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Abstract

Many definitions of weak n-category have been proposed. It has been widely
observed that each of these definitions is of one of two types: algebraic def-
initions, in which composites and coherence cells are explicitly specified, and
non-algebraic definitions, in which a coherent choice of composites and con-
straint cells is merely required to exist. Relatively few comparisons have been
made between definitions, and most of those that have concern the relation-
ship between definitions of just one type. The aim of this thesis is to establish
more comparisons, including a comparison between an algebraic definition and
a non-algebraic definition.

The thesis is divided into two parts. Part I concerns the relationships
between three algebraic definitions of weak n-category: those of Penon and
Batanin, and Leinster’s variant of Batanin’s definition. A correspondence be-
tween the structures used to define composition and coherence in the definitions
of Batanin and Leinster has long been suspected, and we make this precise for
the first time. We use this correspondence to prove several coherence theorems
that apply to all three definitions, and also to take the first steps towards de-
scribing the relationship between the weak n-categories of Batanin and Leinster.

In Part II we take the first step towards a comparison between Penon’s def-
inition of weak n-category and a non-algebraic definition, Simpson’s variant of
Tamsamani’s definition, in the form of a nerve construction. As a prototype for
this nerve construction, we recall a nerve construction for bicategories proposed
by Leinster, and prove that the nerve of a bicategory given by this construction
is a Tamsamani–Simpson weak 2-category. We then define our nerve functor for
Penon weak n-categories. We prove that the nerve of a Penon weak 2-category
is a Tamsamani–Simpson weak 2-category, and conjecture that this result holds
for higher n.
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Introduction

An n-category is a higher-dimensional categorical structure in which, as well as
objects and morphisms between those objects, we have morphisms between mor-
phisms (“2-morphisms”), morphisms between 2-morphisms (“3-morphisms”),
and so on up to n-morphisms for some fixed natural number n. Such structures
arise in areas as diverse as homotopy theory, computer science, and theoretical
physics, as well as category theory itself. The case of strict n-categories, in which
composition of morphisms is strictly associative and unital, is well-understood,
but for many applications it is not sufficiently general, since many naturally
occurring “composition-like” operations satisfy associativity and unitality only
up to some kind of higher-dimensional isomorphism or equivalence. Thus, a no-
tion of weak n-category is required. The theory of weak n-categories has grown
rapidly over the past two decades; many different definitions of weak n-category
have been proposed, using a wide variety of approaches, but the relationships
between these definitions are not yet well understood, with few comparisons
having been made. It has been widely observed (see [Lei02]) that each of these
definitions belongs to one of two groups, called “algebraic” and “non-algebraic”.

The distinction between algebraic and non-algebraic definitions lies in the
way in which composites and coherence cells are treated, and is often described
as follows: in an algebraic definition composites and coherence cells are explic-
itly specified; in a non-algebraic definition a suitable choice of composites and
coherence cells is required to exist, but is not specified and is not necessarily
unique. However, the difference is more deeply ingrained in the approaches
used than this description would suggest. Algebraic definitions draw upon tech-
niques from universal algebra, such as the theories of monads and operads,
whereas non-algebraic definitions use topological techniques, such as homotopy
theory and model category theory, and are closely related to the more algebraic
notions of topological space, such as Kan complexes. Thus when making com-
parisons between definitions that belong to just one group, there are pre-existing
techniques that can be used, but making a comparison between an algebraic def-
inition and a non-algebraic definition is more of a challenge. The way in which
the algebraic and non-algebraic approaches fit into the bigger picture of the
relationship between algebra and topology is well-illustrated in the following
diagram, by Leinster [Lei10]:
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2 Introduction

Leinster used this diagram to illustrate the homotopy hypothesis of Grothen-
dieck, an important application of the theory of weak n-categories. Very roughly,
this hypothesis states that “ω-groupoids should be the same as spaces” (and,
in the n-dimensional case, “n-groupoids should be the same as n-types”). To
state it formally we need to choose a notion of weak n-category and a notion of
space, with the “strongest” statement of the hypothesis arising when we use an
algebraic definition of weak n-category and a non-algebraic definition of space.
A statement of the hypothesis using a non-algebraic notion of weak n-category
or an algebraic notion of space is less strong since it connects concepts that are
more similar to one another, but it should be easier to prove for the same reason.
Understanding the relationship between algebraic and non-algebraic definitions
of weak n-category would thus represent a significant step towards proving the
strongest version of the homotopy hypothesis. The case of weak n-groupoids,
weak n-categories in which all morphisms (including higher morphisms) are
invertible up to some higher cell, is of particular interest not only in the case
of the homotopy hypothesis, but also in the study of Homotopy Type Theory
[UFP13].

We now discuss the various definitions of weak n-category that have been
proposed. The earliest algebraic definitions were made for specific values of
n, and took a very direct approach; these include the classical definitions of
bicategory [Bén67] and tricategory (first defined in [GPS95], and made fully
algebraic in [Gur06]), and Trimble’s definition of tetracategory [Tri95]. The
definition of tetracategory is long, and highlights the fact that it is not practical
to use the classical approach for higher values of n. Thus, in algebraic definitions
of weak n-category for a general value of n, more abstract methods are used.
Algebraic definitions for a general value of n include Penon’s definition [Pen99],
which uses a weakened version of the free strict n-category monad, Batanin’s
definition ([Bat98], with variants [Lei04b, Ber02, Lei02, Cis07, Gar10, BG11,
Che11a]), which uses globular operads, and the definitions of Trimble ([Tri99],
first published in [Lei02], with variants [CG07, Che11a]) and May [May01],
which use weakened forms of enrichment.

Non-algebraic definitions take the form “a weak n-category consists of some
underlying data (usually a presheaf) satisfying a certain condition”. This con-
dition ensures that a coherent choice of composition structure can be made from
the underlying data, but the exact composition structure is not explicitly spec-
ified. Various types of underlying data are used in non-algebraic definitions, in-
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cluding simplicial sets [Str87], multisimplicial sets [Tam99, Sim97], cellular sets
[Joy97], opetopic and multitopic sets [BD98, HMP00, HMP01, HMP02, Lei98b],
and ω-hypergraphs [HMT99, MT00]. Many non-algebraic definitions deal with
the case of (∞, n)-categories, a type of higher category in which there is no
maximum dimension of cell, but in which all cells of dimension greater than n
are equivalences. These definitions include quasi-categories (also known as weak
Kan complexes) [BV73, Vog73, Joy02, Lur09], Segal n-categories [HS98, Sim12],
and complete Segal spaces [Rez01].

Although there is a large number of different definitions, relatively few com-
parisons have been made between them, and most of the comparisons that have
been made are either exclusively between algebraic definitions, or exclusively
between non-algebraic definitions. In the case of algebraic definitions, Batanin
has made a comparison between his definition and that of Penon [Bat02], show-
ing that his definition is weaker than Penon’s and conjecturing some sort of
weak equivalence between the two; Cheng has shown that a generalisation of
Trimble’s definition is an instance of a variant of Batanin’s [Che11a]. In the
case of non-algebraic definitions, Cheng has proved an equivalence between
the opetopic and multitopic definitions of Baez–Dolan, Hermida–Makkai–Power,
and Leinster [Che04b, Che04a]; Bergner has proved equivalences between vari-
ous definitions of (∞, 0)- and (∞, 1)-categories [Ber08]; Joyal and Tierney have
proved equivalences between quasi-categories, complete Segal spaces, and Segal
n-categories [JT07]; Barwick and Schommer-Pries have shown the definitions of
(∞, n)-category of Joyal, Lurie, Rezk, and Simpson all satisfy a certain axioma-
tisation [BSP12]. Leinster has compared various definitions, both algebraic and
non-algebraic, with the classical definitions of category and bicategory in the
cases n = 1 and n = 2 [Lei02]. In the non-algebraic cases these are comparisons
of an algebraic definition with a non-algebraic definition, although not for a
general value of n. Similarly, Gurski has also proved an equivalence between
bicategories and a 2-dimensional reformulation of Street’s definition of weak
ω-category [Gur09], building on work of Duskin [Dus02].

It may appear from this list of comparisons that the most progress has
been made with non-algebraic definitions; this is because in the non-algebraic
setting the lack of specified composites and coherence cells means we do not
need to be as careful about keeping track of things as we do in the algebraic
setting. Very little progress has been made in comparing algebraic and non-
algebraic definitions, with the only existing comparisons being restricted to the
case n = 2. Moving between the algebraic and non-algebraic settings is difficult;
it is not simply a case of taking a non-algebraic definition and making choices
of composites and coherence cells, or of taking an algebraic definition and just
asking for existence in place of specified structure. There are situations in which
it is possible to make changes like this, but the resulting definitions are not far
removed from the original ones. For example, Batanin’s definition [Bat98],
which is algebraic, uses a globular operad with a specified contraction; we can
make this “less algebraic” by replacing this with a contractible operad [Lei02,
Definition B2], but the resulting notion of weak n-category is still an algebraic
one. Similarly, the Tamsamani–Simpson definition, which is non-algebraic, asks
for certain maps to be contractible; we can make this “more algebraic” by asking
for specified contractions [Pel08], but the resulting notion of weak n-category is
still non-algebraic.

One established method of moving between the algebraic and non-algebraic
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settings is the idea of a “nerve construction”. This idea arose from the well-
known nerve construction for categories, which allows us to express a category
as a simplicial set satisfying a “nerve condition”. Roughly speaking, a nerve
construction takes an algebraic object, and produces from it a particular kind
of presheaf, so a nerve construction can be seen as a way of passing from an al-
gebraic setting to a non-algebraic setting. Various authors have given nerve con-
structions for algebraic definitions of weak n-category [Web07, Mel10, BMW12],
but these have focussed on extracting a canonical nerve from a given alge-
braic notion of n-category, rather than making connections with existing non-
algebraic definitions. This can be seen as creating a new non-algebraic definition
corresponding to the given algebraic definition; the presheaves this approach
gives are therefore specific to the chosen algebraic definition, and are unlikely
to be presheaves on a category that arises naturally elsewhere. One exception
to this is the case of strict ω-categories; Berger has shown that, in this case,
the canonical nerve is a presheaf on a category that arises naturally as a wreath
product of the simplex category ∆ [Ber02, Ber07]. These nerve constructions
illustrate one reason that the subject has grown; various authors have tried to
make connections between definitions, and ended up inventing new definitions
(see, for example, [BD98, Lei04b]). The proliferation of definitions of weak
n-category has led to a disjointed, disparate subject, and this highlights the
importance of making comparisons between existing definitions. The aim of
this thesis is to make the first comparison between an algebraic definition and
a non-algebraic definition of weak n-category.

The thesis is structured as follows: it is divided into two parts; broadly
speaking, the first part concerns the relationships between various algebraic
definitions of weak n-category, and second part describes the first steps towards
a comparison between an algebraic definition and a non-algebraic definition.

The first part begins with Chapter 1, in which we recall the definition of
Penon weak n-category [Pen99]. This is the central definition of the thesis, in
the sense that it is the only definition of weak n-category to be used in both
parts. The idea of the definition of Penon weak n-category is to weaken the
well-understood notion of strict n-category by means of a “contraction”. This
is inspired by the topological notion of a contraction; and Penon uses it to ensure
that any axiom that holds in a strict n-category holds “up to homotopy” in a
Penon weak n-category.

Penon weak n-categories are defined as algebras for a monad induced by a
certain adjunction. Penon described this adjunction in his original paper, but
we give a new construction that we will use later, in Chapters 3 and 5. The left
adjoint in this adjunction freely adds two types of structure: a binary compo-
sition structure and a contraction structure. In our construction we add these
structures alternately, dimension by dimension, using an interleaving construc-
tion based on that of Cheng [Che10] (see also [HDM06]).

In Chapter 2 we discuss definitions of weak n-categories as algebras for glob-
ular operads. Globular operads were introduced by Batanin [Bat98] as a tool for
defining weak n-categories; they are a type of higher operad in which the oper-
ations have as their arities globular pasting diagrams. We recall the definitions
of globular operads and their algebras, then discuss Batanin’s approach to iden-
tifying which globular operads give a “sensible” definition of weak n-category.
We recall the definitions of a system of compositions and a contraction on a
globular operad, and the definition of Batanin weak n-categories as algebras for
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the initial globular operad with a contraction and system of compositions.
Batanin’s definition can be seen as a whole family of definitions, with many

authors using variants [Ber02, Lei02, Cis07, Gar10, BG11, Che11a]. One vari-
ant of particular note is that of Leinster [Lei04b]; in place of a contraction and
system of compositions, Leinster uses a notion called an “unbiased contraction”
on an operad, which simultaneously ensures that we have unbiased composi-
tion operations and coherence operations. We recall the definition of unbiased
contraction, and Leinster’s variant of Batanin’s definition, in which he defines
weak n-categories to be the algebras for the initial operad with an unbiased
contraction; we refer to these algebras as “Leinster weak n-categories”.

In this chapter, we make the following results precise for the first time:

• The existence of the initial operad with a contraction and system of com-
positions; this has previously been (very reasonably) assumed by other
authors [Bat98, Lei02].

• The correspondence between operads with contractions and systems of
compositions, and operads with unbiased contractions; specifically, we
prove a conjecture of Leinster [Lei04a, Section 10.1] stating that any op-
erad with a contraction and system of compositions can be equipped with
an unbiased contraction (the converse is already known [Lei04a, Exam-
ples 10.1.2 and 10.1.4]).

• Three coherence theorems for algebras for globular operads; these results
are not surprising, but have not previously been proved. These theorems
hold for the algebras for any globular operad equipped either with a con-
traction and system of compositions, or with an unbiased contraction. By
the previous result, for each theorem we can pick whichever notion is most
convenient for the purposes of the proof.

Chapter 3 concerns comparisons between various operadic definitions of weak
n-category. It is a result of Batanin [Bat02] that Penon weak n-categories can
be defined as algebras for a certain globular operad, and that this operad can
be equipped with a canonical choice of contraction and system of compositions.
We give a new proof of this, using our construction of the monad for Penon weak
n-categories from Chapter 1. Our proof is more direct than Batanin’s, and gives
a different point of view, elucidating the structure of the operad. This implies
that the coherence theorems from the previous chapter also hold for Penon weak
n-categories; Batanin has already observed [Bat02] that this result also gives a
canonical comparison map from the operad for Batanin weak n-categories to the
operad for Penon weak n-categories, and has used this to prove that Batanin
weak n-categories are the weaker of the two for n ≥ 3.

We then take several steps towards a comparison between Batanin weak n-
categories and Leinster weak n-categories. It has been widely believed that these
definitions are in some sense equivalent (see [Lei04b, end of Section 4.5]), but
no attempt to formalise this statement has been made. We derive comparison
functors between the categories of Batanin weak n-categories and Leinster weak
n-categories, and discuss how close these functors are to being equivalences
of categories. We investigate what happens when we take a Leinster weak n-
category and apply first the comparison functor to the category of Batanin weak
n-categories, then the comparison functor back to the category of Leinster weak
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n-categories. We believe that the Leinster weak n-category we obtain is in some
sense equivalent to the one with which we started, and take a preliminary step
towards formalising this statement.

In the second part we describe a new nerve construction for Penon weak
n-categories. As mentioned earlier, nerves give a non-algebraic approach to the
study of n-categories. A nerve construction takes the form of a functor from a
category of “algebraic objects” of some kind (e.g. algebras for a certain monad)
to a category of “non-algebraic objects” (e.g. presheaves on a certain category);
essentially, a nerve construction gives us a way of comparing algebraic things
with non-algebraic things. The nerve given by our nerve construction for Penon
weak n-categories is an n-simplicial set, a presheaf of the same kind used in
the definition of Tamsamani–Simpson weak n-category; thus this allows for a
comparison to be made between the two definitions. While various authors
have given nerve constructions for algebraic definitions of weak n-category in
the past [Ber02, Web07, Mel10, BMW12], our nerve construction is the first to
provide a comparison between an algebraic definition of weak n-category and a
pre-existing non-algebraic definition.

We begin Chapter 4 by recalling the nerve construction for categories, and
explaining how this leads to an alternative equivalent definition of a category
as a simplicial set satisfying a condition called the “nerve condition”. We then
recall Simpson’s variant of Tamsamani’s definition of weak n-category [Tam99,
Sim97]. Instead of simplicial sets, i.e. functors ∆op → Set, this definition uses
n-simplicial sets, functors (∆n)op → Set; these must satisfy a generalised nerve
condition, named the Segal condition in analogy with a similar condition arising
in the study of Segal categories [Seg74, DKS89]. The Segal condition ensures
that coherent composition exists in a Tamsamani–Simpson weak n-category;
note that there may be many different choices of coherent composition, and
since this is a non-algebraic definition, no specific choice is made.

In Chapter 5 we describe our nerve construction for Penon weak n-categories
in the case n = 2. We treat the case n = 2 separately because it is simpler, both
notationally and conceptually, and also because we are able to prove that the
nerve of a Penon weak 2-category satisfies the Segal condition. This represents
strict progress towards a comparison of the two definitions for n = 2, since
it tells us that the image of the nerve functor is contained in the category of
Tamsamani–Simpson weak 2-categories.

In [Lei02], Leinster proposed a nerve construction for bicategories in which
the nerve of a bicategory is a bisimplicial set; we use this as the prototype
for our nerve construction. Leinster defined the action of the nerve formally
only on the objects of ∆2; we complete this definition, and extend it to a def-
inition of a nerve functor for bicategories. We then prove for the first time
that the nerve of a bicategory satisfies the Segal condition, and is therefore a
Tamsamani–Simpson weak 2-category. Note that various other nerve construc-
tions for bicategories have been proposed [Dus02, LP08, Gur09], but these are
less suitable for generalisation to nerve constructions for an algebraic definition
of weak n-category, since they do not make a distinction between the dimensions
of cells in the same way. Tamsamani–Simpson weak n-categories are well-suited
to comparison with algebraic definitions since cells of different dimensions are
kept separate in the underlying data, as they are in the algebraic definitions. It
also appears that a generalisation of one of these other nerve constructions for
bicategories would require a definition of lax maps of Penon weak n-categories,
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and such a definition does not exist.
We then define our nerve functor for Penon weak 2-categories. To do so, we

use our construction of the monad for Penon weak n-categories from Chapter 1.
It is here that the construction shows its utility; it allows us to describe a certain
type of Penon weak n-category which we can think of as being “partially free”,
and Penon weak n-categories of this type are used to describe the shapes of
cells we require in our nerve. The full necessity of the interleaving construction
in developing this nerve is somewhat hidden, however; describing the shapes of
cells in the nerve required great care, and our construction of Penon’s monad
gave us the precise control needed to do this correctly, allowing us to tweak the
construction to get it just right.

At the end of this chapter we prove that the nerve of a Penon weak 2-category
satisfies the Segal condition, and is therefore a Tamsamani–Simpson weak 2-
category. The proof is unavoidably technical, and is also in some parts elemen-
tary, and we apologise for this; both Penon weak n-categories and Tamsamani–
Simpson weak n-categories are naturally arising in their own contexts, but these
contexts are very different, and it is inevitable that any comparison will be tech-
nically complicated. In this proof we use the notation for the cells of a Penon
weak n-category given by our construction of Penon’s monad from Chapter 1.

In Chapter 6 we generalise our nerve construction for Penon weak 2-categories
to the case of general n. We conclude with a discussion of further results still
to be proved that our nerve construction now makes it possible to state pre-
cisely, including a conjecture that the nerve of a Penon weak n-category is a
Tamsamani–Simpson weak n-category; proofs of these results are beyond the
scope of this thesis. Comparison functors are rare in the study of weak n-
categories, as discussed in the background section, and it is an achievement to
have obtained a comparison functor allowing us to compare the definitions of
Penon and Tamsamani–Simpson, even though proving that this functor satis-
fies the desired properties is still out of reach. We hope that this work will lead
to a full comparison between these two definitions, as well as paving the way
for more comparisons between algebraic and non-algebraic definitions of weak
n-category.

Notation and terminology

Throughout this thesis, the letter n always denotes a fixed natural number,
which is assumed to be the highest dimension of cell in the definition(s) of weak
n-category being discussed. Where a specific value of n is used, this is noted.
We write N for the set of natural numbers; note that we take this to include 0.

All of our algebraic definitions of weak n-category use n-globular sets as
their underlying data. An n-globular set is a presheaf on the n-globe category
G, which is defined as the category with

• objects: natural numbers 0, 1, . . . , n− 1, n;

• morphisms generated by, for each 1 ≤ m ≤ n, morphisms

σm, τm : (m− 1)→ m

such that σm+1σm = τm+1σm and σm+1τm = τm+1τm for m ≥ 2 (called
the “globularity conditions”).
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For an n-globular set X : Gop → Set, we write s for X(σm), and t for X(τm),
regardless of the value of m, and refer to them as the source and target maps
respectively. We denote the set X(m) by Xm. We say that two m-cells x,
y ∈ Xm are parallel if s(x) = s(y) and t(x) = t(y); note that all 0-cells are
considered to be parallel. We write n-GSet for the category of n-globular sets
[Gop,Set].

We write T for the free strict n-category monad on n-GSet. This is the
monad induced by the adjunction

n-GSet n-Cat,⊥
//

oo

where n-Cat is the category of strict n-categories, and the right adjoint is the
forgetful functor sending a strict n-category to its underlying n-globular set.
In certain circumstances (for results in which a greater degree of generality is
possible) we write T to denote an arbitrary monad, possibly satisfying certain
conditions. In such cases, T can always be taken to be the free strict n-category
monad, and this will be the particular example in which we are interested.
We write ηT : 1 ⇒ T for the unit of the monad T , and µT : T 2 ⇒ T for its
multiplication. Similarly, for any monad K, we denote its unit by ηK : 1 ⇒ K
and its multiplication by µK : K2 ⇒ K.

We write 1 for the terminal n-globular set, which has precisely one m-cell
for each 0 ≤ m ≤ n. The n-globular set T1 appears frequently throughout the
thesis, specifically in Chapters 2 and 3. Applying the monad T freely generates
all possible formal composites; since there is only one m-cell in 1 for each 0 ≤
m ≤ n, that m-cell can be composed with itself any number of times along all
dimensions of boundary. Thus an element of T1m is a pasting diagram made
up entirely of globular cells (possibly including identity cells). There is only one
such pasting diagram at dimension 0, since 0-cells cannot be composed, so T10

has only one element. At dimension 1 such a diagram consists of a finite string
of 1-cells composed end to end, so for each natural number k there is an element
of T11 which should be visualised as

• • • •. . . • ,// // //︸ ︷︷ ︸
k 1-cells

where each arrow represents the unique element of 11. Note that this includes
the degenerate case k = 0. At higher dimensions the diagrams become more
complicated, since cells can be composed in more ways; a typical element of T12

looks like

• • • • ,
⇓

⇓
⇓//

��
//
EE

��

@@

where each double arrow represents the unique element of 12, and the single
arrow on the left-hand end is a degenerate 2-cell (i.e. an identity 2-cell on the
unique element of 11). We call a cell in T1 a globular pasting diagram; for a
fixed m we call a cell in T1m an m-globular pasting diagram.
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Chapter 1

Penon weak n-categories

This chapter concerns the definition of Penon weak n-category. This was orig-
inally given in [Pen99], but we use a variant given in [Bat02, CM09]. Penon
defined weak n-categories as the algebras for a monad on the category of reflex-
ive globular sets (globular sets in which each cell has a putative identity cell at
the dimension above). In [CM09] Cheng and Makkai observed that, in the finite
dimensional case, Penon’s definition did not encompass certain well-understood
examples of weak n-categories, such as braided monoidal categories, but that
this could be remedied by using globular sets instead of reflexive globular sets.
Note that Penon originally gave his definition in the case n = ω, whereas we
take n to be finite (this modification of the definition for finite n is standard,
see [Lei02, CM09]). The use of a finite value of n allows us to prove coherence
theorems that hold for Penon weak n-categories in Chapter 2, most of which
do not hold in the ω-dimensional case, and in Chapters 5 and 6 it allows us to
make a comparison between Penon weak n-categories and Tamsamani–Simpson
weak n-categories, the latter only being defined for finite n.

The reason for choosing to use Penon weak n-categories over another alge-
braic definition is that we are able to give an explicit description of Penon’s
monad, and thus of a free Penon weak n-category. This was very useful when
devising the nerve constructions in Chapters 5 and 6; these constructions in-
volve algebras that are almost free, and the construction of Penon’s monad in
this chapter made it possible to modify the free algebra construction in a way
that would not be possible with the definitions of Batanin and Leinster dis-
cussed in Chapter 2. In spite of its unusual construction, Penon’s monad is
known to arise from an n-globular operad with contraction and system of com-
positions (see [Bat02]), so this definition belongs to a commonly studied family
of definitions of weak n-category. This is discussed in more detail in Section 3.1.

The monad for Penon weak n-categories is induced by a certain adjunction;
in this chapter we recall the definition, then give a new construction of the left
adjoint of the adjunction.

1.1 Definition of Penon weak n-categories

In this section we recall the non-reflexive variant of Penon’s definition of weak
n-category [Pen99, Bat02, CM09]. The idea of Penon’s definition is to weaken

13
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the well-understood notion of strict n-category by means of a “contraction”.
To do this Penon considers “n-magmas”: n-globular sets equipped with binary
composition operations that are not required to satisfy any axioms (apart from
the usual source and target conditions). He then asks when an n-magma is
“coherent enough” to be considered a weak n-category. To answer this question
he uses the fact that every strict n-category has an underlying n-magma to
compare n-magmas with strict n-categories by considering maps

X S,
f
//

where X is an n-magma, S is the underlying n-magma of a strict n-category,
and f preserves the n-magma structure. Penon defines a notion of a contraction
on such a map, which lifts identities in S to equivalences in X, ensuring that the
axioms that hold in S hold up to equivalence in X; by analogy with contractions
in the topological sense, we can think of the axioms as holding “up to homotopy”
in X.

Penon then defines a category whose objects are maps f : X → S as above
equipped with contractions; we denote this category byQ, following the notation
of Leinster [Lei02]. An object of Q can be thought of as consisting of an n-
magma X that can be contracted down to a strict n-category S. There is a
forgetful functor Q → n-GSet sending an object of Q to the underlying n-
globular set of its magma part. This functor has a left adjoint, which induces
a monad on n-GSet, and a Penon weak n-category is defined to be an algebra
for this monad.

We begin by recalling the definition of an n-magma.

Definition 1.1.1. An n-magma (or simply magma, when n is fixed) consists
of an n-globular set X equipped with, for each m, p, with 0 ≤ p < m ≤ n, a
binary composition function

◦mp : Xm ×Xp Xm → Xm,

where Xm ×Xp Xm denotes the pullback

Xm ×Xp Xm Xm

Xm Xp

//

��

t
//

s

��

in Set; these composition functions must satisfy the following source and target
conditions:

• if p = m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(b ◦mp a) = s(a), t(b ◦mp a) = t(b);

• if p < m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(b ◦mp a) = s(b) ◦m−1
p s(a), t(b ◦mp a) = t(b) ◦m−1

p t(a).
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A map of n-magmas f : X → Y is a map of the underlying n-globular sets such
that, for all m, p, with 0 ≤ p < m ≤ n, and for all (a, b) ∈ Xm ×Xp Xm,

f(b ◦mp a) = f(b) ◦mp f(a).

We write n-Mag for the category whose objects are n-magmas and whose mor-
phisms are maps of n-magmas.

Observe that every strict n-category has an underlying n-magma, and we
have a forgetful functor

n-Cat −→ n-Mag.

We now recall the definition of a contraction on a map of n-globular sets
f : X → S, where S is the underlying n-globular set of a strict n-category. Note
that this definition does not require a magma structure on X. We must treat
dimension n slightly differently, since there is no dimension n + 1; to do so,
we define a notion of a “tame” map of n-globular sets (the terminology is due
to Leinster [Lei04a, Definition 9.3.1]), which ensures that we have equalities
between n-cells where we would normally expect contraction (n+ 1)-cells.

It is common to express the definition of contraction in terms of lifting con-
ditions [Bat02, Ber02, Cis07]; however, we express the definition using pullbacks
of sets since this approach allows for a straightforward construction of free con-
tractions, which we describe in the next section.

In the following definition, Xc
m+1 is the set of all pairs of m-cells requiring a

contraction (m+ 1)-cell, i.e. the set of all pairs of parallel m-cells on Xm which
are mapped by f to the same m-cell in Sm. For any (a, a) ∈ Xc

m+1, we write
γm(a, a) = 1a, since it is these contraction cells that give us the identities in a
Penon weak n-category.

Definition 1.1.2. Let f : X → S be a map of n-globular sets, where S is the
underlying n-globular set of a strict n-category. The map f is said to be tame
if, given a, b ∈ Xn, if s(a) = s(b), t(a) = t(b), and fn(a) = fn(b), then a = b.

For each 0 ≤ m < n, define a set Xc
m+1 by the following pullback:

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × Sm.

//

��

(s,t,fm)
//

(s,t,fm)

��

Note that when m = 0, we take Xm−1 to be the terminal set.
A contraction γ on a tame map f : X → S consists of, for each 0 ≤ m < n,

a map
γm+1 : Xc

m+1 → Xm+1

such that, for all (a, b) ∈ Xc
m+1,

• s(γm+1(a, b)) = a;

• t(γm+1(a, b)) = b;

• fm+1(γm+1(a, b)) = 1fm(a) = 1fm(b).
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Note that we only ever speak of a contraction on a tame map; thus, whenever
we state that a map is equipped with a contraction, the map is automatically
assumed to be tame. One way to think about this is to say that we do require a
contraction (n+ 1)-cell for each pair of n-cells in Xc

n, and the only (n+ 1)-cells
in X are equalities.

Penon does not use the term “contraction”; instead, he uses the word “stretch-
ing” (“étirement”). This may appear somewhat counterintuitive, since the two
words seem antonymous. However, Penon’s terminology comes from viewing
the same situation from a different point of view; rather than seeing S as a
contracted version of X, Penon sees X as a stretched-out version of S. In the
case in which X has a magma structure, Penon refers to a such a map as a “cat-
egorical stretching” (“étirement catégorique”). Categorical stretchings form a
category Q, which we now define.

Definition 1.1.3. The category of n-categorical stretchings Q is the category
with

• objects: an object of Q consists of an n-magma X, a strict n-category S,
and a map of n-magmas

X

S

f

��

equipped with a contraction γ;

• morphisms: a morphism in Q is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-Mag such that

– v is a map of strict n-categories;

– writing γ for the contraction on the map f and δ for the contraction
on the map g, for all 0 ≤ m < n, and (a, b) ∈ Xc

m+1, we have

u(γm(a, b)) = δm(u(a), u(b)).

We denote such a morphism by (u, v).

For an object

X

S

f

��
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of Q, we refer to X as its magma part and S as its strict n-category part. There
is a forgetful functor

U : Q n-GSet

X

X

S

//

x

��

� //

and this functor has a left adjoint F : n-GSet→ Q. Penon gives a construction
of this left adjoint in the second part of [Pen99].

Definition 1.1.4. Let P be the monad on n-GSet induced by the adjunction
F a U . A Penon weak n-category is defined to be an algebra for the monad P ,
and P -Alg is the category of Penon weak n-categories.

1.2 Construction of Penon’s left adjoint

In [Pen99] Penon gave a construction of the left adjoint F , mentioned above,
using computads (which he called “polygraphs”, terminology due to Burroni
[Bur93]). In this section we give a new, alternative construction of the functor
F , using a monad interleaving construction similar to that used by Cheng to
construct the operad for Leinster weak ω-categories [Che10] (see also [HDM06],
which describes a more general interleaving argument). There are two reasons
for giving this alternative construction: in Section 3.1 we use it to prove that
there is an n-globular operad whose algebras are Penon weak n-categories, and
it also gives us notation for all the individual cells in a Penon weak n-category,
a fact which we use in Section 5.3.

The first step of our construction is the same as that of Penon. There is
a forgetful functor UT : n-Cat → n-GSet (the notation UT is used because
n-Cat = T -Alg), and we write R for the comma category

n-GSet ↓ UT .

Thus an object ofR is a map of n-globular sets f : X → S, where S is underlying
n-globular set of a strict n-category. Recall that an object of Q consists of an
object f : X → S ofR equipped with a magma structure on X and a contraction
on f , so we can factorise the forgetful functor U : Q → n-GSet as

Q n-GSet

R

U //

W "" V

<<

where W forgets the magma and contraction structures, and V sends an object
f : X → S of R to its n-globular set part X. To construct a left adjoint to U
we construct left adjoints to V and W separately. Constructing a left adjoint
to V is straightforward: it sends an n-globular set X to ηTX : X → TX.

We now explain the interleaving argument, which is used to construct the left
adjoint to W ; this is where our construction differs from that of Penon. In an
object of Q the magma structure and contraction structure exist independently
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of one another, and there are no axioms governing their interaction. Thus, we
can define categories

• Magn, whose objects are objects f : X → S of R, together with a magma
structure on X, which is respected by f ;

• Contrn, whose objects are objects f : X → S of R, together with a
contraction.

The maps in these categories are required to respect the magma and contraction
structures respectively. We can write the category Q as the pullback

Q Magn

Contrn R,

//

��

N

��

D
//

where N and D are the forgetful functors that forget the magma and contraction
structures respectively. The functor N has a left adjoint M , which freely adds
binary composites, and the functor D has a left adjoint C, which freely adds
contraction cells. We wish to combine these left adjoints to obtain a left adjoint
to W : Q → R, which adds both the magma and contraction structures freely.
However, we can’t just add all of one structure, then all of the other, since with
this approach we do not end up with enough cells. If we add a contraction
structure first, followed by a magma structure, we do not get any contraction
cells whose sources or targets are composites, such as unitors and associators.
If we add a magma structure first, followed by a contraction structure, we do
not get any composites involving contraction cells.

We therefore “interleave” the structures, one dimension at a time. To do so,
we make the following observations:

• when we add contraction cells freely, the contraction m-cells depend only
on cells at dimension m− 1;

• when we add composites freely, the composites of m-cells depend only on
cells at dimensions m and below.

This means that we can add the contraction cells and composites one dimension
at a time; starting with dimension 1, we first add contraction cells freely, then
add composites freely; we then move up to the next dimension and repeat the
process.

To formalise this, we give separate dimension-by-dimension constructions of
both the free contraction structure and the free magma structure, then interleave
these constructions by lifting them to the case in which we have both a magma
structure and a contraction structure. Thus we obtain a left adjoint to the
forgetful functor W : Q → R; by composing this with the left adjoint to the
functor V : R → n-GSet we obtain the left adjoint F to U : Q → n-GSet.

Owing to the length of this construction, this section is divided into four
subsections. In Subsection 1.2.1 we construct the left adjoint to V . In Subsec-
tions 1.2.2 and 1.2.3 we give dimension-by-dimension constructions of the left
adjoints to D and N respectively; these describe the free contraction structure
and free magma structure. Finally, in Subsection 1.2.4 we then interleave these
constructions to give a left adjoint to W .
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1.2.1 Left adjoint to V

We begin by describing R explicitly, in order to establish some terminology, and
to make clear its connection with Q.

Definition 1.2.1. Write R to denote the comma category n-GSet ↓ UT ; ex-
plicitly, R is the category with

• objects: an object of R consists of an n-globular set X, a strict n-category
S, and a map of n-globular sets

X

S

f

��

• morphisms: a morphism in R is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-GSet such that v is a map of strict n-categories. We denote such a
morphism by (u, v).

As in the case of Q, for an object

X

S

f

��

we refer to X as its n-globular set part and S as its strict n-category part.

We have a forgetful functor W : Q → R, which forgets the contraction and n-
magma structures but leaves the underlying map of n-globular sets unchanged,
and a forgetful functor V : R → n-GSet, defined by

V ( X
f
// S ) = X;

these compose to give V ◦ W = U . We construct left adjoints to V and W
separately, then compose these to obtain the left adjoint to U . We begin with
the construction of the left adjoint to V ; we do this in more generality than we
require, since this construction is valid for any monad T .

Definition 1.2.2. Let T be a monad on a category C, and write UT : T -Alg→ C
for the forgetful functor that sends a T -algebra to its underlying object in C.
Define a functor H : C → C/UT as follows:
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• on objects: for X ∈ n-GSet,

H(X) = ( X
ηTX // TX ),

where TX has the structure of the free T -algebra on X;

• on morphisms: for f : X → Y in C, Hf = (f, Tf).

Proposition 1.2.3. Write V : C/UT → C for the forgetful functor defined by,
for an object f : X → S of C/UT , where S has a T -algebra structure θ : TS → S,

V ( X
f
// S ) = X.

Then there is an adjunction H a V .

Proof. First, we define the unit α : 1 ⇒ V H and the counit β : HV ⇒ 1. For
X ∈ C,

αX = idX : X −→ V HX = X.

For f : X → S in C/UT , where S has a T -algebra denoted by θ : TS → S,
observe that θ is a map of T -algebras since, by the algebra axioms, the diagram

T 2S TS

TS S

Tθ //

µTS

��

θ

��

θ
//

commutes. The component of β at f : X → S, denoted βf , is given by the
commuting diagram

X X

S

TX TS S,

idX //

ηTX

��

f

��
f

��

ηTS

��

idS

��

Tf
//

θ
//

as a map in C/UT . This diagram commutes since the left-hand square is a
naturality square for η and the bottom-right triangle is the unit axiom for the
algebra θ; the remaining square commutes trivially.

We now show that α and β satisfy the triangle identities. First, consider

V
αV //

1V
''

V HV

V β

��

V.

For f : X → S in R,

V ( X
f
// S ) = X = V HV ( X

f
// S ),
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αX = 1X , and Uβf = 1X , so this diagram commutes.
Now consider

H
Hα //

1H
''

HVH

βH

��

H.

For X ∈ C,

H(X) = ( X
ηTX // TX ) = HVH(X),

HαX = HidX = (idX , idTX), and βHX = (id, µX ◦ TηX) = (idX , idTX), so this
diagram commutes.

This gives us the left adjoint to the functor V : R → n-GSet.

1.2.2 Free contraction structure

We now construct the free contraction on an object of R. In order to be able
to use the construction in the interleaving argument in Section 1.2.4, we give
the construction one dimension at a time. In order to do so, we define, for each
0 ≤ k ≤ n + 1, a category Contrk, an object of which consists of an object of
R equipped with a contraction up to dimension k. (Observe that Contr0 = R,
and note that a “contraction at dimension n+1” refers to the tameness condition
at dimension n.) We then have, for each 0 < k ≤ n+ 1, a forgetful functor

Dk : Contrk → Contrk−1.

We construct a left adjoint to each Dk, which freely adds a contraction structure
at dimension k, leaving all other dimensions unchanged.

Definition 1.2.4. Let f : X → S be a map of n-globular sets, where S is the
underlying n-globular set of a strict n-category, and let 0 ≤ k ≤ n. Recall
from Definition 1.1.2 that, for each 0 ≤ m < n, the set Xc

m+1 is defined by the
pullback

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × Sm.

//

��

(s,t,fm)
//

(s,t,fm)

��

where, when m = 0, we take Xm−1 to be the terminal set.
A k-contraction γ on the map f consists of, for each 0 ≤ m < k, a map

γm+1 : Xc
m+1 → Xm+1

such that, for (a, b) ∈ Xc
m,

s(γm+1(a, b)) = a,

t(γm+1(a, b)) = b,

fm+1(γm+1(a, b)) = idf(a).
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Note that having an n-contraction on a map f is not the same as having
contraction on f ; for a contraction on f , we also require that fn satisfies the
condition that, for all a, b ∈ Xn, if s(a) = s(b), t(a) = t(b), and fn(a) =
fn(b), then a = b. This condition can be thought as having contraction cells at
dimension n+ 1, but the only (n+ 1)-cells are equalities.

Definition 1.2.5. For each 0 ≤ k ≤ n, define a category Contrk, with

• objects: an object of Contrk consists of an n-globular set X, a strict
n-category S, and a map of n-globular sets

X

S

f

��

equipped with a k-contraction γ;

• morphisms: a morphism in Contrk is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-GSet such that

– v is a map of strict n-categories;

– writing γ for the contraction on the map f and δ for the contraction
on the map g, for all 0 < m ≤ k, and (a, b) ∈ Xc

m, we have

u(γm(a, b)) = δm(u(a), u(b)).

Define a category Contrn+1, with

• objects: an object of Contrn+1 consists of an n-magma X, a strict n-
category S, and a map of n-magmas

X

S

f

��

equipped with a contraction γ;

• morphisms: a morphism in Contrn+1 is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-GSet such that
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– v is a map of strict n-categories;

– writing γ for the contraction on the map f and δ for the contraction
on the map g, for all 0 < m ≤ n, and (a, b) ∈ Xc

m, we have

u(γm(a, b)) = δm(u(a), u(b)).

For all 0 < k ≤ n+ 1, we have a forgetful functor

Dk : Contrk → Contrk−1;

for 0 < k ≤ n, this functor forgets the contraction at dimension k, and for
k = n+ 1 it is the inclusion functor of the subcategory Contrn+1 into Contrn.

We now define a putative left adjoint Ck to the functor Dk; we will then
prove that this functor is left adjoint to Dk in Proposition 1.2.7.

Definition 1.2.6. For each k, 0 < k ≤ n, we define a functor

Ck : Contrk−1 → Contrk.

We begin by giving the action of Ck on objects. Let

X

S

f

��

be an object of Contrk−1, and write γ for its (k − 1)-contraction (assuming
k > 1; if k = 1, we have Contrk−1 = Contr0 = R, so there is no contraction
on f). We define an object

X̃

S

f̃

��

of Contrk, with k-contraction γ̃. The n-globular set X̃ is defined by:

• X̃j = Xj for all j 6= k;

• X̃k = Xk qXc
k,

• for (x, y) ∈ Xc
k ⊆ X̃k, s(x, y) = x, t(x, y) = y,

• for all other cells, sources and targets are inherited from X.

The map f̃ : X̃ → S is defined by

• f̃j = fj for all j 6= k;

• f̃k : X̃k → Sk is defined by

– f̃k(α) = fk(α) for α ∈ Xk ⊆ X̃k;

– f̃k(x, y) = 1fk−1(x) for (x, y) ∈ Xc
k ⊆ X̃k.
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The k-contraction γ̃ on f̃ is defined by

• γ̃m = γk−1
m for all m < k − 1;

• γ̃k−1 : Xc
k → X̃k is the inclusion into the coproduct X̃k = Xk qXc

k.

This defines the action of Ck on objects.
We now give the action of Ck on morphisms. Let

X Y

S R

u //

f

��

g

��

v
//

be a morphism in Contrk−1. Define a morphism

X̃ Ỹ

S R

ũ //

f̃

��

g̃

��

v
//

in Contrk, where ũ is defined by

• ũj = uj for all j 6= k;

• ũk : X̃k → Ỹk is given by

– ũk(α) = uk(α) for α ∈ Xk ⊆ X̃k;

– ũk(x, y) = (uk−1(x), uk−1(y)) for (x, y) ∈ Xc
k ⊆ X̃k.

This defines the action of Ck on morphisms.

Proposition 1.2.7. For all 0 < k ≤ n, there is an adjunction Ck a Dk.

