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ABSTRACT

Protein-protein/protein-RNA interactions are assuming increasing significance with
the recent discoveries of the diverse and important roles RNA-protein complexes
play in biological systems. As a result there is an increasing demand for high
throughput analytical approaches for the analysis of these complexes. In this study,
affinity purification-mass spectrometry (AP-MS) approaches are used to analyse
protein-RNA complexes. Tandem affinity purification (TAP)-MS was used to analyse
complexes associated with the Saccharomyces cerevisiae splicecosome and RNA
processing pathways providing insight into the coupling of the various steps of gene
expression. These approaches were also used to exhaustively distinguish two similar
but functionally distinct Lsm complexes providing further insight into their mRNA
processing pathways. These studies are consistent with the model that splicing occur
co-trancriptionally and that several steps of gene expression is coupled to
transcription. Utilizing HPLC-MS approaches in conjunction with other molecular
biology techniques, the recently discovered Streptococcus thermophilus CRISPR/Cas
complex was also investigated. The Cas protein complexes were identified and their
stoichiometry determined using semi-quantitative data. This provided insight into
the roles of these Cas proteins in the biogenesis of the CRISPR/Cas complex.
Furthermore, the architecture of the CRISPR RNAs (crRNA) associated with the
complex was determined, providing further insight into this mechanism of the crRNA

processing in the novel Type Il CRISPR/Cas complex
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Chapter 1

Introduction

Proteins are biological molecules consisting of one or more chains of amino acids
whose roles in the cell include cellular catalysts (enzymes), transport molecules,
biological sensors and structural units (building blocks of the cell)(Gutteridge and
Thornton, 2005). Although, all proteins are ultimately composed of 20 standard
amino acids, they differ from each other by the linear sequence of their amino acids
and the folding of their amino acid chains into unique tertiary- or quaternary-
dimensional structures. Protein sequence is to a large extent encoded by
deoxyribonucleic acid (DNA) sequence but specifically dictated the messenger
ribonucleic acid (mRNA) sequence of its gene. RNA, like proteins, are large biological
molecules distinguished functionally by their sequence, but are composed of chains
of four distinct nucleotide bases and are generally regarded as the secondary

hereditary material of the cell (Gutteridge and Thornton, 2005; Higgs, 2000).

The term ‘proteome’, first coined in the mid-1990s, can be defined as the entire
complement of proteins expressed in a cell, organism or tissue at any given time
under defined conditions (Wilkins et al., 1996). Typically the proteome is much
larger than the genome due to alternate gene splicing and post-translational
modifications of proteins (Yates, 2000). In comparison to the relatively constant
information retained in the genome, the proteome can be subject to great variations
in response to environmental change. Proteomics is the study of all the proteins
encoded within the genetic information and how these proteins perform the
biological requirements of an organism. This enables a deeper understanding of
cellular function to be developed; which proteins are present, their relative
abundance, post-translational modifications, sub-cellular localisation, and how
proteins interact with each other to perform their defined roles within a system

(Wilkins et al., 1996).

The interest in protein interactions stems from the discovery that proteins/enzymes

do not always catalyse biochemical pathways in the classical fashion predicted by
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Beadle and Tatum (Beadle and Tatum, 1941); that is, one-gene/one-enzyme/one-
function. In the model postulated by Tatum and Beadle only one protein is
responsible for, and catalyses, one biochemical reaction. However, it is now known
that many important cellular processes such as DNA replication and repair are
carried out by large molecular machineries comprising several proteins (George et
al., 2001; Labib et al., 2000; Wang et al., 2004). As the proteomics field has emerged,
many researchers have put considerable effort into elucidating protein—protein
interaction networks in different organisms, in order to better understand the
interplay between proteins and to gain more insight into the potential for disease

development in case of network disruptions.

Protein-protein interactions are a phenomenon that defines the binding of one
protein to another usually to carry out a biological function. Early structural studies
revealed that hydrophobicity is the major principle of protein-protein interactions
(Chothia and Janin, 1975). Protein-protein interactions differ depending on the
function that is to be performed and the number of molecules involved. Proteins
may interact with another protein to transport it, for instance, from the nucleus to
the cytoplasm or vice versa (Damelin and Silver, 2000). It may mediate signals from
the surface to the inside of the cell which is the case in signal transduction,
important in many biochemical processes and disease conditions such as cancer.
Proteins may interact with one or more proteins to form a catalytic or structural unit
(Finzel et al., 1985; Jones and Thornton, 1996; Keskin et al., 2008; Milligan, 1996).
Protein interactions may be transient, as is the case when one of the interacting
partners is to be structurally modified, or it can form stable protein complexes

(Jones and Thornton, 1996; Keskin et al., 2008).

