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Abstract

The purpose of this thesis is to extend the range of application of the method fun-

damental solutions (MFS) to solve direct and inverse geometric problems associated

with two- or three-dimensional Helmholtz-type equations. Inverse problems have

become more and more important in various fields of sicence and technology, and

have certainly been one of the fastest growing areas in applied mathematics over

the last three decades. However, as inverse geometric problems typically lead to

mathematical models which are ill-posed, their solutions are unstable under data

perturbations and classical numerical techniques fail to provide accurate and stable

solutions.

The novel contribution of this thesis involves the developement of the MFS com-

bined with standard techniques for composite bi-material problems, the determina-

tion of inner boundaries, inverse shape and heat transfer coefficient identification,

identification of a corroded boundary and its Robin coefficient, as well as the nu-

merical reconstruction of an inhomogeneity.

Based on the MFS, unknows are determined by imposing the available boundary

conditions, this allows to obtain a system of linear/nonlinear algebraic equations. A

well-conditioned system of linear algebraic equations is solved by using the Gaussian

elimination method, whilst a highly ill-conditioned system of equations is solved by

the regularised least-squares method using a standard NAG routine E04FCF.

The accuracy and convergence of the MFS numerical technique used in this

thesis is investigated using certain test examples for various geometry domains.

The stability of the numerical solutions is investigated by introducing random noise

into the input data, this yields unstable results if no regularisation is used. The

Tikhonov regularisation method is employed in order to reduce the influence of

the measurement errors on the numerical results. The inverse numerical solutions

are compared with their known analytical solution, where available, and with the

corresponding direct numerical solution where no analytical solution is available.
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Chapter 1

Introduction

Helmholtz-type problems arise naturally in many physical and engineering applica-

tions. The research work presented in this thesis considers Helmholtz-type equations

in a domain Ω.

◮ The modified Helmholtz equation, otherwise related to steady-state heat con-

duction governing the heat conduction in fins, see Kraus et al. (2001), is given by

∇2u − k2u = 0 in Ω, (1.1)

where u is the temperature, k2 = 2h/(λδ), h is the convective heat transfer coeffi-

cient, and λ and δ are the thermal conductivity and thickness of the fin, respectively.

◮ The Helmholtz (reduced wave) equation governing wave propagation in an acous-

tic medium, see Colton and Kress (1998), is given by

∇2u + k2u = 0 in Ω, (1.2)

where u is the space-dependent part of the velocity potential, k = w
c

is the wave

number, w is the frequency and c is the speed of sound. Equation (1.2) is obtained

from the wave equation
∂2Ψ

∂t2
− c2∇2Ψ = 0, (1.3)

where Ψ is the velocity potential, assuming the solution to be time harmonic, i.e.

Ψ(X, t) = e−iwtu(X).
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1.1 Motivation and background

Investigating the process of heat transfer and providing acceptable heat conditions

occupy an important place in the design and development of production methods

related to the heating and cooling of materials, for example, continuous steel casting,

glassmaking, high temperature crystal growing out of melt, etc. Two heat transfer

phenomena can be inferred as special features of heat condition of modern heat-

loaded structures and production methods, namely the non-stationary state and

non-linearity. These derive from the use of many traditional design, theoretical

and experimental methods. Amongst them are methods based on a solution of

inverse problem by measurements of the system or process state, to find one or

more characteristics causing this state. An extensive list of references for inverse

heat transfer problems can be found in Alifanov (1994). Referring to heat transfer,

we assume that the temperature field u satisfies the modified Helmholtz equation

(1.1) in a bounded domain Ω, which models the heat conduction in a fin.

Next, we refer to the scattering of time-harmonic waves by obstacles surrounded

by a homogeneous medium, that is, an exterior problem for the Helmholtz equation

(1.2).

There are two cases of impenetrable and penetrable objects in obstacle scattering.

For sound-soft (impenetrable) obstacles, the pressure of the total wave u = uinc+us,

vanishes on the boundary of the obstacle D, where uinc and us denote the incident

field and the scattered wave, respectively. Similarly, the scattering from sound-hard

obstacles leads to a homogeneous Neumann boundary condition ∂u
∂n

= 0 on ∂D.

More generally, we can have a homogeneous Robin boundary condition ∂u
∂n

+iαu = 0

on ∂D, where α is the impedance. The scattering by a penetrable obstacle D with

constant density ρD and speed of sound cD differing from the density ρ and c of

the surrounding medium R
3\D leads to a transmission problem. In this case, in

addition to the total field u = uinc + us in R
3\D satisfying Helmholtz equation

(1.2), we have also v in D satisfying the Helmholtz equation (1.2) with a different

wave number kD = w
cD

6= k, and the transmission conditions u = v, 1
ρ

∂u
∂n

= 1
ρD

∂v
∂n

on ∂D. In addition, the scattered wave us should satisfy the Sommerfeld radiation

condition

lim
r→∞

r
(∂us

∂r
− ikus

)
= 0, r = |X|, (1.4)

where |X| is the Eucliden norm of a point X in R
3.

The Helmholtz equation is also often used to explain the vibration of a structure

in acoustics where the domain is divided into structural acoustics and aero acoustics.

Structural acoustic deals with the occurrence of vibrations in structure, for example,

the engine and propeller of a cruise ship cause distributing vibrations of the chairs
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and tables in ship’s restaurant. Aero acoustic mostly deals with the occurrence of

vibrations in fluids and air, see Beskos (1997). It is used in the acoustic cavity

problem which requires the domain of cavity, the wave number and the boundary

conditions, see Chen and Wong (1998).

The aim of this thesis is to solve numerically direct and inverse geometric prob-

lems associated to two- or three-dimensional Helmholtz-type equations using the

meshless method of fundamental solution (MFS). Whilst neverthelss direct prob-

lems have been previously solved using the more traditional finite and boundary

elements methods, the application of the meshless MFS to solving inverse prob-

lems is of a rather more recent investigation, see for example the recent review by

Karageorghis et al. (2011).

1.2 Direct problems

The major concern in a direct problem is to determine the unknown solution within

a domain from the known initial and boundary conditions. Direct problems have

been extensively studied over the last two centuries, resulting in a wealth of literature

of procedures relating to their solution. Direct problems are in general well-posed.

According to Hadamard (1923), a problem is well-posed if it satisfies the following

properties:

• The solution exists for all data.

• The solution is unique for all data.

• The solution depends continuously on the data (stability), i.e. the inverse

operator is continuous. In other words, continuous dependence on the data

means that small errors in the input data cause only small errors in the output

solution.

If one or more of the above properties is violated this leads to an ill-posed problem.

Let us make more clear the above concepts, as introduced in Colton and Kress

(1998). Suppose that A : X → Y is an operator from a normed space X to a normed

space Y such that

Ax = y, (1.5)

where x ∈ X and y ∈ Y . Then the operator equation (1.5) is well-posed if A is

bijective and the inverse operator A
−1 : Y → X is continuous; otherwise the equation

(1.5) is ill-posed. According to the above definition, three types of ill-posedness can

be classified in the following:
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• If A is not surjective this means that the equation (1.5) is not solvable for all

y ∈ Y (non-existence).

• If A is not injective this means that the equation (1.5) may have more than

one solution (non-uniqueness).

• If A
−1 exists but is not continuous this means that the equation (1.5) does not

continuously depend on the data y (instability).

Some information is required to be known in a direct problem formulation such as:

1. the boundary of the solution domain,

2. the governing equation in the domain,

3. the boundary conditions for the entire boundary and initial conditions if nec-

essary,

4. the material properties,

5. the forces acting in the domain.

Direct problems for Helmholtz-type equations have been extensively studied in the

literature, see for example Niwa et al. (1982). However, in many engineering prob-

lems certain quantities in the list above are not directly specified or measured and

this leads to inverse problem formulations which are discussed in the next subsection.

1.3 Inverse problems

Inverse problems have been recently studied in various branches of science and en-

gineering and medicine. Typical applications of inverse problems consider inverse

scattering for constricting the potential energy from the phases of scattered waves,

see Colton and Kress (1998), estimation of the component spectral curves from an

unknown mixture spectra, electrocardiography for estimating epicardial potential

distribution from that on the body surface, etc. Usually, the inverse problem im-

plies identification of inputs from outputs. A definite and rational definition can be

given by considering direct problems as the opposite to inverse problems, see Kubo

(1988). When one or more of the conditions 1–5 of section 1.2 are either unknown,

or not fully specified, this leads to an inverse problem. The unknown conditions are

to be determined with the assistance of an over specified condition. Noise becomes

an important concern in the solution of most inverse problems, as the over specified

condition is usually provided by using experimental field data. In general, inverse
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problems can be one of the following problems which correspond to the lack of one

of the requisites or their combinations:

1. the determination of parts of the boundary of the solution domain;

2. the inference of the governing equations;

3. the identification of the boundary conditions and/or initial conditions;

4. the determination of the material properties involved,

5. the determination of the forces acting in the domain.

In practice, many experimental impediments may arise in measuring or enforcing

certain conditions. The physical situation at the surface of a solid body may be

unsuitable for attaching a sensor or the accuracy of the surface measurement may

be seriously impaired by the presence of the sensor. The main feature in the in-

terpretation of the experimental results for all these problems is what we have to

derive the results by indirect manifestations of the object that can be measured

experimentally. Thus we are dealing with problems where we need to determine the

causes if we know the result of observations.

Science has been built by the accumulation of effort towards solving this kind

of never-ending series of inverse problems. Direct analysis can be made only when

inverse problem has been solved to determine the requisites for the direct problems.

At the end, inverse problems can be recognised as the complement to direct problems

and play one of the most important roles in science and engineering. Furthermore,

they are also more difficult to solve both analytically and numerically than direct

problems since they are non-linear and, in general, ill-posed as they do not fulfill

the well-posedness criteria of Hadamard.

There are many inverse problems arising in several applications. Let us mention

some of them as follows.

◮ Cauchy problems

In these problems, the boundary conditions on both the solution and its normal

derivative (for second-order PDEs) are prescribed only on a part of the boundary

of the solution domain, whilst on the remaining part of the boundary no condition

is given, see, for example, the book by Fattorini (1984) on the Cauchy problem in

which the list of references on the subject contains over 100 pages! The goal is to

determine the missing solution and its normal derivative on this remaining part of

the boundary. The practical situations that are modelled by such problems occur

when due to either physical impossibility, or just inconvenience, for example there
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are no available measurements of the pollutant concentration on some hostile parts

of the boundary of the region that was polluted. However, the values of the con-

centrations are needed on those inaccessible parts and they are sought using some

extra measurements that can be taken on the accessible boundary.

◮ Source identification problems

In these problems, one considers inhomogeneous equations where the boundary of

the solution domain under consideration is known and on the part of the boundary

conditions are over-specified. The unknown inhomogeneous source forcing term in

the governing equation needs to be determined. Typical practical application arise

in the case of water pollution caused by some point sources. A point source pollu-

tant is one that enters the water from a pipe, channel, or some other confined and

localised source. The most common example of a point source of pollutants is a pipe

that discharge sewage into a stream or river. Inverse source identification problems

have been described at length in the PhD thesis of Rap (2005).

◮ Parameter identification problems

In these problems, parameters in the governing PDE characterising the material

properties are unknown. A typical example concerns the identification of an un-

known thermal conductivity by means of temperature and heat flux measurements

on the boundary, see Beck and Arnold (1977), and Beck et al. (1985).

◮ Inverse geometric problems

The research work in this thesis focuses on this type of inverse problems. Inverse

geometric problems are an important class of inverse problems in which part of the

domain or boundary needs to be identified. It can model defects such as obstacles,

cavities, inclusions, flaws, faults, voids and cracks. In addition, they arise in typi-

cal medical application in detection of anomalies such as tumours inside or on the

boundary of the body.

In these problems the location and shape of the part of the boundary of solution

domain under consideration is unknown. On the known part of the boundary, con-

ditions are over-specified. These problems are more difficult than the previous types

of inverse problems because, in fact, the coordinates of points describing the the

unknown part of the boundary display non-linearly and they produce a non-linear

system of equations. In practice, inverse geometric problems are investigated using

various imaging and tomography techniques such as electrical impedance tomogra-

phy (EIT), see Vauhkonen (2004), gamma ray emission tomography (GRET), see

Cattle (2005), magneto-resonance imaging (MRI), see Bertero and Boccacci (1998).
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One of the most famous applications of an inverse geometric problem is the X-ray

computed tomography, in which a tomographic image is reconstructed from X-ray

shadow photographs taken from various direction.

The numerical solution of an initial/boundary value problem can be computed

by direct or iterative solvers using a numerical method, such as the finite element

method (FEM); the boundary element method (BEM); the finite difference method

(FDM) or the method of fundamental solutions (MFS). It is the latter one that is

employed in this thesis.

1.4 The Method of Fundamental Solutions (MFS)

The method of fundamental solutions (MFS) is a powerful meshfree method appli-

cable to boundary value problems when a fundamental solution of the governing

equation is explicitly defined. It was initially introduced by Kupradze and Alek-

sidze (1964), and it was firstly presented as a numerical method by Mathon and

Johnston (1977). Over the past 30 years, the MFS has been widely used for the

numerical approximation of a large variety of physical problems, see e.g the review

by Fairweather and Karageorghis (1998). The general concept of the MFS is that

the solution is approximated by a linear combination of fundamental solutions with

respect to source points which are placed outside the solution domain. The MFS

has all advantages of the BEM, for example, and does not require discretisation

over the domain in contrast to discretisation methods such as the FDM and the

FEM. In addition, integrations over the boundary are avoided, the solution in the

interior of the domain is evaluated without additional quadratures, the derivatives

are calculated directly from the MFS expansion representation, its implementation

is very easy and only little data preparation is required. A couple of disadvantages

are that the locations of the source points are preassigned (and this introduces some

additional degree of arbitrariness) and also the resulting system of algebraic equa-

tions is ill-conditioned. Merits and drawbacks of the MFS compared with the BEM

are discussed in Burgess and Mahajerin (1984), and Ahmed et al. (1989).

Now, let us consider Helmholtz-type equations in a bounded domain Ω ⊂ R
n,

n = 2, 3, namely

∇2u(X) ± k2u(X) = 0, in Ω, (1.6)

subject to the boundary conditions

C1u = f1, on ∂Ω1 (1.7)
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and

C2u = f2, on ∂Ω2, (1.8)

where ∂Ω = ∂Ω1 ∪ ∂Ω2, ∂Ω1 ∩ ∂Ω2 = ∅, C1 and C2 denote Dirichlet, Neumann

or Robin boundary conditions/operators and f1, f2 are given functions. In the ap-

plication of the MFS, the solution of problem (1.6) is approximated as a linear

combination

uN(X) =
N∑

j=1

ajG±(X, ξj), X ∈ Ω = Ω ∪ ∂Ω, (1.9)

where G±(X, ξ) is the fundamental solution of the Helmholtz-type equation (1.6),

and (ξ)j=1,N are sources (’singularities’) located outside Ω. The locations of the

source points are usually chosen by considering either the static scheme, in which

the sources are preassigned, or the dynamic scheme, in which both the sources and

unknown coefficients (aj)j=1,N are determined during the solution process, see for

more details Fairweather and Karageorghis (1998).

In this thesis, in order to avoid additional nonlinearity caused by considering a

dynamic scheme, we will consider only the static approach in which the locations

of the source points to be preassigned and kept fixed on a pseudo-boundary ∂Ω′,

preferably taken to be a circle or a curve similar to the boundary ∂Ω containing Ω.

The optimal location of this pseudo-boundary is one of the major challenges in the

application of the MFS and this will be investigated thoroughly in Chapter 2.

1.5 Numerical solution of Helmholtz-type prob-

lems

1.5.1 The MFS for direct problems

The MFS unknown coefficients a = (aj)j=1,N are determined by collocating the

boundary conditions (1.7) and (1.8) at M points, in general, uniformly distributed

over the entire the boundary ∂Ω. This leads to a system of linear equations which

can be written

Aa = b, (1.10)

where A is an M ×N matrix, a is the N × 1 vector of unknowns and b is an M × 1

known vector.

In all situations, in order to obtain a unique solution for the system of equations

(1.10) we require M ≥ N . If M = N the system of equations (1.10) can be solved

using the Gaussian elimination method, whilst if M > N one can employ the linear

least-squares method which replaces the rectangular M ×N overdetermined system
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of equations (1.10) with the square N × N determined system

AtrAa = Atrb, (1.11)

where tr denotes the transpose of a matrix/vector. It is well-known that the ill-

conditioning of the MFS matrix A increases, as the distance between the source

points
(
ξl

)
l=1,N

and the boundary ∂Ω increases, see Chen et al. (2006). Thus if

N is large, or if the input data (1.7) and (1.8) contain noisy errors, then the sys-

tem of equations (1.11) needs to be regularised using, for example, the Tikhonov

regularization method which gives

aλ = (AtrA + λI)−1Atrb, (1.12)

where I is the identity matrix and λ > 0 is a regularisation parameter to be pre-

scribed according to some criterion, e.g. the discrepancy principle, see Morozov

(1966), the L-curve criterion, see Hansen (1990) or the generalized cross validation

principle, see Golub et al. (1979). Equation (1.12) imposes a continuity constraint

onto the solution and is known as Tikhonov’s regularisation of order zero. It is worth

pointing out that the regularised solution (1.12) has been obtained from minimising

the functional

T (a) := ‖Aa − b‖2 + λ‖a‖2. (1.13)

Higher-order smoothness constraints can also be imposed by replacing the identity

matrix in (1.12) with higher-order finite difference derivatives giving rise to higher-

order regularisations, see Philips (1962). Alternatively, instead of the Tikhonov

regularised solution one could employ the truncated singular value decomposition

method (TSVD), see for more details Hansen (1990).

1.5.2 The MFS for inverse problems

In the application of the MFS to inverse problems, we distinguish between linear

and nonlinear problems.

◮ Linear problems

Cauchy problems and source identification problems are linear. Typically, in such

problems the boundary is known and the unknowns are the boundary data or the

sources acting in the domain. By collocating the boundary conditions on part of the

boundary and, in some cases, collocating the solution at some interior points this

leads to a system of linear equations given by (1.10) which is ill-conditioned and

requires the application of the Tikhonov regularisation method or the TSVD.
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◮ Non-linear problems

Inverse geometric problems and parameter identification problems are nonlinear

problems. The part of the boundary is unknown and needs to be determined by

collocating the boundary conditions, in this case, this leads to a system of non-linear

equations

F (a, r) = b, (1.14)

where r is a vector containing the geometric parameters describing the unknown

part of the boundary. The system of non-linear equations (1.14) can be solved using

the non-linear regularised least-squares which recasts into minimising the non-linear

objective function

T (a, r) = ‖F (a, r) − b‖2 + λ1‖a‖2 + λ2‖r‖2, (1.15)

where λ1 and λ2 are positive regularisation parameters which can be chosen accord-

ing to some criterion, e.g. the L-surface criterion, see Belge et al. (2002).

1.6 Condition number

For linear direct and inverse problems, the MFS implementation usually yields to

a system of linear algebraic equations (1.10). The condition number of a matrix is

defined as the ratio between the largest singular value to the smallest singular value.

The basic concept of condition number is a measure of stability or sensitivity of the

matrix. In other words, the condition number of matrix A measures the solution

a to the errors in the data b. It gives an indication of the accuracy of the results

from the matrix inversion. If the inverse problem is ill-posed then, the known b

contains measured information and the matrix A is ill-conditioned. The measured

information always involves errors for a variety of different reasons. Thus, if the

condition number is large, even a small error in b, may caused a large error in the

solution a. On the other hand, if the condition number is small then the error in

the solution a will not be bigger than the error in the data b.

1.7 More on stable methods of regularisation

The MFS system of linear equations (1.10) is ill-conditioned due to the large condi-

tion number of the matrix A which increases as the number of boundary collocation

and source points increases. Furthermore, inverse problems are in general ill-posed.

This means that the systems of linear/non-linear equations (1.10) and (1.14) upon

direct inversion will produce a highly unstable numerical solution. Regularisation
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methods, which are described in more details below, are needed in order to achieve

the stability of the numerical solution.

1.7.1 Tikhonov regularisation method

The Tikhonov regularised solution of the system of linear algebraic equations (1.10)

is given by

aλ = argmin
a∈RN

{
‖Aa − b‖2 + λ‖P (m)a‖2

}
, (1.16)

where the matrix P (m) ∈ R
(N−m)×N induces a Cm-continuity constraint on the

solution aλ and λ > 0 is the regularisation parameter. When λ = 0 in (1.16), this

reduces to the ordinary least-squares method which is unstable. In the case of the

zeroth-, first- and second-order Tikhonov regularisation methods the matrix P (m),

i.e. m = 0, 1, 2, is given by, see e.g. Marin and Lesnic (2005), P (0) = I ∈ R
N×N ,

P (1) =




−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . . . . .

...

0 0 · · · 1 −1



∈ R

(N−1)×N ,

P (2) =




1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

...
. . . . . .

...

0 0 · · · 1 −2 1



∈ R

(N−2)×N .

For the minimisation of (1.13), making its gradient equal to zero, the Tikhonov

regularised solution (1.16) becomes

aλ = (AtrA + λP (m)trP (m))−1Atrb. (1.17)

For the system of non-linear equations (1.14), the standard zeroth-order Tikhonov

regularised term is added to the minimisation of the functional T as it appears in

expression (1.15), whilst in the first-order Tikhonov regularised the term is λ2‖r‖2

in (1.15) is replaced by λ2‖r′‖2.

1.7.2 Truncated singular value decomposition (TSVD)

The singular value decomposition method (SVD) is a widely used technique in which

the matrix A of the system of linear equations (1.10) is decomposed as, see e.g. Golub
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and Van Loan (1989),

A = USV tr, (1.18)

where the columns of U are the orthonormal eigenvectors of AAtr, the columns of

V are the orthonormal eigenvectors of AtrA, and S is a diagonal matrix containing

the singular values (σi)i=1,N in decreasing order

σ1 > σ2 > · · · > σN > 0, (1.19)

assuming that M > N . Then, the length of the vector a is minimised by

‖Aa − b‖ = ‖USV tra − b‖ = ‖Sy − c‖, (1.20)

where y = V tra = V −1a, which has the same length as a, and c = U trb. Hence, the

optimal solution is ỹ = S+c, where S+ is an N × M pseudo-inverse of the diagonal

matrix S defined by

S+ = diag(σ+), σ+ =

{
σ−1

i if σi 6= 0

0 otherwise.
(1.21)

This gives the compact solution

ã = V ỹ = V S+U trb = A+b, (1.22)

where A+ denotes the pseudo (Moore-Penrose) inverse of the matrix A. Equation

(1.20) can be rewritten in the spectral expression

ã =
N∑

i=1

σ+
i (utr

i · b)vi. (1.23)

In the TSVD, we drop the smallest singular values so that equation (1.23) becomes

aJ =
J∑

i=1

σ−1
i (utr

i · b)vi, (1.24)

where ui and vi are the column vectors of the matrices U and V , respectively, and J

is the truncation parameter, which can be determined according to some criterion,

such as those briefly discussed in the next section.
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1.7.3 Choice of regularisation parameters

Over the last four decades, many different methods for selecting regularisation pa-

rameters have been proposed. The proper choice of the regularisation/truncation

parameters plays an important role in equations (1.17) and (1.24), respectively, for

achieving accurate and stable numerical results of inverse problems. In the TSVD,

it is mentioned in the previous section that the optimal choice of the truncation

parameter J is based on discarding the smallest singular values of the matrix A in

the system of linear equation (1.10), whilst in the Tikhonov regularisation method,

the optimal choice of regularisation parameter λ is chosen based on L-curve, see

Hansen (1990). Regularisation is necessary when solving ill-posed problems because

the simple least-squares solution, i.e. λ = 0, is completely dominated by contribu-

tions from data and rounding errors. By adding regularisation we are able to damp

out these contributions and maintain the norm ‖a‖ to be of reasonable size. If the

regularisation parameter λ is chosen too small, then the regularized solution remains

unstable and, conversely, if the regularisation parameter λ is chosen too large, then

the regularised solution is oversmoothed and may deviate from the true solution.

The L-curve is one of the most convenient tools for the analysis of discrete ill-

posed problems. It is actually a plot for many positive regularisation parameters of

the norm ‖aλ‖ of the regularised solution versus the corresponding residual norm

‖Aaλ − b‖. In this way, the L-curve clearly displays the compromise between min-

imisation of these two quantities, which is the heart of any regularisation method.

The discrepancy principle is probably the most widely used technique for choos-

ing the regularisation parameter, see Morozov (1966) and Tikhonov and Arsenin

(1977). According to this principle the regularisation parameter λ should be chosen

such as

‖Aa − b‖ ≈ δ, (1.25)

where δ is an estimate of the level of noise present in the problem, i.e.

δ = ‖b − bǫ‖, (1.26)

where bǫ is the perturbed value of the right-hand side of the system of equations

(1.10).

1.8 Structure of the thesis

In this thesis, direct and inverse geometric problems are investigated. Based on

the MFS, the direct and inverse problems are reduced to solving ill-conditioned
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systems of linear/nonlinear equations. In direct problems, these systems of linear

equations are then solved using the Gaussian elimination method and in some cases

the Tikhonov regularisation method is needed, as in equation (1.12), whilst in in-

verse problems, these systems of nonlinear equations are solved by minimising the

nonlinear regularised least-squares functional, as in equation (1.15). The choice of

the regularisation parameters required in the Tikhonov regularisation and TSVD is

based on the L-curve method, as well as on the discrepancy principle.

The accuracy of the numerical solution obtained by the MFS is investigated for

several test examples using a varying number of boundary collocation and source

points. The numerical results are compared with the analytical solutions, where

available. Then, following the well-or ill-posed nature of the problems considered

in this thesis, the stability of numerical solution is investigated by perturbing the

input data in order to simulate the measurement errors inherently present in any

measured data set of an actual engineering problem.

The present Chapter 1 provides the background of developing the MFS technique.

Based on the MFS discretisation, the Helmholtz-type equations for both direct and

inverse problems have been reduced to solving systems of linear/non-linear equa-

tions. Stable methods, such as Tikhonov regularisation and the TSVD, have been

described in order to solve the resulting ill-conditioned system of equations due to

increasing the condition number of MFS matrix or adding noise in the input data.

The choice of the regularisation/truncation parameters have been highlighted.

In Chapter 2, several direct problems for Helmholtz-type elliptic partial differen-

tial equations (PDEs) in various geometries, such as circle; square; annulus; exterior

of a circle; sphere and annular sphere, are investigated by employing the MFS. The

convergence of the MFS numerical results is investigated and the numerical solutions

are graphically illustrated both on the boundary and inside the solution domain.

In Chapter 3, we introduce and develop the MFS for solving Helmholtz-type

PDEs in composite materials. Numerical results are presented and discussed for

several examples involving both the modified Helmholtz and the Helmholtz equa-

tions in two- or three-dimensional, bounded or unbounded, smooth or non-smooth

composite domains.

In Chapter 4, an inverse geometric problem for the modified Helmholtz equa-

tion arising in heat conduction in a fin, which consists of determining an unknown

inner boundary (rigid inclusion or cavity) of an annular domain from a single pair

of boundary Cauchy data is solved numerically using the MFS. A nonlinear min-

imisation of the objective function is regularised when noise is added into the input

boundary data. The stability of numerical results is investigated for several test

examples.
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Chapter 5 extends the analysis of Chapter 4 for determining an unknown inner

boundary of an annular domain and together with its surface heat transfer coefficient

from one or two pairs of boundary Cauchy data.

In Chapter 6, an inverse geometric problem for two-dimensional Helmholtz-type

equations arising in corrosion detection is considered. This problem which consists

of determining an unknown corroded portion of the boundary of a two-dimensional

domain and possibly its surface heat transfer (impedance) Robin coefficient from

one or two pairs of boundary Cauchy data is solved numerically using the same

numerical approach as in Chapters 4 and 5.

The method is further applied in Chapter 7 to solve an inverse geometric problem

in a composite material which consists of reconstructing an unknown inner boundary

of a domain from a single pair of boundary Cauchy data.

Finally, in Chapter 8, general conclusions and suggestions for possible futher

work are given.



Chapter 2

Direct Problems for

Helmholtz-type Equations

2.1 Introduction

In this chapter, we solve some direct problems for Helmholtz-type elliptic partial

differential equations (PDEs) in various geometries by the method of fundamental

solutions (MFS), which is an approximation technique introduced by Kupradze and

Aleksidze (1964). In the first three decades of discovery, the MFS was mainly re-

stricted to solving homogenous elliptic linear equations, for example, the Laplace

and biharmonic equations. Sometimes, the MFS is also called as the desingular-

ized method, or the charge simulation method in the mathematical and engineering

literature, see Alves and Chen (2005).

The MFS is a powerful meshless technique and popular tool for solving various

types of linear PDEs for which the fundamental solution is available explicitly. In

addition, it also has the advantages of rapid convergence, see Xin (2005), Mitic and

Rashed (2004), high accuracy, simple theory and convenience of implementation by

programming, see Hui and Qinghua (2007). An excellent overview of the history of

the MFS and its applications to elliptic linear PDEs has been given in Fairweather

and Karageorghis (1998), and Golberg and Chen (1999).

The basic idea of the MFS is to approximate the solution by a linear combination

of fundamental solutions of the governing equation with respect to source points

which are placed outside the solution domain, see Bogomolny (1985). The MFS

differs from the common well-known boundary element method (BEM) approach of

discretising boundary integral equations in that the source points are located outside

the solution domain. In particular, they are not on the boundary, and therefore

there is no jump relation nor singularity of the fundamental solution kernel. Thus,

an advantage over the BEM is that the solution may be simply and accurately
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evaluated up to the boundary. There appear to be a few comparisons between the

BEM and the MFS in the literature, notably Burgess and Mahajerin (1984) and

Ahmed et al. (1989); however, our goal is not to undertake such task, but instead

to show that the MFS may be competitive and hence deserves analysis in places

where the BEM may become prohibitely computationally expensive and difficult to

implement, e.g. in three-dimensional inverse problems.

The outline of this chapter is as follows. In section 2.2, we introduce the MFS for

Helmholtz-type equations, namely the modified Helmholtz equation ∇2u− k2u = 0

and the Helmholtz equation ∇2u+k2u = 0. In section 2.3, we present a convergence

analysis of the MFS. In section 2.4, we present and discuss the numerical results ob-

tained for various benchmark test examples in some simple two- or three-dimensional

geometries (circle, square, annulus, unbounded exterior of a circle, sphere, annular

sphere, unbounded exterior of a sphere). Finally, in section 2.5 we give some con-

clusions.

