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Summary 

In this thesis intersubband relaxation of electrons in quantum wells is theoretically 
investigated. Firstly, the in-plane kinetic energy, and also well width dependences of 
electron intra- or intersubband scattering rates (or times), associated by longitudinal 
optical (LO) phonon emission in a semiconductor single quantum well (SQW) struc- 
ture are presented. Semi-analytic calculations are carried out for a GaAs/AlO. 3GaO. 7As 
SQW structure. The results show that the scattering rates (both for intra- and intersub- 
band scattering) weakly depend on in-plane kinetic energy of the electron. Further- 
more, the resulting calculations of well width dependence show that intrasubband 
scattering times gradually increase with well width contrasting with the intersubband 
scattering times which display a monotonic decrease. 

A theoretical study of the condition to achieve inverted population in a semicon- 
ductor double quantum well (DQW) structure is also presented. The LO-phonon 
assisted tunneling rates, based on the Fr6hlich interaction and Fermi's golden rule, has 
been performed for a GaAs/Alo. 3Gao. 7As DQW structure. The calculated results show 
that the tunneling rates monotonically decrease with the energy difference El - El 

and strongly depend on the magnitude of the transfer integral M. 

This work has been extended to calculate the electron transport and its kinetics, due 
to various types of scattering and tunneling mechanisms in a triple barrier resonant 
tunneling structure (TBRTS). A system of coupled kinetic equations that describe the 
nonequilibrium electrons in the structure has been solved analytically to obtain sub- 
band distribution functions and gain spectra. 

Finally, the concept of sequential tunneling has been introduced to explain an in- 
plane magnetic field dependence of resonant tunneling in a TBRTS. Typical current- 
voltage characteristics and derivatives for the TBRTS with particular design parame- 
ters have been calculated. It is found in the second derivative of the current that the 

resonance between El and Ej is manifested as a visible feature in the background of a 
wide E2 resonance. This feature has a sharp local maximum in the absence of applied 
magnetic field, and becomes flattened with increasing magnetic field in agreement with 
experiments. 
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Chapter I 

Intersubband transitions in quantum wells 

1.1 Outline of Thesis 

This chapter begins with a brief introduction to semiconductor heterostructures, 

quantum wells (QWs) and superlattices. The remainder of the chapter describes inter- 

subband transitions in QWs, which play an essential role in the lasing action in Quan- 

tum Cascade Laser (QCL) structures. 

In Chapter 2, a microscopic lattice dynamic model is introduced to calculate 

scattering times for intra- and intersubband transitions due to electron-longitudinal- 

optical (LO)-phonon interaction in a single quantum well (SQW) structure. The scat- 

tering times are investigated in terms of in-plane kinetic energy of the electron. Well 

width dependence of the intersubband scattering times is also presented. 

In Chapter 3, the technique developed in Chapter 2 is applied to calculate tun- 

neling rates for interwell transitions due to electron-LO-phonon scattering in a double 

quantum well (DQW) structure. The focus is on the investigation of the tunnelling 

rates as a function of the difference in confinement energy between the states involved. 

The calculations are presented in an analytical form taking-into account the different 

effective mass of the electron in the quantum well and barrier materials. 

Chapter 4 applies the Boltzmann kinetic equation to the study of nonequilibriurn 

electrons in DQW structures. The kinetic equation, which involves terms describing 

the electron-electron (e-e) and electron-LO-phonon (e-LO) scattering, as well as elec- 

tron escape and electron generation processes, have been analytically solved for the 

subband distribution functions. The resulting calculations provide a comprehensive 
description of the lasing process in intersubband lasers. 
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Chapter 5 compares details experimental measurements with theoretical calcula- 

tions for the tunneling current in a triple barrier resonant tunneling structures (TBRTS) 

incorporating asymmetric coupled QWs with magnetic field applied perpendicular to 

the direction of current flow. 

Concluding remarks and future work relating to this work are presented in Chapter 

6. 

1.2 Heterostructures, quantum wells and superlattices 

1.2.1 Heterostructures 

Modem techniques of semiconductor crystal growth have resulted in what is 

known as band-gap engineering. Using HIN semiconductors Molecular Beam Epitaxy 

(MBE) and Metal-Organic Chemical Vapour Deposition (MOCVD) allow the growth 

of ultra thin layers of semiconductor materials with a controlled energy band gap. 

These layers can be grown epitaxially on top of one another providing there is a rea- 

sonable match of the crystal lattice constant between layers. 

Continued developments of these techniques are currently the subject of a new 

field of semiconductor device research. Many new device structures such as Hetero- 

junction Bipolar Transistors (HBT), High Electron Mobility Transistors (HEMT) and 

Resonant Tunneling Diodes (RTD), are designed using the principles of band-gap 

engineering. The RTD, which utilizes the electron-wave resonance occurring in double 

potential barriers, emerged as a pioneering device in this field [1,2]. The idea of reso- 

nant tunneling was extensively investigated both in a fundamental viewpoint and also 

its applications [3-6], shortly after MBE appeared in the research field of compound 

semiconductor crystal growth. Since then, the RTD has attracted a great amount of 

interests and has been investigated both from the standpoint of quantum transport 

physics and also its application in functional quantum devices. Despite its simple 

structure, the RTD is indeed a good laboratory for elcctron-wave experiments, which 

can investigate various manifestations of quantum transport in semiconductor nano- 

structures. It has played a significant role in disclosing the fundamental physics of the 

electron-wave in semiconductors, and enabling the study of more complex and 
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advanced quantum mechanical systems such as the electron intersubband transitions in 

QCL structures. 

1.2.2 Quantum wells and superlattices 

Band-gap engineering enables the production of conduction and valence bandedge 

profiles of a typical quantum well as shown in Figure 1.1 (a). The barrier material has a 

larger band gap than the well material, causing the motion of electrons (e) and holes (h) 

in the growth direction to be restricted. The confinement potential quantizes the motion 

of the carriers (e or h) in the growth direction, giving rise to a number of dis-crete 

energy levels. These energy levels which are known as subband energies have an 

associated dispersion in the plane of the quantum well (for the idealised paralolic 
bands) 

h2 k2 
E,, (ky + XY 

2Me*(h) 

where kxy is the magnitude of in-plane wavevector of e or h, m: (h) is the effective 

mass, and en is the energy at the bottom of the nth subband. In the infinitely deep well 

approximation the confinement energy e,, is simply 
h2 n; r 

2 

2m* 
, (h) 

where L stands for the well width. 

In addition, modem crystal growth techniques also allow the growth of multiple 

quantum well (MQW) structures, which are schematically shown in Figure 1.1(b). 

This structure can be formed by periodic variation of alloy composition during crystal 

growth. For a MQW consisting of a series of quantum wells separated by barriers wide 

enough that wavefunction of a carrier in one well does not penetrate into an adjacent 

well each well has the same cigenstates as would an individual well; i. e. they are effec- 

tively isolated from one another. When the barrier thickness decreases, the probability 

of an electron tunneling from one well to another increases; i. e. the wave function of 

the carrier in one well can be non-zero in an adjacent well. For a structure consisting of 

two such wells separated by a thin barrier the eigenstates split into two. For N such 

wells the splitting gets into N states. As N increases a continuous distribution of 
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allowed states, called a miniband, is formed. The formation of these minibands is 

exactly analogous to the formation of bands in the tight binding model of bulk semi- 

conductors. Such a structure is known as a superlatticc. 

(31-Owth "I'Us -z 
0 

BA 

-E c 

1-- -. 1 E3 

E2 

E., (b) 

J-J v 

(a) Quanhun weR lietef ostnicture 

k 
XY 

ABABABABABA 

I IL 

Coildticfioil bancledye -E 

(b) Superlathce 

Figure 1.1 Conduction bandedge profiles of (a) a SQW heterostructure with the ideallsed 
parabolic dispersions of electrons (or holes), and (b) a SUperlattice forined by 
periodic variation of alloy (materials A and B) composition during crystal 
growth processes with the rcSLIlting minibands and minigap. 
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The superlattice can be viewed as a bulk material which has its periodicity in one 

direction modified resulting in both the dispersion energy in the growth direction and 

also the effective mass of the carriers being modified. When the barriers are very thin 

this effective mass is approximately the bulk mass. 

1.3 Quantum cascade lasers 

1.3.1 Introduction 

Recently, the emission wavelengths of semiconductor lasers have been available in 

the infra-red (IR) region [7-10]. Long wavelength semiconductor lasers are in demand 

for many industrial and research applications such as free-space communications, atmos- 

pheric pollution monitoring, industrial process control, IR counter measures, medical diapos- 

ties, and IR radar for aircraft and automobiles. According to the conventional interband 

transition approach it requires narrow band-gap semiconductor materials for realising 

mid- and long wavelength IR lasers. However, nonradiative recombination processes, 

Auger recombination for instance, tend to limit the high temperature lasing perfor- 

mance. 

An alternative approach utilising intersubband transitions in semiconductor quan- 

turn well structures for long wavelength IR lasers was first suggested in 1972 by 

Kazarinov and Suris [7]. In this unipolar structure coherent photons are generated by 

electron transitions from one confined state to another. Therefore, the wavelength of 

intersubband lasers is determined not by the band gap, but by the energy separation of 

conduction subbands arising from the quantum confinement in quantum well struc- 

tures. The first intersubband laser was not realised until the recent demonstration of a 

Quantum Cascade Laser (QCL) reported in 1994 by Faist et al [8]. The QCL is 

schematically demonstrated in Figure 1.2, and utilises photon emission between sub- 

bands in a staircase of coupled GaInAs quantum wells separated by AlInAs barriers. 

Each injected electron is recycled, ideally producing an additional photon, as it cas- 

cades through each period of the laser. 
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Figure 1.2 (a) Conduction band energy diagram of a portion of a QCL, which typically 
consists of 35 x active regions and digitally graded regions which act as 
injectors. The wavy arrows indicate the laser transitions. (b) Schematic repre- 
sentation of the dispersions of the confinement states n=1,2, and 3 parallel to 
the QW plane; kxy is the corresponding in-plane wave vector of electron. The 

bottom of these subbands correspond to energy levels n=1,2, and 3 indicated 
in (a). The wavy'arrows indicate all radiative transitions originating from the 
electron population in the subband n=3 down to the subband n=2. The quasi- 
Fermi energy eF,, corresponding to the population inversion at threshold mea- 
sured from the bottom of the n=3 subband. The straight arrows represent the 
intersubband nonradiative, transitions due to LO-phonon scattering processes 
[8]. 
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The main obstacle to achieving the intersubband lasing is nonradiative relaxations 

between subbands due to optical phonon scattering (discussed in more detail later in 

the following chapters). The typical phonon relaxation time (- 1 ps) is much shorter 

than the radiative time, which is longer than 1 ns, resulting in a very low radiative 

efficiency (..: ý 10-3 ). However, specially designed multiple barrier heterostructures can 

provide population inversion that giving rise to lasing without reducing the current 

injection efficiency. 

In the following subsection the basic principles of intersubband transitions in 

QWs, and also some basic aspects of quantum effects and relaxation processes in semi- 

conductor nanostructures, which play an essential role in the QCL are presented. 

1.3.2 Basic principles of intersubband transitions in quantum wells 

According to whether the optical transition is between quantum states in adjacent 

QWs, so-called interwell photon-assisted tunneling transitions shown in Figure 1.3(a), 

or between states in the same QW, so-called intrawell transitions shown in Figure 

1.3(b), the approaches towards intersubband lasing can be devided in two categories 

[9,10]. The interwell photon-assisted tunneling transition, originally suggested for 

generating and amplifying IR light by Kazarinov and Suris [7], occurs between the 

ground state of a QW and one of the excited states of the adjacent well in a superlattice 

structure under an external electric field parallel to the growth direction. A population 
inversion can be easily established between the two quantum states due to the barrier- 

separated feature of the two states, and the laser energy can be tuned over a wide range 

by varying the electric field strength. However, since the overlap of their wavefunc- 

tions is quite small, the transition rate between the two states is small, and a high elec- 

tron injection is required to obtain sufficient gain to overcome losses in the system, 

leading to a very high threshold current. -- 
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(a) 

(b) 
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hn 

Z 
............ 

ýý Acý 

Figure 1.3 Illustrationsl of optical intersubband transitions: (a) interwell photon-assisted 
tunneling transitions, and (b) intrawell transitions associated with electron reso- 
nant tunneling between QWs [9]. 

In the second scheme, the intrawell optical transition rate is much larger, but the 

nonradiative relaxation between the two states in the same well is also faster, which 

results in difficulties in achieving population inversion between the two states. For a 

clear comparison between the two approaches, it is helpful to have a more analytic 

evaluation. Starting from the lasing threshold gain condition [9,11 

ropt ' gth a. + ai 

I SI"I I 
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where r,, Pt 
is the optical confinement factor, 91h is the gain at threshold, a.. is the 

mirror losses due to finite facet reflectivity, and a, is the internal losses for the optical 

wave which results from various mechanisms such as free-carrier absorption and scat- 

tering at the heterostructure interfaces. Since a,, ce., and r. P, are mainly concerned 

with the optical wave in the QW structure, it can be assumed that a,, a., and rP, 

would not be significantly affected by the different transition schemes (inter- or intra- 

well transitions). Thus, the same threshold gain 91h is required in the two approaches. 

How the threshold gain is reached differs in the two approaches? 

CTro, wili aids -z 

E2 
hc2 

Ell"12 
-IN- 
Tj 

Conduction bandedge g 

Figure 1.4 Schematic diagram of a QCL structure with a wide well as the lasing unit and 
two narrow QWs as the electronic energy filters by resonant tunneling [9]. 

Considering the steady state of a two-level system shown in Figure 1.4, one can 

obtain 

n2 - n, 
j (-;, 

"2 (r12 

e I+ T" 2+ T12 

where n, is the electron density at the the lower energy level - E, , n2 the electron 

density at the upper energy level E2,, J the current density injected into the -upper 

level, r, the electron lifetime at the lower level, r, 2'' the electron relaxation (including 

nonradiative and radiative contributions) time from E2 to E,, and 'r2 is the time 
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required for an electron in the upper level to escape from the well in ways other than 

through the lower level. 

From Eq. (1.3), it is clear that the relaxation 1'12 must be longer than the electron 

lifetime -rl in order to establish the population inversion, which is essential to intersub- 

band lasing. Since the overlap wavefunctions between two states in adjacent wells is 

smaller, the relaxation time ", 2 for the interwell transition is longer than the relaxation 

time 'r12 for the intrawell transition, and thus population inversion can be established 

more easily by the interwell photon-assisted tunneling transition. Additionally, due to 

the longer relaxation time r, 2 . the escape time "2 at the upper level, which is approxi- 

mately the same in the two transition schemes, has a more significant impact in 

reducing the current injection efficiency in the case of interwell transition. If the 

lifetime r, at the lower level is much smaller than the relaxation time 'r, 2 in either 

case, one can show that the threshold current density for intrawell transitions is lower 

than the threshold current density for interwell transitions. Therefore, it is preferable to 

make the lower level lifetime r, much smaller than the relaxation time r12 and use the 

intrawell transition approach to intersubband lasing to achieve a low threshold current. 
However, reducing the lifetime at the lower level to a value much smaller than the 

relaxation time without affecting the current injection efficiency is a difficult task. 

Since the typical value of the electron relaxation time 'r, 2, due to LO phonon 

emission between subbands with energy separation higher than the LO phonon energy 

(ELO ; zý 36 meV for GaAs QW), is of the order of I ps [ 12-14], a sufficiently thin 

barrier layer is required for the lower lifetime r, to be smaller than r12. However, such 

a thin barrier layer does not provide good confinement of electrons in the upper level, 

leading to large leakage current. Modified QW structures with alternating wide and 

narrow well acting as electronic energy filters, have been suggested to overcome this 

problem [15-17]. Here energy filters selectively inject and remove electrons via reso- 

nant tunneling as schematically shown in Figure 1.4. However, because the nonradia- 

tive relaxation by LO phonons is so fast, a sufficient population inversion cannot be 

easily achieved without a large amount of current injection and careful device design. 



Chapter I Intersubband Transitions in Quantum Wells ..................................... I 

In the far-IR spectrum, the dominant nonradiative relaxation 1-ac 2 via acoustic 

phonon scattering between subbands, is on the order of 100 ps. Thus the population 
inversion can be achieved more efficiently, and the radiative efficiency could be raised. 
Making use of the difference in the relaxation times above and below the optical 

phonon energy for stimulated far-IR emission in a multilevel scheme has been sug- 

gested by Andronov [16], and can be constructed in DQW system made of a narrow 

well as the injected current region, and a wide well as the lasing region. Since the 

energy separation between subbands is smaller, thermal fluctuation may be a serious 

problem in far-IR lasing action, and low operating temperatures may be required. In 

contrast, in the wavelength ranges of the mid-IR spectrum, the nonradiative relaxation 

of electrons between subbands by optical phonon scattering is unavoidable. Therefore, 

in order to achieve intersubband lasing in practice at these wavelengths, it is highly 

desirable to suppress the nonradiative decay processes in QWs. A common feature 

shared by these two approaches, whether the transition is interwell or intrawell, is that 

the electron transport in the QW structures is based on conventional intraband 

tunneling, in which a delicate balance is attempted to simultaneously fulfill two essen- 

tially distinct physical requirements for the realisation of an efficient population 
inversion [17], which are good confinement of electrons at the upper energy level and a 
fast electron tunneling rate at the lower level. This leads us to get through problems in 

practical implementation. 

The goal of this thesis is to generalize theoretical explanations of electron relaxa- 

tion in the QCL operation, and also study how to design a QCL structure to achieve a 
high radiative efficiency with a low threshold current thus optimizing its performance 

and operating temperature. 
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Chapter 2 

Longitudinal optical phonon scattering in 

single quantum well structures 

In this chapter in-plane kinetic energy, and also well width dependence of electron 

scattering times; both for intra- and intersubband scattering, due to LO phonon emis- 

sion in semiconductor SQW structures are investigated. The focus is on comparisons 
between the intra- and intersubband scattering times of electrons in a QW. The results 
have been performed for GaAs/Al,, Gal.,, As material systems, which are of considerable 

experimental interest. In addition, a comparison of the scattering times calculated using 

the semi-analytic approach described in this chapter with the numerical results reported 
in Ref. 12 by Ferreira and Bastard is also presented. 

2.1 Introduction 

Electron-phonon interaction in polar semiconductor QWs has attracted a great 

amount of interest both from a fundamental viewpoint and also due to its importance 

for device performance. For instance, the cooling of photoexcited carriers, carrier tun- 

neling, and the mobility of high-speed heterostructure devices are primarily governed 

by the scattering of electrons associated with LO phonons. The investigation of this 

interaction has been studied using either a dielectric continuum, model [18-24] or 

microscopic lattice dynamic models [25-30]. Dielectric continuum model ignores the 

effect of individual layers of atoms but it has the considerable advantage of making the 

interaction very simple. In some parameter regimes, the use of dielectric continuum 

model is well established and the electron scattering times calculated by using this 

model compare well with experimental results [31-33]. However, scaling'of the 
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electron-1-0-phonon interaction with diminishing device length presents a serious 

challenge to the accurate use Of Such model. As a result, there has recently been an 

increasing need for more rigorous analysis and dctailed knowledge of electroll-LO- 

phorion interactions in reduced dimensional systerris. This has been the main rnotiva- 

tion for the emergence of ab initio microscopic models [28,291. Though such models 

provide the most accurate analysis of the structure, they have not been used extensive- 

ly. This can attributed to the fact that the ab initio microscopic analysis involves very 

arduous and time consuming first-principle calculations of lattice dynamics [34,35] 

rather than employing adjustable parameters [36,37]. 

2.2 LO-Phonon scattering in single quantum well structures 

In general, any device can be viewed as a complex array of scatterers shown in 

Figure 2.1. The time-dependent Schr6dinger equation, including the microscopic time- 

varying scattering potential U#, t) due to the entire array of scatterers is [38] 

ih 
h2 

V2 + E(. (r) + Ujr, t)]T(iý, t) = EIP(r-, t) (2.1) 
li 

[ 

2ni* 

where E(, (F) is the conduction bandedge energy profile, m* the electron effective 

mass, and VI is the electron wavefunction with the corresponding total energy E. 

hicident waves 
IBM 

Refl 
W_ 'j, 

Indilvidual scatters 
(impiu-ities or phonons) 

/Tl"Ill. 

slmttetl 
WI-1ves 

Figure 2.1 Transmission ofelectrons through a device with a scattering potential U, (i:, t) 

composed of localised scattering potentials due to individual scattcrers (impuri- 

ties or phonons) [381. 
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2.2.1 Electron confinement in a SQW structure 

With modem epitaxial growth techniques, the alloy composition can be varied on 

an atomic scale to produce structures such as that shown in Figure 2.2. The structure 

consists of a narrow band-gap semiconductor (material B) layer embedded between 

two wider band-gap (materials A and Q layers resulting in the band discontinuities, 

which are such that the motion of both types of carriers (e or h) in the growth direction 

is restricted. The electron confinement energies in the conduction band can be calcu- 
lated in the envelope function approximation [39-42], using a Kane model [43] for 

describing the electron states of the parent A, B and C materials [44]. The electron 

wave function in each layer takes the form 

ii AAC A, B, C (F), 
Zn 

(ir) (F) 
= 

2: 
Un (2.2) 

where X,, (F) is the envelope wavefunction, and U 
A, )?, C (F) is the Bloch wave function 
n 

in the A, B or C material. 

By adopting a single-band spherical-effective-mass model to such the quasi-two- 
dimensional (quasi-2D) electrons and take as simplified boundary conditions on the 

envelope function with a periodic boundary condition in the QW plane, the envelope 

function X,, (F) can be factorised 

Xn 
(F) 

=1 exp(ii, ": )(Pn (Z) 
, JS 

(2.3) 

where z is the growth direction, k., 
y the in-plane wave vector of the electron, S the 

normalization area of the QW plane, and ýp,, (z) is the envelope function restricted in 

the growth direction z, determined by the Schr6dinger-like equation [39-42,45] 

0 
E., (z, 

I(Pn(Z)= 
en(Pn(Z) (2.4) 

where m*(z) is the electron effective mass depending on z, E,, (z) the conduction 

bandedge energy profile, and en is confinement energy of the nth subband. 
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Envelope fUnction 
[I st approidmation] 
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00 
IE 

Fnvelope function 
[Exact solution] 
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E2 

Ei 
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0 L+51 Qualittun WeU 

k 
XY 

Figure 2.2 Schematic conduction bandedge profile of a SQW structure, which consists of 
A, B and C material with energy levels and the simplified envelope functions 
Vn (z), and also the associated total energy including the in-plane kinetic 

energy for each subband. 

