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ABSTRACT 
 

Introduction: Haemodialysis (HD) patients have high rates of cardiovascular (CV) disease 

and mortality yet the reasons for this have not been fully elucidated. High doses of 

erythropoiesis stimulating agents (ESAs), increases in oxidative stress and inflammation, 

and alterations to the fibrin clot phenotype are all possible contributors. Vitamin E (VE)-

bonded dialysis membranes are purported to have favourable effects on a number of 

these parameters which were tested here in the setting of a randomised controlled trial. 

 

Methods: Patients were randomised to HD with VE-bonded polysulfone membranes or 

non-VE-bonded equivalents and followed for 12 months. Data on anaemia parameters 

were collected monthly and blood tests were performed at baseline, 6 and 12 months for 

the measurement of oxidative stress (oxidatively modified-low density lipoprotein, 

thiobarbituric acid reactive species), inflammation (C-reactive protein, complement 

components C3, SC5b-9, factor D, properdin) and fibrin clot properties. Contemporaneous 

data were collected on CV events and death. 

 

Results: Of the 260 patients enrolled, 123 were randomised to dialysis with VE-bonded 

membranes. Analysis of the full dataset revealed no differential effects of the VE-

membranes on ESA requirements, oxidative stress, inflammation, fibrin clot structure or 

clinical outcomes. Key findings included a potential ESA-sparing effect of the VE-

membranes in ESA resistant patients, a progressive decline in C3 levels over 12 months 

and associations between the levels of C3 and SC5b-9 at baseline and the subsequent 

risks of dying or experiencing a CV event. 

 

Conclusions: There were no benefits in switching prevalent HD patients to dialysis with 

VE-bonded dialysis membranes with the exception of possible utility in ESA-resistant 

patients. The novel finding suggesting a link between the complement system and poor 

outcomes in HD patients may provide further insights to explain the high rates of CV 

disease and mortality for this patient group and merits further study. 
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Chapter 1 : Introduction 

1.1 Renal failure 

1.1.1 Chronic kidney disease and end-stage renal failure 

In health the kidneys perform a number of disparate roles including electrolyte, acid-base 

and blood volume homeostasis in addition to endocrine and metabolic functions. In 

patients with chronic kidney disease (CKD) the ability of the kidneys to perform some or all 

of these functions is reduced. Chronic kidney disease is common and, depending on the 

definition used, affects upwards of 10% of the population becoming more prevalent with 

advancing age [1-3]. End-stage renal failure (ESRF) generally refers to patients with 

severe renal impairment who require renal replacement therapy (RRT), either in the form 

of dialysis or renal transplantation, for the purpose of sustaining life. 

  

The prevalence of patients requiring RRT in the United Kingdom (UK) is approximately 

832 patients per million and this figure has been rising year on year [4]. Renal replacement 

therapy provision is associated with significant healthcare costs as, despite only affecting 

0.08% of the UK population, it has been estimated to account for 1-2% of National Health 

Service (NHS) expenditure [5]. The most frequently identified causes of ESRF in the UK 

are diabetes and glomerulonephritis, although the diagnosis is uncertain in up to a fifth of 

patients [4]. The options for patients requiring RRT are dialysis, either in the form of 

haemodialysis (HD) or peritoneal dialysis, or renal transplantation. In the UK renal 

transplantation is the most prevalent form of RRT with HD the most commonly used 

dialytic therapy as illustrated in Figure 1 [4]. 

 

Peritoneal Dialysis (8%)

Haemodialysis (44%)

Transplant (48%)
 

Figure 1 - Breakdown of renal replacement therapies by modality in the UK in 2010. 
(Data taken from UK Renal Registry Report 2011 [4]). 
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1.1.2 Haemodialysis for end-stage renal failure 

Haemodialysis refers to the process whereby a patient’s blood is passed through a 

dialyser, in which waste products and fluid are removed, before the blood is returned to the 

patient. Blood is passed through hollow fibres within the dialyser which are bathed in a 

fluid known as dialysate as shown in Figure 2. The walls of the fibres are semi-porous and 

represent a physical barrier between the blood and the dialysate and are referred to as the 

dialysis membrane or dialysing surface. The dialysis membrane has numerous small pores 

permitting the passage of molecules between the blood and dialysate along a diffusion 

gradient. There is a constant flow of fresh dialysate, of the order 300-800 mL/min, to 

maintain this concentration gradient thereby maximising diffusive transport. In addition to 

this diffusive transport of molecules, hydrostatic forces are used to generate a 

transmembrane pressure gradient resulting in the net movement of fluid from the blood 

into the dialysate. Fluid accumulation is one of the clinical consequences of renal failure 

and this latter mechanism is the principal way in which fluid is removed from patients. 
 

Blood inlet

Blood outlet

Dialysate inlet

Dialysate outlet

 
Figure 2 - Schematic representation of a dialyser. Blood (red arrows) is pumped 
through hollow fibres which are bathed in dialysate (blue) which flows around the fibres in 
the opposite direction to the blood (black arrows). The constant supply of fresh dialysate 
serves to maximise the diffusion gradient and hence the diffusive transport of solutes 
across the walls of the dialysis fibres. 
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In order to obtain and maintain a constant supply of blood from the patient at sufficient flow 

rates to permit meaningful solute removal, typically 250-450 mL/minute, a specialised form 

of what is termed ‘dialysis access’ is required. Dialysis access can take the form of either 

an arteriovenous fistula (AVF), graft or a central venous catheter (CVC). Fistulas are 

created by surgically anastomosing an artery and a vein - typically in the forearm of the 

patient’s non-dominant hand. Grafts again require a surgical procedure but in these 

instances an artery and a vein are connected by interposing a hollow segment of synthetic 

material such as polytetrafluoroethylene (PTFE); the upper thigh is a common anatomical 

site for graft insertion. Two needles are then inserted into the AVF or graft and connected 

to the dialyser with hollow tubing thereby establishing the dialysis circuit which is depicted 

graphically in Figure 3. Central venous catheters used for chronic dialysis usually comprise 

a dual lumen hollow tube which is sited in a large vein, most often the superior vena cava, 

and it is common practice to tunnel them under the skin in order to reduce the risk of 

bacteraemia. The lumen of the catheter is partitioned therefore blood can be withdrawn 

and returned via the same catheter without significant mixing of the blood in the afferent 

and efferent limbs of the dialysis circuit. 

Dialysate

Bubble 
trap

Blood pump

Dialyser

“Arterial” or 
afferent limb

“Venous” or 
efferent limb

Venous 
pressure 
monitor

Arterial 
pressure 
monitor

Venous 
clamp

Anticoagulant
Dialysis 
access

 
Figure 3 - Schematics of a dialysis circuit. Patients are connected to the dialyser via 
their dialysis access. Blood is pumped out of the patient via the “arterial” or afferent limb of 
the dialysis circuit and through the dialyser. Blood then passes through a bubble trap, 
removing any potential air emboli, before being returned to the patient via the “venous” or 
efferent limb. 
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In terms of limiting patient morbidity, principally from infective complications, the preferred 

type of dialysis access is an AVF followed by a graft and then CVCs [6, 7]. The use of 

CVCs, however, is unavoidable for a number of patients as there is an inherent delay 

following fistula or graft surgery before the access can be used and both are associated 

with appreciable failure rates. One of the principal advantages of CVCs is that they can be 

used immediately following placement. Patients almost universally require anticoagulation 

to facilitate HD given the potent pro-coagulant stimulus of passing blood through the 

dialyser and dialysis tubing. This is most often achieved by infusing heparin into the 

dialysis circuit for the duration of the HD session, or by administering a bolus of low-

molecular weight heparin at the start of dialysis. Patients typically have HD three times per 

week with a usual treatment session lasting 4 hours; however alternative HD regimens 

such as nocturnal or short daily HD are followed by some patients. 

1.1.3 Medical management of dialysis patients 

A number of the complications of renal failure are only partially, or not at all, corrected by 

HD therapy. Examples of such complications include hypertension, renal osteodystrophy 

(also termed CKD-mineral bone disorder (CKD-MBD)) and anaemia. Elevated blood 

pressure is common in dialysis patients due to a combination of factors which include fluid 

retention, calcification of the vascular tree and, as is commonly the case, as a complicating 

factor of the medical condition which led to renal failure, such as diabetes or 

glomerulonephritis [8]. Treatment of hypertension is centred on accurate assessment of 

intravascular fluid status and the attainment of euvolaemia, by removing excess fluid 

during dialysis, and frequent recourse to anti-hypertensive drug therapy. A number of 

factors in HD patients conspire to cause alterations in the mineral-bone-kidney axis 

resulting in CKD-MBD - chief among which are phosphate retention, reduced activation of 

vitamin D in the kidney and the consequent development of secondary 

hyperparathyroidism [9]. The treatment of CKD-MBD is multifaceted and commonly 

involves dietary phosphate restriction, the administration of phosphate binders to limit 

intestinal phosphate absorption and supplementation with activated Vitamin D (1α-

hydroxycholecalciferol) [9]. Anaemia is frequently encountered in HD patients and reduced 

renal production of erythropoietin (EPO) is the main driver. The mainstay of anaemia 

management is the provision of erythropoiesis stimulating agents (ESAs), such as 

recombinant human EPO (rHuEPO) or one of its derivatives. A detailed overview of 

anaemia in HD patients is provided in section 1.3. 
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1.2 Cardiovascular disease in renal failure 

1.2.1 Epidemiology of cardiovascular disease in dialysis patients 

Cardiovascular (CV) disease is the single largest cause of death in the general population 

[10], therefore it is perhaps not surprising that it is also the leading cause of death in 

chronic dialysis patients [11]. One striking difference, however, is the magnitude of CV 

complications among patients receiving dialysis with patients in their thirties having similar 

rates of fatal CV events as non-dialysis patients in their eighties [12]. Cardiovascular 

complications accelerate as renal function declines and a high percentage of incident 

dialysis patients already have a substantial burden of CV disease [13, 14]. Findings such 

as these have prompted investigators to try and determine which aspects of renal 

insufficiency contribute to the increased CV risk. 

  

One possible explanation was thought to be the high incidence of “traditional” CV risk 

factors such as hypertension, dyslipidaemia, obesity, diabetes mellitus and left ventricular 

hypertrophy among dialysis patients [15]. Interestingly, however, a number of these factors 

appear to behave differently in dialysis patients. For example, there is an approximately 

linear relationship between increasing blood pressure and the risk of CV events in the 

general population [16]. This contrasts with data from dialysis populations in which the 

relationship appears to be U-shaped with lower blood pressures, of the order associated 

with good outcomes in the general population (i.e. 110 mmHg systolic blood pressure), 

seemingly associated with an increased risk of death in HD patients [17-20]. One 

explanation for this observation may be that low blood pressure is a proxy for co-morbid 

diseases, such as heart failure [21], as studies which specifically look at late mortality, 

particularly in dialysis cohorts without other significant comorbidities, have reported a more 

linear relationship between blood pressure and mortality akin to that observed in the 

general population [22, 23]. Similarly, there is a wealth of evidence for the general 

population supporting the use of cholesterol lowering therapy to reduce CV events both in 

terms of secondary prevention [24, 25] and primary prevention in high risk groups [26-28]. 

Studies performed in dialysis patients [29-31] have failed to demonstrate any significant 

mortality benefit from lipid lowering therapy and, furthermore, observational data suggest 

that hypocholesterolaemia may be linked to increased mortality [32, 33]. The correlation 

between hypocholesterolaemia and mortality may be a reflection of nutritional status as, 

for example, an elevated body mass index (BMI) is a well established CV risk factor 

among the general population [34-36] but is associated with a lower risk of death in 
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dialysis patients [37-40]. In line with all of these findings, standard risk factor algorithms 

based on data gathered from non-dialysis patients fail to predict the higher observed rates 

of CV disease among patients on dialysis [15, 41]. Consequently investigators have had to 

look for alternative explanations for the high rates of CV disease among dialysis patients. 

 

Epidemiological studies, examining both renal and non-renal patient cohorts, have 

identified a number of “non-traditional” CV risk factors such as inflammation [42], oxidative 

stress [43], hyperfibrinogenaemia [44, 45], malnutrition and hypoalbuminaemia [46-48] and 

hyperhomocysteinaemia [49]. As with many of the traditional risk factors, these “non-

traditional” risk factors are over-represented in dialysis populations. In addition to these 

risk factors some of the therapies used to treat the complications of renal failure, such as 

ESAs for the treatment of renal anaemia [50-52], may also contribute to the development 

of CV complications. Prior to examining how some of these factors may be involved in the 

development of CV disease in HD patients an overview of CV disease, and particularly 

how it differs in renal and non-renal patients, is provided in section 1.2.2. 

1.2.2 Pathophysiology of cardiovascular disease 

Cardiovascular disease is an umbrella term incorporating diseases relating to the heart 

and blood vessels. Such diseases include myocardial infarction, stroke and critical limb 

ischaemia. Common pathological processes underlie these disease states with the 

different clinical syndromes arising from similar processes occurring in different vascular 

beds. The two main pathological processes which give rise to CV disease are 

atherosclerosis and vascular calcification. The relative contributions of each of these 

processes differ in renal and non-renal patients. 

1.2.2.1 Atherosclerosis 

Atherosclerosis is the pathological process whereby lipid-rich material accumulates within 

arterial walls forming plaques, leading to progressive luminal narrowing and eventual 

arterial occlusion or thrombosis. The initial step in the development of an atherosclerotic 

lesion involves changes to the vascular endothelium which are thought to arise primarily 

as a response to injury [53]. A number of injurious mechanisms have been identified 

including hyperlipidaemia, hypertension, diabetes mellitus, free radicals from cigarette 

smoking, infectious micro-organisms (e.g. herpes viruses, Chlamydia pneumoniae) and 

genetic alterations [53]. These changes to the endothelium result in increased vascular 

permeability, altered expression of cell surface adhesion molecules and the release of 

cytokines and growth factors. Circulating monocytes are then able to migrate into the 
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vascular wall, differentiate into macrophages, and take up oxidised low density lipoprotein 

(Ox-LDL) to form foam cells. Activated macrophages and foam cells, in conjunction with 

activated platelets, lymphocytes sequestered at the site of injury and the overlying 

endothelial cells, secrete a variety of growth factors (e.g. granulocyte-macrophage colony 

stimulating factor (GM-CSF), platelet derived growth factor B), pro-inflammatory cytokines 

(e.g. interleukin-1 (IL-1), IL-8, tumour necrosis factor-α (TNF-α) and chemokines (e.g. 

monocyte chemotactic protein-1(MCP-1)), as well as induce endothelial cell expression of 

cellular adhesion molecules (e.g. intracellular adhesion molecule 1 (ICAM-1), vascular cell 

adhesion molecule 1 (VCAM-1), E-selectin, P-selectin) . The net effects of these mediators 

are smooth muscle cell proliferation and further cellular recruitment. This results in the 

release of more mediators, thereby establishing a positive feedback loop, leading to intimal 

thickening and luminal narrowing with the development of an atherosclerotic plaque. Over 

time, plaques can become unstable and ultimately may rupture exposing the thrombogenic 

lipid rich core to the circulation resulting in thrombus formation with the potential for vessel 

occlusion or distal clot embolisation. 

 

As early as 1974 observations of accelerated atherosclerosis in HD patients were reported 

[54]. Subsequently several post mortem studies have demonstrated more advanced, 

widespread atherosclerotic disease in dialysis patients compared to patients not on 

dialysis [55-58]. Part of the explanation for these findings is likely to be the clustering of 

factors known to be associated with the development of atherosclerosis in dialysis 

populations, e.g. diabetes and hypertension, however these do not fully explain the 

discordant rates of CV disease in dialysis and non-dialysis patients as already highlighted. 

In addition to an increased atherosclerotic burden, arterial calcification is an important 

contributor to the development of CV disease in HD patients. 

1.2.2.2 Arterial calcification 

Arterial calcification can be sub classified on the basis of whether the deposits are found 

principally within the intimal or medial layers of arteries (see Figure 4). Calcification at 

each of these sites represents a different disease process although both contribute to the 

development of CV disease but via different mechanisms. Intimal calcification chiefly 

occurs in conjunction with atherosclerosis, i.e. in the vicinity of lipid deposits, and interferes 

with the conduit function of arteries [59]. This contrasts with medial calcification, also 

known as Monckeberg’s arteriosclerosis, which is characterised histologically by diffuse 

fibroelastic intimal thickening, increases in collagen and medial ground substance with 

fragmentation of the elastic lamellae and secondary fibrosis and calcification of the media, 
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the end result of this process is increased arterial stiffness [60, 61]. Arterial stiffness has 

physiological implications because the elastic properties of healthy arteries serve as a 

cushion for the pulsations generated by intermittent ventricular contractions. This permits 

storage of part of the volume of blood ejected during systole to be returned during diastole 

thereby maintaining organ and tissue perfusion throughout the cardiac cycle [62]. Arterial 

stiffening, and the consequent loss of cushioning ability, can ultimately lead to adverse 

arterial and cardiac remodelling [63-65], manifesting as left ventricular hypertrophy (LVH), 

reduced ventricular ejection fraction, diastolic dysfunction, systolic hypertension and an 

increase in myocardial oxygen consumption with reduced subendocardial blood flow [63, 

65-68]. Non-invasive tests available for assessing calcification, such as electron beam 

computed tomography and ultrasonography, are unable to reliably differentiate between 

intimal and medial calcification [69]. 

 

Atherosclerotic 
plaque

Media

Intima

Calcification

A. Arteriosclerosis
(Medial calcification)

B. Atherosclerosis
(Intimal calcification)

 
Figure 4 - Principal sites of arterial calcification. A. Arteriosclerosis (medial 
calcification) and B. Atherosclerosis (intimal calcification). 
 

Dialysis patients have increased vascular calcification compared to non-renal patients [55-

58, 70, 71] with more extensive vascular calcification being associated with increased 

mortality [72, 73]. The clinical consequences of enhanced intimal or plaque calcification in 

HD patients are not clear. Data from non-renal patients suggest that calcification of carotid 

artery plaques is associated with a lower stroke risk [74-77] and calcification of coronary 

artery plaques is associated with more stable disease [78]. The few studies examining 

coronary calcification measured using electron-beam computerised tomography in small 

numbers of HD patients have produced mixed results with one study reporting an 
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association between the degree of coronary artery calcification and the severity of 

atherosclerosis at angiography [79] and another reporting no such association [80]. A 

retrospective series of dialysis patients undergoing coronary angioplasty reported 

improved outcomes in patients with more extensive vascular calcification measured at 

angiography [81]. Putting these findings together, it seems unlikely that enhanced intimal 

or plaque calcification is solely responsible for the increased rates of CV disease in HD 

patients. 

 

Perhaps more relevant to the high rates of CV disease in HD patients is medial 

calcification. Medial calcification is commonly associated with advanced age, diabetes and 

renal failure and, when present, is associated with worse outcomes [73, 82]. Patients with 

renal disease are subject to a number of factors which increase the propensity for vascular 

calcification, chief among which is altered mineral metabolism, i.e. CKD-MBD. The main 

drivers of this process are phosphate retention [71, 83], and the consequent development 

of secondary hyperparathyroidism [9], and the therapeutic options used in their treatment 

such as Vitamin D therapy [84-86] and calcium containing phosphate binders [87-89]. It 

can therefore be seen that the pathological spectrum of CV disease in HD patients differs 

from non-HD patients in that it tends to be more widespread and advanced with more 

extensive vascular calcification, particularly medial calcification. These pathological 

differences may underlie the different spectrum of clinical disease observed in HD 

patients. 

1.2.3 Clinical spectrum of cardiovascular disease in dialysis 
patients 

In addition to the discordant rates of CV events in dialysis compared to non-dialysis 

populations, the nature of these events also appears to differ. A large observational series 

in the USA of patients presenting with acute coronary syndromes (ACS) found that the 

clinical characteristics and management of dialysis patients presenting with ACS differed 

significantly from non-dialysis patients in terms of their demographics (dialysis patients 

tended to be younger), established cardiac risk factor profiles and the treatments they 

received [90]. In particular, the authors reported that there was a lower index of clinical 

suspicion of ACS in dialysis patients with twice as many dialysis patients presenting with 

acute myocardial infarction (AMI) misdiagnosed on admission, possibly due to a lower 

proportion of patients presenting with chest pain as has been similarly reported in CKD 

patients presenting with AMI [91]. This suggests HD patients may present with different 
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symptomatology compared to non-HD patients. When looking at causes of death in 

dialysis patients, sudden cardiac deaths account for approximately a quarter of deaths [92-

94] contrasting starkly with reports of only a few cases per thousand in the general 

population [95, 96]. Furthermore, data from post-mortem studies suggest that 

approximately 60% of sudden death cases in the general population have evidence of 

coronary atherosclerosis, with the majority having an identifiable acute ischaemic lesion 

[97, 98]. In a similar report of sudden cardiac death in Japanese dialysis patients, less than 

6% of cases had post mortem evidence of an acute coronary event [99]. In addition, 

differences in the aetiological or contributory factors for sudden cardiac death in general 

and dialysis populations have also been reported. For example, evidence of left ventricular 

dysfunction appears to be an important risk factor in the general population [100] but a 

study in dialysis patients found no difference in the incidence of sudden death when 

patients with ejection fractions of greater and less than 40% were compared [101]. 

Similarly LVH appears to be associated with a greater risk of sudden cardiac death in the 

general population [102] but not in patients on dialysis [101]. Part of the explanation for 

these differences may be that dialysis patients are subject to factors which are themselves 

associated with a greater risk of death and which are much less frequently encountered in 

non-dialysis patients such as rapid electrolyte shifts, hyperkalaemia and perturbations in 

fluid balance [93, 101, 103, 104]. With reference to section 1.2.2.2, vascular calcification 

may contribute to sudden cardiac death in HD patients with one study, for example, 

showing an association between cardiac calcification and pro-arrhythmogenic 

electrocardiographic features [105]. 

1.2.4 Summary of cardiovascular disease in dialysis patients 

It can be seen that CV disease in HD patients differs from that seen in non-dialysis 

populations in terms of its incidence, prevalence, pathogenesis, clinical spectrum of 

disease, relationship to emerging and established risk factors and outcomes. It is 

important to recognise these differences as CV intervention studies showing benefit in the 

general population may not necessarily translate into similar benefits for patients on 

dialysis, as exemplified by the largely negative studies of lipid lowering therapies in HD 

patients with respect to mortality [29-31]. This underscores the need to conduct clinical 

trials in HD patients with interventions aimed at improving factors known to contribute to 

the development of CV disease in this group of patients. The main aetiological factors 

contributing to the elevated rates of CV disease in HD patients can be grouped under 

three broad headings: (i) clustering of patients at high risk of developing CV complications 

by nature of their comorbidities (e.g. diabetes, hypertension), (ii) factors attributable to loss 
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of renal function (and the therapies used in their treatment) and (iii) factors related to 

dialysis therapy. In the following sections, several factors which are known or thought to 

contribute to CV disease in HD patients and which are relevant to this thesis are discussed 

in more detail. 

1.3 Anaemia in dialysis patients 

1.3.1 Overview of anaemia in dialysis patients 

Anaemia is a common feature of CKD and its incidence increases as glomerular filtration 

rate (GFR) declines [1, 106, 107]. Anaemia can give rise to disabling symptoms such as 

lethargy, dyspnoea, loss of appetite, poor memory and concentration. Studies looking at 

global measures of wellbeing and disability have shown a reduced quality of life for 

anaemic versus non-anaemic dialysis patients [108], a reduced capacity for exercise [109] 

and improvements in these parameters with anaemia correction [110-112]. Observational 

studies in dialysis patients have consistently shown anaemia to be associated with 

increased morbidity and mortality [113-119]. 

 

Longstanding anaemia results in marked compensatory CV changes. There is an increase 

in the cardiac output and a drop in peripheral resistance due to tissue hypoxia-induced 

vasodilation [120]. There is also a tendency for worsening of myocardial ischaemia owing 

to the reduced oxygen carrying capacity of the blood in conjunction with the high 

prevalence of coronary artery disease in dialysis patients. Prolonged anaemia contributes 

to LVH [121, 122] which has been shown to increase the mortality of dialysis patients 

independent of age, diabetes, hypertension, hyperlipidaemia and smoking, even when it is 

asymptomatic [123, 124]. In CKD patients, LVH develops rapidly as GFR declines and 

consequently LVH is already present in approximately 75% of patients starting RRT and is 

strongly predicative of late (i.e. >2 years) mortality on dialysis [124]. This time lag is 

important as it may represent an opportunity to implement interventions directed at slowing 

the progression of LVH and therefore potentially improving patient outcomes. One such 

intervention appears to be the improvement of haemoglobin levels with ESAs, such as the 

use of synthetic rHuEPO, which has been shown to reduce LVH [118, 125] and improve 

CV mortality [118]. In addition to reducing mortality and the requirements for blood 

transfusions, the treatment of renal anaemia in dialysis patients has been associated with 

improvements in quality of life [110-112, 126] and cognitive function [127, 128], as well as 

enhancing immune functioning [129, 130] and improving the bleeding diathesis associated 

with renal insufficiency [131-133]. 
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1.3.2 Factors contributing to anaemia in haemodialysis patients 

Several mechanisms have been implicated in the development of anaemia in HD patients. 

These are important to recognise as they highlight potential ways of minimising or 

correcting the anaemia; some of the key contributory factors are presented here. 

1.3.2.1 Impaired erythropoiesis and altered iron metabolism 

The hormone EPO consists of a 165-amino acid protein combined with four complex 

carbohydrate chains and is intimately involved in the control of erythropoiesis [134, 135]. 

Erythropoietin stimulates red blood cell (RBC) production by binding to EPO-receptors 

located primarily on early erythroid progenitor cells, burst-forming unit erythroid cells and 

colony-forming unit erythroid cells in the bone marrow [134, 135]. The binding of EPO to 

these receptors prevents the apoptosis of these early erythroblast cells which are then 

able to divide and develop into mature erythrocytes [136]. In health, the secretion of EPO 

reflects the oxygen content of blood with a reduction in oxygen delivery to the tissues, as 

occurs in anaemia, representing a powerful stimulus for secretion. The synthesis of EPO is 

principally mediated via the oxygen-dependent expression of a number of genes, central to 

which is a family of hypoxia-inducible transcription factors (HIFs) [135, 137, 138]. The two 

most important molecules in this family are HIF-1 and HIF-2 which comprise an oxygen-

regulated -subunit and a structural -subunit [139]. Production of the -subunits occurs 

largely independently of oxygen concentrations however oxygen mediated hydroxylation of 

residues present on the -subunit increases the rate of proteosomal destruction, thus 

modifying the transcriptional activity of the molecules [139]. In the presence of reduced 

oxygen delivery this results in potentiation of HIF activity and an increase in EPO synthesis 

[140].  

 

Erythropoietin is normally synthesised by interstitial fibroblasts in the renal cortex and 

directly stimulates the erythroid progenitor cells [135, 141]. In foetal and early postnatal life 

the liver produces significant amounts of EPO although this soon diminishes after which 

time the kidneys are the primary source of EPO synthesis [134]. Although the liver cells 

retain the ability to produce EPO, they are unable to compensate for the loss of renal 

production in patients with significant renal impairment [142] and only low levels are 

present in anephric adult patients [143]. The progressive loss of renal mass with declining 

renal function leads to a reduction in circulating EPO and a fall in haemoglobin levels 

[144]. However, the relationship between EPO levels and anaemia is not clear cut with 

many anaemic CKD patients having similar EPO levels to non-anaemic non-uraemic 
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controls [145] and patients with anaemia and renal impairment are often able to increase 

EPO production in response to a hypoxic stimulus [141]. This suggests that there is more 

underlying the pathophysiology of anaemia in CKD patients besides simply EPO 

deficiency. 

 

An adequate supply of iron is essential for erythropoiesis as iron is a key constituent of 

haem, the oxygen carrying component of mature erythrocytes. Effective erythropoiesis 

requires the transfer of large amounts of iron from its storage sites, mainly in the liver and 

spleen, to the bone marrow for haemoglobin synthesis. Iron deficiency can arise due to 

depletion of iron stores, termed true iron deficiency, or there may be sufficient stores of 

iron but problems with its mobilisation or utilisation which has been termed functional iron 

deficiency [146]. Both factors are important in the development of anaemia in HD patients. 

Absolute iron deficiency is not uncommon among dialysis patients due to occult or non-

occult blood loss coupled with poor dietary intake and impaired intestinal absorption [146, 

147]. Functional iron deficiency is also frequently encountered in HD patients, although 

detecting it is not straightforward using routinely available clinical laboratory tests such as 

ferritin determination [148]. Measurement of the percentage of hypochromic red blood cells 

or the transferrin saturation provide an indirect measure of iron utilisation and are useful 

for diagnosing functional iron deficiency in this setting [146, 149]; published guidelines of 

iron therapy in HD patients are based on these parameters [150, 151]. 

 

Inflammation is an important contributor to functional iron deficiency. It can lead to 

increased levels of the peptide hepcidin [152], a negative regulator of iron metabolism (the 

levels of which are already increased in patients with renal impairment [153-155]), reduced 

uptake of iron from the gut [147] and enhanced uptake of lactoferrin (a molecule involved 

in iron trafficking) by activated macrophages expressing lactoferrin receptors [156, 157]. In 

addition to its effects on iron metabolism, several inflammatory mediators, such as TNF-α, 

IL-1 and IFN-γ, have been shown to exert a suppressive effect on erythroid progenitor 

cells in the bone marrow [158, 159] and blunt the secretion of EPO in response to falling 

haemoglobin levels [160]. Several markers of malnutrition, such as BMI, albumin levels 

and the protein catabolic rate, have been linked to anaemia severity [161-163], although 

inflammation and malnutrition frequently co-exist in HD patients [164] making it hard to 

separate out their individual effects. 

 

Besides inflammation, several other aspects of renal insufficiency and dialysis therapy 

contribute to impaired erythropoiesis. A link between hyperparathyroidism and anaemia 
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has been known for some time [165, 166]. The most likely mechanism behind this 

association is a pro-fibrotic effect on the bone marrow [167-169], although a direct 

inhibitory effect of PTH on early erythroid cells has been reported by some [170], but not 

all [171, 172], investigators with the differing findings possibly related to the preparations of 

PTH used [173]. As yet unidentified factors retained in the plasma of dialysis patients, so 

called uraemic inhibitors of erythropoiesis, may also play a role in anaemia. Evidence for 

their existence comes from observations that HD patients often experience a rise in 

haemoglobin levels following the initiation of dialysis [174-176] or an increase in dialysis 

dose [177-180]. Early in vitro work using animal cells lines demonstrated the ability of 

uraemic serum to inhibit erythropoiesis [181-183] although subsequent work using an 

autologous human model failed to corroborate these findings [184]. Therefore proof of the 

existence of uraemic inhibitors of erythropoiesis, their nature and mechanism of action 

remains enigmatic. 

 

The renin-angiotensin system (RAS) may also be relevant to the development of anaemia 

in dialysis patients. Activation of the RAS is common in dialysis patients, particularly if they 

are hypertensive [185-188], and pharmacological blockade of the RAS is frequently 

employed owing to the anti-hypertensive and cardioprotective properties of these 

medications [189]. Elevated haematocrits have been reported in patients with activation of 

the RAS secondary to renal artery stenosis of both native [190] and transplanted [191] 

kidneys. Similarly blood pressure trials in non-dialysis patients have reported lower 

haemoglobins in patients taking angiotensin converting enzyme inhibitors (ACEi) or 

angiotensin receptor antagonists [192-195]. In HD patients, the use of drugs which 

antagonise the RAS appear to increase ESA requirements [196, 197] with improvements 

in the ESA requirements observed following drug cessation [198]. Receptors for 

angiotensin-II, one of the effector molecules of the RAS, have been identified on erythroid 

progenitor cells and the formation of blood forming units in vitro is increased in the 

presence of angiotensin-II and suppressed by pharmacological receptor blockade [199, 

200]. Data from rat models [201, 202] and human studies [203, 204] point to a role for 

angiotensin-II as an EPO secretagogue. An endogenous haematopoiesis inhibitor, N-

acetyl-seryl-aspartyl-lysl-proline, has been identified which is almost exclusively degraded 

by ACE, providing another mechanism for anaemia in patients treated with ACE inhibitors 

[205, 206]. 
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1.3.2.2 Reduced erythrocyte lifespan and enhanced oxidative stress 

The haemoglobin concentration at any one time reflects the balance between RBC 

production and destruction. It has been known for some time that erythrocyte lifespan is 

reduced in uraemic patients [207-211] by approximately 20% compared to healthy controls 

[212]. Corpuscular factors appear to be important in this setting as erythrocytes from 

uraemic individuals have different physical properties when compared to erthrocytes 

obtained from non-uraemic individuals. They have a more rigid structure [213-218], 

rendering them more susceptible to splenic sequestration and destruction [216, 218, 219], 

resulting in a shortened lifespan. This notion is supported by anecdotal evidence of 

improvements in anaemia for dialysis patients who underwent splenectomy in the pre-

modern treatment era [216, 219]. 

 

Oxidative stress is thought to be an important contributor to shortened RBC survival owing 

to increased membrane rigidity as a consequence of erythrocyte membrane lipid 

peroxidation [218, 220]. In support of this, several studies have reported an association 

between increased levels of oxidative stress and lower haemoglobin levels [221-224] and 

higher ESA requirements [225, 226]. Importantly, however, the link between oxidative 

stress and renal anaemia is not clear cut and is probably bi-directional because RBCs, or 

more specifically the anti-oxidants within RBCs (e.g. glutathione reductase, superoxide 

dismutase), form an important part of the host defence against oxidative stress. In other 

words, oxidative stress begets anaemia and anaemia begets increased oxidative stress as 

shown in Figure 5. A detailed account of the factors predisposing to increased oxidative 

stress in HD patients and its association with CV disease is provided in section 1.4.  

 

Oxidative stress

Anaemia

↑Erythrocyte 
membrane lipid 

peroxidation

↑erythrocyte 
rigidity

Premature 
erythrocyte 
destruction

↓erythrocyte 
mass

↓circulating 
anti-oxidant 

enzymes

 
Figure 5 - Positive feedback loop concerning anaemia and oxidative stress. 
Oxidative modification of erythrocyte membranes leads to increased erythrocyte rigidity 
and premature destruction. Anaemic patients have lowered anti-oxidant defences by virtue 
of a decreased mass of circulating erythrocytes and the anti-oxidant defence mechanisms 
contained therein. 
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Besides oxidative stress, a number of other factors can contribute to premature 

erythrocyte destruction in HD patients. Erythrocytes isolated from HD patients appear to 

be particularly susceptible to complement mediated cell lysis [227] and HD patients are 

both primed for complement activation [228, 229] and frequently exposed to factors known 

to promote activation of the complement system, such as the dialysis membrane [230-

234]. Detailed accounts of the complement system, complement activation in HD patients 

and the implications for the development of CV disease are provided in section 1.5. 

Dialysate contaminants, such as chloramines [235, 236] or heavy metals [237, 238], can 

result in haemolysis, with a consequent reduction in the eryrthrocyte lifespan, underscoring 

the need to maintain high standards of water quality in HD units. Blood loss is also 

common in HD patients, particularly from the gastrointestinal tract [239-242], owing to the 

presence of a number of risk factors for bleeding including the effects of uraemic toxins on 

platelet function, the regular administration of anti-coagulants to facilitate dialysis and 

anaemia itself [243, 244]. 

 

In summary, it can be seen that a number of factors conspire to cause anaemia in HD 

patients. These can influence both the ability to generate new red blood cells, 

erythropoiesis, and shorten the lifespan of circulating erythrocytes. Effective management 

of renal anaemia, therefore, requires a multifaceted approach in order to address these 

different factors. An overview of the strategies used to treat renal anaemia in chronic HD 

patients is provided in the next section. 

1.3.3 Treatment of anaemia in haemodialysis patients 

Prior to the 1980’s, patients on regular HD frequently required blood transfusions to 

maintain their haemoglobin levels. This presented significant risks in terms of viral 

transmission, iron overload and allosensitisation; the latter being important in limiting organ 

availability for renal transplantation. Other measures to improve anaemia included the use 

of cobalt [245] or androgens [246] to stimulate erythropoiesis. Early studies on sheep had 

shown that administration of EPO rich plasma could correct the anaemia association with 

renal failure [247]. In 1977 human EPO was purified [248] and 8 years later the gene was 

identified and cloned [249, 250] enabling the large scale production of rHuEPO. Shortly 

after this, successful trials of rHuEPO being used to treat anaemia in dialysis patients were 

published [251, 252]. Since this time, a number of different agents capable of stimulating 

erythropoiesis, collectively termed ESAs, have been developed (e.g. HIF stabilisers, 

peglyated rHuEPO [253]). The use of ESAs is now commonplace with over 90% of UK 

dialysis patients receiving an ESA [4].  In 2001 darbepoetin-alfa, the ESA used in the 



 17 

present study, was licensed for the treatment of renal anaemia. It is a modified rHuEPO, 

differing in its amino acid sequence and carbohydrate content, resulting in a lower binding 

affinity for the EPO receptor but a longer half-life and greater duration of biological activity 

[254, 255]. The advantages of this being reduced frequency of administration enabling 

weekly, fortnightly or even monthly dosing in stable patients [256], compared to the initial 

three times per week dosing schedule with rHuEPO. The ESA requirements differ 

significantly between patients and, for an individual patient, change over time necessitating 

regular monitoring of the haemoglobin levels with ESA dose adjustments in order to 

maintain haemoglobin levels within a desired range. This variation is in part due to the 

large number of factors known to influence ESA responsiveness, such as inflammation, 

the availability of iron stores, dialysis adequacy and intercurrent clinical events such as 

haemorrhage or dialysis circuit clotting [257]. As previously discussed, iron deficiency is 

common in HD patients and iron supplementation is frequently employed in the treatment 

of anaemia for patients on HD [258]. Trials of iron preparations in dialysis patients have 

demonstrated that oral preparations are frequently inadequate [259, 260] and that 

intravenous preparations can be effective in the treatment of anaemia [261-263]. 

Intravenous iron is frequently co-prescribed with ESAs and it has been shown to reduce 

ESA requirements [264-268], even in patients with high ferritin levels [264, 269]. 

Treatments for anaemia, particularly the provision of ESAs, are associated with significant 

healthcare costs which are attributable both to the procurement of the drugs and the 

infrastructure required to administer and monitor them [270]. In addition to cost 

considerations, anaemia and the use of ESA are closely linked to the development of CV 

disease in HD patients.  

1.3.4 Anaemia and cardiovascular disease in haemodialysis 
patients 

In the first published reports of ESA administration for the treatment of renal anaemia, 

investigators were able to demonstrate dose-dependant increases in haemoglobin levels 

and the avoidance of blood transfusions, but at the expense of higher blood pressures and 

rates of vascular thrombosis [251, 252, 271]. Similar findings were reported in subsequent 

placebo-controlled trials [272, 273] along with observational reports of improved quality of 

life scores [108, 112, 126] and patient outcomes [274, 275]. Since these early studies, a 

large number of observational [52, 113, 114, 116, 274-283] and interventional studies 

[284] in dialysis patients, and meta-analyses and systematic reviews of CKD patients 

(including patients on dialysis) [285-289] have tried to determine the optimal haemoglobin 
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target for ESA treated dialysis patients. The message from these studies appeared to be 

that targeting higher haemoglobin levels, usually above 13 g/dL (i.e. near normalisation), 

was associated with a greater incidence of CV events, mortality, hypertension and 

vascular thrombosis (particularly in patients receiving large doses of ESAs [50-52]) 

compared to aiming for a lower haemoglobin target of around 11 g/dL (i.e. partial 

correction), with no apparent benefits in terms of patient reported quality of life outcome 

measures. What is less clear is whether the excess harm was attributable to higher 

haemoglobin levels, higher ESA doses or a confounding effect of one or more of the 

factors known to contribute to ESA resistance. Three potential causal mechanisms to 

explain the findings of these studies are depicted graphically in Figure 6 and discussed 

further here. 

↑ESA

Adverse 
outcomes*

↑ESA ↑Haematocrit / 
↑Haemoglobin

Adverse 
outcomes*

↑ESA

Adverse 
outcomes*

Factors associated 
with ESA resistance

e.g. inflammation, oxidative 
stress, malignancy, under-
dialysis, malnutrition

A.

B.

C.

↑Haematocrit / 
↑Haemoglobin

 
Figure 6 - Causal diagram outlining the possible explanations for the higher 
mortality in ESA intervention trials for patients randomised to the higher 
haemoglobin target group. A. Increased haemoglobin levels / haematocrit leads to 
adverse outcomes. B. Higher ESA doses are responsible for the increased rates of 
adverse outcomes, increased haemoglobin levels / haematocrit are an epiphenomenon. C. 
The factors which render patients ESA resistant, hence requiring of larger ESA doses, are 
also associated with adverse outcomes. (*Adverse outcomes: mortality, cardiovascular 
events, hypertension and vascular thrombosis; ESA: Erythropoiesis stimulating agent) 
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Higher haemoglobin levels could plausibly explain some of the association between the 

use of ESAs and the worsening of hypertension or the occurrence of vascular thromboses 

or CV events in the aforementioned studies [251, 252, 271, 273, 284]. Maintenance of 

blood volume requires a reduction in plasma volume for higher haemoglobin levels and the 

resultant higher haematocrit will increase the propensity for thrombosis, as well as 

increasing vascular resistance and blood pressure [290]. However, observational data 

from dialysis patients who maintain haemoglobin levels above 12 g/dL without the need for 

ESAs identified no excess mortality for these patients [291]. Additionally, a large 

observational study of 58,058 HD patients reported that higher ESA doses were 

associated with increased mortality, irrespective of haemoglobin levels and, in contrast to 

the previously cited intervention studies, a haemoglobin level in the range 12-13 g/dL was 

associated with the greatest survival [52]. Similarly, a secondary analysis of a study 

comparing higher and lower haemoglobin targets in CKD patients not on dialysis [50] 

found that both higher ESA doses and failure to achieve the target haemoglobin, which 

was much more prevalent in the higher target haemoglobin group, rather than the absolute 

haemoglobin levels were associated with higher mortality. Taken together, these findings 

suggest that higher ESAs doses, rather than higher haemoglobin levels or haematocrit, 

may be directly responsible for the development of CV complications. 

 

A number of mechanisms have been put forward to explain the potential for harm with high 

ESA doses. The intermittent ESA dosing schedules, with the resultant swings in blood 

levels, are very different to the continuous low levels of EPO produced in the healthy state 

and the blood levels achieved with ESA administration are supra-physiological [292]. Many 

non-erythroid cells express the EPO-receptor, including vascular endothelial cells, smooth 

muscle cells and cardiac myocytes [293], where receptor activation generally promotes 

cellular survival. The supra- and non-physiological stimulation of these receptors, and the 

subsequent effects on cell survival and apoptosis, for example potentially resulting in 

adverse myocardial modelling, could explain some of the increased risks associated with 

ESA usage although no direct evidence for this exists [294]. Furthermore, studies have 

reported ESAs to increase endothelial and vascular smooth muscle cell proliferation [295-

297], the expression of MCP-1 [297, 298] and markers of endothelial damage such as 

tissue-type plasminogen activator (tPA) and thrombomodulin [299], all of which have been 

linked to the development of atherosclerosis. Hypertension can develop in ESA treated 

patients due to the associated hypervolaemia, in addition to ESA-mediated up-regulation 

of vasoconstrictors, such as endothelin-1 and thromboxane A2 [300, 301], and the 

increased expression of angiotensin II receptors in vascular smooth muscle [302]. 
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Elevated levels of pro-inflammatory cytokines, such as TNF-α, have been reported in renal 

patients treated with ESAs [303, 304] and these in turn have been linked with an increased 

risk of CV disease in the general population [305, 306]. There are therefore a number of 

mechanisms through which ESAs may cause CV disease. 

 

Prospective studies of both incident [307] and prevalent [308] dialysis patients have 

reported significant associations between ESA dose and mortality which became non-

significant when the analyses were adjusted for confounders such as inflammation and 

comorbidity. Therefore, perhaps a more compelling explanation for the greater mortality in 

patients receiving higher ESA doses is that patients receiving the higher doses are often 

ESA resistant, i.e. requiring of higher ESA doses to achieve a given haemoglobin level, 

and the factors which contribute to this ESA resistance actually mediate the higher 

mortality rates. The effects of further ESA dose increases on haemoglobin levels in 

patients already taking large doses appear to be minimal [309], suggesting that in many 

cases failure to respond to an ESA is due to ESA resistance rather than under-dosing. A 

number of factors which contribute to ESA resistance, such as inflammation, oxidative 

stress, malignancy, under-dialysis and malnutrition, are themselves associated with an 

increased risk of mortality [162, 257]. The idea that ESA resistance, rather than high doses 

of ESAs per se, is associated with worse outcomes has been borne out by several large 

observational series [51, 310, 311] and a prospective study which specifically measured 

ESA-responsiveness [312]. It therefore seems likely that the factors which contribute to 

ESA resistance, and hence necessitate the usage of higher ESA doses, are the same 

factors which portend the higher mortality rates rather than it being directly attributable to 

the ESAs. In other words, in the studies which showed an association between ESA dose 

and adverse outcomes, the ESA dose may in fact be a proxy for the factors driving ESA 

resistance, rather than the ESA being mechanistically involved in the development of CV 

disease. In an attempt to better understand the relationship between ESA dose, ESA-

resistance and adverse outcomes prospective studies are being undertaken comparing 

fixed high and low dose ESA administration, as opposed to haemoglobin target driven 

therapy, on patient mortality and CV outcomes [313]. 

 

From the data presented here it can be seen that a number of the factors which are 

implicated in the high rates of CV disease in HD patients also contribute to renal anaemia 

and ESA resistance. Therefore targeting these factors may lead to improved patient 

outcomes as well as improvements in anaemia. Additionally, such approaches may limit 

some of the potential harm and high costs associated with increased ESA usage. Two 
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such factors are oxidative stress and inflammation, both of which are commonly 

encountered in HD patients and are discussed in more detail here. 

1.4 Oxidative stress 

1.4.1 Overview of oxidative stress 

Oxidative stress is a term which refers to an imbalance between the production of 

potentially harmful reactive oxygen species (ROS) and the normal anti-oxidant protective 

mechanisms present to guard against tissue damage. Reactive oxygen species include 

superoxide anions, hydrogen peroxide and the hydroxyl radical and they are formed from a 

wide variety of enzymatic and non-enzymatic reactions. Important sites of oxidative activity 

in mammals are the mitochondrial respiratory chain and phagocytes in the host defence 

against pathogens [43]. The mitochondrial enzyme cytochrome oxidase is responsible for 

much of the oxygen metabolised by humans and it catalyses the transfer of electrons to 

molecular oxygen reducing it to water [314]. If the oxygen is only partially reduced this can 

lead to the formation of ROS, such as the superoxide anion resulting from the transfer of a 

single electron to molecular oxygen [315]. Additionally, a number of different sources of 

ROS exist in vascular and other tissues including the nicotinamide dinucleotide phosphate 

(NADPH) oxidase enzyme complex, xanthine oxidase, lipoxygenases, cyclooxygenases 

[316] and nitric oxide synthase [317]. 

 

Mammalian systems have evolved a number of protective anti-oxidant mechanisms to try 

and limit the damage caused by ROS. These comprise enzymes, such as superoxide 

dismutase and glutathione peroxidise, as well as anti-oxidants such as reduced 

glutathione, transition metal ions, tocopherols and ascorbic acid [318, 319]. Oxidative 

stress, or ROS-mediated damage, occurs when these protective mechanisms become 

overwhelmed such that there is an excess of ROS. The ROS are then able to react with a 

number of different macromolecules, such as deoxyribonucleic acid (DNA), proteins, lipids 

or carbohydrates, leading to alterations in their structure and / or function. 

 

The in vivo detection of ROS is technically difficult owing to the small quantities involved 

and their highly reactive nature with consequent short half-lives. To circumvent this 

problem, investigators have identified a number of end-products of oxidative damage, 

formed through different reaction pathways, which are stable and easier to measure [43, 

320-323]. Some of the commonly measured markers of oxidative stress are listed in Table 

1. Measurement of oxidative stress, however, is not restricted to the use of biomarkers as 
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various other methodologies have been employed including measurement of total anti-

oxidant capacity (TAC), evaluation of anti-oxidant enzyme activity, such as erythrocyte 

superoxide dismutase, glutathione (GSH) or plasma glutathione peroxidase, or measuring 

the levels of antioxidants such as vitamins E and C [324, 325]. 

 

Table 1 - Examples of commonly measured biomarkers of oxidative damage.  
 

Lipids 
 Malondialdehyde 

Thiobarbituric acid reactive species (TBARS) 
Oxidised low-density lipoprotein (Ox-LDL) 
Exhaled alkenes 
Advanced lipoxidation end products  
4-hydroxynonaneal 
F2α-isoprostane 

Proteins 
 Thiol oxidation 

Advanced oxidation protein products (AOPPs) 
Carbonyl formation 

Deoxyribonucleic acid 
 8-hydroxy 2’ deoxyguanine 
Carbohydrates 
 Advanced glycation end products (AGEs) 

Reactive aldehydes 
 

1.4.2 Oxidative stress in haemodialysis patients 

A number of studies have demonstrated greater levels of oxidative stress in HD patients 

compared to healthy controls by measuring a variety of biomarkers including F2-

isoprostanes, advanced oxidation protein products (AOPP), malondialdehyde (MDA) and 

Ox-LDL [326-337]. Interestingly, markers of oxidative stress appear to increase as renal 

function declines [338, 339] and several factors are thought contribute to the high oxidative 

burden observed in renal populations. These factors include the higher prevalence in renal 

populations of conditions which are themselves associated with enhanced oxidative stress 

such as hypertension [316], diabetes mellitus [340, 341] and increased age [342, 343]. 

Additionally, a number of different aspects of renal failure and HD therapy may directly 

contribute to oxidative damage both through the increased generation of ROS and 

reduced anti-oxidant defences. 
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1.4.2.1 Increased generation of reactive oxygen species 

It has been known for some time that even a single session of HD can increase markers of 

lipid peroxidation [344, 345] and reduce the plasma antioxidant capacity [346]. An increase 

in the respiratory burst activity of neutrophils plays an important role in the enhanced 

oxidative stress observed in these patients. Neutrophils obtained from HD patients 

immediately prior to a dialysis session have a higher spontaneous rate of ROS production 

compared to those obtained from healthy controls [330, 347] and they are primed for an 

enhanced respiratory burst following stimulation [347, 348], as are neutrophils obtained 

from patients with advanced renal insufficiency not yet on HD [349, 350]. It therefore 

appears likely that there is an as yet unidentified factor (or factors) retained in the plasma 

of patients with renal insufficiency which mediates this phenomenon. In support of this 

theory, studies have demonstrated the ability of plasma from patients on HD, or with 

advanced renal insufficiency, to stimulate ROS generation by neutrophils [347, 350, 351]. 

This effect is partially corrected by high-flux dialysis or haemodiafiltration [351, 352] and 

reversed by renal transplantation [347] suggesting the presence of a circulating factor. 

 

Another factor which is important in HD related oxidative stress is the dialysis membrane. 

Dialysis with bio-incompatible membranes, such as cuprophane, has been shown to 

greatly enhance oxidative stress [353, 354]. More recent studies looking at markers of lipid 

peroxidation have shown lower levels in patients dialysing with more biocompatible 

polysulfone compared to modified cellulose membranes [355]. These effects may be 

mediated through complement activation as the complement fragment C5a has the ability 

to stimulate, or at lower concentrations prime, the respiratory burst activity in neutrophils 

[356, 357]. (In the context of this thesis, an overview of the complement system is provided 

in section 1.5.2 and the biological consequences of membrane biocompatibility in section 

1.7.3.1.) 

 

Endotoxaemia may also contribute to oxidative stress through activation of NADPH 

oxidase in phagocytes [358, 359]. Trace amounts of endotoxin in dialysate have the 

potential to enter the bloodstream of patients dialysing with high-flux membranes [360, 

361] although many centres, including the centre where the present study was conducted, 

use endotoxin filters reducing the potential for this to occur. The translocation of 

endotoxins from the bowel has also been reported in HD patients, particularly following 

periods of intra-dialytic hypotension [362], providing another mechanism of endotoxin 

exposure. Blood-membrane interactions and endotoxin exposure, however, can only partly 
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explain the increased oxidative burden in HD patients as evidence of enhanced oxidative 

stress is also present in peritoneal dialysis patients [334, 363] who are not exposed to 

these factors. 

 

Intravenous iron preparations are frequently administered to dialysis patients for the 

treatment of anaemia (see section 1.3.3) and may be another important contributor to the 

oxidative burden [364-369], owing to the ability of free iron to act as a catalyst for free 

radical generation [370, 371]. However, current data would suggest that with modern 

intravenous iron preparations and dosing regimens aimed at the avoidance of iron 

overload, the toxicity attributable to free iron is minimal [372-374]. There is also data that 

ESAs may contribute to the oxidative burden in HD patients by increasing superoxide 

production by stimulated PMNs [375] and depleting anti-oxidant enzymes in erythrocytes 

[376, 377]. 

1.4.2.2 Reduced anti-oxidant defences 

In addition to the pro-oxidant factors present among dialysis patients discussed above, 

there is also a reduced antioxidant capacity. The enzymes superoxide dismutase, catalase 

and the glutathione system are important in the host defence against ROS and are 

primarily intracellular. The activity of these enzymes in HD patients appears to be varied. 

The activity of superoxide dismutase and glutathione reductase in erythrocytes has been 

reported to be normal or decreased and glutathione peroxidase activity to be normal [332, 

378, 379]. The whole blood concentration of glutathione appears to be reduced [379] 

despite preservation of normal levels within erythrocytes [380] and there also appears to 

be defects in the hexose monophosphate shunt within RBCs resulting in a reduced ability 

to detoxify oxidising free radicals [381]. 

 

Plasma proteins are also important in the host defence against oxidative stress [382] as 

the sulphydryl groups are capable of being oxidised through the formation of a disulfide 

bond with low molecular weight aminothiols, such as cysteine and homocysteine, present 

in the plasma. Levels of cysteine and homocysteine are significantly elevated in dialysis 

patients [383, 384] and fall post-dialysis [383, 385]. The removal of free aminothiols during 

dialysis may result in the dissociation of the protein bound portion thus freeing up 

sulphydryl groups and improving the antioxidant capacity of the plasma proteins. Owing to 

its abundance in plasma, albumin is a particularly important antioxidant [386, 387] and 

patients with hypoalbuminaemia have greater erythrocyte membrane lipid peroxidation 

than patients with normal albumin levels [388].  Levels of the most biologically active form 
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of Vitamin E, α-tocopherol, appear to be similar in HD patients and healthy controls [389-

392], whereas Vitamin C levels tend to be lower in dialysis patients likely owing to dialytic 

losses of this water soluble vitamin and avoidance of vitamin C rich foods which are often 

high in potassium [390, 393, 394]. Anaemia in HD patients, as discussed in section 

1.3.2.2, also contributes to lowered anti-oxidant defences, which improve following ESA 

therapy [395], owing to the abundance of anti-oxidant enzymes, such as glutathione 

reductase and superoxide dismutase, within erythrocytes. It can be seen, therefore, that 

renal insufficiency and HD contribute to oxidative stress both through factors which 

increase ROS production and impair anti-oxidant defence mechanisms.  

1.4.3 Oxidative stress and cardiovascular disease 

Observational studies have reported on the association between markers of oxidative 

stress and CV disease both in dialysis patients [396-399] and non-renal populations [400]. 

Some of this association may be due to the presence of factors which are themselves 

associated with increased oxidative stress and the development of CV disease, such as 

diabetes [340, 341],  hypercholesterolaemia [401], advancing age [342, 343], tobacco 

consumption [402, 403] and hypertension [316]. However, there is observational and 

laboratory data pointing to a functional role for oxidative stress in the development of CV 

disease. 

 

Enhanced oxidative stress is thought to favour the development of atherosclerosis and a 

number of markers of oxidative stress have been found to correlate with the degree of 

carotid intima-media thickness in HD patients [404-406]. Endothelial dysfunction is an 

important initiating event in the development of atherosclerotic lesions [53] (see section 

1.2.2) and is associated with increased CV events, even in the absence of obstructive 

arterial disease [407]. Oxidative stress may promote endothelial dysfunction through 

interactions with the nitric oxide system, leading to reduced bioavailability of nitric oxide, 

and impaired vascular relaxation [408, 409]. Furthermore, superoxide anions (O2
-) can 

react with nitric oxide forming cytotoxic nitric oxide derivatives, such as peroxynitrite, which 

promote platelet aggregation [410, 411] and therefore increase the propensity for 

thrombosis. Oxidative stress also leads to alterations in lipoprotein function and the 

formation of highly reactive lipid peroxidation products. These are thought to have a role in 

the development of CV disease as set out in the “oxidative modification hypothesis” of 

atherosclerosis [412] (see section 1.2.2.1) in which the the oxidative modification of LDL to 

form Ox-LDL prior to uptake by macrophages is one of the key steps in the pathogenesis 

of atherosclerotic lesions [413-415].  Greater levels of lipid peroxidation products [416], 
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including Ox-LDL [392, 417, 418], have been found in patients with renal failure along with 

increased expression of macrophage scavenger receptors leading to increased Ox-LDL 

uptake [419]. Certain transcription factors, including nuclear factor-κB (NFκB) and activator 

protein-1, appear to be up regulated in response to oxidative stress resulting in the 

increased expression of adhesion molecules involved in atherogenesis, such as VCAM-1, 

ICAM-1 and E-selectin, and the promotion of smooth muscle cell proliferation [420]. In 

addition to playing a role in atherosclerotic CV disease, there is emerging evidence that 

oxidative stress may promote vascular calcification through up regulation of bone 

morphogenetic protein-2 [421] and induction of Runx2 [422], key transcription factors for 

osteogenic differentiation of vascular smooth muscle cells, suggesting oxidative stress 

may contribute to CV disease through enhancing vascular calcification. 

 

It can therefore be seen that the levels of oxidative stress are increased in HD patients 

owing to factors which both increase the generation of ROS and impair anti-oxidant 

defences. These heightened levels of oxidative stress, through the promotion of 

endothelial dysfunction, the enhanced atherogenicity of oxidatively modified lipids, effects 

on vascular calcification and worsening of anaemia, may in turn contribute to the increased 

rates of CV disease observed in HD patients. 

1.4.4 Interplay of oxidative stress and inflammation in 
haemodialysis patients 

A number of studies have reported on the positive correlation between markers of 

oxidative stress and inflammation in HD patients [327, 332, 423-425] and, furthermore, it 

appears that these process are mechanistically linked. One way in which these processes 

are linked is through the enzyme myeloperoxidase, an abundant haem protein present in 

phagocytes, which converts chloride and hydrogen peroxide to hypocholorous acid [426]. 

Neutrophil activation during HD is well recognised and elevated biomarkers of 

myeloperoxidase-catalysed oxidation following an HD treatment have been reported [333]. 

Thiol groups on proteins, such as albumin, are an important part of the host defence 

against oxidative damage [382, 386, 427] as discussed in section 1.4.2.2, and the levels of 

albumin fall in response to inflammation [428, 429] resulting in diminished anti-oxidant 

defences and a greater susceptibility to oxidative stress in the setting of inflammation. The 

complement system is also linked to oxidative stress as Ox-LDL has been shown to bind 

C3a in vivo [430] and ROS, such as hydrogen peroxide, have been shown to directly 

activate C5 via a non-enzymatic mechanism [431]. Further evidence of a synergistic 
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relationship between complement and oxidative stress comes from animal models of 

ischaemia-reperfusion injury whereby complement activation is attenuated by the addition 

of anti-oxidants [432, 433]. 

 

Oxidative stress and inflammation are frequently encountered in HD patients, are 

mechanistically linked through a variety of mechanisms and both are implicated in the 

pathogenesis of anaemia and CV disease in HD patients. An overview of inflammation in 

HD patients and the implications for the development of CV disease is provided in the 

following section. 

1.5 Inflammation 

1.5.1 Overview of inflammation in haemodialysis patients 

Increased inflammation in HD patients is both frequently encountered and associated with 

increased mortality, principally from CV disease [163, 429, 434-442]. It is therefore a 

reasonable line of enquiry to investigate whether interventions which reduce inflammation 

translate into improved outcomes for patients. In order to do this, it is first necessary to 

understand the factors which contribute to inflammation in HD patients. Inflammation in HD 

patients is multifactorial. Some of the patient specific factors which have been shown to be 

important include the dialysis access [443], particularly thrombosed grafts [444], persistent 

subclinical infections, such as Chlamydia pneumoniae [445-447] or dental infections [448, 

449], failing transplants [450] or comorbidities such as heart failure [451]. Vascular access 

appears to be particularly important with respect to inflammation and the type of dialysis 

access has been linked to patient mortality, being lowest with native vessel AVFs and 

highest with CVCs [7, 443, 452]. This association with mortality may be mediated, at least 

in part, through effects on inflammation as lower levels of the negative acute phase 

reactant albumin are found in patients dialysing with CVCs or synthetic grafts, compared to 

AVFs [453], and low albumin levels are a strong predictor of mortality in dialysis patients 

[47, 429, 435]. These associations may represent selection bias, with the healthiest 

patients tending to undergoing AVF formation [454], although albumin levels fall following 

CVC insertion [455] and rise following removal [456] suggesting a causal association 

between dialysis access and inflammation. The link between dialysis access and 

inflammation may also be mediated through infection as the incidence of infections, a 

powerful stimulus for inflammation, is increased in patients with CVCs [6, 457] and 

infective episodes are associated with an elevated risk of subsequent CV events in dialysis 

patients [457, 458]. Additionally CVCs, even in the absence of overt infection, may 
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contribute to systemic inflammation through the formation of biofilms and bacterial 

colonisation [459-461]. 

 

Renal insufficiency itself predisposes to inflammation through the reduced renal clearance 

of inflammatory cytokines [462-464] and components of the complement system, such as 

factors D [228] and B [465], in addition to the accumulation of advanced glycation end-

products (AGEs) [466-468] which are able to trigger an inflammatory response in vitro 

[469, 470]. However the levels of inflammatory biomarkers and cytokines do not appear to 

be correlated with glomerular filtration rate in pre-dialysis patients [471, 472] suggesting 

reduced renal clearance is not the only factor. The dialysis process itself contributes to 

inflammation [473] through blood-membrane interactions promoting cytokine release [474] 

and complement activation [230-233], in addition to the potential additive effects of non-

sterile dialysate or back-filtration [475, 476] and endotoxin exposure [360-362]. Optimised 

HD therapy using ultrapure dialysate and biocompatible membranes reduces markers of 

inflammation, such as C-reactive protein (CRP), but does not normalise them [477], 

suggesting that refinements to the dialysis technique can only go so far in reducing the 

inflammatory burden for HD patients [478]. 

 

The complement system plays an important role in the increased inflammation observed in 

HD patients. The ability of dialysis membranes to activate the complement cascade has 

been well established [230-233]. This is largely attributable to nucelophilic binding sites 

afforded by hydroxyl groups on the membrane surface binding C3b and triggering the 

alternative complement pathway [479, 480]. The adsorption of C3 onto polymer surfaces 

has also been shown to induce conformational changes, such that the molecule resembles 

C3b, providing another mechanism of alternative complement pathway activation in HD 

patients [234]. The majority of the complement proteins are synthesised in the liver and 

are acute phase reactants [481] and thus HD patients, with heightened levels of 

inflammation and the reduced renal clearance of complement proteins [228, 465], may be 

primed for complement activation. The elevated CRP levels frequently encountered in HD 

patients may also contribute to complement activation as CRP can form complexes with 

polysaccharides and C1q [482, 483], leading to activation of the classical complement 

pathway, and interact with factor H enhancing alternative pathway activation [484]. There 

are, therefore, a number of factors conspiring to enhance complement activation in HD 

patients, both in terms of patients being primed for activation and being subjected to 

multiple complement activating stimuli. Given these observations and the focus of this 

thesis, an overview of the complement system is provided in the following section. 
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1.5.2 The complement system 

The complement system is an important component of the innate immune system and 

comprises a number of plasma and membrane bound proteins involved in pathways of 

cascading enzymatic reactions. 

1.5.2.1 Pathways of complement activation 

There are three major activation pathways for the complement system termed: (i) the 

classical pathway, (ii) the lectin pathway and (iii) the alternative pathway (see Figure 7). 

 

(i)  Classical pathway 

The classical pathway is triggered by the binding of C1q to specific structures on microbial 

or apoptotic cells, or to endogenous pattern recognition molecules such as 

immunoglobulins (IgM or IgG) or pentraxins (e.g. CRP) [482, 485]. When the C1q subunit 

of the C1 complex binds to a target, the C1r subunit undergoes an auto-activation 

cleavage process which in turn cleaves and activates the C1s subunit. The C1s subunit 

then cleaves C4 and C2 resulting in the formation of the C3 convertase complex C4b2a. 

The C4b2a complex then combines with C3b, generated from the cleavage of C3, to form 

the C5 convertase complex C4b2a3b [486]. The C5 convertase cleaves C5 to form the 

anaphylotoxin C5a and the fragment C5b. The C5b fragment associates with C6 and C7, 

forming the C5b-7 complex, which becomes incorporated into the target cell membrane. 

