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Abstract

The existence of ‘dark matter’ throughout the universe is now well established but its

form and origin remain one of the greatest problems for modern cosmology. Particle
physics posits a solution to this problem in the form of ‘Weakly Interacting Massive
Particles’ (WIMPs) which are predicted to exist by many theories extending physics
beyond the standard model. The discovery of such particles would consequently have
profound implications for both disciplines. Many experiments around the world are
now endeavouring to achieve this goal but currently the most successful are those
using scintillator detectors.

This thesis describes a study of the use of Pulse Shape Discrimination (PSD)

techniques to reduce the rate of electron recoil background events in scintillator
dark matter experiments. The development of new classes of detector with novel
pulse shape properties is described and the results of tests using elastic scattering
of monoenergetic neutrons to simulate nuclear recoil signal events are presented.
Monte Carlo simulations have been used to assess the performance of CASPAR, a
particularly promising new technique, and the results presented here indicate that
this has the potential to considerably improve dark matter sensitivity, particularly
for spin dependent WIMP interactions. An analysis of 867 kg.days of data from

an operational Nal(Tl) detector is described and the resulting evidence for a small
population of events with anomalous pulse shape properties discussed.
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Chapter 1

The Dark Matter Problem

1.1 Introduction

Dark matter is a problem which arises in astrophysics and cosmology but which

potentially has a solution in particle physics. This chapter introduces the problem
and then goes on to discuss some of the possible solutions. The chapter begins with
a brief description of modern cosmology (§1.2) and then proceeds to discuss some

of the theoretical arguments for the existence of dark matter (§1.3). Following this
there is a discussion of the cosmological evidence (§1.4) and then an outline of the
various dark matter candidates, baryonic and non-baryonic, ‘hot’ and ‘cold’, and of

the various ways in which their presence might be inferred experimentally (§1.5).

1.2 The Standard Cosmology

Since the discovery by Hubble [1] of a linear relationship between galactic redshift
and distance there has been overwhelming observational evidence to suggest that
we live in an expanding universe created in a hot Big Bang (2, 3, 4, 5]. The cos-
mological model of Friedmann, Robertson and Walker (FRW) has proven to be
remarkably successful at explaining these observations and has come to be known
as the ‘standard’ cosmology.

In any theory of an expanding universe it is natural to consider a quantity known

as the ‘scale factor’ S(¢). This relates the distance rg between two objects at time
to to the distance r(t) at some subsequent time ¢:

r(t) = roS(t). (1.1)

Since it is difficult to measure the absolute size of the universe it is convenient to
deal instead with the scale factor, which gives a measure of the relative size.

1



The Dark Matter Problem 2

It is believed that the large scale behaviour of the universe is governed predom-
inantly by the Einstein field equations [6]:

8nrG
Gpv — A NTym (1'2)

where G, is the Einstein Tensor describing the geometrical properties of spacetime
and T, is the stress-energy tensor describing the mass-energy distribution of the
universe. Now the uniformity of the Cosmic Background Radiation (CBR) to 1
part in 10* suggests that on the largest scales the universe is both homogeneous

and isotropic. Such a homogeneous isotropic spacetime can be described by the
Robertson-Walker metric:

do?
1 — ko?

ds? = c2dt* — S*(t) [ + o%df* + ozsinzﬂdq‘bz] , (1.3)
where s is the spacetime distance, o, 6 and ¢ are dimensionless comoving spatial
coordinates and k is a parameter related to the Gaussian curvature of spacetime K
by K = k/S*(t), k = —1,0 or +1. From this metric one may derive the appropriate

forms for G, and T}, and hence solve Eqn. 1.2 to give the Friedmann equations for
the evolution of S(¢t) [7):

S*t) 8rGy k& A
3‘!

Szt 3 1 S2(3) + (14)

25(t)  S*(t) 8TG N kc?

b A = — — -

S@) T SEE) 2 P th (1-5)
where p is the matter density, p is the matter pressure and A is an integration

constant (the ‘cosmological constant’) corresponding to a non-zero vacuum energy

density. For the time being A will be assumed to be zero at all times after the Big
Bang.

Now the recession velocity of a comoving observer in an expanding universe is
given by the Hubble law (1]

v=1=reS(t) = rH(?), (1.6)
where H(t) is the Hubble parameter

H(t) = -ﬁ% (1.7)

The current value of H(t), Hy, can be determined from Doppler measurements
of recession velocities and from knowledge of the distances at which the observed
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objects lie. The latter are in general known only imprecisely and so the currently
preferred values lie in the broad range

H, = 100k (kms™*Mpc™?), 0.65 < h < 0.8. (1.8)

One can now define the ‘critical’ density p.ri: as that density which gives a ‘flat’

universe of zero curvature, i.e. k = 0. From Eqn. 1.4 and 1.7 one then obtains, with
A set to zero,

H2(t) = §£€%€E"ﬁ’ (1.9)
or
3H*(t)

It is also convenient to define the density parameter Q, as the ratio of the actual
density p to the critical density peri::

Q = -, (1.11)
Perit |
whence from Eqn. 1.4 and 1.10
kc? = HES3(Q — 1), (1.12)

where S, is the current scale factor. Solving Eqn. 1.4, 1.5 and 1.12 for S as a function
of t one now finds that the overall evolution of the universe depends critically upon
the value of Q. If Qo > 1 (k = +1) then the universe is ‘closed’ and ceases to
expand after a time tmaz: = 2M Gy /3c® (where M is the total mass of the universe),
recollapsing after a time 2t.;. If Qo = 1 (k = 0) then the universe is ‘flat’ and
ceases to expand only after an infinite amount of time. In the case where Qy < 0
(k = —1) the universe does not contain sufficient matter to halt the expansion and it
persists indefinitely. These different possibilities are illustrated in Fig. 1.1 (overleaf).

The true value of 0y and hence the fate of the universe are currently unknown.
The total mass of luminous matter detectable by conventional (electromagnetic spec-
trum) astronomy is certainly not sufficient to give £3p = 1. There is good reason to
suspect however that not all matter is in this form and that a large fraction of the

matter in the universe has yet to be detected. This matter is referred to as ‘dark
matter’. The observational evidence for its existence will now be discussed.
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Figure 1.1: The evolution of the scale factor S(t) with time for negative, zero and
positive spacetime curvatures. Adapted from [8].

1.3 Observational Evidence for Dark Matter

1.3.1 Extragalactic Dark Matter

In recent years there has been an increasing amount of evidence for the existence of
dark matter [3]. Its presence has been inferred mainly from the influence it exerts
on the visible universe through gravitational interaction. The earliest evidence of
this kind came from Doppler measurements of the relative velocities of galaxies in
the Coma cluster by Zwicky [9]. The virial theorem relates the distribution of these
relative velocities to the escape velocity of the cluster and hence to its gravitational
mass M. Combining this with measurements of the luminosity L of the cluster

gives a value for the cluster mass to light ratio (M/L)uster. This is in turn directly
related to the density parameter for the cluster:

(M/L)ayster X Qetusterh(M/L)o. (1.13)

In the absence of dark matter (M/L)custer Will be equal to (M/L)ium, the value
for typical luminous stellar matter (~ 2), while for an appreciable fraction of dark

matter (M /L)quster Will be larger, since the dark matter makes no contribution to L.
The values of (M/L) for typical clusters (~ 200) are indeed found to be significantly
larger than (M/L);.» and from this (and a knowledge of the Hubble parameter) the
presence of a large fraction (2 85 %) of dark matter may be deduced.

This general technique has been applied to systems on many different distance

scales, from binary galaxies and clusters to superclusters and large scale flows. In
general it is found that the measured value of {2 increases with scale indicating an
Increase in the observed fraction of dark matter. This is because the power spectrum
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of fluctuations in the structure of the dark matter is typically shifted towards larger
scales relative to that of luminous matter [5]. Thus by considering larger distance
scales one is in effect sensitive to a greater fraction of the overall dark matter density
of the universe {1pys.

It is possible to determine {2 on still larger scales by using Doppler measurements
of deviations from the Hubble law for distant objects. The law is assumed to hold
statistically for objects at these distances and hence any deviation will be due to

peculiar velocities caused by inhomogeneities in the local distribution of matter.
This allows an estimate to be made of the matter density Q2 from (2]

OS5 \H, /6
Upec ~ : - (—E) : (1.14)

(L

where dn/n is the fluctuation in galaxy count at scale A and b is a bias parameter
accounting for differences in the structure power spectra for dark and luminous
matter. This technique provides an estimate for Q2 of order unity at scales 2 100
MPc [10].

Perhaps the most striking evidence for the existence of dark matter on cosmolog-
ical distance scales has come from the observation of gravitational lensing of distant
objects by clusters of foreground galaxies. By modeling the lensing process Tyson et
al. {11] have deduced the density distribution of the lensing cluster CL 0024+1654.
A map of the cluster density is plotted in Fig. 1.2 and gives a clear indication of

the size of the dark halo in comparison with that of the luminous galaxies which it
contains.

Figure 1.2: The density profile of CL 0024+1654 obtained through analysis of the

macrolensed image of a background galazy. The light grey shading represents the

dark halo while the visible galazies appear white. The contours represent the lensing
density distribution. Taken from [11].
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1.3.2 (Galactic Dark Matter

The preceding considerations give no indication of the amount of dark matter which
has accumulated within individual galaxies and to measure this one must resort to
dynamics on shorter distance scales. Doppler techniques have been used to deter-
mine the rotation velocity v of luminous matter (stars, hot gas etc.) within many
different spiral galaxies. From Newtonian mechanics the rotation velocity of gravita-

tionally bound matter at radial distance r from the centre of a spherically symmetric
galaxy is expected to be given by

where M (r) is the total mass enclosed within . Observations (Fig. 1.3) indicate

that typically beyond the galactic bulge v remains approximately constant out to
distances in many cases in excess of 100 kpc, and so from Eqn. 1.15

M total (7') T, (1.16)

or,

2

Ptotal X T °. (1.17)

150

NGC 6503

0 10 20 30
Radius (kpc)

Figure 1.3: The rotation curve of spiral galazy NGC 6503. Also plotted is the best
fit rotation curve comprising of disk, halo and gas contributions. Taken from [12].

This is inconsistent with the observed distribution of luminous matter in spiral
galaxies, which peaks strongly in the bulge at » = 0 and is greatly attenuated at
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larger radii. There is thus strong evidence for a significant dark contribution to the
total masses of these galaxies (Qgatazy S 0.2, Qum S 0.04). Our own galaxy has

a typical spiral morphology and here too measurements have shown evidence for a
sizeable dark ‘halo’ out to at least 20 kpc (Fig. 1.4) [13, 14].

0 8

10 15 20
R (kpe)

Figure 1.4: The rotation curve of the Milky Way showing behaviour similar to that
in Fig. 1.3. Figure (a) shows raw data and Figure (b) a smoothed data set. 0 is the

rotation velocity and R is the distance from the galactic centre. Taken from [15].
Data originally from [13]. |

1.3.3 Summary of Observational Evidence

Knowledge of the apparent mass density of the universe on different scales, from
galaxies to cosmological distances is summarised in Fig. 1.5 (overleaf). The rise in

measured {} with distance scale is apparent, as is the tendency towards 2 ~ 1 at
the largest scales.
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Figure 1.5: Estimates of ) at different scales. Based on [10, 16, 17].

1.4 Theoretical Arguments for Dark Matter

1.4.1 Inflation and the Cosmological Constant

Despite the early successes of the standard cosmological model of FRW there re-
mained a number of problems with the theory [5]:

e The uniformity of the CBR throughout the sky indicates that in the early
universe widely spaced regions possessed the same temperature. However since
these regions were causally disconnected at this time there is no reason for this
to have been so. This apparent paradox is referred to as the ‘horizon problem’

2].

e By examining the quantum processes occurring in the early universe one can
estimate the current density of topological defects (magnetic monopoles) cre-

ated as it passed through the GUT (Grand Unified Theory) phase transition.
This monopole density (~ 1500 m~3) exceeds the limit placed by the survival

of galactic magnetic fields (the Parker Bound [2]) by many orders of magni-

tude and must therefore be incorrect [5]. This paradox is referred to as the
‘monopole problem’.

e By using Eqn. 1.12 one can examine the evolution of 2 with time. In the
absence of a cosmological constant it is found that any value of Q(t) soon after
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the Big Bang not equal to 0, 1 or oo leads to a universe which either recol-
lapses on itself after the Plank time ¢, = 10~*3 s or rapidly gains a negligible
subsequent value for (). In particular it is found that to give Q < 0.01 as
observed for luminous matter in the universe today €2(t,) must have differed

from unity by less than +107°°. This fine tuning or ‘flatness’ problem can be

solved by setting €2(¢,) to 1 in which case 2(t) = 1 for all time afterwards
[5]. This requires the existence of some additional contribution to g other

than €, and if the present value of A is zero then this must come from dark
matter.