Proof. We first define the unit η : 1⇒ DkCk, and counit ε : CkDk ⇒ 1.
Let

X

S

f

��

be an object of Contrk−1, with (k−1)-contraction γ (assuming k > 1; if k = 1,
we have Contrk−1 = Contr0 = R, so there is no contraction on f). Applying
DkCk gives

X̃

S

f̃

��
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in Contrk−1 with the same (k− 1)-contraction. The corresponding component
of the unit η is given by the map

X X̃

S S

ηX //

f

��

f̃

��

idS

//

where ηX is defined by

(ηX)j =

{
1Xj if j 6= k,
the inclusion Xj ↪→ Xj qXc

j if j = k.

Now let

X

S

f

��

be an object of Contrk, with k-contraction γ. Applying CkDk gives

X̃

S

f̃

��

in Contrk with k-contraction γ̃, which is equal to γ at all dimensions except k.
The corresponding component of the counit ε is given by the map

X̃ X

S S

εX //

f̃

��

f

��

idS

//

where εX is defined by

• (εX)j = 1Xj for all j 6= k;

• (εX)k : X̃k → Xk is given by

– (εX)k(α) = α for α ∈ Xk ⊆ X̃k;

– (εX)k(x, y) = γ̃k(x, y) for (x, y) ∈ Xc
k ⊆ X̃k.

We now check that the triangle identities hold; consider the diagrams

Dk
ηDk //

1
((

DkCkDk

Dkε

��

Ck
Ckη //

1
((

CkDkCk

εCk

��

Dk, Ck.



26 Chapter 1. Penon weak n-categories

In all of the natural transformations in these diagrams, the components on the
strict n-category parts are all identities, so to show that the diagrams commute
we need only consider the components on the n-globular set parts. Since the
components of the maps of n-globular sets are identities at every dimension
except dimension k, we need only check that the corresponding diagrams of
maps of sets of k-cells commute.

First, we must show that, given

X

S

f

��

in Contrk, the diagram

Xk

(ηX)k
//

1Xk
))

X̃k = Xk qXc
k−1

(εX)k

��

Xk

commutes; this is true, since given α ∈ Xk, we have

(εX)k ◦ (ηX)k(α) = (εX)k(α) = α.

Secondly, we must show that, given

X

S

f

��

in Contrk−1 with (k − 1)-contraction γ, the diagram

X̃k
(η̃X)k

//

1X̃k
''

X̃k q X̃c
k

(εX̃)k
��

X̃k

commutes. We have two kinds of freely added contraction cells in X̃k q X̃c
k; we

write (x, y) for the contraction cells in Xc
k, and [x, y] for those in X̃c

k (the latter

being the specified contraction cells in this case). Given α ∈ Xk ⊆ X̃k,

(εX̃)k ◦ (η̃X)k(α) = (εX̃)k(α) = α;

given (x, y) ∈ Xc
k ⊆ X̃k,

(εX̃)k ◦ (η̃X)k(x, y) = (εX̃)k[x, y] = (x, y);

hence the diagram commutes.
Thus the triangle identities hold, and we have an adjunction Ck a Dk, with

unit η and counit ε.
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We must also define Cn+1 separately, since “adding contraction (n+1)-cells”
consists of identifying certain n-cells rather than actually adding cells; we can
think of this as adding equality (n+ 1)-cells between pairs of n-cells that would
usually require a contraction cell between them.

Definition 1.2.8. We define a functor

Cn+1 : Contrn → Contrn+1.

We begin by giving the effect of Cn+1 on objects. Let

X

S

f

��

be an object of Contrn, with n-contraction γ. Define a set Xc
n+1 and maps π1,

π2 : Xc
n+1 → Xn by the following pullback:

Xc
n+1 Xn

Xn Xn−1 ×Xn−1 × Sn.

π1 //

π2

��

(s,t,fn)
//

(s,t,fn)

��

The set Xc
n+1 can be thought of as the set of pairs of n-cells to be identified,

but note that there is some redundancy: for all a ∈ Xn, (a, a) ∈ Xc
n+1, and if

we have (a, b) ∈ Xc
n+1 we also have (b, a) ∈ Xc

n+1.
We now define an object

X̃

S

f̃

��

of Contrn+1 with contraction γ̃. For 0 ≤ m < n, define

X̃m = Xm,

and define X̃n to be the coequaliser of the diagram

Xc
n+1

π1 //

π2

// Xn.

For 0 ≤ m < n, define
f̃m = fm,

and define f̃n : X̃n → Sn to be the unique map such that

Xc
n+1

π1 //

π2

// Xn
q
//

fn
  

X̃n

f̃n

��

Sn
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commutes, where q : Xn → X̃n is the coequaliser map. Finally, define γ̃ to be
the n-contraction defined by

γ̃m =

{
γm if m < n,
q ◦ γn if m = n.

This defines the action of Cn+1 on objects.
We now give the action of Cn+1 on morphisms. Let

X Y

S R

u //

f

��

g

��

v
//

be a morphism in Contrn. Define a morphism

X̃ Ỹ

S R

ũ //

f̃

��

g̃

��

v
//

in Contrn+1, where, for 0 ≤ m < n,

ũm = um,

and ũn : X̃n → Ỹn is defined to be the unique map such that the diagram

Xc
n+1

π1 //

π2

// Xn
q
//

un

��

X̃n

ũn
��

Yn p
// Ỹn

commutes, where p is the coequaliser map for Ỹn. This defines the action of
Cn+1 on morphisms.

Proposition 1.2.9. There is an adjunction Cn+1 a Dn+1.

Proof. We first define the unit η : 1⇒ Dn+1Cn+1, and counit ε : Cn+1Dn+1 ⇒
1. Let

X

S

f

��

be an object of Contrn. Applying Dn+1Cn+1 gives

X̃

S

f̃

��
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in Contrn+1. The corresponding component of the unit η is given by the map

X X̃

S S

ηX //

f

��

f̃

��

idS

//

where ηX is defined by

(ηX)j =

{
1Xj if j < n,

the coequaliser map q : Xn → X̃n if j = n.

Observe that Cn+1Dn+1 = id, and if

X

S

f

��

is in the image of Dn+1, X̃ = X and q = idX , so η = id. Furthermore, the
counit

ε : Cn+1Dn+1 ⇒ 1

is also the identity. Thus all maps appearing in the diagrams for the triangle
identities are identity maps, so both diagrams commute. Hence there is an
adjunction Cn+1 a Dn+1.

Thus Definitions 1.2.6 and 1.2.8 give us a dimension-by-dimension construc-
tion of the free contraction on an object of R.

1.2.3 Free magma structure

We now construct the free n-magma on the source of an object of R. As with
the construction of the free contraction in the previous subsection, in order to
be able to use the construction in the interleaving argument in Subsection 1.2.4,
we give the construction one dimension at a time. To do so we define, for each
0 ≤ j ≤ n, a category Magj , an object of which consists of an object of R
in which the source is equipped with a magma structure up to dimension j.
(Observe that Mag0 = R.) We then have, for each 0 < j ≤ n, a forgetful
functor

Nj : Magj →Magj−1.

We construct a left adjoint to each Nj , which freely adds a magma structure at
dimension j, leaving all other dimensions unchanged.

In order to define what it means for an n-globular set to have a j-magma
structure, we use the j-truncation functor

Trj : n-GSet −→ j-GSet,

which forgets the sets of m-cells for all m > j, and, for m ≤ j, leaves the sets
of m-cells and their source and target maps unchanged; the action on maps is
defined similarly.
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Definition 1.2.10. Define a category Magj , with

• objects: an object of Magj consists of an object

X

S

f

��

in R such that TrjX is a j-magma, and Trjf is a map of j-magmas.

• morphisms: a morphism in Magj is a morphism

X Y

S R

u //

f

��

g

��

v
//

in R such that Trju is a map of j-magmas.

We can express the category Magj as a pullback. For any m ∈ N we have
a commuting triangle of forgetful functors

m-Cat m-Mag

m-GSet

G //

UTm ## E{{

in CAT. We can then write Magj as the pullback

Magj n-GSet ↓ UT

j-Mag ↓ G j-GSet ↓ UTj

//

��

Trj

��

E
//

For all 0 < j ≤ n, we have a forgetful functor

Nj : Magj →Magj−1,

which forgets the composition maps for j-cells. We will define, for each 0 < j ≤
n, a functor

Mj : Magj−1 →Magj

which freely adds binary composites at dimension j, taking an n-globular set
equipped with a (j − 1)-magma structure and adding a magma structure at
dimension j to give an n-globular set equipped with a j-magma structure. We
will then show that the functor Mj is left adjoint to the forgetful functor Nj .

Before defining Mj , we first fix some notation that will be used in the con-
struction of the free binary composites. Let X be an n-globular set equipped
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with a (j − 1)-magma structure. For each 0 ≤ p < j, we can form the set of
pairs of j-cells that are composable along p-cells using the following pullback:

Xj ×Xp Xj Xj

Xj Xp.

//

��

s

��

t
//

We view Xj ×Xp Xj as the set of freely generated binary composites of j-cells
along p-cells. We can form the set of freely generated binary composites of j-
cells along boundaries of all dimensions by taking the coproduct of these sets
over p. As the notation will become somewhat complicated in the definition of
the left adjoint to Nj , we use the following shorthand:

X2
j :=

∐
0≤p<j

Xj ×Xp Xj .

This set comes equipped with source and target maps into Xj−1, which are de-
fined in analogy with the sources and targets of composites in a magma structure
from Definition 1.1.1, as follows:

• if p = m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(a, b) = s(a),

t(a, b) = t(b)

• if p < m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(a, b) = s(b) ◦m−1
p s(a),

t(a, b) = t(b) ◦m−1
p t(a).

The set X2
j contains only binary composites of “depth 1”; that is, it contains

binary composites of pairs of j-cells in X, but it does not contain binary com-
posites of binary composites, binary composites of binary composites of binary
composites, etc. In order to obtain these composites of greater “depth”, which
we require in the free magma structure, we must iterate this process. To do so

we define, for each k ≥ 0, a set X
(k)
j of composites of depth at most k. We have

inclusion maps

X
(k)
j ↪→ X

(k+1)
j ,

so this gives a sequence of sets; we take the colimit of this sequence to obtain
the set of freely generated binary composites of all depths. We now describe
and illustrate this iterative process for low depths of composite (k ≤ 2).

When k = 0, we define

X
(0)
j = Xj ,

with source and target maps s, t : X
(0)
j → Xj−1 given by those in X.

When k = 1, we define

X
(1)
j := Xj +

(
X

(0)
j

)2

= Xj +X2
j ,



32 Chapter 1. Penon weak n-categories

where the notation X2
j is shorthand, as described earlier. The set X2

j inherits

source and target maps from X
(0)
j , so we have source and target maps

s, t : X
(1)
j −→ Xj−1

inherited from those for Xj and X2
j . To see how this gives the set of composites

of depth at most 1, we consider the case j = 2. By “expanding out” X2
2 , we see

that X
(1)
2 contains the following shapes of composites:

X
(1)
2 = X2 + X2 ×X0

X2 + X2 ×X1
X2

• ⇓ • • ⇓ • ⇓ • •
⇓
⇓
•

��

@@

��

@@

��

@@

��
//
FF

When k = 2, we define

X
(2)
j := Xj +

(
X

(1)
j

)2

.

As in the case k = 1, this comes equipped with source and target maps. In the

case j = 2, “expanding out”
(
X

(1)
j

)2

gives

X
(2)
2 = X2 + X2

2 + X2 ×X0 X
2
2 + X2 ×X1 X

2
2 + X2

2 ×X0
X2

+ X2
2 ×X1

X2 + X2
2 ×X0

X2
2 + X2

2 ×X1
X2

2 .

Thus X
(2)
2 contains the same shapes of composites that appear in X

(1)
2 , as well as

those composites of depth 2: in X2×X0
X2

2 we have composites of the following
shapes:

• ⇓ •
(
⇓ • ⇓

)
• and • ⇓ •

(
⇓
⇓

)
•;

��

@@

��

@@

��

@@

��

@@

��
//
FF

in X2 ×X1
X2

2 we have composites of the following shape:

• ⇓ •

◦

•
⇓
⇓
•;

��

@@

��
//
FF

the shapes of composites in X2
2 ×X0 X2 and X2

2 ×X1 X2 are similar to those
above; in X2

2 ×X0 X
2
2 we have composites of the following shapes:

•
(
⇓ • ⇓

)
•
(
⇓ • ⇓

)
•

��

@@

��

@@

��

@@

��

@@

and also

•
(
⇓ • ⇓

)
•
⇓
⇓
• and •

⇓
⇓
•
(
⇓ • ⇓

)
•;

��

@@

��

@@

��
//
FF

��
//
FF

��

@@

��

@@
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and finally, in X2
2 ×X1

X2
2 we have composites of the following shapes:

•
⇓
⇓
•

◦

•
⇓
⇓
•

and

•

•

⇓

⇓

•
◦
•

⇓

⇓

•

•.

��
//
FF

��
//
FF

��
//

FF
//

��
//

FF
//

Thus X
(2)
2 contains all binary composites of 2-cells of depth at most 2.

Since the construction of the the free j-magma structure consists of taking
pullbacks and filtered colimits of sets, in order to define the composition maps
at dimension j we require the following lemma due to Mac Lane [ML98, The-
orem IX.2.1], which states that finite limits commute with filtered colimits in
Set. Note that this theorem still holds if Set is replaced by any locally finitely
presentable category; see [AR94, Proposition 1.59].

Lemma 1.2.11 (Mac Lane). Let I be a finite category, and let J be a small,
filtered category. Then for any bifunctor

F : I× J→ Set

the canonical arrow

colim
j∈J

lim
i∈I

F (i, j) −→ lim
i∈I

colim
j∈J

F (i, j)

is an isomorphism.

We now define a putative left adjoint Mj to the functor Nj ; we will then
prove that this functor is left adjoint to Nj in Proposition 1.2.13.

Definition 1.2.12. For each 0 < j ≤ n, we define a functor

Mj : Magj−1 →Magj .

We begin by giving the action of Mj on objects. Let

X

S

f

��

be an object of Magj−1. We will define an object

X̂

S

f̂

��

of Magj , where X̂ differs from X only at dimension j. The set X̂j of j-cells

of X̂ is the set of freely generated binary composites of j-cells of X. We define
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this as the colimit of a sequence of sets X
(k)
j , where X

(k)
j is the set of freely

generated binary composites of j-cells of X of depth at most k. We define X
(k)
j

by induction over k, as follows: when k = 0, define

X
(0)
j = Xj ,

with source and target maps s, t : X
(0)
j → Xj−1 given by those in X. Now

suppose that k > 0 and we have defined X
(k−1)
j , equipped with source and

target maps

s, t : X
(k−1)
j −→ Xj−1.

We define X
(k)
j by

X
(k)
j := Xj +

(
X

(k−1)
j

)2

.

Recall that the notation used above is shorthand, defined by(
X

(k−1)
j

)2

:=
∐

0≤p<j

X
(k−1)
j ×Xp X

(k−1)
j ,

and that this set inherits source and target maps from X
(k−1)
j . Thus we have

source and target maps

s, t : X
(k)
j −→ Xj−1

inherited from those for Xj and
(
X

(k−1)
j

)2

.

For each k ≥ 0, we define a map

i(k) : X
(k)
j → X

(k+1)
j ,

which includes the freely generated composites in X
(k)
j (those of depth at most

k) into the set X
(k+1)
j (which contains composites of depth at most k+ 1), and

leaves the generating cells unchanged. The maps i(k) are defined by induction
over k, as follows:

• for k = 0, i(0) is the coprojection map

i(0) : Xj → Xj +X2
j ;

• for k ≥ 1, suppose we have defined i(k−1) : X
(k−1)
j → X

(k)
j . We define i(k)

to be the map

i(k) := 1Xj +
∐

0≤p<j

(
i(k−1), i(k−1)

)
: Xj +

(
X

(k−1)
j

)2

→ Xj +
(
X

(k)
j

)2

.

These sets and maps give us a diagram

X
(0)
j

i(0)
// X

(1)
j

i(1)
// X

(2)
j

i(2)
// X

(3)
j

i(3)
// . . .
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in Set; we then define

X̂j := colim
k≥0

X
(k)
j .

For m 6= j, we define
X̂m := Xm.

For m 6= j, j + 1, the source and target maps

s, t : X̂m → X̂m−1

are those inherited from X. Now write c
(k)
j : X

(k)
j → X̂j for the coprojection

maps. The source and target maps for m = j + 1 are given by the composites

X̂j+1 = Xj+1 Xj X̂j
s //

c
(0)
j
//

and

X̂j+1 = Xj+1 Xj X̂j
t //

c
(0)
j
//

respectively. To define the source and target maps for m = j, recall that,

for each k, we have source and target maps s, t : X
(k)
j → Xj−1; we define s,

t : X̂j → Xj−1 to be the unique maps induced by the colimit defining X̂j that
make, for all k ≥ 1, the diagrams

X
(k)
j X̂j

Xj−1

X
(k)
j X̂j

Xj−1

c
(k)
j
//

s

��

s

��

c
(k)
j
//

t
��

t

��

commute respectively.
We now define the j-magma structure on X̂. For all m < j, and for all

0 ≤ p < m, the composition map

◦mp : X̂m ×X̂p X̂m = Xm ×Xp Xm → Xm

is the corresponding composition map from the (j − 1)-magma structure on X.
To define the composition map ◦jp for 0 ≤ p < j, we begin by observing that,
by Lemma 1.2.11, we have an isomorphism

colim
k,l≥0

(
X

(k)
j ×Xp X

(l)
j

)
∼=
(

colim
k≥0

X
(k)
j

)
×Xp

(
colim
l≥0

X
(l)
j

)
= X̂j ×Xp X̂j .

Thus, to define the composition maps at dimension j, we define, for each k,
l > 0, 0 ≤ p < j, a map

◦jp : X
(k)
j ×Xp X

(l)
j → X̂j .

To do so, observe that, in the case k = l, the source of the composition map

above includes in X
(k+1)
j , which in turn includes in X̂j ; thus in this case we

define the composition map to be the composite:

X
(k)
j ×Xp X

(k)
j
� � // X

(k+1)
j

c
(k+1)
j
// X̂j .
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Now suppose that k < l; in this case we first include the source of the composi-
tion map in

X
(l)
j ×Xp X

(l)
j ,

and we can then follow the same method as for k = l. Write

i(k,l) := i(l) ◦ i(l−1) ◦ · · · ◦ i(k) : X
(k)
j −→ X

(l)
j ,

and define ◦jp to be the composite

X
(k)
j ×Xp X

(l)
j X

(l)
j ×Xp X

(l)
j X

(l+1)
j X̂j ,

(i(k,l),id)
// � � //

c
(l+1)
j
//

where the second map is the coprojection into the coproduct defining X
(l+1)
j .

Similarly, for l > k, we define ◦jp to be the composite

X
(k)
j ×Xp X

(l)
j X

(k)
j ×Xp X

(k)
j X

(k+1)
j X̂j ,

(id,i(k,l))
// � � //

c
(k+1)
j
//

Then ◦jp : X̂j×Xp X̂j → X̂j is defined to be the unique map induced by universal
property of

X̂j ×Xp X̂j

as a colimit (using Lemma 1.2.11) such that, for all k, l > 0, the diagram

X
(k)
j ×Xp X

(l)
j X̂j ×Xp X̂j

X̂j

(
c
(k)
j ,c

(l)
j

)
//

◦jp
((

◦jp
��

commutes. This defines a j-magma structure on X̂.
We now define the map f̂ : X̂ → S. At dimension j, f̂ acts on a freely

generated composite in X̂j by first applying f to each individual generating
j-cell in the composite, then evaluating this composite via the magma structure
on S; at all other dimensions it is the same as the map f .

For m 6= j, define

f̂m = fm : X̂m = Xm → Sm.

To define f̂m for m = j, we first define, for each k ≥ 0, a map

f
(k)
j : X

(k)
j → Sj .

When k = 0, define

f
(k)
j = fj : X

(0)
j → Sj .

Now let k ≥ 1 and suppose we have defined the map

f
(k−1)
j : X

(k−1)
j → Sj ;
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we define the map

f
(k)
j : X

(k)
j → Sj

as follows: for each 0 ≤ p < j there is a map(
f

(k−1)
j , f

(k−1)
j

)
: X

(k−1)
j ×Xp X

(k−1)
j → Sj ×Sp Sj

induced by the universal property of Sj ×Sp Sj . We compose each of these with

the composition map ◦jp, and define f
(k)
j : X

(k)
j → Sj to be a coproduct of these

composites, as follows:

f
(k)
j :=f

(0)
j +

∐
0≤p<j

(
(◦jp) ◦

(
f

(k−1)
j , f

(k−1)
j

))
:

X
(k)
j = Xj +

∐
0≤p<j

X
(k−1)
j ×Xp X

(k−1)
j → Sj .

We then define f̂j to be the unique map such that, for all k ≥ 1, the diagram

X
(k)
j X̂j

Sj

c
(k)
j
//

f
(k)
j ��

f̂j

��

commutes.
Thus we have defined an object

X̂

S

f̂

��

of Magj ; this gives the action of Mj on objects.
We now give the action of Mj on morphisms. Let

X Y

S R

u //

f

��

g

��

v
//

be a morphism in Magj−1. We define a morphism

X̂ Ŷ

S R

û //

f̂

��

ĝ

��

v
//
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in Magj . At dimension j, the map û acts on a freely generated composite in X̂
by applying u to each individual generating j-cell in the composite, thus giving
a freely generated composite of j-cells in Ŷj ; at all other dimensions it is the
same as the map u.

For m 6= j, we define ûm = um. To define ûm for m = j, first we define, for
each k ≥ 1, a map

u
(k)
j : X

(k)
j → Y

(k)
j .

When k = 0, define

u
(1)
j := uj : X

(1)
j → Y

(1)
j .

Now let k ≥ 1 and suppose we have defined

u
(k−1)
j := uj : X

(k−1)
j → Y

(k−1)
j ;

we define u
(k)
j as follows:

u
(k)
j := u

(k−1)
j +

∐
0≤p<j

(
u

(k−1)
j , u

(k−1)
j

)
: X

(k)
j → Y

(k)
j .

We then define ûj to be the unique map such that, for all k ≥ 1, the diagram

X
(k)
j X̂j

Y
(k)
j Ŷj

c
(k)
j
//

u
(k)
j

��

ûj

��

c
(k)
j

//

commutes. This gives the action of the functor Mj on morphisms.

Proposition 1.2.13. For all 0 < j ≤ n, there is an adjunction Mj a Nj.

Proof. We first define the unit η : 1⇒ NjMj and counit ε : MjNj ⇒ 1.
Let

X

S

f

��

be an object in Magj−1. Then the corresponding component of the unit map
η is

X X̂

S S,

f

��

ηX //

f̂

��

idS

//

where ηX is defined by

(ηX)k =

{
idXk if k 6= j,

the coprojection map c
(0)
j : Xj → X̂j if k = j.
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Naturality of η is immediate at dimensions k 6= j, and follows from the definition
of the action of Mj on maps when k = j.

Now let

X

S

f

��

be an object in Magj . The corresponding component of the counit map ε should
be a map of the form

X̂ X

S S.

f̂

��

ηX //

f

��

idS

//

To define the map εX , recall that

X̂j := colim
k≥0

X
(k)
j ;

thus for each k ≥ 0, we define a map

ε
(k)
X : X

(k)
j → Xj ,

by induction over k.

When k = 0, X
(k)
j = Xj , and we define

ε
(0)
X := idXj .

Now suppose we have defined ε
(k)
X for some k = l. Recall that

X
(l+1)
j := Xj +

∐
0≤p<j

X
(l)
j ×Xp X

(l)
j .

We define ε
(l+1)
X by

ε
(l+1)
X := idXj +

∐
0≤p<j

(
(◦jp) ◦

(
ε
(l)
X , ε

(l)
X

))
: X

(l+1)
j −→ Xj ,

where ◦jp is the composition map from the j-magma structure on X. We then

define (εX)j : X̂j → Xj to be the unique map such that, for all k ≥ 0, the
diagram

X
(k)
j X̂j

Xj

c
(k)
j
//

ε
(k)
X ��

(εX)j

��
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commutes. This defines the counit ε : MjNj ⇒ 1. We now check naturality of
ε. Let

X Y

S R

u //

f

��

g

��

v
//

be a morphism in Magj ; since the components of ε are identities on strict n-
category parts, and at all dimensions other than dimension j, to show that ε is
natural we need only show that the diagram

X̂j Ŷj

Xj Yj

ûj
//

(εX)j

��

(εY )j

��

uj
//

commutes. By definition of X̂ as a colimit, this diagram commutes if, for each
k ≥ 0, the diagram

X
(k)
j Y

(k)
j

Xj Yj

u
(k)
j
//

ε
(k)
X

��

ε
(k)
Y

��

uj
//

commutes; we prove this by induction over k. It is immediate when k = 0, since

ε
(0)
X = idXj and ε

(0)
Y = idYj . Now suppose we have shown that the diagram

commutes for some k = l; then we have

u ◦ ε(l+1)
X = uj +

∐
0≤p<j

(
uj ◦ (◦jp) ◦

(
ε
(l)
X , ε

(l)
X

))
= uj +

∐
0≤p<j

(
(◦jp) ◦

(
ujε

(l)
X , ujε

(l)
X

))
= uj +

∐
0≤p<j

(
(◦jp) ◦

(
ε
(l)
X u

(l)
j , ε

(l)
X u

(l)
j

))
= ε

(l+1)
j u

(l+1)
j ,

so the diagram commutes for k = l + 1. Thus, by induction, the diagram
commutes for all k ≥ 0. Hence ε is natural.

We now check that η and ε satisfy the triangle identities, i.e. that the
diagrams

Nk
ηNk //

1
((

NkMkNk

Nkε

��

Mk
Mkη //

1
((

MkNkMk

εMk

��

Nk, Mk

commute. In all of the natural transformations in these diagrams, the compo-
nents on strict n-category parts are all identities, so to show that the diagrams
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commute we need only consider the components on underlying n-globular sets.
Since the components of the maps of n-globular sets are identities at every
dimension except dimension j, we need only check that the corresponding dia-
grams of maps of sets of j-cells commute.

For the first triangle identity, let

X

S

f

��

be an object of Magj . Then the diagram

Xj X̂j

Xj

(ηX)j=c
(0)
j
//

ε
(0)
j

$$

(εX)j

��

commutes by the universal property of (εX)j , so this triangle identity is satisfied.
Similarly, for the second triangle identity, let

X

S

f

��

be an object of Magj−1. Then the diagram

X̂j
̂̂
Xj

X̂j

(η
X̂

)j=c
(0)
j
//

ε
(0)
j

$$

(ε
X̂

)j

��

commutes by the universal property of (εX̂)j , so this triangle identity is satisfied.
Thus we have an adjunction Mj a Nj , as required.

1.2.4 Interleaving the contraction and magma structures

We now explain the interleaving argument and show that we can interleave the
constructions of Subsections 1.2.2 and 1.2.3 to give a construction of the left
adjoint to the functor

W : Q → R.

To do so we add the contraction and magma structures one dimension at a
time, starting with dimension 1 and working upwards. At dimension m we
first add free contraction cells using the functor Cm, then add free composites
using the functor Mm, and then move up to the next dimension. Finally, we
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add “contraction (n + 1)-cells” using the functor Cn+1, which identifies the
appropriate cells at dimension n. Note that the method we use very closely
follows the method used by Cheng in [Che10].

This construction is possible because of the dimensional dependencies of the
functors Ck and Mj defined in Subsections 1.2.2 and 1.2.2; the contraction k-
cells added by Ck only depend on the (k − 1)-cells, and the composites added
by the Mj only depend on the j-cells.

In order to describe this interleaving process formally, we define, for each
0 ≤ j, k ≤ n, a category whose objects are objects of R equipped with both a
j-magma structure and a k-contraction.

Definition 1.2.14. For each 0 ≤ j ≤ n, 0 ≤ k ≤ n+ 1, define a category Rj,k
with

• objects: an object of Rj,k consists of an n-globular set X equipped with
a j-magma structure, a strict n-category S, and a map of n-globular sets

X

S

f

��

that preserves the j-magma structure of X, equipped with a k-contraction
γ;

• morphisms: a morphism in Rj,k is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-GSet such that

– v is a map of strict n-categories;

– u preserves the j-magma structure of X;

– writing γ for the contraction on the map f and δ for the contraction
on the map g, for all 0 < m ≤ n, and (a, b) ∈ Xc

m, we have

u(γm(a, b)) = δm(u(a), u(b)).

For 0 < j ≤ n, 0 < k ≤ n+ 1, we have forgetful functors

Dj,k : Rj,k → Rj,k−1,

which forgets the contraction structure at dimension k, and

Nj,k : Rj,k → Rj−1,k,

which forgets the magma structure at dimension j. Thus we can write the
forgetful functor

W : Q → R
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as the composite

Q = Rn,n+1

Dn,n+1
// Rn,n

Nn,n
// Rn−1,n

Dn−1,n
// · · ·

N1,1
// R0,1

D0,1
// R0,0 = R.

In order to construct the left adjoint to W , we construct left adjoint to each
of the factors in the composite above, by lifting the constructions of Ck and
Mj from Subsections 1.2.2 and 1.2.3 in a way that interacts properly with the
forgetful functors

Rj,k →Magj ,

which forget the k-contraction structure entirely, and

Rj,k → Contrj ,

which forget the j-magma structure entirely.

Lemma 1.2.15. For all 0 < k ≤ n+ 1, the adjunction

Contrk−1 Contrk

Ck

⊥
//

Dk

oo

lifts to an adjunction

Rk−1,k−1 Rk−1,k

Ck−1,k

⊥
//

Dk−1,k

oo

making the diagram

Rk−1,k−1 Rk−1,k

Contrk−1 Contrk

Ck−1,k

⊥
//

Dk−1,k

oo

Ck

⊥
//

Dk

oo

�� ��

commute serially.

Proof. We need to show that, given (X, f, S, γ) ∈ Contrk−1, if X is equipped
with a (k − 1)-magma structure, then this (k − 1)-magma structure is “stable”
under Ck; this is immediate since, by construction, Ck adds only k-cells to X,
so the underlying (k − 1)-globular set of X remains stable under Ck.

Lemma 1.2.16. For all 0 < j ≤ n, the adjunction

Magj−1 Magj

Mj

⊥
//

Nj

oo

lifts to an adjunction

Rj−1,j Rj,j
Mj,j

⊥
//

Nj,j

oo
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making the diagram

Rj−1,j Rj,j

Magj−1 Magj

Mj,j

⊥
//

Nj,j

oo

Mj

⊥
//

Nj

oo

�� ��

commute serially.

Proof. We need to show that, given (X, f, S) ∈Magj−1, if (X, f, S) is equipped
with a j-contraction γ, this j-contraction structure is “stable” under Mj . By
construction, Mj adds only j-cells to X, so the underlying (j − 1)-globular set
of X remains stable under Mj . The required contraction j-cells depend only on

the (j − 1)-cells of X̂, and we have X̂c
j−1 = Xc

j−1, so the contraction j-cells in

X̂ are given by

Xc
j−1

γj−1
// Xj

cj
// X̂j .

For m < j, we have X̂c
m−1 = Xc

m−1, X̂m = Xm, and the contraction m-cells
are given by γm−1 : Xc

m−1 → Xm. Hence the j-contraction structure is stable
under Mj .

Combining Lemmas 1.2.15 and 1.2.16, we obtain a chain of adjunctions

R = R0,0

C0,1

⊥
// R0,1

D0,1

oo

M1,1

⊥
//
. . .

N1,1

oo

Cn−1,n

⊥
// Rn−1,n

Dn−1,n

oo

Mn,n

⊥
// Rn,n

Nn,n

oo

Cn,n+1

⊥
// Rn,n+1 = Q.

Dn,n+1

oo

Composing these, we obtain an adjunction

R
J

⊥
// Q,

W
oo

where J = Cn,n+1 ◦Mn,n ◦ Cn−1,n ◦ · · · ◦M1,1 ◦ C0,1. We then have

n-GSet
F

⊥
// Q,

U
oo

where F = J ◦ H. Thus U has a left adjoint, so Penon weak n-categories are
indeed well-defined, and moreover we have an explicit description of this left
adjoint.



Chapter 2

Operadic definitions of
weak n-category

In this chapter we recall and compare two operadic definitions of weak n-
category, those of Batanin [Bat98] and Leinster [Lei98b]. We give a new proof
of the existence of the initial n-globular operad with a contraction and system
of compositions, a fact that has previously only been assumed [Bat98, Lei02].
A correspondence between the contractions and systems of compositions used
in Batanin’s definition, and the unbiased contractions used in Leinster’s defini-
tion, has long been suspected, and we prove a conjecture of Leinster [Lei04a,
Section 10.1] that shows that the two notions are in some sense equivalent.
We then prove several new coherence theorems which apply to algebras for any
operad with an unbiased contraction or with a contraction and system of compo-
sitions; these coherence theorems thus apply to both Batanin weak n-categories
and Leinster weak n-categories.

All definitions in this chapter are of the n-dimensional case, but it is straight-
forward and well-established how to modify the definitions to the ω-dimensional
case [Bat98, Lei98b]. The results in Section 2.5 are mostly not applicable in the
ω-dimensional case, since most of the coherence theorems concern behaviour
of cells at dimension n (for example, stating that certain diagrams of n-cells
commute).

As noted in the introduction, throughout this chapter we write 1 to denote
the terminal object of the category in which we are working; with the exception
of Section 2.1, we work exclusively in n-GSet. In this case, 1 is the n-globular
set in which the set 1m of m-cells is a one-element set for every 0 ≤ m ≤ n.
We also write 1 for the unique element of each set 1m. Applying T to the
terminal n-globular set freely generates composites, giving the n-globular set T1
of globular pasting diagrams. The cells of T1 are the arities of the operations
in an n-globular operad.

2.1 Globular operads

In this section we recall the definitions of generalised operads and their algebras,
with particular emphasis placed on the case of n-globular operads. None of the
material in this section is new; it originates in [Lei04a], with the special case of

45



46 Chapter 2. Operadic definitions of weak n-category

n-globular operads originating in [Bat98].
A classical operad has a set of operations, each equipped with an arity: a

natural number which is to be thought of as the number of inputs that the
operation has. In the definition of generalised operad, we replace Set with any
category C that has all pullbacks and a terminal object, denoted 1. The arities of
the generalised operad are then generated by applying a suitably well-behaved
monad T to the terminal object, giving an “object of arities” T1 in C; hence
such a generalised operad is called a “T -operad”. To retrieve the definition of
classical non-symmetric operad, we take C = Set, and take T to be the free
monoid monad on Set. The terminal object in Set is the one-element set 1,
and applying T gives T1 ∼= N, so in this case a T -operad has natural numbers
as arities. We will return to this example throughout the section.

We will be particularly interested in the case of n-globular operads, in which
C = n-GSet and T is the free strict n-category monad. As explained in the
introduction, in this case T1 is the n-globular set whose elements are globular
pasting diagrams. In an n-globular operad, each operation has such a diagram
as its arity, and should be thought of as a way of composing a diagram of cells
of that shape.

Before giving the definition of T -operad, we must first state formally what
it means for T to be “suitably well-behaved”.

Definition 2.1.1. A category is said to be cartesian if it has all pullbacks. A
functor is said to be cartesian if it preserves pullbacks. A natural transformation
is said to be cartesian if all of its naturality squares are pullback squares. A
map of monads is said to be cartesian if its underlying natural transformation
is cartesian. A monad is said to be cartesian if its functor part is a cartesian
functor and its unit and counit are cartesian natural transformations.

We now explain what it means for a monad to be cartesian with reference
to the example of the free monoid monad on Set. Let f : X → Y be a map
of sets, and consider the corresponding naturality squares for the free monoid
monad T , i.e.

X Y

TX TY

and

T 2X T 2Y

TX TY.

f
//

ηTX

��

Tf
//

ηTY

��

T 2f
//

µTX

��

Tf
//

µTY

��

Recall that an element of TX is a “word” in X; that is, a finite string of elements
of X. The fact that the naturality square for the unit is a pullback square tells
us that every element of X is uniquely determined by its image under f and the
corresponding word of length 1 in TX. This means that we have no equations
of the form x = t where x is a word of length 1 but t is a word of some other
length, and also tells us that any element of TX whose image under Tf is a
word of length 1 must itself be a word of length 1.

Similarly, the fact that the naturality square for the multiplication is a pull-
back square tells us that any element of T 2X (a word of words in X) is uniquely
determined by an element of TX, which tells us which elements of X appear in
this word of words, and an element of T 2Y , which tells us how these elements
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of X are divided into words. This means that if two words in TX are equal,
they must be of the same length, and consist of the same elements of X in the
same order.

So the fact that T is cartesian tells us that, for a set X, each element of TX
has a fixed length and order, and that this length and order will be preserved
by any map in the image of T . More generally, for any cartesian monad T
on Set or a presheaf category, we can think of this as telling us that, for an
object X, each element of TX has a fixed “shape” that is preserved by any
map in the image of T . This goes some way towards explaining why cartesian
monads are appropriate for generating the arities of generalised operads; arities
are supposed to be the shapes that the inputs of an operation can take, so we
need a monad for which the elements of T1 are fixed shapes.

We now recall the definition of T -collections, the underlying data for T -
operads.

Definition 2.1.2. Let C be a cartesian category with a terminal object 1, and
let T be a cartesian monad on C. The category of T -collections is the slice
category C/T1. Explicitly, this is the category with:

• objects: an object of C/T1, called an T -collection (or simply, a collection),
consists of an object K of C, and a map

K

k

��

T1

in C;

• morphisms: a morphism of f : K → K ′, called a map of collections, is a
map of the underlying objects of C such that

K K ′

T1

f
//

k
��

k′

��

commutes.

We obtain from C/T1 the monoidal category of collections T -Coll by equip-
ping it with a tensor product. Let k : K → T1, k′ : K ′ → T1 be collections.
Then their tensor product is defined to be the composite along the top of the
diagram

K ⊗K ′ TK ′ T 21 T1

K T1

// Tk′ //
µT1 //

��

T !

��

k
//
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where ! is the unique map K ′ → 1 in C (since 1 is terminal). The unit for this
tensor is the collection

1

ηT1
��

T1.

In the case in which C = n-GSet, and T is the free strict n-category monad, a
T -collection is called an n-globular collection. We write n-Coll for the monoidal
category of n-globular collections.

To understand this definition, we return to the example of classical non-
symmetric operads, in which C = Set and T is the free monoid monad. In this
case we have T1 ∼= N, so a collection consists of a set K of operations and a
map k : K → N that assigns an arity in N to each operation in K. The tensor
product will be used to define composition in a T -operad, via a multiplication
map µK : K ⊗K → K. In this case, an element K ⊗K consists of an operation
of arity n for some n ∈ N, together with a string of n operations to be composed
into each of the first operation’s n inputs; the pullback checks that the arity of
the first operation is the same as the length of this string. Thus µK takes this
information an gives a single operation of K, with the appropriate arity.

We now explain the role the tensor product of collections will play in the
definition of n-globular operad, i.e. in the case C = n-GSet, and T is the free
strict n-category monad. As in the case above, in an n-globular operad with

underlying collection K
k // T1 , composition of operations will be defined as

a map of collections µK : K ⊗K → K, so our explanation will focus on K ⊗K.
We think of a typical element of K ⊗K as looking like:

• • •
⇓

⇓
⇓θ =

• • •⇓
⇓
⇓

θ1 =

• • •⇓θ2 =

• • •⇓ = θ3

��
//
EE

��

@@

��

FF

��
//
II

//
��

FF

��

FF
//

��

FF





where θ, θ1, θ2, θ3 are m-cell in K (with θ1, θ2, θ3 the “labels” of the m-cell in
TK). Applying the composite

K ⊗K TK T 21 T1// Tk //
µT1 //

combines the arities of these operations to give:

• • • • •⇓ ⇓

⇓

⇓

⇓
��

@@

��

@@

��

II

��

@@
//
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which is the arity of the operation we obtain by applying the multiplication map
µK : K ⊗K → K, since µK is a map of collections.

We now give the definition of a T -operad.

Definition 2.1.3. Let C be a cartesian category with a terminal object 1, and
let T be a cartesian monad on C. A T -operad is a monoid in the monoidal
category T -Coll. Thus, an T -operad consists of:

• a collection
K

k

��

T1;

• a unit map ηK : 1→ K in C such that

1 K

T1

ηK
//

ηT1
��

k
��

commutes;

• a multiplication map µK : K ⊗ K → K such that the triangle in the
diagram

K ⊗K

K TK

T1 T 21

T1

K

�� ��

k �� T !�� Tk ��

µT1
��

µK
//

k

��

commutes.

These must satisfy the usual monoid axioms. Note that we usually refer to such
an operad as simply “an operad K”.

A map of T -operads f : K → K ′ is a map of monoids. This consists of a
map f : K → K ′ of underlying collections such that the diagrams

1

K K ′

ηK

��

ηK
′

��

f
//

and

K ⊗K K ′ ⊗K ′

K K ′

f⊗f
//

f
//

µK

��

µK
′

��
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commute.
In the case in which C = n-GSet, and T is the free strict n-category monad,

a T -operad is called an n-globular operad. Since n-globular operads are the
only kind of operads used in this thesis, we will often refer to them simply as
“operads”.

To see that this is a generalisation of the definition of classical non-symmetric
operad, we once again return to the case in which C = Set and T is the free
monoid monad. In a T -operad with underlying collection k : K → N, the com-
position of operations is given by the multiplication map µK : K ⊗ K → K.
This map takes an element of the tensor product, that is an operation of arity
n and a string of n operations of arities i1, . . . , in, and composes to give a single
operation in K. The commuting triangle in the diagram defining µK ensures
that the arity of the composite operation is i1+. . .+in. Identities come from the
unit map ηK : 1 → K, which picks out a single operation, and the commuting
triangle ensures that the arity of this operation is 1.

The algebras for a T -operad are the algebras for a particular induced monad,
which we now define.

Definition 2.1.4. Let C be a cartesian category with a terminal object 1, let
T be a cartesian monad on C and let K be a T -operad. Then there is an
induced monad on C, which by abuse of notation we denote (K, ηK , µK) (so the
endofunctor part of the monad is denoted by the same letter as the underlying
n-globular set of the operad, and we use the same notation for the unit and
multiplication of the monad as we do for those of the operad). The endofunctor

K : C → C

is defined as follows: on objects, given an object X in C, KX is defined by the
pullback:

KX K

TX T1,

K! //

kX

��

T !
//

k

��

where ! is the unique morphism X → 1 in C; on morphisms, given a morphism
u : X → Y in C, Ku is defined to be the unique map induced by the universal
property of the pullback defining KY such that the diagram

KX KY K

TX TY T1

Ku // K! //

kX

��

kY

��

Tu
//

T !
//

k

��

K!

%%

T !

99

commutes. Observe that commutativity of the left-hand square in the diagram
above shows that k is a natural transformation K ⇒ T ; the fact that this square
is a pullback square shows that this natural transformation is cartesian.
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The unit map ηK : 1⇒ K for the monadK has, for eachX ∈ C, a component
ηKX : X → KX which is the unique map such that the diagram

X 1

KX K

TX T1,

K! //

kX

��

T !
//

k

��

! //

ηKX

��

ε

��

ηTX

  

ηT1

��

commutes.

The multiplication map µK : K2 ⇒ K for the monad K has, for each object
X in C, a component µKA : K2X → KX which is the defined to be unique map
such that the diagram

K2X

K ⊗K TKX

K TK T 2X

T1 T 21

KX

K TX

T1

�� ��

�� �� �� ��

k �� T !�� Tk �� T 2!��

�� ��

k �� T !��

µKX

��

µK

%%

µTX

||

commutes.