2.2 The Method of Fundamental Solutions (MFS)

for Helmholtz-type equations

2.2.1 The MFS for the modified Helmholtz equation

Let us consider the modified Helmholtz equation to be solved in a bounded domain

Ω ⊂ R
2 or R

3,

∇2u(X) − k2u(X) = 0, X ∈ Ω, (2.1)

with boundary conditions

Dirichlet: u(X) = f(X), X ∈ Γ1, (2.2)

Neumann:
∂u

∂n
(X) = g(X), X ∈ Γ2. (2.3)

In the above, k > 0 is a given constant, n is the outward normal to the boundary

∂Ω, f and g are given functions, the boundary ∂Ω = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅.
The fundamental solution of equation (2.1), i.e. the free space Green function which

satisfies equation (2.1) in the whole space except at X = Y where it becomes infinite,

is given by, see e.g. Balakrishnan and Ramachandran (2000),

G−(X,Y ) =





1
2π

K0(kr), in two-dimensions

e−kr

4πr
, in three-dimensions

(2.4)
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where r =‖ X − Y ‖ and K0 is the modified Bessel function of the second kind of

order zero. It is well-known that K0(kr) satisfies the modified Helmholtz equation

(2.1) in R
2\{(0, 0)} with a singularity at the origin r = 0.

In the MFS, we seek the solution of problem (2.1)-(2.3) as a linear combination

of non-singular fundamental solutions (2.4), see e.g. Marin and Lesnic (2005), Marin

(2005, 2010b),

u(X) =
N∑

l=1

alG−(X, ξl), X ∈ Ω, (2.5)

where
(
ξl

)
l=1,N

are distinct source points (’singularities’) located outside Ω, and(
al

)
l=1,N

are unknown real coefficients to be determined by imposing the boundary

conditions (2.2) and (2.3). In expression (2.5), the number of source points N

represents the truncation number in an approximating series given by the denseness

of the set
{

G−
(
·, ξl

)
| l = 1, 2, . . . ,∞, ξl /∈ Ω

}
in L2(Ω), see Bogomolny (1985).

This denseness result constitutes the theoretical basis of the MFS for the modified

Helmholtz equation.

Imposing the boundary conditions (2.2) and (2.3), equation (2.5) in two-dimensions

gives

f(X) =
N∑

l=1

alK0

(
k ‖ X − ξl ‖

)
, X ∈ Γ1, (2.6)

g(X) = −k

N∑

l=1

al(X − ξl) · n
‖ X − ξl ‖

K1

(
k ‖ X − ξl ‖

)
, X ∈ Γ2, (2.7)

where K1 is the modified Bessel function of the second kind of order one and, for

simplicity, the constant 1
2π

has been embedded in the unknown coefficients (al)l=1,N .

Taking X =
(
Xj

)
j=1,M

∈ ∂Ω boundary points such that X =
(
Xj

)
j=1,M1

∈ Γ1 and

X =
(
Xj

)
j=M1+1,M

∈ Γ2, equations (2.6) and (2.7) are collocated as

fj := f(Xj) =
N∑

l=1

alK0

(
k ‖ Xj − ξl ‖

)
, j = 1,M1, (2.8)

gj := g(Xj) = −k

N∑

l=1

al(X
j − ξl) · n

‖ Xj − ξl ‖
K1

(
k ‖ Xj−ξl ‖

)
, j = M1 + 1,M. (2.9)

Equations (2.8) and (2.9) form a system of M linear algebraic equations with

N unknowns which generically can be written as (1.10), where a =
(
a1, ..., aN

)tr
,
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b =
(
f1, ..., fM1 , gM1+1, ..., gM

)tr
,

Ajl =





K0

(
k ‖ Xj − ξl ‖

)
, j = 1,M1, l = 1, N,

−k(Xj−ξl)·n
‖Xj−ξl‖ K1

(
k ‖ Xj − ξl ‖

)
, j = M1 + 1,M, l = 1, N.

(2.10)

In three-dimensions the collocation of the boundary conditions (2.2) and (2.3)

results in

fj := f(Xj) =
N2∑

l=1

ale
−k‖Xj−ξl‖

‖ Xj − ξl ‖
, j = 1,M2

1 , (2.11)

gj := g(Xj) = −
N2∑

l=1

al(k ‖ Xj − ξl ‖ +1)

‖ Xj − ξl ‖3
e−k‖Xj−ξl‖(Xj − ξl) · n, j = M2

1 + 1,M2,

(2.12)

where again, for simplicity, the constant 1
4π

has been embedded in the unknown

coefficients (al)l=1,N2 .

2.2.2 The MFS for the Helmholtz equation

We also consider the Helmholtz equation

∇2u(X) + k2u(X) = 0, X ∈ Ω, (2.13)

with the boundary conditions (2.2) and (2.3). In equation (2.13), k > 0 is called the

wave number. Recall, see Colton and Kress (1998), that the problem (2.2), (2.3)

and (2.13) is well-posed with solution u ∈ H1(Ω) for f ∈ H1/2(Γ1), g ∈ H−1/2(Γ2)

if −k2 is not a mixed eigenvalue (of the Laplacian) for the bounded domain Ω. The

fundamental solution of Helmholtz equation (2.16) is given by, see e.g. Barnett and

Betcke (2008),

G+(X,Y ) =





i
4
H

(1)
0 (kr), in two-dimensions

e−ikr

4πr
, in three-dimensions

(2.14)

where r =‖ X−Y ‖, i =
√
−1 and H

(1)
0 = J0 +iY0 is the Hankel function of the first

kind of order zero, J0 is the Bessel function of the first kind of order zero, and Y0 is

the Bessel function of the second kind of order zero. It is well-known that H
(1)
0 (kr)

satisfies the Helmholtz equation (2.13) in C\{0} with a singularity at r = 0. In

three-dimensions, in equation (2.14) we took the fundamental solution e−ikr/(4πr)

instead of eikr/(4πr) since the former satisfies the Sommerfeld radiation condition



Chapter 2. Direct Problems for Helmholtz-type Equations 20

(1.4) at infinity.

In the MFS, we seek the solution of problem (2.2), (2.3) and (2.13) as a linear

combination of non-singular fundamental solutions (2.14),

u(X) =
N∑

l=1

alG+(X, ξl), X ∈ Ω, (2.15)

where (ξl)l=1,N are distinct source points placed outside Ω, and (al)l=1,N are unknown

complex coefficients to be determined by imposing the boundary conditions (2.2)

and (2.3). The denseness of the set
{

G+

(
·, ξl

)
| l = 1, 2, . . . ,∞, ξl /∈ Ω

}
in

L2(Ω), see Bogomolny (1985), and Alves and Chen (2005), constitutes the theoretical

basis of the MFS for the Helmholtz equation. Note that in two-dimensions the

still singular functions Y0 or H
(2)
0 may also be used instead of H

(1)
0 in the MFS

approximation (2.15), see Ennenbach and Niemeyer (1996) and Karageorghis (2001).

Some investigations, see Hon and Chen (2003) and Chen and Hon (2003), have even

attempted to use the non-singular function J0 in (2.15) giving rise to the so-called

boundary knot method, but without much theoretical justification.

Imposing the boundary conditions (2.2) and (2.3), equation (2.15) in

two-dimensions gives

f(X) =
N∑

l=1

alH
(1)
0 (k ‖ X − ξl ‖), X ∈ Γ1, (2.16)

g(X) = −k

N∑

l=1

al(X − ξl) · n
‖ X − ξl ‖

H
(1)
1

(
k ‖ X − ξl ‖

)
, X ∈ Γ2, (2.17)

where H
(1)
1 is the Hankel function of the first kind of order one and, for simplicity,

the constant i
4

has been embedded in the unknown complex coefficients (al)l=1,N .

Using that

H
(1)
j (kr) = Jj(kr) + iYj(kr), j = 0, 1, (2.18)

where J1 is the Bessel function of first kind of order one, and Y1 is the Bessel

function of second kind of order one, equations (2.15) with G+(X, ξl) replaced by

H
(1)
0 (k ‖ X − ξl ‖) can be rewritten as (viz al = αl + iβl for l = 1, N)

u(X) =
N∑

l=1

[
αlJ0

(
k ‖ X − ξl ‖

)
− βlY0

(
k ‖ X − ξl ‖

)

+i

(
αlY0

(
k ‖ X − ξl ‖

)
+ βlJ0

(
k ‖ X − ξl ‖

))]
, X ∈ Ω. (2.19)
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Also, equations (2.16) and (2.17) when collocated at the boundary points (Xj)j=1,M

result in

fj := f(Xj) =
N∑

l=1

[
αlJ0

(
k ‖ Xj − ξl ‖

)
− βlY0

(
k ‖ Xj − ξl ‖

)

+i

(
αlY0

(
k ‖ Xj − ξl ‖

)
+ βlJ0

(
k ‖ Xj − ξl ‖

))]
, j = 1,M1, (2.20)

gj := g(Xj) = −k
N∑

l=1

(X − ξl) · n
‖ X − ξl ‖

[
αlJ1

(
k ‖ Xj − ξl ‖

)
− βlY1

(
k ‖ Xj − ξl ‖

)

+i

(
αlY1

(
k ‖ Xj − ξl ‖

)
+ βlJ1

(
k ‖ Xj − ξl ‖

))]
, j = M1 + 1,M.(2.21)

Separating the real and imaginary parts, equations (2.20) and (2.21) form a system

of 2M linear algebraic equations with 2N unknowns which can be written as (1.10),

where a = (α1 . . . αN , β1 . . . βN)tr, b = (f1, . . . , fM1 , gM1+1, . . . , gM , 0 . . . , 0)tr, and

Ajl =





J0(k ‖ Xj − ξl ‖), j = 1,M1, l = 1, N

−Y0(k ‖ Xj − ξl−N ‖), j = 1,M1, l = N + 1, 2N

J1(k ‖ Xj − ξl ‖), j = M1 + 1,M, l = 1, N

−Y1(k ‖ Xj − ξl−N ‖), j = M1 + 1,M, l = N + 1, 2N

Y0(k ‖ Xj−M − ξl ‖), j = M + 1,M + M1, l = 1, N

J0(k ‖ Xj−M − ξl−N ‖), j = M + 1,M + M1, l = N + 1, 2N

Y1(k ‖ Xj−M − ξl ‖), j = M + M1 + 1, 2M, l = 1, N

J1(k ‖ Xj−M − ξl−N ‖), j = M + M1 + 1, 2M, l = N + 1, 2N

(2.22)

In three-dimensions the collocation of the boundary conditions (2.2) and (2.3)
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gives,

fj := f(Xj) =
N2∑

l=1

1

‖ Xj − ξl ‖
[
αl cos(k ‖ Xj − ξl ‖) + βl sin(k ‖ Xj − ξl ‖)

+i
(
− αl sin(k ‖ Xj − ξl ‖) + βl cos(k ‖ Xj − ξl ‖)

)]
, j = 1,M2

1 , (2.23)

gj := g(Xj) = −
N2∑

l=1

(Xj − ξl) · n
‖ Xj − ξl ‖3

{
αl

[
cos(k ‖ Xj − ξl ‖) + k ‖ Xj − ξl ‖

sin(k ‖ Xj − ξl ‖)
]

+ βl

[
sin(k ‖ Xj − ξl ‖) − k ‖ Xj − ξl ‖

cos(k ‖ Xj − ξl ‖)
]

+ i
{

αl

[
− sin(k ‖ Xj − ξl ‖) + k ‖ Xj − ξl ‖

cos(k ‖ Xj − ξl ‖)
]

+ βl

[
cos(k ‖ Xj − ξl ‖) + k ‖ Xj − ξl ‖

sin(k ‖ Xj − ξl ‖)
]}}

, j = M2
1 + 1,M2. (2.24)

y

x
ρ=1

0

R
r
0

Ω

M boundary
collocation

points

M source
points

∇ 2u±k2u=0

Figure 2.1: Sketch of the MFS with M = N boundary collocation and source points.
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2.3 Convergence analysis of the MFS

In order to analyse the convergence of the numerical results obtained, we introduce

two approximation errors given by

absolute error = |u(X) − uM(X)|, relative error =

∣∣∣∣∣
u(X) − uM(X)

u(X)

∣∣∣∣∣,

where u(X) is the exact solution and uM(X) is the MFS numerical solution with

M = N source and boundary collocation points, as shown in Figure 2.1.

In Katsurada and Okamoto (1996), and Fairweather and Karageorghis (1998),

for the Dirichlet problem for the Laplace equation ∇2u = 0 in Ω, u |∂Ω= f on ∂Ω,

it was given that if Ω = B(0; ρ) is a circle of radius ρ > 0, f is analytical, and if

u is analytically harmonic continuable to the whole plane R
2, then the maximum

(supremum) of local error at any point (x0, y0) ∈ Ω obeys, for sufficiently large M ,

|uM(x0, y0) − u(x0, y0)| ≤ ‖uM − u‖L∞(Ω) = sup
(x,y)∈Ω

|uM(x, y) − u(x, y)|

≤ C
( ρ

R

)M

, (2.25)

where C > 0 is a positive constant which may depend on f and R, but not on M ,

and R > ρ is the radius of the exterior circle where the M sources are positioned.

This shows that the MFS is exponentially convergent with respect to increasing M ,

or R. The same result holds for the Helmholtz operator ∇2 + k2I, see Barnett and

Betcke (2008), and for the modified Helmholtz operator ∇2−k2I, by accommodating

the proofs of [Balakrishnan and Ramachandran (2000); Barnett and Betcke (2008);

Bogomolny (1985)] related to the Laplace equation.

The estimate (2.25) was proved by Katsurada (1989, 1990) for ∂Ω a circle and

an analytical Jordan curve, respectively. In the case that u is not analytically

continuable to the whole plane R
2, but rather only up to an extension B(0; r0) with

r0 > ρ then the error estimate (2.25) modifies as, see Kitagawa (1988, 1991), for

sufficient large M ,

‖uM − u‖L∞(Ω) ≤ ‖u‖L∞(∂B(0;r0))

( 2

1 − ρ
r0

){
[1 + A(R, ρ)]

( ρ

r0

)M/3

+ 4
( ρ

R

)M/3
}

,

(2.26)

where A(R, ρ) is some constant between 1 and 2. The price to pay for this excellent

exponential convergence is that the condition number of the coefficient matrix of

the resulting MFS system of equations grows exponentially with respect to M , and
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can be estimated by

K(M,R) ∼ ln(R)

2
M

(R

ρ

)M/2

. (2.27)

2.4 Numerical results and discussion

In this section, we present and discuss numerical results obtained in different ge-

ometries, see Figure 2.2, namely,

Ω =





{(x, y) ∈ R
2 | x2 + y2 < 1}, (circle) Examples 1 and 4,

{(x, y) ∈ R
2 | x, y ∈ (−1/2, 1/2)}, (square) Example 2,

{(x, y) ∈ R
2 | 1 < x2 + y2 < 4}, (annulus) Examples 3 and 5

{(x, y) ∈ R
2 | x2 + y2 > 1}, (unbounded exterior circle) Example 6

{(x, y, z) ∈ R
3 | x2 + y2 + z2 < 1}, (sphere) Examples 7 and 9

{(x, y, z) ∈ R
3 | 1 < x2 + y2 + z2 < 4}, (annular sphere) Example 8

{(x, y, z) ∈ R
3 | x2 + y2 + z2 > 1}, (unbounded exterior sphere) Example 10

(2.28)

1. (a) For the analytical solution of the modified Helmholtz equation (2.1) in

two-dimensions we take

u(X) = ex+y, X = (x, y) ∈ Ω, (2.29)

which satisfies it with k =
√

2. The various geometries (2.28) are considered

in Examples 1-3 in order to illustrate the applicability of the MFS to deal with

smooth, non-smooth and multiply-connected domains.

For simplicity, we consider Dirichlet boundary conditions only, i.e. Γ2 =

∅, Γ1 = ∂Ω namely

u(x, y) = f(x, y) = ex+y, (x, y) ∈ ∂Ω. (2.30)

Corresponding to (2.29), the normal derivative is given by

∂u

∂n
(x, y) = ex+y(nx + ny), (x, y) ∈ ∂Ω, (2.31)

where n = (nx, ny).

(b) For the analytical solution of the modified Helmholtz equation (2.1) in

three-dimensions we take

u(X) = ex+y+z, X = (x, y, z) ∈ Ω, (2.32)
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which satisfies it with k =
√

3. The unit sphere and annular spherical ge-

ometries (2.28) are considered in Examples 7 and 8 in order to illustrate the

applicability of the MFS to deal with smooth simply and multiply-connected

domains. For simplicity, we consider Dirichlet boundary conditions only, i.e.

Γ2 = ∅, Γ1 = ∂Ω, namely

u(x, y, z) = f(x, y, z) = ex+y+z, (x, y, z) ∈ ∂Ω. (2.33)

Corresponding to (2.32), the normal derivative is given by

∂u

∂n
(x, y, z) = ex+y+z(nx + ny + nz), (x, y, z) ∈ ∂Ω, (2.34)

where n = (nx, ny, nz).

2. (a) For the analytical solution of the Helmholtz equation (2.13) in two-dimensions

we take

u(X) = sin(x + y), X = (x, y) ∈ Ω (2.35)

which satisfies it with k =
√

2. The circle and annulus geometries are consid-

ered in Examples 4 - 6 in order to illustrate the applicability of the MFS to

deal with smooth simply-connected, multiply-connected and unbounded do-

mains. For simplicity, we consider Dirichlet boundary conditions only, i.e.

Γ2 = ∅, Γ1 = ∂Ω, namely

u(x, y) = f(x, y) = sin(x + y), (x, y) ∈ ∂Ω. (2.36)

Corresponding to (2.35), the normal derivative is given by

∂u

∂n
(x, y) = (nx + ny) cos(x + y), (x, y) ∈ ∂Ω. (2.37)
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Figure 2.2: The distributions of source (◦) and boundary collocation (•) points.
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(b) For the analytical solution of the Helmholtz equation (2.13) in three-

dimensions we take

u(X) = sin(x + y + z), X = (x, y, z) ∈ Ω, (2.38)

which satisfies it with k =
√

3. The geometries (2.28) of Examples 9 and

10 are considered in order to illustrate the applicability of the MFS to deal

with smooth bounded and unbounded domains. For simplicity, we consider

Dirichlet boundary conditions only, i.e. Γ2 = ∅, Γ1 = ∂Ω, namely

u(x, y, z) = f(x, y, z) = sin(x + y + z), (x, y, z) ∈ ∂Ω. (2.39)

Corresponding to (2.38), the normal derivative is given by

∂u

∂n
(x, y, z) = (nx + ny + nz) cos(x + y + z), (x, y, z) ∈ ∂Ω. (2.40)

The MFS is also applicable to other types of boundary conditions, e.g. Neumann,

oblique, mixed, Robin, radiative, see Golberg and Chen (1999).

In all the computations, performed in FORTRAN and MATLAB, we take, for

simplicity, M = N uniformly distributed points and we investigate the convergence

of the numerical solution with respect to increasing the number of source/boundary

collocation points M = N from 20 to 40, and then to 80 in two-dimensions, and

from 5 × 5 to 10 × 10, and then to 20 × 20 in three-dimensions.

2.4.1 Example 1 (Modified Helmholtz equation, circle)

For the unit circle geometry Ω = B(0; 1), the source points are located on a circle

of radius R > 1 centred at the origin, and we investigate various values of R ∈
{1.5, 2, 2.5}. The distributions of source and boundary collocation points are shown

in Figure 2.2(a). The numerical interior solutions for u(0.5, 0.5) obtained with M =

N ∈ {20, 40, 80} and R ∈ {1.5, 2, 2.5} are shown in Table 2.1. From Table 2.1

it can be seen that as M = N increases, or R increases the numerical solution

for u(0.5, 0.5) converges toward its exact value of e1.0 ≃ 2.718282. The numerical

solutions for normal derivative ∂u/∂n(1, θ) obtained with R = 2 and various values

of M = N ∈ {20, 40, 80} are shown in Figure 2.3 in comparison with the analytical

solution (2.31) given by

∂u

∂n
(1, θ) = (cos(θ) + sin(θ))ecos(θ)+sin(θ), θ ∈ [0, 2π). (2.41)
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From this figure it can be seen that the numerical solution converges to the analytical

solution (2.41) as M = N increases. Overall from Table 2.1 and Figure 2.3 it can

be concluded that the MFS provides a convergent and accurate numerical solution

for solving the Dirichlet problem for the modified Helmholtz equation in smooth

geometries.

In order to investigate the influence of the number M of source and boundary

collocation points and the radius R on the convergence of the numerical results

obtained, we set M ∈ {10, 20, 40, 60, 80, 160, 320}, R ∈ {1.5, 2, 2.5}. Figure 2.4

shows the logarithm of the local absolute error at the interior point (0.5, 0.5) ∈ Ω.

From this figure it can be seen that this error decreases exponentially as the number

M of source/collocation points increases to 40, 60, and 80.

Table 2.1: The numerical solution for u(0.5, 0.5) in Example 1 for various values of

M = N ∈ {20, 40, 80} and R ∈ {1.5, 2, 2.5}. The exact value is e1.0 ≃ 2.718282.

M = N R u(0.5, 0.5) R u(0.5, 0.5) R u(0.5, 0.5)

20 1.5 2.717843 2 2.718277 2.5 2.718282

40 1.5 2.718282 2 2.718282 2.5 2.718282

80 1.5 2.718282 2 2.718282 2.5 2.718282
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Figure 2.3: The analytical and the MFS solutions for the normal derivative

∂u/∂n(1, θ) for various values of M = N ∈ {20, 40, 80} and R = 2, for Example 1.

This can be estimated by the equations log |uM(0.5, 0.5) − e| = −0.4M + 1.4,

−0.7M + 3, and −M + 5 when R = 1.5, 2, and 2.5, respectively. This is expected

since from (2.25) with ρ = 1 we have

log |uM(x0, y0) − u(x0, y0)| ≤ log C − M log R, (2.42)

where C is a positive constant which may depend on k, R and f , but not on M .

However, this error increases slightly for M > 160, M > 60, and M > 40 for

R = 1.5, 2 and 2.5, respectively, due to the round-off machine’s double precision of

O(10−16) being reached.
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Figure 2.4: Logarithm of the local absolute error at the interior point (0.5, 0.5) ∈ Ω

versus M , for various R.

Figure 2.5 shows the global error for the interior numerical solution given by

‖uM(x, y) − u(x, y)‖L2(Ω) ≃

√√√√ 1

10

10∑

i=1

2π

5

5∑

j=1

∣∣∣uM(ri, θ̃j) − u(ri, θ̃j)
∣∣∣
2

, (2.43)

where ri = i/11 for i = 1, 10, and θ̃j = 2πj/5 for j = 1, 5. It can be seen that error

decreases exponentially as the number M of source/collocation points increases to

40, 60, and 80. This can be estimated by the equations log ‖uM(x, y)− ex+y‖L2(Ω) =

−0.4M + 3, −0.5M + 0.8, and −0.9M + 3.3 when R = 1.5, 2, and 2.5, respec-

tively. However, this error increases slightly for M > 160, M > 60, and M > 40,

respectively. This is expected since from (2.1) we have

1√
π
‖uM(x, y) − u(x, y)‖L2(Ω) ≤ sup

(x,y)∈Ω

|uM(x, y) − u(x, y)| ≤ C

RM
, (2.44)
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Figure 2.5: Logarithm of the global L2(Ω) error for the numerical interior solution

u|Ω versus M , for various R.

Figure 2.6 shows the global error for the numerical normal derivative given by

∥∥∥∥∥
∂uM

∂n
(x, y) − ∂u

∂n
(x, y)

∥∥∥∥∥
L2(∂Ω)

=

(
2π

10

10∑

i=1

∣∣∣
∂uM

∂n
(cos(θi), sin(θi))

−∂u

∂n
(cos(θi), sin(θi))

∣∣∣
2
) 1

2

, (2.45)

where θi = 2πi/10 for i = 1, 10, and ∂u
∂n

(x, y) = (cos(θ) + sin(θ))ecos(θ)+sin(θ), for

(x, y) ∈ ∂Ω. It can be seen that error decreases exponentially as the number M

of source/collocation points increases to 40, 60, and 80. This can be estimated

by the equations log ‖∂uM

∂n
(x, y) − ∂u

∂n
(x, y)‖L2(∂Ω) = −0.4M + 3, −0.6M + 0.8, and

−0.8M + 4.6 when R = 1.5, 2, and 2.5, respectively.
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Figure 2.6: Logarithm of the global L2(∂Ω) error for the numerical normal derivative
∂u
∂n
|∂Ω versus M , for various R.

Figure 2.7 shows the global error for the boundary numerical solution given by

‖uM(x, y) − ex+y‖L2(∂Ω) ≃

√√√√2π

10

10∑

i=1

∣∣∣uM(cos(θi), sin(θi)) − ecos(θi)+sin(θi)

∣∣∣
2

, (2.46)

It can be seen that error decreases exponentially as the number M of source/

collocation points increases to 40, 60, and 80. This can be estimated by the equations

log ‖uM(x, y)−ex+y‖L2(∂Ω) = −0.4M +2.2, −0.6M +2, and −M +6 when R = 1.5, 2,

and 2.5, respectively. The error can be used efficiently for the Dirichlet boundary

value problem if no exact solution is available explicitly. Then, by the maximum

principle for elliptic partial differential equations, the error inside Ω will be bounded

from above by the error on the boundary ∂Ω. Hence, the error (2.46) quantifies the

maximum error obtainable throughout Ω = Ω ∪ ∂Ω.
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2.4.2 Example 2 (Modified Helmholtz equation, square)

In order to illustrate how the MFS performs in non-smooth domains with corners

we consider the solution domain to be the square Ω = (−1/2, 1/2) × (−1/2, 1/2).

Again we investigate the convergence of the numerical solution as M = N increases.

The source points are located on an outside square at a distance d ∈ {1, 1.5, 2} from

the origin, see Figure 2.2(b).

Example 2. The numerical interior solutions for u(0.2, 0.2) obtained with M =

N ∈ {20, 40, 80} and d ∈ {1, 1.5, 2} are shown in Table 2.2. From this table it can

be seen that as M = N increases, or d increases the numerical solution for u(0.2, 0.2)

converges toward its exact value of e0.4 ≃ 1.4918247. The numerical solutions for

normal derivative ∂u/∂n(S), where S is the arclength measured counterclockwise

along the perimeter starting from the corner (−1/2,−1/2) obtained with d = 1 and

various values of M = N ∈ {20, 40, 80} are shown in Figure 2.8 in comparison with
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the analytical solution (2.31) given by

∂u

∂n
(x, y) =





−ex−1/2, x ∈ (−1
2
, 1

2
), y = −1

2

e1/2+y, y ∈ (−1
2
, 1

2
), x = 1

2

e1/2+x, x ∈ (−1
2
, 1

2
), y = 1

2

−ey−1/2, y ∈ (−1
2
, 1

2
), x = −1

2

(2.47)

From this figure it can be seen that the numerical solution converges to the analyt-

ical solution (2.47) as M = N increases. Similar results have been obtained when

the source points were located on an outside circle of radius R = {1, 1.5, 2} centred

at the origin, see Figure 2.2(c), and therefore they are presented.

Table 2.2: The numerical solution for u(0.2, 0.2) in Example 2 for various values of

M = N ∈ {20, 40, 80} and d ∈ {1, 1.5, 2}. The exact value is e0.4 ≃ 1.4918247.

M = N d u(0.2, 0.2) d u(0.2, 0.2) d u(0.2, 0.2)

20 1 1.49182876 1.5 1.49182469 2 1.4918247

40 1 1.4918247 1.5 1.4918247 2 1.4918247

80 1 1.4918247 1.5 1.4918247 2 1.4918247
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Figure 2.8: The analytical and the MFS solutions for the normal derivative

∂u/∂n(S), as a function of the arclength S for various values of M = N ∈
{20, 40, 80} and d = 1, for Example 2.
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2.4.3 Example 3 (Modified Helmholtz equation, annulus)

In order to illustrate how the MFS performs in multiply-connected domains we

consider the solution domain to be the annulus Ω = {X = (x, y) ∈ R
2|1 < x2 +

y2 < 4}, and, as in the previous section, we investigate the convergence of the

numerical solution as M = N increases. In the case of annulus, the source points

are located on an outside circle of radius R = 2.5 and on an inside circle of radius

R = 0.5, see Figure 2.2(d). The numerical interior solutions for u(1.5, θ) obtained

with M = N ∈ {20, 40, 80} are shown in Figure 2.9. Form Figure 2.9 it can be

seen that as M = N increases the numerical solution for u(1.5, θ) converges toward

the analytical solution (2.29). The numerical solutions for the normal derivatives

∂u/∂n(1, θ) and ∂u/∂n(2, θ), for various values of M = N ∈ {20, 40, 80} are shown

in Figure 2.10 in comparison with the analytical solutions (2.31) given by

∂u

∂n
(1, θ) = −(cos(θ) + sin(θ))ecos(θ)+sin(θ),

∂u

∂n
(2, θ) = (cos(θ) + sin(θ))e2(cos(θ)+sin(θ)), θ ∈ [0, 2π). (2.48)

From Figure 2.10 it can be seen that the numerical solution converges to the an-

alytical solution (2.40) as M = N increases. Overall from Figures 2.9 and 2.10

it can be concluded that the MFS provides a convergent and accurate numerical

solution for solving the Dirichlet problem for the modified Helmholtz equation in

multiply-connected geometries.
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Figure 2.9: The analytical and the MFS solutions for u(1.5, θ) for various values of

M = N ∈ {20, 40, 80}, for Example 3.
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Figure 2.10: The analytical and the MFS solutions for the normal derivatives (a)

∂u/∂n(1, θ) and (b) ∂u/∂n(2, θ), for various values of M = N ∈ {20, 40, 80}, for

Example 3.

2.4.4 Example 4 (Helmholtz equation, circle)

As in Example 1, for the unit circle geometry Ω = B(0; 1), the source points are lo-

cated on a circle of radius R > 1 centred at the origin, and we investigate various val-

ues of R ∈ {1.5, 2, 2.5}. The distributions of source and boundary collocation points

are shown in Figure 2.2(a). The numerical interior solutions for u(0.7, 0.5) obtained

with M = N ∈ {20, 40, 80} and R = {1.5, 2, 2.5} are shown in Table 2.3. From this
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table it can be seen that as M = N increases, or as R increases the numerical so-

lution for u(0.7, 0.5) converges toward its exact value of sin(1.2) = 0.93203909. For

solutions with no singularities outside Ω the estimate (2.25) holds and the value of R

can be increased until a very ill-conditioned matrix would eventually fail a Gaussian

elimination inversion. Figure 2.11 shows the numerical solutions for normal deriva-

tive ∂u/∂n(1, θ) obtained with R = 2 and various values of M = N ∈ {20, 40, 80}
in comparison with the analytical solution (2.37) given by

∂u

∂n
(1, θ) = (cos(θ) + sin(θ)) cos(cos(θ) + sin(θ)), θ ∈ [0, 2π). (2.49)

From this figure it can be seen that the numerical solution converges to the analytical

solution (2.49) as M = N increases. Overall form Table 2.3 and Figure 2.11 it can

be concluded that the MFS solution is a convergent and accurate numerical solution

for solving the Dirichlet problem for the Helmholtz equation in smooth geometries.

Table 2.3: The numerical solution for u(0.7, 0.5) in Example 4 for various values

of M = N ∈ {20, 40, 80} and R ∈ {1.5, 2, 2.5}. The exact value is sin(1.2) ≃
0.93203909.