A solution to these problems was proposed by Guth [18] and Linde [19, 20] in
the form of ‘inflation’. The standard inflationary model postulates the existence of
a non-zero vacuum energy density at times t < tgyr =~ 10733 s due to the existence
of a scalar ‘inflaton’ field associated with the GUT phase transition. This had the

same effect as a large non-zero cosmological constant dominating the righthand side
of the Friedmann equations (Eqn. 1.4 and 1.5). Hence one may write

S%(t) A
giving a solution
S(t) « efat, (1.19)

This implies that during this phase of its history the universe underwent a period of
rapid expansion (inflation) by a factor > 10%°. At t = tgyr the universe crossed the

GUT phase transition and at subsequent times the inflaton field decayed rapidly to

zero. Thus for t >> tgyr the behaviour of the universe can be taken to be described
by the FRW model with A = 0.

This idea of a rapidly inflating universe has a number of attractive features:

e It drives the Gaussian curvature of spacetime K to zero and thereby drives Q(t)
to unity (from Eqn. 1.12), hence solving the flatness problem. The standard
inflationary theory predicts further that A is currently zero and hence supports
the above inference of the existence of dark matter from the FRW model.

e It solves the horizon problem since regions of space which were initially in

causal contact could have become causally disconnected by the superluminal
expansion of spacetime.

e It solves the monopole problem by inflating the mean volume per monopole

in the early universe and hence reducing the current monopole density to well
below the Parker Bound.
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Inflationary models fit well to the recent data from experiments mapping the
small scale temperature anisotropies in the CBR {21}]. These anisotropies originated
as quantum fluctuations in the hot primordial plasma at times ¢t < tgyr and were
magnified by inflation to scales where they could provide seeds for structure forma-
tion in the later universe. The background photons themselves were originally of
energy E > Eqyr ~ 10 GeV however the Hubble recession has since redshifted
them into the microwave region of the spectrum where they can be detected with
conventional astronomical techniques. The power spectrum of the anisotropies is
shown in Fig. 1.6 and can be used in particular to constrain models explaining the

composition and amount of dark matter in the universe. These constraints will be
considered in more detail later in this chapter.
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Figure 1.6: The measured power spectrum of CBR fluctuations plotted as a function

of angular scale (top) and wavenumber (bottom). The two full curves are predictions

with 1p = 0.05, h = 0.3 (thick) and h = 0.75 (thin). The dotted line is a polynomial
fit. Taken from [22].

Recently results have been published by the Supernova Cosmology Project sug-

gesting that Qmaer < 1 (23]. By using type Ia supernovae as ‘standard candles’
the detailed characteristics of the Hubble recession of distant galaxies have been
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determined. The results are consistent with 2,54t = 0.6 £ 0.2 if QA + Qpnatter = 1

or Qpatter = 0.2+ 0.4 if A = 0 (Fig. 1.7). If these results are correct then although
Qunetter 1s inconsistent with a closed or flat universe there is still room for a large
amount of dark matter due to the low observed value of ., (< 0.01).

More recent results from the same collaboration using 40 type Ia supernovae
appear to show evidence for a large non-zero cosmological constant (24 2 0.3 -
Fig. 1.8) however the results are still preliminary [24]. Such findings are certainly
controversial [25]. Even with our current understanding of cosmology it is difficult

to conceive of a ‘natural’ theory which is capable of giving a non-zero value for A

consistent with this observational evidence. In all that follows A will therefore be
taken to be identically zero, except during the inflationary epoch.
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»5;954:95 Gyr

‘-.. .

Figure 1.7: Allowed confidence regions for Qn and Qmatter from o type Ia SNe at
zn~ 0.4, 1 type Ia SN at z ~ 0.83 and from all 6 SNe combined (open contours).

Taken from [23].

Figure 1.8: Preliminary allowed confidence regions for S0y and Qpuater from 40 type
Ia SNe. The lower contours show the allowed region given a 0.2 magnitude system-
atic difference between the luminosities of local (recent) and distant (early) super-
novae. Taken from [26].
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1.4.2 Big Bang Nucleosynthesis and Baryonic Dark Matter

Perhaps the earliest recognition of the need for dark matter was in the 19th century
when Adams inferred the existence of Neptune from its gravitational effects on the
orbit of Uranus. Similarly the simplest solution to the problem currently confronting
us would be for the dark matter to be made up of non-luminous baryonic matter in

the form of planets, low mass stars or cold gas clouds. This would be attractive in
the sense that these objects are already known to exist.

107"
.
-3 $'s
10 ik
-3 -
10 3;5
3'Q
-4 ' 5
10 21
- '
10 ;

Abundance Relative to Hydrogen

107%  10™ 107 107°
Density of Ordinary Matter (Baryons) (g/ce)

Figure 1.9: Nucleosynthesis predictions for the abundances of the light elements.
The widths of the curves represent the 2-0 uncertainties in the abundances. The

predictions are only consistent with observations in the shaded region (equivalent to
0.008 < Qph? < 0.024). Taken from [27].

A strong constraint on the amount of baryonic material in the universe comes
from the theory of Big Bang Nucleosynthesis (BBN). This relates the relative pri-
mordial abundances of the light nuclei to the ratio 7 of the number densities of
baryons and photons. 7 is then related to the baryonic density parameter Q25 by
28]

n=2.72 % 107°Qgh’ (1.20)

By measuring the ratio of the abundances of various light nuclei, for example by
measuring the intensities of absorption lines in extragalactic gas clouds, one can

thus derive a value for 2gh?®. Predicted abundances are plotted in Fig. 1.9 and from

these the limit 0.008 < Qgh® < 0.024 [27] (h ~ 0.6) is derived. Further discussion
of BBN constraints can be found in [29).
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These considerations indicate that there is indeed a significant amount of bary-
onic dark matter, given that for galaxies O, S 0.01. On the other hand there
is undoubtedly insufficient baryonic dark matter to explain the large scale mea-

surements of © and close the universe as required by FRW and inflation. The
nucleosynthesis evidence is supported by the CBR and large scale structure mea-

surements (Fig. 1.6), which appear to be incompatible with a universe dominated

by baryonic dark matter. This data can also be used to constrain other models and
is considered in more detail in §1.5.2.

0.1

Qllatttr
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0.001
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H,/100 km s-! Mpc-!

Figure 1.10: Allowed regions for Q0 as a function of Hy. The top band represents §,

the middle band Qp (baryonic matter) and the lower band Q,,n (luminous matter).
Taken from [27].

In reality there are thus fwo dark matter problems (Fig. 1.10); a baryonic dark
matter problem related to the disagreement between nucleosynthesis constraints and
measurements of Q;,m, and a non-baryonic dark matter problem related to the dis-
agreement between ;,,, and measurements of {2 on the largest scales. Nevertheless
the dark matter required to explain galactic rotation curves can (just) be explained

purely in terms of the baryonic contribution, although there must remain a less
densely clustered non-baryonic dark matter background.
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1.5 Dark Matter Candidates and Searches

1.5.1 Baryonic Dark Matter

Dark baryons could exist in several forms. A few of these are listed in Table 1.1.
There follows a brief description of the candidates based on the review of [30].

| Candidate | Moss (xMo) |

Soowbals | <oool |
Brows Dwars | 0001008 |
Dwas | <01 |
[ White Dvars | IMF ~ 03|
[NewronStas | TMF>5 |
[ Stelar Black Holes | IMF ~ 2050
[ Supermassive Black Holes | > 10° |
[ Gas Clouds (Hot or Gold) | 5100

Table 1.1: Baryonic dark matter candidates. ‘IMF’ stands for Initial Mass Function.
Based on [30].

‘Snowballs’ are cold objects consisting of condensed hydrogen of atomic density
or greater. There are strong theoretical arguments to believe that snowballs cannot
have masses below 10%° g however and recent results from microlensing (see below)
[31] appear to exclude the remaining allowed mass region. Brown dwarfs are stel-

lar objects of insufficient mass to burn hydrogen while M-dwarfs are higher mass
stars which burn hydrogen but are nevertheless extremely dim. The former are
well motivated theoretically and provide the main motivation for the microlensing
searches currently underway. The latter are less favoured as dark matter candidates
on account of the absence of significant galactic IR emission. White dwarfs form
the end state of most medium mass stars but are most likely too bright to form a
significant fraction of §{25. Neutron stars are produced by supernovae and form the
end state of heavier stellar bodies. The fraction of {05 contained within these is also
strongly limited. Supermassive black holes form without passing through a nuclear

fusion stage and their density is limited by the considerable heating they produce
of surrounding matter [30].

Gas clouds can be either ‘hot’ and atomic, or ‘cold’ and molecular. Large volumes

of hot gas are observable by their X ray emissions and hence are largely excluded
[30]. It also now appears unlikely that there is sufficient mass contained within cold
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molecular clouds to make the dominant contribution to {1p, at least within spiral
galaxies {32]. '

The plausibility of a significant brown dwarf component to the galactic dark
matter has led several groups to begin searches for ‘MACHOs’ or ‘MAssive Compact
Halo Objects’ within our galaxy. ‘MACHOQ’ is a blanket term referring to compact
dark objects such as snowballs, planets, brown, M- and white dwarfs, neutron stars
and stellar black holes.

In order to search for MACHOs one looks for the transient brightening of distant

stars located typically in the LMC [33, 31], SMC [31] or galactic bulge [33]). This
can be caused by gravitational lensing of the starlight by a dark foreground object
passing through the field of view. The lensing process is governed by the Einstein
field equations (Eqn. 1.2) and can be parameterised in terms of u(t) = b/rg, where

b is the perpendicular distance of the MACHO from the line of sight and rg, the
radius of the Einstein ring, is given by [33]

[4GymLz(l -
re = —ﬂ_;:%(__jl (1.21)

Here m is the MACHO mass, L is the distance between the observer and the lensed
star and Lz is the distance between the observer and the lens. If u(¢) > 1 then a
ring image characteristic of macrolensing will be formed however if u(t) < 1 then

there will be no change in the general shape of a point image and only amplification
will be observed. The degree of amplification caused by this ‘microlensing’ is given
by [33]
u?(t) + 2
Alt) = —————— 1.22
2 u(t)\/ul(t) + 4’ (1.22)

and u(t) can in turn be parameterised as follows:

(1.23)

where 1p is the time of maximum amplification, u,,;, = u(to) and 7 is the event
duration. The requirements that the amplification be achromatic, time symmetric
and non-repeating allows events due to variable stars, supernovae etc. to be rejected.

The duration 7 is a linear function of rg and hence proportional to \/m. Thus

sensitivity to lensing events with a wide range of durations allows limits to be set
on the abundance of MACHOs with a wide range of masses.

In Fig. 1.11 are plotted the limits on dark matter halo fraction f set by the
EROS collaboration {31, 34] and MACHO collaboration [33], the latter using the
lensing events plotted in Fig. 1.12. Although the most probable value for f inferred
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from the MACHO events is ~ 50% (~ 70% if two dubious events are included) the
errors are such that only the smallest halo fractions are disallowed and no definite

statement can be made. In addition there is some suggestion that there may be a
tidal flow or small dwarf galaxy in the direction of the LMC thereby biasing the

results in favour of high values of Q [33]. There is consequently still room for a

significant non-baryonic contribution to the galactic halo.
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Figure 1.11: Ezclusion diagram for MACHO mass and halo fraction from MACHO
and EROS results. The lefthand dotted line is the EROS limit when corrections
for systematics are not taken into account. The dotted and dot-dashed lines are

the EROS limits assuming that one or two of their candidate events are due to
MACHOs. Taken from [84].
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MACHO LMC 2-year Events
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Figure 1.12: The light curves of the eight MACHO LMC microlensing events. All
errors are 1-o. Taken from [33].

1.5.2 Non-Baryonic Dark Matter

General Introduction

In most cases non-baryonic dark matter candidates were created in the early universe
in thermal equilibrium with the CBR. As the universe expanded the interaction rate

of the dark matter particles fell below the expansion rate and thermal equilibrium
was lost. If the dark matter particles were relativistic at this point of ‘freeze out’
then they are referred to as ‘Hot Dark Matter’ (HDM). HDM particles would have
had a high average momentum at freeze out and would therefore have clustered
gravitationally only on the largest scales. This HDM density field would initially
have washed out any clustering by baryonic matter on small scales and hence would
have led to the formation of luminous structure in a ‘tbp down’ manner, with small
scale structure forming after the structure on klarger scales. Computer simulations of
the formation of large scale structure in this way [35] are in conflict with the IRAS

large scale structure maps (see below). Similarly measurements of the temperature
fluctuations in the CBR [21, 36], which in turn map the density perturbations in
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the early universe, indicate conflict with the predictions of pure HDM. Finally the
phase space occupied by HDM makes it incompatible with the discovery of dark
matter on small scales in dwarf spiral galaxies [37]. This evidence makes it unlikely
that pure HDM can provide a solution to the non-baryonic dark matter problem.