Membrane bound C5b-7 acts as a receptor for C8 and the resultant C5b-8 complex binds 

and polymerises C9 to form the lytic terminal complement complex C5b-9 [487]. 

 

(ii)  Lectin pathway 

The lectin pathway is similar to the classical pathway with mannose-binding lectin (MBL) 

fulfilling a similar role to C1q and the MBL-associated serine proteases (MASPs) having 

structural and functional homology with the classical pathway C1r and C1s molecules. The 

MBL molecule binds specific carbohydrates on the surface of pathogens leading to the 

activation of MASPs which in turn cleave C2 and C4 to form the C3 convertase complex 

C4b2a as in the classical pathway [485]. 

 

(iii)  Alternative pathway 

The alternative pathway of complement activation is distinct from the other two pathways. 

Under normal physiological conditions, the C3 molecule undergoes low-grade 

spontaneous hydrolysis of an unstable internal thioester forming C3(H2O), so called “C3 
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tick over” [488]. The C3(H2O) then combines with factor B, which is subsequently cleaved 

by factor D, forming a soluble C3 convertase C3(H2O)Bb. The formation of this initial C3 

convertase of the alternative pathway is thought to be the mechanism through which the 

initial C3b molecules are generated [489]. These C3b molecules are important in immune 

surveillance as contact with a target cell leads to opsonisation by C3b and accelerated 

complement activity. This is achieved by the bound C3b combining with factor B which, 

after cleavage by factor D, generates the alternative pathway C3 convertase C3bBb [485]. 

This C3 convertase is subsequently stabilised by combining with properdin, to form 

C3bBbP [490], and leads to the generation of yet more C3b thereby establishing a positive 

feedback loop. This process is inhibited on healthy host cells but amplification occurs 

rapidly on damaged or target cells. More recently it has been discovered that the 

alternative pathway can be activated by properdin acting as a pattern recognition molecule 

[485, 491] in addition to the roles of properdin in amplifying the complement response by 

attracting C3b [492] and stabilising the C3 convertase complex (C3bBbP). The deposition 

of C3b generated by the classical or lectin pathways can serve as a catalyst for 

amplification of the complement response by the alternative pathway. This may be 

particularly important as up to 80% of the C5a and C5b-9 formed following complement 

activation via the classical pathway may be generated by the alternative pathway [493], 

highlighting the role of the alternative pathway in amplifying the complement response. 

1.5.2.2 Effector functions of complement 

There are several effector mechanisms of the complement system. The opsonisation of 

target cells by C3b facilitates immune clearance, principally by phagocytes bearing 

complement receptors, and amplification of the immune response. The anaphylatoxins 

C3a and C5a are produced in high quantities at sites of complement activation and act as 

chemoattractants for inflammatory cells in addition to exerting a wide range of biological 

effects through receptor interactions, including effects on vascular tone and permeability 

and upregulation of other inflammatory mediators such as IL-6 and TNF-α [494]. 

Complement activation also results in generation of the membrane attack complex C5b-9. 

This is initialised following C5b formation by the action of C5 convertases on C5 and 

results in target cell lysis by forming pores in the cell membranes [485]. 
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Figure 7 - Overview of the pathways of complement activation. The classical pathway 
is usually triggered by the binding of the C1q subunit to antibody-antigen complexes. The 
C1s subunit then cleaves C4 and C2 leading to the assembly of the classical C3 
convertase, C4b2a, on the target cell membrane. The lectin pathway is similar except that 
initiation is by the binding of mannose-binding lectin (MBL) to sugar residues, with 
subsequent complexing of MBL-associated serine proteases (MASPs) which then cleave 
C4 and C2. The alternative pathway is activated by the binding of autoactivated C3, which 
is constitutively present, or C3b to factor B, which is cleaved in the presence of factor D, to 
form C3Bb; this complex is stabilised by properdin forming the alterative pathway C3 
convertase C3bBbP. C3 convertases cleave C3 forming C3a and C3b, the latter of which 
combines with the C3 convertases shifting the substrate specificity to C5 i.e. forming C5 
convertases. The effector mechanisms of the complement system are the production of 
the anaphylatoxins C3a and C5a, the opsonisation of target cells by C3b and the 
generation of the membrane attack complex C5b-9. (Figure adapted from Janeway et al. 
[495]). 
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1.5.2.3 Regulators of the complement system 

Tight regulation of the complement system is important in order to maximise the damage 

to any invading pathogens whilst minimising damage to host cells. This regulation is 

achieved by a vast array of soluble and membrane-bound regulatory proteins which are 

able to interact with the complement cascade at different stages. Some of the key 

inhibitory molecules are C1-inhibitor, factor H, factor I, vitronectin, clusterin, CD55 (also 

known as decay accelerating factor) and CD59. The C1 inhibitor is a serine protease 

which binds and blocks C1r, C1s and the MASPs [496] effectively limiting complement 

activation at an early stage. The main actions of factor H are the removal of Bb from the 

alternative pathway C3 convertase, C3bBb, resulting in loss of activity known as decay 

acceleration, and acting as a cofactor for factor I mediated degradation of C3b [497]. 

Vitronectin (also known as protein S) and clusterin (also known as apolipoprotein J) are 

important in limiting formation of the membrane attack complex. Clusterin binds to C5b-7 

interfering with complex assembly and vitronectin inhibits the polymerisation of C9 [485, 

498, 499]. The combination of vitronectin with the terminal complement components 

results in the formation of the soluble SC5b-9 complex which can be detected in biological 

fluids and provides a marker of complement activation [498, 500]. Decay accelerating 

factor is a membrane bound protein found on a large number of cell types which prevents 

the assembly of the alternative pathway C3-convertase and accelerates the breakdown of 

formed convertases, effectively limiting complement activation on host cells [501]. The 

CD59 molecule is another membrane bound protein important in limiting complement 

mediated host cell damage and functions by binding C8 in the C5b-8 complex, impeding 

the subsequent binding of C9, and by binding to C9 in the C5b-9 complex preventing the 

binding of further C9 molecules necessary for membrane attack complex formation [502]. 

Of particular relevance to this thesis is a potential role for complement in the pathogenesis 

of CV disease as discussed in the next section. 

1.5.3 Inflammation and cardiovascular disease 

A large number of observational studies, both in HD [163, 429, 434-442, 503-506] and 

non-HD [42, 507] populations, have reported the link between elevated inflammatory 

markers (most commonly CRP) and adverse outcomes, particularly CV disease. Despite 

this well documented relationship it remains unclear whether the inflammatory process is 

itself driving atherosclerosis or merely an epiphenomenon accompanying established 

atherosclerotic disease. 
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One line of inquiry has been whether the acute phase reactants themselves are involved in 

the initiation or progression of atherosclerosis. Much of the published work in this area has 

been undertaken examining CRP, an acute phase protein synthesised in the liver, which is 

an objective, although non-specific, marker of inflammation. In addition to the associations 

between CRP levels and adverse outcomes already cited, the levels of CRP have also 

been shown to be an independent predictor of the number of carotid artery plaques in 

dialysis patients [447] and correlate closely with other markers of atherosclerosis in pre-

dialysis patients, such as carotid intimal thickening [48]. There is also evidence that CRP 

may itself be pathogenic as it has been found within atherosclerotic lesions of infarcted 

myocardium [508-511], as well as potentially increasing LDL uptake by macrophages [512] 

and aiding monocyte recruitment during atherogenesis [513]. Studies using cultured 

endothelial cells have also demonstrated the ability of CRP to attenuate nitric oxide 

production [514], induce adhesion molecule expression (e.g. ICAM-1, VCAM-1 and E-

selectin) [515] and increase chemokine production (e.g. MCP-1) [516], all processes 

involved in atherosclerosis. Similarly in animal models, treatment with human CRP has 

been shown to increase aortic plaque size [517] as well as cerebral [518] and myocardial 

[519] infarct size following arterial ligation. These findings all point to a role for CRP in the 

development of atherosclerosis. 

 

Contrary to these findings, some commentators believe that the association between 

elevated CRP levels and CV disease is merely an epiphenomenon [520] and that the CRP 

levels simply reflect inflammation which increases CV risk through effects on endothelial 

dysfunction, insulin resistance and oxidative stress, for example, rather than having a 

mechanistic role. In support of this, several large genetic studies looking at polymorphisms 

in the CRP gene, which are known to be associated with higher CRP levels, have reported 

no association between elevated CRP levels and CV disease [521-524] thus strengthening 

the case that elevated CRP levels are merely an epiphenomenon rather than being 

mechanistically involved in the development of CV disease. Furthermore, some of the data 

demonstrating pro-atherosclerotic effects of CRP in vitro were subsequently attributed to 

bacterial contamination of the recombinant CRP used [525, 526]. The relevance of some 

of the studies cited so far has been criticised because of the non-specific nature of 

elevated CRP levels. In addition to CRP, other acute phase reactants may have a 

pathogenic role in the development of CV disease. The role of one such molecule, 

fibrinogen, is discussed further in this context in section 1.6.4. Pro-inflammatory cytokines 

may also be involved as, for example, TNF-α has been shown to mediate endothelial 

dysfunction [527] and promote vascular cell calcification in vitro [528] and IL-6 exacerbates 
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early atherosclerosis in rat models [529]. The levels of IL-6 also appear to predict CV risk 

in renal [429, 439, 505] and non-renal [530, 531] populations. In addition to the 

inflammatory mediators discussed so far, the role of complement in the pathogenesis of 

CV disease is particularly relevant to this thesis. 

 

The role of complement in the development of CV disease has received little attention in 

the renal literature to date. This is a potential oversight given the multiple mechanisms of 

enhanced complement activation in HD patients and the emerging link between 

complement and CV disease. A number of observational series in non-renal patients have 

reported positive associations between C3 levels and both prevalent [532-536] and 

incident [537-540] CV disease, even after correction for a number of traditional CV risk 

factors. Furthermore, levels of SC5b-9 appear to predict the risk of subsequent CV events 

in patients with diabetes following AMI [541] and C5a levels are predictive of CV events in 

patients with peripheral vascular disease [542]. Studies have also demonstrated increased 

complement activation during acute myocardial infarction [543-545] and ischaemic stroke 

[546]. In addition to this observational data, there is evidence complement may have a 

functional role in the development of CV disease. Analyses of atherosclerotic lesions has 

consistently demonstrated the presence of activated complement components [511, 547-

552], and isolated lipid extracts from human atherosclerotic lesions appear to be potent 

activators of the complement system [553]. Analyses of atherosclerotic lesions have also 

demonstrated co-localisation of CRP and activated complement components [509-511] 

which may represent a mechanistic role both for CRP and complement activation in 

atherosclerosis given the ability of CRP to bind C1q and activate complement via the 

classical pathway [482]. Studies on rabbits fed a cholesterol-rich diet have shown that the 

extent of atherosclerosis is greatly reduced in C6-deficient, compared to non-C6-deficient, 

animals suggesting a functional role for the terminal complement components in the 

progression of atherosclerosis [554]. Animal models of cardiac ischaemia-reperfusion 

injury have also demonstrated reduced infarct size with various inhibitors of the 

complement system (e.g. C1 esterase [555] and C5a [556, 557] inhibitors). A number of 

the complement system effector mechanisms may also have a role in the development of 

CV disease. Many of the molecules formed, such as C3a, C3b and C5a, are able to act as 

ligands for receptors on leukocytes triggering inflammation and the release of pro-

inflammatory cytokines, such as IL-6 and TNF-α, and chemokines, such as IL-8, as well as 

acting as chemoattractants recruiting monocytes and lymphocytes [485, 558]. There is 

therefore a wealth of laboratory data supporting a mechanistic role for various components 

of the complement system in the development and progression of atherosclerotic lesions. 
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There is also emerging evidence of a role for complement in reducing vascular compliance 

of elastic arteries which, as discussed in section 1.2, is important in the pathogenesis of 

CV disease in renal patients. Fibromodulin and adiponectin have been shown to bind 

collagen fibres in vessel walls [559, 560] and also to bind C1q [561, 562] thereby activating 

the classical complement pathway leading to complement deposition. In mice, extensive 

binding of C3 and C4 to collagen and elastin fibres in the adventitia has been 

demonstrated [563] and a case report of a chronic HD patient with a congenital C4 

deficiency found no evidence of arterial stiffness after 28 years on dialysis [564]. 

Furthermore, in a mouse model the development of ventricular stiffening in the setting of 

hyperglycaemia was dependent on the mannose-binding lectin complement pathway [565] 

and blocking the actions of C5a in a hypertensive rat model attenuated ventricular collagen 

deposition and stiffness [566]. Taken together, these findings suggest that complement 

might have a functional role in the development of vascular stiffness. 

 

There also appears to be haemostatic consequences of complement activation which are 

relevant in the setting of CV disease. For example, there is evidence of enhanced 

complement activation in ruptured compared to stable coronary plaques [547] and the 

membrane attack complex is able to stimulate platelet degranulation and increase 

endothelial expression and release of von Willebrand Factor and tissue factor [567, 568] 

suggesting complement activation may influence thrombosis. The C3a molecule has also 

been shown to induce platelet aggregation and potentiate the activity of ADP in vitro [569]. 

There is evidence of cross-talk between the complement and haemostatic cascades. For 

example, MASP-2 is able to cleave thrombin from prothrombin [570] and thrombin 

generation is a key step in haemostasis as discussed in detail in section 1.6.1. Thrombin 

provides an important link between coagulation and complement as thrombin has been 

shown to have C5 convertase activity [571], be an agonist for the protein kinase C (PKC)-

dependent pathway of decay accelerating factor regulation [572] and to cleave factor H 

resulting in the formation of a monocyte chemotactic factor [573]. A number of coagulation 

factors (F) have been found to activate components of the complement system; FXa, FXIa 

and plasmin activate C3 and C5 [574], thrombin, plasmin and kallikrein activate C3 and C4 

[575] and FXIIa activates C1 [576]. Activation of the coagulation system results in 

increased C3a generation which can be counteracted by thrombin inhibition [577]. There 

also appears to be cross-talk at the inhibitor level as C1-inhibitor, in addition to inhibiting 

C1r, C1s, MASP1 and MASP2 in the complement cascade, also appears to inhibit FXIa 

and FXIIa of the coagulation cascade [578, 579]. Thrombin activatable fibrinolysis inhibitor 
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(TAFI), a key molecule involved in the regulation of thrombolysis (discussed in more detail 

in section 1.6.2.3), is also able to inactivate C5a [580]. 

 

It can be seen, therefore, that there is considerable observational and laboratory data 

suggesting an important role for several inflammatory process in the development of CV 

disease. In particular, the complement cascade appears to have important roles both in 

the development of atheromatous plaques and in promoting a pro-inflammatory and pro-

thrombotic microenvironment [533]. Despite the high rates of CV disease and the multiple 

stimuli for complement activation in HD patients, the relationship between these two 

entities in this patient group has received little attention to date and is one of the foci of the 

present study. 

 

As discussed so far, the increased levels of oxidative stress and inflammation observed in 

HD patients may contribute to their enhanced risk of developing CV disease. A number of 

mechanisms may underpin this association including effects on endothelial function and 

the development of atherosclerotic lesions. Another potential mechanism may be through 

effects on haemostasis and thrombosis or, more specifically, alterations in fibrin clot 

structure. In the following section an overview of the haemostatic and fibrinolytic systems 

is provided in addition to outlining the links between fibrin clot structure and CV disease. 

1.6 Haemostasis and fibrinolysis 

1.6.1 The haemostatic system 

1.6.1.1 Overview of the haemostatic system 

When the integrity of the vasculature is breached a clot, derived from components 

circulating in the blood stream, is formed in an attempt to minimise blood loss by a process 

termed haemostasis. Thrombosis, unlike haemostasis, is a pathological phenomenon in 

which the clotting system is activated erroneously resulting in clot formation within the 

lumen of a blood vessel impeding or obstructing the flow of blood. Blood clots comprise a 

mass of platelets, red blood cells and leukocytes bound in a mesh of interlocking fibrin 

fibres. Their formation requires tight control to restrict clot formation to the site of injury and 

prevent dissemination throughout the vascular tree. Haemostasis proceeds in two phases, 

termed primary and secondary haemostasis. Over time clots are broken down, by a 

process termed fibrinolysis, and replaced by new tissue to restore vascular integrity. 
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1.6.1.2 Primary haemostasis 

Primary haemostasis refers to the processes culminating in the formation of a haemostatic 

plug made up of a mass of activated platelets tethered to the site of vascular injury. The 

key steps involved are platelet adhesion, platelet activation and platelet aggregation. The 

initial trigger for haemostasis is injury to the endothelium exposing components of the 

subendothelial matrix to the blood. Circulating platelets then adhere to the subendothelial 

matrix via receptor interactions leading to platelet activation. Of the exposed components 

of the subendothelial matrix, von Willebrand factor (vWF) and collagen appear to be the 

most important for primary haemostasis. Von Willebrand factor is a large multimeric 

protein secreted by endothelial cells which circulates in the plasma and is present in the 

subendothelial matrix bound to collagen. Following a breach in endothelial integrity, 

collagen and vWF in the subendothelial matrix are exposed to the circulation. Platelets 

then bind the immobilised vWF via the receptor GpIb-IX-V complex [581], which only has a 

low affinity for circulating vWF [582], and to exposed collagen via the GpVI receptor [583]. 

This binding leads to platelet adhesion and platelet activation. A number of receptors on 

the surface of platelets, such as members of the integrin family αIIbβ3 and α2β1, are 

constitutively expressed in their inactive form but undergo conformational changes 

following platelet activation exposing new binding sites. Several ligands for these receptors 

have been identified including fibrinogen, vWF, collagen, fibronectin, vitronectin and 

laminin [584-587]. Activated platelets release granules containing agonists, such as 

adenosine di-phosphate (ADP), which then bind to receptors (in the case of ADP, 

receptors P2Y1 and P2Y12 [588]) on nearby platelets leading to further platelet activation 

and the establishment of a positive feedback loop. Other mediators of this process include 

thromboxane A2, serotonin, and collagen [589]. Thrombin, the terminal serine protease of 

the coagulation cascade, is important for platelet activation and provides a link between 

primary and secondary haemostasis. Thrombin cleaves two G protein-coupled protease 

activated receptors (PARs) on platelets, PAR1 and PAR4, exposing a new N-terminus 

which acts as a tethered ligand to activate the receptor [590, 591]. The net effects of 

ligands binding to these platelet receptors are platelet degranulation and increased integin 

expression leading to further platelet activation and platelet aggregation. The activated 

platelets undergo cytoskeletal remodelling, in the presence of calcium, to form the 

haemostatic plug. The haemostatic plug is comprised largely of a mass of activated 

platelets tethered to the subendothelial matrix and, as such, is relatively friable and liable 

to being dislodged from the site of injury. This initial platelet plug is then stabilised by 

processes collectively termed secondary haemostasis. 
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1.6.1.3 Secondary haemostasis 

Secondary haemostasis refers to the processes which result in the formation of a network 

of cross-linked fibrin molecules, providing stability to the haemostatic plug, and ultimately a 

mature blood clot. It involves a number of serine proteases which circulate as zymogens 

and become proteolytically activated when stimulated and, in the presence of specific 

activators and co-factors, result in the cleavage of thrombin from prothrombin. This series 

of reactions is referred to as the coagulation cascade and it was first described in 1964 

[592, 593]. Thrombin is the key effector enzyme of the coagulation system and has a 

number of important biological functions including the conversion of soluble fibrinogen to 

fibrin, platelet activation and amplification of the coagulation cascade [594]. Current 

understanding of secondary haemostasis is that it takes place in three phases termed the 

(i) initiation phase, (ii) amplification phase and (iii) propagation phase. An overview of the 

key steps in secondary haemostasis is provided in Figure 8. 

 

(i)  Initiation phase: exposure of tissue factor to coagulation factors 

The initiating step in secondary haemostasis is the exposure of tissue factor (TF) to the 

circulation [595]. Tissue factor is a transmembrane glycoprotein constitutively expressed 

on a number of extravascular cells, particularly fibroblasts and pericytes in the vascular 

wall, but is absent from cells that are in contact with the circulation, such as endothelial 

cells [596]. Injury to the vessel wall, leading to endothelial damage, results in TF coming 

into contact with blood which then forms a complex with FVII, the extrinsic factor tenase 

complex TF:VIIa, on the phospholipid surface of the cell membrane and this represents the 

first stage of clot formation [597]. The TF:VIIa complex activates the zymogens FIX and FX 

and the FXa formed is capable of generating small amounts of thrombin from prothrombin. 

These small quantities of thrombin, formed in the vicinity of the TF-bearing cell, act as a 

primer for clot formation by causing platelet activation, the dissociation of FVIII from vWF, 

and the activation of FV, FVIII and FXI [598]. 
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Figure 8 - Current schema of haemostasis and the central role of thrombin 
generation. The initiating event in clot formation is the exposure of tissue factor (TF) to 
the circulation and the formation of the TF:VIIa complex. This generates small amounts of 
thrombin through the activation of FX. The TF:VIIa complex also activates FIX and the 
formed FIXa complexes with FVIIIa (cleaved by thrombin from von Willebrand factor 
(vWF)), increasing FXa generation. FXa then associates with its cofactor FVa, again 
generated by thrombin, forming the FVa:FXa complex which is able to rapidly increase the 
generation of thrombin, far outweighing that generated by FXa alone. The final step 
involves the proteolytic cleavage of fibrinogen to form a fibrin clot, the stability of which is 
greatly enhanced by FXIIIa covalent cross-linking. (F: Factor, TF: Tissue factor, vWF: von 
Willebrand factor.) 
 

(ii)  Amplification phase: increased thrombin generation 

Following the generation of small amounts of thrombin during the initiation phase the next 

step, termed the amplification phase, results in a rapid increase in the generation of 
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thrombin. The FIXa formed by the TF:VIIa complex associates with FVIIIa which, in the 

presence of calcium, forms the intrinsic tenase complex FVIIIa:FIXa on the membrane 

surface predominantly of platelets but also on activated endothelium and phospholipid 

microparticles [599]. The formation of the FVIIIa:FIXa complex is essential for amplifying 

the generation of thrombin by increasing the formation of FXa which far exceeds that 

generated by the TF:FVIIa complex [599-601]. Factor Xa then associates with its cofactor 

FVa on the phospholipid surface in the presence of calcium, forming the prothrombinase 

complex FVa:FXa, leading to the rapid generation of thrombin. The mass of activated 

platelets at the site of vascular injury is the primary site for thrombin generation which, in 

turn, is highly dependent on the amount of FIXa formed by the TF:FVIIa bearing cells and, 

to a lesser extent, FXIa generation [602]. In addition, thrombin interacts with platelets via 

the platelet receptor GpIb-IX-V which serves as scaffolding facilitating interactions with 

other platelet membrane components, such PAR-1 and PAR-4 [603]. This interaction 

results in further platelet activation, FVa membrane expression and activation of the 

GpIIb/IIIa platelet receptor [604, 605] further enhancing platelet aggregation and thrombin 

generation. 

 

(iii) Propagation phase: formation of fibrin clot 

The ensuing rapid generation of thrombin results in the formation of a stable fibrin clot. The 

first step is the cleavage of fibrinopeptide A and fibrinopeptide B from the fibrinogen 

molecule by thrombin, forming soluble fibrin monomers [606]. These soluble fibrin 

monomers then undergo spontaneous polymerisation, by forming side-to-side and end-to-

side connections, leading to the formation of protofibrils which coalesce to form a fibrin 

polymer gel composed of thicker, branching fibres [595, 602]. The final stage involves 

XIIIa, itself activated by thrombin, covalently linking the fibrin strands to form a stable fibrin 

network [607, 608]. 

1.6.1.4 Control of haemostasis 

Owing to the presence of a number of positive feedback loops in the haemostatic process, 

necessary for signal amplification, several mechanisms are in place to confine active 

clotting to the site of vascular injury and prevent widespread dissemination. Some of the 

principal molecules involved in controlling coagulation are detailed here. 
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(i)  Antithrombin III 

Antithrombin III (ATIII) is a circulating serine protease inhibitor synthesised in the liver. It 

inhibits coagulation by binding and forming complexes with thrombin and the activated 

factors FIXa, FXa and FXIa, both inhibiting their activity and facilitating their removal from 

the circulation [609]. The activity of ATIII is increased by binding to its cofactor heparin, 

present as heparin sulphate on the vascular endothelium, thus helping to maintain 

vascular patency and limit intravascular thrombosis in the physiological state [610]. 

 

(ii)  Tissue factor pathway inhibitor (TFPI) 

Tissue factor pathway inhibitor (TFPI) is synthesised by endothelial cells and circulates 

bound to plasma lipoproteins, with some TFPI being stored within platelets and some 

bound to proteoglycans on the vessel wall [602]. It is a serine protease which inhibits both 

FXa and the TF:FVIIa complex [611]. Inhibition of TF:FVIIa requires the presence of FXa 

[612] so TFPI dampens, but does not prevent, coagulation in the presence of ongoing 

TF:FVIIa generation and this ensures that coagulation is initiated resulting in the 

generation of FXa before TFPI is able to inhibit the process [612]. The duration of the 

initiation phase of secondary haemostasis is thus dependant to a large extent on the 

relative concentrations of TFPI and TF:FVIIa [600].  

 

(iii)  Protein C pathway and thrombomodulin 

In addition to the central role of thrombin in initiating clot formation, it also plays an 

important role in downregulating the coagulation cascade by binding to thrombomodulin 

and activating protein C [613]. Thrombomodulin is a transmembrane protein synthesised 

by, and primarily found on, endothelial cells. When thrombin binds to thrombomodulin on 

the cell surface, thrombin undergoes a structural transformation such that it no longer 

activates platelets or coagulation factors but instead activates protein C [602]. Activated 

protein C (APC) then cleaves and inactivates FVIIIa and FVa [614, 615] in the presence of 

the cofactor protein S [616]. Important functions of the thrombin-thrombomodulin complex 

are to restrict clot development to the site of vascular injury and to maintain the 

anticoagulant properties of the endothelium under normal physiological conditions. 

1.6.2 The fibrinolytic system 

1.6.2.1 Overview of the fibrinolytic system 

The fibrinolytic system comprises a number of proteins and inhibitors which break down 

fibrin deposits. The haemostatic and fibrinolytic systems are finely balanced for the 
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purposes of maintaining an intact and patent vascular system. The main effector enzyme 

of the fibrinolytic system is plasmin. 

1.6.2.2 Generation of plasmin 

Plasmin is generated by the proteolytic cleavage of the circulating zymogen plasminogen. 

Plasmin cleaves fibrin at specific lysine and arginine residues forming soluble fibrin 

degradation products [595]. When fibrin is cleaved, carboxy-terminal lysine residues are 

exposed which bind to lysine-binding sites present on both tPA and plasminogen, 

increasing fibrin binding, plasmin generation and lysis of the fibrin clot [617]. The main 

physiological activator of plasminogen is tissue-type plasminogen activator (tPA) which is 

released by endothelial cells in response to thrombin or injury [617]. Another activator, 

urokinase-type plasminogen activator (uPA), is also able to cleave plasmin from 

plasminogen and is synthesised and secreted as inactive pro-urokinase requiring 

activation by plasmin or one of the contact factors (FXII, kininogen and prekallikrein) [618]. 

Although both of these activators are synthesised by the endothelium, tPA is the primary 

plasminogen activator in the blood [619, 620] with uPA being more important in wound 

healing, vasculogenesis and proteolysis of the extracellular matrix [602], as well as playing 

a role in cell signalling [621]. 

1.6.2.3 Control of fibrinolysis 

Despite an abundant supply of circulating plasminogen, very little plasmin is produced 

under normal circumstances because tPA is present in very small amounts and it is 

relatively inefficient at generating plasmin from non fibrin-bound plasminogen [622]. This is 

important in restricting fibrinolysis to sites of injury, where fibrin has been deposited, and 

avoiding widespread activation of plasminogen. In addition, a number of plasmin inhibitors 

and plasminogen activator inhibitors (PAIs) modulate the fibrinolytic process as outlined in 

Figure 9. 

 

(i)  Plasminogen activator inhibitors (PAI) 

The activation of plasminogen is controlled by plasminogen activator inhibitors (PAIs) 

which circulate in plasma in great excess forming biologically inactive complexes with tPA 

and uPA preventing inappropriate plasmin generation [623]. Of the PAIs, PAI-1 is the most 

important biologically [619, 622] and it is synthesised by the vascular endothelium, adipose 

tissue and the liver [624-626] with large quantities being stored in platelets [627] rendering 

platelet-rich clots relatively resistant to fibrinolysis and protecting the developing clot from 

fibrinolysis [609]. Circulating PAI-1 is relatively unstable with a half-life of 1-2 hours [628], 
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however it binds to vitronectin, present in both the plasma and extracellular matrix [629, 

630], which increases its half-life to 4-6 hours [628]. As the clot forms, the fibrin binding of 

tPA and plasmin/plasminogen within the thrombus limits the ability of PAI-1 to inhibit tPA, 

thereby allowing the generation of plasmin and fibrinolysis to occur [609]. Interestingly PAI-

1 is also able to inhibit APC [631] and thrombin [632, 633] in the presence of vitronectin 

and/or heparin although the physiological significance of this remains unclear [609]. 
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Figure 9 - The principal activators (blue) and inhibitors (red) of fibrinolysis. Plasmin 
is the main effector enzyme of the fibrinolytic system and it cleaves fibrin resulting in 
dissolution of the clot and the generation of soluble fibrin degradation products. Plasmin is 
formed by proteolytic cleavage of its zymogen, plasminogen, principally by the action of 
tissue plasminogen activator (tPA) but also, to a lesser degree, urokinase. Both tPA and 
urokinase are inactivated by complexing with plasminogen activator inhibitors (PAIs). 
Thrombin activated fibrinolysis inhibitor (TAFI) also inhibits plasmin and is formed when 
thrombin is present in high concentrations; other important physiological inhibitors of 
plasmin are α2-antiplasmin and α2-macroglobulin. (PAI: Plasminogen activator inhibitor, 
TAFI: Thrombin activatable fibrinolysis inhibitor, tPA: Tissue plasminogen activator). 
 

(ii)  Thrombin activatable fibrinolysis inhibitor (TAFI) 

Thrombin activatable fibrinolysis inhibitor is a single chain plasma glycoprotein present in 

the circulation and stored in platelets [617]. It is activated by the presence of high 
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concentrations of thrombin but can be activated by much lower thrombin levels in the 

presence of thrombomodulin [634]. Activated TAFI (TAFIa) inhibits fibrinolysis by removing 

carboxy-terminal lysine and arginine residues from fibrin [635] preventing the binding of 

plasminogen and tPA. 

 

(iii)  α2-Antiplasmin 

Of the plasmin inhibitors α2-antiplasmin is the principal physiological inhibitor [602]. The C-

terminal lysine residue of α2-antiplasmin binds to the lysine binding site on plasmin, 

inactivating the enzyme and forming a complex which is subsequently cleared by the liver 

[617]. Plasmin binds to fibrin via the same lysine binding sites therefore α2-antiplasmin is 

much more efficient at inactivating free rather than fibrin-bound plasmin [636]. Activated 

factor XIIIa also cross-links α2-antiplasmin to fibrin enhancing the clot’s resistance to 

fibrinolysis [637]. Other plasmin inhibitors include α2-macroglobulin and the protease nexin 

[617, 623]. 

 

The foregoing sections on haemostasis and fibrinolysis detail the major mechanisms 

involved in the formation, and subsequent dissolution, of fibrin clots. The physical 

characteristics of fibrin clots, such as fibre thickness and pore size, can vary depending on 

the conditions under which they are formed. These different physical characteristics, in 

turn, are reflected in the properties of the clot such as clot permeability or susceptibility to 

fibrinolysis. An overview of the key determinants of fibrin clot structure and function is 

provided in the following section. 

1.6.3 Determinants of fibrin clot structure and function 

A number of genetic and environmental factors modify the fibrinogen molecule and its 

ability to interact with other molecules, such as FXIII and plasminogen, leading to 

alterations in the structure and characteristics of the formed clot. Studies of twins have 

shown the environmental factors to exert the greatest influence on the fibrin clot phenotype 

[638]. Some of the key environmental determinants of fibrin clot structure, in the context of 

this thesis, are discussed further here. Of prime importance in determining the structure of 

the fibrin clot, perhaps unsurprisingly given that it is the principal substrate, is the 

concentration of fibrinogen. In vitro studies have demonstrated that fibrin clot structure is 

greatly influenced by the kinetics of fibrin polymerisation [639]. Faster rates of 

polymerisation, as occur with higher fibrinogen or thrombin concentrations for example, 

result in the formation of clots composed of thinner fibres which are denser and less 
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permeable with smaller intrinsic pores in both purified fibrinogen [640-643] and plasma 

based [644-649] systems. A number of other environmental factors are also able to 

influence clot structure through different mechanisms; one such mechanism is through 

modifications to the fibrinogen molecule such as glycation. Fibrinogen glycation in vitro has 

been shown to decrease clot permeability and fibrinolysis susceptibility [650, 651]. 

Similarly fibrin clots derived from patients with diabetes appear to be less permeable and 

more resistant to fibrinolysis, when compared to patients without diabetes, with the clot 

characteristics being related to glyaemic control as measured by HbA1c levels [652-655]. 

A number of drugs can also alter clot structure. For example aspirin has been shown to 

increase clot permeability and fibre thickness [656-659], an effect likely mediated through 

acetylation of fibrinogen lysine residues [660]. Vitamin K is required for the γ-carboxylation 

of glutamate residues on the vitamin K dependant proteins, which include the coagulation 

factors II, VII, IX and X and the regulatory proteins C and S [661], in order that they can 

bind calcium and interact with phospholipids to carry out their physiological roles [662-

668]. Therefore vitamin K antagonists, such as warfarin, can have a profound influence on 

fibrin clot assembly kinetics and the clot structure, for example increasing permeability 

[669]. 

 

Most relevant to the present thesis are the potential for oxidative stress and inflammation 

to alter the fibrin clot phenotype. Oxidative stress, inflammation and hyperfibrinogenaemia 

often tend to co-exist in patients making it hard to assess their individual contributions to 

the fibrin clot characteristics. The most likely mechanism through which oxidative stress 

may influence the fibrin clot phenotype is through oxidative modification of the fibrinogen 

molecule. This has been shown experimentally to increase the clotting time and reduce the 

clot density [670, 671], but not influence fibrinolysis susceptibility [671]. Fibrinogen 

oxidatively modified in vitro appears to polymerise at a slower rate [672-677] and this 

effect on the reaction kinetics may explain the mechanism of altered clot structure. 

Perhaps the most widely studied biomarker of oxidative stress in the setting of fibrin clot 

structure and function is prostaglandin-F2α (PGF2α) which is formed by the free radical-

catalysed peroxidation of arachidonic acid [678]. Several observational studies have 

shown PGF2α levels to be negatively correlated with clot permeability and positively 

correlated with fibrinolysis times [646, 648, 679, 680]. However, similar associations 

between these clot characteristics and the levels of CRP and fibrinogen were also reported 

in these studies which, combined with the observational nature of the study designs, 

makes it hard to differentiate the effects of oxidative stress from those of inflammation or 

fibrinogen levels. 
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As with oxidative stress markers, several studies have demonstrated associations 

between increased levels of inflammatory markers, such as IL-6, C3, CRP and 

orosomucoid, and fibrin clot parameters such as increased clot density, reduced 

permeability and fibrinolytic susceptibility [645, 646, 648, 649, 681-683]. Fibrinogen is an 

acute phase reactant [428], therefore trying to assess the effects of inflammation, 

independent of the effects on fibrinogen levels, from these data is not straightforward. 

Multiple linear regression statistical techniques have been used in an attempt to assess 

the individual contributions of predictor variables, e.g. inflammatory markers, on the 

various fibrin clot parameters while adjusting for other covariates, such as fibrinogen 

levels. Using this approach, several studies have reported independent associations 

between markers of inflammation and alterations in the fibrin clot properties [648, 679, 

681]. Taken together, these would suggest that inflammation may lead to alterations in the 

fibrin clot by mechanisms other than simply influencing fibrinogen levels. One such 

mechanism may be the binding of inflammatory mediators to the fibrin molecule, such as 

CRP [684] or C3 [652, 682, 685, 686], thereby influencing fibrin network assembly. 

Complement may be particularly important in determining the fibrin clot phenotype. In vitro 

work has demonstrated that the fibrin clots formed in the presence of increasing 

concentrations of C3 are more resistant to fibrinolysis [686] and complement activation 

leads to reduced fibrin fibre thickness and increased tensile strength [687]. Human studies 

have shown that increased C3 levels are associated with prolongation of fibrinolysis times 

in healthy individuals and patients with diabetes [652, 688]. It therefore seems likely that 

complement component C3 is an important contributor to the fibrin clot structure and 

function. In addition to complement, the levels of PAI-1 may also be important in the 

setting of inflammation as they rise as part of the acute phase response [428] and increase 

fibrinolytic resistance. However, Sjoland et al. [645] reported a negative association 

between CRP levels and fibrinolysis times in experiments which included flufenamic acid, 

an inhibitor of PAI-1, suggesting increases in PAI-1 levels cannot fully explain the 

enhanced fibrinolytic resistance in the presence of inflammation. In practice, inflammation-

induced hyperfibrinogenaemia is likely to be the principle driver behind the altered clot 

phenotype observed in the setting of inflammation, although changes in the levels of 

circulating factors, such as C3 and PAI-1, are also likely to be contributory. 

 

From the data presented in this section, it can be seen that fibrin clot structure and 

function appear to be influenced by a number of environmental factors including oxidative 

stress, inflammation, hyperglycaemia and drug therapy. There is also considerable 
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evidence linking both fibrinogen levels and alterations in the fibrin clot phenotype with CV 

disease. 

1.6.4 Haemostatic factors in cardiovascular disease 

1.6.4.1 Elevated fibrinogen levels and cardiovascular disease 

A large number of prospective epidemiological studies in non-renal populations, including 

two large meta-analyses [689, 690], have reported on the positive association between 

plasma fibrinogen levels and the risk of developing de novo CV disease. Furthermore, in 

patients with known CV disease, fibrinogen levels appear to be associated with the extent 

and severity of disease in a number of studies [691-694], although not all [695], with higher 

levels being predictive of future CV events and mortality [696-700]. Additionally in HD 

patients, in whom a number of the conventional CV risk factors such as hypertension and 

hypercholesterolaemia appear to behave differently as detailed in section 1.2.1, increased 

fibrinogen levels also appear to be associated with CV disease [45, 701]. However, 

fibrinogen levels are also known to be associated with many new and emerging risk 

factors for CV disease, such as smoking, elevated BMI, advancing age and inflammation 

[702-707]. This begs the question as to whether the association between 

hyperfibrinogenaemia and CV disease is an epiphenomenon, reflecting the contribution of 

these other risk factors, or represents a final common pathway through which these risk 

factors promote the development and progression of CV disease or, indeed, represents a 

different mechanistic pathway altogether. One potential mechanism through which 

fibrinogen levels may influence CV disease risk is through alterations to the fibrin clot 

structure. 

1.6.4.2 Fibrin structure and function in relation to cardiovascular disease 

In the 1990’s, Fatah et al. demonstrated that male patients who had suffered a myocardial 

infarction before the age of 45 formed plasma derived fibrin gel networks that were tighter, 

more rigid, less permeable and were comprised of fibres with lower mass-length ratios 

than networks derived from healthy controls [644, 649]. This led to the concept of an 

“adverse clot phenotype”, characterised by denser, less porous clots with increased 

fibrinolytic resistance, which a plethora of subsequent studies have consistently reported 

to be over represented in individuals either with, or at high risk of developing, CV disease. 

These include patients with premature CV disease [708] and their healthy first degree 

relatives [709], patients with acute coronary syndromes [648, 681], particularly with co-

existent renal dysfunction [647] or coronary stent thrombosis [710], stroke patients [711, 
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712], patients with abdominal aortic aneurysms [713], peripheral arterial disease [714, 715] 

and their relatives [716], patients with idiopathic venous thromboembolism [717], chronic 

heart failure [718], diabetes [654, 655, 719, 720] and their relatives [688], patients with the 

metabolic syndrome [721] and smokers [679, 722, 723]. Similar alterations in the fibrin clot 

structure have also been described in patients on peritoneal dialysis [645] and HD [646]. 

 

In 2007, Sjoland et al. [645] compared the plasma derived fibrin clots from 22 peritoneal 

dialysis patients with 24 healthy controls. The clots formed from patient plasma were less 

permeable, less compactable and more resistant to fibrinolysis and were more 

architecturally complex when examined with electron microscopy. Additionally, a number 

of the clot characteristics, particularly fibre properties, permeability and fibrinolysis rate, 

were highly correlated with the levels of fibrinogen, IL-6 and CRP. However, the levels of 

these biomarkers were higher in the peritoneal dialysis patients compared to controls 

making it hard to discern the individual contributions of renal failure and dialysis to the clot 

phenotype [645]. Furthermore, there was little correlation between the clot parameters and 

markers of uraemia suggesting that the majority of the differences in clot structure may be 

attributable to the inflammatory milieu rather than the uraemic state. However routine 

indices of uraemia, such as serum urea and creatinine levels as reported by the authors, 

may be less reflective of retained toxins in a peritoneal dialysis population than in patients 

not on dialysis. The authors also reported no effect of PAI-1 levels on lysis rates which is 

somewhat counter-intuitive, although perhaps anticipated, as they added flufenamic acid 

to the fibrinolysis reaction mix which inhibits most fibrinolytic inhibitors including PAI-1 

[724, 725]. The rates of fibrinolysis did, however, correlate with clot permeability and 

inversely with fibre diameter as had been reported by others [726] highlighting the link 

between fibrin clot structure and properties. Given the small patient numbers in the study 

and the differences in baseline characteristics, besides the presence of renal failure, it is 

hard to draw definitive conclusions about the influence of renal failure or peritoneal dialysis 

therapy on fibrin clot structure or function. It does, however, serve as pilot data suggesting 

that there may be differences in renal patients compared to non-renal controls. 

 

Of greater relevance to the present thesis was the study by Undas et al. [646] which 

analysed fibrin clot parameters in a cohort of HD patients and examined how they were 

related to subsequent CV mortality. They undertook baseline fibrin clot analysis in 33 HD 

patients without evidence of active inflammation and 33 age and sex matched non-HD 

controls; patients were followed for 36 months for the occurrence of fatal CV events. To 

analyse the plasma derived fibrin clots they performed permeation studies and 
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spectrophotometric analyses of clot turbidity and lysis in addition to perfusion clot lysis 

analysis in which formed fibrin clots were perfused with buffer containing tPA and the 

concentration of D-dimer in the effluent measured every 20 minutes. The HD patients had 

higher levels of CRP and fibrinogen in addition to higher PGF2α levels but similar levels of 

PAI-1. Again, the clots obtained from dialysis patients were less permeable, had higher 

maximum absorbencies using turbidimetric measurements and took longer to lyse [646]. In 

unadjusted analyses, the permeability coefficient was negatively correlated with PGF2α and 

CRP levels and the lysis times positively correlated with the PGF2α and fibrinogen levels; 

no significant associations were observed between any of the clot variables and the PAI-1 

levels or duration of dialysis treatment. These suggest that the levels of inflammation and 

oxidative stress may be important in determining the fibrin clot phenotype in HD patients. 

The study also examined fibrin clot structure in relation to fatal CV events over 3 years. 

Baseline levels of fibrinogen and PGF2α, but not CRP, were significantly higher in the 

patients who experienced a fatal CV event during follow up and the fibrin clots from these 

patients were denser, less permeable and more resistant to fibrinolysis [646]. 

 

Data from the two studies examining fibrin clot structure in dialysis patients [645, 646] 

suggest that dialysis patients form fibrin clots that differ from healthy controls and exhibit 

the adverse clot phenotype seen in patients with, or at high risk of developing, CV disease 

i.e. compact, rigid, less permeable clots with reduced susceptibility to fibrinolysis. In the 

study of HD patients [646], alterations in the clot characteristics also appeared to be 

related to the subsequent risk of fatal CV events. It is hard to draw definitive conclusions, 

however, as other intergroup differences, such as the levels of inflammation, fibrinogen 

and oxidative stress, may well be responsible for these associations rather than any 

effects of uraemia or dialysis therapy. 

1.6.4.3 Summary of haemostatic factors and cardiovascular disease 

From the data presented in this section it appears that fibrinogen levels and alterations in 

the fibrin clot structure are associated with CV disease. As discussed in sections 1.4.3 and 

1.5.3, increased inflammation and oxidative stress are also linked to increased rates of CV 

complications. It remains unclear whether the association between the haemostatic 

markers discussed and CV disease represents a mechanistic association or merely an 

epiphenomenon, reflecting the influence of other factors such as inflammation and 

oxidative stress. One way of addressing this uncertainty is to study the effect of 

interventions which reduce inflammation and / or oxidative stress on the haemostatic 

markers and also on CV outcomes. One such intervention, which has been extensively 
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studied in the setting of CV disease prevention, is Vitamin E (VE) which has both anti-

oxidative and anti-inflammatory properties. 

1.7 Vitamin E and cardiovascular disease 

1.7.1 Overview of vitamin E 

Vitamin E refers to a family of eight structurally related, water-insoluble compounds 

consisting of α-,β-,γ-, and δ-tocopherol and the corresponding tocotrienols [727]. Of these 

compounds, α-tocopherol is the most biologically active and γ-tocopherol is the most 

abundant form in the human diet [728, 729]. Vitamin E has been shown to have a number 

of pleiotropic actions, including anti-oxidant and anti-inflammatory activities. 

1.7.1.1 Anti-oxidant activity of Vitamin E 

Within cell membranes, α-tocopherol is the major defence against oxidative damage [730-

732]. Vitamin E is able to function as an anti-oxidant by interrupting free radical 

propagated chain reactions leading to the formation of a tocopheroxyl radical [733]. This 

reaction involves the removal of a hydrogen atom from the hydroxyl group of the 

tocopherol by a peroxyl (oxidant) molecule forming a stable tocopheroxyl radical. Figure 10 

outlines the reactions involved, along with the rate constants, in the α-tocopherol mediated 

interruption of lipid peroxidation. In the presence of an initiating radical (X•), a hydrogen 

radical may be extracted from unsaturated lipids (LH) forming a lipid radical (L•). The lipid 

radical then combines readily with oxygen to form a lipid peroxyl radical (LOO•) which 

propagates the radical chain if not scavenged. The reaction rate between LOO• and α-

tocopherol (α-TOH) is much faster (k=105-106 M-1s-1) than the reaction rates between 

LOO• and LH (k=102 M-1s-1) which effectively means that α-tocopherol interrupts 

propagation at this stage by “neutralising” the LOO• radical to form an α-tocopheroxyl 

radical (α-TO•). Importantly, tocopherol can be recycled from the tocopheroxyl radical by a 

number of soluble anti-oxidants, such as vitamin C and ubiquitol [734], effectively 

increasing its antioxidant potential even at low concentrations. 

1.7.1.2 Anti-inflammatory activity of Vitamin E 

Vitamin E has been shown to influence several processes involved in inflammation and 

atherosclerosis. Monocytes isolated from healthy individuals [735] and patients with 

diabetes [736] have been shown to produce less superoxide, hydrogen peroxide, lipid 

peroxides and inflammatory mediators, such as IL-6 and IL-1β, following a period of α-

tocopherol supplementation. Additionally, VE has been found to reduce the expression of 
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cell surface adhesion molecules, such as ICAM-1, VCAM-1 and E-selectin [737, 738], and 

inhibit leukocyte adhesion in vitro [739, 740]. Studies in humans have also reported a 

reductions in circulating soluble adhesion molecules [741-743] and CRP levels [744, 745] 

following VE supplementation. A number of different mechanisms may explain the anti-

inflammatory activity of VE including inhibition of the transcription factor NFκB [746], 

protein kinase C [747-749] and cyclo-oxygenase [750-752]. 
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Figure 10 – Role of α-tocopherol in interrupting free radical propagated lipid 
damage.  Free radicals (X•) react with unsaturated lipids (LH) to form a lipid radical (L•). 
This then rapidly combines with oxygen forming a lipid peroxyl radical (LOO•) which is 
capable of reacting with more LH, thereby propagating a chain reaction. The reaction rate 
constant (k) for the reaction between LOO• and α-tocopherol (α-TOH) (k=105-6) is much 
faster than that for LOO• with LH (k=102), therefore the presence of α-TOH effectively 
interrupts propagation at this stage. This results in the formation of the more stable α-
tocopheroxyl radical (α-TO•) which can be recycled by antioxidants such as ubiquinol or 
vitamin C. (Adapted from Brigelius-Flohe [734]). 
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1.7.1.3 Haemostatic effects of vitamin E 

A number of studies in different patient groups such as smokers [753] and patients with 

diabetes [754, 755] or coronary spastic angina [756], have demonstrated reductions in 

PAI-1 levels following VE supplementation. This may be important in terms of CV risk 

modification as elevated PAI-1 levels have been reported in patients with [757], or at high 

risk of developing [758], CV disease with PAI-1 deposition being observed in 

atheromatous plaques [759-761] and at sites of vascular injury [762]. Platelet activation is 

also important in atherogenesis [53, 763] and VE supplementation has been shown to 

reduce P-selectin levels [754, 764], a glycoprotein which mediates the adhesion of 

platelets to endothelial cells during inflammation and thrombosis, with circulating soluble 

P-selectin levels reflecting the degree of platelet activation [765, 766]. Vitamin E, 

particularly in high doses, appears to antagonise vitamin K [767, 768] which is required for 

the γ-carboxylation of glutamate residues on vitamin K-dependent proteins, which include 

the haemostatic factors II, VII, IX and X, proteins C and S [769]. Supplementation with VE 

in healthy individuals, however, appears not to influence laboratory clotting parameters, 

such as the bleeding [770] or prothrombin [768] times. This contrasts with data from 

patients taking coumarins or who are vitamin K deficient [771, 772] in whom VE 

supplementation exacerbates the coagulopathy. This latter point may be particularly 

relevant to HD patients who have been shown to have both low status and intake of 

vitamin K [773]. Vitamin E has also been shown to enhance endothelial function by 

increasing the release and amplifying the activity of nitric oxide [774], increasing the 

production of the vasodilating prostanoids PGE2 and PGI2 [775] and protecting the 

endothelium against damage from ROS, Ox-LDL and lipid peroxides [776, 777]. 

 

Given that VE has been shown to beneficially influence a number of processes implicated 

in the pathogenesis of CV disease, such as oxidative stress, inflammation and 

haemostasis, several studies have examined the potential utility of VE compounds to 

ameliorate CV risk. 

1.7.2 Human studies of vitamin E 

1.7.2.1 Vitamin E supplementation in non-dialysis patients 

Data from observational studies, involving large numbers of patients, have suggested a 

reduction in CV disease endpoints for patients receiving VE supplements or those with a 

high dietary VE intake [778-782]. However, subsequent intervention studies in humans 

examining the role of oral VE supplementation in the primary [783-786] or secondary [787-



 53 

794] prevention of CV disease and subsequent meta-analyses [795, 796] have failed to 

demonstrate benefit in the general population. There are a number of potential reasons 

why the initial promise of VE in reducing CV disease, initially identified in observational 

studies, has not been subsequently observed in interventional trials. It is plausible that 

uncontrolled confounders may be responsible for the observed association. For example 

patients who take vitamin supplements may be more health conscious with regards to 

other aspects of their diet and lifestyle which may explain the association with improved 

CV outcomes rather than being a direct effect of the VE per se. The isoforms of VE found 

in the diet may have different biological activity [797] or bioavailability [798] to the synthetic 

VE compounds used in supplements to explain the apparent differential effects of VE in 

observation and interventional studies. However, despite the apparent absence of benefit 

from VE supplementation in the general population, given the heightened levels of 

oxidative stress and inflammation in HD patients, VE has also been extensively studied in 

dialysis patients. 

1.7.2.2 Vitamin E supplementation in dialysis patients 

Patients on HD do not appear to be deficient in VE. The levels of α-tocopherol have been 

reported to be similar, if not slightly higher, than non-dialysed controls [327, 389, 799] and 

γ-tocopherol levels have been variably reported as higher [389] or lower [800] in HD 

patients. Vitamin E compounds are lipid soluble and excreted in the bile [801, 802] thus 

dialytic losses of VE would not be anticipated. However the metabolites of VE, 

carboxyethylhydroxychromanols (CEHCs), are water soluble and are both excreted in the 

urine [797] and removed by HD [389]. The levels of α- and γ-CEHC, the respective 

metabolites of α- and γ-tocopherol, are significantly higher in HD patients compared to 

healthy controls, particularly following VE supplementation [389], suggesting dialytic 

clearance cannot not compensate for the loss of renal excretion. The biological activity of 

these metabolites is unclear but, for example, γ-CEHC has been shown to have anti-

inflammatory properties in vitro, through the inhibition of cyclooxygenase-2 mediated 

prostaglandin synthesis [752]. 

 

Given that HD patients have heightened levels of inflammation, oxidative stress and CV 

disease, as well as altered VE metabolism leading to the accumulation of water soluble 

biologically active metabolites, there is a strong rationale for assessing the benefits of VE 

supplementation in HD patients despite the negative trials in non-HD populations. To this 

end a number of studies have investigated the effects of VE supplementation on markers 

of oxidative stress and inflammation as well as anaemia and CV outcomes as outlined in 



 54 

Appendix A, Table 52. The results of these studies are heterogeneous although overall 

would tend to suggest improvements in markers of oxidative stress, such as MDA [368, 

803-816], and anaemia parameters, such as haematocrit or ESA requirements [812, 817-

821], and equivocal effects on markers of inflammation, such as CRP and IL-6 [389, 822-

824], following supplementation with VE. The apparent contrasting results for some of 

these studies may reflect the different preparations of VE used, which differ in their 

bioavailability and relative concentrations of the various VE isoforms, and the non-

standardised approaches for determining several of the oxidative stress endpoints 

reported such as MDA and TBARS levels. Furthermore, the studies consisted of small 

numbers of HD patients followed up over relatively short time periods and many of the 

studies selected sub-populations of patients, such as those with diabetes or low levels of 

VE. These factors limit the ability to generalise the results from the studies but do suggest 

that VE supplementation in HD patients may have a role in reducing some of the factors 

thought or known to contribute to CV disease. 

 

The only published study to date examining VE supplementation and CV endpoints in HD 

patients was the SPACE trial [825]. In this study 196 patients with pre-existing CV disease 

were randomised to receive 800 IU/day of VE or placebo and were followed for a median 

of 519 days for the occurrence of CV events or death. There was a significant reduction in 

a primary composite CV endpoint, largely attributable to a reduction in the number of 

myocardial infarctions, but no mortality benefit for the VE treated patients, although it is 

worth noting that the study was not powered to detect a difference in mortality. 

Interestingly, Tepel et al. [826] conducted a placebo controlled trial with a different anti-

oxidant, acetylcysteine, in 134 HD patients and again reported a reduction in a composite 

CV endpoint, but not mortality, after a median follow up of 14.5 months. Taken together, 

these would suggest that anti-oxidants may have a role in reducing CV morbidity, but not 

mortality, in HD patients. 

 

It can therefore be seen that despite the attractive simplicity of administering oral VE 

supplements to ameliorate some of the factors known to contribute to CV disease in HD 

patients, no mortality benefit has been observed in the small number of HD patients 

studied to date. It may be that interventions aimed at lowering oxidative stress and / or 

inflammation may only have a minimal impact on lowering CV events or mortality rates, 

owing to the multiplicity of contributing factors in HD patients, or that the ability of VE to 

influence these factors is limited. With regards to the latter point, blood-membrane 

interactions are thought to contribute substantially to the oxidative and inflammatory 
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burden for HD patients and, as VE is lipid soluble, its ability to influence these reactions or 

neutralise the soluble ROS generated in the blood may be limited. In an attempt to 

address these issues, VE-bonded dialysis membranes have been developed. One small 

study has also demonstrated the superiority of membrane bound VE over oral 

supplementation in terms of its ability to reduce oxidative stress in HD patients [827]. 

Therefore, on the basis of these theoretical and practical considerations, a number of 

studies have evaluated VE bonded dialysis membranes in relation to inflammation and 

oxidative stress. 

1.7.3 Vitamin E coated dialysis membranes 

1.7.3.1 Dialysis membrane composition and biocompatibility 

Before examining the role of VE bonded dialysis membranes in improving factors thought 

or known to be related to CV disease in HD patients, it is important to consider the 

membrane composition. As discussed in section 1.5.1, the process of passing blood over 

a dialysis membrane elicits an inflammatory response with the biocompatibility of a 

membrane relating to the magnitude of this response [828]. Membrane biocompatibility is 

a nebulous term lacking a consensus definition but can be evaluated by determining the 

ability of a membrane to generate complement activation products, such as C3a and C5a, 

upregulate pro-inflammatory cytokines, such as IL-1β, TNF-α or IL-6, and induce changes 

in the number and level of activation of circulating peripheral blood mononuclear cells 

during HD [829]. Dialysis membrane composition has changed over time, as have trends 

in usage, commensurate with improvements in dialysis and manufacturing technology and 

the costs involved. Cellulose membranes, such as Cuprophan, were the first to be 

manufactured and are generally deemed bioincompatible owing to the presence of large 

numbers of free hydroxyl groups on their surface capable of activating complement [479, 

480]. Refinements to the original cellulose membranes, termed modified cellulose 

membranes, include substituted cellulose membranes in which acetate is chemically 

bonded to the surface reducing the number of free hydroxyl moieties, or cellulosynthetic in 

which a synthetic material, usually a tertiary amino compound, is added to liquefied 

cellulose during manufacture. The latest generation of membranes, termed synthetic 

membranes, are not based on cellulose but made from synthetic plastics and include 

polysulfone, polyacrylonitrile and polymethylmethacrylate. Synthetic membranes are the 

most biocompatible with regards to systemic complement activation owing to the absence 

of nucleophilic binding sites and, in the case of some membranes such as polyacrylonitrile, 

the ability to adsorb activated complement components onto their surface [830]. 
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Despite the theoretical advantages, no large scale prospective randomised controlled trial 

to date has reported improved morbidity or mortality for biocompatible compared to less 

biocompatible membranes. Data from observational series [831-833] and a post hoc 

analysis of a multi-centre drug intervention study [834] however, have suggested higher 

rates of mortality and CV events for patients dialysing with unmodified cellulose compared 

to those using either modified cellulose or synthetic membranes. These observations may 

well be explained by the differing membrane compositions although other factors, such as 

improvements in patient care over time and reduced cellulose and increased modified 

cellulosic / synthetic membrane usage [835], are also likely to be important. A Cochrane 

review in 2005 [836] reported that there was no evidence of benefit for synthetic 

membranes over cellulose or modified cellulose membranes in terms of mortality, 

morbidity or dialysis-related adverse symptoms and that more research was needed. It is 

therefore not clear whether any clinically relevant difference in biocompatibility exists 

between modified cellulose and synthetic membranes. Grooteman et al. [837] compared 

several measures of biocompatibility in 31 patients undergoing chronic HD in a 3-week 

crossover study. Polysulfone use was associated with a slight reduction in dialysis-

associated leucopenia when compared to modified cellulose but no difference in 

complement activation. Panichi et al. [838] reported greater reductions in CRP levels with 

polysulfone use compared to modified cellulose membranes although the polysulfone 

group contained a mixture of patients on conventional dialysis and haemodiafiltration, 

unlike the modified cellulose group who all received conventional dialysis. An 

observational series has reported lower mortality rates for patients dialysing with synthetic 

compared to modified cellulose membranes in centres where dialysers are reused [839], 

although dialyser reuse has declined rapidly in recent times with reductions in dialyser 

costs [840]. More recently Zhang et al. [841] undertook a 6 month prospective randomised 

controlled trial in 60 chronic HD patients to assess the biocompatibility of 4 different 

membranes. Patients were all dialysing on polysulfone membranes prior to study start and 

were then randomised to dialysis with either a polyethersulfone, cellulose triacetate or a 

polymethylmethacrylate membrane. No significant differences in markers of inflammation 

(CRP, IL-1β and IL-13) were observed but the levels of C5a rose more quickly during 

dialysis in patients dialysing with the cellulose triacetate membrane suggesting there may 

be differences in biocompatibility. A number of studies have compared markers of 

oxidative stress in patients using polysulfone dialysis membranes with those using 

modified cellulose membranes. Some studies [345, 355, 842-844], although not all [845-

848], have reported improved levels of oxidative stress for patients dialysing with 

polysulfone compared to cellulose based membranes. For the purposes of this thesis, the 
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effects of VE coating modified cellulosic and synthetic membranes are considered 

separately since the membrane composition is known to impact a number of the factors 

which are also influenced by VE, such as inflammation and oxidative stress. It therefore 

seems prudent to examine the potential benefits of coating dialysis membranes with VE 

independent of the membrane composition.  

1.7.3.2 Vitamin E coated modified cellulose membranes 

Vitamin E modified cellulose membranes were the first to be developed [849] and a 

number of clinical studies have examined their anti-oxidant activity in vivo in addition to 

their effects on inflammation, erythrocyte lifespan, complement and leukocyte activation as 

detailed in Appendix A, Table 53. Taken together, these studies would appear to suggest 

that VE coating of modified cellulose membranes is associated with improvements in 

oxidative stress markers including TBARS and Ox-LDL [827, 844, 850-874], anaemia 

parameters including erythrocyte susceptibility to haemolysis, red blood cell lifespan and 

ESA requirements [856, 861, 868, 869, 875-879], markers of inflammation, such as IL-6 

[854, 858, 880], and indices of complement activation, such as C3a and SC5b-9 levels 

[851, 857, 881-883]. A meta-analysis including many of these studies highlighted the anti-

oxidant properties of these VE-bonded membranes [884]. It is important to note, however, 

that many of these studies should perhaps only be considered as pilot studies owing to the 

small number of patients evaluated, the relatively short duration of follow up and the lack 

of a control group in many of them. They do, however, serve as proof of concept regarding 

the potential utility of VE coated membranes to ameliorate some of the factors thought to 

contribute to CV disease in HD patients, such as anaemia, oxidative stress and 

inflammation. Perhaps more relevant in the modern treatment era is whether coating the 

latest generation biocompatible synthetic membranes with VE confers similar benefits. 

1.7.3.3 Vitamin E coated polysulfone membranes 

More recently VE coated polysulfone membranes have been developed [885] and 

continue to be refined [886, 887], with in vitro studies demonstrating their anti-oxidant 

activity and biocompatibility [885-888]. A number of clinical studies have reported on the 

effects of dialysis with a VE coated polysulfone membrane as detailed in Table 2. As with 

the VE bonded cellulose membrane, it can be seen that only relatively small numbers of 

patients have been studied to date and the results are somewhat equivocal with regards to 

anaemia, inflammation and oxidative stress [889-896]. Whether this is because there is no 

benefit of coating polysulfone membranes with VE, or that the effects are subtle 
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necessitating studies on larger groups of patients or specific patient subgroups in order to 

detect differences, is not clear. 

 

Table 2 - Studies examining effects of vitamin E bonded polysulfone dialysis 
membranes on oxidative stress, anaemia and inflammation. 