M = N R u(0.7, 0.5) R u(0.7, 0.5) R u(0.7, 0.5)

20 1.5 0.93205434 2 0.93203926 2.5 0.93203909

40 1.5 0.93203909 2 0.93203909 2.5 0.93203909

80 1.5 0.93203909 2 0.93203909 2.5 0.93203909
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Figure 2.11: The analytical and the MFS solutions for the normal derivative

∂u/∂n(1, θ) for various values of M = N ∈ {20, 40, 80} and R = 2, for Example 4.
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2.4.5 Example 5 (Helmholtz equation, annulus)

As in Example 3, the annular geometry is Ω = {X = (x, y) ∈ R
2|1 < x2 + y2 < 4},

and we investigate the convergence of the numerical solution as M = N increases.

The source points are located on an outside circle of radius R2 = 2.5 and on an

inside circle of radius R1 = 0.5, see Figure 2.2(d). The numerical interior solutions

for u(1.5, θ) obtained with M = N ∈ {20, 40, 80} are shown in Figure 2.12. Form

this figure it can be seen that as M = N increases the numerical solution for

u(1.5, θ) converges towards the analytical solution (2.35). This concludes that the

MFS provides a convergent and accurate numerical solution for solving the Dirichlet

problem for the Helmholtz equation in multiply-connected geometries.
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Figure 2.12: The analytical and the MFS solutions for u(1.5, θ) for various values of

M = N ∈ {20, 40, 80}, for Example 5.

2.4.6 Example 6 (Helmholtz equation, unbounded exterior

of a circle)

In the direct scattering problem, let Ω ⊂ R
2 be a bounded planar domain with

boundary ∂Ω ∈ C2 such that the exterior R
2\Ω of Ω is connected. We are given the

wave number k > 0, and an incident field given by a plane wave moving in the unit

direction d̂ ∈ S1 = {d ∈ R
2 : |d| = 1}, namely

uinc(X) = eikX.bd, X ∈ R
2. (2.50)

Then the scattering of uinc by Ω produces a scattered wave us with corresponding

total field u = us + uinc, where us ∈ C2(R2\Ω) ∩ C1(R2\Ω) which satisfies the
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Helmholtz equation

∆us(X) + k2us(X) = 0, X ∈ R
2\Ω (2.51)

and the Sommerfeld radiation condition at infinity

lim
r→∞

√
r
(∂us

∂r
(X) − ikus(X)

)
= 0 (uniformly with respect to X̂ = X/|X|),

(2.52)

where r = |X|, and the boundary conditions corresponding to:

(a) the Dirichlet boundary condition (sound-soft obstacle)

u(X) = 0, X ∈ ∂Ω ⇐⇒ us(X) = −uinc(X) = −eikX.bd, X ∈ ∂Ω(2.53)

or

(b) the Neumann boundary condition (sound-hard obstacle)

∂u

∂n
(X) = 0, X ∈ ∂Ω ⇐⇒ ∂us

∂n
(X) = −∂uinc

∂n
(X) = −∂(eikX.bd)

∂n
(X),

X ∈ ∂Ω. (2.54)

In the scattering problem from an obstacle Ω, say the unit circle, the solution

domain is exterior and unbounded hence, the MFS source points are located on an

inside circle of radius R1 < 1, say R1 = 1/2, centred at the origin. The distributions

of source and boundary collocation points are shown in Figure 2.2(e). The analytical

solution for the direct scattering from a sound-soft circular obstacle B(0; a) of radius

a centred at the origin by an incident plane wave in the x−direction is given by, see

Colton and Kress (1983),

u(r, θ) = J0(kr) − J0(ka)H
(1)
0 (kr)

H
(1)
0 (ka)

+ 2
∞∑

n=1

in cos(nθ)
[
Jn(kr) − Jn(ka)H

(1)
n (kr)

H
(1)
n (ka)

]
,

(r, θ) ∈ R
2\B(0; a) = {r ≥ a, θ ∈ [0, 2π)} (2.55)

where H
(1)
n and Jn are the Hankel and Bessel functions of first kind of order n,

respectively. For simplicity, we consider the Dirichlet sound-soft boundary condition

(2.53). In what follows we take a = k = 1.

The connection between the Rayleigh hypothesis, i.e. the region of the conver-

gence of the series (2.55), and the MFS has been pointed out recently by Martin

(2012). In particular, in the MFS the radius R1 < 1 should be chosen such that
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there are no singularities of the analytic continuation of the solution in the annulus

B(0; a)\B(0; R1).

We investigate the convergence of the numerical solution as M = N increases.

The numerical exterior solutions for the real and imaginary parts of us(2, θ) obtained

with M = N ∈ {20, 40, 80} are shown in Figure 2.13. From this figure it can be

seen that the numerical solution converges towards the analytical solution (2.55) on

∂B(0, 2), as M = N increases.
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Figure 2.13: The analytical and the MFS solutions of: (a) real, and (b) imaginary

parts of us(2, θ) for various values of M = N ∈ {20, 40, 80}, for Example 6.

The numerical solutions for the real and imaginary parts of the normal derivative

∂us/∂n(1, θ), for various values of M = N ∈ {20, 40, 80} are shown in Figure 2.14

in comparison with the analytical solution

∂us

∂n
(1, θ) =

∂u

∂n
(1, θ) − ∂uinc

∂n
(1, θ) θ ∈ [0, 2π), (2.56)

where from (2.55),

∂u

∂n
(1, θ) =

∂u

∂r
(1, θ) =

kJ0(k)H
(1)
1 (k)

H
(1)
0 (k)

− kJ1(k) + 2k
∞∑

n=1

in cos(nθ)

[
Jn−1(k) − n

k
Jn(k) − Jn(k)(n

k
H

(1)
n (k) − H

(1)
n+1(k))

H
(1)
n (k)

]
, θ ∈ [0, 2π). (2.57)

We also have that

∂uinc

∂n
(1, θ) =

∂(eikr cos(θ))

∂r
(1, θ) = ik cos(θ)eik cos(θ). (2.58)
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Figure 2.14: The analytical and the MFS solutions of: (a) real, and (b) imaginary

parts of ∂us/∂n(1, θ) for various values of M = N ∈ {20, 40, 80}, for Example 6.

From Figure 2.14 it can be seen that the numerical solution for the normal

derivative converges to the analytical solution (2.56) as M = N increases. We

have also investigated the numerical results for various values of R1 ∈ (0, 1) and,

although not illustrated, we report that the numerical MFS solutions become more

accurate as R1 decreases from 1 to about 0.1, after which ill-conditioning takes over

and regularization would be required. Overall from Figures 2.13 and 2.14 it can

be concluded that the MFS provides a convergent and accurate numerical solution

for solving direct scattering problems in exterior unbounded domains. In the next

examples we extend the MFS analysis to three-dimensions.

2.4.7 Example 7 (Modified Helmholtz equation, sphere)

In this example in which the domain Ω is a sphere, a standard equiangular spherical

coordinates distribution is used for the boundary collocation and source points given

by 



x = r cos(θj) sin(φi),

y = r sin(θj) sin(φi),

z = r cos(φi),

(2.59)

where θj = 2πj
M

, φi = πi
M

, for i, j = 1,M . This was introduced only for convenience

and is not optimal as it concentrates points near the poles. More sophisticated knot

distributions are also possible, see Alves and Valtchev (2005).

In order to illustrate how the MFS performs in a typical three-dimensional

smooth geometry we consider the solution domain to be the unit sphere Ω = {X =

(x, y, z) ∈ R
3|x2 + y2 + z2 < 1}, with the source points located on a sphere of radius
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R > 1, centred at the origin. We investigate various values of R ∈ {1.5, 2, 2.3}, and

also the convergence of the numerical solution as M2 increases. The distributions of

source and boundary collocation points are shown in Figure 2.2(f). The numerical

interior solutions for u(0.5, θ, π/2) and u(0.5, π/4, φ) obtained with M ∈ {5, 10, 20}
and R ∈ {1.5, 2, 2.3} are shown in Figures 2.15 and 2.16, respectively. From these

figures it can be seen that as M increases, or the radius R increases the numerical

solutions for u(0.5, θ, π/2) and u(0.5, π/4, φ) converge toward the analytical solution

(2.32).

The numerical solution for the normal derivative ∂u/∂n(1, θ, φ) obtained with

R = 2 and M2 = 20× 20 is shown in Figure 2.17 in comparison with the analytical

solution (2.34) given by

∂u

∂n
(1, θ, φ) = (cos(θ) sin(φ) + sin(θ) sin(φ) + cos(φ))ecos(θ) sin(φ)+sin(θ) sin(φ)+cos(φ),

θ ∈ [0, 2π), φ ∈ [0, π). (2.60)

From this figure it can be seen that the numerical solution converges to the analytical

solution (2.60) as increases. Overall from Figures 2.15-2.17 it can be concluded

that the MFS provides a convergent and accurate numerical solution for solving the

Dirichlet problem for the modified Helmholtz equation in a smooth simply-connected

three-dimensional geometry such as a sphere.
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Figure 2.15: The analytical and the MFS solutions for u(0.5, θ, π/2) for various

M ∈ {5, 10, 20} and R ∈ {1.5, 2, 2.3}, for Example 7.
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Figure 2.16: The analytical and the MFS solutions for u(0.5, π/4, φ) for various

M ∈ {5, 10, 20} and R ∈ {1.5, 2, 2.3}, for Example 7.
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Figure 2.17: (a) The analytical, and (b) the MFS solution for the normal derivative

∂u/∂n(1, θ, φ) for M = 20 and R = 2, for Example 7.

In order to investigate the influence of the number M of source and boundary

collocation points and the radius R on the convergence of the numerical results
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obtained, we set M ∈ {10, 15, 20, 30, 40, 50, 60, 80}, R ∈ {1.5, 2, 2.5}. Figure 2.18

shows the logarithm of the local absolute error at the interior point (0.5, 0, 0) ∈ Ω.

From this figure it can be seen that this error decreases exponentially as the number

M of source/collocation points increases to 40, 50, and 80. This can be estimated

by the equations log |uM(0.5, 0, 0)−e0.5| = −0.4M +2.8, −0.7M +2, and −0.8M +2

when R = 1.5, 2, and 2.5, respectively. This is expected since from (2.25) we have

log |uM(x0, y0, z0) − u(x0, y0, z0)| ≤ C − M log R. (2.61)

However, this error increases slightly for M > 80, M > 50, and M > 40 for

R = 1.2, 2 and 2.5, respectively, the reason of increasing error is the same reason of

ill-conditioning as in the two-dimensional case.
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Figure 2.18: Logarithm of the local absolute error at the interior point (0.5, 0, 0) ∈ Ω

versus M , for various R.

Figure 2.19 shows the global error for the interior numerical solution given by

‖uM(x, y, z) − u(x, y, z)‖L2(Ω) ≃√√√√
4∑

k=1

10∑

i=1

10∑

j=1

(1

5

)(2π

10

)( π

10

)
r2
k sin(φj)

∣∣∣uM(rk, θi, φj) − u(rk, θi, φj)
∣∣∣
2

, (2.62)
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where rk = k/5 for k = 1, 4, θi = 2πi/10 for i = 1, 10, and φj = πj/10 for j = 1, 10.

It can be seen that error decreases exponentially as M increases to 40, 50, and 80.

This can be estimated by the equations log ‖uM(x, y, z)−ex+y+z‖L2(Ω) = −0.4M +2,

−0.7M +4, and −0.8M +3 when R = 1.5, 2, and 2.5, respectively. This is expected

since from (2.25) we have

√
3

2
√

π
‖uM(x, y, z)−u(x, y, z)‖L2(Ω) ≤ sup

(x,y,z)∈Ω

|uM(x, y, z)−u(x, y, z)| ≤ C

RM
. (2.63)
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Figure 2.19: Logarithm of the global L2(Ω) error for the numerical interior solution

u|Ω versus M , for various R.

However, the error increases slightly for M > 80, M > 50, and M > 40, respec-

tively, as a result of ill-conditioning. Overall from Figures 2.18 and 2.19 it can be

concluded that the rate of convergence of the MFS approximation in two- or three-

dimensions for Helmholtz-type equations satisfy equation (2.25) which shows that

the error is exponentially decreasing as M → ∞. However, as given by equation

(2.27), the condition number also increases exponentially as M → ∞.
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2.4.8 Example 8 (Modified Helmholtz equation, annular

sphere)

In order to illustrate how the MFS performs in multiply-connected three-dimensional

domains we consider the solution domain to be the annular sphere Ω = {X =

(x, y, z) ∈ R
3|1 < x2 + y2 + z2 < 4}. We investigate the convergence of the numer-

ical solution as the 2M2 increases. In the case of the annular sphere between the

concentric circles of radii 1 and 2, the source points are located on an outside sphere

of radius R = 2.5 and on an inside sphere of radius R = 0.5, see Figure 2.2(g). The

numerical interior solutions for u(1.5, θ, π/2) and u(1.5, π/4, φ) obtained for various

M ∈ {5, 10, 20} are shown in Figure 2.20. From this figure it can be seen that as M

increases the numerical solution for u(1.5, θ, π/2) and u(1.5, π/4, φ) converge toward

the analytical solution (2.32). The numerical solutions for the normal derivatives

∂u/∂n(1, θ, φ) and ∂u/∂n(2, θ, φ), for M = 20 are shown in Figures 2.21 and 2.22

in comparison with the analytical solutions (2.34) given by

∂u

∂n
(1, θ, φ) = −(cos(θ) sin(φ) + sin(θ) sin(φ) + cos(φ))ecos(θ) sin(φ)+sin(θ) sin(φ)+cos(φ),

∂u

∂n
(2, θ, φ) = (cos(θ) sin(φ) + sin(θ) sin(φ) + cos(φ))e2(cos(θ) sin(φ)+sin(θ) sin(φ)+cos(φ)),

θ ∈ [0, 2π), φ ∈ [0, π). (2.64)

From Figures 2.21 and 2.22 it can be seen that the numerical solutions for the normal

derivatives are in good agreement with the analytical solutions (2.64). Overall from

Figures 2.20-2.22 it can be concluded that the MFS provides a convergent and accu-

rate numerical solution for solving the Dirichlet problem for the modified Helmholtz

equation in multiply-connected three-dimensional smooth geometries such as an an-

nular sphere.
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Figure 2.20: The analytical and the MFS solutions for: (a) u(1.5, θ, π/2), and (b)

u(1.5, π/4, φ) for various M ∈ {5, 10, 20}, for Example 8.
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Figure 2.21: (a) The analytical, and (b) the MFS solutions for the normal derivative

∂u/∂n(1, θ, φ), for M = 20, for Example 8.
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Figure 2.22: (a) The analytical, and (b) the MFS solutions for the normal derivative

∂u/∂n(2, θ, φ), for M = 20, for Example 8.

2.4.9 Example 9 (Helmholtz equation, sphere)

As in Example 7, a standard equiangular spherical coordinates distribution for the

boundary collocation and source points are used. In order to illustrate how the MFS

performs in a typical three-dimensional smooth geometry we consider the solution

domain to be the unit sphere Ω = {X = (x, y, z) ∈ R
3|x2 + y2 + z2 < 1}, with

the source points located on a sphere of radius R > 1, centred at the origin. We

investigate various values of R ∈ {1.5, 2, 2.5}, and also the convergence of the numer-

ical solution as M2 increases. The distributions of source and boundary collocation

points are shown in Figure 2.2(f). The numerical interior solutions for u(0.5, θ, π/2)

and u(0.5, π/4, φ) obtained with M ∈ {5, 10, 20} and R ∈ {1.5, 2, 2.5} are shown

in Figures 2.23 and 2.24, respectively. From these figures it can be seen that as M

increases, or the radius R increases the numerical solutions for u(0.5, θ, π/2) and

u(0.5, π/4, φ) converge toward the analytical solution (2.38).

The numerical solution for the normal derivative ∂u/∂n(1, θ, φ) obtained with

R = 2 and M2 = 20× 20 is shown in Figure 2.25 in comparison with the analytical

solution (2.40) given by

∂u

∂n
(1, θ, φ) = [cos(θ) sin(φ) + sin(θ) sin(φ) + cos(φ)] cos(cos(θ) sin(φ)

+ sin(θ) sin(φ) + cos(φ)), θ ∈ [0, 2π), φ ∈ [0, π). (2.65)

From this figure it can be seen that the numerical solution converges to the analytical

solution (2.65) as M increases. Overall from Figures 2.23-2.25 it can be concluded

that the MFS provides a convergent and accurate numerical solution for solving
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the Dirichlet problem for the Helmholtz equation in a smooth simply-connected

three-dimensional geometry such as a sphere.
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Figure 2.23: The analytical and the MFS solutions for u(0.5, θ, π/2) for various

M ∈ {5, 10, 20} and R ∈ {1.5, 2, 2.5}, for Example 9.
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Figure 2.24: The analytical and the MFS solutions for u(0.5, π/4, φ) for various

M ∈ {5, 10, 20} and R ∈ {1.5, 2, 2.5}, for Example 9.
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Figure 2.25: (a) The analytical, and (b) the MFS solution for the normal derivative

∂u/∂n(1, θ, φ) for M = 20 and R = 2, for Example 9.
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2.4.10 Example 10 (Helmholtz equation, unbounded exte-

rior of a sphere)

For the direct scattering problem in three-dimensions, let Ω ⊂ R
3 be a bounded pla-

nar domain with boundary ∂Ω ∈ C2 such that the exterior R
3\Ω of Ω is connected.

We are given the wave number k > 0, and an incident field given by a plane wave

moving in the unit direction d̂ ∈ S2 = {d ∈ R
3 : |d| = 1}, namely

uinc(X) = eikX.bd, X ∈ R
3. (2.66)

Then the scattering of uinc by Ω produces a scattered wave us with corresponding

total field u = us + uinc, where us ∈ C2(R3\Ω) ∩ C1(R3\Ω) which satisfies the

Helmholtz equation

∆us(X) + k2us(X) = 0, X ∈ R
3\Ω (2.67)

and the Sommerfeld radiation condition at infinity

lim
r→∞

r
(∂us

∂r
(X) − ikus(X)

)
= 0 (uniformly with respect to X̂ = X/|X|),

(2.68)

where r = |X|, and the boundary conditions corresponding to (2.53) and (2.54).

As in Example 6, in the scattering problem from an obstacle Ω, say the unit

sphere, the solution domain is exterior and unbounded hence, the MFS source points

are located on an inside sphere of radius R1 < 1, say R1 = 1/2, centred at the origin.

The distributions of source and boundary collocation points are shown in Figure

2.2(h). The analytical solution for the direct scattering from a sound-soft spherical

obstacle B(0; a) of radius a centred at the origin by an incident plane wave in the

x−direction is given by, see Colton and Kress (1998),

us(r, θ, φ) = − j0(ka)

h
(1)
0 (ka)

h
(1)
0 (kr)P0(cos(φ))

−
∞∑

n=1

in(2n + 1)
jn(ka)

h
(1)
n (ka)

h(1)
n (kr)Pn(cos(φ)),

(r, φ) ∈ R
3\B(0; a) = {r ≥ a, φ ∈ [0, π)} (2.69)

where h
(1)
n and jn are the spherical Hankel and spherical Bessel functions of first

kind of order n, respectively, Pn is the Legendre function of degree n. For simplicity,

we consider the Dirichlet sound-soft boundary condition (2.53). Corresponding to
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(2.69), the normal derivative is given by

∂us(a, θ, φ)

∂n
=

kj0(ka)P0(cos(φ))h
(1)
1 (ka)

h
(1)
0 (ka)

− k

2

∞∑

n=1

in(2n + 1)
jn(ka)Pn(cos(φ))

h
(1)
n (ka)

[
h

(1)
n−1(ka) − h

(1)
n (ka) + kah

(1)
n+1(ka)

ka

]
, φ ∈ [0, π). (2.70)

In what follows we take a = k = 1. We investigate the convergence of the

numerical solution as M = N increases. The numerical exterior solutions for real

and imaginary parts of us(2, π/4, φ) obtained with M = N ∈ {8, 16, 32} are shown

in Figure 2.26. From this figure it can be seen that the numerical solution converges

towards the analytical solution (2.69) on ∂B(0, 2), as M = N increases.
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Figure 2.26: The analytical and the MFS solutions of: (a) real, and (b) imaginary

parts of us(2, π/4, φ) for various values of M = N ∈ {8, 16, 32}, for Example 10.
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Figure 2.27: (a) The analytical and (b) the MFS solutions of real part of

∂us/∂n(1, θ, φ) for various values of M = N = 20, for Example 10.

The numerical solutions for the real and imaginary parts of the normal derivative

∂us/∂n(1, θ, φ), for various values of M = N = 20 are shown in Figures 2.27 and 2.28

in comparison with the analytical solution (2.70). From these figures it can be seen

that the numerical solution for the normal derivative converges to the analytical

solution (2.70) as M = N increases. Overall from Figures 2.26-2.28 it can be

concluded that the MFS provides a convergent and accurate numerical solution for

solving direct scattering problems in exterior unbounded domains.
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Figure 2.28: (a) The analytical and (b) the MFS solutions of imaginary part of

∂us/∂n(1, θ, φ) for various values of M = N = 20, for Example 10.
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2.5 Conclusions

In this chapter, Helmholtz-type equations in two- or three-dimensions, subject to

(Dirichlet) boundary conditions, have been investigated by employing the MFS. Ten

examples involving various geometries (circle, square, annulus, exterior unbounded

of a circle, sphere, annular sphere) have been analysed. The numerical results ob-

tained show that the convergence of the MFS depend on increasing the number

of source and collocation points and the distance from the source points to the

boundary of the solution domain. The application of the MFS for Helmholtz-type

equations in composite materials will be presented in the next chapter.



Chapter 3

The method of fundamental

solutions for Helmholtz-type

equations in composite materials

3.1 Introduction

The composite bi-material problems under consideration in this chapter are solved by

using a domain decomposition MFS technique developed in Berger and Karageorghis

(1999, 2001); Marin and Lesnic (2007); Karageorghis and Lesnic (2008). The bi-

material is decomposed into two subdomains and the solution is approximated by an

MFS-type expansion in each subdomain. At the interface, the continuity conditions

for the solution and its normal derivative are imposed.

The outline of this chapter is as follows. In section 3.2 we introduce the math-

ematical formulation, whilst in section 3.3 we present the MFS for Helmholtz-type

equations in composite bi-materials. In section 3.4 we present and discuss the nu-

merically obtained results for each case considered. In section 3.5 we give some

conclusions and possible future work.

3.2 Mathematical formulation

We consider a bi-material composed of two subdomains Ω1 and Ω2, with boundaries

∂Ω1 and ∂Ω2, respectively. Referring to the fields of heat conduction and acoustics,

the two homogeneous materials in Ω1 and Ω2 are characterized by the constant heat

transfer coefficients (wavenumbers) k1 and k2, respectively. The temperature (acous-
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tic pressure) distribution in each subdomain satisfies the Helmholtz-type equations

∇2u1 ± k2
1u1 = 0 in Ω1, (3.1)

∇2u2 ± k2
2u2 = 0 in Ω2. (3.2)

(a) In the first case we consider the modified Helmholtz equation with a minus sign

in (3.1) and (3.2) subject to the boundary conditions

u1 = f1 on ∂Ω1\Γ12, (3.3)

u2 = f2 on ∂Ω2\Γ12, (3.4)

and on the interface Γ12 = ∂Ω1 ∩ ∂Ω2 we have the continuity of solution and its

normal derivative, namely

u1 = u2, on Γ12, (3.5)

−κ
∂u1

∂n1

=
∂u2

∂n2

on Γ12, (3.6)

where n1 and n2 are the outward unit normal vectors to the domains Ω1 and Ω2,

respectively, and κ represents the ratio between the thermal conductivities of the

materials Ω1 and Ω2.

(b) In the second case we consider the direct scattering problem from a penetra-

ble bounded obstacle Ω1 with mixed transmission conditions. This is given by the

Helmholtz equation with plus sign in (3.1) and (3.2) when Ω1 is a bounded obstacle

and Ω2 = R
n\Ω1, where n = 2, 3, is its exterior unbounded complement which is

assumed connected. The mixed transmission conditions on the interface ∂Ω1 are

given by

u1 − (u2 + uinc) = 0 on Γ1, (3.7)

u1 − (u2 + uinc) = -iη
∂(u2 + uinc)

∂n2

on Γ2, (3.8)

κ
∂u1

∂n1

+
∂(u2 + uinc)

∂n2

= 0 on ∂Ω1, (3.9)

where κ represents the ratio between the electric permittivities of the materials Ω1

and Ω2, Γ1 and Γ2 are two disjoint portions of the boundary ∂Ω1 such that Γ1∩Γ2 = ∅
and Γ1 ∪ Γ2 = ∂Ω1, η is the impedance coefficient allowing for non-perfect contact,

and uinc is the incident field given by a plane wave moving in the unit direction

d̂ ∈ Sn−1 = {d ∈ R
n : |d| = 1}, namely uinc(X) = eik2X.bd. The Sommerfeld infinity
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condition is given by

lim
|X|→∞

√
|X|n−1

( ∂u2

∂|X|(X) − ik2u2(X)
)

= 0

(uniformly with respect to X̂ = X/|X|). (3.10)

3.3 The Method of Fundamental Solutions (MFS)

3.3.1 The MFS for the modified Helmholtz equation

Example 1. Let us first consider the case when the governing equation is the

modified Helmholtz equation, namely

∇2u1 − k2
1u1 = 0 in Ω1, (3.11)

∇2u2 − k2
2u2 = 0 in Ω2, (3.12)

where Ω1 and Ω2 occupy the rectangular regions, see Figure 3.1(a),

Ω1 = (−1/2, 1/2) × (0, 1/2) and Ω2 = (−1/2, 1/2) × (−1/2, 0). Now, we treat the

two subdomains separately: in Ω1, the solution u1 is approximated by

u1,N(X1) =
N∑

j=1

ajG−(X1, ξ1
j; k1), X1 ∈ Ω1, (3.13)

and in Ω2, the solution u2 is approximated by

u2,N(X2) =
N∑

j=1

bjG−(X2, ξ2
j; k2), X2 ∈ Ω2, (3.14)

where the 2N vectors (ξ1
j)j=1,N and (ξ2

j)j=1,N contain the sources which are located

uniformly distributed outside Ω1 and Ω2, respectively, at a distance δ > 0 from them,

see Figure 3.1(a). The fundamental solutions G− of modified Helmholtz equations

(3.11) and (3.12) are given by, see Balakrishnan and Ramachandran (2000),

G−(X,Y ; ki) =

{
K0(kir), in two-dimensions
e−kir

r
, in three-dimensions

(3.15)

where r =‖ X − Y ‖, i = 1, 2, and, for simplicity, the constants 1
2π

in two-

dimensions and 1
4π

in three-dimensions have been embedded in the unknown co-

efficients (aj)j=1,N and (bj)j=1,N in (3.13) and (3.14), respectively. Imposing the

boundary conditions (3.3) and (3.4), and the interface conditions (3.5) and (3.6),
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yield





N∑

j=1

ajG−(X1(i), ξ1
j; k1) = f1(X1(i)), i = 1, 2M/3

N∑

j=1

ajG−(X1(i), ξ1
j; k1) −

N∑

j=1

bjG−(X2(i), ξ2
j; k2) = 0, i = 2M/3 + 1,M

N∑

j=1

bjG−(X2(i − M), ξ2
j; k2) = f2(X2(i − M)), i = M + 1, 5M/3

−κ
N∑

j=1

aj
∂G−
∂y

(X1(i − M), ξ1
j; k1) +

N∑

j=1

bj
∂G−
∂y

(X2(i − M), ξ2
j; k2) = 0,

i = 5M/3 + 1, 2M

(3.16)

where (X1(i))i=1,M and (X2(i))i=1,M are boundary collocation points uniformly dis-

tributed (as midpoints) on ∂Ω1 (starting from the point (−1
2
, 0) in a clockwise direc-

tion) and on ∂Ω2 (starting from the point (−1
2
, 0) in a counterclockwise direction),

see Figure 3.1(a). We have chosen midpoints in order to avoid collocating at the

corners of the rectangles where the normal derivative is undefined. In (3.16)

∂G−
∂y

(Xl(i − M), ξl
j; kl) = −kl

(Xl(i − M) − ξl) · (0, 1)

‖ Xl(i − M) − ξl
j ‖

K1

(
kl ‖ Xl(i − M) − ξl

j ‖
)
, l = 1, 2, (3.17)

Equations (3.16) form a system of 2M linear algebraic equations with 2N unknowns

which generically can be written as

Ac = d, (3.18)

where c =
(
a1, · · · , aN , b1, · · · , bN

)tr
, d =




f1(X1(i))i=1,2M/3

(0)i=2M/3+1,M

f2(X2(i − M))i=M+1,5M/3

(0)i=5M/3+1,2M




, and
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Aij =





K0(k1 ‖ X1(i) − ξ1
j ‖), i = 1, 2M/3, j = 1, N

0, i = 1, 2M/3, j = N + 1, 2N

K0(k1 ‖ X1(i) − ξ1
j ‖), i = 2M/3 + 1,M, j = 1, N

−K0(k2 ‖ X2(i) − ξ2
j ‖), i = 2M/3 + 1,M, j = N + 1, 2N

0, i = M + 1, 5M/3, j = 1, N

K0(k2 ‖ X2(i − M) − ξ2
j ‖), i = M + 1, 5M/3, j = N + 1, 2N

κk1(X1(i−M)−ξ1
j)·(0,1)

‖X1(i−M)−ξ1
j‖ K1

(
k1 ‖ X1(i − M) − ξ1

j ‖
)
,

i = 5M/3 + 1, 2M, j = 1, N
−k2(X2(i−M)−ξ2

j)·(0,1)

‖X2(i−M)−ξ2
j‖ K1

(
k2 ‖ X2(i − M) − ξ2

j ‖
)
,

i = 5M/3 + 1, 2M, j = N + 1, 2N

(3.19)

Example 2. Secondly, we consider the case when the domain Ω1 occupies the

concentric annular region Ω1 = {(x, y) ∈ R
2|R2

1 < x2 + y2 < R2
2}, and the domain

Ω2 occupies the circular region Ω2 = {(x, y) ∈ R
2|x2 + y2 < R2

1}, see Figure 3.1(b).

Using the MFS we treat the two subdomains separately: in Ω1, the solution u1 can

be approximated by

u1,2N(X) =
2N∑

j=1

ajG−(X, ξj; k1), X ∈ Ω1, (3.20)

and in Ω2, the solution u2 can be approximated by

u2,N(X) =
N∑

j=1

bjG−(X, ηj; k2), X ∈ Ω2, (3.21)

where the 2N vectors (ξj)j=1,2N and the N vectors (ηj)j=1,N contain the sources

which are located outside Ω1 and Ω2, respectively. In particular, (ξj)j=1,N ,

(ξj)j=N+1,2N and (ηj)j=1,N are uniformly distributed on concentric circles of radii

R3 ∈ (0, R1), R4 ∈ (R2,∞) and R5 ∈ (R1,∞), respectively, see Figure 3.1(b).