Dark matter particles which were non-relativistic at freeze out are by contrast
referred to as ‘Cold Dark Matter’ (CDM). On account of their low average momenta
they would have clustered much more strongly in the early universe and would have
first begun forming structure on small scales, rather like baryonic matter. This
provides much better agreement with the IRAS [38] and CBR survey data (Fig. 1.13)
than pure HDM. There have also been a number of mixed dark matter scenarios

suggested in order to improve this fit [27], most notably ‘*CDM’ which consists of
a mixture of 30% HDM in the form of low mass relic neutrinos (see below) and

70% CDM. A ‘tilting’ of the initial CBR power spectrum away from the Harrison-

Zel’dovich power law model also gives a good fit (‘Tilted Dark Matter’ or TDM) as

does a mixture of CDM and a non-zero cosmological constant (ACDM), although it
is difficult to reconcile this last possibility with fine tuning arguments (§1.4.1).
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Figure 1.13: A comparison of measurements of the power spectrum of large scale
structure with different dark matter models. The boz is from COBE [39] CBR mea-

surements while the data points are from galazy redshift surveys as analysed in [40).
For the definitions of the models see tezt. Taken from [}1].

Many potential non-baryonic dark matter candidates have been suggested. A far
from exhaustive list is given in Table 1.2. Some of the most promising candidates
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will now be considered in more detail.

[Gondidate [ Maws [ Abundance om ™|
o [<w0eve [~100 |
Tight LH Newrino | <015ev/@ [ ~100 |
Guvitio [ evj@ _|[~10 |
Newmalmo [~ 100Gev/e [10° |
ime [~10Gev/@ (105 |
Feary Newio |2 100GeV/&? [~ 107 |
[Coyptoms ete. [~ 107 Gev/@ [~ 108 |
Magaetic Monopole | ~ 10° GeV/e® [ ~ 107 |
QuakNagest [~10%g  [~10% |
[Primordial BE__ |p10%g _ [g10@ |

Table 1.2: Non-baryonic dark matter candidates. Heavy particles interacting with
baryonic matter via the electroweak gauge bosons (W=, Z° h) are collectively re-

ferred to as ‘WIMPs’ (‘Weakly Interacting Massive Particles’). Neutralinos, azinos
and heavy neutrinos fall into this category. This table is based on Table 9.1 in [2].

Hot Dark Matter and Neutrinos

The leading candidates for HDM are low mass relic neutrinos. All three known
species of light lefthanded neutrino were produced abundantly in the Big Bang and
consequently at present there is a relic neutrino number density throughout space

~ 1.12 x 108 m™3 [5]. Should these neutrinos have average mass m, this number
density contributes an amount [2]

m,. (eV/c?
Q=) -9—(1_5-}-1[;—2 (1.24)

1=1

to the overall density parameter of the universe {25. The requirement that these
neutrinos do not over close the universe consequently places a strict upper bound
on any of their masses of m, < 91.5 eV/c? (the Cowsik-McClelland Bound [42)).
By construction the renormalisation structure of the standard model of particle
physics (§2.2) incorporates only mass-less neutrinos and so within the standard
model m, is identically zero. Within many extensions to the standard model however

there are mechanisms for giving the neutrinos mass, most notably the ‘see-saw’
mechanism [43] embodied within SO(10) GUT models. Here it is the very large
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mass of a heavy righthanded Majorana neutrino which generates the very small
masses of the known lefthanded neutrinos through virtual loop effects. In these

models the neutrinos acquire a mass hierarchy equal to that of the squares of the
masses of the corresponding charged leptons or up type quarks [43]:

2
My

My = 31 (1.25)

where my/, is the appropriate lepton / quark mass and Mpg is the righthanded
neutrino mass (assumed degenerate for all generations). The electron and muon
neutrinos invariably obtain masses too small to be of cosmological interest (< 1073
eV/c? and < 102 eV/c® respectively) however the tau neutrino may have a mass as
high as 30 eV/c® [43]. In this case v, can become a viable candidate for the HDM
in models such as vCDM. It is also interesting to note that in this framework the
heavy (M > 10° TeV/c?) righthanded neutrino generating the lefthanded masses
could act as the CDM candidate required to improve the fits to the COBE and
IRAS data. The mass of such a relic righthanded neutrino is constrained by over

closure arguments only to be greater than 5 GeV/c? (2 GeV/c? for Dirac neutrinos;
the Lee-Weinberg bound (2, 44]). Heavy Majorana or Dirac neutrinos with standard
model couplings are excluded for almost all masses by a combination of cosmological
arguments, constraints from LEP and null results from direct and indirect searches
[45, 46].

At present it is impossible to detect relic neutrinos or measure their masses
although suggestions for detectors have been made [47]. Instead the masses must
be inferred through techniques which use neutrinos produced by sources other than
the Big Bang. The principal technique is to search for oscillations between different
neutrino flavour eigenstates caused by mixing between different mass eigenstates.
The motivation for this has come from an observed deficit in the number of neutrinos
coming from production processes occurring both in the sun (8 decay and fusion)
and in the atmosphere (decay of = and u secondaries from cosmic ray interactions).
It is thought that the underlying cause of this deficit is that neutrinos of one flavour
are oscillating into neutrinos of other flavours which are invisible to the detectors
[43]. The solar neutrino anomaly could be resolved by oscillations of the form 7, — b,

and the atmospheric neutrino anomaly by oscillations of the form v, — v,. In each
case the probability of oscillation is given by [43]
1.267Am2L
200 ainl
Poac = sin® 20. sin (—'—E——-——-) ' (126)

where 8 is the neutrino mixing angle, L (km) is the oscillation length or ‘baseline’,
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Am? ((eV/c?)?) is the difference of the squares of the masses of the mass eigenstates
and F (GeV) is the neutrino energy.
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Figure 1.14: The allowed confidence regions (68%,90%,99%) for sin®26 and Am?

for v, — v, oscillations from 33 kt.yrs data from Super-Kamiokande. The thin line
is the 90% region from the Kamiokande data. Taken from [48].

The dependence of the oscillation probability upon Am?L/E makes measure-
ments with a specific baseline and neutrino energy sensitive to only a certain range

of Am? — sin®(260) parameter space. The atmospheric neutrino anomaly, recently
confirmed by the latest results from the Super-Kamiokande experiment (Fig. 1.14),
is most likely due to a muon neutrino / tau neutrino Am? ~ 2.2 x 1073 (eV/c?)?
with near maximal mixing such that sin®(26) > 0.8 [48]. The solar neutrino anomaly
meanwhile naively admits ‘vacuum oscillation’ solutions with electron antineutrino
/ muon antineutrino Am? ~ 10~1% (eV/c?)? and once again near maximal mixing.
In the solar case there also exists the possibility of a resonant enhancement in the
oscillation probability as the neutrinos pass through the electron rich solar plasma.
This process is known as the ‘Mikheyev-Smirnov-Wolfenstein’ (MSW) effect [49, 50]
and leads to solutions with electron antineutrino / muon antineutrino Am? ~ 108

(eV/c?)* and low mixing angles. These solutions are however disfavoured by the lat-
est data from Super-Kamiokande [48]. Further data on this question should become
available in the near future from both the Super-Kamiokande and SNO collabora-

tions [51] but it appears that these results rule out a significant contribution to
from standard model neutrinos.
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Owing to the low values of Am? and the corresponding long baselines which are
required, the allowed region for solar neutrino oscillations is probably inaccessible
to experiments using terrestrial sources of neutrinos. In order to understand the

atmospheric neutrino anomaly however several terrestrial experiments have been - -

conducted, typically using neutrinos produced by accelerators or commercial fission
reactors [43]. The LSND collaboration (baseline ~ 30 m [52]) claims to see neutrino
oscillations of the form 7, — 7, for Am® > 4 x 1072 (eV/c?)? (all mixings) but the
claim is disputed by the KARMEN collaboration [53] whose detector is sensitive to
roughly the same regions of parameter space. Further work is needed to resolve this
question. All other such experiments have reported null results and further progress
will probably require the construction of ‘long baseline’ experiments such as MINOS

(baseline 730 km [54]) which are designed to probe directly the regions of parameter
space suggested by the atmospheric anomaly [43].

Cold Dark Matter

CARRACK 1

US. Search expected
1g-12 1097 100

-~
L Yo ly
G 10~ £SL
e ®

t A
O

1 < 3 o 710 2030 50
m, [ueV]

Figure 1.15: Compilation of ezperimental limits on azion mass and couplings. Along
the T azxis is plotted azion mass, and along the y azis the arion-photon coupling. Ez-
periments are University of Florida (UF), Rochester-Brookhaven-Fermilab (RBF),
- joint U.S. search and Tokyo (Carrack). For references see e.g. [55, 56]. Taken from

[56].

Null results from searches for anomalously heavy protons indicate that stable non-
baryonic CDM particles must be colourless and uncharged [57). There are many
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theoretically postulated particles which fall into this category. The leading candi-
dates will now be discussed.

One prominent candidate is the axion, a Higgs like scalar boson proposed to solve
the ‘strong CP’ problem. Generic SU(3)¢c QCD models incorporate a phase, fg¢p,
which leads to CP violation in strong interactions [55]. Phenomenologically this
is unacceptable and so the axion was postulated to dynamically drive this phase
to zero. Unlike other CDM candidates the axion would not have been produced
in thermal equilibrium with the CBR in the Big Bang and its primary production
mechanism would have been through the collapse of topological defects. Its mass
is tightly constrained by both accelerator searches and astrophysical arguments, in
particular the time spectrum of neutrinos from SN1987a [56]. A small cosmologically
interesting mass window (107% eV/c? < m, < 1072 e€V/c?) remains and this is
currently being investigated by several experiments searching for resonant conversion
of relic axions to microwave photons in a strong B field (for a review see [55]). No

signal has been seen as yet although sensitivity to the axion mass m, and its coupling
to photons g, is improving rapidly (Fig. 1.15).

Another non-baryonic CDM candidate currently favoured by theorists is the
super heavy (m ~ 10 GeV/c?) ‘crypton’ derived from certain higher dimensional
‘superstring’ theories (§2.3). The decay of these particles may explain the observed

excess of ultra high energy cosmic rays above the GKZ cut off [58] and hence there is

additional motivation to consider them seriously. Indirect detection of these particles
will require the use of large extensive air shower arrays [58].

The ‘best bet’ non-baryonic CDM candidates are generally thought to be ‘WIMPs’
(Weakly Interacting Massive Particles). These can be defined as heavy relics which
interact with baryonic matter via the electroweak gauge bosons. The massive
righthanded neutrinos discussed previously fall into this category however the most
favoured WIMPs are those predicted to exist by the theory of supersymmetry
(SUSY). In many SUSY models the Lightest Supersymmetric Particle (LSP) is
absolutely stable and could therefore constitute the dark matter were it to have
been produced in sufficient quantities in the Big Bang. Depending upon the model
the LSP can be the neutralino (the SUSY partner of the neutral standard model

bosons), the axino (the SUSY partner of the axion) the gravitino (the SUSY partner
of the graviton) or possibly some other neutral SUSY particle. The neutralino in
particular provides a WIMP candidate with just the right properties to solve the

non-baryonic dark matter problem [59]. The particle physics underlying SUSY dark
matter will be discussed in more detail in the next chapter.

Evidence for WIMP dark matter can be sought in several ways. Direct evidence
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could be gained by searching for interactions with baryonic detector materials. Relic
WIMPs may occasionally couple to an atomic nucleus in these materials and scatter
elastically, causing the nucleus to recoil. If this nuclear recoil can be detected then
it is possible to infer the presence of the WIMP and hence the dark matter. Direct
searches of this kind for WIMP dark matter form the basis for much of this thesis
and the detailed theory underlying the technique will be outlined in §3.

Indirect detection experiments are also possible and these typically look for the
products of the coannihilation of WIMPs trapped in the gravitational potentials of
the earth, sun or galaxy [46]. These searches are sensitive to all types of WIMP and

they have been used in particular to exclude a large region of Dirac masses for relic
righthanded neutrinos.
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Figure 1.16: Indirect limits on spin dependent WIMP-nucleon couplings derived from
indirect dark matter searches using large volume neutrino detectors. The full line

is the combined limit from the Baksan [60] and Kamiokande [61] experiments; the
dashed line is an order of magnitude estimate given Q equal to unity. The dot-dashed
line is the ezpected limit from a 10° m* detector. Adapted from [62].

