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A poet once said, The whole universe is in a glass of wine. We will probably

never know in what sense he meant that, for poets do not write to be under-

stood. But it is true that if we look at a glass of wine closely enough we see the

entire universe.

There are the things of physics: the twisting liquid which evaporates depend-

ing on the wind and weather, the reflections in the glass, and our imagination

adds the atoms. The glass is a distillation of the Earths rocks, and in its com-

position we see the secrets of the universes age, and the evolution of stars.

What strange arrays of chemicals are in the wine? How did they come to be?

There are the ferments, the enzymes, the substrates, and the products. There

in wine is found the great generalization: all life is fermentation. Nobody can

discover the chemistry of wine without discovering, as did Louis Pasteur, the

cause of much disease. How vivid is the claret, pressing its existence into the

consciousness that watches it!

If our small minds, for some convenience, divide this glass of wine, this

universe, into parts - physics, biology, geology, astronomy, psychology, and so

on - remember that Nature does not know it! So let us put it all back together,

not forgetting ultimately what it is for. Let it give us one more final pleasure:

drink it and forget it all!

Richard P. Feynman
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Abstract

Understanding the transport properties of microorganisms in fluid is a fundamental

problem in soft matter physics, and the dynamics of an active colloid in non-equilibrium

statistical mechanics has recently attracted pioneering investigations into the design of ar-

tificial swimming robots at the microscale. A topical review of the remarkable discoveries

in the field, both theoretically and experimentally, is first addressed.

The mechanism of interfacial phoretic transport is used for an active colloid achieving

autonomous propulsion by diffusiophoresis. A theoretical framework has been established

to ascertain the generic properties of the active motion of such a self-propelled colloid,

driven by the use of surface catalytic reactions. The kinetic route for the chemical reac-

tion is considered as a two-step process, followed by quantitative procedures that examine

the influence of fuel concentration and colloid size on the propulsion velocity. Specifically,

both Janus and inhomogeneous colloids are studied, and their propulsion velocities rise

linearly with the fuel concentration in a dilute solution and decay with the size scale in

the small size limits. The theoretical results for a Janus sphere are consistent with the

experimental observation.

Furthermore, to what extent can the incorporation of advection into the diffusion be

interpreted as a means of self-propulsion. An advection-diffusion model is constructed to

compute the concentration distribution of the solute and propulsion velocity, aiming to
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Abstract

explore the role played by the advection effects on the movement of Janus particles. The

numerical results show that while Janus particle can achieve an autonomous propulsion at

a small Péclet number, the accumulation of solute particles in the upstream of the colloid

disappears at the large Pe limit.

In conclusion, the major outcome of this work is the demonstration of the qualitative

agreement with the present analysis of mobility to explain the observed size dependence.

Lastly, the results suggest that a catalytic colloid powered by diffusiophoresis is a use-

ful model for self-propulsion and indicate what still needs to be done to obtain a full

understanding of the swimming characteristics of colloidal dispersions.
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Chapter 1

Introduction and Overview

1.1 Introduction

In this chapter, general information about swimming at the microscale and subdivisions

of the topic are provided. A statement of the problem will then be discussed in order to

specifically address the research question.

1.2 Background

The world is filled and inhabited with abundant microorganisms, many of which first

appeared on Earth nearly four billion years ago [1] [2] [3]. Despite their tiny size, these

microorganisms are essential for the survival of all organisms and have a significant ef-

fect on many biological processes, including reproduction, infection, and the marine life

ecosystem. Bacteria, fungi, and algae convert energy and release nutrients into the envi-

ronment when breaking down the waste from humans, animals and plants, which enables

other organisms to gain energy from the process of decomposition. Microorganisms are

also involved in the cycle of many important elements and compounds, including oxygen,

carbon and nitrogen, and the endless cycle of materials is also linked to the transformation
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Chapter 1: Introduction and Overview

of energy in nature. For example, massive plankton blooms form one part of the oceanic

ecosystem and bacterial metabolites in the ocean decompose not only carbon, but also

nitrogen, phosphorus and sulphur. Furthermore, microbes take part in the production of

food, such as the conversion of sugar into other compounds when using yeast or bacteria

in the absence of oxygen, namely fermentation. The process of fermentation is often used,

with the help of microbes, to produce tasty food, such as beer, yogurt, cheese, wine, bread,

and chocolate, to name but a few. Thus, microbes are essential to agriculture and the

global circulation of materials.

Generally, at least one thousand different species of microbiomes inhabit the human

body and the total number of microbiomes is estimated to be 10− 100 trillion [4] [5]. In

other words, there are ten times the number of microbial cells as there are human cells

[4] [5] [6] [7], and this makes an individual human a giant superorganism. The metabolic

activity performed by these microbes has various tasks at different locations in the human

body and plays a vital role in the digestion and absorption of food as well as in protecting

against infections at the cellular level. However, many bacteria, fungi and viruses are

harmful to humans and result in many diseases and severe illnesses, such as smallpox,

food poisoning, and the plague during the Middle Ages. While some microbes cause dis-

ease, others are beneficial to human health, working with our bodies in many complex

and subtle ways. For instance, motile cilia are present in the lining of the human lungs

and the windpipe (trachea), sweeping mucus and dirt out of the airways in order to pro-

vide protection against infections [8]. Other types of cilia in the cochlear and some brain

tissues are responsible for the detection of vibrations caused by sound and the circulation

of cerebrospinal fluid [9]. The millions of microbes that reside on our skin and inside us,

form a protective barrier to prevent pathogens from colonising the skin’s surface, boosting

the skin’s immune system [10]. Without the skin microbiomes, our bodies would be open
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Chapter 1: Introduction and Overview

to microbial attacks. As microbes are essential to the Earth and to humans, considerable

research has been carried out into how the microbes that call the human body home af-

fect our health, their locomotion and collective motion; there are still many areas to be

investigated.

Transport is a fundamental requirement for all living matter, not only when searching

for food or finding a mate, but also for escaping from danger. Physiological processes

must continually take place in order to transport the required materials to and from

all areas of the human body, right down to the individual cells. At the cellular level,

nutrients are transported to cells, and waste materials are then moved out of these cells

through the process of osmosis and diffusion. Osmosis across the cell membrane, which

is semipermeable, separates and expels bio-waste and keeps the bloodstream free from

impurities in our bodies. The system that transports food, water, and nutrients between

the cell, the organism, and the external environment helps us to maintain health and

sustain life. To survive in such a wide variety of habitats, microbes have evolved a great

number of mechanisms to obtain energy, digest food and reproduce, and the locomotion

of active organisms, such as bacteria and cell motility, share certain characteristics in

common. It is important that the mechanisms of the microorganisms determine their

movement, and an understanding of their locomotion is crucial when designing synthetic

nanomotors.

1.3 Artificial microswimmers

The issue of artificial micro- or nanoswimmers in fluid has been widely investigated in

order to explore the physical and biophysical principles underlying the locomotion. The

field of micro- or nanoswimmers, which can convert physical or chemical energy sources
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into mechanical work, emerged at the end of the 1990s due to the demand for tiny devices to

aid chemical, biochemical and medical applications, such as monitoring, drug delivery and

cell repair. This opens an avenue to produce autonomous devices: micro- and nanorobots,

controlled by different mechanisms. The research into designing artificial swimming robots

that include several feasible features or functions has been useful as it has yielded new

information that is applicable to humans. Swimming robots could be delivered to specific

cellular targets when they are injected into the body via the vascular and digestive systems

with the aim of performing medical tasks. A nanoswimmer could incorporate a possible

number of attachments in order to sense, transport, and be tailored to swim through the

bloodstream with speed and efficiency [11]. Such a micro- or nanoscale delivery vehicle

could attach probes, which could then monitor the location of the device. Consequently,

it is hoped that these robots can help the avoidance of major invasive surgery and enhance

the diagnosis of disease.

1.4 The hydrodynamics of microorganisms at low Reynolds

numbers

Despite the fact that artificial nanoswimmers have plenty of potential applications, it is

difficult to keep a small robot going in a steady direction and also navigate it to its desired

destination. This is due to the combination of a low Reynolds number and Brownian

motion in the nanoworld. Physically, as the size of an object decreases, the mass and weight

decrease as the third power of its size. As an object gets smaller and smaller, forces, such

as molecular attraction and cohesion, become more significant, and the gravitation exerted

on the object decreases due to the reduction in mass. Thus, the key difference between the

nanoworld and our everyday life is that viscous dissipation completely dominates inertial

effects, and this refers to the low Reynolds number environment. The Reynolds number
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Re is a dimensionless number that gives a measure of the ratio of inertial forces to viscous

force [12]:

Re =
ρV a

η
, (1.1)

where a is the dimension of the body, V represents its speed, ρ is the density of the fluid,

and η denotes the fluid viscosity, a measure of a fluid’s tendency to stick together. Table

1.1 shows examples of the Reynolds number range from very large values to extremely

small ones [13]. For instance, the Reynolds number of a swimming whale is approximately

of the order O(108), whereas for a swimming bacteria it is roughly O(10−5) to O(10−4)

[14].

Table 1.1: Reynolds numbers for different species [13]

Reynolds number

A large whale swimming at 10 m/s 300,000,000

A tuna swimming at the same speed 30,000,000

A duck flying at 20 m/s 300,000

A large dragon fly going 7 m/s 30,000

A copepod in a speed burst of 0.2 m/s 300

Flapping wings of the smallest flying insects 30

An invertebrate larva, 0.3 mm long, at 1 mm/s 0.3

A sea urchin sperm advancing the species at 0.2 mm/s 0.03

A bacterium, swimming at 0.01 mm/s 0.00001

In the nanoworld, water itself acts as a very viscous liquid because the inertia of a

swimmer is completely irrelevant to its motion at a low Reynolds number. As the inertial

forces are assumed to be negligible, the Navier-Stokes equation, the governing equation of
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fluid motion, can be reduced to the Stokes equation:

−∇p+ η∇2v + f = 0, (1.2)

where p is pressure, η presents the fluid viscosity, v is the flow velocity, and f denotes

external force. Since the Stokes equation is linear and exhibits time reversal symmetry,

a periodic and reciprocal motion cannot lead to any locomotion in an inertia-less realm.

Therefore, swimming in a viscous fluid is a big challenge for small objects. Due to the

property of time reversibility, it is difficult to mix together two or more viscous fluids, and

this amazing phenomenon is called laminar flow [8] [15] [16]. For example, drops of dye

are injected into a cylinder filled with syrup, following which the inner cylinder is rotated

slowly so that the drops appear uniformly around the entire container. Surprisingly, these

dyed drops can return to their initial state or starting point by simply reversing the di-

rection of the mixing.

In addition, rules of physics are governed by different length scales, and thermal fluc-

tuations become important at the microscale [17]. When a microsized object is suspended

in gas or liquid, its movement is considerably influenced by the continuous collision of

randomly moving particles in the environment, and this effect is a type of thermal pertur-

bation. The direction of the microsized particle is constantly changing whilst other gas

or liquid molecules are striking it. This deflection is due to the transfer of kinetic energy

from the rapidly moving molecule to the tiny particle, a phenomenon known as Brownian

diffusion. The stochastic process involves a random force field duo to the significant effect

of thermal noise or other fluctuations of the solvent on the particle. Therefore, one needs

propulsion strategies that can maintain the orientation of a microrobot efficiently in viscous

environments and which can overcome the thermal fluctuations from the surroundings. In

the following section, the aim is to introduce various methods that microorganisms have
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adopted to achieve propulsion in fluid.

Movement is one of the existential requirements of creatures and a microorganism is

no exception. In nature, microorganisms have evolved various sophisticated mechanisms

in order to search for food, mates, or avoid danger, and the solutions are diverse. The

following are some examples of how propulsion can be achieved by a sequence of shape

deformations under time-reversal invariants. Many microswimmers use one or more ap-

pendages to generate mobility in a viscous environment [18]. The appendant part could

be a relatively stiff helix that is rotated by a motor embedded in the cell wall [18], or

it could be a flexible filament undergoing whip-like motions due to the action of molec-

ular motors [11]. Bacteria, such as Escherichia coli, can swim and tumble by applying

chemical energy to operate a flagellum, which is powered by a rotary motor and acts as

a rigid propeller. This ability is important for E. coli, enabling it to obtain food by de-

tecting fluid flow, gradients in nutrients and to move to regions of higher concentration[19].

Furthermore, both cilia and flagella have unique propulsion mechanisms that perform

different functions at various locations within the human body. Flagella propel themselves

with hair-like structures which can exhibit a variety of structures and movement patterns

[20] [21]. Moreover, cilia are also used for nutrient uptake and quorum sensing by detecting

other physical and chemical signals. The movement of an individual cilium is asymmetric

with an effective stroke and a recovery stroke [22]. Many cilia are arranged in rows on

the cell surface and can beat synchronously while being slightly out of phase with the

adjacent row. Paramecium, covered with thousands of cilia, can move forwards and back-

wards based on the locomotion of coordinated waves of beating performed by the cilia [23].

When designing artificial microrobots, there are two main approaches to accumulate
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this development. One is to be inspired by motile cells and bacterium and to mimic their

propulsion mechanisms. The other is to establish theoretical models or clever experiments

that shed a new light on the hidden world of motility at the micro- or nanoscale. The task

in the next chapter is to make current developments more precise.

The rest of the thesis is organised as follows. In Chapter 2, this study embarks on an

ambitious journey to illustrate how the evolution of designing artificial microbes, and a

review of the current state of research in the field, is intimately related to swimming at a

low Reynolds number. In despite of the diverse mechanisms of propulsion, all have some

basic underlying principles, which will be highlighted in the following section.

Chapter 3 explores a facet of the locomotion of active colloids that asymmetrically

catalyses a chemical reaction and can achieve autonomous propulsion due to diffusiophore-

sis. Firstly, a diffusion-reaction model for the concentration of solutes is applied, and the

catalytic activity occurring on the surface of the colloid is considered as a two-step process.

The computed concentration profile is employed to calculate the velocity distribution of

the asymmetrically catalysed colloid, and the results show that the propulsion velocity

decays with the size of this particle. The effects of various sized colloid scales and solute

concentrations have been examined, and the qualitative picture of the size dependence of

the velocity distribution is in good agreement with the theoretical predictions and exper-

imental data. The computational investigations of the active colloids give an insight into

the nature of the non-equilibrium phenomenon.

While self-diffusiophoresis is addressed under the diffusion-reaction model in Chapter

3, the effects of advection-diffusion on the solute dispersion is discussed in Chapter 4.

This chapter begins by introducing some general information about advective effects, and
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a natural question then arises: what role does advection-diffusion play? To address this

question, the study examines a simple case, Janus sphere, and investigates the role played

by advection-diffusion in a phoretic colloid. In addition, fluid field for diffusion-reaction

model can be depicted by applying the theoretical framework of advection-diffusion.

Finally, Chapter 5 offers some general conclusions and directions for future research.

1.5 Summary

The issue of artificial micro- or nanoswimmers in fluid has been widely investigated,

and these tiny devices could sense and transport attachments in order to perform vari-

ous functions in nature and the human body. Despite these potential applications, it is

difficult to keep a tiny robot going in a steady direction and to steer it to its destina-

tion because of the combination of Brownian motion and the viscous environment. Many

bacteria have achieved autonomous propulsion powered by various mechanisms at low

Reynolds numbers, and their movement provides rich information for designing artificial

microswimmers.
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Chapter 2

Self-Propulsion at the Microscale

2.1 Introduction

The goal of this review is to describe the theoretical framework and experimental

techniques for locomotion at a low Reynolds number environment, such as water or the

bloodstream. After a brief, general review of recent developments, the fundamental prop-

erties of locomotion without inertia are outlined, followed by a discussion of some of the

remarkable contributions from artificial swimming robots, both theoretically and experi-

mentally. This chapter aims to capture the excitement of this research area, which lies in

a multidisciplinary area, including physics, chemistry, bioengineering, and applied math-

ematics.

2.2 Literature Review

2.2.1 Strategy for microscale propulsion

Self-propelled motion is one of the most fascinating aspects of biological systems and

has an essential use in the human body at the cellular level. A typical example of in-

tracellular self-propelled motion is a motor protein,which can convert chemical reactions
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into mechanical work along filaments. Kinesin and myosin can utilise the chemical energy

released by the hydrolysis of ATP, and the conformational changes from this hydrolysis

leads to directed transport on microtubules or actins [24]. This motility process is vital

as it affects many biological processes, including the cell division, muscle contraction, and

axonal transport.