    

Study Duration No. pts 
on VEM 

Reported effects of VE 
membrane 

Andrulli et al., 2010 [894] 8 months 9 →ERI, →CRP, →IL-6 
Aoun et al., 20101 [890] 4 weeks 7 ↓Dialyser clotting,  →Hb, →ESA 

Calo et al, 2011 [891] 1 year 25 

↓oxidative stress2 (incl. ↓Ox-LDL), 
↓PAI-1, →ESA, →Hb, 
↓mononuclear cell activation, 
→Carotid intima-media thickness3 

Mandolfo et al. 20114 [889] 6 months 16 →ESA, ↓ERI, →IL-6, →CRP, 
→TAC, →AGEs 

Matsumura et al, 20105 [892] 10 months 8 
↓Intra-dialytic hypotension, ↓Pre-
dialysis BP, →Nitric oxide-related 
molecules, →Hb, →ESA dose 

Morimoto et al, 2005 [895] 6 months 16 ↓Ox-LDL, ↓ADMA, ↓MDA, ↓ESA 
Paniichi et al, 2011 [893] 6 months 62 ↑Hb, →ESA, ↓ERI, ↓CRP, ↓IL-6 

Sanaka et al, 2013 [896] 12 months 151 →ERI, →CRP 
    

Notes: 1. Paediatric study 
2. Number of measures of improved oxidative stress reported: ↓Ox-LDL, 

↓p22phox, ↑heme oxygenase-1 
3. Carotid intima-media thickness performed in a subset of 9 patients 
4. All patients dialysing via CVC’s 
5. Patients with intra-dialytic hypotension selected for study inclusion 

    

ADMA: Asymmetric dimethylarginine; AGEs: Advanced glycation end products; CVC: 
Central venous catheter; ESA: Erythropoiesis stimulating agent; ERI: ESA resistance 
index; MDA: Malondialdehyde; PAI-1: Plasminogen activator inhibitor-1; TAC: Total anti-
oxidant capacity; VEM: Vitamin E-bonded membrane 

1.8 Summary 

Patients on dialysis have far higher rates of CV disease than members of the general 

population. Furthermore, the pathophysiology, risk factors and the clinical manifestations 

of CV disease differ markedly between these two groups. Anaemia, or more specifically 

ESAs for the treatment of anaemia, has been linked to the development of CV 

complications. Underlying both the high rates of CV disease and the association between 

anaemia and adverse CV outcomes may be the high levels of inflammation and oxidative 

stress encountered in HD patients. Additionally, there are a wealth of data linking 

haemostatic markers, such as fibrinogen levels and altered fibrin clot structure, with CV 
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disease in both dialysis and non-dialysis patients. Whether this represents a mechanistic 

association or an epiphenomenon is not clear. Vitamin E has both anti-inflammatory and 

anti-oxidative properties providing a strong rationale for examining its utility in ameliorating 

renal anaemia and improving CV outcomes in dialysis patients. Studies in non-renal 

patients, however, have largely been disappointing in this respect but studies in HD 

patients have shown some promise, perhaps reflecting the different nature of CV disease 

in these patients and the altered metabolism of VE. Blood-membrane interactions are 

thought to be a major contributor to both inflammation and oxidative stress in HD patients 

and VE is lipid soluble; hence supplementation may have a limited capacity to influence 

fluid phase reactions occurring at the blood-membrane interface. There is therefore a 

sound logic for investigating the potential of VE bonded membranes to improve 

inflammation, oxidative stress, renal anaemia and ultimately CV disease. 
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Chapter 2 : Aims 
The main aims of this thesis were to examine the effects of switching prevalent HD 

patients to dialysis with VE bonded polysulfone dialysis membranes for a period of 12 

months on: 

 

 Renal anaemia (i.e. ESA resistance) 

 Oxidative stress 

 Inflammation 

 Fibrin clot structure and function 

 Cardiovascular events 

 Mortality 

 

These were achieved by undertaking a prospective randomised controlled trial in which 

260 HD patients were randomised to dialysis with either VE bonded polysulfone dialysis 

membranes or non-VE bonded equivalent membranes. All of the factors under 

consideration, i.e. anaemia, oxidative stress, inflammation and fibrin clot structure, have 

been implicated in the development of CV disease and mortality in HD patients. This thesis 

will therefore provide an insight into the potential for VE-bonded membranes to ameliorate 

the high CV risk experienced by patients on HD. 
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Chapter 3 : Methods 

3.1 Study design and intervention 

The study forming the basis of this thesis was a prospective randomised controlled trial 

comparing a VE-bonded HD membrane (Vitabran-A, Asahi Kasei Medical Corporation, 

Japan) with a non-VE-bonded equivalent membrane (Rexeed-A, Asahi Kasei Medical 

Corporation, Japan). Both membranes were high-flux polysulfone membranes made by 

the same manufacturer with similar performance characteristics, differing only in the 

presence or absence of a VE coating on the dialysing surface. The Rexeed-A membrane 

was the standard membrane in use at Leeds Teaching Hospitals NHS Trust (LTHT) prior 

to this study. Participating patients were randomised to dialysis with either the Rexeed-A 

or Vitabran-A membrane for a period of 12 months. Both dialysis membranes were CE 

marked and were not classed as investigational medical products or devices (Medicines 

and Healthcare products Regulatory Agency (MHRA), personal communication January 

2009, Ref: E/2008/1110). 

3.2 Trial Approvals 

The research protocol was approved by Leeds West Research Ethics Committee 

(reference:  08/H1307/144) and LTHT Research and Development (reference: RL 

08/8779) prior to commencement. The study was also prospectively registered on the 

European Union Drug Regulating Authorities Clinical Trials (EudraCT) (reference: 2009-

017505-11) and International Standard Randomised Controlled Trial Number (ISRCTN) 

(reference: 12650766) databases and was adopted onto the National Institute for Health 

Research (NIHR) portfolio (reference: 6789). 

3.3 Funding 

The study was jointly funded by Asahi Kasei Medical Corporation, Japan who 

manufactured and supplied the Vitabran-A and Rexeed-A membranes, by the LTHT Renal 

Charitable Trustees and the NIHR. 

3.4 Study setting 

The study was undertaken in HD units managed by LTHT which collectively provide 

dialysis services for a population of approximately 1.7 million people in West Yorkshire 

[897]. Study patients received dialysis at one of 9 dialysis units spread over 7 geographical 
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locations: (i) St James’s University Hospital (wards 55 and 53), Leeds, (ii) Seacroft 

Hospital, Leeds (Frank Parson’s dialysis unit and B-ward), (iii) Beeston Satellite Unit, 

Leeds, (iv) Calderdale Royal Infirmary, Halifax, (v) St. Luke’s Hospital, Huddersfield, (vi) 

Clayton Hospital, Wakefield and (vii) Dewsbury District Hospital, Dewsbury. Midway 

through the study, the Clayton Hospital dialysis unit closed down and patients were 

transferred to a new satellite dialysis unit based at Pontefract General Hospital, Pontefract. 

3.5 Research team 

The research team was led by Dr Simon Lines and comprised the research nurses 

Rosalyn Wheatley (Principal Research Nurse for the study), Emma Giddings, Shyama 

Rughooputh, Stuart Turner, and a research assistant Frank Lee. The project supervisors 

for the study were Dr Mark Wright, Dr Emma Dunn (Consultant Nephrologists, LTHT) and 

Dr Angela Carter (Senior Lecturer in CV epidemiology, University of Leeds). The roles of 

the various members of the core research team are detailed in Appendix B. 

3.6 Patients 

3.6.1 Screening, recruitment and enrolment 

All patients managed by the renal services at LTHT had information pertaining to their 

medical care stored on a locally configured computer-based information system (Proton, 

Clinical Computing Limited, UK), hereafter referred to as the Proton system. A list of all HD 

patients was obtained from the Proton system and screened by Dr Simon Lines. The 

inclusion criteria and exclusion criteria for study eligibility were as follows. 

 

INCLUSION CRITERIA 

 Established on HD for at least 3 months prior to entry into study 

 Patients expected to remain on HD for at least 6 months 

 Written consent and willingness to participate in the study 

 Age ≥ 18 years at point of entry into study 

 Patients on a 3 times a week dialysis schedule 

 

EXCLUSION CRITERIA 

 Unwillingness or inability to cooperate or give written informed consent 

 Terminally ill patients (expected survival less than 6 months) 



 63 

 Medical conditions requiring regular blood transfusions at the time of study 

enrolment 

 Any serious medical, social or psychological condition that in the opinion of the 

investigator would disqualify a subject from participation 

 Patients with a significant inflammatory illness within the last 3 months as defined 

by a CRP > 50 mg/L or 3 times the patient’s baseline CRP. 

 

Eligible patients were approached by a member of the research team when they attended 

for dialysis to introduce the study and to provide a copy of the patient information leaflet to 

take away and read. Patients were then approached again, no earlier than their next 

dialysis session, to answer any questions and obtain written informed consent for those 

wishing to participate. There was therefore a minimum time period of 48 hours between 

introducing the study and obtaining written informed consent and patients could request 

more time if they wished. If patients were non-English speakers, independent translators 

were used to explain the background to the study and to obtain written informed consent 

for those wishing to participate. The patient information sheets and the consent form were 

approved by the Leeds West Research Ethics Committee. Study patients who dialysed at 

another centre for more than two weeks during the study period discontinued the study 

after their last HD session at an LTHT unit prior to dialysing elsewhere; data collected up 

to that time point were analysed. This criterion was used as dialysis at a different centre 

often necessitated a change in dialysis membrane, non-protocolised ESA prescription (see 

section 3.8.1) and exposure to other factors, such as different dialysis water quality, which 

had the potential to influence the various study endpoints. 

3.6.2 Randomisation 

All patient records on the Proton system have a unique database number and this number 

was used to allocate patients into the control or intervention arm of the study on the basis 

of whether it was odd or even. An analysis of all LTHT HD patients was performed on this 

basis prior to starting the study and there was an even split in the number of patients and 

the two groups were comparable with regards to age, sex and length of time on RRT. 
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3.7 Data collection 

3.7.1 Demographic, lifestyle and comorbidity data 

The following baseline information was recorded for each of the study patients at baseline: 

age, sex, ethnicity, cause of ESRF, length of time on dialysis and smoking status coded as 

current smoker (i.e. smoked in the last 12 months), ex-smoker or never smoked. This 

information was obtained by reviewing the Proton system and from discussions between 

the study participant and a member of the research team. If patients did not speak English, 

translators independent of the study and research team were used. All data were entered 

and stored on a bespoke Microsoft Access 2003 (Microsoft Corporation, USA) database 

created by Dr Simon Lines which was password protected and stored in accordance with 

the Data Protection Act and the LTHT and University of Leeds data storage policies. 

 

Comorbidity at baseline was determined for each patient using the method reported by 

Davies et al. [898]. This scoring system has been validated in patients with ESRF and 

shown to be predictive of survival [899, 900]. Information regarding the presence of 

comorbidity was obtained from discussions with the study participants and review of the 

clinical patient records. For the purposes of this scoring system, comorbidity was classified 

into seven domains as detailed below and, for each comorbid domain, evidence of disease 

not its severity was required. To be counted, comorbidities had to either be considered 

active, still present or controlled by on-going treatment. The comorbid score for each 

patient was determined by the number of domains affected giving a theoretical maximum 

of seven. 

 

1. Malignancy - active, non-cutaneous disease e.g. myeloma, breast cancer 

2. Ischaemic heart disease (IHD) - Previous myocardial infarction, angina pectoris, 

positive coronary angiography or other diagnostic procedure (e.g. exercise test, 

thallium or dobutamine stress test) or the presence of ischaemic changes on the 

resting electrocardiogram (as distinct from left ventricular hypertrophy). 

3. Peripheral vascular disease (PVD) - Including distal aortic, renovascular, lower limb 

and cerebrovascular disease; either symptomatic disease in these vascular 

territories (e.g. cerebrovascular event, amputation, claudication) or significant 

stenoses (>50%) on vascular imaging or Doppler ultrasound. 
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4. Left ventricular dysfunction - Defined as clinical evidence of pulmonary oedema, 

not attributable to errors in fluid balance, or moderate to severe left ventricular 

dysfunction on echocardiography. 

5. Diabetes mellitus - The presence of either type 1 or type 2 diabetes mellitus 

6. Systemic collagen vascular disease - For example systemic vasculitis, rheumatoid 

arthritis and systemic sclerosis, either active or requiring treatment. 

7. Other significant pathology - Defined as a condition severe enough to have an 

impact on survival in the general population such as severe chronic obstructive 

pulmonary disease, cirrhosis or psychiatric illness. Treatable conditions (e.g. peptic 

ulceration) or non-life threatening diseases such as severe osteoarthritis were not 

counted. 

3.7.2 Medications 

The current medications for all study participants were recorded at the time of the 

baseline, 6 and 12 months study visits. This information was obtained from the list of 

current medications stored in the Proton system following corroboration with the study 

participants. The data were stored in the study database as dummy variables by drug 

classes for those drugs which were deemed relevant to our study endpoints of anaemia, 

CV disease and fibrin clot properties. This list of drugs comprised: aspirin, warfarin, 

clopidogrel, dipyridamole, sulphonylureas, insulin, statins (3-hydroxy-3-methylglutaryl 

Coenzyme-A reductase inhibitors), renin-angiotensin medications (angiotensin converting 

enzyme inhibitors, angiotensin II receptor blockers or direct renin inhibitors) and β-

adrenoceptor antagonists. The ESA and intravenous iron doses were recorded for all 

study patients. This information was obtained from the Proton system retrospectively at the 

end of the study by interrogating the database using a database query written by Dr 

Elizabeth Lindley (Clinical Scientist, Department of Renal Medicine, LTHT). As the Proton 

system was used for prescribing ESAs and intravenous iron for all LTHT managed HD 

patients [901] this method was robust. 

3.7.3 Dialysis information 

The monthly dialysis dose (urea reduction ratio), pre-dialysis blood pressure and post-

dialysis weight were recorded for all study patients. For the blood pressure and weight, the 

median value of 3 readings performed over a week was recorded. Adherence to dialyser 

allocation was audited for all study participants by members of the research team. 

Following study commencement, all available dialysis worksheets were reviewed for the 
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first 6 weeks on a fortnightly basis. If there was >95% adherence to the allocated dialyser 

the monitoring schedule was reduced to a 2 week period every 6 weeks. If a unit failed to 

achieve 95% compliance they remained on fortnightly checks until adherence was >95%. 

Audit results were fed back to the senior sisters at each unit. The results of the routine 

water quality tests performed at all of the dialysis units during the study period were 

obtained retrospectively after study completion. 

3.7.4 Blood sampling 

Monthly pre- and post- dialysis blood samples were obtained from study subjects as part 

of routine clinical care. A summary of the blood testing schedule is shown in Table 3. The 

routine blood tests were taken by the clinical staff in line with LTHT standard operating 

procedures and the results collated from the Proton system using a database query written 

by Dr Elizabeth Lindley (Clinical Scientist, Department of Renal Medicine, LTHT).  

 

Table 3 - Blood testing schedule. Details of the blood tests performed as part of routine 
clinical care the additional blood tests performed for the study. 

  

Routine tests Additional study tests 
Monthly Baseline, 6 months and 12 months 
 Pre- & post- dialysis urea and electrolytes  Lipid profile* 
 Full blood count  Clotting screen† 
 Ferritin  Clauss fibrinogen level 
 Calcium  C-reactive protein 
 Phosphate  Fibrin clot structure and function 
 Bicarbonate  Complement assays 
 HbA1c  Oxidative stress 
3 monthly   
 PTH   

*Cholesterol, high-density & low-density lipoprotein and triglyceride levels 
†Clotting screen: Activated partial thromboplastin time and pro-thrombin time 

 

Blood samples for the additional study tests were taken pre-dialysis by members of the 

research team via their dialysis access. For patients with AVFs and grafts, blood was 

aspirated via the dialysis needle after cannulation. For patients dialysing via a CVC, the 

CVC was prepared and connected to the dialysis machine as for routine dialysis. The 

blood pump was then started and once the column of blood had reached the bubble trap 

on the HD machine, approximately 30 seconds, blood was aspirated aseptically from the 

sampling port on the arterial limb of the dialysis circuit using a 19 Gauge butterfly. 

Approximately 35 mL of blood was collected and used to fill the sample bottles in the 

following order: 
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1. 9 mL of blood into 10 mL pre-cooled tube containing 1 mL of 0.109 M trisodium 

citrate 

2. 6 mL of blood into pre-cooled ethylenediaminetetraacetic acid (EDTA) containing 

tube 

3. 3.5 mL of blood into trisodium citrate tube 

4. 4 mL of blood into each of 3 x gel tubes 

 

Samples collected into pre-cooled bottles (1 and 2 above) were mixed by slow inversion, 

so as to minimise cellular activation, and immediately placed on ice. The trisodium citrate 

tube and 2 of the gel tubes were transported by hand to the LTHT Research and 

Development laboratories for analysis of lipids, CRP, Clauss fibrinogen, prothrombin time 

(PT) and activated partial thromboplastin time (APTT). The 10 mL trisodium citrate, 6 mL 

EDTA and the remaining 4 mL gel tube were transported to the LIGHT laboratories (the 

former two samples on ice) for centrifugation. The gel tubes were left for a minimum of 30 

minutes to clot. All samples were then centrifuged at 3000g for 30 minutes in a centrifuge 

pre-cooled to 4oC. Following centrifugation the supernatant was aliquoted into cryotubes 

and snap frozen in liquid nitrogen. The supernatant from the trisodium citrate samples 

were stored at -40oC and the remainder stored at -80oC prior to analysis. 

3.7.5 Blood transfusions 

Data on blood transfusions were initially obtained by asking patients at the time of blood 

sampling if they had received any blood transfusions in the preceding 6 months and by 

interrogating the Proton system; however it became apparent that only a few of the dialysis 

units were accurately recording this data. In an attempt to identify everyone who had 

received a blood transfusion a list was generated of all patients who had a >2 g/dL/month 

increase in their haemoglobin level during the study period. This list was then cross-

referenced with the computerised records of the blood banks attached to units which were 

authorised to administer transfusions to determine which patients had received blood and 

the number of units they received. 

3.7.6 Clinical events 

Data on hospital admissions and deaths were collected weekly for study participants 

through a combination of interrogating the renal database, contacting the dialysis units by 

email and telephone, and encouraging study participants and clinical staff to notify the 

research team of clinical events such as hospital admissions. A spreadsheet was used to 

record the date and details of the clinical events which were coded into one or more of the 
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following categories: (i) cardiovascular, (ii) non-infective dialysis access event, (iii) infection 

requiring hospital admission, (iv) death or (v) other. 

 

Dialysis access events were defined as any hospital admission or access procedure for 

non-infective dialysis access problems, e.g. thrombosed fistula, CVC blockage. 

Cardiovascular events were defined as death or hospital admission arising from CV 

disease including acute coronary syndromes, cerebrovascular events, peripheral vascular 

disease, acute arrhythmias and pulmonary oedema not attributable to errors in fluid 

balance. 

3.8 Anaemia data 

3.8.1 Anaemia management 

The LTHT dialysis service has used a computer-based decision support system to inform 

ESA and iron dosing as part of routine clinical care for over 10 years [902]. By adopting a 

logic-based algorithmic approach anaemia practices are standardised for all patients, 

independent of supervising nephrologist and HD unit, permitting the objective evaluation of 

interventions with ESA-based outcomes as has been performed previously [903]. 

Recommendations from the decision support system are issued in the form of a report 

which is passed to either the supervising physician or independent nurse prescriber based 

at the respective dialysis unit to implement or reject any changes. In practice the 

recommendations are followed almost without exception providing an unbiased, stable 

platform for comparing ESA doses between the study groups. 

 

The ESA-dosing algorithm used in this study was a predictive algorithm and the LTHT 

experience with this algorithm has been published [901]. All patients requiring an ESA 

were prescribed darbepoetin alfa (Amgen). In essence the predictive algorithm had a 

target haemoglobin level of 11.5 g/dL, the midpoint of the target haemoglobin range 

recommended by National Institute for Health and Clinical Excellence (NICE) at the time 

this study was conducted [904], and recommended ESA dose adjustments based on the 

haemoglobin level and its trajectory; full details of the algorithm are provided in Appendix 

D. In addition all patients received intravenous iron with dosing based on their 

haemoglobin, ferritin and CRP levels, mean red cell volume and the percentage of 

hypochromic red blood cells as detailed in Appendix D. 
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3.8.2 Erythropoiesis stimulating agent (ESA) resistance index 

In line with other studies examining the effects of VE bonded membranes on ESA 

requirements [889, 893, 894], it was decided to use the ESA resistance index (ERI) as the 

outcome measure for ESA requirements. The ERI is a measure of how much ESA an 

individual patient requires to achieve a given haemoglobin concentration, adjusted for 

body weight, as defined below. For example, a lowering of the ERI in an individual patient 

would mean that they required a lower ESA dose to achieve a given haemoglobin level - 

i.e. they became less ESA resistant. 

 Weekly ESA dose (IU)*  
   

 
ESA Resistance Index (ERI)  = 

Weight (kg) x Haemoglobin (g/dL)  
 

*Darbepoetin alfa (µg) doses multiplied by 200 to convert to IU units erythropoietin as per convention 

3.9 Routine biochemistry and haematology assays 

The clinical laboratories at LTHT performed the assays for the routine biochemistry and 

haematology tests detailed in Table 3, in addition to the lipid profile, clotting screen, Clauss 

fibrinogen and the highly sensitive CRP assays (see Appendix C for details). It became 

apparent after all of the sampes had been analysed that any samples with a Clauss 

fibrinogen level greater than 4.5 g/L were reported as >4.5 g/L rather than accurately 

quantified. This was because the autoanalysers were configured and optimised for clinical 

rather than research use. Although the raw data were still theoretically available, it was not 

possible to go back retrospectively and quantify the fibrinogen concentrations in the 

samples with high fibrinogen levels. Logistically it would have been difficult as it required 

taking one of the clinical analysers off-line for several hours to process even a few 

samples. Perhaps more importantly, the standard curve used to determine the fibrinogen 

concentration was optimised for analysing samples in the range 0-4.5 g/L. To 

retrospectively extrapolate data from outside the range of the standard curve would likely 

have introduced significant errors. In view of this, the fibrinogen dataset was analysed by 

dividing the samples into quartiles of fibrinogen concentration such that all the samples 

with fibrinogen concentrations >4.5 g/L were in the highest quartile. 

3.10 Ox-LDL ELISA 

The Ox-LDL assays were performed by Ms Helena Baker (Research Technician, LTHT 

Research and Development Laboratory) using commercial ELISA kits (Immundiagnostik 

AG, Bensheim, Germany) to analyse serum samples which were stored at -80 oC prior to 

analysis. To perform the assay, standards and quality control (QC) samples, buffers, 
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antibody, substrate and stop solutions included with the kit were reconstituted as per the 

manufacturer’s recommendations. Serum samples were thawed prior to being diluted 1/10 

with dilution buffer. The pre-coated 96-well microtitre plates were initially washed 5 times 

with 250 µL/well of washing buffer prior to loading 100 µL of standard, sample or QC into 

each well. The plates were sealed and placed on a plate shaker for 4 hours at RT. The 

contents of the wells were discarded and the wells washed 5 times with 250 µL of washing 

solution prior to loading with 100 µL/well of conjugated antibody solution. After a further 1 

hour incubation at RT on a plate shaker, the contents of the wells were discarded and the 

wells washed 5 times with 250 µL of washing solution. To develop the plates, 100 µL of 

substrate was added to each well and the plates incubated for 15-25 minutes at RT in the 

dark; the reaction was stopped by the addition of 50 µL/well of stop solution. The 

absorption in each well was measured at 450 nm with a 620 nm reference filter. All 

samples were analysed in duplicate with an intra-sample coefficient of variation (CoV) of 

less than 10% deemed acceptable; samples with a CoV of greater than 10% were 

repeated. A linear best fit line was then plotted through the five standards and used to 

determine the concentration of Ox-LDL in the samples. The resultant data were provided 

by the R&D department as a spreadsheet (Excel®, Microsoft Corporation) containing 

sample identification numbers and Ox-LDL concentrations. With this approach 63% of the 

samples had a calculated concentration which was below the manufacturer stated lower 

limit of detection of the assay (4.3 ng/mL) and the inter-assay CoV for the low QC sample, 

which was nearest to the mean concentration of the study samples, was 26%. 

 

The apparent low levels of Ox-LDL in the study cohort were an unexpected finding based 

on published studies using the same commercial assay both in renal [891] and non-renal 

[905] patients. It was therefore decided to obtain the raw optical density data from the R&D 

department for re-analysis (Dr Simon Lines). Visual inspection of these data suggested 

that fitting a straight line through the standards resulted in a poor estimation. Evaluation of 

the data using the curve fitting option on SPSS (SPSS Inc., IBM) revealed that a cubic 

curve fit was more appropriate. The equation for the best fitted cubic curve through the 

standards for each plate was determined using SPSS and the Ox-LDL concentration in 

each sample pair re-calculated using Microsoft Excel® (Dr Simon Lines). This revised 

dataset had a marginally improved inter-assay CoV of 19% for the low QC and 22% of the 

samples had an Ox-LDL concentration below the quoted lower limit of detection for the 

assay (4.3 ng/mL); these samples were assigned a concentration of 4.3 ng/mL for the 

purposes of data analysis. The inter-assay CoV of the high QC also marginally improved 
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on recalculation from 14% to 13%. The manufacturer quoted intra- and inter-assay CoVs 

were 3.9-5.0% and 9.0-11.0% respectively. 

3.11 Thiobarbituric acid reactive species assay (TBARS) 

3.11.1 Development and optimisation of TBARS assay 

The assay used in this study was based on the method developed by Jentzsch et al. [906] 

and used by Eiselt et al. in a study of HD patients [866]. From the large body of literature 

on TBARS assays the key aspects appeared to be: (i) addition of an anti-oxidant to the 

reaction mix, most frequently butylated hydroxytoluene (BHT), to limit intra-assay oxidation 

[906]; (ii) precipitation of proteins and lipids, again to limit autoxidation of polyunsaturated 

fatty acids during the heating step and to reduce adsorption of the MDA:TBA adduct 

thereby theoretically reducing yield [907]; (iii) acidic reaction conditions and heating to 

render the carbonyl groups of MDA more susceptible to nucleophilic attack by TBA, thus 

decreasing reaction time and increasing yield [908] and (iv) butanol extraction to minimise 

the effects of reaction mixture turbidity [909, 910]. All of these considerations were 

addressed in the method published by Jentzsch et al. [906] which formed the basis of the 

assay used here. It was decided to use a 5mM concentration of BHT as previous work had 

suggested a threshold level of 3 mM for minimisation of intra-assay oxidation [906].  

 

To generate the standard curve for the assay, a 5 mM MDA stock solution was prepared 

by acid hydrolysis of 1,1,3,3-tetramethoxypropane (TMP) in 0.1 M hydrochloric acid at 

37 oC. The MDA stock solution was serially diluted with ultrapure water to form standards 

of 50 µM, 25 µM, 12.5 µM, 6.25 µM, 3.13 µM, 1.6 µM, 0.8 µM and 0.4 µM; fresh standards 

were prepared for each assay. The assay was performed using fresh frozen serum 

aliquots, stored at -80 oC, which were thawed in cold water for 10-15 minutes, vortex 

mixed and centrifuged at 13,000 g for 1 minute immediately prior to analysis. A known 

volume of the serum, initially 150 µL, was combined with an equal volume of 0.2 M 

phosphoric acid (H3PO4) and 25 µL 70 mM BHT in an eppendorf tube. The contents were 

vortex mixed, 25 µL of 70 mM TBA added and the samples vortex mixed again. The 

eppendorf tubes were then transferred to a heat block pre-heated to 90 oC for 45 minutes. 

After the heating stage the eppendorf tubes were placed on ice for 5 minutes to stop the 

reaction prior to the addition of 350 µL butanol. The eppendorf tubes were then vortex 

mixed and centrifuged at 13,000g for 2 minutes. The supernatant was pipetted in aliquots 

of 150 µL into the wells of a 96-well microtitre plate and the absorbance measured at 

540 nm with a 620 nm reference filter using an MRX plate reader (Dynex Technologies). A 
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cubic best fit curve was then calculated for the standards, plotted on a logarithmic 

abscissa, and used to interpolate the TBARS levels (i.e. MDA concentration) in the study 

samples. Several aspects of the published methodology [906] were identified for 

optimisation, these were the serum volume assayed and the incubation time. 

 

To determine the optimal volume of serum to use in the assay, the total reaction volume 

was fixed at 450 µL and serum volumes of 100 µL, 150 µL and 200 µL were compared. In 

each case an equivalent volume of 0.2 M phosphoric acid was added, along with 25 µL of 

BHT and TBA; ultrapure water was used to make up the final reaction volume to 450 µL. 

The absorbance-concentration graphs for the standards from each of these experiments 

are shown in Figure 11. At low concentrations (i.e. below 3.1 µM MDA equivalents) the 

100 µL volume performed worse, i.e. there was minimal change in absorbance for a 

change in concentration, but there was little difference between the 150 µL and 200 µL 

assays over the anticipated concentrations of TBARS in the study samples. In light of 

these considerations, and the volume of test serum available given that samples were to 

be analysed in duplicate and repeated if they yielded discordant results, it was decided to 

use a serum volume of 150 µL. 

 
Figure 11 - TBARS assay standard curves from 3 experiments to determine the 
effects of altering the volume of serum or standard in the final reaction mix. At low 
TBARS concentrations the curves were relatively flat, particularly for the 100 µL assay, 
with little difference between the 150 µL and 200 µL assays. 
 

The next optimisation step undertaken was to examine the effect of different incubation 

times. The vast majority of published TBARS methodologies heated the reaction mix to 

>90 oC although the incubation time varies from 15 minutes to three hours. The Jentsch et 
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al. [906] method involved heating for 45 minutes and it was decided to compare the 

performance characteristics of heating the reaction mix for different lengths of time. The 

standards were made up as for the previous experiments although the lowest 0.4 µM 

standard was omitted owing to the flatness of the curve in this region. Three samples of 

pooled serum were assayed as follows: (i) no spike, (ii) low concentration MDA spike (from 

MDA stock solution) and (iii) high concentration MDA spike. The effects of incubating the 

standards and test sera for 15, 30, 45, 60 and 75 minutes were compared and the results 

are displayed in Figure 12. On the basis of these experiments it was decided to heat the 

samples for 45 minutes. 
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Figure 12 - Effects of different heating times in TBARS assay. (A) Standard curves 
and (B) Samples: (I) No-MDA spike; (II) Low concentration MDA spike and (III) High 
concentration MDA spike. 
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Spiking experiments were carried out to measure the recovery of MDA. Aliquots of pooled 

serum were spiked with 0.5 µM, 1 µM,  2 µM and 2.5 µM of MDA and the mean recovery 

rate was 84%; this was in keeping with the published experience of others [908]. Batches 

of high and low QC samples were generated in order that they could be run with each 

assay to determine the intra-assay CoV. The low QC consisted of a series of aliquots of 

fresh frozen serum and the high QC was generated by spiking a batch of low 

concentration QC with MDA standard prior to separation and storage. 

3.11.2 Final TBARS assay protocol 

Test serum samples, stored at -80 oC, were defrosted immediately prior to analysis by 

standing in water for 10 minutes at RT. All samples were vortex mixed then centrifuged at 

13,000 g for 1 minute. Standards were prepared by serial dilution of the 5 mM stock MDA 

solution using ultrapure water to the following concentrations: 12.5 µM, 6.3 µM, 3.1 µM, 

1.6 µM and 0.8 µM. One-hundred and fifty microlitres of standard or test serum were 

combined with 150 µL of 0.2 M H3PO4 and 25 µL of 70 mM BHT in eppendorf tubes; all 

standards and samples were analysed in duplicate. The contents were vortex mixed, 

25 µL of 70 mM TBA added and the contents mixed again. The eppendorf tubes were 

transferred to a heat block pre-heated to 90 oC for 45 minutes. After this time they were 

placed on ice for 5 minutes to stop the reaction. 

 

To extract the TBARS, 350 µL butanol was added to each eppendorf tube after cooling 

and the contents vortex mixed prior to centrifugation at 13,000 g for 2 minutes. One 

hundred and fifty microlitres of the supernatant were pipetted into the wells of a 96-well 

microtitre plate and the absorbance measured at 540 nm with a reference filter of 620 nm 

using an MRX plate reader (Dynex Technologies). The concentration of MDA equivalents 

in each sample was interpolated from a best fit cubic regression curve through the 

standards using the Revelation software package (Dynex Technologies). Any duplicates 

with concentrations below 5 µM and a CoV > 25% or concentrations above 5 µM and 

CoV’s >10% were repeated. The intra-assay CoV’s for the high and low QC were 2.1% 

and 18.5% respectively and the inter-assay CoVs 13% and 21% respectively. The average 

concentrations of the high and low QC samples were 9.4 and 2.1 µM MDA respectively. 

3.12 C3 ELISA 

A C3 ELISA developed previously in the Division of Cardiovascular and Diabetes 

Research (DCDR) by Mrs May Boothby and Mrs Jane Brown (Research Technicians, 

DCDR) and Dr Verena Schoeder (Visiting postdoctoral student, DCDR) was used to 
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determine C3 levels in citrated plasma which had been stored at -40 oC. A pooled citrated 

plasma sample was diluted in phosphate buffered saline with tween (PBS-T, see Appendix 

E) to dilutions of 1/25,000, 1/50,000, 1/100,000, 1/200,000 and 1/400,000 to generate the 

standards. As a new pool of plasma had been collected since the assay was previously 

run, the plasma pool used to generate the standards was calibrated against purified C3 

(Quidel) to determine the concentration. To achieve this, a standard curve was generated 

using the purified C3 corresponding to concentrations of 4.8 mg/mL, 2.4 mg/mL, 1.2 

mg/mL, 0.6 mg/mL and 0.3 mg/mL diluted 1/100,000. The normal pool was analysed at 

dilutions of 1/25,000, 1/50,000, 1/100,000, 1/200,000 and 1/400,000 and the calibration 

assay performed twice and used to calculate the concentration of C3 in the normal pool 

(0.86 mg/mL). The standards in the finalised assay therefore corresponded to sample 

concentrations of 3.44 mg/mL, 1.72 mg/mL, 0.86 mg/mL, 0.43 mg/mL and 0.22 mg/mL 

after adjusting for sample dilution. 

 

On the day prior to performing the assays, each well of a 96-well microtitre plate (Nunc, 

Denmark) was coated with 100 µL rabbit anti-human C3 antibody (DAKO) diluted 1/10,000 

with PBS. Plates were sealed and placed on a plate shaker at 400 rpm and incubated 

overnight at 4 oC. On the day of the assay the plate and all reagents were brought to RT. 

Test plasma samples were thawed in a water bath pre-warmed to 37 oC and serially 

diluted to 1/100,000 with PBS-T using a Microlab 500 diluter (Hamilton Company, USA). 

 

Following overnight incubation the antibody coating solution was discarded and the wells 

washed 4 times with 200 µL of PBS-T. A blocking step was not included as it had been 

previously demonstrated not to influence the results (Dr Verena Schroeder). The plate was 

loaded with 100 µL/well of blank (PBS-T), standard, QC and test plasma samples in 

duplicate and incubated at RT on a plate shaker at 400 rpm for 2 hours. All samples 

pertaining to an individual patient were analysed on the same plate. The contents of the 

wells were discarded prior to washing 4 times with 200 µL PBS-T and the addition of 

100 µL/well of detection antibody (goat anti-human C3, Quidel) at a dilution of 1/10,000 (in 

PBS-T). The plate was incubated at RT for 1 hour on a plate shaker at 400 rpm after which 

the contents of the wells were discarded prior to washing 4 times with 200 µL/well PBS-T. 

Subsequently 100 µL of horseradish peroxidise (HRP) conjugated rabbit anti-sheep 

antibody (DAKO), diluted 1/2000 in PBS-T, was added to each well and the plate 

incubated at RT on a plate shaker at 400 rpm for 1 hour. During this incubation, 4 tablets 

of OPD (14.08 mg of 1,2-phenylenediamine dihydrochloride per tablet, DAKO) were 

completely dissolved in 12 mL of deionised water before adding 5 µL 30% w/v hydrogen 
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peroxide. Following incubation, the contents of the wells were discarded and the plate 

washed 4 times with 200 µL/well of PBS-T. One hundred microlitres of OPD substrate 

solution was pipetted into each well by columns at 10 second intervals prior to placing the 

plate on a plate shaker at 400 rpm. Once the wells had turned dark yellow, after 

approximately 8 minutes, the reaction was stopped by the addition of 100 µL 1.5 M H2SO4 

to each column at 10 second intervals. The plate was then sealed and placed on a plate 

shaker for 10 minutes prior to reading. The absorbance at 490 nm for each well was 

measured using an MRX microplate reader. The concentration of C3 in each sample was 

calculated using the Revelation software package by estimating the best fit quadratic 

regression curve through the standards. Each sample was analysed in duplicate and any 

sample with a duplicate CoV of greater than 10% was repeated. The intra- and inter-assay 

CoV’s were 2.8% and 6.6% respectively. Of the 714 samples analysed, Dr Simon Lines 

carried out the ELISA for 238, Victoria Richardson (PhD student, LIGHT laboratories) 73 

and Jia-Ying Lee (visiting PhD student, National Taiwan University) undertook 403. 

 

In addition to C3 levels, it was decided to measure the levels of properdin, factor D and 

SC5b-9 in the study samples. Owing to the large number of study samples to be analysed, 

and the prohibitive costs of purchasing commercial ELISA kits, it was decided to develop 

and perform in-house ELISAs for these purposes. The properdin ELISA, as detailed in the 

following section, was based on an ELISA which had previously been developed in the 

department and which was re-optimised for this study. The ELISAs for quantifying factor D 

and SC5b-9 levels were developed de novo using commercially available antibody pairs 

as detailed in sections 3.14 and 3.15. During the development of the ELISAs, it was 

intended to perform the properdin, SC5b-9 and factor D ELISAs contemporaneously for 

the study samples so that all 3 assays could be performed using only 1 aliquot of fresh 

frozen plasma per patient sample. The coating, diluting and washing buffers and the 

diathenolamine solution used were the same for all three ELISAs and their compositions 

are detailed in Appendix E. 

3.13 Properdin ELISA 

3.13.1 Optimisation of properdin ELISA 

A modified version of an in-house sandwich ELISA previously developed by Dr Riyaz 

Somani (PhD student, University of Leeds) was used for the measurement of properdin 

levels [911]. Briefly, the sequential steps involved in the ELISA were: (i) overnight coating 

of a 96-well microtitre plate with anti-human properdin monoclonal antibody (Thermo 
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Scientific), (ii) incubation with diluted plasma samples, (iii) incubation with a biotinylated 

anti-human properdin monoclonal antibody (Thermo Scientific), (iv) incubation with 

streptavidin and (v) development with p-nitrophenol phosphate. As the antibodies available 

were different lot numbers to those used previously, a matrix comparing different dilutions 

of the coating (anti-human properdin monoclonal antibody, Thermo Scientific) and 

conjugated (biotinylated anti-human properdin monoclonal antibody) antibody was 

performed by Jia-Ying Lee (visiting PhD student, National Taiwan University). This 

confirmed that the 1/5,000 dilutions, as had been used previously, were the most 

appropriate; these data is shown in Figure 13. 
  

 

  Detection antibody dilution 
  1/5,000 1/10,000 1/20,000 1/40,000 

0.119 1.075 0.603 0.144 0.904 0.463 0.154 0.694 0.459 0.156 0.541 0.366 
1/ 

5,000 
0.111 1.108 0.651 0.108 0.879 0.522 0.160 0.752 0.491 0.154 0.555 0.377 

0.124 0.935 0.551 0.118 0.857 0.563 0.159 0.716 0.465 0.145 0.488 0.381 1/ 
10,000 

0.146 0.978 0.573 0.136 0.847 0.556 0.156 0.671 0.457 0.163 0.529 0.395 

0.121 0.904 0.554 0.134 0.671 0.444 0.169 0.545 0.402 0.155 0.452 0.374 
1/ 

20,000 
0.120 0.875 0.522 0.135 0.674 0.440 0.142 0.582 0.417 0.149 0.437 0.370 

0.146 0.809 0.472 0.137 0.591 0.428 0.166 0.481 0.383 0.147 0.370 0.347 
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  Plasma dilution 
         Optimal combination 
Figure 13 - Properdin ELISA optimisation assay to determine the optimal dilutions of 
coating and detection antibodies. Absorbancies measured at 405 nm with 540 nm 
reference filter for different dilutions of coating and detection antibody and plasma. The 
optimal combination was a 1/5000 dilution for both the coating and detection antibody and 
1/400 for the plasma. Data kindly provided by Jia-Ying Lee (visiting PhD student, National 
Taiwan University). 
 

The original assay [911] analysed samples at a dilution of 1/800 with a 5 point standard 

curve generated from serial dilutions of pooled plasma centred on this dilution. There was 

noted to be an increased signal using samples diluted 1/400 compared to 1/800 (see 

Figure 13) and an extended standard curve generated from serial dilutions of pooled 

plasma identified that the 1/400 dilution lay in the middle of the linear portion of the 
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standard curve (see Figure 14). The standard curve also flattened off at lower dilutions, i.e. 

higher properdin concentrations. It was therefore decided to analyse samples at a dilution 

of 1/400 and generate standards by diluting the pooled plasma samples: 1/100, 1/200, 

1/400, 1/800, 1/1,600. After several plates were analysed, it was apparent that there was 

an edge effect which persisted even if all of the incubation steps were performed in the 

dark; the outer wells of the plates were therefore not used in subsequent assays. 

 
Figure 14 - Example standard curve for the properdin ELISA. Standards were 
generated by serial dilution of pooled plasma as labelled. The 1/400 dilution can be seen 
to lie on the linear portion of the standard curve. There was also a flattening off of the 
standard curve at lower dilutions / higher antigen concentrations. 
 

To determine the concentration of properdin in the pooled plasma samples used to 

generate the standards, calibration assays were performed using purified properdin 

(Quidel). The purified properdin sample was diluted to form standards corresponding to 

sample concentrations of 110 µg/mL, 55 µg/mL, 27.5 µ/mL, 13.8 µg/mL and 6.9 µg/mL at a 

dilution of 1/400. Samples of the pooled plasma were analysed at dilutions of 1/100, 1/200, 

1/400, 1/800 and 1/1,600. Four sets of dilutions were analysed on two separate plates to 

determine the concentration of properdin in the pooled plasma sample (70 µg/mL). 

 

The next optimisation step was to investigate the effects of increasing the antibody-

incubations steps from 1 to 2 hours to allow the properdin ELISA to be performed in 

parallel with the factor D and SC5b-9 ELISAs (see sections 3.14 and 3.15). Assays 

comparing 1 and 2 hour incubation steps with the antigen revealed greater well 

absorbance values and a lower CoV (8.4% vs 11.1%) in the 2 hour incubation assay. 

Similar experiments comparing 1 and 2 hour incubation periods with the conjugated 

antibody found no differences in the well absorbancies or the CoV. On the basis of these 
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results, and to facilitate performing the properdin ELISA in conjunction with factor D and 

SC5b-9 ELISAs (see sections 3.14 and 3.15), it was decided to increase the incubation 

periods with both the antigen and conjugated antibody to 2 hours. 

 

The performance of the original properdin ELISA, on which the method detailed here was 

based, had previously been shown to be unaffected by the addition of a blocking step (Dr 

Riyaz Somani, Personal Communication). Assays performed using the optimised 

methodology here similarly demonstrated no effects of blocking with 1% BSA therefore no 

blocking step was included in the final protocol. Optimisation of the SC5b-9 ELISA, 

detailed in section 3.15.1, identified that the addition of 10 mM EDTA to the sample dilution 

buffer (see Appendix E) limited in vitro complement activation. The performance of the 

properdin ELISA was unaffected when assays using EDTA and non-EDTA containing 

sample dilution buffers were compared. It was therefore decided to use the EDTA 

containing buffer to facilitate the use of a single study sample dilution series to perform the 

properdin, SC5b-9 and factor D ELISAs. Finally, to assess the sensitivity of the ELISA at 

detecting different concentrations of properdin, spiking assays were performed using 

purified properdin (Quidel). Pooled plasma samples were combined with aliquots of 

purified properdin which equated to 30 µg/mL and 80 µg/mL after adjusting for the dilution 

factor of 1/400. Two sets of dilutions were performed in separate assays and the mean 

recovery of properdin was 127%. 

3.13.2 Final properdin ELISA protocol 

On the day prior to performing the assays each inner well of a 96-well microtitre plate 

(Nunc) was coated with 100 µL of anti-human properdin mouse monoclonal antibody 

(Thermo Scientific) diluted 1/5,000 in coating buffer (see Appendix E). Plates were sealed 

and placed on a plate shaker at 400 rpm overnight at 4 oC. On the day of the assay the 

plates and reagents were brought up to RT. Frozen EDTA plasma samples from study 

subjects and a QC sample, all stored at -80 oC prior to assay, were defrosted in a water 

bath pre-warmed to 37 oC and diluted to 1/400 in sample diluting buffer (see Appendix E) 

using a Microlab 500 diluter. An aliquot of pooled plasma, quantified for properdin as 

detailed above, was similarly thawed and diluted 1/100, 1/200, 1/400, 1/800 and 1/1,600 in 

sample diluting buffer to generate the standards which corresponded to sample properdin 

concentrations of 17.5 µg/mL, 35 µg/mL, 70 µg/mL, 140 µg/mL and 280 µ/mL at a dilution 

of 1/400. 
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Following overnight incubation the antibody coating solution was discarded and the wells 

washed 3 times with 200 µL washing buffer (see Appendix E). The inner wells of the plate 

were loaded with 100 µL/well of blank (sample diluting buffer), standard, QC and test 

plasma samples in duplicate and incubated at RT on a plate shaker at 400 rpm for 2 

hours. All samples pertaining to an individual patient were analysed on the same plate. 

The contents of the wells were discarded prior to washing 3 times with 200 µL washing 

buffer. The wells were coated with 100 µL/well of biotinylated anti-human properdin 

monoclonal antibody (Thermo Scientific) diluted 1/5,000 with diluting buffer and incubated 

at RT for 2 hours on a plate shaker at 400 rpm. The contents of the wells were then 

discarded and the plates washed 3 times with 200 µL washing buffer prior to adding 

100 µL/well streptavidin-alkaline phosphatase (Sigma), diluted 1/500 with diluting buffer, 

and the plate incubated at RT on a plate shaker at 400 rpm for 1 hour. During this 

incubation the substrate solution was made by dissolving 3 tablets of p-nitrophenol 

phosphate tablets (Sigma) in 15 mL of 1 M diethanolamine solution (see Appendix E). The 

contents of the wells were then discarded prior to washing 3 times with 200 µL washing 

buffer and 100 µL of substrate solution was added to each column at 10 second intervals 

prior to placing the pate on a plate shaker at 400 rpm. Once the wells had turned yellow, 

after approximately 30 minutes, the reaction was stopped by the addition of 100 µL 4 M 

NaOH to each well by columns at 10 second intervals. The plate was then sealed and 

placed on a plate shaker for 10 minutes prior to reading the absorbance on a MRX 

microplate reader at 405 nm with a reference filter of 540 nm. The concentration of 

properdin in each sample was interpolated using the Revelation software package by 

estimating the best fit cubic regression curve through the standards. Each sample was 

analysed in duplicate and any pair with a CoV of greater than 10% repeated. The intra- 

and inter- assay CoVs for the assay were 15.4% and 18.8% respectively which, although 

greater than the commonly accepted values of 5% and 10%, were similar to the 

manufacturer quoted CoVs for the commercial kits available at the time (Antibody Shop®, 

Denmark, March 2012). 

3.14 Factor D ELISA 

3.14.1 Development and optimisation of factor D ELISA 

A search of the catalogues of the main antibody suppliers led to the identification of an 

antibody pair which were recommended for use in ELISAs for quantifying human factor D. 

These antibodies were an anti-human complement factor D monoclonal antibody (Santa 

Cruz Biotechnology Inc.) (coating antibody) and a biotinylated anti-complement factor D 
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monoclonal antibody (Thermo Scientific) (conjugated antibody). The initial step was to 

determine the optimal concentration of these two antibodies. 

 

A 96-well microtitre plate was coated with 100 µL/well of coating antibody at 

concentrations of 1/250, 1/500, 1/1,000 and 1/2,000 and placed on a plate shaker at 4 oC 

overnight. The next day, after washing, the wells were incubated for 1 hour with blocking 

buffer (see Appendix E). The wells were then washed and the plate loaded with blanks 

(dilution buffer) and pooled plasma at a dilution of 1/100. After incubation for 1 hour and a 

subsequent plate wash, the plate was loaded with 100 µL/well of coating antibody at 

concentrations of 1/1,000, 1/2,000, 1/3,000 and 1/4,000. After a further 1 hour incubation 

the plate was washed and loaded with 100 µL/well of streptavidin-alkaline phosphatise 

(Sigma) at a dilution of 1/500 and incubated for a further 1 hour. After a final wash the 

plate was developed with p-nitrophenol phosphate substrate in 1 M diethanolamine (final 

concentration 1 mg/mL) and the reaction stopped by the addition of 4 M NaOH. 

Absorbance was then measured at 405 nm with a 540 nm reference filter using an MRX 

microplate reader - see Figure 15. On the basis of this assay, it was decided to use a 

coating antibody concentration of 1/500 and a detection antibody concentration of 1/4,000.  
   

  Detection antibody concentration 
 1/1,000 1/2,000 1/3,000 1/4,000 

0.018 0.354 0.024 0.319 0.034 0.302 0.039 0.265 
1/250 

0.024 0.275 0.032 0.260 0.038 0.245 0.046 0.310 

0.000 0.294 0.032 0.252 0.036 0.265 0.035 0.266 1/500 
0.017 0.296 0.038 0.240 0.039 0.241 0.038 0.260 

0.017 0.081 0.039 0.072 0.038 0.081 0.038 0.077 1/1,000 
0.022 0.082 0.032 0.072 0.039 0.073 0.039 0.074 

0.025 0.045 0.044 0.040 0.040 0.047 0.039 0.045 
1/2,000 

0.024 0.045 0.043 0.046 0.040 0.048 0.039 0.047 
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Figure 15 - Factor D optimisation assay to determine the optimal dilutions of coating 
and detection antibodies. From this assay, the optimal antibody concentrations were 
1/500 for the coating antibody and 1/4,000 for the detection antibody. 
 

To determine the optimal sample dilution an aliquot of the pooled plasma was diluted as 

follows: 1/5, 1/10, 1/20, 1/40, 1/80 and 1/160. A graph of absorbance against 
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concentration, plotted on a logarithmic abscissa, and a best fit curve through the data 

points is shown in Figure 16. It was decided to use a plasma dilution of 1/40 as, owing to 

the higher levels of factor D in HD patients [228], it was anticipated that the factor D levels 

in the majority of the study samples would fall on the linear portion of the standard curve. 

 
Figure 16 - Example standard curve for the factor D ELISA. Standards were generated 
by serial dilution of pooled plasma as labelled. 
 

The next step was to determine the effects of increasing the incubation times with the 

antigen and conjugated antibody from 1 to 2 hours. For these experiments a pooled 

plasma sample was diluted: 1/10, 1/20, 1/40, 1/80 and 1/100. In addition, an aliquot of 

purified factor D was available (concentration unknown) and this was analysed undiluted 

alongside the diluted plasma samples. Experiments comparing 1 hour with 2 hour 

incubation times for the antigen and conjugated antibody were compared. Both assays 

were stopped after 20 minutes incubation with p-nitrophenol phosphate substrate by the 

addition of 100 µL/well of 4M NaOH and the results are shown in Figure 17. From these 

assays it can be seen that the antibodies were detecting factor D, as the wells incubated 

with the purified factor D returned a high signal, and lengthening the incubation times from 

1 to 2 hours increased the well absorbancies. It was therefore decided to increase the 

incubation periods with both the antigen and conjugated antibody to 2 hours. 

 

Next, experiments comparing the assay performance with and without the blocking step 

were undertaken in which half of the plate was incubated with blocking buffer and half of 

the plate was incubated with diluting buffer to act as control. The results of these 

experiments suggested that the blocking step had no significant impact on the final well 

absorbancies and it was therefore omitted. The SC5b-9 ELISA was found to be improved 

by analysing samples diluted in EDTA-containing buffer (see section 3.15.1) to limit in vitro 
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complement activation. The performance of the factor D ELISA was compared using 

EDTA and non-EDTA containing buffers and was found to be unaffected. It was decided to 

use the EDTA-containing buffer in order that the properdin, factor D and SC5b-9 ELISAs 

could be performed by serially diluting one aliquot of study plasma. 

 
        

-0.024 1.179 0.672 0.380 0.141 0.113 0.826 1 hour 
incubations 0.011 1.142 0.696 0.393 0.121 0.121 0.775 

        
0.017 2.199 1.416 0.755 0.314 0.248 1.203 2 hour 

incubations 0.020 2.049 1.344 0.737 0.305 0.242 1.103 
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Figure 17 - Factor D optimisation assay examining the effects of sample dilution and 
increased incubation times with the antigen and detection antibody 
  

To determine the concentration of factor D in the pooled plasma sample used to generate 

the standards, calibration assays were performed using purified factor D (Quidel). 

Standards were generated using the purified factor D corresponding to factor D 

concentrations of 0.25 µg/mL, 0.5 µg/mL, 1 µg/mL, 2 µg/mL, 4 µg/mL, 8 µg/mL and 16 

µg/mL at a dilution of 1/40. The concentration of factor D in the pooled plasma, diluted 

1/10, 1/20, 1/40, 1/80 and 1/160, was calculated by averaging data from two sets of 

dilutions in two separate assays (2.13 µg/mL). Spiking assays were performed in which the 

equivalent of 2 µg/mL, 4 µg/mL and 6 µg/mL of purfied factor D, at a dilution of 1/40, were 

added to pooled plasma. The assays were performed in duplicate and the average 

recovery of factor D was 88%. 

3.14.2 Final factor D ELISA protocol 

On the day prior to performing the assay, the wells of a 96-well microtitre plate were 

coated with 100 µL of anti-human complement factor D monoclonal antibody diluted 1/500 

with coating buffer. The plates were sealed and placed on a plate shaker at 400 rpm and 

incubated at 4 oC overnight. On the day of the assay the plate and reagents were brought 

to RT. Frozen EDTA test plasma and QC samples, stored at -80 oC prior to assay, were 

defrosted in a water bath pre-warmed to 37 oC and diluted 1/40 in sample diluting buffer 

using a Microlab 500 diluter. The plate contents were discarded and the wells washed 3 

times with 200 µL washing buffer. The wells were loaded with 100 µL of blanks (sample 

diluting buffer), standards, QC’s and samples and the plate sealed and placed on a plate 
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shaker at 400 rpm and incubated at RT for 2 hours. All samples pertaining to an individual 

patient were analysed on the same plate. The contents of the wells were discarded and 

the wells washed 3 times with 200 µL washing buffer. Detection antibody (biotinylated anti-

complement factor D) was diluted 1/4,000 in diluting buffer and 100 µL added to each well. 

The plates were sealed and placed on a plate shaker at 400 rpm and incubated at RT for 2 

hours. The contents of the wells were then discarded and the wells washed 3 times with 

200 µL washing buffer. The wells were loaded with 100 µL streptavidin-alkaline 

phosphatase, diluted 1/500 with diluting buffer, and the plate sealed and placed on a plate 

shaker at 400 rpm and incubated at RT for 1 hour. 

 

During this incubation the substrate solution was made by dissolving 3 tablets of p-

nitrophenol phosphate tablets in 15 mL 1 M diethanolamine solution. The contents of the 

wells were discarded prior to washing 3 times with 200 µL washing buffer. To develop the 

plate, 100 µL of substrate solution was added to each column at 10 second intervals prior 

to placing the plate on a plate shaker at 400 rpm. After 30 minutes the reaction was 

stopped by the addition of 100 µL 4 M NaOH to each well by columns at 10 second 

intervals. The plate was sealed and placed on a plate shaker for 10 minutes prior to 

reading the absorbance on a MRX microplate reader at 405 nm with a reference filter of 

540 nm. The concentration of factor D in each sample was calculated using the Revelation 

software package by estimating the best fit cubic regression curve through the standards. 

Each sample was analysed in duplicate and any sample pair with a CoV of greater than 

10% was repeated. For samples with factor D levels greater than the highest standard, a 

further assay was performed using a fresh serum aliquot analysed at a higher dilution. The 

intra- and inter- assay CoVs for the assay were 3.6% and 9.6% respectively. 

3.15 SC5b-9 ELISA 

3.15.1 Development and optimisation of SC5b-9 ELISA 

The starting point of the SC5b-9 ELISA development was the identification of a suitable 

antibody pair. The capture antibody used was a monoclonal mouse antibody (aE11, Santa 

Cruz Biotechnology Inc.), originally developed by Mollnes et al. [912], and subsequently 

used in ELISAs for measuring SC5b-9 levels in human plasma [913]. This antibody binds 

to a neoantigen formed on the complement component C9 when it is incorporated into the 

SC5b-9 complex which is not present in uncomplexed C9. The conjugated antibody used 

for detection was a biotinylated anti-C6 monoclonal antibody (Quidel Corporation) as 
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recommended by Mollnes (personal communication, 2011). The specificity of using this 

approach to detect SC5b-9 has previously been demonstrated by Mollnes et al. [912].  

 

To determine the optimal antibody dilutions a 96-well microtitre plate was coated with 

100 µL/well of coating antibody at dilutions of 1/1,000, 1/2,000 and 1/3,000 and placed on 

a plate shaker at 400 rpm and incubated at 4 oC overnight. The next day the plate and all 

reagents were brought to RT. After discarding the contents of the plate and washing, the 

wells were incubated for 1 hour with blocking buffer (see Appendix E). The wells were then 

washed and loaded with 100 µL/well of blanks (dilution buffer) and pooled plasma, 

collected in iced citrate, diluted 1/10. After 1 hour incubation the plate was washed again 

and loaded with 100 µL/well of conjugated antibody at concentrations of 1/1,000, 1/2,000 

and 1/3,000. After a further one hour incubation and subsequent plate wash, each well 

was loaded with 100 µL of streptavidin-alkaline phosphatase at a dilution of 1/500 and 

incubated for one hour. After a final wash the plate was developed with p-nitrophenol 

phosphate substrate in 1 M diethanolamine (final concentration 1 mg/mL) and the reaction 

stopped by the addition of 100 µL/well of 4 M NaOH after approximately 1 hour. 

Absorbance was measured at 405 nm with a 540 nm reference filter using an MRX 

microplate reader - see Figure 18. 
   

  Detection antibody concentration 

 1/1,000 1/2,000 1/3,000 

-0.013 0.033 0.017 0.013 0.040 0.029 
1/1,000 

-0.010 0.037 0.023 0.021 0.033 0.042 

0.000 0.032 0.033 0.023 0.039 0.036 
1/2,000 

0.009 0.034 0.033 0.023 0.040 0.039 

0.010 0.037 0.037 0.034 0.043 0.043 
1/3,000 

0.012 0.040 0.043 0.034 0.043 0.043 
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Figure 18 - SC5b-9 optimisation assay to determine optimal concentration of coating 
and detection antibody using 1 hour incubations. There was a low signal to noise ratio 
so the experiment was repeated using greater antibody concentrations. 
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The signal to noise ratio using these concentrations of plasma and antibodies was low, so 

a similar experiment was repeated using greater antibody concentrations of 1/250, 1/500 

and 1/1,000 and plasma dilutions of 1/5 and 1/10. Furthermore the incubation times for the 

antigen and the conjugated antibody were both increased to 2 hours; the results of this 

assay are shown in Figure 19. From these two experiments it was decided to use a 

coating antibody concentration of 1/500 and a detection antibody concentration of 1/1,000, 

in conjunction with the longer incubation times, as this combination seemed to be the best 

compromise between greater signal to noise ratio and lowest antibody concentration and 

hence costs.  
   

  Detection antibody concentration 

 1/250 1/500 1/1,000 

0.010 0.083 0.113 -0.009 0.081 0.125 0.038 0.087 0.122 
1/250 

-0.004 0.086 0.123 0.015 0.089 0.128 0.041 0.088 0.147 

0.007 0.135 0.199 0.027 0.143 0.215 0.047 0.137 0.195 
1/500 

0.008 0.134 0.214 0.029 0.144 0.211 0.040 0.134 0.194 

0.024 0.128 0.148 0.042 0.128 0.168 0.038 0.121 0.140 
1/1,000 

0.032 0.132 0.149 0.040 0.143 0.164 0.041 0.107 0.133 
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Figure 19 - SC5b-9 optimisation assay to determine optimal dilutions of coating and 
detection antibodies using 2 hour incubations. The optimal dilutions were 1/500 for the 
coating antibody and 1/1,000 for the detection antibody. 
 

The next steps in the assay development were to determine the optimal sample dilution 

and to generate a standard curve which could be calibrated and used to determine the 

concentration of SC5b-9 in the study samples. Given that SC5b-9 is only present in low 

concentrations in serum, it was necessary to generate a sample standard with higher 

levels of SC5b-9 which, when diluted, could be used to generate a standard curve. To 

achieve this, a pool of fresh serum was obtained and incubated with 10 mg/mL of 

Zymosan A (Sigma), a glucan prepared from yeast cell walls which is a potent activator of 

complement [913], for 4 hours at 37 oC with frequent mixing. The specimen was then 

centrifuged and aliquots of the zymosan-activated serum (ZAS) supernatant were snap 
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frozen in liquid nitrogen and stored at -80 oC prior to use. Aliquots of the serum were also 

snap frozen in liquid nitrogen without ZAS activation to serve as QC samples. 

 

Following overnight incubation with coating antibody at a concentration of 1/500, a 

microtitre plate was loaded with ZAS, serially diluted as follows: 1/1, 1/2, 1/4, 1/8, 1/16, 

1/32, 1/64, 1/128, 1/256, 1/512, 1/1,024, 1/2,048, 1/4,096, 1/8,192 and 1/16,384, and with 

pooled serum samples diluted 1/2, 1/5 and 1/10. After a 2 hour incubation the plates were 

washed, conjugated antibody added at a dilution of 1/1,000, and the plates incubated for a 

further 2 hours; the remainder of the assay was carried out as detailed previously. The 

absorbancies in the wells containing the lower dilutions of ZAS, i.e. 1/1 to 1/32, exceed the 

maximum absorbance of the plate reader and were not quantified. A graph of the 

absorbance against concentration, plotted on a logarithmic abscissa, for the remaining 

diluted ZAS samples and a best fit curve through the data points is shown in Figure 20. 

From this graph it can be seen that the sample dilutions analysed provided broad 

spectrum coverage across the absorbance spectrum for the plate reader and that there 

was a flattening off of the curve at higher dilutions. In the same assay, pooled serum 

samples were analysed at dilutions of 1/2, 1/5 and 1/10 with mean absorbancies of 0.732 

absorbance units (au), 0.553 au and 0.365 au respectively. Taking these findings together 

suggested that using ZAS diluted in the range 1/256 - 1/16,384 would provide adequate 

coverage of the SC5b-9 concentrations in the pooled serum sample diluted in the range 

1/2 - 1/10.  

 
Figure 20 - Example standard curve using serially diluted zymogen-activated serum 
sample. At higher dilutions, the best fit line through the diluted zymogen-activated serum 
samples can be seen to flatten off. 
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The next optimisation assays performed were designed to establish the optimal time to 

read the plates after the addition of the the p-nitrophenol phosphate substrate. In these 

experiments, the concentration of SC5b-9 in the serum samples was assigned an arbitrary 

value and standards were made by diluting the ZAS as follows: 1/200, 1/400, 1/800, 

1/1,600, 1/3,200, 1/6,400 and 1/12,800. The ELISA was carried out as detailed above and, 

following the addition of the p-nitrophenol phosphate substrate and prior to the addition of 

4 M NaOH stopping solution, the plate was read after 30, 40, 50 and 60 minutes 

incubation. The results of these experiments, shown in Figure 21, revealed that the slope 

of the graph increased, particularly at higher concentrations of SC5b-9, with increasing 

incubation times thus improving the sensitivity of the assay to detect smaller differences in 

SC5b-9 concentrations. It was therefore decided to develop the plates for 60 minutes with 

the p-nitrophenol phosphate substrate prior to reading. 

 
Figure 21 - Graph of absorbance against concentration for the zymosan activated 
serum standard curve following incubation with the substrate for 30, 40, 50 and 60 
minutes. The slope of the graph, particularly at higher SC5b-9 concentrations, increased 
with the length of incubation time. 
 

Experiments comparing the assay performance with and without the blocking step were 

undertaken. The results suggested the blocking step had no significant impact on the 

results and it was therefore omitted. Given the potential for ongoing in vitro complement 

activation following thawing of the sample aliquots prior to analysis, the effect of adding 

EDTA to the sample diluting buffer was investigated. (The presence of EDTA inhibits 

complement by chelating divalent metal ions, principally calcium and magnesium, which 

are required for complement activation [914]). This experiment was performed by loading 

half of an ELISA plate with a ZAS standard curve and normal pool serum (diluted 1/4) with 

EDTA containing buffer (10 mM) and the other half with the same samples diluted in a 
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similar buffer without EDTA. Again, after assigning an arbitrary concentration to the ZAS 

pool, the mean calculated SC5b-9 levels were 26.5% higher in the non-EDTA diluted 

samples suggesting ongoing in vitro complement activation. It was therefore decided to 

use an EDTA-containing buffer for sample dilution. 

 

To determine the concentration of SC5b-9 in the ZAS, an arbitrary concentration was 

assigned to the ZAS pool and 36 samples, previously quantified for SC5b-9 using a 

commercial Quidel ELISA kit and spanning a wide concentration range (11.6 ng/mL to 525 

ng/mL), were analysed on 2 separate assays. An average value for the concentration of 

SC5b-9 in the ZAS was then calculated (220 mg/mL). To examine the ability of the assay 

to detect differences in the SC5b-9 concentrations, in the absence of purified SC5b-9, two 

samples with differing levels of SC5b-9 were quantified for SC5b-9 and mixed in the ratios 

25:75, 50:50, and 75:25. The SC5b-9 concentrations in each of the mixtures were 

measured and found to be 91.5%, 95.0% and 97.1% of the predicted concentrations 

respectively suggesting the ELISA was able to differentiate samples on the basis of SC5b-

9 concentration. As the standard curve flattened off at low concentrations of SC5b-9, it 

was decided to assess the effects of analysing samples at lower dilutions i.e. 1/2. Data 

from these experiments suggested the changes in concentration levels at these lower 

dilutions were markedly non-linear therefore no samples were analysed at a dilution of less 

than 1/4. 

