hypotheses could be tested further as it predicts that apoptosis would be restored by blocking 

the CD4/CCR5 receptor to prevent gp120 binding, or by inhibiting Mcl-1 transcription using 

siRNA. 

Pneumococcal killing associated with macrophage apoptosis involves the generation of 

reactive oxygen and nitrogen species (ROS/RNS); In MDM, S. pneumoniae challenge induces 

Mcl-1 down regulation, translocation of cytochrome C and caspase activation, all of  which can 

be abrogated by inhibition of inducible nitric oxide synthase (iNOS) (Marriott, Ali et al. 2004). 

Concurrent with a fall in Mcl-1 , there is a burst of mitochondrial ROS and an associated 

cathepsin D dependent upregulation of the antioxidant superoxide dismutase (SOD)(Bewley, 

Pham et al. 2011). In  addition to its role in stabilising the mitochondrial outer membrane, and 

so preventing apoptosis, Mcl-1 is required for optimum oxidative phosphorylation (Perciavalle, 
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Stewart et al. 2012). In the absence of a 36 kD isoform of Mcl-1, that localises to the 

mitochondrial matrix, impaired function of the electron transport chain results in increased 

mitochondrial superoxide (O2
-) (Perciavalle, Stewart et al. 2012). Mitochondrial O2

- is increased 

during apoptosis and plays a role in intracellular bacterial killing (Ricci, Pastukh et al. 2008; 

West, Brodsky et al. 2011).  My host research group has shown that blocking mitochondrial O2
- 

leads to increased bacterial survival at later time points suggesting that overall, mitochondrial 

ROS enables bacterial killing downstream of the induction of a mitochondrial pathway of 

apoptosis (Bewley, Pham et al. 2011; Bewley 2013). HIV-1 is also associated with increased 

ROS and increased antioxidant production at baseline (Suresh, Annam et al. 2009) and in 

alveolar macrophages in particular from HIV-1 seropositive donors, there is increased SOD 

(Gordon, Jagoe et al. 2013). I therefore investigated whether levels of mitochondrial O2
- were 

altered in HIV-1 infected MDM and how this changed after challenge with S. pneumoniae. As 

expected, S. pneumoniae infection led to increased O2
- in control MDM as did HIV-1 infection 

of MDM alone. These findings were not an artefact of altered mitochondrial numbers as the 

total mitochondrial mass was not altered by either pneumococcal challenge of HIV-1, in 

keeping with previous work showing no effect of HIV-1 infection on macrophage mitochondrial 

DNA content (Azzam, Lal et al. 2006). However, there was no additional rise in mitochondrial 

O2
- in HIV-1 infected MDM subsequently challenged with S. pneumoniae. One explanation may 

be that MDM exposed to HIV-1 and or soluble elements from other HIV-1 infected MDM 

respond with not only increased ROS production but also with parallel upregulation of 

antioxidants, which then serve to rein in and neutralize any further increment in superoxide 

provided by the mitochondria as the cell undergoes apoptosis. This hypothesis could be further 

tested by measuring SOD and the consequences of its inhibition in these conditions. 

In the alveolar environment, factors other than gp120 could be playing a role in influencing the 

apoptotic and bacterial killing behaviour of alveolar macrophages in HIV-1 seropositivie 

individuals on ART. Potential candidates include other cells (e.g. epithelial cells and 
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lymphocytes), soluble host factors (immunoglobulin, complement, and cytokines) and 

antiretroviral compounds. Since I had observed that there was a moderate but significant CD8 

T lymphocytosis in the BAL of the HIV-1-seropositive donors in this study, I compared both the 

total lymphocyte and CD4/CD8 lymphocyte percentages in the BAL fluid with the apoptotic 

responses of the AM. There was a significant correlation between the induction of apoptosis 

following S. pneumoniae infection and the percentage of CD4+ and ratio of CD4:CD8 T 

lymphocytes in the BAL, but not with the percentage of lymphocytes as a proportion of all 

leukocytes. This association may have arisen simply because the HIV-1 donors had lower 