Definition 2.1.5. Let C be a cartesian category with a terminal object 1, let T
be a cartesian monad on C and let K be a T -operad. An algebra for the operad
K, referred to as a K-algebra, is defined to be an algebra for the induced monad
(K, ηK , µK). Similarly, a map of algebras for the operad K is a map of algebras
for the induced monad, and the category of algebras for the operad K is K-Alg,
the category of algebras for the induced monad.

Batanin and Leinster each define weak n-categories to be the algebras for a
particular n-globular operad; we recall the definitions of these in Sections 2.2
and 2.4 respectively.



52 Chapter 2. Operadic definitions of weak n-category

2.2 Batanin weak n-categories

In this section we recall the definition of Batanin weak n-category, which was
originally given by Batanin in [Bat98]. Batanin weak n-categories and Leinster
weak n-categories are defined to be the algebras for particular n-globular oper-
ads. In order to identify an appropriate operad to use, Batanin’s approach is to
define two pieces of extra structure on an operad:

• a system of compositions: this picks out binary composition operations at
each dimension;

• a contraction on the underlying collection: this ensures that we have con-
traction operations which give the constraint cells in algebras for the op-
erad; it also ensures that composition is strict at dimension n.

Operads equipped with contractions and systems of compositions form a cat-
egory, and this category has an initial object; a Batanin weak n-category is
defined to be an algebra for this initial operad.

In fact, the approach described here is slightly different from that of [Bat98],
in which Batanin uses contractible operads rather than operads equipped with
a specified contraction. Since contractibility is non-algebraic, there is no initial
object in the category of contractible operads with systems of compositions, so
Batanin explicitly constructs an operad that is weakly initial in this category.
He claims without proof that, if we use specified contractions, this operad is
initial [Bat98, Section 8, Remark 2], so the operad we describe is the same as
Batanin’s, even though the approach is slightly different.

We begin by defining what it means for an operad to be equipped with a
system of compositions. To do this, we define a collection

S

T1

s

��

that contains precisely one binary composition operation for each dimension of
cell and boundary; in order for the sources and targets of these operations to be
well-defined, S also contains a unary operation (i.e. one whose arity is a single
globular cell) at each dimension, but otherwise contains no other operations.
The collection S comes equipped with a unit map, which picks out the unary
operation at each dimension. Note that it is not possible to equip S with an
operad structure, since it does not have operations of all the arities we would
require in order to define a multiplication map on S. For example, in S ⊗ S we
have 1-cells such as

• • •

• • •

// //

// //

��

but there is no way to define the action of the multiplication on this cell since
there is no operation of arity

• • • •// // //
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in S. Once we have defined S, we define a system of compositions on an operad
K to be a map of collection S → K, which picks out the desired binary compo-
sition operations in K; this map is required to interact properly with the unit
maps for S and K.

Definition 2.2.1. Let 0 ≤ m ≤ n, and write ηm := ηTm(1), the single m-cell in
the image of the unit map ηT : 1→ T1. Define, for 0 ≤ p ≤ m ≤ n,

βmp =

{
ηm if p = m,
ηm ◦mp ηm if p < m.

Define an n-globular collection S
s // T1 , in which

Sm := {βmp | 0 ≤ p ≤ m ≤ n} ⊆ T1m,

and define the unit map ηS : 1→ S by ηSm(1) = βmm .

Let K
k // T1 be an n-globular operad. A system of compositions on K

consists of a map of collections

S K

T1

σ //

s

��
k

��

such that the diagram

1 S K
ηS
// σ //

ηK

::

commutes.

The notion of contraction on a collection used to define Batanin weak n-
categories is the same as the notion of contraction, from Definition 1.1.2, on a
map of n-globular sets

f : X → R,

where R is the underlying n-globular set of a strict n-category. In the case
of a contraction on a collection, this strict n-category is always T1, the free
strict n-category on 1. We will restate the definition of contraction in this
case in an alternative equivalent way; the reason for doing this is that it allows
for easier comparison between contractions and the unbiased contractions of
Leinster, which we recall in Section 2.4. Before giving this alternative definition
of contraction, we establish some notation that will be used in the definition.
This notation is more general than is necessary at this stage, but will be used
in its full generality in the definition of unbiased contractions.

Let K
k // T1 be an n-globular collection. We will define, for each glob-

ular pasting diagram π, a set CK(π) whose elements are parallel pairs of cells in
K, the first of which maps to the source of π under k, and the second of which
maps to the target of π under k. When π = idα for some α ∈ T1, we can think
of CK(π) as a set of contraction cells living over π, since every such pair requires
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a contraction cell for there to be a contraction on the map k. To modify the
definition of contraction to a definition of unbiased contraction in Section 2.4,
we use all pasting diagrams π in T1, not just those of the form π = idα for some
α ∈ T1.

To define CK(π), we first define, for all 0 ≤ m ≤ n, x ∈ T1m, a set

K(x) = {a ∈ Km | k(a) = x};

that is, the preimage of x under k. Then, for all 1 ≤ m ≤ n, π ∈ T1m, we define

CK(π) =

{
K(s(π))×K(t(π)) if m = 1,
{(a, b) ∈ K(s(π))×K(t(π)) | s(a) = s(b), t(a) = t(b)} if m > 1.

Definition 2.2.2. A contraction γ on an n-globular collection K
k // T1

consists of, for all 1 ≤ m ≤ n, and for each α ∈ (T1)m−1, a function

γidα : CK(idα)→ K(idα)

such that, for all (a, b) ∈ CK(idα),

sγidα(a, b) = a, tγidα(a, b) = b

We also require the following tameness condition, as in Definition 1.1.2: for α,
β ∈ Kn, if

s(α) = s(β), t(α) = t(β), k(α) = k(β),

then α = β.

Operads with contractions and systems of compositions form a category,
which we now define.

Definition 2.2.3. Define OCS to be the category with

• objects: an object of OCS is an operad

K

T1

k

��

equipped with a contraction γ and a system of compositions σ : S → K;

• morphisms: for operads K
k // T1 , K ′

k′ // T1 , respectively equipped
with contraction γ, γ′, and systems of compositions σ, σ′, a morphism
u : K → K ′ consists of a map u of the underlying operads such that

– the diagram

S

K K ′

σ

��

σ′

��

u
//

commutes;
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– for all 1 ≤ m ≤ n, α ∈ T1m−1, (a, b) ∈ CK(idα),

um(γidα(a, b)) = γ′idα(um−1(a), um−1(b)).

We often refer to an operad with a contraction and system of compositions
simply as a Batanin operad. The category OCS has an initial object

B

T1,

b

��

the existence of which we prove in Section 2.3. This initial object is in some
sense the “simplest” operad in OCS. It has precisely the operations required
to have a system of compositions, a contraction, and an operad structure, and
no more; furthermore, it has no spurious relations between these operations.

Definition 2.2.4. A Batanin weak n-category is an algebra for the n-globular

operad B
b // T1 . The category of Batanin weak n-categories is B-Alg.

Note that the presence of a system of compositions and a contraction on an
operad does not affect the category of algebras for that operad. The algebras
depend only on the operad itself; systems of compositions and contractions are
used purely as a tool for selecting an appropriate choice of operad.

2.3 Initial object in OCS

We now prove that the category OCS has an initial object. This has been
believed for some time [Bat98, Lei02], but has not previously been proved. Our
proof is based on a proof by Leinster [Lei04a, Appendix G] of the existence of the
operad for Leinster weak n-categories, which is defined as the initial operad in
a different, but similar, category of operads, as we shall see in the next section.

The idea of this proof is as follows: the category n-Coll has an initial object

∅ T1.
! //

There is a forgetful functor

OCS −→ n-Coll,

which sends an operad to its underlying collection, and this forgetful functor
has a left adjoint. The initial collection is the colimit of the empty diagram in
n-Coll, and left adjoints preserve colimits, so applying the left adjoint to the
initial collection gives the initial object in OCS.

Thus we can prove the existence of the initial Batanin operad B by proving
the existence of this left adjoint. To do so we use the following monadicity result,
due to Kelly [Kel80, 27.1] (which appears in this form in [Lei04a, Appendix G]):



56 Chapter 2. Operadic definitions of weak n-category

Proposition 2.3.1. Let

D C

B A

//

��

U
//

V

��

be a pullback square in CAT. If A is locally finitely presentable and each of U
and V is finitary and monadic, then the functor D → A is monadic.

To apply this result to our situation, we take A = n-Coll, D = OCS; to
see what B and C should be, observe that in a Batanin operad the contraction
structure exists independently of the operad structure (though note that the
system of compositions cannot exist without the unit of the operad structure).
Thus we have categories

• Contr of collections equipped with contractions;

• SoC of operads equipped with systems of compositions (“SoC” stands
for “system of compositions”);

and we can write OCS as the pullback

OCS Contr

SoC n-Coll.

//

��

V

��

U
//

The composite (of either side, since this diagram commutes) is the forgetful
functor OCS→ n-Coll. Thus we take B = SoC and C = Contr.

Note that this is not the same as an interleaving construction; Proposi-
tion 2.3.1 does not require us to decompose the left adjoints to U and V dimen-
sion by dimension (or even construct them explicitly), and it does not give an
explicit description of the left adjoint A → D.

We now define the categories Contr and SoC formally.

Definition 2.3.2. Define Contr to be the category with

• objects: an object of Contr consists of a collection X
x // T1 equipped

with a contraction γ;

• morphisms: for collections X
x // T1 , X ′

x′ // T1 , respectively equipped
with contractions γ, γ′, a morphism u : X → X ′ consists of a map u of
the underlying collections such that, for all 1 ≤ m ≤ n, α ∈ (T1)m−1,
(a, b) ∈ CX(idα),

um(γidα(a, b)) = γ′idα(um−1(a), um−1(b)).

Define SoC to be the category with

• objects: an object consists of an operad K
k // T1 equipped with a

system of compositions σ;
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• morphisms: for operads K
k // T1 , K ′

k′ // T1 , respectively equipped
with contraction γ, γ′, and systems of compositions σ, σ′, a morphism
u : K → K ′ consists of a map u of the underlying operads such that the
diagram

S

K K ′

σ

��

σ′

��

u
//

commutes.

To show that the conditions of Proposition 2.3.1 hold in our case, we must
prove that the forgetful functors

U : SoC −→ n-Coll,

V : Contr −→ n-Coll,

which send objects to their underlying collections, are monadic. To do so, we
use Beck’s monadicity theorem [Bor94b, Theorem 4.4.4]:

Theorem 2.3.3 (Beck’s monadicity theorem). A functor U : D → C is monadic
if and only if

• U has a left adjoint;

• U reflects isomorphisms;

• given a pair of morphisms

X Y
f
//

g
//

in D such that

U(X) U(Y )
Uf
//

Ug
//

has a split coequaliser in C, then (f, g) has a coequaliser in D which is
preserved by U .

Lemma 2.3.4. The functor

V : Contr→ n-Coll

is monadic.

Proof. We show that V is monadic by checking that it satisfies the conditions
in Beck’s monadicity theorem (Theorem 2.3.3). The functor V has a left ad-
joint, which can be constructed using exactly the same method as was used to
construct the free contractions in Definitions 1.2.6 and 1.2.8; we just restrict to
objects of R and Q with T1 as their strict n-category parts. Since V leaves the
underlying maps of collections unchanged, it reflects isomorphisms. Thus we
only need to check the condition regarding coequalisers.
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Consider a pair of maps

X Y

T1

f
//

g
//

x

��

y

��

in Contr such that its image under V has a split coequaliser. We have

X Y Z

T1

f
//

g
//

q

��

p

�� e //

x
$$

y

��
z

zz

in n-Coll, where Z
z // T1 is the coequaliser of (f, g), and p and q satisfy

the following equations:

ep = idZ , fq = idY , gq = pe.

To show that (f, g) also has a coequaliser in Contr, we need to show that we
can equip Z with a contraction in such a way that e and any maps induced by
the universal property preserve contractions.

Write γ for the contraction on Y
y
// T1 , so for all 0 < m ≤ n, and for

all α ∈ T1m−1, we have a function

γidα : CY (idα)→ Y (idα).

Suppose we have 0 < m ≤ n and α ∈ T1m−1. We define a function

δidα : CZ(idα)→ Z(idα)

as follows: given (a, b) ∈ CZ(idα),

δidα(a, b) = γidα(p(a), p(b)).

We need to check that this defines a contraction δ on Z
z // T1 . Since

ep = idα, δidα(a, b) has the correct source and target, and since y = ze, we have

zeδidα(a, b) = yγidα(p(a), p(b)) = idα.

Thus δ is a contraction on Z
z // T1 , and by definition of δ, e preserves the

contraction structure.
Now suppose we have a collection with contraction W

w // T1 and a map
r : Y →W in Contr such that wf = wg. There is a unique map u : Z →W in
n-Coll such that ue = r. For all 0 < m ≤ n, α ∈ T1m−1, and (a, b) ∈ CZ(idα),
we have

uδidα(a, b) = ueγidα(p(a), p(b)) = rγidα(p(a), p(b)),

so since r preserves contraction cells, so does u; hence u is a map in Contr.

Thus Z
z // T1 is the coequaliser of (f, g) in Contr.

Hence V is monadic, as required.
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To prove that the functor U : SoC→ n-Coll is monadic, we first prove that
it has a left adjoint. Observe that, if we did not require a system of compositions,
we could use the free monoid construction of Kelly [Kel80], since an operad is
a monoid in n-Coll. However, we cannot simply add a system of compositions
to our generating data and then apply the free monoid construction, because
in order to define the sources and targets of the operations in a system of
compositions, we require a unit operation at the dimensions below. Thus we
construct the left adjoint to U via an interleaving-style construction, similar to
that used by Cheng in [Che10]. At each dimension we freely add the binary
composition operations required for a system of compositions, then apply the
free monoid construction at that dimension to generate the operad structure
freely; we then move up to the next dimension and repeat the process. Note
that this is not a true interleaving since the system of compositions cannot exist
independently of the operad structure.

Lemma 2.3.5. The functor

U : SoC −→ n-Coll

has a left adjoint.

Proof. To describe the interleaving-style construction we must define what it
means for a collection to have an operad structure up to dimension k for some
k ≤ n. To do this, we use a truncation functor, defined as follows: for each
k ≤ n, we have

Trk : n-GSet −→ k-GSet

which sends an n-globular set to its underlying k-globular set, which has the
same set of m-cells for all 0 ≤ m ≤ k, and the same source and target maps.
Since Trk(T1) = T (Trk1), this induces a functor

Trk : n-Coll k-Coll

X TrkX

T1 TTrk1.

//

x

��

Trkx

��

� //

Note that we denote both functors by Trk; it will be clear from the context
which we are using.

For each 0 ≤ k ≤ n, define k-Opd to be the category with:

• objects: collections X
x // T1 such that Trk( X

x // T1 ) has the
structure of a k-operad;

• morphisms: maps of collections that preserve the k-operad structure.

We can equip an object of k-Opd with a system of compositions at every dimen-
sion up to (k+ 1). Since we have no operad structure at dimension (k+ 1), this
system of compositions cannot pick out the unit operation at this dimension.
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For each 0 ≤ j ≤ n, define an n-collection S(j) s(j) // T1 by

S(j)
m :=


Sm if m < j,
{βmp | 0 ≤ p < m} if m = j,
∅ if m > j;

with s(j) the inclusion into T1. Given an object X
x // T1 of k-Opd, where

k ≥ j − 1, a j-system of compositions on X consists of a map of collections

S(j) X

T1

σ(j)
//

s(j)
��

x

��

such that the diagram

1 TrkS
(j) TrkX

ηS
// σ(j)

//

ηX

77

commutes.
Let k ≥ j − 1, and define (k, j)-SoC to be the category with:

• objects: an object of (k, j)-SoC is a collection X
x // T1 such that

Trk( X
x // T1 ) has the structure of a k-operad, equipped with a j-

system of compositions;

• morphisms: a morphism in (k, j)-SoC is a map of the underlying col-
lections that preserves both the k-operad structure and the j-system of
compositions.

For each 0 ≤ j < n, we have an inclusion S(j) ↪→ S(j+1), giving a forgetful
functor

Bk,j : (k, j)-SoC −→ (k, j − 1)-SoC

which forgets the system of compositions at dimension j. When j < k + 1, we
also have a forgetful functor

Dk,j : (k, j)-SoC −→ (k − 1, j)-SoC,

which forgets the operad structure at dimension k. We also have a forgetful
functor

D0,0 : (0, 0)-SoC = 0-Opd −→ n-Coll.

Thus we can write the functor U : SoC→ n-Coll as the composite

SoC ∼= (n, n)-SoC
Dn,n

// (n− 1, n)-SoC
Bn−1,n

// (n− 1, n− 1)-SoC
Dn−1,n−1

// · · ·

· · ·
B1,2
// (1, 1)-SoC

D1,1
// (0, 1)-SoC

B0,1
// (0, 0)-SoC

D0,0
// n-Coll.
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We show that U has a left adjoint by showing that each of its factors has a left
adjoint.

To show that each functor Dk,j has a left adjoint, we observe that, for each
0 ≤ k ≤ n, there is a forgetful functor

Dk : k-Opd −→ (k − 1)-Opd

that forgets the operad structure at dimension k (when k = 0, we take (k −
1)-Opd = n-Coll, andD0 = D0,0). We recall from [Che10, Proposition 2.1] that
each Dk has a left adjoint, which we denote by Ck; this is constructed using
a dimension-by-dimension decomposition of Kelly’s free monoid construction
from [Kel80]. To show that this lifts to a functor

Ck,j : (k − 1, j)-SoC −→ (k, j)-SoC,

we must check that, when we apply Ck to a (k− 1)-operad in (k− 1, j)-SoC, it
retains its j-system of compositions. This is true when j < k, since Ck leaves
dimensions below dimension k unchanged. When j = k, given an object X of
(k − 1, k)-SoC, with k-system of compositions σ(k), we have an inclusion map

Xk ↪→ CkXk

given by the component of the unit of the adjunction Ck a Dk at dimension k.
Thus we can equip CkX with a k-system of compositions, given by σ(k) at all
dimension less than k, and at dimension k given by

S
(k)
k

Xk CkXk.
σ

(k)
k // � � //

Thus for each 0 ≤ j ≤ k ≤ n we have an adjunction Ck,j a Dk,j .
Let 0 ≤ j ≤ k ≤ n. We now construct a putative left adjoint

Ak,j : (k, j − 1)-SoC −→ (k, j)-SoC

to the functor Bk,j . We first describe the action on objects. Let X
x // T1 be

an object of (k, j−1)-SoC, and write σ : S(j−1) → Trj−1X for its (j−1)-system
of compositions. We define

Ak,j( X
x // T1 ) = ( X̃

x̃ // T1 ),

where

• X̃ is defined by

X̃m :=

{
Xm if m 6= j,

Xm q S(j)
m if m = j,

with source and target maps s, t : X̃j → X̃j−1 = Xj−1 given by

s(βmp ) = t(βmp ) :=

{
µX(βm−1

p , ηm−1 ◦m−1
p ηm−1) if m− 1 6= p,

ηXm−1(1) if m− 1 = p;

• x̃ is defined by

x̃m :=

{
xm if m 6= j,

xm q s(j)
m if m = j;
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• the j-system of compositions σ(j) : S(j) → TrjX̃ is given by σ
(j)
m = σ

(j−1)
m

for m < j, and

σ
(j)
j : S

(j)
j ↪→ X̃j = Xj q S(j)

j

is given by the coprojection into the coproduct.

For the action on morphisms, given a map f : X → Y in (k, j − 1)-SoC, we
define Ak,j(f) = f̃ , where

f̃m :=

{
fm if m 6= j,
fm q idSm if m = j.

We now show that Ak,j a Bk,j . Define a natural transformation α : 1 ⇒
Bk,jAk,j whose component at X

x // T1 in (k, j − 1)-SoC is given by

(αX)m :=

{
idXm if m 6= j,

Xm ↪→ Xm q S(j)
m if m = j.

Define a natural transformation β : Ak,jBk,j ⇒ 1 whose component at X
x // T1

in (k, j)-SoC is given by

(βX)m :=

{
idXm if m 6= j,

idXm q σ
(j)
m if m = j;

where σ(j) : S(j) → X is the j-system of compositions on X. We now check the
triangle identities to show that Ak,j a Bk,j with unit α and counit β. Since
the components of α and β are equal to the identity at all dimensions other
than j, we need only check that the triangle identities hold at dimension j. For

X
x // T1 in (k, j − 1)-SoC, the diagram

Xj q S(j)
j (Xj q S(j)

j )q S(j)
j

Xj q S(j)
j

(α
XqS(j) )j

//

(β
(XqS(j))qS(j) )j

��id
))

commutes. For X
x // T1 in (k, j)-SoC, the diagram

Xj Xj q S(j)
j

Xj

(αX)j
//

(β
XqS(j) )j

��
id

&&

commutes. Thus, Ak,j a Bk,j .
Hence, using the decomposition of U described above, U has a left adjoint,

as required.

Lemma 2.3.6. The functor

U : SoC→ n-Coll

is monadic.
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Proof. We show that U is monadic by checking that it satisfies the conditions
in Beck’s monadicity theorem (Theorem 2.3.3). By Lemma 2.3.5, U has a left
adjoint, and since U is the identity on maps, it reflects isomorphisms. Thus we
only need to check the condition regarding coequalisers.

Consider a pair of maps

X Y

T1

f
//

g
//

x

��

y

��

in SoC such that its image under U has a split coequaliser. We have

X Y Z

T1

f
//

g
//

q

��

p

�� e //

x
$$

y

��
z

zz

in n-Coll, where Z
z // T1 is the coequaliser of (f, g), and p and q satisfy

the following equations:

ep = idZ , fq = idY , gq = pe.

To show that (f, g) also has a coequaliser in SoC, we need to show that we
can equip Z with an operad structure and a system of compositions, in such a
way that e and any maps induced by the universal property of the coequaliser
preserve both the operad structure and the system of compositions.

For the operad structure, define the unit map ηZ to be the composite

1 Y Z

T1

ηT1 ��

y

��
z

��

ηY
// e //

and define the multiplication map µZ to be the composite along the top of

Z ⊗ Z Y ⊗ Y Y

Z TZ TY

T1 T 21

T1.

Z

��

p⊗p
//

µY
//

��

e //

Tp
//

Ty
��

��

z �� T !�� Tz ''

µT1 ''

z

��

y

��

The diagrams above show that ηZ and µZ are both maps in n-Coll.
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For the system of compositions, define σZ : S → Z to be the composite

S Y Z

T1.

s
��

y

��
z

��

σY // e //

The diagram above shows that σZ is a map in n-Coll.

We now check that e preserves the operad structure and the system of com-
positions. That e preserves the unit and system of compositions is immediate
from the definitions of ηZ and σZ ; for the multiplication, the diagram

Y ⊗ Y Z ⊗ Z

X ⊗X Y ⊗ Y

X Y

Y ⊗ Y Y Z

e⊗e
//

idY⊗Y

��

q⊗q

$$

p⊗p
��g⊗g

//

f⊗f

��

µX

��

µY

��g
//

f

��

e

��

µY
//

e
//

commutes. Hence e is a map in SoC.

We now check that the maps induced by the universal property of Z also
preserve the operad structure and the system of compositions. Suppose we have
an operad K in SoC, and a map h : Y → K in SoC. The universal property of
Z in n-Coll gives us a unique map u : Z → K making the diagram

X Y Z

K

T1

f
//

g
//

x

��

y

��

z

��

e //

h
))

u

$$

kuu

commute in n-Coll. The diagrams

1

Y

Z K

ηY
��

ηZ

��

ηK

��

h

''

e
��

u
//
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and

Z ⊗ Z K ⊗K

Y ⊗ Y

Y

Z K

u⊗u
//

p⊗p
��

h⊗h

::

µY

��

µK

��
h

$$

e

��

u
//

commute, so u is a map of operads. Also, the diagram

S

Y

Z K

σY
��

σZ

��

σK

��

h

''

e
��

u
//

commutes, so u preserves the system of compositions on Z. Thus Z is the
coequaliser of (f, g) in SoC, as required, so U is monadic.

The final step we need to take in order to use Proposition 2.3.1 to prove that
OCS has an initial object is to prove that the functors

U : SoC −→ n-Coll,

and
V : Contr −→ n-Coll

are finitary. To do so, we first give a result describing colimits in slice categories,
which gives us a description of colimits in n-Coll.

Lemma 2.3.7. Let C be a cocomplete category, let Z be an object of C, and let
D : I→ C/Z be a diagram in the slice category C/Z. For each i ∈ I, write

X(i)

Z

x(i)

��

for the object D(i) in C/Z. Write

X := colim
i∈I

X(i)

for the colimit in C, and write

ci : X
(i) → X
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for the coprojections. Then the colimit

colim
i∈I

D(i)

in C/Z is given by

X

Z,

x

��

where x is the unique map such that, for all i ∈ I,

X(i) X

Z

ci //

x(i)

��

x

��

commutes.

Proof. Let

Y

Z

y

��

be an object of C/Z, and let

X(i) Y

Z

fi //

x(i)

��

y

��

be a cocone under the diagram D in C/Z. The universal property of X in C
induces a unique map f : X → Y such that, for every i ∈ I, the diagram

X(i)

X Y

ci

��

fi

��

f
//

commutes. We need to check that f is a map in C/Z, i.e. that the diagram

X Y

Z

f
//

x

��

y

��

commutes. The maps

X(i) Y Z
fi //

y
//
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define a cocone under the diagram defining X in n-GSet, so there is a unique
map u : X → Z such that each

X(i) X

Y Z

ci //

fi

��

u

��

y
//

commutes. Both u = x and u = yf make this diagram commute; thus x = yf ,
so f is a map in C/Z. Thus colimi∈ID(i) is given by

X

Z,

x

��

as required.

Lemma 2.3.8. The functor

V : Contr→ n-Coll

is finitary.

Proof. First observe that, by Lemma 2.3.7 and the fact that n-GSet is a
presheaf category and is thus cocomplete, n-Coll is cocomplete. Thus our
approach is to show that V creates filtered colimits; since all filtered colimits
exist in n-Coll, this implies that V preserves filtered colimits.

Let D : I→ Contr be a filtered diagram in Contr. Since n-Coll is cocom-
plete, V D has a colimit in n-Coll. Write

X(i)

T1

x(i)

��

for the underlying collection of the object D(i) in Contr, and write γ(i) for the
contraction on this collection. Write

X

T1,

x

��

for the colimit colimi∈I V D(i) in n-Coll, and write ci : X
(i) → X for the copro-

jections. We will show that there is a unique way to equip X with a contraction
in such a way that each ci preserves the contraction structure, and that this
gives the colimit of D in Contr.
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Let 0 ≤ m < n, and let a, b be parallel m-cells in X with x(a) = x(b). By
Lemma 2.3.7,

X = colim
i∈I

X(i)

in n-GSet, and since colimits are computed pointwise in presheaf categories,

Xm = colim
i∈I

X(i)
m .

Thus there exist i, j ∈ I and u ∈ X(i)
m , v ∈ X(j)

m such that

ci(u) = a, cj(v) = b.

By definition of the map x, we have

x(i)ci(u) = x(a) = x(b) = x(j)cj(v).

Since I is filtered, we have a cocone in the diagram D under X
(i)
m and X

(j)
m , with

vertex X
(k)
m for some k ∈ I and maps di : X

(i)
m → X

(K)
m , dj : X

(j)
m → X

(K)
m , such

that di(u) and dj(v) are parallel in X(k). Thus we can define a contraction γ
on x : X → T1 by

γ(a, b) = ckγ
(k)(di(u), dj(v)).

The fact that I is filtered, and commutativity of the universal cocone defining X,
ensure that this definition is independent of the choice of i, j, k. By definition
of γ, each ci preserves the contraction structure, and furthermore this is the
only way to equip x : X → T1 with a contraction in a such a way that the ci’s
preserve contractions.

We now check that maps induced by the universal property ofX also preserve
contractions. Suppose we have a collection

K

T1

k

��

with contraction δ, and a cocone

X(i) K

T1

ci //

x(i)

��
k

��

in Contr. Then there is a unique map of collections u : X → K such that each

X(i) X

K

ci //

ri
��

u

��
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commutes. We must show that u preserves the contraction structure. Let
0 ≤ m < n, and let (a, b) ∈ Xc

m+1. By the definition of γ, we can pick k ∈ I
such that there exist u, v ∈ X(k)

m with

γ(a, b) = ckγ
(k)(u, v).

Thus
uγ(a, b) = uckγ

(k)(u, v) = rkγ
(k)(u, v) = δ(rk(u), rk(v)),

as required. Hence u is a map in Contr.
So V creates filtered colimits; hence, since n-Coll is cocomplete, V preserves

filtered colimits.

Lemma 2.3.9. The functor

U : SoC→ n-Coll

is finitary.

Proof. Our approach is analogous to that used in the proof of Lemma 2.3.8;
we show that U creates filtered colimits, and since n-Coll is cocomplete (and
in particular, it has all filtered colimits) this implies that U preserves filtered
colimits.

Let D : I→ SoC be a filtered diagram in SoC. Since n-Coll is cocomplete,
UD has a colimit in n-Coll. Write

X(i)

T1

x(i)

��

for the underlying collection of the object D(i) in SoC; write η(i) and µ(i) for
the unit and multiplication maps for the operad structure on this collection,
and σ(i) for its system of compositions. Write

X

T1,

x

��

for the colimit colimi∈I UD(i) in n-Coll, and write ci : X
(i) → X for the copro-

jections. We will show that there is a unique way to equip X with an operad
structure and a system of compositions in such a way that each ci preserves
the operad structure and the system of compositions, and that this gives the
colimits of D in SoC.

Let i ∈ I and define the unit ηX and system of compositions σX on X to be
given by the composites

1 X(i) X, S X(i) X.
η(i)

//
ci //

ηX

99

σ(i)
//

ci //

σX

99
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Commutativity of the universal cocone defining X ensures that these maps are
well-defined and independent of the choice of i.

To define the multiplication map µX we take an elementary approach. Let
0 ≤ m ≤ n, and let (α, β) ∈ X ⊗Xm, so α ∈ Xm, β ∈ TXm, and z(α) = T !(β).
Since X is computed pointwise, so each Xm is computed in Set, we can find

i ∈ I and a ∈ X(i)
m such that ci(a) = α. The element β is a freely generated

composite of m-cells βk ∈ Xm, indexed over some set K with k ∈ K. For each
βk, we can find jk ∈ I with bk ∈ X(jk) such that cjk(bk) = βk. Since I is filtered,
we have a cocone in I under X(i) and the X(jk)’s. Write X(p) for the vertex of
this cocone, and write

di : X
(i) → X(p), djk : X(jk) → X(p)

for the coprojections. We can then find b ∈ TXp
m with Tcp(b) = β, given by the

appropriate composite of the djk(bk)’s.

We thus define µX by

µX(α, β) := cpµ
(p)(di(a), b).

Commutativity of the universal cocone defining X ensures that this maps is
well-defined and independent of the choices of i, jk, and p. We now check that
µX is a map of collections. Let (α, β) ∈ X ⊗X. Then we have

xµX(α, β) = xcpµ
(p)(di(a), b)

= x(p)µ(p)(di(a), b)

= µT1 ◦ Tx(p) ◦ x(p)

X(p)(di(a), b)

= µT1 ◦ Tx ◦ xcp(di(a), b)

= µT1 ◦ Tx ◦ x(α, β),

where i, p, di, a and b are as above. Thus the triangle in the diagram

X ⊗X

X TX

T1 T 21

T1

X

�� ��

x �� T !�� Tx ��

µT1
��

µX
//

x

��

commutes, so µX is a map of collections.

It is immediate from the definitions of ηX , µX , and σX that, for each i ∈ I,
the coprojection ci preserves the operad structure and the system of compo-
sitions on X(i); furthermore, this is the only way to equip X with an operad
structure and a system of compositions such that this is true.

We now check that maps induced by the universal property of X preserve
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the operad structure and system of compositions. Suppose we have an operad

K

T1

k

��

with unit ηK , multiplication µK , and system of compositions σK , and a cocone

X(i) K

T1

ci //

x(i)

��
k

��

in SoC. Then there is a unique map of collections u : X → K such that each

X(i) X

K

ci //

ri
��

u

��

commutes. We must show that u preserves the operad structure and the system
of compositions on X. The diagrams

1 X(i) X

K

η(i)

//

ηk
!!

ηX

%%ci //

ri

��
u

}}

and

S X(i) X

K

σ(i)
//

σk
!!

σX

%%ci //

ri

��
u

}}

commute, so u preserves the unit and the system of compositions. For preser-
vation of the multiplication, we need to show that the diagram

X ⊗X K ⊗K

X K

u⊗u
//

µZ

��

µK

��

u
//
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commutes; this is true since, given (α, β) ∈ X ⊗X, we have

µK ◦ u⊗ u(α, β) = µK(u(α), Tu(β))

= µK(ucpdi(a), T (icp)(b))

= µK(rpdi(a), T rp(b))

= rpµ
(p)(di(a), b)

= ucpµ
(p)(di, b)

= uµX(α, β),

where i, p, di, a and b are as in the definition of µX .
Thus U creates filtered colimits; since n-Coll is cocomplete, U preserves

filtered colimits.

We now have all the results required to prove the following proposition:

Proposition 2.3.10. The category OCS has an initial object.

Proof. Our aim is to show that the category OCS has an initial object. Recall
that there is a forgetful functor

OCS −→ n-Coll,

and that our approach is to show that this forgetful functor has a left adjoint,
then apply that left adjoint to the initial object

∅

T1

!

��

in n-Coll; since the initial object is the colimit of the empty diagram, and left
adjoints preserve colimits, this will give us the initial object in OCS.

The forgetful functor OCS → n-Coll can be factorised as either of the
composites in the pullback square

OCS Contr

SoC n-Coll,

//

��

U
//

V

��

and, by Proposition 2.3.1, it has a left adjoint if n-Coll is locally finitely pre-
sentable and each of U and V is finitary and monadic. The functor U is monadic
by Lemma 2.3.6 and finitary by Lemma 2.3.9; the functor V is monadic by
Lemma 2.3.4 and finitary by Lemma 2.3.8; since n-Coll is a slice of a presheaf
category, it is also a presheaf category, so is locally finitely presentable (see
[Lei04a, Proposition 1.1.7 and Appendix G] and [Bor94b, Example 5.2.2(b)]).
Specifically, given a small category A and a presheaf X : Aop → Set, we have

[Aop,Set]/X ' [(A/X)op,Set],

where A/X is the category of elements of X, which has:
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• objects: pairs (A, x), where A ∈ A and x ∈ XA;

• morphisms: a morphism f : (A, x)→ (A′, x′) in A/X consists of a map

f : A→ A′

in A such that Xf(x′) = x.

In the case of n-Coll where A = n-GSet and X = T1, the category of elements
(A/X)op has one object for each globular pasting diagram, and morphisms
generated by source and target maps.

Thus, the forgetful functor OCS → n-Coll has a left adjoint, so OCS has
an initial object.

2.4 Leinster weak n-categories

Various authors [Ber02, Lei02, Lei04b, Cis07, Gar10, BG11, Che11a] have con-
sidered variants of Batanin’s definition. Many of these variants take the ap-
proach of relaxing the choice of operad, by defining a weak n-category to be an
algebra for any operad that can be equipped with a contraction and system of
compositions. In this section, we recall a variant of the definition that takes a
different approach, due to Leinster [Lei98b]; we refer to the resulting notion of
weak n-category as a “Leinster weak n-category”. The key distinction between
Leinster’s variant and Batanin’s original definition is that, rather than using a
contraction and system of compositions, Leinster ensures the existence of both
composition operations and contraction operations using a single piece of extra
structure, called an “unbiased contraction” (note that Leinster simply uses the
term “contraction” for this concept, and uses the term “coherence” for Batanin’s
contractions). An unbiased contraction on an operad lifts all cells from T1, not
just identity cells as in a contraction. As well as giving the usual constraint cells,
an unbiased contraction gives a composition operation for each non-identity cell
in T1. Thus for any globular pasting diagram there is an operation, specified
by the unbiased contraction, which we think of as telling us how to compose a
pasting diagram of that shape “all at once”. Operads equipped with unbiased
contractions form a category, and this category has an initial object; a Leinster
weak n-category is defined to be an algebra for this initial operad.

We recall briefly the definition of Leinster weak n-categories. The majority
of this section concerns the relationship between the unbiased contractions of
Leinster and the contractions and systems of compositions of Batanin. First
we recall a result of Leinster [Lei04a, Examples 10.1.2 and 10.1.4] that any
operad with an unbiased contraction can be equipped with a contraction and
system of compositions in a canonical way. We then prove a conjecture of Lein-
ster [Lei04a, 10.1] which states that any operad with a contraction and system of
compositions can be equipped with an unbiased contraction. The proof consists
of picking a binary bracketing for each pasting diagram in T1, then compos-
ing these bracketings with contraction cells to obtain unbiased contraction cells
with the correct sources and targets. Since we have to make arbitrary choices
of bracketings during this process, there is no canonical way doing this.

We begin by recalling the definition of unbiased contraction [Lei98b].
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Definition 2.4.1. An unbiased contraction γ on an n-globular collection

K
k // T1

consists of, for all 1 ≤ m ≤ n, and for each π ∈ (T1)m, a function

γπ : CK(π)→ K(π)

such that, for all (a, b) ∈ CK(π),

sγπ(a, b) = a, tγπ(a, b) = b.

We also require that, for α, β ∈ Kn, if

s(α) = s(β), t(α) = t(β), k(α) = k(β),

then α = β.

The key difference between the unbiased contractions of Leinster and the
(biased) contractions of Batanin, defined in Definition 2.2.2, is that unbiased
contractions lift all cells from T1, not just the identities. Thus in an operad

K
k // T1 equipped with an unbiased contraction, there is a contraction

cell for each cell of T1, giving us a composition operation in K of each arity.
This gives unbiased composition in K (rather than just the binary composition
given by a system of compositions); thus, when using operads with unbiased
contraction, we have no need for a system of compositions.

Definition 2.4.2. Define OUC to be the category with

• objects: operads K
k // T1 equipped with an unbiased contraction γ;

• morphisms: for operads K
k // T1 , K ′

k′ // T1 , respectively equipped
with unbiased contractions γ, γ′, a morphisms u : K → K ′ consists of a
map of the underlying operads such that, for all 1 ≤ m ≤ n, π ∈ (T1)m,
(a, b) ∈ CK(π),

um(γπ(a, b)) = γ′π(um−1(a), um−1(b)).

We often refer to an operad with an unbiased contraction simply as a Leinster
operad.

Lemma 2.4.3. The category OUC has an initial object, denoted L
l // T1 .

This lemma was originally proved by Leinster in his thesis [Lei04b]; an ex-

plicit construction of L
l // T1 is given by Cheng in [Che10].

Definition 2.4.4. A Leinster weak n-category is an algebra for the n-globular

operad L
l // T1 . The category of Leinster weak n-categories is L-Alg.

We now discuss the relationship between Leinster operads and Batanin oper-
ads. We first recall a theorem of Leinster [Lei04a, Examples 10.1.2 and 10.1.4],
which states that every Leinster operad can be equipped with a contraction and
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system of compositions (thus giving it the structure of a Batanin operad) in a
canonical way. We then prove a conjecture of Leinster [Lei04a, Section 10.1],
which states that any Batanin operad can be equipped with an unbiased con-
traction (giving it the structure of a Leinster operad), though not in a canonical
way; the proof of this result is new.

Since the algebras for an operad are not affected by a choice of system of
compositions, contraction, or unbiased contraction, one consequence of these
theorems is that any result that holds for algebras for a Batanin operad also
holds for algebras for a Leinster operad (and vice versa). We use this fact in
Section 2.5 to prove several coherence theorems that are valid for both Batanin
and Leinster weak n-categories, whilst working with whichever notion is more
technically convenient in the case of each proof.

The following the theorem is due to Leinster [Lei04a, Examples 10.1.2 and
10.1.4].

Theorem 2.4.5. Let K be an n-globular operad with unbiased contraction γ.
Then K can be equipped with a contraction and a system of compositions in a
canonical way.

The converse of this theorem is a conjecture of Leinster [Lei04a, Section 10.1];
we now prove it for the first time.

Theorem 2.4.6. Let K be an n-globular operad with contraction γ and system
of compositions σ. Then K can be equipped with an unbiased contraction.

Our approach to prove this is as follows: first, we define a map k̂ : T1→ K,
which uses the contraction on k to lift identity cells in T1, and picks a binary
bracketing for each non-identity cell. This bracketing is constructed using the
system of compositions on K; the choice of bracketing is arbitrary. To extend
this to an unbiased contraction on k we need to specify, for all 1 ≤ m ≤ n, and
for each π ∈ T1m and a, b ∈ CK(π), an unbiased contraction cell

γπ(a, b) : a −→ b.

To obtain this unbiased contraction cell we start with the cell k̂(π); since k̂ is
a section to k this cell maps to π under k, but in general it does not have the
desired source and target. In order to obtain a cell with source a and target b
we compose k̂(π) with contraction cells, first composing k̂(π) with contraction
1-cells to obtain a cell with the desired source and target 0-cells, then composing
the resulting cell with contraction 2-cells to obtain a cell with the desired source
and target 1-cells, and so on; this composition is performed using the system of
compositions on K. The resulting cell has the desired source and target and,
since contraction cells map to identities under k, and k̂ is a section to k, this
cell maps to π under k. Note that the section k̂ is not just used to prove that k
is surjective at each dimension; it is also used in the construction of an unbiased
contraction on a Batanin operad in the proof of Theorem 2.4.6.

Lemma 2.4.7. Let K be an n-globular operad with contraction γ and system
of compositions σ. Then k has a section k̂ : T1 → K in n-GSet, so for all
0 ≤ m ≤ n, km : Km → T1m is surjective.

Proof. Our approach is first to define k̂, then show it is a section to k and
therefore each km is surjective. To define k̂ : T1 → K, we use a description
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of T1 due to Leinster [Lei04a, Section 8.1]. For a set X, write X∗ for the
underlying set of the free monoid on X (so X∗ is the set of all finite strings
of elements of X, including the empty string, which we write as ∅). Define T1
inductively as follows:

• T10 = 1;

• for 1 ≤ m ≤ n, T1m = T1∗m−1.

The source and target maps are defined as follows:

• for m = 1, s = t = !: T1m → T10;

• for m > 1, s = t : T1m → T1m−1 is defined by, for (π1, π2, . . . , πi) ∈ T1m,

s(π1, π2, . . . , πi) = (s(π1), s(π2), . . . , s(πi)).

This description of T1 is technically convenient, but it hides what is going
on conceptually. The element (π1, π2, . . . , πi) of T1m should not be visualised
as a string of (m − 1)-cells; instead, we increase the dimension of each cell in
each πi by 1, then compose π1, π2, . . . , πi along their boundary 0-cells. So the
element

(•, •, . . . , •)︸ ︷︷ ︸
i

of T11 should be thought of as

• • • •. . . • ,// // //︸ ︷︷ ︸
i 1-cells

the element

(∅, • −→ • −→ •, • −→ •)

of T12 should be thought of as

• • • • ,
⇓

⇓
⇓//

��
//
EE

��

@@

and so on.
We now define k̂ : T1 → K by defining its components k̂m, for 0 ≤ m ≤ n,

inductively over m. We use the following notational abbreviations:

• for each m we write ηm for the m-cell σm(βmm) = ηK(1) of K;

• for m ≥ 1 we write idm for the identity m-cell on η0. Recall that identity
cells in K are defined via the contraction on k, so idm is defined inductively
over m as follows:

– when m = 1, idm := γ∅(1, 1);

– when m > 1, idm := γ∅(idm−1, idm−1).
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We also denote binary composition of m-cells along p-cells, defined using the
system of compositions on K, by ◦mp , the same notation used in the definition
of magma, Definition 1.1.1.