Imposing the boundary condition (3.3) and the interface continuity conditions (3.5)
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and (3.6), yield





2N∑

j=1

ajG−(X(i), ξj; k1) = f1(X(i)), i = 1,M

2N∑

j=1

ajG−(X(i), ξj; k1) −
N∑

j=1

bjG−(X(i), ηj; k2) = 0, i = M + 1, 2M

−κ
2N∑

j=1

aj
∂G−
∂r

(X(i − M), ξj; k1) +
N∑

j=1

bj
∂G−
∂r

(X(i − M), ηj; k2) = 0,

i = 2M + 1, 3M

(3.22)

where (X(i))i=1,M and (X(i))i=M+1,2M are boundary collocation points uniformly

distributed on the circles of radii R2 and R1, respectively, and





∂G−

∂r
(X(i − M), ξj; k1) = −k1

(X(i−M)−ξj)·X(i−M)

‖X(i−M)−ξj‖R1
K1

(
k1 ‖ X(i − M) − ξj ‖

)

∂G−

∂r
(X(i − M), ηj; k2) = −k2

(X(i−M)−ηj)·X(i−M)

‖X(i−M)−ηj‖R2
K1

(
k2 ‖ X(i − M) − ηj ‖

)

(3.23)

Equations (3.22) form a system of 3M linear algebraic equations with 3N unknowns

which generically can be written as (3.18), where

c =
(
a1, · · · , a2N , b1, · · · , bN

)tr
, d =




f1(X(i))i=1,M

(0)i=M+1,2M

(0)i=2M+1,3M


 and

Aij =





K0(k1 ‖ X(i) − ξj ‖), i = 1,M, j = 1, 2N

0, i = 1,M, j = 2N + 1, 3N

K0(k1 ‖ X(i) − ξj ‖), i = M + 1, 2M, j = 1, 2N

−K0(k2 ‖ X(i) − ηj ‖), i = M + 1, 2M, j = 2N + 1, 3N
κk1(X(i−M)−ξj)·X(i−M)

‖X(i−M)−ξj‖R1
K1

(
k1 ‖ X(i − M) − ξj ‖

)
,

i = 2M + 1, 3M, j = 1, 2N
−k2(X(i−M)−ηj)·X(i−M)

‖X(i−M)−ηj‖R2
K1

(
k2 ‖ X(i − M) − ηj ‖

)
,

i = 2M + 1, 3M, j = 2N + 1, 3N

(3.24)

Example 3. Finaly, we consider the case when the domains Ω1 and Ω2 are the three-

dimensional cubes presented in Figure 3.1(c), where Ω1 = (0, 1)× (0, 1)× (0, 1) and

Ω2 = (0, 1) × (0, 1) × (−1, 0). We treat the two subdomains separately: in Ω1, the
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solution u1 is approximated by

u1,6N2(X1) =
6N2∑

j=1

ajG−(X1, ξ1
j; k1), X1 ∈ Ω1, (3.25)

and in Ω2, the solution u2 is approximated by

u2,6N2(X2) =
6N2∑

j=1

bjG−(X2, ξ2
j; k2), X2 ∈ Ω2, (3.26)

where the 12N2 vectors (ξ1
j)j=1,6N2 and (ξ2

j)j=1,6N2 contain the sources which are

located outside Ω1 and Ω2, respectively, at a distance δ > 0 from them. More

precisely, we take

ξ1
l =

(
− δ,−δ +

(1 + 2δ)(i − 1)

M − 1
,−δ +

(1 + 2δ)(j − 1)

M − 1

)
,

ξ1
N2+l =

(
1 + δ,−δ +

(1 + 2δ)(i − 1)

M − 1
,−δ +

(1 + 2δ)(j − 1)

M − 1

)
,

ξ1
2N2+l =

(
− δ +

(1 + 2δ)i

M + 1
,−δ,−δ +

(1 + 2δ)(j − 1)

M − 1

)
,

ξ1
3N2+l =

(
− δ +

(1 + 2δ)i

M + 1
, 1 + δ,−δ +

(1 + 2δ)(j − 1)

M − 1

)
,

ξ1
4N2+l =

(
− δ +

(1 + 2δ)i

M + 1
,−δ +

(1 + 2δ)j

M + 1
, 1 + δ

)
,

ξ1
5N2+l =

(
− δ +

(1 + 2δ)i

M + 1
,−δ +

(1 + 2δ)j

M + 1
,−δ

)
,

and

ξ2
l =

(
− δ,−δ +

(1 + 2δ)(i − 1)

M − 1
,−1 − δ +

(1 + 2δ)(j − 1)

M − 1

)
,

ξ2
N2+l =

(
1 + δ,−δ +

(1 + 2δ)(i − 1)

M − 1
,−1 − δ +

(1 + 2δ)(j − 1)

M − 1

)
,

ξ2
2N2+l =

(
− δ +

(1 + 2δ)i

M + 1
,−δ,−1 − δ +

(1 + 2δ)(j − 1)

M − 1

)
,
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ξ2
3N2+l =

(
− δ +

(1 + 2δ)i

M + 1
, 1 + δ,−1 − δ +

(1 + 2δ)(j − 1)

M − 1

)
,

ξ2
4N2+l =

(
− δ +

(1 + 2δ)i

M + 1
,−δ +

(1 + 2δ)j

M + 1
,−1 − δ

)
,

ξ2
5N2+l =

(
− δ +

(1 + 2δ)i

M + 1
,−δ +

(1 + 2δ)j

M + 1
, δ

)
, i, j = 1,M, l = (i − 1)M + j.

Imposing the boundary conditions (3.3) and (3.4), and the interface conditions (3.5)

and (3.6), yield





6N2∑

j=1

ajG−(X1(i), ξ1
j; k1) = f1(X1(i)), i = 1, 5M2

6N2∑

j=1

ajG−(X1(i), ξ1
j; k1) −

6N2∑

j=1

bjG−(X2(i), ξ2
j; k2) = 0, i = 5M2 + 1, 6M2

6N2∑

j=1

bjG−(X2(i − 6M2), ξ2
j; k2) = f2(X2(i − 6M2)), i = 6M2 + 1, 11M2

κ
6N2∑

j=1

aj
∂G−
∂z

(X1(i − 6M2), ξ1
j; k1) −

6N2∑

j=1

bj
∂G−
∂z

(X2(i − 6M2), ξ2
j; k2) = 0,

i = 11M2 + 1, 12M2

(3.27)

where (X1(i))i=1,6M2 and (X2(i))i=1,6M2 are boundary collocation points uniformly

distributed on ∂Ω1 and ∂Ω2, see Figure 3.1(c). More precisely, we take

X1
l =

(
0,

(i − 1)

M − 1
,
(j − 1)

M − 1

)
, X2

l =

(
0,

(i − 1)

M − 1
,−1 +

(j − 1)

M − 1

)
,

X1
M2+l =

(
1,

(i − 1)

M − 1
,
(j − 1)

M − 1

)
, X2

M2+l =

(
1,

(i − 1)

M − 1
,−1 +

(j − 1)

M − 1

)
,

X1
2M2+l =

(
i

M + 1
, 0,

(j − 1)

M − 1

)
, X2

2M2+l =

(
i

M + 1
, 0,−1 +

(j − 1)

M − 1

)
,

X1
3M2+l =

(
i

M + 1
, 1,

(j − 1)

M − 1

)
, X2

3M2+l =

(
i

M + 1
, 1,−1 +

(j − 1)

M − 1

)
,

X1
4M2+l =

(
i

M + 1
,

j

M + 1
, 1

)
, X2

4M2+l =

(
i

M + 1
,

j

M + 1
,−1

)
,

X1,2
5M2+l =

(
i

M + 1
,

j

M + 1
, 0

)
, i, j = 1,M, l = (i − 1)M + j.
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In (3.27)

∂G−
∂z

(
Xl(i − 6M2), ξl

j; kl

)
=

(
kl +

1

‖Xl(i − 6M2) − ξl
j‖

)

(ζj
l − zl(i − 6M2))

‖Xl(i − 6M2) − ξl
j‖2

e−kl‖Xl(i−6M2)−ξl
j‖, l = 1, 2, (3.28)

where zl and ζj
l are the third component of Xl and ξl

j, respectively. Equations

(3.27) form a system of 12M2 linear algebraic equations with 12N2 unknowns which

generically can be written in the form of system (3.18), where

c =
(
a1, · · · , a6N2 , b1, · · · , b6N2

)tr
, d =




f1(X1(i))i=1,5M2

(0)i=5M2+1,6M2

f2(X2(i − 6M2))i=6M2+1,11M2

(0)i=11M2+1,12M2




, and

Aij =





e
−k1‖X1(i)−ξ1

j‖

‖X1(i)−ξ1
j‖ , i = 1, 5M2, j = 1, 6N2

0, i = 1, 5M2, j = 6N2 + 1, 12N2

e
−k1‖X1(i)−ξ1

j‖

‖X1(i)−ξ1
j‖ , i = 5M2 + 1, 6M2, j = 1, 6N2

− e
−k2‖X2(i)−ξ2

j‖

‖X2(i)−ξ2
j‖ , i = 5M2 + 1, 6M2, j = 6N2 + 1, 12N2

0, i = 6M2 + 1, 11M2, j = 1, 6N2

e
−k2‖X2(i−6M2)−ξ2

j‖

‖X2(i−6M2)−ξ2
j‖ , i = 6M2 + 1, 11M2, j = 6N2 + 1, 12N2

κ
(
k1 + 1

‖X1(i−6M2)−ξ1
j‖

)
(ζj

1−z1(i−6M2))

‖X1(i−6M2)−ξ1
j‖2 e

−k1‖X1(i−6M2)−ξ1
j‖,

i = 11M2 + 1, 12M2, j = 1, 6N2

−
(
k2 + 1

‖X2(i−6M2)−ξ2
j‖

)
(ζj

2−z2(i−6M2))

‖X2(i−6M2)−ξ2
j‖2 e

−k2‖X2(i−6M2)−ξ2
j‖,

i = 11M2 + 1, 12M2, j = 6N2 + 1, 12N2

(3.29)

In all situations, in order to obtain a unique solution for the system of equations

(3.18) we require M ≥ N . The underdetermined case M < N with the MFS has

been recently considered in Smyrlis and Karageorghis (2010), but it will not be

investigated herein. If M = N the system of linear equations (3.18) can be solved

using the Gaussian elimination method, whilst if M > N one can employ an ordinary

linear least-squares method which replaces the rectangular over determined system

of equations (3.18) with the square determined system

AtrAc = Atrd. (3.30)

The MFS resulting matrix A is often ill-conditioned, see Chen et al. (2006), hence,

if N is large, then the system of equations (3.30) needs to be regularized using, for
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example, the Tikhonov regularization method which gives

(AtrA + λI)c = Atrd, (3.31)

where I is the identity matrix and λ > 0 is a regularization parameter to be pre-

scribed according to some selection criterion such as the discrepancy principle, the

L-curve, or the generalized cross validation.

3.3.2 The MFS for the Helmholtz equation

Example 4. Let us now consider the case when the governing equation is the

Helmholtz equation, namely

∇2u1 + k2
1u1 = 0 in Ω1, (3.32)

∇2u2 + k2
2u2 = 0 in Ω2, (3.33)

where Ω1 occupies the circular region Ω1 = {(x, y) ∈ R
2|x2 + y2 < R2

1}, and Ω2

occupies its complement, i.e. the unbounded exterior region of the circle, namely

Ω2 = {(x, y) ∈ R
2|x2 + y2 > R2

1}, see Figure 3.1(d). Using the MFS we treat the

two subdomains separately: in Ω1, the solution u1 can be approximated by

u1,N(X) =
N∑

j=1

ajG+(X, ξ1
j; k1), X ∈ Ω1, (3.34)

and in Ω2, the solution u2 can be approximated by

u2,N(X) =
N∑

j=1

bjG+(X, ξ2
j; k2), X ∈ Ω2, (3.35)

where the 2N vectors (ξ1
j)j=1,N and(ξ2

j)j=1,N contain the sources which are located

outside Ω1 and Ω2, respectively. In particular, (ξ1
j)j=1,N and (ξ2

j)j=1,N are uniformly

distributed on concentric circles of radii R3 ∈ (0, R1) and R2 ∈ (R1,∞), respectively,

see Figure 3.1(d).

The fundamental solution G+ of Helmholtz equations (3.32) and (3.33), in the

two-dimensional case are given by, see Fairweather and Karageorghis (1998),

G+(X,Y ; kl) = H
(1)
0 (klr), l = 1, 2, (3.36)

where for simplicity, the constant i
4
, which does not appear in (3.36), has been

embedded in unknown complex coefficients (aj)j=1,N and (bj)j=1,N in (3.34) and
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(3.35), respectively. The convergence, stability and error estimates of the MFS for

the Helmholtz equation have been investigated in Barnett and Betcke (2008), and

Ushijima and Chiba (2003). Equations (3.34) and (3.35) with G+(X,Y , kl), l = 1, 2,

replaced by H
(1)
0 (kl‖X − ξl

j‖) can be rewritten as

u1,N(X) =
N∑

j=1

ajH
(1)
0 (k1‖X − ξ1

j‖), X ∈ Ω1, (3.37a)

u2,N(X) =
N∑

j=1

bjH
(1)
0 (k2‖X − ξ2

j‖), X ∈ Ω2. (3.37b)

Collocating the mixed transmission conditions (3.7)-(3.9) at the points
(
X(ℓ)

)
ℓ=1,M

uniformly distributed (as midpoints) on the interface Γ12 = ∂Ω1 = {(x, y) ∈ R
2| x2+

y2 = R2
1} = Γ1 ∪ Γ2 = {(x, y) ∈ Γ12| y ≥ 0} ∪ {(x, y) ∈ Γ12| y < 0} yield

N∑

j=1

[
ajH

(1)
0

(
k1‖X(ℓ) − ξ1

j‖
)
− bjH

(1)
0

(
k2‖X(ℓ) − ξ2

j‖
)]

= eik2X(ℓ)·bd,

ℓ = 1,M/2, (3.38)

N∑

j=1

[
ajH

(1)
0

(
k1‖X(ℓ) − ξ1

j‖
)
− bjH

(1)
0

(
k2‖X(ℓ) − ξ2

j‖
)]

+
ik2η(X(ℓ))

R1

N∑

j=1

(X(ℓ) − ξ2
j) · X(ℓ)

‖X(ℓ) − ξ2
j‖ bjH

(1)
1

(
k2‖X(ℓ) − ξ2

j‖
)

= eik2X(ℓ)·bd

(
1 − k2η(X(ℓ))

(
X(ℓ) · d̂

)

R1

)
, ℓ = M/2 + 1,M, (3.39)

−k1κ
N∑

j=1

ajH
(1)
1

(
k1‖X(ℓ − M) − ξ1

j‖
)(X(ℓ − M) − ξ1

j) · X(ℓ − M)

‖X(ℓ − M) − ξ1
j‖

+k2

N∑

j=1

bjH
(1)
1

(
k2‖X(ℓ − M) − ξ2

j‖
)(X(ℓ − M) − ξ2

j) · X(ℓ − M)

‖X(ℓ − M) − ξ2
j‖

= −ik2e
ik2X(ℓ−M)·bd

(
X(ℓ − M) · d̂

)

R1

, ℓ = M + 1, 2M. (3.40)

Separating the real and imaginary parts, equations (3.38)-(3.40) form a system of

4M linear algebraic equations with 4N unknowns which generically can be written

as (3.18) for the unknown coefficients
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c =
(
Re(a1), · · · , Re(aN), Im(a1), · · · , Im(aN), Re(b1), · · · , Re(bN), Im(b1), · · · ,

Im(bN)
)tr

.

Calculation of the condition number of the matrix A reveals that this matrix

is highly ill-conditioned. As such, the resulting MFS system cannot be solved by

a direct method, such as the Gaussian elimination method which would produce a

highly oscillatory and unstable numerical solution. Therefore, in order to deal with

this instability issue we employ the Tikhonov regularization method (3.31).
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Figure 3.1: The distributions of source (◦) and boundary collocation (•) points.

3.4 Numerical results and discussion

In the Fortran computations we have used the NAG routines S18ACF, S18ADF,

S17AEF, S17AFF, S17ACF and S17ADF for implementing the special functions
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K0, K1, J0, J1, Y0 and Y1, respectively. For Examples 1-3 regularization was not

needed and the linear least-squares method was employed for solving the system

of equations (3.30). However, for Example 4 regularization, as given by expression

(3.31), was found necessary in order to obtain a stable solution.

3.4.1 Modified Helmholtz equation

It is the purpose of this subsection to present and discuss numerical results ob-

tained for the modified Helmholtz equations (3.11) and (3.12) in different composite

geometries, see Figure 3.1.

Example 1:

{
Ω1 = (−1/2, 1/2) × (0, 1/2), (rectangle)

Ω2 = (−1/2, 1/2) × (−1/2, 0), (rectangle)
(3.41)

Example 2:

{
Ω1 = {(x, y) ∈ R

2| 0.25 = R2
1 < x2 + y2 < R2

2 = 1}, (annulus)

Ω2 = {(x, y) ∈ R
2| x2 + y2 < R2

1 = 0.25}, (circle)

(3.42)

Example 3:

{
Ω1 = (0, 1) × (0, 1) × (0, 1), (cube)

Ω2 = (0, 1) × (0, 1) × (−1, 0), (cube)
(3.43)

We present results for M = N uniformly distributed points and δ = 0.1 for Example

1 and δ = 0.5 for Example 3 which is three-dimensional. Other values of δ between

O(10−1) and O(1) did not significantly affect the accuracy of the numerical results

and practical experience indicates that δ should be chosen neither too small nor too

large.

Example 1. We take the Dirichlet data (3.3) and (3.4) given by

u1(x, y) = f1(x, y) = ex+y, (x, y) ∈ ∂Ω1\Γ12 (3.44)

u2(x, y) = f2(x, y) = ex(1 + y), (x, y) ∈ ∂Ω2\Γ12 (3.45)

We also take k1 =
√

2, k2 = 1 and κ = 1. We can realize κ = 1 and still have

composite different heat conductors by taking two materials with the same thermal

conductivity, but with different heat capacities. For example, the thermal property

measurements performed by the company Hukse flux Thermal Sensors indicate that,

at 20◦ Celsius, quartz and marble have both the same thermal conductivity 3W/(m ·
K), but their volumetric heat capacities are different, namely, 2.130 J/(cm3 ·K) and

2.376 J/(cm3 ·K), respectively. This implies that their thermal diffusivities are also

different and equal to 0.0141 cm2/s for quartz and 0.0126 cm2/s for marble. The

bi-material (3.41) is considered in order to show the applicability of the MFS to deal
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with non-smooth composite domains, see Figure 3.1(a). This example possesses an

analytical solution which is given by

u1(x, y) = ex+y, (x, y) ∈ Ω1 (3.46)

u2(x, y) = ex(1 + y), (x, y) ∈ Ω2 (3.47)

Corresponding to (3.46) and (3.47), the normal derivatives at the interface Γ12 =

(−1/2, 1/2) × {0} are given by

−∂u1

∂y
(x, 0) = −ex,

∂u2

∂y
(x, 0) = ex, (x, y) ∈ Γ12. (3.48)

Figures 3.2(a) and 3.2(b) show the logarithm of the L2-errors for the solution u1

and its normal derivative ∂u1/∂y along the interface Γ12 given by

‖u1 − u1,N‖L2(Γ12) ≈

√√√√ 1

M1

M1∑

i=1

∣∣∣u1(x1(i), 0) − u1,N(x1(i), 0)
∣∣∣
2

, (3.49)

∥∥∥
∂u1

∂y
− ∂u1,N

∂y

∥∥∥
L2(Γ12)

≈

√√√√ 1

M1

M1∑

i=1

∣∣∣
∂u1

∂y
(x1(i), 0) − ∂u1,N

∂y
(x1(i), 0)

∣∣∣
2

, (3.50)

where x1(i) = (2i − 1)/(2M1) for i = 1,M1, and M1 = 99. The value of M1

is irrelevant as we only wish to calculate the solution at points on the boundary

different from the boundary collocation points.

Although not illustrated, we report that for M = 30 to 60 the errors are large

because there are not enough points to approximate a complicated geometry. From

Figures 3.2(a) and 3.2(b) it can be seen that the errors (3.49) and (3.50) decrease

exponentially as the number M of source/collocation points increases to 90, 120,

and 150. The numerical and analytical interior solutions for u1 and u2 obtained

with M = 90 are shown in Figures 3.3(a) and 3.3(b), respectively. From these

figures it can be seen that the agreement between the MFS numerical solution and

the analytical solution is excellent.
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Figure 3.2: Logarithm of the errors (3.49) and (3.50).
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Figure 3.3: (a) The MFS solution for u1, u2 and (b) the analytical solutions (3.46)

and (3.47) with M = 90.

Example 2. We take k1 =
√

2, k2 =
√

5, a high contrast bi-material with κ = 5,

and the Dirichlet data (3.3) given by

u1(x, y) = f1(x, y) = ex−y, (x, y) ∈ ∂Ω1\Γ12. (3.51)

Note that this example does not possess an explicit analytical solution to compare

with the numerical results. Further, the bi-material (3.42) is considered in order to

show the applicability of the MFS to deal with smooth composite domains which

may not be simply connected, see Figure 3.1(b).

Figure 3.4 shows the logarithm of the error for the numerical solution u1 on the
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boundary ∂Ω1 given by

‖u1,2N − f1‖L2(∂Ω1) ≈

√√√√ 2π

M1

M1∑

i=1

∣∣∣u1,2N (1, θi) − f1(1, θi)
∣∣∣
2

, (3.52)

where θi = 2πi
M1

for i = 1,M1, and M1 = 99. From this figure it can be seen that the

error (3.52) decreases exponentially as the number M of source/collocation points

increases to 40, 60, and 80. However, this error increases slightly for M > 160. As

in the previous example, the reason for this increase in the error is that the system

of linear equations (3.18) becomes ill-conditioned.

The numerical solutions for the normal derivatives ∂u1/∂n(1, θ) and

∂u1/∂n(0.5, θ) for M = 40 are shown in Figures 3.5(a) and 3.5(b), respectively. The

numerical interior solutions for u1(0.75, θ) and u2(0.25, θ) obtained with M = N ∈
{20, 40, 80} are shown in Figures 3.5(d) and 3.5(c), respectively. Although Exam-

ple 2 does not possesses an analytical solution available explicitly, the convergence

illustrated, as M increases, in Figures 3.5(d) and 3.5(c) shows that an accurate

numerical MFS solution has been obtained.
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Figure 3.5: The MFS solutions for: (a) ∂u1/∂n(1, θ), (b) ∂u1/∂n(0.5, θ), (c)

u1(0.75, θ), and (d) u2(0.25, θ).

Example 3. We take the Dirichlet data (3.3) and (3.4) given by

u1(x, y, z) = f1(x, y, z) = ex+y+z, (x, y, z) ∈ ∂Ω1\Γ12 (3.53)

u2(x, y, z) = f2(x, y, z) = ex+y(1 + z), (x, y, z) ∈ ∂Ω2\Γ12 (3.54)

We also take k1 =
√

3, k2 =
√

2 and κ = 1. The bi-material (3.43) is considered

in order to show the applicability of the MFS to three-dimensional non-smooth

composite domains, see Figure 3.1(c). This example possesses an analytical solution

given by

u1(x, y, z) = ex+y+z, (x, y, z) ∈ Ω1 (3.55)

u2(x, y, z) = ex+y(1 + z), (x, y, z) ∈ Ω2 (3.56)

Corresponding to (3.55) and (3.56), the normal derivatives at the planar interface
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Γ12 = (0, 1) × (0, 1) × {0} are given by

−∂u1

∂z
(x, y, 0) = −ex+y,

∂u2

∂z
(x, y, 0) = ex+y, (x, y, z) ∈ Γ12. (3.57)

Figures 3.6(a) and 3.6(b) show the logarithm of the L2-errors for the solution uk

and its normal derivative ∂uk/∂z along the interface Γ12 given by

‖uk − uk,6N2‖L2(Γ12) ≈

√√√√ 1

M2
1

M1∑

i,j=1

∣∣∣uk(xk(i), yk(j), 0) − uk,6N2(xk(i), yk(j), 0)
∣∣∣
2

,

(3.58)

∥∥∥
∂uk

∂z
− ∂uk,6N2

∂z

∥∥∥
L2(Γ12)

≈
√√√√ 1

M2
1

M1∑

i,j=1

∣∣∣
∂uk

∂z
(xk(i), yk(j), 0) − ∂uk,6N2

∂z
(xk(i), yk(j), 0)

∣∣∣
2

, (3.59)

for k = 1, 2, where xk(i) = i/(M1+1) for i = 1,M1, yk(j) = j/(M1+1) for j = 1,M1,

and M1 = 99. From Figures 3.6(a) and 3.6(b) it can be seen that the errors (3.58)

and (3.59) decrease exponentially as the number M of source/collocation points

increases.
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Figure 3.6: Logarithm of the errors (3.58) and (3.59).
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3.4.2 Helmholtz equation

It is the purpose of this subsection to present and discuss numerical results obtained

for the Helmholtz equations (3.32) and (3.33) in the composite geometry

{
Ω1 = {(x, y) ∈ R

2| x2 + y2 < R2
1 = 1}, (circle)

Ω2 = {(x, y) ∈ R
2| 1 = R2

1 < x2 + y2}, (unbounded exterior circle)

(3.60)

This can be viewed as a bi-material composed of a bounded domain material Ω1 and

its unbounded complement domain material Ω2 = R
2\Ω1.

Example 4. In this example we take k1 = 1/2, k2 = 1, κ = 2 and the posi-

tive impedance function η(X) = 1. The bi-material (3.60) is considered in order

to show the applicability of the MFS to deal with unbounded domains, see Figure

3.1(d). Taking the direction of scattering d̂ = (1, 0) along the x-axis, the incident

field is given by

uinc(X) = cos(k2x) + i sin(k2x), X = (x, y) ∈ R
2. (3.61)

Corresponding to (3.61), the normal derivative of the incident field along the inter-

face Γ12 = ∂Ω1 is given by

∂uinc

∂r
(X) =

k2x

R1

(
− sin(k2x) + i cos(k2x)

)
, X = (x, y) ∈ Γ12. (3.62)

The numerical solutions for the real and imaginary parts of the difference u1(1, θ)−
u2(1, θ) on the portion Γ1 = {(x, y) ∈ R

2| x2 + y2 = R2
1 = 1, y ≥ 0} of the interface

Γ12 = ∂Ω1 obtained with various values of M = N ∈ {20, 40, 80} and λ = 0,

and with various values of the regularization parameter λ ∈ {0, 10−6, 10−3} and

M = N = 80 are shown in Figures 3.7 and 3.8, respectively, in comparison with the

exact incident field

uinc(1, θ) = eik2 cos(θ), θ ∈ [0, π]. (3.63)

These were calculated at M1 = 19 uniformly distributed points on Γ1 different

from the boundary collocation points. From Figure 3.7 it can be seen for relatively

low values of M = N ∈ {20, 40} the numerical MFS solution obtained with no

regularization is in good agreement with the exact incident field (3.63), but as M =

N increases to 80 the numerical solution without regularization starts to manifest

instabilities, see Figure 3.7(a). This is consistent with the findings of Ramachandran

(2002) who suggested the use of regularization in order to obtain a stable MFS
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solution. Therefore, in Figure 3.8 we present the results obtained with regularization

included in (3.31) and it can be seen that smoother and more stable numerical results

are obtained.
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Figure 3.7: (a) Real and (b) imaginary parts of u1(1, θ) − u2(1, θ) for λ = 0 and

various values of M = N ∈ {20, 40, 80} in comparison with the exact incident field

(3.63).
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Figure 3.8: (a) Real and (b) imaginary parts of u1(1, θ) − u2(1, θ) for M = N = 80

and various values of λ ∈ {0, 10−6, 10−3} in comparison with the exact incident field

(3.63).
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3.5 Conclusions

In this chapter, Helmholtz-type equations in both two- and three-dimensional com-

posite materials subject to boundary conditions and interface continuity conditions

have been investigated by the MFS. Four examples involving the Helmholtz-type

equations in composite materials have been analysed. The numerical results ob-

tained by the MFS are accurate and in good agreement with the exact solution,

where available (Examples 1 and 3). Future work will concern developing the MFS

for inverse geometric problems associated to Helmholtz-type equations in which the

interfaces between the composite materials are considered unknown, see Cakoni et al.

(2010b), Carpio and Rapun (2010), and the next chapter.



Chapter 4

Determination of inner boundaries

in modified Helmholtz inverse

geometric problems

4.1 Introduction

In this chapter, we consider the application of the MFS for solving the inverse

problem which consists of determining an unknown defect D compactly contained

in a simply-connected bounded domain Ω assuming that the temperature u satisfies

the modified Helmholtz equation governing the heat conduction in a fin, see e.g.

Marin et al. (2004),

∇2u − k2u = 0 in Ω \ D, (4.1)

where k2 = 2h/(λδ), h is the convective heat transfer coefficient, λ and δ are the ther-

mal conductivity and fin thickness, respectively, from the knowledge of the Dirichlet

temperature data u and the Neumann heat flux data ∂u/∂n on the boundary ∂Ω of

Ω, where n is the outward unit normal at ∂Ω, and a boundary condition (Dirichlet,

Neumann or Robin) on the boundary ∂D of D.

In earlier chapters we have found that the MFS produces an accurate approxi-

mation to the solution of the direct problem in both two- and three-dimensions, and

in this chapter we extend it to solve numerically the inverse problem of identifying

the unknown inner boundary ∂D of a defect D compactly contained in Ω. More

concretely, the inverse nonlinear ill-posed problem of determining the inner bound-

ary is approached based on a regularized optimization procedure which uses the

MFS solver at each iteration. This chapter, which is a variant of the Kirsch-Kress

idea for inverse scattering, see Kirsch and Kress (1987), builds upon the previous

recent applications of the MFS for solving inverse geometric problems governed by
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the Laplace equation, see Borman et al. (2009) and Karageorghis and Lesnic (2009),

the Helmholtz equation, see Karageorghis and Lesnic (2011), the biharmonic equa-

tion, see Karageorghis and Lesnic (2010b), the Lamé system in elasticity, see Alves

and Martins (2009), and the Stokes system in slow viscous flow, see Martins and

Silvestre (2008). A related inverse geometric problem when the unknown defect,

e.g. a crack, is at the boundary of ∂Ω, known as the inverse boundary determina-

tion has been investigated using the MFS in Mera and Lesnic (2005), Marin et al.

(2011), Marin (2009), Marin and Munteanu (2010) for the isotropic, anisotropic

and functionally graded Laplace equation, in Marin and Karageorghis (2009) for

Helmholtz-type equations, in Zeb et al. (2008) for the biharmonic equation, and in

Marin (2010a) for the Lamé system in elasticity.

The outline of this chapter is as follows. In section 4.2 we introduce the math-

ematical formulation, whilst in section 4.3 we present the MFS for the inverse ge-

ometric problem. In section 4.4 we present and discuss the numerically obtained

results. In section 4.5 we give some conclusions and possible future work.

