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Summary 

During neural development, each neuron sends an axon out from its cell body. Extending 

axons are guided by interactions between environmental factors and axonal receptors for 

these factors. It has been suggested that certain proteins of the immunoglobulin-like 

superfamily are among the molecules involved in axon guidance. In particular, TAG-1, Ll 

and NrCAM have previously been implicated in the guidance of dorsal spinal commissural 

axons at the ventral midline region known as the floor plate. To establish whether these 

molecules have such roles in mice, the dorsal spinal axons of TAG-], LI or NrCAM mutant 

mouse embryos were traced. There were no significant differences between the results 
from mutant embryos and their wild type counterparts. This indicated that these three 

proteins are individually not essential for the normal development of mouse dorsal spinal 

projections. However, results from TAG-MLI double mutant embryos suggested that TAG- 

I and LI might affect the ability of commissural axons to extend out of the floor plate. 
Analysis of ephrin B3 mutant embryos indicated that ephrin B3 might also be important for 

floor plate exit. 

As the TAG-] null mutation includes a lacZ construct, this reporter gene was used to further 

investigate the roles of TAG-1. Its expression was used to determine distribution of TAG-1 

gene activity in the developing mouse nervous system. As the pattern of reporter 

expression was found to be comparable with that of TAG-1 protein, the TAG-] null allele 

was used as a marker for TAG- I -expressing cells in mutant embryos. Most of the 

structures that normally express TAG- I seemed to be unaffected by an absence of the 

protein. However, the hypoglossal nerve was significantly less likely to extend towards the 

tongue in TAG-1 null homozygous embryos than in heterozygotes. This suggested that 

TAG- I might be important for the guidance of hypoglossal axons. 
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1 Introduction 



1.1 Axon Guidance 

The vertebrate nervous system is a highly complex network. It is estimated that there 

are as many as 1011 neurons in the human brain, and this figure does not include 

neurons of the spinal cord or peripheral nervous system. The neurons of the brain make 

around 1014 connections, or synapses (Garrity and Zipursky, 1995), and so form the 
basis of a large number of neural pathways. It is along such routes that all nervous 
information is passed. The fact that these pathways are highly similar between 
individuals of the same species suggests that neural development is precisely controlled. 

Each neuron consists of a cell body and a number of processes known as neurites. Cajal 

and Harrison both showed that the longest of these, which is called the axon, extends 
from the cell body to a target during development (Cajal, 1909; Harrison, 19 10). Weiss 

proposed that axon outgrowth was undirected, that targets were reached at random, and 
that non-functional connections were subsequently pruned back (Weiss, 1936). More 

recent work has shown that it is indeed possible to eliminate surplus connections, on the 
basis of a lack of neuronal activity (Purves and Lichtman, 1980). 

Activity-dependent refining of neuronal connections is important for the development 

of a properly wired nervous system. However it is now known that initial axonal 

outgrowth, which occurs before the onset of electrical activity, actually lays down a 
relatively specific network of neuronal connections (Goodman and Shatz, 1993). 
Sperry's "chemoaffinity hypothesis" first suggested that extending axons are guided by 

relative affinities for different areas, being directed by gradients of chemical signals 
(Sperry, 1963). Such gradients are indeed found in the developing nervous system. 
They may be established either by release of a molecular "cue" from a distinct source, 
as is the case with netrins in the spinal cord, or by graded expression of the molecule by 

a field of cells, as for ephrin ligands across the retina (Tess ier-Lavigne and Goodman, 
1996). It is now known that some axon guidance cues can also work in a more discrete 

way than Sperry envisaged. For example, extending axons can turn to grow along 
certain nerve fibres and yet avoid others (the "labelled pathway hypothesis": Goodman 

et al., 1984; Bastiani et al. 1984; Raper et al., 1983a, 1983b, 1984), and can respond to 
individual "guidepost cells" (Bentley and Caudy, 1983). Axon guidance cues have 

often been assigned to one of four categories, being thought of as either long range or 
short range signals, and molecules of either type having either positive or negative 
effects upon axon growth (Figure 1.1; Tessier-Lavigne and Goodman, 1996, Jessell and 
Sanes, 2000). However, it is now known that certain single guidance molecules 
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function as both long- and short-range cues. For example, netrin- I can be membrane 
bound (Serafini et al., 1994) or diffusible (Kennedy et al., 1994), and slit appears to act 
as both a long and short range repellent (Kidd et al., 1999; Simpson et al., 2000). 
Furthermore, single guidance molecules can function as both positive and negative 
signals, as has been demonstrated for Sernaphorin I (Wong et al., 1997), Semaphorin 
3A (Song et al., 1998; Tuttle and O'Leary, 1998), Netrin-I (Colamarino and Tessier- 
Lavigne, 1995; Ming et al., 1997,200 1; Hong et al., 1999; Hbpker et al., 1999), Slit-2 
(Nguyen B a-Charvet et al., 1999,200 1; Wang et al., 1999 a; Zinn and Sun, 1999) and 
myelin-associated glycoprotein (Ming et al., 2001). Therefore, distinctions between the 
four modes of action shown in figure 1.1 are not always clear (Mueller, 1999; Jessell 
and Sanes, 2000). 

To generate a different guidance cue for each decision point in the nervous system 
would require more genes than are contained in the human genome (Treubert and 
Brilmmendorf, 1998). Instead it seems that an armoury of different molecules are used 
at particular times, in precise combinations and in specific contexts. In order to respond 
to environmental cues, the leading edge of the axon, referred to as the growth cone 
(Cajal, 1909), bears numerous receptor molecules. When activated, such receptors 
initiate intracellular signalling events, which subsequently cause the growth cone to 

proceed either towards or away from the cue (Gomez et al., 2001). 

Of the many cell surface receptor molecules, those that are able to mediate adhesion by 
their interactions are classified as cell adhesion molecules (CAMs). Some CAMs 

recognise components of the extracellular matrix (ECM), as for example do the 
integrins (figure 1.2). Others interact with counter-receptors on other cells, either using 
a different sort of molecule or using another CAM of the same type, as is commonly the 
case for cadherins. Certain proteins of the immunoglobulin-like superfamily (IgSF) can 
act both as ECM receptors and as counter-receptors for molecules, including 
themselves, on other cells. Many of the CAMs implicated in axon guidance belong to 
the IgSF (i. e. are 'IgCAMs'), and it is on this group of proteins that the present study 
concentrates. 
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FIgure 1.1. Four major mechanisms of axon guidance. The four types of axon 
guidance force are shown schematically, with respect to the dark grey neuron. 
Axons can be guided by long range chemorepulsive cues (1) , depicted here as 
diffusing from the source on the left. Such chemorepulsive factors may include 
sernaphorins (Messersmith et al., 1995; Fluschcl et al., 1995; Bagnard el al., 2000), 
nctrins (Colamarino and Tess] er-Lavi gne, 1995; Hopker et al., 1999), slits (Li et al., 
1999; Nguyen Ba-Charvet et al., 1999) and bone morphogenetic proteins (BMP. s; 
A ugsburger el al., 1999). There can be contact-mediatcd attraction (2), for example 
during the fasciculation along other axons that is mediated by proteins such as 
NCAM (Thanos et al., 1984) or LI (Stoeckli and Landmesscr, 1995). There can 
also be contact-mediatcd repulsion (3), such as that caused by ephrin ligands 
(reviewed in O'Leary and Wilkinson, 1999), some semaphonns (Yu el al, 1998) and 
slits (Kidd et al., 1999). Axons may also be guided by long-range chemoattractant 
molecules (4), such as netrins (Kennedy et al., 1994; Serafini el al., 1996), some 
sernaphorins (Bagnard el al., 2000) and hepatocyte growth factor (HGF; Ebens et 
al., 1996; Caton et al., 2000). Using Tessier-Lavignc and Goodman, 1996; Varela- 
Echavarrfa and Guthrie, 1997; Jessell and Sancs, 2000. 
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FIgure 1.2 Different classes of cell adhesion molecule. Cadherins interact with other cadherin5, 
to mediate cell to cell contact (1). Integrins interact with components of the cxtracellular matrix (2), 
or with IgCAMs on the surfaces of other cells (3). IgCAMs can interact with ccli-surface integrin (3), 
components of the cxtracellular matrix (4) or other IgCAMs (5). Some IgCAMs are also secreted (6). 



1.2 Neural IgSF Molecules 

1.2.1 The immunoglobulin-like superfamily 

The IgSF is currently the largest superfamily of proteins. It is represented in organisms 
ranging from yeast to higher vertebrates (Brflmmendorf and Rathjen, 1995), and is 

estimated to have 765 members in humans (BrUmmendorf and Lemmon, 2001; 
International Human Genome Sequencing Consortium, 2001). Members of the IgSF 

commonly participate in cell recognition events. In vertebrates, most IgSF proteins 
function in either the immune system or in neural development. 

1.2.2 Structural features of neural IgSF molecules 

As is the case for all IgSF members, those of the nervous system contain 
immunoglobulin-like (1g) domains. These domains are generally defined by the 
presence of two cysteine residues, which are separated by between 55 and 75 other 
amino acids. The two cYsteine residues form a disulphide bond with one another, to 
give a characteristic loop. The intra-cysteine residues, many of which are also 
conserved, form a secondary structure of 8-pleated sheets. These fold into a so-called 
"Greek Key" conformation (Williams and Barclay, 1988; Vaughn and Bjorkman, 1996), 

and allow the immunoglobulin-like domain to be assigned to a particular sub-type. 
Initially, Ig domains were classified either as "Cl", "C2" or "V"-type, according to their 
similarity to either the constant or variable regions of antibodies, and most of the neural 
Ig domains were assigned to the C2 set (Williams and Barclay, 1988). More recently, 
the Ig domains found in many neural cell surface molecules have been reclassified as 
belonging to an "I" set, so called as the domains appear to in fact be intermediate 
between the C and V categories (Harpaz and Chothia, 1994; Chothia and Jones, 1997). 
However, it has also been suggested that the I-type immunoglobulin domains are 
actually merely a subset of the V class (Vaughn and Bjorkman, 1996). For the purposes 
of this thesis, the neural Ig domains which were originally referred to as C2-type will be 

shown as I-tYpe, and the few neural Ig domains defined originally as V-type will still be 

classified as such (Williams and Barclay, 1988; Chothia and Jones, 1997). 
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In addition, many of the neural IgSF molecules contain "fibronectin type III" (FNIII) 
domains, which are so called because of their similarity to particular regions of the 
ECM molecule fibronectin (Brilmmendorf and Rathjen, 1995; Chothia and Jones, 
1997). These regions have the same Greek Key structure as Ig domains (Vaughn and 
Bjorkman, 1996; Cota et al., 2000), and are sometimes even referred to as Ig-like 

structures of the same class as the "C2" type domains (Bork et al., 1994). 

As can be seen in figure 1.3, different combinations of these two types of domains are 
used to generate a large number of molecules. These molecules can be grouped into 

sub-families according to the combination of domains that they contain, with some sub- 
family members also showing up to 60% homology in their amino acid sequences 
(Holm et al., 1996; Ogawa et al., 1996). It should be noted that figure 1.3 is a stylised 
diagram, showing the proteins' constituent domains rather than their native 
conformations. The binding abilities of axonin- I domain-deletion constructs indicated 
that the first four Ig-like domains might in fact form a "horseshoe-like" conglomerate 
(Rader et al. 1996; as in figure 1.4 B). Crystallography has since shown that this is 
indeed the case for axonin- I (Freigang et al., 2000), and for part of hemolin, an insect 
Ig-like molecule (Su et al., 1998). Rotary shadowing electron microscopy (Hall et al., 
2000) and negative stain electron microscopy (Schormann et al., 2001) seem to provide 
evidence that the N-terminal Ig domains of Ll form a similar shape. Rotary shadowing 
electron microscopy has also led to the suggestion that axonin- I shows additional 
folding (Rader et al., 1996; figure 1.4 Q, although whether Ll can have such a 
conformation remains unclear. It could be that IgCAMs exist in multiple conformations 
in vivo, and that the ability to switch between isoforms is important for their binding to 
other proteins (Freigang et al., 2000; SchUrmann et al., 2001). 

1.2.3 Meet the family 

N-CAM, the first IgCAM to be characterised (Hoffman et al., 1982), and its closest 
relations all have five "I" type Ig-like domains, and either one or two FNIII domains 
(figure 1.3 A). TAG- I -like sub-family molecules all have six I-type Ig domains and 
four FNIII regions. TAG-1-like proteins, as with those of the N-CAM-like sub-family, 
can be either attached to the cell surface by a glycosylphosphatidyl-inositol (GPI) 
anchor, or secreted (figure 1.3 B; Furley et al., 1990; Karagogeos et al, 199 1; Ruegg et 
al., 1989; Wolff et al., 1989). Ll-like molecules also have six I-type Ig regions, but 
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---------- 

rat/mouse: rRobo- I rRobo-2 DCC 

chick: neogenin 

human: hRobo-I hRobo-2 DCC 

G H 

DSCAM 

or 

------ --------- ---- ---- -- 

rat/mouse: PTPa l7rPK PTP[t P'FFV DM-GRASP/BEN/SCI 

chick: CRYPct DM-GRASP/BEN/SCI 

human: DM-GRASP/BEN/SCI 

Figure 1.3, continued. For key, see previous page. D: Robo proteins. E: DCC (Deleted in 
Collorcctal Cancer). F: DSCAM (Downs Syndrome Cell Adhesion Molecule). G: Type 11 
receptor protein tyrosine phosphatases (R-PTPs). PTPcY can occur in one of two forms. 
H: DM-GRASR which is also known as BEN and SC i. For references, see text. 

t5ý 



A B 

or 
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axonin- I Fl I/contactin 

TAX-1 contactin 
(CNTN2) (CNTNI) 

PANG/BIG-l BIG-2 
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(CA'TN3) 

NB-2 NB-3 

NB-2 NB-3 
(CNTN5) (CNTN6) 

Kn 
I-type immunoglobulin- 
likc domain 

fibronectin type III 
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V-type immunoglobulin- 
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rat/mouse: Ll CHLI NrCAM ABGP/neurofascin 

chick: NgCAM? MCAM neurofascin 

human: Ll CALL NrCAM 

PAT (proline, 
alaninc and threonine 
rich) rcgion 

MAM (Mephrin, 
A5, u) domain 

cell membrane 

GPI (glycosyl- 
phosphatidyl- 
inositol) anchor 

protein tyrosine 
phosphatase domain 

Figure 1.3 Selected vertebrate members of the Immunoglobulin-like superfamily that have been 
implicated in development of the nervous system. A: NCAM, which can occur either as a trans-membrane 
or GPI-anchored protein. B: The TAG-1-like subfamily. All members are attached to the membrane by a 
GPI-linkage, although at least two are also secreted. C: The Ll-likc subfamily. Continues overicaf. 
For references, see text. 
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Figure 1.4 Illustration of how IgCAM molecules may actually be found in vivo. 
A: TAG-1/axonin-1, showing the constituent domains only. B: Negative staining 
electron microscopy, binding studies using domain-deletion proteins (Rader el al., 
1996) and crystallographic analysis (Freigang et al., 1000) have led to the proposal 
that the four terminal Ig-like domains of TAG-1/axonin- I fold into a conglomerate. 
Such conformations have also been demonstrated by rotary shadowing electron 
microscopy (Hall et al., 2000) and negative stain electron microscopy for LI 
(Schurmann et al. 2001), and by crystallography the insect IgCAM hemolin (Su et al., 
1998). C: Negative staining electron microscopy and the domain-deletion proteins 
have also indicated that TAG- I /axonin- I might fold further (Rader et al., 1996; 
Freigang et al. 2000). It has been suggested that the protein might switch from the 
back-folded (C) to the more open (B) conformations when trans interactions are 
required (Freigang et al., 2000) 
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have five FNIII domains rather than four. They have transmcmbrane and cytoplasmic 
sequences rather than GPI anchors (figure 1.3 Q, although in some circumstances the 
metal loprotcinases might release the cxtracellular portions of LI-like molecules from 

cells (Beer et al., 1999; Gutwcin et al., 2000). 

Several other IgSF sub-families are generated by combinatorial use of Ig and FNIII 
domains. Many of the resulting molecules have also been implicated in axon guidance, 
although it is not always clear whether they can mediate cell adhcsion. Such proteins 
include Robo, DCC (Deleted in Colorcctal Cancer) and DSCAM (Downs Syndrome 
Cell Adhesion Molecule) (figure 1.3 D, E and F; Fearon et al., 1990; Hedrick et al., 
1994; Kidd et al., 1998; Yamakawa et al., 1998). Other, more distantly related neural 
IgSF members include the type 11 receptor protein tyrosine phosphatases (R-PTPs; 
figure 1.3 G), and DM-GRASP (also known as BEN or SC I; figure 1.3 H). The former 

are distinguished by cytoplasmic phosphatase activity, while the lattcr includes 
immunoglobulin regions of the V-type (Bums et al., 199 1; Tanaka et al., 199 1, Desai et 
al., 1997; Stoker and Dutta, 1998). 

Much of this thesis will focus upon the TAG-1- and LI-like proteins, and their roles in 
development of the mouse nervous system. 

1.2.4 The TAG-1-like sub-family 

The TAG-1-like subfamily contains at least six different molecules (figure 1.3 B), and is 
represented in at least three vertebrate classes. The rodent molecule TAG- I (Furley et 
al., 1990) has homologues in zebraftsh (Warren et al., 1999) and chicken. In the latter 
case, the protein is known as axonin- I (Ruegg et al., 1989; Zuellig et al., 1991). The 
human homologue of TAG-1 is known as TAX-1, although the gene is also sometimes 
referred to as CNTN2 (Tsiotra et al., 1993; Hasler et al., 1993). F3, which is also 
known as Contactin, has been characterised in rodents (Gennarini el al., 1989) and its 
chicken homologue is known as F1 I (Ratfijen et al., 1987 a; BrUmmendorf et al., 1989). 
There is also a human homologue of F3, the gene for which is often referred to as 
CNTNI (Berglund and Ranscht, 1994; Ried et al., 1994). BIG-1, which is also known 
as PANG, has been characterised in rodents (Yoshihara et al., 1994) and humans. In the 
latter, gene is known as called CNTN3 (Mock et al., 1996). BIG-2 has been described 
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in rodents (Yoshihara et al., 1995). NB-2 has been identified in rodents (Ogawa et al., 
1996), and humans, in which the gene is called CNTN5 (Kamei et al., 1998). It has also 
recently been identified as FAR-2 in chicken (Plagge et al., 2001). Humans also 
possess a homologue of the sixth rodent TAG- I -like protein, NB-3 (also referred to as 
CNTN6: Ogawa et al., 1996; Kamei et al., 2000). Amino acid sequence homology has 

recently indicated that there may also be TAG- I -like molecule in Drosophila 

melanogaster (A. J. W. Furley, personal communication). 

Vertebrate TAG- I -like proteins share between 40% and 60% amino acid sequence 
homology with one another (Brilmmendorf and Ratfijen, 1995; Holm et al., 1996; 
Ogawa et al., 1996; Kamei et al., 2000). All have been implicated in neural 
development, and TAX- I has also recently been suggested to play a role in glial tumour 
migration (Rickman et al., 2001). 

1.2.5 The M-like sub-family 

Members of the LI -like sub-family show less homology with one another than those of 
the TAG- I -like sub-group, sharing around 40% amino acid sequence similarity 
(Brflmmendorf and Rathjen, 1995). In rodents, the Ll-like sub-family currently has 
four members: Ll (previously also known as NILE in rat: Rathjen and Schachner, 1984; 
Bock et al., 1985), Neurofascin (also known as ABGP: Davis et al., 1993), NrCAM 
(Moscoso and Sanes, 1995), and CHLI (Close Homologue of Ll: Holm et al., 1996). 
Neurofascin has been identified in chicken (Rathjen et al., 1987 a). NrCAM (also 

referred to as Bravo) has been characterised in chicken (Grumet et al., 199 1) and human 
(Lane et al, 1996). The human homologue of CHLI is known as CALL (Wei et al., 
1998). 

LI has also been identified in other species. However, the identity of LI homologues in 

other vertebrate classes is not always clear. Zebrafish appear to have two LI 
homologues, L 1.1 and L 1.2 (Tongiorgi et al., 1995). The chicken homologue of LI is 

commonly thought to be NgCAM (Grumet and Sakurai, -1996), which is often assumed 
to be identical to the chick molecule G4 (Rathjen et al., 1987; Kuhn et al., 199 1). 
However, there are notable differences between these proteins (Rathjen et al., 1987 b; 
Burgoon et al., 1991; Kayyem et al., 1992; for discussion, see chapter 3, Grumet 1992, 
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and Sonderegger and Ratfijen, 1992). Thus there could in fact be at least five classes of 
vertebrate LI -like molecules (Holm et al., 1996), rather than four (Hortsch, 2000). 

The LI-like sub-family of neural IgCAMs is also represented in invertebrates, by the 
Drosophila melanogaster molecule neuroglian (Bieber et al., 1989), the Hirudo 

medicinalis (leech) protein Tractin (Huang et al., 1997), and the LAD- I protein of 
Caenorhabditis elegans (Chen et al., 2001). 

The human Ll gene has been studied in particular detail, as it has been implicated in a 
number of X-linked neurological conditions. Symptoms commonly presented by LI 
hernizygous male patients include corpus callosum agenesis, mental retardation, 
adducted thumbs, spastic paraplegia and hydrocephalus (reviewed in Wong et al., 1995; 
BrOmmendorf et al, 1998; Kamiguchi et al., 1998), collectively referred to as the 
CRASH syndrome (Fransen et al., 1998). LI might also have a role in the ability of 
axons to regenerate (Becker et al., 1998), and both LI and NrCAM have been 
implicated in tumour development (Izumoto et al., 1996; Sehgal et al., 1998) 
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1.3 A web of interactions 

1.3.1 Interactions of IgCAMs in vitro 

Variations on the basic structural theme of immunoglobulin-like and fibronectin-type III 
domains afford a battery of cell surface molecules, many of which are found on axons. 
As is true of all cell surface molecules, the neural Ig-like proteins function by 
interacting with other molecules. In order to understand these proteins it is important to 
characterise their interactions (Volkmer et al., 1996). The interactions of TAG- I- and 
Ll- like sub-family members have been studied extensively, and figure 1.5 summarises 
some of the findings (see figure legend for details). 

Evidence for interactions has been obtained in a number of different ways. Some 

associations have been demonstrated by the ability of tagged proteins to attach to 

particular substrates (as in Lustig et al., 1999), or by the aggregation of inert spheres 
conjugated with the molecules of interest (e. g. Grumet and Edelman, 1988; as in figure 
1.6 A). Others have been identified on the basis of cell binding assays, using cells that 
naturally expressed only certain cell surface molecules (Kadmon et al., 1990), or that 
have been specifically transfected with molecules of interest (e. g. Felsenfeld et al., 
1994; Buchstaller et al., 1996; as in figure 1.6 B). Some interactions have been inferred 
from the ability of molecules to be co-immunoprecipitated from cell or tissue extracts 
(e. g. LI and NCAM: Kadmon et al., 1990; axonin- I and NgCAM: Buchstaller et al., 
1996; NrCAM and Neurofascin, Volkmer et al., 1996). Others have been suggested by 

the ability of proteins to co-localise within living cell membranes (e. g. Ll and NCAM: 
Pollerberg et al., 1987; axonin- I and NgCAM: Stoeckli et al., 1996). 

1.3.2 Interactions of IgCAMs in vivo 

Thus an interaction between proteins in vitro does not necessarily mean that the same 
association occurs in vivo. Many of the techniques used to study IgCAM interactions in 

vitro have inadequacies, and results from different assay systems can seem to be 

contradictory. For example, NgCAM and axonin-1 could be said to interact on the basis 

of bead aggregation assays (Kuhn et al., 199 1), but seem unable to bind when expressed 
by cells (Buchstaller et al., 1996). It has been proposed that this potential discrepancy 
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FIgure 1.5 Possible interactions of N-CAM, M-like and TAG-1-like members of the 
immunoglobulin-like superfamily. IgSF members arc within the circle. Interactions of BIG-1, 
BIG-2, and NB-3 arc not yet well documented. Numbers direct the reader to the experimental 
details and references below or ovcrleaf. Note that the nature of interactions varies. For example, 
one line may represent a predominantly cis interaction, and another an interaction that occurs in 
trans; some assays indicate that the interaction mediates growth as well as adhesion, where 
as others do not. 
1) An antibody to NCAM prevented attachment of cells to heparin (Cole et al., 1985; Cole et al., 

1986). 
2) Soluble NCAM bound to immobiliscd collagens (Probstmeicr et al., 1989) 
3) Axonin- I bound to immobilised tenascin-C; co-localisation in vivo (Milev et al., 1996). 
4) F1 I bound to immobilised tcnascin-C (Zisch et al., 1991-1). 
5) Co-immunoprecipitation; co-cxpression in vivo (Peles et al., 1997). 
6) Aggregation of NCAM-containing lipid vesicles (Hoffman and Edelman, 1983); cell aggregation 

assays (Fclscnfeld el al., 1994). 
7) Antibodies to P1 integrins prevented outgrowth of tcctal neurons on TAG-1 (Felsenfeld el al., 

1994). 
8) R-PTP43 fragments (Sakurai et al., 1997) and phosphacan (Milcv ct al., 1994) bound to 

immobilised NCAM; antibodies to NCAM inhibited binding of neurons to phosphacan (Milev 
el al., 1994). 

9) Phosphacan bound to immobilised axonin- I -, overlapping distribution in vivo (Milev, et al., 1996). 
10) Cell aggregation assays (Rader et al., 1993; Felsenfeld et al., 1994), although bead aggregation 

assays have also suggested that TAG/axonin- I might NOT bind homophilically (Kuhn et al., 
1991). 
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I I)Axonin-I bound to dishes coated with NCAM; overlapping distribution in vivo (Milcv et al., 1996). 
12) Co-immunoprccipitation (Kadmon et al., 1990). 
13)Co-immunoprccipitafion; co-clustcring on culturcdcclls (Buttiglioneetal., 1998). 
14)R-PTP-I3 fragments bound to dishes coated with FI I (Sakurai el al., 1997); co-immunoprccipitation; 

antibodies to F1 I prevented outgrowth of DRO neurons on R-PTP-6 (Pclcs et al., 1995). 
15)Co-immunoprccipitation (Rathjcn el al., 1991); cell aggregation assays (Brummncdorf et al., 1993); 

antibodies to F3 prevent response of cerebellar neuritcs to tcnascin R (Pcshcva et al., 1993); soluble 
tenascin R bound to FI I transfcctcd cells (Ndrcnberg et al., 1995). 

16) R-PTP-B fragments bound to an NrCAM coated surface; antibodies to Nr prevented ncuritc outgrowth 
on R-PTP-13 fragments (Sakurai et at., 1997). 

17)Antibodics to LI prevented outgrowth of DRG neurons on TAG-I (Fclscnfcld et al., 1994). 
18)Aggregation of conjugated spheres; antibodies to NrCAM blocked binding of axonin-I conjugated 

spheres to DRG neurons (Suter et al., 1995); NrCAM-Fc bound to immobilised axonin-I (Lustig et al., 
1999). 

19)NgCAM coated spheres bound to FAR-2 expressing cells (Plaggc ct al., 2001). 
20) Axonin- 1 conjugated spheres bound to ncurofascin expressing cells (Volkmcr el al., 1998). 
2 1) Co-immunoprecipitation (Olive et al., 1995). 
22)Protcin binding assays and co-prccipitation from doubly transfectcd cells (Sakurai et al., 1997); 

antibodies to NrCAM prevented outgrowth of tectal neurons on F1 I (Morales et al., 1993), NrCAM-Fc 
bound to an F1 1-coatcd surface (Lustig et al., 1999). 

23) Cell aggregation assays (Brummnedorf et al., 1993). 
24)Antibodies to F1 I prevented outgrowth of tcctal neurons on neurofascin (Volkmer el al., 1996); co- 

localisation at the axon-glial junctions of myelinated peripheral nerve paranodes (Tait et al., 2000). 
25)Solublc tenascin R bound to FAR-2 expressing cells (Plagge et al., 2001). 
26) NcuroftLscin expressing cells bound tenascin-R conjugated spheres (Volkmcr et al., 1998). 
27)R-PTP-8 fragments (Sakurai et al., 1997) and phosphacan (Milev et al., 1994) bound to immobiliscd 

NgCAM; antibodies to NgCAM inhibited binding of neurons to phosphacan (Milev et al., 1994). 
28)Axonin-1 bound to dishes coated with laminin (Milev et al., 1996). 
29)Phosphacan bound to immobilised LI; antibodies to LI inhibited binding of neurons to phosphacan 

(Milev et al., 1994). 
30) Aggregation of conjugated spheres (Kuhn et al, 1991; Kadmon et al., 1990) and transfectcd cells 

(Felsenfeld el al., 1994). 
3 I)L 1 bound to a neurocan-coated surface (Oleszewski et al., 1999). 
32)Antibodies to NgCAM prevented outgrowth of DRG neurons on axonin-I (Kuhn el al, 1991); NSCAM 

expressing cells bound axonin- I -conjugated brads (Buchstaller et al., 1996); antibody co-capping 
experiments (Rader et al., 1993). 

33)NrCAM-Fc bound to an NgCAM coated surface (Lustig et al., 1999), although conjugated spheres did 
not aggregate (Morales et al., 1993; Suter ct al., 1995). 

34)CclI aggregation assays, aggregation of conjugated spheres (Mauro et al., 1992); aggregation of 
conjugated spheres (Morales et al., 1993); NrCAM-Fc bound to an NrCAM coated surface (Lustig el 
al., 1999). 

35)Antibodies to NrCAM prevented outgrowth of tectal neurons on neurofascin (Volkmcr et al., 1996), 
although conjugated spheres did not aggregate (Morales el al., 1993). 

36)NgCAM bound to a laminin-coated surface; aggregation of conjugated spheres, which was inhibited by 
antibodies to either molecule; antibodies to NgCAM inhibited ncuronal attachment to laminin (Grumet 
et al., 1993 a). 

37)Anfibodies to c(vP3 integrins perturbed adhesion of mycloma cells to LI (Montgomery el al., 1996). 
38)Antibodies to NgCAM prevented outgrowth of chick neurites on LI (Lemmon et al., 1989). 
39)Co-immunoprecipitadon (Castellani el al., 2000). 
40)Aggrcgadon of conjugated spheres (Grumet and Edelman, 1988). 
41) Neurocan bound to an NgCAM-coated surface (Friedlander et al., 1994) 
42)Ncurocan bound to an axonin-1-coated surface (Milev el al., 1996). 
43) Neurocan bound to an NCAM-coated surface (Friedlander et al., 1994). 
44)Cells transfected with CHU do not aggregate with one another, or with cells transfectcd with LI 

(Hillenbrand et al., 1999). 
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can be explained if NgCAM and axonin- I normally interact in cis (within the same 
plasma membrane) rather than in trans (between adjacent plasma membranes) (Rader et 
al., 1996). Cells would theoretically present the proteins in their native orientations, 
whereas the molecules could be held in non-physiological orientations when conjugated 
to inert beads. In the latter situation, binding domains could be abnormally exposed, 
such that trans interactions become possible (Rader et al., 1996; figure 1.6). Thus the 
ability of IgCAMs to mediate adhesion of inert beads does not always mean that the 
molecules interact when expressed on opposing surfaces in vivo. 

The understanding of IgCAM function is further complicated by the fact that their 
interactions vary with context. For example, trans homophilic binding of LI is greatly 
enhanced when Ll can also interact in cis with NCAM (Kadmon et al., 1990), but is 
inhibited when Ll can interact with the proteoglycan neurocan (Grumet et al., 1993 b; 
Oleszewski et al., 2000). Ll-like subfamily members seem to exist in a number of 
differentially spliced isoforms, and these do not necessarily all have the same 
properties. There are splice variants of NgCAM (Buchstaller et al., 1996), NrCAM 
(Kayyem et al., 1992) and Neurofascin, the latter having at least fifty different isoforms 
(Hassel et al., 1997). It has recently been proposed that the Drosophila IgCAM 
DSCAM may have more than thirty-eight thousand differentially spliced isoforms 
(Schmucker et al., 2000). Differently spliced versions of NCAM (Small et al., 1988) 

and neurofascin (Hassel et al., 1997) have distinct patterns of expression, suggesting 
that differential splicing might generate proteins with specific functions. Indeed, at 
least some splice variants have distinct binding properties. For example, isoforms of 
Neurofascin which include the PAT domain show a greater affinity for NrCAM 

conjugated spheres than those that do not (Volkmer et al., 1996), the extensive O-linked 

glycosylation of this domain being thought to alter the shape of the molecule (Volkmer 

et al., 1998). 
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Figure 1.6 Possible explanation for apparent discrepancies in assays of axonin-I - NgCAM 
binding. A: inert beads with axonin- I and NgCAM attached to them arc able to aggregate (Kuhn 
et al., 1991, yet cells expressing the proteins do not aggregate (Buchstaller et al., 1996; Felsenfcld 
el al., 1994 for the proposed rodent homologues TAG- I and Ll (B). This apparent difference may 
be explained by an interaction between axonin- I and NgCAM in cis (C), as has been suggested by 
co-clustefing (Stoeckli el al., 1996; Kunz el al., 1996; Malhorta et al., 1998). Physical attachment 
of proteins to inert beads could present the molecules in such a way that they could interact (D), 
where as expression by living cells would present the molecules more physiologically, such that 
they could not interact (E). After Rader etal., (1996). 
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1.4 Neural IgSF proteins and neurite outgrowth in vitro 

While the ability to mediate adhesion and the ability to affect neurite outgrowth are not 
necessarily linked (Lemmon et al., 1992; Doherty et al., 1995), certain TAG-l- and Ll- 
like cell adhesion proteins do seem to influence both outgrowth and adhesion. TAG- I- 

and Ll-like cell adhesion molecules often have expression patterns that are suggestive 
of roles in axon guidance (e. g. Dodd et al., 1988), and in vitro experiments such as cell 
and explant culture have shown that several of these proteins can indeed have effects 
upon neurite outgrowth. Neurons have been grown on substrates of IgCAMs bound to 
nitro-cellulose or plastic surfaces (e. g. TAG- 1: Furley et al., 1990; L 1, NgCAM: 
Lemmon et al., 1989; Ll, NCAM: Kadmon et al., 1990; NgCAM, axonin- 1: Stoeckli et 
al., 1996), or upon cells that express the molecules of interest (e. g. F3: Gennarini et al., 
199 1; NCAM: Saffell et al., 1994; NgCAM: Buchstaller et al., 1996). However, care 
must be taken when interpreting such results. Even if IgCAMs do interact with certain 
binding partners when real neurons are involved, their interaction can have different 

outcomes in different situations. For example, the interaction between FII and the 
extracellular matrix molecule tenascin-R (TN-R; also known as restrictin) seems to 

mediate outgrowth of tectal neurons, and yet cause repulsion of neurons from the 

cerebellum (N6renberg et al., 1995). It may also be that a response to, or a response 
mediated by, IgCAMs can be altered by electrical activity, as has been shown to be the 

case for the sensitivity of growth cones to components of the extracellular matrix 
(Harris and Holt, 2001; Ming et al., 2001). 

It is thus difficult to predict the precise role of an IgCAM in vivo from its behaviour in 

vitro. Increasingly, studies involve direct investigation of the roles of IgCAMs in vivo. 
So far the most common approach has been to prevent the molecule of interest from 
functioning normally, and to observe the effects of this perturbation. 
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1.5 Neural IgSF proteins and neurite outgrowth its vivo 

1.5.1 Perturbation of neural IgSF protein function in ovo 

Protein function can be perturbed in a number of ways. Chicken embryos are 
particularly amenable to in ovo manipulation, as it is possible to reseal eggs and to 

allow development to continue after a perturbation event. The effects of interference 

can then be studied at later stages. For example, such experiments have provided direct 

evidence that the IgCAMs axonin-1, NgCAM and NrCAM are involved in guidance of 
dorsal spinal commissural axons at the ventral midline of the spinal cord (Stoeckli and 
Landmesser, 1995; Lustig et al., 1999; Fitzli et al., 2000). The neural tubes of 
developing chicken embryos were injected with antibodies to these IgCAMs, or with 
soluble versions of axonin-I (Stoeckli and Landmesser, 1995) and NrCAM (Lustig 

et al., 1999). Development was allowed to continue in the presence of the function- 
blocking antibodies, or soluble IgCAMs that would have presumably inhibited the 
function of axonal IgCAMs by competitively interacting with their binding partners. As 

will be discussed in more detail later (see chapter 3), subsequent tracing of commissural 
axons revealed that these perturbations of IgCAM function did indeed seem to affect the 

ability of dorsal spinal axons to fasciculate with one another, and also alter their ability 
to enter the midline region known as the floor plate (Stoeckli and Landmesser, 1995; 
Lustig et al., 1999; Fitzli et al., 2000). 

1.5.2 Perturbation of neural IgSF protein function in ovo: caveats 

However, such results are not completely conclusive. For example, soluble IgCAMs 

could theoretically interact with binding partners and activate them, rather than 

necessarily being competitive inhibitors. Soluble Ll (Doherty et al., 1995) and F3 
(Durbec et al., 1992; Rougon et al., 1994) have indeed been shown to promote 
outgrowth in such a way in vitro. Furthermore, function-blocking antibodies may not 
always have the intended effect (Grenningloh and Goodman, 1992). Inhibition of one 
interaction/function of a molecule does not mean that all are inhibited. For example, it 
has been suggested that antibodies which prevent a trans interaction could leave a cis 
interaction unhindered (Buchstaller et al., 1996). An antibody to certain integrins has 
been shown to prevent binding to vitronectin, and yet promote interactions with laminin 
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and collagens (Neugebauer and Reichardt, 1991). In some cases, antibodies that 
prevent at least some intermolecular interactions can also stimulate cell-signalling 
events (Schuch et al., 1989). 

As commented by Stoeckli and Landmesser (1995), the total absence of a molecule is 

needed to avoid ambiguity. While GPI anchored proteins such as TAG- I may be 

removed from a cell surface using the enzyme phosphatidyl-i nos i tol 

phospholipase C (PI-PLQ (Stoeckli et al., 1996), this method cannot target a specific 
GPI-linked molecule. Anti-sense oligonucleotides, which act to prevent mRNA 
translation, have so far been used to perturb IgCAM function with limited success 
(Buchstaller et al., 1996). Currently the most definite and specific way of ensuring that 
there is no functioning version of a protein is to interfere with its gene. Genetic 
mutations have been used to study the roles of IgCAM proteins in both invertebrate and 
vertebrate systems. 

1.5.3 Mutations in genes encoding invertebrate neural IgSF proteins 

Mutagenesis screens have led to the isolation of mutant alleles of several invertebrate 

neural IgSF genes. Such studies have led to the identification of three Robo proteins in 
Drosophila melanogaster (Seeger et al., 1993; Kidd et al., 1998 b; Simpson et al., 
2000) and of the related protein Sax-3 in Caenorhabditis elegans (Zallen et al., 1998). 
Animals with loss-of-function mutations in robo or sax-3 show excessive crossing of 
the midline of the nervous system by axons, leading to suggestions that these proteins 
normally prevent inappropriate crossing (Seeger et al., 1993; Kidd et al., 1998 a, b; 
Zallen et al., 1998). Drosophila embryos- with mutations in the DSCAM gene have 
disorganised connective tracts and incorrect targeting of Bolwig's nerve, implicating the 
DSCAM protein in the guidance of both CNS longitudinal axons and Bolwig's nerve 
sensory axons (Schmucker et al., 2000). The phenotypes that result from manipulation 
of thefasIl gene indicate that fasciclin II has roles in formation of the Drosophila MP 1, 

vMP2 and FN3 fascicles (Grenningloh et al., 199 1; Lin et al., 1994) and in the ability of 
motor neurons to contact their specific target muscles (Lin and Goodman, 1994; Davis 

et al., 1997). The study of mutant flies has also led to suggestions that fasciclin II is 
important for growth and stabilisation of synapses (Schuster et al., 1996) and for 

memory formation (Cheng et al., 2001). Mutation of the gene encoding neuroglian has 
implicated this molecule in correct motor neuron guidance (Hall and Bieber, 1998), and 
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mutation of the gene encoding frazzled has implicated this Drosophila homologue of 
DCC both in the guidance of motor neurons and the formation of commissures 
(Kolodziej et al., 1996). 

Combining mutations in Drosophila IgCAM genes with those in other genes has also 
afforded information on how IgCAM proteins might relate to other axon guidance 
mechanisms. For example, neuroglian seems to affect the functioning of Drosophila 
EGF and FGF receptors (Garcfa-Alonso et al., 2000). The roles of fasciclin II in the 
fasciculation and guidance of motor axons appears to be finely balanced with those of 
the molecule beaten path (Fambrough et al., 1996), sernaphorins (Winberg et al., 1998) 

and netrins (Winberg et al., 1998; Yu et al., 1998). 

1.5.4 Mutations in genes encoding vertebrate neural IgSF proteins 

In the mouse, mutagenesis can be targeted to genes of interest. Thus mice with 
mutations in the appropriate genes have been used to investigate the roles of vertebrate 
IgCAMs in vivo. NCAM mutant mice were initially shown to have smaller brains, with 
a particular reduction in the size of the olfactory bulbs (Cremer et al., 1994). 
Subsequently NCAM mutant mice have been found to have defects in olfactory neuron 
precursor migration, and in the development of their hippocampal projections (Cremer 

et al., 1997). They also display behavioural problems, with abnormal levels of 
aggression (Stork et al., 1997) and, under certain circumstances, an inability to maintain 
a normal circadian rhythm (Shen et al., 1997). In all of these cases, mutant mice were 
compared with those that are wild type for the NCAM gene, indicating that NCAM 

normally functions in these situations. Similarly, studies of Ll mutant mice have 
implicated this IgCAM in a number of processes, including the guidance of 
corticospinal axons (Cohen et al., 1997) and axons of the corpus callosurn 
(Demyanenko et al., 1999), both at the midline of the developing brain. Ll also seems 
to be involved in correct development of the brain ventricles (Dahme et al., 1997; 
Demyanenko et al., 1999; Fransen et al., 1998), the cerebellar vermis (Fransen et al., 
1998) and the cyto-architecture of the spleen (Wang et al., 2000). Mutation of the gene 

encoding NrCAM has implicated this protein in postnatal development of the lens 
(More et al., 2001) and cerebellum (Sakurai et al., 2001). Mutation of the gene for F3 
(contactin) indicates that this molecule is important for development of certain aspects 
of cerebellar cyto-architecture (Berglund et al., 1999). Analysis of these mutant mice 
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also implicates F3 in the localisation of potassium channels to the axo-glial junctions of 
peripheral myelinated nerves, and thus also in the ability of these nerves to conduct 
nervous impulses efficiently (Boyle et al., 200 1). 