The most promising indirect technique is to search for neutrinos coming from
annihilations within the earth or sun. These searches require the use of large volume,
low energy threshold detectors {62]. The detectors are used to look for the up going
muons produced when neutrinos interact in the rock beneath the detector. The

limits set in this way are extremely stringent and in particular the limits on spin
dependent WIMP-nucleon interactions (Fig. 1.16) are similar or superior to the
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limits set by direct search experiments [62]. The indirect limits are however more
model dependent than the direct search limits and so comparison is difficult.
Indirect searches are also being performed using other techniques. Searches for
anomalously large quantities of antimatter in space using balloon or satellite borne
spectrometers are sensitive to WIMP annihilation in the galactic halo, since this |
would be one source of this antimatter [15]. Searches for a diffuse gamma ray

background within the galaxy are similarly sensitive to such annihilation processes
[15].

1.6 Conclusions

Much theoretical and observational evidence has been discovered for the existence

of dark matter throughout the universe. Big bang nucleosynthesis places strong
constraints on the fraction of this dark matter which can be baryonic in form and
thus non-baryonic scenarios are particularly favoured. The heavy ‘cold dark matter’
particles which are required in this case are predicted to exist by many theories

extending particle physics beyond the ‘standard model’. Direct and indirect searches
are being carried out for evidence for the existence of these particles.



Chapter 2

Supersymmetric Dark Matter

2.1 Introduction

This chapter gives an overview of the theory underlying models of supersymmetric
dark matter. The chapter will begin with a brief account of the standard model of

particle physics (§2.2). This is by itself an enormous subject; for a more detailed
account see e.g. [63, 64, 65, 66]. The section which follows (§2.3) gives a brief intro-

duction to supersymmetry theory and here again the standard review articles such
as (46, 67, 68, 69] should be consulted for more information. There then follows a
description of the various dark matter candidates provided by supersymmetry the-

ory (§2.4). The chapter concludes with a discussion of the various constraints placed
on the mass of the most favoured candidate, the neutralino, by collider experiments

(52.5).

2.2 The Standard Model

2.2.1 The Standard Model Lagrangian

Our current knowledge of the behaviour of matter on the smallest scales is sum-
marised by the so called ‘Standard Model’ (SM) of particle physics. This model
may be derived by considering the most general symmetries obeyed by the forces
of nature and then expressing these symmetries in the language of group theory.
Given a force which is invariant under a gauge transformation with symmetry group
G and which describes matter fields transforming under a representation R of G,
it is possible to derive the appropriate Lagrangian density (and hence equations of
motion) simply by writing down all those terms which are invariant under G and
satisfy the requirements of perturbative renormalisability [70]. The last requirement

27
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ensures that perturbative calculations are finite and therefore that the model has
predictive power. Non-perturbative models may also be constructed but they are in
general much more difficult to work with.

All of the small scale physics discovered up to this point (with the possible
exception of some neutrino physics - §1.5.2) has been found to possess the symmetries

of the group SU(3)¢ x SU(2)r x U(1)y. Of the observed matter fields only the six
quarks (u,d,c,s,t,b) couple to the gauge fields described by the SU (3)c symmetry,
transforming as ‘colour’ triplets of Dirac fermions. The SU(2); symmetry describes
gauge fields which couple only to the lefthanded fermions (quarks and leptons),
which are arranged in weak isospin doublets (e.g. (vr,er) or (ur,dr)). The U(1)y
symmetry describes gauge fields coupling to fermions possessing weak hypercharge ¥

(the charged fermions), arranged in SU(2)y singlets. Righthanded neutrinos do not
couple to any of the above fields and so cannot be included within the standard model

framework. Some larger symmetry groups containing SU(3)¢ x SU(2)L X U(1)y as
a subgroup contain extra gauge fields coupling to uncharged righthanded fermions
and hence these groups can describe the interactions of righthanded neutrinos. Such

interactions can lead to non-zero masses for the lefthanded SM neutrinos (§1.5.2).

Consideration of the above symmetry group and matter field representations
allows the following standard model Lagrangian (density) to be written down [71]:

Lo = wuwe g, pm
_ . 1 1, _
+ Ln" (26,1 - =g W, - 59 YB,‘) L + RAy* (26“ — -;- g'YB“) R
| 1, 2
+ || 20, — Egr_._W_p — 59 YB,)¢| -V (¢)
— (GlquR + GzzécR + hC)
_ . "o S R
= 3; ("9 — m) ¢; — 9" (17" Taq) Gy, — 7GL.Go (2.1)

In this equation the first line contains kinetic terms describing the free motion of
the SU(2)r x U(1)y ‘electroweak’ gauge bosons; the W%, the Z° and the photon.
The second line describes the interactions of these bosons while the third and fourth
lines describe the spontaneous symmetry breaking process (the Higgs mechanism)
which gives mass to both bosons and fermions. The final line is derived from the

SU(3)c gauge symmetry which describes QCD, the theory of the ‘strong’ interac-
tions. The term —iquG‘;" is a kinetic term describing the free motion of the gluons,

the SU(3)c gauge bosons. A more detailed explanation of the standard model La-

grangian together with definitions of the various parameters and fields can be found
in standard text books such as [63,.64, 65, 66).
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The SU(3)¢ and SU(2) symmetry groups described by Eqn. 2.1 are inherently
non-Abelian. Terms may be written down in Lgps which are proportional to the

commutators of the gauge fields and which consequently describe interactions be-
tween these fields. The non-zero values of the commutators of the SU(3)¢ and
SU(2), gauge fields lead in this way to self couplings for the QCD and electroweak
gauge bosons. This has a particularly marked effect in the SU(3)¢c sector where
the QCD coupling strength «, increases significantly (‘runs’) towards low energy.
This causes low energy QCD interactions between the quarks to be characterised

by a web of strongly self coupling gluons. This is believed to be the origin of the

‘confinement’ which causes all quarks and gluons to be bound in states with no net
QCD (colour) charge [66].

The existence of the Higgs sector in Eqn. 2.1 was proposed in order to account
for the observed masses of the W* and Z° gauge bosons. The requirement of

perturbative renormalisability forces their masses to be identically zero at tree level,
however it was found that by introducing a scalar field (the Higgs field) with non-

zero vacuum expectation value (v.e.v.) this problem could be circumvented {64].
The quanta of the Higgs field, the Higgs bosons, couple to the gauge bosons at one
loop and higher orders and thereby give them effective masses [59] (Fig. 2.1).
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Figure 2.1: A loop diagram contributing to the Higgs mechanism giving masses to
the gauge bosons (in this case the Z°).

2.2.2 Deficiencies in the Standard Model

As it stands the standard model of particle physics has been supremely successful

at explaining almost everything observed in particle physics experiments. It does
contain deficiencies however and must only be regarded as an effective model at the
energies currently accessible. In particular it does not explain the origins of the 19
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free parameters which appear in the standard model Lagrangian (Eqn. 2.1). One
would expect the values of these parameters to be determined by new physics at

some higher energy at which the standard model breaks down. Any candidate for a
'Theory of Everything’ (TOE) must also include gravity as described by the Einstein
field equations (Eqn. 1.2). The standard model clearly does not fulfill this criterion
and neither does any other finite renormalisable quantum field theory [66].

One other deficiency found within the standard model is that the mass of the
Higgs scalar cannot be protected from large corrections arising from its coupling to
virtual fermionic loops (Fig. 2.2). These cause its mass to diverge quadratically as
the renormalisation scale of the theory is raised to the point at which new physics

comes into play (assumed to be the GUT scale) [59]. This is clearly a problem if
one wishes the standard model to be finite and divergence free.

=)

Figure 2.2: A fermionic loop contributing to the quadratic divergence of the Higgs
mass in the standard model.

This phenomenon of divergent scalar masses is at the heart of the standard model
gauge ‘hierarchy’ problem. This arises from the fact that the energy scale associated

with the electroweak interaction is O(100 GeV) while the GUT scale is @(10'° GeV).

Since one expects low energy (electroweak scale) physics to be derivable from physics
at higher energies it is desirable for these energy scales to be somehow related. Such
a relationship or ‘hierarchy’ is extremely difficult to establish however, since higher
order effects involving scalar fields with divergent masses always conspire to drive the
masses of the electroweak bosons to the GUT scale, even if the required electroweak-
GUT scale hierarchy is imposed order by order [67]. A grand unified theory avoiding
this problem would require impossible degrees of fine tuning of the initial parameters
and this is believed to be unphysical [67].

There are several proposals to remove these inconsistencies [59, 72] but the most
likely from both an experimental and theoretical point of view is thought to be
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supersymmetry.

2.3 Supersymmetry

2.3.1 Motivations for Supersymmetry

Supersymmetry (SUSY) is a symmetry connecting bosons and fermions [46, 67, 68,
69]. The effect of the four Majorana spin 1/2 hermitian generators Q, of the simplest

SUSY transformations is to interchange fermionic (F') and bosonic (B) spin states
[67]:
Q.|F >=|B >, Qa|B>=|F>. (2.2)

Together with Poincaré symmetry (the generalisation of Lorentz symmetry for ar-
bitrary transformations of spacetime) and local gauge symmetry (symmetry un-
der arbitrary field transformations at each point in spacetime) SUSY forms one of
the few possible fundamental continuous symmetries which may be possessed by

a Lagrangian. The generators ), commute with the four momenta p* but satisty
anticommutation relations with each other {59]:

{Qa,Qs} = =2 (’7}1).&5 ", (2.3)

where the -, are the Dirac gamma matrices. The dependence of the anticommutator

upon the particle momentum has led to SUSY transformations being described as
the ‘square root’ of translations. Herein lies one of the ‘miracles’ of SUSY since the
generators (., thus have a direct relationship with the generators of the Lorentz

symmetry [59]. This apparently contradicts the Coleman-Mandula theorem [66]
forbidding just such a combination of spacetime and internal (here spin) symmetries.

The mechanism by which SUSY is able to circumvent the Coleman-Mandula theorem

in this way is that the () are Grassmann (anticommuting) variables, whereas in the

Lie algebras describing conventional field theories the generators all commute with
one another [67].

The circumvention of the Coleman-Mandula theorem opens up the way for the
construction of a quantum theory of gravity [66]. If supersymmetry is local, i.e.
Qa = Qa(z,), then SUSY provides a connection with the generators of the Poincaré
algebra describing arbitrary spacetime transformations [67]. Although still diver-
gent, locally supersymmetric quantum field theories (‘supergravity’ or ‘SUGRA’
theories) suffer from less serious renormalisation problems than non-supersymmetric

quantum gravity models {66]. For this reason most current proposals for finite, non-

perturbative quantum theories of gravity based upon non-trivial extended spacetime
geometries have local supersymmetry at their heart.
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The predominant effect of SUSY on low energy (electroweak scale) physics is to
double the number of particles found in nature. In any N = 1! SUSY model each

particle, including the Higgs particles (of which there are two doublets in SUSY),
has a partner with the same quantum numbers (except for spin). The partners of
the fermions such as the squarks®? are Majorana scalar bosons while the partners
of the bosons such as the photino and Higgsino are spin 1/2 Majorana fermions.
Simple SUSY models require the masses of these particles to be identical to those of
their SM partners but if this were the case then the SUSY partners would already
have been discovered. Resolution of this problem lies in the low energy breaking

of supersymmetry such that the partners have much higher masses. The precise
mechanism which governs SUSY breaking is currently unknown. It seems likely

that it occurs in some ‘hidden’ sector of the theory which can interact with the

SM particles only through gravitational interactions. This hidden sector occurs
naturally in some quantum theories of gravity [59].

- - - - + ----#‘J---- ——

Figure 2.3: The cancellation of fermionic corrections to the Higgs mass by the scalar
fermions (f) loops in SUSY.

Assuming that SUSY is broken at or near the electroweak scale at energies

O(TeV) vastly increases the complexity of the standard model Lagrangian (Eqn. 2.1).
Many more terms are now permitted by the requirement of perturbative renormalis-
ability. In particular since the SM bosons(fermions) now have fermion(boson) part-

ners these too can participate in loop diagrams. Fermion(boson) contributions to

matrix elements have an overall minus sign relative to boson(fermion) contributions
and so the overall effect of this is to cancel the SM contributions thus rendering many

perturbative calculations divergence free (Fig. 2.3). This solves the gauge hierarchy

1N extended SUSY models may be constructed with N sets of generators Q. Only N = 1

global SUSY models are phenomenologically acceptable although N > 1 is possible for locally
supersymmetric theories [59].

2The names of the partners of the SM fermions(bosons) consist of the fermion(boson) names
prefixed(suffixed) with ‘s’(‘ino’).
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problem (§2.2.2) and allows a mass to be predicted for the Higgs (m), < 146 GeV/c?
[59]) which is broadly consistent with experimental bounds from direct detection
and precision electroweak measurements at LEP and elsewhere [73] (Fig. 2.4).
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Figure 2.4: Constraints on the standard model Higgs mass from LEP2 data. The
dark grey band is the relative x* of a fit to precision electroweak data plotted as a
function of the Higgs mass (requires my < 280 GeV/c* at 95% C.L.). The full and

dotted lines are the relative x* curves for different assumed values of a. The grey
region 13 ezcluded by direct searches. Taken from [73].