4.2 Mathematical formulation

We consider a bounded simply-connected domain Ω with smooth boundary and a

smooth subdomain D of Ω such that D ⊂ Ω, and Ω \ D is connected. The steady-

state temperature u in a fin satisfies the modified Helmholtz equation (4.1) subject

to the boundary conditions

u = f on ∂Ω, (4.2)

and

u = h on ∂D, (4.3)

or
∂u

∂n
= h on ∂D, (4.4)

where f ∈ H1/2(∂Ω) non-constant, and h are given functions. It is well-known that

the direct Dirichlet problem given by equations (4.1)-(4.3) has a unique solution

u ∈ H1(Ω\D), when D is known and h ∈ H1/2(∂D). Also the direct mixed problem

given by equations (4.1), (4.2) and (4.4) has a unique solution u ∈ H1(Ω\D) when D

is known and h ∈ H−1/2(∂D). Here H1/2(∂Ω) denotes the space of traces of functions

u ∈ H1(Ω) restricted to the boundary ∂Ω, and H−1/2(∂Ω) denotes the dual space of

H1/2(∂Ω). We can then define a nonlinear operator Ff (∂D), which maps from the

set of admissible Lipschitz boundaries ∂D to the data space of Neumann heat flux
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(measured) data in H−1/2(∂Ω), as follows:

Ff (∂D) :=
∂u

∂n

∣∣∣
∂Ω

= g ∈ H−1/2(∂Ω). (4.5)

Then the inverse problem under consideration consists of extracting some informa-

tion about the boundary ∂D from the data g = Ff (∂D). The data (4.5) may also

be only partial, i.e. the flux being measured on a non-zero measure portion Γ ⊂ ∂Ω,

instead on the whole boundary ∂Ω. It is well-known that the inverse problem is

nonlinear and ill-posed as opposed to the direct problem which is linear and well-

posed. Although one can show, see Isakov (2009), that the solution of the inverse

problem given by equations (4.1)-(4.3) and (4.5), or (4.1), (4.2), (4.4) and (4.5), is

unique, this solution does not depend continuously upon errors in the input Cauchy

data (4.2) and (4.5). Usually, one has h = 0 in (4.3), i.e. D is a rigid inclusion

(impenetrable soft obstacle), or in (4.4), i.e. D is a cavity (impenetrable hard ob-

stacle). The general composite case in which in D we have another material with

different heat transfer coefficient k′2 6= k2 and the unknown interface ∂D is to be

identified, i.e. D is a penetrable, or transparent obstacle, is deferred to a future

work, see Karageorghis and Lesnic (2010a) for the corresponding inverse transmis-

sion problem for the Laplace equation arising in electrical impedance tomography

(EIT) in electrostatics.

We finally note that the uniqueness of solution of the inverse problem is not

guaranteed if the Dirichlet or Neumann boundary condition (4.3) or (4.4) is replaced

by a Robin boundary condition of the form

∂u

∂n
+ αu = h on ∂D, (4.6)

with α > 0 the surface heat transfer coefficient. In such a situation, in fact, one can

determine both D and α, but from two, instead of one, linearly independent pairs

of Cauchy data (4.2) and (4.5), see Isakov (2009), and Chapters 5 and 6.

4.3 The Method of Fundamental Solutions (MFS)

Based on the density results of Bogomolny (1985) and Smyrlis (2009) for the MFS

for the modified Helmholtz equation, we approximate the solution of equation (4.1)

by a linear combination of fundamental solutions with respect to source points which

are placed outside the solution domain, namely

u(X) =
M+N∑

j=1

ajG−(X, ξj), X ∈ Ω \ D, (4.7)
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where the M+N vectors (ξj)j=1,M+N are distinct source points (’singularities’) lo-

cated outside domain Ω and inside domain D, and G− is the fundamental solution

of the modified Helmholtz equation (4.2). In two-dimensions it is given by, see

equation (2.4),

G−(X,Y ) = K0(kr), (4.8)

where for simplicity, the constant 1
2π

, which does not appear in (4.8), has been

embedded in the unknown coefficients (aj)j=1,M+N in (4.8).

For simplicity, we assume that Ω is the unit disk B(0; 1); otherwise, we first

conformally map the simply-connected domain Ω onto the unit disk. We also

assume that the unknown domain D is star-shaped with respect to origin, i.e.

∂D = {(r(θ) cos(θ), r(θ) sin(θ))| θ ∈ [0, 2π)}, where r(θ) is a 2π-periodic smooth

function with values in the interval (0,1). We take

X i = (cos(θ̃i), sin(θ̃i)), i = 1,M (4.9)

boundary collocation points uniformly distributed on ∂Ω = ∂B(0; 1), where θ̃i =

2πi/M for i = 1,M , and

X i+M = (ri cos(θi), ri sin(θi)), i = 1, N (4.10)

boundary collocation points on ∂D where θi = 2πi/N , ri := r(θi) for i = 1, N . The

(M + N) source points (ξj)j=1,M+N in (R2 \ Ω) ∪ D are taken as

ξj = (R cos(θ̃j), R sin(θ̃j)), j = 1,M, (4.11)

ξj+M = (
rj

s
cos(θj),

rj

s
sin(θj)), j = 1, N, (4.12)

where s > 1 and R > 1. Note that taking only the source points (4.11) outside

Ω is not enough because the solution domain is Ω \ D which is doubly-connected.

Hence, we also need the source points (4.12) located inside D. The distributions of

the boundary collocation points (4.9) and (4.10), and of the source points (4.11) and

(4.12) are schematically shown in Figure 4.1. Then the coefficients (aj)j=1,M+N and

the radii (ri)i=1,N can be determined by imposing the boundary conditions (4.2),

(4.3) and (4.5) in a least-squares sense which recasts into minimising the objective

function

T (a, r) := ‖u − f‖2
L2(∂Ω) +

∥∥∥
∂u

∂n
− g

∥∥∥
2

L2(∂Ω)
+ ‖u − h‖2

L2(∂D). (4.13)
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Figure 4.1: Schematic distribution of source (◦) and boundary collocation (•) points.

In the case when the Neumann condition (4.4) applies instead of the Dirichlet

condition (4.3) on ∂D, the last term in (4.13) is replaced by
∥∥∥∂u

∂n
− h

∥∥∥
2

L2(∂D)
. Upon

discretization, equation (4.13) yields

T (a, r) =
M∑

i=1

[ M+N∑

j=1

ajG−(X i, ξ
j) − f(Xi)

]2

+
2M∑

i=M+1

[ M+N∑

j=1

aj
∂G−
∂n

(X i−M , ξj)

−g(X i−M)
]2

+
2M+N∑

i=2M+1

[ M+N∑

j=1

ajG−(X i−M , ξj) − h(X i−M)
]2

.(4.14)

The minimisation of (4.14) imposes 2M + N nonlinear equations in the 2N + M

unknowns (a, r), and for a unique solution it is necessary that M ≥ N . If there is

noise in the measured data (4.5), we replace g in (4.14) by gε, namely,

gǫ(X i) = g(X i) + ǫi, i = 1,M, (4.15)

where ǫi are random variables generated using the NAG routine D05DDF from a

Gaussian normal distribution with mean zero and standard deviation

σ = p × max
∂Ω

|g|, (4.16)
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where p represents the percentage of noise. In equation (4.14), the normal derivative

of G− is given by

∂G−
∂n

(X, ξ) = −k
(X − ξ) · n
‖X − ξ‖ K1

(
k‖X − ξ‖

)
, (4.17)

The minimisation of the objective function (4.14) is accomplished computation-

ally using the NAG routine E04FCF, which is a comprehensive algorithm for min-

imising an unconstrained sum of squares of nonlinear functions. The method of

minimisation is based on combined Gauss-Newton and modified Newton algorithm

using function values only; for more details see Gill and Murray (1978). Although

the gradient of the function (4.14) can be calculated analytically, the NAG rou-

tine E04FCF does not require the user to supply it. If required, the constraints

0 < ri < 1 for i = 1, N can be imposed manually during the iterative procedure

by adjustment at each iteration. The minimisation process usually terminates when

either a user-specified tolerance is achieved, or when a user-specified maximum num-

ber of iterations is reached.

We finally remark that the process of minimisation of the nonlinear functional

(4.14) is an iterative method for finding simultaneously both the MFS coefficients

a and the inner boundary radial vector r. Alternatively, one could have used a

decomposition approach to take care of the ill-posedness and the nonlinearity of

the inverse problem separately. In this latter approach one would first determine

the MFS coefficients a by imposing the Cauchy data (4.2) and (4.5), and after that

find the boundary ∂D by looking for the Dirichlet level set (4.3). However, the

reconstructions obtained by decomposition methods are not as accurate as those

obtained by iterative minimisation methods, see Serranho (2007). In addition, if the

Neumann condition (4.4) is to be satisfied then the nonlinear step of a decomposition

approach becomes impractical.

4.4 Numerical results and discussion

In this section numerical results are presented for the MFS parameters R = s = 2

and M = N . The initial guess for the vector a is arbitrary, say all components equal

to 0.1. The initial guess for the inner boundary is arbitrary and is taken, say to be

a circle located at the origin with radius 0.5. Actually, in the next section we will

also investigate a different initial guess.
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4.4.1 Example 1

We consider first a simple two-dimensional detection of an unknown circular (rigid

inclusion) inner boundary D = B(0; r0) of radius r0 = 0.7 within the unit circle

Ω = B(0; 1). We take u(1, θ) = f(θ) = ecos(θ)+sin(θ) on ∂Ω and u(r(θ), θ) = h(θ) =

e0.7(cos(θ)+sin(θ)) on ∂D, as the Dirichlet data given by equations (4.2) and (4.3),

respectively. We also take k =
√

2. We take the normal derivative on ∂Ω given by
∂u
∂n

(1, θ) = g(θ) = (cos(θ) + sin(θ))ecos(θ)+sin(θ). For this input data, the analytical

solution is u(r, θ) = er(cos(θ)+sin(θ)).

No noise

Let us consider first the case of exact data when there is no noise p = 0 in the

measured data (4.5). Figure 4.2 shows the objective function (4.14), as a function of

the number of iterations for various M = N = {5, 10, 20}. From this figure it can be

seen that the objective function (4.14) converges to zero within few iterations as M =

N increases. In Figure 4.3 we present the results obtained from the minimisation

routine following a series of 7 iterations when M = N = 20. It can be seen that at

the final iteration 7 one locates the inner circular boundary of radius r0 = 0.7 with

a high accuracy.
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Figure 4.2: The objective function (4.14), as a function of the number of iterations,

(no noise), for various M = N ∈ {5, 10, 20} for Example 1. Initial guess is a circle

of radius 0.5.
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Figure 4.3: The reconstructed boundary for Example 1 when searching for a circular

inner boundary located at the origin of radius r0 = 0.7, (no noise), and M = N = 20.

Initial guess is a circle of radius 0.5.

Robustness with respect to the initial guess

In order to highlight the influence of the initial guess on the numerical results we

take a different guess from the previous computation of Figures 4.2 and 4.3 which

used as initial guess for the inner boundary a circle of radius 0.5 centred at the

origin.

We therefore consider an ellipse of semiaxes 0.5 and 0.4 in the x- and y-directions,

respectively, as an initial guess. The corresponding results to Figures 4.2 and 4.3

are presented in Figures 4.4 and 4.5, respectively. First, from Figure 4.5 it can

be seen that the circular inclusion is accurately identified after 12 iterations (for

M = N = 20). Secondly, by comparing Figures 4.2 and 4.4 it can be seen that, as

expected, it takes a larger number of iterations to achieve convergence in the latter

case than in the former one for all the degrees of freedom M = N ∈ {5, 10, 20}.
From this analysis it can be concluded that the iterative NAG routine E04FCF is

rather robust with respect to a reasonable choice of the initial guess.

In the reminder of this chapter we select as initial guess the former choice of a

circle of radius 0.5 centred at the origin.
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Figure 4.4: The objective function (4.14), as a function of the number of iterations,

(no noise), for various M = N ∈ {5, 10, 20} for Example 1. Initial guess is an ellipse

of semiaxes 0.5 and 0.4.
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Figure 4.5: The reconstructed boundary for Example 1 when searching for a circular

inner boundary located at the origin of radius r0 = 0.7, (no noise), and M = N = 20.

Initial guess is an ellipse of semiaxes 0.5 and 0.4.

Adding noise to the boundary data

In order to investigate the stability of the numerical solution, we add noise into the

Neumann boundary data g as gǫ given by expression (4.15). In this case the total

amount of noise is

ǫ = ‖g − gǫ‖2
L2(∂Ω) =

M∑

i=1

ǫ2
i . (4.18)

In Figure 4.6(a) we present the objective function (4.14), as a function of the number

of iterations for the noise level p = 1% when M = N = 20. For this level of noise

the value of ǫ in (4.18) is 0.0357. Figure 4.6(b) shows the results obtained from

the minimisation routine at various iterations. From this figure it can be seen

that if the minimisation process is let to run until the final convergence illustrated

in Figure 4.6(a) is reached, i.e. for 2878 iterations, then it produces an unstable

inner boundary solution. If the minimisation procedure would have a regularising

character then one way to stabilize the solution is to employ some discrepancy-type

criterion, namely terminate the minimisation process of (4.14) at the first iteration

for which the objective function T (a, r) becomes less than the amount of error ǫ.

According to Figure 4.6(a) for ǫ = 0.0357 this yields the iteration number 1267.

However, the numerical results presented in Figure 4.6(b) at this iteration number
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are still unstable. This is somewhat expected since the NAG routine E04FCF used is

unlikely to have a regularising character. An alternative way to regularise the least-

squares functional (4.14), and obtain a stable solution, is to add to it penalizing

terms which impose additional smoothness on the solution.
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Figure 4.6: (a) The objective function (4.14), as a function of the number of itera-

tions, (p = 1% noise) for Example 1. (b) The reconstructed boundary for Example 1

when searching for a circular inner boundary located at the origin of radius r0 = 0.7,

when there is p = 1% noise in the data (4.5), and M = N = 20.

Incorporating a regularising term

In order to overcome the instablility of the numerical solution illustrated in Figure

4.6(b), we add standard zeroth- and first-order Tikhonov’s regularisation terms to

the functional T given by equation (4.14), namely,

Reg(a, r) =
3M+2N∑

j=2M+N+1

(√
λ1aj−2M−N

)2

+
3M+3N−1∑

j=3M+2N+1

[√
λ2

(
rj−3M−2N+1

−rj−3M−2N

)]2

, (4.19)

where λ1, λ2 ≥ 0 are regularisation parameters. The first term in (4.19) penalises

the norm of ‖a‖2, whilst the second term penalises the norm of the derivative ‖r′‖2.

Penalising the norm of the function ‖r‖2 has also been tried and the results were

less accurate.
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Choice of regularisation parameters

Clearly, the rigorous choice of the regularisation two-parameter family λ1 and λ2

in the nonlinear Tikhonov functional (4.19) is very challenging. One can attempt

the usual discrepancy principle or, the more recent L-surface criterion, Belge et al.

(2002), but the calculations are very expensive and close to being prohibitive. In

our study, we have investigated by trial and error several values for λ1 and λ2,

and although we are not optimal in their difficult choice, at least we can discard

the unstable solutions (those highly oscillatory and unbounded) and provide some

nearly-optimal plausible stable condidates. Currently, the regularisation parameters

are chosen based on experience by first choosing some small values and gradually

increasing them until the numerical oscillations in the unknown inner boundary are

removed. Nevertheless, more work should be undertaken on the subject of multiple

regularisation in the future.

Results with regularisation

We fix M = N = 20 and show the results when λ1 = 0, λ2 ∈ {10−6, 10−3, 10−1} and

λ1 ∈ {10−6, 10−3, 10−1}, λ2 = 0 for p = 1% noise.

Figures 4.7 and 4.8 show the regularised objective function and the retrieved

inner boundary, respectively, for p = 1% noise and various regularisation parameters.

Comparison between Figure 4.6(b) and Figure 4.8(a) shows that the results when

λ1 = 0, λ2 = {10−3, 10−1} become slightly better than the results with λ2 = 0 or

10−6 though they appear still unstable. Much improved stable results can be seen if

one regularises with λ1 ∈ {10−3, 10−1}, λ2 = 0, compare Figures 4.6(b) and 4.8(b).
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Figure 4.7: The regularised objective function for: (a) λ1 = 0, λ2 ∈ {10−6, 10−3,

10−1}, and (b) λ1 ∈ {10−6, 10−3, 10−1}, λ2 = 0, as a function of the number of

iterations, (p = 1% noise) for Example 1.
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Figure 4.8: The reconstructed boundary for: (a) λ1 = 0, λ2 ∈ {10−6, 10−3, 10−1},
and (b) λ1 ∈ {10−6, 10−3, 10−1}, λ2 = 0, for Example 1 when searching for a circular

inner boundary located at the origin of radius r0 = 0.7, when there is p = 1% noise

in the data (4.5).

Discussion on the objective function

We find it useful to finish this example with a discussion about the objective func-

tion (4.14) which is illustrated in Figures 4.2 (no noise, no regularisation), 4.6(a)

(1% noise, no regularisation) and 4.7 (1% noise, with regularisation (4.19)). First
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in the case of no noise, the rapid decreasing behaviour of the objective function

(4.14) shows that the minimisation process is convergent. If this would not have

happened then this could have indicated that the minimisation process is divergent

or, more likely that the computational code contains errors. Next, when noise is

included in the data (4.15), Figure 4.6(a) is also useful because it illustrates the

semi-convergent behaviour of the unregularised objective function (4.14). That is,

although the objective function appears convergent, the solution obtained after 2878

iterations, and illustrated in Figure 4.6(b), is in fact unstable. This is a well-known

phenomenon present in iterative methods for solving ill-posed problems, see e.g.

Engl et al. (2000). In order to restore stability, one can try the so-called discrepancy

principle which ceases the iterative process at the iteration number for which the

residual becomes comparable with the level of noise ε, as illustrated in Figure 4.6(a).

This yields a stopping iteration number 1267, and the numerical results shown in

Figure 4.6(b) although yet unstable they are better than the results obtained af-

ter the final 2878 iterations. A reason why the results obtained with this stopping

criterion happens to be yet unstable may be that the NAG routine E04FCF used

does not have a regularizing character, as that shown by more classical minimisa-

tion schemes, e.g. Levenberg-Marquardt, conjugate gradient, etc. An alternative

to the difficult challenge of obtaining a stable and accurate reconstruction could be

to augment the least-squares functional (4.14) with the regularisation terms (4.19).

Then the iterative algorithm based on minimising (4.14)+(4.19) does not have to be

terminated, and it can be run until convergence is achieved, as illustrated in Figure

4.7. The price to pay is that including (4.19) it introduces additional regularisation

parameters whose prescription is also difficult, as described in a previous section on

the choice of the regularisation parameters.
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Figure 4.9: Distribution of source (◦) and boundary collocation (•) points for the

direct problem associated to Example 2.

4.4.2 Example 2

In this example, we consider the more complicated bean shaped inner boundary ∂D

given by the radial parameterization

r(θ) =
0.5 + 0.4 cos(θ) + 0.1 sin(2θ)

1 + 0.7 cos(θ)
, θ ∈ (0, 2π] (4.20)

within the unit circle Ω = B(0, 1). The Dirichlet data (4.2) on ∂Ω was taken to be

the same as in Example 1. In this case, since no analytical solution is available, the

Neumann data (4.5) is simulated numerically by solving, using the MFS, the direct

Dirichlet problem (4.1), with k =
√

2, u = 0 on ∂D and u(1, θ) = f(θ) = ecos(θ)+sin(θ)

on ∂Ω, when ∂D is given by (4.20), see Figure 4.9. The numerical solutions for the

normal derivative ∂u/∂n(1, θ) on ∂Ω, obtained with R = s = 2 for various values

of M = N ∈ {10, 20, 40} with no regularisation, and with some little regularisation

such as λ = 10−9 when M = N = 40, are shown in Figure 4.10. From the first three

curves on this figure it can be seen that when no regularisation is employed the

numerical results obtained for M = N = 10 and 20 are close to each other; however,

as M = N increases to 40 the numerical solution departs and becomes slightly

oscillatory indicating that ill-conditioning starts to manifest. This is consistent

with the truncated singular value decomposition analysis of Ramachandran (2002)
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regarding the use of regularisation to circumvent the ill-conditioning of the MFS. We

were able to deal with this instability by including a small regularisation parameter

λ = 10−9, and then stable results could be achieved, see the close agreement between

the curve for M = N = 20 and the curve for M = N = 40 and λ = 10−9. Twenty

evenly spread points out of the forty data points of this last curve are chosen as

input Neumann numerically simulated data (4.5) in order to avoid committing an

inverse crime. That is to say that the inverse solver is applied with M = N = 20

which is different from the direct problem M = N = 40 and λ = 10−9.
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n
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,θ
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M=N=10
M=N=20
M=N=40
λ=10−9 for M=N=40

Figure 4.10: The numerical solutions for the normal derivative ∂u/∂n(1, θ), obtained

with R = s = 2 for various values of M = N ∈ {10, 20, 40} with no regularisation,

and the regularised solution λ = 10−9 when M = N = 40, for the direct problem

associated to Example 2.

In Figure 4.11(a), we present the reconstructed and the exact shape obtained

with no noise and no regularisation. From this figure it can be seen that the recon-

structed shape fails to determine the exact shape of the inner boundary. In order to

obtain the reconstructed shape stable and in reasonable good agreement with the

exact shape we apply the regularisation with λ1 = 10−6, λ2 = 0, as shown in Figure

4.11(b).

Figures 4.12 and 4.13 show the regularised objective function and the retrieved
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inner boundary, respectively, for p = 1% noise and various regularisation parame-

ters. From Figure 4.13 it can be seen that, except for the case λ1 = 0, λ2 = 10−1, the

results are quite inaccurate even if regularisation is employed. The reason for this

is that the numerical solution depends strongly on the proper choice of the regular-

isation parameters which in this paper are based on trial and error. And, in fact,

slightly improved stable results can be obtained if regularisation with λ1 = λ2 = 10−1

is used, see Figure 4.14.
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Figure 4.11: The reconstructed boundary for Example 2 when searching for a bean-

shaped inner boundary located at the origin of radius r(θ) in (4.20), when there is no

noise in the data and (a) no regularisation, and (b) regularisation with λ1 = 10−6,

λ2 = 0.
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Figure 4.12: The regularised objective function for: (a) λ1 = 0, λ2 ∈ {10−6, 10−3,

10−1}, and (b) λ1 ∈ {10−6, 10−3, 10−1}, λ2 = 0, as a function of the number of

iterations, (p = 1% noise) for Example 2.
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Figure 4.13: The reconstructed boundary for: (a) λ1 = 0, λ2 ∈ {10−6, 10−3, 10−1},
and (b) λ1 ∈ {10−6, 10−3, 10−1}, λ2 = 0, for Example 2 when searching for a bean-

shaped inner boundary located at the origin of radius r(θ) in (4.20), when there is

p = 1% noise in the data (4.5).
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Figure 4.14: The reconstructed boundary for λ1 = 0, λ2 = 10−1, and λ1 = λ2 = 10−1,

for Example 2 when searching for a bean-shaped inner boundary located at the origin

of radius r(θ) in (4.20), when there is p = 1% noise in the data (4.5).

4.4.3 Example 3

So far, the previous two examples have been concerned with the reconstruction

of an inclusion (simple, such as a circle, or complicated, such as a bean-shaped)

on which the Dirichlet boundary condition (4.3) was enforced. In this example,

we consider reconstructing a complicated peanut-shaped cavity given by the radial

parameterization

r(θ) =
3

4

√
cos2(θ) + 0.25 sin2(θ), θ ∈ (0, 2π], (4.21)

on which the homogeneous Neumann boundary condition (4.4) applies. We take

k = 1, and the Dirichlet data (4.2) on ∂Ω = ∂B(0, 1) given as in Ivanyshyn and

Kress (2006),

u(1, θ) = f(θ) = e− cos2(θ), θ ∈ [0, 2π). (4.22)
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Figure 4.15: Distribution of source (◦) and boundary collocation (•) points for the

direct problem associated to Example 3.

As in Example 2, since no analytical solution is available, the Neumann data

(4.5) is simulated numerically by solving, using the MFS, the direct mixed problem

(4.1), with k = 1, ∂u/∂n = 0 on ∂D, and (4.22), when ∂D is given by (4.21), see

Figure 4.15. In imposing the homogeneous Neumann boundary condition on the

(insulated) cavity ∂D given by equation (4.21), one needs to use expression (4.17)

with the (inward) normal to ∂D given by

n =
1√

r2(θ) + r′2(θ)
[−(r′(θ) sin(θ) + r(θ) cos(θ))i + (r′(θ) cos(θ) − r(θ) sin(θ))j],

(4.23)

where i = (1, 0) and j = (0, 1). For the peanut-shaped cavity (4.21), the expression

for the normal (4.23) becomes

n =
1√

(cos2(θ) + 0.25 sin2(θ))2 + 0.5625 sin2(θ) cos2(θ)

[
n1i + n2j

]
, (4.24)

where

n1 = cos(θ)
(
0.5 sin2(θ) − cos2(θ)

)
, n2 = − sin(θ)

(
0.25 sin2(θ) + 1.75 cos2(θ)

)
.
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The numerical solutions for the normal derivative ∂u/∂n(1, θ) on ∂Ω, obtained

with R = s = 2 for various values of M = N ∈ {20, 40, 80} with no regularisation,

and with regularisation λ = 10−6, are shown in Figure 4.16. The same conclusion

about the need of including regularisation when the dimension of the matrix of the

system of linear algebraic equations increases, as that obtained in Figure 4.10 can be

drawn. This is consistent with the comments made by Chen et al. (2006) regarding

the ill-conditioning of the MFS for direct problems with exact boundary conditions.

The inverse solver is applied with M = N = 20 and the input data (4.5) is chosen

out of the curves with M = N = 40 from Figure 4.16 as explained for Example 2.

For the cavity identification problem given by equations (4.1), (4.2), (4.4) and (4.5)

with h = 0, the last term in (4.14) is replaced by

2M+N∑

i=2M+1

[ M+N∑

j=1

aj
∂G−
∂n

(X i−M , ξj)
]2

. (4.25)

In expressing this term one needs to use (4.17) with the (inward) normal to ∂D

given by (4.23), where, in discretised form, the derivative r′ is approximated using

simple backward finite differences as

r′(θ) ≈ ri − ri−1

θi − θi−1

, i = 1, N (4.26)

with the convention that r0 = rN and θ0 = 0. Central finite differences can also be

used, see Karageorghis and Lesnic (2010a).

Similar results to those presented for Example 2 have been obtained and, for

brevity, we only illustrate Figure 4.17 which shows the reconstructed boundary for

p = 1% noise and regularisation parameters λ1 = λ2 ∈ {10−5, 10−3}. From this figure

it can be seen that reasonable accurate and stable numerical results are obtained.
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Figure 4.16: The numerical solutions for the normal derivative ∂u/∂n(1, θ) for var-

ious values of M = N ∈ {20, 40, 80} with (a) no regularisation, and (b) with regu-

larisation λ = 10−6, for the direct problem associated to Example 3.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

 

 

Exact
Final iteration 16, λ

1
=λ

2
=10−3

Final iteration 35, λ
1
=λ

2
=10−5

Figure 4.17: The reconstructed boundary for λ1 = λ2 ∈ {10−3, 10−5} for Example 3

when searching for a peanut-shaped inner boundary located at the origin of radius

r(θ) in (4.21), when there is p = 1% noise in the data (4.5).
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4.5 Conclusions

In this chapter, the modified Helmholtz inverse geometric problem, which consists of

determining an unknown inner boundary of an annular domain from a single pair of

outer boundary Cauchy data has been investigated by the MFS. Several examples

for two-dimensional simple, bean and peanut-shaped inner boundaries have been

considered. The numerical results show that the MFS is well-suited for the solution

of inverse geometric problems and is very accurate for exact data. When 1% noise

was added into the Neumann data this yields unstable results if no regularisation was

employed. Regularisation terms were added in order to obtain a stable solution. The

model presented here has potential for extension to thermography since the modified

Helmholtz equation can be obtained from the time-dependent heat equation through

the θ-scheme associated with the time finite-difference discretization and averaging

of the transient fields.



Chapter 5

Inverse shape and surface heat

transfer coefficient identification

5.1 Introduction

The identification of unknown obstacles and their resistive characteristics is very

important in inverse problems, design and optimisation. Similarly as in chapter 4,

consider the inverse problem which consists of determining an unknown defect D

compactly contained in a simply-connected bounded domain Ω assuming that the

steady-state temperature u satisfies the modified Helmholtz equation (4.1) from the

knowledge of the Dirichlet temperature data u and the Neumann heat flux data

∂u/∂n on the boundary ∂Ω, and a Robin boundary condition on ∂D.

The inverse nonlinear ill-posed problem of determining the inner boundary ∂D

and possibly its surface heat transfer coefficient is approached using a regularised

minimisation procedure which employs an MFS solver at each iteration. We men-

tion that there also exists an extensive literature on using the boundary element

method (BEM) instead of the MFS for internal boundary identification, see e.g.

Duraiswami et al. (1997) and Lesnic (2001) for the Laplace equation in electrical

impedance tomography (EIT), Marin et al. (2003) for the Lame system in elasticity,

and Marin et al. (2004) for the modified Helmholtz equation. However, there are

clear methodological differences between the MFS and the BEM, see e.g. Ahmed

et al. (1989) for a comparison between the two methods. In summary, although the

MFS formulation may introduce some extra ill-conditioning, by avoiding the nu-

merical integration it is considerably easier to use, especially in higher dimensional

problems.

The outline of this chapter is as follows. In section 5.2 we introduce the math-

ematical formulation, whilst in section 5.3 we present the MFS for the modified

Helmholtz equation. In section 5.4 we present and discuss the numerically obtained
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results. In section 5.5 we give some conclusions and possible future work.

5.2 Mathematical formulation

Consider a bounded simply-connected domain Ω with smooth boundary such as

D ⊂ Ω, and Ω \ D is connected. The steady-state temperature u satisfies the

modified Helmholtz equation (4.1) subject to the boundary conditions

u = f on ∂Ω, (5.1)

and
∂u

∂n
+ αu = 0 on ∂D, (5.2)

where f ∈ H1/2(∂Ω) is non-constant and L∞(∂D) ∋ α > 0 is the surface heat

transfer coefficient. In equation (5.2), n denotes the outward normal to the domain

Ω \ D, i.e. pointing inwards with respect to D. It is well-known that the direct

Robin problem given by equations (4.1), (5.1) and (5.2) has a unique solution u ∈
H1(Ω\D), when D is known. We can then define the nonlinear operator Ff (∂D)

given by equation (4.5). Then the inverse problem under consideration consists of

extracting some information about the boundary ∂D from the data g = Ff (∂D).

The Robin boundary condition (5.2) models Newton’s law of cooling which gives

a linear relationship between the heat flux and the surface temperature through a

surface heat transfer coefficient of proportionality α. The simpler extreme case when

α = 0, i.e. the obstacle D is a hard cavity on whose boundary ∂D the homogeneous

Neumann condition ∂u/∂n = 0 applies, possesses a unique solution, see Isakov

(2009), Theorem 3.1). Uniqueness also holds for α = ∞, i.e. the obstacle D is a soft

rigid inclusion on whose boundary ∂D the homogeneous Dirichlet condition u = 0

applies, see Lesnic and Bin-Mohsin (2012).