CD4:CD8 ratios than the control donors through an HIV-1 mediated effect that was 

independent of that on the macrophages. That no correlation was observed when control 

donors were excluded might support this interpretation, although it is also possible that too 

few donors were included to adequately power for a detectable effect.  Alternatively this 

finding could mean that there is a relationship between CD4+ T helper cells or cytotoxic T cells 

and alveolar macrophages that influences macrophage responses to S. pneumoniae, as has 

been demonstrated for the immune regulation of Mycobacterium tuberculosis (MTB) infection 

in untreated HIV-1-seropositive individuals (Kalsdorf, Scriba et al. 2009). Ultimately an 

association between pulmonary lymphocytes and the apoptotic response of alveolar 

macropahges needs to be tested by functional experiments with cell cultures that provide 

evidence of the cells required to modulate macrophage responses and define the molecular 

basis of this effect. 

Antiretroviral compounds inhibit the replication of HIV-1 by action on virus specific targets 

such as the HIV-1 protease and reverse transcriptase enzymes. However, these drugs can also 

have off target effects and the HIV-1 protease inhibitors have been shown to inhibit apoptosis 

by blocking the mitochondrial adenine nucleotide translocator and thus maintain 

mitochondrial integrity (Weaver, Tarze et al. 2005; Vlahakis, Bennett et al. 2007). Additionally, 

protease inhibitors are associated with inhibition of alveolar macrophage apoptosis in mice 
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during pneumococcal infection (Marriott 2010). The majority of individuals on highly active 

antiretroviral therapy receive a three drug combination derived from two classes; 2 nucleoside 

reverse transcriptase inhibitors (NRTI) plus a third drug which is either a protease inhibitor (PI) 

or a non nucleoside reverse transcriptase inhibitor (NNRTI).  Thus it is plausible that the altered 

apoptotic responses of the AM were a consequence of the HAART these donors were receiving 

and not HIV-1 per se. To investigate the possibility that the altered apoptotic responses of the 

AM were a consequence of their HAART, HIV-1 donors were recruited specifically with regard 

to their HAART treatment history and grouped into those who had continuously received PI 

based therapy or non PI (NNRTI) based therapy. When the results from the S. pneumoniae 

infections were compared, both PI and NNRTI treated donors showed similarly reduced AM 

apoptotic responses compared with control. The effect was also seen for AM from  HIV-1 

donors who were antiretroviral treatment naïve. These data indicate that the altered 

apoptosis following challenge with S. pneumoniae that is observed in the context of HIV-1 

infection is unlikely to be a consequence of specific antiretroviral drug therapy.   

In conclusion I have shown in thesis section that HIV-1 mediates its effects on apoptosis 

through indirect mechanisms. gp120 mediates some of these effects and there is potential 

relationship with persistent abnormalities in lung T cell subsets, although whether this is causal 

remains to be determined. Ultimately this leads to inhibition of the molecular switch for 

apoptosis provided by Mcl-1 downregulation and a failure to induce mitochondrial superoxide. 

The net effect of this change when combined with the likely effects of chronic adaptation to 

oxidative stress are discussed more in the next section. 
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6 Chapter 6. Discussion 

6.1 HIV-1 infection results in decreased macrophage apoptosis 

following challenge with Streptococcus pneumoniae which is 

linked to impaired bacterial killing.  
 

In this thesis I set out to investigate why individuals living with HIV-1 infection continue to be 

at increased risk of developing invasive pneumococcal disease (IPD), compared with the 

general population, even when they were established on effective antiretroviral therapy (ART). 

I focused on the role of the macrophage, the first immune cell responsible for defence against 

pneumococcal infection.  I used three models of macrophage HIV-1 infection, an HIV-1 

infected cell line, healthy monocyte-derived macrophages (MDM) infected with HIV-1 in vitro 

and alveolar macrophages (AM) retrieved from the lungs of HIV-1-seropositivie individuals. I 

have shown that HIV-1 infection is associated with reduced macrophage apoptosis in response 

to pneumococcal challenge, and that this is linked to impairment in late phase killing of 

phagocytosed pneumococci.   