According to the connection rules it is necessary to have boundary conditions at 

the interfaces as follows: (p,, (z) and 
I 

are continuous [39,42,46-52]. 
m*(z)l az 

I 

I [a(p"(Z)] The continuity of ;; ý-( 
z) 

is necessary for the conservation of particle current (Z) az 
passing through the surfaces in place of the usual continuity of the derivative of ýp,, as 

derived in quantum mechanics textbooks. With these relevant boundary conditions the 

SchrOdinger-like equation Eq. (2.4) can be exactly solved to yield the envelope func- 

tions and subband energies [39,45,47]. However, to make the results more practical it 

is very useful to take into account the finite barrier height in first approximation that 

gives for the effective well width [39,42,46-53] 

Leff =L+ (50, +451,,, (2.5) 

where L is the well width (material B), and 
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go 
h 

h 
(2.6) 

here m. 1, mB- and mý are the electron effective masses of the materials A, B and C, 

respectively. UO and U, are the heights of the barriers adjusted to the QW; see also 

Figure 2.2. 

As a consequence of the appropriate approximation above, solutions of Eq. (2.4) 

are obtained 

0z< 
-(50 

Lý ; -c5o <Z<L+d, (2.7) Vn (Z) 
!: 

sin [kz (z + t5o)] 
ff 

0 z>L+, 51 

where k, = 
mr 
Leff ;n=1,2,3,. and the total electron energy associated with the 

state In, k,, 
y 

) =- X,, (F) is therefore 

h2 k2 
2M 

B* 

( h2 Ir 
22 

2mB Leff 

en 31 (2.8) 

; (2.9) 

)2 

In fact, this approach works well if the barriers arc high enough; Le. 
49 
2MB 

)L 

eff. ý 

(( U0, ul . 
A symmetric SQW system, which consists of a single GaAs layer embedded 

between two thick Al., Gal, As layers, is now considered. The band-gap energy for 

Al,, Gal-,, As is larger than that for GaAs. This results in the change of band gap energy 
(AEg) being distributed between the conduction and valence bandedges. Thus, 
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AEg =E 
AIGaAs 

-E 
GaAs 

= AE 
c+A. Er (2.10) 99 

where E AIGaA' and EGA' are band-gap energies for AIGal-, As and for GaAs, respec- 99 

tively. AEc and AEv are the conduction and valence band-offset, respectively. For 

such a long time it was believed that A. Ec was ;: tý 88% of AEg [45]. However, in 

recent years there has been a lot of argument over this, and it now seems that the figure 

is closer to 60% [38,54-56]. 

For small Al contents (0: 5 x: 5 0.45) [55] 

E AIGaAs (x) 
= 1.424 +1.247x (in eV units) 9 (2.11) 

mA, G,, A., 
(x) 

= (0.067+0.083x)mo 

where MAIGaAs is the effective mass of electrons in Al. Gal-,, As materials, and mo is the 

free electron mass. 

Table 2.1 Some useful material parameters of the GaAs/Al., Gal.,, As heterostructures. 

. 41 contents Effective masses Changes of the Conduction band- Valence band- 

band-gap energy offset offset 

x AEg AEc AEv MAIGaAs 

[meV] [meV] [mev] 

0 0.067 mo 000 

0.1 0.075 mo 125 75 50 

0.2 0.084 mo 249 150 99 

0.3 0.092 mo 374 224 150 

0.40 O. Ioomo 499 299 200 

0.45 0.104mo 561 337'. 224, 
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2.2.2 Electron LO-phonon interactions: Fr6hlich interactions 

According to the microscopic lattice dynamical model, the electrons are described 

by the Hamiltonian [57] 

AA 

H= Ho + Hph + He-ph (2.12) 

A 

where Ho is a single-particle Harniltonian 

2 
V2 +U HO = 2m * 

(F) 
, (2.13) 

here the potential energy U(P) includes the electrostatic potential and conduction 

bandedge discontinuity, and m* (F) is the electron effective mass. Hph is the Hamilto- 

nian representing for a phonon bath maintained in thermodynamic equilibrium, 

+ 

+1 
Hph 

= ýho, a, a, (2.14) 
q 2) 

and He-ph is the electron-phonon interaction given by 

I]a(q)e (a, 
e-'"+ a+-e'"), (2.15) e-ph V-v 

1, 
-q 

where q =- Q+q, is the phonon wave vector; here Q stands for in-plane phonon wave 

vector, and q., the phonon wave vector in z direction. a4 and a+, are the phonon 

annihilation and creation operators, respectively. cc(q) is a coupling strength for a 

phonon of mode q, co the phonon angular frequency, and V is the normalization 

volume. 

According to Fermi's golden rule, the scattering rates of an electron from an initial 

state m, k' inthemthsubband to all final states n, kf inthentlisubbandaccom- I 
XY 

)I 
XY 

) 

panied by emission (or absorption) of a phonon with energy hcD is [12,58,59] 

2z 
n, kf 

JIýe-phl 
mIk 

)12' 
05(Ei -, Ef T- hW)dNf (2.16i 

ri h. 
f 1( 

XY XY 
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where the upper (lower) sign refers to emission (absorption) of the phonon. E, and 

Ef are the total energies of the electron at initial and final states, respectively. In this 

expression the integration is done over the final density of states Nf . The illustration 

of scattering processes involving the LO phonon allowed by conservation of energy 

and conservation of momentum in the xy-plane is shown in Figure 2.3. 

COO 

Wo 

Figure 2.3 Illustration of scattering processes involving an LO phonon allowed by conser- 
vation of energy and conservation of momentum in the xy-plane. 

For the LO-phonon scattering mode, the coupling strength ot(q) is given by [19, 

60,61] 

(q)2 )o 
.e21-1 (2.17) la 2; r 

"2 
ý7 (in SI units) 

0 q 
Zlr7c 1C., 0 

where K., and KO are the high-frequency and static dielectric constants of the QW, co 

the permittivity of vacuum, e the electronic charge, and hco 0 is the LO-phonon 

energy. Using Eqs. (2.15), (2.16) and (2.17) the electron LO-phonon scattering rates 

from an initial state m, k' in the mth subband to all final states n, kf in the nth 
I 

XY 
)I- 

XY) 

subband is therefore [12,60] 

kxy 
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1= Co ff I,,, (Q)[(Alo + 1)5(Ei - Ef - hcoo)+ NO, 5(Ei - Ef + hwo)]d 2kf, (2.18) 
Ti XY 

2z 1e2[,, C() (2; r h wo (2.19) 
h (2ir)3 Co 00 

Tze', 7- 70 
] 

No =1 (2.20) 

exp 
0, 

kBT (` -i' 
V(k' Y+ (kf Y- 2k' kf coso (2.21) XY XY XY XY 

(hkly ý- 
Ei -c =- c, (2.22) 

2m' 

(hkf 

. XY = E, - en T- hCO0 = S+(em- en) ý- hCO0 ') (2.23) 
2m' 

where No is the thermal population of LO phonons at temperature T, k,, the Boltz- 

mann constant, 0 the angular between P and kf 
, and e is the in-plane kinetic 

XY XY 

energy of the clcctron. The tenn 1,,, (Q) is defined as [ 17,5 8,60] 

+00 JGmn (qj2 

dq (2.24) f 
Q2+ q2 

z' 
--oo z 

where 
L TT 

G�� (qj = X* (F)exp(iq., z)X�(F)dz (2.25) 1m 

0 

determines momentum conservation in the z direction; here z =- z+ 80. With the func- 

tions given by Eqs. (2.3) and (2.7), the exact formula forl.,, (Q) can be given in the 

form [60] 

ff 
V. (zýp. (z)exp(-Qlz'-ýz'l)(p,,, (z'ýp,, (z')dzdý'. (2.26) 

Q 



Chapter 2 LO-phonon scattering in SQWstructures ........................................ 21 

For a system operated at temperature T=0K the thermal population of phemons 

is equal to zero; i. e. No = 0. In other words, only a spontaneous LO phonon emission 

exists. As a result, Eq. (2.18) reduces to 

1=C,, ff I., (Q)8(Ei 
- Ef - hcoo)d 2 kf (2.27) 

rj XY 

By substituting d2kf=kf do dk f=m do dE'; here E' =E+ ho) 0, the scattering XY XY XY h2f 

rates become 

co m 
21r 

Im, (Q)do f J(Ej - E)dE' (2.28) f 

0 E' 

and it is finally obtained, 

2; r 1= 
Co M Im� (Q)do 

. (2.29) 
ri h2 

)1 

0 

To obtain the useful analytical expressions for the intra- and intersubband scattering 

rates, the considerations will be divided as follows: 

(i) The intrasubband scattering rates (m = n) 

The intrasubband scattering processes will be achieved if the in-plane kinetic 

energy of the electron is just enough to emit an LO phonon; i. e. c *2: h wo. The integral 

I., given by Eq. (2.26) can be obtained for two extreme conditions as follow [601: 

for Q q_, 
I., (Q) = ;rp 

(2.30) Q 
Jbnn 

Q2 for Q q, 

L 

where 2 
T(P 

2 (Z) (P 2 (z)dz =3. From the both resulting approximations bnn 
0nn 

Leff 

given in Eq. (2.30) the formula for Inn (Q) can be approximately written in the form 

I",, (Q) ý TC ; For all values of Q (2.31) 
Q(1 + b,, Q) 
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By substituting I,,, (Q) given in Eq. (2-31) into Eq. (2.29), and using Eqs. (2.2l)- 

(2.23), the intrasubband scattering rates is finally obtained 

Co 9- d0 (2.32) zi 2 
0 

where (P) =- r, is the intrasubband scattering times, and Qp,, -= Q. 

From Eqs. (2.2l)-(2.23), it can be obtained 

M*)ACOJ*[I+ 1-ýI-)-2 
I 

COSý]1/2 (2.33) Qpnn 
h2 

where 8 46 is a dimensionless in-plane kinetic energy of the electron in units of h COO 

LO-phonon energy hcoo. 

(ii) The intersubband scattering rates (m # n; here only m>n is considered) 

According to the analogous method above the results of Eq. (2.26) are [60] 

2L[ M2 +n 
2 

for Q q-, 
I.,, (Q) ;r 2y] 

(2.34) 
;r for Q qý, bmn Q2 

I LIff 2 
where 2f P2 

(Z)(P2 (z)dz From the results given in Eq. (2.34), the Mn b. 
n 0 

Leff 

formula for Imn (Q) can be approximately written in the form 

7C 
I. (Q) For all values of Q = 

Amn + bmn Q2 
(2.35) 

;r 2( m2 -n 
2 

whereAmn - 2L(m 2+n2* 
By substituting I,,,, (Q) given in Eq. (2.35) into Eq. (2.29), 

the intersubband scattering rates is obtained 
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21r 
1 Co m 

T", "' (A : -- -i f 
K 

Q2 Amn + bmn 6mn 
do , (2.36) 

here -=, c, is the intersubband scattering time, and Qp., M Q. Again, by using 

Eqs. (2.2l)-(2.23) 

1+ 1J' 
'y 

COSý]1/2 
1))-2 F1+L I 

Qpmn 
hM2 

ý(13 
00 (2.37) 

m 

Em - En 2ý 2_n2 

where r 
0 L2 h COO 2 eff 

2.3 Results and discussion 

In this section semi-analytic calculations for electron LO-phonon scattering rates 

(or times) in a GaAs/Alo. 3GaO. 7As SQW structure are presented. Unless otherwise 

speci-fied, the following calculations have been performed with the material 

parameters: ico = 12.90, ic, = 10.92, and hwo = 36 meV [60]. According to 

Eqs. (2.32) and (2.36) the scattering rates (or times) can be plotted as a function of in- 

plane kinetic energy of the electron (Figure 2.4). To compare our calculations with the 

results reported by Ferreira and Bastard [12] the well-width dependence of these 

scattering rates (or times) are also investigated (Figure 2.5). 

Figure 2.4 presents the resulting calculations of the in-plane kinetic dependence of 

the intra- (I-A) and intersubband (2->I) scattering rates (or times) for different well 

widths: L= 60,80 and 100 A at temperature T=0K. The results shows that both 

intra- and intersubband scattering rates (or times) weakly depend on in-plane kinetic 

energy of the electron. For the intrasubband scattering the rates are always zero at 

,6<1. 
The reason for this is that electrons have no chance to emit LO phonons in this 

energy region 
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Figure 2.4 (a) In-plane kinetic dependence of the intra- (1-*l) and intersubband (2->I) 
scattering rates due to an LO-phonon emission in GaAs/A10.3GaVAs SQW 
structures of well widths 60,80 and 100 A at temperature T0K, and (b) the 
corresponding intra- and intersubband scattering times. 
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Figure 2.5 (a) Well width dependence of the intra- (1->I) and intersubband (2-7+1) 
scattering rates due to an LO-phonon emission in GaAs/Al, ), Gk7As SQW 
structures for different in-plane kinetic energies; 0=0,1 and 2, at temperature 
T=0K, and (b) the corresponding intra- and intersubband scattering times. 
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In Figure 2.5 the plots are obtained for the well width dependence of intra- (I -ý 1) 

and intersubband (2-+1) scattering rates (or times) at temperature T=0K. For a 

narrow QW with the well width L< 100 A resulting in large values of the energy 

separation between the two subbands invloved, E2 - El > 3h coo, these scattering rates 

(or times) are not strongly dependent upon well width (see also Figure 2.4). For the 

intrasubband scattering (1->1) the resulting calculations show that the scattering times 

are almost independent on the well width. 

For the intersubband scattering (2-41); especially for the cases of electron initial 

states with small in-plane kinetic energies (, 8 -). 0), the rates monotonically increase 

with well width. When the quantum well becomes wider which results small values of 

the subband energy separation E2 - E, the rates strongly increase with well width, and 

have a peak at the point at which E2 - El =h coo. For fairly wide QWs (L > 180 A) that 

have E2 - El <h wo the intersubband scattering due to LO phonon emission is impossi- 

ble. Furthermore, it is clearly seen that the intersubband scattering (2->I) times are 

always longer than the intrasubband scattering (1->1) times for all cases of j6 -2: 1. It is 

also found that the inter- and intrasubband scattering times differ by less than a factor 

of 3 for L> 100 A, but nearly an order of magnitude in narrow QWs. 

Figure 2.6 compares the semi-analytic calculations of the scattering times, based 

on our approach, as a function of well width to the numerical results calculated by 

Ferreira and Bastard [ 12]. It can be seen that the semi-analytic results, especially for the 

intrasubband scattering, have a quite good agreement with the' results reported in Ref 

12. This provides a strong support for the application of our simplistic methodolo-gy to 

other similar systems. Furthermore, the results, also show - that the intrasubband 

scattering time due to LO-phonon scattering is approximately on the order of 0.1 - 0.2 

ps, while the intersubband scattering time exceeds to the order of I-2 ps, depending 

upon the well width. It is, however, our approach having an advantage of that the 

analytic expressions given in Eqs. (2.32) and (2.36), respectively, for the intra- and 
intersubband scattering rates (or times) are quite simple and practical to generalize to 

other similar QW systems. 
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Figure 2.6 Comparison of the well width dependence of the intra- (I ->I) and intersubband 

(2-->I) scattering times, due to an LO-phonon emission in GaAs/Al,, Ga,, As 
SQW structures at temperature T=0K, as calculated by our semi-analytic 
approach and by the numerical method described in Ref. 12. The lines, solid 
(-) and dash-dot are the semi-analytic results based on our 
methodology. The symbols (0 and 0) are numerical results of the scattering 
times extracted from a typical calculated result in Ref. 12. 

2.4 Conclusions 

In summary, starting from the Fr6hlich interaction and Fen-ni's golden rule, the 

expressions for the intra- and mterSUbband scatering rates (or times) have been 

obtained. Serni-analytic calculations are carried out for a GaAs/A10.3Gaý). 7As SQW 

structure. The results mainly show that the scattering rates, both for the intra- and 

intersubband scattering, weakly depend on in-plane kinetic energy of the electron. For 

the intrasubband scattering the rates gradually decrease at 8 ý! I. If 8<I, electrons 

have no chance to emit LO phonons resulting that the rates are always zero in this 

region. 

The investigation of the well width dependence of the intra- and intersubband 

scattering shows that the intrasubband scattering times gradually increase with well 

width while the intersubband scattering times monotonically decrease. For the QW 

structures with narrow well widths (L< 100 A) it is found that the intrasubband scat- 

tering times are always 111LICII shorter than that for intersubband scattering. These rates 

are close to each other for wider QWs. 
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Chapter 3 

Longitudinal optical phonon assisted tunneling 
in double quantum well structures 

In this chapter a theoretical study of the condition to achieve inverted population 

in a semiconductor DQW structure is presented. The aim is to calculate the tunneling 

rates for interwell transitions due to electron LO-phonon scattering in a DQW structure 

as shown schematically in Figure 3. L This structure is similar to that used as an inter- 

subband lasing unit in QCL structures. It consists of a wider well (QW1) as a lasing 

unit, and a narrower well (QW2) as an electronic energy filter by various type of 
tunneling mechanisms. The tunneling rates are mainly investigated as a function of the 

difference in energy between theE, level of the QW1 and the El level of the QW2 

(see Figure 3.1). 

3.1 Introduction 

Recently, it has been demonstrated that in order to achieve inverted population in a 

triple barrier resonant tunneling structure (TBRTS) one should ensure efficient re- 

moval of carriers from the E, level [15,62,63]. Transport through the TBRTS has also 

been extensively theoretically [64-66] and experimentally [67-69] studied. The physics 

of resonant tunneling in these systems is much more than an extension of the results of 

the double-barrier case (1,2,70-77] since the former involves the coupling of quasi- 
bound states between two adjacent wells in the DQW structure. In most cases the 

experimental resonant position corresponds to theoretical prediction based on a ID 

self-consistent solution of Poisson's and Schr6dinger equations. However, the ampli- 

tude and width of the LO-phonon peak differ significantly from the ID-model [68]. 
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This discrepancy arises from scattering processes which accompany tunneling pro- 

cesses and result in sequential, rather than coherent, tunneling. This was clearly 
demonstrated in experiment with application of strong magnetic field parallel to the 

current [67-69]. These papers experimentally prove the essential role of LO phonons 
for sequential tunneling. Theoretically, the role of LO-phonon assisted tunneling in 

resonant tunneling was also extensively studied [67,70-75]. The main result for TBRTS 

shows that the resonant peak in the current-voltage characteristics became wider and a 

satellite peak appears at an LO-phonon energy. 

Another LO-phonon assisted tunneling problem comes from the studies of a ver- 

tical transport in superlattices [78,79]. It was found that LO-phonon scattering is the 

most efficient process for hopping conductivity [80]. It has also been shown by Tsu 

and D6hler [78] that superlattice transport can be reduced to a DQW problem. The 

transfer integral for the DQW system was calculated by Calecki et al [79]. However, 

the calculation did not take into account that initial and final states should be orthogo- 

nal, and their result takes only the exponentially small overlap of wavefunctions in the 

barrier. This problem has be resolved numerically by Weil and Vinter [80], and their 

result shows that the main overlap comes from well regions, but not from the 

interbarrier overlap. This approach has been generalized by Ferreira and Bastard [12], 

and Harrison [8 1 ]. These calculations take into account the slope of conduction band in 

the heterostructure affected by applied electric field, and also consider other various 

mechanisms for interwell scattering such as the electron-electron (e-e) and electron- 

acoustic-phonon scattering. However, in both papers [12,81] the 1D-Schr6dinger equa- 

tion was treated numerically without taking into account the different effective masses 

of electrons in the wells and barriers. The exact analytic solution of the ID-Schr6din- 

ger equation taking into account the different effective masses has been obtained by 

Allen and Richardson [64]. However, the results are not practical to calculate the 

matrix elements for the LO-phonon transitions. 
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3.2 Formalism of LO-phonon assisted tunneling in double quantum 

well structures 

3.2.1 Electronic states in a DQW structure 

Conducfion 
banded, cre 

Figure 3.1 Schematic conduction bandedge profile of a DQW structure with a wider well 
(QWI) as a lasing unit and a narrower well (QW2) as an electronic energy filter 
by various types of tunneling mechanisms. 

A GaAs/Al., Gal.. As DQW structure is schematically shown in Figure 3.1. This has 

been used as an intersubband lasing structure, consisting of a wider well (QWI) as a 
lasing unit and a narrower well (QW2) as an electronic energy filter by various type of 
tunneling mechanisms. To create lasing efficiency, in general, it is necessary to achieve 

a sufficient population inversion between subbands E2 and E, in the QWL Popula- 

tion inversion occurs when the device has appropriate design parameters providing a 

good electron confinement at the upper subband E2 and short electron lifetime at the 

lower subband E, . 

Electric field, F 

. 40 

Zl Z2 Z3 Growth a. -ds-z 
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In this chapter the tunneling rates of electron from the subband El are investi- 

gated. The investigation mainly focuses on a variation of the electron tunneling rates, 

I, 
as a function of the energy difference El - E*; where -r, is the tunneling time of 

ri 

the electron from subband E,. The notations El, E2 and E, stand for the electron 

states in each of the wells when isolated from each other (see Figure 3.1). 

However, in reality, one has to consider the system where two potential wells are 

connected via a barrier that permits a measure of quantum mechanical tunneling. For 

reasons of simplification, the DQW structure shown in Figure 3.1 can be simplified by 

neglecting the effect of linear potential drop in the wells, and consider it as a rectangu- 

lar QW with finite-wall problem. To make the results more realistic it is useful to take 

into account finite barrier heights in first approximation (as employed in Chapter 2) 

that give for effective well widths of QWI, QW2 and barrier thickness in terms of a,, 

dc and b, respectively [39,42,46-53] : 

ac = L, + 50 + i5l, dc = L2 + 82 + 83 hc = b-81-052 (3.1) 

and 

151 
h- 

i=0,1,2,3 (3.2) 
ýM*wb-- U 

where L, and L, are the well widths of QWI and QW2, respectively. b refers to the 

middle barrier thickness, m,, and mb stand for effective masses of the electron in the 

QWs, and in the barriers, respectively. U, are the heights of the barriers adjusted to the 

QWs that takes into account applied electric field F, given as 

UO = AEC + eF(L' U, AEC - eF( 
L, +b 

2 
(3.3) 

U2 = AEC + eF( 
L2 +b U3 AEC - eF 1ý2 

ý2 

(2 



Chapter 3 LO-phonon assisted tunneling in DQWstructures ............................... 32 

where AEc is the conduction band-offset of the GaAs/Al,, Gal-,, As heterostructure, F 

is the magnitude of the applied electric field, and e is the electronic charge. In general, 

this approach works well if the barrier is high enough; i. e. 
;r 

2h2 

<< AEc. ým, *, 2 dc 

According to the approach above, and neglecting the exponentially small tails of 

the wavefunctions as they give a small contribution to the LO-phonon matrix element, 

the ground state wavefunctions in each of the wells when isolated from each other can 
be given by 

0 

ac 
Irp, (z) 

F2 
sin[ 7r (z + 

ac ac 
0 

;z< -150 
; -, 50 <z< zi + 05, (3.4) 

; Z>Zi+81 

0 

7_ 
c 

V2 (Z) sin 
F2 17 (Z3 + 83 -Z 

c 
[7c 'T 

0 

;Z< Z2 -'52 

; Z2 - t52 <Z< Z3 + j3 (3.5) 

;Z> Z3 + 53 

where (p, and V2 stand for the unperturbed states E, and E*, respectively. Because 

wells are coupled, one can assume that the eigcnfunction of the system is a linear 

combination of (p, and V2 [82-86]. Thus, 

V(Z) = alvl(z) + a2(P2(Z), (3.6) 

In this approach the values of a, and a2 are determined from the eigenvalue equation 

EI M12 (al )=E, al 
, 

(M2, 

EI'+iI" a2 a2 
(3.7) 

where E' is the energy eigenvalue of the electron when wells are coupled. M12 is the 

transfer integral between the states E, and E, ; in this work it is assumed that 

M12 = M21 = -M, and r is half width of the E* level. According to the approach I 
introduced by Bar-Joseph and Gurvitz [86] the latter M can be given as 
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h'ic 2 El 
112 

M exp(- Kb) (3.8) 

M. 
7LILý 

2 

M, 

where 

2m mw 
M, Mb* (U, 

-EI) +1 2 h2 h2 
(U2 

-EI (3.9) 

The resulting calculations for the DQW structure with well widths and barrier thick- 

ness: L, = 66 A, L2 = 33 A and b= 26 A, give the approximate values of M around 

5.0 meV depending on the magnitude of electric field. However, experimental data 

reported by Li et al [ 15] gives M as about 7.5 meV for such the DQW structure. 