Recent developments in micro- and nanoscale engineering have led to the realisation of

various miniature mobile robots. The synthetic nano- or microswimmers have attracted

considerable theoretical and experimental interests, and a number of mechanisms have

been proposed in order to produce a net displacement of the synthetic microrobot in an

aqueous media. After a brief overview of previous studies, the focus is on self-propelled

nano- and microsystems powered by diffusiophoresis.

In order to produce a net displacement in any direction in a viscous fluid, a non-

reciprocal motion is required in order to break the time-reversal symmetry of the motion,

an idea first stated by Purcell [25]. A typical reciprocal movement is the scallop theorem,

in which a scallop opens slowly and shuts its shell quickly, but achieves no net progress

by symmetrically flapping its arms. The pioneering work done by Purcell also concluded

that a microswimmer requires at least two degrees of freedom when undergoing a non-

reciprocal motion, and this imposes a constraint on the design of an artificial microbe.

A simple, one-dimensional swimmer consisting of three spheres linked in a row con-

nected by two rigid rods was proposed by Najafi and Golestanian [26] [27]. The com-

plete cycle of the non-reciprocal motion is divided into four stages, and the distinct

mechanochemical states of the three linked spheres is illustrated in Figure 2.1. As the

rods sequentially contract and expand in length, the four-stage cycle can lead to a net
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translation of the whole system to the right side by an amount ∆. Therefore, the cycle

of motion effectively causes the spheres to propel the device forward. In addition, the

conformational cycle of such swimmers has two degrees of freedom, and it is assumed that

the swimming velocity depends on the transition rates between elongated and shortened

states [28]. Based on this simple kinetic model, the effect of an external force or load on

the swimming velocity is discussed, and the results show that the position of the external

force exerted can affect the performances of this swimmer when carrying a load or in

resisting an opposing force [28].

Figure 2.1: Schematics of the swimmer consisting of three linked spheres and its complete

cycle of motion. Here D is the distance of the right and left spheres numbered 2 and 3

from the middle sphere, and ε is the relative displacement changed by the right or left

arm [26] [27].

It is demonstrated that a chain of colloidal magnetic particles linked by DNA can be

driven by an external oscillatory magnetic field [29], and this breakthrough in artificial
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nanomotors is inspired by the motion of spermatozoa. As the alignment of the filament

with an assembled blood cell was actuated by an oscillating magnetic field, the flexible

linkage of magnetic particles attached to a red blood cell can behave like a propelled flag-

ellum. Due to the combination of a static magnetic field and a sinusoidal field, a beating

pattern was induced by the continuous deformation of the filament. The attached red-

blood cell with a tail exhibits self-propulsion, and its swimming velocity and orientation

depend on the external fields.

A new approach, developed by Mei and his colleagues in 2008, describes the recent

progress on rolling up functional nanomembranes on polymers [30]. This rolled-up nan-

otech produces a catalytic tubular microjet by controlling the fabrication of metal and ox-

ide tubes as well as many other material combinations including titanium/iron/gold/silver

multilayer nanomembranes. Due to the decomposition of hydrogen peroxide following a

catalytic reaction of the hydrogen peroxide with the silver inner tube wall, the propulsion

of the microjets is generated by oxygen bubbles thrust out of an opening in the tube. This

catalytic tubular microrobot has advanced performances, such as cargo delivery, dynamic

assembly, and remotely controlled microjets.

It is reported that the motion of multi-oscillating dumb-bells with mutual phase dif-

ferences can break the otherwise time reversible motion and cause directed motion [31].

Another swimming mechanism based on dumb-bells is experimentally demonstrated and

theoretically analysed by Tierno et al. [32] [33] [34]. By switching an external magnetic

field, a non-reciprocal rotation of DNA-linked doublets is produced in a viscous-dominated

confined fluid, and the conformation of the system is illustrated in Figure 2.2. The path

and orientation of the paramagnetic doublets can be controlled by an external oscillating

magnetic field, and the velocity depends on the strength and frequency of the magnetic
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field as shown in Figure 2.3.

Recently, a team of researchers at the Georgia Institute of Technology has developed

a new model for microswimmer ”flexible gel robots” powered by periodic expansions and

contractions [35]. This system consists of a hydrogel which is ten microns long with

two propulsive flaps attached to each side of the gel body, and its swimming direction is

controlled by a flexible steering flap at its front, as shown in Figure 2.4. The responsive

gel body undergoes periodic expansion and contraction in response to an external stimuli,

such as light, temperature change or magnetic field, leading to volume changes in a cyclical

way as well as a time-irreversible beating motion of the propulsion flaps. As a result, a

net motion can be generated by the combination of movements of the gel body and the

beating motion. The stimuli-sensitive body acts as an engine so that it can propel and

navigate itself at low Reynolds numbers. Furthermore, the researchers have tested various

parameters of gel and flap properties, such as size, oscillation rates, and intensity of

external stimulus in order to optimize the efficiency of the propulsion.

According to a recent article [36], it is reported that a self-propelled microsystems

without any external fuels can achieve an autonomous motion in a very acidic environ-

ment, such as the stomach and human blood serum. The interior material of the tubular

polyaniline (PANI)/Zn microrocket is made of zinc, which is not only related to the gen-

eration of the hydrogen bubbles but is also more biocompatible. The mechanism is based

on the bubbles of hydrogen gas spontaneously produced from the microrocket’s nozzle. By

testing different acidic conditions, the new microrockets display a speed-pH dependence,

and this speed can reach 0.001m/s.

Another method is discussed to achieve orientation by spinning under gravity [37].
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This system which consists of three spheres connected by two arms can spin along their

axes without external torque. The rotation can influence sedimentation gradually and this

model can be extended to study the effect of gravity on a viscous fluid.

Cell motility in viscous fluids is ubiquitous and affects many biological processes, in-

cluding reproduction, infection and the marine life ecosystem, and the polymerisation of

actin proteins into dynamic filament structures plays a crucial role in cell motility. Actin

is a protein involved in many cellular processes ranging from the regulation of gene tran-

scription to acting as a motor in cell motility [38] [39]. Actin polymerisation is responsible

for the motile properties of cells, such as Eukaryotic cell migration, as it can generate the

force which deforms the cell membrane. In a typical example, the movement of Listeria

monocytogenes can be induced by polymerising or depolymerising actin filaments and the

observation reveals that the nucleation and elongation of actin filaments are stimulated

by the ActA and Arp2/3 complex. The assembly of comet tails made of actin filiments

is developed and is essential for coupling actin polymerisation to the force that drives

bacterial propulsion [40] [41]. Furthermore, there is a condition where the effect of the

non-diffusing solute is considered. In this scheme, the actin comet tail of Listeria could be

modelled as an inert trailing particle and perform as a porous medium, inducing motility

in the advection dominated regime [42].

In order to understand actin dynamics in cells, a mathematical model based on a

combination of passive polymerisation and branched-network growth is reviewed [43]. To

maintain a consistent supply of actin monomers, actin filaments are eventually severed and

depolymerised. Filament density is regulated by capping protein binding to the filament

tips, ceasing polymerisation[43].
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An important point to notice is that most nanomotor mechanisms, mentioned above,

involve either metals or solutions which are not biocompatible with the human body. As

a result, the application of such swimming robots is restricted. Enzymes, being a group

of natural bio-chemical substances that are responsible for enormous chemical reactions

within the body, can overcome this drawback by operating in suitable substrates that are

already present in the body. The non-reciprocal conformation changes of the enzyme, as

well as diffusiophoresis and electrophoresis can conceivably be used to generate motion

in the case of enzyme-driven nanomotors. The following section discusses enzyme-based

microswimmers in detail and such micro- or nanomotors provide strategies for the design

of synthetic ones.

2.2.2 Diffusiophoresis

The movement of colloidal particles caused by interactions between interfaces and ex-

ternal fields is referred to as phoretic transport [44], and this effect could be induced by

a gradient in electrostatic potential (electrophoresis), solute concentration (diffusiophore-

sis), or temperature (thermophoresis). The various phoretic motions (electrophoresis,

diffusiophoresis, thermophoresis) differ from sedimentation in that the driving forces op-

erate within a thin interfacial layer at the surface of a particle rather than on the bulk of

the particle. Many investigations on phoretic effect are focused on Janus sphere, which is

composed of two different surface properties and named after the two-faced Roman god,

and some of the subsequent works are outlined as follows.

Electrophoresis is the motion of a charged particle relative to a fluid under the influ-

ence of an electric field [45] [46] [47]. This occurs as the particle carries an electric surface

charge which is acted upon by an electrostatic coulombic force from an external electric

field [45] [46]. It is suggested that microswimmers are capable of moving autonomously
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by self-electrophoresis in the presence of an externally applied electric field [44] [48] [49].

According to previous findings [50] [51] [52], nanorod devices consisting of gold-platinum

rods with equal sized segments can move autonomously in a hydrogen peroxide solution.

The system of rod-shaped nanoparticles with reaction-driven motion is directed to the

right, as shown in Figure 2.5 [51]. The platinum acts as a catalyst for the decomposition

of the hydrogen peroxide and remains unchanged throughout the chemical reaction. Due

to the oxygen concentration gradient generated between the ends of the rod, the propulsion

of such a conducting device exhibits enhanced translations along the rod axis at speeds of

up to ten body lengths per second in the H2O2 solution. A further visual verification of the

predicted direction of the fluid flow field in a coupled gold-platinum electrode system was

obtained by monitoring tracer particles moving near to a gold-platinum catalytic micro

pump [50] [51].

Several teams have studied fabricated self-propulsion powered by electrochemical reac-

tions and the particles effectively act as short-circuited electrochemical cells. It is demon-

strated that a carbon fibre is capable of moving autonomously by the redox reactions of

glucose and oxygen occurring on its opposite sides [53]. Propulsion due to the electro-

chemical decomposition of hydrogen peroxide fuel into oxygen and water, has also been

demonstrated to generate fluid flows above concentric electrodes [54] and in between in-

terdigitated microelectrodes [51], as well as propelling rotating micro-gears made from

platinum and gold [55] and bimetallic nanorod motors [56].

For thermophoresis or the Soret effect [57] – [65], it should be emphasised that the hot

Brownian motion induced by low to moderate laser power is capable of self-propulsion,

and movement could be as fast as self-diffusiophoretic colloids [66]. Using Janus particles
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with their half hemisphere covered with gold, self-propelled motion was examined under

externally imposed laser irradiation [67]. When the half-metal coated beads absorbed light

from the non-uniform laser beam, it underwent substantially enhanced Brownian diffusion

with a ballistic velocity enhanced mean-square displacements [67] [68].

Moreover, it is suggested that self-propulsion can be caused by an imbalance of concen-

tration gradient on a Janus sphere, a colloidal particle made of two halves with different

physical properties. The difference in the concentration of the molecules on the two sides

of a Janus particle leads to an imbalance in the total kinetic energies of the molecules.

Therefore, the particle tends to move towards the area of lower concentration, and this

type of particle movement is known as diffusiophoresis [69]. Based on this effect, the lo-

comotion of a colloid with an asymmetric coating of catalyst on its surface can achieve

autonomous propulsion by diffusiophoresis [70] [71].

The simple model of a self-propelling device driven by diffusiophoretic effect was pro-

posed by Golestanian et al.[71] and a sketch of the configuration is provided in Figure 2.6.

In the scheme, the enzyme acts as a catalyst promoting the reaction rate of the chemical

reaction in its vicinity. One benefit of propulsion by diffusiophoresis is high efficiency, as

no additional power is needed. In fact, an enzyme simply increases the rate of reaction and

remains unchanged throughout the chemical reaction. This means the sphere never loses

its own fuel, and the process of the diffusiophoretic effect can only be slowed by changes

within its surroundings.

Experiments on the diffusiophoretic effect has realised that the velocity of polystyrene

Janus particles depends on the concentration of fuel molecules in a short time [72]. In this

experiment, a spherical swimmer was a polystyrene ball with a diameter of 1.62µm, and
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an asymmetric distribution of catalyst was coated on its surface. One half of the sphere

was coated with platinum, whereas the other half remained bare. The swimmer was then

placed in a solution of hydrogen peroxide (H2O2). During the chemical reaction, there

were more product molecules generated in the vicinity of the coated hemisphere, and the

gradient of solute concentration on the two sides of the Janus colloid becomes imbalanced.

Consequently, the polystyrene ball was propelled by the asymmetric release of the reaction

products. In order to demonstrate that the motion of the artificial micro swimmers was

a function of the hydrogen peroxide concentration, a number of swimmers were produced

and their trajectories were recorded over 25 seconds in various concentrations of hydrogen

peroxide. Additionally, polystyrene spheres of the same size without a catalyst coat on

their surfaces were also produced and used as control spheres. Both the coated and bare

spheres were placed in the same solution, and their trajectories were tracked and compared

in Figure 2.7 [72]. No matter how large the H2O2 concentration is, control particles

still undergo Brownian motion. On the contrary, there is an enhanced diffusion of Pt-

coated bead, and the displacement increases with the fuel concentration. Furthermore,

the mean squared displacement can be estimated as a function of time by trajectory

analysis. The mean squared displacements for the Pt-coated Janus spheres, immersed in

hydrogen peroxide at various concentrations, are illustrated in Figure 2.8 [72]. While the

curves for the 0% are linear with the elapsed time, they become parabolic by increasing

the concentration of hydrogen peroxide up to 10%. The results in Figures 2.7 – 2.8

indicate that such a colloid has an effective autonomous propulsion, and how fast it can

swim depends on the concentration of fuel molecules. The experimental observation can be

explained by a generic model of diffusiophoresis proposed by Golestanian and his colleagues

[71] [73].

There have been several investigations into diffusiophoresis and these have, so far,
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yielded positive results. For certain motile biological systems, such as Listeria monocyto-

genes, a protein concentration gradient can be generated by polymerising or depolymeris-

ing protein filaments, and this provides a means of self-propulsion [74]. This mechanism

is appropriate to an advective regime where the motion is dominated by the fluid advec-

tion instead of diffusion [75]. By local demixing of a critical binary liquid mixture, active

motion can be easily tuned by illumination. Illumination techniques have been employed

to confine, control and steer the motion of Janus colloids covered in gold on one of the

hemispheres [76]. Furthermore, it has been demonstrated experimentally that the segre-

gation and pattern formation of colloids and macromolecules can be achieved based on

diffusionphoresis [77] [78].

A characteristic feature of such self-propelled motion is that self-motile colloids un-

dergo stochastic motion depending on three distinct time scales: the vorticity diffusion

time τh, the solute diffusion time τd, and the colloidal rotational diffusion time τr [79].

Experimental study has once again used the platinum catalysed reaction of decomposi-

tion of hydrogen peroxide and examined the effect of the observation time interval on

the translation diffusion of Pt-coated Janus sphere in H2O2 solution [80]. In addition,

making more complicated geometries, such as dumbbells with a variety of catalytic pat-

terns has been suggested by S. Ebbens et al. [81]. A class of artificial microswimmers

with combined translational and rotational self-propulsion has been studied experimen-

tally. The chemically-fueled microswimmers are made of doublets of Janus colloidal beads

with catalytic patches that are positioned at a fixed angle relative to one another. The

mean-square displacement and the mean-square angular displacement of the active dou-

blets were analysed from the context of a simple Langevin description, using the physical

characteristics of the microswimmers, such as the spontaneous translational and rotational

velocities extracted.
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The physical characteristics of an active colloid powered by diffusiophoresis have been

investigated theoretically, however, the previous model indicated the swimming velocity

of a colloid with an asymmetric catalyst is independent of the size [82]. Furthermore,

current research shows the effect of size on the propulsion velocity of the Janus sphere,

both theoretically and experimentally, and the velocity decays as a function of size with

inverse size-dependence [73]. The velocity has been studied systematically as a function

of the fuel concentration and its size. The purpose of this thesis is to understand such

properties from the molecular point of view.

In Chapter 3, a simple model of reaction-diffusion is considered, which is induced by

using surface catalytic reactions and gradients of concentration to produce slip velocity

that could lead to the net propulsion of a spherical swimmer.

2.3 Summary

So far, this topical review has reported a number of different systems, employing the

various mechanism on miniature mobile robots at low Reynolds numbers. Although not

all subjects are addressed, it is hoped that the collection of articles will stimulate further

discussion of the highly non-intuitional world of motility at the microscale.

21



Chapter 2: Self-Propulsion at the Microscale

Figure 2.2: Schematic of a doublet of two differently sized paramagnetic polystyrene beads,

attached by DNA linkers, rotating by an external oscillating magnetic field [32]. (a)

Doublet rotating around an axis parallel to the plane is controlled by the external magnetic

field H with frequency Ω. (b) and (c): The microscopic images illustrate that the doublet

travels further along the x direction than the individual particle, and their trajectories are

indicated by red and blue lines respectively.
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Figure 2.3: Comparison of the experimental data (dots) and theoretical fittings (lines).