Another consequence of electroweak scale SUSY breaking is that it changes the
rate at which the three SM gauge couplings ‘run’ with energy. If grand unification
occurs at some large energy scale then one would expect all three couplings to
have the same strength at this energy, signifying that the SU(3)c, SU(2). and
U(1)y groups have been absorbed into a larger GUT group. The renormalisation
group equations can be used to evolve the measured values of these couplings at
the electroweak scale up to higher energies, however when this is done it is found
that they do not meet at a single point [59]. The incorporation of supersymmetry
into GUT's changes the running of the couplings by just the right amount to give
unification at a single higher energy of approximately 101® GeV ([74] Fig. 2.5). This
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is a remarkable achievement given that the evolution occurs over a range in energy
of some fourteen orders of magnitude.
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Figure 2.5: The unification of gauge couplings with (heavy bands) and without (dotted
lines) supersymmeltry. Inverse couplings (strong, electromagnetic, weak) are plotted

as functions of log)o(Q) where Q is the energy scale. Taken from [7{].

The inclusion of SUSY within the grand unified theories themselves has addi-
tional benefits. Generically GUTSs predict that the proton has a finite lifetime owing
to decay through the exchange of GUT scale baryon number violating X bosons.
Owing to the high mass of these bosons the process is extremely rare, with a proton
lifetime considerably in excess of the age of the universe. Searches for proton decay
therefore typically use a sample of 2, 10** protons in which statistically one may de-
cay in a time O(1 year). Limits on the proton lifetime set in this way are in conflict
with many GUT estimates and rule out a large class of models, in particular those
based upon the gauge group SU(5) {63]. The situation can be remedied by consid-
ering SUSY GUTSs, which in general predict a higher unification scale and hence a
proton lifetime which is at least a factor of ten greater than the non-SUSY SU(5)
expectation and no longer in conflict with experimental bounds [74]. In addition
the most probable decay mode is no longer p — 7%t but p — K *y., on which
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the experimental limits are far less severe [67].

2.3.2 The MSSM

Despite the many successes of supersymmetry there are still problems associated
with SUSY extensions of the standard model. A major disadvantage is that the
number of parameters required to describe the model is greatly increased. In the
most simple model, the Minimal Supersymmetric extension of the Standard Model
(MSSM), a further 63 free parameters are required in addition to the 19 appearing
within the standard model [46].

Of the 63 extra free parameters 57 arise due to sfermion masses and mixings.
In the MSSM the partners of the helicity eigenstates of the charged SM fermions
are separate, distinct spin O eigenstates of the weak interaction. These states mix
to form the physical mass eigenstates with mixing matrices containing angles and
masses which are free parameters of the model. In the squark sector mixing also
occurs between QCD (colour) eigenstates. The contributions of the these different

sfermion components to the mass eigenstates can be determined by diagonalising
the mass matrices [46].

The partners of the SM bosons are also mixed to form distinct mass eigenstates
of particular charge and quantum number. The partners of the charged Higgs and

gauge bosons mix to form four ‘charginos’ (52{:,2)3 while the partners of the gluons
mix to form ‘gluinos’ and the partners of the uncharged Higgs and gauge bosons
(Higgsinos and gauginos) mix to form four ‘neutralinos’ (¥?, i =1,...,4):

% = faWs + faB® + fia HY + fi HY (2.4)

The parameters appearing in the mass matrices (f;; for the neutralinos) include
three gaugino mass parameters M), M, and Mj, a Higgsino mass parameter i and
the ratio of the SUSY Higgs v.e.v.s, tan 8. A basis is often chosen in which the
final free parameter is taken to be the mass of the pseudoscalar SUSY Higgs, m 4.
The total number of free parameters is then 63 as required. Sparticle contributions
to mass eigenstates can again be determined by diagonalising the appropriate mass
matrices [46].

The number of free parameters contained within the MSSM may be reduced
slightly by requiring the unification of gaugino masses at the GUT scale. This
allows the following relationship between M; and M, to be derived 46}

Ml — "3"M2 tan ewﬁ-— '2"M2a (25)
3t is conventional to denote SUSY states with a tilde e.g. ji for the smuon.
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where 0, is the Weinberg angle. Further reduction comes from the use of rela-
tionships derived within SUGRA. The model can then be described by just 5 free
parameters. In one particular basis these may be taken to be: m;j; the common
gaugino mass, mg the common scalar mass, Ao the common trilinear coupling, tan

and sign(p). This model is known as the minimal Supergravity model (mSUGRA)
[46].

2.3.3 R Parity

Another disadvantage of incorporating SUSY into the standard model is the catas-

trophic violation of lepton and baryon number by virtual SUSY interactions. It is
known from the stringent experimental limits on proton decay mentioned previously

(§2.3.1) that baryon number is almost exactly conserved and similar limits exist on

lepton number violating processes. In the SUSY version of Eqn. 2.1 there are terms
which can lead to violation of these bounds {75]:

Lp, = XijkL;L;E) + AijkL;Q,-Dk + /\;}kU,-UjDk (2.6)

where L(Q) are the lepton(quark) doublet superfields, D and U are the down like and
up like quark superfields, E is the lepton singlet superfield, A, A’ and A" are Yukawa

couplings and 1, j, k = 1,2, 3 are generation indices [75]. The Yukawa couplings can
be set to zero, thereby avoiding lepton and baryon number violation, by imposing a

new discrete multiplicative symmetry known as R parity which separates particles
and sparticles and is defined as

-Rp —_ (_1)3B+2S+L, (27)

where B, L and S are baryon number, lepton number and spin respectively. In
alternative scenarios the proton lifetime can be protected by imposing weaker con-
servation laws on either baryon number or lepton number separately. In these R
parity violating models however there are generally processes which act to wash out
the matter-antimatter asymmetry created during baryogenesis in the early universe
[76]. Thus, unless baryogenesis occurs through some non-standard mechanism, the R

parity violating Yukawa couplings in Eqn. 2.6 must be extremely small. Henceforth
they will be assumed to be sufficiently small to be cosmologically insignificant.

Phenomenologically one of the key consequences of R parity conservation is that
all SUSY particles are created and annihilated in pairs. This in turn leads to the fact

that the Lightest Supersymmetric Particle (LSP) is stable and is hence potentially
a candidate for the dark matter.
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2.4 Supersymmetric Dark Matter Candidates

From the considerations of §1.5.2 the LSP must be colourless and uncharged to form
a viable dark matter candidate. In most SUSY models this condition is naturally
satisfied. The LSPs appearing in a variety of models will now be discussed.

Gluinos and Sneutrinos

In the MSSM there is a small region of parameter space currently not excluded by
experiment where the LSP could be a light gluino ( 2 GeV/c* S m; < 4 GeV/c?).
This could evade the constraint from heavy proton searches (§1.5.2) by forming
neutral hadrons incapable of binding to conventional baryonic matter. The scenario
is being excluded rapidly however by accelerator searches [77]. It is also just possible

that the sneutrino could be the LSP but this possibility too is strongly constrained
by experiment [46].

Neutralinos

By contrast the lightest neutralino (¥j) forms the LSP over large regions of uncon-
strained MSSM parameter space. By requiring that SUSY solves the gauge hierarchy
problem the mass of this particle is generally found to lie in the range 10 GeV/c?

< mgo S 10* GeV/c?. This mass range taken together with the predicted %? self
annihilation cross section leads to relic LSP neutralinos having a density parameter
Q5 of order unity [59]. This is a remarkable coincidence, given that SUSY was pro-
posed quite independently of the dark matter problem, and it has led many people
to regard the lightest neutralino as the most likely CDM candidate.

Gravitinos

In the MSSM SUSY breaking in the hidden sector (§2.3.1) is communicated to
the SM particles via gravitational interactions. Models do exist however where
the communication is via the SM gauge bosons. In these ‘gauge mediated’ models
the gravitino, the spin 3/2 partner of the spin 2 graviton appearing in SUGRA,
can be extremely light (m3/; ~ keV/c?) and hence a candidate for the LSP [78].
This scenario has received considerable theoretical attention recently due to the
observation of an anomalous event at CDF which could be interpreted as involving
gravitino production {79]. There are problems with such an interpretation however
[79] and in any case recent experiments at LEP have almost excluded the regions

of parameter space required by the event [80]. Gravitino LSPs would couple very
weakly to baryonic matter preventing direct detection in any conceivable dark matter
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search experiment. Luckily for dark matter experiments however the gravitino in

conventional SUSY models has a mass very much greater than that of the partners
of the SM particles and thus cannot be the LSP.

Axinos

Still more exotic models incorporating axions into SUSY naturally predict a light
axino LSP with m; ~ 100 GeV/c? [2]. Together with the axion this could provide
sufficient dark matter to close the universe. The properties of a relic axino LSP
would in general be similar to those of a neutralino LSP [2].

2.5 Collider Neutralino Searches

Given the current theoretical interest in the neutralino in particular as a dark matter

candidate the bounds on the neutralino mass and other SUSY parameters which can
be set by current and future collider experiments will now be considered.

Figure 2.6: The tree level diagram for the plrocess ete™ — x1xi7-

2.5.1 Neutralino Mass Limits

Limits on the mass of the lightest neutralino are currently being set by experiments
at lepton colliders such as LEP. It is not usually possible to search for direct s
channel X} production as the neutralinos escape from the detector without causing
it to trigger. A search is nonetheless possible in the case where initial state radiation
is emitted (Fig. 2.6), however the signal is expected to be dwarfed by an irreducible

background from the process e¥e™ — viy. Limits must consequently be set by
using the null results of searches for other SUSY particles such as the charginos
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and the next to lightest neutralino (x3). These searches exclude various regions of
MSSM parameter space and by using model dependent MSSM mass relations the
mass of the X} can be constrained. Using this technique with LEP2 data acquired
at energies < 183 GeV and taking into account Higgs mass limits, cosmological
arguments (over closure of the universe) and radiative corrections, the minimum
allowed value of my is 42 GeV/c? [81]. This limit can be expected to increase
steadily over the next few years as LEP energies are increased. This data also

practically rules out a pure Higgsino neutralino, favouring instead states dominated
by the gaugino contributions [81].

2.5.2 Discovery Potential

In [82] a survey was performed of mSUGRA parameter space comparing the discov-
ery potentials of collider searches and direct search WIMP dark matter experiments

(§1.5.2). The results suggest that in large regions of parameter space the direct de-
tection rates are potentially at observable levels (> 10~ kg~'day~!). For large tan 3

(> 10) the regions of parameter space accessible to these experiments are greater

than those accessible to collider experiments at LEP2 and the Tevatron (Run II)
(Fig. 2.7 overleaf). Given the recent evidence from LEP2 Higgs searches that tan 3

is large (e.g. [83]) it seems likely that direct search WIMP dark matter experiments

can set the best limits on mSUGRA parameter space, at least until the LHC comes
on line in 2005.

In the event that strongly interacting SUSY particles such as squarks or gluinos

are discovered at a collider experiment then subsequent determination of the MSSM
parameters could be used to infer the neutralino mass. It is however extremely

difficult in such circumstances to determine the masses of any of the SUSY states
directly in a model independent manner. This is because all SUSY events contain at
least two X7 in the final state due to the requirement of R parity conservation. This
prevents kinematic reconstruction of the masses of the neutralinos which have been
produced. In a lepton collider the masses of some of the other sparticles which have
been produced may be determined by a dedicated threshold scan but in a hadron
collider such as the Tevatron or LHC even this is not possible. Should neutralino
dark matter be discovered on the other hand it may be possible to use the results
of direct or indirect search experiments to measure the ¥ mass directly, using the

results of §3. This is an additional reason to pursue such experiments, even if SUSY
is first discovered at a collider.
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Figure 2.7: A contour plot of mSUGRA discovery potential in collider experiments
and direct search WIMP dark matter experiments for nSUGRA parameters Ag = 0,
tanfB = 10, and (a) p < 0 or (b) p > 0. The regions labelled ‘TH’ and ‘EX’ are
ezcluded by theory and ezperiment respectively. The dash-dotted line surrounds the
region where 0.15 < Q, < 0.4 as required for some mized dark matter scenarios.
‘MI’ and ‘LEP2’ represent the discovery potential of the Tevatron (Run II Main

Injector) and LEP2 respectively. Also plotied is the region excluded by the measured
BR(b — sv). Taken from [82].