When m = 0, define
k̂0(1) = η0.

When 1 ≤ m ≤ n the construction becomes notationally complicated, so we
first describe it by example in the cases m = 1, 2.

When m = 1, by the construction of T1 above, an element of T1m is a string

(•, •, . . . , •)︸ ︷︷ ︸
i

for some natural number i. When i = 0, define

k̂1(∅) = id1.

When i ≥ 1, there are three steps to the construction of k̂1. First, we apply k̂0

to all elements in the string, which gives

(η0, η0, . . . , η0)︸ ︷︷ ︸
i

,

a string of 0-cells in K. Now, we add 1 to the dimension of each cell in the
string by replacing each instance of η0 with η1, which gives

(η1, η1, . . . , η1)︸ ︷︷ ︸
i

,

a string of 1-cells in K. Finally, we compose these 1-cells along boundary 0-cells,
using the system of compositions on K, with the bracketing on the left. Thus,
for example, in the case of i = 4, we obtain

k̂1(•, •, •, •) :=
((
η1 ◦10 η1

)
◦10 η1

)
◦10 η1.

When m = 2, an element of T1m is a string of elements of T11

π = (π1, π2, . . . , πi),

for some natural number i. When i = 0, define

k̂2(∅) = id2.

For the case i ≥ 1, we explain with reference to the example

• • • • .
⇓

⇓
⇓//

��
//
EE

��

@@

Recall that, as a string of elements of T11, this is written as

(π1, π2, π3) = (∅, • −→ • −→ •, • −→ •).
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As in the case m = 1, there are three steps to the construction of k̂2(π1, π2, π3).

First, we apply k̂1 to all elements in the string, which gives(
k̂1(π1), k̂1(π2), k̂1(π3)

)
=
(
id1, η1 ◦10 η1, η1

)
.

In general each k̂1(πj) is either id1 or a composite of η1’s. The next step is to

add 1 to the dimension of each k̂1(πj) by replacing

• every instance of id1 with id2;

• every instance of η1 with η2;

• every instance of ◦10 with ◦21.

The cell we obtain from k̂1(πj) is denoted k̂+
1 (πj). Thus our example becomes(

k̂+
1 (π1), k̂+

1 (π2), k̂+
1 (π3)

)
=
(
id2, η2 ◦21 η2, η2

)
.

Finally, we compose these cells along boundary 0-cells, using the system of
compositions on K, with the bracketing on the left. In our example, this gives

k̂2(π) :=
(
η2 ◦21

(
η2 ◦21 η2

))
◦20 id2.

We now describe the construction in general for 1 ≤ m ≤ n. Suppose that
we have defined k̂m−1 in such a way that, for all π ∈ T1m−1, k̂m−1(π) consists
of a composite of copies of ηm−1 and idm−1, composed via operations of the
form ◦m−1

p for some 0 ≤ p < m− 1.
Let (π1, π2, . . . , πi) be an element of T1m. When i = 0, we define

k̂m(π1, π2, . . . , πi) = k̂m(∅) = idm.

When i ≥ 1 we define k̂m(π1, π2, . . . , πi) in three steps, as described above.

First, we apply k̂m−1 to each πj to obtain(
k̂m−1(π1), k̂m−1(π2), . . . , k̂m−1(πi)

)
.

Next, we obtain from each k̂m−1(πj) a cell k̂+
m−1(πj) ∈ Km by replacing

• every instance of idm−1 with idm;

• every instance of ηm−1 with ηm;

• every instance of ◦m−1
p , for all 0 ≤ p < m− 1, with ◦mp+1.

This gives (
k̂+
m−1(π1), k̂+

m−1(π2), . . . , k̂+
m−1(πi)

)
.

Finally, we compose these cells along boundary 0-cells, using the system of
compositions on K, with the bracketing on the left. This gives

k̂m(π1, π2, . . . , πi) :=(
. . .
(
k̂+
m−1(πi) ◦m0 k̂+

m−1(πi−1)
)
◦m0 · · · ◦m0 k̂+

m−1(π2)
)
◦m0 k̂+

m−1(π1).
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This defines a map of n-globular sets k̂ : T1 −→ K.
We now show that k̂ is a section to k. At dimension 0, k0k̂0 = idT10

since

T10 is terminal, so k̂0 is a section to k0. Suppose we have shown that, for
1 ≤ m ≤ n, km−1k̂m−1 = idT1m−1

. For π ∈ T1m−1,

kmk̂
+
m−1(π) = (π),

so for (π1, π2, . . . , πi) ∈ T1m, we have

kmk̂m(π1, π2, . . . , πi) = (π1, π2, . . . , πi),

as required. When i = 0,
kmk̂m(∅) = ∅.

Hence k̂ is a section to k.

We now use the map k̂ to define an unbiased contraction on k : K → T1.

Proof of Theorem 2.4.6. We define an unbiased contraction δ on the operad K;
that is, for all 1 ≤ m ≤ n, and for each π ∈ T1m, a function

δπ : CK(π)→ K(π)

such that, for all (a, b) ∈ CK(π),

sδπ(a, b), tδπ(a, b) = b.

To make the construction easier to follow, we first present the cases m = 1
and m = 2 separately, before giving the construction for general m. Through-
out the construction, we use the map k̂ : T1 → K defined in the proof of
Lemma 2.4.7, which we showed to be a section to k : K → T1.

Let m = 1, let π ∈ T1m = T11, and let (a, b) ∈ CK(π). If π = idα for some
α ∈ T10 we already have a corresponding contraction cell from the contraction
γ on k, so we define

δπ(a, b) := γidα(a, b).

Now suppose that π 6= idα for any α ∈ T10. We seek a 1-cell

δπ(a, b) : a −→ b

in K such that k1δπ(a, b) = π. We have a 1-cell k̂1(π) in K, and since k̂ is a
section to k, we have

k1k̂1(π) = π.

However, k̂1(π) does not necessarily have the required source and target. In
order to obtain a cell with the desired source and target, we first observe that

k1sk̂1(π) = sk1k̂1(π) = s(π)

and
k1tk̂1(π) = tk1k̂1(π) = t(π).

Thus, from the contraction γ, we have contraction 1-cells

γidk0(a)
(a, sk̂1(π)) : a −→ sk̂1(π)
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and

γidk0(b)
(tk̂1(π), b) : tk̂1(π) −→ b

in K. Thus in K we have composable 1-cells

a • • b,//
k̂1(π)

// //

where the dashed arrows denote the contraction cells. We define the contraction
cell δπ(a, b) to be given by a composite of these cells; as in the definition of k̂,
we bracket this composite on the left, so

δπ(a, b) :=
(
γidk(b)

(tk̂(π), b) ◦10 k̂(π)
)
◦10 γidk(a)

(a, sk̂(π)).

Since k maps the contraction cells to identities and k̂1(π) to π, and since in K
the arity of a composite is the composite of the arities, we have

kδπ(a, b) = π,

as required. This defines the unbiased contraction δ on k : K → T1 at dimension
1.

Before defining δ for m = 2 or for general m, we establish some notation.
For repeated application of source and target maps in K, we write

sp := s ◦ s ◦ · · · ◦ s︸ ︷︷ ︸
p times

, tp := t ◦ t ◦ · · · ◦ t︸ ︷︷ ︸
p times

,

so for 1 ≤ p < m ≤ n, and for an m-cell α of K, sp(α) is the source (m− p)-cell
of α, and tp(α) is the target (m− p)-cell of α. For all m < l ≤ n, we write idlα
for the identity l-cell on α; so, for example,

idm+1α = idα, idm+2α = ididα ,

and so on.
Now let m = 2, let π ∈ T1m = T12, and let (a, b) ∈ CK(π). As in the case

m = 1, if π = idα for some α ∈ T11, define

δπ(a, b) := γidα(a, b)

for all (a, b) ∈ CK(π).
Now suppose that π 6= idα for any α ∈ T11. We seek a 2-cell

δπ(a, b) : a =⇒ b

in K such that k2δπ(a, b) = π. We have a 2-cell k̂2(π) in K, and since k̂ is a
section to k, we have

k2k̂2(π) = π.

However, k̂2(π) does not necessarily have the required source and target cells at

any dimension. We construct δπ(a, b) from k̂2(π) in two stages: first we compose
with contraction 1-cells to obtain a 2-cell with the required source and target
0-cells, then we compose this with contraction 2-cells to obtain a 2-cell with the
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required source and target 1-cells. To obtain a cell with the required source and
target 0-cells, observe that, since T10 is terminal,

ks(a) = ks2k̂(π)

and
kt(b) = kt2k̂(π).

Thus, from the contraction γ, we have contraction 1-cells

γid1(s(a), s2k̂(π)) : s(a) −→ s2k̂(π)

and
γid1

(t2k̂(π), t(b)) : t2k̂(π) −→ t(b)

in K. Thus we have the following composable diagram of cells in K:

s(a) • • t(b),//
��

@@
//k̂2(π)

��

where the dashed arrows denote identity 2-cells on the contraction cells men-
tioned above. We compose this diagram to obtain a 2-cell in K with the required
source and target 0-cells, which we denote δ0

π(a, b). Formally, this is defined by

δ0
π(a, b) :=

(
id2γid1

(t2k̂(π), t(b)) ◦20 k̂(π)
)
◦20 id2γid1

(s(a), s2k̂(π)).

As before, we bracket this composite on the left, though this choice is arbitrary.
We now repeat this process at dimension 2 to obtain a cell with the required

source and target 1-cells. We have

s(a) = s(b) = s2δ0
π(a, b)

and
t(a) = t(b) = t2δ0

π(a, b),

so we have contraction 2-cells

γidk(a)
(a, sδ0

π(a, b)) : a =⇒ sδ0
π(a, b)

and
γidk(b)

(tδ0
π(a, b), b) : tδ0

π(a, b) =⇒ b

in K. Thus we have the following composable diagram of cells in K:

s(a) • • t(b),

a

��

��

//
��

@@
//k̂2(π)

��

��

b

BB



82 Chapter 2. Operadic definitions of weak n-category

where the dashed arrows denote contraction cells. We compose this diagram to
obtain the unbiased contraction cell δπ(a, b) in K. Formally, this is defined by

δπ(a, b) :=
(
γidk(b)

(tδ0
π(a, b), b) ◦21 δ0

π(a, b)
)
◦21 γidk(a)

(a, sδ0
π(a, b)).

By construction, we see that sδπ(a, b) = a, tδπ(a, b) = b. As before, since k

maps the contraction cells to identities and k̂2(π) to π, and since in K the arity
of a composite is the composite of the arities, we have

kδπ(a, b) = π,

as required. This defines the unbiased contraction δ on k : K → T1 at dimension
2.

We now give the definition of δ for higher dimensions. Our approach is the
same as that for dimensions 1 and 2; we build our contraction cells in stages, first
constructing a cell with the desired source and target 0-cells, then constructing
from that a cell with the desired source and target 1-cells, and so on.

Let 3 ≤ m ≤ n, let π ∈ T1m, and let (a, b) ∈ CK(π). If π = idα for some
α ∈ T1m−1, we define

δπ(a, b) := γidα(a, b).

Now suppose that π 6= idα for any α ∈ T1m−1. We seek an m-cell

δπ(a, b) : a −→ b

in K such that kmδπ(a, b) = π. As before, we have an m-cell k̂m(π) in K, and

since k̂ is a section to k, we have

kmk̂m(π) = π.

However, k̂m(π) does not necessarily have the required source and target cells
at any dimension. We obtain a cell with the required source and target by
defining, for each 0 ≤ j ≤ m − 1, an m-cell δjπ(a, b) which has the required
source and target j-cells, and maps to π under k. We define this by induction
over j. Note that, since this construction is very notation heavy, we henceforth
omit subscripts indicating the dimensions of components of maps of n-globular
sets, so we write k for km, k̂ for k̂m, etc.

Let j = 0. Since T10 is the terminal set, we have

ksm−1(a) = ksmk̂(π)

and
ktm−1(b) = ktmk̂(π)

in K, so we have contraction 1-cells

γid1(sm−1(a), smk̂(π))

and
γid1(tmk̂(π), tm−1(b))

in K. We obtain δ0
π(a, b) by composing k̂(π) with the m-cell identities on these

contraction cells, so we define

δ0
π(a, b) :=

(
idmγid1

(tmk̂(π), tm−1(b)) ◦m0 k̂(π)
)
◦m0 idmγid1

(sm−1(a), smk̂(π)).
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By construction, we have

sm−1(a) = sm−1(b) = smδ0
π(a, b)

and

tm−1(a) = tm−1(b) = tmδ0
π(a, b),

so this has the required source and target 0-cells. Since k sends contraction cells
to identities, and since k̂ is a section to k, we have

kδ0
π(a, b) = π.

Now let 0 ≤ j < m− 1, and suppose we have defined δjπ(a, b) such that

sm−j−1(a) = sm−j−1(b) = sm−jδjπ(a, b),

tm−j−1(a) = tm−j−1(b) = tm−jδjπ(a, b),

so δjπ(a, b) has the required source and target j-cells, and

kδjπ(a, b) = π.

Applying k to the source and target conditions above, we have

ksm−j−2(a) = ksm−j−1δjπ(a, b)

and

ktm−j−2(b) = ktm−j−1δjπ(a, b).

Thus we have contraction cells

γidksm−j−2(a)
(sm−j−2(a), sm−j−1δjπ(a, b)),

and

γidksm−j−2(b)
(tm−j−1δjπ(a, b), tm−j−2(b)).

in K. We obtain δj+1
π (a, b) by composing δjπ(a, b) with the m-cell identities

on these contraction cells (or with the contraction cells themselves in the case
j + 1 = m), so we define

δj+1
π (a, b) :=

(
idmγidksm−j−2(b)

(tm−j−1δjπ(a, b), tm−j−2(b)) ◦mj+1 δ
j
π(a, b)

)
◦mj+1 idmγidksm−j−2(a)

(sm−j−2(a), sm−j−1δjπ(a, b)).

By construction, we see that

sm−j−1δj+1
π (a, b) = sm−j−2(a)

and

tm−j−1δj+1
π (a, b) = tm−j−2(b),

so δj+1
π (a, b) has the required source and target (j + 1)-cells. Since

kδjπ(a, b) = π,
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and k maps contraction cells to identities, we have

kδj+1
π (a, b) = π.

This defines an m-cell δjπ(a, b) in K, for each 0 ≤ j ≤ m−1, with the required
source and target j-cells, and such that

kδjπ(a, b) = π.

In particular, we have
δm−1
π (a, b) : a −→ b.

Thus we define
δπ(a, b) := δm−1

π (a, b).

This defines an unbiased contraction δ on the operad K, as required.

Thus any operad with a contraction and system of compositions can be
equipped with an unbiased contraction. In the proof above we had to make
several arbitrary choices. Most of these involved picking a binary bracketing for
a composite; we also chose to define the unbiased contraction to be the same
as the original contraction on all cells for which this makes sense, which we did
not have to do. There is no canonical choice in any of these cases, and thus no
canonical way of equipping an operad in OCS with an unbiased contraction.

Note that various authors use variants of Batanin’s definition in which a
choice of globular operad is not specified, and instead a weak n-category is
defined either to be an algebra for any operad that can be equipped with a
contraction and system of compositions, or an algebra for any operad that can be
equipped with an unbiased contraction ([Lei02, Definitions B2 and L2], [Ber02,
Gar10, BG11, Che11a]). By Theorems 2.4.5 and 2.4.6, these two “less algebraic”
variants of Batanin’s definition are equivalent, since any operad that can be
equipped with a contraction and system of compositions can also be equipped
with an unbiased contraction, and vice versa.

2.5 Coherence for algebras for n-globular oper-
ads

In this section we prove three new coherence theorems for algebras for any
Batanin operad or Leinster operad K. Roughly speaking, our coherence theo-
rems say the following:

• every free K-algebra is equivalent to a free strict n-category;

• every diagram of constraint n-cells commutes in a free K-algebra;

• in any K-algebra there is a certain class of diagrams of constraint n-cells
that always commute; these should be thought of as the diagrams of shapes
that can arise in a free algebra.

In the first two of these theorems freeness is crucial; these theorems do not
hold in general for non-free K-algebras, so this does not mean that every weak
n-category is equivalent to a strict one, which we know should not be true for
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n ≥ 3 in a fully weak theory. All of these theorems have analogues in the case
of tricategories, which appear in Gurski’s thesis [Gur06] and book [Gur13] on
coherence for tricategories; these are noted throughout the section. Note that
there is no theorem corresponding to the coherence theorem for tricategories that
states “every tricategory is triequivalent to a Gray-category” [GPS95, Theorem
8.1], since we have no analogue of Gray-categories in this case. There are also
no coherence theorems for maps of K-algebras, since there is no established
notion of weak map of K-algebras.

These coherence theorems hold for Batanin weak n-categories and Leinster
weak n-categories; in Section 3.1 we prove that there is a Batanin operad whose
algebras are Penon weak n-categories, so the theorems in this section also hold
for Penon weak n-categories. Note that, by Theorems 2.4.5 and 2.4.6, we need
only prove each coherence theorem either in the case of algebras for a Batanin
operad or algebras for a Leinster operad; thus in each case we use whichever of
these is more technically convenient for the purposes of the proof. Throughout
this section we write K to denote either a Batanin operad or Leinster operad
(with the exception of Definition 2.5.1 and Proposition 2.5.2, in which a little
more generality is possible).

Our first coherence theorem corresponds to the coherence theorem for tri-
categories stating that the free tricategory on a Cat-enriched 2-graph X is
triequivalent to the free strict 3-category on X [Gur13, Theorem 10.4]. Since
the theorem involves comparing K-algebras with strict n-categories, before
stating the theorem we first define, for any n-globular operad K, a functor
T -Alg → K-Alg; in fact, we do this for a T -operad K for any suitable choice
of monad T . This functor is induced by the natural transformation k : K ⇒ T .
We then prove that, under certain circumstances (and in particular, when K is
an n-globular operad with unbiased contraction), this functor is full, faithful,
and injective on objects, so we can consider T -Alg to be a full subcategory of
K-Alg. This tells us that, for any definition of weak n-categories as algebras
for an n-globular operad, every strict n-category is a weak n-category. The fact
that the inclusion functor is full comes from the fact that, since K-Alg is the
category of algebras for a monad, we only have strict maps of K-algebras.

Definition 2.5.1. Let T be a cartesian monad on a cartesian category C, which
has an initial object 1, and let K be a T -operad. Then there is a functor
− ◦ k : T -Alg→ K-Alg defined by

−→

7−→

− ◦ k : T -Alg K-Alg

XTX

YTY

KX TX X

KY TY Y

Tu

��

u

��

φ
//

ψ
//

Ku

��

kX //

kY

//

u

��

φ
//

ψ
//

Proposition 2.5.2. Let T be a cartesian monad on a cartesian category C,
which has an initial object 1, and let K be a T -operad such that, for any object
X in C, the component kX : KX → TX of the natural transformation k : K ⇒ T
is an epimorphism. Then the functor − ◦ k : T -Alg → K-Alg is full, faithful,
and injective on objects; hence we can consider T -Alg to be a full subcategory
of K-Alg.
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Proof. First, faithfulness is immediate since when we apply − ◦ k to a map of
T -algebras it retains the same underlying map of n-globular sets.

For fullness, suppose we have T -algebras TX
φ
// X , TY

ψ
// Y , and

a map u between their images in K-Alg. By naturality of k,

KX KY

TX TY

Ku //

kX

��

kY

��

Tu
//

commutes, so

KX TX

TX TY

X Y

kX //

kX

��

Tu

��

φ

��

ψ

��

u
//

commutes. Since kX is an epimorphism, the diagram above gives us that

TX TY

X Y

Tu //

φ

��

ψ

��

u
//

commutes, so u is a map of T -algebras. Hence − ◦ k is full.

Finally, suppose we have T -algebras TX
φ
// X , TX

ψ
// X , with

− ◦ k
(
TX

φ
// X
)

= − ◦ k
(
TX

ψ
// X
)
.

Then

KX TX

TX X

kX //

kX

��

ψ

��

φ
//

commutes. Since kX is an epimorphism, this gives us that φ = ψ, so − ◦ k is
injective on objects.

In the case in which K is a Batanin operad or Leinster operad, each compo-
nent kX is surjective on all dimensions of cell, so we have the following corollary.

Corollary 2.5.3. Let K be a Batanin operad or Leinster operad. Then the
functor − ◦ k : T -Alg→ K-Alg is full, faithful, and injective on objects.
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For the remainder of this section, when we say “strict n-category”, we mean
it in the sense of a K-algebra in the image of the functor −◦k : T -Alg→ K-Alg.

Before we state our first coherence theorem, we must also define what it
means for two K-algebras to be equivalent.

Definition 2.5.4. Let K be an n-globular operad, and let

KX
θ // X , KY

φ
// Y

be K-algebras. We say that the algebras KX
θ // X and KY

φ
// Y are

equivalent if there exists a map of K-algebras u : X → Y or u : Y → X such
that u is surjective on 0-cells, full on m-cells for all 1 ≤ m ≤ n, and faithful on
n-cells. The map u is referred to as an equivalence of K-algebras.

Observe that, since maps of K-algebras preserve the K-algebra structure
strictly, this definition of equivalence is much more strict (and thus much less
general) than it “ought” to be. This is also why we require that the map u
can go in either direction; having a map X → Y satisfying the conditions does
not imply the existence of a map Y → X satisfying the conditions. We will
use this definition of equivalence only in the next theorem, and, in spite of its
lack of generality, it is sufficient for our purposes. If we required a more general
definition of equivalence of K-algebras, there are various approaches we could
take. One option would be to replace the map u with a weak map of K-algebras;
a definition of weak maps of K-algebras is given by Garner in [Gar10], and is
valid for any n-globular operad K. Another option is to replace the map u
with a span of maps of K-algebras, similar to the approach used by Smyth
and Woolf to define an equivalence of Whitney n-categories [SW11]. However,
pursuing definitions of equivalence given by either of these approaches is beyond
the scope of this thesis.

In this definition of equivalence we asked for surjectivity on 0-cells, rather
than essential surjectivity. This is another way in which our definition of equiva-
lence is less general than it “ought” to be, but once again, asking for surjectivity
is enough for our purposes. This approach of using surjectivity instead of es-
sential surjectivity to simplify the definition of equivalence has previously been
taken by Simpson [Sim97]; we discuss this in more detail in the definition of
Tamsamani–Simpson weak n-category in Section 4.2.

Theorem 2.5.5. Let K be an n-globular operad with unbiased contraction γ,
and let X be an n-globular set. Then the free K-algebra on X is equivalent to
the free strict n-category on X.

Proof. As a K-algebra, the free strict n-category on X is

KTX T 2X TX.
kTX //

µTX //

We first show that kX is a map of K-algebras, and then show that it is an
equivalence of K-algebras.



88 Chapter 2. Operadic definitions of weak n-category

The diagram

K2X KTX

TKX T 2X

KX TX

kKX

!!

KkX //

TkX //µKX

��

kTX

��

µTX

��

kX

//

commutes; the top square is a naturality square for k, and the bottom part is
axiom for the monad map k. Thus kX is a map of K-algebras, as required.

We now show that kX is surjective on 0-cells. By definition of the unit
ηK : 1⇒ K, the diagram

X KX

TX

ηKX //

ηTX
��

kX

��

commutes. We have TX0 = X0, and (ηTX)0 = idX , so at dimension 0 the
diagram above becomes

X0 KX0

X0.

(ηKX )0
//

idX0
��

(kX)0

��

Hence (kX)0 is surjective, i.e. kX is surjective on 0-cells.
We now show that kX is full on m-cells for all 1 ≤ m ≤ n. Let (α, p),

(β, q) ∈ KXm−1 be parallel (m − 1)-cells, and let π : kX(f) → kX(g) be an
m-cell in TX. Then we have an m-cell

(π, γT !(π)(p, q)) : (α, p) −→ (β, q)

in KX with kX(π, γT !(π)(p, q)) = π. Hence kX is full at dimension m.
Finally, we show that kX is faithful at dimension n. Let (α, p), (β, q) be

n-cells in KA, such that

s(α, p) = s(β, q), t(α, p) = t(β, q), kX(α, p) = kX(β, q).

The first two equations above give us that s(p) = s(q) and t(p) = t(q), and the
third equation gives

α = kX(α, p) = kX(β, q) = β.

Now, since (α, p), (β, q) ∈ KXn, and since α = β, we have

k(p) = T !(α) = T !(β) = k(q),

and since k has an unbiased contraction γ, it is faithful at dimension n, and we
get that p = q. Hence (α, p) = (β, q), so kX is faithful at dimension n.

Hence kX is an equivalence of K-algebras, so the free K-algebra on X is
equivalent to the free strict n-category on X.
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The remaining coherence theorems require only a contraction on the operad
K, not a system of compositions or an unbiased contraction. These theorems
concern which diagrams of constraint cells commute in a K-algebra, so in order
to state them, we must first define what we mean by a “diagram” in a K-algebra,
and what it means for a diagram to commute.

Definition 2.5.6. Let K be an n-globular operad, let KX
θ // X be a K-

algebra, and let 1 ≤ m ≤ n. A diagram of m-cells in KX
θX // X consists of

an unordered pair of m-cells (α, p), (β, q) ∈ KXm such that θ(α, p) and θ(β, q)
are parallel, i.e.

sθ(α, p) = sθ(β, q), tθ(α, p) = tθ(β, q).

We write such a diagram as ((α, p), (β, q)).
We say that the diagram ((α, p), (β, q)) commutes if

θ(α, p) = θ(β, q).

Our second coherence theorem states that in a free K-algebra every diagram
of constraint n-cells commutes. This corresponds to the coherence theorem
for tricategories due to Gurski which states that, in the free tricategory on a
Cat-enriched 2-graph whose set of 3-cells is empty, every diagram of 3-cells
commutes ([Gur13, Corollary 10.6], originally [Gur06, Theorem 10.2.2]). Since
the constraint 3-cells in a free tricategory do not depend on the generating 3-
cells, this implies that in a free tricategory all diagrams of constraint 3-cells
commute. Our theorem is analogous to this last result, and our approach is the
same as that of Gurski: first, we prove a lemma which states that, in the free K-
algebra on an n-globular set whose set of n-cells is empty, all diagrams of n-cells
commute; note that in a free K-algebra of this type, all n-cells are constraint
cells. We then use this lemma, combined with the fact that the constraint n-cells
in a free K-algebra depend only on dimension n− 1, to prove the theorem.

Lemma 2.5.7. Let K be an n-globular operad with contraction γ, and let X be
an n-globular set with Xn = ∅. Then in the free K-algebra on X, every diagram
of n-cells commutes.

Proof. Let ((α, p), (β, q)) be a diagram of n-cells in K2X
µXA // KX . Since

Xn = ∅, the only n-cells in TX are identities, so we have TXn
∼= TXn−1,

and the source and target maps s, t : TXn → TXn−1 are isomorphisms with
s(π) = t(π) for all π ∈ TXn. Since (α, p), (β, q) are parallel and kX is a map
of n-globular sets, so preserves sources and targets, kX(α, p) and kX(β, q) are
parallel n-cells in TX so must be equal. As shown in the proof of Theorem 2.5.5,
kX is faithful at dimension n, hence (α, p) = (β, q).

Before we use Lemma 2.5.7 to prove our second coherence theorem, we must
first give a formal definition of constraint cells in a K-algebra. Constraint cells
are cells that arise from the contraction on k : K → T1; these include identities,
and mediating cells between different composites of the same pasting diagram.
Note that constraint m-cells for m < n depend on the choice of contraction on
k, even though the algebras for K do not; constraint n-cells do not depend on
the choice of contraction on k, since faithfulness of k at dimension n ensures
that there is only ever one valid choice at this dimension.
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Definition 2.5.8. Let K be an n-globular operad with unbiased contraction γ,

and let KX
θ // X be a K-algebra. There is a contraction δ on kX : KX →

TX given by, for each 1 ≤ m ≤ n, π ∈ TXm−1, the function

−→
7−→

δidπ : CKX(idπ) KX(idπ)

((π, p), (π, q)) (π, γT !(idπ)(p, q)).

A constraint m-cell in KX
θ // X is an m-cell of X in the image of the map

CKX(idπ) KX(idπ) (KX)m Xm,
δidπ // � � //

θm //

for some π ∈ TXm−1.

Corollary 2.5.9. Let K be an n-globular operad with contraction γ, and let

X be an n-globular set. In the free K-algebra on X, K2X
µKX // KX , every

diagram of constraint n-cells commutes.

Proof. Write X ′ for the n-globular set defined by

X ′m =

{
Xm if m < n,
∅ if m = n,

with source and target maps the same as those in X for dimensions m < n;
write u : X ′ → X for the map which is the identity on all dimensions m < n.
For all π ∈ TKXn−1 = TKX ′n−1 we have CK2X′(idπ) = CK2X(idπ), and the
diagram

CK2X′(idπ) K2X ′(idπ) (K2X ′)n KX ′m,

CK2X(idπ) K2X(idπ) K2Xn KXm,

δ′idπ// � � //
µK
X′ //

δidπ // � � //
µKX //

K2un

��

K2un

��

Kun

��

commutes.
Let ((α, p), (β, q)) be a diagram of n-cells inK2X such that α, β ∈ TKXn are

composites of constraint n-cells of KX. Since constraint n-cells are determined
by (n− 1)-cells, and TKXn−1 = TKX ′n−1, we have (α, p), (β, q) ∈ K2X ′n, with
µKX′(α, p) and µKX′(β, q) parallel. Thus, by Theorem 2.5.7, (α, p) = (β, q).

The final coherence theorem describes a class of diagrams of constraint n-
cells which commute in any K-algebra. These diagrams should be thought of
as those that are “free-shaped”, i.e. they are diagrams of constraint cells that
could arise in a free K-algebra. This rules out diagrams in which the sources and
targets of the constraint cells involve non-constraint cells with constraint cells in
their boundaries, and non-composite cells with composites in their boundaries.
This is the analogue of a coherence theorem for tricategories due to Gurski,
which describes a similar class of diagrams of constraint 3-cells in the context of
tricategories [Gur06, Corollary 10.2.5]. We call such a diagram FK-admissible,
where FK is the left adjoint to the forgetful functor

UK : K-Alg −→ n-GSet,
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which sends a K-algebra to its underlying n-globular set; this terminology is
taken from the theorem of Gurski mentioned above.

Definition 2.5.10. Let K be an n-globular operad with contraction γ, and let

KX
θ // X be a K-algebra. A diagram ((α, p), (β, q)) of constraint n-cells in

X is said to be FK-admissible if there exists a sub-n-globular set E of X, with
En = ∅ and inclusion map i : E ↪→ X, and a diagram ((α′, p′), (β′, q′)) of con-
straint n-cells in FKE such that ((α, p), (β, q)) is the image of ((α′, p′), (β′, q′))
under the map

K2E KX

KE X,

Ki //

µKE

��

θ

��

i

//

where i is the transpose under the adjunction FK a UK of i.

The following is now an immediate corollary of Lemma 2.5.7, and the fact
that i is a map of K-algebras.

Corollary 2.5.11. Let K be an n-globular operad with contraction γ, and let

KX
θ // X be a K-algebra. Then every FK-admissible diagram of constraint

n-cells in KX
θ // X commutes.
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Chapter 3

Comparisons between
algebraic definitions of weak
n-category

In this chapter we investigate the connections between the algebraic definitions
of weak n-category given in the previous two chapters. We begin by recalling
that there is a Batanin operad whose algebras are Penon weak n-categories,
which was originally proved by Batanin [Bat02]; we give a new, more direct
proof of this using our construction of Penon’s left adjoint from Section 1.2.
This tells us that the coherence theorems from Section 2.5 hold for Penon weak
n-categories. It also allows for comparison of Penon’s definition with other
operadic definitions of weak n-category, though we make no such comparison
here.

We then take the first steps towards a comparison between Batanin weak
n-categories and Leinster weak n-categories, using the correspondence between
Batanin operads and Leinster operads from Section 2.4. It has long been be-
lieved that these definitions are in some sense equivalent [Lei04b, end of Sec-
tion 4.5], but formalising this statement is difficult since it is not clear what
“equivalent” should mean in this context, so no such comparison has previously
been made. We derive comparison functors between the categories of Batanin
weak n-categories and Leinster weak n-categories using the universal properties
of the operads B and L. These functors should be higher-dimensional equiv-
alences of some kind; there is currently no way of stating this formally, so we
give a preliminary approximation of what this might mean.

3.1 The operad for Penon weak n-categories

In [Bat02], Batanin proved that there is an n-globular operad whose algebras
are Penon weak n-categories, and that this operad can be equipped with a con-
traction and system of compositions. In this section we give a new, alternative
proof of this fact using the construction of Penon’s left adjoint from Section 1.2.
Although it is not a new result, our proof is more direct than that of Batanin,
offering an alternative point of view in a way that elucidates the structure of
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the operad, and makes clear the fact that the contraction and system of compo-
sitions arise naturally from the contraction and magma structure in the original
definition of the monad P .

Note that we do not use this fact, or the proof, elsewhere in the thesis. The
result implies that the coherence theorems from Section 2.5 apply to Penon
weak n-categories. In order to prove it, we use an alternative statement of the
definition of n-globular operad (see [Web04]), which describes an n-globular
operad as a cartesian map of monads.

Proposition 3.1.1. An n-globular operad consists of a monad K on n-GSet,
and a cartesian map of monads k : K ⇒ T (by which we mean a cartesian nat-
ural transformation k : K ⇒ T respecting the monad structure). Given operads
k : K ⇒ T , k′ : K ′ ⇒ T , a map of operads f : K ⇒ K ′ is a map of monads
such that the diagram

K K ′

T1

f
//

k
��

k′

��

commutes. The category of algebras for an operad k : K ⇒ T is the category
K-Alg of algebras for the monad K.

It is a straightforward and enlightening exercise to prove that this defini-
tion is equivalent to Definition 2.1.3, and also that the monad K is necessarily
cartesian. We leave this to the reader.

To prove that there is an operad whose algebras are Penon weak n-categories
using Proposition 3.1.1 we must prove three facts: that there is a natural trans-
formation

p : P =⇒ T,

that this natural transformation is cartesian, and that it is a map of monads.
Note that we know that the source of this natural transformation must be P to
ensure that the algebras for the resulting operad are indeed P -algebras.

Proposition 3.1.2. Recall from Definition 1.1.4 that P : n-GSet → n-GSet
is the monad induced by the adjunction

n-GSet Q.
F

⊥
//

U
oo

There is a natural transformation p : P ⇒ T whose component pX at X ∈ n-GSet
is given by the map part of

F (X) = ( PX
pX // TX ),

an object of Q.

Proof. Recall that there is a forgetful functor

UT : n-Cat −→ n-GSet
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that sends a strict n-category to its underlying n-globular set, and that the
category R can be considered as the comma category

n-GSet ↓ UT .

Write

π1 : n-GSet ↓ UT → n-GSet

and

π2 : n-GSet ↓ UT → n-Cat

for the projection maps, and consider the following diagram:

n-GSet

Q

n-GSet ↓ G

n-GSet n-Cat.

F
��

W
��

π1

��

π2

��

G
oo

#+

Then the universal property of n-GSet ↓ UT as a 2-limit induces a unique
natural transformation p : P ⇒ T such that

n-GSet

Q

n-GSet ↓ UT

n-GSet n-Cat

n-GSet

n-Catn-GSet

=

F
��

P

��

FT





W
��

π1

��

π2

��

G
oo

#+

P

��

FT





G
oo

p

#+

where FT is the free strict n-category functor.

Proposition 3.1.3. The natural transformation p : P ⇒ T is cartesian.

To prove this, we must show that each naturality square for p is a pullback
square. To do so, we use the construction of the adjunction

n-GSet Q.
F

⊥
//

U
oo

from Section 1.1. Recall that this adjunction can be decomposed as

n-GSet R Q.
H

⊥
//

V
oo

J

⊥
//

W
oo
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Given a map f : X → Y in n-GSet, the corresponding naturality square is
obtained by applying the functor J : R → Q to the map

X Y

TX TY.

f
//

ηTX

��

Tf
//

ηTY

��

in R, which is a pullback square in n-GSet, since the free strict n-category
monad T is cartesian [Lei04a, 4.1.18 and F.2.2]. Thus we prove that p is cartesian
by proving that the functor J sends maps that are pullback squares to maps
that are pullback squares (in fact, we do so only for a certain class of such
maps). Recall that the adjunction J a W can be decomposed as the following
chain of adjunctions:

R = R0,0

C0,1

⊥
// R0,1

D0,1

oo

M1,1

⊥
//
. . .

N1,1

oo

Cn−1,n

⊥
// Rn−1,n

Dn−1,n

oo

Mn,n

⊥
// Rn,n

Nn,n

oo

Cn,n+1

⊥
// Rn,n+1 = Q,

Dn,n+1

oo

where the functor Cm,m+1 freely adds the contraction structure at dimension
m+ 1, and the functor Mm,m freely adds the magma structure at dimension m.
We now prove three lemmas to show that each of these functors sends maps that
are pullback squares to maps that are pullback squares, thus showing that their
composite J does so as well. Note that there are three lemmas since the functor
Cn,n+1 must be treated separately from the functors Cm,m+1 for 0 ≤ m ≤ n−1.

Note that we only consider maps whose the strict n-category part is a map
in the image of T between free strict n-categories; this is as general as we need
it to be to prove Proposition 3.1.3, and it allows us to use the fact that T is
cartesian in the proofs of the lemmas.

Lemma 3.1.4. Let 0 ≤ m ≤ n− 1 and suppose we have a morphism

X Y

TA TB

u //

x

��

Tf
//

y

��

in Rm,m that is a pullback square in n-GSet. Then its image under the functor

Cm,m+1 : Rm,m −→ Rm,m+1

is also a pullback square in n-GSet.

Proof. The idea of the proof is as follows: the functor Cm,m+1 freely adds
contraction (m + 1)-cells to X and Y . These contraction cells are obtained by
taking pullbacks in Set, and then added to the sets of (m+ 1)-cells Xm+1 and
Ym+1 by taking coproducts in Set. The action of Cm,m+1 on the map itself
is then induced by the universal properties of these pullbacks and coproducts.
Thus the image of this map under the functor Cm,m+1 is a coproduct of pullback
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squares (with some adjustments at the bottom to ensure that the strict n-
category parts TX and TY remain unchanged). Since pullbacks commute with
coproducts in Set [ML98, IX.2 Exercise 3], this coproduct of pullback squares
is itself a pullback square.

Recall from Definition 1.1.2 that we have

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × TAm

//

��

(s,t,xm)
//

(s,t,xm)

��

For k 6= m + 1, we have Cm,m(u, Tf)k = (u, Tf)k, and since pullbacks in
n-GSet are computed pointwise, we only need to check that Cm,m(u, Tf)m+1

is a pullback square, i.e. that

Xm+1 qXc
m+1 Ym+1 qXc

m+1

TAm+1 TBm+1

um+1qucm+1
//

xm+1qxcm+1

��

Tfm+1

//

ym+1qycm+1

��

is a pullback square. Since coproducts commute with pullbacks in Set [ML98,
IX.2, exercise 3], this is true if the squares

Xm+1 Ym+1

TAm+1 TBm+1

Xc
m+1 Y cm+1

TAm+1 TBm+1

um+1
//

xm+1

��

Tfm+1

//

ym+1

��

ucm+1
//

xcm+1

��

Tfm+1

//

ycm+1

��

are both pullback squares. The left-hand square is a pullback square by hypoth-
esis. For the right-hand square, suppose we have a cone

V Y cm+1

TAm+1 TBm+1

v1 //

v2

��

Tfm+1

//

ycm+1

��

in Set. Recall that we have source and target maps s, t : Y cm+1 → Ym given by
the projections from the pullback defining Y cm+1. Composing with these, and
source and target maps for TA and TB, induces maps

V

Xm Ym

TAm TBm,

V

Xm Ym

TAm TBm.

um //

xm

��

Tfm

//

ym

��

sv1

!!

sv2

��

!σ

�� um //

xm

��

Tfm

//

ym

��

tv1

!!

tv2

��

!τ

��
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The maps σ and τ give us a cone over the pullback square defining Xc
m+1;

commutativity of this cone comes from the globularity conditions, and the fact
that every cell in the image of v2 is an identity, so has the same source and
target. Thus the universal property of Xc

m+1 induces a unique map such that
the diagram

V

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × TAm.

σ

''

τ

��

v

��
//

��

(s,t,xm)
//

(s,t,xm)

��

commutes.
We now check that v makes the diagram

V

Xc
m+1 Y cm+1

TAm+1 TBm+1

v1

##

v2

��

v

�� ucm+1
//

xcm+1

��

Tfm+1

//

ycm+1

��

commute. To show that the top triangle commutes, observe that the map
v1 = ucm+1 ◦ v makes the following diagram commute:

V

Xc
m+1 Xm

Xm

Y cm+1 Ym

Ym Ym−1 × Ym−1 × TBm.

v

''

σ

((

τ

%%

ucm+1

''

s //

t

��

um

''

um ''

s //

t

��

(s,t,ym)
//

(s,t,ym)

��

Since umσ = sv1 and umτ = tv1, by the universal property of Y cm+1, we have
ucm+1 ◦ v = v1.

To show that the left-hand triangle commutes, write i : TAm → TAm+1 for
the map that sends an m-cell to its identity (m+ 1)-cell, and consider that we
can factorise xcm+1 ◦ v as

V Xc
m+1 Xm TAm TAm+1.

v // s //

xcm+1

**
xm // i //

σ

77

sv2

;;
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Thus we have xcm+1 ◦ v = isv2 = v2, since all cells in the image of v2 are
identities.

Finally, uniqueness of v comes from the universal property of Xc
m+1. Hence

Xc
m+1 Y cm+1

TAm+1 TBm+1

ucm+1
//

xcm+1

��

Tfm+1

//

ycm+1

��

is a pullback square, so Cm,m+1(u, Tf) is a pullback square.

We must treat the case m = n separately.

Lemma 3.1.5. Suppose we have a morphism

X Y

TA TB

u //

x

��

Tf
//

y

��

in Rn,n that is a pullback square in n-GSet. Then its image under the functor

Cn,n+1 : Rn,n −→ Rn,n+1 = Q

is also a pullback square in n-GSet.

