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Abstract

The capability of hardware is constantly developing in capacity, speed and effi-

ciency. This development has sparked industrial and academic interest in how

best to utilise the increased capability. It is now possible to integrate many

systems that in the past might have existed as different nodes, into the one

consolidated architecture. This desire to centralise functionality leads to the

potential of a system that contains software components of differing levels of

importance or criticality. Such Mixed Criticality Systems pose a challenging

problem with regard to analysis and certification. Much work has been under-

taken investigating the use of Fixed Priority scheduling for Mixed Criticality

Systems, a notable scheme, known as Adaptive Mixed Criticality (AMC), pro-

vides significant advances in schedulability over prior approaches. The focus of

the work on AMC revolves around just two levels of criticality. In this work

we develop extensions to consider greater than two levels of criticality, for both

forms of AMC analysis (AMCrtb & AMCmax) and consider the implication

of applying these extended approaches. Alongside this we adapt some of the

schemes developed prior to AMC in order to assess their relative effectiveness.

We also review and further develop Period Transformation for use with Mixed

Criticality Systems. Finally we provide a set of evaluations to illustrate the

results. We conclude that AMC maintains its effectiveness over many criticality

levels and remains an effective scheme. Of the two forms of analysis, AMCrtb is

the most practical as the schedulability improvement gained by using AMCmax

is slight and the increase in computation required is extreme. When considering

an arbitrary number of criticality levels AMCrtb is a dependable, comprehensive

scheme.
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Chapter 1

Introduction

Alongside the development of faster and more efficient hardware there is an in-

creasing demand to support systems of a progressively heterogeneous nature. In

the past system functionality might have been spread over many nodes, however

advances in single and multi-core architectures have paved the way for the con-

solidation of this functionality. These advances have begun to push industrial

and academic interest towards developing systems to facilitate a wider range of

functionality. Many key industrial sectors, from automotive to aerospace, have

recognised the advantages and, perhaps, the necessity, of moving towards more

centralised architectures.

Such systems are likely to include components of differing level of impor-

tance, or Criticality. Components might be safety critical or simply have a level

of desired performance. We define a Mixed Criticality System (MCS) as, a sys-

tem that incorporates two or more different levels of criticality. Safety Critical

elements are typically subject to certification by a relevant Certification Au-

thority (CA), this requires the specific (Safety Critical) components to adhere

to the, often highly pessimistic, analysis mandated by the CA.

This highlights one of, if not the key challenge in the field of Mixed Criticality

systems; balancing the need to satisfy the CA and provide suitable guarantees of

safety, whilst ensuring as high as possible resource utilisation. One component

might not require any certification, and thus the system designer’s performance

predictions provide an adequate basis for analysis, however another element

might require certification, and thus pessimistic techniques are used to gauge

its’ performance.

There are clear advantages to the use of Mixed Criticality Systems, these
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include (but are not limited to): increased energy efficiency, reduced cost and

a smaller physical footprint. These requirements are most apparent in safety

critical industries, such as the automotive or aerospace domains. Systems in

these areas are required to deal with increasingly more complex mission critical

or even general purpose applications such as image capture and recognition.

Sitting these applications beside high integrity, safety critical functionality is

challenging.

A key stepping stone in supporting such systems is to consider the schedul-

ing of its tasks. In this work we consider several new and old, uni-processor,

fixed priority scheduling policies and assess their effectiveness. Much of the

previous work has limited its analysis to consider only two levels of criticality

(importance) HI and LO, work such as [41] and [10]. This work seeks to extend

these schemes to allow them to deal with 2 to n possible criticality levels and

to investigate what performance impact this might have.

The document is structured as follows; Chapter 2 contains a review of the

current MCS literature, Chapter 3 considers AMCrtb [10] and its extension,

Chapter 4 considers AMCmax [10] and its extension, Chapter 5 Considers Period

Transformation for Mixed Criticality Systems, Chapter 6 provides a detailed

Evaluation and Chapter 7 ends the document with some concluding remarks.
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Chapter 2

Literature Review

In 2007 Vestal [41] published what is widely considered to be the initial work on

the verification of Mixed Criticality Systems. In this paper Vestal identifies the

key MCS problem, verification vs utilisation and the need for criticality-aware,

graceful-degradation. Graceful degredation implies that a system should ensure

it provides sufficient execution budget for each task subject to the bounds set

by their criticality level. If a task overruns these bounds, it should be dealt with

in some way that allows higher criticality tasks to continue to work within their

timing requirements. Two papers in 2008 built upon Vestal’s work; Baruah

and Vestal [14] refined the initial model and noted that EDF is not optimal for

Mixed Criticality Systems and Huber et al. [24] considered MC systems from a

multi-processor perspective.

The work that followed Vestal’s seminal paper focused primarily upon uni-

processor Mixed Criticality systems and their analysis, with a view to both

dynamic and static scheduling approaches. More recently a larger body of work

has formed investigating MC systems on multi-processor/core platforms. This

move to more advance platforms has been fuelled by industrial pressure to utilise

new and powerful hardware available in multi-processor form. A rich body of

work continues to develop for both uni-processor and multi-processor platforms.

The following Chapter provides a review of the work on Mixed Criticality

Systems. Section 2.1 describes the system model used in the review. Section

2.2 considers current analytical work including priority assignment, static and

dynamic analysis. Section 2.3 briefly considers some comparative works. Section

2.4 considers variations on the analysis presented in section 2.2. Section 2.5 looks

at some more practical approaches and Section 2.6 provides a summary.
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2.1 The System Model

Although there are variations of the Mixed Criticality Model defined by Vestal

[41], the model described below provides a good basis for this review and is

commonly used in much of the literature.

A system constitutes a finite set of components K. Each of these components

is assigned a criticality level, L (designated by the system designer) and consists

of a finite set of sporadic tasks. Each task, τi, is defined as τi = {Ci, Ti, Di, Li}
where Ci is the Worst Case Execution Time (WCET) time, Ti is the period

(minimum inter-arrival time), Di is the deadline and Li is the criticality level.

Each task gives rise to an unbounded series of jobs.

Vestal [41] makes an important observation regarding the relationship be-

tween the criticality level of a task and its computation time. As the criticality

level increases, so does the computation time. This is due to the increased level

of pessimism in the analysis of higher criticality tasks. A safety critical task

might have a criticality level of L1 (Where L1 > L2), the task might also be

verified to criticality level L2, its L2 WCET would be less than or equal to its L1

WCET. Variation in the frequency of the minimum inter-arrival time or period

of each task has also been considered. Burns and Baruah [16] note that this

is less likely, but it could be due to the certification of a task requiring a more

pessimistic (therefore more frequent) inter-arrival time at a higher criticality

level. Several other papers [6, 9, 11] also consider this potential variation.

The observations described above allow us to modify our definition of a task,

τi = {
−→
C ,
−→
T ,D,L}, where

−→
C and

−→
T are vectors, one value for each criticality

level. These vectors conform to the following, for any two criticality levels L1

& L2:

L1>L2 =⇒ C(L1) ≥ C(L2)

L1>L2 =⇒ T (L1) ≤ T (L2)

It is also possible to state a similar constraint for a criticality dependent

deadline (although this has been given some focus [9], this is still a subject for

future study).

L1>L2 =⇒ D(L1) ≥ D(L2)

A shorter, L2 criticality deadline might be one desired for high quality of service
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whiles its higher criticality L1 deadline is safety critical.

The last point to address is the concept of criticality modes, a system might

be defined to execute in a number of different modes depending upon the number

of specified criticality levels. Such systems always begin their execution in the

lowest criticality level (L2), a mode change occurs, L2 −→ L1, when a task at

level L2 executes to its L2 WCET, Ci(L2), without signalling completion.

Both the observations about period and computation time, and the idea of

a criticality based mode change stem from the desire to satisfy two conflicting

properties: Static verification (certification) and efficient resource utilisation.

The Certification Authority will consider only the verification of tasks that are

safety critical, as long as a suitable level of isolation is maintained they are

not concerned with the rest of the system. However using just the pessimistic

response time predictions provided by the CA would lead to a very inefficient

system. Instead we use criticality levels, this allows the high criticality tasks

(those verified by the CA) to, if necessary, execute for their pessimistic execution

times. In this case the lower criticality tasks would be managed in some way

as to prevent them from interfering with the execution to the high criticality

tasks.

The model assumes that, in reality, the system designer’s predictions for task

response times are likely to be accurate, thus the system will run comfortably in

the lowest criticality level. The ability to perform a mode change provides the

reassurance required for safety critical aspects of the system. It is worth noting

that due to this assumption about the correctness of the systems designer’s

predictions, the majority of the MC work considers only an increase in the

criticality level of a system. The potential return to lower criticality levels has

not yet been addressed in any detail.

It is worth illustrating this functionality by means of a naive, but commonly

used example. Consider the case of an Unmanned Aerial Vehicle (UAV). In

order to fly in civilian airspace the flight control software must be certified,

as it is safety critical. The reconnaissance software, required for the success-

ful operation of the UAV is considered mission critical and is not subject to

certification. The system designer estimates (reliably) that the mission critical

elements require 0.45 of a processor. The Certification Authority analyses (pes-

simistically) the safety critical element and determines that 0.9 of a processor

is required. On the face of it, with a utilisation of 1.35 it seems that we need

two processors. However the system designer estimates the utilisation for the

safety critical element to be only 0.5. Therefore in the low criticality mode the
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utilisation is 0.951, only one processor is required. If a criticality change occurs

0.9 of the processor is given to the safety critical software.

2.2 Analysis

2.2.1 Priority Assignment

Mixed Criticality priority assignment was initially considered by Vestal in his

2007 paper [41]. He observed that Rate Monotonic and Deadline Monotonic

priority assignments were not optimal for use in Mixed Criticality Systems.

Much of the mixed criticality literature uses the notation LO and HI to denote

the criticality levels in a dual criticality system. This notation is used, where

appropriate, throughout this review. Consider the task set in Table 1:

τ Ci(LO) Ci(HI) Ti Di L
1 1.5 - 2.5 2.5 LO
2 1 3 4 4 HI

Table 2.1: An Example of the Sub-Optimality of RM & DM Assignment.

Under Deadline Monotonic (and Rate Monotonic) assignment, τ1 would be

given the highest priority. Execution in the LO mode is acceptable as 1.5 + 1 ≤
D2. However during a criticality change there is a problem. If both τ2 & τ2 are

released at the same instant, τ1 executes to 1.5 then τ2 executes to 1. However

if τ2 does not signal completion a change of criticality level from LO −→ HI

occurs. In this situation the response time of τ2 would be 4.52 which is greater

thanD2. Therefore the task-set is not schedulable with τ1 at the highest priority.

If τ2 were given the highest priority, the LO mode would execute the same as

before 1 + 1.5 which meets both deadlines. If τ2 executes to its LO budget

without signalling completion, a change from LO −→ HI occurs and τ2 is able

to execute to its HI WCET value, 3, and τ1 is suspended. In this way Deadline

and Rate Monotonic algorithms are not optimal for use in MC systems.

As shown above, this is due to their inability to deal with multiple execution

time values for each task. Vestal did note that Audsley’s [2] optimal priority

assignment algorithm is applicable. Vestal suggests that this algorithm can

be adjusted to utilise Mixed Criticality Scheduling analysis in order to find an

optimal priority assignment. Audsley’s algorithm seeks to assign a task to the

10.45+0.5
21.5 + 3
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lowest priority, when a task is assigned this priority it is removed from the

system and the test is run again until all tasks are granted a priority or the

search fails and is unable to assign a complete set of priorities. In this case we

can consider the system unschedulable. Vestal utilises a metric known as the

Criticality Scaling Factor [29, 41] the largest value by which all execution times

can be simultaneously multiplied while preserving feasibility. If when looking

for a task to assign to a priority, two are feasible, the task with the greatest

Criticality Scaling Factor will be assigned that priority. Audsley’s algorithm

has the advantage of being able to determine if an optimal assignment exists

within n(n+1)/2 steps instead of an exhaustive search of all possible priority

assignments.