1.5.5 The present study 

1.5.5.1 Mice with mutations in the TAG-] gene 

A major part of this thesis is an investigation into the roles of TAG- I in the developing 

nervous system, through analysis of embryonic and immature TAG-] mutant animals. 
An independent study of TAG-] null mutant mice has recently reported that adenosine 
Al receptors are upregulated in the adult hippocarnpus, and that animals have an 
increased susceptibility to epileptogenic drugs. However, effects of the mutation upon 
neural development were not described (Fukimauchi et al., 2001). 

Two separate mutations were made in the mouse TAG4 gene (A. J. W. Furley; see also 

materials and methods). In the "TAGA,, mutation, a neomycin resistance cassette was 
inserted into the TAG-] gene by homologous recombination. As the initial leader 

sequence was left intact, and the remaining Ig-encoding exons are within the same 
reading frame, the inserted cassette is spliced over. Truncated TAG- I proteins are 
expressed on the surface of affected cells (figure 1.7; A. J. W. Furley, personal 
communications). The absent Ig domains are some of those shown to be essential for 
the interaction of axonin- I with NgCAM or NrCAM (Rader et al, 1996; Fitzli et al., 
2000; figure 1.8), such that TAG' homozygous mutant mice can be assumed to express 
TAG-I that cannot bind to LI or NrCAM. Separate lines of mice with this mutation 
were maintained on C57BI/6 and 129Sv strain backgrounds. Mice homozygous for this 
mutation on either genetic background were born at normal Mendelian frequencies, and 
displayed no overt defects. 

Completely null TAG-] mutant mice were also generated. These animals lack all TAG- 
I protein (verified by B. W. Kiernan and A. M. Furley, data not shown), as the 

mutation involves deletion not only of coding exons but also of the TAG-] leader 

sequence (A. M. Furley, personal communication; figure 1.7). This mutation was 
maintained separately in mice of either a mixed genetic background or of a pure 
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Figure 1.7 TAG-] alleles and their products. A: The wild type TAG- I gene, which encodes full-length 

TAGA protein. B: The TACrAmutant allcle. insertion of a neomycin resistance cassette deleted part of 
exon 3 through to part of cxon 6, preventing the production of full length TAG- I protein. However, the 
leader sequence of cxon 2 remains intact, and transcription can continue from this either with cxon 7, 
giving TAG- I protein that lacks the first two immunoglobulin-like domains, or with exon 9, giving TAG- I 
protein that lacks the first three immunoglobulin-like domains (A. J. W. Furicy. personal communication). 
Both of these truncated TAG- I proteins should be unable to interact with LI or NrCAM (Radcr et al., 
1996; Fitzli el al., 2000; see figure 1.8). C: the TAG- I null mutant allcle. As the leader sequence of exon 
2 has been deleted, no TAG- I protein is produced (A. J. W. Furley and B. W. Kiernan, personal 
communication). Instead, the tau-1acZ gene construct is transcribed, giving a reporter protein that has 
6-galactosidase activity and that is transported along axons. Arrows represent the oligonucleotidc primers 
used to determine the genotypes of mice (see methods). 
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Figurel. 8 All four of the first four Ig-like domains of TAG- 1/axonin- I are required 
for its interactions with either NgCAM or NrCAM. Binding sites have been determined 
by assessing the interactions of proteins that lack certain domains. Regions of axonin- I 
that are important for binding of this protein to NgCAM were determined by Rader el al., 
1996. Regions of NgCAM required for binding to axonin- I were identified by Kunz el al., 
1998. The third fibronectin type 11 domain of NgCAM was required for association with 
axonin-1, although this does not necessarily mean that this domain itselfinteracts with 
axonin- I (De Angelis el al., 1999). The regions of axonin-I and NrCAM that are involved 
in the interaction of these two molecules were identified by Fitzli et al., 2000. The results 
of Rader et al. and Fitzli et al. imply that proteins produced from the 7AGI mutant allele are 
unable to interact with either NrCAM or the rodent NgCAM-likc molecule LI. 



C57131/6 strain. In both cases, mice were born at expected Mendelian frequencies and 
outwardly appeared to be unaffected by the mutation. This thesis describes analyses of 
TAG-] mutant embryos and mice, with the aim of establishing whether TAG-] 

mutations do in fact affect neural development. 

1.5.5.2 Analysis of TAG-] mutant mice 

TAG-I -deficient developing nervous systems were compared with those of wild type 
mice. Of particular interest were the dorsal commissural axons of the spinal cord. 
TAG- I is expressed by these axons in rodents (Yamamoto et al., 1986; Dodd et al., 
1988; Vaughn et al., 1992), and its homologue axonin-I is thought to be involved in the 
ability of chicken dorsal commissural axons to enter the spinal cord ventral midline 
(Stoeckli and Landmesser, 1995; Stoeckli et al., 1997; Fitzli et al., 2000). TAG- I- 
deficient and wild type spinal cords were compared in transverse section by 
immunofluorescent and immunohistochernical labeling, and by staining for the activity 
of a B-galactosidase reporter protein (see methods). Dorsal spinal projections were also 
traced using the lipophilic dye DiI (l, l'-dioctadecyl-3,3,3', 3'- 
tetramethylindocarbocynine perchlorate). The proportions of labelled axons that 
followed various trajectories were compared between TAG- I deficient and wild type 
littermates. The study also involved a thorough characterisation of the dorsal spinal 
projections of wild type embryos, and a re-evaluation of previous reports. 

Other aspects of neural development were also analysed. The inclusion of a tau-1acZ 
gene within the TAG-] null mutation meant that all structures that would ordinarily 
express TAG- I could be stained for 13-galactosidase activity. This allowed the 
expression pattern of TAG- I to be documented comprehensively. It also allowed a 
general survey of the ways in which expressing structures were affected by a lack of 
TAG- I protein. Particular attention was paid to cells whose development has 

previously been suggested to involve TAG-1. For instance, TAG-1 is normally 
expressed by neurons of the facial (VIIth cranial) nerve nucleus during a period of 
caudal migration. In mouse embryos homozygous for mutations in the krox-20 or ebf-1 
transcription factor genes, a premature cessation of TAG- I expression by facial nerve 
neurons coincides with a truncated caudal migration (Garel et al., 2000). Axonin-l has 
been implicated in the fasciculation of axons in the chicken hindlimb (Xue and Honig, 
1999), which appears to be important for correct innervation (Landmesser and Honig, 
1986; Honig and Rutishauser, 1996). Therefore both the developing facial nerve 
nucleus and extending limb nerves were examined. The cerebellum, which shows some 
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failure of granule cell migration in adult TAG4 mutant mice (K. Ohyama and R. 
Yoshida, personal communication) was also examined for gross defects during its 

maturation. Other structures were studied in particular detail following the initial 

survey of B-galactosidase expressing structures. For example, TAG- I had not 
previously been implicated in development of the hypoglossal (XIIth cranial) nerve, but 

appearance of this nerve when stained for B-galactosidase activity raised the possibility 
that its axons might require TAG- I for correct extension. 

1.5.5.3 Mice with mutations in LI, NrCAM or ephrin B3 

This thesis also provides novel data on the neural development of mouse embryos with 
null mutations in the genes encoding the IgCAMs LI (courtesy of P. Soriano; Cohen et 
al., 1997) or NrCAM (courtesy of M. Grumet; Sakurai et al., 2001), or in the gene 
encoding the cell surface molecule ephrin B3 (courtesy of N. Gale; Kullander et al, 
2001 b). 

As is the case for TAG-1, LI is expressed by dorsal spinal commissural axons (Dodd et 
al., 1988), and its homologue appears to be required for correct development of these 

axons in the chicken (Stoeckli and Landmesser, 1995; Stoeckli et al., 1997). Male mice 
that are hemizygous for the X-linked mutation in LI are smaller than normal, have 

sunken and lacrimous eyes, are unable to breed, and often drag their hind limbs. This 
latter feature has been attributed to incomplete decussation of the corticospinal tract 
(Cohen et al., 1997), a pathway that carries impulses from the brain to the spinal cord, 
and which normally crosses the mid-line of the caudal hind-brain (Kalil, 1984; Gribnau 

et al., 1986). Thus it was conceivable that LI might also be involved in the decussation 

of dorsal spinal commissural axons. Previous immunofluorescent labelling of spinal 
cord sections showed that some dorsal spinal axons do decussate in LI hemizygous 

mutant embryos (Cohen el al., 1997), but it was not shown whether this was true of all 
of the axons. Therefore the dorsal spinal projections of LI mutant embryos were also 
traced using DiI, and differences between hemizygous and wild type embryos were 
analysed statistically. The possibility that TAG-1 and LI might act redundantly was 
also investigated. The dorsal spinal projections of VITAG-1 double mutant embryos 
were traced with Dil and compared to those of wild type embryos. A broader analysis 
was also conducted: whole embryos devoid of full-length TAG-1 and Ll proteins were 
stained for 8-galactosidase activity, and the structures that normally express TAG- I 

were compared. 
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The IgCAM NrCAM is also expressed by rodent dorsal spinal commissural axons, with 
specific localisation to axonal surfaces that are actually within the commissure. It is 
also expressed by the rodent spinal cord ventral midline, or floor plate, beneath which 
the decussating axons extend (Lustig et al., 200 1). Like axonin- 1, NrCAM seems to 
have a role in guiding dorsal spinal commissural axons at the chicken floor plate 
(Stoeckli and Landmesser, 1995; Stoeckli et al., 1997). Thus, although NrCAM 
homozygous mutant mice show no overt defects (Sakurai et al., 2001), it was 
conceivable that NrCAM might influence spinal commissural axon guidance. In order 
to investigate this possibility, the dorsal spinal axons of NrCAM homozygous mutant 
embryos were labelled. So too were those of ephrin B3 mutant embryos, as ephrin B3 
is also expressed in the floor plate (Gale et al., 1996 a; Bergemann et al., 1998; Imondi 
et al., 2000), and at least one population of commissural axons re-decussates aberrantly 
the ephrin B3 null mutants (Kullander et al., 2001 b). 

In summary, this thesis describes analysis of the dorsal spinal commissural axons of a 
number of lines of mutant mice. Although dorsal spinal projections of other NrCAM 

mutant embryos have since been studied elsewhere (More et al., 2001), this thesis 
provides the first reports of Dil analysis of these projections in TAG4, Ll or ephrin B3 

null mutant embryos. It also constitutes the first general description of the neural 
development of TAG-] mutant embryos. 
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2 Materials and Methods 
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2.1 Production of mutant mice and embryos 

2.1.1 Generation of single mutant animals 

TAG-] mutant mice were generated by AJ. W. Furley. The TAG-] gene was mutated by 

homologous recombination in embryonic stem cells (as in Mansour et al., 1990; see 
Capecchi 2001 for review). As indicated in figure 1.7, the TAG' mutation involved partial 
deletion of the gene, such that truncated TAG- I proteins were still produced and expressed 

at the cell surface (A. J. W. Furley, personal communication). The TAG-] null mutation also 
involved deletion of the gene's leader sequence, such that no TAG- I protein was produced 
(B. W. Kiernan and AJ. W. Furley, personal communications). Initially, both mutations 

were maintained within mice of a mixed strain background. Subsequently the null mutation 

was backcrossed, for at least 6 generations, onto a C57131/6 genetic background. The TAG' 

mutation was backcrossed onto a C57BI/6 genetic background for at least 10 generations, 

and was also maintained separately on a 129/SvEv background. All of these lines of mice 

were viable, and without obvious deficiencies. Mutant embryos were obtained from 

pregnant females mated as shown in figure 2.1. Cross 2.1 A was used to obtain litters that 

contained all three TAG' or TAG4 null mutant genotypes, so that "blind" analyses could be 

performed. Crosses 2.1 B, C and D were used subsequently, to increase the numbers of 

samples of particular genotypes more effectively. 

LI mutant mice were a gift from P. Soriano. Their generation is described in Cohen et al., 
1997. For the present study they were maintained on a 129/SvEv strain background, and 

mutant embryos were obtained from pregnant heterozygous females, mated as shown in 

figure 2.2. The cross shown is the only one that could be used, as hemizygous males are 

effectively sterile (Cohen et al., 1997). 
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A 
+/- 

B 
+1+ x +1- 

II 

+1+ +1- 

CD 
+1+ x -I- +1- x -I- 

II 

+1- +1- -1- 

FIgure 2.1 Crosses used to obtain TAG4, NiCAM and ephrin B3 mutant embryos. 
A: hcterozygote x hetcrozygotc matings were used to obtain litters that contained all three 
genotypes. This allowed embryos of all genotypes to be analysed together, "blindly". Crosses B, C 
and D were also used, according to which embryos were required and which mice were available. 
So too were crosses of mice with others of the same genotype, to produce embryos all of that 
genotype. 

+/- Vy 

III 

Figure 2.2 Cross used to obtain LI mutant embryos. The Ld gene is X-linked, so hcmizygous 
males completely lack Ll protein. As such mice arc largely unable to mate (Cohen et al., 1997). 
homozygous female embryos could not be generated. 
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NrCAM mutant mice were a gift from M. Grumet. Their generation is described in Sakurai 

et al., 2001. For the present study they were maintained on a mixed strain background, and 
mutant embryos were obtained from pregnant females mated as shown in figure 2.1. 

Again, cross A was used to obtain litters that contained all three genotypes, to allow C; 
unbiased analysis, and crosses B, C and D were used subsequently, as required. 

Ephrin B3 mice were a gift from N. Gale. Their generation is described in Kullander et al., 
2001 b, and for the present study they were maintained on a mixed strain background. 

Heterozygous and homozygous mutant embryos were obtained from pregnant females 

mated as shown in figure 2.1 and described above for TAG-1 and NrCAM mutant mice. 

Math-l-lacZ transgenic mice were a gift from J. Johnson. Their generation is described in 

Helms and Johnson, 1998, and for the present study they were maintained on a C57131/6 

strain background. These mice express lacZ under the control of ectopic inath-I regulatory 
sequences, such that endogenous inath-I gene expression is unaffected. Thus cells that 

would normally express the Math- I transcription factor still do so, and in addition contain 
the lacZ gene product, B-galactosidase. Math-I is normally expressed in the cells of the 
dorsal spinal cord that give rise to TAG- I -positive DI interneurons (Liem et al., 1997; 

Helms and Johnson, 1998; Lee et al., 1998; Gowan et al., 2001). Therefore staining of 

math-I-lacZ transgenic embryos for B-galactosidase provides a TAG- I -independent method 

of marking DI interneurons. Math-I-lacZ transgenic mice were mated with those carrying 
the TAG' mutation. This provided a method for staining the DI interneurons of TA GA 

homozygous mutant embryos, which would not otherwise contain O-galactosidase activity 

and which were not recognised by the 4D7 antibody (figure 3.6). 
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2.1.2 Generation of double mutant animals 

YAG-RLI double mutant embryos were also generated. For DiI labeling of dorsal spinal 

axons (see below), the YAGAmutant allele was used. This was to ensure that embryos were 

all of the same genetic background. At the time of the investigation, the TAG A and LI 

mutations were both being maintained on a pure 129/SvEv strain background, but the TAG- 

I null mutation was being maintained on mixed and C57BI/6 genetic backgrounds. Thus 

TAG-I null ILI double mutant embryos would have had a heterogeneous genetic 
background, and littermates would not all have had the same genes. This is likely to have 

affected the results obtained, as the LI mutant phenotype is known to be more severe when 

on a C57BI/6 genetic background than when on a 129/SvEv genetic background (Dhame et 

al., 1997). 7be u5c oF TAGAmutant animals meant that embryos differed from one another 

only at the TAG-] and LI loci, so that any differences in phenotype could be attributed to 

the IgCAM deficiencies. TAG A ILI double mutant embryos were most commonly obtained 

as illustrated in figure 2.3. 

For other analyses of double mutant embryos, the TAG-I null mutation was used. 
Although not as precise an approach, the use of this mutation did mean that embryos could 
be stained for 3-galactosidase activity. This allowed TAG- I -expressing structures to be 

stained more easily and more reliably than by whole mount immunohistochernistry (see 

below). As L11TAG' double heterozygous (or "trans-heterozygous") mice were already 
being bred for the matings shown in figure 2.3, it proved easier to mate these with TAG- I 

null animals than to begin to breed L11TAG-1 null trans-heterozygotes. As illustrated in 

figure 2.4, the embryos that lacked wild type TAG- I protein thus carried one TAG- I null 

and one TAG'allele. This had the additional benefit that double mutant and control 

embryos contained equivalent amounts of 6-galactosidase, which allowed their staining to 

be compared more objectively than if some embryos had been carrying two tau-lacZ 

alleles. 
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Figure 2.3 Crosses used to obtain L11TAG-1 double mutant embryos for Dil analysis. Such 
embryos were used as described in chapters 3 and 4. In each case, genotype with regards to Ll is 
shown above the line, and genotype with regards to TAG4 is shown below the line. "A" denotes the 
TAGA allele, which encodes truncated TAG- I proteins (see figure 1.7). Whether cross A, B or C was 
used depended on the mice: that were available. 
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Figure 2.4 The cross used to obtain LIITAG-I double mutant embryos to be stained for 
B-galactosidase activity. Other crosses were used occasionally, according to which mice were 
available. In each case the genotype above the line is that for LI, and the one beneath the line is 
for TAG-L All of the resulting embryos carry a null TAG-I allele, so can be stained for 
13-galactosidase activity. "A" denotes the TAG' allele. This encodes truncated TAG-1 proteins 
(A. J. W. Furley, personal communication), so "A/-" embryos have no full-length TAG- I protein. 
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2.1.3 Harvesting of animals 

For analysis of embryos, pregnant females were killed by an overdose of anaesthetic 
(pen tobarb i tone) the appropriate number of days after mating: the time of vaginal plug 
discovery was referred to as EO. 5. The uterus was transferred to cold PBS (phosphate 
buffered saline; Sigma), and embryos were removed under a Zeiss Stemi SV6 dissecting 

microscope. Although it was usual for embryos of a single litter to show slight age 
differences (Kaufman 1992), embryos were not used if they were judged to be abnormally 

under-developed. There did not appear to be any relationship between the occurrence of 

such embryos and genotype (data not shown). The developmental ages of embryos were 

confirmed using Hogan et al., 1994. For instance, an embryo that was nominally E 11.5 

would not be used as such if it did not have a pigmented retina. 

Post-natal mice were anaesthetised by exposure to carbon dioxide, and killed by 

decapitation. Their brains were removed in cold PBS, under a Zeiss Stemi SV6 dissecting 

microscope. 

2.1.4 Genotyping of animals 

When necessary, the genotypes of animals were determined by polymerase chain reaction 
(PCR). Embryonic sacs or other small pieces of tissue were incubated overnight at 500C in 

100 - 500 pl lysis buffer (I OOmM NaCl, I OmM Tris (pH 8), 1 mM EDTA and I% SDS in 

de-ionised water), to which had been added 0.2 mg/ml proteinase K (Promega). DNA was 

purified from the resulting mixture by the addition of twice the sample volume of phenol- 

chloroform, mixing vigorously for 10 minutes, and then centrifuging at 13000 rpm for 10 

minutes. The resulting supernatant was removed and put through a second phenol- 

chloroform extraction, and then I pl was added to l9pl PCR reaction mixture. This 

reaction mixture consisted of 20mM tris-HCI (pH 8.4), 5OmM KCI, 2.25mM MgC12, 0- 
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0.2mM of each of the deoxyribonucleoside triphosphates dATP, dCTP, dGTP and dTTP, 

0.5pM of each of 4 diagnostic oligonucleotide primers, and 2.5 units Taq DNA polymerase 
(GibcoBRL), in sterile water. In each case, one pair of oligonucleotide primers was used to 
detect the wild type allele, and another pair used to detect the mutant allele. The primers 

used to diagnose genotypes of TAG, TAG-] null and Ll mutant animals are shown in 

figure 2.5 A-D. PCR was performed using a Hybaid "PCR Express" PCR machine. 
Reaction conditions were 3 minutes at 94"C, followed by 30 cycles of 30 seconds at 94"C, 

30 seconds at 591C, I minute at 72'C, and a final stage of 3 minutes at 72"C. PCR 

products were run on 2% agarose gels containing 0.5 pg/ml ethidium bromide, for 40 

minutes at 80 volts. Ultra-violet illumination of gels revealed the extents to which DNA 

bands had migrated. As the different primer sets produced DNA of distinctive sizes, the 

bands obtained from a PCR reaction could be used to diagnose the genotype of the original 
tissue (as shown in figure 2.5 E and F). 
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Figure 2.5 Diagnostic oligonucleotide primers used to determine the genotypes of mutant mice. 
TIwo primers are used to detect each allele. A PCR reaction to diagnose the genotypes of TAGA mutant 
animals would use primers A (to detect the wild type gene) and B (to detect the mutant allele). The 
primers shown in A give a DNA product of 450 base pairs (bp), while the primers shown in B give a 
product of 260 bp. These migrate for different distances when run on an agarose gel, such that the geno- 
type could be determined as illustrated in E. A PCR reaction to genotype TAG-] null mutant animals 
would use primers A and either B or C, as the mutant allele contains both the neomycin resistance and 
IacZ genes (figure 1.7). A PCR reaction to genotype LI mutant animals would use the primers shown in 
D, which gives a product of 400 bp, to detect the wild type LI gene. The primers shown in B were used 
to detect the mutant allele, as it includes a neomycin resistance cassette (Cohen el al., 1997). When the 
reaction products had been run on an agarose gel, genotypes could be determined as illustrated in R 
The regions to which the A, B and C primer sets anneal are shown in figure 1.6 A, B and C respectively. 
Other genotyping reactions are not illustrated as they were always performed by other members of the 
laboratory. 

wild type TAG4 gene GGA GGA GAG AGA CCC CGT GAA A 
ACA CGA AGT GAC GCC CAT CCG T 

neomycin-resi stance gene TGG AGA GGC TAT TCG GCT ATG AC 
AGC AAG GTG AGA TGA CAG GAG ATC 

lacZ gene CTG GAT AAC GAC ATT GGC GTA AG 
AGA TCC CAG CGG TCA AAA CAG 

wild type LI gene GGT GCA AGG GTG ACA TTC ACG T 
TGC TCT CCA CCT CAT CCA GTT CAG 

TAG-1 +1+ +1. -I- Ll +/+ 
or +/Y 

450 bp -a- 

260 bp o. 

400 bp 

260 bp 



2.2 Immunohistochemistry 

2.2.1 Whole-mount immunohistochernistry 

For whole-mount immun ohistoc hernis try, embryos or pieces of embryos were fixed in 4% 

paraformaldehyde (in 0.12M phosphate buffer, pH 7.4), at 4'C for approximately two 

hours. Samples were then washed at least three times in PBS, each wash lasting for a 

minimum of one hour. The function of endogenous hydrogen peroxidase enzyme, such as 
is within red blood cells, was blocked by an overnight incubation at 4'C in a solution of 0.1 

% hydrogen peroxide in PT., (PBS with I% Triton., 100; Sigma). After this blocking step, the 

hydrogen peroxide solution was removed and samples were washed at least three times in 

PTxj each wash lasting for a minimum of one hour. The samples were then incubated 

overnight in blocking solution (PT. with 10% heat-inactivated goat serum: GibcoBRL goat 

serum, heat inactivated at 56'C for 30 minutes) at 4C. After this step, which serves to 

reduce the non-specific binding of antibodies, embryos or pieces were incubated at 4'C, 

with agitation, in primary antibody solution. This solution consisted of a 115 dilution of the 

required hybridoma supernatant in PT,, H (PT., with I% heat-inactivated goat serum). The 

supernatant was either 2H3, which recognises a 155kd neurofilament protein (Dodd et al., 
1988), or 4137, which recognises TAG- I (Yamamoto et al., 1986; Dodd et al., 1988). After 

at least four days the primary antibody was removed. Samples were washed at least three 

times in PT., H, each wash lasting at least one hour and involving agitation of the samples. 
Tissue was then incubated at 4'C with agitation in a solution of the appropriate horseradish 

peroxidase-conjugated secondary antibody, diluted 1/200 in PT., H. If the primary antibody 
had been 2H3, a goat anti-mouse IgG secondary antibody was used (Biosource 

International, or Jackson ImmunoResearch); if the primary antibody had been 4137, a goat 

anti-mouse IgM secondary antibody was used (Biosource International). 

After at least three days, samples were washed briefly in PT., H. They were then washed at 
least twice in 0.1 M Tris buffer (pH 7.2), each wash lasting at least one hour and involving Z: l 
agitation of the tissue. Samples were then immersed in a solution of I mg/ml DAB (3,3"- 
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diaminobenzidine tetrahydrochloride), which had been made up as Ix 6mg DAB buffer 

tablet (Merck) per 6ml distilled water and filtered before use. This pre-incubation lasted 

for at least two hours, and was carried out at room temperature and in darkness. Samples 

were then incubated in more of the DAB solution, to which had been added 0.03% 

hydrogen peroxide. This incubation in "activated" DAB was also carried out at room 

temperature and in darkness, but only for as long as was necessary for a brown reaction 

product to develop. When labelling had developed sufficiently, active DAB solution was 

removed and samples were washed a number of times in PBS. Samples were examined 

using a Zeiss Stemi SV6 dissecting microscope. When required, samples were 

photographed using either an MC- 100 camera attachment and Kodak Ektachrome 64T film, 

or a Nikon Coolpix 990 digital camera. In the former case, pictures were scanned 

electronically using a Nikon LS-2000 scanner. Figures were prepared using Adobe 

Photoshop and Canvas 7. 

2.2.2 Immunobistochernical and immunofluorescent labelling of sections 

Other embryos were sectioned before labelling. Following fixation and rinses in PBS as 

described above, embryos were cryo-preserved. This involved incubation in a solution of 

30% sucrose in PBS, at 4'C for a minimum of one night. Once saturated with sucrose 

solution, embryos or pieces of embryos were mounted onto chucks using OCT compound 

(BDH) and stored at -20*C until sectioning. Tissue was sectioned using a Bright cryostat, 

and 15 Vm sections were collected on glass slides (Superfrost Plus, BDH). 

Sections to be labelled were re-hydrated using PT.,. Those to be used for 

immunohistochernistry were incubated in a solution of 0.1 % hydrogen peroxide in PT, at 

4'C for approximately 30 minutes, to block the function of endogenous hydrogen 

peroxidase. Those to be used for immunofluorescence, and those that had been rinsed in 

PT, after the hydrogen peroxidase blockage step, were then incubated at 4"C for a 
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minimum of two hours in blocking solution (10% heat-inactivated goat serum in PT. J. 

Sections were then incubated in primary antibody solutions, overnight at 4'C. The 4D7 

and 2113 antibodies were used as described above. 324, a rat monoclonal IgG antibody to 
LI (Boehringer Mannheim; Rathjen and Schachner, 1984), was used at 1150 in PT, H. 838, 

a rabbit polyclonal antibody to NrCAM (courtesy of M. Grumct; Lustig et al., 200 1), was 

used at 1/300 in PT. H. R. 33 1, a rabbit polyclonal antibody to BMP7, was used at 11500 in 

PTxH that had been specifically adjusted to pH 6.4 (Dale et al., 1997). Sections were rinsed 

at least three times in PTxH, and incubated for at least one hour at 4"C in a solution of the 

appropriate secondary antibody. 

Secondary antibodies were used at a dilution of 1/200 in PTH. For immunohistochemical 

labelling, horseradish peroxidase-conj u gated secondary antibodies were applied. For the 
4D7 and 2H3 primary antibodies, the secondary antibodies used were as described above. 
For 838 or R. 33 1, a goat anti-rabbit secondary antibody was used (Biosource International 

or Boehringer Mannheim), and for 324, a goat anti-rat secondary antibody was used 
(Sigma). Following this incubation, sections were rinsed at least three times in PT', H or 
PBS, and incubated for at least 30 minutes in 0. IM Tris buffer (pH 7.2). They were then 

covered in a solution of I mg/ml DAB (without hydrogen peroxide, prepared as above) in 

darkness for at least 30 minutes. Samples were then incubated in DAB solution to which 
had been added 0.03% hydrogen peroxide. This incubation was conducted at room 
temperature in darkness, progress of the reaction being checked frequently using a Zeiss 

Stemi SV6 dissecting microscope. When labelling had developed sufficiently, active DAB 

solution was removed and sections were rinsed a number of times in PBS. Cover slips 

were applied to the slides, using a mounting medium of approximately 2: 1 glycerol to 

carbonate buffer. Sections were examined using a Zeiss Axiophot microscope. When 

required they were photographed, using either an MC-100 camera attachment with Kodak 

Ektachrome 64T film, or a Nikon Coolpix 990 digital camera. In the former case, pictures 

were scanned electronically using a Nikon LS-2000 scanner. Figures were prepared using 
Adobe Photoshop and Canvas 7. Unless otherwise stated, the sections shown were from 

inter-limb levels of the spinal cord. 
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For immunofluorescent labelling, the appropriate classes of fluorescently- conjugated 

secondary antibodies were applied, and the incubation was carried out in darkness. 

Secondary antibodies were either fluorescein isothiocyanate (FITC) or tetremethyl 

rhodamine isothiocyanate (TRITC) conjugates (Biosource International), according to 

which colour of fluorescence was required. After at ]cast three washes in PTH and/or 
PBS, cover slips were applied. A mounting medium of 2: 1 glycerol: carbonate buffer, to 

which had been added the "anti-fade" compound p-phenylenediamine (Sigma; one small 

crystal per 1.5 ml) was used. Sections were examined under an Olympus BX60 fluorescent 

microscope and photographed with an Olympus PM C35DX camera, Olympus PM 30 

Exposure Control Unit and Kodak Ektachrome P1600 film. Pictures were scanned 

electronically using a Nikon LS-2000 scanner, and figures were prepared using Adobe 

Photoshop, and Canvas 7. Unless otherwise stated, the sections shown in figures were from 

inter-limb levels of the spinal cord. 
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2.3 Dil injection of spinal cord preparations 

2.3.1 Injection of open book preparations 

While antibody labelling can demonstrate whether some axons do cross the midline, it 

cannot show whether other axons also fail to decussate (figure 2.6). In contrast to 

antibodies, which label bilaterally, axon tracers such as DiI (1, I'-dioctadecyl-3,3,3', 3'- 

tetramethylindocarbocynine perchlorate) can be used unilaterally and allow commissural 

axons to be traced without interference of axons from the other side of the spinal cord. DiI 

injections were equally the work of the author and B. W. Kiernan. 

Spinal cords were dissected from embryos in cold Leibovitz's L15 medium (GibcoBRL) 

that contained approximately I% heat inactivated goat serum. Isolated spinal cords were 

slit along the roof plate and pinned out onto Sylgard coated petri dishes as "open books" 

(figure 2.7; Bovolenta and Dodd, 1990). The petri dishes contained a solution of 4% 

paraformaldehyde fixative (as above), such that incubation for at least two hours at 4'C 

caused the spinal cords to be fixed as open books. After this fixation, dishes were rinsed 

gently with PBS. Before they were unpinned, the PBS-covered open book preparations 

were injected with DiI (Molecular Probes), dissolved to be 2.5 mg/ml in DMF (di-methyl 

formamide; Sigma). Injections were made using glass micropipettes (1.2mm outer 
diameter, 0.69mm inner diameter, Clark Electrical Instruments) that had been pulled to fine 

points using a P-97 Flaming/Brown micropipette puller, Sutter Instrument Company. 

Pulled micropipettes were filled with Dil solution by capillary action, and attached to the 

end of rubber tubing (an "aspirator assembly"; Sigma). Small amounts of Dil were blown 

into the required regions of fixed spinal cord by mouth. Open book samples were then 

unpinned, transferred to micro-centrifuge tubes, and stored in darkness at VC for at least 

one week. One week was found to be sufficient time for DiI to diffuse along dorsal 

commissural axons such that trajectory could be determined (data not shown). 
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B 

DO 

Figure 2.6 The sensitivity of Dil labeling in the spinal cord. Antibodies label bilaterally (A), 
such that it is not possible to trace individual axons. For example, if a length of spinal cord is cut 
along its dorsal mid-line to give an "open book" preparation (as indicated on the left and shown 
on the right), the labelling of all axons means that it is not clear whether axons arc projecting 
ipsilaterally or contralaterally, or rostrally or caudally. In contrast, Dil is applied unilaterally (B). 
In "open book" preparations, it is possible distinguish between different projections as labelled 
fascicles must all originate from the same area. Scissors not to scale. 
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Figure 2.7 Preparation of samples for Dil analysis. A: spinal cords were removed from mouse 
embryos and slit longitudinally along the roof plate. B: Opencd-out spinal cords were pinned down 
and fixed into an "open book" conformation. After fixation, the preparation was injected with Dil, 
using a glass micropippette. C: After at least a week, preparations were mounted, in a small volume 
of PBS, between glass cover slips that were separated by a ring of vacuum grease. This allowed the 
sample to be examined from both sides under a conventional fluorescence or confocal microscope. 

45 



2.3.2 Analysis of results 

After one week, the injected spinal preparations were analysed. Such analysis was carried 

out in collaboration with B. W. Kiernan. Open book preparations were mounted in a small 

volume of PBS, between two glass cover slips (BDH) that were separated slightly by a ring 

of vacuum grease (Dow Coming; see figure 2.7). The projections labelled by each 

injection site were examined using a Leica DMR fluorescence microscope. This analysis 

was normally performed "blindly": that is, before the examiner knew which preparations 

were of which genotype. Sites that had DiI applied to inappropriate dorso-ventral locations 

were ignored, so that all sites would be comparable. Analysis was further restricted to 

axons that had reached the floor plate, as axonin- 1, NgCAM and NrCAM are thought to 

guide chicken dorsal commissural axons only once the floor plate has been reached 

(Stoeckli and Landmesser, 1995; Lustig et al., 1999). The labelling of axons that had not 

reached the floor plate was attributed to application of Dil either to younger commissural 

neurons, or to association interneurons, whose axons would turn longitudinally in the 

ipsilateral lateral funiculus (Cajal, 1909; Altman and Bayer, 1984; Wentworth, 1984). 

There was no obvious correlation between genotype and the occurrence of such axons (data 

not shown). 

When sites were judged to have unambiguous labelling of dorsal spinal axons, proportions 

of the labelled projections were assigned to one of the six categories illustrated in figure 

3.10. Projections that had crossed the floor plate and made a rostral turn were classed as 

"contra-rostral", while those that had crossed the floor plate but made a caudal turn were 

assigned to the "contra-caudal" category. "lpsi-rostral" projections were those that had 

turned rostrally without having crossed the floor plate, and "ipsi-caudal" ones those that 

had turned caudally without having crossed the floor plate. Those that failed to turn, and 

instead continued to extend circumferential ly into the contra-lateral spinal cord, were 

classed as "continuing". Axons that appeared to have been in the process of crossing the 

floor plate at the time of spinal cord fixation were said to be "in/at the floor plate". Where 

possible, the proportions of projections in each category were determined by counts of 
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labelled axon/fascicles. In other cases, proportions were estimated. The validity of this 

approach was tested by comparing estimates with those of another researcher, and also with 
those made from photographs of the sites (data not shown). 

When required, samples were imaged using a Leica TCS SP confocal system and TCS 

NT/SP software, or were photographed using an Olympus BX60 fluorescent microscope, 
Olympus PM C35DX camera, Olympus PM 30 Exposure Control Unit, Kodak Ektachrome 

P1600film. In the latter case, pictures were scanned electronically using a Nikon LS-2000 

scanner. Figures were prepared using Adobe Photoshop and Canvas 7. 

The mean proportion of axons in each category was calculated for all of the injection sites 
of each type. The proportions of axons within each category were displayed graphically 
using Microsoft Excel (Excel: mac, 2001). This software was also used to test the statistical 
significance of apparent differences, one-way ANOVA (analysis of variance) tests being 
judged to be the most appropriate (Dytham, 1999). 
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2.4 Staining for structures that contain B-galactosidasc 

2.4.1 Staining for 13-galactosidase activity 

Fresh samples (brains or embryos) were rinsed in PBS, and fixed for approximately one 
hour in fresh "lacZ fixative" (I % paraformaldehyde, 0.2% gluataraldehyde, 5mM EGTA and 
0.02% Tritonx, 009 in PBS) at room temperature. After at least three washes in lacZ wash 
0 mM EGTA, 2mM MgCl, and 0.02% Triton,, 100, in PBS), each lasting at least 30 minutes. 
B-galactosidase activity was visualised. This involved an overnight incubation in IcICz 

staining solution (5mM potassium ferrocyanide (Sigma), 5mM potassium ferricyanide 

(Sigma), 0.01 % sodium deoxycholate, and 0.02% Triton,,,., in PBS) to which had been 

added I mg/ml 5-bromo-4-chloro-3-indolyl-B-D-galactopyranoside (X-gal, Sigma). This 

incubation was carried out at room temperature, in darkness. 

The following day, samples were rinsed thoroughly in PBS. They were then fixed 

overnight in 4% paraformaldehyde at 4*C, for better preservation of staining, and stored at 
4*C in PBS. 

2.4.2 Processing of stained samples 

Samples stained for 8-galactosidase activity were subsequently processed in one of a 

number of ways. Brains and bisected brains were photographed using a Zeiss Stemi SV6 

dissecting microscope with MC- 100 camera attachment and Kodak Ektachrome 64T film. 

Stained structures were identified using Paxinos, 1985, Yamamoto et al., 1986, Paxinos et 

al., 199 1, Fitzgerald, 1992, Wolfer et al., 1994, Altman and Bayer, 1995 and Jacobowitz 

and Abbott, 1997. 
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Embryos were usually cleared. Clearing involved dehydration by successive overnight 
incubations in 70% ethanol, 100% methanol and fresh 100% methanol, before immersion in 

benzoyl benzoate: benzoyl alcohol mixture (ratio of 2: 1, both from Sigma). This rendered 

the embryos transparent, allowing B-galactosidase stained structures to be studied in more 
detail. Embryos were photographed using a Zeiss Stemi SV6 dissecting microscope with 

either an MC-100 camera attachment and Kodak Ektachrome 64T film, or a Nikon Coolpix 

990 digital camera. Figures were prepared using Adobe Photoshop and Canvas 7. Stained 

structures were identified using Paxinos et al., 199 1, Kaufman, 1992 and Jacobowitz and 

Abbott, 1997. In the case of whole embryos, the phenotype of the hypoglossal nerve was 

scored, as illustrated in figures 6.2 and 6.3. The phenotypes recorded for mutant and 

control embryos were compared using aX2 test (Microsoft Excel: mac, 200 1, as suggested 

by Dytham, 1999). 

Embryos were also often sectioned. If they had been cleared, they were first "un-cleared" 

and re-hydrated, the dehydrating and clearing process described above being carried out in 

reverse. Regions of interest were pre-incubated in embedding mixture (made up as 2.25g 

gelatin dissolved in 50ml PBS, to which was added PBS up to a volume of 400ml, 135g 

albumin, and 90g sucrose), overnight for between I and 3 nights depending upon size of the 

tissue. After this, the sample was put onto a layer of the same embedding mixture, which 
had been set with I part in 10 of 25% glutaraldehyde, in the base of an embedding mould. 
More embedding /glutaraldehyde mixture was then added. Once the whole block had set, 

100pm sections were made using a Series 1000 Vibratome Sectioning System. Sections 

were collected in 24-well plates containing PBS, and were examined using a Zeiss Stemi 

SV6 dissecting microscope. If high magnification was required, sections were mounted 
between two cover slips (as described above and shown in figure 2.7 for open book 

preparations) and examined using a Zeiss Axiophot microscope. Photographs were taken 

either using an MC-100 camera attachment and Kodak Ektachrome 64T film, or using a 

Nikon Coolpix 990 digital camera. In the former case, pictures were scanned electronically 

using a Nikon LS-2000 scanner. Figures were prepared using Adobe Photoshop and 
Canvas 7. Unless otherwise stated, the sections shown were from inter-limb levels of the 

spinal cord. 
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3 Roles of Immunoglobulin-like Cell Adhesion 
Molecules in Guidance of Dorsal Spinal 

Commissural Axons at the Rodent Floor Plate 
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3.1 Abstract 

One of the most striking examples of IgCAM expression is that of commissural neurons of 

the dorsal spinal cord. In rodents, TAG- I is expressed as the axons of dorsal commissural 
interneurons extend towards the midline and cross it, but not once they have turned 

longitudinally. In contrast Ll is expressed only during and after decussation (Dodd et al., 
1988). NrCAM is expressed by the decussating portions of commissural axons, and also by 

the midline region that the axons cross (Stoeckli and Landmesser, 1995; Lustig et al., 1999, 

2001). Perturbation of the functions of the corresponding chicken IgCAMs using 

antibodies (Stoeckli and Landmesser, 1995, Lustig et al., 1999) has suggested that these 

molecules are important for the correct guidance of avian dorsal commissural axons. 

This chapter describes an investigation into the roles of TAG- 1, LI and NrCAM in 

guidance of mammalian dorsal spinal projections. In addition to demonstrating that dorsal 

spinal neurons do not necessarily all decussate and turn rostrally, as had previously been 

implied, it shows that mutations in theTAG-1, Ll or NrCAM genes alone do not have 

significant effects upon their guidance. However, it does seem that when both of the TAG- 

] and Ll genes are mutated, the development of at least some dorsal spinal projections is 

perturbed. At E12.5, double mutant embryos had a greater proportion of axons "in or at the 

floor plate" than did wild type embryos. However, at E13.5, the spinal cords of double 

mutant embryos have a smaller proportion of their dorsal spinal axons within the midline. 

These results suggest that Ll and TAG-1 are in fact involved in the ability of dorsal spinal 

axons to cross the floor plate, but that other factors can compensate for their absence. 
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3.2 Introduction 

3.2.1 Commissural neurons 

Commissural neurons are those whose axons decussate: that is, those whose axons extend 

across the midline of the nervous system. The axons of commissural neurons make 

synaptic contacts with targets on the contralateral side of the nervous system to that of their 

cell body. Such connections between the two halves of the body are important for co- 

ordination of sensory input to, and of motor output from, the brain. If inappropriate 

decussations are made, or appropriate ones are not, function of the nervous system can be 

compromised. For example, inappropriate decussations seem to underlie "mirror 

movement" disorders, in which patients are unable to prevent both sides of the body from 

carrying out actions intended for just one side (Schott and Wyke, 198 1; Yokoyama et al., 
2001). Axons of the corticospinal tract and/or corpus callosurn fail to decussate in a 

number of retardation syndromes (Wong et al., 1995, Brammendorf et al., 1998). Thus the 

ability of axons to grow across the midline of the developing nervous system is carefully 

controlled. 