 

This apoptosis-associated killing function of the macrophage in pneumococcal disease has not 

been studied before in the context of HIV-1 infection and my data suggest that it could be a 

key determinant of the increased risk of IPD for HIV-1-seropositive individuals. Individuals 

receiving antiretroviral therapy (ART) continue to be at increased risk from IPD and 

pneumococcal pneumonia. This is despite the fact that they have reconstituted T cell immunity 

and that, as discussed in the introduction to this thesis, those features of untreated HIV-1 that 

contribute to increased IPD risk such S. pneumoniae pharyngeal colonization and impaired 

humoral immunity are also less prominent. Importantly I observed the defect in apoptosis 

following pneumococcal challenge in AM from HIV-1-seropositive individuals receiving fully 

suppressive ART who had reconstituted their peripheral blood CD4 count, demonstrating that 
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this phenomenon is also likely to be relevant to the ongoing IPD risk in the era of highly active 

antiretroviral therapy.  

Reduced apoptotic responses to pneumococci are part of a more general alteration in 

macrophage apoptotic reprogramming; a feature of HIV-1 infection which supports HIV latency 

in the macrophage pool by promoting the cells' longevity (Lum and Badley 2003). The survival 

of a directly HIV-1 infected macrophage, or from the point of view of host defence, its failure 

to die, fits this paradigm. I have also shown that uninfected bystander macrophages exhibit the 

same survival phenotype, and that the HIV-1 viral envelope glycoprotein gp120 is sufficient to 

mediate this effect. Whether this indirect inhibition of the apoptotic response in an uninfected 

macrophage, before virus entry, gains additional advantage for HIV-1 is not clear. 

Nevertheless, this phenomenon is important because changes in the behaviour of uninfected 

macrophages would be required for there to be any significant effect on apoptosis-associated 

pneumococcal killing as the best estimates state that only very few macrophages are directly 

infected by HIV-1 in vivo, even in untreated, viraemic individuals. In fact change in the 

behaviour of uninfected or bystander cells is a well established phenomenon in HIV-1 infection 

in general, with examples including loss of uninfected CD4+ T cells through activation induced 

cell death (Patki, Zielske et al. 2000) or neuronal tissue death (Aquaro, Calio et al. 2002). A 

limitation of this work is that I did not measure the level of gp120 in the bronchoalveolar 

lavage (BAL) fluid of these individuals. gp120 is detectable in the blood and BAL fluid of 

untreated, viraemic HIV-1 seropositivie individuals (Klasse and Moore 2004). These 

concentrations might be expected to be lower in aviraemic, ART treated individuals, but in the 

small number of subjects where it has been measured, gp120 is detectable both in the plasma 

and lungs of individuals on ART, even with suppressed viral loads (Rychert, Strick et al. 2010; 

Gundavarapu, Mishra et al. 2013). However, another important finding in this study was that 

HIV-1 p24 antigen, a marker of replication, was detected in alveolar macrophages from donors 

that had undetectable virus in the plasma. As discussed in chapter 4 and below, ongoing 
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replication of HIV-1 has been described in compartments other than the blood in those on ART 

(Yukl, Gianella et al. 2010). I predict that any ongoing HIV-1 replication in the lung alveolar 

macrophages of these volunteers would be a source of gp120 that could mediate the observed 

phenotype in bystander AM in the same manner as demonstrated by in vitro treatment of 

MDM with gp120.  

It is important to recognise that these single cell type in vitro and ex vivo experiments are only 

crude models for the host pathogen interactions that occur during the pathogenesis of IPD; the 

contribution of T lymphocytes and epithelial cells to AM responses, either directly or by 

paracrine cytokine and chemokine release is not modelled; the complement and 

immunoglobulin added to cultures was from the serum of healthy volunteers and will differ 

quantitatively and qualitatively from that in the alveolar microenvironment of HIV-1-

seropositive individuals. Furthermore IPD can arise by invasion of the upper respiratory tract 

without the need for pulmonary infection and may involve a significantly different role for the 

macrophage (Mook-Kanamori, Geldhoff et al. 2011). Nevertheless, results from these 

experimental systems have been demonstrated to mirror those from in vivo mouse models of 

invasive pneumococcal disease and so can provide valid insights into the mechanisms 

underlying the pathogenesis of IPD in the lung (Dockrell, Marriott et al. 2003; Marriott, 

Hellewell et al. 2006).   