2.6 Conclusions

The standard model of particle physics has been supremely successful at explaining
the observed interactions of matter and energy on the smallest scales. There are
inconsistencies contained within it however and these may be resolved through the

introduction of the concept of supersymmetry. Many supersymmetric theories nat-

urally contain dark matter candidates, the properties of which can be constrained
by current and future collider experiments.
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the sensitivity of the experiment. This energy spectrum may be decomposed into a
number of factors:

jﬁ = Ro-;M (EL,E,,).; f(A).G:(A, ER).S(A, ER).F*(A, Eg).I(4). (3.1)

Here dR/dE, is the differential rate of nuclear recoil events of energy E, observed
in the detector and the other factors are as follows:

e A fundamental interaction rate Ry proportional to the zero momentum transfer
WIMP scattering cross section og (§3.3).

e A detector response matrix element M(E;, E,) taking into account statisti-

cal detector effects such as finite energy resolution and event identification
efficiency (§3.6).

e A mass fraction f(A) of element A in the target material (§3.5).

e A nuclear recoil relative energy detection efficiency factor G,(A, Er) describing

the proportion of deposited recoil energy Er which can be observed by the
detector (§3.5).

e A ‘spectral’ function S(A, Eg) ~ exp(—Egr/Eqr) (Ey, r constants) containing
the kinematics of the WIMP-nucleus scattering process (§3.4).

e A form factor F*(A, Er) accounting for reduction in nuclear coherence due to
finite nuclear size (§3.3).

o A coupling enhancement factor I(A) containing model dependent quantities
leading to enhancements or reductions in the scattering rate for specific nuclei

(§3.3).

Although Eqn. 3.1 describes the expected energy spectrum of signal events in a

direct search experiment, the energy spectrum of events which is actually observed
also contains another contribution due to background events. Background may be
caused by a number of different processes. The principal sources are:

o Nuclear recoil events caused by the scattering of naturally occurring neutrons.

For the most part the neutrons come from U and Th chain decays within the
detector and its surroundings and from spallation by cosmic ray muons.

e Electron recoils caused by low energy beta or gamma decays within the de-
tector or the Compton scattering of naturally occurring high energy gamimas.
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Figure 3.1: Simulated electron recoil background from the “°*K 1460 keV line. The

compton continuum was stmulated using Eqn. 8.2. Note the Compton ‘edge’ at 1248
keV as predicted by Eqn 3.3.

At low energy the Compton process dominates and the electron recoil energy
spectrum is given to a good approximation by [85]

2,2 4 .
dR, . _}_2_ 2+ — E2m?c . E, (E, — 2mc?) |
dE, E2 E2(E, - E,) E,(E, - E,)

where E, is the energy of the incident photon, E, is the energy of the recoiling

electron and m is the electron mass. This gives a reasonably flat spectrum
extending from a maximum energy of

(3.2)

2E2
Eymaz = ——5—n0r .
mc? + 2E,’ (3-3)
down to zero energy (Fig. 3.1).

3.2.2 Design Considerations

The need to maximise the signal event rate dR/dE, drives the design of all direct
search dark matter experiments. The main features of Eqn. 3.1 which must then be
taken into account when optimising detector design are the following:

¢ The fundamental WIMP interaction rate Ry is predicted to be extremely small

(<1 /kg/day), requiring massive, stable detectors capable of running over long
periods of time.
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e The predicted values of Ry are also smaller than the rate of background nu-
clear and electron recoil events in the detector. Consequently these events
must be removed by the use of physical shielding (including the installation of
experiments deep underground to remove cosmic ray induced nuclear recoils),
detector components of high radiopurity and possibly also electron recoil back-
ground discrimination techniques. The latter in particular can have an adverse

effect on the response matrix M due to a reduction in event identification ef-
ficiency. This effect must also be minimised.

e The observed energy spectrum is predicted to be very soft. This is because
both S(A, Er) and F*(A, Er) fall rapidly with increasing recoil energy Ep,
while G;(A, ER) is often small (e.g. < 30 % for most scintillator targets). A
high detector visible energy threshold (incorporated within M(E!, E,)) can
thus prevent a detector from triggering on the majority of signal events. De-

tectors can be designed which have G,(A, ER) of order unity (e.g. bolometers)
and which can hence observe more of the signal energy spectrum however

these often have poor background discrimination properties. The detector
visible energy threshold must therefore be as low as possible.

e The coupling enhancement factor J(A4) can vary over several orders of magni-
tude for different nuclei thereby affecting the total observed event rate. The
consequent need to maximise this quantity thus governs the choice of target

nucleus and hence target material (via f(A)). Depending upon the form of the
WIMP-nucleus interaction which is being investigated (spin dependent or spin

independent §3.3) either high spin or high A (heavy) nuclei may be favoured.

e The spectral function S(A,FEg) contains a time dependent component due
to variation in the velocity of earth borne detectors relative to the galactic
WIMP halo. This component causes a small annual modulation (< 10%) in
the observed signal event rate and this can be used to identify the signal against
a considerable rate of background events (assuming these are unmodulated).

In order to do this however still larger detectors are required so as to minimise
the effects of counting statistics.

3.2.3 Direct Detection Techniques

The current world status of direct search WIMP dark matter experiments is sum-

marised in Table 3.1 (overleaf). Some of the more widely used techniques for max-
imising dR/dE, and hence sensitivity to WIMPs will now be discussed.
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(Wame | Gowion | ¥ () | Nucles | Dic. | Status

UKDMC-Nal(Tl) | Boulby (UK) |20 [Nl | + | R
UKDMO-NaIAD | Boulby (UK) [ ~100 [Nal | o | P
[UKDMOUVS | Boulby (UK) [~ _[Nal | o | P
UKDMCIXe |Boulby (UK) |62 [Xe | o | F
[ UKDMCZEPLIN | Boulby (0K) __ [200 [Xe | o | P
[GASPAR | Boulby (0K) |04z [FCa | o | ¥
[DRIFT  [BoulbyOK) (<1 _[Xe | » [ P
DAMANGl [ GranSesso (1) [ 1155 | Nal | o | R
DAVAXe | GranSaso(l) |65 [Xe | o | R
[ADMS_ [GranSaso(®) _[035 [Ge | | F
[GENIUS | GranSeso () |10 [Ge | | P
[ORESST | GranSaso (1) (10 [A0 | | 7
Vilmo | GrawSaso(  [136 [Te0 | + | R
"ODMS [ SLAG/Souden (U9)[10_[Ge | = | F _
ODMS | SLAC/Soudwn (U5) {10 [§i |+ | F
'EDELWESS _ [ISM(m) (008 [Ge | « | F

[EDELWEISS _ [TSM(F) (00w (Ao | | R
[Zaragows | Confrone (59) 324 [Nal | | R

[SALOPARD | Canfranc (5p) 001 [8n | = | F
[ELEGANTS V| Kemioka (Tap) [ 760 [Nal | | R
| FLEGANTS VI_| Kemioka (Tap) |29 [FCa | | F
Tokyo | Nokogiriyama (ap) [024 [ Fii | = | F_
[Baksan  [Balow (F50) |17 [Ge || R
[DEMOS | TANDAR (A 10 [Ge | [ R

[ORPHEUS __ [Bem(CH) (12 [sa | = [ F
Mica  [Ambest (05 [<07[s [+ | R
SMPE  [Pes o1 [F [+ | P

Table 3.1: Current and planned direct detection experiments world wide. ‘Disc.’
refers to the ability of a detector to discriminate against background. Under ‘status’,

‘R’ means running, ‘F’ means funded and ‘P’ means proposed. For references on
these ezperiments see e.g. [86] or [87].
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The first limits on WIMP dark matter were set by germanium ionisation de-

tectors originally used for searching for double beta decay. These detectors offer
the advantage of low energy threshold and high radiopurity however they provide
no electron recoil background discrimination. Other experiments use crystals such
as Al,O3 operated at cryogenic temperatures as the target and detect the thérﬁlal J
phonons emitted by a recoiling particle using superconducting transition edge ther-

mometers. This technique has the advantage that the recoil energy threshold is still
lower than that for ionisation detectors (< 1 keV due to G.(A, Egr) ~ 1) while the
detector radiopurity may also be better. On the other hand nuclei such as Al and

O possess poor spin dependent and spin independent coupling enhancement factors

(§3.3) and again there is little evidence that the technique can provide electron recoil
background discrimination.

Several collaborations make use of crystals of Si or Ge operated at cryogenic
temperatures. These hybrid devices detect both the ionisation and phonons pro-

duced by a recoil. The ratio of signals in the ionisation and phonon channels for a
given event depends sensitively on whether the event is due to a nuclear or electron
recoil and hence excellent discrimination can be obtained. These experiments are

nevertheless extremely difficult and in the past have been plagued by unexpected

background problems. The first low background results from these detectors are
still awaited.

Of all the detectors currently in operation the most effective are those using
scintillators. The recoil of a nucleus or electron through a scintillator causes it to

emit light which can then be detected using photomultiplier tubes (§4.3.2) or other
sensitive photodetectors. The scintillator itself can be either a solid (e.g. NaI(Tl) or

CaF,(Eu)) or a liquid (e.g. dioxan or Liquid Xenon - LXe). Scintillation materials
can easily be purified to reduce the background electron recoil rate and with good

light collection they can give a detector energy threshold as low as that of ionisa-
tion detectors. They may also contain heavy. nuclei such as iodine or xenon with
large spin independent coupling enhancement factors I,; or nuclei such as fluorine
with large spin dependent coupling enhancements factors I,4 (§3.3). Furthermore,
in some scintillators it is possible to discriminate signal from electron recoil back-
ground by examining the precise time spectrum of the pulse of scintillation light
from an event (‘Pulse Shape Discrimination’). The pulse shape differences required
may be intrinsic to the scintillator, as in the case of NaI(Tl) (§4.2.2 and §8), or
alternatively engineered into it, as in the case of the CASPAR detector (§4.2.4 and

§7). The U.K. Dark Matter Collaboration (UKDMC) currently operates Nal(TI)
WIMP dark matter detectors, and is also involved in developing several other types
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Figure 3.2: Cross section limits from a 6.2 kg UKDMC Nal(Tl) detector. Figure (a)
shows the limits on spin dependent cross section and WIMP mass, Figure (b) the
limits on spin independent cross section and WIMP mass. In both cases the dashed
and dotted curves represent the contributions from individual nuclei, and the full
curves the combined limits. The regions above the curves are excluded. The charac-
teristic minima in the single element curves lie at WIMP masses determined by the
mass of the target nuclei (through kinematics) and the finite detector visible energy
threshold (which decreases the sensitwity to light WIMPs). The curves have been
calculated using the data of [88] and form factors and coherence factors described in

§3.3. The curves have been normalised to WIMP-nucleon cross sections as described
in §3.7.
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of scintillator detector. The most recent limits on WIMP mass and cross section set
by an operational UKDMC Nal(T1) detector are plotted in Fig. 3.2.
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Figure 3.3: Spin independent cross section data from the DAMA-Nal0 experiment.
The curve is the best previous limit from DAMA-Nal0 and DAMA-Xe0 data while

the hatched area is the allowed region from an annual modulation analysis of 4549

kg.days of Nal(Tl) data. The lefthand edge of the shaded region is excluded by
accelerator SUSY searches (§2.5). Taken from [89].

Bulk NaI(Tl) crystal scintillator detectors are also operated by the DAMA col-

laboration at Gran Sasso (Italy) [89]. 4590 kg.days of data from an array of nine
9.7 kg crystals have been analysed to search for the annual modulation expected in
the signal rate. The observation of a small modulation in data from some of the

crystals has been taken as evidence for a WIMP signal consistent with the hatched
region of parameter space in Fig. 3.3. Critics of DAMA however point out that the
data was collected over just two short summer and winter periods (1185.2 kg.days
and 3363.8 kg.days respectively) and therefore cannot be used to demonstrate that
the modulation is annual. Furthermore the modulation is only seen in three of the
nine crystals in the array {90]. Without the use of pulse shape discrimination it is
uncertain whether the ‘signal’ is caused by a modulation in noise, background events

or detector performance rather than in a population of nuclear recoils. More work
1S needed.

The limits from all direct search experiments, including those plotted in Fig. 3.2
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and Fig. 3.3, are calculated from observed visible energy spectra using Eqn. 3.1. It

is appropriate therefore that the different terms in this equation now be investigated
in more detail.

3.3 Couplings, Cross Sections and Form Factors

At the most fundamental level the magnitude of an observed nuclear recoil energy
spectrum is related to the total event rate and hence to the WIMP scattering cross
section o. This cross section may be calculated to high accuracy by considering
the full set of tree level and in some cases one loop diagrams responsible [46]. In
the MSSM (§2.3.2) the cross section may include terms due to Z°, Higgs or squark
exchange, with the relative magnitudes of these terms depending upon the precise
constituents of the WIMP (here assumed to be the neutralino).

The relative magnitudes of the different scattering diagrams determine whether
the interaction is predominantly with the spin of the nucleus or its mass. This
feature of WIMP scattering spectra is in general quantified by dealing with two
separate cross sections due to the spin dependent (axial vector) and spin independent
(scalar) contributions. When calculating the limits set by a particular experiment it
is usual to quote limits on both spin dependent and spin independent cross sections,
taking into account the different sensitivities of the target nuclei to the different

interactions. If a signal is observed then the situation is somewhat different and
the fractional contribution of the two interactions to the total cross section may be
considered a free parameter to be determined from the data.