3.15.2 Final SC5b-9 ELISA protocol 

On the day prior to performing the assays the wells of a 96-well microtitre plate were 

coated with 100 µL of anti-human complement C9 monoclonal antibody (aE11) diluted 

1/500 in coating buffer. The plates were then sealed and placed on a plate shaker at 400 

rpm and incubated at 4 oC overnight. On the day of the assay the plate and reagents were 

brought to RT. Frozen EDTA-plasma samples, stored at -80 oC prior to assay, were 

defrosted in a water bath pre-warmed to 37 oC and diluted 1/4 in sample diluting buffer 

using a Microlab 500 diluter. An aliquot of ZAS was diluted with diluting buffer to make 

standards as follows: 1/400, 1/800, 1/1,600, 1/3,200, 1/6,400, 1/12,800, 1/25,600. These 

corresponded to sample concentrations of SC5b-9 of 2200 ng/mL, 1100 ng/mL, 550 

ng/mL, 275 ng/mL, 137.5 ng/mL, 68.8 ng/mL and 34.4 ng/mL respectively after adjusting 

for sample dilution. A fresh aliquot of pooled serum (high QC) and plasma (low QC) were 

diluted 1/4 and analysed on every plate. 
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On the day of the assay, the contents of the wells were discarded and the wells washed 3 

times with 200 µL washing buffer. The wells were loaded with 100 µL of blanks (sample 

diluting buffer), standards, QC’s and samples and the plate sealed and placed on a plate 

shaker at 400 rpm and incubated at RT for 2 hours. All samples pertaining to an individual 

patient were analysed on the same plate. The contents of the wells were discarded and 

the wells washed 3 times with 200 µL washing buffer. Conjugated antibody (biotinylated 

anti-human C6) was diluted 1/1,000 in diluting buffer and 100 µL added to each well. The 

plates were sealed and placed on a plate shaker at 400 rpm and incubated at RT for 2 

hours. The contents of the wells were discarded and the wells washed 3 times with 200 µL 

washing buffer. The wells were loaded with 100 µL streptavidin-alkaline phosphatase 

(diluted 1/500 with diluting buffer) and the plate sealed and placed on a plate shaker at 

400 rpm and incubated at RT for 1 hour. 

 

During this incubation the substrate solution was made by dissolving 3 tablets of p-

nitrophenol phosphate in 15 mL 1 M diethanolamine solution. The contents of the wells 

were discarded prior to washing 3 times with 200 µL washing buffer. To develop the plate 

100 µL of substrate solution was added to each column at 10 second intervals prior to 

placing the pate on a plate shaker at 400 rpm. After 1 hour the reaction was stopped by 

the addition of 100 µL 4 M NaOH to each well by columns at 10 second intervals. The 

plate was placed on a plate shaker for 10 minutes prior to reading the absorbance on a 

MRX microplate reader at 405 nm with a reference filter of 540 nm. The concentration of 

SC5b-9 in each sample was calculated using the Revelation software package by 

estimating the best fit cubic regression curve through the standards. Each sample was 

analysed in duplicate and any pair with a CoV of greater that 10% repeated. Any sample 

with a SC5b-9 below the apparent lower limit of detection for the assay were assigned a 

concentration of 34.4 ng/mL - the lowest standard. For samples with SC5b-9 levels above 

the level of the standard curve, a fresh aliquot of serum was analysed at a greater dilution 

than 1/4. The intra- and inter- assay CoVs for the assay were 5.1% and 9.3% respectively. 

3.16 Turbidimetric fibrin clot structure and function assays 

Turbidimetric techniques were used to measure parameters related to the formation and 

breakdown of plasma-derived fibrin clots in vitro using assays developed for high 

throughput analyses as previously reported [721] and detailed below. All assays were 

performed using fresh frozen citrated plasma samples.  



 91 

3.16.1 Turbidimetric clotting assay 

In 96-well plates (Greiner), 25 µL plasma and 75 µL Tris-buffer were combined in each 

well and clot formation initiated by the addition of 50 µL of an activation mix comprising 

human thrombin (Calbiochem; final concentration 0.03 U/ml) and calcium chloride (final 

concentration 7.5 mmol/L) in Tris-buffer. The activation mix was added to columns of the 

96-well plate on a plate shaker at intervals of 10 seconds. When the activation mix had 

been added to all of the wells, the plate was immediately transferred to an ELx-808 plate 

reader (BioTek Instruments) preheated to 32oC and the absorbance measured at 340 nm 

every 13 seconds for 60 minutes. The temperature of 32 oC was chosen as previous work 

demonstrated the formation of bubbles at 37 oC which interfered with assay interpretation 

(Dr Angela Carter, Personal communication). The time delay between adding the 

activation mix and transferring the plate to the plate reader was recorded and subsequent 

results adjusted accordingly. The resulting time and absorbance data were saved (KC4 

software, BioTek Instruments) and imported into a spreadsheet (Microsoft Excel, Microsoft 

Corporation, USA). The raw data were analysed using bespoke software developed by Mr 

Simon Davy (School of Computing, University of Leeds) [721]. A diagram of the typical 

absorbance-time graph obtained from this software is illustrated in Figure 22, along with 

the calculated turbidimetric clotting assay parameters: lag time (LagC), maximum 

absorbance (MaxAbsC) and clotting rate (CRC). 
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Figure 22 - Clotting assay parameters. Graphical representation of a typical absorbance 
/ time graph obtained from the clotting assay illustrating the measured parameters: 
maximum absorbace (MaxAbsc), lag time (Lagc) and clot rate (CRc). 
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The lag time was defined as the time between the addition of the activation mix and the 

time immediately prior to the exponential increase in absorbance. The maximum 

absorbance was representative of the final clot density and, for the purposes of these 

analyses, was defined as the absorbance value that remained stable for at least 3 

readings (i.e. 39 seconds) after the lag time, corrected for the lag absorbance. A crude 

estimate of the clot rate was obtained by dividing the maximum absorbance by the time 

between the end of the lag phase and the point at which maximum absorbance was 

obtained. The intra- and inter-assay CoVs respectively for each of these variables were: 

lag time: 5.4% and 12.3%, maximum absorbance: 2.0% and 5.3% and clot rate: 4.9% and 

16.8%. 

3.16.2 Turbidimetric fibrinolysis assay 

The method for the fibrinolysis assay was similar to the clotting assay with the addition of 

12.5 ng tPA (Technoclone) per well in the Tris-buffer (final concentration 83 ng/mL). The 

tPA containing buffer was added to columns of a microtitre plate on a plate shaker, pre-

loaded with 25 µL plasma, at 10 second intervals. After exactly 3 minutes, 50 µL of 

activation mix (see section 3.16.1) was added to each column of the plate at 10 second 

intervals. After the activation mix had been added to all of the wells the plate was 

transferred to an ELx-808 plate reader, pre-heated to 32 oC, and the absorbency 

measured at 340 nm every 13 seconds for 60 minutes. After one hour the frequency of the 

absorbency measurements was reduced to every 2 minutes for a further 9 hours. The time 

delay between adding the activation mix and the samples being read by the plate reader 

was recorded and subsequent results adjusted accordingly. Analyses of the raw data were 

undertaken using the bespoke software described in section 3.16.1. In addition to the 

parameters described in 3.16.1, several fibrinolysis parameters were also determined as 

shown in Figure 23. 
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Figure 23 - Fibrinolysis assay parameters. Graphical representation of a typical 
absorbance / time graph obtained from the fibrinolysis assay illustrating the measured 
parameters: lag time (lagL), maximum absorbance (MaxAbsL), clot rate (CRL), Lys50t0, 
Lys50lag and Lys50MA times, lysis rate (LR) and lysis area. 
The 50% lysis point (Lys50) was defined as the time at which the absorbance dropped to 

half the maximum absorbance after correcting for the lag absorbance. Three measures of 

clot fibrinolysis were determined as follows: Lys50t0 - the time from initiation of clot 

formation to Lys50; Lys50lag: the time from the end of the lag phase to Lys50 and Lys50MA: 

the time between reaching maximum absorbance and Lys50. The lysis area was the area 

under the curve, corrected for lag absorbance, taken from the end of the lag phase to the 

point where the absorbance again dropped to the lag absorbance value following clot lysis. 

A crude estimate of the fibrinolysis rate was calculated by dividing the maximum 

absorbance by the time between the maximum absorbance being reached and Lys50. The 

intra- and inter-assay CoVs for the variables calculated in the fibrinolysis assay were as 

follows: lag time: 4.5% and 10.8%, maximum absorbance : 2% and 10.9%, clot rate: 6% 

and 21.5%, Lys50t0: 3.4% and 6.6%, Lys50lag: 5.4% and 9.7%, Lys50MA: 9.5% and 15.9%, 

lysis rate: 16.0% and 32.9% and Lysis area: 16.0% and 27.8%. 

 

For both assays a sample of pooled plasma was analysed on every plate for quality 

assurance and to determine the intra-assay CoV. All samples were analysed in duplicate 

and a mean value for each variable calculated. Prior to accepting the calculated values for 

a given sample, the absorbance-time graphs were inspected visually to ensure the 

computer algorithm was interpreting the data correctly. Results from sample pairs with 
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greater than 10% discrepancy in the maximum absorbance or Lys50t0 variables were 

disregarded and the assay repeated using another fresh frozen citrate plasma sample. 

These variables were chosen for internal quality control as previous experience with the 

assay had revealed them to be the most reproducible and informative measurements. 

3.17 Statistics 

3.17.1 Overview of statistical methods used 

All variables were assessed for conformity to an approximate normal distribution through a 

combination of visually inspecting frequency histograms and Q-Q plots, and calculating the 

sample skewness and kurtosis. For variables which approximated a normal distribution 

parametric tests were used otherwise non-parametric testing was employed. Normally 

distributed variables were reported as the mean [±standard error of the mean(SEM)] and 

non-normally distributed variables values reported as median [inter-quartile range(IQR)] 

unless otherwise stated. All statistical analyses were performed using either Stata version 

12.1 (StataCorp, Texas) or SPSS version 16.0 (IBM Corporation, New York) and graphs 

were drawn using GraphPad Prism version 6.02 (GraphPad Software Inc., California). A 

p<0.05 was considered significant. 

3.17.2 Power calculations 

Based on the standard deviation of the log transformed ERI at baseline for the study 

population, a sample size of 118 patients in each group would detect a 25% reduction in 

the ESA dose with a power of 80% at a significance level 5%. Based on the standard 

deviation and differences observed in the measured maximum absorbance in a previous 

study using the same turbidimetric clotting assay in subjects with and without the 

metabolic syndrome [721], a sample size of 50 in each group would have an 80% power to 

detect a 10 percent difference at the 5% level. 

3.17.3 Baseline between-group comparisons 

To examine for differences in the continuous variables between the study groups, pairwise 

testing using either an unpaired t-test or a Mann-Whitney U test was performed depending 

on the underlying distribution. Categorical variables were compared using a Chi-squared 

test or Fisher’s exact test as appropriate.  
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3.17.4 Analysis of baseline data 

Initially bivariate analyses were performed in which the Spearman’s rank correlation 

coefficients for the independent variables and the dependant variable of interest were 

calculated looking for significant monotonic relationships. For normally distributed 

dependent variables, the effect of categorical independent variables were tested using 

either an independent t-test (2 groups) or one way analysis of variance (ANOVA) (>2 

groups) with Bonferroni post hoc testing if the omnibus ANOVA test was significant. For 

non-normally distributed dependent variables, the corresponding statistical tests used 

were a Mann-Whitney U test (2 groups) or a Kruskal-Wallis test (>2 groups) followed by 

post hoc Mann-Whitney U testing with Bonferroni correction for multiple comparisons if the 

omnibus Kruskal-Wallis test was significant. 

 

Given the large number of predictor variables, multiple regression analysis was performed 

to identify the independent predictors of the ERI, oxidative stress, inflammation and the 

fibrin clot parameters in the dataset. All predictor variables associated with the dependent 

variable at a significance level of p<0.2 in unadjusted analyses, as a conservative cut-off 

suggested by Altman [915] and others [916], were included in the initial regression model. 

Again, given the large number of predictor variables and the exploratory nature of these 

analyses, a backwards stepwise variable selection procedure was used to construct a 

more parsimonious regression model and to identify which were the key independent 

determinants of each of the variables studied. All models were assessed for 

multicollinearity by reviewing correlation matrices of the variables included in the final 

model and inspection of the variance inflation factors (VIFs). As regression analysis can be 

sensitive to outliers, the analyses were initially performed on the whole dataset. A scatter 

plot of the residuals versus fitted values was reviewed for each model looking for a 

homoscedastic distribution of the errors and for outlying data points. If the distribution plot 

of errors was heteroscedastic, the dependent variable was transformed and the analyses 

repeated. If the dataset appeared to include influential outlying cases, the analysis was 

repeated after excluding these cases as specified in the text. In these situations, an 

objective method for identifying cases with outlying values for the dependent variable was 

adopted. A data point was considered to be an outlier if it was outside of 3 standard 

deviations from the mean for variables, raw or transformed, which approximated a normal 

distribution or if it was less than 1.5 times the interquartile range below the 25th percentile 

or greater than 1.5 times the interquartile range above the 75th percentile for non-normally 

distributed variables. 
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A number of the samples had analyte levels outside of the assay range (i.e. fibrinogen, 

SC5b-9 and Ox-LDL); in these cases the corresponding upper or lower limit of the assay 

was substituted for samples that were above or below the assay range respectively. For 

these variables, testing for significant associations with the predictor variables at baseline 

was performed by dividing the dataset into quartiles, such that all of the low or high 

substituted values were grouped together. The value of each of the continuous predictor 

variables were then compared across the quartiles by performing an ANOVA or Kruskall-

Wallis analysis with post hoc testing as already described for normally or non-normally 

distributed continuous variables respectively. Categorical variables were compared 

between quartiles using either a Chi-squared of Fishers exact test as appropriate. To 

examine for the independent predictors of these variables, ordinal logistic regression was 

employed. The quartiles were modelled using a backwards stepwise variable selection 

procedure with all of the predictor variables associated with the independent variable at a 

significance of p<0.2 included in the initial model as already described. All models were 

tested to ensure that the Brant test of parallel regression assumption was met. 

3.17.5 Analysis of longitudinal data 

Between groups comparisons at a given time point were performed using either the 

independent sample t-test or the Mann-Whitney U test depending on the distribution of the 

variable. Baseline and 12 month values were compared within groups using either the 

paired sample t-test or the Wilcoxon-signed ranks test for normally or non-normally 

distributed variables respectively. To further assess the influence of time and study group 

allocation on the dependant variable of interest, repeated measures ANOVA were 

performed on raw or transformed data which approximated a normal distribution. For 

variables which were not normally distributed, the following transformations were 

performed and the data re-examined for normality: logarithmic, reciprocal, square-root and 

exponential. Logarithmic transformations were not attempted on datasets which contained 

0 (e.g. ERI). For variables which did not approximate a normal distribution, either 

untransformed or following transformation, changes over time were assessed using the 

non-parametric Friedman’s test. To graph the changes in the variables across study vistis, 

plots of the mean and 95% confidence interval were used. In the case of transformed 

variables, the confidence intervals were determined on the transformed dataset and back 

transformed to construct the graphs as advocated by Bland and Altman [917]. For 

variables which did not approximate a normal distribution, either before or after 

transformation, box-and-whisker plots were constructed with the whiskers representing the 

5th and 95th centiles. 
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3.17.6 Analysis of clinical outcome data 

For each of the clinical outcome variables considered, i.e. mortality, CV events, infective 

episodes and dialysis access events, the associations with the categorical variables in the 

baseline dataset were explored by constructing Kaplan-Meier curves and calculating the 

logrank test statistic. The associations with the continuous variables were explored initially 

by comparing the event rates after dividing the study cohort into tertiles. This was 

undertaken to examine for non-linear associations which would invalidate Cox-regression 

analyses. Provided there was no evidence of a non-linear association, univariate Cox-

regression analysis was then performed with each of the continuous variables to calculate 

the hazard ratio (HR) and 95% confidence interval. The effect of dialysis with the VE 

membrane was examined by constructing a Kaplan-Meier curve for the two study groups 

and calculating the logrank test statistic. All analyses were right-censored.  
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Chapter 4 : Patient characteristics and follow up 

4.1 Patient recruitment, follow-up and baseline characteristics 

A total of 500 patients were screened for study inclusion and 260 patients were enrolled as 

shown in Figure 24. The main reason for ineligibility was evidence of active inflammation 

at baseline and, of the eligible patients, the main reason for non-participation in the study 

was declined consent. Out of the 260 patients starting the study, 215 completed all 3 study 

visits (see Figure 25). The major reasons for study discontinuation were renal 

transplantation or death. Anaemia endpoint data were available for 220 patients (116 

controls, 104 VE group) as 5 patients completed 12 months on the study but did not 

undergo the final 12-month blood sampling. Reasons for this were transplantation (n=2), 

death (n=1), withdrawal from dialysis (n=1) and protocol violation for more than two weeks 

dialysis at another centre (n=1). 

 

Following randomisation, a greater number of patients were allocated to the control arm of 

the study (137 vs 123). Patients were well matched in terms of demographics, dialysis 

parameters, medications and comorbidities with the exception of an excess of patients 

with diabetes (35% vs 23%, p<0.05) and a higher median post-dialysis weight (73.4 vs 

69.7 kg, p<0.05) in the VE group (see Table 4). There were no significant differences in 

the biochemisty and lipid profiles between the study groups at baseline (see Table 5). 
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Figure 24 - Patient recruitment and screening. Of the 500 patients screened, 260 were 
enrolled in the study. 
 



 100 

 

 

260
Patients

137
Control

123
Vitamin E

2Switched to larger 
dialyser

10

4Died

4Transplanted

1Switched to larger 
dialyser

2Died

2Protocol violation*

1Peritoneal dialysis

10

1Home 
haemodialysis

3Transplanted

127
6 month study visit

113
6 month study visit

1Moved out of region

12

4Died

7Transplanted

1Moved out of region

12

4Died

7Transplanted 4Transplanted

2Dialysis withdrawal

1Poor dialysis 
compliance

13

1Protocol violation*

5Died

115
Completed study

100
Completed study

 
Figure 25 - Patients completing the study and reasons for discontinuation by 
treatment group. (*Patients dialysed at another centre for >2 weeks). 
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Table 4 - Comparison of baseline characteristics between study groups.  
  Control Vitamin E p 
N 137 123  
Sex   0.58 
 Male 80 (58%) 76 (62%)  
 Female 57 (42%) 47 (38%)  
Age (yrs) 64.0 (±1.3) 62.6 (±1.5) 0.50 
Ethnicity   0.96 
 White 106 (77%) 93 (76%)  
 Asian 24 (18%) 22 (18%)  
 Black 6 (4%) 7 (6%)  
 Other 1 (1%) 1 (1%)  
Smoking history   0.21 
 Never smoked 56 (41%) 62 (50%)  
 Current smoker 35 (26%) 22 (18%)  
 Ex-Smoker 46 (34%) 39 (32%)  
Time on renal replacement therapy  (yrs) 3.9 [1.8 – 7.6] 3.2 [1.2 – 6.6] 0.18 
Dialysis access at baseline n (%)   0.13 
 Fistula 109 [80%] 109 [89%]  
 Dialysis Catheter 25 [18%] 13 [11%]  
 Graft 3 [2%] 1 [1%]  
Pre-dialysis systolic blood pressure (mmHg) 135 [±2.1] 139 [±2.2] 0.18 
Pre-dialysis diastolic blood pressure (mmHg) 71 [±1.2] 72 [±1.2] 0.75 
Post dialysis weight (kg) 69.7 [56.8 – 78.9] 73.4 [61.2 – 87.0] 0.03 
Dialysis dose (urea reduction ratio) 0.76 [±0.01] 0.75 [±0.01] 0.30 
Cause of ESRF n (%)   0.54 
 Diabetes 27 (19.7%) 30 (24.4%)  
 Autosomal dominant polycystic kidney disease 9 (6.6%) 9 (7.3%)  
 Chronic pyelonephritis 10 (7.3%) 8 (6.5%)  
 Glomerulonephritis 30 (21.9%) 16 (13%)  
 Hypertension 14 (10.2%) 10 (8.1%)  
 Renal vascular disease 12 (8.8%) 8 (6.5%)  
 Other 16 (11.7%) 19 (15.4%)  
 Unknown 19 (13.9%) 23 (18.7%)  
Co-morbidity n (%)    
 Diabetes 31 (22.6%) 43 (35.0%) 0.03 
 Ischaemic heart disease 43 (31.4%) 31 (25.2%) 0.27 
 Peripheral vascular disease 37 (27.0%) 34 (27.6%) 0.91 
 Left ventricular dysfunction 11 (8%) 13 (10.6%) 0.48 
 Malignancy 9 (6.6%) 8 (6.5%) 0.98 
 Systemic collagen disease 9 (6.6%) 3 (2.4%) 0.11 
 Other significant pathology 32 (23.4%) 24 (19.5%) 0.45 
 Overall Score 1 (0 – 2) 1 (0 – 2) 0.94 
Drugs at baseline n (%)    
 ACEi / A2RB 41 (29.9%) 42 (34.1%) 0.47 
 Β-blockers 26 (19%) 29 (23.6%) 0.37 
 Statins 79 (57.7%) 68 (55.3%) 0.70 
 Aspirin 56 (40.9%) 61 (49.6%) 0.16 
 Clopidogrel 9 (6.6%) 11 (8.9%) 0.47 
 Dipyridamole 0 3 (2.4%) 0.07 
 Warfarin 12 (8.8%) 4 (3.3%) 0.07 
 Sulphonylureas 5 (3.6%) 8 (6.5%) 0.29 
 Insulin 26 (19%) 28 (22.8%) 0.45 
Data presented as mean [±SEM] or median [IQR] unless stated. A2RB: Angiotensin II receptor 
blocker; ACEi: Angiotensin converting enzyme inhibitors. 
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Table 5 - Baseline biochemistry and lipid profiles. 
  Control Vitamin E p 
Biochemistry    
 C-reactive protein (mg/L) 7.1 [2.9 - 14.4] 5.6 [1.6 - 17.9] 0.29 
 Albumin (g/L) 38 [±0.4] 38 [±0.4] 0.97 
 Calcium (mmol/L) 2.38 [±0.02] 2.39 [±0.02] 0.63 
 Phosphate (mmol/L) 1.49 [±0.04] 1.51 [±0.05] 0.75 
 Parathyroid hormone (pmol/L) 21 [12 - 39] 23 [9 - 44] 0.62 
 Bicarbonate (mmol/L) 21.9 [±0.2] 22.0 [±0.2] 0.81 
 HbA1C (%) 7.7 [±0.3] 7.4 [±0.2] 0.42 

Lipid profile    
 Cholesterol (mmol/L) 3.9 [±0.1] 4.0 [±0.1] 0.23 
 Low-density lipoprotein (mmol/L) 2.0 [±0.1] 2.2 [±0.1] 0.14 
 High-density lipoprotein (mmol/L) 1.2 [±0.0] 1.1 [±0.0] 0.56 
 Triglycerides (mmol/L) 1.4 [1.1 - 2.0] 1.4 [1 - 2.2] 0.94 

Data presented as mean [±SEM] or median [IQR] 

4.2 Dialyser adherence 

Dialyser adherence was monitored throughout the study as detailed in section 3.7.3 and a 

summary of the dialyser monitoring checks for each dialysis unit by study arm is provided 

in Table 6. None of the units fell below the 95% adherence standard at any of the audit 

visits and the overall adherence in both treatment groups was 98.8%.  

 

Table 6 - Results of dialyser adherence monitoring. 

%correct (Number of sessions audited) Dialysis unit 
Control Vitamin E TOTAL 

Frank Parsons Unit, Seacroft Hospital 99.9% (1411) 97.4% (2010) 98.5% (3421) 

Ward 55, St James’s Hospital 99.9% (1226) 96.2% (1129) 98.0% (2355) 

Beeston Dialysis Unit 100% (1207) 99.6% (427) 99.9% (1634) 

Dewsbury Dialysis Unit 99.6% (734) 97.6% (1137) 98.3% (1871) 

Wakefield Dialysis Unit 99.9% (929) 99.8% (580) 99.9% (1509) 

Huddersfield Dialysis Unit 99.7% (867) 96.2% (541) 98.4% (1408) 

Halifax Dialysis Unit 100% (623) 99.1% (736) 99.5% (1359) 

B-ward, Seacroft Hospital 100% (731) 97.5% (427) 99.1% (1158) 

Ward 53, St James’s Hospital 100% (60) 96.3% (116) 97.8% (176) 

TOTAL 99.9% (7788) 97.6% (7103) 98.8% (14891) 
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4.3 Water quality data 

4.3.1 Microbiology data 

As part of routine clinical care, the quality of the water used to generate the dialysate was 

monitored regularly at each dialysis unit; the results of these tests were obtained 

retrospectively after study completion. Figure 26 shows the bacterial growth and endotoxin 

count for each of the dialysis units at the time the study samples were taken, along with 

the median ERI, CRP and Ox-LDL levels and the mean C3 levels. It can be seen that 

there was significant variation between the units in terms of the water quality but this did 

not appear to be reflected in the ERI, CRP, Ox-LDL levels or C3 levels. Additionally, the 

bacterial count at Dewsbury at the time of the baseline and 12 month study visit, the 

endotoxin levels on wards 55 and 53 at baseline, and at Dewsbury and Huddersfield for 

both the baseline and 6-month study visits exceed the Quality of Dialysis Fluid for 

Haemodialysis and Related Therapies (BS ISO 11663_2009) recommended limits. (These 

limits are a bacterial count of <100 colony forming units per mL and an endotoxin 

concentration of <0.25 endotoxin units per mL). No water quality data were available from 

wards 55 and 53 at the time of the 6 month study visit as the main water treatment plant 

was being replaced and all patients were dialysed using individual reverse osmosis units 

fed from the main hospital water supply. 

4.3.2 Chlorine levels 

Figure 27 shows the results of the chlorine levels from the routine weekly water tests for 

the various units along with the ERI, haemoglobin and the bilirubin levels as a crude 

measure of haemolysis, the principal complication of excess chlorine in the dialysis water 

supply [918]. No data on chlorine levels were available for the 6-month sampling period at 

ward 55 or ward 53 as the dialysis unit was undergoing replacement of the water plant and 

all patients were dialysing via individual reverse osmosis units; data were also unavailable 

for the 12-month sampling period for the Wakefield dialysis patients. The Quality of 

Dialysis Fluid for Haemodialysis and Related Therapies (BS ISO 11663_2009) 

recommends a maximum concentration of chlorine in water used for dialysis is <0.1 mg/L. 

On 2 occasions the levels of chlorine in the dialysis water breached this standard: during 

the baseline sampling at Huddersfield and the 6-month sampling at B-ward. However, the 

levels were only marginally above the standard and not associated with any evidence of 

haemolysis on the basis of the parameters examined. 
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Figure 26 - Bacterial and endotoxin counts, Ox-LDL levels, ESA resistance index 
(ERI), C3 and CRP levels grouped by dialysis unit at the time of the baseline, 6- and 
12-month study visits. The bacterial count at Dewsbury at the time of the baseline and 
12 month study visit, the endotoxin levels on wards 55 and 53 at baseline and at 
Dewsbury and Huddersfield for both the baseline and 6-month study visit exceed the BS 
ISO 11663_2009 recommended limits. 
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Figure 27 - Chloride levels, ESA resistance index (ERI), bilirubin and haemoglobin 
levels grouped by dialysis unit at the time of the baseline, 6- and 12-month study 
visits. At the time of the baseline sampling at Huddersfield and the 6-month sampling at 
B-ward the chlorine levels exceed the BS ISO 11663_2009 recommended standard. 
 

4.4 Discussion 

A total of 260 patients were recruited and 215 completed 12-months in the study and all 3 

study visits. In terms of patient characteristics, both groups were well matched with the 

exception of an excess of patients with diabetes and a higher median post dialysis weight 

in the VE group. There were no significant inter-group differences in the baseline 

biochemical and lipid parameters measured. One of the main exclusion criteria was the 

presence of active inflammation at baseline, defined as a CRP > 50 mg/L as others have 

done [919]. This approach was taken as the levels of inflammation in patients with 

significant inflammation at baseline would be anticipated to reduce. It would therefore be 

difficult to discern in these patients if any reductions in inflammation were attributable to 

the use of the VE-bonded membrane or the results of changes to the factors which were 

contributing to the inflammation. Given that all of the endpoints in this study, namely ESA 

requirements, oxidative stress, fibrin clot structure and function and inflammation itself, 

would be influenced by the presence of active inflammation this approach was adopted. 
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The principal reasons for study discontinuation were patient death or renal transplantation 

and a detailed analysis of the patient outcomes are presented in Chapter 9. 

 

The results of the dialyser adherence audits suggested a high level of overall compliance 

with the study protocol, thus permitting a meaningful evaluation of the VE membrane. The 

adherence was higher in the control group, as may have been anticipated, because the 

dialysers used in the control arm were the standard dialysers in use by the units, both prior 

to and during the study, hence there was a greater chance of a study patient being 

dialysed with a control membrane rather than vice versa. The quality of the water used for 

dialysis at the various units was broadly in keeping with the BS ISO 11663_2009 (Quality 

of dialysis fluid for haemodialysis and related therapies) recommended guidelines with the 

notable exceptions of high endotoxin levels in 3 of the units at various points during the 

study. However all LTHT dialysis machines were fitted with endotoxin filters and no 

temporal relationships between the excursions in endotoxin levels and either inflammatory 

markers or ERI were observed, suggesting no clinically relevant sequelae. 

 

It can be seen that in the present study a large number of patients were recruited and 

followed for 12-months. Consequently this study allowed meaningful investigation into the 

determinants of ESA-resistance, oxidative stress, inflammation, fibrin clot structure and 

function and clinical outcomes in a prevalent, non-inflamed UK HD population in addition 

to examining the effects of HD with VE-bonded dialysis membranes on these parameters. 
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Chapter 5 : Anaemia 
As discussed in section 1.3, anaemia is frequently encountered in HD patients and several 

studies have reported an association between greater ESA requirements and mortality 

[50-52]. It still remains unclear, however, whether this association is a consequence of the 

higher ESA doses themselves or the factors which render patients ESA resistant and 

hence requiring of higher ESA doses. Many of the factors which are known to increase 

ESA requirements, such as inflammation and oxidative stress, have also been implicated 

in the development of CV disease. Therefore interventions aimed at improving these 

factors, such as dialysis with a VE-bonded membrane in the present study, may both lower 

the ESA requirements, with their potential for harm and significant attendant healthcare 

costs, and improve patient outcomes. In this chapter, the significant determinants of ESA 

resistance in the study cohort at baseline were examined prior to evaluating the effects of 

12 months HD with VE-coated polysulfone membranes. 

5.1 Determinants of baseline ESA resistance index 

Table 7 and Table 8 detail the results of the bivariate analyses examining for the 

significant determinants of ERI at baseline. The ERI was negatively correlated with length 

of time on renal replacement therapy and bicarbonate levels, and positively correlated with 

systolic blood pressure and CRP (see Table 7). The ERI was also higher in females, 

Blacks compared to Caucasians and in patients dialysing with CVCs (see Table 8). The 

ERI did not differ significantly when patients were compared under the broad categories of 

diabetes, ischaemic heart disease, malignancy, peripheral vascular disease or left 

ventricular dysfunction; similarly comorbidity score, as defined in section 3.7.1, was not 

correlated with ERI (r=0.04; p=0.52). 
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Table 7 – Determinants of ESA resistance index at baseline: continuous variables. 
  n r p 
Patient factors    
 Age 260 0.02 0.80 
 Pre-dialysis systolic blood pressure 260 0.12 0.046 
 Pre-dialysis diastolic blood pressure 260 0.03 0.64 
Dialysis factors    
 Time on renal replacement therapy 260 -0.19 0.002 
 Urea reduction ratio 260 -0.11 0.08 
Laboratory parameters    
 Ferritin 260 0.08 0.22 
 CRP 260 0.15 0.02 
 Albumin 260 0.04 0.50 
 Cholesterol 259 0.03 0.69 
 High-density lipoprotein 259 -0.07 0.29 
 Low-density lipoprotein 254 0.00 1.0 
 Triglycerides 259 0.02 0.75 
 Bicarbonate 260 -0.14 0.02 
 Calcium 260 0.00 0.99 
 Phosphate 260 0.07 0.25 
 Parathyroid hormone 248 0.01 0.92 
 HbA1c 72 -0.03 0.79 

r: Correlation coefficient 
 

Multivariate regression analysis modelling the baseline ERI using a backwards stepwise 

variable selection procedure and the variables listed in Table 7 and Table 8 with a 

significance level of p<0.2, as described in section 3.17.4, was carried out. This indicated 

that an increased ERI was independently associated with higher CRP levels, female sex, 

lower dialysis dose and was higher in Blacks compared to Asians or Caucasians. The final 

model had an adjusted-R2 of 0.12 indicating that the model explained 12% of the variance 

in the baseline ERI. Review of the residual versus fitted regression diagnostic plot, 

however, highlighted a number of cases with extreme values. A total of 9 cases fulfilled the 

a priori criteria for having an outlying high ERI value (see section 3.17.4); no cases fulfilled 

the criteria for having outlying low values. Repeating the modelling procedure after 

excluding these 9 cases indicated an independent positive association between the ERI 

and CRP levels, lower dialysis dose and female sex, but did not retain the variable coding 

for ethnicity. The adjusted-R2 for this model was 0.06 indicating that this final model 

explained 6% of the variance in the baseline ERI for this subset of patients. 
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Table 8 - Determinants of ESA resistance index at baseline: categorical variables. 
   

n 
ERI 

 (IU/wk/kg/g/dL Hb) 
 Median [IQR] 

 
p 

Patient factors: Sex Male 156 3.92 [2.02 - 7.50] <0.05 
 Female 104 5.19 [2.74 - 8.49]  

Ethnicity Caucasian 199 3.94 [2.11 - 7.36] 0.02† 
 Asian 46 5.25 [2.73 - 7.67]  
 Black 13 7.82 [4.33 - 17.1]  
 Other* 2 8.42 [4.36 - 12.5]  

Smoking history Never  118 4.90 [2.70 - 7.86] 0.18 
 Current  57 3.42 [2.03 - 6.27]  

 Ex-smoker 85 4.90 [2.14 - 7.86]  
Dialysis access Fistula 218 4.10 [2.12 - 7.37] 0.02 

 Catheter 38 6.71 [3.42 - 10.7]  
 Graft* 4 4.35 [0.60 - 7.40]  

Co-morbidities: Diabetes Yes 74 5.16 [2.48 - 7.54] 0.40 
 No 186 4.14 [2.17 - 7.78]  

Ischaemic heart disease Yes 74 4.69 [2.03 - 7.54] 0.87 
 No 186 4.30 [2.30 - 7.81]  

Malignancy Yes 17 5.29 [3.73 - 10.9] 0.15 
 No 243 4.36 [2.17 - 7.61]  

Peripheral vascular disease Yes 71 4.62 [1.92 - 7.81] 0.89 
 No 189 4.36 [2.50 - 7.62]  

Left ventricular dysfunction Yes 24 4.09 [1.13 - 8.01] 0.35 
 No 236 4.56 [2.38 - 7.62]  

Drugs: ACEi / A2RBs / DRI Yes 83 4.83 [2.42 - 7.82] 0.55 
 No 177 4.54 [2.10 - 7.65]  

β-blockers Yes 55 5.20 [3.41 - 7.82] 0.07 
 No 205 4.12 [2.09 - 7.65]  

Statins Yes 147 4.36 [2.02 - 7.31] 0.14 
 No 113 5.04 [2.76 - 7.96]  

Aspirin Yes 117 4.83 [2.35 - 8.02] 0.69 
 No 143 4.43 [2.15 - 7.36]  

Clopidogrel Yes 20 5.25 [3.55 - 6.79] 0.55 
 No 240 4.39 [2.17 - 7.80]  

Dipyridamole Yes 3 6.33 [2.00-11.12] 0.61 
 No 257 4.54 [2.28 - 7.65]  

Warfarin Yes 16 5.98 [1.89 - 9.38] 0.48 
 No 244 4.49 [2.27 - 7.62]  

Sulphonylureas Yes 13 493 [1.23 - 7.02] 0.64 
 No 247 4.54 [2.29 - 7.76]  

Insulin Yes 54 5.48 [2.97 - 8.25] 0.16 
 No 206 4.16 [2.17 - 7.61]  

* Excluded from statistical analysis owing to small group size; †Caucasians vs Blacks on post 
hoc testing. ACEi: Angiotensin converting enzyme inhibitors; A2RBs: Angiotensin II receptor 
blockers; DRI: Direct renin inhibitors 
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5.2 Temporal changes in anaemia parameters and the effects 

of vitamin E 

The baseline anaemia parameters are shown for both groups in Table 9. The unadjusted 

ESA dose was significantly higher for patients in the VE group. However patients in the VE 

group had a higher median post dialysis weight, and the ESA dose and weight were 

significantly correlated (r=0.12, p<0.01). Therefore the weight adjusted ESA doses were 

compared between study groups and found not to differ. There were no significant 

differences between the groups in the markers of iron status, ferritin and red cell 

hypochromasia, nor in the doses of intravenous iron administered.  

 

Table 9 - Comparison of the baseline anaemia parameters between study groups. 

 Control Vitamin E p 
n 137 123  
Haemoglobin (g/dL) 11.7 [±0.1] 11.4 [±0.1] 0.09 
Mean corpuscular volume (fl) 97 [±0.6] 96 [±0.5] 0.32 
Red cell hypochromasia (%) 7.2 [±0.6] 6.5 [±0.6] 0.47 
Packed cell volume (%) 37 [±0.4] 36 [±0.4] 0.26 
Darbepoetin alfa dose (µg/wk) 20 [7.5 - 30] 20 [10 - 40] 0.049 
Weight (kg) 69.7 [56.8 - 78.9] 73.4 [61.2 - 87.0] 0.03 
Weight adjusted Darbepoetin alfa 
dose (µg/kg/wk) 0.25 [0.13 - 0.40] 0.28 [0.14 - 0.45] 0.16 

ESA resistance index (ERI) 
(IU/wk/kg/g/dL Hb) 3.96 [3.45 - 4.96] 5.06 [2.33 - 8.09] 0.13 

Patients not requiring ESA at baseline 13 [9.5%] 8 [6.5%] 0.38 
Ferritin (µg/L) 490 [±20] 460 [±19] 0.26 
Iron sucrose dose (mg/week) 25 [25 - 50] 25 [25 - 50] 0.24 

Data presented as mean [±SEM] or median [IQR]; ESA: Erythropoiesis stimulating agent; 
Hb: Haemoglobin; wk: week. 
 

5.2.1 12-month changes in haemoglobin and ferritin levels  

Figure 28 shows the mean monthly haemoglobin concentrations for study patients. 

Throughout the study period, the mean haemoglobin levels in both groups were centred on 

the mid-point of the haemoglobin target range: 11.5 g/dL (see section 3.8.1). There were 

no significant differences in the mean haemoglobin levels between the groups at baseline 

(p=0.09) or 12 months (p=0.98). Pairwise comparisons of the mean baseline and 12 month 

haemoglobin levels revealed no significant differences in either the control group (p=0.12) 
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or the vitamin E group (p=0.64). Additionally, a repeated measures analysis found no 

significant effect of time (p=0.44), study group (p=0.33) or significant interaction between 

time and study group (p=0.38) on the haemoglobin concentration indicating the 

haemoglobin levels did not change significantly over 12 months and there was no effect of 

dialysis with the VE membranes. 

 

 
Figure 28 - Monthly mean haemoglobin concentrations (±95% CI) for the two study 
groups. There were no significant differences between the two groups with the 
haemoglobin levels centred on the midpoint of the target range: 11.5 g/dL. 
 

There were no significant differences in the mean ferritin levels at baseline (p=0.26) or 12-

months (p=0.50), nor when the 12-month changes in ferritin levels were compared 

between study groups (p=0.66). The mean ferritin levels increased during the study period 

(p for trend <0.001) but there was no effect of study group (p=0.88) nor significant 

interaction between study group and time (p=0.57) as shown in Figure 29. The LTHT 

assay used for measuring ferritin levels was changed shortly after the study was begun 

and the new assay reported approximately 30% higher ferritin levels (Dr Mike 

Bosomworth, Head of Blood Sciences, LTHT, personal communication 2010) to likely 

explain the significant increasing trend in the ferritin levels observed; the wide inter-assay 

variability of ferritin assays has been reported previously [920]. Changing the ferritin assay 

resulted in the gradual increase in the mean ferritin among study patients, as shown in 

Figure 29, rather than an abrupt change. This is a consequence of the staggered study 

commencement times for patients, spanning an approximate 5 month period, and the fact 
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that it was not introduced for all patients at the same time. Thus the length of time that 

patients had been on the study at the time the new assay was introduced varied and the 

proportion of patients undergoing ferritin determinations with the new assay increased as 

the study progressed. 
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Figure 29 - Mean monthly ferritin concentrations (±95% CI) for the two study groups. 
The ferritin levels increased significantly over time, likely as a consequence of a change in 
the ferritin assay. There was no differential effect of dialysis with the VE-bonded 
membrane. 
 

A comparison of the number of units of blood transfused into patients during the study 

revealed no statistical differences between groups, either in the number of patients 

receiving a transfusion (VE: 6 vs Control: 7 patients, p=0.93) or the total number of units of 

blood transfused (VE: 35 vs Control: 23 units of blood, p=0.43). In the VE group, one 

patient received 11 units and a second patient received 10 units which explained the non-

statistically significant discrepancy in the total number of units transfused despite a similar 

proportion of patients receiving a transfusion.  

5.2.2 12-month changes in ESA resistance index 

Figure 30 displays the monthly ERI for the two study groups. There were no significant 

differences in the median ERI between the groups at baseline (p=0.13) or at 12-months 

(p=0.20), nor any significant differences between the median baseline and 12 month ERI 

in either the control (p=0.30) or VE (p=0.60) groups. Similarly a comparison of the change 
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in ERI at 12-months from baseline found no statistically significant difference between the 

control and VE groups (p=0.08) as shown in Figure 31. 
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Figure 30 - Box and whisker plot of the monthly ERI by study group. There were no 
significant differences between the groups nor any significant changes over time within 
either group. 
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Figure 31 - Comparison of the change in ERI over 12 months between groups 
showing no significant difference. (*ΔERl = ERI12months - ERIbaseline) 
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Data from the two UK Renal Registry Reports, which collate data from the majority of renal 

units in the UK, conducted immediately prior to [921] and during [4] the study period, 

indicated that both the mean and median ESA doses for LTHT dialysis patients were the 

lowest in the country, despite haemoglobin levels close to the national median; thus 

suggesting low levels of ESA resistance in LTHT dialysis patients. It was therefore decided 

to perform post hoc subgroup analysis after stratifying patients into tertiles of ERI at 

baseline to determine if there was a differential effect of VE for those patients with a higher 

ERI at the start of the study. Table 10 shows the baseline and 12-month ERI data stratified 

by tertiles of ERI at baseline and study group. A chi-squared analysis of the number of 

patients from the two study groups within each tertile of ERI at baseline was not 

statistically significant (p=0.18) suggesting an even distribution. 

 

Table 10 - Baseline and 12 month ESA resistance indices for study patients, 
stratified by ERI at baseline and study group. 

  BASELINE  12 MONTHS  

  n ERI 
(IU/wk/kg/g/dl Hb)  n ERI 

(IU/wk/kg/g/dl Hb) p* 

Control 39 9.45 [7.62 - 12.3]  31 8.14 [4.44 - 15.6] 0.41 Highest 
tertile Vitamin E 48 9.28 [7.70 - 12.5]  41 7.70 [5.34 - 12.7] 0.01 

 p†  0.72   0.60  

Control 50 4.40 [3.53 - 5.45]  45 4.04 [2.60 - 6.02] 0.87 Middle 
tertile Vitamin E 36 4.70 [3.83 - 5.36]  31 5.18 [3.04 - 6.56] 0.49 

 p†  0.50   0.60  

Control 48 1.66 [0.000 - 2.23]  40 1.91 [0.351 - 3.50] 0.02 Lowest 
tertile Vitamin E 39 1.53 [0.603 - 2.30]  32 2.13 [1.28 - 3.55] 0.03 

 p†  0.84   0.52  

*p-value for baseline vs 12 months; †p-value for between group comparisons  
 

From the data shown in Table 10 it can be seen that there was an increase in the ERI after 

12 months for patients in the lowest ERI tertile at baseline irrespective of study group, no 

significant changes for patients in the middle tertile, and a reduction in ERI for patients in 

the highest tertile dialysing with the VE-bonded, but not the control, membranes. 

Interestingly the between group comparisons of ERI at the baseline and 12-month time 

points were not statistically significant. Performing a Friedman’s test for each group within 

each tertile, assessing for significant changes over time across the 12 month study period 

using the monthly ERI data, revealed the change in ERI was only statistically significant for 
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the VE group in the highest tertile (p<0.001); the significance persisted at the 5% level 

after applying a Bonferroni correction for multiple comparisons. To further explore if there 

was a differential effect of the VE-bonded membrane depending on the ERI at baseline, 

the 12-month change in ERI was compared between study groups after stratifying into 

tertiles of ERI at baseline as shown in Figure 32. It can be seen that there was an 

apparent beneficial effect of dialysing with the VE-bonded membrane for patients in the 

highest tertile in terms of a reduction in the ERI. 

 

A. Highest tertile B.  Middle tertile

C. Lowest tertile

 
Figure 32 - Comparison of change in ERI between groups stratified by tertiles of ERI 
at baseline. Among patients in the highest tertile of ERI at baseline, there was a 
significant reduction in ERI after 12 months for those patients dialysing with the VE 
membrane. (ΔERI = ERI12months = ERIbaseline). 
 

As there appeared to be a differential effect of the VE membrane depending on the 

baseline ERI, a regression model for the 12-month change in ERI was constructed 

comprising the baseline ERI and study group in addition to an interaction term for these 

two variables. The regression co-efficients for the study group and baseline ERI variables 

were not significant (p=0.17 and 0.28 respectively) but the regression coefficient for the 

interaction term was statistically significant (p<0.01), indicating an effect of the VE-bonded 
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membrane on the 12-month change in ERI conditional on the starting ERI. This is depicted 

graphically in Figure 33 which is a scatter plot of the change in ERI against the baseline 

ERI and best-fit linear regression lines through the data points for the two study groups. 

The slope of the regression line through the control group data points did not differ 

significantly from zero (p=0.30) indicating no effect of the baseline ERI on the 12-month 

change in ERI observed. The slope of the regression line through the VE group data points 

was negative and differed significantly from zero and the other regression line (p<0.01 in 

both cases). This suggests a differential effect of the VE-bonded membrane with greater 

reductions in ERI for patients with a higher ERI at baseline.  
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Figure 33 - Scatter plot for the change in ERI against baseline ERI with best fit 
regression lines through the data points for each group. The regression line for the 
control group did not differ significantly from zero (p=0.30), whereas the regression line for 
the Vitamin E group had a negative slope (β -0.30 [±0.07]) which differed significantly from 
zero and from the control regression line (p<0.01 in both cases). (ΔERI = ERI12months - 
ERIbaseline). 
 

Given that there was a reduction in ERI for those patients in the highest tertile dialysing 

with the VE membrane, further analyses were undertaken to determine the characteristics 

of this group. To this end all of the variables which were associated with ERI at baseline at 

a significance level of p<0.2, the selection criterion for inclusion in the multivariate 

analyses, were compared between tertiles; the results of these analyses are shown in 

Table 11. From these results it can be seen that selecting patients on the basis of a higher 

ERI was selecting patients with higher levels of inflammation, increased CVC usage, lower 

dialysis dose, lower pre-dialysis bicarbonate levels and shorter length of time on RRT. 
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Table 11 - Factors significantly related to baseline ERI compared between the 
tertiles of ERI at baseline. 

  Baseline ERI  
  Lowest tertile Middle tertile Highest tertile p† 

n 87 86 87  
ERI (IU/wk/kg/g/dl Hb) <3.05 3.05 - 6.33 >6.33  
Sex    0.18 
 Males 

Females 
68% 
32% 

57% 
43% 

55% 
45% 

 

Ethnicity    0.14 
 Caucasian 

Asian 
Black 
Other* 

84% 
14% 
2% 
0% 

76% 
18% 
3% 
1% 

70% 
20% 
9% 
1% 

 

Smoking    0.14 
 Never smoked 

Current smoker 
Ex-smoker 

39% 
24% 
37% 

49% 
27% 
24% 

48% 
15% 
37% 

 

Dialysis access    0.011 
 Fistula 

Central venous catheter 
Graft* 

91% 
7% 
2% 

85% 
14% 
1% 

76% 
23% 
1% 

 

Time on RRT (yrs) 4.5 [2.7 - 8.6] 3.8 [1.3 - 8.4] 2.7 [1.0 - 5.5] 0.0011 
Urea reduction ratio 0.76 [±0.01] 0.76 [±0.01] 0.74 [±0.01] 0.0462 
C-reactive protein (mg/mL) 5.7 [2.2 - 14.5] 5.6 [1.7 - 10.5] 9.8 [4.2 - 22] 0.0021,3 
Bicarbonate (mmol/L) 22.3 [±0.2] 22.2 [±0.3] 21.3 [±0.2] 0.011 
Systolic blood pressure 132 [±2.6] 140 [±2.6] 138 [±2.7] 0.10 
Malignancy 3% 8% 8% 0.38 
β-blockers 13% 29% 22% 0.034 
Insulin 15% 22% 25% 0.23 
Statins 64% 58% 47% 0.07 
Data presented as range, mean [±SEM] or median [IQR]. ERI: ESA resistance index; RRT: 
renal replacement therapy. *Excluded from statistical testing due to small group size; 
†Significance test for trend 
Post-hoc pairwise testing between tertiles: 1Highest vs lowest tertile; 2No significant 
differences on pairwise testing; 3Highest vs middle; 4Lowest vs middle tertile 
 

To determine if a change in any of these factors might explain the observed reduction in 

ERI for patients in the high ERI tertile dialysing with the VE-bonded membrane, the 12-

month changes in these parameters were compared between study groups. From Table 

12 it can be seen that the changes in these variables did not differ significantly between 

study groups. This suggests that the reduction in ERI may be attributable to the VE-

bonded membranes and not to the changes in these variables.  
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Table 12 - Between group comparisons of change in each variable over 12 months 
for patients in the high ERI tertile. Variables listed are those which differed significantly 
when patients compared on the basis of ERI tertile. (In each case change was calculated 
by subtracting the baseline from the 12-month value.) 

 Change in variable over 12 months  
Variable Control VE p 

C-reactive protein (mg/L) 0 [-7.5 - 8.2] -0.3 [-10.3 - 3.2] 0.42 
Urea reduction ratio 0.02 [-0.03 - 0.06] -0.01 [-0.06 - 0.04] 0.34 
Bicarbonate (mmol/L) 1 [-2 - 2] 0 [-3 - 2] 0.33 
Central venous catheter usage (n) -2 -1 1.0 

Data presented as median [IQR] unless stated 

5.3 Discussion 

One of the principal aims of this study was to determine if switching prevalent HD patients 

to dialysis with a VE bonded dialysis membrane for 12 months had any effect on ESA 

requirements; the metric used to assess ESA requirements was the ERI. There are a 

number of advantages to analysing the ERI in preference to unadjusted ESA doses. The 

weekly ESA dose is not a continuous variable, as it is restricted to the available pre-filled 

darbepoetin alfa syringe sizes available (10 µg, 15 µg, 20 µg, 30 µg, 40 µg, 50 µg, 60 µg, 

80 µg, 100 µg, 130 µg, 150 µg, 300 µg and 500 µg), therefore analyses of the unadjusted 

ESA doses were unlikely to be sensitive to small changes in ESA responsiveness. The 

use of an endpoint such as ERI was particularly pertinent in the present study given the 

non-blinded study design. If the endpoint was simply ESA dose, there would be the 

potential for investigators to modify their ESA-prescribing practices, either consciously or 

subconsciously, thereby possibly influencing the outcome of the study. This is negated by 

adjusting the ESA dose by the haemoglobin concentration in the calculation of the ERI. 

The ability of prescribers to influence the outcome in the present study is further minimised 

by the use of a computer based predictive ESA-dosing algorithm. Additionally, other 

studies evaluating the potential of VE-bonded polysulfone membranes to improve anaemia 

[889, 893, 894] have reported effects on the ERI allowing the results from the present 

study to be placed in context. 

5.3.1 Baseline determinants of ESA resistance index 

One of the main purposes of analysing the baseline dataset was to gain an understanding 

of the determinants of ERI in the study population prior to examining the influence of VE-

bonded dialysis membranes. At baseline, the unadjusted median ESA dose and post-

dialysis weight were significantly higher in the VE group. However, after adjusting for 

weight, the ESA requirements and ERI were found not to differ between groups. With 
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regards to the determinants of ERI, the principle findings were that the baseline ERI was 

negatively correlated with dialysis dose and length of time on RRT, positively correlated 

with CRP and was higher in women, Blacks compared to Caucasians and in patients 

dialysing via CVCs. All of these findings are consistent with the published literature 

concerning ESA responsiveness as discussed further here. 

 

The association between markers of inflammation, such as CRP as measured in the 

present study, and ESA resistance is well documented in HD patients [922-926]. 

Inflammation increases ESA requirements through a number of mechanisms. 

Inflammatory cytokines, such as IL-1, TNF-α and IFN-γ, have been shown to have a direct 

suppressive effect on early erythroid progenitor cell growth in vitro [158, 159]. Erythrocyte 

life span is also reduced in the presence of inflammation due to accelerated destruction of 

immunoglobulin or immune complex coated red blood cells by activated reticulo-

endothelial macrophages [927] and enhanced complement mediated lysis in HD patients 

[227]. Importantly, inflammation also exacerbates functional iron deficiency through 

hepcidin induction [152, 928], the uptake of lactoferrin by activated macrophages [156, 

157] and impairment of intestinal iron absorption [147]. The influence of functional iron 

deficiency on anaemia in the present study, however, was mitigated to a large extent by 

the protocolised administration of supplemental intravenous iron as detailed in section 

3.8.1 and Appendix D. 

 

The finding in the present study regarding the association between greater dialysis dose 

and reduced ERI has been similarly reported in other studies [177-180]. The most likely 

explanation for this is the removal of as yet unidentified “uraemic inhibitors of 

erythropoiesis” by the dialysis process. Evidence for the existence of these uraemic 

inhibitors comes from early in vitro work in which uraemic serum was found to inhibit 

erythropoiesis in animal cell lines [181-183] and improvements in anaemia observed 

following the initiation of dialysis in uraemic individuals [174-176] or an increase in dialysis 

dose [177-180]. The exact nature of these inhibitors remains elusive. 

 

It is interesting that CVC usage, inflammation and lower dialysis dose were associated 

with increased ERI on bivariate analyses but the association with CVC usage did not 

persist in the multivariate analysis; an association between CVC usage and increased ERI 

has been reported previously [162, 929, 930]. The association between CVC usage and 

ERI in the present study did not appear to be solely due to heightened inflammation, which 

is generally enhanced in patients dialysing with CVCs [453], as there was no statistically 
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significant difference in the CRP levels at baseline when patients dialysing with CVCs and 

fistulas were compared (9.0 [2.1-19.7] vs 6.3 [2.0-14.2] mg/L respectively; p=0.28). 

Patients dialysing via CVCs received, on average, a lower dialysis dose compared to 

patients dialysing with fistulas (URR: 0.73 [±0.01] vs 0.76 [±0.00] respectively, p=0.03) 

which is likely a consequence of lower achievable blood flow rates for patients dialysing 

via CVCs, although no data were available to corroborate this. Thus it is possible that the 

bivariate association between catheter usage and ERI became non-significant in a model 

which adjusted for inflammation and dialysis dose because the association was mediated 

through these factors.  

 

On bivariate analysis it was evident that patients who had been on RRT for longer had a 

lower ERI. One explanation for this may be that time on RRT was a proxy for general 

health, with healthier patients surviving, and hence dialysing, for longer. The converse may 

also be true with the healthiest patients receiving a renal transplant leaving those patients 

deemed medically unsuitable for a transplant to remain on dialysis. Thus the people who 

have been on dialysis for longer periods may, in fact, represent an intermediate group in 

terms of disease burden suggesting comorbidity may not be the explanation for the 

association between dialysis vintage and ERI. Comorbidity, as defined by the Charlson 

Index [931], was found to be related to ESA requirements in a large observational Spanish 

study [162] but not in the present study where comorbid disease burden was quantified 

using a different method developed by Davies et al. [898] (r=0.04, p=0.52). Furthermore, 

the exclusion from the present study of patients with evidence of active inflammation, 

approximately 10% of the screened population (see Figure 24), may have diluted any 

association between disease burden and ERI in contrast to the observational study by 

Lopez-Gomez et al. [162] which had no such exclusion criteria. Thus the apparent 

contrasting findings between these two studies may be a result of different approaches to 

defining comorbidity and the different populations studied. Length of time on dialysis was 

also strongly positively correlated with dialysis dose (r=0.28, p<0.0001) thus the 

association between ERI and time on dialysis may simply be a confounding effect rather 

than a causal relationship. This is further supported by the exclusion of the variable coding 

for length of time on dialysis in favour of dialysis dose in the stepwise multivariate 

regression analysis. 

 

The multivariate regression model identified that the ERI was greater in women, 

independent of the other variables considered, which is consistent with the findings of 

others [162, 932]. In health, women have a lower haemoglobin level than men [933]. The 
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reasons for this are not completely understood although possible explanations include the 

influence of sex hormones on the release of iron from the reticuloendothelial cells during 

erythropoiesis [934], the positive effects of androgens on erythropoiesis [934, 935] and 

menstrual blood loss. The latter finding, however, is likely to be of minor relevance in HD 

patients as premenopausal women are frequently amenorrhoeic [936]. 

 

The initial regression model suggested that the ERI was higher in Blacks, although this 

association did not persist after excluding the 9 cases with outlying high values for the ERI; 

4 of these 9 patients were of Black ethnicity. This suggests that it was a small number of 

patients with high ERIs driving the association between ethnicity and ERI in the initial 

analysis. The finding of higher ESA resistance in Blacks compared to Caucasians has 

been widely reported in dialysis series from the United States [179, 937-939], although the 

racial mix is likely to differ from the patients included here. Some factors which can 

influence anaemia are known to differ among races, such as haemoglobin variants and 

socioeconomic factors [940], and this may explain some of the differences, although a 

large observational series from America of non-dialysis patients found the higher incidence 

of anaemia among Black individuals to persist even after controlling for a number of these 

factors [941]. Thus, despite being widely acknowledged, a comprehensive explanation for 

the racial differences in anaemia and ERI remains enigmatic.  Furthermore, it is hard to 

draw definitive conclusions about racial differences in ERI from the present study given the 

vastly discrepant group sizes (13 Blacks vs 199 Caucasians). From the analyses of the 

baseline dataset, it appears that the study patients were representative of a typical dialysis 

population thus providing a suitable platform to test the effects of a VE-bonded dialysis 

membrane on anaemia outcomes. 

5.3.2 The effects of vitamin E on anaemia 

A number of studies have compared VE-bonded modified cellulose membranes with non 

VE-bonded membranes with respect to anaemia parameters, such as haemoglobin levels, 

ESA requirements and red blood cell lifespan, and generally reported improvements with 

VE [856, 861, 868-870, 875-879, 942, 943]. However many of these studies were non-

randomised, did not have a parallel group study design and examined anaemia 

parameters as a non-primary outcome measure. More recently VE-bonded versions of the 

latest generation biocompatible synthetic membranes have become available such as the 

Vitabran-A membrane tested here. The primary finding in the present study with regards to 

anaemia was that 12 months dialysis with a VE-coated polysulfone membrane offered no 

improvements in ESA resistance, when compared to an equivalent non-VE-coated 
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polysulfone membrane. Post hoc subgroup analysis, however, did reveal a reduction in 

ERI for patients with a higher ERI at baseline dialysing with the VE membranes, but not 

the control membranes, and a regression analysis examining the interaction between 

baseline ERI and study group found a significant effect of the VE-membrane on the 12-

month change in ERI conditional on the ERI at baseline. Further analysis of the subgroup 

of patients with the highest ERI at baseline revealed a higher proportion of these patients 

were dialysing via CVCs, that they had higher levels of CRP and lower pre-dialysis 

bicarbonate levels and were receiving a lower dose of dialysis compared to the remaining 

patients; each of these factors were also significantly associated with ERI at baseline. To 

try and determine if the reduction in ERI for those patients in the highest tertile of ERI at 

baseline dialysing with the VE membrane was an effect of the VE-membrane, or due to 

changes in any of these parameters, the change in each of these variables over 12 

months were compared between study arms and found to be non-significant. Thus, on the 

basis of these analyses, it may be that the observed improvement in ERI for this subset of 

patients was attributable to dialysis with the VE-membrane, although an effect of an 

unmeasured factor or factors cannot be discounted. It is worth noting, however, that 

although the distribution of patients across the tertiles analysed using a chi-squared test 

did not differ from the expected values, suggesting an even distribution of the two study 

groups, more patients in the highest tertile were dialysing with VE membrane (48 vs 39). 

Patients with the highest ERI at baseline were, on subsequent determinations, more likely 

to have a reduction in ERI rather than further increases; the phenomenon of regression to 

the mean. Thus the effect of regression to the mean, rather than a true effect of the VE 

membrane, cannot be entirely discounted as a reason for the observed reduction in ERI 

for the patients in the highest ERI tertile dialysing with VE. It is important, however, to 

consider the data from the present study in the context of other studies examining the 

utility of VE-bonded membranes in improving renal anaemia. 

 

Several studies have investigated the effects of VE-coated polysulfone membranes on 

anaemia parameters. A number of these studies [891, 892, 894, 896], including a 

paediatric study [890], failed to demonstrate a convincing reduction in ESA requirements 

with the VE membranes. One of the first studies to suggest a benefit in terms of renal 

anaemia with the VE membranes was published by Morimoto et al. [895] who followed 31 

patients for 6 months, 16 of whom dialysed with the VE-membrane. Although anaemia was 

not the primary focus of the study, they reported significantly lower ESA doses in the VE 

group despite similar haemoglobin levels. Several subsequent studies, all of which were 

published after the present study was commenced, have specifically addressed the ability 
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of VE bonded polysulfone membranes to reduce ESA requirements. In a pilot study 

Andrulli et al. [894] followed 19 patients for 8 months, 10 of whom were randomised to 

dialysis with a VE bonded polysulfone membrane. The ERI decreased significantly in all 

patients over the study period with no apparent benefit observed with the VE membrane. 

After adjusting for the levels of intact PTH, α- and γ-tocopherol, all of which were 

significantly correlated with ESA dose at baseline, in a post hoc multivariate regression 

analysis the reduction in ERI in the VE group compared to the control group reached 

statistical significance (p=0.04). This study, as stated by the authors, was a pilot study but 

does point to a possible ESA-sparing effect of the VE-membranes. Mandolfo et al. [889] 

followed 16 patients, all of whom were dialysing with CVCs, in a 12-month cross-over 

study comprising 6 months dialysis with a VE bonded polysulfone membrane and 6 

months with a non-VE bonded polysulfone membrane; no details on the performance 

characteristics of the comparator membrane were provided. During the 6 month period 

dialysing with the VE membrane they reported lower ESA doses and a lower ERI, with no 

significant differences in haemoglobin levels, again suggesting that the VE membrane 

improved ESA responsiveness. This second study differs markedly from the present study 

in that only patients with CVCs were included, a factor which was found to be associated 

with ESA resistance in the present dataset, making direct comparisons impossible. 

  

In perhaps the most comprehensive study published to date examining anaemia 

outcomes, Panichi et al. [893] enrolled 62 patients in a 13-month multicentre randomised 

controlled cross-over design study comparing a low-flux VE-bonded polysulfone 

membrane with a low-flux non VE-bonded polysulfone membrane. After 6-months dialysis 

with the VE membrane they reported stable ESA requirements and an increase in 

haemoglobin levels which translated into a statistically significant improvement in the ERI; 

no significant changes in the haemoglobin level, ESA dose or ERI were observed following 

6-months dialysis with the non VE membrane. Thus there was an apparent benefit of the 

VE membrane in terms of reducing ERI. The Panichi et al. [893] study differs from the 

present study in that low-flux membranes were used in contrast to the high-flux 

membranes used in the present study. However, published data have shown that 

membrane flux has little impact on anaemia [919, 944-946] suggesting that the use of 

membranes with different permeability characteristics may not explain the discrepant 

findings of the two studies. 

 

More recently, Sanaka et al. [896] published the results of a 12-months prospective, multi-

centre, randomised controlled trial evaluating the effects of a VE-bonded polysulfone HD 
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membrane on the relative change in ERI. A total of 305 patients from 48 haemodialysis 

facilities in Japan were divided into two groups on the basis of their haemoglobin levels, 

10-10.9 g/dL and 11-11.9 g/dL, and then randomised to 12-months dialysis with either a 

high-flux VE-bonded membrane or a non-VE bonded equivalent membrane; data on 213 

patients completing the study were analysed. The primary outcome was relative ERI, 

defined by dividing the monthly ERI by the ERI at baseline. Overall there was no effect of 

the VE-membrane on the 12-month relative change in ERI; although no data were 

provided to assess equivalence of ERI at baseline. Further analyses, defined a priori, 

identified a reduction in the relative ERI for patients in the higher haemoglobin group 

dialysing with the VE-membrane who were receiving darbepoetin alfa, but not rHuEPO, at 

12 months. Analysing all of the patients in the higher haemoglobin group together, 

regardless of ESA used, revealed a significantly higher 12-month relative ERI for patients 

dialysing with the non VE-bonded membrane, compared to the VE-bonded membrane, 

although in both groups the 12-month relative ERIs did not differ significantly from 

baseline. 