In 2008 Baruah and Vestal [14] generalised the priority assignment algorithm

by assessing both EDF and FP (Fixed Priority) assignment. This assessment

coupled with the use of sporadic task systems aided the development of the Aug-

mented Audsley algorithm. Dorin et al. [18] provided a proof of the optimality

of Audsley’s approach for Mixed Criticality Systems.

2.2.2 Static, Response Time Approaches

After Vestal’s 2007 paper [41], much work went into the static analysis of Mixed

Criticality systems. When considering this analysis, we must again reflect upon

the conflicting aims of isolation and efficiency. Until recently general practice

has focused upon isolation of tasks for safety, system resources are often inef-

ficiently used. Techniques such as space partitioning, exclusive resource access

and time partitioning provide poor resource utilisation. A further approach

is known as partitioned criticality scheduling [10] (criticality monotonic), this

assigns priorities according to criticality level, all tasks of a higher criticality

will have higher priorities than those of lower criticality. The latter approach

removes the risk of criticality inversion, where a task of higher priority but lower

criticality interferes with the execution of a higher criticality task. However this

approach is extremely inefficient.

The majority of the static MC analysis below is based around standard

response time techniques [3].

Ri = Ci +
∑

τj∈hp(τi)

⌈
Ri
Tj

⌉
Cj (2.1)

Where the response time of τi, Ri is solved recursively based upon interference
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suffered from the set of tasks with a higher priority than τi.

In 2007 Vestal [41] proposed an approach to mixed criticality scheduling.

Vestal’s approach made an important step forward by allowing for interleaved

task priorities between criticality levels. However the analysis is based on the

assumption that all tasks are verified to the highest criticality level in the sys-

tem. This is prohibitively expensive and provides far from optimal resource

utilisation.

Own Criticality Based Priority is a scheme first suggested by Baruah et

al. [13]. Essentially it is an extension of Audsley’s algorithm [2] to allow for

mixed criticality systems. It provides both a priority ordering and a sufficient

schedulability test. The algorithm seeks to find the job ji that might be assigned

the lowest priority if all other jobs execute for their Ci(Li). In this way the

priority ordering is based upon each job’s criticality level. While this does

provide an improvement over Vestal’s [41] original analysis, as we consider jobs

at their criticality level not at the highest, it still provides far from efficient

utilisation.

Static Mixed Criticality is a continuation of the Own Criticality Based Pri-

ority scheme, extended to utilise run-time monitoring. If the system detects

that a low criticality job, ji, is overrunning its allocated Ci it is prevented from

executing further and is suspended. If an overrun is detected for a high criti-

cality job, jk, the system undergoes a criticality level change to the high mode.

Jobs of τk (and all other high criticality tasks) are given their high criticality

execution budgets, Ck(HI). This use of run-time monitoring provides schedu-

lability analysis far superior to that initially developed by Vestal [41] which we

can re-name SMC-NO [10], SMC with no run-time monitoring.

Baruah et al. [10] utilise run-time monitoring to detect jobs that reach their

maximum execution time (Ci(LO)) but do not signal completion. This moni-

toring allows for a criticality change to occur, LO −→ HI(for the purpose of

this explanation Baruah et al. restrict themselves to two criticality levels). This

functionality was used to derive a new algorithm, Adaptive Mixed Criticality

(AMC). The runtime behaviour of AMC is as follows. All jobs in the system

begin execution in their LO criticality mode, if ji executes for more than its

allocated Ci(LO) a criticality change occurs. All jobs of criticality LO are sus-

pended indefinitely. Jobs with a HI criticality level continue to execute, but this

time to their Ci(HI) budgets. They present two analytical methods, method

1 or AMCrtb is a simpler response time based approach that assesses both the

schedulability of the tasks in each mode of the system and the schedulability of
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any Criticality changes. The more precise Method 2, AMCmax, only considers

the finite set of possible points (s) at which a criticality change could occur,

from these points it is possible to perform analysis to discover the worst case

point of s and thus determine if the task set in question is schedulable. We

cover the analysis of both AMCrtb and AMCmax in Chapters 4 and 5.

AMCrtb has been extended in [43] to utilise preemption thresholds and

Baruah and Chattopadhyay [11] consider SMC and AMC when task periods

alter according to their criticality level rather than WCETs.

Zero Slack Scheduling is a further technique for scheduling Mixed Critical-

ity Systems initially suggested by Niz et al. [34]. They work on the basis that

criticality inversion (lower criticality tasks with higher priorities interfering with

higher criticality tasks at lower priorities) only matters during overload condi-

tions, similar to the idea of a criticality change [10]. They define two modes, N

mode (normal) and C mode (critical). They calculate the last possible time at

which a task (of high criticality) must begin execution in order to meet its dead-

line, if this is not met, the system moves to C mode. In C mode lower criticality

tasks are prevented from interfering to ensure the high criticality task completes

by its deadline. During normal execution (N mode) the system allocates the

slack, before the zero slack instant, to lower criticality tasks. Huang et al. [23]

expand further by identifying a situation where a low criticality task might miss

its deadline and affect the higher criticality tasks, to solve this they present

a priority demotion technique. Alongside this addition an updated analysis is

presented.

2.2.3 Period Transformation

Period Transformation [39] is also applicable to MC systems. The idea is that

a task is split into smaller component parts by some factor n. So τi’s Ti would

be come Ti/n and Ci would become Ci/n. The transformed task set might then

be assigned some more optimal priority assignment (Rate Monotonic etc.). If

all tasks are transformed, in a non MC system, any task set with a utilisation

less than or equal to 1 will be schedulable as the task set will be harmonic3.

However period transformation suffers from excessive overheads involved with

splitting tasks and managing their executions alongside an increased number

of context switches. These excessive overheads might explain why industrial

uptake of the scheme has not occurred, as such Period Transformation presents

3Where all task periods are integer multiples
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very attractive theoretical properties but suffers from many practical issues.

Vestal proposes a PT technique applicable to MC systems, tasks are trans-

formed if their period (for tasks where T = D) is less than the shortest period

of a LO criticality task. The purpose of this technique is to provide a criti-

cality monotonic ordering. There are two groups of tasks which might not be

transformed.

• LO criticality tasks will not be transformed as they are to be given the

lowest priorities.

• HI criticality tasks with a period less than that of the lowest LO task.

These tasks are not transformed as they might already be assigned a higher

priority under criticality monotonic assignment.

Due to the fact that not all tasks are transformed, the bound stating that

a task set is schedulable if the utilisation is less than 1 is no longer applicable

as a harmonic task set is not created. Extending MC Period Transformation to

more than 2 criticality levels has yet to be addressed and may present additional

challenges. We cover the analysis for Period Transformation and its extensions,

in detail, in Chapter 6.

2.2.4 Dynamic Scheduling

The use of EDF scheduling in Mixed Criticality systems was initially consid-

ered by Baruah and Vestal [14]. They note that due to the nature of EDF,

any task might be prioritised over another, therefore all tasks must be verified

to the highest level of criticality. This leads to the key point that standard

EDF is not optimal when considering systems with multiple worst case execu-

tion times/levels of criticality. Baruah et al. [8] introduce EDF-VD, Earliest

Deadline First with Virtual Deadlines, an EDF scheduling approach which uses

modified, artificial deadlines to ensure schedulability of multiple levels of critical-

ity. Further work on EDF-VD [7] proves optimality via the use of the speed-up

factor [25].

Baruah et al. [13] describe the speed-up factor metric as: “the minimum

multiplicative factor by which processors must be made faster in order to com-

pensate for the inexactness of the test”. In other words it is a metric used to

gauge how much faster a processor would need to be to make a task set schedu-

lable under a particular algorithm. This is particularly useful when considering
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the effectiveness of both Fixed Priority and Dynamic scheduling algorithms as

they are not directly comparable.

Ekberg and Yi [19] expand upon previous work EDF-VD [8, 7] by allowing

EDF to use different artificial deadlines for tasks depending on the current

criticality mode. They employ demand bound functions, DBFLO & DBFHI to

assess the maximum execution demand in any given time interval. The same

principles of EDF-VD hold here, the demand bound functions are used to tune

the deadlines of tasks to achieve better utilisation and in turn schedulability.

Park and Kim [35] derive an algorithm known as CBEDF (Criticality Based

Earliest Deadline First), this algorithm uses slack reclamation to provide effi-

cient scheduling. Two types of slack are defined;

• Remaining Slack: Spare time between Ci(LO) & Ci(HI) if a high critical-

ity job completes early.

• Empty Slack: If all Ci(HI) tasks use their allocated time, any additional

slack is empty slack.

CBEDF allows both forms of slack to be allocated to CiLO tasks in such a way

that it does not interfere with those tasks of higher criticality. Finally their

experimentation shows CBEDF’s dominance over OCBP scheduling.

PLRS [21] is a dynamic algorithm which draws its inspiration from both

static and dynamic scheduling. Pre-runtime PLRS calculates job priorities even-

tually creating a priority plan taking into account multiple criticality levels. This

plan is then used at runtime to assign priorities. This algorithm is a hybrid using

static, offline analysis to produce a plan, but dynamic assignment at run-time.

2.2.5 Other Approaches

Baruah and Fohler [12] explore the use of Time Triggered (TT) scheduling in

a Mixed Criticality context. Due to the nature of the complete determinism

provided by a time triggered system it is widely used and favoured by Certi-

fication Authorities. They show that achieving high utilisation and meeting

certification requirements is difficult with strict TT scheduling. However they

show that such systems can be extended to include mode changes, this requires

multiple dispatch tables, one for each level of criticality in the system. Steiner

[40] also touched on the TT approach, this time looking at the incorporation of

TT network traffic with unsynchronised traffic.
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Lackorzynski et al. [27] explore the potential link between Mixed Criticality

and Hierarchical scheduling. Hierarchical scheduling, usually associated with

virtualisation, could help provide strict isolation between tasks of differing crit-

icality levels. Each level might run on a different guest OS, or High criticality

tasks on one, all other criticalities on another. They show that current hierar-

chical scheduling techniques are not flexible enough to deal with the challenge of

MC systems. However Lackorzynski et al. [27] propose alterations to deal with

MC systems, whereby each guest OS is assigned a budget for each criticality

level.

2.3 Comparative Work

Comparing different algorithms is not always straightforward. Baruah et al. [10]

provide an effective comparison of several variations on FP Mixed Criticality

scheduling. They perform experiments using large sets of randomly generated

tasks, the key result is the relationship between task set utilisation and the

percentage of schedulable task sets. Kelly et al. [26] provide an experimen-

tal analysis which compares Audsley’s optimal priority assignment with Rate

Monotonic priority assignment.

Haung et al. [23] present an evaluation of Response Time, Period Transfor-

mation and Zero-Slack scheduling based approaches upon harmonic and non-

harmonic task sets of varying sizes. The evaluation also includes overheads,

allowing for a better comparison with the theoretically superior Period Trans-

formation. Their work does not explicitly state the number of criticality levels

considered. In one example it appears that 3 criticality levels are used. However,

for the most part, only dual criticality systems are considered, or, the number

of criticality levels is left unspecified. This work represents one of the most

thorough comparative evaluations of common Mixed Criticality approaches.