3.2.2 Dl interneurons 

The spinal cord consists of a variety of populations of neurons (figure 3.1), and some of 
these are commissural (Wentworth, 1984). The axons of motor neurons, which extend out 

of the ventral horn of the spinal cord to peripheral targets such as muscles, do not 
decussate. The axons of interneurons, which are by far the most common spinal neurons 
(Jankowska and Lundberg, 198 1), project entirely within the central nervous system and 

synapse on other neurons. If their axons extend across the midline of the spinal cord, to a 

target on the contralateral side of the nervous system, they are known as commissural 
interneurons. The majority of commissural axons decussate ventral to the lumen of the 

spinal cord, in the ventral commissure, although a few do decussate dorsal to the lumen, in 

the dorsal commissure (Cajal, 1909; Orlino et al., 2000). If the axon of an intemeuron 
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Figure 3.1. The major classes of neurons that originate in the spinal cord. 
Intemeurons of either type may also be classified as relay intemeurons if their 
axons project to distant regions of the spinal cord or to the brain, or as intersegmental 
intemeurons if their axons extend to targets at approximately the same rostro-caudal 
level as the cell body. The axon of the commissural intemeuron is shown extending 
rostrally in the ventral longitudinal fasciculus (VLF); the ipsilateral interneuron is 

shown extending rostrally in the lateral longitudinal fasciculus (LLF). rp- roof plate; 
fp- floor plate. 
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remains ipsilateral, that is, if it extends only on the same side of the nervous system as the 

cell body, the neuron is said to be an association interneuron (Altman and Bayer, 1984; 

Wentworth, 1984). Interneurons may also be classified according to whether their axons 

extend to distant or local targets. Relay intemeurons are those that extend axons to distant 

regions of the spinal cord or to the brain, while inter-segmental intemeurons are those that 

make contact with motor neurons at approximately the same spinal level as their cell body 

(Altman and Bayer, 1984; Silos-Santiago and Snider, 1992). 

Although there are such definite criteria by which interneurons may be classified, the 

matter of describing different populations is far from straight forward (Lowrie and Lawson, 

2000). For example, individual intemeurons can have axons which branch to project both 

ipsilaterally and contralaterally, and some axons branch to project both rostrally and 

caudally (Cajal, 1909; Oppenheim et al., 1988). Some have projections to both local and 
distant targets (Jankowska and Lundberg, 198 1). Interneurons have also been classified 

according to the location of their cell body or on the basis of their morphology, in addition 

to their axonal projection (for example, Oppenheim et al., 1988; Silos-Santiago and Snider, 

1992,1994; Eide et al., 1999). However, differences in species and developmental stages 

used mean that is often extremely difficult to determine how such methods of classification 

relate to one another (Eide et al., 1999), or to the adult situation (Oppenheim et al., 1988). 

In the adult rat, axons of dorsal horn commissural neurons contribute to the spinothalamic 

(Tracey, 1985) and ventral spinocerebellar (Brown, 198 1) tracts, while the axons of other 

adult dorsal horn neurons may contribute to the ipsilateral spinocervical and dorsal column 

pathways (Brown, 198 1). However, interneuron cell bodies migrate considerably during 

development (Leber and Sanes, 1995), and the position of a mature neuron can often be 

quite different from the site of origin (Lee et al., 1998; Pierani et al., 2001). 

More recent studies classify interneurons according to the transcription factors that they 

express during development, although relating early gene expression to ultimate axon 
trajectory remains difficult (Bermingham et al., 2001). Using criteria of Lim homeobox 

transcription factor expression, there seem to be at least nine distinct classes of interneurons 

(figure 3.2 A). Five of these classes originate in the dorsal spinal cord (that is, the region 
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Figure 3.2 Different classes of developing spinal neurons. 
A. There are at least 9 distinct populations of interneurons within the developing spinal cord: five dorsal 
(D] to D5) and four ventral (VO to V3). The ventral spinal cord also contains motor neurons (MN). 
The different classes of neurons are distinguished by the expression of characteristic transcription factors 
(shown above in italics), and the dorso-ventral region of the spinal cord in which they originate (shown 
above for approximately E10.5 spinal cord). Using Burril ef al., 1997, Liern el al., 1997, Matise and 
Joyner, 1997; Lee el al., 1998; Briscoe el al., 1999,2000, Pierani et al. 2001, Moran-Rivard el al., 2001. 
B. At least some of the populations occupy different regions of the spinal cord by E12.5. The DI 
interneurons have migrated ventrally and form two distinct sub-groups (Lee el al., 1998), the D5, VO and 
VI neurons also appear to have migrated to more ventral locations (Moran-Rivard ef al., 2001). The V2 
interneurons are also thought migrate ventrally (Moran-Rivard el al., 2001). The later positions of the 
other interneuron classes has not been reported. 



dorsal to the sulcus limitans; Shoji et al., 1996; Matise and Joyner, 1997), and are referred 
to as classes DI to D5 (Lee and Jessell, 1999; Pierani et al., 2001). The other four classes 

originate more ventrally and are designated VO to V3 (Jessell, 2000). However, it should 
be noted that considerable migration occurs (Leber and Sanes, 1995): the cell bodies of D 1, 

D5, VO and VI interneurons subsequently all appear to occupy more ventral regions of the 

spinal cord than those of their origin (figure 3.2 B; Lee et al., 1998; Pierani et al., 200 1). 

D I, D2 and D3 interneurons are distinguished by their expression of the Lim homeobox 

genes LH2, islet I and Lim 112 respectively (Liem et al, 1997). The DI population can be 

further divided into DIA and DIB interneurons, according to whether LH2A or LH2B is 

expressed (Lee et al., 1998); a subset of the D3 interneurons that also expresses the 

transcription factor Brn3A have been assigned to a D3A sub-class (Gowan et al., 2001). 

D4 interneurons express Lnzxlb (Pierani et al., 2001). Although a specific marker of D5 

interneurons has yet to be reported, the existence of this class has been predicted on the 

basis of there being a gap between domains of expression of other markers (Matise and 
Joyner, 1997). D5 interneurons seem to arise from the same progenitor population as the 

VO interneurons, which are identified by their expression of Evx- I (Burrill et al., 1997; 

Pierani et al., 1999,2001; Moran-Rivard et al., 2001). VI intemeurons express En I 

(Burrill et al., 1997; Pierani et al., 1999), V2 interneurons express Chx 10 (Briscoe et al., 
2000), and V3 interneurons express sim I (Briscoe et al., 1999). 

DI and VO interneurons send axons across the ventral midline of the spinal cord (Liem et 

al., 1997; Moran-Rivard et al., 200 1), while the axons of VI and V2 interneurons project 

entirely within the ipsilateral spinal cord (Saueressig et al., 1999; Moran-Rivard et al., 
2001). The nature of the D2, D3, D4, D5 and V3 axonal projections is not well 
documented, although lack of expression of the dorsal commissural neuron markers TAG- I 

(Liem et al., 1997) and Math- I (Helms and Johnson, 1998; Lee et al., 1998) implies that 
D2 and D3 axons remain ipsilateral. Thus DI interneurons are so far the only neurons of 
dorsal origin that are known send axons across the floor plate. 
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3.2.3 Guidance of the axons of Dorsal Spinal Commissural Interneurons 

3.2.3.1 From cell body to floor plate 

The guidance of dorsal commissural interneuron axons has been studied extensively, and 

what are thought to be DI axons are now known to be guided by a number of different 

molecular mechanisms (summarised in figure 3.3). Beginning at around E9 in the mouse 

embryo, the axons project ventrally (Holley, 1982; Altman and Bayer, 1984; Wentworth, 
1984), apparently being forced away from the roof plate by the repulsive activity of BMP7 
(Augsburger et al., 1999). The axons then continue to extend ventrally and also medially, 

under the attractive influence of Netrin (Kennedy et al., 1994; Serafini et al., 1994,1996), 

which is secreted by the floor plate and responded to via the axonal Ig-like receptor DCC 
(Keino-Masu et al., 1996; de ]a Torre et al., 1997; Stein et al., 2001). There might also be 

other, as yet unidentified, floor plate attractant factors (Serafini et al., 1996; Hummel et al., 
1999). The 400pm from cell body to floor plate is crossed in approximately twenty-four 
hours (Bovolenta and Dodd, 1990), with the first commissural axons reaching the floor 

plate at about EIO, and later generated axons continuing to reach the floor plate during the 
following forty-eight hours (Wentworth, 1984). 

3.2.3.2 Floor plate entry 

Once at the floor plate, commissural axons must extend into this structure. Continued 

attraction by Netrin, and short-range attraction by F-Spondin (Burstyn-Cohen et al., 1999) 

appear to encourage the axons to extend into the midline. It has also been suggested that 

certain IgCAMs might be involved in floor plate entry, as they are expressed in a highly 

specific manner. At the time of floor plate entry, dorsal spinal expression of TAG- I 

appears to be unique to DI interneurons (Vaughn et al., 1992; Liem et al., 1997). It is 

found on the surface of DI cell bodies from the onset of their differentiation, and once 

axons begin to extend expression becomes restricted to these processes (Dodd et al., 1988). 

When the axons have crossed the midline of the spinal cord, they too cease to express 
TAG-1, possibly due to the influence of the floor plate cells (Bovolenta and Dodd, 1991; 
Campbell and Peterson, 1993; Matise et al., 1999; Zou et al., 2000; figure 3.4 A, D, G, J 
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1. Cell body to floor plate 
- Repulsion ftom roof plate by BMP7 (rat) 

- Attraction to floor plate by 
netrins (mouse, chicken, rat) 

4. Longitudinal extension 
Continued repulsion from the floor 

plate (as for floor plate exit) 
Attraction to floor plate by 

F-Spondin (chicken) 
- Repulsion from more 

lateral regions by Slit-2 
and Sema 3E(mouse) 

Fasciculation along 
other longitudinal 

axons (chicken) 

2. Floor plate entry 7. 3. Floor plate exit 

- Continued attraction by netrins Loss of attraction to netrins (rat), due to 

- Axons arc unable to respond to the interaction of Robo with DCC (Xenopus) 

repulsive midline factor Serna 3B (mouse) - Axons acquire sensitivity to the repulsive 

- Lack of axonal Eph B receptors (mouse) midline factor Sema 3B (mouse) 

- Masking of a repulsive cue by - Increased axonal expression of Eph receptors 
axonin- I (TAG- 1) - NrCAM mediates repulsion by midline ephrins (mouse) 
interactions (chicken) - Increased axonal expression of Robo 

- Low axonal expression of Robo, mediates repulsion by Slit (Drosophila) 

receptor for the repulsive midline - Up regulation oj'axonal FI L 1,3/contachn (chicken) 
factor Slit (Drosophila) Up regulation of LI (mouse, rat) 
Low axonal expression ofL I (mouse, rat) - Down regulation of'axonal DM-GRAV, 

N-Cadherin and. #1 inlegrins (chicken) 

- Down regulation oj'axonal TA G- I (mouse, rat) 

Figure 3.3 Mechanisms that might guide dorsal commissural interneurons. 
Four stages of dorsal commissural axon guidance are shown. Mechanisms suggested to be acting at 
each stage are listed, along with the species in which experiments were performed . Note that the change 
in surface Robo expression has not yet been demonstrated in vertebrates. Expression patterns which are 
of note, but which have not yet been shown to be of physiological relevance, are given in italics. 
For references, see text. 
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Figure 3.4 Expression of the lgCAMs TAG-1, LI and NrCAM in E11.5 and E12.5 mouse spinal 
cord. Transverse sections were labelled using antibodies to TAG- I (A, D, G and J), L1 (13, E, H and K) or 
NrCAM (C, F, I and J). A-V expression of TAG-], LI and NrCAM in EI 1.5 spinal cord. D-F show the 
floor plate regions at a higher magnification. The antibody to TAG-] has labelled commissural axons (c), 
from the dorsal origin to their decussation underneath the floor plate (fp). The area at which dorsal root 
ganglion axons enter the spinal cord is particularly strongly labelled (d; also labelled strongly for LI in B), 

as are the motor axons extending into the periphery(m). LI is strongly expressed by commissural axons 
underneath the floor plate and in the ventral longitudinal funiculus (vlf). Axons label most strongly for 
NrCAM underneath the floor plate. The floor plate cells themselves also express NWAM (F). 
At El 2.5, the expression patterns are very similar to those at at El 1.5 (G-L). The major difference is that 
many more axons can be seen beneath the floor plate and in the ventral longitudinal fasciculus, as more 
axons have decussated. M-0 summarize expression of the three IgCAMs by dorsal commissural neurons. 
Red indicates strong surface expression. 
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and M). In contrast, the IgCAM Ll is only expressed on the surface of dorsal commissural 

axons as they reach the floor plate, and this expression continues as the axons complete 
their decussation and turn to extend in the ventral funiculus (Dodd et al, 1988; Tran and 
Phelps, 2000; Zou et al., 2000; figure 3.4 B, E, H, K and N). Another Ll-like protein, 
NrCAM, is also expressed by commissural axons, although surface levels appear to be high 

only on the portion of the axon that is within the floor plate, a structure which itself 

expresses NrCAM (Stoeckli and Landmesser, 1995; Lustig et al., 1999,2001; figure 3.4 C, 
F, I, L and 0). Experiments in chick have suggested that floor plate entry is at least in part 
dependent upon these IgCAMs, with the chick homologues of TAG- I (axonin- 1), and 
NrCAM, seeming to be involved in the ability to overcome factors that inhibit entry 
(Stoeckli and Landmesser, 1995; Stoeckli et al., 1997; see below). 

Other molecules have expression patterns that are similarly suggestive of roles in floor 

plate entry, although their in vivo functions have not been studied in the same way as those 

of axonin-1, NgCAM and NrCAM. The IgCAM Neurofascin, 81-integrins, N-cadherin 

(Shiga and Oppenheim, 199 1), and possibly the IgCAM DM-GRASP (EI-Deeb et al., 
1992), are all expressed more strongly on commissural portions of decussating axons than 

on the pre-commissural surfaces. 

3.2.3.3 Floor plate exit 

Once the DI commissural axons have been allowed to enter the floor plate, other 

mechanisms ensure that they do not simply remain within it. The axons seem to acquire 
sensitivity to inhibitory factors expressed by the floor plate, and also to lose their sensitivity 
to the factors that had made it attractive. Post-commissural axons become responsive to 
Slit-2 and Sernaphorin 3B (Zou et al., 2000). In the former case, this change might reflect 
increased expression of Robo receptors on the surface of axons, as has been shown to occur 
in Drosophila (Kidd et al., 1998 a, b; 1999; Brose et al., 1999). Axonal expression of the 
Eph BI receptor also seems to increase at the time of floor plate exit (Imondi et al., 2000), 

possibly so that the axons can begin to be repelled by floor plate ephrin B3 (Gale et al., 
1996; Bergemann et al., 1998; Imondi et al., 2000). In addition, post-decussation 
commissural axons cease to be attracted by Netrin (Shirasaki et al., 1998). This seems to 
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involve silencing of Netrin receptor function by the newly active Robo receptors (Stein and 

Tessier-Lavigne 2001; see Dickson, 2001 for review). The down-regulation of axonal 

TAG-1, and the up-regulation of axonal LI, (Dodd et al., 1988; Shiga and Oppenheim, 

1991; figure 3.4) might also be involved in the loss of attraction and/or the onset of 

repulsion (Shirasaki et al., 1995; Stoeckli and Landmesser, 1998). So too could be the 

reduced surface expression of BI -integrins, N-cadherin (Shiga and Oppenheim, 1991) and 

DM-GRASP (EI-Deeb et al., 1992), and the concomitant increased expression of FII 

(173/contactin; Shiga and Oppenheim, 1991) as the axons exit the floor plate. 

3.2.3.4 Longitudinal Extension 

After decussation, extending spinal commissural axons commonly make a sharp turn to 

proceed longitudinally, growing alongside the floor plate, in the ventral funiculus of the 

spinal cord (Altman and Bayer, 1984; Oppenheim et al., 1988). This longitudinal turn 

appears to require a balance of attractive and repulsive factors. Continued expression of the 

aforementioned receptors for repulsive floor plate factors, and the loss of sensitivity to floor 

plate attractants, ensures that commissural axons do not re-decussate (Kidd et al., 1998b, 

1999; Harris and Holt, 1999; Imondi et al., 2000; Zou et al., 2000; Stein et al., 200 1). A 

number of other mechanisms ensure that the axons are still able to extend alongside the 

floor plate, rather than being repelled into more lateral spinal cord. It appears that the floor 

plate continues to produce at least one attractive factor. F-spondin, a positive signal for 

neurite extension, is expressed at the time when commissural axons are extending 
longitudinally (Klar et al., 1992; Burstyn-Cohen et al., 1999). It has been shown that 

injection of antibodies to F-spondin reduces the ability of commissural axons to turn 

sharply, the axons appearing to be more reluctant to maintain contact with the floor plate 
(Burstyn-Cohen et al., 1999). However, a longitudinal turn is still made, suggesting that F- 

spondin is not the only factor that prevents the axons from continuing to extend into more 

lateral tissue. Indeed, regions of the lateral spinal cord, such as the cell bodies of motor 

neurons, have been shown to express some of the same inhibitory factors as the floor plate 
(Wang et al., 1999; Imondi et al., 2000; Zou et al., 2000). Thus the post-decussation DI 

axons are effectively forced to extend in between the motor neurons and ventral midline 
(Zou et al., 2000). In addition, it is thought that commissural axons specifically extend 

61 



along axons that already lie in the ventral funiculus. Such mechanisms have been proposed 

to involve NgCAM and NrCAM in the chicken (Stoeckli and Landmesser, 1995; Fitzli et 

al., 2000), and FasH and connectin in the fruit fly (Rusch and Van Vactor, 2000; Simpson 

et al., 2000). 

3.2.4 The Roles of TAG-1, Ll and NrCAM in Guidance of Dorsal Commissural 
Axons at the Floor Plate 

3.2.4.1 The Roles of Axonin-1, NgCAM and NrCAM in Guidance of Chick Dorsal 
Commissural Axons 

As mentioned, experiments conducted on chick embryonic spinal cord have suggested that 

TAG- 1, LI and NrCAM may influence guidance of commissural axons at the floor plate. 
Stoeckli and Landmesser (1995) perturbed the function of what are thought to be the 

chicken homologues of these molecules: axonin-1, the homologue of TAG-1; the chick 
NrCAM; and NgCAM, which is arguably thought to be the equivalent of Ll (Sonderegger 

and Rathjen, 1992, and see below). Function-blocking antibodies or purified IgCAMs were 
injected into the central canals of chick spinal cords in ovo. Development was allowed to 

continue, with periodic repetition of the injection procedure to ensure that levels of the 

added proteins remained high. Effects on the developing commissural axons were 

visualised by injection of the dorsal commissural neuron cell bodies with Dil (1,1'- 

dilinoleyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate), a lipophilic dye that diffuses 

along cell membranes and enables axons to be traced (Schlessinger et al., 1977; Godement 

et al., 1987). Antibodies to Ng-CAM caused defasciculation (a reduction in the tightness of 
bundling) of commissural axons, as illustrated in figure 3.5 A and B. Purified axonin- I 

protein, which is thought to compete with endogenous axonin- I for its usual binding 

partners (Stoeckli et al., 199 1), and antibodies to axonin- 1, also caused defasciculation. In 

addition, when function of axonin- I was perturbed, up to 50% of commissural axons failed 

to cross the midline. These axons were instead seen to turn longitudinally on the ipsilateral 

side of the floor plate, without having decussated (figure 3.5 B). Antibodies to Nr-CAM 

also caused defasciculation and failure of up to 50% of axons to enter the midline (Stoeckli 

and Landmesser, 1995). 
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Figure 3.5 Effects of perturbing IgCAM function on chick dorsal spinal axons (Stoeckli and 
Landmesser, 1995; Stoeckli et al., 1997). Embryonic chick spinal cords were injected with either a control 
protein (transferrin), antibodies to an IgCAM, or a purified IgCAM (A and B). After a few days, the 
spinal cords were dissected out and either sectioned transversely (A) or cut dorsally to give flat 
"open-book" preparations (13; see methods). Dorsal spinal neurons were traced using the lipophilic dye 
DiL Antibodies to NgCAM caused a defasciculation not seen in control samples. Antibodies to axonin- I 
or NrCAM, or purified axonin-1, also caused defasciculation, and in addition up to 50% of axons turned 
on the ipsilateral side of the floor plate (affows; Stoeckli and Landmesser, 1995). The effect of IgCAM 
perturbation upon the ability of dorsal spinal axons to enter floor plate was also tested in vitro (Q. In 
control experiments, or when anti-NgCAM antibodies were applied, axons from dorsal spinal cord were 
able to extend into floor plate tissue (grey). Antibodies to axonin-I or NrCAM, or purified axonin-1, 
seemed to prevent floor plate entry. Anti-axonin- I and purified axonin- I also caused growth cone 
collapse (arrow head). 



These results raised the possibility that attraction to the floor plate by netrins is not 

sufficient for all axons to then enter the midline, and that further interactions are required 
for floor plate entry. It was proposed that the floor plate is inherently inhibitory for dorsal 

commissural axon extension, and that interactions between axonal axonin- I and floor plate 
NrCAM may allow such an inhibitory activity to be over-come. Thus when either axonin- I 

or NrCAM is unable to function, axons fail to enter the floor plate (Stoeckli and 

Landmesser, 1995). 

Subsequent in vitro experiments have supported this idea: antibodies that blocked the 

function of either axonin- I or NrCAM rendered dorsal spinal axons unable to enter floor 

plate explants (Stoeckli et al., 1997; figure 3.5 C). However, antibodies to the two proteins 
did not act in exactly the same way. Both seemed to prevent dorsal spinal axons from 

entering the floor plate explants, but only those to axonin- I induced growth cone collapse 
(figure 3.5 Q. Therefore axonin- I and NrCAM appear to have slightly different roles in 

the guidance of chick dorsal spinal axons. It was suggested that axonin-1 has an anti- 

collapse function, in addition to interacting with NrCAM to allow floor plate entry 
(Stoeckli et al., 1997). 

3.2.4.2 The Roles of TAG-1, LI and NrCAM in Guidance of Mouse Dorsal Commissural 
Axons 

A substantial part of this thesis addresses the question of whether IgCAMs are also 
involved in the guidance of mammalian dorsal commissural axons. This was investigated 

using mouse embryos with mutations in the TAG-], LI and NrCAM genes. Such an 

approach avoids the difficulties of ensuring survival after in utero perturbation, and also 

reduces the scope for incomplete blockage of protein function (discussed in section 1.5.2). 

The dorsal commissural axons of mutant mouse embryos were studied in a number of 

ways. Antibody labelling and IacZ reporter constructs were first used to establish whether 
axons decussated normally in embryos of all genotypes. Dorsal spinal axons were also 
traced using the lipophilic dye DiI (Schlessinger et al., 1977; Godement et al., 1987; 

Bovolenta and Dodd, 1990; Stoeckli et al., 1995; see methods), and the results from 

embryos of different genotypes were compared statistically (Dytham, 1999). 
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3.3 Results 

, 
3.3.1 Antibody labelling of dorsal commissural neurons 

In accordance with previous reports, immunofluorescent and immunohistochernical 

labelling showed that wild type mouse dorsal spinal axons extend across the ventral midline 

of developing spinal cord (Yamamoto et al., 1986; Bovolenta and Dodd, 1990; figures 3.4 

A-J; 3.6 A, C, E and G; 3.8 A, C; 3.9 A, C). 

Antibodies were also used to label the dorsal spinal commissural neurons of mutant 
embryos. 

3.3.1.1 Embryos with mutations in TAG-] 

Figure 3.6 shows approximately transverse sections of El 1.5 spinal cord from TAGA 

homozygote and wild type embryos. Although the embryos were not sectioned in exactly 

the same plane, dorsal commissural neurons can be seen to extend underneath the floor 

plate in both cases (arrowheads). Furthermore, the expression patterns of neurofilament 

proteins, and the IgCAMs LI and NrCAM, appear to be unaffected by the mutation. There 

is no specific labelling of TAG-1 (fiSuMMO)a5de monoclonal antibody used does not seem to 

recognise the proteins produced by the TAGAallele, although the truncated proteins can be 

labelled using a polyclonal antibody to TAG- I (A. M. Furley, personal communication). 
TAG-I null mutant embryos were not studied by immunofluorescence, as they were 

reserved for more sensitive axon tracing techniques (see below). 

3.3.1.2 Embryos with mutations in Ll or NrCAM 

Figure 3.7 presents transverse sections of E 11.5 (a-f) and E 12.5 (g-1) wild type and LI 

mutant embryos that have been labelled by immunofluorescence. Again, all of the spinal 
cord sections have at least some labelled axons beneath the floor plate, and the expression 
of neurofilament proteins, TAG- I and NrCAM appear unaffected by the mutation. 
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Figure 3.6 Comparison of transverse sections of El 1.5 spinal cord which have either 
wild type (C57BI/6) or truncated (TAGAIA ) TAG-1 protein. Sections were labelled 
with antibodies to the proteins indicated on the left. Arrowheads point to axons which are 
crossing the midline underneath the floor plate. 
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Figure 3.7 Comparison of transverse sections of Ell. 5 and E12.5 spinal cords 
taken from embryos that either did or did not have wild type Ll protein. 
A-F. E 11.5 spinal cord. Sections were labelled using antibodies to the proteins 
named on the left. Arrowheads indicate the presence of axons beneath the floor 
plate in all sections. 

(6-7 



Ll -ly 

E 

im 

Figure 3.7 continued. 6-L: E12.5 spinal cord. Sections were labelled using 
antibodies to the proteins named on the left. Arrowheads indicate the presence 
of axons beneath the floor plate in all sections. 
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Immunofluorescent labelling of spinal cord sections did not reveal any differences between 

NrCAM mutant and wild type embryos (T. Sakurai and M. Grumet, personal 

communication). 

3.3.2 Use of lacZ reporter gene constructs 

Dorsal spinal commissural neurons were labelled more specifically using one of two IacZ 

reporter genes. 

The TAG-] null mutation incorporates a tau-lacZ gene construct (Callahan and Thomas, 

1994; Mombaerts et al., 1996; AJ. W. Furley, personal communication; see methods). This 

means that tau-1acZ is expressed under the control of the gene sequences that normally 

control expression of TAG-L The tau-13-galactosidase fusion protein is thus present in all 

cells that would ordinarily express TAG-1, and the tau component of the protein ensures 

that the enzyme is transported along axons. Figure 3.8 shows sections of E 11.5 and E 12.5 

embryos that are either heterozygous or homozygous for the TAG- I null mutation, and 

which have been stained for B-galactosidase activity. Labelled axons can be seen beneath 

the floor plate in all cases (arrowheads). 

This result was confirmed using embryos expressing only truncated TAG-lproteins. As the 
TA GAmutation does not itself include a IacZ gene, mice with this mutation were mated 

with those carrying a math-MacZ reporter transgene (Helms and Johnson, 1998; see 
methods). This transgene allows essentially wild type embryos to express B-galactosidase 

protein under the control of elements that regulate expression of the transcription factor 

Math-1. As Math- I is normally expressed by DI interneurons, staining for B-galactosidase 

activity labels dorsal spinal commissural axons (Helms and Johnson, 1998). Matings of 

math-l-lacZ mice with those carrying the TAG' mutation generated embryos which, when 
stained for B-galactosidase activity, allowed direct comparisons of the DI interneurons of 
embryos of different TAG" genotypes (see methods). Figure 3.9 shows sections of El 1.5 

and E12.5 spinal cords stained for B-galactosidase activity. Labelled axons can be seen to 

cross the ventral midline in embryos of all three genotypes (arrowheads). Although the 
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Figure 3.8 Sections of embryos with the TAG-I null mutation. Staining for 
B-galactosidase activity specifically labelled cells that would normally express TAG-] 
The stain is stronger in homozygote embryos as they have two copies of the lacZ gene, 
and so more 13-galactosidase protein. The staining is otherwise very similar in the 
heterozygous and homozygous embryos. Labelling differs from that obtained using 
antibodies (see figure 3.4), possibly reflecting perdurance of B-galactosidase protein (see 
discussion). Arrow heads indicate axons crossing the ventral midline of the spinal cord. 
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Figure 3.9 Sections of TAG' mutant embryos that also have the math-l-lacZ 
transgene. Staining for 13-galactosidase activity specifically labelled the DI 
intemeurons (Helms and Johnson, 1998; Lee and Jessell, 1999). Arrowheads 
indicate axons crossing the ventral midline of the spinal cord. The difference 
between the ventral commissures shown in A and B is likely to reflect slightly 
different plans of sectioning. The differences between the staining of sections C 
and D is attributable to age variation. Although both nominally E12.5, the 
embryos were from different litters, and the littermates of "embryo D" were all 
developmentally more advanced than those of "embryo U (data not shown). 
Such differences are not uncommon (Kaufman, 1992). 
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commissure appears thicker in the vibratome-sectioned E 11.5 heterozygote than in the 

homozygote littermate, this can be attributed to differences in plane of section. The 

differences between the E12.5 embryos of different genotypes can be attributed to age 
differences, as in this particular example the embryos were not siblings; indeed, the shape 

of the E12.5 section indicates that this was taken from an "older" spinal cord. 

3.3.3 Tracing of dorsal spinal axons using Dil 

While immunofluorescent labelling and 1acZ reporter gene constructs demonstrated that 

axons do decussate in IgCAM mutant embryos, these methods could not show whether all 

axons were decussating. As illustrated in figure 2.6, such labelling is bilateral and cannot 
distinguish between axons from the two sides of the spinal cord. The ipsilateral turning of 

up to 50% of axons seen in chicken IgCAM perturbation experiments (Stoeckli and 
Landmesser, 1995) would not have been apparent using this approach. In order to assess 

whether some axons were also failing to cross the ventral midline, Dil was injected 

unilaterally into spinal cord open book preparations (Bovolenta and Dodd, 1990; Stoeckli 

and Landmesser, 1995; see section 2.3). Once the DiI has diffused along the axons, the 

labelled projections were examined using conventional fluorescence and confocal 

microscopy. All DiI injections and subsequent analyses were carried out in collaboration 

with B. W. Kiernan. 

In contrast to what might have been expected (e. g. Bovolenta and Dodd, 1990; Stoeckli and 
Landmesser, 1995), a number of different types of projection were labelled (figure 3.10). 

In addition to the well-documented "contra-rostral" projections, some axons turned 

caudally once they had left the floor plate (referred to subsequently as "contra-caudal" 

projections). Some axons did not turn at all, and instead appeared to "continue" into more 
lateral regions of the contralateral spinal cord. Other axons made a longitudinal turn, either 

rostrally or caudally, without having crossed the floor plate (here known as "ipsi-rostral" or 
"ipsi-caudal" respectively). A final group of axons was judged to be "in or at the floor 

plate": such axons had growth cones that appeared to have been in the process of 
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Figure 3.10 Examples of different trajectories taken by dorsal spinal projections. 
A: site at which the majority of axons make a contra-rostral turn (would have been estimated as 98%). 
B: site at which approximately 40% of labelled axons make a contra-caudal turn (arrowed). C: site at 
which approximately 10% of axons make an ipsi-rostral turn (arrowed). D: site at which approximately 
35% of axons continue to extend laterally (arrowed). E: site at which approximately 90% axons are in/at 
the floor plate. In all of these examples, the boundaries of the floor plate are represented by dashed lines, 
and the white bar is of a length equivalent to I Wpm. F: site demonstrating that one injection can label 
axons in several categories. An estimate of proportions at this site would be 70% contra-rostrai, 10% 
contra-caudal, 15% ipsi-rostral, 2% ipsi-caudal and 3% continuing to extend laterally. 
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crossing the floor plate when the spinal cord was fixed (figure 3.10 E). For each injection 

site, labelled fascicles were assigned to the above categories. Where possible this involved 

counting the labelled projections; in other cases, the proportions of axons that fell into each 

category were estimated (see methods). Analysis was restricted to axons that could be 

traced as far as the floor plate, as others had not yet reached the point at which the IgCAMs 

were thought to act (Stoeckli and Landmesser, 1995), and might even have been axons 
from different population of neurons. It was judged valid to discount such projections, as 

there did not appear to be any relationship between their occurrence and embryo genotype 
(data not shown). Sites that were obviously damaged, or that had Dil applied to any area 

other than the dorsolateral spinal cord, were also ignored. 

Ul- For each experimental condition, the mean proportion of axons within each category was 

calculated. The statistical significance of differences was tested at the 5% level, using one- 

way ANOVAs (Dytham, 1999). Selected probabilities are given to three significant figures 

below, and a full summary of the statistical analysis is given as appendix 3. A. 

3.3.4 Wild type dorsal spinal projections 

Wild type embryos were analysed along with their mutant littermates, in order to 

characterise the normal pattern of dorsal spinal projections. Two different wild type strains 

were analysed, to provide controls of both of the genetic backgrounds used for mutant 
animals. 

3.3.4.1 129/SvEv embryos 

129/SvEv spinal cord preparations were taken from E 11.5, E 12.5 and E 13.5 embryos, as 

these ages were expected to cover the time during which most dorsal commissural axons 
decussate (Bovolenta and Dodd, 1990, using Schneider and Norton, 1979; Silos-Santiago 

and Snider, 1992). The results described below were compiled from studies of the TAGA, 

LI and NrCAM mutant embryos, as all three mutations were being maintained on the 

129/SvEv strain background. As can be seen in figure 3.11, the majority of axons were 
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judged to have either made a contra-rostral turn or to have their growth cones in or at the 

floor plate. At El 1.5, over 80% of axons appeared to be in/at the floor plate, while only 

17% had made a contra-rostral turn. The percentage of axons judged to have growth cones 

within the floor plate fell over the next two days, with the difference between El 1.5 and 

E 12.5 embryos proving significant (p= 0.0220). The percentage of axons making a contra- 

rostral turn showed a concomitant increase, again with the difference between El 1.5 and 

E12.5 proving significant (p= 0.000438). Although always below 5%, the percentage of 

axons making a contra-caudal turn was also increased between E 11.5 and E12.5, changing 

by a statistically significant percentage (p= 0.0436). These results suggest that the E 12.5 

and E 13.5 contra-rostral and contra-caudal categories comprise axons that were in/at the 

floor plate at El 1.5. The proportions of axons making ipsi-rostral or ipsi-caudal turns, or 

continuing without turning, were below 5% at all three ages and showed no significant 

changes over time (see appendix 3A. 1). 

3.3.4.2 C57BI/6 embryos 

Embryos of a second wild type strain, C57BI/6, were also analysed. The dorsal spinal 

axons of E12.5 and E13.5 C57BI/6 embryos were traced as part of the study of TAG-I null 

mutant embryos (see below). These results were also compared with those from the 129Sv 

mouse embryos, to ensure that the occurrence of "non-contra-rostral" projections was not 

peculiar to the 129/SvEv strain. Figure 3.12 illustrates this comparison. 

The C57131/6 spinal preparations were also found to have projections other than those that 

decussated and then turned rostrallY. The proportions of "contra-caudal", "ipsi-rostral", 

"ipsi-caudal" and "continuing" projections did not differ significantly between embryos of 

the two strains, at either E12.5 or E13.5 (see appendix 3. A. 2). Therefore it appears that 

mouse embryos other than those of the 129/SvEv strain have dorsal spinal axons which 

extend in ways previously regarded as "abnormal" (e. g. Bovolenta and Dodd, 1990; 

Stoeckli and Landmesser, 1995). 

The 129/SvEv and C57BI/6 strains are also similar in that embryos of both strains display 

an increase in the proportion of contra-rostral axons, and a concomitant decrease in the 

proportion of axons in or at the floor plate, between E 12.5 and E 13.5. This supports the 
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Figure 3.11 Mean proportions of axons within each category in 129/SvEv embryos of three different 
ages. Bars show standard effors. 
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notion that many of the axons that have their growth cones within the floor plate at earlier 

ages subsequently make a contra-rostral turn. 

Despite such similarities, the E 12.5 and E 13.5 embryos of the two strains do differ 

significantly. At both ages the C57BI/6 embryos have significantly greater proportions of 

axons that have made a contra-rostra] turn (p= 0.0119 and p= 0.000767 respectively), and 

correspondingly fewer projections within the floor plate (p= 0.0506 at E12.5 and 

p=0.000546 at E13.5). This is suggestive of an inherent difference in the timing of floor 

plate exit and turning by dorsal commissural axons of the two wild-type strains (see 

discussion). 

Older spinal cords were not analysed as these begin to contain too many different 

populations of neurons for our injection technique to be sufficiently specific. For example, 

additional neurons "confound analysis" of chick dorsal spinal commissural projections 
from stage 27 onwards (Stoeckli and Landmesser, 1995), a stage estimated to be 

approximately equivalent to mouse E 12.5 (using Hamburger and Hamilton, 195 1, and 
Schneider and Norton, 1979). Similarly, by an age approximately equivalent to E13 mouse 
(Schneider and Norton, 1979); rat spinal cord comprises at least 22 different types of 
interneurons (Silos-Santiago and Snider 1992,1994). 

3.3.4.3 Comparison of different dorsal-ventral injection sites 

The finding that both wild type strains have labelled axons projecting in ways other than 

"contra-rostral" raised the possibility that DiI was being applied to different neurons to 

those studied previously. To establish whether this was the case, the position of Dil 

injection was varied. Dye was applied to the dorsolateral region of 129/SvEv E1.. 5 spinal 

cord preparations as shown previously, or was applied to areas more dorsal or more ventral 

to this usual injection site (see figure 3.13 A). The proportions of axons in each category 

were compared (figure 3.13 B; appendix 3. A. 3). 

As can be seen, the site of injection does indeed affect the results obtained. At E12.5 the 

results of injecting DiI at the three different levels were significantly different. More dorsal 0 
injections of dye labelled a greater proportion of axons in or at the floor plate, and smaller Cý 
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proportions of axons in all other categories. Injections of dye into more ventral regions of 

the dorsal spinal cord labelled greater percentages of axons that made contra-rostra] or 

contra-caudal turns than did injections into the usual dorsolateral region. These differences 

were found to be statistically significant (p= 5.145 x 10-5 and p= 0.0364 respectively). 
Proportions of labelled axons making ipsi-rostral or ipsi-caudal turns, or continuing, were 

also increased when dye was injected more ventrally, whilst a significantly smaller 

proportion of axons was judged to be in or at the floor plate (p= 4.033 x 10'5). 

These results imply that injections into different dorsal-ventral regions of the dorsal spinal 

cord label neurons that differ in some way (see discussion). However, this difference does 

not appear to account for the labelling of projections considered abnormal by other groups 
(e. g. Bovolenta and Dodd, 1990; Stoeckli and Landmesser, 1995). More dorsal injection 

sites did display smaller proportions of projections that could have been classed as 
"abnormal", but they also included only low percentages of axons that had made the 

66normal" contra-rostra] turn. Conversely, the ventral-most injections labelled large 

proportions of axons that made a contra-rostra] turn, but also labelled axons with other 

trajectories. Thus none of the three dorso-ventral regions of dorsal spinal cord tested 

appear to give rise to large proportions of the "normal" contra-rostra] projections without 

also giving rise to axons which project "abnormally" (figure 3.13). 

3.3.4.4 Comparison of different rostro-caudal injection sites 

Although differences in dorso-ventral position of DiI injection did not appear to be 

responsible for the differences between this and previous studies, it remained possible that 

the rostro-caudal position was affecting results. For example, some previous studies used 

restricted regions of the spinal cord (e. g. lumbar: Stoeckli and Landmesser, 1995), rather 

than injecting dye along its entire length. The possibility that certain regions do in fact 

have only contra-rostral projections was investigated by comparing cervical and lumbar 

sites. Mean proportions of axons from the three most rostral injection sites of each embryo 
(providing that these sites were not so rostral as to be of hindbrain character) were 

compared with the three most caudal sites. Figure 3.14 presents the mean proportions of 

axons within each category when E12.5 129/SvEv spinal preparations were anal sed. CP y 
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Cervical and lumbar injections both labelled contra-caudal and continuing projections, at 

percentages that did not differ significantly (appendix 3.4). This indicates that the labelling 

of contra-caudal and continuing projections is not simply an effect of injecting DiI at all 

rostro-caudal levels, rather than just in lumbar regions. 

It therefore appears that non-contra-rostral projections are consistently labelled in wild type 

preparations. 

3.3.5 Comparison of IgCAM mutant and wild type spinal cords 

The DiI analysis of dorsal spinal axons was also performed on embryos from the mutant 

mouse lines. In each case, homozygous mutant embryos were compared with heterozygous 

and wild type embryos of the same strain. Embryos were often analysed "blindly": that is, 

before their genotypes were known. Initial comparisons were made at E12.5. At this age 

many dorsal commissural axons have decussated (Bovolenta and Dodd, 1990, using 
Schneider and Norton, 1979; figure 3.12), but there are not yet too many other populations 

of spinal neurons (Silos-Santiago and Snider, 1992,1994; Stoeckli and Landmesser, 1995, 

using Hamburger and Hamilton, 1951 and Schneider and Norton, 1979). 

3.3.5.1 TAG-] mutant embryos 

Figure 3.15 summarises the results of injecting DiI into dorsal spinal cord preparations 
from E12.5 TAGAembryos of a 129/SvEv strain background. As can be seen, embryos of 

all three genotypes (wild type, heterozygote and homozygote for the mutation) had the 

majority of their labelled axons within either the "contra-rostral" or "in/at floor plate" 

categories. Although homozygous embryos had a smaller proportion of contra-rostral 

axons, and a correspondingly greater proportion of axons in or at the floor plate, these 

differences were not statistically significant (see appendix 3. A. 5). There were no 

significant differences between the proportions of wild type, heterozygote and homozygote 

axons within any of the other categories. This included the ipsi-rostral category, which 

might have been expected to include up to 50% of axons, on the basis of experiments 
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conducted in chick embryos (Stoeckli and Landmesser, 1995). There were no obvious 
differences in the extent to which the labelled axons were fasciculated (data not shown). 
Therefore, in contrast to what may have been expected from the chick experiments, the 

TAG' mutation did not seem to have had a significant effect upon the guidance of E12.5 

mouse dorsal commissural neurons. 

While the TAG A mutant protein lacks the domains thought to be necessary for interactions 

with Ll and NrCAM (Rader et al., 1996), it could be that the domains that remain are 

adequate for the normal function of TAG- I in dorsal commissural axon guidance. Indeed, 

the fibronectin domains of its human homologue TAX- I are sufficient for homophilic 

binding (Tsiotra et al., 1996). Therefore the possibility that the truncated TAG- I protein 

contains sufficient domains for dorsal commissural axon guidance was investigated. TAG- 

1 null embryos, which completely lack TAG- I protein (A. M. Furley and B. W. Kiernan, 

personal communicatioQ were compared with wild type embryos of the same C57131/6 

genetic background. As before, the majority of axons had either made a contra-rostral turn, 

or appeared to be in or at the floor plate (figure 3.16). The homozygote TAG-] null 

embryos had a larger proportion of axons in or at the floor plate, and a correspondingly 

smaller proportion of contra-rostral axons, than heterozygote or wild type embryos. 
However, as was also the case for TAG' mutant embryos, the differences between the 

genotypes were not statistically significant (appendix 3. A. 7). There were no obvious 
differences in the extent to which the labelled axons were fasciculated (data not shown). 
These results indicate that the lack of a phenotype in TAG' spinal cords was not attributable 

to residual function of the truncated TAG- I protein, and confirm that TAG- I is not 

essential for correct guidance of dorsal spinal interneurons. 