Scaled doublet velocity V/V0 is shown as a function of the strength H0/H1 and frequency

Ω/ΩB of the external oscillating magnetic field [32].
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Figure 2.4: Schematic diagram illustrating a responsive gel body (red) with two propulsive

flaps (green) attached to its opposite sides. The steering flap (green) at the front of the

swimmer is sensitive to light (yellow), and velocity vectors through the middle of the gel

body are shown by green cones. Combined with the steering flap bending, the periodic

beating of the propulsion flaps could move the device forward [35].

Figure 2.5: Sketch of a gold-platinum nanorod showing the mechanism for electro-kinetic

process of decomposition of hydrogen peroxide [51]. Due to the decomposition of H2O2 at

metal surfaces, an electrical current is created from Pt to Au end. Therefore, the bimetallic

rod can achieve propulsion and is seen to move in the direction of the platinum end.
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Figure 2.6: An illustration of autonomous diffusiophoretic motion of a colloid with an

enzymatic site (red). The Solute molecules of diameter a are dissolved in the fluid sur-

rounding the colloid with radius R. Due to a reaction on a catalytic patch of the surface

of the colloid, an asymmetric concentration gradient of solutes is created, leading to self-

propulsion for the spherical swimmer [71].

Figure 2.7: Measured displacement of both the control (blank) and platinum-coated par-

ticles suspended in different hydrogen peroxide concentrations [72]. Locomotion of ×5

polystyrene beads in varying solution was recorded over 25 seconds, and the trajectory for

each measurement in the same concentration is shown by different colours.
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Figure 2.8: The mean squared displacements of platinum-coated particles [72]. Each

colour represents different concentrations of hydrogen peroxide. The parabolic curve for

high concentration of H2O2 indicates an enhanced diffusion.
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Chapter 3

Reaction - Diffusion Model of

Catalytic Colloids

3.1 Introduction

A colloid that asymmetrically catalyses a chemical reaction powered by diffusiophore-

sis provides a means of self-propulsion, and this mechanism can achieve an autonomous

propulsion at low Re as the time-reversal symmetry is broken. A theoretical framework

has been established to investigate the behaviour of the swimming velocity of such a colloid

which maintains an asymmetric configuration of solute concentration adjacent to it. The

study begins with a diffusion-reaction model, followed by quantitative procedures that

will estimate the influence of fuel concentration and colloid size on the propulsion velocity.

Both the analytic and numerical results emphasise physical intuition and are eventually

compared with experimental data.
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3.2 Model of Diffusion-Reaction at Low Reynolds Number

3.2.1 Slip Velocity for Diffusion-Reaction

This chapter aims to develop a theory that models the self-propulsion achieved by

an active colloid with an asymmetric catalyst on its surface. Specifically, the desire is

to compute the concentration distribution, thus determining the propulsion velocity at

low Reynolds numbers. Firstly, a theoretical model for diffusion-reaction, based on dif-

fusiophoresis, is introduced. In order to obtain a full insight into the movement of an

asymmetrically catalysed colloid, the factors that affect its path need to be determined.

Next, the general kinetic route of the two-step reaction is considered: the reaction path

that breaks substrate S into products S′ and P via an intermediate process where the

substrate forms the complex SE with enzyme E [73]:

S + E
k1

kd

SE
k2−→ S′ + P+ E, (3.1)

where k1 and k2 are the corresponding rates for the two reactions. The backward reac-

tion path in Eq. (3.1) is eliminated for simplicity, as it does not change the qualitative

behaviour of the system [73]. Due to the presence of the enzyme, the chemical reaction

takes place considerably quickly in the vicinity of the catalyst, and this leads to the in-

creased production of S′ and P with corresponding concentrations CS′ and CP, respectively.

Solute molecules interact with the surface of the colloid through intermolecular inter-

actions, including van der Waals attractive forces, hard sphere repulsive interactions, and

the hydration forces. The colloidal motion is caused by these forces, which are typically

short ranged. In order to simplify the situation, a common potential W mediates these

interactions between the solutes and the colloid is assumed, and the potential is considered

to decay over an effective distance λ [69]. The potential between a colloid and a solute
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particle is a function of their normal separation distance y [83], and its general behaviour

is shown in Figure 3.1. If the potential function W (y) is repulsive, then the colloid is

driven to the side with lower solute concentration. The characteristic length scale λ is

expected to be of the order O(Å), and its precise value can be computed by knowledge of

solute/colloid interaction W (y) [44] [84].

λ2eff =

∫ ∞

0
dz z

{
DS

DP

[
1− e

−WP(z)

kBT

]
+
DS

DS′

[
1− e

−WS′ (z)
kBT

]
−
[
1− e

−WS(z)

kBT

]}
(3.2)

Here, kB is Boltzmann constant, T denotes the absolute temperature, and D indicates

diffusion coefficient.

W HyL

y
R0 R + Λ

Figure 3.1: Decay of hypothetical potential W (y) in the diffused layer (slipping plane)

with thickness λ.

The flow field is divided into inner and outer regions with different length scales, λ and

R respectively. As a result, the inner region can be considered as a plate and boundary

layer concept is applied. In this scheme, the thickness λ of the interface between colloid

and fluid molecules is much smaller than the size of the colloid R. A solute molecule is
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experienced a force −C∇W (y), that is proportional to the local solute concentration C

and the radial gradient of the potential ∇W (y), and this leads to a pressure p in the thin

layer. As the interaction of the solute to the particle is increasing along the side of higher

solute concentration, a diffusive flux of solute is produced from the higher concentration

side to the lower one. Then this streaming flow across the interface causes a relative mo-

tion with a slip velocity vs, which is tangential to the plate, at the edge of the inner region

[44]. The slip velocity has different behaviours on different length scales. While the slip

velocity is continuous within an interfacial layer, it becomes discontinuous on the scale of

the colloid size.

A model for the slip velocity due the interaction between the solutes and the colloid is

developed by Derjaguin et al. and Anderson [44] [69], and this movement is related to the

solute concentration in a local coordinate where y is the normal variation to the surface

of the colloid. At the equilibrium, the local solute concentration in the inner region can

be represented by Boltzmann distribution:

C(y, θ) = CS(θ) exp
−W (y)
kBT , (3.3)

where θ is the lateral angle in the spherical coordinate, and CS(θ) is the concentration

along the surface at the outer edge of the slipping plane. It is important that the mo-

mentum transferred between solute molecules and the colloid is conserved within the inner

region (both x- and y-directions). In the limit λ/R≪ 1, the boundary-layer approximation

applies to the Stokes equations.

∂p

∂y
+ C

∂W (y)

∂y
= 0, (3.4)

η
∂2vx
∂z2

− ∂p

∂x
= 0 (3.5)

Here, p is the pressure field, η denotes the viscosity of the solvent, and vx means the

x-component of the slip velocity. Combining the preceding equations gives the formula
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for the slip velocity in a solution of nonelectrolyte solutes with concentration gradient ∇C

[69], and the resulting slip velocity along the surface is described in Eq. (3.6) and Figure

3.2.

vs =
kBT

η

∫ ∞

0
dy y

[
1− exp

−Wj(y)

kBT

]
∂C

∂x
(3.6)

vs

yR
R + Λ

Figure 3.2: The slip velocity vs is a function of normal distance from the colloidal surface

y.

Alternatively, a slip velocity of the solute particle passing by the colloid at position rs

somewhere within the interface can be expressed in terms of a coefficient µ:

vs = µj(rs)(I− nn) · ∇Cj(rs), (3.7)

µj(rs) =
kBT

η

∫ ∞

0
dy y

[
1− exp

−Wj(y)

kBT

]
. (3.8)

Here, the unit vector n is normal to the surface, I denotes the identity tensor, and I−nn
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gives the tangent direction. Wj(y) indicates the intermolecular potential between the jth

diffused molecules and the surface of the colloid [44]. The coefficient between the slip

velocity and a concentration gradient µj(rs) is defined as a local mobility for the solute

species j, and is controlled by the interaction of the solute molecules with the surface of

the colloid [44]. In the reaction-diffusion framework, a slip velocity is influenced by all the

solute species, including substrate and product particles at position rs on the surface [44]

[69].

vs(rs) = µS(rs)(I− nn) · ∇CS(rs) + µP(rs)(I− nn) · ∇CP(rs)

+ µS′(rs)(I− nn) · ∇CS′(rs) (3.9)

After introducing the idea of slip velocity, the configuration of a colloid suspended in solute

molecules is depicted in Figure 3.3.

Furthermore, a lateral slip velocity vs due to the depletion of the product particles

within the interface produces a net drift motion of the colloid, and the net drift velocity

V can be formulated from the overall slip velocity [82] [85] [86]:

V · f̂i = −
∫ ∫

drs n · σi · vs(rs), (3.10)

where σi is the hydrodynamic stress tensor at the surface and f̂i represents an applied

unit force. The Eqs. (3.9) – (3.10) are applied to any shape of swimmer. In the following

section, the focus is placed on an asymmetrically catalysed sphere with radius R. For a

sphere, the net drift velocity described in Eq. (3.10) can be deduced [82] [87]:

n · σi = 1
4πR2 f̂i, (3.11)

V = − 1
4πR2

∫ ∫
drs vs(rs). (3.12)

Once the concentration profile is known, the velocity distribution of the spherical swimmer
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R

n

Λ

vs

rs

V

Figure 3.3: Schematic of active colloid with radius R suspended in fluid molecules. The

slipping velocity vs is induced by the flux of solute molecules at position rs within the

interface, and the slipping plane is shown as the dashed circle with length scale λ. An

inhomogeneous distribution of solutes drives the motion of colloid with the translation

velocity V.

can be determined.

3.2.2 Reaction-Diffusion Process of the Fuel Molecules

The diffusion-reaction model proposed in [73] assumes that the kinetic route for the

chemical reaction taking place in the vicinity of the enzyme is a two-step reaction:

H2O2 + Pt
k1

kd

Pt(H2O2)
k2−→ H2O+O+ Pt. (3.13)
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The migration of colloid dispersed in a fluid under the action of a concentration gradient

is far from equilibrium, and the solute diffusion time can be computed by scale analysis.

Because the particles of interest are micron size and the diffusion coefficients for solute

species D are of the order 10−9m2/s, diffusion time is estimated as [T ] = [L]2/[D] ∼

10−3 s. In addition, the the motion of the colloid powered by diffusiophesis is less than

10µm/s [72], which is much slower than the the solute diffusion. In this situation, a

separation of time scale between the diffusion of solute species and the propulsion of the

colloid is considered [79], and this indicates that the system of reaction-diffusion process

achieves a steady state. Therefore, the transition involving the binding of the substrate

from the solution is assumed to proceed at a rate k1. The diffusion-reaction equations for

the three species read

−Dhp∇2Chp = −k1ChpCE, (3.14)

−Dw∇2Cw = k2CSE, (3.15)

−Do∇2Co = k2CSE, (3.16)

at the steady state. In the above equations, hp indicates hydrogen peroxide, w denotes

water, and o means oxygen. Cα and Dα are the concentration and diffusion constant

for each species, respectively. CE is the (volume) density of the unoccupied enzymatic

regions, and CSE represents the density of the occupied regions where the substrate forms

a complex with the enzyme. At a steady state, the effective rates of the two processes

should balance each other, and this imposes a constraint to the equations:

k1ChpCE = k2CSE. (3.17)
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From integrating the three diffusion equations above, we have:

DhpChp +DwCw = DhpC∞, (3.18)

DhpChp +DoCo = DhpC∞, (3.19)

DwCw = DoCo, (3.20)

where, C∞ is the concentration at infinity. Therefore, the concentrations of the products

Cw and Co are the function of Chp:

Cw =
Dhp

Dw
(C∞ − Chp), (3.21)

Co =
Dhp

Do
(C∞ − Chp). (3.22)

The concentrations of the products can be calculated as long as the concentration profile

of hydrogen peroxide is obtained.

Using the notation Chp ≡ [H2O2] and Co ≡ [O2], the steady state diffusion–reaction

equations for the reaction can be rewritten as

∇2Chp(r, θ) = 0, ∇2Co(r, θ) = 0, (3.23)

subject to the boundary conditions

Dhp∂rChp|r=R = k1Chp(R, θ)pfrK(θ), (3.24)

Do∂rCo|r=R = −k2pcx(θ)K(θ), (3.25)

where K(θ) is the “coverage” function that described how the angular pattern of the

platinum patch(es) cover the surface of the colloid. For instance, the coverage function of

a Janus sphere has a simple form:

K(θ) =


1, if 0 < θ < π

2

0, if π
2 < θ < π.
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Figure 3.4: The coverage function K(θ) for a Janus sphere.

The angular pattern of the catalyst coating on the Janus sphere is shown in Figure 3.4. If

a distribution of catalyst is coated unevenly on surface of a sphere, such colloid is regarded

as an inhomogeneous sphere. Figures 3.5 – 3.6 are illustrated as three examples of coverage

function for inhomogeneous spheres. These inhomogeneous coverage functions are chosen

because they are simple in terms of Legendre polynomials.
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Figure 3.5: The coverage function K(θ) for inhomogeneous case 1.
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Figure 3.6: The coverage function K(θ) for inhomogeneous case 2
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Figure 3.7: The coverage function K(θ) for inhomogeneous case 3

In addition, the enzyme spends a certain fraction pfr of its time unoccupied or free,

and the rest pcx = 1−pfr is bound to the substrate. Both pfr and pcx are nearly constant in

time and this means the enzyme converts the substrate at a constant rate, which needs to

be found. In fact, the enzyme remains unchanged throughout the chemical reaction, and

the concentrations of the platinum in a free or occupied state can be represented by the

probability in either state multiplying the total concentration of the enzyme in all states
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C0
E.

pfr + pcx = 1, (3.26)

CE + CSE = C0
E =

N0
E

4πR2
δ(r −R), (3.27)

CSE = pfr(θ)C
0
E, (3.28)

CE = pcx(θ)C
0
E, (3.29)

where, N0
E is the total number of enzyme molecules. Based on the Eqs. (3.26) – (3.29),

the balanced relation Eq. (3.17) can be rewritten in the following way:

1− pfr =
k1
k2

pfr Chp(r, θ). (3.30)

Solving this equation gives the probability of being in a free state as

pfr =
k2

k2 + k1Chp
. (3.31)

Then the boundary condition in Eq. (3.24) can be expressed as

Dhp∂rChp|r=R =
k2k1Chp(R, θ)

k2 + k1Chp(R, θ)
K(θ). (3.32)

For a sphere of radius R with azimuthally symmetric patterns, the surface quantities

only depend on the latitude angle θ. If the diffusion coefficient is a constant, the steady

state diffusion-reaction reduces to the Laplace equation. These allow us to expand the

concentration of hydrogen peroxide in terms of Legendre polynomials as:

Chp(r, θ) = C∞

[
1−

∞∑
l=0

Bl

(
R

r

)l+1

Pl(cos θ)

]
, (3.33)

where C∞ is the concentration at infinity and Bl is an unknown coefficient. When the

concentration profile described above is applied, the boundary condition in Eq. (3.32) can

38



Chapter 3: Reaction - Diffusion Model of Catalytic Colloids

be represented in this way:

∞∑
l=0

Bl(l + 1)Pl(cos θ) = −
k2k1Chp

k2 + k1Chp
K(θ)

=

(
k1R
Dhp

)
[1−

∑
lBlPl]

1 +
(
k1C∞
k2

)
[1−

∑
lBlPl]

K(θ). (3.34)

Here, the coverage function K(θ) could also be expanded by Legendre polynomials [88]

K(θ) =
∞∑
l=0

FlPl(cos θ), (3.35)

and where

Fl = −
(
1

2

) l−1
2 (2l + 1)(l − 2)!!

4( l+1
2 )!