 

There are a number of methodological concerns with this study including the 2x2x2 study 

design (i.e. haemoglobin group x dialyser membrane x ESA used) which significantly 

reduced the power of the study to detect a significant effect of the membrane; no reference 

was made in the manuscript regarding the statistical power of the study. Furthermore, no 

statistical adjustments were made for the multiple pairwise comparisons of the relative ERI 

at each of the monthly time points and the associated increase in familywise error rate. 

Therefore the aforementioned apparent significant differences between the 12-month 

relative ERIs for patients in the high haemoglobin group dialysing with the different 

membranes may represent a type I statistical error. It would, perhaps, have been more 

informative to stratify patients on the basis of ERI at study start, rather than the 

haemoglobin level, given that change in ERI was the primary outcome measure. No data 

were provided comparing ESA requirements between the patients in the two “haemoglobin 

groups” although the median ESA doses appeared to be smaller in the higher 

haemoglobin group, suggesting that these patients may have been less ESA resistant. If, 

indeed, this was the case it is possible that the VE-bonded membrane may have had a 

role in limiting increases in ERI over time, as were observed for patients dialysing with the 

control membrane, for less ESA-resistant patients. This is the converse of the present 

study in which the more ESA-resistant patients appeared to benefit from dialysis with the 

VE-bonded membrane. This interpretation of the Sanaka et al. [896] data, however, 

remains conjecture as these points were not specifically addressed in the manuscript. It 
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may, however, provide further circumstantial evidence that subgroups of patients, 

identified on the basis of ESA-resistance, may benefit from dialysis with a VE-bonded 

membrane rather than advocating wholesale switching of all prevalent HD patients to 

dialysis with VE-bonded membranes. 

 

It is important to note that the patients in the present study differed from those in the 

previously cited studies reporting a beneficial effect of VE-bonded membranes on 

anaemia. The patients in the present study, for example, had significantly lower ERI’s at 

baseline than the other studies evaluating VE-bonded polysulfone membranes in this 

setting (see Table 13). Interestingly, the baseline ERIs for those patients in the highest 

tertile of ERI in the present study, who appeared to benefit from dialysis with the VE-

membrane, were closer to the published studies which demonstrated an ESA-sparing 

effect of the VE-membranes [889, 893]. This suggests that the VE-bonded membranes 

may be beneficial in ESA-resistant patients although such a supposition requires testing in 

an appropriately designed study. 

 

Table 13 - Comparison of studies evaluating vitamin E bonded polysulfone 
membranes with a primary anaemia endpoint. 

Study No. patients Study 
duration 

Baseline ERI* 
(IU/wk/kg/g/dl Hb) 

Overall effect of 
VE membrane 

THIS STUDY 260 12 months 4.6 [2.3 - 7.7] ERI → 
Andrulli et al. [894] 20 8 months 7.7 [4.8 - 11.6] ERI → 
Panichi et al. [893] 62 6 months 10.7 [9.7 - 11.8] ERI ↓ 
Mandolfo et al. [889]† 16 6 months 12.2 [± 5.6] ERI ↓ 
Sanaka et al., [896] 305 12 months Not stated (Relative) ERI → 

*Data presented as median [IQR] or mean [±standard deviation] as reported by the Authors; 
†Study included only patients dialysing through central venous catheters. ERI: Erythropoiesis 
stimulating agent resistance index 
 

The apparent low ERI for patients in the present study is further highlighted by the LTHT 

patients having the lowest mean and median ESA doses in the country, despite 

haemoglobin levels close to the national median, from data published in the UK Renal 

Registry reports [4, 921]. The reasons for the apparent low ERI in the study cohort are not 

immediately obvious. Patients with significant inflammation, which is associated with ESA 

resistance as already discussed, were excluded from study and this is likely to be an 

important factor although a number of the other published studies [893, 894] similarly 

excluded patients with active inflammation yet reported higher patient ERIs. This fact 

would also not explain the UK Renal Registry data [4, 921] as information on all HD 
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patients is collated. Perhaps the most striking difference between the present study and 

the published studies and data from the other UK dialysis units included in the UK Renal 

Registry is the use of a predictive ESA-dosing algorithm. The published experience with 

this approach [901] suggests it leads to efficient ESA usage and thus may explain, at least 

in part, the apparently low doses of ESA used by LTHT HD patients. 

 

Another factor potentially complicating the comparison of the results from the present 

study with those already published is the use of the conversion ratio of 1:200 for 

converting rHuEPO doses (µg) to equivalent darbepoetin doses (IU) in order to calculate 

the ERI. This conversion factor is recommended by the manufacturers of rHuEPO as the 

ratio at which products are cost-neutral under European licensing [903], and is adopted by 

the UK Renal Registry [4, 921]. There have been concerns for some time that this 

conversion ratio may not represent clinical equivalence [947]. A meta-analysis examining 

the relative doses of ESAs in HD patients identified that after switching patients from 

rHuEPO to Darbepoetin alfa at a conversion rate of 1:200, further dose reductions 

averaging 30% could be made while maintaining haemoglobin levels [948]. Using this 

conversion rate, therefore, will likely overestimate the ERI for patients receiving 

darbepoetin alfa. In the present study, where all patients used the same ESA, this is 

maybe of less relevance although in other studies, such as the Panichi et al. study [893], 

where a mixture of rHuEPO and darbepoetin alfa were used, applying a potentially 

erroneous correction factor to a subset of patients may give misleading results. In the 

Panichi et al. study, however, the authors stated that the same ESA was used by each 

patient for the duration of the study and this, combined with the cross over study design, 

means it is unlikely to have materially affected their overall results. It is therefore likely that 

ERIs calculated in patient groups using different ESAs may not be directly comparable and 

this may form part of the explanation for the apparent discrepant findings of the studies 

evaluating VE-bonded polysulfone membranes detailed in Table 13. The use of different 

ESAs was specifically addressed by Sanaka et al. [896] who reported a benefit of the VE-

membrane for patients with higher haemoglobin levels at baseline receiving darbepoetin 

alfa, but not those who received rHuEPO, suggesting the possibility of a differential effect 

of the VE-bonded membrane depending on the ESA used. The mechanisms through 

which such a situation may occur are not obvious. The effect of different dialysis 

membranes on the biological activity of different ESAs has not been specifically studied to 

date. If, for example, the various ESA preparations had differing susceptibilities to 

oxidative modification, which in turn resulted in attenuation of their biological activity, it 
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would be conceivable that the use of the putatatively anti-oxidant VE coating on the 

dialysis membrane may exert differing effects depending on the ESA used. 

 

It is important to note that in the present study only prevalent HD patients were included, 

i.e. established on dialysis for greater than 3 months, and patients with active inflammation 

at baseline were excluded which together ruled 13% of the screened LTHT HD population 

ineligible for this study. These factors, in addition to the other parameters shown to be 

important determinants of ERI in this study population, such as race, CVC usage, dialysis 

dose and the prevailing levels of inflammation and ESA-resistance, need to be considered 

when generalising the results from the present study to other dialysis populations. It is also 

important to consider the statistical power of the present study. The power calculation 

indicated a sample size of 118 patients in each arm would have an 80% power to detect a 

25% difference in ESA doses (see section 3.17.2). The number of patients with 12-months 

of ESA data (VE group: 116 and control group: 104) was less than this thus the failure to 

show any significant benefit with the VE membrane may represent a type 2 statistical 

error. However, this study enrolled more patients that the other VE studies which did report 

reductions in ERI with Panichi et al. [893] reporting an 11% reduction in ERI and Mandolfo 

et al. [889] a 28% reduction. The baseline and 12 month ERI for patients in the VE group 

in the present study were similar (5.1 [2.3-8.1] IU/wk/kg/g/dl Hb in both cases, p=0.68 for 

pairwise comparison) suggesting an effect of the VE membrane on ERI at the study 

population level was unlikely, despite the recruitment of fewer patients identified in the 

power calculation. The apparent significant difference between the groups in terms of the 

reduction in ERI for the highest tertile patients dialysing with the VE membrane also needs 

to be interpreted in context, given that it could represent a false positive finding in light of 

the inflated type 1 error rate associated with multiple pairwise statistical testing. However, 

the regression coefficient for the interaction term of study group and baseline ERI in a 

multiple regression model of the 12-month change in ERI did suggest a significant effect of 

the VE membrane conditional on the baseline ERI, strengthening the case that the VE 

membrane may be beneficial for patients with increased ESA-resistance. 

 

The positive finding with respect to a significant reduction in ERI for patients in the highest 

tertile of ERI at baseline dialysing with the VE-membrane needs placing in clinical context. 

The median reduction in ERI for this group of patients was 1.29 IU/wk/kg/g/dL Hb which, 

using the median weight and average haemoglobin level for this subgroup of patients, 

equates to a reduction of 5.5 µg/week. The median ESA dose for patients in the highest 

ERI tertile at baseline was 40 µg/week therefore this represents a greater than 10% 
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reduction in the ESA dose. It is difficult to calculate what this dose reduction would 

translate to in terms of a cost saving given the variation in ESA pricing between different 

units and the use of pre-filled syringe sizes. However changes of this magnitude may well 

translate into significant cost savings in terms of ESA expenditure. An important question, 

howeverm would be whether the increased costs of the VE-membrane could be wholly or 

partially offset by the reductions in ESA requirements. 

 

From the information presented in this chapter, it is perhaps not surprising that in a unit 

which already has efficient ESA prescribing [901], low levels of ESA-resistance [4, 921] 

and which uses the latest generation of biocompatible membranes no additional benefits 

of the VE membrane on overall ESA resistance were observed; akin to the law of 

diminishing returns. Given that the comparator membrane was a latest generation 

biocompatible membrane, further attempts to improve the biocompatibility of an already 

biocompatible membrane by coating with VE are likely to result in more modest 

improvements than those observed with coating the less biocompatible modified cellulose 

membranes. 

 

In conclusion, no ESA-sparing effect was observed in the present study when prevalent 

HD patients were dialysed with a VE-bonded membrane for a period of 12 months. For 

patients with higher levels of ESA resistance, VE-bonded membranes may offer some 

benefit although trials specifically designed to answer this question are needed. Further 

studies are required to determine which, if any, patients or subsets of patients may benefit 

from dialysis with a VE-bonded membrane. Such considerations would also need to factor 

in the increased costs associated with the VE-membranes and the potential to offset these 

with reductions in ESA expenditure or improved clinical outcomes. 
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Chapter 6 : Oxidative stress 
Levels of oxidative stress, measured using a variety of different biomarkers, have been 

shown to be increased in HD patients [326-337] due to the increased generation of ROS 

and reduced anti-oxidant defences as outlined in section 1.4.2. Furthermore, enhanced 

oxidative stress is thought to underlie a number of complications encountered by HD 

patients such as ESA-resistance (see section 1.3.2) and CV disease (see section 1.4.3). 

Two biomarkers of oxidative stress were measured in the present study, Ox-LDL and 

TBARS, and analyses of these data are presented in this chapter. Initially the determinants 

of each biomarker in the study population were evaluated prior to examining the effects of 

12 months dialysis with a VE-bonded polysulfone membrane. 

6.1 Determinants of baseline oxidative stress 

6.1.1 Determinants of baseline Ox-LDL levels 

Out of 260 baseline samples 257 were analysed owing to missing labels on three samples. 

Of the 257 samples, 57 (22%) were below the lower limit of detection for the assay and 

were assigned a value of 4.3 ng/mL as described in the methods section 3.10; for this 

reason the frequency distribution of the Ox-LDL dataset was heavily positively skewed and 

had a long tail owing to high Ox-LDL levels in a small number of samples as shown in 

Figure 34. Correlation analysis to look for significant associations with continuous 

variables in the dataset, given the distribution of the data and the large number of samples 

with Ox-LDL levels below the limit of detection, would be unlikely to yield meaningful 

results. The data were therefore divided into quartiles as described in the methods (section 

3.15), thereby ensuring that all of the 22% samples with Ox-LDL levels below the lower 

limit of detection were grouped together in the lowest quartile. The results of the analyses 

examining for significant determinants of Ox-LDL at baseline are shown in Table 14 and 

Table 15. 
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Figure 34 - Frequency distribution of Ox-LDL levels at baseline. The distribution of 
data was heavily positively skewed. Of these samples 22% were below the lower limit of 
detection for the assay and high levels of Ox-LDL were present in a small number of 
samples. 
 

From the analyses in Table 14 and Table 15 it can be seen that the Ox-LDL levels were 

significantly associated with PTH concentration and were higher in patients with ischaemic 

heart disease, peripheral vascular disease and left ventricular dysfunction. To examine for 

independent predictors of Ox-LDL in the dataset, stepwise ordinal logistic regression 

modelling the quartiles of Ox-LDL levels was performed as detailed in section 3.17.4. The 

independent variables initially entered into the model were those variables associated with 

Ox-LDL at a significance of p<0.2 in the bivariate analyses. The resultant model identified 

that a history of ischaemic heart disease, left ventricular dysfunction, higher phosphate 

and lower PTH levels were independently associated with higher quartiles of Ox-LDL 

concentration. The model satisfied the Brant test of parallel regression assumption and 

had an overall adjusted-R2 of 0.03. 
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Table 14 - Determinants of Ox-LDL levels at baseline: analysis of continuous variables between quartiles of Ox-LDL.  

  Quartiles of Ox-LDL  
  Q1 Q2 Q3 Q4 p* 

n 65 64 64 64  
Ox-LDL (ng/mL) <8.9 8.9 - 34.0 36.2 - 96.8 >96.8  
Patient factors      
 Age (yrs) 65.2 [±1.9] 63.2 [±1.9] 59.9 [±2.0] 65.5 [±2.2] 0.18 
 Weight (kg) 73.6 [59.4-84.1] 73.3 [62.1-85.5] 69.9 [56.7-81.2] 68.2 [57.0-78.6] 0.28 
 Pre-dialysis systolic BP (mmHg) 140.8 [±3.1] 132.7 [±2.7] 136.6 [±3.6] 136.5 [±2.8] 0.32 
 Pre-dialysis diastolic BP (mmHg) 71.2 [±1.7] 71.6 [±1.6] 72.5 [±1.9] 70.2 [±1.5] 0.79 
Dialysis factors      
 Time on renal replacement therapy (yrs) 3.7 [1.3-5.9] 3.4 [2.0-7.4] 3.4 [1.3-7.7] 3.9 [1.3-8.6] 0.77 
 Urea reduction ratio 0.75 [±0.01] 0.76 [±0.01] 0.74 [±0.01] 0.76 [±0.01] 0.39 
Laboratory parameters      
 Haemoglobin (g/dL) 11.6 [±0.2] 11.4 [±0.1] 11.7 [±0.2] 11.7 [±0.2] 0.76 
 Ferritin (µg/L) 454 [±32] 490 [±21] 464 [±31] 491 [±27] 0.73 
 C-reactive protein (mg/L) 6.9 [2.9-14.9] 6.5 [2.8-19.9] 6.8 [1.8-13.9] 6.5 [1.7-14.3] 0.80 
 Albumin (g/L) 37.8 [±0.6] 38.2 [±0.5] 37.9 [±0.5] 38.0 [±0.6] 0.97 
 Cholesterol (mmol/L) 3.8 [±0.1] 4.1 [±0.1] 3.9 [±0.1] 4.0 [±0.1] 0.45 
 High-density lipoprotein (mmol/L) 1.1 [±0.0] 1.1 [±0.1] 1.1 [±0.0] 1.2 [±0.1] 0.50 
 Low-density lipoprotein (mmol/L) 2.0 [±0.1] 2.2 [±0.1] 2.1 [±0.1] 2.1 [±0.1] 0.73 
 Triglycerides (mmol/L) 1.4 [0.9-2.0] 1.6 [1.2-2.2] 1.5 [1.1-2.0] 1.4 [1.0-2.1] 0.56 
 Bicarbonate (mmol/L) 21.9 [±0.3] 22.5 [±0.2] 21.6 [±2.3] 21.8 [±2.8] 0.22 
 Calcium (mmol/L) 2.39 [±0.03] 2.40 [±0.02] 2.4 [±0.02] 2.39 [±0.02] 0.88 
 Phosphate (mmol/L) 1.41 [±0.06] 1.49 [±0.06] 1.61 [±0.06] 1.50 [±0.07] 0.15 
 Parathyroid hormone (pmol/L) 23.5 [9.2-47.3] 24.3 [15.0-49.4] 22.9 [11.9-40.9] 15.6 [7.9-27.8] 0.04† 
 HbA1c (%) 8.0 [6.65-9.7] 7.1 [6.6-7.7] 6.8 [6.0-8.3] 6.9 [6.2-8.4] 0.22 

Data presented as range, mean [±SEM] or median [IQR]. *The p-value was obtained by comparing the values between quartiles. If 
this omnibus test statistic was significant, pairwise comparisons between quartiles were performed looking for significant 
differences at the 5% level (after applying a Bonferroni correction to the α-level for multiple comparisons) with significant findings 
indicated on the table. (†Q4 vs Q2). BP: Blood pressure. 
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Table 15 - Determinants of Ox-LDL levels at baseline: categorical variables. 
   

n 
Ox-LDL (ng/mL) 
 Median [IQR] 

 
p 

Patient factors: Sex Male 154 38.3 [9.0 - 103.1] 0.29 
 Female 103 32.1 [4.3-87.9]  

Ethnicity Caucasian 198 39.5 [11.5-101.7] 0.30 
 Asian 44 31.8[7.4-72.7]  
 Black 13 4.3[4.3-174.8]  
 Other* 2 26.4 [25.1 - 27.6]  

Smoking history Never smoked 116 30.1 [4.3-60.7] 0.17 
 Current smoker 57 44.3 [13.7-121.6]  

 Ex-smoker 84 40.0 [18.1-107.7]  
Dialysis access Fistula 215 31.3 [6.8-81.5] 0.18 

 Catheter 38 51.5 [9.8-120.8]  
 Graft* 4 60.0 [25.7-324.1]  

Co-morbidities: Diabetes Yes 73 40.1 [4.3-109.6] 0.87 
 No 184 33.1 [11.9-86.3]  

Ischaemic heart disease Yes 73 42.8 [20.6-174] 0.01 
 No 184 30.2 [5.7-69.7]  

Malignancy Yes 17 31.3 [10.2-341.1] 0.60 
 No 240 35.1 [7.9-96.5]  

Peripheral vascular disease Yes 69 48.9 [16.2-205.3] 0.02 
 No 188 32.0 [6.7-68.2]  

Left ventricular dysfunction Yes 24 57.4 [16.1-363.9] 0.047 
 No 233 33.2 [6.2-80.4]  

Drugs: ACEi / A2RBs / DRI Yes 82 32.1 [4.3-59.6] 0.15 
 No 175 38.1 [13.4-105.5]  

β-blockers Yes 54 38.3 [20.0-80.1] 0.58 
 No 203 33.3 [6.6-101.4]  

Statins Yes 144 32.3 [6.3-100.8] 0.65 
 No 113 40.2 [8.8-92.3]  

Aspirin Yes 116 32.7 [8.8-100.6] 0.59 
 No 141 38.4 [7.2-97.6]  

Clopidogrel Yes 19 54.5 [11.6-224.8] 0.29 
 No 238 33.6 [7.4-96.0]  

Dipyridamole Yes 3 15.0 [4.3-58.1] 0.40 
 No 254 35.1 [8.5-99.1]  

Warfarin Yes 16 31.0 [9.7-282.9] 0.82 
 No 241 36.2 [8.2-97.6]  
Sulphonylureas Yes 13 42.8 [14.2-73.9] 0.72 
 No 244 33.5 [7.9-100.7]  

Insulin Yes 53 39.1 [4.3-114.1] 0.51 
 No 204 33.6 [13.0-86.3]  

*Excluded from statistical analysis owing to small group size. ACEi: Angiotensin 
converting enzyme inhibitors; A2RBs: Angiotensin II receptor blockers; DRI: Direct 
renin inhibitors 
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6.1.2 Determinants of baseline TBARS levels 

In addition to the Ox-LDL levels, a second marker of oxidative stress, TBARS, was also 

measured in the study participants. To examine the relationship between TBARS and Ox-

LDL levels, TBARS levels were compared across quartiles of Ox-LDL (see Figure 35) and 

were found not to differ significantly (p=0.13).  
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Figure 35 - Mean (±95% CI) baseline TBARS levels by quartiles of Ox-LDL. The mean 
TBARS levels did not differ between quartiles of Ox-LDL (*p for trend) 
 

Table 16 and Table 17 detail the results of the analyses examining for the significant 

determinants of TBARS at baseline. The only statistically significant determinant of TBARS 

in unadjusted analyses was the bicarbonate levels (r=-0.15; p<0.05). The initial backwards 

stepwise variable selection procedure modelling the baseline TBARS levels, including all 

of the variables associated with TBARS levels at a significance of p<0.2, identified higher 

ferritin and HDL levels, lower bicarbonate levels and male sex to be independently 

associated with increased TBARS levels. A review of the residual versus fitted regression 

diagnostic plot identified a number of cases with high TBARS levels which may have been 

influencing the model.  A total of 5 cases fulfilled the a priori criteria for having an outlying 

(high) TBARS level (see section 3.17.4) and the variable selection procedure was 

repeated after excluding these cases. The resultant model, based on 251 cases, identified 

lower bicarbonate and higher HDL levels to be independently associated with increased 

TBARS levels; the final model adjusted-R2 was 0.04. 
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Table 16 - Determinants of TBARS at baseline: continuous variables. 
  n r p 
Patient factors    
 Age 260 0.03 0.59 
 Weight 260 -0.06 0.35 
 Pre-dialysis systolic blood pressure 260 -0.06 0.32 
 Pre-dialysis diastolic blood pressure 260 -0.06 0.34 
Dialysis factors    
 Time on renal replacement therapy 260 0.05 0.39 
 Urea reduction ratio 260 0.02 0.80 
Laboratory parameters    
 Haemoglobin 260 0.10 0.11 
 Ferritin 260 0.12 0.06 
 C-reactive protein 260 -0.10 0.12 
 Albumin 260 -0.07 0.27 
 Cholesterol 259 -0.02 0.79 
 High-density lipoprotein 259 0.12 0.06 
 Low-density lipoprotein 254 -0.04 0.55 
 Triglycerides 260 -0.08 0.17 
 Bicarbonate 260 -0.15 0.02 
 Calcium 260 -0.03 0.62 
 Phosphate 260 -0.07 0.25 
 Parathyroid hormone 248 -0.06 0.32 
 HbA1c 72 -0.02 0.88 

r: Correlation coefficient 
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Table 17 - Determinants of TBARS at baseline: categorical variables. 
   

n 
TBARS (µM) 
 Mean [±sem] 

 
p 

Patient factors: Sex Male 156 2.4 [±0.1] 0.17 
 Female 104 2.3 [±0.1]  

Ethnicity Caucasian 199 2.4 [±0.1] 0.71 
 Asian 46 2.5 [±0.2]  
 Black 13 2.3 [±0.2]  
 Other* 2 2.8  

Smoking history Never smoked 118 2.3 [±0.1] 0.49 
 Current smoker 57 2.3 [±0.1]  

 Ex-smoker 85 2.5 [±0.1]  
Dialysis access Fistula 218 2.4 [±0.1] 0.62 

 Catheter 38 2.3 [±0.1]  
 Graft* 4 2.3 [±0.2]  

Co-morbidities: Diabetes Yes 74 2.3 [±0.1] 0.32 
 No 186 2.4 [±0.1]  

Ischaemic heart disease Yes 74 2.5 [±0.1] 0.10 
 No 186 2.3 [±0.1]  

Malignancy Yes 17 2.7 [±0.1] 0.14 
 No 243 2.4 [±0.1]  

Peripheral vascular disease Yes 71 2.4 [±0.1] 0.99 
 No 189 2.4 [±0.1]  

Left ventricular dysfunction Yes 24 2.4 [±0.2] 0.92 
 No 236 2.4 [±0.1]  

Drugs: ACEi / A2RBs / DRI Yes 83 2.4 [±0.1] 0.61 
 No 177 2.4 [±0.1]  

β-blockers Yes 55 2.5 [±0.1] 0.32 
 No 205 2.4 [±0.1]  

Statins Yes 147 2.4 [±0.1] 0.51 
 No 113 2.4 [±0.1]  

Aspirin Yes 117 2.3 [±0.1] 0.30 
 No 143 2.4 [±0.1]  

Clopidogrel Yes 20 2.3 [±0.2] 0.66 
 No 240 2.4 [±0.1]  

Dipyridamole Yes 3 2.0 [±0.5] 0.44 
 No 257 2.4 [±0.1]  

Warfarin Yes 16 2.4 [±0.2] 0.89 
 No 244 2.4 [±0.1]  
Sulphonylureas Yes 13 2.3 [±0.2] 0.67 
 No 247 2.4 [±0.1]  

Insulin Yes 54 2.4 [±0.1] 0.74 
 No 206 2.4 [±0.1]  

* Excluded from statistical analysis owing to small group size; sem: standard error 
of the mean. ACEi: Angiotensin converting enzyme inhibitors; A2RBs: Angiotensin 
II receptor blockers; DRI: Direct renin inhibitors 
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6.2 Temporal changes in oxidative stress and the effects of 

vitamin E 

6.2.1 12-month changes in Ox-LDL levels 

Figure 36 shows the Ox-LDL levels at each study visit and Figure 37 the change in Ox-

LDL levels after 12 months. There were no significant differences in the Ox-LDL levels 

between the groups at baseline (p=0.10) or at 12 months (p=0.35). Comparison of the 

baseline and 12-month levels within groups revealed no significant difference in the control 

group (p=0.13) but a statistically significant increase in the VE group (27.6 [4.3-65.4] vs 

32.8 [4.3 - 102.4] ng/mL, p=0.02). This test, however, was not significant at the pre-

specified 5% level after applying a Bonferroni correction to adjust for the increased 

familywise type 1 error rate associated with multiple pairwise testing. A comparison of the 

change in Ox-LDL levels after 12 months did not differ between the groups (p=0.63) (see 

Figure 37) and a Friedman’s test within groups for changes in Ox-LDL levels across the 

three sampling points was not significant in either the control (p=0.18) or VE (p=0.07) 

groups. 
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Figure 36 - Comparison of the Ox-LDL levels in patients randomised to the control 
or Vitamin E membrane. 
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Figure 37 - Comparison of the 12 month change in Ox-LDL levels for patients 
randomised to the control or Vitamin E membrane. 
(*ΔOx-LDL = Ox-LDL12months - Ox-LDLbaseline) 
 

6.2.2 12-month changes in TBARS levels 

Figure 38 displays the mean TBARS levels measured at each of the three sampling points 

for both study groups; levels were similar between groups at baseline (p=0.40) and 12-

months (p=0.60). A repeated measures ANOVA of the normally distributed TBARS data 

found the levels to increase significantly across sampling points (p=0.045) but no effect of 

study group (p=0.49) or interaction between time and study group (p=0.70) were observed. 

Comparing the change in TBARS levels between groups similarly found no significant 

difference (p=0.75) as shown in Figure 39. There was no significant correlation between 

the 12-month change in Ox-LDL and TBARS levels (r=-0.02, p=0.78). 
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Figure 38 - A graph displaying the mean (±95% CI) TBARS levels at each of the 
sampling points for the two groups. The levels increased during the study period 
(p=0.045 for trend) but there was no difference between the two groups. 
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Figure 39 - Comparison of the 12 month change in TBARS levels between patients 
randomised to the control and vitamin E membranes. There was no significant 
difference in the 12 month change in TBARS levels between groups. (*ΔTBARS = 
TBARS12months - TBARSbaseline). 
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6.3 Oxidative stress and ESA resistance index 

At baseline there was no difference in ERI when patients were compared between 

quartiles of Ox-LDL (p=0.67) and the ERI was not correlated with TBARS levels (r=0.03, 

p=0.65). After 12-months there were no significant correlations between the change in ERI 

and either the change in Ox-LDL or TBARS levels (r=0.01, p=0.84 and r=-0.04, p=0.57 

respectively). Given the apparent differential effect of the VE-membrane conditional on the 

baseline ERI, the oxidative stress biomarkers were similarly examined after dividing the 

study population into tertiles of ERI at baseline. These analyses revealed no significant 

differences in the baseline levels of Ox-LDL (p=0.96) or TBARS (p=0.86) between the 

tertile nor were there any differential effects of the VE-membrane on the 12-month change 

in Ox-LDL (p>0.44 in all cases) or TBARS (p>0.49 in all cases) within any of the tertiles. 

6.4 Discussion 

Vitamin E has been widely used as an anti-oxidant owing to its ability to interrupt free 

radical propagated chain reactions leading to the formation of a tocopheroxyl radical [733]. 

As blood-membrane interactions are thought to be a major source of oxidative stress in 

HD patients there is a rationale for bonding VE to the dialysing surface of HD membranes. 

As discussed in section 1.4.2, oxidative stress appears to be increased in HD patients and 

may underlie a number of the complications they encounter including ESA-resistance, 

inflammation and the increased rates of CV disease. In the present study two biomarkers 

of lipid peroxidation were measured: Ox-LDL and TBARS.  

 

The initial marker of oxidative stress measured in the study samples was Ox-LDL and 

there were a number of concerns regarding the accuracy and validity of this dataset. Of all 

the samples measured, 22% were below the lower limit of detection for the assay and 71% 

had concentrations which fell between the lowest two standards in a region of the standard 

curve which, by nature of the curve fitting process, was likely to be poorly reproducible 

between assays. The low QC sample had an Ox-LDL concentration intermediate between 

the 2nd and 3rd standard, a more reproducible region of the standard curve, yet had an 

inter-assay CoV of 19%, suggesting the variability in the study samples was likely to be 

even greater. The accuracy and reproducibility of the assay may have been improved by 

analysing the study samples at a lower dilution than the manufacturer recommended 1:10 

but this option was not considered by the R&D technicians performing the assay nor 

discussed with the investigator (Dr Simon Lines) as concerns with the dataset only 

became apparent after all of the samples had been analysed. Due to financial constraints 
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it was not possible to purchase more ELISA kits to repeat all of the assays at a lower 

dilution. 

 

In terms of the absolute Ox-LDL levels measured in the present study - it is hard to place 

these in the context of the published literature. A variety of commercial Ox-LDL ELISA’s 

are available and have been used in published studies although they vary in methodology, 

with some being sandwich ELISAs and others competitive ELISAs, and in the antigenic 

specificity of the antibodies used [949]. Furthermore the levels of Ox-LDL reported in 

seemingly similar HD populations vary greatly [858, 891, 950-956] even in studies using 

ELISA’s from the same manufacturers. Indeed, one study using two different commercial 

Ox-LDL ELISAs to measure samples from the same patients reached differing conclusions 

with the two assays highlighting this inconsistency [957]. It is thus difficult to establish 

whether the apparent low levels of Ox-LDL measured in the study samples were indeed 

reflective of low levels of oxidative stress or represented an anomaly given the concerns 

with the assay. Perhaps most relevant to the present study in this regard was the study by 

Calo et al. [891] which measured Ox-LDL in HD patients using the same commercial 

ELISA kits as used here yet they reported approximately 10-fold higher Ox-LDL levels. 

Differences between the two studies such as the use of plasma rather than serum, smaller 

patient numbers, the exclusion of patients with diabetes and the use of low-flux dialysers in 

the Calo et al. [891] study may be responsible for the contrasting results although whether 

these differences could account for such a large discrepancy is unclear. In order to try and 

determine whether the apparent low levels of Ox-LDL measured in the present study were 

a result of methodological problems with the assay or were indeed reflective of low levels 

of oxidative stress, it was decided to perform an additional measure of oxidative stress and 

to this end a TBARS assay was developed and utilised. 

 

Unlike the Ox-LDL ELISA the TBARS assay is very non-specific. The use of TBARS as a 

measure of oxidative stress has been employed for over 30 years [958] and is predicated 

on the reactivity of TBA towards MDA [959]. Malondialdehyde is a side product of 

enzymatic arachidonic acid oxygenation and an end product of oxidative lipid peroxidation 

and it forms a fluorescent red adduct with TBA [959, 960]. The central tenet of the assay is 

that more lipid peroxidation results in higher MDA levels, and hence the formation of more 

MDA:TBA adducts, the levels of which can be measured spectrophotometrically or 

fluorometrically. There are, however, widespread criticisms of the assays with particular 

reference to its lack of specificity and sensitivity. For example TBA has been shown to 

react with a variety of compounds, besides MDA, such as sugars, amino acids, bilirubin 
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and albumin [961]. Despite lipid peroxidation being the most abundant source of MDA, it 

can also be produced by non-oxidative mechanisms such as heavy metal catalysed 

degradation of amino acids and sugars [962] or during prostaglandin metabolism [963, 

964]. The reaction between TBA and MDA is dependant on a number of factors, chiefly 

reaction pH and temperature, and in the absence of a standardised methodology, 

comparing absolute levels between studies may be misleading. However, despite these 

valid criticisms concerning the assay, it has been, and continues to be, widely reported as 

an outcome measure in studies examining oxidative stress. Indeed, of the several studies 

examining the effects of VE coated modified cellulose membranes, three reported the 

effects on oxidative stress using TBARS as an outcome measure [864, 866, 965], and 

when the results were pooled in a meta-analysis an overall beneficial effect of these VE 

membranes on TBARS was observed [884]. 

 

As with the Ox-LDL assay, the TBARS levels in the study samples on the whole were low. 

Again, at the lower concentration ranges where most of the study samples were clustered, 

the assay was not particularly reproducible with high intra- and inter-assay variabilities. 

This arose because the best fit regression line through the standards was relatively flat at 

low concentrations (see Figure 11 and Figure 12) thus small changes in optical 

absorbance translated into correspondingly larger changes in concentration, as compared 

to samples intersecting the steeper portions of the graph (i.e. at greater TBARS 

concentrations). Despite the concerns regarding the lack of standardised methodology for 

TBARS determination and its non-specific nature, the levels of TBARS in the present study 

population were broadly in keeping with other published studies of HD patients [332, 405, 

866, 966, 967] and the overall low levels were consistent with the Ox-LDL data. 

 

Interestingly there was little agreement between the two markers of oxidative stress both in 

terms of the associations with other variables at baseline and the change in each 

parameter after 12 months. Both TBARS and Ox-LDL are putative markers of lipid 

peroxidation and thus one may expect them to be highly correlated. Although there was no 

significant difference in the mean TBARS levels when patients were divided into quartiles 

on the basis of Ox-LDL levels, there was a non-significant trend towards increasing 

TBARS levels across quartiles of increasing Ox-LDL concentration (see Figure 35). 

Published studies measuring both have produced varying results with some reporting good 

agreement [968] and others reporting no correlation [969] or different time courses of 

response to antioxidant interventions [895]. The Ox-LDL levels in the present study were 

quantified by an ELISA and are thus specific for molecules possessing the epitope 
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recognised by the antibodies - MDA-modified apolipoprotein B 100. However Ox-LDL is 

not a distinct entity as the oxidation of LDL is a complex process leading to oxidative 

changes in both the lipid and protein components, for example resulting in a number of 

different changes to apolipoprotein B amino acids and cross-linking, or the formation of 

aldehydes and ketones within the lipid moiety [970]. It is therefore possible that one 

specific oxidative modification of Ox-LDL, as recognised by the antibodies used in the 

ELISA, may not be reflective of the overall oxidative burden. The non-specific nature of the 

TBARS assay has already been highlighted. Thus an explanation for the lack of 

agreement between the two measures of oxidative stress measured in the present study 

may simply be that they are measuring different things, albeit both related to lipid 

peroxidation. Another explanation for the lack of agreement between these two biomarkers 

may be that it is a reflection of the poor reproducibility of one or both of the assays such 

that a true association exists but it was not detected using the methodologies employed 

here. 

 

Despite consistency in the literature reporting higher TBARS in HD patients compared to 

healthy controls [332, 405, 966, 967], in line with the widely accepted dogma that oxidative 

stress is enhanced in HD patients, the literature on Ox-LDL levels is less clear cut with 

some studies reporting Ox-LDL levels to be higher in HD patients compared to healthy 

controls [417, 418] with others reporting the converse to be true [954, 955]. The use of 

different ELISA kits to measure Ox-LDL, as already discussed, may partly explain these 

discrepancies. Another part of the explanation for these conflicting findings may be the flux 

of HD membrane used. In the studies reporting higher levels of Ox-LDL in HD patients 

[417, 418] low-flux dialysers were used whereas the study by Ribeiro et al. [955], which 

reported lower levels in HD patients compared to controls, used high-flux membranes. In 

another study reporting lower levels in HD patients compared to controls [954] no 

comment was made on the dialyser flux. Wanner et al. [355] previously demonstrated a 

reduction in Ox-LDL levels after 6 weeks when patients switched from low- to high-flux 

polysulfone dialysers. More recently, however, Schneider et al. [919] reported significant 

reductions in Ox-LDL levels after 12 months for patients dialysing with both low- and high- 

flux membranes with no significant difference between the two. The mechanisms by which 

dialysis with high-flux membranes might lead to a lowering of Ox-LDL levels are not 

immediately obvious. Several early short term studies, involving relatively small numbers 

of patients, suggested a benefit of high-flux dialysis in terms of improving the lipid profile in 

HD patients [971-974], which in turn could theoretically influence Ox-LDL levels. However 

in all of these studies a low-flux modified cellulose membrane was compared to a high-flux 
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polysulfone membrane making it hard to attribute the findings to membrane flux over 

composition. A subsequent randomised controlled trial comparing high and low-flux 

polysulfone membranes reported no difference in lipid profiles [975]. It thus seems likely 

that membrane composition was the important factor in the earlier studies reporting 

improvements in lipid profiles [971-974] rather than permeability characteristics. This 

makes logical sense as LDL has a molecular weight of between 2.4-3.9 MDa [976, 977] 

(contrast this with albumin 67 kDa and β2-microglobulin 11 kDa) and thus even high-flux 

membranes are likely to be impermeable to LDL. There are in vitro data that polysulfone 

can adsorb LDL onto its surface [978], although the contribution of this to overall 

circulating LDL and Ox-LDL levels are unknown, but this might form part of the explanation 

through which membrane composition could influence lipid profiles. From the studies 

presented here it is hard to unpick the individual contributions of membrane composition, 

flux and time on dialysis to the levels of circulating Ox-LDL levels. It is therefore unclear 

whether the seemingly low Ox-LDL levels in the present cohort were reflective of low 

levels of oxidative stress or simply that patients were dialysing with high-flux biocompatible 

membranes. The potential for differences in dialyser flux or composition to alter oxidative 

stress levels highlights one of the strengths of the present study in that both groups were 

dialysed with high-flux polysulfone membranes of similar performance characteristics with 

the only difference being the presence or absence of the VE coating.  

 

It would therefore appear that the levels of oxidative stress, as measured by Ox-LDL and 

TBARS, were low in the study cohort. This is important to bear in mind when assessing an 

anti-oxidant intervention such as the VE-bonded membrane used in the present study. As 

the levels of oxidative stress at baseline were low in the study cohort, it would potentially 

be harder to show any improvements with anti-oxidant interventions as compared to 

cohorts with higher levels of oxidative stress. Furthermore both of the assays used in the 

present study were not particularly accurate or reproducible over the concentration ranges 

of analyte present in the majority of study samples, thereby limiting the ability to detect 

subtle differences between subgroups or changes over time. These factors need to be 

considered when making inferences from these datasets. Prior to examining the effects of 

the VE-bonded membrane on Ox-LDL and TBARS levels, the significant determinants of 

these oxidative stress biomarkers in the baseline dataset were evaluated. 

6.4.1 Baseline determinants of oxidative stress biomarkers 

A number of published studies have examined various markers of oxidative stress and 

how they relate to disease in HD patients with particular emphasis on CV disease. 



 

 

144 

Analysis of the baseline Ox-LDL data in the present study revealed the levels to be higher 

in patients with a prior history of CV disease which is consistent with studies both in 

haemodialysis [956] and non-renal populations [979-983]. There are a wealth of 

mechanistic data on the so called “oxidative modification hypothesis” [412] whereby the 

atherogenicity of circulating LDL is greatly enhanced by oxidative modification to 

substantiate the association observed in the present study. Oxidised-LDL has been found 

to have a role in endothelial injury [984-986], foam cell formation [987, 988] and enhanced 

expression of pro-inflammatory genes [985, 989, 990] which are all key events in the 

development of atherosclerotic lesions and ultimately CV disease. The observed 

correlation between Ox-LDL and comorbidity score, as defined in the present study 

(section 3.7.1), may reflect that three out of the seven disease domains (ischaemic heart 

disease, peripheral vascular disease and left ventricular dysfunction) used in the scoring 

system come under the broad umbrella of CV disease and all were significantly associated 

with Ox-LDL levels in bivariate analyses. 

 

In contrast with the Ox-LDL levels, there was no association between TBARS and 

prevalent CV disease. In one of the largest studies published to date examining the 

association between biomarkers of oxidative stress and CV disease in HD patients, Boaz 

et al. [396] reported higher TBARS levels in patients with prevalent CV disease. Compared 

with the present study the Boaz et al. [396] study consisted of fewer patients (76 vs 260) 

and included a higher proportion of patients with pre-existing CV disease (58% vs 42% 

using the criteria given by the authors); no comment was made about the proportion of 

patients with diabetes other than insulin dependent patients were excluded. Thus differing 

patient characteristics between the studies may explain the inconsistent findings. However 

it is hard to completely reconcile the lack of association between TBARS and prevalent CV 

disease in the present study given the widely accepted association between biomarkers of 

oxidative stress and CV disease in HD populations [324, 396, 397, 956, 991] and the 

findings of a significant association with Ox-LDL levels. 

 

The lack of a significant association between Ox-LDL and LDL levels was an unexpected 

finding. Several studies have reported a positive correlation between Ox-LDL and LDL 

levels in various patient groups including dialysis patients [955], elderly patients [992], 

patients with type 2 diabetes [993] and familial hypercholesterolaemia [994] as well as 

healthy subjects [995, 996]. However other studies, in line with the results from the present 

study, have reported no correlation between Ox-LDL and cholesterol or LDL levels [997, 

998]. An association between Ox-LDL and LDL levels would make biological sense given 
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that Ox-LDL levels are likely to reflect both levels of oxidative stress as well as the levels 

of available substrate, i.e. LDL. Reasons for the lack of significant association are not clear 

but potential mechanisms include differential membrane adsorption or a consequence of 

dialysis with high-flux dialysis membranes. 

 

Higher TBARS levels were independently associated with higher ferritin levels at baseline. 

A positive association between oxidative stress and ferritin levels has previously been 

reported in healthy subjects [999] and patients with type 2 diabetes mellitus [1000]. Iron is 

stored in the body as ferritin molecules, limiting the toxicity associated with free iron, 

however iron can be released from ferritin by the action of reducing agents, converting 

Fe3+ to Fe2+, particularly in the setting of low antioxidant levels [1001] as are commonly 

found in HD patients (see section 1.4.2.2). Free iron has been shown to be involved in the 

formation of oxygen free radicals in vivo [1002], a process which can be attenuated to 

some extent by iron chelation [1003]. Thus it would appear that ferritin has a role both in 

terms of limiting iron toxicity and providing a potential source of iron capable of 

exacerbating oxidative stress [1004] to explain the positive association between TBARS 

and ferritin levels in the present study. Intravenous iron, frequently administered to HD 

patients, is another potential source of free iron and has been shown to increase oxidative 

stress both in HD [366] and chronic kidney disease [1005, 1006] patients. However, there 

was no correlation between iron dose and ferritin levels nor between iron dose and either 

of the markers of lipid peroxidation measured in the present study suggesting intravenous 

iron was not a significant contributor to oxidative stress levels in the study cohort. 

 

A positive association between HDL and oxidative stress, as evidenced by a positive 

association with TBARS in the present study, has been similarly reported in the general 

population [1007]. The HDL molecule has antioxidant properties conferred principally by 

the presence of its constituent antioxidant enzymes, paraoxonase and glutathione 

peroxidase, and the presence of methionine residues on apolipoproteins [1008-1010]. 

High-density lipoproteins may also have a role in the extraction of oxidised lipid from LDL 

[1011, 1012] although no significant associations between Ox-LDL and HDL levels were 

observed in the present study. Additionally, in the presence of systemic inflammation and 

oxidative stress, there is evidence that the anti-oxidant capabilities of HDL are reduced 

[1013, 1014], as has been observed in HD patients [1015]. Thus the finding of a positive 

association between TBARS and HDL levels may represent up-regulation of HDL 

synthesis in the face of increased oxidative stress. 
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The lack of an association between diabetes and oxidative stress in the present study is 

interesting. Diabetes is widely known to be associated with increased levels of oxidative 

stress in non-dialysis populations [1016, 1017] particularly in the presence of diabetic 

complications or poor diabetic control [1018-1023]. In contrast to these studies no 

associations between diabetes and either of the markers of oxidative stress measured 

were observed in the present study. This may have arisen because the pro-oxidant stimuli 

associated with HD and renal failure may mask any additional contribution from the 

presence of a diabetic state. Contrary to this supposition, Dursun et al. [1024] reported the 

effects of HD and diabetes to be additive in terms of oxidative stress as quantified by 

TBARS levels and anti-oxidant enzyme activity; however little information on the patient 

characteristics were provided to permit a meaningful comparison with the findings of the 

present study. 

 

From an appreciation of the associations in the present dataset, in the context of the 

published literature, it would appear that both Ox-LDL and TBARS were reflective of 

oxidative stress levels in the patient cohort, at least to some extent, and that the overall 

levels were low. With reference to Chapter 5 concerning the anaemia data, low levels of 

oxidative stress may potentially be a contributory factor to explain the low ESA usage for 

LTHT patients compared to other UK HD populations in the UK Renal Registry Reports [4, 

921] although no data are available to substantiate this supposition. In summary the 

baseline data are broadly in keeping with the published literature concerning the 

determinants of Ox-LDL and TBARS in HD patients thus providing an appropriate setting 

to investigate the effects of a VE-bonded dialysis membrane on these biomarkers of 

oxidative stress. 

6.4.2 Changes in oxidative stress over time and the effects of 
vitamin E 

Analyses of the TBARS data revealed a significant increase in the levels across study 

visits with no differential effect of the VE-bonded membrane; no such trend was observed 

with the Ox-LDL levels. The data in Figure 39 would suggest that the TBARS levels only 

increased in slightly over 50% of patients, rather than it being a universal phenomenon. It 

is therefore possible that the increasing trend in TBARS levels was driven by a subset of 

patients with large increases in TBARS levels rather than being reflective of all patients; 

particularly given the use of parametric statistical testing (ANOVA) rather than rank-based 

non-parametric methods. It was also possible, however, that the increasing trend was 



 

 

147 

reflective of enhanced oxidative damaged accrued with time on dialysis. In support of this 

others have shown a positive correlation between time on HD and increased markers of 

oxidative damage, such as TBARS levels [1025], and negative correlations with levels of 

antioxidants, such as ubiquitol and α-tocopherol [332]. However, no negative correlation 

between time on dialysis and either of the markers of oxidative stress measured in the 

present study was found making this a less likely explanation for the results observed 

here. As discussed in the previous section, the prevailing levels of oxidative stress in the 

study cohort was low at baseline. It was therefore more probable, on subsequent 

determinations, that the levels would increase rather than decrease further - the corollary 

of the regression to the mean phenomenon. Thus the observed increase in TBARS levels 

may have been a consequence of inadvertent sample selection bias, such that patients 

with low levels of oxidative stress were entered into the study. 

 

Concerning the anti-oxidant potential of VE, a number of studies have examined the 

effects of VE-coated modified cellulose membranes on biomarkers of oxidative stress. 

Many of these were included in a systematic review [884] which reported an overall 

beneficial effect of the VE membranes. The present study aimed to address a slightly 

different question, namely does VE-coating of the more biocompatible polysulfone 

membranes confer similar benefits? The principal finding of this study with respect to 

biomarkers of oxidative stress, or more specifically lipid peroxidation, was that no 

improvements were observed after 12-months with the VE membrane. 

 

Several studies, of relatively short duration and involving small numbers of patients, have 

measured the effects of VE-bonded polysulfone membranes on biomarkers of oxidative 

stress with differing results. Two studies [889, 894] reported no improvements in various 

biomarkers, including total anti-oxidant capacity, markers of protein oxidation and α- and γ- 

tocopherol levels, after several months with the VE-bonded polysulfone membrane 

compared to a similar non VE-bonded equivalent membrane. However two different 

studies [891, 895], this time measuring different biomarkers of oxidative stress including 

Ox-LDL, TBARS and ADMA, did report improvements with the VE membrane. An obvious 

difference between the studies reporting positive and negative effects of the VE membrane 

was the choice of biomarkers measured. The potential to draw differing conclusions 

depending on the oxidative stress biomarker measured is typified by the present study 

which showed a lack of consistency between Ox-LDL and TBARS levels in terms of their 

significant determinants. 

 



 

 

148 

Interestingly the two studies which measured Ox-LDL levels, as measured in the present 

study [891, 895], both reported a fall in the levels following HD with the VE membrane. In 

the study by Calo et al. [891] it is difficult to interpret the effects of the VE-membrane as 

patients were switched from a low-flux polysulfone membrane (Dr Lorenzo Calo, personal 

communication, July 2012) to a high-flux VE-coated polysulfone membrane and the Ox-

LDL levels were lower after 12 months compared to baseline values. As already 

discussed, dialyser flux may influence Ox-LDL levels thus the observed reduction in Ox-

LDL levels may be a consequence of increased dialyser flux rather than an effect of the 

VE-membrane. In the second study Morimoto et al. [895] reported improvements in Ox-

LDL and TBARS levels although these were determined in LDL fractions, obtained by 

sequential ultracentrifugation, rather than in whole serum as was performed in the present 

study. Other important differences between the Morimoto et al. study [895] and the present 

study to potentially explain the apparent differing conclusions include fewer patient 

numbers (31 vs 261), a higher preponderance of females (52% vs 40%) and patients with 

diabetes (82% vs 28%) in the published study. Additionally the authors provided no 

information on dialyser flux or delivered dialysis dose although reported a mean dialyser 

surface area of 1.55 m2. The lowest surface area dialyser used in the present study was 

1.8 m2 with a significant number using 2.1 m2 thus the delivered dialysis dose was likely to 

be greater in the present study. Theoretically this could alter oxidative stress levels, 

perhaps as a consequence of greater VE-exposure with the larger surface area 

membranes, although there are no published data to support this. Additionally the mean 

haemoglobin level in the Morimoto et al. study [895] at baseline was 9.8 g/dL with a mean 

EPO dose of 5416 IU/week which suggests much higher levels of ESA resistance than in 

the present study (mean haemoglobin 11.6 g/dL; median EPO dose (calculated by 

applying correction factor of 200) 4000 IU/week) suggesting fundamental differences in the 

patient cohorts. As discussed in Chapter 5, the higher ESA-resistance may be a 

consequence of higher levels of inflammation or oxidative stress and therefore the 

response to the VE-membrane may be expected to differ between the two study 

populations.  

 

Thus, from the very small number of patients included in published studies to date, it is not 

possible to form a consensus on the effect of VE-bonded polysulfone membranes on 

oxidative stress given the conflicting findings. Additionally the choice of oxidative stress 

biomarkers, and the methods by which they are measured, appears to be of prime 

importance. The present study, in view of the number of patients recruited, parallel group 

design, length of follow-up and the pre-specified oxidative stress endpoint, is well placed to 
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contribute significantly to this evidence base. From these combined data it would appear 

that there is no convincing evidence that the use of VE-coated polysulfone membranes 

results in improvements in Ox-LDL or TBARS levels. A potential corollary of this finding is 

that the non-VE bonded polysulfone membranes are in fact very biocompatible in terms of 

their ability to induce oxidative stress - perhaps approaching the limit of what may be 

achievable with synthetic materials, thus the additional benefits of a VE-coating, unlike that 

observed with the less biocompatible modified cellulose membranes, are small. 

 

In this chapter the effects of a VE-bonded polysulfone membrane on two biomarkers of 

oxidative stress, Ox-LDL and TBARS, have been evaluated and no evidence of benefit 

was observed. One of the putative mechanisms through which VE-bonded membranes 

might improve ERI, as discussed in the last chapter, is through a reduction in oxidative 

stress. As there was no apparent improvement in the oxidative stress biomarkers in the 

current study, the question as to whether improving oxidative stress for patients dialysing 

with biocompatible polysulfone membranes results in improvements in ESA resistance 

remains unanswered. Perhaps a more important question, however, is whether the use of 

the VE-bonded membranes translates into clinical benefits for patients through reductions 

in CV disease rates, morbidity and mortality. The data with respect to these endpoints are 

presented and discussed in Chapter 9. 
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Chapter 7 : Inflammation 
There are a wealth of observational data linking increased levels of inflammatory 

biomarkers, such as CRP and IL-6, with adverse outcomes in HD patients including 

reduced quality of life [1026], increased ESA resistance [923, 924] and increased mortality, 

particularly from CV disease [163, 429, 435, 439, 440, 505, 506]. There are also 

mechanistic data linking various components of the inflammatory cascade with these 

disease processes such as evidence of a role for CRP [510-513] or complement 

components [56, 511, 547-549] in atherosclerosis and inflammatory mediators in ESA 

resistance [147, 156-160, 227, 927, 928]. Despite these observational data, evidence that 

treating inflammation per se, as distinct from ameliorating conditions which contribute to 

inflammation such as infection, translates into benefits for HD patients is lacking. There is, 

however, a logic that such approaches may improve outcomes for HD patients. In the 

present study a number of components of the inflammatory response were measured: 

CRP, C3, SC5b-9, factor D and properdin levels. The relationships between these 

biomarkers and the patient characteristics were explored in the baseline dataset. The 12-

month longitudinal data were then evaluated to determine if these inflammatory 

parameters changed over time and to determine if there were any effects of dialysis with a 

VE-bonded membrane. 

7.1 Determinants of baseline inflammation 

The associations between the inflammatory markers CRP, C3, SC5b-9, factor D and 

properdin and the independent variables in the baseline dataset were evaluated for their 

key determinants as detailed in section 3.17.4. 

7.1.1 Determinants of baseline CRP levels 

In bivariate analyses, the CRP levels were positively correlated with weight, C3, ferritin 

and triglyceride levels, negatively correlated with HDL and calcium levels (see Table 18), 

were higher in patients with a prior history of ischaemic heart disease (see Table 19) and 

lower in patients receiving renin-angiotensin medications (see Table 20) and in patients in 

the lowest quartile of SC5b-9 levels (see Table 21). There were no differences in CRP 

levels when patients were compared on the basis of diabetic status or in patients dialysing 

with CVCs compared to AVFs (see Table 19). Multivariate regression analysis using a 

backwards stepwise variable selection procedure and the variables associated with CRP 

at a significance of p<0.2 as described in section 3.17.4, initially identified the independent 
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predictors of higher CRP levels to be male sex, higher C3, SC5b-9 and ferritin levels, 

lower albumin levels and that the CRP levels were lower in patients of Black ethnicity. 

However, review of the residuals versus fitted regression diagnostic plot revealed a highly 

heteroscedastic distribution of the errors. The variable selection procedure was therefore 

repeated modelling the logarithm of the CRP levels. In this model, higher C3, SC5b-9 and 

ferritin levels and lower albumin, calcium and HDL levels were independently predictive of 

higher CRP levels and the CRP levels were lower in Blacks. This model had an adjusted-

R2 of 0.25, constant error variance and was not influenced by the presence of outliers. 

7.1.2 Determinants of baseline C3 levels 

The C3 levels were positively correlated with age, weight, cholesterol, triglyceride and 

CRP levels, negatively correlated with blood pressure and time on dialysis (see Table 18) 

and were lower in current smokers, Caucasians compared to Asians (see Table 19), in 

patients receiving renin-angiotensin medications and patients not receiving statins (see 

Table 20); the levels also differed across quartiles of Ox-LDL (see Table 22). There were 

no significant associations between C3 levels and the presence of diabetes or CV disease 

(see Table 19). An initial regression model constructed using a backwards stepwise 

variable selection procedure and the variables associated with C3 levels at a significance 

of p<0.2 retained the variables age, weight, systolic blood pressure, ethnicity and 

cholesterol, CRP, LDL, factor D and properdin levels. However this model was influenced 

by multicollinearity as evidenced by a positive regression coefficient for cholesterol and a 

negative correlation coefficient for LDL, despite these variables being positively correlated 

with each other in the dataset (r=0.90, p<0.0001), and the high VIFs for these variables 

(5.9 and 6.1 respectively). The LDL / cholesterol ratio was calculated but this was not 

correlated with the C3 levels with sufficient statistical significance to justify inclusion in the 

variable selection procedure (r=-0.07, p=0.29). The modelling procedure was therefore 

repeated retaining the cholesterol and excluding the LDL levels as cholesterol had the 

strongest association with C3 levels on bivariate testing (see Table 18). This final model 

had an adjusted-R2 of 0.33 and identified the independent predictors of higher C3 levels 

were increased age and weight, higher levels of CRP, cholesterol, factor D, and properdin 

levels, lower systolic blood pressure and Asian ethnicity. 

7.1.3 Determinants of baseline SC5b-9 levels 

Of the samples measured at baseline, 41 (16%) had SC5b-9 levels below the limit of 

detection for the assay and were assigned a value of 34.4 ng/mL which was the 

concentration of the lowest standard. The associations between SC5b-9 and the 
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continuous predictor variables in the dataset were evaluated by comparing them between 

quartiles of SC5b-9 as detailed in section 3.17.4. In bivariate analyses the quartiles of 

SC5b-9 were positively associated with factor D and CRP levels and dialysis dose, 

negatively associated with calcium and HbA1c levels (see Table 21) and the SC5b-9 

levels were lower in patients receiving sulphonylureas (see Table 20). There was a non-

linear relationship with the albumin levels such that they were higher in the third compared 

to fourth quartile of SC5b-9 levels (see Table 21). Backwards stepwise ordinal logistic 

regression modelling of the SC5b-9 quartiles was performed initially including all of the 

variables associated with SC5b-9 levels at a significance of p<0.2 as described in section 

3.17.4. The initial model identified sulphonylurea therapy, higher HbA1c and lower factor D 

levels to be independently associated with lower quartiles of SC5b-9 concentrations. 

However this model was only based on 72 observations as it was censored for non-

diabetics owing to the inclusion of HbA1c levels in the variable list for model selection; the 

procedure was therefore repeated after excluding this variable. The resultant model again 

identified sulphonylurea therapy and lower factor D levels to be associated with lower 

quartiles of SC5b-9 but also retained the CRP levels which had a positive association with 

the quartiles of SC5b-9. The final model had a pseudo adjusted-R2 of 0.06 and satisfied 

the Brant test of parallel regression assumption. 

7.1.4 Determinants of baseline factor D levels 

In unadjusted analyses the levels of factor D were negatively correlated with LDL, calcium, 

PTH and TBARS levels (see Table 18), positively associated with SC5b-9 levels (see 

Table 21) and were lower in patients receiving beta-blockers or renin-angiotensin 

medications (see Table 20) and in patients with a diagnosis of malignancy (see Table 19). 

An initial regression model was constructed using a backwards stepwise variable selection 

procedure and all of the variables associated with factor D levels at a significance of p<0.2. 