Further experimental analysis can be found [4, 22, 27, 28].

2.4 Variations On The Analysis

2.4.1 Multi-Core/Processor

Multi-core support of Mixed Criticality was initially considered by Anderson et

al. [1]. They note two techniques for multi-core scheduling;
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• Partitioned Scheduling: One dispatching table for each processor

• Global Scheduling: One global dispatching table for many processors

Current practice employs the use of partitioned scheduling for Hard Real-

Time systems and Global scheduling for Soft Real-Time systems. They propose

an innovative scheme utilising Containers (Servers) to provide suitable isola-

tion between criticality levels whilst Global scheduling provides good processor

utilisation. However their work is limited to Harmonic Task Sets. Mollison et

al. [31] extend the work by Anderson et al. [1] by considering the use of Hi-

erarchical scheduling. They develop a scheme which defines 5 criticality levels

A to E, each level is scheduled within its own container. Level A Tasks are

scheduled via a cyclic executive, level B via EDF, levels C and D via G-EDF

(Global EDF) and Level E via a best effort scheme. This complex scheme does

help provide isolation, however the runtime overheads are unclear. Herman et

al. [22] provide an examination of the issues surrounding fully implementing

the scheme described above. They show that implementation is possible and

that overheads can be kept to within reasonable bounds.

Li and Baruah [30] also explore the issue of scheduling MC systems on multi-

processors/cores. Their work is a generalisation of the algorithm fpEDF (Fixed

Priority Earliest Deadline First) [5], fpEDF is an algorithm for scheduling

normal (non-mixed criticality) tasks on a multi-processor system. They continue

to use a previously developed algorithm EDF −V D [7] to develop a scheduling

technique applicable for multi-processor MC systems.

Pathan [36] presented a Fixed Priority, multi-processor scheme. He describes

an algorithm MSM (Mixed Criticality Scheduling algorithms on Multiproces-

sors) the fundamentals of which are based on previous FP work such as AMC

[10]. Alongside this uni-processor algorithm sits multiprocessor scheduling anal-

ysis which utilises Audsley’s Optimal Priority Ordering [2]. The effectiveness of

the technique is evaluated against Deadline-Monotonic & Criticality-Monotonic

Priority Orderings and is shown as more effective.

2.4.2 Communication & Shared Resources

Access to shared resources and inter-task/processor communication are partic-

ularly challenging topics in Mixed Criticality systems. There is a clear issue

when considering the potential communication between low and high criticality
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tasks. For example, low −→ high, the low criticality task may overrun its dead-

line, sending a message late or not at all. Unless the high criticality task is able

to deal with potentially unreliable communication this could cause the system

to be unschedulable. Communicating from high −→ low still poses a problem;

consider a high criticality task attempting to send a message to a low criticality

task which is not ready to receive. This might be due to the task locking a

resource or high levels of interference. The high criticality task might suffer,

or even miss a deadline. It is clear that more stringent controls and protocols

are required to maintain suitable isolation, but allow controlled communication

where appropriate.

Burns and Davis [17] examine Mixed Criticality communication over a Con-

troller Area Network (CAN). They identify similar conflicting requirements to

MC scheduling: how to partition use of the network whilst sharing the capacity.

A Trusted Network Component (TNC) is key to their solution, a TNC allows

for message send requests to be monitored. If these requests are too frequent a

criticality mode change occurs. A triggering message [17] is an irregular message

that breaks the send request frequency for the current criticality level.

Similar issues exist around the access of shared resources. Yun et al. [42]

examine the problems around memory access, providing suitable isolation while

preventing intolerable interference. This problem is amplified once again by

the introduction of multi/many-core systems. Yun et al. [42] observe that,

using a standard controller, a task on an 8 core platform might have its WCET

extended by up to 300% while it accesses memory for only 10% of its execution

time. Clearly interference like this is prohibitive. To counter this they propose

a memory throttling technique, based upon the idea of monitoring the traffic

from each core. Budgets for memory access are dealt with in two ways:

• Static Budget Distribution: Each core has its own budget which is stat-

ically distributed from a global budget. All cores share the same period.

[42].

• Dynamic Budget Distribution:All throttled cores share a single global bud-

get & period. When each core accesses memory it consumes a portion of

the global budget. [42].

In this way Yun et al. [42] present a solution to control memory access by either

a static or dynamic scheme.

Hierarchical scheduling is one approach to scheduling on multi-core systems.

Lackorzynski et al. [27] observed that performance suffers when criticality levels
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are introduced. To remedy this they propose a method of Flattening Hierarchi-

cal scheduling, as covered Section 2.2.5.

2.5 Implementations/Frameworks

Among the current body of Mixed Criticality work, there are papers which look

at more practical issues surrounding the implementation of MC systems. Huber

et al. [24] suggests a resource management structure based on a Trusted Network

Authority (TNA) and a Resource Management Authority (RMA). The RMA

controls the resources available to any non-safety critical systems; the TNA

monitors these systems to ensure they do not interfere with the safety critical

applications.

Pellizzoni et al. [37] present a design methodology for SoC based Mixed

Criticality systems. This methodology is based upon the idea of Platform-

Based Design (PBD) [38] and the use of the Architectural Analysis and Design

Language (AADL) [20]. Their work focuses on fault tolerance and the isolation

of system components.

The issue of fault tolerance and error handling is also addressed by Axer et

al. [4]. They consider SoC based fault tolerance and suggest a check point based

system to deal with errors. These check points are created at regular intervals

during runtime, the system can be rolled back if an error occurs. However this

is only really applicable for soft real-time systems.

Baruah and Burns [9] present an implementation of a fixed priority scheme

in Ada. They consider the necessary runtime monitoring, mode change func-

tionality and how it might be implemented in Ada. They demonstrate this

behaviour by providing code patterns.

Neukirchner et al. [33] present a contract-based dynamic task management

system. The scheme covers a wide range of problems such as task management,

memory access, fault tolerance and appropriate functional isolation.

Integrated Dependable Architecture for Many Cores (IDAMC) [32] is an-

other, more complete scheme which aims to satisfy the Mixed Criticality goals

of isolation and high utilisation. This is achieved through the use of runtime

monitoring, and control/isolation of shared resources. IDAMC also considers

fault tolerance and recovery.
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2.6 Summary

The review above has covered the key works in what is a rapidly growing field.

Vestal’s [41] seminal work instigated this fresh study into Mixed Criticality

systems. This work is driven by industrial pressures and the increasing cost ef-

fectiveness of more powerful and advanced hardware. This has given rise to the

desire to consolidate functionality that might have traditionally been spread

across many systems. A Mixed Criticality system must manage the balance

between the efficient use of these resources while providing suitable levels of iso-

lation and assurance where required. Static and Dynamic scheduling approaches

have been considered alongside a raft of other, often more practically minded

schemes. As Mixed Criticality study has progressed it is becoming increasingly

clear that there is a need to support more complex system architectures with

multi-core or many-core support. It is also clear that current scheduling mod-

els are, largely, too simplistic. Such approaches are often limited to a single

processor and two criticality levels. There is a need to factor in issues around

communication, access to shared resources and error handling. Mixed Critical-

ity systems represent a fast moving and challenging area of research. Current

work provides a good foundation to allow future study to address additional

problems with a view to providing more comprehensive solutions.

In the rest of this work we address the issue of multiple criticality levels. As

indicated above much of the published work has restricted itself by considering

just two criticality levels. However standards such as ISO 26262, IEC 61508 and

DO-178B typically have 4 or 5 levels. As such is is necessary to ensure that the

analysis developed for two criticality scales appropriately to incorporate two or

more criticality levels.
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Chapter 3

The AMCrtb Approach

AMCrtb is a technique proposed by Baruah et al. [10] to provide schedulability

analysis for the AMC scheduling policy. The scheme expands upon standard

response time techniques in order to facilitate the properties of AMC. Baruah

et al. [10] show that AMCrtb strictly dominates SMC for 2 criticality levels, we

aim to extend the analysis beyond 2 levels to investigate whether this remains

valid. The following chapter will consider the initial analysis proposed in [10]

and an extension to this analysis to cope with more than 2 criticality levels. The

chapter is structured as follows; Section 3.1 considers the original dual criticality

approach, Section 3.2 presents the extensions to AMCrtb for 2 to n criticality

levels, Section 3.3 briefly adapts some additional approaches, SMC, SMC-NO

and CrMPO (Criticality Monotonic Priority Ordering) for n criticality levels,

Section 3.4 presents some illustrative results and Section 3.5 summarises the

Chapter.

3.1 Dual Criticality

The original analysis presented by Baruah et al. [10] is shown in Equations (3.1),

(3.2) and (3.3). There are two stages to the approach, the first is to consider the

LO and HI criticality levels individually and ensure they are schedulable. The

second stage is to consider the criticality change from LO to HI and ascertain

whether it is feasible. The first step is to assess the schedulability of each

criticality mode in the system.
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Stage 1A: Check the schedulability of the LO mode for all tasks.

Ri(LO) = Ci(LO) +
∑

j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (3.1)

Stage 1A considers all tasks in the LO criticality mode in order to ensure that

the system is schedulable in its LO mode. This equation is solved using standard

response time techniques for solving a recursive relation.

Stage 1B: Check the schedulability of the HI mode for HI tasks.

Ri(HI) = Ci(HI) +
∑

j∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) (3.2)

Where hpH is the set of all higher priority HI criticality tasks. Stage 1B consid-

ers only the HI criticality tasks executing to their HI criticality budgets. This

ensures that, once a criticality change has occurred, the system is schedulable.

The next step is to assess the schedulability of any HI criticality tasks exe-

cuting during a criticality level change.

Stage 2A: Calculate the schedulability of the criticality change for HI tasks.

R∗i (HI) = Ci(HI)+
∑

j∈hpH(i)

⌈
R∗i (HI)

Tj

⌉
Cj(HI)+

∑
k∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO)

(3.3)

Where hpH is the set of all higher priority HI criticality tasks and hpL is the set

of all higher priority LO criticality tasks. Stage 2A assesses the schedulability

of the criticality level change. The use of the static value for higher priority but

lower criticality tasks allows AMC to place an upper bound upon any potential

interference from low criticality tasks during a criticality change. This is possible

due to the way in which AMC handles a criticality level change. Under AMC,

all LO criticality tasks are suspended when a criticality change occurs, as such

during this time their ability to interfere with the high criticality tasks is limited.

This limit is the LO response time of the high task as after that time the system

will be running in the HI criticality mode, or the task will have completed and

no criticality change need occur.
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3.2 Many Criticality Levels

When considering n possible criticality levels we examine the two stages used

for dual criticality systems in 3.1. In stage one, rather than considering only the

LO and HI levels, here we examine each level, up to n, and determine whether

they are schedulable. In stage two we consider n − 1 criticality level changes,

for each change we seek to determine whether all tasks in the set will meet their

deadlines.

3.2.1 Stage One

Consider a system containing 5 distinct criticality levels, L1 . . . L5 where L1 >

L5. The analysis for L5 must consider the potential interference of all higher

priority tasks, regardless of criticality level (as L5 is the lowest level). To calcu-

late the interference suffered from higher priority L4 tasks we use the following

term: ∑
j∈hp(i)|Lj=L4

⌈
Ri(L5)

Tj

⌉
Cj(L5)

The algorithm looks for those higher priority tasks, τj , where the criticality level

(Lj) is equal to L4. This considers any interference suffered from a task at L4,

but uses their L5 values. The calculation can be completed to account for levels

L3 . . . L1 as shown in Equation (3.4).