6.2  HIV-1 is associated with persistence of Mcl-1 expression and 

failure to augment mitochondrial superoxide by macrophages 

following Streptococcus pneumoniae challenge 

My host research group has established that dynamic regulation of myeloid cell leukemia 

protein-1 (Mcl-1) is a key determinant of apoptosis following pneumococcal challenge 

(Marriott, Bingle et al. 2005). I have also observed this association between apoptosis and Mcl-

1 expression in MDM and found that HIV-1 infection of MDM is associated with the persistent 
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expression of Mcl-1 after pneumococcal challenge. Although the mechanism is not yet fully 

elucidated, there is a link between the down regulation of Mcl-1, increased mitochondrial 

reactive oxygen species (ROS) and killing of pneumococci by the macrophage that is distinct 

from phagolysosomal killing (Bewley, Pham et al. 2011; Perciavalle, Stewart et al. 2012).  

HIV-1 infection is associated with increased oxidative stress (Gil, Martinez et al. 2003); as 

examples, HIV-1-seropositive individuals have increased malondialdehyde (MDA), an index of 

lipid peroxidation, in their serum (Nakamura, De Rosa et al. 1996) and hydrogen peroxide 

(H2O2) production is higher in HIV-1 volunteers’ monocytes (Elbim, Pillet et al. 2001). 

Concurrently, levels of some antioxidants are decreased such as has been described for 

glutathione in BAL fluid and plasma from HIV-1-seropositive compared with seronegative 

donors (Staal, Ela et al. 1992). Other antioxidants, such as thioredoxin (Nakamura, De Rosa et 

al. 1996) and superoxide dismutase (SOD2) (in alveolar macrophages) (Gordon, Jagoe et al. 

2013) are increased. Differences in antioxidants measured in studies depend on which fluid or 

cell type is analysed; macrophages over express the SOD2 gene in response to HIV-1 infection 

(Raoul, Le Naour et al. 1998), unlike T cells where SOD2 is reduced (Westendorp, Frank et al. 

1995). In vitro studies also demonstrate that HIV-1 infection of primary human macrophages 

increase MDA (Aquaro, Muscoli et al. 2007) and exposure of macrophages to gp120 

(Pietraforte, Tritarelli et al. 1994) and nef  (Olivetta, Pietraforte et al. 2005) are each sufficient 

to induce increased ROS. The findings of increased SOD2 in HIV-1 may represent a chronic 

adaptation to oxidative stress which could limit the impact of further increases in superoxide 

(O2
-) levels following infection. I observed that O2

-  was increased in the mitochondria of MDM 

with HIV-1 infection but did not increase further following S. pneumoniae challenge. Taking 

these together it my data suggest that with HIV-1 infection, both directly infected and 

uninfected bystander macrophages lack the capacity to further escalate mitochondrial ROS 

production because of chronic elevation of antioxidant mechanisms and that this leads to a 
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consequent deficit in bacterial killing capacity. Combined with the observation that HIV-1 is 

associated with persistent Mcl-1 expression, and therefore reduced apoptosis, I hypothesise 

that there may be a ‘double hit’ in HIV-1; a reduction in the capability for Mcl-1 

downregulation, with the consequence of impaired increases in mitochondrial ROS during 

pneumococcal challenge and, with chronic elevation of antioxidants, associated impairment in 

the ROS mediated microbicidal activity of macrophages in HIV-1 infection. 

6.3 HIV-1-seropositive individuals on fully suppressive ART continue 

to have a CD8+ T lymphocytosis with a reversed CD4:CD8 ratio in 

the BAL 

An unexpected finding  from this PhD  was that  HIV-1-seropositivie individuals on fully 

suppressive ART had a BAL lymphocytosis. This was driven by higher numbers of CD8+ T cells 

with a consequently reduced CD4:CD8 ratio. These observations reflect those in reports from 

untreated, viraemic HIV-1 infected individuals with lymphocytic BAL fluid (Twigg, Soliman et al. 