3.3.5.2 Ll and NrCAM mutant embryos 

Dil was also used to analyse the dorsal spinal axons of mouse embryos with mutations in 

the LI or NrCAM genes. As discussed previously, molecules considered to be the chicken 
homologues of these proteins have been implicated in the correct development of chick 
dorsal spinal commissural projections (Stoeckli and Landmesser, 1995; Stoeckli et al., 
1997; Lustig et al., 1999; Fitzli et al., 2000). 
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NgCAM, thought to be the chick equivalent of L I, appears to be important for the 

fasciculation rather than the guidance of dorsal spinal axons (Stoeckli and Landmesser, 

1995). However, there are notable differences between this protein and Ll (see discussion 

and review in Sonderegger and Rathien, 1992). In contrast to NgCAM, which is expressed 
by dorsal spinal commissural axons both before and after decussation, the restricted 

expression of Ll is suggestive of a role in regulating decussation (Bovolenta and Dodd, 

1990). Indeed, Ll has been implicated in at least two other rodent decussation events. As 

is the case in humans with Ll mutations (Wong et al., 1995), Ll mutant mice can display 

agenesis of the corticospinal tract (Cohen et al., 1997; Dahme et al., 1997) and/or corpus 

callosum. (Demyanenko et al, 1999), depending upon genetic background. Therefore it is 

conceivable that Ll is also involved in the guidance of rodent dorsal spinal axons at the 

midline. Immunofluorescent labelling of the dorsal spinal commissural neurons of Ll 

mutant mice did not reveal any gross defects in guidance at the floor plate (Cohen et al., 
1997; figure 3.7), but unilateral injections of DiI were necessary to establish whether there 

were in fact subtle guidance errors. 

Figure 3.17 illustrates the proportions of axons following each trajectory in E12.5 LI 

mutant spinal cord preparations (with a 129/SvEv genetic background; see methods for 

explanation of the crosses used). All three genotypic groups showed a similar distribution: 

most of the labelled axons had either made a contra-rostral turn, or seemed to have had 

their growth cones in/at the floor plate at the time of fixation. Hemizygous male embryos 

were those with the greatest proportions of their dorsal spinal projections making a contra- 

rostral turn, and with the smallest proportion in or at the floor plate. However, the 
differences between the hemizygous, heterozygous and wild type embryos were not 

statistically significant (appendix 3. A. 8). There were no obvious differences in the extent 
to which the labelled axons were fasciculated (data not shown). These results indicate that 

the LI mutation does not affect the development of dorsal spinal projections. 

NrCAM has also been implicated in the guidance of chick dorsal spinal commissural axons 
(Stoeckli and Landmesser, 1995; Stoeckli et al., 1997), and is expressed by decussating 

axons and the floor plate in rodents (Lustig et al., 1999). Therefore the role of NrCAM in 

guidance of the rodent axons was investigated using NrCAM mutant spinal preparations. 
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Figure 3.18 presents the results of injecting DiI into E12.5 NrCAM mutant dorsal spinal 

cords. It can be seen that the greatest proportions of axons were within the "contra-rostral" 

or "in/at floor plate" categories. As was the case with the TAG-] null embryos, the 

homozygous mutant samples had a greater percentage of their axons in or at the floor plate, 

and a smaller percentage making a contra-rostral turn, than the wild type spinal 

preparations. However, the differences between these proportions were not statistically 

significant (see appendix 3. A. 9). This is in accordance with independent reports that 

mutations in NrCAM have no significant effect upon the ability of dorsal spinal axons to 

decussate (More et al., 2001; M. Grumet and T. Sakurai, personal communication). There 

was a significant difference between the mean percentages of axons making a contra-caudal 

turn (p= 0.0387), wild type embryos having a greater proportion of their axons within this 

category than mutants. This raised the possibility that the NrCAM mutation may adversely 

affect guidance of the small proportion of projections that turn caudally after decussation 

(see above). Other studies of NrCAM mutant spinal commissural projections did not 

classify projections in a way that would have revealed such a difference (More et al., 2001; 

M. Grumet and T. Sakurai, personal communication). Aside from this observation, the 

present results indicate that the NrCAM mutation does not perturb the guidance of dorsal 

spinal commissural axons. Fasciculation of the axons also seemed to have been unaffected. 

Thus it seems that NrCAM, like TAG- I and Ll, is not essential for the correct guidance of 

mouse dorsal spinal projections. 

3.3.5.3 TAG-RLI double mutant embryos 

The above results imply that the three single IgCAM mutations have little effect upon 
dorsal spinal axon trajectory. This is in contrast to what may have been expected following 

perturbation of IgCAM function in the developing chicken. One possible explanation for 

the present findings is that there is redundancy of function among the IgCAMs expressed at 

the mouse floor plate. Indeed, NrCAM and NgCAM appear to have redundant roles in the 

development of chick dorsal commissural axons. In vivo perturbation of the functions of 

these proteins individually did not compromise longitudinal axon extension, but extension 

was inhibited when the functions of both were perturbed at once (Fitzli et al., 2000). 
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Therefore these IgCAMs appear to have redundant functions in the chicken spinal cord. 

Such a relationship between Ll/NgCAM and NrCAM has previously been suggested to 

account for the lack of spinal commissural axon defects in LI mutant mouse embryos 

(Fitzli et al., 2000). LI1NrCAM double mutant mice show cerebellar dysgenesis and die 

within a few weeks of birth (Sakurai et al., 2001), although the embryonic development of 

their spinal commissural projections has not yet been studied (T. Sakurai and M. Grumet, 

personal communication). To address the possibility of redundancy between other mouse 
IgCAMs, mutations in NrCAM or LI have been combined with those inTAG-1. At the time 

of writing, mice with mutations in both TAG-] and NrCAM are still being generated, but a 

colony of mice with mutations in both TAG-] and LI has been established. 

Mice hemizygous for the LI null allele and also homozygous for the TAG' mutation (see 

introduction and methods) were viable, and showed no overt phenotype. The dorsal spinal 

commissural projections of such embryos were analysed as described above. Figure 3.19 

illustrates the proportions of labelled projections within each category for E12.5 TAG-YLI 

double mutant embryos and their wild type counterparts. A graph including results from 

spinal cords of the intermediate genotypes (see methods) is presented in appendix 3. B. 

At E12.5, there was a significant difference between the mean proportions of axons making 

a contra-rostral turn (p= 0.0384), with double mutant embryos having the smaller 

proportion. The double mutant embryos had a correspondingly larger proportion of axons 

in or at the floor plate, although this difference was not technically significant (p= 0.0501). 

There were no statistically significant differences between the double mutant and wild type 

embryos in the other four categories of projection (see appendix 3. A. 10). 

The smaller percentage of axons making a contra-rostral turn, and the greater percentage of 

axons in or at the floor plate, might reflect a delay in the development of the dorsal spinal 

projections of double mutant embryos. Such an effect could reflect hindrance of double 

mutant axon growth at the floor plate, or could be a symptom of a delay at an earlier stage 

of development. For example, the double mutation could theoretically affect initial axon 

production, although such an explanation seems somewhat unlikely, as Ll is not strongly 

expressed by rodent commissural neurons until decussation (figure 3.4; Dodd et al., 1988). 
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To better understand the mechanism behind the apparent delay, other ages of double mutant 

and wild type embryos were compared. Figure 3.20 presents the results obtained from the 

application of DiI to El 1.5 spinal preparations. As can be seen, the wild type and double 

mutant proportions showed a striking similarity, and there are no significant differences 

between the two genotypes in any of the categories (see appendix 3. A. 11). These data 

support the above suggestion that the double mutation does not affect the growth of dorsal 

spinal projections before the floor plate is reached. 

E13.5 preparations were also analysed, with a view to determining whether the apparent 
delay seen at E12.5 persists or is subsequently repaired. Figure 3.21 presents the results 
from E 13.5 embryos. As was the case at E 12.5, the percentages of axons differed 

substantially between the two genotypes. However, the percentages did not differ in the 

same way as at E12.5. At E13.5, it was the mutant embryos that had a greater proportion of 

their axons making a contra-rostral turn, and that had a smaller proportion of their axons 
in/at the floor plate. These differences were highly significant, with probabilities of 
0.00451 and 4.41 x 10-' respectively (see appendix 3. A. 12). The mutant embryos also had 

greater proportions of axons making a contra-caudal turn, making an ipsi-rostral turn, or 

continuing laterally (p= 0.000468, p= 0.0384 and p= 0.000228 respectively). 

These results are suggestive not just of recovery but of "over recovery". Such an idea can 
be further appreciated when the E12.5 and E13.5 proportions are compared with one 

another. In the wild type embryos, the percentage of axons making a contra-rostral turn 
increases, and the percentage in or at the floor plate decreases, but neither change is 

statistically significant (appendix 3. A. 1). In contrast, the differences between these 

proportions are highly significant in the double mutant embryos (p= 7.08 x IWO and p= 
4.48 x 10' respectively; appendix 3. A. 13). This indicates that the dorsal spinal projections 

of double mutant embryos are displaying significantly different growth characteristics to 

those of wild type embryos between the E12.5 and E13.5 time points. 

There were no obvious differences in the extent to which the double mutant and wild type 

axons were fasciculated at any of the three ages (data not shown). E14.5 spinal 
preparations were not analysed, on account of the additional populations of axons that 
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would be labelled by DiI injections at this age (Silos-Santiago and Snider, 1992; Stoeckli 

and Landmesser, 1995, using Hamburger and Hamilton, 1951 and Schneider and Norton, 

1979). 
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3.4 Discussion 

In all cases, the majority of labelled projections were judged to be either projecting "contra- 

rostrally", or in or at the floor plate. The relative frequencies with which these axon fates 

were observed did not differ significantly between any of the E 12.5 single IgCAM mutant 

embryos and their wild type counterparts. All other classes of projection accounted for 

relatively small proportions of those labelled. However, such "abnormal" projections were 
labelled consistently, and could not be attributed to experimental factors such as embryo 

age, mouse background strain, or the site at which DiI was injected. With the exception of 

the "contra-caudal" axons of NrCAM mutant embryos, these projections were observed at 

similar frequencies in single mutant and wild type embryos. This shows that the three 

single IgCAM mutations do not affect the guidance of mouse dorsal commissural axons 

(Stoeckli and Landmesser, 1995; Stoeckli et al., 1997). However, development of the 

axons appeared to be compromised in embryos mutant for both TAG-] and L1, and it is 

possible that the TAG-1 and Ll proteins have some functional redundancy during floor 

plate exit. 

3.4.1 Wild type embryos and the occurrence of "abnormal" projections 

3.4.1.1 E12.5 mouse dorsal spinal axons do not all make a "contra-rostral" turn. 

The antibody labelling and reporter gene approaches both demonstrated that the axons of 

wild type dorsal spinal neurons decussate in the ventral commissure. This is in accordance 

with previous studies which have implied that, if allowed to develop unperturbed, dorsal 

spinal interneurons make a contralateral and rostral turn (e. g. Bovolenta and Dodd, 1990; 

Stoeckli and Landmesser, 1995; Matise et al., 1999). 

However, unilateral application of DiI to wild type dorsolateral spinal cord also revealed 

the existence of axons with other tra ectories. While the majority of labelled axons that i 

made a longitudinal turn did so contralaterally and rostrallY, some DiI injections labelled 

projections that made a rostral turn on the ipsilateral side of the floor plate. Some 

92 



projections extended caudally rather than rostrally, and some did not turn longitudinally at 

all (see figure 3.10). The occurrence of such non-contra-rostral projections had previously 
been attributed to perturbation events, such as the application of function-blocking 

antibodies or a gene mutation (e. g. Stoeckli and Landmesser, 1995; Matise et al., 1999; 

Fitzli et al., 2000). A number of practical steps were taken to establish whether the present 

labelling of such projections in wild type embryos was an artefact. 

3.4.1.2 Non-contra-rostral projections in embryos of different ages 

As earlier studies were conducted in species other than mouse (rat: Bovolenta and Dodd, 

1990; chicken: Stoeckli and Landmesser, 1995), it was possible that the embryos used were 

not at comparable stages of development. For example, it could be that previous 
investigations used relatively older embryos, such that there had been time for any non- 

contra-rostral projections to be eliminated. It appears that initial analyses of rat dorsal 

spinal projections were conducted at an age approximately equivalent to mouse EII 

(Bovolenta and Dodd, 1990, using Schneider and Norton, 1979), but that the chick 

projections were studied at an age equivalent to at least E13 (Holley, 1982; Stoeckli and 
Landmesser, 1995, using Hamburger and Hamilton, 1951 and Schneider and Norton, 

1979). In order to determine whether the mouse non-contra-rostral projections were 

subsequently eliminated, spinal cord preparations from E12.5 129/SvEv embryos were 

compared with those from E 11.5 and E 13.5 embryos (as discussed previously, increasing 

complexity makes it impractical to study projections in older spinal cords: Stoeckli and 
Landmesser, 1995). The proportions of axons projecting contra-rostrally and contra- 

caudally both increased significantly between E 11.5 and E12.5, while the proportion of 

axons judged to be in or at the floor plate showed a significant decrease. This raised the 

possibility that axons that had been in or at the floor plate at E 11.5 had left the midline and 

extended longitudinally by E12.5. However, the proportions of ipsi-rostral, ipsi-caudal and 

continuing projections did not change significantly during this period, and none of the 

proportions showed a significant difference when E12.5 embryos were compared with 
those of E13.5. This implies that non-contra-rostral axons are not selectively eliminated 
between E12.5 and ages estimated to be comparable to those examined in the chick. 
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3.4.1.3 Non-contra-rostral projections in wild type embryos of a different strain 

There are numerous cases in which the phenotype caused by a particular mutation varies 

with mouse strain (Gerlai, 1996). For example, mice with a mutation in the enix-I gene 

showed a reduction in the size, or an absence, of the corpus callosurn if they were of a 

predominantly 129/Sv strain, but showed no callosal defects if they were of a C57BI/6 

genetic background (Guo et al., 2000). LI mutant mice have also been shown to have 

corpus callosurn deficiencies in mice of one 129Sv sub-strain (Demyanenko et al., 1999) 

but not those of another (Cohen et al., 1998). A different mutation in the LI gene causes 
hydrocephalus in mice of a C57BI/6 strain background, but not in those of a 129/SvEv 

background (Dhame et al., 1997). Therefore it was conceivable that the non-contra-rostral 

projections described here were peculiar to the mice of the 129/SvEv genetic background. 

To investigate this possibility, the results from 129/SvEv embryos were compared with 

those from the wild type C57BI/6 embryos, which had been analysed as controls for the 

TAG-] null mutation. At both E12.5 and E13.5, the C57BI/6 embryos also had axons 

within the contra-caudal, ipsi-rostral, ipsi-caudal, continuing and in/at floor plate 

categories. This suggests that projection of dorsal spinal axons in directions other than 

contra-rostral is not unique to embryos of the 129/SvEv strain. The proportions of axons 

within the contra-rostral, ipsi-rostral, ipsi-caudal and continuing groups did not differ 

significantly between the strains at either age. However, C57/BI6 embryos had a 

significantly greater proportion of their dorsal spinal axons within the contra-fc6ýral 

category, and a greater proportion in or at the floor plate, at both E 12.5 and E 13.5 

(appendix 3. A. 2). As embryos get older, the proportion of axons making a contra-rostral 
turn tends to increase, and that of axons within the floor plate tends to decrease (see figures 

3.11 and 3.12). Therefore it could be that development of the dorsal spinal commissural 

axons of mid-gestation C57/BI6 embryos is more advanced than that of 129Sv embryos of 

the same age. 

As seen with the 129/SvEv results, those from C57BI/6 embryos indicate that the observed 

non-contra-rostral projections persist at least until ages that are equivalent to those used for 

chick experiments (Stoeckli and Landmesser, 1995, using Hamburger and Hamilton, 1951 

and Schneider and Norton, 1979). 
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3.4.1.4 Non-contra-rostral projections from differently positioned injection sites 

The possibility that different neurons were being labelled to those studied previously was 
investigated by varying the site of DiI injection. Significant differences were found 

between the projections labelled when DiI was applied to more dorsal, or to more ventral, 

areas of the dorsal spinal cord. Axons of more dorsal origin were most commonly in or at 

the floor plate. Axons labelled by more ventral injections were significantly more likely to 

have made a contra-rostral turn, but also significantly more likely to have made a contra- 

caudal turn. Thus no particular dorso-ventral region of mouse dorsal spinal cord appeared 

to be a source of purely contra-rostral projections, and variations in the site of injection do 

not appear to account for the differences between the current and previous results. 

Nevertheless, the differences between projections from different dorso-ventral levels are 

still of interest. The injections could be labelling neurons of distinct populations, neurons 

of a single population that comprises neurons of different ages, or of a combination of the 

two. The idea that neurons at different locations have matured to different extents is 

supported by a comparison of figures 3.11 and 3.13: progressively more ventral injection 

sites yield results that are reminiscent of those from progressively older embryos. At E12.5 

the DIA and DIB sub-populations of DI interneuron, which appear to mature at different 

times, do in fact occupy different dorsal-ventral positions (Lee et al., 1998; figures 3.2, 

3.22). DIB interneurons begin their ventral-ward migration away from the common DI 

pool before the DI As, and at E 12.5 they are found in more ventral regions of the dorsal 

spinal cord (Lee et al., 1998; figure 3.2,3.22). The axons of DIB interneurons would 

therefore be expected to reach the floor plate, and possibly also extend beyond it, before 

those of DIA interneurons. Thus the greater proportion of axons that made a contralateral 

turn when DiI was injected more ventrally could conceivably be attributed to DIB neurons 

(figure 3.22). It should be noted that the more ventral injections are likely to have also 
labelled axons with dorsally located cell bodies, as these would incorporate DiI along their 

axon shafts. Therefore the "advanced" development of more ventrally originating axons 

may be even more pronounced than it appears in figure 3.13. 
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FIgure 3.22 Schematic representation of how different dorso-ventral injection sites relate to 
the positions of DI interneurons. The positions of DIA and DIB interneurons are shown as 
determined by the expression of LH2A and LEM respectively (Lee et al., 1998), in E12.5 spinal 
cord that has been cut transversely (A) or prepared as an open-book (B). The different injection 
sites used to generate the results presented in fl gure 3.13 are also shown, demonstrating a possible 
explanation for why the lateral (L) sites labelled greater proportions of axons that had made a 
contra-rostral turn, while dorsal (D) sites labelled greater proportions of axons that were still in or 
at the floor plate. D-L: dorso-lateral. 
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As experiments to perturb chick IgCAM function had focussed upon lumbar spinal cord 

(Stoeckli and Landmesser, 1995), the possibility that non-contra-rostral projections are 

specific to other rostro-caudal levels was also investigated. Both cervical and lumbar sites 

from the 129/SvEv E12.5 analysis described above were found to give rise to non-contra- 

rostral projections, and the differences in proportions were statistically insignificant. 

Although not conclusive, this result indicates that lumbar spinal cord does not have an 

especially high proportion of axons that make a contra-rostral turn. Thus the present 
labelling of non-contra-rostral projections is not merely an artefact of injecting regions 

other than those previously reported to contain only contra-rostral projections. 

This result is also of note because it appears to contradict the idea that the cervical spinal 

cord is developmentally more advanced than lumbar spinal cord. In fact, the possibility 

that spinal development does not follow a simple, unilinear, cephalo-caudal gradient has 

been raised previously. When thoracic and lumbosacral levels were compared, there were 

no significant differences between the extent of motor and dorsal root ganglion neuron 

production at these two levels (Altman and Bayer, 1984). 

3.4.1.5 Non-contra-rostral projections and low temperatures 

It has been suggested that a greater incidence of "abnormal" projections is related to the 

time for which unfixed spinal cords are kept on ice (T. Sakurai, personal communication). 
Exposure of unfixed tissues to low temperatures has indeed been shown to cause changes in 

Drosophila axon trajectory, and has lead to at least one inaccurate description of a mutant 

phenotype (Grenningloh et al., 1994; Lin et al., 1994). However, no differences between 

proportions of axons within each category were observed when spinal cords were incubated 

on ice for various lengths of time (data not shown). 

3.4.1.6 Previous reports of non-contra-rostral projections 

A closer inspection of older studies revealed that such "abnormal" trajectories have in fact 

been observed in wild type and control animals. For example, the neurons labelled by 

dorsal injections are thought to correspond to a population previously termed "dorsolateral 

border cells" (Oppenheirn et al., 1988; Stoeckli and Landmesser, 1995), and these were 
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originally described as "primarily ascending commissural" neurons. Whilst on the one 
hand these projections are said to be "almost exclusively ascending", the proportions of 
dorsolateral border axons which ascend and descend were estimated to be in the region of 
80% and 20% respectively (Oppenheim et al., 1988). Similarly, it appeared that "at least 

some of the axons also had an ipsilateral branch", and that ipsilateral projections could 

account for approximately 20% of all projections from these neurons (Oppenheim et al., 
1988). CaJal also described single chick dorsal spinal interneurons that contributed to both 

ipsilateral and contralateral. ventral funiculi, and referred to commissural axons that 
bifurcated to both ascend and descend (CaJal, 1909). Therefore some axons originating in 

the chick dorsal spinal cord do follow trajectories other than "contra-rostral". 

Such projections have also been reported in mammals. For example, in rat embryos, "five 

axons out of hundreds" turned ipsilaterally, and "rostrally turning axons sometimes had 

short caudal protrusions" (Bovolenta and Dodd, 1990). Many dorsal commissural axons of 

neonatal rat spinal cord extend caudally instead of, or as well as, rostrally (Eide et al., 
1999). A study of mature cat mid-lumbar interneurons reported that one in five dorsal 

commissural axons descended (Bras et al., 1989), a proportion comparable with that 

observed in the embryonic chick (Oppenheim et al., 1988). 

Non-contra-rostral projections have also been observed in wild type mice, although these 

have not always been commented upon. DiI injections have labelled axons of dorsal spinal 

origin that continue to extend into more lateral regions after decussation (Imondi et al., 
2000, figure 3H therein; T. Sakurai, personal communication), or which appear to turn 
ipsilaterally (Burstyn-Cohen et al., 1999, figure 5 Q. One study seemed to report that 

almost 5% of wild type commissural axons make a caudal rather than rostral turn (Matise et 

al., 1999, table I therein). Another study classified injection sites as "perfect", "mildly 

defective" or "severely defective" according to the numbers of axons that did not display a 

contra-rostral trajectory. This approach saw approximately 3% of wild type injection sites 

classified as severely defective, and a further 30% assigned to the mildly defective category 
(Zou et al., 2000, figure 7). 
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When such results are also considered, the finding that wild type dorsolateral spinal 

neurons do not all project contra-rostrally is perhaps not as surprising as it first appeared. 

3.4.2 Single IgCAM mutant embryos 

In order to test whether IgCAMs are as important for rodent dorsal spinal axon guidance as 

they appear to be for that of chick, Dil was applied to the dorsal spinal cords of E12.5 TAG- 

], Ll or NrCAM mutant embryos. There were no significant differences between the 

percentages of axons within each category when wild type embryos were compared with 

those homozygous for mutant TAG-1. This was true of mice homozygous for either the 

TAG' allele on a 129/SvEv genetic background, or the TAG-1 null allele on a C57131/6 

background. Embryos homozygous for the TAG' mutation on a C57131/6 genetic 
background were found to be similarly unaffected, both during the present study (data not 

shown) and during a brief investigation by another group (E. Stoeckli, personal 

communication). The results from TAG-1 null embryos suggest that the absence of a 

phenotype in TAG' mutants is not specifically attributable to the presence of truncated 

TAG- I protein. There were no significant differences between the nature of the projections 
labelled in Ll hemizygous mutant embryos and their wild type counterparts. NrCAM 

homozygous mutant spinal cords were also largely indistinguishable from their wild type 

counterparts. However, the percentage of axons making a contra-caudal turn differed 

significantly, NrCAM mutants having a slightly smaller proportion their axons in this 

category (appendix 3. A. 9). The contra-caudal category was under-represented in both 

homozygous and heterozygous embryos, raising the possibility that any reduction in 

NrCAM expression is sufficient to affect the decision of whether to turn rostrally or 

caudally. Although no such result has been reported previously, the absence of other 

significant defects is in accordance with other recent studies of NrCAM mutant mouse 

embryos (More et al., 2001; T. Sakurai and M. Grumet, personal communication). 

99 



3.4.2.1 Why are there no major defects? 

The results presented above demonstrate that the TAG-1, LI and NrCAM proteins are not 

essential for the correct guidance of mouse dorsal commissural axons at the floor plate. 
There are a number of possible explanations for these findings. The first is that TAG-1, LI 

and/or NrCAM might not be involved in the guidance of mouse dorsal spinal axons. This 

is in contrast to the reports that axonin-1, NgCAM and NrCAM are important for the 

correct development of chick dorsal commissural axons (Stoeckli and Landmesser, 1995; 

Stoeckli et al., 1997; Fitzli et al., 2000). The apparent lack of defects in the single mutant 

mouse embryos may reflect inherent differences between the guidance mechanisms of 
different species. Different patterns of IgCAM expression suggest that chickens and 

rodents might indeed have distinct guidance mechanisms. For example, axonin- I is 

strongly expressed on the surface of chick dorsal commissural axons both before and after 
decussation (Shiga and Oppenheim, 199 1; Stoeckli and Landmesser, 1995). Yet TAG- I is 

lost from the surface of rodent axons once the floor plate has been crossed (Dodd et al, 
1988; Wolfer et al, 1994; Zou et al., 2000; figure 3.4). Similarly, NgCAM is strongly 

expressed on the surface of chick dorsal commissural axons both before and after 
decussation (Shiga and Oppenheim, 199 1; Stoeckli and Landmesser, 1995), but LI is 

expressed on the surface of the rodent axons only once the floor plate has been reached 
(Dodd et al., 1988). Therefore it is conceivable that these molecules function in different 

ways in birds and mammals. Such mechanistic differences have been described for other 

aspects of development, such as mouse and chicken FGF8 having distinct roles in 

determination of left-right asymmetry (Meyers and Martin, 1999). 

It is still possible that TAG- 1, LI and/or NrCAM are necessary for correct development of 

mouse dorsal commissural. axons. It could be that the present investigation failed to detect 

subtle effects. For example, mechanical rather than manual application of DiI might have 

allowed smaller and more precise injections, and so meant that sub-populations of axons 

could be studied more specifically. Sectioning of spinal cords might have revealed defects 

not apparent in open book preparations, such as the reduced axon fasciculation seen in the 

chicken experiments (Stoeckli and Landmesser, 1995). IgCAM mutant embryos might not 
have been analysed at sufficiently late ages in the present study. Single null mutant 
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embryos were only taken at E12.5, yet, as shown above, the proportion of axons making a 

contra-rostral turn continues to increase beyond this age (see figures 3.11 and 3.12). 

Therefore it is conceivable that TAG- 1, LI and/or NrCAM are specifically involved in the 

guidance of axons that reach the floor plate after E12.5. However, E13.5 TAGA 

homozygous embryos were found not to differ significantly from wild type littermates 

(appendix 3. A. 6), and an independent analysis of NrCAM null embryos reported that their 

dorsal spinal axons were unaffected at E 11.5, E 12.5 or E 13.5 (More et al., 200 1). 

TAG- 1, Ll and/or NrCAM could be essential for the correct guidance of mouse dorsal 

spinal projections at E 12.5, providing that the mice are not of the 129/SvEv or C57131/6 

strains. As already mentioned, mutations can cause different phenotypes according to 

which genetic backgrounds are used, as different mouse strains carry alternative alleles for 

certain loci, and some strain specific alleles may modify the effects of a mutation. For 

example, mice with a mutation in the gene encoding Neuropilin- I survive for different 

lengths of time depending upon which genetic background they have (Kitsukawa et al., 
1997). The Eph receptor B2 has been reported to cause defects in the vestibular system 

when present on a CD I background, but not to have an effect when on either of the 

129/SvEv or C57131/6 strain backgrounds (Cowan et al., 2000). Effects of the Ll mutation 

upon other commissural axons are known to be background dependent, with failure of 

corpus callosurn decussation being evident in mice of the l29/SvJae sub-strain but not in 

those of a 129/SvEv background (Cohen et al., 1997; Demyanenko et al., 1999). It is 

therefore possible that the effects of the TAG-1, Ll and/or NrCAM mutations are 

ameliorated by alleles that are peculiar to 129/SvEv or C57131/6 mice. This could be tested 

by analysing embryos which have the mutations on other genetic backgrounds, although to 

back-cross a mutation onto a new background takes many generations, and cannot entirely 

eliminate flanking genes from the original strain (Gerlai, 1996; Lathe, 1996). 

It may be that TAG- 1, L1 and/or NrCAM are not necessary for guidance of the dorsal 

commissural axons of mouse or chicken embryos. It is possible that the results obtained 
from chicks do not simply reflect inhibition of the target IgCAM. Antibodies that prevent 

an interaction with one protein do not necessarily prevent, and can sometimes even 

promote, interactions with others (Neugebauer and Reichardt, 199 1; Stoeckli et al., 199 1; 
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Buchstaller et al., 1996). Certain function-blocking antibodies have been shown to 

stimulate cell-signalling events (Schuch et al., 1989). At least two IgCAMs (F3 and LI) 

are known to be capable of interacting with, and activating, their binding partners when 

applied in a soluble form (Durbec et al., 1992; Rougon et al., 1994; Doherty et al., 1995; 

Sugawa et al., 1997). Such findings raise the possibility that the reported perturbations of 

chick commissural axon guidance (Stoeckli and Landmesser, 1995; Stoeckli et al., 1997; 

Fitzli et al., 2000) might not simply reflect blockage of IgCAM function. 

3.4.2.2 The possibility of redundancy between IgCAMs. 

It is important to note that the finding that TAG- 1, LI and NrCAM are not essential for 

correct dorsal commissural. axon guidance does not mean that they have no function in this 

system. It might be that when a mouse embryo lacks one of these proteins, other 

molecule(s) can fulfil its roles. There are several examples of such "redundancy". In 

Drosophila, there are four neural receptor protein tyrosine phosphatases (RPTPs), and more 

than one of them must be mutated for a phenotype to be observed (Sun et al., 2000). There 

could be redundancy between ephrin B ligands in the rodent floor plate (see chapter 4). In 

the chicken, NgCAM and NrCAM appear to have redundant roles in promoting the 

longitudinal extension of dorsal spinal commissural axons (Fitzli et al., 2000). 

The possibility that TAG-1, LI and NrCAM are redundant with one another is being 

investigated by analysis of mice with multiple IgCAM mutations. As already mentioned, 

mice homozygous for both LI and NrCAM mutations display dysgenesis of the cerebellum 

and die within three weeks of birth (Sakurai et al., 2001). At the time of writing, crosses 

are underway to enable the TAG-] -NrCAM double mutant mice to be studied on a pure 

genetic background. As will be discussed below, embryos with mutations in both TAG-] 

and LI seem to have defects in the guidance of dorsal spinal axons at the floor plate, 

suggesting that there is indeed some functional redundancy between these two proteins. 

TAG-1, LI and NrCAM could alternatively, or additionally, have redundancy with other 
factors. As discussed in chapter 1, there are many neural IgCAMs, and some of these are 

also expressed by developing dorsal spinal interneurons. For example, Neurofascin shares 
47% and 33% amino acid sequence homology with NgCAM and NrCAM respectively 
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(Holm et al., 1996), and its expression overlaps with those of these two molecules in the 
developing chicken spinal cord. Neurofascin is present on the commissural and post- C 
decussation portions of commissural axons (Rathjen et al., 1987 b; Shiga and Oppenheim. 
199 1), in a pattern reminiscent of that of rodent LI (Dodd et al., 1988; Tran and Phelps, 
2000). Neurofascin does indeed seem to compensate for NrCANI in the cerebella of 
NrCAM mutant mice (Sakurai et al., 2001). F1 1, the chicken homologue of F3, is 

expressed by dorsal spinal commissural axons only after decussation (Shiga and 
Oppenheim, 199 1), raising the possibility that, although most closely related to TAG- I 
(5 1% amino-acid sequence homology, Holm et al., 1996), F3 may be redundant with L 1. 

Determinin the expression patterns of the Neurofascin and F3 proteins in the developing 

MOUse spinal cord would indicate whether their redundancy with Ll is in fact a possibility. 

Another candidate for redundancy with NgCAM/L I is NCAM. This molecule is expressed 
by commissural axons (Dodd et al., 1988), and its homologue FasII has been implicated in 

the proper fasciculation of longitudinal axon tracts in Drosophila (Lin et al., 1994). Studies 

of NCAM deficient mice (e. g. Cremer et al., 1994,1997) do not seem to have addressed the 

issue of dorsal commissural axon development. DM-GRASP (also known as SC I and 

BEN, and as neurolin in fish) is strongly expressed by both mouse and human floor plate 

cells during commissural axon development (Karagogeos et al., 1997; Fraboulet et ell., 

2000). In chick, the decussating portions of the commissural axons themselves have also 

been reported to express DM-GRASP (El-Deeb et al., 1992). DM-GRASP is capable of 

interacting homophilically (Tanaka et al., 199 1), and also heterophilcally with NgCAM 

(Debernardo and Chang, 1996). It would be interesting to examine embryos homozygous 

mutant for both DM-GRASP and NrCAM. 

3.4.2.3 TAG- 1, LI and NrCAM and other axon guidance mechanisms 

The functions of TAG- 1, LI and/or NrCAM could also overlap with the other molecular 

events that have been reported to regulate floor plate entry (summarised in figures 3.3 and 
3.23). For example, rat dorsal commissural axons seem to be insensitive to the floor plate 
inhibitory factors Sernaphorin (Sema) 3B and Slit-2 at the time of midline entry, but to 
become responsive to these factors after decussation (Zou et al., 2000). It could be that 
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TAG- I and NrCANI ensure that sensitivity is acquired only after floor plate entry. The 

Drosophila receptor for Slit proteins, the IoSF molecule Roundabout (Kidd et al., 1999), is 

specifically down-regulated on commissural growth cones before their decussation (Kidd et 

al., 1998 a). Roundabout, which is also known as Robo, has thus been referred to as a 
66gatekeeper" protein, because its surface expression determines whether the floor plate can 
be entered (Kidd et al, 1998 a). The vertebrate homologues of Slit and Robo are expressed 

by the floor plate and decussatina, axons respectively (Kidd et al., 1998 a; Brose et al., 
1999), although it is not yet clear whether surface expression of vertebrate Robo receptors 

alters at the midline. In Drosophila, axonal expression of Robo is reduced in response to 

the midline protein Commissureless, or Comm (Kidd et al.. 1998 b). However. a vertebrate 

version of this protein has not yet been identified. If vertebrate Robo proteins are down- 

regulated at the vertebrate floor plate, it could be that interactions involving axonin- I and 
floor plate NrCAM have a similar role to that performed by Comm (Chien, 1998). 

Labelling of IgCAM mutant mouse spinal cord with anti-Robo antibodies could indicate 4-P 

whether axonin- I/TAG- I -NrCAM interactions participate in the regulation of levels of 0 
Robo protein. If a rodent equivalent of Comm is discovered, it will be interesting to I 
establish whether mice mutant for both this and TAG- I and/or NrCAM have increased 

proportions of ipsilateral axons. 

TAG- I -NrCAM interactions could equally have gatekeeper functions with regards to other 
floor plate inhibitory factors (figures 3.3 and 3.23). For example, pre-commissural axons 

are insensitive to Sema 3B, despite expressing the Sema 3B receptor component 
Neuropilin-2 (Zou et al., 2000). It could be that a TAG-l-NrCAM binding event changes ID It; 
the ability of decussating axons to respond to Sema 3B. There are at least two other 

situations in which an IgSF member seems to affect the responses of axons to sernaphorins. 
In Drosophila, the IgSF protein Off-Track seems to be involved in the ability of the Plexin 

A receptor to mediate responses to Sema Ia (Winberg et al., 200 1). In mice, LI alters the 

sensitivity of corticospinal axons to Sema 3A, apparently via its interaction with the Sema 

3A receptor Neuropilin- I (Castellani et al., 2000; He, 2000). The mechanism could 
involve changes in the ability of Neuropilin- I to relieve the other part of the Sema 3A 
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Figure 3.23 Summary of mechanisms of floor plate entry and/or exit that might involve TAG-1, LI 
and/or NrCAM. A: Expression of lgCAMs in the floor plate area could theoretically maintain Robo 
expression at low levels to allow entry, or increase surface expression of Robo to allow exit . Note that 
this model is highly speculative. Drosophila commissural alter their surface expression of Robo as 
illustrated (Kidd et al., 1999 a and b), and it is known that mammalian dorsal commissural axons express 
Robo proteins (Kidd el al., 1998 a; Brosc et al., 1999; Yuan el al., 2001), and acquire sensitivity to slit-2 
only once the floor plate has been crossed (Zou el al., 2(XX)). However, it is not clear whether surface 
expression of mammalian Robo receptors changes at the floor plate, so it might not be levels of this that 
determine slit-scrisitivity. B: Interactions between TAG- I and NrCAM might repress ncuropilin-2 
function to allow floor plate entry; interactions involving the ncwly-expressed LI might relieve such 
repression, so that Sema 3B can cause floor plate exit. C: IgCAMs might affect the expression of Eph B 
receptors, or affect the ability ofthese receptors to function. IgCAMs could also/alternatively alter the 
ability of commissural axons to respond to as yet uncharacterised factors. 
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receptor, Plexin A 1, from its auto-inhibition (Takahashi and S trittmatter, 200 1. Gi oer and 

Kolodkin, 2001). LI-Neuroplin-I interactions might also affect the signalling of second 

messenger molecules (Castellani et al., 2000). Indeed, Sema _3 )A induced repulsion can be 

attenuated or even converted to attraction by increased levels of intracellular cyclic GMP 

(Song et al., 1998), and it appears that soluble LI cannot convert the response to Sema 3A 

to attraction if the synthesis of cyclic GMP is inhibited (Castellani et al., 2000). Therefore 

it is conceivable that TAG- I and/or NrCAM ensure that Sema 3B repels dorsal spinal 

commissural axons only after their decussation. 

TAG- I and/or NrCAM could theoretically also be involved in the ability of dorsal spinal 

'growth cones to respond to B-class ephrins, another group of potential floor plate inhibitory 
0 Zý I 
factors (see also chapter 4). All three B-ephrin licrands are expressed in the floor plate, 
be, yinning at EII with ephrin B3 (Imondi et al., 2000). Their Eph B receptors do not 

appear to be expressed by the dorsal commissural axons until they have already entered the 

floor plate (Imondi et al., 2000), raising the possibility that TAG- I/NrCAM may affect the 

response to B-ephrins at the level of receptor gene expression. It is also possible that TAG- 

I and/or NrCAM are involved in the ability to respond to as yet undescribed floor plate 
inhibitory factors. Such factors could include BMP7, which is known to repel dorsal spinal 

axons away from the roof plate (Augsburger et al., 1999), and which appears to be 

expressed in the mouse floor plate (figure 3.24). It seems to be restricted to the apical floor 

plate (figure 3.24), possibly explaining why commissural axons characteristically cross the 

floor plate basally (for examples see Holley, 1982; Holley et al., 1982; Dodd et al., 1988: 

Shiga and Oppenheim, 199 1; Stoeckli et al., 1995; Tran and Phelps, 2000). VEMA is a 

novel protein that could also be involved in guidance at the ventral midline, as it is 

expressed within cells of the rat floor plate at appropriate stage of development (Runko et 

al., 1999). Although an intracellular protein, it could conceivably affect commissural axons 
following a physical transfer to them, as has been demonstrated for the Comm protein in 

Drosophila (Tear et al., 1996) and for 8-galactosidase in mice (Campbell and Peterson, 

1993). 
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Figure 3.24 BMP7 appears to be expressed by the E12.5 cervical floor plate. 
A and B: two different magnifications of a transverse section of E12.5 mouse 
floor plate that had been labelled with the R-3331 antibody to BMP7 and a 
fluorescent secondary antibody. C: the floor plate of an adjacent section that had 
been labelled with R. 3331 and a horse-radish peroxidaxe conjugated secondary 
antibody, to show that the labelling in B is not a non-specific artefact. 
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Whether TAG- I and/or NrCAM alter axonal sensitivity to Slit proteins, sernaphorin 313, B 

ephrins, or as yet undiscovered midline inhibitory factors, this study demonstrates that they 

are not individually essential for floor plate entry. As suggested, the decision to enter floor 

plate appears to depend upon a balance of positive and negative cues (Stoeckli and 

Landmesser, 1995; Stoeckli et al., 1997). When either TAG-I or NrCAM is mutated, other 

positive activities remain, and these might even be up-regulated to compensate. For 

example, dorsal spinal axons were still attracted to Netrin- I when the functions of axonin- 
1, NgCAM and NrCAM were perturbed (Stoeckli et al., 1997). A second floor plate 

attractant, F-Spondin (Burstyn-Cohen et al., 1999) might also guide the mutant dorsal 

commissural axons into the floor plate. Such positive cues, and other mechanisms to 

ensure that negative factors are ignored, could mean that the absence of TAG-1, LI or 

NrCAM is not sufficiently great a loss for the balance to be tipped in favour of inhibitors. 

3.4.2.4 Investigating the possibility of redundancy 

The possibility that other molecules and/or mechanisms promote floor plate entry in the 

absence of TAG- 1, LI or NrCAM could be investigated in a number of ways. As 

demonstrated, double mutant mice can be generated. The possibility that other factors are 

up-regulated to compensate for the lack of the IgCAMs could be tested by antibody 

labelling of sections from mutant and wild type embryos. However, as is evident in figures 

3.6 and 3.7, it can be difficult to judge whether a protein is expressed more strongly or not. 

A third approach is that of explant culture. In vitro culture of chick dorsal spinal cord with 

floor plate explants showed the effects of perturbation to be more pronounced than in vivo 

(Stoeckli and Landmesser, 1995; Stoeckli et al., 1997; summarised in figure 3.5), possibly 

reflecting the absence of other factors that normally influence floor plate entry. Similarly, 

Ll hemizygous mutant dorsal root ganglion axons fail to respond to ventral spinal cord 

explants in vitro (Castellani et al., 2000), despite showing no obvious guidance defects in 

vivo (figures 3.7 and 5.11, appendix 5.13). Therefore it is possible that subtle effects of the 

TAG-1, Ll and/or NrCAM mutations might also be more apparent in vitro than in vivo. If 

this proved to be the case, the in vitro culture system could be used to investigate how the 

IgCAMs act. For example, if mutant axons were found to be unable to enter floor plate 

108 



explants, antibodies could be used to block the function of candidate midline inhibitory 

cues. If such an antibody restored the ability of mutant axons to enter floor plate tissue, its 

target might be a negative factor that the IgCAMs normally negate. If the culture of mutant 

mouse dorsal spinal cord with floor plate revealed no defects in floor plate entry, function- 

blocking antibodies could be used to identify factors with which the IgCAMs are 

redundant. The use of specifically transfected cells rather than floor plate would allow the 

responses to single midline factors to be tested individually (e. g. Kennedy et al., 1994; 

Shirasaki et al., 1996; Castellani et al., 2000; Zou et al., 2000). 