Proof. Recall from Definition 1.2.8 that we have

Xc
n+1 Xn

Xn Xn−1 ×Xn−1 × TAn,

π1 //

π2

��

(s,t,xn)
//

(s,t,xn)

��

and that X̃n is defined to be the coequaliser of the diagram

Xc
n+1 Xn

π1 //

π2

//

in Set. We write q : Xn → X̃n for the coprojection. The set Ỹn is defined
similarly, and we write r : Yn → Ỹn for the coprojection. For all 0 ≤ m < n we
have

Cn,n+1(u, Tf)m = (u, Tf)m,

and for m = n, we have that Cn,n+1(u, Tf)n is given by

X̃n Ỹn

TAn TBn,

ũn //

x̃n

��

Tfn

//

ỹn

��
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so we only need to check that this is a pullback square in Set.
Write w for the unique map making the diagram

Xn

•

Yn

Ỹn

TAn TBn

un //

r

��
//

��

Tfn

//

ỹn

��

xn

��

w

��

commute. We will show that, for a, b ∈ Xn, w(a) = w(b) if and only if (a, b) ∈
Xc
n+1, and also that w is surjective; and thus Cn,n+1(u, Tf)n is a pullback

square and w = q.
Let (a, b) ∈ Xc

n+1, so xn(a) = xn(b), s(a) = s(b), t(a) = t(b). We have
(un(a), un(b)) ∈ Y cn+1, so run(a) = run(b). Thus

w(a) = (xn(a), run(a)) = (xn(b), run(b)) = w(b).

Now let a, b ∈ Xn with w(a) = w(b), so xn(a) = xn(b), run(a) = run(b).
The source map s : Xn → Xn−1 is the unique map making the diagram

Xn Yn

TAn

Xn−1 Yn−1

TAn−1 TBn−1

un−1
//

xn−1

��

Tfn−1

//

yn−1

��

un //

s

%%xn

��

s %%

s

%%

commute. Thus, since sun(a) = sun(b) and sxn(a) = sxn(b), we have s(a) =
s(b). Similarly, t(a) = t(b). Hence (a, b) ∈ Xc

n+1.

Now let π ∈ TAn, c ∈ Ỹn, with Tfn(π) = ỹn(c). We wish to show that there
is some a ∈ Xn with w(a) = (π, c), and thus that w is surjective. Since ỹn is
surjective, there exists c′ ∈ Yn with r(c′) = c. Since Xn is given by the pullback

Xn Yn

TAn TBn

un //

xn

��

Tfn

//

yn

��

and yr(c′) = Tfn(π), we have a ∈ Xn with xn(a) = π, un(a) = c′. Thus
w(a) = (π, c), so w is surjective. Hence

X̃n Ỹn

TAn TBn

ũn //

x̃n

��

Tfn

//

ỹn

��
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is a pullback square.

Thus we have shown that the functors adding the free contraction cells send
maps that are pullback square to maps that are pullback squares. We now do
the same for the functors adding the free magma structure.

Lemma 3.1.6. Let 0 < m ≤ n and suppose we have a morphism

X Y

TA TB

u //

x

��

Tf
//

y

��

in Rm−1,m that is a pullback square in n-GSet. Then its image under the
functor

Mm,m : Rm−1,m −→ Rm,m
is also a pullback square in n-GSet.

Proof. The idea of this proof is similar to that of the proof of Lemma 3.1.4,
but is slightly more complicated since the construction of Mm,m uses filtered
colimits as well as coproducts. The functor Mm,m freely adds binary composites
of m-cells to X and Y . These composites are added through a process of taking
pullbacks, coproducts, and filtered colimits in Set. The action of Mm,m on the
map itself is then induced by the universal properties of these pullbacks, coprod-
ucts, and filtered colimits. Thus the image of this map under the functor Mm,m

is a filtered colimit of coproducts of pullback squares (with some adjustments
at the bottom to ensure that the strict n-category parts TX and TY remain
unchanged). Since pullbacks commute with both coproducts and filtered col-
imits in Set [ML98, IX.2, Exercise 3 and Theorem 1], this filtered colimit of
coproducts of pullback squares is itself a pullback square.

Recall the notation from Definition 1.2.12: we write

Mm,m( X
x // TA ) = X̂

x̂ // TA ,

Mm,m( Y
y
// TB ) = Ŷ

ŷ
// TB .

Since Mm,m changes only dimension m, and since pullbacks in n-GSet are
computed pointwise, we just need to check that

X̂m Ŷm

TAm TBm

ûm //

x̂m

��

Tfm

//

ŷm

��

is a pullback square in Set. Recall that X̂m and Ŷm are defined as filtered
colimits in Set, with

X̂m := colim
j≥1

X(j)
m , Ŷm := colim

j≥1
Y (j)
m .
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Since pullbacks commute with filtered colimits in Set, we can prove that the
above diagram is a pullback square by proving that, for each j ≥ 1, the diagram

X
(j)
m Y

(j)
m

TAm TBm

u(j)
m //

x(j)
m

��

Tfm

//

y(j)
m

��

is a pullback square in Set. We do this by induction. When j = 1, we have

X
(j)
m = Xm, Y

(j)
m = Ym, and the square above becomes is a pullback square by

hypothesis.

Now suppose that j > 1, and we have shown that

X
(j−1)
m Y

(j−1)
m

TAm TBm

u(j−1)
m //

x(j−1)
m

��

Tfm

//

y(j−1)
m

��

is a pullback square; we will show that

X
(j)
m Y

(j)
m

TAm TBm

u(j)
m //

x(j)
m

��

Tfm

//

y(j)
m

��

is a pullback square. Recall that X
(j)
m is defined by

X(j)
m := Xm q

∐
0≤p<m

X(j−1)
m ×Xp X(j−1)

m ,

and similarly for Y
(j)
m . Since pullbacks commute with coproducts in Set, the

above diagram is a pullback square if, for all 0 ≤ p < m, the diagram

X
(j−1)
m ×Xp X

(j−1)
m Y

(j−1)
m ×Yp Y

(j−1)
m

TAm TBm

(u(j−1)
m ,u(j−1)

m )
//

��

Tfm

//
��
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is a pullback square. We can write this as

X
(j−1)
m ×Xp X

(j−1)
m Y

(j−1)
m ×Yp Y

(j−1)
m

TAm ×TAp TAm TBm ×TBp TBm

TAm TBm.

(u(j−1)
m ,u(j−1)

m )
//

(x(j,1)
m ,x(j,1)

m )

��

(Tfm,Tfm)
//

(y(j,1)
m ,y(j,1)

m )

��

◦mp

��

◦mp

��

Tfm

//

The top square is a pullback of pullback squares, and hence is itself a pull-
back square. The fact that the bottom square is a pullback square is left as a
straightforward exercise to the reader; it is an application of the fact that T is a
cartesian monad [Lei04a, Example 4.1.18 and Theorem F.2.2], so the naturality
squares for its multiplication µT are pullbacks squares, and the fact that T 2A
and T 2B can be constructed via a series a pullbacks in n-GSet (see [Lei04a,
F.1] and [Che11b], which give constructions of T using this method).

Thus the diagram

X̂m Ŷm

TAm TBm

ûm //

x̂m

��

Tfm

//

ŷm

��

is a pullback square in n-GSet. Hence Mm,m sends maps that are pullback
squares to maps that are pullback squares, as required.

We now combine these results to prove that p : P ⇒ T is cartesian.

Proof of Proposition 3.1.3. Combining the above results, and using the fact that
J : R → Q is defined as the composite

J = Cn,n+1 ◦Mn,n ◦ Cn−1,n ◦ · · · ◦M1,1 ◦ C0,1,

we see that, given a map (u, Tf) in R such that

X Y

TA TB

u //

x

��

Tf
//

y

��

is a pullback square in n-GSet, the map J(u, Tf) in Q is also a pullback square
in n-GSet. Take (u, Tf) to be

A B

TA TB

f
//

ηTA

��

Tf
//

ηTB

��
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for any f : A → B in n-GSet, which is a pullback square since T is cartesian.
Applying J gives us that

PA PB

TA TB

Pf
//

pA

��

Tf
//

pB

��

is a pullback square in n-GSet. Thus p : P ⇒ T is a cartesian natural transfor-
mation.

Thus the natural transformation p : P ⇒ T satisfies one of the conditions in
Proposition 3.1.1; to prove that it is an operad, we now only need to prove the
following:

Proposition 3.1.7. The natural transformation p : P ⇒ T is a map of monads.

Proof. We need to check that p satisfies the monad map axioms. To do so, recall
that P is the monad induced by the adjunction

n-GSet Q
F

⊥
//

U
oo

defined in Section 1.2, and that this adjunction can be decomposed as

n-GSet R Q.
H

⊥
//

V
oo

J

⊥
//

W
oo

Write α, β for the unit and counit of H a V , and write κ, ζ for the unit and
counit of J aW . Then the unit η = ηP of the adjunction F a U is given by the
composite

1 V H VWJH = UF
α // V κH //

and the counit ε of F a U is given by the composite

FU = JHVW JW 1.
JβW

//
ζ
//

To show that p satisfies the axioms for a monad map we consider the unit ηP

and counit ε for the adjunction F a U . Write α for the unit of the adjunction
H a V and κ for the unit of the adjunction J a W . By Proposition 1.2.3,
α = id, so ηP = V κH. For all X ∈ n-GSet, κHX is the map

X PX

TX TX

ηPX //

ηTX

��

idTX

//

pX

��

in R. Commutativity of this diagram shows that p satisfies the first axiom for
a monad map.
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For all X ∈ n-GSet, εFX is the map

P 2X PX

TPX T 2X TX

µPX //

pPX

��

pX

��

TpX

//

µTX

//

in Q. Commutativity of this diagram shows p satisfies the second axiom for a
monad map.

Thus p : P ⇒ T is a monad map.

Combining Propositions 3.1.3 and 3.1.7 gives us the following theorem:

Theorem 3.1.8. There is an operad whose algebras are Penon weak n-categories,
given by the cartesian map of monads p : P ⇒ T .

Proof. The natural transformation p : P ⇒ T is cartesian by Proposition 3.1.3,
and is a monad map by Proposition 3.1.7. Thus it is an operad, and its category
of algebras is P -Alg, the category of Penon weak n-categories.

In keeping with our notation for the operads for Batanin weak n-categories
and Leinster weak n-categories, we henceforth abuse notation write P := P1
and p := p1, so the underlying collection of this operad is denoted

P

p

��

T1.

Proposition 3.1.9. The operad P for Penon weak n-categories can be equipped
with a contraction and system of compositions which arise naturally from the
contraction on p1 : P1→ T1 and the magma structure on P1 respectively.

Proof. The presence of the contraction is immediate, since

P

p

��

T1

is an object of Q, so is equipped with a contraction as constructed in Section 1.2.
Similarly, P , is equipped with a magma structure; we use this to define a system
of compositions

S P

T1

σ //

s

��

p

��

as follows: for all 0 ≤ m ≤ n,

• σm(βmm) := (ηP1 )m(1) = 1;
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• for 0 ≤ l ≤ m, σm(βml ) := 1 ◦ml 1.

From the definition of the magma structure on P given in Definition 1.2.12, this
satisfies the source and target conditions for a map of n-globular sets, and the
commutativity conditions required to be a map of collections. By definition of
σm(βmm),

1 S P
εS // σ //

εP=ηP1

::

commutes. Thus, σ is a system of compositions on P .

Thus we now have P as an operad with a contraction and a system of
compositions. Consequently, the coherence theorems from Section 2.5 are valid
for Penon weak n-categories.

3.2 Towards a comparison between B-Alg and
L-Alg

In this section we give some steps towards a comparison between Batanin weak
n-categories and Leinster weak n-categories; everything in this section is new.
The fact that both Batanin weak n-categories and Leinster weak n-categories are
defined as algebras for n-globular operads means we can make some statements
about the relationship between the two definitions by comparing the operads B
and L. Some of these statements are preliminary, but we hope that they will
pave the way for a more comprehensive comparison in the future.

We use the correspondence between Batanin operads and Leinster operads
(Theorems 2.4.5 and 2.4.6), along with the universal properties of the operads
B and L, to derive comparison functors

u∗ : L-Alg −→ B-Alg and v∗ : B-Alg −→ L-Alg.

We then give an explicit construction of a left adjoint to u∗. We can think
of u∗ as a forgetful functor that forgets the unbiased composition structure on
an L-algebra, and remembers only its binary-biased composition structure. Al-
though the existence of the left adjoint to u∗ can be proved by abstract means,
our construction illustrates the fact that the left adjoint freely adds unbiased
composites to a B-algebra, while leaving the original B-algebra structure un-
changed. The construction is also applicable in a more general context; the
exact level of generality is noted at the beginning of the subsection.

The functors u∗ and v∗ are not equivalences of categories; they should be
higher-dimensional equivalences of some kind, but we do not have a formal way
of saying this, so instead we approximate this statement. To do so, we consider
what happens when we start with an L-algebra, apply u∗ to obtain a B-algebra,
then apply v∗ to that to obtain an L-algebra; in particular, we take some steps
investigating the relationship between the resulting L-algebra and the original
L-algebra. We expect these L-algebras to be in some sense equivalent, but it is
not clear how to make this precise, due to the lack of a well-established notion
of weak map of L-algebras. The underlying n-globular sets of these L-algebras
are the same; they differ only on their algebra actions. We argue that these
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algebra actions differ only “up to a constraint cell”; we make this statement
precise, defining a new notion of weak map of L-algebras in the process.

3.2.1 Comparison functors between B-Alg and L-Alg

Recall from Definition 2.2.3 that we write OCS for the category of Batanin
operads, and from Definition 2.4.2 that we write OUC for the category of
Leinster operads. By Theorem 2.4.5 we have a canonical functor

OUC −→ OCS

which is the identity on the underlying operads. Applying this functor to L
equips it with a contraction and a system of compositions. Thus, since B is
initial in OCS, there is a unique map

B L

T1

u //

b
��

l
��

in OCS.

By Theorem 2.4.6 we can equip the operad B with an unbiased contraction
to obtain an object of OUC. However, unlike the process of equipping L with a
contraction and system of compositions, there is no canonical way of doing this;
the unbiased contraction on B depends on a choice of section to b, as described
in Lemma 2.4.7. Suppose we have chosen a section to b and thus equipped B
with an unbiased contraction. Since L is initial in OUC, there is a unique map

L B

T1

v //

b
��

l
��

in OUC.

Recall from Proposition 3.1.1 that every map of operads gives rise to a
corresponding map of the induced monads. Thus the maps u and v induce
functors between the categories of algebras B-Alg and L-Alg; we write

u∗ : L-Alg −→ B-Alg

for the functor induced by u, and

v∗ : B-Alg −→ L-Alg

for the functor induced by v.

Proposition 3.2.1. The functor v∗ is a retraction of the functor u∗, i.e.

u∗v∗ = idB-Alg.
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Proof. Recall that we have a functor OUC → OCS. Applying this functor to
v gives that v is a map in OCS, so the composite

B L B

T1

u // v //

b
!!

l

��
b

}}

is the identity idB , since B is initial in OCS. Thus u∗v∗ is the functor induced
by vu = idB , so u∗v∗ = idB-Alg, as required.

We now consider the composite

L-Alg B-Alg L-Alg.
u∗ //

v∗ //

Note that v∗u∗ does not change the underlying n-globular set of an L-algebra,
it only changes the algebra structure. We describe a small example which il-
lustrates the way in which the new algebra structure differs from the original
one. In Section 3.2.3 we investigate the relationship between an L-algebra and
its image under the functor v∗u∗ more fully, using this example to motivate a
definition of weak map of L-algebras that we use in the general case. Let n ≥ 2
and let A denote the n-globular set consisting of three composable 1-cells:

• • • •f
//

g
// h //

We consider the free L-algebra on A, i.e.

L2A

LA.

µLA

��

This has:

• 0-cells: the same as those of A;

• 1-cells:

– generating cells f , g, h,

– binary composites g ◦ f , h ◦ g, h ◦ (g ◦ f), (h ◦ g) ◦ f ,

– a ternary composite h ◦ g ◦ f ,

– identities and composites involving identities;

• 2-cells: for every pair of parallel 1-cells a, b ∈ LA1, a constraint cell which
we write as

[a, b] : a =⇒ b.

In particular, this includes constraint cells mediating between different
composites of the same cells, e.g.

[h ◦ g ◦ f, (h ◦ g) ◦ f ],

[(h ◦ g) ◦ f, h ◦ (g ◦ f)],

etc. We also have freely generated composites of these;
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• m-cells for m ≥ 3: constraint cells, and composites of constraint cells.

Applying u∗v∗ to this gives the L-algebra

L2A

BLA

L2A

LA,

vLA
��

uLA
��

µLA��

which has the same underlying n-globular set as the free L-algebra on A, but has
a different composition structure. Write � for the new composition operation
on 1-cells, which is defined as follows:

• binary composition remains the same, so we have

g � f = g ◦ f, h� g = h ◦ g, h� (g � f) = h ◦ (g ◦ f),

etc.;

• ternary composition is given by bracketing on the left, i.e.

h� g � f = (h ◦ g) ◦ f.

Consider the diagram

L2A L2A

BLA

L2A

LA LA

LidLA //

vLA
��

µLA

��

uLA
��

µLA
��

idLA

//

in n-GSet. If this diagram commuted it would be a map of L-algebras, and
since its underlying map of n-globular sets is an identity, this would show that
the free L-algebra on A is isomorphic to its image under v∗u∗. In fact this
diagram does not commute; although it does commute on the underlying B-
algebra structure, i.e. it commutes on generating cells, binary composites, and
constraint cells mediating between these, it does not commute on cells that only
exist in the L-algebra structure, such as ternary composites. Consider the freely
generated ternary composite

h ◦ g ◦ f ∈ L2A.

We have

• θ ◦ LidLA(h ◦ g ◦ f) = θ(h ◦ g ◦ f) = h ◦ g ◦ f ;
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• idLA ◦ θ ◦ uLA ◦ vLA(h ◦ g ◦ f) = h� g � f = (h ◦ g) ◦ f ,

and
h ◦ g ◦ f 6= (h ◦ g) ◦ f,

so the diagram does not commute. However, there is a constraint cell mediating
between these two 1-cells:

[h ◦ g ◦ f, (h ◦ g) ◦ f ] : h ◦ g ◦ f ⇒ (h ◦ g) ◦ f.

Similarly, for any other cell in L2A that is not part of the underlying B-algebra
structure (such as non-binary composites of 1-cells involving identities, and non-
binary composites at higher dimensions) we also have a constraint cell mediating
between its images under the maps θ ◦ LidLA and idLA ◦ θ ◦ uLA ◦ vLA. Thus,
we can think of the diagram as “commuting up to a constraint cell”. By the
definition of constraint cells as those induced by the contraction L, combined
with the fact that all diagrams of constraint n-cells commute in a free L-algebra
(Theorem 2.5.9), these constraint cells are equivalences in the L-algebra, and any
diagram of them commutes up to a constraint cell at the dimension above, with
strict commutativity for diagrams of constraint n-cells. Thus these constraint
cells are “well-behaved enough” to act as the mediating cells in a weak map; any
commutativity conditions we would need to check are automatically satisfied by
coherence for L-algebras.

3.2.2 Left adjoint to u∗

We now construct a functor

F : B-Alg −→ L-Alg,

and prove that this is left adjoint to the functor u∗. Recall that u∗ is the
functor induced by the unique map of operads with contractions and systems
of compositions

u : B −→ L

induced by the universal property of B, the initial object in OCS. We can
think of u∗ as a forgetful functor that sends an L-algebra to its underlying B-
algebra by forgetting its unbiased composition structure, and remembering only
the binary composition structure and the necessary constraint cells. The left
adjoint F takes a B-algebra and freely adds an unbiased composition structure,
along with all the required constraint cells to make an L-algebra, but retains
the original binary composition structure (note that new binary composites are
not added freely).

It is a result of Blackwell–Kelly–Power [BKP89, Theorem 5.12] that any
functor induced by a map of monads has a left adjoint (their result is for 2-
monads, but can be applied to monads by considering them as a special case of
2-monads). Consequently, one may ask why the adjunction

B-Alg L-Alg⊥
F //

u∗
oo

should be considered significant, and, in particular, why it is more significant
than the adjunction in which v∗ is the right adjoint. There are two reasons for
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this. First, u : B → L is canonical in the sense that it is the only such map of
monads that preserves the contraction and system of compositions on B. In con-
trast, v : L→ B is not canonical; there is no canonical way of equipping B with
an unbiased contraction (Theorem 2.4.6), so v depends on the choices we made
when doing so. Second, this adjunction formalises the idea that the key differ-
ence between B-algebras and L-algebras is that B-algebras have binary-biased
composition whereas L-algebras have unbiased composition, and describes how
to obtain an L-algebra from a B-algebra by adding unbiased composites, as well
as the necessary constraint cells, freely.

The construction of the left adjoint described in this section is valid in greater
generality than just this case; we can replace n-GSet with any cocomplete cate-
gory, L with any finitary monad, B with any other monad on the same category,
and u : B → L with any map of monads. We first explain the construction with
reference to the specific case of a left adjoint to u∗, then state the construction
in more generality.

Note that the left adjoint we construct is not induced by a map of monads;
a functor B-Alg → L-Alg induced by a map of monads L ⇒ B would leave
the underlying n-globular set of a B-algebra unchanged, but the left adjoint
to u∗ freely adds unbiased composites (and various contraction cells) to obtain
an L-algebra structure, rather than using cells already present in the original
B-algebra.

Let

BX

X,

θ

��

be a B-algebra; we will now construct an n-globular set X̄, which will be the
underlying n-globular set of the L-algebra obtained by applying F to the B-
algebra above. First, we apply L to X, which freely adds an L-algebra structure,
while ignoring the existing B-algebra structure. This free L-algebra structure
has a free B-algebra structure inside it, which is picked out by the map

uX : BX −→ LX.

We identify this free B-algebra structure with the original B-algebra structure
on X by taking the following pushout:

BX LX

X X(1).

uA //

θ

��

φ(1)

��

x(1)

//

Taking this pushout identifies any cell in the free B-algebra structure inside LX
with the corresponding cell in the original B-algebra on X. So, for example,
any free binary composite in LX is identified with the binary composite of the
same cells, as evaluated by θ, in X.

However, this is not the end of the construction for two reasons: first, in prin-
ciple the act of identifying cells causes more cells to share common boundaries,
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thus making more cells composable; second, taking this pushout does nothing to
cells in LX that involve both the B-algebra and non-B-algebra structure. Such
cells include non-binary composites of binary composites; for example, suppose
we have a string of four composable 1-cells

• • • • •a // b // c // d //

in X. In X(1), we have distinct cells

d ◦ c ◦ (b ◦ a) 6= d ◦ c ◦ θ(b ◦ a),

but in the L-algebra we are constructing we want these cells to be equal.
To rectify these problems we apply L to X(1), thus freely adding composites

of the newly composable cells, then identify the free L-algebra structure on
LX(1) with the partial L-algebra structure on X(1) given by φ(1) : LX → X(1)

by taking the pushout

LX

X(1)

L2X LX(1)

X(2).

φ(1)

��

µLX

��

Lφ(1)

//

φ(2)

��

x(2)

//

Once again, the act of identifying cells causes more cells to become composable.
Also, although in X(1) we now have the desired equalities between non-binary
composites involving binary composites such as

d ◦ c ◦ (b ◦ a) = d ◦ c ◦ θ(b ◦ a),

this is not true for composites whose binary parts appear at greater “depths”,
such as non-binary composites of non-binary composites of binary composites.
We thus must repeat the procedure above indefinitely to obtain the following
sequence of pushouts in n-GSet:

BX LX

X = X(0) X(1)

L2X LX(1)

X(2)

L2X(1) LX(2)

X(3)

· · ·

· · ·

uA //

φ(0)=θ

��

φ(1)

��

x(1)

//

µLX

��

Lφ(1)

//

φ(2)

��

x(2)

//

µL
X(1)

��

Lφ(2)

//

φ(3)

��

x(3)

//
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The bottom row of this diagram is a sequence of n-globular sets

{X(i)}i≥0.

We define X̄ to be given by

X̄ := colim
i≥0

X(i),

We now describe the construction in general. Throughout the rest of this
section, let C denote a cocomplete category, let R and S be monads on C with S
finitary (i.e. the functor part of S preserves filtered colimits), and let p : R→ S
be a map of monads. The map p induces a functor

p∗ : S-Alg −→ R-Alg,

and we will construct a left adjoint F to p∗. Let

RX

X,

θ

��

be an R-algebra. We define a sequence

{X(i)}i≥0.

of objects in C by the following sequence of pushouts in C:

RX SX

X = X(0) X(1)

S2X SX(1)

X(2)

S2X(1) SX(2)

X(3)

· · ·

· · ·

uA //

φ(0)=θ

��

φ(1)

��

x(1)

//

µSX

��

Sφ(1)

//

φ(2)

��

x(2)

//

µS
X(1)

��

Sφ(2)

//

φ(3)

��

x(3)

//

We then define an object X̄ of C by

X̄ := colim
i≥0

X(i).

This will be the underlying object of C of the S-algebra obtained by applying
the functor F to the R-algebra θ : RX → X.

We now equip X̄ with an S-algebra action

φ : SX̄ −→ X̄.
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Since S is finitary, we can write SX̄ as

SX̄ = colim
i≥0

SX(i).

We wish to use the universal property of this colimit to define the S-algebra
action φ. To do so, we now describe the cocone that induces φ, and prove that
it commutes.

Lemma 3.2.2. There is a cocone under the diagram

{SX(i)}i≥0

with vertex X̄, given by

SX(0) SX(1) SX(2) · · ·

X(1) X(2) X(3)

X̄

Sx(1)
//

φ(1)

��

Sx(2)
//

φ(2)

��

Sx(3)
//

φ(3)

��

c(1)
..

c(2)

��
c(3)

��

Proof. We must show that, for each i ≥ 0, the diagram

SX(i) SX(i+1)

X(i+1) X(i+2)

X̄

Sx(i+1)
//

φ(i+1)

��

φ(i+2)

��

c(i+1)

��
c(i+2)

��

commutes. We can write this diagram as

SX(i)

S2X(i) SX(i+1)

SX(i)

X(i+1) X(i+2)

X̄.

SηS
X(i)

��

Sx(i+1)

$$
id
SX(i)

&&

Sφ(i+1)

//

µS
X(i)

��

φ(i+2)

��

φ(i+1)

��

x(i+2)

//

c(i+1)

$$

c(i+2)

��
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The rectangle commutes since it is the pushout square defining X(i+2), the
top-left triangle commutes by the unit axiom for the monad S, and the bottom
triangle commutes by definition of X̄; thus we need only check that the top-right
triangle commutes. We do so by showing that, for all i ≥ 0, the diagram

X(i)

SX(i) X(i+1)

ηS
X(i)

��

x(i+1)

""

φ(i+1)

//

commutes, then applying S to this diagram.

When i = 0, the diagram above can be written as

X

RX SX

X X(1).

ηRX

��
idX

��

ηSX

""pX //

θ

��

φ(1)

��

x(1)

//

The square commutes since it is the pushout square defining X(1), the left-hand
triangle commutes by the unit axiom for θ, and the top-right triangle commutes
by the unit axiom for the monad map p. Thus this diagram commutes.

Now let i ≥ 1. The diagram

SX(i−1) X(i)

S2X(i−1) SX(i)

SX(i−1)

X(i) X(i+1)

ηS
SX(i)

��

φ(i)

//

ηS
X(i)

��
id
SX(i−1)

&&

Sφ(i)

//

µS
X(i−1)

��

φ(i+1)

��

φ(i)

��

x(i+1)

//

commutes; the bottom rectangle commutes since it is the pushout square defin-
ing X(i+1), the top square commutes since it is a naturality square for ηS , and
the top-left triangle commutes by the unit axiom for the monad S. We wish to
cancel the φ(i)’s in the diagram above, in order to obtain the desired triangle.
We can do this if φ(i) is an epimorphism; we now show that this is true by
induction over i.
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To show that this is true when i = 1, observe that ηRX is a section to θ, so
θ is epic; since the pushout of an epimorphism is also an epimorphism [Bor94a,
Proposition 2.5.3], we have that φ(1) is epic.

Now suppose i > 1 and that we have shown that φ(i−1) is epic. By the unit
axiom for the monad S, ηS

X(i−2) is a section to µS
X(i−2) , so µS

X(i−2) is epic. Hence
the composite

φi−1 ◦ µSX(i−2)

is epic; since the pushout of an epimorphism is also an epimorphism, we have
that φ(i) is epic.

Hence, for each i ≥ 0, the diagram

X(i)

SX(i) X(i+1)

ηS
X(i)

��

x(i+1)

""

φ(i+1)

//

commutes, and thus the diagram

SX(i) SX(i+1)

X(i+1) X(i+2)

X̄

Sx(i+1)
//

φ(i+1)

��

φ(i+2)

��

c(i+1)

��
c(i+2)

��

commutes, as required.

We now define φ : SX̄ → X̄ to be the unique map induced by the universal
property of SX̄ such that, for all i ≥ 0, the diagram

SX(i) SX̄

X(i+1) X̄

Sc(i) //

φ(i+1)

��

φ

��

c(i+1)

//

commutes. To check that

SX̄

X̄

φ

��

is an S-algebra we must show that it satisfies the S-algebra axioms.

Lemma 3.2.3. The map φ : SX̄ → X̄ satisfies the S-algebra axioms.
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Proof. For the unit axiom, we must check that the diagram

X̄ SX̄

X̄

ηS
X̄ //

idX̄
��

φ

��

commutes. Since X̄ is defined as a colimit, we check this by comparing the
cocones corresponding to the maps on either side of the diagram. The cocone
corresponding to φ ◦ ηS

X̄
is given by, for each i ≥ 0, the composite

X(i) SX(i) X(i+1) X̄.
ηS
X(i)
//

φ(i+1)

// c(i+1)
//

The cocone corresponding to idX̄ is the universal cocone given by the coprojec-
tions c(i). The diagram

X(i) SX(i)

X(i+1)

X̄.

ηS
X(i)
//

x(i)

""

c(i)

��

φ(i+1)

��

c(i+1)

��

commutes, so these cocones are equal. Thus the unit axiom is satisfied.
For the associativity axiom, we must check that the diagram

S2X̄ SX̄

SX̄ X̄

Sφ
//

µS
X̄

��

φ

��

φ
//

commutes. Since S is finitary, we have

S2X = colim
i≥0

S2X(i).

Thus we can check that the diagram commutes by comparing the cocones corre-
sponding to the maps on either side of the diagram. The cocone corresponding
to φ ◦ Sφ is given by, for each i ≥ 0, the composite

S2X(i) SX(i+1) X(i+2) X̄
Sφ(i+1)

//
φ(i+2)

// c(i+2)
//

The cocone corresponding to φ ◦ µS
X̄

is given by, for each i ≥ 0, the composite

S2X(i) SX(i) X(i+1) X(i+2) X̄.
µS
X(i)
//

φ(i+1)

// x(i+2)
// c(i+2)

//
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From the definition of X̄, for all i ≥ 0, the diagram

S2X(i) SX(i+1)

SX(i)

X(i+1) X(i+2)

X̄

Sφ(i+1)

//

µS
X(i)

��

φ(i+2)

��

φ(i+1)

��

x(i+2)

//

c(i+1)

""

c(i+2)

��

commutes, so these cocones are equal. Thus the associativity axiom is satisfied.
Hence

SX̄

X̄

φ

��

is an S-algebra.

This gives us the action of the left adjoint to p∗ on objects. To prove that
this gives a left adjoint, we use the following result of Mac Lane [ML98, The-
orem IV.1.2], which allows us to avoid describing the action of the left adjoint
on morphisms.

Lemma 3.2.4. Given a functor U : D −→ C, an adjunction

C D
F

⊥
//

U
oo

is completely determined by, for all objects x in C, an object F0(x) in D and a
universal arrow ηx : x→ UF0(x) from x to U .

As is suggested by the notation, here the assignment F0(x) gives the action
of the left adjoint F on objects, and the maps ηx are the components of the unit
of the adjunction.

Proposition 3.2.5. There is an adjunction F a p∗.

Proof. As discussed above, we prove this using Lemma 3.2.4, thus allowing us
to avoid constructing the action of F on morphisms. Let

RX

X

θ

��



3.2 Towards a comparison between B-Alg and L-Alg 119

be an R-algebra. By the construction described earlier we have a corresponding
S-algebra

SX̄

X̄.

φ

��

To show that this gives the action on objects of the left adjoint F : R-Alg →
S-Alg to p∗, we require a map of R-algebras

ηX : X −→ X̄

which is a universal arrow from X to p∗. This is given by the coprojection map
c(0) : X → X̄. This is indeed a map of R-algebras, since the diagram

RX RX̄

SX SX̄

X X(1) X̄

Rc(0)
//

pX

��

θ

��

pX̄

��
Sc(0)

//

φ(1)

��

φ

��

x(1)

//

c(1)

//

c(0)

==

commutes. We now show universality. Suppose we have an S-algebra

SY

Y

ψ

��

and a map of R-algebras

RX RY

SY

X Y.

Rf
//

θ

��

pY
��

ψ
��

f
//

We seek a unique map of S-algebras

SX̄ SY

X̄ Y

Sf̄
//

φ

��

ψ

��

f̄

//
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such that the diagram

X X̄

Y

c(0)
//

f
��

f̄

��

commutes. We define f̄ by defining a cocone

f̄ (i) : X(i) −→ Ȳ

by induction over i.
When i = 0, X(i) = X, and we define f̄ (i) = f̄ (0) to be given by f : X → Y .
When i = 1, f̄ (i) = f̄ (1) is the unique map such that the diagram

RX SX

X X(1)

SY

Y

pX //

φ(1)

��

Sf

%%

ψ

��

θ

��

x(1)

//

f
44

ε(1)

%%

commutes. To check that this is well-defined we must check that the outside of
this diagram commutes; this is true, since

RX SX

RY

X

SY

Y

pX //

Rf %%

pY
//

Sf

%%

ψ

��

θ

��

f
44

commutes.
Now let i > 1 and suppose that we have defined f̄ (i−1) : Y (i−1) → Ȳ . We de-

fine f̄ (i) to be the unique map induced by the universal property of the pushout
X(i) such that the diagram

S2X(i−2) SX(i−1)

SX(i−2) SY

X(i−1) X(i)

Y

Sφ(i−1)

//

µS
X(i−2)

��

φ(i)

��

Sf̄(i−1)

��

φ(i−1)

��

ψ

��

x(i)

//

f̄(i−1) 11

f̄(i)

��
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commutes. Note that the fact that the bottom triangle in this diagram com-
mutes gives us commutativity of the cocone. To check that this is well-defined
we must check that the outside of this diagram commutes; this is true, since

S2X(i−2) SX(i−1) SY

S2Y

SX(i−2)

SY

X(i−1) Y

Sφ(i−1)

//

S2f̄(i−2)
''µS

X(i−2)

��

Sf̄(i−1)

//

ψ

��

Sψ

99

µSX

��
Sf̄(i−2) **

φ(i−1)

�� ψ
%%

f̄(i−1)

//

commutes.
We then define f̄ to be the unique map such that, for each i ≥ 0, the diagram

X(i) X̄

Y

c(i) //

f̄(i)

��

f̄

��

commutes. When i = 0 this gives us the required commutativity condition
for c(0) to be a universal arrow, and uniqueness of f̄ comes from the universal
property of X̄. All that remains is to check that f̄ is a map of S-algebras, i.e.
that the diagram

SX̄ SY

X̄ Y

Sf̄
//

φ

��

ψ

��

f̄

//

commutes. Since S is finitary, we can write SX̄ as

SX̄ = colim
i≥0

SX(i).

Thus we can check that the square above commutes by comparing the cocones
corresponding to the maps ψ◦Sf̄ and f̄ ◦φ. The cocone corresponding to ψ◦Sf̄
has components given, for each i ≥ 1, by the composite

SX(i) SY Y.
f̄(i)

//
ψ
//

The cocone corresponding to f̄ ◦φ has components given, for each i ≥ 1, by the
composite

SX(i) X(i+1) Y.
φ(i+1)

//
f̄(i+1)

//
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From the definition of f̄ (i+1) we see that the diagram

SX(i) SY

X(i+1) Y

f̄(i)

//

φ(i+1)

��

ψ

��

f̄(i+1)

//

commutes for all i ≥ 0; hence the cocones described above are equal, so f̄ is a
map of S-algebras.

Hence we have an adjunction F a p∗, as required.

Finally, to show that this construction does indeed give an adjunction

B-Alg L-Alg⊥
F //

u∗
oo

in the case C = n-GSet, R = B, S = L, p = u, we must show that L is finitary.
In fact, this is true of any monad induced by an n-globular operad.

Lemma 3.2.6. Let K be an n-globular operad. Then the monad induced by K
is finitary, i.e. its underlying endofunctor preserves filtered colimits.

Proof. It is a result of Leinster that the free strict n-category monad T is finitary
[Lei04a, Theorem F.2.2]; the proof that the monad K is finitary is an application
of this and of the fact that filtered colimits commute with pullbacks in Set
(Lemma 1.2.11).

Let I be a small, filtered category and let

D : I −→ n-GSet

be a diagram in n-GSet. Then for each i ∈ I, KD(i) is given by the pullback

KD(i) K

TD(i) T1,

K! //

kD(i)

��

T !
//

k

��

in n-GSet. Write

X := colim
i∈I

D(i).

Then KX is given by the pullback

KX K

TX T1,

K! //

kX

��

T !
//

k

��
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in n-GSet. Since T is finitary, we have

TX ∼= colim
i∈I

TD(i).

Since filtered colimits commute with pullbacks in Set, and since limits and
colimits are computed pointwise in n-GSet, we have that filtered colimits com-
mutes with pullbacks in n-GSet, so

KX = colim
i∈I

KD(i).

Hence K preserves filtered colimits, i.e. K is finitary.

Hence there is an adjunction F a u∗.

3.2.3 The relationship between u∗ and v∗

Recall that, in Proposition 3.2.1, we showed that u∗v∗ = idB-Alg. We then gave
a small example of an L-algebra

L2A

LA.

µLA

��

and described its image under the composite

L-Alg B-Alg L-Alg.
u∗ //

v∗ //

Specifically, we argued that the diagram

L2A L2A

BLA

L2A

LA LA

LidLA //

vLA
��

µLA

��

uLA
��

µLA
��

idLA

//

in n-GSet “commutes up to a contraction cell”. We now extend these ideas to
a definition of weak map of L-algebras that uses constraint cells for mediating
cells, in order to formalise this idea and thus investigate the relationship between
a general L-algebra and its image under the functor v∗u∗ more fully. The idea is
that, by using constraint cells, any axioms we would require will automatically
be satisfied, so we do not have to state any axioms in the definition. This
approach is beneficial, since it is straightforward to specify the data required
for a weak map of L-algebras (i.e. to specify where we require mediating cells),
but difficult to state the axioms that this data must satisfy.

Note that the definition of weak map that this approach gives is not optimal,
for several reasons. First, the fact that the mediating cells must be constraint
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cells means that this definition lacks generality, since in a fully general definition
of weak map we would be able to use any choice of cells that interacted with
one another in a suitably coherent way. Second, the composite of two weak
maps is not necessarily a weak map, since the mediating cells in the composite
are composites of constraint cells, and these are not necessarily constraint cells.
Finally, in a non-free L-algebra not all diagrams of constraint n-cells commute,
and not all diagrams of constraint cells commute up to a higher constraint cell.

Definition 3.2.7. LetK be an n-globular operad with a contraction and system
of compositions and let

KX

X,

KY

Y,

θ

��

φ

��

be K-algebras. A weak map of K-algebras consists of a (not necessarily com-
muting) square

KX

X

KY

Y

Kf
//

θ

��

φ

��

f
//

in n-GSet, equipped with the following constraint cells:

• for all 0-cells x in KX, a constraint 1-cell

fx : φ ◦Kf(x) −→ f ◦ θ(x)

in Y ;

• for all 1-cells a : x→ y in KX, a constraint 2-cell

φ ◦Kf(x) φ ◦Kf(y)

f ◦ θ(x) f ◦ θ(y)

φ◦Kf(a)
//

fx

��

fy

��

f◦θ(a)
//

fa

{�

in Y ;

• for all 2-cells

x y
��

CC
α
��

in KX, a constraint 3-cell

• •

• •

V

• •

• •

!!

==
φ◦Kf(α)
��

fx

��

fy

��

==
fbx�

!!

fx

��

fy

��

fax�

!!

==
f◦θ(α)
��

fα
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in Y . We abuse notation slightly and write this as

fα : fb ◦ (φ ◦Kf(α)) V (f ◦ θ(α)) ◦ fa,

omitting the 1-cells fx and fy; this makes little difference here, but at
higher dimensions it allows us to avoid unwieldy notation;

• for 3 ≤ m ≤ n− 1, and for all m-cells α in KX, a constraint cell

fα : ft(α) ◦ (φ ◦Kf(α))→ (f ◦ θ(α)) ◦ fs(α).

As described above, we omit lower-dimensional constraint cells from the
source and target to avoid unwieldy notation. When m = 3, fα is a
constraint 4-cell with source

• •
V

• •

V

• •

• •

φ◦Kf(α) !!

==

�# {�

�� ��

==
ftt(α)x�

!!

�� ��

fss(α)x�

!!

==
f◦θ(t(α))
��

ft(α)

and target

• •

• •

V

• •

• •;V

!!

==
φ◦Kf(s(α))
��

�� ��

==
ftt(α)x�

!!

�� ��

fss(α)x�

!!

==�# {�
f◦θ(α)

fs(α)

• for all n-cells α in KX, an equality (which we can think of as a “constraint
(n+ 1)-cell”)

ft(α) ◦ (φ ◦Kf(α)) = (f ◦ θ(α)) ◦ fs(α).

Note that, given two weak maps of K-algebras

KX

X

KY

Y

KZ

Z,

Kf
//

θ

��

Kg
//

φ

��

ψ

��

f
//

g
//

although their underlying maps of n-globular sets are composable, this compos-
ite is not necessarily a weak map of K-algebras, since in a weak map we require
the mediating cells to be constraint cells, whereas in the composite gf we only
have composites of constraint cells. Thus there is no category of K-algebras
with morphisms given by weak maps. There are two ways we could get around
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this: we could either modify our definition of weak map to allow us to use com-
posites of constraint cells as mediating cells, or we could take the closure under
composition of the class of weak maps; either approach is beyond the scope of
this thesis.

Recall that in Section 2.5 we gave a definition of equivalence of K-algebras
which used strict maps (Definition 2.5.4). We now modify this definition by
using weak maps instead of strict maps, to obtain a notion of weak equivalence
of K-algebras.

Definition 3.2.8. LetK be an n-globular operad with a contraction and system
of compositions. We say that two K-algebras

KX

X,

KY

Y

θ

��

φ

��

are weakly equivalent if there exists a weak map

KX

X

KY

Y

or KY

Y

KX

X

Kf
//

θ

��

φ

��

f
//

Kf
//

φ

��

θ

��

f
//

such that f is surjective on 0-cells, full on m-cells for all 1 ≤ m ≤ n, and faithful
on n-cells. The map f is referred to as an weak equivalence of K-algebras.

As in Definition 2.5.4, in this definition we require that the weak equivalence
can go in either direction, since having a weak equivalence in one direction does
not guarantee the existence of a weak equivalence in the opposite direction. This
is caused by the fact that in our definition of weak map only allows for mediating
cells that are constraint cells, rather than allowing any suitably coherent choice
of cells.

We now consider the composite

L-Alg B-Alg L-Alg,
u∗ //

v∗ //

and show that any L-algebra is weakly equivalent to its image under this functor.

Proposition 3.2.9. Let

LX
θ // X

be an L-algebra. Then the diagram

LX LX

BX

LX

X X

LidX //

vX
��

θ

��

uX
��

θ
��

idX

//
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can be equipped with the structure of a weak map of L-algebras, and this weak
map is a weak equivalence.