Protein-protein interactions are at the core of interactomics, a new field which
interfaces bioinformatics with molecular biology to understand the nature and
consequences of interactions among and between proteins, and other molecules
(Keskin et al., 2008). Protein-RNA interaction is a recent innovation in the field which
studies the interactions of proteins with RNAs. Several approaches have been used

to study protein-protein interactions which will be discussed.
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1.1 Principles of Protein-Protein Interactions

It is now widely recognized that the vast majority of cellular pathways are mediated
by protein-protein interactions and that the recognition of the function of at least
one binding partner in a protein-protein interaction network will facilitate the
assignation of a pathway (Chothia and Janin, 1975; Ewing et al., 2007; Keskin et al.,
2008). Conversely, the recognition of the binding partners of a protein opens up an
avenue to identifying its function. Mapping cellular pathways and their complex
connectivity is gaining momentum as researchers are increasingly gaining insight
into the network of many protein-protein interactions (Ewing et al., 2007; Mann et
al., 2001). Identification of protein-protein interactions is at the heart of proteomics,
functional genomics and drug discovery. And since no two proteins can bind at the
same site, understanding the way protein partners interact and insight into their
mechanism of association will aid in deciphering the dynamic regulation of pathways

(Keskin et al., 2008).

Protein-protein interactions fall under two broad categories: 1) interaction where
protein partners bind with high affinity and 2) more transient interactions. The
obligatory, stable or high affinity interactions form complexes while the transient
interactions bind and uncouple continuously (Keskin et al., 2008). To understand
what constitute functional protein interactions, the preferred mechanisms of these
interactions have to be addressed and many chemical scientists are working towards
this end. However, validating functional protein-protein interaction is a difficult task
as any two proteins can interact from the chemical point of view. This is because
protein-protein interactions are mainly driven by hydrophobic interactions but also
by hydrophobic interactions and salt bridges (Xu et al., 1997) (Tsai and Nussinov,
1997). The major challenge becomes formulating a parameter for distinguishing
functional interactions from the false ones. The two major considerations taken into

account are the conditions and strength of interactions (Keskin et al., 2008).

A good appreciation of the mechanism of protein-protein interactions will require
viewing proteins more as flexible structures than as the rigid molecules often
depicted in crystal structures. Protein assumes various conformations depending on

whether it is free or bound to a ligand (or another protein) and a protein in solution
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may have a different conformation from that observed in crystal structure. Shape
complementarity, allosteric effects, organisations chemical and physical
contributions of components of the complex are also factors important in
understanding and predicting protein interactions (Gunasekaran et al., 2004; James

et al., 2003).

The amino acid residues that line the surfaces of protein are very important when
considering protein-protein interaction as proteins interact through their surfaces.
Cooperativity, a concept referring to the chemical and physical inputs of different
components of complex towards thermodynamic stability, contribute to the
stability, and hence the formation of protein-protein interaction. Giving that a wide
spectrum of factors plays roles either directly or indirectly towards protein complex
formation, the prediction of protein-protein interaction pieced together from the
chemical and physical properties of components of a complex becomes a gruelling
task (Keskin et al., 2008). It therefore becomes necessary when elucidating the
functional structure of a protein in complex to employ a more holistic approach that
captures the structural features of that protein when bound to its functional
interacting partners. Crystal structures of the protein complex would have been a
good, if not a more ideal, way of studying protein complexes. The problem is that
large protein complexes are innately thermodynamic unstable at crystallization
conditions, resulting in very few to be crystallized so far (Ke and Doudna, 2004;
Keskin et al., 2008). Researchers are increasingly exploiting the powerful technology
of tandem affinity purification-mass spectrometry to both identify the components
of protein complexes and gain insight into the structure of the complex as a unit. A
very practical approach towards gaining more complete structural information will
be to complement the mass spectrometry data with crystal structural data of each

component of the complex.

1.2 Protein-RNA Interactions

In addition to the importance of studying protein-protein interactions, RNA also
plays an important role in complex structures and pathways such as the ribosome,
spliceosome and RNAi (Fire et al., 1998; Kastner et al., 1990; Lihrmann et al., 1990;

Moore, 1998; Ramakrishnan and White, 1998; Thiede and von Janta-Lipinski, 1998).
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A common phenomenon in these pathways is mediation of function by the
interaction of proteins with RNA. RNA molecules are flexible structures that display
secondary and tertiary features that are almost as diverse as their function (Jones et
al.,, 2001). Although commonly single-stranded, some examples of RNA structures
include hairpin loop, bulges, pseudoknots and short length of double helices.
Proteins tend to bind to RNA where it forms complex secondary structures such as
stem loops and bulges (Nagai, 1996). Also, non-Watson base-pairing can also occur
in loop regions of RNA and such structures can be selectively recognized by proteins

(Jones et al., 2001).