Although the uniqueness of solution holds for the simpler extreme cases α ∈
{0,∞}, this solution, in general, does not depend continuously on the input Cauchy

data (5.1) and (4.5). Special corrective procedures are necessary in order to obtain

a stable solution, see Yang et al. (2010), Bin-Mohsin and Lesnic (2012).

In the general case α ∈ (0,∞) there are counterexamples for which the obstacle

D cannot be uniquely retrieved, see Pagani and Pierotti (2009) for the case of

Laplace’s equation, i.e. k = 0 in (4.1).

We briefly note that the situation regarding the uniqueness/non-uniqueness of

solution is much more settled in the case of a boundary determination in corrosion

detection, see Cakoni et al. (2010a), and Isakov (2009). However, in many obstacle

problems it is not always physically realistic to assume that the boundary condition
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on the obstacle is known, in which situation the coefficient α in (5.2) together

with the obstacle D are to be simultaneously determined. Then, clearly one set of

Cauchy boundary measurements (5.1) and (4.5) is not sufficient to simultaneously

recover the shape and the heat transfer coefficient. However, it turns out that two

linearly independent boundary temperatures measurements f1 and f2, one of which

is positive, inducing, via (4.5), two corresponding heat flux measurements g1 and

g2, are sufficient to provide a unique solution for the pair (D,α), see Pagani and

Pierotti (2009, Theorem 4.5). Similar uniqueness, see Rundell (2008) and Bacchelli

(2009), as well as stability, see Sincich (2010), results have been obtained recently

in the more established case of identifying on unknown corroded boundary and its

impedance.

We finally note that the mathematical heat conduction fin model given by equa-

tions (4.1), (5.1), (5.2) and (4.5) also arises in electrostatics (with k = 0), where

u represents the electric potential, f is the voltage, g is the current flux and α

corresponds to the impedance which is the reciprocal of the resistance. Also, if in

equations (4.1) and (5.2), the real quantities k and α become purely imaginar we

have the corresponding situation in acoustics.

5.3 The Method of Fundamental Solutions (MFS)

The MFS is applied as described in Section 4.3. When α is known, the MFS coef-

ficient vector a = (aj)j=1,M+N and the radii vector r = (ri)i=1,N characterising the

star-shaped inner boundary ∂D can be determined by imposing the boundary con-

ditions (5.1), (5.2) and (4.5) in a least-squares sense which recasts into minimising

the nonlinear objective function

T (a, r) :=
∥∥∥u−f

∥∥∥
2

L2(∂Ω)
+

∥∥∥
∂u

∂n
−g

∥∥∥
2

L2(∂Ω)
+

∥∥∥
∂u

∂n
+αu

∥∥∥
2

L2(∂D)
+λ1‖a‖2+λ2‖r′‖2, (5.3)

where λ1, λ2 ≥ 0 are regularisation parameters to be prescribed. The last term in

(5.3) contains a C1-smoothing constraint on the sought shape ∂D. Introducing the

MFS approximation (4.7) into (5.3) yields

T (a, r) =
M∑

i=1

[ M+N∑

j=1

ajG−(X i, ξ
j) − f(X i)

]2

+
2M∑

i=M+1

[ M+N∑

j=1

aj
∂G−
∂n

(X i−M , ξj)

−g(X i−M)
]2

+
2M+N∑

i=2M+1

[ M+N∑

j=1

aj

(∂G−
∂n

(X i−M , ξj) + α(X i−M)G−(X i−M , ξj)
)]2

+λ1

M+N∑

j=1

a2
j + λ2

N−1∑

j=1

(rj+1 − rj)
2. (5.4)
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The minimisation of (5.4) imposes 2M + N nonlinear equations in the 2N + M

unknowns (a, r), and for a unique solution it is necessary that M ≥ N . If there is

noise in the measured data (4.5), we replace g in (5.4) by gε given by (4.15).

The minimisation of the objective function (5.4) is accomplished computationally

using the NAG routine E04FCF. In Chapter 4, the physical constraints 0 < ri < 1

for i = 1, N that the defect D stays within the host domain Ω during the itera-

tion proccess were imposed manually during the iterative procedure by adjustment

at each iteration. However, in this chapter we impose this physical constraint by

changing to the new variables q = (qi)i=1,N defined by ri = 1 − 1
1+e2qi

for i = 1, N .

This way the minimisation of (5.4) with respect to the new variables (a, q) becomes

unconstrained because the function R ∋ q 7→ 1 − 1
1+e2q = 1

2
(1 + tanh(q)) ∈ (0, 1) is

a bijection.

Finally, we observe that the form of the functional (5.3) contains a single mea-

surement of the heat flux g for a prescribed temperature f , via the operatorial

relation (4.5). However, in some cases, as discussed in Section 5.2, one may need to

use two measurements of the heat flux g1 and g2 for two prescribed linearly inde-

pendent temperatures f1 and f2, via the operatorial relation (4.5). This means that

we double up the number of measurements in equation (5.3) which now reads as

T (a(1), a(2), r) :=
∥∥∥u1 − f1

∥∥∥
2

L2(∂Ω)
+

∥∥∥u2 − f2

∥∥∥
2

L2(∂Ω)
+

∥∥∥
∂u1

∂n
− g1

∥∥∥
2

L2(∂Ω)

+
∥∥∥
∂u2

∂n
− g2

∥∥∥
2

L2(∂Ω)
+

∥∥∥
∂u1

∂n
+ αu1

∥∥∥
2

L2(∂D)
+

∥∥∥
∂u2

∂n
+ αu2

∥∥∥
2

L2(∂D)

+λ1

(
‖a(1)‖2 + ‖a(2)‖2

)
+ λ2‖r′‖2, (5.5)

where a(1) and a(2) are the corresponding unknown coefficients in the MFS expansion

(4.7) for approximating the solutions of the inverse problems with the Dirichlet data

f1 and f2, respectively.
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Figure 5.1: Distribution of source (◦) and boundary collocation (•) points for the

direct problem associated to the pear-shape (5.6).

5.4 Numerical results and discussion

In this section numerical results are presented for k = 1 and the MFS parameters

R = s = 2 and M = N . We consider reconstructing a complicated pear-shaped

inner boundary ∂D given by the radial parametrization, see Qin and Cakoni (2011),

r(θ) = 0.6 + 0.125 cos(3θ), θ ∈ (0, 2π], (5.6)

and we initially take the Dirichlet data (5.1) on ∂Ω = ∂B(0; 1) given by (4.22)

Since no analytical solution is available, the Neumann data (4.5) on ∂Ω is simulated

numerically by solving, using the MFS, the direct mixed problem given by the

modified Helmholtz equation (4.1), the homogeneous Robin boundary condition

(5.2) on ∂D, and the Dirichlet boundary condition (4.22) on ∂Ω, when ∂D is known

and given by (5.6). The arrangement of the source and boundary collocation points

are shown in Figure 5.1. For the pear-shaped cavity (5.6), the expression for the

inward normal (4.23) is given by

n =
1√

(0.6 + 0.125 cos(3θ))2 + 0.140625 sin2(3θ)

[
n1i + n2j

]
,
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where

n1 = 0.375 sin(3θ) sin(θ) − cos(θ)
(
0.6 + 0.125 cos(3θ)

)
,

n2 = −0.375 sin(3θ) cos(θ) − sin(θ)
(
0.6 + 0.125 cos(3θ)

)
.

The numerical solutions for the normal derivative ∂u/∂n(1, θ) on ∂Ω, obtained for

various values of M = N ∈ {20, 40, 80} for Example 1 below (with α = 0) are shown

in Figure 5.2. From this figure it can be seen that the numerical results are conver-

gent as the number of degrees of freedom increases. Twenty evenly spread points out

of the curve M = N = 40 of Figure 5.2 are chosen as input Neumann numerically

simulated data (4.5) in the inverse problem next in order to avoid committing an

inverse crime. That is to say, the inverse solver is applied with M = N = 20 which

is different from that of the direct problem M = N = 40. Observe that by this pro-

cedure we already have introduced some numerical noise into the data (4.5), even

when there is no additional random noise in equation (4.15), i.e. p = 0 in equation

(4.16). This procedure of fabricating heat flux input data (4.5), in the absence of

an analytical solution being available, has been applied in all the examples of this

section.

The initial guess for the vector a is 0.1, and for the vector q is 0, i.e. the initial

guess for the inner boundary is taken a circle located at the origin with radius 0.5.

In our computational program execution of the NAG routine E04FCF, we initially

set a user-specified maximum number of calls of function evaluations, MAXCAL, to

be equal to 400 × (number of unknowns), as suggested by the NAG Fortran library

manual. The minimisation process terminates when either the MAXCAL number is

reached, or when unbounded values of q, e.g. the absolute value of a component of q

is greater than 1010, are recorded. In this latter situation, we re-choose MAXCAL as

the last number of calls before the program execution halted and re-run the program.

5.4.1 Example 1 (α = 0)

We consider first the case when the obstacle D is a cavity, i.e. α = 0 in equation

(5.2). From Isakov (2009, Theorem 3.1), we know that for α = 0 the solution of the

inverse problem is unique.

We consider first the case when there is no noise, i.e. p = 0, in the input flux

data (4.5). Figure 5.3(a) shows the objective function (5.4) with λ1 = λ2 = 10−4,

as a function of the number of iterations. From this figure it can be seen that the

objective cost functional decreases rapidly to a low stationary level of O(10−3) in

about 20 iterations. In Figure 5.3(b), we present the exact shape (5.6) and the
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reconstructed shape obtained from the regularised minimisation of the objective

function illustrated in Figure 5.3(a). From this figure it can be seen that the numer-

ically reconstructed shape is stable and reasonably accurate in comparison with the

exact shape (5.6). Although not illustrated, it is reported that the numerical results

obtained with no regularisation imposed in the nonlinear least-squares functional

(5.4), i.e. λ1 = λ2 = 0, were found unstable and inaccurate. This is to be expected

since the inverse problem under investigation is ill-posed and therefore some sort of

regularisation is needed in order to obtain stable solutions.

Figures 5.4-5.6 show the regularised objective function and the retrieved inner

boundary when there is p = 1% noise in the input flux data (4.5), generated as in

(4.15), for various regularisation parameters. As expected, from Figure 5.5 it can be

seen that if the regularisation parameters λ1 and λ2 are too small (say 10−6) then

oscillating unstable solutions are obtained. However, reasonably stable numerical

solutions are obtained for λ1 = 0, λ2 = 10−3, and λ1 = λ2 = 10−4.
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Figure 5.2: The numerical solutions for the normal derivative ∂u/∂n(1, θ), obtained

by solving the direct problem with various values of M = N ∈ {20, 40, 80}, for

Example 1.
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Figure 5.3: (a) The regularised objective function, as a function of the number of

iterations, and (b) the reconstructed boundary for λ1 = λ2 = 10−4, for Example 1

when there is no noise in the data (4.5).
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Figure 5.4: The regularised objective function (5.4) for: (a) λ1 = 0, λ2 ∈ {10−6,

10−3, 10−1}, and (b) λ1 ∈ {10−6, 10−3, 10−1}, λ2 = 0, as a function of the number of

iterations, (p = 1% noise) for Example 1.
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Figure 5.5: The reconstructed boundary for: (a) λ1 = 0, λ2 ∈ {10−6, 10−3, 10−1},
and (b) λ1 ∈ {10−6, 10−3, 10−1}, λ2 = 0, for Example 1 when there is p = 1% noise

in the data (4.5).
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Figure 5.6: The reconstructed boundary for: (a) λ1 = 0, λ2 = 10−3, and (b)

λ1 = λ2 = 10−4, for Example 1 when there is p = 1% noise in the data (4.5).

5.4.2 Example 1
′

(α = 10)

In this related example we change the heat transfer coefficient α from 0 to a large

value such as 10 in order to mimic a rigid inclusion, i.e. as α → ∞ the Robin

condition (5.2) recasts as the homogeneous Dirichlet boundary condition u = 0.

Note that, although from Theorem 1 we know that for α = ∞ the solution of the

inverse problem is unique, from the counterexample presented in Appendix A, the
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solution of the inverse problem with α ∈ (0,∞) may not be unique.
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Figure 5.7: The regularised objective function (5.4) for λ1 = λ2 ∈ {10−k| k = 3, 6},
as a function of the number of iterations, for Example 1

′
when there is no noise in

the data (4.5).

Figure 5.7 shows the objective function (5.4) obtained with λ1 = λ2 ∈ {10−k| k =

3, 6}, as a function of the number of iterations. The exact shape (5.6) and the recon-

structed shape obtained, when there is no noise in the input data (4.5), are presented

in Figure 5.8. From Figure 5.8 it can be seen that there is some improvement in the

numerically reconstructed shape which is stable and accurate for λ1 = λ2 = 10−4 in

comparison with Figure 5.3(b).

When p = 1% noise is added to the input data (4.5), Figure 5.9 shows the

regularised objective function for various values of λ1 = λ2 ∈ {10−k| k = 3, 6},
whilst Figure 5.10 shows the corresponding reconstructed shapes. From these plots

it can be seen that there is improvement in the numerical results, particularly for

λ1 = λ2 = 10−4 comparing to Figures 5.5 and 5.6.
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Figure 5.8: The reconstructed boundary for λ1 = λ2 ∈ {10−k| k = 3, 6}, for Example

1
′
when there is no noise in the data (4.5).
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Figure 5.9: The regularised objective function (5.3) for λ1 = λ2 ∈ {10−k| k = 3, 6},
as a function of the number of iterations, for Example 1

′
when there is p = 1% noise

in the data (4.5).
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Figure 5.10: The reconstructed boundary for λ1 = λ2 ∈ {10−k| k = 3, 6}, for

Example 1
′
when there is p = 1% noise in the data (4.5).

5.4.3 Example 2

In this example, we consider reconstructing the same pear-shaped inner boundary

given by expression (5.6) on which the homogeneous Robin boundary condition (5.2)

applies with the positive heat transfer coefficient given by, see Serranho (2006),

α(θ) = 1.5 − cos(θ) + 0.5 sin(2θ), θ ∈ [0, 2π). (5.7)

We also take the same Dirichlet data (5.1) on ∂Ω = ∂B(0, 1) given by (4.22). Figure

5.11 shows the objective function (5.4) obtained with λ1 = λ2 ∈ {10−k| k = 3, 6}, as

a function of the number of iterations. In Figure 5.12, we present the exact shape

(4.23) and the reconstructed shapes obtained when there is no noise in the input

data (4.5). From Figure 5.12 it can be seen that the numerically reconstructed

shapes are stable and reasonable accurate in comparison with the exact shape (5.6).
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Figure 5.11: The regularised objective function (5.4) for λ1 = λ2 ∈ {10−k| k = 3, 6},
as a function of the number of iterations, for Example 2 when there is no noise in

the data (4.5).
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Figure 5.12: The reconstructed boundary for λ1 = λ2 ∈ {10−k| k = 3, 6}, for

Example 2 when there is no noise in the data (4.5).
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5.4.4 Example 2
′

.

Next, we change the Dirichlet data (4.22) on ∂Ω = ∂B(0, 1) to

u(1, θ) = f(θ) = sin(θ), θ ∈ [0, 2π). (5.8)

and reconsider Example 2. We shall call this Example 2
′
.

Figure 5.13 shows the objective function (5.4) with various regularisation pa-

rameters λ1 = λ2 ∈ {10−k| k = 3, 6}, as a function of the number of iterations.

The resulting shapes obtained for different values of the regularisation parameters

λ1 = λ2 are presented in Figure 5.14. From these plots, it can be seen that reasonable

results are obtained for λ1 = λ2 = 10−4.
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Figure 5.13: The regularised objective function (5.4) for λ1 = λ2 ∈ {10−k| k = 3, 6},
as a function of the number of iterations, for Example 2

′
when there is no noise in

the data (4.5).
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Figure 5.14: The reconstructed boundary for λ1 = λ2 ∈ {10−k| k = 3, 6}, for

Example 2
′
when there is no noise in the data (4.5).

5.4.5 Example 2
′′

.

In the previous two Examples 2 and 2
′
, as given in the counterexample of Lesnic

and Bin-Mohsin (2012), solution may not be unique since we are using a single set

of data (4.22) or (5.8). This is one possible reason why the results of Figures 5.12

and 5.14 are inaccurate even for exact data. In order to ensure the uniqueness of

solution we combine the Dirichlet data (4.22) and (5.6) on ∂Ω = ∂B(0, 1) as

u1(1, θ) = f1(θ) = e− cos2(θ), u2(1, θ) = f2(θ) = sin(θ), θ ∈ [0, 2π). (5.9)

These boundary temperature data are linearly independent and they induce the heat

fluxes g1 and g2 via the operatorial relation (4.5).

Figure 5.15 shows the regularised objective function (5.5) with various values

of λ1 = λ2 ∈ {10−k| k = 3, 6}, whilst Figure 5.16 shows the corresponding recon-

structed shapes. From these plots it can be seen that there are improvements for

λ1 = λ2 ∈ {10−4, 10−3} when using more data compared to the single data inversion

previously illustrated in Figures 5.12 and 5.14.
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Figure 5.15: The regularised objective function for λ1 = λ2 ∈ {10−k| k = 3, 6}, as a

function of the number of iterations, for Example 2
′′

when there is no noise in the

data (4.5).
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Figure 5.16: The reconstructed boundary for λ1 = λ2 ∈ {10−k| k = 3, 6}, for

Example 2
′′

when there is no noise in the data (4.5).
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5.4.6 Example 3

We finally consider the case when both ∂D and α are unknown. In this case, two

linearly independent Dirichlet data (5.1), with at least one of them positive, ensure

a unique solution for the pair (∂D, α), see Pagani and Pierotti (2009) and Isakov

(2009). As in Example 2
′′
, the two Dirichlet data (5.9) on ∂Ω = ∂B(0; 1) are consid-

ered. Since now the heat transfer coefficient α is also unknown, i.e. the functional

T appearing in the left-hand side of (5.5) also depends on α, as T (a(1), a(2), r, α),

we add to it yet another regularisation term λ3‖α‖2. As expected, the numerical

results cannot be better than those from Figure 5.16, because we use the same two

pieces of information, but there are more unknowns in Example 3 than in Example

2
′′
.

Figure 5.17 shows the reconstructed shapes for various regularisation parameters

λ1, λ2 and λ3, whilst Figure 5.18 shows the correspondingly retrieved heat transfer

coefficient α. From Figure 5.17 it can be seen that reasonable stable results are

achieved although the accuracy is rather limited. Furthermore, from Figure 5.18

it can be seen that the inclusion of regularisation for α, i.e. λ3 > 0, improves the

stability and accuracy of the numerical results.
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Figure 5.17: The reconstructed boundary for various regularisation parameters, for

Example 3 when there is no noise in the data (4.5).
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Figure 5.18: The numerical and exact solutions for α obtained with various regular-

isation parameters, for Example 3 when there is no noise in the data (4.5).

5.5 Conclusions

In this chapter, the modified Helmholtz inverse geometric problem, which consists

of determining an unknown inner boundary and its surface heat transfer coefficient

in an annular domain from one or two linearly independent pairs of outer bound-

ary Cauchy data, has been investigated by the MFS. Further, regularization terms

were added in order to obtain stable and accurate numerical results. Of course,

one possible disadvantage of the formulation is the introduction of these additional

regularisation parameters. The choice of one single parameter is already highly non-

trivial, and the choice of two or three parameters can be very expensive and difficult

to justify. Other than by trial and error, as it has been performed in our preliminary

investigation, one could employ the concept of the L-(hyper) surface criterion, see

Belge et al. (2002), but this is deferred to a future study.

The numerical results show satisfactory reconstructions for the homogeneous

Robin condition (α = 0, α = 10 and α(θ)) with reasonable stability against noisy

data. Although overall from the figures illustrated in Section 5.4 the accuracy of the
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numerical results seems rather limited, we believe that more accurate results can be

obtained if one uses more sophisticated NAG routines which allow for simple bounds

on the variables to be imposed directly. This, however, would require the gradient

to be supplied by the user, and this computational implementation is deferred to a

future work.

In the next chapter, we allow for the defect D to occur at the boundary ∂Ω.



Chapter 6

Identification of a corroded

boundary and its Robin coefficient

6.1 Introduction

Inverse geometric problems arise in analysing various imaging and tomography tech-

niques such as electrical impedance tomography (EIT), gamma ray emission tomog-

raphy (GRET), magneto-resonance imaging (MRI), etc. In this chapter, we consider

the application of the MFS to solving numerically the inverse geometric problem

which consists of determining an unknown part of the boundary Γ2 ⊂ ∂Ω assuming

that the dependent variable u satisfies the Helmholtz (or the modified Helmholtz)

equation in a simply-connected bounded domain Ω ⊂ R
2, namely

∇2u ± k2u = 0 in Ω, (6.1)

where k > 0, from the knowledge of the Dirichlet boundary data u|Γ1 and the

Neumann flux data ∂u/∂n, i.e. Cauchy data, on the known part of the boundary

Γ1 = ∂Ω \ Γ2, together with a boundary condition (Dirichlet, Neumann or Robin)

on the unknown part of the boundary Γ2. Equation (6.1) with minus sign is the

modified Helmholtz equation and it models the heat conduction in a fin, whilst

equation (6.1) with plus sign is the Helmholtz equation and it models the wave

propagation in acoustics.

The inverse, nonlinear and ill-posed problem of determining the unknown (inac-

cessible) corroded portion of the boundary Γ2 and possibly its surface heat transfer

coefficient, if a Robin condition is prescribed on Γ2, is approached using a regularised

minimisation procedure which employs an MFS solver at each iteration. This study

is general and builds upon the previous recent applications of the MFS to solving

similar boundary determination corrosion problems in Marin (2009); Marin et al.
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(2011); Marin and Munteanu (2010); Mera and Lesnic (2005); Yang et al. (2009)

for the isotropic, anisotropic and functionally graded Laplace equation, in Marin

and Karageorghis (2009) for Helmholtz-type equations, in Zeb et al. (2008) for the

biharmonic equation, in Marin (2010a) for the Lamé system in elasticity, and in

Hon and Li (2008) for the heat equation. For more details about the MFS, as ap-

plied to inverse problems in general, see the recent review by Karageorghis et al.

(2011). We finally mention that there also exists an extensive literature on using the

BEM instead of the MFS for the corrosion boundary identification, see e.g. Lesnic

et al. (2002) for the Laplace equation in EIT, Marin and Lesnic (2003) for the Lamé

system in elasticity, and Marin (2006) for Helmholtz-type equations.

The outline of this chapter is as follows. In section 6.2 we introduce and discuss

the mathematical formulation, whilst in section 6.3 we present the MFS for the

Helmholtz-type equations. In section 6.4 we present and discuss the numerically

obtained results for several test examples. In section 6.5 we give some conclusions

and possible future work.

6.2 Mathematical formulation

We consider that the solution domain Ω is a simply-connected bounded by a smooth

or a piecewise smooth curve ∂Ω, such that ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, and Γ1 and

Γ2 are of positive measure. The function u satisfies the Helmholtz (or the modified

Helmholtz) equation (6.1) subject to the boundary conditions

u = f on Γ1, (6.2)

and
∂u

∂n
+ αu = h on Γ2, (6.3)

where f ∈ H1/2(∂Ω) non-constant and h ∈ H−1/2(∂Ω) are given functions, and

α ∈ L∞(Γ2) is the non-negative impedance (surface heat transfer) Robin coefficient.

In equation (6.3), h is usually zero in which case (6.3) represents a homogeneous

Robin boundary condition. In the case of the Helmholtz equation we also assume

that k2 is not an eigenvalue for the negative of the Laplacian −∇2 in the domain

Ω with the homogeneous form of the mixed boundary conditions (6.2) and (6.3) on

∂Ω. It is well-known that the direct Robin problem given by equations (6.1)-(6.3)

has a unique solution u ∈ H1(Ω), when Γ2 is known. We can then define a nonlinear

operator Ff (Γ2), which maps the set of admissible Lipschitz boundaries Γ2 to the
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data space of Neumann flux data in H−1/2(Γ1), as follows:

Ff (Γ2) :=
∂u

∂n

∣∣∣
Γ1

= g ∈ H−1/2(Γ1). (6.4)

Then the inverse problem under consideration consists of extracting some informa-

tion about the boundary Γ2 from the data g = Ff (Γ2). The data (6.4) may also be

only partial, i.e. the flux being measured on a non-zero measure portion Γ ⊂ Γ1,

instead of the whole boundary Γ1. It is well-known that this inverse problem is non-

linear and ill-posed, as opposed to the direct problem which is linear and well-posed.

We briefly note that the situation regarding the uniqueness/non-uniqueness of

solution is much more settled in the case of the inverse shape boundary determina-

tion of Γ2 when α is known, see Cabib et al. (2011); Cakoni and Kress (2007); Cakoni

et al. (2010a); Inglese and Mariani (2004); Isakov (2009), or in the case of the inverse

impedance determination of α when Γ2 is known, see Inglese (1997); Chaabane and

Jaoua (1999); Ivanyshyn and Kress (2011). However, in corrosion problems it is not

always physically realistic to assume that the boundary condition on the corroded

boundary is known, in which situation the coefficient α in (6.3) together with the

obstacle Γ2 are to be simultaneously determined. Then, clearly one set of Cauchy

boundary measurements (6.2) and (6.4) is not sufficient to simultaneously recover

Γ2 and α. However, it turns out that two linearly independent boundary data f1

and f2, one of which is positive, inducing, via (6.4), two corresponding flux mea-

surements g1 and g2, are sufficient to provide a unique solution for the pair (Γ2, α),

see Pagani and Pierotti (2009); Rundell (2008); Bacchelli (2009). The stability issue

has also been recently addressed in Sincich (2010).

We finally note that the case when Ω is a doubly-connected annular domain

with outer boundary Γ1 and inner unknown boundary Γ2 has been investigated in

Chapter 5.

Even when α is known, one set of Cauchy data (6.2) and (6.4) may not be enough

to determine uniquely the corroded boundary Γ2, as it can be seen from the following

counterexample.
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Figure 6.1: Geometry for the counterexample.

6.2.1 Counterexample

We follow the analysis of Cakoni and Kress (2007) for the Laplace equation, i.e.

k = 0, and consider the geometrical configuration for the solution domain Ω sketched

in Figure 6.1, where a > 0 is a constant parameter.

Let the solution domain be

Ω = {(x, y) ∈ R
2| x2+y2 < 1, y > 0}∪{(x, y) ∈ R

2| x ∈ (−1, 1), y ∈ (−a, 0)}, (6.5)

consisting of a semicircle and a rectangle. Consider the following function

u(x, y) =
√

2eγy sin
(π

4
(βx + β + 1)

)
, (x, y) ∈ Ω, (6.6)

where β and γ are some constants to be prescribed.

(a)The modified Helmholtz equation

Consider first the case of the modified Helmholtz equation

∇2u − k2u = 0 in Ω. (6.7)
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It can be seen that (6.6) satisfies the modified Helmholtz equation (6.7) if γ2 =

k2 + β2π2

16
. Let us try now to satisfy the homogeneous form of the Robin boundary

condition (6.3) on Γ2. On the left vertical boundary of Γ2 we have u(−1, y) = eγy,
∂u
∂n

(−1, y) = −∂u
∂x

(−1, y) = −πβ
4

eγy, y ∈ (−a, 0), and we can take

α(−1, y) =
βπ

4
, y ∈ (−a, 0). (6.8)

We can make this non-negative by requiring that β ≥ 0. On the right verti-

cal boundary of Γ2 we have u(1, y) =
√

2eγy sin
(

π(2β+1)
4

)
, ∂u

∂n
(1, y) = ∂u

∂x
(1, y) =

πβ
√

2
4

eγy cos
(

π(2β+1)
4

)
, y ∈ (−a, 0), and we can take

α(1, y) = −βπ

4
cot

(π(2β + 1)

4

)
=

βπ

4
tan

(π(2β − 1)

4

)
, y ∈ (−a, 0). (6.9)

We can make this non-negative by requiring that

β ∈
[1

2
,
3

2

]
∪

[5

2
,
7

2

]
. (6.10)

Finally, on the horizontal boundary of Γ2 we have u(x,−a) =
√

2e−aγ sin
(

π
4
(βx +

β + 1)
)
, ∂u

∂n
(x,−a) = −∂u

∂y
(x,−a) = −γ

√
2e−aγ sin

(
π
4
(βx + β + 1)

)
, x ∈ (−1, 1),

and we can take

α(x,−a) = γ, x ∈ (−1, 1). (6.11)

We can make this non-negative by taking

γ =

√
k2 +

β2π2

16
. (6.12)

To summarize, one can observe that by taking γ given by (6.12) and β in the

intervals given in (6.10), we can satisfy the homogeneous form of the Robin boundary

condition (6.3) on Γ2, independent of the constant positive parameter a. In addition,

the solution (6.6) does not depend on a and so it will be independent of the Cauchy

data (6.2) and (6.4) on Γ1 = {(x, y) ∈ R
2| x2 + y2 = 1, y ≥ 0}. In conclusion, a > 0

cannot be identified from equations (6.2)-(6.4) and (6.6) only, and therefore this is

a counterexample to the uniqueness of solution.
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We now perform a similar analysis for the Helmholtz equation.

(b)The Helmholtz equation

Consider now the case of the Helmholtz equation

∇2u + k2u = 0 in Ω. (6.13)

It can be seen that (6.6) satisfies the Helmholtz equation (6.13) if γ2 = β2π2

16
− k2,

and we immediately require that β2 ≥ 16k2

π2 .

On trying to satisfy the homogeneous form of the Robin boundary condition (6.3)

on Γ2, as before, one obtains α(−1, y) = βπ
4

, α(1, y) = βπ
4

tan
(

π(2β−1)
4

)
, y ∈ (−a, 0),

α(x,−a) = γ. If we take, for example, β to be an odd integer greater or equal

than 4k/π and γ =
√

β2π2

16
− k2 then, α(1, y) = βπ

4
and we satisfy that α ≥ 0

everywhere on Γ2. Again the non-uniqueness of solution follows because a > 0

cannot be determined.

6.3 The Method of Fundamental Solutions (MFS)

In the MFS for Helmholtz (or modified Helmholtz) elliptic equation, we can approxi-

mate the solution of equation (6.1) by a linear combination of fundamental solutions

with respect to source points which are placed outside the solution domain, namely

u(X) =
N∑

j=1

ajG±(X, ξj), X ∈ Ω, (6.14)

where the N vectors (ξj)j=1,N are distinct source points located outside the domain

Ω, and G± is the fundamental solutions of Helmholtz (or modified Helmholtz) equa-

tion (6.1). The fundamental solutions of the Helmholtz and the modified Helmholtz

in two-dimensions are given by

G+(X,Y ) = H
(1)
0 (kr), (6.15)

and

G−(X,Y ) = K0(kr), (6.16)

respectively, where for simplicity, the constants i
4

and 1
2π

, which do not appear in

(6.15) and (6.16), respectively, have been embedded in the unknown coefficients

(aj)j=1,N in (6.14). These coefficients are real for the modified Helmholtz equation

and complex for the Helmholtz equation.