This model identified the factor D levels were independently positively associated with 

higher C3 levels, higher quartiles of SC5b-9, lower bicarbonate and LDL levels and were 

lower in Asians. Review of the regression diagnostic plots suggested the analyses were 

influenced by a small number of cases with high factor D levels. A total of 12 cases fulfilled 

the a priori criteria for having an outlying factor D level as described in section 3.17.4 and 

were therefore excluded from the subsequent analysis. Repeating the variable selection 

procedure after excluding these cases generated a model which identified lower factor D 

levels were independently associated with increased calcium, PTH or cholesterol levels or 

patients receiving renin-angiotensin medications; this final model had an adjusted-R2 of 

0.10. 
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7.1.5 Determinants of baseline properdin levels 

The only statistically significant association with the properdin levels in the unadjusted 

analyses was a positive correlation with phosphate levels (see Table 18). The initial 

backwards stepwise variable selection procedure, including all of the variables associated 

with the baseline properdin levels at a significance of p<0.2, rejected all of the variables 

but was censored for non-diabetics owing to the inclusion of HbA1c levels. The procedure 

was therefore repeated after omitting HbA1c levels from the variable list and the resultant 

model retained only C3 levels which were positively associated with properdin levels; the 

model had an adjusted-R2 of 0.02. A review of the residual versus fitted regression 

diagnostic plot identified a number of cases with high properdin levels, including 2 samples 

with properdin levels above the upper limit of the assay which had been assigned values 

of 280 µg/mL. A total of 6 cases fulfilled the a priori criteria set out in section 3.17.4 for 

having outlying properdin levels and the modelling procedure was repeated after excluding 

them from the dataset. The resultant model had an adjusted-R2 of 0.08 and identified that 

higher properdin levels were independently associated with lower dialysis dose and 

albumin levels, higher PTH levels and were lower in patients receiving renin-angiotensin 

medications. 
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Table 18 - Determinants of CRP, C3, factor D and properdin levels at baseline: continuous variables. 
   CRP  C3  Factor D  Properdin 
 n  r p  r p  r p  r p 

Patient factors              
Age 260  0.10 0.11  0.18 <0.01  0.04 0.57  0.02 0.78 
Weight 260  0.14 0.02  0.38 <0.0001  -0.08 0.18  0.09 0.15 
Pre-dialysis systolic blood pressure 260  -0.08 0.22  -0.14 0.02  -0.04 0.52  0.02 0.77 
Pre-dialysis diastolic blood pressure 260  -0.10 0.11  -0.19 0.002  -0.08 0.22  0.01 0.81 
Dialysis factors              
Time on renal replacement therapy 260  0.11 0.07  -0.14 0.03  0.08 0.19  0.00 0.96 
Urea reduction ratio 260  0.04 0.49  -0.07 0.28  0.10 0.12  -0.09 0.17 
Laboratory parameters              
Haemoglobin 260  -0.05 0.43  -0.07 0.25  0.06 0.37  0.08 0.21 
Ferritin 260  0.13 0.04  0.11 0.09  0.00 0.99  -0.02 0.75 
Albumin 260  -0.10 0.10  0.04 0.57  0.09 0.16  -0.11 0.07 
Cholesterol 259  0.02 0.77  0.15 0.02  -0.12 0.06  0.05 0.44 
High-density lipoprotein 259  -0.16 0.01  -0.10 0.09  -0.06 0.36  0.00 0.96 
Low-density lipoprotein 254  0.01 0.88  0.10 0.13  -0.14 0.03  0.05 0.45 
Triglycerides 259  0.14 0.02  0.33 <0.0001  0.00 0.94  0.04 0.48 
Bicarbonate 260  -0.10 0.12  -0.10 0.11  -0.11 0.07  -0.06 0.33 
Calcium 260  -0.17 <0.01  0.06 0.38  -0.14 0.02  0.10 0.11 
Phosphate 260  -0.01 0.91  0.00 0.96  -0.06 0.31  0.15 0.02 
Parathyroid hormone 248  0.10 0.11  0.01 0.91  -0.13 0.04  0.12 0.06 
HbA1c 72  0.04 0.75  0.06 0.62  0.07 0.53  -0.20 0.09 
Inflammation biomarkers              
C-reactive protein 260  1.00 1.00  0.35 <0.0001  0.00 0.95  -0.07 0.28 
C3 260  0.35 <0.0001  1.00 1.00  0.11 0.07  0.12 0.06 
Factor D 260  0.00 0.95  0.11 0.07  1.00 1.00  -0.03 0.60 
Properdin 260  -0.07 0.28  0.12 0.06  -0.03 0.60  1.00 1.00 
Oxidative stress              
TBARS 260  -0.10 0.12  -0.10 0.15  -0.13 0.03  0.06 0.33 

r: Correlation coefficient 
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Table 19 - Determinants of CRP, C3, SC5b-9, factor D and properdin levels at baseline: Patient factors and comorbidities. 
  n CRP 

(mg/L) p C3  
(mg/mL) p SC5b-9 

 (ng/mL) p Factor D 
(µg/mL) p Properdin 

 (µg/mL) p 

Patient factors:            
Sex Male 156 6.9 [2.7-16.0] 0.17 0.77 [±0.02] 0.88 68.5 [39.8-104.7] 0.74 3.5 [2.9-4.2] 0.65 53.5 [43.9-67.2] 0.51 
 Female 104 6.2 [1.7-14.0]  0.77 [±0.02]  66.6 [39.7-122.7]  3.3 [2.9-4.2]  55.2 [41.8-74.7]  
Ethnicity Caucasian 199 6.8 [2.4-14.5] 0.052 0.76 [±0.01] 0.04† 66.8 [41.3-112.4] 0.50 3.5 [2.9-4.3] 0.12 53.3 [41.9-68.4] 0.77 
 Asian 46 7.9 [1.6-21.0]  0.83 [±0.03]  63.4 [38.2-105.4]  3.2 [2.7-3.9]  56.3 [45.0-69.3]  
 Black 13 1.9 [0.5-6.7]  0.76 [±0.04]  70.8 [34.4-92.9]  3.6 [3.2-4.1]  54.0 [44.8-64.1]  
 Other* 2 5.2 [0.6-9.8]  0.69 [±0.06]  121.1 [86.5-155]  4.0 [3.4-4.5]  118.6 [97.9-139]  
Smoker Never 118 5.6 [1.6-13.8] 0.09 0.77 [±0.02] 0.001‡ 68.8 [39.4-122.3] 0.51 3.5 [2.9-4.2] 0.83 55.9 [44.3-73.1] 0.44 
 Current 57 6.7 [2.1-14.3]  0.70 [±0.02]  57.0 [38.5-95.8]  3.4 [2.9-3.9]  54.0 [39.7-66.3]  
 Ex 85 8.3 [3.6-20]  0.82 [±0.02]  67.4 [43.4-101.9]  3.4 [2.8-4.2]  52.2 [43.3-64.7]  

Fistula 218 6.3 [2.0-14.2] 0.28 0.78 [±0.01] 0.17 67.0 [38.8-112.4] 0.78 3.4 [2.9-4.2] 0.70 53.6 [43.2-69.3] 0.58 Dialysis 
access Catheter 38 9.0 [2.1-19.7]  0.73 [±0.03]  69.1 [48.8-104.3]  3.6 [2.9-4.1]  53.6 [39.6-64.9]  
 Graft* 4 16.5  0.74 [±0.07]  58.0 [42.9-70.9]  4.1 [3.5-4.5]  69.3 [49.8-76.6]  
Comorbidities:            

Diabetes Yes 74 6.1 [2.3-16.3] 1.0 0.79 [±0.02] 0.24 60.1 [38.4-104.3] 0.32 3.4 [2.8-4.2] 0.87 55.2 [44.4-77.9] 0.18 
 No 186 6.9 [2.1-14.5]  0.76 [±0.01]  68.9 [40.1-110.8]  3.4 [2.9-4.1]  53.6 [42.3-67.1]  
IHD Yes 74 9.8 [3.0-22.0] <0.01   0.80 [±0.02] 0.13 67.2 [40.1-98.2] 0.89 3.5 [2.9-4.3] 0.48 53.5 [41.2-65.7] 0.52 
 No 186 6.0 [1.8-13.0]  0.76 [±0.01]  67.0 [39.6-111.4]  3.4 [2.9-4.1]  54.3 [43.9-71.1]  
Malignancy Yes 17 8.5 [5.9-15] 0.16 0.76 [±0.04] 0.76 78.6 [38.0-99.9] 0.89 3.0 [2.6-3.6] 0.04 51.2 [40.6-77.0] 0.90 
 No 243 6.7 [1.9-14.6]  0.77 [±0.01]  66.8 [39.8-109.1]  3.5 [2.9-4.2]  53.8 [43.4-68.1]  
PVD Yes 71 9.0 [3.2-18.1] 0.09 0.78 [±0.02] 0.73 63.7 [39.4-113.9] 0.94 3.5 [3.1-4.4] 0.36 53.5 [41.9-68.1] 0.85 
 No 189 6.3 [1.8-14.5]  0.77 [±0.01]  67.2 [39.7-106.0]  3.4 [2.9-4.1]  54.0 [43.9-68.8]  

Yes 24 6.7 [2.2-12.8] 0.71 0.77 [±0.04] 0.73 55.7 [37.7-80.1] 0.15 3.5 [3.0-4.4] 0.36 46.8 [42.7-60.1] 0.14 LV 
dysfunction No 236 6.8 [2.1-16.5]  0.77 [±0.01]  67.3 [40.5-112.0]  3.4 [2.9-4.1]  54.7 [43.9-70.7]  

Data presented as mean [±SEM] or median [IQR]. *Excluded from analysis owing to small group size, †Caucasians vs Asians, ‡Current vs Never and 
Ex-smokers. IHD: Ischaemic heart disease, PVD: Peripheral vascular disease, LV: Left ventricular. 
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Table 20 - Determinants of CRP, C3, SC5b-9, factor D and properdin levels at baseline: Medications. 
             
  n CRP 

(mg/L) p C3  
(mg/mL) p SC5b-9 

 (ng/mL) p Factor D 
(µg/mL) p Properdin 

 (µg/mL) p 

Yes 83 5.9 [1.2-10.4] 0.01 0.73 [±0.02] 0.02 71.3 [38.5-112.4] 0.80 3.2 [2.7-3.8] 0.03 52.2 [39.9-64.8] 0.08 RAS 
medications No 177 7.8 [2.7-18.3]  0.79 [±0.01]  66.4 [39.7-103.2]  3.5 [3.0-4.3]  54.9 [44.2-71.4]  

β-blockers Yes 55 6.9 [1.4-14.4] 0.69 0.76 [±0.02] 0.45 60.0 [37.8-90.8] 0.19 3.2 [2.6-4.1] 0.047 51.5 [44.4-64.2] 0.52 
 No 205 6.7 [2.4-15.9]  0.78 [±0.01]  67.5 [40.0-113.9]  3.5 [3.0-4.2]  54.9 [41.8-72.1]  

Statins Yes 147 7.0 [2.5-14.5] 0.58 0.79 [±0.01] 0.03 68.7 [44.7-103.5] 0.46 3.5 [3.0-4.3] 0.26 53.6 [43.9-71.4] 0.54 
 No 113 6.6 [1.8-16.3]  0.74 [±0.02]  63.7 [38.1-111.8]  3.4 [2.7-4.1]  54.0 [41.1-66.8]  

Aspirin Yes 117 7.2 [2.4-15.0] 0.77 0.78 [±0.02] 0.29 66.8 [47.5-111.6] 0.29 3.5 [3.0-4.4] 0.11 53.1 [44.1-66.3] 0.52 
 No 143 6.7 [1.8-14.5]  0.76 [±0.02]  67.5 [38.2-106.5]  3.4 [2.8-4.0]  54.1 [41.6-71.0]  

Clopidogrel Yes 20 6.7 [2.1-14.5] 0.43 0.78 [±0.05] 0.93 68.6 [45.4-94.0] 0.67 3.4 [2.7-5.4] 0.87 49.3 [38.6-64.0] 0.12 
 No 240 10.1 [2.5-19.5]  0.77 [±0.01]  66.8 [39.4-108.6]  3.4 [2.9-4.1]  54.1 [43.9-70.7]  

Dipyridamole Yes 3 2.8 [1.1-35] 0.76 0.75 [±0.04] 0.81 77.7 [44.7-107.2] 0.80 3.8 [3.4-6.1] 0.27 48.3 [39.4-53.3] 0.33 
 No 257 6.8 [2.1-14.6]  0.77 [±0.01]  66.8 [39.6-107.9]  3.4 [2.9-4.2]  54.0 [43.1-68.8]  

Warfarin Yes 16 10.8 [3.5-17.6] 0.15 0.77 [±0.03] 0.97 53.3 [38.1-77.3] 0.21 3.4 [2.8-3.8] 0.67 49.3 [42.5-67.8] 0.55 
 No 244 6.5 [1.9-14.5]  0.77 [±0.01]  67.3 [40.5-110.3]  3.5 [2.9-4.2]  53.9 [43.5-68.3]  

Sulphonylureas Yes 13 4.3 [1.3-7.5] 0.12 0.79 [±0.05] 0.70 38.5 [34.4-71.3] 0.02 3.5 [2.9-4.4] 0.94 60.3 [40.1-82.2] 0.51 
 No 247 6.9 [2.1-15.3]  0.77 [±0.01]  67.5 [42.5-110.8]  3.4 [2.9-4.2]  53.6 [42.7-68.1]  

Insulin Yes 54 9 [1.9-20.0] 0.39 0.78 [±0.02] 0.73 66.7 [44.1-117.9] 0.58 3.3 [2.7-4.1] 0.37 54.3 [44.2-71.4] 0.75 
 No 206 6.7 [2.2-14.4]  0.77 [±0.01]  67.1 [39.2-106.8]  3.5 [2.9-4.2]  53.7 [42.6-68.2]  

Data presented as mean [±SEM] or median [IQR]. *Excluded from analysis owing to small group size. RAS: Renin-angiotensin system 
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Table 21 - Determinants of SC5b-9 levels at baseline: analysis of continuous variables across quartiles of SC5b-9. 
  Q1 Q2 Q3 Q4 p 
n 65 65 65 65  
SC5b-9 (ng/mL) <39.8 39.8 - 66.8 67.2 - 106.7 >106.7  
Patient factors      
 Age (yrs) 62.9 [±2.0] 64.3 [±1.9] 61.5 [±2.1] 64.7 [±2.0] 0.66 
 Weight (kg) 73.2 [62.2 - 79.0] 73.6 [61.3 - 90] 69.4 [57.5 - 78.4] 69.3 [56.4 - 82.9] 0.30 
 Pre-dialysis systolic blood pressure (mmHg) 138.3 [±2.8] 135.1 [±3.3] 136.0 [±3.2] 137.4 [±3.0] 0.88 
 Pre-dialysis diastolic blood pressure (mmHg) 72.8 [±1.6] 70.5 [±1.6] 72.3 [±1.7] 70.3 [±1.6] 0.62 
Dialysis factors      
 Time on renal replacement therapy (yrs) 3.7 [1.2 - 7.5] 3.0 [1.2 - 6.2] 3.4 [1.5 - 7.0] 4.9 [2.1 - 8.8] 0.11 
 Urea reduction ratio 0.75 [±0.01] 0.74 [±0.01] 0.74 [±0.01] § 0.77 [±0.01] ‡ 0.02 
Laboratory parameters      
 Haemoglobin (g/dL) 11.7 [±0.2] 11.6 [±0.2] 11.5 [±0.2] 11.6 [±0.1] 0.87 
 Ferritin (µg/L) 455 [±31] 465 [±26] 495 [±28] 488 [±26] 0.70 
 Albumin (g/L) 37.5 [±0.6] 37.7 [±0.6] 39.4 [±0.4] § 37.2 [±0.5] ‡ 0.02 
 Cholesterol (mmol/L) 3.9 [±0.1] 4.0 [±0.1] 3.9 [±0.1] 4.0 [±0.1] 0.86 
 High-density lipoprotein (mmol/L) 1.1 [±0.0] 1.2 [±0.1] 1.2 [±0.0] 1.2 [±0.0] 0.69 
 Low-density lipoprotein (mmol/L) 2.1 [±0.1] 2.1 [±0.1] 2.1 [±0.1] 2.1 [±0.1] 0.97 
 Triglycerides (mmol/L) 1.35 [1.0 - 2.0] 1.5 [1.1 - 2.4] 1.5 [1.0 - 2.0] 1.4 [0.9 - 2.1] 0.50 
 Bicarbonate (mmol/L) 22.0 [±0.3] 22.3 [±0.3] 21.6 [±0.3] 21.9 [±0.3] 0.42 
 Calcium (mmol/L) 2.43 [±0.02] 2.41 [±0.02] 2.35 [±0.02] 2.36 [±0.02] 0.04 
 Phosphate (mmol/L) 1.45 [±0.06] 1.53 [±0.06] 1.52 [±0.06] 1.51 [±0.06] 0.85 
 Parathyroid hormone (pmol/L) 22 [12 - 45] 22 [7 - 37] 23 [11 - 48] 21 [9 - 40] 0.59 
 HbA1c (%) 8.6 [6.8 - 9.8] 7.1 [6.7 - 8.1] 6.8 [5.7 - 7.4] 6.8 [6.4 - 8.0] 0.049 

Inflammatory markers      
 C-reactive protein (mg/L) 4.6 [1.4 - 8.7]†‡ 8.2 [2.8 - 17.7]* 9.7 [3.5 - 20.4]* 8.3 [1.8 - 18.6] 0.01 
 C3 (mg/mL) 0.74 [±0.02] 0.79 [±0.02] 0.79 [±0.03] 0.77 [±0.02] 0.29 
 Factor D (µg/mL) 3.2 [2.7 - 3.7]‡ 3.4 [2.8 - 4.0] ‡ 3.5 [2.8 - 4.1]*† 3.9 [3.2 - 4.7] 0.001 
 Properdin (µg/mL) 53.3 [45.2 - 63.9] 53.6 [44.9 - 65.0] 51.3 [39.9 - 72.5] 57.7 [39.4 - 74.6] 0.94 
Oxidative stress      
 Ox-LDL (ng/mL) 34.6 [4.3 - 124.8] 33.7 [13.5 - 81.5] 38.2 [16.5 - 61.4] 33.6 [4.3 - 106.4] 0.98 
 TBARS (µM MDA) 2.4 [±0.1] 2.3 [±0.1] 2.3 [±0.1] 2.5 [±0.1] 0.72 
Data presented as range, mean [±SEM] or median [IQR]. The p-value is for significance of omnibus test. Pairwise post hoc testing was 
performed if omnibus test significant with significant differences between quartiles indicated as: vs *Q1, †Q2, ‡Q3 or §Q4. 
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Table 22 - Comparison of CRP, C3, SC5b-9, factor D and properdin levels between 
quartiles of Ox-LDL. 
 Quartiles of Ox-LDL  
 Q1 Q2 Q3 Q4 p 

n 65 64 64 64  
Ox-LDL 
(ng/mL) 

<8.9 8.90 - 34.0 36.2 - 96.8 >96.8  

CRP 
(mg/L) 

6.9 
[2.9 - 14.9] 

6.5 
[2.8 - 19.9] 

6.8 
[1.8 - 13.9] 

6.5 
[1.7 - 14.3] 0.80 

C3 
(mg/mL) 

0.80 
[±0.02] 

0.81† 
[±0.02] 

0.72* 
[±0.02] 

0.75 
[±0.02] 0.01 

SC5b-9 
(µg/mL) 

37.9 
[14.9 - 62.9] 

67.9 
[45.3 - 97.9] 

72.9 
[45.0 - 105.6] 

63.0 
[37.6 - 117.2] 0.92 

Factor D 
(µg/mL) 

3.5 
[3.0 - 3.9] 

3.4 
[2.9 - 4.1] 

3.4 
[2.6 - 4.1] 

3.7 
[3.2 - 4.4] 0.07 

Properdin 
(µg/mL) 

57.2 
[46.3 - 68.8] 

50.4 
[42.7 - 74.3] 

54.8 
[44.0 - 74.5] 

51.8 
[41.0 - 63.8] 0.32 

Data presented as range, mean [±SEM] or median [IQR]. The p-value is for significance of 
omnibus test. Pairwise post hoc testing was performed if omnibus test significant and 
significant differences between quartiles indicated: vs *Q2, †Q3 

7.2 Temporal changes in inflammation and the effects of 
vitamin E 

Analyses of the longitudinal data were undertaken to investigate the changes in 

inflammatory markers over time and to evaluate the influence of the VE-bonded 

membrane as detailed in section 3.17.5. 

7.2.1 12-month changes in CRP levels 

The CRP levels did not differ between groups at baseline (p=0.29) or 12-months (p=0.84) 

as shown in Table 23. Similarly, comparison of the 12-month and baseline CRP levels 

identified no significant differences in either the control (p=0.84) or VE (p=0.25) groups 

(see Table 23). A repeated measures ANOVA was performed on the log-transformed CRP 

levels, which approximated a normal distribution, and identified that the CRP levels 

changed significantly across study visits (p<0.001) but there was no significant effect of 

study group allocation (p=0.47) nor significant interaction between study group and time 

(p=0.94) (see Figure 40). Comparing the 12-month change in CRP levels between study 

groups similarly found no effect of the VE-bonded membrane (p=0.68, see Figure 41). 
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Table 23 - Analyses of baseline and 12-month data for the inflammatory markers 
CRP, C3, SC5b-9, factor D and properdin. 

  Baseline  12 months p* 

Control 7.1 [2.8 - 14.5]  5.2 [1.3 - 17.6] 0.84 CRP 
 (mg/L) Vitamin E 5.6 [1.6 - 17.9]  6.5 [1.7 - 14.2] 0.25 

 p† 0.29  0.84  

Control 0.76 [±0.01]  0.69 [±0.02] <0.0001 C3 
 (mg/mL) Vitamin E 0.78 [±0.02]  0.71 [±0.02] <0.0001 

 p† 0.50  0.49  

Control 61.0 [40.5 - 100.6]  57.8 [41.0 - 104.8] 0.80 sC5b-9  
(ng/mL) Vitamin E 67.5 [39.4 - 113.9]  72.5 [44.7 - 123.2] 0.42 

 p† 0.46  0.36  

Control 3.5 [3.0 - 4.3]  3.6 [2.9 - 4.2] 0.38 Factor D  
(µg/mL) Vitamin E 3.4 [2.7 - 4.1]  3.4 [2.6 - 4.3] 0.27 

 p† 0.06  0.31  

Control 51.5 [42.1 - 66.1]  49.6 [41.0 - 63.0] 0.17 Properdin  
(µg/mL) Vitamin E 56.4 [44.4 - 74.8]  51.5 [40.9 - 68.4] 0.02 

 p† 0.07  0.60  

Data presented as mean [±SEM] or median [IQR]. 
*p-value for baseline vs 12 months; †p-value for between group comparisons  
 

C
R

P 
(m

g/
L)

 
Figure 40 - CRP levels at baseline, 6 and 12 months in each study group. The CRP 
levels changed significantly across study visits (p<0.001) but there was no effect of study 
group (p=0.47) nor significant interaction between study group and time (p=0.94). 
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Figure 41 - Comparison of 12-month change in CRP levels between study groups. 
There was no significant difference in the 12-month change in CRP levels between study 
groups. (ΔCRP = CRP12months - CRPbaseline). 

7.2.2 12-month changes in C3 levels 

The C3 levels were similar in the control and VE groups at baseline (p=0.50) and 12 

months (p=0.49) (see Table 23). The 12-month C3 levels were significantly lower than 

baseline in both the control (p<0.0001) and VE (p<0.0001) groups (see Table 23). A 

repeated measures ANOVA, analysing the C3 levels across study visits, identified that the 

changes in C3 over time were significant (p<0.0001) but there was no significant effect of 

study group allocation (p=0.38) nor significant interaction between study group and time 

(p=0.67) as shown in Figure 42. A comparison of the 12-month change in C3 levels 

between the two study groups found no significant difference (p=0.35, see Figure 43). 

 
Figure 42 - C3 levels at baseline, 6 and 12 months in each study group. The C3 levels 
fell significantly across study visits (p<0.0001) but there was no significant effect of study 
group allocation (p=0.38) nor significant interaction between group and time (p=0.67). 
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Figure 43 - Comparison of 12-month change in C3 levels between study groups. The 
C3 levels fell in both groups after 12 months in the majority of patients with no difference 
between the groups. (ΔC3 = C312months - C3baseline). 
 

Given the striking finding of a significant fall in C3 levels across study visits, irrespective of 

the dialyser used, it was decided to explore the relationships between the changes in the 

modifiable variables correlated with C3 levels at baseline and the change in C3 levels. 

These variables were weight, blood pressure, cholesterol, triglycerides and CRP levels 

(see Table 18). The results of the correlation analyses looking for significant associations 

between the changes in these variables and the change in C3 levels are shown in Table 

24. The change in C3 levels was significantly positively correlated with the change in 

weight, CRP, cholesterol and triglyceride levels. Using the change in these variables to 

model the change in C3 levels with multivariate regression generated a model with an 

adjusted-R2 of 0.16 suggesting that 16% of the variance in the change in C3 levels in the 

dataset could be attributed to changes in weight and the levels of CRP, cholesterol and 

triglycerides. 

 

Table 24 - Spearman’s rank correlation coefficients for the 12-month change in C3 
levels and the 12-month change in each of the variables significantly associated 
with C3 levels at baseline. 

 r p 
ΔWeight 0.15 0.03 
ΔSystolic blood pressure 0.01 0.86 
ΔDiastolic blood pressure 0.04 0.60 
ΔCholesterol 0.23 <0.001 
ΔTriglycerides 0.14 0.04 
ΔCRP 0.38 <0.0001 

In each case, the change [Δ] was calculated by subtracting the baseline value from the 
12-month value 
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7.2.3 12-month changes in SC5b-9 levels 

As shown in Table 23, there were no significant differences in the SC5b-9 levels between 

groups at baseline (p=0.46) or 12-months (p=0.36), nor when the 12-month and baseline 

levels were compared in the control (p=0.80) or VE (p=0.42) groups. Owing to a significant 

number of the samples analysed having SC5b-9 levels below the lower limit of detection 

for the assay, it was not possible to transform the data such that it approximated a normal 

distribution therefore a repeated measures ANOVA was not performed. A Friedman’s test 

examining for significant changes over time was not statistically significant in either the 

control (p=0.85) or VE (p=0.94) groups. The SC5b-9 levels at each study visit are depicted 

graphically in Figure 44. Comparison of the 12-month change in the SC5b-9 levels 

between study groups revealed no significant difference (p=0.48, see Figure 45). 

 
Figure 44 - SC5b-9 levels at baseline, 6 and 12 months in each study group There 
were no significant inter-group differences nor significant changes in the SC5b-9 levels 
across study visits. 
 

 
Figure 45 - Comparison of 12-month change in SC5b-9 levels between study groups. 
There was no significant difference in the 12-month change in SC5b-9 levels between 
study groups. (ΔSC5b-9 = SC5b-912months - SC5b-9baseline). 
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7.2.4 12-month changes in factor D  levels 

As shown in Table 23, there were no significant differences in the factor D levels between 

the groups at baseline (p=0.06) or 12-months (p=0.31), nor when the 12-month and 

baseline levels were compared in the control (p=0.38) or VE (p=0.27) groups. A repeated 

measures ANOVA was performed after transforming the factor D levels by calculating the 

reciprocals, which approximated a normal distribution, to examine for significant changes 

in the factor D levels across study visits and to look for any effects of study group 

allocation (see Figure 46). The factor D levels did not change significantly across study 

visits (p=0.06) nor was there any significant effect of study group allocation (p=0.13) or 

significant interaction between study group and time (p=0.44). Comparison of the 12-

month change in factor D levels revealed no significant difference between the groups 

(p=0.92, see Figure 47). 

 

 
Figure 46 - Factor D levels at baseline, 6 and 12 months in each study group. There 
were no significant changes in the factor D levels across study visits nor significant effects 
of study group allocation.  
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Figure 47 - Comparison of 12-month change in factor D levels between study 
groups. There was no significant difference in the 12-month change in factor D levels 
between study groups. (ΔFactor D = Factor D12months - Factor Dbaseline). 

7.2.5 12-month changes in properdin levels 

As shown in Table 23, there was no difference when the properdin levels were compared 

between study groups at baseline (p=0.07) or 12-months (p=0.60). Within group 

comparisons of the baseline and 12-months levels, however, revealed a significant 

reduction in properdin levels in the VE group (p=0.02) but no significant changes in the 

control group (p=0.17). A repeated measures ANOVA was performed on the log 

transformed properdin levels, which approximated a normal distribution, to examine for 

significant changes in the properdin levels across study visits and to look for any inter-

group differences (see Figure 48). This analysis revealed the changes in properdin levels 

across study visits to be non-significant (p=0.08) and there was no significant effect of 

study group allocation (p=0.22) nor significant interaction between study group and time 

(p=0.11). A comparison of the 12-month change in properdin levels revealed no significant 

difference between the two groups (p=0.38, see Figure 49). 
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Figure 48 - Properdin levels at baseline, 6 and 12 months in each study group. There 
were no significant changes in the properdin levels across study vistis nor significant 
effects of study group allocation. 
 

 

 
Figure 49 - Comparison of 12-month change in properdin levels between study 
groups. There was no significant difference in the 12-month change in properdin levels 
between study groups. (ΔProperdin = Properdin12months - Properdinbaseline). 
 

In summary, the principal findings concerning the 12-month inflammatory marker datasets 

were significant reductions in C3 levels over 12-months, irrespective of dialyser used, and 

a possible effect of the VE-membrane in lowering properdin levels. This latter finding, 

however, was only evident on pairwise comparison of the baseline and 12-month 

properdin levels in the VE group; both a Friedman’s analysis, examining for significant 

changes in properdin levels across all 3 study visits in the VE group, and a between group 

comparison of the 12-month changes in properdin levels were not statistically significant. 

Taking these findings together, it would seem unlikely that dialysis with the VE-bonded 

membrane had a properdin-lowering effect. 
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7.2.6 Inter-relationships of the 12-month changes in the 
inflammatory markers 

In addition to examining the changes in the inflammatory markers over the 12-month study 

period and the effects of the VE membrane, the associations between the changes in the 

inflammatory markers were evaluated. To this end the Spearman’s rank correlation 

coefficients were determined for the 12-month changes in each of the inflammatory 

variables (see Table 25). From these data it can be seen that the 12-month change in 

CRP levels was positively correlated with changes in both the C3 and SC5b-9 levels and 

there was a weaker, but significant, positive correlation between the 12-month changes in 

C3 and properdin levels. In terms of associations between the changes in the markers of 

inflammation and oxidative stress measured, the only statistically significant finding was a 

negative correlation between the changes in SC5b-9 and Ox-LDL levels (r= -0.16, p=0.02). 
 

Table 25 - Spearman’s correlation coefficients for the 12-month change in each of 
the inflammatory markers. 

 ΔC3 ΔSC5b-9 ΔFactor D ΔProperdin 

ΔCRP 0.38* 0.37* -0.05 -0.03 
ΔC3  0.13 -0.04 0.14† 
ΔSC5b-9   -0.03 -0.09 

ΔFactor D    -0.04 

In each case, the change [Δ] was calculated by subtracting the baseline 
value from the 12-month value.*p<0.0001, †p<0.05 

7.3 Inflammation and ESA resistance index 

To evaluate the associations between the inflammatory markers and the ERI at baseline, 

the Spearman’s correlation coefficients for the ERI and CRP, C3, factor D and properdin 

levels were determined. The only statistically significant finding was a positive correlation 

between CRP and ERI as reported in Chapter 5 (see also Table 26); there was no 

association between ERI and quartiles of SC5b-9 (p=0.14). 
 

Table 26 - Spearman’s rank correlation coefficients between baseline levels of ERI 
and CRP, C3, factor D and properdin. 

 r p 

CRP 0.15 0.02 

C3 -0.09 0.16 

Factor D -0.07 0.28 

Properdin 0.04 0.55 
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To further characterise the associations between inflammation and ERI in the study 

population, correlation analysis between the change in ERI and the change in each of the 

inflammatory markers was performed. From these analyses there were no significant 

associations between the 12-month changes in ERI and any of the biomarkers of 

inflammation measured (Table 27). 

 

Table 27 - Correlation coefficients between the change in ERI and the change in 
each of the measured biomarkers of inflammation.  

   

 r p 

ΔCRP 0.10 0.15 
ΔC3 -0.03 0.63 
ΔSC5b-9 0.08 0.25 
ΔFactor D -0.01 0.83 
ΔProperdin 0.06 0.39 

In each case, the change [Δ] was calculated by subtracting the baseline value from the 
12-month value. 
 

Given the findings of an apparent differential effect of the VE membrane on ERI depending 

on the baseline ERI, as detailed in Chapter 5, it was decided to examine the inflammatory 

markers after dividing patients into tertiles of ERI at baseline. In these analyses, the CRP 

levels were significantly higher for patients in the highest tertile of ERI compared to the 

middle and lowest tertiles (p<0.01 in both cases, see Table 11). The levels of C3 were 

significantly higher for patients in the lowest tertile of ERI compared to the middle tertile 

(0.79 [±0.02] mg/mL versus 0.73 [±0.02], p=0.03); the pairwise comparisons between the 

other tertiles were not statistically significant (p>0.08 in both cases). The SC5b-9, factor D 

and properdin levels at baseline did not differ between tertiles of ERI at baseline (p>0.4 in 

all cases). To examine for a differential effect of the VE membrane on the inflammatory 

markers within tertiles of ERI, these 12-month change in each of the inflammatory markers 

were compared between groups after stratifying patients into tertiles of ERI. In these 

analyses, there was no differential effect of the VE membrane on the change in the levels 

of CRP (p>0.42 in all tertiles), C3 (p>0.44 in all tertiles), factor D (p>0.20 in all tertiles) or 

SC5b-9 (p>0.41 in all tertiles). Pairwise testing revealed an apparent difference in the 12 

month change in properdin levels for patients in the highest tertile of ERI dialysing with the 

VE membrane compared to the control membrane (-9.6 [-18.6 - 3.5] versus 1.9 [-7.1 - 9.0] 

respectively, p=0.02) although this became non-significant at the pre-specified 5% level 

after applying the Bonferroni correction for multiple pairwise testing as described in section 

3.17.4. There was no differential effect of the VE membrane on the 12-month change in 
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properdin levels for patients in the lowest and middle tertiles of ERI (p=0.70 and p=0.86 

respectively).  

7.4 Discussion 

As already highlighted, increased levels of inflammation are associated with a number of 

problems encountered by chronic HD patients such as ESA resistance [923, 924] and 

increased mortality rates, particularly from CV disease [163, 429, 435, 439, 440, 505, 506]. 

Although there is no direct evidence that reducing levels of inflammation improves patient 

outcomes, such approaches seem logical. One such intervention may be the use of VE 

which has been shown to have anti-inflammatory properties [741-745] as outlined in 

section 1.7.1.2. In this chapter, the effects of switching prevalent HD patients to 12-months 

dialysis with a VE-bonded polysulfone membrane on the levels of CRP, C3, SC5b-9, factor 

D and properdin were examined. Prior to investigating the effects of the VE-membrane, 

the key determinants of each of these inflammatory markers in the baseline dataset were 

evaluated. 

7.4.1 Baseline determinants of inflammation biomarkers 

C-reactive protein has been the most commonly studied marker of inflammation in HD 

patients to date, likely owing to the widespread use of CRP measurements in routine 

clinical practice. C-reactive protein is the archetypal measure of the acute phase response 

with plasma concentrations capable of increasing by up to 1000-fold [428, 1027]. In the 

present study the baseline CRP levels were independently associated with the positive 

acute phase reactants ferritin and C3 and the negative acute phase reactant albumin as 

might be expected. A previous study [1028] reported no significant correlation between C3 

and CRP levels in a cohort of 103 prevalent HD patients without significant inflammation, 

although the nephelometric assay they used to measure CRP had a detection limit of 6 

mg/L unlike the more sensitive assay used in the present study, to possibly explain their 

failure to detect a positive association between these two acute phase reactants. The 

levels of CRP were higher in patients with a prior history of IHD in unadjusted analyses in 

line with previous studies demonstrating an association between CRP levels and carotid 

atherosclerosis in HD patients [447], for example, and the well established link between 

increased levels of inflammation and both CV and all-cause mortality in this patient group 

[163, 429, 434, 435, 439-441, 504-506]. However, there was no independent association 

between a prior history of IHD and the baseline CRP levels in multivariate regression 

analysis suggesting that the association evident in the unadjusted analyses could be 

accounted for by the other factors retained in the final model. The levels of CRP tended to 
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be higher in patients dialysing via CVCs compared to AVFs although the difference was 

not statistically significant; this differs from several published studies in which CVC usage 

has been associated with increased levels of CRP [456, 929, 1029]. The lack of 

association in the present study may reflect that the study population was selected on the 

basis of CRP<50 mg/L at baseline, thereby excluding 11% of LTHT chronic dialysis 

patients (see Figure 24) and potentially diluting any associations between inflammation 

and CVC usage which may be apparent in unselected HD populations. There was no 

association between CRP levels and diabetic status in the present study, consistent with 

the findings of others [456, 1030], which differs from data obtained in non-renal 

populations in which diabetes is associated with elevated CRP levels [1031]. These 

discrepancies may reflect that the pro-inflammatory stimuli of HD and renal failure mask 

any additional contributions from the presence of the diabetic state. 

 

A wealth of data from non-renal populations have demonstrated elevated C3 levels in 

patients with prevalent CV disease [532-536, 539, 1032] and diabetes [652, 1033, 1034], 

however, no such associations were evident in the present study of HD patients. The 

finding of higher C3 levels in Asians mirrors the findings from studies of ethnicity and 

complement levels in non-renal patients [1035, 1036]. The independent association of 

weight and C3 levels observed in the present study has similarly been reported both in 

obese individuals [1037] and apparently healthy adolescents [1038] not on dialysis. This 

association is likely explained by the fact that C3 and IL-6 are secreted by adipose tissue 

[1039] with serum C3 levels correlating with the amount of visceral and subcutaneous 

tissue [1040] which is greater in obese individuals. This association with body fat is also 

likely to explain the independent association between C3 and cholesterol levels in the 

present study as has been reported by others [536, 1032, 1039]. 

 

There are little or no published data in the modern treatment era concerning the levels of 

the alternative complement pathway components in HD patients, their determinants or 

clinical correlates. This represents one of the novel aspects of the present study and 

highlights the exploratory nature of many of the analyses performed herein. Patients 

receiving renin-angiotensin medications were noted on bivariate analysis to have lower 

CRP, C3 and factor D levels and on multivariate analysis to have lower factor D and 

properdin levels. Angiotensin II has a number of pro-inflammatory actions on the vascular 

wall, including the production of ROS, inflammatory cytokines and adhesion molecules 

[1041], thus medications which either block the formation of angiotensin II (ACE-inhibitors, 

direct renin-inhibitors) or prevent it from binding to its receptor (angiotensin II receptor 
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antagonists) are likely to ameliorate these inflammatory processes, potentially explaining 

the findings of the present study. C-reactive protein levels have been extensively studied 

in this respect with a large number of studies in non-HD populations demonstrating 

reductions in CRP levels for patients commencing renin-angiotensin medications [1042]. 

Complement components have been subjected to much less investigation although there 

are data to suggest that C3 levels may also be lowered by these medications in patients 

not on dialysis [683], in line with the finding of lower levels in patients receiving RAS-

medications in the present study.  

 

In terms of the interplay between oxidative stress and inflammation, the significant 

associations at baseline were lower factor D levels in patients with higher TBARS levels 

and a non-linear relationship between C3 and Ox-LDL levels. There are no published data 

examining the relationship between factor D and markers of oxidative stress in dialysis 

patients. Previous studies in HD patients, in contrast to the present one, have 

demonstrated a positive association between the levels of inflammation and oxidative 

stress [327, 332, 423-425]. There are a number of reasons to explain why increased levels 

of inflammation and oxidative stress frequently co-exist in HD patients. These include 

clustering of disease states which predispose to inflammation and oxidative stress, such 

as diabetes, and the ability of HD therapy to contribute to both of these processes as 

detailed in sections 1.4.2 and 1.5.1. Inflammation and oxidative stress are also 

mechanistically linked, for example through the enzyme myeloperoxidase which is 

activated during HD [333] and has both oxidative [426] and inflammatory actions, 

particularly affecting nitric oxide bioavailability in the vascular wall [1043]. Conversely 

oxidative stress can enhance inflammation through upregulation of the transcription factor 

NFκB, increasing production of pro-inflammatory cytokines such as IL-6 and acute phase 

proteins such as CRP [1044], and by reducing the availability of thiol groups on proteins 

[382, 386, 427] as a consequence of the reduction in albumin levels as part of the acute 

phase response [428]. The complement system is also linked to oxidative stress as Ox-

LDL has been shown to bind C3a in vivo [430] and ROS such as hydrogen peroxide have 

been shown to directly activate C5 via a non-enzymatic mechanism [431]. Further 

evidence of a synergistic relationship between complement and oxidative stress comes 

from animal models of ischaemia-reperfusion injury whereby complement activation is 

attenuated by the addition of anti-oxidants, such as captopril which possesses sulfhydryl 

groups [432, 433]. There are therefore a number of aspects of both inflammation and 

oxidative stress which are linked. The absence of significant associations in the present 

study may reflect the low levels of inflammation and oxidative stress present in the study 
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cohort or the choice of biomarkers. Another explanation may be the use of pre-dialysis 

blood samples. If dialysis therapy is the principal driver of inflammation and oxidative 

stress in these patients, the measurement of pre-dialysis biomarker levels may not 

necessarily reflect the inflammatory and oxidative burden associated with HD treatment. 

 

At baseline the ERI was significantly positively correlated with CRP levels which is 

consistent with the well established association between inflammation and ESA resistance 

[922-925]. A number of mechanisms underpin this association, as discussed in section 

1.3.2, including suppressive effects of inflammatory cytokines on erythroid progenitor cells 

[158, 159], reduced red blood cell lifespan [227, 927], blunted EPO response [160] and 

functional iron deficiency [147, 156, 157, 928]. There were no significant associations 

between ERI and the complement components measured. Previous work has shown the 

erythrocytes of HD patients to be particularly susceptible to complement mediated lysis 

[227] although in the present study there was no association between SC5b-9 levels and 

ERI at baseline, nor any correlation between the changes in these two parameters, 

suggesting complement mediated red blood cell destruction may be a minor contributor to 

anaemia in this study cohort.  

7.4.2 Changes in inflammatory markers over time and the effects of 
vitamin E 

In addition to examining the baseline dataset for the significant determinants of the various 

inflammatory markers measured, the longitudinal data were analysed both to assess the 

effects of the VE membrane and to explore the inter-relationships of the changes over time 

in the inflammatory biomarkers. There were no significant effects of the VE membrane on 

any of the inflammatory markers measured after 12 months. Pairwise comparison of the 

baseline and 12-month properdin levels revealed a significant decrease in those patients 

dialysing with the VE membrane but there were no differences between the groups at 

baseline or 12 months nor when the changes in properdin levels were compared between 

groups. It is therefore possible that the apparent significant decrease in properdin levels 

observed in the VE group was a product of multiple statistical testing rather than a true 

effect of the VE membrane, i.e. a type 1 statistical error. A previous study employing 

proteomics has demonstrated that properdin is adsorbed onto the surface of polysulfone 

membranes during dialysis [1045], although the influence of VE-coating membranes on 

the adsorption of properdin has not been studied, and the extent to which dialyser 

adsorption contributes to circulating properdin levels in HD patients is unclear. Enhanced 
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membrane adsorption of properdin in the presence of a VE-coating may, therefore, be a 

potential mechanism to explain the observation in the present study although no evidence 

for this phenomenon exists. 

 

The most striking observation from the longitudinal data was the progressive reduction in 

C3 levels across study visits, coupled with the negative correlation between C3 levels and 

the number of years on dialysis. The change in C3 levels was correlated with the change 

in weight, cholesterol, triglyceride and CRP levels over the 12-month study period although 

further analysis indicated that the change in these factors only explained 16% of the 

variance in the change in C3 levels, suggesting the importance of unmeasured factors. A 

unifying explanation for these observations, therefore, remains enigmatic. Possible factors 

which could explain the fall in C3 levels include dialyser adsorption [1045, 1046] or 

complement consumption and it is likely that both of these factors are contributory. The 

levels of C3 doubtless decrease during complement activation although may not be a 

sensitive indicator of activation given the relatively small proportion of circulating C3 which 

is cleaved [1047-1049]. The molecular weight of C3 is 185 kDa ruling out dialytic losses. 

Regarding the possible contribution of complement activation to the decline in C3 levels, it 

is difficult to make inferences based on the relative levels of the biomarkers measured in 

the present study. As described in section 1.5.2, C5b-9 is one of the end products of 

activation of the complement cascade and, in the present study, the pre-dialysis levels of 

SC5b-9 were measured. There was no association between the levels of C3 and SC5b-9 

at baseline but what this means in terms of the degree of complement activation is 

unclear. For example low SC5b-9 levels may be a consequence of low levels of 

complement activation, with reduced synthesis, or reflect high levels of complement 

activation with consumption of the terminal complement components. Blood-membrane 

interactions are a major stimulus for complement activation in HD patients so the pre-

dialysis SC5b-9 levels measured in the present study are likely to represent the nadir. The 

SC5b-9 molecule has a short half life of approximately 40 minutes [1050] thus the 

predialysis levels are likely to be more reflective of inter-dialytic SC5b-9 clearance and / or 

redistribution rather than dialysis associated complement activation. Furthermore, the fate 

of activated complement components to form either the membrane attack complex C5b-9 

or the soluble complex SC5b-9, as measured in the present study, is dependent on a 

number of factors important among which are the circulating levels of vitronectin (also 

known as protein S) and clusterin (also known as apolipoprotein J). These molecules bind 

the C5b-7 complex, preventing its insertion into lipid membranes, and limit the 

polymerisation of C9 necessary for membrane attack complex formation [485, 498, 499] 
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thus lower levels of vitronectin or clusterin may be expected to result in the formation of 

relatively less SC5b-9. Both vitronectin and clusterin have been shown to be adsorbed 

onto the surface of dialysis membranes [1045, 1046, 1051] and, in the case of vitronectin, 

correlate negatively with the length of time on dialysis [1052]. This suggests that the profile 

of SC5b-9 generation following complement activation in HD patients, particularly during 

dialysis, may differ markedly from complement activation occurring in non-HD patients or 

during the inter-dialytic period, and highlights the pitfalls of using pre-dialysis SC5b-9 

levels as a marker of complement activation in this setting. The levels of factor D 

increased across quartiles of SC5b-9 levels suggesting that increased SC5b-9 levels may 

reflect enhanced complement activity. This has a biological plausibility as factor D is the 

rate limiting enzyme of the alternative pathway [228] and therefore higher levels are likely 

to be permissive for greater SC5b-9 generation. An alternative explanation for the fall in 

C3 levels across study visits, the negative correlation between C3 levels and time on 

dialysis, and the positive correlation between the change in C3 levels and the change in 

weight may be that they reflect protein-energy malnutrition. Protein-energy malnutrition is 

very common among HD patients, with the degree of malnutrition correlating with the 

length of time of dialysis dependency [1053]. Studies of severely malnourished children 

[1054, 1055] and guinea pigs [1056] have demonstrated reductions in the levels of C3. It 

remain unclear, however, whether lesser degrees of malnutrition could result in reduction 

in C3 levels or whether C3 levels only fall in the setting of severe malnutrition. No data 

were available on nutritional status of the HD patients to corroborate this theory. 

 

The foregoing discussion presented here highlights some of the difficulties inherent in 

studying complement activation in vivo, particularly with the biomarkers measured here, as 

low levels of a particular component may represent increased complement activation (i.e. 

increased consumption), reduced complement activation (i.e. reduced formation of 

downstream components), increased clearance or reduced synthesis. Furthermore, the 

circulating levels of certain components or complexes, as already highlighted with SC5b-9, 

are dependent on a number of factors besides simply the extent of complement activation. 

These complexities may go some way to explaining why there was no significant 

association in the present study between the principle substrate of the complement 

cascade, C3, and one of the downstream products of complement activation SC5b-9. 

 

In the present study, no convincing reductions in the levels of inflammation were observed 

with the VE-bonded membranes. The anti-inflammatory effects of VE-bonded polysulfone 

membranes have only been studied in relatively small numbers of patients to date. 
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Mandolfo et al. [889] followed 16 patients dialysing with CVC’s for 12-months in a cross-

over study design and reported no effects of the VE-bonded polysulfone membrane on the 

levels of CRP or IL-6. In a larger study of 62 HD patients, Panichi et al. [893] reported 

significant reductions in both CRP and IL-6 levels after 6 months for patients dialysing with 

a VE-bonded polysulfone membrane and no significant changes in patients dialysing with 

a comparable non-VE bonded polysulfone membrane. The VE and comparator 

membranes were both low-flux, contrasting with the high-flux membranes used in the 

present study, although membrane flux has previously been shown not to influence CRP 

and IL-6 levels [355, 919, 1057]. Analysis of the change in CRP after 6 months in the 

present study found no significant differences between the groups and no reduction in 

levels with the VE membrane (p=0.78). The baseline CRP levels in the present study were 

similar to those reported by Panichi et al. [893] suggesting the apparent discrepant 

findings could not be attributed to vastly different levels of inflammation in the two study 

populations. Interestingly Panichi et al. [893], despite demonstrating reductions in both ERI 

and inflammation after 6 months with the VE membrane, reported no correlation between 

the changes in these two variables suggesting that the improvements in ERI may not have 

been directly attributable to reductions in inflammation. This, combined with the similar 

findings in the present study regarding the absence of association between changes in 

inflammation and ERI, suggests that strategies aimed at reducing inflammation may only 

have a limited impact on improving ESA resistance in the subset of HD patients without 

significant inflammation. 

 

In the present study a number of markers of inflammation and components of the 

complement system were measured. With the exception of CRP, there is very little 

published data on the determinants or significance of these markers in HD patients. One of 

the novel aspects of the present study was the measurement of a number of components 

of the alternative complement pathway, including serial measurements over time. The 

most significant findings with regards to the inflammatory markers were a reduction in C3 

levels over the 12 month study period, irrespective of study group allocation, and a 

negative association with the number of years on dialysis. Data from the general 

population have consistently shown elevated C3 levels to be associated with CV disease 

[533, 534, 536, 538-540] and CV disease is the leading cause of death in HD patients [11], 

with rates far exceeding those seen in the general population [12]. The findings with 

respect to C3, therefore, are on the face of it hard to reconcile as reductions in C3 levels 

may be expected to translate into improved CV outcomes. This may not necessarily follow, 

however, as the spectrum of CV disease seen in HD patients differs from that seen in the 
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general population both at the morphological level, with increased vascular calcification 

[56-58] and reduced myocardial capillary density [1058], and at the phenotypic level with 

more deaths attributable to complications of cardiac failure, such as arrhythmias, than to 

atherosclerotic disease [14, 92, 1059-1062] (see section 1.2.3). Much of the mechanistic 

data concerning the role of complement in CV disease pertains to atherosclerosis [511, 

547-549] which may be a less prominent feature of CV disease in HD patients. Infections 

are also common in HD patients and are a leading cause of death after CV disease [4]. 

Patients with deficiencies in complement C3 are prone to infections [1063] thus reductions 

in C3 levels, as observed in the present study, may increase patients susceptibility to 

infections. Analyses of the complement levels with regards to the risks of CV events and 

infective episodes in the study patients is provided in Chapter 9. 

 

As already highlighted, no beneficial effects of the VE-bonded membranes on markers of 

inflammation were observed in the present study. The majority of the anti-inflammatory 

activities of VE relate to cellular aspects of inflammation, such as the expression of cell 

surface adhesion molecules [737, 738] and leukocyte adhesion [739, 740], thus the ability 

of VE to influence complement activation may be limited. One of the first studies of the VE-

bonded polysulfone dialysers, using in vitro techniques, found no difference in the level of 

complement activation, as measured by C3a, C4a and C5a levels, between VE-bonded 

and unbonded polysulfone membranes suggesting that the addition of a VE coating on the 

dialyser surface may have a limited impact on complement activation [885]. Thus it is 

perhaps not surprising that there was no effect of switching to a VE-bonded dialysis 

membrane on the levels of the alternative complement components measured in the 

present study. 

 

In Chapter 5, a beneficial effect of the VE-bonded membrane in reducing ERI for patients 

with higher levels of ESA-resistance was observed. The only significant finding when the 

levels of the inflammatory markers were compared across tertiles of ERI at baseline was 

higher CRP levels in the group of patients in the highest tertile of ERI. Although the levels 

of CRP and the ERI were significantly positively correlated, the changes in each of these 

variables over 12-months were not correlated. This suggests that inflammation may 

contribute to ESA resistance, but reducing inflammation in a subset of non-inflamed 

prevalent HD patients, as were included in the present study, may have a limited impact 

on improving ESA resistance. Himmelfarb et al. [227] have previously reported on the 

increased erythrocyte deposition of C5b-9 in HD patients, compared to controls, 

suggesting complement activation may play a role in the shortened red blood cell lifespan 
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of HD patients. Although it is hard to infer the degree of complement activiation from the 

levels of the biomarkers measured in the present study, the absence of any association 

between the complement levels and the ERI, both in terms of the levels at baseline and 

the changes over 12 months, may mean that the complement system is only a minor 

contributor to anaemia in non-inflamed HD patients dialysing with biocompatible dialysis 

membranes as were studied here. 

 

In conclusion, no effects of the VE-membrane on the markers of inflammation measured in 

the present study were observed. Given this finding, the question of whether measures 

aimed at improving generalised inflammation translate into improved ESA resistance 

remains unanswered. The absence of an association between changing levels of 

inflammation and ERI, both in the present study and elsewhere [893], might suggest that 

lowering inflammation would only have a limited impact on improving ESA resistance, 

particularly in patients with already low levels of inflammation. There are little or no 

published data in HD patients in the modern treatment era examining the levels of the 

alternative complement pathway components, their determinants or their biological 

associations. The current study, therefore, represents the largest series of HD patients 

with serial measurements of the alternative complement pathway components to date and 

thus will contribute to understanding in this area. In particular, the findings of a decline in 

C3 levels over 12 months and the negative association between C3 levels and time on 

dialysis merits further investigation. In addition to the ERI, oxidative stress and 

inflammation endpoints discussed so far, all patients had samples taken for analysis of 

fibrin clot structure - another putative marker of CV risk which has only been studied in 

small numbers of dialysis patients. 
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Chapter 8 : Fibrin clot structure and function 
Fibrin clots obtained from numerous patient groups, including patients with IHD [644, 648, 

649, 681, 708], diabetes [654, 655, 719, 720], PVD [714, 715], abdominal aortic 

aneurysms [713], chronic heart failure [718] and cerebrovascular disease [711, 712], are 

denser and more resistant to fibrinolysis than fibrin clots derived from healthy controls. 

Similar findings have also been described in the small number of end-stage renal failure 

patients studied to date including patients undergoing chronic peritoneal dialysis [645] and 

HD [646]. Furthermore, in the study of HD patients [646], those patients who went on to 

have a fatal CV event formed clots which had a shorter lag time and were denser and 

more resistant to fibrinolysis. Thus it appears that an altered clot phenotype may be both 

reflective of prevalent CV disease and predictive of future risk. In this chapter the 

determinants of fibrinogen levels and the ex vivo fibrin clot parameters were evaluated in 

the study cohort. The longitudinal data were then analysed to study the impact of dialysis 

with the VE-bonded membrane on the clot characteristics, to determine if the fibrin clot 

phenotype changed over time and to explore the associations between changing clot 

characteristics and changing levels of inflammation and oxidative stress. 

8.1 Assay data used for analyses 

Samples for analysis of fibrin clots were available for 714 of the 715 study visits. No fibrin 

clot data were obtained from 7.6% of the samples from the clotting assay and 7.3% of the 

samples from the fibrinolysis assays because there was insufficient clot formation or 

fibrinolysis to allow accurate determination of the clot parameters described in section 

3.15. A review of the samples which did not yield assay data revealed a high proportion 

were obtained from patients dialysing via CVCs compared to fistulas or grafts (clotting 

assay: 83% vs 7%, fibrinolysis assay 79% vs 7%; p<0.0001 both cases). Of the samples 

obtained from patients dialysing via CVCs, data were only obtained in 50% of the clotting 

assays and 54% of the fibrinolysis assays. Warfarin therapy also influenced the assays as, 

of the samples obtained from patients receiving warfarin, only 73% yielded clotting assay 

results and 82% fibrinolysis assay results. Considering these data together, 100% of the 

samples with no clotting assay data and 90% of the samples with no fibrinolysis assay 

data were obtained from patients either dialysing via a CVC and / or who were receiving 

warfarin. Additionally in 6 samples, obtained from 4 patients, there was a complete 

absence of fibrinolysis of the formed clot after 9 hours thus it was not possible to calculate 

any of the fibrinolysis parameters. There were therefore data available from 660 clotting 

assays and 662 fibrinolysis assays (see Figure 50). 
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Given that high proportions of samples obtained via CVCs or from patients receiving 

warfarin yielded no assay data, the samples from these patients which did yield data were 

evaluated and found to differ significantly from the remaining samples (see Table 28 and 

Table 29). It was therefore decided to exclude all samples obtained from patients dialysing 

via CVCs or receiving warfarin from further analyses. This resulted in a complete fibrin clot 

dataset for 578 samples which were analysed in more detail (see Figure 50). 

Table 28 - Clot characteristics of samples obtained from patients on warfarin. 
  Warfarin  
  Yes No p 
Clotting assay parameters 
n 33 627  
Lag time (s) 539 [514 - 593] 519 [464 - 599] 0.09 
Maximum absorbance (au) 0.558 [±0.017] 0.539 [±0.006] 0.43 
Clot rate (x10-4s) 2.6 [1.8 - 2.9] 4.1 [3.2 - 4.9] <0.0001 

Fibrinolysis assay parameters 
n 37 625  
Lag time (s) 621 [557 - 864] 594 [521 - 695] 0.07 
Maximum absorbance (au) 0.272 [±0.020] 0.410 [±0.006] <0.0001 
Clot rate (x10-4s-1) 2.0 [1.1 - 3.4] 4.9 [3.8 - 6.2] <0.0001 
Lys50t0 (s) 2811 [2382 - 3233] 2176 [1994 - 2498] <0.0001 
Lys50lag (s) 1989 [1677 - 2561] 1567 [1398 - 1859] <0.0001 
Lys50MA (s) 767 [644 - 858] 728 [598 - 910] 0.61 
Lysis rate (x10-4s-1) -1.2 [-1.5 - -0.8] -1.2 [-1.7 - -0.7] 0.54 
Lysis area 427 [267 - 613] 565 [390 - 869] <0.01 

Data presented as mean [±SEM] or median [IQR]. au: Absorbance units 
 

Table 29 - Clot characteristics of samples obtained via central venous catheters. 
  Central venous catheter sample  
  Yes No p 
Clotting assay parameters 
n 45 615  
Lag time (s) 626 [488 - 967] 519 [465 - 589] <0.0001 
Maximum absorbance (au) 0.538 [±0.023] 0.540 [±0.006] 0.92 
Clot rate (x10-4s) 2.7 [1.8 - 4.2] 4.1 [3.2 - 4.9] <0.0001 

Fibrinolysis assay parameters 
n 49 613  
Lag time (s) 837 [660 - 1508] 590 [519 - 672] <0.0001 
Maximum absorbance (au) 0.308 [±0.026] 0.409 [±0.006] <0.0001 
Clot rate (x10-4s-1) 2.6 [1.1 - 4.7] 4.9 [3.8 - 6.2] <0.0001 
Lys50t0 (s) 2906 [2318 - 3835] 2173 [1995 - 2465] <0.0001 
Lys50lag (s) 2028 [1580 - 2693] 1560 [1398 - 1846] <0.0001 
Lys50MA (s) 863 [657 - 1112] 722 [ 598 - 897] <0.01 
Lysis rate (x10-4s-1) -1.1 [-1.5 - -0.5] -1.2 [-1.7 - -0.7] 0.18 
Lysis area 405 [277 - 577] 575 [394 - 877] <0.001 

Data presented as mean [±SEM] or median [IQR]. au: Absorbance units 
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Figure 50 - Breakdown of fibrin clot structure samples assayed, excluded and 
subsequently used for analyses. Samples for fibrin clot structure analyses were 
available from 714 study visits. A significant proportion of the samples obtained from 
patients dialysing via central venous catheters or receiving warfarin yielded no assay data. 
The final dataset, which was subsequently analysed in more detailed, comprised clotting 
and fibrinolysis assay data from 578 patient samples. 
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8.2 Determinants of baseline fibrinogen levels and fibrin clot 
parameters 

Given the relatively large number of variables measured in the clotting and fibrinolysis 

assays, the inter-relationships between the variables were examined. Table 30 details the 

correlation coefficients for the parameters which were measured in both the clotting and 

the fibrinolysis assays (i.e. lag time, maximum absorbance and clot rate). The shared 

parameters were positively correlated between the two assays and the clot rate was 

positively correlated with the maximum absorbance and negatively correlated with the lag 

times in both assays.  
 

Table 30 - Correlation matrix for shared clotting (C) and fibrinolysis (L) assay 
variables. 

 Lag (L) Max Abs 
(C) 

Max Abs  
(L) 

Clot rate 
(C) 

Clot rate  
(L) 

Lag (C) 0.58* -0.24* -0.31* -0.35* -0.42* 
Lag (L)  -0.26* -0.30* -0.33* -0.33* 
Max Abs (C)   0.84* 0.41* 0.53* 
Max Abs (L)    0.69* 0.82* 
Clot rate (C)     0.72* 

*p<0.0001 
 

Table 31 details the correlation coefficients for the fibrin clot parameters measured in the 

fibrinolysis assay. All of the measures of fibrinolysis (i.e. Lys50t0, Lys50lag, Lys50MA, lysis 

rate and lysis area) were positively correlated. The lag times tended to be longer and the 

final clot turbidity lower in the fibrinolysis compared to the clotting assay (see Figure 51). 
 

Table 31 - Correlation matrix for fibrinolysis assay variables.  

 Max 
Abs 

Clot 
rate Lys50t0 Lys50lag Lys50MA Lysis 

rate 
Lysis 
area 

Lag -0.30* -0.33* 0.31* -0.07 -0.09 0.00 -0.25** 

Max Abs  0.82* 0.22* 0.36* 0.53* -0.07 0.77* 

Clot rate   -0.05 0.08 0.49* 0.00 0.65* 
Lys50t0    0.89* 0.65* 0.45* 0.54* 
Lys50lag     0.75* 0.48* 0.70* 

Lys50MA      0.59* 0.89* 
Lysis rate       0.47* 

*p<0.0001, **p<0.01 



 

 

181 

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1

20
0

40
0

60
0

80
0

10
00

12
00

200 400 600 800 1000 1200

A. Lag time (s) B. Maximum absorbance (au)

Fibrinolysis assay Fibrinolysis assay

C
lo

tti
ng

 a
ss

ay

C
lo

tti
ng

 a
ss

ay

 

Figure 51 - Scatter plots of A. lag times and B. maximum absorbancies derived from 
the clotting and fibrinolysis assays. (Line indicates equivalence). From these graphs 
lag times tended to be shorter and the maximum absorbance greater in the clotting assay 
 

Based on these results, the fibrin clot parameters selected for more detailed analyses 

were the lag time and maximum absorbance from the clotting assay and the Lys50t0 times 

from the fibrinolysis assay. A more detailed explanation of the rationale for selecting this 

subset of variables is presented in the discussion (section 8.6.1). For the fibrinogen levels 

and each of the fibrin clot assay parameters selected for further analysis, the significant 

determinants in the baseline dataset were evaluated prior to examining the changes in 

these variables across study visits and the effects of dialysis with the VE-bonded dialysis 

membrane. 

8.2.1 Determinants of baseline fibrinogen levels 

Samples with fibrinogen levels greater than 4.5 g/L were not quantified, 11% of the 

baseline dataset, and were assigned a value of 4.5 g/L as detailed in section 3.9. The 

continuous predictor variables were compared across quartiles of fibrinogen 

concentrations as described in section 3.17.4. In bivariate analyses the fibrinogen levels 

were positively associated with weight (see Table 32), CRP, C3, ferritin and triglyceride 

levels (see Table 33), were higher in patients receiving aspirin, in ex-smokers compared to 

patients who had never smoked (see Table 34) and were significantly associated with 

bicarbonate levels (see Table 33). Backward stepwise ordinal logistic regression modelling 

of the quartiles of fibrinogen levels was performed including all of the variables associated 

with fibrinogen levels at a significance of p<0.2 as described in section 3.17.4. The 

resultant model identified that higher CRP and C3 levels, shorter time on dialysis and 

being a current smoker were independently associated with higher fibrinogen levels. The 

final model had an adjusted-R2 of 0.13 and satisfied the Brant test of parallel regression. 
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Table 32 - Determinants of baseline fibrinogen levels: analysis of continuous variables by quartiles of fibrinogen (patient and 
dialysis factors). 

  Quartiles of fibrinogen concentration  
  Q1 Q2 Q3 Q4 p 

n 64 64 64 64  
Fibrinogen (g/L) <3.4 3.4-3.7 3.8-4.1 >4.1  
Patient factors      
 Age (yrs) 59.4 [±2.2] 64.6 [±2.2] 62.9 [±2.0] 66.1 [±1.6] 0.11 
 Weight (kg) 66.4 [58.9 - 74.9] †‡ 69.3 [55.9 - 83.0] 73.7 [62.4 - 91.5]* 76.3 [63.7 - 88.2]* <0.01 
 Pre-dialysis SBP (mmHg) 139.4 [±2.9] 139.6 [±3.3] 134.9 [±2.6] 133.8 [±3.4] 0.40 
 Pre-dialysis DBP (mmHg) 74.5 [±1.9] 72.6 [±1.8] 70.2 [±1.3] 68.8 [±1.5] 0.07 
Dialysis factors      
 Time on RRT  (yrs) 5.0 [1.7 - 10.4] 3.6 [1.4 - 7.8] 4.0 [1.2 - 6.6] 3.3 [1.2 - 3.3] 0.14 
 Urea reduction ratio 0.76 [±0.01] 0.76 [±0.01] 0.76 [±0.01] 0.73 [±0.01] 0.26 

Data presented as range, mean [±SEM] or median [IQR]. For variables with significant omnibus test statistic across quartiles, 
pairwise testing was performed after applying a Bonferroni correction to the α-level. Significant differences on pairwise testing 
between quartiles indicated as: vs *Q1, †Q3, ‡Q4. SBP/DBP: Systolic / Diastolic blood pressure; RRT: Renal replacement therapy. 
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Table 33 - Determinants of baseline fibrinogen levels: analysis of continuous variables by quartiles of fibrinogen (laboratory 
parameters). 

  Quartiles of fibrinogen concentration  
  Q1 Q2 Q3 Q4 p 

Laboratory parameters      
 Haemoglobin (g/dL) 11.4 [±0.2] 11.8 [±0.1] 11.5 [±0.2] 11.6 [±0.2] 0.34 
 Ferritin (µg/L) 458 [±26] 452 [±27] 440 [±25]§ 548 [±32]‡ 0.02 
 C-reactive protein (mg/L) 2.5 [0.4 - 8.5]‡§ 4.3 [1.7 - 10.9]§ 8.3 [3.5 - 14.6]*§ 16.8 [6.9 - 38.8]*†‡ <0.001 
 C3 (mg/mL) 0.68 [±0.02]‡§ 0.74 [±0.02]§ 0.80 [±0.03]* 0.86 [±0.02]*† <0.0001 
 SC5b-9 (ng/mL) 63.1 [37.0 - 108.5] 62.9 [38.0 - 116.3] 67.0 [44.8 - 113.5] 71.5 [50.9 - 93.1] 0.75 
 Factor D (µg/mL) 3.3 [2.9 - 4.1] 3.7 [3.1 - 4.4] 3.5 [3.1 - 4.1] 3.2 [2.6 - 4.0] 0.06 
 Properdin (µg/mL) 52.9 [42.7 - 67.3] 53.2 [44.1 - 67.3] 53.6 [41.4 - 66.0] 55.6 [44.7 - 72.6] 0.64 
 Albumin (g/L) 38.2 [±0.5] 38.2 [±0.6] 37.4 [±0.5] 38.1 [±0.6] 0.69 
 Cholesterol (mmol/L) 3.9 [±0.1] 4.1 [±0.1] 3.9 [±0.1] 4.0 [±0.1] 0.53 
 High-density lipoprotein (mmol/L) 1.2 [±0.1] 1.2 [±0.0] 1.1 [±0.0] 1.1 [±0.0] 0.22 
 Low-density lipoprotein (mmol/L) 2.0 [±0.1] 2.2 [±0.1] 2.1 [±0.1] 2.1 [±0.1] 0.46 
 Triglycerides (mmol/L) 1.2 [0.9 - 2.0]§ 1.4 [0.9 - 2.1] 1.4 [1.1 - 2.0] 1.8 [1.2 - 2.4]* 0.01 
 Bicarbonate (mmol/L) 22.4 [±0.3] 21.6 [±0.3] 22.5 [±0.3]§ 21.4 [±0.3]‡ <0.01 
 Calcium (mmol/L) 2.37 [±0.02] 2.41 [±0.02] 2.38 [±0.02] 2.40 [±0.02] 0.57 
 Phosphate (mmol/L) 1.50 [±0.06] 1.41 [±0.06] 1.53 [±0.06] 1.59 [±0.07] 0.20 
 Parathyroid hormone (pmol/L) 18.9 [7.9 - 34.3] 22.5 [9.4 - 39.4] 21.4 [13.6 - 35.8] 28.3 [11.6 - 54.1] 0.20 
 HbA1c (%) 7.5 [5.9 - 9.5] 7.5 [6.1 - 9.2] 7.0 [6.6 - 7.8] 7.3 [6.2 - 9.0] 0.88 
 Ox-LDL (ng/mL) 38.4 [12.9 - 117.7] 33.7 [4.3 - 96.8] 42.7 [17.1 - 112.3] 28.6 [5.8 - 54.1] 0.30 
 TBARS (µM MDA) 2.5 [±0.1] 2.3 [±0.1] 2.3 [±0.1] 2.4 [±0.1] 0.51 

Data presented as mean [±SEM] or median [IQR]. For variables with significant omnibus test statistic across quartiles, pairwise 
testing was performed after applying a Bonferroni correction to the α-level. Significant differences on pairwise testing between 
quartiles indicated as: vd *Q1, †Q2, ‡Q3, §Q4. 
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Table 34 - Determinants of baseline fibrinogen levels: categorical variables.  