Furthermore the perturbed energy eigenvalues satisfied Eq. (3.7) are determined by 

the secular equation, 

det 
E'- EI M (M 

E' - EI - i, 

) 

and it is finally obtained that 

2 (El +E -ir El - El* +, ]F 
+ M2 

. 

The actual energy splitting clearly depends on the magnitude of the transfer integral 

M, and the half width r of the E, level. With the introduction of and 

_02 +(M2 r, 2) 
w -i the norinalized eigen wavefunctions are 

(P (±) (Z) 
Z-- CI(±)(PI(Z)'+ C2(±)(P2(Z) 

9 
(3.12) 
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-+2 _I r2 
COT 6 

where Cl(±) -4- and C(±) = 
((O: F 6)2 + m2 r, 2 

2 
(01 T- 02 +(M2 1,2 

44 

3.2.2 The LO-phonon assisted tunneling in a DQW structure 

According to Fermi's golden rule, the scattering rates of an electron from an initial 

state m, k' in the mth subband to all final states n, kf in the nth subband accom- I 
XY 

)I 
XY 

) 

panied by emission (or absorption) of a phonon with energy ho) is [12,58,59] 

21r 2 

n, kf 
If. 

-ph 
Im, k' g(Ei-E : Fhw)dNf (3.13) 

hf 
1( 

_V V)l f 

where the upper (lower) sign refers to emission (absorption) of the phonon. E, and Ef 

are the total energies of the electron at initial and final states, respectively. In this 

expression the integration is done over the final density of states Nf . For the LO- 

phonon scattering mode the rate is therefore [ 12,60] 

I= Co ff I.,, (Q)[(No + 1), 5(El - Ef - hwo)+ NO, 5(Ei - Ef + hcoo)]d 2 kf , (3.14) 
ri XY 

associated with the appropriate variables as given in Eqs. (2.19)-(2.23). The integral 

I. (Q) can be obtained from Eq. (2.26), and it is simplified by considering the results 

only for an extreme condition of small Q values; Le. Q << q.,. 

By substituting wavefunctions given by Eq. (3.12) into Eq. (2.26) 

I 

(cl, +)q(-) 
Q 1+ 0.207Qac 

ý 
-) Y 2C, (")C, (-)C(')C(-) C 

2(+) 
C 

2( 22 

1+ 0.207Qd 
c- I+Q(ac +bc+ 

dc 
22 

(3.15) 

and the magnitude of the in-plane phonon wave vector Q given in Eq. (2.21) can be 

written as 
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1/2 
r Ij 7 

Cos 
)hooo 

j6 
1 

where 0 is the angle between k' and kf 
. The dimensionless energy parameters 8 and XY XY 

are defined as follows: 

ch2 
(k' 

=. XY (3.17) 
h coo 2 m, *, h wo 

I- 
E(') -E(-) 

- 

V(El 
- Ej Y+ (4M 2- iF2 ). 

(3.18) 
h COO h coo 

The expression for the LO-phonon assisted tunneling rates given in Eq. (3.14) asso- 

ciated with Eqs. (3.15)-(3.18), in general, can be applied to any LO-phonon scattering 

processes from the mth subband to the nth subband. It clearly shows that the rate 
I 

Tj 

depends on both 
j6 and 

3.3 Results and discussion 

Semi-analytic calculations of the LO-phonon assisted tunneling rates have been 

performed for a GaAs/A]0.3Gao. 7As DQW structure with relevant characteristic parame- 

ters: L, = 66 A, b= 26 A, and L2 = 33 A. In Figure 3.2 the tunneling rates at tempera- 

ture T=0K for different values of M: 5.0 meV and 7.5 meV are investigated as a 

function of the energy difference E, - E, . In these plots the resulting calculations of 

the LO-phonon assisted tunneling rates (solid line) are mainly to compare with the 

coherent tunneling rates (dash-dot line) 

I=-I 
ImE(') 

'rl coherent 
2h 4 M2' r, 2 

1+ (EI 
-ý *ý )' 

(3.19) 

(see for details in Chapter 5). 
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Figure 3.2 Electron tunneling rates as a function of the energy difference E, - E, at 
operating temperature T=0K for different values of the transfer integral M 
(a) 5.0 meV, and (b) 7.5 meV. 

Figure 3.2(a) shows that for M=5. OmeV the tunneling rate due to electron-LO- 

phonon scattering is much less than the rates due to coherent tunneling. However, these 

rates of LO-phonon assisted tunneling and coherent tunneling become comparable to 

each other when the magnitude of the transfer integral M increases; see Figure 3.2(b). 

In general, the results show that it is possible to get effective LO-phonon assisted tun- 

neling even though the rates are slightly less than that from coherent tunneling. 

However, the LO-phonon assisted tunneling has an advantage of a wider energy range 

and is less sensitive to nonparabolicity effects than coherent tunneling. 
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Figure 3.3 In-plane kinetic energy dependence of the LO-phonon assisted tunneling rates at 
operating temperature T=0K for different values of the transfer integral M 
(a) 5.0 meV, and (b) 7.5 meV. 

In addition, our formula can be used for roughly investigating the tunneling rates 
for hot electrons, i. e., 8 ;, -- 0. According to Eq. (3.1.6) one can, easily find that the in- 

plane momentum transfer gradually increases with 8. As a result, the integral I., (Q) 

is slightly decreased that results in decreasing of the LO-phonon assisted tunneling 

rates at a particular value of the energy difference E, - E, 

Figure 3.3 presents the in-plane kinetic energy dependence of LO-phonon assisted 

tunneling rates for different values of the dimensionless energy difference 
h co, 

: 0, 
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I 
and 1; assuming the transfer integral M: 5. OmeV and 7.5meV. The calculated 3 

results mainly show that the tunneling rates due to LO-phonon scattering are weakly 
dependent upon the in-plane kinetic energy. 

3.4 Conclusions 

Starting from the Fr6hlich interaction and Fermi's golden rule as described in 

Chapter 2, the tunneling rates due to electron-LO-phonon scattering in a semiconduc- 

tor GaAs/Al,, Gal.,, As DQW structure can be obtained. In general, the resulting calcula- 

tions mainly show that the tunneling rates monotonically decrease with the energy 

difference El - El , and strongly depend on the magnitude of the transfer integral M. 

These rates are calculated at temperature T=0K. However, the expression given by 

Eq. (3.14) is quite simple and practical to generalise to other systems considered at 

temperatures T>0K. 

To calculate the tunneling rates more accurately, it should be mentioned that e-e 

scattering is also an effective inelastic scattering channel. In our geometry [62,63] the 

2DEG in front of the first barrier is likely to have suitable density to ensure effective 
inelastic scattering. To compare this calculation with experiment it should be men- 

tioned that only indirect measurements are available at the present moment. Further- 

more, it has been also found that the average LO-phonon assisted tunneling rates 
depend strongly on the distribution function of in-plane kinetic energy of electrons [87- 

89]. As a result, for any particular case one needs to know which part of the distribu- 

tion function is meaningful for the experiments. However, our results mainly give a 

simple way to calculate the tunneling rates for various conditions and geometries of the 

structure. 
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Chapter 4 

Nonequilibrium electrons in double quantum 
well structures 

A theoretical study of hot electrons in a triple-bamer DQW structure (see Figure 

4.5) is presented. A system of coupled kinetic equations that describes the nonequili- 

briurn population in each subband has been derived. An analytic solution of the model 
kinetic equation has been found. Our approach differs from previous treatments 

[90,91], where the electron distribution functions are based on the two extreme limits: 

(i) low electron concentration corresponding to TO << 1, and (ii) high electron concen- 
I*ee 

tration corresponding to -LO- >_ I; here ro and -r,, refer to electron-LO-phonon (e-LO) 
ree 

scattering and electron-electron (e-e) energy relaxation times, respectively. In the 

present work, the distribution functions are investigated for the whole range of 'ro 
ree 

ratios. The outcome of the kinetic equation for subband distribution functions provides 

a comprehensive description of gain in intersubband lasers. 

4.1 Introduction 

Studies of mid- and long-wavelength infrared (IR) lasers based on electronic inter- 

subband transitions within the QWs in semiconductor low dimensional heterostruc- 

tures have attracted a great amount of interest since the first demonstration of a QCL 

was reported by Faist et al [8]. Continued development of QCL operation, improving 

the threshold current and the maximum temperature of operation, requires a soundly- 
based understanding of the effects of changing design parameters on the intersubband. 
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population kinetics. For efficient lasing, specially designed structures providing 

sufficient global population inversion between the two subbands involved are required. 
In our earlier work [62,63] it has been shown that to achieve inverted population in a 
GaAs/Al,, Gal-,, As DQW structure (shown schematically in Figure 4.5) one should 

ensure an efficient removal of carriers from the El subband. Population inversion 

occurs when the device has appropriate design parameters providing a good electron 

confinement for subband E2 and short electron lifetime in the E, subband. 

Recently, it has been shown by Faist et aL [92] that for lasing in the intersubband 

lasers, global population inversion is not a necessary condition but that nonparabolici- 

ties combined with the nonthermal electron distribution in the laser unit can make 
lasing action possible. This idea has been theoretically studied by Gelmont et aL 
[90,91]. The main calculations of these papers were directed to investigate the spectral 
line shape of radiative intersubband transitions in a QW. It has been foundthat the line 

shape of radiative intersubband transitions is determined by two factors: 

(i) the electron intra- and intersubband scattering rates, and 

(ii) the effective mass differences between the two subbands involved. 

The interplay between these two factors leads to essential non-Lorentzian form of 

the spectral line. Calculations of spectral density of gain g(Q) are described as a func- 

tion of the electron distribution functions f, (c, ) and A (62 ) in both subbands El and 

E2, where -, and 62 are the kinetic energies in the subbands E, and E2, respectively. 

Generally, the distribution functions are nonthermal and their actual shapes strongly 

affect the spectral density of gain [91]. At very low electron concentrations the distri- 

bution function f, (. -I) is given by a quasi-discrete ladder with the occupation probabi- 

lities decreasing toward the subband bottom [91,93]. A thermal equilibrium distribu- 

tion function based on arguments of fast e-e scattering is considered in the majority of 

these papers [91,93,94]. However, there is substantial gap between the two limiting 

cases, the very low and high electron concentration- regimes of operation. The most 

typical shape is continuous, but the distribution function is strongly nonequilibrium. 
This behaviour, in fact, has been studied extensively via the ensemble Monte Carlo 
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technique (see particularly the work of Goodnick, Lugli and their collaborators) 

[88,95,96]. 

Our approach has an advantage of that it is more convenient to build up a model to 

investigate the kinetics of electron scattering in other similar systems by changing the 

relevant controlled parameters. However, there are some limitations of this model that 

will be discussed later in Section 4.5. 

4.1.1 Optical Transitions : Optical matrix elements and selection rules for 

intersubband transitions 

The intersubband transition rate for electrons confined in the conduction band of 

QW structures can be calculated by time dependent perturbation theory, in particular 

the Fermi golden rule [83,84]: 

W= 2z i, kly)12 ä (Ef (ixfy Ei xly h Co) (4.1) 1 j(flkxfy l, 
e-photon h if 

1 

where i and f represent initial and final states with total energies Ej and Ef , respec- 

tively, the T hco is for photon to absorption (upper sign) or emission (lower sign), and 

He-photon is the electron-photon interaction Hamiltonian; here kXY = kxýx + kyýy is 

the transverse wave vector of the electron. According to the electric-dipole approxima- 

tion, which treats the electric field as constant across the electronic states, the optical 
II 

matrix element has the fonn [83] 

Mfi "= 
(fokýf IHe-pholonli, 

(4.2) k"y) = 
(f, kfy fil i, k", 

Y) , 

aa. a where -ihV = -ih ýx + j, + ez - is the momentum operator, and e is the ( 
Ox ay az 

) 

polarization vector of light. 

As an example, consider photon absorption (or emission) between bound states in 

the quantum well aligned along z, shown in Figure 4.1. We have known from Section 

2.2 that the electron wave function is factorized into' a product of an envelo pe wave 

function restricted in the growth direction, (pi (z), and a transverse plane wave as given 

in Eq. (2-3). 
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Figure 4.1 Optical absorption by transitions between electronic states in a quantum well. 
(a) Envelope functions along the growth direction with energy levels. The 
thickness of the arrows are rough indications of the coupling strengths of the 
transitions, with broken lines indicating forbidden transitions. (b) Band struc- 
ture in the transverse ky plane showing the vertical nature of the allowed tran- 

sitions, with the Fermi level EF * 

Firstly, suppose that light propagates normal to the QW layers so that the polariza- 

tion vector of the light is either e=ýý.. or e=ý ýy 
. where ý is for the magnitude of 

the polarization vector. In the case -ih which affects only the 
ax 

transverse plane wave of the bound state. Thus, 

P)l il kxly ) =ý hkx I i, k, ) 
, (4.3) 

and 

jývf 1ý - PI i, kxy) =ý hk., (f, ý, fy 1 i, kxy) =, 0,. (4.4) 

Physically, this means that no light is absorbed with this polarization and the same 

obviously holds for the case Y. Thus light'propagatesl normal to the QW layer 

cannot be absorbed in these transitions. 

kxy 
'1 -. 
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Now consider the case e=ý ýz 9 the electric field nonnal to the QW plane, which 

requires light to propagate in the plane of the well. In this case, b= -ih which az 

affects only the envelope wave function V,, (z) of the bound state. Thus 

kfy i, ký) 
(4.5) 

This implies that the optical matrix element Mf, - (f 1P., I i) if k., fy = k., 'Y; i. e. the 

transitions preserve the conservation of the transverse momentum of the electrons, and 

zero otherwise. Thus, optical transitions are vertical in transverse k, plane, as shown 

in Figure 4.1. Another important task is to evaluate the matrix element 

+ Co 

-ih 
f dzV; (z) (Pi (Z) (4.6) 

--00 

As we have known that the envelope wave functions, p,, (z), in a symmetric well 

schematically shown in Figure 4.1 (a) are either even or odd. The derivative changes the 

parity, and the matrix element will be non-zero only if one state is even and the other 

odd; Le. If - il = 1,3,5,. - .. This is a selection rule that governs which transitions can be 

allowed in optical absorption (or emission). For example, optical absorption ý is 

permitted from the lowest state (n = 1) to n=1,3,5,. - -, but not to odd values of n 

(Figure 4.1). The result can apply to any symmetric well, however it can be defeated by 

deliberately growing an asymmetric well. 

In addition, instead of using the matrix elements themselves, it is useful to intro- 

duce a quantity, so-called the oscillator strength Ff, to characterize the strength of an 

optical transition, defined by [83,84] 

h 0) 

I(f 2 2 "2m*co Ff, =7= -I(f 
IZI, )12 (4.7) 

h 

The latter matrix clement zf, is called the dipole matrix clement, and is commonly 

quoted. The strengths of optical transitions can be manipulated through the oscillator 
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strength by changing the shape of the QW, or by modifying the occupations through 

doping, injection of carriers, pumping, or simply a change in temperature. 

4.1.2 Distribution Functions: 

Fermi-Dirac and Boltzmann Distribution Functions 

Distribution function is a function representing the average number of particles 

that occupy a state, which depends on the nature of the particles concerned. For 

instance, electrons, protons, and other particles carrying a half-integer spin, so-called 

fermions, obey the Pauli exclusion principle, which states that no more than on fer- 

mion can occupy a given state. The Pauli exclusion principle for fermion restricts the 

occupation number of a state to be either zero or one. The average occupation is 

governed by the Fermi-Dirac distribution function f(E, EF, T), 

f(E, EF, T) = 
1 (4.8) 

exp 
[E-EF(T) 

+1 L--kBT] 

where kB is the Boltzmann constant. The energy EAT) is usually called the Fermi 

level in semiconductors, which generally depends on the temperature T. The Fermi- 

Dirac function plotted for several temperatures is shown in Figure 4.2. 

The important feature of the Fermi-Dirac distribution function is that it takes 

values between zero and one, as it is expected from the exclusion principle. The transi- 

tion from one to zero becomes more rapid as the temperature decreases, and it becomes 

a Heaviside unit step function in the limit of zero temperature, 

f(E, EF, T=OK) = e(Eo-'E). F (4.9) 

Thus all states below EO are completely filled, and those above are empty. In fact, the F 

notation EO of EAT) at zero temperature is the strict definition of the Fermi level, F 

and the quantity EF (T) is generally called the chemical potentialp; i. e., EF, = limp. 
T-+O 

However, standard usage in semiconductor physics is to call both the Fermi level. 
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Figure 4.2 Fermi-Dirac distribution function at different temperatures :0K, 10 K, 30K, 
100 K and 3 00 K. (a) For the case of a constant Fermi level EF ý-_ 10 meV. 
(b) For a two-dimensional electron gas (2DEG) in GaAs at constant density 

n2D se 3x 10 11 cm7'. The Fermi level EF moves downward from E0 as the F 
temperature rises [83]. 

At the energies far above EF; on the other wordE-EF >>kBT, the exponential 

term in Eq. (4.8) is much larger than one. Thus the distribution function becomes 

f(E, EF, T) %tý exp(- (4.10) 

This is the Boltzmann distribution. In our present work, the calculated distribution 

function of electrons in each subband is mainly investigated at the energies far above 

EF. The Fermi-Dirac and Boltzmann distribution functions are plotted together for 

comparison in Figure 4.3. 
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4.1.3 Basic Laser Physics: 

Spontaneous and stimulated emission (or absorption) 

The laser (LASER -=Light Amplification by Stimulated Emission ofRadiation) is a 

source of highly directional, monochromatic and coherent light. The last three letters in 

the word LASER are intended to imply how the device operates by the stimulated 

emission of radiation. In general, the emission of radiation when excited electrons fall 

to lower energy states occur randomly and can therefore be categorized as spontaneous 

emission. This mean that the instant rate at which electrons fall from the subband E2 

to a lower subband El (see Figure 4.4) is proportional to the number of electrons 

remaining in E2 (the population of E2). Thus, it is expected an exponential emptying 

of the electrons to the lower subband with a spontaneou's decay time -rspon., describing 

how much time an electron spends in the" E2 " subband. However, if -conditions' are 

appropriate, the electron in the upper subbaiid can be stimulated to fall to the low' er one 
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by emitting photon in a time much shorter than its spontaneous decay time; i. e. 

rstim. << rspon. , The stimulus is due to the presence of photons of the proper frequency. 

Let us consider an electron in the subband E2 waiting to drop to the lower sub- 

band El with the emission of a photon of energy hQ = E2 - El shown in Figure 4.4. 

Now we assume that this electron in the upper level is immersed in an intense field of 

photons, each having energy hQ = E2 - E, , and in phase with the other photons. The 

electron is induced to fall from E2 to El, contributing a photon whose wave is in 

phase with the radiation field. If this process continues and other electrons are stimu- 
lated to emit photons in the same fashion, a large radiation field can build up. This 

radiation will be monochromatic since each photon will have energy of precisely 

M= E2 - E, and will be coherent, because all the released photons will be in phase 

and reinforcing. This process of stimulated emission can be described quantum mecha- 

nically to relate the probability of emission to the intensity of the radiation field. 

n2 
E2 

pliotons 

h0 = E2 -Ei 

pliotoll 
c: 

olmý*CL cu h 92 
PQ 

W 

P 
pilotoll e 

e---, 
CL 

cc C14 
10 h C2 - pq .0 CC 

El 
111 

(a) (b) (c) 

Figure 4.4 Schematic diagram of radiative processes of electrons in subbands El and E2: 
(a) spontaneous emission, (b) stimulated emission, and (c) absorption. 

A few observations about the relative rates at which the absorption and emission 

processes occur can be simply described by Einstein method [97,98]., If the electrons 

exist in a radiation field of photons with energy hQ, such that the energy density of the 

field is p(Q), then stimulated emission can occur along with absorption and spon- 
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tancous emission. The rate of stimulated emission is proportional to and to the energy 

density of the stimulating field p(Q) and to the electron population in the upper 

subband n2. Therefore, the stimulated rate can be written as B12P(Q)n2 91 where B, 2 is 

a proportionality factor for stimulated emission. The rate at which the electrons in E, 

absorb photons should also be proportional to the photon field energy dcrisityp(Q) and 

to the electron population in El. The absorption rate can be given as B21P(f2)nl, 

where B21 is a proportionality factor for absorption. Finally, the rate of spontaneous 

emission is proportional only to the electron population in the upper subband. Intro- 

ducing another proportionality factor for spontaneous emission A12 
. the rate of the 

emission can be written as A, 2n2. For steady state at which the two emission rates 

must balance the rate of absorption to maintain constant populations n, and n2 . We 

have 

B21, o(Q)nl = Al2n2 + B12p(n)n2 . (4.11) 

In general, the coefficients A12, B12 and B21 are so-called the Einstein coefficients. 