Attempts were made to set up an in vitro assay for dorsal commissural axon growth. 
Initially dorsal spinal explants were grown with floor plate tissue on a substrate of laminin, 

as this "two-dimensional" culturing allows the entry of axons into the floor plate to be 

carefully recorded (e. g. Stoeckli et al., 1997; see figure 3.25). However, the explants 

responded poorly, and the floor plate was seldom reached by axons of any genotype. This 

did not appear to be due to the laminin substrate causing the axons to find netrin- I 

repulsive, as has been described for Xenopus retinal axons (H6pker et al., 1999), as neither 

additional Netrin- I (as in Shirasaki et al., 1996), nor greatly reduced laminin 

concentrations, afforded better results. This was not unexpected, as it is recognised that 

mouse embryonic dorsal spinal cord is more difficult to culture in vitro than that of either 

rat or chicken (M. Tessier-Lavigne and E. Stoeckli, personal communications). Axon 

outgrowth was more robust when explants were co-cultured in a "three-dimensional" 

collagen gel matrix (figure 3.25; Lumsden and Davies, 1983; Placzek et al., 1993). Such a 

system has previously been used to test the responses of mouse dorsal spinal axons to 

potential midline guidance cues (e. g. Tessier-Lavigne et al., 1988; Placzek et al., 1990 a, b; 

Zou et al., 2000; Castellani et al., 2000). For example, such assays demonstrated that the 

ability to respond to Sema 3A is dependent upon axonal Ll (Castellani et al., 2000), and 

that pre- and post- decussation commissural axons have different sensitivities to floor plate 
factors (Zou et al., 2000). Dorsal spinal commissural axons, as defined by expression of 
TAG- I protein, or B-galactosidase, were produced from dorsal spinal explants in collagen 
(data not shown), but difficulties in obtaining mutant and wild type embryos of the same 

age meant that responses of axons of different genotypes were not compared. 
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Two-dimensional culture 
e. g. on laminin 

A 

View from 
above 

B 

Side view 

Three dimensional culture 
e. g. in collagen 

I 

Figure 3.25 Schematic representation of one of the practical differences between "two-dimensional" 
and "three-dimensional" explant culture. Axons seeming to enter floor plate when viewed from above 
(A) may actually be at a different level within a collagen gel (13, tight). 
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3.4.3 Double mutant embryos 

In contrast to the results from single mutant embryos, the development of dorsal spinal 

projections appeared to be abnormal when both Ll and TAG-] were mutated. At E12.5, the 

mice both homozygous for the TAGAmutation and hemizygous for the Ll mutation had a 

significantly smaller proportion of their dorsal spinal axons projecting contra-rostrally than 

did wild type embryos. The double mutant embryos also had a substantially greater 

proportion of their axons in or at the floor plate. The proportions of axons within the other 

categories did not differ significantly. 

These results differ from those chicken IgCAM perturbation experiments (summarised in 

figure 3.26). When chick embryos were treated in ovo with a mixture of antibodies to 

axonin- I and NgCAM, the only obvious deviation from normal development was the 

occurrence of ipsilateral, rostral projections, as seen when the function of axonin-1 is 

perturbed alone (Fitzli et al., 2000, Stoeckli and Landmesser, 1995). The results presented 
here indicate that TAG-YLI double mutant mouse embryos do not have any more ipsi- 

rostral projections than is normal. In the chick experiments, the proportions of axons in or 

at the floor plate were only seen to increase when embryos were injected with antibodies to 

both NgCAM and NrCAM (Fitzli et al., 2000). 

There are a number of potential explanations for such differences. As discussed above, the 

mouse may have additional mechanisms to allow dorsal spinal axons to enter the floor 

plate; conversely, the chick may have more mechanisms than the mouse for ensuring that 

axons leave the floor plate. Another reason for the differences between these results might 
be that NgCAM and Ll are not equivalent proteins. As discussed by Sonderegger and 
Rathjen (1992), Ll and NgCAM have many structural similarities, such as their numbers of 
immunoglobulin-like and fibronectin type III domains, their apparent proteolytic cleavage, 

and the presence of a cytoplasmic site for phosphorylation (Sonderegger and Rathjen, 1992; 

Burgoon et al., 1995). However, the two amino acid sequences share only the same level 

of homology as do non-homologous members of the Ll-like sub family (Holm et al., 
1996), and more recent analysis of structural features likens NgCAM more to NrCAM than 
Ll (Hortsch, 2000). As already mentioned, the expression of the molecules by 
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wild type LI -/V, TAG A/A 

EMS 

E12.5 

E13.5 

B chicken embryo, uninjected chicken embryo, injected with 
antibodies to both axonin-I and 

NgCAM 

I. 

II 

Figure 3.26 Summary of the results of injecting TAG-l-L] double mutant embryos (A), and how 
these compare to the results of chick experiments (B). At El 1.5, there were no significant differences 
between mouse embryos of the two genotypes. At E12.5, the double mutant has a smaller proportion of 
axons turning contra-rostrally. By E13-5, the double mutant has the greater proportion of axons making a 
contra-rostral turn. In contrast, perturbation of both ofthc molecules thought to be equivalent to TAG-I 
and Ll in chicken embryos resulted in failure of floor plate entry (Fitzli et al., 2000). 
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commissural axons also differs, with NgCAM being expressed more prominently on the 

axons before decussation (Stoeckli and Landmesser, 1995). Rat expression of LI bears 

more similarity to the expression pattern of chick neurofascin than that of NgCAM (Dodd 

et al., 1988, Shiga and Oppenheim, 1991). Therefore it may be that LI is so different to 

NgCAM that the two should not be expected to have the same function. 

3.4.4 So what are Ll and TAG-1 doing in the mouse spinal cord? 

The double mutant results do not provide sufficient information for the roles of TAG- I and 

Ll to be deduced fully, but speculations can be made. The greater proportion of axons in 

or at the floor plate at E12.5 is indicative of the molecules being involved in floor plate 

exit. Whether TAG-I and Ll function in a single mechanism or in distinct ones is not 

clear. However, the ability of the molecules to interact directly, and the differences 

between the single and double mutant results, are suggestive of co-operation in some way. 

The single TAG-I mutants do demonstrate slight tendencies towards having greater 

percentages of their axons in or at the floor plate, and smaller proportions turning contra- 

rostrally (figures 3.15,3.16 and 3.26). However, the single LI embryos do not display such 

tendencies, and if anything seem to have a greater proportion of their axons turning contra- 

rostrally (figure 3.17). This implies that the significantly greater proportion of axons in or at 

the floor plate in E12.5 TAG-11LI double mutant embryo is not merely an effect of the 

addition of two independent, less than significant results. 

TAG- I and Ll are known to interact heterophilically in cis - that is, within the same cell 

membrane (Felsenfeld et al., 1994; Stoeckli et al., 1996; Rader et al. 1996; Buchstaller et 

al., 1996; Malhorta et al., 1998). Ll and TAG-1 are co-expressed on the portions of 

commissural axons that are within the floor plate (Dodd et al., 1988; Tran and Phelps, 

2000), so it could be that they interact in cis in this region. If this is the case, the resulting 

complex might act as a receptor for floor plate inhibitory cues, or interact with such 

receptors. For instance, an Ll-TAG-1 heterodimer could theoretically interact with the 

receptors for Slit-2 and/or Sema 3E, so causing decussating axons to become sensitive these 
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cues (Zou et al., 2000). Indeed, Ll is known to interact with the sernaphorin receptor 

Neuropilin- I (Castellani et al., 2000), although it is Neuropilin-2, rather than Neuropilin- 1, 

that is expressed by dorsal spinal interneurons (Chen et al., 1997; Kolodkin et al., 1997). It 

would be interesting to test whether TAG-MI double mutant axons were repelled by Slit-2 

or Sema 3E in vitro. 

The presence of more axons within the double mutant floor plate at E 12.5 is suggestive of a 

delay in dorsal spinal axon development. This could reflect an "unwillingness" of double 

mutant axons to leave the floor plate, or it could be symptomatic of an earlier delay. In 

order to better understand the roles of TAG- I and LI in the mouse spinal cord, E 11.5 and 

E13.5 embryos were also analysed (the results are surnmarised in figure 3.26). The finding 

that the double mutant and wild type results are almost indistinguishable at El 1.5 implies 

that axons are unaffected before the floor plate is reached. It remains possible that the 

double mutation perturbs an earlier stage of the development of a population of axons that 

arrives at the floor plate after El 1.5, but the lack of expression of Ll by pre-commissural 

axons makes this seem unlikely. 

At E13.5, the TAG-YLI double mutant embryos were found to be significantly different 

from their wild type counterparts. At this age, the double mutant spinal preparations had a 

significantly greater proportion of axons that had made a contra-rostral turn, and a 

significantly smaller percentage in or at the floor plate. The proportions of projections 

within the "contra-caudal" and "continuing" categories were also significantly greater than 

those of wild type embryos. 

One possible explanation for the apparent increase in non-floor-plate projections could be 

that there is an unusually large decrease in the proportions of axons within the "in/at floor 

plate" category. Thus the proportions of contra-rostral, contra-caudal and continuing axons 

may have increased relatively rather than absolutely. This could occur if stalled axons were 

selectively killed off in the double mutant embryos. Embryos with a mutation in Sema 3A 

have been shown to have their inappropriate axonal projections selectively eliminated 
before birth (White and Behar, 2000). It could be that some of the TAG-YLI double 

mutant dorsal spinal axons are unable to respond to trophic factors from the midline (Wang 
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and Tessier-Lavigne, 1999) or adjacent glia (Booth et al., 2000), such that they cannot 

survive beyond E12.5. It would be interesting to compare the extent of cell death within 

wild type and double mutant spinal cords between E12.5 and E13.5, for example using 
TdT-mediated dUTP-biotin nick-end labelling (TUNEL) analysis (Gavrieli et al., 1993). 

Alternatively, the apparent "over-recovery" could reflect an up-regulation of factors in an 

attempt to compensate for the absence of TAG-1 and Ll. For example, if TAG-l- LI 

interactions normally allow axons to respond to a floor plate inhibitory cue, it might be that 

the activity of another midline repulsive factor (see above) is increased, to force the axons 

to continue. As discussed previously, antibody labelling could be used to check for the up- 

regulation of factors. 
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3.5 Conclusions 

1. The axons of dorsal spinal interneurons do not all make a "contra- rostral" turn. 

It has been shown that some wild type axons of dorsal spinal origin have trajectories 

other than that of decussating and turning rostrally. 

2. The axons of mouse dorsal spinal interneurons are guided normally in the absence 

of full-length TAG-1, Ll or NrCAM proteins. 
In contrast to what may have been expected from chick experiments, single mutations 
in TAG4, Ll or NrCAM do not have significant effects upon mouse dorsal spinal axon 

guidance. 

3. The axons of mouse dorsal spinal interneurons are not guided normally when 
both TAG-1 and Ll are mutated. 

Double mutant axons seem to have an impaired ability to leave the floor plate at E 12.5. 

However, double mutant axons are more likely to have left the floor plate by E13.5 than 

are those of wild type embryos. 
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3.6 Appendices 

Appendix IA: Statistical analyses of the differences between dorsal spinal projections 
labelled under various circumstances. 

In each case, the differences between distributions were assessed using an "analysis 
of variance" test (ANOVA) in "Microsoft Excel: mac 2001 ", as suggested by 
Dytham, 1999. 
This test affords the same results as a two-tailed t-test when two groups are 
compared, but as it tests whether the variance within groups is the same as the 
variance between groups, it is also suitable for comparisons of more than two 
groups. In the summary tables, "count" denotes the number of sites for each group; 
44sum" is the total of the percentages of axons within the category; 4, average" is the 
mean percentage per site, and "variance" is the extent to which the individual 
percentages varied form their mean. The ANOVA table summarises intermediate 
stages of the calculations used to obtain the F-statistic: "df' denotes degrees of 
freedom; "SS" the sum of squares, "MS" the mean square (SS/df), and the "F'- 
statistic is the ratio of the two MS values. The "P-value" is the probability on the F- 
value being obtained by chance- i. e. the probability that the variances between and 
within groups would differ as they do if there was no a significant difference. 
Where the P-value is below 0.05, the chance of the result occurring if the groups 
were the same is so low that the groups are concluded to be significantly different. 

3. A. 1: Comparison of 129/SvEv embryos of different ages. 

3. A. 2: Comparison of 129/SvEv and C57BI/6 embryos at E12.5 and E13.5. 

3. A. 3: Comparison of the projections labelled when DiI was injected at different dorso- 
ventral positions. 

3. A. 4: Comparison of the projections labelled when Dil was injected at different rostro- 
caudal levels. 

3. A. 5: Comparison of embryos wild type, heterozygous or homozygous for the TAG' 
(truncation) mutation. 

3. A. 6: Comparison of embryos wild type or homozygous for the TAGA(truncation) 
mutation at E13.5. 
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3. A. 7: Comparison of embryos wild type, heterozygous or homozygous for the TAG-1 null 
mutation. 

3. A. 8: Comparison of embryos wild type, heterozygous or hemizygous for the LI null 
mutation. 

3. A. 9: Comparison of embryos wild type, heterozygous or homozygous for the NrCAM null 
mutation. 

3. A. 10: Comparison of TAG' ILI double mutant embryos with those wild type for both 
genes: E12.5. 

3. A. 11: Comparison of TAG' ILI double mutant embryos with those wild type for both 
genes: E 11.5. 

3. A. 12: Comparison of TAGAILI double mutant embryos with those wild type for both 
genes: E 12.5. 

3. A. 13: Comparison of TAG' ILI double mutant embryos at different ages. 

Appendix IB: Mean proportions of axons within each category in E12.5 LPTAG' double 
mutant embryos: all genotypic combinations. 
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4 The Role of Ephrin B3 in Guidance of Dorsal Spinal 

Commissural Neurons at the Rodent Floor Plate 
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4.1 Abstract 

As discussed in the previous chapter, it is thought that the floor plate is inherently 

inhibitory for the growth of dorsal spinal axons, and that molecules such as TAG- I and 

NrCAM might allow commissural axons to ignore midline negative cues. One molecule 

that could contribute to a midline inhibitory activity is ephrin B3. DiI was used to label the 

dorsal spinal projections of mouse embryos homozygous for a mutation in the ephrin B3 

gene. At E 12.5, homozygotes had a greater proportion of their axons in or at the floor 

plate, and a smaller proportion turning contra-rostrally, than heterozygotes. This implies 

that ephrin B3 normally forces axons to extend out of the floor plate and into the contra- 

lateral spinal cord. At E13.5, the dorsal spinal projections of homozygotes are statistically 
indistinguishable from those of heterozygotes, indicating that the lack of ephrin B3 is 

overcome once the floor plate begins to express ephrins BI and BZ. 
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4.2 Introduction 

Eph receptors are cell surface tyrosine kinases, so named after the erythropoietth-producing 

hepatocellular carcinoma cell line, from which the first family member was isolated. There 

are now known to be at least fourteen vertebrate Eph receptors, classified as either EphA or 

EphB receptors according to their sequence homology and which class of ligands they 

prefer to bind (figure 4.1). The ligands, referred to as ephrins (for "Eph receptor 

interacting"), are either attached to the cell membrane by a glycosylphosphatidyl-inositol 

(GPI) anchor (A-ephrins) or by a trans-membrane domain (B-ephrins) (Drescher, 1997; 

Eph Nomenclature Committee, 1997; Holland et al., 1998). Figure 4.1 summarises the 

different classes of ephrins and Eph receptors, demonstrates ligand-receptor interactions, 

and includes names by which each protein has previously been known (using Gale et al., 

1996b; Drescher, 1997; Eph Nomenclature Committee, 1997). Despite this classification, it 

should be noted that at least one Eph A receptor is able to interact with ligands of the B 

ephrin class (Gale et al., 1996b), and that ephrins can also act as receptors for the Eph 

proteins. For example, treatment of B-ephrin expressing cells with soluble, aggregated 

EphB2 leads to phosphorylation of the B-ephrins (Holland et al., 1996, BrUckner et al., 

1997), and soluble Eph B extracellular domains can cause collapse of retinal axon growth 

cones (Birgbauer et al., 2001). Mutations in EphB2 have non-cell autonomous effects 

(Henkemeyer et al., 1996), and at least one B-ephrin can interact with adaptor proteins that 

might mediate cell autonomous effects upon signalling complexes and the cytoskeleton 

(BrUckner et al., 1999; Cowan and Henkerneyer, 2001). Thus Eph/ephrin signalling is in 

fact thought to be bi-directional (BrUckner and Klein, 1998; Holland et al., 1998). 

Eph receptors and their ligands have been implicated in a number of aspects of 
development (reviewed by Flanagan and Vanderhaeghen, 1998; Fris6n et al., 1999; Holder 

and Klein, 1999; O'Leary and Wilkinson, 1999). Ephrin B2 appears to have a role in the 

formation of arteries and veins, and possibly also in establishing differences between these 

vessel types (Wang et al., 1998). Eph B2 and Eph B3 seem to mediate fusion of the palatal 

shelves during craniofacial development (Orioli et al., 1996). EphB2 may also be involved 
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EFL-6, ELF-3, 
LERK-8 

Figure 4.1 Eph receptors, ephrin ligands and their interactions. Ligands of the ephrin A 
subclass are attached to the cell membrane by a GPI anchor-, ligands of the B subclass have 
trans-mcmbrane domains. The Eph receptors are classified as either A or B on the basis of 
extracellular domain sequence and the subclass of cphrin ligand with which they preferentially 
interact. Arrows indicate the interactions between proteins or between members of the bracketed 
groups of proteins (using Gale et al., 1996 b; Drescher, 1997). Names by which the proteins have 
previously been known are also given (Eph Nomenclature Committee, 1997). 
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in the correct expression of molecular channels within plasma membranes (Cowan et al., 
2000). However, most is known about the contribution of Ephs and ephrins to neural 
development. 

Although at least one ephrin can promote axon branching (Castellani et al., 1998), the 

majority of studies implicate Eph and ephrin proteins in inhibitory and/or repulsive roles. 
For example, Eph receptors and ephrins mediate segregation of the developing hindbrain 

into rhombomeres, by rendering cells destined for adjacent rhombomeres immiscible (Xu et 

al., 1999). The expression of ephrin BI and ephrin B2 in the caudal halves of somites 

appears to force neural crest cells and motor axons to leave the central nervous system only 

through somites' rostral halves (Wang and Anderson, 1997). Ephrin A5 in the dorsal spinal 

cord appears to induce the apoptosis of motor neurons that attempt to migrate or extend 

axons in that direction (Yue et al., 1999). Ephrins A2 and A5 mediate the topographic 

mapping of retinal axons to specific areas of the superior colliculus (optic tectum) by 

inhibiting the formation of contacts in inappropriate regions (Cheng et al., 1995; Drescher 

et al., 1995; Monshau et al., 1997; Frisen et al., 1998; DUtting et al., 1999). These two 

ephrins could have a similar role in the mapping of connections between the hippocampus 

and septum (Gao et al., 1996,1999) and in the correct targeting of motor axons to muscles 
(Feng et al., 2000). Ephrin A5 may also be involved in the formation of layer-specific 

connections within the cerebral cortex (Castellani et al., 1998). Mouse embryos 
homozygous for a mutation in the eph A4 gene lack dorsal hind limb innervation, the Eph 

A4 receptor normally mediating repulsion of limb axons away from the ventral region and 
into the dorsal compartment (HeImbacher et al., 2000). 

In particular, Ephs and ephrins havý been found to affect the ability of axons to cross the 

midline of the nervous system (i. e. to decussate). In Xenopus tadpoles, premature 

expression of B-ephrins at the optic chiasm appeared to force a sub-set of retinal axons to 

project ipsilaterally, as normally only occurs after metamorphosis (Nakagawa et al., 2000). 

Mice homozygous for a null mutation in the eph B2 gene had a greatly reduced posterior 

part to their anterior commissure, a tract that links the two cerebral hemispheres 
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(Henkemeyer et al., 1996). Eph B3 is thought to have a similar role in development of the 

posterior portion of the anterior commissure, as the failure of axons to decussate was 

exacerbated in mice with mutations in both eph B3 and eph B2 (Orioli et al., 1996). The 

products of these genes also seemed to co-operate in decussation of the corpus callosum, 4P 
another tract that connects the cerebral hemispheres (Orioli et al., 1996), 

Eph B2 mutant mice also showed a temporary inability of inner ear efferent axons to 

decussate: axons entered the midline, but seemed reluctant to leave it (Cowan et al., 2000). 

Eph A8 appears to be necessary for the decussation of a tract that connects the superior and 
inferior colliculi (Park et al., 1997). In the absence qfEph A4, some corticospinal tract 

(CST) axons aberrantly re-decussate (Dottori et al., 1998; Kullander et al., 2001 a; 
Leighton et al., 2001 ; Coonan et al., 200 1). It seems that corticospinal Eph A4 is a receptor 
for an inhibitory activity within the spinal cord midline (Kullander et al., 2001 a), and that 

ephrin B3 is at least part of such an activity (Kullander et al., 2001 a, b; Yokoyama et al., 

2001). The effects of eph and ephrin mutations upon mouse brain commissures are 

summarised in figure 4.2, after Frisen et al., 1999. 

It has been suggested that ephrin B3 also guides spinal commissural axons. Ephrin B3 

mRNA is expressed by the ventral midline of the mid-gestation spinal cord (Gale et al., 
1996 a; Bergemann et al., 1998; Imondi et al., 2000), at the time when the first dorsal 

spinal commissural axons complete their decussation and extend out of the floor plate 

(Wentworth, 1984). Dorsal spinal neurons have been reported to express Eph BI mRNA, 

and post-midline commissural axons express surface molecules to which ephrin B3 can 
bind. Dorsal spinal axons are also repelled by ephrin B3 in vitro (Imondi et al., 2000). 

Therefore it was decided to investigate whether ephrin B3 is involved in the guidance of 

mouse dorsal spinal commissural axons in vivo, and DiI was used to compare the dorsal 

spinal projections of embryos that either did or did not have ephrin B3 protein. 
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axons fail to decussate in EphB3 mutant mice. axons fail to decussate in cphA8 mutant mice 
failure is more pronounced in (EphA8 is expressed ky the axons; 
EphB21E'phB3 double mutants presumably ephrins in surrounding 
(EphB2 and EphB3 appear to be expressed in the tissue means that the axons can 
midline; cortical axons express tirv ligands) only extend across the midline) 

posterior part of 
anterior conunis: 
axons fail to decussate in ephA4 axons can rc-decussate in EphA4 
and ephB2 mutant mice. and ephrin B3 mutant mice 
failure is more pronounced (axons express F. phA4; 
in ephB21ephB3 double mutants ephrin B3 is in the midline). 
(axons express ephrin B]; EphB2 and EphA4 in surrounding 
tissue means that the axons can only extend across the midline) 

Figure 4.2 Summary of the effects of ephlephrin mutations upon decussating axons of 
the mouse brain Using Frisen el al., 1999 and references mentioned in the text. SC- superior 
colliculus; IC- inferior colliculus; Cb- cerebellum. In addition, mice homozygous for a mutation 
in Eph B2 have a temporary defect in the decussation of their inner car efferent axons, However, 
these axons form a normal commissure by E14. (Cowan el al., 2000). In Xenopus, premature 
expression of B-cphrins in the optic chiasm can force retinal axons that normally decussate to 
extend ipsilaterally (Nakagawa el al, 2000). 
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4.3 Results and Discussion 

As presented in figure 4.3, E12.5 embryos homozygous for the ephrin B3 mutation had on 

average a smaller proportion of their axons making a contra-W5rral turn than did 
I 

heterozygotes. Homozygous embryos also had a correspondingly larger proportion of their :z 113 

dorsal spinal projections in or at the floor plate. Both of these differences were statistically 

significant (p= 0.0 128 and p= 0.00570 respectively). There were no other significant 

differences between the labelled spinal projections of the two groups of embryos. This 

result suggests that ephrin B3 might normally cause spinal commissural axons to be 

expelled from the floor plate at E12.5, and that a lack of the protein means that some of the 

axons are unable to complete their decussation. The idea that ephrin B3 functions in such a 

way is supported by previous reports of the expression of ephrin B3 and its receptors, and 

the effect that ephrin B3 protein has upon dorsal spinal axons in vitro (Gale et al., 1996 a., 

Bergemann et al., 1998, Imondi et al., 2000-, see above). 

In order to understand better the effects of the ephriii B3 mutation, E 11.5 and E13.5 spinal 

cords were also analysed. The differences between heterozygous and homozygous E 11.5 

ephrin B3 mutant embryos were slight (figure 4.4) and statistically insignificant (see tl 

appendix 4. A. 2). Thus the pre-commissural development of dorsal spinal commissural 

axons did not appear to have been affected by the ephrin B3 mutation. At E 13.5, the dorsal 

spinal projections of homozygote and heterozygote embryos were also statistically 

indistinguishable (see figure 4.5 and appendix 4. A. 3). This is suggestive of there being a 

repair of the mutant phenotype between E 12.5 and E 13.5. Such a recovery may reflect the 

onset of expression of other repulsive factors by the floor plate. Indeed, the floor plate 
begins to express ephrin B2 at around E 12, and its expression of ephrin BI begins at E 13 

(Imondi et al., 2000; summarised in figure 4.6). Purified versions of either protein can bind 

to, and induce the collapse of, dorsal cornmissural axons in vitro (Imondi et al., 2000). 

Therefore it is conceivable that the subsequent floor plate expression of ephrins 131 and B2 

provides sufficient repulsion for stalled commissural axons to proceed (figure 4.7). Such a 

redundancy between Ephs and ephrins has already been proposed to explain the recovery of 
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Figure 4.6 Expression B-ephrin mRNA in the developing mouse spinal cord, as reported 
by Imondi et al., (2000). 
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Figure 4.7 Schematic representation of what may be happening at the floor plate of ephrin B3 
heterozygous and homozygous mutant embryos. Axons are shown crossing the floor plate as in open 
book preparations. At E10.5, most axons have yet to reach the floor plate. At El 1.5, axons have entered 
the floor plate. The hetcrozygote floor plate begins to express ephrin B3, but this does not have an effect 
upon axon trajectory as no Eph B receptors are expressed at the axon surface. At E12-5, the EphB I 
receptor is expressed (dark orange). Axons are repelled out of the floor plate by ephrin B3 in hcterozygous 
embryos, but there is as yet no ephrin ligand for the receptor in the homozygote floor plate. By E13.5, the 
ephrin 133 mutant floor plate is also repulsive, as other B-cphrins arc expressed. These provide 
sufficient repulsion to force the commissural axons to extend out of the midlinc. Using Imondi et al., 
2000. 



inner ear efferent axons, which stall within the floor plate of EphB2 homozygous mutant 

mouse embryos (Cowan et al., 2000, Stoeckli, 2000). Recovery could also/alternatively 
involve other floor plate inhibitory factors. For example, Slit-2 and Sema 3B have also 
been shown to be repulsive for dorsal commissural axons (Zou et al., 2000) and to be 

expressed by the mid-gestation floor plate (Brose et al., 1999; Zou et al., 2000). In both 

cases, commissural axons only become responsive to the cues once they have reached the 
floor plate (Zou et al., 2000), so it is possible that the recovery of ephrill B3 homozygous 

mutant dorsal commissural axons reflects acquisition of sensitivity to Slit-2 and/or Sema 

3B. It would be interesting to trace the dorsal spinal axons of embryos mutant both for 

ephritz B3 and genes such as ephrin B I, ephrin B2, slit-2 or seina 3B. In addition, it would 
be of interest to compare ephrin B3 mutant embryos directly with their wild type 
littermates. The previous chapter describes the dorsal spinal projections of 129/SvEv and 
C57BI/6 wild type embryos, but also demonstrates that the nature of these projections can 

vary significantly between different wild type strains. Wild type embryos of the same 

mixed genetic background that was used for the ephriii B3 mutation were not studied. Thus 

it remains possible that embryos heterozygous for the ephrin B3 mutation are not a true 

reflection of the wild type state, and that the effects of the ephrin B3 mutation are in fact 

more pronounced than presented here. 

In contrast to what may have been expected (Imondi et al., 2000), and also in contrast to the 

corticospinal tract phenotype (Yokoyama et al., 200 1), the dorsal spinal commissural axons 

of ephrin B3 homozygous embryos were never seen to re-decussate. This may be because 

the factors mentioned above, or as yet unidentified factors, can prevent spinal commissural 

axons from re-crossing the midline in the absence of ephrin B3. Again, it would be 

interesting to determine whether the same phenotype is observed in embryos with 

mutations in other genes in addition tolephrin B3. 

There were notable similarities and differences between the ephrin B3 and LJITAG' double 

mutant embryos. In both cases, mutant spinal preparations showed a stall of axons at 
E 12.5, implicating the molecules in the process of floor plate exit. At E 13.5, ephrin B3 
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homozygous mutant dorsal spinal axons were indistinguishable from those of 
heterozygotes, whereas a large proportion of LYTAGI double mutant dorsal spinal axons 

were still in or at the floor plate. It is thus theoretically possible that Ll/TAG-l and ephrin 
B3 form part of a single mechanism: that Ll and TAG-1 normally allow axons to respond 
to ephrin B3 at E12.5, and to other factors at E13.5. Indeed, there is evidence that LI can 
interact with at least one known receptor for ephrin B3, LI seeming to be phosphorylated 
by EphB2 in vitro (Zisch et al., 1997). Further experiments would be needed to determine 

whether LI and TAG- 1 are in fact involved in the ability to respond to ephrin B 3. For 

example, in vitro culture of wild type or LHTAG' double mutant axons with ephrin B3- 

expressing cells would reveal the effect of the double mutation with respect to this ephrin. 

In summary, the results presented show that ephrin B3 is involved in the development of 

vertebrate dorsal spinal commissural projections. At E 12.5, it seems that extension of the 

axons is delayed in or at the floor plate of ephrin B3 homozygous mutant embryos. This 

possibly reflects the absence of an inhibitory factor that normally forces the axons to 

continue. There seems to be a complete recovery of this phenotype by E 13.5, when the 

floor plate begins to express other B-ephrin ligands. 
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4.4 Conclusions 

1. At E12.5, ephrin B3 is involved in the ability of mouse dorsal spinal 

commissural axons to extend out of the floor plate and into the contra-lateral 

spinal cord. 

2. At E13.5, other factors can cause dorsal commissural axons to extend out of the 

floor plate. 
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4.5 Appendices 

Appendix 4. A: Statistical analyses of the differences between ephrin B3 heterozygous and 
homozygous mutant embryos. 

4. A. 1: Comparison of E 12.5 embryos heterozygous or homozygous for the ephriii B3 
mutation 

4. A. 2: Comparison of El 1.5 embryos heterozygous or homozygous for the ephrin B3 
mutation 

4. A. 3: Comparison of E 13.5 embryos heterozygous or homozygous for the ephrin B3 
mutation 
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5 Further Analysis of the Developing Nervous 

System in TAG-] Mutant Mice 

Please note that throughout this chapter, the term "TAG-] null mutant" refers to mice or 

embryos carrying either one (heterozygotes) or two (homozygotes) copies of the TAG- I 

allele (shown in figure 1.7). 
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5.1 Abstract 

The TAG-I null allele includes a tau-lacZ reporter construct, which is positioned 

downstream of TAG-I gene regulatory sequences. The distribution of B-galactosidase 

activity in TAG-I null embryos was found to be very similar to that previously described 

for TAG- I immunoreactivity. Thus the TAG-I null allele is a useful tool for studying 

structures that normally express TAG-1. Most of these structures appeared to develop 

normally in TAG-] null homozygotes. These included the facial (VIIth cranial) and limb 

nerves, even though TAG- I has previously been implicated in their development. 

However, it seemed that the TAG4 null mutation did have an adverse effect upon 
development of the habenulointerpeduncular tract and hypoglossal (XIIth cranial) nerve. 

The TAG-I null allele was also used to study the effects of other mutations upon structures 

that normally express TAG-1. Preliminary results suggest that TAG- I -expressing 
structures were largely unaffected by either the LI single mutation or the L11TAG' double 

mutation. 
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5.2 Introduction 

Previous studies have indicated that TAG-1 is not only expressed by developing spinal 

neurons. Yamamoto et al. (1986) described expression of an antigen now known to be 

TAG- I in many regions of the mouse nervous system between E 10 and birth. They 

reported immunoreactivity within the cranial nerves, developing cerebellum, 

mesencephalon, optic and olfactory nerves, habenulointerpeduncular tract (HIPT; also 
known as thefasciculus retroflexus), anterior commissure and cerebral cortices. Wolfer et 

al. (1994) recorded TAG- I -like immunoreactivity within many of the same structures 
between ElO and E17, and between PO and P15. In addition the latter study reported 

expression by the embryonic dorsal root ganglia, sympathetic nervous system and 

rhombencephalon. Yoshihara et al. (1995) described in detail the expression of TAG- I 

mRNA by several regions of the adult rat brain. It is thus conceivable that TAG- I might be 

involved in the development of neurons other than those of the dorsal spinal cord. 

TAG- I has been suggested to have roles in the development of other neurons. Those of the 

facial (VIIth cranial) nerve specifically express TAG- I during a period of caudal migration 
(Garel et al., 2000). Mutations in the genes encoding the ebf-I or krox-20 transcription 
factors cause premature cessation of both this migration and facial nerve neuron TAG-1 

expression (Garel et al., 2000; Cordes, 200 1). The chicken homologue of TAG- 1, axonin- 
1, seems to mediate the repulsion of chicken dorsal root ganglion (DRG) axons by the 

notochord (Masuda et al., 2000). Axonin-1 has also been suggested to mediate the 
fasciculation of sensory axons along motor axons in the developing chick hind limb (Xue 

and Honig, 1999). This appears to be necessary if sensory axons are to reach their target 

muscles (Landmesser and Honig, 1986; Honig et al., 1998). In addition, antibodies that 

perturb the function of the related molecule NgCAM seem to cause incorrect sorting of 

axons into nerves in chick hind-limb plexus regions (Honig and Rutishauser, 1996). 

Another region in which TAG-1 might function is the postnatal cerebellum. Cerebellar 

granule cells express the protein particularly strongly (Furley et al., 1990; Wolfer et al., 
1994; Yoshihara et al., 1995; Wolfer et al., 1998), at stages when much cerebellar 
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development occurs (Altman and Bayer, 1997), and when few other structures maintain 
strong expression of TAG- I (Yoshihara et al., 1995). 

Thus it is conceivable that TAG- I could influence development of the facial nerve, limb 

nerves, cerebellum, and/ or the many other regions of the nervous system that express the 

protein. It was therefore decided to conduct a general survey of the roles of TAG- I in 

neural development. Its expression was determined using a reporter gene, and expressing 
structures were examined for gross anatomical defects in its absence. 

As the TAG-] null mutation was produced by partial replacement of the gene by a tau-lacZ 

construct, TAG4 null mutant mice should express a tau-B-galactosidase protein in all cells 
that would normally express TAG- I (Callahan and Thomas, 1994; Mombaerts et al., 1996; 

AJ. W. Furley, personal communication). B-galactosidase activity can be detected by 

treatment with X-gal, which is converted to a blue stain in all cells that contain the enzyme. 
As tau is a protein that is transported throughout axons, the tau-B-galactosidase fusion 

proteins is similarly transported, and treatment with X-gal allows axons to be traced 

(Callahan and Thomas, 1994; Mombaerts et al., 1996). In this way, structures that would 

normally have expressed TAG- I could be stained and compared in animals that had either 

one or two copies of the mutant TAG-1 allele. This allowed animals that did have wild type 
TAG- I protein to be compared with those that did not. 

Whole embryos were examined from the age of E10.5, when TAG-I protein is first 

expressed at appreciable levels (Yamamoto et al., 1986), to the age of E 13.5, after which 
time the embryonic epidermis prevents effective staining of whole embryos (Whiting et al., 
1991). At later stages, isolated brains were stained for 6-galactosidase activity. Brains 

were taken from mice aged E 16.5, P2 and P 15, as these ages represent late embryonic, 

neonatal and more advanced post-natal development respectively. These are also ages for 

which TAG- I immunoreactivity has been described previously (Wolfer et al., 1994), 

allowing the reliability of 13-galactosidase reporter protein expression to be verified. At all 

of the ages studied, heterozygote TAG-] null embryos /brains were compared with those of 
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homozygotes, in order to determine whether the absence of TAG- I protein had affected 

neural development. 

The TAG-1 null allele was also used to study TAG-1 expressing structures in other mutant 

embryos. The effects of the Ll mutation were investigated by comparing otherwise wild 

type TAG-] null heterozygous embryos with those that were also hemizygous for the Ll 

mutation. In addition, TAG-] null heterozygous "control" embryos were compared with 

those hernizygous for the Ll mutation and also homozygous for TAG-] mutations, in order 
to investigate the effects of simultaneous absences of both full-length TAG-1 and Ll 

proteins. 
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5.3 Results 

5.3.1 Embryonic development of TAG-1 null mutant mice 

5.3.1.1 EIO. 5 embryos 

ElO. 5 embryos, the youngest studied here, showed staining of the nervous system at all 

levels from the rhombencephalon caudally (figure 5.1; see table 5.1 for summary, and 

appendix 5. A for an alphabetical list of the abbreviations used). Spinal staining was 

restricted to the ventral horn and ventral roots. This is in accordance with previous work 
(Yamamoto et al., 1986; Dodd et al. 1988; Vaughn et al., 1992; Wolfer et al., 1994). The 

most rostral spinal cord also had staining in the dorsal horn and dorsal root ganglia, both of 

which normally begin to express TAG- I between E 10 and EII (Yamamoto et al., 1986; 

Vaughn et al., 1992; Wolfer el al., 1994). Within the rhombencephalon, the facial and 
hypoglossal nerve nuclei were stained. Short projections of these nerves were often also 

labelled, as was the trigeminal (Vth cranial nerve) ganglion (figure 5.1). Again, these are 

structures that have been reported to express TAG- I from between E 10 and EII (Wolfer et 

al., 1994). The oculomotor nerve did not appear to be labelled in embryos of this age, 

which is in contrast to one report of TAG- I protein expression (Wolfer et al., 1994), but in 

agreement with another (Yamamoto et al., 1986). 

The staining of homozygous embryos was usually stronger than that of heterozygotes. This 

was expected, as homozygotes possess two copies of the tau-lacZ gene, and so express 

more of the tau-B-galactosidase protein. The stained structures did not appear to differ 

between heterozygous (n=8) and homozygous (n=28) embryos at this age (figure5.1). The 

lesser extension of hypoglossal nerve rootlets of the homozygous embryo shown in figure 

5.1 can be attributed to normal differences in the extent to which littermates had developed 

(Kaufman, 1992; data not shown). 
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5.3.1.2 E 11.5 embryos 

At El 1.5, staining was more extensive than at 1310.5, in accordance with 

immunohistochemical studies of TAG- I expression (Yamamoto et al., 1986; Wolfer et al., 

1994; appendix 5.13). As shown in figure 5.2, both dorsal and ventral spinal cord was 

found to stain strongly, at all rostro-caudal levels. This reflects the fact that cells within the 

ventral and dorsal horns and dorsal root ganglia all normally express TAG- I protein at this 

age (Yamamoto et al., 1986; Wolfer et al., 1994). Spinal nerves, which are formed from 

the extending ventral and dorsal roots (figure 5.2), were labelled at all rostro-caudal levels. 

Within the brain, the entire rhombencephalon was stained, and, depending upon the precise 

age of the embryo, certain cranial nerves could be identified. These included the trigerninal 

ganglion and its ophthalmic, maxillary and mandibular divisions, and the facial nucleus and 

nerve. The glossopharyngeal, vagal (IXth and Xth cranial) and hypoglossal nerves were 
frequently also stained. In older embryos, the hypoglossal rootlets had often converged to 

form a single nerve, which extended caudally away from the hindbrain. In some El 1.5 

embryos, this nerve had begun to turn and extend back towards the future tongue region. 

The trigeminal, facial, glossopharyngeal, vagal and hypoglossal nerves have all previously 
been reported to express TAG-1 at El I (Yamamoto et al., 1986; Wolfer et al., 1994). The 

only apparent discrepancy between the present staining and a previous 
immunohistochernical study (Yamamoto et al., 1986) is that the trochlear (IVth cranial) 

nerve did not appear to be labelled. This may be because the El 1.5 nerve was too 

immature to contain sufficient B-galactosidase for it to be visible at low magnification. The 

accessory (XIth cranial) nerve, which has been reported to express TAG- I at this age 
(Wolfer et al., 1994), was not identified. This is presumably because it could not be 

distinguished from the strongly stained hindbrain and vagus, along which it extends (e. g. 

appendices 5.13 and 5.1)). 

The more developmentally advanced embryos within El 1.5 litters also had staining within 
the ventral mesencephalon, or tegmenturn. This area included the oculornotor (IIIrd 

cranial) nerve and interpeduncular nuclei. The oculomotor nerve was commonly seen 
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extending towards the eye. This nerve was most often labelled in homozygote embryos, 

presumably as their additional tau-B-galactosidase protein means that such fine structures 

are more readily visible. The oculomotor nerve is known to express TAG- I at this age 
(Yamamoto et at., 1986), although whether or not the E 11.5 interpeduncular area expresses 
TAG- I does not seem to have been examined previously. More dorsally, the superior 

colliculus was often labelled, in agreement with reports that its expression of TAG- I begins 

between El I and E12 (Yamamoto et al., 1986; Wolfer et al., 1994). More developmentally 

advanced El 1.5 embryos also showed staining of what appeared to be the hypothalamus 

and the olfactory epithelium, both of which are TAG- I immunoreactive from EII onwards 
(Wolfer et al., 1994). 

The pattern of staining was virtually identical in heterozygous (n=32) and homozygous 

El 1.5 embryos (n=32; figure 5.2). This included the staining of the facial nerve nucleus, 

the caudal migration of which is known to specifically coincide with its expression of 
TAG- I (Garel et al., 2000; see figure 5.3). The extension of DRG axons away from the 

notochord also appeared to be the same in homozygous and heterozygous embryos (figure 

5.2 E and F). However, development of the hypoglossal nerve may have been affected by 

the TAG-] null mutation. This nerve did not always turn back towards the tongue region, 

and sometimes failed to extend beyond the point of rootlet convergence. As will be 

discussed more fully in chapter 6, such apparently incomplete development was seen more 
frequently in homozygotes than heterozygotes. 