One of the most common RNA-binding motifs is the RNA recognition motif (RRM).
Examples of these motifs are found in proteins such as the Sex-lethal (SXI), an RNA
binding protein with two RRMs that control sex-differentiation (Crowder et al.,
1999). The RNA binding protein, hnRNP A1, also utilizes two RRM motifs to complex
with heterogenous RNA (hnRNA) and is thought to influence mRNA processing and
export (Shamoo et al., 1994). SXI and hnRNP Al have RRMs referred to as RRM1 and
RRM2 and features the canonical RRM fold and flexible interdomain linker (see
Figure 1.1) (Crowder et al., 1999; Shamoo et al., 1997). Whereas hnRNP Al
maintains an interdomain contact between its two RRMs (1HA1) (See Figure 1.1A),
SXI (3SXL) does not (see Figure 1.1B)(Crowder et al., 1999)). The RRM is a small
protein domain which has about 75-85 amino acids and forms a four-stranded B-
sheet against two a-helices (Mattaj, 1993; Nagai, 1996). This recognition motif plays
roles in various cellular pathways, such as mRNA/rRNA processing, splicing,
translation regulation, RNA export and RNA stability (Haynes, 1992; Knight and
Docherty, 1992; Liihrmann et al., 1990; van Heugten et al., 1992). Two major ways in
which proteins recognize and bind or interact with RNAs have been suggested: 1) by
binding to the major groove and 2) by Beta-sheet binding. It is on this basis that two
classes are distinguished: a) groove-binding protein-RNA complexes, where proteins
position a secondary structure element such as the alpha-helix into an RNA groove,
and b) Beta-sheet binding complexes where the protein creates a pocket with its

beta-sheet elements that bind unpaired RNA bases (Draper, 1999) (see Figure 1.2).

Several line of evidence from analysis of many RNA binding proteins suggest that

groove-binding proteins specifically bind double-stranded or single-stranded, single-
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loop RNA elements and beta-sheet binders, single-stranded or single-stranded,
single loops or single-stranded, multiple loops (as in U1A spliceosomal protein which
has double RRM). However, this division is often complicated by the fact that
sometimes different domains of a protein complex or even protein may exhibit both
classes of RNA binding, for instance, glutaminyl tRNA synthetase where both classes
of RNA-binding domains occur and which binds single stranded, multiple loops RNA
structure. Several of these complications abound (see Figure 1.2 and 1.3) (Jones et

al., 2001).

RRM2

Figure 1.1 Relationship of RRM domains in SXL and hnRNP A1l Ribbon
diagrams of hnRNP A1l and Sex-lethal RNA binding motifs (RRMS) using the
secondary structure elements of RRM1 and RRM2 of both proteins. A) Crystal
structure of hnRNP A1 RRM1 and 2 (1HA1) determined at 1.7 A resolution
reveals two RRMs that are independently folded but connected by a flexible
linker. B) Crystal structure of SXL’ RRM1 and 2 (3SXL) determined at 2.7 A
resolution displaying the same canonical fold and disordered linker observed
in hnRNP A1 RRMs. SXL lacks interdomain contact between RRMs. Figure
generated using PDB IDs:  1HA1 and 3SXL.
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Figure 1.2 Diagrams depicting protein—RNA complexes Examples of complexes
belonging to different families. The sizes of the proteins are not comparable
between diagrams and each is viewed from an angle that best depicts both the
protein and RNA. In each diagram the RNA molecule is shown in ball-and-stick
format and the proteins in ribbon format. Different subunits of the same protein
are differentiated by colour. (A) In coat protein from Satellite tobacco mosaic virus
(1A34) beta-Sheets recognize double-stranded RNA structure; (B) In bean pod
mottle virus (1BMV) B-sheet recognizes single-stranded RNA; (C) aspartyl tRNA
synthetase (1ASY) utilizes groove binding + B-sheet to recognize single stranded,
multiple loops RNA structures; (D) methyltransferase VP39 (1AV6) utilizes groove
binding domains to recognize single-stranded RNA structure; (E) spliceosomal
U2B”/U2A" complex (1A9N) utilizes B-sheet to recognize and bind single-stranded,
single loop RNA structures. Adapted from Jones et al., 2001.
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Figure 1.3 Representative examples from some of the most common RNA-
binding protein families, as illustrated here demonstrate the variability in the
number of copies (as many as 14 in vigilin) and arrangements that exist. This
variability has direct functional implications. For example, Dicer and RNase Ill both
contain an endonuclease catalytic domain followed by a double-stranded RNA-
binding domain (dsRBD). So, both proteins recognize dsRNA, but Dicer has evolved
to interact specifically with RNA species that are produced through the RNA
interference pathway through additional domains that recognize the unique
structural features of these RNAs. Different domains are represented as coloured
boxes. These include the RNA-recognition motif (RRM; by far the most common
RNA-binding protein module), the K-homology (KH) domain (which can bind both
single-stranded RNA and DNA), the dsRBD (a sequence-independent dsRNA-
binding module) and RNA-binding zinc-finger (ZnF) domains. Enzymatic domains
and less common functional modules are also shown. PABP, poly(A)-binding
protein; PTB, polypyrimidine-tract binding; R/S, Arg/Ser-rich domain; SF1, splicing
factor-1; TTP, tristetraprolin; U2AF, U2 auxiliary factor. Taken from Lunde et al.,
2007
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multiple copies are the higher affinity, specificity and versatility that arise from such
modular design. Individual domains, in comparison, often bind short stretches of
RNA with weak 