For thermal equilibrium, at which the Boltzmann distribution function takes into 

account the relative population will be 

»T 
-2-2 = exp 

E2 
_EI = exp(- ih-ý2 . (4.12) 

n, k, 9T BT) 

According to Planck's law, the radiation ficld is 

p(Q) = 
2hn3 

(4.13) 

exp kBT 

here c is the speed of light. Substituting these relevant tenns into Eq. (4.10), 

Xc3 '412 exp + 
B12 

= exp(l"-" (4.14) ThET) B21 kBT) BT 

1 

21 B 

Because this expression, Eq. (4.14), must hold for all temperature T. Thus 
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;rc3 '412 
B12 

2hQ3 B21 B21 

Finally, with a presence of photon field 

Stimulated emission rate B12P(n) 
(4.16) = 

)P(Q) 

Spontaneous emission rate A12 

As Eq. (4.16) indicates, the way to enhance the stimulated emission over sponta- 

neous emission is to have a very large photon field energy density p(Q). In the laser, 

this condition is fulfilled by providing an optical resonant cavity in which the photon 
density can build up to a large value through multiple internal reflections at certain 
frequencies. Similarly, 

Stimulated emission rate B, 2p(C2)n2 n2 
=-. (4.17) 

Asorption rate B21p(Q)n, n, 

This suggests that it is possible to have stimulated emission dominated over 

absorption of photons from the radiation field if we have a right condition of main- 

taining more electrons in the upper subband than in the lower subband; i. e. n2 > nj. 

This condition is quite unnatural since, in general, n2 < n, for any equilibrium case. 

Because of its unusual nature, the condition n2 > nj is so-called population inversion. 

In summary, Eq. (4.16) and (4.17) indicate that if the photon density is to build up 

through a predominance of stimulated emission over both spontaneous emission and 

absorption, the device must provide such the two relevant requirements: (i) an optical 

resonant cavity to encourage the photon field to build up, and (ii) a means of obtaining 

population inversion. 
1! 
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4.2 Formulation of the model kinetic equations 

Applied electric field; F 
QW1 14 

E2 QW2 

4. 12 tiout 91 
'11ý - 

)I- 
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mt 
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Bandedge 
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Figure 4.5 (a) Schematic diagram of the conduction bandedge of a DQW structure and 
kinetics of electrons scattering. (b) The subband diagram presenting the radia- 
tive intersubband ýansitions in the QW I, and also shown the nonradiative inter- 
and intrasubband transitions by emission or absorption of LO phonons. 

Kinetics of electron scattering shown schematically, in Figure 4.5 can be described 

by a model kinetic equation [99-101 

at = SLO (ci) + C,,, (ei) + Ri (ei) + Gi (ei) ; i=1,2 (4.18) 

0k 

(b) 
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where fi(. -i) is the electron energy distribution function, corresponding to the occupa- 

tion probability of kinetic energy states --i in subband E,; here E, denotes the total 

energy of electrons. We consider the dispersion relations 61,2 (k) in both subbands are 

different and nonparabolic. However, all the effects of interest here are simplified by 

regarding the subbands themselves as parabolic, but characterized by different effec- 

tive mass ml* and m2* [91] 

EI, 
2 (k) + EI, 

2 
(0) 

=hk ') (4.19) 
MI, 2 

here k =_ k., 
y 

is the magnitude of in-plane wave vector of the electron. 

Electron-LO-phonon scattering: The term SLO('-i) is responsible for electron 

scattering by LO phonons in subband E, [ 100] 

SLO(ri) = -, v(ei)fi(ci) + Bi(vi) , (4.20) 

Ix [No + (No + 1)0(--i - hcoo)] (4.21) 
TO 

-Ix[(No+l)fi(ci+hcoo) + NOG(. -j-hcoo)fj(ej-hwo)j, (4.22) 
To 

where E) is a Heaviside step function, and z-O the intrasubband relaxation time due to a 

spontaneous LO-phonon emission. For a sufficient narrow QW of any shape, the time 

constant ro st; 0.1 ps (for GaAs) [90,91,102]. No is the phonon distribution function. If 

LO phonons are strongly nonequilibriurn [ 103], the appropriate function is used instead 

of No. In our case it will lead to an effective LO phonon temperature which differs 

from the lattice temperature TL. The function y(. -, ) describes the transverse phase 

relaxation rate due to the intrasubband scattering which is dominated by the interaction 

with LO phonons. The latter term B, (c, ) is responsible for the scattering-in of the 

electron by emission (or absorption) of LO phonons. 
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Electron-electron scattering: To calculate the term C,, (e, ) that describes e-e 

scattering processes, one has to consider the e-e scattering probability W,, (--j -)- vý ) of 

interacting electrons from initial states e, in subband E, to the final states el in f 

subband Ef . In a system with isotropic or nearly isotropic electron distributions, the 

probability W, (--, -> cý ) is given by [99] 

;r 

W,, (ei 
Cf 

)=- f 
do W,, (4.23) 

7r 0 

f 
j 
(E 

j) 
2z jMký'k;; 

ki, kj 
12 

8(el +cj -. -' -c'), (4.24) W. " hfg 

where M is the matrix element for the e-e scattering process of an electron 

with wave vector k, in subband E, and a second electron with wave vector k-, in 

subband Ej into the final states with wave vector ký and kg' in subbands Ef and 

Eg, respectively. For the problem with isotropic electron distributions, the average of 

the probability W,,, (ki 
-> ký) over the angle 0 between k, and ký enters into the 

calculations as given in Eq. (4.23). 

In order to simplify our calculations we neglect any mismatch in the properties of 

the narrow- and wide-gap semiconductor lattices and also disparities in the dielectric 

permittivity. An e-e interaction operator is therefore, U,, =C, vhere r is the 
47rcoK. r 

distance between two interacting electrons. The matrix element M is con- 

sequently obtained [99] 

2 
e (4.25) 

4; rcoic. r S( (lký , 

where Q= lký 
- k9I I =1 

K- ki I is the relative in-plane wave vector of the interacting 

electrons, which detcrmines the in-planc momentum transfer of the electrons, and S 

the surface area of the QW. 
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Finally, one can obtain the e-e scattering C,, (. -i) in the collision integral form 

[99,100] 
00 

C,, f de ipj(. -j' 
IW,, (-- 

i -> ci)fj 
(c 

i- J)fj 
(ei)] (4.26) 

0 

where pj 
(cj 

-! 
j- is the 2D density of states in subband Ej. 

; rh 2 

The general expression for C,, (ei) given by Eq. (4.26) associated with Eqs. (4.23)- 

(4.25) is very complicated as it is a bilinear function of the electron distribution func- 

tion, on the contrary to the other tenns SLO, Ri and G,. To reduce it to a linear inte- 

gral equation fonn one can put in Eq. (4.24) the Maxwellian distribution 

exp (4.27) 
B" 

ýe 

where ni is the number of electrons per unit area in subband E, and T, 
' the electron 

temperature. Physically it means that scattering of the minority of high kinetic-energy 

electrons is affected only by the projection on the majority of quasi-thermalized 

electrons. In general, it is meaningful to include an elec-tron temperature Te that 

differs from the lattice temperature TL when the energy relaxation due to e-e scattering 

is faster than the energy relaxation due Jo LO-phonon scattering; i. e. 

00 [100]. Under these conditions the temperature Te can be founid Tee < To exp 20 
(- 

TB" Tee 

using an energy balance equation. Even with this simplification the e-e scattering 

probability W,, (--I -), cf' ) is still complicated and could be solved analy-tically only in 

some special cases [99,104]. To handle the problem analytically we use a property of 

the coulomb singularity of the matrix element Mk 
'k,; k 'k ; 

at small momentum transfer, 

This singularity implies that scattering events with low energy transfer are dominant. 

As a result, one can use the F6kker-Planck-Landau (FPL) approximation to transform 

the collision integral Eq. (4.26) into a differential form [ 100,105] 
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Ia IM-0J. 
"(SA =aJ,, (ci) (4.28) 

Iýi 
-(--i) act act 

where the flux on the energy axis J,, (--, ) is 

-[Ae, (-ri) + Djcj)-ý"- i(--i) (4.29) 
"Ci 

]f 

co 
A,, (ei) f de; pi (c; Xci 

- 6; )W,, (6i 
-+ 6; ) (4.30) 

0 

00 
D� (ei) =1f de, pi (ei Xej 

- ei)2 W� (ci 
-> ei) , 

(4.31) 
20 

where A,, (, -, ) is the dynamic friction, and D,, (. -, ) the energy-diffusion coefficients. 

Recently, it has been numerically shown by Kinsler et aL [94] and Smet et A 

[ 10 1] that e-e scattering is dominated by small angle intrasubband events (i =f and 

j= g) in which the initial electrons stay within their original subband after scattering 

and their relative momentum transfer is small resulting in a small value of the energy 
transfer. The main investigations of these papers [94,101] are directed to e-e intersub- 

band scattering (i #f or j# g). In this case the energy of final states of electrons lies 

in a narrow region. Their resulting calculations show that the intersubband e-e scat- 
tering events, which involve a change of subband at least for one of the electrons, 

vanish at small values of in-plane wave vector k< kmi,,; where knin is the minimum 

value of k that permits the intersubband transitions occur. For electrons at large values 

of in-plane wave vector k> krnin, where the e-e intersubband transitions is possible, 

e-e intersubband scattering processes are typically less important when compared to 

e-e intrasubband transitions. In addition, they have also pointed out that for the suffi- 

cient large values of the energy, separation between subband e-e' intersubband 

transitions become much weaker when compared to the. e-e, intrasubband scattering 

processes. These relevant results enable us to neglect the e-e intersubband scattering 

processes and take into account only the e-e' intrasubband transitions. For the kinetic 
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energies -i >> T, the dynainic friction coefficient A,, (c, ) is independent of kinetic 

energy [99] 

e4=h COO (4.32) Aee Aee -': 
e2 

2 n. 
7 

(32h 

0 Koo 
»i ee 

where ns = nj + n2 is the electron concentration in the QWI and z-,, is responsible for 

the e-e relaxation time at LO-phonon threshold. This relaxation time -r., is important 

for describing the competition between e-e scattering and the LO phonon emission near 

the LO phonon threshold, represented by the dimensionless parameter 

17 = 
To roe 

4-n. 
ns (4.33) 

h 2COO C2K2 CM-2 Tee 32 0 Go) 
3.84xlOll 

(for the GaAs QW). At high electron concentration; i. e. 77 >> 1, e-e scattering is domi- 

nant. The e-e scattering rate in our approach defined by Eq. (4.32) differs from the 

maximum e-e scattering rate introduced by Goodnick and Lugli [88], 

*4 
m. e 

n, (in Sl units) (4.34) FMIX 
4h 3q2c2K2 

00 00 

where mW stands for the electron effective mass in the QWs and qO is the inverse 

screening length in two dimensions. The reason for obtaining the definition of the e-e 

scattering in our approach is that electron gas energy transfer rate is determined by 

transport cross-section which differs from the total cross-section of the screened 
Coulomb potential that has been used in the Monte Carlo simulations [88]. If screening 

parameter qO << 
L* 

r, appears to be kinetic-energy independent that makes 
F%20 

OL 

the problem more simplistic. 

Electron escapefrom the subband. - The term Rjej, in Eq. (4.18), describes elec- 

tron escape from subband E,. For the lower subband E, in QWI (see Figure 4.5) the 

electron escape rate is )-. 

R, (el) = 
f, (--I )p 

(4.35) 
r1out 
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where r,,,, t is the electron escape time from the subband due to various types of 

scattering mechanisms. In this present work we take into account only LO-phonon 

assisted tunneling which is typically the most prominent scattering process, so that 

R, (c, (2NO + 1) 
fl (el 

(4.36) 
'r, 

here r, is the interwell scattering time due to a spontaneous LO-phonon emission. The 

nonradiative time r, can be tuned by changing the design parameters of the QWs and 

barriers. To achieve the efficient removal of electrons from subband El the designed 

structure must be such that the subband energy difference E, - Ej is close to the LO- 

phonon energy. For a GaAi/Al,, Gal-,, As DQW structure utilizing LO-phonon tunneling, 

the calculated time constant rl is in the range 0.4 - 1.0 ps depending upon the coupling 

strength between the electronic states of the two subbands E, and E, [62,63]. How- 

ever, in the present work it is regarded as a tunable parameter to determine the global 

population ratio between E2 and El subbands. 

For subband E2 the electron escape rate R2 ('-i ) can be determined by intersub- 

band LO-phonon assisted scattering from the subband E2 down to subband El, 

neglecting any other scattering mechanisms including the tunneling through out the 

subband. Therefore, the electron escape rate is 

2 
(62 

(4.37) R2 (62 (2NO + 1) 
f 

'rl 

where "12 is the intrawell scattering time due to a spontaneous LO-phonon emission 

from subband E2 down to subband E, . The typical nonradiative time T, 21 ps (in 

GaAs QW) for mid-infrared regime of operation [ 13,14,106]. 

Electron generation processes: The term G, (ei), in Eq. (4.18), describes the elec- 

tron generation in subband Ej. For the lower subband the electron generation GI(CI) 

can be obtained from the intersubband scattering rates of electron from the upper sub- 
band 
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G, f2 KNO + Oh (61 
0+h coo + NOf2 (-Pl 

-'ýno (4.38) 
1'12 Mi 

where hilo = E2 (0) 
- Eý (0) is the energy separation between the two subbands. The 

first term is responsible for the emission of LO phonons, while the latter term stands 

for the absorption of LO phonons. 

Electron generation G2(-2) in the upper subband is assumed to be monoenergetic 

for the following reasons: 

(i) For a strong nonparabolic material the 2D electron gas (2DEG) in the emitter 

is permitted to tunnel through the upper subband E2 in QWI; see also Figure 

4.5(a), only for a definite wave vector k; Le. the definite kinetic energy 62. 

(ii) Similarly, for the case of optical pumping only the photoelectrons with a 

definite wave vector k are allowed to be pumped into the E2 subband. This is 

equivalent to requiring the definite kinetic energy 62 to be pumped into the 

subband. 

(iii) The third main reason is that the model kinetic equation in our approach is 

linear. This implies that if one can find its solution with a8 -function 

pumping, one will be able to build up the convolution of general problems 

with arbitrary generation functions. 

Consequently, the electron generation in the upper subband is therefore 

G2 (r2 )=- GO A--2 
-CO) 10 (4.39) 

P2 

where Go is the number of electrons with, kinetic energy co and P2 ('02 is the 2 

2D density of states in the subband E2' 

By substituting all of the relevant scattering terms, SLO, C, R, and G, into the 

kinetic equation Eq. (4.18) under steady state conditions, one can obtain 

d'd2 
- +'kg Te 

2]fi(CI)-y(si)fi(ziý)+Bi(ci)+Ri(91) 
(4.40) 

ree ei ci-ý -ýýi 
7sj 
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Dee (--i 

here Ie-.: ý is the electron temperature of the 2D electrons below the LO- 
k,? Aee (--i ) 

phonon threshold. It follows from the principle of detailed balance that a 2DEG below 

the LO-phonon threshold represents a thermal bath with temperature T, 

In addition to the dimensionless parameter )7 = -LO-, we introduce ý, = 
ro 

I Tee r, 

ý2 -LO- ee 'OTS and y, = -5-. The ratio ýLl 
,A=: 

ý, 
characterizes the global popula- 

r12 hcoo hcoo ý2 

tion ratio between the two subbands involved. The dimensionless parameter A, deter- 

mines the ratio of electron temperature to LO-phonon energy. In our approach it is 

always assumed to be small. As a result of substituting these dimensionless parameters 
into the kinetic equation Eq. (4.40), one can obtain a four dimensionless kinetic equa- 

tion system to eliminate the step function E), that takes into account the LO phonon 

threshold, as follows: 

(i) For the upper subband E2. 

Y2 "-ý 1; 

2f 

.d2 
(Y2 ) 

+77 +1)-a i7Aee 
dy 2+ 

(NO + I)f2 (Y2 
2f2(V2) "": -PO95(Y2-YO) 

2 
dY2 

(4.41) 

y2 > 1; 

i7Aee 
dy 2 +77 

dY2 
+ (NO + I)f2 (Y2 + 1) + NOf2 (Y2 fl2f2 (Y2 0 

.2 

(4.42) 

(ii) For the lower subband E, 

(a) O<yj <1; 

2f 

i7A 
d 1(y]) df, (y 

I) jyj 0 (4.43) 
Y2 ee ýý + 17 + (No + I)fl (Y' + I)- alf 
VI dy, 
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yj > 1; 

qA, 
dY2 

+17 
dy, 

+(No+l)fi(Yi+l)+Nofi(vi-l)-Afi(vi) = Pt(yi), 
1 

(4.44) 

-': NO + ý1,2 (2 N -= 
(2N 

() = 
roGo 

where al, 2 0 +09 A, 
2 0+ 

1XI + P, 

P2ýCOO 
and 

Mo Mo 12 f_ 
)[ 

PI '*'ý ý2 
.0 

(NO + 1)f2 YI +1 
)+NOf2 

YI-1- 
ml hcoo ) hcoo 

The details of mathematical solution of Eqs. (4.4l)-(4.44) are presented in 

Appendix A, where boundary conditions for these equations are also presented. In the 

following section the resulting solutions of the kinetic equation system for various 

values of the relevant parameters 17 9 ýI 9 ý2 and A,,, are presented. 

4.3 Subband distribution functions 

Nonequilibrium electrons in a GaAs/Al,, Gal.,, As DQW heterostructure shown in 

Figure 4.5 are investigated. A universal dimensionless energy variable y= '02 for 
hwo 

subband distribution functions f, (y, ) and f2 (y) are introduced; here y, = 
f2 

y. The 
Mý 

calculated subband distribution functions for different values of q are shown in Figure 

4.6. With increasing values of ? 7; i. e. increasing the concentrations of electrons, the 

subband distribution functions below the LO-phonon threshold, (y < I). in both sub- 

bands become close to Maxwellian distributions. In the region above LO-phonon 

threshold (y > I), the shape of the upper subband distributions f2 (y) are still close to 

Maxwellian while for the lower subband the distributions ! fj (y)'are always strongly 

nonequilibrium and deviate far from Maxwellian. 
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At a very low electron concentration limit, n, <,. ý: IX 1011 CM-2 ; i. e. 17<<I, the 

dominant scattering process is due to LO phonon transitions within the subband. The 

distribution functions for Y7 =I ; i. e. n, = 1.92 x 1010 CM-2 at different operating tempera- 
20 

ture T= 77 K and 300 K are shown in Figures 4.6(a) and 4.7(a), respectively. Following 

calculations have been done for a chosen situation 'r, 2 ='rl that results in the equal sub- 

band population. Our purpose is to investigate the possibility to achieve positive gain 

without global population inversion. 

The results show that the shape of the distribution functions in both subbands deviates 

far from Maxwellian. In the upper subband they have a pronounced peak at the pumping 

energy affected by the monochromatic electron generation process that plays an essential 

role in this regime of operation. Immediately after nonradiative intersubband transitions 

from the upper subband E2 down to the lower subband El, the lower subband electrons 

are in a state of high kinetic energy '01 -`ý AC20 + '02 1 ýCOO * Consequently, they cascade 

down to the subband bottom by emitting LO phonons with the result that the distribution 

functions fl(y) at steady state are strongly nonequilibrium. For q=1 at temperature 
20 

T= 77 K, one can observe four pronounced peaks in the lower subband distribution 

function fl(y). However, its shape deviates far from the shape of f2(y) at low kinetic 

energies. At 77 =I all peaks are completely smeared out, but the large shoulder below the 

main peak always remains. 

In Figure 4.7 electron distributions calculated for the system with the same parameters 

as in Figure 4.6, but operating at room temperature T= 300 K are presented. The investi- 

gation focuses on the distribution functions affected by the thermal phonon population 

No, which governs the lattice temperature TL. By comparing the, resulting calculations for 

a specific value of q at different operating temperatures ýT= 77 K and 300 K, it, is clear 

that the nonequilibrium electron behaviour is strongly dependent on the lattice tempera- 

ture. The main interest of these resulting calculations as shown in Figures 4.6 and 4.7 are 

addressed to the case 
L=1, 

which corresponds to equal subband population n2 = nj. ý2 
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The results show that it is possible to achieve positive values of the spectral gain g(Q) 

due to the existence of local population inversions at some definite kinetic energies -2; 

Le. at some particular electron wave vectors k, in the region below the LO-phonon thres- 

hold that provides an essential contribution to the spectral gain density. This implies that it 

is possible to achieve laser action even in low electron concentration regimes of high 

temperature operation; see also Figure 4.7(a). In addition, it is also found that the width 

and position of the peak gain depends strongly on the pumping energy into theE2 

subband. 

4.4 Spectral density of gain 

In the limit that the transverse phase relaxation rate y(e) is much smaller than the 

optical frequency Q, optical gain spectra g(Q) can be expressed as a function of the 

subband distribution function f, (e, ) and f2 (6 =- 62 ) 19019 11 

2 12M2*n 00 
4e IZ12 

", II d. --. 
L 

V2 (S 
- fl (6 

(4.45) g(n) 3f QR (c. )12 ý(cf h LIc EOK.,, 0 
[Q a 

where Z12 is the dipole matrix clement, 1c. the dielectric constant at high frequency, co 

the permittivity of vacuum, L, the QWI width and c the speed of light. The vertical 

transitions with particular hok (C); see also Figure 4.5, are given by 

hQý (. -) = hQý +c-c, hQo-c 
M2 

M, 
(4.46) 

According to the threshold nature of y(e) that has been discussed in Section 4.2 the 

optical gain becomes strongly influenced by the nonequilibrium distributions in the two 

subbands. Gain spectra calculated for' different'values -of the competition parameter q 

between e-e scattering and electron-LO-phonon scattering for different values of the elec- 

tron concentrations are shown in Figure 4.8. 
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Figure 4.8 Variations of gain spectra under the monochromatic pumping P2 (y) = PO 5(y 

into the upper subband E2 with equal subband population n2 = nj; assuming the 
following parameters: 'rO = 0" PS9 'r12 = 'rI =I ps, the subband separation energy 

U20 = 155 meV, and m2* = 1.2m, *, for different values of 77 =I, 
I 

and I at 20 3 
different temperatures: (a) 77 K, and (b) 3 00 K. 