Proof. We need only show that this diagram can be equipped with the structure
of a weak map of L-algebras; if so, it will automatically be a weak equivalence
since its underlying map of n-globular sets is the identity. In this proof we write
f := idX to avoid double subscripts and misleading notation for the mediating
constraint cells. Note that although L is defined using an unbiased contraction,
in this proof we only use its contraction and system of compositions, as described
in Theorem 2.4.5.

Recall from Definition 2.1.4 that LX is defined by the pullback

LX L

TX T1.

L! //

lX

��

T !
//

l

��

For 1 ≤ m ≤ n we write the elements of LXm in the form (α, χ), where α ∈ TX,
χ ∈ L, and T !(α) = l(χ) (note that we do not do this when m = 0 since L0 has
only one element). Our approach is to find the required constraint cells using
the fact that

L B L

T1

u // v //

l
!!

b

��
l

}}

commutes; thus when we apply uXvX to a cell in LX we end up “a contraction
cell away” from where we started.

Since the lower-dimensional mediating cells appear in the sources and tar-
gets of the mediating cells at the dimensions above, we must define our choice of
mediating cells by induction over dimension. As in Definition 3.2.7, for dimen-
sions greater than 1 we abuse notation slightly by omitting lower-dimensional
constraint cells from sources and targets.

At dimension 0 the diagram commutes, so for all x ∈ LX0 we define

fx := idθ(x) : θ(x) −→ θuXvX(x).

At dimension 1, let
(a, p) : x −→ y

be a 1-cell in LX, where a ∈ TX1 and p ∈ L1. We seek a constraint 2-cell

φ ◦Kf(x) φ ◦Kf(y)

f ◦ θ(x) f ◦ θ(y)

φ◦Kf(a,p)
//

fx=idθ(x)

��

fy=idθ(y)

��

f◦θ(a,p)
//

f(a,p)

{�

in LX. We have
uXvX(a, p) = (a, uv(p)),
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and we can write the source and target of the required 2-cell as

idθ(y) ◦ θ(a, p) = θ(a, id ◦ p)

and

θ(a, uv(p)) ◦ idθ(x) = θ(a, uv(p) ◦ id)

respectively, where id denotes the identity on the unique 0-cell of L. Now, since
(uv)0 = idLX , we have

s(id ◦ p) = s(uv(p) ◦ id),

t(id ◦ p) = t(uv(p) ◦ id),

l(id ◦ p) = l(uv(p) ◦ id).

Hence there is a contraction 2-cell γ(id ◦ p, uv(p) ◦ id) in L. We denote this by
κp, and define f(a,p) to be the constraint cell

f(a,p) := θ
(
ida, κp

)
: θ(a, id ◦ p)⇒ θ(a, uv(p) ◦ id)

in X.
Now let 2 ≤ m ≤ n, and suppose that for all j < m and for all j-cells (a, p)

in LX we have defined a constraint cell

f(a,p) = θ(ida, κp) : θ(a, κt(p) ◦ p)⇒ θ(a, uv(p) ◦ κs(p))

in X. Let (α, χ) be an m-cell in LX. We have uXvX(α, χ) = (α, uv(χ)), so we
seek a constraint (m+ 1)-cell

f(α,χ) : ft(α,χ) ◦ θ(α, χ)→ θ(α, uv(χ)) ◦ fs(α,χ).

We can write the source of this as

ft(α,χ) ◦ θ(α, χ) = θ(α, κt(χ) ◦ χ),

and the target as

θ(α, uv(χ)) ◦ fs(α,χ) = θ(α, uv(χ) ◦ κs(χ)).

The cells κt(χ) ◦ χ and uv(χ) ◦ κs(χ) are parallel; since the diagram

L B L

T1

u // v //

l
!!

b

��
l

}}

commutes, and since l maps contraction cells to identities in T1, we have

l(κt(χ) ◦ χ) = l(χ) = luv(χ) = l(uv(χ) ◦ κs(χ)).

Hence there is a contraction (m+ 1)-cell

γ(κt(χ) ◦ χ, uv(χ) ◦ κs(χ))
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in L (an equality if m = n). We denote this by κχ, and define f(α,χ) to be the
constraint cell

f(α,χ) = θ(idα, κχ) : θ(α, κt(χ) ◦ χ)→ θ(α, uv(χ) ◦ κs(χ)).

This equips the diagram

LX LX

BX

LX

X X

LidX //

vX
��

θ

��

uX
��

θ
��

idX

//

with the structure of a weak map of L-algebras; thus, since its underlying map
of n-globular sets is idX , it is a weak equivalence of L-algebras.

We now justify that, in the example above, the use of constraint cells as
mediating cells allows us to avoid having to check any axioms. All of the con-
straint cells we used in this example were first formed in LX, with the correct
source and target; we then applied θ to obtain a constraint cell in X. Thus any
diagram we would want to commute, as one of the axioms for a weak map, is
the image under θ of a diagram of constraint cells in the free L-algebra

L2X LX;
µLX //

thus any such diagram commutes (up to a constraint cell of the dimension above
in the case of diagrams of cells of dimension less than n), by coherence for L-
algebras (see Corollary 2.5.9). Note that this will not be true for a general weak
map of L-algebras, since in a non-free L-algebra not all diagrams of constraint
cells commute.

All of this highlights many of the difficulties involved in defining and working
with weak maps when using an algebraic definition of weak n-category. The
natural notion of map in the algebraic setting is that of strict map; to define a
notion of weak map we need to specify a large amount of extra structure and
axioms. Our approach to defining weak maps, using constraint cells to give
maps that are “automatically coherent” without the need to check any axioms,
is comparable to the approach taken in non-algebraic definitions of weak n-
category. In the non-algebraic setting it is meaningless to say that a map is
strict, since we have no specified composites for maps to preserve. The natural
notion of map is more like a weak map (or a normalised map if the definition has
a notion of degeneracies), and consists simply of a map of the underlying data.
This is sufficient since the roles of the cells are encoded in their shapes, which
are recorded in the underlying data; this is in contrast to the algebraic case in
which, once we have applied an algebra action, all cells are globular so we are
unable to tell what role they play in the algebra. Maps in the non-algebraic
case are more comparable to weak maps , and it is meaningless to ask for a
map to be strict since we do not have specified composites. This concludes our
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analysis of algebraic definitions, and leads us on to Part II, in which take the
first steps towards a comparison between the algebraic definition of Penon and
the non-algebraic definition of Tamsamani–Simpson.
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weak n-categories
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Chapter 4

Tamsamani–Simpson weak
n-categories

We now move on to the study of non-algebraic definitions of weak n-category.
This part focusses on the construction of a nerve functor for Penon weak n-
categories, which allows us to compare them with a non-algebraic definition of
weak n-category, specifically Simpson’s variant of Tamsamani’s definition. This
definition, which originates in [Tam99], is a higher-dimensional generalisation
of the nerve of a category; Tamsamani’s idea was, instead of using simplicial
sets, presheaves on ∆, to use n-simplicial sets, presheaves on ∆n. He defined a
weak n-category to be an n-simplicial set satisfying a generalisation of the nerve
condition, called the Segal condition; this name is inherited from an analogous
condition that arises in the study of Segal categories [Seg74, DKS89]. The defi-
nition we use is a variant of Tamsamani’s definition, given by Simpson [Sim97].
Simpson refined and slightly simplified Tamsamani’s definition, giving a more
direct approach at the cost of a little generality.

This definition is appropriate to use for the purposes of making a compari-
son between an algebraic and non-algebraic definition, since in a Tamsamani–
Simpson weak n-category the cells are separated by dimension, as they are in a
globular algebraic definition such as that of Penon. This is often not the case
with non-algebraic definitions of weak n-category.

In this chapter we recall the nerve construction for categories, and the def-
inition of Tamsamani–Simpson weak n-category. None of the material in this
chapter is new.

4.1 Nerves of categories

It is well-known that every small category has associated to it a simplicial
set, known as its nerve [Seg68]. The nerve is constructed by expanding upon
the underlying graph of a category in a way that captures all the informa-
tion about composition, identities, and associativity, information which is not
present in the underlying graph. The nerve construction gives a nerve functor
N : Cat→ SSet, which sends a category to its nerve. This functor is full and
faithful [Lei04a, Section 3.3], so functors between categories correspond precisely
to morphisms between their nerves.
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Not every simplicial set arises as the nerve of a category, but those that do
arise in this way can be characterised using a number of different (equivalent)
conditions. Such a condition is called a nerve condition. Nerve conditions check
whether or not we can define composition from a simplicial set in a way that is
well-defined, associative, and unital. Along with fullness and faithfulness of the
nerve functor, they allow us to give alternative statements of the definitions of
category and functor purely in terms of simplicial sets. There are various nerve
conditions; the nerve condition we use is that used by Tamsamani [Tam99], since
this is the condition that is generalised in the definition of Tamsamani–Simpson
weak n-category. This condition is a Segal condition, and originates in [Seg68].

We begin by recalling the definition of simplicial sets. There are several
different ways of defining simplicial sets, and the morphisms between them. For
our purposes, we will think of the category of simplicial sets as the category of
presheaves on the simplicial category ∆.

Definition 4.1.1. We write ∆ for the category with

• objects: for each k = 0, 1, 2, . . . , the totally ordered set [k] = {0, 1, . . . , k};

• morphisms: order preserving functions.

The category of simplicial sets SSet is defined to be the presheaf category

SSet := [∆op,Set].

We now establish some notation and terminology that we will use when
talking about simplicial sets, all of which is standard. For a simplicial set
A : ∆op → Set, we usually write Ak to denote the set A[k], where [k] ∈ ∆. We
refer to the elements of Ak as the “(simplicial) k-cells of A”. We refer to maps
A[p], where [p] : [j]→ [k] in ∆ is injective, as “face maps”, since such maps give
us the j-cell faces of the k-cells of A. For all k > 0, 0 ≤ i ≤ k, we have a map
di : [k − 1]→ [k] in ∆ given by

di(j) =

{
j if j < i,
j + 1 if j ≥ i,

and the face maps A(di) generate all face maps in A. Similarly, we refer to maps
A[q], where [q] : [j] → [k] is surjective, as “degeneracy maps” since such maps
give us degenerate j-cells; in the nerve of a category, these degenerate cells will
be those made up at least partially from identities.

An ordered set can be considered as a category in which the elements of
the set are the objects of the category and, for elements a, b, there is one
morphism a → b if a ≤ b, and no such morphism otherwise. Order-preserving
maps then correspond precisely to functors. Thus we can consider ∆ to be a
full subcategory of Cat; we write

I : ∆ −→ Cat

for the inclusion functor. For each [k] ∈ ∆, I[k] is the category consisting of a
string of k composable morphisms. In the nerve of a category C, the set of k-cells
is given by Cat(I[k], C), the set of composable strings of length k of morphisms
in C.

We now use this inclusion functor to define the nerve functor for categories.
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Definition 4.1.2. The nerve functor N : Cat→ SSet is defined to be:

N : Cat −→ [∆op,Set]

C

F

��

Cat(I(−), C)

F◦−

��

7−→

D Cat(I(−),D),

where Cat(I(−), C), referred to as the nerve of the category C, is the simplicial
set defined by

Cat(I(−), C) : ∆op −→ Set

[k]

p

��

Cat(I[k], C)

−◦p

��

7−→

[j] Cat(I[j], C).

In the nerve of a category C, the set of 0-cells Cat(I[0], C) is the set of objects
in C, and the set of 1-cells Cat(I[1], C) is the set of morphisms in C, with the
face maps giving the sources and targets. The set Cat(I[2], C) of composable
pairs of morphisms tells us about composition in C, and the sets of k-cells for
k > 2 tell us about associativity. Since identities in the nerve are given by
the degeneracy maps, when we take the nerve of a category we retain all the
information in that category.

The following result is well-known (see, for example, [Lei04a, Section 3.3]).

Proposition 4.1.3. The nerve functor N : Cat→ SSet is full and faithful.

Thus functors between categories correspond precisely to maps of simplicial
sets between their nerves.

We now recall the nerve condition that will be generalised in the definition of
Tamsamani–Simpson weak n-category in the next section. The nerve condition
we use is a Segal condition, rather than a horn-filling condition.

In the category ∆, for each object [k], k ≥ 1, and for each i, 0 ≤ i ≤ k − 1,
we have a map

ιi+1 : [1]→ [k]

0 7→ i

1 7→ i+ 1.

We also have maps σ, τ : [0] → [1], with σ(0) = 0 and τ(0) = 1. Thus we can
construct the following diagram in ∆:

[k]

[1]

ι1

44

[1]

ι2

88

[1]

ι3

EE

. . . [1]

ιk−1

ee

[1]

ιk

ii

[0]
τ

__

σ

??

[0]
τ

__

σ

??

[0]
τ

__

σ

??
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and this diagram commutes.
Let A : ∆op → Set be a simplicial set. Applying A : ∆op → Set to the

diagram above gives the following diagram in Set:

Ak

i1

tt

i2

ww

i3
��

ik−1

&&

ik

**
A1

t !!

A1

s}} t !!

A1

s}}

. . . A1

t !!

A1

s}}

A0 A0 A0

where ij sends a k-cell to the jth 1-cell in its spine, and s and t send a 1-cell to
its source and target 0-cells respectively. Since functors preserve commutative
diagrams, this diagram commutes and is a cone with vertex Ak over the diagram

k︷ ︸︸ ︷
A1

t !!

A1

s}} t !!

A1

s}}

. . . A1

t !!

A1

s}}

A0 A0 A0

Since Set is complete, we can take the limit of this diagram, called a wide
pullback, which we denote by A1 ×A0

· · · ×A0
A1︸ ︷︷ ︸

k

. The kth Segal map

Sk : Ak → A1 ×A0 · · · ×A0 A1︸ ︷︷ ︸
k

is the unique map induced by the universal property of the wide pullback such
that the diagram

Ak

i1





i2

��

!Sk

��

ik−1

��

ik

��

A1 ×A0
· · · ×A0

A1

uu {{ ## ))
A1

t !!

A1

s}}

. . . A1

t !!

A1

s}}

A0 A0

commutes.
The set Ak is the set of simplicial k-cells in A. If A arises as the nerve

of a category, we should be able to think of these as composable strings of k
morphisms, together with their composites. Now, an element of

A1 ×A0
· · · ×A0

A1︸ ︷︷ ︸
k
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is a k-tuple (f1, . . . , fk) of 1-cells in A, such that t(fi) = s(fi+1) for 0 ≤ i < k.
We can think of such a k-tuple as being like a string of k “composable” 1-cells
in our simplicial set.

Definition 4.1.4. A simplicial set A : ∆op → Set, is said to satisfy the nerve
condition if, for all k, the kth Segal map Sk is an isomorphism.

The following result originates in [Seg68].

Proposition 4.1.5. Given a category C, the nerve N (C) satisfies the nerve
condition. Given a simplicial set A, if A satisfies the nerve condition then there
exists a category C such that N (C) ∼= A.

Proposition 4.1.5 and Proposition 4.1.3 allow us to give the following alter-
native statement of the definition of the category of small categories.

Definition 4.1.6. The category of small categories Cat is the full subcate-
gory of [∆op,Set] whose objects are those simplicial sets that satisfy the nerve
condition.

4.2 Tamsamani–Simpson weak n-categories

In this section we recall Simpson’s variant of Tamsamani’s definition of weak
n-category [Tam99, Sim97]. We begin by generalising the definition of simplicial
set to that of an n-simplicial set (often known as a multisimplicial set when not
specifying the value of n).

Definition 4.2.1. The category of n-simplicial sets n-SSet is defined induc-
tively as follows:

• 0-SSet := Set;

• for n ≥ 1, n-SSet := [∆op, (n − 1)-SSet] ∼= [(∆n)op,Set], by cartesian
closedness of Cat.

We could have defined n-simplicial sets to be presheaves on ∆n directly,
but the form of the definition stated above highlights the fact that n-simplicial
sets can be obtained by a process of repeated internalisation, which is a well-
established method of adding extra dimensions; thus this illustrates why ∆n

is a reasonable category on which to take presheaves in a definition of weak
n-category. Note that the inductive nature of this definition means that the
definition of Tamsamani–Simpson weak n-category does not a priori allow for
the case n = ω. We write an object of ∆n as an n-tuple

(k1, k2, . . . , kn),

where, for all 1 ≤ i ≤ n, ki ∈ N.
We now explain how we should think of the shapes of cells in an n-simplicial

set for the purposes of the definition of Tamsamani–Simpson weak n-category.
In ∆, the object [k] can be thought of as a string of k composable morphisms.
Similarly, in an n-simplicial set A : (∆n)op → Set, the set A(k1, k2, . . . , kn)
can be thought of as the set of pasting diagrams called “cuboidal” by Lein-
ster [Lei04a]. A cuboidal pasting diagram (k1, k1, . . . , kn) ∈ ∆n can be thought
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of as a grid of n-cells which is k1 n-cells long, k2 n-cells high, . . . , and kn n-cells
wide; for example, the cuboidal pasting diagram (2, 3) ∈ ∆2 is shown in the
diagram below.

�� ��

�� ��
•

��&&
88 EE•

��&&
88 EE•

�� ��

For this to give a globular notion of weak n-category, we need to ensure that,
if g : x → x′ is a k-cell in a weak n-category, then the (k − 1)-cells x and x′

have the same source and the same target. To do so we require that, for any
j, if kj = 0, i.e. the pasting diagram is 0 j-cells wide, then j − 1 should be the
maximum dimension of cell in the diagram. In order to deal with this issue we
use Simpson’s method, which is to use presheaves on a quotient of ∆n, denoted
Θn, rather than using presheaves on ∆n itself. Note that if we do not ensure
that our cells are globular, we obtain a definition of weak n-tuple category (also
known as a weak n-fold category).

We define Θn as a coequaliser in Cat. The idea is to identify objects in ∆n

if they are to be thought of as the same cuboidal pasting diagram. For example,
in Θ2, given an object (j, k), if j = 0 the pasting diagram has zero width, so the
value of k should make no difference since the pasting diagram must also have
zero height. Thus in Θ2 we identify all objects of the form (0, k), so Θ2 looks
like:

(0, 0) (1, 0) (2, 0) . . .

(1, 1) (2, 1) . . .

(1, 2) (2, 2) . . .

...
...

//

//
oo

22
22

��

33
33

��

//

//

//
oo

oo

//

//

//
oo

oo

//

//

//
oo

oo

OO OO

��

OO OO

��

OO OO OO

����

OO OO OO

����

Similarly, for higher values of n, objects of ∆n are identified in Θn if they differ
only after a 0.

Definition 4.2.2. We define a category Θn as a coequaliser in Cat as follows:
first, let R be the subcategory of ∆n ×∆n with

• objects: for all objects (k1, k2, . . . , kn) of ∆n,

((k1, k2, . . . , kn), (k1, k2, . . . , kn))

is in R; also, for a fixed j with 1 ≤ j < n,

((k1, k2, . . . , kj , . . . , kn), (k′1, k
′
2, . . . , k

′
j , . . . , k

′
n))

is in R if kj = 0 = k′j and ki = k′i for all i < j;
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• morphisms: let l, m ≤ n, and let (k, 0) = (k1, . . . , kl, 0, . . . , 0) and (k′, 0) =
(k′1, . . . , k

′
m, 0, . . . , 0) be objects of ∆n. Then the morphism

(φ, ψ) : ((k, 0), (k, 0))→ ((k′, 0), (k′, 0)),

where φ = (φ1, . . . , φn), ψ = (ψ1, . . . , ψn), is in R if

– for all i ≤ j, φi = ψi;

– φj : [kj ]→ [k′j ] factors through [0] in ∆.

Since R is a subcategory of ∆n × ∆n, it comes equipped with projection
maps π1, π2 : R→ ∆n. The category Θn is defined to be the coequaliser of the
diagram

R ∆n
π1 //

π2

//

in Cat. A presheaf
A : (Θn)op −→ Set

is called an n-precategory.

Note that this is not the only way of ensuring that we have globular cells;
in the original definition, Tamsamani takes presheaves on ∆n, then includes an
extra condition to ensure that the cells are globular. In their expositions of
Simpson’s definition, both Cheng and Lauda [CL04] and Leinster [Lei02] also
take this approach. Using Simpson’s approach does make a difference, since
it leads to a definition of a weak n-category as a presheaf satisfying the Segal
condition, with no extra conditions; this allows us to work with a presheaf cat-
egory, with all the usual desirable properties these have, such as completeness,
cocompleteness, and the existence of the Yoneda embedding.

We now discuss the Segal condition, Tamsamani’s n-dimensional generali-
sation of the nerve condition for categories given in Definition 4.1.4. Like the
nerve condition, the Segal condition is a condition on a family of morphisms
of n-precategories, called the Segal maps; these Segal maps are defined to be
induced by wide pullbacks in a way analogous to the definition of the Segal
maps in Section 4.1.

In the nerve condition we required that the Segal maps were isomorphisms,
to ensure that well-defined, associative, unital composition could be extracted
from the nerve. In the Segal condition for weak n-categories, we wish to weaken
this since we only want composition that is associative and unital up to coherent
isomorphism. If the Segal maps were maps of n-categories we would instead
require them to be equivalences. However, the Segal maps are merely maps of
n-precategories, so we cannot use the same notion of equivalence. A functor is
an equivalence if it is full, faithful, and essentially surjective on objects; for a
map of n-precategories, we can still define fullness and faithfulness in the same
way, but we cannot define what it means for a map to be essentially surjective
since we do not have a composition structure, and thus no notion of isomorphism
between cells.

It was Simpson’s insight that, instead of asking for essential surjectivity, we
can demand surjectivity on 0-cells. Simpson observed that the resulting notion,
which we call contractibility, is enough for the purposes of the Segal condition,
although it is not enough to define equivalences in general. Recall that we



140 Chapter 4. Tamsamani–Simpson weak n-categories

previously used this insight of Simpson when defining equivalences of algebras
for an operad in Definition 2.5.4, since contractibility was all that we required
in this context as well.

Before defining contractibility, we establish some notation used in the def-
inition. Let 0 ≤ p ≤ n, and write 1p for the equivalence class in Θn of the
object

(1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
n−p

)

of ∆n, which should be thought of as a single globular p-cell.
Let A : (Θn)op → Set be an n-precategory. In ∆, we have maps σ, τ : [0]→

[1], with σ(0) = 0 and τ(0) = 1. We define the source and target maps (denoted
s and t respectively) in A, for each p, as follows:

s = A(id, . . . , id︸ ︷︷ ︸
p−1

, σ, id, . . . , id) : A(1p)→ A(1p−1);

t = A(id, . . . , id︸ ︷︷ ︸
p−1

, τ, id, . . . , id) : A(1p)→ A(1p−1).

Note that this defines the underlying n-globular set of the n-precategory A, with
the set of p-cells for each − ≤ p ≤ n given by A(1p).

We now give the definition of contractibility.

Definition 4.2.3. Let m ≥ 1, let A, B : (Θm)op → Set be m-precategories,
and let α : A → B be a map of m-precategories. For each 0 ≤ p ≤ m − 1, we
write A(1p)×B(1p) B(1p+1)×B(1p) A(1p) for the limit of the diagram

A(1p)

α1p

��

B(1p+1)
s
//

t

��

B(1p)

A(1p) α1p

// B(1p)

in Set. We also have a cone over this diagram with vertex A(1p+1), as shown
in the diagram below:

A(1p+1)
s //

t

��

α1p+1
%%

A(1p)

α1p

��

B(1p+1)
s
//

t

��

B(1p)

A(1p) α1p

// B(1p)

The universal property of the limit induces a unique map

α̃1p+1
: A(1p+1)→ A(1p)×B(1p) B(1p+1)×B(1p) A(1p)
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such that

A1p+1
s

))

t

//

α1p+1

33

α̃1p+1

**

A(1p)×B(1p) B(1p+1)×B(1p) A(1p) //

��

**

A(1p)

α1p

��

B(1p+1)
s
//

t

��

B(1p)

A(1p) α1p

// B(1p)

commutes.
The map α : A→ B is said to be contractible if:

• the map α10
: A(10) → B(10) is surjective (this is surjectivity of α on

objects);

• for each 0 ≤ p ≤ m− 1, the map

α̃1p+1
: A(1p+1)→ A(1p)×B(1p) B(1p+1)×B(1p) A(1p)

is surjective (this gives fullness at dimension (p+ 1));

• for each p = m− 1, the map

α̃1p+1
: A(1p+1)→ A(1p)×B(1p) B(1p+1)×B(1p) A(1p)

is injective (this gives faithfulness at dimension m).

Note that the definition of contractibility above is only concerned with the
effect of A and B on 1p. The set A(1p) is the set of “globular p-cells”, i.e. p-cells
in A that are one 1-cell long, one 2-cell high, etc.; there are no cells composed
end-to-end (and similarly for B).

We now give the construction of the Segal maps. In the nerve condition for
categories we considered composable strings of k morphisms for every k ∈ N;
here we consider, for every 0 ≤ m ≤ n, the composable strings of k m-cells for
every k and every composite of m-cells.

Let A : (Θn)op → Set be an n-precategory. Then, for all 1 ≤ m ≤ n, and all
k = (k1, . . . , km−1), we have a functor

A(k,−,−) : ∆op → [(Θn−m)op,Set]

[k] 7→ A(k, k,−),

with the effect on morphisms given by composition.
Consider, as in Subsection 4.1, the following diagram in ∆:

[k]

[1]

ι1

44

[1]

ι2

88

[1]

ι3

EE

. . . [1]

ιk−1

ee

[1]

ιk

ii

[0]
τ

__

σ

??

[0]
τ

__

σ

??

[0]
τ

__

σ

??
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Applying the functor A(k,−,−) to this diagram gives us the following dia-
gram in [(Θn−m)op,Set]:

A(k, k,−)

i1

uu
i2
��

ik−1

��

ik

))

A(k, 1,−)

t %%

A(k, 1,−)

syy

. . . A(k, 1,−)

t %%

A(k, 1,−)

syy

A(k, 0,−) A(k, 0,−)

and this is a cone over the diagram:

k︷ ︸︸ ︷
A(k, 1,−)

t &&

A(k, 1,−)

sxx

. . . A(k, 1,−)

t &&

A(k, 1,−)

sxx

A(k, 0,−) A(k, 0,−)

Since Set is complete, [(Θn−m)op,Set] is complete, so we can take the limit
of this diagram, denoted

A(k, 1,−)×A(k,0,−) · · · ×A(k,0,−) A(k, 1,−),

called a “wide pullback”. The universal property of this wide pullback induces
a unique morphism such that the diagram

A(k, k,−)

A(k, 1,−)×A(k,0,−) · · · ×A(k,0,−) A(k, 1,−)

A(k, 1,−) A(k, 1,−) A(k, 1,−) A(k, 1,−)

A(k, 0,−) A(k, 0,−)

Sk,k

��

i1

��

i2

��

ik−1

��

ik

��tt vv (( **

t

��

s

��

t

��

s

��

commutes. The maps Sk,k, for all k = (k1, . . . , km−1) and all k ∈ N, are called
the Segal maps.

We now give Simpson’s variant of Tamsamani’s definition of weak n-category.

Definition 4.2.4. Let n ∈ N. A Tamsamani–Simpson weak n-category is
an n-precategory A : (Θn)op → Set such that, for all 1 ≤ m ≤ n, k =
(k1, . . . , km−1) ∈ ∆m, and [k] ∈ ∆, the Segal map

Sk,k : A(k, k,−)→ A(k, 1,−)×A(k,0,−) · · · ×A(k,0,−) A(k, 1,−)

is contractible.



Chapter 5

Nerves of Penon weak
2-categories

This chapter concerns our nerve construction for Penon weak 2-categories. We
begin by recalling a nerve construction for bicategories due to Leinster [Lei02] in
which the nerve of a bicategory is a 2-precategory, and we prove that this nerve
is a Tamsamani–Simpson weak 2-category (a result previously stated without
proof by Leinster). We then define our own nerve functor for Penon weak 2-
categories using Leinster’s nerve construction for bicategories as a prototype.
Finally, we prove that the nerve of a Penon weak 2-category is a Tamsamani–
Simpson weak 2-category.

Note that, throughout this chapter, given a 2-precategory

A : (Θ2)op −→ Set,

we refer to an element of the set A(j, k), for j, k ∈ N, as a “(j, k)-cell”.

5.1 Leinster’s nerve construction for bicategories

In this section we describe and expand upon a nerve construction for bicate-
gories originally given by Leinster in [Lei02], which will serve as a prototype
for our nerve construction for Penon weak n-categories in Section 5.2. This
nerve construction takes a bicategory and produces from it a 2-precategory as
its nerve. Leinster defines this nerve construction only on objects; we extend
the construction to a definition of a nerve functor

N : Bicat −→ [(Θ2)op,Set]

by describing the action on morphisms. Leinster states without proof that the
nerve NB satisfies the Segal condition, and is thus a Tamsamani–Simpson weak
2-category; we prove this result for the first time. Apart from the definition of
the action of N on objects (Definition 5.1.1) and an unpacked version of the
definition of Tamsamani–Simpson weak n-category in the case n = 2 (Defini-
tion 5.1.4), everything in this section is new.

Before stating the formal definition of this nerve functor, we discuss the
shapes of the simplicial cells in the nerve. The reason for giving this explanation
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is that the nerve construction is somewhat notation-heavy since it is defined
using a completely elementary method; for a bicategory B, the set of (j, k)-cells
in the nerve of B is defined by simply specifying the cells of B which, together,
make up a (j, k)-cell in the nerve of B. This explanation of shapes of cells also
helps motivate the shapes of cells used in our nerve construction for Penon weak
n-categories.

Recall that, for all k > 0, 0 ≤ i ≤ k, we have a map di : [k − 1] → [k] in ∆
given by

di(j) =

{
j if j < i,
j + 1 if j ≥ i.

In the nerve of a category NC, a simplicial k-cell consists of a string of k com-
posable morphisms, and the face maps NC(di) are defined either to omit a
single cell at one end of this string, or to compose a single pair of cells within
the string. One would expect the definition of a (k, 0)-cell in the nerve of a
bicategory to be similar; however, we cannot define these face maps in exactly
the same way, since composition of 1-cells in a bicategory is not associative. We
now explain why this causes problems.

Suppose we define a (k, 0)-cell in the nerve of a bicategory to consist just
of a string of k composable morphisms, which we write as (f1, f2, . . . , fk), with
the face maps defined using composition in the same way as in the nerve of a
category. In ∆2, the diagram

(3, 0) (2, 0)

(2, 0) (1, 0)

(d1,1)
oo

(d2,1)

OO

(d1,1)

OO

(d1,1)
oo

commutes. Write NB for the nerve of B; then, in order for NB to be a bisim-
plicial set, the diagram

NB(3, 0) NB(2, 0)

NB(2, 0) NB(1, 0)

NB(d1,1)
//

NB(d2,1)

��

NB(d1,1)

��

NB(d1,1)
//

must commute in Set. However, consider a (3, 0)-cell (f, g, h) ∈ NB(3, 0).
Applying the maps along the top and right of the diagram above gives

(f, g, h) �
NB(d1,1)

// (g ◦ f, h) �
NB(d1,1)

// (h ◦ (g ◦ f)),

whereas applying the maps along the left and bottom of the diagram gives

(f, g, h) �
NB(d2,1)

// (f, h ◦ g) �
NB(d1,1)

// ((h ◦ g) ◦ f),

so the diagram does not commute.
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Thus instead we define a (k, 0)-cell in the nerve of a bicategory to consist
not only of a string of k composable 1-cells, but of a whole k-simplex of 1-cells
and isomorphism 2-cells; the data for each (k, 0)-cell includes all of its faces,
not just those which make up the composable string of 1-cells. For example, a
(2, 0)-cell looks like:

a1

a0 a2

f01

GG

f12

��

f02

//

i012∼
��

This should be thought of as a pair of composable 1-cells, together with another
1-cell that would be a “valid choice” for their composite (but not necessarily
their actual composite in the bicategory).

Similarly, a (3, 0)-cell looks like

a1 a2

a0 a3

=

a1 a2

a0 a3

f01

GG

f12 //

f23

��

f03

//

f02

::

f01

GG

f12 //

f23

��

f03

//

f13

$$

∼
ι012

�# ∼
ι123

{�

∼ι023 �� ∼ ι013��

i.e. a commuting tetrahedron whose faces are isomorphism 2-cells.
The (j, k)-cells in the nerve, for k > 0, are “simplicially weakened” ver-

sions cuboidal pasting diagrams. We usually draw these as grids of 2-cells; for
example, we draw a (3, 2)-cell as:

w�α1
01

w�α1
12

w�α1
23

a0

f0
01

��f1
01 //

f2
01

BB
a1

f0
12

��f1
12 //

f2
12

BB
a2

f0
23

��f1
23 //

f2
23

BB
a3.w�α2

01

w�α2
12

w�α2
23

However, such diagrams are misleading since they do not capture the whole
simplicial shape of the cell. In fact, each string of k composable 1-cells on the
same “level” (i.e. with the same superscript) is a (k, 0)-cell, and all diagrams of
2-cells within each (j, k)-cell commute.

Note that the notation used in the diagrams above is the notation we use in
the construction. The subscripts and superscripts decorating each cell should
be thought of as the coordinates of that cell, with the subscripts giving the
horizontal coordinates, and superscripts giving the vertical coordinates.

We state the definition of this nerve functor for bicategories in three parts.
In Definition 5.1.1 we define, for a bicategory B and for each object (j, k) in
Θ2, a set NB(j, k), which is the set of (j, k)-cells in the nerve of B; this is the
only part of the definition that Leinster states formally in [Lei02]. Then, in
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Definition 5.1.2, we extend this to a definition of a 2-precategory

NB : (Θ2)op −→ Set

by defining the action of this presheaf on maps. This defines the action of the
nerve functor

N : Bicat −→ [(Θ2)op,Set].

on objects; in Definition 5.1.3 we define the action of this functor on maps.
Recall that an object of Θ2 is an equivalence class or objects of ∆2. An object

of ∆2 is in an equivalence class with more than one member if and only if it is of
the form (0, k). Thus, for the purposes of the following definition we treat the
equivalence class of (0, k) as the object (0, 0) of ∆2; all other equivalence classes
are treated as their sole member. Note that the exact choice of representative
does not make a difference to the definition.

Note that, ideally, we would give an abstract definition of the nerve of a
bicategory by first defining a functor i : Θ2 → Bicat, then defining the nerve of
a bicategory B to be given by Bicat(i(−),B), as we did when defining the nerve
of a category. However, this is not practical in the case of bicategories since the
bicategories in the image of the functor i are difficult to describe (in particular,
they are not free, unlike in the case of the nerve of a category). We believe that
describing these bicategories would require extra machinery (for example, we
believe it could be done using computads) and is thus beyond the scope of this
thesis. Note that this is one of the reasons for using Penon weak n-categories in
the remainder of the thesis; in the case of Penon weak n-categories we are able
to construct the nerve in this abstract way, by modifying the construction of a
free Penon weak n-category, in a way that is not possible with bicategories. We
do this in Sections 5.2 and 6.1.

In the original version of this definition in [Lei02], Leinster used ∆2 rather
than Θ2, and then enforced a non-cubical condition, as described immediately
after the definition of Θn, Definition 4.2.2. This is the only non-cosmetic differ-
ence between the following definition and Leinster’s original definition; we also
write the axioms as diagrams rather than equations.

Definition 5.1.1. Let B be a bicategory. We associate to B a 2-precategory
NB : (Θ2)op → Set, called the nerve of B, as follows:

Given (j, k) ∈ Θ2, NB(j, k) is the set which has as its elements all quadruples(
(au)0≤u≤j , (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
where

• each au is an object of B;

• each fzuv : au → av is a 1-cell of B;

• each αzuv : fz−1
uv → fzuv is a 2-cell of B;

• each ιzuvw : fzvw ◦ fzuv → fzuw is an isomorphism 2-cell of B, with inverse
(ιzuvw)−1;

and these cells satisfy the following axioms:
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• for all 0 ≤ u < v < w ≤ j, 1 ≤ z ≤ k, the diagram

fz−1
vw ◦ fz−1

uv fz−1
uw

fzvw ◦ fzuv fzuw

ιz−1
uvw //

αzvw∗α
z
uv

��

αzuw

��

ιzuvw

//

commutes; alternatively, we can draw this axiom as

• •

•

= • • •$$
::

55

��

ιz−1
uvw��

αzuw��

��

CC

��

CC EE
αzuv��

αzvw��

ιzuvw��

• for all 0 ≤ u < v < w < x ≤ j, 0 ≤ z ≤ k, the diagram

(fzwx ◦ fzvw) ◦ fzuv fzwx ◦ (fzvw ◦ fzuv)

fzvx ◦ fzuv fzwx ◦ fzuw

fzux

suvwx //

ιzvwx∗1fzuv

��

1fzwx∗ι
z
uvw

��

ιzuvx
''

ιzuwx
ww

commutes, where

suvwx : (fzwx ◦ fzvw) ◦ fzuv → fzwx ◦ (fzvw ◦ fzuv)

is the component of the appropriate associativity isomorphism for B; al-
ternatively, we can draw this axiom as

av aw

au ax

=

av aw

au ax

fzuv

GG

fzvw //

fzwx

��

fzux

//

fzuw

::

fzuv

GG

fzvw //

fzwx

��

fzux

//

fzvx
$$

∼
ιuvw
�# ∼

ιvwx
{�

∼ιuwx �� ∼ ιuvx��

In [Lei02] Leinster does not define the action of the presheaf NB on mor-
phisms formally; he simply states that NB is “defined on maps by a combi-
nation of inserting identities and forgetting data”. We now explain this idea
in more detail, then make it precise in the next definition. Given a map
(p, q) : (l,m)→ (j, k) in Θ2, we define a map

NB(p, q) : NB(j, k)→ NB(l,m).
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To understand what this map does, recall that an element of NB(j, k) consists
of a collection of cells of B which form a (j, k)-cell, and that each of these
cells has subscripts and (in some cases) superscripts which we think of as the
coordinates of this cell within the (j, k)-cell. Given an element of NB(j, k), its
image under NB(p, q) is the element of NB(l,m) made up of those cells whose
horizontal coordinates are in the image of p and, where appropriate, whose
vertical coordinate is in the image of q; any cells whose coordinates are not in
the images of p and q are omitted, and cells with repeated coordinates are taken
to be identities (or unitors in some cases).

Definition 5.1.2. Let B be a bicategory, and write l and r for its left and right
unitors respectively. Let (p, q) : (l,m) → (j, k) be a map in Θ2. We define a
function of sets

NB(p, q) : NB(j, k)→ NB(l,m)

as follows:

NB(p, q) :

(
(au)0≤u≤j , (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
7−→

(
(bu)0≤u≤l, (g

z
uv)0≤u<v≤l

0≤z≤m
, (βzuv)0≤u<v≤l

1≤z≤m
, (κzuvw)0≤u<v<w≤l

0≤z≤m

)
where

• bu = ap(u)

• gzuv =

{
f
q(z)
p(u)p(v) if p(u) 6= p(v),

idap(u)
if p(u) = p(v);

• βzuv =


α
q(z)
p(u)p(v) if p(u) 6= p(v), q(z − 1) 6= q(z),

id
f
q(z)

p(u)p(v)

if p(u) 6= p(v), q(z − 1) = q(z),

ididap(u)
if p(u) = p(v);

• κzuvw =


ι
q(z)
p(u)p(v)p(w) if p(u) 6= p(v) 6= p(w),

l
f
q(z)

p(u)p(v)

if p(u) 6= p(v) = p(w),

r
f
q(z)

p(u)p(v)

if p(u) = p(v) 6= p(w),

ididap(u)
if p(u) = p(v) = p(w).

This defines the action of the nerve functor on objects; we now give a new
definition which extends this to a definition of a nerve functor

N : Bicat −→ [(Θ2)op,Set],

by describing the action of this functor on morphisms.

Definition 5.1.3. Let F : A → B be a strict functor of bicategories. We define
a map of bisimplicial sets NF : NA → NB to be the map whose component
NF(j,k) : NA(j, k)→ NB(j, k), for each (j, k) ∈ ∆2, is given by

NF(j,k)

(
(au)0≤u≤j , (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
=

(
(F (au))0≤u≤j , (Ff

z
uv)0≤u<v≤j

0≤z≤k
, (Fαzuv)0≤u<v≤j

1≤z≤k
, (Fιzuvw)0≤u<v<w≤j

0≤z≤k

)
.
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The above defines a functor N : Bicat → [(Θ2)op,Set], called the nerve
functor.

In [Lei02], Leinster stated without proof that the nerve of a bicategory sat-
isfies the Segal condition, and is thus a Tamsamani–Simpson weak 2-category.
We will prove this for the first time; before doing so, we recall the definition of
Tamsamani–Simpson weak n-category (Definition 4.2.4) in the case n = 2; the
following is a slight unpacking of the definition, which treats Segal maps of the
forms Sk and Sj,k separately.

Definition 5.1.4. A Tamsamani–Simpson weak 2-category is a functor

A : (Θ2)op → Set

such that

(i) for each k ≥ 0, the Segal map

Sk : A(k,−) −→ A(1,−)×A(0,1) · · · ×A(0,1) A(1,−)︸ ︷︷ ︸
k

is contractible, i.e. it is surjective on objects, and full and faithful on
1-cells;

(ii) for each m, k ≥ 0, the Segal map

Sj,k : A(j, k) −→ A(j, 1)×A(j,0) · · · ×A(j,0) A(j, 1)︸ ︷︷ ︸
k

is a bijection.

Thus to prove that the nerve of a bicategory is a Tamsamani–Simpson weak
2-category, we break this statement down into four propositions: one stating
that each of the Segal maps Sj,k is a bijection, and the other three stating the
three conditions required for contractibility of the Segal maps Sk.

Proposition 5.1.5. Let B be a bicategory. For all j, k ≥ 0, the Segal map

Sj,k : NB(j, k) −→ NB(j, 1)×NB(j,0) · · · ×NB(j,0) NB(j, 1)︸ ︷︷ ︸
k

is a bijection.

Proof. Let(
(au)0≤u≤j , (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
be an element of NB(j, k). The function Sj,k maps this to((

(au)0≤u≤j , (f
z
uv)0≤u<v≤j

0≤z≤1
, (α1

uv)0≤u<v≤j , (ι
z
uvw)0≤u<v<w≤j

0≤z≤1

)
,(

(au)0≤u≤j , (f
z
uv)0≤u<v≤j

1≤z≤2
, (α2

uv)0≤u<v≤j , (ι
z
uvw)0≤u<v<w≤j

1≤z≤2

)
,

. . . ,(
(au)0≤u≤j , (f

z
uv)0≤u<v≤j

k−1≤z≤k
, (αkuv)0≤u<v≤j , (ι

z
uvw)0≤u<v<w≤j

k−1≤z≤k

))
.
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Every cell listed in the original element of NB(j, k) is listed in its image under
Sj,k, so this function is injective. Furthermore, any element of the wide pullback

NB(j, 1)×NB(j,0) · · · ×NB(j,0) NB(j, 1)︸ ︷︷ ︸
k

can be written in the form above. Thus Sj,k is surjective.

Hence Sj,k is a bijection.

Proposition 5.1.6. Let B be a bicategory. For all k ≥ 0, the Segal map

Sk : NB(k,−) −→ NB(1,−)×NB(0,0) · · · ×NB(0,0) NB(1,−)︸ ︷︷ ︸
k

is surjective on objects.