. (3.36)

Expressing the preceding arguments for the boundary condition is a new formula in Bl

involved with Legendre polynomials:

k1C∞
k2

Nmax∑
l,m=0

BlBm(l + 1)

(
2n+ 1

2

)
Glmn − k1R

Dhp

Nmax∑
l,m=0

BlFm(l + 1)

(
2n+ 1

2

)
Glmn

+
k1R

Dhp
Fn − (1 +

k1C∞
k2

)Bn(n+ 1) = 0. (3.37)

Here, Glmn is a Legendre polynomial triple product integral

Glmn =

∫ 1

−1
Pl(x)Pm(x)Pn(x)dx. (3.38)

Eq. (3.37) is a nonlinear and quadratic equation in Bl which needs solving for Bl in order

to have a full picture of the concentration profile Chp(r, θ). The unknown coefficient Bl is

a function of k1C∞
k2

and k1R
Dhp

. Basically, the summations in Eq. (3.37) should be calculated

from 0 to ∞ , but there will be infinite solutions for Bl. To simplify the problem, Nmax

was chosen as the upper limit of these summations ( 0 ≤ l,m, n ≤ Nmax ). When the

values of k1C∞
k2

and k1R
Dhp

are chosen, there will be a new set of equations in B0, B1, · · ·BNmax .
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In general, there will be more than one set of solutions for B0, B1, · · ·BNmax depending

on the value of Nmax. If this situation happens, a method of constraints is needed to select

which set of B0, B1, · · ·BNmax is of interest. Therefore, two facts of the concentration of

[H2O2] are taken into account. One fact is that the surface concentration of hydrogen per-

oxide Chp(R, θ) is less than the concentration at infinity C∞. The other is that Chp(R, θ)

is always positive. These provide a new constraint for the surface concentration Chp(R, θ):

1 >

Nmax∑
l=0

BlPl(cos θ) > 0. (3.39)

For the two special cases where θ = 0 and π, then the constraint in Eq. (3.39) has the

following forms:

1 >

Nmax∑
l=0

BlPl(1) > 0, (3.40)

1 >

Nmax∑
l=0

BlPl(−1) > 0. (3.41)

Using the formula described above, the unknown variable Bl in Eq. (3.37) can be

numerically solved as long as the set of solutions is satisfied with the two constraints in Eqs.

(3.40) and (3.41). Now, a complete distribution has been achieved for the concentration

profile and its gradient that were created by the two-step reaction between the solute and

the enzyme. As a result, the velocity of the spherical swimmer can be evaluated in terms

of k1C∞
k2

and k1R
Dhp

. By analysing the mobilities of the substrate and the two products, it is

found that the velocity of the swimmer is only dependent on B1(
k1C∞
k2

, k1RDhp
):

V(
k1C∞
k2

,
k1R

Dhp
) = −2

3

DhpC∞
R

[
µw
Dw

+
µo
Do

−
µhp
Dhp

]
B1(

k1C∞
k2

,
k1R

Dhp
)

= −V0
2

3

DhpC∞
k2R

B1(
k1C∞
k2

,
k1R

Dhp
), (3.42)

V0 =

[
µw
Dw

+
µo
Do

−
µhp
Dhp

]
k2, (3.43)

where, V0 is the velocity scale.
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3.2.3 Scaling Region for Propulsion Velocity

By solving Eq. (3.34) numerically, both the B1 and velocity are the function of the size

of the colloid as well as the fuel concentration in the fluid. The theoretical prediction of

the propulsion velocity is of a Janus sphere, which has a hemispherical coating of catalyst

and is a special case. For a Janus sphere, the coefficient B1 becomes a constant in the

large size limit when R ≫ Dhp/k1 and R ≫ DhpC∞/k2. In the limit R ≪ Dhp/k1 and

R ≫ DhpC∞/k2, B1 the swimming velocity is size-independent due to B1 ≃ 3k1R
8Dhp

. When

R ≪ Dhp/k1 and R ≪ DhpC∞/k2, B1 ≃ 3k2R
8DhpC∞

, the velocity does not depend on the

radius R. The magnitude of velocity for the Janus sphere has two asymptotic forms at

small R or in the large R limit.

V (
k1C∞
k2

,
k1R

Dhp
) ∼


R− independent, if k1R

Dhp
≪ 1

1
R , if k1R

Dhp
≫ 1

After appropriate scaling, the propulsion velocity in Eq. (3.42) can be represented as a

function of the thermal energy kBT , viscosity η and an effective Derjaguin length λeff

[69]. The swimming velocity exhibits different behaviour in different limits and the corre-

sponding regions are summarised in Figure 3.8.

To obtain the behaviour of the swimming velocity of an inhomogeneous sphere, a

similar procedure is adopted as for the problem. According to Eq. (3.34) and Eq. (3.42),

the behaviour of both the B1 and velocity at different limits of R can be predicted. In the

large size limit when R≫ Dhp/k1 and R≫ DhpC∞/k2, Eq. (3.34) becomes

∞∑
l=0

Bl(l + 1)Pl(cos θ) =
k1R

Dhp

[
1−

∑
l

BlPl

]
K(θ). (3.44)

Note that the summation of the right hand side of Eq. (3.34) is always finite, and this
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Figure 3.8: Three scaling regions for the propulsion velocity of a Janus sphere as a function

of the size and fuel concentration. The crossover boundaries between these three regimes

are presented by red dashed lines, and blue dotted lines indicate the locations which

correspond to the previous experiments of Ref. [72] [73]. The red diagonal dot-dashed line

means the crossover between regime II and III remains implicit.

can be achieved via small [1−
∑

lBlPl] with B1 ∼ 1/R for any positive coverage function

K(θ). In the limit R≪ Dhp/k1 and R≫ DhpC∞/k2, B1 is proportional to the size scale R

and this relation indicates that the swimming velocity is independent of R. Similarly,when

R≪ Dhp/k1 and R≪ DhpC∞/k2, Eq. (3.34) can be expressed as

∞∑
l=0

Bl(l + 1)Pl(cos θ) =
k2R

DhpC∞
K(θ). (3.45)

Therefore, the relationship between B1 and R is also linear.
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The prediction of the speed for an inhomogeneous sphere is summarised as follows and

shown in Figure 3.9.

V (
k1C∞
k2

,
k1R

Dhp
) ∼


R− independent, if k1R

Dhp
≪ 1

1
R2 , if k1R

Dhp
≫ 1
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Figure 3.9: Three scaling regions for the propulsion velocity of an inhomogeneous sphere

as a function of the size and fuel concentration. Blue dashed and diagonal dot-dashed

lines show the crossover boundaries between regimes I, II and III.

3.3 Results

3.3.1 Janus Sphere

First of all, a Janus sphere was considered as its coverage function K(θ) has a simple

form. When the two parameters k1C∞
k2

and k1R
Dhp

were given, the propulsion velocity of the
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swimmer was estimated by solving Eq. (3.37) for Bl numerically. Note that the propulsion

velocity is only controlled by the term containing the B1 coefficient, hence the numerical

solution of B1 plays a vital role in the analysis.

For larger Nmax, the Eq. (3.37) starts to be more complex. The small value of Nmax is

insufficient to offer a stable solution of Bl and increasing Nmax is the only way to achieve

an adequate solution for these nonlinear equations. In effect, the value of Nmax used in

the code is between 8 and 20. Figure 3.10 indicates that the B1 is proportional to the size

scale R, but becomes a constant at the large size limit.
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Figure 3.10: For a Janus sphere, the B1 coefficient that determines the swimming velocity

is a function of size parameter k1R
Dhp

at constant values of k1C∞
k2

. The colourful lines indicate

different fuel concentrations k1C∞
k2

ranging from 0.1 to 10.

Having tested the effect of various fuel concentrations and sizes on Bl, the full distri-

bution of the concentration of hydrogen peroxide Chp can be found from Eq. (3.33), and
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the surface concentration Chp(R, θ) for different parameters k1C∞
k2

and k1R
Dhp

is plotted with

respect to θ in Figure 3.11.
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Figure 3.11: The surface concentration of hydrogen peroxide Chp(R, θ) is a function of the

latitude angle θ. Coloured lines in the legend present different parameters for size and fuel

concentration.

The data in Figure 3.11 reflects that there is a depletion in the surface concentration

of hydrogen peroxide in the region 0 < θ < π/2 due to the fixed enzymatic area on the

surface of the Janus sphere. Note that the size parameter k1R
Dhp

has a direct association

to the radius of the sphere. If the size of the swimmer is quite small, this corresponds

to the case where the depletion zone disappears. For the two cases k1R
Dhp

= 50, k1C∞
k2

= 5

and k1R
Dhp

= 50, k1C∞
k2

= 0.5, the two sets of data fluctuate considerably in the region

π/2 < θ < π, hence the data is transformed into a frequency domain by a Fourier transform

for frequency filtering, then followed by an inverse transform to return to the original space.
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Figure 3.12: The surface probability for the unoccupied state pfr is a function of the

latitude angle θ, and this basically reflects the catalyst geometry of a Janus sphere. Various

parameters of size and fuel concentration are shown by different coloured lines.

In the experiment demonstrated by [72], the rates for the reaction in Eq. (3.13) are

calculated as k1 = 4.4 × 1011 µm−2s−1, and k2 = 4.8 × 1010 µm−2s−1. Then the surface

probability for the unoccupied state pfr can be calculated from Eq. (3.31) and shown in

Figure 3.12. In essence, the distribution of the surface probability reflects the pattern of

coverage function K(θ) for a Janus sphere.

Figures 3.13 – 3.14 are 3D colour-map presentations which display the concentrations

of the substrate/product particles and clearly reveal the depletion/accumulation zones

around the coated area during the reaction process. The corresponding contour plots for

the substrate and product particles are also illustrated in Figures 3.15 – 3.16.

Furthermore, the velocity distributions for the Janus sphere are shown in Figures 3.17
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Figure 3.13: The concentration profile of hydrogen peroxide Chp for a Janus sphere in 3D.

Figure 3.14: The concentration profile of the products (water and oxygen) for a Janus

sphere in 3D.
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Figure 3.15: The contour plot for the concentration of hydrogen peroxide. One hemisphere

of the Janus colloid coated with the catalyst is shown by purple, and color bar indicates

high (yellow) versus low (dark blue) concentration. Due to the decomposition of substrate

in the chemical reaction, there is a depletion of particles in the vicinity of the coated area.
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Figure 3.16: The contour plot for the product concentration, and discrete contour levels

with high/low concentration are presented by colour bar. An accumulation of product

molecules is created around the catalytic patch (purple) since more and more water and

oxygen are generated from the reaction.
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Figure 3.17: The velocity of the Janus sphere v.s. k1C∞
k2

at constant values of k1R
Dhp

plotted

on a logarithmic scale. Coloured lines indicate different size parameters k1R
Dhp

ranging from

0.01 to 10. As the propulsion velocity is proportional to the fuel concentration, the slope

in this log-log plot is 1.
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Figure 3.18: The velocity of the sphere v.s. k1R
Dhp

at constant values of k1C∞
k2

are plotted on

a logarithmic scale. Coloured lines show different fuel concentration k1C∞
k2

ranging from

0.1 to 10. As the propulsion velocity decays with the swimmer size, the slope in the log-log

plot is −1.
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– 3.18, and the results are illustrated on a logarithmic scale to highlight the turning points.

According to the definition of variable k1C∞
k2

, the reaction rates k1 and k2 have the same

dimensions, and consequently the relationship between k1C∞
k2

and C∞ is linear. As shown

in Figure 3.17, the velocity is proportional to the concentration C∞ while the fuel concen-

tration is low (k1C∞
k2

≪ 1). As k1C∞
k2

increases gradually, the velocity becomes independent

of the fuel concentration.

Compared with Figure 3.17, there is a reversed pattern in Figure 3.18. In the small

size limit k1R
Dhp

≪ 1, the swimming velocity of the Janus sphere is independent of the size

scale. By contrast, the propulsion velocity decreases and has a 1/R dependence in the

realm k1R
Dhp

≫ 1. In conclusion, the behaviour of the velocity is almost as predicted.

The propulsion velocity of Janus colloids that are half covered with a catalyst is experi-

mentally probed [73]. In the experiment, various sizes of Janus spheres made of polystyrene

beads were suspended in a hydrogen peroxide solution with 10% concentration. The size

distribution ranged from 250nm to 5µm and Janus colloids with different sizes were then

tested, provided that other parameters, such as catalyst coating, thickness and fuel concen-

tration were fixed. The experiment demonstrates that the velocity of the Janus particle

decreases with its radius in the size range of the observation. The 1/R dependence is

shown in Figure 3.19 [73], and the experimental data corresponds to the region III in

Figure 3.8. In Figure 3.19, the parameters with a choice of T = 293K, η = 10−3 Pa · s,

C∞ = 3M(10%), and λeff = 0.62 Å fit reasonably well with the measured velocities in

the size range of the observation [72] [73]. After appropriate scaling, the theoretical results

are consistent with the experimental data, suggesting that a catalytic colloid propelled by

diffusiophoresis can be a useful model to examine the swimming characteristics of colloidal

dispersions.
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Figure 3.19: A comparison of the theoretical and experimental results for the swimming

velocity of a Janus sphere as a function of its radius [73]. The numerical results for the

theory are shown by a solid line, while dots indicate the experimental data. Inset: the

same results in log-log form.
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3.3.2 Inhomogeneous Sphere

For an inhomogeneous sphere, several different cases with various angular patterns

of catalyst were studied. Although the coverage functions of these cases are different,

the swimming velocities of such inhomogeneous spheres have the same behaviour. In the

following, three different cases are shown as examples, and the corresponding coverage

functions for these three cases are illustrated with respect to θ in Figures 3.5 – 3.7.

Similar to Janus sphere, the interaction and the asymmetric solute concentration in

principle drive the motion for the inhomogeneous sphere to propel itself. By solving the set

of nonlinear equations in Eq. (3.37), the full distribution of the concentration of hydrogen

peroxide Chp can be obtained as well. Figures 3.20 – 3.22 plot the solution of B1 for cases

1–3, respectively, and B1 is shown as a function of the colloid size. The results for these

three different cases reveal the same trend of B1, which can be divided into two regions.

While B1 increases rapidly with the colloid size R in the region k1R
Dhp

< 50, it suddenly

decreases in the large size region 50 < k1R
Dhp

< 1000. The two regions of B1 exhibit distinct

dependence on the size of the sphere.

Next, the propulsion velocity can be determined from Eq. (3.42), and the results are

illustrated in Figures 3.23 – 3.28. These figures have been sketched in the logarithmic

scale for better visualisation. Figures 3.23 – 3.25 show a linear growth in velocity with

increasing fuel concentration for small concentration k1C∞
k2

< 1, however, the propulsion

velocity does not depend on fuel concentration in the region 10 < k1C∞
k2

< 100. In

general, velocity for both the Janus colloid and inhomogeneous covered spheres has the

same dependence on fuel concentration. Additionally, the size dependence on velocity

of the inhomogeneous sphere becomes increasing important as larger sized colloid, and
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Figure 3.20: B1 v.s. k1R
Dhp

at constant values of k1C∞
k2

for inhomogeneous case 1.
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Figure 3.21: B1 v.s. k1R
Dhp

at constant values of k1C∞
k2

for inhomogeneous case 2
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Figure 3.22: B1 v.s. k1R
Dhp

at constant values of k1C∞
k2

for inhomogeneous case 3

Figures 3.26 – 3.28 display this trend. When the spherical swimmer is sufficiently small (

k1R
Dhp

< 100 ), B1 is proportional to its radius as shown in Figures 3.20 – 3.22. As a result,

propulsion velocity is independent of the size scale at small size limit. On the contrary,

the 1/R dependence occurs if the size of the spherical swimmer is in the realm k1R
Dhp

> 100,

where B1 decreases with the size scale. The swimming velocity, consequently, decays with

the size of the spherical swimmer and has a 1/R2 dependence. To sum up, the numerical

results show that the behaviours of the velocity for inhomogeneous cases are almost as the

theory has predicted in section 3.23.

When diffusiophoresis is expected to be the dominant propulsion mechanism, both

Janus and inhomogeneous colloids can propel themselves in an aqueous solution, and such

self-propulsion can be observed in all regions in Figures 3.8 – 3.9. The results display that

the velocity of the asymmetrically catalysed particle is proportional to the fuel concentra-

tion in region I, whereas it decays with the radius of the sphere in region III. Although
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Figure 3.23: The propulsion velocity v.s. k1C∞
k2

at constant values of k1R
Dhp

plotted in the

logarithmic scale for inhomogeneous case 1; the slope for this log-log plot is 1.
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Figure 3.24: The propulsion velocity v.s. k1C∞
k2

at constant values of k1R
Dhp

plotted in the

logarithmic scale for inhomogeneous case 2; the slope for this log-log plot is 1.
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Figure 3.25: The propulsion velocity v.s. k1C∞
k2

at constant values of k1R
Dhp

plotted in the

logarithmic scale for inhomogeneous case 3; the slope for this log-log plot is 1.
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Figure 3.26: The propulsion velocity v.s. k1R
Dhp

at constant values of k1C∞
k2

plotted in the

logarithmic scale for inhomogeneous case 1; the slope for this log-log plot is −2.
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Figure 3.27: The propulsion velocity v.s. k1R
Dhp

at constant values of k1C∞
k2

plotted in the

logarithmic scale for inhomogeneous case 2; the slope for this log-log plot is −2.
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Figure 3.28: The propulsion velocity v.s. k1R
Dhp

at constant values of k1C∞
k2

plotted in the

logarithmic scale for inhomogeneous case 3; the slope for this log-log plot is −2.
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the swimming velocity for both Janus and inhomogeneous spheres is size independent in

regimes I and II, it decays as a function of the colloid size at the larger size limit in regime

III. The diagonal dot-dashed line in Figures 3.8 – 3.9 indicates that this crossover between

regime II and III is not clear.