Ri(L5) = Ci(L5)+
∑

j∈hp(i)|Lj=L4

⌈
Ri(L5)

Tj

⌉
Cj(L5) +

∑
k∈hp(i)|Lk=L3

⌈
Ri(L5)

Tk

⌉
Ck(L5) +

∑
l∈hp(i)|Ll=L2

⌈
Ri(L5)

Tl

⌉
Cl(L5) +

∑
m∈hp(i)|Lm=L1

⌈
Ri(L5)

Tm

⌉
Cm(L5)

(3.4)

This process is repeated for each of the remaining criticality levels to check

their schedulability. The tasks within each criticality level must be analysed

to determine whether they are schedulable. It is possible to generalise these

equations to one that can deal with 2 −→ n criticality levels. We must consider

the schedulability of n criticality levels individually.
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For each criticality level.

∀L ∈ 1 . . . n

For all tasks where the criticality level is greater than or equal to L.

∀τi|Li ≥ L

Calculate the response times for that level.

Ri(L) = Ci(L) +
∑

j∈hp(i)|Lj≥L

⌈
Ri(L)

Tj

⌉
Cj(L) (3.5)

Equation (3.5) considers the response time of task τi at criticality level L by

accounting for any interference from higher priority tasks with a criticality level

greater than or equal to L. This test is repeated for each of the n criticality

modes. In this way response times are calculated for all of the modes a task

might execute in, up to their criticality level. Equations (3.1) and (3.2) are the

dual criticality application of Equation (3.5).

3.2.2 Stage Two

In addition to assessing the schedulability of each criticality level, it is necessary

to consider the behaviour of the system during a criticality change. Criticality

changes are assumed to be sequential, if L5 is the lowest and L1 the highest

then the system must go from L5 −→ L4 −→ L3 −→ L2 −→ L1. Therefore in

the worst case a task at L1 could suffer interference from each criticality level

during the final change from L2 −→ L1.

When assessing the interference suffered during a criticality change we must

consider two groups of tasks. The first group are those tasks of a higher priority

and with a criticality level greater than or equal to the task in question. The

interference from these tasks has already been considered in the analysis for

each criticality level shown above. As AMC suspends tasks with a criticality

lower than the level the system is currently in, the analysis considers only higher

priority tasks with a criticality greater than or equal to the current level.

The second group are those tasks with a higher priority but a lower criticality

level. It is clear that under AMC, those tasks with a higher priority but lower

criticality will have a bounded effect on a higher criticality task if a criticality

change occurs (due to AMC suspending lower criticality tasks).
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Figure 3.1: Bounded interference example

Consider the case in Figure 3.1, two tasks are executing τ1(L1) and τ2(L2)

where L1 > L2 and τ2 has the highest priority. A criticality change occurs at the

instant shown, prior to that both τ1 & τ2 have been running at criticality level

L2. After the criticality change τ1 continues to execute and τ2 is suspended.

From this it is possible to see that any interference that τ1 might suffer from

higher priority tasks at criticality level L2 is bounded by its own L2 response

time, R1(L2). As such the interference suffered by a task from a lower criticality

level is bounded by its response time at that level.

The interference caused by task τ2 can be calculated.⌈
R1(L2)

T2

⌉
C2(L2)

The value R1(L2) represents τ1’s response time at criticality level L2. This

can be generalised to include all higher priority, lower criticality tasks.

∑
k∈hp(i)|Lk<Li

⌈
Ri(Lk)

Tk

⌉
Ck(Lk)

Here we consider all tasks with a higher priority than τi where the criticality

level is lower. Ri(Lk) is the response time of τi at the criticality level of τk. It is

worth noting that these values are static and do not change upon each iteration.

The use of a response time value for a task’s criticality level and those below

implies that the criticality change analysis must begin at the lowest criticality

level and ascend. Thus producing the response time values required to bound

the interference suffered from lower criticality tasks.

If we combine the analysis for the higher priority tasks with a criticality level

greater than or equal to Li and the analysis for the higher priority tasks with a

criticality level less than Li we can produce an algorithm to assess the feasibility

of the criticality level changes in a system. In a system with n criticality levels

we must consider n− 1 criticality level changes.
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For each criticality level.

∀L ∈ 1 . . . n

For all tasks where the criticality level is greater than or equal to L

∀τi|Li ≥ L

Beginning at the lowest criticality level, calculate the schedulability of each

criticality change.

R∗i (L) = Ci(L) +
∑

j∈hp(i)|Lj≥L

⌈
R∗i (L)

Tj

⌉
Cj(L) +

∑
k∈hp(i)|Lk<L

⌈
Ri(Lk)

Tk

⌉
Ck(Lk)

(3.6)

The algorithm shown in Equation (3.6) will assess the schedulability of the

criticality changes within a task set containing 2 −→ n criticality levels. This

combined with the algorithm in Equation (3.5) provides an AMCrtb schedula-

bility test generalised to greater than 2 levels of criticality.

3.3 Adapting Additional Approaches

The main focus of this work is on extending AMCrtb and AMCmax. In or-

der to compare their performance with their competitors we must consider the

extension of these algorithms as well. We will briefly discuss the extension of

Criticality Monotonic Priority Ordering (CrMPO), SMC-NO or Vestal’s Origi-

nal algorithm [41] and SMC (Static Mixed Criticality).

3.3.1 CrMPO

Criticality Monotonic Priority Ordering is the most simplistic of the techniques

and is easily the least efficient. Tasks are given priorities based upon their

criticality level, the higher the criticality level the higher the priority. If there

are multiple tasks of the same criticality level these tasks are assigned priorities

in deadline monotonic order. The schedulability of the resulting ordering is then

determined via standard response time analysis.
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Standard Analysis:

Ri = Ci +
∑

τj∈hp(τi)

⌈
Ri
Tj

⌉
Cj (3.7)

CrMPO does not take into account multiple WCETs depending upon the crit-

icality level, it simply schedules each task, at its criticality level. However, the

criticality monotonic ordering does avoid the problem of Criticality Inversion,

(Lower criticality tasks with higher priorities interfering with high criticality

tasks).

3.3.2 SMC-NO

Vestal’s algorithm [41], or SMC-NO Static Mixed Criticality with No runtime

monitoring, is a scheme based around standard response time techniques and

utilises Audsley’s Optimal Priority Assignment algorithm [2] to produce a pri-

ority ordering.

SMC-NO:

Ri(Li) = Ci(Li) +
∑

τj∈hp(τi)

⌈
Ri(Li)

Tj

⌉
Cj(Li) (3.8)

The use of Cj(Li) implies that the WCET value is required for the criticality

level Li. As SMC-NO does not support run-time monitoring and criticality

inversion is not avoided, the values used in the analysis must be verified up

to the criticality level of the task in question. Therefore lower criticality tasks

would have to be verified up to the same level as those higher criticality tasks,

this is prohibitively expensive.

3.3.3 SMC

Although SMC supports criticality change functionality no extension is required

to allow for 2 −→ n criticality levels. The analysis for SMC is straight forward,

the analysis shown below is used in conjunction with Audsley’s Optimal Priority

Assignment algorithm [2]. SMC:
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Ri(Li) = Ci(Li) +
∑

τj∈hp(τi)

⌈
Ri(Li)

Tj

⌉
Cj(min(Li, Lj)) (3.9)

The use of Cj(min(Li, Lj)) is to indicate that the WCET value used should be

the lower of the two values, for Cj(Li) or Cj(Lj).

3.4 Some Illustrative Results

In order to determine whether AMCrtb remains dominant over SMC we applied

both algorithms, as well as Criticality Monotonic Priority Ordering (CrMPO)

to randomly generated task sets. Further details of the experimental set-up can

be found in Chapter 6. The graphs below briefly illustrate the performance of

AMCrtb against other approaches.

Figure 3.2: AMCrtb, SMC and CrMPO with 2 criticality levels.
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Figure 3.3: AMCrtb, SMC and CrMPO with 5 criticality levels.

Figure 3.2 and Figure 3.3 show the performance of AMCrtb and SMC at 2

and 5 criticality levels respectively. It is clear to see that AMCrtb maintains its

dominance over SMC at 2 and 5 criticality levels. This solidifies and extends the

conclusion made by Baruah et al. [10] that AMCrtb strictly dominates SMC.

3.5 Summary

The above chapter outlines AMCrtb and how it is extendible to many criti-

cality levels. It also discusses the differences between SMC and AMCrtb and

demonstrates that AMCrtb remains the dominant algorithm. This is shown via

analytical discussion and experimental results1.

1See Chapter 6 for further experimental work
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Chapter 4

The AMCmax Approach

AMCmax is presented as an alternative solution by [10] to assess the schedu-

lability of a task set running under the AMC scheduling policy. As described

in the Chapter 3, AMCrtb (AMC Response Time Bound), the other algorithm

proposed in [10] is very much an extension of standard response time techniques

applied to the mixed criticality problem. AMCmax, however, utilises a novel

approach to find the worst case response time of a task. AMCmax exploits the

idea that a criticality change may occur only when a task reaches its execution

budget for the current criticality level without signalling completion, therefore

there are a finite set of points at which the criticality change might take place.

By examining the execution of a task set, it is possible to determine which of

these points might lead to the worst case response time. The work is organised

as follows, Section 4.1 describes AMCmax in further detail and considers the

dual criticality analysis presented in [10], Section 4.2 explores the extension of

the analysis to 3 and eventually n possible criticality levels, Section 4.3 considers

some experimental results and provides an evaluation and Section 4.4 provides

a summary.

4.1 Original Analysis

In this section we will consider the original analysis presented by Baruah et

al. [10], this analysis is restricted to dual criticality levels, LO and HI. As

such the following discussion will consider one criticality change at time s. As

we established above, a criticality level change can occur only when a task
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executes to its budget without signalling completion. There are a finite number

of points in time at which this change might take place. It is possible to bound

these points as the criticality change must occur sometime between the start of

execution, time 0 and the LO response time (Ri(LO)). AMCmax uses these

points and seeks to determine the point at which the worst case phasing for a

HI criticality task might occur.

Figure 4.1: Example AMCmax criticality change.

Figure 4.1 shows a criticality change occurring and the system moving into

the HI mode. The diagram also shows the Interference suffered in both the LO

and HI modes. The possible times of s are shown by the shorter arrows and

the time of the criticality change by the long arrow. Baruah et al. [10] illustrate

this change with Equation (4.1), showing the calculations required to determine

the response time of a high criticality task if the change occurs at time s.

Rsi (HI) = Ci(HI) + IL(s) + IH(s) (4.1)

From Equation (4.1) it is easy to see the two segments of interference we must

assess, IL and IH . These sections are also shown in Figure 4.1.

The technique used to assess the response time of low criticality tasks is

straightforward, it can be seen in Equation (4.2):

IL(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO) (4.2)
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Where hpL(i) denotes the sum of high priority, LO criticality tasks. The equa-

tion follows standard response time techniques but utilises the floor function

rather than ceiling. The floor function is used to ensure that all tasks are

accounted for immediately upon release. This algorithm is also used when cal-

culating the LO response times of all tasks, in this case Rsi (LO) is used rather

than s.

Having considered the Low criticality tasks we can return to Equation (4.1).

Baruah et al. [10] consider how to calculate the response time of a high criticality

task. They consider the high mode as an interval of t− s where t > s. t is the

response time of the task and is the value that is replaced in each iteration. The

number of releases in this interval, t− s, can be calculated:⌈
t− s
Tk

⌉
+ 1

This can be extended for cases where Di < Ti:⌈
t− s− (Tk −Dk)

Tk

⌉
+ 1

The full calculation is shown in Equation (4.3) presented in the form of a func-

tion M . With input parameters k, s and t, where k is the task, s is time s and

t is time t (or the response time replaced into the equation).