3.3.1 Spin Dependent Neutralino Interactions

Zero Momentum Transfer

In the MSSM the spin dependent neutralino scattering cross section is characterised
by axial vector couplings arising at tree level from ¢ channel Z° exchange and s
channel squark exchange (Fig. 3.4 overleaf). The appropriate Feynman rules give the

following matrix element M; ; for the scattering of quark species i from neutralino
component sparticle j [46]:

M = di3D;7,YsDi 0" 154;. (3.4)

for an effective coupling d; ; and quark and sparticle fields g; and 5; respectively. In

the non-relativistic limit the sparticle term p;7,7sp; reduces to 2S; for sparticle spin
vector S; [91] and likewise the quark term gi7#7°¢; reduces to 2S; for quark spin
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X iy

Figure 3.4: Tree level diagrams contributing to spin dependent neutralino-nucleus
scattering.

vector S;. The expectation value of S; within the nucleon may be approximated by

S..Ag; [92] where Ag; is the fraction of nucleon spin carried by quark 1 (determined
from DIS data and nuclear theory).

In order to proceed further an explicit sparticle composition of the neutralino
must be assumed, as this governs the form of d;;. In the case of a pure photino
neutralino the propagator is predominantly a squark and d; ; x Q? (= D;5) for quark
charge Q;. In the pure Higgsino case on the other hand the propagator is mainly
a Z° and d;j; « T? (= D;j;) where T} is the third component of quark isospin.

Denoting the constants of proportionality by d; the following may be written quite
generally (in analogy to {92]):

< nucleon|M; ;|nucleon >= 4d;S;.S, Z D; iAg;. (3.5)
$

The Wigner-Eckardt theorem can now be used to relate this expression to the
equivalent nuclear matrix element [91]. The theorem states that the expectation
value of the nucleon spin S, over the nucleus is equal to the expectation value of the
nuclear spin J multiplied by some constant A. This expression must be determined
from a suitable nuclear model, with the early single unpaired nucleon estimates now
superceded by more sophisticated odd group model calculations. Using this result,

taking the square of the expectation value and summing over initial and averaging
over final spin states the following cross section is obtained [92]:

2
4
o = =wNJI(J +1)dj (Z :Di,jA(Ii)

0o0-ds4. (3.6)
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Here I,4 is a spin dependent coupling enhancement factor containing all the spin

dependence of the cross section, oy is a ‘raw’ cross section and u is the reduced mass
of the neutralino-nucleus system given by

Mp My
= e, 3.7

for target nucleus mass M7 and neutralino (WIMP) mass Mp. The proportionality
of o to u? is a general feature of all WIMP-nucleon cross sections, coming from the

kinematics of the interaction.

It is usual to treat the sum in Eqn. 3.6 as a single constant C. Hence by assuming
a particular neutralino composition all model dependent differences in cross section
between target nuclei are contained within the spin dependent coupling enhancement
factor I,y = C%)X2J(J + 1)). When evaluating C? the calculation can be simplified
considerably by assuming that only the unpaired nucleon in the nucleus participates
in the interaction (as in the single unpaired nucleon model). Experimental limits

for a particular nuclear target are generally normalised to the equivalent WIMP-

nucleon cross section rather than expressed in terms of the fundamental MSSM
parameters and so only the ratios of the C? and the A2J(J + 1) for nuclei and

nucleons are required. This has the additional benefit of removing the need to know
d; ; explicitly.

Non-Zero Momentum Transfer

In extrapolating from a neutralino-quark matrix element to a neutralino-nucleus ma-

trix element the above argument implicitly assumes that the scattering is coherent.
This is true in the limit of zero momentum transfer ¢, as in this case the propagator

has insufficient momentum to resolve the nucleons or quarks contained within the

nucleus. At higher values of ¢ however this is no longer true and the cross section
should be multiplied by a form factor correction F?(q) < 1:

g = Go.Isd.Fz (q) (3.8)

At the Born level the form factor is merely the Fourier transform of the nuclear
density distribution p(r), reflecting the probability of scattering from a particular

point, i.e. [84]
& o) = 2
(./ p(r)e‘q'rd3f)

(54.&’1 [o T sin(q'r)p(r)dr)2 , (3.9)

F*(q)
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for a spherically symmetric density distribution. In the simple case of an interaction

with a single unpaired nucleon the appropriate density distribution is a thin shell of
nuclear radius r, = 1.0A'/3 fm. The form factor is then [84]

Fz(q) = jg(qrn) .
sin(gry)
( qTn ) . (3.10)

In the more realistic case of an odd group nucleus, calculations indicate that at least

the first zero in the Bessel function is filled [88, 84| giving an empirical form factor
of

Fz(Q) = jg(qrn)

. 2
(sm(qrn)) (qra < 2.55, ¢qrn, > 4.5),
dTn

Fi(q) = 0.047 (2.55 < gry, < 4.5). (3.11)

When calculating nuclear recoil energy spectra it is often convenient to express

the form factor as a function of recoil energy Er rather than momentum transfer g,
using the relation

. 3MGE;
q - hC ) (3-12)

for a target of mass Mr.

Unified Treatment

The above treatment of the spin dependent scattering cross section relies to a large
extent upon considerably simplified models of the nucleus. This approach is use-

ful for illustrating the underlying physics and estimating detector sensitivity when
more detailed calculations are not available. Cross section calculations have re-

cently reached a much higher degree of sophistication however and it is now possible
to avoid many of the approximations required previously. The calculations gener-

ally proceed in three steps [46] relating to the calculation of the neutralino-quark
matrix elements in terms of the MSSM parameters, the extrapolation to neutralino-

nucleon matrix elements using DIS data and quark models, and the derivation of
the neutralino-nucleus cross section using a detailed nuclear shell model calculation.
These treatments take into account couplings to both protons and neutrons [46],

and the effects of the mixture of sparticles within the neutralino. The result is that
although the calculated cross sections retain the same general form as Eqn. 3.6 the

quantity I4.F?(q) = C?X2J(J + 1)F2(q) no longer factorises to give a form factor
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F*(q) which is independent of MSSM parameters. This makes the publication of
completely model independent limits impossible. It is nevertheless still possible to

define a form factor in which the SUSY model dependency is small thus enabling
meaningful calculations to be performed [93].

In these detailed calculations the explicit form of I,, is {46]

Iig = (Cup < N|Sp|N > 4Cyun < N|S,|N >)° -‘-I-'—"—l, (3.13)

J

where < N|S;|N > is the expectation value of nucleon ¢ over the nucleus and C,,,

and C,, represent the sum in Eqn. 3.6 for neutron and proton scattering respectively.
The corresponding point like nuclear scattering cross section is then [46)

_ 2GR’
B T

) I,d. (3.14)

For non-zero momentum transfer F*(q) is parameterised by [84]

F*(q) = -g-%—g-))-, (3.15)
where [94]
S(q) = a3Soo(q) + a$S11(q) + aga;Se1(q). (3.16)

The isovector and isoscalar coefficients a; and ap are proportional to the d;; or

alternatively the nucleon C? factors and are hence dependent upon the neutralino
composition and MSSM parameters. o9 may be derived from Eqn. 3.14 through the
use of Eqn. 3.6.

In this detailed framework an effective A\2J(J + 1) may be defined using the
following expression [93]

Cwn
Cup

p:
N J(J + )efs = (< N|S,|N > + < N|S,|N >) J—-l—--]:-. (3.17)

J

The squares of the C,; parameters used in these calculations are listed in Table 3.2
while the resulting A2J(J + 1),y are listed in Table 3.3. Form factors derived from
Eqn. 3.15 for iodine and sodium nuclei are plotted as functions of recoil energy Ep
in Fig. 3.5(a). Conversion from ¢ to Eg has been performed using Eqn. 3.12.
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Table 3.2: C? factors estimated from Eqn. 3.6 for different neutralino compositions
w and nucleon targets i. Adapted from Table 4 in [84].
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Table 3.3: A2J(J+1).y for different nuclei and neutralino compositions. From [93].
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Figure 3.5: Form factors for Na and I plotted as functions of recoil energy Ef.
Figure (a) shows the spin dependent form factors from [93] using calculations in

[94]. Figure (b) shows the spin independent form factors calculated using Eqn. 3.20
with ¢ parameters determined from fits to muon-nucleus scattering data [84].
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3.3.2 Spin Independent Neutralino Interactions

In the case of spin independent cross sections the route from elementary matrix
element to neutralino-nucleus cross section is similar to that outlined above. Here

however the calculation is complicated by the contribution to the cross section made
by scalar neutralino-gluon scattering via squark and Higgs exchange at the one loop

level [46]. This may be similar in magnitude to the scalar neutralino-quark contri-
bution due to tree level ¢ channel Higgs exchange and s channel squark exchange

(Fig. 3.6). Vector interactions do not occur due to the Majorana character of the
neutralino [46].

X 4y X T

q q

Figure 3.6: Tree level diagrams contributing to spin independent neutralino-nucleus
scatlering.

The scalar interaction responsible for spin independent interactions traces the
mass distribution of the nucleus. The expectation value of the overall neutralino-
nucleus matrix element is thus proportional to the total nuclear mass due to coher-
ence effects. The cross section for a point like nucleus of atomic mass A is then
proportional to a spin independent coupling enhancement factor I,; = A% [46]:

4 2 £2

4p°f* I,
T

JOIsis (3.18)

)

for generic nucleon coupling parameters f. The spin independent coupling enhance-
ment factor must be modified by a form factor at finite momentum transfer just as

before, however since the coherence is now governed by the nuclear mass rather than
spin distribution the Fourier transform of the mass distribution provides a rather

accurate estimate for F%(q). The simplest approximation is to assume a solid sphere
nucleus of radius r, = 1.14Y3 fm (given constant nuclear mass density), in which
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case [84]:

Fry
[
P
oy
)
|

371(qry) :
( dTn ) .
Mw)(__:qg_;ses_(ﬂr_))_ (3.19)

A better fit to experimental fixed target elastic lepton-nucleon scattering data [95]

is provided by multiplying this expression by an additional term accounting for a
smeared out nuclear density at large radius [96]:

F*(q) = (3jl(qr"))2e"'”, (3.20)

gTn

where s is determined by the fit and is generally ~ 0.9 fm. This form factor 1is
plotted for iodine and sodium (again using Eqn. 3.12) in Fig. 3.5(b).
Detailed calculations of spin independent cross sections including one loop effects

are now available [46] but unlike in the spin dependent case the MSSM model de-
pendency does still seem to be confined to the neutralino-quark coupling and model
independent limits can still be set. The spin independent cross section is found

to vanish for pure gaugino or Higgsino states {84] but is nevertheless significant

and comparable to the spin dependent cross section in large regions of the MSSM
parameter space.

3.3.3 Othelj WIMPs

Direct detection experiments searching for elastic nuclear recoils are sensitive to
WIMPs other than neutralinos. Some consideration must therefore also be given
to the cross sections for the scattering of these particles. One general model en-
countered previously is that incorporating a heavy neutrino (§1.5.2). If this is a
Majorana particle then it has a spin dependent total point like cross section given
by [84]
2G2 .

0= -;542 2 L4, (3.21)

where the I,; and F%(q) are those derived for Higgsino scattering (Z° exchange).

The spin independent cross section is similar to that for neutralinos (Eqn. 3.18) but
with different generic nucleon couplings f.

For a Dirac neutrino the spin dependent cross section is one quarter of that for a
Majorana neutrino {84]. The spin independent scattering of heavy Dirac neutrinos
is governed by vector Z° exchange and traces the nuclear charge distribution [46).
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The point like cross section is given by [84]

2
Gr 2

g = 871'}14“ I,,i. (322)

where the spin independent coupling enhancement factor I,; is

Ii = ((A-2)+ (1 -4sin®6y) 2)°
~ (A-2)%. (3.23)

The distribution of nuclear charge is similar to that of nuclear mass [46] and so

the form factor F*(q) may be approximated by that due to a smeared solid sphere
distribution (Eqn. 3.20), as in the case of neutralino scattering.

In limited regions of MSSM parameter space the LSP is the sneutrino (§2.4) and
in this case owing to the predominance of Z° exchange the sneutrino scattering cross
sections are merely those for the heavy Dirac neutrino multiplied by a factor of four

[84]. All cross sections above may be converted to o through the use of Eqn. 3.6 or
Eqn. 3.18.