The fundamental difference in propulsion velocity for both Janus and inhomogeneous

spheres is in the regime III in Figures 3.8 – 3.9, where velocity decrease considerably

with the colloid size. The main difference between Janus and inhomogeneous spheres is

in their different catalyst geometries. Why a Janus colloid swims faster than an inho-

mogeneous one can be understood physically. Propulsion of a Janus sphere powered by

self-diffusiophoresis is due to solute gradient, which is sustained by a surface reaction oc-

curring on only one side of the Janus colloid. However, catalyst is coated unevenly on

both sides of an inhomogeneous sphere. Since there are products generated on two sides

of an inhomogeneous colloid, this implies that the interactions of the solute species on the

colloid become balanced, leading to small solute diffusion. In other words, it is easier for

a Janus particle to maintain the asymmetric distribution of solute molecules and imbal-

anced concentration gradient, involving in solute diffusion. As a consequently, there is an

enhanced diffusion of the Janus particle, and the velocity for Janus colloid decays slower

with its size compared with an inhomogeneous one. From mathematical view, the velocity

for inhomogeneous colloid has 1/R2 size dependence at a large size limit, and the decay

length scale of the velocity reduction is computed as
√
Dhp/k1 due to dimension analysis.

It was observed that the velocity of the Janus sphere decreases with the size scale

[73]. This appears to contradict the expectation that the velocity of self-diffusiophoretic

swimmers is independent of size, and is only controlled by the activity, which is a measure

of the effective rate of activity for the catalytic reaction, the mobility, which is controlled
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by the interaction of the solute molecules with the surface of the colloid, and the diffusion

coefficient of the solute [82]. This is, however, only a statement about the contribution of

size to the swimming velocity due to hydrodynamics. The key to resolving this apparent

contradiction is to realise that the activity, which is taken as an effective rate of particle

production per unit area, is in itself the result of a complex catalytic reaction-diffusion

process and might depend on size.

It is important to note that there are experimental limitations on the practical range of

size and fuel concentration. In fact, systematic probing the motion for smaller swimmers

becomes more difficult because of the optical limit of the scattering techniques [73]. In ad-

dition, there will be an expulsion of oxygen bubbles as long as the local oxygen production

from the chemical reaction with catalyst is considerably faster than solute diffusion from

the surface of the colloid. This bubble release occurs especially for high fuel concentration

or large colloids, and could also drive the propulsion of the particle [73] [89] [90]. With

increasing fuel concentration or the size of swimmer, the self-diffusiophoresis is not the

only explanation for the observed propulsion of the active colloid due to the presence of

exceeding oxygen concentration and bubble ejection.

3.4 Summary

In conclusion, both Janus and inhomogeneous spheres can achieve autonomous propul-

sion powered by diffusiophoretic effect. The propulsion velocity of the Janus particle is

inversely proportional to the radius of the sphere at the large size limit, however, the 1/R

behaviour is expected to disappear for smaller sizes of swimmers. The numerical results

for the velocity behaviour of the Janus colloid are in agreement with the experimental

observation. This theoretical analysis for Janus sphere is then extended to an inhomoge-
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neous case. Compared with Janus particles, while an inhomogeneous sphere has similar

behaviour for propulsion velocity at small size limits, its propulsion velocity exhibits a

decay with 1/R2 dependence at large size limits.
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Chapter 4

Advection - Diffusion Model for

Catalytic Janus Colloid

4.1 Introduction

At the heart of this chapter is the incorporation of advection into the diffusion equation,

and the presentation of analytic and numerical methods to solve the resulting partial

differential equation for a Janus colloid with an asymmetric chemical catalyst. Despite

the Janus sphere being regarded as the simplest model, it is still a perfect starting point for

the investigation of an autonomous motion powered by diffusiophoresis. However, even

this simplest of model contains subtleties and complexities: what happens if advective

transport and diffusive motion are considered together? How does the advection come into

play? The work presented in the following sections attempts to offer a simple paradigm to

explore the effects of advection on self-propulsion of colloidal particles. The quantitative

procedures to examine the influence of advection-diffusion on velocity of a Janus sphere

are provided as well.
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4.2 Model of Advection-Diffusion for Phoretic Swimmers at

Finite Péclet number

4.2.1 Advection-Diffusion Equation

Previous investigations of the phoretic motion of a self-propelled swimmer driven by

concentration gradient only assumed that the scalar field evolves solely via diffusion [73]

[79] [82] [91], and the effects of advection on such self-propelled colloids have been ne-

glected. In this chapter, a theoretical framework is established for studying the effects of

advection-diffusion on the diffusiophoretic motion of colloidal particles and examines the

general case with finite Péclet number. The relative importance between advection and

diffusion can be measured by a dimensionless Péclet number Pe.

Pe =
va

D
(4.1)

Here, v is the flow speed, a denotes a characteristic length scale of the colloid, and D refers

to the diffusion coefficient of the solute. A typical, open ocean is characterised by velocities

of order 0.01m/s, lengths of order 2− 3000 km (the size of large rotating ocean currents),

and the turbulent diffusion coefficient of order 1000m2/s, therefore Pe is of order 20− 30.

For the theoretical model for diffusion-reaction described in Chapter 3, the advection is

neglected relative to diffusion as Pe is less than 10−2 with magnitude of propulsion velocity

V < 10µm/s, colloid size R ∼ µm, and diffusion coefficient D ∼ 10−9m2/s.

In this scheme, a Janus particle with radius R is considered. Taking the incompressible

flow assumption into account, the Stokes equations will read

∇p = η∇2v, (4.2)

∇ · v = 0. (4.3)
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Here p is the pressure, η denotes the (constant) dynamic viscosity, and v represents the

velocity of the fluid. For a solute, the concentration field c can be approximated by the

solution of the Stokes equations:

v · ∇c−D∇2c = 0. (4.4)

Boundary condition for the concentration field is set out by

−D∂rc|r=R = α(θ), (4.5)

where α is the surface activity, and θ denotes the polar angle. The concentration profile

is then expanded in terms of Legendre polynomials Pl(cos θ) with unknown coefficient cl.

c(r, θ) =

∞∑
l=0

cl(r)Pl(cos θ) (4.6)

The interest here is in the spherical coordinates (r, θ, φ). Here, r is radial distance, θ

indicates the polar angle, and φ denotes the azimuthal angle. Note that the theoretical

model is specialised in azimuthally symmetric problems (i.e. problems with no azimuthal

dependence). In other words, this approach infers ∂c
∂φ = 0, and in this case Laplacian and

gradient operators can be simplified in this way:

∇2c =
∂2c

∂r2
+

2

r

∂c

∂r
+

1

r2
∂2c

∂θ2
+

cot θ

r2
∂c

∂θ
, (4.7)

∇c = ∂c

∂r
r̂ +

1

r

∂c

∂θ
θ̂. (4.8)

Then the advection-diffusion equation Eq. (4.4) becomes:

v · ∇c−D∇2c

= vr
∂c

∂r
+

1

r
vθ
∂c

∂θ
−D(

∂2c

∂r2
+

2

r

∂c

∂r
− l(l + 1)c

r2
)

=
∞∑
l=0

vr
∂cl
∂r
Pl(cos θ) +

∞∑
l=0

vθcl
r

∂Pl

∂θ
−

∞∑
l=0

D

(
∂2cl
∂r2

+
2

r

∂cl
∂r

− l(l + 1)cl
r2

)
Pl(cos θ).

(4.9)
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4.2.2 Velocity Distribution

To begin with, fluid flow is set up due to an interaction between the colloid and solute

within a thin boundary layer, and a slip velocity at the edge of this layer is proportional to

the local concentration gradient determined by a combination of diffusion and advection.

vs(rs) = µs(rs)(I− nn) · ∇cs(rs) (4.10)

For the spherical case, the pressure is represented as the summation of Legendre polyno-

mials.

∇2p = 0 =⇒ p(r, θ) =

∞∑
l=0

Al

(
R

r

)l+1

Pl(cos θ) (4.11)

By introducing the Laplacian ∇2, the expression for ∇2(r · v) is

∇2(r · v) = r · ∇2v+ 2∇ · v. (4.12)

As the flow is not compressible, providing that the fluid density does not vary in response

to a change in pressure, hence the curl of a gradient field is zero (∇·v = 0), and the above

equation leads to the following

∇2(rvr(r, θ))r = r · ∇2v =
r

η
∇p

= −1

η

∞∑
l=0

Al(l + 1)

(
R

r

)l+1

Pl(cos θ). (4.13)

This help us to write r · v in the form of

rvr(r, θ) =
1

η

∞∑
l=0

flPl(cos θ), (4.14)

where fl is unknown. By applying Eq. (4.14) to Eq. (4.13), the following formula can be

obtained

1

r

∂2

∂r2
(rfl(r))−

l(l + 1)

r2
fl(r) = −Pl(l + 1)

(
R

r

)l+1

. (4.15)

One of the most powerful methods of solving differential equations is ”Guess-and-Check”.

Now, an attempt is made to guess a particular solution for the unknown function fl.

fl(r) = Xlr
l +

Yl
rl+1

+
1

2

l + 1

2l − 1
ZlR

2

(
R

r

)l−1

(4.16)
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Note that Xl, Yl, and Zl correspond to different r dependences and these three unknown

functions will need to be solved later.

Firstly, Xl can be determined by considering some extreme conditions. As r → ∞ and

vr < ∞, this results in Xl = 0 for l ≥ 2. Furthermore, if the velocity is integrated over

the surface of a large sphere, the zeroth order of Xl, Yl, Zl are all zeros.

0 =

∮
v · ds = r

f0(r)

η
=

1

η

(
X0r + Y0 −

1

2
Z0Rr

2

)
(4.17)

=⇒ X0 = 0, Y0 = 0, Z0 = 0 (4.18)

For another special case where r → ∞, X1 is found to have a simple form.

vr(r, θ)|r→∞ =
1

rη

(
X1r +

Y1
r2

+ Z1R
2

)
P1(cosθ)

=
X1

η
cosθ = −|v|cosθ

=⇒ X1 = −|v|η (4.19)

Here, |v| is the magnitude of the fluid velocity. After solving Xl, the velocity profile can

be rewritten as

vr(r, θ) =
1

rη

∞∑
l=0

flPl(cos θ)

= −|v|cosθ + 1

rη

∞∑
l=1

[
Yl
rl+1

+
1

2

l + 1

2l − 1
ZlR

2

(
R

r

)l−1
]
Pl(cos θ)

= −|v|cosθ + 1

η

∞∑
l=1

[
Yl
rl+2

+
1

2

l + 1

2l − 1
ZlR

(
R

r

)l
]
Pl(cos θ). (4.20)

The next step is to consider the boundary condition in order to solve Yl. At the surface,

the velocity should be zero vr(R, θ) = 0.

For l = 1

− |v|+ 1

η

(
Y1
R3

+ Z1R

)
= 0

=⇒ Y1 = (η|v| − Z1R)R
3 (4.21)
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For l ≥ 2

Yl
Rl+2

+
1

2

l + 1

2l − 1
ZlR = 0

=⇒ Yl = −1

2

l + 1

2l − 1
ZlR

l+3 (4.22)

Substituting the solutions of Xl and Yl, the velocity distribution is reduced to only one

unknown coefficient Zl.

vr(r, θ) = −|v|cos

[
1−

(
R

r

)3
]
+
R

2η

∞∑
l=1

Zl
l + 1

2l − 1

[(
R

r

)l

−
(
R

r

)l+2
]
Pl(cos θ) (4.23)

Next, a trick of a stream function is applied to solve the unknown function Zl.

If the flow is incompressible and irrotational, velocity can be expressed as a function

of a scalar potential v = f(ψ), where ψ is known as the stream function because it is

constant along a streamline. The potential ψ is not only the scalar field which a vector

field can be expressed in terms of. Velocity can be expressed in terms of a stream function

as well.

∇× v = 0 =⇒ v = ∇ψ

∇ · v = 0 =⇒ ∇2ψ = 0 (4.24)

Considering a two-dimensional flow v = (vx, vy, 0), the stream function ψ is defined to

satisfy the continuity equation, which is in fact a statement of the conservation of mass.

In spherical coordinates, the velocity components for such a flow are related to the stream

function ψ by

vr = − 1

r2 sin θ

∂ψ

∂θ
, vθ =

1

r sin θ

∂ψ

∂r
. (4.25)

By using new function vl, Eq. (4.23) can be rewritten as

vr =

∞∑
l=1

vl(r)Pl(cos θ) =
1

r2
∂ψ

∂x
, x = cos θ. (4.26)
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Note that concentration profile is expanded in terms of Legendre polynomials in Eq.

(4.6). The Legendre polynomials are satisfied with Legendre’s differential equation, and

Pl(x) can be expressed by using Rodrigues’ formula, manipulating the lth power series in

a class of special functions in terms of the lth derivatives of the Legendre polynomials.

d

dx

[
(1− x2)

dPl(x)

dx

]
= −l(l + 1)Pl(x), (4.27)

Pl(x) =
1

2ll!

dl

dxl

[
(x2 − 1)l

]
(4.28)

By applying the recurrence relation known as Bonnet’s recursion formula

Pl(x) =
1

2l + 1

d

dx
[Pl+1(x)− Pl−1(x)] , (4.29)

this compact representation of Legendre polynomial can help us to obtain the profile of

the stream function ψ.

∂ψ

∂x
= − sin θ

∂ψ

∂θ
=

∞∑
l=1

r2vl(r)Pl(x)

=

∞∑
l=1

r2vl(r)

2l + 1

d

dx
[Pl+1(x)− Pl−1(x)] , (4.30)

ψ =
∞∑
l=1

r2vl(r)

2l + 1
[Pl+1(x)− Pl−1(x)] (4.31)

The vθ can be formulated as follows

vθ =
1

r sin θ

∞∑
l=1

1

2l + 1

(
2rvl(r) + r2

dvl
dr

)
[Pl+1(x)− Pl−1(x)]

= |v| sin θ

[
1 +

1

2

(
R

r

)3
]
+

R

2η sin θ

∞∑
l=1

Zl(l + 1)

(2l + 1)(2l − 1)

[
(2− l)

(
R

r

)l

+ l

(
R

r

)l+2
]

[Pl+1(cos θ)− Pl−1(cos θ)] (4.32)

The Zl is still unknown, and the slip boundary condition and properties of Legendre

polynomials are considered to solve it. Slip boundary condition is a function of mobility
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µ and solute concentration c.

vθ(R, θ) =
µ

R
∂θc(R, θ)

=
µ

R

∂

∂θ

∞∑
l=0

cl(R)Pl(cos θ)

= − µ

R
sin θ

∞∑
l=0

d

dx
cl(R)Pl(cos θ) (4.33)

On the surface, vθ in Eq. (4.32) has this form:

vθ(r = R, θ) =
3

2
|v| sin θ + R

η sin θ

∞∑
l=1

Zl(l + 1)

(2l + 1)(2l − 1)
[Pl+1(x)− Pl−1(x)] . (4.34)

Note that Eqs. (4.33) – (4.34) are two forms of vθ and both need to be the same. Multi-

plying the right hand sides of Eqs. (4.33) – (4.34) by sin θ, the vθ can be carried out.

µ

R
(x2 − 1)

d

dx

∞∑
l=1

cl(R)Pl(x) =
3

2
|v|(1− x2) +

R

η

∞∑
l=1

Zl(l + 1)

(2l + 1)(2l − 1)
[Pl+1(x)− Pl−1(x)]

(4.35)

Differentiating both sides of Eq. (4.35) leads to the following relation.