The calculations have been done for an equal global population case (n, = n2) that 

corresponds to 'r, 2 =r, ; ', e. 1. The results show that a strong positive gain for 
ý2 

particular photon energies can be achieved. Small values of which correspond to low 

electron concentrations gives proportionally smaller gain - amplitudes. ý In addition,, the 

shapes of the particular distribution functions involved affect the'shapes of the spectral 

curves. At Y7 > corresponding, to n. > 1.28 x 1011 cm-2 , the main'reason for positive gain 3 

is the leverage of f2 above f, below LO phonon energy. The radiative photon energies 
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are from hOo -h coo 
M2 

-I to Mo. Smaller photon energies correspond to large kinetic 
(MI 

energies in both subbands, and the optical gain becomes negative in this region. At room 

temperature T= 300 K the maximum values of gain strongly decrease because the 

amplitude of the peak near the pumping energy decreases when temperature increases. At 

the E, subband, more electrons are above LO threshold than electrons below the LO 

threshold. Furthermore, the transverse phase relaxation rate y(. -) becomes substantially 

larger thus smearing out the fine structure of the spectral gain function at smaller il. 
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Figure 4.9 Gain spectra in low electron concentration limits at different operating tem- 

peratures under the pu mping P2 (Y) PO 5 into the upper sub ba nd E2 
2 

with equal subband population n2 nj., (a) Assuming the following parame- 
ters: "0 = 0" PS, 'rl 2 rl 1 PS) z*ee =2 ps, the subband separation energy 

- 
hQ0 = 155 meV, and m2 1.2m, 

. (b) Same spectra calculated in the 
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Figure 4.9 presents gain spectra calculated in the low electron concentration limit, 

17 =1; I. e. n, = 1.92 x 1010 CM-2 at different temperatures T: 100 K, 200 K and 3 00 K. 
20 

The results show that the peak gain is not strongly dependent upon temperature in the 

nonparabolic model while in the parabolic model it has strong temperature dependence, 

especially when the system is operated at low temperature. A reason for this is that the 

nonparabolicity effect smears out the peak gain. As a result, the peak gain is not strongly 
dependent upon temperature in the nonparabolic model 
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Figure 4.10 Gain spectra at operating temperatures T =, 77 K for, different subband population 

ratios 
f-2 

= 1,2 and 4 under the pumping, P2 (Y) Y into the upper 
nj 

) 

'. - 
subband E2 with eq 

' 
ual 'subband, population n2 nj; assuming, the following 

parameters: -ro = 0.1 ps, the subband separation energy hQO =155meV, and 

M2 = 1.2m, at low and high electron-concentration regimes of operation which 

correspond to (a) q and (b) q =I, respectively. 20 
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In Figure 4.10, the gain spectra calculated for different values of 1,2 and 4 that ý2 

correspond to global inversion population 
n2 

= 1,2 and 4, respectively, are also investi- 
n, 

gated at low and high electron concentration regimes of operation. Our results show that 

the spectral density of gain is mainly sensitive to the upper subband distribution function 

f2 (e). For n2 > n, at the low electron concentration regime, 77 = -L for instance (see 
20 

Figure 4.1 0(a)), two peaks are observed. The first peak corresponds to the photon emission 

from the bottom of the E2 subband, and second peak from the optical transitions near the 

initial pumping energy. At the high electron concentration regime, j7 =I for instance (see 

Figure 4.10(b)), the second peak completely vanishes due to the dominant of e-e 

scattering. 

4.5 Conclusions 

The kinetic equations, Eqs. (4.4l)-(4.44), has been solved analytically for subband 
distribution functions for various values of q ranging from 0.05 to 2, corresponding to 

electron concentrations n. between 1.92 x 1010 cm-2 and 7.68x 1011 CM-2 . At small 17 the 

shapes of the distribution functions in both subbands deviate strongly from a Maxwellian. 

In the upper subband they have a pronounced peak 
, 
at the pumping energy affected by the 

monochromatic electron generation process that plays an essential role in this regime of 

operation. Immediately after nonradiative intersubband transitions from the upper subband 

E2 down to the lower subband E, , the lower subband electrons are at high kinetic energy 

states 161 = ýnO + 62 :ý ý0)0 . 
Consequently, they cascade down to the subband bottom by 

emitting LO phonons resulting in a strongly nonequilibrium distribu-tion function fl(el) 

under steady-state conditions. At larger 77 all peaks are completely smeared out, and these 

distribution functions become close to a Maxwellian. Detailed shapes of these distribution 

functions are essential for the derivation of energy balance equation and calculation of 

gain in the intersubband lasers. ' 
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Our approach has an advantage of that it is more convenient to build up a model to 

investigate the kinetics of electron scattering in other similar systems by changing the 

relevant controlled parameters. However, in fact, there are some limitations of this model. 

For real device modeling one should take into account the following effects: 

(i) All temperatures T, TL and LO-phonon temperature Tph are assumed to be the 

same for all cases considered in this present work. However, in real devices they 

might be different in some particular regimes of operation. For accurate calcula- 

tions one has to evaluate T,, from the energy balance equation. The incoming 

energy depends on the electron generation Go while the energy losses depend on 

both distribution functions f, and f2. The resulting equation gives A., as a 

function of q, ý, and ý2. Also, at high electron concentrations LO phonon 

distribution function differs from No. Nevertheless, in our equations it requires 

only N(ho-)O), and this can be described by using the effective LO-phonon 

temperature Tph which differs from TL. The effective temperature Tph depends 

on the generation rates Go and the dissipation rates of phonons from the QW 

region. 

(ii) In our approach A, is a constant over the whole energy range. In fact, this 

assumption works well only for - >> kBT, while at e; t; kBT, A,, becomes 

smaller, and has the kinetic energy dependence. However, if electron distributions 

are Maxwellian or Fermi the particular, value, of A,, is not important because 

there is no of LO phonon involvement in this region. Also at high kinetic energies 

e-e screening reduces A, down to several times of the value at low kinetic 

energies and high electron concentrations. 

(iii) At very high electron concentrations corresponding to 77 >> 1, A,,, becomes 

sensitive to the exact distribution functions. As a result, it reduces the accuracy of 

our calculations if the assumption that A., is constant in these regimes of opera- 

tion is used. However, our main interest is directed to investigate the system at 
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17: 5 1 where A,, is not very sensitive to the exact shapes of these distribution 

functions. 

(iv) The assumption that the dominant e-e scattering processes of the minority of 
high-kinetic energy electrons is only due to the scattering on the majority of 

quasi-thermalized electrons, in general, is not valid if the distribution function 

differs from a Maxwellian. However, in reality kBT,, << hcoo. As a result, 

exp _'hoo <<I, thus fulfilling our approach which takes Aee as a kinetic TB Te 

energy independent parameter. 

(v) At the very low electron concentration regimes corresponding q << 1, the ratio 

D"" 
= kBT,, is not valid due to the difficulty of electrons to fonn a thermalized 

Aee 

bath. In this case one has to calculate Dee independently and use the resulting 

Ye =k 
Dee 

as the definition of electron temperature. 
, 6Ae, 

(vi) The F6kker-Pllanck-Landau (FPL) approximation does not work well in the 

regions It - to I << kT,. The reason is that for 2DEG. all scattering angles are 

equally important for energy transfer. To take all of these events into account one 
has to consider the integral equation, Eq. (4.26) instead of Eqs. (4.4l)-(4.44). How- 

ever, the resulting gain is not very sensitive to the exact shapes of the distribution 

functions near pumping point. In reality, the pumping is not an exact 16 - function 

shape due to nonhomogeneous broadening. 
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Chapter 5 

Charge accumulation in a triple barrier 

resonant tunneling structure 

5.1 Introduction 

Recently, there has been experimental interest in the effects of magnetic field on 

resonant tunneling in a triple barrier resonant tunneling structure (TBRTS) (shown 

schematically in Figure 5.1). Detailed measurements of the tunneling current in the 

TBRTS incorporating asymmetric coupled wells in the presence of a magnetic field 

applied perpendicular to the direction of current flow has been presented [ 107]. Experi- 

mental data shows that the current-voltage (I-V) characteristic has a sharp local mini- 

mum in its second derivative when the ground state levels in the wells (E, and E, *) are 

in resonant aligriment. The depth of this minimum decreases with the application of an 
in-plane magnetic field. To explain these phenomena the concept of sequential tunnel- 

ing thought the structure is introduced. The model presented here is based on a two- 

level rate equation system that takes into account realistic scattering and tunneling 

times. The investigation focuses on the in-plane magnetic, field dependence of elec- 

trons at the E, level in QW1 tunneling resonantly thoughout the second well (QW2). 

The theoretically calculated results are compared with experimental results reported by 

Vdovin et aL [107]. 
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5.2 Effect of magnetic field on resonant tunneling in a triple barrier 

resonant tunneling structure 

5.2.1 Effect of magnetic field on the energy of bound states in the 

quantum wells 

Fi 
inel 

QWI 14 
M ANlideleebiefield; F 

00 
QW2 

IF 

Ajoia nWetic f3ela; B 

Conduction 
dge d12 

17 

Figure 5.1 Schematic diagram of the conduction bandedge of a TBRTS in the presence of 
an applied electric Field, F= -FýZ and a magnetic field, B=N., and also 
shown are the kinetics of electron transport through the structure. 

In the presence of a magnetic field f? = Býý the electrons states in each of the 

wells when isolated from each other can be described by a single-particle Hamiltonian, 

flo =+ý U(Z) 2m* (5.1) 

where jb 
is the linear momentum of the electron, and the vector potential for a 

uniform magnetic field B= Nx I namely, A= -Bzýy. m* is the electron effective 

mass. The potential energy U(z) includes the electrostatic potential and conduction 

bandedge discontinuity. Thus, U(z)=E,, (z)-eFz; where E, (z) is the conduction 

bandedge discontinuity, and F is the magnitude of applied electric field. 
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Consequently, the time-independent Schr6dinger-like equations for the bound 

states can be obtained 

[ 

2m* 
+ U(z)]T(F) = ET(F) , (5.2) 

unction that can be written in the form where T. A. 
(F) is the electron wavef 

'-p�kxy (F) 
=1 exp(iiy - F)(p. (z) 

, (5.3) 

ITS- 
and the total energy 

h2 2 

E, (ky) 
= 

kxy 
+ En (5.4) 

2m' 

where ky = ký, ý., + kyýy is the in-plane electron wave vector, S the normalization 

area of the QW plane, and ýp,, (z) are the envelope functions of the isolated well 

centred at - 
L_b for QW1 (L2 +b for QW2), that satisfies the Schr6dinger-like 
2222 

equation 

h2 d2m*22] 
(pn (Z) 

Z2 
u(z + wcpyz +wZ gn(Pn(Z) (5-5) 

2m* d»2c 

where py = hkY =- the momentum of electrons in y, direction, and Co. = 
±B- 

=- the 
M 

22 cyclotron frequency. The term m (0, z for magnetic fields: B :54T, thoughout the 
2 

experimental measurement [ 107] is much smaller than other terms, and is neglected in 

the following calculations. 

The finite barrier thickness in the TBRTS permits electron tunneling; Le. electrons 

have the possibility to tunnel through the barriers. As a result, the states El, E2 (in 

QWI) and Ej* (in QW2) are no longer stable. For instance, electrons in El in QWI 

can tunnel throughout the second well and subsequently decay to the continuum states. 
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The behaviour of such a system is well described by a time-dependcnt Schr6dingcr-. 

type equation [85,86], 

d Vfl (t) Ei -M)( vf 1 
(t V/i (t) ih 

-M EI +wcd 
E' (5.6) 

dt Vf 2 
0) 

12, Py + Vf 2 
(t» 

(V/2 

(t) 

where IYf 
1 
02 is the probability of finding the electron at the El level in QWI, and 

IV/, (t)I' - at the Ei` level in the second well (QW2). M is the magnitude of the matrix 

element of the transition due to the tunneling between QWI and QW2, r the half 

width of the Ej level, and d12 is the distance between the centres of QW1 and QW2. 

The quasi-stationary levels E' are obtained from the secular equation [IS, 86], 

det 
E'- El 

*m=0, (5.7) 
M E'-Ej cocdUPy-ir 

Thus, 

E' = E(l) = 
El -El 

-- ir' El -Z, *+ iF 
+ M2 11 (5.8) 

22 

where E-I* = E, + ct),, dl2Py. The levels E(+) and E(-) correspond to the antisymmetric; 

and symmetric wave functions, respectively. Notice that the notations El, E2 and E* 

throughout our approach stand for the bound states in each of the wells in the absence 

of applied magnetic field, when isolated from each other. 

For the degenerate case (El = E-, *), one has a peculiar physical behaviour resulting 

from an interplay of the coherent tunneling between two wells, and a tunneling from 

QW2 to the continuum. It is found that if 2M >r then 
i 
r, 2 EI V4M2 (5.9) 

2 

r 
This implies that the system has two different levels with the same width, -. In the 

2 

opposite case, 2M < r, and therefore, 
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E (3-) 
= EI -i 

(r 
± 

Vr2 
-4M2), (5.10) 

the system has the same energy level with two different widths. 

However, in our system the condition 2M > r' is always fulfilled. As a result, the 

considered system always has two split energy levels with the same width for the 

degenerate case (El = E, ). The escape rate from QWI has the magnetic field and 

in-plane momentum dependence, 

01 

1 jImE(-) ; EI <EI F11 (5.11) 
h Im E(+) ; EI >EI' 2h 4M2 _r2 

(EI 
- EI - w, d12Py 

In order to calculate the average escape rate 
( 
TI, 

), 
using Eq. (5.1 1) knowledge of 

the distribution function of electrons in the El level is required. Thus, the average rate 

() 
of electrons tunneling resonantly throughout the second well (QW2) is given by 

+00 +00 

L L6xjlpy 
--oo -00 

2h 

1 
dpý, dpy, (5.12) 

4M2 _r2 
(EI 

-EI" - w, d12Py Y, 

where f, ýx 
1, py ) is a nonnalized distribution function of electrons in the E, level. 

Physically, this means that the magnetic fields applied parallel to, the QW layers 

destroy the resonance condition, and result in resonance broadening A. E.. = co, dUPy' 
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Figure 5.2 Average escape rates of electron tunneling resonantly t hroughout the second 
well (QW2) as a function of energy difference E, - E, at different in-plane 
applied magnetic fields :0T, I T, 2 T, 3T and 4 T, forM =5 meV and 
IF =I meV; assuming electron temperature T,, : (a) 10 K, (b) 100 K, and 
(c) 150K. 
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Figure 5.3 Average escape rates of electron tunneling resonantly throughout the second 

well (QW2) as a function of the energy difference E, - E, at different in-planc 
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values of M: (a) 2.5 meV, (b) 5.0 meV, and (c) 7.5 rneV; assuming electron 
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In general, for a system at electron concentrations ns ý-_ 1.0 x 1011 cm-2 (more 

details have been described in Chapter 4), the distribution of electrons can be assumed 

to be Maxwellian, namely, py) - exp - 2m*kBTe, 
ý 

; where T,, is the electron 

temperature. The rates 
( 
TI, as a function of energy difference El -E: have been 

calculated for a TBRTS at different in-plane applied magnetic fields ranging from 0T 

to 4T. The results are shown in Figures 5.2 and 5.3. 

Figure 5.2 presents the effect of in-plane magnetic field on the electron tunneling 

throughout the second well. The calculated results are for a TBRTS with M=5 meV 

and r=1 meV, at different assumed electron temperatures T. : 10K, lOOK and 150K. 

The results show that at low electron temperatures the magnetic field has less effect on 

the rates. This feature becomes more pronounced at high electron temperatures. This 

implies that to analyze the effect of magnetic field on such the resonant tunneling 

knowledge of the distribution function of hot electrons in level E, is required, allowing 

us to find an exact electron temperature. However, it is reasonable, based on a compa- 

rison wit experimental data [107], to assume that T, =150K corresponding to the 

resonance broadening AEres _- 13 meV for the system with an interwell distance 

d12 = 75.5 A in an applied magnetic field B=4T. It can be seen from Figure 5.2(c) 

that the average escape rates at high electron temperature have a strong magnetic field 

dependence resulting in a noticeable smearing out of peaks with increasing magnetic 
field. 

In Figure 5.3, the average escape rates have been calculated for the TBRTS with 
differing values of the transfer integral M. The results show that the, effect of applied 

magnetic fields on the resonant tunneling is strongly dependent on M. Smearing of the 

peaks becomes noticeable when M decreases. In other words, the resonance condi- 

tion of electrons tunneling throughout the second well is easily destroyed by an applied 

magnetic field in a weakly coupled well system. For the structure described in Ref, 107 
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with well widths QW166A/QW233A and the middle barrier thickness 26A, the 

calculated M and r are approximately 5 meV and I meV, respectively. 

5.2.2 Current-voltage characteristic and its derivatives 

To investigate the current-voltage (I-V) characteristic obtained from the struc-ture 

shown in Figure 5.1, and its derivatives we use the concept of sequential tunneling, 

when electrons first accumulate at emitter level EO and tunnel to E2,, then after LO 

phonon emission drop to level E,, and finally leave QW1. The design of the structure 

is chosen in such a way that tunneling from level El to the collector is always faster 

than tunneling from EO to QW1. Moreover, the tunneling from QWI is sufficiently 

fast when levels El and E, ' approximately coincide. The total current density J 

through the heterostructure obeys the equations J= 
LO 

= 
ki-, 

where ro is the tun- 
ro Ti 

neling time from level EO to QWI and T, is the average of escape times from QWI 

/IV 
rl 

throughout QW2, namely, Yj = ý- , Q0 the sheet charge density at level E0, and 
rl 

/ 

Q, the sheet charge density in the wells (QW1 and QW2). 

To simplify the model one can assume that the total bias V across the device is 

mainly determined by the total sheet charge density Q= Q0 + Q, -= Q(V). Therefore, 

the IN characteristics can be obtained in the form [107] 

iQ- (5.13) 
1*0 + Tj 

This leads us to obtain the differential conductivity and its derivative 
av 

1 dQ Q' [dro di7, 
av ro + r, dV (ro +: Fl)i»L dV dV 

], 

ý, 
' 

-_ýý(- 
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dro df, dro 
+ 

dr-I d2 ro 
+. 

ýLr I 2Q 
K- 

V2V2 a21 

(dV 
dV) 

(dV 
dV) Idd 

1'ý 
1 dQ 

aV2 (ro +: F, ), To + T, 2 dro 
+ýLfj 

QdV , (5.15) 

dV dV i 

5.3 Calculations of the current-voltage characteristic 

and its derivatives 
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Figure 5.4 (a) Calibration of electric field against device bias [15]. (b) Experimental data 
of ro against device bias at different operating temperatures T: 4.2 K, 60 K 

and 77 K [107]., 
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Figure 5.5 (a) Typical IN characteristics, (b) the differential conductance ( 
dI 

), and (c) 
dV 

the second derivatives (d2, ) of the IN characteristics at different in-plane 
dV 1) 

magnetic fields: 0 T, I T, 2 T, 3T and 4 T, at operating temperature T= 77 K. 

assuming M=5 meV, IF =I meV and electron temperature T, = 150 K. 
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In order to facilitate the device modelling given in Eqs. (5.12)-(5.15), the electric 

field within the structure was calibrated against device bias by means of Shubnikov-de 

Haas-like magnetotransport measurements of the sheet charge density in the emitter 

accumulation layer [15,108]. For convenience, the results of these measurements are 

shown in Figure 5.4(a) [15]. Also, additional experimental data of To as a function of 

device bias at different operating temperatures T: 4.2 Ký 60 K and 77 K is shown in 

Figure 5.4 (b) [107]. 

Furthermore, the sheet charge density Q0 has also been measured as a function of 

device bias. Linear approximation of this data in the voltage range from 0.6 V to 0.9 V 

gives [107] 

Qo = e. (1.74+4.8V)x1011 CM-2 

where e is the electronic charge, and V is the bias measured in volts. Because the 

voltage drop between wells is much smaller than the total bias, it can be assumed that 

that the total sheet charge density Q= Q0 + Q, ms Q0 to an accuracy of 5% [107]. Using 

these relevant experimental results of measurements, and the escape rates given in 

Eq. (5.12), the IN characteristic and its derivatives are obtained in Figure 5.5. The 

following calculations have been performed for a GaAs/AlO. 3GaO. 7As TBRTS shown in 

Figure 5.1, with material parameters as described in Refs. 15 and 107. 

Figure 5.5(a) presents effects of the in-plane magnetic fields on the IN charac- 

teristic obtained for the TBRTS with M=5 meV and IF =1 meV, at operating tem- 

perature T= 77 K. The results show that smearing of peaks becomes more sign ificant 

with the increasing of applied magnetic field. That means the applied magnetic field 

destroys the resonance condition. 

Figure 5.5(b) shows the differential conductance 
dI 

as a function of. bias-voltage 
dV 

at different applied magnetic fields. At the loW-bias-range (-i< 0.60V), the differential 

conductance is extremely small. It rises at the onset'of electron tuiineling, and then 

drops sharply after exceeding a maximum; particularly forthe system in'the absence of 

the applied magnetic field (B =0 T). This feature corresp, . 6nds to Ia roughly triangular 

IN curve. With increasing magnetic field the triangle I-V'curve is ýsrneared'ouit that 
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results in a smooth drop of 
dI 

after reaches its maximum. As the bias is increased 
dV 

further, an instability of the device can be observed at the high bias (ý: 1.05 V); i. e. the 

negative differential conductance occurs. 

Figure 5.5(c) shows the calculated curves of the second derivative -d 
21 

dV2 

bias voltage for different applied magnetic fields at operating temperature T= 77 K. 

The peak in the second derivative in the absence of applied magnetic field corresponds 

to alignment of the EO level of the emitter accumulation layer with the E2 level of 

QW1. The local minimum can be described in terms of the rapid removal of electrons 

from the El level of QWI throughout the resonantly aligned level El in the QW2. 

This local minimum is located at bias-voltage around 0.83 V. The result agrees closely 

with the experimental data that gives bias-voltage at which maximum population 

inversion is observed [15]. In addition, it can be seen that magnetic field flattens the 

local minimum. 

5.4 Comparison with experimental results 

To compare theoretically calculated results with experiments, the TBRTS using in 

Ref. 107 has been considered. The most interesting structure having been investigated 

throughout this work has well widths QWI 66 A/QW2 33 A, and thickness of the first, 

second and third barriers are 66 A, 26 A and 26 A, respectively. Experimental and 

theoretical results of typical IN characteristics and their second derivatives obtained 

from this structure in the absence of an applied magnetic field at different, temperatures 

T: 4.2 K and 77 K are presented in Figures 5.6 and 5.7. 

In Figure 5.6 it can be seen that the theoretically calculated IN curves agree well 

with experiments at the onset of tunneling in the bias-range 0.7 V- 0.9 V. At high bias 

(> 0.9 V) the current calculated by using our considered model is much smaller than 

that from experiments. This disagreement is probably from effective LO phonon emis- 

sion taking place at the high-bias range, not taken into account in our calculations. In 

order to investigate the behaviour of electron tunneling through the heterostructure in 
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the high-bias regime, a good understanding of clectron scattering processes occurring 
in this region is required. 
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Figure 5.6 Typical IN characteristics obtained from the TBRTS shown in Figure 5.1 in the 
absence of applied magnetic field at different operating temperature: (a) 4.2 K, 
and (b) 77 K. The solid lines (-) are experimental IN characteristics of 
the device in forward bias [107]. The dash-dot lines are theoretically 
calculated results for a TBRTS with M=5 meV, r=1 meV; assuming elec- 
tron temperature T,, = 15 0 K. 
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Figure 5.7 The second derivatives 
d 21 

against bias in the absence of applied magnetic dV2 

field at different operating temperatures T: 4.2 K and 77 K. (a) Theoretical 
results calculated for a TBRTS with M=5 meV, IF =I meV; assuming elec- 
iron temperature T, = 150K. (b) Experimental results reported by Vdovin, el 
aL [107]. 