     
   

n 
Fibrinogen (g/L) 

Median [IQR] 
 

p 
Patient factors: Sex Male 103 3.8 [3.4 - 4.3] 0.55 

 Female 153 3.7 [3.4 - 4.1]  
Ethnicity Caucasian 196 3.7 [3.4 - 4.1] 0.40 

 Asian 46 3.9 [3.3 - 4.3]  
 Black 12 3.5 [2.7 - 4.1]  
 Other* 2 2.2 [1.1 - 3.3]  

Smoking history Never smoked 118 3.7 [3.3 - 4.1] 0.04† 
 Current smoker 56 3.8 [3.4 - 4.1]  

 Ex-smoker 82 3.9 [3.5 - 4.4]  
Co-morbidities: Diabetes Yes 74 3.9 [3.4 - 4.1] 0.76 

 No 182 3.7 [3.4 - 4.1]  
Ischaemic heart disease Yes 74 3.8 [3.5 - 4.3] 0.08 

 No 182 3.7 [3.3 - 4.1]  
Malignancy Yes 16 4.0 [3.4 - 4.4] 0.16 

 No 240 3.7 [3.4 - 4.1]  
Peripheral vascular disease Yes 71 3.8 [3.4 - 4.1] 0.72 

 No 185 3.7 [3.4 - 4.2]  
Left ventricular dysfunction Yes 23 3.7 [3.4 - 4.1] 0.92 

 No 233 3.8 [3.4 - 4.2]  
Drugs: ACEi / A2RBs / DRI Yes 81 3.7 [3.3 - 4.1] 0.22 

 No 175 3.8 [3.4 - 4.2]  
β-blockers Yes 54 3.8 [3.3 - 4.3] 0.96 

 No 202 3.8 [3.4 - 4.1]  
Statins Yes 146 3.8 [3.4 - 4.3] 0.30 

 No 110 3.7 [3.4 - 4.1]  
Aspirin Yes 116 3.8 [3.4 - 4.3] 0.04 

 No 140 3.7 [3.3 - 4.1]  
Clopidogrel Yes 20 3.8 [3.2 - 4.5] 0.96 

 No 236 3.8 [3.4 - 4.1]  
Dipyridamole Yes 3 3.7 [3.7 - 3.8] 0.92 

 No 253 3.8 [3.4 - 4.2]  
Warfarin Yes 15 3.9 [3.6 - 4.3] 0.21 

 No 241 3.7 [3.4 - 4.1]  
Sulphonylureas Yes 13 3.9 [3.3 - 4.2] 0.87 
 No 243 3.7 [3.4 - 4.1]  

Insulin Yes 54 3.9 [3.3 - 4.2] 0.49 
 No 202 3.7 [3.4 - 4.1]  

*Excluded from statistical analysis owing to small group size; †Never vs Ex-
smokers. ACEi: Angiotensin converting enzyme inhibitors; A2RBs: Angiotensin II 
receptor blockers; DRI: Direct renin inhibitors 
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8.2.2 Determinants of baseline lag times 

In bivariate analyses the lag times were positively correlated with the APTT and factor D 

levels, negatively correlated with the PTH and CRP levels (see Table 35), shortened 

across quartiles of increasing fibrinogen concentration and differed between quartiles of 

Ox-LDL (see Table 38). Multivariate regression analysis indicated that the lag times were 

longer in patients with lower levels of fibrinogen, higher APTTs or receiving clopidogrel 

therapy; the adjusted-R2 for the model was 0.10. The residual versus predicted plot 

revealed one outlying case, repeating the stepwise variable procedure after excluding this 

case retained the fibrinogen and APTT variables in the model but excluded clopidogrel 

(model adjusted-R2=0.08). 

8.2.3 Determinants of baseline maximum absorbance 

In unadjusted analyses the maximum absorbance was positively associated with 

fibrinogen, CRP, C3 and triglyceride levels, age, weight and PT and negatively correlated 

with blood pressure (see Table 35). It was also higher in patients with a history of 

ischaemic heart disease, in ex-smokers compared to patients who had never smoked (see 

Table 36) and differed across quartiles of SC5b-9 concentration (see Table 38). On 

multivariate regression analysis there were independent positive associations between 

maximum absorbance and fibrinogen, CRP, C3 and PT levels and negative associations 

with triglyceride levels, TBARS and diastolic blood pressure. Despite the high inter-

correlation of a number of the predictor variables (i.e. fibrinogen, CRP, C3; r>0.35, 

p<0.0001 in all cases) inspection of the variance inflation factors (VIFs) revealed no 

evidence of multicollinearity (max VIF 2.1) suggesting this was not influencing the model 

significantly. Two samples had an outlying value for maximum absorbance and repeating 

the variable selection procedure after excluding these cases had no effect on the variables 

retained in the final model. The initial regression model, i.e. including the complete 

dataset, had an adjusted-R2 of 0.78. Constructing a model including only fibrinogen 

concentration had an adjusted-R2 of 0.70 suggesting that fibrinogen concentration was the 

major determinant of the maximum absorbance, explaining 70% of the variance. 

8.2.4 Determinants of baseline Lys50t0 times 

The Lys50t0 times were positively associated with C3, CRP, factor D, triglyceride, albumin 

and HbA1c levels, negatively associated with diastolic blood pressure and TBARS levels 

(see Table 35) and were longer in women, patients without a diagnosis of malignancy (see 

Table 36), patients receiving aspirin or clopidogrel therapy (see Table 37), and differed 
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between quartiles of fibrinogen concentration (see Table 38). The initial backwards 

stepwise variable selection procedure rejected all of the variables but was only based on 

56 patients owing to the inclusion of HbA1c which was only measured in patients with 

diabetes. The procedure was therefore repeated after omitting this variable and the 

resultant model retained only triglyceride and HDL levels. Both variables had positive 

regression coefficients suggesting the model was influenced by multicollinearity given the 

strong negative inter-correlation of these variables on bivariate analysis (r=-0.52, 

p<0.0001). The cholesterol / HDL ratio was therefore calculated and added to the variable 

list for model selection in place of the individual variables. (The cholesterol / HDL ratio was 

significantly positively correlated with the Lys50t0 times (r=0.15, p=0.03) justifying its 

inclusion in the variable selection procedure). The resultant model (adjusted-R2=0.03) 

indicated that Lys50t0 times were longer in patients receiving aspirin and shorter in patients 

receiving renin-angiotensin medications. Entering the cholesterol / HDL ratio and the 

triglyceride levels, either individually or together, into the stepwise variable selection 

procedure resulted in the same model. A review of the residuals versus fitted regression 

diagnostic plot identified a number of cases with extreme Lys50t0 times and 9 cases 

fulfilled the a priori criteria for being outliers (section 3.17.4); the analyses were therefore 

repeated after excluding these cases. This final model identified that the Lys50t0 times 

were positively associated with factor D, albumin, triglyceride and CRP levels, were lower 

in men, and were negatively associated with haemoglobin and TBARS levels. This model 

had an adjusted-R2 of 0.20, constant error variance and no evidence of multicollinearity. 

The improvement in the model adjusted-R2 and the retention of different variables by the 

stepwise selection procedure suggested that the initial regression model was influenced by 

the cases with outlying Lys50t0 times.  
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Table 35 - Determinants of lag time, maximum absorbance and Lys50t0 times at baseline: continuous variables. 

   Lag time  Maximum 
absorbance  Lys50t0 

 n  r p  r p  r p 

Patient factors           
Age 205  0.07 0.32  0.14 0.04  0.05 0.43 
Weight 205  -0.04 0.53  0.25 <0.001  0.08 0.28 
Pre-dialysis systolic blood pressure 205  0.11 0.12  -0.14 0.04  -0.04 0.62 
Pre-dialysis diastolic blood pressure 205  -0.05 0.44  -0.24 <0.001  -0.15 0.03 
Dialysis factors           
Time on renal replacement therapy 205  -0.02 0.83  -0.12 0.10  -0.06 0.36 
Urea reduction ratio 205  -0.01 0.90  -0.06 0.43  -0.06 0.36 
Laboratory parameters           
Haemoglobin 205  -0.03 0.62  -0.12 0.09  -0.14 0.050 
Ferritin 205  -0.03 0.69  0.13 0.06  0.00 0.97 
Albumin 205  0.04 0.60  -0.01 0.84  0.21 <0.01 
Cholesterol 205  -0.09 0.21  0.00 0.95  0.13 0.06 
High-density lipoprotein 205  0.06 0.37  -0.09 0.18  -0.09 0.19 
Low-density lipoprotein 202  -0.13 0.07  0.01 0.88  0.04 0.60 
Triglycerides 205  -0.02 0.83  0.14 0.045  0.24 <0.001 
Prothrombin time 203  0.00 0.97  0.16 0.02  0.09 0.18 
Activated partial thromboplastin time 203  0.20 <0.01  0.13 0.06  0.06 0.36 
Bicarbonate 205  0.06 0.38  -0.12 0.08  -0.02 0.75 
Calcium 205  -0.01 0.92  -0.01 0.94  -0.07 0.32 
Phosphate 205  -0.10 0.15  0.03 0.65  0.02 0.73 
Parathyroid hormone 195  -0.18 0.01  0.08 0.30  -0.01 0.88 
HbA1c 58  0.04 0.75  -0.06 0.65  0.36 <0.01 
Oxidative stress           
TBARS 205  0.02 0.77  -0.13 0.06  -0.24 <0.001 
Inflammation           
C-reactive protein 205  -0.14 0.04  0.57 <0.0001  0.20 <0.01 
C3 205  0.05 0.52  0.44 <0.0001  0.28 <0.0001 
Factor D 205  0.21 <0.01  -0.08 0.25  0.23 <0.01 
Properdin 205  0.07 0.31  0.07 0.35  -0.11 0.13 

r: correlation coefficient 
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Table 36 - Determinants of lag time, maximum absorbance and Lys50t0: categorical variables (Patient factors and Comorbidities). 
         

  n Lag time (s) p Maximum 
Absorbance (au) p Lys50t0 (s) p 

Patient factors         
Sex Male 130 512 [460 - 595] 0.61 0.532 [±0.013] 0.98 2145 [1938 - 2322] 0.03 

 Female 75 532 [461 - 583]  0.532 [±0.016]  2168 [2035 - 2528]  
Ethnicity Caucasian 155 518 [461 - 583] 0.64 0.533 [±0.011] 0.09 2149 [1971 - 2425] 0.99 

 Asian 39 513 [462 - 599]  0.554 [±0.025]  2106 [1990 - 2427]  
 Black 10 574 [423 - 706]  0.444 [±0.045]  2147 [1957 - 2359]  
 Other* 1 589  0.424  1897  

Smoking history Never  92 534 [462 - 599] 0.40 0.513 [±0.014] 0.01† 2148 [2012 - 2434] 0.30 
 Current  42 513 [459 - 550]  0.508 [±0.018]  2072 [1884 - 2367]  

 Ex-smoker 71 507 [451 - 584]  0.571 [±0.018]  2153 [2022 - 2403]  
Co-morbidities         

Diabetes Yes 59 535 [469 - 589 0.28 0.531 [±0.016] 0.94 2168 [2022 - 2463] 0.33 
 No 146 513 [452 - 589]  0.533 [±0.012]  2140 [1944 - 2422]  

IHD Yes 61 534 [474 - 590] 0.29 0.570 [±0.018] 0.01 2176 [2058 - 2472] 0.07 
 No 144 513 [451 - 589]  0.516 [±0.011]  2137 [1945 - 2365]  
Malignancy Yes 12 485 [421 - 529] 0.13 0.586 [±0.036] 0.18 1986 [1931 - 2081] 0.04 
 No 193 519 [461 - 592]  0.529 [±0.010]  2153 [1989 - 2428]  

PVD Yes 57 538 [471 - 586] 0.26 0.534 [±0.018] 0.91 2153 [1987 - 2434] 0.75 
 No 148 512 [453 - 589]  0.531 [±0.012]  2146 [1960 - 2424]  

LV dysfunction Yes 16 500 [451 - 605] 0.84 0.545 [±0.036] 0.70 2076 [1932 - 2267] 0.34 
 No 189 518 [461 - 588]  0.531 [±0.010]  2149 [1981 - 2426]  

Data presented as mean [±SEM] or median [IQR]. *Excluded from statistical analysis owing to small group size; †Never vs Ex-smokers. 
IHD: Ischaemic heart disease; PVD: Peripheral vascular disease; LV: Left ventricular 
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Table 37 - Determinants of lag time, maximum absorbance and Lys50t0: categorical variables (Drugs). 
       

  n Lag time (s) p Maximum 
Absorbance (au) p Lys50t0 (s) p 

Drugs         
ACEi / A2RBs / DRI Yes 68 504 [461 - 608] 0.54 0.509 [±0.016] 0.10 2100 [1963 - 2291] 0.12 

 No 137 532 [459 - 588]  0.543 [±0.012]  2172 [1980 - 2461]  
β-blockers Yes 40 504 [442 - 570] 0.27 0.560 [±0.028] 0.17 2164 [1979 - 2512] 0.65 

 No 165 520 [462 - 592]  0525 [±0.010]  2146 [1976 - 2410]  
Statins Yes 120 525 [461 - 585] 0.44 0.535 [±0.012] 0.73 2152 [2013 - 2499] 0.18 

 No 85 513 [447 - 596]  0.528 [±0.017]  2138 [1947 - 2341]  
Aspirin Yes 103 528 [462 - 583] 0.95 0.550 [±0.014] 0.07 2218 [2022 - 2528] <0.01 

 No 102 513 [458 - 599]  0.514 [±0.013]  2096 [1941 - 2269]  
Clopidogrel Yes 15 536 [480 - 702] 0.14 0.553 [±0.041] 0.55 2400 [2139 - 2481] 0.046 
 No 190 518 [460 - 586]  0.530 [±0.010]  2143 [1957 - 2404]  

Dipyridamole Yes 3 554 [522 - 651] 0.30 0.521 [±0.017] 0.89 2101 [2056 - 2145] 0.64 
 No 202 518 [461 - 589]  0.532 [±0.010]  2148 [1970 - 2426]  

Sulphonylureas Yes 11 532 [476 - 569] 0.89 0.492 [±0.033] 0.33 2044 [1980 - 2283] 0.34 
 No 194 518 [460 - 590]  0.543 [±0.010]  2148 [1970 - 2427]  

Insulin Yes 41 533 [469 - 602] 0.20 0.542 [±0.021] 0.61 2168 [2019 - 2493] 0.40 
 No 164 517 [457 - 586]  0.529 [±0.011]  2145 [1955 - 2412]  

Data presented as mean [±SEM] or median [IQR]. ACEi: Angiotensin converting enzyme inhibitors; A2RBs: Angiotensin II receptor 
blockers; DRIs: Direct renin inhibitors 
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Table 38 - Analysis of fibrin clot variables by quartiles of A. fibrinogen, B. Ox-LDL 
and C. SC5b-9 concentrations at baseline. 

     

Quartile n Lag time (s) Maximum 
absorbance (au) Lys50t0 (s) 

A. Fibrinogen (g/L)     
Q1: <3.4 51 571 [480-635] 0.382 [±0.009] 2109 [1939-2300] 
Q2: 3.4-3.7 52 533 [491-583] 0.484 [±0.008] 2125 [1952-2280] 
Q3: 3.8-4.1 50 518 [436-584] 0.554 [±0.008] 2121 [1977-2433] 
Q4: >4.1 50 472 [433-542] 0.710 [±0.016] 2257 [2074-2536] 

p  <0.01 <0.0001 0.046 

B. Ox-LDL (ng/mL)     
Q1: <8.9 52 516 [466-634] 0.539 [±0.018] 2177 [2013-2529] 
Q2: 8.9-34.0 54 524 [457-580] 0.535 [±0.021] 2154 [1944-2542] 
Q3: 36.3-96.8 48 482 [434-562] 0.541 [±0.021] 2089 [1939-2226] 
Q4: >96.8 48 544 [480-619] 0.517 [±0.018] 2180 [1977-2429] 

p  0.047 0.82 0.10 

C. SC5b-9 (ng/mL)     
Q1: <40.3 53 505 [462-563] 0.498 [±0.020] 2065 [1933-2349] 
Q2: 40.3-66.8 50 539 [455-590] 0.522 [±0.018] 2153 [2027-2462] 
Q3: 67.2-105 46 521 [458-605] 0.584 [±0.023] 2227 [2032-2426] 
Q4: >105 56 521 [459-593] 0.531 [±0.018] 2146 [1968-2503] 

p  0.61 0.02 0.21 
Data presented as mean [±SEM] or median [IQR]; p is for omnibus test statistic 
 
 

8.3 Temporal changes in fibrinogen levels and fibrin clot 
parameters and the effects of vitamin E 

As outlined in section 8.1 fibrin clot data was only analysed for a subset of the study 

patients, principally due to the exclusion of patients receiving warfarin or dialysing via a 

CVC. A comparison of the baseline characteristics between study groups for this subset of 

patients with fibrin clot structure and function assays data are shown in Table 39 and 

Table 40. Within this patient subset, those patients dialysing with the VE-bonded 

membranes tended to have been on dialysis for less time, have higher post dialysis 

weights, lower factor D levels and were receiving a lower dose of dialysis. 
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Table 39 - Comparison of baseline characteristics between study groups for the 
subset of patients with fibrin clot structure and function assays data. 
  Control Vitamin E p 
N 99 106  
Sex   0.61 
 Male 61 (62%) 69 (65%)  
 Female 38 (38%) 37 (35%)  
Age (yrs) 64.8 [±1.5] 63.3 [±1.6] 0.50 
Ethnicity   0.79 
 White 74 (75%) 81 (76%)  
 Asian 20 (20%) 19 (18%)  
 Black 4 (4%) 6 (6%)  
 Other 1 (1%) 0  
Smoking history   0.46 
 Never smoked 40 (40%) 52 (49%)  
 Current smoker 22 (22%) 20 (19%)  
 Ex-Smoker 37 (37%) 34 (32%)  
Time on renal replacement therapy  (yrs) 4.3 [1.8-9.1] 3.2 [1.2 - 5.9] 0.03 
Pre-dialysis systolic blood pressure (mmHg) 134 [±2.3] 138 [±2.4] 0.16 
Pre-dialysis diastolic blood pressure (mmHg) 70 [±1.2] 72 [±1.2] 0.35 
Post dialysis weight (kg) 68.4 [56.0-78.9] 73.4 [61.6-87.3] 0.02 
Dialysis dose (urea reduction ratio) 0.77 [±0.01] 0.75 [±0.01] 0.03 
Co-morbidity n (%)    
 Diabetes 24 (24%) 35 (33%) 0.17 
 Ischaemic heart disease 34 (34%) 27 (25%) 0.17 
 Peripheral vascular disease 29 (29%) 28 (26%) 0.65 
 Left ventricular dysfunction 6 (6%) 10 (9%) 0.44 
 Malignancy 5 (5%) 7 (7%) 0.43 
 Systemic collagen disease 7 (7%) 3 (3%) 0.20 
Drugs at baseline n (%)    
 ACEi / A2RB 30 (30%) 38 (36%) 0.40 
 Β-blockers 17 (17%) 23 (22%) 0.41 
 Statins 58 (59%) 62 (58%) 0.99 
 Aspirin 47 (47%) 56 (53%) 0.44 
 Clopidogrel 7 (7%) 8 (8%) 1.00 
 Dipyridamole 0 3 (3%) 0.25 
 Sulphonylureas 4 (4%) 7 (7%) 0.54 
 Insulin 19 (19%) 22 (21%) 0.78 
Data presented as mean [±SEM] or median [IQR] unless stated. A2RB: Angiotensin II receptor 
blocker; ACEi: Angiotensin converting enzyme inhibitors. 
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Table 40 - Comparison of the baseline biochemistry, oxidative stress and 
inflammation parameters between study groups for the subset of patients with fibrin 
clot structure and function assays data. 

  Control Vitamin E p 
Biochemistry    
 Albumin (g/L) 37.7 [±0.5] 37.7 [±0.4] 0.99 
 Calcium (mmol/L) 2.36 [±0.02] 2.40 [±0.02] 0.15 
 Phosphate (mmol/L) 1.45 [±0.05] 1.51 [±0.05] 0.38 
 Parathyroid hormone (pmol/L) 20.4 [13.2-41.2] 22.3 [9.0-42.5] 0.87 
 Bicarbonate (mmol/L) 22.0 [±0.3] 22.1 [±0.2] 0.60 
 Cholesterol (mmol/L) 3.9 [±0.1] 4.0 [±0.1] 0.33 
 Low-density lipoprotein (mmol/L) 2.0 [±0.1] 2.1 [±0.1] 0.26 
 High-density lipoprotein (mmol/L) 1.2 [±0.0] 1.2 [±0.0] 0.97 
 Triglycerides (mmol/L) 1.4 [1.1-2.0] 1.4 [0.9-2.2] 0.54 

Oxidative stress markers    
 Ox-LDL (ng/mL) 38.2 [12.5-112] 27.0 [4.3-58.4] 0.12 
 TBARS (µM MDA) 2.4 [±0.1] 2.4 [±0.1] 0.60 

Inflammatory markers 
 CRP (mg/L) 6.9 [3.0-14.1] 5.5 [1.4-14.5] 0.27 
 C3 (mg/mL) 0.77 [±0.02] 0.79 [±0.02] 0.35 
 SC5b-9 (ng/mL) 61.0 [39.5-111] 67.5 [38.8-120] 0.54 
 Factor D (µg/mL) 3.6 [3.1-4.4] 3.4 [2.6-4.1] 0.02 
 Properdin (µg/mL) 51.1 [43.9-67.1] 56.7 [43.7-74.4] 0.12 

Data presented as mean [±SEM] or median [IQR] 
 

At baseline, there were no significant differences in the fibrinogen levels or fibrin clot 

characteristics between the two study groups (see Table 41).  

 

Table 41 - Comparison of fibrinogen levels and fibrin clot parameters between study 
groups at baseline. 

    

 Control Vitamin E p 
Fibrinogen (g/L) 3.8 [3.4-4.1] 3.7 [3.4-4.1] 0.83 
Lag time (s) 519 [468-589] 515 [450-591] 0.66 
Maximum Absorbance (au) 0.526 [±0.015] 0.537 [±0.013] 0.59 
Lys50t0 (s) 2136 [1954-2403] 2157 [1988-2443] 0.47 

Data presented as mean [±SEM] or median [IQR]. au: absorbance units 
 

8.3.1 12-month changes in fibrinogen levels 

As shown in Figure 52, there were no differences in the fibrinogen levels between the 

groups at baseline (p=0.83) or at 12-months (p=0.26), nor when the baseline and 12-

month levels were compared in the control (p=0.82) or VE (p=0.21) groups. The 12-month 

changes in the fibrinogen levels were compared between groups and found not to differ 
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(p=0.32; see Figure 53). The between group comparison of the 12-month change in 

fibrinogen levels remained non-significant after adjusting for post-dialysis weight and time 

on dialysis which were the two significant determinants of the fibrinogen levels which 

differed between the study groups at baseline. 

 

 
Figure 52 - Fibrinogen levels at baseline, 6 and 12 months. There were no significant 
inter-group differences nor significant changes in the fibrinogen levels across study visits. 
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Figure 53 - Comparison of 12-month change in fibrinogen levels between study 
groups. There was no difference in the 12-month change in fibrinogen levels between 
study groups. (ΔFibrinogen = Fibrinogen12months - Fibrinogenbaseline). 

8.3.2 12-month changes fibrin clot parameters 

Repeated measures ANOVA identified no significant trends nor a significant effect of study 

group when lag times (p=0.21 and 0.92 respectively), maximum absorbance (p=0.10 and 

0.23 respectively) and Lys50t0 (p=0.46 and 0.42 respectively) were analysed across study 

visits (see Figure 54). Comparisons of the 12-month changes in each of these parameters 
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between study groups revealed no statistically significant differences (Figure 54). The 

absence of a significant difference between study groups in the 12-month change in each 

of the fibrin clot paramters shown in Figure 54 persisted in analyses which were adjusted 

for the factors which differed between the groups at baseline (i.e post dialysis weight, 

years of dialysis dependency, factor D levels and dialysis dose; p>0.27 in all cases). 
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Figure 54 - Comparisons of the fibrin clot parameters between study groups across 
the three study visits and the change in each parameter after 12 months. There were 
no significant changes over time nor effects of study group allocation on the change in (A) 
lag times, (C) maximum absorbance or (E) Lys50t0 times across study visits. Comparing 
the 12-month change in each of these parameters between study groups similarly found 
no significant differences (B,D and F). (Δvariable = variable12months - variablebaseline). 
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Given that there was no effect of the VE membrane on the fibrinogen levels or fibrin clot 

characteristics, the relationships between the changes in the fibrinogen levels and the 

fibrin clot parameters, and the changes in the biomarkers of oxidative stress and 

inflammation were evaluated in the whole dataset i.e. after combining the two study 

groups. 

8.4 Changes in fibrinogen levels and fibrin clot parameters in 
relation to changes in oxidative stress    

The Spearman rank correlation coefficients for the 12-month change in each of the 

biomarkers of oxidative stress measured in the present study and the change in fibrinogen 

levels and the fibrin clot parameters are detailed in Table 42. The only statistically 

significant finding was a positive correlation between the changes in Ox-LDL levels and lag 

times. 

 

Table 42 - Spearman’s rank correlation coefficients for changes in oxidative stress 
markers, fibrinogen and fibrin clot parameters. 

     

 ΔFibrinogen ΔLag time ΔMaximum 
absorbance ΔLys50t0 times 

ΔOx-LDL -0.04 0.23** -0.03 -0.09 

ΔTBARS -0.12 0.03 -0.08 -0.10 

In each case Δvariable was defined as variable12months - variablebaseline. *p<0.05, **p<0.01. 
 

8.5 Changes in fibrinogen levels and fibrin clot parameters in 
relation to changes in inflammation 

The Spearman’s rank correlation coefficients for the 12-month change in each of the 

inflammatory biomarkers measured, including fibrinogen levels, and the fibrin clot 

parameters are shown in Table 43. Reductions in the lag times were associated with 

increasing fibrinogen, CRP and SC5b-9 levels. The maximum absorbance increased with 

increases in the levels of fibrinogen, CRP, C3 and SC5b-9. Lengthening of the Lys50t0 

times were associated with increases in the C3 and SC5b-9 levels. There were strong 

correlations between the changes in fibrinogen levels and the changes in CRP, C3 and 

SC5b-9 levels. Given that the fibrinogen levels were an important determinant of the fibrin 

clot phenotype, partial correlation analysis was undertaken to determine if the changes in 
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the inflammatory markers were associated with changes in the fibrin clot parameters after 

adjusting for the change in fibrinogen levels. In these adjusted analyses, there were 

significant associations between the change in maximum absorbance and the change in 

both CRP (partial correlation coefficient=0.47, p<0.001) and C3 (partial correlation 

coefficient=0.19, p<0.05) levels. The remainder of the statistically significant findings in the 

unadjusted bivariate analyses become non-significant when the analyses were adjusted 

for the change in fibrinogen levels. 

 

Table 43 - Spearman’s rank correlation coefficients for changes in inflammation 
markers, fibrinogen and fibrin clot parameters. 
     

 ΔFibrinogen ΔLag time ΔMaximum 
absorbance ΔLys50t0 times 

ΔFibrinogen (1.00) -0.20** 0.73** 0.10 

ΔCRP 0.41** -0.25** 0.55** 0.15 

ΔC3 0.40** -0.12 0.44** 0.16* 

ΔSC5b-9 0.23** -0.16* 0.31** 0.18* 

ΔFactor D -0.02 -0.08 0.00 -0.03 

ΔProperdin -0.06 0.06 -0.08 -0.01 

In each case ΔVariable was defined as Variable12months - Variablebaseline. *p<0.05, **p<0.01 
 

8.6 Discussion 

Despite the relatively large number of studies examining fibrin clot characteristics in 

different patient groups, only one published study to date has examined them in chronic 

HD patients [646]. Furthermore, only a small proportion of published studies have 

performed serial measurements of fibrin clot structure following an intervention [683, 

1064]. In the present study several markers of inflammation, oxidative stress and 

components of the complement cascade were measured permitting a detailed evaluation 

of the key determinants of fibrin clot structure and function in HD patients. In addition, the 

effects of changes in the levels of inflammation and oxidative stress on the fibrin clot 

characteristics were determined to establish if interventions targeted at improving the 

levels of inflammation and oxidative stress may have the potential to influence the fibrin 

clot phenotype. One such potential intervention, the use of VE bonded dialysis 

membranes, was evaluated here. 
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Fibrin clot analysis was performed on 714 samples although a significant number of 

assays yielded no results because there was insufficient clot formation or fibrinolysis to 

enable measurement of the clot parameters. A large proportion of the samples without 

assay data were obtained from patients dialysing via CVCs or receiving warfarin. Analyses 

comparing these samples with the remainder of the dataset revealed significant 

differences in the fibrin clot characteristics (see Table 28 and Table 29) therefore these 

samples were excluded from the dataset prior to further analyses. It is likely that some or 

all of the samples obtained from patients dialysing via CVC’s were contaminated with 

heparin to explain the different clot characteristics. To prevent catheter thrombosis all 

CVCs were locked between dialysis sessions with concentrated heparin solution (5000 

units/mL, typical locking volume 1.5-1.7 mL/lumen) in line with the LTHT renal unit policy. 

At the start of the HD treatment, the locking solution was aspirated from the CVC and the 

patient connected to the HD circuit. Prior to obtaining the blood sample for analysis, blood 

was drawn through the CVC for approximately 30 seconds until the column of blood 

reached the bubble trap (see 3.7.4). It is likely, however, that these samples still contained 

trace quantities of heparin, possibly due to contamination of the blood as it was drawn 

through the CVC or as a result of systemic dissipation of small amounts of the locking 

solution when handling the dialysis catheter prior to aspiration. The majority of the 

anticoagulant effect of heparin is as a result of its binding to anti-thrombin III (AT) [1065]. 

The heparin-AT complex then inactivates a number of components of the coagulation 

pathway, including Xa, IXa, XIa and XIIa, and most importantly it binds and inactivates 

thrombin [1065]. Thus heparin contamination could potentially explain the longer lag times 

and slower clotting rates in the assays performed on samples obtained from CVCs 

compared to AVFs. 

 

A number of samples obtained from patients receiving warfarin yielded no assay results 

and the This carboxylation permits calcium-dependent conformational changes thereby 

facilitating interactions with phospholipid membranes which are necessary for their 

physiological activity [769]. Vitamin K dependent proteins include the coagulation factors II, 

VII, IX and X and the regulatory proteins C and S [769]. These factors are all upstream of 

thrombin in the clotting cascade and thus warfarin may be anticipated to have minimal 

effects in the assay as exogenous thrombin is added. However, owing to the small 

quantities of exogenous thrombin added, intra-assay fibrin clot formation relies on the 

generation of endogenous thrombin, via the positive feedback amplification loop described 

in 1.6.1.3, to explain the inhibitory effects observed with warfarin. More samples obtained 

from patients on warfarin yielded data from the fibrinolysis assay compared to the clotting 
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assay. On reviewing the individual sample data, this situation arose because a number of 

the samples obtained from patients receiving warfarin did form a delayed clot which was 

not fully formed during the 1 hour clotting assay but was evident on the 10 hour fibrinolysis 

assay. 

8.6.1 Fibrin clot variables selected for further analyses 

As detailed in Table 30 and Table 31, several of the fibrin clot parameters were highly 

inter-correlated consistent with the original report of this assay [721]. The lag phase 

tended to be shorter and the maximum absorbance greater in the clotting compared to the 

fibrinolysis assay as shown in Figure 51. This was because the reaction mix in the 

fibrinolysis assay contained tPA therefore clot formation and breakdown were occurring 

concurrently. In both assays, the clot rate was positively correlated with the maximum 

absorbance and negatively correlated with the lag phase, and increasing fibrinogen 

concentrations were associated with shorter lag times and the formation of denser clots. 

These findings reflect that fibrin clot structure is influenced to a large degree by the 

kinetics of fibrin polymerisation [639]. Faster rates of fibrin polymerisation, as occur with 

higher fibrinogen concentrations [642, 643], result in the formation of clots comprised of 

thinner fibres which are denser with smaller intrinsic pores in both in vitro purified 

fibrinogen [641-643] and ex vivo plasma-based [644-649] systems. All of the measures of 

fibrinolysis were positively correlated (Table 31) and the variability in the fibrinolysis 

parameters was greater than the variability in the clotting parameters, as detailed in 

section 3.15, which is likely related to the fact that clot formation and breakdown were 

occurring at the same time in the fibrinolysis assays thereby increasing the variability in the 

derived clot parameters. Furthermore, fibrinolysis appears to be more unpredictable as it 

progresses, possibly due to variations in the way the clot breaks apart to reveal 

plasminogen binding sites. Such variation is evident on review of the absorbance-time 

graphs and explains why the variables which measure the whole of the clot lysis, i.e. lysis 

rate and lysis area, were subject to the greatest intra- and inter-assay variability. This also 

provides the rationale for using the time to 50% lysis, termed the Lys50t0 time in the 

present study, as a marker of fibrinolysis susceptibility in line with other studies [646, 647, 

655, 679, 681, 683, 688, 715, 718, 721, 1064, 1066].  All of the lysis measures, with the 

exception of lysis rate, were positively correlated with the maximum absorbance reflecting 

the known association between denser clots and fibrinolytic resistance [726, 1067-1069]. 

This association arises due to reduced access of plasminogen to its binding sites on 

fibrinogen in denser clots, i.e. steric effects, and the increased clot stability conferred by 

the incorporation of greater amounts of fibrinogen per unit volume. 
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After evaluating the inter-relationships of the clotting and fibrinolysis assay parameters in 

the baseline dataset, the variables selected for more detailed analyses were the lag time 

and maximum absorbance from the clotting assay and the Lys50t0 times from the 

fibrinolysis assay. These variables are the measures of clot formation and fibrinolysis 

which are most frequently reported in the literature, allowing better contextualisation of the 

results from the present study. Furthermore the maximum absorbance and the Lys50t0 

times were the most reproducible clot parameters in the present study (see section 3.15),  

and in previous experience with the assay [721], thereby potentially facilitating the 

detection of smaller differences between subgroups. Additionally, with respect to the 

maximum absorbance and lag times, these have been mapped to specific clot 

characteristics or aspects of clot formation, such as a positive association between clot 

turbidity, i.e. maximum absorbance, and the fibrin fibre mass-length ratio [1070, 1071] and 

the lag phase representing the time taken for protofibril formation prior to lateral 

aggregation [639, 1072], permitting a better understanding of the processes being 

indirectly measured. It is important to note that many of the studies examining the 

associations between clot turbidity and clot architecture (e.g. fibre thickness, porosity) 

have been performed using purified fibrinogen. The relationships between these clot 

properties and turbidimetric measurements in plasma samples differ markedly from those 

observed in the purified fibrinogen systems [1070, 1071], largely as a result of the 

presence of plasma proteins, such as albumin, fibronectin and ATIII in the former 

influencing fibrin clot assembly [1073]. Also, although they may be related [647, 648, 709, 

715], clot turbidity measured in the present study and clot permeability measured in a 

number of other studies reflect different aspects of fibrin clot structure with permeability 

reflecting pore size and turbidity the fibre density [1070, 1074, 1075]. Discrepancies 

between the two measures can arise because the fibrin network is comprised of a major 

network, comprising thicker fibres, and a minor network comprising thinner fibres. 

Changes in the minor network may impact little on the clot turbidity but have a profound 

effect on clot permeability [1074-1076], an effect which appears to be more pronounced in 

plasma compared to purified fibrinogen systems [1070]. Analysing the maximum 

absorbance and lag phase from the clotting assay rather than the fibrinolysis assay, 

theoretically at least, seems more logical as the former is not affected by the addition of 

tPA, which increases the lag time and reduces the maximum absorbance as shown in 

Figure 51, allowing a better appreciation of the factors influencing clot formation. The 

majority of studies looking at measures of clot density have done so by examining clots 

formed in the absence of tPA. 
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8.6.2 Baseline determinants of fibrinogen levels and fibrin clot 
parameters 

In both bivariate and multivariate analyses, there were strong positive associations 

between fibrinogen levels and the inflammatory markers CRP and C3 reflecting that all 

three are positive acute phase reactants [428]. There was no difference in fibrinogen levels 

between the sexes in contrast to studies of non-renal populations which have consistently 

reported higher fibrinogen levels in women [702, 707]. Part of the explanation for this is 

thought to be an artefact due to greater dilution of citrated blood samples in men, who tend 

to have higher haematocrits, as studies using dry dipotassium edetate as an 

anticoagulant, thus avoiding any sample dilution, have reported no sex difference in 

fibrinogen levels [1077]. In the present study there was no significant difference in the 

packed cell volume between males and females (36.7 [±0.3] vs 35.7 [±0.4] % respectively; 

p=0.08) which may explain the similar fibrinogen levels between sexes. Although no linear 

association with age was observed across the quartiles of fibrinogen concentration, 

patients in the highest quartile were significantly older than those in the lowest quartile 

(p<0.05) which is consistent with the observation that fibrinogen levels increase with age 

[702]. Increased fibrinogen levels have been associated with both prevalent [1078] and 

incident [690] CV disease, including studies of HD patients [45, 435, 646, 1079], but no 

association with prevalent CV disease was observed in the present study. Again this may 

reflect that patients with higher levels of inflammation, and therefore likely higher CV 

disease risk and burden, were excluded from study participation in contrast to the cited 

studies which had no such exclusion criteria. There was no difference in the fibrinogen 

levels when study patients were compared on the basis of diabetic status. The literature is 

mixed in this respect with two large reports of pooled data from the Fibrinogen Studies 

Collaboration reporting differing conclusions with one finding no association [707] and the 

other suggesting higher levels in patients with diabetes [690]; albeit both studies were in 

non-HD patients. 

 

In addition to examining fibrinogen levels, a number of parameters relating to fibrin clot 

formation and breakdown were evaluated in the present study. Several studies have 

reported positive associations between markers of inflammation, such as CRP, C3 and 

fibrinogen, and clot turbidity and fibrinolysis times and negative associations with lag times 

[648, 652, 655, 681, 683, 686, 688, 709, 715, 718, 719, 1080] as were found on bivariate 

analyses in the present study. The associations between the clot parameters and 

fibrinogen levels were expected, reflecting that fibrin is the major component of clots. 
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Indeed, with respect to the maximum absorbance, 70% of the variance in this parameter 

was explained by the fibrinogen levels alone, with only modest improvements in the 

regression model adjusted-R2 following the addition of the other variables retained by the 

variable selection procedure (i.e. C3, CRP, triglyceride, TBARS levels, diastolic blood 

pressure and prothrombin time), highlighting the importance of fibrinogen levels in 

determining the clot density. However, given that raised inflammatory markers and 

hyperfibrinogenaemia tend to co-exist as part of the acute phase response [428], it is hard 

to assess the individual contributions of the inflammatory markers to the fibrin clot 

phenotype. Both C3 and CRP were retained in the multivariate regression model of 

maximum absorbance, along with fibrinogen, and CRP was independently associated with 

Lys50t0 times. Taking these findings together would tend to suggest that alterations in the 

fibrin clot phenotype in the setting of inflammation, particular clot density and fibrinolysis 

susceptibility with reference to the present study, may arise through mechanisms 

additional to increases in fibrinogen levels. For example several studies have 

demonstrated that C3 is a component of clots [682, 685, 686], the addition of C3 in both in 

vitro and ex vivo systems has been shown to impede fibrinolysis in a dose-dependent 

manner [652, 686] and data from the present study and elsewhere [688] have shown a 

positive association between C3 levels and fibrinolysis times. These data suggest a role 

for complement, or more specifically C3, in determining fibrinolytic susceptibility. C-

reactive protein has been shown to bind fibrinogen [684], and thus may potentially alter 

fibrin network assembly, although more recent data suggest that CRP is not a component 

of plasma derived clots [652]. Increased factor D levels were independently associated 

with longer lysis times in the present study, however there are no previously published 

studies examining this association. It is not clear whether factor D may have a direct 

functional role in reducing fibrinolytic susceptibility, as is postulated for C3, or whether 

increased factor D levels are reflective of, or permissive for, enhanced complement activity 

which itself influences fibrinolysis. Factor D is the rate limiting enzyme of the alternative 

pathway and the alternative pathway is important for amplifying the complement response 

following activation by any of the three pathways [493], therefore the association between 

factor D levels and fibrinolysis times in the present study may simply be a surrogate for 

complement activation. An association between increased factor D levels and increased 

complement activation is supported by the positive association between factor D and 

SC5b-9 levels in the baseline dataset (see Table 21). Somewhat counter to this argument 

was the lack of association between SC5b-9 levels and fibrinolysis times, even in 

unadjusted analyses, although the difficulties in making inferences concerning the degree 
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of complement activation on the basis of the relative levels of the biomarkers measured in 

the present study has been discussed in section 7.4.2. 

 

It would seem, therefore, that the data in the present study would support a role for 

complement components in determining the fibrin clot phenotype. This association has a 

biological basis given that there is cross-talk between components of the complement 

cascade and both the haemostatic and fibrinolytic cascades [1081-1083]. This cross-talk 

includes shared activators and inhibitors, for example the ability of FXIIa to activate C1q 

and therefore the classical complement pathway, and C1 esterase inhibitor to inhibit 

complement activation, the contact coagulation system (kallikrein and FXIIa), FXI, 

thrombin, tPA and plasmin [496]. Thrombin provides an important link between coagulation 

and complement as thrombin has been shown to have C5 convertase activity [571], be an 

agonist for the PKC-dependent pathway of decay accelerating factor regulation [572] and 

to cleave factor H forming a monocyte chemotactic factor [573]. With reference to the 

present study, SC5b-9 has been shown to inhibit platelet aggregation in vivo [1084]. There 

are therefore a number of fibrinogen-independent mechanisms through which 

inflammation, or more specifically complement activation, may influence fibrin clot 

assembly and hence the clot structure. 

 

In addition to the aforementioned associations between inflammatory markers and fibrin 

clot structure, similar clot characteristics (i.e. denser clots, shorter lag times, increased 

fibrinolytic resistance) have also been observed in patients with CV disease [644, 648, 

649, 681, 708, 715], including those on HD [646]. In the present study a prior history of 

ischaemic heart disease was associated with the formation of denser clots on bivariate 

analysis but there were no significant associations with lag or fibrinolysis times which is 

consistent with the small body of literature concerning fibrin structure in HD patients [646]. 

There was no influence of diabetic status on any of the fibrin clot parameters identified for 

detailed analyses and, with respect to fibrinolysis times, this differs from the published data 

in non-renal patients. The few studies of non-renal patients examining ex vivo clots in 

patients with diabetes have reported no differences in lag times and maximum absorbance 

[688, 719] when compared to non-diabetic controls, as was found in the present study, but 

increased fibrinolysis times in diabetic patients [652, 655, 688]. A number of mechanisms 

have been put forward to explain the reduced fibrinolytic susceptibility of fibrin clots formed 

from patients with diabetes including post-translational modifications of the fibrinogen 

molecule, such as glycation or oxidation [1085-1088], increased PAI-1 levels [1089-1093] 
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and increased incorporation of C3 into the clot [652]. Despite no difference in the 

fibrinolysis times between diabetics and non-diabetics in the present study, HbA1c levels 

were positively correlated with fibrinolysis times, as has been reported in purified 

fibrinogen systems [720, 1094], suggesting a possible role of fibrinogen glycation in 

fibrinolytic resistance. The absence of a significant association between diabetes and 

fibrinolytic resistance in the present study, contrasting with those studies already cited 

[652, 655, 688], may have arisen because the effects of uraemia or dialysis therapy on the 

fibrin clot phenotype (see [645, 646]) are greater than that of diabetes such that any 

additional contribution of the diabetic state is masked.  

 

There was an independent positive association between fibrinolysis times and triglyceride 

levels. Several studies have demonstrated a strong correlation between the PAI-1 and 

triglyceride levels [703, 1095-1098] thus the triglyceride levels may have been a proxy for 

PAI-1 levels in this analysis. Since PAI-1 is also a positive acute phase reactant [428] this 

represents another fibrinogen-independent mechanism through which inflammation may 

contribute to fibrinolytic resistance. The initial regression model of Lys50t0 times retained 

the HDL levels and recent work has demonstrated a number of HDL-associated proteins, 

including serum amyloid P and the apolipoproteins A-I, E, J and A-IV, are present in fibrin 

clots derived from plasma and purified fibrinogen [1099] suggesting HDL may influence the 

clot phenotype. The finding of longer lysis times in women is at odds with the higher levels 

of PAI-1 [1096, 1100-1102] and homocysteine [1103, 1104] (which is associated with 

fibrinolytic resistance [1105]) reported in men suggesting that if a true sex difference in 

fibrinolytic susceptibility exists, it is likely due to other factors, such as fibrinogen levels 

(although these did not differ between the sexes in the present study) or the levels of sex 

hormones for example. 

 

The finding of a negative independent association between haemoglobin levels and 

fibrinolysis times was an unexpected finding and it was unlikely to represent a mechanistic 

association given the absence of significant amounts of haemoglobin or red blood cells in 

the plasma samples analysed. The haematocrit and the haemoglobin level were highly 

significantly positively correlated in the baseline dataset (r=0.90, p<0.0001), and 

substituting the haematocrit for the haemoglobin level in the stepwise regression variable 

selection procedure modelling Lys50t0 times resulted in the retention of the same 

variables, including haematocrit in place of haemoglobin. Plasma samples obtained from 

patients with higher haemoglobin levels (and hence haematocrit) would be relatively more 
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diluted by the citrate anticoagulant thus the association with Lys50t0 times in the present 

study may represent a dilution effect. 

 

Both the clot density and fibrinolysis times were negatively and independently associated 

with TBARS levels. Studies using oxidatively modified fibrinogen have demonstrated a 

prolongation of the clotting time and a reduced final clot turbidity [670, 671] but no effect 

on lysis susceptibility [671]. Studies measuring PGF2α as a marker of oxidative stress have 

reported inverse associations with clot permeability, no association with clot turbidity, and 

a positive association with lysis times in patients with acute coronary syndromes [648], 

active rheumatoid arthritis [680] and HD patients [646]. The apparent discrepant findings of 

a negative association between oxidative stress (i.e. TBARS) and fibrinolysis in the 

present study and a positive association between oxidative stress (i.e. PGF2α) and 

fibrinolysis times in several published studies [646, 648, 679, 680] are hard to reconcile. 

They may, on the one hand, simply reflect the different methods employed for measuring 

the fibrin clot phenotype. The fibrinogen molecule is particularly susceptible to oxidative 

modification [1106] and, depending on the profile and extent of the oxidative modifications, 

it is possible that differing effects on the fibrin clot phenotype may be observed. However 

such radical differences between the studies so as to produce opposite results, particularly 

given one of the studies was on HD patients [646], seems improbable. The oxidative 

stress markers measured in the present study differed from those in the published studies 

although all are putative markers of lipid peroxidation and may therefore be expected to 

produce similar findings; although such a supposition was not the case for the two 

biomarkers of lipid peroxidation measured in the present study. The finding in the present 

study that increased TBARS levels were associated both with lower clot densities and 

shorter lysis times, given the positive correlation of these two fibrin clot variables in the 

dataset (see Table 31), combined with the significantly larger dataset compared to the 

previously cited studies, suggests that the observed associations in the present study may 

be real rather than a chance finding from multiple statistical testing.  

8.6.3 Changes in fibrin clot parameters over time and the effects of 
vitamin E 

Cardiovascular disease in HD patients has been associated with increased levels of 

oxidative stress [396, 404-406] and inflammation [163, 429, 435, 439, 506] and both of 

these factors have been shown to influence fibrin clot characteristics, as discussed in the 

previous sections, providing the rationale for studying the effects of anti-inflammatory and 
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anti-oxidative interventions on the fibrin clot phenotype. The small numbers of published 

studies evaluating VE-bonded polysulfone HD membranes have reported improvements in 

markers of inflammation [893] and oxidative stress [891, 895] in some, but not all [889, 

894], cases. The present study examined the impact of the VE-bonded membrane on fibrin 

clot structure and found no effects on the lag time, maximum absorbance or Lys50t0 times. 

These findings are perhaps not surprising as the putative anti-inflammatory and anti-

oxidant properties of the VE membranes, the mechanisms through which the VE 

membrane may alter fibrin clot structure, were not evident in the present study. 

 

The vast majority of published data regarding fibrin clot structure are observational with 

very few studies performing serial measurements. An intervention study by Gajos et al. 

[1064] examined the impact of the anti-oxidant omega-3 polyunsaturated fatty acid (n-3 

PUFA) on fibrin clot structure, in combination with standard pharmacotherapy, in patients 

with stable coronary artery disease undergoing percutaneous coronary intervention and 

stent implantation. The levels of the oxidative stress biomarker PGF2α were positively 

correlated with lysis times at baseline, consistent with a number of studies [646, 648, 679, 

680], and after 1-month treatment with n-3 PUFA there were significant reductions in both 

the PGF2α levels and lysis times compared to patients treated with placebo. In the present 

study, no changes in the levels of oxidative stress were observed in patients dialysing with 

the VE membrane nor were changes in either of the oxidative stress markers measured 

correlated with changes in fibrinolysis times. Despite Gajos et al. [1064] reporting 

reductions in the levels of oxidative stress (i.e. PGF2α) and fibrinolysis times the two may 

not be mechanistically linked given the pleiotropic actions of PUFA with regards to 

coagulation, in addition to their anti-inflammatory and anti-oxidative properties [1107], 

which include effects on the levels of fibrinogen, the levels or activity of a number of 

clotting factors (e.g. FVII, FVIII and vWF) [1108, 1109] and reductions in plasminogen 

activator inhibitors [1110]. Only some of these potentially confounding factors were 

measured in the study and none were adjusted for in the analyses of fibrinolysis times. 

 

Rajzer et al. [683] examined the effects of anti-hypertensive medications on fibrin clot 

structure and reported reductions in C3 levels, improved fibrin clot permeability and 

reduced lysis times after 6 months commensurate with lower blood pressures. Reductions 

in C3 levels over 12 months were observed in the present study (see Figure 42) but, 

despite changes in C3 levels being positively correlated with changes in the maximum 

absorbance and Lys50t0 times (see Table 43), no corresponding reductions in the clot 

density or fibrinolysis times were observed at the study population level. This may reflect 
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the dispersion of values in the fibrin clot parameters such that the statistical analyses used 

for comparing them across study visits were too insensitive to detect any changes. 

 

In the present study, there were significant associations between the changes in lag times 

and the change in fibrinogen, CRP and SC5b-9 levels, the changes in maximum 

absorbance and the change in fibrinogen, CRP, C3 and SC5b-9 levels and the change in 

Lys50t0 times and the change in C3 and SC5b-9 levels (see Table 43). These findings 

would suggest that interventions which alter the levels of inflammation may have the 

potential to influence the clot phenotype. Given the fact that fibrinogen levels were 

significantly associated with all of the fibrin clot parameters on bivariate analyses (see 

Table 38) and that the CRP and C3 levels also increased across the quartiles of fibrinogen 

concentration (see Table 32) and, furthermore, the changes in fibrinogen levels were 

positively correlated with changes in the CRP and C3 levels (see Table 43), it is hard to 

discern the additional contribution of changes in inflammation, over and above changes in 

the fibrinogen levels, in altering fibrin clot phenotype. Fibrinogen, CRP and C3 are all 

acute phase reactants [428] and hence all tend to increase during inflammation. To try and 

better understand the effects of inflammation, separate from any changes in fibrinogen 

levels, on the fibrin clot phenotype partial correlation analyses for the changes in the 

inflammatory markers and the changes in the fibrin clot parameters were carried out while 

adjusting for the changes in fibrinogen levels. The results of these adjusted analyses found 

that changes in either CRP or C3 levels were positively associated with changes in the clot 

density, suggesting an effect of inflammation on the clot density independent of fibrinogen 

levels. Whether these reflect a role for inflammation per se or a specific effect of the CRP 

or C3 molecules is unclear. An in vitro study examining the effect of adding C3 to a purified 

fibrinogen system, for example, reported no effects of C3 on clot density [686], suggesting 

the observations in the present study may not be a direct effect of increased C3 levels. It is 

known that several other acute phase proteins, such as haptoglobin and α1-antitrypsin for 

example, are also present in clots [686, 1099]. The incorporation of these other molecules 

into the fibrin clot may represent a fibrinogen-independent mechanisms through which 

inflammation can lead to the formation of denser clots. Despite the identification of a large 

number of inflammatory mediators present within fibrin clots [1099], for many the effects of 

different levels of incorporation on the clot phenotype have not been elucidated and 

therefore this mechanism remains conjecture at present. Data from the present study 

would suggest that inflammation is associated with a tendency to form clots which are 

denser and more resistant to fibrinolysis, the phenotype associated with CV disease [645-

648, 654, 655, 679, 681, 688, 708-712, 714-723], and that reducing inflammation may be 
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associated with reductions in clot density and fibrinolytic resistance. These data would 

therefore support the idea that interventions aimed at reducing inflammation may have 

‘favourable’ effects on the fibrin clot phenotype. Although the published observational body 

of data points to an association between an adverse clot phenotype and CV disease, it 

remains to be seen if altering the fibrin clot structure to a more ‘favourable’ phenotype, i.e. 

less dense and less resistant to fibrinolysis, would translate into improved CV outcomes.  

 

It still remains unclear whether elevated fibrinogen levels and alterations to the fibrin clot 

phenotype are simply reflective of CV risk mediated through other pathways, e.g. 

inflammation or oxidative stress, or lie on the causal pathway of CV disease. One way to 

try and address the question of whether hyperfibrinogenaemia and alterations to the fibrin 

clot phenotype are mechanistically linked to CV disease has been through the study of 

patients with dysfibrinogenaemias or FXIII polymorphisms, for example, which result in 

alterations to the fibrin clot structure or fibrinogen levels in the absence of potentially 

confounding factors such as inflammation. In these settings, the association between an 

adverse clot phenotype, elevated fibrinogen levels and CV disease are less clear cut. 

 

Against a mechanistic link between hyperfibrinogenaemia and CV disease several studies 

[1111-1113], including a meta-analysis [1114], have shown that polymorphisms in the 

fibrinogen gene which are associated with higher fibrinogen levels are not linked to 

increased rates of CV disease, data which contrasts with large observational series 

reporting a positive association [690, 1078], including patients on HD [45, 701]. Fibrinogen 

undoubtedly has a central role in vascular disease given that fibrin is a prominent 

component of atheromatous plaques [1115, 1116], particularly advanced lesions [1117], 

and fibrinogen and its degradation products have been shown to be involved in a number 

of processes implicated in atherosclerosis including effects on vascular tone and 

endothelial permeability through the binding of ICAM-1 [1118-1120], smooth muscle cell 

chemotaxis [1121] and proliferation [1122-1124], leukocyte migration [1125], LDL 

adsorption [1126] and roles in foam cell formation [1127] and platelet activation [1128]. 

However, despite this, evidence that these processes are enhanced in the presence of 

increased fibrinogen levels are lacking. Studies evaluating the pharmacological lowering of 

fibrinogen levels using fibrates, for example, have been largely disappointing with respect 

to CV disease prevention [1129, 1130] although fibrates have a number of pleiotropic 

effects besides lowering fibrinogen levels such as alterations to the lipid profile [1131]. In 

addition to the processes discussed here, the prominent role of fibrinogen levels in 

determining the structure and function of the fibrin clot have been demonstrated in the 
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present study and elsewhere [641-649] and this may represent another mechanism 

through which hyperfibrinogenaemia could contribute to CV disease. 

 

In support of an association between an adverse clot phenotype and an increased risk of 

CV disease are studies of patients with thrombophilic dysfibrinogenaemia who form fibrin 

networks characterised by thin fibres, reduced permeability and increased resistance to 

fibrinolysis [1132-1136]. The presence of the Thr312Ala polymorphism in the α-fibrinogen 

chain has been associated with venous thrombosis [1137] and post stroke mortality in 

patients with atrial fibrillation [1138]. The fibrin networks derived from purified fibrinogen 

are more rigid and comprised of thicker fibres in patients homozygous for the Ala312 allele 

although lag times, clot turbidity and permeability appear to be unaffected [1139] perhaps 

suggesting an attenuation in the association between fibrin clot phenotype and CV risk. An 

argument against a mechanistic link between fibrin clot structure and CV disease is the 

observation that patients with the Val34Leu polymorphism in the FXIII A-subunit form fibrin 

clots which are less permeable [1140], a characteristic associated with CV disease in a 

number of studies [644, 646, 648, 649, 715, 718], yet these patients have a lower risk of 

CV disease [1141-1144]. By way of an explanation for this apparent paradox Lim et al. 

[1145] suggested a moderating effect of fibrinogen concentrations such that reductions in 

clot permeability with increasing fibrinogen concentrations are more pronounced with the 

“higher” risk Val34 allele compared to the “lower” risk Leu34 allele. The corollary being that 

this FXIII polymorphism may only be protective against CV disease at higher fibrinogen 

concentrations. 

 

With regards to fibrin clot structure it is important to recognise that fibrin clots formed ex 

vivo, and particularly those formed from purified fibrinogen as analysed in a number of the 

studies cited, differ markedly from the fibrin clots formed in vivo. For example, Gersh et al. 

[1146] demonstrated that the incorporation of erythrocytes into fibrin clots, as occurs 

physiologically, resulted in thicker fibrin fibres and changes in the elastic and viscous 

modulus’ although no effect on clot permeability was observed. It is therefore not clear 

exactly how the clot characteristics measured in the laboratory relate to the in vivo fibrin 

clot phenotype. Clot formation in vivo requires an initiating event, such as a ruptured 

coronary artery atherosclerotic plaque in the case of a myocardial infarction, prior to the 

formation of a fibrin clot. Given that clot formation is a relatively late or downstream event 

in the evolution of CV disease, it is difficult to see mechanistically how it could influence 

risk. It is conceivable that denser more fibrinolysis-resistant clots in vivo may be 

associated with worse outcomes, particularly if occlusive thrombi are preceded by smaller 
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thrombotic events, the clinical consequences of which will likely be mitigated by more rapid 

fibrinolytic clearance. Susceptibility to fibrinolysis could therefore theoretically influence 

outcomes with more resistant clots resulting in increased tissue ischaemia or necrosis 

following a thrombotic event, such as a stroke or myocardial infarction. Rapidity of clot 

formation or clot density may have a bearing on whether a clot is occlusive or non-

occlusive, or on the thrombus size following atherosclerotic plaque rupture, to potentially 

explain a mechanistic link between the measured clot parameters, such as lag times and 

maximum absorbance, and clinical outcomes. In summary, it is unclear whether altered 

fibrin clot properties have a mechanistic role in CV disease or whether, as seems to be 

more likely, they represent a form of summation biomarker reflecting a number of different 

factors, for example inflammation, oxidative stress, PAI-1 levels, fibrinogen concentration, 

glycaemic control, drug therapy to name a few, and that the CV risk is mediated through 

these factors and simply reflected in the fibrin clot phenotype. 

 

With regard to the present study, there was no evidence that switching prevalent HD 

patients to a VE-bonded dialysis membrane for a period of 12-months had any effect on 

the fibrin clot structure. However, the question as to whether interventions which reduce 

oxidative stress or inflammation can impact on the fibrin clot structure remains 

unanswered. The two interventional studies which showed favourable changes in fibrin clot 

parameters commensurate with reductions in oxidative stress [1064] and inflammation 

[683], combined with the findings of the present study that reductions in markers of 

inflammation were associated with favourable changes in the fibrin clot phenotype, offers 

some hope that improving levels of inflammation and / or oxidative stress may be potential 

strategies for altering the clot phenotype. Whether these alterations would translate into 

improved CV outcomes remains to be answered. 

 

The present study represents the largest study of fibrin clot structure in HD patients 

allowing a detailed analysis of the determinants of the various clot parameters in this 

patient group. The large number of patients studied permitted the use of multivariate 

regression techniques to identify the independent determinants of the fibrin clot 

parameters given the obvious overlap between several of the variables used in the 

analyses. These data will add considerably to the small body of published literature 

concerning fibrin clot structure in HD patients [646]. As has been discussed already certain 

fibrin clot characteristics, such as increased clot density and fibrinolytic resistance, have 

been associated with prevalent CV disease [644, 648, 649, 681, 708, 711, 712, 714, 715, 

718, 1147] and, in the few studies which have evaluated it, incident disease [646] and 
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disease progression [715]. The next logical question is whether CV outcomes could be 

improved by interventions which, either directly or indirectly, manipulate fibrin clot 

properties. Developing such interventions can only come about after an appreciation of the 

key determinants of fibrin clot structure as presented here. 
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Chapter 9 : Clinical outcomes and mortality 
In this chapter the data on patient mortality, CV events, non-infective dialysis access 

events and infective episodes were analysed for the study participants. The relationships 

between the baseline variables and the various clinical outcomes were considered in 

addition to analysing the influence of dialysis with the VE-bonded membranes. This was 

undertaken using a combination of Kaplan-Meier analyses and Cox-regression as detailed 

in section 3.17.6. The proportions of study patients experiencing at least one clinical event 

and the total number of clinical events encountered are provided in Table 44. While 

acknowledging that the overall event rates for the most part were low, and that the present 

study was not powered to detect significant differences in the clinical endpoints 

considered, an overview of the baseline factors associated with each of these outcomes is 

provided here. 

 

Table 44 - Breakdown of clinical events encountered by study patients. 
   

 Number of patients (%) Number of events 

Mortality 15 (5.8%) 15 

Cardiovascular events 33 (12.7%) 41 

Hospital admission with infection 52 (20%) 70 

Non-infective access events 67 (25.8%) 114 

 

9.1 Baseline predictors of mortality 

During the 12-month study period 15 (5.8%) patients died. The main causes of death were 

acute coronary syndromes (n=6, 40%) and sepsis (n=6, 40%); 3 of the 6 patients who died 

of sepsis had a respiratory focus of infection. The causes of death in the remaining three 

patients were haemorrhagic stroke, hyperkalaemic cardiac arrest secondary to HD non-

attendance and overwhelming sepsis with an intercurrent acute coronary syndrome in a 

patient with advanced prostate cancer. There were no significant differences in the 12-

month mortality when patients were compared on the bases of sex (p=0.10), ethnicity 

(p=0.84), smoking status (p=0.24) or dialysis access (p=0.45). Mortality was significantly 

higher for patients with ESRF secondary to renovascular disease (see Figure 55). 
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Figure 55 - Patient mortality categorised by aetiology of renal failure. Patients with 
ESRF secondary to renovascular disease had significantly higher mortality. 
 

Kaplan-Meier analyses, after dividing the continuous variables age, weight, blood 

pressure, dialysis vintage and dialysis dose into tertiles at baseline did not reveal any 

evidence of non-linear associations with mortality. Univariate Cox-regression analyses 

were therefore performed with each of these variables and no significant associations 

were observed (see Table 45). Considering the patient comorbidities, there were no 

significant differences in the 12-month mortality when patients were compared on the 

bases of diabetic status (p=0.18) or the presence of IHD (p=0.71), PVD (p=0.27), 

malignancy (p=0.32) or left ventricular dysfunction (p=0.70) at baseline. 

 
Table 45 - Univariate Cox-regression hazard ratios for patient characteristics and 
mortality. 

 Hazard ratio [95% CI] p 
Age (per 5 years) 1.10 [0.92 - 1.31] 0.29 
Weight (per kg) 0.99 [0.86 - 1.13] 0.85 
Systolic blood pressure (per mmHg) 1.00 [0.98 - 1.02] 0.81 
Diastolic blood pressure (per mmHg) 0.99 [0.95 - 1.03] 0.55 
Time on dialysis (per year) 1.02 [0.93 - 1.11] 0.37 
Urea reduction ratio (per 1%) 1.02 [0.95 - 1.10] 0.51 

 

As detailed in section 3.17.6, Kaplan-Meier analyses were performed after categorising the 

continuous anaemia, oxidative stress, inflammation and fibrin clot structure and function 

variables into tertiles to examine for non-linear relationships. There were no evidence of 

non-linear relationships with the exception of the association between SC5b-9 levels and 

mortality. Comparing patients on the basis of tertiles of SC5b-9 at baseline revealed no 

patient deaths for patients in the middle tertile, 6 deaths in the lower tertile and 9 in the 

highest tertile (p=0.01); i.e. a U-shaped relationship between SC5b-9 levels and mortality 
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(see Figure 56). Given this non-linear relationship, it was not possible to calculate the Cox-

regression hazard ratio for the SC5b-9 levels; the hazard ratios for the remainder of the 

variables are shown in Table 46. In these analyses, the statistically significant findings 

were the positive associations between ERI and TBARS levels and the risk of mortality. 

Comparing the mortality between the two study groups revealed no effect of dialysis with 

the VE-bonded membranes (see Figure 57). 

 

 
Figure 56 - Patient survival by baseline tertiles of SC5b-9. There were no deaths for 
patients in the middle tertile of SC5b-9 levels. 
 

Table 46 - Univariate Cox-regression hazard ratios for the anaemia, oxidative stress, 
inflammation and fibrin clot parameters and mortality. 

  Hazard ratio [95% CI] p 
Anaemia   
 Haemoglobin (per g/dL) 1.05 [0.70-1.56] 0.82 
 ERI (per IU/wk/g/dL Hb) 1.07 [1.01-1.13] 0.02 
Oxidative stress   
 Ox-LDL (per ng/mL) 1.00 [1.00-1.00] 0.43 
 TBARS (per µM) 2.08 [1.24-3.48] <0.01 
Inflammation   
 CRP (per mg/L) 1.02 [1.00 - 1.04] 0.09 
 C3 (per 0.1 mg/mL) 0.96 [0.72 - 1.27] 0.08 
 Factor D (per µg/mL) 0.99 [0.79 - 1.25] 0.96 
 Properdin (per µg/mL) 0.97 [0.94 - 1.00] 0.10 
Fibrin clot structure and function   
 Fibrinogen (per g/L) 0.84 [0.36-1.93] 0.67 
 Lag time (per 10s) 0.97 [0.91-1.04] 0.40 
 Maximum absorbance (per 0.1 au) 0.75 [0.47-1.21] 0.24 
 Lys50t0 (per 100s) 0.98 [0.91-1.07] 0.70 
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Figure 57 - Comparison of 12-month mortality between study groups. No mortality 
benefit of dialysis with the VE-bonded membrane was observed. 