5.3.1.3 E12.5 embryos 

As shown in figure 5.4, the pattern of staining at E12.5 was similar to that at El 1.5. Spinal 

nerves were seen to have extended further, and staining of both ventral and dorsal rami, and 
their branches, was evident in transverse section (figure 5.4 E and F, and appendix 5. Q. 
Identifiable branches included medial and lateral branches of dorsal rami, and the 

sympathetic white rami communicantes, lateral cutaneous branches, muscular branches, 
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Figure 5.4 Expression of tau-6-galactosidase protein in E12.5 mouse embryos with the TAG-1 null 
mutation. A-B: whole embryos; C-D: head and neck regions-, E-F: transverse sections through E 12.5 
embryos at the thoracic level. In each case, heterozygous embryos are on the left, hornozygous embryos 
on the right. For abbreviations, see table 5.1 or appendix 5. A. White arrows in A and B indicate the 
direction from which the photographs of figure 5.5 were taken. Arrowheads in A and B point to regions 
of non-neuronal expression within the developing mandible and limbs. Note that the clearing procedure 
(see methods) means that staining on both sides of the embryo can be seen at once. Transverse sections 
from other rostro-caudal levels are shown in appendix 5. C. 
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and intercostal/subcostal branches of ventral rami. In addition, spinal nerves were often 

seen to extend into the tail, forming the cauda equina. 

The entire rhombencephalon, including the developing cerebellum and pons, was strongly 

stained. The hypoglossal, vagal, facial, trigerninal and oculomotor nerves were stained in 

all embryos, as expected from published descriptions of TAG- I expression (Yamamoto et 

al., 1986; Wolfer et al., 1994). As will be discussed in the following chapter, the nature of 
the hypoglossal nerve varied considerably, and apparent truncation and/or misrouting 

occurred more often in homozygotes. Other cranial nerves were stained relatively 

consistently: for example, the vagus was always labelled as far as the lower 

thorax/abdomen (figure 5.4 E and F, and appendix 5. C), and the mandibular and maxillary 
branches of the trigeminal nerve were seen to extend into their respective target areas. 

Within the midbrain, the tegmenturn, including oculomotor and interpeduncular nuclei, 

contained 8-galactosidase activity. The oculomotor nerve was still stained, and the 

trochlear nerve was usually also labelled, presumably as it began to accumulate sufficient 

B-galactosidase. The superior colliculus was stained in all cases. The inferior colliculus 

was usually also labelled, although this region seemed to contain less staining than the 

superior colliculus (figure 5.4 C and D). This observation is in accordance with reports that 

the superior colliculus is more TAG-1 immunoreactive than the inferior colliculus at this 

age (Wolfer et al., 1994). A band of staining connecting the mesencephalon and 
diencephalon might correspond to the mammilothalamic tract, which has been reported to 

express TAG- I protein at E 12 (Wolfer et al., 1994). Dorsal to this were radially projecting 

axons that could constitute the stria medullaris, a tract that covers the surface of the 

thalamus and which is known to begin to express TAG- I between E 12 and E 13 (Wolfer et 

al., 1994). In accordance with reported TAG-1 expression, the lateral hypothalamus was 

stained (Wolfer et al., 1994). So too was an area just below it, which may correspond to 

part of the forming pituitary gland (figure 5.4 C and D). 
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Punctate staining was observed across the cerebral cortices, in agreement with reports that 

cortical TAG-1 expression begins at E12 to E13 (Wolfer et al., 1994). The olfactory 

epithelium was still labelled, again in accordance with previous findings (Wolfer et al., 

1994). In addition, staining was observed within the mandibular process (arrowed in figure 

5.4 A and B). This staining could not be attributed to the mandibular division of the 

trigerninal nerve, and may have been in Meckel's cartilage or a developing salivary gland. 
Similar mesenchymal staining was seen within the limbs (arrowed in figure 5.4 A and B), 

and again this could correspond to cartilage. Neither limb nor mandibular mesenchyme has 

previously been reported to express TAG-1. 

There were no obvious differences between whole homozygous (n=22) and heterozygous 

(n=65) embryos at E12.5 (figure 5.4). This was also the case when transverse sections 

were compared (figure 5.4 E and F; appendix 5. Q. The extension of DRG axons away 
from the notochord (figure 5.4 E and F), and the migration of the facial nerve nucleus 

(figure 5.5), both appeared to be unaffected by the TAG-] null mutation. The possible 
disruption of hypoglossal nerve development will be discussed in chapter 6. 

5.3.1.4 E 13.5 embryos 

At E13.5, most of the nervous system appeared to express tau-8-galactosidase (figure 5.6). 

As would be predicted from descriptions of TAG- I expression (Yamamoto et al., 1986; 

Wolfer et al., 1994), the dorsal spinal cord stained strongly. So too did the dorsal root 

ganglia, making it difficult to determine whether the ventral spinal cord was also still 
labelled in the whole embryos. Spinal nerves, including both dorsal and ventral rami, were 

still strongly stained, and the cauda equina could be identified in all embryos. At limb 

levels, segmental nerves could be seen to have formed plexuses, and stained nerves had 

begun to extend from these into the limbs (figure 5.6 E and F). 

The rhombencephalon was still stained. In caudal regions, which correspond to the 

medulla oblongata, the intensity of stain appeared to be lower than at E12.5. However, the 
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Figure 5.5 Comparison of the facial nerve nucleus of E12.5 mouse embryos either 
heterozygous or homozygous for the TAG-I null mutation. E12.5 mouse embryo 
hind-brains are shown as viewed from above, as indicated in figure 5.4. 
A: The mouse facial nerve nucleus at E12.5, (after Garel elat, 2000). Oncein 

rhombomere 6 (R6), the facial nerve cell bodies migrate laterally. This appears to occur 
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Figure 5.6 Expression of tau-B-galactosidase protein in E13.5 mouse embryos with the TAG-I 
null mutation. Heterozygous embryos are on the left, and homozygous embryos on the right, in each 
case. Arrowheads indicate patches of non-neuronal B-gallactosidase activity in the jaw and limbs. The 
patches are fainter in the heterozygous embryo as they contain less 13-galactosidase protcin. For 
abbreviations, see table 5.1 or appendix -5. A. 
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future cerebellar region was strongly labelled, as expected from previous reports of TAG- I 

immunoreactivity (Yamamoto et al., 1986; Wolfer et al., 1994). The hypoglossal nerve 

was not always evident, possibly reflecting the fact that the expression of TAG- I by 

hypoglossal axons has been reported to cease (Yamamoto et al., 1986), or at least lessen 

(Wolfer et al., 1994) at this age. The vestibulocochlear (VIIIth cranial), facial and 

trigeminal nerves were labelled, and the maxillary nerve could be seen to branch profusely 

over the future whisker field (figure 5.6 C and D). 

All of the visible mesencephalon was strongly stained, reflecting the fact that both colliculi 

express TAG- I at this time (Wolfer et al., 1994). The oculomotor nerve could be seen 

extending towards the eye, as could the trochlear nerve (figure 5.6 C and D). Structures 

expressing B-galactosidase within the diencephalon could not be identified, due to intense 

labelling of the surrounding cerebral cortices. Similarly, the precise expression pattern of 
deep telencephalic structures could not be determined, as embryos were not sectioned. 
Staining could be seen within the olfactory epithelium and retina, as expected from their 

expression of TAG- I protein at this age (Wolfer et al., 1994). As at E 12.5, the E 13.5 limbs 

and mandibular process contained patches of staining that appeared to be mesenchymal 

rather than neuronal (figure 5.6, arrowed). 

There did not appear to be any differences between the staining of heterozygote (n=9) and 
homozygote (n=5) embryos. In particular, the developing forelimbs had almost 
indistinguishable patterns of nerve staining (compare figure 5.6 E and F), making it seem 

unlikely that TAG- I is essential for the development of mouse limb innervation prior to 

E 13.5. 

5.3.1.5 E16.5 brains 

To allow complete penetration by X-gal (Whiting et al., 199 1), and to better observe the 

resulting staining, E16.5 brains were dissected out and stained in isolation. As can be seen 
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in figure 5.7, a number of different regions of the E16.5 brain contained B-galactosidase 

activity. 

Within the hindbrain, several cranial nerve nuclei were stained. These included what 

appeared to correspond to the hypoglossal, vestibular, cochlear, facial and trigerninal nerve 

nuclei (figure 5.7). These nuclei have all been reported to express TAG- I mRNA in the 

adult rat brain (Yoshihara et al., 1995). While the respective cranial nerve axons all 

express TAG- I protein at around this age (Yamamoto et al., 1986; Wolfer et al., 1994), the 

expression of TAG- I by embryonic cranial nerve nuclei has not been examined previously. 

The inferior olive and superior olive /trapezoid body were also found to contain tau-B- 

galactosidase at E16.5. As was the case for that of the cranial nerve nuclei, this staining 

could not be compared with previous reports of TAG- I immunoreactivity. The inferior 

olive is known to express TAG- I mRNA in the adult rodent brain (Yamamoto et al., 1986), 

but its embryonic of TAG- I expression has not been recorded; expression of TAG- I by the 

superior olive does not seem to have been examined at any age. The grey nucleus of the 

pons was strongly stained, and it appeared that other pontine nuclei might also have been 

expressing tau-B-galactosidase (figure 5.7). In addition it seems likely that part of the 

staining of this region included the cerebral peduncle, which is known to express TAG- I 

protein at E16.5 (Wolfer et al., 1994). The forming cerebellum appeared to express B- 

galactosidase posteriorly and superficially, but otherwise showed very little staining, as 

expected from the finding that cerebellar expression of TAG- I is relatively low at this time 

(Yamamoto et al., 1986; Wolfer et al., 1994). 

The superior and inferior colliculi of the midbrain were both stained, reflecting previous 

reports of their TAG- I immunoreactivity (Yamamoto et al., 1986; Wolfer et al., 1994). In 

the pre-tectal area, staining appeared to include that of the posterior commissure, which is 

known to express TAG- I at E16 (Wolfer et al., 1994). Ventrally, the tegmenturn contained 

staining that is likely to correspond to the cerebral peduncle and the interpeduncular 

nucleus. The red nucleus could also be identified. Although these two nuclei have not 
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Figure 5.7 Expression of the tau-0-galactosidase protein in the brains of E16.5 mouse embryos 
with the TAG-I mutant allele. Structures which stained for 13-galactosidase activity are labelled as 
indicated in table 5.1 and appendix 5-A. A-B: superior aspect. C-D: inferior aspect. E-F: view from 
the cut surface after sagittall bisection. G: A different TAG- I -/- brain, illustrating staining of the 
intact optic nerve, chiasm and tract, and also staining that may correspond to the proximal pituitary. 

174- 

ge 

TA G- I -/ 



previously been reported to express TAG- I protein at E 16.5, they do express TAG- I 

mRNA in the adult rodent brain (Yoshihara et al., 1995). 

The habenular nuclei of the thalamus were stained, as was the tract that connects the 

habenula to the interpeduncular nucleus, the habenulointerpeduncular tract (HIPT, or 
jasciculus retroflexus). The habenular and interpeduncular nuclei and the HIPT have 

previously been reported to express high levels of TAG-1 protein (Yamamoto et al., 1986; 
Wolfer et al., 1994; Yoshihara et al., 1995). In addition, there was staining within a 

structure that might either be the thalamic reticular nucleus or reuniens nucleus. Both of 
these nuclei have been reported to express TAG- I mRNA in the adult rodent brain 

(Yoshihara et al., 1995). Staining was also observed in what appeared to be the pre-optic 
region of the hypothalamus, although this area was not listed amongst those that expressed 
TAG- I protein at E 16 or E 17 (Wolfer et al., 1994). Posterior to the optic chiasm the 
hypothalamus appeared to be devoid of 13-galactosidase activity, apart from a small region 
that may have connected the hypothalamus to the pituitary gland before dissection. When 

not removed during brain dissection, the optic nerves, chiasm and tracts were strongly 

stained, in accordance with their intense expression of TAG- I protein at E 16.5 (figure 5.7 

G; Wolfer et al., 1994). 

Within the forebrain, the entire surface of the cerebral cortices was strongly labelled. So 

too was the corpus callosum, the commissure which links the two cerebral hemispheres and 

which is known to be TAG-1 immunoreactive from E16 onwards (Wolfer el al., 1994). 

The olfactory bulb, lateral olfactory tract and anterior olfactory nucleus were also stained, 

reflecting their expression of TAG-1 protein at this age (Yamamoto et al., 1986; Wolfer et 

al., 1994). There appeared to be staining of the medial septum and diagonal band, both of 

which have been reported to express TAG- I mRNA in the adult rodent brain (Yoshihara et 

al., 1995). Other components of the septum might also have been stained, although the 

extent and intensity of labelling in the septal area meant that it was difficult to identify 

individual structures with certainty. 
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There did not appear to be any gross differences between TAG-] null heterozygous (n=3) 

and homozygous (n=4) E16.5 brains. The red nucleus is evident in the heterozygote brain 

shown in figure 5.7 E, but not in the homozygote embryo shown in figure 5.7 F. However, 

this nucleus was identified in other homozygotes, and could not be identified in the two 

other heterozYgous brains. This indicates that the apparent absence this nucleus, or of 

staining within it, is not related to an absence of TAG-1 protein. Staining of more E16.5 

brains would be needed to confirm this. 

Another structure that could have been affected by the TAG-] null mutation is the HIPIT. 

This appeared to be less strongly stained in homozygous brains, which is contrary to the 

observation that two copies of the mutant allele lead to more intense staining. This 

apparent reduction in staining was common to all four of the E 16.5 TAG-] null homozygote 

brains examined. 

5.3.2 Post-natal neural development of TAG-] mutant brains 

5.3.2.1 P2 brains 

Figure 5.8 illustrates the pattern of 6-galactosidase activity in the brains of P2 mice that 

carried the TAG-] null mutation. Within the medulla oblongata, the superior olivary and 
facial nerve nuclei were identified, although no other structures could be distinguished from 

the general staining throughout the rhombencephalon. The grey and anterior nuclei of the 

pons were labelled. A report of TAG- I immunoreactivity within the P2 cerebral peduncle 

(Wolfer et al., 1994) makes it seem likely that this tract also contributes to the staining of 

the anterior pontine area. While the P2 rhombencephalon has been reported to be TAG- I 

immunoreactive (Wolfer et al., 1994), hindbrain nuclei have not previously been 

considered individually, so it was not possible to compare their expression of tau-8- 

galactosidase with that of native TAG- I protein. 
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Figure 5.8 Expression of the tau-0-galactosidase protein in the brains of P2 mice with the TAG-l 
null mutant allele. A-B: superior aspect. C-D: inferior aspect. E-F: view from the cut surface, 
following the "redevelopment"of sagittally bisected brains. G-H: sagittally bisected cerebella, showing 
the intense staining of fissure 3 (B). Italicized Roman numerals indicate the developing cerebellar 
lobules. For abbreviations see table 5.1 or appendix 5. A. 
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Staining of the P2 cerebellum was in general accordance with reports of the expression of 

TAG- I protein (Yamamoto et al., 1986; Wolfer et al., 1994). Labelling appeared to be 

predominantly in the external granule cell layer, as is the case with TAG- I protein at this 

age (Wolfer et al., 1994). However, particularly high levels of tau-3-galactosidase activity 

were observed in the posterior cerebellum, a phenomenon that has not been reported for 

TAG- I protein or mRNA at any age. The most intense labelling was around fissure 3, or 
fissure secundum, which separates lobule VIII of the central lobe from lobule IX of the 

posterior lobe (Altman and Bayer, 1997). Such staining was observed in all of the P2 

brains examined (n=9), yet was not seen in cerebella that expressed lacZ under the control 

of the math-] promoter (data not shown). Thus it seems unlikely that the staining reflects a 

non-specific tendency of 13-galactosidase to accumulate within this fissure. 

Within the midbrain, the superior and inferior colliculi were stained. They were less 

intensely stained than at E16.5, reflecting their decreasing expression of TAG-1 protein 

(Wolfer et al., 1994). The pretecturn was strongly stained, as was the interpeduncular area. 
The red nucleus may have been stained, but it was difficult to distinguish this structure 
from anterior pontine nuclei and low level staining throughout the tegmentum. In the 

diencephalon, the habenular nuclei and HIPT stained strongly, reflecting their expression of 
high levels of TAG- I protein at P2, and their expression of TAG- I mRNA in the adult 

(Wolfer et al., 1994; Yoshihara et al., 1995). The rest of the thalamus showed only 

background levels of staining. The hypothalamus was also largely unlabeled, its only B- 

galactosidase activity being within the pre-optic area. The optic chiasm and optic tract 

were still stained, as expected from reports that their expression of TAG- I protein 

continues until at least P6 (Wolfer et al., 1994). 

The surface of the cerebral cortices was intensely stained, despite the previous finding that 

cortical expression of TAG- I protein is much reduced by this time (Wolfer et al., 1994). 

The corpus callosurn. and anterior commissure were both stained strongly, as expected from 

their continued robust expression of TAG- I protein (Wolfer et al., 1994). In addition, the 

hippocampal commissure was stained. The olfactory bulbs were labelled, as were the 
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anterior olfactory nuclei and lateral olfactory tracts, all of which express TAG- I protein at 

P2 (Wolfer et al., 1994). Septal nuclei were stained strongly, although the diagonal band of 

the septum was not as prominent as at E 16.5 (compare figures 5.7 C and D and 5.8 C and 
D). 

As shown in figure 5.8, there were no major differences between the brains of P2 

heterozygous and homozygous TAG-] null mutant mice (n=6 and n=3 respectively). 

5.3.2.2 P15 brains 

Figure 5.9 illustrates the expression of tau-B-galactosidase in P15 brains. At this age, much 

of the hindbrain stained for B-galactosidase activity. The inferior olivary, gracile/ cuneate, 
hypoglossal and pontine grey nuclei were all apparent. Although the rhombencephalon has 

been reported to be devoid of TAG- I immunoreactivity at this age (Wolfer et al., 1994), the 

adult hypoglossal nucleus and inferior olive have been reported to express TAG- I mRNA 

(Yoshihara et al., 1995). Other rhombencephalic nuclei could not be identified, as much of 

the region was stained (figure 5.9 G and H). It may be that this staining corresponded to B- 

galactosidase activity within raphe nuclei that lie along the sagittal midline of the hindbrain, 

although such nuclei have not previously been reported to express TAG-1. Within the 

cerebellum, the external granular layer was particularly strongly stained, reflecting its 

strong expression of both. TAG- I protein and mRNA (Furley et al., 1990; Wolfer et al., 
1994; Yoshihara et al., 1995). 

Within the P 15 mesencephalon, it was again difficult to identify individual structures on 

account of substantial "background" staining. Both the superior and inferior colliculi were 
labelled, with the inferior colliculus appearing to be more intensely stained (figure 5.9 A 

and B). Expression of TAG- I protein by these areas has previously been reported to cease 

soon after birth (Wolfer et al., 1994), although both colliculi have been reported to express 
TAG- I mRNA in the adult rodent (Yoshihara et al., 1995). A region of staining deep to the 
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Figure 5.9 Expression of the tau-B-galactosidase protein in the brains of P15 mice with the TAG-I 
null mutant allele. Structures which stained for B-galactosidase activity are labelled as indicated in the 
summary list overleaf A-B: superior aspect. C-D: inferior aspect. E-F: lateral aspect. G-H: medial 
aspect, after sagittal bisection. For abbreviations, see table 5.1 or appendix 5. A. 
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Figure 5.9 Expression of the tau-B-galactosidase protein in the brains of P15 mice with the 
TAG-I null mutant allele. I-J: sagittally bisected cerebella; italicized Roman numerals indicate 
the developing lobules. For abbreviations, see table 5.1 or appendix 5. A. 
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tecturn might correspond to peri-aqueductal (or central) grey matter, which is also known to 

express TAG- I mRNA in the adult rodent brain (Yoshihara et al., 1995). 

The habenular nucleus and HIPT were also stained. The nucleus is known to express TAG- 

I mRNA in the adult rodent (Yoshihara et al., 1995), although the tract is not thought to 

express TAG- I protein at P 15 (Wolfer et al., 1994). The optic chiasm and tract also 

contained B-galactosidase activity, the former having been reported to express TAG- I 

protein at this age (Wolfer et al., 1994). In addition, a region that appeared to correspond 
to the pre-optic hypothalamus was labelled. 

The telencephalon appeared to contain less B-galactosidase activity at P IS than it had at P2. 

All regions of the cerebral cortex showed diffuse staining, but intense staining was 

restricted to the retrosplenial cortex, and what appears to be the entorhinal cortex. The 

retrosplenial, or posterior cingulate, cortex is known to express TAG- I protein until P6 

(Wolfer et al., 1994), and to express TAG- I mRNA in the adult rodent (Yoshihara et al., 
1995). However, the entorhinal cortex appears not to express TAG- I mRNA in the adult 
(Yoshihara et al., 1995). The anterior and hippocampal commissures could be identified, 

reflecting expression of TAG-1 protein, at least by the former, at P15 (Wolfer et al., 1994). 

The olfactory bulb, the lateral olfactory tract and its nucleus, and the anterior olfactory 

nucleus all contained B-galactosidase activity, even though their surface expression of 
TAG- I protein ceases before P 15 (Wolfer et al., 1994). Expression of TAG- I mRNA by 

the adult olfactory bulb has been reported previously, although expression by the tract and 

nuclei were not mentioned (Yoshihara et al., 1995). The olfactory tubercle has also been 

reported to express TAG- I mRNA in the adult rat (Yoshihara et al., 1995), and this area 

was indeed found to be stained, although B-galactosidase activity appeared to be restricted 
to clusters of cells known as Islands of Cajella, rather than being throughout the tubercle. 
This was particularly evident in brains with two copies of the tau-lacZ reporter gene (figure 

5.9 D). What appears to be the medial septum was also stained. 
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There were no obvious differences between the brains from TAG4 null hetcrozygous and 
homozygous P15 mice (n=13 and n=8 respectively; figure 5.9). 

5.3.3 Use of the TAG-1 null allele to study other mutant embryos 

5.3.3.1 LI mutant embryos 

The TAG-] null allele was also used to investigate effects of the LI null mutation upon 

TAG- I -expressing structures. As shown above, embryos with only one TAG-] null allele 
differed little, if at all, from wild type embryos (compare figure 5.2 with appendix 5.13). 

Therefore the TAG4 null heterozygous genotype was used as a "background", and 

embryos that were otherwise wild type were compared with those that were also 

hemizygous for the LI mutation. 

As can be seen in figures 5.10 and 5.11, there were no obvious differences between whole- 

mount stained embryos at either El 1.5 or E12.5. The staining of LI hemizygous embryos 

(n=9 at E 11.5; n= I at E 12.5) was indistinguishable from that of embryos that carried only 

one copy of the TAG-] null allele (n=5 at El 1.5; n=4 at E12.5). Spinal nerves, the brachial 

plexus, and the oculomotor, trigeminal, facial, glossopharyngeal, vagal and hypoglossal 

nerves all appeared to be developing normally in the absence of Ll protein (for a more 
detailed analysis of the hypoglossal nerves of these embryos, see chapter 6). Staining of 

the mid-brain also appeared to be unaffected by the absence of Ll. These results are in 

agreement with those obtained by whole-mount immunohistochernistry (appendix 5.13). 

5.3.3.2 TAG-MI double mutant embryos 

TAG-] null heterozygote "control" embryos were also compared with those that were both 

hemizygous for the LI mutation and that carried two mutant TAG-] alleles (LPý TAGAI). 
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Figure5.10 Comparison of E11.5 LI+ and LI" mouse embryos using the tau-lacZ component 
of the TAG-I null mutation. Embryos either hemizygous or wild type for the Ll null mutation, and 
also heterozygous for the IAG-I null mutation, were stained for 13-galactosidase activity. The LI 

mutation does not obviously affect the development of TAG-I -expressing structures. A-B: whole 
embryos. C-D: head and neck regions. For abbreviations, see table 5.1 or appendix 5. A. 
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Such double mutant embryos caff ied one null allele and one TAG' allele for practical 

reasons, and so they did express some, truncated TAG- I proteins (for details, see methods). 

As illustrated in figure 5.12, there were no major differences between the whole-mount 

staining of such embryos at E 11.5 (n=9 double mutants embryos, n= II control embryos). 

However, the possibility of more subtle differences could not be ruled out. Despite both 

having only one lacZ-containing allele, the control embryo shown (figure 5.12 A and Q 

appeared to be more strongly stained than its double mutant sibling (figure 5.12 B and D). 

It also seems that the nerves of the pictured control embryo have extended further, adding 

to the impression that the development of the double mutant embryo might be slightly 

retarded. Too few of the embryos studied were littermates to be able to say whether this 

reflected an effect of the mutations, or was simply due to the normal variation between the 

precise developmental stages of siblings (Kaufman, 1992). 

In any case, the absence of both full-length TAG- 1 and LI proteins did not seem to cause 

major defects in the development of B-galactosidase expressing structures at EI1 . 5. 
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Figure5.11 Comparison of E12.5 LI+ and LI" mouse embryos using the t"u-IacZ component 
of the TAG-I null mutation. As at El 1.5, there are no obvious differences between the TAG-]- 
expressing structures of LI wild type and Ll hemizygous mutant embryos. A-B: whole embryos. 
C-D: head and neck regions. For abbreviations, see table 5.1 or appendix 5. A. 
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Figure 5.12 Comparison of Ell 1.5 Ll' , TAG-I ' and Ll", TAG-I "mouse embryos. Embryos 
carrying one copy of the 7A(; -I null allele express both wild type TAG- I protein and tau-B-galactosidase 
in structures that normally express TAG-1. Otherwise wild type embryos were compared with those that 
had no full length TAG-] or LI protein. Double embryos did not appear to differ from those heterozygous 
for the IAG-1 mutation only. A-B: whole embryos. C-D. head and neck regions. For abbreviations, 
see table 5.1 or appendix 5. A. 
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5.4 Discussion 

The inclusion of a tau-lacZ reporter gene construct within the TAG4 null mutation meant 

that expression of tau-B-galactosidase was under the control of TAG4 regulatory elements. 

This allowed the identification of structures in which TAG4 regulatory gene sequences are 

active in E 10.5, E 11.5, E 12.5 and E 13.5 mutant embryos, and in the brains of E 16.5, P2 

and P15 mutant mice. It also and permitted comparison of these structures in mice that did 

have wild type TAG- I protein with those in mice that did not. 

5.4.1 Expression of the tau-B-galactosidase reporter protein 

5.4.1.1 Agreement with reports of TAG- I immunoreactivity 

The observed expression of tau-8-galactosidase is summarised in table 5.1. As mentioned 

throughout section 5.3, the pattern of staining was largely in agreement with reports of the 

expression of TAG- I protein (e. g. Yamamoto et al., 1986; Wolfer et al., 1994; see also 

appendix 5. B). This indicates that expression of the reporter gene does indeed reflect that 

of TAG-1. 

5.4.1.2 The absence of staining in neurons previously reported to express TAG-1 protein 

In general, structures previously reported to express TAG- I protein were also found to 

contain B-galactosidase activity. However, at least one TAG-1-immunoreactive structure 
could not be identified. The trochlear (IVth cranial) nerve was not stained for B- 

galactosidase activity until E12.5, even though it has previously been reported to express 
TAG- I antigens at EII (Yamamoto et al., 1986). The reason for this discrepancy is not 
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Table 5.1 Summary of the expression of tau-0-galactosidase in mice 
with the TAG4 null mutation. The presence of B-galactosidase activity within 
a structure is indicated by red shading, the strength of the colour reflecting the intensity 
of the stain. White represents a lack of expression of B-galactosidase by a structure, or 
lack of the structure, at a particular age. The absence of a box signifies that the structure 
was either not tested, or could not be identified because of other staining in the vicinity. 
Abbreviations used within th chapter are given on the right, in addition to being listed 
alphabetically in appendix 5. A. 

Spinal Cord and associated structures 
ventral hom 
ventral roots 
dorsal hom 
dorsal root ganglia 
spinal nerve 

dorsal ramus 
ventral ramus 

cauda equina 

> 
vh 
vr 

13 N E 0 N N N dh 
13 0 0 m drg 
F-1 0 0 m s 
Q El 0 E d 
11 Fý m m v 0 El 13 0 ce 

0 0 0 9c 
nXII 

13 0 m 0 xii 
El 0 0 0 
El El 0 
El nVIII 

F-1 VIII 
0 m nVII 

D 0 0 m Vil 
13 0 0 0 m 0 V or nV 
El m 0 0 Vmn 
El 0 m m Vmx 
11 0 0 m Vo 
El El Ej m Vof 

1: 1 D 0 Von 
1-: 1 0 0 0 io 

El El so/tz 11 D P8 11 11 El N 0 0 pn 
El E 0 0 cp 
0 N cl [3 N cb 

Rhombencephalon and associated structures 
gracilelcuneate nuclei 
hypoglossal nucleus 
hypoglossal. nerve 
vagus 
glossopharyngeal nerve 
vestibulocochlear nuclei 
vestibulocochlear nerve 
facial nerve nucleus 
facial nerve 
trigeminal ganglion or nucleus 

mandibular nerve 
maxillary nerve 
ophthalmic nerve 

frontal nerve 
nasociliary nerve 

inferior olivary nucleus 
superior olivary nucleus/ trapezoid body 
grey nucleus of pons 
anterior pontine nuclei 
cerebral peduncle 
cerebellum 
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Mesencephalon and associated structures 
tegmenturn: interpeduncular nucleus 

oculornotor nucleus 
oculornotor nerve 

tecturn: superior colliculus 
inferior colliculus 

pretectum 
red nucleus 
trochlear nerve 
mammilothalamic tract? 

Diencephalon and associated structures 
habenular nucleus 
habenulointerpeduncular tract 
reticular or reuniens nucleus 
stria medullaris? 
lateral hypothalamus 
preoptic area 
pituitary? 

Telencephalon and associated structures 
cerebral cortex 
corpus callosurn 
anterior commissure 
posterior commissurc? 
hippocampal commissurc 
olfactory epithelium 
olfactory bulb 
anterior olfactory nucleus 
lateral olfactory tract 
nucleus of lateral olfactory tract 
islands of Cajella 
medial septum 
diagonal band 
cntorhinal cortex 
retrosplenial cortex 
retina 
optic nerve 
optic chiasm 
optic tract 

. 's, 
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clear. It could be that the El 1.5 nerve is too thin to be stained sufficiently strongly for it to 

be visible at low power magnification. 

As far as could be determined, all other reportedly TAG-1-immunoreactive structures 

expressed B-galactosidase. Structures previously reported to express TAG- I protein could 

not always be identified, but this often reflected widespread, intense staining of so many 

neurons within an area that it was difficult to distinguish individual nuclei or tracts. This 

was more of a problem here than in immunohistochernical studies, as B-galactosidase 

activity persists for longer than immunoreactivity (see below) and so can accumulate within 

an area. Other structures were not identified due to their deep location. For example, 
Ammon's horn of the hippocampus was found to be TAG- I immunoreactive in coronal 

sections of E 16 and P2 mouse brains (Wolfer et al., 1994), but it lies too far from the 

external or mid-sagittal surfaces to have been examined during the present study. Staining 

of sectioned TAG-] null mutant brains would allow a more thorough comparison of the 

TAG-I and 8-galactosidase expression patterns. 

5.4.1.3 Staining of neurons not previously reported to express TAG- I protein 

In general, it seems that almost all of the structures that normally express TAG- I protein 

were stained for B-galactosidase activity. Staining was also detected in some areas not 

previously reported to be TAG- I -immunoreactive. For instance, the present study offers 

the first report of TAG-] gene activity within the late embryonic, and early postnatal, 

superior and inferior olivary nuclei. It also constitutes the first description of TAG4 gene 

activity within the developing posterior commissure, red nucleus, pretecturn, neonatal 

septal nuclei or islands of Cajella. The present study found the superior and inferior 

colliculi to contain 8-galactosidase activity at P15 (figure 5.9), even though both have been 

reported to lose their TAG- I immunoreactivity before either E 17 (Yamamoto et al., 1986) 

or P4 (Wolfer et al., 1994), depending on which antibody was used. Similarly, the 

olfactory bulb, lateral olfactory tract and HIPT were found to stain for B-galactosidase 

activity at P15 (figure 5.9), even though they are thought to cease to express TAG-1 protein 
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before this age (Wolfer et al., 1994). There are a number of possible explanations for the 
labeling of these structures in the present, but not previous, studies. 

5.4.1.3.1 Structures might express the TAG-] gene, but not have been examined previously 

In many cases the neurons might not have actually been examined before. For example, the 

rhombencephalon is known to express TAG- I protein up until around birth (Yamamoto et 

al., 1986; Wolfer et al., 1994), but its immunoreactivity had not previously been attributed 

to individual nuclei. 

5.4.1.3.2 Structures might express the TAG4 gene, but not be TAG- I immunoreactive 

Stained neurons might normally express the TAG4 gene, but not express recognisable 
TAG-1 protein. The presence of TAG- I mRNA, but an absence of immunoreactivity, has 

previously been demonstrated for the adult rat brain and spinal cord (Furley et al., 1990). 

The olfactory bulb provides a more specific example: this structure ceases to be TAG- I 

immunoreactive at P9 (Wolfer et al., 1994), but its expression of TAG- I mRNA persists 
into adulthood (Yoshihara et al, 1995; Wolfer et al., 1998). There are several possible 

explanations for such differences. 

It could be that the TAG-1 gene is transcribed, but that the resulting mRNA is not 

translated. The mRNA might in fact be translated, but the resulting TAG- I protein might 

not be recognised by antibodies. For example, it could be held within an intracellular 

compartment that antibodies cannot penetrate. Indeed, surface expression of the related 
IgCAM Ll seems to be regulated by endocytosis, with significant amounts of the protein 
being found within clathrin-coated vesicles (Long et al., 2001). It might be that TAG-1 

protein is expressed at the cell surface, but at levels too low to be detected (Furley et al., 
1990), or that the protein is localised to a particular part of the cell membrane. Both 

axonin- I and LI seem to be targeted to growth cones (Vogt et al., 1996; Kamiguchi and 
Lemmon, 1998), so it is possible that some cells bodies do express the TAG4 gene, but that 

only distant parts of the cell are normally TAG-1-immunoreactive. Alternatively, cells 
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might normally express an isoform. of TAG-1 that is not recognised by the antibodies used. 

Differences in the exposure of particular epitopes have previously been suggested to 

explain differences between TAG- I immunohistochernical studies (Wolfer et al., 1994), 

and have been demonstrated for the related molecule NrCAM (Denburg et al., 1995). 

Another possibility is that the presence of B-galactosidase activity reflects production of 

TAG- I protein that is secreted, such that it is lost from tissue during antibody-labelling 

procedures. The latter is an attractive explanation, as TAG- I /axonin- I is predominantly a 

secreted protein in vivo (Ruegg et al, 1989; Furley et al., 1990). Indeed, dorsal spinal 

neurons continue to produce and secrete TAG- I in vitro at stages when the protein is no 

longer detected at the cell surface (Dodd et al., 1988; Karagogeos et al., 1991). It has been 

suggested that this might reflect cleavage of TAG- I from the cell surface by endogenous 

phospholipase enzymes (Furley et al., 1990; Karagogeos, et al., 199 1; Lierheimer et al., 

1997). Such cleavage could be physiologically important, as soluble axonin- I can affect 

the guidance and fasciculation of dorsal spinal axons when applied experimentally 

(Stoeckli and Landmesser, 1995; Stoeckli et al., 1997). There is at least one example of a 

secreted protein being used physiologically to control the defasciculation of axons at choice 

points (Fambrough and Goodman, 1996). 

5.4.1.3.3 8-galactosidase perdurance 

The B-galactosidase mRNA and protein is very stable, such that 8-galactosidase activity can 

persist, or "perdure", within cells. Thus reporter B-galactosidase can be present within cells 
for longer than the native product of the gene sequences that drive its expression (Echelard 

et al., 1994; Slack, 2001). Such perdurance of B-galactosidase has been suggested to 

account for the staining of neural crest cells in El 1.5 wnt-I-lacZ transgenic mice, even 

though the cells normally cease to express wnt- I mRNA at E9.5 (Echelard et al., 1994). 

Therefore perdurance could theoretically contribute to the staining of cells beyond the end 

of their TAG-1 immunoreactivity. However, it seems unlikely that perdurance accounts for 

all of this staining. The superior and inferior colliculi were found to contain B- 

galactosidase activity at least eleven days after their TAG- I immunoreactivity is thought to 
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cease (figure 5.9; Wolfer et al., 1994), but B-galactosidase has not been reported to persist 
for this long. In fact, hypoglossal nerve staining began to lessen at approximately the same 
time as has been reported for its TAG- I immunoreactivity (figure 5.6; Wolfer et al., 1994). 

This suggests that perdurance cannot explain all of the unexpectedly late staining that was 

observed. 

5.4.1.3.4 Non-physiological activity of the TAG-] gene 

It could be that the presence of B-galactosidase reflects non-physiological transcription of 
the TAG-1 null mutant allele. The TAG-1 null mutation could conceivably have deleted a 

part of the TAG-] gene that normally represses its activity in certain cells. Such a deletion 
has been suggested to explain some of the ectopic B-galactosidase activity in mice carrying 

a GnRH (gonadotrophin-releasing-hormone)-lacZ reporter transgene (Skynner et al., 1999). 

Chicken NgCAM and rat and human Ll are known to contain sequences that can mediate 

repression of expression in certain cells (Kallunki et al., 1995; Schoenherr et al., 1996). 

The Ll gene contains a neural-restrictive silencer element (NRSE), to which the neural- 

restrictive silencer factor (NRSF) can bind (Schoenherr et al., 1996). NRSE sequences 

mediated suppression of NgCAM expression by non-neuronal cells in vitro (Kallunki et al., 
1995), and Ll regulatory elements that lacked their NRSEs caused ectopic expression of 
1acZ in vivo (Kallunki et al., 1997,1998). The many regions displaying ectopic B- 

galactosidase activity included limb and mandibular mesenchyme and Rathke's pouch, part 

of the developing pituitary gland (Kallunki et al., 1997). Thus the NRSE of Ll seemed to 

prevent expression of Ll protein within areas that unexpectedly contained B-galactosidase 

activity in the present study (see below). This raises the possibility that TAG4 contains an 

NRSE that is deleted by the TAG4 null mutation. Indeed, the mutation incorporates the 

second intron of TAG4, and it is the second intron of the Ll gene that contains its NRSE 

(Kallunki et al., 1997). However, perturbation of the Ll NRSE led to considerably more 

widespread ectopic expression than was seen here, and TAG-] was not among the genes 
identified when a DNA database was searched for NRSE -containing sequences 
(Schoenherr et al., 1996). It could be that the TAG4 null mutation deleted an as yet 
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uncharacterised silencer element, such as that which mediates repression of TAG- I 

expression by thyroid hormone (Alvarez-Dolado et al., 2001). 

5.4.1.4 Staining of non-neural structures 

13-galactosidase activity was also observed within the E 12.5 and E 13.5 mandibular process 

and limbs, in a pattern that has not previously been described for TAG- I protein at any age. 

The possible explanations for this staining are the same as those discussed above for 

neuronal staining. However, the mandibular and limb staining is perhaps unlikely to reflect 

6-galactosidase perdurance, as there was no appreciable staining of the jaw, limbs or cells 

migrating towards these regions at 1310.5 or EI 1.5. The idea that TAG-I is normally 

transcribed in the developing jaw and limbs is supported by the observation that regulatory 

sequences of TAX4, the human TAG-] gene, can also drive 8-galactosidase expression 

within limb mesenchyme (A. M. Furley, personal communication; appendix 5.13). 

However, the presence of TAG- I mRNA would need to be demonstrated before the 

mandibular and/or limb TAG-] gene activity could be said to be a normal occurrence. 

If these regions do indeed express TAG-1, it would be interesting to compare the 

expression of TAG-1 -driven B-galactosidase, and/or TAG- I mRNA, with that of tissue 

specific markers. Expression of TAG- I by developing muscles would mean that the 

protein is present both on extending axons and their targets (Yamamoto et al., 1986; Dodd 

et al., 1988; Furley et al., 1990; Wolfer et al., 1994). Such expression is known to be 

important for axon guidance in Drosophila. The presence of the IgCAM fasciclin 11 on 
both motor axons and their target muscles is involved in the formation and stabilisation of 

neuromuscular synapses (Schuster et al., 1996; Davis et al., 1997). Fasciclin III-positive 

motor axons selectively innervate muscles that express fasciclin III, and form synapses with 

muscles that express the protein ectopically (Kose et al., 1997). Similarly, connectin- 

positive motor axons innervate muscles that express connectin, and ectopic expression of 

connectin causes the axons to form inappropriate synapses (Nose et al. 1992,1997). 

Therefore, if TAG- I is indeed expressed on the surface of developing muscle cells, it is 

conceivable that homophilic interactions with axonal TAG- I are important for correct 
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muscle innervation. Another possibility is that the TAG-1 gene is active within developing 

bone. Osteogenic cells have been shown to contain the mRNA of axon guidance proteins 

that include Sema 3A and netrins, and it has been suggested that such molecules control the 

extension of axons into forming bones (Togari et al, 2000). 

5.4.1.5 B-galactosidase activity in the developing cerebellum 

The expression of B-galactosidase also differed slightly from that expected within the 

cerebellum. As shown in figure 5.8 G and H, staining of P2 cerebella was particularly 

intense posteriorly, around fissure 3. Such localisation has not previously been described 

for TAG- I protein (Wolfer et al., 1994) or mRNA (Yoshihara et al., 1995) in the neonate 

cerebellum. However, the perdurance of B-galactosidase means that staining does not 

necessarily reflect transcription at the age of sampling (Echelard et al., 1994; Skynner et 

al., 1999), and it could be that the selective elevation of TAG-] expression did in fact occur 

at an earlier stage of development. Other molecules are known to have restricted patterns 

of expression within the cerebellum (summarised in appendix 5.17). For example, the PI 

mouse cerebellum displays Eph B receptor reactivity within the external granular layer 

(EGL) of lobules VII to X, while ephrin A reactivity is restricted to the EGL of lobule VII 

(Rogers et al., 1999). The TAG- I related protein F3 is selectively expressed within the 

molecular layer of posterior lobules between PI and P2 (Virgintino et al., 1999). In the 

adult rat brain, mRNA of the TAG- I -like molecule BIG-2 is found restricted to the 

Purkinje cells of lobules IX and X, and the granular cell layer of lobules I to VI (Yoshihara 

et al., 1995). The possibility that TAG-] is more strongly expressed by the posterior 

cerebellum is interesting, as the descent of TAG-] mutant granule cells from the external to 

the internal granular layer seems to be most severely compromised in such regions (K. 

Ohyama and R. Yoshida, personal communication). 

Whatever the reasons for the differences between 8-galactosidase activity and TAG- I 

immunoreactivity, the two patterns were largely in accordance. This allowed use of the 
TAG-] null mutant allele as a marker for cells that normally express TAG-1. The lack of 

obvious differences between TAG-] null heterozygotes and wild types (as in appendices 
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53 and 5.1), Yamamoto et al., 1986; Wolfer et al., 1994) meant that the heterozygous 

animals could be used as controls to study the effects of mutations upon cells that normally 

express TAG- 1. 