1999). There are, however, no previous reports describing the lymphocyte populations in the 

BAL of long term ART treated HIV-1-seropositivie individuals and this finding is new. 

Furthermore, lower CD4:CD8 ratios correlated with lower levels of pneumococci associated 

AM apoptosis. These findings raise two issues. First, whether the persistence of a BAL CD8 

lymphocytosis may have long term consequences for the lung and second, whether there is an 

interaction between pulmonary lymphocytes and alveolar macrophages that contributes to 

the HIV-1 associated impairment in apoptosis.   

In addition to the increased risk of pneumococcal pneumonia HIV-1-seropositive individuals 

experience more non-infective respiratory illnesses which have been characterized as diseases 

of the aging lung (Crothers, Huang et al. 2011). Clinical changes occur in other systems in 

people with HIV-1 which are similar to those seen in the elderly, HIV-1 seronegative population 

including osteoporosis (Stone, Dockrell et al. 2010), neurocognitive decline (Ikezu 2009) and 
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atherosclerosis (Kaplan, Kingsley et al. 2007). Both populations demonstrate comparable 

immunologic alterations, in particular reduced T cell renewal and a change from naive to 

predominantly differentiated T cells with associated restriction in T cell diversity; common to 

both is an increased population of antigen experienced cells with increased CD57 and absent 

expression of CD28, the T cell co-stimulatory molecule that binds to CD80 and CD86 on APCs, 

and this CD8+/CD28-/CD57+ population also has reduced proliferative capacity (Merino, 

Martinez-Gonzalez et al. 1998; Brenchley, Karandikar et al. 2003).  Importantly, ART treated 

individuals with viral suppression and good CD4 cell count reconstitution continue to have 

higher numbers of CD57+/CD28- and lower numbers of CD45RA+/CCR7+ (naive) CD8 T cells in 

the blood compared with age matched seronegative controls (Desai SR, Usuga X et al.). Indeed, 

the changes in this group of HIV-1-seropositive individuals in their 50s (median age 56) were 

comparable to those seen in an elderly (median age 88) HIV-1-seronegative control group. 

Thus, even with suppressive ART, there is an overall picture of a reduced CD4:CD8 ratio, driven 

by an expanded CD8 cell population which has a differentiated effector phenotype (Emu, 

Moretto et al. 2014).  The changes are believed to be driven by the immune activation 

associated with HIV-1 and in both HIV-1 and older age, by dysregulation of T cell homeostasis, 

for example through thymic atrophy. In HIV-1-seropositive individuals on treatment, and 

despite undetectable peripheral blood virus, ongoing low level viral replication in tissue 

reservoirs, for example in the gut (Yukl, Gianella et al. 2010), may be responsible for the 

ongoing antigenic stimulation (Buzon, Massanella et al. 2010).  

In my study p24 antigen was detected in AM from some of the ART treated individuals 

indicating that HIV-1 replication continued in the lungs of these individuals despite there being 

no detectable HIV-1 RNA in their blood. This same finding was very recently reported 

elsewhere (Cribbs, Guidot et al. 2014 ). HIV-1 infected AM in the ART treated HIV-1-

seropositive individuals from my study could therefore be influencing the lung T cell 

population. Direct interactions between HIV-1 infected AM and CD4+ T cells are seen to occur 
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in untreated HIV-1 and lead to CD4+ T cell loss from the lung (Twigg, Lipscomb et al. 1989). 