9.2 Baseline predictors of cardiovascular events 

During the 12-month study period 33 patients experienced a total of 41 CV events; a 

breakdown of the CV events by vascular territory is shown Figure 58. The majority of 

events pertained to cardiac or peripheral vascular events. Of the 15 deaths during the 

study, 8 (53%) were CV in aetiology: 7 were the result of acute coronary syndromes and 1 

was a haemorrhagic stroke. 

Cardiac (41%)

Cerebral (15%)

Peripheral (44%)

 
Figure 58 - Breakdown of cardiovascular events by vascular territory. 
 

There were no significant associations between the patient sex (p=0.65), ethnicity 

(p=0.66), smoking habits (p=0.08), dialysis access (p=0.14) or the aetiology of renal failure 

(p=0.06) and the subsequent CV events rate. Kaplan-Meier analyses were performed after 

dividing the continuous variables age, weight, blood pressure, dialysis vintage and dialysis 

dose into tertiles at baseline and there were no evidence of non-linear associations. 

Univariate Cox-regression analyses modelling CV events with each of these variables 

were undertaken and no significant associations were observed (see Table 47). 
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Table 47 - Univariate Cox-regression hazard ratios for patient characteristics and 
cardiovascular events. 
 Hazard ratio [95% CI] p 

Age (per 5 years) 1.11 [0.99 - 1.25] 0.08 

Weight (per kg) 1.01 [0.99 - 1.02] 0.42 

Systolic blood pressure (per mmHg) 1.00 [0.98 - 1.01] 0.55 

Diastolic blood pressure (per mmHg) 0.98 [0.95 - 1.01] 0.18 

Time on dialysis (years) 0.99 [0.93 - 1.06] 0.78 

Urea reduction ratio (per 1%) 0.98 [0.94 - 1.02] 0.31 

 

Considering the baseline co-morbidities, there were no associations between a history of 

diabetes (p=0.57), malignancy (p=0.23) or left ventricular dysfunction (p=0.96) and 

subsequent CV events. Patients with a history of IHD or PVD at baseline experienced a 

higher rate of CV events during the study (see Figure 59). 

 

 
Figure 59 - Cardiovascular event rates compared on the bases of a history of 
ischaemic heart disease or peripheral vascular disease at baseline 
 

Kaplan-Meier analyses found no evidence of non-linear associations between the 

anaemia, oxidative stress, inflammation or fibrin clot structure and function parameters and 

CV events with the exception of the SC5b-9 levels. Again, patients in the middle tertile of 

SC5b-9 levels at baseline fared best experiencing a significantly lower CV event rate (see 

Figure 60). The Cox-regression hazard ratios for the remainder of these variables are 

shown in Table 48. The statistically significant findings were that both higher CRP or C3 

levels at baseline were positively associated with subsequent CV events. The incidence of 

CV events did not differ between study groups (see Figure 61). 
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Figure 60 - Cardiovascular event free survival by baseline tertiles of SC5b-9. Patients 
with SC5b-9 levels in the middle tertile at baseline experienced significantly fewer 
cardiovascular events. 
 

 

Table 48 - Univariate Cox-regression hazard ratios for the anaemia, oxidative stress, 
inflammation and fibrin clot parameters and cardiovascular events. 

  Hazard ratio [95% CI] p 
Anaemia   
 Haemoglobin (per g/dL) 1.11 [0.85-1.46] 0.44 
 ERI (per IU/wk/g/dL Hb) 1.01 [0.95-1.08] 0.71 
Oxidative stress   
 Ox-LDL (per ng/mL) 1.00 [1.00-1.00] 0.054 
 TBARS (per µM) 1.11 [0.71-1.72] 0.65 
Inflammation   
 CRP (per mg/L) 1.02 [1.01-1.03] <0.01 
 C3 (per 0.1 mg/mL) 1.20 [1.01 - 1.42] 0.04 
 Factor D (per µg/mL) 1.04 [0.92-1.16] 0.55 
 Properdin (per µg/mL) 1.00 [0.99-1.01] 0.92 
Fibrin clot structure and function   
 Fibrinogen (per g/L) 0.99 [0.54-1.83] 0.99 
 Lag time (per 10s) 0.99 [0.96-1.03] 0.69 
 Maximum absorbance (per 0.1 au) 1.17 [0.90-1.52] 0.24 
 Lys50t0 (per 100s) 0.97 [0.90-1.05] 0.44 
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Figure 61 - Comparison of cardiovascular events between study groups. There was 
no difference in the CV event rates between study groups. 

9.3 Baseline predictors of infective events 

As detailed in section 3.7.6, infective events were defined as infections necessitating an 

admission to hospital. Fifty-two patients (20%) had at least one infective event during the 

study period and there were a total of 70 events. The commonest sites of primary infection 

were the respiratory tract, followed by bone and soft tissue and then dialysis access (see 

Figure 62). 

 

Dialysis access (11%)

Respiratory tract (39%)

Gastrointestinal tract (6%)

Bone and soft tissue (13%)

Unconfirmed (13%)

Urinary tract (3%)

 
Figure 62 - Primary sites of infections for study patients.  
 

The incidence of infective events did not differ when patients were compared on the bases 

of sex (p=0.17), ethnicity (p=0.92), smoking habits (p=0.30) or renal failure aetiology 

(p=0.18). Patients dialysing via CVCs experience significantly more infections (see Figure 

63). Kaplan-Meier analyses were performed comparing infective events between tertiles of 

age, weight, dialysis vintage and dialysis dose at baseline and there were no evidence of 

non-linear associations. The univariate Cox-regression hazard ratios were therefore 
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calculated for these variables (see Table 49) and both younger age and lower dialysis 

dose were associated with an increased infection rate. 

 

 
Figure 63 - Infective event rates compared by dialysis access at baseline. Patients 
dialysing via central venous catheters experienced a greater rate of infections. 
 

Table 49 - Univariate Cox-regression hazard ratios for patient characteristics and 
infective events. 
 Hazard ratio [95% CI] p 

Age (per 5 years) 0.92 [0.85 - 0.99] 0.04 

Weight (per kg) 0.99 [0.92 - 1.07] 0.86 

Time on dialysis (years) 1.00 [0.96 - 1.06] 0.85 

Urea reduction ratio (per 1%) 0.97 [0.94 - 0.99] 0.03 

 

Considering the comorbidities present at baseline, patients with malignancy were more 

likely to experience an infection during the study (p=0.04). There were no differences in 

the infection rates when patients were compared on the bases of diabetic status (p=0.07), 

or the presence of IHD (p=0.12) or PVD (p=0.87). Kaplan-Meier analyses were performed 

after categorising the continuous anaemia, oxidative stress, inflammation and fibrin clot 

structure and function variables into tertiles. There were no evidence of non-linear 

relationships with the exception of the association between CRP levels and infection rates, 

with patients in the middle tertile at baseline experiencing a higher infection rate (p=0.01). 

The Cox-regression hazard ratios for the remaining variables are shown in Table 50. The 

only statistically significant finding was the positive association between TBARS levels and 

the risk of infection. A comparison of the infection rates between the two study groups 

revealed no significant difference (see Figure 64) suggesting no effect of dialysis with the 

VE-bonded membranes. 
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Table 50 - Univariate Cox-regression hazard ratios for the anaemia, oxidative stress, 
inflammation and fibrin clot parameters and infective events. 

  Hazard ratio [95% CI] p 
Anaemia   
 Haemoglobin (per g/dL) 1.11 [0.89-1.38] 0.36 
 ERI (per IU/wk/g/dL Hb) 1.02 [0.97-1.07] 0.45 
Oxidative stress   
 Ox-LDL (per ng/mL) 1.00 [1.00-1.00] 0.97 
 TBARS (per µM) 1.49 [1.05-2.11] 0.03 
Inflammation   
 C3 (per 0.1 mg/mL) 0.94 [0.80-1.10] 0.44 
 Factor D (per µg/mL) 0.97 [0.85-1.12] 0.71 
 Properdin (per µg/mL) 1.00 [0.99-1.01] 0.70 
Fibrin clot structure and function   
 Fibrinogen (per g/L) 0.84 [0.54-1.32] 0.45 
 Lag time (per 10s) 1.02 [0.99-1.05] 0.26 
 Maximum absorbance (per 0.1 au) 1.06 [0.84-1.35] 0.62 
 Lys50t0 (per 100s) 0.97 [0.91-1.04] 0.38 

 

 
Figure 64 - Comparison of infective events between study groups. There was no 
difference in the incidence of CV events between study groups. 

9.4 Baseline predictors of non-infective dialysis access 
events 

During the 12-month study period 67 (26%) patients experienced a total of 114 dialysis 

access events. These, as detailed in section 3.7.6, were defined as any hospital admission 

or access procedure for non-infective dialysis access problems. Frequently encountered 

events included thrombosed AVFs, poor CVC blood flow necessitating a urokinase 

infusion or a line change, or poor AVF blood flow requiring a fistuloplasty. A breakdown of 

the non-infective dialysis access events encountered is provided in Figure 65.  
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Figure 65 - Breakdown of non-infective dialysis access events. AVF: Arteriovenous 
fistula, CVC: Central venous catheter. 
 

A focused evaluation of the associations between dialysis access events and some of the 

patient characteristics previously thought or known to be related to access problems was 

undertaken. Dialysis via a CVC [7] and the presence of diabetes [1148] have previously 

been shown by others to be associated with increased dialysis access complications, and 

both aspirin and warfarin have been prescribed to patients for the purposes of maintaining 

access patency (reviewed in [1149]); therefore the associations between these factors and 

non-infective dialysis access events in the present study were considered initially. Patients 

dialysing via CVCs experienced significantly more access related events compared to 

patients dialysing via AVFs (see Figure 66); there were no associations between the 

presence of diabetes (p=0.42), or therapy with aspirin (p=0.69) or warfarin (p=0.28) and 

the non-infective dialysis access events rates. 
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Figure 66 - Non-infective dialysis events compared by dialysis access at baseline. 
Patients dialysing with dialysis catheters experienced a higher rate of non-infective dialysis 
access events. 
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Comparison of the non-infective dialysis access events between study groups revealed a 

non-significant tendency towards more events in the control group (see Figure 67). This 

non-significant tendency was likely accounted for by the increased usage of CVCs in the 

control arm at the time of the study visits (16% vs 8%, p<0.01) and the greater rate of non-

infective dialysis access complications for patients dialysing via CVCs (see Figure 66). To 

test this supposition, Cox-regression was performed by constructing a model which 

contained variables coding for dialysis access and study group. In this model, the 

regression coefficient for study group was not significant (p=0.16) and it indicated a higher 

incidence rate of non-infective dialysis access problems for patients dialysing with CVCs, 

as compared to AVFs (HR 2.77 [1.58 - 4.84]), independent of study group allocation. 

 
Figure 67 - Comparison of non-infective dialysis access events between study 
groups. There was no statistically significant difference in the non-infective dialysis access 
events between the study groups. 
 

Given that a large number of the non-infective access events were related to thrombotic 

phenomena the relationships between fibrinogen levels, the fibrin clot characteristics and 

the incidence of access events were explored. The fibrin clot data obtained from patients 

dialysing via CVCs had been removed from the dataset owing to concerns regarding 

heparin contamination of the samples giving rise to spurious results (see section 8.1) 

therefore associations between fibrin clot parameters and CVC-related events could not be 

assessed. Of the 114 non-infective dialysis access events, 30 (26%) were for thrombosed 

AVFs (see Figure 65) and it was decided to analyse this subset of non-infective dialysis 

access events in more detail. Kaplan-Meier analyses found no evidence of non-linear 

associations therefore univariate Cox regression analyses were undertaken. This revealed 

shorter lag times to be associated with an increased rate of AVF thromboses, but no 

associations with fibrinogen levels, maximum absorbance or fibrinolysis times (see Table 

51). The incidence of AVF thromboses did not differ when this subset of patients were 

compared on the bases of aspirin (p=0.93) or warfarin (p=0.59) therapy at baseline. 
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Table 51 - Univariate Cox-regression hazard ratios for the baseline fibrin clot 
parameters and the subsequent risk of arteriovenous fistula thrombosis. 

  Hazard ratio [95% CI] p 
 Fibrinogen (per g/L) 1.19 [0.60-2.37] 0.61 
 Lag time (per 10s) 0.95 [0.91-0.99] 0.04 
 Maximum absorbance (per 0.1 au) 1.06 [0.80-1.42] 0.68 
 Lys50t0 (per 100s) 0.96 [0.88-1.05] 0.41 

 

9.5 Discussion 

A number of clinical endpoints were evaluated in this chapter: mortality, CV events, 

infections and non-infective dialysis access events. The associations between these 

outcomes and the baseline variables in the dataset were analysed before evaluating if the 

data collected on the study patients pertaining to anaemia, oxidative stress, inflammation 

and fibrin clot structure and function, added any additional prognostic information. Finally, 

the influence of dialysis with the VE-bonded membranes on each of the endpoints was 

determined. 

9.5.1 Mortality and cardiovascular events 

The 1 year mortality rate in the present study was 5.8% which is significantly lower than 

the UK national average annual mortality rate of approximately 11% in prevalent HD 

patients [4]. This apparent discrepancy is likely to have arisen, at least in part, because 

patients with significant inflammation were excluded from the study and HD patients with 

increased levels of inflammation are known to be at higher risk of adverse outcomes, 

particularly CV events and mortality [163, 429, 434-438, 1150]. In terms of the predictors 

of CV events and deaths, of which 53% in the present study were CV in aetiology, none of 

the so-called traditional CV risk factors, i.e. diabetes, blood pressure or smoking, were 

significantly associated with the outcomes. This is consistent with other studies which have 

shown that consideration of the traditional CV risk factors alone cannot account for the 

high observed rates of CV disease in renal populations [15, 41]. Part of the explanation for 

this, as outlined in section 1.2.1, is thought to be the increased prevalence of so-called 

non-traditional CV risk factors in renal patients, such as oxidative stress and complement 

activation with reference to the present thesis. 

 

Increased TBARS, but not Ox-LDL, levels were associated with greater mortality although 

neither were significantly associated with CV events. On the face of it, this might suggest 
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that oxidative stress increases mortality which is unrelated to CV disease, perhaps by 

enhancing susceptibility to infection which is a leading causing of death in UK HD patients 

[4] and in the present study. In support of this theory there was a positive association 

between TBARS levels and infective events. The reason for this association may be 

impaired immune function in the presence of oxidative stress. This has been demonstrated 

in mice [1151] and increases in oxidative stress have been shown to precede infections in 

patients infected with the human immunodeficiency virus [1152], yet convincing data in 

humans to support an association between heightened oxidative stress and susceptibility 

to infection are lacking. 

 

In terms of the complement components measured, patients in the higher and lower 

tertiles of SC5b-9 levels at baseline appeared to fare worse than patients with levels in the 

middle tertile with respect to mortality and CV events. As highlighted in Chapter 7, it is 

hard to know what the levels of SC5b-9 mean in terms of complement activity. High levels 

almost certainly reflect enhanced complement activity but whether low levels reflect 

reduced complement activity, and hence reduced SC5b-9 synthesis, or enhanced 

complement activity with consumption of the terminal complement components remains 

unclear. It is therefore possible that the apparent U-shaped association between SC5b-9 

levels and both mortality and CV events in the present study reflects an association 

between complement activation and outcomes. From the small body of literature 

concerning complement activation and CV disease, there are evidence of enhanced 

complement activation following AMI [543-545] or ischaemic stroke [546] and, in patients 

with type 2 diabetes mellitus presenting with AMI, increased levels of SC5b-9 appear to be 

predictive of future CV events [541]. However, all of these data pertain to the acute 

situation rather than examining the predictive utility of SC5b-9 levels measured outside of 

these settings as in the present study. Indirect evidence for a potential role of complement 

activation in the pathogenesis of adverse outcomes for HD patients may come from 

studies reporting the impact of dialysis membrane composition on patient outcomes, such 

as CV events, infections and mortality, in which patients dialysing with less biocompatible 

membranes, which are more avid activators of the complement system, tend to fare worse 

[831, 832, 834, 835]. However other differences exist between the membranes other than 

simply the ability to activate complement, such as the potential to activate neutrophils, 

induce oxidative stress and the membrane permeability and solute clearance 

characteristics; although the ability to activate complement may form part of the 

explanation for the increased adverse event rates with less biocompatible membranes. 

Much of the data regarding outcomes with less biocompatible membranes are historical, 
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as many HD units now use more biocompatible membranes, and many other aspects of 

patient care besides simply dialyser technology have advanced in recent times making it 

hard to attribute improved survival in HD patients over time [4] to changes in dialyser 

composition. 

 

There was a significant association between higher C3 levels at baseline and the 

subsequent risk of CV events. As highlighted in section 1.5.3, a number of observational 

series in non-renal patients have reported positive associations between C3 levels and 

both prevalent [532-536] and incident [537-540] CV disease, yet there are little or no 

published data exploring this association in chronic HD patients. A potential oversight 

given that dialysis is a powerful stimulus for complement activation [230-233] and CV 

disease is a leading cause of death for HD patients [4]. Much of the data attempting to 

elucidate the mechanism, or mechanisms, through which increased C3 levels might 

contribute to CV disease have focused on atherosclerosis. As discussed in section 1.2, 

atherosclerosis is not the sole process involved in the pathogenesis of CV disease in 

chronic HD patients, with vascular calcification playing an important role. The role of the 

complement system in vascular calcification has received far less attention. The 

complement component C3 is an acute phase reactant [428], and the positive association 

between another acute phase reactant, CRP levels, and adverse outcomes in HD patients 

has been well documented by others [163, 434, 435, 437, 1150] and indeed was evident in 

the present study; therefore the finding with respect to C3 levels is perhaps not surprising. 

It is interesting, however, that the associations between C3 and CRP levels and the 

subsequent risk of CV events persisted in the present study which only enrolled patients 

without significant inflammation. It is hard to separate the contributions of inflammation per 

se, and the aspects of inflammation which relate to complement activation - particularly 

given that markers of generalised inflammation, such as CRP levels measured in the 

present study, and a number of the complement components are increased as part of the 

acute phase response [428]. There is still debate as to whether the association between 

inflammation and CV disease arises as a consequence of inflammation driving processes 

which contribute to the development of CV disease, or whether the presence of CV 

disease is itself pro-inflammatory (see section 1.5.3). Unsurprisingly, a history of IHD or 

PVD at baseline was significantly associated with future risk of CV events. Patients with 

ESRF secondary to renovascular disease had a greater mortality, as has been reported by 

others [1153], which is likely a reflection of the high burden of vascular disease in these 

patients. 
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In terms of the anaemia parameters considered, there were no associations between the 

haemoglobin levels and either mortality or CV events. This finding is in accord with the 

literature that haemoglobin levels per se do not contribute to worse outcomes in HD 

patients [50, 291]. Greater ESA requirements have been shown to be an important 

predictor of worse outcomes for patients on HD [51, 52] and, indeed, increased ERI was 

predictive of mortality in the present study. This finding is particularly interesting given that 

patients with significant inflammation, and who were therefore likely to be most ESA 

resistant, were excluded from the study. The data from the present study would therefore 

tend to suggest that the association between ESA resistance and adverse patient 

outcomes persists in HD patients without overt inflammation. A univariate Cox-regression 

analysis modelling the mortality found a significant effect of higher baseline ESA doses 

(HR 1.02 [1.01 - 1.04] per µg/wk). It is therefore possible that the positive association 

between ERI and mortality reported here reflects harm associated with high ESA doses. 

As outlined in section 1.3.4, a number of mechanisms have been put forward to explain 

the potential for harm with ESAs including the large number of non-erythroid cells which 

express EPO [293] and the ability of ESAs to stimulate vascular smooth cell proliferation 

[295-297], cause vasoconstriction [300, 301] and increase the levels of pro-inflammatory 

cytokines [303, 304]. However, many of these factors are associated with the 

pathogenesis of CV disease yet no associations between CV events and the ERI or ESA 

dose were observed in the present study. Approaching 50% of the deaths were infective in 

aetiology and there is emerging evidence that EPO may interfere with immunity [1154], for 

example by impairing macrophage function [1155], yet there was no association between 

ESA requirements and infections suggesting that this mechanism was unlikely to explain 

the association between ERI and mortality in the present study. 

 

With regard to the fibrin clot data, neither the fibrinogen levels nor the fibrin clot 

parameters with significantly associated with either the mortality or CV events. In contrast 

to this, several previous studies in HD patients have demonstrated a positive association 

between fibrinogen levels and mortality [45, 435, 646], akin to data from the general 

population [690, 696-700]. Whether this association was driven by patients with high levels 

of inflammation, and consequently fibrinogen levels, who were excluded from the present 

study to explain the discrepant results is not clear. Only two published studies to date have 

examined the prognostic utility of fibrin clot parameters in high risk groups: patients with 

PVD [715] and patients on HD [646]. In both of these studies [646, 715], published by the 

same group, the formation of less permeable, denser clots with shorter lag times and 

increased fibrinolytic resistance were associated with an increased risk of subsequent 
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adverse CV outcomes. Such findings were not evident in the present study. Of particular 

relevance to the present thesis was the study by Undas et al. [646] which followed 33 HD 

patients for 36 months during which time 10 patients experienced a fatal CV event. At 

baseline, the fibrin clots derived from these patients were less permeable and more 

resistant to fibrinolysis. There are a number of potential reasons why the apparent 

prognostic utility of the fibrin clot parameters reported by Undas et al. [646] was not found 

in the present study. Broadly similar exclusion criteria were used with respect to excluding 

patients with acute illness (as defined by high CRP in the present study) but the number of 

patients, study duration, methodology employed for fibrin clot analysis, statistical 

techniques used, event rates and the endpoint definitions differed between the studies 

preventing a direct comparison. Of the 15 deaths in the present study, 8 had a CV 

aetiology. Comparing the baseline fibrin clot parameters in these patients, i.e. adopting a 

similar endpoint definition to Undas et al. [646], with those who did not suffer a CV death 

over the following 12 months still found no significant differences (p>0.45 in all cases), 

suggesting the discrepancies could not be explained by different endpoint definitions. The 

mortality rate was higher in the Undas et al. [646] study, with 33% of patients dying within 

3 years compared to the 5.8% 1 year mortality in the present study, and 10 out of the 11 

deaths were CV in aetiology contrasting with only 53% in the present study. This suggests 

that there may be fundamental differences between the studies in terms of the patient 

cohorts or the treatments they received. The differences in clot characteristics between the 

survivors and the patients who subsequently died in the Undas et al. [646] study could 

potentially be explained by the significantly higher fibrinogen levels at baseline in the 

patients who went on to have a fatal CV event; no such finding was evident in the present 

study.  

 

There was no difference in mortality or CV events between the two study groups 

suggesting no effect of dialysis with the VE-bonded dialysis membranes. No study to date 

has studied the effects of switching patients to HD with a VE-bonded membrane on these 

endpoints. The putative mechanisms through which VE-bonded membranes may reduce 

CV events in HD patients, i.e. reducing oxidative stress and inflammation, were not 

demonstrated in the present study therefore an absence of effect on these clinical 

endpoints may have been anticipated. It is important to recognise, however, that the 

present study was not adequately powered to detect a difference in mortality or CV events 

therefore the absence of benefit observed with the VE-bonded membrane here should be 

regarded as speculative. 
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9.5.2 Infective events 

Patients on HD experience considerably higher rates of infection compared to aged match 

controls in the general population [1156] and infective episodes are linked to subsequent 

CV events [457, 458]. A number of contributory factors have been put forward to explain 

this including acquired immune dysfunction associated with uraemia [1157, 1158], multiple 

hospital attendances and the frequent use of intravascular devices [1159, 1160]. One-fifth 

of the study cohort experienced an infective event, defined here as an infection 

necessitating an admission to hospital, with the commonest site being the respiratory tract. 

Respiratory infections have been shown to be common among HD patients [1161] and 

associated with significant mortality [1162]. Dialysis access related infections were the 

third commonest site of infection, despite less than 15% of the study population dialysing 

via a CVC, and of these infections approaching 90% were related to CVCs. Several large 

series have similarly demonstrated higher infection rates for patients dialysing via CVCs, 

compared to grafts and AVFs [6, 457]. In the present study, a lower dialysis dose was 

associated with a greater infection rate. However, dialysis dose was lower in patients 

dialysing via CVCs compared to AVFs (urea reduction ratio 0.73 [±0.00] vs 0.76 [±0.01]; 

p=0.03), likely as a consequence of lower achievable blood pump speeds, although there 

were no data available to corroborate this. It is therefore likely that in these unadjusted 

analyses a reduced dialysis dose was a proxy for dialysis via a CVC.  

 

Patients with diabetes in the present study did not appear to experience more infective 

events. The renal literature is mixed in this regard with two large series, based on the 

United States Renal Data Systems (USRDS) data, reporting differing conclusions on the 

influence of diabetes on the occurrence of infections [457, 458]. Interestingly none of the 

complement components measured were significantly associated with infective events. 

The complement component C3 forms an integral part of the innate immune system and 

C3 deficiency is associated with severe recurrent infections [1063]. However, no 

associations were observed between the baseline C3 levels and the risk of infections in 

the present study suggesting that the C3 levels were not an important contributor to 

infection risk in this study cohort. The incidence of infective events did not differ between 

the study groups suggesting no effect of the VE-membranes. 

9.5.3 Non-infective dialysis access events 

Unsurprisingly, dialysis access events were more common among patients dialysing via 

CVCs. This finding is consistent with the literature reporting higher rates of complication for 
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patients dialysing with CVCs compared to AVFs [1163, 1164]. At the time of the study it 

was LTHT policy to admit patients if they required a urokinase infusion for poor CVC blood 

flow rates during HD and this was a significant contributor (14%) to the access events 

recorded. (This practice contrasted with many other HD units and the unit policy has since 

been modified such that patients can receive intra-dialytic urokinase infusions without the 

need for hospital admission). Given that a significant number of non-infective dialysis 

access complications were related to thrombosis or presumed fibrin deposition within 

CVCs, the associations between the all-cause dialysis access events and concomitant 

aspirin or warfarin therapy, the fibrinogen levels and the fibrin clot characteristics 

measured were explored. No significant associations were found. Observational data such 

as these does not take account of the indications for aspirin or warfarin therapy and it is 

possible that a number of patients were taking these medications for vascular access 

patency. In other words, patients previously at high risk of thrombotic vascular access 

complications may have been receiving aspirin or warfarin for this indication to explain the 

apparent lack of observed benefit in the present study. 

 

Unfortunately, no fibrin clot data were available for samples obtained via CVCs owing to 

concerns regarding heparin contamination (see section 8.1 and Figure 50), therefore it 

was not possible to examine the associations between the fibrin clot parameters and non-

infective dialysis access events which pertained to CVCs, a significant contributor to the 

events. It was therefore decided to examine the subset of non-infective dialysis access 

events which related to AVF thrombosis and, in particular, how these were associated with 

the fibrin clot parameters. There were no significant associations between AVF 

thromboses and the fibrinogen levels, clot maximum absorbance or Lys50t0 times but the 

lag times were significantly shorter in patients who went on to have an AVF thrombosis. 

There are no data examining the link between the fibrin clot parameters measured in the 

present study and the potential for thrombosis. Data from patients with idiopathic venous 

thromboembolism suggest no difference in the lag times between patients and controls 

[717], suggesting lag times may not be related to thrombotic potential. Conversely, studies 

examining fibrin clot formation in the setting of CV disease have reported shorter lag times 

in patient groups either with or at high risk of developing CV disease such as patients on 

HD [646], patients with heart failure [718], peripheral arterial disease [715] or acute 

coronary syndromes [648] and in the healthy first degree relatives of patients with 

premature coronary artery disease [709] suggesting shorter lag times may be associated 

with an increased thrombotic risk. It is conceivable that shorter lag times, which represents 

the time taken for sufficient protofibrils to form to enable lateral aggregation, may 
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predispose patients to thromboses particularly in the setting of AVF thrombosis where the 

rapid, turbulent blood is likely to disrupt many clots, and particularly those which are slower 

to form. Shorter lag times tend to be associated with the formation of denser clots (see 

Table 30 and Table 31) owing to the associations between clot assembly kinetics and clot 

structure [639]. It is important to realise, however, that the main drivers for AVF thrombosis 

are endothelial disruption at the site of needling or attenuated blood flow in the region of a 

vascular stenosis rather than pro-coagulant blood. 

 

There was a non-significant tendency towards fewer non-infective dialysis access events 

among patients dialysing with the VE-bonded membrane. There were, however, more 

patients dialysing with CVCs in the control arm which was a significant contributor to the 

access events. To explore this further, Cox-regression modelling the non-infective dialysis 

access events incorporating the dialysis access and study group as covariates was 

undertaken. This confirmed no significant effect of the VE-bonded membrane on dialysis 

access events and the strong positive association with CVC dialysis access. 

 

Despite the present study not being powered to detect differences in the endpoints 

considered in this chapter, there were a number of potentially interesting findings. Worse 

outcomes have previously been reported for patients with higher CRP levels or greater 

ESA-resistance and, in the present study, these associations persisted despite the 

exclusion of patients with significant inflammation. This suggests that it may not be a 

subset of patients with high levels of inflammation driving this association in the published 

studies, rather that increasing inflammation or ERI represents a continuum of risk. The 

finding that higher C3 levels were predictive of future CV events, as has been similarly 

reported in non-HD patients, is a novel finding of the present study. There was also an 

association between the SC5b-9 levels, both high and low, and the occurrence of mortality 

and CV events. Taking these findings together, particularly in light of the facts that HD is a 

potent stimulus for complement activation and HD patients have high rates of CV disease, 

would suggest that complement may play a role in the adverse outcomes for HD patients. 

The findings with respect to a decline in C3 levels across study visits (see Figure 42) and 

the negative correlation with length of time on dialysis (see Table 18, Chapter 7) are 

particularly interesting in this context. More work to understand the role of complement in 

the pathogenesis of CV disease in HD patients is warranted. 

 

No effects of the VE-bonded membrane were observed on any of the clinical endpoints 

considered. This may, of course, represent a type II statistical error owing to the fact the 
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study was not powered to detect a difference after 12 months. The SPACE trial [825] was 

a secondary prevention trial examining the effects of oral VE on CV event reduction in HD 

patients and, according to the authors, with approximately 100 patients in each arm it had 

an 80% power to detect a relative risk of 0.6 in a composite CV endpoint over two years at 

a significance level of 5% and assuming a 30% event rate. To detect a relative risk of 0.6 

in the present study, given the one year CV event rate of 14/137 in the control arm, would 

have required approximately 1600 patients (i.e. 800 in each arm) at a similar power and 

significance level. To detect a 10% difference in the fibrin clot maximum absorbance 

between survivors and patients who died, as reported by Undas et al. [646], at the same α- 

and β-level and based on the mean and standard deviation at baseline, would require 65 

events in contrast to the 15 deaths or 8 CV deaths observed. These calculations serve to 

underscore that the present study was not powered to make inferences based on clinical 

endpoints such as mortality or CV events. However the putative mechanisms through 

which the VE-bonded membrane might be expected to improve these outcomes, i.e. 

reduce oxidative stress and / or inflammation, were not observed here as documented in 

the foregoing chapters. It therefore seems unlikely, even in an adequately powered study, 

that the wholesale switching of non-inflamed prevalent HD patients to dialysis with a VE-

bonded membrane would result in better patient outcomes. 
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Chapter 10 : Conclusions and future perspectives 
The study forming the basis for this thesis is the largest study of VE-bonded polysulfone 

membranes undertaken to date. Novel aspects of this work included the measurement of a 

number of the alternative complement pathway components and the ex vivo fibrin clot 

properties. The key findings of the study, with respect to the VE-bonded dialysis 

membranes, were that switching prevalent HD patients without significant inflammation to 

dialysis with these membranes had no beneficial effects on renal anaemia, oxidative 

stress, inflammation, ex vivo fibrin clot properties or patient outcomes when compared to 

identical uncoated membranes over 12 months. This may reflect a true absence of benefit 

from the VE-coating or, conversely, reflect the excellent biocompatible profile of the latest 

generation polysulfone membranes.  

 

In terms of the anaemia data, post hoc analyses identified a reduction in the ERI for 

patients with greater levels of ESA-resistance at baseline dialysing with the VE-bonded, 

but not the control, membranes. The starting ERI for this subgroup of patients was 

comparable to the other studies reporting an ESA-sparing effect of VE-bonded polysulfone 

membranes [889, 893]. It is therefore possible that the VE-bonded membranes have ESA-

sparing utility in patients who are ESA-resistant; further studies specifically designed and 

powered to answer this question are required. Approaches to this might include enrolling 

patient with evidence of ESA-resistance, for example with ERIs of ≥8 IU/wk/kg/g/dL Hb 

based on data from the present study and those detailed in Table 13, or stratifying patients 

a priori on the basis of their ERI. In the subset of patients with higher ERIs, who appeared 

to benefit from HD with the VE-bonded membrane, the reduction in ERI was not mirrored 

by changes in oxidative stress or inflammation. This may be because the improvements in 

ESA-resistance were not the result of reductions in oxidative stress or inflammation, or 

reflect the choice of oxidative stress and inflammation biomarkers measured. 

 

Previous work with VE-bonded modified cellulose membranes has demonstrated 

improvements in RBC lifespan [878] by measuring the RBC creatine content [1165]. It 

would therefore be interesting to determine if coating polysulfone membranes with VE has 

any effect on RBC lifespan, particularly in ESA-resistant patients who appeared to benefit 

in the present study. Such studies should incorporate measures of inflammation and 

perhaps different or more extensive markers of oxidative stress than were measured here. 

If these studies demonstrated evidence of prolongation of the RBC lifespan with the VE-
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bonded membranes, and no effects on oxidative stress or inflammation as were found in 

the present study, this again may reflect the choice of oxidative stress or inflammation 

biomarkers measured or point to the fact that other mechanisms, distinct from lowering of 

oxidative stress or inflammation, are responsible for the improvements in ESA-resistance 

or RBC lifespan. One such mechanism may relate to the haemostatic effects of VE 

outlined in section 1.7.1.3. Oral VE supplementation has been shown to reduce platelet 

activation, as measured by circulating P-selectin levels [754, 764], thereby reducing their 

thrombotic potential. Studies examining the haemostatic effects of VE-bonded dialysers, 

which have only incorporated very small numbers of patients, have reported beneficial 

effects in terms of reduced dialyser clotting in patients with a propensity to clot [877], 

reduced anticoagulation requirements in children [890] and less dialyser clotting when 

anticoagulation is avoided [1166]. It is therefore possible that the VE-bonded membranes 

reduce dialyser clotting, and hence the RBC mass sequestered in the dialysers and tubing 

at the end of dialysis, to explain improvements in ESA-resistance or increased RBC 

lifespan. This theory could be tested prospectively by incorporating measurements of 

dialyser clotting and intra-dialytic thrombotic events, such as clotted dialysis circuits, in 

future studies. Another potential extension in future studies would be to include data on 

residual renal function, which has been shown to be a determinant of ESA-requirements 

and patient outcomes [1167], but was not measured here. 

 

The other key findings in the present study relate to the complement components 

measured. There was a progressive decline in C3 levels across study visits and the C3 

levels at baseline were negatively correlated with the number of years on dialysis. The 

mechanisms underpinning these findings and the implications for patients are unclear and 

warrant further study; particularly in light of the associations between C3 and CV events. 

For example, do these findings reflect reduced C3 synthesis, increased C3 consumption or 

increased C3 clearance? Data from the present study would suggest that the C3 levels fell 

in the majority of patients (see Figure 43) rather than the findings reflecting large 

reductions in a minority of patients. It therefore seems likely that the fall in C3 levels is a 

feature of chronic HD rather than being restricted to a specific subset of patients. 

Polysulfone HD membranes have been shown to adsorb C3 [1045, 1046], although the 

impact of this clearance on the circulating pre-dialysis C3 levels measured in the present 

study is unclear. In terms of relating the decline in C3 levels to the degree of complement 

activation, making inferences as to the degree of complement activation from the levels of 

the complement components measured in the present study were not straightforward as 

highlighted in section 7.4.2. For example, low circulating levels of a particular complement 
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component may arise as a consequence of reduced synthesis in the setting of low 

complement activity or increased catabolism in the setting of high complement activity. 

Future work might be directed at measuring pre- and post- HD levels of the complement 

components, in addition to measuring other specific markers of complement activation 

such as C3a and C5a. This would provide insights into the overall degree of complement 

activation, how much of it is attributable to the HD process itself and permit a more 

meaningful interpretation of the levels of the other complement components. 

Contemporaneous measurement of the complement components in the afferent and 

efferent limbs of the HD circuit and in the dialysate would provide information about the 

contribution of dialyser clearance and adsorption to the circulating complement levels. The 

fall in C3 levels may also reflect a degree of protein-energy malnutrition which is common 

in HD patients and is linked to time on dialysis [1053]. To investigate this further, 

longitudinal studies measuring complement levels in conjunction with markers of nutritional 

status, such as anthropometry or bioimpedance body composition data, could be 

conducted. 

 

As detailed in section 1.5.3, there is emerging evidence of a role for complement in the 

pathogenesis of CV disease. Given that CV disease is a leading cause of death for 

patients on HD [4], and HD is a powerful stimulus for complement activation [230-233], it is 

a potential oversight that in the modern treatment era this has received little attention in 

the renal literature. In the present study there was a positive association between C3 

levels and future CV events. This is the first time that this association, which has 

previously been described in non-renal patients [538-540], has been similarly reported in 

HD patients. The findings with regards to C3, combined with the independent associations 

between the SC5b-9 levels and the subsequent risk of death or CV events, suggest that 

the complement system may have a role to play in adverse outcomes for HD patients. It 

remains unclear whether these associations reflect a functional role for complement, as 

has been postulated in the development of atherosclerotic lesions for example [511, 547-

552], or represent an epiphenomenon such that the complement components measured 

may merely be reflective of more generalised inflammation which influences CV risk 

through a myriad of mechanisms not specifically related to complement (see section 

1.5.3). The relationships between the complement components and CV disease observed 

here require validating in other prevalent HD populations. Designing studies to try to 

unpick whether complement has a functional role in the development of CV disease, or 

whether it is a marker for other processes which influence CV risk, is not straightforward. 

Such a distinction is an important one to make as if complement had a functional role in 
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the development of CV disease, manipulation of the complement system may be a 

potential therapeutic avenue for ameliorating the high CV risk in HD patients. Given that 

complement is an integral part of the innate immune system and a number of the 

complement components have pleiotropic actions, there is considerable potential for harm 

with such approaches. Larger scale observational studies in HD patients, incorporating the 

measurement of a number of different complement components (e.g. C3, C4, C3a, C5a, 

MASPs, factor H, properdin and SC5b-9), inflammatory markers (e.g. CRP, IL-6, ICAM-1, 

VCAM-1) and haemostatic factors (e.g. fibrinogen, P-selectin, PAI-1, fibrin clot structure) 

may provide a clearer picture of how the various complement activation pathways interact 

with other aspects of the inflammatory response and conspire to cause the 

pathophysiological changes associated with the development of CV disease, such as 

endothelial dysfunction, vascular calcification, atherosclerosis and altered haemostasis. 
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Table 52 - Studies of vitamin E supplementation in dialysis patients - effects on 
oxidative stress, inflammation, anaemia, lipids and cardiovascular outcomes. 

Study Duration 
(days) Dose 

No. HD 
patients 

receiving 
VE 

Reported effects of 
Vitamin E 

Aguilera et al, 1993 [1168] 90 400 mg 24 Hb→, ESA →, Hct → 
Antoniadi et al, 2004 [808] 365 500 mg αT 27 ↓TAC, ↓SOD  
Antoniadi et al, 2008 [810] 365 500 mg αT 27 ↓TAC, ↓SOD 
Ardalan et al, 20071 [1169] 1 400 IU 19 →MDA 

Badiou et al, 2003 [815] 180 500 mg 14 
↓TBARS and ↓LDL 
susceptibility to 
oxidation 

Baldi et al., 2012 [803] 84 800 IU 10 ↓LDL susceptibility to 
oxidation 

Boaz et al, 2000 [825] 519 800 IU 97 ↓composite CV events 
endpoint, →mortality 

Cristol et al, 1997 [821] 180 500 mg 7 ↓ESA requirements 
Diepeveen et al, 20052  [1170] 84 800 IU 10 ↑ox-LDL 

Galli et al, 20013 [864] 21 800 mg 7 
→TBARS, 
↑polyunsaturated:satu
rated fatty acids ratio 

Gallucci et al, 1986 [806] 15 300 mg IM 10 ↓MDA 
Giardini et al, 1984 [812] 15 300 mg IM 19 ↓MDA, ↑Hct 

Giray et al, 2003 [807] 98 600 mg 36 ↓TBARS, ↑SOD, 
↑GPx  

Himmelfarb et al, 2003 [389] 14 300 mg 9 αT / 5 γT 
enriched 

γT: ↓CRP, →IL-6 
αT: →CRP, ↑IL-6 

Himmelfarb et al, 20074  [1171] 56 308 mg γT 31 →PGF2α, →carbonyl 
levels, ↓IL-6, →CRP 

Hodkova et al, 20055 [1172] 7 200 mg 7 
No effect on 
neutrophil respiratory 
burst activity 

Hodkova et al, 2006 [824] 35 400 mg αT 15 →CRP, →ICAM-1, 
→E-selectin 

Inal et al, 1999 [1173] 120 300 mg 36 ↑SOD, ↓ESA 

Islam et al, 2000 [814] 84 800 IU 33 ↓LDL susceptibility to 
oxidation 

Kamgar et al, 20096 [822] 56 800 IU 20 →PGF2α, →CRP, 
→IL-6 

Lilli-Ferez et al, 1987 [1174] 30 600 mg 10 →Hb, →Hct, →Retics 

Lu et al, 2007 [1175] 180 800 IU 13 
No change in 
oxidative protein 
damage 

Lubrano et al, 1986 [811] 15 300 mg IM 9 ↓MDA, ↓EOF 
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Lubrano et al, 1992 [809] 15 300 mg IM 10 ↓PBMC oxidation 

Mafra et al, 2009 [1176] 120 400 IU 19 
↓Total cholesterol, 
↓LDL-cholesterol, 
↓LDL(-) 

Mydlik et al, 2001 [827] 21 400 mg 8 →MDA, →TAC 
Nemeth et al, 20007 [813] 14 15 mg/kg 10 ↓oxidised glutathione 
Ono et al, 1985 [820] 30 600mg 15 ↑Hct, ↓EOF 

Roob et al, 20005 [368] 1 800 IU 22 ↓Iron-induced lipid 
peroxidation 

Roozbeh et al, 2011 [817] 21 400 IU 20 ↑GPx, →MDA, ↑Hb 

Sanaka et al, 19958 [1177] 365 500 mg 11 No effect on lipid 
peroxidation 

Sato et al, 20039 [804] 180 600 mg 8 ↓TBARS 

Sinsakul et al, 1984 [1178] 140 800 IU 16 
→Hct, →Blood 
transfusion 
requirements 

Smith et al, 2003 [823] 60 400 IU 11 → PGF2α, ↑Hct, →IL-
6, →CRP, →TNF-α 

Turi et al, 199210 [818] 14 15mg/kg 10 ↑Hb, ↑Hct 

Uzum et al, 2006 [816] 140 300 mg 19 
↓MDA, ↓EOF 
 

Yalcin et al, 1989 [805] 30 300 mg 20 ↓MDA 
Yeksan et al, 1991 [819] 56 300 mg 12 ↑Hb, ↑serum EPO 

Yukawa et al, 1995 [1179] 14 600 mg 5 Improved MDA-LDL 
metabolism 

     
Notes: 1. Given 6 hours post intravenous iron in conjunction with selenium 600 µg 

2. Cohort included patients on haemodialysis and peritoneal dialysis 
3. Patients with low levels of vitamin E at baseline 
4. Vitamin E supplement principally contained γ-tocopherol and patients also 

received docosahexaenoic acid 
5. In conjunction with intravenous iron 
6. Supplements also contained Vitamins C, B & folic acid 
7. Paediatric study. Supplemented from 2 weeks after commencing ESA 
8. Diabetics 
9. Patients with evidence of microcirculatory disturbance. Supplement also 

contained vitamin C 
10. Paediatric study. Supplementation followed 4 week washout from ESA therapy 

 
αT/γT: Alpha-/Gamma-tocopherol; CRP: C-reactive protein; CV: Cardiovascular; EOF: 
Erythrocyte osmotic fragility; EPO: Erythropoietin; ESA: Erythropoietin stimulating agent (dose); 
GPx: glutathione peroxidase; Hb: Haemoglobin; Hct: Haematocrit; ICAM: Inter-cellular adhesion 
molecule 1; IL: Interleukin; IU: International Units; iv Fe: intravenous iron; LDL: Low-density 
lipoprotein; MDA: Malondialdehyde; PBMC: Peripheral blood mononuclear cell; PGF2α: 
Prostaglandin F2α; SOD: Superoxide dismutase activity; TAC: Total anti-oxidant capacity; 
TBARS: Thiobarbituric acid reactive species; TNF-α: Tumour necrosis factor-α; VE: Vitamin E. 
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Table 53 - Studies examining the effects of vitamin E bonded modified cellulose 
dialysis membranes on oxidative stress, inflammation, anaemia, leukocyte function 
and complement activation. 

Study Duration No. pts 
on VEM 

Reported effects of VE 
membrane 

Al-Jondeby et al, 2003 [942] 4 weeks 75 →Hb, ↑dialyser clotting 

Baragetti et al, 2006 [1180] 42 weeks 8 

↓Free- and protein bound 
pentosidine, ↓AGEs, →endothelial 
function, →ox-LDL, 
→Homocysteine 

Bonnefont-Rousselot et al, 
2000 [965] 3 months 12 →TBARS, →TAS, →SOD, →GPx 

Bufano et al, 2004 [871] 6 months 16 ↓ox-LDL 
Buoncristiani et al, 1997 [859] 30 days 10 ↓MDA, ↑GSH 
Calzavara et al, 1999 [875] 1 month 5 ↓dysmorphic RBCs 

Clermont et al, 2000 [1181] 1 month 16 ↓ascorbyl free radical / vitamin C 
ratio 

Cruz et al, 2008 [876] 1 year 172 ↑Hb, ↓ESA dose 

Dhondt et al, 2000 [1182] 4 weeks 10 
↑leukopenia, ↑CD11b, CD11c & 
CD45 expression, ↓leukocyte 
responsiveness 

Eiselt et al, 2001 [866] 4 weeks 20 ↓TBARS 
Galli et al, 1998 [873] 3 months 15 ↑GSH, ↑leukocyte responsiveness 
Galli et al, 2001 [864] 3 months 15 ↓TBARS 
Girndt et al, 2000 [880] 4 weeks 21 ↓IL-6 production 
Hara et al, 2004 [853] 1 year 13 ↓ox-LDL 

Huraib et al, 20001 [877] 2 months 20 

↓Dialyser clotting, ↓ESA, ↑Hb (Only 
with low-flux membranes. No 
significant effects for patients on 
high-flux membranes) 

Kirmizis et al, 2011 [858] 6 months 35 ↓CRP, ↓IL-6, ↓sICAM, ↓ox-LDL, 
↓TBARS, ↓TAS 

Kobayashi et al, 20032 [879] 1 year 34 ↓Carotid IMT, ↓RBC viscosity, 
↓ESA, ↓dysmorphic RBCs 

Kojima et al, 2005 [1183] 4 weeks 7 ↓Eosinphilia, ↓IL-5, →IgE, ↓CD4 
+ve lymphocytes 

Miyazaki et al, 2000 [1184] single 
session 12 →ox-LDL, → endothelial 

dysfunction3 

Morena et al, 2008 [1185] 
62 patients: 33 for 3 

months / 29 for 6 
months 

→ox-LDL, →total glutathione, 
→AOPP 

Muller et al, 2004 [844] 4 weeks 9 
↓oxidative DNA damage, ↑MDA 
(compared to polysulfone, data not 
provided in paper) 

Mune et al, 1999 [862] 2 years 25 ↓ox-LDL, ↓MDA, ↓increase in aortic 
caclification 
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Mydlik et al, 2004 [872] 3 months 14 ↓MDA, ↑TAC, ↑GSH 
Mydlik et al, 2001 [827] 3 weeks 8 ↓MDA, ↑TAC 

Nakatan et al, 2003 [878] 12 months 18 ↑Hb, ↑HCt, ↑RBC count, ↑RBC 
lifespan 

Odetti et al, 2006 [874] single 
session 8 ↓free 4-hydroxyl-2-nonenal 

Odetti et al, 1999 [855] single 
session 8 ↓TBARS, →Protein carbonyl 

groups, ↓protein glycoxidation 

Omata et al, 2000 [857] 10 weeks 7 ↓Neutropenia, ↓CD11b expression, 
↓MPO, ↓C3a 

Pertosa et al, 1999 [881] 3 months 6 
↓Pre- & post-HD sC5b-9 & 
complement Bb fragment, 
↓intradialytic PBMC activation 

Pertosa et al, 2002 [883] 3 months 8 ↓Jun N-terminal kinase activation, 
↓C5b-9 generation 

Sanaka et al, 1999 [851] 5 weeks 7 ↓leukopenia, ↓MPO, ↓C3a 

Sato et al, 2006 [1186] single 
session 11 →TBARS4 

Satoh et al, 2001 [865] 6 months 18 ↓post-dialysis MDA, AGE, 8-OhdG; 
↓basal AGE and 8-OhdG 

Schieke et al, 1999 [850] 18 weeks 12 
↓MDA, →endothelial function, 
→spontaneous & ↑inducible PBMC 
activity 

Senatore et al, 2002 [882] 6 months 30 ↓β2-microglobulin, ↓ferritin, ↓IgG, 
Normalisation of C3 

Shimazu et al, 2001 
[852, 1187] 

9 months 6 

↓MDA, ↓ox-LDL, ↑superoxide anion 
radical producing ability, ↑plasma 
hydroxyl radical producing ability, 
↓superoxide anion scavenging 
activity 

Sommerburg et al, 1999 
[860] 6 weeks 10 ↓MDA 

Taccone-Gallucci et al, 1999 
[856] 12 months 10 →Hb, →Hct, →RBC count, 

↑Reticulocytes, ↓RBC MDA 

Takouli et al, 2010 [854] 3 months 9 ↓dROMS, ↑TAC, ↓SOD, ↓CRP, 
↓IL-6 

Tarng et al, 2000 [863] 8 weeks 36 ↓8-OhdG (only compared to 
cellulose membrane) 

Triolo et al, 2003 [870] 12 months 10 ↓MDA, →Hb, RBC count, Hct, ESA 

Tsuruoka et al, 2002 [867] 12 weeks 10 
↓ox-LDL, ↓LDL, ↓MDA, ↓predialysis 
PMN superoxide production, 
↓leukopenia 

Usberti et al, 19995 [861] 10 months 11 ↑RBC lifespan, ↓dROMS, ↓MDA, 
↓ESA 

Usberti et al, 2002 [868] 7-9 
months 9 

↓MDA, ↑RBC survival (for pts on 
low dose ESA), ↓Thiol levels, 
↑”anaemia correction” 



 

 

302 

Usberti et al, 20025 [869] 7 months 38 ↓ox-LDL, ↓MDA, →TAS, →Thiols, 
↑RBC survival, ↓ESA 

Westhuyzen et al, 2003 [943] 13 weeks 12 

→Hb, →ESA, →SOD, →GSH, 
↑GPx, ↓erythrocyte susceptibility to 
haemolysis6, ↓Saturated & 
↑polyunsaturated lipid composition 
of erythrocyte membrane 

Yang et al, 2006 [1188] 2 months 407 
→Plasma H2O2 activity, →TAS, 
↓plasma & erythrocyte PCOOH, 
→CRP 

Zaluska et al, 2001 [1189] 20 HD 
sessions 10 

↓post-dialysis monocyte and 
granulocyte CD11b/CD18 
expression 

    
Notes: 1. Patients with frequent dialyser clotting. 10 pts on low-flux and 10 pts on high-flux 

membranes 
2. Patients with sustained eosinophilia at baseline selected (>700 /µL) 
3. Dialysis with non vitamin E coated membrane led to ↑ox-LDL and ↑endothelial 

dysfunction. Endothelial dysfunction measured by flow-mediated vasodilation of 
brachial artery. 

4. Patients on Vitamin E membrane for 2 weeks but only TBARS levels pre- and 
post- single dialysis session at end of 2 week period reported. 

5. Patients were also given reduced glutathione 1200 mg intravenously after every 
dialysis session. 

6. Reduced erythrocyte susceptibility to haemolysis observed at 6 weeks compared 
to baseline but 13 week samples returned to baseline values 

7. 20/40 patients also received 1g vitamin C infusion on dialysis 
 
8-OhdG: 8-hydroxy-2’-deoxyguanosine; AGEs: Advanced glycation end products; AOPP: 
Advanced oxidation protein products; dROMS: Reactive oxygen metabolites and derivatives; 
GPx: Glutathione peroxidise activity; GSH: Reduced glutathione; IgG/IgE: Immunoglobulin 
G/E; H2O2: Hydrogen peroxide; IMT: Intima media thickness; MDA: Malondialdehyde; MPO: 
myeloperoxidase; PBMC: Peripheral blood mononuclear cell; PCOOH: Phosphatidylcholine 
hydroperoxide; RBC: Red blood cell; SOD: Superoxide dismutase activity; TAC: Total 
antioxidant capacity; TAS: Total antioxidant status; VEM: Vitamin E membrane 
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Appendix B Responsibilities of core research team members 

Team member 
(Job role) 

Responsibilities 

Dr Simon Lines 
(Principal Investigator) 

Principal Investigator for study 
Study design and study protocol 
Obtaining ethical approval and LTHT Research and 
Development sponsorship 
Securing study funding 
Adoption of study on to the National Institute for Health 
Research (NIHR) portfolio 
Patient screening for study eligibility 
Consenting patients 
Study visits including blood sampling and data collection 
Collection of hospital admission and mortality data 
Sample processing 
Laboratory assays 
All data analysis and interpretation 

Dr Mark Wright 
(Research Supervisor) 

Securing study funding 
Input into study design – clinical aspects 

Dr Angela Carter 
(Research Supervisor) 

Input into study design – laboratory aspects 
Laboratory supervision 

Dr Emma Dunn 
(Research Supervisor) 

Input into study design – clinical and laboratory aspects 

Ms Victoria Richardson 
(PhD student) 

Technician assistance: C3 ELISA and TBARS assay 

Ms Jia-Ying Lee 
(Visiting PhD student) 

Technician assistance: C3 ELISA, initial properdin ELISA 
optimisation assay 

Rosalyn Wheatley 
(Lead Research 
Nurse) 

Obtaining informed patient consent 
Co-ordinated study visits 
Undertook study visits and blood sampling 
Co-ordinated and undertook dialyser adherence monitoring 

Shyama Rughooputh 
(Research Nurse) 

Undertook study visits and blood sampling 

Stuart Turner 
(Research Nurse) 

Undertook study visits and blood sampling 
Monitoring of dialyser adherence 

Emma Giddings 
(Research Nurse) 

Obtaining informed patient consent 
Undertook study visits and blood sampling 

Frank Lee 
(Clerical support) 

Entered recruitment data on to NIHR database 
Monitoring of dialyser adherence 
Administrative support 
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Appendix C Leeds teaching hospitals laboratory assays 

 

Siemens ADVIA 1800 and 2400 Biochemistry analysers 
  

  Urea and electrolytes 

 Lipids (Cholesterol, LDL, HDL, Triglycerides) 

 C-reactive protein 

 Calcium 

 Phosphate 

 Bicarbonate 

 
Siemens ADVIA Centaur Immunoassay analyser 
  

  Parathyroid hormone (2-site sandwich immunoassay) 

 
Bayer 2120 Analyser 
  

  Full blood count 

 
Instrumentation Laboratory Automated Coagulation Laboratory (ACL TOP) 
  

  Activated partial thromboplastin time, prothrombin time 

 Fibrinogen (Clauss method) 
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Appendix D Anaemia management algorithm 

D.1 ESA dosing 

The ESA dosing for all study patients was carried out by means of a predictive algorithm. 

The details of the algorithm and the LTHT experience of using it have been published in 

2012 [901]. The ESA used for all study patients was darbepoetin alfa (Aranesp®, Amgen, 

UK) and the target haemoglobin concentration was 10.5-12.5 g/dL in keeping with the 

contemporaneous National Institute for Health and Clinical Excellence (NICE) 

recommendations [904]. (Since this study commenced, NICE have issued new guidance 

recommending a target haemoglobin range of 10-12 g/dL [1190]). The main tenet of the 

algorithm is that it takes approximately three months for the haemoglobin level to reach 

steady state following the initiation of an ESA or a change in the dose. The steady state 

haemoglobin concentration is predicted using linear projection of two haemoglobin levels 

measured at one and two months following a change in ESA dose. This three months 

window is based on the pharmacodynamics of ESAs and the altered red blood cell lifespan 

in haemodialysis patients [1191, 1192]. No changes to the ESA dose are recommended if 

insufficient time has elapsed to predict the steady-state haemoglobin level, which in 

practice prevents dose changes at intervals of less than 2 months. This helps to ensure 

that the effects of an ESA dose change are fully evaluated before another change is made. 

The magnitude of the dose change is proportional to the difference between the predicted 

steady state haemoglobin level and the population mean target of 11.5 g/dL, as detailed in 

Table 54 and Table 55. All doses are rounded up or down to the nearest pre-filled syringe 

sizes: 10 µg, 15 µg, 20 µg, 30 µg, 40 µg, 50 µg, 60 µg, 80 µg, 100 µg, 130 µg, 150 µg, 

300 µg and 500 µg. 

 

Table 54 - Definitions used in ESA dosing algorithm. 

Hbtarget 
 Mid point of target range, i.e. 11.5 g/dL 

Hbsteady state 
 Measured Hb >90 days after last ESA dose change 

OR 
 Predicted Hb at 90 days after last ESA dose change by linear extrapolation of Hb 

levels measured >=14 days and >= 42 days following a change in dose 

 ΔHb 
 Hbtarget - Hbsteady state 

Hb: Haemoglobin concentration 
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Table 55 - Darbepoetin alfa algorithmic dose adjustments. 
 Current dose New dose 
Starting dose 
 0 mcg/wk 10 x ΔHb [Maximum starting dose 30 mcg/wk] 

Dose increases 
 2.5 mcg/wk 5 mcg/wk 

 5 mcg/wk 7.5 mcg/wk if ∆Hb <3 g/dl, otherwise 10 mcg/wk 

 10 mcg/wk 15 mcg/wk if ∆Hb <3 g/dl, otherwise 20 mcg/wk 

 15 mcg/wk 20 mcg/wk if ∆Hb <3 g/dl, otherwise 30 mcg/wk 

 20 mcg/wk 30 mcg/wk 

 >20 mcg/wk ((∆Hb x 0.17) + 1) x Current dose  [Max increase 50%] 

Dose reductions  
 2.5 mcg/wk* Stop ESA 

 5 mcg/wk 2.5 mcg/wk 

 > 5 mcg/wk ((∆Hb x 0.17) + 1) x Current dose  [Max decrease 50%] 

*The lowest dose is 10 mcg given every 4 weeks i.e. 2.5 mcg/wk 

D.2 Iron dosing 

Iron deficiency results in anaemia which is poorly responsive to correction by ESAs but 

identifying iron deficiency in HD patients is not straightforward as they have functional iron 

deficiency (see 1.3.2.1) and frequently employed indices of iron stores, such as ferritin, are 

subject to variation from influences such as inflammation. Administration of intravenous 

iron to HD patients has been shown to reduce ESA requirements [268], even in patients 

with high ferritin levels [264, 269], and published guidelines recommend the regular 

administration of parenteral iron to chronic haemodialysis patients. For over a decade, iron 

dosing for LTHT haemodialysis patients has been determined by a computer aided 

decision support system based on the monthly measurement of ferritin and haemoglobin 

levels, the percentage of hypochromic red blood cells and the mean cell volume (MCV). 

The iron preparation used was iron sucrose (Venofer®, Syner-Med Pharmaceuticals, UK). 

The default position was for all patients to receive a maintenance dose of 100 mg of iron 

sucrose fortnightly on dialysis. This dose was augmented or withheld if patients were 

deemed iron deficient or at risk of iron overload as set out below.  

 

For the purposes of the decision support system, patients were classified as iron deficient 

according to the criteria set out in Table 56. One point was scored for each criterion 
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satisfied and if a patients scored 3 points and had a haemoglobin level <12.5 g/dL they 

were classed as iron deficient. Scoring was based on measurements made within the last 

91 days and if more than two measurements had been made, separated by at least 21 

days, an average value was calculated and processed by the algorithm. If patients were 

classed as iron deficient, an ESA was not commenced or the dose increased until they 

had received intravenous iron treatment for at least a 42 day period (i.e. minimum of 1 g 

intravenous iron). 

 
 

Table 56 - Identification of iron deficiency by iron dosing decision support system. 

Haemoglobin < 12.5 g/dl Mandatory 

Ferritin < 200 g/l 1 point 

Ferritin < 100 g/l 1 point 

Mean red cell volume <85 fl 1 point 

Mean red cell volume <75 fl 1 point 

Hypochromic red cells >6% 1 point 

Hypochromic red cells >13% 1 point 

Haemoglobin <10.5 g/dl 1 point 

3 points = iron deficiency 

 

 

As already discussed, in the presence of inflammation ferritin levels are an unreliable 

indicator of iron status. Patients were considered by the decision support system to have 

active inflammation if they had two consecutive CRP measurements, separated by at least 

21 days, of greater than 27 mg/L (upper quartile of the dialysis population) in the last 91 

days. In these patients, the ferritin criteria in Table 56 were disregarded and the patients 

classed as iron deficient if they scored 2 points from the remaining criteria. Patients were 

deemed to be at risk of iron overload if their ferrtin was >650 µg/L and would only be 

prescribed intravenous iron at the discretion of the supervising physician. A summary of 

the decision support system iron dosing algorithm is set out in Table 57. 
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Table 57 - Summary of intravenous iron dosing algorithm. 

Maintenance dose 
℞ 100 mg/fortnight 

Iron deficiency + Hb<12.5 g/dl + patient receiving ESA + ferritin ≤ 650 µg/L 
℞ 100 mg/twice weekly 

Iron deficiency + Hb<12.5 g/dl + patient receiving ESA + ferritin > 650 µg/L 
℞ 100 mg/fortnight 

No iron deficiency + ferritin 500-650 µg/L 
℞ 100 mg/month 

 Continue until: 
 Ferritin <350 µg/L 
 ℞ 100 mg/fortnight 
 Ferritin >650 µg/L 
 ℞ Withhold iron 

Hb≥12.5 g/dL + No ESA for ≥91 days 
℞ Withhold iron 

Hb >14 g/dL 
℞ Withhold iron 

Ferritin >650 µg/L + No iron deficiency 
℞ Withhold iron 

Hb: Haemoglobin concentration, ℞: Prescribe 
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Appendix E Buffers 

In this appendix, the quantities of salts in the buffers refers to their composition at the time 

of preparation prior to pH adjustment. 

E.1 Turbidimetric fibrin clot structure and function assays 

Tris-buffer 
 50 mM Tris-HCl, 100 mM NaCl, pH 7.4 
 

E.2 Thiobarbituric acid reactive species assays 

Thiobarbituric acid (TBA) 
 70 mM thiobarbituric acid dissolved in 0.1 M NaOH 

Butylated hydroxyl toluene (BHT) 
 70 mM butylated hydroxytoluene in ethanol 

1,1,3,3,-tetramethoxypropane (TMP) 
 5 mM in 0.1 M HCl 
 

E.3 C3 ELISA 

Phosphate buffered saline (PBS) 
 2.5 mM NaH2PO4.2H2O, 7.5 mM Na2HPO4.2H2O, 140 mM NaCl, pH 7.2 

PBS-Tween (PBS-T) 
 2.5 mM NaH2PO4.2H2O, 7.5 mM Na2HPO4.2H2O, 0.5 M NaCl, 0.2% Tween-20, 

pH 7.2 
 

E.4 Properdin, factor D and sC5b9 ELISAs 

Coating buffer 
 50 mM Na2CO3, pH 9.6 

Washing buffer 
 50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween-20, pH 7.5 

Sample diluting buffer 
 50 mM Tris-HCl, 150 mM NaCl, 10mM EDTA*, 0.05% Tween-20, pH 7.5 

Blocking buffer 
 50 mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20, 1% BSA, pH 7.5 

Diluting buffer 
 50 mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20, pH 7.5 

Diethanolamine 
 1 M Diethanolamine, 0.5 mM MgCl2, pH 9.8 

*The initial optimisation experiments were carried out using sample dilution buffer which 
did not contain EDTA as detailed in the methods section. The sample dilution buffer 
used in the finalised ELISA protocols did contain EDTA. 
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Appendix F ICH-GCP certificate 

 
 

 

 