Figure 5.7(a) shows the theoretically calculated curves of the second derivatives 

d 21 

VT against bias in the absence of applied magnetic field at different temperatures T: 7 

4.2 K and 77 K. At T=4.2 K the second peak in the second derivative displays a clear 

splitting. This feature becomes more pronounced at T= 77 K and exhibits a sharp local 

minimum at 0.83 V. The results agree very well with the experimental data as shown in 

Figure 5.7(b). 
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Figure 5.8 The second derivative 
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against bias at different applied magnetic field: 

0 T, I T, 2 T, 3T and 4 T, at operating temperature T= 60 K. (a) Theoretical 
results calculated for a TBRTS with M=5 meV, r=1 meV; assuming 
electron temperature T, = 15 0 K. (b) Experimental results reported by Vdovin, 

el aL [ 107]. 

In Figure 5.8(a), the theoretical calculations of the second derivatiN - 
d2I 

a 
dV2 -' 

function of bias are presented. The results are obtained from the TBRTS with M=5 

meV, F=1 meV in different applied magnetic field: 0 T, I T, 2 T, 3T and 4 T, at 

operating temperature T= 60 K. The results show that magnetic field flattens the local 

minimum. As the magnetic field is increased further, this local minimum is calculated 

to disappear for B>4T, while this was observed at B>3T from the experimental 

data shown in Figure 5.8(b). However, it can be seen qualitatively that variations of the 
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theoretical curves of the second derivative agree quite well with the experimental 

results. 

5.5 Conclusions 

The concept of sequential tunneling has been introduced to explain the in-plane 

magnetic field dependence of the resonant tunneling in a triple barrier resonant 

tunneling structure. Typical IN characteristics and their derivatives for a structure with 

particular design parameters have been calculated. The resulting calculations are inves- 

tigated as a function of bias-voltage. It is found in the second derivative of the current 

that the resonance between E, and Ej* exhibits itself as a visible feature in the back- 

ground of a wide E2 resonance. This feature has a sharp local maximum in the absence 

of applied magnetic field, and becomes flattened with increasing magnetic field. The 

magnetic field dependence of this feature can be explained by considering the rate 

equation for tunneling electrons based on the concept of sequential tunneling. Theoreti- 

cal results agree well with the experimental data reported by Vdovin, et aL [107]. 
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Chapter 6 

Concluding remarks and future work 

In this thesis intersubband relaxation of electrons in quantum wells has been theo- 

retically investigated. Firstly, the in-plane kinetic energy, and also well width depen- 

dences of electron intra- or intersubband scattering rates (or times), associated by LO 

phonon emission in a semiconductor SQW structure were presented. Semi-analytic 

calculations, carried out for a GaAs/AIO. 3Gao. 7As SQW structure, show that the scat- 

tering rates (both for intra- and intersubband scattering) weakly depend on in-plane 

kinetic energy of the electron. Furthermore, the resulting calculations of well width 

dependence show that intrasubband scattering times gradually increase with well width 

contrasting with the intersubband scattering times which display a monotonic decrease. 

Secondly, a theoretical study of the condition to achieve inverted population in a semi- 

conductor DQW structure was presented. The LO-phonon assisted tunneling rates, 

based on the Fr6hlich interaction and Fermi's golden rule, has been performed for a 

GaAs/AIO. 3GaO. 7As DQW structure. The calculated results show that the tunneling rates 

monotonically decrease with the energy difference El - Ej* , and strongly depend on 

the magnitude of the transfer integral M. 

Furthermore, electron transport and its kinetic, due to various types of scattering 

and tunneling mechanisms in a triple barrier resonant tunneling structure (TBRTS) 

were investigated. A system of coupled kinetic equations that describe the nonequili- 

briurn electrons in the structure has been solved analytically to obtain subband distribu- 

tion functions and gain spectra. Finally, the concept of sequential tunneling has been 

introduced to explain an in-plane magnetic field dependence of resonant tunneling in a 

TBRTS. Typical IN characteristics and derivatives for the TBRTS with particular 

design parameters have been calculated. It is found in the second derivative of the 
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current that the resonance between El and El' exhibits itself as a visible feature in the 

background of a wide E2 resonance. This feature has a sharp local maximum in the 

absence of applied magnetic field, and becomes flattened with increasing magnetic 
field in agreement with experiments. 

The results from these calculations are relevant to real world devices such as 

quantum cascade lasers (QCLs). These structures contain active regions (often double 

quantum wells), linked by multiple quantum well bridging regions. Whilst the work 

presented here provides a valuable insight of electron transport and scattering in DQW 

structures QCL active regions). A more'realistic device would also include electron 
kinetics in the bridging regions. 

Our future work will extend the calculations presented here, focussing on theo- 

retical studies of the QCL operation, and also on the application of the relaxation 
kinetic model described in Chapter 4 to study the relaxation of electrons in real QCL 

structures. We will also numerically calculate distribution functions and gain spectra of 

a three-subband GaAs/Al,, Gal-,, As DQW active region as a function of temperature and 
injected current. 
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Appendix A 

Solutions of the model kinetic equations 

To solve the model equation given in Eq. (4.40) we first introduce dimensionless 

' and y, and Eq. (4.40) is parameters; 17 ýl = 
'ro 

, ý2 = -LO- , A, = ýLo 
T 

ree r, 'rl2 h coo h coo 

then transformed to the dimensionless kinetic equation as follows: 

L For the upper subband E2: 

O<y<l; 

2f d2 (Y) 

17A +17 + (No + I)f2 (y + 1) - a2f2 (Y) P04Y - YO) (A-1) ee dy 2 dy 

y 1; 

2f 

77A 
d2 (Y) 

+77 +(No +I)f2(y+l)+Nof2(y-l)-, 82f2(y) =0, (A-2) ee dy 2 dy 

where Y- 
roGo ý Y2 9 C12 = NO + ý2 (2NO + 1) 51 )62 =(2NO + 'Xl + Ms PO = 

P2ýC% 

The kinetic equations given in Eqs. (A-1) and (A-2) can be solved by assuming the 

general solution f2 (y) in the forra 

f2 0) (Y) + 

D2 (k) = 

+OD 

dke-'kYD2(k)p(o)(k) 
i2 

-00 

I 

- i7A,, k 2- 
i7k + (No + 1ý-* + Noe'k -, 62 ' 

(A-3) 

(A-4) 

+00 
I 

2, 
f dye (k)f2(o) 

T 
(P2(k) =- 7= 

-'kYD2 

2; r --oo 
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where f2(0) (y) is the zeroth order solution given as follows: 

AjeP2y 2y +A2e-"+ O<Y<YO 

IAe JU2y e JU2 Y <Y<l (A-6) f (0) (Y) + ý2 
3+ 

A4 Yo 
A, e '12Y Y>l 

T -i7: FVi7 +4i7A - 17 + 4t7A ýea2 
17 eA where P2 - 217A, 

and A2 = 2qAe 
The arbitary 

constants A- A5 are obtained from the following boundary conditions: 

(i)at y=0; 

Jý, W Y=o 

[Aee 

dy 
+A (Y)] 

Y=o 
=0 

(ii)at y= yo; 

f2 (Yly=yo+ 
=-- A (Y)y=y- 

, and i7A,, 
df2 (y) 1 1- 

PO 
01 dy Y=yo dy jy=yý j- 

(iii)at y=1; 

f2 W 
y=ll- 

= f2(yly=, - , and 
Y=i+ Y=I- 

II. For the lower subband E, 

O<yl <1; 

17A ee dy 2 +77 
dy, 

+ (NO + I)fl (y, + 1) - a, f, (YI) =0 (A-7) 
I 

yj > 1; 

17Aee dY2 
+17 

dy, +(ivo+l)fi(yi+, )+ivofi(yi-l)-Afi(yi) = Pi(vi), 
I 

(A-8) 
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where a, = No + ý, (2NO + 1), 81 = (2NO + IXI + ý, ), 

M. 
YI +1 

hOo hQo 2 
and 

[(NO 
+ 1)f2 

"Of2 
Yl-'-ý- PI --ý ý2 -* hcoo ) lo 

1. 

General solutions of the kinetic equations given in Eqs. (A-7) and (A-8) can be 

written in the form 

f, (YI) eý'ýYl +B2ell , YI+Fl(yl) O<yl <I (A-9) 
B3e'" + F, (yj ; Y, >1 

+00 

2f 
dke-'k"Djkýpfo)(k), F, (y 71; (A-10) V-2; r -. 0 

D, (k) 
77Aeek 

2_ 
77k + (No + ý-ik + Noe'k -, 61 

(A- 11) 

+00 
(k) f dy, e-'kyD, (k)PI (y, (A-12) 

_00 

q T- NFt7 + 4r7Aý,, a, - 77 - , 
FYI 2+4? 7A ,A where p, - 217A,, , and A, - 217A, 

e 
. The arbitary 

constants B, - B3 are obtained from the following boundary conditions: 

(i)at y, = 

J"(Yl), 
=o =o -> 

[Aee 

dy I+f, 
(y, )Iyl=o =0 

(ii) at y, =1; 

(y, ) ýfl (y ((y 

=I- , and 
j 

YI 
(y, -ty, 

+ dy, 
Yi=l 
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Nonequilibrium electrons in double quantum well structures: A Boltzmann equation approach 

S. Khan-ngem and 1. A. Larkin 
Department of Physics andAstronomy, University of Sheffield Sheffield S3 7RH, United Kingdom 

(Received 24 January 200 1; published 29 August 200 1) 
A theoretical study of hot electrons in double quantum well is presented. We consider a system of coupled 

kinetic equations that describe nonequilibrium population in two lowest subbands, and find an analytical 
solution of these equations. All previous treatments of the electron distribution functions are based on the two 
extreme limits ro I or ro br,,; ý- 1, where ro and r,, refer to electron-LO-phonon (e-LO) and electron- 
electron (e-e) scattering times, respectively. In our approach, the distribution functions are investigated for the 
whole range of ro lr,, ratios. The outcome of kinetic equation for subband distribution functions provides a 
comprehensive description of the lasing process in the intersubband lasers. Our calculations show that the 
lower subband distribution function above LO-phonon threshold is always strongly nonequilibrium and dcvi- 
ates far from thermal distributions while in the region below the LO-phonon threshold it could be close to a 
Maxwellian. Using these distribution functions we calculate spectral density of gain at various temperatures. 
DOI: 10.1103/PhysRevB. 64.115313 

1. OrMODUCTION 

Studies of mid- and long-wavelength infrared lasers based 
on electronic intcrsubband transitions within the quatum 
wells (QW's) in semiconductor low-dimentional heterostruc- 
tures have attracted a great amount of interest since the first 
demonstration of a so-called quantum cascade laser (QCL) 
was reported by Faist et aL 1 Continued delvelopment of the 
QCL operation, improving the threshold current and the 
maximum temperature of operation, requires a sound under- 
standing of the effects of changing design parameters on the 
intersubband population kinetics. To create lasing efficiency, 
in general, it requires specially designed structures providing 
sufficient global population inversion between the two sub- 
bands involved. 

In our earlier works2-3 it has been shown that to achieve 
inverted population in a modified GaAs/AIGal 

-,, 
As double 

QW structure schematically shown in Fig. 1, which is occa- 
sionally used as an intersubband lasing structure that consists 
of a wider well (QWI) as a lasing unit and a narrower well 
(QW2) as an electronic energy filter by various types of tun- 
neling mechanisms, we should ensure efficient drain of car- 
riers from El subband. This happens when the device has 
appropriate design parameters providing a good electron 
confinement at E2 subband and short electron lifetime at the 

L4 E, subband. Recently, it has been shown by Faist et a that 
for lasing in the intersubband lasers, global population inver- 

sion is not a necessary condition but that nonparabolicities 
combined with the nonthermal electron distribution in the 
laser unit can make lasing action possible. This idea has been 
itudied theoretically by Gelmont et al. 5 and Gorfinkel et aL6 
The main resulting calculations of these papers were directed 
to investigate the spectral line shape of radiative intersub- 
band transitions in a QW. It has been found that the line 

shape of radiative intersubband transitions is determined by 
two factors: (i) the electron intra- and intersubband scattering 
rates, and (ii) the effective mass differences between the two 
subbands involved. The interplay between these two factors 
leads to essential non-Lorentzian form of the spectral line. 
The calculations of spectral density of gain g(fl) are de- 

PACS number(s): 42.55. Px, 72.10. -d4 85.30. -z 

scribed as a functional on electron distribution functions 
f, (e 1) and f2(8 2) in both subbands EI and E2, where eI 
and 82 are kinetic energies in the subbands E, and E2. re" 
spectively. Generally, the distribution functions are nonther- 
mal and their actual shapes affect strongly the spectral den- 
sity of gain. 6 At very low concentrations the distribution 
function f, (c 1) is given by a quasidiscrete ladder with the 
occupation probabilities decreasing toward the subband 
bottoM. 6.7 This is very unusual distribution because electron- 
electron (e-e) scattering is very effective for the actual con- 
centrations. Therefore, thermal equilibrium distribution func- 
tion based on arguments of fast e-e scattering is considered 
in the majority of these papers. 6-8 However, there is substan- 
tial gap between the two limiting cases. The most typical 
shape is continuous, but the distribution function is strongly 
nonequilibrium. This behavior, in fact, has been studied ex- 
tensivcly via the ensemble Monte Carlo technique (see par- 
ticularly the work of Goodnick collaborators ). 9-11 

In this paper we study kinetics of electrons scattering in 
triple-barrier double QW heterostructures shown in Fig. 1. A 
model kinetic equation involving terms that describe the 
electron-LO-phonon and e-e scattering, as well as electron- 
escape and electron-generation processes has been derived. 
Analytic solutions of the kinetic equation for distribution 
functions in the two subbands have been found and obtained 
a comprehensive description of the lasing process in the in- 
tersubband lasers. 

The paper is organiscd as follows: formulation of the 
problem is described in Sec. 11, where expressions for the 
model kinetic equation is derived. In Sec. III and Sec. IV we 
present and discuss our calculations of subband distribution 
functions and the spectral density of gain. Finally, conclu- 
sions are addressed in Sec. V, and useful mathematical de- 
tails are presented in the Appendix. 

H. FORMULATION OF THE PROBLEM 

Main purpose of this present work is to investigate non- 
equilibrium behavior of electrons in the two subbands E, 
and E2 (see also Fig. 1). The kinetics of electron scattering in 

I 
0 163-1829/2001/64(11)/115313(10)1$20.00 64 115313-1 C2001 The American Physical Society 
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Applied electric field; F 
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where k is the magnitude of in-plane wave vector of the 
electron. 

Electron-LO-phonon scattering. The term SLO(ej) is re- 
sponsible for electron scattering by LO phonons in subband 
El, so that 

SLO(ei)=- y(cj)fj(cj)+Bj(ej), (2.3) 

-/(Ci)= 
I 

X(Aro+ (No+ I) E)(cj- A wo)], (2.4) 
TO 

I Cmdfim 

Ef 

(b) 
FIG. 1. (a) Schematic diagram of the conduction band of a 

double QW structure and kinetics of electrons scattering. (b) The 
subband diagram presenting the radiative intersubband transitions 
in the QWI, and also shown are the nonradiative inter- and intra- 
subband transitions by emission or absorption of LO phonons. 

our physical system can be described by a model kinetic 
equation 12-14 

df'(-')=S,. 
O(ci)+C,. (ei)+Ri(ei)+Gi(cl); i=1,2 

act 
(2.1) 

where fi(ei) is the electron energy distribution function, cor- 
responding to the occupation probability of kinetic-energy 

states c, in subband Ej; here El denotes the total energy of 
electrons. We consider the dispersion relations cl, 2(k) in 
both subbands are different and nonparabolic. However, all 
the effects of interest here are simplified by regarding the 
subbands; themselves as parabolici but characterized by dif- 
ferent cffective mass mI and M 26 

A2k2 
(2.2) el, 2(k)=Ej. 2(k)-Ej, 2(0)= i- M 1.2' 

Bi(ci)= 
!X 

[(No+ I)fi(ci+hwo) 
TO 
+NDO(ci- AWO)fj(sj- h (00)], (2.5) 

where 0 is a step function, and 70 the intrasubband relax- 
ation time due to a spontaneous LO-phonon emission. For a 
sufficient narrow QW of any shape, the time constant ro 
- 0.1 ps (for GaAs) . 

5.6,15 No is the phonon Planck function. 
If LO phonons are strongly nonequilibrium, one can use the 
appropriate function instead of NO. 16 In our case it will lead 
to effective LO phonon temperature that differs from the 
lattice temperature TL. The function y(ej) describes the 
transverse-phase relaxation rate due to the intrasubband scat- 
tering, which is dominated by the interaction with LO 
phonons. The latter term Bi(el) is responsible for the incom- 
ing electron scattering by emission and absorption of LO 
phonons. 

Electron-electron scattering. To calculate the term 
C,, (ej) that describes e-e scattering processes, we have to 
consider e-e scattering probability W,, (ei--+ e; ) of interact- 
ing electrons from initial states ej in subband El to the final 
states c; in subband Ef . In a system with isotropic or nearly 
isotropic electron distributions, the probability W,. (e, 

8 ') is given by 12 f 

I':: 

I "dOW (i i) 
7r 0 

ee i--* ý' (2.6) 

21r 
J(gj) T_jMj;, ý.. j"jj2 

06(61+ ej- C; - 8; ) (2.7) 

here Mf, f,. f i is the matrix element for the e-e scattering P S' "j 
process of an electron with wave vector ki in subband El and 
a second electron with wave vector kj in subband Ej into the 

" and in subbands E final states with wave vector ký r and 
Ex . respectively. For the problem with isotropic electron dis- 
tributions, the average of the probability W,, (ij--4ý) over 
the angle 0 between ki and k'; enters into the calculations as 
given in Eq. (2.9). 

For reasons of simplifications we neglect any mismatch 
in the properties of the narrow- and wide-gap semi- 
conductor lattices and also disparities in the dielectric per- 
mittivity. We then use an e-e interaction operator of the form 
U,, =e 2 1(41TKr); where e is the electronic charge, K the 

115313-2 
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dielectric permittivity of the QW and r the distance between 
two interacting electrons. The matrix element Mj, p. i ; is 

consequently obtained 12 PSj 

4lrKr s 

(2.8) 

where Q=ji; -k, 'j=jij-kjj is the relative in-plane wave 
vector of the interacting electrons, which determines the in- 
plane momentum transfer of the electrons, and S the surface 
area of the QW. 

Finally, one can obtain the e-e scattering C., (ej) in the 
collision integral form 12,13 

C,. (c d= 
foo 

dej pj(cj)[ W,, (cj - ei)fj(cj') 

(2.9) 

where Pi( 8 1)=Mi/(lrh2) is the two-dimensional (21)) den- 
sity of states in subband E, - 

The general expression for C,, (ci) given by Eq. (2.9) 
associated with Eqs. (2.6)-(2.8) is very complicated, on the 
contrary to the other terms SLO, Rj, and G1, as it is a bilin- 
ear functional on the electron distribution function. To reduce 
it to a linear integral equation form one can put in Eq. (2.7) 
the MaxweIlian distribution 

fi(ei)=niý-; - expý - Ir', ' e 
where ni is the number of electrons per unit area in subband 
Ei, and T, the electron temperature in energy units. Physi. 
cally it means that scattering of the minority of high kinetic- 
energy electrons is affected only by the experience on the 
majority of quasithcrmalized electrons. In general, it is 
meaningful to define the electron temperature T, different 
from the lattice temperature TL when the energy relaxation 
due to e-e scattering is faster than the energy relaxation due 
to LO-phonon scattering, i. e., r,, < -ro exp(h% IT, ). 13 At this 
condition the temperature T, can be found using the energy- 
balance equation. Even with this simplification the e-e scat- 
tering probability W,, (ei--, ') is still complicated and could ef 
be solved analytically only in some special cases. IZ17 To 
handle the problem analytically we will use a consequence of 
the Coulomb singularity of the matrix element Mp at P 
small momentum transfer. This singularity implies that scat- 
tering events with low-energy transfer are dominant. As a 
result, one can use the F6kker-Planck-Landau (FPQ approxi- 
mation to transform the collision integral Eq. (2.9) into a 
differential form's 

1aa 
C1(e1) =- 

p1(e1) 
Ip1(6i)j. (81)] =- 

(2.10) 

where the flux on the energy axis J,, (ej) is 

PHYSICAL REVIEW B 64 115313 

Jee(Ci) =- +De(ei)-Jfi(ci)i (2.11) 

foo 
del 

D,, (ei)= 
I Ode'pi(el)(el- 
2 

(2.12) 

(2.13) 

where A,. (e) is the' dynamic friction, and D,, (ei) the 
energy-diffasion coefficients. 

Recently, it has been numerically shown by Kinsler et aL8 
and Smet et aL 14 that e-e scattering is dominated by small- 
angle intrasubband events (i =f and j= g) in which the ini- 
tial electrons stay within their original subband after scatter- 
ing and their relative momentum transfer is small resulting in 
a small value of the energy transfer. The main investigations 
of these papers 8,14 are directed to e-e intersubband scattering 
(iOf or j0g). In this case the energy of final states of 
electrons lies in a narrow region. Their resulting calculations 
show that the intcrsubband e-e scattering events, which do 
involve a change of subband at least for one of the electrons, 
vanish at small values of in-plane wave vector k<k. j.; 
where k. j. is the minimum value of k that permits the inter- 
subband transitions occur. For electrons at large values of 
in-plane wave vector k>k. i,, , where the e-e intersubband 
transitions is possible, e-e intersubband scattering processes 
are typically less important when compared to e-e intrasub- 
band transitions. In addition, they have also pointed out that 
for sufficient large values of energy separation between sub- 
bands, e-e intersubband transitions become much weaker 
when compared to the e-e intrasubband scattering processes. 
These relevant results enable us to necglect e-e intersubband 
scattering processes and take into account only e-e subband 
transitions. For the kinetic energies ejID- T, the dynamic fric- 
tion coefficient A,, (e) is independent of kinetic energy"' 

e4 wil 
n, =-, T2h- 

'ree 

where n, =nI+n2 is the electron concentration in the QW I 
and r,, is responsible for the e-e relaxation time at LO- 
phonon threshold. This relaxation time r,, is important for 
describing the competition between e-e scattering and the 
LO phonon emission near the the threshold regarded as a 
dimensionless parameter 

V= -LO = 1., , r.. 