Additionally in untreated HIV-1, AM secrete greater amounts of macrophage inflammatory 

protein-1α (MIP-1α) which is chemo attractant for CD8+ T cells (Denis and Ghadirian 1994) and 

AM from HIV-1 seropositivie volunteers with lymphocytic alveolitis also produce more 

interleukin (IL)-1β, IL-6  and IL-15 (Twigg, Iwamoto et al. 1992; Agostini, Zambello et al. 1999), 

some of which may by induced by free gp120 (Choe, Volsky et al. 2001). AM from HIV-1 (but 

not control) donors express more CD80 and CD86 and in ex vivo mitogen assays promote the 

proliferation of T cells by engagement with CD28 (Agostini, Zambello et al. 1999), which could, 

through repeated stimulation, drive the CD8 cells toward the differentiated and exhausted 

phenotype described above. These responses may not be as marked in ART treated HIV-1 

volunteers if the overall number of HIV-1 infected AM is much lower and, as such, may explain 

why in my work there was no difference in AM CD80 expression compared with seronegative 

controls. However, it remains possible that any altered CD80 expression may have reversed 

during overnight culture, as discussed in chapter 4 (Agostini, Zambello et al. 1999; Tomlinson, 

Booth et al. 2012).  

Chronic obstructive pulmonary disease (COPD) is an example of a non infective lung disease 

associated with aging that is also more common in HIV (Crothers, Huang et al. 2011). COPD 

patients have been characterised as having an accelerated aging phenotype in the lung 

(Sharma, Hanania et al. 2009) and, like the elderly, also have more CD8+ T cells (Hogg, Chu et 

al. 2004), an inverted CD4:CD8 (Hodge, Nairn et al. 2007) and reduced CD8+/CD28+ (Barcelo, 

Pons et al. 2008; Hodge, Mukaro et al. 2011) T cell populations in their blood and BAL fluid.  

These changes may in part be caused by cigarette smoking, as demonstrated by mouse models 

of cigarette exposure (Hodge, Mukaro et al. 2011), but are not limited to COPD patients who 

smoke and may promote ongoing tissue damage as CD8+ T cells levels are high in the lungs of 

those with more severe disease (Hogg, Chu et al. 2004). As stated, COPD is more common in 

HIV-1-seropositive cohorts, even after adjusting for smoking (Crothers, Huang et al. 2011; 
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Hirani, Cavallazzi et al. 2011; Madeddu, Fois et al. 2013), raising the possibility that the  

CD8+/CD28- lymphocytosis found in the peripheral blood of HIV-1-seropositive individuals 

could drive the inflammatory lung damage that contributes to COPD and lung disease in these 

individuals in general. My finding of a BAL CD8 lymphocytosis and reduced CD4:CD8 ratio 

further advances this intriguing possibility, and suggests that ART is insufficient to abrogate 

this process.  More detail regarding the nature of the expanded CD8 population in these 

individuals is needed. As discussed in chapter 4, ART naive HIV-1-seropositive individuals also 

have higher levels of CD38+ CD8+ T cells which decline in number with ART (Tilling, Kinloch et 

al. 2002; Landay, da Silva et al. 2007). However, I did not detect any signal for increased CD38 

on the CD8 cells from the BAL of the ART treated individuals in this study.  Future work will 

need to measure CD45RA, CD28, CD57, CCR7, Ki67 and antigenic responsiveness of the cells.  

The second issue to address is whether the altered lymphocyte milieu in the lung could 

contribute to the HIV-1 associated impairment in apoptosis.  Although I found evidence of a 

correlation between lower BAL CD4:CD8 lymphocyte ratios and reduced S. pneumoniae 

associated AM apoptosis, my experiments have not tested whether this is a causal 

relationship. It has been demonstrated that CD8 T cells in the lung of untreated HIV-1-

seropositive individuals develop specific responses against HIV-1 infected AM and, at least 

until late stages of HIV-1 disease, produce an interferon (IFN)-γ mediated inflammatory 

response that can activate other, uninfected, AM (Plata, Autran et al. 1987; Twigg, Spain et al. 

1999). These activated AM have increased expression of major histocompatibility complex 

(MHC) class II and O2
- (Buhl, Jaffe et al. 1993), which can be generated by IFN-γ stimulation of 

the phagocyte oxidase system in macrophages (Cassatella, Bazzoni et al. 1990). Although I did 

observe increased mitochondrial O2
- among in vitro HIV-1 infected MDM, these markers were 

not measured in AM in this study. However, persistence of HIV-1 infected AM in ART treated 

HIV-1-seropositive individuals, as seen in this study, might continue to induce a CD8 T cell 

response that, in turn contributes to ongoing AM activation. The nature of any activation of 
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AM, which persists ex vivo for the 48-72 hour period following BAL until when I performed 

pneumococcal challenge experiments, and leads to the altered apoptosis phenotype I 

observed, needs further study.  However, it remains plausible that CD8+ T cells produced in 

response to HIV-1 infection of AM in lung could in turn lead to activation and increased 

oxidative stress of AM, for instance through IFN-γ induction of ROS (Cassatella, Bazzoni et al. 