M(k, s, t) = min

{⌈
t− s− (Tk −Dk)

Tk

⌉
+ 1,

⌈
t

Tk

⌉}
(4.3)

The use of Ceiling +1, in Equation (4.3), is to account for the completion of

all tasks within the interval s . . . Ri(HI). Rare cases are possible where the

calculation is overly pessimistic, to deal with this the function ensures that the

value returned is no greater than the total number of releases.

The number of releases in the LO criticality mode is easily calculable by

removing the results of Equation (4.3) from the total number of releases.(⌈
t

Tk

⌉
−M(k, s, t)

)
Ck(LO)

35



Therefore IH(s) is:

IH(s) =
∑

k∈hpH(i)

{
(M(k, s, t)Ck(HI)) +

((⌈
t

Tk

⌉
−M(k, s, t)

)
Ck(LO)

)}
(4.4)

And thus the full equation:

Rsi =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)+

∑
k∈hpH(i)

{
(M(k, s,Rsi )Ck(HI))+

((⌈
Rsi
Tk

⌉
−M(k, s,Rsi )

)
Ck(LO)

)}
(4.5)

And:

Ri = max(Rsi )∀s

Finally they look at which points of s, within 0 . . . Ri(LO) require consideration.

Baruah et al. [10] note that the amount of low criticality interference increases

(as a step function), as the value of time s increases, this is due to an increased

amount of time spent in the low criticality mode. Similarly the high criticality

interference decreases as the low increases. Therefore the response time changes

only at the release of a low criticality job, thus we can limit our search to points

of s where a LO criticality job is released. It is worth noting that although this

behaviour is applicable to the current model, in reality a criticality change could

occur whenever any task does not signal completion.

4.2 Extending the Analysis

In the section below we consider the extensions required to allow AMCmax

to facilitate greater than 2 levels of criticality. The first Section considers the

extension to 3 criticality levels (HI, ME, LO), the second Section considers a

similar 3 criticality task system (using levels A, B and C) but explains how the

process described during the extension from 2 to 3 criticality levels is applicable

for any number of additional levels.

36



4.2.1 Adding a Medium Level

It is possible to extend the original analysis for AMCmax to include a medium

(ME) criticality level.

It is important to reconsider the original premise of the algorithm, locating

the time during execution that a criticality change occurs. For two criticality

levels this change occurs at time s, therefore when considering 3 criticality levels

(LO,ME,HI) there will be two possible criticality changes. For each criticality

change from level LO to ME there will be a number of criticality changes from

ME to HI.

Figure 4.2: AMCmax with three criticality levels.

The diagram shown in Figure 4.2 considers the change from LO −→ ME

and ME −→ HI. Time s1 is the time at which the LO −→ME change occurs

and time s2 is the time at which the ME −→ HI change occurs. For each point

of time s1, there will be a number of points of time s2 to check. Where time

s2 ≥ s1 and s2 ≤ Ri(ME).

We can produce a formula for high criticality tasks, similar to Equation

(4.1), for 3 criticality levels.

Rsi (HI) = Ci(HI) + IL(s) + IM (s) + IH(s) (4.6)

And thus the medium:

Rsi (ME) = Ci(ME) + IL(s) + IM (s) (4.7)
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The analysis for the first criticality level (LO) will remain the same using the

value of s1 rather than s (see Equation (4.2)).

Although each algorithm calculates the response time for its criticality level

and those below, these might not be the worst case values. As such response

times will need to be calculated for a task’s criticality level and those below using

a separate algorithm for each level. For example, the ME response time pro-

duced during the calculation of Rsi (HI) might lead to the highest HI response

time, but not the highest ME value. Each criticality level must be checked in

order to ensure that deadlines can be met at that level.

Like AMCrtb, the nature of the algorithm requires that the criticality levels

be calculated in order (lowest to highest). However AMCmax does not utilise

the response time values produced for the lower levels directly, rather they are

used to provide an upper bound to the time in which points of s (the criticality

change) can occur. For example the upper bound on time s1 in a 3 criticality

system is Rsi (LO), therefore for a medium criticality task, the value of Rsi (LO)

must be calculated before Rsi (ME). This is because the value Rsi (LO) is used to

provide an upper bound on the possible points of s1 when analysing the response

time of the ME criticality level of τi. Response time values are required for a

task at its criticality level and all those below.

Having established that the low criticality analysis will remain the same we

must consider the medium level. As, at the medium level we are only dealing

with one criticality change, the analysis is similar to the HI analysis for two

criticality levels.

The ME mode as it is the highest mode in this case, is calculated using the

method M, defined in Equation (4.3).

M(k, s1, Ri(ME))

By removing the above from the total number of releases we can calculate the

interference suffered in the LO mode.(⌈
Ri(ME)

Tk

⌉
−M(k, s1, Ri(ME))

)
Ck(LO)

The medium response time can be seen in Equation (4.8):
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Ri(ME) =
∑

j∈hpL(i)

(⌊
s1
Tj

⌋
+ 1

)
Cj(LO)+

∑
k∈hpM(i)

{
M(k, s1, Ri(ME))Ck(ME)+

(⌈
Ri(ME)

Tk

⌉
−M(k, s1, Ri(ME))

)
Ck(LO)

}
(4.8)

Where:

Ri(ME) = max(Rsi (ME))∀s1

The algorithm presented above for the medium criticality level is similar

in structure to the high criticality calculation for two criticality levels. The

high criticality calculation for three criticality levels is more problematic. The

calculation for the LO level will remain the same, using floor +1 to account for

all releases (see Equation (4.2)). The medium level is a little more challenging

as it represents the intermediary time between s1 and s2. If a medium or high

criticality job is mid execution when the criticality change occurs it is given its

medium criticality budget to complete, such a task must be considered as a full

execution within the medium mode. If the criticality change is triggered from

ME to HI whilst a HI criticality task is mid execution, this will be considered

as a high criticality execution and thus need not be considered in the medium

mode. During this time all task releases must be taken into account, for this we

can use the floor +1 function.

However a medium or high criticality task cannot trigger the change from

LO to ME, we need only consider the points of s1 on which a low criticality task

are released. Therefore we must consider how a medium or high criticality task

might execute across two or more criticality levels.
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Figure 4.3: A criticality change showing execution of Task 1 in two modes.

Figure 4.3 shows two tasks, Task 1 and Task 2. Task 1 has the highest

criticality but the lowest priority, thus Task 2 has the lowest criticality but

the highest priority. The diagram shows Task 1 running, it is pre-empted by

Task 2 which reaches its budget for the low criticality level without signalling

completion. As Task 2 is only a low criticality level task, under AMC it is

dropped and Task 1 resumes its execution in the higher mode with its extended

budget. From this it is clear to see how, even though the task that caused the

criticality change may get dropped, any task of a suitable criticality level with

execution time still to complete might execute in the new criticality mode. The

diagram also illustrates the need to ensure that a task which executes over two

criticality levels is included only in the higher of the two criticality levels, to

include it in both would introduce an unnecessary level of pessimism.

In order to include this in our algorithm we must define a new function,

similar to M, this function is shown in Equation (4.9).

N(k, s1, s2) =

⌊
s2 − s1 − (Tk −Dk)

Tk

⌋
+ 1 (4.9)

Function N makes use of the floor +1 calculation to provide the interference

suffered between time s1 and s2. Therefore the following will provide the ME

criticality interference for a high criticality task τi:

N(k, s1, s2)Ci(ME)

Following this we can define each of the stages in the calculation shown in

Equation (4.6):
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IL(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)

IM (s) =
∑

k∈hpM(i)

{
N(k, s1, s2)Ck(ME) +

(⌈
s2
Tk

⌉
−N(k, s1, s2)

)
Ck(LO)

}

IH(s) =
∑

k∈hpH(i)

{
M(k, s2, t)Ck(HI) +N(k, s1, s2)Ck(ME)+

(⌈
t

Tk

⌉
−N(k, s1, s2)−M(k, s2, t)

)
Ck(LO)

}

It is worth emphasising that the calculation for the medium mode here is differ-

ent than in Equation (4.8), this is due to the fact that the medium mode here is

defined as the time between s1 and s2 and is therefore subject to calculation us-

ing the N function rather than M. This brings up an important observation, for

systems with greater than two criticality levels, there are three distinct stages.

Stage one is the low calculation, this calculation always remains the same (see

Equation (4.2)). Stage two is the intermediary stage, any criticality level which

is bounded by two points of s, or any criticality level which is not the lowest or

the highest. Stage three is the highest criticality level, the calculation for this

level always utilises the M function.

The full calculation for Rsi (HI) is shown in Equation (4.10):

Rsi (HI) = Ci(HI) +
∑

j∈hpL(i)

(⌊
s1
Tj

⌋
+ 1

)
Cj(LO)+

∑
k∈hpM(i)

{
N(k, s1, s2)Ck(ME) +

(⌈
s2
Tk

⌉
−N(k, s1, s2)

)
Ck(LO)

}
+

∑
l∈hpH

{
M(l, s2, R

s
i (HI))Cl(HI) +N(l, s1, s2)Cl(ME)+

(⌈
Rsi (HI)

Tl

⌉
−N(l, s1, s2)−M(l, s2, R

s
i (HI))

)
Ci(LO)

}
(4.10)

Where:

41



Rsi (HI) = max(Rsi (HI))∀s

The calculations are performed following the structure shown in Figure 4.4.

for all s1 where 0 ≤ s1 < Rsi (LO) do
for all s2 where s1 ≤ s2 < Rsi (ME) do

AMCmax()
end for

end for

Figure 4.4: The structure of execution for AMCmax over 3 criticality levels.

As mentioned in section 4.1, in a dual criticality system, Baruah et al. [10]

note that the HI criticality response time of a task increases only on the releases

of LO criticality tasks. Therefore these releases are the only points of s we need

check. The same principle applies when dealing with greater than two criticality

levels. During a change from the ME to the HI mode we consider points of s2,

as the value of Ri(HI) can only increase on the release of a ME criticality task,

we need only check these points of s2 where an ME task is released.

4.2.2 To n Criticality Levels

The process of adding additional criticality levels to a system is best illustrated

by re-considering the extension from 2 to 3 criticality levels. The Section below

describes this process and explains how it might be repeated to account for n

possible criticality levels.

Consider the case of two criticality levels A and B, where A is the lowest

criticality level in the system, (B > A). We would use the analysis from Section

2, this is repeated below for convenience.

Ri(B) = Ci(B) +
∑

j∈hpA(i)

(⌊
s1
Tj

⌋
+ 1

)
Cj(A)+

∑
k∈hpB(i)

{
(M(k, s1, Ri(B))Ck(B)+

((⌈
Ri(B)

Tk

⌉
−M(k, s1, Ri(B))

)
Ck(A)

)}
(4.11)
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Where hpA refers to all higher priority, criticality A tasks and hpB refers to all

higher priority, criticality B tasks.

In order to determine the response time of a level B task, AMCmax considers

points of s where the criticality change might occur. These points are bounded

by the Ri(A) response time of the task in question. If this system were also to

include a criticality level C, such that C > B > A then a criticality change might

occur at any point (s2) between the original change from A to B, point s, and

the task’s response time in criticality mode B, Ri(B). To show this we can look

to Equation (4.10) which deals with a three criticality system and makes use

of the function N shown in Equation (4.9) to calculate the interference between

two points of sn.