Proof. Let

((
a0 a1

f0
01 //

)
,
(
a1 a2

f0
12 //

)
, . . . ,

(
ak−1 ak

f0
k−1,k
//

))
be an element of

A(1, 0)×A(0,0) · · · ×A(0,0) A(1, 0)︸ ︷︷ ︸
k

.

This is a string of k composable 1-cells in B. We seek an element of NB(k, 0)
that maps to this under (Sk)0. We define an element(

(au)0≤u≤j , (f
0
uv)0≤u<v≤j , (ι

0
uvw)0≤u<v<w≤j

)
of NB(k, 0); to do so we must define f0

uv for every v > u+1, and we must define
the ι0uvw for all 0 ≤ u < v < w ≤ k. Our approach is to define the f0

uv’s to be
composites of the f0

u,u+1’s, then define the ι0uvw’s to be composites of constraint
cells in B that mediate between these composites.

Let 0 ≤ u < u+ 1 < v ≤ j, and define f0
uv to be given by the composite

f0
uv := (· · · (f0

v−1,v ◦ f0
v−2,v−1) ◦ · · · ) ◦ f0

u,u+1.

Then, for all 0 ≤ u < v < w ≤ j, there is a composite of constraint isomorphism
2-cells

ι0uvw : f0
vw ◦ f0

uv → f0
uw

in B, which is unique by coherence for bicategories [GPS95, Lei98a].

This defines an element of NB(k, 0); by construction we see that this element
maps to

((
a0 a1

f0
01 //

)
,
(
a1 a2

f0
12 //

)
, . . . ,

(
ak−1 ak

f0
k−1,k
//

))
under (Sk)0, as required. Hence Sk is surjective on objects.
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To show that the Segal maps are full and faithful on 1-cells, we use the fact
that there is some redundancy in the definition of NB(j, k). Specifically, to
specify an element of NB(j, k) we only need to specify αzuv for v = u+ 1, rather
than for all u < v < j (note that we still have to specify every au, fzuv and
ιzuvw). Since this fact is used in the proofs of both fullness and faithfulness, we
state and prove it as a separate lemma:

Lemma 5.1.7. Let B be a bicategory, let j, k ∈ N, and suppose we have the
following data:

• for all 0 ≤ u ≤ j, an object au of B;

• for all 0 ≤ u < v ≤ j, 0 ≤ z ≤ k, a 1-cell fzuv : au → av in B;

• for all 0 ≤ u < j, 1 ≤ z ≤ k, a 2-cell αzu,u+1 : fz−1
u,u+1 → fzu,u+1 in B;

• for all 0 ≤ u < v < w ≤ j, 0 ≤ z ≤ k, an isomorphism 2-cell ιzuvw :
fzvw ◦ fzuv → fzuw in B, with inverse (ιzuvw)−1;

such that the isomorphism 2-cells ιzuvw satisfy the pentagon axiom from the def-
inition of NB on objects, Definition 5.1.1. Then this specifies a unique element(

(au)0≤u≤j , (f
z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
of NB(j, k).

Proof. We need to show that, for all 0 ≤ u < u + 1 < v ≤ j, 1 ≤ z ≤ k, there
is a unique choice of 2-cell αzuv in B such that the axioms for an element of
NB(j, k) are satisfied. We do this by strong induction over v.

First, let v = u + 2. For all 1 ≤ z ≤ k, write w := u + 1, and define
αzuv = αzu,u+2 to be given by the composite

• • •
��

@@

��

@@ CC

��

(ιz−1
uwv)−1

��

αzuw��
αzwv��

ιzuwv��

in B. By considering the composite αzuv ◦ ιz−1
uwv, we see that αzuv satisfies the

square axiom from the definition of NB(j, k), Definition 5.1.1; furthermore, it
is the only 2-cell of B satisfying these axioms, given that αzuw, αzwv, ι

z−1
uwv and

ιzuwv are fixed.
Now let m ≥ 1 and suppose we have defined αzuv for all u+ 1 ≤ v ≤ u+m.

We define αzuv for v = u + m + 1 as follows: let w be a natural number with
u < w < v, and define αzuv to be given by the composite

• • •
��

@@

��

@@ CC

��

(ιz−1
uwv)−1

��

αzuw��
αzwv��

ιzuwv��
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Note that the pentagon axiom from the definition of NB(j, k) ensures that this
is independent of our choice of w. As before, by considering the composite
αzuv ◦ ιz−1

uwv, we see that αzuv satisfies the square axiom from the definition of
NB(j, k), Definition 5.1.1; furthermore, it is the only 2-cell of B satisfying these
axioms, given that αzuw, αzwv, ι

z−1
uwv and ιzuwv are fixed.

This defines a unique element(
(au)0≤u≤j , (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
of NB(j, k), as required.

This now allows us to prove the Segal maps are full and faithful on 1-cells.

Proposition 5.1.8. Let B be a bicategory. For all k ≥ 0, the Segal map

Sk : NB(k,−) −→ NB(1,−)×NB(0,0) · · · ×NB(0,0) NB(1,−)︸ ︷︷ ︸
k

is full on 1-cells.

Proof. Suppose we have two elements f , g ∈ NB(k, 0), which we denote

f =
(

(au)0≤u≤k, (f
0
uv)0≤u<v≤k, (ι

0
uvw)0≤u<v<w≤k

)
and

g =
(

(bu)0≤u≤k, (g
0
uv)0≤u<v≤k, (κ

0
uvw)0≤u<v<w≤k

)
,

and suppose we have an element α of

NB(1, 1)×NB(0,0) · · · ×NB(0,0) NB(1, 1)︸ ︷︷ ︸
k

,

with s(α) = Sk(f) and t(α) = Sk(g). Then, for all 0 ≤ u ≤ k, au = bu, and we
can write α as

α =


(
a0 a1

f0
01

��

g0
01

@@
α1

01��

)
,

(
a1 a2

f0
12

��

g0
12

@@
α1

12��

)
, . . . ,

(
ak−1 ak

f0
k−1,k

��

g0
k−1,k

@@
α1
k−1,k��

) .

By Lemma 5.1.7, α, combined with the isomorphism 2-cells ι0uvw and κ0
uvw,

defines a unique element(
(au)0≤u≤k, (f

z
uv)0≤u<v≤k

0≤z≤1
, (α1

uv)0≤u<v≤k, (ι
z
uvw)0≤u<v<w≤k

0≤z≤1

)
of NB(k, 1), where

• for all 0 ≤ u < v ≤ k, f1
uv = g0

uv;

• for all 0 ≤ u < v < w ≤ k, ι1uvw = κ0
uvw.
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Denote this by α̂; then s(α̂) = f , t(α̂) = g, and Sk(α̂) = α, so Sk is full on
1-cells.

Proposition 5.1.9. Let B be a bicategory. For all k ≥ 0, the Segal map

Sk : NB(k,−) −→ NB(1,−)×NB(0,0) · · · ×NB(0,0) NB(1,−)︸ ︷︷ ︸
k

is faithful on 1-cells.

Proof. Suppose we have two parallel elements α, β ∈ NB(k, 1) such that (Sk)1(α) =
(Sk)1(β). We wish to show that α = β. We can write f and g as

α =

(
(au)0≤u≤k, (f

z
uv)0≤u<v≤k

0≤z≤1
, (α1

uv)0≤u<v≤k, (ι
z
uvw)0≤u<v<w≤k

0≤z≤1

)
and

β =

(
(au)0≤u≤k, (f

z
uv)0≤u<v≤k

0≤z≤1
, (β1

uv)0≤u<v≤k, (ι
z
uvw)0≤u<v<w≤k

0≤z≤1

)
.

Note that the fact α and β are parallel tells us that they can only differ on their
2-cell parts. We write (Sk)1(α) = (Sk)1(β) as

(
a0 a1

f0
01

��

g0
01

@@
γ1

01��

)
,

(
a1 a2

f0
12

��

g0
12

@@
γ1

12��

)
, . . . ,

(
ak−1 ak

f0
k−1,k

��

g0
k−1,k

@@
γ1
k−1,k��

) ,

which is an element of

NB(1, 1)×NB(0,0) · · · ×NB(0,0) NB(1, 1)︸ ︷︷ ︸
k

.

Furthermore, since (Sk)1(α) = (Sk)1(β), we have that, for all 0 ≤ u < k,

α1
u,u+1 = γ1

u,u+1 = β1
u,u+1.

Thus, by Lemma 5.1.7, for all 0 ≤ u < v ≤ k, we have

α1
uv = γ1

uv = β1
uv,

so α = β, as required.

We now have everything we need to prove that the nerve of a bicategory
satisfies the Segal condition.

Theorem 5.1.10. Let B be a bicategory. Then the nerve of B, NB, satisfies
the Segal condition, and is thus a Tamsamani–Simpson weak 2-category.
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Proof. For all j, k ≥ 0, the Segal map

Sj,k : NB(j, k) −→ NB(j, 1)×NB(j,0) · · · ×NB(j,0) NB(j, 1)︸ ︷︷ ︸
k

is a bijection by Proposition 5.1.5.
For all k ≥ 0, the Segal map

Sk : NB(k,−) −→ NB(1,−)×NB(0,0) · · · ×NB(0,0) NB(1,−)︸ ︷︷ ︸
k

is surjective on 0-cells by Proposition 5.1.6, full on 1-cells by Proposition 5.1.8,
and faithful on 1-cells by Proposition 5.1.9.

Thus NB satisfies the Segal condition, so it is a Tamsamani–Simpson weak
2-category.

5.2 The nerve construction for n = 2

In this section we construct a nerve functor for Penon weak 2-categories. The
construction for the case of general n is given in the next chapter; we present
the 2-dimensional case separately since it is simpler, both conceptually and
notationally, than the general case, but not too simple to exhibit all the key
features of the n-dimensional construction. We are also able to prove that
nerves satisfy the Segal condition in the case n = 2; we do this in Section 5.3.
We use Leinster’s nerve construction for bicategories as the prototype for our
construction, and also use his notation.

Recall that, when defining the nerve of a category, we defined a functor
I : ∆ ↪→ Cat, and then defined the nerve NC of a category C to be given by
NC = Cat(I(−), C). In analogy with this, to define our nerve functor for Penon
weak 2-categories, we first define a functor

I2 : Θ2 −→ P -Alg.

This functor should give us, for each object of Θ2, the corresponding cuboidal
2-pasting diagram, expressed as a freely generated Penon weak 2-category. How-
ever, we have to be very careful about what we mean by “freely generated” in
this context. Each cuboidal 2-pasting diagram has associated to it a 2-globular
set whose cells are those which we draw in the pasting diagram. We could simply
define I2 to give us the free P -algebra on these 2-globular sets. Let (j, k) ∈ Θ2

and write FP (j, k) for the free P -algebra on the corresponding 2-globular set.
We would then have, for a Penon weak 2-category A, the nerve defined by

NA(j, k) = P -Alg(FP (j, k),A).

Consider the object (2, 0) of Θ2; writing f and g for the generating 1-cells, the
free P -algebra on the corresponding 2-globular set looks like

•
g

��
•

f

FF

g◦f
// •,
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(omitting identities and any composites involving identities). Thus, for A ∈
P -Alg, the set P -Alg(FP (2, 0),A) is the set of all composable pairs of 1-cells
in A. However, we want an element of NA(2, 0) to consist of a composable pair
of 1-cells together with a choice of alternative composite, so we want I2(2, 0) to
look like

•
g

��
•

f

FF

g◦f

∼= //

h

EE
•,

(once again omitting identities, etc.), where h is the choice of alternative com-
posite. Note that these alternative composites are also required to allow us
to define the face maps in our nerve; we cannot define the face maps using
composition, as in the nerve of a category, because composition of 1-cells is
not strictly associative in a Penon weak 2-category. We can think of this as
weakening the maps in NA(2, 0) on composites, but keeping them strict on
identities. Thus, we may think we want to use a notion of normalised maps
of Penon weak n-categories; that is, maps which preserve identities strictly but
preserve composition only up to coherent isomorphism (note that there is no
established definition of normalised maps of P -algebras, but for the purposes of
this thought experiment this is not important). We would thus define

NA(j, k) := P -Algnorm(FP (j, k),A),

where P -Algnorm is the category of P -algebras and normalised maps. In fact,
normalised maps turn out to be too weak, as we will now demonstrate. Consider
the pasting diagram (2, 2) shown below:

a0 a1 a2

f1

��

g1

//

h1

DD

f2

��

g2

//

h2

DD

�� ��

�� ��

If we use normalised maps, we will add an extra 1-cell isomorphic to each of the
binary composites of f ’s, g’s and h’s. However, owing to the simplicial nature of
Tamsamani–Simpson weak n-categories, we only wish to add such extra 1-cells
in place of f2◦f1, g2◦g1, and h2◦h1. This is because we should have a 2-simplex
of 1-cells at each “level” of the pasting diagram (here we have three such levels,
one containing f1 and f2, one containing g1 and g2, and one containing h1 and
h2), but there should be no extra interaction between the levels. Recall from
Definition 5.1.4 that the Segal map S2,2 divides pasting diagrams of this shape
along the 1-cells g1 and g2, and the Segal condition requires this map to be
an isomorphism; if we add extra cells isomorphic to h2 ◦ f1 and h1 ◦ f2 to the
diagram above, these cells are forgotten by S2,2 so it is not an isomorphism.

We therefore want a method of weakening P -algebras that is biased towards
specific choices of simplicial shapes. Such a method cannot be defined for a
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general P -algebra, since in general we have no notion of “level” like we do in a
2-pasting diagram. Thus, we define this weakening by explicitly stating which
extra cells we are going to add. We do so by modifying the construction of
the free Penon weak 2-category on a 2-globular set, using the construction of
Penon’s left adjoint from Section 1.2.

Recall from Section 1.2 that the adjunction inducing P can be decomposed
as

n-GSet R Q.
H

⊥
//

V
oo

J

⊥
//

W
oo

Thus we can write the free P -algebra functor as the composite

2GSet R Q P -Alg,
H // J // K //

where K is the Eilenberg–Moore comparison functor. Thus, instead of starting
in 2GSet, we can start with an object of R and apply KJ to obtain a P -algebra
that is “partially free” in the sense that the constraint cells and composites are
still added freely (by the functor J), but the contraction is now taken over
a different map, rather than a component of ηT . This allows us to add the
isomorphism 2-cells we want using the contraction, thus avoiding the need to
specify these cells individually.

Before defining the process in general we first describe a small example;
specifically, we construct the P -algebra I2(2, 1). Write X(2, 1) for the 2-globular
set illustrated below:

a0 a1 a2

f0
01

��

f1
01

@@

f0
12

��

f1
12

@@
α1

01

��
α1

12

��

This is the associated 2-globular set of the pasting diagram, a concept introduced
by Batanin [Bat98, Proof of Proposition 4.2]. As explained earlier, we want
I2(2, 1) to be a “simplicially weakened” version of the free P -algebra on this
2-globular set, and to do so we construct an object of R, then generate the
“partially free” P -algebra on it. We take the strict 2-category part of this
object of R to be the free strict 2-category on X(2, 1). To obtain the 2-globular
set part of this object of R we add extra cells to X(2, 1) in the places where we
want to weaken the diagram. Specifically, we add 1-cells

a0 a2 a0 a2.and
f0
02 //

f1
02 //

Based on Leinster’s nerve construction for bicategories, we might also expect
that we need to add a 2-cell

a0 a2,

f0
02

��

f1
02

@@
α1

02

��
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but this will be added automatically as a composite of other 2-cells, as we shall
see later. We write R(2, 1) for the resulting 2-globular set; it can be drawn as:

a0 a1 a2

f0
02

��

f0
01

��

f1
01

CC

f0
12

��

f1
12

CC

f1
02

EE
α1

01��
α1

12��

To get an object of R, we define a map

θ(2,1) : R(2, 1) −→ TX(2, 1)

as follows: θ(2,1) leaves cells in R(2, 1) that are also in X(2, 1) unchanged; on
the extra cells, we have

• θ(2,1)(f
0
02) = f0

12 ◦ f0
01;

• θ(2,1)(f
1
02) = f1

12 ◦ f1
01.

We now explain what happens when we apply the functor

J : R −→ Q

to

R(2, 1) TX(2, 1),
θ(2,1)

//

using the interleaving construction from Section 1.2. First we add contraction
1-cells; since R(2, 1) and TX(2, 1) have the same 0-cells, this just adds identities.
We then generate composites of 1-cells freely; this adds f0

12◦f0
01, f1

12◦f1
01, f1

12◦f0
01

and f0
12◦f1

01, as well as composites involving identities. Next we add contraction
2-cells; this is where the “simplicial weakening” manifests itself. Observe that,
after having generated 1-cell composites, we have pairs of 1-cells:

• f0
02 and f0

12 ◦ f0
01, which are parallel and are mapped to the same cell in

TX(2, 1);

• f1
02 and f1

12 ◦ f1
01, which are parallel and are mapped to the same cell in

TX(2, 1).

Thus, as well as the usual identities, associators, and unitors, generating con-
traction 2-cells freely adds the following cells:

a1

a0 a2

a1

a0 a2

f0
01

EE

f0
12

��

f0
02

//

��

f0
01

EE

f0
12

��

f0
02

//

KS
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a1

a0 a2

a1

a0 a2

f1
01

EE

f1
12

��

f1
02

//

��

f1
01

EE

f1
12

��

f1
02

//

KS

We generate composites of 2-cells, then “add contraction 3-cells”, which forces
all diagrams of 2-cells to commute. In particular, this forces the pairs of trian-
gular cells shown above to be inverses of one another (and thus isomorphisms),
and also gives us a 2-cell

a0 a2 = a0 a1 a2

f0
02

%%

f1
02

99
α1

02��

f0
02

��

f0
01

��

f1
01

CC

f0
12

��

f1
12

CC

f1
02

EE

��

α1
01��

α1
12��

��

Observe that this corresponds to the first axiom from Leinster’s nerve con-
struction (see Definition 5.1.1); adding “contraction 3-cells” also ensures that
the second axiom holds when we perform this construction for longer cuboidal
pasting diagrams.

This whole process gives an object of Q, denoted

Q(j, k) TX(j, k).
φ(j,k)

//

We obtain the P -algebra I2(2, 1) by applying the Eilenberg–Moore comparison
functor; the resulting P -algebra has as its underlying magma the magma part
of the object of Q above.

Note that the triangular cells added by the free contraction are considered
contraction cells in the object of Q, but when we apply the Eilenberg–Moore
comparison functor they are not contraction cells from the point of view of the
P -algebra action. They retain their commutativity properties, however, so given
any other P -algebra A, a map of P -algebras

I2(2, 1) −→ A

can map these cells to any suitably coherent choice of cells in A; their images
need not be contraction cells.

We now describe this construction for a general object of Θ2. As above,
we use Leinster’s notation from his nerve construction for bicategories (Sec-
tion 5.1). Recall that the subscripts and superscripts adorning each cell should
be thought of as being the “coordinates” of that cell within the pasting dia-
gram; the subscripts are the horizontal coordinates, and the superscripts are
the vertical coordinates.

Note that an object of Θ2 is an equivalence class of objects of ∆2. An object
of ∆2 is in an equivalence class with more than one member if and only if it has
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a 0 in the first position. Thus, for the purposes of the following definition we
represent the equivalence class of (0, k) for all k ∈ N by the object (0, 0) of ∆2;
all other equivalence classes are represented by their sole member.

Let (j, k) be an object of Θ2; we first define the 2-globular set X(j, k), the
associated 2-globular set of the cuboidal pasting diagram (j, k), as follows:

• X(j, k)0 = {au | u ∈ N, 0 ≤ u ≤ j};

• X(j, k)1 = {fzu,u+1 | u, z ∈ N, 0 ≤ u < j, 0 ≤ z ≤ k};

• X(j, k)2 = {αzu,u+1 | u, z ∈ N, 0 ≤ u < j, 1 ≤ z ≤ k},

with source and target maps given by

s(fzu,u+1) = au, t(f
z
u,u+1) = au+1,

s(αzu,u+1) = fz−1
u,u+1, t(α

z
u,u+1) = fzu,u+1.

We then add extra 1- and 2-cells to this to obtain a 2-globular set R(j, k),
defined as follows:

• R(j, k)0 = {au | u ∈ N, 0 ≤ u ≤ j};

• R(j, k)1 = {fzuv | u, v, z ∈ N, 0 ≤ u < v ≤ j, 0 ≤ z ≤ k};

• R(j, k)2 = {αzu,u+1 | u, z ∈ N, 0 ≤ u < j, 1 ≤ z ≤ k},

with source and target maps given by

s(fzuv) = au, t(f
z
uv) = av,

s(αzu,u+1) = fz−1
u,u+1, t(α

z
u,u+1) = fzu,u+1.

It is important to note that, in spite of the notation, this does not define functors
X and R into 2-GSet. This is because, at this stage of the construction, there is
no way to define the effect on maps in Θ2, since we cannot map cells to identities
as we do not have these in the 2-globular sets.

We now construct, for each (j, k) ∈ Θ2, an object

R(j, k) TX(j, k)
θ(j,k)

//

of R. We define the map θ(j,k) as follows:

• on 0-cells, θ(j,k)0(au) = au;

• on 1-cells, θ(j,k)1(fzuv) = fzv−1,v ◦ fzv−2,v−1 ◦ · · · ◦ fzu,u+1;

• on 2-cells, θ(j,k)2(αzu,u+1) = αzu,u+1.

This map coincides with ηTX(j,k), the unit for the monad T , for all cells in X(j, k);

the extra cells in R(j, k) can be thought of as weakenings of the composites at
each level of the cuboidal pasting diagram, and θ(j,k) maps each of these cells
to the corresponding freely generated strict composite in TX(j, k).

We now apply the functor J : R → Q to the object of R described above;
this adds to R(j, k) all the required composites and contraction cells. As demon-
strated in the example above, this includes contraction cells in both directions
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between each of the extra 1-cells (those in R(j, k)1 but not in X(j, k)1) and the
corresponding freely generated composites at the same level of the pasting dia-
gram (i.e. of cells with the same z-coordinate). The tameness condition in the
contraction ensures that these contraction 2-cells are isomorphisms. The extra
1-cells will give us the choices of alternative composites in the nerve, and the
contraction cells ensure that these are coherently isomorphic to the composites
we originally had in the Penon weak 2-category whose nerve we are taking. We
denote the resulting object of Q by

Q(j, k) TX(j, k).
φ(j,k)

//

We now extend this to a definition of a functor E2 : Θ2 → Q, with the action
on objects as described above. To describe the action on a morphism in Θ2, we
first define a morphism in R, and then take its transpose under the adjunction

R Q
J

⊥
//

W
oo

to obtain a morphism in Q.
Let (p, q) : (j, k) → (l,m) be a morphism in Θ2. We define the strict 2-

category part of the morphism of R first. Define a map of 2-globular sets
x(p, q) : X(j, k)→ TX(l,m) as follows:

• for au ∈ X(j, k)0, x(p, q)0(au) = ap(u);

• for fzu,u+1 ∈ X(j, k)1, x(p, q)1(fzu,u+1) ={
f
q(z)
p(u+1)−1,p(u+1) ◦ · · · ◦ f

q(z)
p(u),p(u)+1 if p(u) < p(u+ 1),

1ap(u)
if p(u) = p(u+ 1);

• for αzu,u+1 ∈ X(j, k)2, x(p, q)2(αzu,u+1) ={
α
q(z)
p(u+1)−1,p(u+1) ∗ · · · ∗ α

q(z)
p(u),p(u)+1 if p(u) < p(v), q(z − 1) < q(z),

1TX(p,q)1(fzu,u+1) if q(z − 1) = q(z).

To obtain a map TX(j, k) → TX(l,m) we apply T and compose this with the
multiplication for T , giving

TX(j, k) T 2X(l,m) TX(l,m)
Tx(p,q)

//
µTX(l,m)

//

We now define a map

R(j, k) Q(l,m)

TX(j, k) T 2X(l,m) TX(l,m),

r(p,q)
//

θ(j,k)

��

φ(l,m)

��

Tx(p,q)
//

µTX(l,m)

//

where the map r(p, q) is defined as follows:
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• for au ∈ R(j, k)0, R(p, q)0(au) = ap(u);

• for fzuv ∈ R(j, k)1,

R(p, q)1(fzuv) =

{
f
q(z)
p(u)p(v) if p(u) < p(v),

1ap(u)
if p(u) = p(v);

• for αzuv ∈ R(j, k)2,

R(p, q)2(αzuv) =


α
q(z)
p(u)p(v) if p(u) < p(v), q(z − 1) < q(z),

1
f
q(z)

p(u)p(v)

if p(u) < p(v), q(z − 1) = q(z),

11ap(u)
if p(u) = p(v).

Finally, we take the transpose of this map under the adjunction

R Q.
J

⊥
//

W
oo

We write ε : JW ⇒ 1 for the counit of this adjunction, and εφ(l,m)
for the

component corresponding to

Q(l,m) TX(l,m).
φ(l,m)

//

Then the transpose is given by the composite

εφ(l,m)
◦ J
(
r(p, q), µTX(l,m) ◦ Tx(p, q)

)
.

This allows us to define the functors E2 : Θ2 → Q and I2 : Θ2 → P -Alg.

Definition 5.2.1. Define a functor E2 : Θ2 → Q as follows:

• given an object (j, k) ∈ Θ2, E2(j, k) is defined to be the object

Q(j, k) TX(j, k).
φ(j,k)

//

of Q;

• given a morphism (p, q) : (j, k) → (l,m) in Θ2, E2(p, q) is defined to be
the map

εφ(l,m)
◦ J
(
r(p, q), µTX(l,m) ◦ Tx(p, q)

)
.

Write K : Q → P -Alg for the Eilenberg–Moore comparison functor for the
adjunction

n-GSet Q.
F

⊥
//

U
oo

We define a functor I2 := K ◦ E2 : Θ2 → P -Alg.

We can now define the nerve functor for Penon weak 2-categories.
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Definition 5.2.2. The nerve functor N for Penon weak 2-categories is defined
by

N : P -Alg −→ [(Θ2)op,Set]

A

f

��

P -Alg(I2(−),A)

f◦−

��

7−→

B P -Alg(I2(−),B).

For a P -algebra A, the presheaf NA = P -Alg(I2(−),A) is called the nerve of
A.

5.3 The Segal condition

In this section we prove that the nerve of a Penon weak 2-category satisfies the
Segal condition, and is therefore a Tamsamani–Simpson weak 2-category. Recall
from Definition 5.1.4 that NA satisfies the Segal condition if

(i) for all j ≥ 0, the Segal map

Sj : NA(j,−) −→ NA(1,−)×NA(0,1) · · · ×NA(0,1) NA(1,−)︸ ︷︷ ︸
j

is contractible, i.e. surjective on objects, full and faithful on 1-cells;

(ii) for all j, k ≥ 0, the Segal map

Sj,k : NA(j, k) −→ NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

is a bijection.

Our approach is to use the way in which nerve functor is defined to rewrite
the Segal maps in terms of composition with certain maps of P -algebras; this
then allows us to express most parts of the Segal condition (everything except
surjectivity on objects) as statements describing certain P -algebras in the image
of I2 as colimits of diagrams in the image of I2.

Before doing this, we establish some notation for certain free P -algebras in
the image of I2 that can be expressed as colimits of others; these P -algebras
arise in the reformulation of the Segal condition described above. Observe that
the free P -algebra functor FP can be factorised as

2-GSet
FP //

F
##

P -Alg

Q
K

<<

Thus, we see from the construction of I2 that, for j, k ∈ N, if R(j, k) = X(j, k),
then I2(j, k) = FPX(j, k). Since R(j, k) and X(j, k) differ only on 1-cells, this
happens precisely when R(j, k)1 = X(j, k)1, which is true when j = 0 and j = 1:
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• for j = 0, R(j, k)1 = ∅ = X(j, k)1;

• for j = 1, R(j, k)1 = {fz01 | 0 ≤ z ≤ k} = X(j, k)1.

Thus I2(0, 0) = FPX(0, 0), and I2(1, k) = FPX(1, k) for all k ∈ N. For j ≥ 2,
we have f0

02 ∈ R(j, k), but f0
02 6∈ X(j, k), so this does not hold for j ≥ 2.

Recall that, for all k > 0, 0 ≤ i ≤ k, we have a map di : [k − 1] → [k] in ∆
given by

di(j) =

{
j if j < i,
j + 1 if j ≥ i,

and consider the following diagram in P -Alg:

I2(0, 0)

I2(d0,1)

||

I2(d1,1)

""

I2(0, 0)

I2(d0,1)

||

I2(d1,1)

""

I2(1, 0) I2(1, 0) . . . I2(1, 0) I2(1, 0).︸ ︷︷ ︸
j copies of I2(1,0)

Write I2(1, 0)qj for the colimit of this diagram in P -Alg. By the observations
above, this diagram is the image under FP of the diagram

X(0, 0)

a1

||

a0

""

X(0, 0)

a1

||

a0

""

X(1, 0) X(1, 0) . . . X(1, 0) X(1, 0)︸ ︷︷ ︸
j copies of X(1,0)

in 2-GSet, where a0 : X(0, 0)→ X(1, 0) maps the single 0-cell of X(0, 0) to a0,
and similarly for a1. The colimit in 2-GSet of this diagram is X(j, 0), and thus

I2(1, 0)qj = FPX(j, 0),

the free P -algebra on a composable string of j 1-cells.
Similarly, we write I2(1, 1)qj for the colimit in P -Alg of the diagram

I2(0, 1)

I2(d0,1)

||

I2(d1,1)

""

I2(0, 1)

I2(d0,1)

||

I2(d1,1)

""

I2(1, 1) I2(1, 1) . . . I2(1, 1) I2(1, 1),︸ ︷︷ ︸
j copies of I2(1,1)

which is the image under FP of the diagram

X(0, 1)

a1

||

a0

""

X(0, 1)

a1

||

a0

""

X(1, 1) X(1, 1) . . . X(1, 1) X(1, 1)︸ ︷︷ ︸
j copies of X(1,1)
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in 2-GSet. The colimit in 2-GSet of this diagram is X(j, 1), and thus

I2(1, 1)qj = FPX(j, 1),

the free P -algebra on a string of j 2-cells composable along boundary 0-cells.
We now rewrite the Segal maps of the form Sj in terms of composition with

certain maps of P -algebras.

Lemma 5.3.1. Let A be a Penon weak 2-category. For all j > 0, we have

NA(1,−)×NA(0,−) · · · ×NA(0,−) NA(1,−)︸ ︷︷ ︸
j

∼= P -Alg(I2(1,−)qj ,A)

and the Segal map Sj is given by

Sj = · ◦ dqj : P -Alg(I2(j,−),A) −→ P -Alg(I2(1,−)qj ,A),

where dqj : I2(1,−)qj → I2(j,−) is a map in [∆, P -Alg], defined in the proof.

Proof. We have the following functors:

N 2A(·,−) : ∆op −→ [∆op,Set]

k

α

��

P -Alg(I2(k,−),A)

·◦I2(α,−)

��

7−→

j P -Alg(I2(j,−),A),

I2(·,−) : ∆ −→ [∆, P -Alg]

j

α

��

I2(j,−)

I2(α,−)

��

7−→

k I2(k,−),

and

P -Alg(−,A) : [∆, P -Alg]op −→ [∆op,Set]

X

δ

��

P -Alg(X(−),A)

−◦δ

��

7−→

Y P -Alg(Y (−),A).

We can factorise NA(·,−) as follows:

∆op
NA(·,−)

//

I2(·,−)
((

[∆op,Set]

[∆, P -Alg]op

P -Alg(−,A)

55
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For each, [j] ∈ ∆, we consider the actions of the functors NA(·,−) and
I2(·,−) on the diagram

[j]

[1]

ι1

44

[1]

ι2

88

[1]

ι3

EE

. . . [1]

ιj−1

ee

[1]

ιj

ii

[0]
τ

__

σ

??

[0]
τ

__

σ

??

[0]
τ

__

σ

??

in ∆.
Applying NA(·,−) to this diagram gives

P -Alg(I2(j,−),A)

P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A) P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A)

P -Alg(I2(0,−),A) P -Alg(I2(0,−),A)

. . .

uu

�� ��

))

t

��

s
��

t
��

s

��

which is a cone over the diagram

P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A) P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A)

P -Alg(I2(0,−),A) P -Alg(I2(0,−),A)

. . .

t

��

s
��

t
��

s

��

Applying I2(·,−)op to the original diagram gives

I2(j,−)

vv �� �� ((

I2(1,−)

t ""

I2(1,−)

s||

. . . I2(1,−)

t ""

I2(1,−)

s||

I2(0,−) I2(0,−)

in [∆, P -Alg]op, which is a cone over the diagram

j︷ ︸︸ ︷
I2(1,−)

t $$

I2(1,−)

szz

. . . I2(1,−)

t $$

I2(1,−)

szz

I2(0,−) I2(0,−)
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The limit of this diagram is I2(1,−)qj , and this limit induces a unique map dqj

such that the diagram

I2(j,−)

�� �� �� ��

!dqj

��

I2(1,−)qj

vv �� �� ((

I2(1,−)

t ""

I2(1,−)

s||

. . . I2(1,−)

t ""

I2(1,−)

s||

I2(0,−) I2(0,−)

Applying P -Alg(−,A) to this diagram, we get:

P -Alg(I2(j,−),A)

P -Alg(I2(1,−)qj ,A)

P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A) P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A)

P -Alg(I2(0,−),A) P -Alg(I2(0,−),A)

. . .

−◦dqj

��

��

�� ��

��uu

�� ��

))

t

��

s
��

t
��

s

��

Since P -Alg(−,A) is representable, it preserves limits [ML98, V.6 Theorem 3],
so we have that

P -Alg(I2(1,−),A)×P -Alg(I2(0,−),A) · · · ×P -Alg(I2(0,−),A) P -Alg(I2(1,−),A)︸ ︷︷ ︸
k

∼= P -Alg(I2(1,−)qj ,A)

and the Segal map Sj is given by composition with dqj , as required.

Similarly, we now rewrite the Segal maps of the form Sj,k in terms of com-
position with certain maps of P -algebras.

Lemma 5.3.2. Let A be a Penon weak 2-category. For all j, k > 0, we have

NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

∼= P -Alg(I2(j, 1)qk,A)



5.3 The Segal condition 167

and the Segal map Sj,k is given by

Sj,k = · ◦ dqk : P -Alg(I2(j, k),A) −→ P -Alg(I2(j, 1)qk,A),

where dqk : I2(j, 1)qk → I2(j, k) is a map of P -algebras, defined in the proof.

Proof. We take a similar approach to that used in the proof of Lemma 5.3.1.
For each j > 0, we have the following functors:

N 2A(j, ·) : ∆op −→ [∆op,Set]

l

α

��

P -Alg(I2(j, l),A)

·◦I2(1j ,α)

��

7−→

k P -Alg(I2(j, k),A),

and

I2(j,−) : ∆ −→ [∆, P -Alg]

k

α

��

I2(j, k)

I2(1j ,α)

��

7−→

l I2(j, l),

and we can factorise NA(j, ·) as follows:

∆op
NA(j,·)

//

I2(j,·)
((

[∆op,Set]

[∆, P -Alg]op

P -Alg(−,A)

55

For each, [k] ∈ ∆, we consider the effects of the functors NA(j, ·) and I2(j, ·)
on the diagram

[k]

[1]

ι1

44

[1]

ι2

88

[1]

ι3

EE

. . . [1]

ιk−1

ee

[1]

ιk

ii

[0]
τ

__

σ

??

[0]
τ

__

σ

??

[0]
τ

__

σ

??

in ∆. By exactly the same argument as the case of Sj , we have a unique map
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dqk such that

I2(j, k)

�� �� �� ��

!dqk

��

I2(j, 1)qk

ww �� �� ''

I2(j, 1)

t   

I2(j, 1)

s~~

. . . I2(j, 1)

t   

I2(j, 1)

s~~

I2(j, 0) I2(j, 0)

and applying the functor P -Alg(−,A) gives us the diagram

P -Alg(I2(j, k),A)

P -Alg(I2(j, 1)qk,A)

P -Alg(I2(j, 1),A)

P -Alg(I2(j, 1),A) P -Alg(I2(j, 1),A)

P -Alg(I2(j, 1),A)

P -Alg(I2(j, 0),A) P -Alg(I2(j, 0),A)

. . .

−◦dqk

��

��

�� ��

��uu

�� ��

))

t

��

s
��

t
��

s

��

Thus we have that

P -Alg(I2(j, 1),A)×P -Alg(I2(j,0),A) · · · ×P -Alg(I2(j,0),A) P -Alg(I2(j, 1),A)︸ ︷︷ ︸
k

∼= P -Alg(I2(j, 1)qk,A)

and the Segal map Sj,k is given by composition with dqk, as required.

We now use Lemmas 5.3.1 and 5.3.2 to prove that the nerve of a Penon weak
2-category satisfies the Segal condition. We begin with the Segal maps of the
form Sj .

Proposition 5.3.3. Let A be a Penon weak 2-category. For all j > 0, the Segal
map

Sj : NA(j,−)→ NA(1,−)×NA(0,−) · · · ×NA(0,−) NA(1,−)︸ ︷︷ ︸
j

is surjective on 0-cells, i.e. the map

(Sj)0 : NA(j, 0)→ NA(1, 0)×NA(0,0) · · · ×NA(0,0) NA(1, 0)︸ ︷︷ ︸
j
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is surjective.

Proof. By Lemma 5.3.1, the Segal map Sj is given by

Sj = · ◦ dqj : P -Alg(I2(j,−),A)→ P -Alg(I2(1,−)qj ,A),

so we need to show that

(Sj)0 = · ◦ dqj : P -Alg(I2(j, 0),A)→ P -Alg(I2(1, 0)qj ,A)

is surjective. Let φ : I2(1, 0)qj → A be a map of Penon weak 2-categories. We
must find a map ψ : I2(j, 0) → A such that (Sk)0(ψ) = φ, i.e. such that the
diagram

I2(1, 0)qj
φ

//
� s

dqj %%

A

I2(j, 0)

ψ

<<

commutes.
Write the P -algebra A as

PA A
θ //

so UPA = A. We define ψ by factoring through the free algebra FPA. Define
a map

R(j, 0) PA

TX(j, 0) T 2A TA

g
//

θ(j,0)

��

pA

��

Th
//

µTA

//

in R as follows:
The map g : R(j, 0)→ PA is defined by:

• for all au ∈ R(j, 0)0, g0(au) = φ0(au);

• for f0
uv ∈ R(j, 0)1 with v = u+ 1,

g1(f0
uv) = φ1(f0

uv);

• for f0
uv ∈ R(j, 0)1 with v > u+ 1

g1(f0
uv) =

((
· · ·
(
φ1(f0

v−1,v) ◦ φ1(f0
v−2,v−1)

)
◦ · · ·

)
◦ φ1(f0

u,u+1)
)
.

Note that R(j, 0)2 = ∅, so we do not need to define g on 2-cells.
The map h : X(k, 0)→ TA is defined by:

• for all au ∈ X(j, 0)0, h0(au) = φ0(au);

• for all f0
u,u+1 ∈ X(j, 1)1,

h1(f0
u,u+1) = pA ◦ φ1(f0

u,u+1)
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Note that X(j, 0)2 = ∅, so we do not need to define h on 2-cells.
This defines a map in R. We then take the transpose of this map under the

the adjunction

R Q
J

⊥
//

W
oo

We write ε : JW ⇒ 1 for the counit of this adjunction, and εφk
for the component

corresponding to

Q(j, 0) TX(j, 0).
φ(j,0)

//

Then the transpose is given by the composite

εφ(j,0)
◦ J(g, µTA ◦ Th).

Finally, we apply the Eilenberg–Moore comparison functor K : Q → P -Alg to
this; we write

χ := K(εφ(j,0)
◦ J(g, µTA ◦ Th)),

and define

ψ := θ ◦ χ : I2(j, 0)→ A.

We now check commutativity of the diagram

I2(1, 0)qj
φ

//
� s

dqj %%

A

I2(j, 0)

ψ

<<

This commutes if the diagram

X(j, 0) UPFPX(j, 0) UPA

UPFPX(j, 0) UP I2(j, 0)

ηPX(j,0)
//

ηPX(j,0)
��

UPφ //

UP d
qj

//

UPψ

GG

commutes; we check this using an elementary approach. Since X(j, 0)2 = ∅, we
do not have to check commutativity on 2-cells. We have

• for au ∈ X(j, 0)0,

UPψ0 ◦ UP dqj0 ◦ ηPX(j,0)(au) = UPψ0(au) = UPφ0 ◦ ηPX(j,0)(au);

• for fzu,u+1 ∈ X(j, 0)1,

UPψ1 ◦UP dqj1 ◦ ηPX(j,0)(f
z
u,u+1) = UPψ1(fzu,u+1) = UPφ1 ◦ ηPX(j,0)(f

z
u,u+1);

hence the diagram commutes. Hence Sj is surjective on 0-cells.
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We now use Lemma 5.3.1 us to express the fullness and faithfulness part
of the Segal condition in terms of colimits of P -algebras. Recall from Defini-
tion 4.2.3 that, given a map of simplicial sets α : A → B, we have an induced
map α̃1 in Set, as shown in the diagram below:

A1
s

&&

t

..

α1

55

α̃1

''

A0 ×B0
B1 ×B0

A1
//

��

''

A0

α0

��

B1 s
//

t

��

B0

A0 α0

// B0

and that α is full and faithful on 1-cells if the map α̃1 is an isomorphism. We
wish to show that, for all j ≥ 0, the Segal map

Sj : P -Alg(I2(j,−),A) −→ P -Alg(I2(1,−)qj ,A)

is full and faithful on 1-cells. By the description of fullness and faithfulness
above, this happens when the diagram

P -Alg(I2(j, 1),A)
s //

−◦(dqj)1

))

t

��

P -Alg(I2(j, 0),A)

−◦(dqj)0

��

P -Alg(I2(1, 1)qj ,A)
s
//

t

��

P -Alg(I2(1, 0)qj ,A)

P -Alg(I2(j, 0),A)
−◦(dqj)0

// P -Alg(I2(1, 0)qj ,A).

is a limit cone in Set. This cone lies in the image of the functor

P -Alg(−,A) : P -Algop −→ Set,

and this functor is representable, so it preserves limits [ML98, V.6 Theorem 3].
Hence Sj is full and faithful on 1-cells if the diagram

I2(1, 0)q3

(dq3)0

yy

I2(d1,1)q3

&&

I2(1, 0)q3

I2(d0,1)q3

xx

(dq3)0

%%

I2(3, 0)

I2(1,d1)
**

I2(1, 1)q3

(dq3)1

��

I2(3, 0)

I2(1,d0)
tt

I2(3, 1)

is a colimit cocone in P -Alg.
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Before proving this, we describe what this means in the case j = 3. The
P -algebra I2(1, 1)q3 consists of three 2-cells composed horizontally:

a0 a1 a2 a3,

f0
01

��

f1
01

@@

f0
12

��

f1
12

@@

f0
12

��

f1
12

@@
α1

01

��
α1

12

��
α1

23

��

with the copies of I2(1, 0)q3 in the diagram giving its source and target strings
of 1-cells. The P -algebra I2(3, 0) is a tetrahedron whose faces are isomorphism
2-cells:

a1 a2

a0 a3

=

a1 a2

a0 a3.

f01

GG

f12 //

f23

��

f03

//

f02

::

f01

GG

f12 //

f23

��

f03

//

f13

$$

∼= �# ∼={�

∼=�� ∼= ��

Taking the colimit of the diagram glues one of these tetrahedra to the string of
source 1-cells of I2(1, 1)q3, and the other to the string of target 1-cells. Thus
the fullness and faithfulness condition tells us that I2(3, 1) can be obtained this
way; it is a simplicially weakened version of the cuboidal pasting diagram (3, 1).