5.4.2 Effects of the TAG-1 and LI null mutations upon structures that normally 

express TAG-1 protein 

Embryos and brains homozygous for the TAG4 null mutation were compared with those 

that were heterozygous, in order to determine whether the absence of TAG- I protein had 

affected neural development. Aside from darker staining, which reflected the presence of 

two copies of the tau-lacZ allele, homozygous E 10.5, E 11.5, E 12.5 and E 13.5 embryos, and 
E 16.5, P2 and P 15 brains, were almost indistinguishable from their heterozygous 

equivalents. This finding was supported by results from TAG' mutant embryos and brains 

stained for math-]-driven B-galactosidase expression (appendix 5. G, and data not shown). 
An absence of TAG- I protein did not appear to have disrupted the gross development of 

segmental nerve projections, including those innervating the limbs. The majority of cranial 

nerves, and many regions of the brain proper, also appeared to be unaffected. Possible 

exceptions to this were the hypoglossal nerve, which will be discussed in the following 

chapter, and the habenulointerpeduncular tract. For a discussion of effects of the TAG-] 

null mutation upon intrinsic neurons of the spinal cord, see chapter 3. 

The TAG-I null allele was also used to study the effects of the LI mutation upon TAG-I 

expressing structures. At both El 1.5 and E12.5, there were no obvious differences between 

LI hemizygous and control embryos. Neither were there any apparent differences between 

El 1.5 control embryos and Ll hemizygotes that were also carrying two TAG4 mutant 
alleles. This implies that the lack of differences between El 1.5 TAG-] homozygous and 
heterozygous embryos cannot be attributed to compensation by LI, and vice versa. 

197 



5.4.2.1 Segmental nerves 

Spinal nerves appeared to be unaffected by an absence of TAG- I protein. This included the 

contribution by DRG axons, indicating that TAG-1 is not required for their guidance away 

from the notochord, as might have been expected (Masuda et al., 2000). As shown in 

figures 5.4 E and F and 5.6 E and F, the segmental nerves of homozygous E 12.5 and E 13.5 

embryos afforded the same branches as those of heterozygotes. This finding is supported 
by immunohistochernistry of wild type and TAG' embryos (data not shown). The spinal 

nerves of LI hemizygous embryos showed no differences from those of control embryos at 
El 1.5 or E12.5 (figures 5.10 and 5.11). The spinal nerves of TAG-MI double mutant 

embryos were also indistinguishable from those of control embryos at E 11.5 (figure 5.12). 

Extension of nerves from the brachial plexus into the forelimb also appeared to be 

unaffected in E13.5 TAG-1 null homozygous embryos (figure 5.6 E and F). This was 

perhaps unexpected, as axonin-1 has been implicated in correct innervation of the chicken 
hind limb (Landmesser and Honig, 1986; Honig et al., 1998; Xue and Honig, 1999), and 
TAG- I might be expressed within the developing mouse limbs (see figure 5.6 and above 
discussion). Even if TAG-1 protein is not expressed by limb mesenchyme, it is 

conceivable that axonal TAG-1 is important for sensitivity to proteins that are. Axon 

guidance genes expressed within the developing mouse limb include netrin-3 (Poschel, 

1999; Wang et al., 1999 b), slit-2, slit-3 (Yuan et al., 1999), robo-1 (Yuan et al., 1999; 

Vargesson et al., 200 1), robo-2 (Vargesson et al., 200 1), and sema 3A (Wright et al., 1995; 

Taniguchi et al., 1997). Related molecules are known to be important for guidance of 
Drosophila axons into musculature (e. g. Winberg et al., 1998), and mutations in Sema 3A 

can lead to inappropriate innervation of mouse limbs (Taniguchi et al., 1997; White and 
Behar, 2000). The response of corticospinal axons to Sema 3A depends upon axonal 

expression of the IgCAM Ll (Castellani et al., 2000), so it is conceivable that axonal TAG- 

I can affect the sensitivity of axons to guidance factors in the limbs. Indeed, axonin- I 

seems to be important in the repulsion of dorsal root ganglion axons by notochord (Masuda 

et al., 2000). The above results imply that TAG-1 is not essential for the guidance of limb 
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innervation before E12.5/EI3.5, but it would be interesting to compare the TAG-1 null 
heterozygous and homozygous mutant limbs at later stages of development. 

5.4.2.2 Cranial nerves 

The oculomotor, trochlear, trigeminal, facial, vagal and hypoglossal nerves were frequently 

apparent in stained TAG-] null embryos. Other than the hypoglossal nerve, which will be 

discussed in the following chapter, these nerves did not seem to be affected by a lack of 

TAG- I protein. The cranial nerves of LI single, and LPTAG-1 double, mutant embryos 

also appeared to develop normally (figures 5.10,5.11 and 5.12, and appendix 5. D). These 

results contrast with those from mice homozygous for a mutation in the neltropilin-2 gene, 
in which the oculornotor, trochlear, trigeminal and facial nerves are all substantially 
defasciculated (Chen et al., 2000; Giger et al., 2000). 

When cranial nerve nuclei and ganglia could be distinguished from other stained structures, 

these also appeared to be identical in TAG-] null homozygotes and heterozygotes. This 

observation included the facial nerve nucleus, even though a failure of this nucleus to 

migrate caudally is concurrent with loss of TAG- I expression in krox-20 or ebf-I mutant 

mice (Garel et al., 2000). The present result implies that TAG-I is either not involved in 

migration of facial nerve neurons, or that its function is redundant with those of other 

molecules. 

5.4.2.3 The brain 

There were few, if any, major differences between the developing brains of heterozygous 

and homozygous TAG-] null mice. Although it was often difficult to identify nuclei and 
tracts, particularly in the more strongly stained homozygous brains, the structures that could 
be distinguished generally appeared to be unaffected by a lack of TAG- I protein. 
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One possible exception was the habenulointerpeduncular tract (HIPT, orfasciculus 

retroflexus). At E16.5, this tract seemed to be less prominent in homozygous brains, 

despite the fact that homozygote brains generally showed more intense staining than those 

of heterozygotes. The HIPT appeared as a fainter structure in all of the E16.5 brains 

examined, in both halves of each bisected brain, ruling out the possibility that less 

prominent HIPTs were merely further away from the cut surface after uneven bisection. 

There are a number of possible explanations for the fainter appearance of the homozygous 

HIPT (illustrated in figure 5.13). The tract could have been displaced laterally, such that 

more tissue lay in between it and the medial surface of the brain (figure 5.13 B). There 

might be fewer axons produced, or fewer axons following the correct pathway (figure 5.13 

Q. For example, TAG-1 could be involved in the ability to respond to Netrin-1, which 

seems to attract habenular axons ventrally, or in the ability to respond to Sema 3F, which 

seems to prevent habenular axons from straying caudally (Funato et al., 2000; Giger et al., 

2000). The weaker staining could also reflect defasciculation (figure 5.13 D), as has been 

reported in mice homozygous for mutations in both EphB2 and EphB3 (Orioli et al., 1996), 

and those homozygous mutant for the Sema 3F receptor Neuropilin-2 (Chen et al., 2000). 

Axonin-I has indeed been implicated in the fasciculation of other populations of axons 

(Yamamoto et al., 1990; Stoeckli and Landmesser, 1995; Xue and Honig, 1999). Another 

possibility is that TAG- I protein normally has a positive effect upon activity of the TAG4 

gene in habenular neurons. Thus homozygous mutants could theoretically lack a factor that 

increases the activity of TAG4 promoter elements in the heterozygous tracts. 

A preliminary comparison of the tract proved inconclusive (figure 5.13 E and F). It is 

possible that the tract is narrower in the homozygous TAG4 null mutant brain than in the 

wild type: this could signify that fewer HIPT axons are produced, or that some HIPT axons 

are incorrectly guided. However, more work would be needed to determine whether this is 

in fact the case. Sectioning of more E16.5 brains, and examination of these at a higher 

magnification, would demonstrate whether the tract is indeed affected by the lack of TAG- 

1. Labelling of the tract with antibodies, or the application of a tracer such as DiI to the 
habenula, would assist in this verification. In addition, such labelling might show whether 
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Figure 5.13 The habenulointerpeduncular tract (HIPT) in embryos homozygous for the TAG-I 
null mutation. A: illustration to show the position of the wild type HIPT (red) in coronal sections of 
El 6.5 mouse brain. B-D-. possible reasons for the tract appearing to be less intensely stained in brains 
from embryos homozygous for the IAG-I null mutation. B: the tract could lie more laterally than in wild 
type brains, meaning that it is further from the cut surface, such that the view of it is obscured by more 
tissue, C: the tract could contain fewer axons, D: the tract could be defasciculated. 
E-F. - the HIPT is visible in unstained vibratome sections of E16.5 mouse brain. The sections show that 
the integrity of the tract is not severely affected by the IAG-I null mutation, and that the homozygous 
tracts are unlikely to appear fainter due to having a substantially more lateral position. The possibilities 
that the tract consists of fewer axons, is defasciculated, or is not affected at all, cannot be ruled out. 
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a proportion of HIPT axons were projecting incorrectly. If a defect was found, older brains 

could be analysed, to establish whether the problems persist. No defects were apparent in 

older bisected brains, but a previous study found the HIPT to appear normal in mid-sagittal 

section and yet actually be defasciculated (Orioli et al., 1996). The reasons for any 

potential defects could be investigated further in vitro, as described previously (Funato et 

al., 2000). For example, the possibility that TAG-1 is involved in the sensitivity to Sema 

3F could be tested by comparing the response of habenular axons to Sema 3F- expressing 

cells. The possibility that TAG- I enables HIPT axons to respond to Netrin- I could be 

tested in a similar way. 

Other than the habenulointerpeduncular tract, no regions of the developing mouse brain 

were obviously affected by the TAG-1 null mutation. This included the cerebellum, even 

though TAG- I is strongly expressed by cerebellar granule cells (Yamamoto et al., 1990; 

Wolfer et al., 1994; Wolfer et al., 1998), and the cerebellum is hypoplastic in Ll mutant 

mice (Fransen et al., 1998). The lack of gross differences between TAG4 null 
heterozygous and homozygous cerebella was in agreement with an independent analysis of 
TAG-1 null mice (Fukamauchi et al., 200 1), and the results from TAG' mice (see appendix 
5. G). Cerebella from mice homozygous for either TAG-] mutation were foliated normally 
(figures 5.8 G and H, 5.9 1 and J, and appendix 5. G), and the widths of TAG' homozygous 

mutant and wild-type cerebella were statistically identical (data not shown). However, 

these results do not rule out the possibility that TAG- I is important for cerebellar 
development. Cerebella from mice homozygous for a contactinIF3 mutation appear normal 

at a gross level, but have significant defects in their cellular organisation (Berglund et al., 
1999). Indeed, TAG4 mutant cerebella contain ectopic clusters of granule cells, which 
indicate that the descent of these cells from the external to internal granule cell layer is 

impaired (K. Ohyama and R. Yoshida, personal communication). The absence of gross 
defects might reflect functional redundancy of TAG- I with other factors. The IgCAMs LI 

and NrCAM have recently been shown to have redundant functions in cerebellar 
development (Sakurai et al., 2001), so it could be that these, or other, proteins can 

compensate for a lack of TAG- 1. 
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5.5 Conclusions 

1. The staining pattern afforded by X-gal treatment of TAG4 null tissue is in 

accordance with previous reports of TAG-I expression. 

In addition to verifying this, the present study has raised the possibility that the 

TAG-] gene is also transcribed within cells not previously reported to be TAG- I 

immunoreactive. Staining within the limbs and mandible might reflect previously 

undescribed TAG-] gene activity. Alternatively, this staining might be a result of 

the deletion of as yet uncharacterised repressor gene sequences. The significant 

agreement of the B-galactosidase and TAG- I expression patterns means that mice 
heterozygous for the TAG-] null mutation are a valuable tool for studying the 

effects of mutations upon structures that normally express TAG-L 

2, There are few major differences between mice that are homozygous or 

heterozygous for the TAG-] null mutation. 

As will be discussed in the following chapter, the hypoglossal nerve may be 

affected by the absence of TAG- I protein. The results presented above also raise 
the possibility that TAG- I is involved in development of the HIPT. No other 

anatomical aberrations were detected, implying that TAG- I is not essential for the 

gross development of many of the structures that normally express it. However, this 
does not mean that TAG- I is not involved in the development of apparently 

unaffected structures. As in the cerebellum, TAG-] null mutation might affect 
their development, but in a more subtle way than would have been evident here. 

Alternatively TAG- I could be functionally redundant with other factors, although 
the present results suggest that, at least at E 11.5 and E 12.5, TAG- I is not redundant 

with LI. 

203 



5.6 Appendices 
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Appendix 5. C: Sections through E12.5 TAG-1 null mutant embryos stained for B- 
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5. C. 1 Sections through an E12.5 TAG-1 null heterozygous embryo stained for 
B-galactosidase activity 

5. C. 2 Sections through an E12.5 TAG-] null homozygous embryo stained for 
B-galactosidase activity 

Appendix 5. D: Comparison of E 11.5 LI ' and LI 'embryos by whole-mount 
immunohistochernistry. 
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elements. 

Appendix 5. F: Expression of axon guidance molecules within restricted regions of the 
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Appendix 5. A Alphabetical list of abbreviations used in chapter 5 



Appendix 5. A Alphabetical list of abbreviations used in chapter 5 

Abbreviations used in rigures5.1.2,4,6,7,8,9,10,11 and 12. These 
abbreviations are also listed by region on the right hand side of table 5.1. 

III oculornotor nm c 
IV trachIcar nerve 
V trigerninal ganglion 
Vmn mandibular division of triScminal nerve 
Vmx =xillaq division or trigeminal nerve 
VO ophthalmic division o( trigminal ncrvc 
Vor frontal rwn e 
Von nasociliary ricn-c 
Vil facial nerve 
Vill vestibulocochlear nerve 
Ix glossopharyngeil nerve 
x vagus 
x1l hypooossal time 
ac anterior commissure 
ao anterior o1ractory nucleus 
bp brachiA plcxtis 
C cerebral conex 
cb, cerebellum 
cc corpus callosurri 
cc cauds equi" 
CJ islands of Cajella of o1ractory tubercle 
cn subcostal/ intercostal nerve 
CP cerebral peduncle 
d dorsal ramus of spinal nerve 
db diagonal bind 
A spinal dorsal hom 
drg dorsal root priglion 
4 exterrial granular cdI layer of cerebellum 
en entorlinal conex 
gc gracilelcuncate nuclei 
ic inferior colliculus 
ip inuTpcdunculat nucleus 
io, inferior olivary nucleus 
hC hippocampal commissure 
hipt habenuloint"peduncular tract 
hn habcnul&r nucleus 
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Appendix 5. A Alphabetical list of abbreviations (continued) 

hy lateral hypothalamus 
lcb lateral cutaneous branch of ventral ramus 
Id lateral branch of dorsal ramus 
10 lateral olfactory tract 
mb muscular branch of ventral ramus 
md medial branch of dorsal ramus 
Ins medial septum 
Int mammilothalamic tract 
nlll oculomotor ncrvcnuclcus 
nV/na, spinal trigerninal. nucleus/nucleus ambiguus 
nVII facial nerve nucleus 
nVIII vestibular/cochlear nuclei 
nXII hypoglossal nerve nucleus 
nlo nucleus of lateral olfactory tract 
ob, olfactory bulb 
oe olfactory epithelium 
oc optic chiasm 
on optic nerve 
ot optic tract 
PC posterior commissure 
pf paraflocculus of cerebellum 
P9 grey nucleus of Pons 
pr pretecturn 
pn anterior Pontine nuclei 
po preoptic area 
Pt pituitary 
r retina 
re reticular nucleus or reuniens nucleus 
M red nucleus 
rs retrosplenial cortex 
s spinal nerve 
sc superior colliculus 
sm stria medullaris 
so/tZ superior olivary nucleus/trapezoid body 

v ventral ramus of spinal nerve 
vh spinal ventral hom 

vr spinal ventral roots 
wr white ramus communicante 

yo 

007 



Appendix 5.13 Expression of'IAG-1 protein in a wild type El 1.5 mouse embryo 

Vmx Vmn x1l 

X1 IIIAP 

vo 
v Vil . ýfk 

x 1ý1 

drg 

Abbreviations: 

ventral horn 
spinal nerve 
dorsal horn 
dorsal root ganglia 
hypoglossal nerve 
accessory nerve 
vagus 
facial nerve 
trigeminal ganglion 

mandibular division 
maxillary division 
ophthalmic division 

interpeduncular nucleus 
oculomotor nucleus 
superior colliculus 

vh 
s 
dh 
drg 
x1i 
xi 
x 
Vil 
v 
Vmn 
Vmx 
Vo 
lp 
nIll 
sc 

Embryos were labelled using the 4137 monoclonal antibody to TAG- I (Dodd et al., 1988). 
The expression pattern is very similar to that of tau-13-galactosidase in TAG- I null mutant 
embryos at this age (figure 5.2). 



Appendix 5. C. 1 Sections through an E12.5 TAG-] null heterozygous embryo 
stained for B-galactosidase activity 

100prn thick vibratome sections were taken horizontally through the whole embryo 
shown on the left. The sections shown are every third section from the region 
between the white dashed lines. Dorsal is towards the top. Abbreviations are as 
listed in appendix 5. A, and white arrow heads indicate what appears to be 
mesenchymal staining. 
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Appendix S. C. 2 Sections through an E12.5 TAG4 null homozygous embryo 
stained for fi-galactosidase activity 

I OOpm, thick vibratome sections were taken horizontally through the whole embryo 
shown on the left. The sections shown are every third section from the region 
between the white dashed lines. Dorsal is towards the top. Abbreviations are as 
listed in appendix 5. A, and white arrow heads indicate what appears to be 
mesenchymal staining. 
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Appendix5. D Comparison of El 1.5 Ll+ and LI-Ily mouse embryos by whole- 
mount immunohistochemistry 

Ll+ 

IV 

di-j-, 

Abbreviations 

IV 

Ll -ly 

spinal nerve s 
dorsal root ganglion drg 
hypoglossal nerve x1l 
accessory nerve xi 
vagus x 
glossopharyngeal nerve Ix 
facial nerve V11 
trigcminal ganglion V 

mandibular division Vmn 
maxillary division Vmx 
ophthalmic division Vo 

trochlear nerve IV 
oculomotor ncrve/interpcduncular nucleus III/ip 

El 1.5 mouse embryos were labelled using the anti-neurofi lament antibody 2H3 and a horse-radish 
peroxidase conjugated secondary antibody. Embryos with only mutant LI alleles were 
indistinguishable from those which had only wild type versions of the LI gene. 



Appendix 5. E Expression of tau-0-galactosidase protein under 
the control of TAX-I promoter elements 

An El 1.5 "TGii" embryo, expressing tau-B-galactosidase under the control of 
regulatory elements of the human IAG-l gene, 1AX-l (Kozlov el al., 1995, courtesy 
of A. M. Furley). Staining is seen in only a subset of the neurons that usually express 
munne TAG-], namely sensory neurons (as shown in figure 5.2; A. M. Furley, 
personal communication). In addition, the limbs contain large patches of 
B-galactosidase activity that do not appear to be axonal (arrowheads). This staining is 
reminiscent of that seen in the limbs andjaw of embryos with the IAG-l null mutation 
(figures 5.4 and 5.6). 
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Appendix 5. F Expression of axon guidance molecules within restricted regions 
of the cerebellum 

A 

C 

E 

kG-l? 

ephrins 

receptors 

B 

D 

F 

113 

I ephrins 

G-2 

The expression patterns of selected axon guidance molecules within the rodent cerebellum. The 
cerebellar template is based upon the P2 cerebellum, as seen after mid-sagittal section (see figure 5.8. 
g and h). Roman numerals in A denote cerebellar lobules, which were identified using Altman and 
Bayer, 1997. Rostral is to the left in each case. 
A: Possible expression of 7AG-1. The greater expression posteriorly, particularly around fissure 3, 
was suggested by the presence of YAG-1-promoter-driven 13-galactosidase expression (figure 5.5, 
g and h). It was assumed that the staining was within the external granular layer (EGL), as this is 
the only layer of the cerebellum that expresses TAG- I protein at this age (Wolfer el al., 1994). 
While the above distribution of B-galactosidase activity was observed at P2, no such expression 
has been reported for TAG-L It maybe that the above expression pattern occurs at an earlier stage 
of development, or is an artefact of the TAG-1 null mutation. 
B: Expression of F3 at PI to P3, as determined by immunohistochemisry. Immunoreaactivity was 
predominantly within the molecular layer (Virgintino et al., 1999). 
C: Expression of ephrin-A ligands at PI, as determined by binding of a labelled EphA7 receptor. 
Labelling was predominantly of the EGL (Rogers el al., 1999). 
D: Expression of ephrin-B ligands at PI, as determined by immunohistochemistry. Expression 
appeared to be within the Purkinje cell layer (Rogers el al., 1999). 
E: Expression of EphB receptors at P 1, as determined by binding of a labelled ephrin-B I ligand. 
Labelling was predominantly of the EGL (Rogers el al., 1999). 
F: Expression of BIG-2 mRNA in the adult cerebellum, as determined by in situ hybridisation 
(Yoshihara et al., 1995). The mRNA was detected at low levels throughout the granular cell layer, 
with particularly strong expression in anterior folia. Lobules IX and X contained strong expression 
within their Purkinje cells. TAG- I and F3 mRNA were evenly distributed in the adult cerebellar 
lobuies. 
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Appendix 5. G. 2 Comparison of brains from mice either heterozygous or 
homozygous for the TAG, 4 allele, using expression of the nwth-l-lacZ reporter 

construct: P2 

TA G- I +1A TI G- I AIA 

A and B: superior aspect; C and D: inferior aspectl E and F medial aspect, after mid-sagittal bisection. 
A The X-gal stained brains of P2 7AG"" mice were indistinguishable from those of IAG '' mice. 

Abbreviations: 
gracile/cuneate nuclei gc 
facial nerve nucleus Vil 
cerebellum cb 
brachium of superior colliculus bs 

inferior olive io 
grey nucleus of pons P9 
optic tract ot 
frontal neocortex fn 
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Appendix 5. G. 1 Comparison of brains from mice either heterozygous or 
homozygous for the TAG-4 allele, using expression of the math-l-lacZ reporter 

construct: E16.5 

TA CF- I i A/4 T4 G 

A and B: superior aspect, C and D: interior aspect. The X-gal stained brains of E 16.5 IAG einbryos 
were indistinguishable from those of 7AG'ý .4 embryos. 

Abbreviations 
gracile/cuneate nuclei gc grey nucleus of pons P9 
cerebellum cb cerebral peduncle cp 
optic tract ot brachium of superior colliculus bs 
pineal gland? pn? 
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Appendix 5. G. 3 Comparison of brains from mice either heterozygous or 
homozygous for the TAGA allele, using expression of the nwth-l-lacZ reporter 

construct: P15 

TAG-1 TA G- I A, ýA 

A and B: superior aspect, C and D: inferior aspect, E and F: medial aspect, after mid-sagittal bisection. 
G and H: medial aspect of cerebellum after mid-sagittal bisection, Roman numerals denote developing 
lobules. The X-gal stained brains of PI 5 TAG""' mice were indistinguishable from those of IAG ''ý" mice. 

Abbreviations: grey nucleus of pons P9 
cerebellum cb 
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Effect of the TAG-1 Null Mutation upon the 

Hypoglossal (XIIth Cranial) Nerve 

Please note that throughout this chapter, the term "TA G-1 null mutanf ' refers to mice or 
embryos carrying either one (heterozygotes) or two (homozygotes) copies of the TAG- I 
allele (shown in figure 1.7). 
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6.1 Abstract 

The XlIth cranial, or hypoglossal, nerve supplies motor innervation to muscles of the 

tongue. It expresses TAG- I during its development (Yamamoto et al., 1986; Wolfer et al., 

1994), and so contains B-galactosidase activity in embryos that carry the TAG-] null allele. 

Staining of whole embryos indicated that the TAG-1 null mutation might affect 
development of the hypoglossal nerve. Therefore the development of this nerve was 

studied in more detail. Where possible, the frequencies with which nerves showed 

particular phenotypes were compared statistically. There seemed to be a significant 
difference between the hypoglossal nerves of TAG4 null heterozygous and homozygous 

embryos at E 11.5, the nerves of homozygotes being less likely to extend beyond the point 

of rootlet convergence. There also appeared to be a significant difference between the 

hypoglossal nerves of heterozygotes and homozYgotes at E12.5. These results suggest that 

TAG- I might indeed be involved in extension of the hypoglossal nerve. 
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6.2 Introduction 

The X11th cranial, or hypoglossal, nerve supplies motor innervation to all of the intrinsic, 

and all but one of the extrinsic, muscles of the tongue. It is therefore critical for chewing, 

swallowing, breathing and speech (Friedland et al., 1995; Mu and Sanders, 1999). Damage 

of the nerve, for example due to injury or during surgery, or if it is compressed by 

inflammation or a tumour, results in loss of tongue function. The tongue may atrophy, and 
the loss of motor input to musculature can severely impair ability to swallow and speak 
(e. g. Morini et al., 1998; Giuffrida et al., 2000). A number of disorders are characterised 
by tongue dysfunction, including cerebral palsy, Downs syndrome and sleep apnoea 
(Sokoloff, 2000). In the latter case, it has been shown that direct electrical stimulation of 
the hypoglossal nerve can relieve symptoms (Eisele et al., 1997). It is therefore 

conceivable that defects in innervation of the tongue by the hypoglossal nerve may underlie 
the tongue dysfunction seen in a number of swallowing, breathing and/or speech disorders. 

Preliminary analysis of TAG4 null embryos stained for B-galactosidase activity raised the 

possibility that guidance of the hypoglossal nerve was affected by the mutation (chapter 5). 

Therefore the development of this nerve was investigated in more detail. Statistical 

analysis suggested that the hypoglossal nerve was indeed affected by the TAG4 null 

mutation at both E 11.5 and E12.5, implicating TAG- I protein in hypoglossal nerve 
development. 
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6.3 Results 

6.3.1 The hypoglossal nerve in E10.5 mouse embryos carrying the TAG-] null allele 

At E 10.5 (figure 6.1), the hypoglossal nerve was generally observed as a number of stained 

rootlets, which projected ventrally away from the hypoglossal nucleus of the ventral 
hindbrain. In several cases, some of the rootlets had converged to form a single 
hypoglossal nerve, which continued to extend caudally (figure 6.1, C and D). The two 

hypoglossal nerves of an embryo had not necessarily developed to the same extent, as 

reported previously for the hypoglossal nerves of chicken embryos (Rogers, 1965). There 

were no discemable differences between the hypoglossal nerves of heterozygous and 
homozygous embryos at this age. 

6.3.2 The hypoglossal nerve in E11.5 mouse embryos carrying the TAG-1 null allele 

The majority of E 11.5 embryos had distinct hypoglossal nerves extending away from the 

ventral hindbrain (figure 6.2 A and B). Often the nerve had turned to extend rostrally 

towards the developing tongue region (figure 6.2 A). Occasionally the hypoglossal nerve 
did not extend beyond the point of rootlet convergence (figure 6.2 Q. In some cases, 

adjacent rootlets had developed to different extents (figure 6.2 D). 

Many hypoglossal nerves were scored as having converged, extended ventrally and turned 

rostrally (as in figure 6.2 A; phenotype 1). Others were scored as having converged and 

extended ventrally but not turned rostrally (as in figure 6.2 B; phenotype 2), or as having 

converged but not extended beyond the point of rootlet convergence (as in figure 6.2 C; 

phenotype 3). If the rootlets on one side of an embryo had different phenotypes, fractions 

were attributed to the three categories as appropriate (figure 6.2 D). As indicated in figure 
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TAG-] ' TA G- I -/- 
A 

nXII 

xil 

fl 

B 

nXII *n x1l 

x1i 

Figure 6.1 The hYpoglossal nerves of E10.5 mouse embryos carrying the TAG-] null allele 
I he neck regions of E 10.5 embryos (rostral is to the left, caudal to the bottom). 
A and C: examples of heterozygous embryos. B and D: examples ofhomozygous 
embryos. The extent to which the hypoglossal nerve rootlets had extended and/or 
converged varied, but this variation did not appear to be linked to genotype (n= 16 
hcterozygous and n=56 homozygous hypoglossal "nerves"). The two rows ol'staining 
in C arc the two hypoglossal nerves ol'this embryo: all embryos had been rendered 
transparent, but the other three photographs were taken with the two hypoglossal 
nuclei aligned. nXll- hypoglossal nerve nucleus, although it should be noted that the 
extent ofthc nucleus is estimated. X11- hypoglossal nerve (and/or rootlets); fl- fore 
limb. 



Figure 6.2 The hypoglossal nerves of E11.5 mouse embryos carrying the TAG-] null allele 
Neck regions ofEl 1.5 TAG-1 null mouse embryos (in each case rostral is to the left and 
caudal to the bottom), illustrating the different categories to which the stained hypoglossal 
nerves were assigned. 
A: The hypoglossal nerve rootlets have converged, and are extending as a single nerve. 
This can be seen to extend back towards the developing tongue area (not actually shown; 
lies to the left ofeach picture) 
B: A number ofthe hypoglossal nerve rootlets have converged. The resulting hypoglossal 

nerve extends caudally, but has not begun to extend rostrally towards the tongue region. 
C: The hypoglossal nerve rootlets have converged, but no single nerve has extended 
beyond the point of convergence. 
D: Occasionally rootlets ofa single hypoglossal nerve would not all have the same fate. 
This example has three rootlets that seem to extended caudally after convergence, and a 
fourth that does not extend caudally with the others (arrowed). Arrowheads indicate staining 
ot'projections that were not included in the present analysis. It was not clear whether they 
were caudal hypoglossal nerve rootlets, or projections from the most rostral cervical spinal 
cord. The three distinct phenotypes shown in A, B and C were observed in both hetcrozygous 
and homozygous embryos, although the frequency with which each occurred diffcred 
significantly (see table 6.1). 

The actual genotype of each embryo is indicated on the figure. 
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phenolype. 

observed: 
TAG4 +/- 
TAG- I -A 
total 

31 44 
34 23.25 

65 67.25 

B 
expected: 
TAG-] 
TAG-] 

33.562 34.724 
31.438 32.526 

totals 

4 79 
16.75 74 

20.75 153 

10.714 79 
10.036 74 

total 65 67.25 20.75 153 

X2= 14.227, &f. = 2, P-- 0.000814 

Table 6.1 Frequencies with which each hypoglossal nerve phenotype was observed 
at E 11.5, and XI analysis. 
A: Numbers within the table represent individual hypoglossal nerves of the phenotypes 
illustrated at the head of each column. Phenotypes 1,2 and 3 correspond to the embryos 
A, B and C of figure 6.2, respectively. Note that each embryo can be the source of two 
data points. Occasionally some of the rootlets of a nerve would have one fate, while other 
rootlets had another (see figure 6.213). In such cases, fractions were assigned to categories 
as appropriate. For example, the nerve shown in figure 6.2 D would have been scored as 
0.75 phenotype 2 and 0.25 phenotype 3. Damaged nerves were not scored. 
The results were obtained from embryos that were either of a pure C57131/6 background 
(back-crossed for at least 6 generations), or that were on a mixed background of unknown 
composition. 
B: X2 analysis. "expected" values are those that would have been obtained if there was 
no difference between the heterozygous and homozygous nerves. These values were 
calculated as phenotype total x genotype total / grand total. The result of aX2 test 
comparing the observed and expected frequencies is also shown. df degrees of freedom, 
P: probability that the given XI statistic would have been obtained if there was no 
difference between heterozygous and homozygous hypoglossal nerves. Appendix 6. A 
presents the results of alternative classification of the above data (see discussion). 
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6.2, this analysis did not include "rootlets" that might in fact have been of cervical spinal 

origin. These did sometimes contribute to the hypoglossal nerve, as in figure 6.2 A, and as 
has been reported in chick embryos (Rogers, 1965), mouse embryos (Ericson et al., 1997) 

and adult rats (O'Reilly and Fitzgerald, 1990). However, the contribution made by these 

projections varied, and did not appear to be linked to TAG-] genotype (data not shown). 

Hypoglossal axons seemed to fail to extend beyond the point of rootlet convergence (i. e. 

they were of phenotype 3) more frequently in homozygote E 11.5 embryos than in their 

heterozygote littermates (table 6.1 A). This difference was found to be statistically 

significant (X'= 14.227, df = 2, P<0.001; table 6.1 B), indicating that the hypoglossal 

nerves of homozygous embryos are more likely to be defective than those of heterozygotes. 

6.3.3 The hypoglossal nerve in E12.5 mouse embryos carrying the TAG4 null allele 

At E12.5, the majority of hypoglossal nerves had extended ventrally and also turned to 

grow towards the developing tongue (phenotype I in table 6.2). As shown in figure 6.3, 

some nerves had extended but not turned towards the tongue (phenotype 2), and others had 

not extended ventrally beyond rootlet convergence (phenotype 3). As at E 11.5, failure to 

extend beyond the point of convergence was more common amongst the hypoglossal 

nerves of homozygous embryos (table 6.2). The difference between the two groups was 
found to be statistically significant (X2 = 8.701, d. f. = 2, P<0.05; table 6.2 B), indicating 

that a lack of TAG-1 protein also affects development of the hypoglossal nerve at E12.5. 
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Figure 6.3 The hypoglossal nerves of E12.5 mouse embryos carrying the TAG-1 null allele 
Neck regions of E12.5 IAG-I null mouse embryos (rostral is to the left in each case), 
illustrating the different categories to which the stained hypoglossal nerves were assigned. 
A: Hypoglossal nerve rootlets have converged, and are extending as a single nerve that 
can be seen to extend back towards the developing tongue area. B: The hypoglossal nerve 
rootlets have converged, but the single nerve does not extend rostrally towards the tongue 
region. C: Hypoglossal nerve rootlets have converged, but no single nerve has extended 
beyond the point of convergence. The white arrow indicates a "knot-like" area at the 
point of rootlet convergence. This suggests that the hypoglossal axons are still able to 
grow, but that their ability to extend away from the "knot" is compromised. As at El 1.5, 
projections that could not be confidently identified as being hypoglossal were not included 
in analyses. All three of the above phenotypes were observed in both heterozygous and 
hornozvgous embryos (see table 6.2) 
The actual genotype of each embryo is indicated on the figure 



phenoýype: 2,, 

4 

3 total 

observed: 

TA G- 1 111.5 15.5 4 131 
TA G- 1 38 8.5 7.5 54 

total 149.5 24 11.5 185 

B 

expected: 

TA G- 1 105.862 16.995 8.143 131 
TA G- 1 43.638 7.005 3.357 54 

total 149.5 24 11.5 185 

X2 = 8.701, M. = 2, P-- 0.0129 

Table 6.2 Frequencies with which each hypoglossal nerve phenotype was 
observed at E12.5, and X1 analysis. A: Numbers represent individual hypoglossal 

nerves of the phenotypes illustrated at the head of each column. Note that each 
embryo can be the source of two data points. Occasionally some of the rootlets of a 
nerve would have one fate, while other rootlets had another. In such cases, fractions 

were assigned to categories as appropriate. Damaged nerves were not scored. The 
results were obtained from embryos that were either of a pure C57131/6 background 
(back-crossed for at least 6 generations), or that were on a mixed background of 
unknown composition. 
B: X1 analysis. "expecled" values are those that would have been expected if there 
was no difference between the heterozygous and homozygous nerves. These values 
were calculated as phenotype total x genotype total / grand total. The result of a X' 
test comparing the observed and expected frequencies is also shown. d. f: degrees of 
freedom; P: probability that the given N' statistic would have been obtained if there 
was no difference between heterozygous and homozygous hypoglossal nerves. 
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6.3.4 The hypoglossal nerve in E13.5 mouse embryos carrying the TAG-] null allele 

At E13.5, the hypoglossal nerve appeared to be stained less strongly than at the younger 

ages examined. This was expected, as it has previously been reported that hypoglossal 

TAG- I immunoreactivity begins to wane after E12 (Wolfer et al., 1994). Intense staining 

of many other nerves meant that it was difficult to identify and trace the hypoglossal nerve. 

Of the E13.5 hypoglossal nerves that could be identified and traced, all extended ventrally, 

and all but one could be seen to turn to grow towards the tongue (figure 6.4; table 6.3). It 

was impossible to say whether the other hypoglossal nerves had turned rostrally, or had 

even extended beyond the point of convergence. 

In view of the difficulty in tracing the hypoglossal nerve at E13.5, and the reported 

inadequacy of whole mount staining method at later ages (Whiting et al., 199 1), older 

embryos were not analysed. 

6.3.5 The hypoglossal nerve in other mutant embryos 

As an absence of TAG- I appeared to have an effect upon the hypoglossal nerve, how TAG- 

I might function was investigated using embryos with other mutations. Expression of the 

TAG-] null mutant allele was used as a marker for the hypoglossal nerve, and embryos that 

were heterozygous for this mutation, but otherwise wild type, were used as controls (see 

chapter 5). These embryos were compared with littermates that also had the TAG' mutant 

allele, in order to establish whether the hypoglossal nerve developed normally in animals 

that expressed only truncated TAG-1. The control embryos were also compared with 
litterinates that were in addition hemizygous for the Ll mutation, to establish whether the 

nerve was affected by an absence of Ll. Furthermore, embryos that were hemizygous for 

the Ll mutation, and which also carried both TAG-] mutant alleles, were examined, in 

order to assess the effects of simultaneous deficiencies in both IgCAMs. It proved most 
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Figure 6.4 The hypoglossal nerves of E13.5 mouse embryos carrying the TAG-I null allele 
Neck regions of E13.5 7AG-1 null mouse embryos. Rostral is to the left in each case, the 
facial (VII) and vagal (X) nerves are labelled for onentation. 
A: White arrowheads indicate a hypoglossal nerve that could be traced through a rostral 
turn and which definitely extended towards the tongue region. 
B: White arrowheads indicate a hypoglossal nerve that extended beyond the point of 
convergence, but that could not be traced through a rostral turn with certainty. 
C: In many cases, faint staining of the nerve relative to others around it meant that the 
hypoglossal nerve could not be identified at all. 
White arrows indicate staining within what appeared to be the most rostral cervical spinal 
nerves. These projections varied considerably in the embryos studied, and their variation 
seemed to be independent of genotype (data not shown). 
The actual genotype of each embryo is indicated on the figure. 

phenotype: 

hypoglossal 
nerve was not 
positivel. v 
idenlified total 

TA G- 1 +/- 15 03 18 
TA G- 1 -/- 

5 14 10 

tolal 20 17 28 

Table 6.3 Frequencies with which each hypoglossal nerve phenotype was observe at E13.5. 
Numbers represent individual hypoglossal nerves that could be traced through a rostral turn 
towards the tongue (phenotype 1), that could only be seen to extend ventrally but for which 
no rostra] turn was apparent (phenotype 2), or that could not be identified at all. 
The results were obtained from embryos of a mixed background of unknown composition. 
A YI analysis could not be carried out as "expected" values were not large enough for such 
a test to be valid (data not shown, Dytham, 1999). 



practical to obtain embryos of all of these genotypes from the same crosses, as shown in 
figure 2.4. 

At E 11.5, the majority of the hypoglossal nerves could be seen to have turned to extend 
towards the tongue (table 6.4, phenotype I). This was true of all of the genotypes 

examined. The hypoglossal nerves that could not be traced through a rostral turn had all 
extended beyond the point of rootlet convergence (table 6.4, phenotype 2). Too few nerves 
had been examined for X'tests to be valid (Dytham, 1999). However, the frequencies 

presented in table 6.4 were sometimes suggestive. 

Row I of table 6.4 shows the results from control embryos; row 2 shows those from 

embryos that expressed wild type LI protein, but only truncated forms of TAG-1. Within 

these groups, 17 out of 18, and 16 out of 18, hypoglossal nerves could be traced through a 

rostral turn respectively. This suggests that the hypoglossal nerve develops normally in 

embryos that have only truncated TAG- I proteins. 

The results from embryos devoid of wild type Ll, but not wild type TAG- I (table 6.4, row 
5) were more ambiguous. 8 out of 10 of hypoglossal nerves had definitely made a rostral 
turn, but, as mentioned, the significance of this distribution could not be assessed 
statistically. Neither could the occurrence of the two phenotypes in the embryos that lacked 
LI protein, and that expressed only truncated TAG- I proteins (table 6.4, row 6). However, 
it is notable that 6 out of the 18 double mutant hypoglossal nerves could not be traced 
through a rostral turn. It is possible that this result reflects a delay in development of the 
hypoglossal nerves of embryos that lack Ll and express only truncated versions of TAG-1. 
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phenotype: 

Ll'. TAG-] ' 

Ll'. TAG4' 

3. Ll, TAG-] ' 

4. Ll, TAG4' 

5. Ll. TAG-] ' 

6. Ll-"Y, TAG-]A"- 

total 

17 (94.4%) 

16 (89%) 

8 (100%) 

4 (67%) 

8 (80%) 

12(67%) 

65 

11 -4ýý total 

1 (6%) 18 

2 (11%) 18 

0 8 

2 (33%) 6 

2 (20%) 10 

6 (33%) 18 

13 78 

Table 6.4 The hypoglossal nerves of E11.5 TAG-]ILI double mutant embryos. 
The hypoglossal nerves of TA G- LL I mutant embryos were assigned to the fi rst 
category if they could be seen to have turned to grow towards the tongue, and to the 
second if they could not. Hypoglossal nerves had always extended beyond the point of 
rootlet convergence. As previously, "L I"' refers to embryos of either the ,/f or f 1Y 
genotype with regards to L1. All embryos have one TAG-1 null allele, so that TAG-1 
expressing cells could be stained for 8-galactosidase activity. Unfortunately the 
numbers of nerves were too low for valid X' analyses to be carried out (Dytham, 1999). 
Percentages show each frequency as a proportion of the total number of hypoglossal 
nerves of that genotype. Both of the nerves shown are from L 1, TAG-JAI- embryos. 



6.4 Discussion 

A general survey of the effects of the TAG-] null mutation upon neural development 

(chapter 5) raised the possibility that the hypoglossal nerve was affected by an absence of 

TAG- I protein. Therefore the development of this nerve was investigated in more detail. 

As in the more general study, the IacZ reporter component of the TAG-] null mutation was 

used to study the nerves mouse embryos from ElO. 5 to E13.5 inclusive. The results 

presented support the idea that TAG- I is indeed involved in hypoglossal nerve 

development. 

6.4.1 EIO. 5 hypoglossal nerves 

At E10.5, the hypoglossal nerve was seen as a number of rootlets. In several embryos, 

some of these rootlets had converged to form a single nerve. There did not appear to be a 

difference between the hypoglossal nerves of TAG-] null homozygous and heterozYgous 

embryos at this age. This suggests that TAG- I is not required for the initial stages of 

hypoglossal nerve formation. However, it would be necessary to examine more E 10.5 

embryos before the significance of these results could be tested statistically (Dytham, 

1999). 