The calculation for the A criticality tasks remains the same, we use s1 rather

than s in order to differentiate between criticality changes.

∑
j∈hpA(i)

(⌊
s1
Tj

⌋
+ 1

)
Cj(A)

The calculation for the B criticality tasks changes to make use of the function

N (see Equation (4.9)) as it is now used to determine the interference suffered

between two points of s. The criticality A interference is calculated by removing

the number of releases, as calculated by function N from the total number of

releases. ∑
k∈hpB(i)

{
N(k, s1, s2)Ck(B) +

(⌈
s2
Tk

⌉
−N(k, s1, s2)

)
Ck(A)

}

Finally we may consider the calculation for criticality level C. Functions M and

N are used in order to calculate the interference a criticality C task might suffer

in modes C and B respectively. Both functions M and N are removed from the

total number of releases to calculate the criticality A response time.

∑
l∈hpC

{
M(l, s2, Ri(C))Cl(C) +N(l, s1, s2)Cl(B)+

(⌈
Ri(C)

Tl

⌉
−N(l, s1, s2)−M(l, s2, Ri(C))

)
Ci(A)

}
Where hpC refers to all higher priority tasks of criticality level C. The final

calculation is shown in Equation (4.12).
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Ri(C) = Ci(C) +
∑

j∈hpA(i)

(⌊
s1
Tj

⌋
+ 1

)
Cj(A)+

∑
k∈hpB(i)

{
N(k, s1, s2)Ck(B) +

(⌈
s2
Tk

⌉
−N(k, s1, s2)

)
Ck(A)

}
+

∑
l∈hpC

{
M(l, s2, Ri(C))Cl(C) +N(l, s1, s2)Cl(B)+

(⌈
Ri(C)

Tl

⌉
−N(l, s1, s2)−M(l, s2, Ri(C))

)
Ci(A)

}
(4.12)

Where:

Ri(C) = max(Rsi (C))∀sn

Equation (4.12) shows how Ri(C) can be calculated by considering points of s1

where the change from A to B might occur and points of s2 where the change

from B to C might occur.

If we were to extend this system to introduce a 4th criticality level, D, we

would follow the same steps as we did for criticality level C. Consider points

for the criticality change from C to D at time s3 bounded by the criticality C

response time, Ri(C). It is important to note that the function N is always used

to calculate the number of releases between two points of s and the function M

is always used to calculate the response time at the highest criticality level in

the system.

Figure 4.5 shows the system analysed in Equation 4.11. The system has two

criticality levels A and B.

Figure 4.5: A system with modes A and B.
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If a 3rd criticality level is introduced, C, points of s2 are considered between

s1 and Ri(A). The addition of level C is shown in Figure 4.6.

Figure 4.6: The system with modes A and B with an additional level, C added.

This process of adding another set of points to check for each criticality level

may be repeated to account for as many criticality levels as desired. However,

the computational load increases almost exponentially with the number of crit-

icality levels in the system. Increasing the number of tasks to be analysed or

increasing the difference between the WCETs of each criticality level will also

have an impact on the level of computation required.

It is worth noting that calculating the criticality level A response time by

removing the response times of criticality levels B and C from the total number

of releases could cause undue pessimism. The calculations for levels B and C

are, by the nature of this analysis, pessimistic. In rare cases, removing these

values from the total number of releases could imply a criticality A response

time of less than 0. Clearly this is not desirable behaviour. As such checks

must be in place to ensure that the criticality level A response time is at least

0 (assuming that a criticality level A task is released first).

4.3 Some Illustrative Results

Although [10] shows that AMCmax dominates AMCrtb, it is also clear that

AMCmax is a far more computationally intensive test. In order to assess firstly

whether AMCmax maintains its dominance as the number of criticality levels

is increased and secondly whether the number of additional schedulable tasks

is significant enough to warrant the use of the more expensive AMCmax, we

tested the algorithms against sets of artificially generated task sets (The specifics
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behind the task generation are covered in Chapter 6).

tasks, L2 with 3 tasks, L3 with 2 tasks and L4 with 2 tasks, where L4 > L1.

The following graphs show AMCrtb, AMCmax and SMC. Due to the nature

of mixed criticality task sets it is possible for a task set to appear to have a util-

isation greater than 1, as we consider a task’s utilisation at its own criticality

level, not the lowest.

Figure 4.7: AMC, AMCmax and SMC . 2 Criticality Levels
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Figure 4.8: AMC, AMCmax and SMC . 5 Criticality Levels

Figures 4.7 & 4.8 show the performance of AMCmax relative to AMC at

2 and 5 criticality levels respectively. It is immediately obvious that the al-

gorithms maintain their relative effectiveness, despite the additional criticality

levels. This is perhaps the most significant result of the experimentation as it

furthers the claims of [10] that AMC strictly dominates SMC and AMCmax

strictly dominates AMCrtb. However the margin between AMCrtb and AMC-

max remains small, as such there are cases where it might be justifiable to use

AMCrtb rather than AMCmax. Although AMCmax dominates AMCrbt it does

so at significant processing cost. As the number of criticality levels is increased

the computational time required increases significantly. This is because each

level adds additional sets of points of s to search. Coupled with the need to

implement Audsley’s Optimal Priority Assignment algorithm [2], AMCmax is

extremely computationally intensive.

4.4 Summary

To summarise, it is possible to extend AMCmax to facilitate n levels of criti-

cality, as we have shown above. However, the nature of searching many points

of s within many points of s is extremely computationally intensive. remains

to be seen whether the schedulability gain provided by AMCmax is significant
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enough to warrant the higher workload.
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Chapter 5

Period Transformation

Period Transformation (PT) is an older scheduling scheme that has been consid-

ered for use in Mixed Criticality Systems. The original technique [39] involves

transforming the periods, deadlines and worst-case execution time/s of each

task in a set in order to create a harmonic task set. A harmonic task set is a

set in which all task periods are multiples of each other. The advantage of such

a set is that if a transformed task set has a utilisation ≤ 1, it is schedulable

under Rate Monotonic priority assignment. It is clear that such a bound is at-

tractive as theoretically, 100% CPU utilisation is possible. However by dividing

up tasks in this way will significantly increase the number of context switches

and require some form of run-time monitoring to ensure the transformed tasks

execute correctly. These additional overheads may be relatively high and are

perhaps one of the key reasons for the poor industrial uptake of Period Transfor-

mation. Recently PT has been reconsidered for application to MC systems. The

following section considers the original PT analysis, extensions for MC systems

and its flaws. Section 5.1 describes the original PT analysis, Section 5.2 presents

Vestal’s approach [41], Section 5.3 considers some improvements to this analy-

sis, Section 5.4 extends the work beyond 2 criticality levels, Section 5.5 presents

a small set of experimental results and Section 5.6. provides a summary.

5.1 Standard Period Transformation

The purpose of period transformation was originally to allow any task set to be

made harmonic. All tasks within a set are reduced by a factor, n, where τj is
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the task with the shortest period.

n =
Tj
Ti

And thus the transformed period of τj , T
′

j , would be equal to.

T
′

j = Tj/n

This transformation would standardise each period with a task set, making the

set harmonic and thus subject to ≤ 1 utilisation bound for Rate Monotonic

schedulability.

Consider the following example show in Table 5.1.

τ C T/D
1 4 8
2 10 20

Table 5.1: Period Transformation Example

Using Rate Monotonic assignment, τ1 would be assigned the highest priority.

Using standard Response Time Analysis (RTA) it is clear that this task set is

not schedulable.

Period Transformation can be applied to transform τ2 in order to make the

task set harmonic.

n =
20

8

In this case τ2 will need to be reduced by a factor of 2.5.

T
′

2 = 20/2.5

C
′

2 = 10/2.5

The transformed task will be identical to τ1 with a period of 8 and an execution

time of 4. Although the utilisation of this new task set is equal to 11, the task

set is harmonic, therefore its utilisation is ≤ 1 and is schedulable under RM

assignment.

14/8 + 4/8
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5.2 Vestal’s Period Transformation

Vestal [41] proposed a Mixed Criticality scheduling approach based upon Period

Transformation. He uses PT, not to create a harmonic task set, but to allow

for a Criticality and Rate Monotonic based priority ordering which has been

shown not to be optimal for untransformed MC systems [41]. The approach,

which focuses on just two criticality levels HI and LO, proposes that only those

HI criticality tasks with periods greater than or equal to that of the shortest

LO criticality period be transformed. This will allow all HI criticality tasks to

attain a higher priority than the LO and thus avoid the problem of priority

inversion.

This gives us 3 groups of tasks. Those of a LO criticality, these do not

need transformation. Those with a HI criticality but a period shorter than the

shortest LO criticality task, these do not need transformation. Finally those

with a HI criticality with a period greater than that of the shortest LO criticality

task, these are the tasks that must be transformed.

The analysis of HI criticality tasks, in the HI mode is done via standard

response time techniques on untransformed task sets. The analysis for the LO

criticality mode is detailed as follows.

As we are no longer creating harmonic task sets we calculate n slightly

differently:

n =

⌈
Tj
Ti

⌉
We use the ceiling function to ensure that our calculations remain integers.

At runtime, transformed tasks are expected to execute up to their Cj(HI)/n

until they reach their untransformed, Cj(LO), only then can we determine if a

task will overrun its LO execution bounds and a mode change would need to

occur. Transformed tasks, running in the LO mode execute in Cj(HI)/n time

slices until Cj(LO).

Consider the example task set in Table 5.2.

τ C(LO) C(HI) T/D L
i 2 - 5 LO
j 5 10 25 HI

Table 5.2: Untransformed Mixed Criticality Example

Task 2 is transformed by a factor of 5 to allow it the highest priority. The

resulting task set is shown in 5.3.
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τ C ′(LO) C ′(HI) T’/D’ L
i 2 - 5 LO
j 1 2 5 HI

Table 5.3: Transformed Mixed Criticality Example

Figure 5.1: Cj(HI)/n slices completing within Cj(LO)

Figure 5.1 shows the transformed task set shown in Table 4 executing in its

LO mode. As τj is the transformed task, each Cj(HI)/n = 2, Cj(LO)/n = 1

and its original (untransformed) Cj(LO) execution budget is 5. The transformed

task executes for its Cj(HI)/n but completes early on its 3rd execution and is

therefore still operating in the LO criticality mode.

The number of transformed dispatches could be calculated as follows:⌈
Ri
Tj/n

⌉
The number calculated above will contain several complete executions of Cj(LO)

and a remainder, this remainder can execute for no longer than Cj(LO) so vestal

assumes this value. He calculates the number of transformed executions which

complete to Cj(LO): ⌊
Ri
Tj

⌋
Cj(LO)

So including the added pessimism of those transformed executions that do not

complete, the total interference from τj can be summed as follows.⌊
Ri
Tj

⌋
Cj(LO) + Cj(LO)
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Figure 5.2 shows complete executions of Cj(LO) , transformed executions,

Cj(LO)/n and incomplete transformed executions that do not consist of an

entire execution of Cj(LO).

Figure 5.2: An example showing transformed executions constituting a complete
Cj(LO)

Clearly there are several disadvantages to Vestal’s technique. The use of

Ci(LO) to account for transformed releases which do not constitute an entire

Ci(LO) is clearly overly pessimistic. Vestal’s approach also loses one of the

key properties of Period Transformation, the ability to create harmonic task

sets and, by proxy, the ≤ 1 utilisation bound for RM schedulability. Although

not all tasks are transformed it is likely that by transforming the HI tasks the

number of context switches will increase significantly. This coupled with the

need to monitor transformed executions to ensure the correct sections of code

are executing will cause PT overheads to remain, perhaps prohibitively, high.