µ

R

d

dx

[
(x2 − 1)

d

dx

∞∑
l=1

cl(R)Pl(x)

]

=
3

2
|v| d
dx

(1− x2) +
R

η

∞∑
l=1

Zl
l + 1

2l − 1

d

dx

[
Pl+1(x)

2l + 1
− Pl−1(x)

2l + 1

]
(4.36)

Bonnet’s recursion formula is then applied and Eq. (4.36) can be reduced to

µ

R

∞∑
l=1

cl(R)l(l + 1)Pl(x) = −3|v|x+
R

η

∞∑
l=1

Zl
l + 1

2l − 1
Pl(x). (4.37)

Finally, the different order of the desired function Zl can be expressed in the following

way, and Zl has a straightforward relation to the concentration.

l = 1, Z1 =
µη

R2
c1 +

3η|v|
2R

(4.38)

l ≥ 2, Zl =
µη

R2
l(2l − 1)cl (4.39)
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Next, Z1 is solved by using a stress tensor σ which is derived from the Appendix. A

detailed exposition of all the components of the stress tensor is also provided.

In the Appendix, it shows that σrr and σrθ are the function of pressure, velocity, and

viscosity. For force free motion, it implies that Z1 must be zero,

FT =

∮
ds(σrr cos θ − σrθ sin θ) = 0, (4.40)

=⇒ Z1 = 0 (4.41)

and this relates the velocity v and concentration c

|v| = −2

3

µ

R
c1(R, θ). (4.42)

There is now an explicit form for the velocity distribution:

vr(r, θ) = −|v|

[
1−

(
R

r

)3
]
cos θ +

µ

2R

∞∑
l=2

l(l + 1)cl

[(
R

r

)l

−
(
R

r

)l+2
]
Pl(cos θ),

(4.43)

vθ(r, θ) = |v|

[
1 +

1

2

(
R

r

)3
]
sin θ +

µ

2R sin θ

∞∑
l=2

cl
l(l + 1)

2l + 1

[
(2− l)

(
R

r

)l

+ l

(
R

r

)l+2
]

[Pl+1(cos θ)− Pl−1(cos θ)] . (4.44)

Combining the preceding equations, the resulting formula shows that the the advection-

diffusion equation in Eq. (4.9) is very complex and nonlinear. How to deal with this

nonlinearity? The first trick is to eliminate it – with scaling and a change of variables.

After an appropriate scaling, it is convenient to use the new scaled variables ς, C,V,Pe,K
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and set

ς =
r

R
, (4.45)

c(r, θ) =
αR

D
C(ς, θ), (4.46)

v(r, θ) =
αµ

D
V(ς, θ), (4.47)

Pe =
αµR

D2
, (4.48)

α = αK(θ). (4.49)

The advection-diffusion equation and its boundary condition in Eqs. (4.4 – (4.5) can then

be expressed as

PeV · ∇C −∇2C = 0, (4.50)

−∂ςC|ς=1 = K(θ). (4.51)

It is useful to define a new variable t, which is the ratio between radius of the sphere

and distance; t is dimensionless and ranges between 0 and 1.

t =
R

r
=

1

ς

R < r <∞ =⇒ 1 > t > 0 (4.52)

Although the advection-diffusion equation is modified, the technique combined with the

scaling and changing of variables does not make it linear. Here are the details – for both

the first and second derivatives:

∂

∂ς
= −t2 ∂

∂t
, (4.53)

∂2

∂ς2
=

∂

∂ς

(
∂

∂ς

)
= −t2 ∂

∂t

(
−t2 ∂

∂t

)
= 2t3

∂

∂t
+ t4

∂2

∂t2
. (4.54)

The new scaled concentration is written as

C(t, θ) =

∞∑
l=0

Cl(t)Pl(cos θ), (4.55)
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and the unknown coefficients Cl need to be solved.

Using the scaling and changing r completely to the new variable t, the velocity distri-

butions in Eqs. (4.43) – (4.44) are now modified as follows.

Vt(t, θ) =
2

3
C1 cos θ(1− t3) +

1

2

∞∑
m=2

Cmm(m+ 1)
(
tm − tm+2

)
Pm(cos θ) (4.56)

Vθ(t, θ) = −2

3
C1 sin θ(1 +

t3

2
) +

1

2 sin θ

∞∑
m=2

Cm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Pm+1 − Pm−1) (4.57)

Rewriting the advection-diffusion equation Eq. (4.50) in terms of the new variable t,

Pe

∞∑
l

Vς
∂Cς

∂ς
Pl + Pe

∞∑
l

VθCς

ς

∂Pl

∂θ
−

∞∑
l

(
∂2Cς

∂ς2
+

2

ς

∂Cς

∂ς
− l(l + 1)

ς2
Cς

)
Pl = 0

=⇒ −Pe

∞∑
l

Vtt
2∂Cl

∂t
Pl + Pe

∞∑
l

VtClt
∂Pl

∂θ
−

∞∑
l

(
t4
∂2Cl

∂t2
− l(l + 1)t2Cl

)
Pl = 0

=⇒ −Pe

∞∑
l

Vtt
∂Cl

∂t
Pl + Pe

∞∑
l

VtCl
∂Pl

∂θ
−

∞∑
l

(
t3
∂2Cl

∂t2
− l(l + 1)tCl

)
Pl = 0.

(4.58)

Now the prime for differentiation with respect to t is rewritten, and note that at this point

Pe is still arbitrary.

An important property of the Legendre polynomials is that they are orthogonal. Look-

ing at the Legendre polynomials in the advection-diffusion equation Eq. (4.58) to see how

this can all be reduced into one summation in the following form:

∞∑
l=0

Jl(t)Pl(cos θ) = 0,

=⇒ Jl(t) = 0 (4.59)

where, Jl(t) = Jl(Cl(t), Cm(t), Cn(t), P e). Due to the orthogonal property, this summa-

tion can only be satisfied if all polynomial terms will have their coefficients Jl(t) equal
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to zero. Next, it is necessary to express every term in Eq. (4.58) in terms of Legendre

polynomials and this leads to the next topic.

By applying the Legendre polynomial triple product integrals Gl,m,n and Hl,m,n, the

advection-diffusion equation Eq. (4.58) can be simplified term by term.

Gl,m,n =

∫ 1

−1
Pl(x)Pm(x)Pn(x)dx (4.60)

PlPm =
l+m∑
n=0

2n+ 1

2
Gl,m,nPn(cos θ) (4.61)

Hl,m,n =

∫ 1

−1

∂Pl

∂x
Pm(x)Pn(x)dx (4.62)

∂Pl

∂x
Pm =

l+m∑
n=0

2n+ 1

2
Hl,m,nPn(cos θ) (4.63)

Ideally, the value of the upper limit in all summations should be infinity ∞. In order to

simplify the problem, a symbolic upper limit N is used instead of infinity. The first term

in Eq. (4.58) is then separated into two terms t1 and t2:

− Pe

N∑
l

Vtt
∂Cl

∂t
Pl = t1 + t2 (4.64)

t1 = −Pe

N∑
l=0

2

3
(t− t4)C1

∂Cl

∂t
cos θPl = −Pe

N∑
l=0

2

3
(t− t4)C1

∂Cl

∂t

N+1∑
n=0

2n+ 1

2
Gl,1,nPn

= −Pe

N+1∑
l=0

2l + 1

2
Pl

N∑
n=0

2

3
(t− t4)C1

∂Cn

∂t
Gn,1,l (4.65)

and

t2 = −Pe

2

N∑
l=0

t
∂Cl

∂t
Pl

N∑
m=2

Cmm(m+ 1)
(
tm − tm+2

)
Pm

= −Pe

2

N∑
l=0

N∑
m=2

∂Cl

∂t
Cmm(m+ 1)

(
tm+1 − tm+3

) 2N∑
l=0

2n+ 1

2
Gl,m,nPn

−Pe

2

2N∑
l=0

2l + 1

2
Pl

N∑
m=2

∂Cl

∂t
Cmm(m+ 1)

(
tm+1 − tm+3

) N∑
n=0

Gn,m,l (4.66)
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Now consider the recursive formula for the Legendre polynomials:

x = cos θ

∂

∂x

[
(1− x2)

∂Pl

∂x

]
= −l(l + 1)Pl = − l(l + 1)

2l + 1

∂

∂x
(Pl+1 − Pl−1)

=⇒ ∂Pl

∂θ
= − sin θ

∂Pl

∂x
=

1

sin θ

l(l + 1)

2l + 1
(Pl+1 − Pl−1) (4.67)

Similarly, by applying the above rule, the second term in Eq. (4.58) can also be separated

into two terms t3 and t4:

Pe
∑
l

VtCl
∂Pl

∂θ
= t3 + t4 (4.68)

t3 = Pe
N∑
l=0

2

3
(1 +

t3

2
)C1Cl sin

2 θ
∂Pl

∂x

= −Pe
N∑
l=0

2

3
(1 +

t3

2
)C1Cl

l(l + 1)

2l + 1
(Pl+1 − Pl−1)

= −Pe

N+1∑
l=0

2l + 1

2
Pl

N∑
n=0

2

3
(1 +

t3

2
)C1Cn

n(n+ 1)

2n+ 1
Gn+1,0,l

+Pe

N−1∑
l=0

2l + 1

2
Pl

N∑
n=0

2

3
(1 +

t3

2
)C1Cn

n(n+ 1)

2n+ 1
Gn−1,0,l (4.69)

and

t4 =
Pe

2 sin θ

N∑
l=0

Cl
∂Pl

∂θ

N∑
m=2

Cm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Pm+1 − Pm−1)

= −Pe

2

N∑
l=0

Cl
∂Pl

∂x

N∑
m=2

Cm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Pm+1 − Pm−1)

= −Pe

2

2N∑
l=0

2l + 1

2
Pl

N∑
m=2

N∑
n=2

CnCm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Hn,m+1,l −Hn,m−1,l]

(4.70)

Now, each term in the advection-diffusion equation Eq. (4.58) is expressed in terms

of Legendre polynomials, and the advection-diffusion equation is reduced successfully in

this form
∑∞

l=0 Jl(t)Pl(cos θ) = 0. Then, by combining all the terms, the new advection-
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diffusion equation is given by:

−Pe
N+1∑
l=0

2l + 1

2
Pl

N∑
n=0

2

3
(t− t4)C1

∂Cn

∂t
Gn,1,l

−Pe

2

2N∑
l=0

2l + 1

2
Pl

N∑
m=2

∂Cl

∂t
Cmm(m+ 1)

(
tm+1 − tm+3

) N∑
n=0

Gn,m,l

−Pe

N+1∑
l=0

2l + 1

2
Pl

N∑
n=0

2

3
(1 +

t3

2
)C1Cn

n(n+ 1)

2n+ 1
Gn+1,0,l

+Pe
N−1∑
l=0

2l + 1

2
Pl

N∑
n=0

2

3
(1 +

t3

2
)C1Cn

n(n+ 1)

2n+ 1
Gn−1,0,l

−Pe

2

2N∑
l=0

2l + 1

2
Pl

N∑
m=2

N∑
n=2

CnCm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Hn,m+1,l −Hn,m−1,l]

−
∑
l

(
t3
∂2Cl

∂t2
− l(l + 1)tCl

)
Pl = 0. (4.71)

Recalling that Legendre polynomials are orthogonal sequences, the function Jl(t) in the

above summation should be zero
∑∞

l=0 Jl(t)Pl(cos θ) = 0. The choice for l leads to l-th

order function Jl(t), which needs to be solved numerically, and the relation in Eq. (4.71)

allows the function Jl(t) to be generated recursively.

For 0 6 l 6 N − 1, the function Jl(t) for Pl:

−Pe
2l + 1

2

N∑
n=0

2

3
(t− t4)C1

∂Cn

∂t
Gn,1,l

−Pe
2l + 1

4

N∑
m=2

∂Cl

∂t
Cmm(m+ 1)

(
tm+1 − tm+3

) N∑
n=0

Gn,m,l

−Pe
2l + 1

2

N∑
n=0

2

3
(1 +

t3

2
)C1Cn

n(n+ 1)

2n+ 1
Gn+1,0,l

+Pe
2l + 1

2

N∑
n=0

2

3
(1 +

t3

2
)C1Cn

n(n+ 1)

2n+ 1
Gn−1,0,l

−Pe
2l + 1

4

N∑
m=2

N∑
n=2

CnCm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Hn,m+1,l −Hn,m−1,l]

−
∑
l

(
t3
∂2Cl

∂t2
− l(l + 1)tCl

)
Pl = 0 (4.72)
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For l = N , the function Jl(t) for Pl:

−Pe
2l + 1

2

N∑
n=0

2

3
(t− t4)C1

∂Cn

∂t
Gn,1,l

−Pe
2l + 1

4

N∑
m=2

∂Cl

∂t
Cmm(m+ 1)

(
tm+1 − tm+3

) N∑
n=0

Gn,m,l

−Pe
2l + 1

2

N∑
n=0

2

3
(1 +

t3

2
)C1Cn

n(n+ 1)

2n+ 1
Gn+1,0,l

−Pe
2l + 1

4

N∑
m=2

N∑
n=2

CnCm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Hn,m+1,l −Hn,m−1,l]

−
∑
l

(
t3
∂2Cl

∂t2
− l(l + 1)tCl

)
Pl = 0 (4.73)

For l = N + 1, the function Jl(t) for Pl:

−Pe
2l + 1

2

N∑
n=0

2

3
(t− t4)C1

∂Cn

∂t
Gn,1,l

−Pe
2l + 1

4

N∑
m=2

∂Cl

∂t
Cmm(m+ 1)

(
tm+1 − tm+3

) N∑
n=0

Gn,m,l

−Pe
2l + 1

2

N∑
n=0

2

3
(1 +

t3

2
)C1Cn

n(n+ 1)

2n+ 1
Gn+1,0,l

−Pe
2l + 1

4

N∑
m=2

N∑
n=2

CnCm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Hn,m+1,l −Hn,m−1,l]

(4.74)

For N + 2 6 l 6 2N , the function Jl(t) for Pl:

−Pe
2l + 1

4

N∑
m=2

∂Cl

∂t
Cmm(m+ 1)

(
tm+1 − tm+3

) N∑
n=0

Gn,m,l

−Pe
2l + 1

4

N∑
m=2

N∑
n=2

CnCm
m(m+ 1)

2m+ 1

[
(2−m)tm +mtm+2

]
(Hn,m+1,l −Hn,m−1,l]

(4.75)
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Note that the number of variables is reduced to the number of governing equations. By

numerically solving the Eqs. (4.72) – (4.75), the nth concentration Cn can be explicitly

computed to obtain the full picture of velocity distribution.

A natural question arises as to whether there is nonzero velocity for a Janus bead at

a finite Péclet number. Indeed, an important question to address is to what extent can

the advection affect the locomotion of an active colloid. In the small Péclet number limit

(Pe ≪ 1), the Brownian diffusion of solute particles dominates over advection; the motion

of the Janus particle is only slightly perturbed from its equilibrium. On the contrary,

when Pe increases and the advection term cannot be neglected in Eq. (4.50), Brownian

diffusion is important only in a thin boundary layer on the upstream side of the Janus

sphere. According to Eq. (4.50), the boundary layer signifies a balance between radial

diffusion (PeV ·∇C) and advection (∇2C). In other words, the boundary layer represents

(in a frame fixed on the moving colloid) a balance between the strong advection of solute

particles (with velocity v) towards the colloid and diffusion, which enables the solute

particles to pass around the (impenetrable) colloid. This suggests that an accumulation of

solute particles might occur in the boundary layer. A region of low particle density could

be present where the downstream of the colloid carries solute particles away due to the

combination of advection and diffusion.

4.2.3 Flow Field

In order to have an insight into motion of a fluid, it is necessary to find an equation of

the flow line that passes a spherical swimmer. Consider an explicit form for the velocity
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distribution, where the r and θ components of the velocity V are given by:

Vr(r, θ) = −|V|

[
1−

(
R

r

)3
]
cos θ +

µ

2R

∞∑
l=2

l(l + 1)Bl

[(
R

r

)l

−
(
R

r

)l+2
]
Pl(cos θ)

(4.76)

Vθ(r, θ) = |V|

[
1 +

1

2

(
R

r

)3
]
sin θ +

µ

2R sin θ

∞∑
l=2

Bl
l(l + 1)

2l + 1

[
(2− l)

(
R

r

)l

+ l

(
R

r

)l+2
]

[Pl+1(cos θ)− Pl−1(cos θ)] (4.77)

Here, the colloid size R and the mobility µ are constant. Once the unknown coefficients

Bl of the concentration field in Eq. (4.6) is solved, streamlines of a vector field can be

visualised.