1990; Casbon, Long et al. 2012), thus inhibiting their capacity for apoptosis-associated 

bacterial killing and so linking the pulmonary T cell abnormalities to the impairment of host 

defence against S. pneumoniae. 

6.4 Future work 

The observations in this PhD have raised additional questions about the nature of both 

alveolar macrophages and T lymphocytes in the lung in ART treated HIV-1-seropositive 

individuals. 

I found evidence that HIV-1 replication persists in alveolar macrophages of HIV-1 seropositive 

individuals on ART. After recruiting additional volunteers for BAL, I would systematically test all 

donors’ AM for the presence of p24 and use RT-PCR to detect HIV-1 RNA and PCR to detect 

proviral DNA. These tests would also be extended to looking at cell free BAL fluid for HIV-1 

RNA and the lymphocytes for RNA and proviral DNA. In view of my finding that gp120 

mediated the altered AM apoptosis, I would determine its concentration in BAL fluid of these 

volunteers using an ELISA, and adjust the results to the concentration of urea in the BAL fluid, 

which equates to the volume of lung epithelial lining fluid, and so normalise the gp120 results 

for the variation in volumes of saline instilled and recovered from donor to donor.   

I have demonstrated that the behaviour of AM was altered, but did not detect any difference 

in the expression of a limited set of macrophage surface molecules associated with different 

polarisation states. More detailed phenotyping of BAL AM would provide insights into which 

receptors and signalling pathways are differentially expressed and activated in these cells 
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compared with those from control seronegative donors. In the first instance I would to use a 

PCR array to investigate if there is differential gene expression in the intrinsic/mitochondrial 

pathway of apoptosis, the generation of antioxidant molecules and factors associated with 

macrophage polarisation. Any differentially expressed genes I detected would then inform 

multicolour flow cytometry to measure the surface expression and western blots of 

intracellular proteins in confirmatory tests. These tests could be extended to compare 

phenotypes of AM immediately following extraction and after 24-48 hours of ex vivo culture.  

I also discovered that there was a CD8 T cell predominant BAL lymphocytosis in the HIV-1-

seropositive donors which correlated with AM apoptotic responses. I would seek to investigate 

whether there was an interaction between macrophages and lymphocytes.  Using the in vitro 

MDM S. pneumoniae infection model I would measure whether the addition of autologous 

lymphocytes near and during the pneumococcal infection alters apoptotic responses. These 

experiments could be extended to investigate the role of specific lymphocyte subsets using 

FACS sorting by positive or negative selection.  

To examine the significance of the persistent Mcl-1 expression in HIV-1 infected MDM I would 

measure the expression of Mcl-1 in donor AM during the same pneumococcal challenge 

experiments. I would then seek to control the level of Mcl-1 in the in vitro MDM HIV-1 

infection model by inhibiting its transcription via siRNA and measure how apoptosis was 

affected, as discussed in chapter 5. To better understand the role of gp120 in preventing 

apoptosis in the HIV-1 MDM model I would confirm the presence of gp120 in the supernatants 

of these cultures using ELISA and then measure whether the rates of pneumococci associated 

apoptosis were reduce in the presence of anti gp120, CD4/CCR5 receptor blocking antibodies 

or an env deficient strain of HIV-1.  
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Finally, the inclusion of additional HIV-1-seropositive and control donors would provide a 

sufficiently large sample population to test whether there was significant impairment of 

apoptosis-associated killing of S. pneumoniae by AM from the HIV-1-seropositive group. 