5.3 Improving the Analysis

In his analysis, Vestal [41] assumes a value of Ci(LO) for the remaining trans-

formed executions, Ci(HI)/n that do not constitute a complete execution of

Ci(LO). This value, although an effective upper bound, is undesirably pes-

simistic. The work below considers a more accurate approach to finding the

interference from transformed executions that do not constitute a complete un-

transformed execution.
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We still calculate the number of complete executions of Cj(LO):⌊
Ri
Tj

⌋
Cj(LO)

The analysis differs here, rather than just assuming the value of Cj(LO) for all

remaining transformed executions, we seek to determine the size of the incom-

plete interval. To find the size of the remaining interval, P , we do the following:

P = Ri −
⌊
Ri
Tj

⌋
Tj

And thus we use the value P , to calculate the number of transformed executions

within the remaining interval:

x =

⌈
P

Tj/n

⌉
Cj(HI)

n

Therefore the complete calculation will include the transformed tasks within the

incomplete interval and the complete executions of Cj(LO). This is shown in

Equation [5.1].

min{x,Cj(LO)}+

⌊
Ri
Tj

⌋
Cj(LO) (5.1)

The interference suffered from the transformed tasks within the incomplete in-

terval will be the minimum of x or Cj(LO). The use of min{} ensure that we are

not overly pessimistic as the remaining interval cannot be greater than Cj(LO).

This coupled with the standard techniques used to analyse the HI criticality

mode provide the analysis for dual criticality systems with Period Transforma-

tion.

5.4 Greater Than Two Criticality Levels

In-keeping with the nature of this work we then considered how the more accu-

rate analysis presented above might be adapted to work in a system with greater

than two criticality levels. The analysis itself is applicable with little alteration.

As task sets will be ordered in Criticality Monotonic order any task with a

criticality level less than the current, Li, cannot cause interference. Those higher

criticality, transformed tasks will be allowed to execute for their transformed

execution time at their criticality level, Cj(Lj)/n until their untransformed
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budget at the current criticality level, Cj(Li). If execution continues then a

criticality change will occur. The number of complete executions of Cj(Li)

within the interval can be calculated.⌊
Ri
Tj

⌋
Cj(Li)

And therefore we calculate the interference in the remaining time period from

the transformed executions.

P = Ri −
⌊
Ri
Tj

⌋
Tj

x =

⌈
P

Tj/n

⌉
Cj(Lj)

n

The complete calculation for n criticality levels is shown in Equation [5.2].

min{x,Ci(Li)}+

⌊
Ri
Tj

⌋
Cj(Li) (5.2)

As can be seen, the analysis is almost directly applicable. The key challenge is

the transformation of the tasks in such a way that a criticality monotonic order

is created.

The transformation technique proposed by Vestal required those tasks of

a higher criticality level, with a period longer than the shortest period of any

LO task, to be transformed. Following this, when considering more than two

criticality levels it might be tempting to transform all higher criticality tasks

with a period greater than the shortest period of any LO task. However this is

problematic. Consider the example in Table 5.4.

τ T L
1 80 HI
2 110 ME
3 100 LO

Table 5.4: 3 Criticality Level PT Example, Untransformed

Of the three tasks shown in Table 5.4, Task 2 is the only one requiring

transformation as it has a period greater than that of Task 3’s. We can calculate

the transformation factor, n, as follows:
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n =

⌈
110

100

⌉
Thus n = 2, this will give Task 2 a transformed period of 55, less than the period

of Task 1. The set is not criticality monotonic and, as such, it is clear that this

calculation will not suffice.

Instead the process must be iterative, beginning at the lowest criticality level

and moving upwards considering any tasks in the level immediately above. Tasks

in the level immediately above are transformed if their period is greater than

the shortest period at the current level. To illustrate this, re-consider Table 5.4.

We begin the transformation by considering the lowest criticality level, Task 2

is in the ME level, immediately above Task 3 which is LO. Task 2 has a larger

period than Task 3, thus as before we transform Task 2 by a factor of 2, giving

it a new period of 55. Next we consider any tasks in the level immediately above

ME, Task 1 is a HI criticality task, thus is in the level above ME. Task 1 has

a period of 80, greater than the newly transformed period of Task 2. As such

Task 1 is transformed by a factor of 2 leaving it with a period of 40, less than

Task 2’s period of 55. The resulting transformed task set is shown in Table 5.5.

τ T L
1 40 HI
2 55 ME
3 100 LO

Table 5.5: 3 Criticality Level PT Example, Transformed

The task set may now be scheduled in Rate Monotonic and Criticality Mono-

tonic order.

5.5 Some Illustrative Results

Here we briefly consider the schdulability of Period Transformation against AM-

Crtb and AMCmax. We do not account for the additional overheads.

56



Figure 5.3: Period Transformation, AMCrtb and AMCmax: 2 Criticality Levels

Figure 5.4: Period Transformation, AMCrtb and AMCmax: 5 Criticality Levels

Figures 5.3 & 5.4 show that Period Transformation performs well at lower

numbers of criticality levels, however this advantage does not hold up as the
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number of criticality levels increases. This is likely due to an increased com-

plexity in the way in which tasks must be transformed when the number of

criticality levels is greater. We do not account for any overheads in the graphs

above, it is likely that performance would not be as good as shown due to

the cost of splitting a task into its transformed version and enforcing this split

during runtime.

5.6 Summary

In this chapter we have considered and extended Period Transformation for

Mixed Criticality systems. Although its theoretical properties are not as at-

tractive as traditional PT2 they are effective, particularly with a lower number

of criticality levels. The effectiveness of PT decreases as criticality levels are

added, this coupled with a significant increase in overheads might make such a

scheme impractical.

2Harmonic task sets/ Util ≤ 1 schedulability
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Chapter 6

Evaluation

To better reinforce and illustrate the analysis presented in the chapters above

an evaluation is included in the form of a set of experiments. These experiments

set out to assess the performance of AMCrtb, AMCmax and Period Transfor-

mation against themselves and other schemes such as SMC. The experiments

were performed with the aim of better supporting the properties of AMCrtb

and AMCmax reported by Baruah et al. [10], and to determine whether the

claims hold in systems with greater than two criticality levels. The Chapter

is structured as follows; Section 6.1 discusses the process in which tasks were

generated, Section 6.2 explains an adjusted definition of task set utilisation,

Section 6.3 and 6.4 present the results, Section 6.5 provides a discussion and 6.6

summarises this Chapter.

6.1 Assumptions

For the experimentation we consider the highest criticality level to have a WCET

of double the lowest. If other criticality levels exist between these two then their

WCETs are evenly spread between those of the highest and lowest levels. For

example, if a task in an MC system had a period of 10 for its LO criticality level

and a period of 20 for its HI criticality level then period of its ME criticality

level would be 15. The number of tasks within a task set, assigned to each

criticality level will be as even as possible. If a completely even assignment is

not possible then tasks are placed into the lower criticality levels. For example,

a 10 task system with 4 criticality levels would consist of, criticality L4 with 3
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tasks, L3 with 3 tasks, L2 with 2 tasks and L1 with 2 tasks, where L1 > L4.

6.2 Task Generation

To assess the performance of each algorithm some theoretical task sets were cre-

ated. The properties of these task sets are randomly generated. To do this we

first generate utilisations using the UUniFast algorithm [15] shown in Figure 13.

function vectU = UUniFast(n, U)

sumU = U;

for i=1:n-1,

nextSumU = sumU.*rand^(1/(n-i));

vectU(i) = (sumU - nextSumU);

sumU = nextSumU;

end

vectU(n) = sumU;

Figure 6.1: UUniFast [15]

The UUniFast algorithm generates a random distribution of utilisations at

whatever total task set utilisation is input.

The next stage is to generate Task Periods. These are created with a Log

Uniform distribution creating periods between 10 and 1000, similar to those

created in [10]. In this case we work with implicit deadlines, as such deadlines

are equal to periods. By combining the Utilisations and Task Periods it is

possible to generate worst case execution times. However, as we are dealing

with mixed criticality systems and we can calculate only one set of WCET

times from the Utilisations and Periods, we must decide the criticality level of

these values.

Although we have established how the computation times at each criticality

level will be determined (see 6.1), it is only possible to generate one initial value.

We consider this value to be at the highest criticality level for all tasks, this

value is then used to calculate the WCETs for each of the lower criticality levels

following the rules set out above. All initial WCETs are at the highest level,

regardless of the criticality level of the task itself, a value for each lower criticality

level is calculated, and those unnecessary values for tasks with execution times

for levels higher than their own are discarded.
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6.3 Criticality Dependent Utilisation

In order to better represent tasks with a number of different worst case execution

times we consider the notion of criticality dependant utilisation. It is the idea

that the utilisation of a task is based on its execution time at its own criticality

level. This leads to the unusual prospect of the total (criticality dependant)

utilisation of a task set being greater than 1 but still schedulable. As long as

no criticality level has a utilisation greater than 1 then the task set might still

be schedulable. We define Criticality Dependant Utilisation in Equation [6.1].

Ui(Li) =
Ci(Li)

Ti
(6.1)

We use this notion of utilisation for our experimental results.

6.4 Results

This subsection presents some of the results of the experimentation in the form

of graphs showing the percentage of schedulable tasks for increasing total task

set utilisations. These (criticality dependant) utilisations increase in steps of

2%. In this way it is possible to see the percentage of tasks each algorithm can

schedule at each utilisation.

6.4.1 AMCrtb

In Section 3.4 we considered, briefly, some results from a comparison between

AMCrtb and SMC. The graphs below in Figures 6.2, 6.3, 6.4 and 6.5 present

these results for 2, 3,4 and 5 criticality levels.
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Figure 6.2: AMCrtb, SMC, UB & CrMPO: 2 Criticality Levels

Figure 6.3: AMCrtb, SMC, UB & CrMPO: 3 Criticality Levels
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Figure 6.4: AMCrtb, SMC, UB & CrMPO: 4 Criticality Levels

Figure 6.5: AMCrtb, SMC, UB & CrMPO: 5 Criticality Levels

As shown in subsection 3.4 AMCrtb remains the dominant algorithm. Also

included in the graphs above are Criticality Monotonic Priority Ordering (CrMPO)

and a composite upper bound similar to the UB-H&L bound used by [10]. This

composite upper bound considers a task schedulable if each criticality level is
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feasible, each level is considered in isolation and is assigned priorities in Deadline

Monotonic order (as DM is optimal for a single criticality level). This provides

an upper-bound that no FP algorithm can exceed.

AMCrtb’s dominance over SMC is due to the way in which AMC handles

criticality changes. AMC drops all tasks at its current criticality level and

changes to the level above, those tasks dropped are assumed to be suspended

indefinitely. SMC prevents a lower criticality task from interfering the the exe-

cution of the higher criticality tasks but takes no further action. This difference

causes the significant increase in schedulability shown by AMCrtb.

6.4.2 AMCmax

Again we re-consider the short evaluation presented in section 4.3 for AMCmax

including AMCrtb, CrMPO and UB. We look at results for 2 to 5 criticality

levels and consider the performance of both of the AMC algorithms.