Lemma 5.3.4. For all j > 0, the diagram

I2(1, 0)qj

(dqj)0

yy

I2(d1,1)qj

&&

I2(1, 0)qj

I2(d0,1)qj

xx

(dqj)0

%%

I2(j, 0)

I2(1,d1)
**

I2(1, 1)qj

(dqj)1

��

I2(j, 0)

I2(1,d0)
tt

I2(j, 1)

is a colimit cocone in P -Alg.

To prove Lemma 5.3.4, we check directly that I2(j, 1) satisfies the universal
property for the colimit. In order to do this we must specify maps out of I2(j, 1)
and I2(j, k), which we define dimension by dimension, starting at dimension 0
and working up.

Recall from the construction of I2(j, k) that at each dimension (excluding
dimension 0), we have three types of cell: generating cells (those in R(j, k)),
contraction cells, and composites. Since we are defining a map of P -algebras,
once we have defined the effect of the map on generating cells and contraction
cells, the effect on composites is determined by the fact that the map must
preserve the P -algebras structure (in a way that we will make precise later). A
similar statement is true for some of the contraction cells, but not all of them;
due to the fact that (for j > 1) I2(j, k) is not a free P -algebra, only certain
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contraction cells are required to be preserved by the P -algebra structure. We
refer to these cells as “algebraic contraction cells”.

To see which contraction cells are algebraic contraction cells, suppose we
are defining a map ψ : I2(j, k) → A. This consists of a map of 2-globular sets
ψ : UP I2(j, k) = Q(j, k)→ A such that

PQ(j, k) PA

Q(j, k) A

Pψ
//

��

θ

��

ψ
//

commutes, where the left-hand map is the algebra action for I2(j, k). The
commutativity of this diagram is what ensures that the P -algebra structure
is preserved. Thus, the contraction cells that must be preserved are precisely
those which are recognised as contraction cells by the P -algebra structure, i.e.
a contraction cell in Q(j, k) is an algebraic contraction cell if it is the image
under the algebra action PQ(j, k) → Q(j, k) of a contraction cell in PQ(j, k).
Since the only contraction 1-cells in I2(j, k) are the identities, all contraction
1-cells are algebraic. The algebraic contraction 2-cells in I2(j, k) consist of the
identities, and any contraction cells that alter the bracketing of a composite,
or alter the number of identities that appear in a composite, but do nothing
else. In particular, the source and target of a non-identity algebraic contraction
2-cell in I2(j, k) are always composites of cells in I2(j, k), and these composites
feature the same generating cells in the same order.

Another pivotal fact about I2(j, k) is that, in the construction, when we
apply the coequaliser (in order to “add contraction 3-cells”), we identify all
parallel 2-cells. Thus in I2(j, k) there are no distinct parallel 2-cells. This
allows us to write many of the contraction cells as composites of others.

Proof of Lemma 5.3.4. In this proof, we present the case j = 3, before moving
on to the case of general j, since for a fixed value of j we are able to write down
all of the cells in I2(j, 1) (though note that we still omit certain composites). We
use j = 3 rather than j = 2 (the simplest case of the lemma) because I2(2, 1) is
too small for this case to exhibit all the features of the general case.

Suppose we have a P -algebra A and a cocone

I2(1, 0)q3

(dq3)0

yy

I2(d1,1)q3

&&

I2(1, 0)q3

I2(d0,1)q3

xx

(dq3)0

%%

I2(3, 0)

g

**

I2(1, 1)q3

λ

��

I2(3, 0)

h

ttA

in P -Alg. We define a map of P -algebras

ψ : I2(3, 1)→ A
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such that the diagram

I2(1, 0)q3

(dq3)0

yy

I2(d1,1)q3

&&

I2(1, 0)q3

I2(d0,1)q3

xx

(dq3)0

%%

I2(3, 0)

g

//

I2(1,d1)
**

I2(1, 1)q3

λ

((

(dq3)1

��

I2(3, 0)

h

oo

I2(1,d0)
tt

I2(3, 1)

ψ

��

A

commutes.
To define the map ψ, we first list the cells in I2(3, 1). We list the cells by

dimension, and for dimensions above 0, we break the list down further, into
generating cells, contraction cells, and composites.

• 0-cells: au for all 0 ≤ u ≤ 3;

• 1-cells:

– Generating cells:

fzuv for all 0 ≤ u < v ≤ 3, 0 ≤ z ≤ 1;

– Contraction cells:

[au, au] = idau for all 0 ≤ u ≤ 3;

– Composites: Although we don’t need to define the action of ψ on
composites, since this is determined by the fact that ψ preserves the
P -algebra structure, it is useful to list them here since we need to
know what they are in order to write down the contraction 2-cells.
Note that this list does not include composites involving identities.

fzvw ◦ fyuv for all 0 ≤ u < v < w ≤ 3, y, z ∈ {0, 1};

(fz23 ◦ f
y
12) ◦ fx01, f

z
23 ◦ (fy12 ◦ fx01) for all x, y, z ∈ {0, 1}

• 2-cells:

– Generating cells:
α1
uv for all 0 ≤ u < v ≤ 3;

– Contraction cells: There are three different types of contraction cell
in I2(3, 1) – the algebraic contraction cells, the triangular contraction
cells corresponding to the cells denoted ιzuvw in Leinster nerve con-
struction (see Section 5.1), and those which are composites of cells
of the two other types.

The algebraic contraction cells are those of the form:

[(fz23 ◦ f
y
12) ◦ fx01, f

z
23 ◦ (fy12 ◦ fx01)],
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[fz23 ◦ (fy12 ◦ fx01), (fz23 ◦ f
y
12) ◦ fx01],

for all x, y, z ∈ {0, 1}, as well as identities on all 1-cells. The trian-
gular contraction cells, all of which lie in the image of either I2(1, d1)
or I2(1, d0), are those of the form:

[f0
uw, f

0
vw ◦ f0

uv] = I2(1, d1)[f0
uw, f

0
vw ◦ f0

uv],

[f0
vw ◦ f0

uv, f
0
uw] = I2(1, d1)[f0

vw ◦ f0
uv, f

0
uw],

[f1
uw, f

1
vw ◦ f1

uv] = I2(1, d0)[f0
uw, f

0
vw ◦ f0

uv],

[f1
vw ◦ f1

uv, f
1
uw] = I2(1, d0)[f0

vw ◦ f0
uv, f

0
uw],

For all 0 ≤ u < v < w ≤ 3. The remaining contraction cells are
composites of those above:

[f0
13 ◦ f1

01, (f
0
23 ◦ f0

12) ◦ f1
01] = [f0

13, f
0
23 ◦ f0

12] ∗ [f1
01, f

1
01],

[(f0
23 ◦ f0

12) ◦ f1
01, f

0
13 ◦ f1

01] = [f0
23 ◦ f0

12, f
0
13] ∗ [f1

01, f
1
01],

[f1
13 ◦ f0

01, (f
1
23 ◦ f1

12) ◦ f0
01] = [f1

13, f
1
23 ◦ f1

12] ∗ [f0
01, f

0
01],

[(f1
23 ◦ f1

12) ◦ f0
01, f

1
13 ◦ f0

01] = [f1
23 ◦ f1

12, f
1
13] ∗ [f0

01, f
0
01],

[f0
23 ◦ f1

02, f
0
23 ◦ (f1

12 ◦ f1
01)] = [f0

23, f
0
23] ∗ [f1

02, f
1
12 ◦ f1

01],

[f0
23 ◦ (f1

12 ◦ f1
01), f0

23 ◦ f1
02] = [f0

23, f
0
23] ∗ [f1

12 ◦ f1
01, f

1
02],

[f1
23 ◦ f0

02, f
1
23 ◦ (f0

12 ◦ f0
01)] = [f1

23, f
1
23] ∗ [f0

02, f
0
12 ◦ f0

01],

[f1
23 ◦ (f0

12 ◦ f0
01), f1

23 ◦ f0
02] = [f1

23, f
1
23] ∗ [f0

12 ◦ f0
01, f

0
02].

We now define the map ψ : I2(3, 1)→ A:

• On 0-cells:
ψ0(au) := g0(au) = h0(au) = λ0(au).

• On 1-cells:

ψ1(fzuv) :=

{
g1(fzuv) if z = 0,

h1(fz−1
uv ) if z = 1;

ψ1[au, au] = ψ(idau) := λ1(idau) = g1(idau) = h1(idau).

We do not need to define the action of ψ1 on composites explicitly; this is
automatic since ψ must preserve the P -algebra structure.

• On 2-cells:
ψ2(α1

uv) := λ(α1
uv);

ψ2[(fz23◦f
y
12)◦fx01, f

z
23◦(f

y
12◦fx01)] := [ψ1

(
(fz23◦f

y
12)◦fx01

)
, ψ1

(
fz23◦(f

y
12◦fx01)

)
];

ψ2[fz23◦(f
y
12◦fx01), (fz23◦f

y
12)◦fx01] := [ψ1

(
fz23◦(f

y
12◦fx01)

)
, ψ1

(
(fz23◦f

y
12)◦fx01

)
];

ψ2[f0
uw, f

0
vw ◦ f0

uv] := g2[f0
uw, f

0
vw ◦ f0

uv];

ψ2[f0
vw ◦ f0

uv, f
0
uw] := g2[f0

vw ◦ f0
uv, f

0
uw];

ψ2[f1
uw, f

1
vw ◦ f1

uv] := h2[f0
uw, f

0
vw ◦ f0

uv];

ψ2[f1
vw ◦ f1

uv, f
1
uw] := h2[f0

vw ◦ f0
uv, f

0
uw].

As with 1-cells, we do not need to define the action of ψ2 on composites,
including those contraction cells that are composites of others, since ψ
must preserve the P -algebra structure.
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We see by definition of ψ that it is a map of P -algebras, and that it makes the
required diagram commute. It is clear that, at each stage of the construction of
ψ, if we defined the map differently it would not have satisfied these conditions;
in the case of the cells on which ψ is defined explicitly, any other definition
would fail to make the diagram commute, and in the case of all other cells, any
other definition would fail to give a map of P -algebras.

Thus, ψ is the unique map of P -algebras making the required diagram com-
mute, so I2(3, 1) is the colimit in P -Alg of the diagram

I2(1, 0)q3

(dq3)0

yy

I2(d1,1)q3

&&

I2(1, 0)q3

I2(d0,1)q3

xx

(dq3)0

%%

I2(3, 0) I2(1, 1)q3 I2(3, 0)

We now prove the lemma for a general value of j. Suppose we have a P -
algebra A and a cocone

I2(1, 0)qj

(dqj)0

yy

I2(d1,1)qj

&&

I2(1, 0)qj

I2(d0,1)qj

xx

(dqj)0

%%

I2(j, 0)

g

**

I2(1, 1)qj

λ

��

I2(j, 0)

h

ttA

in P -Alg. We define a map of P -algebras

ψ : I2(j, 1)→ A

such that the diagram

I2(1, 0)qj

(dqj)0

yy

I2(d1,1)qj

&&

I2(1, 0)qj

I2(d0,1)qj

xx

(dqj)0

%%

I2(j, 0)

g

//

I2(1,d1)
**

I2(1, 1)qj

λ

((

(dqj)1

��

I2(j, 0)

h

oo

I2(1,d0)
tt

I2(j, 1)

ψ

��

A

commutes.
To define the map ψ, we first list the cells in I2(j, 1). As for the case j = 3,

we list the cells by dimension, and for dimensions above 0, we list generating
cells and contraction cells separately. Note that in this case we do not list the
composites, since the notation would become very unwieldy; the action of ψ
on composites is determined by the fact that fact that it must preserve the
P -algebra structure, so we do not need to list the composites explicitly.
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• 0-cells: au for all 0 ≤ u ≤ j;

• 1-cells:

– Generating cells:

fzuv for all 0 ≤ u < v ≤ j, 0 ≤ z ≤ 1;

– Contraction cells:

[au, au] = idau for all 0 ≤ u ≤ j;

• 2-cells:

– Generating cells:
α1
uv for all 0 ≤ u < v ≤ j;

– Contraction cells: As in the case j = 3, we have algebraic contraction
cells and triangular contraction cells corresponding to the cells ιzuvw;
since all diagrams of contraction 2-cells commute in I2(j, 1), all other
contraction cells can be expressed as composites of contraction cells
of these two types.

The algebraic contraction cells are those mediating between differ-
ently bracketed composites of the same 1-cells, and also identities on
all 1-cells. The triangular contraction cells are those of the form:

[f0
uw, f

0
vw ◦ f0

uv] = I2(1, d1)[f0
uw, f

0
vw ◦ f0

uv],

[f0
vw ◦ f0

uv, f
0
uw] = I2(1, d1)[f0

vw ◦ f0
uv, f

0
uw],

[f1
uw, f

1
vw ◦ f1

uv] = I2(1, d0)[f0
uw, f

0
vw ◦ f0

uv],

[f1
vw ◦ f1

uv, f
1
uw] = I2(1, d0)[f0

vw ◦ f0
uv, f

0
uw],

for all 0 ≤ u < v < w ≤ j. All remaining contraction cells are
horizontal composites of those of the form

[fzvm−1,vm ◦ · · · ◦ f
z
v1,v2

◦ fzv0,v1
, fzul−1,ul

◦ · · · ◦ fzu1,u2
◦ fzu0,u1

],

for all l, m ≥ 2, 0 ≤ u0 < u1 < · · · < ul ≤ j, u0 = v0 < v1 < · · · <
vm = ul, 0 ≤ z ≤ 1. Note that we omit the choice of bracketing in
the contraction cell above; there is one such cell for each choice of
bracketing of the source and target. Each of these contraction cells
can be written as a composite of algebraic contraction cells and the
triangular contraction cells above.

We now define the map ψ : I2(j, 1)→ A:

• On 0-cells:
ψ0(au) := g0(au) = h0(au) = λ0(au).

• On 1-cells:

ψ1(fzuv) :=

{
g1(fzuv) if z = 0,

h1(fz−1
uv ) if z = 1;

ψ1[au, au] = ψ(idau) := λ1(idau) = g1(idau) = h1(idau).

As in the case j = 3, we do not need to describe the action of ψ on
composites explicitly, since it must preserve the P -algebra structure.
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• On 2-cells:
ψ2(α1

uv) := λ(α1
uv);

ψ2[f0
uw, f

0
vw ◦ f0

uv] := g2[f0
uw, f

0
vw ◦ f0

uv];

ψ2[f0
vw ◦ f0

uv, f
0
uw] := g2[f0

vw ◦ f0
uv, f

0
uw];

ψ2[f1
uw, f

1
vw ◦ f1

uv] := h2[f0
uw, f

0
vw ◦ f0

uv];

ψ2[f1
vw ◦ f1

uv, f
1
uw] := h2[f0

vw ◦ f0
uv, f

0
uw].

As in the case j = 3, we do not need to describe the action of ψ on
the remaining 2-cells explicitly, since they are either algebraic contraction
cells, or composites involving the algebraic contraction cells and those
above.

We see by definition of ψ that it is a map of P -algebras, and that it makes the
required diagram commute. It is clear that, at each stage of the construction of
ψ, if we defined the map differently it would not have satisfied these conditions;
in the case of the cells on which ψ is defined explicitly, any other definition
would fail to make the diagram commute, and in the case of all other cells, any
other definition would fail to give a map of P -algebras.

Thus, ψ is the unique map of P -algebras making the required diagram com-
mute, so I2(j, 1) is the colimit in P -Alg of the diagram

I2(1, 0)qj

dqj0

yy

I2(d1,1)qj

&&

I2(1, 0)qj

I2(d0,1)qj

xx

dqj0

%%

I2(j, 0) I2(1, 1)qj I2(j, 0),

as required.

The following is now an immediate corollary of Lemma 5.3.4, via our char-
acterisation of fullness and faithfulness of the Segal maps in terms of colimits
in P -Alg.

Corollary 5.3.5. Let A be a Penon weak 2 category. For all j > 0, the Segal
map

Sj : P -Alg(I2(j,−),A) −→ P -Alg(I2(1,−)qj ,A)

is full and faithful on 1-cells.

We now apply a similar argument to the Segal maps Sj,k, and reformulate
the remaining part of the Segal condition in terms of colimits of P -algebras, as
we did for Sj . By Lemma 5.3.1, Sj,k is given by

NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

∼= P -Alg(I2(j, 1)qk,A).

This is a bijection if I2(j, 1)qk = I2(j, k), and the map

dqk : I2(j, 1)qk → I2(j, k)

is the identity. This tells us that I2(j, k) can be obtained by gluing k copies of
I2(j, 1) along their boundary copies of I2(j, 0). Thus, the Segal map Sj,k is a
bijection if the following lemma holds:
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Lemma 5.3.6. For all j ≥ 0, k > 0, the diagram

I2(j, 0)

I2(j, 1) I2(j, 1)

I2(j, 0)

I2(j, 1)I2(j, 1). . .

I2(j, k)

I2(1,d0)

��

I2(1,d1)

��

I2(1,d0)

��

I2(1,d1)

��

I2(1,ι1) ..

I2(1,ι2)
��

I2(1,ιk−1)
��

I2(1,ιk)pp

is a colimit cocone in P -Alg.

Proof. Let A be a Penon weak 2-category, and suppose we have a cocone

I2(j, 0)

I2(j, 1) I2(j, 1)

I2(j, 0)

I2(j, 1)I2(j, 1). . .

A

I2(1,d0)

��

I2(1,d1)

��

I2(1,d0)

��

I2(1,d1)

��

g(1)
//

g(2)

��
g(k−1)

��
g(k)

oo

in P -Alg. We define a map of P -algebras

ψ : I2(j, k) −→ A

such that the diagram

I2(j, 0)

I2(j, 1) I2(j, 1)

I2(j, 0)

I2(j, 1)I2(j, 1). . .

I2(j, k)

A

I2(1,d0)

��

I2(1,d1)

��

I2(1,d0)

��

I2(1,d1)

��

..
�� ��

pp

g(1)

..

g(2)

!!

g(k−1)

}}

g(k)

pp

ψ

��

commutes, and show that this is the unique such map of P -algebras. We take
the same approach as in the proof of Lemma 5.3.4, defining the map by an
elementary approach, and using the fact that it must preserve the P -algebra
structure to avoid having to define it explicitly on every cell of I2(j, k). To do
so we now list the cells of I2(j, k); note that, as before, we do not list composites
or algebraic contraction cells.

• 0-cells: au for all 0 ≤ u ≤ j;
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• 1-cells:

– Generating cells:

fzuv for all 0 ≤ u < v ≤ j, 0 ≤ z ≤ k;

– Contraction cells:

[au, au] = idau for all 0 ≤ u ≤ j;

• 2-cells:

– Generating cells:

αzuv for all 0 ≤ u < v ≤ j, 1 ≤ z ≤ k;

– Contraction cells: As in Lemma 5.3.4, we have algebraic contrac-
tion cells and triangular contraction cells corresponding to the cells
ιzuvw from Leinster’s nerve construction for bicategories (Section 5.1);
since all diagrams of contraction 2-cells commute in I2(j, 1), all other
contraction cells can be expressed as composites of contraction cells
of these two types.

The algebraic contraction cells are those mediating between differ-
ently bracketed composites of the same 1-cells, and also identities on
all 1-cells. The triangular contraction cells are those of the form:

[fzuw, f
z
vw ◦ fzuv],

and
[fzvw ◦ fzuv, fzuw],

for all 0 ≤ u < v < w ≤ j, 0 ≤ z ≤ k. As in Lemma 5.3.4, all
remaining contraction cells are composites of those above.

We now define the map ψ : I2(j, k)→ A:

• On 0-cells:
ψ0(au) := g

(1)
0 (au).

• On 1-cells:

ψ1(fzuv) :=

{
g

(0)
1 (f0

uv) if z = 0,

g
(z)
1 (f1

uv) otherwise;

ψ1[au, au] = ψ(idau) := g
(1)
1 (idau).

As in Lemma 5.3.4, we do not need to describe the action of ψ on com-
posites explicitly, since it must preserve the P -algebra structure.

• On 2-cells:
ψ2(αzuv) := g

(z)
2 (α1

uv);

ψ2[f0
uw, f

0
vw ◦ f0

uv] := g
(1)
2 [f0

uw, f
0
vw ◦ f0

uv];

ψ2[f0
vw ◦ f0

uv, f
0
uw] := g

(1)
2 [f0

vw ◦ f0
uv, f

0
uw];



5.3 The Segal condition 181

and for 1 ≤ z ≤ k,

ψ2[fzuw, f
z
vw ◦ fzuv] := g

(z)
2 [f1

uw, f
1
vw ◦ f1

uv];

ψ2[fzvw ◦ fzuv, fzuw] := g
(z)
2 [f1

vw ◦ f1
uv, f

1
uw].

As in Lemma 5.3.4, we do not need to describe the action of ψ on the re-
maining 2-cells explicitly, since they are either algebraic contraction cells,
or composites involving the algebraic contraction cells and those above.

We see by definition of ψ that it is a map of P -algebras, and that it makes the
required diagram commute. It is clear that, at each stage of the construction of
ψ, if we defined the map differently it would not have satisfied these conditions;
in the case of the cells on which ψ is defined explicitly, any other definition
would fail to make the diagram commute, and in the case of all other cells, any
other definition would fail to give a map of P -algebras.

Thus, ψ is the unique map of P -algebras making the required diagram com-
mute, so I2(j, k) is the colimit in P -Alg of the diagram

I2(j, 0)

I2(j, 1) I2(j, 1)

I2(j, 0)

I2(j, 1)I2(j, 1). . .

I2(1,d0)

��

I2(1,d1)

��

I2(1,d0)

��

I2(1,d1)

��

︸ ︷︷ ︸
k

as required.

The following is now an immediate corollary of Lemma 5.3.6:

Corollary 5.3.7. Let A be a Penon weak 2-category. For each j, k > 0, the
Segal map

Sj,k : NA(j, k)→ NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

is a bijection.

We now have all the results we need to show that the nerve of a Penon weak
2-category is a Tamsamani–Simpson weak 2-category.

Theorem 5.3.8. Let A be a Penon weak 2-category. Then the nerve NA
satisfies the Segal condition, and is thus a Tamsamani–Simpson weak 2-category.

Proof. Let A be a Penon weak 2-category, and consider its nerve NA. For all
j ≥ 0, the Segal map

Sj : NA(j,−) −→ NA(1,−)×NA(0,1) · · · ×NA(0,1) NA(1,−)︸ ︷︷ ︸
j

is surjective on objects by Proposition 5.3.3 and full and faithful on 1-cells by
Corollary 5.3.5; hence Sj is contractible. Note that the proposition and corollary
are valid only for j > 0, but for j = 0 the result holds trivially.
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For all j, k ≥ 0, the Segal map

Sj,k : NA(j, k) −→ NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

is a bijection by Corollary 5.3.7. As above, this corollary is only valid for k > 0,
but for k = 0 the result holds trivially.

Hence NA satisfies the Segal condition, so it is a Tamsamani–Simpson weak
2-category.



Chapter 6

Nerves of Penon weak
n-categories

In this chapter we generalise the nerve construction for Penon weak 2-categories
from Section 5.2 to a nerve construction for Penon weak n-categories for all
n ∈ N. We then discuss various questions that this nerve construction raises,
and in particular we conjecture that the nerve of a Penon weak n-category is a
Tamsamani–Simpson weak n-category.

6.1 The nerve construction for general n

We now give the construction of the nerve functor for Penon weak n-categories.
This construction proceeds analogously to that for n = 2. Since we are po-
tentially working with a greater number of dimensions in the general case, we
have to weaken composition in each cuboidal n-pasting diagram at every di-
mension (apart from dimensions 0 and n). The greater number of dimensions
entails that the notation for the cells of the P -algebras we construct necessarily
becomes more complicated and unwieldy.

In analogy with the case n = 2, when defining the nerve functor for Penon
weak n-categories, we first define a functor In : Θn → P -Alg which gives us,
for each object of Θn, the corresponding cuboidal n-pasting diagram expressed
as a freely generated Penon weak n-category. We obtain the functor In by
defining a functor En : Θn → Q, then composing this with the Eilenberg–Moore
comparison functor K : Q → P -Alg for the adjunction F a U defining the
monad P .

As in the 2-dimensional case, for each object j = (j1, j2, . . . , jn) of Θn, we
define two n-globular sets, X(j) and R(j); X(j) is the associated n-globular set
of the cuboidal pasting diagram j, while R(j) also contains extra cells to weaken
the composition structure on certain simplicial shapes of composite. We then
define an object of R

R(j) TX(k),
θj

//

and define En(j) to be the image of this under the functor J : R → Q; that is,
the left adjoint to the forgetful functor W : Q → R, as described in Section 1.2.

183
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Before giving the construction, once again we discuss the notation we will
use. We will use a coordinate system similar to that used in the 2-dimensional
construction. The difference is that, since higher dimensional cells require a
greater number of coordinates, instead of using subscripts and superscripts, the
coordinates of a cell will be written as a string in brackets. Thus, the m-cell

αm(u0, v0;u1, v1; . . . ;um−1, vm−1; z)

has source (m − 1)-cell with coordinates (u0, v0; . . . ;um−2, vm−2;um−1) and
target (k − 1)-cell with coordinates (u0, v0; . . . ;um−2, vm−2; vm−1). The z-
coordinate indicates the position of this cell in relation to the other m-cells
parallel to it, and the superscript m indicates the dimension of the cell. As
in the 2-dimensional construction, each n-cell has the same coordinates as its
target (n− 1)-cell.

Recall that an object of Θn is an equivalence class of objects of ∆n. An object
of ∆n is in an equivalence class with more than one member if and only if it has
a 0 in the kth position for some k < n. Thus, for the purposes of the following
definition we treat the equivalence class of (l1, . . . , lm−1, 0, lm+1, . . . , ln), with
m < n, as the object (l1, . . . , lm−1, 0, 0, . . . , 0) of ∆n; all other equivalence classes
are treated as their sole member.

Let j ∈ Θn and define n-globular sets X(j) and R(j) as follows: X(j) is
defined by

• X(j)0 = {au | u ∈ N, 0 ≤ u ≤ j1};

• for 0 < m < n,

X(j)m = {αm(u1, u1 + 1;u2, u2 + 1; . . . ;um, um + 1; z)

| 0 ≤ ul < jl for all 1 ≤ l ≤ m, 0 ≤ z ≤ jm+1};

• for m = n,

X(j)n = {αn(u1, u1 + 1;u2, u2 + 1; . . . ;un−1, un−1 + 1; z)

| 0 ≤ ul < jl for all 1 ≤ l ≤ n− 1, 1 ≤ z ≤ jn};

and R(j) is defined by

• R(j)0 = {au | u ∈ N, 0 ≤ u ≤ j1};

• for 0 < m < n,

R(j)m = {αm(u1, v1;u2, v2; . . . ;um, vm; z)

| 0 ≤ ul < vl ≤ jl for all 1 ≤ l ≤ m, 0 ≤ z ≤ jm+1};

• for m = n,

R(j)n = {αn(u1, v1;u2, v2; . . . ;un−1, vn−1; z)

| 0 ≤ ul < vl ≤ jl for all 1 ≤ l ≤ n− 1, 1 ≤ z ≤ jn};

for both X(j) and R(j), the source and target maps are defined by:
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• for all 1-cells α1(u1, v1; z),

s(α1(u1, v1; z)) = au1
, t(α1(u1, v1; z)) = av1

;

• for all 1 < m < n, and for all m-cells αm(u1, v1;u2, v2; . . . ;um, vm; z),

s(αm(u1, v1;u2, v2; . . . ;um, vm; z))

= αm−1(u1, v1;u2, v2; . . . ;um−1, vm−1;um),

and

t(αm(u1, v1;u2, v2; . . . ;um, vm; z))

= αm−1(u1, v1;u2, v2; . . . ;um−1, vm−1; vm),

• for all n-cells αn(u1, v1;u2, v2; . . . ;un−1,

s(αn(u1, v1;u2, v2; . . . ;un−1, vn−1; z))

= αn−1(u1, v1;u2, v2; . . . ;un−1, vn−1; z − 1),

and

t(αn(u1, v1;u2, v2; . . . ;un−1, vn−1; z))

= αn−1(u1, v1;u2, v2; . . . ;un−1, vn−1; z).

Once again we note that, in spite of the notation, this does not define functors
R and X into n-GSet.

We now wish to construct, for each j ∈ Θn, an object of R which will
consist of a map from R(j) into the free strict n-category on X(j). Before
doing so, we must first establish notation for the freely generated composite
cells in TX(j). Following Penon’s notation for composition in an n-magma (see
Definition 1.1.1), given m-cells α1, α2 and 0 ≤ p < m, where the target p-cell of
α1 coincides with the source p-cell of α2, we write α2 ◦mp α1 for their composite
along boundary p-cells. For composites involving greater numbers of cells we
extend this to summation-style notation; for m-cells αi, 1 ≤ i ≤ k for some k,
satisfying the appropriate source and target conditions to be composable, we
write

m,p

©
1≤i≤k

αi := αk ◦mp αk−1 ◦mp · · · ◦mp α2 ◦mp α1.

We now define θj : R(j)→ TX(j) by:

• for au ∈ R(j)0, (θj)0(au) = au;

• for 0 < m < n, (θj)m(αm(u1, v1;u2, v2; . . . ;um, vm; z)) =

m,m−1

©
um≤wm<vm

· · ·
m,0

©
u1≤w1<v1

αm(w1, w1 + 1;w2, w2 + 1; . . . ;wm, wm + 1; z)

• for m = n, (θj)n(αn(u1, v1;u2, v2; . . . ;un−1, vn−1; z)) =
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n,n−2

©
un−1≤wn−1<vn−1

· · ·
n,0

©
u1≤w1<v1

αm(w1, w1 + 1;w2, w2 + 1; . . . ;wn−1, wn−1 + 1; z)

Similar to the 2-dimensional case, θ coincides with ηTX(j) whenever vl = ul + 1
for all 0 ≤ l ≤ m− 1.

To complete the construction of the action of the functor En : Θn → Q on
objects, we apply the functor J : R → Q to θj : R(j) → TX(j). This adds to
R(j) all the required composites and contraction cells, including those which
ensure that the weakened composites (those cells in R(j) but not in X(j)) are
coherently equivalent to the corresponding freely generated composites at the
same level in the pasting diagram. We denote the resulting object of Q by

Q(j) TX(j).
φj

//

We now define the action of the functor En : Θn → Q on morphisms. As in
the 2-dimensional case, to do so we first define a morphism in R, then take its
transpose under the adjunction

R Q
J

⊥
//

W
oo

to obtain a morphism in Q.
Let p : j→ k be a morphism in Θn. We define the strict n-category part of

the morphism of R first. Define a map of 2-globular sets x(p) : X(j)→ TX(k)
as follows:

• for au ∈ X(j)0, x(p)0(au) = ap1(u);

• for 0 < m < n, αm(u1, u1 + 1; . . . ;um, um + 1; z) ∈ X(j)m, if for all
1 ≤ l ≤ m we have pl(ul) < pl(vl), then

x(p)m(αm(u1, u1 + 1; . . . ;um, um + 1; z)) =

m,m−1

©
pm(um)≤wm
<pm(um+1)

· · ·
m,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 + 1; . . . ;wm, wm + 1; pm+1(z));

otherwise, for the smallest l such that pl(ul) = pl(vl) we define

x(p)m(αm(u1, u1 + 1; . . . ;um, um + 1; z))

to be the identity m-cell on the (l − 1)-cell

l−1,l−2

©
pl−1(ul−1)≤wl−1

<pl−1(ul−1+1)

· · ·
l−1,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 + 1; . . . ;wl−1, wl−1 + 1; pl(ul));

• for αn(u1, u1 + 1; . . . ;un−1, un−1 + 1; z) ∈ X(j)n, if for all 1 ≤ l ≤ m we
have pl(ul) < pl(vl), and pn(z − 1) < pn(z), then

x(p)n(αn(u1, u1 + 1; . . . ;un−1, un−1 + 1; z)) =

n,n−2

©
pn−1(un−1)≤wn−1

<pn−1(un−1+1)

· · ·
n,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 + 1; . . . ;wn−1, wn−1 + 1; pn(z));
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if for all 1 ≤ l ≤ m we have pl(ul) < pl(vl), and pn(z − 1) = pn(z), then
we define

x(p)n(αn(u1, u1 + 1; . . . ;un−1, un−1 + 1; z))

to be the identity n-cell on the (n− 1)-cell

n−1,n−2

©
pn−1(un−1)≤wn−1

<pn−1(un−1+1)

· · ·
n,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 + 1; . . . ;wn−1, wn−1 + 1; pn(z));

otherwise, for the smallest l such that pl(ul) = pl(vl), we define

x(p)n(αn(u1, u1 + 1; . . . ;un−1, un−1 + 1; z))

to be the identity m-cell on the (l − 1)-cell

l−1,l−2

©
pl−1(ul−1)≤wl−1

<pl−1(ul−1+1)

· · ·
n,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 + 1; . . . ;wl−1, wl−1 + 1; pl(ul)).

To obtain a map TX(j) → TX(k) we apply T and compose this with the
multiplication for T , giving

TX(j) T 2X(k) TX(k)
Tx(p)

//
µTX(k)

//

We now define a map

R(j) Q(k)

TX(j) T 2X(k) TX(k),

r(p)
//

θj

��

φk

��

Tx(p)
//

µTX(k)

//

where the map r(p) is defined as follows:

• for au ∈ R(j)0, r(p)0(au) = ap1(u);

• for 0 < m < n, αm(u1, v1; . . . ;um, vm; z) ∈ R(j)m, if for all 1 ≤ l ≤ m we
have pl(ul) < pl(vl), then

r(p)m(αm(u1, v1; . . . ;um, vm; z)) =

αm(p1(u1), p1(v1); . . . ; pm(um), pm(vm); pm+1(z));

otherwise, for the smallest l such that pl(ul) = pl(vl), we define

r(p)m(αm(u1, v1; . . . ;um, vm; z))

to be the identity m-cell on the (l − 1)-cell

αl−1(p1(u1), p1(v1); . . . ; pl−1(ul−1), pl−1(vl−1); pl(ul));
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• for αn(u1, v1; . . . ;un−1, vn−1; z) ∈ R(j)n, if for all 1 ≤ l ≤ n − 1 we have
pl(ul) < pl(vl), and pn(z − 1) < pn(z), then

r(p)n(αm(u1, v1; . . . ;un−1, vn−1; z)) =

αm(p1(u1), p1(v1); . . . ; pn−1(un−1), pn−1(vn−1); pn(z));

if for all 1 ≤ l ≤ n − 1 we have pl(ul) < pl(vl), and pn(z − 1) = pn(z),
then we define

r(p)n(αm(u1, v1; . . . ;un−1, vn−1; z))

to be the identity n-cell on the (n− 1)-cell

αn−1(p1(u1), p1(v1); . . . ; pl−1(ul−1), pn−1(vn−1); pl(z));

otherwise, for the smallest l such that pl(ul) = pl(vl), we define

r(p)n(αm(u1, v1; . . . ;un−1, vn−1; z))

to be the identity m-cell on the (l − 1)-cell

αl−1(p1(u1), p1(v1); . . . ; pl−1(ul−1), pl−1(vl−1); pl(ul)).

Finally, we take the transpose of this map under the adjunction

R Q.
J

⊥
//

W
oo

We write ε : JW ⇒ 1 for the counit of this adjunction, and εφk
for the component

corresponding to

Q(k) TX(k).
φk //

Then the transpose is given by the composite

εφk
◦ J
(
r(p), µTX(k) ◦ Tx(p)

)
.

This allows us to define the functors En : Θn → Q and In : Θn → P -Alg.

Definition 6.1.1. Define a functor En : Θn → Q as follows:

• given an object j ∈ Θn, En(j) is defined to be the object

Q(j) TX(j).
φ(j)

//

of Q;

• given a morphism p : j→ k in Θn, En(p) is defined to be the map

εφk
◦ J
(
r(p), µTX(k) ◦ Tx(p)

)
.

Write K : Q → P -Alg for the Eilenberg–Moore comparison functor for the
adjunction

n-GSet Q.
F

⊥
//

U
oo

We define a functor In := K ◦ En : Θn → P -Alg.
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We can now define the nerve functor for Penon weak n-categories.

Definition 6.1.2. The nerve functor N for Penon weak n-categories is defined
by

N : P -Alg −→ [(Θn)op,Set]

A

f

��

P -Alg(In(−),A)

f◦−

��

7−→

B P -Alg(In(−),B).

For a P -algebra A, the presheaf NA = P -Alg(In(−),A) is called the nerve of
A.

6.2 Directions for further investigation

In this section we discuss the questions that arise from this nerve construction,
and what further results need to be proved in order to make a more complete
comparison between Penon weak n-categories and Tamsamani–Simpson weak
n-categories. The central question is whether the following conjecture holds:

Conjecture 6.2.1. Let A be a Penon weak n-category. Then the nerve NA sat-
isfies the Segal condition, and is thus a Tamsamani–Simpson weak n-category.

We have proved this only in the case n = 2 (Theorem 5.3.8). As in the
2-dimensional case, for general n we can express the Segal maps in terms of
composition with wide pushouts of face maps, allowing us to rephrase some
parts of the Segal condition in terms of colimits of P -algebras in the image of
the functor In : Θn → P -Alg (for the 2-dimensional version, see Lemmas 5.3.1
and 5.3.2). However, it is not practical to generalise the proofs from the 2-
dimensional case to the general case by hand, due to their elementary approach.
The use of computers in mathematical proofs has become more prevalent in
recent years, and it may be possible to generalise these elementary proofs for
low values of n, by using a computer to perform the calculations of the cells in
the P -algebras In(j). To prove Conjecture 6.2.1 in general we would need a more
abstract approach. We believe that this would require a deeper understanding
of the “partially free” P -algebras used in the nerve construction; colimits of free
P -algebras are easy to work with, since the free P -algebra functor preserves
colimits, but this is not true for “partially free” P -algebras. The coherence
theorems of Section 2.5 would likely play a key role in this, and we believe
that those that apply only to free algebras can be extended to “partially free”
algebras using the contractions in Q, though we have not yet made this precise.

Another natural question to ask is whether the nerve functor for Penon weak
n-categories is full and faithful. We now prove that it is faithful, then argue
that it is not full and explain why this is the case.

Proposition 6.2.2. The nerve functor N : P -Alg→ [(Θn)op,Set] is faithful.

Proof. The idea of the proof is as follows: every presheaf (Θn)op → Set has
an underlying n-globular set, and in the case of the nerve of a Penon weak
n-category, this is isomorphic to the underlying n-globular set of the original
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P -algebra. A map of P -algebras is a map of the underlying n-globular sets sat-
isfying a certain commutativity condition, and when we apply the nerve functor
to such a map the action on underlying n-globular sets remains unchanged.

For all 0 ≤ k ≤ n, write

(1k,0) := (1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, . . . , 0) ∈ Θn.

Observe that R(1k,0) = X(1k,0), so In(1k,0) = FPX(1k,0), where

FP : n-GSet −→ P -Alg

is the free P -algebra functor. Furthermore, for k ∈ Gn,

X(1k,0) ∼= Hk = Gn(−, k),

i.e. X(1k,0) is a representable functor. Thus, by the Yoneda lemma, for any
A ∈ n-GSet,

Ak ∼= n-GSet(Hk, A) ∼= n-GSet(X(1k,0, A)),

naturally in A and k. Let A = (θA : PA → A) be a P -algebra. Then, by the
adjunction FP a UP ,

n-GSet(X(1k,0), A) ∼= P -Alg(In(1k,0),A),

naturally in A.

Now suppose we have P -algebras A = (θA : PA→ A), B = (θB : PB → B),
and maps of P -algebras u, v : A → B such that Nu = N v. Thus, for each
0 ≤ k ≤ n we have

u ◦ − = v ◦ − : P -Alg(In(1k,0),A)→ P -Alg(In(1k,0),B).

We can write uk as the composite shown in the diagram below:

Ak Bk

n-GSet(Hk, A) n-GSet(Hk, B)

n-GSet(X(1k,0), A) n-GSet(X(1k,0), B)

P -Alg(In(1k,0),A) P -Alg(In(1k,0),B)

uk //

u◦−
//

u◦−
//

u◦−
//

∼=

��

∼=

��

∼=

��

∼=

OO

∼=

OO

∼=

OO



6.2 Directions for further investigation 191

and similarly, we can write vk as:

Ak Bk

n-GSet(Hk, A) n-GSet(Hk, B)

n-GSet(X(1k,0), A) n-GSet(X(1k,0), B)

P -Alg(In(1k,0),A) P -Alg(In(1k,0),B).

vk //

v◦−
//

v◦−
//

v◦−
//

∼=

��

∼=

��

∼=

��

∼=

OO

∼=

OO

∼=

OO

Since u ◦ − = v ◦ −, these diagrams give us that uk = vk for all 0 ≤ k ≤ n, so
u = v. Hence the nerve functor N : P -Alg→ [(Θn)op,Set] is faithful.

To see that the nerve functor is not full, consider the P -algebra illustrated
below:

•

g

��
•

f

FF

h

∼= //

k

BB •

where g ◦ f = h. Any endomorphism of this P -algebra that sends f to f and
g to g must also send h to h, since maps of P -algebras preserve composition,
and h = g ◦ f . However, when we consider endomorphisms of the nerve of this
P -algebra, we see that there are endomorphisms sending f to f and g to g that
send h to k; such endomorphisms are not in the image of the nerve functor.

This illustrates a key difference between algebraic and non-algebraic defi-
nitions of weak n-category: in the algebraic case the natural notion of map
preserves the composition structure, but in the non-algebraic case there is no
specified composition structure to preserve. In the example above, once we
have applied the nerve functor we no longer remember which cell was g ◦ f , and
morphisms can now map h to any legitimate choice of composite.

Note that maps of nerves are still required to preserve identities, how-
ever, since these are specified by degeneracy maps. This means that maps of
Tamsamani–Simpson weak n-categories behave like normalised maps, i.e. those
that preserve identities strictly, but are only required to preserve composition
weakly. This has been formalised in the 2-dimensional case [LP08]. There is
currently no definition of normalised maps of Penon weak n-categories, and we
believe that such a definition would be necessary to adapt our nerve construction
to give a a full nerve functor for Penon weak n-categories.

One final question raised by this work is whether every Tamsamani–Simpson
weak n-category arises as the nerve of a Penon weak n-category. To answer
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this question we would need to construct a Penon weak n-category from a
Tamsamani–Simpson weak n-category. Note that there will be no canonical
way to do this, since it would involve making choices of composites.

This nerve construction is a considerable first step towards understanding
the relationships between algebraic and non-algebraic definitions of weak n-
categories. We have made a connection between the algebraic definition of
Penon weak n-categories and the non-algebraic setting in which Tamsamani–
Simpson weak n-categories are defined, allowing for the relationship between
these definitions to be studied. Our nerve construction is the first to allow
for such a comparison, and we believe that it should pave the way for more
connections to be made between algebraic and non-algebraic definitions of weak
n-category.
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