6.4.2 E11.5 and E12.5 hypoglossal nerves 

6.4.2.1 Effects of the TAG-] null mutation 

At E 11.5, all of the sets of hypoglossal nerve rootlets examined showed at least some 

convergence. Many of the resulting hypoglossal nerves extended beyond the point of 
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rootlet convergence, and a large proportion could also be traced through a rostral turn. X' 

analysis of the occurrence of each phenotype showed that the hypoglossal nerves of TAG4 

null homozygous embryos were significantly different from those of heterozygotes. The 

frequencies with which each phenotype was observed also differed significantly between 

heterozygous and homozygous hypoglossal nerves at E12.5. These results indicate that the 
E 11.5 and E 12.5 hypoglossal nerves are affected by an absence of TAG- I protein. 

To better understand the effects of the mutation, the El 1.5 results were reclassified, and the 

significance of differences reassessed (appendix 6. A). When classified according to 

whether they had turned towards the tongue or not (i. e. when phenotypes 2 and 3 were 

combined), the hypoglossal nerves of the two genotypes did not differ significantly. When 

classified according to whether they had extended beyond convergence or not (i. e. when 

phenotypes 1 and 2 were combined), the genotypes did show a significant difference (X' 

10.0640, d. f. = 1, P=0.00151). This suggests that the main source of the difference 

between E 11.5 heterozygous and homozygous hypoglossal nerves is their ability to extend 
beyond rootlet convergence. Thus if TAG- I does in fact have a role in E 11.5 hypoglossal 

axon development, it might act specifically at the stage of the post-convergence ventral 

extension. The fact that all TAG-1 mutant hypoglossal nerves send rootlets ventrally to the 

point of convergence (see figures 6.2 and 6.3) supports the above suggestion that TAG-1 is 

not required for the earliest stages of extension away from the hindbrain. 

At E12.5, the most obvious difference between hypoglossal nerves of the two genotypes 

was again in the frequency with which they failed to extend beyond rootlet convergence 
(table 6.2). This observation could not be tested for statistical significance, as regrouping 

of the phenotypes meant that the data were no longer suitable for X' analysis. However, it 

was suggestive of TAG- I also being specifically involved in post-convergence extension at 
E12.5. 
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6.4.2.2 How might TAG- I be involved? 

If TAG-1 is indeed involved in guidance of El 1.5 and E12.5 hypoglossal nerves, it might 
function in any of a number of ways. It could be important for the growth of post- 

convergence hypoglossal. axons, although the frequent occurrence of "knot-like" staining in 

affected nerves (as in figure 6.3 Q suggests that axons do continue to extend, and that it is 

the direction of their growth that is perturbed. TAG- I could direct hypoglossal axons in 

association with activities that have previously been implicated in development of the 

nerve, such as HGF or Serna 3A, or in association with novel factors. Figure 6.5 

summarises some of its possible modes of action. 

Mid-gestation embryos homozygous for a mutation in the gene encoding Hepatocyte 

Growth Factor (HGF) displayed a similar phenotype to that described above. HYpoglossal 

nerve rootlets extended from the hindbrain and converged, but did not appear to extend 
further towards the tongue (Caton et al. 2000). The tongue regions of rat and chicken 

embryos express HGF mRNA, and mouse hypoglossal neurons express mRNA of the HGF 

receptor Met. These observations, and the fact that HGF is a chernoattractant for 

hypoglossal axons in vitro, led to the suggestion that HGF might normally attract 
hypoglossal axons in vivo (Caton et al., 2000). It is conceivable that TAG- I is involved in 

the ability of hypoglossal neurons to find HGF attractive. For instance, TAG- I could 
interact with Met, affecting its ability to mediate attraction to HGF. As HGF can prevent 
the degeneration of adult rat hypoglossal motor neurons (Okura et al., 1999), any alteration 

of its effects by TAG- I could be of clinical importance. 

TAG- I could theoretically allow hypoglossal axons to respond to other attractive factors, 

such as those that attract cranial motor axons to branchial arches in the absence of HGF 
function (Caton et al., 2000). Although its mid-gestation expression was not recorded, the 
developing tongue expresses Netrin-3 at E15.5 (Pi1schel, 1999), so it is conceivable that the 
failure to extend beyond convergence reflects an inability to find target netrins attractive. 
Chicken hypoglossal axons do not respond to Netrin- I in vitro (Varela-Echavarria et al., 
1997), but their response to Netrin-3 does not appear to have been tested. 
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FIgure 6.5 Summary of the ways in which TAG- I may function during normal 
hypoglossal nerve development. Defects in extension of TAG-] null mutant 
hypoglossal nerves suggest that TAG- I is important for both extension beyond rootlet 
convergence and the subsequent rostral turn. In both events, TAG- I could allow 
hypoglossal axons to respond to repulsive signals from the hindbrain, to ignore 
attractive signals from the hindbrain, to respond to attractive signals from areas 
it usually enters, or to ignore repulsive signals from areas through which it must pass. 
Candidate molecules are mentioned above. Sema 3A and HGF have been shown to 
guide hypoglossal axons (for references, see diagram). All other factors are mentioned 
speculatively (for references, see text). The role of TAG- I in response to factors could 
be tested in vitro. 
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Alternatively and/or additionally, TAG-1 could be important for the ability of hypoglossal 

axons to be repelled from the ventral hindbrain once they have converged. Sernaphorin 3A 

(Sema 3A), which repels hypoglossal axons in vitro, and is expressed by the ventral 
hindbrain (Varela-Echavarria et al., 1997), and at least one IgCAM can affect the way in 

which axons respond to Sema 3A (Castellani et al, 2000). Axonin- I has been proposed to 

mediate the repulsion of dorsal root ganglion axons from the notochord (Masuda et al., 
2000). Thus it is theoretically possible that TAG-1 is involved in the ability of post- 

convergence hypoglossal axons to be repelled from the hindbrain by Sema 3A. 

There are a number of other potentially inhibitory cues expressed by the ventral hindbrain. 

Netrin- I is expressed by the ventral midlines of chicken and rat embryonic hindbrains 

(Kennedy et al., 1994; Yee et al., 1999), although, as mentioned above, chicken 
hypoglossal axons were unresponsive to this protein in vitro (Varela-Echavarria et al., 
1997). The ventral hindbrain expresses B ephrins (Gale et al., 1996 b; KUry et al., 2000; 

Yokoyama et al., 2001): these ligands are known to repel limb motor axons (Wang and 
Anderson, 1997; HeImbacher et al., 2000), a population of axons that shares other guidance 

mechanisms with those of the hypoglossal nerve (Ebens et al., 1996; Arber et al., 1999). A 

region that includes the hypoglossal nucleus has been reported to express at least one Eph B 

receptor at the time of hypoglossal nerve extension (Gale et al., 1996 b; Henkemeyer et al., 
1998), and the TAG- I -related protein LI can cause phosphorylation of at least one Eph 

receptor (Zisch et al., 1997). Thus it is conceivable that TAG- I could also interact with 
hypoglossal Eph receptors, in order to enable post-convergence axons to be repelled by 

hindbrain ephrins. Other candidate repellents include F-spondin and Wnt-7b. F-spondin is 

expressed in the floor plate of the hindbrain at El 1.5 (Klar et al., 1992), and this protein has 

been shown to repel other embryonic motor neurons (Tzarfti-Majar et al., 2001). The 

signalling molecule Wnt-7b is also expressed in the caudal hindbrain (Osumi et al., 1997): 

this protein has been implicated in the guidance of cerebellar axons (Salinas, 1999), and its 
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absence coincides with a failure of hypoglossal nerve extension in Pax-6 mutant rat 

embryos (Osumi et al., 1997). 

Rather than simply allowing hypoglossal axons to respond to factors that cause their ventral 

extension, it is also possible that TAG- I allows the axons to ignore factors that would 

otherwise prevent their ventral extension. TAG- I has previously been suggested to act in 

such a way in other neurons. It seems to allow cerebellar granule neurites to overcome 
inhibitory effects of F3 (Buttiglione et al. 1998), and to render dorsal spinal commissural 

axons insensitive to the inhibitory activities of the floor plate (Stoeckli et al., 1997; Stoeckli 

and Landmesser. 1998). A-class ephrins are expressed within the mesoderm ventral to the 

point of rootlet convergence, and also within the branchial arches (Gale et al., 1996 b; Miry 

et al., 2000), so it is conceivable that these are inhibitory for hypoglossal axons if TAG- I is 

absent. 

In vitro experiments could be used to establish whether any of the above speculations are 

valid. For example, the extent to which homozygous TAG-] null hypoglossal axons are 

repelled by a source of Sema 3A, or attracted by a source of HGF, could be investigated (as 
in Varela-Echavam'a et al., 1997 and Caton et al., 2000 respectively). 

The apparent defects in guidance of TAG-] null homozygote hypoglossal axons could be 

secondary to other effects of the mutation. For example, it is theoretically possible that 
TAG-1 is involved in the specification of hypoglossal motor neurons. Hypoglossal neurons 
were mis-specified in Pax-6 and Hb9 mutant animals (Ericson et al., 1997; Osumi et al., 
1997; Arber et al., 1999), and, in the Hb9 mutant mice, what appeared to be the 
hypoglossal nerve was sometimes "severely misrouted" (Arber et al., 1999). It seems that 

the hypoglossal nucleus is considered fully specified when it expresses mRNA of the 
transcription factor islet-2 (Varela-Echavarria et al., 1996; Ericson et al., 1997; Osumi et 

al., 1997). This factor is not detected until after the onset of TAG-1 activity (Varela- 
Echavarria et al., 1996; figure 6.1), so it could be that the above axon guidance defects 

reflect a change of neuron identity. This potential explanation could be further investigated 
by establishing whether the source of "hypoglossal" axons still expresses islet-2 and HB9. 
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It is also theoretically possible that TAG- I is in fact important for the normal decussation 

of hypoglossal dendrites (described by Cajal, 1909, Kappers, 1936, Paxinos, 1985), and 

that failure of this somehow affects guidance of the axons. It would be interesting to 

establish whether hypoglossal dendrite decussation occurs normally in TAG-] null mutant 

embryos, for example by unilateral labelling of the hypoglossal nucleus with DiI. 

However TAG- I acts during hypoglossal axon guidance, the present results raise the 

possibility that its function does not require the first two Ig-like domains of the protein. 

The similarity between the phenotypes of TAG"* and TAG' mutant hypoglossal nerves 

(table 6.4, rows I and 2) suggests that the absence of these domains of TAG-1 from an 

embryo does not affect hypoglossal nerve development. This is perhaps a surprising 

suggestion, as these domains are amongst those necessary for the interactions of axonin- I 

with NgCAM and NrCAM (see Introduction; Rader et al., 1996; Fitzli et al., 2000). 

However, other domains of axonin- I were both necessary and sufficient to promote neurite 

outgrowth in vitro (Rader et al., 1996) and to mediate the homophilic interactions of its 

human homologue TAX- I (Tsiotra et al., 1996), so it is conceivable that such domains are 

also sufficient for the correct guidance of hypoglossal axons. 

The first step in testing this idea would be to examine more TAG' mutant embryos, so that 

the differences between TAG' and TAG' mutant hypoglossal nerves could be tested 

statistically. It would also be important to assess the effects of the TAGAmutation on the 

same strain background used for the TAG-1 null analyses. TAG-] null embryos were either 

of the "pure" C57BI/6 strain or of a mixed background of unknown composition, whereas 

the TAG' mutants examined were obtained by mating mice of the mixed background with 

those of a pure 129/SvEv strain. Thus the TAGAmutant embryos were of a background 

containing a substantially greater proportion of 129/SvEv genes than that used for TAG-] 

null embryos. As discussed in previous chapters, the Ll null mutant phenotype is 

noticeably more severe in mice of the C57BI/6 backgrounds (Dahme et al., 1997), 

indicating that certain loci of the 129/SvEv genome have alleles that can ameliorate effects 

of the Ll mutation. The occurrence of cerebellar granule cell migration defects in C57131/6, 

but not 129/SvEv, mice suggests that 129/SvEv alleles might also lessen the effects of 
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TAG-] mutations (K. Ohyama, R. Yoshida and A. M. Furley, personal communication). 

If so, it could be these that temper the TAG' mutant hypoglossal nerve phenotype. Crossing 

both TAG-] mutations onto a single background would allow any differences between their 

effects to be studied more objectively. 

6.4.2.3 Why are some homozygous mutant nerves unaffected? 

Although El 1.5 TAG-I null homozygous mutant hypoglossal nerves have been shown to be 

statistically more likely to stall at the point of convergence, many did extend further and 

turn towards the tongue. Often homozygous embryos had one stalled hypoglossal nerve 

and one that was apparently normal. Conversely, many heterozygous mutant hypoglossal 

nerves appeared to stall. Such incomplete penetrance of a mutation is a well-known 

phenomenon. The hypoglossal nerve was absent or misrouted in some HB9 homozygous 

mutant embryos, but was unaffected in others (Arber et al., 1999). Eph A4 null mutant 

mice were said to show agenesis of the anterior commissure "with high penetrance" when 

only seven out of thirteen brains were affected (Kullander et al., 2001 a). Similarly, only 

20% of ephrin B3 mutant mice showed agenesis of the corpus callosum (Yokoyama et al., 

2001). Bolwig's nerve was defective in only around 55% of Drosophila DSCAM mutants 

(Schmucker et al., 2000). 

Why the TAG-] null mutation should show incomplete penetrance is unclear. It could 

reflect the heterogeneity of the genetic backgrounds used. Many of the embryos examined 

during the present study were of a mixed genetic background of unknown composition, 

such that siblings could have had different alleles at certain loci. As mentioned above, such 

differences can mean that a single mutation has different effects. However, some of the 

embryos studied were of a "pure" (back-crossed for at least six generations) C57131/6 

background, and analysis of these embryos alone gave similar results to those from 

embryos of undefined strain (data not shown). This suggests that the apparent normality of 

some of the homozygous hypoglossal nerves cannot simply be attributed to the presence of 

modifying alleles in some embryos but not others. 
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It could be that TAG- I acts in a subtle way, to increase the probability that a hypoglossal 

nerve extends, rather than forcing it to extend. For example, it could be that stochastically 

prevents the extension of a number of pioneer hypoglossal axons, which all other 
hypoglossal axons normally follow. TAG-1 could conceivably allow the pioneer axons to 

overcome such a factor, but levels of the factor might not always be high enough to be 

problematic. Alternatively, the levels of potentially redundant factors could vary 

stochastically. For instance, it might be that the activity that guides the pre-convergence 
hypoglossal rootlet extension is sometimes, but not always, sufficient to also rescue the 

effects of a lack of TAG-1 protein. 

6.4.2.4 Possible inadequacies of the present results 

As mentioned above, the some of the present results may reflect differences in the genetic 
backgrounds of embryos in addition to their TAG-] genotype. However, as also mentioned, 

the TAG-] null embryos of a mixed strain background showed a similar distribution of 

phenotypes to those of a pure strain (data not shown). 

Another possible inadequacy is that the present results might actually underestimate the 

effects of the TAG-] null mutation. Although heterozygous mutants are often assumed to 
be essentially wild type (for example, by Leighton et al., 2001), this is not necessarily the 

case. "Haplo-insufficiency" has been reported for other genes that encode axon guidance 

molecules. For example, mice heterozygous for a null mutation in the Eph A4 gene had 

limb innervation defects that were of a severity intermediate to that of wild type and 
homozygote embryos (HeImbacher et al., 2000). Around 12% of the flies heterozygous for 

a mutation in DSCAM had defects in Bolwig's nerve (Schmucker et al., 2000). Aggression 

was markedly increased amongst mice either homozygous or heterozygous for an NCAM 

mutation (Stork et al., 1997). Immunohistochemical labelling of wild type embryos does 

indicate that their hypoglossal nerves are similar to heterozygote hypoglossal nerves stained 
for B-galactosidase activity (see appendices 53 and 5. D). However, of the 16 wild type 
hypoglossal nerves labelled, all extended beyond convergence and made a rostral turn (see 

below; data not shown). This could indicate that a failure to extend beyond convergence is 
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not at all normal, and that a reduced amount of TAG- I protein in heterozygous embryos 

can affect hypoglossal nerve development. This suggestion is supported by reports that 

cerebellar granule cell descent is impaired in mice that are either homozygous or 
heterozygous for TAG-] mutations (K. Ohyama, R. Yoshida and A. M. Furley, personal 

communication). 

Thus the deviation of TAG-] null homozygous hypoglossal nerves from the norm could in 

fact be more pronounced than presented above. A direct comparison of wild type and 
homozygous embryos would require a technique such as immunohistochernistry or axon 

tracing. Preliminary attempts have shown that the E 11.5 hypoglossal nerve can be labelled 

with Dil (data not shown) or antibodies (appendices 5.13 and 5.13), although the success of 
these approaches was variable. The monoclonal anti-TAG-1 antibody 4137 (Yamamoto et 

al., 1986) often labelled the hypoglossal nerve strongly, but this would not be of use for the 

study of TAG4 null mutant nerves. 21-13, an anti-neurofi lament antibody (Dodd et al., 
1988) that should label both wild type and mutant hypoglossal nerves, gave inconsistent 

results (data not shown). As appeared to be the case in previous studies, this antibody 
labels the hypoglossal. nerve in some cases (as in Ericson et al., 1997; Kitsukawa et al., 
1997; Osumi et al., 1997), but not others (as in Van Maele-Fabry et al., 1997; Giger et al., 
2000). This may reflect slight variations in the extent to which epitopes were fixed, or 
differences in the precise composition of the strain backgrounds used. Indeed, the 2H3 

antibody seemed to label the hypoglossal nerves of pure 129/SvEv embryos, but not those 

of C57131/6 or mixed strain embryos (data not shown). 

Immunohistochernistry would also allow TAGAmutant embryos to be analysed in their own 

right. This would allow the importance of different regions of the TAG- I protein to be 

examined without potential complications from other mutations. Immunohistochernical 

analysis might also provide a more reliable method of marking the hypoglossal nerves of 
E13.5 embryos. Generation of another TAG-] null mutation would allow the effects of an 

absence of TAG-1 to be studied independently of tau-B-galactosidase. In one study, tau- 
GFP and tau-B-galactosidase reporter proteins were shown to alter the fasciculation, 

morphology and survival of Drosophila sensory axons (Williams et al., 2000), so it is 
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technically possible that tau-3-galactosidase is responsible for the hypoglossal nerve defects 

of TAG-I null homozygotes. However, other studies have described the use of tau- 

containing reporter proteins to mark axons without detriment (for example, Callahan and 
Thomas, 1994; Mombaerts et al., 1996). Many other nerves that were stained as strongly 

as the hypoglossal were not obviously different to those of wild type animals (compare 

figure 6.2 with appendices 53 and 5. D). This implies that the tau-containing reporter 

protein did not adversely affect the development of TAG-I null mutant hypoglossal axons, 

although analysis of embryos with a different null mutation would be needed to confirm this. 

6.4.3 Later development of the hypoglossal nerve 

The results presented indicate that the TAG-] null mutation has a significant effect upon the 

projection of hypoglossal nerve at El 1.5 and E12.5. At E13.5, faint staining of the 
hypoglossal nerve, and intense staining of many other nerves, meant that it was often 
difficult to trace hypoglossal projections. The hypoglossal nerves that were sufficiently 

strongly labelled could almost always be traced through a rostral turn, possibly reflecting a 
44recovery" of the hypoglossal nerve defects seen at earlier ages. However, it could equally 

reflect a greater tendency of defective nerves to lose their staining. Too few E13.5 

hypoglossal nerves could be identified to distinguish between these possibilities with 

confidence. To increase the numbers of nerves examined, it might be better to identify 

hypoglossal nerves by application of the tracer DiL 

The idea that affected hypoglossal nerves recover is supported by other observations. The 

differences between heterozygous and homozygous hypoglossal nerves were not as 
significant at E 12.5 as they were at E 11.5, implying that nerves of the two genotypes 
become more similar as development proceeds. TAG-] null homozygous mice have no 

obvious defects of tongue function, and performed as well as heterozygous siblings in a test 
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of tongue extension (B. W. Kiernan, personal communication; after Kolb and Wishaw, 

1983). 

Recovery might occur in any of a number of ways. It could involve extension of 

hypoglossal axons that were previously stalled, for example if other factors begin to fulfil 

the role of TAG- 1, or if a factor usually antagonised by TAG- I ceases to function. Indeed, 

defects in the hypoglossal nerve extension of HGF mutant mouse embryos appear to be 

compensated for as development proceeds (Caton et al., 2000). A detailed study of the 

expression of axon guidance molecules in the TAG-] mutant neck and hindbrain might 
identify factors that could mediate recovery. 

Alternatively, recovery could involve innervation of the tongue by other neurons, as can 

occur after damage of the human hypoglossal nerve (Wilson et al., 1994). Indeed, in Pax-6 

mutant rat embryos, which lack the hypoglossal nerve, the tongue is innervated by axons of 

the second cervical spinal nerve (Osumi et al., 1997). Another possibility is that there is no 

recovery of tongue innervation, but that this is not detrimental. It was not uncommon for 

embryos to have one hypoglossal nerve that did extend towards the tongue and one that did 

not (data not shown), and it is possible that unilateral innervation allows adequate tongue 

movement. Indeed, injury of one hypoglossal nerve does not usually have a severe effect 

upon human patients (Wilson et al., 1994). 

Whether tongue innervation is restored could be investigated in a number of ways. While it 

is not practical to stain older embryos for B-galactosidase activity (Whiting et al., 199 1), 

axons could be labelled with a tracer such as DiI. Application of Dil to the hypoglossal 

nucleus would allow the destination of hypoglossal axons to be determined. Application of 
Dil to the tongue itself would label any innervating axons retrogradely, and should show 

the location of their cell bodies. A marker of the hypoglossal nucleus, such as HB9 (Arber 

et al., 1999), could be used to confirm whether a source of tongue innervation was indeed 

hypoglossal. 
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6.4.4 Hypoglossal nerve development and Ll 

LI, and LI1FAG-1 double, mutant embryos were also analysed (table 6.4). The sample 

sizes were such that X' tests would have been unreliable (Dytham, 1999), so it was not 

possible to say whether embryos lacking only LI (row 5 of table 6.4) and controls (row 1) 

differed significantly. Neither was it possible to say whether the hypoglossal nerves of 

embryos lacking Ll and expressing only truncated TAG-1 (row 6) differed significantly 
from controls. The proportions of doubly deficient hypoglossal nerves that could not be 

traced through a rostral turn suggested that there is a difference between these and 

control nerves. However, the lack of an obvious rostral turn was often linked to paler 

staining for B-galactosidase activity (table 6.4). This could reflect a delay in the general 
development of embryos that lack LI and express only truncated TAG-1, rather than a 

specific effect upon hypoglossal axon guidance. More double mutant embryos would need 

to be analysed, and a purer genetic background used, before any conclusions could be 

made. 
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6.5 Conclusions 

1. TAG-1 is involved in the correct development of the mid-gestation mouse 

hypoglossal nerve. 

In the absence of TAG- I protein, E 11.5 and E 12.5 hypoglossal nerves were 

significantly less likely to have extended beyond point of rootlet convergence, and 

turned towards the tongue, than if TAG- I protein was present. 
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6.6 Appendices 

Appendix 6. A: Analysis of El 1.5 hypoglossal nerve results after reclassification. 
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Appendix 6. A Analysis of E11.5 hypoglossal nerve results after reclassification 

A: Comparison of the numbers of hypoglossal nerves that had turned to grow 
rostrally (phenotype 1) with those of other phenotypes (2 + 3). When the rootlets 
of one nerve did not all have the same fate, fractions were assigned to categories 
as appropriate. "expected" values are those that would have been obtained if there 
was no difference between the heterozygous and homozygous nerves. The low NI 
value indicates that the heterozygote and homozygote hypoglossal nerves are not 
significantly different when compared in this way. 
B: Comparison of the numbers of hypoglossal nerves that had extended beyond 
the point of convergence (phenotypes I+ 2) with the numbers of those that had not 
(phenotype 3). The NI value of over 3.84 indicates that the heterozygote 
and homozygote hypoglossal nerves are do differ significantly in their ability to 
extend beyond the point of rootlet convergence. 
d. f.: degrees of freedom; P: probability that the given XI statistic would have been 
obtained if there was no difference between the nerves. 

A 

jo/al: 

observed: 
TA G- I +/- 
TA G- I -A 
total 

expected: 
TA G- I +/- 
TA G- I -A 
total 

B 

observed: 
TA G- I 
TA G- I 
total 

expected 
TA G- I 
TA G- I 
total 

31 48 79 
34 40 74 
65 88 153 

33-562 45.438 79 
31-438 42.562 74 
65 88 153 

X2= 0.703, d. f. = 1, P-- 0.402 

total: 

75 4 79 
57.25 16.75 74 
132.25 20.75 153 

68.286 10.714 79 
63.964 10.036 74 
132.25 20.75 153 

2= 10.0640, d. f = 1, p- 0.00 151 
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7 General Discussion 
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During the development of a nervous system, axons extend from neuronal cell bodies to the 

targets on which they will synapse. This extension is guided by a variety of molecular cues 

within the axons' environment, and by axonal receptors for these cues. Proteins that might 

act as such cues and/or receptors include certain members of the immunoglobulin-like 

super-family (IgCAMs). A number of IgCAMs have been shown to influence the guidance 

of axons in vitro, and to have expression patterns suggestive of roles in axon guidance. 
Whether the proteins do in fact guide axons in vivo is perhaps best tested using animals in 

which IgCAM function has been perturbed. The majority of this thesis describes what is to 

date the most comprehensive analysis of neural development in mice with mutated TAG-] 

alleles. It also provides novel information on the roles of other cell surface proteins in the 

development of TAG- I -expressing neurons. 

The work conducted falls into one of two main categories. Particular attention was paid to 

dorsal spinal commissural neurons, because the IgCAMs TAG-1, Ll and NrCAM have 

previously been implicated in their development. In addition, developing TAG-] null 

mutant mice were examined for gross defects in other aspects of their neuroanatomy. The 

results obtained are summarised below, along with brief discussions of their potential 
implications, suggestions for further research. Positive and negative aspects of the study 

are also considered. 
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7.1 The development of dorsal spinal commissural axons 

7.1.1 Wild type dorsal spinal projections do not all decussate and turn rostrally 

The present study provides a detailed description of the dorsal spinal projections of the 

mid-gestation wild type mouse. The dorsal spinal projections of mid-gestation wild type 

rats (Bovolenta and Dodd, 1990) and mice (Burstyn-Cohen et al., 1999; Matise et al., 1999; 

Imondi et al., 2000; Zou et al., 2000) have been described previously. However, little 

attention had been paid to axons that did anything other than extend across the floor plate 

and turn rostrally. The results presented here confirm that between 3 and 4% of wild type 

mouse dorsal spinal axons normally turn caudally after decussation, and that a further I to 
2% continues to extend laterally rather than making any longitudinal turn. They also show 

that the trajectory taken by dorsal spinal commissural axons can depend upon the dorso- 

ventral level of Dil application, and upon mouse genetic background. For example, the 

axons of E13.5 C57BI/6 embryos were significantly more likely to have left the floor plate 

and turned rostrally than those of 129/SvEv embryos, possibly reflecting an inherent 

difference between these mouse strains. Such findings could prove to be important for the 

interpretation of other work. 

7.1.2 Dorsal spinal commissural projections seem to develop normally in the absence 

of wild type TAG-1, Ll or NrCAM proteins 

Previous studies have implicated the chicken homologues of TAG-1, LI and NrCAM in the 

ability of dorsal spinal commissural axons to extend into the floor plate (Stoeckli and 
Landmesser, 1995; Stoeckli et al., 1997; Fitzli et al., 2000). The present work found there 
to be no significant differences between the ways in which these axons projected in wild 
type and TAG-] mutant mouse embryos. This indicates that TAG- I is not required for the 
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normal guidance of mouse dorsal spinal neurons. Similarly, there were no significant 
differences between the dorsal spinal projections of embryos that lacked Ll and those of 
their wild type littermates. In NrCAM homozygous mutant embryos, a significantly greater 

proportion of dorsal spinal projections made a caudal turn after decussation, but the dorsal 

spinal axons of wild type and NrCAM mutant animals were otherwise identical. 

These results all appear to be in contrast to those from chicken embryos (Stoeckli and 
Landmesser, 1995; Stoeckli et al., 1997; Fitzli et al., 2000). One possible explanation for 

such discrepancies is that the antibodies and soluble proteins applied to chick spinal cord 

did not simply perturb IgCAM function, as had been assumed. Another possibility is that 

there are differences between the ways in which the dorsal spinal axons of mouse and 

chicken are guided. 

The reported absence of defects indicates that TAG-1, Ll and/or NrCAM are individually 

unnecessary for mouse dorsal spinal axon development. However, it does not exclude the 

possibility that these proteins are involved in the development of these projections. It 

might be that other factors can compensate for their absence. This possibility could be 

investigated by comparing the responses of wild type and mutant axons to floor plate tissue 

in vitro. Perturbation of axonin- I or NrCAM function had more pronounced effects upon 

chick dorsal spinal axons in vitro than in vivo (Stoeckli and Landmesser, 1995; Stoeckli et 

al., 1997), so it is conceivable that the effects of IgCAM mutations would also be more 

evident in vitro. If this proved to be the case, in vitro experiments could also be used to 
better understand IgCAM function. For example, dorsal spinal explants could be 

confronted with cells that express just one floor plate factor, for comparison of the 

responses of mutant and wild type axons to this factor alone. 
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7.1.3 Dorsal spinal commissural projections are abnormal in TAG-VLI double 

mutant embryos 

The possibility that other factors compensate for TAG-1, LI or NrCAM can also be 

investigated by analyses of embryos that carry more than one mutation. The present study 
included such an examination of the dorsal spinal projections of TAG-MI double mutant 

embryos. The apparent reticence of double mutant axons to extend out of the E12.5 floor 

plate suggested that TAG- I and LI might indeed be partially redundant in floor plate exit. 
This is conceivable, as these proteins are co-expressed on the regions of dorsal spinal 

commissural axons that lie within the floor plate (Dodd et al., 1988), and are known to 
interact physically (Felsenfeld et al., 1994; Malhorta et al., 1998). At E 13.5, double mutant 

axons were less likely to be in or at the floor plate than those of wild type embryos. This 

could have any of a number of explanations. There might be some sort of over 

compensation for the absence of TAG- I and L I, such as the up-regulation of factors that 

have similar roles, or the down-regulation of factors with antagonistic roles. Alternatively, 

the relative increase in the proportion of contra-rostral axons could reflect the death of 

axons that were in other categories. For instance, the "in/at floor plate" neurons might have 

an impaired ability to respond to trophic factors from the midline (Wang and Tessier- 

Lavigne, 1999), and so be more likely to die. Whether there is selective death of the stalled 

axons could be tested using TUNEL (Gavrieli et al., 1992). As this double mutant analysis 
has indicated that TAG- I and LI might be functionally redundant, it would also be 

interesting to examine the dorsal spinal projections of TAG-IINrCAM and LI1NrCAM 

double mutant embryos. 
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7.1.4 Dorsal spinal commissural projections are abnormal in ephrin B3 mutant 

embrYos 

This thesis also includes direct evidence for the involvement of ephrin B3 in dorsal spinal 

commissural axon development. Expression patterns and in vitro experiments had 

previously led to the suggestion that ephrin B3 might repel these axons from the ventral 

midline (Imondi et al., 2000). Indeed, ephrin B3 appears to have such an effect upon 
corticospinal axons (Kullander et al., 2001 b; Yokoyama et al., 2001). At E12.5, the dorsal 

spinal commissural axons of ephrin B3 homozygous mutant embryos were found to be 

significantly more likely to be in or at the floor plate than those of heterozygous littermates. 

Thus the present work indicates that ephrin B3 does indeed repel dorsal spinal commissural 
axons from the mouse floor plate. It also implies that other factors can subsequently 
compensate for an absence of ephrin B3. There were no significant differences between 
homozygous and heterozygous dorsal spinal projections at E 13.5, when ephrins BI and B2 

are first expressed (Imondi et al., 2000). The possibility that these factors compensate for 

an absence of ephrin B3 could be investigated by the analysis of double mutant embryos. 
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7.2 A general survey of other aspects of neural development 

7.2.1 Description of the regions in which TAG-1 gene regulatory sequences are active 

This thesis also describes investigations into the roles that TAG- I might have in other 

aspects of neural development. Part of this work involved a detailed account of TAG4 

promoter sequence activity at certain developmental stages, as determined by its ability to 

drive expression of a lacZ reporter gene. The distribution of TAG- I immunoreactivity in 

the developing mouse nervous system has been described previously (Yamamoto et al., 

1986; Wolfer et al., 1994). However, this does not necessarily reflect all instances of TAG- 

I protein expression or TAG-1 gene activity. For example, TAG-I is often secreted (Ruegg 

et al., 1989; Furley et al., 1990; Karagogeos et al., 199 1), and it could be that the soluble 

protein is too readily lost from tissue to be labelled by immunohistochernistry. In situ 
hybridisation has been used to determine the extent of TAG-] transcription in the adult 

mouse (Yoshihara et al., 1995; Wolfer et al., 1998), but the present work constitutes the 

first description of TAG4 gene activity in the developing murine nervous system. 

The results presented here are largely in agreement with reports of TAG- I- 

immunoreactivity, although some novel staining was also observed. This could sometimes 
be attributed to a structure not having been examined in previous studies, or to the ability of 

the 1acZ gene product to perdure. In other cases, such as those of limb and mandibular 

mesenchyme, staining was suggestive of novel TAG-] gene activity. This might reflect the 

presence of previously uncharacterised regulatory elements, which non-nal ly repress TAG- I 

expression, but that had been deleted in the TAG-] null allele. Alternatively, it could 

represent normal expression of TAG- I protein that is not detectable by antibody labelling. 

In situ hybridisation of embryos for TAG- I mRNA would establish whether TAG- I is 

indeed transcribed in the developing limbs and/or mandible. 
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7.2.2 Most neurons seem to be unaffected by a lack of TAG-1 protein 

The results presented demonstrate significant agreement between patterns of B- 

galactosidase activity and TAG-I immunoreactivity. This means that the TAG-] null allele 

is a valuable tool for studying the effects of mutations upon structures that normally express 

TAG- 1. 

There were few differences between the patterns of B-galactosidase staining in TAG4 null 
heterozygous and homozygous embryos or immature brains. Structures whose 
development might have been expected to involve TAG- I often appeared to be unaffected 
by an absence of the protein. For example, axonin-I has been implicated in correct 
innervation of chicken hind limb (Landmesser and Honig, 1986; Honig et al., 1998; Xue 

and Honig, 1999), but the limbs of TAG4 null homozygous mouse embryos appeared to be 

innervated normally. TAG- I is expressed by the facial nerve nucleus, and has been 

suggested to have a role in the migration of its cell bodies (Garel et al., 2000). However, 

this migration also seemed to be unaffected by an absence of the protein. 

These results demonstrate that TAG- I is not essential for the gross development of most of 

the neurons that normally express it. However, they do not exclude the possibility that 

TAG- I is involved in their development in some way. For instance, the TAG-] null 

mutation might have more subtle effects than were evident here: this could be investigated 

if mutant embryos and brains were sectioned and examined at higher magnifications. 
Alternatively, other factors might compensate for the lack of TAG- 1. Whether LI and 
NrCAM are such factors could be investigated by analysis of double mutant null embryos. 
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7.2.3 TAG-1 could be important for development of the hypoglossal nerve 

Two populations of neurons that may have been affected by the TAG4 null mutation are 

those of the habenulointerpeduncular tract (HIPT) and those of the hypoglossal nerve. 

Further sectioning of brains would be required to confirm whether development of the 

HIPT had in fact been compromised. Application of DiI to the habenula nucleus would 

give a better idea of the nature of any HIPT disruption. 

Hypoglossal nerve defects were less ambiguous. In the absence of TAG- I protein, E 11.5 

hypoglossal nerves were significantly more likely to stall at the point of rootlet 

convergence than if TAG- I was present. The nerves also differed significantly 
between homozygous and heterozygous embryos at_E12.5. 
Thus TAG- I might be important for the ability of mid-gestation hypoglossal nerve axons to 

extend correctly. The present work also provides evidence that the defects are either not 
detrimental, or subsequently repaired. Applications of DiI to the hypoglossal nerve, or to 

the tongue, at later stages would help to distinguish between these possibilities. So too 

might immunohistochernical labelling of the axons. This would also allow the hypoglossal 

nerves of homozygous mutant embryos to be compared directly with those of wild type 

embryos. In addition, it would allow the hypoglossal nerve to be studied in mice that do 

not carry a lacZ-containing allele. 
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7.3 Positive and negative aspects of the study 

This thesis describes the use of genetically modified mice to better understand the roles of 

particular proteins in mouse neural development. This approach has several benefits. In 

contrast to the experiments performed in chicken embryos (Stoeckli and Landmesser, 1995; 

Lustig et al., 2001), the mouse embryos used here actually lacked the proteins of interest 

(A. M. Furley, personal communication; Cohen et al., 1997; Sakurai et al., 200 1; 

Kullander et al., 2001 b). Thus experimental animals could be compared with controls 

without the possibility that injected factors might have blocked protein function 

incompletely, or have had effects upon other proteins. 

The use of mutant mice also had drawbacks. As reported previously, the effects of 

mutations can vary depending upon mouse genetic background (Dahme et al., 1997; 

Kitsukawa et al., 1997; Guo et al., 2000). When mice of mixed strain backgrounds are 

mated, the resulting embryos can differ from one another genetically, and littermates with a 

single mutation can theoretically have different phenotypes. Thus the effects of mutations 

are best studied using mice of a homogenous genetic strain. As such mice were not 

available at the beginning of the study, the effects of TAG4 mutations were initially 

analysed using mice of mixed strains. Subsequently "pure" genetic strains were also 

generated. In the present study this involved at least 6 "back-crosses", which required 

approximately one year's worth of breeding (Gerlai, 1996). This delayed the investigation, 

with consequences such as there being insufficient time to generate ideal numbers of 

embryos for the E12.5 hypoglossal nerve analysis. A further concern is that such back- 

crossing is possibly an inadequate measure. It has been calculated that, even after 12 

generations of back-crossing, as much as 1% of the mouse genome could remain linked to a 

gene of interest (Gerlai. 1996). Thus a relatively large number of genes might be 

so close to the TAG-1 locus as to be effectively inseparable from it, and the phenotypes of 
TAG-] mutant mice might actually be reflecting the presence of a particular allele at a 
different locus (Gerlai, 1996; Lathe, 1996). This possibility could be investigated by rescue 

experiments. For instance, if TAG-] null mutant mice were caused to express TAG-1 
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protein, correct development of all hypoglossal nerves would indicate that defects were a 

direct result of the TAG-] mutation. TAG-] null mutant mice could be caused to 

specifically express TAG- I by introduction of a TAG-] -containing transgene (Gerlai, 

1996), either by the microinjection of transgenic DNA into pronuclei (Hogan et al., 1994), 

or infection by a transgene-containing virus (Slack and Miller, 1996; Vogt et al., 1996; 

Giger et al., 1997). 

A further drawback of using mutant mice is that the approach can rarely prove that a 

protein is not involved in a process. Overlap between the functions of proteins can often 

mean that other molecules fill the roles of one that is targeted. For example, the HIPT was 

unaffected by mutations in either eph B2 or eph B3, but was defasciculated in mice that 

were homozygous for both mutations. This suggests that the Eph B2 and B3 receptors can 

affect development of the tract, but that the presence of either one is sufficient for 

development to proceed normally (Orioli et al., 1996). Similarly, NrCAMILI double 

mutant mice have more severe defects in the morphology of their cerebella than mice with 

only one of the mutations. This indicates that NrCAM and LI have partially redundant 
functions in cerebellar development (Sakurai et al., 2001). Thus it is possible that TAG-1, 

LI and NrCAM are involved in many more processes than are affected by the absence of 
these proteins individually. 

As discussed above, the effects of perturbing chicken IgCAM function were more 

pronounced in vitro than in vivo (Stoeckli and Landmesser, 1995; Stoeckli el al., 1997). 

Thus the present study might have benefited from an in vitro comparison of mutant and 
wild type axons. It is also possible that more pronounced effects would have been observed 
if animals with multiple mutations had also been used. TAGAILI double mutant embryos 

were examined, but TAG-] nulVL1 double mutant embryos were not, so the possibility that 

Ll has some overlap of function with the truncated TAG-1 proteins remains untested. 
However, it is costly in both time and money to generate animals with multiple mutations, 

particularly if the mutations are not already being maintained on a single strain background 

(see above). 
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Some aspects of the present study would have benefited from analysis of greater numbers 

of samples. Had more animals been available in the time allowed, it would also have been 

better to examine certain things more thoroughly. For example, injection of DiI into 

transverse sections of spinal cord would have allowed the fasciculation of dorsal 

commissural interneurons to be assessed, as in the chicken experiments (Stoeckli and 

Landmesser, 1995). A more detailed immunohistochernical analysis of TAG4 mutant 

animals would have allowed structures that do not normally express TAG- I to be studied. 
This might have proved interesting as the secretion of TAG- I protein (Ruegg et al., 1989; 

Furley et al., 1990; Karagogeos et al., 199 1) means that the TAG4 null mutation could 

theoretically have non-cell-autonomous effects. 
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7.4 Conclusions 

This thesis describes an investigation into the roles of certain proteins in development of 

the mouse nervous system. It reports the use of a lacZ reporter gene to confirm, and 

extend, what is known about expression of TAG-1 in the developing mouse. It also 

describes use of this reporter to study the development of structures that normally express 
TAG-1. It provides the first evidence that an absence of TAG- I protein is detrimental for 

hypoglossal nerve development. The results presented also demonstrate that TAG- I is not 

essential for the gross development of many of the other the neural structures that ordinarily 

express it. This includes some of those that TAG- I has previously been suggested to affect, 

such as the facial nerve nucleus (Garel et al., 2000) and axons that innervate the limbs 

(Landmesser and Honig, 1986; Honig et al., 1998; Xue and Honig, 1999). 

In contrast to what may have been expected from chicken experiments (Stoeckli and 
Landmesser. 1995; Stoeckli et al., 1997), the commissural axons of dorsal spinal 
interneurons also appeared to develop normally in the absence of TAG-1. This was 

verified using axon-tracing methods. Such analyses also provided evidence to support 

previous suggestions that dorsal spinal commissural axons are unaffected by the Ll null 

mutation (Cohen et al., 1997), and confirmed independent findings that their development 

does not require NrCAM (More et al., 2001). In addition, the results presented provide 

evidence for functional redundancy between TAG-1 and Ll, and for a role for ephrin B3, in 

the ability of commissural. axons to extend out of the E12.5 floor plate. 
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