Assume for simplicity that Γ1 = {(r, θ)| r = 1, θ ∈ [0, π]} is the upper-half of
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the unit circle. Consider

X i = (cos(θ̃i), sin(θ̃i)), i = 1,M + 1, (6.17)

to be boundary collocation points uniformly distributed on the known boundary Γ1,

where θ̃i = π(i − 1)/M for i = 1,M + 1. Assume also that the corroded solution

domain Ω is star-shaped with respect to the origin such that Γ2 can be parametrised

by

Γ2 = {(r(θ) cos(θ), r(θ) sin(θ))| θ ∈ (π, 2π), r(θ) > 0}. (6.18)

Consider

X i = (ri−M cos(θ̃i), ri−M sin(θ̃i)), i = M + 2, 2M, (6.19)

to be boundary collocation points on the unknown boundary Γ2, where ri−M = r(θ̃i)

and θ̃i = π(i − 1)/M for i = M + 2, 2M . The source points (ξj)j=1,N in R
2 \ Ω are

taken as

ξj = (R cos(θ̂j), R sin(θ̂j)), j = 1, N, (6.20)

where R > 1 and θ̂j = 2π(j − 1)/N for j = 1, N . Typical distributions of the

boundary collocation points (6.17) and (6.19), and of the source points (6.20) are

schematically shown in Figure 6.2.

When α is known, the MFS coefficient vector a = (aj)j=1,N and the radii vec-

tor r = (ri)i=2,M characterising the star-shaped unknown boundary Γ2 can be de-

termined by imposing the boundary conditions (6.2)-(6.4) in a least-squares sense

which recasts the problem into minimising the nonlinear objective function

T (a, r) :=
∥∥∥u−f

∥∥∥
2

L2(Γ1)
+

∥∥∥
∂u

∂n
−g

∥∥∥
2

L2(Γ1)
+

∥∥∥
(∂u

∂n
+αu

)
−h

∥∥∥
2

L2(Γ2)
+λ1‖a‖2+λ2‖r′‖2,

(6.21)

where λ1, λ2 ≥ 0 are regularisation parameters which are introduced in order to

stabilise the numerical solution. The last term in (6.21) contains a C1-smoothing

constraint on the sought shape Γ2. Introducing the MFS approximation (6.14) into

(6.21) yields

T (a, r) =
M+1∑

i=1

∣∣∣∣∣

N∑

j=1

ajG±(X i, ξ
j) − f(X i)

∣∣∣∣∣

2

+
2M+2∑

i=M+2

∣∣∣∣∣

N∑

j=1

aj
∂G±
∂n

(X i−M−1, ξ
j)

−g(X i−M−1)

∣∣∣∣∣

2

+
3M+1∑

i=2M+3

∣∣∣∣∣

N∑

j=1

aj

(∂G±
∂n

(X i−M−1, ξ
j) + α(X i−M−1)G±(X i−M−1, ξ

j)
)

−h(X i−M−1)

∣∣∣∣∣

2

+ λ1

N∑

j=1

|aj|2 + λ2

M−1∑

j=2

(rj+1 − rj)
2. (6.22)
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In the real case, for the modified Helmholtz equation (6.7) the minimisation of

(6.22) imposes 3M + 1 nonlinear equations in the N + M − 1 unknowns (a, r), and

for a unique solution it is necessary that 2M ≥ N − 2. In the complex case, for

the Helmholtz equation (6.13) the minimisation of (6.22) imposes 6M +2 nonlinear

equations in the 2N +M−1 unknowns (a, r) and for a unique solution it is necessary

that 5M ≥ 2N − 3.

If there is noise in the measured data (6.4), we replace g in (6.22) by gε, namely,

gǫ(X i) = g(X i) + ǫi, i = 1,M + 1, (6.23)

where ǫi are random variables generated using the NAG routine D05DDF from a

Gaussian normal distribution with mean zero and standard deviation

σ = p × max
Γ1

|g|, (6.24)

where p represents the percentage of noise.

In equation (6.22), the normal derivatives of the fundamental solution G±, via

(6.15) and (6.16), are given by

∂G+

∂n
(X, ξ) = −k

(X − ξ) · n
‖X − ξ‖ H

(1)
1

(
k‖X − ξ‖

)
, (6.25)

and
∂G−
∂n

(X, ξ) = −k
(X − ξ) · n
‖X − ξ‖ K1

(
k‖X − ξ‖

)
, (6.26)

and

n(X) =





cos(θ)i + sin(θ)j, if X ∈ Γ1,

1√
r2(θ)+r′2(θ)

[
(r′(θ) sin(θ) + r(θ) cos(θ))i + (−r′(θ) cos(θ)

+r(θ) sin(θ))j
]
, if X ∈ Γ2,

(6.27)

where i = (1, 0) and j = (0, 1). In (6.27), the derivative r′ is approximated using

backward finite differences as

r′(θ̃i+M) ≈ ri − ri−1

π/M
, i = 2,M, (6.28)

with the convention that r1 = 1.

The minimisation of the objective function (6.22) is accomplished computation-

ally using the NAG routine E04FCF. If required, the constraints ri > 0 for i = 2,M
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can be imposed manually during the iterative procedure by adjustment at each it-

eration. The minimisation process usually terminates when either a user-specified

tolerance is achieved, or when a user-specified maximum number of iterations is

reached.

Finally, we observe that the form of the functional (6.21) contains a single mea-

surement of the Neumann flux g for a prescribed Dirichlet boundary data f , via the

relation (6.4). However, in some cases, one may need to use two measured fluxes

g1 and g2 for two prescribed linearly independent boundary data f1 and f2, via the

operatorial relation (6.4). This means that we double up the number of equations

in (6.21) which now reads as

T (a(1), a(2), r) :=
∥∥∥u1 − f1

∥∥∥
2

L2(Γ1)
+

∥∥∥u2 − f2

∥∥∥
2

L2(Γ1)
+

∥∥∥
∂u1

∂n
− g1

∥∥∥
2

L2(Γ1)

+
∥∥∥
∂u2

∂n
− g2

∥∥∥
2

L2(Γ1)
+

∥∥∥
(∂u1

∂n
+ αu1

)
− h

∥∥∥
2

L2(Γ2)
+

∥∥∥
(∂u2

∂n
+ αu2

)
− h

∥∥∥
2

L2(Γ2)

+λ1

(
‖a(1)‖2 + ‖a(2)‖2

)
+ λ2‖r′‖2, (6.29)

where a(1) and a(2) are the corresponding unknown coefficients in the MFS expansion

(6.14) for approximating the solutions of the inverse problems with the Dirichlet data

f1 and f2, respectively.
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Figure 6.2: Typical distribution of source (◦) and boundary collocation (•) points.
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6.4 Numerical results and discussion

In this section numerical results are presented for R = 2 for Examples 1 and 2, R = 3

for Examples 3–6, 2M = N = 28 for Examples 1–5 and 2M = N = 40 for Example

6. The use of higher MFS parameters M and N did not improve the accuracy of

the numerical results, but it may become computationally expensive. Moreover, the

initial guess for the vector a is 1.0 and the initial guess for the unknown part of

the boundary Γ2 is taken as the lower-half of the circle located at the origin with

radius 0.5 for the first five examples and 1 for the sixth example. In all numerical

experiments, as required by the NAG routine E04FCF used, the tolerance, XTol

was set to 10−6, and the maximum number of function evaluations, MAXCAL, was

set to 400(N + M − 1) for the first four and final examples, and to 800(N + M − 1)

for the fifth example. In all examples the corroded boundary Γ2 is unknown. Also,

in the first four and final examples the Robin coefficient α is known, whilst in the

fifth example α is unknown. In comparison with the numerical MFS investigations

concerning sound-soft (Dirichlet boundary condition applies on Γ2) or sound-hard

(Neumann boundary condition applies on Γ2) boundary identification of Marin and

Karageorghis (2009), the novelty of this section consists of solving different inverse

problems to determine an unknown absorbing boundary Γ2 on which the Robin

boundary condition (6.3) applies. In addition, the Robin surface coefficient α can

also be considered unknown, see Example 5. For the Helmholtz equation (6.13) the

main difficulty for solving either the direct or inverse problem is in the case when

k is large. Nevertheless, there are studies, see e.g. Chandler-Wilde et al. (2004),

which deal with this high frequency case, but this issue will not be pursuit herein.

Indeed, for simplicity, only numerical results for the modified Helmholtz equation

(6.7) which is free of any such difficulty for large wavenumbers are illustrated.

6.4.1 Example 1

Consider the unit disk domain Ω = {(x, y) ∈ R
2| x2 + y2 < r = 1}, whose boundary

is divided into two parts, namely

Γ1 = {(x, y) ∈ R
2| x = cos(θ); y = sin(θ); θ ∈ [0, π]}, (6.30)

and

Γ2 = {(x, y) ∈ R
2| x = r(θ) cos(θ); y = r(θ) sin(θ); θ ∈ (π, 2π), r(θ) = 1}. (6.31)
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We take the Dirichlet data (6.2) on Γ1 given by

u(1, θ) = f(θ) = ecos(θ)+sin(θ), θ ∈ [0, π], (6.32)

the Neumann data (6.4) on Γ1 given by

∂u

∂n
(1, θ) = g(θ) = (cos(θ) + sin(θ))ecos(θ)+sin(θ), θ ∈ [0, π], (6.33)

and the inhomogeneous Robin boundary condition (6.3) on Γ2, given by

∂u

∂n
(r(θ), θ) + α(θ)u(r(θ), θ) = h(θ) = (cos(θ) + sin(θ) + α(θ))ecos(θ)+sin(θ),

θ ∈ (π, 2π), (6.34)

where α(θ) is a given non-negative function.

In this example, assuming that α is known, the analytical solution for the mod-

ified Helmholtz equation (6.7) for k =
√

2 satisfying (6.32)-(6.34) is given by

u(x, y) = ex+y, (x, y) ∈ Ω, (6.35)

and Γ2 given by expression (6.31)

6.4.2 Example 2

Also consider a more complicated geometric shape whose boundary is divided into

two parts, namely Γ1 is the upper-half of the circle given by expression (6.30) and

Γ2 is the lower-half of a peanut shape parametrised by

Γ2 =

{
(x, y) ∈ R

2| x = r(θ) cos(θ); y = r(θ) sin(θ); θ ∈ (π, 2π),

r(θ) =

√
cos2(θ) +

1

4
sin2(θ)

}
. (6.36)

The Dirichlet data (6.2) on Γ1 is given by (6.32), the Neumann data (6.4) on Γ1 is

given by (6.33) and the inhomogeneous Robin boundary condition on Γ2 is given by

∂u

∂n
(r(θ), θ) + α(θ)u(r(θ), θ) = h(θ) = er(θ)(cos(θ)+sin(θ))

(
α(θ) + (1, 1) · n(θ)

)
,

θ ∈ (π, 2π), (6.37)

where n is given by the second branch of expression (6.27), r(θ) is given by (6.36)

and r′(θ) = −3 sin(2θ)/(8r(θ)). Assuming that α is known, the analytical solution

for the modified Helmholtz equation (6.7) for k =
√

2 satisfying (6.32)-(6.33) and
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(6.37) is given by (6.35) and Γ2 is given by expression (6.36).

(a) Case I (Dirichlet boundary condition)

Consider first the case when the Dirichlet boundary condition applies on Γ2. This

means that the first term in equation (6.3) is ignored (∂u
∂n

= 0 and we take α = 1).

Thus we consider the Dirichlet boundary condition on Γ2 given by

u(1, θ) = h(θ) = ecos(θ)+sin(θ), θ ∈ (π, 2π). (6.38)

No noise. Here, consider the case when there is no noise, i.e. p = 0, in the input

flux data (6.33). Figures 6.3(a) and 6.4(a) show the objective function (6.22) with-

out regularisation, i.e. λ1 = λ2 = 0, as a function of the number of iterations, for

Examples 1 and 2, respectively. From these figures it can be seen that the objective

function decreases rapidly to a very low stationary level of O(10−15) in about 26 and

31 iterations, respectively. The corresponding exact and reconstructed shapes of the

boundary Γ2 are presented in Figures 6.3(b) and 6.4(b). From these figures it can

be clearly seen that the numerically reconstructed shapes are stable and accurate in

comparison with the exact shapes (6.31) and (6.36).

Adding noise. Consider now the case when there is p = {1%, 3%, 5%} noise in the

input flux data (6.33) added as in (6.23). Although not illustrated, it is reported

that the numerical results obtained with no regularisation imposed in the nonlinear

least-squares functional (6.22) were found unstable and highly inaccurate. This is to

be expected since the inverse problem under investigation is ill-posed and therefore

regularisation is needed in order to obtain stable solutions.

Figures 6.5 and 6.6 show the regularised objective function and the retrieved

boundary Γ2 obtained with the regularisation parameters λ1 = 10−5, λ2 = 10−1 for

Example 1 and λ1 = λ2 = 10−2 for Example 2. From the computational experi-

ments, it is noted that if the regularisation parameters λ1 and λ2 are too small then

oscillating unstable solutions are obtained. However, from Figures 6.5(b) and 6.6(b)

it can be seen that reasonably stable numerical solutions can be obtained if the reg-

ularisation parameters λ1 and λ2 are properly tuned. In our work, we chose them

based on trial and error though one can also try the L-surface framework proposed

by Belge et al. (2002). From these figures it can also be seen that the numerical

solutions become more accurate as the amount of noise p, included in the input

data, decreases.
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Figure 6.3: (a) The objective function and (b) Initial guess, exact and numerically

reconstructed shapes of the boundary Γ2, for Example 1, Case I, when there is no

noise in the data (6.33) and no regularisation.
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Figure 6.4: (a) The objective function and (b) Initial guess, exact and numerically

reconstructed shapes of the boundary Γ2, for Example 2, Case I, when there is no

noise in the data (6.33) and no regularisation.
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Figure 6.5: (a) The regularised objective function and (b) Initial guess, exact and

numerically reconstructed shapes of the boundary Γ2, for Example 1, Case I, when

there is p = {0, 1, 3, 5}% noise in the data (6.33) and λ1 = 10−5, λ2 = 10−1.
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Figure 6.6: (a) The regularised objective function and (b) Initial guess, exact and

numerically reconstructed shapes of the boundary Γ2, for Example 2, Case I, when

there is p = {0, 1, 3, 5}% noise in the data (6.33) and λ1 = λ2 = 10−2.
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Figure 6.7: (a) The objective function and (b) Initial guess, exact and numerically

reconstructed shapes of the boundary Γ2, for Example 1, Case II, when there is no

noise in the data (6.33) and no regularisation.
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Figure 6.8: (a) The regularised objective function and (b) Initial guess, exact and

numerically reconstructed shapes of the boundary Γ2, for Example 1, Case II, when

there is p = {0, 1, 3, 5}% noise in the data (6.33) and λ1 = 10−3, λ2 = 10−1.

(b) Case II (Neumann boundary condition)

We consider a second case when the Neumann boundary condition, i.e. α = 0,

applies on Γ2, this means that the second term in equation (6.3) is ignored (αu = 0).
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Thus we consider the Neumann boundary condition on Γ2 given by

∂u

∂n
(1, θ) = h(θ) =

(
cos(θ) + sin(θ)

)
ecos(θ)+sin(θ), θ ∈ (π, 2π). (6.39)

The numerical results for Example 1 obtained for Case II illustrated in Figures 6.7

and 6.8 are similar to those obtained in Figures 6.3 and 6.5 for Case I. We finally

report that the accuracy and stability numerical results presented in Figures 6.3-6.8

for the Cases I and II are similar to those obtained in Marin and Karageorghis

(2009). However, in Marin and Karageorghis (2009) a different NAG routine was

used and some of the computational details are different.

In the remaining of this section, the numerical investigation now departs from

the analysis of Marin and Karageorghis (2009). For the sake of our preliminary

investigation into an ill-posed problem which may lack the uniqueness of solution,

see the discussion in Section 6.2, we consider next only the determination of the

semicircular boundary (6.31). The retrieval of more complicated shapes such as the

lower-half of the peanut shape (6.36) under the Robin boundary condition (6.3) is

deferred to a future numerical investigation.

(c) Case III (Robin boundary condition)

Consider now the third case when the Robin boundary condition (6.34) with α = 1

applies on Γ2. Unlike the previous Dirichlet and Neumann Cases I and II, see

Figures 6.3 and 6.7, Figure 6.9 shows that in the Robin Case III the numerical

results appear unstable even for exact data, i.e.p = 0, if no regularisation is imposed

on (6.22). In this case, a slight amount of regularisation is needed in order to obtain

stable solutions and these stable and accurate numerical results are also illustrated

in Figure 6.9. For noisy data, the numerical results obtained for Case III illustrated

in Figure 6.10 are similar to those obtained in Figure 6.5 for Case I and in Figure

6.8 for Case II.
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Figure 6.9: (a) The objective and regularised objective functions and (b) Initial

guess, exact and numerically reconstructed shapes of the boundary Γ2, for Example

1, Case III, when there is no noise in the data (6.33), with regularisation λ1 =

0, λ2 = 10−9, and without regularisation λ1 = λ2 = 0.
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Figure 6.10: (a) The regularised objective function and (b) Initial guess, exact and

numerically reconstructed shapes of the boundary Γ2, for Example 1, Case III, when

there is p = {0, 1, 3, 5}% noise in the data (6.33) and λ1 = 10−3, λ2 = 10−1.



Chapter 6. Identification of a corroded boundary and its Robin coefficient 136

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

θ/π

f(
θ)

(a)

1 1.2 1.4 1.6 1.8 2
0.8

1

1.2

1.4

1.6

θ/π

α
(θ

)

(b)

Figure 6.11: (a) The Dirichlet boundary data (6.40) and (b) the Robin coefficient

(6.43) for β = 1, k =
√

2, γ =
√

π2

16
+ 2.

In the previous two examples we have considered non-homogeneous boundary

conditions (6.34) or (6.37) on the unknown corroded boundary Γ2.

In the next examples, we consider the more physical homogeneous Robin bound-

ary condition, i.e. h = 0 in equation (6.3) on Γ2.

6.4.3 Example 3

The unit disk domain Ω = B(0; 1) is considered as in Example 1, and the boundary

is divided into two parts as in (6.30) and (6.31). Take the Dirichlet data (6.2) on

Γ1 given by

u(1, θ) = f(θ) =
√

2eγ sin(θ) sin
(π

4
(β cos(θ) + β + 1)

)
, θ ∈ [0, π], (6.40)

where γ =
√

β2π2

16
+ k2 and the Neumann data (6.4) on Γ1 given by

∂u

∂n
(1, θ) =

∂u

∂r
(1, θ) = g(θ) =

√
2eγ sin(θ)

[
γ sin(θ) sin

(π

4
(β cos(θ) + β + 1)

)

+
βπ cos(θ)

4
cos

(π

4
(β cos(θ) + β + 1)

)]
, θ ∈ [0, π]. (6.41)

We also take homogeneous Robin boundary condition (6.3) on Γ2, i.e. h ≡ 0, namely

∂u

∂n
(1, θ) + α(θ)u(1, θ) = 0, θ ∈ (π, 2π), (6.42)
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where α is the positive Robin coefficient given by

α(θ) = −γ sin(θ) − βπ

4
cos(θ) cot

(π

4

(
β cos(θ) + β + 1

))
, θ ∈ (π, 2π). (6.43)

Graphs of the Dirichlet data (6.40) and the Robin coefficient (6.43) for β = 1,

k =
√

2, γ =
√

π2

16
+ 2 are presented in Figures 6.11(a) and 6.11(b), respectively,

showing that they are positive.

In this example, assuming that α is known and given by expression (6.43), the

analytical solution for the modified Helmholtz equation (6.7) satisfying (6.40)-(6.43)

is given by equation (6.6) and Γ2 is given by expression (6.31). As in Example 1, the

numerical results obtained using regularisation with and without noise in the input

data (6.41) illustrated in Figures 6.12 and 6.13 show that the numerical solutions

are accurate and stable.

For all the examples considered so far an analytical solution was available. In

the next example such an analytical solution is not available.
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Figure 6.12: (a) The regularised objective function and (b) Initial guess, exact and

numerically reconstructed shapes of the boundary Γ2, for Example 3, when there is

no noise in the data (6.41) and λ1 = 0, λ2 = 10−9.
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Figure 6.13: (a) The regularised objective function and (b) Initial guess, exact and

numerically reconstructed shapes of the boundary Γ2, for Example 3 when there is

p = {0, 1, 3, 5}% noise in the data (6.41) and λ1 = 10−9, λ2 = 10−1.
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Figure 6.14: (a) Distribution of source (◦) and boundary collocation (•) points, and

(b) the numerical solutions for the normal derivative g(θ) obtained by solving the di-

rect mixed problem with various regularisation parameters λ ∈ {0, 10−6, 10−4, 10−2},
for Example 4.
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6.4.4 Example 4

In this example, change the Dirichlet data (6.40) on Γ1 to

u(1, θ) = f(θ) = sin(θ) − sin2(θ), θ ∈ [0, π], (6.44)

and keep the same homogeneous Robin boundary condition (6.42) with the Robin

coefficient given by (6.43), β = 1, k =
√

2, γ =
√

π2

16
+ 2.

◮ Direct problem

Since in this case no analytical solution is available, the Neumann data (6.4) on

Γ1 is simulated numerically by solving, using the MFS, the direct mixed problem

given by the modified Helmholtz equation (6.7), the homogeneous Robin boundary

condition (6.42) on Γ2, and the Dirichlet boundary condition (6.44) on Γ1, when Γ2

is known and given by the semicircle (6.31). The arrangement of the source and

boundary collocation points are shown in Figure 6.14(a). The numerical solutions

for the normal derivative g(θ) = ∂u/∂n(1, θ) on Γ1, obtained with R = 2.5 for

various regularisation parameters λ ∈ {0, 10−6, 10−4, 10−2} and M = 14, N = 28

are shown in Figure 6.14(b). The curve obtained for λ = 10−4 in Figure 6.14(b)

is chosen as the most accurate representation of the unavailable exact solution be-

cause, at least it satisfies the continuity of the flux at the end points x = ±1 where

the Dirichlet and Robin boundary conditions meet. Indeed, from (6.44) we have

that u(1, 0) = u(1, π) = 0 and the homogeneous Robin condition (6.42) then also

yields ∂u
∂r

(1, 0) = ∂u
∂r

(1, π) = 0. Next, this curve corresponding to λ = 10−4 in Figure

6.14(b) is used as input flux data (6.4) in the inverse problem.

◮ Inverse problem

Assuming now that Γ2 is unknown, the inverse MFS is applied with a different R than

2.5, say R = 3, in order to avoid committing an inverse crime. The input Neumann

data (6.4) is chosen out of the curve λ = 10−4 of Figure 6.14(b), the Dirichlet data

(6.3) is given by (6.44), and the homogeneous Robin boundary condition (6.42) on

Γ2 is considered.

The numerical results obtained using regularisation with and without noise in the

input data, illustrated in Figure 6.15 show that the numerical solutions are accurate

and stable even for a large amount of noise of up to p = 20%.

The examples analysed so far considered the inverse problem in which the Robin

coefficient α was assumed known. The next and final example considers the case

when this coefficient is unknown.
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Figure 6.15: (a) The regularised objective function and (b) Initial guess, exact and

numerically reconstructed shapes of the boundary Γ2, for Example 4, when there is

p = {0, 5, 10, 20}% noise in the data (6.4) and λ1 = 10−8, λ2 = 1.

6.4.5 Example 5

Assume now that both Γ2 and α are unknown. The initial guess for the unknown

Robin coefficient α is 0.1 for this and next examples. In order to ensure the unique-

ness of solution we combine the Dirichlet data (6.40) and (6.44) on Γ1 as

u1(1, θ) = f1(θ) =
√

2eγ sin(θ) sin
(π

4
(β cos(θ) + β + 1)

)
,

u2(1, θ) = f2(θ) = sin(θ) − sin2(θ), θ ∈ [0, π], (6.45)

with k =
√

2, β = 1, γ =
√

π2

16
+ 2. These Dirichlet boundary data are linearly

independent with at least one of them positive, see Figure 6.11(a), and they induce

the fluxes g1 and g2 via the operatorial relation (6.4). Since now the Robin coefficient

α is also unknown, i.e. the functional T appearing in the left-hand side of (6.29)

also depends on α, as T (a(1), a(2), r, α), we add to it the zeroth-order regularisation

term λ3‖α‖2 or, the first-order regularisation term λ3‖α′‖2. We also add noise in

the flux g2. The numerically obtained results for various amounts of noise are shown

in Figures 6.16-6.18. From these figures it can be seen that the numerical solutions

are stable with respect to the noise included in the input data. Moreover, the first-

order regularisation in α improves the accuracy of the results over the zeroth-order

regularisation. Finally, it can be remarked that the reconstruction of the Robin

coefficient α is more difficult than the reconstruction of the corroded boundary Γ2.
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Figure 6.16: (a) The regularised objective function and (b) Initial guess, exact and

numerically zeroth-order regularisation (in α) reconstructed shapes of the boundary

Γ2, for Example 5, when there is p = {0, 1, 3, 5}% noise in the data (6.4) and

λ1 = 10−8, λ2 = 10−1, λ3 = 10−5.
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Figure 6.17: (a) The regularised objective function and (b) Initial guess, exact and

numerically first-order regularisation (in α) reconstructed shapes of the boundary

Γ2, for Example 5, when there is p = {0, 1, 3, 5}% noise in the data (6.4) and

λ1 = 10−8, λ2 = 9 × 10−1, λ3 = 10−3.
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Figure 6.18: The numerical zeroth-order (-◦-), first-order (-•-) and exact (——)

solutions for the Robin coefficient α, for Example 5, when there is no noise in the

data (6.4).



Chapter 6. Identification of a corroded boundary and its Robin coefficient 143

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

θ/π

g
(θ

)

λ=10−6

 

 

2M=N=20
2M=N=40
2M=N=80

Figure 6.19: The numerical solutions for the normal derivative g(θ) obtained by

solving the direct mixed problem for various values of 2M = N ∈ {20, 40, 80} with

the regularisation parameter λ = 10−6 for

Example 6.

6.4.6 Example 6

Finally, consider a complicated peanut shape domain Ω = {(x, y) ∈ R
2|

√
x2 + y2 <

r(θ) =
√

cos2(θ) + 1
4
sin2(θ); θ ∈ [0, 2π]}, whose boundary is divided into two parts,

namely

Γ1 = {(x, y) ∈ R
2| x = r(θ) cos(θ); y = r(θ) sin(θ); θ ∈ [0, π]}, (6.46)

and

Γ2 = {(x, y) ∈ R
2| x = r(θ) cos(θ); y = r(θ) sin(θ); θ ∈ (π, 2π)}. (6.47)

Take k =
√

2, the Dirichlet data (6.2) on Γ1 given by

u(r(θ), θ) = f(θ) =
(

cos2(θ) +
1

4
sin2(θ)

)
sin2(θ), θ ∈ [0, π], (6.48)

and the homogeneous Robin boundary condition (6.3) on Γ2 with α(θ) = 1 given by

∂u

∂n
(r(θ), θ) + u(r(θ), θ) = 0, θ ∈ (π, 2π). (6.49)
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◮ Direct problem

Since no analytical solution is available, the Neumann data (6.4) on Γ1 is simulated

numerically by solving, using the MFS, the direct mixed problem given by the mod-

ified Helmholtz equation (6.1), the homogeneous Robin boundary condition (6.49)

on Γ2, and the Dirichlet boundary condition (6.48) on Γ1, when Γ2 is known and

given by upper-half of the peanut shape (6.48). The numerical solutions for the

normal derivative g(θ) = ∂u/∂n(r(θ), θ) on Γ1, obtained with R = 2.5 for various

values of 2M = N ∈ {20, 40, 80} and the regularisation parameter λ = 10−6 are

shown in Figure 6.19. Form this figure it can be seen that the numerical results

are convergent as the number of degrees of freedom increases. The curve numerical

obtained for 2M = N = 40 in Figure 6.19 is chosen as input flux data (6.4) in

solving the inverse problem next.

◮ Inverse problem

Assuming now that Γ2 is unknown, in the inverse problem the MFS is applied with a

different R than 2.5, say R = 3, in order to avoid committing an inverse crime. The

input Neumann data (6.4) is chosen out of the curve λ = 10−6 of Figure 6.19, the

Dirichlet data is given by (6.48), and the homogeneous Robin boundary condition

(6.49) on Γ2 is considered.

The numerical results are presented in Figures 6.20 and 6.21. First, from Figure

6.20 it can be observed that the numerical results obtained using the star-shaped

approximation (6.18) for Γ2, denoted by K = ∞, are far from the true peanut

shape (6.47) and they rather maintain the circular feature being close to the initial

guess. In order to improve the results we consider trigonometric polynomials as

approximating radial function r(θ) in a finite-dimensional parametrisation space,

see Chaji et al. (2008),

r(θ) = a0 +
K∑

j=1

aj cos(jθ) +
K∑

j=1

bj sin(jθ), θ ∈ (π, 2π). (6.50)

of degree K. We then perform the minimisation of (6.21) with respect to the pa-

rameteres (aj)j=0,K and (bj)j=1,K instead of the vector r = (rj)j=2,M . We take the

initial guess for a0 = 1, (aj)j=1,K = (bj)j=1,K = 0. The derivative r′ in (6.27) is

given by

r′(θ) = −
K∑

j=1

jaj sin(jθ) +
K∑

j=1

jbj cos(jθ), (6.51)

and the last term in (6.22) is replaced by λ2

( K∑

j=0

a2
j +

K∑

j=1

b2
j

)
. From Figure 6.20(b)
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it can be clearly seen that there are very good improvements for the numerically re-

constructed shape for K ∈ {4, 5} in comparison with the true peanut shape (6.48).

Figure 6.21 shows the numerical results obtained using various regularisation pa-

rameters λ1 = 10−8, λ2 ∈ {10−3, 10−6} without and with p = 1% noise in the input

data (6.4) for K = 5. From this figure it can be seen that the numerical solutions

are accurate and stable.
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Figure 6.20: (a) The regularised objective function and (b) K ∈ {4, 5,∞} Initial

guess, exact and various numerically reconstructed shapes with of the boundary Γ2

when there is no noise in the data (6.4) and λ1 = 10−8, λ2 = 10−3 for Example 6..
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Figure 6.21: (a) The regularised objective function and (b) Initial guess, exact and

numerically reconstructed shapes of the boundary Γ2 when there is p = {0, 1%}
noise in the data (6.4) and λ1 = 10−8, λ2 = 10−3 and 10−6, K = 5 for Example 6.

6.5 Conclusions

In this chapter, two-dimensional Helmholtz-type inverse geometric problems, which

consists of determining an unknown portion of the boundary Γ2 and its Robin co-

efficient from one or two linearly independent pairs of Cauchy data on the known

boundary Γ1 = ∂Ω \ Γ2, have been investigated using the MFS. More precisely, a

nonlinear regularized MFS has been used in order to obtain stable and accurate nu-

merical results for the ill-posed inverse problem in question. Several examples have

been investigated showing that the numerical results are satisfactory reconstructions

for the corroded boundary and its Robin coefficient with reasonable stability against

nosiy data.