3.4 Nuclear Recoil Kinematics

In order to calculate the shape of the nuclear recoil energy spectrum, nuclear recoil
kinematics as well as form factor effects must be taken into account. In the former
case it is the direction of scatter and the magnitude and direction of the WIMP
velocity vector which fix the recoil energy while in the latter it is the magnitude
of the momentum transfer ¢. Having already derived expressions for F?(ER) the

kinematic contribution will now be discussed. The reader is referred to Appendix A
of [84] for a more detailed derivation of the formulae used.

3.4.1 Halo Models

When considering nuclear kinematics a WIMP phase space distribution must first be
assumed as this determines the energies of the incoming WIMPs prior to scattering.
It is generally assumed that the WIMP halo has had sufficient time to virialise in
the potential well of the galaxy [97], although less conventional models are also pos-
sible [98]. In the virial case the distribution is Maxwellian with velocity dispersion
vy determined from the specific dark matter halo model being used. Due to un-
certainties in observational parameters and the halo models themselves vg is known
only imprecisely, lying in the range ~ 270 & 70 km s™! for the simplest isothermal

sphere models [97]. More complicated models assume a flattened halo which may or
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may not be corotating with the luminous disc, however estimates of vy are generally
similar within errors.

The halo model also permits the local WIMP density ppas to be calculated from
observed galactic rotation curves (§1.3.2). Depending on the model this density is
typically in the range 0.3 GeV/c? cm™3 to 0.7 GeV/c? cm™3 in the absence of any
baryonic component [84]. Recent microlensing results (§1.5.1) indicate that there
may in fact be a significant baryonic MACHO component to the halo and taking
this into account gives a conservative estimate of 0.4 GeV/c?* m=3 [88)].

The velocity v, of any WIMP relative to the rest frame of the halo is given by
the vector sum of its velocity in the earth’s frame of reference 4 and the velocity
of the earth through the halo (assumed to be non-rotating) given by 7. Thus the
Maxwell-Boltzmann phase space distribution discussed above may be written

‘if+if§22
v

f(v Ug) =e %0 . (3.24)
The WIMP density distribution is then given by
dn = 1}: (v UE)da’U. (3.25)

Here ng is the mean WIMP number density (= ppa/Mp) for WIMP mass Mp and
k is a normalisation factor given by [84]

21 Vese

k= / do d (cos 9) f (¥, Ug)vdv, (3.26)
where v 1S the galactic escape velocﬂ:y. Performlng the integrals in Eqn. 3.26 then
gives [84]

3
. Vesc 2 Vesc |\ —%&

k—ko(erf(vo)—m(vo)e 0), (327)

where

= (mvd)¥". (3.28)

3.4.2 The Scattering Process

The WIMP event rate per unit mass for a target of atomic mass A is given by
(following [84] throughout this section)

Na
dR = —A—avdn, (3.29)

where N4 is the Avogadro number and ¢ is the scattering cross section from §3.3.
The total event rate is the integral of this expression,

Ny
= ]—afvdn. (3.30)
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Defining R, as the total rate for a target at rest w.r.t. an infinite halo (vg = 0 and
Vese = 00), 1.€.

2 Nappm
Rq WT-A-J_D- agVq, (331)
the following total event rate is obtained
rR=prf 1 f vf (7, 75)dv (3.32)
1k 27 ’ ’ '
This expression may be used more usefully in its differential form
ko .

dR = R,— . 2’]wO'vf('u , Ug)d>v. (3.33)

Now a non-relativistic WIMP of mass Mp and speed v has kinetic energy E(v)
given by

E(v) = --an : (3.34)
The kinetic energy Er in the lab. of a recoiling nucleus struck by such a particle is
Er
where 0 is the CMS scattering angle and r is given by
AMpMr
r = ————, 3.36
(M D -+ MT)2 ( )
Assuming isotropic scattering in cos 6 and hence a uniform distribution of Er < Er,
dR Emaz 1
EE—; = ./,m-,, -E;dR(E)
1 Umaz 'Uo
B -E-;; -/;min 402 dR(v) (3.37)
where Enin = Er/r, Ey = E(v) and
_ 2Emin
Unmin = MD . (338)
Hence from Eqn. 3.33
dR 3 Rq ko 1 [‘Uma:n 1 - 1
R_ET}; = _E'B';—k_zﬂvg - ;f(’U, E)d v, (3.39)

For a target at rest w.r.t. an infinite halo this expression integrates to give

dR(0,00) _ Ry -f=
dEg Eqr ' (3.40)
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In fact vese ~ 600 km s~ [99] and the earth orbits the sun in a plane at angle 60°
to the sun’s galactic velocity leading to [84]

vg ~ 244 4 15sin(27t)kms ™, (3.41)

for time t (in years) from 2"¢ March. In this case

dR(‘UE,OO) R, T 1/2 Yo ( ('Umin + VE Umin — UE
B = T T on erf ”~ erf ~ : (3.42)

and ,
dR(vE,'vm) dR(vg,00) R, -
. dER Tk ( dEg Eore ' (3.43)
In all that follows this equation will be written in abbreviated form:
dR Ry ko (Eor dR(ve,) _ e-r;’-ge
‘ dER B EOT k Rq dER
= Ry.S(ER).F*(ER), (3.44)
where Ry is the raw point like rate given by
R,
Ry = F2(Eg) (3.45)

and S(ER) is the ‘spectral’ function. This is the differential recoil energy spectrum
of WIMP scattering events from nuclei. Ignoring the form factor dependence of o,
the spectrum is seen to closely resemble an exponential function (Fig. 3.7 overleaf),
as would be expected from the form of the approximate spectrum given by Eqn. 3.40.
The time dependence of Eqn. 3.44 is also illustrated in Fig. 3.7.

The normalisation of Eqn. 3.44 is expressed in terms of the raw point like rate
R, however this may be converted quite simply into a normalisation in terms of oy

by using Eqn. 3.30, Eqn. 3.45, Eqn. 3.8 and the trivial relation

rMpM
pr=— (3.46)

It is then found that Ry is directly related to oy by

Ry _ mnppMmNave 0o

ro _57}'175'_;3 (3.47)
In convenient units this gives

Ry 0o

';—' = 1.37PDM‘U0.1—L-2', (3‘48)

with PDM in GeV/c2 cm"'3, Vo in km S-l, RO/T n kg-l day—l

and og in pb (u is
dimensionless).
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Figure 3.7: Raw differential nuclear recoil energy spectrum of WIMP scattering
events from Eqn. 3.44. The full line is the time averaged spectrum over the course
of one year. The dashed and dash-dotted lines are summer and winter spectra. Inset

is a detail of the cross over region showing monthly spectra after the subtraction of
the yearly mean spectrum. Taken from [84].

3.5 Target Specific Factors

Having established the form of the raw WIMP induced recoil energy spectrum of
individual nuclei (Eqn. 3.44) the total spectrum of such events within a target ma-
terial of given elemental composition must now be calculated. This must also take
into account the fact that within a given -target the physics of the energy transfer
process limits the amount of deposited energy which can be directly observed. This

behaviour is independent of the design of the detector itself and is referred to as the
energy detection efficiency.

3.5.1 Target Composition

The target at the heart of a particular detector may contain more than one species
of target nucleus. In this case the total energy spectrum is given merely by the sum
of the spectra of the constituent nuclei weighted by the appropriate mass fraction
£(4).

If data from the detector is being used to set limits however, such as was done
in Fig. 3.2, then a different approach can be used. The target material (of mass m)
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contains a total mass m.f(A) of each target nucleus and so cross section limits can
be calculated using the results of this chapter for each nucleus separately. Examples
of these single nucleus limits are plotted in Fig. 3.2. By considering Eqn. 3.44 the

total raw cross section limit oy is then related to the raw cross section limits oy (A)
from individual nuclei by

= T, 2 A5 B F (4, B

Z(Gf( ).S(A, Er).F*(A, ER))

— dR/dEp

1
; o)’ (3.49)

where a is the Ry — oy conversion factor from Eqn. 3.48.

3.5.2 Energy Detection Efliciency

In many classes of detector the amount of energy detected for a particular recoil is
dependent not only on the recoil energy but also on the type of particle recoiling.
This causes problems because in situ calibration of operational detectors is generally

performed using monoenergetic gamma sources, which produce only electron recoils.
This means that any experimentally observed energy spectrum is equivalent to the
true recoil energy spectrum iff all the events are due to electrons. The spectrum of
nuclear recoils in terms of Er (Eqn. 3.44) may be converted to a spectrum in terms
of the electron equivalent or ‘visible’ energy E, by means of an absolute energy
detection efficiency g.(A, Er) = E,/Eg. This efficiency is a property of the specific
target nucleus and of the target material through which it is travelling.

In practice g,(A, Eg) can be determined by performing nuclear recoil calibra-
tions for each nucleus in each target material using a monoenergetic neutron beam,
as described in §6.4. Because operational detectors are calibrated with high energy
gamma sources rather than at low energies the efficiency is in fact calculated relative
to this high energy point. This relative efficiency g.(A, ER) is clearly only an ap-
proximation to the absolute efficiency since it neglects the effects of non-linearities
in the electron recoil response at low energy. Nevertheless g,(A, Eg) may still be
used to convert nuclear recoil energy to visible energy just so long as g,(A, ER) is

constant at the energies used for gamma calibration during data taking and neutron
beam tests.

In some circumstances g,(A, ER) can be evaluated theoretically. One approach
used with crystal scintillators is to assume Birks’ formula for the visible energy
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emitted by a recoil per unit path length z [100]

dE,  SdE%L/dz
dz 1+ kBdE}/dz’ (3.50)

for constant S and kB. Rearranging this expression gives

0 S
— e !
and so ;
E, 1 S :
gr(A, ER) - ""'"ER = 'E,—R' [ER WdER (3.52)

Due to the pick up of electrons the value of dERr/dz for nuclei is expected to fall at
energies below [101]

E. =
¢ 4m,

p
(T + B - T22), (3.53)

for electron binding energy E, and kinetic energy T.. Thus Eqn. 3.52 leads to a rise
in g.(A, Eg) for nuclei at low energy (§6.4).

Another approach, valid for ionisation detectors, is to use Lindhard theory [101].

This parameterises g.(A, Er) at energies greater than E, in terms of the recoil energy
directly:

gr(Aa ER) = T%a (354)

where the function ¢’(ER) is defined by

1 2 ‘
g(Er) =0.6E} 4+ 0.2E} + 0.8FE,, (3.55)
and .
73
E1 e T‘].E-ER (356)

The onset of electron pick up at energies ~ E. can be taken into account by the
multiplication of Eqn. 3.54 by an exponential term [101]:

(3.57)

Values for the relative energy detection efficiency calculated using the above
formulae are generally rather imprecise and so it is preferable to use the results of
experimental neutron beam calibrations. Given a value for g, (A, ER) for the specific
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nucleus and target being considered the observed energy spectrum of nuclear recoils
can be calculated from:

dR dR
dE.u d ( dr E R)

-1
_1_ 1+ .&. dgr _di.
gr gr dEg dER

dR
= Grgp— (3.58)

The overall effect of the energy detection efficiency (which is usually < 1) is to
soften the visible energy spectrum with respect to the recoil energy spectrum in
Eqn. 3.44. This softening has the undesirable effect of causing any non-zero detector
visible energy threshold (§3.6) to cut out considerably more of the nuclear recoil
spectrum, reducing the sensitivity of the detector. This is of particular importance

for scintillator detectors where g,, referred to as the relative scintillation efficiency,
is generally < 30 %.

3.6 Detector Specific Factors

The above considerations apply to any experiment searching for direct evidence of
WIMPs via elastic nuclear recoil. There are other contributions to the recoil energy

spectrum however which depend specifically on the physical design of the detector.
In this section the statistical character of these effects will be investigated before

discussing how to account for them when considering the observed WIMP induced
nuclear recoil energy spectrum.

3.6.1 Statistical Effects

At the simplest level all detectors have a finite visible energy threshold Ey.,.,; and
this prevents all nuclear recoil events with Ey < Eypresp from being observed. In noisy
detectors the threshold should be set at a level below which irreducible background
noise dominates the spectrum. For large numbers of noise events this threshold is
then sufficiently high to give a sudden cut off in the energy spectrum (e.g. Fig. 8.21).
If the threshold is low however then it may approach the minimum energy physically
observable within the detector E;,. One example of this is in scintillator detectors
using photomultiplier tubes (§4.3.2), where the scintillation pulse consists of a finite
number of photons. An event cannot be registered if it contains less than one photon
and so this sets the value of E;,. Generally for Eip,esn ~ Ej, the statistics of the
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system come into play and there is no longer a hard cut off in the energy spectrum
at Ethresh-

These statistical processes also modify the energy spectrum in other ways. Most
importantly they lead to a finite detector energy resolution which must be convolved
with the theoretical energy spectrum (Eqn. 3.44) to obtain the observed spectrum.
Furthermore, the use of noise rejection cuts (§8) introduces an energy dependent
event identification efficiency which can lead to further statistical vari<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>