ý 

3.84X 1011 CM 2 

(for the GaAs QW). At high electron concentration where 77 
is large that characterizes the dominant of e-e scattering. The 
e-e scattering rate we defined in Eq. (2.14) differs from the 
e-e scattering rate introduced in Ref. 10, r..., 

e4 m*n, 1(4h3K2q 2) in Sl units. Here m* stands for the 0 
electron effective mass in the QW and qO is the inverse 

115313-3 
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screening length in two dimensions. The reason for this is 
that electron-gas-energy transfer rate is determined by trans- 
port cross section that differs from total cross section on the 
screened Coulomb gotential that has been used in the Monte 
Carlo simulations. ' To compare the efficiency between e-e 
and ý-LO scattering we calculate the time r,, that the elec- 
tron requires to lose the enSjpLAw, by e-e collisions. If 
screening parameter q0 <9 42 in wo /A, 7,, appears to be en- 
ergy independent that makes the problem more simplistic. 

Electron escapefrom the subband. The term Rj(ej) de- 
scribes electron escape from subband El. For the 

, 
lower sub- 

band E, in QWI (see also Fig. 1) the electron-escape rate is 

RI(el)=- 
A (c 0 

, rl,,, 

where rl.., is the electron-escape time from the subband due 
to various types of scattering mechanisms. In these present 
work we take into account only LO-phonon assistant tunnel- 
ing that is typically the most prominent scattering process, so 
that 

R, (e I) = -(2NO+ 1) 
A0 

(2.17) 
71 
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Gl(&, )= 
I M2 UNO+ Of& I -"10+4COO) 'r12 MI 

+NQf2(--l-AfIO-AWO)l 

where MloýE2(0)-E, (O) is the energy separation be- 
tween the two subbands. The first term is responsible for the 
emission of LO phonons, while the latter term stands for the 
absorption of LO phonons. 

Electron generation G2(82) in the upper subband is as. 
sumed as monochromatic pumping based on these following 
reasons 

(i) For a strong nonparabolic material the 2D electron gas 
(2DEG) in the emitter is permitted to tunnel through the 
upper subband E2 in QWI; see also Fig. I (a), only for a 
definite wave vector k with a definite kinetic energy e2. 

(ii) Similarly, for the case of optical pumping only the 
photoclectrons with a definite wave vector k are allowed to 
be pumped into the subband E2. This is equivalent to requir- 
ing the definite kinetic energy 82 to be pumped into the 
subband. 

(iii) The third main reason is that the model kinetic equa- 
tion in our approach is linear. This implies that if one can 
find its solution with a Munction pumping, one will be able 
to build up the convolution of general problems with arbitary 
generation function. 

here r, is the interwell scattering time due to a spontaneous 
LO-phonon emission. The nonradiative time rl can be tuned 
by changing the design parameters of the QW's and barriers. 
To achieve the efficient drain of electrons from subband El 
the designed structure must be such that the subband energy 
difference Ej-E*j is close to LO-phonon energy. For the 
particularly designed structure of the LO-phonon tunneling, 
the calculated time constant rl in GaAs/Al., Gal -. As DQW 
heterostructure 3 is in a range of 0.4-1.0 ps depending upon 
the coupling strength between the electronic states of the two 
subbands El and E2. However, in our present paper it is 
regarded as a tuneable parameter to determine the global 
population ratio between El and E2 subbands. 

For subband E2 the electron R2(8j) can be determined by 
intersubband LO-phonon-assistant scattering from the sub- 
band E2 down to subband E I, neglecting any other scattering 
mechanisms from the subband. Therefore, the electron es- 
cape is 

R2(C2)=-(2No+l) 
f2(C2) 

(2.18) 
712 

where r12 is the intrawell scattering time due to a spontane- 
ous LO-phonon mission from subband E2 down to subband 
El. The typical nonradiative time ri in GaAs QW- I ps 
for midinfrared regime of operation. 11.20 

Electron generation processes. The term GI(al) describes 

the electron generation in subband E, For the lower subband 

the blectron generation GI(el) can be obtained from the 
intersubband scattering rates of electron from the upper sub- 
band 

Consequently, the electron generation in the upper sub- 
band is therefore 

G2 82 ý 
Go 

8(82- EO)t (2.20) 
P2 

where Go is the number of electrons with kinetic energy co, 
and P2 -= M2 /(lrh2) is the 2D density of states in the subband 
E2- 

By substituting all of these relevant scattering terms given 
in Eqs. (2.3)-(2.20) into the kinetic equation, Eq. (2.1), un- 
der a steady state of operation, we obtain 

Awo 
-L+T. 

d2 
21fi(el) - Y(sj)fj(ej) +Bi(ci) +R, (ei) 

i-,, del del 

=- GI(e), (2.21) 
here T. =D,, (vj)1A,, (cj) is the electron temperature in a 2D 
electrons below LO-phonon threshold. It follows from the 
principle of detailed balance as 2DEG below the LO-phonon 
threshold represents a thermal bath with temperature T,. 

In addition to the dimensionless parameter 772370/res, 
we introduce C1 = 70 / 71 , 

C2 = 70 / 712 90=T, 
/(A wo) and yj 

=ei /(A wo). The ratio C, / C2 characterizes the global popu- 
lation ratio between the two subbands involved. The dimen- 

sionless parameter 0 determines the ratio of electron tem- 

perature to LO-phonon energy. In our approach it is always 
assumed to be small. As a result of substituting these dimen- 

sionlcss parmneters into the kinetic equation, Eq. (2.21), we 
can obtain a four dimensionless kinetic equation system to 

get rid of the step function 0, that takes into account LO- 

phonon threshold, as follows: 

115313-4 
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For the upper subband E2- 
(a) O<y2<1; 

170 
d2f2(Y2) 

+17 
df2(Y2) 

+(NO+ I )f2(Y2+ l)-a2f2(Y2) 
dy2 

2 
dY2 

-PO06(Y2-YO) (2.22) 

M Y2ý' I; 
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d2f2(Y2) 

dy2 

f2(y2) 
+ (ArO + I)f2(Y2 + I) 270 + 97ý-- 

2 
dY2 

N(Lf2(Y2 - 1) -. 82f2(Y2) ý0 (2.23) 

For the lower subband E 
(a) O<yl< I; 

d2f, (y 1) df, (yj) 
IVO 7 

Vj- 
+ 71 +(No+ I )fl(y I+ I) -aLft(y 0 

Y, dy I 

= 

y I> 1; 

VO 
d2f, (y 1) + 77 

dfl(yi) 
+ Ovo +IW, (Y I+ 1) 

dy2 I 
dy t 

+Naft(Yi - I)-PLft(yl)= -Pi(Yi) (2.25) 

where al. 2=No+fl. 2(2NO+I), fli, 2=(2No+l)(I+fl. 2), 
Po=, roGol(P24WO) and 

f12 hfloý 
Pl(Yl)= ý2 

m 
(No + I)f2 yl+l- AWO 

Ano 
+ NOA yi-l- 

! 

fl -fol) 
)I- 

The details of mathematical solution of Eqs. (2.22)-(2.25) 
are presented in the Appendix where boundary conditions for 
these equations are also presented. In the following section 
we present the resulting solutions of the kinetic equation 
system for various values of the relevant parameters 
77, fl, C2, and 0 that correspond to different regemes of the 
QCL operation. 

M. SUBBAND DISTRIBUTION FUNCTIONS 

In this section our investigations are mainly focused on 
the nonequilibriurn behavior of electrons in the 
GaAs/Al,, Gal-, As DQW heterostructure shown in Fig. 1. 
We introduce a universal dimensionless energy variable y 
MYVý8210(00) for the subband distribution functions 
fj(yj) andf2(y); here yj =a, 060ý(M21ml)y. This va- 
jable conserves at optical transitions from E2 to El. The 
calculated subband distribution functions for different values 
of 17, which determine electron concentrations, are shown in 
Fig. 2. With increasing values of q; i. e., increasing the con- 
centrations of electrons, the subband distribution functions 

-04 i* 

'g 03 

TO I 
n2 =n,, T =77K 

Tto 20 
fl 
f2 

LWWF 

SC fý 

0.2 

0.1 

2 

(2.24) 

U 
U 

7- cffiwo 
-12 
'ý 

10 

I. 
r, 
-2 

=1, n2=ni. T =77K 

f2 

EmkV Scale (b) 

TO 
= 2. n2 =nl, T =77K 

Too f, 
------ f2 

Erimp Scale 

ya affiwo 
FIG. 2. Subband distribution functions for the monochromatic 

pumping P(y) = PO 8(y - 21) into the upper subband E2 with equal 
subband population n2=nl; assuming the following parameters: 
70ý0'1 PS, 712=71ý1 ps, the subband separation energy Aflo 

155 meVandM2ý1.2m,, attempemtureT=77 Kfordiffcrent 
values of V: (a) 0.05, (b) I and (c) 2. 

below LO-phonon threshold (y< 1) in both subbands be- 
come close to Maxwellian distributions. In the region above 
LO-phonon threshold (y> 1), the shape of the upper sub- 
band distributions f2(y) is still close to Maxwellian while 
for the lower subband the distributions fl(y) are always 
strongly nonequilibriurn and deviate far from Maxwellian. 

At a very low electron-concentration limit, n, 4 1.0 
X loll CM-2; i. e., 774 1, where the dominant scattering pro- 
cess is due to LO phonons causing electronic transitions 
within the same subband. The calculated distributions for 7) 
=0.05 and so far n, = 1.92X 1010 CM 2 at different tempera- 
ture T= 77 K and 300 K (see Figs. 2 and 3); here we assume 
that T= T, = TL, which shows that the shape of the distribu- 
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ON 

19 OD2 

n 
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T" 20 

f, 
f3 

(a) 

y 

0.4 

02 

TO 
l, n2 =nI. T= 30OR 

EuS.. J. garge Scak 

(b) 

234 
y 

1" 

I 
TO 

= 2. n2 =nl. T = 30OR 
1.5 

0.5 
Erjup Scale 

... - f2 

(c) 
3 

FTG. 3. Subband distribution functions for the monochromatic 
pumping P(y)=PoS(y- 1-) into the upper subband E2 with equal 2 
subband population n2=nl; assuming the following parameters: 
TO = 0- 1 PS, 'rl2= rl =I ps, the subband separation energy Aflo 

= 155 meV, and m2 - 1.2m 1, at temperature T- 300 K for differ- 

ent values of -t7: (a) 0.05, (b) I and (c) 2. 

tion functions in both subbands deviates far from Maxwell- 
ian. In the upper subband they have a pronounced peak at the 

pum7ping energy affected by the monochromatic electron- 
generation process that plays an essential role in this regime 
of operation. Immediately after a nonradiative intersubband 

transition from the upper subband E2 down to the lower 

subband El, the lower subband electrons are in a state of 
high kinetic energy 81ý "10 + 82:: ý 4 (00- Consequently, they 

cascade down to the subband bottom by emitting LO 

phonons resulting in the distribution functions A(y) at 

steady-state being strongly nonequilibrium. For 17 = 0.05 at 
temperature T= 77 K we can see four pronounced peaks on 
the lower subband distribution function fl(y). However, its 

shape deviates far from the shape of f2(y) at low energies. 

At i7= I all peaks are completely smeared out, but the mas. 
sive shoulder below main peak always remains. 

In Fig. 3 we present the electron distributions calculated 
for the system with the same parameters as in Fig. 2, but 
operating at room temperature T= 300 K. Our investigations 
focus on the distribution functions affected by the thermal 
phonon population No, which governs the lattice temperature 
TL. By comparing the resulting calculations for a specific 
value of q at different operating temperatures T= 77 K and 
300 K. It is cleary seen that the nonequilibriurn electron be- 
havior is strongly dependent on the lattice temperature. The 
main interests of these resulting calculations as shown in Fig. 
2 and 3 are addressed to the case 6 42 = 1. The results show 
that it is possible to achieve positive values of the spectral 
gain g(fl) due to the existence of local population inversions 
at some definite kinetic energies 82; i. e., at some particular 
electron wave vectors k, in the region below the LO-phonon 
threshold that provide an essential contribution to the spec- 
tral gain density. This implies that it is possible to achieve 
laser action even in low electron-concentration regimes of 
high-temperature operation; see also Fig. 3 (a). 

IV. SPECTRAL DENSITY OF GAIN 

In a natural limit that the transverse phase relaxation rate 
, y(e) is much smaller than the optical frequency fl, optical 
gain spectra g(fl) can be expressed as a functional on the 
subband distribution function f, (e 1) and Me ý e2) (Refs. 5 
and 6) 

4e 21ZI212 M2fl f', 
_ 

'Y(6Xf2(8)-fl(81)1 
-jo aB-(jj-fjk(e)]2+[. 

y(C)]2' 
g(fl) ý ý3ac47- 

(4.1) 

where Z12 is the transition matrix element, K. the dielectric 
permittivity at high frequency, a the QWI width, and c the 
speed of lighL The vertical transitions with articular 1ý11&), 
see also Fig. 1, are given by 

i"Ik(8)ý 1"10+ 8- 81 ý "10- 
22 

_1 (4.2) 
ýmj 

According to the threshold nature of y(e) that has been dis- 
cussed in Sec. 11 the optical gain becomes strongly influ- 
enced by the nonequilibrium distributions in the two sub- 
bands. Gain spectra calculated for diferent values of the 
competition parameter V between e-e scattering and 
electron-LO-phonon scattering; in different values of the 
electron concentrations, are shown in Fig. 4. For this calcu- 
lation we assume equal global population ratio that corre- 
sponds to 'r12"='r1 ; i. e. ýj /C2= 1. The resulting calculations 
show that we can achieve strong positive gain for particular 
photon energies. Small values of 77, that correspond to low 
overall-electron concentrations, give proportionally smaller 
gain amplitudes. In addition, the shapes of the spectral 
curves are affected by the shapes of the particular distribu- 
tion functions involved. At q> 1/3 the main reason for posi- 
tive gain is the leverage of f7 above f, below LO-phonon 
energy that corresponds to the photon-energy interval from 
rin. -Aaioum2 im p- ii to A110. The smaller photon ener- 
gies corr espond to large kinetic energies at both subbands, 
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FIG. 4. Variations of gain spectra under the monochromatic 
pumping P(y)=Pob(y-1) into the upper subband E2 with equal 
subband population n2=nl; assuming the following parameters: 
70ý0-1 PS- r12ý71=1 ps, the subband separation energy Aflo 

= 155 meV, and M2ý I-2M1, for different values of 71=0.05,1/3, 
and I at different temperatures: (a) 77 K and (b) 300 K. 

and the optical gain becomes negative in this region. At room 
temperature T= 300 K the maximum values of gain strongly 
decreases because the amplitude of the peak near pumping 
energy decreases when temperature increases. At the bottom 
subband El, more electrons are above LO threshold and so 
far less electrons below the LO threshold. Furthermore, the 
transverse phase relaxation rate y(e) becomes substantially 
larger so that it smears out the fine structure of the spectral 
gain function at smaller 77. 

In Fig. 5 we present gain spectra calculated in a low- 
concentration limit, i2= 0.05; i. e. n, = 1.92X 1010 CM-2, at 
different temperatures. Resulting calculations show that the 
amplitude of gain is not strongly dependent upon tempera- 
ture in the nonparabolic model while in the parabolic model 
it has a strong temperature dependence. 

Gain spectra calculated for different values of fj/ý2 
1,2, and 4 (see Fig. 6) that correspond to global inversion 

population n2 In j= 1,2, and 4, respectively, are also invcsti- 
gated at low- and high-electron-concentration regimes of op- 
eration that correspond to i7=0.05 and 1. Our results show 
that the spectral density of gain is mainly sensitive to the 
upper subband distribution function f2(s). For n2>nl at 
small q that corresponds to low-electron-concentration re- 
gimes two peaks are observed. First peak corresponds to the 
photon emission from the bottom of E2 subband, and second 
peak tp, the optical transitions near the initial pumping point. 
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T= IQýý 
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Mmn-" 

K 
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Photon Energy (meV) 

FIG. 5. Gain spectra in low-concentration limits at different op- 
erating temperatures ranging from 100 to 300 K under the mono- 
chromatic pumping P(y) = PO 8(y - 1) into the upper subband E2 
with equal subband population n2=n1. (a) Assuming the following 
parameters: ro=O. l PS, 712='rl=l ps, r,, =2 ps, the subband 
separation energy U10=155 meV, and m2=1.2m,. (b) Same 
spectra calculated in the parabolic riiodel, ?n2=? n I- 

At q= I the second peak completely vanishes, we also note 
that even at 77= 0.05 first peak always has larger amplitude. 

V. CONCLUSIONS 

We have solved analytically the kinetic equations, Eqs. 
(2.22)-(2.25) for subband distribution functions at various 
values of 17 ranging from 0.05 to 2 that correspond to elec- 
tron concentrations ranging from 1.92X 1010 cm-2 to 7.68 
X loll CM-2 . At small 77, shapes of the distribution func- 
tions in both subbands deviate strongly from Maxwellian. In 
the upper subband they have a pronounced peak at the pump- 
ing energy affected by the monochromatic electron- 
generation process that plays an essential role in this regime 
of operation. Immediately after nonradiative intersubband 
transitions from the upper subband E2 down to the lower 
subband El, the lower subband electrons are at high-kinetic- 
energy states W-_"10+82:: ý46)0- Consequently, they cas- 
cade down to the subband bottom by emitting LO phonons 
resulting in the distribution functions f, (e 1) at steady-state 
being strongly nonequilibrium. At larger 17 all peaks are 
completely smeared out, and these distribution functions be- 
come close to Maxwellian. Detailed shapes of these distribu- 
tion functions are essential for the derivation of energy bal- 
ance equation and calculation of gain in the intersubband 
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FIG. 6. Gain spectra at operating temperatures T- 77 K for 
different subband population ratios n2 In I=1,2, and 4 under the 
monochromatic pumping P(y) = PO 6(y - 1) into the upper subband 
E2; assuming the following parameters: ro=O. l ps, the subband 
separation energy A110=155 meV, and M2=1.2m, at low- and 
high-electron-concentration regimes of operation that correspond to 

71 = 0.05 (b) and ? 1= I (b), respectively. 

lasers. Similar results have been established in Ref. 10. Un- 
fortunately, it is quite difficult to make a direct comparison 
with our calculations. However, the Monte Carlo simulations 
also confirm that below LO threshold the shape of the elec- 
tron distributions are closely Maxwellian, and phonon repli- 
cas survive better at low electron concentration. 

An advantage of our approach is that it is more conve- 
nient. to build up the model to investigate kinetics of elec- 
trons scattering in other similar considerate systems by 
changing the relevant controlling parameters. However, there 
are some limitations of this model and for real device mod- 
eling that we have to take into account the following effects. 

(i) All temperatures T,, TL and LO-phonon temperature 
T,, h are assumed to be the same for all cases considered in 
this paper. However, in real devices they might be different 
in some particular regimes of operation. For accurate calcu- 
lations we have to evaluate T. from the energy balance equa- 
tion. incoming energy depends on the electron generation Go 
while the energy losses depend on both distribution functions 
f, and f2. The resulting equation gives 0 as a function of 77, 
f, and f2. Also, at high electron concentrations LO-phonon 
distribution function differs from No. As we need only 
N(Awo), in our equations this can be done by using the 
effective temperature T,, h that differs from TL. The effective 
tcmicrature Tph depends on the generation rates Go and the 
running away rates of phonons from the QW region. 

(a) 

PHYSICAL REVMW B 64 115313 

(ii) In our approach A, is a constant throughout the en- 
ergy range. In fact, this assumption works well only for a 
)>T,, while at e-T,, A,, is getting smaller. However, if 
electron distributions are Maxwellian or Fermi, it particular 
value of A,, is not important because there is none of LO 
phonon getting involved in this region. 

(iii) At very high electron concentrations that correspond 
to q> 1, A,, becomes sensitive to the exact-distribution 
functions. As a result, it reduces the accuracy of our calcu- 
lations if we still use the assumption that A., is constant in 
these regimes of operation. However, our main interest is 
directed to investigate the system at 17,4 1 where A,, is not 
very sensitive to the exact shapes of these distribution func- 
tions. 

(iv) The assumption that the dominant e-e scattering pro- 
cesses of a minority of high kinetic-energy electrons is only 
due to the scattering on the majority of quasithermalized 
electrons, in general, is not valid if the distribution function 
differs from a Maxwellian. However, in the reality we actu- 
ally have T, -Ihwo. This is enough to have exp(-Awo/T, ) 
41 to fulfill our approach. 

(v) At very low electron concentrations that correspond to 
774 1, the ratio D,, IA,, = T, is not valid due to the difficulty 
of electron to form a thermalized bath. In this case we have 
to calculate D,, independently and use the resulting T, 

D,, IA,, as the definition of electron temperature. 
(vi) The F6kker-Planck-Landau approximation does not 

work well at the regions Ic- e014 T,. The reason is that for 
2DEG all scattering angles are equally important for energy 
transfer. To take all these events into account one has to 
consider the integral equation, Eq. (2.9) instead of Eqs. 
(2.22)-(2.25). However, the resulting gain is not very scnsi- 
tive to exact shapes of the distribution functions near pump- 
ing point. In reality, the pumping is not an exact b-function 

shape due to nonhomogeneous broadening. 

ACKNOWLEDGMENTS 

The work has been supported by EPSRC (UK) Grant No. 
GRIM91044. S. K. would like to specially thank the Royal 
Thai Government for financial supporL We are grateful to L. 
R. Wilson, J. W. Cockburn and Professor G. Rees for useful 
discussions. In addition, we would like to thank Professor M. 
S. Skolnick for his support. 

APPENDIX 

To solve the model equation given in Eq. (2.21) we first 
introduce dimensionless parameters; 77 - ro lr,. ,fI 
='rO1719 f2=701rl2v O=TI(Awo), and yj=ej1(AwO), 
and Eq. (2.21) is then transformed to the dimensionless ki- 

netic equation as follows. 

a. For the upper subband E2 

O<y< I; 
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d2f2(y) 
+71 

df2 (y) 
+(NO+ I )f2(Y+ 0-017A(Y) 710 -dy 2 dy 

=-PO 8(y -yo) 
y> 1; 

(iii) at y =I; 

(At) and 

d 2f2 (y) df2 (y) 
7/OT 

y yj-+ 
71--ý-V+UVO+ I)f2(Y+ 1)+NQf2(Y- 1) 

162A (Y) ý 0, (A2) 

where Y-Y2, a2"4NO+ý2(2NO+l), 82ý-(2N0+1)(I 
+ C2), and PO = -ro Go I(PA (00) - The kinetic equations given in Eqs. (Al) and (A2) can be 
solved by assuming the general solution f2(y) in the form 

(o If "dke-1kYD 
2 JAY)ýf2 )(Y)+ 

4-27r 2(k)ýp(o)(k), 
(M) 

D2(k) i7Ok 2- 77k+(]Vo+ I )e- ik+ Noe lk-i62]-lq 
(M) 

9(0)(k) dye'kYD2(k)Jý20)(y- 1), (M) 2 V'2: -1r - 

where Jý20)(y) is the zeroth-order solution given as follows. 