Future work will consider extending the numerical method developed in this

study to solving for the shape and impedance in inverse scattering governed by the

Helmholtz equation in exterior unbounded domains, see Kress and Rundell (2001),

Serranho (2006), and He et al. (2009).



Chapter 7

Reconstruction of an

inhomogeneity

7.1 Introduction

Consider finally the determination of an inhomogeneity (anomaly) contained in a

given domain from the knowledge of the imposed voltage (boundary temperature)

and the measured current (heat) flux which arises in many non-destructive tomogra-

phy testing of materials. In particular, in this chapter, Consider the inverse problem

of determining an inhomogeneity Ω2 (with Lipschitz boundary ∂Ω2) compactly con-

tained in a bounded domain Ω (with smooth boundary ∂Ω) entering in the modified

Helmholtz elliptic equation

∇2u − k2u = 0 in Ω, (7.1)

where k2 = k2
1+(k2

2−k2
1)χΩ2 is a given positive function with k2 > k1 > 0 and of class

C2(Ω), χΩ2 is the characteristic function of the domain Ω2, and u is the potential

(temperature). In heat transfer, equation (7.1) stands as the governing equation

for a (two-dimensional) dry fin-tube heat exchanger, see Lin and Jang (2002). By

defining

u :=





u1 in Ω1 := Ω \ Ω2,

u2 in Ω2,

(7.2)

equation (7.1) can be rewritten as the following transmission problem:

∇2u1 − k2
1u1 = 0 in Ω1, (7.3)

∇2u2 − k2
2u2 = 0 in Ω2, (7.4)
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u1 = u2, on ∂Ω2, (7.5)

∂u1

∂n
=

∂u2

∂n
on ∂Ω2. (7.6)

Associated to the above problem (7.3)-(7.6) we also have the Cauchy boundary

conditions on ∂Ω given by

u1 = f on ∂Ω, (7.7)

∂u1

∂n
= g on ∂Ω. (7.8)

Such a problem arises in the determination of the contact resistivity of planar elec-

tronic devices, Fang and Cumberbatch (1992). Other formulations of inverse obsta-

cle problems can be found in the topical review by Isakov (2009). Uniqueness of the

inhomogeneity Ω2 entering the inverse problem (7.3)-(7.8) has been established in

the class of balls, star-shaped domains, convex hulls of polygons and other classes of

subdomains in Kang et al. (2001); Hettlich and Rundell (1997); Kim and Yamamoto

(2003); Kim (2002), respectively.

In the previous Chapters 4 and 5 inner rigid inclusions, cavities and absorbing

obstacles in modified Helmholtz inverse geometric problems have been determined

using the MFS. In this chapter, we provide yet another application of the MFS for

solving the inverse transmission problem (7.3)-(7.8).

The outline of this chapter is as follows. In section 7.2, the MFS for the modi-

fied Helmholtz equation in composite bi-materials is presented. In section 7.3, the

numerically obtained results are presented and discussed. In section 7.4, some con-

clusions and possible future work are given.

7.2 The Method of Fundamental Solutions (MFS)

In the MFS for a composite bi-material Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, we approximate

the solutions u1 and u2 of the modified Helmholtz equations (7.3) and (7.4) by a

linear combination of fundamental solutions in the form, see Chapter 3,

u1,2N(X) =
2N∑

j=1

ajG−(X, ξj

1
; k1), X ∈ Ω1, (7.9)

u2,N(X) =
N∑

j=1

bjG−(X, ξj

2
; k2), X ∈ Ω2, (7.10)
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where G− is the fundamental solution for the modified Helmholtz equations which

in two-dimensions for example is given by,

G−(X, ξ; ki) = K0

(
ki‖X − ξ‖

)
, i = 1, 2. (7.11)

For simplicity, the constant 1
2π

, which does not appear in (7.11), has been embedded

in the unknown coefficients (bj)j=1,N in (7.10). In the case that the background

medium Ω1 is harmonic, i.e. k1 = 0, one should replace G−(X, ξ
1
; k1) in (7.9) by

the fundamental solution for the Laplace equation

∇2u1 = 0 in Ω1 (7.12)

which in two-dimensions is given by

GL(X, ξ) = − 1

2π
ln ‖X − ξ‖. (7.13)

In this case, the MFS approximation for (7.12) is

u1,2N(X) =
2N∑

j=1

ajGL(X, ξj

1
), X ∈ Ω1, (7.14)

The source points (ξj

1
)j=1,2N in (7.9) or (7.14) are located both outside the domain

Ω and inside the domain Ω2, whilst the source points (ξj

2
)j=1,N in (7.10) are located

outside Ω2. More precisely, (ξj

1
)j=N+1,2N ∈ Ω2 and (ξj

2
)j=1,N /∈ Ω2 are placed on

(moving) pseudo-boundaries ∂Ω
′

2 and ∂Ω
′′

2 similar to ∂Ω2 at a distance δ > 0 inwards

and outwards, respectively. The rest of source points (ξj

1
)j=1,N ∈ R

2 \ Ω are placed

on a (fixed) pseudo-boundary ∂Ω
′
similar to ∂Ω. A sketch of the fictitions curves

∂Ω
′

2, ∂Ω
′′

2 and ∂Ω
′
on which the source points are located is shown in Figure 7.1.

For simplicity, we assume that Ω is the unit circle B(0; 1) and that the unknown

domain Ω2 is star-shaped with respect to the origin, i.e.

∂Ω2 = {(r(θ) cos(θ), r(θ) sin(θ))| θ ∈ [0, 2π)},

where r is a 2π-periodic smooth function with values in the interval (0,1). We take

X i = (cos(θi), sin(θi)), i = 1, N

to be the outer boundary collocation points uniformly distributed on ∂Ω = ∂B(0; 1),
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where θi = 2πi/N for i = 1, N , and the source points

ξj

1
= (R cos(θj), R sin(θj)), j = 1, N,

where R > 1 is fixed. We also take

X i = (ri−N cos(ϑi−N), ri−N sin(ϑi−N)), i = N + 1, 2N (7.15)

to be the inner unknown boundary collocation points on ∂Ω2, and the inner and

outer source points

ξj

1
= (1 − δ)Xj, ξj−N

2
= (1 + δ)Xj, j = N + 1, 2N,

where δ ∈ (0, 1). In equation (7.15), ri := r(θi) for i = 1, N .

The MFS coefficient vectors a = (aj)j=1,2N , b = (bj)j=1,N in (7.9) or (7.14),

and (7.10), and the radii vector r = (ri)i=1,N characterising the star-shaped inner

boundary ∂Ω2 are determined by imposing the transmission conditions (7.5), (7.6)

and the Cauchy data (7.7), (7.8) at the boundary collocation points (X i)i=1,2N in a

least-squares sense which recasts into minimising the nonlinear objective function

T (a, b, r) :=
∥∥∥u1 − f

∥∥∥
2

L2(∂Ω)
+

∥∥∥∂u1

∂n
− g

∥∥∥
2

L2(∂Ω)
+

∥∥∥u1 − u2

∥∥∥
2

L2(∂Ω2)

+
∥∥∥∂u1

∂n
− ∂u2

∂n

∥∥∥
2

L2(∂Ω2)
+ λ1{‖a‖2 + ‖b‖2} + λ2‖r′‖2, (7.16)

where λ1, λ2 ≥ 0 are regularisation parameters to be prescribed. Introducing the

MFS approximations (7.10), and say (7.14) (with obvious modifications if (7.9) is

used) into (7.16) yields

T (a, b, r) =
N∑

i=1

[ 2N∑

j=1

ajGL(X i, ξ
j

1
) − f(X i)

]2

+
2N∑

i=N+1

[ 2N∑

j=1

aj
∂GL

∂n
(X i−N , ξj

1
) − g(X i−N)

]2

+
3N∑

i=2N+1

[ 2N∑

j=1

ajGL(X i−N , ξj

1
) −

N∑

j=1

bjG−(X i−N , ξj

2
; k2)

]2

+
4N∑

i=3N+1

[ 2N∑

j=1

aj
∂GL

∂n
(X i−2N , ξj

1
) −

N∑

j=1

bj
∂G−
∂n

(X i−2N , ξj

2
; k2)

]2

+λ1

{ 2N∑

j=1

a2
j +

N∑

j=1

b2
j

}
+ λ2

N−1∑

j=1

(rj+1 − rj)
2. (7.17)
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Figure 7.1: Sketch of the curves on which the source (− − −) and the boundary
collocation (—) points are located in the MFS.

The minimisation of (7.17) imposes 4N nonlinear equations in the 4N unknowns

(a, b, r). We can obviously have more equations than unknowns if we take more

boundary collocation points than sources. If there is noise in the measured data

(7.8), we replace the exact g in (7.17) by the noisy gε given by (4.15). In equation

(7.17), the normal derivative of GL and GMH , via (7.12) and (7.11), are given by

∂GL

∂n
(X, ξ) = −

(X − ξ) · n
2π‖X − ξ‖2

,

∂G−
∂n

(X, ξ; k2) = −
k2(X − ξ) · n
‖X − ξ‖ K1

(
k2‖X − ξ‖

)
. (7.18)

The minimisation of the objective function (7.17) is accomplished computation-

ally using the NAG routine E04FCF, as described in Chapter 4.

7.3 Numerical results and discussion

In this section, three examples in two-dimensions are presented in order to show the

accuracy and stability of the MFS described in the previous section. We take k1 = 0

and k2 = 1.

In all numerical experiments, the initial guess for the unknown vectors a, b are
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0 and the initial guess for the inner boundary is taken to be a circle located at the

origin with radius 0.7, i.e. the initial guess for r is 0.7. Moreover, as required by the

NAG routine E04FCF used, the tolerance XTOL was set to 10−6 and the maximum

number of function evaluations, MAXCAL, was set to 1000. However, it is noted

that by increasing the MAXCAL to be large, say 400 × (number of unknowns),

as suggested by the NAG Fortran library manual, the computational time increases

significantly and moreover, it does not produce more accurate numerical results. We

also take R = 2, M = N = 20 for Examples 1 and 2, and M = N = 40 for Example

3.

7.3.1 Example 1

First consider an example for which the analytical solution is available and given

by, see Hettlich and Rundell (1997),

u1(r, θ) = 1 + a0 ln(r), R0 < r < 1, (7.19)

where a0 = R0I1(R0)
I0(R0)−R0I1(R0) ln(R0)

,

u2(r, θ) = A0I0(r), 0 < r < R0, (7.20)

where A0 = 1
I0(R0)−R0I1(R0) ln(R0)

. The modified Bessel functions of first kind of or-

der 0 and 1, namely I0 and I1 are computed using the NAG routines S18AEF and

S18AFF, respectively.

In this example, the unknown inner boundary is the disk

Ω2 = B(0; R0) = {(x, y) ∈ R
2| x2 + y2 < R2

0} (7.21)

of radius R0 = 0.5 and δ is taken to be 0.5. This analytical solution satisfies problem

(7.4)-(7.8) and (7.12), with

f(θ) = 1, θ ∈ (0, 2π] (7.22)

and
∂u1

∂n
(1, θ) = g(θ) = a0, θ ∈ (0, 2π]. (7.23)

Figure 7.2 shows the objective function (7.17) with no regularisation, i.e. λ1 = λ2 =

0, when p ∈ {0, 1, 5, 10}% noise is added in the input data (7.23), as a function

of the number of iterations. From this figure it can be seen that the unregularised



Chapter 7. Reconstruction of an inhomogeneity in an elliptic equation 153

objective cost functional decreases rapidly within 6-8 iterations to either a very low

value of O(10−29) for p = 0, or to a stationary level for p > 0. Moreover, as expected,

this level of stationarity decreases with decreasing the level of noise p.

In Figure 7.3, we present the reconstructed inner boundary and the exact shape

(7.21) with no regularisation for p ∈ {0, 1, 5, 10}%. As expected, as the level of

noise increases, since no regularisation is imposed, the reconstructed inner boundary

becomes unstable.

Next, regularisation is used in (7.17) in order to stablise the numerical solutions.

Figures 7.4 and 7.5 show the regularised objective function (7.17) and the recon-

structed inner boundary, respectively, for p = 10% noise and various regularisation

parameters λ1 = 0, λ2 ∈ {10−8, 10−5, 10−3, 10−1}. From Figure 7.5 it can be seen

that accurate and stable numerical solutions are achieved for λ1 = 0 and λ2 in the

range 10−3 to 10−1, whilst clearly for λ < 10−5 the obtained reconstructions become

unstable.
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Figure 7.2: The unregularised objective function for p ∈ {0, 1, 5, 10}% noise, as a
function of the number of iterations, for Example 1.
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Figure 7.3: The reconstructed inner boundary with no regularisation for p ∈
{0, 1, 5, 10}% noise, for Example 1.
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Figure 7.4: The regularised objective function with various regularisation parameters

λ1 = 0, λ2 ∈ {10−8, 10−5, 10−3, 10−1} for p = 10% noise, as a function of the number

of iterations, for Example 1.
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Figure 7.5: The reconstructed inner boundary with various regularisation parame-
ters λ1 = 0, λ2 ∈ {10−8, 10−5, 10−3, 10−1} for p = 10% noise, for Example 1.
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Figure 7.6: The numerical solutions for the normal derivative ∂u1/∂n(1, θ), obtained

for various values of M = N ∈ {20, 40, 80} with (a) no regularisation, and (b)

regularisation parameter λ = 10−6 for the direct problem associated to Example 2.
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7.3.2 Example 2

In the second example, Consider a more complicated bean-shaped inclusion ∂Ω2

given by the radial parameterisation

r(θ) =
0.5 + 0.4 cos(θ) + 0.1 sin(2θ)

1 + 0.7 cos(θ)
, θ ∈ (0, 2π] (7.24)

within the unit circle Ω = B(0, 1). The Dirichlet data (7.7) on ∂Ω is taken to be

the same as in Example 1 and given by equation (7.22). Also choose δ = 0.3.

Since in this case no analytical solution is available, the Neumann flux data

(7.8) on ∂Ω is simulated numerically by solving, using the MFS, the direct problem

given by equations (7.3)-(7.6) and (7.22), when ∂Ω2 is known and given by (7.24).

In this case, the numerical solutions for the normal derivative ∂u1/∂n(1, θ) on ∂Ω,

obtained for various values of M = N ∈ {20, 40, 80} with no regularisation λ = 0,

and with regularisation λ = 10−6 are shown in Figure 7.6. From Figure 7.6 it can be

seen that the numerical results are convergent as the number of degrees of freedom

increases. Furthermore, a small regularisation with λ = 10−6 tends to improve the

independance of the mesh between M = N = 40 and 80. Twenty evenly spread

points out of the curve M = N = 80 with λ = 10−6 of Figure 7.6(b) are chosen

as input Neumann numerically simulated data (7.8) in the inverse problem. Next,

in order to avoid committing an inverse crime we solve the inverse problem with

M = N = 20.

Figures 7.7 and 7.8 for Example 2 are the anologous of Figures 7.2 and 7.3 for

Example 1 and the same conclusions about the unstable nature of the unregularised

solution, as the level of noise p increases, can be drawn. Figures 7.9 and 7.10 for

Example 2 present similar characteristics to Figures 7.4 and 7.5 for Example 1. In

order to investigate a different situation to that in Example 1 we regularise with

λ1 > 0 instead of λ2 > 0. From Figure 7.10 it can be seen that a stable and

reasonably accurate numerical solution is obtained for λ1 = 10−3 (and λ2 = 0),

whilst clearly for λ < 10−4 the obtained reconstructions become unstable.
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Figure 7.7: The unregularised objective function for p ∈ {0, 1, 3, 5}% noise, as a
function of the number of iterations, for Example 2.
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Figure 7.8: The reconstructed inner boundary with no regularisation for p ∈
{0, 1, 3, 5}% noise, for Example 2.
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Figure 7.9: The regularised objective function with various regularisation parameters
λ2 = 0, λ1 ∈ {10−8, 10−5, 10−3, 10−1} for p = 5% noise, as a function of the number
of iterations, for Example 2.
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Figure 7.10: The reconstructed inner boundary with various regularisation param-

eters λ2 = 0, λ1 ∈ {10−8, 10−5, 10−4, 10−3} for p = 5% noise, for Example 2.



Chapter 7. Reconstruction of an inhomogeneity in an elliptic equation 159

7.3.3 Example 3

Finally consider reconstructing a complicated pear-shaped inclusion ∂Ω2 given by

the radial parameterisation

r(θ) = 0.6 + 0.125 cos(3θ), θ ∈ (0, 2π], (7.25)

within the unit circle Ω = B(0, 1). The Dirichlet voltage (7.7) on ∂Ω was taken to

be the same as in Example 1 and given by equation (7.22). We also take δ = 0.3.

Since no analytical solution of this example is available, the Neumann flux data (7.8)

on ∂Ω is simulated numerically by solving the direct problem (7.3)-(7.6) and (7.22),

when ∂Ω2 is known and given by (7.25), using the MFS with M = N = 80 and

λ = 10−6. In order to avoid committing an inverse crime, use a different number

M = N = 40 in the inverse problem. Next, two cases are considered for this

example, as follows.

◮ Recovery from full angle data

Consider the first case when the full data of measurment of the flux g on the outer

boundary ∂Ω is available. Figure 7.11 shows reconstructed inner boundary with

p = 5%, for various regularisation parameters λ1 ∈ {10−8, 10−5, 10−3, 10−1}, λ2 = 0.

From this figure it can be seen that a stable and reasonably accurate numerical

solution is obtained for λ1 between 10−3 and 10−1 (and λ2 = 0).

◮ Recovery from limited angle data

Finally, consider the case of limited flux measurment data g prescribed on the sub-

portion {(1, θ)| θ ∈ [0, π]} of the full outer boundary ∂Ω = ∂B(0, 1). Figures 7.12

and 7.13 show the reconstructed inner boundary for both full and limited flux data

with or without noise. From these figures it can be seen that, as expected, the

reconstructed inner boundary from full angle data is much more accurate than that

obtained from limited angle data.
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Figure 7.11: The reconstructed inner boundary with various regularisation param-
eters λ2 = 0, λ1 ∈ {10−8, 10−5, 10−3, 10−1} for p = 5% noise, for Example 3.
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Figure 7.12: The reconstructed inner boundary for (a) full angle data for λ1 =

10−1, λ2 = 0, and (b) limited angle data for λ1 = λ2 = 10−9, for no noise, for

Example 3.
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Figure 7.13: The reconstructed inner boundary for (a) full angle data for λ1 =

10−1, λ2 = 0, and (b) limited angle data for λ1 = λ2 = 10−9, for p = 5% noise, for

Example 3.

7.4 Conclusions

In this chapter, a numerical method based on a regularised iterative MFS has been

developed for the reconstruction of an inhomogeneity in an inverse problem for the

modified Helmholtz equation. The choice of the two-family multiple regularisation

parameters was based on trial and error. More rigorous choices of these parameters

should be investigated in any future work. Several examples have been investigated

showing that the MFS is accurate (for exact data) and stable (for noisy data). Future

work will concern extending the MFS developed in this paper to the reconstruction

of a source domain from Cauchy data, see Ikehata (1999).



Chapter 8

General conclusions and future

work

8.1 Conclusions

The work presented in this thesis extends the range of application of the MFS to

solve two types of problems, namely direct and inverse problems, for two- and three-

dimensional Helmholtz-type equations. For inverse problems, the numerical results

have been compared with their analytical solutions, where available, or with the

numerical solution of the corresponding direct problem where no analytical solution

is available.

In inverse geometric problems, the location and shape of part of the boundary

of the solution domain under consideration is unknown. On the known part of the

boundary, the conditions are over-specified. Therefore, in some cases, one needs to

use extra information on an over-specified boundary. In practical situations, this

extra information has to come from measurments and therefore, it is usually con-

taminated by random noise. Due to the ill-posed nature of the inverse problems,

this random noise is frequently drastically magnified if standard solution procedures

are used, as in direct problems, hence highly oscillatory and unbounded behaviour

occurs in the solution. As a consequence, classical numerical methods are not capa-

ble of handling such inverse problems without being augmented by some stabilising

techniques. This means that special corrective techniques are required to achieve

an accurate and stable solution.

The MFS has been applied to solve inverse geometric problems for Helmholtz-

type equations. The inverse geometric problems then have been reduced to ill-

conditioned system of nonlinear equations which have been solved by the Tikhonov

regularisation method. This method modifies the least-squares approach by adding

smoothing factors which are dependent upon regularisation parameters in order
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to reduce the influence of the measurement errors on the numerical results. One

possible selection of the regularisation parameter is based on the L-curve method.

The L-curve is one of the simplest and most popular methods for selecting a single

regularisation parameter. This method plots the size of the solution (measured in

appropriate norm) against the corresponding residual for many positive regularisa-

tion parameters. In many cases, the graph in an L-shaped curve and the value of the

regularisation parameter that corresponds to the corner is considered to be nearly

the optimal choice. If multiple regularisation parameters are encountered one has to

generalize the L-curve concept to an L-hypersurface, see Belge et al. (2002), and the

analysis of parameter selection becomes tedious and computationally expensive. In

this thesis, emphasis is aimed more on the MFS and therefore, in a first attempt and

for simplicity, the regularisation parameters have been chosen by simple trial and

error, i.e. one gradually increases the regularisation parameters until the oscillations

in the numerical solution start to smooth out and disappear. Some discussion on

this has been provided in Section 7.3. But nevertheless more research has to be

done in the future regarding the proper choice of the regularisation parameters for

solving nonlinear and ill-posed problems.

In Chapter 1, a general introduction to direct and inverse problems has been

presented, with the difficulties associated with these problems highlighted and a

review of the previous work on this subject summarised. The MFS has several

advantages when compared to the BEM and these advantages were discussed in

detail in Section 1.4. The development of the MFS, which is a versatile meshless

for approximating numerically various linear partial differential equations when the

fundamental solution is known explicitly, have been surveyed. In the application

of the MFS, unknowns were determined by enforcing the boundary conditions, this

allows to obtain a system of linear/nonlinear equations. A well-conditioned system

of linear algebraic equations can be solved using the Gaussian elimination method,

whilst a highly ill-conditioned system of equations can be solved using a regularised

least-squares method in order to achieve a stable and accurate solution. In this

thesis, the Tikhonov regularisation method has been considered which is the most

known stabilising technique. In this method, the influence of the measurement errors

on the stability of results is reduced by adding smoothing terms in the least-squares

functional.

In Chapter 2, direct problems for two- and three-dimensional Helmholtz-type

equations in various geometries domains namely smooth domains, such as a circle,

an annulus, exterior unbounded domains outside of a circle or a sphere, and non-

smooth domains such as square have been investigated. Based on the MFS, the

direct problem has been reduced to solving a system of linear algebraic equations
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which has been solved using a Gaussian elimination approach. Convergence of the

MFS has been analysed in Section 2.3. To validate the MFS technique, several tests

examples have been investigated and the numerical results obtained show that the

convergence of the MFS depends on increasing the number of source and boundary

collocation points and the distance from the source points to the boundary of the

solution domain.

In Chapter 3, direct Helmholtz-type problems in both two- and three-dimensional

composite materials subject to boundary conditions and interface continuity condi-

tions have been investigated. By employing the MFS, the system of linear equations

has solved by the same approach as in Chapter 2. The degree of ill-conditioning

of these direct formulations has been characterised by the condition number of the

MFS matrix. Several examples involving Helmholtz-type equations in composite

materials showed that the numerical results obtained by the MFS are accurate and

in good agreement with the exact solutions, where available.

In Chapter 4, the inverse geometric problem for the modified Helmholtz in two-

dimensions has been considered. The modified Helmholtz inverse geometric problem

consists of determining an unknown inner boundary of an annular domain from a

single pair of outer boundary Cauchy data. The inverse geometric problem has

been discretised using the MFS which yields a system of nonlinear equations. Then,

this system was solved by the least-squares approach using a standard NAG routine

E04FCF. Different examples for two-dimensional simple-, bean- and peanut-shaped

inner boundaries have investigated in order to see the performance of the proposed

numerical technique. The stability of the solution was investigated by adding noise

into the Neumann data, this yields unstable results if no regularisation was used.

The Tikhonov regularisation method has been employed in order to obtain an ac-

curate and stable solution. Overall, in all cases considered the numerical results

illustrated the fact that the MFS is well-suited for the solution of inverse geometric

problems. Furthermore, it is accurate for exact data and stable for noisy data.

Chapter 5 was concerned with the development of the MFS technique for solving

the modified Helmholtz inverse geometric problem which consists of determining

an unknown inner boundary and its surface heat transfer coefficient in an annular

domain from one or two linearly independent pairs of outer boundary Cauchy data.

After the application of the MFS, an ill-conditioned system of nonlinear equations

is obtained, whose solution requires, as in the previous chapter, the use of Tikhonov

regularisation method. While in this numerical study the regularisation parameters

were chosen by trial and error, more rigorus criteria such as the L-curve or the L-

(hyper) surface will be investigated in a future study. The numerical results show

satisfactory reconstructions for the Robin coefficient and unknown inner boundary
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with reasonable stability against noisy data.

Chapter 6 considered another class of inverse geometric problems governed by

the Helmholtz-type equations in two-dimensions. This problem consists of deter-

mining an unknown portion of the boundary Γ2 and its Robin coefficient from one

or two linearly independent pairs of Cauchy data on the known boundary Γ1. The

MFS was applied to the governing equations and the resulting nonlinear system

of algebraic equations was solved by the least-squares method. More precisely, a

nonlinear regularised MFS was used for the ill-posed inverse problem in question.

Several tests examples have been investigated showing that the MFS is able to find

a very accurate and stable numerical reconstruction for the corroded boundary and

its Robin coefficient with reasonable stability against noisy data.

Finally, Chapter 7 was concerned with the same type of inverse problem as in the

Chapter 5, namely the inverse geometric problem. An MFS has been applied to the

modified Helmholtz equation and the resulting ill-conditioned system of nonlinear

equations solved using the regularised least-squares method. The MFS technique

has been validated for some typical benchmark test examples in a (disk, bean and

pear) inner boundaries and a situation where no analytical solution is available has

been considered. It has been shown that this regularised MFS technique produces

an accurate, (for exact data), and stable, (for noisy data), numerical solution.

In all the inverse geometric problems considered in this thesis, the convergence

and the stability of the iterative MFS employed was thoroughly investigated for

various boundary conditions formulations and various level of noise added into the

input data, thus revealing several features of the method described. The iterative

MFS was found to be accurate with respect to increasing the number of boundary

collocation/source points and decreasing the level of noise. The numerical results

obtained were found to be stable for both simple and complicated physical domains.

Also, the numerical MFS implementation was found to be very efficient in terms of

computational costs. Therefore, it may be concluded that the MFS is an efficient

and reliable numerical method for solving inverse geometric problems.

8.2 Future work

Note that the numerical results presented in this thesis confirm the fact that efficient

iterative MFS can be developed for the solution of inverse boundary value problems,

inverse initial value problems or coefficient identification problems. Similar iterative

MFS can be developed for determination of cracks and inclusions, for free surface

identification or other inverse geometric problems.

As far as the future work is concerned, one can mention the following possible
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investigations:

(i) Extending and developing the application of the MFS to deal with inverse geo-

metric problems for time-dependent PDEs, such as the heat and wave equations.

(ii) Chapter 4 details numerical results concerning the modified Helmholtz inverse

geometric problem in two-dimensions. It would be interesting to study the Helmholtz

inverse scattering problem in both two- or three-dimensions, see the preliminary re-

sults of Karageorghis et al. (2012).

(iii) The regularisation parameters were chosen in this thesis by trial and error, one

could employ the concept of the L-curve or the L-(hyper) surface criterion, see Belge

et al. (2002), this is deferred to a future work.

(v) It is proposed in Chapter 6 to extend the numerical method developed to solv-

ing for the shape and impedance in inverse scattering governed by the Helmholtz

equation in exterior unbounded domains, see Kress and Rundell (2001), Serranho

(2006), and He et al. (2009).

(vi) Other possible work which may be considered in the future relates to the iden-

tification of multiple inclusions.

(vii) Continuing the work of Chapter 7, future work can also concern extending the

MFS developed in this thesis to the numerical reconstruction of a source domain

from Cauchy data, see Ikehata (1999).
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Appendix A

The following counterexample relates to Example 1
′
of subsection 5.4.2.

A Counterexample

For a positive constant α, let us consider the following sequence of functions:

uν(ρ, ϑ) =
(
Iν(kρ) + CνKν(kρ)

)
cos(nϑ), ν > 0, (A.1)

where Iν and Kν are the modified Bessel functions of the first and second kind of

order ν, respectively, and

Cν =
krIν+1(kr) + (ν − αr)Iν(kr)

krKν+1(kr) − (ν − αr)Kν(kr)
, r > 0. (A.2)

One may easily verify that uν satisfies the modified Helmholtz equation (4.1), and

the Robin boundary condition (5.2) on the boundary of the circle B(0; r) of radius

r > 0. The Cauchy data (5.1) and (4.5) can easily be generated from equation (A.1)

on a sufficiently large circle Ω = B(0; R) of radius R > r. Then the non-uniqueness

of the inverse problem follows if we can show that given k > 0, for any α > 0 there

exists ν = ν(α) > 0 such that the function φ : (0,∞) → R defined by

φ(r) =
krIν+1(kr) + (ν − αr)Iν(kr)

krKν+1(kr) − (ν − αr)Kν(kr)
(A.3)

is not injective. One can easily obtain, using MAPLE for example, that lim
r→0

φ(r) = 0,

lim
r→∞

φ(r) = sgn(k − α)∞, where sgn is the signum function. The derivative of φ is

given by

φ
′

(r) =
k
(
ν2 − αr + (k2 − α2)r2

)[
Iν+1(kr)Kν(kr) + Iν(kr)Kν+1(kr)

]

[
krKν+1(kr) − (ν − αr)Kν(kr)

]2 . (A.4)
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In order to investigate the non-injectivity of the function φ we consider the quadratic

(k2 − α2)r2 − αr + ν2 = 0 (A.5)

which is present in (A.4) and gives the stationary points of the function φ.

If α = k then φ is not injective in a neighbourhood of the point ν2/α.

If α 6= k then (A.5) has the solutions

r1,2 =
α ±

√
α2 − 4(k2 − α2)ν2

2(k2 − α2)
.

If α > k then φ is not injective in a neighbourhood of the point

α −
√

α2 − 4(k2 − α2)ν2

2(k2 − α2)
.

If 0 < α < k then one can take ν to be a subunitary fraction of α
2
√

k2−α2 , i.e.

ν = αχ

2
√

k2−α2 with χ ∈ (0, 1), and then φ will not be injective in a neighbourhood of

the points
α(1 ±

√
1 − χ2)

2(k2 − α2)
.

The above non-injectivity of the function φ shows that for any constant α ∈ (0,∞)

we can satisfy the Robin boundary condition (5.2) on circles of different radii, hence

the inverse problem has a non-unique solution.