Figure 6.6: AMCmax, AMCrtb, SMC, UB & CrMPO: 2 Criticality Levels
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Figure 6.7: AMCmax, AMCrtb, SMC, UB & CrMPO: 3 Criticality Levels

Figure 6.8: AMCmax, AMCrtb, SMC, UB & CrMPO: 4 Criticality Levels
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Figure 6.9: AMCmax, AMCrtb, SMC, UB & CrMPO: 5 Criticality Levels

Figures 6.6, 6.7, 6.8 and 6.9 show the performance of AMCrtb, AMCmax,

CrMPO and UB from 2 to 5 criticality levels. As mentioned in section 4.3 it is

clear that AMCmax remains more effective than AMCrtb. However the differ-

ence is slight and the computational intensity of AMCmax is far greater than

that of AMCrtb. This is due to the notion of considering each point of s2 within

s1 etc. This detailed search creates an almost exponential increase in complexity

from one criticality level to the next, this quickly becomes prohibitively expen-

sive to execute beyond 5 criticality levels. One might argue that most standards

support no more than 5 criticality levels (SIL levels), therefore if additional ac-

curacy is required, and there is the facility to perform intensive computation

then AMCmax might be an effective choice. However the schedulability gains

over AMCrtb are slight, potentially making AMCrtb a better choice in most

cases.

6.4.3 Period Transformation

Here we consider the effectiveness of Period Transformation at 2, 3, 4 and 5

criticality levels. We compare PT with AMCrtb and CrMPO (Criticality Mono-

tonic).
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Figure 6.10: Period Transformation, AMCrtb and CrMPO: 2 Criticality Levels

Figure 6.11: Period Transformation, AMCrtb and CrMPO: 3 Criticality Levels
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Figure 6.12: Period Transformation, AMCrtb and CrMPO: 4 Criticality Levels

Figure 6.13: Period Transformation, AMCrtb and CrMPO: 5 Criticality Levels

Figures 6.10, 6.11, 6.12 and 6.13 show that PT performs strongly at two

criticality levels, however this performance tails off as additional criticality levels

are introduced. This is likely to be due to the increased complexity of the
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transformation process. Of course, overheads are a key problem for Period

Transformation, although performance might appear excellent, in reality it is

likely to be far less effective.

6.5 Overall comparison

The graphs in Figures 6.14, 6.15, 6.16, and 6.17 show a comparison of all of the

algorithms tested including, AMCrtb, AMCmax, CrMPO (Criticality Mono-

tonic Priority Ordering), SMC-NO (Vestals Algorithm), SMC, Period Transfor-

mation and UB (Composite upper bound) across 2 to 5 criticality levels.

Figure 6.14: AMCrtb, AMCmax, PT, SMC-NO, SMC, UB & CrMPO: 2 Criti-
cality Levels
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Figure 6.15: AMCrtb, AMCmax, PT, SMC-NO, SMC, UB & CrMPO: 3 Criti-
cality Levels

Figure 6.16: AMCrtb, AMCmax, PT, SMC-NO, SMC, UB & CrMPO: 4 Criti-
cality Levels
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Figure 6.17: AMCrtb, AMCmax, PT, SMC-NO, SMC, UB & CrMPO: 5 Criti-
cality Levels

It is clear to see that, of the standard fixed priority schemes, the AMC

algorithms are the most effective and that they remain so as criticality levels are

added. Although Period transformation does perform better at lower criticality

levels, it suffers from large overheads as discussed in Section 6.3.3 and Chapter 5.

Criticality Monotonic Ordering performs in a predictably poor manner. SMC-

NO fairs slightly better however it’s criticality dependant utilisation is limited

to 100 as there is no criticality change behaviour and each task is considered at

its own criticality level. Standard SMC is reasonably effective, but is outclassed

by the AMC algorithms.

6.6 Discussion

There are a few features of the experimentation that warrant further discussion.

It is clear that varying the number of criticality levels is just one of the

possible factors that might affect the efficiency and schedulability of the algo-

rithms. One such factor might be altering the difference in Worst Case Exe-

cution Times between criticality levels. Although our experimentation assumes

that the WCET at the highest criticality level is double that of the lowest,

varying this difference is likely to change the schedulability of the task sets gen-

71



erated. Similarly the distribution of criticality levels within a system is likely

to have an impact upon schedulability, we assume an even distribution (where

possible), if this were not the case it is likely that the results might differ.

Another point worth noting is that it is not possible to directly compare the

results of the experimentation across any two different criticality levels. This

is due to the fact that although the size of the task set remains the same, the

number of tasks per criticality level will differ as the number of criticality levels

is increased. As such, two factors are varied, the number of criticality levels,

and the number of tasks within each criticality level. Therefore the results are

not directly comparable, it might even be the case that a higher criticality level

appears to out perform a lower, this is as a result of the effect just described. Due

to this the important results of this work is the effectiveness of the algorithms

relative to their competitors, not their effectiveness across different criticality

levels.

The results presented in this Chapter allow for a better gauge of the per-

formance of each of the algorithms over 2 to 5 criticality levels. It backs up

the analysis confirming the effectiveness of each algorithms with the addition

of extra criticality levels. However the performance gained by the AMC based

techniques comes at the cost of suspending lower criticality tasks as criticality

changes occur. In practice this behaviour might be undesirable. While AMC

appears to be an effective approach it is not without its downside.

6.7 Summary

In this Chapter we presented the results of our experimentation which considered

each algorithm running at 2, 3, 4 and 5 criticality levels. We assessed the results

and in particular confirmed that the performance of the AMC based approaches

remains high.
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Chapter 7

Conclusions

Throughout this work we have examined a number of scheduling approaches

for Mixed Criticality Systems. Where applicable, these algorithms have been

extended to facilitate an unknown number, n levels of criticality, extending the

analysis from the Dual criticality focus of current literature. We have considered,

in some depth, the implications of extending AMCrtb, AMCmax and Period

Transformation to include greater than 2 levels of criticality.

The analysis and experimental results described in Chapters 3, 4 and 6

consider AMCrtb and AMCmax. They show that both AMCrtb and AMCmax

continue to significantly dominate SMC. The results of the experimentation

considering up to 5 criticality levels suggests that this dominance would be

maintained up to n criticality levels. This strengthens the dominance of AMCrtb

and AMCmax over SMC shown by Baruah et al. [10] for Dual criticality systems

and gives further evidence of the extendibility of AMC. Both AMC approaches

maintain the same levels of performance for many criticality systems as they do

for dual criticality, in comparison to other approaches such as SMC.

In Chapter 4 we considered the implications and provide the analysis to ex-

tend AMCmax to greater than 2 criticality levels. It quickly became clear that

whilst an extension to n possible levels of criticality is feasible, it is done at sig-

nificant processing cost. The results of the experimentation shown in Sections

4.3 and 6.3 show the performance of the algorithm up to 5 levels of criticality,

running these tests was intensive, running 6 or greater levels of criticality would

not have been possible within a reasonable time frame. Although AMCmax

does out perform and dominate AMCrtb at each criticality level, AMCrtb re-

mains a very good approximation of AMCmax. As such AMCrtb is the most
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practical form of analysis with room to increase the size of the task set or the

number of criticality levels without seriously hampering the time it would take

to generate the results. This extendability will become more valuable as Mixed

Criticality systems develop in complexity. Current standards might only spec-

ify 4 or 5 criticality (SIL) levels, however future development might require a

greater number of levels. In this case the ability to extend and run the analysis

on greater than 5 levels, within a reasonable time frame, is important. AM-

Crtb provides en effective approximation of AMCmax whilst maintaining a far

greater level of efficiency, as such it is well suited to the rapidly changing Mixed

Criticality domain.

We also examined Period Transformation in Chapter 5. In this chapter

Vestal’s Mixed Criticality Period Transformation is considered, some updates

to his analysis are proposed in order to better consider the MC case, and to

reduce the level of pessimism. The experimental data in Sections 5.5 and 6.3

show that Period Transformation performs well at 2 criticality levels, however

performance tails off as criticality levels are added. It is well documented that

Period Transformation, although being theoretically effective, is not practical.

This is due largely to an excessive number of context switches and the need

to closely manage transformed task executions. Not only is this impractical,

but the overheads incurred could reduce the schedulability shown significantly.

However, we do show that it is possible to adapt the Period Transformation

approach to facilitate Mixed Criticality systems.

There can be no doubt that Mixed Criticality systems pose a challenging

set of problems. In this work we have developed and provided evidence of

the extendability and effectiveness of both AMC based analytical approaches.

We have considered the use of Period Transformation and its Mixed Criticality

extensions. Finally we presented an evaluation further detailing the performance

of each scheme.
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scheduling. In Proceedings of the tenth ACM international conference on

Embedded software, EMSOFT ’12, pages 93–102, New York, NY, USA,

2012. ACM.

[28] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task syn-

chronization in zero-slack scheduling. In Real-Time and Embedded Technol-

ogy and Applications Symposium (RTAS), 2011 17th IEEE, pages 47 –56,

april 2011.

[29] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-

rithm: exact characterization and average case behavior. In Real Time

Systems Symposium, 1989., Proceedings., pages 166–171, 1989.

[30] H. Li and S. Baruah. Global mixed-criticality scheduling on multiproces-

sors. In Real-Time Systems (ECRTS), 2012 24th Euromicro Conference

on, pages 166 –175, july 2012.

[31] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, J. A. Scoredos,

and N. G. Corporation. Mixed-criticality real-time scheduling for multicore

systems, 2010.

[32] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic. IDAMC: A

many-core platform with run-time monitoring for mixed-criticality. In High-

Assurance Systems Engineering (HASE), 2012 IEEE 14th International

Symposium on, pages 24 –31, oct. 2012.

[33] M. Neukirchner, S. Stein, H. Schrom, J. Schlatow, and R. Ernst. Contract-

based dynamic task management for mixed-criticality systems. In Industrial

Embedded Systems (SIES), 2011 6th IEEE International Symposium on,

pages 18 –27, june 2011.

[34] D. Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-

criticality real-time task sets. In Real-Time Systems Symposium, 2009,

RTSS 2009. 30th IEEE, pages 291 –300, dec. 2009.

[35] T. Park and S. Kim. Dynamic scheduling algorithm and its schedulabil-

ity analysis for certifiable dual-criticality systems. In Embedded Software

78



(EMSOFT), 2011 Proceedings of the International Conference on, pages

253 –262, oct. 2011.

[36] R. Pathan. Schedulability analysis of mixed-criticality systems on multipro-

cessors. In Real-Time Systems (ECRTS), 2012 24th Euromicro Conference

on, pages 309 –320, july 2012.

[37] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and L. Sha.

Handling mixed-criticality in SoC-based real-time embedded systems. In

Proceedings of the seventh ACM international conference on Embedded soft-

ware, EMSOFT ’09, pages 235–244, New York, NY, USA, 2009. ACM.

[38] A. Sangiovanni-Vincentelli. Quo vadis, SLD? Reasoning about the trends

and challenges of system level design. Proceedings of the IEEE, 95(3):467–

506, 2007.

[39] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some practical

problems in prioritized preemptive scheduling. In RTSS, pages 181–191,

1986.

[40] W. Steiner. Synthesis of static communication schedules for mixed-

criticality systems. In Object/Component/Service-Oriented Real-Time Dis-

tributed Computing Workshops (ISORCW), 2011 14th IEEE International

Symposium on, pages 11 –18, march 2011.

[41] S. Vestal. Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance. In Real-Time Systems Symposium,

2007. RTSS 2007. 28th IEEE International, pages 239 –243, dec. 2007.

[42] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access

control in multiprocessor for real-time systems with mixed criticality. In

Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on, pages

299 –308, july 2012.

[43] Q. Zhao, Z. Gu, and H. Zeng. Pt-amc: Integrating preemption thresholds

into mixed-criticality scheduling. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2013, pages 141–146, 2013.

79