A jeA2Y +A 2e-"2 
Y, O<Y<YO 

(o 
2 

(Y)= A04'ýY+AO, 02y, Yo<y< I 

Aselv, y>l. 

where 

and 

:; - ilq- 
4-777-+-4i7Oa2 

A2 2770 

77 -4 
-i7FT +4 7n7 OT2 

2710 

(A6) 

The. arbitary constants AI -As are obtained from the follow- 
ing boundary conditions. 

(i) aty=O; 

J. I(Y)lx. 0=0- 0 
df2 (Y) 

+f2(Y) 
I 

dy 
ly-O 

at y =yo; 
f2(Y)ly-yO ýA(Y)ly-y; l 

and 

170ýdf2W 
2Y(Y)y 

_I=po _Y+ 
dy 

-Y 
dy. 

ly 

a0 

Yo<y<l 

O<yl< I; 

PHYSICAL REVIEW B 64 115313 

f2(Y)ly- I+ =f2(Y)ly- I -P 

df2 (Y) df2 (y) 
dy y 

L (v 

Y_14, 
dyýy_, 

- 

& For the lower subband E, 

d2f, (y 1) dfl(yl) 
, qO ---i--+71-ý-+(No+l)fl(yt+l)-atfi(yl) dy I yl 

=0 

yl> I; 

(A7) 

710 
d2f, (yj) 

+ ?7 
dfl(yl) 

+ (No + Ofi (YI + 1) 
dy 21 dy I 

+ Nafi (YI - 1) -, OJI (y I) P, (y 1), (A8) 

where a, = No +f 1(2NO + 1), fl, - (2NO + 1) (1 +f 1), and 

mi PIUOýC2ý , 1ý(NO+I)AýYI+1-41101 

MIJ 

+ NQf2 YI-1- 

General solution of the kinetic equations given in Eqs. (A7) 
and (A8) can be written in the form 

f. i(Yi)= 
Ble4qy+B2e, "2y+Fl(yl), O<yl<l jB3ekly'+Fj(y, 

), yi>l. 
(A9) 

FI(yl)= 
I 

dke-'kylDj(k)q(j0)(k), (AIO) 4-2ir 
f-- 

DI(k)=[- 7700- 71k+ (No+ I )e-ik+ Noe'k-, 61]- 1, 

(Al 1) 

(k) =- --ý- dyelky'DI(k)PI(yl), (A12) 91 vi-7rf-- 

where 

and 

,; - 77:; 4-77+- 4V Oct 
Al 2 170 

- 71 - 
; i7T+-- 4 17 Oß 1 

2 170 

The arbitary constants Bt -B3 are obtained from the follow- 
ing boundary conditions. 
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(i) aty, =O; A(YOly, -I- =fl(Yi)ly, - I-, 
J.. (Yi)ly,. O=O--+ 0 

df, (y II +fl (YI) and 
dy 

lyl-0 

df, (y 1) df, (y I 

(ii) at yj = 1; 
dy, 

lyl_, 

+ dy, 
yl_, -. 
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Abstract 

We calculate the tunnelling rates for interwell transitions due to electron-longitudinal-optical phonon (LO-phonon) 
scattering in GaAs-AIGaAs DQW heterostructures starting from the Frdhlich interaction and Fermi's golden rule. T'lle rates 
are investigated as functions of the difference in energy between the E, level of the wider quantum well (QWI) and the E, * 
level of the narrower quantum well (QW2). We also compare our calculations of the LO-phonori assisted tunnelling with the 
conventional resonant tunnelling. C 2000 Elsevier Science B. V. All rights reserved. 

PACS. 72.10. - d; 73.40. Gk: 73.50. -h 

1. Introduction 

Long wavelength semiconductor lasers are in de- 
mand for many industrial and research applications. 
The conventional interband transition approach re- 
quires narrow band-gap semiconductor materials for 
realising mid- and long-wavelength IR lasers. An 
alternative approach utilising intersubband transition 
in semiconductor quantum well structures for long 
wavelength IR lasers was first suggested in 1971 by 
Kazarinov and Suris [1]. In this structure coherent 
photons generated by electron transitions from one 
confinement state to another while holes are not 
involved. Thus, wavelength of intersubband lasers is 
determined, not by the band gap, but by the small 
energy separation of conduction subbands arising 
from quantum confinement in quantum well struc- 
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tures based on wider band-gap semiconductor mate- 
rials. The first intersubband laser was not realised 
until the recent demonstration of a so-called quantum 
cascade laser (QCL) reported by Faist et al. [2]. The 
QCL, a unipolar device, utilises photon emission 
between subbands in a staircase of coupled AlInAs- 
GaInAs quantum wells, in which each injected elec- 
tron is recycled, ideally producing an additional pho- 
ton, as it cascades through each period of the active 
region. The most prominent obstacle to intersubband 
lasing is the nonradiative relaxation between sub- 
bands due to optical phorion scattering which will be 
discussed in Section 2. Ile typical phonon relaxation 
time is much smaller than the radiative time resulting 
in a very low radiative efficiency. However, spe- 
cially designed multiple barTier heterostructures can 
provide population inversion without reducing the 
current injection efficiency. 

In our previous work [3] we have demonstrated 
that to achieve inverted population in a triple barrier 
resonant tunnelling structure (TBRTS) we should 

0375-9601/00/$ - see front matter C 2000 Elsevier Science B. V. All rights reserved. 
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ensure efficient drain of carriers from the lower 

subband. Transport through TBRTS also has been 
intensively theoretically [4-6] and experimentally 
[7-91 studied. The physics of resonant tunnelling in 

these systems is much more than an extension of the 
results of the double-barrier case [ 10,11 ], since the 
former now involves the Coupling of quasi-bound 
states between two adjacent quantum wells in the 
semiconductor heterostructure. In most cases the ex- 
perimental resonant position corresponds to theoreti- 

cal predictions based on the ID self-consistent the- 
ory of Poisson and SchrUdinger equations. However. 

the amplitude and width of the peaks differ signifi- 
cantly from the ID model [8]. This discrepancy 

arises from scattering processes which accompany 
the tunnelling processes and resulting in sequential 
tunnelling rather than coherent tunnelling. This was 
clearly demonstrated [7-91 in experiments with an 
application of strong magnetic field parallel to the 
current These papers experimentally prove the es- 
sential role of LO-phonons which appeared to be a 
major reason for sequential tunnelling. Theoretically, 

the role of LO-phonon assisted tunnelling in resonant 
tunnelling was also intensively studied [7,10-12]. 

The main result for TBRTS shows that the resonant 

E2 

2DEG 

El 

peak in I-V curve became wider and a satellite peak 
appears at LO-phonon energy. Unfortunately, Refs. 
[10-12] studied the 3D-2D-3D tunnelling case 
whereas for QCL structures it is necessary to study 
2D-2D tunnelling to ensure effective drain from 
localised states. 

Another LO-phonon assisted tunnelling approach 
comes from the studies of vertical transport in super- 
lattices [13,14], where it was shown that the LO-pho- 
non mechanism is the most efficient process for 
hopping conductivities. Tsu and D6hIer [13] also 
point out that the transport in superlattices can be 

reduced to DQW problems. To deal with the DQW 
problem we need to evaluate the transfer integral for 
the system [141. However, the calculation reported in 
Ref. [141 does not take into account the orthogonality 
of the initial and final states, as a result the transfer 
integral was calculated only from the exponentially 
small wavefunction overlap in the barrier. This prob- 
lem has been resolved numerically by Weil and 
Vinter [151, and their result shows that the main 
overlap occurs in the well regions and not as a result 
of the interbarrier overlap. This approach has been 
generalised by Harrison [16], and Ferreira and Bas- 
tard (17]. The calculations (16,17] take into account 

zi -O=a 
z2-zi =b 
z3 - 7,2=d 

j,. "k 4 Ei* Appäcd Mectio Field, F 
e4 

Conducdm Band 
QU2 %**"ý 

Zt Zz 4 
Fig. 1. Conduction band profile of the DQW structure with a wider well as a lasing unit and a narrower well as an electronic energy filter by 
tunnelling processes. 
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the slope of the conduction band in the heterostruc- 
ture, which is affected by the applied electric field, 
and other various mechanism for interwell transi- 
tions, i. e. electron-electron and acoustic phonon 
scattering. However, in both papers [16,17] the ID 
Schr8dinger equation was treated numerically with- 
out correcting for the different effective mass of the 
electron in the quantum wells and barrier. This Prob- 
lem has been resolved analytically by Allen and 
Richardson [4]. Exact analytical solutions for the ID 
Schr6dinger equation have been given, however, the 
results are not practical for the purpose of calculating 
the LO-phonon matrix element. 

The aim of the present work is to calculate the 
tunnelling rates for interwell transitions due to elec- 
tron-LO-phonon scattering in DQW heterostruc- 
tures. The focus is on the investigation of the tun- 
nelling rates as functions of the difference in energy 
between the E, level of the wider quantum well 
(QWI) and the E, * level of the narrower quantum 
well (QW2); see also Fig. 1. We present our result- 
ing calculation in an analytical form taking into 
account the different effective mass of the electron in 
the quantum wells and barrier ( 18,19). In our approx- 
imation we assume that the barrier height is much 
larger than the energy levels in the wells. Our calcu- 
lations given for a semiconductor GaAs-AlGaAs 
heterostructure show that the rates due to LO-phonon 
assisted tunnelling are less sensitive to the energy 
difference E, - E, * than those for coherent tun- 
nelling, i. e. LO-phonon assisted tunnelling has a 
wider energy range than coherent tunnelling. As a 
result it is easier to achieve the efficient drain of 
carriers from lower subband by the assistance of 
LO-phonon scattering. Moreover, we also find that 
to get a better drain the design parameters of the 
quantum wells and barrier must be such that the 
energy difference is close to LO-phonon energy, i. e. 
El - Ej* - 36 meV. 

2. Theoretical frameworks 

A modified GaAs-AlGaAs DQW structure is 
schematically shown in Fig. 1. Tlis is occasionally 
used as an intersubband lasing structure that consists 
of a wider well (QWI) as a lasing unit and a 
narrower well (QW2) as an electronic energy filter 

211 

by various type of tunnelling mechanisms. To create 
lasing efficiency it is neceiiai-y to achieve a suffi- 
cient population inversion between subbands El and 
E2 in the QWL This happens when the device has 
the appropriate design parameters providing a good 
electron confinement at the upper subband E2 and 
short electron lifetime at the lower subband E,. In 
this present work we are interested in studying how 
to reduce the electron lifetime at the lower level to a 
proper value for lasing operation. We have investi- 
gated a variation of tunnelling rates, IIT,, of the 
electron as functions of the energy difference E, - 
E, *; here T, is the tunnelling time of the electron. 

., and E, * stand for the electron The notations E,, ý, 
states in each of the wells when isolated from each 
other (see Fig. 1). 

We investigate a system where two potential wells 
are connected via a barrier which permits a measure 
of quantum mechanical tunnelling. We first simplify 
the system as shown in Fig. I by neglecting the 
effect of linear potential drop in the wells, and 
undertake it as a rectangular quantum well with 
finite-wall problem. However, to make the results 
more realistic we take into account finite barrier 
heig ht in first approximation that gives for the effec- 
tive well widths of QWI, QW2 and barrier thickness 
in terms of a, d, and b,, respectively, as follows 
[18-201: 

ac =a+ So + 31, b, =b- 31 - 8, 

dc =d+ 82 + 33 

where a and d are the well widths of QWI and 
QW2, respectively, b refers to the middle barrier 
thickness, 5i=A1r2_am. *Uj, i=O, 1,2,3, where 
a=n: ; 1m 

b* ,m* is the effective mass of the electron 
in the quantum wells while mb* is the effective mass 
of the electron in the barriers, and Uj are the heights 
of the barriers adjusted to the quantum wells that 
take into account the applied electric field, given as 

eFa eFa eFd 
uv UOýVo+ -2'UýVo--2 ' 2ý 0+ 2 

U3 ý VO - 
eFd (2) 

2 

where VO is the conduction band off-set in the 
semiconductor heterostructure, F is the magnitude of 
the electric field, and e is the electronic charge. This 
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approach works well if the barrier is high enough, 
, Tr2h2 I i. e. 12m, *. d; -c VO. However, the overlap inte- 

gral, in fact, depends weakly on this correction. It is 
mainly determined by the energy difference. 

By using the approach above and neglecting the 
exponentially small tails of the wavefunctions as 
they give a small contribution to the LP-phonon 
matrix element, the ground state wavefunctions in 
each of the wells when isolated from each other can 
be given by 

2. iT(z + 80) 2 

- sin-; - 80 <z<Z, + 81 (3a) VI(z) 

ra 

a, 
; otherwise 

F2 
. 

lr(Z3 + 83 - Z) 

7- sin 'I Z, - a, '< Z< Z3 + 33 
, p2( Z) c d, I 

0 ; otherwise 
(3b) 

where (p, and 92 stand for the unperturbed states El 
and Ej*, respectively. Because wells are coupled, 
one can assume that the eigen wavefunction of the 
system is a linear combination of (p, and 9,. Tbere- 
fore, the energy eigenvalues when wells are coupled 
are determined by the condition [13] 

(El + El* Eil* 
_ ý1_ M L2 

22 

where M stands for the magnitude of the transfer 
integral. Using the approach introduced by Bar- 

0 Joseph and Gurvitz [211 we can calculate M as 

With the introduction of e= El - E, */2 and w 
-62+M2, the normalised eigen wavefunctions 
are 
(P(±)( Z) = C(I'±)(P 

I( Z) + C2(±)(P2(Z), (6) 

where 
Tm 

C(t) 
V(W T C)2 +M2, 

and 

WT 8 
V(w: F 8)2 + M2 

The LO-phonon scattering rates. According to 
Fermi's golden rule, the scattering rates of an elec- 

r, 

tron from an initial state 
I i, ki ) in the ith subband to 

all final statesjf, FCf)in the fth subband accompa- 
nied by absorption or emission of a phonon with 
energy hw is [17] 
1 2, rr 
Ti h 

f l('flfllle-Phl"'iý123( 
ei - to) dNt 

(7) 

where Ki and Kf are in-plane wave vectors, and --i 
and ef are the total energies of ihe electron at the 
initial and final state, respectively. The upper (lower) 
sign refers to emission (absorption) of the phonon. In 
this expression the integration is over the number of 
final density of states Nf. 

For the LO-phonon scattering mode the rate is 
therefore [17,231 

242K2 
M= 

ýýýýý El El* 
eXp(- Kb), ra, d-, M bo 

Ul U2 

(5) 

where 
J2Mb 

b ul K 3,2 ü2 - Ei +. 
j 2h21) 

(U2 - EI*) 
1- 

Calculations show that the value of M is 3-5 meV 
depending on the electric field F. Experimental data 
reported by Li et al. [221 gives M as about 10 meV. 
The actual energy splitting given by Eq. (4) clearly 
depends on the magnitude of the transfer integral A 

-- CO 

Xff Ijf(Q) 
(No 

+ 22 

X 5(Ej-Ef: Phwo) A(r, (8) 

with the appropriate variables given as follows: 

2, Tr 1 )ý e2ý[IiI 

2, rr y 
(2, rr 4 Wo 77 - CO = 

', 
ý- - WE 2irý WCO ICX KO 

(9) 

JV +K 2 -2KiKfcosO (10) 
If 

-Nýý 
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where K. and KO are the high-frequency and static 
dielectric constants of the quantum wells, co is the 
permittivity of vacuum, h wo = 36 meV is the LO- 
phonon energy, No is a phonon distribution function, 
hQ is the in-plane phonon momentum which is equal 
to the electron in-pLane momentum transfer, and 0 is 
the angle between Ki and Kr. The integral.. 1jr(Q) is 
defined as [231 

IT 
I, f (Q) - -d 

ff 
(pi( z) qf( z) exp( -QIz- z'l) 

X (p, ( z') (pf( z') dz' dz 

At low temperature we neglect the induced phonon 
emission/absorption and take into account only a 
spontaneous phonon emission; i. e. No = 0. There- 
fore, Eq. (8) reduces to 
I= 

Cof f Iif(Q) 5(ei - ef -h wo) d2 Kf. (12) 
Ti 

In polar coordinates if can be determined as fol- 
lows: 

2if W d Kf dOdKf - 
mw d, 5d--', A2 

where e' = ef +A wo, and the scattering rate is fi- 
nally obtained 

0 1 M, 21r lif(Q) d6. (13) CO 
h2 

f 
Ti ()0 
In particular for GaAs-AlGaAs heterostructures we 

(M 
M* find that CO V/h2)= 1.54 X 1010 A-1 s-1. The 

scattering rate given by Eq. (13) clearly depends on 
the integral Iif (Q) which can be detemined by using 0 Eq. (11) if the electron wavefunctions are known. 

3. Results and discussion 

In this section we discuss semi-analytical calcula- 
tions of the tunnelling rates based on the physical 
model presented in the preceding section. Our calcu- 
lations focus on the investigation of the tunnelling 
rates due to electron-LO-phonon scattering in the 
DQW structure as shown in Fig. 1. We simplify the 
integral Ijf( Q) given by Eq. (11) by considering the 
results only for an extreme condition of smaUQ 
values; i. e. Q .4q,. I 

213 

By substituting wave functions given by Eq. (6) 
into Eq. (11) we obtain 

, 7r (C(+)Cl(-))2 

+2 lif (Q) 0--1 
C2 C21 ) 

QI+0.207Qa, I+0.207Qd,, 

_)C2 2 C(I ')C(I (+)C2( 

(14) 
+ Q(ac J2 + b, + d,, /2) 

and the magnitude of the in-plane phonon wave 
vector Q given in Eq. (10) can be written as 

Qh wo 13 
M 

1+ 1+ (Y- 1) 

-2 1+ 
(Y- 1) 

Cos 0 

1/2 
vAI 

where 6 and y are dimensionless parameters de- 
fined as follows: 

h2Kj 2 

2m, *. hwo' 

Wo 

V(El 
- El* )2 + M2 

h COO 
(16) 

The expression for the tunnelling rate due to elec- 
tron-LO-phonon scattering given by Eq. (13) associ- 
ated with Eqs. (10-06) can be applied for any 
scattering processes from the ith subband to the fth 
subband. It clearly shows that the rate depends on 
both P and -/. However, in this present work we 
investigate for the case of P -+ 0 limits, so that the 
rate is finally formulated as a functions of E, - Ej* 
and M. The calculations have been done for a 
semiconductor GaAs-AlGaAs DQW heterostructure 
with relevant characteristic parameters: a-66 A. 
b- 26 A and d- 33 A. In' Fig. 2 we show the 
results for 

* 
the tunnelling rates, Eqs. (13)-(16), for 

M-5 meV and M- 10 meV as a function of the 
energy difference E, - Ej* . In these plots as shown 
in Fig. 2 we also compare our results in this present 
work (solid line) with the rates calculated from 
coherent tunnelling (dashed line) [221. 
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Fig. 2. Variations of the electron tunnelling rates at operating temperature T-0F, 

Fig. 2(a) shows that for M=5 meV the tun- 
nelling rate due to electron-LO-phonon scattering is 
much less than the rates due to coherent tunnelling. 
However, these rates of LO-phonon assisted tun- 
nelling and coherent tunnelling become comparable 
to each other when the magnitude of the transfer 
integral M increases, as shown in Fig. 2(b) for 
M- 10 meV. In general, our calculations show that 
we can get effective LO-phonon assisted tunnelling 
even though the rates are slightly less than the rates 
of coherent tunnelling. However, LO-phonon as- 
sisted tunnelling has an advantage of a wider energy 

to 

range and less sensitive to nonparabolicity effect 
than coherent tunnelling. Moreover, we also find that 
the rates are restricted within 1/7-s', 2.5 ps-1. In 
addition, our formula can be used for roughly inves- 
tigating the tunnelling rates for hot electrons, i. e. 
13 0 0. According to Eq. (15), one can easily find 
that the in-plane momentum transfer AQ gradually 
increases with P. As a result, the integral lif( Q) is 
slightly decreased which affects the tunnelling rates 
decreasing for each value of energy difference El 

- Ej* with a fixed value of the transfer integral M. 
However, one may notice that the maximum tun- 
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nelling rates for each value of M are almost inde- 
pendent of P. 

215 

is meaningful for the experiment. The results in our 
present work give a simple way to calculate this 
tunnelling time for various conditions and geometry's 
of the structure. 

4. Conclusions 

Starting from the Fr6hlich interaction and Fermi's 
golden rule, we can obtain Eq. (13) associated with 
Eqs. (14)-(16) for the tunnelling rates due to elec- 
tron-LO-phonon scattering in semiconductor 
GaAs-AlGaAs DQW heterostructures. In general, 
the calculations mainly show that the tunnelling rates 
monotonically decrease with the energy difference, 
and strongly depend on the magnitude of the transfer 
integral. The rates are actually calculated at T=0K. 
However, the tunnelling rates formula given by Eq. 
(8) is quite simple and practical to (Yeneralise to other 
systems at TO 0 K. Another simplification we have 
made in this work is concerned with the third barrier. 
In our calculations we ignore the level width r in 

second quantum well (QW2). To make this assump- 
tion valid, we assume that r -c A wo. On the other 
hand, the lifetime of the electron in QW2 (h1F) 

should be much smaller than LO-phonon assisted 
tunnelling time (T, ). For rnýterials with small 
Fr6hlich constant this condition is easily fulfilled; for 
GaAs, for example, 1.6 meV -c r .4 36 meV. Practi- 
cally, that means the thickness of the third barrier, 
6A< bRHs < 30 A for the QW2 of 33 A well-width. 
For the large r threshold of the LO phonon emis- 
sion smeared out for the value of r. Therefore, to 
calculate tunnelling rates more accurately for this 
case we have to treat the final states exactly as the 
states from the continuous spectrum. In this purpose 
we need to solve the ID Schr6dinger equation ex- 
actly, for example using the approach of Refs. [4,241. 

In summary, we should mention that electron- 
electron scattering is also an effective inelastic scat- 
tering channel. In our geometry [3,131 the electron 
gas in front of the first barrier is likely to have 

suitable density to ensure effective inelastic scatter- 
ing. To compare this calculation with experiments, 
we should also mention that only indirect measure- 
ments are available at the present moment. We found 
that the average phonon assisted tunnelling rate de-ý 

pends strongly on distribution function of in-plane 
kinetic energy. As a result, for any particular cases 
we need to know which part of distribution fanction 
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