6.5 Conclusion 

In summary, the data presented in this thesis demonstrate that there is impairment of the 

macrophage’s apoptotic response to S. pneumoniae in HIV-1 infection which leads to reduced 

bacterial killing. These effects are associated with HIV-1 driven increases in anti-apoptotic Mcl-

1 and mitochondrial superoxide in the macrophage. Direct infection with HIV-1 is not required 

and the soluble HIV-1 protein gp120 may be sufficient to mediate this altered phenotype. 

Importantly, the same impairment in apoptosis was observed in alveolar macrophages from 

HIV-1-seropositive individuals on fully suppressive antiretroviral therapy, demonstrating that, 

in so much that these experiments can model the pathogenesis of IPD, a failure of macrophage 

apoptosis-associated killing of pneumococci could play an important role underlying the 

increased risk invasive pneumococcal disease in ART treated HIV-1-seropositive individuals.  I 

also found that there was a CD8 T cell driven lymphocytosis in the lungs of HIV-1-seropositive 

individuals on suppressive ART and suggest that this could both contribute to the altered 

behaviour of alveolar macrophages and promote chronic, inflammation mediated lung damage 

in this population.   
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Appendix 1. Buffers  

Phosphate Buffered Saline (PBS)  

1 x tablet (Oxoid) per 100 mL glass distilled water (dH2O), autoclaved.  

Tris buffered saline (TBS, 10 x concentration) 

 volume / weight 

1M Tris –HCl pH8.0  100 mL 

Sodium chloride (NaCl, Fisher) 97.3 g 

dH2O 900 mL 

 

TBS-Tween 

10x TBS 1000mL + Tween (Sigma-Aldrich) 5 mL 

Paraformaldehyde 

Made up as 4% - 0.4g PFA (BDH) in 100 mL dH2O heated to 60oC in a water bath, then stored at 

-20oC in 10 mL aliquots. Thawed and diluted in PBS to desired concentration on day of use. 

Polyacrylamide gels 

 Stacking gel Resolving gel 

dH2O 3 mL 6.6 mL 

40% acrylamide (Bio Rad) 620 µL 4.5 mL 

0.5M Tris pH 6.8 (Bio Rad) 1260 µL - 

1.5M Tris pH 8.8 (Bio Rad) - 3.8 mL 

20% sodium dodecyl sulphate (SDS, 
Fisher) 

25 µL 75 µL 

Ammonium persulphate (APS, Sigma) 50 µL 150 µL 

Tetramethylethylenediamine 
(TEMED, Sigma-Aldrich) 

5 µL 6 µL  
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Running Buffer (10x) 

 volume / weight 

Tris-Base (Fisher) 30.3 g 

Glycine (Fisher) 190 g 

20% SDS 50 mL 

dH2O Up to 1000 mL 

 

Towbin transfer buffer  

 volume / weight 

Tris-Base (Fisher) 2.9 g 

Glycine (Fisher) 1.45 g 

20% SDS 925 µL 

Methanol 100 mL 

dH2O Up to 500 mL 

 

SDS lysis buffer (Tris-EDTA-SDS) 

 Volume 

1M Tris-HCl pH 7.4 (Fluka) 2 mL 

1M NaCl  15 mL 

0.5M EDTA (Sigma) 1 mL 

0.5M EGTA (Sigma) 1 mL 

20% SDS 5 mL 

H2O 72ml 
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25% weight for weight sucrose solution 

 Weight 

Sucrose (Sigma) 12.5 g 

PBS 47.5 g 

 

FACS buffer 

 Volume 

30% Bovine Serum Albumin (BSA, 
First Link) 

150 µL 

PBS 50 mL 

 

Galactosidase substrate solution (100 x solution) 

 
weight / volume Final 

concentration 

Magnesium chloride (MgCl, Sigma) 0.0952115 g 1 mM 

Potassium-ferricyanide (K3[Fe(CN)6] 
Fluka) 

0.98772 g 3 mM 

Potassium-ferrocyanide (K4[Fe(CN)6] 
Fluka) 

1.26717 g 3 mM 

PBS 10 mL  
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HIV-1 modulates macrophage death responses to S. pneumoniae infection.  
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