The velocity profiles in Eqs. 4.76 – 4.77 are in polar coordinate, and they need to be

transformed from polar to Cartesian coordinate:Vx
Vy

 =

cosθ −sinθ

sinθ cosθ


Vr
Vθ

 (4.78)

Vx = Vrcosθ − Vθsinθ, (4.79)

Vy = Vrsinθ + Vθcosθ (4.80)

r =
√
x2 + y2, cosθ =

x√
x2 + y2

, sinθ =
y√

x2 + y2
(4.81)

By using the converting matrix and the relations between (x, y) and (r, θ), the velocity in

Cartesian coordinate can be written as
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Vx = −|V|

1−( R√
x2 + y2

)3
 x2

x2 + y2

+
µ

2R

x√
x2 + y2

∞∑
l=2

l(l + 1)Bl

( R√
x2 + y2

)l

−

(
R√

x2 + y2

)l+2
Pl(

x√
x2 + y2

)

− |V|

1 + 1

2

(
R√

x2 + y2

)3
 y2

x2 + y2

− µ

2R

∞∑
l=2

Bl
l(l + 1)

2l + 1

(2− l)

(
R√

x2 + y2

)l

+ l

(
R√

x2 + y2

)l+2


[
Pl+1(

x√
x2 + y2

)− Pl−1(
x√

x2 + y2
)

]
(4.82)

Vy = −|V|

1−( R√
x2 + y2

)3
 xy

x2 + y2

+
µ

2R

y√
x2 + y2

∞∑
l=2

l(l + 1)Bl

( R√
x2 + y2

)l

−

(
R√

x2 + y2

)l+2
Pl(

x√
x2 + y2

)

+ |V|

1 + 1

2

(
R√

x2 + y2

)3
 xy

x2 + y2

+
µx

2Ry

∞∑
l=2

Bl
l(l + 1)

2l + 1

(2− l)

(
R√

x2 + y2

)l

+ l

(
R√

x2 + y2

)l+2


[
Pl+1(

x√
x2 + y2

)− Pl−1(
x√

x2 + y2
)

]
(4.83)

Note that the x and y components of velocity profile in Eqs. (4.82) – (4.83) are in a center

of mass frame. Let us transform the inertial frame of reference to the laboratory frame,

which is moving with the translation speed |V| with respect to the center of mass frame.

The Cartesian components of the different velocity vectors in the two frames of reference
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are

Vx = −Vrcos2θ − Vθsin
2θ = −|V|, (4.84)

Vy = Vrsinθcosθ + Vθcosθsinθ = 0. (4.85)

Hence, the flow lines of vector field can be obtained from the preceding relations.

Vx = |V|

(
R√

x2 + y2

)3
x2

x2 + y2

+
µ

2R

x√
x2 + y2

∞∑
l=2

l(l + 1)Bl

( R√
x2 + y2

)l

−

(
R√

x2 + y2

)l+2
Pl(

x√
x2 + y2

)

− |V|
2

(
R√

x2 + y2

)3
y2

x2 + y2

− µ

2R

∞∑
l=2

Bl
l(l + 1)

2l + 1

(2− l)

(
R√

x2 + y2

)l

+ l

(
R√

x2 + y2

)l+2


[
Pl+1(

x√
x2 + y2

)− Pl−1(
x√

x2 + y2
)

]
(4.86)

Vy = −|V|

1−( R√
x2 + y2

)3
 xy

x2 + y2

+
µ

2R

y√
x2 + y2

∞∑
l=2

l(l + 1)Bl

( R√
x2 + y2

)l

−

(
R√

x2 + y2

)l+2
Pl(

x√
x2 + y2

)

+ |V|

1 + 1

2

(
R√

x2 + y2

)3
 xy

x2 + y2

+
µx

2Ry

∞∑
l=2

Bl
l(l + 1)

2l + 1

(2− l)

(
R√

x2 + y2

)l

+ l

(
R√

x2 + y2

)l+2


[
Pl+1(

x√
x2 + y2

)− Pl−1(
x√

x2 + y2
)

]
(4.87)
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4.3 Results

The theoretical framework of advection-diffusion for a Janus particle has already been

developed in the section 4.2. In the following section, various methods of analysis are em-

ployed to find analytic or numerical solutions in order to obtain the concentration profile.

Solving the advection-diffusion equation for large N is challenging as it is necessary to face

the intricate nonlinearity and singularities. Attempting to continue the expansion to higher

order in t and Pe in Eq. (4.71) is not necessary as the algebra becomes rapidly intractable.

Therefore, the nonlinear equations in Eqs. (4.72) – (4.75) are numerically solved by finite

N . To fully determine the function Jl(t) with unknown coefficients Cl(t,Pe), the advection

diffusion equation Eq. (4.71) must be accompanied with appropriate boundary conditions.

At infinity, the concentration is a constant, in this instance called constant b.

N∑
l=0

Cl(0) = constant = b (4.88)

Substituting the variable t, the boundary condition Eq. (4.51) reads

N∑
l=0

t2∂tCl(t)|t=1Pl = K(θ) (4.89)

Here, the coverage function K(θ) could also be expanded by Legendre polynomials [88]

K(θ) =

∞∑
l=0

FlPl(cos θ), (4.90)

Fl = −
(
1

2

) l−1
2 (2l + 1)(l − 2)!!

4( l+1
2 )!

, (4.91)

F0 =
1

2
, F1 =

3

4
, F2 = 0, F3 = − 7

16
· · · (4.92)

The boundary conditions for N = 2 are

C0(0) = constant = b = 0, C1(0) = 0, C2(0) = 0 (4.93)

t2∂tC0|t=1 =
1

2
, t2∂tC1|t=1 =

3

4
, t2∂tC2|t=1 = 0 (4.94)
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Due to the orthogonal property of Legendre polynomials, all the order functions Jl for

N = 2 ought to be zero and have the following forms.

The function J0(t) for P0 = 1:

− 2

9
Pe(t−t4)C1

∂C1

∂t
− 3

5
Pe(t3−t5)C2

∂C2

∂t
+
4

9
Pe(1+

t3

2
)C2

1+
6

5
Pet4C2

2−t3
∂2Cl

∂t2
= 0 (4.95)

The function J1(t) for P1 = cos θ:

−2

3
Pe(t− t4)C1

∂C0

∂t
+

4

15
Pe(t− t4)C1

∂C2

∂t
− 6

5
Pe(t3 − t5)C2

∂C1

∂t

+
4

5
Pe(1 +

t3

2
)C1C2 +

6

5
Pet4C1C2 − t3

∂2C1

∂t2
+ 2tC1 = 0 (4.96)

The function J2(t) for P2 =
1
2(3 cos

2 θ − 1):

−4

9
Pe(t− t4)C1

∂C1

∂t
− 3Pe(t3 − t5)C2

∂C0

∂t
− 6

7
Pe(t3 − t5)C2

∂C2

∂t

−4

9
Pe(1 +

t3

2
)C2

1 +
6

7
Pet4C2

2 − t3
∂2C2

∂t2
+ 6tC2 = 0 (4.97)

The function J3(t) for P3 =
1
2(5 cos

3 θ − 3 cos θ):

− 2

5
Pe(t− t4)C1

∂C2

∂t
− 9

5
Pe(t3 − t5)C2

∂C1

∂t
− 4

5
Pe(1 +

t3

2
)C1C2 −

6

5
Pet4C1C2 = 0 (4.98)

The function J4(t) for P4 =
1
8(35 cos

4 θ − 30 cos2 θ + 3):

− 54

35
Pe(t3 − t5)C2

∂C2

∂t
− 72

35
Pet4C2

2 = 0 (4.99)

Clearly, the advection-diffusion equations in Eqs. (4.72) – (4.75) have two regular singular

points at t = 0 and t = 1. A new, tiny variable t0 is used to avoid boundary problem with

singularities, and the nonlinear-differential equation is approximately solved in the region

t0 ≤ t ≤ 1− t0. In practice, the new variable t0 is between 0.0001 to 0.00001 in the code.
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4.3.1 Advection-Diffusion in Two Limits

To simplify the problem, two special cases are considered first. One is the case in the

boundary layer, and the other is at infinity. At the surface of the colloid t = R/r = 1, the

nonlinear equations Eqs. (4.95) – (4.97) are reduced

2

3
PeC2

1 +
6

5
PeC2

2 − ∂2C0

∂t2
= 0 (4.100)

12

5
PeC1C2 + 2C1 −

∂2C1

∂t2
= 0 (4.101)

−2

3
PeC2

1 +
6

7
PeC2

2 + 6C2 −
∂2C2

∂t2
= 0 (4.102)

When numerically solving the reduced equations, the solutions of unknown coefficient

Cl are obtained and all are a function of Péclet number Pe, as shown in Figures 4.1 –

4.3. As the advection becomes increasingly important, both C0 and C1 are monotonically

decreasing functions of Pe, and reach their minimums of 0.1 and 0.2, respectively. On

the contrary, C2 initially rises with Pe, and this growth persists until Pe ≈ 30 where C2

reaches its maximum. Beyond Pe ≈ 30 there is a decline of C2 to its limiting value of 0.06

for Pe = 100.
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C
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Figure 4.1: For N = 2 and t→ 1, the C0 of

surface concentration as a function of Pe
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Figure 4.2: For N = 2 and t→ 1, the C1 of

surface concentration as a function of Pe
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Figure 4.3: For N = 2 and t→ 1, the C2 of

surface concentration as a function of Pe

The resulting concentration profile is given by

C(1, θ) =

2∑
l=0

Cl(1)Pl(cos θ) (4.103)

= C0 + C1 cos θ + C2
1

2

(
3 cos θ2 − 1

)
(4.104)

After computing the coefficients C0, C1, and C2, the surface concentration of the solute is

also illustrated as a function of Pe and the polar angles θ. Figures 4.4 – 4.6 indicate that

the surface concentration of solute descends gradually and becomes constant as Pe → 100

for fixed polar angles (θ = 0, π4 ,
π
2 ).

In addition, there is a depletion of the surface concentration of solute in the region

0 6 θ 6 π and this angular dependence is shown in Figures 4.7 – 4.9. For different Péclet

numbers (Pe = 1, 10, 100), the surface concentration displays a considerably reduction and

approaches zero as θ → π. The depletion closely reflects the form of coverage function for

a Janus sphere.

In the other extreme case, in which t is very small, only the linear terms in the nonlinear

equations Eqs. (4.95) – (4.97) need to be kept. This approach will also reduce the nonlinear
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Figure 4.4: For N = 2 and t → 1, the

surface concentration v.s. Pe for θ = 0
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Figure 4.5: For N = 2 and t → 1, the

surface concentration v.s. Pe for θ = π
4
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Figure 4.6: For N = 2 and t → 1, the

surface concentration v.s. Pe for θ = π
2

equations because these equations will all be first order differential equations rather than

second order.

−2

9
PetC1

∂C1

∂t
+

4

9
PeC2

1 = 0 (4.105)

−2

3
PetC1

∂C0

∂t
− 4

15
PetC1

∂C2

∂t
+

4

5
PeC1C2 + 2tC1 = 0 (4.106)

−4

9
PetC1

∂C1

∂t
− 4

9
PeC2

1 + 6C2 = 0 (4.107)

The analytic solution of the concentration coefficient is exactly found and has a simple

form:

C0 =
3

Pe
t, C1 = at2, C2 =

2

9
Pea2t3 (4.108)
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Figure 4.7: For N = 2 and t → 1, the

surface concentration v.s. θ for Pe = 1
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Figure 4.8: For N = 2 and t → 1, the

surface concentration v.s. θ for Pe = 10
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Figure 4.9: For N = 2 and t → 1, the

surface concentration v.s. θ for Pe = 100

where a is an arbitrary constant. In order to avoid a regular singular point, t is set as

small value t0 (t0 = 0.00001 in the programme) instead of 0 to approach the case at

infinity. Despite the different values of θ, the results in Figures (4.10) – (4.12) share the

same trend, in which the concentration decays with Pe, and this trend continues until

approaching its minimum as Pe → 100. In addition, the concentration furthest away from

the Janus colloid remains a constant for different polar angles, as shown in Figures (4.13)

– (4.15). When the variable t decreases, the first term in concentration distribution C0

becomes a leading order. As C0 is inversely proportional to Pe, the concentration varies
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inversely with the Pe as well.
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Figure 4.10: For N = 2 and t → 0, the

concentration at infinity v.s. Pe for θ = 0
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Figure 4.11: For N = 2 and t → 0, the

concentration at infinity v.s. Pe for θ = π
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Figure 4.12: For N = 2 and t → 0, the

concentration at infinity v.s. Pe for θ = π
2
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Figure 4.13: For N = 2 and t → 0, the

concentration at infinity v.s. θ for Pe = 1

Similarly, the boundary conditions for N = 3 are

C0(0) = 0, C1(0) = 0, C2(0) = 0, C3(0) = 0 (4.109)

t2∂tC0|t=1 =
1

2
, t2∂tC1|t=1 =

3

4
, t2∂tC2|t=1 = 0, t2∂tC3|t=1 = − 7

16
(4.110)

At the surface of the colloid t = R/r = 1, the advection-diffusion equation for N = 3 can
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Figure 4.14: For N = 2 and t → 0, the

concentration at infinity v.s. θ for Pe = 10
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Figure 4.15: For N = 2 and t → 0, the

concentration at infinity v.s. θ for Pe = 100

be simplified as follows.

2

3
PeC2

1 +
6

5
PeC2

2 +
12

7
PeC2

3 − ∂2C0

∂t2
= 0 (4.111)

12

5
PeC1C2 +

144

35
PeC2C3 + 2C1 −

∂2C1

∂t2
= 0 (4.112)

−2

3
PeC2

1 +
6

7
PeC2

2 +
12

7
PeC2

3 +
24

7
PeC1C3 + 6C2 −

∂2C2

∂t2
= 0 (4.113)

−12

5
PeC1C2 +

8

5
PeC2C3 + 12C3 −

∂2C3

∂t2
= 0 (4.114)

For N = 3, the numerical solutions of the concentration distribution for different Pe are

seen in Figures (4.16) – (4.19) and show qualitatively similar behaviour with those for

N = 2.

When t is very small, only the linear terms in the advection-diffusion equation need to

be kept and the advection-diffusion for N = 3 can be rewritten as

−2

9
PetC1

∂C1

∂t
+

4

9
PeC2

1 = 0 (4.115)

−2

3
PetC1

∂C0

∂t
− 4

15
PetC1

∂C2

∂t
+

4

5
PeC1C2 + 2tC1 = 0 (4.116)

−4

9
PeC2

1 +
8

7
PeC1C3 + 6tC2 −

4

9
PetC1

∂C1

∂t
− 2

7
PetC1

∂C3

∂t
= 0 (4.117)

−4

5
PeC1C2 + 12tC3 −

2

5
PetC1

∂C2

∂t
= 0 (4.118)
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Figure 4.16: For N = 3 and t → 1, the C0

of surface concentration as a function of Pe
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Figure 4.17: For N = 3 and t → 1, the C1

of surface concentration as a function of Pe
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Figure 4.18: For N = 3 and t → 1, the C2

of surface concentration as a function of Pe
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Figure 4.19: For N = 3 and t → 1, the C3

of surface concentration as a function of Pe

However, it may not always be possible to find analytical solutions to advection-diffusion

equations in the domain where t is small. Having analysed the advection-diffusion equation

to the two limits (t→ 1, t→ 0), what do these results for the limits mean physically and

what can they tell us about the behaviour at the inbetween values of t. Next, the methods

used to perform the numerical computations are introduced in the following subsection.

4.3.2 Advection-Diffusion in General Condition

Turning the attention to more general cases (1 > t > 0) for finite Pe, the concentra-

tion profile is computed via a numerical solution of the full advection-diffusion equations
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in Eqs. (4.72) – (4.75).

For N = 1, the advection-diffusion equations and the boundary conditions are

4

9
Pe(1 +

1

2
t3)C2

1 − 2

9
Pe(t− t4)C1

∂C1

∂t
− t3

∂C0

∂t
= 0, (4.119)

2tC1 −
2

3
Pe(t− t4)C1

∂C0

∂t
− t3

∂C1

∂t
= 0, (4.120)

C0(0) = 0, C1(0) = 0, (4.121)

t2∂tC0|t=1 =
1

2
, t2∂tC1|t=1 =

3

4
. (4.122)

For N = 2, the advection-diffusion equation has been shown in Eqs. (4.95) – (4.97).

The numerical solutions of the concentration coefficients are plotted versus t for different

N in Figures (4.20) – (4.33). The results reveal that C0 is always linear with t and C1

increases in the region 0 < t < 1. In Figures (4.34) – (4.37), the concentration decreases

gradually with the polar angle θ and all profiles of the concentration for different N are

in a consistent manner.
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Figure 4.20: For N = 1, C0 as a function

of t
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Figure 4.21: For N = 1, C1 as a function

of t

According to Eqs. (4.56) – (4.57), C1 is directly related to the leading order of the

velocity, hence the behaviour of C1 is important and needs to be specifically analysed.
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Figure 4.22: For N = 2, C0 as a function

of t
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Figure 4.23: For N = 2, C1 as a function

of t
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Figure 4.24: For N = 2, C2 as a function

of t
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Figure 4.25: For N = 3, C0 as a function

of t
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Figure 4.26: For N = 3, C1 as a function

of t
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Figure 4.27: For N = 3, C2 as a function

of t
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Figure 4.28: For N = 3, C3 as a function

of t
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Figure 4.29: For N = 4, C0 as a function

of t
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Figure 4.30: For N = 4, C1 as a function

of t
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Figure 4.31: For N = 4, C2 as a function

of t
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Figure 4.32: For N = 4, C3 as a function

of t

93



Chapter 4: Advection - Diffusion Model for Catalytic Janus Colloid

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

t

C
4

Figure 4.33: For N = 4, C4 as a function

of t
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Figure 4.34: For N = 1 and Pe = 1, the

surface concentration v.s. θ
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Figure 4.35: For N = 2 and Pe = 1, the

surface concentration v.s. θ
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Figure 4.36: For N = 3 and Pe = 1, the

surface concentration v.s. θ
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Figure 4.37: For N = 4 and Pe = 1, the

surface concentration v.s. θ
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Figures (4.38) – (4.41) illustrate C1 as a function of Pe for N = 1, 2, 3, 4 and the results

show that there is a sudden decline in the concentration in the region 0 ≤ Pe ≤ 10. This

behaviour is rather unexpected and suggests that there is no self-propulsion even if the

advection becomes dominant over the flow.
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Figure 4.38: For N = 1, C1 v.s. Pe
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Figure 4.39: For N = 2, C1 v.s. Pe
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Figure 4.40: For N = 3, C1 v.s. Pe
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Figure 4.41: For N = 4, C1 v.s. Pe

By solving the full set of advection-diffusion equations, the Janus colloid can achieve an

autonomous propulsion at a small Pe, but its velocity becomes zero, due to no symmetry

breaking at a large Pe. For N = 4, concentration distribution of the solute and the

corresponding contour plot with different Pe are illustrated in Figures 4.42 – 4.45. If the

Péclet number is small (Pe ∼ O(1)), this leads to an increasing mobility, and the strong

inward advective flux of solute particles in the upstream region causes an accumulation in
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the boundary layer at the surface of the colloid. Figures 4.42 – 4.43 indicate that there is

an accumulation of particles around the Janus colloid at its thin upstream boundary layer

for Pe = 1. However, this accumulation zone disappears for Pe = 100 shown in Figures

4.44 – 4.45, and it implies that the Janus sphere comes to equilibrium. With higher Pe,

effects of advection become more important than diffusion in fluid, and causes larger solute

advection in the vicinity of the sphere. If solute molecules move very rapidly to the side

with low solute concentration, it could balance concentration gradient soon, and no longer

maintain asymmetric distribution of solute concentration around the colloid. As a result,

no propulsion is created due to no symmetry breaking for Pe = 100.

Figure 4.42: For N = 4, Pe = 1, the concentration distribution of the solute for a Janus

sphere in 3D.
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Figure 4.43: For N = 4, Pe = 1, the contour plot for the concentration profile of the solute

and an accumulation in the vicinity of the Janus sphere in its upstream region. The Janus

colloid is placed in the centre, and color bar indicates high (yellow) versus low (dark blue)

concentration.
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Figure 4.44: For N = 4, Pe = 100, the concentration distribution of the solute for a Janus

sphere in 3D.
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Figure 4.45: For N = 4, Pe = 100, the contour plot for the concentration profile of the

solute. There is no an accumulation of particles because of no symmetry breaking.
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4.3.3 Flow Field for Janus and Inhomogeneous Spheres

The framework of flow field introduced in section 4.2.3 can be applied to diffusion-

reaction model in Chapter 3. Once the full picture of the concentration of the solute is

known, the flow field for Janus colloid can be determined. The streamlines of this flow for

a number of representative values of k1C∞
k2

and k1R
Dhp

were studied in order to present the

different qualitative phenomena.

For Janus colloid, Figures 4.46 – 4.48 illustrate the streamlines for the regions I, II

and III in Figure 3.8 respectively. In regimes I and II, there is always a net flow parallel

to the swimming direction at the front of the sphere. However, the flow field in regime

III, shown in Figure 4.48, displays qualitatively striking features. In order to explore the

complex pattern in regime III, more flow plots with different parameters k1C∞
k2

and k1R
Dhp

are studied. According to Figures 4.48 – 4.52, less and less net flow is observed in the

region III, where the propulsion velocity of the Janus sphere is expected to decay with

1/R dependence. These figures for different regions illustrate the process of how the flow

fields changed from one region to another.

Furthermore, the motion of a fluid for inhomogeneous sphere is also computed with

similar procedure, and is shown in Figures 4.53 – 4.55 corresponding to three different

regions in Figure 3.9. The flow patterns in the vicinity of inhomogeneous colloid in region

I and II are symmetric with respect to the midplane, and this is similar to Janus case.

Increasing the size parameter k1R
Dhp

leads to a complex flow field in regime III, where size

dependence of propulsion velocity comes into play, and this reveals an asymmetric pattern

rather than symmetric one. For larger colloid size, there are additional circulations in

the vicinity of the particle. For comparison, the fluid flows more smoothly around the
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Figure 4.46: The flow field around the Janus sphere for k1C∞
k2

= 0.5 and k1R
Dhp

= 0.5 in

region I of the diagram in Figure3.8.

Figure 4.47: The flow field around the Janus sphere for k1C∞
k2

= 5 and k1R
Dhp

= 0.5 in region

II of the diagram in Figure 3.8.
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Figure 4.48: The flow field around the Janus sphere for k1C∞
k2

= 0.5 and k1R
Dhp

= 1 in region

III of the diagram in Figure 3.8.

Figure 4.49: The flow field around the Janus sphere for k1C∞
k2

= 0.5 and k1R
Dhp

= 5 in region

III of the diagram in Figure 3.8.
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Figure 4.50: The flow field around the Janus sphere for k1C∞
k2

= 0.5 and k1R
Dhp

= 10 in region

III of the diagram in Figure 3.8.

Figure 4.51: The flow field around the Janus sphere for k1C∞
k2

= 0.5 and k1R
Dhp

= 20 in region

III of the diagram in Figure 3.8.

103



Chapter 4: Advection - Diffusion Model for Catalytic Janus Colloid

Figure 4.52: The flow field around the Janus sphere for k1C∞
k2

= 0.5 and k1R
Dhp

= 50 in region

III of the diagram in Figure 3.8.

inhomogeneous sphere in regions I and II than that moves in region III, and this difference

reflects the role of size dependence at large size limit.

4.4 Summary

To summarise, the model of advection-diffusion has been constructed to compute the

concentration and velocity of a Janus sphere suspended in fluid. By solving the full set of

advection-diffusion equations, the Janus colloid can achieve an autonomous propulsion at a

small Pe, but its velocity becomes zero due to no symmetry breaking at the large Pe limit.

In addition, for both Janus and inhomogeneous spheres propelled by diffusion-reaction,

size effect has a major impact on the flow field for large colloids.
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Figure 4.53: The flow field around the inhomogeneous sphere for k1C∞
k2

= 0.5 and k1R
Dhp

= 0.5

in region I of the diagram in Figure 3.9.

Figure 4.54: The flow field around the inhomogeneous sphere for k1C∞
k2

= 5 and k1R
Dhp

= 0.5

in region II of the diagram in Figure 3.9.
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Figure 4.55: The flow field around the inhomogeneous sphere for k1C∞
k2

= 0.5 and k1R
Dhp

= 50

in region III of the diagram in Figure 3.9.
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Conclusion

5.1 Conclusion and discussion

The last decade has witnessed the emergence of a new paradigm in biological motil-

ity: transport activities undertaken by molecular motors and dynamics of colloids in fluid

at the micro- or nanoscale. While advances in experimental techniques for the design

of artificial swimming robots have proceeded considerably, theoretical developments have

struggled to keep pace. In order to overcome this gap, this work was devoted to explor-

ing the physical characteristics of active colloids that asymmetrically catalyse a chemical

reaction and to provide a perspective on the propulsion of colloidal dispersions from a

microscale viewpoint.

A model of diffusion-reaction has been established and is an extension of previous the-

ories [82] and [73]. The approach in Chapter 3 employs a combination of analytical and

numerical techniques. In addition, there are some simplifying assumptions in the analysis

presented in section 3.2. The catalytic activity occurring on the surface of the colloid

is considered as a two-step process. However, there could be more intermediate steps in
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the chemical reaction. It is assumed that the main qualitative results will not be affected

by the more complicated kinetic route of the decomposition of substrate catalysed by the

enzyme. Another assumption is that advection is neglected in the diffusion-reaction model.

By building upon the theoretical framework presented in section 3.2, both Janus and

inhomogeneous colloids can achieve self-propulsion by the diffusiophoretic effect and this

mechanism is based on the fact that the asymmetry of the coated catalyst dominates the

mobility. Such spontaneous symmetry breaking can be observed in all regions in Figures

3.8 – 3.9. When the fuel concentration is small (k1C∞
k2

< 1), a Janus sphere can displace

itself. Furthermore, its swimming velocity is proportional to the concentration of solute.

The enhancement of the displacement of a Janus colloid has been verified in a previous

experiment [72]. Nevertheless, the effect of fuel concentration on propulsion velocity is

reduced for higher concentration of solute. Although the previous theory [82] implies that

the velocity of a Janus sphere is independent of its radius, the results in Chapter 3 in-

dicate that the propulsion velocity of the Janus particle is inversely proportional to the

size at the large size limit ( k1RDhp
> 1), and the 1/R behaviour is expected to disappear

for smaller colloids. Evidence from the current experiment [73] demonstrates that the

velocity of a Janus colloid displays the 1/R size dependence in an experiment accessible

range (250nm to 5µm). As a consequence, the theory developed in Chapter 3 can explain

the influence of fuel concentration as well as the observed size dependence of propulsion

velocity for the Janus colloid and is consistent with these previous experiments [72] [73].

Furthermore, this analysis is then extended to an inhomogeneous colloid with asymmetric

catalyst. Compared with Janus particles, while an inhomogeneous sphere has similar be-

haviour for propulsion velocity at small size limits, its propulsion velocity exhibits a decay

with 1/R2 dependence at large size limits.
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The role played by advection-diffusion in the motion of a Janus colloid was examined

in Chapter 4. The concentration is computed as a function of Péclet number. The combi-

nation of advection and diffusion generates and maintains the concentration gradient for

low Péclet number (0 < Pe < 10). Since there is symmetry breaking, this leads to an

accumulation of solute particles in the boundary layer and effective autonomous propul-

sion for the Janus sphere. By contrast, the accumulation zone disappears when advection

overwhelmingly dominates the flow at high Pe. As a result, the Janus colloid undergoes a

random walk and its mean velocity becomes zero. As no symmetry breaking is observed

in the region of 10 < Pe < 100, the dispersion exerts an entropic or depletion force on the

Janus colloid, and the presence of strong advection does not result in any enhancement of

diffusion.

There is another theory that indicates self-propulsion, due to an accumulation of Janus

particles, is linked to Péclet number. Recently, a minimal analysis suggests that advection

is able to lead to symmetry breaking in the phoretic motion of a Janus colloid, and the

particle is predicted to translate with propulsion velocities in a regime of finite Péclet num-

ber [75]. There are two advantages of the theory constructed in Chapter 4. In presenting

the numerical procedure for determining the concentration distribution and propulsion

velocity for an active colloid, the flows are driven by a far field uniform flow. Another ad-

vantage of the theoretical framework that has been presented here is that it readily adopts

other forms of far field flow. The formulation described in Chapter 3 and Chapter 4 would

remain largely unchanged, except for a slight modification of the value of the bound-

ary condition in the domain; that which corresponds to infinity (in the fluid domain). To

summarise, the character of the accumulation of particles reflects the competition between

advection, driving the suspension out of equilibrium, and Brownian diffusion, acting to

restore equilibrium; both of these effects are considerably influenced by the nature of the
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hydrodynamic interactions between particles.

Overall, the theoretical framework for active colloids in the thesis provides a way to

interpret existing experimental results and endeavours to give an overview of the partial

answers that have been proposed or that can be inferred to date. Although the complete

picture has not yet been formulated, it is hoped that the investigation presented in this

thesis will be of benefit to more researchers.

5.2 Future landscape

Eventually, there will be other physical scenarios where the ideas in this thesis will

be used to study other interesting problems. Firstly, a natural extension is to combine

together the two frameworks, namely the two-step kinetic route for diffusion-reaction and

the advection-diffusion model. In addition, the theory can be applied to mechanisms with

an external concentration gradient and external shear flows.

Next, the theoretical framework developed in sections 3.2 and 4.2 may be extended

to study the self-propulsion of a Pt/Au catalytic nanomotor powered by electrocatalytic

reactions. The motion of a bimetallic rod-shaped nanomotor is driven by fluid slip around

the nanomotor’s surface due to a coupling of charge density and electric fields. The govern-

ing equations for the phoretic motion of an asymmetric catalysed colloid are very similar

to those of electrochemical reactions, except that the motion of the charged or dielectric

object is induced by its interaction with an ambient electric field.

It should be noted that, in this discussion, only one active colloid has been considered.

Therefore, it is possible to extend the theory to a system, consisting of two or more colloids
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with asymmetric catalysts. The interaction between different particles could induce a con-

siderably enhanced diffusion than an individual one. In this way, a train of colloids moving

through the dispersion can cause interesting collective behaviour when they interact via

the gradient of the fields that they also use for self-propulsion. The generic properties of

such self-propelled colloids provide a route for pattern formation in colloidal dispersions,

and perhaps other complex fluids. Lastly, the locomotion of self-propelled active colloids,

due to interfacial phoretic transport, has been explored and this fascinating world of the

swimming characteristics of colloidal dispersions awaits future research.
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Appendix A

Stress Tensor

A key step to understand fluid dynamics requires knowledge of the stress tensor in

terms of the properties of the flow, in particular the velocity field. Consider a stress tensor

σ [86]:

∂(ρv)

∂t
+∇ · (ρv2) = ∇ · σ + ρF, (A.1)

where v is the velocity, ρ represents the density, and F denotes the force. Note that σ is

a second-rank tensor (dyadic) and depends on the fluid pressure p, bulk viscosity κ and

viscosity η.

σ = −pI+ κ(∇ · v)I+ 2η∆, (A.2)

∆ =
1

2
[∇v+ (∇v)ᵀ]− 1

3
I(∇ · v), (A.3)

here I = δij which is the Kronecker delta and T denotes transpose matrix.

For imcompressible flow, the divergence of the velocity vanishes ∇ · v = 0, therefore

the stress tensor σ in Eq. (A.2) becomes

σ = −pI+ η [∇v+ (∇v)ᵀ] . (A.4)
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Appendix A: Stress Tensor

In order to obtain the full picture of the stress tensor σ, the only problem we have to

confront is the velocity gradient ∇v. The velocity gradient in spherical coordinate (r, θ, φ)

can be recognizably written in matrix form [86]:

∇v =


∂vr
∂r

∂vθ
∂r

∂vφ
∂r

1
r

(
∂vr
∂θ − vθ

)
1
r

(
∂vθ
∂θ + vr

)
1
r
∂vφ
∂θ

1
r

(
1

sin θ
∂vr
∂φ − vφ

)
1
r

(
1

sin θ
∂vθ
∂φ − vφ cot θ

)
1
r

(
1

sin θ
∂vθ
∂φ − vφ cot θ

)

 (A.5)

We can now use Eq. (A.5) to interpret all the components of the stress tensor σ. Let us

write out Eq. (A.4) entirely and recall that σ12 = σ21, etc.

σrr = −p+ 2η
∂vr
∂r

, (A.6)

σθθ = −p+ 2η

r

(
∂vθ
∂θ

+ vr

)
, (A.7)

σφφ = −p+ 2η

r

(
1

sin θ

∂vθ
∂φ

− vφ cot θ

)
, (A.8)

σrθ = σθr =
∂vθ
∂r

+
1

r

(
∂vr
∂θ

− vθ

)
, (A.9)

σθφ = σφθ =
1

r

∂vφ
∂θ

+
1

r

(
1

sin θ

∂vθ
∂φ

− vφ cot θ

)
, (A.10)

σφr = σrφ =
∂vφ
∂r

+
1

r

(
1

sin θ

∂vr
∂φ

− vφ

)
. (A.11)
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